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Titre: Production gravitationelle de matière et de radiation au cours du reheating après l’infla-

tion.
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Résumé: L’inflation est actuellement la théorie

la plus prometteuse pour décrire les conditions

initiales de l’Univers primordial. Dans les mod-

èles les plus simples, un champ scalaire, l’in-

flaton, parcourt lentement son potentiel avec

une forte densité d’énergie, entraînant une ex-

pansion accélérée de l’Univers. Les fluctua-

tions quantiques de l’inflaton générées aux pe-

tites échelles, peuvent être amplifiées par in-

stabilité gravitationnelle en perturbations cos-

mologiques, avec un spectre de puissance in-

variant d’échelle. Ces prédictions des mod-

èles inflationnaires sont en très bon accord

avec l’observation des anisotropies du fond dif-

fus cosmologique (CMB) et des structures à

grande échelle (LSS). Pour qu’un modèle infla-

tionnaire soit pertinent, il doit également in-

clure un mécanisme viable de transfert d’én-

ergie de l’inflaton vers les autres champs, pro-

duisant ainsi des particules du modèle stan-

dard (SM). Ce mécanisme est appelé reheating

post-inflationnaire. Le reheating peut égale-

ment permettre de produire des particules de

matière noire, ingrédient fondamental dumod-

èle cosmologique standard, et nécessaire pour

expliquer la dynamique des galaxies et des

amas de galaxies. Les particules produites

après l’inflation doivent d’abord avoir formé un

plasma primordial chaud, comme le montrent

les données d’observation sur la nucléosyn-

thèse primordiale (BBN) et le CMB. À la fin

de l’inflation, l’inflaton se stabilise vers le min-

imum de potentiel, mettant fin à l’expansion

accélérée, et commence à osciller autour de

ce minimum. Il peut alors dissiper son én-

ergie et la convertir en particules grâce à son

couplage avec d’autres champs. Ce mécan-

isme est crucial pour comprendre l’évolution de

l’Univers primordial avant la BBN. Dans cette

thèse, nous explorons la phénoménologie du

reheating à travers les désintégrations pertur-

batives ou les annihilations de l’inflaton vers

des particules de différents spins. Nous nous

intéressons également à l’influence de l’équa-

tion d’état pendant le reheating et à ses impli-

cations sur le processus de production de par-

ticules. Nous étudions en particulier un poten-

tiel mixte conduisant à une transition de l’équa-

tion d’état pendant le reheating et nous mon-

trons qu’il peut modifier de manière significa-

tive les prédictions de température de reheat-

ing et de fragmentation du condensat d’infla-

ton. La partie principale de cette thèse se con-

centre sur la production de particules pendant

les oscillations de l’inflaton, via des interactions

gravitationnelles. Nous considérons d’abord

l’échange de gravitons émergeant d’une de-

scription effective de la gravité d’Einstein et

nous généralisons ensuite ces résultats à des

couplages non-minimaux avec la gravité. Ce

cadre théorique est appliqué à la production

de particules de matière noire lourdes de dif-

férents spins ainsi qu’à la production de par-

ticules relativistes du SM. Nous montrons que

l’abondance de matière noire observée peut

être facilement expliquée par ces interactions

gravitationnelles et que la production rapide de

particules relativistes peut être fortement in-

fluencée par ces effets gravitationnels inévita-

bles. Ensuite, les implications d’un potentiel

non-quadratique associé à une équation d’état

exotique sont explorées dans le contexte du re-

heating gravitationnel, conduisant notamment

à un signal spécifique dans le spectre des on-

des gravitationnelles primordiales, générées

pendant l’inflation. Il s’agit d’une signature

caractéristique d’un tel scénario, qui pourrait

être détectée par de futures expériences d’on-

des gravitationnelles. Cette détection mettrait

en lumière l’équation d’état et la température

de reheating. Nous proposons enfin un scé-

nario minimal dans lequel la matière noire et

l’asymétrie matière antimatière sont générées

par ces portails gravitationnels pendant le re-

heating. Nous considérons pour cela la lepto-

genèse impliquant des neutrinos droitsmassifs

et dérivons des contraintes sur les masses de

ces neutrinos dans un tel scénario.
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Abstract: Inflation is currently the most

promising theory for depicting the initial con-

ditions in the early Universe. In the sim-

plest models, a scalar field, the inflaton, is

slowly rolling down its potential with high en-

ergy density, making the Universe exponen-

tially expand. On top of this mechanism of ac-

celerated expansion, quantum fluctuations of

the inflaton generated on small scales can be

further amplified by gravitational effects and

stretched to large-scale cosmological perturba-

tions with a near-scale invariant power spec-

trum. These predictions of inflationary models

are in extremely good agreement with the ob-

servation of the CosmicMicrowaveBackground

(CMB) anisotropies and Large Scale Structures

(LSS). For an inflationary model to be success-

ful, it also needs to include a viable mecha-

nism to transfer energy from the inflaton to

the other fields, producing particles of the Stan-

dard Model (SM). We call this mechanism post-

inflationary reheating. Reheating can also pro-

duceDarkMatter (DM) particles, a necessary in-

gredient of the standard cosmological model,

and to explain the dynamics of galaxies and

galaxy clusters. The SM particles produced af-

ter inflationmust have formed a hot primordial

plasma, as highlightedby observational data on

the Big Bang Nucleosynthesis (BBN) and CMB

measurements. In the standard scenario, the

inflaton field falls towards the potential mini-

mum at the end of inflation, ending the acceler-

ated expansion and oscillating around thismin-

imum. It can then dissipate its energy while os-

cillating and convert it into particles through its

coupling to other fields. This mechanism is cru-

cial to understanding the evolution of the early

Universe before BBN. This thesis explores the

phenomenology of reheating through pertur-

bative decays or scatterings of the inflaton to-

wards particles of different spins. We are also

interested in the effect of the equation of state

during reheating and its implications on the re-

heating process. We especially study a mixed

potential of the inflaton leading to a transition

of the equation of states during reheating, and

show that it can significantly alter the predic-

tions of reheating temperature and fragmen-

tation of the inflaton background. The main

part of this thesis has been focusing on the

production of particles during inflaton oscilla-

tions, mediated by Planck-suppressed gravita-

tional interactions. We first consider the gravi-

ton portals emerging from an effective descrip-

tion of Einstein’s gravity and generalize these

results to non-minimal couplings to gravity.

This framework is applied to the production of

heavy DM particles of different spins as well as

the production of relativistic particles of the SM.

We show that the right relic abundance of DM

could be easily produced through these gravita-

tional portals and that such unavoidable gravi-

tational effects may highly impact the early ra-

diation production from the inflaton. Then, im-

portant implications of steep potential associ-

ated with a stiff equation of state are explored

in the context of gravitational reheating, lead-

ing to an interesting signal in the primordial

gravitational waves spectrum generated during

inflation. This represents a signature of such

a scenario and can be probed by future grav-

itational waves experiments, shedding light on

the equation of state and temperature reached

during reheating. We finally propose aminimal

scenario in which both the DM relic abundance

and the asymmetry between baryons and anti-

baryons, are generated by gravitational portals

during reheating. We rely on the framework of

non-thermal leptogenesis involving a Beyond

Standard Model scenario with additional heavy

right-handed neutrinos. We investigate such

a minimal reheating scenario to produce the

right relics simultaneously during gravitational

reheating, and find constraints on right-handed

neutrino masses in this case.
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Introduction

Over the past century, the advent of two conceptual revolutions in Physics has opened up the
possibility of scientific inquiry into the fundamental nature of matter and the Cosmos, beyond
the realms of ”classical” Physics.

First of all, the marriage of the intrinsic geometry of space-time with the dynamics of matter
has profoundly and durably altered our perception of physical objects and their interactions.
Einstein’s theories of Special and then General Relativity were breakthroughs that changed
the paradigm for discussing dynamics and gravitation. One of the crucial predictions of the
theory of General Relativity, the existence of gravitational waves, has been confirmed by their
recent detection in different experiments, reinforcing the status of Einstein’s theory as the
most accurate description of gravitational interactions. In the early days of General Relativity,
this new paradigm rapidly led to a growing interest in studying the Universe as a whole. In
Einstein’s theory, it is no longer a rigid, static theater of events but can be seen as a physical
object in its own right, deformable and dynamically evolving. At the onset of this revolution,
Cosmology was of theoretical interest for Physicists but did not belong to the established domain
of Science, essentially due to a lack of precise observations to confirm any cosmological model.
However, since the middle of the 20th century, cosmological data have been accumulating, with
the development of a large number of observational tools and experiments, making it possible to
open the window back to the origins of the Universe. Recent cosmological measurements allowed
the establishment of a standard accepted cosmological model by determining the matter-energy
content of the Universe. These various surveys provided surprising outcomes: around 70% of
the energy density of the Universe is made of an unknown and exotic component responsible for
accelerating space-time expansion, which cosmologists called Dark Energy. 30% is composed
of cold matter, but with only 5% of ordinary matter (atoms, nuclei, electrons), the remaining
being made of another unknown component called Dark Matter, which hasn’t been detected in
any particle experiment yet.

Surprisingly enough, around the beginning of the 20th century as well, a fine understanding
of matter at the shortest scales has made it possible to understand the other limits of clas-
sical Mechanics and the classical theory of light. The first Quantum Mechanics development
gradually replaced the concepts of waves, bodies, and trajectories with more conceptual wave
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functions, quanta or quantum states, and noncommutative observables. Later developments
bringing together Special Relativity and Quantum Mechanics looked at quantum field opera-
tors and their excitations, which allowed the prediction of the outcome of experiments with
incredible precision. Quantum Field Theory is built to deal with the fundamental interactions,
currently describing the strong, weak, and electromagnetic interactions. If we still describe par-
ticles in this framework, it has almost abandoned any classical conception of a physical object,
and the predictions are probabilities of interactions. From this new framework, the Standard
Model of particles, the most successful model for describing matter at a fundamental level, has
been developed in the second half of the past century. The last predicted piece, which was still
missing, has been added to the Standard Model with the detection of the Higgs boson at the
Large Hadron Collider in 2012. The Standard Model provides an accurate description of in-
teractions below the atomic scale, allowing us to predict observables with probably the highest
precision ever reached in the history of Science. However, the picture may not be considered
complete. Fundamental obstacles prevent us from having a complete quantum description of
the gravitational interaction, known as the problem of Quantum Gravity. Moreover, the un-
known precise nature of Dark Energy and Dark Matter represents one of the main issues of
both Particle Physics and Cosmological models.

Particle Physics and Cosmology are deeply intertwined in their ambition to understand these
fundamental constituents of the Universe and the forces governing their interactions. One di-
rection of Astroparticle Physics is trying to bridge the gap between the two fields, investigating
cosmological relics from the early Universe, such as Dark Matter. A recent attempt in this
perspective of understanding the initial conditions of the Universe is the theory of cosmic in-
flation. Inflation is a postulated period of extremely rapid exponential expansion of the early
Universe, posited to solve several cosmological puzzles. It also naturally provides a mecha-
nism for generating the primordial density perturbations that later evolve into the large-scale
structure observed in the Universe today. The current inflationary paradigm is formulated
within the framework of Quantum Field Theory, together with General Relativity but without
unifying them. Inflationary models make several testable predictions that can be confronted
with current and future observations, but despite the successes of the inflationary paradigm,
several challenges remain. One major issue is the identification of the microscopic description
of inflation with a more fundamental theory. Another challenge is the precise modeling of the
post-inflationary era called reheating. Following inflation, the Universe enters a phase where
some mechanism should allow the production of particles effectively repopulating the Universe
with the matter and radiation necessary for the subsequent hot Big Bang evolution. The study
of reheating requires understanding the complex non-equilibrium field dynamics and the in-
terplay between different degrees of freedom in the early Universe. Understanding reheating
is crucial for connecting the inflationary phase to the well-established thermal history of the
Universe and the further generation of structures. The study of inflation and reheating is at the
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forefront of High-Energy Physics, Astroparticle Physics, and Cosmology, linking fundamental
Particle Physics and cosmological observations.

In this thesis, we will investigate the production of particles in the very early Universe, at the
end of the cosmic inflation era, during the reheating process. The main analysis is done during
the oscillations of the inflaton field, the field responsible for inflation. We are especially looking
at Planck-suppressed gravitational interactions and consider such a minimal reheating scenario
to produce the cosmological relics, finding constraints in the parameter space of interest. The
work presented in this thesis manuscript is based on several research projects that I carried out
with various collaborators during my PhD1:

• S. Cléry, Y. Mambrini, K.A. Olive, S. Verner, Gravitational portals in the early Universe,
Phys.Rev.D 105 (2022) 7, 075005, arXiv:2112.15214 [1]

• S. Cléry, Y. Mambrini, K.A. Olive, A. Shkkerin, S. Verner, Gravitational portals with
nonminimal couplings, Phys.Rev.D 105 (2022) 9, 095042, arXiv:2203.02004 [2]

• B. Barman, S. Cléry, R.T Co, Y. Mambrini, K.A. Olive, Gravity as a portal to reheating,
leptogenesis and dark matter, JHEP 12 (2022) 072, arXiv:2210.05716 [3]

• S. Cléry, M. A.G. Garcia, Y. Mambrini, K.A. Olive, Bare mass effects on the reheating
process after inflation, Phys.Rev.D 109 (2024) 10, 103540, arXiv:2402:16958 [4]

In addition to the work presented in this manuscript, I also had the opportunity to participate
in other research projects:

• S. Cléry, H. M. Lee, A. G. Menkara, Higgs inflation at the pole, JHEP 10 (2023) 144,
arXiv:2306.07767 [5]

• N. Bernal, S. Cléry, Y. Mambrini, Y. Xu Probing reheating with graviton bremsstrahlung,
JCAP 01 (2024) 065, arXiv:2311.12694 [6]

Before presenting my research work, in the first chapter of this thesis, we introduce the
formalism of modern Cosmology, its main predictions, and their agreement with current cos-
mological surveys, on which all the work described here is based. Part of it is also subject
to open questions in the early evolution of the Universe and the generation of cosmological
relics, which is the main subject of this thesis. In particular, in chapter 1 we describe the
ingredients of the standard model of Cosmology, the ΛCDM model. We outline the main steps
in the history of the early Universe, at the homogeneous and isotropic regime level, and we
motivate the introduction of the cosmic inflation paradigm from recent precision cosmological
measurements.

1The papers are listed chronologically in their date of appearance on the arXiv.
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In chapter 2, we describe the framework of cosmic inflation and reheating by first looking at
the simplest single-field slow-roll models for inflation. We further derive the main predictions of
such models in terms of cosmological perturbations, sourcing anisotropies in the relic radiation
observed and providing seeds for the formation of large-scale structures in the Universe. We
then introduce the mechanism of reheating after inflation, which is at the core of the work
pursued during this thesis. We look at different regimes during the oscillations of the inflaton
field and describe the rich phenomenology originating from the couplings of different fields with
the inflaton background.

Finally, in chapter 3, we introduce the framework of gravitational particle production. Spe-
cial attention is paid to the semi-classical process of gravitational particle production from the
expansion of space-time, which is closely connected to the results obtained in the main work of
this thesis. In the second part, we develop this approach and focus on the production of parti-
cles during the stage of inflaton oscillation, relying on gravitational portals. We describe how
such portals emerged from an effective description of gravity and how it coupled the different
sectors during reheating. We apply this framework to the production of heavy particles during
reheating and further generalize these gravitational portals to the case of nonminimal gravita-
tional interactions. Finally, we look at a simple scenario for the simultaneous generation of the
cosmological relics during reheating, and investigate the constraints on such a scenario.
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In this chapter, we introduce the framework of modern Cosmology developed over the past
century. Our focus is on providing the essential tools to comprehensively describe our entire
Universe, especially in its early days. We begin by highlighting the interconnection between the
matter-energy content and the geometric structure, leading to the conclusion that our Universe
is expanding.

In the second part of the chapter, we depict the significant stages in the history of the Universe
that are already quite well understood. In particular, we discuss how the current cosmological
observations confirm the existence of an early hot dense state that has further cooled down,
leaving different relics that are the most important probes of the Universe expansion. Two main
mechanisms have been described for decades and are currently constrained by our detectors and
telescopes: the primordial Nucleosynthesis, also called Big Bang Nucleosynthesis (BBN), and
the emission of the Cosmic Microwave Background (CMB). These two mechanisms occurred at
different epochs in the far past of the Universe, and their probes and confirmations have led to
a coherent description of the early Universe, after the first minutes of its evolution until now.

From the measurements of CMB radiation and various other astrophysical observations, we
have to conclude that an important fraction of the matter content of the Universe is exotic,
in the form of Dark Matter (DM). In this perspective, we then detail the main mechanism
currently studied for the generation of the DM component, to explain its abundance as inferred
by observations on various scales.

The problem of DM and its production mechanism is closely related to another issue in
modern Physics, that is the apparent asymmetry between baryonic and anti-baryonic matter,
the so-called Baryon Asymmetry, in our Universe (BAU) today. We discuss some evidence of
this asymmetry, and some current approaches to produce such an excess of baryons on anti-
baryons during the early evolution of the Universe. Especially, we will focus on the description
of the Leptogenesis mechanism as an explanation for this asymmetric state of the Universe.

Finally, the standard description of modern Cosmology fails to explain the spatial flatness and
high level of homogeneity and isotropy on the largest scales of the Universe. A modern theory
of cosmic inflation has been developed to cure this lack of predictivity. Furthermore, inflation
is a theory that predicts the origin of the observed inhomogeneities in the CMB, which are the
seeds of the formation of large cosmological structures, such as galaxies and their clusters, that
we observe. This is why it is currently one of the most viable predictive scenarios for the very
first instants of the Universe. We study in the last part of this chapter the imprints of the
initial perturbations on cosmological scales set by inflation and left in the CMB anisotropies
before moving to the next chapter, where we introduce the models of inflation and reheating.
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1.1 Expanding Universe

The main discovery of the 20th century about Cosmology is probably that the Universe is in
expansion. It was established rigorously during the 1920s from several observations of distant
galaxies (”nebulae” at that time) that are fainting away from the observer and appear with
a ”redshifted” spectrum of emission. Edwin Hubble probably made the most crucial role in
this discovery with his first observations of distant nebulae outside the Milky Way, and his
measurement of their recession velocity as a function of their distance to our Solar System [7].
The relation between these velocities and their cosmological distance to the observer is known as
the Hubble-Lemaître law and is a direct probe of an expanding Universe. This discovery of the
Universe expansion has confirmed cosmological models that were established first by physicists
George Lemaître and Alexander Friedmann [8, 9]. These models were described within the
framework of General Relativity which was mainly developed by Albert Einstein around 1915
[10, 11]. They opened a new window on the relation between the geometry of our Universe and
its content in terms of matter and energy. The key feature allowing us to relate cosmological
observations with Universe archaeology is this expansion of space, and we will introduce the
tools to describe the space-time of such an expanding Universe in this part of the thesis.

1.1.1 Basics of General Relativity

The theory of General Relativity is a theory of gravitation. It relates the geometry of curved
space-time to its matter and energy content, and so to the gravitational field. It is a metric
theory of space-time where geometry and distances on the space-time sheet are described by a
metric field gµν(x), which is a symmetric tensor, related to the invariant line element

ds2 = gµνdx
µdxν (1.1)

where xµ are 4D space-time coordinates. A physical system that is not subject to any force
then follows a geodesic trajectory on this space-time sheet described by the equation

d2xµ

dλ
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 (1.2)

where λ is a parameter along the trajectory, while Γµαβ are the Christoffel symbols represent-
ing the affine (Levi-Civita) connection on the space-time manifold. They are related to the
derivatives of the metric tensor through the relation

Γµαβ =
1

2
gµσ (∂αgσβ + ∂βgασ − ∂σgαβ) . (1.3)
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It can be shown easily that this geodesic equation is obtained from a variational principle of
least action along the line element of the trajectory

S =

∫
ds and δS = 0 =⇒ Eq.(1.2) . (1.4)

The equations of motion for the metric field itself are the so-called Einstein equations, which
provide the relation between the space-time geometry and its content in terms of matter and
energy

Rµν −
1

2
R gµν ≡ Gµν = 8πG Tµν + Λ gµν (1.5)

where G is the gravitational constant. We introduced different tensors for the geometry of
space-time on the left-hand side of the equation, and the stress-energy tensor of matter and
energy Tµν on the right-hand side. Λ is a cosmological constant representing the energy density
in the absence of non-gravitational fields. We will come back to the status of this constant in
modern Cosmology in the next part of the section. Rµν is the Ricci tensor determined by the
metric tensor and its derivatives through the connection Γαµν

Rµν = ∂αΓ
α
µν − ∂νΓαµα + ΓαβαΓ

β
µν − ΓαβνΓ

β
µα . (1.6)

R ≡ Rµνg
µν is the Ricci scalar and these two objects define the Einstein tensor Gµν . This set

of equations provides the dynamics of the space-time sheet according to the content of matter
and energy that is standing there. They can be obtained again through a variational principle
of least action, and the appropriate action for space-time is the Einstein-Hilbert action (with
cosmological constant)

SEH = − 1

16πG

∫
d4x
√
−g(R + 2Λ) (1.7)

where g ≡ det(gµν). The action for matter Smatter allows us to define covariantly the stress-
energy tensor

Tµν ≡
2√
−g

δSmatter

δgµν
(1.8)

and to recover Einstein field equations via δStot
δgµν

= δ(SEH+Smatter)
δgµν

= 0 =⇒ Eq.(1.5). More
precisely, the matter action is related to the field content, and so Lagrangian densities for all
the fundamental fields that make up the Universe in terms of matter and radiation

Smatter =
∑
fields

∫
d4x
√
−gLfields . (1.9)

Due to the symmetries of the metric tensor, the total stress-energy tensor is a diagonal tensor.
We will see in the following part that we rely on the hypothesis of a homogeneous and isotropic
Universe on cosmological scales, which in turn imposes the equality of the spatial components
for the stress-energy tensor of fields. The simplest system that satisfies these constraints on
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large scales is a perfect fluid, characterized by its stress-energy

Tµν = (ρ+ P )uµuν − Pgµν (1.10)

where P is the mean pressure of the fluid, ρ its mean energy density, and uµ the components of
its bulk four-velocity in an arbitrary reference frame. We introduce here an important quantity,
the equation of state for the perfect fluid w, which relates its pressure to its energy density via
P = wρ. Then, for an observer attached to the fluid bulk, that is uµ = (1, 0, 0, 0), we have
in this frame gµν = ηµν = diag(1,−1,−1,−1) (the Minkowski metric) and one can rewrite the
stress-energy tensor for a perfect fluid as

Tµν = diag(ρ, P, P, P ) = diag(ρ, wρ, wρ, wρ) (1.11)

1.1.2 Friedmann-Lemaître-Robertson-Walker metric

The description of a space-time metric for the whole Universe relies on the assumption that
it is both homogeneous and isotropic on large scales, which is known as the cosmological
principle. It states that there is no preferred observer in the Universe, at least on a cosmological
scale, meaning that the physical laws and the results we obtain from our computations and
observations should be valid everywhere in the Universe. This principle finds observational
justification on scales greater than 100 Mpc, which we can call cosmological scales. The main
example of this observation of isotropy and homogeneity on the largest scales is the detection
of the CMB radiation, as we will see in section 1.5, which appears to have a high degree of
isotropy and very tiny anisotropies of temperature showed in Figure 1.1. We will discuss the
explanation for such an important level of isotropy and homogeneity on large scales of our
Universe when we deal with inflationary cosmology in section 2.1. However, this observation
is made from our specific position in the Universe, and it is impossible to know whether the
Universe is also isotropic for all observers. The cosmological principle is the fundamental
hypothesis according to which the Universe on very large scales is isotropic for all observers at
rest with respect to the CMB radiation, which also implies the homogeneity of the Universe.
Despite strong motivations and evidence for such a reasonable hypothesis, modern cosmology
depends strongly on this philosophical principle, which has never been demonstrated yet. Still,
different observations of large-scale structures (the largest clusters of galaxies on cosmological
scales) have shown that the reference frame where the CMB is homogeneous is the same as the
frame where the large-scale structure distribution is homogeneous, which is a hint in favor of
the cosmological principle.

Consequently, to describe the Universe as a physical system, following the theory of Gen-
eral Relativity, we have to construct a 3D spatial metric that is homogeneous and isotropic,
embedded within a 4D space-time manifold. In fact, there is only one possible generic form
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Figure 1.1: The anisotropies of the CMB temperature as observed by PLANCK satellite (From
PLANCK Collaboration). This is a map of the energy of photons received today from all direc-
tions in the sky, and emitted after the recombination of protons and electrons in the early Universe.
Nearly 380.000 years after the Big Bang, the Universe experienced a transition from an opaque plasma
to a transparent medium. It shows tiny temperature fluctuations that correspond to regions of slightly
different densities, thought to be the seeds of all future large-scale structures. The temperature contrast
is close to ∆T/T0 ∼ 10−5 on the whole map, demonstrating a high level of isotropy on such large
scales.

of the metric, compatible with these assumptions implied by the cosmological principle. It
was derived and used by different physicists in the the last century, and is now called the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric

ds2 = dt2 − a2(t)
(

dr2

1− kr2
+ r2dθ2 + r2 sin2(θ)dφ2

)
(1.12)

where a(t) is the scale factor, the dynamical quantity that describes the evolution of the distance
due to the expansion between two comoving observers that have no relative velocities between
each other. The set (r, θ, φ, t) are space-time spherical coordinates referred to as comoving
coordinates. We note that in this parametrization, a(t) is dimensionless and we consider r to
be the dimensionful radial distance coordinate. In fact, this describes a class of solutions of
homogeneous and isotropic Einstein equations, depending on the value of k, which can take the
values −1, 0,+1, depending on the intrinsic curvature of space of the Universe

k =


−1 a Universe with negative curvature or hyperbolic geometry, infinite and open

0 a spatially flat Universe with Euclidean geometry, infinite and open

+1 a Universe with positive curvature or spherical geometry, closed and finite
(1.13)

However, it appears that the current cosmological observations favor an (almost) spatially flat
and so Euclidean Universe, i.e. a Universe with k = 0 (see sections 1.5). We will come back
on an explanation for this fact and the current constraints on spatial curvature in section 2.1
when dealing with inflation. Therefore throughout the rest of this thesis, we will assume, in
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general, a spatially flat Universe on cosmological scales and use the FLRW metric with

gµν = diag(1,−a2(t),−a2(t),−a2(t)) . (1.14)

The scale factor describes how the distances change on a photon path in an expanding Universe.
The wavelength of this photon is subject to the contraction or dilatation of space by a factor
a(t), and we define the cosmological redshift of such a photon z, as the ratio of the scale factor
at present time t0 over the scale factor at some past time t

1 + z ≡ λobs

λemit
=
a(t0)

a(t)
=

1

a(t)
(1.15)

where by convention we can set a(t0) = 1. The scale factor links the physical distance traveled
by a photon dH(t) separating two objects in the Universe, with the comoving distance χ(t), the
distance that would be traveled if the Universe was not expanding. For a light-like trajectory
ds = 0 and so

dH(t) = a(t)χ(t) = a(t)

∫ t0

t

dt′

a(t′)
. (1.16)

It is sometimes also useful to reparametrize the FLRW metric as

ds2 = a2(t)(dη2 − (d~r)2) (1.17)

defining the conformal time η(t), which is the total distance traveled by a light ray since t = 0

η(t) =

∫ t

0

dt′

a(t′)
. (1.18)

With these definitions, it is straightforward to derive the Hubble law for the recession velocity
of a galaxy with respect to the observer due to the expansion, assuming it is comoving with the
observer (it has no peculiar velocity relative to the observer). By differentiating the relation
between proper (physical) distance and comoving distance we obtain

vrec(t) = H(t) dH(t) (1.19)

where we introduced the fundamental quantity H(t), the Hubble parameter at a time t, defined
as

H(t) ≡ ȧ(t)

a(t)
. (1.20)

We see that Hubble’s law is a direct consequence of the homogeneity and isotropy of the Universe
and its dynamical expansion. The Hubble parameter expresses the rate at which the Universe
is expanding at a cosmic time t (on a hypersurface of constant cosmic time, to be precise), and
it is measured today to be H(t0) = H0 ∼ 70 km · s−1 ·Mpc−1. It is usually defined through the
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dimensionless parameter h as

H0 ≡ 100 h km · s−1 ·Mpc−1 (1.21)

We call this quantity the Hubble constant, and it is a fundamental physical quantity of modern
Cosmology1

1.1.3 Friedmann-Lemaître equations

Cosmology assumes that matter and radiation filling the Universe can be described in terms of
fields, looking on large scales as perfect fluids of different species. The stress energy associated
with each species is entirely described by the mean energy density of the fluid, ρi, and its
equation of state parameter wi as in Eq.(1.11). In addition, the stress-energy tensor has the
fundamental property of being conserved under its covariant derivative leading to the continuity
equation

∇µT
µ
ν ≡ ∂µT

µ
ν + ΓµαµT

α
ν − ΓανµT

µ
α =

∂ρi
∂t

+ 3(1 + wi)Hρi = 0 (1.22)

where in the last equality, we have used the computations of the Christoffel symbols from
Eq.(1.3) for the FLRW metric Eq.(1.14). The expansion of the Universe is determined by the
dynamical evolution of the scale factor a(t) and its derivative through the Hubble parameter
H(t), which are solutions of the Einstein equations Eq.(1.5) for the FLRW metric Eq.(1.14).
By inserting the FLRW metric and the stress-energy tensors of perfect fluids into the Ein-
stein equations Eq.(1.5), we obtain two equations for the scale factor and its derivatives, the
Friedmann-Lemaître equations(

ȧ

a

)2

= H2(t) =
8πG

3
ρtot +

Λ

3
(1.23)(

ä

a

)
= −4πG

3
(ρtot + 3Ptot) +

Λ

3
. (1.24)

These equations are the fundamental equations that govern the evolution of the whole Universe
as a space-time sheet, depending on its content in terms of cosmological fluids. Here ρtot =

∑
i

ρi

and Ptot =
∑
i

Pi, the sum of energy densities and pressure for all the species filling the Universe

at a cosmic time t. An important observation is that the cosmological constant, Λ, can be
absorbed in ρtot and Ptot by defining and associated ”vacuum” energy density ρΛ = Λ/8πG

together with an equation of state for this exotic fluid, wΛ = −1. By this definition, we assign an
energy density and negative pressure to space-time once it is ”empty” or at least not containing
any classical field. This cosmological constant energy density and pressure is of great importance

1In particular, different cosmological surveys do not agree on the precise value of this quantity, a recent
tension in Cosmology that may have to deal with new Physics beyond its current standard description. For a
review on the so-called Hubble-tension see [12].
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in modern Cosmology and for the inflationary paradigm that is introduced in section 2.1. From
the Friedmann-Lemaître equations, once we know how evolve the different components of the
Universe on large scales, we can determine the evolution of the whole Universe space-time.

Under the assumption of an adiabatic (smooth) expansion of the Universe between a given
a(t) and a0, with constant equations of state wi for the perfect fluid, we can solve the continuity
equation on cosmological scales, Eq.(1.22), and obtain the generic evolution

ρi(t) = ρi,0

(
a(t)

a0

)−3(1+wi)

. (1.25)

The key parameter that drives the expansion of the Universe is hence the equation of state wi of
the main component energy density, ρi, filling the Universe at a cosmic time t. We emphasize the
importance of this approximate description in terms of perfect fluids with a constant equation
of state, which is the most general form for the stress energy in an FLRW space-time [13], and
is remarkably simple to describe various contributions to the matter content filling the Universe
at different epochs. It is also convenient to define the critical energy density of the Universe,
which is the total energy density today for a spatially flat Universe (k = 0), obtained from the
first Friedmann-Lemaître equation evaluated today at a = a0,

ρ0crit =
3H2

0

8πG
. (1.26)

The critical density allows us to define the energy density fraction of each component present
in a flat Universe by Ωi = ρi/ρ

0
crit. Our goal now is to understand the thermodynamics of such

perfect fluids to relate pressure and energy density and determine the associated equation of
state for the different types of components that can dominate the Universe’s evolution.

1.1.4 The Boltzmann equation

The Boltzmann equation allows us to describe the evolution of the distribution function of the
particles making up the fields of each ”species”, fi(x, p, t), in the phase space (x, p) of positions
and momenta of the particles. The distribution function is related to the number of particles
dNi(x, p, t) in an infinitesimal phase-space volume around the point (x, p) at a time t, by [14]

dNi(x, p, t) = fi(x, p, t)
d3p d3x

(2π)3
. (1.27)

Hence, the distribution function can be interpreted as the probability density to find the state
of the system of particles in the phase-space volume d3p d3x. Then, for a closed system that
is not subject to energy exchange or chemical potential with its surrounding environment,
we can show the conservation of this probability density along any phase-space trajectory or,
equivalently, the conservation of the phase-space volume containing the particles along time.
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It is the Liouville theorem stating that the distribution function of each species follows the
continuity equation

dfi
dt

=
∂fi
∂t

+
∂fi
∂xj
· dx

j

dt
+
∂fi
∂pj
· dp

j

dt
= 0 (1.28)

where j = 1, 2, 3 is a spatial index. We call this equation the collisionless Boltzmann equation,
as there is no right-hand side of this equation that can play the role of a source of particles, or
momentum transfer between and among species. To solve the Boltzmann equation, we first have
to find the expression of dp

dt
as a solution to the geodesic equation Eq.(1.2) for a test particle

propagating in a given space-time. For homogeneous and isotropic Universe, following the
cosmological principle, the distribution function of the cosmological fluids should not depend
on xi and the direction of pi, but only on the norm of momentum p and cosmic time t as f(p, t).
We can consider the FLRW metric to recover a very simple equation for the distribution function
of each species

∂fi(p, t)

∂t
−H(t)p

∂fi(p, t)

∂p
= 0 . (1.29)

This equation is valid for all particles of all species and is extremely important to understand
the behavior of the perfect fluid made up of these particles. We compute the first moment of
this probability distribution which is nothing else than the number density of particles in a
volume of space at a given cosmic time t,

ni(t) =

∫
d3p

(2π)3
fi(p, t) (1.30)

as well as the average energy density of the fluid,

ρi(t) =

∫
d3p

(2π)3
Efi(p, t) (1.31)

where E =
√
p2 +m2 is the energy of the particle of momentum p and mass m. The last

thermodynamical quantity to define is the average pressure of the fluid. We can show [14] that
it is obtained from the distribution function through the integral

Pi(t) =

∫
d3p

(2π)3
p2

3E
fi(p, t) . (1.32)

These expressions for the macroscopic quantities are consistent with the description of the
stress-energy tensor of a perfect fluid Eq.(1.11). Indeed, by integrating over momentum

∫
d3p
(2π3)

the conservation equation Eq.(1.29), we obtain the continuity equation for number density

∂n(t)

∂t
+ 3H(t)n(t) = 0 (1.33)
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which corresponds to the conservation of the number of particles in a comoving volume. In the
same way, the integration over momentum after multiplying by the energy of each particle E,
leads exactly to the continuity equation for energy density and pressure, which is Eq.(1.22).
From the expression of energy density and pressure, we can directly extract the behavior of a
gas of relativistic particles of energy E ∼ p � m, and compute the mean equation of state
in this case wi = Pi/ρi = 1/3. In the same way, for a gas of cold (non-relativistic) particles,
E ∼ m� p, we obtain a mean equation of state wi ∼ 〈p2〉/m2 ∼ 0.

Until now, we have described the evolution of distribution functions for species that do not
interact with each other. However, in the general case, the number of particles is not conserved
in a phase-space volume, due to particle-particle interactions (scattering, pair creation, anni-
hilation, decays, etc). Then, in the Boltzmann equation we have to consider a nonvanishing
right-hand side of the equation, introducing the collision term C[f ],

∂fi(p, t)

∂t
−H(t)p

∂fi(p, t)

∂p
= C[f ] . (1.34)

This collision term is fundamental to track the production of species and their interactions,
notably to explain how they can reach a state of maximal entropy at thermal equilibrium, and
when they depart from this equilibrium at decoupling (see section 1.2). If one wants to solve
the Boltzmann equation, one needs to specify the collision terms of processes that modify the
number of particles in the phase space volume. Let us consider a microscopic process described
by the following interaction between particles 1, 2, 3, 4

1 + 2↔ 3 + 4 . (1.35)

Then for this specific process, the collision term for particle 1 can be computed as follows

C[f1(p1)] =
1

2E1(p1)

∫
dΠ2dΠ3dΠ4(2π)

4δ(4)(p1 + p2− p3− p4) (1.36)

×
[
−|M1+2→3+4|2f1(p1)f2(p2)(1± f3(p3))(1± f4(p4))

+|M1+2←3+4|2f3(p3)f4(p4)(1± f1(p1))(1± f2(p2))
]

where we introduced the Lorentz invariant phase space measure Πi ≡ d3pi
(2π)32Ei(pi)

. The terms
+,−, in the parenthesis apply respectively to bosons and fermions statistics, describing either
Pauli blocking or Bose enhancement in the production of final state particles. The transition
amplitude squared for the process |M|2 is characterized by the specific process, interaction,
between the particles. It has to be averaged over initial spin states, summed over final spin
states, and divided by symmetry factors accounting for identical initial or final states. To
consider all the possible processes affecting f1(p1), one has to add to the right-hand side the
different transition amplitudes squared involving particle 1 associated with different rates of
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interactions.

1.1.5 ΛCDM model

In the precedent parts, we have constructed the main tools required to describe the evolution
of the Universe on the largest scales. The success of modern Cosmology relies on the simple
and natural assumptions presented above and the accuracy of its main predictions from these
simple ingredients. The background dynamics and geometry of the Universe can be fully
explained by introducing only five different species described as cosmological perfect fluids.
These five components are the core of the so-called ΛCDM model for Cosmology. Among these
five species, three of them (baryons, neutrinos, and photons) are already part of the current
understanding of particle Physics, which describes standard matter within the Standard Model
(SM) (see Appendix A for an overview of the SM of Particle Physics) 2. Particles that are
still relativistic in the Universe today, such as photons that are massless particles, constitute
a radiation component with the equation of state w = 1/3. In this case from the continuity
equation Eq.(1.22) we obtain the evolution of their energy density

ρR(a) = ρ0R

(
a

a0

)−4
. (1.37)

The main part of the radiation filling the Universe comes from CMB photons, but it represents
a very small fraction of the total energy density today [15]

Ω0
R h

2 ' Ω0
γ h

2 = 2.47× 10−5 h2 . (1.38)

where ΩR = Ωγ+Ων from photons and neutrinos background relic densities. Baryons correspond
to ordinary matter, i.e. atoms (their nuclei as well as electrons). In the ΛCDM paradigm,
it is possible to measure the fraction of baryons in terms of energy density from the CMB
anisotropies, as we will see in section 1.5. From this measurement [15], it appears that baryons
represent only 5% of the energy content of the Universe today. The most precise constraint on
this quantity come from the BBN analysis. The abundance of the light nuclei created during
BBN depends on the number of baryons present in the Universe at that time, which allows
us to determine their abundance today very accurately. Measurements of these light elements’
abundances (see 1.2.3), which are independent of CMB measurements, are compatible with the
Planck satellite measurement of CMB anisotropies [15]. These measurements establish that the
fraction of baryon energy density today is close to

Ω0
b h

2 = 0.0224± 0.0001 . (1.39)

2We note that the observation of the small masses of neutrinos has a strong impact on Cosmology and has
to be accommodated in some extension of the SM, as we will see in section 1.3
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Figure 1.2: Relative abundance of light elements (see section 1.2.3 for the mechanism of BBN) compared
to Hydrogen, as a function of the ordinary matter to photon ratio ηB. Figure taken from [16].

This compatibility between these two independent probes is one of the main successes of the
ΛCDM model. In addition, the other two components of ΛCDM still lack direct detection, and
their fundamental description beyond the SM (BSM) in terms of particles and quantum fields
is still at the heart of High Energy Physics and Cosmology research goals. The first component
is called Cold Dark Matter (CDM) and should be constituted by a non-baryonic and non-
relativistic kind of matter. In particular, CDM (as we shall see in section 1.5) is necessary to
explain the shape of the CMB anisotropies. The measurement of CMB temperature fluctuations
is, therefore, the best way of measuring the current DM fraction. Planck data [15] provide the
measurement

Ω0
CDM h2 = 0.119± 0.001 , (1.40)
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DM thus makes up about 25% of the energy budget of the Universe today. DM is hence
fundamental to explain the expansion of the Universe but is also fundamental to explain the
dynamics of gravitationally bound systems such as galaxies and galaxy clusters, meaning that
several astrophysical evidence supports its existence. We come back more precisely to the main
evidence of its existence while discussing CMB observation in section 1.5 and the main current
approaches to explain DM production in section 1.4. Both matter components, baryonic and
non-baryonic, constitute a cold non-relativistic fluid in the Universe today. Therefore, matter
behaves as a ”dust” with the equation of state w = 0 leading from the continuity equation
Eq.(1.22) to

ρm(a) = ρ0m

(
a

a0

)−3
. (1.41)

Finally, Cosmology has been led to postulate the existence of a Dark Energy (DE) component
in our Universe. In 1998, Riess et al. [17], as well as Perlmutter et al. [18, 19] have shown
by measuring the apparent luminosity of Type Ia Supernovae, that the Universe is undergoing
an acceleration of its expansion. Besides, the best measurements of large-scale structure and
CMB anisotropies indicate that the total amount of matter - both baryonic and DM - accounts
for about 30% of the critical density. Therefore, the rest of the Universe’s energy content
must be something else. The current best explanation for the acceleration of the expansion
of the Universe lies in the existence of this DE component, which should have (with current
constraint) constant energy density, and that can be associated with the cosmological constant
Λ introduced in the Einstein equations Eq.(1.5). The current status of DE is not clear yet,
but this fundamental observation of the accelerating expansion in concordance with the other
probes from the CMB anisotropies, shows that it should represent the main energy component
of our Universe today. The different pieces of evidence for the existence of DE are pushing
towards the same amount of DE with about ∼ 68% of the Universe energy budget and a relic
density

Ω0
Λ h

2 = 0.316± 0.003 . (1.42)

Precise measurement of the CMB anisotropies and Type Ia Super Novae distances, assuming
a Euclidean (flat) Universe, indicates that this DE component should behave very closely to a
cosmological constant, with the equation of state wDE ' 1. Its associated energy density can
be expressed through an equivalent cosmological constant

ρΛ =
Λ

8πG
. (1.43)

corresponding to Λ ∼ 10−84 GeV2. With all these components, the ΛCDM is built up as a
concordance model for Cosmology that can simultaneously explain all the current observations
on the largest scale of our Universe. We note additionally that independent constraints from
CMB measurements and galaxy surveys strongly indicate the Euclidean nature or very high
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Figure 1.3: Constraints on the cosmological parameters (Ωm,ΩΛ) for the contribution of matter and
DE to the total energy budget. Here a curved space is allowed, but the Euclidean flat space line is
represented in solid black. Observations of distance-redshift of Type Ia supernovae provide the blue
contours, while CMB constraints are in orange. The green curves are coming from observations of
the large-scale structures and their matter power spectrum: fluctuations in the density of the visible
baryonic matter caused by acoustic density waves result in a statistical signature at the sound horizon
scale called Baryonic Acoustic Oscillations (BAO). Figure taken from [20]

level of flatness of our Universe on the largest scales (k = 0). This is also a measure of the
consistency of the ΛCDM model, as spatial curvature is related to the critical energy density
through ∑

i

Ωi = ΩR + Ωm + ΩΛ ≡ 1− ΩK ; ΩK(a) ≡ −
k

H2
0a

2
(1.44)

where we recall that ΩR = Ωγ + Ων and Ωm = Ωb + ΩCDM. Current constraints obtained by
combining CMB and large-scale structure probes are giving [22]

|Ω0
K | . 0.002 , (1.45)

indicating that our Universe is almost perfectly flat. We will discuss the problems introduced
by these high levels of flatness, isotropy, and homogeneity when discussing initial conditions
of the ΛCDM model, and the current explanation through the inflation paradigm (see section
2.1).
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Figure 1.4: Constraints for (Ωm, wDE), from CMB (blue), CMB+BAO (yellow), and supernovae (red
and gray). The combined constraints are in black and indicate that DE has to be close to the behavior
of a cosmological constant with wDE = −1. Figure taken from [21].

Within the ΛCDM model, we can rewrite the first Friedmann-Lemaître equation for the
Hubble parameter as

H2(a(t)) = H2
0

[
Ω0
m

(
a

a0

)−3
+ Ω0

R

(
a

a0

)−4
+ Ω0

K

(
a

a0

)−2
+ Ω0

Λ

]
(1.46)

and solve for the evolution of the scale factor, knowing the abundances of each species today,
as constrained by various observations that we discussed above. From the equation, we obtain
Figure 1.5, where we see the different trajectories for the relative size of the Universe, the scale
factor, as a function of cosmic time, for different energy content and spatial curvature. The
current ΛCDM model gathering different observations shows that the trajectory of our Universe
is the one with k = 0, Λ > 0 and ΩΛ ' 0.7, Ωm ' 0.3.

Finally, the different components in terms of energy density have a different evolution along
the expansion, as can be seen from Eqs. (1.41)-(1.37)-(1.43), hence resulting in different relative
abundances in the past. In Figure 1.6, we show the past evolution of the different components
observed today in the Universe as a function of the scale factor. We clearly see that this indicates
three main stages in Universe history: an early domination of radiation energy density, where
hot plasma made of relativistic particles dominates the energy budget. Then, this plasma is
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Figure 1.5: Evolution of the relative size of the Universe (scale factor) as a function of cosmic time
in Gyrs, for different content of matter-energy. The ΛCDM trajectory corresponds to the red curve,
while the other curves are historical cosmological models.

cooling down while the Universe expands, and non-relativistic matter in the form of DM starts
to dominate the expansion at a scale factor a = aeq defined by

1 + zeq =

(
a0
aeq

)
=

Ω0
m

Ω0
R

' 3440 (1.47)

before reaching a DE domination era of accelerated expansion in the very late Universe.

In the next section, we draw a condensed history of the early days of the Universe by exploring
first the radiation-dominated era and the thermal history of the Universe.

1.2 Thermal Universe

After the period of inflation that took place in early times and that we will investigate in
section 2.1, the Universe is filled with relativistic particles interacting intensively and forming
a thermal bath with a very high energy density of radiation and high temperature T . As
the Universe expands, the hot plasma is diluted, and relativistic particles lose their energy
through the redshift of their frequencies. The temperature of the plasma drops down, massive
particles become non-relativistic and some rates of interaction among the particles of the plasma
become suppressed. This will allow for successive depart from thermal equilibrium among the
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Figure 1.6: Evolution of the different components of the Universe density as a function of the redshift
(scale factor).

different species of the plasma leading to the generation of thermal relics and further cold
relics that are constituting our Universe today. This story of the hot thermal Universe and the
different decouplings of species is marked by important events associated with a specific time
or temperature [16] :

• T . 1013 GeV [t & 10−30 s]: the end of the inflation era and the time of reheating that
is the main mechanism studied in this thesis. The early Universe underwent a transition
from a quasi-De Sitter era towards a radiation-dominated era, governed by a hot thermal
bath at a very high temperature. Grand Unified Theories (GUT) also predict new Physics
should occur close to this energy scale (new particles in the spectrum, new interactions
with the SM particles, etc).

• T . 108− 1011 GeV [t & 10−22− 10−28 s]: baryogenesis and leptogenesis can occur from
out-of-equilibrium processes. Heavy particles, such as DM candidates, can be produced
at high temperatures within the thermal bath.

• T . 100 GeV [t & 10−10 s]: the Higgs field condensates and exhibits a non-zero vacuum
expectation value (VEV), inducing the electroweak symmetry breaking. SM particles
acquire masses through their couplings to the Higgs field. Subsequently, weak interactions
are mediated by the massive weak bosons and, therefore, are no longer long-ranged.
Baryon number (B) violating and lepton number (L) violating (but B-L conserving)
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sphalerons are no longer in thermal equilibrium within the bath. Lepton asymmetry can
be converted into a baryon asymmetry (see section 1.3).

• T . 10− 100 GeV [t & 10−8 − 10−10 s]: Weakly Interacting Massive Particle (WIMPs)
DM particles (if they exist) initially in thermal equilibrium with the SM particles, de-
couple from the plasma while being non-relativistic. This freeze-out mechanism explains
naturally the relic abundance of DM as it is observed. We will discuss this process in
the following part on thermal decoupling and when discussing the mechanisms of DM
production in section 1.4.

• T . 150 MeV [t & 10−4 s]: strong interactions reach non-perturbative regime. The
quarks-gluons plasma hadronized as the quarks confine, becoming bound together to
form baryons and mesons through non-perturbative processes.

• T . 0.1 − 10 MeV [t & 102 − 10−2 s]: protons and neutrons fusions form light nuclei
through the primordial nucleosynthesis mechanism (BBN) (see bellow 1.2.3). Close to
T ∼ 1MeV, light SM neutrinos do not interact efficiently anymore with electrons and
start to decouple from the electron-photons thermal bath, while still being relativistic.

• T . 0.1 eV [t & 380 000 years]: electrons and light nuclei recombine to form neutral
atoms (mainly Hydrogen), the Universe becomes transparent to photons. These primor-
dial photons decouple from the bath and freely propagate throughout the Universe in
every direction. They form the CMB as it is observed by our telescopes. Before the last
scattering of photons (z ' 1100), the Universe is no longer dominated by radiation from
the hot thermal bath, but from non-relativistic matter (z = zeq ' 3400). This matter-
radiation equality epoch represents the end of the thermal history of the Universe, which
is entering its ”dark ages” before the formation of stars and galaxies.

In the following part, we describe the several constituents of the thermal bath formed by par-
ticles of different species and discuss the notion of thermal equilibrium and thermal decoupling,
which are relevant to the rest of the manuscript. In particular, we will discuss slightly the main
events taking place during this stage of radiation domination: the BBN and the emission of the
CMB photons at recombination, which both constitute the main signatures and observables of
the early Universe.

1.2.1 Thermal equilibrium

In early times, the Universe was in a hot dense state, in which particles were highly relativistic
and could exchange energy and momentum quite efficiently in a hot plasma at thermal equilib-
rium. Therefore, we can model the cosmological fluid as a gas of weakly interacting particles
and use statistical Physics to describe it. The macroscopic properties of a given gas depend
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on the distribution function fi(p, t), which describes the distribution of states in the phase
space. We introduced this distribution in the precedent section when discussing the Boltzmann
equation Eq.(1.29).

When particles exchange energy and momentum efficiently, the gas made of one type of
particle reaches a state of maximum entropy, called kinetic equilibrium. In an expanding
Universe, this state can be reached under the condition that the interaction rates3, Γ(t), between
the different particles are more important than the expansion rate or Hubble rate, Γ(t) �
H(t). Indeed, if the expansion rate were too large, particles would not have enough time
to interact efficiently before the expansion forbids them to exchange momentum and reach
kinetic equilibrium. Kinetic equilibrium between particles can be reached if the interaction
rate between them is large enough such that their momenta will be redistributed on all energy
scales. This allows us to describe the gas of particles as a single system defined by a macroscopic
temperature T . From statistical mechanics, it can be shown that if the kinetic equilibrium
condition is satisfied, the phase space distribution fi(p, t) of the species i is described by a
Fermi-Dirac (FD) or Bose-Einstein (BE) distribution depending on the spin of the particles

fi(p, t) =
gi

e
E(p)−µi

T (t) ± 1
. (1.48)

where gi is the number of degrees of freedom of the species i, (+) and (−) correspond respectively
to the FD and BE distributions. The phase space distribution depends only on the momentum
norm, satisfying the isotropy condition, and not on position due to homogeneity. It depends on
time through the time-evolution of the densities and so temperature as the Universe expands.

Besides, if the gas contains several species in interaction, each species i has its distribution
function and its associated chemical potential µi, introduced in the FD and BE distributions
at equilibrium. The thermodynamical evolution of a complex system composed of multiple
species is expressed in terms of the chemical potentials for each of the species. The chemical
potential describes the modification of the internal energy state of the system when the number
of particles is not conserved. If we consider the interaction between particles Ai producing
particles Bi through the reaction ∑

i

Ai ←→
∑
i

Bi (1.49)

the system reaches its chemical equilibrium if∑
i

µAi
=
∑
i

µBi
. (1.50)

This condition highlights that the interaction between particles Ai and Bi is at equilibrium,

3We come back on the definition and computation of the interaction rates from the collision term of the
Boltzmann equation for different models in the parts on DM production section 1.4 and reheating section 2.2

26



meaning there is as much production of particles Bi as their destruction leading to production
of particles Ai. In this state of chemical equilibrium, the relative abundances of each species are
time-independent, so their concentration in the plasma does not vary with time. On top of this
condition on the chemical potential, there are conservation equations imposed by a conserved
charge (electric charge, baryon number, lepton number, etc). For photons, there is no conserved
charge, and the number of photons is not conserved as highlighted for instance by the process
of double Compton scattering e−+γ ↔ e−+γγ or Bremsstrahlung. This imposes that µγ = 0.
For particles and anti-particles, carrying opposite conserved charges, the typical process of pair
annihilation e− + e+ ↔ γγ imposes at equilibrium that µe− = −µe+ . Such a condition holds
for any conserved charge associated with an interaction.

As the system reaches kinetic equilibrium at a maximum entropy state, it is further described
by a FD or a BE distribution function. If it is composed of several species interacting, it has
reached chemical equilibrium at a maximum entropy state, where the sums of the chemical
potentials of the different species on each side of the number-changing reaction equations are
equal. Under these conditions, we can say that the system has reached thermal equilibrium.
At thermal equilibrium, all the species share the same temperature T in the thermal bath,
allowing to rewrite the expressions of the number densities ni(T ), energy densities ρi(T ) of a
species i as a function of the temperature, from equations (1.30), (1.31), (1.48),

ni(T ) =
gi

(2π)3

∫
fi(p)d

3p =
gi
2π2

T 3

∫ ∞
xi

du
u(u2 − x2i )1/2

eu−yi ± 1
(1.51)

ρi(T ) =
gi

(2π)3

∫
E(p)fi(p)d

3p =
gi
2π2

T 4

∫
du
u2(u2 − x2i )1/2

eu−yi ± 1
. (1.52)

where we defined xi ≡ mi/T and yi ≡ µi/T . In the general case, the integrals must be evaluated
numerically. However, some limits allow us to understand the Physics taking place in the
thermal bath. We first consider negligible chemical potential compared to the temperature of
the bath T � µi =⇒ yi � 1, which is a good approximation for the primordial thermal bath
as the ratio of the baryon to photon is tiny ηb = nb

nγ
' 6× 10−10. Then, two limits are useful :

• in the relativistic limit T � mi =⇒ xi � 1, we can compute the integrals analytically
from the Euler Γ function and Riemann ζ function,

ni(T ) =

(
3

4

)
ζ(3)

π2
giT

3 (1.53)

ρi(T ) =

(
7

8

)
π2

30
giT

4 (1.54)

where the fraction in the parenthesis is present only for half-integer spin (fermions) species
that have a FD distribution at equilibrium, while this factor is equal to 1 for integer spin
(bosons) that follow a BE distribution at equilibrium.
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• for non-relativistic species, when T . mi and E ' mi, the densities at equilibrium are
Boltzmann suppressed, making the bosonic and fermionic distribution identical in this
limit with

ni(T ) = gi

(
miT

2π

)3/2

e−mi/T (1.55)

ρi(T ) = gimi

(
miT

2π

)3/2

e−mi/T . (1.56)

When the temperature of the plasma evolves below the particle mass, the number density
of the species drops exponentially, as massive particles and their anti-particles annihilate
while the bath energy is no longer sufficient to compensate by the reverse process of pair
production. The energy density is then proportional to the number density, and non-
relativistic species behave like a pressureless gas. This is the dominant behavior of the
cosmological fluid during the so-called matter-dominated era.

In some cases, it can be useful to derive an analytical solution for densities by considering the
Maxwell-Boltzmann distribution function at equilibrium instead of BE or FD distribution. The
classical approximation eE/T � 1 leads to fi(T ) ' gie

−E/T for both bosons and fermions, and
to the following approximation for the number density

ni(T ) ' gi
m2
iT

2π2
K2

(mi

T

)
. (1.57)

where K2(x) is the modified Bessel function of the second kind. This expression is still valid
at the order of 20% for T � E [16]. We have treated the different species independently,
asking them to follow the same distribution at equilibrium through their interactions between
themselves. We can also compute the total energy density of the hot plasma composed of the
different particles, some of them still being relativistic and some not. We saw that the energy
density in non-relativistic species is Boltzmann suppressed, therefore it is sufficient only to
consider relativistic species within the hot thermal bath. The total energy density is

ρR(T ) = gρ(T )
π2

30
T 4 (1.58)

where we have to include in gρ(T ) all relativistic degrees of freedom which are in thermal
equilibrium

gρ(T ) =
∑

i∈bosons

gi

(
Ti
T

)4

+

(
7

8

) ∑
i∈fermions

gi

(
Ti
T

)4

. (1.59)

gi are the internal degrees of freedom, while Ti is the temperature of the species i in equilibrium
among themselves, which can differ after kinetic decoupling from the bath temperature T as
we will see in the next part. We come back to the evolution of this effective number of degrees
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of freedom in the radiation-dominated Universe after discussing the notion of decoupling of the
species.

The primordial plasma is not exactly at equilibrium along the expansion, only a local equi-
librium is maintained, and several out-of-equilibrium processes can explain the generation of
relics and structures in our Universe today. However, when we can consider that the local
equilibrium is maintained, the entropy of the Universe S is conserved, and cosmic expansion
can be regarded as an approximate adiabatic process. From the notion of temperature at equi-
librium, we can define the notion of entropy S of the Universe using the second principle of
Thermodynamics. The following relation is satisfied between the thermodynamic quantities

TdS = dU + PdV − µdN (1.60)

where U and N are respectively the total energy and total number of particles in the system,
V the total volume, and P the pressure. We can derive [13] from this relation the following
definition of the entropy density per species si = Si/V ,

si =
ρi + Pi − µini

T
(1.61)

leading at thermal equilibrium (neglecting chemical potentials µi) to

si = gi,s
2π2

45
T 3 . (1.62)

The total entropy density s is computed from the sum of the contributions of the different
relativistic species in thermal equilibrium

s = gs(T )
2π2

45
T 3 (1.63)

where we defined entropy degrees of freedom

gs(T ) =
∑

bosons

gi

(
Ti
T

)3

+

(
7

8

) ∑
fermions

gi

(
Ti
T

)3

. (1.64)

Apart from the case where a species transfers entropy to particles of the thermal bath, all
species have the same temperature Ti = T , and we have gs(T ) = gρ(T ). The cubic dependence
in T comes from the definition of the entropy density as a function of the energy density and the
entropy conservation condition leads to the following relation between T and the scale factor a

S = s× a3 ∝ gs(T )T
3a3 = cst =⇒ a ∝ 1

T
. (1.65)

This crucial result allows us to trade time evolution for the evolution of temperature while a hot
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plasma in thermal equilibrium dominates the Universe content. Throughout the expansion of
the Universe, the equilibrium condition does not hold for all the species, and successive decou-
plings occur around the state of constant entropy. This means that the particles that decouple
from the thermal bath while being non-relativistic transfer their entropy to the relativistic
species that are still thermalized and with which they are coupled. Therefore, by looking at
the effective numbers of degrees of freedom gρ(T ), gs(T ) as a function of the temperature, we
can follow the history of the successive decouplings by looking at the decreasing value of these
numbers of degrees of freedom, and the corresponding increasing value of the thermal bath
temperature through

gafter
s = gbefore

s − gi =⇒ T after = T before
(
gafter
s

gbefore
s

)1/3

(1.66)

where we have assumed constant entropy and adiabatic process of decoupling (gsT
3 = cst).

Hence, at each decoupling of a species i, there is a drop in the effective degrees of freedom
and a corresponding heating up of the thermal bath. After the decoupling, if the species is
still relativistic (being massless or satisfying mi � T ), it is still having a thermal distribution
but with a different temperature Ti unaffected by the entropy injection, evolving further as
Ti ∝ 1

a
. Hence two different temperatures T , Ti are coexisting and redshifting similarly, one

is maintained by the equilibrium condition through interactions, while the other one is just
originating from the decoupling of the species. Now that we have described the state of thermal
equilibrium among relativistic species during the radiation-dominated era, we are interested in
the mechanism of decoupling and how a species departs from its equilibrium with the bath.
We will apply it to the generic case of light neutrinos of the SM, before discussing the different
successive decoupling that occurred in the early Universe. This will naturally lead us to discuss
the mechanism of BBN, recombination, and the emission of CMB photons.

1.2.2 Decoupling

The chemical decoupling of a species i in equilibrium with a thermal bath corresponds to the
temperature at which the interactions rate Γ(T ) = n〈σv〉 maintaining the chemical equilibrium
of this species with particles of the bath become insufficient compared to expansion character-
ized by the Hubble rate H(T ). We have introduced the interaction rate Γ(T ) computed from
the number density n of the particles interacting, v their relative velocity, and σ the associated
interaction cross-section. The condition Γ(T ) . H(T ) is a good approximation that allows
determining quite accurately the time of decoupling, although a complete solution relies on
solving the Boltzmann equation Eq.(1.34), for the distribution function fi and through the
computation of the collision term associated to number-changing interactions of this species
with the bath particles. The chemical decoupling occurs when the number-changing annihila-
tions (or decays) between the bath particles and the species i are no longer in equilibrium due
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to the expansion. This can occur because the species is massive and becomes non-relativistic;
its number density becomes Boltzmann suppressed as the bath particles do not have sufficiently
high energies on average to produce pairs of the species i, and annihilation from the bath starts
to be suppressed. Chemical decoupling is finally achieved when self-annihilations (or decays)
of the species i are no longer relevant either as number density drops. After this time, no
number-changing interactions can take place for the species i, which is ”frozen out” of equilib-
rium. This mechanism of chemical decoupling can, on the other hand, occur while the particle
is still relativistic due to a too-small rate of interaction below a certain temperature T , leading
also to the decoupling of the species from particles within the bath.

It is important to note that after chemical decoupling, while the number of particles within
the species i cannot be modified anymore, the species can still be in kinetic equilibrium through
scattering processes with relativistic particles in the thermal bath. Indeed, the number density
of the relativistic particles in the bath is not suppressed and drops as T 3, so it can maintain
a sufficient level to keep the species i in kinetic equilibrium via elastic scattering Γel(T ) '
neq〈σel〉 & H(T ). During radiation dominated era, the Friedmann equation Eq.(1.24) indicates
that

H(T )2 ∼ T 4

M2
P

. (1.67)

Hence, as the temperature drops, even the elastic scatterings become inefficient Γel(T )� H(T )

and the species i departs from its kinetic equilibrium. At that time, no process transfers
momentum from the bath to the particles of the species i, which is completely frozen. These
particles start to propagate freely and their distribution function is keeping the form it had at
the moment of the kinetic decoupling4, energy and momentum of the particles just redshifting
afterward. More specifically, when a particle decouples while being relativistic at a temperature
T � mi, then the distribution function keeps the form

fi(p, t) =
1

eE/Ti ± 1
(1.68)

with Ti = Tdec

(
a(tdec)
a(t)

)
, the temperature associated to the relativistic species i at a cosmic

time t, Tdec the temperature at decoupling time. After this decoupling, the number density
ni(Ti) ∝ T 3

i as for the equilibrium case, even if Ti < mi. If the decoupling occurs while the
particle is non-relativistic i.e Tdec . mi, the distribution function after freeze-out is given by

fi(p, t) = e−mi/Tdece−p
2/2miTi (1.69)

with Ti = Tdec

(
a(tdec)
a(t)

)2
. So, during the radiation-dominated era, the temperature associated

with a decoupled sector which is non-relativistic falls as Ti ∝ a−2 and not as a−1.

4This holds as long as the species i is not coupled to another bath or population of particles that can transfer
efficiently momentum.
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Neutrino Decoupling

We discuss further in section 1.4 the generation of a cold relic of Weakly Interacting Massive DM
particles (WIMPs) from this mechanism of thermal decoupling and freeze-out. But before, we
describe an important event occurring in the early Universe, the decoupling of the SM neutrinos
from the photon bath. Neutrinos are the only particles of the SM that interact solely through
the weak interaction (see appendix A for an overview of the SM of Particle Physics). Due to
the weakness of this interaction with the other SM particles, their interaction rates Γν(T ) from
the scatterings eν ↔ eν and annihilation5 νν ↔ ee, become smaller than the Hubble rate H(T )

at a quite high temperature. We can compute the typical interaction rate between neutrinos
and other SM particles from the Fermi theory [16]

σ ∼ (GFT )
2 =⇒ Γν = nν〈σ〉 ∼ G2

FT
5 (1.70)

where GF ' 10−5 GeV−2 is the Fermi constant, and the rate decreases much more rapidly
than H(T ) ∝ T 2. Using the condition Γν . H(T ), we obtain an approximate decoupling
temperature of Tdec ∼ 1 MeV, below which neutrinos do not interact anymore with the SM
plasma. However, at this temperature neutrinos are still largely relativistic mν � Tdec ∼ 1 MeV
(see the next section 1.3 where we discuss the SM neutrino mass). After their decoupling, they
keep their FD distribution function with a temperature Tν only affected by the redshift. Even
after decoupling Tν = Tγ = T and neutrinos still participate in the effective relativistic degrees
of freedom of the Universe with the same temperature as the photon bath. Shortly after their
decoupling, when the temperature of the photon bath drops below Tγ . me = 0.511 keV, there
is not enough energy to efficiently produce electron-positron pairs. Electrons and positrons start
to chemically decouple from the bath while becoming non-relativistic and transfer their entropy
only to the photons through their annihilation ee → γγ via electromagnetic interactions. In
doing so, they reheat partly the photon bath but not the neutrino background as the weak
interactions branching ratio ee→ νν is, in comparison, very suppressed. This has the effect of
increasing the photon bath Tγ compared to the neutrino background temperature Tν , as can
be computed from entropy conservation at decoupling

gγs (T > me)T
3 = gγs (Tγ < me)T

3
γ (1.71)

gνs (T > me)T
3 = gνs (Tγ < me)T

3
ν

5Similar processes occur with quarks which around the energy T ∼ 1 MeV are bounded into protons.
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where the effective number of degrees of freedom evaluated at T > me and Tγ < me are given
by

gγs (T > me) =
11

2
, gνs (T > me) =

21

4
(1.72)

gγs (Tγ < me) = 2, gνs (Tγ < me) =
21

4
.

This results after e+e− annihilation in a different temperature Tγ and Tν , respectively in the pho-
ton bath and neutrino background, related by the entropy injection of the electrons-positrons
in the bath

Tγ =

(
11

4

)1/3

Tν . (1.73)

Given that the temperature of the CMB as observed today is T 0
γ ' 2.725 K, the mechanism of

decoupling predicts a neutrino background with a FD distribution6 at an effective temperature
T 0
ν = 1.95 K. Nowadays, as neutrinos are massive, they become non-relativistic and their

average energy is given by 〈E〉 ' mν while their kinetic energy p2

2mν
is negligible. They constitute

a population of background neutrinos with an energy density ρ0ν = mνn
0
ν , with n0

ν computed
from the FD distribution function replacing E → mν . This represents a relic density [16]

Ω0
νh

2 ' mν

93 eV
. (1.74)

As these non-relativistic neutrinos are part of the matter abundance today, they should not
contribute more than Ω0

m ' 0.3 as obtained within the ΛCDM model. This provides an
important upper-bound on the sum of the SM neutrino masses from cosmological origin as
first highlighted in [23] by Cowsik and McClelland∑

ν

mν . 13.8 eV (1.75)

where the sum is over the neutrino family within the SM (see appendix A). Due to neutrino-free
streaming after their decoupling while being relativistic, they have a strong impact on structure
formation in the Universe and the associated matter power spectrum at small scales [24]. CMB
data associated with Baryon Acoustic Oscillations (BAO) and Large Scale Structure (LSS)
measurements produce very strong upper bounds of the level

∑
νmν . 0.1 eV. On the other

hand, hot fermionic DM with thermal distribution cannot be too light in order to virialize in
gravitating bound systems such as galaxies and dwarf galaxies, due to Pauli exclusion statistics.

6As neutrinos are decoupled while being relativistic, exhibiting a FD thermal distribution, this distribution
is frozen at the decoupling time and the occupation number is only diluted or redshifted by the expansion,
keeping the same shape. This does not mean that neutrinos are in thermal equilibrium among themselves at
this temperature.
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This provides famous lower limits on neutrino as a DM candidate

mν & 10 eV− 0.1 keV (1.76)

derived by Tremaine and Gunn [25], which appears to be in contradiction with upper limits on
the sum of neutrino masses. These are the main reasons why hot thermal DM such as neutrino
is not a viable explanation for the entire DM abundance in our Universe.

Before moving to BBN, we show in Figure 1.7 the evolution of the effective relativistic degrees
of freedom as a function of the temperature of the photon thermal bath. At high temperature,
well above the electroweak symmetry breaking scale vEW ∼ 200 GeV, the SM particles are
massless, and the effective number of relativistic degrees of freedom gρ(T ) = gs(T ) is given by

gSM
ρ =

7

8
(Nf × 2) +NV × 2 +NS =

427

4
= 106.75 (1.77)

where Nf = 45 is the number of fermionic species (leptons and colored quarks), NV = 12 the
number of massless vectors gauged bosons, NS = 4 the number of scalars (Higgs complex SU(2)
doublet scalar). gρ(T ), gs(T ) decrease after the temperature drops below vEW due to the fact

Figure 1.7: Evolution of relativistic degrees of freedom gρ(T ), gs(T ) for the Standard Model. The dotted
line corresponds to the number of effective degrees of freedom in entropy gs(T ). Figure taken from
[26].

that electroweak masses are generated in the SM through the Brout-Englert-Higgs mechanism
(see Appendix A for a description of this mechanism). The Higgs bosons and the top quark are
then rapidly Boltzmann suppressed when the temperature becomes smaller than their mass,
then it is the turn of bottom quark decoupling, and τ lepton decoupling. Around T ∼ 200 MeV,
gρ(T ), gs(T ) are importantly suppressed by the QCD phase transition and the hadronization
of quarks and gluons through the confinement. Below this temperature, there are composite
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states (baryons and mesons) and all the color degrees of freedom are inaccessible. Baryons
rapidly become non-relativistic and their density Boltzmann suppressed. A last event occurs
around T . 1MeV , as we saw through the electron-positrons annihilation and, at the same
time, neutrino decoupling while being relativistic leading soon to a gs(T ) 6= gρ(T ). Nowadays,
at T = T 0

γ we can compute that g0ρ = 3.39.

1.2.3 Big Bang Nucleosynthesis

We have discussed the decoupling of the neutrinos from the thermal bath which determines
their abundance today, and the associated effective temperature of this neutrino background
from cosmological origin. In this part, we describe another important event taking place in
the early Universe which is the decoupling of baryons from the thermal bath. The case of
baryons is much more involved as they are QCD-bound states of quarks and gluons, thus not
fundamental particles. The hadronization process itself is still very blurry and the associated
QCD phase transition in the early times of the Universe evolution is a very deep subject of
active research. However, BBN stands out as one of the most reliable windows into the early
Universe, supported by SM Physics. By forecasting the generation and abundance of light
elements from Deuterium (D), Helium-3 (3He), Helium-4 (4He), to Lithium-7 (7Li), formed
within the initial three minutes, BBN offers a critical test for the standard model of Cosmology
and is corroborated by observational data at a very high level of precision. It relies mainly
on reactions of light elements and their weak decays which are well understood at this typical
energy scale T . 1 MeV. Thus, it is well known that small modifications of the early Universe
Physics beyond the SM (BSM), at the time of BBN, should lead to observable deviations in
primordial abundances of light elements, putting strong constraints on new Physics scenarios.
The onset of BBN took place in the era associated with photon temperatures between T ' MeV
and T ' 10keV. It is the transition from a neutron-proton equilibrium to a Universe with
a significant presence of He. BBN produced the main part of the 4He and D present in the
Universe, as well as fractions of 3He and 7Li.

The successful BBN mechanism relies on simple ingredients. It is assumed that the particle
content at the time of BBN is given by the SM particle spectrum and that QCD phase transi-
tions occurred at a much higher energy scale (confinement of quarks in hadrons). The second
important ingredient is that a net baryon asymmetry was already present at the time of BBN
and is of the order

nb − nb
s

' 10−10 . (1.78)

Hence, BBN must have been preceded by a mechanism capable of producing the baryon
anti-baryon asymmetry of the Universe, preserved until anti-baryons annihilates with baryons
around T ' 1 MeV injecting entropy in the thermal photon bath. We will discuss the so-called
baryogenesis and leptogenesis processes in the next section 1.3. Such mechanisms should pro-
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vide a ratio between baryons and photons density ηB which stays frozen out of equilibrium
until today

ηb ≡
nb
nγ

(T < 1 MeV) =
n0
b

n0
γ

' 6× 10−10 (1.79)

as observed in concordance with BBN in CMB data. As the temperature of the bath is initially
well above the mass difference between neutrons and protons T > ∆m ≡ mn−mp ' 1.29 MeV,
and as the neutron lifetime τn ' 886 s, an almost equal amount of neutrons and protons are
in equilibrium at the onset of BBN

nn ' np(T � ∆m) ' 1

2
nb . (1.80)

At a lower temperature, the relative abundance is suppressed by

nn
np
∼ e−

∆m
T e−

t
τn (1.81)

therefore, at the time of baryon freeze-out, the energy density of the Universe is completely
dominated by photons, neutrinos, electrons, and positrons. Neutrons and protons represent a
negligible fraction of the total energy density. After this decoupling, the number of baryons
(anti-baryons) changing interactions are no longer in equilibrium, and successive processes
within the baryon sector will allow them to bind together, forming the light elements that will
stay out of equilibrium until today.

First, to obtain approximately the abundance of He, we are interested in the freeze-out of
the following weak interactions

n+ ν ↔ p+ e− (1.82)

which are in thermal equilibrium above T & 1 MeV, as long as Γp(T ) = nν〈σv〉 & H(T ). This
typical weak interaction rate scales as Γp(T ) ∼ G2

FT
5 and we remind that during radiation

dominated era, H(T ) = T 2
(
gρπ2

90M2
P

)1/2
. As the Universe cools down, these interaction rates

drop below the Hubble rate, and neutron-to-proton transitions slow down. The ratio of their
abundance is not anymore in chemical equilibrium and around T ' 0.7 MeV this relative
abundance is frozen-out to nn

np
' e−

∆m
T ' 1

6
[27, 28]. It can be shown that it continues to

decrease due to residual interactions and neutron decays down to(
nn
np

)
fo
' 1

7
. (1.83)

at complete freeze-out. The formation of D during this freeze-out of protons and neutrons
is prevented by the large density of high-energy photons and the photo-dissociation process
that destroys efficiently any bound D, even if the binding energy of Deuterium is quite high
ED = 2.22 MeV. Once the temperature drops much below this binding energy, the Boltzmann
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suppression of such photons with high energy allows to form an important fraction of D through
the nuclear reaction

n+ p↔ D + γ . (1.84)

The resulting Deuterium relative abundance can be expressed as [16]

nD
np
∼ nn(mpT )

−3/2eED/T =⇒ nD
nb
∝ ηb

(
T

mp

)3/2

eED/T (1.85)

and from the fact that ηb ' 10−10 and mp ' 1 GeV, we see that the temperature at which Deu-
terium is efficiently produced is smaller than T < 1 MeV. We can approximately compute that
D production occurred when T ' ED/20. This also shows that the BBN production process
of D production is very sensitive to the baryon to photon ratio ηb, this being a complemen-
tary probe of this ratio with CMB observations. We discussed this in the first section of the
manuscript, and we showed this agreement between BBN measurements and CMB observations
in Fig 1.2. Once this large enough D density is produced, it can initiate other nuclear reac-
tions, in particular neutrons are binding mainly into 4He nuclei that have the highest binding
energy per nucleon among light elements 7. Thus, we obtain quite accurately that the 4He mass
fraction in comparison with the total baryon mass is given by [16]

Yp '
4

2 + 14
=

1

4
, (1.86)

which is the main prediction of the BBN mechanism. This computation is an important achieve-
ment of modern Cosmology as it is exactly what is also inferred from various observational
probes such as measurements of the interstellar medium composition, as well as the Solar Sys-
tem abundances in the proto-stellar matter, or study of the Lyman-α forest in the spectrum of
distant quasars. A more rigorous treatment of the freeze-out and nucleosynthesis mechanism
can be obtained by solving numerically the full sets of Boltzmann equations obtained from
Eq.(1.34) assuming initial thermal equilibrium of neutrons and protons, for a vanishing initial
abundance of the other light elements. In the standard BBN scenario (SBBN), the sets of
equations to solve are the following ones

dYi
dt

= −H(T )T
dYi
dT

=
∑

(ΓijYj + ΓjklYkYl + ...) (1.87)

where Yi = ni/s are the yields of each element at the time BBN starts. This equation is
obtained using H ≡ ȧ

a
and entropy conservation T ∝ 1

a
=⇒ d

dt
= −HT d

dT
, as well as

calculating the average generalized rates for element interconversion and decay from the right-
hand side (collision term) of the Boltzmann equation, associated with the transition amplitude
of each process. Many research groups have solved these sets of equations and recent results

7A fraction of D remains and a similar fraction of 3He is produced during the process.

37



[28, 29] are displayed below. These numerical predictions remarkably match the observations
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Figure 1.8: Time and temperature evolution of SBBN light elements abundances. From left to right:
neutrino decoupling, electron-positron annihilation, n/p freeze-out, D bottleneck, and freeze-out of all
nuclear reactions. Protons (H) and neutrons (N) are given relative to nb whereas Yp denotes the 4He
mass fraction. Figure taken from [28].

except for the only disagreement in the 7Li abundance, known as the Lithium problem, which
is an ongoing active research question.

1.2.4 Dark Radiation

In many extensions of the SM, the existence of additional degrees of freedom in the form of new
particles can contribute to a significant modification of the evolution of the effective number
of degrees of freedom in the early Universe. Indeed, the radiation content can be expressed
in terms of the effective number of relativistic species at a temperature T associated with the
temperature of the bath as we introduced in Eqs.(1.58) and (1.59). At the time of BBN the
remaining relativistic degrees of freedom in thermal equilibrium in the hot bath are described
by the radiation energy density

ρR = ργ + ρe + ρν =
π2

30

(
2 + 2× 7

4
+Nν ×

7

4

)
T 4 (1.88)
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where Nν is the total number of neutrino flavors (that is 3 within the SM see Appendix A).
This has been measured in accelerators to high precision and agrees with SM predictions of
Nν = 3. In the SM, the effective number of neutrino species Neff = 3.044 [30] refers to the
effective number of thermally excited neutrino species. The difference with Nν = 3 comes
from the heating of neutrinos from small branching fraction e+e− → νν at electron-positron
annihilation and we define Neff though its contribution to the total radiation density

ρR =

[
1 +Neff

(
7

8

)(
Tν
Tγ

)4
]
ργ (1.89)

which reduces after e+e− annihilation to

ρR =

[
1 +Neff

(
7

8

)(
4

11

)4/3
]
ργ . (1.90)

We can define the associated ∆Nν via

∆Nν = Neff −Nν = Neff − 3 = 0.044 . (1.91)

where the last equality is valid within SM. The presence of any additional relativistic BSM
degree of freedom would contribute to the total radiation energy, and its impact can be absorbed
in terms of the equivalent number Neff and so ∆Nν , which can then depart from its SM value.
A new relativistic species X will contribute to energy density with an associated effective
temperature in this sector TX ,

ρX(T ) = gX
π2

30
T 4
X (1.92)

with gX the number of internal degrees of freedom in the species X. We can relate the density
in the new radiation sector, usually called dark radiation as it is not observed yet, to an effective
contribution to Neff

ρR = ργ + ρν + ρX =

[
1 +Neff

(
7

8

)(
4

11

)4/3
]
ργ (1.93)

and an associated ∆NX
ν due to the contribution of X

∆NX
ν = Neff −Nν =

4

7
gX

(
11

4

)4/3(
TX
Tγ

)4

. (1.94)

We can notice that for any free streaming relativistic species ρX ∝ a−4, and during radiation-
dominated era ργ ∝ T 4 ∝ a−4, showing that we can use this contribution to Neff and ∆Nν

for any additional relativistic degrees of freedom around the time of BBN, even if it is not in
thermal equilibrium within the new sector. Especially for primordial gravitational radiation
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in the form of primordial gravitational waves (GW), we can use this parametrization of this
additional contribution to ρR as a free streaming dark radiation, to put constraints on the relic
density of these primordial GW. Recent Planck measurements of the CMB have become a probe
of Neff at the epoch of recombination (see 1.2.5). Planck constraints [15] give at 95% confidence
level, Neff = 2.99 ± 0.34. With BAO data included, the measurement becomes more stringent
with Neff = 2.99 ± 0.17. Besides, any change in the effective number of relativistic degrees of
freedom affects H(T ). Hence, an increase in Neff will lead to a larger value for the 4He mass
fraction Yp through the BBN mechanism [31], and so, any BSM Physics (or new cosmological
parameters) that affect H(T ) alters the light element abundances from BBN. Combining BBN
analysis with CMB data, allowing for a variation of Neff as performed in [31], it provides the
current best constraint

Neff = 2.898± 0.141 (1.95)

which in turn provides an upper limit on the additional energy density in the form of dark
radiation relic density

Ω0
Xh

2 . 1.3× 10−6 . (1.96)

As discussed above, a specific example of BSM Physics probed by such measurements of
Neff is the generation of GW background, which is a prediction of generic inflation models.
After inflation, other processes such as phase transitions or the further evolution of the Hubble
expansion during reheating and preheating can source stochastic GW backgrounds or modify
the primordial spectrum, as we will discuss in Chapter 3 on gravitational reheating. In all these
cases, GW energy density acts as free-streaming dark radiation and thus its impact on BBN
and CMB is captured by Neff. The limit on GW relic density today from the analysis of its
impact on ∆Nν is given by [31]

Ω0
GWh

2 . 1.3× 10−6 (1.97)

for a specific range of frequency of the GW f & 2 × 10−11 Hz, as the constraint applies to
frequencies above f > fBBN where fBBN is associated to the Hubble scale at BBN time. Indeed,
such a constraint applies only to tensor modes with a wavelength smaller than the horizon at
the start of BBN.

1.2.5 Recombination and the last scattering surface

At the end of the BBN process, the thermal bath is populated with photons, electrons, and
protons in interaction (as well as a smaller fraction of Helium nuclei and traces of the other light
elements produced). Neutrinos have already decoupled and the number density of electrons and
protons are Boltzmann suppressed as T � me,mp, while they are still tightly coupled together
through Coulomb scatterings p + e− ↔ p + e−. After quite a long evolution until z ∼ 1100 or
t ' 380 000 years, the thermal bath (which is not anymore the dominant component of the
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Universe since matter equality at zeq ∼ 3000), attained a temperature of T ∼ 1 eV. Around
this stage the reaction which was in equilibrium

p+ e− ↔ H + γ (1.98)

starts to become suppressed on one side as the photons do not have enough energy to destroy
stable Hydrogen atoms (H) by ionization of the electrons bound to the protons. The binding
energy of the neutral Hydrogen atom is EH = 13.6 eV and so it forms naturally from electrons
and protons which are in the same abundance (neutrality condition for the Universe ne = np)
when T . EH . The number of free electrons and protons starts to become exponentially
suppressed and the plasma recombines into neutral Hydrogen gas and photons. To be more
precise, before this time the free electron fraction

Xe ≡
ne

ne + nH
=

np
np + nH

(1.99)

follows the Saha equation [14, 16]

X2
e

1−Xe

=
1

ne + nH

[(
meT

2π

)3/2

eEH/T

]
(1.100)

leading to an exponential increase of the H population around T . EH . From this simple
equation, we can quite accurately compute the recombination time or temperature at which
Xe(T ) . 0.1, to be Trec ' 0.3 eV, which is far below the binding energy of the Hydrogen
EH . After the formation of the first neutral atoms begins8, the mean free path of photons
in the bath increases as there are fewer electrons and protons ionized in the plasma on which
they can interact9 through Compton scatterings γ + e− ↔ γ + e−. To accurately predict the
decoupling time of the photons associated with their last scattering on the plasma before they
free stream, a very accurate treatment of the e− fraction Xe should be done. There are subtle
effects during recombination as the electrons go out of equilibrium, which requires refinement
of the Saha equation and a full numerical treatment of the Boltzmann equation for electrons
number density [14] in order to predict the decoupling of electrons correctly. The equation to
solve is the following

dXe

dt
= (1−Xe)〈σTv〉

(
meT

2π

)3/2

e−EH/T −X2
enb(T )〈σ(c)v〉 (1.101)

8In fact, the binding energy of Helium is higher than the one of Hydrogen, meaning that the fraction of
Helium produced through BBN (∼ 25% in mass) recombines before Hydrogen, increasing the mean free path of
photons even before what is naively expected.

9Compton scatterings or Thomson scatterings in the low energy limit are more important for electrons than
for protons, as the cross-section scales as σ ∝ 1/m2

i .
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where the first term stands for the ionization rate through Compton (Thomson) scatterings,
while the second term corresponds to the capture of an electron by a proton to form one excited
state of the Hydrogen atom, which further relaxed to its ground state by emitting a photon of
energy Eγ < EH . However, we can still estimate roughly when the decoupling of photons with
electrons occurs by asking

ne(t)σT ' Xe(t)nb(t)σT . H(t) (1.102)

where σT ' 6.65 × 10−25 cm2 is the Thomson cross section of photons on electrons. From
the evolution of the Hubble rate, starting in radiation domination, to matter domination (see
Eq.(1.46)), we obtain that [14]

neσT
H

(z) = 123 Xe

(
Ω0
bh

2

0.022

)(
0.14

Ω0
mh

2

)1/2(
1 + z

1000

)3/2 [
1 +

1 + z

1 + zeq

0.14

Ω0
mh

2

]−1/2
. (1.103)

This shows that the decoupling of the photons corresponding to the last scattering events occurs
when z ∼ 1000 and when Xe . 10−2. Numerical solutions of Xe(t) show that decoupling of
photons occurs while the electrons recombine into neutral Hydrogen, close to Tdec ' Trec '
0.2− 0.3 eV, hence the process of decoupling is quite fast as recombination begins. After this
time, which is called the last scattering surface, primordial photons are no longer interacting and
are completely decoupled while being relativistic (they are massless). They start free streaming
in all directions keeping the same BE equilibrium distribution function at a temperature Tdec.
As the Universe expands and photons propagate, the temperature of this background radiation
cools down to T0 ' 2.725 K, with still a near-perfect BE distribution. They form the CMB
radiation as observed by our telescopes. The Hydrogen gas cools down and continues to dilute,
except close to overdensity regions of DM and baryons, where the gravitational potential wells
lead to the growth of structure. Much later at z ∼ 10, these overdense regions reheat again due
to high density, and future stars allow for re-ionization of the gas, as the Compton scatterings
are possible again in these dense regions.

Now that we have introduced the main steps in the evolution of the hot thermal bath made
of SM particles, from BBN to CMB emission, we are moving to different aspects of relic density
generation, first of baryons that we saw are necessary to explain BBN and CMB measurements,
and then of a cold DM component.

1.3 Baryo-Leptogenesis

1.3.1 Evidence for a Baryon Asymmetry

There are several pieces of evidence that our Universe is baryon-antibaryons asymmetric. Cos-
mic ray detection from galactic and extra-galactic origin indicates that the level of antimatter
(mainly anti-protons and positrons) flux compared to the one of the matter is compatible with
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the fact that these antimatter cosmic rays are generated from secondary processes taking place
at high energy in the galaxies and intergalactic medium, and not originating from primordial
origin. Indeed, the observations of cosmic rays provide a significant upper limit nb

nn
' 10−4 to

the antimatter content in cosmic rays [32]. On larger scales, if both matter and anti-matter
galaxies exist in the same local clusters, telescopes should be able to detect large amounts of
γ-rays photons and pions produced by the annihilation of matter and antimatter. There is no
evidence of such a high flux of γ-rays or pions (decaying into lighter particles in flights) in the
nearby clusters that contain more than 1013M�

10, meaning that they are mainly composed of
either only baryons or antibaryons. Thus, if anti-matter exists together with matter, it should
be highly separated on large scales corresponding to galaxy clusters of masses M > 1013M�.
This seems to indicate that all visible structures on astrophysical scales, such as stars, and
cosmological scales, such as galaxies and clusters, are composed exclusively of matter (baryons
and electrons), with negligible amounts of antimatter (antibaryons and positrons) produced by
rare events.

However, the main probes of this asymmetry come from the measurement of the light nuclei
abundances together with CMB, which highlights the agreement between the hypothesis of BBN
and early Universe Cosmology. The precise value of the baryon asymmetry of the Universe is
obtained through observations from two independent probes. The first one is via BBN, as
discussed in the precedent part, which predicts precisely the abundance of the light elements,
D, 3He, 4He, and 7Li. These predictions depend importantly on the baryon to photon ratio
ηb, and more specifically, the abundances of D and 3He are very sensitive to this parameter.
The primordial abundances of these light elements can be inferred from various observations
and give a constraint on ηb, which can accommodate all the relic abundances of these different
elements consistently. This in turn provides an accurate estimation of the relic abundance of
baryons through

ηb = 2.74× 10−8 Ωbh
2 . (1.104)

The second way to determine Ωb is from measurements of the CMB anisotropies (see section 1.5).
At recombination, when the temperature is sufficiently low for protons and electrons to form
neutral H, the cosmological plasma can be described as a photon-baryon fluid in electromagnetic
interactions. In the temperature anisotropy power spectrum of the CMB, there are peaks whose
spacing and location in Fourier scales are representative of the dynamics of the plasma at the
time of photons decoupling. The physical effect of the baryons is to provide an additional
density and gravitational pull, which enhances the collapse into potential wells. This translates
into an enhancement of the odd peaks in the spectrum known as BAO (see section 1.5). Precise
measurement of the location and heights of the peaks constrains the baryon energy density ρB
at the time of decoupling. In the end, there is an impressive consistency between BBN and
CMB estimations depicted in Figure 1.2 of the first section of this manuscript. The most recent

10M� = 1.98× 1030 kg represents one solar mass
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of these measurements from PLANCK Collaboration provides the following results for baryon
density and asymmetry [15]

YB =
nb − nb

s
= (8.72± 0.08)× 10−11, Ωbh

2 = 0.0224± 0.0001 . (1.105)

These indicate that there must be an asymmetry between SM baryons and SM antibaryons11

in favor of an asymmetry that should have been generated before BBN and recombination to
obtain ηb ' 6× 10−10. Given that initial conditions of the Big Bang scenario suggest an equal
abundance of baryons and antibaryons from thermal equilibrium at high temperature, the ob-
served baryon asymmetry implies the existence of a dynamical process allowing to depart from
this equilibrium between baryons and antibaryons, known as baryogenesis. One might question
why we require the baryon asymmetry to be dynamically generated rather than granted by a
specific initial condition. Firstly, if the baryon asymmetry were an initial condition, it would
necessitate extraordinarily precise fine-tuning to generate such a small value for ηb ' 6× 10−10

after decoupling of baryons and annihilation of matter with anti-matter, a level of precision
that appears highly improbable. Secondly, many observations support the occurrence of infla-
tion, which would have exponentially diluted any primordial baryon asymmetry rendering this
possibility impossible.

Thus, the phenomenon of baryogenesis remains a crucial point in understanding the early
Universe composition and evolution and is deeply connected to any attempt to extend the SM
of Particle Physics. In the following, we discuss the ingredients of baryogenesis and some of the
main scenarios proposed to explain the origin of baryon asymmetry. We specifically look more
carefully at the mechanism of leptogenesis which is closely related to neutrino Physics and their
mass generation through the Seesaw mechanism. We focus on the framework of non-thermal
leptogenesis after inflation which will be used in the third chapter of the manuscript about
gravitational leptogenesis during reheating (chapter 3).

1.3.2 Required ingredients

The ingredients required to generate dynamically a baryon asymmetry were originally given by
Sakharov in [34] and can be summarized as the following conditions

• Baryon number violation is required to generate a net nonzero baryon number (B) start-
ing from a symmetric Universe. In fact, B is conserved at low energy scales within SM but
it is not conserved by some processes of the SM at high energy, the so-called sphalerons

11We note that we only have evidence of an asymmetry between SM quarks and SM anti-quarks making up
SM baryons. However, it may be possible that a dark sector contains also species carrying baryon numbers with
portal interactions between the dark sector and the quarks. This allows our Universe to be baryon symmetric
and is explored in a recent paper [33].
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processes [35, 36]. This anomalous violation in the weak sector of the SM leads to pro-
cesses that involve 9 left-handed quarks and 3 left-handed leptons. Thus B and lepton
number (L) changing processes respecting the condition

∆B = ∆L = ±3 (1.106)

can occur within the SM at high temperatures. We come back to these sphalerons later
on.

• C and CP violation is required as if C or CP are exact symmetries, the total rate of baryon
production is always equal to the process rate which produces an excess of antibaryons.
Hence no net production of baryons over antibaryons is possible if C or CP are conserved.
The weak interactions of the SM violate C maximally and violate CP (see the introduction
of the CKM matrix in appendix A). However, generating the level of baryon asymmetry
with such a small amount of CP violation is impossible. Therefore, baryogenesis or
leptogenesis requires new sources of CP violation from BSM Physics.

• Out of equilibrium dynamics to depart from chemical equilibrium and produce an asym-
metry in B or L numbers that are not conserved. In thermal equilibrium, the production
rate of baryons is equal to their destruction rate, resulting in no net production. Fortu-
nately, as we saw earlier, the expansion of the Universe provides mechanisms of decoupling
leading to out-of-equilibrium dynamics. Within the SM, departure from thermal equilib-
rium occurs especially at the electroweak phase transition [36]. However, measurements
of the Higgs mass and couplings show that this transition is not ”strong”, as required for
successful baryogenesis [37]. Thus, a modification of the electroweak phase transition is
required through new Physics and/or considering other out-of-equilibrium processes in
another new Physics sector. This new Physics should allow the preservation of the B
asymmetry from sphalerons washout.

Many models and scenarios have been proposed to accommodate these conditions in some
extension of the SM. Rapidly after exploring gauge unification, GUT baryogenesis in a SU(5)
gauge theory has been first explored [38]. It generates the baryon asymmetry in the out-of-
equilibrium decays of new heavy bosons. Baryon number violation is natural in such GUT
processes since the same representations of the gauge group may contain both quarks and
leptons of the SM, making it possible for new scalars or gauge bosons to mediate baryon
number-violating interactions among SM fermions. The original GUT baryogenesis scenario
has since suffered from the non-observation of proton decay and, more importantly from the
fact that B − L is a global symmetry of such models. In this case, the B + L violating
SM sphalerons, which are in equilibrium at 100 GeV < T < 1012 GeV, washout the baryon
asymmetry [36] that is originally produced by out-of-equilibrium decays of the heavy particles.
This can be addressed by looking at larger unification gauge groups such as SO(10) in which
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a B − L asymmetry may be generated. However, even in these scenarios, the assumptions of
producing GUT scale ΛGUT ∼ 1016 GeV states in thermal equilibrium before their decoupling
and their decay seem complicated after inflation, given the scale of inflation HI . 1014 GeV (see
section 2.1). Several solutions have been proposed, such as non-perturbative preheating effects
and thermalization after inflation, allowing the production of these massive states [39]. We
explore the mechanism and some non-perturbative preheating effects in section 2.2. Electroweak
baryogenesis is another type of model where the departure from thermal equilibrium takes
place during the electroweak phase transition which has to be a strong first-order transition
[40] to avoid the washout of the asymmetry from the sphalerons. Thus, a modification of
the electroweak scalar potential is required to obtain a successful baryogenesis at electroweak
phase transition. One possible extension of the SM with two Higgs doublet (2HDM) [41] in
which the Higgs potential has more parameters and violates CP, can accommodate successful
baryogenesis.

However, rapidly after the discovery of the sphalerons and the implications for baryogenesis,
a very attractive scenario for the generation of the baryon asymmetry has been proposed, based
on the production of a lepton asymmetry. This asymmetry from L number violation processes
by the out-of-equilibrium decays of heavy SM singlets neutrino was proposed in [42]. These
decays of the heavy neutrinos into light leptons and Higgs bosons can violate C and CP leading
to the production of an excess of antileptons over leptons. The lepton asymmetry produced
can then be converted into a baryon asymmetry by the anomalous electroweak sphalerons,
which are in equilibrium at temperatures larger than the electroweak phase transition. This
is the so-called leptogenesis process that we discuss in the next part, for a specific scenario of
non-thermal leptogenesis.

Electroweak Sphalerons

The SM Lagrangian, invariant under SU(3)c × SU(2)L × U(1)Y gauge group (see appendix
A) and containing the Higgs field, is invariant under global abelian symmetries that are the
baryonic and leptonic symmetries. There are twelve of these global U(1) symmetries associated
with the transformations of the left-handed fermion ψL,

ψL(x)→ eiθψL(x) , (1.107)

one for each of the SM left-handed (3 generations of quarks with 3 colors each, and 3 genera-
tions of leptons). They are accidental symmetries that prevent any B and L violation for any
perturbative process of the SM at the tree level or any order of perturbation theory. ’t Hooft
proved, however, that nonperturbative effects give rise to processes that violate B+L, but not
B−L [35]. Indeed, within the SM, a quantum anomaly in the B+L current (a non-conserving
B + L process that violates at the quantum level the classical symmetry) arises in the weak
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SU(2) gauge interactions, which are chiral (distinguish left and right handed fermion, see ap-
pendix A) and non-abelian interactions [43]. The chiral currents associated with left-handed
fermions, ψL coupled with weak interaction in the SM

jµ = ψLγµψL (1.108)

are conserved in the classical field theory but are not conserved (anomalous) at the quantum
level, related to the triangle loops and renormalization of the theory. The anomaly is given by
[44]

∂µjµ =
1

64π2
ερσµνF

ρσ
A F µν

A =
1

32π2
FA
µνF̃

µνA (1.109)

where ερσµν is the fully anti-symmetric Levi-Civita tensor, FA the SU(2) field strength for
the spin-1 gauge field A and F̃A is the dual field strength. The right-hand side source is a
topological term called the Chern-Simons term, associated with the gauge field configuration.
In four dimensions, the space-time integral of this term can be non-zero for non-abelian gauge
fields and lead to a source term for the anomalous current. If there is a field configuration such
that this space-time integral is non-zero, with an associated number [37]

∆QCS ∝
1

32π2

∫
d4xFA

µνF̃
µνA(x) (1.110)

chiral fermions will be created by a non-perturbative process, even though the generation is
forbidden for any perturbative process. Hence, changes in the Chern-Simons number result in
changes in the baryon number proportional to the number of fermions in the SM. Each of these
transitions in the field configuration generates 9 left-handed quarks (3 colors and 3 generations)
and 3 left-handed leptons (3 generations). At zero temperature, gauge field configurations
that give non-zero ∆QCS correspond to instantons which are quantum fluctuations that can
experience quantum tunneling between different degenerate minima of the theory, associated
with different field configurations [45]. The associated rate of tunneling is highly suppressed
and can be estimated to be of the order

Γ ∝ e−4π/αW , (1.111)

with αW = g2

4π
the electroweak gauge coupling. Thus, at zero (low) temperature, no B + L

violation can be observed. However, at finite high temperatures, thermal fluctuation of the
fields could allow efficient transitions called sphalerons (quasi-particles), which violate B + L

but preserve the B − L current. The effective dynamics of non-abelian gauge fields at finite
temperature studied on the lattice provide the sphaleron transition rates at T � vEW to be of
the order [46]

Γsph ∼ α5
WT . (1.112)
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This implies that above the electroweak phase transition at temperature T � 100 GeV, B +L

violating rates are in equilibrium in the bath. Thus, sphalerons convert any primordial lepton
asymmetry produced before the electroweak phase transition into a baryon asymmetry, as it
violates B + L but conserves B − L. Therefore, a lepton number violation associated with the
generation of a lepton asymmetry at high energies may provide a mechanism for generating more
baryons than anti-baryons in the present Universe. This is exactly what models of leptogenesis
predict.

1.3.3 Non-thermal Leptogenesis

Several pieces of evidence show that the SM should only be considered as a low-energy effective
field theory (EFT) and that there should exist BSM Physics at a higher energy scale. Among
the observables signaling the need for BSM Physics, the experimental evidence for SM neutrino
masses is particularly appealing. Hence, it is very attractive that a BSM model motivated by the
explanation of small SM neutrino masses can also provide a viable mechanism for baryogenesis.
Leptogenesis [42] associated with the Seesaw mechanism [47–52] is such a scenario, that has
gained increasing interest since its first study.

Neutrino masses and the Seesaw Mechanism

Measurements of the chirality of SM neutrinos have shown for a long time that they have to
be left-handed. In the SM, neutrinos are only involved in left-handed current through weak
interactions (see appendix A) and right-handed neutrinos (RHN) are not included. Thus, the
Higgs mechanism after electroweak symmetry breaking cannot provide a mass to the left-handed
neutrinos as it does for the other massive leptons in the SM. Indeed, even a Majorana mass
term involving νi and its charge conjugate field νci ,

L ⊃ 1

2
νcimi,jνj + h.c. (1.113)

violates lepton number conservation, and such a mass term breaks the SU(2)L gauge symmetry
as a triplet, so this effective operator cannot originate from a Yukawa coupling with the SM
Higgs doublet. Yet, long measurements of neutrino fluxes from solar, atmospheric, nuclear
reactors, and accelerator sources have highlighted their oscillations, showing that at least two
of the SM neutrinos must have small masses (for a recent summary of the measurements and
analysis see [53]). More precisely, neutrino oscillation experiments allow us to estimate the
mass-squared difference between the neutrino mass eigenstates i, j ∆m2

ij = m2
νi
−m2

νj
,

(Normal) ∆m2
12 = (7.42± 0.21)× 10−5 eV2, |∆m2

32| ' |∆m2
31| = (2.510± 0.027)× 10−3 eV2

(Inverted) ∆m2
12 = (7.42± 0.21)× 10−5 eV2, |∆m2

23| ' |∆m2
13| = (2.490± 0.027)× 10−3 eV2
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where the first line corresponds to a hierarchy in mass m3 > m2 � m1 (Normal) while the
second line correspond to m2 > m1 � m3 (Inverted).

An elegant solution to explain tiny SM neutrino masses is to introduce three generations
of RHN, Ni, that are singlets under the SM gauge group. They must also be in heavy states
to explain that they haven’t been observed in dedicated experiments. With these additional
right-handed heavy states, it is possible to construct a Yukawa interaction of RHN and lepton
doublets with the Higgs field

L ⊃ −yiαN ilαH + h.c. (1.114)

which provides, after electroweak symmetry breaking, a Dirac mass mD = y〈H〉 = yvEW with
vEW = 174 GeV [54] (we remove for clarity flavor indices). However, to generate such small
masses for SM neutrinos from the Higgs VEV, the Yukawa couplings yiα have to be extremely
small, yiα . 10−10. This fine-tuning of the Yukawa couplings is avoided as one can introduce
large Majorana masses Mi for the RHN such that12

L ⊃ −1

2
N c
iMiNi − yiαN ilαH + h.c. (1.115)

which is allowed by SM gauge symmetries but implies a lepton-number violation. Indeed, the
couplings of RHN to SM lepton doublet, in addition to their Majorana mass term, generate the
effective dimension-5 Weinberg operator, 1

Mi

(
LcLH

∗) (H̃†LL), at an energy scale E �Mi. This
operator is suppressed by the Majorana mass scale Mi but violates lepton number conservation.
By looking at the mass matrix for neutrinos in this model

1

2

(
ν̄ N c

)( 0 mD

mD M

)(
ν

N c

)
+ h.c. (1.116)

after diagonalization, Majorana mass eigenstates are approximately given by mν '
m2

D

M
and

MN ' M in the limit M � mD. Seesaw models are UV models that induce this hierarchy
between the mass scales for heavy RHN and SM active neutrino with MN � mν without asking
for very small Yukawa couplings to the Higgs field. The model discussed above is one type of
Seesaw mechanism called Type-I, where we have introduced additional singlets fermions (here
3 RHN) to the SM spectrum that effectively explains the Majorana mass term for SM neutrinos
with small mass eigenstates originating from a large Majorana mass of the RHN. There are
three types of Seesaw models, depending on the new heavy states in interactions with SM
neutrinos to explain the mass generation (Type-II with SU(2)-triplet heavy scalars and Type
III with SU(2)-triplets heavy fermions). The minimal Type I Seesaw model requires only two
RHN Ni (2RHN model) [55]. It can be obtained as the limit of the three-generation model

12We can always work in a basis where the mass matrix for the RHN M is diagonal.
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above, where one species decouples because it is either very heavy or has vanishing Yukawa. It
can be shown that in this particular limit, only two SM neutrinos acquire a tiny mass, and one
remains massless.

Beyond explaining the SM neutrino small masses, such Seesaw models induce a key new
ingredient: possible lepton number violation by introducing a Majorana mass term to the
RHN. Thus, such models are particularly studied as they can lead to successful leptogenesis
in the out-of-equilibrium decay of the heavy RHN Ni. We discuss next one possible simple
realization in the context of non-thermal leptogenesis.

Lepton asymmetry from heavy RHN decays

The lepton asymmetry can be produced when the heavy Majorana RHN decays into leptons and
Higgs bosons (or their antiparticles) through Yukawa couplings. These decays into light leptons
and Higgs bosons can violate CP if the complex Yukawa couplings involved have unremovable
phases. This can lead to the production of an asymmetry between leptons and antileptons in
the final state. The CP violation is generated by the interference between tree-level decays and
the one-loop diagrams from vertex correction and wave function renormalization of the lightest
RHN (N1) decays [42, 56, 57]

Figure 1.9: The CP asymmetry in type-I Seesaw results from the interference between tree and 1-loop
wave and vertex diagrams. Figure taken from [58].

N1 → lα +H (1.117)
N1 → lα +H∗ .

The CP asymmetry parameter13 is given by [56, 57]

ε∆L =

∑
α[Γ(N1 → lα +H)− Γ(N1 → lα +H∗)]∑
α[Γ(N1 → lα +H) + Γ(N1 → lα +H∗)]

(1.118)

' − 3

16

1

Im(yy†)11

[
Im(yy†)212

(
M1

M2

)
+ Im(yy†)213

(
M1

M3

)]
.

13For the result below we assume a strong hierarchy among RHN masses M3,M2 �M1.
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We can simplify this expression by looking only at the dominant contribution from the Yukawa
matrix and using the small neutrino masses parameters from the Seesaw mechanism mνi

ε∆L ' −
3δeff

16π

M1mν,max

v2EW
(1.119)

where 0 ≤ δeff ≤ 1 is the effective CP violating phase in the neutrino mass matrix and mν,max

is the heaviest light neutrino mass [54, 59]. At high temperatures, the electroweak sphaleron
interactions are in equilibrium and they convert a fraction of a non-zero B−L asymmetry into
a baryon asymmetry[60, 61] through

YB =
8Nf + 4NH

22Nf + 13NH

YB−L =
28

79
YB−L (1.120)

the baryon yield YB ≡ nB

s
, and the B − L original asymmetry YB−L ≡ nB−L

s
, with Nf = 3

the number of fermion generations, NH = 1 the number of Higgs doublet. In the context of
leptogenesis, there is a generation of a lepton asymmetry and so a B − L = −L asymmetry.
Hence, the Seesaw mechanism with RHN requires lepton number violation and provides CP-
violating phases in the neutrino Yukawa interactions. From the heavy RHN out-of-equilibrium
decay, Sakharov conditions are satisfied for a B − L = −L asymmetry generation, further
converted into a baryon asymmetry by electroweak sphalerons.

A natural scenario is a thermal leptogenesis, in which the RHN are produced in thermal
equilibrium first, then decay out of equilibrium while decoupling. First, scattering processes in
the thermal bath can produce a population of thermal RHN. In this case, the RHN number
densities follow the thermal distribution until they start to decouple and decay around T ∼M ,
while their equilibrium number density is Boltzmann suppressed. If the relevant interactions
are out-of-equilibrium, the asymmetries survive and the same Yukawa coupling controls the
production and decay of the RHN. Usually, this scenario requires a hierarchy in mass scales for
the RHN, and in the simplest realization, there are no flavor effects. The initial abundance of N1

decreases due to scattering, decays, and inverse decays, all of them regrouped in what is called
washout processes. The possible importance of flavor effects in leptogenesis is a consequence of
the washout, as for inverse decays and washout scatterings it matters to know which leptons
are distinguishable from the other due to their different masses and couplings. This leads to
interesting effects in the resolution of the relevant Boltzmann equations (see [37] for a review)
for the generation of the lepton asymmetries. However, throughout this thesis, we will consider
a simple scenario motivated by the paradigm of inflation and reheating, in which RHN are
produced by non-thermal processes and stay out of equilibrium before their decay. We refer to
this possibility as non-thermal leptogenesis originally introduced in [62], where inflaton decays
can source the production of heavy RHN that further decay themselves without ever reaching
thermal equilibrium.
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For models of non-thermal leptogenesis during reheating, we consider very heavy RHN such
that the lightest one satisfies M1 > TRH. In this scenario, at any time during reheating after
inflation, no process within the thermal bath is energetic enough to produce RHN14. Then, a
lepton asymmetry is produced at the decay of the lightest right-handed neutrino when H ∼M1.
In this case, the produced asymmetry is computed very simply at the end of reheating from

YL(TRH) = ε∆L
nN1

s
(TRH)→ YB(TRH) =

28

79
ε∆L

nN1

s
(TRH) (1.121)

which is frozen at the time of reheating (see discussion in chapter 3). Constraints on RHN
masses can be put in different scenarios to produce the observed baryon asymmetry while
considering the Seesaw mechanism generates SM neutrino masses.

After this introduction of non-thermal leptogenesis during reheating, we discuss the produc-
tion of another cosmological relic density, the production of DM in the early Universe. In
fact, it is very intriguing that the DM relic abundance is very close to the one of the baryonic
matter (Ω0

CDM ' 5×Ω0
b), probably signaling that similar processes are taking place in the dark

sector in the early Universe to generate this relic density. As for the generation of the baryon
asymmetry, there are two main approaches to DM production: from thermal processes and a
DM species at equilibrium that further freezes out, or through non-thermal production of DM
at different stages of the early Universe. We explore these mechanisms for DM production in
the following part.

1.4 Dark Matter production

One approach to addressing the generation of a DM relic abundance is to assume that the
evolution of the DM component has followed the trajectory of SM species in the hot thermal
plasma before decoupling. The mechanism of thermal decoupling, discussed in the preceding
section about the thermal Universe, has shown its success at describing very precisely the
generation of cosmological relics such as the light elements through BBN, the generation of
baryons through thermal baryogenesis or thermal leptogenesis and, as we will see next, the
emission of the CMB photons. Hence, it appears natural to look for a similar process at
the origin of the DM abundance, considering the particle hypothesis for DM candidate15, as a
thermal relic from the early Universe. This has the advantage of relying only on the microscopic
description of the DM model, especially the DM couplings with the SM species, which in turn
provides Particle Physics predictions of the DM interactions in DM detection experiments.

14To be more precise, one should consider the evolution of the temperature during reheating from a maxi-
mum temperature Tmax to reheating temperature TRH and make sure that no process can destroy the lepton
asymmetry.

15We note that other possible DM candidates that are not described in BSM models of massive particles are
investigated actively such as the Primordial Black Holes (PBH) hypothesis.
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In what follows, we will assume the existence of one DM particle χ in interactions with SM
particles, such that the interaction rates are in equilibrium at high temperatures and DM
follows the thermal equilibrium distribution. Direct and indirect detection experiments put
strong constraints on the coupling of DM with SM particles, and these couplings have to be
weak enough to explain the lack of detection signal. We first discuss the standard paradigm
of WIMPs which are DM particles assumed to be originally in thermal equilibrium and that
decoupled from the thermal bath while being non-relativistic. We then explain the current
status of the most simple microscopic descriptions of such a scenario before moving to the
possibility of producing a DM candidate that never reached thermal equilibrium with non-
thermal production of DM.

1.4.1 Thermal freeze-out and the WIMP scenario

We assume here renormalizable interactions between a DM candidate χ and a SM species ψ,
which can first produce DM from particles of the bath and then bring χ to its kinetic and
chemical equilibrium through ψ + ψ ↔ χ + χ and χ + ψ ↔ χ + ψ. Hence, after this state of
thermal equilibrium is reached, DM number density depends on the Hubble expansion through
the evolution of the temperature and the eventual evolution of the interaction rates. In the
standard WIMP scenario, we consider quite naturally that the DM candidate has a typical
mass scale mχ ∼ GeV − TeV close to the electroweak scale within the SM. This is a natural
assumption as the Higgs mechanism explains the masses of fundamental particles in the SM
around this scale of energy, which can be seen as the effective field theory (EFT) scale of the
SM. In addition, we consider weakly interacting particles, with weak couplings and weak cross-
sections similar to what is measured for SM neutrino interaction for instance. In this scenario,
DM density can be tracked by solving the Boltzmann equation for the processes χχ ↔ ψψ.
Starting from the simple form of the Boltzmann equation derived in Eq.(1.34) and integrating
over the momentum of the DM particles to obtain number density equation, we have16

ṅχ + 3Hnχ = −〈σχχ→ψψv〉
(
n2
χ − n2

eq
)

(1.122)

where 〈σχχ→ψψv〉 is the thermally averaged cross-section of the process and neq is the equilibrium
density of DM particles within the bath. In the WIMP scenario, an important point is that
DM is still in kinetic equilibrium while its chemical decoupling occurs, so we can simplify the
computation of the thermally averaged cross-section from the collision term of the Boltzmann
equation as [63]

〈σχχ→ψψv〉 =
∫
d3p1d

3p2 σvf
eq
χ (p1)f

eq
χ (p2)∫

d3p1d3p2 f
eq
χ (p1)f

eq
χ (p2)

=

∫
d3p1d

3p2
|M|2

128π3E1E2
dΩf eq

χ (p1)f
eq
χ (p2)∫

d3p1d3p2 f
eq
χ (p1)f

eq
χ (p2)

. (1.123)

16For a pedagogical derivation of the Boltzmann equation relevant for freeze-out DM, we refer to [63].
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where f eq
χ (p) is the distribution function of DM particles at equilibrium. In the last equality,

we neglected the mass of particles in the thermal bath in front of the energy in the collision
√
s ∼ T � m3,m4 and use17

dσ

dΩ
' |M|2

128π3E1E2

. (1.124)

As discussed in section 1.2, we usually consider the equilibrium distribution of massive particles
to be a classical Maxwell-Boltzmann distribution f eq

χ (p) = e−E(p)/T , which is valid for the
non-relativistic regime but is still a good approximation in the relativistic limit leading to an
analytical equilibrium number density given by Eq.(1.30) nχ(T ) =

gχm2
χT

2π2 K2

(mχ

T

)
. In this case,

the computation of the thermally averaged cross section can be done from the integral [63]

〈σv〉 = 1

256π2m4
χK

2
2

(mχ

T

) ∫ ∞
4m2

χ

√
s− 4m2

χ|M|2K1

(√
s

T

)
dsdΩ . (1.125)

The right-hand side of the Boltzmann equation leads to the thermal equilibrium between DM
and SM particles and constrains the DM density to follow its thermal distribution, which at high
temperature T � mχ gives nχ(T ) ∝ T 3. However, below T . mχ, in the non-relativistic regime
of the WIMP, the production rate is ∝ n2

eq thus becomes smaller than the Hubble rate H(T ),
and results in the suppression of the DM density neq

χ (T ) ∝ T 3/2e−mχ/T , as DM annihilates
without being produced anymore. Rapidly after, the DM density freezes out of equilibrium
and is further only diluted by the expansion of the Universe. The Boltzmann equation can
be expressed using the DM yield Yχ ≡ nχ

s
, and as the entropy of the Universe during the

radiation-dominated era is conserved sa3 = cst, the DM yield is equivalent to its comoving
number density Yχ ∝ nχ

a3
. Neglecting the variation of the effective number of degrees of freedom

gρ(T ) = gs(T ) ' g∗ during the DM decoupling, and introducing the mass temperature ratio
x ≡ mχ

T
, the equation to solve reduces to [16]

dYχ
dx

=
g∗2π

15

√
10

g∗

mχMP

x2
〈σχχ→ψψv〉

(
Y 2
χ,eq − Y 2

χ

)
(1.126)

which after integration along the evolution of temperature provides the relic DM yield [64, 65]

Y (T0) '
√

π

45
MP

[∫ Tf

T0

g1/2∗ 〈σv〉dT
]−1

. (1.127)

Tf is the temperature of the bath at which the DM relic is frozen out. Therefore, this result
shows that the DM relic yield in the standard freeze-out mechanism depends only on the
thermally averaged cross-section 〈σv〉. Further, the DM abundance is determined by the values
of the cross-section at T0 < T < Tf ∼ mχ, showing that the thermal production of DM is
a low-energy mechanism that can be tackled through the use of EFT for the WIMP. In the

17s = (p1 + p2)
2 is the Mandelstam variable, and dΩ is the solid angle between outgoing particles 3, 4
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generic case, this integral cannot be computed analytically and precise solutions of the DM
relic density and freeze-out temperature Tf at which DM decouples are obtained numerically
for specific microscopic models of DM interactions. Publicly available numerical packages
such as micrOMEGAs [66–69] are computing the DM relic for generic models of WIMPs (and
Feebly Interacting Massive Particles or FIMPs as well). It is possible to provide an analytical
approximation using the non-relativistic18 velocity expansion of the cross-section (see [16, 63]).
For simple models of s-wave annihilation, 〈σv〉 is independent of T and we can obtain the
well-known result for the DM number density evolution shown in Figure 1.10 We can estimate
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Figure 1.10: Evolution of the DM yield Yχ as a function of x. The colored lines are numerical solutions
of Eq.(1.126) for different values of 〈σv〉 = cst and the dotted black line is the thermal distribution.
We see that Tf ∼ 20mχ at decoupling time. Figure taken from [70].

analytically the DM relic for the s-wave annihilation cross section by noticing that for T . mχ,
the equilibrium density is Boltzmann suppressed and Yχ � Yeq(T ), leading to

dY

dx
' −g∗2π

15x2

√
10

g?
mχMP 〈σv〉 Y 2

χ (1.128)

which after integration on x > xf admits the solution

1

Y0
− 1

Yf
=
g∗2π

15

√
10

g?
mχMP

(
1

xf
− 1

x0

)
=⇒ Y0 '

15xf
2πg∗mχMP 〈σv〉

√
g∗
10
. (1.129)

The value of decoupling temperature xf is approximately the instant when the expansion rate

18The non-relativistic limit is valid for WIMP freeze-out as it decouples while being non-relativistic at T . mχ,
implying v � c while DM particles annihilate
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becomes of the order of the DM annihilation rate at equilibrium [16]

H(xf ) = neq(xf )〈σv〉 (1.130)

and for typical WIMP mass mχ ∼ 100 GeV and weak cross section 〈σv〉 ' 10−26 cm3 s−1 we
can find xf ' 20, which is close to a more precise numerical solution xf ' 23. This freeze-out
time shows that the WIMP decouples while being non-relativistic, and these results are almost
independent of the WIMP mass and cross-section. Computing the relic abundance of WIMP
as DM

Ω0
CDMh

2 =
mχY0s0
ρ0crit

' 0.12
( mχ

100 GeV

)(2.5× 10−26 cm3 s−1

〈σv〉

)
(1.131)

shows how the cosmological relic depends on the Particle Physics model of WIMP through 〈σv〉
and mχ. We see also that a DM mass of the order of the electroweak scale mχ ∼ 100 GeV
and a typical electroweak19 cross-section σ ∼ 10−9 GeV−2 ' 10−26 cm3 s−1 provide the right
relic abundance of DM. This ”miracle” has motivated the development of relativistic WIMP
models [70] to explain the observed DM relic density from the standard freeze-out scenario.
Especially, the simplicity of the freeze-out mechanism is that it does not depend on the DM
initial conditions before thermalization, but it occurs only if DM thermalizes at some point
during the radiation-dominated era.

It is also important to emphasize that the relic density of DM depends precisely on the value
of its cross-section with SM particles. A smaller cross-section induces a too-large DM relic,
while a bigger cross-section means more annihilation before decoupling and a smaller relic (see
Figure 1.10). Moreover, similar cross-sections are also expected for DM annihilation within our
galaxy and for elastic scattering of WIMP particles with SM particles on earth, from particles
of DM which are expected to surround our local environment in the Solar System. This fact
has led to important investigations for DM in dedicated experiments20 of direct [71–75] and
indirect detection [76–78]. The absence of any experimental signal has strongly constrained
the simplest WIMP models [65] as can be seen in Figure 1.11 where constraints on the DM
parameters σ and mχ are reported, from direct detection experiments on the left, and indirect
detections on the right. To face these strong constraints from experiments, many models
involving more parameters or other assumptions for DM particles in thermal equilibrium have
been investigated, such as self-interacting and Strongly Interacting Massive Particles (SIMP)
[79] or co-annihilating DM. This current status of DM searches has also led to the exploration of
another possibility by relaxing one hypothesis on the evolution of DM in the early Universe: the
fact that it has reached thermal equilibrium with the hot thermal bath made of SM particles.
Models of very feeble interactions of DM with SM (FIMPs) have been explored since [80],

19We can estimate weak annihilation cross section from the s-channel exchange of weak gauge boson leading
to σ ∼ g4m2

χ/m
4
Z ∼ 10−9GeV−2

20For a review on DM detection experiments looking for WIMP DM and their constraints on microscopic
models see [64, 65, 70]
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Figure 1.11: WIMP DM constraints (current in solid lines, projected in dashed). The left panel shows
the direct detection limits on mχ and the spin-independent DM-proton cross-section σSI

p , while the
right panel refers to the indirect detection constraints on mχ and 〈σv〉. Figure taken from [65], see
the reference for more details.

in which DM is not thermal but is still produced by the hot thermal bath. We discuss this
possibility in the next part, together with the possible production of even much heavier DM
particles in the very early Universe before the radiation-dominated era, during reheating. This
will also allow us in chapter 3 to connect the DM puzzle with the Physics of inflation, as the
inflaton can also produce DM during reheating from non-thermal processes.

1.4.2 Non-thermal production

When DM particles are so feebly interacting, they may never reach thermal equilibrium in the
early Universe. DM production can then be still achieved through the freeze-in mechanism
[80–82], from the scattering or decays of particles in the thermal bath. In this scenario, the DM
particle interacts with the SM so feebly that it never enters chemical or kinetic equilibrium.
Instead, the DM particles are produced from the visible sector until the production stops due
to the cooling of the bath temperature. This can be due to two different mechanisms described
below.

IR Freeze-in and FIMP

We can consider feeble renormalizable interactions between DM and the visible SM sector, and
as the temperature drops below the relevant mass scale of DM particles, or below the mass
scale of the particle that decays to DM, the production of DM stops. In this case, decoupling
occurs either while the DM particles produced are becoming non-relativistic and the bath does
not have sufficiently high energy to produce DM anymore, or when the particle decaying to DM
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disappears. In both cases, it is usually referred to as infrared freeze-in because, in that case,
the relic density of DM depends solely on the DM mass scale and DM couplings (we suppose
the initial abundance of DM to be negligible). This kind of scenario requires renormalizable
couplings between DM and the visible sector that are very small . O(10−7) [83] to prevent
the dark sector from thermalizing with the bath and still generate the correct relic abundance.
To illustrate the standard IR freeze-in scenario, we consider two scenarios, one of a portal
interaction mediated by weak bosons with a feeble coupling (a typical example is a Higgs-
portal [84, 85]) and the second scenario is the decay of a heavy particle into DM.

In the case of 2 → 2 processes, assuming no initial abundance of DM during radiation
dominated era, we can neglect the DM yield at the beginning of the process in the Boltzmann
equation Eq.(1.126) to solve [16, 83]

dYχ
dx
' g∗2π

15

√
10

g∗
mχMP

〈σv〉
x2

Y 2
eq =

270
√
10

16πg
3/2
∗

MP

mχ

1

(2π)8

∫ ∞
2x

z
√
z2 − 4x2K1(z)|M|2dzdΩ

(1.132)
where we used in the last equality the expression of the equilibrium entropy density s = 2π2

45
g∗T

3,
and the equilibrium DM density together with Eq.(1.125), with z ≡

√
s
T

. Typical examples
of interactions involve the exchange of weak mediators such as the Higgs bosons exchange
mediating the interaction between the DM sector and the visible sector. In this case, for
sufficiently high energy when the production of DM occurs at

√
s ∼ T � mH (the mass of the

mediator) and T � mχ, we can estimate the amplitude of the process to be of the order

|M|2 ∼
y2χy

2
ψs

2

(s−m2
H)

2
' y2ψy

2
χ (1.133)

where yψ is a generic Yukawa-like coupling between the Higgs and the SM, while yχ is another
generic Yukawa-like coupling between the Higgs and the DM candidate χ (a Dirac fermion in
this case)21. Thus we have to solve the equation

dYχ
dx

=
270
√
10

4πg
3/2
∗

MP

mχ

1

(2π)7
y2χy

2
ψ =⇒ Y (T ) ∝

y2χy
2
ψ

T
(1.134)

First, we note that this solution is independent of the DM mass, which is a generic feature of IR
freeze-in scenarios, and it increases as ∝ 1/T , which is also a common behavior for most of the
FIMP models. Besides, for too large values of the unknown coupling yχ, the initial production of
DM may be very efficient, and it can quickly bring it to its equilibrium number density, meaning
that DM can easily reach thermal equilibrium from such portal interactions [16]. However, this
may not be the case for feeble couplings, and when T ' mχ the production stops before the DM
sector reaches its thermal abundance. In fact, the value of the coupling required to generate

21This discussion is model dependent and other types of microscopic models are explored in [83]. However,
the main conclusions reached from this computation are the same in many IR freeze-in models.
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the right relic abundance has to be tuned such that when the DM production ceased22 around
T ∼ 20 mχ, the DM yield is precisely the one that matches current observation of DM density

Yχ(T ∼ 20mχ) = Y0 =⇒ y2χ ' 3× 10−20
(
Ω0

CDMh
2

0.12

)
(1.135)

where we assumed for illustration purposes that yψ ∼ 1 for simplicity of the argument. Thus,
typical FIMP renormalizable portal coupling is of the order yχ = yFIMP ∼ 10−10 to provide the
correct DM relic through the freeze-in mechanism.

In the case where the main process is the decay of a heavy particle σ → χχ with similar
coupling yχ, we can rewrite the Boltzmann equation in a simpler form [16, 83]

dYχ
dx

= Yσ
〈Γσ〉
H(x)x

=
M3

σΓσ
2π2H(x)s(x)x2

K1(x) (1.136)

where 〈Γσ〉 is the thermally averaged decay rate of the heavy particle σ which decays prefer-
entially to DM with Γσ = yχ2Mσ

8π
. In the last term of the equation we assumed that the initial

particles are in thermal equilibrium at the time of their decays, and so accurately described
with a Maxwell-Boltzmann distribution. After integration we obtain

Y0 =
y2χ270

√
10

g
3/2
∗ 64π6

MP

Mσ

∫ ∞
Mσ
TRH

x3K1(x)dx (1.137)

where TRH is the reheating temperature, indicating the beginning of the radiation-dominated
era (see section 2.2). Assuming that Mσ < TRH the value of the Yukawa like coupling yχ to
generate the right DM relic is then

y2χ ' 10−24 ×
(
Ω0

CDMh
2

0.12

)( mχ

100 GeV

)(1 TeV
Mσ

)
(1.138)

Again, we see that in this case, we need a very feeble coupling of the order yχ = yFIMP '
10−13 − 10−11 for a 100 GeV DM candidate to satisfy the right relic abundance. We, therefore,
arrive at similar generic conclusions for IR freeze-in DM production in both scenarios.

UV Freeze-in

The above calculations assume that the initial abundance of DM is negligible and irrelevant
for further production of DM during the radiation era. Nonetheless, in the freeze-in scenario
we assumed that DM particles are not in thermal equilibrium with the visible sector thus the
production mechanism can be sensitive to UV Physics originating from new Physics at high

22This is not occurring at the freeze-out temperature but the Boltzmann suppression factor is the same for
the process of DM production and for the process of DM annihilation, leading to very similar temperature of
freeze-in in the simplest scenario.
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energy scales, or to the initial conditions set during reheating after inflation (see section 2.2
for a first discussion of reheating). In particular, the effect of non-renormalizable couplings in
the EFT can be the main source of DM production from higher dimension operators related to
some UV new Physics scale ΛUV. This is in opposition to the thermal DM scenario associated
with the freeze-out mechanism, where DM reaches thermal equilibrium erasing effects from
initial conditions or UV Physics. This important feature of the UV freeze-in mechanism can
be used to constrain different UV models of feebly interacting DM. In such scenarios, it can
occur that the annihilation cross-section (or decaying rate) generating DM becomes smaller
than the Hubble rate very rapidly after reheating at the beginning of the radiation-dominated
era [80, 86]. In this case, the relic density of DM is sensitive to the UV scale ΛUV as well as to
the reheating temperature TRH after inflation.

We consider a toy model example to understand the typical parametric dependence of the
DM relic in UV freeze-in scenarios (for a seminal study, see [86]). DM interacts with the
visible sector within the thermal bath through portals interaction mediated by heavy mediator
Mσ � TRH. Hence, during a radiation-dominated era and

√
s ∼ T � TRH, this heavy state

can be integrated out of the EFT and generate effective operators between DM and the visible
sector suppressed by the UV scale ΛUV ∼ Mσ. The associated s-channel amplitude matrix
element is typically given by

|M|2 ∼
y2ψy

2
χs

2

Λ4
UV

(1.139)

where we consider Yukawa-like coupling between SM fermions, fermionic DM, and a heavy
scalar σ, leading to the Boltzmann equation for the DM yield [16]
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T 3
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. (1.140)

The first thing to emphasize is that it does not depend on the DM mass mχ and secondly, as
T . TRH during the radiation-dominated era, the production process is active only very close
to reheating time, meaning that it occurs at high energy in the bath. Very rapidly, the DM
production rate decreases and becomes suppressed importantly by the UV scale ΛUV, dropping
below the Hubble scale. This feature is generic for all UV freeze-in models. Such models depend
on two parameters: the couplings on one side and the UV scale (or mass of the heavy mediator
here) on the other. One can play on both these parameters to reproduce the right relic of DM
but we can give a lower bound on the couplings asking that the UV scale is at least ΛUV > TRH

and still producing the right DM relic

y2χy
2
ψ & 10−26 ×

(
Ω0

CDMh
2

0.12

)(
100 GeV
mχ

)(
TRH

1010 GeV

)
(1.141)

leading to yχ & yFIMP ' 10−7 assuming yχ ∼ yψ and TRH = 1010 GeV, mχ = 100 GeV. A
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Figure 1.12: A summary of the evolution of the DM yield Y = nDM/s, as a function of x = mDM/T ,
for the freeze-out (YFO), the IR freeze-in (YIR) and the UV freeze-in (YUV) scenarios. Figure taken
from [86].

generalization of such a model has been widely explored in literature and we can show [86] that
a UV-induced effective operator of the form

|M|2 ∝ 1

Λ2n
UV

(1.142)

for an integer power n, results in a DM yield depending parametrically on TRH, and ΛUV

Yχ(T0) ∝
MPT

2n−2
RH

Λ2n
UV

. (1.143)

To conclude this part on DM production, we depict in Figure 1.12 the different mechanisms
described above for DM production from processes taking place in the hot thermal.

We emphasize that one goal of this PhD thesis is to explore further the DM production during
the reheating phase. This can occur through non-perturbative processes while the inflaton
oscillates around its minimum and is coupled to daughter fields, or through perturbative decays
and annihilation as we will discuss in section 2.2. Then, as reheating is not an instantaneous
process after inflation, there is a complex story for the production of the thermal bath and
the dark sector(s) during this stage. Especially there are contributions from the inflaton as
well as from SM particles already produced and thermalizing, with a nonstandard evolution
of energy densities due to the entropy injection during this stage [87]. The evolution of the
inflaton background and the entropy injection in the visible sector induce interesting effects
on DM relic density generation. In the last chapter, we describe a new mechanism for DM
production, involving the very feeble gravitational interaction during reheating.
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1.5 CMB anisotropies
Until now, we discussed early Universe Cosmology, assuming homogeneity and isotropy of the
physical conditions on the largest scales. All the events taking place along the expansion
history described in this first chapter happened (almost) simultaneously in all places of the
Universe. Yet, we also clearly observe that our Universe is not homogeneous and isotropic on
smaller scales, and we observe structures such as galaxies and clusters or even smaller objects
at very small scales that are not in a diffuse and homogeneous state. Structure formation is
impossible in a state of perfect homogeneity and isotropy, as was first assumed in studying the
evolution of the Universe from the radiation-dominated era until the late accelerated expansion.
We understand that one should also consider small deviations from homogeneity and isotropy
which could allow for a dynamical structure formation process to start from small seeds made
of inhomogeneities and anisotropies in the physical fields.

All the structures in the Universe and their variety originate from similar initial fluctuations
in the density of the different species, further amplified by gravitational instability and their
collapse. Then, to explain the presence of large structures that we can see in the Universe, these
initial fluctuations must also be present in the very early days at the time of CMB photons
emission. Such inhomogeneities in the density of the different species should leave important
imprints on the recombination process and the last scatterings of CMB photons, as well as
further effects on their path toward our detectors. Thus, measuring and understanding CMB
anisotropies has been the first and most important probe of such initial fluctuations in the
Universe components.

We introduce in this part some of the main effects affecting the CMB temperature anisotropies
power spectrum, their size and distribution, and how this leads to the most precise evaluation of
the Cosmological parameters in the ΛCDM paradigm. We briefly discuss the impact of DM and
baryons on photons at the time of recombination and decoupling, as well as the measurements
of spatial curvature and DE. This will lead us to describe two of the main issues established
in the standard Cosmology scenario while measuring the CMB temperature anisotropies and
their distribution, issues that are commonly solved by introducing the inflation paradigm. In
the next chapter, we will see how inflation succeeds in explaining the initial conditions that
have led to CMB anisotropies as they are observed.

1.5.1 Cosmological perturbations in a nutshell

Locally the Universe is not perfectly homogeneous and isotropic, but density fluctuations in
the components are small. They are theoretically well described in the linear cosmological
perturbation theory23 at least averaging on sufficiently large scales to avoid the small scales

23A full description of perturbed Einstein-Boltzmann equations is beyond the scope of this chapter of the
thesis, and we refer to [14, 88] for more details.
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non-linearities. We can show that the general form of the linearly perturbed FLRW metric
(introduced in section 1.1) is given after gauge fixing24

ds2 = (1 + 2Ψ)dt2 − a2(t) [(1− 2Φ)δij + 2hij] dx
idxj (1.144)

introducing two scalar potentials Φ and Ψ called Bardeen potentials, and hij the transverse
traceless part of the metric perturbations describing quadrupolar tensor perturbations asso-
ciated with primordial GW. We introduce as well the curvature (or scalar) perturbation R
defined as

R = − 2

3(1 + w)

(
Ψ+

Φ̇

H

)
+ Φ (1.145)

which is directly proportional to the perturbation of the Riemann curvature of the perturbed
FLRW space-time in the comoving gauge. For perfect fluids, the two potentials are equal and
correspond to the gravitational potential generated by energy-matter over densities through
the perturbed Einstein equations. Thus, we introduce perturbation in the stress-energy of the
different species through25

ρi(x, t) = ρ̄i(t) + δρi(x, t) = ρ̄i(t)(1 + δi(x, t)) (1.146)
δPi = c2s δρi(x, t) (1.147)

with ρ̄i(t) the homogeneous component of the energy density of species i, δi(x, t) the density
contrast describing the overdensities as a function of time and position, and cs denoting the
sound speed in the plasma made of baryons, electrons, photons in interaction at the time of
recombination. We also consider a bulk velocity ~ui(x, t) for all the species allowing them to
have a proper motion in the frame we are considering relative to the bulk of CMB photons. At
linear order in perturbation theory, we can work in the Fourier space where Fourier modes of
the perturbations are then independent variables

δi(k, t) =

∫
d3x e−i

~k.~xδi(x, t) (1.148)

with k the Fourier scale. We consider only adiabatic perturbations, as no isocurvature pertur-
bations are seen in the CMB data. Adiabatic perturbations mean that the energy densities of
each of the species at a certain point and an instant t are the same as that of the background
at an instant t + δt(x), and δt(x) is the same for all species. This is equivalent to saying that
local overdensities of each of the species come from the same background state. As we will see,
this is naturally the kind of perturbation predicted by single field inflation models where one
degree of freedom (the inflaton) is at the origin of the perturbations in the different species. In

24This is done in the longitudinal gauge for cosmological perturbations, see [14].
25Here we omit the introduction of the anisotropic stress, which is the traceless part of the perturbed stress-

energy tensor. It can be the source of GW perturbations of the metric.
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particular, this implies that adiabatic perturbations satisfy

δt(x) =
δi

(1 + wi)
=

δj
(1 + wj)

(1.149)

for different species i, j at a given time and a given position in the Universe. In the case
of adiabatic fluctuations initially in thermal equilibrium and assuming homogeneously and
isotropically distribution throughout space with Gaussian statistics, all the statistical properties
of the perturbations are described by the initial scalar (here dimensionless) power spectrum
PR(k)

k3〈R(~k)R∗(~k′)〉 = (2π)3δ(3)(~k − ~k′)2π2PR(k) (1.150)

with δ(3) the Dirac delta. R(~k) is the Fourier transform of the primordial curvature perturba-
tion for some scale ~k, set by initial conditions. The primordial curvature power spectrum is
parametrized as

PR(k) = AS
(
k

k∗

)ns−1

(1.151)

with AS the amplitude of the scalar power spectrum, ns the spectral index or scalar tilt and k∗
an arbitrary pivot scale. Then, the power spectrum associated with some perturbations δi(k, t)
is given by the equal time two-point correlation function

k3〈δi(~k, t)δ∗i (~k′, t)〉 = (2π)3δ(3)(~k − ~k′)2π2Pδi(k) (1.152)

and it is related to the primordial curvature power spectrum through the transfer function of
each species,

Pδi(k, t) = Θ2
δi
(k, t)PR(k) (1.153)

which depends only on the Universe’s content at cosmic time t. For scales such that k < aH(t)

at a time t (super-horizon modes), the curvature perturbation and gravitational potentials
remain constant. For sub-horizon scales k > aH(t), in a radiation-dominated era, density
fluctuations oscillate while the gravitational potentials exhibit dumped oscillations [88]. In a
matter-dominated Universe, gravitational potentials are constant while matter density fluctu-
ations grow due to gravitational instability as δm ∝ a but in the late accelerated Universe, cur-
vature and density fluctuations decay. This is all that we need to discuss the CMB anisotropies.

1.5.2 CMB spectrum and influence of species

At the time of decoupling, photons start to free stream in the Universe. The CMB spectrum is,
to a high degree of precision, a black body spectrum related to a BE distribution for photons,
frozen at the time of their last scattering. The intensity of the CMB signal as a function of the
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photon frequency ν, is nowadays given by

I(ν) = 4πν3
1

e2πν/T0 − 1
(1.154)

where the temperature of CMB today is accurately measured to be T0 = 2.72548± 0.00057 K
[89]. Very stringent limits can be put on any spectral distortion (mainly due to photons passing
through a hot plasma after or during recombination, the so-called Sunyaev–Zeldovich effect) of
the CMB black body spectrum. The CMB photons come from all directions, and the frequency
spectrum measured is very isotropic, signaling very homogenous conditions at the time of
photon decoupling. The first anisotropy in the reception of the CMB photons that have been
predicted and then measured is the CMB dipole. This effect comes from the peculiar velocity
of the Earth inside the (quasi)-homogeneous radiation bath from CMB. There are combined
effects of the proper velocity of Earth within the Solar system, of the Solar system in the
galaxy, and of our galaxy in the local group. This peculiar velocity induces a frequency shift
of the photons in the observation frame compared to their frequency at emission in the CMB
comoving frame, ν ′ = γν(1 + ~n · ~v), γ = 1√

1−v2 the associated Lorentz factor, p is the photon
momentum in CMB comoving frame, ~n its incoming direction and ~v the proper velocity of the
observer with respect to the CMB comoving frame. The velocity of the barycenter of the solar
system with respect to CMB v ' 370 km/s, therefore induces a dipole temperature anisotropy
in the intensity spectrum (

∆T

T0

)
dipole

∼ 10−3 . (1.155)

Beyond the astrophysical effects induced by structures on the path of the photons (lensing,
inverse Compton scatterings, etc.), smaller amplitude anisotropies of the temperature projected
on the CMB map have been observed first by COBE and WMAP and very precisely recently
by PLANCK, at the level of ∆T/T0 ∼ 10−5. The anisotropy in a given direction n̂ can be
understood from several combined effects [88] along the photon geodesic after its decoupling
from electrons. The combination of these effects is given by the general relation

∆T

T0
(n̂) =

[
1

4
δγ + (Ψ + Φ) + ~ub.n̂

]
(tdec, xdec) +

∫ t0

tdec

∂t (Ψ (t, x(t)) + Φ (t, x(t))) dt (1.156)

with ~ub the bulk velocity of baryons (electrons) at decoupling of the photon coming from
direction n̂. The first two terms in the bracket constitute the Sachs-Wolfe effect correspond-
ing to the gravitational redshift of photons escaping gravitational potential wells given lo-
cally by the Bardeen potentials. We can show that for adiabatic perturbations it provides
∆T/T0 = 1/3Ψ(tdec, xdec) depending only on the Newtonian potential at decoupling time on
the last scattering surface. The integral corresponds to the integrated Sachs-Wolfe effects when
photons propagate in a time-varying gravitational potential that induces a redshift when leav-
ing a potential well different from the blueshift caused when entering. This affects the largest
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modes that feel the most the expansion of space-time and, therefore time dependence on the
gravitational potentials. Finally, before recombination, baryons and photons are tightly cou-
pled in the plasma. Any baryonic overdensity fluctuation is amplified by gravitational collapse
in a patch of size given by the Jeans instability length, but is simultaneously repelled by the
radiation pressure of photon overdensity coupled to the baryon overdensity. The interplay of
the two effects generates acoustic oscillations (BAO) in the plasma, propagating at the speed
of sound cs. We can relate cs to the background densities of photons and baryons via

c2s =
ργ

3ργ + 4ρb
(1.157)

showing that CMB anisotropies are sensitive to the ratio of baryons to photons ηB at the time
of decoupling. The effect of the drag force of baryons on photons through the last term in the
bracket above induces oscillations in the photon bath as well.

To project the temperature anisotropies map into a single observable, we expand the direction
dependence n̂ of the temperature field in spherical harmonics Ylm(n̂) given by

T (x, t, ~n) = T̄ (t)
∑
l

l∑
m=−l

alm(x, t)Ylm(n̂) (1.158)

where alm are complex valued functions. We can define the angular power spectrum Cl(t)

〈alm(x, t)a∗l′m′(x, t)〉 = δll′δmm′Cl(t) . (1.159)

related to the two-point correlation function of CMB anisotropies between two angular direc-
tions in the sky via

1

T 2
0

〈∆T (n̂)∆T (n̂′)〉 = 1

2π

∑
l

(2l + 1)ClPl(n̂ · n̂′) (1.160)

with Pl(x) the Legendre polynomials. For a given primordial curvature power spectrum PR, one
can derive the transfer function, Θ2

T (k, l, t), for the photon temperature fluctuations today and
relate the angular power spectrum of temperature anisotropies with the primordial curvature
power spectrum

Dl(t0) =
l(l + 1)Cl(t0)

2π
=

∫
dk

k
Θ2
T (k, l, t0)PR(k) . (1.161)

This angular power spectrum is the main observable extracted from CMB data and provided
by Planck collaboration [90] in Figure 1.13.

This function depends on cosmological evolution after recombination through the transfer
function and on the primordial Universe through the initial conditions for perturbations via
PR(k). The value of the angular separation θ between two points in the CMB anisotropy map
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Figure 1.13: Angular power spectrum of the CMB temperature anisotropy map from Planck Collabo-
ration. In solid red line, the best fit to the spectrum in ΛCDM Cosmology. Figure taken from [90].

such that n̂ · n̂′ = cos θ is related to l ∼ π/θ. On large scales (low l), temperature fluctuations
from adiabatic perturbations lead through the ordinary Sachs-Wolfe effect to a near-scale-
invariant power spectrum related to the amplitude of the primordial curvature power spectrum

Dl '
1

25
AS , (1.162)

AS ' 2×10−9 from the Planck analysis26. Hence the temperature anisotropy power spectrum is
a probe of the primordial power spectrum. For increasing l we see oscillations, the BAO peaks.
The acoustic waves propagate in the plasma until the Compton scattering between baryons and
photons stops, then photons propagate freely but keep the imprint of the BAO on a sphere of
radius given by the sound horizon, rs(τ) at a given time τ

rs(τ) = a(τ)

∫ τ

0

csdt

a(t)
. (1.163)

This distance rs corresponds today in the CMB map to an angular size associated with the first
amplified peak in the spectrum. On the other hand, DM distribution is unaffected by photons
or baryons drag force and collapses in potential wells, further attracting the baryons. Hence, it
can still be seen as imprinted on large-scale structures in distributions of galaxies and galaxy
clusters through the measurement of the matter power spectrum [91]. Finally, we see an overall
damping of the CMB power spectrum, known as Silk-damping [92]. This effect is due to photon

26The spectral index ns is also constrained from low l CMB spectrum [15], ns = 0.9603± 0.0073.
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diffusion at small distances in the baryon-photon plasma that washes out overdensities on the
shortest distances and leading to an exponential damping of the spectrum for larger and larger
values of l.

Impact of the different components

The CMB power spectrum allows a precise estimate of the ΛCDM parameters. Indeed, the
angle on which a given perturbation scale in the CMB is projected depends on the distance
from the observer to the last scattering surface. This cosmological angular distance is strongly
affected by the content of the Universe throughout its history via

dA(z) =
1

z + 1

∫ z

0

dz′

H(z′)
. (1.164)

From Eq. (1.46), we clearly see that this angular distance depends strongly on Ω0
m, Ω0

Λ and H0.
The position of the first acoustic peak is given by

θ∗ =
rs

dA(z∗)
' 1◦ (1.165)

which is also dependent on the sound speed and so ultimately related to Ω0
b or ηb, allowing

to infer Ω0
CDM. We can show [88] that increasing the value of Ω0

CDM while keeping fixed the
other abundances induces a shift of the peaks towards larger scales (smaller l, on the left) while
at the same time reducing the height of the acoustic peaks, especially of the first one. This
important effect of DM on the CMB power spectrum is due to the gravitational pulling of
DM on baryons. On the contrary, keeping Ω0

m fixed but increasing Ω0
b (so decreasing Ω0

CDM)
results in a shift towards higher multiples l (smaller scales), and an enhancement of the peaks
due to the modification of the sound speed and increase drag force of baryons on photons. A
precise measurement of the CMB anisotropies shows the necessity of the presence of a DM
component that does not interact substantially with photons at the time of recombination
and decoupling. Furthermore, the presence of DM allows for the occurrence of the matter-
dominated era before CMB, which leads to an early growth of structure in DM potential wells,
with a strong gravitational effect on the baryon and photons later on. All these are strong
cosmological evidence for the existence of a DM component dominating the matter content of
the Universe.

Finally, using Friedmann equations (1.24), there is a fundamental relation between Ω0
Λ, H0

and the spatial curvature of the Universe

Ω0
K = 1− Ω0

Λ − Ω0
m (1.166)

showing that the contribution of ΩΛ to the power spectrum is related to the value of H0 and
to the spatial curvature Ω0

K = −k2/H2
0 . In fact, the angular distance is also very sensitive to
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the spatial curvature Ω0
K = −k2/H2

0 (see section 1.1) and CMB analysis combined with other
measurements of lensing and BAO analysis in large scale structures provide [15]

Ω0
K = −0.0005± 0.0066 (1.167)

which is compatible with flat Universe to a high degree of precision. Hence, one can infer the
value of Ω0

Λ using the concordance equation of ΛCDM paradigm, as it is illustrated in Figure
1.3, where different measurements are combined. The CMB observation is probably the main
evidence of DM and DE and the power spectrum analysis allows for a rigorous test of the
ΛCDM concordance model, while strongly constraining other alternative scenarios.

1.5.3 Evidences of inflation

We saw how successful and accurate is the explanation of the CMB data within the ΛCDM
paradigm. However, it relies on assumptions for the initial state of the perturbations of the
different species. They have to be adiabatic, with Gaussian statistics and the specific shape
of the primordial curvature power spectrum PR is not predicted by the standard Cosmology
scenario. Beyond this, the level of primordial anisotropy and so inhomogeneity is very small
∆T/T0 ' 10−5, while the typical size of the causally connected regions (the causal horizon) on
the last scattering surface is relatively small compared to the size of the horizon today. We can
estimate from the size of the horizon today dH(t0) ' 1026 m that at recombination, there were
more than 1000 disconnected patches, but with almost exactly the same state of equilibrium,
which seems highly improbable. We also arrive at the conclusion from CMB analysis that the
Universe today is spatially flat to a very high degree of precision Ω0 ' 0. Yet we also show that
ΩK(a) ∝ k2/a2 whereas radiation scales as ΩR(a) ∝ a−4, meaning that in the early Universe,
starting from small curvature today, it should have been tremendously smaller than radiation
density in the far past. We can compute that assuming an initial thermal Universe starting
at Planck scale (quantum gravity regime) the curvature has to be . 10−64 times smaller than
radiation energy density at that time [16]. This represents a problematic fine-tuning of the
initial conditions for the Universe.

These problems correspond to the fact that the expansion can only be decelerated in standard
Cosmological scenarios in the early Universe (at least for low DE energy density). Regarding
these apparent issues of the initial conditions in a hot thermal bath, simple scenarios were
proposed [93–95] that modify the very first instants of cosmological evolution to assume instead
a stage with an accelerated expansion that precedes the thermal Universe. They are now
described within the paradigm of cosmic inflation. We introduce inflationary models in more
detail in the next chapter, but it can be first described as a stage where a kind of cosmological
constant fluid with an energy density ΩΛ but a negative equation of state wΛ < −1/3 dominates
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the energy budget in the early Universe. As we saw from Eq (1.24), this results in

H2 ' 8πG

3
ρΛ = cst (1.168)

ä

a
= ρΛ > 0 . (1.169)

These conditions mean that ȧ = aH increases during inflation and the comoving Hubble radius
(aH)−1 decreases. Since the quantity a2H2 increases during inflation, ΩK(a) is rapidly driven
towards zero during this stage. After the inflationary era, the evolution of the universe is
followed by the conventional radiation domination phase, and ΩK/ΩR(a) begins to increase
again, but if inflation lasts sufficiently long, it can achieve a very small initial spatial curvature
for our observable Universe today, leading to its measured value today. We can recast this
condition on the duration of inflation between an initial scale factor ai to the end of inflation
at aend as

ai
aend

.
aend

a0
(1.170)

or through the number of e-folds during inflation defined as

N = ln aend

ai
& ln a0

aend
. (1.171)

During inflation, the physical wavelength aλ grows faster than the Hubble radius H−1. There-
fore, physical wavelengths are stretched outside the Hubble radius during inflation and pertur-
bations on these scales are frozen until reentering the Hubble radius later on. This is illustrated
in Figure 1.14, where we show the evolution of the comoving Hubble horizon and the crossing
of comoving scales during inflation, followed by their reentry in the subsequent history of the
Universe. Thus, causally connected regions can be much larger than the Hubble radius after
inflation. After inflation ends, during radiation and matter-domination eras, the Hubble radius
grows faster than the physical scales. To solve the horizon problem at CMB decoupling time,
the following conditions should hold∫ tdec

t∗

dt

a(t)
�
∫ t0

tdec

dt

a(t)
(1.172)

where t∗ is the time of the Hubble exit for the perturbations with the comoving pivot scale k∗.
This condition means that the comoving distance traveled by photons before decoupling needs
to be much larger than the one after the decoupling. Solving this condition leads approximately
to the same condition as Eq.(1.171), roughly satisfied for N & 50− 60 e− folds.

However, more than just solving these issues of the standard Big Bang scenario, inflation
models are predicting the generation of adiabatic cosmological perturbations originating from
quantum fluctuations of the inflaton field [97, 98]. These tiny quantum fluctuations also expand
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Figure 1.14: Evolution of the comoving horizon (black thin solid line) during and after inflation.
Different comoving scales labeled by k cross the horizon at different times during inflation and reenter
the horizon later on. An intermediate time between inflation and the radiation-dominated era, the
reheating stage, is represented in orange. Figure taken from [96].

and freeze on super-horizon scales before reentering the Hubble radius after inflation ends, as
shown in Figure 1.14. The simplest inflationary models predict a near scale-invariant curvature
power spectrum from inflaton fluctuations, as we will see in section 2.1, that exactly matches the
required initial conditions for the perturbations at the origin of the observed CMB anisotropies.
On top of these curvature perturbations naturally predicted by inflationary models, quantum
fluctuations of the free gravitational field (tensor modes) are also expected to be excited during
inflation and stretched through the same mechanism under accelerated expansion. This should
result in the generation of a stochastic background of primordial GWs with an associated
tensor power spectrum, expected to be also scale invariant and related to the Hubble scale
during inflation HI . The ratio of the amplitude of the tensor to scalar power spectra

r =
AT
AS

(1.173)

is one of the main predictions of slow-roll inflationary models. The re-entry of tensor modes ex-
citations inside the Hubble radius before recombination induces a small quadrupolar anisotropy
in the radiation bath through the small metric perturbations it induces, which can polarize the
photons as they scatter close to recombination. The so-called B-polarization pattern is a unique
signal in CMB photons of tensor modes perturbations on large scales at decoupling 27. The

27Lensing of E polarization modes also induces B polarization, hence it is difficult to subtract this irreducible
contribution to the polarization of CMB photons to observe the only tensor mode perturbations, especially on
small scales.
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current generation of CMB experiments has not yet observed such polarization of the CMB
photons from primordial origin. Future CMB experiments such as LiteBird will constrain the
spectrum of polarized CMB photons looking for a signal from inflation and will at least put an
upper bound as small as r < 0.002 [99].

The predictions and mechanisms introduced here are the main motivations for studying the
inflationary paradigm and explaining the first instants of the Universe’s evolution. In the
context of an inflationary Universe, we must also understand the transition between inflation
and a radiation-dominated Universe, which is the reheating mechanism, the core of this thesis.
We introduce and discuss these mechanisms in the next chapter of the thesis.
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Inflation was introduced in different works [93–95] as a simple solution to the cosmological
problems that we discussed at the end of the precedent chapter. It is now a very general
paradigm based on semi-classical Physics and Quantum Field Theory (QFT) in curved space-
time, that has provided a framework to link cosmological observations to quantum effects taking
place in the very early Universe. Inflation can be viewed and modeled in many different phe-
nomenological ways. The most common approach is to consider that an inflationary phase
occurs thanks to the dynamics of a scalar field, which can be studied through some exten-
sion of the SM in the UV such as Higgs-inflation [100] Supersymmetry (SUSY), Supergravity
(SUGRA), String Theory or GUT. In such extensions of the SM, we can use inflation as a way
to understand both features of quantum gravity or BSM Particle Physics at high energy scales.
The inflationary paradigm not only provides an excellent way to solve the standard flatness
and horizon problems of Cosmology but also predicts the existence of density perturbations
as seeds for large-scale structures. Quantum fluctuations of the inflaton field are stretched
on large scales by the accelerated expansion and frozen when leaving the Hubble radius, be-
fore reentering the horizon after the end of inflation providing the initial conditions for CMB
anisotropies and the growth of structures. An important prediction of single-field inflation is
that density perturbations are adiabatic and exhibit a nearly scale-invariant power spectrum.
This prediction is directly probed by the measurement of the temperature anisotropies in the
CMB from high-precision observations, as we discussed in section 1.5.

In the first part of this chapter, we introduce the main paradigm of single-field slow-roll infla-
tion, which is a broad phenomenological framework allowing for cosmological predictions and
observational tests, and that is a natural and successful theory for setting the initial conditions
of the Big Bang Cosmology. We first discuss the semi-classical approach to follow the inflaton
dynamics during its slow roll, resulting in a quasi-de Sitter phase of accelerated expansion,
before looking at the generation of cosmological perturbations from quantum fluctuations dur-
ing this regime. Furthermore, we describe a specific example of large-field inflationary models
motivated by SM UV completion and quantum gravity, which accommodates the current CMB
data and belongs to a class of attractor solutions called α-attractor T-models.

In the second part, we are naturally led to the question of the transition from a Universe
dominated by vacuum energy of a single scalar field towards the early stage of the radiation
domination, where a hot thermal plasma of relativistic SM particles has been produced and
is further described in section 1.2. This transition is called reheating after inflation, and it
is the main subject of the work done in this thesis. We introduce in this part the dynamics
of the inflaton after the stage of slow-roll in large field models once it starts to fall towards
the minimum of its potential and oscillates coherently. We further investigate the possible
perturbative couplings between the inflaton and matter (as well as DM) that allow for the
transfer of energy from the inflaton towards the other degrees of freedom. We also discuss non-
perturbative effects in this system of coupled fields through the non-linear dynamics triggering
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instabilities and resonances, as well as the fast evolution of the occupation number of the
fields coupled to the inflaton background. We finally present the effect of different shapes of
the inflaton potential near the minimum, especially by looking at a mixed potential where a
transition of the equation of state occurs during reheating.

2.1 Inflation and initial conditions

In this section, we review the framework of inflationary models in their simplest scenario of
single scalar field dynamics. Inflation is a simple phenomenological idea that the Universe
should grow exponentially under accelerated expansion in its very first instants. In Einstein’s
gravity, this requires a negative pressure cosmological fluid or, equivalently, a nearly constant
energy density throughout the expansion. From Friedmann equations Eq. (1.24) we understand
that an accelerating expansion phase requires

ä

a
> 0⇔ (ρ+ 3P ) < 0 . (2.1)

Hence, an accelerating period is achieved only if the overall pressure P of the cosmological
fluid is negative P < −ρ/3 or equivalently if the equation of state is w < −1/3. Neither a
relativistic gas nor a cold matter dust for which P = ρ/3 or P = 0 respectively can satisfy
such a condition. We will see how a scalar field evolving in a specific potential can reproduce
such a vacuum energy density with negative pressure. In order to study the properties of the
period of inflation, we can assume the extreme condition P = −ρ which is the equation of
state of a cosmological constant dominating the Universe evolution. A Universe for which the
main component satisfies P = −ρ is called de Sitter Universe. The Friedmann equations (1.24)
together with the continuity equation (1.22) for the cosmological constant fluid gives during
the de Sitter phase ρ = cst and so a constant Hubble rate of expansion H = cst. As a result,
we obtain the exponential evolution of the scale factor during the de Sitter phase

a(t) = aie
HI(t−ti) (2.2)

where ti is the time at which de Sitter inflation starts. In this section, we describe the physics of
a single scalar field that can achieve such conditions of quasi-de Sitter Universe while dominating
the Universe in the early times.
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2.1.1 Single-field inflation and the slow-roll regime

The simplest models of inflation involve a single scalar field φ, which is called the inflaton. The
dynamics of a scalar field minimally coupled to gravity are governed by the action

S = SEH + Sφ =
∫
d4x
√
−g
[
−M

2
P

2
R +

1

2
∂µφ∂

µφ− V (φ)

]
(2.3)

which is the sum of the Einstein-Hilbert action of minimal gravity Eq.(1.7) with the action of
a scalar field evolving in the potential V (φ), which can lead to the accelerated expansion of the
Universe. We first consider models minimally coupled to gravity, with canonical kinetic terms
for the scalar field1. From the Euler-Lagrange equations we obtain the classical Klein-Gordon
equation of motion of the scalar field

δSφ
δφ

= 0 =⇒ φ̈+ 3Hφ̇− ∇
2φ

a2
+ V ′(φ) = 0 (2.4)

where the term 3Hφ̇ is a dissipation term due to the expansion of the Universe. The variation
of the inflaton action under a metric transformation δgµν allows us to define the scalar field
stress-energy tensor (the source of the gravitational field) from Eq.(1.8)

T φµν ≡
2√
−g

δSφ
δgµν

= ∂µφ∂νφ− gµνLφ . (2.5)

The corresponding energy density of the inflaton and its pressure density are

ρφ ≡ T00 =
1

2
φ̇2 + V (φ) +

1

2

(∇φ)2

a2
(2.6)

Pφ ≡
1

3
T ii =

1

2
φ̇2 − V (φ)− 1

6

(∇φ)2

a2
. (2.7)

However, isotropy and homogeneity conditions for the background dominant component of the
Universe require that the background component of the scalar field depends only on t. We are
naturally led to split the inflaton field in

φ(x, t) = φ̄(t) + δφ(x, t) (2.8)

where φ̄(t) is the VEV of the inflaton field seen as a quantum field in the isotropic and ho-
mogeneous vacuum of FLRW space-time. This physical state can be seen as a Bose-Einstein
condensation of the system into the lowest energy state (the zero mode state of infinite wave-
length), which can be treated quite as a classical field. On the other hand, δφ(x, t) represents the

1We consider in chapter 3 how non-minimal couplings to gravity can be redefined using a conformal trans-
formation of the metric, into a modification of the kinetic term or a modification of the potential of the scalar
field.
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fluctuations of the inflaton field around its VEV, which have to be quantized in a proper QFT
treatment of the inflaton field. As usual, we consider these perturbations to be of small wave-
length and small amplitude, not destabilizing the classical trajectory of the scalar inflaton field
on large scales such that we treat them as small perturbations on top of the background. For
inflationary dynamics, we are mainly concerned with the evolution of the classical background
field φ̄(t), which we will call φ(t) for simplicity from now on. This scalar condensate provides
the classical background configuration sourcing the Einstein-Friedmann equations during infla-
tion, and that evolves in the effective potential2 given by V (φ). For a homogeneous classical
scalar field, we have to drop the gradient terms, and the Klein-Gordon equation reduces to

φ̈+ 3Hφ̇+ V ′(φ) = 0 (2.9)

while the density and pressure are given only by

ρφ =
1

2
φ̇2 + V (φ) (2.10)

Pφ =
1

2
φ̇2 − V (φ) . (2.11)

Thus, we obtain that the equation of state of the Universe dominated by the inflaton is given
by the ratio

wφ ≡ Pφ/ρφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.12)

Accelerated expansion requires ä > 0 which implies w < −1/3, and we see that it can be
achieved if φ̇2 < V (φ). Especially, if we can neglect the kinetic energy of the scalar field
dominated by its potential energy, we have Pφ ' −ρφ ' V (φ). Therefore, a scalar field stuck
into a region of the field space of non-zero potential mimics the effect of a cosmological constant
in terms of density and pressure, resulting in a quasi-de Sitter phase.

If we require that φ̇2 � V (φ), the scalar field starting in such a region of the field space is
slowly rolling down its potential. This phase of slow-roll is naturally satisfied if the potential
is sufficiently flat, ensuring that the rolling of the field is slow due to dissipation from the
expansion. For a slow-roll inflation duration sufficiently long to solve classical cosmological
problems (see section 1.5), we demand that the kinetic energy remain small, and so the change
of φ̇ during expansion should satisfy |φ̈/φ̇| � H. Hence we impose the slow-roll conditions
φ̇2 � V (φ) and |φ̈| � |3Hφ̇| such that the new equation of motion becomes

3Hφ̇ ' −V ′(φ) . (2.13)

2We note that quantum effects that renormalize the potential at high energies have to be coherently included
into the effective potential, and we consider here the effective theory of a classical field fully specified by the
effective potential.
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The slow roll conditions also impose that

V ′(φ)2

V (φ)
� H2(φ) (2.14)

|V ′′(φ)| � H2(φ) (2.15)

which gives the flatness conditions on the inflaton potential that must be satisfied during slow-
roll inflation. To describe generically this slow-roll regime, we define dimensionless potential
parameters

εV ≡
M2

P

2

(
V ′(φ)

V (φ)

)2

(2.16)

ηV ≡M2
P

(
V ′′(φ)

V (φ)

)
(2.17)

which have to satisfy εV � 1, |ηV | � 1 during slow-roll. Equivalently, noticing that ä =

a(Ḣ +H2), the accelerating expansion condition induces that

εH ≡ −
Ḣ

H2
= −d lnH

dN
< 1 (2.18)

where we also define the first slow-roll parameter εH , as the first logarithmic derivative of the
Hubble rate with respect to the number of e-folds N ≡ ln a/ai. To achieve sufficiently many
e-folds of inflation (see section 1.5), we need εH to be much less than 1 for long enough. The
second slow-roll parameter quantifies the rate of change of εH

ηH ≡
ε̇H
HεH

=
d ln εH
dN

(2.19)

and has also to satisfy ηH < 1. We can show that for successful slow-roll inflation, the conditions
on potential parameters εV � 1, |ηV | � 1 are equivalent to εH � 1 and |ηH | � 1 and the
slow-roll parameters are related via

εH ' εV (2.20)
ηH ' 4εV − 2ηV . (2.21)

Within the slow-roll approximation, the expansion during the domination of the inflaton energy
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density is exponential

eNend =
aend

ai
= exp

[∫ tend

ti

H(t′)dt′
]

(2.22)

' exp
[∫ φend

φi

− 1

M2
P

V (φ)

V ′(φ)
dφ

]
' exp

[∫ φi

φend

1√
2εV

dφ

MP

]
where we use the subscript φend to refer to the field value at the end of inflation and φi at the
beginning of inflation, assuming 0 < V (φend) < V (φi) and φend < φi. If the value of the inflaton
changes on a range larger than ∆φ ∼ MP , we can obtain large e-foldings solving the flatness
and isotropy issues3. The fluctuations observed at the CMB pivot scale k∗ are created about
N∗ e-folds before the end of inflation

N∗ '
∫ φ∗

φend

dφ√
2ε∗V
' 40− 60 . (2.23)

Hence, to solve the horizon and flatness problems, we require that the total number of e-folds
exceeds about 50. The precise value depends on the energy scale of inflation and on the details
of reheating after inflation, as we discuss in section 2.3.

So far, we haven’t specified the form of the inflaton potential. Since the first models of
inflation (some of them have been ruled out by CMB constraints or by the problem of inflation
ending) many varieties of inflationary models have been proposed. The different kinds of single-
field inflationary models can be classified into three types, depending on the trajectory of the
field and the shape of the potential. The first class consists of the “large field” models, in
which the initial value of the inflaton is displaced from its minimum by a large (superplanckian
φi > MP ) value, and it slowly rolls down toward the potential minimum while decreasing.
For the rest of this thesis, we will consider such a scenario associated with a specific type of
potential introduced in the last part of this section. The second class consists of the “small
field” models, in which the inflaton field is initially small (subplanckian φi < MP ) and slowly
evolves toward the potential minimum at larger values of the field. It seems more complicated
for such scenarios to easily accommodate the CMB constraints on the scalar tilt ns and the
tensor-to-scalar ratio r (see section 1.5). We illustrate the two kinds of potential shapes for the
large field and small field models, respectively, in Figure 2.1. The third class consists of the
hybrid inflation models, in which inflation typically ends through the combined dynamics of a
second scalar field which can trigger a phase transition that leads to inflation exit.

3We note that large field values φ > MP do not mean that quantum gravity corrections become important
to follow the inflaton trajectory. This would happen if the energy density (potential) of the scalar condensate
is ∼M4

P . This can be avoided with sufficiently small self-coupling of the inflaton.
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Figure 2.1: The large field inflation models (Left) versus small field inflation models (Right), while the
inflaton is falling towards the minimum of its potential energy. Figure taken from [101].

Now that we have discussed how the dynamics of a homogeneous scalar condensate slowly
rolling down its flat potential can explain the accelerated expansion of the Universe, we suc-
cinctly present the main predictions of such kind of models at the level of quantum fluctuations
and the resulting cosmological perturbations.

2.1.2 Cosmological perturbations from inflation

We now look at the small perturbations of the scalar field δφ(x, t) around its VEV that will lead
to the generation of cosmological perturbations, enabling us to distinguish between different
inflation models in their predictions for such seeds of structures on large scales. As we already
mentioned in section 1.5, the tiny anisotropies measured in the CMB can be explained within the
inflationary paradigm as originating from quantum fluctuations stretched to cosmic sizes during
inflation, and that persist long after inflation ends due to their freezing outside the Hubble
radius. The generation of adiabatic perturbations, or equivalently curvature perturbations, is a
generic prediction of inflation models. It can be easily understood from the presence of a single
field φ, the inflaton, that sources such perturbations of curvature during inflation. Secondly, the
distribution among scales of such primordial perturbations is expected to be near-scale invariant
from slow-roll inflation, with Gaussian statistics. Let us describe in more detail where it comes
from.

Scalar perturbations

We start with the classical equation of motion for the inflaton perturbations during inflation.
Developing the inflaton field as Eq.(2.8) and injecting this decomposition in the Klein-Gordon
equation for the inflaton field, we find that the perturbations of the inflaton evolve as [14]

δφ′′ + 2aHδφ′ +
(
k2 + a2V ′′(φ)− 6εHa

2H2
)
δφ = 0 (2.24)
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where the derivatives are conformal time derivatives d
dη

, such that dt = adη, and k is the
comoving momentum associated with the dispersion relation for the inflaton perturbation.
Defining the field X ≡ aδφ, we can rewrite this equation as a harmonic oscillator but with
time-dependent frequency due to expansion,

X ′′ +

(
k2 + a2m2

φ − 6εHa
2H2 − a′′

a

)
X = 0 (2.25)

where we define m2
φ ≡ V ′′(φ). The time-dependent frequency for each mode is ω2

k = k2+a2m2
φ−

6εHa
2H2 − a′′/a. We canonically quantize such fluctuations introducing the associated modes

function v(k, η)

X̂(~k, η) = v(k, η)â~k + v∗(k, η)â†~k (2.26)

where â†~k, â~k are the creation and annihilation operators associated to the field X̂. They obey
the canonical commutation relations such that

〈X̂(~k, η)X̂(~k′, η)〉 = |v(k, η)|2(2π)3δ(3)(~k − ~k′) (2.27)

and the mode functions satisfy the following equation of motion

v′′ + ωk(η)
2v = 0 . (2.28)

To solve this equation and obtain the evolution of the mode functions as a function of conformal
time η, we have to first solve Friedmann equations during the quasi-de Sitter phase of inflation
to express the scale factor evolution. From the definition of the slow roll parameter εH = − Ḣ

H2 ,
one can show that during slow roll a′′/a ∼ η−2(2 + 3εH) [102]. Besides, ηV � 1 during slow-
roll, so we have necessarily m2

φ � H2 implying for sub-Hubble scales k2 � a′′/a ∼ a2H2 that
the frequency is approximately constant ω2

k ∼ k2. Thus, we find that UV fluctuations with
wavelength well within the horizon oscillate as in flat space-time, with plane wave solutions for
the mode equation

v(k � aH, η) =
e−ikη√
2k

. (2.29)

We call such a solution the Bunch-Davies vacuum solution with the proper normalization of
the modes. In the generic case Eq.(2.28) can be written as [102]

v′′ +

(
k2 − 1

η2

(
ν2φ −

1

4

))
v = 0 (2.30)

with νφ ' 3
2
+ 3εV − ηV , using 3ηV = m2

φ/H
2 and εH ' εV . The generic solution for this

differential equation is given by

v(k, η) =
√
−ηA(k)H(1)

νφ
(−kη) +

√
−ηB(k)H(2)

νφ
(−kη) (2.31)
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with Hν(x)
(1) and Hν(x)

(2) the Hankel’s functions of the first and second kind, A(k) and B(k)

being integration constants. We impose Bunch-Davies boundary conditions at early times for
each mode −kη � 1, corresponding to modes well within the horizon, and obtain the later
evolution

v(k, η) =

√
π

2
ei(νφ+1/2)π

2
√
−ηH(1)

νφ
(−kη) =⇒ lim

k�aH
v(k, η) ∝ 1√

2k
(−kη)

1
2
−νφ (2.32)

where we expressed at the end the limit for super-horizon modes. As a consequence, going back
to the perturbations of the inflaton field, we obtain

|δφk| '
H√
2k3

(
k

aH

)3/2−νφ
(k � aH) (2.33)

which is the main result of the evolution of perturbations of the inflaton on super-horizon scales.
This result shows that we can neglect the time evolution of the perturbation once it crosses the
horizon, and a near-constant amplitude of the quantum perturbations on super-horizon scales
leads rapidly to a large occupation number of the modes, for which the classical treatment
of such perturbations becomes accurate. Defining the (dimensionless) power spectrum of the
inflaton perturbations, Pφ, as

〈0|δφkδφk′ |0〉 = (2π)3δ(3)
(
~k − ~k′

)
|δφk|2 ≡ (2π)3δ(3)

(
~k − ~k′

) 2π2

k3
Pφ . (2.34)

we can compute it on scales k � aH,

Pφ ≡
k3

2π2
|δφk|2 =

(
H

2π

)2(
k

aH

)3−2νφ
(k � aH) . (2.35)

The power spectrum of fluctuations of the scalar field δφ is nearly independent of the scale k:
the amplitude of the fluctuation on super-Hubble scales does not depend on the time at which
the fluctuations cross the Hubble radius. There is still a mild scale dependence coming from
the small evolution of the Hubble rate during inflation

dPφ
d ln k

≡ ns − 1 = 3− 2νφ = 2ηV − 6εV (2.36)

which defines ns the scalar tilt for perturbations, related to slow-roll parameters. It is useful
to consider, instead of the scalar field perturbations, the gauge-invariant comoving curvature
perturbation related to the gravitational potential as introduced in CMB analysis (see section
1.5), which describes adiabatic perturbations of energy densities. During inflation we can show
that it is related to the scalar field perturbation as [14]

R = −aH
φ̄′
δφ (2.37)
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and this quantity is conserved on the super-horizon scales after inflation until the reentry of the
corresponding mode within the horizon [14]. When a mode leaves the horizon during inflation, it
will reenter the horizon later on, carrying the frozen information coming directly from the time
it exited the horizon during inflation. Finally, the initial conditions for the comoving curvature
perturbation, sourcing CMB anisotropies, are characterized by the comoving curvature power
spectrum (see section 1.5)

PR =

(
aH

φ̄′

)2

Pφ '
1

2M2
P εV
Pφ . (2.38)

Therefore, single-field slow-roll inflation predicts near-scale-invariant adiabatic perturbations,
characterized by the comoving curvature power spectrum. It is usually parametrized considering
the exit of the CMB pivot scale k∗, through Eq.(1.151)

PR = AS
(
k

k∗

)ns−1

(2.39)

with AS the scalar power spectrum amplitude. We can relate the amplitude to the potential

AS '
V (φ∗)

24π2M4
P εV ∗

(2.40)

where the quantities with subscript ∗ are defined at pivot scale horizon crossing k∗ = aH.

Primordial Gravitational Waves

The metric perturbations can be split into scalar, vector, and tensor parts according to their
transformation properties in space, on hypersurfaces of constant time. The decomposition theo-
rem proves that the Einstein equations for the scalar, vector, and tensor parts of the perturbed
metric are decoupled in linear perturbation theory. We saw how scalar perturbations of the
metric, the curvature perturbation, are sourced by the perturbed scalar inflaton field during in-
flation. We can show that no vector perturbation is sourced during single-field inflation. Hence,
we are left with independent tensor perturbations that can be excited during the quasi-de Sitter
phase. They correspond initially to quantum fluctuations |h̃TTij | � 1 in the metric field, which
are transverse and traceless (massless tensor modes)

ds2 = a2(η)
[
dη2 − (δij + h̃TTij )dxidxj

]
. (2.41)

We first normalize these tensor modes to hij = MP

2
h̃ij �MP , which correspond to the canoni-

cally normalized gravitons propagating in Minkowski flat space-time. The two transverse trace-
less tensor degrees of freedom can be represented by the two polarization modes h+(k, η) and
h×(k, η). They both follow the equation of motion derived from perturbed Einstein equations
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[14]

h′′ + 2
a′

a
h′ + k2h = 0 (h = h+, h×) (2.42)

which is the equation of motion of a massless scalar field during inflation. We follow the
procedure done for scalar perturbations in the precedent part, introducing the rescaled field
X = ah, to obtain the mode equation for each polarization

v′′ +

(
k2 − a′′

a

)
v = 0 . (2.43)

Once they enter the classical regime, these tensor perturbations can be seen as primordial
gravitational waves (GW) generated during inflation. From the analysis done for the scalar
perturbations, we obtain the corresponding dimensionless tensor power spectrum on super-
horizon scales

PT ≡
∑
+,×

k3

2π2
|h̃|2 = 8

(
H

2π

)2(
k

aH

)3−2νT
(k � aH) (2.44)

with νT ' 3/2− εV for slow-roll inflation. The tensor spectral index nT is given by

nT ≡
d lnPT
d ln k

= 3− 2νT ' −2εV (2.45)

where the last relation is called the slow-roll consistency relation. We can show [14] that
the tensor perturbations are also frozen when they leave the horizon during inflation, before
reentering the horizon later on. Thus, slow-roll inflation also predicts primordial gravitational
waves, independent of the curvature perturbation (at linear order), with a near-scale invariant
power spectrum as initial conditions. As for comoving curvature perturbations we parametrized
the initial tensor power spectrum at the horizon crossing of the CMB pivot scale

PT = AT
(
k

k∗

)nT

. (2.46)

where AT = V (φ∗)
24π2M4

P
. We understand that the amplitude of the tensor power spectrum is, this

time, independent of the slow-roll parameters and is a direct probe of the scale of inflation HI .
We can define the ratio of the amplitudes of tensor to scalar power spectra as in Eq.(1.173)
and obtain

r ≡ AT
AS

= 16εV ∗ . (2.47)

These are the main predictions of the inflationary paradigm that can be constrained by CMB
observations, as we discussed in section 1.5.
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2.1.3 A specific class of potential: α attractor T-models

We discuss one specific class of models that are well motivated by UV Physics in the realization
of noscale supergravity and that predict inflation observable in agreement with CMB data. The
measurements of the tilt of the primordial scalar power spectrum ns = 0.9649 ± 0.0042, and
the strong constraints from the absence of signal of primordial tensor modes by the Planck
Collaboration [103], r < 0.056, favor a large field inflation model with a very flat potential as
a large field plateau, and a quite low energy density HI . 6 × 1013 GeV ⇔ V(φ � MP) .

(1.6 × 1016 GeV)4. In this perspective, interest is growing for inflation models belonging to a
class of solutions, including the Starobinsky model [93], that predict low tensor to scalar ratio
and converge to the slow-roll attractor predictions

ns ' 1− 6εV ∗ + 2ηV ∗ ' 1− 2

N∗
− 3

2N2
∗

(2.48)

r ' 16εV ∗ '
12

N2
∗
. (2.49)

where N∗ is the number of e-folds between the horizon crossing of the pivot scale k∗ used in
CMB data analysis and the end of inflation. We first describe the original Starobinsky model
and then show how it can be embedded into a more general class of potential resulting from
noscale supergravity construction.

Starobinsky Inflation

Starobinski proposed in [93] a modification of the Einstein-Hilbert action Eq.(1.7), in order to
capture UV quantum gravity effects into an effective higher dimension operator proportional
to the squared of the Ricci scalar,

S =

∫
d4x
√
−g
[
−M

2
P

2
R +

ξ

12
R2

]
. (2.50)

The theory is, in fact, conformally equivalent to Einstein’s gravity but with an additional
dynamical scalar field φ evolving in an exponentially flat potential. Indeed, this can be seen by
introducing the auxiliary (non-dynamical) field, χ, with the following action [16]

S =

∫
d4x
√
−g
[
−M

2
P

2
R

(
1 + ξ

χ2

M2
P

)
− β

4
ξχ4

]
(2.51)

where χ satisfies the Lagrange constraints

χ2 = − ξ
β
R (2.52)
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leading to the original theory for β = 3ξ. As we have introduced a modification of the effec-
tive Planck scale in the action expressed in the Jordan frame, it is useful to perform a Weyl
(conformal) redefinition of the metric

g̃µν = Ω2gµν (2.53)

Ω2 ≡ 1 + ξ
χ2

M2
P

(2.54)

to look at the theory in the new frame called the Einstein frame, associated with the redefinition
of the coordinates. We can show that transforming R→ R̃ through the conformal transforma-
tion of the metric, and defining the new scalar degree of freedom as φ =

√
3
2

ln (1 + ξ χ2

M2
P
), we

obtain the Einstein frame action,

S =

∫
d4x
√
−g̃
[
−M

2
P

2
R̃ +

1

2
g̃µν∂µφ∂

µφ− V (φ)

]
(2.55)

with

V (φ) =
3

4
m2
φM

2
P

(
1− e−

√
2
3

φ
MP

)2

(2.56)

which is the Starobinsky potential, where m2
φ =

M2
P

ξ
[93]. This potential is flat at large field

values φ � MP with V (φ) ' 3
4
m2
φM

2
P , while it is at leading order in φ � MP , quadratic near

its minimum V (φ) ' 1
2
m2
φφ

2. This potential provides the slow roll parameters and inflationary
predictions given above Eq.(2.49).

Generalizing Starobinsky model: α-attractor T-models

A class of models that generalize the Starobinsky effective potential can be constructed within
the framework of noscale supergravity [104, 105]. We do not give any details of the supergravity
construction which is far beyond the scope of this thesis, but we review the ingredients necessary
to lead to the T-models potential for the effective scalar inflaton, following [87]. In N = 1

supergravity, the scalar sector can be described by a superpotential W , and the Kähler potential
K, for which we consider the form

K = −3 ln
(
T + T − |χ|

2

3

)
(2.57)

where T is a volume modulus and χ is a matter field [87, 104]. We can find the scalar effective
potential considering the Wess-Zumino-like superpotential4

W =M

(
χ2

2
− χ3

3
√
3

)
(2.58)

4We work in units of MP here, but we reintroduce the Planck scale later on.
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is given by

V (χ) =
|∂W
∂χ
|2

(T + T − |χ|2
3
)2
→ V (φ) =

3

4
M2

(
1− e−

√
2
3
φ

)2

(2.59)

where we used the field redefinition χ =
√
3 tanh

(
φ√
6

)
and considered that the modulus is

stabilized at 〈T 〉 = 1/2 [87, 104]. This shows that the effective Starobinsky potential can
arise from such a supergravity construction for simple superpotential. A generalization of the
effective scalar potential with the same attractor predictions Eq.(2.49) can be derived from the
generic superpotential [87]

W = 2
k
4
+1
√
λ

(
χ

k
2
+1

k + 2
− χ

k
2
+2

3(k + 6)

)
(2.60)

leading for φ to the effective inflaton potential

V (φ) = λM4
P

[√
6 tanh

(
φ√
6MP

)]k
(2.61)

where we restored the Planck mass dimension for clarity of the result. This reduces to the
Starobinsky model for k = 2 and a suitable choice of λ, but still provides similar plateau
potential at large field values for all k. More precisely, it generates the same inflationary
predictions from slow-roll parameters (with a very mild dependence on the free parameter k).
However, for φ � MP and k > 2, different leading order monomial terms dominate the shape
of the potential near the minimum as V (φ � MP ) ' λM4

P

(
φ
MP

)k
. We provide in Figure 2.2

the shape of the potential for T-attractor models with different values of k. For such potential
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Figure 2.2: Inflaton potential for T-models Eq.(2.61), for different values of k.
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of the inflaton, in the slow-roll approximation, the number of e-folds Eq.(2.23)

N∗ '
∫ φ∗

φend

1√
2ε

dφ

MP

' 3

2k
cosh

(√
2

3

φ∗
MP

)
(2.62)

and the amplitude of the curvature primordial power spectrum is related to the potential via

AS∗ '
V (φ∗)

24π2ε∗M4
P

(2.63)

giving approximately [106] the normalization of λ

λ ' 18π2AS∗
6k/2N2

∗
. (2.64)

We remind the Planck pivot scale value k∗ = 0.05 Mpc−1, and the amplitude of the scalar
power spectrum is measured to be ln (1010AS∗) = 3.044 [103]. In the next section, we will be
interested in the late-time dynamics of the inflaton φ as inflation ends, and one must find the
inflaton field value at the end of inflation when ä = 0⇔ φ̇2 = V (φ). An approximate solution
for this condition gives [106]

φend '
√

3

8
MP ln

[
1

2
+
k

3

(
k +
√
k2 + 3

)]
(2.65)

for the T-models potential considered above.

Throughout the work done in this thesis, we adopt the T-models as a benchmark model to the
effective potential for the inflaton field, and we consider different values of the free parameter
k. This leads to interesting phenomenology during the coherent oscillations of the inflaton after
inflation, during reheating.

2.2 Post-inflationary reheating

Inflation is a very successful and predictive theory for the initial conditions of Big Bang Cos-
mology. However, a complete inflationary model requires in addition a mechanism for ending
the quasi-de Sitter era and explaining the transition towards the thermal Universe. Indeed, the
period of exponential expansion must end with an efficient transfer of the energy stored in the
inflaton condensate during inflation, into the different components of a thermal bath filling the
Universe in its further evolution. Inflation ends when the potential energy associated with the
inflaton field becomes smaller than its kinetic energy, making the slow-roll regime end. This
is possible as the scalar inflaton field falls towards the minimum of its potential and when its
motion leads to reaching the condition εH = 1 and ηH = 1, ending the accelerated expan-
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sion of the Universe. In the standard approach it is considered that the homogeneous inflaton
condensate begins to oscillate about the minimum of its potential after this time. Within the
inflationary paradigm, all elementary particles populating the Universe must be generated after
inflation. Therefore the cold inflaton condensate must decay into matter and radiation made of
particles of the SM and potentially of dark sectors. The matter and radiation produced must
also reach afterward a thermal equilibrium at a temperature greater than T & 1 MeV to allow
for the standard BBN mechanism to proceed (see section 1.2.3). The crucial transition from
the state of inflaton condensate domination at the end of inflation to the hot thermal bath is
called reheating.

This reheating process is completed when almost all the energy of the scalar inflaton field
is transferred to relativistic particles. At this stage, the effective temperature (more precisely,
the associated energy density of relativistic particles) of the Universe is called the reheating
temperature TRH, which is the main prediction of reheating models. We underline that the
main challenge of reheating models is to deal with a system of coupled fields in a semi-classical
regime of large occupation numbers, but still with important consequences of quantum effects.
This has led to two kinds of approach: an analytical approximation under the assumption
of perturbative analysis, using Hartree approximation to tackle backreactions in the quantum
evolution of coupled fields as well as time-dependent effective masses; on the other hand, solv-
ing the full set of coupled equations of motion to follow the non-linear and non-perturbative
dynamics of the system in a classical regime. This usually requires dedicated numerical tools,
especially modern Lattice simulations. Moreover, the assumptions of single-field slow-roll infla-
tion and the predictions of cosmological observables associated with this simplest model may
be impacted by the stage of non-linear dynamics of coupled fields towards the end of inflation.
More precisely, the departure from the single-field approximation in coupled systems may lead
to non-Gaussianities in the statistics of cosmological perturbations (for reviews, see [107–109])
and a signal of non-linearities in the perturbation spectrum. The study of primordial non-
Gaussianities generated during inflation or from reheating dynamics is far beyond this thesis’s
work, and we will not investigate these constraints further in the following.

In this section we introduce the standard treatment of energy transfer from the inflaton
condensate to the coupled fields. We begin with the perturbative approach to reheating which
is valid in the small couplings limit. This is the main framework followed throughout this thesis,
as we will consider very feeble coupling in the main part of this work along chapter 3. Still, we
show the importance of non-perturbative effects in some preheating models originating from the
coherent state of the inflaton condensate while it oscillates. These effects include parametric
resonances which lead to exponential growth of the occupation numbers of the coupled fields.
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2.2.1 Inflaton oscillations

Let us focus on the inflaton potential given in Eq.(2.61) for T-models. At the end of inflation,
when ä = 0, the scalar inflaton condensate starts to oscillate around the minimum of its
potential. Around this minimum, the potential can be expanded at small field values as

V (φ�MP ) ' λM4
P

(
φ

MP

)k
(2.66)

which is quite generic for other inflationary potentials. For example, Starobinsky inflation
corresponds to k = 2 for which the inflaton has a constant mass scale. We define the effective
mass of the inflaton field as it oscillates through

m2
φ(t) ≡ V ′′(φ) = k(k − 1)λM2

P

(
φ

MP

)k−2
. (2.67)

In a quadratic potential, k = 2, the inflaton oscillates coherently with a constant mass m2
φ =

λM2
P , and for k > 2, the oscillations are non-harmonic for the classical field. Ignoring for now

interactions with other fields, the inflaton experiences damped oscillations due to expansion

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (2.68)

From the homogeneous energy density ρφ and pressure Pφ of the inflaton, we obtain the conti-
nuity equation Eq.(1.22) as

ρ̇φ + 3H(ρφ + Pφ) = 0 . (2.69)

In these dynamics, we separate the short time scale of oscillations related to the effective
potential of the inflaton field from the longer time scale of damping due to Hubble expansion
H. Multiplying the equation of motion Eq.(2.69) by φ and averaging each term over one
oscillation, it leads to the following useful relation 〈φ̇2〉 ' 〈φV ′(φ)〉, where we have neglected
the friction term over one oscillation, and we have as well

〈ρφ〉 '
k + 2

2
〈V (φ)〉 (2.70)

〈Pφ〉 '
k − 2

2
〈V (φ)〉 . (2.71)

These results show that the average equation of state of the inflaton during the oscillations
regime in the potential V (φ) ∝ φk is given by

wφ =
k − 2

k + 2
. (2.72)

During the oscillations of the scalar condensate, the homogeneous inflaton background behaves
as a cold matter dust if k = 2 (quadratic potential) with a constant effective mass m2

φ. However,
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for k > 2, this is not the case anymore, and it behaves effectively as a radiation for k = 4 with
a mass that redshifts as mφ ∝ 1/a. In general, the continuity equation for the average energy
density of the inflation background implies

ρ̇φ + 3H(1 + wφ)ρ ' 0 =⇒ ρφ(a) = ρend

(
a

aend

)− 6k
k+2

(2.73)

if we neglect the interactions. We introduced the energy density at the end of inflation related
to the potential ρend = 3

2
V (φend).

The separation of oscillations time scale and expansion time scale allows us to approximately
parametrize the solution of the equation of motion as

φ(t) = φ0(t) · P(t) (2.74)

where φ0(t) is the dumped amplitude of the oscillations while P(t) is the quasi-periodic function
describing the oscillations of the inflaton. We can set the normalization of φ0(t) such that
V (φ0) = 〈ρφ〉. For a quadratic potential and harmonic oscillations, P(t) = cos((mφ(t)) and
in this case, we can also exactly solve the dumping of the oscillations and find the envelope
φ0(t) ∝ 1/mφt [16]. Looking at the inflaton evolution on short time scales, we can consider the
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×1018
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Figure 2.3: Evolution of the inflaton condensate after inflation in α-attractor T-model potential for
different value of k = 2, 4, 6. We start the evolution at φ(tinit) = MP .
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amplitude of the field approximately constant, and from the definition of the energy density

ρφ =
1

2
φ̇2 + V (φ) =⇒ Ṗ2 ' 2ρφ

φ2
0

(
1− Pk

)
(2.75)

integrate this equation to find the frequency of the oscillations

ω = mφ

√
πk

2(k − 1)

Γ
(
1
2
+ 1

k

)
Γ
(
1
k

) . (2.76)

In the generic potential, the oscillations are anharmonic, and we can develop the periodic
function in a Fourier series in terms of the oscillation frequency

P =
+∞∑

n=−∞

Pne−inωt (2.77)

where Pn are the Fourier modes of the corresponding periodic function P(t). Each Fourier
mode can be seen as an independent classical oscillator with an energy En = nω. All these
modes contribute to the inflaton condensate and can be determined numerically by solving the
oscillatory behavior of the inflaton in the appropriate potential.

2.2.2 Perturbative treatment

To take into account the interactions of the inflaton condensate with the other fields, we have
to solve the Boltzmann equations Eq.(1.34) for both the inflaton distribution function and for
the products of its interactions. The interactions of the condensate induce dissipation while it
oscillates and we can effectively follow this effect through

φ̈+ (3H + Γφ)φ̇+ V ′(φ) = 0 (2.78)

where Γφ is the inflaton background dissipation rate. Under the assumption that the inter-
actions of the inflaton are small perturbations on top of its background evolution, the phase
space distribution for the homogeneous inflaton condensate can be written as [106, 110]

fφ(k, t) = (2π)3nφ(t)δ
(3)(k) (2.79)

corresponding to a density of bosonic modes nφ(t) all in the zero momentum state of lowest
energy (Bose condensation). We underline that no process can inject inflaton quanta into
the condensate, however, the production of inflaton fluctuations (particle states), as well as
quanta of the other fields, can further backreact on the classical evolution of the background.
This is especially important for strong couplings of the fields with the background inflaton
(or strong self-interactions), and it can be tackled through some mean field approximation
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(Hartree). These methods usually require the use of numerical solvers to track the evolution
of distribution functions. However, if the number of occupations of the produced quanta does
not grow too fast towards high values, we can neglect backreactions and rescatterings to solve
the Boltzmann equations analytically. We consider the process φ → AB, where A,B are
two particles, for which the integrated Boltzmann equation related to the inflaton condensate
number density is given by [106]

ṅφ + 3Hnφ = −
+∞∑
n=∞

∫
d3pA

(2π)32EA

d3pB
(2π)32EB

(2π)4δ(3)(pA + pB)δ(nω − EA − EB)|Mn|2 . (2.80)

We have assumed a large occupation number for the inflaton condensate 1 + fφ ' fφ and (at
least initially) a low occupation number for the produced quanta, such that Bose-enhancement
or Pauli-blocking factors can be ignored. We have to sum over the contribution of each inflaton
oscillation mode of energy En = nω to compute the production rate. The associated transition
amplitude from the coherent state to the final states |φ〉 → |AB〉 is given byMn for each mode
n, and we underline that this matrix element effectively contains the condensate amplitude
of oscillations. Physically, the production of quanta from the inflaton field corresponds to an
extraction from a classical background state, and the inflaton field can be treated in this case
as a classical time-dependent parameter from which it is possible to extract energy from each
Fourier mode. We can, therefore, interpret the amplitude Mn as a probability of extracting
from the vacuum state |0〉 two quanta of momenta (pA, pB), through the interactions given by
a Lagrangian density L,

Mn ≡
∫
d4x〈pA pB|iL

[
φ0(t)Pne−inωt, X̂A, X̂B

]
|0〉 . (2.81)

The energy transfer ∆E per space-time volume is given by

∆E ≡
+∞∑
n=∞

∫
d3pA

(2π)32EA

d3pB
(2π)32EB

(EA+EB)(2π)
4δ(3)(pA+ pB)δ(nω−EA−EB)|Mn|2 . (2.82)

We can define an effective rate for the transfer of energy density 5 through the process φ→ AB,
which after integrating the 2-body phase space integrals gives [106]

(1 + wφ)Γφρφ ≡
∆E

Vol4
=

1

8π

+∞∑
n=1

|Mn|2(nω)βn(mA,mB) (2.83)

with the kinematic factor

βn(mA,mB) ≡

√(
1− (mA +mB)2

(nω)2

)(
1− (mA −mB)2

(nω)2

)
. (2.84)

5We underline that this rate differs from the decay or dissipation rate Γφ by a factor (1 + wφ)ρφ.
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We are interested in the evolution of the averaged inflaton energy density (the zeroth mode
homogeneous condensate) for which we have ρφ = mφnφ as the zeroth mode has no momentum.
Taking the time derivative, one can show that we obtain

ρ̇φ + 3H(1 + wφ)ρφ = −(1 + wφ)Γφρφ . (2.85)

We call it the Boltzmann equation for the energy density of the inflaton condensate. As long
as we can neglect the right-hand side of this equation, we recover the adiabatic evolution of the
inflaton background as in Eq.(2.73).

The last ingredient to follow the reheating process in this perturbative framework is the
evolution of the density of produced quanta through the process φ→ AB. Following the same
procedure as what has been done for the inflaton density, we obtain the number density of the
produced quanta ni=A,B

ṅi + 3Hni = R(t) (2.86)

where we introduce the production rate as

R(t) = (1 + wφ)
ρφ
mφ

Γφ = 2× 1

8π

∞∑
n=1

|Mn|2βn (2.87)

in which factor 2 is taking care of the two quanta produced per interaction. At the production
time, kinematics impose mi . En while pi ∼ En. Thus, we are following the evolution of rela-
tivistic quanta during production. Similarly, using the energy density transfer rate Eq.(2.83),
we can follow the evolution of their energy density, ρR, called radiation density by solving

ρ̇R + 4HρR = (1 + wφ)Γφρφ . (2.88)

Once the quanta become non-relativistic, their energy density is approximately given by ρi =

mini. The sets of equations we have to solve during reheating are these Boltzmann equations
together with the Friedmann equation for the expansion rate

H2 =
ρφ + ρR
3M2

P

. (2.89)

Several simplifications have been made in the description above. First, we haven’t considered
statistical effects: if these effects become important, a better treatment of the Boltzmann
equation is required. It can be done by solving the Boltzmann equation for the ”classical”
distribution function f ci (t), without Bose-enhancement or Pauli blocking, and then deducing
the correct distribution function through the relation [111]

fi(k, t) =
1

2

(
e2f

c
i (k,t) ± 1

)
. (2.90)
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From this distribution function, number densities can be computed using the Boltzmann equa-
tion taking statistical effects into account.

As stated earlier, when the occupation number becomes too large, backreactions of the
produced quanta on the inflaton background are important. These can be approximately taken
into account by introducing effective mean field potential for the evolution of the background
[112, 113]. As an example, for a quartic coupling interaction with a field χ of the form σφ2χ2,
the mean-field approach gives

φ̈+ 3Hφ̇+ V ′(φ) + σ〈χ2〉φ = 0 (2.91)

which is a Hartree approximation. Coherent solutions of the equation of motion and density
equations in the regime of strong backreaction usually necessitate numerical integration. We
have also neglected the effect of rescatterings mediated by the inflaton or self-interactions,
which can contribute to redistributing momentum in the UV [113]. However, we expect all
these effects to be small for feeble perturbative couplings, which we consider in this work.

Beyond these non-linear dynamics, non-perturbative effects are expected to occur during
reheating and initiate, in some cases, rapid growth of the number of occupations in the fields.
We discuss these effects in the last part of the section.

2.2.3 Decays and annihilation of the inflaton condensate

We consider the following generic contributions to the Lagrangian6 leading to decay or annihi-
lation of the inflaton [106]

L ⊃


yφf̄f (φ→ f̄f)

µφb2 (φ→ bb)

σφ2b2 (φφ→ bb)

(2.92)

with f a fermionic field and b a bosonic final state. The Yukawa-like coupling y, and the
four-point coupling σ, are dimensionless, while µ is an effective dimensionful coupling. We
consider for simplicity that the produced quanta have vanishing bare masses, but the results
can be adapted to the case of non-zero masses straightforwardly. Using the development of the
inflaton field in Fourier modes Eq.(2.77), we can compute the transition amplitudes for each
mode through the different couplings [106]

Mn = yφ0Pnū(pA)v(pB) (φ→ f̄f) (2.93)
Mn = µφ0Pn (φ→ bb) (2.94)
Mn = 2σφ2

0(P2)n (φ→ bb) (2.95)

6Recently, this analysis has been extended to the case of couplings to vector fields in [114].
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In this computation, the initial state is the asymptotic vacuum since no inflaton quanta are
produced from the condensate. Instead, we treat the condensate as a time-dependent coefficient
of the interaction, and the inflaton is regarded as the homogeneously oscillating classical field.
Therefore, in the case of inflation ”annihilation” from the coupling σφ2b2, this field square must
be expanded in Fourier modes to compute the transition amplitude. We call the associated
Fourier coefficients (P2)n, but we underline that they are different from the square of the
coefficients Pn. The rates for energy density production can be directly computed from these
amplitudes and Eq.(2.83). For the different channels, the authors of [106] derived the following
expressions

Γφ→f̄f =
y2ω

8π
(k + 2)(k − 1)

(
ω

mφ

)2 ∞∑
n=1

n3|Pn|2
(
1−

(
2mf

nω

)2
)3/2

(2.96)

Γφ→bb =
µ2

8πω
(k + 2)(k − 1)

(
ω

mφ

)2 ∞∑
n=1

n|Pn|2
(
1−

(
2mb

nω

)2
)1/2

(2.97)

Γφφ→bb =
σ2ρφ
8πω3

k(k + 2)(k − 1)2
(
ω

mφ

)4 ∞∑
n=1

n|(P2)n|2
(
1−

(
2mb

nω

)2
)1/2

(2.98)

where we use Eq.(2.76) and Eq.(2.67) to relate the amplitude φ0 to the inflaton effective mass
and oscillation frequency, and ρφ = V (φ0).

We are considering massless particles, yet the tree-level couplings to the inflaton background
induce a time-dependent effective mass for the fields

m2
eff(t) =


y2φ2 (φ→ f̄f)

µφ (φ→ bb)

2σφ2 (φφ→ bb)

(2.99)

and the effect of this time-dependent effective mass can be determined by averaging the effective
decay rate over the oscillations. The parameter which drives the associated kinematic effect
is the ratio R ≡ (2meff/ω)

2, as it can be seen in the expression of the transfer rates. For
R� 1, the rates at meff = 0 can be used. The regime when R & 1 depends on the magnitude
of the coupling and the inflaton potential, driving the redshift of the inflaton field φ0(t). We
introduce effective couplings that take into account such kinematic effects and the influence of
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the potential shape such that we can rewrite the effective decay rates as

Γφ→f̄f =
y2effmφ(t)

8π
(2.100)

Γφ→bb =
µ2

eff
8πmφ(t)

(2.101)

Γφφ→bb =
σ2

eff
8π

ρφ(t)

m3
φ(t)

(2.102)

where for k = 2 and meff → 0, yeff = y, µeff = µ, σeff = σ. For k > 2 and meff 6= 0, these
effective couplings have to be estimated numerically during the oscillations of the background
inflaton. The resulting effect when R & 1 is also strongly dependent on the spin of the final
state particles. For fermionic decays and bosonic scatterings, the authors of [106] determined
that

Γφ(R� 1) ' Γφ(R = 0)×R(t)−1/2 (2.103)

leading to less efficient production due to kinematic blocking. On the contrary, the case of
decay towards bosons leads to an enhancement of the production rate in the strong kinematic
limit,

Γφ(R� 1) ' Γφ(R = 0)×R1/2 , (2.104)

signaling the breakdown of perturbativity. This occurs due to the linear dependence on φ0(t)

of the effective mass for the bosons and shows that the non-perturbative tachyonic instability
should be considered rigorously.

We can compute analytically the evolution of the energy densities by solving their Boltzmann
equations Eq.(2.85), Eq.(2.88) with the effective transfer rates determined above. To do so, it
is useful to parameterize generically the decay rates through

Γφ(t) = γφ

(
ρφ
M4

P

)l
(2.105)

where the exponent l depends on the channel of production

l =


1
2
− 1

k
(φ→ f̄f)

1
k
− 1

2
(φ→ bb)

3
k
− 1

2
(φφ→ bb)

(2.106)
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and

γφ =



√
k(k − 1)λ1/kMP

y2eff
8π

, (φ→ f̄f) ,

µ2
eff

8π
√
k(k − 1)λ1/kMP

, (φ→ bb) ,

σ2
effMP

8π[k(k − 1)]3/2λ3/k
, (φφ→ bb) .

(2.107)

The integration of the equation for radiation energy density provides the generic solution [106]

ρR(a) =
2k

k + 8− 6kl

γφ
Hend

ρl+1
end
M4l

P

(aend

a

)4 [( a

aend

) k+8−6kl
k+2

− 1

]
(2.108)

where for now we have neglected the effective masses of final states products (R � 1) in
this result (see section 2.3 for further details on the treatment of these effects). As decays
of the condensate begin, the decay products are assumed to thermalize quickly and produce
a thermal bath with an associated temperature ρR = g∗π2

30
T 4. We represent such evolution

for arbitrary magnitudes of the couplings considered in Figure 2.4. The bath temperature
reaches a maximum equivalent temperature Tmax rapidly, and afterward, as inflaton decays,
the temperature falls but not adiabatically. Instead, the temperature decreases more slowly as
entropy is injected in the thermal bath from the condensate through continuing decays. The
different slopes for the different channels and potential parameter k can be directly computed
from Eq.(2.108) and are summarized in [106]. The reheating temperature is defined when
the energy density in the radiation bath equals the energy density of the inflaton condensate
ρR(aRH) = ρφ(aRH). When R < 1 and approximating ρφ as in Eq.(2.73) until the end of the
reheating mechanism, it is easy to determine the reheating temperature from Eq.(2.108). The
generic solution for the reheating temperature T (aRH) ≡ TRH

TRH =

(
30

g∗π2

) 1
4

[
2k

8 + k − 6kl

√
3γφ

M4l−1
P

] 1
2−4l

(2.109)

when 8 + k − 6kl > 0 whereas for 8 + k − 6kl < 0 and k > 4 we obtain

TRH =

(
30

g∗π2

) 1
4

[
2k

6kl − k − 8

√
3γφ

M4l−1
P

ρ
6kl−k−8

6k
end

] 3k
4k−16

. (2.110)

In the first case, it is important to note that the reheating temperature is independent of ρend

and entirely determined by the potential parameter k together with the coupling constant for
the process considered. On the other hand, there is a dependence on the initial energy density of
the inflaton in the second case. Furthermore, in the second case, there is no reheating possible if
k ≤ 4 as the inflaton energy density decreases faster than the radiation energy density produced
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Figure 2.4: Evolution of energy densities as a function of the scale factor after inflation. Boltzmann
equations are integrated numerically. In blue is the inflaton energy density, and in red is the radiation
energy density, for different production channels labeled by the associated coupling constant. We do
not consider effective masses of the produced quanta in this plot. Top Left: k = 2, Top Right: k = 4,
Bottom: k = 6.

as can be seen for inflaton annihilation and k = 2 in Figure 2.4.

The non-standard temperature evolution during the reheating phase directly affects DM
production after inflation for the UV freeze-in scenario (see section 1.4). In this case, DM
production depends on the higher dimension effective operator that connects DM to the visible
sector in the thermal bath. During the freeze-in production, the DM production rate from
out-of-equilibrium scatterings can be parametrized the following way [86, 87]

R(T ) =
T n+6

Λn+2
UV
⇔ 〈σv〉 ∝ T n

Λn+2
UV

(2.111)

which is a valid EFT description of the freeze-in production during reheating for ΛUV > Tmax.
It leads to rich phenomenology depending on the dimension n of the EFT operator driving the
production process and the DM relic density may depend on either the maximum temperature,
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Tmax, the reheating temperature TRH, or both. Thus, the evolution of the temperature during
reheating is extremely important for such scenarios [87, 106]. The evolution of energy densities
during reheating also plays a crucial role in DM production directly from the inflaton [115–117].
The main goal of this thesis is to investigate a natural and minimal scenario of UV freeze-in
during reheating through gravitational-mediated effective operators, including the production
of particles from the inflaton. It is described in very detail throughout chapter 3.

2.2.4 Non-perturbative effects

We now discuss non-perturbative effects in the excitation of the fields coupled to the inflaton
background while it oscillates. More precisely, we consider the effect of parametric resonances
that trigger instability in the evolution of the mode functions for the coupled fields. We usually
refer to such effects as preheating compared to a perturbative limit of reheating, as they are
expected to occur at the beginning of the oscillations of the inflaton and lead quite rapidly to
an enhancement of the occupation numbers of the fields. They further leave a classical state of
high occupation numbers for the fields, but perturbative decays of the inflaton are usually still
required to deplete its energy density efficiently at the end of the reheating process. We will
consider as an example of such early non-perturbative evolution, the case of a massless scalar
field χ, coupled to the inflaton through the renormalizable coupling

L ⊃ 1

2
m2
φφ

2 + σφ2χ2 . (2.112)

This field can account for one degree of freedom of the SM or as a DM field excited during
preheating. Such description can be generalized to any spin state and different renormaliz-
able couplings [113, 118, 119], but the evolution of fields through the non-perturbative effects
of preheating is usually model-dependent (couplings, spins, potential of the inflaton). Non-
perturbative effects come from the short-time driven oscillations in the effective mass of the
coupled field χ. For the purpose of this analysis, we consider that the inflaton oscillates in a
quadratic potential after inflation (k = 2) with a constant effective mass m2

φ = λM2
P (where we

consider the T-models potential as a benchmark). In this case, the equation of motion for the
daughter fields is well known to be of the Mathieu type [113], with unstable solutions for the
mode functions of the fields. Similar solutions can be found in a quartic potential k = 4; how-
ever, numerical tools are usually necessary for steeper potential k > 4 to study the evolution
of the mode functions of coupled fields in such oscillating background.
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Parametric resonances and preheating

We consider that the inflaton oscillates about a quadratic minimum with V (φ) ' 1
2
m2
φφ

2 such
that

φ(t) = φ0(t) · cos (mφt) . (2.113)

φ0(t) '
φend

mφt
(2.114)

and we assume that the normalization of λ is set by CMB anisotropies (see section 2.1) to be
λ ∼ 10−11. If the amplitude of inflaton oscillations, φ0(t), or the coupling constant σ, become
large σφ0(t)

2 > m2
φ, high-order Feynman diagrams can give comparable predictions to the

lowest-order ones, signaling the failure of perturbative analysis. Non-perturbative effects can
lead to exponential growth of the occupation number of the field and can be seen for a generic
class of couplings as a parametric resonance mechanism. To understand this, we start with the
equation of motion for the field χ(

d2

dt2
− ∇

2

a2
+ 3H

d

dt
+m2

χ(t)

)
χ = 0 (2.115)

where m2
χ(t) = 2σφ2(t) is the time-varying mass of the field χ due to its quartic coupling to

the inflaton background. On average, in this case, 〈wφ〉 ' 0 and so the scale factor evolution is
the same as during the matter-dominated era with

a(t) ' aend

(
t

tend

)2/3

. (2.116)

Using the field redefinition x = a3/2χ, we can rewrite the equation of motion for the Fourier
modes of the field x as

ẍp(t) + w2
p(t)xp = 0 (2.117)

where
w2
p(t) =

p2

a2
+ σφ2

0(t) cos2 (mφt) +
9

4
wφ(t)H

2(t) . (2.118)

We work here in cosmic time t and comoving momentum p, and we do not average over the
oscillations, as the small time scale dynamics are responsible for the transfer of energy through
non-perturbative effects. We understand from this equation that after a few oscillations of
the condensate, wφ(t) → 0 and φ0(t) is dumped, leading quite rapidly to stable harmonic
oscillations of the modes and thus no instability. Thus, non-perturbative effects are expected
to be important solely during the first few oscillations of the inflaton. They end after quite a
few oscillations and are followed by any perturbative effects that can occur on top of the stable
evolution of the modes, as we discussed in the preceding part.
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There is a competition between two effects in the evolution of the mode function during the
first oscillations: the expansion and dumping from the term ∝ H2, and the driving force due
to the background through the coupling σφ2(t). At the end of inflation, we have on average
V (φ0) = ρφ =⇒ H2(t) ∼ m2

φφ
2
0(t)/M

2
P . Thus the ratio of the friction term to the driving term

is approximately constant in magnitude during the oscillations

wφH
2

σφ2
∼
wφm

2
φ

σM2
P

∼ wφλ

σ
(2.119)

and is negligible in the case of large couplings σ � λ. Especially at the end of inflation
H2

end ' V (φend)/M
2
P , we find that in the very first oscillations, we can safely neglect the

expansion in the limit of large couplings. In the regime σ � λ, we usually can treat the
evolution with a good approximation using the perturbative analysis to compute the number
densities 7.

In this perspective and to obtain analytical estimates, we first neglect completely the expan-
sion of the Universe during the first oscillations. It is then useful to introduce the following
variables

z ≡ mφt, Ap ≡
p2

m2
φa

2
+ 2q, q ≡ σφ2

0

2m2
φ

∼ σ

λ
(2.120)

where φ0 is considered constant, Ap is the energy in the comoving mode p divided by the
inflaton mass, while q is interpreted as the normalized coupling of the mode to the background,
also called the resonance parameter. Under this parameterization, the mode equation takes the
well-known form of a Mathieu equation

d2xp
dz2

+ (Ap − 2q cos (2z))xp = 0 . (2.121)

The Mathieu equation is known to exhibit unstable solutions for some specific values of the
parameters q, Ap, called parametric resonances. This unstable evolution of the modes can
be understood from its stability/instability chart, illustrated in Fig. 2.5. The white regions
correspond to unstable regions, where the mode solutions grow exponentially as xp ∝ exp (µpz),
the characteristic exponent, µp, being called Floquet’s exponent for the mode and can be
computed by applying Floquet’s theory of dynamical systems driven by periodic forces [113,
118]. A real positive Floquet’s exponent triggers unstable exponential growth, while it induces
oscillation when it is imaginary. The comoving particle occupation number in the mode p is
given by [113]

np =
ωp
2

(
|ẋp|2

ω2
p

+ |xp|2
)
− 1

2
(2.122)

7We note that in the regime σ ' λ numerical analysis [119] show that the friction can importantly reduce
the early production of particles compared to the perturbative analysis predictions
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Figure 2.5: Mathieu stability chart. The white regions correspond to instability bands, where the mode
grows exponentially. The red regions correspond to stable regions, where the mode oscillates. The two
grey lines correspond to the flow lines of two modes with different p. Figure taken from [119].

and thus, as the mode functions exponentially grow, the associated occupation number grows
as np(t) ∝ exp (2µpt), signaling non-perturbative productions of particles. q . 1 corresponds
to the regime of ”narrow resonance” which can be seen from Figure 2.5. The resonant particle
production occurs mainly near the first instability band Ap ∼ 1 ± q in this regime [113]. Yet,
one can show that in this regime of narrow resonance the explosive particle production ends
rapidly because of the expansion. Indeed, we have considered constant physical momenta p/a
in the stability analysis; however, the redshifts drive the modes outside the narrow bands quite
rapidly, as can be seen on the trajectory of a specific mode in the stability chart. In addition,
the decrease of the amplitude φ0(t) cannot be completely neglected when q < 1, even from the
onset of the oscillations. The band becomes more and more narrow as φ0(t) decreases and the
combined effects result in a completely ineffective resonant process in the limit q � 1. In this
limit, the perturbative analysis is valid [119].

Therefore, significant non-perturbative production in an expanding universe occurs mainly for
q & 1, called broad resonance regime. It corresponds to a highly non-perturbative regime where
the resonance occurs still above the line Ap = 2q in the stability chart. Occupation numbers
grow exponentially until they are so large that the back-reaction effects become important.
Because the inflaton amplitude decreases, each oscillation mode goes through lower amounts
of bands and evolves toward the origin of the stability chart gradually. On the way, each
mode has its own history of stability and instability, crossing different bands. In such models
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with large q, the expansion of the Universe makes preheating occur as a stochastic resonance
mechanism [113] depicted in Figure 2.6. At the end of the process, all the modes reach the limit

lnnk
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Figure 2.6: Early stages of parametric resonance, showing the stochastic evolution of a specific mode
function xp (Top) and the associated evolution of the occupation number np(t) (Bottom). Figure taken
from [113]

q ' 1 and enter the inefficient narrow resonance regime, ending the non-perturbative evolution.
To summarize, using the kinematic parameter R = 4m2

χ(t)/m
2
φ(t) introduced before, we have

that non-perturbative effects become important when R � 1 whereas in the limit R . 1,
perturbative analysis should give appropriate results [119]. In chapter 3, as we consider feeble
gravitational couplings, we rely solely on perturbative analysis.

Backreactions and Inflaton fragmentation

Along this preheating stage, the produced particles with high occupation numbers can backreact
on the inflaton background. In this case, non-linear interactions become important. The energy
density of χ is smaller than the one of the inflaton during reheating, but for a sufficiently large
coupling σ, the two can become comparable due to the enhancement of non-perturbative effects.
This strong backreaction regime can be tackled by resolving the effect of the field χ in the motion
of the background. One can use the Hartree approximation but accounting for these non-linear
effects is usually tackled in classical numerical simulations. At large occupation numbers for
a sufficiently large coupling, the quantum fields and their perturbations can be approximated
as classical and hence studied by solving the classical system of equations of motion without
the need to track each mode function separately. Modern numerical tools have been developed
to track the evolution of classical fields and their inhomogeneities in the non-linear regime
and in an expanding background. The main approach relies on discretizing space-time on a
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spatial lattice to solve the non-linear partial differential equations of motions on each lattice
site. Public codes such as CosmoLattice [120] are the main tools available. Figure 2.7 shows
the results of [119] where the authors used CosmoLattice, to follow the evolution of the energy
densities as a function of time during reheating. We see that for small couplings, the stochastic
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Figure 2.7: Energy density in relativistic bosons ρχ during reheating as a function of the scale factor,
for different values of the ratio σ/λ. Results are from perturbative computation when effective mass
is ignored (dotted blue) and accounted for (in dashed-dotted blue), computed non-perturbatively in the
Hartree approximation (transparent black) using CosmoLattice (solid black). Figure taken from [119].

resonances end quite rapidly and provide results similar to those of perturbative computations.
For larger and larger couplings, the enhancement of energy density is more and more important,
potentially leading to a stage of strong backreactions requiring this numerical analysis.

The effect of rescatterings of produced particles on the background can lead to the disruption
of the coherency of the inflaton condensate. This can be seen as a production of inflaton quanta
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from interactions, that are not in the lowest energy state and it can significantly alter the
further evolution of the universe. Interestingly, in a non-quadratic potential k > 2, inflaton
exhibits self-interactions which transfer the energy of the coherent homogeneous condensate into
inhomogeneous fluctuations δφ(x, t) [118, 121–123]. This can occur even without interactions
of the inflaton with other fields. The equation of motion of the inflaton perturbations in a
potential V (φ) ' λM4

P

(
φ
MP

)k
(with k > 2) is given by

δφ̈+ 3Hδφ̇− ∇
2δφ

a2
+ k(k − 1)λM2

P

(
φ(t)

MP

)k−2
δφ = 0 (2.123)

where the perturbations originate initially from quantum fluctuations given by the Bunch-
Davies vacuum. The growth of these inhomogeneities can be described with parametric reso-
nances and an exponential growth of the occupation number in inflaton perturbations is ex-
pected. Redefining the field X = aδφ and making the change of time variable to conformal
time adη = dt, the mode equation for inflaton quanta is given by

X ′′ + w2
pXp = 0 (2.124)

with (see section 2.1)

w2
p =

p2

a2
− a′′

a
+ a2m2

φ(a) . (2.125)

The driving term that leads to fragmentation through parametric resonance is thus given by
a2m2

φ(a). The resonance structure associated with this equation of motion varies with time
for k > 4 but is time-independent for k = 4, as mφ(a) ∝ 1/a [122, 123], this fact originat-
ing from the conformal invariance of the φ4 theory. In Figures 2.8, the authors of [123] show
the evolution of the energy density in inflaton perturbations using CosmoLattice for different
shapes of the inflaton potential k = 4, 6, 8. In this evolution, the early growth of perturba-
tion is approximately following the parametric resonances regime until backreactions on the
inflaton background become important. Afterward, the inflaton sector can be considered to be
dominated by its perturbations as a gas of relativistic particles in a highly non-linear turbulent
regime [118]. The condensate does not disappear completely and the relic condensate generates
a mass term for the inflaton particles which allows them to decay further and complete reheat-
ing if their decay width dominates the expansion rate Γδφ & H. The impact of fragmentation
of the condensate on the reheating process at late time is explored widely in [119], for different
couplings and values of k.

An important effect of the fragmentation of the background is that it gradually leads to a
different equation of state for the Universe during reheating, as the condensate is destroyed and
replaced by a turbulent gas of inflation quanta. From 〈w〉 = k−2

k+2
it is attracted to a radiation-

like equation of state 〈w〉 → 1/3 as we see in the bottom panels of Figure 2.8. However, taking
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Figure 2.8: Left: Inflaton energy density in the classical condensate (green), in inflaton particles
(yellow), and the sum of both (blue), as functions of the scale factor. Right: Ratio of the energy
densities in condensate over particles ξ (black) and comoving number density of inflaton particles n3

δφ

(red), during and after fragmentation. Bottom panels: the averaged equation of state during and after
fragmentation. Figures taken from [123].
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the expansion into account, due to the faster redshift of the effective mass term m2
φ(t), together

with the time dependence of the resonance structure, the fragmentation process is expected
to be less efficient for steeper potential and to occur on a larger time scale for increasing k

[118, 119]. In chapter 3, we explore the possibility of purely gravitational reheating which, as
we will see, requires looking at steep inflaton potential with k > 6 (high value of the equation of
state). Therefore, we expect the effect of self-resonances and fragmentation to be less efficient,
allowing us to consider the inflaton condensate as the main component driving the evolution
during reheating in this case.

2.3 Reheating in a mixed potential: bare mass effects
This section is based on: S. Cléry, M. A.G. Garcia, Y. Mambrini, K.A. Olive, Bare mass effects
on the reheating process after inflation, Phys.Rev.D 109 (2024) 10, 103540, arXiv:2402:16958
[4]

Motivation

The process of transferring the energy stored in inflation oscillations to the SM particles is not
instantaneous, as seen in section 2.2. An oscillating inflaton condensate can decay or scatter
progressively, producing a bath of relativistic particles. The efficiency of the reheating process
depends on the rate of the energy transfer as well as on the shape of the inflaton potential,
V (φ), about its minimum. Even if the exact shape of the potential at the end of inflation is
unknown it can often be approximated about its minimum by a polynomial function of φ. In
many models of inflation, the inflaton potential can be approximated about its minimum by a
quadratic term, V (φ) = 1

2
m2
φφ

2. The Starobinsky model [93] is one example. In this case, only
one Fourier mode of the inflaton oscillation contributes to the reheating process. For a potential
whose expansion about its minimum is V (φ) = λφk, with k ≥ 4, the exercise is more subtle
and requires a more involved analysis as detailed in section 2.2. The reheating process will, in
general, depend on the spin of the final state particles in either inflaton decays or scatterings,
and in some cases, reheating does not occur. However, we cannot exclude the presence of a
bare mass term 1

2
m2
φφ

2, which may be subdominant at the end of inflation, and during the early
phases of the oscillations, but which becomes dominant when φ has redshifted. The presence of
this term, even if it is small, would then modify the reheating mechanisms. In this section, we
consider the effects of a bare mass term for the inflaton, when the inflationary potential takes
the form V (φ) = λφk about its minimum with k ≥ 4. We concentrate on k = 4, but discuss
general cases as well. We study the impact of such a mass term on reheating processes, as the
equation of state of the inflaton condensate changes from wφ = 1

3
to wφ = 0. We compute

the effects on the reheating temperature for cases where reheating is due to inflaton decay (to
fermions, scalars, or vectors) or to inflaton scattering (to scalars or vectors). For scattering
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to scalars and in the absence of a decay, there is always a residual inflaton background which
acts as cold dark matter. We also briefly consider the effect of the bare mass term on the
fragmentation of the inflaton condensate.

2.3.1 The transition, φ4 → φ2

We begin by supposing that the dominant contribution in a series expansion of the inflaton
potential about its minimum is the quartic term and that at the end of inflation, this dominates
over a quadratic mass term, so that

λφ4
end �

1

2
m2
φφ

2
end . (2.126)

For a > aend, the evolution of the energy density of φ is governed by the Boltzmann equation
for ρφ Eq.(2.85)

dρφ
dt

+ 3(1 + w)Hρφ ' 0 . (2.127)

For k = 4, Eq. (2.127) gives
ρφ = ρend

(aend

a

)4
, (2.128)

where ρend is the value of the density of energy of the inflaton at the end of inflation, ρend =
3
2
V (φend). For the T -models with potential given in Eq. (2.61) we have,

φend '
√

3

8
MP ln

[
1

2
+
k

3

(
k +
√
k2 + 3

)]
. (2.129)

The parameter λ in Eq. (2.61) is determined from the normalization of the CMB anisotropies
[15]. The normalization of the potential for different values of k can be approximated by
Eq.(2.64) where AS∗ ' 2.1 × 10−9 is the amplitude of the curvature power spectrum. For
N∗ = 56 e-folds we find λ = 3.3× 10−12, and ρ

1
4
end = 4.8× 1015 GeV (when k = 4).

We solve the equation of motion for the inflaton as in Eq.(2.74), introducing P(t) a quasiperi-
odic function encoding the (an)harmonicity of short-timescale oscillations in the potential and
φ0 the envelope of the oscillations. As φ0 decreases, eventually the evolution of the condensate
will be governed by the quadratic term. This occurs at a = am when

1

2
m2
φφ

2
0(am) = λφ4

0(am) . (2.130)

Using φ4
0(a) = (ρend/λ)(

aend
a
)4 for aend < a < am gives

am

aend
=

(
4λρend

m4
φ

)1/4

' 9.1× 103
(
109 GeV
mφ

)
. (2.131)
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In deriving (2.131), we note that the envelope function φ0 is determined by the average energy
density 〈ρφ〉 = V (φ0). Thus unless reheating occurs rapidly, the quadratic term will dominate
the reheating process even if the quartic dominates after when oscillations begin. This will have
huge consequences on the reheating temperature, as well as on the Physics of fragmentation as
we will see.

Indeed, if reheating occurs at a = aRH > am, the process is affected by the bare mass term.
For a > am, the equation of state changes from w = 1/3 (for k = 4) to w = 0 (for k = 2) and
the solution for a� am to the Friedmann equation becomes

ρφ =
1

2
ρφ(am)

(am

a

)3
= ρend

(
aend

am

)4 (am

a

)3
. (2.132)

Furthermore,

ρm ≡ ρφ(am) = 2ρend

(
aend

am

)4

=
m4
φ

2λ
. (2.133)

Combining Eqs. (2.131) and (2.132) we obtain

ρφ|a>am
=
mφρ

3
4
end

(4λ)
1
4

(aend

a

)3
. (2.134)

This form for ρφ dominates the energy density until reheating when ρφ(aRH) = ρR(aRH).
Here, ρR is the energy density transferred to the thermal bath via the Boltzmann equation

dρR
dt

+ 4HρR = (1 + w)Γφρφ . (2.135)

From the above, we can determine the reheating temperature for a given mass, mφ for which
the bare mass affects the reheating process, and therefore modifies the calculation of TRH. The
condition am < aRH implies that ρm > ρφ(aRH) and thus the condition for the quadratic part
to dominate the reheating process is given by

ρm & ρRH ⇒ ρRH .
m4
φ

2λ
, (2.136)

from Eq.(2.133). Using ρRH = αT 4
RH with α = gRHπ

2

30
for gRH relativistic degrees of freedom at

aRH, we obtain
TRH .

mφ

(2αλ)
1
4

' 250 mφ , (2.137)

which means that if the energy transfer between the condensate and the thermal bath is slow
and the reheating temperature TRH lower than the limit obtained in the equation (2.137), we
must take into account the quadratic term to determine TRH when aRH > am.
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2.3.2 Limits on the inflaton bare mass

As noted earlier, the CMB observables impose an upper limit to mφ. Planck [15] has determined
with relatively high precision, the value for the tilt of the CMB anisotropy spectrum, ns =

0.9649 ± 0.0042 (68% CL). In addition, the tensor-to-scalar ratio, r < 0.036 is constrained by
BICEP/Keck observations [124, 125]. To translate these limits to an upper limit on mφ, we use
the T -model in Eq. (2.61) as an example. Recall that the conventional slow-roll parameters for
a single-field inflationary model are given by

εV ≡
1

2
M2

P

(
V ′

V

)2

, ηV ≡M2
P

(
V ′′

V

)
, (2.138)

the scalar tilt and tensor-to-scalar ratio can be expressed in terms of the slow roll parameters
as (see section 2.1)

ns ' 1− 6εV ∗ + 2ηV ∗ , (2.139)
r ' 16εV ∗ . (2.140)

In a more precise model determination of N∗, and ns, there is some dependence on the reheating
temperature and equation of state [126, 127]. The computation is based on the self-consistent
solution of the relation between N∗ and its corresponding pivot scale k∗,

N∗ = ln

[
1√
3

(
π2

30

)1/4(
43

11

)1/3
T0
H0

]
− ln

(
k∗
a0H0

)
− 1

12
ln gRH +

1

4
ln
(
V (φ∗)

2

M4
Pρend

)
+ ln

[
aend

aRH

(
ρend

ρRH

)1/4
]
, (2.141)

where the present Hubble parameter and photon temperature are given byH0 = 67.36 km.s−1.Mpc−1

[15] and T0 = 2.7255 K [128]. For the T-models dominated by a quadratic term, agreement
with Planck/BICEP/Keck data requires N∗ between roughly 42 - 56 [129].

In the absence of a mass, mφ = 0, N∗ ' 56 with φ∗ = 6.96MP and (ns, r) = (0.964, 0.0034),
independently of the efficiency of reheating [106, 122]. Therefore, to set limits on a possible
mass term for k = 4, we set N∗ = 56. For non-zero masses both ns and r increase, but the
limit on mφ is determined mainly from ns. Figs. 2.9 and 2.10 show the numerically computed
CMB observables ns and r for a variety of bare masses and inflaton-matter couplings. As is
customary, the Planck (k∗ = 0.05Mpc−1) and WMAP (k∗ = 0.002Mpc−1) pivot scales are
chosen for ns and r, respectively. For mφ 6= 0, the effective equation-of-state parameter evolves
as w = −1/3 → 1/3 → 0 → 1/3 from the end of inflation to the end of reheating. The
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Figure 2.9: Scalar tilt ns (top) and tensor-to-scalar ratio r (bottom) as functions of the Yukawa
coupling y (2.143), for a selection of bare masses mφ and k = 4.

dependence of N∗ on the instantaneous equation-of-state parameter can be made evident by
rewriting the last term of (2.141) as

ln

[
aend

aRH

(
ρend

ρRH

)1/4
]

=
1− 3wint

12(1 + wint)
ln
(
ρRH

ρend

)
, (2.142)

where wint denotes the e-fold average of the equation of state parameter during reheating [127].
The top panel of Fig. 2.9 depicts the bare mass dependence of the scalar tilt, as a function of
an inflaton-matter Yukawa coupling (see Eq. (2.143)). For mφ = 0, N∗ ' 56 for any y, leading
to the purple horizontal line. For mφ = 0.025

√
λMP , the smallest non-zero mass in the Figure,

the resulting curve presents two regimes. At y & 10−1, ns is independent of y since reheating is
completed before matter domination, aRH < am. However, for y . 10−1, reheating is completed
by the dissipation of the quadratic, harmonic oscillations of φ. A dependence of ns on y is
induced, since now the last term of (2.141) is relevant for the determination of N∗. For smaller
y reheating is delayed, resulting in a smaller N∗ and as a consequence ns. In the case of larger
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Figure 2.10: Same as Fig. 2.9 shown in the (ns, r) plane. The gray (light gray) shaded regions
correspond to the 68% (95%) C.L. Planck+BK18 regions [124].

masses, the pure quartic regime is reduced, or outright lost, and the relation of ns and y is
determined by the duration of reheating in the matter dominated era, and the modification of
the slow roll dynamics due to the presence of the large bare mass. Analogous conclusions can
be drawn from the bottom panel of Fig. 2.9. In this case the addition of the bare mass increases
the value of the tensor-to-scalar ratio, both from the modified inflation dynamics, and from the
dependence on y of the number of e-folds N∗.

Fig. 2.10 compares the corresponding (ns, r) curves against the Planck+BK18 constraints [124].
Here the range of couplings spans reheating temperatures from TRH ∼ 2× 1014 GeV for y = 1,
to TRH ∼ O(10)MeV for y = 10−15. We note that for the smallest bare masses high reheating
temperatures are favored by the CMB data. On the other hand, for the largest masses consid-
ered, lower TRH are preferred. At the nominal N∗ = 56, corresponding to y ≈ 1 in the figure,
we find that mφ < 0.2

√
λMP ' 8.8 × 1011 GeV at 68% CL with (ns, r) = (0.971, 0.0050) and

mφ < 0.25
√
λMP ' 1.1 × 1012 GeV at 95% CL with (ns, r) = (0.975, 0.0061). Above these

masses, the values of ns and r rise very quickly and agreement with data is lost. Applying this
limit on mφ in Eq. (2.137) gives TRH . 2.8 × 1014 GeV. In other words, for larger reheating
temperatures, the energy transfer is sufficiently efficient to avoid any interference of a possible
quadratic interaction without violating the CMB data. Allowing for the full range in coupling
y or equivalently TRH and expanding the range in N∗, we see from Fig. 2.10, that the 68% CL
upper limit is mφ < 0.33

√
λMP = 1.4× 1012 GeV (for y ≥ 10−15 and a 95% CL upper limit of

mφ . 0.38
√
λMP = 1.6× 1012 GeV. For larger masses it becomes impossible to simultaneously

satisfy the Planck constraints to 2σ and the BBN bound TRH & MeV.
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In addition to an upper bound to mφ, we expect that radiative corrections to the potential will
provide finite mass, which, unless fine-tuned away, will determine a lower bound on the inflaton
mass. Since the inflaton must (at some level) be coupled to SM particles, loops involving SM
particles with weak scale masses will contibute radiatively to the inflaton mass. Therefore,
we expect that the coupling of the inflaton to either fermions or scalars would lead to a mass
term proportional to ymf or µ (see Eqs. (2.143) and (2.156) for couplings to fermions and
scalars respectively. While loops involving SM fermions are probably no larger than the weak
scale, the coupling to scalars could generate a significant contribution to mφ. Furthermore,
in a supersymmetric theory we would also expect contributions to the scalar mass of order
the supersymmetry breaking scale. However, as noted, any lower limit to the inflaton mass
would be subject to the degree of fine-tuning by canceling a bare mass term with any 1-loop
corrections. Therefore unlike the upper limit discussed above, we do not apply a firm lower
limit its mass, but recognize that it should not be surprising to generate weak scale masses,
even in theories with the potential given in Eq. (2.61) for k ≥ 4.

2.3.3 Consequences of the inflaton coupling to matter

Reheating to create a thermal bath of Standard Model particles requires some coupling of
the inflaton to the Standard Model. The relation between this coupling and the reheating
temperature is dependent not only on the shape of the inflaton potential about its minimum,
but also on whether the reheating is produced by inflaton decay (in to either fermions, scalars
or vectors) or scattering. As in [87, 106] we will study the three possible cases: fermion decay,
scalar decay and scalar scattering, adding the vectorial final states (decay and scattering)
analyzed in [114].

Inflaton decay to fermions

Given a Yukawa-like coupling of the inflaton to fermions,

Lφff = yφf̄f , (2.143)

the inflaton decay rate is

Γφ =
y2eff
8π
mφ . (2.144)

Here, the effective Yukawa coupling yeff(k) 6= y is defined by averaging over an oscillation.
In general for k 6= 2, the effective coupling must be calculated numerically [106, 130, 131].
The general expressions for the reheating temperature, defined by ρφ(aRH) = ρR(aRH) and
αT 4

RH = ρR(aRH), are given in section 2.2. TRH depends strongly on the spin of the final state
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decay products, and for decays to fermions, Eq. (2.109) gives with l = 1/2− 1/k and k < 7

TRH =

(
1

α

) 1
4

[
k
√
3k(k − 1)

7− k
λ

1
k
y2eff
8π

] k
4

MP , (2.145)

or

TRH =


(
λ
α

) 1
4 y2eff

π
MP ' 4.2× 1014y2eff GeV k = 4 ,(

3
α

) 1
4

(
y2effmφMP

20π

) 1
2

' 3.3× 1012yeff

√
mφ

109GeV GeV k = 2 .

(2.146)

Notable in Eq. (2.146) is that TRH exhibits a different dependence on the coupling and mass
of the inflaton. In particular, TRH ∝ y2eff in the case am > aRH, TRH ∝ yeff

√
mφ if am < aRH.

We will see that for sufficiently low coupling, the quadratic term can dominate the reheating
process leading to a higher reheating temperature.

When the limit in Eq. (2.137) is satisfied, reheating is sufficiently late to be determined by
the quadratic term (k = 2 in Eq. (2.146)) and that can be translated into a limit on the coupling
yeff,

yeff . ym
eff = 0.02

√
mφ

109 GeV
. (2.147)

We show in Fig. 2.11 the value of the reheating temperature as function of yeff for different
values of the inflaton bare massmφ = 103, 109 and 1011 GeV, neglecting the effects of an effective
final state mass (see below) and thus yeff = y. To obtain the figure, we solved numerically
the complete set of Friedmann equations for ρR and ρφ, taking the full potential V (φ) =
1
2
m2
φφ

2 + λφ4. We also show for comparison with dashed lines, the analytical value of TRH

obtained in Eqs. (2.146). We clearly see the change of behavior TRH = f(yeff) below the limiting
value in Eq. (2.147) where the bare mass term controls the final reheating temperature. For
yeff . ym

eff, TRH ∝ yeff, whereas for larger values of yeff, when the reheating is dominated by the
quartic part of the potential, the reheating temperature ∝ y2eff and is independent of mφ.

A background field value for φ, however, induces an effective mass for the fermion, f , meff =

yφ, and the rates for producing the fermions are suppressed by R−1/2 where R ∝ m2
eff/m

2
φ ∝

y2(φ0/MP )
4−k/λ [106].8 The mass of the inflaton is defined by

m2
φ(t) ≡ V ′′(φ0(t)) . (2.148)

When R� 1, there is a significant suppression in the decay rate and yeff � y. Note that in the
case of a quartic potential, mφ ∝ φ. As meff ∝ φ also,R is constant,R ' 1.4y2/λ ' 4.2×1011y2.

8Collective effects can additionally become important for sufficiently large couplings y, resulting in a further
Pauli suppression for the efficiency of the decays. For k = 2, these preheating effects become relevant for
y & 10−5 [119].
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Figure 2.11: Reheating temperature as a function of the Yukawa coupling y when a bare mass term is
added to a quartic potential (k = 4). Solid lines are obtained by solving numerically the Boltzmann
equations for energy densities, while dashed lines are given by the analytical approximations in Eqs.
(2.146) Here we neglect the effective mass of the final state fermion, R = 0 and yeff = y.

In other words, the effect of R results in a suppression of the reheating efficiency by a constant
factor R− 1

2 ' 1.5 × 10−6/y throughout the reheating process. This suppression begins to be
efficient (R & 1) for y & 1.5 × 10−6 [106]. On the other hand, for a quadratic potential,
R = 4(φ0/mφ)

2y2 decreases with time, redshifting as a− 3
2 . Which means that if there is no

suppression during the quartic dominated era (a < am), there is no suppression in the quadratic
era (a > am).

The kinematic suppression in the effective coupling yeff for R � 1 can be parametrized
as [106]

y2eff ' ckR−1/2(ω/mφ)y
2 (2.149)

where ck is a k-dependent constant9 and ω is the oscillation frequency. For k = 4, c4 ' 0.5 and
ω ' 0.49mφ. This leads to

yeff '
1

2
× y

R 1
4

' 6× 10−4
√
y (k = 4) . (2.150)

We note that only when R ∼ 0.1, do we recover yeff = y. Note also that unless yeff is relatively
small, yeff . 2 × 10−3, the Lagrangian coupling, y, is non-perturbative [106, 123], where this
perturbativity limit on yeff assumes y .

√
4π.

For k = 2, c2 ' 0.38 and ω = mφ. At the end of reheating, ρRH = 1
2
m2
φφ

2
0(aRH) = αT 4

RH, so

9There is an additional dependence of yeff on the sum of the Fourier modes associated with the inflaton
oscillations in the potential V (φ) ∼ φk, for each value of k. However, this additional dependence is O(1), as
shown in [106].
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that
φ0(aRH) =

√
2α
T 2

RH
mφ

. (2.151)

Then, for R� 1, we can write

yeff ' 0.15(mφ/TRH)
√
y (k = 2) , (2.152)

and using Eq. (2.146) for TRH in terms of yeff we have

yeff = 6.7× 10−3
( mφ

109 GeV

) 1
4
y

1
4 (k = 2) . (2.153)

In this case, non- perturbativity sets in unless yeff . 1.5(mφ/φ0)
1
2 , assuming that yeff < y. Note

that for k > 4 the limit becomes more severe as R is larger and increases in time.

Because of the suppression in the decay rate, the relation between TRH and the decay coupling
y shown in Fig. 2.11 needs to be reassessed. Indeed, when y & 1.5 × 10−6, R & 1 and the
suppression effect should be taken into account. The relation between TRH and y when the
effects of kinematic suppression are included is shown in Fig. 2.12. At very low values of
y, R � 1 and the suppression effects can be ignored. In this case, the relation between
TRH and y is unaffected. However, when yeff ≤ y the relation is altered. From Eq. (2.153),
this occurs when y > 1.3 × 10−6(mφ/GeV)

1
3 , or when y > 1.3 × 10−5(1.3 × 10−3)(6 × 10−3)

when mφ = 103 (109) (1011) GeV. These values are seen in Fig. 2.12 when the solid curves
begin to deviate from the dashed curves. The dashed curves show the relation in Fig. 2.11
when suppression effects are ignored. The expression for yeff in Eq. (2.153) can be inserted in
Eq. (2.146) to obtain the relation between TRH and y for when suppression effects are included
and reheating is governed by the quadratic term,

TRH = 2.2× 1010 GeV
( mφ

109GeV

) 3
4
y

1
4 (k = 2) . (2.154)

We saw previously in Eq. (2.137) that the reheating temperature is determined by the quartic
term only if TRH & 250mφ. When the kinematic suppression effects are ignored (y = yeff), this
occurs when y does not satisfy Eq. (2.147). In this case, we can use Eq. (2.150) to determine
the relation between TRH and y,

TRH = 1.5× 108y GeV (k = 4) , (2.155)

and thus we expect that reheating is determined by the quartic term when y > 1.7×10−6mφ/GeV.
This occurs at y = 1.7 × 10−3 for mφ = 103 GeV as can be seen in Fig. 2.12. For the larger
masses shown, we see that the transition would only occur in the non-perturbative regime (with
y � 1) and so for the two higher masses, the reheating temperature is always determined by
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Figure 2.12: As in Fig. 2.11, the reheating temperature as function of the yukawa coupling y for
different values of the inflaton bare mass mφ = 103 GeV (red-dotted), 109 GeV (green-dashed) and
1011 GeV (full-blue). Here we consider the effective mass of produced fermion, R = (2yφ0/ω)

2.

the quadratic mass term.

Decay to scalars

Another possibility is that reheating occurs predominantly through inflaton decay to scalars,
through the coupling

Lφb2 = µφb2 (2.156)

where b is a real scalar field. As was the case for the fermion decay, there is also an effect from
the effective mass of the scalar field, and we parameterize it by considering an effective coupling
µeff. We note that µeff is now a dimensionful parameter and is enhanced (and not reduced) by
R1/2 [106]. The associated decay rate is given by

Γφb2 =
µ2

eff
8πmφ

. (2.157)

For k = 2 this effective coupling reduces to the Lagrangian coupling µ but is different for k > 2.
It is important to note that in this case, as mφ decreases with time, the decay rate increases
with time.

For decays to scalars, l = 1/k − 1/2, and using the appropriate expression found in the
Appendix for γφ, we have

TRH =

(
1

α

) 1
4

[
2k
√
3

(4k + 2)
√
k(k − 1)

λ−
1
k
µ2

eff
8πM2

P

] k
4(k−1)

MP , (2.158)
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or

TRH =



(
1
α

) 1
4

(
µ2eff

36πM2
P

) 1
3
λ−

1
12MP

' 1.8× 1018
(
µeff
MP

) 2
3 GeV k = 4 ,(

3
α

) 1
4

(
MP

20πmφ

) 1
2
µeff

' 3.3× 103µeff

√
109GeV
mφ

k = 2 ,

(2.159)

We show in Fig. 2.13 the evolution of TRH as function of µ for the same set of masses
mφ = 103, 109 and 1011 GeV, in the simplified case with meff = 0. We clearly recognize the
dependence TRH ∝ µ for the smaller values of µ and TRH ∝ µ2/3 for the larger values, when
reheating is dominated by the quartic part of the potential. The value of µ for which reheating
is dominated by the quadratic term obtained from Eq. (2.159) with k = 4 is

µ . 1.3× 108
( mφ

109 GeV

) 3
2 GeV , (2.160)

which is effectively what is observed in Fig. 2.13. From Eq. (2.160), we see that the reheating
temperature for mφ = 103 GeV (red curve) is always due to the quartic term, as the transition
from quadratic to quartic occurs at a low value of µ beyond the range shown. For the larger
values of mφ, Eq. (2.160) indicates when when the slopes of TRH vs. µ begins to change.
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Figure 2.13: Reheating temperature as function of the bosonic coupling µ, for different values of the
inflaton bare mass mφ = 103 GeV (red), 109 GeV (green) and 1011 GeV (blue). Solid lines are obtained
by solving numerically the Boltzmann equations for energy densities, while dashed lines are given by
the analytical approximations in Eqs. (2.159). Here we neglect the effective mass of produced bosons,
R = 0.

In order to account for the effective mass m2
eff = 2µφ0, we need to include an enhancement of
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the production rate ∝ R 1
2 , with R = 8µφ0/m

2
φ for k = 2 and R ' 2.8µ/(λφ0) for k = 4. The

effective dimensionful coupling10 when R� 1 is [106]

µ2
eff '

c′k
4
(k + 2)(k − 1)

ω

mφ

R
1
2µ2 , (2.161)

with c′k ' {0.38, 0.37, 0.36} for k = {2, 4, 6}, so that µeff ' 0.62(8φ0/m
2
φ)

1
4µ

5
4 for k = 2. Then

using Eq. (2.151) for φ0 and Eq. (2.159) for k = 2 to replace TRH, we have

µeff ' 3.3× 10−10 GeV
(
109 GeV
mφ

)2 ( µ

GeV

) 5
2
. (2.162)

Then, the effects of the kinematic enhancement will occur when

µ & 2.1× 106
( mφ

109 GeV

) 4
3 GeV . (2.163)

This can be see seen in Fig. 2.14 for mφ = 109 (1011 GeV as the point when the solid curves break
away from the dashed curves at µ ' 2.1×106 (9.8×108) GeV respectively. At lower values of µ,
the effects of the kinematic suppression can be ignored. Formφ = 103 GeV, this occurs at a value
of µ below the range shown. It must be noted that the enhancement of the particle production
rate with R� 1 is connected to the (tachyonic) resonant excitation of b. This typically signals
the breakdown of the perturbative approximation, requiring the use of lattice codes to capture
the bosonic enhancement originated from the short-time preheating effects [132, 133]. We do
not consider this effect in the present work, and we take the perturbative rate as a lower bound
on the efficiency of the decay process.

In the region when µeff > µ and quadratic reheating dominates, we can insert Eq. (2.162)
into Eq. (2.159) to obtain

TRH = 1.1× 10−6 GeV
(
109 GeV
mφ

) 5
2

µ
5
2 (k = 2) . (2.164)

At higher values of µ the transition to quartic reheating occurs and using Eq. (2.161) with
the expression for R for k = 4, we find that

µeff ' 2.5 GeV
( µ

GeV

) 15
14 (2.165)

10Again, an additional O(1) dependence of µeff on the sum of the Fourier modes associated with the inflaton
oscillations for each value of k is neglected here [106]. Note also that the values of c′k were omitted in [106].
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Figure 2.14: Reheating temperature as function of the bosonic coupling µ, for different values of the
inflaton bare mass mφ = 103 GeV (red), 109 GeV (green) and 1011 GeV (blue). Solid lines are obtained
by solving numerically the Boltzmann equations for energy densities, while dashed lines are given by
the analytical approximations in Eqs. (2.159). Here we consider the effective mass of produced bosons,
R = 8µφ0/ω

2.

which when inserted in Eq. (2.159) gives

TRH ' 2.5× 1019 GeV
(

µ

MP

) 5
7

(k = 4) . (2.166)

Decay to Vectors

Recently, we have considered the possibility of inflaton decays to vectors [114] motivated by
inflationary models in the context of no-scale supergravity [134] (which easily lend construction
of the T -models considered in section 2.1 and here [87]). Often, in such models, the inflaton
couplings to matter fermions and scalars are highly suppressed [135–137], and reheating is
only possible if the gauge kinetic functions contain inflaton couplings. The inflaton to vector
couplings can be parameterized by

L ⊃ − g

4MP

φFµνF
µν − g̃

4MP

φFµνF̃
µν , (2.167)

From these Lagrangian couplings, we can derive the inflaton decay rate

Γφ→AµAµ =
α2

effm
3
φ

M2
P

, (2.168)

where α2
eff = (g2eff+ g̃

2
eff)/(64π). Note the dependence of the width on m3

φ, which is very different
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from the decay into fermions (∝ mφ) and to scalars (∝ 1/mφ). Γφ→AµAµ decreases much more
rapidly than Γφ→ff , rendering the reheating much less efficient, even impossible as long as the
reheating is dominated by the quartic term.

Indeed, for decay to vectors, l = 3/2− 3/k, and using the appropriate expression for γφ, we
have from Eq. (2.109)

TRH =

(
1

α

) 1
4

[√
3k

5
2 (k − 1)

3
2λ

3
k

13− 4k
α2

eff

] k
4(3−k)

MP . (2.169)

This expression is valid so long as k + 8 − 6kl > 0, which is the case for k = 2, but not for
k ≥ 4. For k + 8 − 6kl < 0, the reheating temperature is given by Eq. (2.110) for k > 4. For
k = 4, the radiation density in Eq. (2.108) scales as a−4 when a � aend, as does the inflaton
energy density in Eq. (2.73) and we never achieve the condition that ρφ(aRH) = ρR(aRH) and
reheating never occurs. Thus we have

TRH =


no reheating k = 4 ,(
3
α

) 1
4

(
2m3

φ

5M3
P

) 1
2

αeffMP

' 7.0× 103αeff
( mφ

109GeV

) 3
2 GeV k = 2 ,

(2.170)

Thus for a k = 4 inflationary potential, reheating via the decays to vector bosons does not
occur in the absence of a bare mass term. The bare mass term is then necessary to ensure a
successful reheating. However, the bare mass term should ensure TRH & 2 MeV, which means

mφ & 40α
− 2

3

eff TeV . (2.171)

This value is the minimal bare mass necessary to have reheating through decay to vectors for
k = 4.

Finally we note that there are no kinematic enhancement/suppression effects in this case.
Since the inflaton is coupled to F 2 (as opposed to A2), no mass term is generated. Then
geff = g (and g̃eff = g̃) for k = 2, and for k = 4 only differs by a Fourier coefficient in an
expansion of V (φ) [114]. Nevertheless, non-perturbative preheating effects may play a role for
large couplings, an effect that we leave for future work [138–140].

Scattering to scalars

We can also consider the case where the inflaton transfers its energy through the coupling

Lφ2b2 = σφ2b2 (2.172)
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where b is a real scalar field. The associated decay rate is given by [106]

Γφ2b2 =
σ2

eff
8π

ρφ
m3
φ

(2.173)

where we have introduced the effective coupling σeff obtained, as for yeff and µeff, after averaging
over oscillations of the background inflaton condensate [106]. This effective coupling is equal
to the Lagrangian coupling σ for k = 2 but is different for k > 2 and as in the case of decays
to fermions there is a kinematic suppression.

For scattering to scalars, l = 3/k − 1/2, and using the appropriate expression found in the
Appendix for γφ, we have from Eq. (2.109) valid when k ≥ 4,

TRH =

(
1

α

) 1
4

[ √
3

(2k − 5)
√
k(k − 1)

3
2

λ−
3
k
σ2

eff
8π

] k
4(k−3)

MP . (2.174)

For k = 2, 8 + k − 6kl < 0 and ρR redshifts as a−4 which is faster than ρφ ∝ a−3. Thus, in
this case, reheating is not possible if the quadratic term becomes dominant before reheating is
complete. The reheating temperature can then be written as,

TRH =


(
1
α

) 1
4

(
σ2

eff
144π

)
λ−

3
4MP

' 8.9× 1023σ2
effGeV k = 4 ,

no reheating k = 2 .

(2.175)

As one can see, the possibility of reheating through scattering to scalars is opposite the
case of decays to vectors. Reheating is not possible when the quadratic part of the potential
dominates the reheating process. Naively, when we neglect the kinematic suppression effects in
R, reheating is therefore only possible if the limit in Eq. (2.137) is violated, namely

σeff & 5.3× 10−7
√

mφ

109 GeV
. (2.176)

For smaller couplings, the quadratic term will dominate before reheating is complete, and as a
result never completes. We note in the expression for TRH in Eq. (2.175), the maximum value
for σeff that can be used is determined from aRH > aend, which gives

σ2
eff < 2.2× 10−9 . (2.177)

Furthermore, for self-couplings this large, we expect that non-perturbative effects become non-
negligible [119]. For larger values, we have a maximum reheating temperature of 2× 1015 GeV,
which is basically determined from ρend.
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As previously noted, for inflaton scattering to scalars, there is a kinematic suppression when
R > 1. In this case, for k = 4, R ' 2.8σ/λ is a constant and 11

σ2
eff '

c′′k
8
k(k + 2)(k − 1)2R−1/2(ω/mφ)σ

2

' 16R−1/2σ2 ' 9.6
√
λσ

3
2 , (2.178)

using c′′4 = 1.22. Then the reheating temperature in terms of σ becomes

TRH = 1.6× 1019 GeVσ
3
2 (k = 4) . (2.179)

In Fig. 2.15, we compare the reheating temperature as a function of σ when kinematic effects are
ignored to the case where they are included. From Eq. (2.178), these effects become important
when σ > 3.1 × 10−10. The dashed lines correspond to the solution when kinematic effects
are ignored. The abrupt increase in TRH occurs when Eq. (2.176) is satisfied (and σeff = 4σ).
In contrast, the solid lines include the kinematic suppression and reheating is possible when
Eq. (2.176) is used with Eq. (2.178) or when

σ & 6.4× 10−6
( mφ

109 GeV

) 2
3
. (2.180)

This limit accounts for the abrupt rise in TRH for the solid lines in Fig. 2.15. At higher
coupling, the reheating temperature follows Eq. (2.179) and scales as σ 3

2 as opposed to σ2 when
the suppression effects are ignored. In the latter case, we see the curves flatten at large coupling
since aRH is approaching aend and the approximation used in (2.175) breaks down. These curves
end when aRH = aend, indicated by the vertical gray dotted line. The solid curves would end
when σ ' 0.002.

In the absence of a decay term for the inflaton, a bare mass term will eventually lead to a
non-zero relic density of inflatons after annihilations freeze out. Indeed, even if σeff is sufficiently
large and respects the condition (2.176), the presence of a quadratic term may dominate the
energy budget of the Universe. Thus we can derive a limit on a combination of the inflaton
mass, TRH and the coupling σ. Saturating the limit leaves us with the inflaton as a cold dark
matter candidate! 12

Indeed, for σeff sufficiently large to ensure reheating with k = 4, for a > aRH, the evolution
of ρφ is determined from the Boltzmann equation including dissipative effects [106]

d

da

(
ρφa

6k
k+2

)
= − γφ

aH

2k

k + 2

ρl+1
φ

M4l
P

a
6k
k+2 . (2.181)

11We neglect the dependence of σeff on the sum of the Fourier modes associated with the inflaton oscillations
for each value of k [106].

12The possibility of inflaton dark matter in a similar context was considered in [141] where the conditions for
freeze-out of a thermal inflaton given. See also [142–146].
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Figure 2.15: Reheating temperature as function of the scattering coupling σ, for different values of
the inflaton bare mass mφ = 103 GeV (red), 109 GeV (green) and 1011 GeV (blue). Solid lines are
obtained by solving numerically the Boltzmann equations for energy densities including the effect of
R, while dashed lines neglect the effect of effective masses. The vertical gray dotted line corresponds
to the limit Eq.(2.177), when neglecting the effect of R.

and for k = 4, l = 1
4

and γφ as given in the Appendix, we find that ρφ scales as

ρφ = 256ρRH

(aRH

a

)8
. (2.182)

Here, we used H =
√
ρR/3M2

P . In the absence of a mass term, since Γφ ∝ γφρ
1
4
φ ∝ a−2 and

after reheating, H ∝ ρ
1
2
R ∝ a−2, the ratio Γ/H remains constant and the scaling in Eq. (2.182)

remains true indefinitely and the density of inflatons becomes negligibly small.

However, when mφ 6= 0, eventually the mass term dominates over the quartic term (at
a = am) and we can determine am, when ρφ(am) =

1
2
m2
φφ

2(am),

am

aRH
=
ρ

1
8
RHλ

1
82

1
8

√
mφ

, (2.183)

where the inflaton density is given by

ρm
φ = ρφ(am) =

m4
φ

2λ
. (2.184)

as was previously found in Eq. (2.133).

For a > am, Eq. (2.181) can be solved, now with k = 2 and l = 1. In the limit that a� am,

125



the residual inflaton density is given by

ρφ(a) ' ρm
φ

(am

a

)3
, (2.185)

so long as (mφ/MP ) � (2λ)
1
4/3

1
3 ≈ .001, which is always true given the upper limits on mφ

discussed in Section 2.3.2. Thus the presence of a mass term in the case where reheating
is determined by a quartic coupling of the inflaton to scalars (which requires k > 2), leads
automatically to cold dark matter candidate.

Given the inflaton density in Eq. (2.185), it is straightforward to compute the relic density
today and in effect set a limit on the inflaton bare mass. Today,

ρφ =
8m

5
2
φα

3
8T 3

0

(2λ)
5
8T 3

RH2
ξ , (2.186)

where ξ = (43/427)(4/11) ' 0.036 and relative to the critical density we have

Ωφh
2 = 1.6

( mφ

1 GeV

) 5
2

(
1010 GeV
TRH

) 3
2

(2.187)

and thus

mφ < 0.35

(
TRH

1010 GeV

) 3
5

GeV , (2.188)

using Ωφh
2 < 0.12. This is a remarkably strong limit on a bare mass term for the inflaton if it

remains stable.

Scattering to Vectors

If the gauge kinetic function is quadratic in the inflaton, then scattering rather decay to vectors
occurs. In this case, the inflaton to vector couplings can be parameterized by

L ⊃ − κ

4M2
P

φ2FµνF
µν − κ̃

4M2
P

φ2FµνF̃
µν , (2.189)

From these Lagrangian couplings, we can derive the inflaton decay rate

Γφφ→AµAµ =
β2ρφ
M4

P

mφ , (2.190)

where β2 = (κ2eff + κ̃2eff)/(4π).

For scattering to vectors, l = 3/2−1/k, and using the appropriate expression for γφ, we have
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from Eq. (2.110)

TRH =

(
1

α

) 1
4

[ √
3k

4k − 7
β2(k(k − 1))

1
2λ

1
k

] 3k
4k−16

×
(
ρend

M4
P

) 4k−7
4k−16

MP . (2.191)

since 8 + k − 6kl < 0 for k ≥ 2. However, Eq. (2.191) is only valid for k > 4. For k = 2(4),
ρφ ∝ a−3(a−4) while ρR ∝ a−4 for all k and reheating is not possible for k < 6. For these
specific cases, we then have

TRH =

no reheating k = 4 ,

no reheating k = 2 ,
(2.192)

In this case, the presence of a bare mass will not change the lack of reheating through the
scattering to vectors.

As a conclusion, whereas in the case of decays to fermions or bosons, the presence of a
quadratic term only acts on the value of TRH, decreasing the reheating temperature in the
former case, increasing it in the latter case, the quadratic term when dominant removes the
possibility of reheating through scattering to scalars but reopens the possibility of reheating
through decay to vectors, but does not allow reheating through the scattering to vectors.

2.3.4 Generalized potentials

The inflationary potential may be dominated by higher order terms if k > 4. In this section,
we generalize some of the arguments made above in the event that the inflationary potential is
approximated by

1

2
m2
φφ

2
0 + λφk0M

4−k
P

(2.193)

about its minimum. In this case, the general expression for the scale factor when the mass term
dominates is given by

am

aend
=

2λ
2
kM

2(4−k)
k

P ρ
k−2
k

end
m2
φ

 k+2
6k−12

, (2.194)

with ρend = 3
2
V (φend) and λ by Eq. (2.64). Then

ρφ(am) = 2

(
m2
φ

2

) k
k−2

λ
−2
k−2M

2(k−4)
k−2

P , (2.195)
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which clearly reduces to Eq. (2.133) for k = 4. A parallel derivation leading to Eq. (2.137)
implies that

ρRH . 2

(
m2
φ

2

) k
k−2

λ
−2
k−2M

2(k−4)
k−2

P
(2.196)

for the mass term to dominate at reheating. In terms of the reheating temperature, this amounts
to

TRH .

(
1

α

) 1
4

(
mφM

k−4
k

P

(2λ)
1
k

) k
2(k−2)

. (2.197)

For comparison with Eq. (2.137), we have

TRH .

5.0× 105 GeV
( mφ

GeV

) 3
4 k = 6 ,

6.3× 106 GeV
( mφ

GeV

) 2
3 k = 8 ,

(2.198)

using λ = 5.7× 10−13 and 9.5× 10−14 for k = 6 and 8, respectively.
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Figure 2.16: Minimal reheating temperature from Eq.(2.197), below which the inflaton mass term
drives the process, as a function of the bare mass mφ and for different values of k, k = 4 (solid line),
k = 6 (dashed), k = 8 (dotted). In the different shaded regions, reheating occurs while the inflaton
oscillates in a quadratic potential (k = 2), given by its bare mass mφ. Above the lines, for different k,
reheating occurs while the inflaton oscillates in the potential V (φ) ∼ φk.

2.3.5 Consequence on the inflaton fragmentation

Recently, the authors of [123] and [122] have shown that fragmentation can significantly alter
the reheating process. Indeed, the fragmentation of the inflaton condensate results in the
population of an inflaton-particle bath, whose very low mass, proportional to the density of
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the condensate which remains unfragmented, may not allow reheating temperatures above the
BBN bounds for inflaton decays to fermions. This fragmentation is due to the presence of a
self-scattering term of type λφk, with k ≥ 4. The inflaton condensate does not fragment in the
absence of self-interactions allowing for reheating to occur as discussed above.

However, the study [123] was carried out in the context of a monomial potential of the type
V (φ) = λφk. It is then easy to see that the presence of a bare mass term of the type 1

2
m2
φφ

2

can change the conclusions of this study, in particular if the quadratic term begins to dominate
before the fragmentation halts. If we define aF as the value of the scale factor at the end
of fragmentation, then aF/aend = 180, 4.5 × 104, 6 × 106 and 7 × 108, for k = 4, 6, 8 and 10
respectively [123]. In order for a quadratic term to affect the fragmentation process, we must
have am . aF and using Eq.(2.131) it becomes easy to compute, for each value of k, the minimal
value of mφ necessary to ensure that the quadratic term dominates the potential before the end
of fragmentation. The problem of a leftover bath of massless inflatons can then be avoided by
stopping the fragmentation process.

More precisely, when reheating begins, self interactions can source the growth of the inflaton
fluctuations δφ(t,x) = φ(t,x)− φ̄(t), where φ̄ denotes the homogeneous condensate. At early
times, this growth can be captured by the linear equation of motion

δ̈φ+ 3H ˙δφ− ∇
2δφ

a2
+ V ′′(φ̄) δφ = 0 , (2.199)

where
V ′′(φ̄) ' k(k − 1)λφ̄k−2M4−k

P +m2
φ . (2.200)

For mφ = 0, the oscillating nature of this resulting effective mass term drives the resonant
growth of δφ and the eventual fragmentation, δφ� φ̄ [121–123, 147–154]. However, if mφ dom-
inates before fragmentation, V ′′ ∼ const., strongly suppressing the oscillatory driving force.13

Fig. 2.17 shows the evolution of the total inflaton energy density ρφ, compared to the energy
density in its fluctuations ρδφ, as computed numerically for a T-model of inflation [105] with k =

4 and three choices of the bare mass (see [122] for details). The top panel depicts the zero bare
mass scenario. In it, the rapid growth of inflaton fluctuations driven by parametric resonance
can be appreciated. This growth only stops when ρφ ' ρδφ (a/aend ' 180), corresponding to
the near-complete fragmentation of the inflaton condensate in favor of free φ-particles.14 For
the bottom two panels we take mφ > 0. In both cases, the quartic→ quadratic transition time
has been chosen to be posterior to the complete fragmentation of the inflaton, am > aF. A

13For a purely quadratic inflaton potential the growth of fluctuations is still present, albeit not exponentially
enhanced, due to the coupling of δφ with the fluctuations of the metric [155–158].

14The fragmentation of the inflaton condensate is not total even for mφ = 0. A small but nonvanishing
homogeneous component φ̄ remains, and its presence can induce the decay of the free inflaton quanta δφ [122,
123].
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naive estimate from Eq. (2.200) would indicate that the resonant growth of δφ would not stop
until

a

aend
=

√
12λφend

mφ

' 2.6
am

aend
, (2.201)

that is, the field would be fully fragmented before matter domination. However, the full nu-
merical solution of the equation of motion (2.199) shows that the growth of fluctuations is in
reality suppressed from a . am/2, as both panels of Fig. 2.17 demonstrate. Therefore, reaching
quadratic dominance is a sufficient condition to avert full fragmentation. Note that for smaller
masses than those used in Fig. 2.17, fragmentation would nearly completely destroy the con-
densate and potentially disrupt the reheating process entirely. On the other hand, for larger
masses, the fragmentation process would not be operative at all.

A qualitative depiction of this result for potentials with k ≥ 4 is shown in Fig. 2.18, where
we plot the limit on the mass mφ above which the bare mass term dominates over λφk in the
potential as a function of k. We see that for larger value of k, where the fragmentation is
less efficient due to the increasing difficulty for the self scattering to occurs for higher modes,
even a small bare mass term can be sufficient to stop the fragmentation process and ensure a
successful reheating.

To conclude this section, when the inflaton potential is dominated by a quadratic term
about its minimum, decays are necessary, as scatterings do not lead to a radiation-dominated
universe. However, potentials dominated by higher order interactions, k > 2, have anharmonic
oscillations and scattering may lead to reheating, though these models may be subject to
additional constraints arising from the fragmentation of the inflaton condensate. The details
of the reheating process depend on the spin of the final state particles produced.

In models of inflation for which the potential can be expanded about its minimum as V (φ) ∝
φk, with k > 2, it is quite possible, that a bare mass term in the full scalar potential is also
present. We derived upper limits to this mass from CMB observables. The qualitative effect
of the mass term also depends on the reheating mechanism (decay or scattering) as well as the
spin of the final states. For decays to fermions, the reheating temperature is increased by the
presence of mass term, while for scalars, it is decreased. For decays to vectors, reheating does
not occur for k = 4 in the absence of a mass term and its presence allows for the possibility
of reheating in this case. In contrast, if the mass term becomes important before the end
of reheating for scattering to scalars, the reheating process is halted. Furthermore, when
reheating is accomplished through scattering to scalars with k ≥ 4, the density of inflatons
quickly redshifts (as a−8) until the mass term comes to dominate. In this case, the residual
inflaton matter density acts as cold dark matter and a strong limit on the inflaton mass has
been derived in Eq. (2.188). Finally, we have seen that for scattering to vectors, reheating with
k = 4 is not possible (k ≥ 6 is required), and the mass term does not come to the rescue in
this case.
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Figure 2.17: Energy density of the inflaton fluctuations ρδφ compared to the total energy density ρφ, for
three values of the bare mass, for k = 4. The vertical dashed line corresponds to the value of am/aend
when mφ 6= 0. In both of these cases, although am > aF, the exponential growth of δφ is stopped by
the transition to matter-domination.
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Chapter 3

Gravitational particle production
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Production of thermal relics, through the freeze-in or freeze-out mechanisms, requires the
temperature of the thermal plasma to be high enough to produce heavy particles. However,
DM candidates have not provided any detectable signal through interactions with SM particles
in direct detection, indirect detection, or accelerator experiments. The stringent constraints on
the magnitude of DM coupling with SM species may suggest that it does not interact other
than by gravity. If so, the primordial origin of DM must be explained through gravitational
effects, and it is an appealing motivation to study the early-universe production of particles
through gravitational interactions.

The first work on gravitational production can be traced back to Schrödinger who studied
particle pair creation in the expanding Universe [159]. This seminal work was then pursued
by Parker and Ford in [160, 161] and Zel’dovich in [162], where the framework of cosmological
gravitational particle production was developed. It is the commonly accepted mechanism to
explain the origin of cosmological perturbations from inflation (section 2.1) from the work of
Mukhanov and Sasaki [97]. But this mechanism can also naturally explain the generation of
relic densities and may play a role in generating the matter-antimatter asymmetry. Cosmolog-
ical gravitational particle production may produce particles of mass comparable to the scale of
inflation, as large as 1014 GeV, even if the reheating temperature is much lower after inflation.
In addition, as opposed to standard scenarios for the production of cosmological relics, gravita-
tional production occurs inevitably even when the fields do not couple directly to SM particles
or the inflaton. In this sense, it is a model-independent mechanism that appears as a minimal
extension of SM processes because gravitational production does not depend on any couplings
between the different sectors.

The first part of this chapter focuses on gravitational particle production during inflation
resulting from the background gravitational field evolution as the Universe expands. It is a
semiclassical approach as the gravitational field itself is not quantized, whereas the spectator
fields (not coupled but experiencing the expansion) are quantized. We introduce the semiclas-
sical framework of QFT in curved space-time to derive the equations of motion for the Fourier
mode of spectator fields during inflation. We see how the expansion induces a mixing of positive
and negative-frequency that can be interpreted as a particle production using the Bogoliubov
formalism, and how to compute relic number density from it.

In the second part, we develop a novel approach to study particle production originating
from gravitational interactions during the inflaton oscillations regime. We adopt a Boltzmann
picture computing transition amplitudes and collision terms on short time scales based on QFT
in Minkowski space-time and involving effective gravitational operators. The leading order
effect is computed from the s-channel gravitons exchange process that we call the (minimal)
gravitational portal. It induces a rich phenomenology during reheating depending on the spin
of the particle produced and the shape of the inflaton potential around the minimum. We more
specifically apply this framework to the production of heavy DM particles during reheating,
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looking at the UV freeze-in from the thermal bath mediated by the gravitons, as well as the
contribution from the inflaton modes. The effect of these gravitational portals on the production
of relativistic quanta of the SM is also studied. In a second section, we further generalize this
framework of gravitational portals to the case of nonminimal couplings to gravity for scalar
fields. Finally, we consider a simple scenario for the generation of the DM relic abundance and
the origin of the baryon asymmetry in the Universe. We look at the gravitational production
of heavy RHN during the stage of reheating, which can simultaneously explain the asymmetry
from non-thermal leptogenesis as well as provide a proper DM candidate. These RHN are
produced from the gravitational portals and stay out-of-equilibrium concerning the hot thermal
bath. Such gravitational portals can also produce the relativistic particles of SM that further
thermalize into the bath. We investigate the constraints on such a scenario of gravitational
reheating involving minimal and nonminimal couplings to gravity.

3.1 Cosmological production

3.1.1 Quantum scalar field in curved space-time

We study a real scalar quantum field χ(x), evolving in the classical space-time given by the met-
ric gµν which we consider to be the FLRW background. We write gµν(x) = a2(η)diag (1,−1,−1,−1)
which is related to Minkowski space-time through conformal coordinate transformation, η being
the conformal time adη = dt. The generic action for the massive scalar field is given by

S =

∫
d4x
√
−g
[
−1

2
M2

P (1 + ξ)R +
1

2
∂µχ∂

µχ− 1

2
m2
χχ

2

]
(3.1)

where ξ is a dimensionless nonminimal coupling to gravity, which directly coupled the scalar
field to the Ricci curvature. This specific nonminimal coupling is an expected effective coupling
generated in curved space-time by UV processes and is motivated in many cosmological scenar-
ios. However, there can be an additional extension of Einstein gravity with higher dimension
operators for gravitational interactions that we do not consider here. To follow the dynamics
of such a scalar field during the quasi-de Sitter inflation, we first redefine the field via X = aχ,
for which the action becomes [163]

S =

∫
d4x

1

2

[
(X ′)2 − (∇X)2 +

(
a′′

a
(1 + 6ξ)− a2m2

χ

)
X2 − ∂η(aHX2)

]
, (3.2)

where we used the relation between the Ricci scalar and the scale factor second derivative in
FLRW space-time, −1

6
R(a) = a′′

a
. This term in parenthesis in front of X2 can be interpreted

as a time-dependent effective mass of the scalar field due to the expansion of space-time and
related to the gravitational coupling. The associated equation of motion can be derived [163]
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and is given by

X ′′ −∇2X +

(
a2m2

χ −
a′′

a
(1 + 6ξ)

)
X = 0 . (3.3)

which is a linear wave equation with a time-dependent effective mass given by the parenthesis.
Solutions can be expanded on a basis of mode functions, χk(η), given by the Fourier transform
of the field X(x, η) (on a hypersurface of constant conformal time) labeled by the comoving
momentum ~k. The field operator is quantized so that each mode is associated with creation and
annihilation operators âk, â†k, satisfying canonical commutation relations. The mode functions
satisfy the following equation of motion

χ′′k(η) + ωk(η)
2χk(η) = 0 (3.4)

for each comoving momentum k, which is a harmonic oscillator equation with a time-dependent
comoving frequency

ωk(η)
2 = k2 + a2(η)m2

χ +

(
1

6
+ ξ

)
a2(η)R(η) . (3.5)

The set of mode functions forms a complete orthonormal basis of the wave equation solutions
and satisfies the so-called Wronskian condition for canonically normalized fields

Wk ≡ χkχ
′∗
k − χ∗kχ′k = i . (3.6)

In the following, we neglect the backreaction of the field χ on the background metric, as we
are looking at a limit of small particle production through gravitational effects. We are mainly
interested in solving the mode equation for a quasi-de Sitter space-time during inflation. The
origin of the production comes from the time dependence of the frequency of the modes and to
understand this mechanism, let us first look at the situation in Minkowski space-time.

If there is no cosmological expansion, the frequency of Fourier modes (computed in the same
hypersurface of constant time) is constant for each wave number k. Thus, each mode is a
harmonic oscillator, and we have a natural basis for solutions of the wave equation, describing
plane waves, for which

χk(η) =
e−iωkη

√
2ωk

(3.7)

that is the positive-frequency mode function (the negative-frequency mode function is obtained
by replacing ωk → −ωk). The associated creation and annihilation operators act on a unique
vacuum state as âk|0〉 = 0 for all Fourier modes, which coincide in all inertial frames. Thus all
inertial observers agree on the number of particles that they can define frame-independently
through the same operator N̂k = â†kâk. In this case, the number density of particles in the field
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can be computed in a specific state |Ψ〉 as

n =

∫
d3k

(2π)3
〈Ψ|N̂k|Ψ〉 . (3.8)

Therefore, if no interactions are considered in the vacuum, we expect no particle to ever be
produced and the field to stay throughout its evolution in the non-excited configuration.

For curved space-times, however, it is generally impossible to specify a basis for solutions
of positive-frequency modes associated with the dispersion relation above, which holds along
space-time dynamics. In this case, inertial observers may decompose the field operator into
different mode functions and creation and annihilation operators at different times. Thus, the
vacuum state at some time may be an excited state at another time, associated with a nonzero
number of particles (quanta) of the fields. The cosmological gravitational particle production
results from the mixing of positive and negative-frequency modes in an evolving gravitational
background, that induces a time-dependent dispersion relation for the wave equation. We
discuss below, in further detail, the formalism of Bogoliubov transformations, which allows to
determine this number of particles measured by an observer in an expanding space-time.

One important aspect of the expansion of the Universe is that the FLRW space-time is related
to the Minkowski space-time by a time-dependent conformal transformation of the coordinates

gFLRW
µν (η) = a2(η)ηµν . (3.9)

Therefore, field theories conformally coupled to gravity do not lead to gravitational production
(at least not classically). Indeed, under such a conformal transformation of the metric

gµν(x)→ e2Ω(x)gµν(x) (3.10)

the action varies as

δS =
1

2

∫
d4x
√
−gTµνδgµν =

∫
d4x
√
−gT µµδΩ(x) (3.11)

and we understand that if the trace of the stress-energy tensor of a given field vanishes, any
conformal variation of the metric coordinates does not modify the action of the field. Therefore,
in the case of an expanding (homogenous and isotropic) Universe, it implies that such a field is
not experiencing the expansion of the Universe; its equation of motion would be independent of
space-time expansion. Thus we expect no gravitational production for a conformal field evolving
in an FLRW space-time 1. One can derive from Eq.(1.8) and the generic action Eq.(3.1) that

1Classical conformal symmetry of a field theory may be broken by quantum anomalies, leading to gravita-
tional effect even in an FLRW space-time.
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the trace of the stress-energy tensor for a scalar field is given by

T µµ = (6ξ − 1) (gµν∂µχ∂νχ+ χ) +m2
χχ

2 . (3.12)

This shows that (classically) massless scalar field, with a nonminimal coupling to gravity ξ =

−1
6
, are conformally coupled, and no gravitational production is expected in an expanding

Universe. Similarly, we can show from the action of a massless vector (spin 1) field, Aµ, that it
is conformally coupled and that T µµ, A = 0 resulting in no gravitational production of massless
spin 1 quanta. Finally, for a spin 1/2 fermion following Dirac action in curved space-time,
the trace of the stress-energy tensor T µµ, 1/2 ∝ m. We thus expect a suppressed gravitational
production2 as the mass of the fermion m→ 0.

3.1.2 The Bogoliubov transformations

We are interested in computing the gravitational production of particles in FLRW space-time,
which describes an early era of inflation close to de Sitter space-time, followed by the classical
expansion history of the Universe. In this case, the scale factor a(η) grows exponentially fast
during inflation and expands further during subsequent cosmological eras. The evolution of
the scale factor induces a change in the mode frequency, leading to a fundamental ambiguity
in the identification of positive and negative-frequency modes and the notion of excited states.
To solve this issue, we consider the in − out formalism of QFT and first, we suppose that at
asymptotic times the mode functions are solutions of the free theory in Minkowski background
[163],

χin
k (η) ∼

1√
2ωin

k

e−iω
in
k η (η → −∞) (3.13)

χout
k (η) ∼ 1√

2ωout
k

e−iω
out
k η (η → +∞) . (3.14)

The associated constant frequencies are given at asymptotic far past and far future and are
related to two distinct complete sets of operators âin

k , â
out
k to expand the fields. There is at

any time a freedom to choose the basis of the mode functions between the in and out to
expand the field operators. One can show that, in fact, there is an infinite family of equivalent
representations of the fields related by a SU(1, 1) transformation [163], that all satisfied the
canonical commutation relations, or equivalently, the Wronskian condition for the modes. Such
a transformation of modes associated with a transformation of the ladder operators is called a
Bogoliubov transformation. It allows to relate the mode functions in the two bases through a

2We note that, very recently, gravitationally 1-loop induced effective mass of (chiral) fermions have been
investigated in [164]. The authors argue that a gravitational wave background induces a new energy scale that
can break the classical conformal invariance of fermionic action and lead to gravitational production. This
mechanism may be efficient even for m→ 0.
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linear combination

χin
k (η) = αkχ

out
k (η) + βkχ

∗ out
k (η) (3.15)

âin
k = α∗kâ

out
k − β∗k â

† out
−k (3.16)

where αk, βk are called Bogoliubov coefficients. For the new basis modes to follow the same
equation of motion and for the new ladder operators to satisfy the canonical commutation
relations, it implies that the Bogoliubov coefficients also satisfy |αk|2 − |βk|2 = 1. One can
check that under this condition on the Bogoliubov coefficients, the new mode functions also
satisfy the Wronskian condition. We can easily invert the relation and, using the Wronskian
find an expression of the Bogoliubov coefficients as a function of the modes

αk = i
(
χ∗ out
k (η)χ′ ink (η)− χ′∗ out

k (η)χin
k (η)

)
(3.17)

βk = i
(
χ′ out
k (η)χ in

k (η)− χ out
k (η)χ′ ink (η)

)
. (3.18)

We emphasize that the Bogoliubov coefficients themselves are time-independent. In the fol-
lowing, the set of operators âin

k define the vacuum state |0in〉, that we consider to be given by
the Bunch-Davies vacuum state. The expected number of particles measured by the N̂k

out
≡

â† out
k âout

k operators may be nonzero in the vacuum state |0in〉 and the corresponding particle
comoving number density is then given by

a3n =

∫
d3k

(2π)3
|βk|2 . (3.19)

We see that if the expansion of space-time induces a mixing of positive and negative-frequency
modes, which are solutions of the wave equation, the information is encapsulated in the Bo-
goliubov coefficients. Gravitational particle production sourced by the classical evolution of
the background space-time can be tracked by computing the Bogoliubov coefficient βk in this
in− out formalism.

However, the continuous growth of the scale factor during the expansion shows that space-
time is not asymptotically flat in the far past and future and we can associate a continuous
change of frequency with a continuous change of the mode functions. Yet, we still can consider
that at asymptotic early and late times, the comoving frequency ωk(η) is slowly varying. The
change of frequency is adiabatic as long as

ω′k(η)

ω2
k(η)

� 1 (η → ±∞) (3.20)

which is generically verified for FLRW space-time expansion, sufficiently far away from any
abrupt transition from quasi-de Siter phase to further evolution. For such a case, WKB ap-
proximation gives a good definition of in−out asymptotic mode functions (see [163] for further
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details on the adiabatic expansion in the WKB method)

χin
k (η) ∼

1√
2ωk(η)

e−i
∫ η ωk(τ)dτ (η → −∞) (3.21)

χout
k (η) ∼ 1√

2ωk(η)
e−i

∫ η ωk(τ)dτ (η → +∞) (3.22)

which defines the positive-frequency mode functions at the leading adiabatic order. This ap-
proximation is justified at sufficiently late and early times as higher order terms in the adiabatic
expansion are vanishing for η → ±∞. Thus, the associated ladder operators at asymptotic early
times define the adiabatic vacuum state |0in〉, which we identify with the Bunch-Davies vacuum
in the following.

At intermediate times η, we can decompose generically the mode function χin
k (η) as

χin
k (η) = α̃k(η)

1√
2ωk(η)

e−i
∫ η ωk(τ)dτ + β̃k(η)

1√
2ωk(η)

ei
∫ η ωk(τ)dτ (3.23)

where we introduced two generic unknown mode functions α̃k(η), β̃k(η) which are associated
asymptotically in the past to positive, negative-frequency part of the solution to the wave
equation such that α̃k(η) → 1 and β̃k(η) → 0 when η → −∞. With this parametrization of
the problem, the game is now to understand the evolution of these two functions as a function
of η and try to relate their late-time behavior to the Bogoliubov coefficients associated with
the gravitational production mechanism. Asking for χin

k (η) to solve the equation of motion and
using the Wronskian condition |α̃k(η)|2 − |β̃k(η)|2 = 1, we can invert the relation defining the
unknown function β̃k(η) and compute it as

|β̃k(η)|2 =
ωk(η)

2
|χin
k (η)|2 +

|χ′ ink (η)|2

2ωk(η)
− 1

2
. (3.24)

Furthermore, one can easily show that to solve the equation of motion, these unknown functions
are solutions of the following differential equations

α̃′k(η) = β̃k(η)
ω′k
2ωk

e2i
∫ η ωk(τ)dτ (3.25)

β̃′k(η) = α̃k(η)
ω′k
2ωk

e−2i
∫ η ωk(τ)dτ . (3.26)

We want to relate the asymptotic behavior of the function β̃k(η) with the coefficient βk, which
is related to the modes via Eq.(3.18). Evaluating this relation at sufficiently late times, one
can show that

βk = lim
η→+∞

i
(
χ′ out
k (η)χ in

k (η)− χ out
k (η)χ′ ink (η)

)
' lim

η→+∞
β̃k(η) (3.27)
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where we assume that the expansion is adiabatic at late times such that ω′
k

2ωk
→ 0. It shows that

to compute the Bogoliubov coefficient, and so the semi-classical gravitational production, one
just needs to evaluate the late time limit of the function β̃k(η). At this point, there are two main
approaches. Suppose we can get explicit solutions of the mode function at any time (numerically
or under an analytical approximation): in that case, one can compute the function β̃k(η) from
Eq.(3.24) and look at its late-time asymptotic value when it should stabilize to the Bogoliubov
coefficient βk. On the other hand, if one has only the solution for the evolution of the time-
dependent frequency ωk(η), one can try to solve the differential equation Eq.(3.26) for β̃k(η)
and again evaluate the solution at sufficiently late-time. To do so, a specific situation simplifies
the resolution drastically: considering small gravitational production such that |β̃k(η)| � 1

along the evolution, solving Eq.(3.26) reduces to the evaluation the following integral

β̃k(η) '
∫ η

dτ
ω′k(τ)

2ωk(τ)
e−2i

∫ η ωk(τ)dτ . (3.28)

3.1.3 Production of UV modes from de Sitter phase

We illustrate the generation of a cosmological relic for one simple situation of de Sitter space-
time and massless scalar modes, minimally coupled to gravity. This mechanism is particularly
important for generating massless gravitons that follow the same dynamics as minimally coupled
massless scalars in an expanding Universe. These massless gravitons can be produced from
gravitational effects during the quasi-de Sitter inflation, forming a cosmological relic of tensor
modes constituting a stochastic background of gravitational waves. The following computation
using Bogoliubov transformations is closely related to the one done in the classical limit for the
generation of cosmological perturbations during inflation in section 2.1.

The mode equation for massless scalars is simply given by

χ′′k(η) +

(
k2 − a′′

a

)
χk(η) = 0 (3.29)

and during the de Sitter expansion the scale factor grows as

a = aee
He(t−te) (3.30)

where the subscripts te and ae refer to the end of the de Sitter phase. We consider He to be the
constant Hubble rate for the de Sitter phase, which we can approximately relate to the Hubble
rate at the end of inflation. Using the definition of conformal time and Hubble rate dη = da

a2H
,

we can relate the conformal time to the scale factor as

η =

∫ a

ae

da

a2H
' − 1

aH
(3.31)
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where in the last equality we used a � ae during de Sitter phase. In particular, it shows that
a′′/a ' 2/η2 in de Sitter phase, therefore, the mode equation is reduced to

χ′′k(η) +

(
k2 − 2

η2

)
χk(η) = 0 . (3.32)

At asymptotic early times, corresponding to a � ae i.e η → −∞, we consider (all) the modes
to be in the adiabatic Bunch-Davies vacuum and the solution at a later time can be in this
case readily calculated

χk(η) =
e−ikη√
2k

(
1− i

kη

)
(3.33)

which indeed converges to the plane wave solution at asymptotic times when k|η| → ∞. How-
ever, at this point, we have to remember that we consider at asymptotic times an adiabatic
evolution of the frequency of modes. The adiabatic condition reads

ω′k
2ω2

k

� 1⇔ k2η2 � 1 (3.34)

thus, if the de Sitter phase is eternal, there is no asymptotic time at which the frequency is
evolving adiabatically; there is always a break of adiabaticity for any mode at horizon crossing
when kη . 1. In this perspective, we also have to track the production of modes that exit
the horizon in a de Sitter phase. We saw in section 2.1 that such modes are frozen when they
leave the horizon and can be rapidly treated in the classical limit. The knowledge of further
cosmological evolution is necessary until their reentry inside the horizon, when such modes can
source primordial cosmological perturbations as derived in section 2.1. For more details on the
Bogoliubov treatment of such IR modes in the various cases of massless or massive fields and
non-minimally coupled fields to gravity, see the recent review [163].

For a finite de Sitter phase followed by a further adiabatic expansion, a collection of modes
satisfying k � aeHe are always sub-horizons and remain in the adiabatic limit. Such particle
states are well defined in this semi-classical approach, as the curvature does not vary across the
spatial extension of such a wavepacket k � aH ∼ |1/η|. We can estimate the small generation
of excitations for these UV modes from the de Sitter phase. As developed in the preceding part,
we have two ways to evaluate gravitational particle production. We have the exact solution of
the mode function at any conformal time η during de Sitter so that we can use Eq.(3.24) with

|β̃k(η)|2 =
1

4k4η4
. (3.35)

We obtain the same result by using Eq.(3.28)

β̃k(η) =

∫ η

dτ
ω′k
2ωk

e−2i
∫ η ωkdτ '

∫ η

dτ
1

τ 3k2
e−2i

∫ η ωkdτ ' − 1

2k2η2
. (3.36)
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Assuming that this function matches the Bogoliubov coefficient at the end of inflation, we obtain
the comoving number density generated at the end of de Sitter phase when ηe = −1/aeHe as

a3en(ae) =
1

a3e

∫ +∞

aeHe

d3k

(2π)3
|βk|2 '

1

a3e

∫ +∞

aeHe

dk

8π2

a4eH
4
e

k2
' H3

e

8π2
. (3.37)

As a result, we see that we can expect the generation of particles with large momentum k �
aeHe and a number density at the end of the de Sitter phase given by n(ae) ∼ H3

e , which
is further diluted by the expansion. It is close to what was first derived in seminal papers
[161, 165] and can be interpreted as a thermal bath of particles with a temperature T ∼ Hend

called the Gibbons-Hawking temperature, associated with the de Sitter cosmological horizon.
This is, in fact, the same effect at the origin of the Hawking radiation of black holes considering
a Schwarzschild metric or the Unruh effect for accelerated observers.

This simple (and naive) estimate can be refined with several improvements: the number of
particles is drastically changed considering massive as well as non-minimally coupled fields.
Furthermore, this estimation does not consider the contribution of low momentum modes that
are frozen on super-horizon scales, as discussed above. In addition, it is valid for a de Sitter
phase with exactly constant Hubble rate H = He, which is not the case for slow-roll inflation.
Finally, it assumes that nothing occurs for these UV modes after de Sitter inflation and that
they are frozen during their later evolution. However, as we will see in the next sections, there
is an important phenomenology to study the gravitational interactions during the oscillations
of the inflaton after inflation, leading to excitations from gravitational interactions of such
UV modes. This motivates the work done in this thesis about the gravitational production of
particles during reheating within a Boltzmann framework. We underline that the subtle con-
nection between the Bogoliubov approach and the Boltzmann picture for gravitational effects
has been investigated for the specific case of Starobinsky inflation in [112, 166, 167], and is
under investigation for other inflaton potentials [168].

3.2 Gravitons exchange during reheating

This section is based on: S. Cléry, Y. Mambrini, K.A. Olive, S. Verner, Gravitational portals
in the early Universe, Phys.Rev.D 105 (2022) 7, 075005, arXiv:2112.15214 [1]

Motivation

The hypothesis for a WIMP as a dark matter candidate is being challenged by a lack of signal
in dedicated direct detection experiments such as XENON1T [169], LUX [72] or PANDAX
[170] (see [64] for a detailed review). These experiments exclude a large part of the parame-
ter space in models where dark matter communicates with the Standard Model (SM) via the
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Higgs [85, 171–175], the Z [176–179] or even an electroweak extension introducing a massive
Z ′ mediator [180–182]. However, an alternative exists in the form of particles interacting very
feebly with the thermal bath, and never having reached thermal equilibrium [80, 183, 184] as
introduced in the first chapter for the FIMP scenario (see 1.4). The seclusion can be justified
by the weakness of a coupling (gravitational in the case of the gravitino [185–189]) or by the
exchange of very heavy mediators (generated by an extra U(1) [190], moduli field [191] or mas-
sive spin-2 field [192] as examples). A complete review can be found in [83] as well as related
studies in [117, 193–195].

The minimal coupling one can imagine between dark matter and the Standard Model is
gravitational mediated through a graviton [196, 197]. As this coupling is unavoidable, any pro-
cess invoking graviton exchange provides a lower limit on the amount of dark matter produced
either via the thermal bath [192, 197–201] or directly through the scattering of the inflaton
[202, 203]. The energy available in both cases partly compensates for the strong reduction in
coupling by the Planck mass, MP . This is not too surprising. Indeed, we know that in the case
of a FIMP, a coupling of the order of ∼ 10−11 is needed to produce dark matter in sufficient
quantities. This corresponds to an effective coupling of the order of E2

M2
P

, with E ∼ 1013 GeV
representing the available energy in the interaction. This energy corresponds, roughly, to the
mass of the inflaton. It is therefore at the end of inflation, during the transition period of re-
heating, between an inflaton-dominated universe and the radiative universe, that the available
energy is sufficient for the efficient gravitational production of dark matter.

The reheating process is not instantaneous [116, 193, 204] and can be sourced by many
mechanisms discussed in the section 2.2. The radiation bath may be produced by inflaton
decays or scattering which require a coupling of the inflaton to the Standard Model, or as we
show below through the gravitational production of radiation. In this case, as the radiation
begins to appear the Universe rapidly achieves a maximum temperature, Tmax, and the reheating
process continues until radiation domination is achieved at TRH. The evolution of the radiation
density depends on [87, 106] 1) how it is produced, that is, through decays, or scatterings,
2) the dominant final state particle spin, and 3) the form of the inflaton potential about its
minimum. For this analysis we consider that the inflaton oscillates around the minimum of
its potential parametrized as V (φ) ' λφkM4−k

P . This approximation is appropriate for the
Starobinsky model [93] (leading to k = 2), as well as more general α-attractor type models
[105, 141]. Once the reheating is achieved, T > TRH, the inflaton disappears from the energy
budget and the temperature evolves isentropically T ∝ a−1, where a is the scale factor of
the Universe. As we show below, the evolution of the radiation density can be modified by
the gravitational production of Standard Model quanta which induces a lower bound on the
maximum temperature of the Universe. We show that it is of the order of 1012 GeV, and is one
of the main results of our analysis.
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If the production of dark matter occurs during reheating, it is intimately linked to the
behavior of the inflaton and the evolution of the thermal bath. Often it is assumed that either
the dark matter is directly coupled to the inflaton, in which case, it can be produced directly
from inflaton decays [87, 115, 116, 205] or it is coupled to the Standard Model, and thus
produced thermal as the gravitino or other super-weakly interacting particles. In the latter
case, it has also been shown that radiative decay of the inflaton [206] could be the dominant
process to populate the dark Universe.

In the following section, we analyze all processes involving a gravitational interaction, com-
paring the modes of production via the thermal bath, the scattering of the inflaton, and the
gravitational production of particles from the thermal bath that subsequently produce dark
matter through gravity as well. In this sense, each of the physical quantities we consider,
such as the relic density or maximum temperature, must be considered as lower bounds, as the
gravitational process we compute is inevitable in any theory based on Einstein’s gravity. As a
result, these lower bounds must be taken into account in any kind of extension of the Standard
Model, and can be thought of as a gravitational “background noise”. We do not consider pre-
heating via parametric or stochastic resonances as it has been done in [119], because we want
to compute the minimal unavoidable amount of dark matter, and thus derive the strongest
model-independent constraints on the dark matter mass, supposing that it only couples grav-
itationally. The only nongravitational coupling we consider is a coupling of the inflaton to
SM fields to achieve reheating. Thus, we consider a generic Yukawa-like coupling of the form,
yφf̄f , where f is some Standard Model fermion. We assume rapid thermalization, and these
decays are (partially) responsible for the growing thermal bath. However, the production of
dark matter from the thermal bath is entirely gravitational.

The framework for our computation is outlined in 3.2.1. We consider both scalar and
fermionic dark matter coupled to the Standard Model and the inflaton only through gravity.
We compute the rates for the production of dark matter either through thermal scattering
(mediated by gravity alone) or from the inflaton condensate. We choose an attractor form for
the inflaton potential that, when expanded about its minimum, takes the form φk. Our results
are sensitive to k. Reheating takes place as the inflaton oscillates about this minimum. In 3.2.2
we consider three distinct gravitational processes: the gravitational production of dark matter
from the thermal bath, the gravitational production of dark matter from the condensate, and
the gravitational production of the thermal bath from the condensate. We then compare each
mode in 3.2.3.

3.2.1 The framework

We study universal gravitational interactions that must exist between the inflationary and
dark sectors. If the space-time metric is expanded around flat space using gµν ' ηµν + h̃µν the
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gravitational Lagrangian in the transverse-traceless gauge in second order can be written (see
Appendix B) as

L =
M2

P

2
R 3 M

2
P

8
(∂αh̃µν)(∂αh̃µν) =

1

2
(∂αhµν)(∂αhµν) (3.38)

where hµν = (MP/2)h̃µν is the canonically normalized perturbation and MP = (8πG)−1/2 '
2.4 × 1018 GeV is the reduced Planck mass. Gravitational interactions are described by the
Lagrangian (see Appendix B)

√
−gLint = −

1

MP

hµν
(
T µνSM + T µνφ + T µνX

)
. (3.39)

Here SM represents Standard Model fields, φ is the inflaton and X is a dark matter candidate.
The form of the stress-energy tensor T µνi depends on the spin of the field, i = 0, 1/2, 1,3 and
is given by

T µν0 = ∂µS∂νS − gµν
[
1

2
∂αS∂αS − V (S)

]
, (3.40)

T µν1/2 =
i

4

[
χ̄γµ

↔
∂νχ+ χ̄γν

↔
∂µχ

]
−gµν

[
i

2
χ̄γα

↔
∂αχ−mχχ̄χ

]
, (3.41)

T µν1 =
1

2

[
F µ
αF

να + F ν
αF

µα − 1

2
gµνFαβFαβ

]
, (3.42)

where V (S) is the scalar potential for either the scalar dark matter candidate, the SM Higgs
boson, or the inflaton, with S = X,H, φ, and Fµν = ∂µAν − ∂νAµ is the field strength for
a vector field, Aµ. In Fig. 3.1, we show the s-channel exchange of a graviton obtained from
the Lagrangian (3.39) for the production of dark matter from either the inflaton condensate
or Standard Model fields. In addition, a similar diagram exists for the production of Standard
Model fields (during the reheat process) from the inflaton condensate in the initial state.

Although the direct coupling to the massless graviton appears to be feeble due to Planck
suppression, the energy available in the thermal bath during the initial stage of reheating is
large enough to make the gravitational production rates significant.

The scattering amplitudes related to the production rate of the processes φ/SMi(p1) +

φ/SMi(p2)→ SMi/Xj(p3) + SMi/Xj(p4) can be parametrized by

Mij ∝M j
µνΠ

µνρσM i
ρσ , (3.43)

where (i, j) denotes the spin of the (initial,final) state involved in the scattering process and
i, j = 0, 1/2, 1. Πµνρσ is the graviton propagator for the canonical field h with momentum

3In this analysis we consider dark matter candidates that are either real scalars or a Dirac fermion.
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Figure 3.1: Feynman diagram for the production of dark matter through the gravitational scattering of
the Standard Model particle bath or inflaton condensate.

k = p1 + p2,
Πµνρσ(k) =

ηρνησµ + ηρµησν − ηρσηµν

2k2
. (3.44)

The partial amplitudes, M i
µν , are given by

M0
µν =

1

2
[p1µp2ν + p1νp2µ − ηµνp1 · p2 − ηµνV ′′(S)] , (3.45)

M1/2
µν =

1

4
v̄(p2) [γµ(p1 − p2)ν + γν(p1 − p2)µ]u(p1) , (3.46)

M1
µν =

1

2

[
ε∗2 · ε1 (p1µp2ν + p1νp2µ)

− ε∗2 · p1 (p2µε1ν + ε1µp2ν)− ε1 · p2
(
p1νε

∗
2µ + p1µε

∗
2ν

)
+ p1 · p2

(
ε1µε

∗
2ν + ε1νε

∗
2µ

)
+ gµν (ε

∗
2 · p1ε1 · p2 − p1 · p2 ε∗2 · ε1)

]
, (3.47)

with analogous expressions for dark matter in terms of the dark matter momenta, p3, p4, and
potential V (X), if X is a scalar. For an initial state inflaton with S = φ, we replace M0

µν with
T 0
µν from Eq. (3.40). As we only consider vectors in the Standard Model, their masses have

been neglected in Eq. (3.47).

In what follows, we consider three distinct processes based on the diagram in Fig. 3.1: for
the production of dark matter, A) SM + SM → X +X, B) φ+ φ→ X +X, where the latter
involves the inflaton condensate (zero mode) in the initial state rather than an initial state
particle with momentum p1,2 (see below for more detail), and C) φ + φ → SM + SM, as a
minimal and unavoidable contribution to the reheating process.

The dark matter production rate from SM fields can be readily calculated by assuming
that the initial particle states are massless. This assumption can be justified by the fact that
the energy associated with the momenta, p1 , p2 is extremely large at the end of inflation and
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dominates over electroweak scale quantities.

The dark matter production rate R(T ) for the SM+SM → X + X process with amplitude
M4 is

R(T ) =
2

1024π6
×
∫
f1f2E1 dE1E2 dE2 d cos θ12

∫
|M|2 dΩ13 , (3.48)

where the factor of two accounts for two dark matter particles per scattering, Ei denotes the
energy of particle i = 1, 2, 3, 4, θ13 and θ12 are the angles formed by momenta p1,3 and p1,2,
respectively, and

fi =
1

eEi/T ± 1
(3.49)

represents the assumed thermal distributions of the incoming SM particles.

The total amplitude squared for the gravitational scattering process SM+SM → Xj +Xj is
given by a sum of the three amplitudes associated with different initial state spins,

|M|2 = 4|M0|2 + 45|M1/2|2 + 12|M1|2 . (3.50)

These were calculated in [192] and it was found that the dark matter production rate is given
by

RT
j = Rj(T ) = βj

T 8

M4
P

, (3.51)

where j refers to the spin of X (either 0 or 1/2), the constants βj and details related to
the computation of dark matter production rate and the amplitude squared are given in the
addendum at the end of the section A.

For the production of dark matter through the scattering of the inflaton condensate we
consider the time-dependent oscillation of a classical inflaton field φ(t). Since our computation
depends explicitly on inflaton potential, we consider the α-attractor T-model [105] as a specific
example Eq.(2.61),

V (φ) = λM4
P

∣∣∣∣√6 tanh
(

φ√
6MP

)∣∣∣∣k , (3.52)

In this class of models, inflation occurs at large field values (φ > MP ), and after the period of
exponential expansion, the inflaton begins to oscillate about the minimum and the process of
reheating begins. The potential can be expanded about the minimum as 5

V (φ) = λ
φk

Mk−4
P

, φ�MP . (3.53)

4It should be noted that we include the symmetry factors associated with identical initial and final states in
the squared amplitude, |M|2.

5It should be noted that this discussion is general and not limited to T-models of inflation.
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The time-dependent oscillating inflaton field can be parametrized as

φ(t) = φ0(t) · P(t) , (3.54)

where φ0(t) is the time-dependent amplitude that includes the effects of redshift and P(t)
describes the periodicity of the oscillation.

To calculate the dark matter production rate, we combine the potential (3.53) with Eq. (3.54),
which leads to V (φ) = V (φ0) · P(t)k. We next expand the potential energy in terms of the
Fourier modes [106, 131, 207]

V (φ) = V (φ0)
∞∑

n=−∞

Pkne−inωt = ρφ

∞∑
n=−∞

Pkne−inωt , (3.55)

where ω is the frequency of oscillation of φ, given by [106]

ω = mφ

√
πk

2(k − 1)

Γ(1
2
+ 1

k
)

Γ( 1
k
)

. (3.56)

For scalar dark matter, we find that the particle production rate per unit volume and unit
time for an arbitrary value of k is given by

Rφk

0 =
2× ρ2φ
16πM4

P

Σk
0 , (3.57)

where the factor of two accounts for the fact we produce two dark matter particles per scattering,
with

Σk
0 =

∞∑
n=1

|Pkn|2
[
1 +

2m2
X

E2
n

]2√
1− 4m2

X

E2
n

, (3.58)

where En = nω is the energy of the n-th inflaton oscillation mode and mX is the mass of the
produced dark matter. A detailed calculation of this rate is presented in the second adden-
dum B.

For the case k = 2, we find that the particle production rate is given by

Rφ2

0 =
2× ρ2φ
256πM4

P

(
1 +

m2
X

2m2
φ

)2√
1− m2

X

m2
φ

, (3.59)

where m2
φ = V ′′(φ0), and since

∑
P2
ne
−inωt = cos2(mφt), we find that only the second Fourier

mode in the sum contributes, with
∑
|P2

n|2 = 1
16

and E2 = 2mφ.6

6We note that the rate calculated here differs from [202] by a factor of 8, because in the latter the inflaton
was treated as a particle and not a condensate resulting in a difference by a factor of 2 in the applied symmetry
factors. In addition, the interaction considered there did not use a properly normalized graviton resulting in a
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For a fermionic dark matter candidate, we find the following rate

Rφk

1/2 =
2× ρ2φ
4πM4

P

m2
X

m2
φ

Σk
1/2 , (3.60)

where the factor of two accounts for the sum over the particle and antiparticle final states, with

Σk
1/2 =

+∞∑
n=1

|Pkn|2
m2
φ

E2
n

[
1− 4m2

X

E2
n

]3/2
. (3.61)

For the case k = 2, we obtain

Rφ2

1/2 '
2× ρ2φ
256πM4

P

m2
X

m2
φ

[
1− m2

X

m2
φ

]3/2
. (3.62)

A detailed discussion related to the dark matter production rates through the inflaton conden-
sate scattering is given in the second addendum B.

For the production of SM fields from inflaton oscillations, we follow the same procedure, but
replace the partial amplitude, M j

µν , for dark matter with the appropriate amplitude involving
SM fields. Below, we consider only the example of producing Higgs bosons, namely φ + φ →
H +H.

3.2.2 Gravitational production of quanta

As we discussed above, the graviton can act as a portal between the inflaton, SM fields and a
potential dark matter candidate. We here consider three cases in detail:

1. The graviton portal between a thermal bath and dark matter. This is essentially a
gravitational freeze-in mechanism for the production of dark matter.

2. The graviton portal between the inflaton and dark matter. In this case, the inflaton
directly populates the dark matter without the need of either the thermal bath or a
mediator between the SM and the dark matter candidate.

3. The graviton portal between the inflaton and the Standard Model sector to produce a
radiative bath at the start of reheating.

3.2.2.1 SM SM→ hµν → DM DM

The spin-2 portal for the production of dark matter was considered in [192] for both massive
and massless spin-2 fields. Here we restrict our attention to the massless (graviton) portal.

factor of 2 in the vertex and 16 in the rate.

150



For an inflaton potential with k = 2, the scattering cross section between SM fields and dark
matter is proportional to T 2/M4

P , and we expect the resulting dark matter abundance to
be primarily sensitive to the reheating temperature (rather than the maximum temperature
attained during the reheating process). Sensitivity to Tmax requires a cross section with a steep
dependence on temperature, σ ∝ T n, with n ≥ 6. When k > 2, sensitivity to Tmax requires
only n > (10 − 2k)/(k − 1) when the primary reheating mechanism is determined by inflaton
decays as discussed below. Then, for example, when k = 4, when n > 2/3, the dark matter
abundance becomes sensitive to Tmax. For the graviton portal, then, this occurs when k ≥ 3.

The gravitational scattering of particles in the primordial plasma can produce massive parti-
cles playing the role of a viable dark matter candidate X. Then, the matter density nX obeys
the classical Boltzmann equation7

dnX
dt

+ 3HnX = RT
X , (3.63)

It is more convenient to work with a as dynamical parameter, rather than t or T . Eq.(3.63)
can then be rewritten

dnX
da

+ 3
nX
a

=
RT
X(a)

Ha
. (3.64)

Since the production rate RT
X is dependent on the initial state energies, i.e., of the temperature

of the thermal bath, one needs the expression of T (a) to solve the Boltzmann equation in terms
of the scale factor. We explain the functional dependence of RT

X on a below. Defining the
comoving number YX = na3, we obtain

dYX
da

=
a2Ri

X(a)

H
. (3.65)

We assume an inflaton potential of the form given in Eq. (3.53). We next apply the expres-
sions for energy conservation for the inflaton density ρφ and the radiation density ρR

dρφ
dt

+ 3H(1 + wφ)ρφ ' −(1 + wφ)Γφρφ (3.66)

dρR
dt

+ 4HρR ' (1 + wφ)Γφρφ . (3.67)

where wφ = Pφ

ρφ
= k−2

k+2
[106] is the equation of state parameter. Here we assume that reheating

primarily occurs due to the inflaton effective coupling to the Standard Model fermions, given
by the Lagrangian

Lyφ−SM = −yφf̄f , (3.68)

7We note that we include the relevant factors of 2 associated with identical initial states in the definition of
the particle production rate.
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where y is a Yukawa-like coupling and f is a Standard Model fermion. Note that in a gauge
invariant theory, the coupling in Eq. (3.68) must originate from a higher dimensional (D ≥ 5)
operator, and thus we view y as an effective coupling. At the renormalizable level, we could also
consider a coupling of φ to the SM Higgs which for k = 2 would lead to an identical evolution
during the reheating process.8 The width of φ is easily determined from the coupling (3.68)

Γφ =
y2

8π
mφ . (3.69)

Note that for k > 2, there is a k-dependent correction and mφ depends on φ and hence on the
scale factor a. We defined the inflaton energy density and pressure as

ρφ =
1

2
〈φ̇2〉+ 〈V (φ)〉, Pφ =

1

2
〈φ̇2〉 − 〈V (φ)〉. (3.70)

We can solve Eqs. (3.66, 3.67) and obtain [87, 106]

ρφ(a) = ρend

(aend

a

) 6k
k+2 (3.71)

and

ρR(a) = ρRH

(aRH

a

) 6k−6
k+2 1−

(
aend
a

) 14−2k
k+2

1−
(
aend
aRH

) 14−2k
k+2

, (3.72)

where these relations hold for aend � a � aRH. aend is a reference point marking the end of
inflation. ρφ(aend) corresponds to the total energy density (there is virtually no radiation at
this point) when the slow-roll parameter ε = 1. At this moment, ρend = 3

2
V (φend) [209]. Note

that this solution possesses a maximum for ρR(a) (at a = amax). We have also defined ρRH and
aRH such that ρR(aRH) = ρφ(aRH). Since

ρR =
gTπ

2

30
T 4 ≡ αT 4 , (3.73)

where gT is the number of relativistic degrees of freedom at the temperature, T . Thus, we have
ρR(amax) = αT 4

max and ρR(aRH) = αT 4
RH. The ratio of amax to aend is fixed and depends only on

k [87]
amax

aend
=

(
2k + 4

3k − 3

) k+2
14−2k

. (3.74)

Since we can express T as function of the scale factor, a, with Eq. (3.72), we can implement

8For other values of k, the relation between T and a is altered for bosonic final states as discussed in detail
in [106]. Couplings of the inflaton of the form in Eq. (3.68) as well as couplings to Higgs bosons were discussed
in no-scale supergravity inflation models in [208].
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that relation in Eq. (3.51) to obtain RT
X as function of a,

RT
X(a) = βX

ρ2RH
α2M4

P

(aRH

a

) 12k−12
k+2

 1−
(
aend
a

) 14−2k
k+2

1−
(
aend
aRH

) 14−2k
k+2


2

. (3.75)

Using H '
√
ρφ(a)√
3MP

, which is valid for a� aRH, Eq. (3.65) becomes

dYX
da

=

√
3MP√
ρRH

a2
(

a

aRH

) 3k
k+2

RT
X(a) . (3.76)

The solution to this equation is

nTX(aRH) =
βX
√
3

α2M3
P

ρ
3/2
RH

(1− (aend/aRH)
14−2k
k+2 )2



ln
(
aRH
aend

)
− 5

16

(
3− 4

(
aend
aRH

) 8
5
+
(
aend
aRH

) 16
5

)
[k = 3]

k+2
6

(
1

3−k +
3

k−1

(
aend
aRH

) 14−2k
k+2

+ (k−7)2
k3+k2−17k+15

(
aend
aRH

) 18−6k
k+2 − 3

k+5

(
aend
aRH

) 28−4k
k+2

)
[k 6= 3]

(3.77)

where we integrated Eq. (3.76) between the values of the scale factor corresponding to the end
of inflation, aend, and the reheating temperature (reached at aRH). Writing the relic abundance
[16]

ΩXh
2 = 1.6× 108

g0
gRH

n(TRH)

T 3
RH

mX

1 GeV
, (3.78)

and inserting Eq. (3.77), we obtain

ΩT
Xh

2 = Ωk ×


5
18

ln
(
ρend
ρRH

)
− 5

16

(
3− 4

(
ρRH
ρend

) 4
9
+
(
ρRH
ρend

) 8
9

)
[k = 3]

k+2
6

(
1

3−k +
3

k−1

(
ρRH
ρend

) 7−k
3k

+ (k−7)2
k3+k2−17k+15

(
ρRH
ρend

) 3−k
k − 3

k+5

(
ρRH
ρend

) 14−2k
3k

)
[k 6= 3]

(3.79)

with

Ωk = 1.6× 108
g0
gRH

βX
√
3√

α

mX

1 GeV
T 3

RH
M3

P

[
1−

(
ρRH

ρend

) 7−k
3k

]−2
, (3.80)

where g0 = 43/11 and we take gRH = 427/4 as the Standard Model value.

We observe that, for a given reheating temperature, the relic abundance decreases with k.
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Furthermore, whereas ΩT
Xh

2 ∝ T 3
RH for a quadratic potential, it becomes ∝ T 2

RH for a quartic
potential, and even ∝ TRH for k = 6. This comes from the fact that the Hubble parameter,
dominated by the evolution of the inflaton, has a greater dependence on T for larger values of
k, slowing down the production mechanism for large temperatures.

3.2.2.2 φ φ→ hµν → DM DM

As noted earlier, it is also possible that the inflaton condensate can lead to the direct production
of dark matter through single graviton exchange [202]. Here, we generalize that result for k ≥ 2.
Having computed the production rate in Eqs. (3.57) and (3.60) for scalar and fermionic dark
matter respectively, we can replace RT

X with the rates in Eq. (3.76). Then integrating

dYX
da

=

√
3MP√
ρRH

a2
(

a

aRH

) 3k
k+2

Rφk

X (a) (3.81)

between aend and aRH gives for scalar dark matter

nφ0(aRH) =

√
3ρ

3/2
RH

8πM3
P

k + 2

6k − 6

[(
aRH

aend

) 6k−6
k+2

− 1

]
Σk

0 (3.82)

which can be expressed as function of ρend using Eq. (3.71):

nφ0(aRH) '
√
3ρ

3/2
RH

8πM3
P

k + 2

6k − 6

(
ρend

ρRH

)1− 1
k

Σk
0, (3.83)

or

Ωφ
0h

2

0.1
'

(
ρend

1064GeV4

)1− 1
k
(
1040GeV4

ρRH

) 1
4
− 1

k
(
k + 2

6k − 6

)
× Σk

0 ×
mX

2.4× 10
24
k
−7GeV

(3.84)

where we assumed aRH � aend. Note that the dependence on ρφ used in Eq. (3.81) hides the
fact that we considered a decaying inflaton during the reheating.

For fermionic dark matter we obtained

nφ1/2(aRH) =
m2
X

√
3(k + 2)ρ

1
2
+ 2

k
RH

12πk(k − 1)λ
2
kM

1+ 8
k

P

[(
aRH

aend

) 6
k+2

− 1

]
Σk

1
2

' m2
X

√
3(k + 2)ρ

1
2
+ 2

k
RH

12πk(k − 1)λ
2
kM

1+ 8
k

P

(
ρend

ρRH

) 1
k

Σk
1
2

(3.85)
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where we used

m2
φ = V ′′(φ0) = k(k − 1)λ

2
kM2

P

(
ρφ
M4

P

)1− 2
k

. (3.86)

We can simplify the expression to write

Ωφ
1/2h

2

0.1
=

Σk
1/2

2.4
8
k

k + 2

k(k − 1)

(
10−11

λ

) 2
k
(
1040GeV4

ρRH

) 1
4
− 1

k

×
(

ρend

1064GeV4

) 1
k
(

mX

8.3× 106+
6
k GeV

)3

(3.87)

3.2.2.3 φ φ→ hµν → SM SM

Up until now, we have assumed that the thermal bath was produced via inflaton decays.
However, for low reheat temperatures, and hence small values of the Yukawa-like inflaton
coupling, y, it is possible that radiation, in the form of Higgs bosons, is produced directly from
the condensate via gravitational interactions.

The calculation for the production of SM fields produced by the scattering of the inflaton
via gravity is similar to the preceding calculation for dark matter. As was shown in [106, 202],
there exists the possibility that the thermal bath is produced not by inflaton decay but rather
by inflaton scattering after inflation. This occurs for instance for low values of y. In this case,
the maximum temperature is not given by the inflaton width, but by the scattering process,
whereas the final reheating (and thus TRH) is still dominated by the decay. This is illustrated
in Fig. 3.2 below. In fact, the gravitational scattering φφ→ hµν → HH is always present and
can never be eliminated. Such a process generates an effective coupling

Lh = σhφ
2H2 . (3.88)

We can write the left-hand side of Eq. (3.67) as [106]

(1 + w)Γφρφ =
1

8π

∞∑
n=1

|Mn|2En = N
σ2
h

4π
φ4
0ω

∞∑
n=1

n|Pkn|2. (3.89)

where we used Mn = 2σhφ
2
0Pkn, and N = 4 is the number of real scalars in the Standard

Model, when we neglect the Higgs mass. Identifying this rate with that in Eq. (3.57), and
(1 + w)Γφρφ = ωRφk

0 , we deduce that

σh =
ρφ

2M2
Pφ

2
0

, (3.90)
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for each real scalar. Thus for the Standard Model Higgs, and in the case k = 2 we have

σh =
m2
φ

4M2
P

' 3.9× 10−11
(

mφ

3× 1013 GeV

)2

. (3.91)

σh can be considered as the lowest possible and inevitable value for a quartic coupling between
the inflaton and scalars. This may be important and even dominate the reheating process at its
earliest stages. We note that in a theory with additional weak scale scalars such as the minimal
supersymmetric Standard Model (MSSM), the gravitational production is increased due to the
large number of scalars, N = 98 in the MSSM. Note also that there is a minimal gravitational
production rate for the production of SM fermions and gauge bosons though this is completely
negligible due to the mass suppression (see e.g. Eq. (3.60) for fermions). Thus if we restrict our
attention to the Standard Model, we take N = 4 corresponding to the four real scalar degrees
of freedom.

We now recompute the evolution of the radiation density using Eq. (3.67) and (3.89),

dρhR
dt

+ 4HρhR = N
ρ2φω

16πM4
P

∞∑
n=1

n|Pkn|2 . (3.92)

The solution of (3.92) is

ρhR = N

√
3M4

PγkΣ
h
k

16π

(
ρe
M4

P

) 2k−1
k k + 2

8k − 14

×
[(ae

a

)4
−
(ae
a

) 12k−6
k+2

]
(3.93)

with
γk =

√
π

2
k
Γ(1

2
+ 1

k
)

Γ( 1
k
)

λ
1
k (3.94)

and

Σh
k =

∞∑
n=1

n|Pkn|2 . (3.95)

Once again, there is a maximum temperature which can be determined by from the value of
aend/a, which maximizes Eq. (3.93),

aend

amax
=

(
2k + 4

6k − 3

) k+2
8k−14

, (3.96)

and hence a maximum radiation density,

ρhmax = N

√
3M4

PγkΣ
h
k

16π

(
ρend

M4
P

) 2k−1
k k + 2

12k − 6

(
2k + 4

6k − 3

) 2k+4
4k−7

(3.97)
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For k = 2 we have

T hmax ' 3.1× 1012
(

ρend

1064 GeV4

) 3
8
(

mφ

3× 1013 GeV

) 1
4

GeV , (3.98)

where we have taken N = 4 and scales as N1/4. Furthermore, the sum Σh
k (3.95) begins at

n = 2, because 2 modes scatter, and the initial mode has an energy of 2ω, which implies, for
k = 2,

Σh
2 = 2× |P2

2 |2 = 2× 1

16
=

1

8
. (3.99)

It is important to stress the importance of Eqs. (3.97) and (3.98). These correspond to an
absolute lower bound on the maximal temperature of the Universe. We have not made any
assumption other than the existence of a complex Higgs doublet and the inflaton coupled only
through gravity. Our calculation implies that the Universe must have passed through this (or
a higher) temperature during the early stages of reheating.

For k = 2, the radiation density produced by inflaton scattering as computed above never
comes to dominate the energy density and can not lead to reheating. Although scattering can
lead to reheating if k ≥ 4 [106]. Gravitational scattering is less efficient. The ”quartic” coupling
defined in Eq. (3.90) is only constant if k = 2. In general, it scales as φk−20 . Nevertheless, for
k > 4 reheating from gravitational scattering is possible, though very inefficient. For example,
for k = 6, TRH . 1 eV. As a result it is usually necessary to include a decay channel for the
inflaton as in Eq. (3.68).9 We will see in section 3.4 that gravitational reheating can be possible
for higher equations of states and which constraints are imposed on this scenario.

For a sufficiently large coupling, y, the radiation produced by decay will always dominate
over that produced by scattering as computed above. In addition, the maximum temperature
may be greater than the lower bound in Eq. (3.98). However, there is a critical value of y,
such that at smaller couplings, the gravitational scattering process (3.89) dominates at some
point during the reheating process. This gives us the reheating temperature below which the
maximal temperature is fixed by (3.97), and is independent of additional couplings beyond
gravity between the inflaton and the standard model sector. To determine the value of this
critical coupling (and hence reheating temperature), it is useful to rewrite Eq. (3.72) as

ρyR =

√
3M4

Pγ
3
ky

2Σy
k

8π

(
ρend

M4
P

) k−1
k

λ−
2
k
k + 2

7− k

×
[(aend

a

) 6k−6
k+2 −

(aend

a

)4]
. (3.100)

9Note that even including non-perturbative effects including preheating, does not lead to reheating in the
absence of a decay channel for k = 2 [119].
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We found that the maximum of ρyR when evaluated at amax given by Eq. (3.74) is

ρymax =
y2γ3k
√
3

16π
λ

−2
k M4

P

(
ρend

M4
P

)1− 1
k
(
3k − 3

2k + 4

) 3k−3
7−k

×Σy
k , (3.101)

where

Σy
k =

∞∑
n=1

n3|Pkn|2 . (3.102)

For k = 2, the dominant mode is the first mode (n = 1) which gives

Σy
2 = 13 × |P2

1 |2 =
1

4
(3.103)

The critical value for y such that the maximum radiation density and temperature are de-
termined from the scattering of the inflaton condensate is given by ρymax < ρhmax which leads
to

y2 . N
λ

2
k

γ2k

(
ρend

M4
P

)
Σh
k

Σy
k

×
(

k + 2

12k − 6

)(
2k + 4

6k − 3

) 2k+4
4k−7

(
2k + 4

3k − 3

) 3k−3
7−k

, (3.104)

which gives for k = 2 and N = 4

y . 0.4

√
ρend

M4
P

' 6.9× 10−6
(

ρend

1064GeV4

) 1
2

(3.105)

or

TRH . 3.0× 109
(

ρend

1064GeV4

)1/2(
λ

2.5× 10−11

)1/4

GeV , (3.106)

where TRH is defined by [106]

ρφ(aRH) = αT 4
RH =M4

P

(√
3γ3ky

2Σy
kλ
− 2

k (k + 2)

8π(7− k)

)k

. (3.107)

Thus for all models with a reheat temperature due to decays, which is less than that given in
Eq. (3.106), the maximum temperature during the reheat process is determined by scattering
(mediated by gravity) and thus can not be ignored. Note also that for such small values of y,
the kinetic effects due to the effective mass induced by the coupling yφf̄f are nonexistent, as
shown in [106].

We show in Fig. 3.2 the evolution of the energy densities of the inflaton (blue), the radiation
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produced by inflaton decays (orange dashed), the radiation produced by inflaton scattering
mediated by gravity (green dashed), and the total radiation density (red) as function of the
scaling parameter a/aend for a Yukawa-like coupling y = 10−8 with k = 2 and ρend = 1064 GeV4.
We clearly see that the beginning of the evolution of the radiation density is dominated by the
scattering of the inflaton via graviton exchange (orange line), which determines the maximum
temperature. For k = 2, the radiation density from scattering falls as a−4 [106], whereas the
density from decays falls more slowly as a−3/2 so that eventually the latter begins to dominate
the population of the thermal bath when a = aint, until the reheating is complete when ρφ = ρR

at a = aRH. For aint � aend, we can approximate the crossover point from Eqs. (3.93) and
(3.100) using the equality ρyR = ρhR. For sufficiently small y and for k = 2, we find

aint

aend
'
(
8y2Σy

2

5NΣh
2

M4
P

ρend

)− 2
5

, (3.108)

which gives aint ' 430 aend in good agreement with the numerical solution for the parameter
choices used in Fig. 3.2. We stress that the maximum temperature attained Tmax ' 1012 GeV
is independent of any beyond the Standard Model physics, and is purely gravitational and can
not be ignored when production rates are highly dependent on the ratio Tmax/TRH.
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Figure 3.2: Evolution of the radiation density (red) and inflaton density (blue) as a function of a/aend
for a Yukawa-like coupling y = 10−8 with ρend = 1064 GeV4 and k = 2. This plot is obtained by solving
numerically equations (3.66), (3.67) and (3.92). The evolution of the radiation density produced from
inflaton decays (orange dashed) and scattering mediated by gravity (green dashed) are also shown.

We can finally apply our result to the dark matter production through a graviton exchange
while the bath is also dominated by the scattering of φ through graviton exchange. For TRH .

109 GeV, the Boltzmann equation one needs to consider is
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dY h
X

da
=

√
3MP√
ρend

a2
(

a

aend

) 3k
k+2

Rh
X(a) (3.109)

with
Rh
X = βX

ρ2max
α2M4

P

(amax

a

)8
. (3.110)

The result of the integration gives

Y h
X(aint) =

N23
√
3M3

PβXγ
2
k(Σ

h
k)

2

α265536π2

(
k + 2
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ρend
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a3end
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+
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k + 2

18k − 18
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aend
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−
(
k + 2

5k − 2
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1−

(
aend

aint

) 10k−4
k+2

)]
(3.111)

where aint corresponds to the value of the scale factor when the radiation density produced by
inflaton decays begins dominate over that produced by gravitational inflaton scattering (this
only occurs if y satisfies the bound in Eq. (3.104)). For a > aint, the slope of the radiation
energy density curve as a function of a changes as seen in Fig. 3.2 and any thermal contribution
to the production of dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (3.111) can be simplified and we see that the
dark matter yield does not depend on this intermediate scale factor, but only on aend and ρend.
Thus for small y, we can also use Eq. (3.111) to evaluate the dark matter density at a = aRH,

nhX(aRH) ' N2
√
3βXγ

2
k(Σ

h
k)

2M3
P

196608π2α2

(
k + 2

8k − 14

)2

(3.112)

× (k + 2)(4k − 7)2

(k − 1)(k + 5)(5k − 2)

(
ρend

M4
P

) 7k−4
2k
(
ρRH

ρend

) k+2
2k

and the relic abundance

Ωh
Xh

2 = 1.6× 108
g0
gRH

mX

1 GeV

√
3βXγ

2
k(Σ

h
k)

2M3
P

196608π2α2T 3
RH

(
k + 2

8k − 14

)2

× (k + 2)(4k − 7)2

(k − 1)(k + 5)(5k − 2)

(
ρend

M4
P

) 6k−6
2k
(
ρRH

M4
P

) k+2
2k

(3.113)

Because the radiation produced by gravitational scattering dominates near amax only when TRH

satisfies Eq. (3.106), the relic density in Eq. (3.113) is suppressed by (ρRH/MP )
(k+2)/2k, and it
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never dominates the gravitational production of dark matter given in Eq. (3.79), though it can
lead to important effects when nongravitational production modes with a strong dependence
on temperature are considered.

3.2.3 Results

Given the specific inflaton potential, here the T-models Eq. (3.52) which take the form of
Eq. (3.53) when expanded about the origin, we can determine λ from the normalization of the
CMB quadrupole anisotropy and ρend from the condition ε = 1, as discussed earlier. Setting y =

10−7, for k = 2, we have λ = 2.5×10−11 and ρ1/4end = 5.2×1015 GeV10. For k = 4, λ = 3.3×10−12

and ρ
1/4
end = 4.8 × 1015 GeV whereas for k = 6, λ = 4.6 × 10−13 and ρ

1/4
end = 4.6 × 1015 GeV. For

more on the determination of these parameters, see section 2.1.

Given these (model-dependent) parameter values for k = 2, 4, 6, we list in Table 3.1, the val-
ues for Tmax which we obtain from ρhmax in Eq. (3.97); the maximum coupling y from Eq. (3.104)
for which the gravitational produced radiation with temperature Tmax dominates over that pro-
duced by decays; and the corresponding reheating temperature, TRHmax obtained when y = ymax

using Eq. (3.107) for ρRH. Tmax ∝ λ1/4k depends weakly on the inflaton coupling, and thus varies
little for different values of k. The coupling ymax is independent of λ and also varies little with
k. However, the final reheat temperature (which is not a result of purely gravitational interac-
tions) is very sensitive to k as it scales as yk/2, resulting in very small reheating temperatures
when k = 4 or 6 for the small values of y considered.

k = 2 k = 4 k = 6

Tmax 1.0× 1012 GeV 7.5× 1011 GeV 6.5× 1011 GeV
ymax 1.8× 10−6 1.4× 10−6 1.1× 10−6

TRHmax 7.9× 108 GeV 470 GeV 9.7× 10−4 GeV

Table 3.1: Lower bound on Tmax generated by the process φφ→ hµν → HH for different values
of k. The radiation from this gravitational scattering dominates when y < ymax and we also
list the corresponding reheating temperature TRH when y = ymax.

We show in Figs.(3.3) and (3.4) (for scalar and fermionic dark matter, respectively) the
region in the parameter space defined by the (mX , TRH) plane for which we can obtain a relic
abundance consistent with the Planck CMB determination of the cold dark matter density,
ΩXh

2 = 0.12 [22]. We combine the dark matter density originating from thermal production
as given in Eq. (3.79) with that from scattering of the condensate to scalars given in Eq. (3.84)
or fermions in Eq. (3.87).

For scalar dark matter, scattering in the condensate dominates the production of dark mat-
ter and we see from Eq. (3.84) that an isodensity contour should obey a simple power law,

10Different values of y give differences (at most) of 20% on λ, and 5% on ρ
1/4
end.
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Figure 3.3: Points respecting Planck constraint Ωh2 = 0.12 in the case of a scalar dark matter, in the
plane (mX , TRH) for different values of k.

corresponding to mX ∝ (TRH)
4
k
−1. Indeed, thermal production is not an efficient mechanism

for the scalar dark matter, and the unique mechanism which populates the dark matter density
is inflaton scattering (barring any beyond the Standard Model contribution). To better under-
stand this, we can compute the ratio of the rates when a = amax, where the thermal production
is maximum. Comparing the rates in Eqs. (3.57) and (3.75)

Rφk

0 (amax)

RT
0 (amax)

=
α2Σk

0

8πβ0

(
3k − 3

2k + 4

) 6
7−k
(
ρend

ρRH

) 2
k

(3.114)

= g2max
5760Σk

0

3997

(
3k − 3

2k + 4

) 6
7−k
(
ρend

ρRH

) 2
k

� 1 ,

where gmax = 427/4 is the number of degrees of freedom at amax in the Standard Model. Since
ρend � ρRH, we clearly see that the ratio is much greater than one. This implies that the
gravitational production is always dominated by the scattering of the inflaton zero modes.

Restricting our attention to Eq. (3.84) for the production of dark matter scalars, we see that,
for k = 4, something interesting happens. The relic abundance is independent of the reheating
process, and depends only on the energy density at the end of inflation. This comes from the
fact that, for increasing values of k, the production of dark matter is less efficient, and, from
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Figure 3.4: Points respecting Planck constraint Ωh2 = 0.12 in the case of a fermionic dark matter, in
the plane (mX , TRH) for different values of k.

Eq. (3.83), we see that nφ0 ∝ T 3
RH for k = 4. Dilution effects thus render the present abundance

independent of TRH and there is a unique universal limit of mX . 120 GeV for scalar dark
matter and . 1.7 × 109 GeV for fermionic dark matter (when inflaton scattering dominates).
For k > 4, the slope of TRH vs mX changes sign, and the required reheating temperature grows
with the dark matter mass. In this case, even sub-GeV dark matter candidates are allowed for
low reheating temperatures, whereas for k = 2 and k = 4 the production process is too weak to
produce MeV dark matter in sufficient quantities to account for the cold dark matter density
as determined by Planck [22].

The (mX , TRH) plane for fermionic dark matter is shown in Fig. 3.4. In this case both
the scattering from a condensate and thermal gravitational contributions must be considered.
Notice that there is a change in slope between the required reheating temperature and dark
matter mass. For higher masses, the scattering from the condensate dominates as in the case
of scalar dark matter and we require mX ∝ T

(k−4)
3k

RH as can be seen from Eq. (3.87). However, at
lower masses, because of the mass suppression in the rate in Eq. (3.60) and hence the abundance
of dark matter in Eq.(3.85), there is a region where the thermal production dominates over φ−φ
scattering. In this case, mX ∝ T−3RH, T

−2
RH, T

−1
RH, for k = 2, 4 and 6, respectively, as can be seen

from Eq. (3.79). The origin of this suppression is simply a helicity argument; the scattering
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of two scalars generates rates where a spin-flip is required making it proportional to the mass
of the fermion in the final state. Thus the rate vanishes for a massless fermion. This is not
the case for thermal production, because Standard Model particles in the thermal bath are
relativistic and then can still produce fermionic dark matter through scattering without being
affected by a helicity suppression. To be more quantitative, we again compare the production
rates in Eqs. (3.60) and (3.75) at a = amax

Rφk

1/2(amax)

RT
1/2(amax)

=
α2Σk

1/2

2πβ1/2

m2
X

m2
φ

(
3k − 3

2k + 4

) 6
7−k
(
ρend

ρRH

) 2
k

= g2RH
11520 Σk

1/2

11351

m2
X

m2
φ

(
3k − 3

2k + 4

) 6
7−k
(
ρend

ρRH

) 2
k

. (3.115)

In contrast to the scalar case, we see that there exists a value ofmX . (.13, .050, .036)(ρRH/ρend)
1/kmφ,

for k = 2, 4 and 6, respectively, for which the relic abundance is dominated by the thermal pro-
duction.

3.2.4 Conclusions

We have considered in this section the production of matter and radiation interacting only
gravitationally with the inflaton through the exchange of a graviton hµν . We compared the
production of dark matter from inflaton scattering and from the thermal bath (mediated only
by gravity). The former tends to dominate the production in a large part of the parameter
space. However, we noticed a notable difference in the case of fermionic dark matter, because
the production through φφ scattering is suppressed by a mass flip proportional to the dark
matter mass m2

X . We have also seen that it is possible to produce radiation from inflaton
scattering in the condensate during the earlier stages of reheating. As a result, we have derived
a lower bound on the maximal temperature is expected from φφ→ hµν → HH of the order of
1012 GeV for a typical chaotic or α−attractor scenario. This lower gravitational bound becomes
the effective maximal temperature for TRH . 109 GeV (for k = 2).

A major challenge for gravitational particle production as well as all mechanisms of reheating
is experimental verification. As the processes we have discussed are all minimal, in the sense that
they arise simply from Einstein’s gravity, they are contained in all models which include models
beyond the Standard Model. In that sense, there is nothing unique to the specific processes
we have described. Most important is the search for a signature for the maximum temperature
attained. Thus, gravitational effects give lower bounds on maximal temperature and relic
abundance that cannot be neglected and should be considered as the minimal ingredients to
add to any nonminimal extension of the Standard Model. A similar analysis has been pursued
in [210]. The results obtained are largely in agreement with our own.
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Addenda

A Thermal production

In this addendum, we describe our calculation of the production rate for scalar and fermionic
dark matter, and include the amplitude squared for the relevant processes. If we ignore the
masses of Standard Model particles, the rate R(T ) for the processes SM + SM→ DMj + DMj

can be computed from

RT
j =

∑
i=0,1/2,1

NiRij = 2×
∑

i=0,1/2,1

Ni

1024π6

∫
fi(E1)fi(E2)E1 dE1E2 dE2 d cos θ12

∫
|Mij|2 dΩ13

=
(
4R0j + 45R 1

2
j + 12R1j

)
, (3.116)

where the factor of two accounts for two dark matter particles per scattering, Ni denotes the
number of each SM species of spin i: N0 = 4 for 1 complex Higgs doublet, N1 = 12 for 8 gluons
and 4 electroweak bosons, and N1/2 = 45 for 6 (anti)quarks with 3 colors, 3 (anti)charged
leptons and 3 neutrinos, c.f., Eq. (3.50). The infinitesimal solid angle is defined as

dΩ13 = 2π d cos θ13 , (3.117)

with θ13 and θ12 being the angle formed by momenta p1,3 and p1,2, respectively. In the massless
limit, one can express the amplitude squared in terms of Mandelstam variables, s and t, which
are related to the angles θ13 and θ12 by the expressions

t =
s

2
(cos θ13 − 1) , (3.118)

s =2E1E2 (1− cos θ12) . (3.119)

The amplitudes and rates for scalar and fermionic dark matter are given in the following
subsections.

Scalar dark matter

We note that we include the symmetry factors of the initial and final states in the squared
amplitudes, and indicate it with an overbar:

|M00|2 = 1

4M4
P

t2(s+ t)2

s2
, (3.120)

|M
1
2
0|2 = 1

4M4
P

(−t(s+ t))(s+ 2t)2

s2
, (3.121)

|M10|2 = 1

2M4
P

t2(s+ t)2

s2
. (3.122)
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Using these amplitudes in Eq. (3.116), we obtain [192]

RT
0 =

3997π3

20736000

T 8

M4
P

≡ β0
T 8

M4
P

. (3.123)

Fermionic dark matter

The corresponding amplitudes for fermionic dark matter are given by:

|M0 1
2 |2 = (−t(s+ t))(s+ 2t)2

4M4
P s

2
, (3.124)

|M
1
2

1
2 |2 = s4 + 10s3t+ 42s2t2 + 64st3 + 32t4

8M4
P s

2
, (3.125)

|M1 1
2 |2 = (−t(s+ t))(s2 + 2t(s+ t))

M4
P s

2
, (3.126)

which leads to the following rate [192]

RT
1
2
=

11351π3

10368000

T 8

M4
P

≡ β 1
2

T 8

M4
P

. (3.127)

B Production from the Inflaton condensate

In this second addendum, we describe our calculation of the particle production rate of dark
matter from the scattering of the inflaton condensate. If we consider the gravitational scattering
process φ(p1) + φ(p2)→ X i(p3) +X i(p4), with i = 0, 1/2, illustrated by the Feynman diagram
in Fig. 3.1, then the Boltzmann equation for the number density of produced dark matter
particles is given by [106, 110]

dnX
dt

+ 3HnX = Rφk

i , (3.128)

where the rate is given by

Rφk

i ≡ gX
∫
dΨ1,2,3,4(2π)

4δ(4) (p1 + p2 − p3 − p4)

×
[
|M|212→34f1f2(1± f3) (1± f4)− (34↔ 12)

]
(3.129)

where dΨ1,2,3,4 = Π4
i=1d

3pi/ ((2π3)2p0i ) denotes the phase space distribution of particles 1, 2, 3

and 4,M is the transition amplitude, fi is the phase space density of species i, and gX denotes
the number of produced dark matter particles. If we ignore the Bose enhancement and Pauli
blocking effects, then the above rate can be approximated as

Rφk

i = gX

∫
d3p3

(2π)32p03

d3p4

(2π)32p04
× (2π)4δ(4) (p1 + p2 − p3 − p4) |M|212→34 . (3.130)
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For the inflaton condensate we can use the transition amplitude Mn for each oscillating field
mode of φ. In this case, the four-momentum of the n-th oscillation mode is given by p1 + p2 =

pn =
√
s = (En,0) with En the energy of the n-th oscillation mode. Since the transition

amplitude Mn of the n-th oscillation does not depend on the final particle momenta p3,4, we
can approximate the rate as

Rφk

i =
gX
l!

1

8π

∞∑
n=1

|Mn|2
√

1− 4m2
X

s
(3.131)

where l is associated with the number of identical particles in the final state.

For the production of scalar dark matter, we find that the scattering amplitude squared is
given by

|M0φk

n |2 =
ρ2φ
M4

P

[
1 +

2m2
X

s

]2
|(Pk)n|2 , (3.132)

where s = E2
n = n2ω2, and we used ρφ = λφk

Mk−4
P

. We find that the inflaton scattering rate is
given by

Rφk

0 =
2× ρ2φ
16πM4

P

∞∑
n=1

[
1 +

2m2
X

E2
n

]2
|(Pk)n|2〈βn (mX ,mX)〉 , (3.133)

where

βn (mA,mB) ≡

√√√√(1− (mA +mB)
2

E2
n

)(
1− (mA −mB)

2

E2
n

)
, (3.134)

and we used gX = 2. For the case k = 2, we find that the rate is given by Eq. (3.59).

Similarly, for fermionic dark matter, we find that the scattering amplitude squared is,

|M1/2φk

n |2 =
2ρ2φ
M4

P

m2
X

s

[
1− 4m2

X

s

]
|(Pk)n|2 , (3.135)

and the rate is given by Eq. (3.61). The rates as defined in the text depend on various sum-
mations over the Fourier modes of the periodicity function P(t). In Table 3.2, the numerical
values of these quantities are given for k = 2, 4, 6. Values are given in the limit of vanishing
dark matter mass.
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k = 2 k = 4 k = 6

Σk
0 (Eq. (3.58)) 1

16
0.063 0.056

Σk
1/2 (Eq. (3.61)) 1

64
0.061 0.101

Σh
k (Eq. (3.95)) 1

8
0.141 0.146

Σy
k (Eq. (3.102)) 1

4
0.241 0.244

Table 3.2: Numerical values of the various summations of the Fourier modes of the periodicity
functions used in the text. The dark matter mass has been neglected in producing the numerical
values.

3.3 Non-minimal couplings to gravity

This section is based on: S. Cléry, Y. Mambrini, K.A. Olive, A. Shkkerin and S. Verner, Gravi-
tational portals with nonminimal couplings, Phys.Rev.D 105 (2022) 9, 095042, arXiv:2203.02004
[2]

Motivation

In the precedent section, we saw that promoting a field theory Lagrangian from a Lorentz-
invariant one to a generally covariant one necessarily leads to an interaction between the fields of
the theory and the gravitational field. In the case of a scalar field, S, the natural generalization
of this minimal interaction scenario is to introduce a non-minimal coupling term of the form

∝ ξSS
2R . (3.136)

Here R is the Ricci scalar and ξS is a non-minimal coupling constant. This non-minimal
coupling to gravity proved to be useful in many applications to cosmology. Examples include
Higgs inflation [100, 211], where S is associated with the Higgs field degree of freedom h — the
only scalar degree of freedom in the Standard Model, preheating [212], where S is associated
with the inflaton field φ, and non-perturbative production of dark matter [213–215], where S
represents the scalar dark matter particle X.

We showed in the precedent section that the interaction between the dark and visible sectors
induced by gravity leads to unavoidable contributions to reheating and dark matter produc-
tion, in the thermal bath or via the scattering of the inflaton condensate, through the graviton
exchange processes shown in Fig. 3.1. Thus, gravity is strong enough to mediate perturba-
tive channels of reheating and dark matter production. It is therefore important to compare
the minimal gravitational particle production to similar processes obtained with non-minimal
couplings.

The purpose of this part is to study how the inclusion of the non-minimal coupling terms
of the form (3.136) affect the gravitational production of dark matter and radiation during re-
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heating. Note that the presence of these terms is unavoidable: if there were no such couplings
at the tree level, they would still be generated by quantum corrections [216]. We consider the
effects of non-minimal couplings to curvature, for three types of scalars: the Higgs boson, the
inflaton, and a scalar dark matter candidate. We study particle production in the processes
hh → XX, φφ → hh, and φφ → XX which are induced by the non-minimal couplings. We
compute the abundance of dark matter produced by these non-minimal couplings to gravity as
well as the contribution to the production of the radiation bath during reheating.

Here φ represents the inflaton background oscillating around its minimum after the end
of inflation [160, 161]. Since the scalar fields couple directly to the curvature scalar R, the
oscillating background causes the effective masses of the fields to change non-adiabatically and
leads to particle production. This regime of particle creation has been considered in several
different contexts, including gravitational production of scalar [196, 217–227], fermion [228, 229],
and vector dark matter [230–234].

Our main interest is to compare the (dark) matter production channels induced by the non-
minimal couplings with the production via the s-channel graviton exchange that sets minimal
possible production rates. We will see for which values of the couplings the rates are enhanced,
and what are the consequences on the dark matter density or the temperature attained during
reheating. We adopt in this section the Starobinsky inflationary potential [93], although our
results are largely independent of the particular form of the potential. As for the potentials for
the fields h and X, we take them to be renormalizable polynomials. We also assume no direct
interaction between φ, h, and X.

Working in the perturbative regime implies that the non-minimal couplings must satisfy
|ξS| � M2

P/〈S〉2, where 〈S〉 is the vacuum expectation value of S = φ, h,X. The value of ξh
is constrained from collider experiments as |ξh| . 1015 [235, 236].11 Furthermore, the lower
bound on ξh comes from the fact that the Standard Model electroweak vacuum may not be
absolutely stable [237–243]. To prevent the vacuum decay due to quantum fluctuations during
inflation [244–250], the effective mass of the Higgs field induced by the non-minimal coupling
must be large enough; this gives ξh & 10−1 [251–253] (see also [254]).12

The section is organized as follows: we discuss non-minimal gravitational couplings of the
inflaton, the Higgs boson, and a dark matter scalar in detail. We calculate the dark matter
production rates either from scattering in the thermal bath or from oscillations in the inflaton
condensate. We compare similar processes obtained from the minimal gravitational particle
production. We choose the Starobinsky model of inflation and discuss the reheating epoch
when the inflaton begins oscillating. In 3.3.3 we discuss the resulting abundance of dark matter

11Note that in the case of Higgs inflation, ξh is fixed from CMB measurements [100].
12This estimate assumes no new physics interfering the RG running of the Higgs self-coupling constant until

inflationary energy scales.
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produced from the thermal bath and directly from scattering of the inflaton condensate. We
also compute the effects of the non-minimal couplings on the maximum temperature attained
during reheating. We then compare different processes in 3.3.4, before summarizing our results
in 3.3.5.

3.3.1 Scalar-gravity Lagrangian

The theory we consider comprises 3 scalar fields non-minimally coupled to gravity: the inflaton
φ, the Higgs field13 H, for which we adopt the Unitary gauge, H = (0, h)T/

√
2, and the dark

matter candidate X. The relevant part of the action takes the form

S =

∫
d4x
√
−g̃
[
−M

2
P

2
Ω2R̃ + L̃φ + L̃h + L̃X

]
(3.137)

with the conformal factor Ω2 given by

Ω2 ≡ 1 +
ξφφ

2

M2
P

+
ξhh

2

M2
P

+
ξXX

2

M2
P

. (3.138)

Here the tilde used in Eq. (3.137) indicates that the theory is considered in the Jordan frame.
For the scalar field Lagrangians we have

L̃S =
1

2
g̃µν∂µS∂νS − VS , S = φ, h,X . (3.139)

Next, we specify the scalar field potentials. For a model of inflation, we choose the well-
motivated Starobinsky model for which [93] (see section 2.1)

Vφ =
3

4
m2
φM

2
P

(
1− e−

√
2
3

φ
MP

)2

. (3.140)

The Starobinsky potential is equivalent to the T-alpha attractor potential introduced in 2.61,
giving similar inflationary predictions at high field value, in the specific case k = 2. In what
follows, we work in the perturbative regime with φ�MP , hence the potential is approximated
as

Vφ '
1

2
m2
φφ

2 . (3.141)

The inflaton mass, mφ, is fixed by the amplitude of scalar perturbations inferred from CMB
measurements [22]; for the potential (3.140) this gives mφ = 3× 1013 GeV [134].

The potential for the Higgs field is taken as follows

Vh =
1

2
m2
hh

2 +
1

4
λhh

4 . (3.142)

13We consider the Higgs boson as a surrogate for any additional scalars with Standard Model couplings.
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Here mh and λh are the Higgs mass and quartic coupling, correspondingly. Note that both
parameters undergo the renormalization group (RG) running. In what follows we take a weak
scale mass, which is a good approximation at the time of reheating and our results are insensitive
to λh. Finally, the dark matter potential is simply given by

VX =
1

2
m2
XX

2 . (3.143)

To study the reheating in the theory (3.137), it is convenient to remove the non-minimal
couplings by performing the redefinition of the metric field. Leaving the details to the addendum
A that follows this section, we write the action (3.137) in the Einstein frame,

S =

∫
d4x
√
−g
[
−M

2
P

2
R +

1

2
Kijgµν∂µSi∂νSj

−Vφ + Vh + VX
Ω4

]
.

(3.144)

Here the indices i, j enumerate the fields φ, h,X, and the kinetic function is given by

Kij = 6
∂ logΩ
∂Si

∂ logΩ
∂Sj

+
δij

Ω2
. (3.145)

Note that the scalar field kinetic term is not canonical. In general, it is impossible to make
a field redefinition that would bring it to the canonical form, unless all three non-minimal
couplings vanish.14 For the theory (3.144) to be well-defined, the kinetic function (3.145) must
be positive-definite. Computing the eigenvalues, one arrives at the condition

Ω2 > 0 , (3.146)

which is satisfied automatically for positive values of the couplings. Note that the negative
couplings are also allowed for certain scalar field magnitudes.

In what follows, we will be interested in the small-field limit

|ξφ|φ2

M2
P

,
|ξh|h2

M2
P

,
|ξX |X2

M2
P

� 1 . (3.147)

We can expand the kinetic and potential terms in the action (3.144) in powers of M−2
P . We

obtain a canonical kinetic term for the scalar fields and deduce the leading-order interactions
induced by the non-minimal couplings. The latter can be brought to the form

Lnon−min. = −σξhXh
2X2 − σξφXφ

2X2 − σξφhφ
2h2 , (3.148)

14Such a redefinition exists if the three-dimensional manifold spanned by the fields φ, h and X is flat. One
can show that it is not the case if at least one of the couplings is non-zero.
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where the σξij are functions of the couplings ξi, ξj, the masses mi, mj, and the Mandelstam
variables; see the addendum A for details.

The small-field approximation (3.147) implies the bound
√
|ξS| .MP/〈S〉 with S = φ, h,X.

Since the inflaton value at the end of inflation is φend ∼MP and afterwards 〈φ2〉 ∼ a−3, where
a is the cosmological scale factor, then |ξφ| . (a/aend)

3. In particular, at the onset of inflaton
oscillations

|ξφ| . 1 . (3.149)

Note that since our calculations involve the effective couplings σξφX (σξφh), which depend both
on ξφ and ξX (ξh), the relatively small value of |ξφ| can, in principle, be compensated by a large
value of the other couplings.

In Fig. 3.5, we show the scattering processes obtained from the Lagrangian (3.148). These
contribute to reheating (when h is in the final state) and dark matter production (when X is
in the final state).

h/φ X/h

σ

h/φ X/h

Figure 3.5: Feynman diagram for the 4-point interactions between the inflaton φ, the dark matter
scalar candidate X, and the Higgs boson h, given by the Lagrangian (3.148).

Finally, in evaluating the cosmological parameters, it is important to stay within the validity
of the low-energy theory. The cutoff of the theory can be estimated as (see, e.g., [255–257])

Λ ∼ MP

maxi |ξi|
. (3.150)

In particular, the temperature of reheating must not exceed Λ.

3.3.2 Production rates

In this section, we consider again three processes:

1. The production of dark matter from the scattering of thermal Higgs bosons (assuming
reheating is produced by inflaton decay). In this case, the dark matter is populated via
a freeze-in mechanism throughout the reheating period.
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2. The production of dark matter from direct excitations of the inflaton condensate. This
process, which can be viewed as gravitational inflaton scattering, is independent of the
presence of a thermal bath.

3. The creation of a radiative bath at the start of reheating arising from the Higgs boson
production through gravitational inflaton scattering. Since such a process is unavoidable
in minimally coupled gravity, it is interesting to know when such a process becomes
dominant in the model with non-minimal couplings ξi.

The thermal dark matter production rate R(T ) for the process hh→ XX can be calculated
from15 [115, 258]

R(T ) =
2×Nh

1024π6

∫
f1f2E1 dE1E2 dE2 d cos θ12

∫
|M|2 dΩ13 , (3.151)

Nh = 4 is the number of internal degrees of freedom for 1 complex Higgs doublet, |M|2 is the
matrix amplitude squared with all symmetry factors included. This accounts for the explicit
factor of 2 in the numerator of Eq. (3.151). The thermal distribution function of the incoming
Higgs particles is given by the Bose-Einstein distribution.

The rate for minimal gravitational interactions from Eq. (3.39) was derived in the precedent
section. The rate we use here differs in two respects. As noted earlier, we only include Higgs
scalars in the initial state whereas in [1, 192], all Standard Model particle initial states were
included. Secondly, we keep terms depending on the dark matter mass which had not previously
been taken into account. This allows us to consider dark matter masses approaching the inflaton
mass and/or the reheating temperature.

For minimal (non-minimal) gravitational interactions, we find that the thermal dark matter
production rate can be expressed as

R
T, (ξ)
X (T ) = β

(ξ)
1

T 8

M4
P

+ β
(ξ)
2

m2
XT

6

M4
P

+ β
(ξ)
3

m4
XT

4

M4
P

, (3.152)

where the coefficients β(ξ)
1, 2, 3 are given in the second addendum B by Eqs. (3.199-3.201) for

minimal-gravitational production, and by Eqs. (3.195-3.197) for the non-minimal coupling con-
tribution. The ratio of the non-minimal to minimal rate is shown in Fig. 3.6. However, we
note that when ξi ∼ O(1) both rates are comparable and interference effects become significant.
The full coefficients β1, 2, 3 including interference are given by Eqs. (3.202-3.201) from the second
addendum B. We will discuss below the comparison of the effects on dark matter production
from the two rates.

15We include the symmetry factors associated with identical initial and final states in the definition of |M|2,
and a factor of 2 is explicitly included in the definition of the rate to account for the production of 2 identical
particles.
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Figure 3.6: Contours of the ratio of the dark matter production rates from the thermal bath based on
non-minimal gravitational interactions to those based on minimal interactions. The ratio is displayed
in the (ξh, ξX) plane. Note that as discussed in the Introduction, negative values of ξh may require
new physics (such as supersymmetry) to stabilize the Higgs vacuum.

The rate for dark matter produced from inflaton oscillations of the inflaton condensate for a
potential of the form V = λφk were considered in detail in [1, 106]. The time-dependent inflaton
can be written as φ(t) = φ0(t)P(t), where φ0(t) is the time-dependent amplitude that includes
the effects of redshift and P(t) describes the periodicity of the oscillation. The dark matter
production rate is calculated by writing the potential in terms of the Fourier modes of the
oscillations [1, 106, 131, 207] as introduced in section 3.2. For k = 2 (the only case considered
here), the frequency of oscillation is simply, ω = mφ. The rate generated by non-minimal
couplings can be readily calculated using the Lagrangian (3.148), which leads to

Rφ, ξ
X =

2× σξ 2
φX

π

ρ2φ
m4
φ

Σk
0 , (3.153)

where Σk
0 is the same coefficient introduced in Eq.(3.95), while En = nω is the energy of the

n-th inflaton oscillation mode. For k = 2, only the second Fourier mode in the sum contributes,
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with
∑
|P2

n|2 = 1
16

. Thus, the rate becomes

Rφ, ξ
X =

2× σξ 2
φX

16π

ρ2φ
m4
φ

√
1− m2

X

m2
φ

, (3.154)

where ρφ is the energy density of the inflaton and the interaction term σξφX is given in the
addendum A by Eq. (3.190).

It was shown in section 3.2.1 that the dark matter production rate through the exchange of
a graviton, is given by Eq.(3.59) which can be written in the same form as (3.154) by defining
an effective coupling σφX

σφX = −
m2
φ

4M2
P

(
1 +

m2
X

2m2
φ

)
. (3.155)

A comparison of the non-minimal to minimal rates for the production of dark matter from
inflaton scattering is shown in Fig. 3.7. For the production of Higgs bosons through inflaton
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Figure 3.7: Contours of the ratio of the dark matter production rates from oscillations in the inflaton
condensate based on non-minimal gravitational interactions to those based on minimal interactions.
The ratio is displayed in the (ξφ, ξX) plane.

175



condensate scattering, we follow a similar procedure, and from the Lagrangian (3.148) we find

Rφ, ξ
h ' Nh

2× σξ 2
φh

16π

ρ2φ
m4
φ

, (3.156)

where we assumed that mh � mφ, Nh = 4 is the number of internal degrees of freedom for 1
complex Higgs doublet, and σξφh is given in the addendum A by Eq. (3.191). On the other hand,
it was argued in Section 3.2.2 that the scattering φφ→ hh through the graviton exchange can
also be parameterized by an effective coupling

Lh = −σφhφ2h2 , (3.157)

with
σφh = −

m2
φ

4M2
P

, (3.158)

and the rate Rφ
h is given by the analogous expression to (3.156) with σξφh replaced by σφh.

The full four-point coupling of course is given by the sum σξφh/X+σφh/X . However, except for
values where the two are similar, which occurs when 12ξ2 + 5ξ ' 1

2
(assuming mX � mφ and

taking the ξi to be equal to ξ), either the minimal or the non-minimal contribution dominates.
Thus, for the most part, we will consider separately the minimal and non-minimal contributions.
Note that for two values of ξ (ξ ∼ −1/2 and 1/12) destructive interference could occur causing
the entire rate to vanish (at the tree level).

3.3.3 Particle Production with a Non-Minimal Coupling

Given the rates Rj
i calculated in the previous part, we compute the evolution for the gravita-

tional (minimal and non-minimal) contribution to the reheating processes and the dark matter
density for the three reactions outlined above.

3.3.3.1 h h→ DM DM

The gravitational scattering of thermal Higgs bosons leads to the production of massive scalar
dark matter particles X. The dark matter number density nX can be calculated from the
classical Boltzmann equation Eq.(3.63) We proceed similarly to what we did in the section
3.2.2 by introducing the comoving number density YX = na3 and rewriting the Boltzmann
equation. Since the production rate (3.152) is a function of the temperature of the thermal
bath, it is necessary to determine the relation between T and a to solve the Boltzmann equation
as a function of the scale factor a. For the Starobinsky potential in Eq. (3.140), at the end of
inflation, the inflaton starts oscillating about a quadratic minimum16. We remind the reader

16For the inflaton scattering with V (φ) ∼ φk, where k > 2, see [87, 106, 119, 194, 210, 259, 260].
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that for a quadratic minimum, we can set the equation of state parameter wφ = Pφ

ρφ
' 0. Hence,

we can solve Eq.(3.66,3.67) for this specific value of wφ. We assume here that reheating occurs
due to the effective inflaton coupling to the Standard Model fermions, given by the interaction
Lagrangian Eq.(3.68). We find [87, 106]

ρφ(a) = ρend

(aend

a

)3
(3.159)

and

ρR(a) = ρRH

(aRH

a

) 3
2 1−

(
aend
a

) 5
2

1−
(
aend
aRH

) 5
2

, (3.160)

in agreement with the generic case for an arbitrary k found in Eq.(3.71, 3.72). We emphasize
again that these equations are strictly valid for aend � a� aRH. For the Starobinsky potential,
ρend ' 0.175m2

φM
2
P [209]. The maximum temperature (or radiation energy density) is attained

when the radiation energy density reaches its peak at ρR(amax) = αT 4
max, as described in section

3.2.2.

Using Eq. (3.160) we can then express the production rate from gravitational scattering of
thermal particles (3.152) as a function of the scale factor a

R
T, (ξ)
X (a) ' β

(ξ)
1

ρ2RH
α2M4

P

(aRH

a

)3  1−
(
aend
a

) 5
2

1−
(
aend
aRH

) 5
2


2

, (3.161)

where we assumed that mX � mφ, T , and thus neglected the terms β(ξ)
2, 3. We find that the

solution to the DM Boltzmann equation from thermal production is

nT, ξX (aRH) =
2βξ1√
3α2M3

P

ρ
3/2
RH

(1− (aend/aRH)
5
2 )2
×(

1 + 3

(
aend

aRH

) 5
2

− 25

7

(
aend

aRH

) 3
2

− 3

7

(
aend

aRH

)5
)
, (3.162)

where we integrated Eq. (3.76) in the interval aend < a < aRH using the rate above. The relic
abundance is then given by

Ω
T, (ξ)
X h2 =

2

3
Ω

(ξ)
k

[
1 + 3

(
ρRH

ρend

) 5
6

− 25

7

(
ρRH

ρend

) 1
2

− 3

7

(
ρRH

ρend

) 5
3

]
, (3.163)

with

Ω
(ξ)
k = 1.6× 108

g0
gRH

β
(ξ)
1

√
3√

α

mX

1 GeV
T 3

RH
M3

P

[
1−

(
ρRH

ρend

) 5
6

]−2
, (3.164)
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where g0 = 43/11 and we use the Standard Model value gRH = 427/4. We observe that
ΩT, ξ
X ∝ βξ1 T

3
RH. Therefore large values of the couplings ξh and ξX would require a decrease in

the reheating temperature. In part 3.3.4 we compare the scattering rates and the dark matter
abundances with the minimally coupled case.

3.3.3.2 φ φ→ X X

Another mode of dark matter production is through the scattering of the inflaton itself. Whereas
the graviton exchange channel was treated with care in section 3.2.2, in the case of non-minimal
coupling it suffices to replace RT, ξ

X in Eq. (3.76) with the production rate Eq.(3.154), and to
integrate between aend and aRH, which leads to

nφ, ξX (aRH) =
σξ 2
φXρ

3/2
RHMP

4
√
3πm4

φ

[(
aRH

aend

) 3
2

− 1

]√
1− m2

X

m2
φ

. (3.165)

For aRH � aend, using Eq. (3.159) we can express nφ, ξX as a function of ρend:

nφ, ξX (aRH) '
σξ 2
φXρRH

√
ρendMP

4
√
3πm4

φ

√
1− m2

X

m2
φ

, (3.166)

and we find

Ωφ, ξ
X h2

0.12
'

1.3× 107σξ 2
φXρ

1/4
RHM

2
P

m3
φ

mX

1GeV

√
1− m2

X

m2
φ

, (3.167)

where we assumed the Starobinsky value for ρend. The analogous expression for models with
minimally coupled gravity is found by replacing σξφX → σφX .

Up to this point, we have assumed that the radiation is produced via the direct inflaton decay
to a fermion pair. In the next part, we discuss the unavoidable radiation production channel
when the inflaton condensate scattering produces Higgs bosons and compare the models with
minimal and non-minimal coupling to gravity.

3.3.3.3 φ φ→ h h

Gravitational processes that produce dark matter can also populate the thermal bath in the
same way. Even if this Planck-suppressed production mechanism does not dominate throughout
the entire reheating process, it was shown in precedent section 3.2.2 that for TRH . 109 GeV it
is graviton exchange that dominates the production of the thermal bath at the very beginning
of the reheating, when ρφ ∼ ρend. The maximal temperature reached, Tmax, (which can be
considered as an absolute lower bound on Tmax) is Tmax ∼ 1012 GeV. It is therefore natural to
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determine the value of the couplings (ξφ, ξh), for which non-minimal gravitational processes
generate the thermal bath at early times, and the maximal temperature which can be attained
by these processes.

We compute the radiation energy density produced by gravitational couplings by considering
the rate Rφ, ξ

h (3.156) into the Boltzmann equation (3.67)

dρR
dt

+ 4HρR ' Nh

σξ 2
φh

8π

ρ2φ
m3
φ

, (3.168)

where we took into account that each scattering corresponds to an energy transfer of 2mφ.17

The solution to this equation is

ρR = Nh

√
3σξ 2

φh

4π

ρ
3/2
endMP

m3
φ

[(aend

a

)4
−
(aend

a

) 9
2

]
. (3.169)

Note that the dependence on the scale factor a is very different from that found in Eq. (3.160)
due to inflaton decay. Indeed, the Higgs bosons produced by gravitational scattering (minimal
as well as non-minimal) are redshifted to a greater extent because of the high dependence of
the rate on their energy due to the form of the energy-momentum tensor T 0

µν . Since ρR ∝ a−4

in Eq. (3.169) (at large a) and ρφ ∝ a−3 in Eq. (3.159), reheating through this process does
not occur (i.e., ρR never comes to dominate the total energy at late times) and inflaton decay
is necessary.18

However, as in the case of the reheating from the inflaton decay, the energy density in
Eq. (3.169) exhibits a maximum when a = amax = (81/64)aend. The maximum radiation
density is then,

ρξmax ' Nh

σξ 2
φh

12
√
3π

ρ
3/2
endMP

m3
φ

(
8

9

)8

, (3.170)

and from this expression we find that the maximum temperature produced by gravitational
interactions is given by

T ξmax ' 6.5× 1011

(
|σξφh|
10−11

) 1
2

GeV (3.171)

' 1.8× 1012
√
|ξ| (|5 + 12ξ|)

1
2

(
mφ

3× 1013 GeV

)
GeV ,

where we took ξφ = ξh = ξ in the last equality. The analogous expression for models with
minimally coupled gravity is found by replacing σξφh → σφh. To compare the maximum temper-

17Or equivalently that each Higgs quanta carries an energy mφ.
18This conclusion is avoided if the inflaton potential about minimum is approximated by φk with a higher

power of k > 4 [1, 259].
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ature obtained by non-minimal interactions with respect to minimal gravitational interactions,
we can rewrite Eq. (3.171) (now including minimal interactions in T ξmax) as

T ξmax ' 1.3× 1012

(
|σξφh + σφh|

σφh

) 1
2

GeV . (3.172)

The value of ξ for which the maximum temperature generated by the non-minimal coupling
surpasses the one from graviton exchange is shown in Fig. 3.8 and is determined using√

|σξφh|
|σφh|

=
√
2|ξ| (|5 + 12ξ|)

1
2 > 1 (3.173)

which is satisfied when ξ > 1/12 or ξ < −1/2, as discussed earlier. As noted above and discussed
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Figure 3.8: The maximum temperature during reheating generated separately by minimal and non-
minimal gravitational scattering of Higgs bosons in the thermal bath.

in section 3.2.2, minimal (and non-minimal) gravitational interactions for a quadratic inflaton
potential do not lead to the completion of the reheating process, thus requiring additional
inflaton interactions for decay. Although radiation density produced in scattering falls off
faster than that from decay, at early times, the radiation density may dominate and determine
Tmax. To determine when the φ φ→ h h process leads to the maximum temperature, we rewrite
Eq. (3.160) as:

ρyR =

√
3y2mφM

3
P

20π

(
ρend

M4
P

) 1
2
[(aend

a

) 3
2 −

(aend

a

)4]
. (3.174)

Using Eq. (3.74), we find that the maximum radiation density produced by the inflaton decay
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is given by

ρymax =

√
3y2mφM

3
P

32π

(
ρend

M4
P

) 1
2
(
3

8

) 3
5

. (3.175)

The maximum temperature is therefore determined by (non-minimal) gravitational interactions
when

y2 . Nh

8ρendσ
ξ 2
φh

9m4
φ

(
8

9

)8(
8

3

) 3
5

(3.176)

or
y . 1.6 σξφh

√
ρend

m4
φ

' 5.4× 104 σξφh

(
3× 1013 GeV

mφ

)
. (3.177)

This leads to the following reheating temperature:

TRH . 3.1× 1019σξφh

(
mφ

3× 1013 GeV

)−1/2
GeV

. 2.4× 109
(

mφ

3× 1013

) 3
2

ξ(5 + 12ξ) GeV (3.178)

where TRH is given by [106]

ρφ(aRH) = αT 4
RH =

12

25
Γ2
φM

2
P =

3y4m2
φM

2
P

400π2
, (3.179)

when the reheating temperature is determined by inflaton decay. The primary effect of the
gravitational scattering processes on reheating is the augmentation of Tmax for sufficiently small
inflaton decay coupling, y. This can be seen in Fig. 3.9 where we show the evolution of the
energy density of radiation from scattering and decay as well as the energy density of the
inflaton as a function of a/aend for σξφh = 0 and σξφh/σφh = 100, respectively.

As we saw in Eq. (3.173), minimal gravitational interactions dominate over non-minimal
interactions when σξφh < σφh or when

12ξφξh + 3ξh + 2ξφ <
1

2
, (3.180)

when we neglect contributions proportional to the Higgs mass. In this case, the maximum
temperature is determined by gravitational interactions when y . 2.1× 10−6 from Eq. (3.177)
using σφh from Eq. (3.158). The evolution of the energy densities in this case is shown in
Fig. 3.9 with y = 10−8. However as the energy density of radiation after the maximum falls
faster than ρφ, reheating in the Universe is determined by the inflaton decay. For a sufficiently
small coupling y, the energy density from the decay dominates the radiation density at a > aint,
where

aint

aend
'

(
5σ2

φhNhρend

y2m4
φ

)2/5

' 1.6

(
σφhMP

ymφ

)4/5

. (3.181)
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Figure 3.9: Evolution of the inflaton density (blue) and the total radiation density (red), with radiation
density produced from inflaton decays (dashed orange) and φ φ→ h h scattering processes ρσ, ξR (dotted
green) and ρσR (dash-dotted purple) with σξφh/σφh = 100 (or ξφ = ξh = ξ ' −2.3 or 1.8), as a function
of a/aend for a Yukawa-like coupling y = 10−8 and ρend ' 0.175m2

φM
2
P ' 9 × 1062 GeV4. The black

dashed lines corresponds to the ratios aint/aend ' 150 and 6500, which agrees with Eq. (3.181). The
numerical solutions are obtained from Eqs. (3.66), (3.67), and (3.168).

For σφh = 3.8× 10−11, mφ = 3× 1013 GeV, and y = 10−8 we have aint ≈ 160aend, as seen in the
figure. When Eq. (3.180) is not satisfied, non-minimal interactions may dominate as shown in
the bottom panel of Fig. 3.9, for σξφh = 100σφh and y = 10−8. The cross-over can be determined
from Eq. (3.181) with the replacement σφh → σξφh. In this example, aint ≈ 6500aend.

3.3.4 Results

We now turn to some general results that may be obtained from the framework of described
above. Concerning the gravitational production of dark matter from the thermal bath, the
difficulty of populating the Universe via the exchange of a graviton was already discussed in
section 3.2.2. Summing the minimal and non-minimal contributions in Eq. (3.163), we find for
ρRH � ρend

ΩT
X

0.12
' [1 + 30f(ξh, ξX)]

(
TRH

1014 GeV

)3(
mX

4.0× 109 GeV

)
=

[
1 + 120ξ2(1 + 6ξ + 12ξ2)

]
×
(

TRH

1014 GeV

)3(
mX

4.0× 109 GeV

)
(3.182)
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with
f(ξh, ξX) = ξ2h + 2ξhξX + ξ2X + 12ξhξX (ξh + ξX + 4ξhξX)

where we assumed ξh = ξX = ξ in the last equality, for simplicity. It is clear that if we set
ξ = 0, i.e. if we consider only graviton exchange, the reheating temperature necessary to obtain
a reasonable density respecting the data [22] is dangerously close to the mass of the inflaton,
even for extremely large dark matter masses. This problem had already been raised in [192] and
resolved in [1, 202] by considering the dark matter produced from the (minimal) gravitational
inflaton scattering.

On the other hand, from Eq. (3.182) we see that there is another solution to this tension
if one allows for non-minimal gravitational couplings. Indeed, it is easy to see that for values
of ξi & 0.1 (f(ξh, ξX) & 1

30
), non-minimal gravitational production dominates over graviton

exchange. In this case, it becomes easier to obtain the correct dark matter density for more
reasonable values of TRH and/or mX . For example, for a common value ξ = ξh = ξX = 1, a
temperature of TRH ∼ 1.2 × 1013 GeV, thus slightly below the inflaton mass, is sufficient to
produce an EeV dark matter candidate, whereas for ξ = 1000, TRH ∼ 1011 GeV will saturate
the relic density for a 2.6 TeV dark matter mass. We show this result in Fig. 3.10 where we
plot the reheating temperature needed to satisfy the relic density constraint as function of mX

for different value of ξ. For each value of ξ, the relic density exceeds ΩXh
2 = 0.12 above the

corresponding curve. As one can see, the line for ξ = 0 is in the upper corner of the figure at
high values of TRH and mX and these drop significantly at higher values of ξ.
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Figure 3.10: Region of parameter space respecting the relic density constraint ΩXh2 = 0.12 in the plane
(mX ,TRH) for different values of ξ = ξh = ξX and ρend ' 0.175m2

φM
2
P in the case of gravitational

production from the thermal bath h h→ X X. Both minimal and non-minimal contributions are taken
into account.
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As was shown in secton 3.2.2, another possibility to avoid the necessity of high reheating
temperatures and/or dark matter masses is the production of matter from the oscillations
within the inflaton condensate when the energy stored in the condensate is much larger than
the reheating temperature. A simple comparison between Eqs. (3.163) and (3.167) shows that
the production of dark matter via inflaton scattering when ξi 6= 0 generally dominates over the
production of dark matter from the thermal bath:

Ωφ, ξ
X

ΩT, ξ
X

' 34
(σξφX)

2

βξ1

M5
P

T 2
RHm

3
φ

' 185
MPmφ

T 2
RH

(5 + 12ξ)2

1 + 6ξ + 12ξ2
� 1 , (3.183)

where we took ξ = ξφ = ξh = ξX and mX � mφ in the last equality. We are therefore able to
state that the relic density of dark matter generated by the non-minimal gravitational scatter-
ing of the inflaton is always much more abundant than that produced by the thermal bath.

Dark matter production from inflaton scattering via minimal graviton exchange also domi-
nates over minimal gravitational thermal production (3.2.2). This state of affairs is anything
but surprising. Indeed, the energy available in the inflaton condensate at the onset of oscil-
lations is much greater than that available in the thermal bath during the reheating process.
As the scattering cross-sections are themselves highly dependent on the energies through the
energy-momentum tensor, it is quite normal that inflaton scattering is the dominant process
for both minimal and non-minimal gravitational couplings. Since inflaton scattering dominates
in both the minimal and non-minimal gravitational interactions we can compare the two. We
obtain

Ωφ, ξ
X

Ωφ
X

=
σξ 2
φX

σ2
φX

' 4ξ2(5 + 12ξ)2 , (3.184)

and we see again that non-minimal interactions dominate when ξ > 1/12 or < −1/2.

We show in Fig. 3.11 the region of the parameter space in the (mX , TRH) plane allowed by the
relic density constraint, adding all of the minimal and non-minimal gravitational contributions,
from inflaton scattering and as well as Higgs scattering from the thermal bath taking ξφ = ξh =

ξX = ξ. As expected, for ξ = 0 we recover the result found in section 3.2.2. As one can see,
the difficulty in the gravitational production from the thermal bath is indeed alleviated as a
reheating temperature TRH ' 1011 GeV allows for the production of a PeV scale dark matter
candidate. If in addition we introduce the non-minimal couplings ξ, the necessary reheating
temperature to fit the Planck data may be as low as the electroweak scale for a GeV candidate
if ξ & 1000. Finally, we note that given the dark matter mass and reheating temperature (if
that sector of beyond the Standard Model physics were known), the contours in Fig. 3.11 allow
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Figure 3.11: Region of parameter space respecting the relic density constraint ΩXh2 = 0.12 in the plane
(mX ,TRH) for different values of ξφ = ξh = ξX = ξ and ρend ' 0.175m2

φM
2
P in the case of production

from gravitational inflaton scattering φ φ→ X X. Both minimal and non-minimal contributions are
taken into account.

us to place an upper bound on the non-minimal couplings, ξ.We can rewrite Eq. (3.167) as

ΩXh
2

0.12
= 4.1× 10−7(12ξ2 + 5ξ +

1

2
)2
(

TRH

1010GeV

)
×
( mX

1GeV

)( mφ

3× 1013GeV

)
, (3.185)

when mX � mφ and ξ = ξφ = ξX . Then, for example, if mX = 1 TeV, and TRH = 109 GeV, we
obtain an upper limit of |ξ| . 4.

3.3.5 Conclusions

In this section, we have generalized the minimal gravitational interactions in the early Universe,
i.e., the s-channel exchange of a graviton, to include non-minimal couplings of all scalars to the
Ricci curvature R. We consider a scalar sector Si consisting of the inflaton condensate φ, the
Higgs field H and a dark matter candidate X, and we have analyzed the impact of couplings
of the type ξiS2

iR on the reheating process and dark matter production. The latter can be
generated by the thermal Higgs scattering or excitations of the inflaton, both through minimal
and non-minimal gravitational couplings. Whereas the Higgs scattering through the exchange
of a graviton necessitates a very large reheating temperature and/or dark matter mass in or-
der to fulfill Planck CMB constraints (TRH ' 1014 GeV with mX ' 109 GeV), for ξ & 0.1,
the non-minimal coupling dominates the process and alleviates the tension. For ξ ' 1000, a
dark matter mass of ∼ 1 PeV with TRH ' 1010 GeV will satisfy the constraint, see Fig. 3.10.
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However, thermal production is not the sole source of dark matter production through gravity.
When we include the contribution (necessarily present) of the inflaton scattering, we showed
that the energy stored in the condensate at the end of inflation compensates largely the re-
duced gravitational Planck coupling. These processes yield the correct relic abundance through
minimal graviton exchange for a dark matter mass of ∼ 108 GeV with TRH ' 1010 GeV, and
the constraint is satisfied for a dark matter mass of ∼ 100 GeV and TRH & 104 GeV if one adds
non-minimal couplings of the order ξ ' 100 as we show in Fig. 3.11. Gravitational inflaton
scattering also affects the reheating process, producing a maximum temperature ' 1012 GeV
with minimal couplings, reaching as large as T ξmax ' 5|ξ|Tmax ' 1014 GeV for ξ = 100 as one
can see in Fig. 3.8. This result can be re-expressed as an upper limit to |ξ| given values of mX

and TRH.

We can not over-emphasize that all these results are unavoidable, in the sense that they
are purely gravitational and do not rely on physics beyond the Standard Model. The relic
density of Dark Matter and maximum temperature of the thermal bath computed here should
be considered as lower bounds, that should be implemented in any extension of the Standard
Model, whatever is its nature.

Addenda

A Leading order interactions

The full Jordan frame action we consider is given by Eq. (3.137). The conformal transformation
to the Einstein frame is given by

gµν = Ω2g̃µν , (3.186)

where gµν is the Einstein frame space-time metric and the conformal factor is expressed by
Eq. (3.138). It can readily be shown that the scalar curvature transforms as (see, e.g., [261])

R̃ = Ω2 [R + 6gµν∇µ∇ν lnΩ− 6gµν (∇µ lnΩ) (∇ν lnΩ)] . (3.187)

After eliminating the total divergence term, we find the Einstein frame action (3.144). To find
the effective interaction terms we assume the small field limit (3.147) and expand the conformal
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factors in the Einstein frame action. We find the following effective interaction Lagrangian:

Leff = −1

2

(
ξφφ

2

M2
P

+
ξXX

2

M2
P

)
∂µh∂µh−

1

2

(
ξhh

2

M2
P

+
ξXX

2

M2
P

)
∂µφ∂µφ−

1

2

(
ξφφ

2

M2
P

+
ξhh

2

M2
P

)
∂µX∂µX

+
6ξhξXhX

M2
P

∂µh∂µX +
6ξhξφhφ

M2
P

∂µh∂µφ+
6ξφξXφX

M2
P

∂µφ∂µX +m2
XX

2

(
ξφφ

2

M2
P

+
ξhh

2

M2
P

)
+ m2

φφ
2M2

P

(
ξXX

2

M2
P

+
ξhh

2

M2
P

)
+m2

hh
2

(
ξφφ

2

M2
P

+
ξXX

2

M2
P

)
, (3.188)

and we can rewrite the above Lagrangian in terms of the effective couplings as Eq. (3.148),
with

σξhX =
1

4M2
P

[
ξh(2m

2
X + s) + ξX(2m

2
h + s)

+
(
12ξXξh(m

2
h +m2

X − t)
)]
, (3.189)

σξφX =
1

2M2
P

[
ξφm

2
X + 12ξφξXm

2
φ + 3ξXm

2
φ + 2ξφm

2
φ

]
, (3.190)

σξφh =
1

2M2
P

[
ξφm

2
h + 12ξφξhm

2
φ + 3ξhm

2
φ + 2ξφm

2
φ

]
, (3.191)

where s, t are the Mandelstam variables. The latter couplings assume an inflaton condensate
in the initial state rather than a thermal Higgs in the initial state accounting for the lack of
symmetry in the three couplings.

B Thermal production with non-minimal couplings

In this addendum, we calculate the thermal dark matter production rate RT, ξ
X (T ) arising from

the effective four-point interaction σhXh
2X2, where σhX is given by Eq. (3.189). We also

calculate the production rate RT
X(T ) for the thermal scattering processes mediated by gravity

alone, SM SM → X X, that are unavoidable in models with a minimal coupling to gravity
(ξφ,h,X = 0) [1, 192], and compare the two results. The production rate RT, ξ

X (T ) can be
computed from Eq. (3.151). The matrix element squared is given by

|MhX, ξ|2 = 4σξ 2
hX , (3.192)

where in the limit where the Higgs boson mass is neglected, the Mandelstam variables s and t

are given by

t =
s

2

(√
1− 4m2

X

s
cos θ13 − 1

)
+m2

X , (3.193)

s =2E1E2 (1− cos θ12) . (3.194)
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We find the following coefficients for Eq. (3.152)

βξ1 =
π3

2700

[
ξ2h + 2ξhξX + ξ2X + 12ξhξX (ξh + ξX + 4ξhξX)

]
, (3.195)

βξ2 =
ζ(3)2ξh
2π5

[
ξh + ξX + 6ξhξX − 12ξhξ

2
X

]
, (3.196)

βξ3 =
ξ2h

576π
. (3.197)

Similarly, we find the matrix element squared for minimally coupled gravity:

|MhX |2 =
1

4M4
P

(t(s+ t)− 2m2
Xt+m4

X)
2

s2
, (3.198)

where we have neglected the Higgs field mass. We find the coefficients:

β1 =
π3

81000
, (3.199)

β2 = −ζ(3)
2

30π5
, (3.200)

β3 =
1

4320π
. (3.201)

where we have neglected the Higgs field mass. Note that when both contributions are kept,
and we neglect mh � mX , the full coefficients (including interference) are given by

βξ1 =
π3

81000

[
30ξ2h (12ξX(4ξX + 1) + 1)

+10ξh(6ξX + 1)2 + 10ξX(3ξX + 1) + 1
]
, (3.202)

βξ2 = −ζ(3)
2

60π5
[2 + 10ξX

+5ξh (1 + 6ξX + 6ξh (6ξX(2ξX − 1)− 1))] , (3.203)

βξ3 =
1

8640π
[2 + 5ξh (32ξh − 2)] . (3.204)

which reduces to Eqs. (3.199-3.201) when all ξi = 0.
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3.4 Gravity as a portal to Reheating, Leptogenesis and
Dark Matter

This section is based on: B. Barman, S. Cléry, R.T Co, Y. Mambrini, K.A. Olive, Gravity as
a portal to reheating, leptogenesis and dark matter, JHEP 12 (2022) 072, arXiv:2210.05716
[3]

Motivation

Dark Matter and inflation require an extension to the Standard Model of particle physics,
but it is not the only reason why an extension is necessary. As discussed in section 1.3, the
visible or baryonic matter content of the Universe is asymmetric. One interesting mechanism
to produce the baryon asymmetry of the Universe (BAU) via the lepton sector physics through
leptogenesis [42] where, instead of creating a baryon asymmetry directly, a lepton asymmetry is
generated first and subsequently gets converted into baryon asymmetry by the (B+L)-violating
electroweak sphaleron transitions [36]. In thermal leptogenesis [262–265], the decaying particles,
typically right-handed neutrinos (RHNs), are produced thermally from the SM bath. However,
the lower bound on the RHN mass in such scenarios (known as the Davidson-Ibarra bound),
leads to a lower bound on the reheating temperature TRH & 1010 GeV [266] so that the RHNs
can be produced from the thermal bath. One simpler alternative is the non-thermal production
of RHNs [62, 267–270] originating from the decay of inflaton. This interaction is necessarily
model dependent as it depends on the Yukawa interaction between the inflaton and the RHNs.

In addition to providing the DM abundance, gravitational interactions can also be the source
of baryogenesis. As shown in [59], it is possible to have a model-independent theory of non-
thermal production of RHNs from inflation, once the inflaton potential is specified. The abun-
dance of RHNs is calculated in the same manner as the dark matter abundance and can lead to
observed BAU from the out-of-equilibrium CP violating decay of the RHNs, produced during
the reheating epoch.

In this section of the thesis, we derive a simultaneous solution for the DM abundance, the
baryon asymmetry, and the origin of the thermal bath from purely gravitational interactions.
In this sense, our scenario can be considered as the most minimal possible, since we do not
introduce any new interactions for any process beyond the SM, except for gravity. The only
new fields required are the dark matter candidate and the RHNs (which are anyway needed for
the generation of neutrino masses). Our only model dependence comes from the choice of the
particular inflaton potential. However, we are mostly sensitive to the shape of the potential
near the minimum, after inflation. But, as will be shown in the following section, even this
dependence proves to be weak when it comes to combining the constraints of reheating, baryo-
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genesis, and the dark matter relic density. We will further show that the present framework
can give rise to a detectable inflationary Gravitational Waves (GW) background, to probe this
scenario for TRH . 5× 106 GeV in future GW experiments, such as BBO, DECIGO, CE, and
ET. That in turn already excludes the minimal gravitational reheating scenario which leads to
an excess of the present-day GW energy density, in conflict with the BBN prediction. However,
a large part of the parameter space remains within the reach of several futuristic GW detection
facilities.

We first review the gravitational production of RHN and SM particles from inflaton scattering
and the thermal bath in Sec. 3.4.1, where we also discuss the effect of non-minimal gravitational
interactions. We then derive the set of parameters (dark matter mass, RHN mass, and reheating
temperature, TRH, which simultaneously provide the correct relic density and BAU in Sec. 3.4.5.
If the dark matter is not absolutely stable, we are able to propose an explanation for the PeV
events observed at IceCube in the case of a long-lived candidate. Finally, we propose a novel
scenario where the gravitational production is a two-step process passing through a scalar
singlet that couples with the RHN sector in Sec. 3.4.6.

3.4.1 Gravitational production of RHNs

The minimal gravitational interactions are described by the Lagrangian [271, 272]

√
−gLint = −

1

MP

hµν
(
T µνSM + T µνφ + T µνX

)
, (3.205)

as introduced in 3.2.1 in Eq.(3.39) where φ is the inflaton and X is a particle that does not
belong to the SM. In the context of this section, we consider X to be a spin 1/2 Majorana
fermion which can be associated with DM or a Right-Handed Neutrino (RHN). The form of
the stress-energy tensor T µνi for Majorana spin-1/2 fermions, takes the form

T µν1/2 =
i

8

[
χ̄γµ

↔
∂νχ+ χ̄γν

↔
∂µχ

]
− gµν

[
i

4
χ̄γα

↔
∂αχ−

mχ

2
χcχ

]
. (3.206)

Without loss of generality, we will assume that the inflaton potential V (φ) is among the class
of α-attractor T-models described in Eq.(3.52) which can be expanded about the origin19

V (φ) = λ
φk

Mk−4
P

; φ�MP . (3.207)

19Our discussion is general and not limited to T-models of inflation as the way we express the minimum of
the potential is generic.
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The end of inflation may be defined when ä = 0 where a is the cosmological scale factor. The
inflaton field value in this potential at that time is given by [106, 209]

φend '
√

3

8
MP ln

[
1

2
+
k

3

(
k +
√
k2 + 3

)]
. (3.208)

and the inflaton energy density at φend is ρend = 3
2
V (φend). The overall scale of the potential

parameterized by the coupling λ, is determined from the amplitude of the CMB power spectrum
AS, as in Eq.(2.64). In our analysis, we use ln(1010AS) = 3.044 [103] and set N = 55. This
leads to an inflaton mass of mφ ' 1.2× 1013 GeV for k = 2. More generically, mφ ' 1.2× 1013

is also the inflaton mass at the end of inflation for any larger k when the full potential in
Eq. (3.52) is used. While N = 55 is appropriate for reheating temperatures of order 1012 GeV,
for lower reheating temperatures (between 10− 107 GeV) N = 45− 50 [273]. However, we have
checked that our results are very insensitive to the value of N .

In addition to the inflationary sector and the SM, neutrino masses and mixing require at least
two (heavy) right-handed neutrino states for the seesaw mechanism [49–52, 274, 275]. One
of these, if produced and remaining out-of-equilibrium until its decay, can produce a lepton
asymmetry. In order to account for the dark matter in a most economic way, we assume three
RHNs, Ni, where for now, the lightest of these, N1 is decoupled from the other two and has a
vanishing Yukawa coupling. Aside from the Yukawa couplings, the only couplings we consider
between the SM, the RHNs, and the inflaton are gravitational of the form in Eq. (3.205).
Needless to say, such interactions are unavoidable, and must be taken into account in any
extensions beyond the SM. As a concrete example, we consider the renormalizable interaction
Lagrangian between the Majorana RHNs and the SM

L ⊃ −1

2
MNi

N c
iNi − (yN)ij N i H̃

† Lj + h.c. . (3.209)

Here H and L are the SM Higgs and lepton doublet respectively. Lepton number is clearly
violated in this Lagrangian.20 For now, we assume that (yN)1i = 0 for all i and that N1 is
stable. As a result, N1 is a viable DM candidate. Later, we will relax this condition and
consider a metastable DM candidate with (yN)1i 6= 0, allowing for N1 to decay into neutrinos
that could be observed at IceCube. The preservation of the lepton asymmetry will provide a
limit on (yN)1i/MN1 . The other two RHNs, namely N2,3 are assumed to be heavier and they
participate in leptogenesis.

We would like to remind the readers that there are three types of seesaw models, which differ
by the properties of the exchanged heavy particles, e.g.,

20We consider the RHNs to be mass diagonal.
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(i) Type-I: SM gauge fermion singlets

(ii) Type-II: SM SU(2)L scalar triplets

(iii) Type-III: SM SU(2)L fermion triplets.

In the present case we are considering the Type-I scenario, which is evident from the Lagrangian
in Eq. (3.205). The Type-I seesaw mechanism can indeed be realized with only two active
RHN [55, 276–278]. In this context, only the normal (m1 < m2 < m3) and inverted (m3 <

m2 < m1) hierarchies are relevant, where mi are the light neutrino masses. With only two
RHN playing a role in the seesaw mechanism, we expect m1 = 0 or m3 = 0, depending on the
hierarchy. Indeed, due to the reduced rank of the mass matrices (a 3 × 2 Dirac matrix and
a 2 × 2 Majorana matrix) one neutrino remains massless, while the others acquire their light
mass through the usual seesaw suppression of the order mi ∼ (yN )2ii〈H〉2

MNi
.

We further assume the absence of any direct coupling between the inflaton φ and the RHNs,
such that there is no perturbative decay of the inflaton into the RHN final state; in other
words, we do not attribute a lepton number to the inflaton. Thus, the only possible production
of the RHNs is the 2-to-2 gravitational scattering of the inflatons and of the particles in the
radiation bath. As we will show, these production channels dominate in different regions of
the parameter space. In Fig. 3.12, we show the s-channel exchange of a graviton obtained
from the Lagrangian in Eq. (3.205) for the production of RHNs from the inflaton condensate,
to which we can add a similar diagram for the production of SM fields during the reheating
process as described in section 3.2.1. Despite the a priori Planck reduced interactions, we will
show that this framework is perfectly capable of simultaneously explaining the dark matter
relic abundance and the observed baryon asymmetry, while also reheating the Universe. The
Planck suppression due to graviton exchange is indeed partially compensated by the energy
available in the inflaton condensate at the end of inflation.

ϕ

ϕ

Ni

Ni

Tµν
Ni

MP

Tµν
ϕ

MP
hµν

Figure 3.12: Feynman diagram for the production of RHN through the gravitational scattering of the
inflaton condensate. A similar diagram also exists with Standard Model particles in the initial state.

In this part, we compute the gravitational interactions and resulting abundances of the DM
candidate, N1 as well as the abundance of the RHN neutrino responsible for leptogenesis. We

192



consider the interactions of the type in Fig. 3.12 between the inflaton and the Ni. In addition,
we are interested in the gravitational interactions between the inflaton and SM particles that
make up the thermal bath. We will show that it is possible to produce the thermal bath
assuming the absence of any inflaton decay mode leading to reheating. We will quantify how
such interactions can give rise to reasonable relic density and baryon asymmetry. The DM
candidate N1 can be produced during reheating from inflaton scattering φφ → N1N1 as well
as from the thermal bath (mediated by a massless graviton in both cases). For (yN)1i = 0,
N1 couples only gravitationally, and the SM processes will not lead to its production. On
the other hand, for the generation of the baryon asymmetry, we will cater to non-thermal
leptogenesis, where the RHNs N2,3 are too weakly coupled to reach thermal equilibrium. Hence
they are predominantly produced only during reheating from gravitational inflaton scattering.
To summarize, we consider the following production via graviton exchange

• φφ→ N1N1, SM SM → N1N1 for production of the DM candidate N1.

• φφ → N2,3N2,3 for production of N2,3 that will lead to non-thermal leptogenesis. (Con-
tributions from SM SM → N2,3N2,3 are negligibly small.)

• φφ→ SM SM for the reheating process.

3.4.1.1 Gravitational dark matter

We start by computing the DM number density via 2-to-2 scattering of the bath particles,
mediated by graviton exchange. In this case the interaction rate is given by [1, 192, 201, 203]

RT
Ni

=
1

2
× β1/2

T 8

M4
P

, (3.210)

where we have computed in precedent section, β1/2 = 11351π3/10368000 ' 3.4 × 10−2 in Eq
(3.127), the explicit factor of 1

2
accounting for the Majorana nature of Ni. The evolution of

RHN number density nNi
(with i = 1, 2, 3) is governed by the Boltzmann equation

dnNi

dt
+ 3H nNi

= RT
Ni
, (3.211)

Defining the comoving number density as YNi
= nNi

a3 we can re-cast the Boltzmann equation
as

dY T
Ni

da
=
a2

H
RT
Ni
, (3.212)

where i = 1 for DM production, and the superscript T refer to the thermal source of production.
To properly capture the evolution of the inflaton and radiation energy density (and hence
temperature) we solve the set of coupled equations (3.67-3.66), for a generic equation of state
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of the inflaton fluid wφ. We recall that in our framework the potential V (φ) is proportional to
φk, Eq. (3.207). During reheating, the total energy density is dominated by the inflaton and we
can approximate the Hubble parameter by H2 ' ρφ/3M

2
P . In this case, we obtain Eq.(3.71)

ρφ(a) = ρend

(aend

a

) 6k
k+2

. (3.213)

Recall that we are assuming that the radiation bath is produced gravitationally through inflaton
scattering; namely, we do not rely on a specific decay channel φ→ SM particles for reheating.
In this case, due to helicity conservation, the production of SM fermions from inflaton scattering
is strongly suppressed by the mass of the fermions, whereas massless vectors are not produced
because of the antisymmetry of Fµν . However, scattering into scalars, especially Higgs scalars,
is always allowed and dominates the production rate. In [106], the inflaton dissipation rate
was parameterized as Γφ ∝ ρlφ. For a quartic interaction with constant coupling, l = (3/k) −
(1/2). However, for the effective gravitational coupling between the inflaton and SM Higgs, the
coupling is proportional to m2

φ ∝ ρ
(1−2/k)
φ . This leads to l = (3/2) − (1/k). More accurately,

expanding the potential energy in terms of the Fourier modes [1, 59, 106, 131, 207, 279] as in
Eq.(3.55) the production rate of radiation is given by [1, 2, 59]

(1 + wφ) Γφ ρφ = Rφk

H '
Nhρ

2
φ

16πM4
P

∞∑
n=1

2nω|Pk2n|2 = αkM
5
P

(
ρφ
M4

P

) 5k−2
2k

, (3.214)

where Nh = 4 is the number of internal degrees of freedom for one complex Higgs doublet
and we have neglected the Higgs bosons mass. The frequency of oscillations of φ is given by
Eq.(3.56) [106] and m2

φ = ∂2V (φ)
∂φ2

is the inflaton mass squared. The definition of αk follows the
analysis in [59], with the values given in Table 3.3. For l = (3/2) − (1/k) the results of [106]
yields for the evolution of the radiation density

ρR(a) =ρRH

(aRH

a

)4 [ 1− (aend/a)
8k−14
k+2

1− (aend/aRH)
8k−14
k+2

]
, (3.215)

which can be obtained by combining (3.213) and (3.214). The evolution in Eq. (3.215) is valid
when aend � a � aRH. To obtain Eq. (3.213), we have supposed H � Γφ, which is valid for
all a because Γφ < H at the end of inflation and Γφ decreases faster than H for all k ≥ 2. As a
result, we note that gravitational reheating is only possible for 6k

k+2
> 4, i.e., when ρφ redshifts

faster than ρR. This limits our parameter space to k > 4. It is also important to ensure that a
sufficiently large reheating temperature is attained to allow Big Bang Nucleosynthesis (BBN)
to occur at T ∼ 1 MeV as we will discuss in more detail in part 3.4.2. Using Eqs. (3.210) and
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k αk αξk
6 0.000193 αk + 0.00766 ξ2h
8 0.000528 αk + 0.0205 ξ2h
10 0.000966 αk + 0.0367 ξ2h
12 0.00144 αk + 0.0537 ξ2h
14 0.00192 αk + 0.0702 ξ2h
16 0.00239 αk + 0.0855 ξ2h
18 0.00282 αk + 0.0995 ξ2h
20 0.00322 αk + 0.112 ξ2h

Table 3.3: Relevant coefficients for the gravitational reheating [cf. Eq. (3.214) and Eq. (3.251)].

(3.215) and relating T 8 to ρ2R, we obtain the thermal rate of DM production

RT
Ni

=
1

2
× β1/2

ρ2RH
c2∗M

4
P

(aRH

a

)8 [ 1− (aend/a)
8k−14
k+2

1− (aend/aRH)
8k−14
k+2

]2
. (3.216)

The DM number density at the end of reheating can then be computed by integrating Eq. (3.212),
leading to

nTNi
(aRH) =

β1/2 (k + 2) ρ
3
2
RH

12
√
3M3

P c
2
∗

(
1

1− r
14−8k
k+2

)2

×
[

2(7− 4k)2

(k + 5)(k − 1)(5k − 2)
r

10+2k
k+2 − 9

(k + 5)
+

18

(5k − 2)
r

14−8k
k+2 − 1

(k − 1)
r

28−16k
k+2

]
, (3.217)

where r = aRH/aend. Since the gravitational reheating temperature is generally quite low as
discussed in part 3.4.2, we can consider the limit r � 1 and the dominant term in the expression
above is

nTNi
(aRH) '

β1/2 (k + 2) ρ
3
2
RH

12
√
3M3

P c
2
∗

2(7− 4k)2

(k + 5)(k − 1)(5k − 2)
r

10+2k
k+2 . (3.218)

The contribution of gravitational scattering of the particles in the primordial plasma to the
DM relic abundance can then be determined using [16]

ΩT
N1
h2 = 1.6× 108

g0
gRH

nTN1
(aRH)

T 3
RH

MN1

GeV
, (3.219)

which gives

ΩT
N1
h2 ' 1.6× 108 ×

g0 β1/2
gRH

× MN1

GeV
c
− 5

6
− 5

3k
∗ (7− 4k)2 (k + 2)

6
√
3 (k + 5)(k − 1)(5k − 2)

(
TRH

MP

) 5k−20
3k
(
ρend

M4
P

) k+5
3k

,

(3.220)
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where g0 = g∗(T0) = 43/11 and gRH = g∗(TRH) = 427/4 are the number of relativistic degrees of
freedom at present and at the end of reheating respectively. In (3.220), we have used Eq. (3.213)
evaluated at a = aRH to relate r, TRH, and ρend.

The DM candidate N1 can also be produced directly from inflaton scattering. As we shall
see in the next section, the same process is also involved in the production of the baryon asym-
metry. For the production of N1 through the scattering of the inflaton condensate, we consider
the time-dependent oscillations of a classical inflaton field φ(t). As it has been pointed out
in [121, 122, 153, 280], for all potentials steeper than quadratic near the origin, the oscillating
inflaton condensate may fragment due to self-interactions and self-resonances. The equation of
state, in that case, approaches w → 1/3 at sufficiently late times. If this occurs after T = TRH,
then this effect is not important since the inflaton energy would already be subdominant. Fur-
thermore, N is predominantly produced at aend so possible fragmentation at later times would
not affect the calculation of the baryon asymmetry we considered. Reheating may be affected;
however, the exact time when w transitions 1/3 depends on k and requires dedicated lattice
simulations [121–123, 153, 280]. In addition, self-resonance becomes less efficient for larger k
as shown by the lattice results for k up to 6 [121, 153, 280] and up to k = 10 more recently in
[123], while most of our viable results are for k > 6. Performing such lattice simulations for
larger k is beyond the scope of the present analysis.

Furthermore, we assume a mass hierarchy MN1,2,3 < mφ such that the s-channel graviton
mediated process (as shown in Fig. 3.12) is kinematically allowed. Note that, since N1 is
effectively decoupled from N2,3, it does not necessarily need to be the lightest of the three. The
production rate for Ni from inflaton scattering mediated by gravity is given21 by

Rφk

Ni
=

ρ2φ
4πM4

P

M2
Ni

m2
φ

Σk
Ni
, (3.221)

where

Σk
Ni

=
+∞∑
n=1

|Pk2n|2
m2
φ

E2
2n

[
1−

4M2
Ni

E2
2n

]3/2
, (3.222)

accounts for the sum over the Fourier modes of the inflaton potential, and m2
φ = λ k (k −

1) (ρφ/(λM
4
P ))

k−2
k . Here En = nω is the energy of the n-th inflaton oscillation mode and MNi

is the mass of the produced RHN. Then, the number density of RHN is obtained by solving a
Boltzmann equation analogous to that in Eq. (3.212) as

dY φk

Ni

da
=

√
3MP√
ρRH

a2
(

a

aRH

) 3k
k+2

Rφk

Ni
(a). (3.223)

21Note the difference of factor 2 with section 3.2.1, comes from the Majorana nature of the RHNs.
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Integration of Eq. (3.223), leads to the following expression for the RHN density [59]

nφ
k

Ni
(aRH) '

M2
N1

√
3 (k + 2) ρ

1
2
+ 2

k
RH

24π k(k − 1)λ
2
k M

1+ 8
k

P

(
ρend

ρRH

) 1
k

Σk
N1
, (3.224)

evaluated at the end of reheating. To obtain the DM relic abundance, one can again follow
Eq. (3.219), but now replacing nTN1

(aRH) with nφN1
(aRH), and obtain as in section 3.2.1

Ωφk

N1
h2

0.12
=

Σk
N1

2.4
8
k

k + 2

k(k − 1)

(
10−11

λ

) 2
k
(
1040GeV4

ρRH

) 1
4
− 1

k

×
(

ρend

1064GeV4

) 1
k
(

MN1

1.1× 107
+ 6

k GeV

)3

. (3.225)

The total DM relic abundance is a sum of the gravitational contribution from thermal bath
(ΩT

N1
h2) and from inflaton scattering (Ωφk

N1
h2).

3.4.1.2 Gravitational leptogenesis

Since N1 is the stable DM candidate, in the present scenario the lighter of N2,3 can undergo
out-of-equilibrium decay to SM final states. We denote N2 to be the lighter of these, and we
must require that the mixing of N1 and N2 to be sufficiently small so as to prevent the decay
of N2 to N1. For now, we take this coupling to be absent. The resulting CP asymmetry from
the decay of N2 is of the form [37, 56, 57, 281, 282]

ε∆L =

∑
α[Γ(N2 → lα +H)− Γ(N2 → lα +H∗)]∑
α[Γ(N2 → lα +H) + Γ(N2 → lα +H∗)]

. (3.226)

(see section 1.3). The resulting lepton asymmetry depends on the out-of-equilibrium abundance
of N2 as computed in the previous subsection. So long as MN2 � mφ and any kinematic
suppression can be ignored, the number density of N2 (at aRH) will be given by Eq. (3.224)
with the substitution N1 → N2. The CP asymmetry can be expressed as [54, 59, 282]

ε∆L '
3δeff

16π

MN2 mν ,max

v2
, (3.227)

where 〈H〉 ≡ v ≈ 174 GeV is the SM Higgs doublet vacuum expectation value, δeff is the effective
CP violating phase in the neutrino mass matrix with 0 ≤ δeff ≤ 1, and, we take mν,max = 0.05

eV as the heaviest light neutrino mass. Here we are interested in non-thermal leptogenesis [267–
270, 283–285]. The gravitationally produced N2 should not be thermalized into the bath for
the consistency of the calculation. To check this, we note that the thermalization rate Γth '
y2N2

T/8π decreases slower than the Hubble rate H =
√
ρφ√

3MP
based on Eqs. (3.213) and (3.215).

Thermalization is potentially dangerous until T ' MN2 when the N2 out-of-equilibrium decay
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rate dominates over the thermalization rate. Using Eq. (3.213), aend/a ' T/Tmax based on
Eq. (3.215), and y2N2

' mνMN2/v
2, we find that Γth is always less than H at T = MN2 in the

parameter space of interest.22 Thus the resulting lepton asymmetry will not be suppressed by
inverse decays.

The produced lepton asymmetry is eventually converted to baryon asymmetry via electroweak
sphaleron processes (see section 1.3) leading to

YB =
nB
s

=
28

79
ε∆L

nφN2
(TRH)

s
, (3.228)

where nφN2
(TRH) is the number density from Eqs. (3.218) and (3.224) at the end of reheating

and s = 2π2gRHT
3
RH/45 is the entropy density. The final asymmetry then becomes

YB ' 3.5× 10−4 δeff

(mν,max

0.05 eV

)( MN2

1013 GeV

)
nφN2

s

∣∣∣∣∣
TRH

, (3.229)

while the observed value, as reported by Planck [22], is Y obs
B ' 8.7 × 10−11. We note that

the lepton asymmetry is not washed out because the lepton-number violating process involving
the Yukawa scattering and the electroweak sphaleron processes are never in equilibrium at the
same time.

3.4.2 Gravitational reheating temperature

In the precedent part, we computed the energy density in radiation from a purely gravitational
process. However, to avoid conflict with the BBN, that requires the reheating temperature
TRH & 1 MeV, one needs to consider wφ & 0.65 [59, 259], or k =

2 (1+wφ)

(1−wφ)
& 9. This lower

bound comes from the fact that, for higher k, the inflaton energy density redshifts faster
so the transition to radiation domination is achieved sooner, at a higher temperature. This
requirement of having large wφ can be relaxed with non-minimal gravitational couplings as we
will discuss in what follows.

The precise bound on TRH is in fact more involved especially for k ≤ 8 for the following
reasons. As noted below Eq. (3.215), the inflaton-dominated era ends when ρφ redshifts below
ρR. The difference in the scale factor dependence between ρφ in Eq. (3.213) and ρR in Eq. (3.215)
increases with k. In other words, for smaller k, the inflaton energy density does not redshift
significantly more than radiation. Thus, TRH for low k needs to be substantially higher than
TBBN ≈ 1 MeV so that the inflaton energy density does not excessively modify the expansion
rate of the universe at BBN. We can recast the BBN bound on the extra energy density in the
form of ∆Nν < 0.226 [31] (see 1.2.4) into a bound on TRH as a function of k using the following

22More precisely, T/Tmax = amax/a = (amax/aend)(aend/a) = ((6k − 3)/(2k + 4))((k+2)/(8k−14))(aend/a) ≈
31/8(aend/a) for large k see section 3.2.2.
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expression

1 =
ρφ
ρR

∣∣∣∣
TRH

=
ρφ
ρR

∣∣∣∣
TBBN

(aBBN/aRH)
6k
k+2

(TRH/TBBN)4
, (3.230)

with entropy conservation g∗(aRH)T
3
RH a

3
RH = g∗(aBBN)T

3
BBN a

3
BBN within the SM sector, as well

as ρφ(TBBN) =
7
8

(
4
11

) 4
3 ∆Nν

π2

30
T 4

BBN. The resulting bounds for each k are TRH . 40MeV (k =

6), 9MeV (k = 8), 5MeV (k = 10), 4MeV (k = 12) and 3MeV (14 ≤ k ≤ 20), which we
will show as red-shaded regions in the subsequent figures concerning TRH. We note that this
estimate is in good agreement with a more rigorous treatment performed in Ref. [286] using a
BBN computing package for the case of kination (large k limit).

The reheating temperature can be determined by solving the Boltzmann equation for the
radiation energy density produced graitationally. This yields [59]

ρR(a) ' αk
k + 2

8k − 14

√
3M4

P

(
ρend

M4
P

) 2k−1
k (aend

a

)4
, (3.231)

and evaluating this at aRH we have

T 4
RH =

30

π2 gRH
M4

P

(
ρend

M4
P

) 4k−7
k−4

(
αk
√
3 (k + 2)

8k − 14

) 3k
k−4

. (3.232)

From Eq. (3.232) we find TRH ' 60 MeV for k = 10 and ρend ' (4.8 × 1015 GeV)4. Note that,
due to the logarithmic dependence of φend on k in Eq. (3.208), ρend changes very slowly with k
and remains approximately fixed to the above value.

In Fig. 3.13, we show in the left panel the reheating temperature for minimal gravitational
interactions by the curve labeled ξh = 0 (other values of ξh, non-minimal coupling of the Higgs
to the Ricci scalar, are discussed in the next subsection). As one can see, TRH rises to ' 1 TeV,
for k = 20. This minimal case with ξh = 0 is excluded by excessive gravitational waves as dark
radiation as will be discussed in part 3.4.4, so a non-minimal coupling is ultimately required.

At the start of the reheating process, the Universe quickly heats to a maximum temperature,
Tmax. As discussed in section 3.2.2, the maximum temperature attained through purely grav-
itational processes is of order 1012 GeV, decreasing slightly with k. The maximum radiation
density which determines Tmax was found to be

ρmax '
√
3αkM

4
P

(
ρend

M4
P

) 2k−1
k k + 2

12k − 16

(
2k + 4

6k − 3

) 2k+4
4k−7

≡ c∗ T
4
max . (3.233)
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Figure 3.13: Variation of TRH (left) and Tmax (right) as a function of k, for different choices of ξh.
Triangles highlight the physical choices of even k. The red-shaded region is excluded by BBN because
low reheating temperatures lead to an excessive inflaton energy density during BBN. The blue-shaded
region is similarly excluded by BBN for excessive gravitational waves produced during inflation. The
gray-shaded region is excluded as the lowest reheating temperature from gravitational reheating is that
from minimal gravity (pure graviton exchange), i.e., ξh = 0.

Asymptotically at large k, Tmax ≈ 8×1011 GeV and
(
Tmax
TRH

)
k�4
∼
(

1
αk�4

)1/2 (
M4

P

ρend

)1/2
� 1. This

represents a minimal maximum temperature, as other processes such as decays (not considered
here), may lead to a higher maximum temperature. The value of Tmax is shown in the right
panel of Fig. 3.13. For minimal gravitational interactions, corresponding to the simple exchange
of a graviton, Tmax ' 1012 GeV. In fact, as we noted before and will elaborate in part 3.4.4,
gravitational reheating with ξh = 0 (graviton exchange) is already ruled out by the BBN
bound on dark radiation in the form of GW. Thus, to account for the reheating mechanism
in a gravitational framework, it is necessary to introduce non-minimal couplings of fields to
gravity. We compute the reheating and maximum temperatures for non-minimal gravitational
interactions in the next subsection. The value of Tmax will be relevant when we discuss the DM
warmness constraint because DM is produced relativistically and predominantly at Tmax.

3.4.3 Non-minimal gravitational production

As pure gravitational particle production can be insufficient, we also consider the possibility
that scalar fields have non-minimal couplings to gravity which generate effective couplings
between these scalar fields and the RHNs. Thus, we allow both the inflaton φ and the Higgs
field H to be non-minimally coupled. We denote the complex Higgs doublet as h throughout
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the following section. One can then write the action as

SJ =

∫
d4x
√
−g̃
[
−M

2
P

2
Ω2 R̃+ L̃φ + L̃h + L̃Ni

]
, (3.234)

where
L̃φ =

1

2
∂µφ ∂

µφ− V (φ)

L̃h = ∂µh ∂
µh† − V (hh†)

L̃Ni
=
i

2
Ni
←→
/∇ Ni −

1

2
MNi

(N )ciNi + L̃yuk

L̃yuk = −yNi
Ni h̃† L+ h.c. ,

(3.235)

and N ,L are the RHN and SM lepton doublet fields in Jordan frame. The conformal factor
Ω2 is given here by

Ω2 ≡ 1 +
ξφ φ

2

M2
P

+
ξh |h|2

M2
P

. (3.236)

As in section 3.3.1, it is convenient to remove the non-minimal couplings by performing the
usual conformal transformation from the Jordan frame to the Einstein frame,

gµν = Ω2 g̃µν , (3.237)

SE =

∫
d4x
√
−g

[
−M

2
P R
2

+
Kab

2
gµν∂µSa ∂νSb +

i

2Ω3
Ni

←→
/∇ Ni −

1

Ω4

(
MNi

2
N c
i Ni + Lyuk

)

− 3i

4Ω4
Ni

(←→
/∂ Ω

)
Ni −

1

Ω4
(Vφ + Vh)

]
, (3.238)

where we have used √
−g̃ →

√
−g
Ω4

(3.239)

/̃∇ → Ω/∇− 3

2
Ω2(/∂Ω) , (3.240)

and the indices a, b enumerate the fields φ, and the real components of h. Then making spinor
field redefinition L → Ω3/2L, Ni → Ω3/2Ni and Ni → Ω3/2Ni we recover the following action
with canonical kinetic term for the RHN

SE =

∫
d4x
√
−g

[
−M

2
P R
2

+
Kab

2
gµν∂µSa ∂νSb −

1

Ω4
(Vφ + Vh) +

i

2
Ni

←→
/∇ Ni

− 1

2Ω
MNi

N c
i Ni +

1

Ω
Lyuk

]
. (3.241)
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where the kinetic function Kab has been introduced in Eq.(3.145). In what follows, consider
the small-field limit Eq.(3.147) which constrains ξφ � 1. However, there is no such constraint
on ξh which can take relatively large values.

Expanding the kinetic and potential terms in the action in Eq. (3.241) in powers of 1/M2
P ,

we obtain a canonical kinetic term for the scalar fields, and deduce the leading-order interac-
tions between scalars and the RHNs induced by the non-minimal couplings. Note that, the
non-minimally coupled Yukawa interaction in Eq. (3.241) gives rise to a 3-to-2 (or 2-to-3) pro-
cess with RHN in the final state above electroweak symmetry breaking temperature. These
processes thus will be kinematically suppressed and have a subdominant contribution to the
RHN production. The kinetic terms for the RHNs can be expressed in the form

Lnon−min. = −σξhNi
|h|2N c

iNi − σξφNi
φ2N c

iNi , (3.242)

with
σξφNi

=
MNi

2M2
P

ξφ (3.243)

σξhNi
=

MNi

2M2
P

ξh . (3.244)

These non-minimal interactions open up additional channels

• RHN production from inflaton scattering: φφ→ NiNi

• RHN production from Higgs scattering: hh† → NiNi

• Higgs production from inflaton scattering: φφ→ hh†.

Interestingly, as can be seen from the interaction terms, the production of RHNs is systemati-
cally proportional to the mass of the fermion. Then, for the thermal production of RHNs, the
production rate is

RT,ξ
Ni
' Nh

ζ(3)2 ξ2h
32 π5

M2
Ni
T 6

M4
P

, (3.245)

where ζ(x) is the Riemann-zeta function. For both minimal and non-minimal gravitational
couplings, the leading term in the production rate for scalar dark matter scales as T 8 [2].
Similarly, the production rate for fermions in minimal gravity also scales as T 8 as seen in
Eq. (3.210). However, for non-minimal gravitational interactions, after the conformal rescaling
to obtain canonical kinetic terms, there is no non-minimal coupling to the kinetic terms (in
contrast to the scalars where this coupling is found in Eq. (3.241)). Instead, we are left with
only the mass term coupled to |h|2 and the thermal production rate is proportional only to
∝M2

Ni
T 6.
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Using the rate in Eq. (3.245) we obtain the number density at the end of reheating due to
the non-minimal interaction as

n
T (ξh 6=0)
Ni

=

(√
3Nh ζ(3)

2 ξ2h

32π5 c
3/2
∗

M2
Ni
ρRH

M3
P

) (k + 2)

(
1−

(
ρend
ρRH

) 7
3 k
− 4

3

)−3/2
72 (5− 4k) Γ

(
29−20k
14−8k

)
×

[
9
√
π(5− 4k)

(
ρend

ρRH

)1/k

Γ

(
4k − 4

4k − 7

)
+ 4

(
ρend

ρRH

) 16k2+4k+169

21k−12k2

Γ

(
29− 20k

14− 8k

)
G

]
, (3.246)

with

G =

(
ρend

ρRH

) 4(k+30)
3k(4k−7)

3(4k − 5)

(
ρend

ρRH

) 16k2+49
3k(4k−7)

− 6

(
ρend

ρRH

) 56
3(4k−7)


2F1(...) ,

where 2F1

(
−1

2
, 3
4k−7 ,

4k−4
4k−7 ,

(
ρend
ρRH

) 7
3k
− 4

3

)
is the hypergeometric function. For the inflaton scat-

tering process φφ→ NiNi, on the other hand, we find

Rφ,ξ
Ni

=
M2

Ni
ξ2φφ

4
0ω

2

32πM4
P

∞∑
n=1

(2n)2|P(2)
2n |2 ×

√
1−

4M2
Ni

E2
2n

, (3.247)

where we define φ0 =
(

ρφ

λM4−k
P

) 1
k , Pn and P(2)

n by23

φ(t) = φ0(t) · P(t) = φ0(t)
∞∑

n=−∞

Pne−inωt (3.248)

φ2(t) = φ2
0(t) · P2(t) = φ2

0(t)
∞∑

n=−∞

P(2)
n e−inωt . (3.249)

This rate is restricted by the small field limit that imposes a stringent bound |ξφ| . 1. When
we compare this rate with the one due to inflaton scattering mediated by minimal gravitational
interactions (Eq. (3.221)), we obtain

Rφ,ξ
φNi

Rφk

Ni

≈
[
k (k − 1) ξφ (ω/mφ)

2

√
8

]2 ∞∑
n=1

(2n)2|P(2)
2n |2

∞∑
n=1

1
(2n)2

∣∣Pk2n∣∣2 . (3.250)

This ratio takes values between {32 ξ2φ, 242 ξ2φ} for k ∈ [6, 20]. Hence, the non-minimal con-
tribution from inflaton scattering dominates over the graviton exchange for ξφ > 1

2
√
8

when

23Note that we introduce different notations for the Fourier coefficients of the classical fields φ(t), φ2(t) and
V (φ(t)).
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k = 6 and for ξφ > 0.06 when k = 20. In what follows, we will neglect this contribution as it
dominates for values of ξφ close to the small field limit, making the assumption of canonical
kinetic terms of the fields invalid.

The non-minimal coupling of Higgs bosons to gravity provides an additional channel to reheat
the Universe through gravitational processes, with the following rate [59]

(1 + ωφ)Γφ = Rφ,ξ
H '

ξ2hNh

4πM4
P

∞∑
n=1

2nω

∣∣∣∣2× Pk2nρφ + (nω)2

2
φ2
0|Pn|2

∣∣∣∣2 = αξkM
5
P

(
ρφ
M4

P

) 5k−2
2k

,

(3.251)
where Pn has been defined in Eq. (3.248) and αξk is given in Table 3.3. If we solve Eq. (3.67)
for ρR, the reheating temperature in the presence of the non-minimal coupling is then given by

(
T ξRH

)4
=

30

π2 gRH
M4

P

(
ρend

M4
P

) 4k−7
k−4

(
αξk
√
3 (k + 2)

8k − 14

) 3k
k−4

. (3.252)

The reheating temperature as a function of k is shown in the left panel of Fig. 3.13 for several
values of ξh. The maximum temperature in this case is determined from

ρξmax '
√
3αξkM

4
P

(
ρend

M4
P

) 2k−1
k k + 2

12k − 16

(
2k + 4

6k − 3

) 2k+4
4k−7

≡ c∗ (T
ξ
max)

4 . (3.253)

Contours of T ξmax in the (k, TRH) plane are shown in the right panel of Fig. 3.13, where the
appropriate values of ξh taken from the left panel are used to calculate T ξmax.

3.4.4 Gravitational waves generated during inflation

We review here the calculation of gravitational waves (GW) generated by quantum fluctuations
during inflation, followed by a cosmological era where the inflaton energy dominates and red-
shifts faster than radiation. This results in an enhancement of GW, which places a constraint
from excessive dark radiation and offers a GW signal with a distinctive spectrum. The ratio of
the gravitational wave (GW) energy density to that of the radiation bath is given by [287]

ρGW

ρR
=

1

32πGρR

k2GW
2
PT (kGW) with PT (kGW) ≡ 2H2

I (kGW)

π2M2
P

, (3.254)

where kGW is the momentum mode of the GW, PT is the primordial tensor power spectrum (see
section 2.1), HI(kGW) is the Hubble scale during inflation when the mode kGW exits the horizon,
Thc is the horizon-crossing temperature when the mode re-enters the horizon at kGW = H(Thc),
and the factor of 1/2 accounts for the time average of the rapidly oscillating metric perturba-
tions. In our case, ρGW/ρR is redshift invariant up to the change of g∗ after T = Tmax because
entropy is only efficiently produced at T = Tmax as discussed in part 3.4.2. Therefore, the final
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gravitational wave strength is given by ΩGWh
2 = Ωγ h

2 (ρGW/ρR) × [g4∗s(eV)/g∗(Thc)g
3
∗(eV)]

1
3

where Ωγ = ργ,0/ρcrit,0 is the fraction of the photon energy density today. Here g∗s(eV) =[
2 + 7

8
× 2× 3×

(
4
11

)]
' 3.91 and g∗(eV) =

[
2 + 7

8
× 2× 3×

(
4
11

)4/3] ' 3.36 denote the effec-
tive number of relativistic degrees of freedom relevant for the entropy density and the energy
density, respectively.

As one can see, if horizon crossing occurs during radiation domination k2GW = H2(Thc) =

ρR/(3M
2
P ), then the GW spectrum becomes scale invariant. On the other hand, if horizon

crossing occurs during the reheating era when the Universe is dominated by inflaton energy
density, the GW strength is enhanced by a factor of ρφ/ρR evaluated at Thc. As a result, the
largest enhancement is for the mode that re-enters the horizon right after inflation at Tmax. For
minimal gravitational reheating (ξh = 0), the enhancement in this mode is ρend/ρR(Tmax) '
(4−6)×1013 for k ∈ [6, 20], based on Eqs. (3.52) and (3.208). This gives ΩGWh

2 ' (8−10)×10−6,
which corresponds to the high frequency points of the blue curves, which fix ξh = 0, in the left
panel of Fig. 3.14. These values are excluded by the BBN bound of ΩGWh

2 ' 1.3 × 10−6 [31]
(see 1.2.4), shown by the blue-shaded region at the top. Therefore, the case with minimal
gravitational interactions is excluded, which was previously pointed out by Ref. [288]. The
constraint is relaxed when Tmax is increased, e.g., by non-minimal gravitational interactions via
ξh [cf. Eq. (3.253)], because the GW energy density relative to that of radiation is smaller in
this case. The blue region in the right panel of Fig. 3.14 (and subsequent figures) shows the
constraint in this non-minimal scenario, which excludes ξh . 0.5, as can be seen from the left
panel of Fig. 3.13.

In addition to setting a constraint, such enhanced gravitational waves offer an important
signature to search for [289]. The amount of enhancement depends on ρφ/ρR at the time of
horizon crossing, implying that the GW spectrum depends on the inflaton potential near the
minimum and the parameter k. By analyzing modes that re-enter the horizon after Tmax and
using ρφ ∝ a−6k/(k+2) from Eq. (3.213), we find the GW spectrum scales with the frequency as
ΩGWh

2 ∝ f
k−4
k−1 , which is consistent with Ref. [288]. The enhanced GW spectra are demonstrated

in the left panel of Fig. 3.14 for the different values of k in the blue and red curves. The blue
(red) curves correspond to the minimal scenario (TRH = 300TeV), and allow for k to vary from
10 (6) to 20 in increments of 2 (for ξh = 0, k < 10 is excluded by BBN for low TRH according
to Fig. 3.13.) Here, the frequency is obtained by redshifting the initial momentum mode at Thc

to today’s photon temperature Tγ,0 as

f =
kGW

2π

Tγ,0
Thc

(
g∗(eV)

g∗(Thc)

) 1
3

. (3.255)

Therefore, by measuring the slope of ΩGWh
2 as a function f , one can determine k and thus

reveal the shape of the inflaton potential energy near the minimum. Note that, the end-point
frequencies for the red curves are different for different choices of k (and different ξh), as for a
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Figure 3.14: Gravitational wave constraints and future prospects. Left: The blue-shaded region is
excluded by BBN for excessive dark radiation. The blue and red curves fix ξh = 0 and TRH = 300TeV,
respectively. Various curves of the same color use different values of k as labeled and in increments of
2. The sensitivity of several future experiments as a function of frequency is also shown. Right: The
blue region is excluded by BBN for the excessive GW energy as dark radiation. The regions below the
gray dashed curves can be probed by the GW experiments as specified.

given k and TRH, the maximum possible frequency is dictated by

fmax =
H(Tmax)

2π

aend

a0
, (3.256)

which for ξh = 0 turns out to be ' 7× 1010 Hz for all k, while modes with frequencies f > fmax

are never produced. In the right panel of Fig. 3.14, the regions below the gray dashed curves can
be probed by the future gravitational wave observatories—BBO [290–292], DECIGO [293–295],
CE [296, 297] and ET [298–301]. Here we use the sensitivity curves derived in Ref. [302]. Since
these GW observatories probe frequencies that correspond to modes that exit the horizon early
in the inflation period, we use the large-field asymptotic value of V (φ) in Eq. (3.52) to obtain
HI . In the left panel of Fig. 3.14, we illustrate the GW spectra in the red curves for a fixed
TRH = 300TeV, which can be detected by DECIGO for k ≥ 8 and by BBO for all k ≥ 6.
Remarkably, in the right panel, a large region in the parameter space with TRH < 5× 106 GeV
can be probed by future GW detectors. We emphasize that this potential GW signal is generic
for our model and applicable throughout this thesis manuscript, although we do not show these
sensitivity curves in all figures for clarity of presentation.
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3.4.5 Results and discussion

3.4.5.1 Simultaneous solution: the case of stable DM candidate

As we have seen, for each value of k and ξh (in the non-minimal case), there is a unique value for
TRH from gravitational portals during reheating. These are shown in the left panel of Fig. 3.13.
The gravitational thermal production of DM generally requires reheating temperatures much
larger than can be obtained with ξh = 0. In this part, we will consider TRH and k as free
parameters and it should be understood that we are implicitly assuming that ξh 6= 0 and takes
the necessary value to achieve a particular reheating temperature for a given value of k. For the
production of DM, both minimal and non-minimal thermal contributions are included, whereas
for the generation of a lepton asymmetry, only minimal contributions from inflaton scattering
are considered.

The results presented depend on the underlying class of inflationary models. As noted earlier,
we consider T-models of inflation [105] for which we have determined λ and ρend (see section 2.1).
As discussed above, there are two contributions to the DM relic density: from gravitational
scattering within the newly formed primordial plasma and directly from inflaton scattering.
These two contributions are presented separately in the upper two panels of Fig. 3.15. In the
upper left panel, we show two contours of the yield, nN1/s = 10−22 and 10−24, for both minimal
gravitational interactions (dotted curves) using Eq. (3.217) and non-minimal interactions (dot-
dashed curves) using Eq. (3.246). Note the latter yield is proportional to M2

N1
as shown by the

contour labels, and we have normalized these contours by choosing MN1 = 108 GeV. Also note,
MN1nN1/s ' 0.44 eV is needed to explain the observed dark matter density, ΩN1h

2 = 0.12.
For k > 4 and minimal gravitational interactions, the relic density increases with reheating
temperature, nN1/s ∼ T

5k−20
3k

RH . The scaling of nN1/s for non-minimal interactions is more
complicated but also increases with TRH.

In the upper right panel of Fig. 3.15, we provide four contours of the yield, nN1/s, produced
from inflaton scattering, which also scales as M2

N1
. The gravitational production process from

inflaton scattering is complementary to the thermal production process just discussed. Recall
that we are assuming ξφ is small enough that non-minimal scattering processes can be ignored.
In this case, from Eq. (3.224), we see that nN1/s ∼ T

−1+ 4
k

RH and for k > 4, the relic density
decreases with increasing TRH. As MN1nN1/s ' 0.44 eV is needed to explain the observed DM
density, ΩN1h

2 = 0.12, we find indeed that higher reheating temperatures require lighter DM
candidates to fit with the relic abundance constraint.

Combining the two constraints shown in the top panels of Fig. 3.15 we see that for a given k
and MN1 , there are both upper (from thermal scattering) and lower (from inflaton scattering)
limits to TRH so as to avoid exceeding the observed cold DM abundance. The resulting relic
density as a function of TRH is shown in the bottom left panel of Fig. 3.15, where we show the
total relic abundance (ΩT

N1
+Ωφk

N1
)h2 relative to the observed abundance for a fixed k = 14 and
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Figure 3.15: Top left: Contours of fixed comoving number density, nN1/s = 10−22 and 10−24 in
the (k, TRH) plane. MN1nN1/s ' 0.44 eV is needed to explain the observed dark matter density,
ΩN1h

2 = 0.12. Dotted curves assume DM production solely from minimal gravitational scattering in
the thermal bath. Dot-dashed curves correspond to non-minimal gravitational scatterings. The latter
are scaled with M2

N1
. Top right: Contours of nN1/s = 10−20, 10−18, 10−16 and 10−14 each scaled

with M2
N1

assuming DM production only from inflaton scattering. In both upper panels, the gray-
shaded region is excluded as minimal gravitational interactions necessarily produce larger reheating
temperatures. Low reheating temperatures shaded in red (blue) are excluded by BBN for an excessive
inflaton (GW) energy. Bottom left: The total relic abundance (ΩTN1

+ Ωφ
k

N1
)h2/0.12 as a function of

reheating temperature for three choices of DM masses {106, 107, 108} GeV for fixed k = 14. Individual
contributions to the dark matter density are distinguished by line types as indicated. Bottom right:
Coloured regions correspond to values of (k, TRH) with (ΩTN1

+ Ωφ
k

N1
)h2 ≤ 0.12 for the three choices of

MN1 used in the bottom left panel, and the lines styles indicate the dominant contribution.
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three choices of the DM mass MN1 = {106, 107, 108} GeV. We clearly see that the desired relic
density (ΩN1 = 0.12) is obtained twice: (i) at a lower reheating temperature, where inflaton
scattering dominates, and (ii) for a higher reheating temperature, when we are in the thermal
production regime. The allowed region corresponds to the parameter space at or below the line
Ωh2/0.12 = 1 in the bottom left panel of Fig. 3.15. For MN1 > 3×108 GeV, there are no values
of (TRH, k) that result in an acceptable density of DM, and the allowed range in TRH is larger
with lighter DM. This is understandable as, the thermal relic requiring a larger upper bound
on TRH for lighter DM, while the inflaton scattering requires a smaller lower bound on TRH for
lighter DM.

A two-dimensional version of the lower left panel of Fig. 3.15, over a range in k, is shown in the
lower right panel. Low values of TRH are excluded by BBN. Once again, the gray-shaded region
in the lower right corner of this panel is also excluded since minimal gravitational interactions
would produce a reheating temperature larger than the values in that region. Within each
shaded band (the color corresponds to a specific choice of MN1), the total relic density is below
the observed DM density. The observed value is reached on the border of the colored bands.
For DM of masses very close to 1 PeV, there exists a viable parameter space for k ≥ 9 (along
the boundary of the excessive GW region), requiring ξh ' 0.5. For larger masses, the range in
k extends to lower values, and higher reheating temperatures are possible and require larger
non-minimal coupling to gravity.

Having identified the regions of the (k, TRH) parameter space with a suitable DM density,
we turn to the production of the baryon asymmetry through gravitationally induced leptoge-
nesis. This analysis was performed in [59] and therefore we only briefly summarize the results
found there. We note, however, Ref. [59] neglected the kinematic suppression in Eq. (3.222) to
maintain the model independence of the analysis, though this effect is included in the present
work. In Fig. 3.16, we show contours of some benchmark values of the mass of N2 that repro-
duce the observed baryon asymmetry Y obs

B . We find that the gravitational contribution to the
baryon asymmetry is essentially entirely due to inflaton scattering rather than the thermal par-
ticles in the SM bath. Since minimal gravitational interactions are excluded by excessive GW,
non-minimal interactions are required to produce a sufficiently large thermal bath so that GW
fractional energy is consistent with BBN. Leptogenesis via N2 is therefore possible above the
border of the blue-shaded region in Fig. 3.16, indicating a mass MN2 & 3×1011 GeV is required.
Larger values of MN2 can produce the correct asymmetry so long as ξh > 0. Nonetheless, when
MN2 & 3 × 1012 GeV, the baryon asymmetry starts to become suppressed for the following
reason. The inflaton mass obtained from Eqs. (3.52) and (3.208), mφ ' 1.2× 1013 GeV across
all k values, is no longer much larger than MN2 and the kinematic suppression in Eq. (3.222)
becomes important. This explains the existence of the green region as well as why the curve
for MN2 = 1013 GeV is at a lower TRH than that for MN2 = 3 × 1012 GeV. Once again, the
bottom red region is forbidden by BBN because of an excessive inflaton energy density during
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BBN. In summary, we observe that, saturating the bound on GW from BBN, together with the
right DM abundance and successful leptogenesis requires ξh ' 0.5, MN2 ' 3 × 1011 GeV and
MN1 ' 106 GeV. As discussed above, this parameter space can be extended, allowing larger
values {MN1 ,MN2} if one considers stronger non-minimal gravitational couplings by ξh & 0.5,
thus allowing a larger reheating temperature [cf. Eq. (3.252)].

4 6 8 10 12 14 16 18 20
10-4

10-3

10-2

10-1

1

10

102

103

104

105

106
0.5 0.6 0.7 0.8

k

T
R

H
(G

eV
)

w

YB underproduced

inconsistent
reheating

BBN

ex
ces

siv
e GW

s

MN2
= 31012 GeV

MN2
= 1012 GeV

MN2
= 1013 GeV

MN2
= 31011 GeV

Figure 3.16: Contours of MN2 corresponding to the observed baryon asymmetry [cf. Eq. (3.229)] in
the (k, TRH) plane. The red-shaded region correspond to the lower bound on TRH from BBN, and the
green region leads to underproduction of YB due to the kinematic suppression in inflaton scattering
when MN2 approaches mφ.

Combining our preceding analyses, it is possible, for a given V (φ), to constrain the (MN1 ,
MN2 , ξh) parameter space by requiring leptogenesis, DM production and reheating to have a
common gravitational origin. Indeed, for a given k and DM mass MN1 , the temperature TRH can
be determined by the relic abundance constraint. In turn, TRH determines the value of ξh needed
to reheat the Universe, as well as the value of MN2 which gives the desired baryon asymmetry
through leptogenesis. To illustrate our result, we project the viable parameter space in the
(MN1 ,MN2) plane in Fig. 3.17 for different values of ξh, allowing k to vary within k ∈ [6, 20]. In
each coloured line segment, gravitational interactions are responsible for the observed DM relic
abundance, the baryon asymmetry and reheating. Different coloured slanted line segments in
this figure correspond to different choices of the non-minimal coupling ξh, with ξh = 0 being
ruled out from overproduction of GW. The maximum possible value for ξh is around 13.5,
above which the mass MN2 necessary to reproduce the observed baryon asymmetry gets too
close to mφ and kinematic suppression becomes significant, as can be seen from Fig. 3.16. Note
that for each ξh, the allowed parameter space satisfying all the constraints, is rather restricted.
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This is better seen from the right panel figure, where we have zoomed in to the ξh = 1 case.
Interestingly, this shows that the viable parameter space is approximately independent of k,
while k = 6 and 8 are excluded by BBN as can be seen from the left panel of Fig. 3.13.
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Figure 3.17: Viable parameter space in the (MN1 ,MN2) plane for which gravitational interactions are
responsible for the observed DM relic abundance (in N1), the baryon asymmetry (produced from N2

decays), and reheating for k ∈ [6, 20]. In the left panel, different colours correspond to ξh = {0, 1, 10}
diagonally from bottom left (red) to top right (blue). The vertical black segment indicates the range in
MN2 for MN1 = 4 PeV for the range in k considered, where the connection to the IceCube high-energy
neutrino excess will be discussed in the next subsection. In the right panel, we magnify the parameter
space for a fixed non-minimal coupling ξh = 1. The dots correspond to even values of k as indicated.

3.4.5.2 Simultaneous solution: the case for a decaying DM & IceCube events

Until now, we have assumed that the DM candidate, N1, is absolutely stable. If it is not, and
N1 has non-zero Yukawa components, y1i, N1 can decay to SM final states. In this case, one
necessary (but not sufficient) constraint on the DM mass and Yukawa coupling arises from the
requirement of having a lifetime larger than the age of the Universe τN1 & τuniv ' 4.35× 1017 s.
On the other hand, the IceCube detector has reported the detection of three PeV neutrinos, a
roughly 3σ excess above expected background rates [303–305]. The three highest energy events
correspond to deposited energies of 1.04 PeV, 1.14 PeV and 2.0 PeV. Although the origin of these
very high energy events is still unclear, it has been shown in Refs. [306–320] that such events
could be sourced from the decays of superheavy DM particles. The neutrino energy spectrum
presents a high-energy cutoff at mDM/2 [307, 308] if two body decays including one neutrino are
present. The total excess can be interpreted as high energy neutrinos resulting from the decay
of N1 with τN1 ≈ 1028 s for both normal and inverted hierarchies [307, 321]. Given that the
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maximum energy of the IceCube events has been measured to be about 2 PeV, the mass of the
DM particle is constrained to be ' 4 PeV. Moreover, the IceCube spectrum sets a lower bound
on the DM lifetime of the order of 1028 s [308, 321], which is approximately model-independent
and orders of magnitude larger than the lifetime of the Universe. Thus, satisfying this bound
automatically makes N1 a nearly stable relic, and hence a good DM candidate. For N1 → `H

decay, we find

τ ≡ Γ−1N1→`H '
(
y2N1

MN1

8 π

)−1
' 1028 s

(
4× 10−29

yN1

)2 (
1PeV
MN1

)
; (3.257)

that is, the Yukawa coupling yN1 must be highly suppressed. On the other hand, in order to
satisfy the observed DM abundance via the freeze-in mechanism in the early Universe through
inverse decay ν ,H → N1 involving the same Yukawa, one needs [80, 317]

ΩN1 h
2 ' 0.12

(
yN1

1.2× 10−12

)2 (
MN1

1PeV

)
. (3.258)

This means that the Yukawa required to interpret the PeV IceCube event from the decay
of N1, yN1 ∼ 10−29, is far too small for the thermal bath to populate the Universe from
the freeze in mechanism. Thus, if we are restricted to dimension-four interactions involving
RHN and the SM, it is not possible to simultaneously explain the DM relic density and the
IceCube events. Alternatively, we may consider higher dimensional operators [317], modified
gravity/cosmology [322] or some different production mechanism for DM [323].

Our minimalistic framework contains a natural avenue to reconcile both the DM abundance
and IceCube events, through the gravitational production of decaying PeV neutrinos in the early
Universe. However, as discussed in precedent part 3.4.4, the case with minimal gravitational
interactions is excluded by BBN for an excessive amount of GW as dark radiation. Thus we
then need to go (slightly) beyond the minimal setup and include non-minimal gravitational
interactions. We show in Fig. 3.18 contours for ΩN1h

2 = 0.12 for MN1 = 4 PeV in the (k,
TRH) plane. The orange (dashed, dotted) lines correspond to the two dominant gravitational
scattering processes involving the (inflaton, thermal particles) as discussed in the previous
subsection. Note however that gravitational thermal production requires a high reheating
temperature and is not compatible with the observed baryon asymmetry as can be understood
from Fig. 3.16. In contrast, at lower TRH, the correct relic density can be produced from inflaton
scattering with a lower value of ξh ≈ 2.5. In the left panel of Fig. 3.17, we show, by the black
vertical line segment, the range in MN2 obtained from varying k while fixing MN1 = 4 PeV.
Note that, since N1 is a long-lived stable relic, it does not contribute to the generation of the
baryon asymmetry as its decay takes place below the electroweak phase transition. In addition,
because the Yukawa coupling of N1 is extremely small, its interactions which violate lepton
number will not be in equilibrium, and hence will not wash out any of the asymmetry produced
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by N2. We summarize our analysis in the tables presented in the conclusion of the section
Tables 3.4 and 3.5.

4 6 8 10 12 14 16 18 20
10-4
10-3
10-2
10-1

1
10

102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014
1015

0.5 0.6 0.7 0.8

k

T
R

H
(G

eV
)

w

inconsistentreheating
BBN

excessive GWs

MN1 = 4 PeV

MN1
= 4 PeV

Figure 3.18: Contours of fixed relic density, ΩN1h
2 = 0.12 for MN1 = 4 PeV. The upper dotted contour

corresponds to production from gravitational scattering in the thermal bath (and requires a large value
of ξh) and the lower dashed contour corresponds to production from inflaton scattering (and requires
a relatively low value of ξh) Between the two contours ΩN1h

2 < 0.12 for MN1 = 4 PeV.

3.4.6 Dark matter & leptogenesis with a Majoron

We have seen that our result are particularly constrained because of the strong dependence of
the production of the RHN on its mass MNi

, limiting our allowed region to masses above a
PeV. In this last part, we consider an alternative mechanism. We include an additional complex
scalar field, Φ containing the Majoron [52, 312, 324–331], that acts as an intermediate state in
the interactions of the inflaton and RHNs. This interaction is depicted in Fig. 3.19.

The relevant Lagrangian of this extension can be written as

LΦ = (−yiR ΦN c
i Ni + h.c.) + 1

2
µ2
ΦΦ2 − 1

4
λΦ Φ4 . (3.259)

After symmetry breaking, the real part of Φ acquires a non-zero vacuum expectation value,
around which one can expand the field as: Φ = 1√

2
(S + vS)e

iJ/vS , and J is the Majoron.
This expectation value is the origin of the RHN Majorana masses, MNi

= yiR vS/
√
2. Then
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Figure 3.19: Feynman diagram for the gravitational production of an on-shell scalar S coupled to the
heavy neutrinos.

mS = µΦ < mφ and the gravitational production rate of the real scalar, S is24

Rφk

S =
2× ρ2φ
16πM4

P

Σk
S , (3.260)

where the factor of two accounts for the fact we produce two scalar particles per scattering,
with

Σk
S =

∞∑
n=1

|Pk2n|2
[
1 +

2µ2
Φ

E2
2n

]2√
1− 4µ2

Φ

E2
2n

. (3.261)

Since each scalar decays into 2 right-handed neutrinos, we obtain for the density of Ni after
integration of the Boltzmann equation,

nSφ
k

Ni
(aRH) ' Bri ×

√
3ρ

3/2
RH

4πM3
P

k + 2

6k − 6

(
ρend

ρRH

)1− 1
k

Σk
S, (3.262)

where we assumed aRH � aend, and here Bri =
(yiR)2∑
(yiR)2

=
M2

Ni

M2
N1

+M2
N2

+M2
N3

if N1,2,3 are all lighter
than S. The relic abundance of N1 is then given by
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, (3.263)

whereas the baryon asymmetry follows from Eq. (3.229). Note that so long as MNi
� µΦ � mφ,

the resulting dark matter abundance and baryon asymmetry will be independent of mS. We

24As shown in section 3.2.2, and [210], for the case of a scalar field, the gravitational thermal production is
always negligible compared to inflaton scattering.
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show in Figs. 3.20 and 3.21 respectively, the parameter space allowed by the relic abundance
and the baryogenesis constraint in the (k , TRH) plane. Comparing Fig. 3.20 and the dashed
lines (from the inflaton scattering) in the bottom right panel of Fig. 3.15, we notice that the
mass of the dark matter respecting Planck constraint is much lower, if the branching fraction
to N1 is large. For Br1 = 1, the difference is about 8 orders of magnitude, and around 6 orders
of magnitude for Br1 = 10−2. The reason is easy to understand: the production rate through
S is boosted in comparison with the direct production, by a factor

RSφk

N1

Rφk

N1

' Br1
m2
φ

M2
N1

. (3.264)

For smaller branching fraction, the density of N1 through this channel is suppressed and the
effect is milder and proportional to Br1, as one can see in Fig. 3.20 right panel.
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Figure 3.20: Contours of observed relic abundance assuming Br1 = 1 (left) and Br1 = 10−2 (right) for
different choices of the DM mass, considering only Majoron contribution. The purple-shaded region is
disallowed from the warm DM limit (see text).

Given that the required mass, MN1 , can be much lower when we couple the RHNs to the
scalar S, and N1 is produced relativistically, N1 dark matter may still be warm around the
time of CMB decoupling. We derive the warmness constraint by redshifting the N1 initial
momentum of order mφ at Tmax to the temperature T ' 1 eV and require that the velocity
at T ' 1 eV is less than 2 × 10−4. This bound on the velocity is obtained from translating
the limit on the warm dark matter mass from the Lyman-α forest [332] in the case where the
abundance is generated thermally. The current warmness constraint is shown by the purple

215



4 6 8 10 12 14 16 18 20
10-4
10-3
10-2
10-1

1
10

102
103
104
105
106
107
108
109

1010
0.5 0.6 0.7 0.8

k

T
R

H
(G

eV
)

w

Br2 = 1

MN 2
>

m ϕ

2

inconsistent
reheating

BBN

exc
ess

ive
GWs

MN2
= 1012 GeV

MN2
= 1011 GeV

MN2
= 1010 GeV

MN2
= 109 GeV

4 6 8 10 12 14 16 18 20
10-4
10-3
10-2
10-1

1
10

102
103
104
105
106
107
108
109

1010
0.5 0.6 0.7 0.8

k

T
R

H
(G

eV
)

w

Br2 = 10-2

MN 2
>

m ϕ

2

inconsistent
reheating

BBN

exc
ess

ive
GWs

MN2
= 1012 GeV

MN2
= 1011 GeV

Figure 3.21: Contours of NN2 corresponding to the observed baryon asymmetry for Br2 = 1 (left) and
Br2 = 10−2 (right) in the (k, TRH) plane. Here only the contribution due to the intermediate scalar is
included. The green-shaded region is kinematically inaccessible due to MN2 > mφ/2 [cf. Fig. 3.19].

region, while the future sensitivity using cosmic 21-cm lines [333] is shown by the purple dotted
curve. In summary, this mechanism interestingly allows for electroweak scale fermionic dark
matter produced gravitationally, which is not possible by the direct scattering of the inflaton.
We show in Fig. 3.21 the parameter space allowed to obtain a sufficient amount of baryon
asymmetry for the set of branching ratios Br2 = 1 and 10−2. Comparing Figs. 3.16 and 3.21
left, we note that for M2 = 1013 GeV the situation is similar to the direct production because
no real enhancement ∝ m2

φ

M2
N2

exists. However, for MN2 = 1011 GeV and large values of k, TRH

should be about 3 orders of magnitude larger to obtain the same asymmetry. The reason is
that for a large value of k, YB ∝ 1

TRH
when S is produced (combining Eqs. (3.262) and (3.229)),

and ∝
M2

N2

m2
φTRH

when N2 is produced directly. In other words, TRH should be compensated by

a factor m2
φ

M2
N2

to avoid an excessive asymmetry. As in the case of dark matter, lowering the
branching ratio dilutes the effect as one can see in the right panel of Fig. 3.21.

Finally, we can combine the preceding results on Majoron production, adding the possibility
for a gravitational reheating with non-minimal coupling. We illustrate this in Fig. 3.22, which
is the analog of Fig. 3.17 but with the scalar S as an intermediate state. For demonstration
purposes, here we suppose MN3 > mφ/2 so that N3 is not produced by the inflaton or S,
resulting in Br2 = 1 − Br1 = 1 − (MN1/MN2)

2 ' 1. As the branching ratios are completely
determined by the masses MN1 and MN2 , for a fixed k and a fixed ξh, there will be again only
one point in the (MN1 ,MN2) plane that could simultaneously obtain the CMB-determined DM
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relic abundance and the observed baryon asymmetry. Each color segment in Fig. 3.22 assumes
a fixed ξh and allows values of k ∈ [6, 20] that are consistent with the BBN bound on TRH.
The black dot indicates the MN1,2 masses, independent of k, required to explain the IceCube
high-energy neutrino excess. The green region is inaccessible because mS > MN2 > mφ/2

forbids the production of S via φ scattering.25 Compared to Fig. 3.17, we see that the effect
of S as an intermediate state expands the parameter space of allowed dark matter density and
baryon asymmetry. Most notably, the parameter space opens up towards lower masses, and
allows large values of ξh.
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Figure 3.22: Parameter space satisfying the right dark matter relic abundance and baryon asymmetry,
considering the production through S. The line colors correspond to different values of ξh, with
ξh = {0, 1, 10, 102} from bottom to top, and ξh = 0 corresponds to minimal graviton exchange. Each
colored line segment shows the variation of the predicted masses with k ∈ [6, 20]. The black dot marks
the parameter point that can also explain the IceCube high-energy neutrino excess.

3.4.7 Conclusions

In this section, we have shown the possibility that inflationary reheating, DM, and the BAU can
be generated solely by gravitational interactions. The baryon asymmetry is produced through
the decay of a RHN MN2 , leading first to a non-zero lepton asymmetry in the leptogenesis
framework. For minimal gravitational interactions, ξh = 0, a large amount of dark radiation
is created in the form of gravitational waves and is inconsistent with BBN. Thus, we allow
for a non-minimal gravitational coupling ξhRH

2 where H the Standard Model Higgs field to
enhance reheating so that the ratio of GW energy density to the radiation is decreased. The

25Note that we have not included the effects of µΦ in Σk
S . These start to play a role for large ξh & 102 when

2MN2 becomes close to mφ, since we require 2mN2 < mS < mφ.
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lowest ξh consistent with BBN is around 0.5. The range of the parameter space is 2-8 PeV
for the dark matter mass MN1 and 0.3 − 1.7 × 1012 GeV for the mass of the lepton number
violating decaying RHN, MN2 . The range corresponds to a scan over ξh. Our solution restricts
0.5 . ξh . 13.5 and TRH < 3×105 GeV, where the maximum reheating temperature is attained
with ξh ' 4.7. We summarize our results for fixing different values of ξh or MN1 in the upper
sections of Table 3.4 and Table 3.5 labeled ”Direct gravitational production.” Primordial GW
generated during inflation allow a large parameter space with TRH . 5× 106 GeV to be probed
in proposed gravitational wave detectors such as BBO, DECIGO, CE and ET.

Direct gravitational production
ξh TRH [GeV] MN1 [PeV] MN2 [GeV]
1 {5.6− 1.8× 104} {2.49− 2.54} {4.5− 4.8} × 1011

{2.5− 2.7} {0.11− 9.8× 104} 4.0? {7.3− 9.2} × 1011

10 8.1 8.1 1.7× 1012

Gravitational production via S
ξh TRH [GeV] MN1 MN2 [GeV]
1 {5.6− 1.8× 104} {7.9− 12} TeV {1.4− 2.1} × 109

10 {8.1− 1.3× 106} {220− 360} TeV {4.0− 6.5} × 1010

{50− 68} {2.6× 103 − 2.6× 107} 4.0 PeV? 7.1× 1011

100 {8.1× 103 − 9.8× 107} {7.1− 11} PeV {1.3− 2.0} × 1012

Table 3.4: Ranges of TRH, DM (MN1) and RHN (MN2) masses, over which baryon asymmetry
and DM relic abundance are simultaneously satisfied via gravitational yield for different choices
of the non-minimal coupling ξh; ξh = 0 corresponds to minimal gravity, which is not shown since
it is excluded by BBN for excessive GW. The upper section assumes direction production of
N1,2, while the lower assumes production via Majoron’s CP-even partner S as an intermediate
state. Here we allow k ∈ [6, 20] and omit points whose low TRH values are excluded by BBN.
(For the direct gravitational production, a single value of k = 8 is allowed for ξh = 10, while no
points are allowed for ξh & 13.5.) The ? entry corresponds to the DM mass that can explain
the IceCube high-energy neutrino events.

Direct gravitational production
ξh TRH [GeV] MN1 [PeV] MN2 [GeV]
1 0.0084 (excluded) – –

2.5 0.11 4.0? 7.3× 1011

10 8.1 8.1 1.7× 1012

Gravitational production via S
ξh TRH [GeV] MN1 MN2 [GeV]
1 0.0084 (excluded) – –
10 8.1 220 TeV 4.0× 1010

68 2.6× 103 4.0? 7.1× 1011

100 8.1× 103 7.1 PeV 1.3× 1012

Table 3.5: Same as Table 3.4 but for a fixed k = 8 as a benchmark.
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We also showed that N1, if unstable, can explain the recent IceCube PeV events through its
decay into SM neutrinos. In this case, if we want to accommodate simultaneously the correct
DM relic abundance, the observed baryon asymmetry, gravitational reheating and the IceCube
events, the value of ξh is fixed for a given k. We show this result in the second row of the upper
section of each table where the assumed value of mN1 = 4 PeV is marked by ?.

Finally, we proposed a new scenario where the RHN and the DM are produced through an
intermediate scalar state S, the CP-even partner of the Majoron. In this case, the gravitational
production of the scalar is not helicity suppressed by the mass of the final state fermions. As a
result, the mass ranges for N1 and N2 are increased. For 0.5 . ξh . 100, the mass range for N1

is 4 TeV to 11 PeV, and the range for N2 is 7× 108− 2× 1012 GeV. Finally, the IceCube events
can be explained by appropriate choices of ξh and TRH for each k, whereas MN2 is predicted
to be 7.1 × 1011 GeV for all k when MN1 is fixed to 4 PeV. We summarize our overall results
for fixing different values of ξh or MN1 in the lower sections of Table 3.4 and Table 3.5 labeled
”Gravitational production via S”.
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Conclusion

In this thesis, we studied some aspects of particle production in the early Universe, a field of
research currently under intense theoretical, phenomenological, and experimental investigations
to look for potential probes of new physics. Especially, we have been interested in the reheating
process after inflation, a crucial transition between the quasi-de Sitter phase of inflation and
the further radiation-dominated Universe. Reheating is fundamental as it has to explain the
generation of a hot thermal plasma made of SM particles, as well as the other cosmological
relics, such as DM and potentially the baryon asymmetry.

We focused on constructing and using a theoretical framework for gravitational particle pro-
duction during reheating after inflation. These research works addressed the question of the
initial conditions for the thermal Universe as well as the problem of DM production in the
scenario where it is completely secluded from the SM sector. The first chapter of this thesis
was dedicated to introducing and developing the state of the art of the current understanding of
early Universe Cosmology and Astroparticle Physics, while the second and third ones described
the paradigm of inflation and reheating, deriving key results on particle production during this
stage. In the following, we summarise the main content of each chapter and the important
results obtained in this thesis.

In the first part of chapter 1, we presented the basics of General Relativity and the paradigm
of modern Cosmology for the homogeneous and isotropic Universe. We summarized the cur-
rently accepted ΛCDM concordance model that describes the main components of our Universe
and its expansion history. This model is in very precise agreement with the most recent observa-
tions of CMB photons and their anisotropies of temperature, the large-scale structure surveys,
and the BBN constraints.

In the second part, we depicted the significant stages in the history of the thermal Universe,
the condition for thermal equilibrium among the different species to occur, and how successive
decoupling can explain the observation of cosmological relics such as CMB photons or DM
abundance. The problem of the observed asymmetry between baryons and antibaryons has
been addressed by describing baryogenesis constraints and models of non-thermal leptogenesis
after inflation. A link with neutrino physics and an explanation for their small masses is
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discussed through the Seesaw mechanism involving BSM particles in the form of RHN. We then
detailed the main processes currently investigated for the generation of the DM component,
involving the WIMP model associated with thermal freeze-out, or the more recent FIMP and
UV freeze-in scenarios.

Finally, in the last part of this chapter, we reviewed the cosmological implications of CMB
temperature anisotropies measurements. We studied the imprints of the initial cosmological
perturbations on the CMB angular power spectrum and which constraints impose the recent
and most precise measurements of Planck Collaboration on cosmological models. We explained
why the standard description of modern Cosmology fails to explain the spatial flatness and
homogeneity and isotropy on the largest scales of the Universe, requiring an extension of the
standard hot Big Bang scenario.

In chapter 2, we reviewed the main predictions of the theory of inflation. We presented the
most simple scenario of single-field slow-roll inflation, driven by a single scalar field called the
inflaton. We showed how the dynamics of such a field can explain the existence of a quasi-
de Sitter phase in the first instants of the Universe and how the phenomenological models of
inflation are constrained to solve the issues of standard Cosmology. We further introduced
the mechanism at play in generating primordial perturbations from the inflaton sector, set-
ting the initial condition for the curvature perturbations that source CMB anisotropies. We
discussed the predictions of single-field slow-roll inflationary models in terms of the amplitude
of the curvature power spectrum, the scalar tilt, and the tensor-to-scalar ratio, which are the
main cosmological parameters related to the inflationary models being constrained by current
observations.

In the second part, we introduced the process of reheating after inflation in two kinds of
approach: an analytical approximation under the assumption of perturbative analysis, and on
the other hand, by solving the full set of coupled equation of motions for the field to follow
the non-linear and non-perturbative dynamics of the system in a classical regime. In the first
approach, we considered the oscillations of the inflaton around the minimum of its potential and
developed its oscillations in Fourier modes. We solved the Boltzmann equation for coupled fields
with various couplings and spins as well as different inflaton potentials. Then, we considered
the effect of parametric resonances that can trigger instability in the evolution of the mode
functions of coupled fields. We derived standard results in the stability analysis for fields
coupled to an oscillating background leading in some scenarios to rapid preheating. The effect
of inflaton background self-fragmentation has also been discussed.

In the last part, novel results are obtained on the reheating efficiency when the inflaton
evolves in a mixed-potential. We considered the effects of a bare mass term for the inflaton,
while it oscillates about its minimum but when higher order terms dominate during inflation.
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We showed that the presence of a mass term can significantly alter the reheating process, as
the equation of state of the inflaton condensate changes when the inflaton amplitude drops due
to expansion. We computed the effects on the reheating temperature for cases where reheating
is due to inflaton decays or inflaton scatterings. For scattering to scalars and in the absence
of decay, we showed that there is always a residual inflaton background that acts as CDM. We
derived a strong upper limit for the inflaton bare mass in this case. We also considered the
effect of the bare mass term on the inflaton fragmentation.

In chapter 3, we presented the main work conducted during this thesis. First, we reviewed the
semi-classical approach to tackle cosmological particle production, involving the study of QFT
in curved space-time and the Bogoliubov formalism. This led us to develop a novel framework
to compute the production of matter and radiation during reheating interacting only gravita-
tionally through the exchange of a graviton. We compared the production of DM from inflaton
scatterings and from the UV-freeze in contribution mediated only by gravity. We showed that
the inflaton contribution tends to dominate the production in a large part of the parameter
space. We have also seen that it is possible to produce radiation from inflaton scattering in
the condensate during the earlier stages of reheating, rapidly reaching an unavoidable high
maximal temperature.

We then generalized the minimal gravitational interactions to include non-minimal couplings
of scalars to the Ricci curvature R and have analyzed the impact of couplings of the type ξiS2

iR

on the reheating process and DM production. We showed that the non-minimal coupling
can dominate the process and alleviate constraints on DM mass to generate the right relic
abundance.

Finally, in the last part, we showed the possibility that inflationary reheating, DM, and the
baryon symmetry can be generated simultaneously solely by gravitational interactions. We
considered a simple BSM scenario involving three generations of RHN where the baryon asym-
metry is produced through the decay of a RHN in the non-thermal leptogenesis framework.
For minimal gravitational interactions, ξh = 0, a large amount of dark radiation is created in
gravitational waves, putting strong constraints on gravitational reheating scenario. We also
allowed for a non-minimal gravitational coupling ξhRH2 to enhance reheating so that the ratio
of GW energy density to the radiation is decreased. Primordial GW generated during inflation
allow a large parameter space for reheating temperature and equation of state to be probed in
future gravitational wave experiments such as BBO, DECIGO, CE and ET. We also proposed
a new scenario where the RHN and the DM are produced through an intermediate scalar state
S, the CP-even partner of the Majoron. In this case, the gravitational production of the scalar
is not helicity suppressed by the mass of the final state fermions, resulting in an increased mass
range for RHN to produce the baryonic and DM relics simultaneously.
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To conclude, this thesis illustrates the crucial importance of reheating after inflation in under-
standing the generation of cosmological relics and initial conditions for the thermal Universe. It
shows the necessity for further investigating the phenomenology of BSM scenarios in the early
Universe. We have emphasized the possibility of a minimal scenario where the different sectors
interact only through gravitational interactions. We showed that in such a simple case, the
generation of cosmological relics can be achieved quite easily. If observational constraints on
primordial gravitational waves and the duration of reheating can be put on phenomenological
aspects of reheating models, it is necessary to pursue theoretical efforts to link these models
to cosmological observables or experimental constraints accurately. The non-linear regime of
cosmological perturbations, which could be constrained in future surveys, could shed light on
the complex dynamics involving several coupled fields in the early Universe.
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Appendix A

The Standard Model: an overview

In Particle Physics, the currently accepted theory is the Standard Model (SM). The SM com-
bines the theory of electroweak interactions and the theory of quantum chromodynamics (QCD),
which are QFT and gauge theories. Such QFT rely on local gauge symmetry, which naturally
predicts the existence of gauge bosons, mediating interactions between quantum fields. SM pre-
dicts which interactions occur among known particles and the probabilities of such interactions.
All of the particles in the SM have been experimentally observed, with the final observation
being the Higgs boson in 2012 by ATLAS and CMS. It is a renormalizable QFT that allows tree
level and any higher order calculations within perturbation theory, and probes quantum effects.
The calculations agree with experimental data with high precision. However, the SM does not
provide a quantum description of gravity and hence can not be valid up to arbitrary large ener-
gies. It is expected that processes taking place around the Planck scale MP ' 2.5× 1018 GeV,
come with significant gravitational corrections that are not tackled within the SM description.
Therefore, the Planck scale is a natural UV cutoff of the theory.

SM gauge structure

The SM is a gauge theory defined by its gauge symmetry group, as a direct product of smaller
gauge groups

GSM = SU(3)c × SU(2)L × U(1)Y (A.1)

where SU(3)c is associated with color charges of quantum fields (QCD), while SU(2)L is as-
sociated with the chiral (left-handed fields) weak-isospin and U(1)Y to the weak hypercharge,
together describing the gauge structure of the electroweak theory. SU(N) gauge groups are
non-abelian, meaning gauge transformations are non-commutative. The number of generators
required to fully specify SU(N) Lie group is N2− 1. The generators are elements of the corre-
sponding Lie algebra. In the SM, spin-1 vector fields are the mediators of the gauge interactions
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and are spanning the adjoint representation of the associated gauge group. These vector fields
Aµ, or gauge bosons, are introduced to ensure gauge invariance and are related to the generators
of the group as

Aµ = Aµ,aT
a (A.2)

where T a, a ∈ [1, N2− 1], are the generators, elements of the Lie algebra obeying the following
Lie bracket relations

[T a, T b] = ifabcT c (A.3)

where fabc is the group structure constant associated with the gauge group. For SU(2)L, the
generators are given by T a = (1/2)σa, the three 2 × 2 Pauli matrices, while for SU(3)c, the
generators in the fundamental representation are 3× 3 matrices with similar properties called
Gell-Mann matrices. The U(1)Y gauge group is abelian and generated by one field. Therefore,
in the SM we have the following vector bosons

SU(3)c : Ga
µ a = 1, 2, ...8 (gluons)

SU(2)L : W a
µ a = 1, 2, 3 (weak isospin bosons)

U(1)Y : Bµ (weak hypercharge boson)

A local gauge transformation acts on quantum fields as

Ψ(x)→ eigθa(x)T
a

Ψ(x) (A.4)

where the parameter θa(x) depends on space-time. As a consequence, the derivative of a
field is no longer gauge invariant. Therefore, gauge covariant derivatives are required, Dµ =

∂µ − igAaµT
a to maintain gauge invariants of the dynamical theory, where a gauge coupling

constant, g, has to be introduced. The vector fields transform as

Aaµ → eiθa(x)T
a

(
Aaµ +

i

g
∂µ

)
e−iθa(x)T

a (A.5)

such that the covariant derivative remains invariant under gauge gauge transformations. From
these fields, we can build a gauge invariant Yang-Mills Lagrangian (generalizing the Maxwell
Lagrangian), including kinetic terms and interaction terms for the gauge bosons

Lgauge = −
1

4
BµνB

µν − 1

4
W a
µνW

µν,a − 1

4
Ga
µνG

µν,a (A.6)
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with the following field strength

Bµν = ∂µBν − ∂νBµ (A.7)
W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν (A.8)

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν (A.9)

where εabc is the structure constant for SU(2) which is the rank 3 Levi-Civita tensor, and g,
gs the weak gauge coupling for SU(2)L and the strong gauge coupling for SU(3)c respectively.
Mass for the gauge fields is forbidden by gauge symmetry but the Spontaneous Symmetry
Breaking (SSB) of the SU(2)L × U(1)Y → U(1)EM via the Brout-Englert-Higgs mechanism
leads to the mass generation of the weak gauge bosons. A residual U(1)EM gauge symmetry is
maintained and associated with Maxwell’s theory of electromagnetism such that the photons
remain massless. We discuss this mechanism while introducing the Higgs sector.

Higgs sector

The Brout-Englert-Higgs mechanism is the name given to the SSB of the electroweak gauge
sector in the SM. This is the process by which matter particles and weak gauge bosons acquire
masses. Before SSB, mass terms for particles are forbidden, as they are not gauge invariant.
The breaking of the SU(2)L×U(1)Y symmetry at low energy allows for writing renormalizable
mass terms for fermions and weak gauge bosons. In such a mechanism, the Lagrangian is still
gauge invariant, but the ground state of the system is not invariant under gauge transformation.
This is realized by introducing a complex scalar SU(2)L doublet Φ with Hypercharge Y = 1/2,
which acquires a non-zero VEV at low energy. This Higgs field can be written as a function of
four real degrees of freedom φi, (i = 1, ..., 4), in the doublet

Φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (A.10)

This Higgs field has a gauge invariant potential such that the Higgs sector gauge invariant
Lagrangian is given by

LHiggs = (DµΦ)
†(DµΦ)− V (Φ) (A.11)

with
V (Φ) = −µ2|Φ|2 + λ|Φ|4 (A.12)

the Mexican hat potential. The parameter λ is positive, hence the potential is bounded from
below, but µ2 is also positive, leading to a minimum of the potential for a non-vanishing value
of the Higgs field (VEV), vEW = µ/

√
λ. It can be seen by an appropriate gauge transformation
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of the Higgs field that the vacuum configuration is given by

〈Φ〉 = 1√
2

(
0

vEW

)
. (A.13)

The process is called symmetry breaking because the VEV of the Higgs field breaks the
electroweak gauge symmetry as this specific configuration is not invariant under the whole
gauge transformation. Thus, the Higgs field spontaneously breaks the symmetry by adopting
this ground state. One scalar degree of freedom remains as fluctuations around the electroweak
vacuum after SSB, called the Higgs boson h. The Higgs doublet in unitary gauge reduces to

Φ =
1√
2

(
0

vEW + h

)
. (A.14)

A remaining U(1) symmetry is conserved by this vacuum configuration, as this configuration
is invariant under a complex phase rotation. The symmetry-breaking pattern is thus

SU(2)L × U(1)Y → U(1)EM (A.15)

There were four generators for the electroweak gauge group, which reduces to one unbroken
generator of the U(1)EM symmetry after the Higgs field acquires its VEV. The unbroken gen-
erator is a linear combination of the generators of SU(2)L and U(1)Y identified as the electric
charge of electromagnetism

Q =
σ3
2

+
Y

2
.1 (A.16)

with Y the electroweak hypercharge. Each broken generator corresponds to one degree of free-
dom which is apparently lost in the resulting theory. However, we can show that in this vacuum
configuration, electroweak interactions between the Higgs doublet and weak gauge bosons lead
to the spontaneous generation of mass terms for the vector fields. From the covariant deriva-
tives in the kinetic terms of the Higgs doublet, it leads to mass terms for three gauge fields W±

and Z which are the following mass eigenstates

W±
µ =

W 1
µ ±W 2

µ√
2

(A.17)(
Zµ

Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)
·

(
W 3
µ

Bµ

)

We see that Zµ is a mixing of electroweak gauge bosons W 3
µ and hypercharge Bµ. The mixing

angle θW is the Weinberg angle defined as tan θW ≡ g′

g
, the ratio of SU(2)L and U(1)Y gauge

228



couplings. The masses of the electroweak bosons are given by the VEV and the Weinberg angle

mW =
gvEW

2
, mZ =

gvEW

2 cos θW
, mA = 0 (A.18)

and the photon vector field Aµ remains massless after SSB, which is associated with the re-
maining U(1)EM gauge symmetry. Hence, three of the four scalar degrees of freedom reduce to
massless Goldstone bosons after SSB, which, in a proper gauge, are absorbed in the longitudi-
nal polarization of the gauge fields while generating their masses. Higgs bosons also acquire a
mass, generated by Higgs self-interaction after the electroweak SSB

mh =
√
2λv (A.19)

All the masses in the electroweak sector depend only on Higgs potential parameters, which
have been measured experimentally.

Quarks and Leptons

The fermionic content of the SM is divided into three generations (flavors) of quarks and leptons.
Within each generation i = 1, 2, 3, there are SU(2)L singlets; one up-type quark uR,i, one down-
type quark dR,i, and one lepton `R,i, that are right-handed Weyl fermions. In addition, within
each generation, there are SU(2)L lepton doublets and quark doublets

Li =

(
νi

`i

)
L

, Qi =

(
ui

di

)
L

(A.20)

that are left-handed Weyl fermions. Hence, SM is a chiral theory distinguishing left-handed
and right-handed fermions. The gauge invariant kinetic and gauge interaction terms for the
fermions are given by the Dirac Lagrangian

LDirac =
∑

leptons

iLiDµγ
µLi+

∑
leptons

i`R,iDµγ
µ`R,i+

∑
quarks

iqR,iDµγ
µqR,i+

∑
quarks

iQiDµγ
µQi (A.21)

where the interactions with gauge bosons are provided by the gauge covariant derivatives Dµ

introduced above. The associate charges of SM under each gauge group are summarized in
Table A.1 below.

Because of the chiral SU(2)L charges assignment, any mass term in the fermionic sector
also breaks gauge symmetry. However, in addition to gauge couplings, fermions in the SM are
also coupled to the Higgs doublet through Yukawa interactions. The gauge invariant Yukawa
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SU(3)c SU(2)L U(1)Y
Qi
L 3 2 1/6

uiR 3 1 2/3
diR 3 1 −1/3
LiL 1 2 −1/2
`iR 1 1 −1
Φ 1 2 1/2

Table A.1: Fermions and Higgs doublet charges under SM gauge group.

Lagrangian is given by

LYukawa = −(y`)ijLiΦ`R,j − (yd)ijQiΦdR,j − (yu)ijQiΦ̃uR,j + h.c. (A.22)

where Φ̃ = iσ2Φ∗ is the SU(2)L Higgs doublet conjugate with opposite hypercharge compared
to Φ. The Yukawa matrices yij are 3 × 3 complex matrices describing the flavor interactions
within the SM. After electroweak SSB, in unitary gauge, the Yukawa sector reduces to

LYukawa = −
(
vEW + h√

2

)[
(y`)ij`L,i`R,j − (yd)ijdL,idR,j − (yu)ijuL,iuR,j + h.c.

]
(A.23)

which introduce direct couplings between the Higgs boson and the fermions, as well as flavor
non-diagonal mass terms from the non-vanishing VEV of the Higgs field. The leptons mass
matrix is assumed diagonal in this basis (mass eigenstates are also flavor eigenstates for leptons)
while the quark mass matrices can be diagonalized through the unitarity redefinition of the fields

uL,i → V ij
u uL,j, dL,i → V ij

d dL,j . (A.24)

To describe quark oscillations we introduced the CKM matrix V CKM
ij = (V †uVd)ij that is re-

lating flavor quark eigenstates that are interacting under weak interaction, to their free mass
eigenstates. This 3 × 3 complex matrix can be parametrized by three mixing angles θij and a
non-zero complex phase δ, which induces CP-violation in quarks weak interactions. After the
diagonalization of the mass matrix, we are left with the following mass terms for the quarks,
as well as for ”down-type” leptons

mqi =
yiivEW√

2
, m`i =

yiivEW√
2

. (A.25)

Due to the chirality of the neutrinos, which are only left-handed Weyl fermions part of the
SU(2)L doublet, no such mass terms are generated for them. No right-handed neutrinos are
present within the SM, thus neutrinos remain in massless states. Finally, we see that in the
mass basis, fermions of the SM (except neutrinos) interact with the Higgs bosons through the
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Yukawa interaction

LYukawa ⊃ −
∑
i

mq,i

vEW
hqL,iqR,i −

∑
i

m`,i

vEW
h`L,i`R,i (A.26)

showing that couplings between the Higgs boson and SM fermions are proportional to their
masses.

To conclude, despite the success of the SM, the theory is challenged by some observations
that can not be explained. SM neutrinos are massless within the SM; however, experiments
have shown that the neutrinos do have masses, and mixing occurs between them (see section
1.3 for a discussion of some BSM models explaining neutrinos masses). Additionally, there is
no particle in the SM that can explain the existence of cold DM. The asymmetry of matter
over anti-matter is yet another feature of the observable Universe that can not be explained
within the SM (see section 1.3). There exists a hierarchy in the masses of the three generations
of quarks and leptons which is not explained. It is, therefore, natural to look for completion of
the SM at higher energy scales, but still below the Planck scale.
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Appendix B

Weak-Field Gravity and gravitons

In this appendix, we consider gravity as an effective field theory and derive the massless gravi-
tons propagator as well as the leading order gravitational interactions. For this purpose, we
look at perturbed Einstein equations, following the procedure presented in [334]. We work
in the weak field limit of gravity, assuming that we can expand the local metric field around
Minkowski background as

gµν = ηµν +
2

MP

hµν (B.1)

where hµν is the massless graviton canonically normalized field. At first order in the perturba-
tion |hµν | �MP , the Ricci tensor and scalar can computed as

Rµν =
1

MP

[
∂µ∂λh

λ
ν + ∂ν∂λh

λ
ν − ∂µ∂νhλλ −�hµν

]
+O(h2) ,

R =
2

MP

[
∂µ∂λh

µλ −�hλλ
]
+O(h2) .

(B.2)

yielding the linearly perturbed Einstein equation through

Rµν −
1

2
ηµνR ≡

κ

2
Oµναβh

αβ =
1

M2
P

Tµν . (B.3)

The differential operator Oµναβ(x) has to be gauge–fixed before looking at its associated Green
function. Under a general coordinate transformation which leaves the field equations invariant,

xµ → xµ +
2

MP

ξµ(x) . (B.4)

the metric perturbation transform as

hµν → hµν − ∂µξν − ∂νξµ . (B.5)
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Thus, by choosing the appropriate transformation such that

�ξµ = −(∂µhµν −
1

2
∂νh

λ
λ) (B.6)

we are free to fix the gauge as
∂µh

µ
ν −

1

2
∂νh

λ
λ = 0 , (B.7)

which is called de Donder (harmonic) gauge condition. In this gauge, for the field

h̄µν = hµν −
1

2
ηµνh

λ
λ , (B.8)

the equations Eq.(B.3) reduce to the wave equation sourced by stress energy

�h̄µν = −
1

MP

Tµν . (B.9)

In this gauge, we can show by expanding the Einstein-Hilbert action Eq.(1.7) SEH at the second
order in the metric perturbation hµν , that the associated Lagrangian density reads [334]

√
−gL =

1

2
∂λhµν∂

λhµν − 1

4
∂λh∂

λh− 1

MP

hµνTµν (B.10)

where we introduced the trace of the metric perturbation h ≡ hµµ and the leading order coupling
to matter is given by the last term involving Tµν . This leading order interaction of the graviton
field is considered in chapter 3. We can easily rewrite this Lagrangian density and integrate by
parts to obtain the form

√
−gL =

1

2
hµν�

(
Iµναβ − 1

2
ηµνηαβ

)
hαβ −

1

MP

hµνTµν . (B.11)

where we introduced the identity tensor

Iµναβ ≡ 1

2
(ηµαηνβ + ηµβηνα) . (B.12)

From this effective field theory in the weak-field limit, |hµν | �MP , we quantize the graviton
field as the solution of the wave equation Eq.(B.9) in the absence of matter. As the on-
shell massless photon is described in terms of a spin-one polarization vector εµ(p) which can
have helicity projection either + or − along momentum direction, the massless graviton is a
spin-2 particle which can have the 2 on-shell different helicity projections along its momentum
direction. Since hµν has to be a symmetric tensor, it can be described in terms of a simple
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product of spin-1 polarization vectors such as

ε++
µν = ε+µ ε

+
ν (B.13)

ε−−µν = ε−µ ε
−
ν . (B.14)

These two possible polarizations of the massless tensor field are considered by introducing the
polarization tensor εµν given by the above products of polarization vectors. We note that the
helicity states given are consistent with the harmonic gauge requirement, since they satisfy

ηµνεµν = 0, and pµεµ (B.15)

showing that the tensor modes described in that way are on-shell transverse-traceless modes.
To quantize the graviton field, we use the plane wave decomposition

ĥµν(x) =
∑

λ=++,−−

∫
d3~p

(2π)3
1√
2ωp

[
âp(λ)εµν(λ)e

−ip·x + â†p(λ)ε
∗
µν(λ)e

ip·x] , (B.16)

where the ladder operators âp(λ) and â†p(λ) satisfy the canonical commutation relations

[âp(λ), â
†
p′(λ

′)] = δ(3)(~p− ~p′)δλλ′ . (B.17)

From the Lagrangian density given above, we obtain the equation of motion(
Iµναβ − 1

2
ηµνηαβ

)
�Dαβγδ = Iµνγδ (B.18)

and one can extract the Green function, corresponding with appropriate initial conditions to
the Feynman propagator in momentum space for the massless graviton [334]

iDαβγδ =

∫
d4p

(2π)4
i

p2 + iε
e−q·xPαβγδ (B.19)

with
Pαβγδ =

1

2

[
ηαγηβδ + ηαδηβγ − ηαβηγδ

]
. (B.20)

The leading order interaction term and the Feynman propagator for massless gravitons are
used in chapter 3 to derive transition amplitudes of gravitational portals during reheating.
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Synthèse

Modèle cosmologique standard

La Cosmologie moderne, par l’utilisation de la Relativité Générale et de la théorie quantique
des champs, ainsi que par l’acquisition de données observationnelles de plus en plus précises, a
permis d’élaborer un Modèle Standard pour la composition de notre Univers et son évolution.

L’observation systématique du décalage vers le rouge du spectre lumineux émis par les galax-
ies lointaines a d’abord permis de mettre en évidence l’expansion de l’espace-temps dans le cadre
de la théorie de la relativité générale, fournissant ainsi une histoire de l’Univers dans son en-
semble au-delà de celles des objets physiques en son sein. Les principales données ayant permis
d’établir le modèle cosmologique proviennent de la détection du fond diffus cosmologique (Cos-
mic Microwave Background, ou CMB). Cette détection confirme l’expansion de l’Univers à par-
tir d’un état de haute densité d’énergie et de rayonnement, un plasma homogène de particules
relativistes en interactions à très haute température. Le spectre de corps noir des photons du
CMB résulte d’abord des interactions intenses entre les particules du bain primordial, menant
à l’équilibre thermodynamique, puis au découplage progressif des différentes particules à cause
de l’expansion, entraînant le refroidissement et la dilution du plasma primordial. Ces photons
sont par la suite libres de se propager dans toutes les directions jusqu’à parvenir dans nos
détecteurs.

L’étude approfondie du CMB, mais aussi la description du processus de formation des pre-
miers noyaux atomiques (nucléosynthèse primordiale, Big Bang Nucleosynthesis ou BBN) et la
mesure de l’abondance des différents éléments chimiques dans l’Univers (voir Figure B.1), ont
permis d’aboutir à une description cohérente du contenu de l’Univers en termes de matière et
d’énergie. Le modèle cosmologique, appelé modèle ΛCDM, indique que plus de 25% du con-
tenu de l’Univers est une matière noire froide, qui n’est pas baryonique et qui ne produit pas
de signal d’interaction avec la matière ordinaire, autre que par son attraction gravitationnelle.
Cette matière noire n’a pas encore été détectée directement ou indirectement dans une quel-
conque expérience cherchant à mettre en évidence ses propriétés d’interaction avec la matière
connue. La matière ordinaire ne représente que 5% du contenu de l’Univers en masse-énergie.
Enfin, la récente observation du spectre de certaines supernovae (de type Ia), confrontée aux
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données issues du CMB, a montré que notre Univers est dans une phase tardive d’expansion
accélérée, expliquée par la présence d’une énergie sombre. Les données indiquent que cette én-
ergie sombre devrait représenter près de 70% du contenu énergétique de l’Univers, bien qu’elle
n’ait pas encore été détectée directement dans une expérience. Les caractéristiques physiques
de cette énergie sombre, déduites des données d’observation, sont compatibles avec l’effet d’une
constante cosmologique, notée communément Λ, dans les équations de la relativité générale
décrivant l’expansion de l’Univers.

Figure B.1: Analyse des données d’observation menant au modèle de concordance ΛCDM. A gauche:
prédictions de l’abondance des noyaux légers par les modèles de nucléosynthèse primordiale, confronté
aux mesures du ratio baryons/photons via l’analyse du CMB. A droite: contraintes sur la densité de
matière froide (matière noire et baryonique) et d’énergie sombre, à partir de l’analyse des données
du CMB, des structures à grandes échelles et des supernovae. Ces différentes contraintes concordent
vers un Univers dominé par l’énergie sombre (70%) et par la matière noire froide (25%), alors que la
matière baryonique ne représente que 5% du contenu en masse-énergie.

A partir de ce modèle du contenu de l’Univers actuel, il est possible de mieux comprendre
les phases d’expansion passées (Figure B.2). Le modèle décrit un Univers primordial dominé
par un plasma de particules relativistes très énergétiques, qui intéragissent fortement, avec une
grande densité d’énergie. L’Univers se refroidit ensuite du fait de l’expansion, menant à la
dilution de la densité de particules et à la diminution de leur énergie moyenne. Les particules
massives de matière, en premier lieu celles de matière noire, deviennent non-relativistes et
finissent par dominer le contenu en énergie. La formation des structures que sont les galaxies,
puis les clusters de galaxies, a lieu au cours de cette phase de domination de la matière noire
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froide. Enfin, la densité d’énergie de l’énergie sombre, qui n’est pas diluée par l’expansion, finit
par dominer le contenu en énergie pour donner lieu à l’accélération de l’expansion de l’Univers.
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Figure B.2: Evolution des différentes composantes de l’Univers en terme de densité d’énergie, en
fonction du décalage vers le rouge (facteur d’échelle ou taille relative de l’Univers par rapport à sa
taille actuelle).

Histoire thermique de l’Univers et densités reliques

Au cours de l’ère de domination de la radiation, l’Univers primordial est rempli de partic-
ules relativistes interagissant intensément et formant un bain à l’équilibre thermique à une
température très élevée. À mesure que l’Univers se dilate, le plasma chaud se dilue, et les par-
ticules relativistes perdent de l’énergie en raison du décalage vers le rouge relativiste de leurs
fréquences. La température du plasma diminue, les particules massives deviennent rapidement
non-relativistes, et certains taux d’interaction entre les particules du plasma sont réduits. Cela
entraîne un départ progressif hors de l’équilibre thermique des différents types de particules. Le
découplage d’un type de particule initialement à l’équilibre correspond au moment où le taux
d’interaction, qui maintient l’équilibre de ce type de particules avec les autres au sein du bain
thermique, devient insuffisant par rapport à l’expansion caractérisée par le taux d’expansion
H(T ) (ou Hubble rate).

Les différentes particules du Modèle Standard, mais également les hypothétiques particules
des théories au-delà du Modèle Standard, peuvent être initialement à l’équilibre thermique
du fait de leus interactions et subir ce découplage par la suite, laissant une densité relique
de particules observables aujourd’hui. Certains découplages sont cruciaux pour comprendre
l’évolution cosmologique:
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• La BBN se distingue comme l’une des fenêtres les plus fiables sur les premiers instants
de l’Univers. Le début de la BBN s’est produit à une époque où la température du
bain thermique est comprise entre T ∼ 1 MeV et T ∼ 10 keV. Il est supposé que le
contenu en particules à l’époque de la BBN est donné par le Modèle Standard et que les
quarks sont confinés dans les hadrons à ces échelles d’énergie. Le deuxième ingrédient
important est qu’une asymétrie baryonique doit déjà présente à l’époque de la BBN, de
l’ordre de nb−n̄b

s
∼ 10−10, jusqu’à ce que les anti-baryons s’annihilent avec les baryons

autour de T ∼ 1 MeV, et que la fraction restante se découple du bain thermique. La
BBN permet alors d’expliquer la production de la majeure partie de l’hélium-4 et du
deutérium présents dans l’Univers, ainsi qu’une fraction de l’hélium-3 et du lithium-7,
par des réactions de fusions nucléaires énergétiquement favorisées à ces températures. La
BBN offre un test crucial pour le Modèle Standard de la Cosmologie, confirmé par des
données observationnelles avec un très haut niveau de précision. Ainsi, il est bien établi
que de petites modifications de la Physique de l’Univers primordial au-delà du Modèle
Standard, à l’époque de la BBN, devraient entraîner des déviations observables dans les
abondances primordiales des éléments légers, imposant donc des contraintes strictes sur
les scénarios de nouvelle Physique.

• À la fin du processus de BBN, le bain thermique est peuplé de photons, d’électrons
et de protons en interaction, ainsi qu’une fraction de noyaux d’autres éléments légers
produits. Les densités d’électrons et de protons sont fortement réduites par le fait que la
température du bain thermique décroit sous leur masse (limite non-relativiste), mais les
protons et électrons restent couplés par des processus de Coulomb p+e− ↔ p+e−. Autour
d’un âge de l’Univers de t ' 380 000 ans, le bain thermique atteint une température de
T ∼ 1 eV. À ce stade, la réaction qui était en équilibre p + e− ↔ H + γ commence à
produire plus d’hydrogène, car les photons n’ont plus assez d’énergie pour détruire les
atomes d’hydrogène stables par ionisation des électrons liés aux protons. Le plasma se
recombine graduellement en un gaz d’hydrogène neutre et en photons libres. Après le
début de la formation des premiers atomes neutres, le libre parcours moyen des photons
dans le bain thermique augmente, car il y a de moins en moins d’électrons et de protons
ionisés dans le plasma avec lesquels ils peuvent interagir par des diffusions Compton
γ+e− ↔ γ+e−. Lorsque les photons sont totalement découplés des électrons et protons,
ce qu’on appelle la surface de dernière diffusion, les photons du CMB n’interagissent
plus tout en restant relativistes et commencent à se propager librement dans toutes les
directions, en conservant la même fonction de distribution d’équilibre. À mesure que
l’Univers se dilate et que les photons se propagent, la température de ce rayonnement
de fond diminue jusqu’à sa valeur actuelle de T0 ≈ 2, 725K, tout en conservant une
distribution de corps noir quasi-parfaite.

Les modèles les plus étudiés pour expliquer la génération d’une densité relique de matière
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noire considère que les particules de matière noire ont suivi la même histoire thermique que
les particules du Modèle Standard dans le plasma chaud, avant de subir un découplage. Cela
présente l’avantage de ne se baser que sur la description microscopique du modèle de matière
noire, notamment les couplages avec les particules du Modèle Standard, ce qui permet ensuite
de prédire pour les interactions de particules de matière noire dans les expériences de détection
en laboratoire. Dans le scénario standard des WIMPs (particules massives interagissant faible-
ment), les particules de matière noire sont initialement à l’équilibre thermique. Cependant,
lorsque la température devient inférieure à la masse de ces WIMPs (régime non-relativiste), le
taux de production des particules de matière noire devient rapidement inférieur au taux d’ex-
pansion, ce qui entraîne une diminution de la densité de matière noire, la matière noire pouvant
s’annihiler sans être produite à nouveau. Dans les modèles de WIMPs, il est naturel de consid-
érer que le candidat de matière noire possède une masse typique mχ ∼ GeV− TeV, proche de
l’échelle électrofaible au sein du Modèle Standard. Cette hypothèse est naturelle puisque le mé-
canisme de Higgs explique les masses des particules fondamentales autour de cette échelle d’én-
ergie. Rapidement après, la matière noire se découple complètement du bain thermique et n’est
ensuite plus que diluée par l’expansion de l’Univers. La densité relique de matière noire dans
ces modèles dépend uniquement de la section efficace d’interaction moyennée 〈σv〉 (voir Figure
B.3). On peut montrer alors qu’une masse de matière noire de l’ordre de l’échelle électrofaible,
mχ ∼ 100 GeV et une section efficace électrofaible typique σ ∼ 10−9 GeV−2 ≈ 10−26 cm3 s−1

reproduisent la densité relique observée de matière noire comme inféré par les relevés cos-
mologiques. Ce « miracle » a motivé le développement de modèles de WIMPs pour expliquer
la génération de matière noire. En particulier, la simplicité du mécanisme réside dans le fait
qu’il ne dépend pas des conditions initiales avant la thermalisation.

Cependant, malgré des investigations poussées dans des expériences dédiées de détection
directe et indirecte de matière noire, l’absence de tout signal expérimental a fortement con-
traint les modèles de WIMPs les plus simples (voir Figure B.3). Pour faire face à ces fortes
contraintes expérimentales, d’autres hypothèses sont étudiées. Ainsi, lorsque les particules de
matière noire interagissent très faiblement avec les autres particules, elles peuvent ne jamais
atteindre l’équilibre thermique dans l’Univers primordial. La production de matière noire peut
alors encore être réalisée par le mécanisme de ”freeze-in”, à partir des collisions ou des désin-
tégrations de particules, sans atteindre l’équilibre thermique. Parmi ces modèles de freeze-in,
une possibilité a en particulier motivé les travaux réalisés au cours de cette thèse. Le mécan-
isme de production peut être sensible à la Physique modélisant des processus à très hautes
énergies (UV), ou à des conditions initiales établies lors des premières phases d’évolution du
bain thermique. Cela s’oppose au scénario de matière noire thermique associé au mécanisme de
découplage, où la matière noire atteint en premier lieu l’équilibre thermique, effaçant les effets
des conditions initiales ou de la Physique UV. Cette caractéristique de sensiblité aux condi-
tons initiales et à la Physique des hautes énergies dans le cas du ”freeze-in” peut être utilisée

241



1 5 10 50 100 500
10-13

10-10

10-7

10-4

10-1

Figure B.3: Haut: Évolution de la densité de matière noire en fonction de la température, pour
une matière noire initialement à l’équilibre avec le bain thermique. Les courbes colorées représentent
les solutions numériques de l’équation de Boltzmann dans un modèle de matière noire à l’équilibre
thermique, intéragissant faiblement avec les particules du bain thermique (WIMPs), pour différentes
valeurs de la section efficace d’interaction 〈σv〉 = constante. La courbe noire en pointillés correspond
à la distribution thermique. Bas: Contraintes sur les WIMPs (actuelles en lignes pleines, projetées en
pointillés). Le panneau de gauche montre les limites de détection directe sur mχ et la section efficace
de l’interaction WIMP-proton, tandis que le panneau de droite se réfère aux contraintes de détection
indirecte (rayons cosmiques) sur mχ et 〈σv〉. Figures tirées de [65, 70].

pour contraindre différents modèles UV de matière noire intéragissant très faiblement. Un des
objectifs de cette thèse de doctorat est la description d’un nouveau mécanisme de production
de matière noire, impliquant l’interaction gravitationnelle au cours du reheating après la phase
primordiale d’inflation cosmologique.

Enfin, un autre questionnement majeur en Cosmologie et Physique des particules a mo-
tivé les travaux réalisés au cours de cette thèse. Différentes observations indiquent que notre
Univers est asymétrique en terme d’abondance de baryons et d’antibaryons. La valeur précise
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de l’asymétrie est obtenue à partir de deux sources d’observation indépendantes. La première
est l’abondance des noyaux légers et la BBN, dont les prédictions dépendent fortement du ra-
tio baryon/photon et donc de l’asymétrie initiale entre baryons et anti-baryons. La seconde
méthode repose sur les mesures des anisotropies de température du CMB, également sensible
à l’abondance relative de baryons par rapport aux photons. Ces différentes observations in-
diquent qu’il doit exister une asymétrie entre les baryons et les antibaryons du Modèle Standard
avant la BBN et la recombinaison donnant un ratio baryons/photons ηB ' 6 × 10−10. Étant
donné que les conditions initiales du scénario du Big Bang suggèrent une abondance égale de
baryons et d’antibaryons en raison de l’équilibre thermique à haute température, l’asymétrie
baryonique observée implique l’existence d’un processus dynamique permettant de s’écarter de
cet équilibre entre baryons et antibaryons, connu sous le nom de baryogenèse. La baryogenèse
ou la leptogenèse nécessite de nouvelles sources de violation de la symétrie CP provenant d’une
Physique au-delà du Modèle Standard. Cette nouvelle Physique doit également permettre de
préserver l’asymétrie baryonique face aux processus non-perturbatifs appelés sphalérons élec-
trofaibles. Dans cette thèse, nous investiguons un modèle simple de leptogenèse, au cours du
reheating après l’inflation. Dans ce cas, l’asymétrie est issue des processus de violation du
nombre leptonique par les désintégrations hors équilibre de neutrinos lourds (neutrinos droits).
Ces désintégrations des neutrinos lourds en leptons légers et en bosons de Higgs peuvent violer
les symétries C et CP, conduisant à la production d’un excès d’antileptons par rapport aux
leptons (voir Figure B.4).

Figure B.4: L’asymétrie CP dans le modèle Seesaw de type I résulte de l’interférence entre les dia-
grammes tree-level et les diagrammes à 1-boucle. Figure tirée de [58].

L’asymétrie des leptons ainsi générée peut ensuite être convertie en asymétrie baryonique
par les sphalérons électrofaibles, qui violent B +L (baryons + leptons) mais conservent B −L
(baryons - leptons), et sont à l’équilibre à des températures supérieures à la transition de
phase électrofaible. Dans cette thèse, nous nous concentrons sur un modèle de leptogenèse
non-thermale où les neutrinos droits massifs ne sont pas à l’équilibre dans le bain thermique
avant leur désintégration. Nous étudions la production gravitationnelle de tels neutrinos droits
massifs pendant le reheating après l’inflation.
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Conditions initiales: inflation et reheating
L’Univers n’est pas homogène et isotrope aux petites échelles, et nous observons des structures
telles que des galaxies, des amas de galaxies, et des objets à des échelles très réduites. La for-
mation de structures est impossible dans un état de parfaite homogénéité et isotropie. Il faut
également considérer de petites fluctuations, permettant à un processus dynamique de forma-
tion de structures de débuter à partir de petites ”graines” d’inhomogénéités. Il est aujourd’hui
bien compris que toutes les structures dans l’Univers proviennent de fluctuations initiales dans
la densité des différentes particules, amplifiées ensuite par l’attraction gravitationnelle. Ces
fluctuations initiales doivent également être présentes dans les phases primordiales, notamment
au moment de l’émission des photons et de la recombinaison des atomes d’hydrogènes, laissant
des empreintes visibles dans le CMB. Ainsi, de faibles anisotropies de température du CMB
ont été mesurées au 20ème siècle (voir Figure B.5), une observation cruciale pour étudier ces
fluctuations initiales dans les composants de l’Univers.
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Figure B.5: Gauche: Les anisotropies de température du CMB telles qu’observées par le satellite
PLANCK. Le contraste de température est proche de ∆T/T0 ∼ 10−5 sur l’ensemble de la carte. Droite:
Spectre de puissance angulaire des anisotropies de température du CMB. En ligne rouge continue, le
meilleur ajustement au spectre dans le modèle ΛCDM. Figure tirée de [90].

La forme spécifique du spectre de puissance (Figure B.5) mesurée dans les anisotropies de tem-
pérature du CMB renseigne sur les conditions initiales pour ces perturbations cosmologiques.
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Cependant leur existence n’est pas prédite par le modèle cosmologique standard. De plus, le
niveau d’anisotropie primordiale est très faible (dans le CMB on mesure un contraste de tem-
pérature de ∆T/T0 ≈ 10−5) tandis que la taille typique des régions causalement connectées
(l’horizon causal) est faible au moment de l’émission du CMB, comparée à la taille de l’Univers
aujourd’hui (régions d’où nous parviennent les photons aujourd’hui). On peut estimer qu’au
moment de l’émission du CMB, il y avait plus de 104 zones déconnectées, mais dans le même
état d’équilibre thermique, ce qui semble difficilement explicable sans contacte causal. De
plus, l’analyse du CMB nous conduit à la conclusion que l’Univers actuel est spatialement
plat (euclidien). Pourtant, cette courbure spatiale devrait s’accentuer du fait de l’expansion
de l’Univers et aurait dû être extrêmement faible dans le passé: c’est le problème de réglage
fin des conditions initiales de courbures et d’inhomogénéité. Ces problèmes correspondent au
fait que l’expansion ne peut être que décélérée dans les scénarios cosmologiques standards.
C’est pourquoi, une théorie modifiant les tous premiers instants de l’évolution cosmologique
a été proposée à la fin du 20ème siècle. Cette théorie suppose l’existence d’une phase d’ex-
pansion accélérée précédant l’Univers thermique: c’est l’inflation cosmologique. Elle résout le
problème des conditions initiales d’homogénéité et de courbures par la croissance exponentielle
de la taille de l’Univers pendant cette phase et fournit un mécanisme pour la formation des
structures à grande échelle observées aujourd’hui. Cependant, des défis subsistent, notamment
l’identification d’une description microscopique de l’inflation et la modélisation précise de l’ère
post-inflationnaire appelée reheating, au cours de laquelle l’univers est repeuplé en matière et
en rayonnement.

Les modèles les plus simples d’inflation impliquent un seul champ scalaire φ, appelé l’inflaton,
couplé minimalement à la gravité et dominant le contenu masse-énergie de l’Univers dans les
premières phases d’évolution. En particulier, si l’on peut négliger l’énergie cinétique du champ
scalaire, dominée alors par son énergie potentielle, ce champ scalaire imite l’effet d’une constante
cosmologique en termes de densité et de pression, résultant en une phase d’expansion accélérée.
En imposant les conditions dites de ”slow-roll” au potentiel de l’inflaton, le champ scalaire roule
lentement vers son minimum de potentiel réalisant la phase d’inflation. Cette phase de slow-roll
est naturellement satisfaite si le potentiel est suffisamment plat, garantissant que la descente du
champ soit lente en raison de la dissipation causée par l’expansion. En fonction de la trajectoire
du champ et de la forme du potentiel, différents modèles peuvent être construits. Dans cette
thèse, nous considérons exclusivement des modèles à ”grand champ”, dans lesquels la valeur
initiale de l’inflaton est éloignée de son minimum et prends une grande valeur supérieure à la
masse de Planck (φi > MP ). En particulier, nous avons basé notre analyse sur une des modèles
qui sont bien motivés par la Physique des hautes énergies et la théorie de supergravité, qui
prédisent une inflation avec des signatures observables en accord avec les données du CMB
(potentiel représenté Figure B.6). Au sein de cette classe de solutions, les modèles convergent
vers les mêmes prédictions pour la phase de slow-roll.
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Au-delà de résoudre le problème de l’horizon et de l’homogénéité, l’inflation est une théorie
prédictive qui explique la génération de perturbations cosmologiques à partir d’effets quan-
tiques. Les petites fluctuations quantiques du champ scalaire δφ(x, t) autour de sa valeur
dans le vide (VEV) sont en fait étirées pendant la phase d’expansion accélérée et persistent
longtemps après la fin de l’inflation. La génération de perturbations adiabatiques (perturba-
tions de la courbure) est une prédiction générale des modèles d’inflation. De plus, la distribution
de ces perturbations primordiales aux différentes échelles physiques est prédite comme étant
presque invariante d’échelle en raison du slow-roll. Ceci est en parfait accord avec les obser-
vations des anisotropies de température du CMB et les conditions initiales des perturbations
cosmologiques.

Un modèle inflationnaire complet nécessite également un mécanisme pour mettre fin à l’ère
d’expansion accélérée et expliquer la transition vers l’Univers thermique. En effet, la période
d’expansion exponentielle doit se terminer par un transfert efficace de l’énergie stockée dans
le condensat d’inflaton durant l’inflation vers les différentes composantes d’un bain thermique
domninat ultérieurement l’évolution de l’Univers. L’inflation se termine lorsque l’énergie po-
tentielle associée au champ d’inflaton devient inférieure à son énergie cinétique, mettant fin
au régime de slow-roll. Cela se produit lorsque l’inflaton se rapproche du minimum de son
potentiel et qu’il commence à osciller autour de ce minimum (voir Figure B.7).

Ce condensat froid oscillant doit se désintégrer en matière et en rayonnement constitués de
particules du Modèle Standard et potentiellement de matière noire. La matière et le rayon-
nement produits doivent ensuite atteindre un équilibre thermique à une température supérieure
à T & 1MeV pour permettre à la BBN de se dérouler correctement. Cette transition du conden-
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Figure B.7: Évolution de l’amplitude du condensat d’inflaton après l’inflation dans le potentiel présenté
plus haut, pour différentes valeurs de k = 2, 4, 6.

sat vers le bain thermique chaud est appelée reheating. Quand cette tranisition est terminée, la
température effective de l’Univers est alors appelée la température de reheating notée TRH . Il
est important de souligner que le principal défi des modèles de reheating est la compréhension
de la dynamique d’un système de champs couplés dans un régime semi-classique, mais où les
effets quantiques jouent encore un rôle important. Deux approches sont adoptées:

• Pour prendre en compte les interactions du condensat d’inflaton avec les autres champs,
nous devons résoudre les équations de transport (Boltzmann) pour l’inflaton et pour les
produits de ses interactions. Sous l’hypothèse de faibles interactions, on peut négliger
les rétroactions des produits sur l’évolution de l’inflaton pendant les oscillations. Si
le nombre d’occupation pour les quanta produits reste faible, de sorte que les facteurs
d’amplification ou de blocage dû à la statistique quantique peuvent être ignorés, on peut
utiliser une approche perturbative pour résoudre l’équation de Boltzmann. Nous devons
alors sommer les contributions de chaque mode d’oscillation de l’inflaton pour calculer le
taux de production. On peut interpréter l’amplitude de transition comme une probabilité
d’extraction de deux quanta à partir du condensat d’inflaton. Nous considérons différents
couplages perturbatifs (voir Figure B.8) entre l’inflaton et des champs de différents spins,
représentant les degrés de liberté du Modèle Standard.

• Si les couplages sont forts, des effets non perturbatifs dans l’excitation des champs couplés
à l’inflaton peuvent intervenir pendant les oscillations. Plus précisément, des résonances
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paramétriques peuvent déclencher une instabilité dans l’évolution des modes et une ex-
plosion de la production de particules avec un nombre d’occupation qui croît exponen-
tiellement. Nous faisons généralement référence à ces effets sous le nom de preheating,
car ils se produisent au début de la phase d’oscillations de l’inflaton. Ils laissent ensuite
un état classique de haute occupation pour les champs, mais des processus perturbatifs
sont généralement toujours nécessaires pour transférer efficacement l’énergie à la fin du
processus de reheating.

Dans ce travail de thèse, nous avons considéré principalement une approche perturbative, du
fait des couplages faibles entre l’inflaton et les autres champs qui ont été étudiés. Nous avons
également analysé l’efficacité du processus en fonction de la forme du potentiel d’inflaton autour
du minimum. Même si la forme exacte du potentiel à la fin de l’inflation est inconnue, elle peut
souvent être approchée autour de son minimum par une fonction polynomiale de φ. Dans de
nombreux modèles d’inflation, le potentiel d’inflaton autour de son minimum est dominé par
un terme quadratique V (φ) = 1

2
m2
φφ

2 (le modèle de Starobinsky en est un exemple). Pour un
potentiel dont l’expansion autour de son minimum est V (φ) = λφk avec k > 2, le reheating est
plus compliqué à modéliser et nécessite une analyse plus approfondie.

Cependant, nous ne pouvons pas exclure systématiquement la présence d’un terme de masse
pour l’inflaton 1

2
m2
φφ

2, qui peut être initialement négligeable mais qui peut devenir dominant
lorsque les oscillations de φ sont amorties au cours par l’expansion. La présence de ce terme,
même s’il est faible, modifie alors significativement le transfert d’énergie de l’inflaton vers les
autres champs. Nous étudions l’impact d’un tel terme de masse sur les processus de reheating,
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alors que l’équation d’état du condensat d’inflaton change de wφ = 1
3

à wφ = 0. Nous calculons
les effets sur la température de reheating pour les cas de désintégrations de l’inflaton (vers des
fermions, des scalaires ou des vecteurs) ou de l’annihilation de l’inflaton (vers des scalaires ou
des vecteurs). Pour les collisions produisant des scalaires et en l’absence de désintégration, il
reste toujours une densité résiduelle d’inflaton qui agit comme de la matière noire froide. Nous
considérons également brièvement l’effet du terme de masse sur les rétroactions des perturba-
tions d’inflaton produites sur le condensat d’inflaton (fragmentation du condensat).

Production gravitationnelle de particules

Dans cette thèse, nous explorons principalement la production de particules dans l’Univers
primordial à la fin de l’inflation, pendant le processus de reheating. Nous étudions plus spéci-
fiquement les interactions gravitationnelles dans un scénario minimal de reheating, produisant
les différentes reliques cosmologiques. L’interaction minimale et irréductible qui doit exister en-
tre la matière noire et les particules du Modèle Standard est médiée par les gravitons. L’origine
de ce couplage est le couplage effectif, dans le cadre de la relativité générale, entre le tenseur
énergie impulsion des différents champs et les perturbations de la métrique (les gravitons) via
le Lagrangien effectif

√
−gL ⊃ − 1

MP
hµνT

µν . Comme ce couplage est inévitable, il fournit une
limite inférieure au nombre de particules produites par le processus d’échange de gravitons
(s-channel). À la fin de l’inflation, pendant la période de reheating, l’énergie disponible du
champ inflationnaire conduit à une production gravitationnelle significative, qui peut être plus
efficace que la production à partir du bain thermique. Nous avons évalué ces contributions et
trouvé les contraintes pour obtenir la densité relique observée de matière noire dans l’espace des
paramètres donné par la masse des particules de matière noire et la température de reheating
(Figure B.9). Nous considérons en premier lieu l’échange d’un graviton, hµν , entre l’inflaton ou
des particules du bain thermique et des particules de matière noire (bosoniques, fermioniques).

Les particules relativistes du Modèle Standard peuvent également être produites efficacement
par l’inflaton via des effets gravitationnels pendant le reheating, pour atteindre rapidement
une densité de radiation très élevée (Figure B.10). Cette production est de fait inévitable
et peut mener à des températures très élevées pour le bain thermique juste après l’inflation
T ∼ 1012 GeV. Ce résultat est indépendant du potentiel inflationnaire considéré comme nous
l’avons démontré.

Nous avons ensuite étendu cette analyse en introduisant des couplages non minimaux à la
gravité via le terme de courbure ξiRS2

i qui générant des couplages effectifs entre les différents
secteurs (Si pouvant être respectivement l’inflaton, le champ scalaire de matière noire, ou
le champ de Higgs). Pour ne pas compromettre l’inflation et maintenir un terme cinétique
canonique pour l’inflaton pendant sa phase d’oscillation, nous imposons une limite de faible
champ, ce qui contraint le couplage non-minimal ξφ � 1. Ainsi, le seul couplage non minimal
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Figure B.9: Gauche: Diagramme de Feynman pour la production gravitationnelle de particules par
échange de gravitons. Droite: Courbes respectant la contrainte de densité relique de matière noire
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Figure B.10: Évolution de la densité de l’inflaton (en bleu) et de la densité totale de rayonnement
(en rouge), avec la densité de rayonnement produite par les désintégrations de l’inflaton (pointillés
orange) et les processus gravitationnels minimaux (pointillés violets) et avec un couplage non-minimal à
la gravité (pointillés violets). Le maximum atteint par la production gravitationnelle minimale (courbe
violette) correspond à une température équivalente de Tmax ∼ 1012 GeV.

pertinent considéré est celui du champ de Higgs ξh. Il est alors utile de redéfinir le champ
métrique via la transformation conforme appropriée pour redéfinir la théorie dans un cadre
de gravité usuelle mais avec des couplages effectifs supplémentaires entre les champs. En
développant l’action dans la limite de faibles champs, nous obtenons des termes cinétiques
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canoniques effectifs et déduisons les interactions au premier ordre induites par le couplage non
minimal. Ces nouveaux couplages induisent une production plus efficace de matière noire et de
radiation pendant le reheating (voir Figures B.10 et B.11).
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Figure B.11: Région de l’espace des paramètres respectant la contrainte de densité relique de matière
noire ΩXh

2 = 0.12 pour un champ scalaire et différentes valeurs des couplages non-minimaux ξ =
ξh = ξX dans le cas de la production gravitationnelle. Les contributions minimales et non minimales
sont toutes deux prises en compte. Le potentiel d’inflaton est fixé avec le paramètre k = 2.

Nous avons également montré que le reheating par les seuls processus d’échange de gravitons
nécessite un terme V (φ) ∼ φk dans le potentiel pour l’inflaton avec k > 8. Ce mécanisme de
reheating gravitationnel entraîne également une faible température de reheating (Figure B.12).
Cela a pour conséquence une importante amplification du spectre de puissance des modes ten-
soriels excités pendant l’inflation, les ondes gravitationnelles primordiales (Figure B.12). Ceci
est exclu en raison d’une génération excessive de radiation supplémentaire sous forme d’ondes
gravitationnelles à l’époque de la BBN. Le spectre présente une amplification distinctive qui
dépend de la forme du potentiel de l’inflaton dans lequel il oscille, avec comme densité relique
d’ondes gravitationnelles ΩGWh

2 ∝ f
k−4
k−1 . Les contraintes sur les degrés de liberté relativistes

effectifs, ∆Neff, au moment de la BBN et du découplage du CMB se traduisent par une con-
trainte sur les ondes gravitationnelles reliques ΩGWh

2 . 5.6× 10−6∆Neff. Cette limitation du
reheating gravitationnel minimal motive l’introduction, comme une généralisation naturelle, de
couplages non minimaux à la gravité, en particulier pour le champ de Higgs du Modèle Stan-
dard. Ce couplage non minimal augmente la température de reheating atteinte par ces portails
gravitationnels. Au-delà de la contrainte imposée par les ondes gravitationnelles primordiales,
cet effet permet d’envisager un test observationnel de tels scénarios de reheating avec de faibles
températures pour différentes équations d’état de l’inflaton (différents potentiels). De futurs dé-
tecteurs d’ondes gravitationnelles pourraient permettre de contraindre l’espace des paramètres
pour le reheating, et ceci de manière indépendante du modèle de couplage de l’inflaton avec la
matière (voir Figure B.12).
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Figure B.12: Haut gauche: Température de reheating TRH atteinte par la production gravitationnelle
incluant la contribution non minimale via le couplage ξh. La région rouge est exclue en raison d’une
température de réchauffement trop basse pour un succès de la BBN. Haut droite: Densité relique des
ondes gravitationnelles primordiales en fonction de la fréquence, pour différents couples (ξh, k) en bleu,
et pour une TRH fixée avec différents k en rouge. La région bleue est exclue par la BBN du fait de l’excès
d’onde gravitationnelle. Les courbes de sensibilité des futurs détecteurs de GWs sont montrées. Bas:
Projection des contraintes futures des détecteurs d’ondes gravitationnelles dans l’espace des paramètres
(TRH, k). La région bleue est déjà exclue en raison d’un excès de la relique d’ondes gravitationnelles.

Enfin, nous montrons qu’un scénario minimal utilisant uniquement ces ”portails gravitation-
nels” est capable de générer simultanément la densité relique observée de matière noire ainsi
que l’asymétrie baryonique via la leptogenèse non-thermale, tout en produisant un bain ther-
mique suffisamment chaud après l’inflation. Nous montrons qu’il est possible de produire les
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neutrinos droits lourds pendant le reheating via les interactions gravitationnelles, à partir du
condensat d’inflatons. Cette production peut être alimentée, soit par des bosons de Higgs du
Modèle Standard en échangeant des gravitons et en étant médiée par le couplage non mini-
mal à la gravité ξh, soit directement à partir de l’inflaton médiée par la gravité. Ces neutrinos
droits massifs sont par ailleurs motivés par le mécanisme de ”seesaw” pouvant expliquer la faible
masse des neutrinos actifs. L’abondance de neutrinos droits peut ensuite conduire à l’asymétrie
baryonique observée (Figure B.13) grâce à la désintégration hors équilibre des RHN violant la
symétrie CP. Dans cette perspective, nous dérivons une solution simultanée pour l’abondance
de matière noire, l’asymétrie baryonique, et l’origine du bain thermique à partir d’interactions
purement gravitationnelles (Figure B.13). En combinant les analyses précédentes, il est possible
de contraindre, pour un potentiel dans lequel évolue l’inflaton V (ϕ), l’espace des paramètres
(MN1,MN2, ξh) en exigeant que la leptogenèse non-thermale, la production de matière noire et
le reheating aient une origine commune par les interactions gravitationnelles considérées.

Conclusion
Dans cette thèse, nous avons étudié certains aspects de la production de particules dans
l’Univers primordial, un domaine de recherche actuellement au centre d’investigations théoriques,
phénoménologiques et expérimentales intenses pour rechercher des indices potentiels de nouvelle
Physique. En particulier, nous nous sommes intéressés au processus de reheating, une transi-
tion cruciale entre la phase d’inflation et la phase de domination de la radiation. Le reheating
est fondamental car il doit expliquer la génération d’un plasma thermique chaud composé de
particules du Modèle Standard, ainsi que d’autres reliques cosmologiques, comme la matière
noire et potentiellement expliquer l’asymétrie baryonique.

Nous nous sommes concentrés dans cette thèse sur la construction et l’utilisation d’un cadre
théorique pour la production gravitationnelle de particules pendant le reheating. Cette thèse
illustre l’importance cruciale d’approfondir les recherches sur la phénoménologie des scénarios
au-delà du Modèle Standard dans l’Univers primordial. Nous avons mis en avant la possibilité
d’un scénario minimal où les différents secteurs interagissent uniquement à travers des interac-
tions gravitationnelles effectives. Nous avons montré que, dans un tel cas simple, la génération
de reliques cosmologiques peut être réalisée aisément. Si des contraintes observationnelles sur
les ondes gravitationnelles primordiales et la durée du reheating peuvent être prises en compte
dans les aspects phénoménologiques de ces modèles, il est nécessaire de poursuivre les efforts
théoriques pour relier ces prédictions aux observables cosmologiques ou aux contraintes expéri-
mentales avec précision. Le régime non linéaire des perturbations cosmologiques, qui pourrait
être contraint dans de futures campagnes d’observations, pourrait apporter un éclairage sur la
dynamique complexe impliquant plusieurs champs couplés après l’inflation cosmologique.
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Figure B.13: Haut gauche: Les régions colorées correspondent aux valeurs de (k, TRH) avec ΩN1h
2 ≤

0.12 pour trois choix de masse de matière noire MN1 (rouge, bleu, violet). Haut droite: Contours
de MN2, la masse des neutrinos droits instables qui se désintègrent au cours de la leptogenèse, cor-
respondant à l’abondance baryonique observée dans le plan (k, TRH). La région verte conduit à une
sous-production de baryons en raison de la cinématique de l’interaction lorsque MN2 approche de la
masse de l’inflaton. Bas: Espace des paramètres viable dans le plan (MN1 ,MN2) où les interactions
gravitationnelles sont responsables de la densité relique de la matière noire observée, de l’asymmetrie
baryonique (produite par les désintégrations de N2) et du reheating, pour k ∈ [6, 20]. Les différentes
couleurs correspondent à différents ξh.
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