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Abstract

In the context of policy search for robotic systems, being sample-efficient is a

most. Evolutionary Algorithms have been used in the past ten years to achieve signifi-

cant results in the robotics domain as their Darwinist approach to optimization allows

them to bypass problems often encountered by gradient-based optimization methods

like Reinforcement Learning. Nevertheless, such methods remain sample greedy and

almost impossible to transfer directly onto a real robotic system. This Ph.D thesis

takes interest in solving that sample-efficiency problem, especially for the Novelty

Search algorithm, a novelty-driven Evolutionary Algorithm. Incorporating learned

models in the optimization process has been a solution towards sample-efficiency for

many years, but few works address this within the Novelty Search framework. Three

research axis within that framework are explored in this manuscript. Firstly, the

impact of pre-training the learned model with data gathered using random processes

of varying time-correlation is evaluated. It is shown that the impact is negligible on

a state-of-the-art model-based Evolutionary Algorithm, but that it is significant on

a model-based Reinforcement Learning algorithm with returns with up to ten-fold

differences between the best and worst random process used. Secondly, a prelimi-

nary study is made on a new approach aiming at biasing the initial population of

the Novelty Search algorithm towards a more behavioraly diverse one using random

dynamics models ensembles. It is shown that this approach successfully reduces the

number of evaluations required by Novelty Search to cover the environment of a two-

wheeled robot. It is also shown that this approach fails on a more complex locomotion

environment of an hexapod robot, and the lack of diversity captured by the random

models ensembles used is determined as the cause. Finally, a new model-based Evo-

lutionary Algorithm, dubbed Model-Based Novelty Search, is proposed, with the aim

of preserving the strong exploration capabilities of Novelty Search while reducing the

numbers of evaluations needed to reach the same coverage of the Behavioral Space.

Results on three robotic tasks show a reduction in sample usage compared to Novelty

Search of 30% up to 75% depending on the considered task, a significant advance

towards a more sample-efficient Novelty Search algorithm.





Résumé

La robotique est un domaine vaste et le degré de complexité du contrôle d’un
robot peut varier grandement selon le système à contrôler, la tâche à accomplir et
l’environnement dans lequel cette tâche doit être accomplie. Pour faire face à cette
complexité, des méthodes permettant au roboticien d’abstraire de nombreuses par-
ties de la tâches ont émergées, notamment les méthodes d’apprentissage. Ainsi, le
problème du contrôle du robot passe d’une tâche d’ingénierie à un problème de de-
sign d’un algorithme d’apprentissage, ayant pour objectif l’apprentissage d’une poli-
tique. Dans le cadre de l’apprentissage par renforcement [151], l’environnement étant
défini comme un processus de décision Markovien, une politique est une stratégie de
décision qui pour un état du système renvoie l’action que l’agent (le robot) doit ef-
fectuer, généralement avec un objectif précis en tête qu’il soit de résoudre la tâche ou
d’explorer l’environnement du robot. Nous nous intéressons dans cette thèse unique-
ment à des stratégies déterministes, mais une distribution de probabilité sur l’action
à effectuer peut également être retournée par la politique pour un état donné.

De nombreuses méthodes de recherche de politique existent mais, dans le cadre de
cette thèse, deux nous intéressent particulièrement. Premièrement, l’apprentissage
par renforcement consiste en interactions successives avec l’environnement suivant
une politique, chaque interaction donnant un signal de récompense à l’agent. La ré-
compense peut-être positive ou négative, et l’agent se sert de ce signal de récompense
pour améliorer sa politique, de telle sorte qu’à terme l’agent prenne l’action opti-
male de telle sorte à maximiser la récompense reçue le long d’un épisode, un épisode
étant une suite d’interactions avec l’environnement. L’apprentissage par renforce-
ment s’est fortement développé ces dernières années à travers de nombreux succès
en robotique [81] et dans d’autres domaines [173, 118] . Néanmoins, l’apprentissage
par renforcement se base sur le gradient du signal de récompense, qui en robotique
est souvent trompeur ou épars [12] et peut mener à des apprentissages de politiques
sub-optimales.

Les algorithmes évolutionaires [110] sont une autre famille de méthode d’optimisation
pouvant être utilisés pour trouver une ou plusieurs politiques permettant de répondre
à un problème donné. A l’inverse de l’apprentissage par renforcement, ces méthodes
n’utilisent pour se guider que de la performance d’une politique sur un épisode en-
tier, et sont donc moins sensible au problème de récompense rare. En particulier,
les algorithmes de diversité [91, 133] sont un sous-ensemble des algorithmes évolu-
tionaires dont l’objectif est de générer un ensemble de politiques diverse les unes par



rapport aux autres dans un espace dit comportemental, défini par l’utilisateur. Le
premier algorithme proposant ce schéma de fonctionnement est Novelty Search [91].
Novelty Search a des propriétés couvrantes de l’espace comportemental [43], ce qui
permet en alignant la tâche et l’espace comportemental à cet algorithme de résoudre
et d’apporter un ensemble de solutions diverses à des tâches de robotique complexes.

Néanmoins, les méthodes d’apprentissage présentées ci-dessus reposent souvent
sur des volumes de données importants pour permettre au robot de trouver des
comportements résolvant la tâche qui lui est confiée [96]. Hors, dans le monde réel,
l’utilisation d’un robot est coûteuse: temps de développement de contrôleurs stables,
temps d’exécution des mouvements, risques de sécurité et usure de la machine sont
tous des facteurs à prendre en compte lorsque l’on décide de travailler sur un robot
dans le monde réel. Ainsi, dans le monde de l’apprentissage en robotique, l’utilisation
de simulateurs s’est d’autant plus démocratisée [30, 157, 28]. Un comportement
est appris sur le système simulé, puis transferré sur le système réel, pour un coût
d’évaluation sur le système réel grandement réduit, l’apprentissage ayant déjà été
effectué en simulation. Cependant, l’utilisation de simulateurs ne se fait pas sans
anicroches et amène également d’autres problèmes, le plus notoire étant le Reality
Gap [66]. Le Reality Gap est l’existence d’une divergence dans la dynamique du
système dans le monde réel et celle observée dans sa version simulée. En effet, la
simulation est une approximation de la réalité et ne prend pas en compte tout les
facteurs pouvant influencer le comportement du robot dans la réalité: calibration,
bruit dans les capteurs, frottements...

Pour surmonter ce problème, de nombreuses méthodes ont été proposées. Les plus
notoires sont l’Identification de Système [30, 157, 28, 1, 83], l’Adaptation de Domaine
[69, 48, 101, 21, 76, 16, 67, 159], la Transférabilité [84] et la Randomisation de
Domaine [156, 129, 138, 109]. En dépit de ces propositions de solution au problème du
Reality Gap, d’autre façons de le contourner existent. L’une d’entre elles est au coeur
de cette thèse, les approches basées sur un modèle appris de l’environnement [131].
Les approches basées modèle sont centrées non pas sur un simulateur, défini à l’avance
et dont les paramètres sont souvent fixés, mais sur un modèle de la dynamique de
l’environnement appris au fur et à mesure des interactions avec ce dernier. Cette
approche permet généralement, dans le support d’entraînement du modèle d’avoir
une représentation fiable de la réalité car directement appris à partir de données
du monde réel. Ces méthodes concourrent souvent les unes entre les autres sur un
facteur primordial d’un algorithme de recherche de politique basée modèle: la sample-
efficency ou le nombre d’évaluations sur le système réel nécessaire pour atteindre un
comportement résolvant la tâche donnée au robot.



Ainsi, dans cette thèse, nous abordons le sujet de la réduction du nombre d’évaluations
nécessaire pour l’algorithme Novelty Search pour couvrir l’espace comportemental
défini par l’utilisateur, tout particulièrement grâce à l’utilisation de modèles appris.
Nous chercherons donc à répondre à la problématique suivante:

Comment réduire le nombre d’évaluations requise par Novelty Search

pour couvrir l’espace comportemental ?

Pour y répondre, nous procéderons en trois volets, chacun attaquant différentes
phases de l’apprentissage de Novelty Search ou des méthodes basées modèles. Pre-
mièrement, nous étudions l’impact des processus aléatoires de récolte de données
initiale pour le pré-entraînement d’un modèle de la dynamique de la tâche ainsi
que la manière dont ils se comparent les uns aux autres, en montrant qu’en fonc-
tion de l’environnement la différence de performance initiale de l’algorithme peut être
jusqu’à 10 fois supérieure avec une méthode de récolte de données initiale appropriée.
Deuxièmement, nous proposons une approche préliminaire basée sur l’utilisation de
modèles de la dynamique aléatoire permettant de générer une population initiale
pour l’algorithme Novelty Search plus diverse que d’utiliser une population de poli-
tique paramétrées aléatoirement. Finalement, nous proposons une nouvelle méthode
basée modèle autour de l’algorithme Novelty Search, nommée Model-Based Novelty
Search, qui divise jusqu’à 5 fois le nombre d’évaluations sur le système réel nécessaires
pour atteindre une couverture similaire à celle de Novelty Search classique.

Dans le premier chapitre, nous abordons donc la question du processus aléatoire
utilisé pour générer des données issues de l’interaction entre le robot et son envi-
ronnement, données par la suite utilisées pour pré-entraîner un modèle utilisé avec
une méthode de recherche de politique basée modèle. Ce processus aléatoire contrôle
le comportement du robot dans son environnement. Nous considérons cinq méth-
odes de récolte initiale de données, deux venant de l’état de l’art et trois étant des
marches aléatoires dans l’espace des actions que peut prendre l’agent. Les deux méth-
odes issues de l’état de l’art sont les actions aléatoires et les politiques paramétrées
aléatoirement. Les trois autres sont des paramétrisations différentes de marche aléa-
toires générées à l’aide de bruit coloré [130], chaque paramétrisation modifiant le
degré d’auto-corrélation des trajectoires générées dans l’espace des actions. Chacune
de ces méthodes de bruit coloré est dénotée CNRWβ , β étant le facteur permettant
de régler le degré de corrélation temporelle dans les sequences d’actions générées avec
un β plus grand, la séquence étant plus fortement corrélé.

Plus en détail dans le chapitre 3, nous étudions le comportement de chacune de



ces méthodes d’initialisation sur 5 environnements robotique différents que nous car-
actérisons à l’aide d’une métrique de consistence des actions dans l’espace d’état du
système. Cette métrique permet de montrer que les environnements avec une consis-
tance plus grande auront leur dynamique mieux explorée par des méthodes de récolte
initiale de données peu corrélés dans le temps, notamment les actions aléatoires.
La réciproque est également observée pour les environnements avec une consistance
faible, les modèles de la dynamique ayant une erreur de prédiction plus faible lorsque
les données ont été récoltées avec un processus aléatoire dont les séquences d’actions
sont plus fortement corrélées.

Finalement, nous analysons l’impact de ces méthodes sur deux algorithmes état
de l’art: DAQD [98] et PETS [26], le premier étant un algorithme Quality-Diversity
basé modèle, et le second étant un algorithme d’apprentissage par renforcement basé
modèle. Les figures 1a, 1b et 1c montrent l’évolution de la couverture de DAQD
en fonction du nombres d’évaluations avec les différentes méthodes d’initialisation
étudiées. L’impact observé n’est pas significativement différent entre les différentes
méthodes considérées, et est même rapidement effacé avec le nombre d’évaluations
grandissant. DAQD semble ne pas être très sensible à la qualité initiale du modèle,
et l’effet de l’initialisation est rapidement supprimé, le nombre d’évaluations supplé-
mentaires étant effectué étant rapidement très supérieur au budget d’initialisation
de 10 épisodes.

Les figures 2a, 2b et 2c montrent l’impact des méthodes d’initialisation sur
l’algorithme PETS. Cet algorithme effectuant une nouvelle optimization après chaque
action prise, l’effet de l’initialisation de modèle devrait être plus prononcé. Effec-
tivement, nous observons sur la figure 2a, que les actions aléatoires donnent une
récompense médiane finale jusqu’à plus de dix fois supérieur à celle d’une marche
aléatoire à base de bruit coloré. Cet environnement étant le plus consistant, cela
correspond bien à nos attentes en termes de correspondance entre la corrélation
temporelle des séquences d’actions générées, la qualité du modèle et l’impact sur la
méthode de recherche de politique qui s’ensuit. De même, sur la figure 2c, nous
observons que la marche aléatoire avec un bruit coloré le plus corrélé dans le temps
donne un retour médian en terme de récompense quasiment dix fois supérieur à celui
des actions aléatoires. Cet environnement étant le moins consistent, cela confirme à
nouveaux les observations faite précedemment.

Pour conclure, dans ce chapitre nous explorons le lien entre la consistence des
actions dans un environnement, le degré d’auto-corrélation de méthode de récolte
initiale de données et l’impact sur la qualité d’un modèle appris avec ces données.



(a) Two-Wheeled Robot Maze

(b) Two-Wheeled Robot Maze Traps

(c) Ball In Cup

Figure 1: Impact of different initial data gathering methods on DAQD algorithm
ten first generations

De plus, nous démontrons que la qualité du modèle peut parfois avoir un impact très
important sur la méthode de recherche de politique, pouvant entraîner des écarts de
performance jusqu’à dix fois supérieur lorsqu’une méthode appropriée est utilisée.
Nous montrons également que certains algorithmes sont plus sensibles que d’autres



(a) Cartpole

(b) Pusher

(c) Ball In Cup

Figure 2: Impact of different initial data gathering methods on PETS algorithm
first iteration return

à ce phénomène.



Des conclusions du chapitre précédent, nous supposons que si l’initialisation du
modèle peut avoir un impact fort sur la méthode de recherche qui s’en suit, d’autres
facteurs peuvent également l’impacter. Dans le cas de l’algorithme Novelty Search,
un facteur potentiellement important est la population de politiques utilisée comme
point de départ pour la recherche de diversité. Usuellement, cette population est
initialisée avec un ensemble de politiques paramétrées aléatoirement de manière uni-
forme dans l’espace des paramètres. Nous proposons dans ce chapitre de biaiser
la population initiale, de telle sorte qu’elle ne soit pas uniforme sur l’espace des
paramètres mais plutôt concentrée sur des régions prometteuse de ce même espace.

Pour déterminer les régions de cet espace pouvant être prometteuses, nous pro-
posons d’utiliser des ensembles de modèles dynamiques paramétrés aléatoirement
pour caractériser des politiques nouvelles sur l’ensemble de ces modèles. Les poli-
tiques trouvées étant diverses sur l’ensemble de ces environnements, l’objectif est
qu’ensuite ces politiques soient également plus diverses sur le système réel que des
politiques paramétrées aléatoirement. Pour trouver ces politiques, nous proposons
d’utiliser l’algorithme Novelty Search avec des mesures de nouveauté adaptées à
l’utilisation d’ensemble d’environnements (les modèles aléatoires). Nous proposons
donc deux méthodes de mesures de nouveauté, Nmin et Nsum, calculant respective-
ment le minimum de nouveauté d’une politique sur l’ensemble d’environnement, et
la seconde la somme de la nouveauté sur l’ensemble des modèles aléatoires. Nous
proposons également deux représenations de modèle aléatoires, les Spatial Random
Fields [60] et les Réseaux de Neurones Non-Linéaires, les premiers donnant des tran-
sitions Gaussiennes et l’évolution des transitions en fonction de l’état-action en entrée
étant continu, les seconds n’ayant aucune garantie de continuité pour deux entrées
proches les unes des autres mais ayant potentiellement plus de capacité de représen-
tation. Finalement, à l’issue de Novelty Search sur l’ensemble de modèle, un ensem-
ble d’individus (de la taille de la population) est selectionné à l’aide d’une de deux
méthodes proposée: soit les individus les plus nouveaux générées au cours de Novelty
Search sur l’ensemble de modèle aléatoires sont sélectionnés, avec pour objectif qu’ils
soient le plus nouveau possible sur le système réel, ou la population finale à l’issue de
Novelty Search est sélectionnée, avec pour objectif que ces individus soient les plus
évolvables [44].

L’algorithme proposé, 0DAB, est évalué sur deux environnements, le premier
étant une tâche de navigation d’une base mobile à deux roues dans un environ-
nement ouvert, le seconde étant une tâche de locomotion d’un robot hexapode. La
première tâche ayant une dynamique uniforme, nous nous en servons comme tâche
jouet permettant d’évaluer la viabilité de la méthode proposé et de déterminer quelle



Figure 3: Coverage of 100 randomly parameterized policies compared to 0DAB se-
lected bootstraps using Non-Linear Neural Network ensembles of size 40 on Two-
Wheeled Robot Navigation Task

Figure 4: Novelty Search coverage evolution comparison between randomly param-
eterized policies and 0DAB selected bootstraps obtained with Non-Linear Neural
Networks ensembles of size 40 on Two-Wheeled Robot Navigation Task

représentation de modèle peut-être la plus intéressante à utiliser. Il en ressort que
les Spatials Random Fields et leur dynamique simple ne parviennent pas à générer
des individus qui maintiennent leur diversité sur l’environnement réel, tandis que les
réseaux de neurones non-linéaires y parviennent et surpassent la diversité atteinte
par une population de politiques paramétrées aléatoirement d’environ 35% commme
montré sur la figure 3. De plus, la figure 4 montre qu’utiliser cette population comme
point de départ réduit de plusieurs centaines le nombre d’évaluations nécessaires pour
couvrir totalement l’environnement considéré.

Les résultats sur le second environnement sont plus mitigés, 0DAB ne parvenant
pas à générer une population d’individus ayant une couverture initiale de l’espace



comportemental nettement supérieur à celui d’un ensemble de politique paramétrées
aléatoirement, et ce malgré l’exploration d’horizon de planification plus grand sur
le modèle comme montré sur la figure 5. De plus, la figure 6 montre que même
lorsque la couverture initiale est plus importante, l’utilisation de 0DAB biaise la
recherche évolutionnaire dans des zones sous performantes de l’espace des paramètres,
et mène à une évolution de la couverture de l’espace comportemental plus lente
qu’avec des politiques paramétrées aléatoirement de manière uniforme dans l’espace
des paramètres.

Figure 5: Coverage of 100 randomly parameterized policies compared to 0DAB se-
lected bootstraps using Non-Linear Neural Network ensembles of size 4 and 40 and
a prediction horizon of 30 and 100 time-steps on Omnidirectional Hexapod Locomo-
tion Task

Figure 6: Novelty Search coverage evolution comparison between randomly param-
eterized policies and 0DAB selected bootstraps obtained with Non-Linear Neural
Networks ensembles of size 4 and 40 and a prediction horizon of 30 and 100 time-
steps on Omnidirectional Hexapod Locomotion Task

Pour comprendre ce phénomène, une analyse supplémentaire est faite. L’algorithme



Novelty Search est lancé sur le système réel, et les individus ainsi générés sont ensuite
transférés sur l’ensemble de modèle et l’on observe leur descripteur comportemental
sur l’ensemble de modèle. Ces descripteurs comportementaux sont comparés à ceux
obtenus avec 0DAB sur ce même ensemble de modèle, et l’on observe la différence
de couverture sur l’ensemble de modèle de chacune de ces deux approches. La fig-
ure 7 montre ce qui ce passe lorsque 0DAB fonctionne bien sur l’environnement de
navigation d’une base mobile à deux roues. Un alignement des solutions de Nov-
elty Search obtenues sur le système réel avec celle trouvées par 0DAB est observé:
l’ensemble de modèles aléatoires choisi permet de capturer un mapping de l’espace
des paramètres vers l’espace comportemental qui est similaire, la diversité des solu-
tions étant préservée entre les deux. La figure 8 quand à elle montre ce qui se passe
lorsque la représentation de modèle n’est pas la bonne pour générer des solutions
diverses sur le système réel. En effet, les solutions issues de Novelty Search sur le
système réel s’écrasent toutes dans une petite région de l’espace comportemental
sur les modèles aléatoires, rendant la sélection de solutions diverse avec 0DAB très
difficile.

Pour conclure, dans ce chapitre nous avons présenté une étude préliminaire sur
un nouvel algorithme appelé 0DAB ayant pour objectif de générer une population
d’individus plus diverse que des politiques paramétrées aléatoirement. Pour ce faire,
nous proposons d’utiliser des modèles dynamique aléatoires et des métriques de nou-
veauté adaptées. Nous montrons l’efficacité de la méthode sur une tâche de naviga-
tion d’une base mobile à deux roues, augmentant la couverture initiale de 35% par
rapport aux politiques paramétrées aléatoirement et réduisant de plusieurs centaines
le nombre d’évaluations nécessaire pour couvrir complètement l’environnement. Néan-
moins, sur une tâche avec une dynamique moins uniforme, la locomotion d’un robot
hexapode, 0DAB échoue à produire une population initiale significativement plus
diverse que celle des politiques paramétrées aléatoirement et biaise même négative-
ment la population en réduisant significativement la vitesse de d’évolution de la
couverture de l’environnement avec Novelty Search. Nous avons ensuite mené une
analyse montrant que ce phénomène s’explique par la difficulté à caractériser les solu-
tions considérées comme diverses sur la seconde tâche avec les ensembles de modèles
aléatoires de la dynamique considérés.

Le dernier chapitre s’intéresse directement à la réduction du nombre d’évaluations
nécessité par Novelty Search directement au cours du processus d’optimisation. L’objectif
est de réduire le nombre d’évaluations nécessaire pour atteindre une couverture don-
née. Pour ce faire, nous proposons d’incorporer un modèle de la dynamique de
l’environnement dans la boucle de Novelty Search. L’objectif est donc de réduire



Figure 7: Archive Coverage after 0DAB on the real system and on the models of the
Non-Linear Neural Network Ensemble of size 40 compared to that of Novelty Search
on Two-Wheeled Robot Navigation Task

le nombre d’évaluations d’individus en pratique peu nouveaux, en estimant a priori
leur nouveauté grâce à ce modèle de la dynamique. L’algorithme proposé, Model-
Based Novelty Search, repose donc en son centre sur l’algorithme Novelty Search
classique, executé sur le modèle appris. Novelty Search est exécuté sur le modèle
pour un nombre de génération adaptatif, basé sur le nombre d’évaluations sur le
système totales actuelles, de telle sorte que mieux le modèle est appris, plus le pro-
cessus d’optimization de Novelty Search sur le modèle est long. A l’issu du budget
de générations défini sur le modèle, les sp individus les plus nouveaux parmi tout
ceux générés sur le modèle sont transférés sur le système réel, sp étant la taille de la
population. Ces mêmes individus sont ensuite utilisés comme point de départ pour



Figure 8: Archive Coverage after 0DAB on the real system and on the models of
the Non-Linear Neural Network Ensemble compared to that of Novelty Search on
Omnidirectional Hexapod Locomotion Task

la prochaine boucle de l’algorithme Novelty Search sur le modèle, et ce processus est
répété jusqu’à exhaustion du budget d’évaluations sur le système réel.

Nous évaluons la performance de Model-Based Novelty Search contre celle de
Novelty Search, de Vanilla Quality-Diversity et de Dynamics-Aware Quality-Diversity
sur trois environnements différents: une tâche de locomotion d’un robot hexapode,
une tâche de navigation d’une base mobile à deux roues dans un environnement ou-
vert et une tâche de bilboquet. Les figures 9, 10 et 11 montrent que sur les trois envi-
ronnements considérés, Model-Based Novelty Search réduit le nombre d’évaluations
nécéssaires pour atteindre une couverture similaire par rapport à Novelty Search de
30% à 75%, un gain significatif. De plus, Model-Based Novelty Search réduit égale-



Figure 9: Coverage of Diversity Methods on the Two-Wheeled Robot Navigation
task depending on number of evaluations

ment le nombre d’évaluations nécéssaires pour atteindre une couverture similaire à
celle de Dynamics-Aware Quality Diversity de 30% à 50%.

Figure 10: Coverage of Diversity Methods on Omnidirectional Hexapod task depend-
ing on number of evaluations

On observe sur les figures 9 et 10 que Model-Based Novelty Search a tendance à
sous-performer en terme de couverture atteinte lorsque le nombre d’évaluations sur
le système réel est encore faible. Nous montrons plus en détail dans le chapitre 5 que
cela est dû a une sur-exploitation du modèle avec l’objectif de transfert des individus
les plus nouveaux, ces individus étant souvent au début ceux dont le descripteur
comportemental est le plus mal estimé. Dans le chapitre 5, nous proposons donc
une nouvelle approche évolutionaire basée modèle, Model-Based Novelty Search, qui



Figure 11: Coverage of Diversity Methods on Ball In Cup task depending on number
of evaluations

préserve les capacités d’exploration forte de Novelty Search tout en réduisant le
nombre d’évaluations nécessaires de 30% à 75%.

Pour conclure, nous avons dans cette thèse répondu à la question de la réduc-
tion du nombre d’évaluations pour l’algorithme Novelty Search a travers trois volets.
D’abord, nous avons étudié comment la méthode initiale de récolte de données util-
isées pour pré-entraîner le modèle pouvait impacter une méthode de recherche de
politique basée modèle, en montrant que la différence de récompense obtenue par
une méthode d’apprentissage par renforcement basée modèle pouvait être jusqu’à 10
fois supérieur lorsqu’une méthode appropriée est utilisée. Ensuite, nous avons pro-
posé une approche préliminaire permettant d’augmenter la couverture initiale d’un
ensemble de politique par rapport à des politiques paramétrées aléatoirement sur un
environnement de navigation simple. Nous avons également étudié les limites de cette
technique ainsi que les raisons de ces limites. Finalement, nous avons proposé une
nouvelle méthode de recherche de politique basée modèle inspirée de l’algorithme
Novelty Search permettant de réduire le nombre d’évaluations nécessaire pour at-
teindre une couverture similaire à celle de Novelty Search de 30% à 75% en fonction
de l’environnement considéré. La question de la réduction du nombre d’évaluations
de Novelty Search reste un problème ouvert auquel de nombreuses pistes méritent
toutefois d’être encore étudiées, mais cette thèse aura su apporter quelques éléments
de réponses et de réflexion pour progresser dans ce domaine.
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Chapter 1

Introduction

In human imagination, robots have emerged as captivating creations capable of acting
in a human-like way in almost any scenario. As robots are seen with a capacity for
precise and efficient task execution, Humanity dreams of robots imbued with the
same physical and logical capabilities as humans. Towards this robots nowadays
tend to be placed in more and more complex task setups to solve, from manipulating
objects that have high order dynamics [12] to evolving in open-ended setups where
everything is yet to learn [94]. Nevertheless, as of today, controlling a robotic system
can still be a difficult task. To deal with such situations, robots have been more and
more coupled with learning techniques, allowing them to learn from interactions with
their environments to either solve a specific task or discover a variety of skills within
their current capabilities. This domain is called robot learning, and is critical domain
within artificial intelligence that focuses on endowing robots with the capability to
acquire knowledge and skills through data-driven processes. Employing machine
learning algorithms, robots undergo training to adapt their behavior based on data
gathered from their environment. Various paradigms are employed to facilitate this
adaptive process.

A lot of the recent interest in robot learning has stemmed from one of these
paradigms, called Reinforcement Learning [151]. Reinforcement Learning is a sub-
field of machine learning that addresses the challenge of training agents to make de-
cisions in environments to achieve specific goals. Unlike supervised learning, where
training data is labeled with correct outputs, and unsupervised learning, where the
agent identifies patterns without explicit guidance, Reinforcement Learning operates
through interactions with an environment, learning from feedback in the form of
rewards or penalties. The Reinforcement Learning framework has proven highly suc-
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cessful in applications involving sequential decision-making tasks, including robotics
[85, 176], traditional games [146], video games [164] and other autonomous systems
[74].

At the heart of Reinforcement Learning lies the Markov Decision Process, a
mathematical framework that formalizes sequential decision-making. The Markov
Decision Process encapsulates the dynamics of the environment, specifying the state
space, action space, transition function, and reward structure. The agent’s goal is to
learn an optimal policy that maximizes the expected long-term rewards within this
framework, a policy being a strategy that maps states to actions.

Another family of optimization methods used for policy search are Evolutionary
Algorithms [110]. With origins deeply rooted in Charles Darwin’s theory of evolu-
tion, Evolutionary Algorithms are characterized by their capacity to mimic nature’s
iterative process of selection, recombination, and mutation to evolve solutions that
solve a given task. Central to this paradigm is the notion of a population of candidate
solutions, each representing a possible answer to a given problem. The algorithm
iteratively refines this population, advancing it toward increasingly effective solu-
tions through aforementioned processes. The guiding principle is to replicate the
way species evolve over generations, where the most successful traits are inherited
and accumulate, yielding increasingly fit organisms.

A sub-family of algorithms within Evolutionary Algorithms is Diversity Algo-
rithms [91, 133]. Such approaches have emerged as promising solutions to the prob-
lem of exploring the agent environment. These approaches focus on promoting di-
verse behavior in a user-defined Behavioral Space, leading to the discovery of a broad
range of solutions beyond the traditional reward-based exploration methods. One no-
table diversity-driven approach is Novelty Search [91], which encourages exploration
by rewarding agents based on the novelty of their behaviors rather than explicit re-
wards. The concept of novelty, introduced by Lehman and Stanley [93], quantifies
how different an agent’s behavior is from previously encountered behaviors in the
environment. By maximizing novelty, agents are incentivized to explore new regions
of the Behavioral Space, increasing the likelihood of discovering novel and potentially
beneficial behaviors. Novelty Search has shown promise in solving challenging tasks
where sparse rewards or deceptive landscapes make traditional Reinforcement Learn-
ing methods ineffective, such as robotic control tasks [80, 21, 76], maze navigation
[93], and multi-agent systems [54].

Despite those advantages, Diversity Algorithms also face their own challenges. In-
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deed, the design of the Behavioral Space can significantly impact the performance of
these methods. Researchers continue to explore various techniques to overcome these
challenges, such as intelligently adapt the diversity algorithms to more complex Be-
havioral Space representations [115] or directly learning the Behavioral Space [127].
Moreover, diversity-driven approaches share the same hurdles as most data-driven
techniques, notably Reinforcement Learning: they require an important amount of
environment interactions to find rewarding policies or cover the user-defined Behav-
ioral Space. Such techniques thus call for the usage of a low sample cost simulator,
which is not always available depending on the task to be tackled.

Indeed, simulation environments have become indispensable tools for developing
and evaluating robot algorithms and control systems [30, 157, 28]. They offer numer-
ous advantages, including cost-effectiveness and faster development cycles. However,
a notorious problem arises when the simulator is not close enough to the real environ-
ment [80, 107]. This problem is called the Reality Gap [66] and poses a significant
challenge in robotics, referring to the disparity between a robot’s performance in
simulation and its performance in real-world settings. Several key factors contribute
to the reality gap, such as physics and dynamics, sensor and actuator models, envi-
ronment modeling and adaptability.

Researchers have explored several approaches to mitigate the reality gap and
improve the transferability of robotic skills from simulations to real-world scenarios.
Four main approaches have been proposed across the years: System Identification [30,
157, 28, 1, 83], Domain Adaptation [69, 48, 101, 21, 76, 16, 67, 159], Transferability
[84] and Domain Randomization [156, 129, 138, 109]. But all these approaches cannot
always close the reality gap when the simulation does not hold enough information
about the real-world environment. A promising way to be able to overcome the reality
gap in most cases is by using a learned model of the real-world environment. Even
though model-based methods require interactions with the robot’s real environment,
which are costly to gather, it allows to directly refine the robot’s behavior given the
real-world dynamics it will follow.

Model-based approaches in robotics either use a mathematical or learned model of
the robot and its environment to control and optimize the robot’s behavior. Model-
based approaches are crucial for enhancing the robot’s performance, as they enable
the robot to predict its future actions and outcomes based on the model, allowing
for better decision-making and planning. Two prominent model-based techniques in
robotics are Model Predictive Control [19] and Model-based Reinforcement Learning
(MBRL) [131, 113]. A more recent approach in robotics is Model-Based Evolution-
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ary Algorithms (MBEA) [49]. In this thesis, we will focus on approaches using a
completely learned model, as mathematical models or simulators can be either too
slow to use with data-oriented techniques or too inacurate to successfully transfer
onto the real-world.

Both Model-based Reinforcement Learning [113] and Model-Based Evolutionary
Algorithms [49] are approaches where the robot learns a model of the environment
dynamics from data collected during exploration. This learned model is then used for
planning and decision-making. The main difference between both techniques resides
in the output of the Policy Search algorithm, MBRL giving a single policy while
MBEA outputs a repertoire of policies given a user-defined Behavioral Space. One
of the main advantages of Model-Based techniques based on a learned model is their
sample efficiency [37].

However, using a learned model can also bring some hurdles. The accuracy of the
learned model is critical for the success of MBRL algorithms. Errors in the model can
lead to inaccurate predictions and sub-optimal decision-making. Additionally, MBRL
requires a balance between exploration and exploitation. While it uses a learned
model to guide planning, the robot must still explore the real environment to improve
the model’s accuracy and avoid over-fitting. On the contrary, MBEA techniques
require more samples to converge than MBRL algorithms, which is inherent to the
goal of Policy Search methods whose goal is to cover a an outcome space that can
be hard to explore completely [43].

The landscape of Model-Based techniques has still not be completely explored,
especially in the field of Diversity Algorithms. Exploring how to design and enhance
such methods in the context of robotic tasks is thus an interesting domain that
deserves to be explored, as Diversity Algorithms have proven to propose a strong
paradigm helping solving various complex robotic tasks, one of the last bastion pre-
venting it from wider adoption being its sample-efficiency.

In this context, this Ph.D thesis revolves mostly around Diversity Algorithms, the
novelty driven sub-class of Evolutionary Algorithms. It studies various ways of in-
creasing their sample-efficiency, especially for the Novelty Search algorithm through
the usage of learned models. More precisely, the general question that will be an-
swered in this manuscript is:

How to reduce the number of evaluations required by Novelty Search to

cover the Behavioral Space ?
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Each chapter will answer this question in different ways, aiming at tackling several
phases of the considered Model-Based Policy Search algorithms.

Enhance Initial Model Performance for Robotics Tasks

In chapter 3, the focus is made on the model bootstrapping part of Model-Based
techniques. We study the impact on learned model performance of the random
processes used to gather initial training data before the Model-Based Policy Search
algorithm is used. The question answered is thus:

Does randomly gathered initial training data for model initialization has

an impact on Model-Based Policy Search, and how those random

processes compare ?

To answer that question, we demonstrate a link between a consistency metric
introduced to measure the consistency of actions across the State Space of a Markov
Decision Process and the time-correlation of the random processes used to gather
initial training data for learning the model.

Model prediction error using low data budgets typically used in Model-Based
Policy Search techniques is thus studied and the impact of each of the initial data
gathering method is evaluated on a set of five environments with various consistency
over actions. Moreover, a clear impact on a state-of-the-art step-based Model-Based
Reinforcement Learning algorithm, PETS [26], is shown with varying initial returns
obtained by the algorithm up to 10 times greater when the model is initialized with
the suited random process. Similarly, an impact is observed on a state-of-the-art
episode-based Model-Based Diversity Algorithm, Dynamics-Aware Quality-Diversity
[98], with initial coverage metrics being slighlty affected by the random process used
to pre-train the learned model.

Population Bootstrapping with Random Dynamics Models

Chapter 4 shifts the focus from the model to the initial population used in the
Novelty Search algorithm and answers the following question:

How to bias the initial population without knowledge of the target task to

increase initial population coverage and subsequent Novelty Search

sample-efficiency ?

A preliminary study is conducted with such an objective. The proposed approach,
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dubbed 0DAB for Zero-Shot Diverse Archive Bootstrapping, aims at leveraging ran-
domly parameterized dynamics models to generate a set of diverse solutions to be
used as the starting population of a Novelty Search routine on the real system. En-
sembles of random dynamics models are used, and novelty metrics aiming at finding
individuals that are as novel as possible on all environments are used to generate
archives of generally diverse behaviors.

The approach successfully demonstrates a better initial coverage and increased
sample-efficiency on a simple robot navigation task with smooth dynamics, reducing
the number of evaluations required by Novelty Search to cover the environment
by several hundred samples. The approach is then evaluated on a second and less
smooth real dynamical system, an omnidirectional hexapod locomotion task. On this
environment, the approach fails to reach our objective. The reasons for failure are
analyzed and the random dynamics models representation being used is determined
as a culprit as interesting solutions on the models collapse to small regions of the
random dynamics models ensemble Outcome Space.

Model-Based Novelty Search

Finally, chapter 5 considers creating a novel Model-Based Policy Search algo-
rithm completely, taking inspiration from Novelty Search. This new Model-Based
Evolutionary Algorithm answers the question:

How to increase Novelty search sample-efficiency using learned

dynamics models ?

A new Model-Based technique is thus proposed, dubbed Model-Based Novelty
Search. This approach leverages the classic Novelty Search algorithm to generate a
diverse set of individuals on a learned dynamics model. The most novel individuals
generated using the model are then transferred onto the real system, and serve as
the starting population for the next Novelty Search loop on the learned dynamics
model.

This new policy search method performance in terms of coverage of the Be-
havioral Space is evaluated on three different robotic environments and compared
against three baselines: Novelty Search, Vanilla Quality-Diversity and Dynamics-
Aware Quality-Diversity. The new algorithm outperforms all three baselines in terms
of sample-efficiency as it reduces the number of evaluations required to reach the fi-
nal coverage of Novelty Search by 30% up to 75% depending on the considered
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environment. Moreover, when compared against Dynamics-Aware Quality Diversity,
Model-Based Novelty Search reduces the number of samples required to reach its
final coverage between 30% and 50%.

To summarize, this Ph.D thesis work presents three contributions, all falling in
the field of increasing sample-efficiency of Policy Search algorithms, and more specif-
ically of the Novelty Search algorithm. The first contribution consists in helping
scientists chose a better initialization technique for their Model-Based Policy Search
techniques. The second contribution consists in a preliminary work on biasing the
initial Novelty Search population to be more diverse and lead faster to more di-
verse individuals and finally the last contribution consists in a novel Model-Based
Evolutionary Algorithm, Model-Based Novelty Search, which enhances greatly the
sample-efficiency of the classic Novelty Search algorithm.
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Chapter 2

Background And Related Work

2.1 Reinforcement Learning

As stated previously, Reinforcement Learning (RL) has emerged as a versatile ap-
proach for solving various problems, ranging from robotics [81] to healthcare [173]
and economics [118]. The fundamental goal of RL is to learn a policy. The policy
guides the agent’s decision-making process by specifying the action to take given a
state the system is in. The objective of RL is thus to find the policy that maximizes
the expected cumulative reward over time, the agent receiving a positive or nega-
tive reward from the environment depending on the agent’s current state and action
taken toward solving the task.

Doing so and as shown on figure 2.1, the agent iteratively acts in its environment
(according to its policy that takes into account the current state the agent is in),
observe the change in state and the reward that is returned by his environment and
start acting again, updating its policy periodically. This trial-and-error learning loop
relies on a Markov Decision Process, a generic framework essential to RL and used
to describe problems that respect the Markov property.

2.1.1 Markov Decision Process

The Markov property allows an important simplifcation of the dynamics of various
systems, as it states that the transition from a state in the system to another state
in the system solely depends on the current state and action taken, not on the past
events. It is a strong hypothesis that nevertheless remains valid in most applications,
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Figure 2.1: MDP with an agent interacting with a single environment

as long as the state does contain all the information needed to infer about its future.

Thus, a Markov Decision Process (MDP) constitutes a fundamental framework
for modeling decision-making processes. Formally, a MDP is denoted as a tuple
⟨S,A, T,R⟩, where S represents the set of states, A the set of actions, T denotes the
transition function, and R represents the reward function.

In the context of MDPs, the elements of the MDP can be detailed as such:

• S is the state-space denoted as S ⊆ Rds , where ds represents its dimension-
ality,

• A is the action-space denoted as A ⊆ Rda , where da is its dimensionality,

• T is the transition function, which associates to a current state s and action
a the next state s′ :

T : S ×A → S
and

T (s, a) = s′

with s, s′ ∈ S, a ∈ A. T thus describes how the agent’s actions impact the
system state and provide the complete system transition dynamics,
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• R is the reward function, which associates a scalar value called reward to
each state the system could be in, effectively guiding the agent toward solving
its given task:

R : S ×A −→ R
and

R(s, a) = r

with r the scalar reward associated with state s.

• π is a policy, which is a function that returns an action a ∈ A to take in a
state s ∈ S:

π : S −→ A

• Θ is the parameter space, corresponding to the space of parameters used
to define the policy π, such that if a policy is parameterized with a vector of
parameters θ ∈ Θ, it will be denoted as πθ

2.1.1.1 Estimating the expected reward

Solving MDPs involves determining an optimal policy π∗ : S −→ A that returns
the best action to take in each state to maximize the expected cumulative reward.
When dealing with parameterized policies, finding the optimal policy π∗ thus mean
finding the set of parameters θ∗ ∈ Θ that corresponds to the optimal policy π∗. For
ease of reading, we usually won’t explicit that policy are parameterized by set of
parameters. In order to estimate the expected cumulative reward, two functions,
the Value function and Q function, constitute the key-components of most RL algo-
rithms, being used in various ways to optimize the agent policy. The Value function
provides estimates of the expected rewards attainable in a specific state, while the
Q function provide such an estimate for a specific state-action pair.

The Value function, denoted as V π(s), is the anticipated cumulative reward an
agent can receive starting from state s, while following policy π. Formally, it is
characterized as the expected summation of discounted future rewards, with the
discount factor γ modulating the relative significance of immediate versus distant
rewards. The Value function is mathematically expressed as:

V π(s) = Eπ

[ ∞∑
t=0

γtrt | s0 = s

]
(2.1)
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Here, rt signifies the reward obtained at time step t in state st obtained following
policy π, and γ ∈ [0, 1] is the discount factor, crucial for striking a balance between
rewards closer or further into the future.

Secondly, the Q function, symbolized as Qπ(s, a), is the projected cumulative
reward an agent can receive from a state s, given that it initiates action a, and
subsequently abides by policy π. The Q function accounts for the potential rewards
of opting for action a in state s and subsequently following the policy π. The Q
function is mathematically expressed as:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt | s0 = s, a0 = a

]
(2.2)

In the above equation, a0 denotes the initial action chosen by the agent, and rt

is defined as in equation 2.1.

The Value function and Q function thus serve as two cornerstones functions to
estimate the reward of a given state or state-action pair in multiple Reinforcement
Learning algorithms. Both of these functions estimates are learned and updated
iteratively using experience gained from interactions between the agent and the en-
vironment.

2.1.1.2 Brief Overview

One method using the Value function is Value Iteration. Value Iteration stands as
a foundational algorithm in reinforcement learning for solving Markov Decision Pro-
cesses. This method, introduced by Bellman [10], computes optimal value functions
iteratively by updating estimates based on the Bellman optimality equation. Modifi-
cations like Prioritized Sweeping [114] prioritize state updates for faster convergence
thus using less data samples. As RL advances, Value Iteration remains relevant for
its simplicity and theoretical significance in solving optimal control problems.

As another foundational algorithm in RL, Q-learning [165] consists in iteratively
refining action-value estimates by balancing immediate rewards and long-term out-
comes. Firstly proposed by Watkins and Dayan [165], recent enhancements like
Deep Q-Networks [112] leverage deep neural networks to handle high-dimensional
state spaces. Indeed, combining Q-learning with convolutional neural networks has
demonstrated learned agents capable to outperform human experts in Atari games
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using only inputs coming from raw image pixels. Thus showing a path to Deep Re-
inforcement Learning, Mnih et al. paved the way to handle environments with more
complex states spaces and more complex dynamics. Approaches called Policy Gradi-
ents methods [168] only improve their policy using directly the reward signal. These
approaches do not explicitly approximate the Value function or the Q function. Such
methods were also improved vastly by using deep neural networks [142, 143].

Another family of methods is Actor Critic methods. Actor Critics methods [82]
combine policy gradient and value function approximations to enhance furthermore
the final agents performance. Deep Reinforcement Learning Actor Critic methods
like A3C [111] introduces a better training efficiency and stability to actor-critic
learning through asynchronous agents being trained in parallel. The agents policy
and critic network parameters are then synchronized periodically, allowing training
to remain stable. Guided by these techniques, Reinforcement Learning has achieved
remarkable success in multiple areas [81, 118, 173], but applying these methods to
complex robotics tasks in simulation or directly to real robotics systems engender
various new problems [85, 12]. One of these problems for Reinforcement Learning is
scenarios with sparse or deceptive rewards functions.

In scenarios with sparse rewards, such as robotic grasping [12] or game playing
[147], where the environment provides feedback only rarely or sporadically, RL agents
often struggle to learn meaningful policies. The lack of frequent rewards makes it
difficult for the agent to discern which actions are beneficial and which are detrimen-
tal. This results in slow learning and high variance in the estimated value functions,
as the agent has limited guidance to update its policy. Additionally, sparse rewards
can lead to exploration difficulties, where the agent may not encounter rewarding
states frequently enough to explore the entire state space effectively. Furthermore,
deceptive reward scenarios present yet another significant challenge to RL agents.
Contrary to sparse reward scenarios, in such cases the reward signal provided by the
environment might mislead the agent, pushing it to pursue suboptimal strategies.
For instance, in a maze with a dead-end very close to the actual objective, the agent
could remain stuck inside this dead-end while actually never reaching the goal if the
reward function is designed as a simple Euclidean distance. In such situations, the
RL agent can get stuck in locally optimal policies that provide misleading feedback
and hinder the discovery of globally optimal strategies.

Both sparse and deceptive reward scenarios often lead to the problem of exploration-
exploitation trade-offs. In sparse reward settings, exploration is crucial for finding
rewarding states, but RL agents might be hesitant to deviate from known strate-
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gies due to the limited feedback. In deceptive reward scenarios, the agent might be
discouraged from exploring alternative actions that could lead to better outcomes,
as the deceptive reward misguides its learning process. To address these challenges,
various techniques have been proposed within the RL community. In sparse reward
scenarios, methods like curiosity-driven exploration [150, 18] and intrinsic motivation
[25, 9] aim to incentivize exploration by introducing auxiliary tasks or objectives that
encourage the agent to explore unfamiliar parts of the state space. These techniques
can help alleviate the exploration problem and improve learning efficiency.

In deceptive reward scenarios, research is focused on designing reward functions
that better align with the true objectives of the task. Techniques like reward shaping
[106] attempt to provide more informative reward signals, thereby guiding the agent
towards more desirable behavior. Reward shaping consists in providing additional
information that would help the agent fulfill its task. The drawback of doing so is
that it can require a great quantity of expert knowledge on the task to be able to
design a reward function that will have the right shape for the RL algorithm to solve
properly the given task.

To conclude, while Reinforcement Learning is a powerful paradigm for solving
complex decision-making problems, it faces significant challenges in sparse reward
and deceptive reward scenarios. These challenges can reduce learning efficiency and
lead to suboptimal policies. Addressing these issues requires the development of novel
algorithms and techniques that enhance exploration capabilities of RL algorithms or
to adjust reward signals through cumbersome reward shaping.

2.2 Evolutionary Algorithms

Other optimization techniques exists to tackle the same problems as Reinforcement
Learning. Evolutionary Algorithms (EAs) [110] are a family of optimization and
search techniques inspired by the principles of natural evolution [34]. They work by
maintaining a population of candidate solutions or individuals and applying succes-
sively selection and variation to evolve the population over successive generations. In
Evolutionary Algorithms, a candidate solution is evaluated over a complete episode
whose length is the task horizon. A value, called fitness (and usually corresponding
to the accumulation of reward seen over the whole episode, or somehow adjusted to
give the correct selective pressure) is thus used to direct the search in the parameter
space using the evolution theory mechanisms. Evolutionary Algorithms thus gen-
erally follow the evolution cycle depicted on Figure 2.2. These methods have been
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widely applied in the robotics field [42].

Figure 2.2: Evolutionary Algorithms general cycle

As described by Eiben et al. [46], firstly a population of individuals is initialized,
each individual having its own set of parameters or genotype θ ∈ Θ. Secondly, each
individual in the population is evaluated on a complete episode on the environment
associated to the MDP of the task or any other task that returns a fitness for an
individual evaluation. Depending on a selection criteria that will be developed in
the next section, individuals might be selected among the population. Once an indi-
vidual has been selected, its genotype will undergo variation. Several possibilities
exists so as to variation, from mutations to breeding between two individuals. Pos-
sible variations will also be detailed in the next section. Once a new population of
individuals has been created through selection and variation, it is once again evalu-
ated and the process repeats itself until a termination criterion is reached, whether
it be a task-oriented criterion or simply a budget-oriented criterion. Moreover, an
individual performance is evaluated through what is called a fitness function. The
fitness function has the same role as the reward function in RL, except that in Evolu-
tionary Algorithms the fitness is evaluated over the whole episode rather than being
a step-by-step reward.
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2.2.1 Selection and Variation techniques

Selection is a component of Evolutionary Algorithms that plays a significant role in
the effectiveness of the optimization process. The selection process determines which
individuals from the current population will be chosen as parents for generating the
next generation of individuals. The primary goals of selection in Evolutionary Al-
gorithms are to preserve or ameliorate higher fitness individuals and to maintain
diversity, thus striking balance between exploration and exploitation. Several tech-
niques exist so as to how to select which individuals to variate or to carry over onto
next generation. We list here the most commonly used ones:

• Roulette Wheel Selection is a method where individuals are selected pro-
portional to their fitness. Higher fitness individuals have a higher chance of
being selected. This method mimics the idea of "survival of the fittest" and
can lead to faster convergence towards optimal solutions.

• Tournament Selection consists in firstly selecting a fixed number of individ-
uals (the tournament size) randomly from the population, and then select the
one from the tournament with the highest fitness. This process is repeated to
select multiple individuals. This selection method allows for a good trade-off
between exploration and exploitation.

• Elitism consists in selecting part of the best individuals from the current gen-
eration to be directly carried over to the next generation without any changes.
This ensures that the best solutions are preserved across generations potentially
decreasing convergence time.

On the other hand, variation plays a different but as important role in driving
the evolutionary search. Variation encompasses the genetic operators of crossover
and mutation, which introduce diversity and explore new solution regions in the
population by directly modifying the individuals genotype:

• Mutation: Mutation involves making small random changes to an individual’s
genetic representation. This introduces exploration by creating new genetic
material that might not have been present in the current population. Muta-
tion can occur in various ways depending on the representation used (bit-flip
mutation for binary strings and Gaussian mutation for continuous values for
example).
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• Crossover: Crossover involves combining genetic information from two or
more parent individuals to create one or more offspring. In a binary represen-
tation, for example, a crossover point is chosen, and genetic material before
and after the point is exchanged between parents to create offspring.

The variation process is fundamental in allowing EAs to not get stuck in local
optima and converge towards high-quality solutions. Both mutation and crossover
do not take into account the fitness of the individual and allow for gradient-free
blind exploration of the individuals parameter space. Both processes are inherently
stochastic as to what part of the genome should be modified or taken from the
parents individual, and are completely agnostic to the problem considered. EAs can
thus be applied to optimization problems formulated as a black-box problem [46],
where the only need is to be able to provide a candidate individual to the problem
and to evaluate its performance. Selection and variation thus creates the basis of
any Evolutionary Algorithm.

Evolutionary Algorithms have exhibited remarkable efficacy in a diverse array
of applications across various domains. In the realm of robotics, EAs have been
leveraged for tasks such as robot path planning [62], evolutionary robot design [100],
and swarm robotics optimization [17]. In the finance domain, EAs have been used
in portfolio optimization [132] and trading strategy development [5]. Moreover, EAs
have found utility in other fields, including data clustering [61] and medical image
processing [87], highlighting their versatility and adaptability in addressing complex
optimization challenges. But a sub-field of Evolutionary Algorithms, that we will
call Diversity Algorithms throughout this thesis, is specifically interesting in many
robotic tasks.

2.2.2 Diversity Algorithms

Firstly, as a sub-class of Evolutionary Algorithms, Diversity Algorithms do not aim
to solely optimize for a specific fitness function or task but rather take into account or
optimize for novelty in the obtained solutions with regards to the previously obtained
solutions in what is called an Outcome Space or Behavioral Space. In addition
to the previously defined Markov Decision Process tuple ⟨S,A, T,R⟩, we thus now
define:

• B, the Behavioral or Outcome space in which the agent’s behavior is de-
scribed. Elements of this space are called behavior descriptors b ∈ B. An
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example of a behavior descriptor could be the final pose of a two-wheeled
robot.

• oB, the observer function that associates to a trajectory of N consecutive
states τ = {s0, s1, . . . , sN} a behavior descriptor b ∈ B that is usually of
reduced dimensions compared to τ as it captures its essential parts:

oB : SN −→ B

• AΠ, the Archive, a set of all the individuals that are saved in the final diverse
set of solutions found by the Diversity Algorithm, and that are used to compute
the novelty of evaluated individuals.

Thus, the evaluation step of the Evolutionary Algorithms (Figure 2.2) now re-
turns a behavior descriptor and a fitness as well. In the context of a MDP, at the
end of an episode an individual is thus assigned a behavioral descriptor b ∈ B and a
fitness f ∈ R. Using the behavioral descriptor, Diversity Algorithms aim is to find a
set of diverse individuals, which in our case are parameterized policies πθ, that covers
the Outcome space or Behavioral Space. Coverage is a metric that is measured by
evaluating the ratio of the regions of the Behavioral Space that the Diversity Algo-
rithm reached to the total reachable Behavioral Space. In this thesis, to measure
coverage, the Behavioral Space is discretized along all its dimensions, and a bin is
considered filled when a behavioral descriptor of an evaluated individual falls into
this bin. Coverage is then measured by calculating the ratio of the number of filled
bins to the total number of bins. Diversity Algorithms are particularly interesting
in the case of sparse or deceptive reward scenarios, as they do not have as a first
objective to maximize an extrinsic reward signal coming from the environment that
can lead to suboptimal policies.

2.2.2.1 Novelty Search

The Novelty Search algorithm, introduced by Lehman and Stanley [91] as an alter-
native approach to classic evolutionary search, was the first Diversity Algorithm to
be proposed. It indeed diverges from traditional fitness-based optimization methods
by prioritizing the discovery of novel solutions rather than focusing on improving
fitness at all. Novelty Search hypothesize that searching for novel solutions can un-
veil unexplored regions of the solution space, potentially leading to more diverse and
innovative outcomes.
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The Novelty Search algorithm introduces a new metric, usually called Nov-
elty or Diversity, that is directly computed in the Behavioral space over the whole
episode behavior of the individual. In mathematical terms, given a set of individuals
{x1, x2, . . . , xn}, the novelty of the behavior descriptor bxi of a solution xi is quanti-
fied by its Euclidean distance from its k-nearest neighbors in the population and in
the archive. The novelty score N(bxi) can be calculated as:

N(bxi) =
1

k

k∑
j=1

distance(bxi , bxj ), (2.3)

where distance(bxi , bxj ) denotes the distance metric between the behavioral descrip-
tors of solutions xi and xj .

Novelty Search thus encourages the exploration of the Outcome space, even if
the novel solutions do not immediately exhibit higher fitness values. This creates
the main difference between Evolutionary Algorithms and Diversity Algorithms as
how good a solution is is not decided based on its fitness, but rather on the novelty
of the discovered solution compared to the rest of the previously found solutions,
measured in the Outcome Space. Doing so, it has been shown that the Novelty Search
algorithm has covering properties over the user-defined Behavioral Space [43], making
it a strong exploration algorithm for problems that can be considered as black-box
as long as it is possible to define a Behavioral Space. Indeed, the Outcome space is
usually designed so that it is aligned with the task to be solved by the agents, such
that covering the Behavioral space covers the task space and generally allows to find
at least one solution solving the given task in the task space. The aim of covering
the Behavioral Space can also be to discover a variety of skills for an agent, that it
could then use in a sequential way to solve more complex tasks.

Novelty Search iterative process involves generating a set of solutions and assess-
ing their novelty to drive the population towards diversity. Individuals with higher
novelty scores are retained as potential parents for the next generation, irrespective
of their fitness levels. This decoupling of novelty and fitness ensures that the algo-
rithm remains unbiased towards purely exploiting the best solutions, making Novelty
Search a purely exploratory population-based policy search method. Moreover, at
each generation a fixed number of individuals are added to the archive. Gomes et
al. [53] shown on a set of robotic navigation tasks that choosing the individuals to
add to the archive randomly rather than the most novel led to a higher exploration
uniformity of the Behavioral Space than adding them based on their novelty, as well
as reducing the sensitivity to the number of individuals added to the archive at each
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generation. The archive is then involved in the novelty metric, such that the algo-
rithm has a "memory" of the previously visited regions of the Outcome Space. The
complete algorithm is outlined in Algorithm 1.

Algorithm 1 Novelty Search
1: sp is the population size, so is the offspring size, k is the number of individuals to add

to the archive at each generation, G is the generation budget
2: AΠ ← ∅ ▷ Initialize AΠ to an empty set
3: g ← 1 ▷ Set g at as the first generation
4: πθ1 . . . πθsp

← random_parameters() ▷ Set the population to randomly parameterized
policies

5: bi∈[1,sp] ← evaluate(πθ1
. . . πθsp

) ▷ Evaluate the randomly initialized policies
6: ηi∈[1,sp] ← N(b1), . . . , N(bsp) ▷ Compute the Novelty using the population behavioral

descriptors
7: AΠ ← sample(πθ1 . . . πθsp

) ▷ Add k individuals from the population to the archive
8: ▷ Performing Novelty Search
9: for g in [1, . . . , G] do

10: πθ∗
1
, . . . , πθ∗

so
← variation(πθ1

. . . πθsp
) ▷ Generate the offspring from the

population using the variation operator
11: bi∈[1,so] ← evaluate(πθ∗

1
, . . . , πθ∗

so
) ▷ Evaluate the offspring

12: ηi∈[1,so] ← N(1), . . . , N(so) ▷ Compute the Novelty using the offspring behavioral
descriptors

13: πθ1
, . . . , πθsp

← select(πθ∗
1
. . . πθ∗

so
, η1 . . . ηso) ▷ Update population with the sp most

novel individuals in the offspring
14: AΠ ← sample(πθ1 . . . πθsp

) ▷ Select k individuals from the population to be added to
the archive

15: g ← g + 1

16: return AΠ

Figure 2.3: Example of diverse trajectories found by QD search for different goal
coordinates [78]

Novelty Search has found various applications in robotics, the first one being in
the original NS paper on a two-wheeled robot maze navigation task [91]. NS thus
shown its ability to find policy representations and parametrizations that would
successfully complete any of the given mazes, even the most deceptive ones. In a
higher degrees-of-freedom robotic task, Kim et al. [78], as shown on 2.3, gave a robot
the ability to throw a ball in a basket and adapt to failure thanks to a large and
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diverse coverage of the defined behaviour space. Exploring directly the Outcome
Space thus allows to tackle seamlessly robotic tasks of various degrees of freedom
and dynamics, only by defining a proper Behavioral Space aligned with the goal
task. Novelty Search has been the first Diversity Algorithm to be introduced, but
paved the way for other algorithms, notably Quality Diversity Algorithms.

2.2.2.2 Quality Diversity

Quality-Diversity (QD) algorithms [133] aim to achieve a balance between optimizing
the quality of solutions and promoting diversity among them. Different QD algo-
rithms exists, but their objective is usually to maintain a diverse set of solutions that
cover the Outcome Space as best as possible while keeping the highest performing
solutions in each region of the Behavioral Space. Indeed, ignoring completely the
reward in Novelty Search grants great exploratory capabilities but prevents the al-
gorithm to exploit any reward signal found in the environment. Quality Diversity
algorithms try to overcome this weakness of Novelty Search by creating competition
between individuals whose Behavioral descriptors are close in the Outcome Space.

One main distinction between the different Quality Diversity algorithms is how
the archive is organized. In the first Quality Diversity Algorithm, Novelty Search
with Local Competition, Lehman And Stanley [92] propose to add a niching mech-
anism to the Novelty Search algorithm, such that once two solutions fall into the
same niche, the highest performing one is the one that is kept in the Archive. The
niching mechanism works by considering two policies close enough in the Outcome
Space to be in competition for being saved in the niche they share. The authors then
use a multi-objective optimization algorithm inspired from NSGA-II [36] to promote
both local competition between individuals in neighboring niches and novelty, which
allows them to cover as much the Outcome Space as Novelty Search while having
individuals in each niche that outperforms the ones found with a simple Novelty
Search on an Evolution of Robotic Organisms task.

Since, different niching mechanisms have been proposed. As much as NS-LC has
outperformed NS on certain tasks, it remains computationally expensive, having to
compute several metrics and optimize multiple objectives at the same time as the
Outcome Space remains continuous. Addressing that issue, the Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites, [121]) algorithm proposes to discretize
the Behavioral Space, thus creating a fixed number of niches beforehand which have
a look-up time lower than the one of a costly k-nearest-neighor computation in the

21



NS-LC algorithm. One disadvantage of MAP-Elites is that it does not scale to high-
dimensionnal Outcome Space as the number of niches grow exponentially with its
dimensions. Vassiliades et al. thus proposed to use a CVT [45] to create a fixed
number of niches, whatever the dimension of the search space is. The complete
MAP-Elites algorithm is detailed in Algorithm 2.

Algorithm 2 MAP-Elites
1: sp is the population size, G is the generation budget
2: AΠ ← ∅ ▷ Initialize AΠ to an empty set
3: g ← 1 ▷ Set g at as the first generation
4: πθ1 . . . πθsp

← random_parameters() ▷ Set the population to randomly parameterized
policies

5: bi∈[1,sp] ← evaluate(πθ1
. . . πθsp

) ▷ Evaluate the randomly initialized policies
6: ▷ Performing MAP-Elites
7: for g in [1, . . . , G] do
8: πθ∗

1
, . . . , πθ∗

sp
← variation(AΠ) ▷ Generate a new population from AΠ using the

variation operator
9: bi∈[1,sp] ← evaluate(πθ∗

1
, . . . , πθ∗

sp
) ▷ Evaluate the population

10: for i in [1, sp] do
11: if AΠ(bi) is empty then
12: AΠ(bi)← πθi

13: else
14: if fitness(πθi

) > fitness(AΠ(bi)) then
15: AΠ(bi)← πθi

16: g ← g + 1

17: return AΠ

Quality Diversity methods were applied on locomotion tasks in order to give
hexapod robots high adaptability even in case of mechanical malfunction, through
maintenance of a highly diverse behaviour repertoire [31] [21]. These methods were
also applied to provide rapid generalization capabilities to unforeseen scenarios to
robotic systems when combined with higher-level planning capabilities [76]. Quality
Diversity algorithms, exemplified by the MAP-Elites approach, thus provide a novel
perspective on behavior optimization by also promoting the discovery of diverse
solutions. These approaches are promising in problems where traditional purely
fitness-based optimization methods may fail due to pitfalls in the fitness function.
Nevertheless, Diversity Algorithms, as well as all the data-driven techniques that
were detailed up till now, suffer from several drawbacks.

2.3 Closing the Reality Gap

While Reinforcement Learning allows for policy optimization and generalization for
a specific task, it may struggle to converge when encountering problems with a
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deceptive or sparse reward function. On the other hand, Diversity algorithms do
not suffer from such problems, at the cost of even more data samples taken from
the environment. When working with fast simulators, having an important data
usage, or a low sample efficiency, might not matter as sampling transitions from
the simulator is low cost in itself. But when considering real robotic applications,
sampling transitions from the environment suddenly becomes very costly: it takes a
significantly increased amount of time, it increases the real robot wear and tear, they
might not be available for an extended period of time and require safety measures.
Using such data-driven techniques directly on a real robot thus does not make much
sense or requires an extraordinary amount of real-life resources to be applied properly
like Levine et al. did [96] with 14 manipulator arms in parallel for data collection
over the span of two months.

Nevertheless, the ultimate goal of robot learning approaches remains to have
these policies perform on a real robot in the real world, not in simulation. To do
so, one possible way is to leverage knowledge from a simulator to train a policy or
learn an archive of policies that would then be transferred onto the real robot. But
for the previously described techniques to transfer directly on real robots, it is a
requirement that the policies are learned on an accurate enough simulator [80, 107],
such that the discrepancies between the simulation and the real robotic setup are
not too large. But when these differences are hard to overcome and prevent direct
behavior transfer from one domain to another, an issue called the reality gap [66]
or the simulation bias [6, 8] appears. Both terms designate the same problem, but
we will refer to the aforementioned issue as the reality gap, this word being more
commonly used in the literature [120].

The reality gap arises because the robot’s behavior learned in simulation may
not translate perfectly to the real-world robotic setup. This disparity can result in
unexpected and sometimes catastrophic failures when deploying the robot controlled
by the learned policy in real-world scenarios. Several factors can contribute to the
reality gap:

• Physics and Dynamics: Simulations are simplifications of the real world, and
as such, they often lack the fidelity required to accurately represent the physics
and dynamics of real-world scenarios. In simulations, friction, air resistance,
and other forces may be neglected or modeled at a coarse level, resulting in
different robot behaviors compared to the real world.

• Sensor and Actuator Models: Sensors and actuators in simulations might
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not perfectly replicate their real-world counterparts. Calibration errors, noise,
and discrepancies between simulation and real-world sensor data can lead to
different robot perception inducing a different control, affecting the robot’s
ability to interact as intended with its environment.

• Environment Modeling: Simulations rely on environment models that are
designed to be computationally efficient and easy to simulate. However, these
models often fail to capture the complexity and dynamics of real-world envi-
ronments. Real-world scenarios include a myriad of unpredictable elements,
such as varying terrain, lighting conditions, and dynamic obstacles, which are
challenging to replicate accurately in simulations.

• Adaptability: Robots trained solely in simulation may lack the adaptability
required to handle variations and uncertainties present in real-world conditions.
They may overfit to the specific conditions of the simulation, rendering them
ineffective or unsafe in unforeseen situations.

Figure 2.4: Different simulation-to-reality techniques [167]

Four of the main approaches proposed over the years to close the reality gap
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are System Identification, Domain Adaptation, Transferability and Domain
Randomization as shown of figure 2.4. These techniques are also called simulation-
to-reality approaches. The amount of samples required for the various Policy Search
techniques presented in this thesis are shown on figure 2.5. We take as a basis for
harmonizing the amount of samples between the various techniques an environment
with an episode length of 300 time-steps. System Identification objective is literally
to build the best mathematical model for the real physical system that needs to be
tackled. In the case of policy search in robotics, the mathematical model is thus the
simulator, and System Identification consists in estimating at best the simulation pa-
rameters, either beforehand or using some interactions with the real world. Robotics
Simulators [30, 157, 28] are the prime example of System Identification, as they are
based on the various physics laws that determine the dynamics of robotics systems.
Nevertheless, these simulators usually rely on fixed sets of parameters during the
policy search, which can lead to the reality gap problem as mentioned previously as
modelisation errors exist [47, 3]. Thus, some authors proposed approaches that au-
tomatically identify the mathematical models parameters using data from real-world
interactions [1, 83].

Nevertheless, such approaches might struggle with the complexity and variability
of real-world environments as they require accurate measurements and assumptions
about the system’s underlying physics, which can be difficult to provide, especially in
dynamic and uncertain settings. Domain Adaptation techniques [69, 48, 101], on the
other hand tackle this problem differently. Domain Adaptation techniques do not
necessarily assume a fixed mathematical model, but rather learn a policy in simula-
tion and refine it in the real-world setup or learn a mapping between the source and
target domain that is used to bring closer the source domain data distribution (from
which sampling is cheap) to the target domain data distribution. In the first case,
the idea is thus to pre-train the policy by making the best usage of the existing sim-
ilarities between the simulation and real-world scenario, so that the least number of
interactions with the real system can be done afterwards to learn an efficient enough
policy regarding the task to solve. The second case can be applied in several ways,
like proposed by Chatzilygeroudis et al. [21] and generalized to multiple contexts by
Kaushik et al. [76] in the Evolutionary techniques domain where authors propose to
learn a corrected mapping between the policies in the archive and their outcome in
the Behavioral Space. In the Reinforcement Learning context, authors proposed to
reduce the gap between the simulated observations and the real observations, either
learning to render more realistically the simulated observations [16] or by learning
to represent any observations as a canonical view [67], effectively reducing the gap
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in performance between simulation and reality as the policy is fed the same obser-
vations. Finally, Domain Adaption can also be done through adversarial training,
where a discriminator is used to align the policy’s output distribution in both sim-
ulation and real-world domains [159]. This adversarial setup encourages the agent
to produce similar behaviors in both domains, effectively reducing the reality gap.
Domain Adaptation techniques can use as low as 2000 real-world samples (steps on
the target domain) but up to 100 000 depending on the complexity of the task and
the method being used.

Domain Randomization techniques propose another path to attack the reality
gap problem. In a way that reminds Domain Randomization, Jakobi et al. [66]
proposed to fine-tune the simulation noise a bit more than the real-system noise
such that the learned behaviors would be more robust to the real world dynamics
that the simulation will anyhow fail to predict completely. Pursuing on the same
track, authors proposed a Domain Randomization [156], which consists in learning
the robot policies in the simulator while wrapping it in an envelope of noise, much
like Jakobi et al. did in 1995. In Domain Randomization, the agent is trained in a
simulated environment with a wide range of variations to create a more robust policy
that can adapt to different real-world conditions, such that behaviors are more robust
to transfer. It requires expert knowledge on both the source and target domains, as
the programmer needs to know which parameters from the simulation are not well
modeled or can vary slightly in the reality, like light conditions, friction or wear and
tear in the robot mechanical system. This approach has been shown to improve the
generalization of robotic control policies and perception systems, aiding in bridging
the reality gap between simulation and reality[156, 129, 138]. Finally, Mehta et
al. [109] propose an active way of doing Domain Randomization quite opposed to
simply fine-tuning by hand the environments distribution parameters. They propose
to refine the current simulated environment distribution parameters by selecting the
most informative MDPs for the agent out of the current distribution. This allows
them to enhance the zero-shot performance of Domain Randomization by 1.5-2 times
on a task with a robotic arm pushing an object. Domain Randomization techniques
are zero-shot transfer techniques, meaning that the policies are trained solely in the
source domain.

Domain Randomization and Domain Adaptation techniques have also been com-
bined together to allow real robots to accomplish tasks with higher accuracy and
using a small number of real-world samples [174, 22, 67, 109, 138]. Yu et al. pro-
posed to firstly search in randomized simulations for an ensemble of highly rewarding
policies and then to select the policy among that ensemble that performs best in the
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Figure 2.5: Graph of the number of samples required by each family of Policy
Search algorithms and methods aiming at crossing the Reality Gap. Model-Based
approaches are presented in the subsequent section.

target environment [174]. This reminds the works of Kim et al. [79] which used the
Novelty Search algorithm (to generate an ensemble of policies) and local adaptation
to cross the reality gap in a ball-throwing task on a real Baxter robot. Chebo-
tar et al. propose to use some real-world samples to learn the parameters of the
randomized environments distribution, so as to have a distribution of environments
that captures as best as possible the real environment dynamics, which allows their
real-world tasks (opening a drawer and swinging a ball in a hole) to be solved using
only a few episodes [22]. The general idea of such hybrid techniques is that the
distribution of data generated from the source environment is being brought closer
to the target domain data distribution, while using means of domain randomization
to capture as best as possible the real system data distribution as shown in Figure
2.4. Hybrid techniques combining Domain Randomization and Domain Adaptation
allow the number of target domain samples required to be diminished compared to
Domain Adaptation alone, and allows to tackle more complex tasks than Domain
Randomization alone. Samples used typically ranges from 1000 to 50 000.

The Transferability approach is a little more radical compared to the other
simulation-to-reality approaches. Indeed, the Transferability [84] approach chooses
to completely ignore the behaviors found on the badly modeled parts of the simu-
lator, by iteratively estimating the existing discrepancies between the simulator and
the real-world. Even if this technique indeed overcomes the reality gap problem, it
does so at the cost of potentially missing the most rewarding behaviors if the sim-
ulator cannot model these properly, as highlighted by some parts of the simulator
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being greyed out as shown on figure 2.4. This once again highlights the fact that if
the discrepancies existing between the simulation and the real world are too great,
a critical problem arises. Indeed, if so, policies found using a simulator will most
likely fail even using simulation-to-reality techniques as the simulator cannot contain
enough meaningful information at all. Tasks with high system dynamics complexity,
like manipulation of deformable objects [12], are particularly subject to this kind of
problem as no existing simulator is fast and accurate enough to learn robust policies
using an important amount of simulated samples. Ensuring that the learned policies
generalize well to unseen real-world scenarios while avoiding negative transfer (where
performance degrades due to mismatched domains) is thus an ongoing research fo-
cus, and the choice of simulation fidelity and how well it aligns with the real-world
conditions significantly impact transfer success. The Transferability approach is a
very cost-efficient technique even on locomotion tasks with high degrees-of-freedom
dynamics. Indeed, Transferability was generally evaluated using a total of only 1000
to 4500 real-world samples, nevertheless at the cost of potentially missing some of
the most rewarding behaviors.

2.4 Model-based Approaches

Few possibilities remain as to how alleviate the reality gap problem. One way to
go around it, as no simulator is used, is model-based techniques [131]. In such ap-
proaches, a model of the system is directly learned from data gathered on the target
domain. Model-based policy search approaches have been explored by the literature
for decades [7], and have shown promising results in effectively giving real robotic
systems the ability to perform simple [14, 37] to more complex tasks [26, 122] with-
out needing an extreme amount of data. Even though model-based techniques suffer
from their own drawbacks linked to the uncertainty within the model of the envi-
ronment they are trying to learn, they have proven to be an interesting alternative
or complement to other policy search methods relying exclusively on a simulator.
A lot of model-based policy search techniques are step-based policy search meth-
ods, resulting from the reinforcement learning framework [151]. On the other hand,
episode-based policy search methods are less represented in the robotics field and
principally stem from Bayesian Optimization [148] and from Evolutionary methods
[91].

Going more into detail, the transition function can be written as st+1 = T (st, at).
When learning the dynamics model of the system, we are actually approximating the
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true system’s transition function T with a function T̂ϕ parameterized by a vector ϕ

that can be represented using several different type of learnable models. Model-based
policy search aim is thus to fit a model T̂ϕ using limited measurements of the true
transition function T in the form of N data samples D = {(sn, an), sn+1}Nn=1. T̂ is
used recursively to predict a policy’s behavior in imagination over a given horizon
without trying it out on the real system, which helps to save expensive real system
samples. Deisenroth et al. [39] showed that using tuples (st, at) ∈ Rds+da as training
inputs and differences ∆t = st+1 − st ∈ Rds as training targets facilitates vastly the
training of a dynamics model. Indeed, doing so helps in several ways. Firstly, doing
so makes the assumption of environment stationarity: In many real-world scenarios,
the dynamics of the environment are relatively consistent and stationary over time.
By learning the differences between consecutive states, the model can focus on cap-
turing these changes, which tend to be smaller and more stable than the absolute
values of states. Secondly, there is a regularization effect, as learning state residu-
als naturally regularizes the model. It encourages the model to focus on capturing
the incremental changes in the environment, which often have more structure and
regularity than absolute states which increases model stability throughout learning.
Finally, it greatly helps toward model generalization as state deltas often exhibit
more consistent and predictable patterns than absolute states. This can lead to bet-
ter generalization when the model needs to handle unseen or novel states that were
not explicitly encountered during training. Dynamics Models can be used in Various
Model-Based planning schemes and Model-Based Policy Search algorithms using a
Dynamics Model can be more or less divided into three categories: Model Predic-
tive Control, Model-Based Reinforcement Learning and Model-Based Evolutionary
Algorithms.

2.4.1 Model-Based Planning Schemes

2.4.1.1 Model Predictive Control

Model Predictive control (MPC) [19] is an advanced control technique for automa-
tion. The principle of this technique is to use a dynamic model of the process inside
the controller in real time in order to anticipate the future behaviour of the process.
The dynamics model can either be a mathematical model or a learned model. This
technique is particularly interesting when systems have large delays or many distur-
bances. Model Predictive Control is widely employed in diverse applications such as
robotics, process control [135], and autonomous vehicles [73]. It operates by solving
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an optimization problem over a finite prediction horizon to determine a sequence
of control actions that optimally achieve desired objectives while satisfying system
constraints.

The fundamental principle of MPC involves formulating an optimization problem
that considers a dynamic model of the system, an objective function, and constraints.
Let st represent the system state at time step t, and at denote the actions taken.
The optimization problem is defined as follows:

min
at:t+H

H−1∑
k=0

C(st+k,at+k) + Cf (st+H)

subject to st+k+1 = T̂ (st+k,at+k),

st+k ∈ S,

at+k ∈ A,

(2.4)

where H is the prediction horizon, C represents the immediate cost associated
to taking action at in state st at time step t and Cf is the cost associated to the
final state. The costs functions C and Cf are usually defined as the opposites of the
reward function R, as the reward should be maximized but the cost minimized.

The optimization problem is solved at each time step, producing a sequence of
optimal control inputs at:t+H as shown on Figure 2.6. However, only the first control
action at is applied to the system. As time progresses, the MPC optimization is
re-executed with a receding horizon, adapting to changes in the environment and
system dynamics. MPC’s ability to handle constraints, uncertainties, and long-term
planning has made it an essential tool for complex control problems.

Even though the MPC paradigm stems from the control community [19] where it
has been applied even to very complex tasks like robot surgical interventions [161], it
has also more recently been applied to different robotics setups with lot less hypoth-
esis using learned dynamical models. Doing so, Nagabandi et al. [122] demonstrated
that learning a dynamics model with a medium-sized neural network is sufficient to
learn complex locomotion gaits when coupled with model predictive control. Taking
this one step further, PETS [26] proposed a method in which they learned online
a dynamics model on several reinforcement learning and robotics benchmark tasks
using deep ensembles. They proposed using ensembles of probabilistic neural net-
works to capture both epistemic and aleatoric uncertainty [64], epistemic being the
uncertainty that can be reduced through acquiring more data, thus useful to orient
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Figure 2.6: The Model Predictive Control Loop

exploration [155], and aleatoric being the one inherent to the underlying stochastic
process. Moreover, other techniques like Dynamics Aware Discovery of Skills [145],
Plan2Explore [144] and PDDM [123], all leverage learnt dynamics model to enhance
sample-efficiency and make more informative decisions in the agent environment, us-
ing MPC either to select the best learned skill to use or to apply the best estimated
action at each timestep.

2.4.1.2 Model-Based Reinforcement Learning

Combining Reinforcement Learning with a learned model, Model-Based Renforce-
ment Learning uses the learned model to optimize the agent’s policy π. Indeed, if a
cost function is available as in MPC, being able to model the world also allows to
update the policy like a regular Reinforcement Learning algorithm, except that the
data used to update the policy does not come from the real-world but is generated
using the learned model T̂Φ(s, a) by minimizing the cost function. This way, the
policy is executed on the model, new data samples in the form of (s, a, s′) tuples are
obtained and the associated cost C(s, a) +Cf (s

′) is computed and used to train the
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policy π. The goal is thus to update the policy π so that it’s closer to optimality
on the model T̂Φ, by backpropagating the cost using the learned dynamics model to
train the policy over a finite horizon T . This process is detailed in Figure 2.7.

Figure 2.7: The Model-Based Reinforcement Learning Loop

Model-based Reinforcement Learning approaches have been explored by the lit-
erature for decades [7], and have shown promising results in effectively giving real
robotic systems the ability to perform simple [37] to more complex tasks without
needing an extreme amount of data. Doing so, [141, 37] control an actuated cart-
pole to either maintain the pole up while moving the cart or to swing it up from
a resting pose. Similarly, [14] demonstrate how a two-link robot arm with a single
actuator can learn to swing up its non actuated endpoint above a target height.
These works demonstrated interesting results on limited degrees-of-freedom robotic
setups, opening the path to more complex control or policy search techniques using
a model. Such techniques thus evolved towards more complex robotics systems, in
terms of system dynamics and problem dimensionality. For example, several works
have shown results on biped walking tasks. Like that, [116, 38, 95] all demonstrated
the learning of successful walking gaits by bipedal robots, both on simulation [95]
and on real robot systems [116, 38]. Kaiser et al. [75] also showcased SimPLe, an
MBRL algorithm up to 10 times more sample-efficient than model-free algorithms
while using only image inputs, much like [144] in the MPC framework. Finally, some
methods demonstrates a robot learning to perform surgical tasks bootstrapped from
demonstrations or in a pouring task for the PR2 robot [172], showcasing the ability of
model-based techniques to learn even high dimensional behaviors in a few real-world
interactions if a model can be learned quickly.
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2.4.1.3 Model-Based Evolutionary Algorithms

A learned model can be integrated in different ways [23]. Indeed learned models
have been coupled with evolutionary algorithms for quite a while [89]. Larragana et
al. proposed to use the model to estimate the probability distribution of candidate
solutions and use the model to generate a new population instead of using variation
operators. The new population is then evaluated, and the model is trained iteratively
with the newly collected data. Instead of estimating directly the distribution of
candidate solutions, other methods try to directly learn the inverse model of the
mapping between the objective space (the image of the decision space, in our case B
the behavioral space) and the decision space (the space of the solutions, in our case
the parameter space Θ) [52, 24, 29, 97, 153].

Finally, other methods directly try to learn a model of the objective function.
This can be done in several ways depending on the nature of the problem to solve.
The objective function can be estimated directly by mapping the decision space
to the objective space [169, 71, 70, 152, 27, 49, 77], thus reducing the number of
expensive evaluation of the objective function (in our case the transition function T

over a complete episode). An other way applicable in the MDP case is to estimate
directly the transition function, and use it to estimate the fitness and behavioral
descriptors of the candidate solutions [98, 99].

Figure 2.8: The Model-Based Evolutionary Algorithm Loop
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Thus, Model-Based Evolutionary Algorithms, just like regular Evolutionary Al-
gorithms, do not aim to optimize a single policy like Model Based Reinforcement
Learning or a single action like Model Predictive Control but rather aim to generate
a set of individuals that will solve the given optimization problem, whether it is to
maximize a reward oriented fitness, to be as diverse as possible or multiple objectives
at the same time. MBEAs work much like regular EAs, except that the optimization
part is usually mostly done directly on the model T̂Φ as shown on Figure 2.8 for
Novelty and Quality-Diversity based MBEAs (in this case the model T̂Φ can be a
dynamics model [98, 99] or a direct model [49, 77])

In the robotics community, MBEAs have been applied only in a few recent oc-
curences. Keller et al. thus uses a neural network to directly learn the mapping
between actions and behaviours [77], which, depending on the complexity of the
underlying dynamics, can be proven quite hard.

Prior to the works of this thesis, only Lim et al. [98, 99] coupled a learned Dy-
namics Model with an Evolutionary Algorithm. Authors showed on a locomotion
task that the usage of a learned dynamics model coupled with the Quality Diversity
algorithm MAP-Elites could reduce by 10 the number of samples required to reach a
similar quality and coverage in the final archive of behaviors. This work is particu-
larly interesting as it is the first to showcase that even in episode-based policy search
techniques, where the planning horizon is usually pretty long, that a dynamics model
can still hold meaningful information about the individual evaluated in imagination.

2.4.2 Model Representations

2.4.2.1 Gaussian Processes

Gaussian Processes (GPs) have emerged as a powerful tool for surrogate model-
ing. Gaussian Processes are the generalization of a Gaussian distribution over a
finite vector space to a function space of infinite dimension [134]. These probabilis-
tic models provide a flexible framework for approximating complex functions and
learning transition dynamics. Given a set of observed state-action pairs and their
corresponding next-state outcomes, a GP models the underlying transition dynamics
and captures the uncertainty associated with the function approximation. The GP
defines a distribution over functions and provides not only point estimates but also
an uncertainty metric, which is interesting for making informed decisions when using
an approximated model.
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Mathematically, a GP is defined by a mean function µ(x) and a covariance func-
tion (kernel) k(x,x′), where x and x′ represent the input points. Given a set of
training data {(xi,yi)}, where yi is the observed next-state outcome corresponding
to input xi, the predictive distribution at a test point x∗ is a Gaussian distribution
characterized by the mean and variance:

µ∗(x∗) = k⊤
∗ (K + σ2

nI)
−1y

σ2
∗(x∗) = k(x∗,x∗)− k⊤

∗ (K + σ2
nI)

−1k∗

where k∗ represents the vector of covariance between the test point and training
points, K is the covariance matrix of the training points, and σ2

n is the noise variance
parameter. The mean and variance provide information about the expected next-
state outcome and the uncertainty associated with it.

The advantages of GPs for surrogate modeling lie in their ability to handle com-
plex and nonlinear transition functions while providing a measure of uncertainty.
This makes them well-suited for guiding exploration and decision-making in policy
search problems, as they allow agents to make informed choices while accounting
for the uncertainty inherent to the transition function approximation. Additionally,
GPs can naturally handle unevenly spaced or noisy data, which is often the case
in real-world applications. Gaussian Processes are thus a powerful tool, as it can
leverage priors, exploit uncertainty in the model and generalize well with small data
sets.

Another advantage of GPs is that they can leverage priors to actually learn
quicker on the given task. Priors can come from previous tasks or from simulation.
Several robotic applications made such use of GPs, such as ITE [31] which allowed
an hexapod robot to adapt to different damage conditions in a few amounts of trials
after facing this new situation. GPs were also used successfully in other robotic
applications. For example, Martinez-Cantin et al. [105] used GPs to model a process
in which a robotic system had to navigate in an uncertain environment. It was also
used in other locomotion setups, for example to learn policies for a quadruped robot
[102] or for a small vibrating soft tensegrity robot [136].

Nevertheless, Gaussian Processes suffer from several aspects. Firstly, they do
require a prior assumption on the underlying data distribution, which can be detri-
mental when no knowledge of the task is available at all, as it requires to make
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assumptions on the underlying function to approximate. Moreover, Gaussian Pro-
cesses do not scale well to high dimensional data and big training data sets, as the
computational power required for inference becomes quickly intractable [63]. This
is particularly problematic in certain robotic tasks where the state and action space
can grow pretty quickly

2.4.2.2 Deterministic Neural Networks

Just like GPs, Neural Networks (NNs) can be used to learn various models represent-
ing the task or its underlying dynamics. Standard NNs have been less used as models
as they are deterministic and lack of the uncertainty information GPs have which
allows better long-term predictions in terms of robustness as they tend to less be
exposed to model bias. Nevertheless some researcher did use NNs for model learning
in robotic applications. For example, Nagabandi et al. used NNs as dynamics model
to initialize a model-free learner which was then used to learn walking gaits [122].
In the Evolutionary Algorithm framework, Keller et al. used a neural network to
directly learn the mapping between actions and outcomes [77], which, depending on
the complexity of the underlying dynamics, can be proven quite hard. Indeed, the
mapping between actions and outcomes can be arbitrarly complex depending on the
length of the task episode and the system dynamics complexity.

Nevertheless, Simple Neural Networks are still interesting to look at as they lay
out the basis of the regression problem that needs to be solved to approximate the
system dynamics. The goal is to minimize the discrepancy between the predicted
next-state outcomes and the actual observed outcomes. The Mean Squared Error
(MSE) is a commonly used loss function in this context:

L(ϕ) = 1

N

N∑
i=1

∥∥∥yi − T̂ϕ(si,ai)
∥∥∥2 ,

where ϕ represents the parameters of the neural network, si and ai are the state
and action inputs of the i-th observation, yi is the corresponding true next-state
outcome, and N is the number of observations.

To address the challenge of generalization to unseen states and actions, regu-
larization techniques like weight decay [86, 103] or dropout [149] can be employed.
Weight decay adds a penalty term to the loss function based on the magnitudes of
the network’s weights, promoting smaller weight values and preventing overfitting.
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Dropout randomly drops a fraction of the neurons during training, forcing the net-
work to rely on a variety of features and thus enhancing its ability to generalize.
This way, DEEP-PILCO [51] modified the previous PILCO algorithm by replacing
the GP by a Neural Network, whose output uncertainty is captured using dropout
[149], allowing the algorithm to handle bigger training datasets both in terms of
dimensionality and training samples.

Despite their capabilities, NNs for learning transition functions have challenges,
such as the curse of dimensionality and overfitting. Training on insufficient or bi-
ased data may lead to poor generalization and inaccurate transition models. Fur-
thermore, the choice of architecture, regularization, and optimization strategies can
significantly impact the performance of the learned transition function. Inspired by
these drawbacks, other Neural Networks based approaches were proposed.

2.4.2.3 Probabilistic Neural Networks

Indeed, recent extensions of NNs to probabilistic models exists, notably through
Probabilistic Neural Networks (PNNs) [50]. PNNs scale better than GPs to the
number of samples, but don’t have the advantage of the possibility to include priors
(easily) and require more hyper-parameter optimization. Nevertheless, PNNs were
used to achieve state of the art results, notably on the half-cheetah benchmark [26].

PNNs also have other advantages over GPs, as they are able to model scenarios
with multiple modalities and heteroskedasticity [40], scenarios that GPs fail to model
properly. PNNs can also be used, together with latent input variable to decompose
the various types of uncertainties in the model, so that do determine better which
points to query in the next trials [41].

Going more into detail, a probabilistic neural network is a type of neural net-
work that outputs probability distributions, typically characterized by a mean and a
variance, instead of point estimates. This characteristic allows PNNs to model uncer-
tainty and capture the inherent variability in predictions, making them particularly
useful for tasks where uncertainty estimation is essential.

The loss function for training a probabilistic neural network takes into account
both the accuracy of the predicted mean values and the uncertainty captured by the
predicted variances. The goal is to minimize the discrepancy between the predicted
probability distributions and the true distributions of the target data. A commonly
used loss function for PNNs is the negative log-likelihood (NLL) loss, which measures
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the dissimilarity between the predicted distribution and the actual target distribu-
tion.

Mathematically, given an input sample x and its corresponding true output y

characterized by a Gaussian distribution with mean µy and variance σ2
y, the NLL

loss can be defined as:

L(ϕ) = − log (p(y|x;ϕ)) ,

where ϕ represents the network parameters, and p(y|x;ϕ) is the predicted prob-
ability density function of the output distribution given the input x. For a Gaussian
distribution, this density function can be expressed as:

p(y|x;ϕ) = 1√
2πσ2

y

exp

(
−(y − µy)

2

2σ2
y

)
.

Minimizing the NLL loss encourages the network to generate predicted distri-
butions that align closely with the true distributions, effectively optimizing both
the mean and the variance predictions. This enables the network to learn not only
accurate point estimates but also to capture the uncertainty associated with the
predictions.

One advantage of using a probabilistic neural network with the NLL loss is its
ability to provide calibrated uncertainty estimates. The predicted variances can also
serve as a measure of the model’s confidence in its predictions. High variance indi-
cates higher uncertainty either in the model or in the transition dynamics when they
are stochastic, whereas low variance suggests higher confidence in the predictions
or lower randomness in the system dynamics. This can be particularly valuable in
scenarios where reliable uncertainty estimation is crucial for decision-making or risk
assessment. Nevertheless, it would be interesting to be able to dissociate the model
uncertainty, which is called the epistemic uncertainty, from the system dynamics
uncertainty, which is called the aleatoric uncertainty, as having both mixed can un-
dermine the decision capabilities of a policy search algorithm using such a model
[64].
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2.4.2.4 Ensembling

Theoretically, the most natural way to capture epistemic uncertainty would be using
Bayesian inference. This is done in what we call Bayesian Neural Networks (BNNs),
which instead of estimating the Neural Network parameter vector ϕ try to estimate
the posterior distribution p(ϕ|D) over the Neural Network parameters depending
on the collected data. Doing so basically maintain a distribution over the network
parameters and allows to naturally separate the epistemic and aleatoric uncertainty.
BNNs also require the introduction of a prior distribution over the model parameters,
which is a choice left to the designer and often set to a normal prior with a zero mean
and diagonal covariance [72]. Nevertheless, time-efficient BNNs are still a challenge
especially at training time. Even if great advances were made recently, state of the
art training algorithms for BNNs bring the training time to 2-5 times more than that
of the ADAM algorithm for non-Bayesian Neural Networks [124].

Hopefully, other techniques which are more tractable exist to approximate a
Bayesian Framework, like Batch Ensembles [166], Deep Ensembles [125] and Vari-
ational Neural Networks [56]. We take particular interest in Deep Ensembles, as
they proved being efficient to learn Dynamics Models in robotic tasks in various
contexts [26, 68, 144, 123, 98]. Deep Ensembles are pretty simple to understand,
as they simply are an ensemble of N PNNs with different initial set of parameters
ϕi ∈ Φ, i ∈ {1, . . . , N}, and trained with the same data samples in different batches.
Ensemble methods offer various ways to make predictions using the combined knowl-
edge of those N models. One common approach is to average the predictions of
individual models to obtain a final prediction. This simple yet effective technique
helps mitigate the potential errors of individual models and produce more stable and
accurate predictions [88] and moreover epistemic and aleatoric uncertainty can be
separated:

p(y|x;ϕ) ∼ N (µ∗(x), σ
2
∗(x)) (2.5)

µ∗(x) =
1

N

N∑
i=1

µi(x) (2.6)

σ2
∗(x) =

1

N

N∑
i=1

(σ2
i (x) + µ2

i (x))− µ2
∗(x) (2.7)
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One would thus use µ∗(x) directly as the next step estimate. Nevertheless, some
methods do not use the average of the mean predictions over the models

µ∗(x)

directly as the estimated transition function next step prediction [13, 68, 26], and
make more sophisticated uses of the various models in the ensemble to modify the
predictions properties. One way to use the predictions differently is by preserving
the particles on a single model of the ensemble, such that the variance σ2

∗(x) can be
divided into aleatoric and epistemic uncertainty:

σ2
∗(x) =

1

N

N∑
i=1

(σ2
i (x) + µ2

i (x))− µ2
∗(x)

=
1

N

N∑
i=1

σ2
i (x) +

1

N

N∑
i=1

µ2
i (x)− µ2

∗(x)

= Ei[σ
2
i (x)] + Ei[µ

2
i (x)]− Ei[µi(x)]

2

= Ei[σ
2
i (x)] +Vari[µi(x)]

(2.8)

According to Equation 2.8, the right term, the variance of the means, corresponds
to epistemic uncertainty, the uncertainty that stems from the lack of data and is mea-
sured through disagreement between the models of the ensemble. On the otherside,
the left term is the mean of the variances and represents aleatoric uncertainty, the
inherent stochasticity in the underlying transition function to be learned [160].

This thesis is focused on using such learned models, more specifically those based
on Neural Networks architectures to increase Novelty Search sample-efficiency. Those
learned models can be used in various ways as Neural Networks based architectures
hold a great representational capacity [11, 20] making them perfect for modeling
dynamics of robotic systems of various State-Action Space dimensions as well as
modeling non-linear and even discontinuous transition functions [65]. Combining
such modeling methods with Evolutionary Algorithms is thus at the core of this
thesis, using the combination of both in various ways towards increasing Novelty
Search sample-efficiency. But such models might yield very different prediction errors
depending on the training data provided, especially in the first few interactions with
the environment when the amount of training data available is relatively small. Next
chapter addresses this issue by focusing on various random processes controlling the
robot behavior to gather initial training data such that the learned models prediction
error would be reduced in the context of Model-Based Policy Search.
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Chapter 3

Bootstrapping Model-Based Policy
Search: A Study

As presented in the precedent chapter, robotics learning suffers from several prob-
lems, most notably the reality gap problem and the sample efficiency problem. The
reality gap can be addressed using a variety of techniques, but a family of method
tries to overcome both the reality gap and the sample efficiency problem at once:
model-based techniques. In this chapter, we take interest in such methods and more
particularly into the way the data to initialize the models is gathered. Indeed, when
dealing with a black-box environment, the only possible way to gather data is to give
the agent actions to perform. In the case of model-based policy search algorithm,
this initial data is used to train the model of the environment dynamics which is sub-
sequently used to guide the policy search. The literature has addressed this initial
data gathering problem mainly in two ways: use uniformly sampled random actions
for a number of steps [122, 57, 144] and use randomly parameterized policies [98, 99]

Nevertheless, this poses a problem. Indeed, no consideration is given to the
method used for initial data gathering and the impact it has on the model boot-
strap depending on the environment at hand, meaning that we could use the same
initialization method for any environment, even though it could not be suited at all
to the dynamics of the given Markov Decision Process. Depending on the Model-
Based Policy Search approach used, having a poorly initialized model could lead to
sub-optimal behaviors for several episodes, which is detrimental to sample efficiency
in a context where the goal is to maximize the information gain of each sample.

In this chapter, we thus propose to study the impact of the initial data gathering
method on two Model-Based Policy Search algorithms: Dynamics-Aware Quality-
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Diversity (DAQD) [98], an episode-based Model-Based Quality Diversity algorithm,
and Probabilistic Ensembles with Trajectory Sampling (PETS) [26], a step-based
Model-Based Reinforcement Learning algorithm. In order to provide more depth
to our study, we will be studying the impact of five different initial data gathering
techniques: Random Actions, Random Policies, and three variations of Colored Noise
Random Walks. The last initial data gathering technique proposed is particularly
interesting as it allows, independently from the environment at hand, to generate
action sequences of varying time-correlation.

Those different initial data gathering techniques thus have varying degrees of
auto-correlation, which in turn is linked to the ability to generate different data
distributions in the action-space A and in the state-space S of a given environment.
To determine beforehand what type of initial data gathering technique could work for
a given environment, we propose a consistency metric, evaluating the propensity
to which actions taken in the environment yield the same transition whichever state
the system is in. We then link that consistency to the evaluated model prediction
error to show that there is a relation between auto-correlation in the generated action
sequences, model prediction error and environment consistency such that one could
to some extent predict which type of method to use to bootstrap properly its Model-
Based Policy Search algorithm model. Finally, we evaluate the actual impact this
has on the two aforementioned Model-Based Policy Search algorithms

3.1 Methods

3.1.1 Initial Data Gathering Methods

One of the core principles of model-based techniques is that they iteratively alternate
between exploration on the real system and exploration on the learned model. As
stated before, in this study we focus on the data gathering method that will help
pre-train the learned model. The objective is to have a model that is as much as
possible properly bootstrapped given a limited budget that should be significantly
inferior to the budget given to the subsequent model-based policy search method
used. In this context, we consider several initialization methods that are detailed
furthermore in the next paragraph.

Considering action an ∈ A, what we call an initialization method, or initial data
gathering method can be described as an action sequence, ideally independent of
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the agent’s environment E. We describe such an action an as a sequence of random
variables An such that:

• A0 = a0

• An =
n∑

i=0
αiZi, Zi being the random variable at step i

In this chapter, we’ll consider the following different initialization methods:

• Random Actions denoted RA

• Colored Noise with β = 0 (Brownian Motion [117]) denoted CNRW0

• Colored Noise with β = 1 denoted CNRW1

• Colored Noise with β = 2 denoted CNRW2

• Random Policies denoted RP

All of these different initialization methods can be formalized in the same manner,
except for random policies as they depend on the policy representation. we start by
describing the other initialization methods that do fit the presented formalism and
will finish by detailing random policies.

Random Actions (RA):

Random actions: B uniformly drawn actions a ∈ A, each applied for R step
sequentially on the task horizon H such that B = H

R . An episode thus consists of
rolling out B different actions, for R step each, on a newly reinitialized environment.
In the previously presented formalism gives:

ZRA
i ∼ U(A)

Such that:
ARA

n = ZRA
n−nmodB

Colored Noise Random Walk (CNRW): [130] proposed correlated action sequences
through modifying the power spectral density (PSD) of that time-series. Indeed, the
correlation structure of a sequence, if looked at as a time series is directly connected
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to the power spectral density (PSD) [130]. As such, it is possible to define colored-
noise sequences as a function of a β factor which creates correlated action sequences
such that PSD(f) ∝ 1

fβ . It is important to note that with a β factor equal to zero,
the Colored Noise distribution is equivalent to a Gaussian distribution N (µ, σ), such
that the generated noise sequence is equivalent to white-noise and the associated
action sequence is thus equivalent to Brownian Motion [117]. We emphasize the
fact that Random Actions and CNRW0 (Brownian Motion) are distinct methods, as
the first produces uncorrelated action sequences. Colored Noise Random Walk can
thus be described as follow, with β modifying the PSD of the random variable Zi as
described before:

Z
CNRWβ

i ∼ N i
CN (µ, σ, β)

Such that:

A
CNRWβ
n =

n∑
i=0

Z
CNRWβ

i

Where N i
CN (µ, σ, β) represents the Colored Noise distribution conditioned on the β

factor and the i− 1 previous samples regarding the ith sample, as the sampled noise
sequence is highly time correlated.

Random Policies (RP): In the scope of this chapter, Random Policies will refer
to two-layers deep neural networks, with ten neurons per layers. The input layer
of the network is the current state sn the agent is in and the output layer is the
current action an the RP controller outputs for state sn depending on the controller
parameterization by vector θ, the parameters of the vector being the weights and
biases of the underlying neural network. Simply put:

an = RP (sn, θ)

RP controllers are thus directly dependant on the environment, while all the pre-
viously mentioned controllers are completely environment independent. Previous
controllers, except for Random Actions, are all Random Walks in the action space
A of the agent’s environment E. The interest that we take in this study is thus
to evaluate the importance of the time-correlation in the action sequences used to
generate initial training data as the described initialization methods cover the range
of time-correlation values.
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3.1.2 Environment consistency metric

To measure the dynamics consistency of an environment, we propose to use the
coefficient of variation [2] of the ∆s = st+1 − st data distributions obtained by
sampling uniformly a single action a ∈ A in M multiple uniformly sampled states
s ∈ S and acting in the environment using the true transition function. Multiple
coefficient of variation measures are then obtained for all the N sampled actions,
and we look at the mean and standard deviation of these measures across the system
state as outlined in Algorithm 3. The coefficient of variation is defined as follow,
being the ratio of the aforementioned distribution standard deviation to the mean:

cv =
σ

µ
(3.1)

The consistency metric is thus defined as u = 1−cv, such that when observed ∆s

variation for sampled actions is high, environment consistency is low and vice versa.
Observed coefficient of variations are then averaged over sampled actions.

Algorithm 3 Consistency measure
1: Sample uniformely N actions a ∈ A
2: for each action a do
3: Sample uniformely M states s ∈ S
4: for each state s do
5: (S,A,NS)← t(s, a) ▷ Collect real transition data
6: ∆S ← NS − S ▷ Append transition residual to ∆S

7: uA ← 1− σ∆S

µ∆S
▷ Compute coefficient of variation of distribution of transitions for

action a and corresponding consistency
8:
9: return mean(uA), std(uA)

3.1.3 PETS and DAQD

The Probabilistic Ensembles with Trajectory Sampling (PETS) algorithm is a model-
based reinforcement learning (MBRL) approach designed for sample-efficient learn-
ing with limited trials. PETS utilizes probabilistic dynamics models, as presented in
Section 2.4.2.3 to learn the system dynamics, and train them as an ensemble to cap-
ture various sources of uncertainty as described in Section 2.4.2.4. PETS proposes
to employ trajectory sampling, generating multiple trajectories by sampling from
the learned dynamics models, and utilizes the cross-entropy method [35] to optimize
for the best next action to perform under a specified planification horizon. PETS
alternates between optimizing for the best return under its current modelization
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of the environment dynamics the next action to perform and acting in the envi-
ronment. By combining probabilistic modeling, ensemble learning, and trajectory
sampling, PETS is a sample-efficient Model-Based Policy Search algorithm that can
solve robotic tasks with only a small number of interactions, making it particularly
suitable for scenarios where trials are limited. The algorithm is further detailed in 4,
with TS referring to both trajectory sampling methods T1 and Tinf described below.

Algorithm 4 PETS
1: Initialize data D with an initial data gathering method for 10 episodes
2: ▷ Performing PETS
3: for k in [1, . . . ,K] do
4: Train a PE dynamics model T̂ given D
5: for t in [0, . . . ,H] do
6: for Action sampled at:t+T ∼ CEM(·), 1 to N Samples do
7: Propagate state particles spτ using TS and T̂

8: Evaluate actions as
∑t+T

τ=t

∑P
p=1 r(s

p
τ ,aτ )

9: Update CEM(·) distribution
10: Execute first action a∗t (only) from optimal actions a∗t:t+T

11: Record outcome: D ← D ∪ st,a
∗
t , st+1

Chua et al. propose two methods of Trajectory Sampling:

• TS1 corresponds to uniformly selecting a model from the ensemble at each
time step to propagate the current prediction or particle. This corresponds to
considering the ensemble as a Bayesian model as each particle would be re-
sampling from the approximated marginal posterior of the system dynamics.

• TSinf corresponds to never changing the model from the ensemble being used
to infer a particle trajectory. A model is uniformly sampled at the first step
and thus used for the planning horizon. The idea behind TSinf is that the en-
semble is a collection of plausible models. Not changing the model used during
inference thus captures the time-invariance of the real system dynamics func-
tion T , considering each model of the ensemble as a plausible approximation
of the true dynamics function. Moreover, using TSinf allows for separation of
epistemic uncertainty and aleatoric uncertainty [41] as shown in Equation 2.8,
where aleatoric uncertainty is captured by the average variance of the particles
inferred on the model ensemble and where epistemic uncertainty is the variance
of the average of particles for each time-step.

In this chapter, we will be using the TS1 propagation method, as it yielded the
best results in the original PETS paper.
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The other method we will be using is the Dynamics-Aware Quality-Diversty
(DAQD) algorithm, which is a Model-Based Quality-Diversity algorithm (and more
broadly a Model-Based Evolutionary algorithm). Much like PETS, DAQD utilizes
probabilistic models as an ensemble to provide more accurate predictions of the
roll-out of a candidate solution. As opposed to PETS, DAQD uses TSinf for the pre-
diction of the individual trajectory, from which is derived the behavioral descriptor
using the observer function oB and the individual fitness using the fitness function.
DAQD thus transfer the QD search onto the model using a random selection process
and directional variation [162]. Once enough individuals are found on the model to
potentially be added to the archive (100 is the number used in our and their exper-
iments), all individuals found are transferred onto the real system and the archive
selection process on the real system takes place, finally adding to the archive only
the individuals that are actually either filling a new bin or that replace a previous
individual. The complete DAQD algorithm is detailed in 5.

In this chapter, we will use two different version of the DAQD algorithm. Firstly,
the Vanilla version, which bootstraps the archive like a regular QD algorithm using a
fixed number of randomly parameterized policies before performing any search using
the model. The data gathered doing so is also used to train the dynamics model.
Secondly, we will use a custom version of the DAQD algorithm which consist of two
phases: the initialization phase, where a specified budget of an initial data gathering
method is spent to train the model and a second phase of QD search on the model,
similar to Vanilla DAQD after its bootstrap phase. The budget for initialization in
the custom DAQD version will be 10 times lower than the one of the Vanilla DAQD
algorithm.

3.2 Experiments

3.2.1 Experimental Setups and corresponding Consistency

In our experiments, we consider five setups, with various consistency metrics and
some with a distinct characteristic not present in any other environment and repre-
sentative of real world robotic setup commonly found dynamics or specificities. Four
characteristics are thus studied: sparse interactions (in the Ball In Cup scenario),
which are the fact that some transitions appear very scarcely in the transition func-
tion T , discontinuities in the transition function dynamics (in the Two-wheeled Robot
Maze scenario), and finally physical traps (in the Two-wheeled Robot Maze Traps
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Algorithm 5 Dynamics-Aware Quality-Diversity (DAQD)
1: Initialize repertoire AΠ (to ∅), imagined repertoire ÃΠ (to ∅), dynamics model pdyn, and

replay buffer B (to ∅)
2:
3: while maximum number of evaluations not reached do
4:
5: if first iteration then ▷ Generate random policies at first iteration.
6: πθ∗

1
. . . πθ∗

b
← random_parameters()

7: else
8: πθ1

. . . πθb
← select(AΠ) ▷ Selecting b policies from repertoire AΠ

9: πθ∗
1
. . . πθ∗

b
← variation_operators(πθ1

. . . πθb
) ▷ Apply variations to parameters

θi.
10:
11: ▷ Performing QD Exploration in Imagination
12: while model stopping criterion is False do
13: (s̃di, R̃i)i∈[1,b] ← imagined_rollouts(πθ∗

1
. . . πθ∗

b
) using pdyn ▷ Evaluate using

dynamics model.
14: ÃΠ ← model_condition(πθ∗

1
. . . πθ∗

b
, ÃΠ) ▷ Add πθ∗

i
to ÃΠ depending on R̃i and

novelty of s̃di.
15: if model stopping criterion is False then ▷ Continue performing QD exploration

in imagination.
16: πθ1 . . . πθb

← select(ÃΠ) ▷ Selecting b policies from imaginary repertoire ÃΠ.
17: πθ∗

1
. . . πθ∗

b
← variation_operators(πθ1

. . . πθb
)

18:
19: ▷ Acting in the Environment
20: πθ1

. . . πθN
← select(ÃΠ) ▷ Selecting N policies from imaginary repertoire ÃΠ to be

evaluated.
21: (sdi, Ri)i∈[1,N ], transitions ← evaluation(πθ1

. . . πθN
) ▷ Evaluate in environment;

get transitions.
22: B ← add_to_replay_buffer(transitions, B)
23: AΠ ← repertoire_condition(πθ1 . . . πθN

,AΠ) ▷ Add πθi to AΠ depending on Ri and
novelty of sdi.

24: ÃΠ ← synchronise_repertoires(AΠ, ÃΠ) ▷ Erase content of ÃΠ and replace it with
the content from AΠ.

25:
26: ▷ Learning Dynamics Models
27: Update pdyn using B ▷ Train dynamics model with transitions collected in replay

buffer.
28:
29: return AΠ

scenario), much like a robot falling into a pit not being able to escape it or dropping
an object crucial for the end of its task out of its reach, such that task completion
isn’t possible anymore. We also consider two other environments for their different
consistency and their application with the PETS algorithm: the Cartpole scenario
and the Pusher scenario directly taken from the PETS paper [26].

The two Two-Wheeled Robot Mazes scenarios will be used exclusively with
DAQD and are based on the Hard Map from the original Novelty Search paper
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[91]. Those environments are not used with PETS as designing a simple dense re-
ward function would be deceptive and unhelpful. The Cartpole and Pusher will be
used exclusively with PETS. Regarding the Ball In Cup task, it is an extension of the
two-dimensional Ball In Cup environment from the DeepMind control suite [154]. It
will be used with both methods as a specific dense reward has been designed, such
that the agent is rewarded when swinging up the ball above the cup, then for reduc-
ing the distance between the ball and the cup and finally by successfully putting the
ball inside the cup, allowing for usage of the PETS algorithm on this task.

3.2.1.1 Two-Wheeled Robot Maze

The Two-Wheeled Robot Maze environment consists in a two-wheeled robot nav-
igating in a maze that is hard to explore, taken from [91]. The robot wheels are
independently speed controlled, the action-space of the robot thus is two dimen-
sional and consists of the motor command to send to each of the robot wheels. The
state-space consists of the position, velocity and orientation of the two-wheeled robot.
The orientation ϕ, that is expressed in degrees, is divided in two fields corresponding
to sin(ϕ) and cos(ϕ), to maintain continuity in the state values whatever the value
of ϕ is. The state-space is thus of dimension 6. The task consists in reaching as many
robot positions as possible, the behavior descriptor thus being the end position of
the two-wheeled robot trajectory over an episode. Two versions of the task are con-
sidered: one in which the walls act as discontinuities in the transition function, the
robot simply colliding with them when touching them, and an other one in which
the walls act as physical traps, effectively ending the episode. The episode length is
1000 steps on these environments. An image of the setup is shown on Figure 3.1d.
The outcome space we consider for this environment is the final position x-axis and
y-axis position of the robotic mobile base. The two environments are based on the
Fastsim simulator [119].

3.2.1.2 Ball In Cup

The Ball-In-Cup environment consists in a ball that is hanging below a cup thanks
to a string. The cup is controlled in position in the three-dimensional space. The
action-space thus consists in the three dimensional position of the cup in the 3D
space. The state-space consists of the relative position and velocity of the ball to the
cup. The state-space is thus of dimension 6. The task thus consists in putting the
ball inside the cup. The task can either have a sparse reward function or a dense
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reward function. In the sparse reward scenario, reward is only given when the ball
gets into the cup. In the dense reward scenario, a specific dense reward function
has been designed, such that the agent is rewarded when swinging up the ball above
the cup, then for reducing the distance between the ball and the cup and finally by
successfully putting the ball inside the cup. In both scenarios, this tasks presents an
important challenge as the problem involves sparse interactions. Indeed, to give the
ball an upward velocity requires to swing the ball, which can only be done through
a portion of executable action sequences. An image of the setup is shown on Figure
3.1c. The outcome space we consider for this environment is the relative position of
the ball to the cup. The episode length is 300 steps on this environment.

3.2.1.3 Cartpole

The cartpole environment is a classic robotic control environment consisting of a
pole linked to a cart through an unactuated revolute joint as shown on Figure 3.1a.
The cart itself is then controlled in a single dimension along a prismatic joint. The
action-space thus consists in a single action representing the target velocity (positive
or negative) of the cart along the prismatic joint. On the other hand, the state-space
consists of the current cart position and velocity along the prismatic joint as well
as the angular position and angular velocity of the pole linked to the cart. The
state-space is thus of dimension 6. Here, the given task is to swing-up the pole and
keep it upright. The closer the pole is to its upright position, the higher the reward
is. This task, as well as the Pusher task, have a non-deceptive dense reward function
and is ideal for step-based model-based techniques that require a dense reward, like
PETS [26]. Both the Cartpole and the Pusher environments are directly taken from
the PETS experiments. The episode length is 150 steps on this environment.

3.2.1.4 Pusher

The final environment we consider is the pusher environment which consists in a
7 degrees of freedom robotic arm of a PR2 robot, of a puck on a table and of a
target position for the puck to reach, as shown on Figure 3.1b. The robotic arm
is torque controlled in each of its joints. The action-space thus consists in a vector
of dimension seven, each of its dimensions being the torque to apply to each of the
seven joint. The state-space consists of the current angular position and velocity of
the robotic arm joints, of the end-effector Cartesian position, of the puck Cartesian
position and finally of the goal Cartesian position. The state vector is thus a 23
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(a) Cartpole (b) Pusher

(c) Ball In Cup (d) 2-wheeled Robot Maze

Figure 3.1: Benchmark environments

dimensional vector. The task objective is to push the puck towards the goal position
on the table using the robotic arm. The reward function is a weighted mix of the
distance between the end-effector and the puck and of the distance between the puck
and its goal position. The episode length is 150 steps on this environment.

The consistency metric is being computed on a budget of N = 1000 actions
sampled uniformly in the action-space A, each action being applied in M = 1000

states sampled uniformly in the state-space S, for a total of 1 million observed
transitions. Observed ∆s are obtained using the real transition function t and are
min-max normalized w.r.t. the observed minimum and maximum values of ∆s for
each of the state dimensions. Figure 3.2 shows the consistency measure for each of
the considered benchmark environments. The cartpole environment has the highest
consistency metric around 0.9, while the Pusher environment is slightly above 0.7

followed closely by the two Two-Wheeled Robot Maze environments (fastsim_maze
and fastsim_maze_traps) at 0.67 and finally by the Ball In Cup environment right
below 0.65. We observe that the cartpole has a greater standard deviation than the
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Figure 3.2: Consistency metric for benchmark environments

Pusher and Ball In Cup environment which is most likely due to the cartpole state
dimensions, comprised of the slider position and pole angle, following very different
dynamics. Finally, we observe that the two Two-Wheeled Robot Maze have a very
great standard deviation in their consistency. In this case, it seems to indicate that
the environments are both very consistent (in the regions without any obstacle) and
very inconsistent (in the regions with obstacles). Results on the two Two-Wheeled
Robot Maze might be harder to interpret given the inconsistent consistency metric
of these environments and their long prediction horizons.

3.2.2 Data gathering policies

3.2.2.1 Auto-correlation

We first want to ensure that the initialization methods we consider are set up properly
at different values in the time correlation spectrum. In that case, Random Actions
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represent the least time-correlated end of that spectrum, the actions being uniformly
re-sampled every R time-step. We now want to have the other proposed methods
laid at the opposite of that spectrum, ideally forming a gradient of time-correlation.
We thus propose to look at the auto-correlation of the generated action sequence to
ensure that we have the intended action sequences behavior.

In order to do so, we first observe the auto-correlation of the generated noise
sequences, to ensure that an increasing β factor in Colored Noise results in higher
time-correlation in the noise sequences. We consider a time lag of up to 25 elements as
we find this a suitable value to observe the differences in time-correlation between the
considered noise generators. As expected and as observed on Figure 3.3a, Brownian
Motion (CNRW0) underlying noise generator produce a noise sequence with near
zero auto-correlation values. On the contrary, CNRW1 and CNRW2 underlying
noise generators produce higher time-correlated noise sequences. Indeed, we can see
on Figure 3.3a that Colored Noise with a β factor equal to one has auto-correlation
values that decreases exponentially while with a β factor equal to two the auto-
correlation values diminishes almost linearly. Being sure that the underlying noise
generators are working as intended, we now observe the same graphs directly in the
action-space A to ensure that the observed properties carries on from R.

(a) Noise sequence auto-correlogram (b) Action sequence (random walk in action
space) auto-correlogram

Figure 3.3: Auto-correlograms of noise and action sequences on a time lag of 25
sequence elements

Firstly, it is important to note that, by nature, Random Walks induce time-
correlation in the generated sequences. Shown results are obtained on 1000 randomly
sampled sequences for each method. As observed on Figure 3.3b, Brownian Motion
(CNRW0) produce a pretty low time-correlation on the considered time lags. We
now want to confirm that CNRW1 and CNRW2 have higher auto-correlation over
those input lags, and that CNRW2 is more time-correlated than CNRW1. We
can observe on 3.3b that CNRW2 is indeed more time-correlated than CNRW1, as
CNRW2 correlation value for a 25 time-lag, CNRW2 is settling around 0.7, while
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CNRW1 settles around 0.65. The decrease in time-correlation across time is thus
steeper for CNRW1 with regards to CNRW2, which is the intended behavior. Now
that we ensured that we have various time-correlated initial data gathering methods,
we continue this study by analyzing the initialized models prediction errors and by
putting these into perspective with the action sequences time-correlations and the
consistency metrics of each of the environments.

3.2.2.2 Data distribution study

In this section, we focus on studying the data distributions produced by each of the
initialization methods. We both observe the data distribution obtained on actions,
which in most cases is the same across all dimensions of the action spaceA for a single
initialization method, and observe the resultant state data distribution obtained
taking the actions produced by the initialization method. All results are gathered
with a 10 episodes budget on all environments for each method with 10 repetitions.
Shown state-space dimensions are usually representative of the other dimensions
which are not shown.

Here, the goal is to determine which initialization method state-action pairs are
the most spread in the state-action space. Indeed, this should increase model pre-
diction capabilities, as well as allow for more generalization to unseen states as more
various data is fed to the model for training. What is to be noted is that inducing
more time correlation in the initial data gathering method will in most environments
give the model a broader data distribution in the state space S to learn from. Never-
theless, it needs to be taken into consideration that as much as visiting more diverse
states can bring better generalization capabilities overall, having a denser training
data support can help reduce variance in predictions among the models of the en-
semble. Moreover, as mentioned previously, four environments will be considered,
and each of the selected dimensions to visualize are represented as histograms on
figures 3.4, 3.5, 3.6, 3.8 and 3.7.

Ball In Cup

Looking at the distribution of the generated actions on the Ball In Cup envi-
ronment on Figure as shown on figure 3.4a, we observe that Random Actions effec-
tively provide uniformely distributed data in the action space. The other methods
provide a sort of gradient of the data distribution between Random Actions and
Random Policies in the action space, with CNRW0 being the closest to uniformely
distributed data in the action space, while more time-correlated initialization meth-
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ods like CNRW1 and CNRW2 are closer to Random Policies, having most of their
action values at the limit of the action space. We remark that as intended, CNRW1

appears closer to a uniform data distribution in the action space than CNRW2, even
if both are far from being effectively uniform in the action space. Most of the remarks
made on the action-space data distribution here are also valid for other environments
and will not be repeated for each environment.

On the state-space side, we observe that on this environment higher time-correlated
initial data gathering methods visits more different states, reaching regions of the
state space that lesser time-correlated initialization methods, like Random Actions
and Brownian Motion fail to reach as shown on figures 3.4b, 3.4c and 3.4d. On
this environment, this is mostly due to the sparse interaction in the dynamics of
the system of giving the ball an upward speed (as shown on figure 3.4d) which is
only reachable if the same motion of the cup is continued for enough time steps.
This translates in more states visited along the z-axis (as shown on figure 3.4c) for
higher time-correlated methods. On the x-axis and y-axis, all methods more or less
visit the sames states as shown on figure 3.4b but higher time-correlated techniques
still visits more uniformly states along those axes. It is thus expected that higher
time-correlated initialization methods will yield better prediction results, as they are
able to visit more diverse states. CNRW1 should perform among the bests in terms
of prediction error, as it seems to be the closest to well spread training data in the
state-action space.

Two-Wheeled Robot Maze

Looking at the state-space data distributions on the Two-Wheeled Robot Maze
environment on figure 3.5, we observe that more time-correlated initialization meth-
ods have wider data distributions that reach states that lower time-correlated initial
data gathering methods like Random Action do not reach. In more detail, we ob-
serve on first and second dimensions of the state vector, which corresponds to the
x-axis and y-axis robot position in the maze that methods like Random Actions or
CNRW0 remain in the same area around the initial state. On the other hand, even
though methods with higher time correlation should hit the walls of the maze quite
frequently, CNRW1 seems to be the initialization method that explores the most
the environment. We would thus expect this method to yield best results in terms
of minimization of the model prediction error. Nevertheless, this environment dy-
namics are quite simple when setting the discontinuities (the walls) aside, so we also
could expect small prediction error from such methods if the walls do not change the
robot trajectory too drastically.
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(a) 1st dimension of action vector (b) 1st dimension of state vector

(c) 3rd dimension of state vector (d) 6th dimension of state vector

Figure 3.4: Training data distributions on Ball In Cup environment

Two-Wheeled Robot Maze Traps

We now take a look at the same maze environment but change the walls impact
on the dynamics. Instead of simply being an obstacle for the robot, walls now end
the data gathering episode when hit by the robot. We expect that this would create a
disadvantage for highly correlated trajectories that might hit walls while going further
in a single direction, effectively going far from the safe initial state of the system.
Indeed, as we can see on the figure 3.6, initialization methods that have high time
correlation in their action sequences have quantitatively less training samples than
other methods with less correlation in their action sequences, like Random Actions
or Brownian Motion. We thus expect to see a drop in prediction quality for the
model trained with higher time-correlated initialization methods, as they have lower
amounts of data to train from on the Two-wheeled maze trap field environment.

Cartpole

We now look at the data distribution on the Cartpole environment on Figure
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(a) 1st dimension of action vector (b) 1st dimension of state vector

(c) 2nd dimension of state vector (d) 5th dimension of state vector

Figure 3.5: Training data distributions on Two-wheeled robot maze environment

3.7. We only look at the state-space data distribution, as the action space data
distribution is similar to the priorly exhibited ones. On the Cartpole environment,
we look at 4 dimensions of the state-space: the cart position and velocity, and the
pole angular position (decomposed into its cosine and sine parts for continuity). We
observe that Random Actions allow for visitation of more diverse states for every
studied dimension of the state-space. Moreover, looking at Figure 3.7a, we can
clearly see that lesser time-correlated methods, like random Actions and CNRW0

are the most well-spread in all the observed state-space dimensions, while higher
time-correlated methods tend to maintain the system in the same states. According
to this distribution data analysis, Random Actions should give the least prediction
error on the Cartpole Environment among the five considered initialization methods,
which corroborates the idea that an environment with a high consistency metric
should work best with lower time-correlated initialization methods.

Pusher

Going onto the Pusher environment generated distributions on Figure 3.8, we

57



(a) 1st dimension of action vector (b) 1st dimension of state vector

(c) 2nd dimension of state vector (d) 5th dimension of state vector

Figure 3.6: Training data distributions on Two-wheeled robot maze trap field
environment

once again only look at the state-space data distribution, as the action space data
distribution for similar reasons as previously. On the Pusher environment, we look
at 4 dimensions of the state-space: the x and y position of the end-effector of the
robotic arm, and the x and y position of the palet the robot can interact with. As
expected, we observe on Figure 3.8a and Figure 3.8b that higher time-correlated
initialization methods tend to reach more diverse end-effector positions more often
than lower time-correlated initialization methods. Nevertheless, when looking at the
palet x and y positions attained on Figure 3.8c and Figure 3.8d, all methods more or
less keep the palet in its original position, with some rare occurences making the palet
move. In this environment, we would thus expect higher time-correlated methods
to have a slightly lower prediction error as they visit more diverse states, but not
an important difference as all methods fail to interact with the palet. Indeed, being
able to move the palet is central to solving the task, and a model not being able to
predict what actions will move the palet won’t be better at solving the problem given
at bootstrap, no matter how good it is to predict the rest of the system dynamics.
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(a) 1st dimension of state vector (b) 2nd dimension of state vector

(c) 3rd dimension of state vector (d) 4th dimension of state vector

Figure 3.7: Training data distributions on Cartpole environment

3.2.2.3 Prediction error analysis

Prediction errors are obtained by taking the average mean prediction error over 10
repetitions of models trained using the initialization methods detailed previously.
The prediction error is computed against a diverse set of 10 trajectories resulting
from Novelty Search [91] runs, so as to capture as much as possible of the system
dynamics. Trajectories are specifically chosen as to be as diverse as possible be-
havioraly speaking, such that their trajectories are representative of the real system
dynamics. Predictions are made on two different horizons, to highlight the model
performance under different planning schemes. We thus show model prediction error
on 1-step predictions and on 25-step predictions (which is the PETS planification
horizon for all of the three considered tasks). Predictions are obtained using TS1

particle propagation and averaging predictions over all particles for the Cartpole,
Ball In Cup and Pusher environment.

For environments that are used with DAQD , the predictions are also obtained on
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(a) 15th dimension of state vector (b) 16th dimension of state vector

(c) 18th dimension of state vector (d) 19th dimension of state vector

Figure 3.8: Training data distributions on Pusher environment

the complete episode length meaning that model prediction error on environments
with sparse reward functions are shown on 1-step predictions, on 25-step predictions
and on H-steps, H being the task horizon. They are obtained using TSinf on the two
Two-Wheeled Robot Maze environments. We consider a single initialization budget
of 10 episodes as it represents a reasonable number of environment interaction w.r.t.
the required number of episodes for task completion for all initial data gathering
methods.

Raw prediction error (mean and standard deviation) results for the Cartpole,

Cartpole

Prediction horizon RA CNRW0 CNRW1 CNRW2 RP

1 0.18 ± 0.44 0.33 ± 0.58 0.39 ± 0.63 0.39 ± 0.63 0.26 ± 0.5

25 1.15 ± 1.53 2.39 ± 5.39 2.5 ± 2.54 3.35 ± 2.51 1.55 ± 1.86

Table 3.1: Mean prediction error on Cartpole
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Cartpole

RA CNRW0 CNRW1 CNRW2 RP

RA 1.000e+00 8.357e-04 9.786e-03 7.113e-03 9.786e-03

CNRW0 8.357e-04 1.000e+00 4.903e-01 2.853e-01 1.047e-06

CNRW1 9.786e-03 4.903e-01 1.000e+00 9.246e-01 1.047e-06

CNRW2 7.113e-03 2.853e-01 9.246e-01 1.000e+00 1.576e-06

RP 9.786e-03 1.047e-06 1.047e-06 1.576e-06 1.000e+00

Table 3.2: Mann-Whitney U Test p-values over 25-step prediction errors on
Cartpole

Pusher, Ball In Cup, Two-Wheeled Robot Maze and Two-Wheeled Robot Maze
Traps environment are respectively shown in Tables 3.1, 3.6, 3.3, 3.8 and 3.10.
Moreover, Mann-Withney U Test [104] p-values tables are also given for each en-
vironment appropriate prediction horizon in Tables 3.2, 3.4, 3.5, 3.9, 3.11 and 3.7.
The Mann-Whitney p-values are obtained by computing the U Test for each of the
given initialization method prediction error against each of the other initialization
method prediction error. We will only refer to both tables to interpret more in depth
results from Figures 3.9a and 3.9b, which show the model prediction error for each
of the initialization methods considered depending on the environments, ranked by
their consistency measure from high consistency to low consistency. Model prediction
errors are normalized between the minimum and maximum prediction error obtained
with the bootstrapped models. Ideally, if our hypothesis is correct, we should see a
downtrend from left to right for methods with high time-correlation and an uptrend
from left to right for methods with low time-correlation in their generated action
sequences.

Figure 3.9a shows the 1-step mean prediction error measured for the models
trained using the data gathered by the initialization methods. We observe on the
Cartpole environment that the least time-correlated method, Random Actions, is

Ball In Cup

Prediction horizon RA CNRW0 CNRW1 CNRW2 RP

1 0.058 ± 0.107 0.037 ± 0.066 0.022 ± 0.045 0.021 ± 0.044 0.024 ± 0.048

25 0.796 ± 1.322 0.681 ± 1.116 0.346 ± 0.561 0.327 ± 0.515 0.416 ± 0.682

300 15.00 ± 45.40 14.90 ± 22.20 3.400 ± 2.800 3.600 ± 1.900 3.100 ± 1.300

Table 3.3: Mean prediction error on Ball In Cup
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Ball In Cup

RA CNRW0 CNRW1 CNRW2 RP

RA 1.000e+00 2.139e-03 6.796e-08 6.776e-08 1.235e-07

CNRW0 2.139e-03 1.000e+00 6.796e-08 6.776e-08 2.218e-07

CNRW1 6.796e-08 6.796e-08 1.000e+00 5.978e-01 1.895e-01

CNRW2 6.776e-08 6.776e-08 5.978e-01 1.000e+00 3.850e-02

RP 1.235e-07 2.218e-07 1.895e-01 3.850e-02 1.000e+00

Table 3.4: Mann-Whitney U Test p-values over 25-step prediction errors on Ball In
Cup

Ball In Cup

RA CNRW0 CNRW1 CNRW2 RP

RA 1.000e+00 1.988e-01 4.679e-02 2.137e-03 1.636e-01

CNRW0 1.988e-01 1.000e+00 4.166e-05 3.063e-06 2.341e-03

CNRW1 4.679e-02 4.166e-05 1.000e+00 2.563e-02 6.949e-01

CNRW2 2.137e-03 3.063e-06 2.563e-02 1.000e+00 2.943e-02

RP 1.636e-01 2.341e-03 6.949e-01 2.943e-02 1.000e+00

Table 3.5: Mann-Whitney U Test p-values over H-step prediction errors on Ball In
Cup

the most precise. The Cartpole environment being the most consistent one, we did
expect to observe a gradient of prediction errors from the least time-correlated to the
highest time-correlated initialization methods. We also remark that CNRW1 and
CNRW2 are very close in terms of prediction errors, both having the same mean
and std prediction error. Random actions prediction error is more than twice lower,
thus we expect to see a better performance of PETS on the cartpole environment
with a model bootstrapped with Random Actions. Moreover, Table 3.2 shows that
Random Actions are significantly different from all others initialization methods.
Random Policies also perform pretty well, sitting in-between the least to the highest
initial data gathering methods.

At first glance, the Pusher environment has a strange order not corresponding
to our hypothesis. But when looking more closely at Table 3.6 we observe that all
prediction errors are actually really close from each other, which is confirmed by
looking at Table 3.7, where no statistically significant difference is found. We thus
would expect all methods to impact equally the PETS algorithm. As expected, the
Two-Wheeled Robot Maze Traps environment is harder to interpret. Indeed, both
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Pusher

Prediction horizon RA CNRW0 CNRW1 CNRW2 RP

1 0.2 ± 0.63 0.22 ± 0.64 0.21 ± 0.64 0.22 ± 0.64 0.21 ± 0.64

25 1.69 ± 2.13 1.41 ± 1.99 1.28 ± 1.79 1.28 ± 1.81 1.28 ± 1.88

Table 3.6: Mean prediction error on Pusher

Random Actions, CNRW1 and CNRW2 perform almost equally if we only look at
the mean prediction error. Nevertheless, Random Actions initialized models actually
have a lower standard deviation on this prediction horizon as shown on Table 3.10,
which could indicate that Random Actions would be the better method to use for
this environment. Moreover, Table 3.11 shows on the 1000 steps prediction horizon
that Random Actions are significantly higher from all others initialization methods.

The Two-Wheeled Robot Maze environment is also hard to interpret, as Random
Actions is the second worst in terms of mean prediction error. Nevertheless, once
again the standard error is 4 times lower for Random Actions than for CNRW1,
CNRW2 and Random Policies, even though these methods give the lowest mean
prediction error. Since errors are compounded, a high variance in the predictions
can lead to highly diverging trajectories compared to a higher mean prediction error
with a lower variance. Looking at this data, it is still unclear which method would be
best to initialize the model for that task, as no clear statistical significance is found
between the initialization methods prediction errors on the 1000 step prediction
horizon as shown in Table 3.9.

Finally, on the Ball In Cup environment, higher time-correlated methods show the
smallest prediction error. Indeed, CNRW1 and CNRW2 have a mean and standard
deviation of prediction error that is almost three times smaller than that of Ran-

Pusher

RA CNRW0 CNRW1 CNRW2 RP

RA 1.000e+00 1.636e-01 2.139e-03 3.851e-02 3.507e-01

CNRW0 1.636e-01 1.000e+00 7.712e-03 9.786e-03 6.389e-02

CNRW1 2.139e-03 7.712e-03 1.000e+00 9.461e-01 1.478e-01

CNRW2 3.851e-02 9.786e-03 9.461e-01 1.000e+00 2.853e-01

RP 3.507e-01 6.389e-02 1.478e-01 2.853e-01 1.000e+00

Table 3.7: Mann-Whitney U Test p-values over 25-step prediction errors on Pusher
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dom Actions. Random Policies also perform pretty well, once again having a mean
prediction error quite close to the best prediction error observed. Table 3.4 shows
the p-values of the Mann-Whitney U test for prediction errors at 25 steps prediction
horizon. On that horizon, higher time correlated methods (CNRW1 and CNRW2)
are significantly different from lower time correlated methods (RA and CNRW0).
Nevertheless, Table 3.5 shows that on a higher prediction horizon, the significance
of the prediction errors differences diminishes by several orders of magnitude.

(a) 1-step (b) 25-step

Figure 3.9: Min-max normalized model prediction error depending on the
environment consistency measure

We will now look at the 25-step prediction error as it is the one that interests
us the most, since its aligned on PETS optimizer planning horizon. On the same
graph we also plot the H-step prediction error for the two Two-Wheeled Robot Maze
environments, as this is the planning horizon of interest in the case of DAQD. The
Ball In Cup environment prediction error is shown on the 25-step horizon. This
horizon was chosen as it should compound in a similar way whichever the horizon is,
given the fact that the variance in the prediction error is not too important as shown
in Table 3.3. This graph, on Figure 3.9b could thus directly predict the initial PETS
and DAQD algorithm performance depending on the initialization method used to
gather training data.

Overall, we see that the model prediction error order remain the same as for 1-step
prediction error on the Cartpole and Ball In Cup environments, except for the pusher
environment, where more time-correlated methods have the least mean prediction
error now. Nevertheless, looking more into detail on Table 3.6, we observe once again
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that most methods are pretty close one to another in terms of prediction error, even
though Random Actions have the worse prediction error. On the two Two-Wheeled
Robot Maze environments, Random Actions now have the lowest prediction error
as expected from the 1-step prediction errors observed in detail on the Table 3.8
and 3.10. Indeed, Random Policies, CNRW1 and CNRW2 mean prediction errors
explode on the long prediction horizon of 1000 steps and completely deviate from the
true test trajectories. We can thus conclude that Random Actions should initialize
the model at best and give the best results for the DAQD algorithm.

The Ball In Cup and Cartpole environments display a prediction error two to
three times lower with reduced standard deviation respectively for higher time-
correlated methods and lower time-correlated methods as expected. Overall, we
observe that our hypothesis that the least time-correlated methods would perform
best on more consistent environments seems to be validated when considering the
environments we experimented on. Results are more difficult to interpret when con-
sidering the three intermediary environments, Pusher, Two-Wheeled Robot Maze
and Two-Wheeled Robot Maze Traps, as it seems for the Pusher that all methods
shall perform equally, while on the Maze environments it seems that Random Actions
should give the best initialized model in terms of mean prediction error for the plan-
ning horizon of the algorithm. It will now be interesting to observe the actual impact
of these different model prediction errors on the PETS and DAQD algorithms, as we
would expect the performance of the algorithm to follow that of the models.

3.2.3 Model-Based Policy Search on a Learned Model

In this section, we study the impact of the initial data gathering technique chosen on
two different Model-Based Policy Search algorithms: an episode-based one, DAQD
[98] and a step-based one, PETS [26]. Consequently to what was shown in the
previous sections, we expect the Model-Based Policy Search algorithms performance
to be increased on environments with high consistency when initializing the model

Two-wheeled robot maze

Prediction horizon RA CNRW0 CNRW1 CNRW2 RP

1 0.152 ± 0.249 0.207 ± 0.480 0.036 ± 1.040 0.035 ± 1.045 0.061 ± 0.986

25 1.698 ± 3.277 3.433 ± 6.600 0.921 ± 13.15 0.930 ± 14.246 1.411 ± 10.85

1000 291.8 ± 165.4 460.6 ± 501.5 3454 ± 6112 8994 ± 5357 1026 ± 1313

Table 3.8: Mean prediction error on Two-wheeled robot maze
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Two-Wheeled Robot Maze

RA CNRW0 CNRW1 CNRW2 RP

RA 1.000e+00 3.942e-01 2.748e-02 9.780e-03 1.058e-02

CNRW0 3.942e-01 1.000e+00 7.643e-02 5.649e-02 8.103e-02

CNRW1 2.748e-02 7.643e-02 1.000e+00 3.234e-01 6.168e-01

CNRW2 9.780e-03 5.649e-02 3.234e-01 1.000e+00 2.503e-01

RP 1.058e-02 8.103e-02 6.168e-01 2.503e-01 1.000e+00

Table 3.9: Mann-Whitney U Test p-values over H-step prediction errors on
Two-Wheeled Robot Maze

Two-wheeled robot maze trap field

Prediction horizon RA CNRW0 CNRW1 CNRW2 RP

1 0.133 ± 0.677 0.307 ± 1.585 0.133 ± 4.032 0.146 ± 4.043 0.227 ± 3.901

25 1.452 ± 2.784 4.207 ± 7.751 2.514 ± 51.47 2.820 ± 56.82 4.060 ± 48.84

1000 118.6 ± 55.7 281.4 ± 135.4 7977 ± 5459 9183 ± 9597 8658 ± 9418

Table 3.10: Mean prediction error on Two-wheeled robot maze trap field

Two-Wheeled Robot Maze Traps

RA CNRW0 CNRW1 CNRW2 RP

RA 1.000e+00 2.596e-05 1.037e-04 2.684e-06 2.563e-07

CNRW0 2.596e-05 1.000e+00 1.075e-01 1.547e-02 6.040e-03

CNRW1 1.037e-04 1.075e-01 1.000e+00 1.404e-01 2.977e-01

CNRW2 2.684e-06 1.547e-02 1.404e-01 1.000e+00 7.557e-01

RP 2.563e-07 6.040e-03 2.977e-01 7.557e-01 1.000e+00

Table 3.11: Mann-Whitney U Test p-values over H-step prediction errors on
Two-Wheeled Robot Maze Traps

with lesser time-correlated initial data gathering techniques. The same reasoning
goes for environments with low consistency, and intermediary environments should
not advantage much any initialization technique.
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3.2.3.1 Impact on an episode-based Model-Based Policy Search algo-
rithm: DAQD

Firstly, we study the impact of the different initial data gathering methods on DAQD
[98]. Two different version of the algorihtm are compared: the Vanilla version, which
bootstraps the model and the archive with 100 randomly parameterized policies, and
a second version directly using the model at the first iteration after bootstrapping it
with one of the initial data gathering methods compared in this chapter. We expect
DAQD to have a lower initial coverage when model prediction error is higher, as a
model with a higher prediction error shouldn’t be able to predict as accurately as a
model with lower prediction error the behavior descriptor of a candidate solution.

Figures 3.10a, 3.10b and 3.10c show the evolution of the coverage using either
Vanilla DAQD or the bootstrapped version of DAQD. Looking first at Figure 3.10a,
we observe that Random Actions perform slightly better than the other initialization
methods on the first generation, with a very slight 20% increase in coverage. This
seems to corroborate what we concluded in the previous section, with Random Ac-
tions having a lower model prediction error. All other initial data gathering methods
bring a comparable coverage. This results is consistent with the model prediction
errors we evaluated, as only the models initialized with Random Actions kept their
mean and standard deviation on prediction error in a reasonable margin on the task
horizon. The Ball In Cup environment results on DAQD do not show any difference
whichever method is used, even though a pretty important gap was found in terms
of model prediction error. This can be due to the fact that solutions are evaluated
episodically, which bias them toward important time-correlation given the policy
representation, and that whichever the model prediction error is.

Nevertheless, even if we observe that all the initialization methods perform better
than the Vanilla DAQD approach, at least on the first generation, the effect of the
model bootstrapping is lost after a few generations. Choosing a particular way to
gather initial data for model training in DAQD on the two-wheeled robot maze
environment does not seem to impact the policy search approach. As DAQD gathers
much more data than the fixed training budget, the effect of the pre-training is not
so consequent and show the robustness of DAQD against various model initialization
techniques.
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(a) Two-Wheeled Robot Maze

(b) Two-Wheeled Robot Maze Traps

(c) Ball In Cup

Figure 3.10: Impact of different initial data gathering methods on DAQD algorithm
ten first generations
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(a) Cartpole

(b) Pusher

(c) Ball In Cup

Figure 3.11: Impact of different initial data gathering methods on PETS algorithm
first iteration return

3.2.3.2 Impact on a step-based Model-Based Policy Search algorithm:
PETS

PETS [26] is the method that is used for demonstrating the impact of various initial
data gathering methods. We use TS1 particle propagation together with models
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pre-trained with the different initial training data we mentioned. It is expected
that PETS will yield a higher initial return when model prediction error is lower.
Consequently, we expect PETS performance to be increased on environments with
high consistency when initializing the model with lesser time-correlated initial data
gathering techniques. The same reasoning goes for environments with low consis-
tency, and intermediary environments should not advantage much any initialization
technique.

Figures 3.11a, 3.11b and 3.11c show the first iteration return obtained using
PETS with different model bootstraps. Looking first at Figure 3.11a, we observe
that the model prediction error order we observed on Figures 3.9a and 3.9b is con-
served. Indeed, Random Actions perform 10 times better than lesser time-correlated
methods on the first iteration. Similarly on the Ball In Cup environment, higher
time-correlated initialization methods initially bring a return 4 to 6 times higher
than lesser time-correlated initialization methods. Finally, all initial data gathering
methods on the Pusher environment yield comparable initial return. It is worth not-
ing that we observe on all these environments that the model prediction error shown
in Figure 3.9b directly correlates with the model-based policy search performance,
with an increasing proportion w.r.t. actual model prediction error. Figures 3.12a,
3.12b and 3.12c show the evolution of the return obtained by PETS over multiple
algorithm iterations, with the model being trained after each iteration. Figure 3.12a
shows that bootstrapping the model using Random Actions on the Cartpole task
helps the algorithm converge after only 3 iterations, while it takes more than 10
to converge when bootstrapped with CNRW1 or CNRW2. Similarly, Figure 3.12c
shows that boostrapping the model using Random Actions leads to almost no reward
being found on the Ball In Cup task, while bootstrapping it with others methods
helps lot more, yielding returns more than 5 times higher. Finally, Figure 3.12b shows
what was observed on the first iteration with all methods more or less performing
the same over iterations.

3.3 Conclusions

In this chapter, we proposed a consistency metric based on the coefficient of varia-
tion that measures the action consistency in a Markovian Decision Process. A link
between the consistency and the dynamics model prediction error when initialized
with a suited initial data gathering method has been made, as we empirically evalu-
ated these on five environments of varying consistency. Clear conclusions cannot be
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(a) Cartpole

(b) Pusher

(c) Ball In Cup

Figure 3.12: Impact of different initial data gathering methods on PETS algorithm
return over evaluations

drawn from the two Two-Wheeled Robot Maze environments and from the Pusher
environment. However, the two more extreme environments in terms of consistency,
the Ball In Cup and the Cartpole, do seem to go in the direction that the proposed
metric seems to characterize the environment dynamics to some extent. It was also
shown that time-correlation in the data gathering action sequences can be selected

71



depending on the consistency measure, so as to minimize model prediction error.

We looked at the impact of the initial model prediction error and the evolution
of the coverage using the DAQD algorithm, but aside from a small difference at the
first iteration, no clear impact on the algorithm performance in terms of coverage can
be drawn as methods that yielded a lower coverage quickly catch up with the better
ones. This can be due to the high budget given to the DAQD algorithm compared
to the considered initialization budget, as well as being due to the novelty pressure
coming from the archive itself, which gets filled pretty well even with randomly
parameterized policies as shown with the Vanilla DAQD version.

Finally, we saw evidence of a direct link between the initial model prediction error
and the initial return with the PETS algorithm, with obtained return differences
being of a factor of up to 10 for the two extremes of the time-correlation in the
initializing action sequences. Even though the results are pretty clear for the first
iteration of the Model-Based Policy Search algorithm, it is worth noting that during
our experiments we also saw inversions in the return trends over the course of the
policy search algorithm training. Such dynamics are inherent to the method used,
and could be a subject of further studies.
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Chapter 4

Archive Bootstrapping For
Sample-Efficiency

As seen in the previous chapter on learned model bootstrapping, initialization can
be a crucial phase of any learning method, for example when applied to regression
problems like learning a robotic system dynamics. Indeed, from our conclusions on
learned model initialization in the previous chapter 3, we saw that properly boot-
strapped models could lead to an important increase in performance of a subsequent
model-based policy search algorithm. Nevertheless, it was still a requirement to in-
teract with the real system to gather data so as to bootstrap the model, but could
it be possible to initialize a random model that would pertain a similar dynamics
than that of a low data regime bootstrapped model? If so, could it be possible to
use such a random dynamics model to determine beforehand a diverse collection of
policies to bootstrap a population-based algorithm?

To that end, we propose in this chapter to explore various random dynamics
model representations and various policy representations together with a model-
based Novelty Search loop ran on the random model, whose aim is to find generalist
or evolvable individuals to bootstrap the initial population of a subsequent Novelty
Search ran on the real system. The main study subject will thus be two-fold. Firstly,
the initial coverage of the Outcome Space B of the population generated using the
random dynamics model shall be higher than that of a randomly parameterized
population. Secondly, the subsequent Novelty Search algorithm bootstrapped using
that population as a starting point should cover the Outcome Space in a lower number
of evaluations compared to a Novelty Search routine bootstrapped using randomly
parameterized policies as its initial population. To create a selective pressure towards
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individuals that are novel on a range of environments rather than on a single one, we
propose to use ensemble of random dynamics models and to measure an individual
novelty across the model ensemble, following various techniques detailed furthermore
in the next section.

4.1 Methods

Our objective is thus to create an algorithm that replaces the initial population in
Novelty Search from randomly parameterized policies to a population biased towards
being more novel initially, resulting in a higher coverage, and being more evolvable,
resulting in a faster coverage of the environment. The proposed method thus works
around three axis:

• Representing random dynamics

• Searching for a diverse set of policies on the random dynamics ensembles

• Selecting policies for initialization

One thus asks firstly, how to represent random dynamics? The first concern
doing so should be that, much like it is done with System Identification, the random
dynamics should be as close as possible to those of the real system. The problem
is that the dynamics of the target system are considered unknown. Considering
models with close to unlimited representational capacity could thus be interesting.
Non-linear neural networks are one model representation that fits this. Nevertheless,
using randomly parameterized non-linear neural networks as models could lead to
dynamics that are not smooth. Indeed, there is no guarantee that the state transition
given by a Non-Linear Neural Network to a specific state-action pair will give similar
state transition values even if changing very slightly the state or the action. In case
using Non-Linear Neural Networks is too unstable, we propose to compare them to
a simpler random dynamics model representation. We thus propose to use Spatial
Random Fields [60] for that purpose.

More precisely, we consider using Gaussian Spatial Random Fields, which model
spatial correlations in the considered variables. In our case, the variables is the
state of the dynamical system, using such models thus enforces that each of the
state variables evolve independently from one another and according to a Gaussian
law, moreover output values for each state variable are correlated, meaning that the
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output values do not abruptly change if two input state-action pairs are close from one
another. This assumption simplify vastly the dynamics of a random dynamics model,
potentially making it closer to reality in case of simple real system dynamics, or
making it farther if the target system dynamics contain non-linearities. Nevertheless,
whether using Non-Linear Neural Networks or Spatial Random Fields, using a single
random dynamics model will not help in finding policies that are novel on several
dynamical systems, most importantly the real target system. Indeed, when using
a single random dynamics model, the real target dynamics could be too far from
the source training domain and lead to poor results when transferring the learned
behaviors.

One solution to mitigate this could be to use ensembles of random dynamics mod-
els, much like in Domain Randomization [156]. Indeed, using an ensemble of random
dynamics models could help generate a collection of individuals whose diversity can
be robust to various dynamical systems, even if non-linearities exists. However, this
raises the question of how to search for such collection of individuals on the model
ensemble. When looking for a diverse set of individuals on a single dynamical system
w.r.t. a user-defined Behavioral Space B, the Vanilla Novelty Search algorithm can
be followed. However, when searching on multiple dynamical system at once, the
strategy to maintain a diverse collection of individuals should be adapted.

We propose two ways of doing so:

• Computing the sum of the novelty on each of the prand,dyn such that the novelty
of individual x is Nsum(bx) =

∑R
i=1N(bx)

prand,dyn

i

• Computing the minimum of the novelty on each of the prand,dyn such that the
novelty of individual x is Nmin(bx) = min

prand,dyn

1,...,R (N(bx))

Using the classical Novelty Search algorithm, we thus propose to evaluate the con-
sidered individuals on each of the R random dynamics model and to use one of the
two above novelty metrics, Nmin and Nsum, to estimate the novelty of the individu-
als and otherwise proceed like usual with the Novelty Search algorithm optimization
loop. As the models are random and do not represent directly real system dynam-
ics, the prediction horizon does not have to be the actual episode length of the real
system. Using the real episode length as prediction horizon could potentially bring
the proposed individuals closer to the real system dynamics, but it could also in-
crease the risk of divergence as the random dynamics models are unbounded. To
limit that effect and enhance greatly the computation speed, we limit the prediction
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horizon on the random dynamics models to horizons ranging between 10 and 100
steps, representing a fraction of the real system episode length.

Finally, once Novelty Search on the random dynamics model ensemble is done,
it is required to select some individuals among all those evaluated to be transferred
onto the real system as a bootstrap for a Novelty Search routine. To do so, we
propose to explore two different selection methods:

• Selecting the final population, as it should be the most evolvable [44] thus
potentially the bootstrap that should allow for the fastest evolution towards
uniform Outcome Space coverage

• Selecting the most novel individuals could ensure that the transferred individ-
uals are novel enough to generate an initial coverage that is higher of that
of randomly parameterized policies, but only if the source random dynamical
system distribution is close enough or contains the target dynamical system

We decide to rule out using random selection as the number of individuals generated
on the random dynamics models is almost 100 times that of the individuals we select
for transfer on the real system. Using random selection would thus sub-sample a lot
from the generated solutions and not be representative of the policy search made on
the random dynamics model ensemble. For more details, the general algorithm for
our algorithm, 0DAB is outlined in 6.

Algorithm 6 0DAB Algorithm
1: Initialize repertoire AΠ (to ∅), estimated repertoire ÃΠ (to ∅), dynamics model prand,dyn,

k (to 15)
2:
3: πθ∗

1
. . . πθ∗

b
← random_parameters()

4: ▷ Performing NS Exploration on the model prand,dyn
5: while evaluation budget is not exhausted do
6: b̃i∈[1,b] ← model_evaluate(πθ∗

1
. . . πθ∗

b
) using prand,dyn ▷ Evaluate using model.

Rollouts up to horizon H on prand,dyn to estimate b̃i.
7: ÃΠ ← novelty_selection(πθ∗

1
. . . πθ∗

b
, b̃1 . . . b̃b, ÃΠ) ▷ Add the k most novel πθ∗

i
to ÃΠ

depending on estimated novelty from b̃i (estimated using Nmin or Nmax.
8: πθ1

. . . πθb
← select(πθ∗

1
. . . πθ∗

b
) ▷ Selecting b most novel policies from offspring.

9: πθ∗
1
. . . πθ∗

b
← variation_operators(πθ1

. . . πθb
)

10:
11: bootstrap← select_bootstrap(ÃΠ, πθ∗

1
. . . πθ∗

b
)

12:
13: return bootstrap
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(a) Omnidirectional Hexapod Robot Lo-
comotion

(b) 2-Wheeled Robot Navigation

Figure 4.1: Considered Environments

Nomenclature examples

Model Type Ensemble Size Prediction Horizon on Model Novelty Metric on Ensemble Selection Method Nomenclature

Non-Linear Neural Network 4 10 Nsum Final Population NN-4-h10-sum-fp

Spatial Random Field 40 10 Nmin Novelty SRF-40-h10-min-nov

Table 4.1: Nomenclature examples for different 0DAB parameterizations

4.2 Experiments

To denote all of these different parameterizations for 0DAB, a nomenclature is defined
and examples are provided in in Table 4.1

4.2.1 Experimental Setups

To assess the performance of the proposed bootstrapping algorithm, experiments
are conducted on two environments. In the case of bootstrapping Novelty Search, a
single metric interests us: coverage of the Outcome Space B. Firstly, initial coverage
attained with the output from the proposed bootstrap algorithm is compared to that
of randomly parameterized policies, the bootstrapping method commonly used in the
literature. Secondly, the coverage evolution depending on the number of real-world
evaluations should demonstrate if the bootstrap has a longer term effect over the
whole Novelty Search routine. Those two graphs should help us determine which
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type of random dynamics model can be interesting to use in the case of robotics
system of varying dynamics complexity, which bootstrap selection method is the
most robust and finally if bootstrapping the model with such a technique has an
impact on a subsequent Novelty Search routine. Real-system Novelty Search routines
are systematically bootstrapped with 100 individuals, this amount being equivalent
to the population size sp. 0DAB bootstraps are therefore equivalent to initializing
the population of Novelty Search with the output of the 0DAB algorithm rather than
using randomly parameterized policies.

Two robotic environments are considered, which are a Two-Wheeled Robot Nav-
igation task and an Omnidirectional Hexapod Locomotion task. The Two-Wheeled
Robot Navigation task consists in a khepera-like mobile robot navigating a (vast)
empty space over an episode with a long horizon of 1000 steps. Each robot wheel
is independently speed controlled, making this environment Action Space two di-
mensional. The system state consists of the robot position, velocity and orientation,
the latter being divided into its cosine and sine parts for continuity reasons. The
Two-Wheeled Robot Navigation task thus has a State Space of dimension 6. In this
environment, the observer function oB maps each individual trajectory to its final
x-axis and y-axis position, making the behavioral descriptor the final position of the
robot at the end of the episode. An image of the setup is shown on Figure 4.1b.
The simulator used for this task is the Fastsim simulator [119]. The dynamics of
this environment are almost completely smooth, as they follow the kinematics of a
differential drive robot. Non-linearities arise on the outskirts of the navigation map,
as there are walls that the robot can collide with. This environment dynamics being
pretty smooth and uniform across the whole State-Space, random dynamics model
ensembles generated individuals could maintain their diversity when transferred on
this environment.

The second environment considered is an Hexapod Robot Locomotion task [98].
It consists in an 18-DoF hexapod robot whose goal is to learn locomotion skills
as shown on Figure 4.1a. An episode lasts 300 time-steps. The Hexapod has 3
controllable joints per leg, for a total of 18 independently controlled joints, making
the Action Space of this task a 18 dimensional vector. The State-Space is comprised
of 48 dimensions, being the current angular position of the joints, their angular
velocity, the Cartesian position and velocity of the robot center of mass and the
angular position and velocity of the robot center of mass. The considered Outcome
Space in this task is the final x-axis and y-axis position reached by the robot at the
end of the episode. This task uses the DART simulator proposed by Lee et al. [90].
This task has much more complex dynamics than that of the Two-Wheeled Robot
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Navigation task, as it has many non-linearities in its transition function with the legs
hitting the ground and allowing the robot to develop a walking gait using all six of
its legs. This environment dynamics being of high dimension and non-linear in many
regions of the State-Space, random dynamics model ensembles generated individuals
might not be able to maintain their diversity when transferred on this environment.

4.2.2 Two-Wheeled Robot Navigation Task: Spatial Random Fields
or Neural Networks as Random Dynamics Models

The Two-Wheeled Robot Navigation Task having the smoothest dynamics out of the
two considered environments, it is insightful to firstly look at this environment to
determine what random dynamics model representation and what bootstrap selection
method are the most suited to accomplish our objectives. As such, initial coverages
of the Outcome Space obtained with various model representations are observed in
this section. Four different random dynamics model representations are considered:
Spatial Random Fields ensembles of size 4 and 40, and Non-Linear Neural Networks
ensembles of size 4 and 40, all with an evaluation prediction horizon of 10 steps on
the Novelty Search routine on the random models ensembles. Coverages are plotted
as boxplots, and are sorted in increasing order using the median coverage value of
each bootstrapping method considered.

Figure 4.2 shows that Spatial Random Fields ensembles of size 4 fail to outper-
form randomly parameterized policies in terms of initial coverage. Indeed, Spatial
Random Fields ensembles of size 4 with 0DAB generate individuals whose coverage
is inferior or equivalent to that of randomly parameterized policies. We can thus rule
out using such random dynamics models, as they do not seem to be able to generate
diverse solutions even for the smoother dynamics of the Two-Wheeled Robot Navi-
gation Task. On the contrary, Figure 4.3, which shows the initial coverage obtained
with bootstraps outputs from 0DAB with Non-Linear Neural Networks ensembles
of size 4, demonstrates that such random dynamics models can produce diverse so-
lutions for the dynamics of the considered environment to some extent, such that
Random Policies are outperformed in terms of initial coverage by 30%. Non-Linear
Neural Networks ensembles thus seem to be an interesting random dynamics model
representation methods for the robotic task considered that we will further study in
the next section.

Even though Spatial Random Fields ensembles of size 4 did not yield interesting
results, it might be due to the relatively small size of the ensemble considered. Figure
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Figure 4.2: Coverage of 100 randomly parameterized policies compared to 0DAB
selected bootstraps using Spatial Random Fields ensembles of size 4 on

Two-Wheeled Robot Navigation Task

Figure 4.3: Coverage of 100 randomly parameterized policies compared to 0DAB
selected bootstraps using Non-Linear Neural Network ensembles of size 4 on

Two-Wheeled Robot Navigation Task

4.4 thus shows the initial coverages obtained with 0DAB with Spatial Random Fields
ensembles of size 40. It shows that even with an increased ensemble size, Spatial
Random Fields ensembles still fail to outperform randomly parameterized policies
in terms of initial coverage. Indeed, Spatial Random Fields ensembles of size 40
with 0DAB generate individuals whose coverage is similar to the one obtained with
ensembles of size 4, which does not increase the initial coverage compared to that
of randomly parameterized policies. For the rest of this chapter, we thus decide
to exclude Spatial Random Fields ensembles from our experiments, as they fail to
encapsulate the dynamics of the simplest environment we consider. On the other
hand, Figure 4.5 shows interesting results. Indeed, it demonstrates that increasing
the ensemble size ameliorated the initial coverage obtained with the 0DAB outputted
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bootstraps, as the median initial coverages with an ensemble size of 40 are slightly
higher than with an ensemble size of 4.

Figure 4.4: Coverage of 100 randomly parameterized policies compared to 0DAB
selected bootstraps using Spatial Random Fields ensembles of size 40 on

Two-Wheeled Robot Navigation Task

Figure 4.5: Coverage of 100 randomly parameterized policies compared to 0DAB
selected bootstraps using Non-Linear Neural Network ensembles of size 40 on

Two-Wheeled Robot Navigation Task

Finally, Figure 4.6 shows the results obtained with 0DAB coupled with Non-
Linear Neural Networks ensembles of size 400. Increasing further the ensemble size
does not seem to impact the reached initial coverage for most methods, but does
seem to reduce the inter-quartile range for the 0DAB bootstraps selecting the initial
population based on the novelty of the individuals. Having ensemble of size 40
being seemingly sufficient, we propose to keep 40 as the biggest ensemble size we
will look at in this chapter. Overall, these results show that using Spatial Random
Fields ensembles fails to generate diverse solutions for a simple robotic environment
dynamics, even when increasing the ensemble size, thus driving us toward the decision
to exclude them from our experiments. Nevertheless, it also showed that Non-Linear
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Figure 4.6: Coverage of 100 randomly parameterized policies compared to 0DAB
selected bootstraps using Non-Linear Neural Network ensembles of size 400 on

Two-Wheeled Robot Navigation Task

Neural Networks ensembles based random dynamics models could be promising, as
an increase of up to 35% in initial coverage is observed with ensembles sizes of 4 and
40.

4.2.3 Two-Wheeled Robot Navigation Task: Influence of different
bootstraps on NS

Having studied the impact on initial coverage of the various considered model repre-
sentations and having restrained our study to a single dynamics model representation
(being Non-Linear Neural Networks ensembles with an ensemble size of 40), it would
be insightful to look at the actual impact of the bootstrap obtained with 0DAB on
a subsequent Novelty Search routine. Figure 4.7 shows the coverage evolution of
the 4 different combinations of novelty metric on the model and bootstrap selection
methods at the end of the 0DAB procedure. As the initial coverage of each of the
methods was already higher than that of randomly parameterized policies, it was
expected that 0DAB bootstrapped Novelty Search routines would cover faster the
environment. Nevertheless, we must also take into account that selecting particu-
lar policies as the starting point of Novelty Search can be detrimental to the policy
search process. Indeed, such selected policies are not spread across the whole param-
eter space, biasing the parameter space exploration process towards specific regions
that were identified as promising on the random dynamics ensembles.

Nevertheless, as observed on Figure 4.7 this is not the case on the Two-Wheeled
Robot Navigation task for the considered bootstrapping selection methods and nov-
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Figure 4.7: Novelty Search coverage evolution comparison between randomly
parameterized policies and 0DAB selected bootstraps obtained with Non-Linear
Neural Networks ensembles of size 40 on Two-Wheeled Robot Navigation Task

elty metrics on the model. We observe that even though there was a slight difference
in terms of initial coverage between all the different combinations of parameteriza-
tion for 0DAB considered, all four actually perform similarly on this task in terms of
speed to cover the environment. A few hundred evaluations are saved using 0DAB
on the Two-Wheeled Robot Navigation task, proving that 0DAB could potentially
help to bootstrap the population of a Novelty Search algorithm slightly better than
using randomly parameterized policies. However, it is interesting to note that the
difference in sample-efficiency is not very significant even though this environment
had the simpler dynamics out of the two on which experiments are made. Interesting
insights were drawn from experiments on this environment, showing that ensembles
should not be too small or they will not capture enough diversity in the dynamics
space. Another interesting observation is that all the considered bootstrap selection
methods and novelty metrics more or less perform the same, the novelty selection
being a little more performing in terms of initial coverage than the others, especially
when coupled with the Nmin novelty metric.

4.2.4 Omnidirectional Hexapod Locomotion Task: Chosing the right
Neural Network representation

The Omnidrectional Hexapod Locomotion Task is a task that could show the limits
of the proposed method. Indeed, as its dynamics are less smooth than that of the
Two-Wheeled Navigation Task, we would expect the performance observed before
to be deteriorated, unless some Non-Linear Neural Network representation manages
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to remain pertinent with more complex real system dynamics. To determine this,
following the same process as for the Two-Wheeled Robot Navigation Task seems
appropriated. Starting from simpler model representations, Figure 4.8 shows the
initial coverage obtained with Non-Linear Neural Networks of size 4 with a prediction
horizon of 10 timesteps. No bootstrap selection method outperforms Random Policies
w.r.t. initial coverage with such a model representation, as all considered methods
perform slightly worse or equivalently to randomly parameterized policies.

Figure 4.8: Coverage of 100 randomly parameterized policies compared to 0DAB
selected bootstraps using Non-Linear Neural Network ensembles of size 4 and a

prediction horizon of 10 time-steps on Omnidirectional Hexapod Locomotion Task

For the previous environment, initial coverage for the 0DAB bootstraps was al-
ready higher than that of randomly parameterized policies, even at a low ensemble
size. Nevertheless, increasing the ensemble size had also increased the initial coverage
reached by the bootstraps, as it helps capturing more diverse dynamics. Increasing
the ensemble size to 40 and 400, Figure 4.9 shows the initial coverage obtained
with such Non-Linear Neural Networks ensembles with a prediction horizon of 10
timesteps. Initial coverages still do not increase significantly higher than that of
randomly parameterized policies even when increasing the ensemble size, whichever
bootstrapping selection method and novelty metric is used.

Given that on the previous environment, using the Nmin novelty metric together
with the novelty selection metric gave the best initial coverages, we propose to study
further the different possible model representations using only this bootstrap method
and novelty metric combination. The only parameter left to consider that we decided
we could adapt is the prediction horizon on the model. Increasing the model planifi-
cation horizon could lead to find more diverse behaviors, but at the risk of increasing
the risk of finding too many diverging behaviors. Figure 4.10 thus shows the initial
coverages obtained with random model prediction horizon equal to 30 time-steps and
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Figure 4.9: Coverage of 100 randomly parameterized policies compared to 0DAB
selected bootstraps using Non-Linear Neural Network ensembles of size 40 and 400
and a prediction horizon of 10 time-steps on Omnidirectional Hexapod Locomotion

Task

100 time-steps, representing 10% and 33% of the real system episode length.

Figure 4.10: Coverage of 100 randomly parameterized policies compared to 0DAB
selected bootstraps using Non-Linear Neural Network ensembles of size 4 and 40
and a prediction horizon of 30 and 100 time-steps on Omnidirectional Hexapod

Locomotion Task

Once again, no model representation coupled with a different prediction horizon
on the model reaches a significantly better coverage on the real system compared to
randomly parameterized policies. It might not actually be that important, as what
matters is the bias induced in the population which even with a similar coverage
or even lower coverage could be a better starting point for Novelty Search on the
real system. Nevertheless, it could also mean that the random dynamics model
ensemble fail to capture some features of the target dynamics system in its dynamics
distribution, which would mean that the bootstrap could be biased in the wrong
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direction.

4.2.5 Omnidrectional Hexapod Locomotion Task: Influence of dif-
ferent bootstraps on NS

Figure 4.11 shows the impact on Novelty Search of the various bootstraps presented
in Figure 4.8. Disappointingly, the lower initial coverage did seem to indicate that
the random dynamics model representations proposed would not generate diverse
solutions on the real system dynamics and wrongfully bias the initial population
toward a sub-optimal one compared to randomly parameterized policies, as the cov-
erage evolution of 0DAB bootstrapped Novelty Search is two times lower than that
of Random Policies bootstrapped Novelty Search after 5000 evaluations. Sampling
uniformly in the parameter space has the advantage to create a completely unbiased
starting point which can then focus directly all the interesting regions of the param-
eter space, while biasing the population towards certain regions of the parameter
space, which may not be interesting to the real system can be very detrimental to
the policy search.

Figure 4.11: Novelty Search coverage evolution comparison between randomly
parameterized policies and 0DAB selected bootstraps obtained with Non-Linear

Neural Networks ensembles of size 4 on Omnidirectional Hexapod Locomotion Task

This problem might be fixed when using higher ensemble sizes. However, higher
ensemble size do not reach our objective as well even though the coverage evolution
is a little more promising than that of 0DAB bootstrapped with random dynamics
models ensembles of size of 40 and 400, as shown on Figure 4.12. As expected, the
0DAB bootstrap leading to the best coverage among the various bootstraps consid-
ered is the one using as much as 400 models, which allow a better representation of
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Figure 4.12: Novelty Search coverage evolution comparison between randomly
parameterized policies and 0DAB selected bootstraps obtained with Non-Linear

Neural Networks ensembles of size 40 and 400 on Omnidirectional Hexapod
Locomotion Task

the dynamics space but still fails to generate a diverse set of individuals for the real
system dynamics. Now, as stated in the previous section, the only parameter left to
play around with is the prediction horizon on the model ensemble during 0DAB.

Figure 4.13: Novelty Search coverage evolution comparison between randomly
parameterized policies and 0DAB selected bootstraps obtained with Non-Linear

Neural Networks ensembles of size 4 and 40 and a prediction horizon of 30 and 100
time-steps on Omnidirectional Hexapod Locomotion Task

Previous section shown that even such a change did not improve the initial cov-
erage, and Figure 4.13 shows as expected that the corresponding coverage evolution
remains lower than that of Vanilla Novelty Search throughout the whole evaluation
budget. A slight amelioration is observed, the final coverage after 5000 evaluations
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of these parameterizations being a little higher than the one reached by all the previ-
ously considered ones. Nevertheless, all parameterizations that we considered have no
significant difference between each other and all fail to enhance the sample-efficiency
of the Novelty Search approach bootstrapped with randomly parameterized policies.

4.2.6 Reasons of failure

To try to understand the reasons of the failure on the more complex environment, an
additional experiment is proposed. This experiment consists in transferring the final
archive of a Novelty Search routine ran on the real system on the random dynamics
model ensembles considered. This should show which regions of the behavior space
on the random dynamics model ensembles is reached by the Novelty Search archive,
which is comprised of the most diverse individuals relatively to the considered Be-
havioral Space. This way, a characterization of the solutions could be found if some
structure emerges in our observations.

Firstly, Figure 4.14 shows what would happen in one of the ideal cases. Indeed,
this figure is obtained with 0DAB bootstrapped with a Non-Linear Neural Network
ensemble of size 40, which gave the best results on the Two-Wheeled Robot Naviga-
tion task. The first 8 models of the ensembles are shown on the figure, as well as the
real system on the top left. 0DAB generated solutions are shown in the color blue on
each figure. Novelty Search generated solutions, obtained on the real system after a
complete run, are shown in orange on both the real system and the random dynam-
ics models considered. Figure 4.14 shows that 0DAB and Novelty Search solutions
almost overlap on most models.

But the model simply being a way to characterize the individual genotype, what
matters most is how well the solutions are spread on the random dynamics models.
Indeed, if all solutions are well spread, it means that the random dynamics models
can represent the real system dynamics to some extent as the observer function on
both the real system and the real models act in a similar way. Indeed, if Novelty
Search generated individuals which are covering the real system also cover the random
dynamics systems, it means that the random dynamics system observer function
preserves the diversity properties of those individuals through an observer function
that behaves similarly on all considered dynamical systems.

Furthermore, Figure 4.15 shows the coverage of Novelty Search on a Spatial
Fields Random ensemble of size 40. Compared to what was obtained using Non-
Linear Neural Networks, Novelty Search solutions are much more concentrated in a
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Figure 4.14: Archive Coverage after 0DAB on the real system and on the models of
the Non-Linear Neural Network Ensemble of size 40 compared to that of Novelty

Search on Two-Wheeled Robot Navigation Task

single zone. Having all the solutions concentrated in a single zone makes them hard
to characterize on the model and thus to select for bootstrapping. This translates
on the poor coverage reached by such methods as shown on the first top left figure
in Figure 4.15, and echoes on the fact that if all the solutions that are diverse on
the real system are not diverse on the random dynamics models, it means that the
random dynamics models do not capture the dynamics properties of the real system
and thus that Spatial Random Fields are not proper model representations to use
for the problem at hand.

These results show that Non-Linear Neural Networks are not necessarily ideal ran-
dom dynamics model representations, as shown on Figure 4.16. Indeed, the Novelty
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Figure 4.15: Archive Coverage after 0DAB on the real system and on the models of
the Spatial Random Fields Ensemble of size 40 compared to that of Novelty Search

on Two-Wheeled Robot Navigation Task

Search solution concentration is even more accentuated here as the actual dynamics
of the system are completely different from the random dynamical systems generated
using Non-Linear Neural Networks. The solution region is much more concentrated
in the center of the model Behavioral Space, which once again makes such solutions
hard to find as they all collapse to a singular region of the search space. The model
representation does play an important role, as it was hypothesized at the beginning of
this chapter, but determining beforehand which model representation is best suited
for a specific task remains a complex task. Non-Linear Neural Networks might be
of a too high representational capacity for most problems, causing a collapse of the
best solutions depending on the size of the state space, while Spatial Random Fields
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Figure 4.16: Archive Coverage after 0DAB on the real system and on the models of
the Non-Linear Neural Network Ensemble compared to that of Novelty Search on

Omnidirectional Hexapod Locomotion Task

might be too simple to accurately capture the dynamics of robotics systems with
non-smooth dynamics.

4.3 Conclusions

In this chapter, we presented an algorithm whose aim is to generate a population
bootstrap for Novelty Search called 0DAB. The proposed algorithm makes use of
Novelty Search in combination with a random dynamics models ensemble to opti-
mize for novelty on the whole model ensemble. We demonstrated that on a sim-
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ple robotic navigation environment, given the appropriate random dynamics model
representation, such an algorithm could help bootstrap the initial Novelty Search
population by increasing the initial coverage up to 35% and reducing the number of
samples required to cover completely the Outcome Space on the real system by a
few hundred.

Nevertheless, we also observed that such an algorithm does not scale well to
more complex robotics tasks like the Omnidirectional Hexapod Locomotion Task.
Most importantly, we identified that the main limitation does not seem to be the
algorithmic loop itself but rather the model representation used. Indeed, increasing
the number of models and/or the prediction horizon in the 0DAB algorithm loop
had a positive impact on the initial coverage and coverage evolution of a subsequent
Novelty Search routine. However, no model representation was found in our works
to capture properly the dynamics of the considered task, resulting in poor coverage
evolution with a negative initial bias in the population used to bootstrap Novelty
Search.

We analyzed the potential reasons for such results and identified that the used
model representations failed to capture the system dynamics properly and resulted
in solution behavioral descriptors collapsing to small regions of the Outcome Space
on each of the random dynamics models of the ensemble, making characterization
and selection for transfer of the interesting solutions found hard. Using more suited
models, like Physics-Informed Neural Networks [33], could be an interesting lead as
such models could help bring closer the considered random dynamics models closer
to the reality, thus making the ensemble encapsulate better the real system dynamics
in its dynamics distribution.
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Chapter 5

Model-Based Novelty Search

As described in Section 2.2.2.1, Novelty Search stands out among Evolutionary Al-
gorithms by emphasizing the exploration of the parameter space through the identi-
fication and promotion of novel solutions. Novelty Search diverges from traditional
objective-based evolutionary algorithms by rewarding solutions based on their nov-
elty rather than their performance. However, Novelty Search faces challenges in
terms of sample-efficiency. Indeed, Novelty Search uniform covering properties of
the Behavioral Space B [43] come at the cost of an extensive search, comprised of
a number of uninteresting trials of the objective function. Novelty Search being an
Evolutionary Algorithm, it is not surprising at all as such methods are known to be
highly demanding in terms of required samples to reach their optimization objective.

In this context, it would be great to be able to characterize a potential solu-
tion derived from an already highly novel population before actually transferring it
onto the real system. Using a model to that purpose is one solution. Indeed, the
integration of a model in Novelty Search allows for predictive analysis of candidate
solutions, enabling the algorithm to explore the solution space more intelligently. By
leveraging the insights provided by the model, the algorithm can guide the search
towards regions likely to contain solutions with high novelty, disregarding potentially
non-novel solutions that are usually tested whatsoever on the real system as what
drives the novelty would not be only the current population but also the character-
ization of the candidate solutions with the learned model of the system dynamics.
Effectively, the idea behind adding a model to Novelty Search would be to estimate
the behavioral descriptor of a larger pool of individuals to only transfer onto the
real system the most novel portion. This should enhance the sample-efficiency as
the algorithm would not waste as many evaluations as its model-free counterpart on
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uninteresting regions of the Behavioral Space B.

To that end, Lim et al. [98] proposed a model-based Quality-Diversity algorithm
called Dynamics-Aware Quality-Diversity. It uses a learned dynamics model to trans-
fer only a certain number of individuals that are deemed to be potentially added to
the real archive of behaviors. This algorithm already demonstrated a faster coverage
than its non model-based counterpart on their benchmark environment, and it would
be interesting to compare it to our proposed algorithm to ensure that Model-Based
Novelty Search is effectively faster than a model-based Quality-Diversity algorithm
as Model-Based Novelty Search should maintain the strong exploration properties of
its non-model-based counterpart, Novelty Search.

5.1 Methods

Our aim is to compare the performance of a Model-Based version of the Novelty
Search algorithm against several other Diversity Algorithms. To that end, we decide
to use three different Diversity Algorithms as baselines. Firstly, Novelty Search, as it
is the algorithm we are trying to improve using a model. Secondly, we will compare
to two Quality-Diversity algorithms, Dynamics-Aware Quality Diversity [98] and its
non-model based counterpart as defined in their paper. The Novelty Search algo-
rithm is detailed in Algorithm 1 and Dynamics-Aware Quality Diversity is detailed
in Algorithm 5. The non model-based Quality-Diversity algorithm used, denoted
Vanilla Quality-Diversity, has the same repertoire addition rules as Dynamics-Aware
Quality-Diversity that were proposed by Cully et al. [32]. Those addition rules put
the emphasis on both exploration with the preservation of novel behaviors in the
archive AΠ and quality through local competition within a niche in the archive as
proposed by Lehman et al. [92] and refined by Cully et al. [32]. This niching sys-
tem thus keeps the Behavioral Space continuous rather than discretizing it like the
MAP-Elites algorithm described in Algorithm 2, thus making the archive used un-
structured. Both Dynamics-Aware Quality Diversity and Vanilla Quality-Diversity
use a uniform selection operator and directional variation [162] to drive the Quality-
Diversity search. Sets of hyperparameters for each algorithm and experiment will be
further detailed in the next section.

We thus propose a Model-Based version of the Novelty Search algorithm. It con-
sists in two phases, much like Dynamics-Aware Quality Diversity [98]. Initialization
consists in generating a population of size sp of randomly parameterized policies, to
evaluate them and train the dynamics model using the foraged data. Afterwards, a
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Novelty Search loop is performed on the dynamics model using Tinf inference. The
starting population on the model Novelty Search procedure is set to the last batch
of sp individuals evaluated. From this population is generated so offspring policies
using a selection and variation mechanism. The offspring is then evaluated on the
dynamics model to estimate their behavior descriptor and the sp most novel ones are
selected as the new population. Moreover, k individuals are selected to be added to
the archive ÃΠ, either randomly or based on their novelty metric and all the model
evaluated individuals are saved in a container Ẽ to allow for a more fine selection at
the end of the model Novelty Search process.

This selection-variation-evaluation process is repeated G̃ times, G̃ being adaptive
on the current real generation G inspired from the algorithm proposed by Janner et
al. [68]. G̃ thus increases over the complete evaluation budget, starting from G̃0 up
to 10% of the maximum real evaluation budget and increasing linearly up to G̃max

once 90% of the maximum real evaluation budget is reached. Once G̃ is reached, it
is time to select which individuals to transfer onto the real system. To do so, we
propose to transfer the sp most novel individuals evaluated on the model w.r.t to the
current real archive of behaviors AΠ and all the model evaluations performed. Those
selected individuals are then evaluated on the real system, the dynamics model is
updated and k individuals are selected to be added to the archive AΠ. The complete
Model-Based Novelty Search algorithm is outlined in Algorithm 7.

5.2 Experiments

5.2.1 Experimental Setups

To evaluate the performance of the proposed Model-Based Novelty Search algorithm,
experiments are conducted on three environments. The considered metric for all of
the environments is the coverage of the user-defined Behavioral Space B depend-
ing on the number of evaluations. Ideally, our method should outperform at least
Novelty Search on all considered environments with a lower number of evaluations
to reach a certain coverage, and should also outperform its Model-Based Quality-
Diversity counterpart, Dynamics-Aware Quality-Diversity [98], as we want to provide
a Model-Based Novelty Search algorithm that keeps the strong exploration capabil-
ities of Novelty Search when compared to Quality-Diversity algorithms. The three
environments considered are a Two-Wheeled Robot Navigation task, an Omnidirec-
tional Hexapod Locomotion task and a Ball In Cup task.
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Algorithm 7 Model-Based Novelty Search (MBNS)
1: sp is the population size, so is the offspring size, k is the number of individuals to add to

the archive at each generation, G is the generation budget, G̃ is the generation budget
in imagination

2: Initialize repertoire AΠ (to ∅), imagined repertoire ÃΠ (to ∅), dynamics model pdyn, and
replay buffer B (to ∅)

3: πθ1
. . . πθsp

← random_parameters() ▷ Set the population to randomly parameterized
policies

4:
5: (sdi, Ri)i∈[1,N ], transitions ← evaluation(πθ1

. . . πθN
) ▷ Evaluate in environment; get

transitions.
6: B ← add_to_replay_buffer(transitions, B)
7:
8: ▷ Learning Dynamics Models
9: Update pdyn using B ▷ Train dynamics model with transitions collected in replay buffer.

10:
11: for g in [1, . . . , G] do
12: Ẽ ← ∅ ▷ Initialize model evaluations container
13: for g̃ in [1, . . . , G̃] do
14: πθ∗

1
, . . . , πθ∗

so
← variation(πθ1 . . . πθsp

) ▷ Generate the model offspring from the
model population using the variation operator

15: b̃i∈[1,so] ← model_evaluate(πθ∗
1
, . . . , πθ∗

so
using pdyn) ▷ Evaluate the model

offspring
16: η̃i∈[1,so] ← N(1), . . . , N(so) ▷ Compute the Novelty using the model offspring

behavioral descriptors
17: Ẽ ← πθ∗

1
. . . πθ∗

so
▷ Add evaluated individuals to model evaluations container Ẽ

18: πθ1
, . . . , πθsp

← select(πθ∗
1
. . . πθ∗

so
, η1 . . . ηso) ▷ Update population with the sp

most novel individuals in the model offspring
19: ÃΠ ← sample(πθ1

. . . πθsp
) ▷ Select k individuals from the population to be

added to the model archive
20: g̃ ← g̃ + 1

21: πθ1
, . . . , πθsp

← select_for_transfer(Ẽ) ▷ Select sp most novel individuals to
transfer on the real system from model evaluations container Ẽ

22:
23: ▷ Acting in the Environment
24: bi∈[1,sp], transitions ← evaluation(πθ1

, . . . , πθsp
) ▷ Evaluate the selected population

in environment; get transitions.
25: B ← add_to_replay_buffer(transitions, B)
26: AΠ ← sample(πθ1 . . . πθsp

) ▷ Select k individuals from the population to be added to
the archive

27: ÃΠ ← synchronise_repertoires(AΠ, ÃΠ) ▷ Erase content of ÃΠ and replace it with
the content from AΠ.

28:
29: ▷ Learning Dynamics Models
30: Update pdyn using B ▷ Train dynamics model with transitions collected in replay

buffer.
31:
32: return AΠ

The Two-Wheeled Robot Navigation task is the same that was described in the
previous chapter 4. An image of the setup is shown on Figure 5.1c. This environment
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(a) Omnidirectional Hexapod Robot
Locomotion

(b) Ball In Cup

(c) 2-Wheeled Robot Navigation

Figure 5.1: Considered Environments

is interesting as it has simple dynamics which are easy to learn as obstacles are only
placed on the outskirts of the navigation map. The considered algorithms perfor-
mance could be affected from the long episode length making mutated individuals
farther from their parents in the Outcome Space and making model-based methods
suffer from the long prediction horizons over which compounding error can lead to
significant behavioral descriptor estimation errors.

The second environment considered is directly taken from the Dynamics-Aware
Quality-Diversity paper and is the same that was used in the previous chapter as well
4. It consists in an 18-DoF hexapod robot whose goal is to learn locomotion skills
as shown on Figure 5.1a. An episode lasts three seconds at a frequency of 100Hz,
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making the prediction horizon 300 steps. In this task, non-linear neural networks are
not used as a policy representation. Instead, Cully et al. [31] proposed to use peri-
odic functions, as periodic functions allow to control each joint using only the three
parameters defining a periodic function, those parameters being the phase, ampli-
tude and duty cycle of a sinusoid wave. Such policies are particularly well suited to
locomotion as they induce periodic movement priors. The prediction horizon being
shorter than that of the Two-Wheeled Navigation task, this task should be solved
with a little more ease by evolutionary algorithms and their model-based counter-
parts, making it an interesting benchmark to evaluate the unaffected performance of
each algorithm.

Finally, the last environment considered is the Ball In Cup task as described in
Section 3.2.1.2. This environment is particularly interesting to showcase the impor-
tance of thriving for diversity, as its dynamics are sparse. Thus, purely novelty driven
methods should perform better on this environment compared to methods that also
optimize for quality as they will tend to leave aside the sparse parts of the transition
function or at least until its non-sparse parts are explored more thoroughly.

5.2.2 Hyperparameters

For our experiments, there is four type of hyperparameters: Evolutionary Algo-
rithms parameters, common to all the policy search algorithms compared here, Nov-
elty Search parameters, common to Novelty Search and Model-Based Novelty Search,
Quality-Diversity parameters, common to Quality-Diversity and Dynamics-Aware
Quality-Diversity and finally Model-Based parameters, common to the two consid-
ered model-based diversity algorithms Model-Based Novelty Search and Dynamics-
Aware Quality-Diversity.

For all the Diversity Algorithms considered, policies parameters value are re-
strained in the range [−5, 5] for all environments except the Omnidirectional Hexa-
pod Locomotion task where policy parameters values are restricted to [0, 1] as the
policies are represented with periodic functions and not non-linear neural networks.
Non-linear neural networks of 2 hidden layers of 10 neurons each are used as poli-
cies. A uniform selection mechanism is used together with the Iso+LineDD mutation
[162] with a σ = 0.01 for the isotropic Gaussian part and σ = 0.2 for the directional
Gaussian part to variate the individuals. The mutation probability is fixed to 20%,
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EA Hyperparameters

Parameter TWR Value OH Value BIC Value

Policy Representation Non-linear Neural Network Periodic Functions Non-linear Neural Network

Policy Parameter Range [−5, 5] [0, 1] [−5, 5]

Selection Mechanism Uniform Uniform Uniform

Variation Mechanism Iso+LineDD [162] Iso+LineDD [162] Iso+LineDD [162]

Variation Probability 20% 20% 20%

nov_l 9 0.015 0.012

QD Hyperparameters

Initialization Size 100

Offspring Size 200

NS Hyperparameters

Population Size 100

Offspring Size 200

Individuals added to AΠ 15

Selection criteria to add to AΠ novelty

MB Hyperparameters

Ensemble Size 4

Batch Size 512

Learning Rate 0.001

Model Training Rate every 500 evaluations

Table 5.1: Hyperparameters common to all diversity algorithms used

and as an unstructured archive of behaviors [92] (only for QD-based algorithms and
just for coverage evaluation in NS-based algorithms) is used, the distance between
competing individuals is set to 1.5% of the size of the Behavioral Space.

Quality-Diversity algorithms use a random initialization comprised of a 100 ran-
domly parameterized individuals, and the batch size to generate after a mutation
procedure is 200 individuals. Novelty Search algorithms use a population size of a
100 individuals, and an offspring size of 200. The number of individuals added to the
archive at each generation is 15 and are selected based on their novelty. Model-Based
techniques use a Probabilistic Neural Network Ensemble, comprised of 4 different
neural networks of 2 layers, the first one consisting in 500 neurons and the last one
400. The batch size is set to 512, the learning rate to 0.001 and the model is trained
every 500 real-world evaluations. Finally, Model-Based Novelty Search generations
G̃ on the model increase linearly with the current budget and maximum budget ratio
from G̃0 = 4 generations to G̃max = 20 generations.
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5.2.3 Results

5.2.3.1 Navigation Task

Figure 5.2 shows the results obtained on the Two-Wheeled Robot Navigation task
obtained on a total of 25000 evaluations and 10 repetitions for each method. All
methods reach the maximum coverage in that amount of evaluations. That coverage
is shown for each of the considered methods on Figure 5.3, which shows the coverage
of 10 separate runs on the same figure for each considered algorithm. All methods
indeed achieve a similarly dense coverage of the complete Outcome Space. To analyze
the performance in terms of speed to reach this coverage, it is interesting to look at
the archive coverage evolution in function of the number of evaluations on Figure
5.4. The view is restricted to the 5000 first evaluations for clarity purposes. On
this figure, two interesting things are observed. Firstly, Model-Based Novelty Search
is around 50% faster than Novelty Search and Dynamics-Aware Quality-Diversity.
Indeed, Model-Based Novelty Search reaches the final Novelty Search coverage in
3300 evaluations instead of 5000 evaluations. Similarly, it reaches the final Dynamics-
Aware Quality-Diversity coverage in 3500 evaluations instead of 5000.

Figure 5.2: Final Coverage of Diversity Methods on Empty Maze task

Secondly, Model-Based Novelty-Search is slower than all other Policy Search
methods during the first 600 evaluations, which seems to be due to over-exploitation
of the model. To explain this, Figure 5.5 shows the descriptor estimation error evolu-
tion of individuals transferred after the optimization procedure on the learned model
for both Model-Based Novelty Search and Dynamics-Aware Quality-Diversity. De-
scriptor estimation error is calculated as the L2 norm of the difference between the
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(a) QD archive cumulated coverage (b) DAQD cumulated coverage

(c) NS cumulated coverage (d) MBNS cumulated coverage

Figure 5.3: Cumulated coverage over 10 repetitions for each of the Diversity
Algorithms considered on the Two-Wheeled Robot Navigation task

real behavioral descriptor and the estimated behavioral descriptor using the learned
model such that: ϵdesc(πθi

) =

√
(bi − b̃i)2. On this figure, at the same step where

the model is updated (after 500 evaluations), a steep drop in descriptor estimation
error happens. This fall is way more pronounced in Model-Based Novelty Search,
with descriptor estimation error values going from 150-300 to 30-60, while Dynamics-
Aware Quality-Diversity had descriptor estimation error values that remained in the
50-125 range. Moreover, the median descriptor estimation error of selected individu-
als for Model-Based Novelty Search quickly goes down after training the model with
more gathered data and goes below that of Dynamics-Aware Quality-Diversity. This
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Figure 5.4: Coverage of Diversity Methods on the Two-Wheeled Robot Navigation
task depending on number of evaluations

shows that on the Two-Wheeled Robot Navigation task, Model-Based Novelty Search
is able to exploit the model more robustly than Dynamics-Aware Quality-Diversity
once the model has lower prediction errors.

Nevertheless, why Model-Based Novelty Search has a poor initial coverage over
the first 500 evaluations still needs to be investigated. This can be explained with
the different way that each Model-Based algorithm utilizes its model. Indeed, in
Dynamics-Aware Quality-Diversity, as soon as the model estimates that at least 100
individuals could be added to the archive AΠ, those individuals are transferred. This
can lead in the early generations to simply performing a single or a few selection and
mutation iteration, as the model can predict behavioral descriptor values that are not
reliable but remain diverse as no explicit objective that may overexploit the model
is defined. This effectively allows Dynamics-Aware Quality-Diversity to not overuse
the model and simply perform better than its non-model-based counterpart. On the
contrary, Model-Based Novelty-Search has an explicit novelty objective, which will
increase the over-exploitation of the model. Selecting the most novel policies in that
case is not ideal as the model is far from good, which can bring a bias in the real
diversity found in the solutions.

To support this claim, the evolution of the descriptor estimation error of selected
and non-selected individuals is observed at the end of the Novelty Search routine on
the learned model on the Two-Wheeled Robot Navigation task respectively shown on
Figure 5.6 and Figure 5.7. If our claim is correct, on the first 500 evaluations a sig-
nificantly higher descriptor estimation error on the selected individuals compared to
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Figure 5.5: Comparison of the evolution of all transferred individuals estimated
behavioral descriptor error between MBNS and DAQD on the Two-Wheeled Robot
Navigation task. N.B.: In Model-Based Novelty Search, the transferred individuals

are the most novel.

the non-selected individuals should be observed, error which should then be reduced
after enough model training is done. Furthermore, the novelty of selected individuals
should remain significantly higher than that of non-selected individuals throughout
all evaluations. On Figure 5.6, the gap between selected and non-selected individ-
uals descriptor estimation error is of more than 100, selected individuals almost
having twice the descriptor estimation error than non-selected individuals. After
500 evaluations, this gap is drastically reduced, selected individuals only having a
descriptor estimation error that is only 20-30% higher at maximum compared to
non-selected individuals. On Figure 5.7, the gap in estimated novelty between se-
lected and non-selected individuals remains more or less the same throughout all
evaluations, showing that Model-Based Novelty Search is able to use the model to
find high novelty individuals once the model is enough trained.

Moreover, Figure 5.8 shows the L2 error of dynamics models trained during
Model-Based Novelty Search or Dynamics-Aware Quality-Diversity routines against
a set of diverse trajectories obtained using Novelty Search on the real system consid-
ered. Those trajectories thus form an independent and diverse test set representing
the real system dynamics, ideal to evaluate the dynamics model performance. The
model error is thus computed by taking the L2 norm of the difference between the
real next state (obtained from the trajectory data) and the estimated next state
(obtained using the learned dynamics model) for a given state and action as input.
The idea is that if the model L2 Error is the same for both Model-Based Novelty
Search and Dynamics-Aware Quality-Diversity while the transferred individuals L2
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Figure 5.6: Evolution of selected vs non-selected individuals estimated behavioral
descriptor error with MBNS on the Two-Wheeled Robot Navigation task

Figure 5.7: Evolution of selected vs non-selected individuals model novelty with
MBNS on the Two-Wheeled Robot Navigation task

Error on the descriptor is way higher it definitely means that Model-Based Novelty
Search initial lower coverage is due to model exploitation. This is confirmed as when
looking at Figure 5.8, dynamics model trained with either of the two methods behave
similarly w.r.t. the diverse set of trajectories considered. This validates our claim
that the model is over-exploited in the first 500 evaluations, and explain the poor
performance in terms of coverage of Model-Based Novelty Search when the model
has prediction errors that are too high.

5.2.3.2 Omnidirectional Hexapod Locomotion Task

On the Locomotion task, the control of an Omnidirectional Hexapod robot, results
are obtained on a total of 50 000 evaluations and 10 repetitions for each method con-
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Figure 5.8: Evolution of the Dynamics Model L2 Error on a diverse set of 100
unseen trajectories for Dynamics Models trained independently with MBNS and

DAQD

sidered. On Figure 5.9, the final coverage reached for a budget of 50 000 evaluations
with Model-Based Novelty Search is twice the final coverage reached with Novelty
Search, 50% higher than the one reached by Dynamics-Aware Quality-Diversity and
thrice the one reached by the non model-based QD algorithm considered. The cor-
responding coverage is shown for each of the considered algorithms on Figure 5.10,
where Model-Based Novelty Search indeed reaches regions of the Outcome Space
that are never reached by any other considered method. This metric indicates that
Model-Based Novelty Search can cover faster the Behavioral Space of this task than
any other method considered. Now Figure 5.11, helps to analyze the performance of
Model-Based Novelty Search in terms of speed to reach the final coverage of each of
the other methods considered.

Model-Based Novelty Search is more than 4 times faster than Novelty Search on
this task. Indeed, at 12 000 evaluations, Model-Based Novelty Search has reach a
30% coverage of the environment, while it takes all 50 000 evaluations for Novelty
Search to reach a similar coverage. Compared to Dynamics-Aware Quality-Diversity,
Model-Based Novelty Search is 2.5 times faster, as it reaches the final Dynamics-
Aware Quality-Diversity coverage of 40% of the Outcome Space at 19 500 evalua-
tions only instead of 50 000 evaluations. Model-Based Novelty Search is thus much
more sample-efficient than its non-model based counterpart and than a non nov-
elty incentivized model-based diversity algorithm on the Omnidirectional Hexapod
Locomotion Task. This task being the one where we expected the benchmarked al-
gorithms to perform best, it is interesting to see such a gap in speed of coverage for
our proposed exploration oriented Model-Based Diversity Algorithm.
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Figure 5.9: Final Coverage of Diversity Methods on Omnidirectional Hexapod task

Nevertheless, on this task like on the previous one, Model-Based Novelty Search
is once again slower than any other method during the first thousand evaluations.
Over-exploitation of the model seems to be the culprit again, as the descriptor esti-
mation error for individuals selected for transfer is twice the one of Dynamics-Aware
Quality-Diversity on the first 1000 evaluations as shown on Figure 5.12. Indeed,
Model-Based Novelty Search behavioral descriptor estimation error values are in the
range of 0.05-0.20, while Dynamics-Aware Quality-Diversity tends to select individ-
uals with a better estimation of their behavioral descriptor with estimation errors
values lying in the range of 0.025-0.10. This limitation is quickly addressed as the
model becomes better at predicting individuals trajectories. Indeed, the median
descriptor estimation error of selected individuals for Model-Based Novelty Search
joins that of Dynamics-Aware Quality-Diversity after 5000 evaluations, but remains
slighlty higher than that obtained with Dynamics-Aware Quality-Diversity over all
the evaluations.

Once again, to emphasize the reason of that initial under performance of Model-
Based Novelty Search in terms of coverage, we propose to look at Figures 5.13 and
5.14 which show the mean and standard deviation of the descriptor estimation er-
ror and the estimated novelty obtained on the model before transferring any in-
dividual. Again, after each model training, the gap in descriptor estimation error
between selected and non-selected individuals shrinks, thus bringing better novelty
estimates that are properly exploited by Model-Based Novelty Search to generate
novel solutions. Indeed, the gap reduces to the same ranges observed on the Two-
Wheeled Robot Navigation task, going from almost twice the error in the first 500
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(a) QD cumulated coverage (b) DAQD cumulated coverage

(c) NS cumulated coverage (d) MBNS cumulated coverage

Figure 5.10: Cumulated coverage over 10 repetitions for each of the Diversity
Algorithms considered on the Omnidirectional Hexapod Locomotion task

evaluations to less than 30% after 2000 evaluations. Moreover, Figure 5.15 shows
that the L2 error of dynamics models trained during Model-Based Novelty Search
or Dynamics-Aware Quality-Diversity routines against a set of diverse trajectories
are similar, meaning that the only explanation possible for lower coverage is indeed
over-exploitation of the model through the novelty objective.
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Figure 5.11: Coverage of Diversity Methods on Omnidirectional Hexapod task
depending on number of evaluations

Figure 5.12: Comparison of the evolution of all transferred individuals estimated
behavioral descriptor error between MBNS and DAQD on Omnidirectional

Hexapod Locomotion Task. N.B.: In Model-Based Novelty Search, the transferred
individuals are the most novel.

5.2.3.3 Ball In Cup Task

Finally, the results obtained on the Ball In Cup task are analyzed. Results are
obtained on a total of 25 000 evaluations and 10 repetitions for each method consid-
ered. Figure 5.16 shows that Model-Based Novelty Search reaches a final coverage of
0.19, Novelty Search reaches a final coverage of 0.16 and Dynamics-Aware Quality-
Diversity reaches a final coverage of 0.12, which represent respectively an increase
of 30% and 90% in terms of final coverage for the considered budget. Nevertheless,
it is interesting to note that here Novelty Search reaches a coverage that is higher

108



Figure 5.13: Evolution of selected vs non-selected individuals estimated behavioral
descriptor error with MBNS on Omnidirectional Hexapod Locomotion Task

Figure 5.14: Evolution of selected vs non-selected individuals model novelty with
MBNS on Omnidirectional Hexapod Locomotion Task

than the one reached by Dynamics-Aware Quality-Diversity. As the Ball In Cup
task is a task with sparse dynamics, meaning that some transitions appear scarcely
in the transition function T , it was expected that more exploratory methods would
perform better as observed when looking at final coverages. Indeed, looking at the
corresponding coverage shown for each of the considered algorithms on Figure 5.17,
it is shown that both QD methods have a lower archive density on the lower part of
the z-axis, corresponding to end positions that lift the ball above the cup. On the
other hand, Novelty Search based methods have a more densely populated archive
in all the directions, with Model-Based Novelty Search being the most dense of the
two.

Figure 5.18 shows the evolution of the coverage for each of the four considered
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Figure 5.15: Evolution of the Dynamics Model L2 Error on a diverse set of 100
unseen trajectories for Dynamics Models trained independently with MBNS and

DAQD on Omnidirectional Hexapod Locomotion Task

Figure 5.16: Final Coverage of Diversity Methods on Ball In Cup task

Diversity Algorithms on the Ball In Cup environment. Model-Based Novelty Search
is 2 times faster than Dynamics-Aware Quality-Diversity to reach its final coverage
as it attains 12% of coverage at 12 800 evaluations, but only 30% faster than Novelty
Search to reach its final coverage of 16% of the Outcome Space. Model-Based Nov-
elty Search remains more sample-efficient than Novelty Search and Dynamics-Aware
Quality-Diversity, but not as much as we would expect. This could be explained by
the fact that the transition dynamics of the Ball In Cup task is more complex than
those of the two other environments, as we recall that Ball In Cup was the least con-
sistent environment as shown in Chapter 3 meaning that actions yield inconsistent
behaviors depending on the state the system is in, most likely leading to an increased
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(a) QD cumulated coverage (b) DAQD cumulated coverage

(c) NS cumulated coverage (d) MBNS cumulated coverage

Figure 5.17: Cumulated coverage over 10 repetitions for each of the Diversity
Algorithms considered on the Ball In Cup task

error in the descriptor estimation for the model evaluated individuals.

Indeed, when looking at Figure 5.12, two things are observed. Firstly, just like
on the two previous environments, Model-Based Novelty Search over-exploits the
model when it is not yet enough trained. Nevertheless, it seems to affect slightly
the performance for the first 1500 evaluations but not as much as on the Hexapod
environment for example. The second remark that can be made is that the descrip-
tor estimation errors for the transferred individuals, for both Model-Based Novelty
Search and Dynamics-Aware Quality-Diversity, remain high through the whole policy
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Figure 5.18: Coverage of Diversity Methods on Ball In Cup task depending on
number of evaluations

search process. Indeed, error remains around 0.3, which is high for the environment
as it has limits that are in the [−0.4, 0.4] across each dimension. As stated earlier,
this is most likely due to the fact that this task is hard to model. Indeed, actions do
not have the same impact at all in different regions of the State-Space, thus making
generalization for the model way harder than in more consistent environments like
the Two-Wheeled Robot Navigation task or the Omnidirectional Hexapod. After
3000 evaluations, looking at the median descriptor estimation error of transferred
individuals for Model-Based Novelty Search compared to that of Dynamics-Aware
Quality-Diversity, Model-Based Novelty Search descriptor estimation error is smaller
and continue to decreases until exhaustion of the allocated budget, showing the abil-
ity of Model-Based Novelty Search to explore more thoroughly the complex dynamic
of this task.

Nevertheless, the descriptor estimation error of selected individuals in Model-
Based Novelty Search was significantly higher than that of Dynamics-Aware Quality-
Diversity on the first 1500 evaluations, even if the performance of the algorithm is
not highly impacted on this environment. Figures 5.20 and 5.21 show that the gap
between selected and non-selected individuals reaches as high as almost thrice the
descriptor estimation error. This is however quickly reduced after 1500 evaluations,
descriptor estimation errors being identical after that while higher novelty is main-
tained in the selected individuals, ensuring a good functioning of Model-Based Nov-
elty Search once the model has enough training data. Finally, Figure 5.22 shows that
the L2 error against a set of diverse trajectories is similar for models trained both
using Dynamics-Aware Quality-Diversity and Model-Based Novelty Search, show-
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Figure 5.19: Comparison of the evolution of all transferred individuals estimated
behavioral descriptor error between MBNS and DAQD on Ball In Cup task. N.B.:

In Model-Based Novelty Search, the transferred individuals are the most novel.

Figure 5.20: Evolution of selected vs non-selected individuals estimated behavioral
descriptor error with MBNS on Ball In Cup task

ing that the model is effectively being over-exploited through the novelty objective
initially.

5.3 Conclusions

In this chapter, we proposed a new Model-Based Diversity Algorithm based on the
Novelty Search algorithm called Model-Based Novelty Search. We proposed to per-
form a Novelty Search loop directly on a learned dynamics model, using the model
to estimate the behaviors of the individuals generated through selection-variation,
and to select for transfer onto the real system the most novel individuals found w.r.t.
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Figure 5.21: Evolution of selected vs non-selected individuals model novelty with
MBNS on Ball In Cup task

Figure 5.22: Evolution of the Dynamics Model L2 Error on a diverse set of 100
unseen trajectories for Dynamics Models trained independently with MBNS and

DAQD on Ball In Cup task

all the model evaluations performed and the current real Novelty Search archive AΠ.
We proposed to compare this method against three baselines, two regular Diver-
sity Algorithms, Novelty Search and Quality-Diversity with an unstructured archive,
and a state-of-the-art Model-Based Diversity Algorithm Dynamics-Aware Quality-
Diversity.

We measured the performance of each algorithm in terms of coverage of the
user-defined Outcome Space B on three different environments, an environment with
pretty uniform dynamics that are easy to learn, a benchmark environment taken
from the Dynamics-Aware Quality-Diversity paper and an environment with sparse
interactions in its dynamics making it harder to learn a dynamics model for. We
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showed that the proposed algorithm, Model-Based Novelty Search, outperformed all
other 3 baselines in all three environments on the considered evaluations budgets in
terms of coverage. The increase in sample-efficiency against Novelty Search ranged
from a 30% increase to a 4 times increase in speed to reach a similar coverage. The
increase in sample-efficiency against Dynamics-Aware Quality-Diversity ranged from
a 50% increase to a 2.5 times increase in speed to reach a similar coverage.

Finally, we analyzed the model prediction error and showed that Model-Based
Novelty Search tends to over-exploit the dynamics model when it is not yet accurate
enough, a known problem for novelty-driven methods that could be addressed using
uncertainty metrics obtained using dynamics model ensembles. Indeed, one could
argue that over-exploiting the model is not a problem if it brings informative data
that may help train the model to make more accurate predictions faster, however
using uncertainty metrics as discussed in the next chapter would yield better results.
Indeed, using novelty directly does not necessarily gather the most informative data,
as most of the individual’s trajectory might remain in the already known training
support. Inversely, an individual could be not novel at all but be very informative
if some parts of its trajectory end up in unseen parts of the environment dynamics.
Future works addressing this over-exploitation issue could lead to a new Model-Based
Novelty Search method that is more robust to the environments dynamics.
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Chapter 6

Discussion

6.1 Models and priors

In Chapter 4, we proposed to use two different model representations, Spatial Ran-
dom Fields and Non-Linear Feed-Forward Neural Networks. Such model represen-
tations are useful as they are relatively simple and can represent efficiently a sys-
tem dynamics, the first representation being able to model Gaussian transitions
and spatial correlations in the transition function, the second being able to model
non-linearities and handle more complex transition functions. However, such repre-
sentations quickly faced limitations when encountering robotic systems with a bigger
State-Action Space.

Indeed, even the most powerful representation of the two proposed, Feed-Forward
Neural Networks, failed to incorporate and respect the underlying physical princi-
ples governing the system. However integrating the priors on system dynamics in
the learning pipeline can improve several aspects of the learning process, especially
sample-efficiency [140]. Novel approaches like Physics-Informed Neural Networks [33]
help integrating seamlessly such constraints directly in the model learning. Indeed,
Physics-Informed Neural Networks is an approach that integrates the strengths of
neural networks with a strong emphasis on physics-based constraints. Unlike classic
neural networks that may lack interpretability and struggle with generalization to
new scenarios, Physics-Informed Neural Networks leverage prior knowledge of the
system’s physics during training.

By embedding the governing physical laws directly into the neural network ar-
chitecture, Physics-Informed Neural Networks can learn more accurately the system
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dynamics with less training data and generalize better outside of the training data
[33]. Indeed, Physics-Informed Neural Networks are trained to both fit observed data
and reduce the residual of a Partial Differential Equation governing the system dy-
namics. Nevertheless, such methods require prior knowledge over the task dynamics
and can also be hard to engineer depending on the considered robotic task.

Hopefully, most robotic tasks dynamics have been broadly studied and equations
describing the various considered systems do exist, even if they might include many
parameters. Incorporating them into Physics-Informed Neural Networks could be
lengthy, but could help reduce vastly the data cost of learning an accurate dynam-
ics model from scratch. In the context of this thesis, incorporating such priors in
the models could help enhancing the proposed 0DAB algorithm, by using random
dynamics models that are closer to the reality as they directly integrate some knowl-
edge of the target system, without needing any data. But the cost of developing such
techniques should be properly evaluated against using directly simulators and ap-
proaches inspired from Domain Randomization. Moreover, Physics-Informed Neural
Network offer all the aforementioned advantages at the cost of an increased com-
putational cost for training the model, as multiple and different in nature training
objectives are optimized at once.

6.2 Promoting Novelty

In Chapter 4, we proposed two novelty metrics on ensembles of environments. Such
novelty metrics aimed at finding generally novel individuals, i.e. individuals that are
more novel than most other individuals on all the considered environments. We pro-
posed to use Nmin, the minimum of normalized novelty obtained on all environments,
and Nsum the sum of normalized novelty obtained on all environments.

We supposed that such novelty metrics would promote generally novel individu-
als, and it did seem to as coverage on most environments was uniform. Nevertheless,
it is hard to determine if the obtained individuals did reach our goal of being novel
on unseen environments in the same environment distribution as the one the policies
were found on. Such behaviors can be found in various ways, and other authors have
tried to reach that goal in different ways.

Salehi et al. [139] propose in their algorithm FAERY to explicitly create a prior
population of individuals with the objective of making that prior population both
versatile (the number of solutions derived from the prior population) and adaptive
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(the number of mutations required to reach a solution from the prior population).
Those two fitness functions are optimized using the multi-objective optimization
method NSGA-II [36].

The objectives here are much more explicit than ours and could lead to interesting
results if instead of optimizing the population through either Nmin or Nmax, such
an optimization scheme was used in 0DAB. Indeed, the idea is that using such
methods could make up better for the discrepancies existing between the source and
target domains, as the prior population could capture more generalist characteristics
compared to our proposed novelty metrics.

6.3 Long horizon prediction

Across chapters 3, 4 and 5 we observed in several occurrences that a long prediction
horizon is detrimental to the overall trajectory prediction. Indeed, the type of models
we used as dynamics models, as they work in a recursive manner where the previous
prediction is fed back into the prediction model, compound error over the prediction
horizon. Thus, the longer the horizon, the more inaccurate the prediction, which is
problematic in the case of Diversity Algorithms.

Indeed, as Diversity Algorithms compute the novelty and fitness of an individual
over a complete episode, rather than computing a reward step-by-step like in Rein-
forcement Learning, using predictive models in this context requires to accurately
predict the complete trajectory of the candidate solutions. Moreover, in the con-
text of the robotic tasks that we considered in this thesis, the final position of the
candidate solutions is often used as the behavioral descriptor. This amplifies even
more the effect of a model whose error increases overtime as the Outcome Space is
exactly the most error-prone part of the predicted trajectory of the model-evaluated
individual.

One could thus propose to directly predict the behavioral descriptor of an indi-
vidual, but the mapping between the parameter space and the outcome space is often
hard to learn, and using a dynamics model which directly represents the considered
Markov Decision Process transition function did increase considerably the sample
efficiency of model-based Quality Diversity algorithms [98]. Nevertheless, it does not
mean that the dynamics models that were used up to this point in the literature are
ideal for the considered environments and prediction horizons.
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Others model representation exists to make more accurate predictions over long
horizons, leveraging their ability to capture complex patterns and dependencies in
temporal data. Most of these representation take inspiration from Recurrent Neural
Networks [108]. Recurrent Neural Networks are designed to handle sequential data by
maintaining hidden states that capture information from previous time steps. This
makes Recurrent Neural Networks suitable for long-term prediction tasks as they
can retain context over extended periods. However, traditional Recurrent Neural
Networks suffer from the vanishing gradient problem [58], limiting their effectiveness
in capturing long-range dependencies.

To address the vanishing gradient problem in Recurrent Neural Networks, Long
Short-Term Memory (LSTM) networks [59, 175] were introduced. LSTMs incor-
porate memory cells and gating mechanisms, allowing them to capture and store
information over longer time horizons. This makes LSTMs well-suited for tasks re-
quiring accurate long-term predictions, such as dynamics modeling [137, 171]. Such
model representations have thus been used in time series forecasting with higher ac-
curacy than regular Neural Networks [15]. Other model representations exploiting
recurrence have been proposed and used in robotics task dynamics learning contexts
like RSSM [57] that demonstrated that using both a stochastic and a deterministic
inference path in their model was crucial to long horizon accurate predictions. Such
models have also been successfully applied to real robotic systems with very high
sample-efficiency [170].

Nevertheless, one should not undermine choosing the right model representation
for the right problem. Indeed, in the case of physical systems when all the rele-
vant variables are available and stochasticity is non-existent or relatively low, long
term predictions should be accurate enough. Some authors proposed using Gener-
ative Models for such long term prediction horizons and demonstrated results that
even surpassed that of LSTMs or other recurrent architectures by several range of
magnitude over prediction horizons of several hundred time-steps [55].

Another interesting approach is to leverage a mechanism called attention [163].
Transformers are a type of model representation that use this mechanism integrated
into neural network architectures to focus on specific parts of the input sequence
when making predictions. This selective attention mechanism enhances the model
ability to capture relevant long-term dependencies, making it particularly useful
for dynamics modeling tasks. An increasing number of works uses such models
and some integrate them as dynamics models with promising results in applications
like industrial settings [158] and inverse kinematics modeling of soft robots [4] and
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grasping [126]. While we did not explore most of the aforementioned methods in this
thesis, some deserve to be explored thoroughly as they could deal with some of the
limitations observed in our works.

6.4 Information Guided Search

In Chapter 5, we proposed to guide a Model-Based Novelty Search approach using a
simple novelty metric transferring the most novel individuals found on the model onto
the real system. Such approach proved to enhance greatly the sample efficiency of
the Vanilla Novelty Search algorithm. We also noticed that the behavioral descriptor
estimation on the model was sometimes very far from the real behavioral descriptor.
This can be imputed to the model not being trained with enough data, not being
the best representation for modeling time series and to the novelty focused approach
selecting behaviors at the limit and even out of the training data support.

The model not being trained with enough data is inherent to the problem at hand,
so this reason can be ignored as of now. The model representation problem has been
addressed in the previous section. Finally remains the question of the approach used
to select the individuals generated using the model to transfer. Guiding the search
through the objective of gathering the best data to diminish the model prediction
error could be interesting. Indeed, it could kill two birds with one stone: ameliorate
the model performance and find novel individuals. Most novel individuals behavioral
descriptors should end in unexplored regions of the Outcome Space, and data from
outside the training data support is exactly the one that could enhance the model
prediction performance.

As described in section 2.4.2.4, some dynamics model representations allow to
compute such an information gain metric from disagreement between the different
predictions outputted by each model in a model ensemble [144]. Indeed, the epistemic
uncertainty that can be dissociated from the aleatoric uncertainty using ensemble
disagreement is a direct proxy for information gain, and maximising it has been
used in the Reinforcement Learning community as an self-supervision exploration
objective [128, 144]. Authors thus proposed to use such a metric in a Quality-
Diversity context [99] with the goal of enhancing exploration. However, they found
that such metrics, when used for optimization on the learned model skewed the
distribution of the solutions obtained on the model towards that single objective.

Using such metrics can be also be deceptive. For example, in the case where
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the behavioral descriptor is only a part of the end state of the individual trajectory,
if someone were to use the overall information gain over the whole trajectory, the
two objectives could oppose themselves. Indeed, if the behavioral descriptor is in the
already explored region of the Behavioral Space, but that most part of the trajectory
are outside of the training data support, the information gain based metric could
suggest to select that individual while the novelty metric would suggest to discard
it. Alignment in the considered observer function on the trajectory, both on the
behavioral side and on the information gain seems crucial and might explain why
Lim et al. [99] had results that seemed to indicate that disagreement metrics could
be unfruitful, as they computed the disagreement over the whole trajectory and the
behavioral descriptor solely as the final Cartesian position of their robot, a clear
misalignment in objectives. Optimizing for information gain directly thus does not
seem to be a particularly good idea, and more well-thought methods should be
explored, but not before studying the impact of alignment or misalignment between
objectives that might seem similar in the first place but can end up pretty opposed
if one is not careful enough in their design.
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Chapter 7

Conclusion

In this Ph.D thesis, several ways of decreasing the number of evaluations used by
Novelty Search to cover a user-defined Behavioral Space were studied. We started
by explaining the reasons leading scientists to use Model-Based techniques, the main
one being the Reality Gap. Several possibilities to overcome it exist, but Model-
Based approaches set a general and natural framework in which the robot iteratively
interacts with its environment, plans in imagination using its model of the world its
next course of action and takes action again, updating its view of its environment.

A crucial point of such techniques is the number of interactions with the envi-
ronment used, that should be lessen as much as possible. In the realm of Evolu-
tionary Algorithms, sample usage is often very important, and techniques reducing
the sample-efficiency not explored as much as they could be. We thus studied to
focus on the Novelty Search algorithm, and to propose different ways of enhancing
its sample-efficiency, as well as the sample-efficiency of all model-based techniques
through a generic study of the impact of initial model training data.

7.1 Initial Data Gathering techniques impact on MBPS

Indeed, we firslty proposed to study the impact of initial training data on Model-
Based Policy Search algorithms. To do so coherently, we proposed a metric eval-
uating a Markov Decision Process consistency of actions over its State-Space. We
then demonstrated a link existing between the consistency and the prediction er-
ror of the dynamics model when it is trained using an appropriated initial data
gathering method. This was empirically measured on five different robotic tasks of
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varying consistency metric. Clear conclusions cannot be made very clearly on the
three environments with a medium consistency, but the significantly more consistent
and significantly less consistent environments did show that this metric could help
characterize the environment dynamics. Nevertheless, enhancing that metric to be
more precise could help identify better the environments dynamics and chose a suited
degree of time correlation in the initial data gathering technique to bootstrap the
model.

The impact of the initial model training has been studied on two state-of-the-
art Model-Based Policy Search algorithms: DAQD [98] and PETS [26]. On DAQD,
aside from small coverage difference at the first iteration, no significant impact was
observed. The evaluation budget given to DAQD being very high compared to
that of regular Model-Based techniques, it is not really surprising that the model
initialization impact does not propagates on the complete run since the model is
being retrained with much more samples than the initialization budget considered
after a few hundred evaluations. However, on PETS the impact was much more
clear as the observed return differences after the first episode were up to 10 times
higher when using a suited initial data gathering technique. The actual impact from
model initialization thus seems to vary greatly depending on the evaluation budget,
the optimization method used and the overall dynamics of the considered task.

7.2 0DAB: Zero-Shot Diverse Archive Bootstrapping

Secondly, we proposed an algorithm that could help bootstrap the population of a
Novelty Search routine better than randomly parameterized policies. 0DAB, as it is
dubbed, combines random dynamics models ensembles with Novelty Search to find
individuals that are novel across the whole model ensemble. On a simple robotic
navigation task and with a suited random dynamics model representation, 0DAB
was able to increase the initial coverage of up to 35% when compared to randomly
parameterized policies, also reducing the total number of samples required to reach
complete coverage of the Outcome Space by several hundred evaluations.

However, when considering more complex dynamics like that of an hexapod robot
locomotion task, 0DAB failed to increase the initial coverage and to reduce the
number of evaluations to reach the target coverage of the Behavioral Space. Actually,
even when the initial coverage was slightly improved, the coverage evolution was
highly impacted by the bias introduced in the initial population compared to a
completely unbiased population generated through randomly parameterized policies.
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No model representation was found that could capture the dynamics of the target
system to some extent, even though progress seemed to be made when increasing the
prediction horizon on the model ensembles and increasing the size of the ensemble.

The potential reasons of this failure were analyzed through the scope of the
Outcome Space on the random dynamics models used, and it was identified that the
diverse set of solutions found by Novelty Search on the real system, when transferred
onto the random dynamics models, were collapsing to small regions of the Behavioral
Space on every model of the considered ensemble. This makes selection for transfer
of interesting solutions very hard as all diverse solutions actually fell in the same
regions of the Outcome Space and highlighted the need to use better suited model
representations or a different selection or optimization mechanism on the random
dynamics model ensemble to successfully overcome such limitations.

7.3 Model-Based Novelty Search

Finally, a new Model-Based Diversity Algorithm, simply dubbed Model-Based Nov-
elty Search was proposed. A dynamics model of the considered Markov Decision
Process transition function is learned and used to perform in imagination a Novelty
Search loop. At the end of this loop, whose budget is adaptive on the current total
evaluation budget spent, the generated solutions that are estimated to be the most
novel through evaluation of their behaviors on the dynamics model are transferred
on the real system. The transferred solutions are then evaluated on the real system,
and used as the starting population for the next Novelty Search loop on the learned
dynamics model.

This method was compared against three baselines, Novelty Search, Vanilla
Quality-Diversity and Dynamics-Aware Quality Diversity. The performance of each
algorithm in terms of coverage was measured on three different environments, an
hexapod locomotion task, a robotic navigation task and a ball-in-cup task. The
proposed algorithm outperformed in terms of coverage all other three baselines on
all the three considered environments on the evaluations budgets defined. Moreover,
the number of evaluations needed to reach a certain coverage against Novelty Search
was reduced by 30% up to 75% depending on the considered environment. Against
Dynamics-Aware Quality Diversity, the state-of-the-art Model-Based Diversity Al-
gorithm using a dynamics model, the number of samples required to reach its final
coverage was reduced from 30% up to 50% on the different robotic tasks we con-
sidered. To understand better the observed coverage evolutions depending on the
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number of evaluations, the model prediction error was analyzed and showed that
Model-Based Novelty Search tend to over-exploit the dynamics model when it is not
accurate enough in its early stages. Model-Based Novelty Search thus paves the way
to sample-efficient exploration methods by setting a simple framework that could be
enhanced in many different aspects.
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