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Introduction en français

Histoire du calcul

Calculus signifie caillou en latin [Larousse 2023]. Les cailloux ont été la première
unité de comptage utilisée par les bergers pour compter les moutons qui entraient
et sortaient de la bergerie. Au retour d’une sortie, le nombre de cailloux restants
indiquait le nombre de moutons manquants. Ce système a également été utilisé
pendant les conflits pour compter le nombre de soldats qui ne revenaient pas de
la bataille. Ce système de comptage a rapidement été dépassé par la nécessité
d’effectuer des opérations plus complexes, nécessaire pour le commerce par exemple.
Vers 2700-2300 avant J.-C., le premier mécanisme de type boulier est inventé. Il
est conçu comme une extension des doigts de la main pour permettre de compter
jusqu’à plus de 10. À l’époque, on comptait en base 5. Le boulier (Fig. 1.1 (a))
est considéré comme la première version d’une calculatrice. Ces calculs se limitaient
encore à des opérations arithmétiques. Plusieurs siècles plus tard, en 1050-771
av. J.-C., dans la Chine ancienne, les voyageurs utilisaient un “Chariot pointant le
Sud” pour indiquer le sud au cours d’un voyage. Le mécanisme était basé sur un
engrenage différentiel mis en place au début du voyage. Il s’agit du premier calcul
analogique enregistré. En effet, à chaque virage, le chariot calcule la différence
de rotation des deux roues opposées pour la compenser en tournant le pointeur
vers l’orientation initiale. Le premier mécanisme considéré comme un ordinateur
est le mécanisme d’Antikythera (Fig. 1 (b)) dans la Grèce antique, datant de 100
avant J.-C. [Efstathiou & Efstathiou 2018]. Il a été conçu pour calculer les positions
astronomiques à l’aide d’engrenages différentiels. Plusieurs engrenages étaient en
jeu : l’un d’eux comptait 365 dents pour les jours de l’année, un autre contrôlait
le nombre de lunaisons, et ainsi de suite. Pour l’utiliser, il fallait indiquer la date
du jour, et en tournant les engrenages, il donnait la date et les positions de la Lune
et du Soleil pour la prochaine éclipse. Ce calcul utilise la rotation mécanique des
engrenages comme processus de calcul, les données d’entrée et de sortie étant codées
dans la position des engrenages.

Ce type d’ordinateur, qui utilise intelligemment une variation continue d’un dis-
positif physique, c’est-à-dire un signal analogique, est appelé ordinateur analogique.
Un exemple de base de calcul analogique est l’opération de multiplication. Connais-
sant la loi d’Ohm, U = RI où la tension U est égale à la résistance R multipliée
par le courant I, nous pouvons calculer la multiplication entre deux entrées que
nous encodons dans R et I. En mesurant U , nous obtenons la multiplication de
nos entrées encodées. Ce n’est que vers 1150 qu’est apparu le premier ordinateur
analogique “programmable”, appelé l’“Horloge Éléphant” inventée par les Arabes
[Al-Jazari 1974]. Ici, “programmable” signifie que le mécanisme pouvait être réglé
avant d’être mis en marche. Il repose sur la vitesse d’écoulement continues de
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(a) (b)

Figure 1: (a) Photo d’un vieux boulier [Baynes 1875] et (b) fragment du mécanisme
d’Antikythera de [Wikipedia 2005].

l’eau pour donner le pourcentage de temps diurne écoulé. Bien que les ordinateurs
numériques aient commencé à apparaître à la fin du 18ème siècle, à cette époque
les ordinateurs analogiques étaient encore plus puissants, comme en témoigne la
“machine à prévoir les marées” capable, entre autre, d’effectuer une transformée de
Fourier [Wikipedia 2024].

Nous remarquons que tous les systèmes semblables à des ordinateurs mentionnés
ci-dessus sont conçus pour effectuer une tâche spécifique, comme compter, indiquer
une direction ou donner l’heure. Nous appelons ordinateur à usage général ou uni-
versel un ordinateur capable de résoudre n’importe quel calcul au sens moderne
du terme, c’est-à-dire un ordinateur Turing-complet. Nous comprenons que pour
construire un ordinateur universel, nous devons disposer d’une sorte d’ensemble
d’opérations de base qui peuvent être utilisées comme éléments constitutifs d’un
calcul plus complexe. Ces opérations sont nécessairement basées sur le calcul
analogique et doivent également interagir les unes avec les autres. La quantité
physique connue la plus pratique pour effectuer un calcul est le signal électrique.

Jusque dans les années 60, l’une des dernières utilisations du calcul analogique
a été la simulation de systèmes mécaniques complexes, comme le système de sus-
pension d’une voiture avec deux masses couplées à des ressorts et un amortisseur.
[Ulmann 2008]. Vers 1950-1960, les ordinateurs numériques ont surpassé les ordi-
nateurs analogiques [Wikipedia 2024]. Le transistor utilisé comme élément de base
est devenu suffisamment puissant pour effectuer tout calcul complexe plus efficace-
ment que les ordinateurs analogiques. Dans un ordinateur numérique, l’information
n’est plus représentée par une quantité physique continue, mais par une valeur dis-
crète. Bien entendu, le matériel tel que les transistors utilise toujours des variables
physiques continues telles que la tension électrique. Une abstraction supplémentaire
permet de faire le lien avec l’information numérisée : par exemple, une tension in-
férieure à 1/3 d’une certaine unité représente la valeur binaire ‘0’, et une tension
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supérieure à cette valeur représente ‘1’. Cette abstraction et l’universalité des or-
dinateurs numériques les rendent plus versatiles et plus précis que les ordinateurs
analogiques pour effectuer des tâches élaborées.

Au 21ème siècle, il reste très peu de cas de calcul analogique, les plus connus
étant la montre mécanique et l’ordinateur de vol. Avec l’essor de l’intelligence ar-
tificielle, de nouveaux prototypes d’ordinateurs analogiques sont développés dans
les laboratoires d’informatique neuromorphique [James et al. 2017]. L’avantage de
l’informatique analogique est son efficacité énergétique et sa rapidité. Les algo-
rithmes d’intelligence artificielle ne sont pas conçus pour avoir des valeurs exactes,
ce qui fait des ordinateurs analogiques des candidats prometteurs pour accélérer,
avec moins d’énergie, l’exécution de ces algorithmes.

Quoi qu’il en soit, pour calculer quelque chose, nous devons nous appuyer sur
du matériel physique et sur un encodage de l’information. D’une part, l’encodage
dépend du choix entre le calcul numérique ou analogique. D’autre part, le dis-
positif physique est soumis aux lois de la physique sous-jacente en jeu : pour les
dispositifs mécaniques, il suit les lois fondamentales de la dynamique, pour les dis-
positifs électriques, il suit les lois fondamentales de l’électromagnétisme. Selon les
lois en question, les limitations ne sont pas les mêmes. Jusqu’à aujourd’hui, les
lois classiques de l’électromagnétisme ont dominé son utilisation pour le calcul. Au
milieu des années 1920, les lois de la mécanique quantique ont été découvertes.
Ce n’est que dans les années 1980 que l’idée d’un ordinateur quantique est née
[Benioff 1980, Manin 1980, Feynman 1982]. Comme pour les ordinateurs classiques,
il existe des versions quantiques analogiques et numériques. Toutes deux sont basées
sur l’équation maîtresse de la physique quantique. Pour accéder à l’informatique
quantique, nous devons développer un dispositif physique quantique qui peut être
“facilement” contrôlé. Dans la section suivante, nous retracerons l’histoire de la dé-
couverte de la mécanique quantique jusqu’à son utilisation en tant que physique
sous-jacente de l’informatique.

De la mécanique quantique au calcul quantique

La découverte des lois fondamentales de la mécanique quantique est attribuée à
Erwin Schrödinger en 1926 [Schrödinger 1926]. Dans ses travaux, Schrödinger s’est
fortement appuyé sur la thèse de Louis de Broglie, qui a été le premier à postuler que
le rayonnement pouvait être à la fois ondulatoire et corpusculaire [de Broglie 1924].
Au départ, ni de Broglie ni Schrödinger ne semblaient vraiment croire à cette hy-
pothèse particulière sur la matière. Cette hypothèse contre-intuitive leur a permis
d’obtenir des résultats intéressants pour la compréhension de l’atome.

En thermodynamique classique, nous savons qu’au cours d’un processus adiaba-
tique, certaines propriétés physiques telles que l’énergie ou l’entropie sont conservées
[Planck 1903]. Nous appelons processus adiabatique une évolution durant laquelle
les conditions externes varient suffisamment lentement. En 1928, Born et Fock ont
démontré la première version mathématique du théorème adiabatique en physique
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quantique afin de mieux comprendre la stabilité des orbitales électroniques dans
les atomes [Born & Fock 1928]. Ils ont prouvé que le niveau d’énergie d’un sys-
tème quantique est conservé en cas de variation lente du champ électromagnétique.
En cas de variation rapide, il peut passer à un niveau d’énergie différent, appelé
état excité. Illustrons (Fig. 2) ce résultat important, car il constitue le fondement
théorique du calcul quantique adiabatique (voir Sec. 1.3). Imaginons la situation
suivante : Notre objectif est de transporter un bébé de son domicile à un endroit
(pour l’instant non défini). Au départ, le bébé est endormi et est transporté dans
une poussette. Nous savons que si la personne qui pousse la poussette va lente-
ment, il y a une forte probabilité que le bébé reste endormi. En revanche, si la
personne qui pousse la poussette va trop vite, il y a de fortes chances que le bébé se
réveille, commence à pleurer et atteigne l’état d’excitation. Le paramètre externe
qui change est la vitesse de la poussette, et son environnement exterieur est défini
par sa position dans l’espace. Pour un système quantique, l’environnement exterieur
est défini par un objet appelé l’Hamiltonien H du système. Pour qu’une évolution
soit adiabatique, la variation de H au cours du temps doit être suffisamment lent.

Figure 2: Une image schématique pour expliquer le théorème adiabatique (inspirée
par Pauline Besserve). Elle ne vise pas à rendre compte de l’ensemble de la physique
sous-jacente. Le bébé endormi représente l’état de plus basse énergie et le bébé qui
pleure représente un état excité du système quantique.

Le théorème adiabatique soulève quelques questions intéressantes. Tout d’abord,
qu’entend-on par “lent” ? La vitesse de l’évolution est liée à l’inverse du gap Hamil-
tonien. Le gap est la différence entre les niveaux d’énergie à chaque instant de
l’évolution. Pour répondre à cette question sur la validité du théorème adiabatique,
von Neumann et Wigner ont développé un résultat appelé “règle de non-croisement”.
Cette règle stipule que, sous certaines conditions relatives à l’Hamiltonien, deux
niveaux d’énergie ne se croisent jamais réellement lorsque l’Hamiltonien est modifié,
mais qu’ils peuvent s’approcher de très près. Le phénomène qui se produit lorsqu’ils
se rapprochent suffisamment pour que l’on puisse penser qu’ils se croisent est ap-
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pelé croisement-évité, que nous définirons formellement au chapitre 2, Sec. 2.4. Le
gap atteint donc un minimum, que nous notons ∆min. Par conséquent, dans le
régime de temps infini, le système quantique est assuré de rester au même niveau
que celui à partir duquel il a commencé son évolution. Dans notre illustration,
cela signifie que le théorème garantit que le bébé restera endormi si la poussette
se déplace infiniment lentement. La question est la suivante : que se passe-t-il
si l’évolution est plus rapide que la condition adiabatique ? En 1932, Landau et
Zener ont calculé indépendamment la probabilité que le système quantique passe
d’un niveau d’énergie à l’autre. Ces transitions sont appelées transitions non adi-
abatiques. En clair, plus le gap est petit, plus la probabilité de saut est grande
[Landau 1932, Zener 1932]. La meilleure analogie avec le point de gap minimum
dans notre exemple serait la position de la poussette où le bébé pourrait facilement
se réveiller, par exemple lorsque la route est accidentée. Les parties bosselées de
la route doivent être traversées encore plus lentement que les parties plates. Il ar-
rive que ces passages cahoteux apparaissent plusieurs fois au cours de l’évolution.
Dans le travail de [Wilkinson 1987, Wilkinson 1989], l’auteur a entrepris d’abord
une description des croisement-évités, puis une étude statistique de leur nombre.

La première version du théorème adiabatique impose de fortes contraintes sur
l’Hamiltonien, ce qui limite ses applications potentielles. Une version mathéma-
tique plus générale et plus rigoureuse a été dérivée par [Kato 1950] au Japon. En
particulier, il s’est débarrassé de deux hypothèses sur le spectre de l’Hamiltonien.
Dans sa version, ce dernier peut être continu et présenter des dégénérescences. À
la même époque, dans [Anderson 1958], l’auteur démontre un phénomène physique
se produisant dans un système quantique évoluant selon l’équation de Schrödinger.
Il affirme que, dans certaines conditions, aucune diffusion n’a lieu dans un réseau
quantique alors qu’elle était attendue. Plus simplement, il suggère qu’un état quan-
tique peut se localiser dans une région spécifique avant que l’évolution ne se termine.
Cette localisation peut se produire dans un “mauvais” niveau d’énergie - par exem-
ple, dans cette thèse, la principale conséquence de ce phénomène est qu’à un moment
intermédiaire de l’évolution, l’état d’énergie le plus bas est proche de l’état excité
du système à la fin de l’évolution (Fig. 3).

Pour comprendre les différents événements que peut subir un système quan-
tique, il faut également mentionner qu’il peut expérimenter des transitions de phase.
Ces transitions peuvent être du premier ou du second ordre, selon la continuité
d’évolution de l’état au moment de la transition. Nous renvoyons le lecteur à
[Sachdev 1999] pour plus de détails. Un autre résultat théorique important pour
comprendre l’évolution quantique est la limite de Lieb-Robinson. De manière in-
formelle, elle indique que l’information voyage à une vitesse finie dans un système
quantique [Lieb & Robinson 1972]. Cela signifie, entre autres, qu’il existe une évo-
lution de durée total T telle qu’il n’y a pas de corrélation entre deux régions suff-
isamment éloignés au sein du système quantique. La distance “suffisante” est définie
par la vitesse de Lieb-Robinson vLR et est égale à vLRT . Cette vitesse dépend
notamment de la structure du système et de son matériel physique.

Au début des années 70, peu après le début de la recherche en informatique
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Figure 3: Le phénomène de localisation d’Anderson avec notre illustration. L’état
d’énergie le plus bas à un moment intermédiaire est le bébé endormi au milieu du
voyage. Ce dernier état est proche au bébé qui pleure à la fin du voyage. Ici le terme
“proche” est légèrement tiré par les cheveux et montre une limite de notre anaologie.

théorique avec la thèse de Church-Turing, Cook et Levin ont indépendamment
prouvé le premier problème combinatoire NP-difficile [Cook 1971, Levin 1973]. Pour
l’instant, il suffit de considérer les problèmes NP-difficiles comme des problèmes diffi-
ciles qui ne peuvent pas être résolus efficacement. Ce problème est appelé 3SAT pour
Satisfiabilité Booléenne sur des clauses de taille trois. Ce problème marque le début
de la théorie de la complexité. Ce domaine traite de l’analyse des ressources néces-
saires pour calculer certaines fonctions données. En général, il s’agit de ressources
temporelles. À la même époque, Karp a prouvé par réduction un zoo de 21 prob-
lèmes combinatoires qui sont NP-difficiles [Karp 1972]. Par exemple, le problème de
le coupe maximale (MaxCut) est l’un d’entre eux. Illustrons ce problème (Fig. 4).

Figure 4: Illustration du problème de la coupe maximale. À gauche, le problème
original. Au milieu, son encodage dans une instance de graphe. À droite, une
solution possible au problème de la coupe maximale sur le graphe donné. Cette
dernière solution est également une solution au problème original.
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Imaginons une intersection avec des feux de circulation. L’objectif est
d’initialiser les couleurs des feux de circulation afin d’empêcher le plus grand nom-
bre possible d’événements indésirables de se produire. Supposons que nous n’ayons
que deux couleurs, le rouge et le vert. Une façon de résoudre ce problème est de
l’encoder dans un graphe ; chaque feu de circulation est représenté par un sommet
dans le graphe, et nous connectons deux sommets si les feux de circulation corre-
spondants devraient, idéalement, être de couleurs différentes. Le nouvel objectif du
problème original est de trouver une bipartition rouge/verte dans le graphe généré.
Il s’agit de la coupe maximale, car si nous affichons les sommets verts à droite et
les sommets rouges à gauche, toutes les arêtes traversant la bipartition peuvent être
coupées. Nous comprenons qu’avec un carrefour plus complexe comme celui de la
Fig. 5, trouver la meilleure bicoloration est beaucoup moins simple. Le nombre de
combinaisons de couleurs explose exponentiellement avec le nombre n de feux de
circulation sous la forme (nombre de couleurs)n.

Figure 5: Exemple d’un problème de feux de circulation sur une instance complexe.
Lorsque le nombre de feux de circulation augmente, le nombre de combinaisons
explose. La meilleure solution pourrait être frustré, ce qui signifie que même deux
feux de circulation liés ont la même couleur.

Dans cette thèse, nous étudions principalement ce type de problèmes, appelés
problèmes combinatoires sur graphes NP-difficile. Nous renvoyons le lecteur à la
revue suivante [Barahona et al. 1988] sur l’application des problèmes combinatoires.
Par exemple, la solution de MaxCut permet de concevoir des circuits électriques et
de résoudre le problème d’Ising en physique. La difficulté NP de MaxCut signifie
que nous ne connaissons pas d’algorithme dont le temps d’exécution maximum varie
de façon polynomiale avec la taille de l’entrée pour résoudre le problème sur un
graphe d’entrée arbitraire. Cependant, nous pouvons toujours être intéressés par
des solutions approximatives qui peuvent être atteintes efficacement, c’est-à-dire en
temps polynomial. De tels algorithmes sont appelés algorithmes d’approximation,
et nous évaluons leur performance en calculant leur ratio d’approximation. En
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bref, le taux d’approximation nous indique à quel point nous sommes proches de
la solution optimale. Le meilleur algorithme d’approximation pour MaxCut sur
un graphe général est celui de [Goemans & Williamson 1995], qui atteint un ratio
d’approximation de 0,87856, c’est-à-dire que cet algorithme garantit que sa solution
de sortie coupe plus de 87, 856% de toutes les arêtes possibles qui peuvent être
coupées dans la solution optimale. Si nous limitons le graphe à des graphes 3-
réguliers, c’est-à-dire que chaque sommet est lié à exactement 3 autres, les auteurs
de [Halperin et al. 2002] ont prouvé que leur algorithme atteint une approximation
de 0,93 en temps polynomial.

Pendant cette période, la première idée d’un ordinateur quantique a été
lancée en 1982 par Feynman [Feynman 1982]. Il pensait que la meilleure façon
de simuler la nature, qui est quantique, était d’utiliser du matériel quantique.
L’idée a été formalisée par Deutsch, qui a présenté l’ordinateur quantique uni-
versel [Deutsch & Penrose 1985]. Il est fondamentalement similaire à un ordina-
teur “classique”, mais les lois physiques sous-jacentes qui régissent l’appareil sont
des lois quantiques. À la fin des années 80, une équipe italienne a eu l’idée
d’utiliser les fluctuations quantiques pour résoudre des problèmes combinatoires
[de Falco et al. 1988, Apolloni et al. 1989]. Ils ont introduit l’algorithme du recuit
quantique, une métaheuristique générale du même type que le recuit simulé pour
minimiser une fonction de coût donnée. Il utilise l’effet tunnel quantique pour sur-
monter les barrières potentielles, alors que le recuit simulé nécessite une température
élevée pour surmonter ces barrières (Fig. 6). Dans [Kadowaki & Nishimori 1998],
les auteurs ont fourni la première comparaison rigoureuse du recuit simulé et du
recuit quantique.

Figure 6: Explication schématique de la physique qui aide l’état à franchir la barrière
de potentiel.

Ce n’est que dans les années 1990 que les premiers algorithmes quantiques
ont formellement démontré une “accélération quantique” par rapport aux ordina-
teurs classiques. Cela signifie que les ordinateurs quantiques peuvent résoudre des
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problèmes plus efficacement que les ordinateurs classiques [Deutsch & Jozsa 1992,
Bernstein & Vazirani 1997]. Il s’agit d’algorithmes numériques, car la propriété dis-
crète rend le cadre plus propice aux démonstrations. Parmi eux, les deux plus
célèbres sont l’algorithme de [Shor 1994] pour la décomposition des nombres en fac-
teurs premiers et l’algorithme de [Grover 1996] pour la recherche d’une aiguille dans
une botte de foin. Ces travaux ont lancé une course sans précédent vers la réalisation
de l’avantage quantique en pratique.

Structure du manuscrit et contributions

Dans la suite de ce manuscrit, nous reprenons cette introduction en anglais en y
ajoutant tout les travaux des années 2000 à aujourd’hui qui constituent l’état de
l’art duquel la recherche présentée dans cette thèse s’est lancée.

La recherche présentée dans ce manuscrit se base principalement sur des articles
publiés ou acceptés dans différentes revues scientifiques [Braida & Martiel 2021,
Braida et al. 2022, Braida et al. 2024a, Braida et al. 2024b]. Nous avons essayé de
les laisser tels qu’ils ont été publiés, nous avons modifié certaines notations pour
qu’elles restent harmonieuses dans le manuscrit et nous avons ajouté certains travaux
non publiés qui sont de nature plus exploratoire, mais qui pourraient fournir des idées
et des possibilités futures. Dans le chapitre 2, nous introduisons formellement les
notations du calcul quantique analogique et la définition des Hamiltoniens pour les
problèmes combinatoires sur graphes. Nous détaillons différents algorithmes pour
le problème MaxCut. Ensuite, nous définissons clairement la notion de croisement
évités et la borne de Lieb-Robinson.

Sauf indication contraire, tout le contenu des parties I et II relève du travail
original du doctorant avec ses superviseurs.

La partie I se concentre sur la compréhension du phénomène de croisement évité
dans le calcul quantique adiabatique (CQA). Dans le chapitre 3, nous commençons
par la caractérisation récente de [Choi 2020] et prouvons comment sa paramétrisa-
tion est liée au gap minimum. Ensuite, en appliquant sa définition à un modèle jouet
pour le problème de la k−clique de poids maximum, nous mettons en évidence com-
ment la définition peut manquer la caractérisation d’un croisement évité (Sec. 3.1).
Ces observations nous conduisent à proposer une nouvelle définition, plus générale
que la précédente (voir Fig. 7 et Sec. 3.2). Elle utilise un développement de Taylor
pour justifier notre nouvelle définition et fournit en même temps la démonstration
rigoureuse de la description initiale d’un croisement évité (Sec. 2.4.2). Nous validons
notre définition par des analyses numériques. Finalement, nous montrons quelques
cas de limitation que notre définition ne capturera pas non plus (Sec. 3.3). Dans
le chapitre 4, nous prouvons un théorème qui donne une condition d’apparition des
croisement-évités sous la validité de l’expansion de perturbation au premier ordre
(Sec. 4.1). Nous appliquons ensuite ce théorème au problème MaxCut pour prouver
que CQA résout efficacement MaxCut sur des graphes bipartis réguliers et qu’une
irrégularité suffisante conduit à un gap se réduisant exponentiellement (Sec. 4.2).
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Bien que l’implication générale de cette observation serait de conclure à l’échec de
CQA dans ce cas, en utilisant notre nouvelle définition de croisement-évités, une
étude numérique suggère que ce n’est probablement pas le cas. Pour de petites in-
stances, la probabilité de mesurer l’état optimal semble atteindre efficacement une
valeur constante. Cette observation frappante nous amène à poser la question de la
possibilité de prouver un théorème adiabatique relaxé de sa dépendance dans le gap.
La dernière section du chapitre (Sec. 4.3) suggère d’autres études intéressantes du
problème MaxCut en utilisant la théorie perturbative. Il est tout à fait remarquable
que nous puissions analyser différents coefficients du processus quantique à l’aide de
la terminologie de théorie des graphes. Cela permettrait-il de prouver des résultats
intéressants ?

Figure 7: Inclusion des définitions des croisement-évités.

La partie II se concentre sur les potentialités du recuit quantique en tant
qu’algorithme d’approximation. Plus précisément, nous nous attaquons à l’étude
du recuit quantique courts en temps et constant pour MaxCut sur les graphes cu-
biques (i.e. 3-régulier). Notre première approche (Chapitre 5) est une adaptation di-
recte de la démonstration du rapport d’approximation de QAOA [Farhi et al. 2014].
Nous décrivons d’abord les différentes étapes de la preuve dans le régime du calcul
analogique (Sec. 5.1). Ensuite, le travail réside dans le calcul d’une borne de Lieb-
Robinson (LR) suffisamment petite à distance 1 pour dériver une borne inférieure
non triviale (au-dessus du choix aléatoire) sur le ratio d’approximation lorsque le
recuit quantique est étudié comme un algorithme 1-local (0.5933 dans Fig. 1.11 et
Sec. 5.2). Une étude de l’optimalité de la borne de type LR utilisée nous conduit
à apporter des arguments numériques convaincants selon lesquels le ratio devrait
être supérieur à celui de QAOA (0.6925). Nous suggérons un algorithme non implé-
mentable, dans le sens où il est trop coûteux à exécuter, dont le ratio est probable-
ment proche de 0.6963 (Sec. 5.3). Dans le dernier projet détaillé dans le chapitre 6,
nous développons une borne de LR super serrée atteignant des valeurs numériques
étonnantes nous permettant de réduire le temps nécessaire pour l’algorithme précé-
dent. Avec l’introduction d’une version paramétrée du recuit quantique, nous avons
pu prouver qu’il atteint avec une analyse 1-locale un ratio d’approximation supérieur
à 0.7020, surpassant tout algorithme 1-local connu pour ce problème (voir Fig. 8 et
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Sec. 6.2). Nous discutons de l’optimalité de cette nouvelle borne et prouvons que
la méthode employée atteint presque son optimalité (Sec. 6.3). Dans un dernier
chapitre (Chapitre 7), nous développons quelques idées sur la localité dans le recuit
quantique, et ce qui est nécessaire pour prouver une borne de LR dépendante de
l’état. Finalement, nous donnons quelques arguments sur le ratio d’approximation
effectif en argumentant sur le pire graphe et en tirant astucieusement parti des
symétries des graphes, grâce auxquelles nous sommes capables de simuler rapide-
ment des graphes de grande taille.

Figure 8: Ratio d’approximation atteint par différent algorithmes que nous détail-
lons par la suite. En gras sont indiquées nos contributions.

Le dernier chapitre Conclusion et perspectives résume les principaux résultats
et suggère quelques pistes de recherche.
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1.1 History of computing

Calculus means pebble in Latin [Larousse 2023]. Pebbles were the first counting unit
used by shepherds to count sheep entering and leaving the sheepfold. On the way
back, the number of pebbles remaining indicated the number of sheep missing. This
system was also used during conflicts to count the number of soldiers who failed to
return from battle. This counting system was soon surpassed by the need to carry
out more complex operations, such as trade. Around 2700-2300 BC, the first abacus-
type mechanism was invented. It was designed as an extension of the fingers of the
hand to enable counting to more than 10. At the time, counting was done in base 5.
The abacus (Fig. 1.1 (a)) is considered to be the first version of a calculator. These
calculations were still limited to arithmetic operations. Several centuries later, in
1050-771 BC, in ancient China, travelers used a south-pointing chariot to indicate
south during a journey. The mechanism was based on a differential gear set up at
the start of the journey. This was the first reported analog calculation. The first
mechanism considered to be a computer was the Antikythera mechanism (Fig. 1.1
(b)) in ancient Greece, dating from 100 BC [Efstathiou & Efstathiou 2018]. It was
designed to compute astronomical positions using differential gears. Several gears
were involved: one had 365 teeth for the days of the year, another controlled the
number of lunations, and so on. To use it, you had to indicate the day’s date, and
by turning the gears, it gave the date and the positions of the moon and sun for
the next eclipse. This computation uses the mechanical rotation of the gears as the
computational process, with the input and output data encoded in the position of
the gears.

This type of computer, which intelligently uses a continuous variation of a phys-
ical device, i.e. an analog signal, is called an analog computer. A basic example of
analog computation is the multiplication operation. Knowing Ohm’s law, U = RI
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(a) (b)

Figure 1.1: (a) Picture of the abacus in [Baynes 1875] and (b) fragment of the
Antikythera mechanism from [Wikipedia 2005].

where voltage U is equal to resistance R multiplied by current I, we can compute
the multiplication between two inputs that we encode as R and I. By measuring
U , we obtain the multiplication of our encoded inputs. It was not until around
1150 that the first “programmable” analog computer appeared, called the Elephant
Clock invented by the Arabs [Al-Jazari 1974]. Here, “programmable” means that
the mechanism could be adjusted before it was started. It operates on the speed
of continuous hydraulic quantities to give the percentage of daylight time elapsed.
Although digital computers began to appear at the end of the 18th century, at that
time analog computers were still more powerful, as witnessed by the tide-predicting
machine capable of performing the Fourier transform [Wikipedia 2024].

We note that all the computer-like systems mentioned above are designed to
perform a specific task, such as counting, indicating direction or telling the time.
We call a general-purpose or a universal computer a computer capable of solving
any computation in the modern sense of the term, i.e. a Turing-complete computer.
We understand that to build a universal computer, we need to have some kind
of set of basic operations that can be used as building blocks for a more complex
calculation. These operations are necessarily based on analog computation and
must also interact with each other. The most practical known physical quantity for
performing a computation is the electrical signal.

Until the 60s, one of the last uses of analog calculation was to simulate complex
mechanical systems, such as the suspension system of a car with two masses cou-
pled to springs and a damper [Ulmann 2008]. Around 1950-1960, digital computers
outperformed analog computers [Wikipedia 2024]. The transistor used as the basic
building block became powerful enough to perform any complex calculation more
efficiently than analog computers. In a digital computer, information is no longer
represented by a continuous physical quantity, but by a discrete value. Of course,
hardware such as transistors still use continuous physical variables such as electrical



1.2. From quantum mechanics to quantum computation 15

voltage. A further abstraction makes the link with digitized information: for exam-
ple, a voltage less than 1/3 by a certain unit represents the binary value of ‘0’, and a
voltage greater than this value represents ‘1’. This abstraction and the universality
of digital computers make them more versatile and precise than analog computers
for performing elaborate tasks.

In the 21st century, there are very few cases of analog calculation left, the best-
known being the mechanical watch and the flight computer. With the rise of artificial
intelligence, new prototypes of analog computers are being developed in laborato-
ries for neuromorphic computing [James et al. 2017]. The advantage of analog com-
puting is its energy efficiency and speed. Artificial intelligence algorithms are not
designed to have exact values, which makes analog computers promising candidates
for speeding up, with less energy, the execution of these algorithms.

In any case, to compute something, we need to rely on physical hardware and in-
formation encoding. On the one hand, the encoding depends on the choice between
digital or analog computation. On the other hand, the physical device is governed
by the laws of the underlying physics at play : for mechanical devices, it follows
the fundamental laws of dynamics, for electrical devices, it follows the fundamental
laws of electromagnetism. Depending on the laws involved, the limitations are not
the same. Until today, the classical laws of electromagnetism have dominated its
use for computation. In the mid-1920s, the laws of quantum mechanics were dis-
covered. It wasn’t until the 1980s that the idea of a quantum computer was born
[Benioff 1980, Manin 1980, Feynman 1982]. As with classical computers, there are
analog and digital quantum versions. Both are based on the master equation of
quantum physics. To access quantum computing, we need to develop a quantum
physical device that can be “easily” manipulated. In the following section, we will
trace the history from the discovery of quantum mechanics to its use as a computa-
tional framework.

1.2 From quantum mechanics to quantum computation

The discovery of the fundamental laws of quantum mechanics is attributed to Erwin
Schrödinger in 1926 [Schrödinger 1926]. In his work, Schrödinger relied heavily on
the thesis of Louis de Broglie, who was the first to postulate that radiation could
be both wave and corpuscular [de Broglie 1924]. Neither de Broglie nor Schrödinger
at first seemed to really believe in this particular hypothesis about matter. This
counter-intuitive assumption allowed them to derive interesting results for the un-
derstanding of the atom.

In classical thermodynamics, we know that during an adiabatic process, certain
physical properties such as energy or entropy are conserved [Planck 1903]. Classical
evolution is irreversible, so the process is said to be adiabatic if the evolution is
extremely fast. Quantum evolution, on the other hand, is reversible. We call a
quantum adiabatic process an evolution in which external conditions vary sufficiently
slowly. In 1928, Born and Fock proved the first mathematical version of the adiabatic
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theorem in quantum physics to better understand the stability of electronic orbitals
in atoms [Born & Fock 1928]. They proved that the energy level of a quantum
system is conserved under a slow variation of the electromagnetic field. Under fast
variation, a state initialized in the lowest energy level, called the ground-state, can
move to a different energy level, called the excited state. Let us illustrate (Fig.
1.2) this important result as it is the theoretical foundation of adiabatic quantum
computing (see Sec. 1.3). Imagine the following: Our goal is to transport a baby
from its home to a (for now undefined) location. Initially the baby is asleep, and
is transported in a stroller. We know that if the person who is pushing the stroller
goes slowly, there is a high probability that the baby will stay asleep. On the other
hand, if the person pushing the stroller goes too fast, there is a high probability
that the baby will wake up, start crying and reach the excited state. The external
parameter that changes is the speed of the stroller, and its external environment is
defined by its position in space. For a quantum system, the external environment
is defined by an object called the Hamiltonian H of the system. For an evolution
to be adiabatic, the rate of the change of H is set to be slow enough.

Figure 1.2: A schematic picture to explain the adiabatic theorem (inspired by
Pauline Besserve). It does not aim to capture the whole underlying physics. The
asleep baby represents the state of lowest energy and the crying baby represents an
excited state of the quantum system.

The adiabatic theorem raises some interesting questions. First, what does “slow”
mean here? The rate is related to the inverse of the Hamiltonian gap. The gap is the
difference in energy levels throughout the evolution. To answer this question about
the validity of the adiabatic theorem, von Neumann and Wigner derived a result
called the “no-crossing rule”. This rule states that, under certain conditions on the
Hamiltonian, two energy levels never actually cross when the Hamiltonian is mod-
ified, but can come very close. The phenomenon when they come so close enough
that we might think they are crossing is called Avoided level-crossing (AC), which
we will formally define in Chapter 2, Sec. 2.4. The gap thus reaches a minimum,
which we note as ∆min. Consequently, in the infinite time regime, the quantum
system is guaranteed to remain at the same level from which it started its evolution.
In our illustration, this means that the theorem guarantees that the baby will stay
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asleep if the stroller moves infinitely slowly. The next question is: what happens
if evolution proceeds faster than the adiabatic condition? In 1932, Landau and
Zener independently derived the probability that the quantum system will jump
from one energy level to the other. These transitions are called non-adiabatic tran-
sitions. In plain English, the smaller the gap, the greater the probability of jumping
[Landau 1932, Zener 1932]. The best analogy to the small gap point in our example
would be the position of the stroller where the baby could easily wake up, e.g. when
the road is bumpy. The bumpy parts of the road should be crossed even more slowly
than the flat ones. It happens that these bumpy passages can appear several times
during the evolution. In the work of [Wilkinson 1987, Wilkinson 1989], the author
undertook first a description of AC, then a statistical study of their number.

The first version of the adiabatic theorem has strong constraints on the Hamilto-
nian, limiting its potential applications. A more general and rigorous mathematical
version was derived by [Kato 1950] in Japan. In particular, he got rid of two as-
sumptions about the spectrum of the Hamiltonian. In his version, the latter can
be continuous and show degeneracies. Around the same time, in [Anderson 1958],
the author demonstrated a physical phenomenon occurring in a quantum system
evolving according to Schrödinger’s equation. He asserted that, under certain con-
ditions, no diffusion takes place in a lattice when it was expected. In simpler terms,
it suggests that a quantum state can become localized within a specific region before
the evolution concludes. This localization may occur in a “wrong” energy level – for
instance, in this thesis, the main consequence of this phenomenon is that at some
intermediate time of the evolution, the lowest energy state is close to the excited
state at final time (Fig. 1.3).

Figure 1.3: Anderson’s localization phenomenon with our illustration. We represent
the state inside the bra-ket notation [Nielsen & Chuang 2002]. The lowest energy
state at an intermediate moment is the sleeping baby in the middle of the journey.
This last state is akin to the crying baby at the end of the journey. It is a bit
far-fetched and shows a limit to the comparison.

To understand the different events a quantum system can undergo, we should
also mention that it can experience phase transitions. These transitions can be first-
or second-order, depending on the continuity of the evolved state at the time of the
transition. We refer the reader to [Sachdev 1999] for more details. Another impor-
tant theoretical result for understanding quantum evolution is the Lieb-Robinson
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bound. Informally speaking, it states that information travels at a finite speed in
a quantum system [Lieb & Robinson 1972]. This means, among other things, that
there is an evolution in total time T such that there is no correlation between two
sufficiently distant sites of the quantum system. The “sufficient” distance is defined
by the Lieb-Robinson velocity vLR and is equal to vLRT .

In the early 70s, shortly after research into theoretical computer science began
with the Church-Turing thesis, Cook and Levin independently proved the first com-
binatorial NP-hard problem [Cook 1971, Levin 1973]. For now, it is enough to think
of NP-hard problems as difficult problems that cannot be solved efficiently. This
problem is called 3SAT for Boolean Satisfiability over clauses of size three. This
problem marks the beginning of complexity theory. This field deals with the anal-
ysis of the resources required to compute certain given functions. In general, these
are temporal resources. At the same time, Karp proved by reduction a zoo of 21
combinatorial problems that are NP-hard [Karp 1972]. For example, the Maximum
Cut (MaxCut) problem is one of them. Let us illustrate this problem (Fig. 1.4).

Figure 1.4: Illustration of the MaxCut problem. On the left the original problem.
On the middle, its encoding in a graph instance. On the right, a possible solution
to the MaxCut problem on the given graph. The latter solution is also solution to
the original problem.

Let us imagine an intersection with traffic lights. The aim is to initialize the
colors of the traffic lights to prevent as many undesirable events as possible from
occurring. Let us assume we only have two colors, red and green. One way of solving
this problem is to encode it in a graph; each traffic light is represented by a node
in the graph, and we connect two nodes if the corresponding traffic lights should,
ideally, be of different colors. The new goal in addressing the original problem
is to find a red/green bicoloration of the generated graph. This is the maximum
cut, because if we display green nodes on the right and red nodes on the left, all
edges crossing the bipartition can be cut. We understand that with a more complex
intersection like the one shown in Fig. 1.5, finding the best bicoloration is much less
straightforward. The number of color combinations explodes exponentially with the
number n of traffic lights as (number of colors)n.

In this thesis, we mainly study this type of problem, called NP-hard
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Figure 1.5: Example of a traffic lights problem on a complex instance. As the
number of traffic lights increases, the number of combination explodes. The best
solution might be frustrated, meaning that even two linked traffic lights have the
same colors.

combinatorial graph problems. We refer the reader to the following review
[Barahona et al. 1988] on the application of combinatorial problems. For exam-
ple, MaxCut’s solution helps design electrical circuits and solves the Ising problem
in physics. The NP-hardness of MaxCut means that we do not know of any al-
gorithm that scales polynomially with the input size to solve the problem on an
arbitrary input graph. However, we may still be interested in approximate solutions
that can be reached efficiently, i.e. in polynomial time. Such algorithms are called
approximation algorithms, and we evaluate their performance by calculating their
approximation ratio. In a nutshell, the approximation ratio tells us how close we are
to the optimal solution. The best approximation algorithm for MaxCut on a general
graph is that of [Goemans & Williamson 1995], which achieves an approximation ra-
tio of 0.87856, i.e. this algorithm guarantees that its output solution cuts more than
87, 856% of all possible edges that can be cut in the optimal solution. If we restrict
the graph to 3-regulars, i.e. each node is linked to exactly 3 others, the authors of
[Halperin et al. 2002] proved that their algorithm achieves an approximation of 0.93
in polynomial time.

Meanwhile, the first idea for a quantum computer was launched independently by
Benioff, Manin and Feynman [Benioff 1980, Manin 1980, Feynman 1982]. Feynman
thought that the best way to simulate nature, which is quantum, was to use quantum
hardware. The idea was formalized by Deutsch, who presented the universal quan-
tum computer [Deutsch & Penrose 1985]. It is fundamentally similar to a “classical”
computer, but the underlying physical laws governing the device are quantum laws.
In the late ’80s, an Italian team came up with the idea of using quantum fluctu-
ations to solve combinatorial problems [de Falco et al. 1988, Apolloni et al. 1989].
They introduced the Quantum Annealing (QA) algorithm, a general metaheuris-
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tic of the same type as simulated annealing to minimize a given cost function.
It uses quantum tunneling to overcome potential barriers, whereas simulated an-
nealing requires a high temperature to overcome these barriers (Fig. 1.6). In
[Kadowaki & Nishimori 1998], the authors provided the first rigorous comparison
of simulated annealing and quantum annealing.

Figure 1.6: Schematic explanation of the physics that helps the state to get over
potential barrier.

It was not until the 1990s that the first quantum algorithms formally demon-
strated “quantum speed-up” compared with classical computers. This means that
quantum computers can solve problems more efficiently than classical comput-
ers [Deutsch & Jozsa 1992, Bernstein & Vazirani 1997]. These are numerical algo-
rithms, as the discrete property makes the setting more conducive to demonstra-
tions. Among them, the two most famous are [Shor 1994]’s algorithm for factoring
prime numbers and [Grover 1996]’s algorithm for finding a needle in a haystack.
These works launched an unprecedented race towards the realization of quantum
advantage in practice.

1.3 Theoretical foundation of analog quantum comput-
ing

In the digital framework, research is already well advanced, with several concrete
proofs of quantum acceleration. The first hardware was beginning to emerge. On
the analog side, the D-Wave Inc. launched its first hardware capable of quantum
annealing. However, theoretical research into the model was not as advanced as
in digital quantum computing. The year 2000 marked the beginning of the for-
malization of Adiabatic Quantum Computation (AQC) coined by the authors of
[Farhi et al. 2001]. They formalized the quantum adiabatic computing framework
with the guarantee of finding the desired state on the basis of the adiabatic theo-
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rem. Basically, in AQC, the initial state is a ground-state of some easy-to-capture
Hamiltonian H0 and the Hamiltonian is continuously modified so that the final
Hamiltonian encodes some combinatorial problem. Indeed, as we mentioned earlier,
the Maximum Cut problem, for example, is equivalent to solving an Ising problem
which is described by the ground-state of a certain Hamiltonian H1. Consequently,
finding the ground-state of H1 is equivalent to finding the solution to the MaxCut
problem. Thanks to the adiabatic theorem, we know that if evolution is sufficiently
slow, the system will remain in the same energy level. So, if it starts from the ground-
state (lowest energy state) of a certain initial Hamiltonian H0 and we change the
Hamiltonian slowly over time, at the end the state is the ground-state of H1, i.e.
the desired solution. To visualize the role of H0 and H1, we understand that H1

depends on the problem and the input instance of the problem. It is as if we could
choose between different final destinations to take the baby, the problem varies if
we have to transport the baby to the nursery or to school. Conversely, the initial
Hamiltonian depends on the problem and it should be easy to prepare the ground-
state of such a Hamiltonian, just as it is easy to put the baby to sleep when he is
at home.

Figure 1.7: A schematic picture to explain AQC (inspired by Pauline Besserve). The
state is the baby in the stroller. Its ground-state is the asleep state. The excited
state is the awake crying state. The starting point is some place where it is easy to
prepare the baby in the asleep state, e.g. “Home”. The final destination depends on
the problem we want to solve. Here, the goal is to bring the baby to the nursery in
its asleep state. The straight road is bumpy and by going too fast we increase the
probability to awake the baby and finish the trip in the excited state.

Let us imagine for a moment thatH0 is a bathtub. If we compareH1 to the shape
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of the bottom of a bathtub, its ground-state is the deepest point of the bathtub.
Evolution begins with a full bath and no knowledge of the shape of its bottom. At
the start of evolution, we empty the bath and the state begins to “see” the shape of
the bottom. It guesses where the deepest point is as the bath empties. Depending
on H1’s landscape, a potential barrier may have separated the bath into several
parts. In order to transport part of the state of a well with local minima to the well
including global minima, i.e. the ground-state, physics relies on quantum tunneling.
This tunneling phenomenon needs time to be effective. In fact, it requires the rate of
change of the Hamiltonian to be sufficiently slow in relation to the inverse square of
the gap ∆min. This requirement is exactly that imposed by the adiabatic condition,
which then ensures the effectiveness of the tunneling effect and guarantees that the
final state is the target state. This new formalism makes the study of the gap the
main tool for analyzing the complexity of AQC.

Like the MaxCut problem, it seems that many other combinatorial problems
can be encoded in an H1 Hamiltonian. For example, in [Childs et al. 2002], the
authors proposed a method for solving the k−clique problem with AQC. For this
problem, we look for a clique of a given size k in a given input graph G, a clique
being a complete subgraph. In general, combinatorial problems defined on graphs
constitute a subset of problems called Quadratic Unconstrained Binary Optimization
(QUBO) and go back to [Hammer & Rudeanu 1968]. We say “quadratic” because
at most two variables are linked, like two nodes in a graph, and “binary” because the
solution is a binary string that associates a bit with each node. Hamiltonians defined
on a graph are said to be 2-local because the Hamiltonian’s operators generally
propagate on a node and/or an edge (2 nodes). In a k−local Hamiltonian, at most
k sites are involved in an operator. In [Cubitt & Montanaro 2016], the authors
proved that finding the ground-state of a k−local Hamiltonian is NP-hard. One of
the first theoretical results in this framework was proved by [Roland & Cerf 2002].
The authors mainly demonstrate that AQC has the same quantum acceleration for
Grover’s problem (the needle in a haystack) by designing a specific Hamiltonian
rate-of-change profile such that the gap has the best possible closure. In 2004, a
major result of [Aharonov et al. 2004] proved the equivalence between AQC and the
universal digital quantum computer, making AQC universal for computation. The
fact that the digital quantum computer can simulate an analog quantum evolution
was already proven, the main contribution focused on the other implication, namely
that AQC¸ can efficiently simulate any polynomial-depth quantum circuit.

The difficulty in proving the complexity result in AQC comes from its continu-
ous nature. When the Hamiltonian is time-dependent, there is no general result for
the Schrödinger equation. Determining the scale of the gap is also a difficult chal-
lenge. Previously, we mentioned that two physical phenomena have been observed
to generate small gaps. With AQC, the study of the gap attracts a lot of attention
with the aim of proving the tendency to scale with the size of the input instance.
[Knysh & Smelyanskiy 2006, Schützhold & Schaller 2006] tackled the gap by ob-
serving the quantum phase transition. A first-order phase transition is characterized
by an exponentially decreasing gap, while second-order transitions are generally ac-
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companied by polynomial closure (exceptions can be found in [Tsuda et al. 2013]).
Perturbation theory provides an approach to exponentially small gaps. The au-
thors of [Amin & Choi 2009] used it to highlight the appearance of a first-order
transition in an evolution of AQC for a specific case. In [Altshuler et al. 2010], the
authors show that Anderson localization can also produce an exponentially small
gap for an NP-hard problem. From these results, it is usual to conclude that AQC
is inefficient, since the adiabatic guarantee is valid for times greater than ∆−2

min.
However, this conclusion is quickly relaxed by [Choi 2011], where the author shows
on a particular example that by changing parameters of the final Hamiltonian, we
can transform a first-order transition into a second-order one. We refer the reader
to [Laumann et al. 2015]’s study of the effect of the Hamiltonian parameter on the
efficiency of AQC.

Short of mathematical tools to study the analog framework, [Farhi et al. 2014]’s
work introduced a quantum circuit inspired by AQC to approximate a combinato-
rial problem. It is called Quantum Approximation Optimization Algorithm (QAOA)
and basically, they performed a continuous evolution digitization and then a param-
eterization to optimize the approximation ratio achieved. This algorithm is also
parameterized by its depth. The depth of a quantum circuit is equivalent to the
running time of the evolution. In the infinite depth regime, the adiabatic theo-
rem guarantees the optimal solution. The authors proved that with a single layer,
QAOA achieves an approximation ratio of 0.6925 for MaxCut on cubic (3 regular)
graphs. This type of algorithm, known as a variational algorithm, attracted a lot
of attention in the Near Intermediate Scale Quantum (NISQ) era [Preskill 2018], as
it performs well in short constant time. In the NISQ era, we assume that quantum
computers are still noisy, so the result of an algorithm is not exactly as predicted
by theory. Also, the computer has a fairly short lifetime due to fast decoherence.
We refer the reader to [Albash & Lidar 2018] for the most recent review on AQC.

More recently, over the last five years, a large number of research pa-
pers have been published motivating the use of QAOA as a promising candi-
date for approximating combinatorial graph problems [Shaydulin & Alexeev 2019,
Herrman et al. 2021, Farhi et al. 2022]. A series of variants of this algorithm
have been proposed to improve its performance in practice [Blekos et al. 2023].
In [Lykov et al. 2023], the authors even suggest that QAOA could provide a
quantum advantage over classical algorithms in the NISQ era. Several nu-
merical studies using classical simulation and also quantum hardware such as
[Pelofske et al. 2024] maintain that QA outperforms QAOA. Both metaheuris-
tics are well suited to approximate combinatorial optimization problems. QA has
even been extended to continuous function optimization and industrial applications
[Yarkoni et al. 2022, Arai et al. 2023]. Another analog approach to quantum com-
putation, called Continuous-Time Quantum Walk (CTQW), is also a promising
computational framework, as similar analytical results have been proven for its ef-
ficiency [Apers et al. 2022]. In CTQW, the Hamiltonian is independent of time. In
this thesis, we do not cover this topic and refer the reader to a recent review by
[Kadian et al. 2021]. In the same vein, the authors of [Banks et al. 2024] proved
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that optimal state transfer techniques achieve an approximation ratio of 0.6003 for
the MaxCut problem on cubic graphs. To improve the analog approaches of QA and
AQC, one idea is to modify the Hamiltonian in the middle of the evolution by adding
another Hamiltonian. This technique stems from the theory behind the idea of
Shortcut-to-Adiabaticity [Guéry-Odelin et al. 2019]. With our example of the baby
in the stroller, the idea would be to find a new route from the house to the nursery,
avoiding the bumps (Fig. 1.8). From a numerical point of view, this approach looks
promising for improving gap scaling [Seki & Nishimori 2012, Feinstein et al. 2022].

Figure 1.8: A schematic picture to explain the idea of Shortcut-to-Adiabaticity. To
avoid the bumps part on the journey, the stroller can take a detour by some designed
place, e.g. a square, so that going fast on this path is safe in terms of excitation
probability.

Some researchers are focusing more on the optimal design of the total Hamilto-
nian rate of change, i.e. the combination function that links H0 and H1. This latter
function is called the schedule. Recall that in QA, the computation does not rely
on the adiabatic theorem and has no general guarantee on the output state. With
this in mind, any schedule is worth to be tested. It has long been thought that the
“bang-bang” form of schedule is optimal [Yang et al. 2017]. The “bang-bang” sched-
ule refers to the specific combination in which only H1 is applied first, then only H0.
This is exactly what the QAOA circuit implements. However, in [Brady et al. 2021],
the authors demonstrate that a “bang-anneal-bang” scheme might be more efficient.
In other words, a continuous part in the middle of the combination certainly im-
proves the performance of the annealing process. In general, the task of schedule
optimization is an important field of research in analog quantum computing (Fig.
1.9).

In terms of understanding anti-crossings, it has been proposed by [Choi 2020]
a new definition of this phenomenon by explicitly describing the behaviors of cer-
tain quantities of the quantum system. This provides a better understanding of
the phenomenon and enables it to be characterized more formally. Finally, we
mention some recent uses of the Lieb-Robinson bound in quantum computing. In
[Haah et al. 2021], the authors proved a bound Lieb-Robinson (LR) for Hamiltonian
simulation on a quantum circuit. Their algorithm decomposes the full Hamiltonian
acting on all qubits into local gates. The LR bound keeps track of the error made
by truncating the gates. The complexity, i.e. the number of gates, of the algo-
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Figure 1.9: A schematic picture to explain the idea of schedule optimization. On
flat part of the road the stroller can go fast. The knowledge of bumps positions
can help to design optimal driving speed of the stroller. This idea was used by
[Roland & Cerf 2002] to prove the Grover speed-up in AQC.

rithm is almost optimal in the worst case. This approach has also been developed in
[Tran et al. 2019]. A major improvement in the tightness of the LR bound was pro-
posed in [Wang & Hazzard 2020]. In [Moosavian et al. 2022], the bound was also
used to study the limited performance of quantum annealing in a short running time.
They proved that the approximation ratio achieved by QA for the MaxCut problem
is lower than the best classical algorithm (Goemans-Williamson) if the running time
is less than logarithmic in the input size.

1.4 Contribution of this thesis

This thesis manuscript is based primarily on peer-reviewed arti-
cles [Braida & Martiel 2021, Braida et al. 2022, Braida et al. 2024a,
Braida et al. 2024b] and published or accepted in different scientific journals.
We tried to leave them as published, we changed some of the notation to keep it
harmonious in the manuscript and we added some unpublished work that is more
exploratory in nature, but which could provide insights and future possibilities. In
Chapter 2, we formally introduce the notations of analog quantum computing and
the definition of the Hamiltonians. We detail different algorithms for the MaxCut
problem. Then, we clearly define the notion of anti-crossings and the Lieb-Robinson
bound.

Unless otherwise stated, all content in Part I and II is original work from the
PhD candidate with his supervisors.

Part I focuses on the understanding of the avoided crossing phenomenon in adi-
abatic quantum computing. In Chapter 3, we first start from the recent characteri-
zation of [Choi 2020] and prove how her parametrization is related to the minimum
gap. Then applying her definition to a toy model for the maximum k−clique prob-
lem, we highlight how the definition can miss an AC (Sec. 3.1). These observations
lead us to suggest a new definition, more general than the former (see Fig. 1.10 and
Sec. 3.2). It uses a Taylor expansion to justify our new definition and it provides
in the same time the rigorous demonstration of the initial description of an AC
(Sec. 2.4.2). We validate our definition with numerical evidence. Eventually, we
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show some limitation cases that our definition will not capture either (Sec. 3.3). In
Chapter 4, we prove a theorem that gives a condition of occurrences of an AC under
the validity of the perturbation expansion at first order (Sec. 4.1). We then apply
this theorem to the MaxCut problem to prove that AQC efficiently solves MaxCut
over regular bipartite graphs and that enough irregularity leads to an exponentially
closing gap (Sec. 4.2). Although the general implication of this observation would
be to conclude on the failure of AQC in this case, using our new AC definition,
a numerical study hints that it is probably not the case. For small instances, the
probability to measure the optimal state seems to reach a constant value efficiently.
This striking observation leads us to open a question on the possibility to prove an
adiabatic theorem relaxed from its dependence in the gap. The last section of the
Chapter (Sec. 4.3) suggests other interesting studies of the MaxCut problem using
perturbative theory. It is quite remarkable that we can speak about the different
coefficients in graph terminology. Would it allow to prove interesting results?

Figure 1.10: Inclusion of the anti-crossings definitions.

Part II targets the potentiality of QA as an approximation algorithm. More
precisely, we tackle the study of short constant time QA for MaxCut over cubic
graphs. Our first approach (Chapter 5) is a direct adaptation of the QAOA ap-
proximation ratio demonstration. We first describe the different steps in the analog
regime (Sec. 5.1). Then, the work resides in the computation of a small enough
LR bound at distance 1 to derive a non-trivial (above random guess) lower bound
on the approximation ratio when QA is studied as a 1-local algorithm (0.5933 in
Fig. 1.11 and Sec. 5.2). A tightness study of the LR type bound used leads us to
bring some numerically convincing argument that the ratio should be above the
QAOA one (0.6925). We suggest a non-implementable algorithm, in the sense that
it is too costly to be run, whose ratio is probably close to 0.6963 (Sec. 5.3). In the
last project detailed in Chapter 6, we develop a super tight LR bound achieving
astonishing numerical values allowing us to reduce the time needed for the hinted
previous algorithm. Along with the introduction of a parametrized version of QA,
we were able to prove that the approximation ratio reached by QA with a 1-local
analysis is above 0.7020, outperforming any known 1-local algorithm for this prob-
lem (see Fig. 1.11 and Sec. 6.2). We discuss the tightness of this new bound and
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prove that the employed method almost reaches its optimality (Sec. 6.3). In a last
chapter (Chapter 7), we develop some insight about the locality in QA, and what is
needed to prove a state-dependent LR bound. Eventually, we give some argument
on the effective approximation ratio by arguing on the worst graph and by cleverly
taking advantage of the graph symmetry, thanks to which we are able to quickly
simulate large graphs.

Figure 1.11: Similar to Fig. 2.9 where we added our contributions in bold. They
corresponds to a 1-local analysis of QA.
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In this chapter, we will develop the mathematical formalism that will be useful
for us in pursuing the research that is the subject of this thesis. As far as possible,
we have tried to use common symbols for well-known physical quantities, or if we
have reused some of the work of other authors, but to keep a harmonious notation
in the manuscript, we may adapt some of them.
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2.1 Theoretical foundation of analog quantum comput-
ing

2.1.1 Complexity theory

Before diving into the quantum formalism, it is essential to establish some fundamen-
tal definitions regarding complexity classes for decision and optimization problems.
The complexity of an algorithm denotes the resources required for its execution.
When unspecified, complexity typically refers to the time needed to run the algo-
rithm, expressed as a function of the input size n, and called the running time T .
The algorithm can be of different nature, namely, classical or quantum. The dis-
tinction is based on the hardware used to run the algorithm. In the classical case,
we distinguish between deterministic algorithms, i.e. same input result in the same
output, and probabilistic algorithms, i.e. same input potentially result in different
outputs. The output of a quantum algorithm is defined by the probability distri-
bution generated by the final state of the algorithm. Usually, when unspecified,
algorithm refers to deterministic algorithm. In the thesis, we simply use algorithm
to mention quantum algorithm when it is clear from the context.

Complexity classes were first defined for decision problems and then adapted
for optimization problems. A decision problem is a yes-no problem, i.e. if g is
an instance of a decision problem, the goal is to answer the question “is there a
solution x to g” ? For example, MaxCut above k (“is there a bipartition that cuts
at least k edges of the input graph?”) or k-clique (“does the input graph have a
complete subgraph of size k?”) are decision problems. The definition automatically
splits the inputs into two subsets, “yes”-instances and “no”-instances, for which the
above question is answered by “yes” and “no” respectively. In this thesis, we will
restrict to problems whose solutions x can be checked efficiently, i.e. there exists
a deterministic algorithm, called the verifier, that takes g and x as an input and
verifies if x is a solution for input g. The verifier runs in polynomial time with
respect to the input size (in particular the size of x is polynomial in the size of
g). Note that for “yes”-instances, there exists x such the verifier accepts, while for
no-instances the verifier rejects for any x. This class of problems is called NP:

Definition 2.1 (NP). The class NP is defined as the set of all decision problems
for which the solution of a “yes”-instance is verifiable in polynomial time and any
candidate solution of a “no”-instance is rejected by the verifier in polynomial time.

Among all problems in NP, some of them have solutions that are efficiently
computable. It defines a subset of NP and it is called P:

Definition 2.2. (P) The class P is defined as the set of all decision problems for
which there is a polynomial-time deterministic algorithm that can decide if the input
is a “no” or “yes”-instance.

Although it is somewhat trivial to see that P ⊂ NP, it is widely believed that
P ̸= NP since [Cook 1971, Levin 1973] but no one ever proved or disproved the
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converse inclusion. It is widely believed that there exists problems in NP that are
not in P. To class the ones that are very unlikely to be in P, we define the notion of
NP-hardness. If solving a specific problem L in polynomial time, allows us to solve
efficiently any other problem in NP, then L is said to be NP-hard. In addition, if L
belongs to the class NP then L is NP-complete. This field of research started with
the Cook-Levin theorem [Cook 1971, Levin 1973] where the authors, independently
proved the first NP-complete problem. Then, by a technique called polynomial
reduction, Karp showed 21 other NP-complete problems [Karp 1972].

All these above definitions were generalized to the probabilistic and quan-
tum case. P in the probabilistic framework becomes BPP, and in the quan-
tum one, it becomes BQP. B stands for “Bounded-error”, meaning that there
exists a polynomial randomized/quantum algorithm that gives the correct yes-
no answer with probability at least 2

3 . The same generalization exists for the
class NP and it becomes MA, for Merlin-Arthur, in the probabilistic regime and
QMA in the quantum one. We refer the reader to the following references
[Bernstein & Vazirani 1997, Ausiello et al. 1999] for a more comprehensive presen-
tation of computational complexity. On Fig. 2.1, we sum up the known inclusion
results between the complexity classes (see [Albash & Lidar 2018] for more details).

Figure 2.1: Known inclusion of some complexity classes

In this work, we are interested in the optimization versions of those problems.
The goal is not to answer the yes-no question anymore but to compute the optimal
solution x of the problem input g with respect to some cost function C(g, x). Even
though there exists well defined terminology for the optimization versions, for sim-
plicity, we will abusively call them the same way. For example, as we will see in the
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Section 2.3, we say that the maximum cut optimization problem is NP-hard.
NP-hard problems are more difficult to solve in terms of time complexity and

usually the best known algorithm find the optimal solution in exponentially long
time with respect to the input size. What happens if we only allow polynomial
time? We only hope for an approximated solution. Those algorithms that run in
polynomial time and guarantee that the solution is “close to the optimum” are called
approximation algorithms (classical or quantum). To evaluate their performance, we
compute their approximation ratio. Here, we only consider maximization functions.
For a deterministic algorithm A, it is defined as the minimum among all inputs g
of the ratio of the cost of the output y of the approximation algorithm with the
optimal cost Copt(g) of the input :

ρA = min
g

C(g, y)

Copt(g)

For example, we say that A is a 0.7 approximation algorithm for maximization
problem C if, given any input g, it guarantees that the output solution cost is at
least 0.7 times the best value Copt(g).

For probabilistic algorithms, we are interested in the expectation of the output
cost value Ey∼A(C(g, y)), i.e. it is guaranteed that given an input g, on average,
the output cost value is ρC times the optimal cost value for g.

For quantum algorithms solving classical problems, we also look at the the aver-
age output value of the final state measure compared to the optimal one. To write
it properly, let us first introduce the quantum computational model we will study
in this thesis and its notations.

2.1.2 Adiabatic quantum computing

As in the classical setting, in quantum computing we differentiate between digi-
tal and analog computing based on the hardware used. In this thesis we mainly
study the quantum analog framework to solve or approximate NP-hard optimiza-
tion problems. Let us start with a formal definition of AQC as defined in the review
[Albash & Lidar 2018].

Definition 2.3 (AQC). A k−local adiabatic quantum computation is specified by
two k−local Hamiltonians, H0 and H1, acting on n p−state particles, p ≥ 2. The
ground-state of H0 is unique and is a product state. The output is a state that is
ε−close in the l2−norm to the ground-state of H1. Let s(t) : [0, T ] → [0, 1] (the
“schedule”) and let T be the smallest time such that the final state of an adiabatic
evolution generated by H(s) = (1 − s)H0 + sH1 for time T is ε−close in l2−norm
to the ground-state of H1. T is called the running time of the computation.

In this work, we are only interested in Hamiltonians acting on quantum bits
(qubits) so p = 2. Qubits are 2−states particles that can be represented by |0⟩
the ground-state and |1⟩ the excited state. For a comprehensive introduction to
quantum computing, we refer the reader to [Nielsen & Chuang 2002]. Furthermore,
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we will mainly be concerned with QUBO problems (Def. 2.4) which implies that
our Hamiltonians are k = 2−local. Unless specifically mentioned, we will not use
p and k to represent those parameters as we are fixing them here for the rest of
the thesis. For AQC to solve QUBO problems, it must be ensured that the final
ground-state of H1 encodes the solution x∗ of the optimization problem. The choice
of the two Hamiltonians H0 and H1 differs according to the problem under study.
In this definition, both Hamiltonians are hermitian matrices in C2n×2n . In Sec. 2.2,
we express the Hamiltonians for three problems: maximum k−clique, MaxCut and
Maximum Independent Set (MIS). The last quantity to be designed is the schedule
s(t) such that s(0) = 0 and s(T ) = 1, the choice being totally arbitrary.

Definition 2.4 (QUBO). Let x ∈ {0, 1}n be an n−bitstring and Q ∈ Rn×n a weight
matrix. The goal of a Quadratic Unconstrained Binary Optimization problem is to
find the assignment x∗ that minimizes the following function:

fQ(x) = xTQx =
∑
i,j

Qijxixj

Now, let us call |ϕj(s)⟩ and Ej(s) the instantaneous eigenvectors and eigenval-
ues of the total Hamiltonian H(s) acting on n qubits, such that ∀j ∈ [0, 2n −
1], H(s)|ϕj(s)⟩ = Ej(s)|ϕj(s)⟩ where the eigenvalues are ordered with E0(s) ≤
E1(s) ≤ ... ≤ E2n−1(s). With this notation, the ground-state is the state of
minimum energy, namely |ϕ0(s)⟩. The definition then requires that at s = 0,
E0(0) < E1(0), so that the initial ground-state |ϕ0(0)⟩ is unique and that it is
a product state. This last condition can be relaxed with an “easy-to-prepare state”
which is the case of product states but in some cases it can be interesting to start
from an easy-to-prepare entangled state (see Sec.2.2.4). The output state, which we
do not know yet how to construct, is represented by |ψT ⟩, for now, and is ε−close
to the final ground-state of H1, i.e. |⟨ψT |ϕ0(1)⟩|2 ≥ 1 − ε. The final ground-state
can be degenerate and so the output state can be in a superposition of states lying
in the ground subspace of H1. We detail in Sec. 2.2 how to write the Hamiltonians
for graph combinatorial problems. In [Lucas 2014], the authors show how to write
Hamiltonians for many NP-hard problems.

Writing |ψ(s)⟩ the current state of the algorithm, the computation runs as follows
for runtime T . The initial quantum state |ψ0⟩ = |ψ(0)⟩ is the ground-state of the
initial Hamiltonian H0, then the quantum system evolves under the effect of the
defined Hamiltonian H(s) according to Schrödinger’s equation:

∀s ∈ [0, 1], iℏ
∂

∂s
|ψ(s)⟩ = TH(s)|ψ(s)⟩ (2.1)

As it is standard in this field of research, ℏ is taken as unity which sets the order of
magnitude of the Hamiltonians strength. The output state, abusively written earlier
|ψT ⟩ to preserve the dependence on the runtime, is the final state |ψ(1)⟩ of the quan-
tum evolution. It usually ends up in a superposition of classical states. The aim of



34 Chapter 2. Preliminaries

AQC is for the latter state to overlap significantly with the final ground-state to solve
the problem at hand. The main theoretical support for this property is the adiabatic
theorem, which states that a quantum system will remain in the same eigensubspace
during the whole quantum process if the evolution is slow enough. “Slow enough” is
characterized by the size of minimum spectral gap ∆min = mins |E1(s) − E0(s)| of
the total Hamiltonian H(s). In general, with few assumptions on the Hamiltonian,
the gap dependence is O(∆−3

min) [Jansen et al. 2007], and with smoothness hypoth-
esis it can be improved to O(∆−2

min) [Elgart & Hagedorn 2012]. In most cases of
interest in computer science, the Hamiltonians respect the condition for an inverse
square minimum gap dependence of the running time. Here we expose the version
of [Morita & Nishimori 2008] for which the adiabatic condition is somewhat easier
to capture. It is, however, more restrictive than the previous cited versions as it
assumes a non-degenerate instantaneous ground-state throughout the evolution.

Theorem 2.1 ([Morita & Nishimori 2008]). If the initial state is the ground-state
at s = 0, i.e. |ψ(0)⟩ = |ϕ0(0)⟩ and the instantaneous ground-state of H(s) is not
degenerated for s ≥ 0, the quantum state |ψ(s)⟩ has the following asymptotic form
in the limit of large T :

|ψ(s)⟩ =
∑
j

cj(s)e
−iT

∫ s
0 Ej(s

′)ds′ |ϕj(s)⟩, (2.2)

c0(s) ≃ 1 +O(T−2),

cj ̸=0(s) ≃
i

T

[
Aj(0)− eiT

∫ s
0 ∆j0(s

′)ds′Aj(s)
]
+O(T−2)

where Aj(s) =
⟨ϕj(s)|Ḣ|ϕ0(s)⟩

∆j0(s)2
and ∆jk(s) = Ej(s)− Ek(s).

Proof. Substituting state (2.2) in Schrödinger equation (2.1) gives us the following
equation for the coefficient cj(s) :

ċj =
∑
k ̸=j

ck(s)
eiT

∫ s
0 ∆jk(s

′)ds′

∆jk(s)
⟨ϕj(s)|Ḣ|ϕk(s)⟩ (2.3)

where we used that ⟨ϕj(s)|ϕ̇j(s)⟩ = 0 because the state is of unit norm and we can
fix the global phase of the state which is irrelevant in quantum computing. The
derivative of the eigen-relation H(s)|ϕj(s)⟩ = Ej(s)|ϕj(s)⟩ gives :

⟨ϕj(s)|ϕ̇k(s)⟩ = −
⟨ϕj(s)|Ḣ|ϕk(s)⟩

∆jk(s)

Then integrating Eq. (2.3) yields

cj(s) = cj(0) +
∑
k ̸=j

∫ s

0
ck(u)e

iT
∫ u
0 ∆jk(s

′)ds′ ⟨ϕj(u)|Ḣ|ϕk(u)⟩
∆jk(u)

du
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By assumption, the initial state is the ground-state of H(0), so c0(0) = 1 and
cj ̸=0(0) = 0. By introducing αjk(u) = eiT

∫ u
0 ∆jk(s

′)ds′ ⟨ϕj(u)|Ḣ|ϕk(u)⟩
∆jk(u)

and inserting the
former equation into itself, we can distinguish two cases j = 0 and j ̸= 0 as

c0(s) = 1 + 0 +
∑
k ̸=0

∑
l ̸=k

∫ s

0

∫ u

0
cl(v)αkl(v)dv α0k(u)du (2.4)

cj ̸=0(s) = 0 +

∫ s

0
αj0(u)du+

∑
k ̸=j

∑
l ̸=k

∫ s

0

∫ u

0
cl(v)αkl(v)dv αjk(u)du (2.5)

We then perform an integration by parts of αj0(u) giving us :∫ s

0
αj0(u)du =

1

iT

[
eiT

∫ u
0 ∆j0(s

′)ds′Aj(u)
]s
0
− 1

iT

∫ s

0
eiT

∫ u
0 ∆j0(s

′)ds′ d
du
Aj(u)du

where [f(u)]s0 = f(s) − f(0). Therefore the first term yields the order T−1 part of
the cj ̸=0(s) coefficients. The next integration by parts will give the T−2 term along
with the nested integrals of Eq. (2.5). For the ground-state coefficient c0(s), we see
that the T−1 is null and the next one is of order T−2 with the nested integrals of
Eq. (2.4).

The condition for adiabatic evolution is straightforward. We say that the quan-
tum evolution is adiabatic if for every s ∈ [0, 1], the state |ψ(s)⟩ remains close to
the instantaneous ground-state of H(s). In other words, the condition translates
into ∀j ̸= 0 , ∀s, cj(s) ≪ 1, i.e. T ≫ |Aj(s)|. We recover the usual writing of the
adiabatic validity condition, namely

T ≫ ∥Ḣ∥max

∆2
min

where ∥Ḣ∥max is the maximum norm of the time derivative of the Hamiltonian
throughout the evolution. We note that this condition is consistent with the
expansion presented in the proof of Theorem 2.1. In usual case of combinatorial
problem, the numerator scales only polynomially with the input size, making the
scaling of the minimum gap the main quantity to analyze to conclude on the
complexity of AQC.

The adiabatic theorem is the main theoretical foundation of AQC. This theorem
guarantees that the runtime is bounded by the complexity of the minimum spectral
gap. In 2004, the authors of [Aharonov et al. 2004] showed that AQC is equivalent
to the gate-based model of quantum computing making AQC a universal compu-
tational framework. Indeed, any continuous quantum evolution can be efficiently
approximated by a quantum circuit using a discretization, a process known as Hamil-
tonian simulation. Conversely, it is possible to encode a quantum circuit into a local
Hamiltonian such that its ground-state contains the output of the circuit. Based
on this theorem, the task of analyzing the complexity of adiabatic computation is



36 Chapter 2. Preliminaries

restricted to understanding the behavior of Hamiltonian gap. It appears that this
task is extremely difficult in the general case, and there are only few cases where
an analytical derivation of the gap is possible. The main focus of the studies is to
understand how ∆min scales with the input size, and to distinguish between hard
problems with a gap that closes at least exponentially fast and easy problems with
only a polynomially small gap or less. In Sec. 2.4, we will detail the interesting
case where the gap closes exponentially fast at avoided level crossing. Two physical
phenomena are known to be the source of these AC: first order quantum phase
transitions [Sachdev 1999] and Anderson localization [Anderson 1958].

Overall, AQC seems well suited for some specific tasks such as finding the ground-
state of an Hamiltonian and very little analytical work is known around its com-
plexity, compared to promising numerical works. The gap dependence is the main
hurdle toward analytical proofs of quantum advantage. However, it is still possible
to study a quantum evolution by eliminating the gap dependence in the design of
the algorithm as we see in the next section. For near-term devices (see Sec. 2.1.4),
the runtime is limited by a constant and, in practice, the duration of quantum evo-
lution should be less than this latter upper limit. This is why there is great interest
in understanding quantum evolution performance on different time scales.

2.1.3 Quantum annealing

In this setting, the runtime T can be arbitrarily chosen and the initial state may
not be the initial ground-state (although this is usually the case). Depending on the
choice of T , the evolution is not necessarily adiabatic and the final state no longer
has the same guarantee. We call such an evolution quantum annealing (QA) and it
is a general meta-heuristic for approximating combinatorial problems. It has been
introduced in [de Falco et al. 1988, Kadowaki & Nishimori 1998] with practical im-
plementation in [Apolloni et al. 1989]. With this definition, QA is more general
than AQC but the convergence of QA towards the optimal solution is still guar-
anteed by the adiabatic theorem. This opens the door to approximation study or
to parametrization of AQC to optimize a certain target measure. To evaluate the
performance of the evolution, we may want to study/optimize the probability of
measuring the target state |x∗⟩, i.e. |⟨x∗|ψT ⟩|2. Nonetheless, as the runtime is ar-
bitrarily chosen, away from the adiabatic regime, it is most likely that the output
state differs from the target. Depending on T , the output state can still have a good
enough cost value not too far from the target. The output state is an approximate
solution. To capture “good enough”, another potential performance indicator is the
approximation ratio (Def. 2.5), the goal being to optimize the average value of the
final state with respect to the optimal value.

Definition 2.5 (Approximation ratio). Given an input graph G on which we want
to solve an maximization problem C, and a quantum algorithm A that outputs a
potential solution x for the problem with value C(G, x), the approximation ratio
r(C(G),A) is defined by the ratio of the expected output of A and the optimal value
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Copt(G).

rC(G),A =
Ex∼A(C(G, x))

Copt(G)
(2.6)

In this thesis, we are interested in the worst case scenario. This means that we
are looking for input-independent lower bounds of the worst possible ratio taken
over all possible input graphs:

ρC,A = min
G

Ex∼A(C(G, x))

Copt(G)

In our notation, the final expected output is written as ⟨ψT |H1|ψT ⟩. To see this, let
us decompose |ψT ⟩ in the computational basis of the bit-strings, and write

⟨ψT |H1|ψT ⟩ =
∑

x,y∈{0,1}n
⟨ψT |y⟩⟨y|H1|x⟩⟨x|ψT ⟩

=
∑

x∈{0,1}n
⟨x|ψT ⟩⟨ψT |x⟩C(x)

=
∑

x∈{0,1}n
|⟨x|ψT ⟩|2C(x)

= Ex∼A(C(x))

where we use the fact that ⟨x|H1|y⟩ = C(x)δxy and we remove the dependency in
G of C as it is clear from the context. δxy represents the Kronecker delta symbol
that evaluates to 1 when its indices are equal (x = y) and 0 otherwise (x ̸= y).

This broader setting of QA offers room to analyze the quantum evolution as an
approximation algorithm for shorter runtimes, away from the adiabatic condition.
In this thesis (Part II), we undertake the specific runtime regime of constant time QA
with the goal to formally prove lower bounds on the approximation ratio achieved
by QA on some specific benchmark problems that we will detail in the next section.
Similar results exist in the bounded depth quantum circuit model as well as in
the classical case with constant round distributed algorithms. In Sec. 2.3, we will
develop the construction of two other algorithms that formally prove lower bounds
on the worst-case approximation ratio.

Quantum annealing seems to be even more suitable for NISQ use, as the hard-
ware developed to perform this metaheuristic have a limited “quantum lifetime”. As
we will see in the next section, this lifetime is called decoherence time.

2.1.4 Hardware and quantum annealer

The hardware available today for performing continuous quantum evolution is gen-
erally referred to as quantum annealer. As mentioned in the Introduction chapter
1, D-Wave was the first company to commercialize this type of hardware. Subse-
quently, many other companies began to develop technology to perform continuous
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quantum evolution, such as Pasqal [Henriet et al. 2020], Qilimanjaro, QuEra Com-
puting and others. The main limitation of current hardware is the total runtime it
allows. This limitation means that adiabatic evolution cannot be guaranteed in the
general case. This makes QA the main metaheuristic for analog quantum computing
in the NISQ era. However, very few analytical results are known for this regime,
so in this thesis we set out to prove the algorithmic performance of QA in constant
time (Part II).

As an example, the hardware from the French company Pasqal uses Ryd-
berg atoms as the physical building blocks of quantum information. Indeed, in
[Saffman et al. 2010], the authors show how to use this technology to perform quan-
tum computations. In [Serret et al. 2020], the authors provide quantitative require-
ments for running a QA algorithm with this hardware. A Rydberg atoms Hamil-
tonian naturally encode a specific combinatorial problem, called the MIS problem
(see Sec. 2.2.3). A recent study [Ebadi et al. 2022] published in Science claimed
a “quantum speed-up” using 287 Rydbergs atoms to solve a combinatorial graph
problem compared with simulated annealing, the classical version of QA. Later in
[Andrist et al. 2023], the result was mitigated by using a broader range of classical
solvers.

2.2 Hamiltonians definition for graphs combinatorial
problems

In both AQC and QA, the encoding of the target Hamiltonian H1 is crucial. As stip-
ulated by Def. 2.3, the ground-state of H1 should encode the desired output state.
As mentioned earlier, in this work we will mainly focus on graph optimization prob-
lems. In this section, we first develop the general form of the target Hamiltonian to
solve such combinatorial problems. Then we explicit the expression of the Hamilto-
nians for three problems : Maximum Cut, Maximum Independent Set and Maximum
(weight) k−clique. While the initial Hamiltonian H0 remains independent of the
input and the same one can always be used, its design can be tailored according to
the nature of the problem, as in the maximum (weight) k−clique problem. For more
examples of problems encoded in Hamiltonian, we refer the reader to the seminal
work of [Farhi et al. 2001] and the comprehensive work of [Lucas 2014].

2.2.1 General optimization on graphs

We consider a restricted class of problems whose inputs are graphs and outputs are
set of nodes, or two-partitions of the input node set, minimizing some global cost
function. Moreover, we focus our interest on combinatorial graph problems where
the global cost is a sum of cost functions localized on the nodes and the edges of
the input graph.

Formally, we are given as input some graph G = (V,E) on n nodes, and our cost
function C associates any n-bit vector x (bit xi corresponding to the Boolean value
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of node i) with a value C(x) =
∑

i∈V v(xi)+
∑

⟨i,j⟩∈E u(xi, xj), for certain functions
v : {0, 1} → N and u : {0, 1} × {0, 1} → N. In general, the weighted version of
each problem can be easily expressed by including the dependence of the weights
in the cost functions u and v. The values taken from the cost function are then R.
Moreover, if we assume that the local cost functions are quadratic, it is easy to see
that the resulting cost functions are a special case of Def 2.4, see [Hauke et al. 2020].

In quantum computing, we call the basis {|x⟩, x ∈ {0, 1}n} the computational
basis. A quantum annealing algorithm, a fortiori an adiabatic quantum computation
algorithm, for minimizing a cost function C on n-node graphs is defined by three
ingredients:

Final Hamiltonian H1. A target Hamiltonian H1 (i.e. a hermitian operator)
encoding the solution of the cost function C as its ground-state. The generic way
to ensure this property is to encode the entire cost function, in the sense that for
all x ∈ {0, 1}n, H1|x⟩ = C(x)|x⟩. Notice that H1 is diagonal in the computational
basis. This completely defines H1 and the target state x∗, which minimizes C, is
the ground-state as H1|x∗⟩ = C(x∗)|x∗⟩. This construction is achieved by encoding
each clause of C separately: H1 = −

∑
i∈V N

(i)−
∑

⟨i,j⟩∈EM
(i,j). It follows that the

structure of C is preserved by this Hamiltonian H1 and local clauses become local
terms (also called observables). Here, N (i) encodes the local cost function v(xi) of
node i acting on qubit i and M (i,j) the local cost function u(xi, xj) of edge ⟨i, j⟩
acting on qubits i and j. They can be defined as follows:

N (i) =(v(0)|0⟩⟨0|+ v(1)|1⟩⟨1|)⊗ IV \{i}

M (i,j) =(u(0, 0)|00⟩⟨00|+ u(0, 1)|01⟩⟨01|
+ u(1, 0)|10⟩⟨10|+ u(1, 1)|11⟩⟨11|)⊗ IV \{i,j}

Initial Hamiltonian H0. An input-independent initial Hamiltonian H0 to start
our annealing. The ground-state of this Hamiltonian must be easy to prepare, as, for
example, the product states. Apart from this technical constraint, to understand the
choice of this Hamiltonian, we need to understand the role it plays in the evolution.
Let’s consider the evolution of the amplitude of a state ⟨x| in the quantum system
|ψ(s)⟩. The Schrödinger equation allows us to write

i
|ψ(s+ ds)⟩ − |ψ(s)⟩

ds
= TH(s)|ψ(s)⟩

⇒|ψ(s+ ds)⟩ = (I − iTds((1− s)H0 + sH1))|ψ(s)⟩
⇒⟨x|ψ(s+ ds)⟩ = (1− iTsC(x)ds)⟨x|ψ(s)⟩ − iT (1− s)ds⟨x|H0|ψ(s)⟩

⇒⟨x|ψ(s+ ds)⟩ = (1− iTsC(x)ds)⟨x|ψ(s)⟩ − iT (1− s)ds
∑
y ∼
H0

x

(H0)xy⟨y|ψ(s)⟩

where I is the identity matrix and y ∼
H0

x means that the matrix element (H0)xy

is non-zero, i.e. states x and y are related via H0. We understand from the last
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equation that the amplitude at time s+ds of state x is influenced by the amplitude
of x at time s but also by the amplitude of “neighboring” states y via H0. Without
saying more on the evolution, we understand that if we want to reach some state x∗,
i.e. the amplitude of x∗ at time s = 1 is large, it requires that this state “commu-
nicates” with other states. Otherwise, the probability of measuring the target state
at the end of the evolution will be the same as the initial probability. Therefore, H0

should connect all states that are potential solution to the optimization problem.
Informally, physicists call this a driver in which the quantum system can evolve.

Schedule s(t). The schedule is a function s(t) : [0, T ] → R with s(0) = 0 and
s(T ) = 1 so that H(0) = H0 and H(s(T )) = H1 and it rules the trajectory in time
of the total Hamiltonian H(s). It also fixes the runtime T and depending on the
scaling of the minimum gap, the evolution will be adiabatic or not. This degree of
freedom allows a wide range of possible functions and it includes the whole research
area of optimal transport (see [Brady et al. 2021]). Freedom in the choice of the
schedule also enables to add a catalyst Hamiltonian in the middle of the evolution.
For example, the following total Hamiltonian is allowed

H(s) = (1− s)H0 + s(1− s)Hcat + sH1

The most standard choice of schedule is the linear interpolation with s(t) = t
T which

is a straight line between 0 and 1. Unless stated otherwise, in this work we mostly
focus on this standard schedule without perturbative Hamiltonian and we leave
this question for further work. It is interesting to point out that a local adiabatic
condition can be stated as

ds
dt
≪ ∆01(s)

⟨ϕ1(s)|Ḣ|ϕ0(s)⟩
enabling for an adjusted design of the schedule, i.e. to go fast when the gap is
large and slow down when it is small. This idea has been deftly manipulated
in [Roland & Cerf 2002] to prove the well-known Grover speedup in the adia-
batic regime. The authors adjusted the speed of the evolution according to the
gap leading to a particular form of schedule. We see that the standard linear
schedule has a speed of 1/T which does not allow for intelligent control of the speed.

These three ingredients are both necessary and sufficient for initiating a quantum
annealing process. In order to comprehensively understand the Hamiltonians formu-
lation, we provide a detailed description of the Hamiltonians employed to investigate
the computational complexity of solving three combinatorial graph problems. It is
important to note that the complexity depends on the choice of your Hamiltoni-
ans [Choi 2011].

2.2.2 Maximum Cut

Maximum Cut as an optimization problem, is a combinatorial problem in which
one has to find a bi-partition of the nodes of an input graph G(V,E) such that the
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number of edges across the bi-partition is maximized (see Fig. 2.2). The bi-partition
is represented by a n−bit vector x with partition ‘0’s and ‘1’s (respectively green and
red in Fig. 2.2). The associated cost function is CMaxCut(x,G) =

∑
(i,j)∈E xi ⊕ xj

where ⊕ is a XOR operator between two bits. It evaluates to 1 if xi ̸= xj and 0
otherwise. Using the notation of the previous section, we have that function v(.) is
null and the cost function u(., .) is the XOR operation. It is interesting to note that
this function has a Z2 symmetry meaning that by flipping all the bits of a bitstring
x, it gives another bitstring x̄ with the exactly the same cost value. Also, without
any knowledge of the input labeling, any bitstring is a potential solution.

Figure 2.2: Example of Maxcut solving on the graph (left) with solution (right). The
bi-partition green/red represents the bi-partition ‘0’ and ‘1’. The solution proposed
on the right has value C(1010) = −4.

To solve this problem using quantum annealing, we first look at the opposite
cost function C = −CMaxCut, as the setting of QA we defined earlier can be used to
minimize some functions.

A standard choice for the initial Hamiltonian is

H0 = −
∑
i∈V

σ(i)x

where σ(i)x is the bit-flip operator acting on qubit i. The ground-state (i.e. the
eigenvector of minimum eigenvalue) of this Hamiltonian is the product state |ψ0⟩ =(
|0⟩+|1⟩√

2

)⊗n
, the uniform superposition of all possible bit-strings of length n. This

state is particularly easy to prepare (it is not entangled) and will be the starting point
of our computation. Now, if we look at the matrix elements of H0, we understand
that for any bit-strings x and y, (H0)xy = −1 if x differs from y by exactly one bit
and 0 otherwise. This observation tells us that the graph generated by −H0 is the
hypercube, e.g. see Fig. 2.3. This choice of Hamiltonian satisfies the connection
condition between all the possible solutions.

For the final Hamiltonian H1, we observe that the cost function can be rewrit-
ten in terms of variables zi = 2xi − 1 ∈ {−1,+1} as C(z) = −

∑
⟨i,j⟩∈E

1−zizj
2 . It
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Figure 2.3: Example of the graph generated by −H0 with n = 3. Each node of the
graph represents a potential solution, i.e. a bi-partition of the input graph G.

computes exactly the same function. To encode it in a Hamiltonian, we use the
Pauli σz operator where state |0⟩ is the +1 eigenvector and state |1⟩ is the -1 eigen-
vector. For quantum computing, this operator is the perfect basis transformation
from {0, 1} to {−1,+1}. Thus, the Hamiltonian writes

H1 = −
∑

⟨i,j⟩∈E

1− σ(i)z σ
(j)
z

2

so that it verifies for any bit-string H1|x⟩ = C(x)|x⟩. The optimal state x∗ is the
one that minimizes C, so the quantum state |x∗⟩ is the ground-state of H1.

These two Hamiltonians are well defined as required by the setting of AQC or
QA, and the adiabatic theorem guarantees that the adiabatic evolution will find the
solution to this problem. In Sec. 2.3, we review some of the known approximation
ratios proved on this problem in the classical and quantum world.

2.2.3 Maximum Independent Set

Maximum Independent Set as an optimization problem, is a combinatorial problem
where the goal is to find the largest set S of nodes of a graph G(V,E) such that
there is no edge of E between the nodes of S, called a stable. We encode the
potential independent set in a vector x = x1x1....xn with xi = 1 if i ∈ S and xi = 0

otherwise. The cost function is written in two parts because we want to maximize
the Hamming weight of x while minimizing the number of edges between nodes i
and j such that xi = xj = 1. We write CMIS(x) =

∑
i∈V xi −

∑
(i,j)∈E xixj . Even

though this function only weakly encodes the independent set constraint, one can
easily transform any bit-string x of cost CMIS(x) into a stable of size at least CMIS(x).
This can be done considering each edge that violates the stable condition (i.e. each
edge ⟨i, j⟩ such that xi = xj = 1), picking at random one of its extremities, and
removing it from the solution. This effectively removes a node from x while “fixing”
at least an edge, thus creating a new solution with an increased cost. Eventually,
the maximum of CMIS(x) corresponds to a maximum independent set.
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Figure 2.4: Example of an MIS in a graph. The MIS in green node is encoded in
vector x = 101010101 with value C(x) = −5.

Like the MaxCut problem, to solve MIS via analog quantum computing, we will
look at the cost function C = −CMIS. The same initial Hamiltonian works as well for
this problem, i.e. H0 = −

∑
i∈V σ

(i)
x . In order to implement C into a Hamiltonian

we proceed to the same change of basis as for MaxCut: {0, 1} is transformed into
{1,−1} and C can be written as C(z) =

∑
i
1−zi
2 −

∑
⟨i,j⟩

1−zi
2

1−zj
2 . Thus, the final

Hamiltonian for MIS that QA will minimize is:

H1 = −
∑
i∈V

1

2
(1− σ(i)z ) +

∑
(i,j)∈E

1

4
(1− σ(i)z )(1− σ(j)z )

Unlike MaxCut, we see here that we have a component on the nodes and a com-
ponent on the edges; N (i) = 1

2(1 − σ
(i)
z ) and M (i,j) = −1

4(1 − σ
(i)
z )(1 − σ(j)z ). The

ground-state of this Hamiltonian is the MIS.

2.2.4 Maximum weight k-clique problem

First, let us define the Maximum Clique problem. As an optimization problem, the
goal is to find the clique of maximal size in an input random graph G(V,E). It is
directly equivalent to solving MIS problem in the complementary graph of G. A
clique is a complete graph, so its complementary graph is an independent set. The
complement of a graph G is a graph G′ on the same nodes such that two distinct
nodes of G′ are adjacent if and only if they are not adjacent in G. Similarly, a bit-
string x = x1x2...xn encodes a potential solution as it selects the subgraph generated
by the set {i, xi = 1}.

In the maximum k-clique optimization problem, we parametrized the Maximum
Clique problem by the knowledge of the maximum clique size k. This parameter
allows us to focus on bit-strings of Hamming weight equal to k as we are only
interested in sub-graphs of size k. Thus the whole search space of size 2n is reduced
to the

(
n
k

)
search space, that is the space spanned by bit-strings of Hamming weight

k. Consequently, in the cost function, we can remove the part that deals with the
Hamming weight and we are left with Ck−clique(x) =

∑
(i,j)/∈E xixj . It counts the

number of edges missing from the subgraph generated by x for it to be a clique. In
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Fig. 2.5 for example, looking at the subgraph generated by nodes 1,2 and 3 results
in the vector x = 111000 with cost value Ck−clique(x) = 1.

Figure 2.5: Example of a 3-clique in a graph. The solution in red is encoded in
vector x = 001110 and its value is C(x) = 0.

The authors of [Childs et al. 2002] were the first to introduce the potential of
AQC to solve the maximum k−clique problem. Cleverly and unlike the previously
presented problems, the chosen initial Hamiltonian H0 stabilizes the

(
n
k

)
Hilbert

space and thus preserves the Hamming weight of the computational basis vectors
encoding our subgraphs. The S operator, exchanging the position of xi and xj in
vector x, does not affect the Hamming weight and is the retained candidate in the
original paper. Therefore, we write:

H0 = −
∑

(ij)∈E(Gdriver)

S(ij)

where

S(ij) =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


(ij)

swaps qubits i and j

and Gdriver represents the graph of the allowed swaps between the qubits. In the
original work [Childs et al. 2002], they only look at the complete driver graph, al-
lowing the swap of any pairs of qubits. Then noticing that 2S(ij) = σ

(i)
x σ

(j)
x +σ

(i)
y σ

(j)
y ,

we can write H0 with quantum operators like:

H0 = −
1

2

∑
(ij)∈E(Gdriver)

(σ(i)x σ(j)x + σ(i)y σ(j)y )

Now, −H0 does not generate a hypercube anymore, but still connects every potential
solution if Gdriver is connected. Let us illustrate with a path graph as the driver
graph. In Fig. 2.6, we plot on the top a line graph of size 5 and the corresponding
graph with adjacency matrix −H0 and k = 3. We can see that the vector x is linked
to the vector y if, for a node i ∈ V (Gdriver), the exchange of the positions of xi and
xi+1 gives y. For example, vector x = 11100 has only one neighbor because only x3
and x4 can swap. This is why the state that alternates between ‘0’ and ‘1’ is the
highest degree node, since each swap of pairs (xi, xi+1) results in a new state. This
driver graph gives us another degree of freedom to play with.
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Figure 2.6: Example of a connected Gdriver, a line on n = 5 nodes (top) and the
generated search graph (down) with adjacency matrix −H0 associated to the given
driver graph where we implicitly fix k = 3.

For the final Hamiltonian, with a similar reasoning from the MIS problem, it is
written as follows:

H1 =
1

4

∑
i,j /∈E

(1− σ(i)z )(1− σ(j)z )

Now, we will introduce the weighted version of the k−clique problem 1. We
suppose that each node i of the input graph has a weight wi and the goal is to
find the k−clique such that it maximizes the sum of the weights of the clique. The
cost function can be updated to C(x) =

∑
(i,j)/∈E xixj − α

∑
i∈V wixi with a free

parameter α that we can arbitrarily turn on to give more or less importance to the
weights. The resulting final Hamiltonian for the weighted version is

H1 =
1

4

∑
i,j /∈E

(1− σ(i)z )(1− σ(j)z )− α
∑
i∈V

1− σ(i)z

2
wi

The above presented problems are the three problems on which we applied the
theoretical results we developed during this thesis. Now that we know how to write
the Hamiltonian for different graph problems, we have every ingredient to study
the QA evolution. Before moving on to the specific questions that we tackle in this
thesis to provide some numerical and analytical results on the complexity of AQC
and QA applied to these problems, in the next section, we present a quick overview
of the state-of-the-art results on the MaxCut problem as well as the construction of
two algorithms that can be compared to QA.

1We draw the reader’s attention to the fact that only the optimal solution is expected to be
a clique, whereas approximate solutions may be only weighted dense k−subgraphs. We use the
k−clique terminology as introduced in the original article [Childs et al. 2002].
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2.3 Approximation of MaxCut

In this section, we first show the construction of two algorithms that have proven an
approximation ratio on MaxCut over regular graphs and can be compared to quan-
tum annealing. Then we review some known results about the approximability of
the MaxCut problem in order to put the complexity of the problem into perspective.
We also mention recently proved results on QA applied to MaxCut.

2.3.1 Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a gate-based algorithm introduced by [Farhi et al. 2014]. The construction
of this algorithm is inspired by the quantum adiabatic evolution. It works in two
parts: first a digitization of the continuous evolution and then a Trotterization and
parametrization of the gates.

The first idea starts with trying to approximate the unitary operator UT of the
continuous evolution. This operator is the solution of the Schrödinger evolution,
i.e. the operator that transforms |ψ0⟩ in |ψT ⟩. We can write this as |ψT ⟩ = UT |ψ0⟩.
There is no known closed form for this unitary when the Hamiltonian H(s) is time-
dependent. The continuous interval [0, T ] is decomposed into p pieces of size δt
so that pδt = T . For large enough p, H(s) is well approximated by the function
constant by pieces of values H(jδt) for j ∈ [0, p]. Now, the Schrödinger equation can
be solved on every interval [jδt, (j+1)δt] because the Hamiltonian is constant. The
unitary operators are therefore equal to e−iδtH(jδt). The total evolution operator
can be approximated by the product of all these operators, i.e.

UT ≃
p∏

j=0

e−iδtH(jδt), for large enough p

We can already state that the limit when p tends to infinity of the right hand side
is the unitary of the adiabatic evolution.

The next step is to decompose the exponential. We know that for any matrices A
and B, eA+B = eAeB if and only if A and B commute. If we develop the Hamiltonian
we have H(jδt)− = (1 − jδt)H0 + jδtH1 with [H0, H1] ̸= 0 so the splitting of
the exponential is not possible. But the Trotter-Suzuki [Trotter 1959, Suzuki 1976]
formula

eA+B = lim
n→+∞

(
e

A
n e

B
n

)n
at first order allows us to write

UT ≃
p∏

j=0

e−iδt(1−jδt)H0e−ijδ2tH1

with the error in O(∥[H0, H1]∥). We see that the coefficients in front of the Hamil-
tonians in the exponential come from the schedule. As mentioned in the Schedule
paragraph of Section 2.2.1, this function can be optimized to improve the efficiency.
Here these coefficients are replaced by real parameters βj , γj that can be optimized
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with respect to a chosen target function. We call UQAOAp(γ, β) the unitary gener-
ated at a given p with parameters vectors γ = (γ1, ..., γp) and β = (β1, ..., βp) the
following product:

UQAOAp(γ, β) = e−iβpH0e−iγpH1 ...e−iβ1H0e−iγ1H1

To see that these operators are quantum gates, we apply it to the MaxCut problem
on some graph G(V,E). We use the same expressions of the Hamiltonians as defined
in Section 2.2.2, i.e. H0 =

∑
i∈V σ

(i)
x and H1 =

∑
e∈E Oe with Oe = 1−σ

(i)
z σ

(j)
z

2 for
e = (i, j), the signs of the Hamiltonians have no more importance as they are
absorbed by the parameters. It is easy to see that every term in H0 or in H1

commutes so the corresponding exponential splits like:

e−iβjH0 =
∏
i∈V

e−iβjσ
(i)
x (2.7)

e−iγjH1 =
∏
e∈E

e−iγjOe (2.8)

Each term within the product consists of local operators acting on either one or
two qubits exclusively. Consequently, the resultant quantum gates are readily im-
plementable (see Fig. 2.7).

Figure 2.7: On the left the example of a graph G on which we solve MaxCut via
QAOA. On the right a QAOA circuit for p = 1 applied to G where the two qubits
gates (in green) are e−iγ1Oe for each edge e and the single qubit gate (in red) are
e−iβ1σ

(i)
x for each node i.

In practice to run a QAOA, we need to choose a starting state |s⟩ and a target
function on which optimizing the parameters. Let us call |γ, β⟩ the final state of a
QAOA circuit with p layers, i.e. |γ, β⟩ = UQAOAp(γ, β)|s⟩. We know that in the
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limit of an infinite large p, UQAOAp(γ, β) can produce an adiabatic transformation
of the starting state. So to keep the guarantee that the final state will converge
toward a superposition of the optimal states |x∗⟩, solutions of the MaxCut problem
on G, the starting state is the same as in QA, meaning the ground-state of H0, the
uniform superposition of all possible states:

|s⟩ = |ψ0⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩

For finite p, the guarantee does not hold anymore, and the final state is a complex
superposition. Complex in the sense that even for p = 1, it has been shown that
under some complexity assumptions (PostBPP ̸= PostBQP), finding the final prob-
ability of a given computational state classically is “Hard” [Farhi & Harrow 2019].
The chosen target function, like in the case of finite time QA, is the expected out-
put cost value, i.e. Fp(γ, β) = Ex∼QAOAp [C(x)] = ⟨γ, β|H1|γ, β⟩, where C is the
classical cost function of MaxCut defined in Section 2.2.2. Let us look at how it
simplifies for p = 1. By linearity of the expectation,

F1(γ, β) =
∑
e∈E
⟨γ, β|Oe|γ, β⟩

=
∑
e∈E
⟨s|eiγ1H1eiβ1H0Oee

−iβ1H0e−iγ1H1 |s⟩ (2.9)

To simplify the formula we will use the following result. Given two ob-
servables OX and OY supported on qubits in set X and Y respectively, we
have that eiOY OXe

−iOY = OX as long as the observables commute. When
the observables do not share their support, i.e. X ∩ Y = ∅, it is easy
to see that they commute. Using this with the expressions of the gates of
Eq. (2.7), we see that for each summand, many terms cancel out ending in
⟨s|
∏

X∼e e
iγ1OXeiβ1(σ

(a)
x +σ

(b)
x )Oee

−iβ1(σ
(a)
x +σ

(b)
x )
∏

X∼e e
−iγ1OX |s⟩ with edge e = (a, b)

and X ∼ e meaning that the product is over every edges X ∈ E that share a com-
mon node with e (see Fig. 2.8). Therefore, for a given edge e, the term only depends
upon the structure at distance one from e. Using a similar reasoning for any p, we
can show that the term will depends on the neighboring structure up to distance p
from e.

Knowing this property of QAOA circuit at finite p, the rest of the reasoning to
show the achieved approximation ratio for MaxCut over regular graphs is decom-
posed in a combinatorial argument followed by an optimization of the parameters
(γ, β). Indeed, a nice property of regular graphs is the finite number of local struc-
tures around a given edge. So, for a fixed degree, there is only a finite number
of different terms in Eq. (2.9). This is how the authors of the original paper
[Farhi et al. 2014] show the 0.6925 approximation ratio for cubic graphs. We inten-
tionally stay quite blurry on this final step as we will follow a similar reasoning to
prove our bound on the QA framework, so all details will be given later (see Part II).
The main property of QAOA allowing for this straightforward proof is its locality.
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Figure 2.8: Schematic view of a term in the sum of Eq. (2.9) and how the different
terms cancel each other. Two boxes of same colors in row is equal to the identity.

2.3.2 Classical local algorithms

In the section, we review the best known classical local algorithms for MaxCut.
In short, for local algorithms on graphs used in distributed computing, “the out-
put of a node in a local algorithm is a function of the input available within a
constant-radius neighborhood of the vertex” (by [Suomela 2013], Suomela’s survey
on local algorithms). Here we talk about an algorithm called the threshold algorithm
[Hirvonen et al. 2017]. For simplicity of the analysis, the original paper restricts the
input graphs to triangle-free instances. The algorithm works in one round: each
node of the input graph G receives a random variable in {−1,+1}, then if the value
of a node agrees with too many of its neighbors’ value, it changes its own variable.
“Agree” means that they have the same initial value and “too many” is relative to
a given threshold τ , a hyper-parameter that is fixed before running the algorithm.
Formally, if ui ∈ {−1,+1} is the initial value of node u, the final value uf is given
by :

uf =

{
−ui if |{v, v ∼ u and vi = ui}| ≥ τ
ui otherwise.

where v ∼ u means that ⟨u, v⟩ is an edge of G. The authors proved that it approx-
imates MaxCut on cubic graphs with a ratio of 0.6875.

This algorithm has been relaxed to increase its performance [Hastings 2019].
Let v0 ∈ [−1, 1]n be the vector of the initial value for each node, i.e. node i has
value (v0)i. This vector is transformed into a vector v1 according to the following
equation:

v1 = v0 − cJ.v0

where J is the adjacency matrix of the input graph G. The output bi-partition is
given by the sign of the final vector v1 for each node. By choosing c = 0.6, Hastings



50 Chapter 2. Preliminaries

numerically shows that it achieves an approximation ratio of 0.6980 for MaxCut
over cubic graphs. Even though it is only a numerical argument, the author adds “it
would also likely not be difficult to prove the performance of the classical algorithm
rigorously”. It is believed that this value can be proved and we will take it as if
it were. This value, obtained by a Monte Carlo sampling over 108 different graphs
is also believed to be tight, like in the QAOA case, i.e. there are input graphs for
which it achieves this value.

Remark. To understand how the Hastings algorithm is a relaxed version of the
threshold algorithm, we can see that in the discrete case where v0 is sampled from
{−1,+1}n and the same above update rule is used, the new value of a node i is
equal to:

(v1)i = (v0)i.(1− c(2m− d))

where d is the degree of the graph, so d = 3 in the cubic case, and m is the
number of i’s neighbors that agree with i. Therefore, the new value changes sign if
c(2m− d) ≥ 1, i.e. if m is large enough. This large enough m is the threshold.

This new algorithm is strictly local like QAOA and achieves a better performance
than the quantum algorithm. Apparently, local quantum algorithms bring no speed-
up upon the classical ones. In the next section, we review some other result about
the MaxCut problem and sum up the known approximation value for cubic graphs.

2.3.3 Overview of few results

The MaxCut problem is known to be NP-hard even for regular cubic graphs
[Alimonti & Kann 2000]. More precisely, it is NP-hard to approximate this prob-
lem up to some threshold. For arbitrary graphs, the best known algorithm is
a semi-definite programming algorithm introduced by Goemans and Williamson
[Goemans & Williamson 1995] and guarantees a 0.87856 approximation. More-
over, under the assumption of Unique Games Conjecture (UGC), the authors of
[Khot et al. 2007] proved that for arbitrary graphs, it is NP-hard to approximate
MaxCut above the Goemans-Williamson value of 0.87856. Assuming P ̸= NP , the
hardness of approximability is of 16/17 ≃ 0.94... [Håstad 2001]. When restricted
to cubic graphs, or maximum degree bounded by 3, the hardness of approximabil-
ity increases to 0.997 [Berman & Karpinski 1999] while the best known algorithm
achieves an approximation ratio of 0.9326 [Halperin et al. 2002]. All of these classi-
cal algorithms run in polynomial time with respect to the input size. In Fig. 2.9,
we sum up the known approximation values in different regimes.

Focusing on constant time algorithms, we have local algorithms as the one
reviewed in the previous section. Basically, each node of the graph receives a
random bit and updates it according to some information about its neighbors’
bits. If we limit the number of update rounds to p, we call it a p−local algo-
rithm. This approach runs in constant time only if the graph is regular so that
the number of neighbors does not depend on the input size. With this method,
the best classical algorithm achieves a ratio of 0.6980 MaxCut over cubic graphs
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[Hastings 2019, Marwaha 2021] (see Sec. 2.3.2). It is easy to see that a random
attribution of colors to the nodes gives a 0.5 approximation ratio.

Figure 2.9: Sum up of the known approximation results and hardness value for
MaxCut in general and in cubic graphs as well as the approximation ratios reach by
local algorithm that run in constant time.

In the quantum framework, there are no known polynomial time approximation
algorithms for combinatorial problems. If we restrict to constant time algorithms, we
have the QAOA that we reviewed in Sec. 2.3.1 and its circuit depth is parametrized
with p. With p = 0, it achieves the trivial value of 0.5 and with p = 1 it reaches a
ratio of 0.6925 for MaxCut over cubic graph [Farhi et al. 2014]. This algorithm, by
its construction, is a p−local algorithm. In the intermediate time scale, there are no
proven results in polynomial depth, however, in logarithmic depth, the authors of
[Farhi et al. 2020] proved that QAOA does not perform well even on random regular
bipartite graphs.

In the QA setting, there was no known result apart from the adiabatic the-
orem that guarantees the optimal solution in exponentially long runtime. In
[Moosavian et al. 2022], using Lieb-Robinson techniques (see Sec. 2.5), it was proved
similar results to QAOA in the logarithmic time regime, i.e. QA with less than
logarithmic time does not perform well, the approximation ratio for some regular
bipartite graphs is upper bounded by a value below the Goemans-Williamson. In
order to provide analytical proofs of the computational complexity in the AQC
regime, the main theoretical tool remains the adiabatic theorem. The validity of
this theorem is ruled by the minimum gap ∆min amplitude. It happens that two
physical phenomena can give rise to exponentially small ∆min: first-order quantum
phase transition [Sachdev 1999] and Anderson localization [Anderson 1958]. These
two phenomenons, when associated with exponentially closing gaps, have a typi-
cal signature when looking at the behavior of the eigen-energies during a quantum
evolution and it is called “Anti-crossings” or “Avoided level-crossing” and sometimes
“level repulsion”. This behavior is the subject of the next section.
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2.4 Avoided level crossings (AC)

In this section, we discuss the literature around the ACs behavior as they are
related to exponentially closing gaps. The early motivations behind the study
of AC were the validity conditions of applicability of the adiabatic theorem
[von Neumann & Wigner 1929, Wilkinson 1987, Wilkinson 1989]. Then with the
rise of quantum annealing [de Falco et al. 1988] and adiabatic quantum computing
[Farhi et al. 2000], proving their occurrences in a quantum evolution is a method to
prove the inefficiency of AQC [Altshuler et al. 2010]. Inversely, proving that no such
behavior occurs guarantee the efficiency of AQC [Braida et al. 2024a]. Also, know-
ing the time at which they occur during the evolution can still help to prove some
quantum advantage [Roland & Cerf 2002, Amin & Choi 2009, Dalzell et al. 2023] as
it allows to tune the schedule accordingly. The key technical tool to study avoided
level-crossings is the perturbation theory, so we explain the general idea of the
method and derive the main results as well as the original description. Both of
them will be useful in this thesis.

2.4.1 Perturbation theory

General setting: In general, the perturbative analysis is used to study the
effect a perturbation has on a system well-defined without this perturbation. For
example, given two Hermitian matrices A and B, we know an eigen-pair (x, λ) of
A, i.e. Ax = λx and we are interested in how a perturbation B will change this
state. In other words, if (x, λ) represents the kth eigen-pair of A, we are interested
in the kth eigen-pair (xµ, λµ) of A+ µB for a small parameter µ. We suppose then
that there exists a polynomial expansion in µ computing (xµ, λµ). We write these
expansions as:

xµ = x+ x(1)µ+ x(2)µ2 + x(3)µ3 + ...

λµ = λ+ λ(1)µ+ λ(2)µ2 + λ(3)µ3 + ...

where x(i) and λ(i) represent the different coefficients of the polynomial expansion
being respectively vectors and scalars. In practice, to be able to say something
interesting, we stop the expansion at some order i. The validation of the truncation
is justified by the ratio of the (i+ 1)th term over the ith being small.

The different coefficients are derived iteratively by identification in the eigen-
relation of the perturbed matrices. Namely, we identify each term in µj in the
relation (A + µB)xµ = λµxµ. Finally, the obtained relations for each order in
µ are vector equations. After choosing a right basis for the entire space (usually
the eigen-vectors of A), we project along the different basis vectors each relation.
Projecting along x gives the λ(i) terms and along others basis vectors gives the
different coordinates of the vector x(i).

Application to quantum mechanics: We now apply the perturbative analysis
to studying quantum system. For a full course on perturbation theory in quantum
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mechanics, we refer the reader to the MIT lecture notes [Zwiebach 2018].
Let H be an Hamiltonian from which we have the full knowledge of its dynamics,

meaning we know the whole spectrum respecting H|n⟩ = En|n⟩ for the nth state.
We assume that the states are normalized, i.e. ⟨n|n⟩ = 1. We are interested in the
behavior of the eigen-energy and eigen-vector corresponding to the nth eigen-state
under the perturbation λV for a small parameter λ and an Hamiltonian V . In other
words, we are looking for En(λ) and |nλ⟩ solution of Ĥλ|nλ⟩ = En(λ)|nλ⟩ where
Ĥλ = H + λV . Like presented above, we suppose that the eigen-energy and vector
have an expansion in λ and we identify the different terms in the eigen-relation

(H + λV )(|n⟩+ λ|n(1)⟩+ ...) = (En + λE(1)
n + ...)(|n⟩+ λ|n(1)⟩+ ...)

Thus, by identification of the λj terms, we have the following relations:

λ0: H|n⟩ = En|n⟩, already known,

λ1: H|n(1)⟩+ V |n⟩ = En|n(1)⟩+ E
(1)
n |n⟩

λ2: H|n(2)⟩+ V |n(1)⟩ = En|n(2)⟩+ E
(1)
n |n(1)⟩+ E

(2)
n |n⟩

...

Then we project those relations onto vector |n⟩ to get the energy corrections:

• E(1)
n = ⟨n|V |n⟩

• E(2)
n = ⟨n|V |n(1)⟩+ E

(1)
n ����⟨n|n(1)⟩

The last term can be canceled because the expanded state is not assumed to be
normalized and the following claim is true.

Claim. For i ≥ 1, we can assume that vectors |n(i)⟩ have no component against |n⟩.

Proof. Let us fix an i ≥ 1 and suppose |n(i)⟩ has a component in |n⟩, so we can
write:

|n(i)⟩ = |n(i)⟩⊥ + αi|n⟩

where |n(i)⟩⊥ is a vector orthogonal to |n⟩. The expanded state |nλ⟩ can now be
written like:

|nλ⟩ = (1 + α1λ+ α2λ
2 + ...)|n⟩+ λ|n(1)⟩⊥ + λ2|n(2)⟩⊥ + ...

So this eigenstate will still be an eigenstate of Ĥλ if we divide it by the coefficient
in front of |n⟩. We call the latter state |nλ⟩′ and has the following expansion:

|nλ⟩′ = |n⟩+ λ|n(1)⟩′⊥ + λ2|n(2)⟩′⊥ + ...

To get the first correction orders of the state, we project onto another basis state
|m⟩ to obtain the different coordinates:
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• ⟨m|n(1)⟩ = ⟨m|V |n⟩
En − Em

• ⟨m|n(2)⟩ = 1

En − Em
(⟨m|V |n(1)⟩ − E(1)

n ⟨m|n(1)⟩)

To develop an intuition of these expressions, we will see in Sec. 2.4.3 that they
have been used to study the behaviors of the eigen-energies E0(s) and E1(s) at the
end of a QA evolution. These latter anti-crossings are called perturbative crossings.
Before that, we present in the next section the original description of an AC.

2.4.2 Initial description of an Anti-crossing

The goal is to retrieve, in our setting, the first results about AC given by
[von Neumann & Wigner 1929] right after the first version of the adiabatic theo-
rem [Born & Fock 1928] and later by [Wilkinson 1989].

For two Hamiltonians A and B, let H(s) be a Hamiltonian with parameter
s ∈ [0, 1] of the form (1− s)A+ sB. We note that we are in a more general setting
as the standard A + µB. Let (|ϕj(s)⟩, Ej(s)) be the pairs of instantaneous eigen-
vector/eigen-values. We suppose that the eigen-values are ordered with E0(s) the
smallest one.

Suppose that for a specific value of s = s∗, the gap ∆01(s) = E1(s) − E0(s) is
minimal, i.e. ∆01(s

∗) = ∆min and the value of E0(s
∗) and E1(s

∗) are extremely close.
At s∗, H(s∗) is diagonal in the eigen basis span by (|ϕ∗0⟩, |ϕ∗1⟩, ...) where we removed
the dependency in s∗ and just added a star for clarity. The total Hamiltonian can
be written like H(s) = H(s∗) + (s − s∗)Ḣ. Here, Ḣ = B − A is the derivative of
H(s) with respect to s. This basis will be our working basis and the diagonal values
of H(s∗) are the eigen-energies (E∗

0 , E
∗
1 , ...) and will be called the star basis.

H(s∗) =

E
∗
0 0 (0)

0 E∗
1

(0)
. . .


where (0) means that the upper and lower parts are filled with zeros. We are
interested the behavior of the energies E0(s) and E1(s) around s = s∗ when H(s∗) is
perturbed by the Hamiltonian δsḢ for a small variation δs = s−s∗. Let us callHδs =

H(s∗ + δs) = H(s∗)+ δsḢ. In [von Neumann & Wigner 1929, Wilkinson 1989], the
authors explains that at first order, in the star basis, this Hamiltonian has the
following structure:

Hδs =

E0,δs b

b† E1,δs

(0)

(0) R


where R denotes the square matrix for the remaining Hilbert space. Importantly, we
note that all matrix elements ⟨ϕ∗j |Hδs |ϕ∗i ⟩ = 0 for j ∈ {0, 1} and i ≥ 2. In Chapter 3,
we provide a rigorous proof of this statement in the demonstration of Theorem 3.1
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as it does not appear in the original work. There are three last terms to explicitly
describe the behavior around the crossing point s∗. It is straightforward to see that

E0,δs = ⟨ϕ∗0|Hδs |ϕ∗0⟩ = E∗
0 + δsḢ00

E1,δs = ⟨ϕ∗1|Hδs |ϕ∗1⟩ = E∗
1 + δsḢ11

b = ⟨ϕ∗0|Hδs |ϕ∗1⟩ = δsḢ01

where we introduced the matrix element Ḣij = ⟨ϕ∗i |Ḣ|ϕ∗j ⟩. In Proposition 3.1, we
also prove that Ḣ00 = Ḣ11 at a crossing point. Solving the diagonalization of the
two by two upper matrix yields the energy expressions:

E±
δs

=
E∗

0 + E∗
1

2
+ Ḣ00δs ±

∆min

2

√√√√1 +

(
2Ḣ01

∆min
δs

)2

(2.10)

These expressions are the first mathematical description of the eigen-energies’ shape
undergoing an anti-crossing. On Fig. 2.10, we draw the well-known plot of the
energy behaviors around the crossing point, they take the shape of two hyperbola
branches.

To close the loop, let us discuss about the different expressions we have for
the approximation of the eigen-energies around the crossing point. Indeed, in this
section we exploited a related but different perturbation theory, namely we reduced
the problem to a 2 × 2 matrix and diagonalized the system. In Section 2.4.1, we
presented a generic perturbation theory. Using the latter, we remark that the Ej,δs ’s
expressions are the first order approximation of Ej(s) around s∗. How Eq.(2.10) is
equivalent to the generic perturbation theory? Developing the square root like√
1 + x2 ≃ 1+ 1

2x
2, under the condition of 2Ḣ01

∆min
δs ≪ 1, yields an expression up the

second order:

E±
δs
≃ E∗

0,1 + Ḣ00δs ±
Ḣ2

01

∆min
δ2s

which is consistent with the second order generic perturbative expansion.
Now that the general idea of the AC phenomenon has been described properly,

let us move on its application in quantum computing.

2.4.3 Perturbative crossings

In this section, we review the AC happening at the end of a QA or AQC evolution
called perturbative crossings. There are usually attributed to the Anderson Local-
ization effect as close to the end, the Hamiltonian H(s) is close to the final one
H1. In few words, this effect tends to localized the system in computational states
(eigen-states of H1) and if it localized in the “wrong” energy level, the gap shrinks
as O(bh) for some b < 1 and h the Hamming distance between the state where it
localized and the right energy level state. Informally, let say that the ground-state
of the system localized in state y = 111000 and the true ground-state of the final
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Figure 2.10: Plot of the energy shapes around the anti-crossings. Two branches of
hyperbolas respecting Eq. (2.10). The orange star is the non-crossing point. In
grey, the values of the asymptote slopes. The first order expansion of the associated
eigen-states.
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Hamiltonian is x∗ = 000111, then it has to move from y to x∗ through all states in
the path that links y and x∗ in H0. So if H0 is the bit-flip mixing operator, then
the distance is the Hamming distance between x∗ and y. It results in a gap that
closes exponentially fast with the system size. We will see a more detailed example
in Chapter 3 and Appendix A.

The approach to show the occurrence of a perturbative crossing is to study
the final Hamiltonian H1 perturbed by the initial H0, i.e. the study of H̄(λ) =

H1 + λH0. Without choosing a specific final Hamiltonian, we call |GS⟩ = |ϕ0(1)⟩
and |FS⟩ = |ϕ1(1)⟩ the ground-state and first excited state of H1 of energy Egs and
Efs respectively. Looking at the behaviors of E0,λ and E1,λ being respectively the
perturbed expansion in λ of E0(1) = Egs and E1(1) = Efs, can point out a real
crossing of the perturbed expansion arising from an avoided crossing (see Fig.2.11)

Figure 2.11: Schematic plot of a perturbative crossings. The perturbed expansions
E0,λ and E1,λ cross at λ∗. For the plot, we stop at the second-order perturbation
making the curves quadratic in λ.

In [Altshuler et al. 2010], the authors applied this method on the Exact Cover
problem. This problem is NP-Hard and the encoded-problem Hamiltonian H1 has
a similar structure to the ones of Section 2.2.1. They expressed the eigen-values of
H̄(λ), E0,λ and E1,λ as an expansion in λ:

Ej,λ = Ej(1) +
∞∑
q=1

λqE
(q)
j , j ∈ [0, 1]

and studied the behavior of these factors E(q)
j to conclude on the presence of a strong

anti-crossing when AQC is used to solve Exact Cover. The difficulty when using
perturbative theory is to prove the validity of the expansion. This means that if the
expansion can be stopped at any finite order as long as the next term is negligeable
compared to the previous one. In this latter work, the authors carefully bound the
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tail of the expansion allowing them to conclude on the theoretical implication of
their result, i.e. AQC fails at solving Exact Cover, it gets stuck in a local minimum.

This type of perturbative crossing has also been highlighted in
[Amin & Choi 2009] as a first-order quantum phase transition. It is said
that this transition happens between two ordered phases only after localization. Is
it the same thing as Anderson localization (AL)? How first-order phase transition
and AL are related? We leave these questions to physicists. In any case, Amin
and Choi used a perturbative expansion up to second order to point out the
occurrence of an AC on a specific instance of the MIS problem. The condition for
this expansion to hold is satisfied in their example. To understand the necessity of
the second-order derivation, let us see the expressions of the eigen-values. Using
the same perturbation and the formula of Section 2.4.1, we get:

E0,λ = Egs + λ((((((⟨GS|H0|GS⟩ − λ2
∑
x ̸=GS

|⟨GS|H0|x⟩|2

Ex − Egs
(2.11)

E1,λ = Efs + λ������⟨FS|H0|FS⟩ − λ2
∑
x ̸=FS

|⟨FS|H0|x⟩|2

Ex − Efs
(2.12)

where we abusively used the notation GS to represent the ground-state bit-string
and for a bit-string x, we note Ex the energy of state |x⟩. We observe that the
first-order term vanishes because ⟨x|H0|y⟩ ≠ 0 only when x and y differ by exactly
one bit. Therefore, the curves cross if the λ2 coefficient of the first excited state is
larger in norm than the coefficient of the ground-state, i.e:∑

x∼FS

1

Ex − Efs
>
∑
x∼GS

1

Ex − Egs

The two sums have the same number of terms, so the inequality is satisfied if FS
has lower energy neighbors than GS. This idea leads the author of [Choi 2020]
to propose the “LENS” property, meaning “Low-Energy Neighboring State”. Using
this insight the author suggested a new characterization of an anti-crossing that we
present in the next section. Although the perturbative approach seems conclusive
in some cases, one can not conclude in the absence of an AC during the evolution
if not found by the perturbative method. Indeed, from [Laumann et al. 2015], we
know that they can happen at any time. This is why V. Choi suggested a more
general definition for an AC at any time in the annealing process.

2.4.4 Choi’s crossing definition

In this section, we review a new description of an avoided crossing in a QA process
suggested in [Choi 2020] to tackle anti-crossings at any time in the evolution. From
the states |ϕk(1)⟩ which can be degenerated and represent the states at the kth

energy level, V. Choi introduces the following quantities:

ak(s) = |⟨ϕk(1)|ϕ0(s)⟩|2

bk(s) = |⟨ϕk(1)|ϕ1(s)⟩|2
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They are the decomposition in the possible degenerated computational basis of the
instantaneous eigenvectors corresponding to the two lowest eigenvalues. Especially,
with k = 0, 1, we have a0(s) and a1(s) representing respectively how much of the
final ground-state |ϕ0(1)⟩ = |GS⟩ and the final first excited state |ϕ1(1)⟩ = |FS⟩
overlaps with the instantaneous ground-state |ϕ0(s)⟩, i.e. a0(s) is the probability of
finding |GS⟩ in |ϕ0(s)⟩. The same is true for b0(s) and b1(s) with the instantaneous
first excited state |ϕ1(s)⟩. Let’s restate her definition of a (γ, ε)-anti-crossing:

Definition 2.6. For γ ≥ 0, ε ≥ 0 we say there is an (γ, ε)-Anti-crossing if there
exists a δs > 0 such that

1. For s ∈ [s∗ − δs, s∗ + δs],

|ϕ0(s)⟩ ≃
√
a0(s)|GS⟩+

√
a1(s)|FS⟩

|ϕ1(s)⟩ ≃
√
b0(s)|GS⟩ −

√
b1(s)|FS⟩

where a0(s) + a1(s) ∈ [1 − γ, 1], b0(s) + b1(s) ∈ [1 − γ, 1]. Within the time
interval [s∗− δs, s∗+ δs], both |ϕ0(s)⟩ and E1(s)⟩ are mainly composed of |GS⟩
and |FS⟩. That is, all other states (eigenstates of the problem Hamiltonian
H1) are negligible (which sums up to at most γ ≥ 0).

2. At the avoided crossing point s = s∗, a0, a1, b0, b1 ∈ [1/2 − ε, 1/2 + ε],
for a small ε > 0. That is, |ϕ0(s∗)⟩ ≃ 1/

√
2(|GS⟩ + |FS⟩) and |ϕ1(s∗)⟩ ≃

1/
√
2(|GS⟩ − |FS⟩).

3. Within the time interval [s∗−δs, s∗+δs], a0(s) increases from ≤ γ to ≥ (1−γ),
while a1(s) decreases from ≥ (1 − γ) to ≤ γ. The reverse is true for b0(s),
b1(s).

This definition of an anti-crossing gives more insights toward the understanding
of this physical phenomenon happening during an adiabatic evolution. Four new
quantities, a0(s), a1(s) and b0(s), b1(s), and two parameters (γ, ε) are at stake
here, to describe it. Definition 2.6 presents in a precise way how the quantities vary
through the anti-crossing (see Fig.2.12) and implicitly suggests on the size of the
parameters that the smaller they are, the stronger the anti-crossing will be. However,
there is a missing result that directly links this definition of an anti-crossing to the
min-gap. How the parameters (γ, ε) influence the min-gap? In Chapter 3, we answer
this question by providing a rigorous proof the the minimum gap expressed in terms
of ak and bk.

In this section, we sorted out the literature around the avoided crossing phe-
nomenon after a general introduction to the perturbative theory which is the main
technical tool to study the ACs. The understanding of the AC is an active research
area as it indicates the computational complexity of the problem we are dealing
with. There are still no general approaches to qualify the phenomena apart from
the exponentially closing gap at the crossing point. Furthermore, the presence of
such AC allows to conclude on the exponential time complexity to solve the problem
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Figure 2.12: Evolution of a0(s) and a1(s) around a (γ, ε)−anti-crossing point s∗.
The same goes for b0(s) and b1(s) but inverted so that b1(s) ends close to 1.

but does not give insights on the performance of a quantum evolution to approx-
imate it. Can we still guarantee some performance of QA if one fixes the time
away from the adiabatic regime? The other technical tool that is known to study a
quantum evolution is the Lieb-Robinson bound.

2.5 Lieb-Robinson bound

In this section, we present a result from theoretical physics that has numerous
application in computer science. Informally, it states as follows.

Theorem 2.2 (Lieb-Robinson bound). There is an upper bound on the velocity vLR
at which information can propagate in a quantum system.

It has been first proved in [Lieb & Robinson 1972], but it is only after a gener-
alization of a result in higher dimension in [Hastings 2004] that uses the LR bound,
that Theorem 2.2 gained more and more attention.

2.5.1 Observation and intuition

Let us first develop the intuition and some observations that are useful to understand
how we will use this bound. By Theorem 2.2, the finite velocity vLR implies at finite
time T that the correlation of two distant subsystems is very small. Here the notion
of distance is defined by the Hamiltonian connectivity acting on the quantum system.
For simplicity, we suppose that the Hamiltonian HG is 2−local and the connectivity
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is described by a graph G. So the distance is relative to G. For instance, on a line
graph, the qubits at the extremity of the line are weakly correlated for some time.
On a general graph G, the runtime required to correlate every qubits is of order
D

vLR
, where D is the diameter of the graph.
Another point of view of this result is to look at the evolution of an observable.

If |ψG
T ⟩ is a quantum system that evolved under HG for time T , the final expectation

value of a local observable OX supported on X depends mainly on the neighboring
configuration Ω of X up to distance p ≃ vLRT . This means that a quantum system
that evolves under the Hamiltonian restricted to the subgraph Ω, notedHΩ produces
a final expected value of the observable OX very close to the one with the whole
quantum system.

Figure 2.13: On the right, the plot of the evolution of the expected edge e energy for
different size l of cycle Cl. The dashed lines in light grey point out the splitting time
when the remaining curve splits from the others with a difference less than 0.005.
On the left, cycle of size 4 and 6 with the representation of the time evolution of
the support of the evolved observable Oe up to time T1, indicated by the red box.

To illustrate this phenomenon, let’s put ourselves in the QA framework to solve
the MaxCut problem over even cycles, as defined previously in Section 2.2.2. We
restrict the input graphs to even cycle Cl of size l. The total Hamiltonian is written
H(Cl, s) = −(1− s)

∑
i σ

(i)
x − s

∑
eOe where for any edge e = (a, b), the observable

Oe encodes the MaxCut cost function, i.e. for a bit-string state |x⟩ ∈ {0, 1}l,
⟨x|Oe|x⟩ = 1 if and only if xa ̸= xb and 0 otherwise. The initial state |ψ0⟩ of the
evolution being the uniform superposition over all bit-strings of length l, the initial
expected value of the edge e is ⟨ψ0|Oe|ψ0⟩ = 0.5 as there is the same amount of
computational states that cut edge e (xa ̸= xb) and uncut it. After some time T ,
the final expected value is ⟨Oe⟩Cl

= ⟨ψCl
T |Oe|ψCl

T ⟩. We note that in the limit of
large T , this latter value converges toward 1 as every edge e can be cut in an even
cycle, and the adiabatic theorem guarantees that the final state converges toward
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the optimal state |x∗⟩. On Fig. 2.13 we plotted the evolution of ⟨Oe⟩Cl
for different

values of l against the total runtime T . We observe that all curves start at 0.5 as
expected and then follow the same trajectory up to some time T1 where the value
for C4 starts to increase toward 1 faster than all the others that continue on the
same trajectory for a while. Then, we can see similar splitting point later between
the smallest remaining cycle and the others. We can infer that until time T1, ⟨Oe⟩Cl

remains independent of the cycle size. Consequently, the quantum evolution has
the capability to differentiate between C4 and the other cycles. The underlying
intuition drawn from this observation suggests that information must propagate
around the cycle, and up to T1, the finite velocity vLR implies that examining a
local observable does not provide sufficient information to distinguish among all
cycles. The knowledge of the graph structure at this point is limited. At time T1,
edge e of C4 starts to gain the knowledge that it is inside a cycle whereas the edge
of the other cycle could potentially be in the middle of a long path. The drawings
on the left of Fig. 2.13 try to convey this idea by showing that the edge e is looking
around him and information comes at a finite speed, so the longer you let the
system evolves the further in the graph e can “see”. The knowledge of belonging
to an even cycle helps e to take a better decision faster, and thus converges toward 1.

This illustration is only a toy example with an informal tone to communicate some
intuition behind Theorem 2.2. In the next section we dive into the mathematical
derivation of the bound.

2.5.2 Mathematical derivation

The original derivation of the LR bound is an upper bound on the norm of a commu-
tator between an evolved local observable A(t) and a static one B. It is assumed that
the support Y of B and the support X of A = A(0) are at distance p (see Fig. 2.14).
If UG

t is the unitary solution of the Schrodinger equation under HG (here G can be
an hyper-graph), then the evolved observable is written A(t) = (UG

t )†AUG
t . Because

X and Y are distant subsets of G, we have that [A,B] = 0. But for positive time
t, in general [A(t), B] ̸= 0. The LR bound gives an upper limit on the norm of this
commutator and shows that it is exponentially small with the distant p, namely,
there exists a constant vLR and two real scalars a and b such that

∥[A(t), B]∥ ≤ ae−b(p−vLRt)

We see from this equation that the bound is exponentially small with p and expo-
nentially large with t. This also means that for large t the bound becomes too loose
to be meaningful. We will not prove the bound in details but we show how the
different steps fit into each other by following these Lecture Notes [Hastings 2010].

The first derived LR bounds were in the time independent case. Let us work
with a general time-independent Hamiltonian of the form H =

∑
Z γZ where the

sum is over the subset Z of qubits on which the local operator γZ acts. It can be
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Figure 2.14: Setting for LR bound derivation.

shown that the derivative of the commutator of interest respects:

d∥[A(t), B]∥
dt

≤ 2∥A∥
∑

Z:Z∩X ̸=∅

∥[γZ(t), B]∥

where γZ(t) is the evolved operator γZ . Integrating this equation gives

∥[A(t), B]∥ − ∥[A(0), B]∥ ≤ 2∥A∥
∑

Z:Z∩X ̸=∅

∫ t

0
dt1∥[γZ(t1), B]∥

Now we see that we can apply this inequality repeatedly to bound the right-hand
side. So knowing that [A,B] = 0, the first iterations give

∥[A(t), B]∥
2∥A∥

≤
∑

Z1:Z1∩X ̸=∅

∫ t

0
dt1∥[γZ1(0), B]∥

+ 2
∑

Z1:Z1∩X ̸=∅

∑
Z2:Z2∩Z1 ̸=∅

∥γZ1∥
∫ t

0
dt1

∫ t1

0
dt2∥[γZ2(t2), B]∥

≤ 2t∥B∥
∑

Z1:X∼Z1∼Y

∥γZ1∥

+ 22∥B∥ t
2

2

∑
Z1,Z2:X∼Z1∼Z2∼Y

∥γZ1∥∥γZ2∥

+ 23∥B∥ t
3

3!

∑
Z1,Z2,Z3:X∼Z1∼Z2∼Z3∼Y

∥γZ1∥∥γZ2∥∥γZ3∥+ ...

where the notation X ∼ Z1 ∼ ... ∼ Zk ∼ Y means that the intersection two by two
is not the empty set, i.e. Z1 ∩X ̸= ∅, ∀i ∈ [1, k − 1], Zi ∩ Zi+i ̸= ∅ and Zk ∩ Y ̸= ∅.
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Now to pursue the proof we need to add an assumption about the interaction in
the Hamiltonian of interest. From a physical point of view, in the most general
case one can use a law of interaction to bound the different sums appearing in the
expression. Being exponential or power decay interaction, it is enough to finish the
demonstration [Haah et al. 2021, Tran et al. 2019]. In the case of interest in this
thesis, namely the combinatorial graph problems, the interactions are finite range
as we only have bounded 2−local operators in the Hamiltonian (see Section 2.2).
So like in [Moosavian et al. 2022], the sum of the rth term is over paths of length r
from X to Y and the first p− 1 terms are null. We are left with the last term, i.e.

∥[A(t), B]∥
2∥A∥

≤ 2p∥B∥ t
p

p!
(2(d− 1))p

where we bounded the number of paths of length p from X to Y by (2(d− 1))p if G
is a d−regular graphs. Then using a Stirling formula or an astute manipulation of
the exponential like in [Chen et al. 2023], we get the wanted expression of the LR
bound.

2.5.3 Some known applications

The Lieb-Robinson bound has brought a growing interest since the result of
[Hastings 2004] as it is used to generalize a physical result at higher dimension,
namely the Lieb-Schultz-Mattis theorem [Lieb et al. 1961].

From a computer science point of view, the first application of this bound is in
[Haah et al. 2021] and later generalized in [Tran et al. 2019] to produce a quantum
circuit for Hamiltonian simulation. It improves on the gates complexity and the
depth of the circuit upon the previous best algorithms based on the Lie-Trotter-
Suzuki formula [Berry et al. 2006], or truncated Taylor series [Low & Chuang 2017].

More recently, in [Moosavian et al. 2022], the authors used the Lieb-Robinson
bound to prove some upper bound on the reachable approximation ratio on MaxCut
by a quantum annealing evolution when the runtime is at most logarithmic in the
input size. They claim to prove the first time-dependent LR bound. The outcome of
their result is an upper bound on the performance of short time QA closely related to
the result in [Farhi et al. 2020] about QAOA. They show that on a specific class of
bipartite regular graphs, the approximation ratio for MaxCut is upper bounded by
a value that goes below the Goemans-Williamson ratio of 0.87856 when the degree
exceeds 6. In plain English, this means that QA in logarithmic time cannot beat
Goemans-Williamson’s algorithm for MaxCut.

For a more extensive review about the Lieb-Robinson bound, we refer the reader
to [Chen et al. 2023].
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In this chapter, we present our contribution in the understanding of the avoided-
crossing phenomenon in AQC. Recall that in AQC we suppose that the state is
evolved adiabatically, meaning, among other things, that the runtime is ruled by
the minimum gap closing, while in QA the runtime is chosen arbitrarily. For this
reason, AC phenomenon are of first interest when studying AQC performance. Here,
we show some results and limitations of the most recent definition by [Choi 2020]
(Sec. 3.1). Those observations lead us to propose a new definition of an AC encom-
passing more cases. We support our new characterization with a numerical analysis
on a toy example for the maximum (weight) k−clique problem (Sec. 3.2).

3.1 Results and limitations of Def. 2.6

In this section, we discuss the recent definition of an anti-crossing introduced in
[Choi 2020], that we detailed in the Preliminaries Chapter in Sec. 2.4.4. Recall
that the study of this phenomenon is interesting in AQC as it comes with an
exponentially closing minimum gap of the total Hamiltonian. Improving the
characterization of an AC is a major challenge in this setting to understand the
time complexity of AQC. We will show how Def. 2.6 is indeed linked to a small
gap. Then using a toy model of the maximum weighted k−clique problem, we show
how this definition is limited to some specific AC.

As defined in Sec. 2.2, we focus on total Hamiltonian of the form H(s) = (1 −
s)H0+sH1, with H0 the initial Hamiltonian and H1 the problem Hamiltonian. Let’s
state a useful lemma that applies in this setting:
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Lemma 3.1. Let λi, |ni⟩ be an eigenvalue/eigenvector orthogonal pair of a real-
valued symmetric time dependent matrix operator B such that B̈ = 0, we have:

λ̇i = ⟨ni|Ḃ|ni⟩ (3.1)

|ṅi⟩ =
∑
j ̸=i

⟨nj |Ḃ|ni⟩
λi − λj

|nj⟩ (3.2)

λ̈i = 2
∑
j ̸=i

|⟨nj |Ḃ|ni⟩|2

λi − λj
(3.3)

Proof. We take the derivative of the eigen relation B|ni⟩ = λi|ni⟩:

Ḃ|ni⟩+B|ṅi⟩ = λ̇i|ni⟩+ λi|ṅi⟩

and knowing that ⟨ni|ṅi⟩ = 0 because ⟨ni|ni⟩ = 1, we compose by ⟨ni| on the
left to get the first expression. Then, composing the same expression by another
eigenvector |nj⟩ with eigenvalue λj we obtain (λi − λj)⟨nj |ṅi⟩ = ⟨nj |Ḃ|ni⟩. From
that we get the second expression. Eventually, we take the second derivative of the
eigen relation:

B̈|ni⟩+ 2Ḃ|ṅi⟩+B|n̈i⟩ = λ̈i|ni⟩+ 2λ̇i|ṅi⟩+ λi|n̈i⟩

by hypothesis B̈ = 0, then projecting onto |ni⟩ and using (3.2) we obtain the third
result.

In our setting, the second derivative of the Hamiltonian H(s) with respect to s
is zero, so the results of this latter lemma are true for the Hamiltonian H(s).

3.1.1 Minimum gap in AC of Def. 2.6

Let us first recall quickly the idea of Def. 2.6 crossing. Around anti-crossing point s∗,
the instantaneous ground-state |ϕ0(s∗)⟩ and first excited state |ϕ1(s∗)⟩ are mainly
localized in the final ground-state |GS⟩ and final first excited state |FS⟩. With
ak(s) = |⟨ϕ0(s)|ϕk(1)⟩|2 and bk(s) = |⟨ϕ1(s)|ϕk(1)⟩|2, the definition states that
there exists δs such that in the interval [s∗ − δs, s∗ + δs]:

|ϕ0(s)⟩ ≃
√
a0(s)|GS⟩+

√
a1(s)|FS⟩

|ϕ1(s)⟩ ≃
√
b0(s)|GS⟩ −

√
b1(s)|FS⟩

where the four quantities a0, a1, b0 and b1 have well defined behaviors parametrized
by γ and ε. γ represents the maximal amount of states other than |GS⟩ and |FS⟩,
i.e. in the same interval,

∑
k≥2 ak(s) < γ (similarly for the bk’s). ε represents the

value by which the latter four quantities deviate from 1/2 at crossing point s∗ (see
Fig. 2.12). Typically, a0(s) will grow from below γ to above 1− γ passing through
1
2 ± ε at s = s∗, and inversely for a1(s). The same goes for b1 and b0.

Now, recall that the quantity of interest for AQC is the behavior of the minimum
gap ∆min. Few examples are known where the expression of the gap can be found
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explicitly [Albash & Lidar 2018]. It is interesting to understand the influence of
parameter γ and ε on the minimum gap value. We derive here the exact expression
(Proposition 3.1) of ∆min using the quantities introduced in [Choi 2020].

Proposition 3.1. ∆min =
∑

k Ek(1) [bk(s
∗)− ak(s∗)] where the sum runs over in-

dices k corresponding to distinct Ek(1).

Proof. The gap reaches a minimum at s∗ so its derivative is null at s∗, thus using
Eq. (3.1) of Lemma 3.1, we get:

0 =
d∆

ds
(s∗)

=
dE1

ds
(s∗)− dE0

ds
(s∗)

= ⟨ϕ1(s∗)|Ḣ|ϕ1(s∗)⟩ − ⟨ϕ0(s∗)|Ḣ|ϕ0(s∗)⟩

⇒ ⟨ϕ1(s∗)|H0|ϕ1(s∗)⟩ − ⟨ϕ0(s∗)|H0|ϕ0(s∗)⟩ = ⟨ϕ1(s∗)|H1|ϕ1(s∗)⟩
− ⟨ϕ0(s∗)|H1|ϕ0(s∗)⟩

In the setting of linear interpolation, we have Ḣ = H1 − H0. The eigen relation
takes the form of sḢ|ϕk(s)⟩ = Ek(s)|ϕk(s)⟩ − H0|ϕk(s)⟩. Then projecting onto
⟨ϕk(s)| gives s⟨ϕk(s)|Ḣ|ϕk(s)⟩ = Ek(s) − ⟨ϕk(s)|H0|ϕk(s)⟩. Applying this relation
with k = 0, 1 on the previous calculation, gives another expression of the min-gap:

∆min = E1(s
∗)− E0(s

∗)

= ⟨ϕ1(s∗)|H0|ϕ1(s∗)⟩ − ⟨ϕ0(s∗)|H0|ϕ0(s∗)⟩
= ⟨ϕ1(s∗)|H1|ϕ1(s∗)⟩ − ⟨ϕ0(s∗)|H1|ϕ0(s∗)⟩

Now, let’s write |ϕ1(s∗)⟩ and |ϕ0(s∗)⟩ in the computational basis |x⟩. There exists
αx and βx such that

|ϕ0(s∗)⟩ =
∑

x∈{0,1}n
αx|x⟩ and |ϕ1(s∗)⟩ =

∑
x∈{0,1}n

βx|x⟩

By definition of ak and bk, the different eigen subspace can be degenerate, so we
have that ∑

x s.t.Ex=Ek(1)

|αx|2 = ak(s
∗) and

∑
x s.t.Ex=Ek(1)

|βx|2 = bk(s
∗)

Then knowing that H1|x⟩ = Ex|x⟩ and Ex = Ek(1) is the same for all vectors in the
subspace span by |ϕk(1)⟩, we have:

⟨ϕ0(s∗)|H1|ϕ0(s∗)⟩ =
∑
x

∑
y

α†
xαy⟨x|H1|y⟩

=
∑
x

|αx|2Ex

=
∑
k

ak(s
∗)Ek(1)
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The same goes with |ϕ1(s∗)⟩ and bk(s∗) therefore we end up with:

∆min =
∑
k

Ek(1) [bk(s
∗)− ak(s∗)]

This result is a general expression of the minimum gap when linear interpolation is
used. We can see that it depends only on the new variables and the final energies.
The minimum gap will be exponentially small if all terms ak and bk are small or if
ak ≃ bk. We can now upper-bound ∆min using the parameter ε that quantifies the
strength of the anti-crossing.

Corollary 3.1. For a (γ, ε)-anti-crossing of definition 2.6, we have:

∆min = O(ε)

Proof. For a (γ, ε)-anti-crossing of definition 2.6, a0(s
∗), a1(s

∗), b0(s
∗), b1(s

∗) ∈
[1/2 − ε, 1/2 + ε]. Thus, for k = 0, 1, |bk(s∗) − ak(s

∗)| ≤ 2ε. This also means
that

∑
k≥2 ak(s

∗) ≤ 2ε, and the same goes for the bi(s∗)′s. The final energy Ek(1) is
upper-bounded by a constantM and without loss of generality we assume Ek(1) ≥ 0,
therefore:

∆min ≤ E0(1)|b0(s∗)− a0(s∗)|+ E1(1)|b1(s∗)− a1(s∗)|

+M
∑
k≥2

[bk(s
∗) + ak(s

∗)]

≤ 2εE0(1) + 2εE1(1) + 4εM

≤ 2(E0(1) + E1(1) + 2M)ε

The smaller ε is, the smaller the minimum gap will be. Therefore, if the instanta-
neous ground-state is exponentially close to a linear combination of |GS⟩ and |FS⟩
(i.e. ε is exponentially small), the minimum gap will be exponentially small. This
new result quantifies the strength of a Def. 2.6 anti-crossing.

Discussion: Let us discuss some intuition we can get from the quantities ak
and bk based on Def. 2.6. Around crossing point, a1 is dominant before s∗, meaning
that the instantaneous ground-state is localized in the first final excited state before
the anti-crossing. After s∗, a0 is dominant, meaning that |ϕ0(s)⟩ is now localized
in the final ground-state. This exchange of localization happens in pairs with the
instantaneous excited state |ϕ1(s)⟩ as it jumps from |GS⟩ toward |FS⟩. This implies
that before s∗, |ϕ0(s)⟩ was heading toward |FS⟩, and |ϕ1(s)⟩ toward |GS⟩.

One can understand the ak’s as being the direction toward which the instan-
taneous ground-state is evolving. For a particular j, if aj is becoming dominant
at some point in the evolution, it means that |ϕ0(s)⟩ is going toward the jth final
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energy state. The description imposed by Def. 2.6 seems restrictive as it is only
focused on a0 crossing with a1, but in theory, a0 could cross with any other level aj .
One could question if the imposed property is universal for an AC in general. The
same intuition holds for the bk’s and the instantaneous first excited state |ϕ1(s)⟩.
Although Def. 2.6 relates the anti-crossings to the gap closing via Prop. 3.1, is it
possible to exhibit a counter-example to the definition helped by the intuition we
provided on the role of the ak’s? We answer this question in the following section.

3.1.2 AC in Maximum-Weight k-clique problem

To validate or invalidate Def. 2.6 of an AC, we look at the maximum-weight k−clique
problem, with the Hamiltonians described in Sec. 2.2.4. We recall that the goal is to
find a clique of size k in a given input weighted graph G = (V,E,w) that maximizes
the weight of the clique. w is a vector such that wi is the weight of node i. The
initial Hamiltonian H0 stabilizes the Hilbert space span by bit-strings of Hamming
weight k, and we choose the path graph as the driver graph, meaning that H0

links two classical states if they differ by exactly one swap. We choose the path
graph as it seems that it makes AQC struggle more than other tested driver graph
(see Appendix A). In the weighted setting, the cost of a bit-string (necessarily of
Hamming weight k) is the number edges missing to form a clique minus the weights
of the corresponding nodes. As introduced in Sec. 2.2.4, we add a parameter α in
front of the total weight to play with the importance of the weights.

The toy example we constructed to illustrate the anti-crossing phenomenon is a
graph on n = 6 vertices and |E| = 7 edges and the size of the clique we search is
of size k = 3 (see Fig. 3.1). Let w = [1.0, 1.0, 1.0, 1.5, 1.5, 1.5] be the list of weights
of the six nodes. Using this weight vector, for α < 2/3, the ground-state of H1 is
|GS⟩ = |111000⟩ with energy 0− 3α and the first excited state |FS⟩ = |000111⟩ with
energy 1 − 4.5α (for α = 0, there are many first excited states). The ground-state
is degenerate for 1 − 4.5α = −3α i.e. α = 2/3. It is interesting to note that these
latter states are far apart in the graph GH0 generated by −H0. Indeed with a path
graph as driver graph, GH0 is similar to the one presented in Fig. 2.6 with a kite
configuration. The distance in this graph between |GS⟩ and |FS⟩ is the diameter of
the graph, i.e. the largest distance between two states. As we will see in Sec. 4.2,
this property is an indicator for small minimum gap.

6 1

34

5 2

Figure 3.1: Toy example 1 with weights [1,1,1,1.5,1.5,1.5] for each node. For α < 2/3,
the solution is the triangle with nodes labeled 1, 2 and 3. For α > 2/3, the solution
is the subgraph {4,5,6}.
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Now let us have a look at the evolution of the different quantities occurring during
an anti-crossing to compare two instances, α = 0 and α = 0.5. First, let us
explicitly give the final energies of the different states (Fig. 3.2). We see that in
the case of α = 0, the first excited state is degenerate with 8 states whereas, with
α = 0.5, both the ground and first excited states are non-degenerate.

(a)

(b)

Figure 3.2: States with energies for toy example 1 for α = 0 (a) and α = 0.5 (b)

In the following analysis, we call anti-crossing the two hyperbola branches described
by von Neuman and Wigner (see Sec. 2.4.2) that can happen between any two
successive eigenvalues and we denote by s∗ the anti-crossing point between the two
lowest eigenvalues. We plot the evolution of the first three eigenvalues for the two
cases of interest. On Fig. 3.3 (a), two types of anti-crossings are distinguishable:
the one between E2 and E1 which is quite weak and the one between E1 and E0

which is strong and of interest in AQC. Here, the slope of E0(s) before s∗ is the
slope of E1(s) after s∗. Noticing that E1 does not undergo another AC after, we
can say that the lowest energy was going toward E1(1) before bouncing against the
second lowest energy to redirect toward E0(1). If we follow the intuition given in
the previous section, we can expect to see a0 crossing a1.

Now, looking at Fig. 3.3 (b), we see that E2 and E1 are getting closer before
and even more after the anti-crossing between E1 and E0. The slope of E0 before
s∗ is jumping from one level to the other ending in E2(1). Our intuition says that
a2 is becoming dominant before s∗ as the direction of E0 is E2(1), and crosses with
a0. The latter case does not follow the parametrization definition 2.6. The plots
of ak’s and bk’s for these two instances on Fig. 3.4 validate our expectations on the
behavior of these curves. On the left, figures 3.4(a) and (c) show the evolution as
predicted by definition 2.6, however, figures 3.4(b) and (d) show other variations of
the quantities ak and bk for an anti-crossing. Thus, the toy model we introduced
highlights the limitation of Def. 2.6. We further explained the intuition behind this
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(a)

(b)

Figure 3.3: Eigenvalues evolution for toy example 1 with α = 0 (a) and α = 0.5 (b)
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limitation and a thorough example is detailed in Sec. 3.2.3.

(a) (b)

(c) (d)

Figure 3.4: ak (top) and bk (bottom) during evolution for toy example 1 with α = 0

(left) and α = 0.5 (right). Values indexed by 0 are in blue, those by 1 in red, 2 in
green and 3 in purple.

Here we gave more insights on the quantities introduced in Def. 2.6 to describe an
anti-crossing and we explicit the link with the min-gap. A strong anti-crossing will
end up in a small min-gap. However, Def. 2.6 is not general enough as the ak’s
and bk’s don’t explain exactly the behavior described by the definition. In the next
section, still motivated by [Choi 2020], we give a new parametrization definition of
an anti-crossing between the two lowest energies based only on a0(s) and b0(s) and
derive a result that quantifies the min-gap.

In this section, we studied the anti-crossing of Def. 2.6 and proved that it is
indeed related to a minimum gap closing but with a toy model of the maximum-
weight k−clique we were able to show the limitation of this definition and explained
which energy landscape could invalidate Def. 2.6. Based on our observations, in the
next section we introduce a relaxed definition of an anti-crossing to encompass more
cases.
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3.2 New characterization of anti-crossing

In this section, we give a new general result on the derivatives of the instantaneous
vectors involved in the anti-crossing and then we introduce a more general charac-
terization of an anti-crossing than the one studied in the previous section.

3.2.1 Variation of |ϕ0(s)⟩ at s∗

In AQC, we are interested in the evolution of the ground-state as it encodes the
solution of the given problem at the end of the computation. By the adiabatic
theorem, the state stays close to the instantaneous ground-state. Why is it hard to
follow it sometimes? What is happening to the instantaneous ground-state and first
excited state at crossing point? We give one element of answers in Theorem 3.1,
proving that the variation of the two states that crossed are symmetrically similar.
The amplitude of this variation is inversely proportional to the minimum gap, the
direction of the variation is only supported by the other vector state involved in the
anti-crossing.

Theorem 3.1. Assuming that around the s∗ anti-crossing point between E0(s) and
E1(s), all other higher energy levels are well separated from these two levels, the
following relations hold :

d

ds
|ϕ0(s∗)⟩ ≃ − β|ϕ1(s∗)⟩ (3.4)

d

ds
|ϕ1(s∗)⟩ ≃ β|ϕ0(s∗)⟩ (3.5)

where β = ⟨ϕ0(s∗)|Ḣ|ϕ1(s∗)⟩
∆min

and the ≃ symbol hides some negligible O(δ2s) terms for
a small δs around s∗.

Proof. Let us write the expression we get using Eq. 3.2 of Lemma 3.1, for i = 0, 1 :

d

ds
|ϕi(s)⟩ = (−1)i+1 ⟨ϕ0(s)|Ḣ|ϕ1(s)⟩

E1(s)− E0(s)
|ϕi⊕1(s)⟩ −

∑
j≥2

⟨ϕj(s)|Ḣ|ϕi(s)⟩
Ej(s)− Ei(s)

|ϕj(s)⟩

The right-hand side is composed of a first term that is β and a second term which
is a sum over energy levels greater than 2. Let us show that the sum is zero. To
do so, we will show that for i = 0, 1,∀j ≥ 2, ⟨ϕi(s∗)|Ḣ|ϕj(s∗)⟩ = 0. We start from
the observation that the slope of E0(s) before s∗ is the one from E1(s) after s∗,
meaning that they satisfy dE0

ds (s∗ − δs) = dE1
ds (s∗ + δs) for a small δs > 0. The

slopes are exchanged. This observation is consistent with the original description in
[von Neumann & Wigner 1929, Wilkinson 1989].

Then we use Taylor expansion at the first order in δs :

dE0

ds
(s∗)− δs

d2E0

ds2
(s∗) =

dE1

ds
(s∗) + δs

d2E1

ds2
(s∗) +O(δ2s)
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We will neglect the O(δ2s) terms in the rest of the proof and we hide them behind
the ≃ symbol. In the neighborhood of s∗, the gap ∆(s) is minimal in s∗, thus
dE1
ds (s∗)− dE0

ds (s∗) = d∆
ds (s

∗) = 0. We are left with :

d2E0

ds2
(s∗) +

d2E1

ds2
(s∗) ≃ 0

We are in a setting with linear interpolation, so Ḧ = 0. We can use Eq. 3.3 of
Lemma 3.1 to get:

2
∑
j ̸=0

|⟨ϕ0(s∗)|Ḣ|ϕj(s∗)⟩|2

E0(s∗)− Ej(s∗)
+ 2

∑
j ̸=1

|⟨ϕ1(s∗)|Ḣ|ϕj(s∗)⟩|2

E1(s∗)− Ej(s∗)
≃ 0

Pulling out from the first sum the term j = 1 and the term j = 0 from the second
one, they cancel each other and we end up with:

∑
j≥2

[
|⟨ϕ0(s∗)|Ḣ|ϕj(s∗)⟩|2

Ej(s∗)− E0(s∗)
+
|⟨ϕ1(s∗)|Ḣ|ϕj(s∗)⟩|2

Ej(s∗)− E1(s∗)

]
≃ 0

The sum of positive summands is equal to zero, so each summand is equal to zero.
Because the denominators are strictly positives, we obtain:

∀j ≥ 2,

{
⟨ϕ0(s∗)|Ḣ|ϕj(s∗)⟩ ≃ 0

⟨ϕ1(s∗)|Ḣ|ϕj(s∗)⟩ ≃ 0

This is enough to conclude.

Actually, with some manipulations of the eigen relation like in the proof of
Prop. 3.1, we have that for i ̸= j, ⟨ϕi(s)|Ḣ|ϕj(s)⟩ = 1

s ⟨ϕi(s)| − H0|ϕj(s)⟩ =
1

1−s⟨ϕi(s)|H1|ϕj(s)⟩ ≥ 0. Thus, one can show that:

∀j ≥ 2,

{
⟨ϕ0(s∗)|H1|ϕj(s∗)⟩ = ⟨ϕ0(s∗)|H0|ϕj(s∗)⟩ ≃ 0

⟨ϕ1(s∗)|H1|ϕj(s∗)⟩ = ⟨ϕ1(s∗)|H0|ϕj(s∗)⟩ ≃ 0

Furthermore, if H1 is positive semi-definite (which is easy to achieve by adding an
identity matrix scaled by the minimum value of H1), we have β ≥ 0 .

This theorem also fills a blank in Chapter 2, Sec. 2.4.2 in which we assumed
the reduced matrix expression of the Hamiltonian around s∗. The matrix element
⟨ϕ∗0|Hδs |ϕ∗j ⟩ = ⟨ϕ∗0|H(s∗)|ϕ∗j ⟩ + ⟨ϕ∗0|Ḣ|ϕ∗j ⟩ ≃ 0 for j ≥ 2, and the same holds with
|ϕ∗1⟩.

Here, we understand that the smaller the minimum gap is, the more brutal
the variation of the instantaneous ground-state will be. This result can explain
why it is hard to follow the trajectory of the ground-sate vector. Furthermore, the
direction of the variation is purely supported by the other vector involved in the
anti-crossing meaning that |ϕ0(s∗)⟩ and d

ds |ϕ0(s
∗)⟩ form the same plane as |ϕ0(s∗)⟩

and |ϕ1(s∗)⟩ where these two vectors rotate.
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3.2.2 New anti-crossing definition

During adiabatic evolution, each level of energy will undergo some anti-crossings. We
aim to explain the anti-crossings happening to one specific level namely the ground-
state. In AQC, the purpose is to find the ground-state of the final Hamiltonian,
thus knowing from which higher energy level |GS⟩ comes, will help to understand
if the solution has to jump many levels before ending in the ground-state. This
information is present in the coefficient of |ϕi(s)⟩ corresponding to |GS⟩. Therefore,
instead of looking at the decomposition of the instantaneous ground-state |ϕ0(s)⟩ in
the computational basis, we can look at the decomposition of the final ground-state
|GS⟩ in the instantaneous basis by introducing :

gk(s) = |⟨GS|ϕk(s)⟩|2 (3.6)

The value of the gk during the evolution corresponds to the probability to measure
the solution if the system is in the kth energy level. In AQC, generally, we start
from the ground-state of the initial Hamiltonian H0, so the state stays close to the
instantaneous ground-state according to the adiabatic theorem. Therefore, we hope
that g0 is dominant at some point.

Notice that g0 = a0 and g1 = b0. The idea is to relax Def. 2.6 to include a better
description of an anti-crossing between E0 and E1. The intuition behind those
variables are quite similar, a dominant gj during the evolution means that the
instantaneous basis vector |ϕj(s)⟩ is in direction toward the solution before s∗. We
can restate the parametrization of an (γ, ε)-anti-crossing based only on g0 and g1.

Definition 3.1. For γ ≥ 0, ε ≥ 0 we say there is an (γ, ε)-Anti-crossing if there
exists a δs > 0 such that

1. For s ∈ [s∗ − δs, s∗ + δs],

|GS⟩ ≃
√
g0(s)|ϕ0(s)⟩+

√
g1(s)|ϕ1(s)⟩ (3.7)

where g0(s)+g1(s) ∈ [1−γ, 1]. Within the time interval [s∗−δs, s∗+δs], |GS⟩ is
mainly composed of |ϕ0(s)⟩ and |ϕ1(s)⟩. That is, all other states (eigen states
of the Hamiltonian H(s)) are negligible (which sums up to at most γ ≥ 0).

2. At the avoided crossing point s = s∗, g0 = g1 ∈ [1/2 − ε, 1/2], for a small
ε > 0. That is, |GS⟩ ≃ 1/

√
2(|ϕ0(s∗)⟩+ |ϕ1(s∗)⟩).

3. Within the time interval [s∗ − δs, s
∗ + δs], g0(s) increases from ≤ γ to

≥ (1− γ), while g1(s) decreases from ≥ (1− γ) to ≤ γ.

Our new definition is quite similar to Def. 2.6 and trivially includes all anti-crossings
described by Choi’s definition. We see from point 1 and 3 that we can remove point
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2 by setting 2ε = γ. Nevertheless, one may want to keep the independence of
this two parameters to encompass more potential AC. Additionnaly, we have the
following corollary of Theorem 3.1 that links it to the minimum gap and properly
characterizes the strength of an anti-crossing.

Corollary 3.2. Still neglecting terms in O(δ2s),

dg0
ds

(s∗) +
dg1
ds

(s∗) ≃0 (3.8)

dg0
ds

(s∗)− dg1
ds

(s∗) ≃4g0,1(s∗)β (3.9)

Proof. We have dgi
ds (s) = ⟨GS|ϕi(s)⟩⟨GS|dϕi

ds (s)⟩ + ⟨ϕi(s)|GS⟩⟨dϕi

ds (s)|GS⟩, g0(s∗) =

g1(s
∗) and theorem 3.1.

For a strong anti-crossing, g0(s∗) = g1(s
∗) = g0,1(s

∗) ≃ 1/2. Using our definition
(Def. 3.1), along with Corollary 3.2, we have that

4g0,1(s
∗)β =

dg0
ds

(s∗)− dg1
ds

(s∗) ≃ 1− 2γ

δs

which gives the order of the minimum gap: ∆min = O(2Ḣ01
δs

1−2γ ). The main prop-
erty characterizing an avoided-crossing according to our definition is the sharp vari-
ation of g0 and g− 1 around s∗. We provide numerical evidence on the previous toy
model (Fig. 3.1) by plotting the derivative of g0 and g1 against ∆min for α ∈ [0, 0.66]

close to the threshold 2/3 (Fig. 3.5). The numerical result looks consistent with
Corollary 3.2. We clearly see that the derivative of g0 and g1 have similar opposite
variation. The plain lines express the tendency of the variations which are clearly
inversely proportional to the minimum gap.

In this section, we introduced a new characterization of an anti-crossing which is
a relaxed version of Def. 2.6. We supported this definition by an analytical result and
numerical evidence on AC that the previous definition (Def. 2.6) does not capture.
In the next section, we further detail an example and explain each expected behavior
of the ak, bk and gk.

3.2.3 Thorough comparison of ACs definitions

In this section, we illustrate how the two definitions (Def. 2.6 and Def. 3.1) differ
and interpret this difference through the previous intuitions. We use a new toy
model for the maximum-weight k−clique problem with the graph in Fig. 3.6. It is
the same structure of the graph Fig. 3.1 where nodes 1 and 3 are swapped as well
as nodes 5 and 6. We keep the same weights vector w = [1, 1, 1, 1.5, 1.5, 1.5].

For α = 0.2, this produces the following final states according to their energy
(Fig. 3.7 (a)) and the eigenvalues evolution (Fig. 3.7 (b)).
With this instance, we observe that the final slope of E0(s) comes from the slope
of E2(s), therefore we expect that g2(s) becomes dominant before transmitting to
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(a)

(b)

Figure 3.5: Evolution of the derivative of g0 and g1 (a) and the difference (b) against
the min-gap for α varying from 0 (large gap) to 0.66 close to the threshold 2/3 (small
gap).

5 3

14

6 2

Figure 3.6: Toy example 2
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(a)

(b)

Figure 3.7: States (a) with their energy and Ei(s) (b) during evolution for toy
example 3.6 with α = 0.2
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g1(s) after the first anti-crossing between E2 and E1. Eventually, the anti-crossing
of E1 and E0 will produce a crossing of g1 and g0. The latter will become dominant
and will become equal to 1 at the end. Now, focusing on the slope of E0(s) before
the anti-crossing, following the different successive anti-crossings, the jumps end up
in the 4th energy level. In terms of ak’s and bk’s, this means that a3(s) becomes
important just before the anti-crossing and crosses a0(s) at the anti-crossing. The
same goes for b3(s) and b0(s). The plots below supports these previous analyses.

(a) (b)

(c)

Figure 3.8: ak (a), bk (b) and gk (c) during evolution for toy example 3.6 with
α = 0.2. Values indexed by 0 are in blue, those by 1 in red, 2 in green and 3 in
purple.

Remarks:

1. On Fig. 3.8 (a), we only see one specific situation, namely the crossing of a3
with a0 at the anti-crossing point s∗ between E0 and E1. This means that
the curve E0(s) was going toward the 4th energy level in terms of the slope
before s∗ and immediately change its slope toward its final direction of the
1st energy level. Hypothetically, we could observe a3 crossing a1, which will
indicate that E0(s) change its direction toward the 2nd energy level, then a1
crossing a0. In this hypothetical case, E0(s) undergoes two anti-crossings.
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2. On Fig. 3.8 (b), we focus on the behavior of |ϕ1(s)⟩. Here, we understand
that E1(s) first went toward the 3rd energy level before changing direction
toward the lowest energy level. This is b2 crossing b0 when the first anti-
crossing between E1 and E2 occurs. Then, it takes the direction of the 4th

energy level when b0 crosses b3. Indeed, it fetches the direction of E0 before
anti-crossing (remember it was a3 which was dominant at this point). Then
again takes back its initial direction with b2 becoming dominant at the second
anti-crossing between E1 and E2. Eventually, smoothly change its direction
toward its final goal.

3. On Fig. 3.8 (c), the point of view is quite different as we look from the final
lowest energy position E0(1) and see from where it comes. We see in Fig. 3.7
(b) that the final blue slope undergoes two anti-crossing before becoming blue.
Indeed, it starts green, then jumps to red and finally blue. These successive
anti-crossings appear on the plot of gk, first, g2 is dominant, then at the first
anti-crossing between E2 and E1, g2 crosses with g1. Now, the final slope of
E0 is transported by E1. Eventually, E1 anti-crosses E0 so g1 crosses g0 and
the evolution (at least for the ground-state) can finish peacefully.

From this detailed example, we understand that avoided crossings are a place
where slopes of eigen energies are swapping. As hinted in the first bullet point of
the remarks, the new introduced definition has its own limitation as we see in the
next section.

3.3 Limitation and other potential type of AC

In this section, we highlight potential limitations in our AC definition. In
Definition 3.1, emphasis is placed on the significance of the |GS⟩ coefficient in
the instantaneous eigenvectors. As defined, |ϕ0(s)⟩ will ultimately converge to
|GS⟩, and if an AC occurs between E1 and E0, then g0 will inevitably un-
dergo a noticeable increase. However, this observation holds true only for the fi-
nal AC in the evolution. Notably, if E0 experiences multiple AC events (as in
[Somma et al. 2012, Feinstein et al. 2022]), the initial AC may not conform to the
behaviors outlined in our definition.

For instance, considering an energy spectrum akin to Fig. 3.9, our definition
remains applicable for the second AC of E0(s) but not for the first one. In this
scenario, g2 begins to dominate before the first anti-crossing between E2 and E1.
Subsequently, g2 intersects with g1, which then becomes the dominant coefficient.
The crossing between g1 and g0 occurs at the second anti-crossing between E1 and
E0, aligning with the predictions of our definition.

Now the question is “How can we describe the first AC”. We have two perspec-
tives. Either we take the point of view of looking where E0 is going. Here, following
the different AC brings the initial slope of E0 to E3, so a3 is becoming dominant,
then after the crossing point, E0 is heading toward E2 so a2 is becoming dominant.
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Figure 3.9: Example of an energy spectrum in which the ground-state undergoes
two anti-crossing. In this situation, the first AC does not follow our definition but
the second one does.

We can expect a crossing of a3 and a2 and inversely between b2 and b3 as well.
Or, similarly to our definition, we also expect a2 and b2 to cross. We see with this
example that it might be more complicated to find a general approach to describe
an AC. Another potential AC is one where E2 anti-crosses with E0 leaving E1 in
the middle without changing its trajectory.

Conclusion

In this chapter, we questioned the definition of an AC given by [Choi 2020] and
shown a limitation case. Supported by a theoretical approach, we suggested a
relaxed definition to encompass more cases. We provided a complete example along
with a discussion based on our intuition on the evolution of the different quantities
ak, bk and gk. Eventually we suggested further directions to describe even more
potential AC. The main ingredient of all these observations are the conservation of
the slope at an AC. Is it always verified? We leave this question for future work.
Now that we have a better understanding of the phenomenon that can generate
exponentially small minimum gap during a quantum evolution, we move on the
presence of such closure during a quantum evolution. In the next chapter, we prove
a necessary condition on the occurrence of exponentially closing gaps in AQC. As it
happens, these gaps do not correspond to the definition we have introduced in this
chapter, and we will study their impact on the efficiency of AQC.
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In this chapter, we develop a perturbative first-order expansion at the beginning
and end of the adiabatic process to prove a necessary condition for the appear-
ance of first-order quantum phase transitions. In this chapter, we refer to AC as
first-order quantum phase transitions that are characterized by the presence of an
exponentially closing gap. We apply this result to the MaxCut problem on bipartite
graphs. We show that AQC efficiently solves the problem when the graph is also
regular. Furthermore, we construct a family of non-regular bipartite graphs that
satisfies the AC occurrence condition, and numerically confirm the appearance of
an exponentially decreasing gap. This last interesting case leads us to question the
correlation between the appearance of an exponentially small gap and the difficulty
of solving the problem since, despite the very small gap, AQC efficiently finds the
optimal solution with a fairly good probability (Sec. 4.2). Not all exponentially
small deviations are equivalent in terms of the efficiency of AQC. Using the def-
inition of AC we proposed in chapter 3 (Def. 3.1), we are able to distinguish the
latter case with a first-order quantum phase transition that is a source of failure for
AQC. Finally, we suggest a more advanced perturbative expansion for the MaxCut
problem (Sec. 4.3).

4.1 Perturbative Analysis to AQC

In this section, we apply the perturbative analysis presented in Sec. 2.4.1 to the AQC
process. This idea has already been explored by other authors [Altshuler et al. 2010,
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Amin & Choi 2009, Werner et al. 2023] to derive different results and intuitions
about the occurrences of an anti-crossings during the evolution. The perturba-
tive analysis can be naturally applied at the beginning (s(0) = 0) and at the end
(s(T ) = 1) of the evolution. Typically, we know the eigen basis of H0 and H1 which
allows us to deduce relevant features about the process. Building on the work of
[Werner et al. 2023], we develop here an expansion of the energy EI

0 = E0(0) of
the initial state |ψ0⟩ = |ϕ0(0)⟩, i.e. the ground-state of H0 and for the energies
Egs = E0(1) of the final ground-state |GS⟩ = |ϕ0(1)⟩ and Efs = E1(1) of the final
first excited state |FS⟩ = |ϕ1(1)⟩ of H1. We further assume that the first excited
subspace of H1 is degenerate, meaning that there are many solutions with second
best cost value. We already know from [Amin & Choi 2009] that the second-order
perturbation can be enough to prove the presence of an AC. In Sec. 2.4.3, we also
saw that at first-order, without the degeneracy condition, it was impossible to con-
clude on the crossing of the perturbed final energy. In [Werner et al. 2023], the
authors show that adding the condition of a first degenerate excited subspace of H1

lifts the degeneracy at first order. We place ourselves in this setting to derive pow-
erful technical results on the occurrence of ACs. Recall that AC refers to the point
where the gap is closing exponentially fast, i.e. when the two lowest instantaneous
eigen-energies are getting exponentially close to each other. Intuitively, the energy
curves almost cross but change directions right before (Sec. 2.4 and 3.2).

Before deriving the different expansions (in the next sections), let us set again the
considered time-dependent Hamiltonian H(s) = (1−s)H0+sH1. We need to define
H0, H1 and the trajectory s(t). We choose to stay in the standard setting of AQC for
solving classical optimization problems defined over the bit-strings of size n where
s(t) can be any function from 1 to 0 (e.g. s(t) = t

T ), H0 = −
∑

i σ
(i)
x where the sum

is over the n qubits of the considered quantum system and H1 =
∑

x∈{0,1}n Ex|x⟩⟨x|.
Ex is the value for a classical n−bit-string x of the function we want to optimize,
i.e. if C is a cost function to minimize, C(x) = Ex. We refer the reader to Sec. 2.2
for more details on the construction of the Hamiltonians. From this setting, we
know that |ψ0⟩ is the uniform superposition over all bit-strings and the associated
eigen-space is non-degenerate. We further assume that the ground space of H1 is
non-degenerate as well, i.e. ∃! x∗, Ex∗ = Egs while the first excited subspace is
degenerate, i.e. ∃ x ̸= y, Ex = Ey = Efs > Egs.

We now introduce different graphs that help us to better visualize some quan-
tities. As described in Sec. 2.2.2, H0 can be seen as the negative adjacency matrix
of an n−regular graph. If each node represents a bit-string x, this state is con-
nected to another one y via H0 if y is exactly one bit-flip (σx operation) away
from x. We express this relation as x ∼

H0

y. For any bit-string of size n, there

are exactly n possible bit-flips. −H0 represents the search graph which is the hy-
percube in dimension n among all possible solutions x. We can isolate the nodes
that belong to the degenerate first excited subspace of energy Efs among all x, i.e.
Vloc = {y ∈ {0, 1}n|Ey = Efs} and we can define the graph induced by those states
Vloc in −H0. We call Gloc this subgraph that corresponds to the local minima of
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Figure 4.1: A 5-cube with Gloc highlighted with red nodes and thick black edges.
Light-blue node is the unique ground-state and blue edges show the connection
between Gloc and the ground-state. Green nodes are all the other possible states
with higher energies. The labels, once converted in binary, represent the state
configuration.

the optimization problem. An example of Gloc in the 5-cube is shown on Fig. 4.1.
We use MaxCut on a cycle to generate this example, we give the details in the next
section. To visualize the landscape of such a graph, we draw in Fig. 4.2 a schematic
two-dimensional plot of the objective function C(x) which is also the energy land-
scape of H1. In the example of Fig. 4.1, we see that the optimal state x∗ = |GS⟩ is
only connected to states in Gloc and there is no component of Gloc far from it, i.e.
with a potential barrier in between. This idea is conveyed in Fig 4.2 by the absence
of green parts between the red and blue sections.

In the rest of the section, we detail the perturbation expansions and how we can
articulate them to derive a condition on the occurrence of the anti-crossing during
AQC. More precisely, we will prove the following theorem:

Theorem 4.1. Under perturbative expansion validity, if λ0(loc) is the unique largest
eigenvalue of the adjacency matrix of Gloc and H1 has a unique ground-state and a
degenerate first eigen-space, with a linear interpolation in s between H0 and H1 as
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Figure 4.2: Schematic energy landscape of H1 corresponding to Fig. 4.1. Gloc has
only one component and is strongly connected to the optimal state x∗.

defined above, and by defining

slg =
λ0(loc)

∆H1 + λ0(loc)
=

1

1 + ∆H1
λ0(loc)

and

αH1 =
∆H1

⟨H1⟩0 − Egs

where ∆H1 = Efs − Egs and ⟨H1⟩0 is the mean of H1’s eigenvalues, we can say
that an anti-crossing happens at slg if λ0(loc) > nαH1. No anti-crossing occurs if
λ0(loc) < nαH1.

The assumption on λ0(loc) is always satisfied when Gloc has a unique major
component. This forms a general condition on the occurrence of an anti-crossing
during a quantum process with the assumptions of the theorem. We see that the
αH1 parameter depends only on the problem H1 while λ0(loc) is mixing H0 and H1.
We observe from this result that the potential occurrence time of an AC around
slg is ruled by the ratio ∆H1

λ0(loc) . In practice, this result can help computer scientists
to design appropriate schedules by slowing the evolution around the AC. However,
the λ0(loc) parameter can be complicated to compute. It encodes the centrality of
Gloc and can be interpreted as the importance of this graph. To tackle this we use
a result from graph theory [Zhang 2021] that bounds the largest eigenvector of a
graph by : davg(loc) ≤ λ0(loc) ≤ dmax(loc). Where davg(loc) and dmax(loc) denote
the average and maximum degree of Gloc respectively. We can derive the following
more practical corollary:
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Corollary 4.1. By introducing,

s+lg =
davg(loc)

∆H1 + davg(loc)

s−lg =
dmax(loc)

∆H1 + dmax(loc)

we can distinguish three regimes :

- AC occurs in the interval [s+lg, s
−
lg] if davg(loc) > nαH1;

- No-AC occurs if dmax(loc) < nαH1;

- Undefined if dmax(loc) > nαH1 > davg(loc).

This corollary gives an interval where an AC may occur. Furthermore, it will help
anyone who wants to study the different regimes when applied to a specific problem
as we do with MaxCut in the next section. In any case, this analytical result is
derived from the perturbative theory and the validity of the truncation used needs
to be checked. We suggest a validation of this approach applied to MaxCut over
bipartite graphs, through analytical and numerical evidence in Sec. 4.2.4. Now let
us detail the proof of the theorem.

4.1.1 Initial perturbation

At the beginning of the evolution, we know that we start from the ground-state of
H0 with energy EI

0 , i.e. H0|ψ0⟩ = EI
0 |ψ0⟩. We are interested in how it changes while

perturbingH0 with someH1. More formally, let us look at the modified Hamiltonian
H̃(ε) = H0+ εH1 which is obtained by dividing the original Hamiltonian by (1− s)
and setting ε = s

1−s . If we call Ẽdeloc(ε), “deloc” for delocalized state, the ground-
state energy expansion at first-order of H̃(ε), by perturbative analysis with non-
degenerate subspace, the first-order expansion is :

Ẽdeloc(ε) = E
(0)
0 + εE

(1)
0

= ⟨ψ0|H0|ψ0⟩+ ε⟨ψ0|H1|ψ0⟩
= EI

0 + ε⟨H1⟩0

where EI
0 = −n and the associated state |ψ0⟩ is a uniform superposition among all

bit-strings. Hence, ⟨H1⟩0 represents the mean of all possible values of the optimiza-
tion problem, encoded in H1. Therefore, in the s frame, we end up with :

Edeloc(s) = −(1− s)n+ s⟨H1⟩0 (4.1)

This change of frame is valid as one could have studied directly H(s) = H(s×) +

(s− s×)Ḣ for s× = 0 as we do when looking at the AC point s× = s∗ in Sec. 2.4.2.
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4.1.2 Final perturbation

At the end of the evolution, we know that the ideal case is one where the state
largely overlaps with the final ground-state. However, the appearance of an
anti-crossing can lead to a significant overlap with the first excited state, or even
with higher levels (see Sec. 3.3 for ACs cascade). We are therefore interested in
the behavior of the energies ending in Egs and Efs when perturbed by H0. More
formally, consider the modified Hamiltonian H̄(λ) = H1 + λH0 which is obtained
by dividing the original Hamiltonian by s and setting λ = 1−s

s . We choose this
point of view because it is more usual when applying perturbation theory, but as
the initial case, setting s× = 1 leads to the same expressions.

First, we focus on the behavior of the ground-state. We know that H1|GS⟩ =

Egs|GS⟩. If we call Ēglob(λ), where “glob” stands for global minima, the ground-
state energy expansion at first-order of H̄(λ), by perturbative analysis with a non-
degenerate subspace, the first-order expansion is :

Ēglob(λ) = E(0)
gs + λE(1)

gs

= ⟨GS|H1|GS⟩+ λ⟨GS|H0|GS⟩
= Egs

Recall that Egs is the optimal value of the optimization problem we are studying
and the associated eigenspace is non-degenerate. Thus |GS⟩ is a quantum state that
encodes a classical bit-string, the optimal solution to the problem. In other words,
|GS⟩ is a vector of the canonical basis of the Hilbert space and ⟨GS|H0|GS⟩ is a
diagonal element of H0 which are all zero. Therefore in the s frame, we obtain :

Eglob(s) = sEgs (4.2)

Secondly, we focus on the evolution of the first excited state. However, we
supposed that this subspace is degenerate so we need to be more precise about
which state we want to study. Let |FS, k⟩ be the kth eigenstate of the degenerate
eigenspace of H1, by definition H1|FS, k⟩ = Efs|FS, k⟩. If we keep the usual bit-
string basis among the degenerate subspace, the first order term ⟨FS, k|H0|FS, k⟩ will
always be zero and the degeneracy is not lifted. The states |FS, k⟩ can be ordered
by continuity of the non-degenerate instantaneous energy landscape of H(s) and
thus H̄(λ) as well. We therefore focus on the energy evolution of the state |FS, 0⟩.
If we call Ēloc(λ) the first excited state energy expansion at first-order of H̄(λ), by
perturbative analysis with non-degenerate subspace, the first-order expansion is :

Ēloc(λ) = E
(0)
fs,0 + λE

(1)
fs,0

= ⟨FS, 0|H1|FS, 0⟩+ λ⟨FS, 0|H0|FS, 0⟩
= Efs + λ⟨FS, 0|H0|FS, 0⟩
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To lift the degeneracy at first-order, we need to find a “good” basis |FS, k⟩ for which
∀k ≥ 1, ⟨FS, 0|H0|FS, 0⟩ < ⟨FS, k|H0|FS, k⟩. We take as basis vectors |FS, k⟩ of the
degenerate eigenspace the eigenvectors of adjacency matrix Aloc of Gloc. With this
notation, Aloc|FS, k⟩ = λk|FS, k⟩ where we order λ0 > λ1 ≥ λ2 ≥ ... and finally
⟨FS, k|H0|FS, k⟩ = −λk by construction. This ensures that the degeneracy is lifted
if the largest eigenvalue of Aloc is unique. This happens if Gloc has a unique major
component, which we assume. Note that if Gloc consists only of isolated nodes,
intuitively they become as difficult as the ground-state to find by AQC unless there
are exponentially many of them [Ebadi et al. 2022], we assume from now that this
is not the case. Hence, λ0 is unique and in the s frame, we end up with :

Eloc(s) = sEfs − (1− s)λ0 (4.3)

From [Zhang 2021], we can bound the largest eigenvector of a graph by : davg(loc) ≤
λ0 ≤ dmax(loc), where davg(loc) and dmax(loc) denote the average and maximum
degree of Gloc respectively. Consequently, we can use the following more practical
bounds on Eloc(s):

Eloc(s) ≥ sEfs − (1− s)dmax(loc) = E−
loc(s) (4.4)

Eloc(s) ≤ sEfs − (1− s)davg(loc) = E+
loc(s) (4.5)

4.1.3 Energy crossing

Figure 4.3: Schematic behavior of the three energy expansions: (left) a case where
the condition of AC is not satisfied and (right) a case where the condition is satisfied.

We are in position to distinguish different regimes during which an avoided-
crossing does or does not occur. The state begins in the delocalized situation,
since |ψ0⟩ is the uniform superposition, with energy Edeloc. If it first crosses Eglob,
it then follows trajectory of the instantaneous ground-state to “easily” reach the
final optimal state. If it crosses Eloc first, then it follows the trajectory of the
first instantaneous excited state, and at some point it will cross Eglob later and an
anti-crossing will occur at that instant. Hence, the two instants of interest in the
dynamics are sdg, defined such that Edeloc(sdg) = Eglob(sdg), and sdl, defined such
that Edeloc(sdl) = Eloc(sdl). If sdl < sdg, then an anti-crossing occurs at time slg



92 Chapter 4. Exponentially closing gaps in AQC

verifying that Eloc(slg) = Eglob(slg). Fig. 4.3 shows the possible behavior of the
energy expansions. In this plot, we assume that Egs < Efs < 0. The slope of the
curve Eloc also depends on λ0, the largest eigenvalue of Gloc. A larger λ0 value shifts
the sign of the slope toward positives values, so that Eloc crosses Edeloc before Eglob,
all else being equal. This situation (right) will create an AC during the annealing.
It is important to note that a large value of λ0 means high connectivity in the graph
Gloc (or at least in its largest component). In other words, this means that the local
minima are large in the mixing graph H0 making it difficult for AQC to converge
toward the global minimum.

We can derive the explicit expression for sdg, sdl and slg as follows:

sdg =
n

n+ ⟨H1⟩0 − Egs

sdl =
n− λ0

n− λ0 + ⟨H1⟩0 − Efs

slg =
λ0

∆H1 + λ0
=

1

1 + ∆H1
λ0

We note
αH1 =

∆H1

⟨H1⟩0 − Egs

where ∆H1 = Efs−Egs, a parameter that depends only on the problem H1 we want
to solve. And so AC occurs at slg if sdl < sdg i.e. if λ0 > nαH1 . This concludes the
proof of our theorem.
The corollary immediately follows by using E−

loc(s) and E+
loc(s). The undefined

regime is then when sdg ∈ [s−dl, s
+
dl] because we cannot discriminate which curve the

delocalized energy will cross first.

This result is quite general for many targets Hamiltonians, but we still need
several conditions: the ground-state must be unique and the first excited subspace
is degenerate, the validity of the first-order perturbative expansion and the unique
largest component in Gloc.

Remark. From a physical point of view, as developed in Sec. 2.4.3 and more in
[Amin & Choi 2009], we understand that in the AC-case the instantaneous ground-
state first localized in the first excited state |FS⟩ (or in the eigen subspace) corre-
sponding to a quantum phase transition of second order generating only a polyno-
mially small gap. The AC happens when the state then experiences a transition
from a localized state |FS⟩ to another localized state |GS⟩ related to a first-order
quantum phase transition.

In this section, we applied the perturbative analysis to AQC and showed under
assumptions about H1, Gloc and the expansion truncation, that anti-crossings may
occur during annealing given a condition to be satisfied that depends on Gloc and
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H1. We have also given a corollary that relaxes the assumptions of the theorem so
that it is more useful when applied to a specific problem. In the next section, we
show such an application in the case of MaxCut on bipartite graphs.

4.2 Application to MaxCut over bipartite graphs

In this section, we apply Corollary 4.1 to the MaxCut problem over bipartite graphs.
Given a graph G(V,E), recall that the goal of MaxCut is to partition its node set
V into two parts L and R in order to maximize the number of cut edges, i.e., of
edges with an endpoint in L and the other in R. Such partitions are classically
encoded by a bit-string of size n = |V |, the ith bit being set to 0 if node i ∈ L, and
to 1 if i ∈ R. We define our target Hamiltonian as H1 = −

∑
⟨ij⟩∈E

1−σ
(i)
z σ

(j)
z

2 . This
Hamiltonian (and the corresponding MaxCut cost function, see Sec. 2.2.2) has a
trivial symmetry : any solution can be turned into a solution with the same energy
by bit-flipping all its entries. Consequently, H1 has a degenerate ground-state. We
can break down this symmetry by forcing an arbitrary bit (say the first one) to 0

and updating H1 accordingly. In Sec. 4.2.4, we provide some analytical tools to
justify the validation of the perturbation expansion in such cases.

To ensure that the two conditions on H1 are met, we need to choose a class
of graphs such that the ground-state is non-degenerate (after breaking the trivial
symmetry). Connected bipartite graphs obviously respect this property and we
focus on them in the rest of the section. We will in particular show that the first
excited subspace is degenerate. Also this class allows us to explicitly determine the
parameter αH1 and the graph Gloc. This will help us to determine the existence (or
not) of ACs while solving MaxCut on these graphs with AQC.

4.2.1 d−regular bipartite graphs

We first restrict the bipartite graphs on being d-regular and we will show that no AC
appears during the evolution by using the result from Corollary 4.1 : dmax(loc) <
nαH1 . Leading to the following theorem :

Theorem 4.2 (No AC - d-regular bipartite graphs). AQC efficiently solves MaxCut
on d−regular bipartite graphs, assuming the validity of the first-order expansion in
this case.

First, we show the two following claims to give a value to nαH1 , then we show
the No-AC conditions with Lemma 4.1 if d /∈ {2, 4}. The latter two cases are tackled
separatly where we directly use the technical Theorem 4.1 to prove the desired result.

Claim 1. For d-regular bipartite graphs we have, nαH1 = 4l
d , where l ∈ [1, d] denotes

the number of uncut edges in the first excited state, i.e. Efs = Egs + l.

Proof of claim 1. For bipartite graphs we have that ⟨H1⟩0 = − |E|
2 , Egs = −|E| and

∆H1 = l ∈ [1, d]. For regular graphs, we also have that |E| = dn
2 . This is enough to

prove Claim 1.
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So nαH1 = 4l
d and we need to look at how dmax(loc) and davg(loc) behave

compared to 4l
d .

Claim 2. There exist graphs with dmax(loc) > 0 only if l = d. Therefore nαH1 = 4.

Proof of claim 2. Recall that Gloc is the subgraph induced by solutions of energy
Efs in the hypercube −H0. In other words, the vertices of Gloc are configurations
(bit-strings) of energy Efs (so “second best” solutions for MaxCut), and two vertices
are adjacent if the corresponding bit-strings differ in exactly one bit, i.e., each one
is obtained by bit-flipping a single bit of the other. We denote by dmax(loc) the
maximum degree of Gloc. We know that, in the input graph G, there exists a
left/right partition of its vertices such that all edges lie across the partition (by
bipartiteness). Looking at one configuration of the first excited subspace, it specifies
another bipartition, this time with all but l edges lying across it. We are interested
in configurations that are not isolated in Gloc because these nodes as mentioned in
Sec. 4.1 do not play a role in AC occurrence. In such a configuration x, we want that
by flipping one node (i.e. moving it to the other side of the partition), the number
of uncut edges stays the same, in order to obtain a configuration y that is also a
vertex of Gloc. So this specific node needs to have half of its edges that are uncut
and the other half that are cut in this particular configuration x of the first excited
subspace. This automatically restricts l to be both even and larger than d/2.

Case l = d/2: Let us suppose l = d/2. We are in a situation similar to Fig. 4.4
(left). By supposing that l = d/2, it means, in the configuration of one excited state,
all other edges must go from left (L) to right (R). This splits the configuration in
the classical L/R partition of a cut. Then we show the following claim that node
1 is a minimal separator of the graph which creates another split up (U) and down
(D) (Fig 4.4 - right).

Claim 3. Assume that l = d/2 and let us consider a configuration corresponding to
a non-isolated vertex of Gloc. Then there is a node of the input graph G, say node
1, having d/2 neighbors on each side of the configuration. Moreover, this node is a
minimal separator of the graph (see Fig. 4.4).

Proof of claim 3. The configuration x is such that all edges but l = d/2 are cut, and
this also holds after the bit-flip of one of its bits. Assume without loss of generality
that this is the first bit, corresponding to node 1, and that 1 is on the left-hand side
of the configuration, i.e., 1 ∈ L. Since flipping node 1 from left to right maintains
the number of cut edges, it means that 1 has exactly d/2 neighbors in set L and d/2
in set R. Since l = d/2, it also means that the l uncut edges are precisely the d/2
ones incident to node 1, from 1 to vertices of L.

Let ND(1) denote the set of neighbors of 1 in L, and NU (1) denote the set of
neighbors of 1 in R. We prove that ND(1) and NU (1) are disconnected in graph
G − 1, obtained from the input graph G by deleting vertex 1. By contradiction,
assume there is a path P from a ∈ NU (1) to b ∈ ND(1) in G− 1. Path P together
with vertex 1 form a cycle in graph G. By bipartiteness, this cycle is even, so
at least one edge of the cycle, other than {1, b}, is contained in L or R. This is
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Figure 4.4: Construction of a specific first excited configuration with d = 4. The
L/R partition (left) is natural in MaxCut. The U/D partition (right) is relevant if
1 is a minimal separator.

in contradiction with the assumption that l = d/2 and all of of these specific d/2
edges are linked to the same node 1. Therefore, G− 1 is disconnected. This proves
claim 3.

This creates four quadrants UL, UR, DL and DR as follows: U is the subset
of nodes of G formed by the union of connected components of G − 1 intersecting
NU (1), and D is its complement. Then UL, UR, DL and DR are defined as the
respective intersections of U and D with L and R (UL = U ∩ L and similar). The
above considerations tell us that all edges of G−1 go either from UL to UR or from
DL to DR. Now, we call nDL and nDR the numbers of nodes in parts DL and DR
(other than the labeled ones, i.e., the neighbors of node 1). By counting the edges
from DL to DR, observe that these variables must satisfy the following equation:

d

2
(d− 1) + dnDL = dnDR

Because we know that d is even and, nDL and nDR are integers, the above equation
cannot be satisfied.

Case l > d/2: l must be strictly larger than d/2, i.e. l ∈ [d2 + 1, d]. All these l
uncut edges can be split between rL and rR, the ones on the left side and right side
respectively and without loss of generality we choose that already d/2 of them are
on the left side. So rL ∈ [d2 , d], rR ∈ [0, d2 ] and l = rL + rR. Again we can count the
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number of edges that lie across L and R and we end up with:

dnL − 2rL = dnR − 2rR

where nL = |L|, nR = |R| and nL + nR = n the total number of nodes. In a
d−regular bipartite graph, n is necessarily even, so we have that

rL − rR = 2(
n

2
− nR)

d

2
= kd for k ∈ Z

The potential values for rL and rR bring the interval for rL − rR to [0, d]. So only
k = 0 and k = 1 are possible. If k = 0, then rL = rR = d/2 so l = d. If k = 1, then
rR = 0, rL = d so l = d. In any case, the only possibility is to have l = d which
concludes the proof of claim 2.

These two claims simplify the expression of the different AC occurrence condi-
tions, as follows:

- AC if davg(loc) > 4;

- No-AC if dmax(loc) < 4;

- Undefined if dmax(loc) > 4 > davg(loc).

We are left with a last thing to show to ensure that no AC occurs while solving
MaxCut on d−regular bipartite graphs with AQC. To this purpose, we show this
final lemma:

Lemma 4.1. If d /∈ {2, 4} then dmax(loc) < 4.

Proof. Recall that odd values for d are already disregarded as d must be even.
Suppose it is possible to have dmax(loc) ≥ 4 then it means that we need at least
four nodes in a configuration such as Fig. 4.4, where half of their edges are uncut.
Let us call F the set of these latter nodes, i.e. |F | = dmax(loc). It means that there
are at least |F |d2 ≥ 2d outgoing uncut edges from the nodes in F . By outgoing edge
from a node, we mean the extremity of the edge that leaves the node (each edge
contributes to two outgoing edges, one for each of its nodes). So here we count the
number of edges that leave a node in F which are uncut. We are allowed at most d
uncut edges to be a local minimum. So all of these 2d outgoing uncut edges need
to generate exactly d edges. This remark forces dmax(loc) to be smaller than 4,
so suppose dmax(loc) = 4. One node has only three possible neighbors for its d/2
uncut edges, so it is possible as long as d

2 ≤ 3, i.e., d ≤ 6. For d = 6, linking all of
these edges creates a triangle which makes the whole graph non-bipartite.

To finish the demonstration of Theorem 4.2, we still have to handle the cases for
which d ∈ {2, 4}. We treat them separately and show that they fall in the Undefined
regime so we directly use Theorem 4.1 to conclude.
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Figure 4.5: Left: Gloc of a cycle of size n = 6. Right: a precision of the first excited
state configurations from the upper-right part of Gloc. Red edges are the uncut ones
and the green node is the fixed node such that the top right node corresponding to
node labeled 5 in Gloc is 000101. We easily see that nodes in {20, 23, 17, 29, 5} are
linked to the ground-state.

Case d = 2 : As d must be even, we focus on even cycles. We see that it creates
a large Gloc, see Fig. 4.5.

We can easily evaluate the average and maximum degree of this graph as :

dmax(loc) = 4

davg(loc) = 4
n− 2

n
= 4(1− 2

n
)

These values bring the cycle in the Undefined regime. However, we can expect
that AQC will easily work with a MaxCut on an even cycle because its Gloc is
highly connected to the ground state. Fig. 4.1 shows how Gloc (which is the one in
Fig. 4.5) is linked to the ground-state (blue edges). More precisely, there are n− 1

connections with the ground state in an (n − 1)-regular graph. This means that
there is no potential barrier to overcome going from states in Gloc to the |GS⟩.

Another justification is to directly use the technical Theorem 4.1 which says that
no AC occurs if λ0 < 4, where λ0 is the largest eigenvalue of Gloc. We know that
λ0 = dmax(loc) if and only if Gloc is dmax(loc)-regular, otherwise λ0 < dmax(loc).
So we are in the no-AC regime.

Case d = 4 : By construction, in the case where d = 4, there is one possible
configuration in a 4-regular graph that brings its Gloc in the Undefined regime. It
can be artificially scaled up as shown in Fig. 4.6 :
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Figure 4.6: (left) 4-regular bipartite graph in one of its first excited state configura-
tions and (right) Gloc where we disregarded the isolated node. Written in red, the
number of red nodes (k = 3). In shaded blue, a part of the graph that completes
the graph in a 4-regular one. The purple dashed line shows the bipartition of the
graph.

We can easily derive the maximum and average degree of Gloc:

dmax(loc) = 4

davg(loc) =
8(k + 1)

3k + 4
= 2 +

2k

3k + 4

where k is a parameter to construct the graph. Gloc is not connected to the ground
state, so one can imagine that this will produce a potential barrier that creates an
AC. But as one can see, the average degree of Gloc only tends to 2+2/3 < 4, which
is far from the AC appearance condition. A similar argument from the case d = 2

can be applied here when using directly the technical theorem with λ0.

These above results allow us to conclude on the absence of anti-crossing during
an adiabatic process to solve MaxCut over d−regular bipartite graphs and show
theorem 4.2. One can deduce from this that there is no exponentially closing gap
leading to a polynomial runtime to find the optimal cut in regular bipartite graphs
via AQC. A natural question arises from this conclusion: Can we draw a similar
conclusion for general bipartite graphs? We discuss this in the next section.
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4.2.2 General bipartite graphs

In this section, we are interested in the behavior of the energies if we look at bi-
partite graphs in general. We construct a family of bipartite graphs that respect
the condition of occurrence of an anti-crossing, meaning that exponentially clos-
ing gaps can arise even for MaxCut on bipartite graphs. Let G(E, V ) denote a
bipartite graph. Similarly to the previous section, ⟨H1⟩0 = − |E|

2 , Egs = −|E|
and ∆H1 = l ∈ [1,dmin(G)]. Claim 2 is still applicable with the minimum degree
dmin(G) of G. So ∆H1 = dmin(G) and nαH1 becomes 4dmin(G)

davg(G) . The condition for
the different regimes can be written as follows:

- AC if davg(loc) > 4dmin(G)
davg(G) ;

- No-AC if dmax(loc) < 4dmin(G)
davg(G) ;

- Undefined if dmax(loc) > 4dmin(G)
davg(G) > davg(loc).

We can see that the No-AC case is never verified by adapting the proof of Lemma
4.1. Gloc is generated by bit-flipping the nodes of G with degree dmin(G). We know
that there are dmin(G) edges uncut in the first excited state, i.e. 2dmin(G) outgoing
edges. By calling dy(loc) the degree of configuration y in Gloc, it means that there
are dy(loc) nodes in G that can be flipped from y to give a configuration also in
Gloc. Those dy(loc) nodes are necessarily of degree dmin(G) and they count for
1
2dy(loc)dmin(G) outgoing edges. So dy(loc) must verified the following inequality :

1

2
dy(loc)dmin(G) ≤ 2dmin(G)

⇒ dy(loc) ≤ 4 (4.6)

The maximum of 4 is reached by the configuration where four nodes of G have
degree dmin(G) and can be flipped. This brings the No-AC condition to dmin(G)

davg(G) > 1

which is never verified, with the limit case of regular graphs. So let us focus on the
AC condition.

The first point gives us the condition for a graph G that produces an anti-
crossing under an AQC evolution for the MaxCut problem. First, looking only at
the right-hand side, the ratio dmin(G)

davg(G) is small for highly irregular graphs. From
Eq. (4.6), the average degree for Gloc is certainly smaller than 4 so we need to play
with the degree of G. Even though we remove the regularity hypothesis, we can still
use some results from the above cases. Indeed, in that setting, Gloc arises from the
bipartition of a dmin(G)-regular induced subgraph of G. We look at graphs G with
a large average degree but with also a small minimum degree and a large davg(loc).
The cycle produces the densest Gloc but it is highly connected to the ground-state
and the average degree of the cycle is not quite large. The idea is to attach two
complete bipartite graphs (Krr,Kll) that will increase the average degree of the
graph by two parallel sequences of nodes of degree 2 (P1, P2) that will create the
dense Gloc and small dmin(G) of value 2. Fig. 4.7 provides an example of a such a
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graph with r = l = 3 and where P1 and P2 are sequences of k1 = k2 = 2 adjacent
nodes of degree 2. k1 and k2 need to be of the same parity to ensure bipartiteness of
the whole graph. Three configurations of the same graph are shown, corresponding
to the ground-state (left), and two configurations of the first excited subspace
(middle, right), that create the different components in Gloc (Fig 4.8).

Figure 4.7: Configurations of G in its ground-state (left) and first excited state.
(middle) a configuration far from GS, (right) a configuration neighboring GS.

Figure 4.8: Gloc of graph G. Three components : (middle) and (right) similarly:
components corresponding to states in a configuration close to the one on (Fig 4.7 -
right) and (left) component corresponding to states in the configuration of (Fig 4.7
- middle). The light dashed grey edges and nodes show how these two components
grow when ki > 2.

The largest component of Gloc is a lattice of size (k1 +1, k2 +1) if ki represents the
number of nodes in Pi. It is far away from the ground-state as we need to flip at
least all the nodes of the Kr,r part. The two other components can be viewed as
subgraphs of the large component so they have smaller eigenvalues than the largest
one of the lattice; they are also strongly connected to the ground-state. Fig. 4.9
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shows the details of the relation between the nodes of Gloc and graph configurations
in a left/right partition. The middle configuration of Fig. 4.7 corresponds to the
middle node of the lattice in Gloc. Then moving each node in blue or green produce
another configuration with the same edge penalty.

Figure 4.9: Details of the large component of Gloc and how each configuration is
related by bit-flip. We intentionally omit the drawing of the Kr,r and Kl,l which do
not play a role in Gloc.

We directly have that dmin(G) = 2. Now, we need to derive the average degree
of G and of the largest component of Gloc (its maximum degree being 4).
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davg(loc) =
4 ∗ 2 + 2(k1 − 1 + k2 − 1) ∗ 3 + (k1 − 1)(k2 − 1) ∗ 4

(k1 + 1)(k2 + 1)

=
4k1k2 + 2(k1 + k2)

(k1 + 1)(k2 + 1)

= 4

(
1−

1 + 1
2(k1 + k2)

(k1 + 1)(k2 + 1)

)

= 4

(
1− 1

k + 1

)
for k = k1 = k2

davg(G) =
(k1 + k2) ∗ 2 + 2r ∗ r + 2l ∗ l + 4

k1 + k2 + 2r + 2l

=
2k + r2 + l2 + 2

k + r + l
for k = k1 = k2

Let us solve the equation davg(loc) > 4dmin(G)
davg(G) with dmin(G) = 2.

davg(loc) > 4
dmin(G)

davg(G)

⇒ 1− 1

k + 1
>

2(k + r + l)

2k + r2 + l2 + 2

⇒ r2 + l2 + 2− 2r − 2l

2k + r2 + l2 + 2
>

1

k + 1

⇒ (k + 1)(r2 + l2 + 2− 2r − 2l) > 2k + r2 + l2 + 2

⇒ k(r2 + l2 − 2r − 2l) > 2r + 2l

⇒ k >
2(r + l)

r(r − 2) + l(l − 2)

⇒ k >
2(r + 3)

r(r − 2) + 3
for l = 3

We have a limit at r = 3 and k = 2 for a graph of size 16. Then the smallest graphs
that satisfy the condition are for r = 3 and k = 3 or r = 4, l = 3 and k = 2 which
bring the size of the smallest graphs satisfying the AC condition to 18 nodes.

This above construction shows that there exist bipartite graphs that exhibit an AC.
The presence of an anti-crossing implies an exponentially closing gap bringing the
provable runtime to find the optimal cut exponentially large in the size of the graph.
This construction can be scaled up easily by growing the parameters k, r and l. In
the next section, we numerically investigate the presence of AC on graphs of this
family to support this theoretical result.
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4.2.3 Numerical study: AC and other observations

In this section, we give some numerical evidence of the occurrence of the AC in the
particular family we constructed in Sec. 4.2.2. The goal is to observe the behavior
of the minimum gap and to confirm the exponentially closing gap. We then discuss
whether or not these gaps lead to a computational inefficiency of AQC and moderate
the term AC by looking at the more mathematical definition we introduced in Sec.
3.2.

Minimum gap study: Let us first show that the value of the minimum gap sup-
ports the theoretical results derived in Secs. 4.1 and 4.2.2. To compute this quantity
for large graphs, we use the SciPy library [Jones et al. 01 ] and its optimized method,
scipy.sparse.linalg.eigs, for matrices with a sparse representation. Our Hamiltonians
have a sparse representation in the Pauli basis, enabling us to compute the minimum
gap for graphs with up to 28 nodes.

To satisfy the conditions required for our application, we fix one node of the
graph to lift the standard MaxCut symmetry. Specifically, we fix one node of the
Kl,l part on the left (L) side of the partition. We consider the family of graphs Grk

with the same structure as in the previous section, where we fix l = 3 and assume
k1 = k2 = k. Therefore, we can vary two parameters (Fig. 4.10 shows the schematic
energy landscape of H1 for Grk):

- Increasing r increases the distance between Gloc and the ground-state in the
hypercube, as all the Kr,r part needs to be flipped (fixing one node in the Kl,l

part blocks the possibility to flip this part entirely),

- Increasing k creates a larger Gloc, resulting in a larger local minimum that is
not linked to the ground-state, but also increases the two other parts of Gloc

connected to it.

We denote ∆rk(s) as the difference between the two lowest instantaneous eigen-
values of H(s) associated with Grk, i.e., the spectral gap of the time-dependent
Hamiltonian. We plot these gaps in Fig. 4.11 (a) by varying r and k. Specifically,
we observe that increasing r by 1 divides the gap by 2. To illustrate this, we also
plot Fig. 4.11 (b) the minimum gap of ∆rk for k = 2 against r. We fit this curve
with an exponentially decreasing function of r. When k is fixed, it is straightforward
to see that r ≃ n

2 .
Fig. 4.11 supports the main theorem in Sec. 4.1 and the construction in Sec. 4.2.

The distance to the ground-state appears to play a major role in the minimum gap
compared to the size of Gloc. Remember that Gloc has three components and two
of them are linked to the ground-state while the other one is a lattice far from the
ground-state. Increasing k also increases the width around the ground-state, mak-
ing it easier to reach than if it were isolated while increasing r has no impact on Gloc.



104 Chapter 4. Exponentially closing gaps in AQC

Figure 4.10: Schematic energy landscape of the MaxCut function on an instance
Grk and how r and k affect it.

Typically, it is assumed that an exponentially closing gap implies the failure of
AQC [Altshuler et al. 2010]. In the next paragraph, we investigate the probability of
measuring the ground-state at the end of a quantum evolution after a time tmax and
discuss about the AC definition, which opens a new question on the computational
efficiency of AQC.

Discussions about AC and AQC failure: Now that we have established the
exponentially small gaps for the graph Grk when r is increasing, we can wonder if
it can be deduced that AQC is inefficient to solve those instances, as this is the
usual deduction from small gaps. In Fig. 4.12, we observe the probability prk of
measuring the ground-state at the end of a quantum annealing (QA) evolution for
different instances of Grk as a function of tmax. This plot was obtained using the
AnalogQPU of the Eviden quantum software. Surprisingly, the probability seems
to reach the value around 0.5 faster than expected, meaning in a time tmax that
does not appear to depend too much on the size of the graph. This observation is
not a contradiction of the adiabatic theorem, as it will certainly converge to 1 in an
exponentially long runtime. It could also be just a scale illusion: for much larger
graphs, the probability might stay at zero for a longer time than observed here, but
this is not what the point below suggests. However, it raises questions about the
effectiveness of AQC in practical applications even when exponentially small gaps
are present.
The observed gaps in Fig. 4.11 exhibit an exponentially closing behavior, which is
a signature of the AC phenomenon we are looking at. However, the computational
complexity does not seem to be affected, in the sense that a constant probability to
obtain the optimal solution is reached in a time that does not seem to depend too
much on the graph size. We can notice in Fig. 4.11 (a) that the trend of the gaps
appears to be softer compared to other observed ACs [Bapst & Semerjian 2012],
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Figure 4.11: (a) Evolution of the spectral gap ∆rk(s) and (b) minimum gap of ∆r2

for r going from 3 to 9 in logarithmic scale. It fits an exponentially decreasing
tendency.

indicating a smoother transition. To address this observation, we use our work
and intuition developed in Sec. 3.2 that proposed a more formal definition of anti-
crossings that involves a new set of quantities. Given that only one AC is observed,
Def. 3.1 should apply here. Let g0(s) = |⟨ϕ0(s)|GS⟩|2 and g1(s) = |⟨ϕ1(s)|GS⟩|2 be
the overlap squared of the instantaneous eigenstates (zeroth and first respectively)
of H(s) with the ground-state |GS⟩ of H1. Typically, at an anti-crossing point, these
curves undergo a harsh exchange of position. If g0(s) smoothly increases toward 1,
it is not an AC according to our definition. For the graph Grk, the conditions given
in this formal definition do not seem to be fully satisfied, as the plots in Fig. 4.13
show. On the left, an example of behavior of g0 and g1 when AC happens, the
curves experience an almost discontinuity at AC point, changing the position of g0
and g1 (in the middle and right-hand plots, g0 and g1 for instances G32 and G72

respectively). In the G32 case, g1 starts to become bigger than g0 but it produces
only a little bump and g0 has a smooth growth toward 1. One could think that
this phenomenon is due to the small size of the instance, and that by considering
larger instances but with very small gaps, we would observe a “typical” AC behavior.
However, on the G72 case, where the size increases and the gap decreases, this bump
totally disappears and we can only attest to a smooth growth of g0. This observation
indicates the opposite of an AC behavior leading to an efficient AQC evolution to
solve these instances. This raises the question of whether every exponentially closing
gap necessarily leads to a failure of AQC, or if AC is a particular event that creates an
exponentially closing gap leading to a complete leak of the probability distribution
into higher energy levels.
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Figure 4.12: Probability of measuring the ground-state after a time tmax for instances
with k = 2 and r ∈ [3, 7].

Typical gj(s) for G32 for G72

Figure 4.13: Evolution of g0(s) in blue and g1(s) in red for graph G72 (right), G32

(middle) and a typical behavior (left) during an AC like in Section 3.2.

4.2.4 Validation of perturbative expansion and limitations

We discuss here the validation of this expansion at first-order in the case of MaxCut
over d−regular bipartite graphs. We need to look at the second order term and
compare it to the first or zeroth order term. Eventually we give a little conclusion
of the work developed in Sec. 4.1 and 4.2.

Delocalized state expansion: The eigen-basis of the initial Hamiltonian H0 can
be written as

|Eb⟩ =
1√
2n

∑
x∈{0,1}n

(−1)b·x|x⟩,

where b is an n−bit-string and the centered dot stands for the scalar product over
Fn
2 . There are n+ 1 different eigen-levels where the kth eigen-space has degeneracy
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(
n
k

)
and correspond to eigen-states with bit-string b of Hamming weight |b| = k and

eigen-value EI
b = −n+ 2|b| (see [Cvetkovic et al. 1980] for more details). With this

notation, we can write |ψ0⟩ as |E00...00⟩. We are interested in

E
(2)
0 =

∑
b ̸=00...0

|⟨Eb|H1|ψ0⟩|2

EI
0 − EI

b

For MaxCut problem on graph G, we know that ⟨Eb|H1|ψ0⟩ = −1/2 if and only if
Gb is exactly one edge (see Appendix B.1). Gb is the graph induced by the node
i where bi = 1. Therefore E(2)

0 = − |E(G)|
16 . We have E(1)

0 = ⟨H1⟩0 ≃ − |E(G)|
2 so

|E(2)
0 |

|E(1)
0 |

= 1
8 < 1.

Ground-state expansion: The eigen-basis of the final Hamiltonian H1 is the
canonical basis of the bit-string |x⟩ with energy Ex, and we named |GS⟩ the bit-string
corresponding to the ground-state with energy Egs. It follows that the second-order
term is

E(2)
gs =

∑
x∈{0,1}n

|⟨x|H0|GS⟩|2

Egs − Ex

where |⟨x|H0|GS⟩| = 1 if and only if the bit-string x is at exactly one bit-flip from
the bit-string GS. We can rewrite it like

E(2)
gs =

∑
x∼
H0

GS

1

Egs − Ex

For the MaxCut problem on a d−regular bipartite graph, we can further simplify.
Indeed, from the ground-state, flipping one bit gives an energy state |x⟩ of exactly
Ex = Egs+d. So we end up with E(2)

gs = −n
d . We have E(1)

gs = 0 and E(0)
gs = Egs =

dn
2

which leads to |E(2)
gs |

|E(0)
gs |

= 2
d2

< 1. For d = 4 we have the same value as for the

delocalized state.

Local minima expansion: We work in the same basis as for the latter expansion
and we look at

E
(2)
fs =

∑
x/∈V (Gloc)

|⟨x|H0|FS, 0⟩|2

Efs − Ex
≤

∑
x/∈V (Gloc)

∑
y ∼
H0

x

|⟨y|FS, 0⟩|2

Efs − Ex

The size of this double sum is the number of connections Gloc has with the whole
hypercube, i.e. |∂Gloc|. The term |⟨y|FS, 0⟩|2 is large when the degree of node y in
Gloc is large so with less occurrence in the above double sum. On average, when a
graph is regular its vector coordinate value of the largest eigenvalue is 1√

|V (Gloc)|
.

By introducing the conductance of the subgraph Gloc as h(loc) = |∂Gloc|
|V (Gloc)| , we can

upper bound the second-order term with

|E(2)
fs | ≤ h(loc)

1

minx |Efs − Ex|
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We know that |E(1)
fs | = λ0(loc) ≥ davg(loc) = n − h(loc). So the ratio we need

to check is h(loc)
n−h(loc)

1
minx |Efs−Ex| which is smaller if Gloc is neighboring high energy

states.

Conclusion

In this second technical chapter, we studied the occurrences of AC characterized
only by exponentially closing gaps in a quantum evolution. We first provided a
technical theorem that gives a condition to distinguish between the cases where
AC can appear or not. This theorem assumes some conditions on H1 and the
validity of the perturbation expansion at first-order. We only suggest a validation
for the MaxCut problem over d−regular bipartite graphs which allows us to prove
the efficiency of AQC in this specific case. Although it is well known that this
problem is trivially solvable classically, to the best of our knowledge there was no
proof of the efficiency of AQC in this restrictive class of graphs. We also want to
draw reader’s attention on the validity we suggested as we only compared to next
order term. A more rigorous approach would need to look at any order and show
that under some condition on slg the expansion is valid. In the next section we give
some hints on the higher order of the expansion.

More significantly, the tools we developed allowed us to construct a certain family
of irregular bipartite graphs that satisfy the condition for AC occurrence. We did
not rigorously validate the perturbative expansion for general bipartite graphs but
the numerical computation of the minimum gap showed the exponential closure of
the gap with the input size. This suggests that enough irregularity may lead to
AQC inefficiency over this class of graphs. However, this is not what the numerical
calculation of the probability of measuring the ground-state hints. It appears that
a constant probability is reached in a time that does not strongly depend on the
input size. Our insights about AC in Sec. 3.2 seems to indicate no localization of
the instantaneous ground-state and a smooth evolution leads the quantum state to
|GS⟩ “easily”.

The last section is dedicated to a current unfinished work where we develop
higher order of the perturbative expansion for the MaxCut problem.

4.3 Higher order perturbative expansion for MaxCut

In this section we try to develop higher order of the perturbation theory by using
the following proposition due to my supervisor Simon Martiel :

Proposition 4.1 (see Appendix B.1). If H1 is the Hamiltonian encoding the Max-
Cut problem over a graph of n nodes and H0 is the standard bit-flip operator with
eigenpairs (|Eb⟩, Eb) for a bit-string b where Eb = −n+2|b|, |b| being the Hamming
weight of b, then

⟨Eb|H1|Eb′⟩ =
1

2
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if and only if Gb⊕b′ is exactly an edge. Where Gb⊕b′ is the subgraph induced by nodes
i such that (b⊕ b′)i = 1.

The eigenvectors |Eb⟩ of H0 correspond to states where qubit i is in state |+⟩ =
|0⟩+|1⟩

2 if bi = 0 and |−⟩ = |0⟩−|1⟩
2 if bi = 1. In the computational basis it is written

as:

|Eb⟩ =
1√
2n

∑
x∈{0,1}n

(−1)b·x|x⟩

The interesting result of Proposition 4.1 will allow us to take the perturbative ex-
pansion of the initial state |ψ0⟩ = |E0n⟩ further. Motivated by the recent result
in [Dalzell et al. 2023] where the authors show an algorithm with a super Grover
speed-up by essentially approximating the instantaneous ground-state close to the
beginning |ϕ0(s′)⟩ for s′ close to zero, we tackle the expansion of the initial state to
see if anything relevant comes out. The super Grover speed-up comes as the overlap
of the ground-state at s′ with the final ground-state is slightly better than the usual
2−

n
2 by a factor c : 2−(n

2
−c).

We directly look at the time-dependent Hamiltonian H(s) = (1− s)H0+ sH1 =

H0 + s(H1 −H0) where H0, the bit-flip operator and H1 the MaxCut Hamiltonian
(see Sec. 2.2.2). By doing this, the expansion at any time s is the instantaneous
ground-state. So we suppose that there exist expansions of the ground-state and its
energy like:

• |ϕ0(s)⟩ = |E0n⟩+ s|E(1)
0n ⟩+ s2|E(2)

0n ⟩+ ...

• E0(s) = E
(0)
0 + sE

(1)
0 + s2E

(2)
0 + ...

such that H(s)|ϕ0(s)⟩ = E0(s)|ϕ0(s)⟩ with the assumption that ⟨E(i)
0n |E

(j)
0n ⟩ = δij .We

identify the different terms in sj :

s0: H0|E0n⟩ = E
(0)
0 |E0n⟩

s1: (H1 −H0)|E0n⟩+H0|E(1)
0n ⟩ = E

(0)
0 |E

(1)
0n ⟩+ E

(1)
0 |E0n⟩

s2: (H1 −H0)|E(1)
0n ⟩+H0|E(2)

0n ⟩ = E
(0)
0 |E

(2)
0n ⟩+ E

(1)
0 |E

(1)
0n ⟩+ E

(2)
0 |E0n⟩

s3: (H1−H0)|E(2)
0n ⟩+H0|E(3)

0n ⟩ = E
(0)
0 |E

(3)
0n ⟩+E

(1)
0 |E

(2)
0n ⟩+E

(2)
0 |E

(1)
0n ⟩+E

(3)
0 |E0n⟩

...

sk: (H1 −H0)|E(k−1)
0n ⟩+H0|E(k)

0n ⟩ =
∑k

l=0E
(k−l)
0 |E(l)

0n ⟩

We know that E(0)
0 = −n = E0, Eb = −n+2|b| and to get E(k)

0 we project onto ⟨E0n |
and then project onto another state ⟨Eb| to get ⟨Eb|E

(k)
0n ⟩. Using Proposition 4.1,
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we can explicit the terms as :

E
(1)
0 = ⟨E0n |(H1 −H0)|E0n⟩ = ⟨H1⟩0 + n

|E(1)
0n ⟩ =

∑
b ̸=0n

|Eb⟩
⟨Eb|H1|E0n⟩
E0 − Eb

=
1

4 ∗ 2
∑

b st Gb≡edge

|Eb⟩

E
(2)
0 = ⟨E0n |(H1 −H0)|E(1)

0n ⟩ =
∑
b̸=0n

|⟨Eb|H1|E0n⟩|2

E0 − Eb
= −|E(G)|

4 ∗ 22

|E(2)
0n ⟩ =

∑
b ̸=0n

|Eb⟩
(E0 − Eb)

(
⟨Eb|(H1 −H0)|E(1)

0 ⟩ − E
(1)
0 ⟨Eb|E

(1)
0 ⟩
)

=
∑
b ̸=0n

|Eb⟩
(E0 − Eb)

∑
b′ ̸=0n

⟨Eb|(H1 −H0)|Eb′⟩⟨Eb′ |H1|E0n⟩
(E0 − Eb′)

− E(1)
0

⟨Eb|H1|E0n⟩
(E0 − Eb)


=
∑
b ̸=0n

|Eb⟩
(E0 − Eb)

∑
b′ ̸=0n

⟨Eb|H1|Eb′⟩⟨Eb′ |H1|E0n⟩
(E0 − Eb′)

− (Eb + E
(1)
0 )
⟨Eb|H1|E0n⟩
(E0 − Eb)



=
1

42 ∗ 2

−(⟨H1⟩0 + 4)
∑

Gb≡edge

|Eb⟩+
1

2

∑
Gb≡P2

extremities

|Eb⟩+
1

22

∑
Gb≡2 non-

adjacent edges

|Eb⟩


E

(3)
0 = ⟨E0n |(H1 −H0)|E(2)

0n ⟩

=
1

42 ∗ 22

(
−|E(G)|(⟨H1⟩0 + 4) +

3

2
|{triangle ∈ G}|

)

where we used the fact that ⟨Eb|H1|Eb′⟩⟨Eb′ |H1|E0n⟩ = 1
4 if and only if Gb′ is exactly

an edge and Gb⊕b′ as well. This happens when Gb selects a pair of nodes that are
the extremities of a path of length 2, P2 = {Gb′ , Gb⊕b′} or when Gb is two non-
adjacent edges with one of them being Gb′ . Then when looking at the energy it
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further imposes that Gb is also an edge forming a triangle with P2.

|E(3)
0n ⟩ =

∑
b ̸=0n

|Eb⟩
(E0 − Eb)

(
⟨Eb|(H1 −H0)|E(2)

0 ⟩ − E
(1)
0 ⟨Eb|E

(2)
0 ⟩ − E

(2)
0 ⟨Eb|E

(1)
0 ⟩
)

=
∑
b ̸=0n

|Eb⟩
(E0 − Eb)

 ∑
b′,b′′ ̸=0n

⟨Eb|H1|Eb′⟩⟨Eb′ |H1|Eb′′⟩⟨Eb′′ |H1|E0n⟩
(E0 − Eb′)(E0 − Eb′′)

−
∑
b′ ̸=0n

⟨Eb|H1|Eb′⟩⟨Eb′ |H1|E0n⟩
(E0 − Eb′)

(
E

(1)
0 + Eb′

E0 − Eb′
+
E

(1)
0 + Eb

E0 − Eb

)

+

(
(E

(1)
0 + Eb)

2

E0 − Eb
− E(2)

0

)
⟨Eb|H1|E0n⟩
(E0 − Eb)

]

=
−1

2 ∗ 42

(
(⟨H1⟩0 + 4)2

4
+ E

(2)
0

) ∑
Gb≡edge

|Eb⟩+ 2
⟨H1⟩0 + 4

22 ∗ 42
∑

Gb≡P2
extremities

|Eb⟩

+
1

22 ∗ 4

(
⟨H1⟩0 + 4

4
+
⟨H1⟩0 + 8

8

) ∑
Gb≡2 non-

adjacent edges

|Eb⟩

− 1

23 ∗ 43
∑

Gb≡P3
extremities

|Eb⟩

− 1

23 ∗ 42 ∗ 8

 ∑
Gb≡P3

extremities

|Eb⟩+
∑

Gb≡edge

|Eb⟩+
∑

Gb≡edge
under a hat

|Eb⟩


− 1

23 ∗ 4 ∗ 8 ∗ 12
∑

Gb≡3 non-
adjacent edges

|Eb⟩

E
(4)
0 = −|E(G)|

22 ∗ 43

(
(⟨H1⟩0 + 4)2 − |E(G)|

22

)
+ 3|{T ∈ G}|⟨H1⟩0 + 4

22 ∗ 42

− 2|{S ∈ G}|
(

1

23 ∗ 43
+

1

23 ∗ 42 ∗ 8

)
− |E(G)|

24 ∗ 42 ∗ 8
...

E
(k)
0 = ⟨E0n |H1|E(k−1)

0 ⟩

⟨Eb|E
(k)
0 ⟩ =

1

E0 − Eb

(
⟨Eb|H1|E(k−1)

0 ⟩ − (Eb + E
(1)
0 )⟨Eb|E

(k−1)
0 ⟩

−
k−2∑
l=1

E
(k−l)
0 ⟨Eb|E

(l)
0 ⟩

)
where S stands for square and T for triangle and the following claim:
Claim 4. For bit-strings, b, b′ and b′′, the product
⟨Eb|H1|Eb′⟩⟨Eb′ |H1|Eb′′⟩⟨Eb′′ |H1|E0n⟩ equals to 1

23
if Gb′′ , Gb′⊕b′′ and Gb⊕b′

are exactly an edge. These conditions are reunited in five different situation :
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(a) - |b′| = 2 sharing one bit with b′′ and Gb selects a pair of nodes that are
the extremities of a path of length three: P3 = Gb′′ ∩Gb′⊕b′′ ∩Gb⊕b′ .

(b) - |b′| = 2 sharing one bit with b′′ and Gb is a graph with four nodes and at
least one edge non adjacent to Gb′′ , called edge under the hat. The hat being
the path P2.

(c) - Gb′ is two non-adjacent edges (which include Gb′′) and Gb selects a pair of
nodes that are the extremities of a path of length three: P3 = Gb′′ ∩Gb′⊕b′′ ∩
Gb⊕b′ .

(d) - Gb′ is two non-adjacent edges (which include Gb′′) and b = b′′ or b =

b′′ ⊕ b′, i.e. Gb is exactly an edge.

(e) - Gb′ is two non-adjacent edges (which include Gb′′) and Gb is three non-
adjacent edges, including Gb′ .

Figure 4.14: Proof of Claim 4. For clarity, we denoted Gs by s only. In blue the
edges imposed by Proposition 4.1 and in pink and purple the possible candidates for
a b and b′ respectively. Dash lines mean that they are not necessarily corresponding
to an edge in G.

From Fig. 4.14, it is easy to see which structure will appear in the computation
of the energy coefficient E(4)

0 = ⟨E0n |H1|E(3)
0 ⟩. Indeed, the composition by ⟨E0n |H1|

forces Gb to be exactly an edge. So only situations (a), (c) and (d) are valid.

Discussion: Now that we have obtained the first three orders for the ground
state and the first four orders for the energy, let’s analyze the implications. While I
would not put my finger on the accuracy of the prefactor of each term, the structural
insights derived from the analysis remain interesting. Regarding the anti-crossing
phenomenon, can we discern its presence in this derivation? At a certain time s∗
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when an AC occurs, there is a sharp change in the amplitude of the instantaneous
ground-state. Examining the first few coefficients, it becomes evident that distinct
features of the input graph manifest. The abrupt change in amplitude might be
linked to specific combinations of structures within the input graph. In the case of
an AC, one can intuit that the information about the graph structure available to the
quantum state up to s∗ seems inadequate for guiding it toward the solution; instead,
it appears to be misled and localized in an incorrect state. Is it worth exploring the
idea that substantial structures within a graph could induce this effect? To address
this, a more in-depth exploration of the perturbative coefficient derivation would be
necessary.

Can we still infer some intriguing aspect of the quantum evolution with these first
few coefficients? First, on the ground-state coefficients, let see how the first-order
changes the initial state. Let us write it in the computational basis :∑

Gb≡edge

|Eb⟩ =
∑

Gb≡edge

1√
2n

∑
x∈{0,1}n

(−1)b·x|x⟩

=
1√
2n

∑
x∈{0,1}n

|x⟩
∑

Gb≡edge

(−1)b·x

=
1√
2n

∑
x∈{0,1}n

|x⟩
∑

⟨a,b⟩∈E(G)

(−1)xa+xb

=
1√
2n

∑
x∈{0,1}n

(|{uncut edges in x}| − |{cut edges in x}|) |x⟩

=
1√
2n

∑
x∈{0,1}n

(|E(G)|+ 2C(x)) |x⟩

where C(x) is the classical cost function of MaxCut (see Sec. 2.2.2) which counts
(minus) the number edges across the bipartition of x. We observe that this term
has little effect on a majority of states as C(x) has the shape of a Gaussian around
⟨H1⟩0 = − |E(G)|

2 . It is acting non-trivially on states close to the best and the worst
solution for MaxCut, but with opposite signs. It is less obvious how the other terms
affect the different amplitudes but on the bad solutions (e.g. with lots of zeros) it
is always a great influence with a plus sign.

Now, on the energy, we see that the kth coefficient scales like O(|E(G)|k−1).
Even though it is not exactly the same perturbative expansion as previously used in
Sec. 4.1, this observation gives less credits to the validity of the first-order expansion
in Sec. 4.2.4. However, it gives us really interesting features on how the quantum
evolution works when solving the MaxCut problem. Apparently it treats the edges,
then the triangles, then the squares and so on. Also, even cycles and odd cycles have
opposite effect on the energy value which is rather expected since odd cycles are not
bipartite. We can see that the different size of cycles will appear in the expansion
and affecting differently the ground-state energy. It is as if the quantum state is
more influenced by small cycles first. Intuitively, AQC is solving MaxCut locally
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first, with short range structures and little by little starts to see larger structures. In
the next part of this thesis, we actually investigate the short constant time Quantum
Annealing regime to see if we can prove any analytical bound on the approximation
ratio at such runtimes.
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In this chapter, the goal is to prove a non-trivial approximation ratio, i.e. above
random guess, using a quantum annealing process in constant time for MaxCut
over cubic graphs. We first generalize the construction of [Farhi et al. 2014] where
the authors proved the approximation ratio reached by single-layer QAOA. The
generalization aims to encapsulate more combinatorial problems like the Maximum
Independent Set problem, but still focusing on cubic graphs. Then, driven by the
notion of the Lieb-Robinson velocity to recover a notion of locality in a continuous
quantum evolution, we use a LR-type bound precise enough to prove that QA reaches
a 0.5933-approximation of MaxCut on cubic graphs at constant time. The best
available LR bounds in the literature are not suited for this purpose as they are
usually asymptotic bounds, so they perform quite badly at really short radius. It
will become clearer in the following sections how precise we need the bound to be.
Eventually, we provide an analysis of the bound tightness and present arguments
for the optimal approximation ratio with an alternative construction.

5.1 Locality in short-time quantum annealing

Recall that to evaluate the performance of a non-adiabatic quantum evolution like
QA, we use the approximation ratio, which is the ratio of the expected energy of the
final state to the value of the optimal cost. In the most general setting, we follow
the notations of Sec. 2.2.1. We do not specify an initial Hamiltonian H0 for the
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moment, but assume that the initial state |ψ0⟩ is a uniform product state. Without
loss of generality, given a graph G(V,E), we seek to find the maximum of a cost
function C(x,G) defined on x ∈ {0, 1}n. HG

1 encodes minus this cost function such
that the ground-state encodes the optimal solution x∗. We restrict ourselves to cost
functions decomposed into local cost functions on nodes and edges. In the final
Hamiltonian HG

1 , it resolves into local observables on nodes and edges. In the most
general framework, H1 can be written as :

HG
1 = −

∑
v∈V (G)

N (v) −
∑

e∈E(G)

M (e)

Driving our quantum system according to the Hamiltonian H(t, G) = (1 −
t
T )H0 + t

TH
G
1 over a graph G between times t1 < t induces a unitary evolution

UG
u,t. Using this notation, the state of the quantum system after a time t is given

by |ψG(t)⟩ = UG
0,t|ψ0⟩. This evolution operator is defined by UG

0,0 = I and respects
the Schrodinger equation :

i
∂

∂t
UG
0,t = H(t, G)UG

0,t for t ∈ [0, T ] (5.1)

The approximation ratio for QA to solve C is then written as :

ρC = max
T

min
G

−⟨HG
1 ⟩G,T

Copt(G)

where −⟨HG
1 ⟩G,T = ⟨ψG(T )| − H1|ψG(T )⟩ and Copt(G) = C(x∗, G) is the optimal

cost value. The goal is to find a lower bound of this ratio. Taking the maximum
on T may seem confusing, since in the infinite regime, the ratio converges to 1 by
the adiabatic theorem. However, we can either force it to be smaller than a certain
constant, or leave it as it is, and this maximum will be more relevant when using the
local analysis detailed in the next section. By expectation linearity, we can write :

−⟨HG
1 ⟩G,T =

∑
v∈V
⟨N (v)⟩G,T +

∑
e∈E
⟨M (e)⟩G,T (5.2)

We are ultimately interested in producing lower bounds for each summand in the
non-adiabatic regime where T is small. From now on, we will drop the dependence
on T when explicit from context.

5.1.1 Locality and restriction to regular graph

We denote by |ψG⟩ the state produced by the QA algorithm on the input graph G.
This state depends on the whole input, in particular this entails that each term in
Eq. 5.2 might depend on the structure of the whole graph G. For a positive integer
p, we define the ball of radius p around a subgraph X of G (see Fig. 5.1)

Definition 5.1. We call Bp(X) the ball of radius p around a subgraph X of G, i.e
the subgraph of G containing X and all nodes and edges situated on a path of G of
length at most p (i.e., with at most p edges), with an end-point in X.
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Figure 5.1: Schematic view of Bp(e) (shaded green bag) in a graph G (shaded grey
bag) for a subgraph X being only an edge e.

Let us assume for a moment that QA is “p-local” for some constant p in the
sense that, for each vertex and edge, it does not create correlations farther than a
neighborhood at distance p. Formally, this entails that the expectation value of a
local observable N (v) or M (e) only depends on the structure of the neighborhood at
distance p, i.e. on Bp(v) and Bp(e) respectively. We point out that this notion of
locality is the classical notion of local algorithm on graphs used in distributed com-
puting, where “the output of a vertex in a local algorithm is a function of the input
available within a constant-radius neighborhood of the vertex” [Suomela 2013].) In
that particular setting, Eq. 5.2 can be written as:

−⟨HG
1 ⟩G,T =

∑
v∈V
⟨N (v)⟩Bp(v) +

∑
e∈E
⟨M (e)⟩Bp(e) (5.3)

where |ψBp(v)⟩ (resp. |ψBp(e)⟩) is the quantum state obtained by running the
quantum process Hamiltonian H(t, Bp(v)) (resp. H(t, Bp(e))). With this lo-
cality assumption, we recover exactly the same argument as in the QAOA case
[Farhi et al. 2014].

However, this locality condition for QA is of course too optimistic at this stage.
We shall see in the next subsection that, thanks to Lieb-Robinson type inequalities,
we can bound the difference between the actual values of energies on nodes and edges
on the whole graph, and those obtained by only considering bounded radius balls
around a node or an edge, hence obtaining a lower bound on the final expected value
with a very similar expression to Eq. 5.3. Regular graphs have the particularity of
having very few distinct small Bp(X). For any node, its neighborhood at distance
p = 1 is a star graph. As for edges, their neighborhoods at distance 1 also form a
limited number of configurations, and the number of triangles in such neighborhoods
will play a major role. For example, on 3-regular graphs, Fig. 5.2 shows the balls
of radius 1 around a node v and an an edge e.

Coming back to Eq. 5.3, all the terms in the first sum will be identical since
all nodes have the same distance 1 neighborhood Ω0. The terms of the second sum
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Figure 5.2: Subgraphs of 3-regular graphs for 1-qubit and 2-qubits neighborhoods
at distance 1.

can be regrouped into 3 terms, corresponding to edges having Ω1, Ω2, and Ω3 for
distance 1 neighborhood. We point out the importance of starting from a product
state, with the same state on every qubit otherwise, this latter gathering could not
work. Thus, the expression of the final expected value becomes:

−⟨HG
1 ⟩G = n⟨N (v)⟩Ω0 + g1⟨M (e)⟩Ω1 + g2⟨M (e)⟩Ω2 + g3⟨M (e)⟩Ω3 (5.4)

where gi is the number of edges e having Ωi as B1(e), ∀v,B1(v) = Ω0, and ∀e,B1(e)

is one of the Ωi. The indices v and e of the observables refer to the labels on
the subgraphs in Fig. 5.2. We assume that, for configuration Ω1, the two nodes
unlabeled with degree less than 3 are non-adjacent (if this happens then the four
nodes form a connected component of the input graph, which is not critical for our
analysis). Lets note ni the number of configurations Ωi in the input G. Hence there
are n1 = g1 edges in configuration 1 and 4n1 + 3n2 = g2 in configuration 2 because
there are four sides of Ω1 and three edges of the triangle in Ω2, each of them being
in a configuration of type Ω2. The number of edges in configuration Ω3 corresponds
to the remaining ones, i.e., 3n/2− 5n1 − 3n2 = g3, where we used the fact that the
total number of edges in a d−regular graph is dn/2. Therefore, the final expected
energy can be written as

−⟨HG
1 ⟩G = n⟨N (v)⟩Ω0 + n1⟨M (e)⟩Ω1 + (4n1 + 3n2)⟨M (e)⟩Ω2 (5.5)

+ (3n/2− 5n1 − 3n2)⟨M (e)⟩Ω3

This construction is the one used to analyze the performances of the QAOA
for MaxCut on 3-regular graphs in [Farhi et al. 2014]. The authors used Eq. 5.5
together with an upper bound on the maximum cut in 3-regular graphs in order
to derive a worst case lower bound of 0.6925 on the ratio achieved by single-layer
QAOA. In our setting of QA, we cannot directly use such construction since the
locality condition that allows us to write the final expected cost as in Eq. 5.3 does
not hold. To allow a similar combinatorial argument, we thus need to recover some
form of locality in the QA framework.
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5.1.2 Lieb-Robinson like bound

The main tool we use in this work to regain some relaxed notion of locality in QA is
a Lieb-Robinson like bound. Recall from Sec. 2.5, the LR bound is an upper limit
on the velocity at which information travel in a quantum system. This bounded
speed of information entails that, after evolving our system for a short amount of
time, a local observation cannot depend too strongly on features lying far from the
observed subsystem. In other words, considering an observable OX localized on
subsystem X, the quantity ⟨ψG|OX |ψG⟩ will be close to ⟨ψΩ|OX |ψΩ⟩ for Ω a Bq(X)

for a certain q (see Fig. 5.3).

Figure 5.3: Schematic view of the evolution of the expectation value support of a
local observable Oe on an edge e. vLR indicates the Lieb-Robinson velocity.

More formally, we want to bound the following quantity:

|⟨ψG|OX |ψG⟩ − ⟨ψΩ|OX |ψΩ⟩| = |⟨ψ0|(UG
0,t)

†OXU
G
0,t|ψ0⟩ − ⟨ψ0|(UΩ

0,t)
†OXU

Ω
0,t|ψ0⟩|

= |⟨ψ0|
[
(UG

0,t)
†OXU

G
0,t − (UΩ

0,t)
†OXU

Ω
0,t

]
|ψ0⟩|

Since state-dependent LR bounds do not seem to exist to the best of our knowledge
and are hard to derive, we first start by neglecting the initial state |ψ0⟩ of unit norm,
and write:

|⟨ψG|OX |ψG⟩ − ⟨ψΩ|OX |ψΩ⟩| ≤
∥∥∥(UG

0,t)
†OXU

G
0,t − (UΩ

0,t)
†OXU

Ω
0,t

∥∥∥ (5.6)

where ∥.∥ denotes the operator norm. The two terms in the norm represent the
time evolution of the observable OX over the whole graph G and over the sub-
graph Ω. Lieb-Robinson bounds are explicit, closed expressions upper bounding
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this quantity [Haah et al. 2021], but they are too loose for our applications on ap-
proximation ratios. A numerically tractable expression (not necessarily in a closed
form) is enough for our purpose. Although the expression used in this approach
is not a LR bound in the strict sense of the concept, it bounds the same quantity,
and for simplicity we refer to it as an LR bound. We will use the following result,
adapted for time-dependent Hamiltonians from [Tran et al. 2019].

Proposition 5.1. Let Ω be a subgraph of G, HΩ be the terms of the total Hamilto-
nian HG supported on the subgraph, and OX an observable supported on X included
in Ω. The total Hamiltonian HG is a linear interpolation between H0 and H1 where
only H1 has interactions terms. For an evolution during T and t ∈ [0, T ], we have
that:∥∥∥(UG

0,t)
†OXU

G
0,t − (UΩ

0,t)
†OXU

Ω
0,t

∥∥∥ ≤ ∫ t

0
dt1

t1
T

∥∥∥[(UΩ
t1,t)

†OXU
Ω
t1,t, H1,∂Ω]

∥∥∥ := LRΩ
OX

(t)

(5.7)
where H1,∂Ω is the final Hamiltonian reduced to the border of Ω. Notation [., .]

corresponds to the commutator operation, i.e. for any operators A and B, [A,B] =

AB −BA.

Proof. We note UI(t) = (UΩ
0,t)

†UG
0,t, the evolution in the interaction picture of

VI(t) = (UΩ
0,t)

†V (t)UΩ
0,t where the perturbation V is V (t) = HG(t)−HΩ(t)∥∥∥(UG

0,t)
†OXU

G
0,t − (UΩ

0,t)
†OXU

Ω
0,t

∥∥∥ =

∥∥∥∥∫ t

0
dt1

d

dt1

(
UI(t1)

†(UΩ
0,t)

†OXU
Ω
0,tUI(t1)

)∥∥∥∥
=

∥∥∥∥∫ t

0
dt1

(
UI(t1)

†
[
(UΩ

0,t)
†OXU

Ω
0,t, VI(t1)

]
UI(t1)

)∥∥∥∥
=

∥∥∥∥∫ t

0
dt1

(
(UG

0,t1)
†
[
(UΩ

t1,t)
†OXU

Ω
t1,t, V (t1)

]
UG
0,t1

)∥∥∥∥
=

∥∥∥∥∫ t

0
dt1

t1
T

(
(UG

0,t1)
†
[
(UΩ

t1,t)
†OXU

Ω
t1,t, H1,∂Ω

]
UG
0,t1

)∥∥∥∥
The last equality is true because in V we have every term in Ω, all the interac-

tions terms between Ω and Ω̄ and the terms between two nodes of Ω that are not
considered in Ω. The only interactions terms in ∂Ω lie in H1 and we write it H1,∂Ω.
Thus, V (t1) = HG(t1)−HΩ(t1) = HΩ̄ + t1

T H1,∂Ω. Because X ⊂ Ω, the left term in
the commutator is strictly supported by Ω, so the term with HΩ̄ cancels out and
we are left with the last line. The factor t1

T comes from the linear interpolation we
have assumed but we could adapt it to any other schedules. The final result uses the
triangular inequality with the norm and integral and the fact that UG

0,t1
is a unitary

operator.

On the left-hand side of the inequality of Eq. (5.7), we have the norm of the
difference between the time evolution of OX over a graph G with the time evolution
of the same observable over a subsystem Ω. This value corresponds to the largest
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noticeable difference in energy one could possibly measure between the evolution on
the full graph or restricted to Ω. Interestingly, the right-hand side of this inequality
(i.e. the LR type bound) does not depend on the whole graph G. Potentially, only
H1,∂Ω could depend on the graph but when working with regular graphs, there are
only few possible choices for this term and they all depend on Ω. Therefore this LR
bound only depends on the local shape Ω of the system around X. Thus, looking
at the value of a local observable of an edge or a vertex on the whole graph or only
locally on a subgraph is the same up to a small error given by this bound. This
LR bound will quickly diverge when letting the evolution run for a large amount
of time. In particular, this entails that this result can only be used to analyze
the performances of very short time-continuous evolutions. Moreover, the time
dependence of the bound is such that considering a larger subsystem Ω will yield a
smaller bound for a fixed T . In other words, if one needs to study some evolution
during a longer time (e.g. to get closer to the exact solution), one might need to
increase the size of Ω. In this work, we choose to work with balls Ω of radius p = 1

around each vertex and edge, hence the subgraphs of Fig. 5.2, so we expect that
the maximum over the running time to get the approximation ratio yields a very
short T .

Now, with this result, we can lower bound the value of ⟨OX⟩G that appears in
the expression of the final expected energy in Eq. 5.2. By introducing ⟨OX⟩∗Ω =

⟨OX⟩Ω−LRΩ
OX

, we have that ⟨OX⟩G ≥ ⟨OX⟩Ω−LRΩ
OX

for any observable OX and
subgraph Ω. So we can lower bound the final expected value with an expression
similar to Eq. (5.5) :

−⟨HG
1 ⟩G,T ≥ n⟨N (v)⟩∗Ω0

+ n1⟨M (e)⟩∗Ω1
+ (4n1 + 3n2)⟨M (e)⟩∗Ω2

(5.8)

+ (3n/2− 5n1 − 3n2)⟨M (e)⟩∗Ω3

The approximation ratio that we defined as

ρC = max
T

min
G

−⟨HG
1 ⟩G,T

Copt(G)

can be used to derive an approximation ratio of QA as a 1-local algorithm. The
numerator is lower bounded by an expression that only depends on B1(X), for X
being a node or an edge (see Eq. (5.8)). We also need to obtain an upper bound
on the optimal cost value that can also depend on n1 and n2. The minimization
over all graphs G becomes a minimization over n1 and n2. In a cubic graph, they
must respect 4n1 + 3n2 ≤ n. The maximization task is ruled by the tightness of
the LR-type bound we use.

In this section, we have worked on the construction developed in
[Farhi et al. 2014] to derive an approximation ratio expression of QA as a 1-local
algorithm. Unlike p−layer QAOA where ⟨OX⟩G = ⟨OX⟩Bp(X), in QA it is only
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approximately correct. The difficulty lies in the computation of the error made by
this approximation. For p = 1, we suggest to use Proposition 5.1 as it is numerically
tractable. In the next section, we apply this method to formally prove non-trivial
bound on the approximation ratio reached by QA on MaxCut and MIS over cubic
graphs.

5.2 Two different problem applications

In this section, we apply the method introduced above to derive approximation
ratios for MaxCut and MIS on 3-regular graphs using QA metaheuristic. For each,
we first recall the expression of the observable N (v) and M (e) that we introduced in
Sec.2.2.1. Then we compute the corrected energy ⟨OX⟩∗Ω for appropriate OX and Ω,
for different values of T . Eventually, we classically solve the optimization problem
minn1,n2maxT to derive the value of the approximation ratio.

5.2.1 QA approximation of MaxCut

In Sec. 2.2.2, we introduced the MaxCut problem as well as its encoding in a Hamil-
tonian. We recall that for an input graph G(V,E), the final Hamiltonian is written
like H1 = −

∑
e∈E Oe where for e = ⟨a, b⟩, Oe = 1

2(1 − σ
(a)
z σ

(b)
z ). To compute the

approximation ratio with the previous developed method, we identify N (v) = 0 and
M (e) = Oe. For the optimal cut, we use the same reasoning as in [Farhi et al. 2014]:
the size of the maximum cut is at most the total number of edges |E| and each
configuration of type Ω1 and Ω2 (see Figure 5.2) has at least one edge that is not
cut (they each contain a triangle that is disjoint from all other triangles). For cubic
graph we know that |E| = 3n/2. Hence, we have that Copt(G) ≤ 3n/2−n1−n2. By
normalizing with n1 ← n1/n and n2 ← n2/n, we end up with a global approximation
ratio ρMC for problem MaxCut that verifies:

ρMC ≥ max
T

min
n1,n2 s.t.

4n1+3n2≤1

n1⟨Oe⟩∗Ω1
+ (4n1 + 3n2)⟨Oe⟩∗Ω2

+ (3/2− 5n1 − 3n2)⟨Oe⟩∗Ω3

3/2− n1 − n2

(5.9)

≥ max
T
⟨Oe⟩∗Ω3

(5.10)

where we used our technical result of Appendix C.1 which proves that under rea-
sonable conditions, the minimization over n1 and n2 such that 4n1+3n2 ≤ 1 results
in n1 = n2 = 0. We will see in the numerical computation that the necessary
conditions are fulfilled to have this value of n1 and n2. The worst case for QA is
therefore configuration Ω3, i.e. QA struggles more on triangle-free graphs. Now, it
is interesting to mention that the approximation ratio of QA for MaxCut is lower
bounded by the edge energy in the middle of configuration Ω3 (see Fig. 5.2) cor-
rected by the LR-type bound. This configuration is bipartite, meaning that in the
long time regime, ⟨Oe⟩Ω3 converges toward 1. Indeed, we remind the reader that
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for a classical state |x⟩, ⟨x|Oe|x⟩ = 1 if and only if edge e lies across the bipartition
x and 0 otherwise. This also implies that ρMC ≥ 0.5 because at T = 0, the state
is a uniform superposition over all possible classical states. We know from Sec. 2.5
that the LR bound increases exponentially with T which is why ⟨Oe⟩∗Ω3

reaches a
maximum for a finite T .

We numerically evaluate the ⟨Oe⟩∗Ωi
by computing the middle edge energy for

each Ωi and the corresponding LR-type bound of Proposition 5.7. We found that
a maximum is reached at Tmc = 1.62 for which the numerical values for ⟨Oe⟩∗Ωi

are
presented in Table 5.1.

i 1 2 3
⟨Oe⟩Ωi 0.5951 0.6152 0.6350
LRΩi

Oe
0.0203 0.0310 0.0417

⟨Oe⟩∗Ωi
0.5748 0.5842 0.5933

Table 5.1: Numerical values to obtain ⟨Oe⟩∗Ωi
at T = Tmc

We check that those values are compatible with the conditions of Appendix C.1,
to have that ρMC ≥ maxT ⟨Oe⟩∗Ω3

=0.5933.

Details on the computation: For k ∈ {1, 2, 3}, to compute the value of ⟨Oe⟩∗Ωi

for T ∈ [0, 5], we accessed to the value of ⟨Oe⟩Ωi and the LR-like bound LRΩi
OX

(T ) for
appropriate OX . ⟨Oe⟩Ωi can be computed directly from the quantum state |ψΩi(T )⟩.
This state is computed by numerically solving the Schrödinger equation (2.1) with
a relative tolerance of 10−9 on Ωi. These computations were performed using the
AnalogQPU simulator on Eviden Qaptiva using boost. To compute the LR bound,
we have to compute the unitary evolution operator UΩi

t1,T
for all t1 ∈ [0, T ] and

compute the integral on the right hand side of Eq. 5.7. We chose a time step
of 10−3 to compute the integral. We compute the unitary operator for each time
step by solving the Schrödinger equation for evolution operator (Eq. 5.1). These
computations were carried using the Differential Equations Julia library. Finally,
we chose the interaction terms H1,∂Ω to be as large as possible for each Ωi. This is
a sum over all interactions M (e) for edges e which are not in Ω but have at least
one endpoint in Ω (see Fig. 5.4).

Here we proved that QA as a one local algorithm achieves a 0.5933 approximation
of MaxCut over cubic graphs. The analysis further showed that triangles seems to
help the quantum evolution to reach better ratio. In Chapter 7 we investigate more
in depth this intuition to analyse the behaviors of larger double binary.

5.2.2 QA approximation of MIS

In Sec. 2.2.3, we introduced the Maximum Independent Set problem with its en-
coding in a Hamiltonian. We recall that for an input graph G(V,E), the final
Hamiltonian can be written like H1 = −

∑
v∈V Rv −

∑
e∈E Qe where for a node v,
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Figure 5.4: Example of ∂Ω for Ω3 configuration maximizing the number of interac-
tions with the rest of the graph. Note that an edge between two nodes would also
belong to ∂Ω.

Rv = 1
2(1−σ

(v)
z ) and for an edge e = ⟨a, b⟩, Qe = −1

4(1−σ
(a)
z )(1−σ(b)z ) Unlike Max-

Cut, we see here that we have a component on the nodes and a component on the
edges. We can identify the observables to apply the method of Sec. 5.1 N (v) = Rv

and M (e) = Qe. These two components have opposite effects on the cost value of
a solution x, Rv tends to increase the size and Qe tends to minimize the number
of edges in Gx. Gx is the graph induced by nodes v such that xv = 1. Even if the
measure of the final state of an annealing process can be a state for which Gx is not
an IS, it is easy to correct it to have an IS of the same energy (see Sec. 2.2.3). The
energy of x is the size of the IS produced from x. Now, we need to upper bound
the size of an MIS in regular graph, we use the following claim :

Claim 5. For a d-regular graph, the size of the MIS is upper bounded by n/2 and
this value is reached by bipartite graphs.

Proof. The proof is straightforward once we see that the total number of edges in a
d-regular graph is dn

2 , and any independent set I has d|I| edges incident to it.

Along with Eq. (5.8), and the fact that Copt(G) ≤ n/2, the approximation ratio
for MIS like the following, where we employed the same normalization as in the
previous section with n1 ← n1/n and n2 ← n2/n :

ρMIS ≥max
T

min
n1,n2 s.t.

4n1+3n2≤1

2
[
⟨Rv⟩∗Ω0

+ n1⟨Qe⟩∗Ω1
+ (4n1 + 3n2)⟨Qe⟩∗Ω2

(5.11)

+(3/2− 5n1 − 3n2)⟨Qe⟩∗Ω3

]
≥max

T

(
2⟨Rv⟩∗Ω0

+ 3⟨Qe⟩∗Ω3

)
(5.12)

where the last inequality comes from the optimization over n1 and n2 giving n1 =

n2 = 0 (see Appendix C.1). Similarly to MaxCut case, triangle-free graphs seem to
be worst cases for QA. At T = 0, we have the random guess. For a classical state x,
we know that ⟨x|Rv|x⟩ = 1 if and only if xv = 1 and 0 otherwise. Also, for an edge
e = ⟨a, b⟩, ⟨x|Qe|x⟩ = −1 if and only if xa = xb = 1 and 0 otherwise. So the random
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guess has an approximation ratio of 2× 1
2 − 3× 1

4 = 0.25. The maximization over T
gives at time Tmis = 1.32, the numerical values for ⟨OX⟩∗Ωi

presented in Table 5.2.

i 0 1 2 3
⟨OX⟩Ωi 0.4653 -0.1939 -0.1920 -0.1901
LRΩi

OX
0.0072 0.0034 0.0065 0.0096

⟨OX⟩∗Ωi
0.4581 -0.1972 -0.1985 -0.1997

Table 5.2: Numerical values to obtain ⟨OX⟩∗Ωi
at time T = Tmis for the correspond-

ing OX .

From the numerical values, we can compute the approximation ratio reached
by QA on MIS over cubic graphs, i.e. ρMIS ≥ 0.3171 > 0.25. This proves that
constant time QA is better than random guess for solving MIS. By random guess
for MIS, we mean the algorithm that chooses uniformly at random in {0, 1}n, which
also corresponds to QA at T = 0. However, to put it into perspective, a naive
greedy algorithm that runs in linear time achieves a 0.5 approximation. Let I be
your candidate independent set. Then, for each node, if none of its neighbors is in
I yet, put the node in I. On a d−regular graphs, it outputs an independent set
of size n/d. Our purpose is to illustrate the generality of the approach based on
Lieb-Robinson bounds, which can be used for estimating the energy both on nodes
and on edges. We reach with a constant-time local algorithm a ratio that is better
than random guess.

In this section, we applied the approach presented in Sec. 5.1 on two combina-
torial problems, MaxCut and MIS. The computations showed that constant time
QA in both cases is better than random guess. Although it was expected to beat
random guess, these numbers provides the first guarantee for short time QA. The
numerical values are still not of profound interest in comparison to already known
algorithms (see Sec. 2.3). In the next section, motivated by a tightness analysis of
the bound and numerical argument, we suggest an alternative approach, which is
at this stage not practically tractable.

5.3 Toward a better bound for MaxCut?

We believe that the algorithm behaves significantly better than the approximation
bounds that we were able to prove. In this section, we first argue this claim with a
numerical analysis of our LR bound tightness on MaxCut suggesting some improve-
ment direction. Then, in order to get the best of QA, we provide some hint for a
new approach to find a tighter bound on the approximation ratio and conjecture
that the actual approximation ratio for MaxCut in cubic graphs with a distance 1
analysis might be of 0.6963, while we only guarantee 0.59.
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5.3.1 (Non) Tightness of our LR bound

The analysis of the LR bound tightness or non-tightness depends on the runtime
T and on the radius p of the ball. The construction we followed to obtain our
ratios is for p = 1. So, we study the dependency in T of the LR-type bound we
used in the case of MaxCut. We will focus on the bound for Ω3 as it is the most
relevant one for deriving the ratios. For this purpose, we construct an example of a
ball maximizing the ∂Ω3 as in the case when we compute the LR-type bound from
Eq. (5.7). In Fig. 5.4, we see that Ω3 can have up to eight interactions with the
rest of the graph. We want to create the “worst” neighborhood W3 for Ω3 so that
δ1(W3) = |⟨Oe⟩Ω3 − ⟨Oe⟩W3 | is maximal. A quick numerical analysis tells us that
interactions between two nodes of Ω3 increase the value of the final expected energy,
while an interaction with a node outside Ω3 decreases it. Here, to compare to the
LR-type bound, as we said, we need eight interactions with the outside of Ω3. They
will tend to decrease the value of the final energy. So in other word, this “worst”
configuration we are looking for should push the energy value toward 0 as fast as
possible as the edge energy in Ω3 converges toward 1 progressively. Therefore, W3

is a configuration in which the middle edge is necessarily uncut in the optimal state
x∗. This happens when an edge belongs to two odd cycles. Base on the intuition
that small cycles have effect on the edge energy faster than large ones, we suggest
W3 of Fig. 5.5 (left). In this configuration, all edges but e are cut in the optimal
solution. In W3, ⟨Oe⟩W3 reaches a maximum at time T ∗ = 3.15.

From the derivation of the LR bound we used, i.e. Eq. (5.7), there are two
potential steps where we are losing information. The first one is when we neglect the
initial state |ψ0⟩ in Eq. 5.6, i.e. between δ1(G) = |⟨ψG|Oe|ψG⟩ − ⟨ψΩ3 |Oe|ψΩ3⟩| and
δ2(G) = ∥(UG

0,t)
†OXU

G
0,t − (UΩ3

0,t )
†OXU

Ω3
0,t ∥ where e is an edge in G. The second one

is when proving Proposition 5.1 we use the triangular inequality with the operator
norm and the integral, i.e., between δ2(G) and LRΩ3

OX
. To illustrate this, we plot in

Fig. 5.5 these three quantities δ1(G) ≤ δ2(G) ≤ LRΩ3
OX

for the non-trivial ball W3

we detailed above.

The LR bound used to derive the approximation ratio (i.e. the top red line in
the graph) is interesting up to Tmc. It then diverges too quickly away from δ1 (and
so does the slightly tighter bound δ2). This conveys the intuition that the bound
becomes weak because the initial state is ignored. To the best of our knowledge,
state-dependent Lieb-Robinson bounds do not exist in the literature as they are
difficult to derive. In Chapter 7, we give more intuition on this improvement.

On proving better approximation ratio, this direct approach seems to be limited
by the fact it is too complicated to derive state-dependent LR bounds. To circumvent
this obstacle, in the next section we suggest another approach to get the best of the
LR bound for the derivation of approximation ratios.
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Figure 5.5: On the left, W3, worst edge configuration for LR bound centered on e.
On the right, δ1 and δ2 for W3 aside with LRΩ3

Oe
. The dashed lines indicate the time

Tmc = 1.62 for which we obtain the value of 0.59 and T ∗ = 3.15.

5.3.2 Hints for better approximation ratios

To derive a better approximation ratio for a distance 1 analysis of QA applied to
MaxCut, i.e. still using Eq. (5.8), we need to grasp the meaning of the star energies
⟨Oe⟩∗Ω. When we substitute the LR bound to the edge energy ⟨Oe⟩Ω, we are actually
handling any “bad” trajectory of an edge energy in any possible configuration. “Bad”
in the sense that the energy is evolving away from the trajectory of ⟨Oe⟩Ω caused
by the influence of graph structure at distance more than 1. So ideally we should
use energies ⟨Oe⟩ΩG , corresponding to the minimum energy of the edge e among all
possible cubic graphs G such that B1(e) = Ω:

⟨Oe⟩ΩG = min{⟨Oe⟩G | G ∈ G, e ∈ E(G) s.t. B1(e) = Ω}

That being said, this minimum is obviously intractable as the search space is infi-
nite with infinitely large graphs. However, for short enough runtime, we can restrict
ourselves to small configuration around the edge e, extending the Ωi. Intuitively,
the minimum is reached by edges that are necessarily uncut in the optimal solution.
Thus, our strategy is to construct (small) balls Wi for each configuration Ωi such
that the energy of the observed edge quickly goes to 0 after its expected initial rise,
similarly to the construction for the tightness analysis (see Sec. 5.3.1) In order to
accelerate the convergence speed to 0, we enforced this condition via the adjunction
of the smallest possible odd cycles. Indeed, as we already hinted in Sec. 2.5 and 4.3,
small cycles converge faster to their target because they are considered first by the
quantum evolution. The proposed balls Wi for each configuration Ωi are shown in
Fig. 5.6. We computed the energy of the edge e in each of these balls for T ∈ [0, 5]

and used Eq. 5.9, giving us a ratio of 0.6963 at T ∗ = 3.15. As mentioned above, this
is just a numerical estimate and by no mean a formal derivation. However, unless
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some very non-monotonous behavior arises when growing the radius of these balls,
this is most likely an accurate estimate.

Figure 5.6: On the left, worst configurations Wi for an edge e that has B1(e) = Ωi.
On the right, evolution of the edge energy against T , ⟨Oe⟩W1 (blue, bottom), ⟨Oe⟩W2

(red, middle) and ⟨Oe⟩W3 (green, top).

This estimation is a truly local (distance 1) analysis of QA as the expres-
sion of the approximation we use to compute the ratio depends only on balls
of radius 1. It thus seems reasonable to compare this ratio to one obtained for
other truly local algorithms. The other known bounds in this setting are single
layer QAOA (0.6925) [Farhi et al. 2014] and Hastings’ (classical) local algorithm
(0.6980) [Hastings 2019] (see Sec. 2.3 for more details). If our bound is verified, this
would show that a QA in time T ∗ = 3.15 outperforms single layer QAOA.

As we will develop more formally this construction in Chapter 6, we do not give
too much details, but based on already known LR bounds, it seems that one would
need to look for any balls of radius up to q ≃ 70 in order to prove a relevant ratio.
The best known LR bound for d−regular graphs is presented in [Chen et al. 2023]:

|⟨Oe⟩G − ⟨Oe⟩Bq(e)| ≤
(4(d− 1)t)q

q!

1

1− 2/e

which achieves a value of 0.014 for t = T ∗ = 3.15 and q = 71. Unfortunately, this
radius is unreachable for the best known classical simulation algorithm of quantum
annealing, and neither is it for the largest existing quantum computer. The larger
ball Bq(e) that can be completed in a cubic graph has 2(2q+1−1) nodes. To be able
to use this approach one would need to reach a similar bound value for q = 3.

Discussion: The work presented in this chapter can be easily adapted to tackle
other bounded degree graphs, e.g. MaxCut over 4 (resp 5)-regular graphs gives a
ratio of 0.57 (resp. 0.56), with shorter annealing times. Secondly, we draw readers’
attention to the fact that we only considered linear schedule of the form s(t) = t/T .
Other types of schedules should be tested to get the best possible ratio. For example,
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we tested with the optimal schedule of Grover [Roland & Cerf 2002], i.e. with

f(s) =
1

2
+

2s− 1

2
√
2n − (2n − 1)(2s− 1)2

and the total Hamiltonian H(s) = (1− f(s))H0 + f(s)H1. It is also possible to add
a perturbative Hamiltonian so the total Hamiltonian is H(s) = (1− s)H0 + sH1 +

s(1− s)Hpert where Hpert =
[H0,H1]

2 . Both initiatives output a ratio of 0.61, slightly
improving on the bound presented in Sec. 5.2.1. In any case, the value of the edge
energy as well as the LR-type bound value have to be computed again.

Conclusion

The general method described in this chapter provides tools for deriving approxi-
mation ratios for quantum annealing on combinatorial problems, with a very short
runtime. The locality of quantum annealing given by the Lieb-Robinson bound al-
lows combinatorial arguments on regular (and in particular cubic) graphs, of the
same type as those used for QAOA. We emphasized that the theoretical arguments
are valid for regular graphs of any fixed degree. We applied this technique to Max-
Cut and MIS to show how it can be used to access numerical values of approximation
ratios for cubic graphs. We then discussed the non-tightness of the Lieb-Robinson
bound using MaxCut and drew some “worst-case” graphs to argue that QA can prob-
ably achieve an approximation ratio for this problem significantly better than we
can actually prove. Overall, we have developed tools to recover locality in the stan-
dard formulation of quantum annealing and use this relaxed locality to derive lower
bounds on QA’s performance for the Maximum Cut and the Maximum Independent
Set problem on cubic graphs.

There are two main directions for improving these results and the general issue of
short-term QA as an approximation algorithm for graph optimization problems. The
first direction would be to improve the algorithm itself by choosing a better sched-
ule. In our analysis, we focused on a linear interpolation scheme, whereas QAOA,
which can be considered a special case of QA, relies on a parameterized bang-bang
scheme. There is, however, numerical evidence to suggest that some other sched-
ules produce better energies (see [Brady et al. 2021, Guéry-Odelin et al. 2019]). We
have proposed two types of schedule modification that give slightly better ratios.
We believe that our tools would enable us to study this wider variety of QAs and
obtain analytical guarantees of their performance.

The other direction would be to refine the analysis of constant-time QA using
less restrictive locality arguments such as the one we introduced informally in Sec.
5.3.2. In the next chapter, we choose to formally apply this alternative method.
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In this chapter, we pursue the alternative construction suggested in the previous
chapter (Sec. 5.3.2) to prove the following theorem.

Theorem. With a 1-local analysis, the approximation ratio reached by QA to solve
MaxCut over cubic graphs is above 0.7020.

This result is to be compared with the previous one obtained in Chapter 5, where
we proved a lower bound of 0.5933. We manage to increase the numerical value using
a slightly different approach. First we formally define a p−local analysis of QA and
introduce a new parameter, α, in the standard QA setting. Then we explain how a
Lieb-Robinson bound helps to tract the minimization over all possible cubic graphs
by reducing the total space search G to the family of radius q balls Bq. To find the
minimum among all those balls, we filter out most balls with a global LR bound
ε and to get the best possible ratio, we employ a local bound εloc, adapted to the
considered ball. Eventually, an optimization over T and α allows us to prove the
theorem. An overview of the different steps of the proof are sum-up in Fig. 6.1.

We first go through the formal construction of the method that we introduced
in Sec. 5.3.2 and we detail where the parameter α affect the annealing process. We
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Figure 6.1: Overview of the different steps of the Theorem proof.

focus on the MaxCut problem only but as we developed in Sec. 5.1, it is possible to
consider other combinatorial problems. Then, we derive our tight LR bound that
allows us to compute the approximation ratio promised by the theorem.

6.1 Local analysis of QA and Lieb-Robinson Bound

In this section, we formally develop the construction hinted in Sec. 5.3.2. More
exactly, we introduce a parametrized version of QA and write down the associated
approximation ratio. Then we define properly the meaning of a p−local analysis of
QA with example for p = 0 and p = 1. Eventually, we show how the Lieb-Robinson
bound can be used to tract the desired approximation ratio.

6.1.1 Parametrized QA

Recall that for a given graph G(V,E) in G, a family of graphs, on which we want to
solve MaxCut, the target Hamiltonian is HG

1 = −
∑

X∈E OX where OX = 1−σ
(a)
z σ

(b)
z

2

for the edge X = ⟨a, b⟩. The difference of this new setting is the introduction of a
hyper-parameter α in the initial Hamiltonian as

H0(α) = −
∑
v∈V

σ
(v)
x

α

The initial state is still the uniform superposition |ψ0⟩, as for the final state,
it is now depending on α, i.e. |ψG(T, α)⟩ = UG

T,α|ψ0⟩. Here, UG
T,α denotes the

unitary evolution operator under the time-dependent Hamiltonian H(t, G) = (1 −
t
T )H0(α) +

t
TH

G
1 and T the total annealing time. This operator UG

T,α, corresponds
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to a Schrödinger evolution, i.e. is a solution of:

∀t ∈ [0, T ], iℏ
dUG

t,α

dt
= H(t, G)UG

t,α

The expected value at the end of the annealing process is ⟨HG
1 ⟩G,α =

⟨ψG(T, α)|HG
1 |ψG(T, α)⟩ and thus, our metric of interest is

ρMC = max
T,α

min
G∈G

−⟨HG
1 ⟩G,α

Copt(G)
.

Since we are interested in using local arguments to bound this quantity, as in
Chapter 5, we will restrict the family of graphs G to the set of 3-regular graphs. The
goal is to find a good lower bound for this ratio. This can be achieved by separately
upper bounding the denominator and lower bounding the numerator. By linearity,
the numerator can be written as a sum over the edges

∑
X∈E⟨OX⟩G,α.

Influence of α: To give a brief idea on the effect of the parameter on the quantum
evolution, let us plot in Fig. 6.2, the edge energy value of the middle edge of W3 that
we introduced in Fig. 5.5 for different values of α. We know that in the standard
QA, i.e. for α = 1 (green curve), it starts at 0.5 at T = 0, it increases up to
0.6963 at time T ∗ = 3.15, and then decreases toward 0 its final value. Here, to some
extent, α modulates the weight of H0 compared to H1. As it will become clearer
when deriving the LR bound in Sec. 6.2, increasing α slows down the evolution.
Informally, the information travels at smaller speed in the quantum system. By
consequence, for α > 1, it takes more time to reach a similar value and it corrects
its trajectory toward the target value later in time. In some sense, QA is “fooled”
for longer times when α is large. This allows the edge energy to reach a higher
maximum later.

From now on, we will drop the dependency in α in the edge energy notation,
like for T , when it is clear from context. It will only appear when optimizing the
approximation ratio.

6.1.2 p−local analysis

As we mention, due to its analog nature, QA is non local, so to compare it to other
optimization solver like QAOA or to local classical algorithms, we need to define a
way to analyze it as a local algorithm. In Chapter 5, we suggest an approach for a
1−local analysis. Here we define the notion for any p.

Definition 6.1 (p−local analysis of QA). We call a p−local analysis of QA, an
analysis that produces an approximation ratio that depends only on balls in Bp. In
other words, the expression used to compute the ratio only considered balls in Bp.

In Sec. 5.1, we expanded on one possibility to analyze QA at distance 1, but it
was rather a restrictive version. Let us develop the construction of a 0-local and
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Figure 6.2: Edge energy in the middle of W3 graph ⟨0X⟩W3,α for α ∈
[0.5, 1, 1.5, 2, 2.5]

1-local analysis in the more general case.

0-local: For any X ∈ E, a trivial lower bound of ⟨OX⟩G is to assume that all
edges are in the worst possible configuration. It means that it is lower bounded
by minG∈G⟨OX⟩G = ⟨OX⟩G , where we note G the set of all cubic graphs. With
the trivial bound on Copt(G) < |E|, it gives the following lower bound on the
approximation ratio:

ρMC ≥ max
T,α
⟨OX⟩G .

Finding the latter value constitutes the approximation ratio of QA with 0-local
analysis.

1-local: Now, we are allowed to use the knowledge at distance 1 from the edge
X. Like in Sec. 5.1, for cubic graphs there are only three possible B1(X). We
are refering to the Ωi of Fig. 5.2. Therefore the edge energies ⟨OX⟩G can be
bounded by one of the following quantities ⟨OX⟩Ωi

G = min{⟨OX⟩G | G ∈ G, X ∈
E(G) s.t. B1(X) = Ωi}. And with a similar combinatorial argument, ni being the
number of Ωi in G, the final expected energy can thus be lower bounded as:

−⟨HG
1 ⟩G ≥ n1⟨OX⟩Ω1

G + (4n1 + 3n2)⟨OX⟩Ω2
G + (|E| − 5n1 − 3n2)⟨OX⟩Ω3

G

We remind that this expression still depends on the input graph through the vari-
ables ni, and thus, still needs to be minimized over the positive integers ni’s with
the constraint that 4n1 + 3n2 ≤ |V |. We also use the same upper bound on the
optimal value, i.e. Copt ≤ |E| − n1 − n2, where |E| = 3|V |/2. We recover the lower
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bound for the approximation ratio:

ρMC ≥ max
T,α

min
n1,n2 st

4n1+3n2≤|V |

n1⟨OX⟩Ω1
G + (4n1 + 3n2)⟨OX⟩Ω2

G + (|E| − 5n1 − 3n2)⟨OX⟩Ω3
G

|E| − n1 − n2

(6.1)
The result from Appendix C.1 still applies and under reasonable conditions the
minimization gives n1 = n2 = 0 so the approximation ratio becomes

ρMC ≥ max
T,α
⟨OX⟩Ω3

G

We see that this lower bound is very similar to the 0-local analysis case where we
added the fact that edge X must have Ω3 as its B1(X). We are really using more
knowledge of the neighboring structure of X.

p-local: For a larger p, one would need to enumerate every possible Bp(X) balls
that can be completed in a cubic graphs and comes up with a linear combination
of the edge energy in each of these Bp(X). In [Wurtz & Love 2021], the authors
undertook this approach to prove that p = 2 QAOA achieves a ratio of 0.7559,
value conjectured originally in [Farhi et al. 2014]. It appears that the double binary
tree Tp of depth p is also the worst case for p = 2 and it is widely believed in the
community that Tp is a great candidate to be the ball Bp(X) such that :

ρMC ≥ max
T,α
⟨OX⟩

Tp

G

Motivated by this conjectured, the authors of [Basso et al. 2022] cleverly develop an
iterative procedure to access the final energy of an edge in the middle of a Tp with a
p layer QAOA. They were able to compute the exact value up to p = 17. No similar
results exist for QA but in Chapter 7 we suggest an idea to derive this value.

With this in mind, to access to the approximation ratio reached by QA, we still
need to compute the minimum over an infinite family of graphs. This minimum is
obviously intractable. So to overcome this difficulty, as we mentioned at the end of
Chapter 5, we will use the Lieb-Robinson bound presented in the next section.

6.1.3 Lieb-Robinson bound reduction

This idea of this section is to introduce two types of LR bounds that will help us
in the computation of the minimization over all the cubic graphs. We already know
that with a finite short runtime, the trajectory of an edge energy mostly depends on
the neighboring structure. Consequently, when computing the minimum of interest,
we can stop at a finite radius of the graph around the edge, with a penalty ε on the
minimum. In other words, for a given time T and a desired error ε, there exists a
q(T, ε) such that |⟨OX⟩ΩG −⟨OX⟩ΩBq(T,ε)

| ≤ ε where Bq is the set of all possible Bq(X)

when X is an edge of a cubic graphs G ∈ G. This is basically the main idea of the
Lieb-Robinson velocity. Now, to get the best of the LR bound, we will describe a
local bound, that is adapted to the considered ball Bq(X) and a global one that is
maximizing the local bounds.
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Local bound. Suppose that for any graph G, and any edge X of G, there ex-
ists a εloc(Bq(X), T, α) > 0 that upper bounds the absolute difference: |⟨OX⟩G −
⟨OX⟩Bq(X)| < εloc(Bq(X), T, α). The local aspect lies in the fact that εloc de-
pends on the ball Bq(X). If such a bound exists, we have that ⟨OX⟩G ≥
⟨OX⟩Bq(X) − εloc(Bq(X), T, α). This lower bound is satisfied for all graphs G ∈ G.
The only dependence on the input graph now lies in Bq(X). We can rewrite the
minimization over G as:

min
G∈G
⟨OX⟩G ≥ min

Bq(X)∈Bq

(
⟨OX⟩Bq(X) − εloc(Bq(X), T, α)

)
(6.2)

⇒⟨OX⟩G ≥ ⟨OX⟩∗Bq
(6.3)

where ⟨OX⟩∗Bq
= minBq(X)∈Bq

(
⟨OX⟩Bq(X) − εloc(Bq(X), T, α)

)
. Therefore, the ap-

proximation ratio becomes, for QA as a 0-local algorithm,

ρMC ≥ max
T,α
⟨OX⟩∗Bq

(6.4)

We can do the same for the 1-local analysis, when taking advantage of the neigh-
borhood at radius 1 around the edge X. So we have that

⟨OX⟩Ωi
G ≥ min

Bq(X)∈Bq

(
⟨OX⟩Ωi

Bq(X) − εloc(Bq(X), T, α)
)
= ⟨OX⟩∗Bq,i

(6.5)

where Bq,i is the family of graphs Bq(X) ∈ Bq restricted to balls Bq(X) for which
B1(X) = Ωi. Still assuming n1 = n2 = 0, the approximation ratio can be written as
a new equation that depends only on these epsilons and worst edge energy among
“small” ball of radius q:

ρMC ≥ max
T,α
⟨OX⟩∗Bq,3

(6.6)

It could be costly to compute the local bound for each ball Bq(X). In particular it
seems pointless to calculate them for those with high edge energy values. An upper
bound would suffice to handle several cases at once.

Global bound. To avoid having to develop too many bounds εloc as the number
of Bq(X) explodes exponentially, it can be useful to apply a global bound for most
of the balls in the minimization task. We define it as

ε(q, T, α) = max
Bq(X)∈Bq

εloc(Bq(X), T, α) (6.7)

We will see in Section 6.2 that this maximum is easy to derive from the analytical
expression of the local bound. The global bound is used as follows:(

⟨OX⟩Bq(X) − εloc(Bq(X), T, α)
)
≥ ⟨OX⟩Bq(X) − max

Bp(X)∈Bq

εloc(Bq(X), T, α)

= ⟨OX⟩Bq(X) − ε(q, T, α)
⇒ ⟨OX⟩∗Bq

≥ ⟨OX⟩Bq − ε(q, T, α)
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Then for balls Bq(X) for which ⟨OX⟩Bq(X) is large enough, the global bound is
sufficient in the minimization task over Bq.

Now, we have reduced the problem of finding a minimum among an infinite
number of graphs to a finite number of graphs. We point out that the finite size of
Bq is only true if the maximum degree of the graphs we are looking at is fixed. Thus,
for cubic graphs, the minimum is tractable. However, it might not be practically
tractable if q is too large. As we mentioned in Sec. 5.3.2, the state-of-the-art LR
bound achieves a value of 0.014 at T = 3.15 for q = 71. Recall that we need
to solve the Schrödinger equation on each ball. Today’s quantum computers are
not precise enough to compute the edge energy, so this task is to be handled by a
classical simulator. This highly limits the size of the balls that can be considered.
The largest ball of Bq is the double binary tree Tq which has 2(2q+1 − 1) nodes. At
already 30 nodes for q = 3, this defines the limit of classical resources we can use.
Any known bound does better than the trivial bound of 2 (on the commutator) at
this radius. Sec. 6.2 is dedicated to the derivation of a tighter LR bound tailored
exactly for the purpose of having reasonable LR bound values for q = 3.

6.2 Tight LR bound on regular graphs for MaxCut ap-
proximation

The statement of our main result of the chapter is the following:

Theorem 6.1. With a 1-local analysis, the approximation ratio reached by QA to
solve MaxCut over cubic graphs is above 0.7020.

In this section we prove Theorem 6.1 in two steps. First we develop a
tight enough LR bound using the commutativity graph structure introduced in
[Wang & Hazzard 2020] and by computing the exact values of the schedule’s nested
integrals. This determines the required value of q to achieve the best provable ratio.
The second step is purely numerical and requires to enumerate each ball Bq(X) and
get the minimum of the final expected energy of the edge X inside these balls for
each Ωi, corrected by the LR bound. This new approach follows the idea presented
in the last section of Chapter 5.

6.2.1 Tight LR bound on regular graphs in QA

As mentioned in section 6.1, the minimization to obtain the approximation ratio
is intractable when performed over the entire graph family. However, the LR
bound helps to reduce the size of the set on which we have to minimize to a finite
subfamily of graphs, namely Bq (see Equation 6.3).

First we seek to develop a local bound εloc(Bq(X), T, α) such that |⟨OX⟩G −
⟨OX⟩Bq(X)| < εloc(Bq(X), T, α) for all d-regular graphs G such that the ball at
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distance q around edge X corresponds to Bq(X). Let G be such a graph. Recall
that it is rather difficult to manipulate this expression considering the initial state
|ψ0⟩ so the first step (however costly in terms of tightness) is to get rid of this
dependency by working directly with the evolution operator:

|⟨OX⟩G − ⟨OX⟩Bq(X)| ≤
∥∥∥OG

X(T )−OBq(X)
X (T )

∥∥∥
where we introduce the evolved observable under unitary operators UG

T and UBq(X)
T

respectively, once again dropping the α from the notation. They are defined as:

OG
X(T ) = (UG

T )†OXU
G
T (6.8)

O
Bq(X)
X (T ) = (U

Bq(X)
T )†OXU

Bq(X)
T (6.9)

In [Bravyi et al. 2006], the authors demonstrate that the evolution over a subset of
nodes can also be expressed as :

O
Bq(X)
X (T ) =

∫
dµ(U)UOG

X(T )U †

where µ(U) denotes the Haar measure over unitary operator U supported on S =

V \V (Bp(X)). Noticing that UOG
X(T )U † = OG

X(T ) + U [OG
X(T ), U †], we can bound

the quantity of interest
∥∥∥OG

X(T )−OBq(X)
X (T )

∥∥∥ ≤ ∫
dµ(U)

∥∥[OG
X(T ), U †]

∥∥ for any
unitary U supported on S. We are then left to bound the norm of this commutator.

Commutativity graph: Let us introduce a helpful tool presented in
[Wang & Hazzard 2020] (see also [Chen & Lucas 2021]): the commutativity graph
G(V,E) associated to a Hamiltonian H(t, G) having local interactions. In general,
we can write H(t) =

∑
j hj(t)γj where γj are hermitian operators with norm less

than unity and hj(t) are time-dependent scalars. The commutativity graph of H(t)

is constructed such that each operator γj is represented by a node j and two nodes
j and k are connected if and only if [γj , γk] ̸= 0. The structure of the graph captures
the commutative and non-commutative relationships between the operators in the
Hamiltonian.

In the case of MaxCut, the total time-dependent Hamiltonian writes

H(t, G) =
∑
v∈V

(1− t

T
)
σ
(v)
x

α
+

∑
(a,b)∈E

t

T

1− σ(a)z σ
(b)
z

2

As described, the terms γj of the Hamiltonian are represented as nodes in the
commutativity graph G. We can distinguish two types of nodes in V: those corre-
sponding to interaction operators over the edges E of the original input graph, and
those corresponding to local operators over nodes of V . This means that we have
for e = ⟨a, b⟩ ∈ E, γe = 1−σ

(a)
z σ

(b)
z

2 and for v ∈ V , γv = σ
(v)
x
α . We can rewrite the

total Hamiltonian as:
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H(t, G) =
∑
v∈V

hv(t)γv +
∑
e∈E

he(t)γe

Our notation fixes the time-dependent scalars as he(t) = t
T for e ∈ E and

hv(t) = 1− t
T for v ∈ V . Also, it is obvious to see that the commutativity graph is

bipartite. The only pairs that do not commute are pairs (γv, γe)v,e, where node v is
incident to edge e in G. An example of commutativity graph is shown in Fig. 6.3.

Figure 6.3: Example of a commutativity graph for the following Hamilonian:
H(t, G) =

∑3
i=1(1 −

t
T )

σ
(i)
x
α + t

T
1−σ

(i)
z σ

(i+1)
z

2 where index i is taken modulo 3. Blue
nodes represent 1-local operators and red nodes represent 2-interaction terms. In
particular, blue nodes of G correspond to nodes of the original graph G, and red
nodes correspond to its edges.

For a unitary A supported on S, we want to upper bound the quantity∥∥[OG
X(T ), A]

∥∥. This edge X can be identified with a specific interaction term in the
commutativity graph. Let us defineX to be the node in G corresponding to the edge
X and consider the operator γAX(T ) = [γX(T ), A] with γX(t) = (UG

T )†γXU
G
T , drop-

ping the dependency on G. Still following the first steps in [Wang & Hazzard 2020],
we can arrive at a similar expression in the time-dependent regime (see Appendix
C.2 for details):

∥γAX(T )∥ − ∥γAX(0)∥ ≤
∑

v:⟨Xv⟩∈G

∫ T

0
hv(t)

∥∥[γX(t), γAv (t)
]∥∥ dt

≤
∑

v:⟨Xv⟩∈G

∫ T

0
(1− t

T
)
∥∥γAv (t)∥∥ dt (6.10)

Now, we see on the right hand side of Eq. (6.10) that we have the norm of γv(t)
for some node v adjacent to X in G. We can derive two update rules which we will
use alternately depending on the considered node of G, i.e. depending on whether
it corresponds to an edge e of G or to a node v of G. These two rules are as follows:
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∥γAe (t)∥ − ∥γAe (0)∥ ≤
∑

v:⟨ev⟩∈G

∫ t

0
(1− t′

T
)
∥∥γAv (t′)∥∥ dt′ (6.11)

∥γAv (t)∥ − ∥γAv (0)∥ ≤
2

α

∑
e:⟨ve⟩∈G

∫ t

0

t′

T

∥∥γAe (t′)∥∥ dt′ (6.12)

where we used two inequalities that for any t and any U :

∥γUe (t)∥ = ∥[γe(t), U ]∥ ≤ 1

2
2∥σ(a)z σ(b)z ∥∥U∥ ≤ ∥U∥

∥γUv (t)∥ = ∥[γv(t), U ]∥ ≤ 1

α
2∥σx∥∥U∥ ≤

2

α
∥U∥

where ⟨a, b⟩ is the edge on which γe is applied and we used the trivial commutation
of the identity with any matrix. Note that ∥γAj (0)∥ = 0 as long as j is inside
Bq=k−1(X), so we can iterate up to 2k steps as the first node outside Bq(X) is a
red node corresponding to an interaction term (see Fig. 6.4):

Figure 6.4: Commutativity graph of the cubic graph that maximizes the LR bound.
The shaded area shows an example for q = 2 = k − 1.

∥γAX(t)∥ ≤
(
2

α

)k ∑
v1:⟨Xv1⟩∈E

∑
e1:⟨v1e1⟩∈E

...
∑

ek:⟨vkek⟩∈E

∫ t

0
hv1(t1) (6.13)

×
∫ t1

0
he1(t2)...

∫ t2k−1

0
hek(t2k)∥γ

A
ek
(t2k)∥dt2k...dt2dt1

Now, let us introduce the following nested integral I2k and I2k+1 that appears in
Equation 6.13 where we replace each hj(ti) by its expression and we pull out of the
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integral the factor T 2k and T 2k+1 respectively so that the integrals depend only on
k:

I2k =

∫ 1

0
1− u1

∫ u1

0
u2...

∫ u2k−1

0
u2kdu2k...du2du1

I2k+1 =

∫ 1

0
1− u1

∫ u1

0
u2...

∫ u2k

0
1− u2k+1du2k+1...du2du1

There is no known closed form for these integrals but we can easily have the exact
numerical values for at least the first 100 points and we can upper bound it as we
show in Appendix C.3. We can then write, following Eq. 6.13:

∥γAX(T )∥ ≤ T 2k

(
2

α

)k

I2k
∑

v1:⟨Xv1⟩∈E

∑
e1:⟨v1e1⟩∈E

...
∑

ek:⟨vkek⟩∈E

max
t
∥γAek(t)∥

where γAek(t) corresponds to an interaction node of the commutativity graph (i.e.
red node) because we are at an even step. We used the fact that A is unitary and
the dependence on Bq(X) lies in computing the size of the nested sum. This bound
can be improved by applying the update rule of Equation 6.10 and noticing that
the first terms such that ∥γAek(0)∥ ̸= 0 only include all paths in P2k(X, q). Where
we define Pl(X, q) to be the set of paths of length l in G starting at X and ending
in a node outside Bq=k−1(X) (the green area in Fig. 6.4). After iterating several
times, we get:

∥γAX(T )∥ ≤ T 2k

(
2

α

)k

I2k × |P2k(X, q)|∥γAek(0)∥ (6.14)

+ T 2k+1

(
2

α

)k

I2k+1 × |P2k+1(X, q)|∥γAvk+1
(0)∥

+ T 2k+2

(
2

α

)k+1

I2k+2 × |P2k+2(X, q)|∥γAek+1
(0)∥

+ T 2k+3

(
2

α

)k+1

I2k+3 × |P2k+2(X, q)|∥γAvk+2
(0)∥

+ T 2k+4

(
2

α

)k+2

I2k+4 × |P2k+3(X, q)|∥γAek+2
(0)∥

+ T 2k+5

(
2

α

)k+2

I2k+5 × |P2k+4(X, q)|∥γAvk+3
(0)∥

+ T 2k+6

(
2

α

)k+3

I2k+6

∑
v1:⟨Xv1⟩∈G

∑
e1:⟨v1e1⟩∈G

...
∑

ek+2:⟨vk+1ek+2⟩∈G

max
t
∥γAek+3

(t)∥

= εloc(Bq=k−1(X), T, α)

We stop at the seventh iteration because numerically it appears that the bound
reaches a minimum before increasing again. This is due to the fact that the num-
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ber of paths in |Pl(X, q)| also increases exponentially with l. Each path consid-
ered above ends outside Bq(X), because for the others we have ∥γAj (0)∥ ̸= 0 for
j ∈ [ek, vk+1, ek+1, vk+2, ek+2, vk+3]. To define paths that go beyond Bq(X), we
implicitly extend the balls to maximize the number of paths in Pl(X, q) for l ≥ 2k.
Thanks to the upper bound of the integrals detailed in Appendix C.3, it is easy to
see that the derived bound is decreasing with k and thus with q meaning that we
have the following corollary:

Corollary 6.1. For any q > 0 and any edge X inside a d−regular graph,

∀j > 0, εloc(Bq+j(X), T, α) ≤ εloc(Bq(X), T, α)

the same goes for the global bound as taking the max preserves the inequality:

∀j > 0, ε(q + j, T, α) ≤ ε(q, T, α)

For the local bound, we need to compute for each ball Bq(X) the number of
paths. In practice, a subroutine counting the number of paths of a given size is used
to compute the local bound. The last term with the multiple sums is counting for
(2d)k+3 as at each interaction term there are d possible choices of nodes and only 2
at the others. In this subsection we detailed the derivation of the LR local bound
Eq. 6.14. In the next subsection, we pursue the derivation to get the global bound
by taking the maximal number of paths.

6.2.2 Global LR bound

In this subsection, we use Eq. 6.14 to derive the global LR bound. As defined in
Section 6.1, the global bound is obtained by considering the maximum of the local
bound Eq. 6.14 over all balls in Bq. To this end, we consider the worst-case scenario,
i.e. the ball maximizing the possible number of paths. It’s trivial to see that this
corresponds to the cycle-free ball (Fig. 6.4).

In this cycle-free ball, we can count the number of paths corresponding to each
term in LR bound’s equation. In Fig. 6.5, we depict example paths for each of the
necessary cases that we detail below.

For the first two terms, only direct simple paths reach the outside of Bq(X), and
there are 2(d− 1)k of them. The factor 2 comes from the initial choice at node X,
you can go either left or right on Fig. 6.4. Once the side has been chosen, at each
blue node (node vr), there are d − 1 possibilities, as the path can’t go backwards
by definition of direct single paths. In a path from X to the first node outside
Bq=k−1(X), i.e. of length 2k, there are k blue nodes, bringing the total number of
direct simple paths to 2(d − 1)k (path Fig. 6.5 (a)). The same number of paths is
found for direct paths of length 2k + 1.

Then, for the third and fourth terms, we can distinguish simple direct paths
that go one step further in G, i.e. of length 2k + 2 and 2k + 3 respectively, from
non-direct paths, i.e. passing several times through the same node or edge. For the
third term counting paths of length 2k+2, similarly to above, there are 2(d− 1)k+1
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Figure 6.5: Example of different paths starting at X on the commutativity graph for
the global bound with k = 3. (a) a simple path (Xv1e1v2e2v3e3) in pink of length
2k, (b) a green path (Xv1e1v2ebv2e2v3e3) of length 2k+2 with a back-and-forth on
one edge, (c) in orange a path (Xv1ervrerv1e1v2e2v3e3) of length 2k+4 with a back-
and-forth on a branch of two edges and (d) in blue a path (Xv1erv1e1v2e2v3e2v3e3)

of length 2k+4 with two back-and-forth on two edges at distance at most one from
the simple path.

direct paths. For the non-direct ones, we need to count every edge that can be
used at least twice in the path (path Fig. 6.5 (b). At first, there are the two edges
that start from X, then (d− 1) at each blue node on the path and +1 at each red
node, making a total of 2 + ((d − 1) + 1) ∗ k edges that can be used twice in the
2(d− 1)k possible paths. Therefore, the total number of paths in the third term is
2(d− 1)k+1 + (2 + dk) ∗ 2(d− 1)k. For the fourth term, we use similar reasoning to
arrive at 2(d− 1)k+1 + (dk + 2 + d− 1) ∗ 2(d− 1)k paths.

Let us see how the last two terms are derived. For the fifth term, we need
to count all paths of length 2k + 4 that lead to a red node outside the shaded
area. There are three types of path: direct paths up to ek+2 counting for
2(d − 1)k+2, those with exactly one edge taking two or three times, i.e. reach-
ing ek+1 counting for (d(k+1)+2) ∗ 2(d− 1)k+1 and those reaching ek counting for[
(dk + 2) +

(
dk+2
2

)
+ 2(d− 1) + k

]
∗ 2(d− 1)k. In the latter, a distinction is made:

either an edge is used 4 or 5 times, or 2 different edges at a distance at most one
from the direct path can be used 2 or 3 times (path Fig. 6.5 (d)), or finally choose
a branch of length 2 far from the direct path (path Fig. 6.5 (c)). Similar reasoning
is used for the sixth term.
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We can then substitute the path counting in Eq. (6.14) to derive the following
closed-form:

∥γAX(t)∥ ≤ T 2k

(
2

α

)k

I2k × 2(d− 1)k + T 2k+1

(
2

α

)k+1

I2k+1 × 2(d− 1)k (6.15)

+ T 2k+2

(
2

α

)k+1

I2k+2 × 2(d− 1)k [d(k + 1) + 1]

+ T 2k+3

(
2

α

)k+2

I2k+3 × 2(d− 1)k [d(k + 2)]

+ T 2k+4

(
2

α

)k+2

I2k+4 × 2(d− 1)k
[
d2

(k + 1)2 + 3

2
+ d

3k + 2

2
+ k

]
+ T 2k+5

(
2

α

)k+3

I2k+5 × 2(d− 1)k
[
d2

(k + 2)2 + 3

2
+ d

k + 1

2
+ k − 1

]
+ T 2k+6

(
2

α

)k+3

I2k+6 × (2d)k+3 = ε(q = k − 1, T, α)

In this subsection, we developed the proof of our LR bound for any d−regular
graph on which we want to solve MaxCut with a quantum annealing process. This
bound achieves the best numerical value compared to the state-of-the-art of LR
bounds. This is due to the fact that we have finely evaluated the nested integral
with the standard schedule and used the commutativity graph of the Hamiltonian to
tighten the bound. Here the free parameter α plays an important role: optimizing
over its value will allow us to control the tightness of the bound (6.15). This point
is further discussed in Section 6.3. In the next subsection, we apply the derived
bounds (global and local) to obtain a numerical value of the approximation ratio
for a 1-local analysis of QA.

6.2.3 Application to approximation ratio of MaxCut

In this subsection, we use the previously derived LR bounds to determine the approx-
imation ratio of MaxCut over cubic graph with QA analyzed as a 1−local algorithm.
The proof of the Theorem 6.1 proceeds with step 3, 4 and eventually 5, as illustrated
in the overview of Fig. 6.1. We will use Eq. 6.6 to derive the approximation ratio
with the 1−local analysis. For reproducibility, the code is available on GitHub 1.

For this purpose, after rigorous errors and trials, we set specific values T = 3.33,
α = 1.53 and q = 3, that establish the global bound ε(q, T, α) < 0.016. In order to
compute the required minimums of Eq. 6.5, ⟨OX⟩∗B3,i

, we need to enumerate all balls
in B3 and all cubic graphs in B2. We follow a smart hash-based iterative algorithm
detailed in next paragraph 6.2.3. The algorithm generates 930449 balls. Employing
the AnalogQPU simulator of Eviden Qaptiva (see next paragraph 6.2.3), we solve
the Schrödinger equation to get the final state |ψB3(X)(T, α)⟩ as described in the

1https://github.com/Arts-Braido/LR-bound-for-approximation

https://github.com/Arts-Braido/LR-bound-for-approximation
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Sec. 6.1.1. This allows to explicitly evaluate the value of ⟨OX⟩B3(X) for each ball
in B3. We subtract the value of the global LR bound to the expected edge energy
for each balls. To narrow down our selection, we retain only those balls for which
|⟨OX⟩B3(X)− ε(q, T, α)| < 0.7020. This initial step corresponds to step 3 of Fig. 6.1
and leads to the values for ⟨OX⟩∗B3,1

= 0.5502 and ⟨OX⟩∗B3,2
= 0.6265. These values

satisfy the condition (see Appendix C.1) where the ratio reduces to ρMC ≥ ⟨OX⟩∗B3,3
.

Consequently, our goal is to maximize this minimum for the remaining balls that
have a corrected energy above 0.7020.

We are left with 7071 balls B3(X) with configuration Ω3 at distance 1 around
X, to which we apply the local bound. To compute the local bound we have access
to a path counting algorithm as there is no closed form like the global bound. To
find the maximum over parameters T and α, on Fig. 6.6, we plot the evolution of
(a) maxT

(
⟨OX⟩B3(X) − ε(3, T, α)

)
and (b) maxT

(
⟨OX⟩B3(X) − εloc(B3(X), T, α)

)
against α for the 18 worst balls B3(X) according to the global and local bounds
respectively.

(a) (b)

Figure 6.6: Evolution of (a) maxT
(
⟨OX⟩B3(X) − ε(3, T, α)

)
and (b)

maxT
(
⟨OX⟩B3(X) − εloc(B3(X), T, α)

)
against α for the 18 worst balls for

which it goes under 0.7020 with the global bound.

The analysis reveals that around α = 1.5 all these balls surpass the threshold of
0.7020, with the worst ball g depicted in Fig. 6.7. This plot finally fixes the value
of ⟨OX⟩∗B3,3

= 0.70208... which proves Theorem 6.1.
To sum up, the constant-time analysis of Quantum Annealing (QA) for MaxCut

over cubic graphs, analyzed as a 1-local algorithm, achieves an approximation ratio
exceeding 0.7020. This result goes beyond any known ratio of 1-local algorithms,
whether quantum or classical.

Let us take some lines to discuss the intriguing worst configuration we found. Note
that the ball g in Fig. 6.7 is not the configuration we intuit in Sec. 5.3.1. Indeed
this ball is bipartite and at first glance, the middle edge has no reason to converge
toward 0. First we point out that W3 (Fig. 5.6) is in fact the worst configuration
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Figure 6.7: Ball g = B3(X) achieving the minimum ⟨OX⟩∗B3,3
= 0.70208...

for α ∈ [1, 1.2] (green curve Fig. 6.6 (b)), then g has the smallest edge energy. This
can be explained by the fact that on these plots we subtract the LR bound of the
edge energy. It happens that W3 has only one interaction with the rest of the graph
while g has four which increase the local LR bound value. Secondly, the diameter
of the ball seems to play a role here, W3 has a diameter of 3 whereas the diameter
of g is 5. Informally, left and right parts of g are still evolving independently for
such short runtime pushing toward uncutting the middle edge.

Balls enumeration and numerical simulation: Here, we detail the specificity
of our balls enumeration algorithm. We use the same idea as that developed in
[Wurtz & Love 2021], i.e. an iterative algorithm. We first enumerate all the balls
in B1 which are those on Fig. 5.2. Then, starting from Bp−1, we enumerate Bp by
completing the nodes on the boundary whose degree is less than d of the balls in
Bp−1. There are different ways of completing a node: either we link it to another
existing node of degree less than d, or we create a new node and link it. By doing
this on all nodes of degree less than d of a ball in Bp−1, you get a ball in Bp. You then
apply an isomorphism test to check that the algorithm has not already generated
isomorphic balls. The isomorphism test must also take into account the fact that
there is a “marked” edge X in the balls Bp(X). The edge_match argument in the
Networkx [Hagberg et al. 2008], a Python library, isomorphism test takes this into
consideration. On Fig. 6.8, we show the first iterations of the enumeration.

A naive approach could take more than one year to enumerate all the balls
in B3. The isomorphism test is quite expensive as we do not have an efficient
algorithm for it. Our idea is to hash the generated balls into a dictionary. The
prerequisite for the hash function h to be useful is that for any two graphs G1 and
G2, h(G1) ̸= h(G2) implies that G1 is not isomorphic to G2. If the hash is fast
to generate and creates small enough bags of balls, then it greatly speeds up the
enumeration task. For example a common hash function to quickly evaluate if two
graphs might be isomorphic is the sorted list of degrees, if they are not equal it is
certain that the two graphs are not isomorphic. This hash function however still
evaluates equally for too many non isomorphic graphs, requiring too many calls
to the isomorphic test. Instead, we used the tuple of the diameter and the sorted
eigenvector centrality of the graph adjacency matrix to hash our balls. We manage
to enumerate the 930449 balls of B3 and the regular ones in B2 in less than a day.

In order to compute each value ⟨OX⟩B, we relied on a full state vec-
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Figure 6.8: Iterative process to enumerate all balls of Bq. There are 3 balls at r = 1,
123 balls at r = 2 and more than 900000 at r = 3.

tor representation using on a standard integrator (Boost’s ODEINT solver
[Boost C++ Libraries 2022] used inside a proprietary code). The simulation were
performed on a Eviden Qaptiva appliance using a mix of CPUs and GPUs. The
simulations of the 930449 balls took approximately one month. The github code
offers an alternative Qutip implementation of the same numerical simulations, for
reproducibility.

6.3 Discussion

In this section, we discuss the result and the tightness of Theorem 6.1. In addition
to the use of the commutativity graph, the exact value of the nested integrals alone
would not have brought the ratio above the targeted numerical values of QAOA and
Hastings local algorithm as we see on Fig. 6.6 (b) at α = 1. Then we suggest other
types of schedule to again make the most out of short time QA. Finally, we discuss
about the generalization of the construction.

6.3.1 Tightness of the analysis method

The introduction of a new “hyperparameter” α significantly enhances the precision
of the analysis. To attest this point, on Fig. 6.9, we plot the evolution of both the
local εloc(g, T, α) and global ε(q, T, α) bounds against α for pairs (T, α) for which
⟨OX⟩g = 0.7092 and g denotes the ball of Fig. 6.7. The value of 0.7092 is totally
arbitrary and similar plots are achieved with different values. So we clearly see
on Fig. 6.9 that the LR bound is minimal around α = 1.5 which means that the
analysis of QA is tighter around this point. The trade-off between increasing α to



150 Chapter 6. Tight Lieb-Robinson bound for approximation ratio

have a smaller LR bound also decrease the speed of the edge energy. We saw in
Fig. 6.2 that increasing α slows down the evolution, needing more time to reach a
similar value. This larger time increases in turn the LR bound.

1.0 1.2 1.4 1.6 1.8 2.0
alpha

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 global bound 
local bound loc

Figure 6.9: Evolution of εloc(g, T, α) and ε(q = 3, T, α) against α for pairs (T, α) for
which ⟨OX⟩g = 0.7092 and g being the ball of Fig. 6.7.

We would like to draw readers’ attention to the fact that both the Hastings
algorithm and QAOA also include one or two hyperparameters for obtaining their
best ratio value. In this sense, our parameterized QA analysis is nothing more
complex. However, although these two other algorithms produce a tight ratio value,
QA’s is not tight simply because it is impossible to construct a graph such that
every edge X has the g from Fig. 6.7 as its B3(X).

On the LR bound itself, we can see from Fig. 6.6 (a) that for many of the
balls, the curves of the edge energy are indistinguishable. Indeed, at the pair (T, α)
looked at, there’s no visible difference in the value of the average edge energy. Even
two balls in B2 can have the same trajectory. Informally, this suggests that LR
bound is not yet tight, as for some ball the layer at distance 3 from the edge X
does not impact the edge energy. As mentioned in Chapter 5, neglecting the initial
state greatly affects the accuracy of the bound. In order to strongly improve the
analysis it would be crucial to be able to take into consideration the initial state;
unfortunately, at this stage we lack of mathematical tools for this purpose. Path
counting is another lead suggested in [Chen et al. 2023]. In fact, it seems that only
direct paths contribute to the LR bound. We explored this idea and the bound
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would reach 0.7041. However the result of [Chen et al. 2023] cannot be adapted as
is to our framework, so we cannot claim this approximation ratio at this stage.

6.3.2 Toward better ratios

An important field of research in the improvement of QA’s performance is the op-
timization of the schedule. Indeed, all the construction above works for a linear
interpolation with no specific optimization but one can look at the Hamiltonian

H(t, G) = (1− f(t/T ))H0(α) + f(t/T )HG
1

with f(t) such that f(0) = 0 and f(1) = 1. It is important to note that it also
modifies the LR bound in the nested integrals. In commutativity graph notation, we
have the hv(t) = 1− f(t/T ) and he(t) = f(t/T ). The challenge of this optimization
is that one has to evaluate the energy on each of the 930449 balls for each new
schedule to formally prove an improvement of the ratio. However, a good insight can
be reached by looking only at the 123 balls in B2. In the linear case, we would obtain
the same ratio if we only looked at B2 but using LR bounds of q = 3. For instance,
we tried few cubic functions to already see that with f(s) = 3.2s3− 4.8s2+2.6s, we
should obtain a ratio above 0.7165 at T = 2.77 and α = 1.6.

Figure 6.10: Effect of the schedule when computing the edge energy. Apart from
balls g in Fig. 6.7 and W3 in Fig. 5.5, W ′

3 also have a low energy value. It has
a similar structure to W3. In dash lines, the curve when using the cubic schedule
f(s). Those values are obtain without considering the LR bound. α is fixed to 1.5.

In Fig. 6.10, we plot the edge energy value inside three different balls : g, W3 and
W ′

3 where W ′
3 has a quite similar structure than W3, i.e. it is the other choice of

∂Ω3 that forces the middle edge to be uncut is the optimal state. Plain curves
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are obtained with the linear interpolation and dashed ones with the schedule f(s).
It appears that this schedule speeds up the evolution, and the edge energies are
reaching a slightly higher maximum at shorter times than the linear case. These
two observations are aligned with improving the approximation ratio. A shorter
runtime means a smaller LR bound. With the new schedule, W ′

3 becomes the worst
candidate and without LR correction its maximum over T and α is 0.7180. If the
0.7165 approximation ratio is correct, it would mean that we almost reached the
tightest possible bound on the ratio with this approach.

6.3.3 Directions for generalizing the construction

We developed a LR bound for d−regular graphs applied to MaxCut on cubic graphs.
We believe that our tools can be extended in several directions.

1. This work can be directly adapted to look for other d−regular graphs. A formal
derivation of this bound for any d−regular graphs requires to enumerate all
the balls in B3 that can be completed in a d−regular graphs. The code can
be easily edited for this purpose. However large balls are certainly too big to
solve Schrodinger equation for d ≥ 4. It is still possible to get an intuition
extrapolating the worst ball for d = 3 (Fig. 6.7). For example, the 1−local
approximation ratio for MaxCut over 4-regular graphs may be close to 0.67.

2. For p−local analysis of QA with p ≥ 2, the method developed here runs short
as the time at which the best approximation ratio is achieved is certainly too
large for the LR bound at q = 3. For a p = 2−local analysis, our estimation
gives that we would need to go up to q = 5 to achieve sufficiently small LR
bound at time T ≃ 6.1, time for which the expected edge energy value seems
to maximize. Nevertheless, by extrapolating at p = 2 the worst-case balls
for p = 1 and by numerical experiments on these cases, we believe that the
approximation ratio for MaxCut over cubic graphs is close to 0.77.

3. As discussed in the previous paragraph, the schedule can also be changed, the
main work remains in the computation of the nested integrals of the schedule.
Analytical bounds on these integrals are certainly too difficult to derive, but
only numerical values are required to prove the bound. For any polynomial
schedule, those integrals are easy to evaluate.

4. This construction can be applied to other combinatorial graph problems as we
showed in Chapter 5 Sec. 5.1. With the approach taken in this chapter, more
work is needed to adapt an ad hoc analytical formula for LR bound for the
new problem Hamiltonian.

Conclusion

To conclude, in this work we developed a much tighter Lieb-Robinson bound com-
pared to [Haah et al. 2021, Chen et al. 2023] by carefully manipulating the commu-
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tativity graph and the nested integral of the QA schedule. Despite the continuous
aspect of QA, we defined the notion of p−local analysis of the metaheuristic by
approximating the full algorithm using its restriction to bounded radius subgraphs.
Our 1-local analysis of QA allows us to analytically compare its performances with
the performances of single-layer QAOA for MaxCut over cubic graphs. The tight-
ness of the LR bound we have derived enables us to reduce the exhaustive numerical
simulation to a tractable task that can be completed in a few weeks. Finally, we
introduced a new parameter in the standard QA, enabling us to optimize the value
of the ratio obtained and thus pass the 0.7 mark with a ratio going beyond 0.7020.
This puts us ahead of single-layer QAOA and Hastings’ 1−local algorithm for Max-
Cut over cubic graphs. The comparison has its limits, as the process we are studying
is continuous and not intrinsically local, unlike the two algorithms mentioned. This
work should be seen as a step forward in the study of quantum annealing, bringing
more analytical tools to assess its algorithmic performances.

Also, as mentioned in Sec. 6.3.1, a slight improvement can be made on paths
counting. Then, the remarkable small numerical value of our LR bound might be
applied for a practical implementation of some Hamiltonian simulation schemes,
e.g. [Haah et al. 2021].

As we hinted in Sec. 6.3.2, the bounds on the approximation ratio reached by
this method are almost tight in the sense that even if we had considered that QA
is strictly local, it would not significantly increase the proven ratio. However, the
proven ratio is not tight for QA in the sense that no graph will reach this ratio
because it would mean that every edge X of this graph has the worst candidate as
their B3(X). For any of the “bad” configurations g, W3 or W ′

3 , it is impossible to
construct such a graph. In the next chapter, we argue that the double binary tree
is certainly a limiting case and we give an algorithm that efficiently computes the
edge energy in the middle of the tree.
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In this chapter, we develop some incomplete work around the Lieb-Robinson
bound and the effective approximation ratio for MaxCut on cubic graphs. We
express the exact expansion of the energy of an edge within a graph, where each
coefficient represents the influence of the graph structure at distance k from the
edge. This expansion seems suitable for accessing the first state-dependent bound
LR. Here, we bound the tail of the expansion by the bound developed in the previous
chapter. The first terms are computable by evaluating the energy of the edges inside
a double binary tree Tp of radius p. This approach for a state-dependent LR bound
should compute the first terms for p up to six. Motivated by [Basso et al. 2022], we
found a reduction of the Hilbert space thanks to the symmetry of the graph and
were able to compute efficiently up to p = 3. With more advanced computational
techniques, it is reasonable to assume that p = 4 is numerically accessible. Finally,
we construct graphs that achieve the potential tight approximation ratio of QA.

7.1 Toward a state-dependent LR bound

In this section, we demonstrate an expansion of the energy of an edge X where the
order coefficient kth represents the influence of edges on the boundary of Bk(X), i.e.
edges at distance k + 1 from X. We then propose a way to use it with the bound
developed in chapter 6 to derive a state-dependent LR bound.

First, we provide a technical lemma which is the main tool for the expansion.
Let G(V,E) be a graph on which we solve a combinatorial problem with the usual
Hamiltonians of Sec. 2.2.1. The complete Hamiltonian is then written H(t, G) =



156 Chapter 7. Effective approximation of MaxCut

(1 − t
T )H0 +

t
TH

G
1 for t ∈ [0, T ]. H0 is purely a 1-local Hamiltonian and HG

1 can
have one- or two-local observables. The starting state is the uniform superposition
|ψ0⟩. As in Chapter 5, for a subgraph Ω of G, we call ∂Ω the boundary of Ω, i.e.
the edges outside Ω that have at least one end in Ω. We also denote by UG

t1,t the
solution of the Schrödinger equation between times t1 and t :

i
dUG

0,t

dt
= H(t, G)UG

0,t

We write the final state |ψG(t)⟩ = UG
0,t|ψ0⟩ and for an edge X the edge expected

energy ⟨OX⟩G = ⟨ψG(t)|OX |ψG(t)⟩. By adapting the proof of Proposition 5.1, we
can have the following lemma:

Lemma 7.1. For any edge X of G and any subgraph Ω such that X ∈ E(Ω), the
following is true :

⟨OX⟩G − ⟨OX⟩Ω = i

∫ t

0
dt1

t1
T
⟨[H1,∂Ω, (U

Ω
t1,t)

†OXU
Ω
t1,t]⟩G

where the expectation value inside the integral ⟨...⟩G = ⟨ψG(t1)|...|ψG(t1)⟩ depends
on the integrated variable t1.

Proof. We note UI(t) = (UΩ
0,t)

†UG
0,t, the evolution in the interaction picture of

VI(t) = (UΩ
0,t)

†V (t)UΩ
0,t where the perturbation V is V (t) = HG(t) − HΩ(t). The

state that evolves under UI(t) is written |ψI(t)⟩.

⟨OX⟩G − ⟨OX⟩Ω =

∫ t

0
dt1

d

dt1

(
⟨ψI(t1)|(UΩ

0,t)
†OXU

Ω
0,t|ψI(t1)⟩

)
= i

∫ t

0
dt1

(
⟨ψI(t1)|

[
VI(t1), (U

Ω
0,t)

†OXU
Ω
0,t

]
|ψI(t1)⟩

)
= i

∫ t

0
dt1

(
⟨ψG(t1)|

[
V (t1), (U

Ω
t1,t)

†OXU
Ω
t1,t

]
|ψG(t1)⟩

)
= i

∫ t

0
dt1

t1
T

〈[
H∂Ω

1 , (UΩ
t1,t)

†OXU
Ω
t1,t

]〉
G

7.1.1 Exact expansion of an edge energy

By iteratively using Lemma 7.1, we shall prove the following theorem :

Theorem 7.1. For any graph G, and any edge X in G, there exists r such that
Br+1(X) = G. For each edge, such r is bounded by the diameter of G. Let OX be an
observable supported on X, the quantity ⟨OX⟩G can be expressed into the following
expansions :
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• By introducing O(1)
Y (t1) = i[H

∂B1(X)
1 , (U

B1(X)
t1,t

)†OXU
B1(X)
t1,t

] and O
(k)
Y (tk) =

i[H
∂Bk(X)
1 , (U

Bk(X)
tk,tk−1

)†O
(k−1)
Y (tk−1)U

Bk(X)
tk,tk−1

] we have:

⟨OX⟩G = ⟨OX⟩B1(X) +
r∑

k=1

∫ t

0
dt1

t1
T
...

∫ tk−1

0
dtk

tk
T
⟨O(k)

Y ⟩Bk+1(X) (7.1)

• Also, the expectation of OX can be expanded like :

⟨OX⟩G = ⟨OX⟩B1(X) + i

r∑
k=1

∫ t

0
dt1

t1
T
⟨[H∂Bk(X)

1 , (U
Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

]⟩Bk+1(X)

(7.2)

Note that V (Br(X)) = V (G) and only some edges between two nodes of Br(X)

are missing to have the full graph. In this sense, in some case we have Br(X) = G

and the above equations adapt easily by noting that H∂Br(X)
1 = 0.

To prove Eq. 7.1, we apply Lemma 7.1 with Ω = B1(X). Then we iterate with
Ω = Bk(X) and the observable O(k)

Y

⟨OX⟩G = ⟨OX⟩B1(X) +

∫ t

0

t1
T
⟨O(1)

Y ⟩B2(X)︸ ︷︷ ︸
⟨OX⟩B2(X)

+

∫ t

0
dt1

t1
T

∫ t1

0
dt2

t2
T
⟨O(2)

Y ⟩B3(X) + ...

+

∫ t

0
dt1

t1
T
...

∫ tr−1

0
dtr

tr
T
⟨O(r)

Y ⟩Br+1(X)

= ⟨OX⟩B1(X) +
r∑

k=1

∫ t

0
dt1

t1
T
...

∫ tk−1

0
dtk

tk
T
⟨O(k)

Y ⟩Bk+1(X)

To prove Eq. 7.2, we first observe that :

⟨OX⟩G = ⟨OX⟩B1(X) +
(
⟨OX⟩B2(X) − ⟨OX⟩B1(X)

)
+
(
⟨OX⟩B3(X) − ⟨OX⟩B2(X)

)
...

+
(
⟨OX⟩G − ⟨OX⟩Br(X)

)

For each term ⟨OX⟩Bk+1(X) − ⟨OX⟩Bk(X), we apply Lemma 7.1. It is valid because
Bk(X) is trivially a subgraph of Bk+1(X) and so we have:

⟨OX⟩Bk+1(X) − ⟨OX⟩Bk(X) = i

∫ t

0
dt1

t1
T
⟨[H∂Bk(X)

1 , (U
Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

]⟩Bk+1(X)
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To see the equivalence identity between Eq. (7.1) and (7.2), we observe that the k
first terms of the expansions correspond to the final expectation ⟨OX⟩Bk(X) and so
for t1 ∈ [0, t], we have that :∫ t1

0
dt2

t2
T
...

∫ tk−1

0
dtk

tk
T
⟨O(k)

Y ⟩Bk+1(X) = i⟨[H∂Bk(X)
1 , (U

Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

]⟩Bk+1(X)

These expansions reveal how an edge at distance k from X can affect the observed
edge X. This theorem can be easily adapted for more complex Hamiltonian as long
as H0 is 1-local and there are interaction terms in H1 only.

Now, we understand that the larger the border of Bk(X), the greater the
influence at distance k. Therefore, on a regular graph, edges of ∂Bk(X) that
link two nodes of Bk(X) decrease the influence from the rest of the graph. This
observation goes along with our intuition that small cycles are recognized first by
the quantum annealing process. For the MaxCut problem, we recover that large
girth graphs are the worst for the LR bound making the double binary tree the
worst configuration for an edge. Thus it needs more time for QA to solve the
problem on these graphs as far edges can greatly impact the expectation value of OX .

To better understand the coefficients of the expansion, let us look closely at the
quantity ⟨[H∂Bk(X)

1 , (U
Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

]⟩Bk+1(X). We see that we can apply our
LR bound of Sec. 6.2 to see that these terms are exponentially small in k. Now,
assume that H∂Bk(X)

1 = −
∑

e∈∂Bk(X)Oe where each e has exactly one endpoint in
Bk(X). Let ek be such edge labeled ⟨0, 1⟩ in the graph with node 0 being outside
Bk(X), the corresponding observable is given by :

Oek =


0 (0)

1

1

(0) 0


where 0 and 1 are respectively the full zero square matrix and the identity matrix.
Let A,B and D be the block matrices of (UBk(X)

t1,t
)†OXU

Bk(X)
t1,t

, i.e.

(U
Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

=


A B (0)

B† D

A B

(0) B† D


where we added the dimension coming from the node 0 of the edge ek. With these
notations, the commutator becomes :

[Oek , (U
Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

] =


0 −B (0)

B† 0

0 B

(0) −B† 0


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So the value for t1 = 0, ⟨ψ0|[Oek , (U
Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

]|ψ0⟩ = 0 and for t1 = t,
[Oek , (U

Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

] = [Oek , OX ] = 0. In general, by decomposing the state

|ψBk+1(X)(t1)⟩ =


ψ00

ψ01

ψ10

ψ11


where ψx0x1 is the reduced state to the subspace span by vectors x = x0x1x2... with
xi the bit value of node i. Recall that we assume that edge ek = ⟨0, 1⟩. Consequently,

⟨[Oek , (U
Bk(X)
t1,t

)†OXU
Bk(X)
t1,t

]⟩Bk+1(X) = 2iIm (⟨ψ10|B|ψ11⟩ − ⟨ψ00|B|ψ01⟩))

where Im(z) calls the imaginary part of the scalar z. Given the Z2 symmetry of the
MaxCut problem, we have that |ψ11⟩ = |ψ00⟩ and |ψ10⟩ = |ψ01⟩. We are left with :

2iIm (⟨ψ01|B|ψ00⟩ − ⟨ψ00|B|ψ01⟩))

Further works need to be done on the understanding of the final distribution
|ψBk+1(X)(t1)⟩ and the matrix B to grasp fully the meaning of the coefficient terms
in the expansion.

In this section, we prove two equivalent expansions of an observable expectation
on X by adding information away from X in the graph. We argue that for the
MaxCut problem, large girth graphs are more influenced by the outside. We started
an analysis of the derived coefficients to understand the influence of an interaction
at distance k of X. In the next section, we investigate how these expansions could
help to derive a state-dependent LR bound.

7.1.2 State-dependent LR bound

In this section, we use the expansions of Theorem 7.1 to see the work we still need
to do in order to derive a state-dependent LR bound.

With Eq. (7.1). Finding an upper bound Mk(t) and a lower bound mk(t) on
⟨O(k)

Y ⟩Bk+1(X) gives at t = T ,

r∑
k=1

(T/2)k

k!
mk(T ) ≤ ⟨OX⟩G − ⟨OX⟩B1(X) ≤

r∑
k=1

(T/2)k

k!
Mk(T )

We see that the exponential time dependence of the LR bound is in T/2. By noticing
that

∑∞
k=10

(T/2)k

k! ≃ 3.10−5 and that it would be rather unexpected that Mk(t) is
not decreasing with k we have :

⟨OX⟩G − ⟨OX⟩B1(X) ≤
9∑

k=1

(T/2)k

k!
Mk(T ) + 3.10−5M10(T )

There is still some work to do on the first nine terms to derive a state dependent
LR bound.
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With Eq. (7.2). First, we apply Lemma 7.1 with Ω = Bp(X) for some finite p

⟨OX⟩G = ⟨OX⟩Bp(X) + i

∫ T

0
dt1

t1
T
⟨[H∂Bp(X)

1 , (U
Bp(X)
t1,T

)†OXU
Bp(X)
t1,T

]⟩G

The last term can be bounded by the norm of the commutator to get rid of uncon-
trolled dependence in the input graph G to obtain :

⟨OX⟩G ≤ ⟨OX⟩Bp(X) +

∫ T

0
dt1

t1
T

∥∥∥[H∂Bp(X)
1 , (U

Bp(X)
t1,T

)†OXU
Bp(X)
t1,T

]
∥∥∥

We know that |∂Bp(X)| ≤ 2p+2 with equality for Bp(X) the double binary tree.
Let ep denote an edge that belongs to the border ∂Bp(X). From our LR bound
εloc(Bp(X), T, α) developed in Chapter 6 Sec. 6.2, we have :

⟨OX⟩G ≤ ⟨OX⟩Bp(X) +
T

2
|∂Bp(X)|εloc(Bp(X), T, α)

For a runtime and parameter α that achieved the best approximation ratio in Sec.
6.2, i.e. T = 3.33 and α = 1.53, it appears that p = 6 is enough to bound the tail
of the expansion. We know that εloc(Bp(X), T, α) ≤ ε(p, T, α), the global bound is
achieved for the double binary tree Tp of depth p. We have that T

2 2
p+2ε(p, T, α) ≃

1.8× 10−4. This choice also fixes all Bk(X) to be Tk :

⟨OX⟩G − ⟨OX⟩T1 ≤ i
5∑

k=1

∫ t

0
dt1

t1
T
⟨[H∂Tk

1 , (UTk
t1,t

)†OXU
Tk
t1,t

]⟩Tk+1
+ 1.8× 10−4

where each term in the sum is a difference ⟨OX⟩Tk+1
−⟨OX⟩Tk

for k ∈ [1, 5]. In next
Sec. 7.2, we provide an algorithm that allows us to compute ⟨OX⟩Tk

more efficiently
than directly solving the Schrödinger equation. This method is still limited by the
classical computational resources and runs easily up to p = 3, p = 4 seems accessible
with more advanced programming code. We find that

|⟨OX⟩T2 − ⟨OX⟩T1 | ≃ 3.5× 10−3

|⟨OX⟩T3 − ⟨OX⟩T2 | ≃ 0.1× 10−4

By assuming that |⟨OX⟩Tk+1
−⟨OX⟩Tk

| ≤ |⟨OX⟩T3−⟨OX⟩T2 | for k ∈ [3, 5], we finally
obtain :

⟨OX⟩G − ⟨OX⟩T1 ≤ 3.72× 10−3

Of course there might exist some ball B6(X) ̸= T6 such that the bound is larger
than for the binary tree but it is also most likely that we can bound the tail of the
expansion for p less than 6. Indeed, these balls have at least one close loop that
decreases the size of ∂Bp(X) and εloc(Bp(X), T, α). Nevertheless, as highlighted in
[Basso et al. 2022], an edge in a random regular graph has a high probability to have
a Tk as a neighborhood at distance k, which motivates the work of next section.
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7.2 Double binary tree simulation and optimal approxi-
mation ratio

In this section, we first provide an algorithm to decrease the dimension of the Hilbert
space to compute more efficiently the edge energy in the middle of a Tp. This
approach is motivated by the recent work of [Basso et al. 2022] where the authors
managed to compute this latter energy with a QAOA circuit for p up to 17. The last
section is dedicated to a discussion on the optimal approximation ratio QA reaches
in short time by constructing cubic graphs where each edge X has a Tp as their
Bp(X).

7.2.1 Symmetry in Tp for dimensional reduction

The objective of this section is to leverage the symmetry present in Tp to reduce
the dimensionality of the Hilbert space, which typically grows exponentially with
the number of nodes np, where np = 2(2p+1 − 1). The classical computational cost
begins to increase noticeably around n3 = 30. Initially, we label the binary tree
in a manner such that a bipartition x = xLxR encodes the bipartition xL (or xR)
of the left (or right) part. Left and right parts are defined when putting the edge
root at the top horizontally. This labeling process can be iteratively applied, where
xL = xL[1]xLLxLR, and xL[i] corresponds to the ith bit of xL. An illustration for
the case p = 2 is shown in Fig. 7.1. Furthermore, following this iterative process,
we can represent x = xLxR = xL[1]xLLxLRxR[1]xRLxRR, and so forth. In addition
to the usual Z2 symmetry, Tp exhibits a left/right symmetry at each “level” as it
locally looks like a binary tree. This symmetry implies that the ordering x...Lx...R
can always be rearranged as x...Rx...L without altering the resulting bipartition. We
can then define equivalence classes among of the 2np bit-strings.

Figure 7.1: Example of a labeling for T2 with the notation.

Hence, for every equivalence class of bipartition, we can designate a unique rep-
resentative bit-string. We choose to select one of minimal Hamming weight among
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all potential bit-strings within the equivalence class. Additionally, we ensure that
the representative has its left part smaller than the right part at every level of the
tree. Algorithm 1 outlines the routines needed to compute such a representative
bipartition. The * operation signifies string concatenation, and |.| denotes the com-
putation of the Hamming weight. Furthermore, xL and xR represent the left and
right parts, respectively, of a given x split in half.

Algorithm 1 Computation of the representative bit-string given any input string
x. LR_norm deals with the left/right symmetry at each level and repr_bs deals with
the Z2 symmetry above the LR_norm subroutine

Now that we define a way to uniquely represents an equivalence class, we can
solve the modified Schrödinger equation on the new Hilbert space composed only by
the representatives. If Neff is the new size of the Hilbert space, i.e. the total number
of representative bit-strings, the initial state |ψ̃0⟩ is a vector of size Neff with all
entries equal to 2−

np
2 . The current state |ψ̃(t)⟩ is ruled by the following equation :

i
d

ds
|ψ̃(s)⟩ = TH̃(s)|ψ̃(s)⟩

where H̃(s) = (1 − s)H̃0 + sH̃1. For two representatives x and y, H̃1 is a diag-
onal matrix of size Neff × Neff with entries ⟨x̃|H̃1|x̃⟩ = ⟨x|H

Tp

1 |x⟩ and ⟨ỹ|H̃0|x̃⟩ =∑
z,repr_bs(z)=x⟨y|H0|z⟩. We denoted by |x̃⟩ the vector in the reduced Hilbert space

corresponding to bipartition x and by H0 and H
Tp

1 the usual Hamiltonians for the
MaxCut problem (see Sec. 2.2.2). H̃1 is trivial to compute. Then, we follow Al-
gorithm 2 to enumerate all representatives stored in the set total and to compute
the values to complete H̃0. The subroutine flip(x,i) returns a bit-string y equals
to x with bit xi flipped. label is an iterator from 1 to 2np which attributes the
new label to a representative, namely the x̃, so for a bipartition x, label_dict[x]=x̃.
For two bipartitions x and y, the dictionary count_neigh is constructed suh that
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count_neigh[x][y]= −⟨ỹ|H̃0|x̃⟩. We use two operators on sets, \ for the difference
and + for the union.

Algorithm 2 Enumeration of all representative bit-strings at a given p stored in
the set total and the relation between them in the dictionary count_neigh.

This approach cleverly uses all symmetries in a double binary tree to reduce the
Hilbert space as much as possible. We still guarantee an exact computation of the
final quantum state. Indeed, it is rather direct to reconstruct the state |ψ(s)⟩ given
|ψ̃(s)⟩, each amplitude ⟨x|ψ(s)⟩ = ⟨x̃|ψ̃(s)⟩. The final step is to compute the value
of the edge X energy in the middle of the double binary tree ⟨OX⟩Tp . With the
same labeling as Fig. 7.1, for a bipartition x, edge X = ⟨a, b⟩ bit value is given by
xa = xL[1] and xb = xR[1]. Consequently, by calling |ψT ⟩ (resp. |ψ̃T ⟩) the state
|ψ(s)⟩ (resp. |ψ̃(s)⟩) at the end of the annealing and Nx the number of bipartitions
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that have x as a representative, we have :

⟨OX⟩Tp =
∑

x∈{0,1}np ,xa ̸=xb

|⟨x|ψT ⟩|2 (7.3)

=
∑

x∈total,xa ̸=xb

Nx|⟨x̃|ψ̃T ⟩|2 (7.4)

We ran the different procedures for p ∈ {1, 2, 3} and we obtained Table 7.1
and Fig. 7.2. p = 4 seems doable with a very powerful Ordinary Differential
Equation (ODE) solver.

p np Neff

1 6 12 ≃ 23.6

2 14 462 ≃ 28.85

3 30 816312 ≃ 219.64

4 62 ∼ 241

Table 7.1: Results from the reduction of the Hilbert space on Tp. The lightgrey row
is a guess for Neff inferred from the first three where the power is approximately
just below 2

3np.

Figure 7.2: Edge energy in a double binary tree Tp for p ranging from 1 to 3 and
α = 1. t1 = 3 points out the runtime for which ⟨OX⟩T1 differs by 0.0035 from
⟨OX⟩T2 ≃ 0.7151, similarly t2 = 7 between ⟨OX⟩T2 and ⟨OX⟩T3 ≃ 0.8028.

This method is still limited by the size of the Hilbert space Neff which seems to
grow exponentially fast with np. For the standard QA regime (α = 1 and linear
schedule), Fig. 7.2 points out the arbitrary chosen runtimes tp that are playing
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the role of the number p of layers in QAOA. As mentioned in [Basso et al. 2022],
random regular graphs generally have large girth, so they locally look like tree Tp.
This observation would bring the effective optimal approximation ratio of QA with
a 1-local analysis to 0.7151 and with a 2-local analysis above 0.8. To assess the
tightness of those values, in the next section we construct such cubic graphs.

7.2.2 Optimal approximation ratio for QA?

In this section, we construct 3-regular graphs that achieve the value of the double
binary tree middle edge energy as their approximation ratio. The property of these
graphs is that each edge has exactly the same neighborhood at a given distance.
They are denoted G6, G14 and G30, the index corresponding to the number of their
vertices (Fig. 7.3).
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Figure 7.3: Worst graphs from a QA point of view in short running time. (a) G6

with minimum cycle size = 4. (b) G14 with minimum cycle size = 6. (c) G30 with
minimum cycle size = 8. Each edge has exactly the same neighborhood.

In Fig. 7.4, we plot the approximation ratio reached by the graphs of Fig. 7.3
as a function of T . For G30, each data points took more than 15 hours to compute.

We observe that for an edge X, ⟨OX⟩T1 ≃
−⟨HG14

1 ⟩G14
Copt(G14)

and ⟨OX⟩T2 ≃
−⟨HG30

1 ⟩G30
Copt(G30)

.
These graphs do reach the announced value as their approximation ratio. In graph
theory, these graphs are known as a cage. A cage is a regular graph that has as
few nodes as possible for its girth, the smallest induced cycle of the graph. A cage
is parametrized by two parameter (d, g), d being the regularity of the graph and g

the size of the girth. G6 is a (3, 4)-cage, G14 a (3, 6)-cage and G30 a (3, 8)-cage.
For d = 3, the largest cage is a (3, 12) graph with 126 nodes. These graphs have
an even greater number of symmetry than the double binary tree, and it would be
quite interesting to take advantage of it to compute their approximation ratio for
large cages.
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Figure 7.4: Approximation ratio reached by G6 (blue line), G14 (orange line) and
G30 (red dots) against running time T . The grey dotted lines points out time t1 = 3.

To complete this analysis, we also perform a benchmark over thousands cubic
graphs and compute their approximation ratio. All of the tested graphs have a
higher ratio than G30. Non-bipartite graphs start at T = 0 with an offset because
the random guess already does better than 0.5. Bipartite graphs have a greater
ratios if there are small closed loops. Small cycles are considered faster by the
quantum process.

Conclusion

In conclusion to this exploratory chapter, we initiated the development of a state-
dependent LR bound and highlighted areas requiring further investigation to achieve
a significant improvement over usual LR bounds. The aim behind this approach is
to establish a tighter approximation ratio of QA on MaxCut problems, particularly
on regular graphs. We believe that the worst-case scenario occurs on the double
binary tree. Consequently, we devised a more efficient procedure for computing
edge energies within a binary tree’s midpoint, surpassing the direct solving of the
Schrödinger equation. Our approach leverages every symmetry present in Tp, re-
sulting in a reduction of the Hilbert space by a factor of 2np/3. This allows us to
speculate that the optimal approximation ratio achievable by QA, analyzed as a
local algorithm on MaxCut over cubic graphs, is 0.715 for α = 1. To validate the
tightness of this value, we constructed regular graphs, known as cages, that attain
this optimal ratio.



Conclusion & Outlooks

Conclusion

In this thesis, we mainly tackled the analysis of the computational complexity of
analog quantum computing by borrowing some well-known analytical results from
theoretical physics and by introducing and developing new theoretical tools.

In the first part, we focused on the analysis of exponentially closing gaps, which
are the signature of avoided level crossings. These phenomena are of important
interest in the complexity analysis of Adiabatic Quantum Computing, as the main
theoretical foundation is the adiabatic theorem, that guarantees the optimal final
solution if the running time is inversely proportional to the minimum gap squared.
This latter result puts the analysis of the minimum gap scaling as the principal
candidate to prove any efficiency or inefficiency of the AQC framework. In Chapter
3, we first explored the limitation of the most recent characterization by [Choi 2020]
of an AC (Def. 2.6) by explaining in which situations the definition fails to classify an
AC. Supported by theoretical results we proved, we introduced a new definition
of an AC to capture more possible cases (Def. 3.1) that could be labeled as
AC. We illustrated the intuition that guided us to our definition with a toy model
of the k−clique problem. This example exhibits an AC that is not captured by Def.
2.6, but is by ours (Def. 3.1). The main difference between this two definitions
is the point of view adopted, Def. 2.6 crossings focus on examining “the direction
of the ground-state” whereas our definition of AC examines “the provenance of the
ground-state”. Our main observation is that at crossing point, the derivative of
a certain spectral quantity is inversely proportional to the minimum gap, making
the derivative almost undefined as the gap reduces at an exponential rate. Our
characterization also has its own limitations, which we have highlighted.

After developing our intuition on the AC phenomenon, in Chapter 4, we em-
ployed perturbation theory at the beginning and end of the quantum evolution
to derive a condition on the occurrence of an exponentially closing gap via
first-order quantum phase transition. This condition is valid under certain assump-
tions concerning local minima as well as the validity of the first-order perturbative
expansion. We apply our result on the MaxCut problem. In particular, we suc-
ceeded in proving the hypotheses in the case of regular bipartite graphs to show
that the gap does not shrink exponentially fast with the input size, making AQC
efficient in these cases. We further investigated arbitrary bipartite graphs and
constructed a family of graphs satisfying the occurrence condition of exponen-
tially decreasing gap. High irregularity, which is a property of the graphs
constructed, seems to make efficient MaxCut solving difficult for AQC. To com-
plete our work, we provided a numerical gap analysis of the graphs in question, as
well as for the performance of AQC on this class of graphs. The gap study validated
the theory, however, it appears that the quantum evolution still achieves a constant
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probability of measuring the optimal state without depending too much on the in-
put size. The application of our AC definition (Chapter 3) also pointed out that
the evolution does not undergo an anti-crossing; on the contrary, increasing the size
smoothes then evolution. Eventually, in a last section, we developed higher-order
coefficients of the perturbation theory for the MaxCut problem. We observe in the
first orders that small cycles seem to affect the quantum evolution faster than large
ones, and even and odd cycles have opposite effects on the energy. This leads us to
believe that a quantum evolution is initially more affected by small local structures.

In the second part, we turn to the study of quantum annealing complexity. In
QA, the running time is an arbitrary parameter, making it a good candidate for an
approximation metaheuristic. In fact, on of the most famous variational quantum
circuit for approximate optimization, QAOA, is inspired by analog evolution. These
metaheuristics have recently received increasing attention as they are suitable for
NISQ computers thanks to their finite runtime. In the original work of QAOA,
the authors used the MaxCut problem on cubic graphs to assess the performance
of single-layer QAOA and proved that it reaches an approximation ratio of 0.6925.
The number of layers is the analog of the running time in QA. A question arises:
How does QA behave at finite short time compared to QAOA? Prior to this thesis,
it had not even been proven that its performance was strictly superior to that of
the random guess. That is why, in Chapter 5, we developed new theoretical tools to
answer this question. To use combinatorial arguments similar to the proof of QAOA,
we needed a relaxed notion of locality in the continuous setting. To this purpose, we
developed a Lieb-Robinson like bound that allows us to study QA locally.
Our method can be applied to a wide range of combinatorial graph problems as
long as the input is regular. We numerically evaluated the LR-type bound for the
MaxCut and Maximum Independent Set problems over 3-regular graphs. It resulted
that QA as a local algorithm achieves a 0.5933 approximation ratio for
MaxCut and 0.31 for MIS. Both performances exceed the random guess value of
0.5 and 0.25 respectively. To put this into perspective, we analyzed the tightness
of our LR bound to conclude that QA probably performs even better and hinted a
new approach that could improve approximation ratios.

In Chapter 6, we formalized the idea suggested at the end of the previous chapter
and developed it in the case of the MaxCut problem over cubic graphs. We intro-
duced a parametrized version of QA to give us a degree of freedom that allowed us
to tighten the analysis. The previously known LR bounds reach a sufficiently low
numerical value for the approximation ratio if the local structure considered has a
radius of around 70. With the available classical computational power, only a radius
of 3 seems reasonable in practice. To meet this constraint and make the most of the
new approach developed, we have derived a new LR bound tailored to the
problem, which achieves unprecedented small numerical values. A care-
ful enumeration of all balls of radius 3 around an edge of a cubic graph combined
with an optimization of the introduced parameter yielded a proven new ratio of
0.7020 with a 1-local analysis of QA. This ratio outperforms all known local
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algorithms of MaxCut over cubic graphs. In addition, we also argued that this value
is almost tight for this approach. Eventually, we suggested some directions for im-
proving the ratio by optimizing the schedule and some directions for generalizing
the approach.

Lastly, we ended our work with the exploratory Chapter 7, which gathers at-
tempts at a state-dependent LR bound that could improved the scope of our
method. It also provides arguments on the worst-case neighborhood for an edge,
namely the double binary tree. Indeed, this configuration maximizes the number of
connections with the rest of the graph. Moreover, in random regular graph, all edges
have a local neighborhood that is tree-like. Therefore, evaluating the edge energy
inside a double binary tree would give a good insight into the optimal performance
of QA for MaxCut on random regular graphs. We developed an algorithm to
reduce the size of the Hilbert space thanks to the numerous symmetries
of the double binary tree. This allows us to efficiently access edge energy values
for tree of depth 1,2 and 3. To finally confirm that the values reached by the binary
tree is tight for QA, we constructed 3-regular graphs that reach this value as an
approximation ratio.

Further work

The work we have undertaken in this thesis opens new doors for further results.
As mentioned, direct applications of the tools developed to other combinatorial
problems are potential direct directions.

With regard to the LR bound, to improve numerical results, we have suggested
that the main difficulty is now to derive a state-dependent LR bound. Neglecting
the initial state is costly. In Chapter 7, we developed our first ideas in this direction,
but some ingredients are still missing to finalize the construction. Furthermore, with
the exception of an attempt with a cubic scheduling function, the approximation
ratio in this thesis are developed with a linear schedule. It would be interesting to
investigate this further to see the potential of short time QA. For example, work on
optimal control of [Brady et al. 2021] could help derive more advanced schedules. A
reverse annealing approach also seems promising and would deserve more analytical
study to support it [Crosson & Lidar 2021]. Regarding the application of the LR
limit we derived, we could consider a practical implementation of the quantum
circuit for Hamiltonian simulation proposed in [Haah et al. 2021].

As far as avoided level crossings are concerned, there are still some misunder-
standings about the definition. We define it by a large derivative of the instantaneous
eigenstates at stake at the crossing point. However, it seems that there are Hamilto-
nians for which the gap reduces exponentially fast with the size of the input without
degrading too much the performance of adiabatic quantum evolution, in the sense
that the probability of obtaining the optimum remains reasonable. This striking
observation leads us to consider an adapted version of the adiabatic theorem for
combinatorial optimization that relaxes the dependence on the minimum gap for
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other spectral quantities. The idea would be to design a more restrictive condi-
tion on execution time to achieve a constant probability of measuring the optimal
solution.

Finally, the ideal result would be to prove a certain guarantee on the quality of
the solution derived from a continuous quantum evolution in polynomial time. By
allowing an execution time that scales polynomially with the size of the input, we
expect a fraction of the evolved state to transition to higher-energy states. Can we
quantify which fraction jumps to which energy level? We could certainly start by
studying the probability of a non-adiabatic Landau-Zener transition in polynomial
time.



Appendices





Appendix A

Some interesting features of the
k−clique problem

Contents
A.1 Influence of the driver graph . . . . . . . . . . . . . . . . . . 173

A.2 Some property of H0 . . . . . . . . . . . . . . . . . . . . . . . 175

A.3 Lower bound on the minimum gap . . . . . . . . . . . . . . . 176

In this appendix, we provide results on the maximum-weight k−clique problem.
Some of them were derived during the internship preceding the thesis.

A.1 Influence of the driver graph

In this section, we want to observe the influence of the driver graph. Recall from
Sec. 2.2.4 that we are restricting the Hilbert space to bit-strings of Hamming weight
k. The mixing Hamiltonian H0 = −

∑
⟨a,b⟩∈Gdriver

Swap(a,b) stabilizes this reduced
space by performing only swaps between qubits. For a bit-string x, we call Gx

the graph induced by nodes i such that xi = 1. H1|x⟩ = C(x)|x⟩, where C(x)
counts the number of missing edge in Gx. This encoding is the one suggested
in [Childs et al. 2002]. The authors provided a numerical analysis of the median
running time needed to achieve a ground-state probability above 1

8 . They ran the
analysis over 500 random graphs for size ranging from 7 to 18. They observed a
quadratic scaling of the median runtime when using a complete driver graph Kn.

We tackle here the influence of the driver graph on the median runtime. For
example, we look at the star graph Sn and the path graph Pn. In Fig. A.1, we plot
the result obtain in each case. It is rather impressive how the driver graph seems
to play a significant role in the median efficiency of the continuous evolution. We
recover the result from the original work in (a). For the star graph (b), we observe
a linear tendency with the input size and for the path graph we need a logarithmic
scale to plot the data. The main observation is the spectacular efficiency of the
star graph as a driver over the complete graph. One could expect that a more dense
mixing Hamiltonian would help the evolution and here we observe the contrary. The
path graph however seems to be a quite poor choice as a driver graph.

To run the evolution, we need to start from the ground-state of H0. For the
complete driver graph and the star graph they have the following expressions re-
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Figure A.1: On the left, Gdriver with the corresponding graph GH0 with adjacency
matrix −H0 with n = 5 and k = 3 and on the right the median time to reach a
ground-state probability of 1

8 over 500 random graphs with size from 7 to 18. (a)

for the complete graph, (b) for the star graph and (c) the path graph in log scale.
Green doted curve is the fit from [Childs et al. 2002], in orange our data fit.
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spectively :

|ψK
0 ⟩ =

(
n

k

)− 1
2 ∑
x,|x|=k

|x⟩

|ψS
0 ⟩ =

1√
2



...
1√
(n−1

k )

...

...
1√
(n−1
k−1)

...


For the path graph, we do not have a closed form and we need to compute it at

the beginning of the algorithm. This is why the data in Fig. A.1 for the path graph
stops at n = 14.

To explain these main differences in the median runtime scaling, in the next
section we derive some of the spectral quantity that can play a role in the efficiency
of AQC.

A.2 Some property of H0

We call GH0 the graph induced by the adjacency matrix −H0, i.e. the one in Fig.
A.1 on the left below the driver graph. GH0 represents the graph of the search space
and the relation between the possible solution. At first glance, it would be natural
to prefer the complete driver graph as it generates the most dense GH0 so it should
be easier to amplify the amplitude of the optimal solution, i.e. the clique. However,
it numerically appears that the star driver generates a better GH0 for solving the
problem. Let us introduce two spectral quantities of a graph :

• λH0 is the principal eigenvector of GH0 ;

• γH0 is the principal ratio of GH0 , it is the ratio of the largest component of
|ψ0⟩ with the smallest. It reflects the regularity of the graph (=1 if GH0 is
regular to = en if highly irregular like the kite graph [Zhang 2021]);

We suppose also that k < n/2, otherwise in the rest of this appendix, many k must
be replaced by n − k. In Table A.1, we sum up some usual characterization about
the graph GH0 along with the two previously introduced spectral properties.

Conjecture : The median running time scales like the product λH0γH0 . H0 needs
a high regularity but not too dense. The star seems to have the better scaling,
namely linear while the path is the worst with an exponential tendency. For the
complete graph, it scales like kn, which for small instances is quadratic in n since
k ≃ n/2 at small n.
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Gdriver Complete Star Path

λH0 k(n− k)
√
k(n− k) 2 cos( k+1

n+1
π
2 )

sin( kπ
2(n+1)

)

sin( π
2(n+1)

) ∼n→∞
2k

γH0 1
√

n−k
k ≃ 10−2k−1(n+k

k

)k
diameter k 2k k(n− k)
|E(GH0

)|
|V (GH0

)|
k(n−k)

2
k(n−k)

n
k(n−k)

n

degree k(n− k) k and n− k from 1 to 2k

Table A.1: Quantities about graph GH0 . For the path driver, the value of γH0 is
only an estimation.

A.3 Lower bound on the minimum gap

Let dmax(H0) and d be respectively the maximal degree and the diameter of GH0 .
Inspired by the Appendix D in [Altshuler et al. 2010], one can derive a lower bound
of the gap that depends on dmax(H0) and d.

Lemma A.1. For a given H0 with its associated dmax(H0) and d as defined above,
a unique solution such that E0(1) = 0 and 1 ≤ Ei(1) ≤

(
k
2

)
for all i > 0 on average,

the minimum gap is lower bounded as: ∆min ≥ O((dmax(H0)k
2)−d)

Proof. Let us first consider the case s ≥ 2dmax(H0)+1
2dmax(H0)+2 . The diagonal ele-

ments of H(s) are given by Hii = sEi and the non-diagonal elements satisfy∑
j ̸=iHij ≤ −(1 − s)dmax(H0). Therefore, the Gershgorin circles have a ra-

dius of at most (1 − s)dmax(H0) and the circle around the solution centered
in 0, because E0 = 0, is disjoint from the other circles around sEi ≥ s if
s > 2(1 − s)dmax(H0). Thus, the eigenvalue gap between the two lowest is lower
bounded as: ∆(s) > s− 2(1− s)dmax(H0) ≥ 1

2dmax(H0)+2 ≥ Ω( 1
dmax(H0)

).

Let us now consider the case s ≤ 2dmax(H0)+1
2dmax(H0)+2 . Let Q =

−H(s)+s(k2)I
1−s = A +

λ(
(
k
2

)
I − H1), where A = −H0 is the adjacency matrix of GH0 and λ = s

1−s ≤
2dmax(H0)+1. Since every Ei ≤

(
k
2

)
, all elements of Q are positives. By the mixing

properties of GH0 , Ad has all elements above 1, thus this is also true for Q. Therefore,
µd0−µd1 ≥ 1, where µ0 and µ1 are the 2 largest eigenvalues of Q. The eigenvalues of
Q are upper bounded by the spectral radius which is upper bounded by the norm
∥ Q ∥1= maxi

∑
j |Qij | so that for all i, µi ≤ λ

(
k
2

)
+ dmax(H0). Furthermore we

have µd0 − µd1 ≤ (µ0 − µ1)(µ0 + µ1)
d−1 so that

µ0 − µ1 ≥
1

(µ0 + µ1)d−1

≥ 1

(λk(k − 1) + 2dmax(H0))d−1

≥ 1

(2dmax(H0)× k(k − 1) + k(k − 1) + 2dmax(H0))d−1
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Finally, we have

∆(s) = (1− s)(µ0 − µ1)

≥ 1

(2dmax(H0) + 2)(2dmax(H0)× k(k − 1) + k(k − 1) + 2dmax(H0))d−1

i.e. ∆(s) ≥ O((dmax(H0)k
2)−d)

From Lemma 3, we can only conclude that the algorithm has a run time upper
bounded by a superpolynomial in the size of the problem for k = O(poly(log(n)))

which is no improvement compare to classical algorithms that find k-clique. Also
given Table A.1, we see that the path graph clearly has the worst scaling with a
diameter that grows with O(n), while the complete and star driver have a diameter
in O(k) only
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B.1 Proof of Proposition 4.1

In this appendix, we prove the proposition due to my supervisor Simon Martiel. Let
restate it.

Proposition B.1. If H1 is the Hamiltonian encoding the MaxCut problem over a
graph G(V,E) of n nodes and H0 is the standard bit-flip operator with eigenpairs
(|Eb⟩, Eb) for a bit-string b where Eb = −n+ 2|b|, |b| being the Hamming weight of
b, then

⟨Eb|H1|Eb′⟩ =
1

2

if and only if Gb⊕b′ is exactly an edge. Where Gb⊕b′ is the subgraph induced by nodes
i such that (b⊕ b′)i = 1.

The eigenvectors |Eb⟩ of H0 correspond to states where qubit i is in state |+⟩ =
|0⟩+|1⟩

2 if bi = 0 and |−⟩ = |0⟩−|1⟩
2 if bi = 1. In the computational basis it is written

as:
|Eb⟩ =

1√
2n

∑
x∈{0,1}n

(−1)b·x|x⟩

Let b and b′ be two bit-strings, we have that H1|x⟩ = C(x)|x⟩ for any classical
state |x⟩ where C(x) is the classical cost function for the MaxCut problem, counting
minus the number of edges across the bipartition x. Recall that we are in the
minimization setting so there is a minus absorbed by the cost value, i.e. C(x) ∈
[−|E(G)|, 0]. We can then write :

⟨Eb|H1|Eb′⟩ =
1

2n

∑
x∈{0,1}n

∑
y∈{0,1}n

(−1)b·x(−1)b′·y⟨x|H1|y⟩

=
1

2n

∑
x∈{0,1}n

(−1)(b⊕b′)·xC(x)

= ⟨Eb⊕b′ |H1|E0n⟩
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where we recognize the ground-state |E0n⟩ of H0. Therefore we can focus on proving
that ⟨Eb|H1|E0n⟩ = 1

2 if and only if Gb is exactly an edge and 0 otherwise. Let
consider a bit-string b of Hamming weight k, we can write :

⟨Eb|H1|E0n⟩ =
1

2n

∑
x∈{0,1}n

(−1)b·xC(x)

=
1

2n

∑
y∈{0,1}n−k

∑
x∈{0,1}k

(−1)|x|
(
CGb

(y) + CGb
(x) +DG,b(x, y)

)
where b is the bit-string obtained by bit-flipping every bits in b, CG is the MaxCut
cost function associated to graph G and DG,b(x, y) is (minus) the number of edges
cut across Gb and Gb given bipartition x of Gb and y of Gb. In the two sums above,
the sum over y ranges over all possible bipartitions of Gb, while the sum over x
ranges over all possible bipartitions of Gb.

Since
∑

x∈{0,1}∗(−1)|x| = 0, the term CGb
(y) vanishes. Then for each edge ⟨i, j⟩

between Gb and Gb cut by bipartition x and y, i.e. without loss of generality, if i
belongs to Gb and j to Gb, it means that xi ̸= yj , it exists another bipartition x′

and y′ that also cuts edge ⟨i, j⟩ with |x′| = |x|±1. For example, x′ is x with x′i = xi
and y′ is y with y′j = yj . So the term DG,b(x, y) also vanishes. We are left with :

⟨Eb|H1|E0n⟩ =
1

2n

∑
y∈{0,1}n−k

∑
x∈{0,1}k

(−1)|x|CGb
(x)

=
1

2k

∑
x∈{0,1}k

(−1)|x|CGb
(x)

Now if k = 0 or k = 1, CGb
(x) = 0. Assume that k ≥ 3. For all edges ⟨i, j⟩ in

Gb, only half of the bit-strings x ∈ {0, 1}k will contribute to the sum over x, in fact
every time xi ̸= xj . Among them, half has a positive contribution and the other
half a negative contribution, bringing the total sum to zero (see Table B.1)

x = x1xixj (−1)|x| CGb
(x)

000 +1 0
001 -1 -1
010 -1 -1
011 +1 0
100 -1 0
101 +1 -1
110 +1 -1
111 -1 0

Table B.1: Example of the values in the sum over x for k = 3. Only rows shaded in
light grey have a contribution in the sum.

For the case k = 2, the above argument does not work anymore. Gb is either
two isolated nodes or exactly an edge of G. In the first case CGb

(x) = 0 for any x.
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In the second one, as the sum in x is over the set {00, 01, 10, 11}, only terms 01 and
10 has a non-zero value of CGb

(x) = −1, and they contribute positively to the sum
because the Hamming weight is odd. Thus, we obtain :

⟨Eb|H1|E0n⟩ =
1

2k

∑
x∈{0,1}k

(−1)|x|CGb
(x)

=
1

2k
× (−2)× (−1)

=
1

2

if and only if Gb is exactly an edge. If not, the quantity is zero.

By adapting the proof, a similar result can be proved for the asymmetric H1 :

Claim 6. If H1 is the Hamiltonian encoding the MaxCut problem over a graph
G(V,E) of n nodes where node labeled 1 is fixed to remove the symmetry and H0

is the standard bit-flip operator over n− 1 qubits with eigenpairs (|Eb⟩, Eb), then

⟨Eb|H1|E0n⟩ =
1

2

if and only if (G− 1)b is exactly an edge or exactly one of node 1 neighbors. Where
(G − 1)b is the subgraph of G induced by nodes i such that bi = 1 after deleting
node 1.

We can see that there are exactly the same amount of bit-string b for which the
quantity equals 1/2, which is the total number of edges in the input graph |E(G)|.
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C.1 Minimization of Equation 6.6

Let us study the following function with two variables:

∀x ≥ 0, y ≥ 0|4x+ 3y ≤ 1, f(x, y) =
ax+ b(4x+ 3y) + c(32 − 5x− 3y)

3
2 − x− y

where a = ⟨OX⟩Ω1
G , b = ⟨OX⟩Ω2

G and c = ⟨OX⟩Ω3
G . Empirically we suppose that

a ≤ b ≤ c and we will see later that this assumption is verified. Let x, y be positive
number such that 4x + 3y ≤ 1. Then we have that x + y ≤ 1

3 and x ≤ 1
4 . The

function f can be rewritten in three parts:

f(x, y) =
3
2c

3
2 − (x+ y)

− 3(c− b)(x+ y)
3
2 − (x+ y)

− (2c− a− b)x
3
2 − (x+ y)

If x = y = 0, then f(0, 0) = c. Let us see the condition on which f can only

increase if x + y > 0. The first term can increase at most by c − c
3
2

3
2
− 1

3

= 2
7c.

The second term can decrease at most by c−b
3
2
− 1

3

= (c − b)67 . The last term can

decrease by at most
1
4
(2c−a−b)

3
2
− 1

3

= (2c − a − b) 3
14 . Thus f(0, 0) is the minimum if

2
7c ≥ (c− b)67 + (2c− a− b) 3

14 . Therefore, we can derive the following condition to
satisfy to have f(0, 0) as the minimum:

c ≥ 3(c− b) + 3

4
(2c− a− b)

⇒ 3.5c ≤ 3.75b+ 0.75a

For example with a ≥ 0.5, b ≥ 0.57 and c ≤ 0.71 the assumption and the condition
are satisfied.
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C.2 Proof of Equation 6.10

We are working with a Hamiltonian of general form H(t) =
∑

j∈V (G) hj(t)γj and
for any unitary A supported on S (outside a certain region around one node X),
we want to show Equation 6.10 in the time-dependent regime. We follow exactly
the same steps of [Wang & Hazzard 2020] but with function hj that depends on the
time. First let us look at the derivative of γAX(t):

d[γX(t), A]

dt
= −i

∑
v:⟨Xv⟩∈G

hv(t)[(U
G
T )†[γX , γv]U

G
T , A]

Then we define τA(t) = Û †γAX(t)Û where Û is the unitary that is solution of idÛdt =

−
∑

v:⟨Xv⟩∈G hv(t)γv(t)Û . That way, we have ∥τA(T )∥ = ∥γAX(T )∥ and the derivative
of τA is given by:

˙τA(t) = −i
∑

v:⟨Xv⟩∈G

hv(t)Û
† [γX(t), [γv(t), A]] Û

Now we can proceed as follow:

∥γAX(T )∥ − ∥γAX(0)∥ = ∥τA(T )∥ − ∥τA(0)∥

≤
∫ T

0
∥ ˙τA(t

′)∥dt′

≤
∑

v:⟨Xv⟩∈G

∫ T

0
hv(t) ∥[γX(t), [γv(t), A]]∥ dt

C.3 Nested integrals

In this appendix, we detail the computation of the nested integrals that play an
important role in the LR-bound. To tackle this derivation, we introduce for all
k ∈ N∗:

I2k(x) =

∫ x

0
1− u1

∫ u1

0
u2...

∫ u2k−1

0
u2kdu2k...du2du1

and
I2k+1(x) =

∫ x

0
1− u1

∫ u1

0
u2...

∫ u2k

0
1− u2k+1du2k+1...du2du1

polynomials in x define in [−1, 1]. The goal is to compute these polynomials at
x = 1, which is nothing else than the sum of the polynomial coefficients.

Even case I2k(x): The highest degree of this polynomial is 4k as there are 2k

integrals and there is always a way to choose a uj to integrate so the 2k uj bring
the total degree to 4k. The highest order coefficient is straightforward (−1)k

22k(2k)!
. The
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least order term is the one where we choose the minimum number of uj to integrate
which is k. This observation brings the least order term to be of degree 3k with
coefficient

∏k
l=2

1
3l(3l−1) . In general, there exist positive coefficients aj(k) to express

I2k(x) as a polynomial:

I2k(x) =

k∑
j=0

aj(k)(−1)jx3k+j (C.1)

= x3k
k∑

j=0

aj(k)(−x)j (C.2)

and we define a0(0) = 1. With these notations, the quantity of interest is I2k(1) =∑k
j=0(−1)jaj(k). To find a recurrence relation first notice that I2k(x) =

∫ x
0 1 −

u1
∫ u1

0 u2I2k−2(u2)du2du1 and develop:

I2k(x) =

∫ x

0
1− u1

∫ u1

0
u2 ∗ I2k−2(u2)du2du1

=
k−1∑
j=0

aj(k − 1)(−1)j
∫ x

0
1− u1

∫ u1

0
u3k+j−2
2 du2du1

=
k−1∑
j=0

aj(k − 1)(−1)j
∫ x

0
(1− u1)

u3k+j−1
1

3k + j − 1
du1

=
k−1∑
j=0

aj(k − 1)(−1)j
[

x3k+j

(3k + j − 1)(3k + j)
− x3k+j+1

(3k + j − 1)(3k + j + 1)

]

= x3k
k−1∑
j=0

aj(k − 1)(−1)j
[

xj

(3k + j − 1)(3k + j)
− xj+1

(3k + j − 1)(3k + j + 1)

]

= x3k
k−1∑
j=0

aj(k − 1)(−1)j xj

(3k + j − 1)(3k + j)

− x3k
k∑

j=1

aj−1(k − 1)(−1)j−1 xj

(3k + j − 2)(3k + j)

=
a0(k − 1)

3k(3k − 1)
x3k +

(−1)kak−1(k − 1)

4k(4k − 2)
x4k (C.3)

+ x3k
k−1∑
j=1

(3k + j − 2)aj(k − 1) + (3k + j − 1)aj−1(k − 1)

(3k + j − 2)(3k + j − 1)(3k + j)
(−x)j
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In the last line we can identify the aj(k) coefficients:

a0(k) =
a0(k − 1)

3k(3k − 1)
(C.4)

aj(k) =
aj(k − 1)

(3k + j − 1)(3k + j)
+

aj−1(k − 1)

(3k + j − 2)(3k + j)
for j ∈ [1, ..., k − 1] (C.5)

ak(k) =
ak−1(k − 1)

4k(4k − 2)
(C.6)

We recover the higher and least order coefficients mentioned above. So we can try
to compute I2k(1):

I2k(1) =
k∑

j=0

(−1)jaj(k)

=
k−1∑
j=1

(−1)j
[

aj(k − 1)

(3k + j − 1)(3k + j)
+

aj−1(k − 1)

(3k + j − 2)(3k + j)

]
+

a0(k − 1)

3k(3k − 1)
+ (−1)k ak−1(k − 1)

4k(4k − 2)

=

k−1∑
j=1

(−1)j aj(k − 1)

(3k + j − 1)(3k + j)
+

k−2∑
j=0

(−1)j+1 aj(k − 1)

(3k + j − 1)(3k + j + 1)

+
a0(k − 1)

3k(3k − 1)
+ (−1)k ak−1(k − 1)

4k(4k − 2)

=

k−1∑
j=0

(−1)jaj(k − 1)

(3k + j − 1)(3k + j)(3k + j + 1)
(C.7)

Computing recursively the coefficients (aj(k))j allows us to evaluate the nested
integrals of interest. At the end of this appendix, we develop the numerical analysis
of it.

We can still have a loose upper bound (sufficient for Corollary 6.1) because the



C.3. Nested integrals 187

aj(k) are positives, by looking at I2k(−1):

I2k(−1) =
k∑

j=0

aj(k)

=
a0(k − 1)

3k(3k − 1)
+

k−1∑
j=1

[
aj(k − 1)

(3k + j − 1)(3k + j)
+

aj−1(k − 1)

(3k + j − 2)(3k + j)

]
+
ak−1(k − 1)

4k(4k − 2)

=
a0(k − 1)

3k(3k − 1)
+

k−1∑
j=1

aj(k − 1)

(3k + j − 1)(3k + j)
+

k−2∑
j=0

aj(k − 1)

(3k + j − 1)(3k + j + 1)

+
ak−1(k − 1)

4k(4k − 2)

=
k−1∑
j=0

6k + 2j + 1

(3k + j − 1)(3k + j)(3k + j + 1)
aj(k − 1) (C.8)

≤ 6k + 1

(3k − 1)3k(3k + 1)
I2k−2(−1)

≤ I2(−1)
k∏

l=2

6l + 1

(3l − 1)3l(3l + 1)

≤ 6k+1k!

(3k + 1)!
(C.9)

Odd case I2k+1(x): The higher degree of this polynomial is 4k + 2 as there are
2k + 1 integrals and there is a way to always choose a uj to integrate so the 2k + 1

uj bring the total degree to 4k+2. The least order term is the one where we choose
the minimum number of uj to integrate which is k. This observation brings the
least order term to be of degree 3k + 1. In general, there exist positive coefficients
bj(k + 1) to express I2k+1(x) as a polynomial:

I2k+1(x) =
k+1∑
j=0

bj(k + 1)(−1)jx3k+j+1 (C.10)

= x3k+1
k+1∑
j=0

bj(k + 1)(−x)j (C.11)
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I2k+1(x) =

∫ x

0
1− u1

∫ u1

0
u2 ∗ I2k−1(u2)du2du1

= ...

=
b0(k)

3k(3k + 1)
x3k+1 + x3k+1

k∑
j=1

(3k + j − 1)bj(k) + (3k + j)bj−1(k)

(3k + j + 1)(3k + j − 1)(3k + j)
(−x)j

+
(−1)k+1bk(k)

4k(4k + 2)
x4k+2 (C.12)

We can identify the bj(k) coefficients:

b0(k + 1) =
b0(k)

3k(3k + 1)
(C.13)

bj(k + 1) =
bj(k)

(3k + j + 1)(3k + j)
+

bj−1(k)

(3k + j + 1)(3k + j − 1)
for j ∈ [1, ..., k]

(C.14)

bk+1(k + 1) =
bk(k)

4k(4k + 2)
(C.15)

Those coefficients allows us to compute the exact value of the nested integral. Sim-
ilarly to the even case, we can upper bound the integral of interest like this:

I2k+1(1) =

k+1∑
j=0

(−1)jbj(k + 1)

=

k∑
j=0

(−1)jbj(k)
(3k + j)(3k + j + 1)(3k + j + 2)

(C.16)

I2k+1(1) ≤ I2k+1(−1) ≤
6k+2(k + 1)!

(3k + 2)!
(C.17)

In practice, a numerical study is enough as we are interested in the numerical
value. Using the derived coefficients above, it appears that it follows something like
I2k ≃ num(I2k)

(4k)! and I2k+1 ≃ num(I2k+1)
(4k+2)! where both num(I2k+1) and num(I2k) grow

like eO(k2). A numerical fit gives a tendency function with an almost 1 correlation
factor, see Fig. C.1.
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Figure C.1: Fit curves for the numerator logarithm of the nested integral for even
(left) and odd (right) iteration step.
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Arthur BRAIDA

Calcul Analogique Quantique pour des Problèmes
Combinatoires sur Graphes NP-difficile

Résumé :
L’objectif principal de cette thèse est de fournir un éclairage théorique de la complexité du calcul
quantique en temps continu (QA et AQC), de la compréhension du phénomène physique (AC) qui
conduit à l’échec de l’AQC jusqu’à des preuves de performance de QA en temps court et constant.
Pour atteindre cet objectif, nous utilisons différents outils analytiques empruntés à la physique
théorique, comme l’analyse perturbative des systèmes quantiques et la borne de Lieb-Robinson sur
la vitesse de corrélation dans les systèmes quantiques. La manipulation des graphes et la théorie
spectrale des graphes sont nécessaires pour obtenir des résultats sur des classes spécifiques de
graphes. Nous avons également introduit une nouvelle version paramétrée du QA standard afin
d’affiner l’analyse.
Tout d’abord, nous souhaitons obtenir une définition mathématique d’un AC afin d’en faciliter
la compréhension lors de l’étude d’une classe spécifique de graphes sur lesquels nous souhaitons
résoudre le problème de Maximum Cut. En plus de l’appui analytique que nous développons, nous
apportons une étude numérique pour justifier la nature plus générale de notre définition par rapport
à la précédente. Grâce à une analyse perturbative, nous parvenons à montrer que sur les graphes
bipartis, un gap de fermeture exponentielle peut apparaître si le graphe est suffisamment irrégulier.
Notre nouvelle définition de l’AC nous permet de remettre en question l’efficacité de l’AQC pour le
résoudre malgré le temps d’exécution exponentiellement long que le théorème adiabatique impose
pour garantir la solution optimale.
Le deuxième axe est consacré à la performance du QA en temps constant court. Bien que le QA
soit intrinsèquement non-locale, la borne de LR nous permet de l’approximer avec une évolution
locale. Une première approche est utilisée pour développer la méthode et montrer la non trivialité
du résultat, c’est-à-dire au-dessus du choix aléatoire. Ensuite, nous définissons une notion d’analyse
locale en exprimant le ratio d’approximation avec la seule connaissance de la structure locale. Une
borne LR fine et adaptative est développée, nous permettant de trouver une valeur numérique du
ratio d’approximation surpassant les algorithmes quantiques et classiques (strictement) locaux.
Tous ces travaux de recherche ont été poursuivis entre l’équipe QuantumLab d’Eviden et l’équipe
Graphe, Algorithme et Modèle de Calcul (GAMOC) du Laboratoire d’Informatique Fondamentale
d’Orléans (LIFO). Le travail numérique a été implémenté en utilisant le langage de programmation
Julia ainsi que Python avec le logiciel QAPTIVA d’Eviden pour simuler efficacement l’équation de
Schrödinger.

Mots clés : Recuit quantique, Calcul quantique adiabatique, ratio d’approxima-tion, MaxCut, prob-
lèmes combinatoires, borne de Lieb-Robinson, théorie perturbative, théorie spectrale des graphes

LIFO, 6 Rue Léonard de Vinci, 45067 Orléans



Arthur BRAIDA

Analog Quantum Computing for NP-Hard
Combinatorial Graph Problems

Abstract :
The main objective of this thesis is to provide theoretical insight into the computational complexity of
continuous-time quantum computing (QA and AQC), from understanding the physical phenomenon
(AC) that leads to AQC failure to proving short constant-time QA efficiency.
To achieve this goal, we use different analytical tools borrowed from theoretical physics like
perturbative analysis of quantum systems and the Lieb-Robinson bound on the velocity of correlation
in quantum systems. Graph manipulation and spectral graph theory are necessary to derive results
on a specific class of graph. We also introduced a new parametrized version of the standard QA to
tighten the analysis
First, we want to obtain a mathematical definition of an AC to be easier to grasp when studying
a specific class of graph on which we want to solve the Maximum Cut problem. We support
our new definition with a proven theorem that links it to exponentially small minimum gap and
numerical evidence is brought to justify its more general nature compared to the previous one. With
a perturbative analysis, we manage to show that on bipartite graphs, exponentially closing gap can
arise if the graph is irregular enough. Our new definition of AC allows us to question the efficiency of
AQC to solve it despite the exponentially long runtime the adiabatic theorem imposes to guarantee
the optimal solution.
The second axis is dedicated to the performance of QA at short constant times. Even though QA
is inherently non-local, the LR bound allows us to approximate it with a local evolution. A first
approach is used to develop the method and to show the non-triviality of the result, i.e. above
random guess. Then we define a notion of local analysis by expressing the approximation ratio with
only knowledge of the local structure. A tight and adaptive LR bound is developed allowing us to
find a numerical value outperforming quantum and classical (strictly) local algorithms.
All this research work has been pursue between Eviden QuantumLab team and the Graphe,
Algorithme et Modèle de Calcul (GAMOC) team at the Laboratoire d’Informatique Fondamentale
d’Orléans (LIFO). The numerical work has been implemented using Julia programming Language as
well as Python with the QAPTIVA software of Eviden to efficiently simulate the Schrödinger equation.

Keywords : Quantum Annealing, Adiabatic Quantum Computing, approximation ratio, MaxCut, com-
binatorial problems, Lieb-Robinson bound, perturbative theory, spectral graph theory
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