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Résumé

Alors que le monde de la finance continue d’évoluer rapidement, l’émergence des marchés décentralisés et de

la technologie Blockchain a présenté à la fois des opportunités et des défis. Les marchés décentralisés, opérant

de manière autonome et auto-régulée, introduisent un changement de paradigme qui exige une compréhension

approfondie. Cette thèse se concentre sur la compréhension de ces nouveaux marchés et l’évaluation de leur

stabilité, avec pour objectif plus large de contribuer à la stabilité de l’ensemble de l’écosystème financier.

Le premier chapitre, co-écrit avec Michele Fabi et Julien Prat, offre un aperçu complet sur Auto-

mated Market Makers (AMM) pour les échanges décentralisés (DEXs). L’ambition principale de la Finance

Décentralisée (DeFi) est d’introduire des opérations financières sans tiers de confiance grâce à l’application

de la technologie Blockchain et des contrats intelligents. Dans ce paysage émergent de la DeFi, les AMM

servent de composant fondamental, employant des protocoles algorithmiques pour remplacer le besoin

d’intermédiaires financiers traditionnels. Ce chapitre plonge dans les origines historiques des AMM, mettant

en évidence leur évolution depuis leur création dans les marchés de prédiction jusqu’à leur utilisation mod-

erne dans des environnements décentralisés. Notamment, nous explorons la transition des carnets d’ordres

complexes vers des Constant Function Market Makers (CFMMs), qui déterminent les prix des actifs grâce

à des fonctions de trading déterministes. Ce chapitre met également l’accent sur les fondements théoriques

et les résultats empiriques concernant les CFMMs, éclairant leur capacité à reproduire les instruments fi-

nanciers traditionnels et à optimiser le surplus des traders et des fournisseurs de liquidités. De plus, nous

examinons la dynamique concurrentielle entre les plateformes d’échanges centralisées et décentralisées, en

étudiant les incitations au trading et à la fourniture de liquidités. Enfin, ce chapitre examine de manière

approfondie la question cruciale de la valeur maximale extractible (MEV) et son impact sur les DEXs, pro-

posant des solutions envisageables et identifiant des voies de recherche prometteuses dans ce domaine en

constante évolution.

Le deuxième chapitre explore la microstructure des DEXs, et plus particulièrement celle d’Uniswap.

Lancée en 2018, Uniswap est rapidement devenue la plus grande plateforme d’échange décentralisée, per-

mettant des échanges pair-à-pair de cryptomonnaies, de manière sécurisée et sans intermédiaire. Uniswap

fonctionne sur la base de pools de liquidités automatisés et utilise des contrats intelligents pour faciliter les

échanges entre les différentes cryptommonnaies. Le mécanisme de tarification, régi par la formule du produit

constant, garantit que le produit des réserves reste inchangé avant et après un échange. Ce chapitre exam-

ine la capacité d’Uniswap à aligner ses prix avec ceux des marchés centralisés – consiférés comme marchés

de références – échangeant les mêmes paires de crypto-actifs. En m’inspirant de la littérature sur la mi-

crostructure des marchés financiers traditionnels, je postule que les coûts d’inventaire peuvent influencer de
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manière significative la dynamique et la précision des prix sur Uniswap. Pour évaluer l’impact de ces coûts

sur la précision des prix d’Uniswap, je développe un modèle de microstructure puis le calibre en utilisant

les données de prix de clôture par minute sur les marchés d’Uniswap et de Binance de mai 2020 à décembre

2022. L’analyse se concentre initialement sur la paire ETH-BTC, avant de s’étendre à d’autres paires. Mes

résultats mettent en évidence l’impact significatif des coûts de détention d’inventaire, notamment lorsque

les tailles de pool augmentent, entrâınant une réactivité réduite des traders aux écarts de prix d’Uniswap

par rapport aux prix des marchés de référence. Cependant, en examinant les paires stablecoin-stablecoin, le

modèle révèle que les traders sont enclins à exploiter plus rapidement les opportunités d’arbitrage lorsqu’ils

ne sont pas confrontés à des coûts d’inventaire. Cela conduit alors à l’alignement des prix d’Uniswap avec

ceux des marchés centralisés.

Le troisième chapitre, co-écrit avec Natkamon Tovanich, Julien Prat et Simon Weidenholzer, propose une

analyse complète de la contagion financière au sein de Compound V2, un protocole de prêt décentralisé sur

la blockchain Ethereum. Nous proposons une méthodologie pour construire les bilans comptables des pools

de liquidité de Compound et utilisons cette méthodologie pour caractériser son réseau financier complexe.

Notre analyse révèle que la majorité des utilisateurs de ce réseau s’engagent principalement dans deux

activités: l’emprunt de stablecoins et la participation à l’extraction de liquidité. Pour évaluer la robustesse

du protocole, nous réalisons une série de tests de résistance, simulant des scénarios où le défaut d’un pool

ou des chocs important du prix du Bitcoin et de l’Ether pourraient déclencher des défauts en cascade. Nos

résultats suggèrent qu’une défaillance en cascade est une possibilité, mais qu’il nécessite des chocs de prix

importants. De plus, les pools de stablecoins sont plus susceptibles de faire défaut, tandis que les pools de

Bitcoin et d’Ether sont plus susceptibles d’initier une réaction en châıne.

À travers ces trois chapitres, mon étude vise à approfondir notre connaissance de l’écosystème de la

DeFi, en examinant sa stabilité, la microstructure du marché et les risques de contagion. En explorant ces

questions de recherche cruciales, mon objectif est d’enrichir la discussion sur la DeFi, contribuant ainsi à

promouvoir un écosystème financier plus résistant et pérenne.

Domaine: Economie

mots clés: Economie Digitale, Blockchain; Cryptomonnaie; Finance Décentralisée; FinTech;

Microstructure de Marché, Risques Systémiques.
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Summary

As the world of finance continues to evolve rapidly, the emergence of decentralized markets and Blockchain

technology presents both opportunities and challenges. Decentralized markets, operating autonomously and

self-regulated, introduce a paradigm shift that demands a thorough comprehension. This thesis focuses on

understanding these new markets and assessing their stability, with a broader aim of contributing to the

stability of the entire financial ecosystem.

In the first chapter, co-written with Michele Fabi and Julien Prat, we provide a comprehensive overview

of Automated Market Makers (AMMs) for Decentralized Exchanges (DEXs). The main ambition of Decen-

tralized Finance (DeFi) is to introduce trustless financial operations through the application of Blockchain

technologies and smart contracts. Within this evolving DeFi landscape, AMMs serve as a fundamental com-

ponent, employing algorithmic protocols to replace the need for traditional financial intermediaries. This

chapter dives into the historical origins of AMMs, showcasing their evolution from their inception in predic-

tion markets to their modernized use in decentralized environments. Notably, it explores the transition from

complex Limit Order Books (LOBs) to the prevalent Constant Function Market Makers (CFMMs), which

determine asset prices through deterministic trading functions. The literature review emphasizes the theo-

retical underpinnings and empirical findings regarding CFMMs, shedding light on their ability to replicate

traditional financial instruments and optimize the surplus of traders and liquidity providers. Furthermore, it

delves into the competitive dynamics between centralized and decentralized exchanges, addressing motives

for trading and liquidity provision. Lastly, the chapter addresses the critical issue of Miner Extractible Value

(MEV) and its significance for DEXs, presenting potential solutions.

The second chapter explores the microstructure of DEXs, with a particular emphasis on Uniswap.

Uniswap has emerged as a prominent platform for direct peer-to-peer cryptocurrency exchanges, eliminating

the need for intermediaries. Uniswap operates on the principle of CFMM, using liquidity pools rather than

order books to facilitate trades. Within each pool, prices are algorithmically determined and self-regulated

through a constant product formula, ensuring that the reserves’ product remains consistent both prior to

and following a transaction. This chapter examines Uniswap’s ability to synchronize its quoted prices with

those of centralized markets – considered as reference markets – trading the same asset pairs. Drawing inspi-

ration from the market microstructure literature of traditional financial markets, I postulate that inventory

holding costs can significantly influence Uniswap’s price dynamics and accuracy. To assess the influence of

these costs on Uniswap’s price accuracy, I develop a microstructure model and calibrate it using 1-minute

closing price data of Uniswap and Binance markets from May, 2020 to December, 2022. The analysis initially

focuses on the ETH-BTC pair, before broadening the scope to include other pairs. My results highlight the
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significant impact of inventory carrying costs, particularly as pool sizes expand, resulting in reduced trader

responsiveness to deviations in Uniswap’s prices from reference market prices. However, upon examining

stablecoin-stablecoin pairs, the model reveals that traders are inclined to exploit arbitrage opportunities

more promptly when they do not face inventory holding costs. Consequently, the price on Uniswap closely

aligns with that on CEXs.

The third chapter, co-written with Natkamon Tovanich, Julien Prat and Simon Weidenholzer, provides a

comprehensive analysis of financial contagion within Compound V2, a decentralized lending protocol on the

Ethereum blockchain. We outline a methodology for constructing the balance sheets of Compound’s liquidity

pools and use this methodology to characterize its intricate financial network. Our analysis uncovers that

the majority of users within this network primarily engage in two activities: borrowing stablecoins and

participating in liquidity mining. To assess the robustness of the protocol, we conduct a series of stress tests,

simulating scenarios where a pool’s default or significant price shocks in Bitcoin and Ether could trigger

cascading defaults. Our findings suggest that while a cascading failure is a possibility, it requires substantial

price shocks. Notably, pools of stablecoins are more susceptible to default, while Bitcoin and Ether pools

are more likely to initiate a chain reaction.

Through these three chapters, my research endeavors to advance our comprehension of the DeFi ecosys-

tem, offering insights into its stability, market microstructure, and contagion risks. By addressing key re-

search questions, I aim to contribute to the broader discourse on decentralized finance, ultimately fostering

a more resilient and sustainable financial ecosystem.

Field: Economics

Key words: Digital Economics, Blockchain; Cryptocurrency; Decentralized Finance; Fin-

Tech; Market Microstructure, Systemic Risks.
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Introduction générale

Cette thèse explore le domaine de la Finance Décentralisée (DeFi), examinant le paradigme des market

makers automatisés (AMM), la microstructure du marché des échanges décentralisés (DEX) et les risques

systémiques au sein des protocoles de prêt. Cette introduction générale familiarise les lecteurs avec la tech-

nologie de la blockchain et la DeFi, offrant un aperçu des différents chapitres et soulignant leur contribution

collective à la compréhension et à l’avancement du domaine de la DeFi.

La crise financière mondiale de 2008 a été une rupture de confiance dans les institutions financières tra-

ditionnelles. Les institutions jugées “trop grosses pour faire faillite” se sont révélées vulnérables, pratiquant

des méthodes risquées qui ont mis en péril la stabilité du système financier mondial. La crise a mis en

évidence la défaillance de la surveillance centralisée et souligné le besoin de transparence, de responsabilité

et de résilience dans l’infrastructure financière.

Dans ce climat de mécontentement et de désillusion vis-à-vis des systèmes centralisés, un individu, sous le

nom de Satoshi Nakamoto, a publié un livre blanc intitulé “Bitcoin: Un Système de Trésorerie Électronique

de Pair à Pair”. Ce document a introduit un concept révolutionnaire : une monnaie numérique décentralisée,

le Bitcoin, pouvant être échangée directement entre utilisateurs sans l’intervention d’une autorité centrale.

Le réseau Bitcoin a été officiellement lancé le 3 janvier 2009, lorsque Nakamoto a miné le premier bloc, connu

sous le nom de “bloc de genèse” ou “Bloc 0”. La proposition de Nakamoto a remis en question les notions

traditionnelles de monnaie et de systèmes financiers, offrant une vision d’un réseau monétaire plus inclusif

et transparent. Ceci a été rendu possible grâce à la technologie de la blockchain.

Une blockchain est un registre distribué qui enregistre les transactions sur un réseau d’ordinateurs de

manière sécurisée et transparente. Elle se compose d’une châıne de blocs, où chaque bloc contient une liste de

transactions. Ces blocs sont liés ensemble à l’aide de techniques de hachages cryptographiques, garantissant

l’intégrité et l’immutabilité des données. Une fois qu’un bloc est ajouté à la châıne, il devient impossible de

modifier les informations qu’il contient.

Les principales caractéristiques de la blockchain incluent la décentralisation, la transparence, l’immutabilité

et la sécurité. La décentralisation signifie qu’il n’y a pas de point de contrôle unique, des mécanismes de con-
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sensus (comme la preuve de travail ou la preuve d’enjeu) sont utilisés pour valider et vérifier les transactions.

Cela fait de la blockchain un système résistant à la manipulation et sans besoin de tiers de confiance. La

transparence vient du fait que n’importe qui peut consulter les transactions enregistrées sur la blockchain.

L’immutabilité garantit qu’une fois qu’une transaction est enregistrée, elle ne peut pas être modifiée ou

supprimée. Et la sécurité est maintenue grâce à des techniques cryptographiques.

Alors que le Bitcoin a introduit le concept de monnaie numérique décentralisée et a popularisé la technolo-

gie de la Blockchain à l’échelle mondiale, c’est Ethereum qui a véritablement révolutionné l’espace. Proposé

par Vitalik Buterin à la fin de 2013 et officiellement lancé en 2015, Ethereum a poussé le concept de la

blockchain au-delà des transactions de pair à pair. Ethereum a introduit l’idée des contrats intelligents, des

contrats qui s’executent automatiquement selon des termes prédéfinis par les parties et inscrits dans le code.

Cela a permis aux développeurs de créer des applications décentralisées (DApps) capables d’automatiser

et d’appliquer une large gamme d’accords et de fonctions, éliminant le besoin d’une autorité centrale. La

blockchain d’Ethereum est devenue une plateforme programmable, offrant un écosystème plus polyvalent

et étendu que la blockchain Bitcoin. Cette programmabilité a jeté les bases de la révolution de la DeFi,

marquant un changement de paradigme vers un système financier ouvert, sans permission et transparent qui

fonctionne sans avoir besoin d’autorités centrales.

Il existe plusieurs catégories de protocoles DeFi, chacune offrant des fonctionnalités spécifiques et des

services différents:

• Protocoles de prêt : Les protocoles de prêt permettent aux utilisateurs de prêter leurs crypto-actifs

pour percevoir des intérêts ou d’emprunter des crypto-actifs en fournissant des garanties, sans qu’il

soit nécessaire de recourir à des intermédiaires.

• Les échanges décentralisés (DEXs) : Ces plateformes facilitent l’échange de crypto-actifs de pair

à pair sans qu’une autorité centralisée ne soit nécessaire, offrant ainsi une plus grande autonomie et

une meilleure sécurité aux traders.

• Gestion d’actifs : Les protocoles DeFi pour la gestion des actifs permettent aux utilisateurs d’investir,

de diversifier et de gérer leurs portefeuilles de crypto-actifs de manière décentralisée, souvent par le

biais de stratégies automatisées ou d’échanges algorithmiques.

• Les Marchés de produits dérivés : Ces plateformes proposent des échanges décentralisés de pro-

duits dérivés, y compris des options, des contrats à terme et d’autres instruments financiers, permettant

aux utilisateurs de couvrir les risques ou de spéculer sur les mouvements de prix sans dépendre des

intermédiaires financiers traditionnels.
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• Les Organisations autonomes décentralisées (DAO) : Il s’agit d’entités régies par des contrats

intelligents et fonctionnant de manière autonome sur des réseaux de blockchain, permettant une prise

de décision et une allocation des ressources décentralisées au sein de l’écosystème DeFi.

• Paiements et transferts de fonds : Les solutions DeFi dans cette catégorie visent à fournir des

services de paiement et de transfert de fonds efficaces, peu coûteux et sans frontières, en s’appuyant

sur la technologie blockchain pour faciliter les transactions rapides et sécurisées à l’échelle mondiale.

La DeFi a connu une croissance exponentielle ces dernières années, devenant l’une des tendances les plus

importantes de l’écosystème des cryptomonnaies et de la blockchain. A l’heure que j’écris ces lignes, la valeur

totale bloquée (TVL) en DeFi s’élève à 94,276 milliards de dollars. Au sein de l’écosystème DeFi, les DEXs

et les protocoles de prêt dominent, représentant respectivement 30, 9% et 17, 1% de la part de marché (voir

Figure 1).

L’un des facteurs clés de la popularité de la DeFi est sa décentralisation. Contrairement aux systèmes fi-

nanciers traditionnels où des intermédiaires tels que les banques, les chambres de compensation et les courtiers

supervisent les transactions et la gestion des actifs, les protocoles DeFi fonctionnent sur des réseaux de

blockchain, permettant des interactions de pair-à-pair sans besoin d’intermédiaires. Cela permet non seule-

ment de réduire le risque de contrepartie, mais aussi d’améliorer la transparence et l’accessibilité, car toute

personne disposant d’une connexion internet peut y participer. Cette inclusivité ouvre des opportunités

financières aux individus qui sont mal desservis ou exclus du système bancaire traditionnel. De plus, la

DeFi offre une plus grande transparence par rapport à la finance traditionnelle. Les transactions sur les

réseaux blockchain sont immuables et vérifiables publiquement, ce qui permet aux utilisateurs d’auditer les

transactions et de suivre les fonds en temps réel. Un autre aspect important du DeFi est sa composabilité.

Les protocoles de DeFi sont conçus pour être interopérables, ce qui signifie que différents protocoles peuvent

être combinés ou empilés pour créer de nouveaux produits et services financiers. Cette composabilité fa-

vorise l’innovation et permet aux développeurs d’itérer et d’expérimenter rapidement de nouveaux produits

financiers. Les protocoles de DeFi offrent également aux détenteurs de cryptomonnaies la possibilité de

maximiser leurs rendements en fournissant des liquidités à certains protocoles DeFi, souvent sous forme de

prêts ou de fourniture de liquidité dans des pools de liquidités.

Bien que la DeFi offre de nombreuses opportunités, elle représente un tout nouveau paradigme financier,

doté de ses propres règles et fonctionnant de manière autonome. Par conséquent, il est impératif de mener

une analyse approfondie de la microstructure des marchés de ces plateformes. Il est essentiel de comprendre

leur fonctionnement dans des conditions variées et d’évaluer les risques systémiques qui existent au sein

de ces marchés. Sans une surveillance et une évaluation minutieuses, le potentiel attrayant de la DeFi
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pourrait être obscurci par des conséquences et des vulnérabilités imprévues. Ainsi, l’objectif de cette thèse

est d’approfondir la compréhension de ces marchés émergents et de contribuer à cette littérature en plein

essor sur la DeFi.

Le premier chapitre, intitulé SoK : Constant Function Market Makers, offre une analyse exhaustive des

teneurs de marché automatisés – Automated Market Makers (AMM) – dans le contexte des DEXs. Dans le

paysage en constante évolution de la DeFi, les AMM occupent une place centrale, en exploitant des protocoles

algorithmiques pour contourner les intermédiaires financiers traditionnels. Ce chapitre explore l’évolution

historique des AMM, retraçant leur évolution depuis leur création sur les marchés de prédiction jusqu’à

leur application actuelle dans des environnements décentralisés. Il met en lumière les travaux théoriques et

empiriques concernant les Constant Function Market Makers (CFMM), mettant en évidence leur capacité

à reproduire les instruments financiers traditionnels et à améliorer les avantages pour les traders et les

fournisseurs de liquidité. Enfin, ce chapitre aborde la question cruciale de la valeur extractible par les

mineurs (MEV) et ses implications pour les DEX, en proposant des solutions potentielles et en évoquant des

directions prometteuses pour de futures explorations dans ce domaine en constante évolution.

Dans le deuxième chapitre, nous nous concentrons sur le CFMM le plus populaire dans l’écosystème DeFi

: Uniswap. Uniswap est la plus grande plateforme d’échange décentralisée, facilitant les échanges directes

de crypto-monnaies de pair à pair, évitant ainsi le recours à des intermédiaires. Il est composé de plusieurs

pools de liquidités, chacun correspondant à une paire de crypto-actifs. Le prix auquel les deux actifs peuvent

être échangés est fixé algorithmiquement selon la formule du produit constant. Selon cette formule, après

chaque échange, le produit des nouvelles réserves doit demeurer égal au produit initial. La précision des prix

d’Uniswap repose sur la condition de non-arbitrage. Les prix des DEX devraient toujours tendre à s’aligner

avec ceux des CEX – considérés comme les prix de référence – car s’il y a une déviation, les traders peuvent

réaliser un profit en achetant un actif sur le marché d’échange où le prix est bas et en le vendant sur le

marché où le prix est élevé. Cependant, la mise en œuvre de ces stratégies d’arbitrage peut contraindre

les traders à ajuster leurs inventaires, les éloignant ainsi de leurs positions optimales. De tels ajustements

peuvent exposer les arbitrageurs à des risques et à des coûts qui peuvent impacter leur rentabilité globale.

Cette situation est d’autant plus marquée lorsque la taille du pool augmente, réduisant ainsi l’impact des

transactions sur les prix et entrâınant une augmentation significative des coûts d’inventaire. Si l’impact des

coûts des stocks sur les prix de transaction a été largement étudié dans la littérature traditionnelle sur la

microstructure des marchés, à ma connaissance, cette question n’a pas encore été explorée dans le contexte de

la DeFi. Ce chapitre développe un modèle de microstructure pour examiner l’impact des coûts d’inventaire

sur la précision des prix au sein d’Uniswap. Le modèle est ensuite testé à l’aide de données de prix de

clôture par minute sur les marchés Uniswap et Binance entre mai 2020 et décembre 2022, en se concentrant
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principalement sur la paire ETH-BTC. Les résultats confirment le modèle théorique, indiquant qu’au fur et à

mesure que le pool s’élargit, les traders deviennent moins réactifs aux opportunités d’arbitrage en raison des

risques d’inventaire accrus. Des volumes de transactions plus importants sont nécessaires pour influer sur les

prix Uniswap, ce qui nécessite des stocks d’inventaire plus importants et expose par conséquent les traders à

des risques de marché plus élevés. En étendant l’analyse à d’autres paires, il devient évident que les traders

opérant sur des paires de stablecoins, qui sont généralement indexées sur le dollar américain, présentent

généralement peu d’exposition aux risques de marché. Dans ce cas, les traders sont enclins à exploiter

plus facilement les opportunités d’arbitrage, ce qui conduit à une convergence des prix entre Uniswap et

les marchés centralisés (CEX). Dans ce chapitre, je vise à offrir une compréhension plus complète de la

microstructure du marché sur Uniswap et de ses conséquences potentielles pour les applications DeFi, afin

d’améliorer l’efficacité et la stabilité de l’écosystème DeFi.

Enfin, le troisième chapitre de cette thèse s’intéresse aux protocoles de prêt, en particulier à Compound

V2. S’il est largement admis que les systèmes financiers traditionnels sont vulnérables à la contagion par

divers canaux, tels que les ruées bancaires et les cascades de défaillances, les risques de contagion poten-

tiellement présents dans les protocoles DeFi restent relativement inexplorés. Dans ce contexte, le troisième

chapitre se concentre sur l’évaluation des risques systémiques dans Compound. Le protocole de Compound

gère plusieurs pools de liquidités, chacun étant dédié à des jetons spécifiques. Dans ce contexte, les four-

nisseurs de liquidités ajoutent des fonds aux pools, tandis que les emprunteurs retirent des fonds en déposant

des crypto-actifs en garantie dans d’autres pools. Ces interactions établissent un réseau de passifs financiers

interconnectant les différents pools de liquidités. Dans ce chapitre, nous décrivons une méthodologie pour

construire les bilans des pools de liquidité de Compound et utilisons cette méthodologie pour caractériser

son réseau financier complexe. Notre analyse révèle que les utilisateurs empruntent principalement des sta-

blecoins et participent à des activités de minage de liquidité (liquidity mining) pour gagner des jetons de

gouvernance de Compound. Dans un second temps, nous évaluons la résilience du protocole en nous inspirant

de la littérature contemporaine sur la contagion financière. Nous étudions la façon dont les chocs se propa-

gent dans le réseau financier de Compound via une série de tests de résistance. Nos résultats suggèrent que

si les défaillances en cascade restent possibles, elles nécessitent des chocs de prix importants. Notamment,

les pools contenant des stablecoins sont les plus susceptibles de faire défaut, tandis que ceux impliquant

des Bitcoins et des Ethers sont plus susceptibles de déclencher un effet domino. Cette étude vise à combler

un vide majeur dans la littérature sur les risques de contagion au sein des protocoles DeFi. Alors que les

recherches existantes se concentrent sur la décentralisation et l’interconnexion des divers protocoles DeFi,

notre étude se distingue en étant la première à analyser les risques de contagion et les effets de réseau au

sein des protocoles de prêt. Ce faisant, nous apportons une contribution unique au champ de la recherche en
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évolution constante sur la DeFi. De plus, notre approche s’aligne sur les recherches menées dans le contexte

plus général de la contagion financière, en s’appuyant sur des études approfondies sur la transmission des

chocs et de la détresse à travers les marchés financiers.
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General Introduction

This dissertation delves into the realm of Decentralized Finance (DeFi), examining the automated market

maker (AMM) paradigm, the market microstructure of decentralized exchanges (DEXs), and the systemic

risks within lending protocols. This introduction familiarizes readers with Blockchain Technology and DeFi.

It provides an overview of the subsequent chapters and highlights their collective contribution to understand-

ing and advancing the field of DeFi.

The 2008 global financial crisis was a breakdown of trust in traditional financial institutions. Institutions

deemed “too big to fail” were revealed to be vulnerable, engaging in risky practices that jeopardized the

stability of the global financial system. The crisis exposed the failure of centralized oversight and underscored

the need for transparency, accountability, and resilience in financial infrastructure.

In this climate of discontent and disillusionment with centralized systems, an individual, under the name

of Satoshi Nakamoto, published a white paper titled “Bitcoin: A Peer-to-Peer Electronic Cash System”.

This document introduced a revolutionary concept: a decentralized digital currency, the Bitcoin, that could

be exchanged directly between users without the involvement of any central authority. The Bitcoin network

was officially established on January 3, 2009, when Nakamoto mined the first block, known as the “genesis

block” or “Block 0”. Nakamoto’s proposal challenged traditional notions of currency and financial systems,

offering a vision of a more inclusive and transparent monetary network. This has been made possible through

the foundational technology of blockchain.

A blockchain is a distributed ledger that records transactions across a network of computers in a secure

and transparent manner. It consists of a chain of blocks, where each block contains a list of transactions.

These blocks are linked together using cryptographic hashes, ensuring the integrity and immutability of the

data. Once a block is added to the chain, any information within it cannot be modified.

The key features of blockchain include decentralization, transparency, immutability, and security. Decen-

tralization means there is no single point of control, consensus mechanisms (like proof-of-work or proof-of-

stake) are used to validate and verify transactions. This makes blockchain a tamper-resistant and trustless

system. Transparency comes from the fact that anyone can view the transactions recorded on the blockchain.
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Immutability ensures that once a transaction is recorded, it cannot be altered or deleted. And security is

maintained through cryptographic techniques.

While Bitcoin pioneered the concept of decentralized digital currency and introduced the world to

blockchain technology, it was Ethereum that truly revolutionized the space. Proposed by Vitalik Buterin in

late 2013 and officially launched in 2015, Ethereum took the concept of blockchain beyond peer-to-peer trans-

actions. Ethereum’s blockchain became a programmable platform, offering a more versatile and expansive

ecosystem compared to Bitcoin blockchain. Ethereum introduced the idea of smart contracts, self-executing

contracts with the terms of the agreement directly written into code. This allowed developers to create de-

centralized applications (DApps) that could automate and enforce a wide range of agreements and functions

without the need for a central authority. This programmability laid the foundation for the DeFi revolution,

marking a paradigm shift towards an open, permissionless, and transparent financial system that operates

without the need for central authorities.

DeFi protocols be categorized into several distinct areas, each offering unique financial services and

solutions:

• Lending protocols: Lending protocols enable users to lend their digital assets to earn interest or

borrow assets by providing collateral, without the need for intermediaries.

• Decentralized Exchanges (DEXs): These platforms facilitate the peer-to-peer exchange of digital

assets without the need for a centralized authority, providing greater autonomy and security for traders.

• Asset Management: DeFi protocols for asset management allow users to invest, diversify, and

manage their digital asset portfolios in a decentralized manner, often through automated strategies or

algorithmic trading.

• Derivatives Markets: These platforms offer decentralized derivatives trading, including options,

futures, and other financial instruments, allowing users to hedge risk or speculate on price movements

without relying on traditional financial intermediaries.

• Decentralized Autonomous Organizations (DAOs): These are entities governed by smart con-

tracts and run autonomously on blockchain networks, enabling decentralized decision-making and

resource allocation within the DeFi ecosystem.

• Payments and Remittances: DeFi solutions in this category aim to provide efficient, low-cost, and

borderless payment and remittance services, leveraging blockchain technology to facilitate fast and

secure transactions globally.
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DeFi has experienced an explosive surge in popularity over the past few years, emerging as one of the

most significant trends within the cryptocurrency and blockchain space. At the time of writing, the Total

Value Locked (TVL) in DeFi stands at $94.276 billion. Within the DeFi ecosystem, DEXs and lending

protocols dominate, accounting for 30.9% and 17.1% of the market share, respectively (see Figure 1).

Figure 1: Total Value Locked (TVL) by category (%) in March 2024.
Source: https://www.tastycrypto.com/blog/top-defi-tokens.

One of the key factors driving the popularity of DeFi is its decentralization. Unlike traditional financial

systems where intermediaries such as banks, clearinghouses, and brokers oversee transactions and asset man-

agement, DeFi protocols operate on blockchain networks, enabling peer-to-peer interactions without the need

for intermediaries. This not only reduces counterparty risk but also enhances transparency and accessibility,

as anyone with an internet connection can participate in DeFi activities. This inclusivity opens up financial

opportunities to individuals who are underserved or excluded from the traditional banking system. Moreover,

DeFi offers greater transparency compared to traditional finance. Transactions on blockchain networks are

immutable and publicly verifiable, allowing users to audit transactions and track funds in real-time. Another

significant aspect of DeFi is its composability. DeFi protocols are designed to be interoperable, meaning that

different protocols can be combined or stacked together to create new financial products and services. This

composability fosters innovation and allows developers to rapidly iterate and experiment with new financial

products. DeFi protocols also offer cryptocurrency holders the opportunity to maximize their returns on

their crypto assets by providing liquidity to decentralized exchanges or participating in liquidity pools.

While DeFi presents numerous opportunities, it is a completely new financial paradigm with its own

set of rules and self-regulated. Therefore, it is imperative to thoroughly analyze the market microstructure

of these platforms. Understanding how their properties function under various conditions and assessing

the systemic risk within these markets is crucial. Without careful examination and oversight, the allure

of DeFi’s potential could be overshadowed by unforeseen consequences and vulnerabilities. Therefore, this

thesis endeavors to attain a deeper comprehension of these emerging markets and to enrich the burgeoning
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literature on DeFi.

The first chapter, entitled SoK: Constant Function Market Makers, provides a comprehensive examina-

tion of Automated Market Makers (AMMs) within the realm of DEXs. In the dynamic landscape of DeFi,

AMMs play a pivotal role, leveraging algorithmic protocols to supplant traditional financial intermediaries.

This chapter delves into the historical genesis of AMMs, tracing their evolution from their inception in pre-

diction markets to their contemporary application in decentralized environments. The chapter underscores

the theoretical foundations and empirical insights concerning CFMMs, elucidating their capacity to replicate

traditional financial instruments and enhance the benefits for traders and liquidity providers. Moreover, it

explores the competitive dynamics between centralized and decentralized exchanges, addressing the motiva-

tions for trading and liquidity provision. Lastly, the paper addresses the crucial issue of Miner Extractible

Value (MEV) and its implications for DEXs, proposing potential solutions and outlining promising avenues

for further exploration in this evolving domain.

In the second chapter, The Market Microstructure of Uniswap, our focus shifts towards the most popular

CFMM in the DeFi ecosystem: Uniswap. Uniswap is the largest decentralized exchange, facilitating direct

peer-to-peer cryptocurrency transactions, effectively bypassing the need for intermediaries. It is composed of

multiple liquidity pools, each corresponding to a pair of crypto assets. The price at which the two assets can

be exchanged is set algorithmically according to the constant product formula. This formula states that once

an exchange is done, the product of the new reserves should remain at its pre-trade value. The accuracy

of Uniswap’s prices hinges on the fulfillment of the no-arbitrage condition. The prices on DEXs should

always converge with those on CEXs – considered as the reference market prices – because any deviation

presents an opportunity for traders to capitalize on price differentials by buying assets where prices are

lower and selling them where prices are higher. However, executing such arbitrage strategies may require

traders to adjust their inventory levels, potentially deviating from their desired positions. Such discrepancies

can expose arbitrageurs to risks and expenses that impact their overall profitability. This effect becomes

especially pronounced as the pool size increases, leading to a reduction in the price impact of trades and a

significant increase in inventory costs. While the impact of inventory costs on transaction prices has been

extensively explored in traditional market microstructure literature, to the best of my knowledge, there has

been no prior attempt to investigate this phenomenon within the context of DeFi. This chapter develops a

microstructure model to examine the influence of inventory holding costs on price accuracy within Uniswap.

The model is then estimated using 1-minute closing price data from Uniswap and Binance markets spanning

from May 2020 to December 2022, primarily focuses on the ETH-BTC pair. The findings support the

theoretical model, indicating that as the trading pool expands, traders become less responsive to arbitrage

opportunities across markets due to heightened inventory risks. Larger trades are required to impact Uniswap
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prices, necessitating increased inventory holdings and consequently exposing traders to greater market risks.

When broadening the scope of analysis to include other pairs, it becomes evident that traders operating in

markets with stablecoin pairs, which are pegged to the US dollar, typically encounter minimal exposure to

market risks. In such cases, traders are inclined to exploit arbitrage opportunities more readily, leading to a

convergence of prices between Uniswap and centralized exchanges (CEXs). In this chapter, I aim to offer a

more comprehensive understanding of the market microstructure on Uniswap, and its potential consequences

for DeFi applications, ultimately enhancing the efficiency and stability of the DeFi ecosystem.

Finally, the third chapter, entitled Contagion in Decentralized Lending Protocols: A Case Study of Com-

pound, directs its attention towards lending protocols, evaluating systemic risks within Compound V2. While

it is widely acknowledged that traditional financial systems are vulnerable to contagion through various chan-

nels,such as bank runs and default cascades, the contagion risks potentially present in DeFi protocols remain

relatively unexplored. Compound protocol manages multiple liquidity pools, each dedicated to specific to-

kens. Within this framework, lenders contribute liquidity to pools, while borrowers withdraw liquidity by

pledging collateral in other pools. These interactions establish a network of financial liabilities interconnect-

ing the various liquidity pools. In this chapter, we outline a methodology for constructing the balance sheets

of Compound’s liquidity pools and use this methodology to characterize its intricate financial network. Our

analysis reveals that users predominantly engage in borrowing stablecoins and participating in liquidity min-

ing activities to earn Compound’s governance token. Subsequently, we evaluate the protocol’s resilience by

drawing inspiration from contemporary literature on financial contagion We explore how shocks propagate

through Compound’s financial network via a series of stress tests. Our findings suggest that while cascading

failure remains a possibility, it necessitates substantial price shocks. Notably, pools containing stablecoins

are most susceptible to default, while those involving Bitcoins and Ethers are more likely to trigger a domino

effect. This research addresses a critical gap in the literature regarding the potential for contagion risks

within DeFi protocols. While existing studies explore the decentralization and interconnectedness of various

DeFi protocols, our paper pioneers the investigation of contagion risks and network effects within lending

protocols, adding a unique dimension to the evolving field of DeFi research. Additionally, our approach aligns

with research in the broader context of financial contagion, drawing on extensive studies on the transmission

of shocks and distress across financial markets.
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Chapter 1

SoK: Constant Function Market

Makers1

Co-written with Michele Fabi and Julien Prat.

Abstract

We provide an overview of the academic literature on Automated Market Makers for Decentralized Ex-

changes. Our review puts an emphasis on contributions from researchers in economics and finance. We cover

papers that study the optimal design of Automated Market Makers. Then we discuss models that leverage

the insights from the literature on two-sided markets to characterize the equilibrium size of liquidity pools

and the incentives of liquidity providers. Finally, we review recent research on the interactions between

Miner Extractible Value and Decentralized Exchanges.

Keywords: constant function market makers, automated market makers, decentralized exchanges, miner

extractable value.

JEL Classification: G14, D82

1Forthcoming: Chapter 10 in “A Companion to Decentralized Finance, Digital Assets, and Blockchain Technologies” edited
by Edward Elgar Publishing Ltd.
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1.1 Introduction

The advent of blockchain technologies has given rise to a fast-growing stream of financial innovations gath-

ered under the term Decentralized Finance (DeFi). They rely on blockchains and smart contracts to provide

decentralized implementations of financial services. The main promise of DeFi is to replace human interven-

tions, and all the moral hazard that they entail, with algorithmic protocols. At its most ambitious, DeFi

attempts to do away with the trust in financial intermediaries upon which the legacy system is built.

One the most important building blocks of DeFi are Automated Market Makers (AMMs), algorithms

that pool resources to run decentralized exchanges. Although the first AMMs were invented in the 80’s,

long before the popularization of blockchains, they are currently receiving much attention as their modern

upgrades are particularly suited to running decentralized exchanges. Due to their growing adoption, AMMs

are also becoming the focus of renewed academic scrutiny.

This chapter provides an overview of the emerging literature on AMMs. It looks at the history of

automated market-making to provide some perspective, and then reviews recent innovations. AMMs were

first introduced in prediction markets to substitute human intermediaries with algorithmic rules. Their aim

was to elicit information about the beliefs of participants, rewarding them for making correct predictions.

We explain how researchers were able to derive clear connections between the AMM prices, the cost function

of the market maker, and risk-neutral security pricing.

AMMs for prediction markets were theoretically motivated, their practical implementation being grounded

in explicit principles. By contrast, AMMs for DeFi were introduced by practitioners who adopted heuristic

solutions to solve the challenges of decentralized market-making. The new type of AMMs that have nowadays

almost completely superseded limit order books (LOBs) in decentralized environments are Constant Func-

tion Market Makers (CFMMs). Instead of relying on complex matching mechanisms, CFMMs determine

asset prices using a deterministic trading function of their inventory. Liquidity providers adjust the level of

this trading function by supplying or withdrawing liquidity. Traders swap their assets with the CFMM in a

way that keeps the trading function constant.

We present the burgeoning literature that studies the theoretical properties of CFMMs as well as several

empirical papers testing its predictions. Our review illustrates that, in spite of their simplistic approach,

CFMMs possess several desirable features. First, they satisfy the oracle property as their equilibrium in the

absence of arbitrage opportunities tracks market prices. Also, under a set of reasonable design restrictions,

CFMMs can be fine-tuned so as to replicate the payoffs that liquidity providers would obtain from investing

in traditional financial instruments. The joint surplus of traders and liquidity providers can be optimized

by adjusting the curvature of the trading function: Curved functions are more suited to pools of volatile
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assets, whereas flatter functions are more suited to stable, mean-reverting assets such as stablecoins. We

explain how these findings follow from standard microeconomic principles since the problem of arbitrageurs

is isomorphic to the derivation of the compensated demand function in consumer theory (Fabi and Prat,

2022).

After having discussed the optimal design of CFMMs, we survey the literature that studies the compe-

tition between centralized and decentralized exchanges. Decentralized protocols have grown exponentially

over the last years, becoming serious competitors to centralized exchanges that operate mostly through limit

order books. A recent line of research investigates how traders and liquidity providers allocate their assets

across these two types of exchanges. It builds on the market microstructure literature and identifies several

motives and counter-motives for liquidity provision and trade. Trade is motivated either by exogenous mo-

tives, resulting in noise trading, or by arbitrage. Liquidity provision is motivated by returns from fees and

capital gain on reserves, but discouraged by adverse selection costs, intrinsic to all types of AMMs. Adverse

selection arises because providers lock their funds in the AMM, which prevent them from swiftly reacting

to price shocks. Adverse selection costs depend on the relative amount of informed to noise trading. In

Centralized Exchanges (CEXes), adverse selection is measured by the signal-to-noise ratio. In Decentralized

Exchanges (DEXs), adverse selection is measured by the impermanent loss, a function of the curvature of

the trading function. The literature highlights that competition among trading platforms leads to a stable

equilibrium distribution of liquidity and explains empirical distribution of liquidity in popular DEXs such

as Uniswap.

The last branch of literature addresses issues related to privacy and, more specifically, to Miner Ex-

tractible Value (MEV), a fundamental challenge for all trades processed on a public blockchain. MEV is the

profit that malicious bots can make by defrauding users using insider information. Doing so on a blockchain

is particularly easy since transactions are stored in a public memory pool. We present the literature docu-

menting the significance of MEV for popular DEXs and the solutions that have been proposed to alleviate

this problem. The last section concludes by discussing promising directions for further research.

1.2 AMMs For Prediction Markets

AMMs predate the advent of decentralized finance. They were first introduced to streamline prediction

markets, i.e. securities markets whose primary objective is to aggregate information about probabilities of

future events, such as election results or weather forecasts.2 Algorithmic solutions are deemed promising

because they have the potential to alleviate the thin market problem that often beleaguers prediction markets.

2Prediction markets are also called information markets. Successful examples include Iowa electronic markets and the
Hollywood stock exchange.
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The traditional way to foster market liquidity is to rely on the intermediation of professional market

makers who act as counterparties to buy and sell orders. AMMs raise the possibility of replacing human

market makers with automated algorithms. In order to provide a workable solution, the algorithm has to

solve the two following challenges. First, information must be elicited. Traders who interact with the AMM

should find it optimal to reveal their beliefs about the probability distribution of future events. Second, the

algorithm has to aggregate opinions by producing an estimate which summarizes the information revealed

by all the previous trades.

1.2.1 Information elicitation

The information elicitation problem was analyzed long before the creation of prediction markets. Consider an

agent who entertains the belief p about the distribution of the random variable X. The elicitation mechanism

asks the agent to report a distribution r based on the knowledge that she will receive the reward ci = s(r,Xi)

if Xi turns out to be the true state of X. The design problem consists in finding a scoring rule s(r,Xi) such

that

p = argmax
r

Ep[s(r,Xi)], (1.1)

where Ep is the expectation operator associated to the agent’s belief p. A rule s(r,Xi) that satisfies eq. 1.1

is called a proper scoring rule since the best response of the agent is to truthfully report her belief p.

A naive approach would consist in replacing the score with the reported probability, so that s(r,Xi) = ri.

However, this rule does not induce truthful reporting. It is not a proper scoring rule because its linearity

induces the forecaster to place all probability weights on the events that she deems the most likely to occur.

Truthful reporting therefore excludes linear rules. But does it identify a unique solution? Unfortunately

no. The quadratic scoring rule proposed by Brier (1950) was quickly followed by Good (1952)’s introduction

of the logarithmic scoring rule. These two seminal contributions spurred a research agenda whose objective

was to provide additional criteria for the selection of scoring rules. For instance, Winkler (1969) showed that

Good’s logarithmic rule is the only rewarding scheme which allows the designer to use standard likelihood

methods for the evaluation of the forecaster’s performance. As we will show below, the need to come up

with additional criteria to narrow down the design space remains one of the main motivations for ongoing

research on AMMs.

1.2.2 Information aggregation

Since proper scoring rules elicit beliefs, why shouldn’t we harvest the wisdom of crowds by combining beliefs

elicited from multiple forecasters? The answer from the literature on opinions pooling is full of caveats
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(see, for instance, Genest and Zidek, 1986), showing that more often than not, the pooled distribution is

indistinguishable from one of the individual distributions.

The difficulty to pool opinions explains why it remains common for forecasts to rely on the advice of a

single expert. Prediction markets, on the other hand, do not shy away from the information aggregation

challenge. Instead of trying to compute one summary statistics out of disparate beliefs, they leverage the

economic incentives of forecasters. Betting markets indicate that individuals are willing to place wagers on

future events and that they use each other’s bets to update their priors, resulting in reliable probability

estimates (Hausch, 1994).

A market structure similar to that of betting markets can be algorithmically emulated. As originally

proposed by Hanson (2003, 2007), the first step consists in using scoring rules sequentially so as to construct

a market scoring rule. The state of the market scoring rule is equal to the report r of the last person that

has interacted with the rule. The state is public information and anyone can update it by submitting a

new report. Once the actual value Xi is revealed, the payout Π to the agent that made the n-th update

is equal to Π(rn, Xi|rn−1) = s(rn, Xi) − s(rn−1, Xi). Given that agents cannot modify the previous report

rn−1, maximizing one’s expected payoff amounts to maximizing the expected value of s(rn, Xi), which is

equivalent to solving eq. 1.1. Hence, when the scoring rule s is proper, agents whose beliefs differ from the

last report are incentivized to update it by submitting their own truthful report.

Although market scoring rules achieve our goal of sequentially eliciting truthful forecasts, their imple-

mentation is not very user-friendly. Reports are not standard bets as agents have to submit probability

distributions.3 A more natural implementation would allow traders to buy and sell securities whose payoffs

are attached to the realization of specific outcomes. This is where the introduction of cost functions becomes

useful. More specifically:

1. Let N denote the number of mutually exclusive and exhaustive outcomes of the random variable X to be

predicted. The AMM offers to trade N distinct securities, each paying $1 per share if its corresponding

outcome is realized.

2. The AMM cost function C(q) returns the total amount of money spent by traders as a function of the

vector q that keeps track of the overall number of shares held for each of the N securities. The AMM

quotes a marginal price pi(q) for security i that is equal to ∂C(q)/∂qi.

3. Anyone can at any time buy or sell shares. The AMM charges C(q′) − C(q) for a trade that changes

the number of outstanding shares from q to q′.

3Another implementation challenge arises from the fact that payoffs are negative in some states of the world. The market
scoring rule therefore has to be complemented with an escrow mechanism requesting from each forecaster that they deposit an
amount equal to their losses in the worst-case scenario, i.e. minXi

Π(rn, Xi|rn−1).
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4. Once the outcome is realized, the traders that bought the winning security receive $1 per share from

the AMM, while those that did not receive nothing.

The connection between cost functions and market scoring rules is not obvious. Yet, Chen and Pennock

(2012) shows that the cost function can always be chosen so as to replicate the incentives of participants

interacting with a market scoring rule. The equivalence holds under the additional constraint that the vector

of marginal prices belongs to its probability simplex, i.e.
∑N

i=1 pi(q) = 1 for all q ∈ RN
+ . This restriction

ensures that the price of a security indicates the probability of its predicted outcome.

The most popular cost function is the one associated to the logarithmic market scoring rule s(r,Xi) =

b · log(ri). It reads C(q) = b · log(
∑N

i=1 exp(
qi
b )). The coefficient b > 0 is called the liquidity parameter

because it controls the elasticity of the price response of the AMM: The larger b is, the less reactive prices

are, and so, the more liquid the AMM is. Then, given that the owner of the AMM chooses the value of b,

shouldn’t she set it as high as possible? The reason why one should refrain from doing so is that the liquidity

parameter also controls the amount of money that the AMM can lose. A fundamental property of market

scoring rules is that, although running an AMM might be costly, the losses can usually be bounded ex-ante.

For the logarithmic market scoring rule, the worst-case loss, b · log(N), is linearly increasing in b.4 Hence

the owner of the AMM faces a fundamental trade-off between risk exposure and market liquidity.

Another result in Chen and Pennock (2012) that yields intriguing connections between prediction markets

and DeFi is their construction of utility-based market makers. Consider a market maker with utility function

U for money and subjective prior about the distribution of the random variable X. A constant utility cost

function charges users the exact amount that keeps the market maker indifferent between accepting and

declining the trade. Accordingly, “the market maker starts the market with some initial expected utility and

then keeps this expected utility level during the whole process of trading” (Chen and Pennock, 2012, p.51).

It turns out that a broad class of market scoring rules5 satisfies this constant utility requirement when the

market maker displays hyperbolic absolute risk aversion. This equivalence result provides a microfoundation

for the parametric specification of the AMM, making it possible to directly import the market maker’s priors

into prices. We will see below that obtaining similar results for CFMMs is one of the main open questions

of DeFi.

4Note that the worst-case loss is independent of the number of forecasts because the AMM only has to pay the last
trader. This result immediately follows from the definition of the AMM’s overall payout:

∑T
n=1 s(r

n, Xi) − s(rn−1, Xi) =
s(rT , Xi)− s(r0, Xi), where T is the index of the last trader.

5More precisely, weighted pseudospherical scoring rules, as defined by Jose et al. (2008), which include logarithmic scoring
rules as one of their limit cases.
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1.3 CFMMs and Decentralized Finance

The previous section illustrates how research on AMMs for prediction markets progressed in a systematic

way. Starting from a well-defined problem, researchers used scoring rules as building blocks to clarify and

streamline the design of AMMs. The emergence of AMMs in decentralized finance followed a completely

different process. To fully grasp the motivation behind the introduction of CFMMs, it is instructive to go

back to their genesis in a proposal first floated by Buterin (2016). The rationale for introducing CFMMs

was not to tackle a clear conceptual problem but rather to expediently solve some practical challenges posed

by market-marking on blockchains that limit-order books were not able to address.

1.3.1 Motivation for CFMMs

Blockchains have many promises but, as of today, most applications are centered on DeFi. Their fundamental

benefit is to algorithmically handle the settlement and enforcement of contracts, thereby avoiding the risks

and costs associated to financial intermediation. Decentralized exchanges such as Uniswap, Sushiswap and

Curve constitute the core of DeFi. They leverage blockchain infrastructures to allow their users to swap

digital assets “atomically” (i.e., without counterparty risk).

Traditional AMMs and LOBs are not suited to these limitations because they require many iterations

to perform simple asset transfers (Angeris et al., 2022).6 The inefficient usage of resources entailed by

traditional market structures is not only costly to the traders directly involved in a transaction, but also

generates a negative externality on all blockchain users.

CFMMs use a simple, minimalist approach to improve resource efficiency: They only need to keep track

of a liquidity pool and its reserve vector R ∈ RN
+ for the N tradable assets. The fact that CFMMs’ internal

states are small relative to LOBs makes them extremely light, as can be seen from their publicly accessible

codes.7 We now explain how the smart contracts of CFMMs price swaps using a deterministic function of

the reserves.

1.3.2 Functioning of CFMMs

The market actors that interact with a CFMM classify broadly according to two roles. On the one hand,

liquidity providers (LPs) determine the size of the liquidity pool. They can inject additional reserves but do

not affect the relative share of the assets listed in the pool. In exchange, they obtain shares of the liquidity

6A CFMM takes constant memory to operate and constant time to process each trade. On the contrary, the memory and
time taken by a LOB to process a set of trades scale linearly and quadratically in the number of trades to be processed.

7The codes for Uniswap’s smart contract can be found at https://github.com/Uniswap.
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pool in the form of LP tokens. These LP tokens, besides giving liquidity providers the right to withdraw the

pool’s reserves in proportion to their shares, also allow them to collect trading fees.

On the other side of the market, traders or users interact with the CFMM by supplying some assets and

withdrawing others. The amount of output O ∈ RN
+ a trader is entitled to receive is determined by his input,

I ∈ RN
+ , and the CFMM’s reserves R so as to keep the trading function constant at its pre-trade value. That

is,

f(R−O + I) = f(R).

The trading function f is usually positive, smooth, strictly increasing, and strictly quasi-concave. These are

very convenient properties as we will see in the next paragraphs.

The level curve of f attained at current reserves is often called bonding curve. In relation to the trading

function, the division of interactions between the CFMM and market actors can be described as follows:

Liquidity providers shift the CFMM to a different bonding curve, while traders move reserves along a fixed

bonding curve (see Figure 1.1).

Figure 1.1: Bonding curve movements.

In practice, some CFMMs implement additional operations besides liquidity provision and swap as de-

scribed above, making the classification of market actors blurrier.8 It is nevertheless useful to keep in mind

the provider-trader dichotomy as a benchmark.

CFMMs usually charge traders with a proportional fee, 1 − γ ∈ [0, 1), on their trades. In this case, the

output O the traders receive for an input of I assets will be determined by counting only γI of the input

in the trading-function equality, so that f(R − O + γI) = f(R). The other (1 − γ)I will directly feed the

8For example, some CFMMs (e.g., Bancor) implement a “unilateral liquidity provision” functionality for supplying reserves
only of part of the supported assets. We can treat unilateral liquidity according to our binary classification as a composed
operation, made of balanced liquidity provision and subsequent swap. Also, as explained below, a swap that charges transaction
fees can be thought of as a composed operation.

31



liquidity pool’s reserves, which after the swap will amount to R′ = R−O+ I > R−O+γI for γ > 0. Notice

that for f strictly increasing, f(R′) > f(R − O + γI) = f(R). Transaction fees therefore shift the bonding

curve upwards owing to the increased liquidity in the pool.

CFMM Launch Trading function #pools TVL Blockchain(s)
Curve Jan. 2020 Stableswapi 257 $5.88b Ethereum, Polygon,

Arbitrum, Optimism,. . .
Uniswap Nov. 2018 CPMMii 1239 $4.3b Ethereum, Polygon,

Arbitrum, Optimism, Celo
Pancakeswap Sept. 2020 CPMM 108 $2.92b BSC
Balancer March. 2020 G3MMiii 186 $1.83b Ethereum, Polygon,

Arbitrum
Sunswap Jan. 2022 CPMM and 237 $962.59m TRON

Stableswap (for stablecoin pools)
Sushiswap Sept. 2020 CPMM 688 $831.22m Ethereum, Arbitrum,

Polygon, Harmony,
Gnosis,. . .

VVS Finance Nov. 2021 CPMM 18 $451.47m Cronos
DeFichain DEX May 2020 CPMM 57 $314.3m DefiChain

BiSwap May 2021 CPMM 87 $273.11m BSC
Osmosis June 2021 Customizableiv 261 $220.68m Osmosis

i Stableswap:f(R) = α
∑N

i=1 Ri − β(ΠN
i=1Ri)

−1, for α ≤ 0, β ≤ 0.
ii CPMM:f(R) = R1 ·R2.
iii G3MM:f(R) = ΠN

i=1R
wi
i , for

∑N
i=1 wi = 1.

iv Customizable: Can be customized in each liquidity pool.

Table 1.1: Top-10 CFMMs by Total Value Locked (TVL).

Example: Uniswap. The most popular type of CFMM is the Constant Product Market Maker

(CPMM) introduced by Uniswap, a DEX organized as a collection of liquidity pools for asset pairs. CPMMs

use the trading function f(R) = R1 · R2. The quantity I1 of asset 1 required by the CFMM to output O2

units of asset 2 is therefore given by

I1 = O2
R1

R2 −O2
. (1.2)

The CFMM determines the terms of swap among assets though the quantity function q : R×RN
+ → R (Angeris

and Chitra, 2022). q(∆2;R) is the purchase cost of ∆2 units of asset 2; i.e., in eq. (1.2), I1 = q(O2;R).
9

Conversely, q(−∆2;R) is the sale revenue for the converse operation.10

Notice that in eq. 1.2, I1 = q(O2;R) is increasing in R1 and O2, but decreasing in R2. This is on purpose

since the CFMM has to incentivize users to keep the pool balanced, making it expensive to drain reserves

and cheap to refurnish them when they are scarce. Moreover, the quantity function is convex in O2 and

9In the two-asset case, some authors define q using asset 1 rather than asset 2 as the output asset.
10The quantity function for a swap among generic assets ij has additional inDEXs qij(∆j).
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makes total reserve depletion impossible as

d

dO2
q(02;R) > 0,

d2

dO2
2

q(02;R) > 0, (1.3)

and lim
O2→R2

q(02;R) =∞

The properties in eq. 1.3 can be summarized as convex pricing. The marginal price, or simply price dI1/dO2

(of asset 2) is given by:

p(R) ≡ p = lim
O2→0

q(O2;R)

O2
=
R1

R2
.

More generally, the vector of prices quoted by a CFMM is proportional to the gradient of the trading function,

i.e., p = λ▽f(R), where λ > 0 is a scaling constant. This means that marginal prices are proportional to the

slope of the supporting hyperplane of the trading set {(I,O) : f(R+ I −O) ≤ f(R)}; i.e. the set of trades

that keep the market maker weakly above its bonding curve (see Figure 1.2 that shows the trading set in

the shaded region and its supporting hyperplane at given reserves). Taking asset k as numeraire, so that

pk = 1, and setting λ = 1/▽kf(R), we get pi = ▽if(R)/▽kf(R) for all i = 1, . . . N (Angeris et al., 2020;

Fabi and Prat, 2022).

Figure 1.2: CFMM pricing.

1.3.3 Properties of CFMMs

The organizing principles of CFMMs are still eluding researchers. This situation is largely explained by

the fact that CFMM were not introduced to solve a clear problem but instead to expediently address some

practical challenges. Despite research being still in its infancy, some promising contributions have been made

over the last few years.
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The pioneers of research on CFMMs are Angeris et al. (2020, 2021a, 2021b, 2021c, 2021d, 2021e, 2022).

They point out that much can be gathered about the behavior of CFMMs by studying the shape of their

trading sets.

Price Oracle

The first topic these authors analyze is the decentralized oracle problem. A CFMM solves the decentralized

oracle problem if its price closely tracks the fundamental price, usually assimilated to the price on a centralized

exchange such as Binance. Decentralized oracles are of great value for the ecosystems hosted by a blockchain.

Thanks to them, other DeFi applications can read prices directly on-chain, thereby avoiding a potential

single-point-of-failure originating from the interaction with external applications. This is why major DEXs

implement a price oracle API that retrieves their historical price averages.11

Angeris and Chitra (2020) show that if the trading set is convex, i.e. if the trading function is strictly

quasi-concave, the CFMM does have a unique no-arbitrage equilibrium in which the CFMM tracks the

reference price.

To illustrate how the no-arbitrage condition ensures that the CEX and the DEX quote the same price,

consider Uniswap’s CFMM with reserves R1,R2. Suppose that asset 1 is the numeraire and the CEX quotes

a market price of p for asset 2. Suppose also that both DEX and CEX charge no fees. Now, whenever

p ̸= R1/R2 , an arbitrageur can profit from trading across the DEX and the CEX. For p > R1/R2 , asset

2 is underpriced in the DEX. The arbitrageur can then swap asset 1 for asset 2 on the DEX and sell it to

the CEX, cashing in the price difference. If p < R1/R2 , then asset 1 is underpriced in the DEX, leading

to a symmetric arbitrage opportunity. A strictly convex trading set guarantees that there exists a unique

post-arbitrage reserve level with the implied price matching that of the CEX. Note that the oracle property

is robust to the addition of transaction fees γ in the DEX. More precisely, fees cause the DEX price pDEX

to track the CEX price pCEX within tight bounds, pDEX ∈ [γpCEX , γ−1pCEX ].

Angeris et al. (2021e) simulate the price-oracle property for Uniswap using agent-based techniques. Other

authors provide empirical evidence with real-world data. Lo and Medda (2021), use an ARDL-ECM (Autore-

gressive Dynamic Lag Error Correction Model) to estimate the cointegrating relationship between Uniswap’s

ETH-USDT exchange rate and the exchange rates for the same pair offered by several centralized exchanges.

Lehar and Parlour (2021) find that price differences between Binance and Uniswap are usually below 1%

when liquidity is abundant.

The empirical literature also investigates the discovery of fundamental prices directly on DEXs. A market

discovers the fundamental price of an asset when its quoted price is efficient (i.e., it reflects the value of the

11For Uniswap the price oracle API can be retrieved at: https://docs.uniswap.org/protocol/concepts/V3-overview/oracle.
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asset). When a DEX quotes fundamental prices, not only those prices and the ones posted by coexisting

CEXes are close under no arbitrage, but the DEX itself becomes the reference market. In other words, the

CEXes adjust their prices towards the ones quoted by the DEX, not the other way around. Han et al. (2021)

argue that Binance traders do indeed consider Uniswap prices as efficient. Specifically, they show that when

liquidity provision on Uniswap increases, Binance traders tend to gravitate more towards Uniswap’s price,

whereas Uniswap traders become less sensitive to Binance’s price.

Fabi and Prat (2022) highlight a striking equivalence among the CFMM’s no-arbitrage equilibrium and the

expenditure minimization problem (EMP) in microeconomic theory. For a bonding curve set at f(R) = K,

they show that equilibrium reserves equal the Hicksian demand h(p;K) of a consumer given indirect utility

K and commodity prices p. The LP value function (i.e., the value of the pool) equals the expenditure

function V (p;K) under the same interpretation as before. From now on, we omit to state the level of the

trading function (i.e., the indirect utility in the EMP) when unnecessary, and just write h(p) and V (p).

CFMMs equivalence

Angeris and Chitra (2020) study the classification of CFMMs. They find that two CFMMs are equivalent

if their trading functions generate the same trading sets. This is intuitive since trading functions and their

bonding curves are designed to represent trading sets, in the same way that utility functions represent

preferences or transformation functions represent production processes in microeconomic theory (Mas-Colell

et al., 1995, chapters 3 and 5). More formally, two CFMMs with trading functions f and g are equivalent if

f = v ◦ g where v is a monotonically increasing function.

Accordingly, under some specific parametrization, Uniswap and its multi-asset generalization Balancer

are actually indistinguishable. Balancer uses the trading function

f(R) = ΠN
i=1R

wi
i (1.4)

with weights wi ∈ (0, 1) :
∑
wi = 1. For N = 2 and w1 = w2 = 1

2 , the Uniswap trading function g(R)

can be written as

g(R) = [R
1
2
1 R

1
2
2 ]

2 = [f(R)]2,

thus proving the equivalence with Balancer for this parametrization, while, for wi ̸= 1
2 , the equivalence

breaks down.
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Optimal curvature

As previously stated, CFMM pricing should discourage traders to create excessive movements in the pools’

reserves. This is especially important to limit the cost of adverse selection for liquidity provision, originating

whenever an arbitrageur takes advantage of a discrepancy between the CFMM’s prices and the prices quoted

in the reference market. In DeFi jargon, the cost of adverse selection is called Impermanent Loss (IL).

A way to mitigate excessive arbitrage, and thus impermanent losses, is by having trading functions that

induce convex pricing, as in the case of Uniswap (eq. 1.3). This requires positive slippage, defined as the

derivative of the price with respect to output; i.e. for a two-assets pool,

d

dO2
p(R1 + q(O2;R), R2 −O2) > 0.

Angeris et al. (2022) and Fabi and Prat (2022) show that slippage is positive if the trading sets are

convex, a property that is satisfied if and only if the trading function is strictly quasi-concave or if it exhibits

positive Gaussian curvature.

Some curvature in the trading function is thus desirable to create slippage and limit the harms of arbitrage,

but excessive curvature can discourage traders. What is then the optimal curvature of a trading function?

The answer that Angeris et al. (2022) provide is that low-curvature CFMMs are more suited to low-volatility,

mean-reverting assets, such as stablecoins, whereas high-curvature CFMMs are most suited to volatile assets.

Trading of the first asset type is not information-driven, hence reserves are likely to move according to small

random shocks that pose little risk of depletion. In this context, it is natural to let swaps take place at low

slippage. On the other hand, trading of volatile assets is more susceptible to arbitrage, which can cause

large reserves movements and harm liquidity providers. In this case, setting a higher slippage via curvature

shields LPs. Optimal CFMM curvature resembles classical results in the order-book literature (Glosten and

Milgrom (1985)). In that context, to reduce adverse selection, market makers eliminate excessive orders.

Analogously, in CFMMs, the smart contract discourages excessive trading by implementing a steeply curved

trading function.

Given that the slippage of any convex price function can be bounded from below using a linear function

of the traded tokens, Angeris et al. (2022) uses this lower bound to compute the maximum trade size that

makes liquidity provision profitable.

The main takeaway from analyzing CFMM curvature and LP returns is that an optimal CFMM should

adjust curvature dynamically based on the volatility of their traded assets (Krishnamachari et al., 2022).

To the best of our knowledge, Krishnamachari et al.’s design has not yet been implemented. However,
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alternative dynamic curves are already used by some recent AMMs.12

Replication

The other fundamental aspect covered in the series of papers by Angeris and coauthors is payoff replication

via CFMMs (Angeris et al., 2021b). The problem of payoff replication deals with the inversion of the liquidity

providers’ value function. We have already explained how to compute LPs’ value under no-arbitrage for a

given trading function (see section 1.3.2). Now we address the converse question: Starting from a desired

payoff profile for liquidity providers, can we find a trading function which replicates that specific payoff?

The authors manage to do so for a comprehensive class of LP payoff functions. This problem has the same

flavor as the one addressed by Chen and Pennock (2012) for prediction markets since they showed how to

derive the AMM associated to a particular cost function.

To solve the replication challenge, Angeris et al. (2021b) exploit duality theory. They prove that the

dual problem associated to the maximization of arbitrageurs’ gains corresponds to the minimization of LPs’

value. In analogy with demand theory, the process of finding the trading set that achieves a given LP payoff

is analogous to recovering consumer preferences from a given expenditure function (Fabi and Prat, 2022).

Angeris et al. (2021b) establish a bijection between the family of LP value functions that are concave,

positive, increasing, homogeneous of degree one in the market price and CFMM with convex trading sets.

Each property of the class of payoff functions that can be replicated has economic interpretations. Concavity

of the value function is analogous to requiring that LPs face impermanent losses; positivity implies that the

LP cannot run a deficit; increasing functions ensure that the value of the portfolio grows as the assets

appreciate. Homogeneity of degree 1 is simply a scaling property: If all prices are scaled proportionally, so

does the value of the LPs’ portfolio.

Privacy

So far, we have seen that convexity of the trading set is a desirable property. However, it also has the

drawback of causing a loss of privacy for users, as explained by Angeris et al. (2021d). Since the history

of pool reserves is public, the quantity function derived from a convex trading set can be inverted so as to

recover the exact sequence of trades that led a liquidity pool to its current state. Transactions batching is

not a viable solution as it considerably worsens users’ terms of trade owing to the price impact. Randomizing

also worsen the price impact because of convex pricing. Moreover, the Central Limit Theorem implies that

one can efficiently extract the random noise component from prices.

12For example, Dodo uses a dynamic bonding curve (https://docs.dodoex.io/english/).

37



1.4 Decentralized Platform Economics

We have covered the main properties and optimal design of CFMMs. We now turn our attention to the

market structure that they generate. The economics literature on platforms uses the term two-sided market

to refer to markets that have two distinct sides exerting direct positive externalities on each other (Rochet

and Tirole, 2003). This is exactly the case for DEXs that operate through a CFMM. As mentioned in the

previous sections, the two market sides are liquidity providers and traders. Liquidity providers benefit from

higher trade volumes by earning more fees. Traders benefit from higher liquidity by getting lower slippage

from the CFMM.

A small but fast-growing literature studies the platform economics of decentralized exchanges. The

earliest contributions on this topic are by Aoyagi and Ito (2021), Capponi and Jia (2021), and Lehar and

Parlour (2021). These papers propose variations of the same benchmark model to study the rents of traders

and liquidity providers who participate to a constant-product DEX or a CEX, together with the resulting

allocation of liquidity among the competing exchanges.

1.4.1 Comparison of CFMM and LOB exchanges

Although this strand of literature outlines many similarities with classical market microstructure models,

it also highlights important differences. For example, in LOBs, LPs choose both the quantity they want

to supply as well as the minimum sale price of their assets. By contrast, when interacting with a CFMM,

LPs choose only their supply while the price of the liquidity is given by a function of the CFMM’s reserves.

Once liquidity is supplied, it cannot be conditioned on the price. Due to this feature, the rents from liquidity

provision in CFMMs are mutualized, whereas in LOBs liquidity provision is competitive. This feature creates

an important difference in the composition of LPs’ rents for the two market mechanisms. In LOBs, if LPs

compete on prices, their revenues come mainly from setting price slippage strategically. On the other hand,

in CFMMs, slippage revenues are captured by arbitrageurs, so LPs revenues come from transaction fees

(Lehar and Parlour, 2021).

Interestingly, Uniswap’s latest upgrade (Uniswap V3) closes part of the gap between CFMMs and LOBs

by introducing concentrated liquidity. This functionality allows LPs to supply reserves only within specific

price ranges of the traded pair. The advantage of this additional feature for a liquidity provider is that, when

the exchange rate matches the range at which she supplies liquidity, she can achieve the same fee income as

in a standard constant-product pool supplying lower liquidity. The drawback of liquidity concentration is

that exchange rates that fall outside of the specified price range can cause substantial losses for LPs. Liao

and Robinson (2022) show that, despite its recent launch in 2021, Uniswap V3 was able to collect more
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liquidity than some of the most popular CEXes (Binance, Coinbase, Kraken, Gemini).

1.4.2 Incentives for liquidity providers

The economic literature on two-sided markets underlines that platforms must attract the market side whose

demand is more elastic to rents (Rochet and Tirole, 2003). In the case of DEXs, the elastic side of the market

are liquidity providers. In line with theory, existing DEXs strive to attract liquidity providers, competing

against each other and against CEXes.

Yield Farming

The process through which LPs harvest the rewards from competing DEXs is known as yield farming. Its

revenues are mostly made of two components. First, LP tokens, which allow LPs to accrue transaction

fees and claim a fraction of the DEX that they furnish (see section 1.3.2). Second, governance tokens, that

carry voting rights on DEXs’ strategic decisions (for example, the level of trading fees associated to a given

liquidity pool).

The open, unregulated nature of DeFi makes liquidity competition particularly harsh for DEXs. Such

competition gives rise to frequent mushrooming of yield farming opportunities. Their landscape is so vast

and transient that LPs rely on aggregators, such as Yearn or 1inch, to optimize their liquidity positions

across multiple DEXs. To the best of our knowledge, yield farming has received limited academic attention.

We therefore only present two major cases of yield farming opportunities that could inspire future research.

Example: Vampire attacks

Some yield farming opportunities originate from DEXs’ attempts to enter a market. Network effects should

make it difficult for new DEXs to attract liquidity towards them rather than towards well-established pro-

tocols. Yet, the open nature of smart contracts combined with traders seeking yield-farming opportunities

open the way for newcomers to use cloning strategies. The most common of them is called vampire attack.

It entails a DEX siphoning liquidity from another protocol by offering its liquidity providers attractive deals.

The first example is the SushiSwap attack, which allowed Sushiswap (a Uniswap fork) to appropriate

over $1B of liquidity from Uniswap in less than a week. Sushiswap offered SUSHI tokens to Uniswap LPs

as extra rewards in exchange for migrating their Uniswap LP tokens on Sushiswap through the Masterchef

smart contract.13 In response, Uniswap launched in September 2020 its governance token, the UNI token,

along with an airdrop of 400 UNI to users who had previously used Uniswap V1 or V2.

13The MasterChef contract can be found here: https://docs.sushi.com/docs/Developers/Sushiswap/MasterChef.
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Vampire attacks have been common in DeFi space and, unfortunately for the victim protocol, give to

LPs attractive profit opportunities, at time combined with the entertainment of gamification.14

Example: Curve wars.

Other yield farming opportunities originate from DEXs’ efforts to establish a dominant market position,

as in the “Curve wars” that started around May 2020 and which is still ongoing. The Curve wars are

competitions among DeFi protocols for the control of Curve’s liquidity. Curve being the biggest DEX

by total value locked ($5.83b at the time of writing), DeFi protocols have a strong interest in having their

tokens traded on Curve at competitive rates. This enables them to attract yield farmers and thus to establish

prominence over their competitors.

A protocol can achieve such goal by holding a big share of Curve’s liquidity tokens, the CRV. These

can be locked into Curve and converted into Curve’s svCRV governance tokens. Besides providing passive

yields, svCRV allow their owners self-vote for pool gauging; that is, directing new emissions of CRV tokens

to themselves. Generous CRV emissions attract yield farmers and explain the importance of controlling the

outstanding token basis of CRVs.

In a similar fashion to Vampire attacks, Convex Finance (Convex for brevity) managed to control the

majority of CRV tokens through a cloning mechanism. It devised a protocol that allowed CRV owners to sell

their voting rights on Curve for more liquid assets with boosted financial yield, the CvxCRV tokens minted

by Convex. Then Convex allowed its LPs to vote on Curve’s governance by locking its native tokens, the

CVX. In this way, Convex effectively took control over Curve.

Despite Convex being in control of most CVXs in circulation, Curve’s governance is to some extent still

contestable. Vote buying (or “bribing”) protocols such as Bribe.cvx or Votium allow owners of CRV or CVX

tokens to delegate their votes in exchange for side payments. Some protocols such as Llama Airforce Union

even optimize vote buying for CVX holders.

Adverse selection costs

The downside of liquidity provision in DEXs are adverse selection costs. These arise whenever reference

prices change because LPs have their funds locked in liquidity pools, and so cannot react before arbitrageurs

take advantage of the price discrepancy.

The usual metric of adverse selection in CFMMs is the impermanent loss (IL) as already mentioned in

Section 1.3.3. Fabi and Prat (2022) use a static model to compute the IL as the arbitrage profit from a price

14Enzo finance recently carried out a vampire attack against six Ethereum exchanges masked as a videogame
(https://decrypt.co/87778/enso-finance-vampire-attack-six-ethereum-defi-competitors).
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shock. They show that the impermanent loss caused by a price move from p0 to p1 is given by:

IL(p0, p1) = p1 · [h(p0)− h(p1)] (1.5)

= p1 · ▽pV (p0)− V (p1) ≥ 0. (1.6)

The second equality in eq.(1.6) follows from h(p) = ▽pV (p) (Shephard’s lemma), and the final inequality

from the concavity of V in p. Fabi and Prat (2022) demonstrate through eq. (6) that IL is convex in p1 with

global minimum IL = 0 at p0 = p1.

Milionis et al. (2022) develop a continuous-time model of liquidity provision and propose a new measure

of adverse selection costs called loss-versus-rebalancing (LVR), which is simply the sum of IL in eq. (1.5)

over all price changes in a given time period. They call their measure loss-versus-rebalancing rather than

impermanent loss to underline that they do not keep reserves fixed at their initial value throughout the

history of arbitrages. In a static model, LVR and IL coincide. However, in a dynamic model, IL do not take

into account the impact of reserves rebalancing after each arbitrage. Formally, assuming that prices evolve

according to a sequence p0, p1, . . . , pn+1 and that arbitrageurs trade with the CFMM in periods 1 to n,

LV R =

n∑
k=1

IL(pk−1, pk)

=

n∑
k=0

h(pk)[pk − pk−1]− [V (pn+1)− V (p0)]. (1.7)

Milionis et al. (2022) solve the continuous-time limit of eq. (1.7) assuming a geometric Brownian motion for

p. For a timespan of length T , they demonstrate that

LV R −→
∫ T

0

l(pt)dt,

and they solve in closed-form the instantaneous LVR rate l(pt), expressing it as a function of price volatility

and curvature of the LP expenditure function. For a single risky asset with price volatility σ, the instanta-

neous LVR reads

l(p) = −σ
2p2

2

d2

dp2
V (p). (1.8)

Milionis et al. (2022) estimate LVR applying eq. (1.8) to Uniswap and Balancer (see eq. 1.4). They find

that daily TVL is about 3bp and that LPs’ annual yield is about 8%.
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1.4.3 Incentive for traders

The recent models of competing exchanges distinguish traders as either noise or informed traders (i.e.,

arbitrageurs). Noise traders have exogenous reasons to trade; they either swap-in or -out a fixed quantity

of assets with equal probability. Informed traders trade with the CFMM to profit from price discrepancies

among exchanges.

The interactions between liquidity providers and traders determine the inventory of liquidity pools as

well as the distribution of liquidity among competing DEXs and CEXes. The literature keeps CEX and

DEX platforms passive but endogenizes the allocation of trades and liquidity across such platforms. It

shows that the impact of trader participation on the liquidity of DEXs is in line with established results in

the market microstructure literature (Kyle, 1985; Glosten and Milgrom, 1985; Easley and O’hara, 1987).

Informed trading discourages liquidity provision as it causes impermanent losses. Noise trading attracts

LPs as it allows them to profit from fees while avoiding large movements in reserves. In the case of DEXs,

informed trading also causes temporary capital gains thanks to convex CFMM pricing: If noise trades net-

out in expectation, then expected pool reserves increases due to the (strict) convexity of the bonding curve.

Formally, for a distribution over trades ∆ with E[∆] = 0, Jensen’s inequality implies that

E[q(∆;R)] ≥ q(E[∆];R) = 0. (1.9)

The intuition behind eq. (1.9) is that for convex bonding curves, buying assets from a CFMM is more

expensive than selling them.

The problem with such capital gains is that they are completely cancelled out after a single arbitrage.

Hence the only lasting factors for liquidity providers originate from transaction fees and asset volatility. In

models such as Capponi and Jia (2021) and Lehar and Parlour (2021) where traders’ platform choice is

exogenous, both fees and volatility have very clear direct effects on equilibrium liquidity: Positive for fees,

negative for volatility. However, other contributions point out that equilibrium effects that also take into

account traders’ reactions can be subtler.

Saleh et al. (2022) argue that only moderate fee rates stimulate liquidity provision. Excessive rates

instead fire back on LPs due to the disincentive that they entail for traders. Surprisingly enough, Saleh

et al. (2022) show that charging low trading fees rather than none can attract traders. Since collected fees

are poured back in the liquidity pool, they reduce slippage, in turn making the CFMM more attractive to

traders if the lower slippage compensates the higher fees.

Aoyagi and Ito (2021) model a CEX-DEX duopoly. They highlight that higher DEX liquidity generates

positive spillovers on the CEX. In their model, an exogenous increase in DEX liquidity causes both types
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of traders to migrate from the CEX to the DEX, but not to the same extent. Informed traders are more

likely to migrate than noise traders due to their higher sensitivity to slippage. The signal-to-noise ratio of

the CEX therefore decreases, leading to lower bid-ask spreads in its LOB.

The theoretical results discussed above are supported by empirical evidence. Lehar and Parlour (2021)

conduct a regression analysis on Uniswap daily data for 1,376 pools. They show that, as predicted by

their model, liquidity is negatively affected by volatility and positively affected by noise trading. Lehar and

Parlour (2021) argue that the stability of reserves is guaranteed by Ethereum’s gas fees, which prevent LPs

from draining pools in response to extreme market events (contrarily to what is usually observed in LOBs).

They support their stability hypothesis by observing that the 41% ETH price decline which occurred in May

19 of 2021 only caused a withdrawal of 17% of Uniswap’s liquidity.

Capponi and Jia (2021) analyze a dataset ranging from April to December 2021, collected from major

CEXes and 12 liquidity pools, half from Uniswap, half from Sushiswap. They also find empirical support

for a negative relationship between volatility and liquidity, and a positive relationship between liquidity and

noise trading. They test and confirm that gas fees and asset volatility are positively correlated.

Finally, Heimbach et al. (2021) also analyze Uniswap data from its deployment in May 2020 to January

2021 in order to describe liquidity distribution across pools. They find that pool participation follows a

power law: Most LPs participate to a single pool, and 96.5% of them participate to at most 5 pools at once.

They argue that LPs’ cautiousness is the most plausible explanation for liquidity concentration. LPs tend

to participate only to pools whose risks they can assess with confidence. Such an evaluation is easier for the

few popular pools to which most LPs participate, rather than for the many small pools in the tail of the

liquidity distribution.

1.5 Miner Extractible Value

We have seen that CFMM is a simple and versatile technology. Nonetheless, its minimalistic design is not

without drawbacks. The most notorious one is Miner Extractible Value (MEV).

Technically, MEV are profits that blockchain miners or speculators can earn through the reordering of

transactions within blocks. Transaction reordering is harmless to blockchains featuring simple transactions

such as Bitcoin, but not for CFMMs and DeFi applications. For instance, when two buy orders are sent to

a CFMM, one after another, the pricing formula results in a better deal for the first order.15

The name MEV comes from the fact that miners are in control of transaction ordering within blocks and

can freely select it according to strategic or even malicious motives. Most of the times, however, aggressive

15Exposure to MEV is another reason why LOBs are unsuited to blockchains
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block reordering is not performed by miners but rather arbitrage bots that continuously scan the memory

pool (mempool for brevity) to spot profit opportunities, and engage in gas auctions to claim them (see for

example Figure 1.3). This behavior indirectly benefits miners who ultimately get the rents from bots’ auctions

(Capponi and Jia, 2021). MEV priority auctions are problematic for the whole ecosystem as all participants

bear the congestion externality they generate. Ethereum’s mempool is teaming with bots that profit from

MEV opportunities at the expenses of users. This is why practitioners refer to it as a “dark forest”, a term

originally coined in the sci-fi novel Remembrance of the Earth’s Past (Liu, 2008) and popularized in the

context of blockchains by a blog article (Robinson and Konstantopoulos, 2020).16

Figure 1.3: Example of Price Gas Auction (PGA) that was observed over the Ethereum peer-to-peer network.
The top graph shows the gas bids of two observed bots over time, while the bottom table details the bots’
initial and final bids and the two mined bids (enclosed within continuation dots). Source: Daian et al.
(2019).

1.5.1 Front-running

Daian et al. (2019) is the first academic contribution that documents the significance of MEV. It studies its

consequences and simulates bots’ priority gas auctions. Analyzing bot activity on Ethereum, Daian et al.

(2019) find that miners often earn more from MEV than from block rewards. They further show that, to

fully exploit MEV rents, miners should rewind and fork the blockchain, committing a so-called time-bandit

16“Dark Forest” is the name of a fictional hypothesis on the state of the universe on which the novel fantasizes. According
to the dark forest hypothesis, the universe is an adversarial environment populated by advanced civilizations. They hide from
each other as an encounter would trigger devastating wars. By analogy, Ethereum’s mempool is said to be a dark forest because
it is populated by arbitrage bots that engage in costly bid auctions if they detect each other.
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attack. There is no account of a time-bandit attack having happened on a popular blockchain, but its

profitability represents a concrete consensus layer threat. Ironically enough, the evidence collected in Daian

et al. (2019) was partly a side-effect of the same authors publishing a preliminary report on arbitrages in

DEXs (Bentov et al., 2017). Its publication attracted the attention of developers who designed bots that

could exploit the arbitrage opportunities identified in the report.

Qin et al. (2021) quantify the MEV on Ethereum from December 2018 to August 2021. They find it to

be over four times the value of block rewards and transaction fees combined. The highest MEV opportunity

was worth 4.1M USD; more than 600 times the sum of block reward and transaction fees for an average

block. They argue that this MEV opportunity was sufficient to incentivize a miner with only 0.1% of the

network mining capacity to commit a time-bandit attack.

1.5.2 Sandwich attacks

The most common form of MEV on DEXs are sandwich attacks. A sandwich attack can be performed on

both buy and sell orders. It involves the combined front-running and back-running of a target transaction.

When a bot (or miner) is notified of some pending buy order on a CFMM, it can forge a buy and a sell order

of equal amounts and squeeze the user’s transaction within these two. Doing so, the attacker earns a profit

as convex bonding curves make it profitable for the bot to buy assets and sell them back when their reserves

are higher. These sorts of manipulations take place also in traditional finance, especially through algorithmic

trading (Michel, 2020). However, CFMMs makes the attackers’ life easier as all pending transactions are

public. The seriousness of MEV is also highlighted by Park (2021), who compares constant-product pricing

Figure 1.4: Sandwich attack.

with traditional LOBs. Although he finds that CFMMs satisfy the desirable feature of not inducing users
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to break their orders into smaller ones nor split them across multiple DEXs, Park also proves that CFMMs

with constant-product pricing are always vulnerable to sandwich attacks.

To see why, consider the CFMM moving as in Figure 1.4 suppose that the initial reserves of the two

assets are R. The attacker observes the mempool and notices that a trader wants to buy O2 units of

asset 2. The attacker first front-runs the trader with the same operation and then back-runs the trader

by inverting it. To front-run the trader, the attacker pays I1 = q(O2;R) of asset 1, moving reserves to

RI = R + ∆, with ∆ = (q(O2;R),−O2) (movement I). Then, the original trade is executed, but now,

the trader pays q(O2;R + ∆) instead of q(O2;R) to receive output O2, moving the CFMM reserves to

RII = R+(q(O2;R)+ q(O2;R+∆),−2O2) (movement II). Finally, by back-running the trade, the attacker

returns the reserves to RI , thereby paying back O2 of asset 2 and receiving q(O2;R+∆) of asset 1 (movement

III). At the end of the sandwich attack, the attacker has 0 units of asset 2 but ends up with a positive balance

q(O2;R+∆)− q(O2;R) > 0

of asset 1, which corresponds to the extra input price the user pays owing to the sandwich attack. Given that

the inequality follows from the convexity of the quantity function, sandwich attacks are always profitable for

any CFMM with convex trading sets (Fabi and Prat, 2022).

The practical consequence of sandwich attacks for users is that they cause involuntary price slippage.

In other words, the price at which an order is meant to be executed might not correspond to the actual

execution price. To defend against sandwich attacks, DeFi platforms allow users to set a maximum slippage

tolerance. Tuning the tolerance threshold is not trivial as it makes users vulnerable to arbitrage if set too

low, but stops most of their trades if set too high. Heimbach and Wattenhofer (2022) compute the optimal

slippage tolerance as a function of the size of the trade and the characteristic of the pool. Their simulations

indicate that customized tolerance rules outperform the constant slippage tolerance implemented by popular

DEXs.

1.5.3 Solutions to MEV

Flashbots is the leading proposal to alleviate MEV. Its key idea is to remove block-building capabilities from

miners and to transfer them to dedicated agents. In Flashbots, block builders are called searchers. They

scan the mempool in search for transactions carrying profitable MEV opportunities, bundle them together,

and auction these bundles to miners through a private relay channel.17 This design reduces the dangers of

MEV in two important ways. First, as miners cannot decide anymore the internal block ordering, they have

17Private relay channels serve the same function as dark pools in the context of centralized LOBs.
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no incentive to commit a time-bandit attack. Second, the private communication channel between builders

and miners eliminates the congestion costs generated by priority auctions.

The separation between builders and miners is part of the design proposal for the new Ethereum V2

running on proof-of-stake. It entails important consensus layer modifications which Ethereum’s developers

have not yet finalized. However, they are already proposing a temporary solution through the Builder API.

Ethereum’s consensus-layer clients can install it to request data directly from the network of block builders,

which operates through execution layer clients.

1.6 Conclusion

We have presented the state of research on AMMs in Decentralized Finance. Born as tools to facilitate infor-

mation elicitation in prediction markets, AMMs have morphed into the CFMMs now used in decentralized

exchanges. These modern variants are suited to blockchains thanks to their lightweight design. We have

explained how decentralized exchanges operated by AMMs give rise to two-sided markets whose success

crucially depends on their ability to attract liquidity. Finally, we have discussed the problems raised by

miner extractible value, highlighting possible solutions and open challenges.

Although a rigorous theory of decentralized market making does not exist yet, much progress has been

accomplished over the last couple of years. A vocabulary has been elaborated to rigorously describe the

design space. Equilibrium models have been built to study existing applications and to provide suggestions

for their improvement. With these foundations laid down, the stage is set for a new wave of research on

the general optimality principles of CFMMs. In this enterprise, standard microeconomic theory is likely to

prove particularly useful since it accurately describes the inner workings of CFMMs (Fabi and Prat, 2022).

Besides providing theoretical insights on market design, we also expect future contributions to foster our

understanding of the interaction between different types of exchanges. The cut-throat competition to attract

liquidity is one of the most striking feature of DeFi. Its study will require more advanced models and better

empirical evidence on equilibrium liquidity provision.

Building a solid theory of CFMMs is a challenging endeavor as the technology evolves at an ever-increasing

pace. Keeping up with this continuous stream of innovations may seem unfeasible, and yet, recent contri-

butions have considerably closed the gap separating theory from practice, making it realistic to envision a

new stage of DeFi where protocol design would draw on scientific insights rather than on serendipity and

educated guesses.
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Chapter 2

The market microstructure of

Uniswap.

Abstract

Uniswap is the largest decentralized exchange operating on the Ethereum Blockchain. It allows users to

exchange one cryptoasset for another through liquidity pools whose exchange rate is set algorithmically.

Uniswap has gained popularity as an oracle, providing realtime price data to diverse Decentralized Finance

(DeFi) protocols. To maintain its reputation as a reliable oracle, it is crucial that Uniswap’s prices closely

track reference market prices. This accuracy in pricing crucially relies on arbitrage activity. However,

inventory holding costs can impact the ability of traders to engage in arbitrage. This paper is the first

attempt to develop a microstructure model to analyze the impact of these costs on the price accuracy of

Uniswap. The model is estimated using price data from Uniswap and Binance. I find that traders are less

likely to close the arbitrage opportunities as the size of the pool increases, a finding that is in line with the

impact of inventory holding costs. Conversely, when traders perceive the trading pair to be stable and not

subjected to inventory holding risks, they are more inclined to take advantage of arbitrage opportunities.
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2.1 Introduction

Uniswap is a decentralized exchange (DEX) which allows for direct peer-to-peer cryptocurrency transactions

without the need for an intermediary. Uniswap is an automated protocol composed of multiple liquidity

pools, with each pool corresponding to a pair of crypto assets. The price at which the two assets can be

exchanged is set algorithmically according to the constant product formula. This formula states that once

an exchange is done, the product of the new reserves should remain at its pre-trade value.

Launched in 2018, Uniswap has exceeded $1, 5T in total trading volume in 2023 against $1 billion in 2020

and $100 million in 2019. This remarkable growth has positioned Uniswap as an effective alternative to the

Centralized Exchanges (CEXs) that are based on limit order books.

The accuracy of Uniswap’s prices relies on the fulfillment of the no-arbitrage condition. While DEXs

and CEXs operate differently, prices on DEXs should always converge to those on CEXs – considered as the

reference markets – as traders can make a profit by buying an asset in the exchange market where the price

is low and selling it on the other one. However, inventory holding costs can impact the ability of traders to

engage in arbitrage if they entail substantial deviations from their desired inventory level. Deviating from

the desired inventory can expose arbitrageurs to risks and costs that impact their overall profitability. This

effect becomes particularly pronounced as the pool size increases, resulting in a decrease in the price impact

of trades and a substantial rise in inventory costs.

This paper develops a microstructure model to analyze the impact of these costs on the price accuracy of

Uniswap. The model is estimated using 1-minute closing price data of Uniswap and Binance markets from

May, 2020 to December, 2022, mainly focusing on the ETH-BTC pair. The empirical results provide support

for the theoretical model and suggest that as the pool increases, traders tend to react less to cross market

arbitrage opportunities as they face inventory risks. During the early stages of the pool, traders managed

to close almost the entire price discrepancy between Uniswap and Binance. However, their willingness to

close the gap gradually reduced, with only around 20% in August 2020, followed by a further decline to

10% in October 2020. This pattern coincides with the significant increase in liquidity provision within the

ETH-BTC pool, resulting in a reduced price impact in the Uniswap market. As the pool size expands,

trades need to be larger in order to influence the Uniswap price and bridge the gap. This requires traders to

hold more inventory, thereby increasing their exposure to market risks. Consequently, traders become less

responsive to price differences between the two markets, despite the potential profit opportunities they offer.

Starting from early 2022, traders once again began closing the gap. This coincided with a decrease in the

price impact as the pool size decreased. Nonetheless, during this period, traders were able to close on average

30% of the gap, possibly due to the illiquidity and limited activity in the pool following the migration to
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Uniswap V3. When extending the analysis to other pairs, it is observed that when traders are not exposed

to market risks, as is often the case with stablecoin pairs due to their peg to the US dollar, they do not

face inventory holding risks. In such cases, traders tend to seize arbitrage opportunities more readily. As a

result, the price on Uniswap tends to align closely with that on CEXs.

This paper aims to contribute to the growing literature on DEXs. Existing studies have explored price

discovery, liquidity provision, the pricing curve, and the dynamics of trader behavior on DEXs. They provide

valuable insights into the functioning and challenges of DEXs in the blockchain ecosystem. Pioneering

research led by Angeris et al. (2020, 2021a, 2021b, 2021c, 2021d, 2021e, 2022) has played a pivotal role

in advancing our comprehension of Constant Function Market Makers (CFMMs). They underscore the

critical importance of comprehending CFMM by meticulously examining the structure of their trading sets

and exploring the non-arbitrage assumption, particularly in the context of Uniswap, using agent-based

simulations.

Additionally, empirical studies provide invaluable insights into the operational dynamics of DEXs. For

instance, Lo and Medda (2021) employ an Autoregressive Dynamic Lag Error Correction Model (ARDL-

ECM) to examine the cointegrating relationship between Uniswap’s ETH-USDT exchange rate and that of

centralized exchanges. Lehar and Parlour (2021) find that price differences between Binance and Uniswap

are typically below 1 percent in the presence of abundant liquidity. The literature also delves into the concept

of DEXs discovering fundamental asset prices. Han et al. (2022) find that the contribution of Uniswap in

determining the fundamental value of cryptocurrencies increases as its liquidity provision increases.

Aoyagi (2020), Capponi and Jia (2021), and Lehar and Parlour (2021) contribute to the platform economics

of DEXs. They analyze the rent of traders and liquidity providers participating in either DEXs or CEXs and

dissect the dynamics governing the distribution of liquidity among these competing marketplaces. Heimbach

et al. (2021) analyze Uniswap data and find that liquidity provision follows a power law, with most liquidity

providers participating in a few pools. Saleh et al. (2022) suggest that moderate fee rates stimulate liquidity

provision, while excessive rates can deter traders. According to Krishnamachari et al. (2021), the optimal

CFMMs should dynamically adjust curvature based on asset volatility.

Finally, Miner Extractable Value (MEV) has also become a critical topic in the DEX ecosystem. Daian et al.

(2019) document the significance of MEV and the potential for time-bandit attacks by miners. Qin et al.

(2022) quantifiy MEV’s value, revealing its substantial impact on miners’ earnings.

Fabi et al. (2023) offer an extensive literature review on Automated Market Makers (AMMs), consolidating

insights and knowledge within this critical component of the DEX landscape. However, to the best of my

knowledge, there has been no prior research investigating the impact of inventory carrying costs on the price

efficiency of DEXs. The market microstructure literature has extensively documented the importance and
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the impact of inventory holding costs on price movements in traditional financial markets. Smidt (1971),

Garman (1976), Amihud and Mendelson (1980), Stoll (1978), Ho and Stoll (1981, 1983), among many others,

have shown that market makers are not merely passive liquidity providers, as they actively seek to maintain

a desired inventory position. Should they deviate from this position, they will adjust the bid-ask spread in

order to return to their desired inventory level.

Therefore, it seems natural to conjecture that inventory holding costs impact Uniswap’s price dynamics

and its price accuracy. By incorporating these costs, one can more accurately characterize the price dynamics

on Uniswap V2 and gain further insight into its market microstructure. Specifically, Uniswap’s reputation

as a reliable oracle, providing real-time price data to diverse DeFi applications, hinges on maintaining a

close alignment of its prices with reference values. Consequently, developers can use these insights to fine-

tune protocol parameters, ultimately leading to improve efficiency and stability within DeFi. Additionally,

comprehending these dynamics is crucial for traders and liquidity providers, enabling them to make more

informed decisions and effectively manage their risk exposure.

While the model developed in this paper draws on the traditional market microstructure literature, it

differs from it notably. The traditional inventory models rely on market makers’ role as price setters, while

in the case of Uniswap, liquidity providers have a passive role. This is due to the protocol’s design where

liquidity providers do not adjust the price. They will only affect the price impact of trades, which decreases

as the liquidity provision of that pool increases. The exchange rate changes only when swapping one asset for

another. Consequently, the inventory risk in this model is carried by traders rather than liquidity providers

as in traditional models. Therefore, this paper focuses on the trader’s decision problem to characterize price

dynamics on Uniswap, with the execution price reflecting the liquidity provision of the pool.

The paper is organized as follows. Section 2.2 describes the Uniswap V2 protocol. Section 2.3 presents

the microstructure model of price dynamics on Uniswap with inventory. Section 2.4 describes the data and

Section 2.5 presents estimation results. Section 2.6 concludes. Additional insights into other trading pairs

are presented in Appendix 2.7.

2.2 Description of Uniswap

This section provides an overview of Uniswap’s functioning and the market participants it interacts with.

Uniswap is a decentralized cryptocurrency exchange protocol that enables peer-to-peer transactions without

the need for a centralized intermediary. It operates using a Constant Product Market Maker (CPMM) model,

where liquidity providers and traders interact through liquidity pools. These liquidity pools consist of pairs

of cryptocurrencies, such as USDC-ETH, represented by the reserve vector R ∈ R2
+, where Ri denotes the
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quantity of the i − th asset held in the pool. Furthermore, pools are governed by a continuous trading

function, also known as the invariant, denoted by f : R2
+ → R+. This function maps the reserve vector R of

the two assets held in the liquidity pool to a real number K, and is defined as

f(R) = R1R2.

on Uniswap’s CPMM model, the price of a token 1 relative to a token 2 is determined by the current

ratio of the reserves of the two tokens in the liquidity pool, i.e. p1,2(R) = R2/R1.

Liquidity Providers. Liquidity providers play a crucial role in determining the size of the liquidity pool

and the trading function value by depositing a proportionate amount of each token in a trading pair into

the liquidity pool based on the current exchange rate. In return, they earn a share of the transaction fees

generated from trades that occur within the pool. Liquidity providers have the flexibility to withdraw their

liquidity at any time. More formally, let I ∈ R2
+ be the vector of reserves that an agent inputs into the

liquidity pool and O ∈ R2
+ the reserves that the protocol outputs to the agent. When the liquidity provider

adds liquidity to the pool, they do so in proportion to the existing reserves, resulting in I = R(α−1) > 0 and

O = 0, where R is the current reserve and α ≥ 1 is a scalar that determines the proportion. Consequently,

the updated reserves are given by R′ = R + I = αR > R. Conversely, when the liquidity provider removes

liquidity from the pool, they do so in proportion to the existing reserves, resulting in I = 0 and O =

R(1− α) > 0, where α ∈ [0, 1]. In this case, the updated reserves are given by R′ = R−O = αR < R. This

change in reserves updates the trading function from f(R) to f(R′), without affecting the exchange rate.

Traders. Traders, on the other hand, exchange one cryptocurrency for another against the liquidity pool.

The output amount O that a trader receives when trading is calculated based on their input amount I

and the reserve R such that the trading function remains constant at its pre-trade value, expressed as

f(R−O + I) = f(R). Therefore, the quantity O1 of asset 1 a trader will receive when putting I2 of asset 2

to the pool is given by

O1 = I2
R1

(R2 + I2)

and the marginal execution price of asset 1 paid by the trader is then

p1,2(∆, R) =
I2
O1
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where ∆ ≡ I −O ∈ R2
+ denotes the net output vector. Finally, the trade results in a new spot price of

p1,2(R
′) =

R2 + I2
R1 −O1

.

The level curve of the constant product function, which represents all possible combinations of the two

assets that would result in the same value of f , is commonly referred to as the bonding curve. Graphically,

the interaction between users and the protocol can be summarized as traders moving reserves along the

bonding curve (keeping the K constant) while liquidity providers shift the constant product function to a

different bonding curve (keeping the ratio of the two reserves constant) as depicted in Figure 2.1.

Transaction fees. In practice, Uniswap charges traders a transaction fee, 1−γ ∈ [0, 1], that is proportional

to their trades. In this case, the quantity O1 of asset 1 a trader will receive when putting I2 of asset 2 to

the pool is determined by accounting for γI of the input asset in the trading function, meaning the trade

must satisfy the following condition:

f(R−O + γI) = f(R).

Therefore, the quantity O1 of asset 1 a trader will receive when putting I2 of asset 2 to the pool is given by

O1 = γI2
R1

(R2 + γI2)
.

As a result of the fees, the constant product is no longer fixed, but rather increases after each trade,

shifting the bonding curve upwards. This is because each trade incurs a fee of (1 − γ)I, which is added to

the reserves of the liquidity pool, resulting in a new reserve vector R′ = R − O + I > R − O + γI. The

trading function f is strictly increasing as
∂f(R)

∂R1
= R2 > 0. Therefore, it follows that

f(R′) > f(R−O + γI) = f(R).

Let’s consider an example of trading in the DAI-ETH pool. Assume there are 100,000 DAI and 100 ETH

in the pool, and a trader wants to sell 10 ETH for DAI. This can be represented as R = (100, 000; 100), with

the trading function value equal to f(R) = 100, 000× 100 = 10, 000, 000.

When the trader sells IETH = 10 ETH, she will receive ODAI = γ10
100, 000

100 + γ100
= 9, 066.11 DAI, paying

0.0011 ETH per DAI 1. The new reserves become R′ = (90, 933.89; 110), and the new trading function value

is f(R′) = 90, 933.89× 110 = 10, 002, 727.9.

1putrans,t+1 =
10

9, 066.11
= 0.0011
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The no-arbitrage equilibrium without market frictions. In the absence of market frictions, whenever

the prices of assets on Uniswap differ from their reference market prices, traders can exploit the price differ-

ences by buying or selling assets on Uniswap. This trading activity triggers a price adjustment mechanism

that drives the prices of assets on Uniswap towards their reference market values.

The no-arbitrage equilibrium in case of transaction fees. In the presence of transaction fees, the

process of price convergence towards the no-arbitrage equilibrium on Uniswap is affected in the following

ways: (i) Traders do not close the gap between the Uniswap price and the reference market price entirely.

(ii) The degree of gap reduction is non-linear in the initial price difference, and the gap reduction is greater

when the initial gap is higher. (iii) The higher the transaction fees, the less likely traders are to exploit

arbitrage opportunities and reduce the price gap.

Reference Markets. CEXs prices are commonly considered as reference prices, primarily due to their

substantial trading volumes and liquidity. These attributes contribute to price stability and reduce vulnera-

bility to abrupt fluctuations and potential price manipulation, establishing CEX prices as excellent reference

points for asset pricing.

2.3 Microstructure model of price dynamics on Uniswap

This section presents a theoretical model of price dynamics on Uniswap, assuming no transaction fees for

simplicity, as they are negligible (0.03%) and do not significantly impact the results. I consider a multi-

period framework where individuals trade an asset X for an asset Y on Uniswap at times t = 1, 2, ..., T.

For simplicity, token X is assumed to be a risky security and security Y is the numeraire asset. The trading

Figure 2.1: Interaction between the Uniswap V2’s Constant Product Function and the different market
actors.
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pair X − Y ’s underlying value, Vt, is not public and is viewed by traders as a random value, denoted by Ṽt.

Specifically, it is assumed that only liquidity providers and arbitrageurs operate on Uniswap, and prior

to any trade, they observe the price of the trading pair on both Uniswap and the CEX, denoted as Pt and

PC
t , respectively. The trader’s information set about the fundamental value just before trading is then given

by Ωt = (PC
t , Pt). Since the CEX price is the reference price, we have E[Ṽt|Ωt] = PC

t .2

Once the trader has observed the Uniswap and CEX prices, she submits her trade on Uniswap to maximize

her utility. The utility function is expressed as a linear combination of the mean and variance of her wealth,

subject to an inventory holding cost:

u(t,Wi,t) = E [Wi,t]−
ρ

2
V ar [Wi,t]− ϕ(Xi,t +Qt −X)2, (2.1)

where ρ is the coefficient of absolute risk aversion of the trader, ϕ is the inventory holding cost, Xi,t is the

trader’s asset inventory before the trade and X is her desired inventory level. The trader’s wealthW is given

by

Wi,t = (Xi,t +Qt)Ṽt −QtPE(Qt) + Ci,t,

where Ci,t denotes the cash holding (in ETH), Qt the size of the trade and PE (Qt) the execution price of

the trade.3

The utility function (2.1) captures the trade-off between maximizing profits and managing inventory

levels. By considering both the mean and variance of wealth, the trader takes into account not only the

expected outcome of the trade but also the level of risk involved. Furthermore, the inventory holding cost

in the utility function reflects the fact that traders may be reluctant to hold inventory that deviates from

their desired level, with the parameter ϕ capturing the trader’s sensitivity to such deviations.

Both arbitrageurs and liquidity traders aim to buy and sell assets quickly and efficiently without holding

onto inventory for extended periods. Indeed, arbitrageurs seek to profit from price discrepancies in different

markets for the same asset. Their strategy involves buying the undervalued asset in one market and selling

it in the overvalued market, with the goal of profiting from the price difference. Since arbitrage trading is

typically done on a short-term basis and the arbitrageur does not intend to hold onto the asset, they aim for

zero inventory levels. This allows them to avoid taking on any additional market risk, as well as to minimize

the impact of any sudden price changes in the asset. Pure liquidity traders, on the other hand, are typically

not interested in holding any inventory of the assets they trade for an extended period, as their goal is simply

to facilitate their own liquidity needs. Therefore, it is likely that they will both employ a zero inventory level

2I will show in Section 2.4.2 that this is a reasonnable assumption.
3Qt is positive if he decides to buy the asset X in exchange for the asset Y and negative if he decides to sell it.
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strategy (i.e. X = 0).

The present model incorporates inventory holding costs in contrast to the model without market frictions

presented in Angeris et al. (2021e), which considers only available arbitrage opportunities to determine the

trader’s utility and consequently the exchange quantity. Indeed, Angeris et al. (2021e) argue that traders

can make a profit by simply buying the asset in the market where the price is low and selling it on the

market where the price is high, thereby driving the Uniswap’s price back to the reference market price. The

present model requires traders to balance arbitrage profits with the additional costs of carrying inventory to

optimize their utility.

Moreover, the current model is based on inventory models in the market microstructure literature, but

it differs in that it focuses on the inventory problem of liquidity traders rather than liquidity providers to

model the price dynamics on Uniswap. This is because, in contrast to traditional inventory models, liquidity

providers on Uniswap are passive and do not influence the exchange rate. Instead, they only affect the price

impact by adjusting the quantity supplied for the two assets in the pool, which is reflected in the execution

price in my model.

Using (2.1), the trader chooses the quantity that maximizes her utility, as follows:

max
Qt

{
(Xi,t +Qt)P

C
t −QtPE(Qt) + Ci,t −

ρσ2
V

2
(Xi,t +Qt)

2 − ϕ(Xi,t +Qt −X)2
}
. (2.2)

Solving problem (2.2) combined with the Uniswap’s properties, the FOC can be written as:

Pt

 1

1− Q∗
t

RX
t

2

= PC
t − ρσ2

V (Xi,t +Q∗
t )− 2ϕ(Xi,t +Q∗

t −X) (2.3)

where RX
t is the reserve size of asset X on Uniswap’s pool X-Y.

Equation (2.3) is non-linear. To simplify it, I take a Taylor expansion around zero as Q∗
t /R

X
t ≈ 0 in

practice:4  1

1− Q∗
t

RX
t

2

≈ 1 + 2
Q∗

t

RX
t

when
Q∗

t

RX
t

→ 0.

Explicit solution. Using the above linear approximation, the FOC (2.3) can be rewritten as

Pt

(
1 + 2

Q∗
t

RX
t

)
= PC

t − ρσ2
V (Xi,t +Q∗

t )− 2ϕ(Xi,t +Q∗
t −X),

4See appendix 2.7 for an empirical justification of this assumption.
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hence,

Q∗
t

(
PC
t , Pt, Xi,t, X,R

X
t

)
=
PC
t − Pt − ρσ2

VXi,t − 2ϕ(Xi,t −X)

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

.

Putting this expression back into the FOC, I finally get the following characterization of price dynamics on

Uniswap:

∆Pt+1 = β0,tX + β1,t
(
PC
t − Pt

)
+ β2,t(Xi,t −X) (2.4)

where β1,t ≡ 1−
(

ρσ2
V +2ϕ

ρσ2
V +2

Pt
RX,t

+2ϕ

)
, β0,t ≡ −ρσ2

V β1,t, and β2,t ≡ −(ρσ2
V + 2ϕ)β1,t.

In equation (2.4), β1,t captures the arbitrage opportunity and is positive since traders will close the

price gap between the centralized and decentralized markets. Everything else being equal, when the asset’s

price on the CEX is higher than on Uniswap, the trader will buy on Uniswap, increasing the Uniswap price

(∆Pt+1 > 0). Conversely, when it is lower, the trader will sell on Uniswap, decreasing the Uniswap price

(∆Pt+1 < 0).

However, β1,t decreases as the inventory carrying cost ϕ increases, indicating that traders are less likely

to reduce the price gap between the CEX and Uniswap. This suggests that arbitrageurs may be reluctant

to take advantage of arbitrage opportunities that require them to deviate significantly from their desired

inventory level. Furthermore, the less risk averse the trader (low ρ) and/or the less volatile the asset (low

σ2
V ), the more the trader will close the gap between the CEX and Uniswap.

Additionally, as the liquidity provision in the pool increases, the trade’s impact on the Uniswap price

decreases. Therefore, the trader needs to sell or buy a larger amount of the asset to bring the Uniswap price

back to the reference market price. The inventory carrying costs cause the trader to marginally close the

gap, even though there is an arbitrage opportunity. Indeed, as RX
t goes to ∞, β1,t converges to 0. It is

worth noting that in a frictionless market, traders should consistently close the price gap entirely to exploit

arbitrage opportunities. Consequently, it would be expected that the parameter β1,t equals 1. However, in

the present model, they do not achieve full closure, as indicated by β1 < 1.

The coefficient β2,t represents the inventory effect and is therefore negative. Intuitively, if the trader’s

inventory before trading is greater than her desired level, she will sell some of asset X to adjust her inventory

towards its target level, causing the Uniswap price to decrease, i.e., ∆Pt+1 < 0. Conversely, if her inventory

is lower than the desired level, she will buy some of asset X, increasing the Uniswap price, i.e., ∆Pt+1 > 0.

Similar to traditional markets, if traders on Uniswap deviate from their desired inventory level, they adjust

the price but they will do so through the exchanged quantity. The magnitude of this inventory effect is
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amplified with higher inventory costs (represented by a larger ϕ), as well as with greater risk aversion on the

trader’s part and higher volatility of the asset.

2.4 Empirical Evidence

2.4.1 The Data

Two datasets are used in this paper: one-minute candlestick data from Binance and transaction data from

Uniswap. The data have been collected for multiple trading pairs (ETH-BTC, AAVE-ETH, USDC-USDT,

USDT-DAI, USDT-ETH ). The primary emphasis within the paper revolves around one specific trading pair,

namely, the wrapped Ether (ETH ) - wrapped Bitcoin (BTC ) pair. The findings for other pairs are presented

in the appendix 2.7, serving as a means to validate and corroborate the results observed for this particular

pair.

Uniswap Data

The Uniswap data were extracted from The Graph, a decentralized API that inDEXs and queries Ethereum

data. The dataset contains all transactions which occurred within the ETH-BTC pool between May 2020

and December 2022.

There are three types of transactions on Uniswap:

- Mint event, referring to a liquidity provision by a liquidity provider within a pool.

- Burn event, referring to a liquidity withdrawal by a liquidity provider within a pool.

- Swap event, referring to an exchange of an amount of one token for another by a trader within a pool.

When a user submits a transaction to Uniswap, it is first broadcast to the Ethereum network and included

in a pool of pending transactions, commonly known as the mempool. Miners on the Ethereum network then

pick up transactions from the pool and include them in the next block they mine. The block interval on the

Ethereum network is currently around 13-15 seconds, meaning that new blocks are added to the blockchain

roughly every 13-15 seconds. The speed at which a Uniswap transaction is processed and confirmed depends

on several factors, including the gas price paid for the transaction and the current level of network congestion.

During periods of high network activity, transaction processing times may be longer.

For each transaction type within a specific trading pair, the data collected include the issuer, the amount

exchanged/minted/burnt, the timestamp, the block number, and the log-index, which represents the order
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of the transaction within the block where it was validated.5 Using this data, the reserves of the two tokens

in the ETH-BTC pool were reconstructed and updated after every event, inferring the adjustment of the

Uniswap price following a swap.

Binance Data

For the centralized market, Binance was selected as it is the most popular CEX. The 1-minute price data

for this market, including the open price, closing price, lowest price, highest price, and total traded volume,

were obtained from Kaggle.

The data from Uniswap and Binance were then matched by using the minute closing price for both markets.

In the case of Uniswap, the minute closing price corresponds to the price that followed the last transaction

of each minute.

2.4.2 Descriptive Statistics

Trading activity within Uniswap

From August 2020 to September 2021, there was a notable increase in trading activity on Uniswap V2,

as demonstrated by Figure 2.2a and Figure 2.2b. Both transaction volume and value (measured in USD)

experienced significant growth during this period. Additionally, the intensity of trading, as indicated by the

decrease in intertrade duration, also showed a continuous rise until September 2021. Prior to September

2020, the average intertrade duration ranged from 10 to 45 minutes. It subsequently dropped to less than

1 minute and remained at that level until September 2021 (see Figure 2.6 in Appendix 2.7). The primary

driver behind this surge in trading activity can be attributed to the UNI token airdrop that occurred in

September 2020. Uniswap launched its governance tokens, the UNI tokens, and distributed them via airdrop

to users who had interacted with the protocol before September 1st, 2020. The airdrop started on September

18th, and as users claimed their UNI tokens, many chose to trade them on Uniswap. The airdrop was a

pivotal event for Uniswap, as it motivated users to engage with the platform and contributed to its growth

and adoption. However, starting from September 2021, there has been a decline in trading activity and pool

reserves on Uniswap V2, with levels returning to those seen before August 2020. Despite this decline, the

volume exchanged remained ten times higher than before August 2020. The decrease in trading activity and

pool reserves post-September 2021 can be attributed to the launch of Uniswap V3 in May 2021. Uniswap V3

introduced concentrated liquidity pools, offering potential advantages over the V2 model.6 Consequently,

5As some transactions happen simultaneously, relying solely on the timestamp is inadequate to sequence them. To arrange
transactions that occur concurrently, one needs to use both the block number and the log-index.

6Concentrated liquidity enables LPs to offer reserves exclusively within defined price ranges of the trading pair. The benefit
for an LP using this option is that, when the exchange rate aligns with the range in which they provide liquidity, they can
generate the same fee income as in a standard constant-product pool with lower liquidity supply. For further details, refer to
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some liquidity providers may have chosen to migrate their funds from V2 to V3 pools. This migration

resulted in reduced activity on Uniswap V2, contributing to the observed decline in pool reserves.

Figure 2.7 in Appendix 2.7 shows a candlestick chart of 1-minute Uniswap price for the ETH-BTC pair

where green spikes indicate a higher closing price than the opening price, and red spikes indicate the opposite.

The size of the spikes reflects the magnitude of the price movement within that minute. Prior to September

2020, the chart displays large spikes with alternating red and green spikes, indicating a market with high

volatility and substantial price movements. However, after September 2020, there was a shift towards smaller

spikes, indicating a more stable market. This shift can be attributed to the increase in pool size, resulting in

a decrease in price impact and hence smaller price movements (Figure 2.8a in Appendix 2.7). Notably, there

was a substantial increase in liquidity provision in mid-September 2020, with the liquidity tripling from its

previous levels. It is interesting to note that despite the decrease in the size of the spikes, the alternating

pattern of red and green spikes persisted, indicating continued market activity and opportunities for traders.

After July 2022, there is a reemergence of punctual high volatility and substantial price movements. This

occurrence can be attributed to the fact that the pool was smaller and less popular during this period.

In summary, the candlestick chart in Figure 2.7 demonstrates the transition from a highly volatile market

with significant price movements to a more stable market environment with smaller spike sizes, primarily

driven by an increase in pool size. However, after July 2022, there is a resurgence of volatility, possibly due

to a smaller and less popular pool as users migrated to Uniswap V3.

(a) Evolution of volume exchanged in USD (b) Evolution of the daily number of transactions

Figure 2.2: Trading activity on Uniswap

Uniswap V3 write paper at https://uniswap.org/whitepaper-v3.pdf.
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Uniswap Vs. Binance

Figure 2.3 illustrates an interesting pattern prior to January 2022, where price divergences between Uniswap

and Binance consistently result in the Uniswap price reverting back to the Binance price. This observation

suggests that the Binance price is leading the Uniswap price, indicating that traders perceive the centralized

market as the reference market. However, a noteworthy change occurs starting from January 2022. The

Uniswap and Binance prices exhibit the same trend but differ in level. This persistence in price discrepancy

can be attributed to market inefficiencies, which may stem from various factors including transaction costs

and liquidity constraints. These factors hinder traders from efficiently arbitraging price discrepancies between

Uniswap and Binance, preventing price convergence and leading to persistent inefficiencies between the two

markets. The results of a Granger Causality test presented in Table 2.2 in the Appendix 2.7 provide support

Figure 2.3: Evolution of BTC/ETH exchange rate

for the hypothesis that the Binance price leads the Uniswap price. The test indicates that the Binance

price Granger causes the Uniswap price at a significance level of 5%, but the reverse is not true. These

findings corroborate the assumption that traders view the centralized market as the reference market and

only consider the price on this market as informative about the fundamental value Ṽt.

The frictionless arbitrage model

Following the approach outlined in Angeris et al. (2019), I fit an arbitrage model without market frictions,

where traders aim to maximize their profits by exploiting price discrepancies between Uniswap and the

reference market.7 Subsequently, I compared the model’s predictions to the observed prices over time (see

Figure 2.8c in Appendix 2.7). It is evident that the frictionless arbitrage model does not closely align with

the data. While it does capture the overall trading pattern, it fails to fully explain the price dynamics on

Uniswap.

7The decision problem faced by the trader is detailed in 2.7.
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This suggests that arbitrage opportunities alone are insufficient to account for the price dynamics observed

on Uniswap. One potential explanation for this discrepancy is the neglect of market frictions, such as

inventory carrying costs. I show in the next section that these frictions play a significant role in shaping the

price dynamics on Uniswap and need to be considered for a more accurate analysis.

2.5 Estimation

2.5.1 Reduced form estimation

The microstructure model outlined in Section 2.3 characterizes the price dynamics on Uniswap, which takes

into account arbitrage opportunities and the carrying cost associated with the trader’s inventory. Unfortu-

nately, we can neither directly observe the trader’s inventory Xi,t nor her desired level X in the available

data. Furthermore, deviations from the desired level, denoted as (Xi,t −X), are likely to be correlated with

the price difference between Uniswap and the reference markets, as β2 is a function of β1. To adress this

issue and estimate β1 and β2 without introducing any bias, I employ a first-difference approach.

First, I assume that the parameters β0,t, β1,t and β2,t are constant over time. This is not a restrictive

assumption because the only time-varying component of the parameters is the price-reserve ratio Pt

Rt
, which,

as shown in Figure 2.8b, tends to stay relatively constant over extended periods and hovers near zero. As a

result, parameters can be expressed as β0,t = β0, β1,t = β1, and β2,t = β2.

Equation (2.4) can then be rewritten as:

∆Pt = β0X + β1
(
PC
t − Pt

)
+ β2(Xi,t −X) + εt.

wher εt is distributed normal with a mean vector of zero and covariance matrix Ω.

Taking the first-difference, I obtain:

∆Pt+1 −∆Pt = β1[∆P
C
t −∆Pt] + β2[Xi,t −Xi,t−1] + ∆εt. (2.5)

Finally, [Xi,t − Xi,t−1] is the quantity Qi,t exchanged on Uniswap at period t. As I consider 1-minute

data, I assume that the quantity exchanged between two consecutive periods is the total exchanged quantity

over that minute. Therefore, equation (2.5) is rewritten as:

∆Pt+1 −∆Pt = β1[∆P
C
t −∆Pt] + β2Qt +∆εt. (2.6)
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To assess the presence of autocorrelation in the error terms, a Ljung-Box Test was conducted (see Table

2.2). The null hypothesis that the errors are not correlated is rejected at the 5% level, indicating autocorre-

lation. To address this issue, the model is estimated using OLS with Newey-West robust estimation of the

variance-covariance matrix. Rolling window estimation on daily basis of the reduced form model (2.6) was

performed to observe the potential changes in the arbitrage opportunity effect over time. The results are

presented in Figure 2.4 and, as explained below, strongly support the theoretical model developed in Section

2.3.

The arbitrage opportunity effect

The coefficient associated with the price difference between Binance and Uniswap is statistically lower than

1, rejecting the model without inventory costs of Angeris et al. (2019) in favor of model (2.4). Additionally,

the effect of the arbitrage opportunity is decreasing over time and gradually approaching zero.

In the initial stages of the pool, traders effectively closed almost the entire price gap between Binance

and Uniswap. However, over time, their ability to close the gap gradually declined. By August 2020, they

were only able to close about 20% of the price gap, which further declined to 10% by October 2020. This

pattern corresponds with the substantial increase in liquidity provided within the ETH-BTC pool, which,

in turn, led to a decrease in the price impact within the Uniswap market. These findings are in line with

the conclusions drawn from the inventory cost model discussed in Section 2.3. This model suggests that as

the size of the pool grows, trades must be more substantial to influence the Uniswap price and narrow the

gap. Consequently, traders are required to hold larger inventories, which increases their exposure to risks.

Consequently, traders become less inclined to respond to price disparities between the two markets, even

when profit opportunities arise.

At the beginning of 2022, traders once again made efforts to reduce the price gap. This resurgence

coincided with an increase in the price impact as the pool size decreased. However, during this period, they

were only able to, on average, close approximately 30% of the gap. This outcome is likely a consequence of

reduced trading activity on Uniswap V2 due to the transition to Uniswap V3.

The inventory effect

The daily estimation of β2 is displayed in Figure 2.4b. Initially, when Uniswap V2 was launched, a trader

with an inventory surplus of one unit would engage in a sale, resulting in a 0.002-point drop in the exchange

rate. Nevertheless, as time passed, this impact waned, becoming negligible. Even if the trader were to

conduct trades to bring her inventory in line with her desired level, the influence on the price would remain

minimal due to the large size of the pool, resulting in a negligible price impact from her trades.
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(a) Daily estimation of β1 (b) Daily estimation of β2

Figure 2.4: Daily estimation of parameters β1 and β2.

2.5.2 Measuring the implicit inventory cost on the no-arbitrage assumption

In section 2.5, my primary focus has been on estimating the arbitrage effect, a crucial element that ensures

the Uniswap price closely tracks the reference price. The results of this estimation have revealed an important

trend: the estimated arbitrage effect is consistently below one and displays a decreasing pattern over time,

suggesting that traders are not effectively closing the entire price discrepancies between Binance and Uniswap.

This pattern coincides with the growth of the liquidity pool on Uniswap. Therefore, I have postulated

that this phenomenon can be attributed to the presence of inventory holding costs. As the Uniswap liquidity

pool grows in size, larger trades are necessary to exert a meaningful influence on the Uniswap price and,

consequently, to narrow the price gap. Accommodating these larger trades necessitates traders to maintain

more substantial inventory positions. This heightened exposure to inventory holding risk seems to make

traders less responsive to price disparities between the two markets, even when such disparities present

profitable opportunities. However, it is important to note that this assertion is based on a conjecture

stemming from the reduced form estimation of β1 and the simultaneous evolution of the pool size.

In this section, my focal point is to dissect each element within β1 and isolate the influence of inventory

costs ϕ, aiming to validate my initial hypothesis. I will delve into whether these inventory costs indeed serve

as a deterrent for traders, hindering their active participation in arbitrage opportunities.

Estimating the volatility of Binance Price

I estimate the Binance Price volatility, σv, using the local average version of the Optimal candlesticK

(OK) estimator proposed by Jia Li and Zhang (2021). Their method takes into account all information in

a candlestick, including the range between high and low prices in addition to the return calculated by the
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Figure 2.5: OK estimator of the Binance Price Volatility

closing and opening prices, resulting in a more accurate estimator than those that rely solely on returns.

The single-candlestick estimator is computed using the following formula:

0.811× (High− Low)− 0.369× |Close−Open|
Duration of the trading session0.5

.

Additionally, when higher frequency candlesticks are available over fixed time interval [0, T ], they suggest

improving this estimator with a local average method over a time window k. The local average estimator is

expressed as:

σ̂t(k) =
1

k

k∑
t=1

0.811× wi+t − 0.369× |ri+t|
∆0.5

n

, for t ∈ [(i− 1)k∆n, ik∆n] , i ∈
[
1,

⌊
T

k

⌋]

where ∆n is the duration of the trading session, wi+j = High pricei+t − Low pricei+t and ri+t =

Closing pricei+t −Open pricei+t.

Given that I have 1-minute candlesticks for Binance price data, I apply this estimator with a daily

estimation window by setting ∆n = 1 minute and k = daily number of observations. Figure 2.5 depicts

the volatility estimation of the ETH-BTC trading pair on Binance over time. The plot reveals that the

exchange rate of the ETH-BTC pair is subject to many fluctuations, but with a relatively low volatility

level. The magnitude of volatility is around 1e-8, suggesting that the changes in price for the ETH-BTC

pair on Binance are relatively small8. Furthermore, comparison with the candlestick chart of Uniswap price

illustrated in Figure 2.7 clearly indicates that the price of the ETH-BTC pair is significantly more stable on

Binance than on Uniswap.

8Please refer to Figure 2.3 for the ETH-BTC price’s range.
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Deriving an estimate for the inventory costs

By using the expression for β1,t and employing a commonly used risk-aversion parameter ρ = 4 as detailed

in the literature in the context of mean-variance utility (Ang 2014), it is possible to obtain estimates for the

inventory costs ϕ. This estimation is accomplished through ordinary least squares (OLS) regression on the

following equation:

yt = 2ϕ+ ρσ2
Vt

(2.7)

where yt = 2 Pt

RX,t
× (1− β1,t)/β1,t.

The estimate of ϕ is presented in table 2.1. It is statistically significant and is positive. Therefore,

inventory costs prevent traders from exploiting arbitrage opportunities and, in turn, from narrowing the gap

between Uniswap and the reference market.

Variable Estimate Std. Error
ϕ 0.051587 0.006658 ∗∗∗

n = 913

Table 2.1: Estimation Results for equation (2.7)

The analysis and model estimation for additional top pairs during the same period can be found in Appendix

2.7. The findings related to these pairs corroborate and complement the conclusions derived from the analysis

of the ETH-BTC pair. In particular, when traders are not exposed to market risks, as is the case with

stablecoin pairs due to their peg to the US dollar, they do not face inventory holding risk. Consequently,

they are more inclined to exploit arbitrage opportunities.

2.6 Conclusion

Uniswap is one of the most widely used decentralized application on Ethereum with more than $1 trillion

in total value locked. Yet, its market microstructure and its trading process are not fully understood as

Uniswap is an AMM and thereby works differently to traditional exchange markets. Therefore, it is crucial

to investigate its market microstructure and its trading process, taking into account market frictions.

Specifically, the price efficiency of Uniswap relies on the arbitrage assumption which implies that any

price differences between Uniswap and other exchanges are eliminated through arbitrage activities, resulting

in the Uniswap price reflecting the true market value of an asset. However, traders may face challenges

when trying to profit from cross-market arbitrage opportunities due to market frictions such as inventory

holding costs. In this context, this paper attempts to complement the existing literature on DEXs and gives

further insight about DEXs by developing and testing a microstructure model of Uniswap’s price dynamics.
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My microstructure model not only considers arbitrage opportunities, but also takes into account inventory

holding costs, which have been found to be a significant factor affecting traders’ decision-making processes. As

the inventory costs increases, traders become less willing to take advantage of arbitrage opportunities and are

less likely to close the price gap between Uniswap and reference markets. Additionally, our empirical findings

provide support for the theoretical model and suggest that as the pool increases, resulting in a decrease in

price impact, traders tend to mitigate the price discrepancy between Uniswap and centralized exchanges less,

as they face greater exposure to inventory risks. Conversely, when traders operate in pools with minimal

market risks, such as stablecoin pairs, they do not encounter inventory holding risks. Consequently, they are

more inclined to exploit arbitrage opportunities.

In future work, I aim to incorporate other market frictions into the model. On top of trader’s inventory,

private information and processing costs are also likely to affect the trading process and thereby, the no-

arbitrage assumption on Uniswap. Indeed, when trading on Uniswap, investors may have private information

regarding the fundamental value of the asset or observe a signal of it through trades of others. They may

then update their belief and trade in consequence. Furthermore, in addition to the 0.3% transaction fees,

investors also need to pay mining fees to have their transaction validated and added to the Ethereum

Blockchain. These fees are fixed and do not depend on the amount traded. As a result, traders may decide

not to take advantage of an arbitrage opportunity if the transaction costs exceed the potential gains, leading

to inaction.

Moreover, it is crucial to consider the impact of Miner Extractable Value (MEV) as another significant

factor. Traders on Uniswap may adopt a strategy of splitting their trades into smaller segments as a

precaution against front-running. Consequently, they may not fully close the price gap in a single transaction.

In summary, my research agenda encompasses the incorporation of market frictions beyond trader inven-

tory, including private information, processing costs, and MEV to gain a more comprehensive understanding

of how they collectively shape trading behavior and influence the completeness of arbitrage opportunities

within the Uniswap ecosystem.

2.7 Appendix

The no-arbitrage equilibrium

In the context of the optimal arbitrage problem, there are two cryptocurrencies, X and Y, which can be

exchanged within either a reference market or the Uniswap platform. Within this problem, traders endeavor

to optimize their profit by exploiting the difference between the reference market price, denoted as PC
t , and
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the Uniswap price, denoted as Pt. The optimal arbitrage problem can be formulated as follows:

Hence,

max
∆Xt∈R+

g(∆Xt)

s.t ∆Yt ≥ 0

∆Yt ≤ RY
t if he sells ∆Xt

∆Xt ≤ RX
t if he buys ∆Xt

(2.8)

where

g(∆Xt) =


g1(∆Xt) =

[
PE(∆Xt)− PC

t

]
∆Xt if he sells ∆Xt

g2(∆Xt) =
[
PC
t − PE(∆Xt)

]
∆Xt if he buys ∆Xt

The two last constraints require that the quantity bought should be lower than the reserve size.

Since PE = ∆Yt

∆Xt
and the quantity exchanged on Uniswap is:

∆Yt =


γ∆XtR

Y
t

RX
t +γ∆Xt

if he sells ∆Xt

∆XtR
Y
t

(RX
t −∆Xt)γ

if he buys ∆Xt

g(∆Xt) can be rewritten as follows :

g(∆Xt) =


g1(∆Xt) =

γ∆XtR
Y
t

RX
t +γ∆Xt

− PC
t ∆Xt if he sells ∆Xt

g2(∆Xt) = PC
t ∆Xt − ∆XtR

Y
t

(RX
t −∆Xt)γ

if he buys ∆Xt

Solutions to problem (1) are:

∆X∗
t =



∆X∗
t,sell =

−RX
t PC

t +
√

γPC
t RY

t RX
t

γPC
t

if PC
t < γPt

0 if γPt ≤ PC
t ≤ Pt

γ

∆X∗
t,buy =

γPC
t RX

t −
√

γPC
t RY

t RX
t

γPC
t

if PC
t > Pt

γ

PROPOSITION 1. When there is no fees and the prices are misaligned, the trader will always take

advantage of pure arbitrage opportunities. However, in presence of fees, even when the prices are misaligned,

the trader will trade only if the difference is high enough to recover the fees, otherwise, they will not respond
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to the price divergence between Uniswap and the centralized exchange, giving rise to inaction.

Using the constant product formula, the new price after the trade is:

P ∗
t+1 =



γRY
t PC

t

(γ−1)
√

γPC
t RY

t RX
t +γRY

t

if PC
t < γPt

Pt if γPt ≤ PC
t ≤ Pt

γ

PC
t −

(1−γ)
√

γPC
t RY

t RX
t

γRX
t

if PC
t > Pt

γ

Finally, the ratio between the Uniswap price and the fundamental value (or centralized price) is :

PC
t

P ∗
t+1

=



1− (1− γ)
√

PC
t

γPt
if

PC
t

Pt
< γ

PC
t

Pt
if γ ≤ PC

t

Pt
≤ 1

γ

(
1− (1− γ)

√
Pt

γPC
t

)−1

if
PC

t

Pt
> 1

γ

PROPOSITION 2. (i) When there is no fees, the trader closes the gap between the two markets, no matter

the initial price difference. (ii) When there are fees, the trader does not close the gap entirely. Furthermore,

the higher the gap (in one direction or another) before the trade, the greater the gap reduction by the trader.

(iii) The gap reduction is not linear in the initial price difference. (iv) The higher the fees, the less the trader

will exploit arbitrage opportunities and reduce the gap.

Deriving Uniswap’s price dynamics

The trader chooses the quantity that maximizes their utility subject to inventory holding costs, as follows:

max
Qt

{
(Xi,t +Qt)P

C
t − PE(Qt)Qt + Ci,t −

ρσ2
V

2
(Xi,t +Qt)

2 − ϕ× (Xi,t +Qt −X)2
}
. (2.9)

where PC
t = E

[
Ṽt

]
.
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The FOC gives:

P ′
E(Qt)Qt + PE(Qt) = PC

t − ρσ2
V (Xi,t +Qt)− 2ϕ(Xi,t +Qt −X).

Note that equality 9

P ′
E(Qt)Qt + PE(Qt) = Pt+1, (2.10)

where Pt+1 is the new Uniswap price after that trade. Furthermore,

Pt+1 = Pt

(
1

1− Qt

RX
t

)2

. (2.11)

where RX
t is the liquidity size of asset X at time t. Combining (2.10) and (2.11), the FOC can be rewritten

as:

Pt

(
1

1− Qt

RX
t

)2

= PC
t − ρσ2

V (Xi,t +Q∗
t )− 2ϕ(Xi,t +Q∗

t −X) (2.12)

The expression (2.11) is highly non-linear. To simplify it, I take a Taylor expansion around zero as Qt/R
X
t ≈ 0

in practice: (
1

1− Qt

RX
t

)2

≈ 1 + 2
Qt

RX
t

when
Qt

RX
t

→ 0.

Explicit solution. Let us now solve for Qt explicitly. The FOC (2.12) can be rewritten as

Pt

(
1 + 2

Q∗
t

RX
t

)
= PC

t − ρσ2
V (Xi,t +Q∗

t )− 2ϕ(Xi,t +Q∗
t −X),

or

Q∗
t

(
PC
t , Pt, Xi,t, X,R

X
t

)
=
PC
t − Pt − ρσ2

VXi,t − 2ϕ(Xi,t −X)

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

.

9(2.10) & equality (2.11) come from the constant function properties.
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Putting it back in the FOC, we finally get:

PC
t − Pt+1 = (ρσ2

V + 2ϕ)Xi,t − 2ϕX + (ρσ2
V + 2ϕ)

PC
t − Pt − ρσ2

VXi,t − 2ϕ(Xi,t −X)

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

=

(
ρσ2

V + 2ϕ− (ρσ2
V + 2ϕ)2

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

)
Xi,t + 2ϕ

(
ρσ2

V + 2ϕ

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

− 1

)
X +

(
ρσ2

V + 2ϕ
) PC

t − Pt

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

=
2 Pt

RX
t
(ρσ2

V + 2ϕ)

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

Xi,t −
4ϕ Pt

RX
t

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

X +
(
ρσ2

V + 2ϕ
) PC

t − Pt

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

.

Rearranging terms and subtracting both side by Pt, we then get:

Pt+1 − Pt =

(
1− ρσ2

V + 2ϕ

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

)
(PC

t − Pt)−
2 Pt

RX
t
(ρσ2

V + 2ϕ)

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

Xi,t +
4ϕ Pt

RX
t

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

X

=
2 Pt

RX
t

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

(PC
t − Pt)−

2 Pt

RX
t
(ρσ2

V + 2ϕ)

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

(Xi,t −X) +
4ϕ Pt

RX
t
− 2 Pt

RX
t
(ρσ2

V + 2ϕ)

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

X

=
2 Pt

RX
t

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

(PC
t − Pt)−

2 Pt

RX
t
(ρσ2

V + 2ϕ)

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

(Xi,t −X)−
2 Pt

RX
t
ρσ2

V

ρσ2
V − 2 Pt

RX
t
+ 2ϕ

X.

We finally get the following characterization of price dynamics on Uniswap:

Pt+1 − Pt = β1,t(P
C
t − Pt)− (ρσ2

V + 2ϕ)β1,t(Xi,t −X)− ρσ2
V β1,tX

where β1,t =
2 Pt

RX
t

ρσ2
V + 2 Pt

RX
t
+ 2ϕ

.
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Additional graphs and statistical tests for the ETH-BTC pool

Figure 2.6: Daily average delta time (in minutes) between two transactions on Uniswap

Note: Trading intensity is measured as the time length between two consecutive trades.

Figure 2.7: Candlestick Chart of the BTC-ETH minute exchange rate on Uniswap

Test Nb of lags Null hypothesis Stat p-value
Ljung-Box test Residuals are independently distributed 18588.225853 0.0

Granger causality test 3 Binance price does not Granger causes Binance price 624.0059 0.0000
Granger causality test 3 Uniswap price does not Granger causes Binance price 1.3501 0.2561

Table 2.2: Ljung-Box test and Granger causality tests
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(a) Evolution of ETH and BTC Re-
serves.

(b) Evolution of the price-reserve
ratio Pt

Rt
.

(c) Observed Vs Predicted ETH-
BTC price on Uniswap

Figure 2.8: Evolution of the ETH-BTC pool over time.

Other crypto pairs on Uniswap

In this appendix, I broaden the scope of my analysis by examining additional cryptocurrency pairs. The

goal is to assess the trading activity within various pools, compare their exchange rates to those on Binance,

and apply the model (2.6) to these pairs. This extension aims to determine if the insights derived from

the ETH-BTC pair can be extrapolated to other pairs or if the inventory holding cost varies depending on

the characteristics of the pair. To achieve this, I gather data for the top pairs during the covered period,

specifically: AAVE-ETHER, USDC-USDT, USDT-DAI, and USDT-ETHER. It is worth noting that USDC,

USDT, and DAI are U.S. stablecoins, cryptocurrencies designed to maintain their value as closely as possible

to the U.S. dollar. The data collection process for those pairs follows the same methodology detailed in

section 2.4.1 for the ETH-BTC pair.

Trading activity

Similarly to the ETH-BTC pair, the various cryptocurrency pairs experienced a surge in trading activity

beginning in November 2020, followed by a decline starting in July 2021, as depicted in Figure 2.9. The

initial increase can be attributed to the Uniswap airdrop, whereas the subsequent decline can be traced

back to users migrating towards Uniswap V3. A corresponding shift in intertrade duration for these pairs

is illustrated in Figure 2.10, showing a consistent decrease until July 2021, reflecting an increasing trading

intensity. However, this trend reversed with the transition to Uniswap V3. The AAVE-ETHER pair stands

as an exception, with a declining trading intensity even during the peak of Uniswap V2, before becoming

inactive with the launch of Uniswap V3. It is also noteworthy that the trading intensity for the ETH-BTC

trading pair remained higher, even in the early stages of Uniswap, compared to these other pairs. The

average intertrade duration never exceeded 40 minutes for the ETH-BTC pair, while for the other pairs,
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Figure 2.9: Daily Trading Volume (USD).

Figure 2.10: Daily inter-trade duration in minutes.

it extended to hours and even days. Shifting our focus to Figure 2.11, it offers insight into the exchange

rates of these different crypto pairs, comparing their evolution on both Uniswap and Binance. For pairs like

USDC-USDT and USDT-DAI, where stablecoins pegged to the US dollar are involved, the exchange rates

should ideally remain at 1. Binance demonstrates remarkable stability in these rates, consistently hovering

around 1. In contrast, Uniswap shows some fluctuations around this value. When we focus on the USDT-

ETHER pair, we observe a close alignment in exchange rates between Uniswap and Binance. However,

delving into the AAVE-ETHER pair, a substantial disparity becomes apparent. Uniswap’s exchange rate

for the AAVE-ETHER pair deviates significantly from the corresponding rate on Binance. To put this into

context, the magnitude of this difference is quite substantial, with Uniswap’s exchange rate registering at

approximately 1e-19, while Binance’s rate remains at 0.1. This marked contrast raises questions about the
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potential influence of Uniswap’s decentralized nature on the behavior of exchange rates. In summary, trading

activity in these pools follows the same pattern as observed in the ETH-BTC pool, with the exception of

the AAVE-ETHER pair.

Figure 2.11: Exchange Rate on Uniswap over time.

Model estimation

I estimate equation (2.6) for these trading pairs. The results are presented in Figure 2.12.

Arbitrage opportunity effect

As one might expect, in the case of the AAVE-ETHER trading pair, traders are reluctant to narrow the price

disparity between Uniswap and Binance. This is due to the unreliability of the Uniswap price, as evidenced

in Figure 2.11, where the Uniswap price significantly diverges from the Binance price. This divergence is

exacerbated by a decline in trading activity within this pool, as depicted in Figure 2.9. Similar to the ETH-

BTC pair, for the USDT-ETHER pair, traders initially fully close the price gap, but later opt to partially

close it, typically narrowing it by around 50%. When it comes to US-stablecoin pairs, traders generally aim

to completely close the price gap between Uniswap and Binance. This outcome is not suprising, given that

stablecoins are expected to maintain their stability and not exhibit significant volatility. Traders might be

more willing to hold inventory, confident that the prices should remain stable within these pools. However,

in some instances, they tend to overreact to the price gap and end up narrowing it by even more, up to

120%.
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Figure 2.12: Daily estimation of β1 using OLS with Newey-West robust estimation of the variance-covariance
matrix.

Binance price volatility

I employ the OK estimator to compute the Binance Price volatility, represented as σv, for the designated

pairs, following the same methodology outlined in section 2.5.2 for the BTC-ETHER trading pair. The

results are presented in Figure 2.13. It is evident from the Figure that, with the exception of the USDT-

ETHER pair, the prices on Binance are stable. This remarkable stability suggests that US-stablecoin pairs

are effectively pegged to the US Dollar on Binance, highlighting the reliability of Binance as a pricing

reference.

Figure 2.13: OK estimator of Binance price volatility.
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Estimating the inventory costs

The inventory cost estimates for each pair are provided in Table 2.3. The effect is statistically significant

at the 5% level for all pairs under consideration, except for the DAI-USDT trading pair. Furthermore, for

the stable-coin pairs, the effect is nearly approaching zero, consistent with the estimator I found for β1 (see

Figure 2.12). Traders effectively eliminate the price gap between Uniswap and Binance because they do not

encounter inventory costs when dealing with these pairs. As previously hypothesized, this phenomenon can

be attributed to the stability of these pairs. Stablecoin pairs are expected to exhibit low volatility, enabling

traders to take advantage of arbitrage opportunities without being exposed to market risks associated with

holding inventory.

In summary, this section complements the findings for the ETH-BTC pair, demonstrating that when the

market risk is low, traders do not encounter inventory risks. Consequently, they seize arbitrage opportunities

and effectively narrow the price gap between Uniswap and Binance.

pair Estimate Std. Error
AAVE-ETHER -1.982e-08 3.884e-09 ∗∗∗

USDC-USDT -5.692e-08 1.741e-08 ∗∗

ETH-USDT -14.198 1.105 ∗∗∗

DAI-USDT 1.662e-06 1.474e-06

Table 2.3: Estimation of the inventory holding cost ϕ.
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Chapter 3

Contagion in Decentralized Lending

Protocols: A Case Study of

Compound.1

Co-written with Natkamon Towanich, Julien Prat, and Simon Weidenholzer.

Abstract

We study financial contagion in Compound V2, a decentralized lending protocol deployed on the Ethereum

blockchain. We explain how to construct the balance sheets of Compound’s liquidity pools and use our

methodology to characterize the financial network. Our analysis reveals that most users either borrow

stablecoins or engage in liquidity mining. We then study the resilience of Compound v2 through a series of

stress tests, identifying the pools that are most likely to set off a cascade of defaults.

1DeFi ’23: Proceedings of the 2023 Workshop on Decentralized Finance and Security, November 30, 2023, Copenhagen,
Denmark. https://doi.org/10.1145/3605768.3623544.
This project has been funded under the Blockchain@X Research Center. Weidenholzer acknowledges support from the Economic
and Social Research Council [grant number ES/T015357/1]. We thank Riho Marten Pallum for helping us develop the code to
extract Compound V2 data from The Graph.
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3.1 Introduction

Smart contracts have enabled the rise of Decentralized Finance (DeFi) protocols that offer financial services

without relying on an intermediary such as a bank or brokerage house. While it is widely acknowledged

that traditional financial systems are vulnerable to contagion through various channels, including bank runs

Diamond and Dybvig (1983) and default cascades Eisenberg and Noe (2001), little is known about the

contagion risks potentially present in DeFi protocols.

To study this question, we focus on Compound V2 but note that alternative protocols, such as AAVE

and MakerDAO, share a comparable architecture, potentially exposing them to similar forces. Compound

is a decentralized lending protocol built on the Ethereum blockchain (see Leshner and Hayes, 2019). The

protocol manages multiple liquidity pools, each dedicated to a specific token. Lenders can add liquidity to

any pool, while borrowers can withdraw liquidity by providing collateral in the form of deposits in other

pools. These operations connect the various liquidity pools through a network of financial liabilities.

Our first contribution lies in proposing a methodology for the description of Compound’s financial net-

work. We do so by characterizing the balance sheet of its liquidity pools and identifying how they are con-

nected by the borrowing and collateral obligations of users. Leveraging the public availability of Ethereum’s

transaction history, we reconstruct the balance sheet of each pool at any given point in time and without

measurement errors. The resulting financial network sheds light on the key functionalities of Compound.

Specifically, it indicates that users predominantly utilize Compound for two types of financial operations:

borrowing stablecoins and participating in liquidity mining of Compound’s governance token.

Then, we assess the resilience of the protocol. Inspired by the recent literature on financial contagion

(e.g., Elliott et al., 2014; Jackson and Pernoud, 2021), we investigate how shocks propagate through the

financial network. Our first set of stress tests simulates the aftermath of a pool’s default, identifying the

pools that pose the highest level of systemic risk. In a second set of simulations, we characterize which

liquidity pools default in response to a drop in the price of Bitcoin and Ether. We find that cascading failure

is a distinct possibility, albeit requiring fairly sizeable price shocks. The pools of stablecoins are the most

likely to default, whereas the pools of Bitcoins and Ethers are the most likely to set off a domino effect.

Related Literature. A growing body of research investigates DeFi protocols in order to assess their

robustness and vulnerabilities. Formal analyses of lending pools can be found in Bartoletti et al. (2021, 2022)

and Gudgeon et al. (2020a). Other studies simulate crash scenarios to explore how lending protocols respond

to market price fluctuations (Kao et al., 2020; Qin et al., 2021). Additionally, researchers have analyzed the

resilience of lending protocols to significant market events, such as the Ethereum Merge (Heimbach et al.,

2023) and governance attacks (Gudgeon et al., 2020).
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The examination of participants’ behavior highlights severe liquidation risks due to their leverage (He-

imbach and Huang, 2023) and risk appetite (Perez et al., 2021). Darlin et al. (2022) and Saengchote (2023)

show that using debt-financed collateral fosters interconnectivity, whereas Chiu et al. (2022) explains why

rigid haircut rules are likely to cause price-liquidity feedback loops. Empirical studies of liquidations reveal

vulnerabilities leading to fire sales (Qin et al., 2021) and liquidation spirals (Warmuz et al., 2023) that could

potentially endanger the stability of the DeFi ecosystem (Lehar and Parlour, 2022).

Instances of illiquidity have been documented, especially in newly established platforms (Gudgeon et al.,

2020; Hafner et al., 2023, Sun et al., 2023). Our paper investigates whether liquidity pools are likely to

become illiquid and explores how such an occurrence might propagate across Compound’s network. To

model these scenarios, we draw upon the extensive research that studies the mechanisms governing the

transmission of shocks and distress across financial markets (Acemoglu et al., 2015; Elliott et al., 2014; Gai

et al., 2011; Gai and Kapadia, 2010; Haldane and May, 2011). Given the extensive scope of the literature

on financial contagion, we direct interested readers to two comprehensive surveys (Glasserman and Young,

2016; Jackson and Pernoud, 2021). Our approach, like these studies, uses the balance sheets of financial

institutions to capture their connections and derive the corresponding network structure. In this context,

Ao et al. (2023) and Saengchote and Castro-Iragorri (2023) are closely related to our research, as they use

network analysis to assess the decentralization of DeFi and the interconnectedness of various protocols. By

contrast, our paper pioneers the investigation of contagion risks and network effects within lending protocols.

Structure of paper. The design of Compound’s protocol is presented in Section 3.2. Section 3.3

describes the structure of Compound’s financial network. Section 3.4 explains how we use data about users’

accounts to build the balance sheets of the lending pools. Section 3.5 analyzes the resilience of the protocol

to cascades of failures. Section 3.6 concludes while the Appendices contain additional material about our

algorithms and data.

3.2 Description of Compound

We start our analysis by describing how users interact with Compound since their actions determine the

structure of the financial network.

3.2.1 Lending

When a user adds liquidity to a pool by depositing tokens, she receives an equivalent amount of cTokens in

return. Essentially, cTokens are tokenized proofs of the deposit that can be redeemed at any time. Users

are incentivized to provide liquidity because cTokens are deflationary and tend to increase in value relative
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to the underlying asset, offering a rate of return on deposits.

For ease of notation, we will omit time inDEXs for all variables. We use dui ≥ 0 to denote the amount

of tokens held by user u as deposit in pool i and gather all the deposits in the matrix d.2 The row vector

du = (du1 , d
u
2 , . . . , d

u
k), where k is the number of pools managed by Compound, represents user u’s deposits

across the different pools. The column vector di = (d1i , d
2
i , . . . , d

n
i ), where n is the number of active users,

lists all the deposits in pool i. Consequently, the sum of deposits in pool i can be calculated as d̄i =
∑

u d
u
i .

To compare deposit values across pools, we need to convert them into a common unit of account. Let pi

represent the price of token i in US Dollars.3 By stacking all prices into the vector p = (p1, . . . , pk), we can

express the value of user u’s deposits as v(du, p) = dupT =
∑k

i=1 d
u
i pi. Additionally, the vector of deposit

values across all users is given by v(d, p) = (v(d1, p), . . . , v(dn, p)) = dpT .

3.2.2 Borrowing

Users have two ways of withdrawing tokens from liquidity pools. As mentioned before, they can redeem their

cTokens, which are then burned by the protocol, effectively releasing their deposited tokens. Alternatively,

they can borrow tokens by using a portion of their deposits as collateral. When borrows are backed by

cTokens from different pools, the loans create a web of liabilities interconnecting the various liquidity pools.

Using a notation similar to that used for deposits, we denote the amount of asset i borrowed by user u

as bui and collect these borrow amounts in the matrix b. Before borrowing an asset, users must select which

cTokens they wish to use as collateral from the various tokens they have supplied. When a user enters a

market, all cTokens they hold in that specific asset class are considered collateral. Let e be the matrix of

dimension n× k, where the element eui represents the “enterMarket” option chosen by user u for token i. It

takes a value of 1 if the user intends to use this asset class as collateral and 0 otherwise. Consequently, the

collateral matrix c is given by c = e⊙ d where ⊙ denotes the Hadamard product.

Each cToken has its own collateral factor, indicating the proportion of the underlying asset value that can

be borrowed. These collateral factors are determined and set by the governance of the protocol. In general,

tokens with a small market capitalization tend to have a low collateral factor. Formally, let κ = (κ1, . . . , κk)

where κi ∈ [0, 1) for all i, be a vector representing the collateral factors associated with each pool.4 The

maximal collateral value available to user u for borrowing is given by v(cu, κp) = cu(κ⊙ p)T =
∑k

i=1 c
u
i κipi.

This value represents the borrowing capacity of user u since she faces the credit constraint v(bu, p) ≤ v(cu, κp).
2For simplicity, we present deposits in terms of the underlying token. In practice, when you deposit funds into Compound

V2, the protocol internally converts the underlying tokens into an equivalent amount of cTokens based on the current exchange
rate.

3Compound primarily relies on Chainlink’s Open Price Feed as its price oracle. The protocol preforms sanity checks by
comparing Chainlink’s price feeds to the prices quoted by Uniswap V2.

4See: https://docs.compound.finance/v2/comptroller/#collateral-factor
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The financial health of each user is quantified by the ratio hu(p) = v(cu, κp)/v(bu, p). Whenever a user’s

health ratio falls below 1, which can occur due to various reasons, such as an increase in the price of the

borrowed tokens, her collateral assets become eligible for liquidation.

3.2.3 Borrowing and lending rates

Borrowers pay interest on their borrowed tokens, while lenders receive interest for providing their assets.

The interest rates for borrowing and lending are determined algorithmically based on the utilization rates of

each pool, i.e., the proportion of the pool’s tokens that have been borrowed (Leshner and Hayes, 2019). The

protocol maintains a positive interest rate difference between borrowing and lending to reward stakeholders

and create liquidity reserves. Furthermore, Compound introduced a liquidity mining program on June 16,

2020, incentivizing user engagement through the distribution of its governance token (COMP). The details

of this distribution mechanism are subject to governance control and may vary over time.5

3.3 Compound’s financial network

The liquidity pools within Compound’s financial network are interconnected through loans, as users lock

tokens in one pool to borrow from another. This mechanism is similar to repurchase agreements (repos)

between banks. Liquidity pools replace financial institutions, with each loan representing a claim from the

pool of the borrowed asset towards the pool(s) providing collateral.

Compound’s financial network comprises a set K = {1, ..., k} of pools or nodes. The balance sheets of

the pools are constructed as follows:

• On the liabilities side, we allocate the certificates of deposit (cTokens) across three categories. Firstly,

we collect the market value of all deposits (Di) that have not entered any market and are, therefore,

external liabilities. Secondly, the interpool liabilities of pool i are the sum of all liabilities towards

other pools (
∑K

j=1 Lij). Specifically, when a user decides to lock their cTokens as collateral, an amount

corresponding to the debt becomes a liability of the pool towards the pool from which the tokens have

been borrowed. Thirdly, the remaining portion of cTokens that have entered the market but are in

excess of the value of the debt is allocated to the pool’s buffer (Bi). We separate these cTokens from

deposits because they are not external liabilities. Instead, the buffer can be mobilized to secure the

debt of users with a deteriorating health ratio.

5See: https://compound.finance/governance/comp
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• On the assets side, we aggregate the market value of all the available tokens in each pool (Ti),
6 including

the reserves set aside by the protocol (Ri) and the value of the interpool assets (
∑K

j=1 Lji), i.e., the

value of all tokens from other pools locked as collateral for loans originating from pool i.

We use the following procedure to identify undercollateralized claims. First, we define αu = v(bu, p)/v(cu, p)

as user u’s borrowing-to-collateral ratio.7 Assuming proportional allocation of collateral, if the user has non-

negative net worth (αu ≤ 1), then the effective liability of pool i towards pool j corresponds in value to

the nominal debt, implying luij = αuβu
j ci where β

u
j ≡ pjb

u
j /v(b

u, p) is the share of u’s borrowing in pool j.

However, if the user has a negative net worth (αu > 1), the pool can only recover luij = βu
j c

u
i units of asset i

before depleting all the funds set aside in u’s buffer. Hence, the liabilities and buffer of user u read

luij = min{1, αu}βu
j c

u
i and Bu

ij = (1−min{1, αu})βu
j c

u
i . (3.1)

The matrices L̄ and L summarize the nominal and effective interpool liabilities. Nominal values represent

the promised payments associated with each claim, while effective values take into account users’ solvency

by adjusting for all undercollateralized claims. Therefore, L̄ij ∈ R+ (Lij ∈ R+) represents the nominal

(effective) liabilities of pool i towards pool j. These values can be calculated by aggregating the nominal and

effective liabilities of all users as follows: L̄ij =
∑n

u=1 α
uβu

j c
u
i pi and Lij =

∑n
u=1 l

u
i,jpi. Finally, the buffer of

each pool in K is given by Bi =
∑

j

∑
uB

u
ijpi.

With this at hand, we can express the net worth of pool i as

Vi =
∑
j

Lji +Ri + Ti −
∑
j

Lij −Bi −Di. (3.2)

Figure 3.1 contains a schematic financial network with only two liquidity pools. The arrows connecting

the pools represent the direction in which payments flow.

3.4 Data and Descriptive Statistics

3.4.1 Data

The public availability of Ethereum’s transaction history allows us to reconstruct the pools’ balance sheets at

any desired time point. By collecting the daily snapshots of users’ positions from Compound V2’s subgraph,8

6More precisely, we calculate the total market value by multiplying the number of tokens Ti available in pool i by their
market price pi.

7We define α as the borrowing-to-collateral ratio, rather than the collateral-to-borrowing ratio, in order to prevent infinite
values for pure lenders.

8https://thegraph.com/hosted-service/subgraph/graphprotocol/compound-v2
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Figure 3.1: Pools’ balance sheets and interpool linkages.

we obtain a comprehensive list of all users, denoted as U , along with their respective lending (dui ) and

borrowing (bui ) balances for each asset, including accrued interests from both lending and borrowing. In

order to convert all balances to US Dollars, we rely on the market prices (p) of the tokens provided by

Compound’s oracle. This results in a sizable dataset containing the daily positions of 422,459 users across

19 pools, spanning from January 1, 2020, to June 30, 2023. Using this information, we construct the liability

matrices and balance sheets for each daily snapshot, following the procedure outlined in section 3.3.

3.4.2 Financial Network

Our procedure generates daily snapshots of the balance sheet of each liquidity pool. Figure 3.2 presents a

cross-section of the top 10 pools on September 7, 2021.9 Two observations stand out. Firstly, the majority

of all deposits are concentrated within five main pools, which can be categorized into two groups: (i)

stablecoin-pools (cUSDC, cUSDT, cDAI), and (ii) crypto-pools (cETH, cWBTC2).10 Secondly, there is a

9We selected this snapshot because it is the day on which Compound reached its highest Total Value Locked (TVL). We
show below that the network structure exhibits persistent features, allowing us to extrapolate general insights from this specific
day.

10WBTCs are wrapped bitcoins, i.e., ERC-20 tokens on the Ethereum blockchain pegged to Bitcoin. The cWBTC2 pool
replaced cWBTC in April 2021, following an upgrade of the cToken contract implementation (See: https://compound.finance/
governance/proposals/41).
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consistent difference in balance sheet composition between the crypto-pools and stablecoin-pools. Specifically,

stablecoin-pools hold significant interpool-assets, whereas crypto-pools have minimal interpool-assets. On

the liabilities side, most cTokens in crypto-pools are used as collateral, while a substantial portion is held

as deposits in stablecoin-pools. These observations suggest that users deposit cryptoassets in Compound

primarily to borrow stablecoins.
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Figure 3.2: Balance sheets of the top 10 pools on Sept. 7, 2021.

This intuition is confirmed by Figure 3.3, which presents the financial network on our reference day

(September 7, 2021). The size of the circles in the graph is proportional to the values in US Dollars of the

pools’ interpool assets. The arrows connecting the pools indicate the direction of payment flows, while the

size of the arrows is proportional to the value of the claims. Upon analyzing Figure 3.3, it becomes evident

that the majority of interpool links originate from the crypto-pools and connect to the stablecoin-pools. This

observation supports the notion that most borrowers utilize Compound as a protocol to engage in repurchase

agreements (repos) to trade their cryptoassets for stablecoins.

Figure 3.3 further illustrates an intriguing pattern: users often engage in borrowing from the same pool

they have previously lent to. This self-borrowing behavior is captured by the color of the nodes, with darker

shades indicating a higher proportion of cTokens being used for self-borrowing. Such a strategy can be

financially advantageous, despite the gap separating the borrowing from the lending interest rates, because
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Figure 3.3: Interpool liability network on Sept. 7, 2021.
The percentage of self-borrow represents the proportion of interpool assets that consist of tokens from the same pool

(
Lii/

∑K
j=1 Lji

)
.

Compound encourages liquidity provision by distributing its governance token (COMP). Additionally, the

benefits of liquidity mining motivate certain users to utilize one stablecoin to borrow another, with cUSDC

and cDAI being particularly notable in this regard.

3.4.3 Centrality

The node-link diagram presented in Figure 3.3 may not readily apply to generalization across multiple

snapshots. To achieve this, we build a scalar measure for each pool that effectively encapsulates their

centrality within the financial network. Centrality measures can be computed from the liabilities matrix
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L̄.11 Specifically, there are two measures of eigenvector centrality of node j which can be obtained in the

following way (Glasserman and Young, 2016):

λνLj =

k∑
i=1

νLj L̄ij and λνRj =

k∑
i=1

L̄ijν
R
j , (3.3)

where λ represents the dominant eigenvalue of L̄. The left eigenvector νL measures funding centrality,

attributing more centrality to nodes that hold claims on nodes with higher centrality. Conversely, the

right eigenvector νR measures borrowing centrality, assigning more centrality to nodes that hold obligations

towards nodes with greater centrality.

Figure 3.4 reports the evolution of the two centrality measures for the dominant pools over time. Although

we observe some variations in the relative importance of each pool, an underlying pattern consistent with

the earlier snapshot becomes apparent: Borrowing centrality attributes most of the weights to crypto-pools

(ETH and either WBTC1 or WBTC2) while funding centrality is concentrated within the stablecoin-pools

(DAI, USDC, and USDT).
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Figure 3.4: Centrality of the six main pools over time.

We identified only two exceptions to this rule, occurring in July 2020 and September 2022, where sta-

blecoins gained a higher borrowing centrality than cryptoassets. In June 2020, following the launch of the

liquidity mining program, cDAI and cUSDC experienced increased usage to borrow other stablecoins. Most

11Since we focus on interpool links, we exclude self-borrowing by setting the diagonal entries of the liability matrix to zero,
i.e., L̄ii = 0 for all i ∈ K
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of these loans were repaid within a span of one to two weeks. In September 2022, a significant ETH price

drop triggered a flight to stable assets, temporarily making cUSDC the main collateral pool. Towards the

end of September, as ETH stabilized, cUSDC’s borrowing centrality returned to its usual level.

To summarize, a descriptive analysis of Compound’s network reveals that it serves two primary purposes.

Firstly, it provides a decentralized protocol enabling users to issue repurchase agreements of cryptoassets

against stablecoins. Consequently, the main risk to the stability of the protocol is a decline in the value of

cryptoassets, particularly ETH and BTC, as it would undermine the value of the collateral supporting the

majority of loans. Secondly, Compound allows its investors to engage in liquidity mining, either by borrowing

from the same pool they have lent to or by utilizing one stablecoin to borrow another. The latter strategy

carries little risk, except in cases where the stablecoin used as collateral undergoes a depegging episode. We

now investigate whether these two sources of risks are likely to propagate across the network.

3.5 Contagion

Financial networks are prone to contagion episodes, wherein the default of a financial intermediary triggers

a cascade of failures (Glasserman and Young, 2016. Jackson and Pernoud, 2021; Upper, 2011). We focus on

the following contagion mechanism which proceeds in two steps. Initially, a wave of liquidations is set off

whenever a pool defaults on its obligations by suspending the convertibility of its cTokens. If the shock is

large enough, the liquidation process fails to restore the value of all interpool assets, thereby burdening the

balance sheets of connected pools with bad loans. This may lead to other pools becoming insolvent, further

amplifying the initial shock and causing a domino effect. We now describe how one can model this contagion

process.

3.5.1 Liquidations

Compound’s liquidation process safeguards lenders by maintaining an adequate level of collateralization.

When a borrower’s health ratio falls below 1, the liquidation of her position is automatically triggered.

Liquidators repay a portion of the debt, known as the “close factor” (denoted by γ), and receive collateral

at the current price plus a liquidation discount factor λ ∈ (0, 1). Multiple rounds of liquidation may occur

until the borrower’s health ratio is restored above 1.

Let’s consider a scenario where user u becomes eligible for liquidation after a change in price from p to

p′. For tractability, we assume that liquidators follow a proportional rule, seizing all borrowed assets based

on their share of the user’s total debt.12 Under this assumption, the user’s borrowing balance is reduced

12In practice, liquidators have the flexibility to choose the token for repayment, the amount to repay within the factor limit,
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by γv(bu, p′) and the liquidator acquires collateral worth (1 + λ)γv(bu, p′) in return. As a result, all asset

holdings of user u after liquidation are diminished by ψu(p′)cuj , where ψ
u(p′) ≡ (1 + λ)γv(bu, p′)/v(cu, p′).

The liquidation process is explained in more detail in section 3.7 where we describe the algorithm used for

its simulation.

The health ratio of user u after t rounds of liquidation, which we denote by hut (p
′), obeys the following

law-of-motion

hut+1(p
′) =

1− ψu(p′)

1− γ
hut (p

′). (3.4)

This expression yields an intuitive threshold condition:

1. v(cu, p′) > (1 + λ)v(bu, p′): In this case, the collateral value exceeds the borrowed value multiplied

by one plus the liquidation discount. Here, liquidation improves the health factor as the reduction in

borrowing exceeds the reduction in collateral (γ > ψu). After potentially multiple rounds of liquidation,

the health of the account will eventually be restored (hu(p′) > 1).

2. v(cu, p′) < (1+λ)v(bu, p′): Here, the collateral value is lower than the borrowed value multiplied by one

plus the liquidation discount. Then liquidation worsens the health factor, triggering multiple rounds

of liquidation until all of user u’s collateral is liquidated Warmuz et al. (2023). Consequently, there

will be
(
1− v(cu,p′)

v(bu,p′)(1+λ)

)
bu bad loans left in the various pools where u chose to invest.

3.5.2 Cascades

The liquidation process has the following impact on the pools’ balance sheets. On the liabilities side, collateral

assets are transferred from borrowers to liquidators, effectively converting the interpool liabilities of the pools

where the borrowers held collateral into deposits. On the assets side, all pools in which users borrow are

replenished in proportion to the amounts borrowed, thereby converting the interpool assets into tokens.

However, when the shock is so severe that condition 2 mentioned above holds, a share of the interpool assets

is not fully repaid, which induces a fall in the net worth of the lending pool.

The shortfall may result in a negative net worth, indicating that the pool owes more than it owns. We

follow the literature on financial contagion in assuming that this signal triggers a run wherein depositors try

to withdraw all the available funds Diamond and Dybvig (1983). If borrowers can mobilize external cash to

repay their loans, they are able to withdraw all the liabilities of the pool. But, since the pool has a negative

net worth, it cannot honor its commitment and must suspend the convertibility of its cTokens.13

and the collaterals to seize. We impose proportional liquidations because it enables us to derive analytical results. We assess
the impact of this assumption in Section 9.

13The suspension of convertibility is explicitly handled on lines 518-521 of the smart contract CToken.sol for pool management.
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To avoid overestimating the likelihood of cascades, we consider a more conservative scenario where users

do not have access to external funds.14 In this scenario, users can only redeem a portion of the pool’s

liabilities, specifically the cTokens held as deposit and excess buffer.15 Then, the run on cTokens leads to

default solely when the combined value of the deposits and excess buffers redeemed by users surpasses the

value of the tokens and reserves held by the pool.

We emphasize that our simulations should be seen as offering a conservative estimate of the impact of

liquidations. This is because we do not account for the potential further price declines of the liquidated asset.

Empirical studies (Chiu et al., 2022; Yaish et al., 2023, Lehar and Parlour, 2022) indicate that this is an

optimistic scenario, as markets do not always have sufficient liquidity to absorb selling pressure effectively.

3.5.3 Simulations

We combine the mechanisms discussed in the preceding subsections to design an algorithm, outlined in Section

3.7, that simulates the spread of a pool default throughout the entire network. Running this algorithm for

each pool identifies those that pose the highest level of systemic risk. We will defer the examination of the

factors that might initiate a particular pool’s default until the conclusion of this subsection.
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Figure 3.5: Default cascades on Sept. 7, 2021.
Initial defaulting pool indicated by the row, affected pools indicated by the columns. The pools with a negative net worth are encoded
as a dot, while the defaulting pools are encoded as an outer circle. The color indicates the round in which a pool is affected.

14This assumption also has the advantage of being consistent with the premise that users do not prevent liquidations by
recapitalizing their undercollateralized positions.

15The excess buffer refers to the cTokens that have entered the market but can be redeemed without triggering additional
liquidations. In other words, the excess buffer equals the buffer minus the haircut associated with the collateral factor of the
loans.
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Figure 3.6: Daily snapshots of default cascades for the top six pools.

Focusing on our reference day (September 7, 2022), we present the predictions of the contagion algorithm

in Figure 3.5. Each row tracks the contagion resulting from the default of a specific pool. As expected,

contagion risks are concentrated within the main pools, except for cUSDT because its collateral factor is set

to zero. Among these pools, the crypto-pools (cETH and cWBTC2) are the primary sources of contagion

because they account for the bulk of collateral assets. Meanwhile, the stablecoin-pools exhibit a higher

likelihood of default due to their elevated utilization rates.

Additionally, the stablecoin-pools also pose systemic risks to other stablecoin-pools, as users partake

in liquidity mining by utilizing one stablecoin to borrow another. These strategies are generally considered

riskless, unless one stablecoin depegs and, as captured by our simulations, triggers the default of its borrowing

pools.

We repeated these simulations for each day in our sample and compiled the results in Figure 3.6. The left-

hand panel summarizes the number of pools affected by the cascades. Consistent with the snapshot reported

in Figure 3.5, cETH and cWBTC/cWBTC2 usually trigger the largest number of defaults. However, by the

end of 2022, cUSDC had emerged as a significant threat because users responded to the significant decline

in cryptocurrency prices by diversifying their sources of collateral.16 The middle panel illustrates the depth

of the cascades, revealing that most of them unfolded within one or two rounds before reaching a state

where no further defaults occurred. By the third round, all cascades had been resolved. The right-hand

panel depicts the percentage of total asset loss caused by the cascades. The chart highlights episodes of

significant losses, mostly involving the two crypto-pools (cETH and cWBTC). It also indicates significant

losses resulting from a default of the cDAI pool towards the end of 2020, when self-borrowing strategies were

particularly widespread.17 It is worth noting that the protocol’s robustness improved over time, as indicated

by the diminishing losses in recent years. This improvement is explained by the accumulation of reserves,

16See Section 9 for further details on the composition of loans over time.
17See Figure 3.10 in Section 9 for supporting evidence.
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resulting in a higher net worth for the pools.

The aforementioned simulations follow the cascades that result from the default of a specific pool without

providing an explanation for why the default occurred initially. In practice, the initial default can be triggered

by a decline in the market price of the pool’s collateral. To evaluate the likelihood of this scenario, we

subjected the prices of the main cryptoassets (ETH and BTC) to negative shocks. We use δ to denote the

magnitude of the price shock, so that p′{ETH,BTC} = (1− δ)p{ETH,BTC}.
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Figure 3.7: Minimal price shocks triggering default.

The outcomes of these experiments are depicted in Figure 3.7. It shows that default cascades are more

likely to originate from stablecoin pools. This fragility can be primarily attributed to two factors: high uti-

lization rates and the reliance on cryptoassets as collateral for the majority of stablecoin loans. Additionally,

we observe that cUSDT is the most prone to default, which rationalizes the protocol’s decision of curtailing

the contagion that may originate from cUSDT by setting its collateral factor to zero. Overall, we find that

to endanger the protocol, the shocks have to be fairly consequential, involving a decline of 50% or more in

market prices.

3.6 Conclusion

Smart contracts reduce counterparty risks, but, as illustrated by the Terra debacle,18 they do not eliminate

contagion risks resulting from flaws in the economic design of their protocol. Fortunately, the transparency

of blockchains offers an opportunity to develop sophisticated supervisory tools. The availability of exhaustive

18See https://www.coindesk.com/learn/the-fall-of-terra-a-timeline-of-the-meteoric-rise-and-crash-of-ust-and-luna/
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and exact data makes it possible to monitor the sources of systemic risks in real time with a precision that

far exceeds what is possible in the traditional financial sector. Our paper, by applying classical methods for

the analysis of financial networks, provides an example of such an endeavor. It characterizes how contagion

might spread through Compound’s network, identifying the pools that are more likely to set off or propagate

a domino effect. Moving forward, we aim to further explore this research avenue by delving deeper into the

trove of data accumulated during this study. In particular, we intend to study the bipartite structure of the

financial network and interact it with the empirical behavior of users in order to identify those that are more

likely to endanger the stability of the protocol.
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3.7 Appendix

Description of Algorithms

This appendix outlines the logic of the algorithms used to simulate default cascades. We first present in

algorithm 1 how liquidations are simulated. All borrowers with an health factor hu below one are liquidated

up to the maximum amount determined by the close factor (γ). The liquidator repays the borrowed assets

and seizes the collateral assets proportionally.19 Under proportional liquidations, the liquidator acquires

collateral worth (1+λ)ζuj (p)γv(b
u, p′) for each asset j used as collateral by user u. Here, ζuj (p) ≡ pjcuj /v(cu, p)

represents the value of assets j relative to the user’s total collateral value.

For each liquidation round, the algorithm updates the new borrow (bu) and collateral (cu) positions

of the borrower.20 Moreover, the deposits of the collateral pools (Dj) and tokens of the borrowing pools

(Di) are also increased as a result of liquidation. The algorithm liquidates the borrower’s position until

hu > 1. We set the gas costs of liquidations equal to the median transaction fee on that snapshot date (i.e.,

median(gasFees)× gasUsed, where gasUsed = 500, 000).

Algorithm 1: Simulation of liquidation process

1 for u ∈ U do
2 while hu < 1 do

// 1. Calculate % borrow and collateral.

3 βu ← pbu/v(bu, p);
4 ζu ← pcu/v(cu, p);

// 2. Calculate repaid and seized amounts.

5 repayu ← min{v(bu, p) · γ, v(cu, p)/(1 + λ)};
6 seizeu ← (1 + λ) ∗ repayu;

// 3. Stop liquidating if profits ≤ txFees.
7 if seizeu − repayu ≤ txFees then
8 break;
9 end

// 4. Repay the borrowed assets.

10 pbu ← pbu − repayu ∗ βu;
11 T ← T + repayu ∗ βu;

// 5. Seize the collateral assets.

12 pcu ← pcu − seizeu ∗ ζu;
13 D ← D + seizeu ∗ ζu;

// 6. Update the health of user u
14 hu ← v(cu, κp)/v(bu, p);

15 end

16 end

Algorithm 2 explains how we simulate the propagation of a pool’s default across the network. Since the

cTokens of the defaulting pool are not anymore liquid, we set their collateral factor κi to zero. This captures

19We assess the impact of this assumption in section 9.
20The updating process for balances is detailed in Section 9.
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the fact that the cTokens cannot be used to repay the loans. The algorithm calls two procedures. The first

one, called simulate liquidation, follows the logic outlined in algorithm 1. It returns the updated collateral

(c) and borrowing (b) matrices defined in section 3.2, along with the deposits (D) and token holdings

(T ) of each pool. The second function, called update balance sheet, follows the methodology presented in

section 3.3 to compute the interpool liabilities (L), reserves (R), buffer (B), excess buffer (X), and net worth

(V ) of each pool. As explained in footnote 15, the excess buffer collects all the cTokens in the buffer that can

be redeemed without triggering additional liquidations. The simulation iterates until the cascade reaches a

state where no further pools default.

Algorithm 2: Simulation of cascading default of the pools

Input: init pool: initial defaulting pool
Output: Dr: list of defaulting pools at depth r.

1 D0 ← {init pool} ; // list of defaulting pools

2 r ← 0 ; // depth of liquidation cascade

// Continue liquidation if any new pool defaulted in the previous round

3 while r > 0 and |Dr ∩Dr−1| > 0 do
4 κ{d∈Dr} ← 0 ; // set κ = 0 for defaulting pools

5 r ← r + 1 ; // increment the cascade depth

// Liquidate borrowers and update the balance sheet

6 (c, b, D, T) ← simulate liquidation(c, b, D, T, p, κ);
7 (L, R, B, X, V) ← update balance sheet(c, b);

// Add default pools after liquidation

8 Dr ← Dr−1 ∪ {k ∈ K|Vk < 0 and Dk +Xk > Tk +Rk};
9 end

Updating balance sheets following Liquidations

After liquidation, Compound adjusts the balances for both the borrower and the liquidator, thus impacting

the balance sheets of the pools associated with the liquidated asset i and seized collateral j. However, the

effects of the process extend beyond those specific pools. The pools associated with assets that borrower i

has used as collateral are also impacted.

In this Section, we provide a detailed explanation of the methodology employed to update balance sheets

following each liquidation event.

Updating the liability side of collateral pools

The seized collateral assets are transferred from the borrower’s wallet to the liquidator’s wallet. This process

effectively converts the interpool liabilities of the pools, where the borrowers had placed their collateral, into
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deposits. Specifically, we have

D′
j = Dj

p′j
pj

+∆cuj p
′
j , ∀j ∈ K

= Dj

p′j
pj

+ (1 + λ)ζuj (p
′)γv(bu, p′)

Prior to the liquidation process, the interpool liabilities for pool j on the behalf of user u were
∑

i l
u
ji =

min{1, αu(p)}cuj pj . After the liquidation, the pool j’s new interpool liabilities is:

min{1, αu(p′)}p′j(cuj −∆cuj ), ∀j ∈ K)

Therefore, it has decreased by:

min{1, αu(p′)}∆cuj p′j +
[
min{1, αu(p)}pj −min{1, αu(p′)}p′j

]
cuj .

Furthermore, the new pool j’s buffer fund is:

min{1, αu(p′)}p′j(cuj −∆cuj )

Hence, after the liquidation, the pool j’s buffer fund has decreased by:

[1−min{αu(p′)}] ∆cuj p′j −
[
min{1, αu(p)}pj −min{1, αu(p′)}p′j

]
cuj .

Updating the asset side of borrowing pools

On the other hand, all pools in which user u has borrowed are replenished in proportion to the amount

borrowed, leading to the conversion of interpool assets into tokens. More specifically,

T ′
i = Ti

p′i
pi

+∆bui p
′
i, ∀i ∈ K

= Ti
p′i
pi

+ βu
i (p

′)γv(bu, p′)
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Moreover, the new interpool assets for pool i (i ∈ K) on the behalf of user u is given by:

∑
j

Ljip
′
j = min{1, αu(p′)}βu′

i

∑
j

(cj −∆cuj )p
′
j


= min{1, αu(p′)}βu′

i

∑
j

cjp
′
j − (1 + λ)γv(bu, p′)


Therefore, the change in interpool assets of pool i (i ∈ K) after the liquidation of account u is then given

by:

∑
j

cj

[
min{1, αu(p′)}βu′

i p
′
j −min{1, αu(p)}βu

i pj

]
−
∑
j

min{1, αu(p′)}βu′

i (1 + λ)γv(bu, p′)

If the user u’s new health ratio is above 1, the liquidation process stops there. However, for some unhealthy

accounts, multiple rounds of liquidation may be necessary to raise the health ratio above 1. Moreover, in

cases where the liquidation fails to improve the user’s health ratio and instead results in a borrowing balance

larger than the collateral balance (αu > 1), Compound will only be able to recover (1− λ)v(c′, p′) (and not

v(c′, p′)) of user u’s debt since the protocol allocates a portion λ of user u’s collateral to the liquidator as a

reward. The remaining debt v(b, p′)− (1− λ)v(c′, p′) will be left unpaid.

The liquidation process affects both the liability side of each of user u’s collateral assets and the asset

side of each of her borrowed assets.

Before the liquidation but after the price change, the budget share of u’s borrowing in asset i (i ∈ K) is

βu
i (p

′) =
p′
ib

u
i

v(bu,p′) and her budget share of u’s collateral in asset i is ζui (p
′) =

p′
ic

u
i

v(cu,p′) .

The borrower u’s new borrowing and deposit balances after the liquidation are:

bu
′

i = bui −∆bui ,∀i ∈ K

du
′

j = dui −∆cuj ,∀j ∈ K

where ∆bui =
βu
i (p′)γv(bu,p′)

p′
i

and ∆cuj = (1 + λ)
ζu
j (p′)γv(bu,p′)

p′
j

.

The liquidator l’s new deposit balance is:

dl
′

j = dlj +∆cuj ,∀j ∈ K
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As a consequence, the borrower u has a new debt-to-collateral ratio

αu(p′) =
v(b′, p′)

v(c′, p′)
=

∑
i(b

u
i −∆bui )p

′
i∑

j(c
u
j −∆cuj )p

′
j

,

Robustness Check on Simulations of liquidations

In this appendix, we explore an alternative scenario where the liquidator’s approach to asset seizure differs

from the one used in the main analysis. Instead of seizing assets in proportion to their share of the user’s

total debt, we employ a sequential rule in which the liquidator prioritizes the assets with the highest share

of the user’s total debt.

To assess the impact of this alternative liquidation strategy, we rely on the Jaccard similarity index

to compare the lists of defaulting pools between our benchmark simulations and the simulations based on

sequential liquidations. The defaulting pools predicted by the two simulations agree (i.e., Jaccard index =

1) 96.72% of the time. Figure 3.8 illustrates the evolution over time of the Jaccard index for the top six

pools. It indicates that, in general, the outcomes of the two simulations are either identical or very similar.
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Figure 3.8: Jaccard similarity index of defaulting pools between benchmark and sequential simulations of
liquidations.

Despite the stability of our results, we do observe a few short-lived periods of divergence. Particularly,

on March 12th and 13th, 2022, the Jaccard index for the cDAI pool suddenly dropped to a very low value of

0.1429. To better understand this divergence, we report in Figure 3.9 a comparison of the default cascades

predicted by the two simulation methods on March 13, 2022. It shows that a default of the cDAI pool did not

trigger a domino effect in the benchmark simulation. However, in the sequential simulation, it triggered a

default of the cUSDC pool, which then propagated to other pools heavily reliant on cUSDC, such as cLINK,
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cTUSD, cUSDT, and cYFI.
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Figure 3.9: Comparison of cascades triggered by a default of the cDAI pool on March 13, 2022.

This difference in outcomes can be attributed to the fact that liquidators now prioritize USDCs. This

concentration of liquidations on a specific asset can exacerbate the fragility of the network, particularly when

the utilization rate and borrowing centrality of this asset are high. In summary, our findings are usually

robust across the two specifications of the liquidation process. However, there are specific periods where the

selection rule followed by the liquidators has an impact on the risk of contagion within the network. An

interesting avenue for future research would therefore consist in studying the behavior of liquidators and

devising a liquidation algorithm that reflects their actions.

Composition of Loans

This appendix provides additional information regarding the composition of loans. We categorize them into

classes based on the nature of the asset pairs, distinguishing between cryptoassets and stablecoins. Addition-

ally, we differentiate between self-borrowing and interpool loans. Figure 3.10 confirms that self-borrowing is

primarily motivated by liquidity mining since pairs of self-borrowed stablecoins gained prominence shortly

after the introduction of Compound’s liquidity mining program on June 16, 2020.

Figure 3.10 further corroborates the findings presented in subsection 3.4.3, according to which a majority

of interpool loans use cryptoassets as collateral for borrowing stablecoins. During the bear market from late

2021 to mid-2022, the weight of cryptoasset–stablecoin pairs significantly increased, which aligns with our

simulation results in Figure 3.6 where we observe a heightened contagion risk emanating from cETH and

cWBTC over this period.
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Figure 3.10: Distribution of nominal liabilities over time.

Subsequently, after the bear market phase, we notice a rise in the proportion of loans associated with

stablecoin-stablecoin pairs, as well as an increase in self-borrowing of stablecoins. This trend amplified the

borrowing centrality and, consequently, the risk of contagion associated with the cUSDC pool, as indicated

in Figure 3.6.
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Conclusion

This thesis has delved into the intricate ecosystem of DeFi, particularly focusing on the market microstructure

of DEXs and the systemic risks inherent in lending protocols. Through a comprehensive analysis of existing

literature, theoretical frameworks and empirical data, several critical insights have emerged.

Chapter 1 offered a systematic overview of CFMMs, emphasizing their role as fundamental components

of decentralized exchanges. By tracing the evolution of AMMs from their theoretical origins to their practical

implementations in DeFi, we highlighted the theoretical underpinnings and empirical observations surround-

ing CFMMs. Through rigorous examination, we uncovered their desirable properties, such as the oracle

property and their ability to replicate payoffs from traditional financial instruments. Additionally, we ex-

plored the competition between centralized and decentralized exchanges, shedding light on the motivations

behind liquidity provision and trade, ultimately contributing to a more comprehensive understanding of

market microstructure dynamics.

In Chapter 2, we investigate the impact of inventory holding costs on the accuracy of Uniswap’s pricing

mechanism. By developing a microstructure model and leveraging price data from Uniswap and Binance, the

study reveals how inventory holding costs impact traders’ decision-making processes and subsequently, the

price accuracy of Uniswap. This chapter underscores the importance of understanding market microstructure

in decentralized exchanges and the role of inventory holding costs in shaping price dynamics. By incorpo-

rating additional market frictions and exploring the impact of factors such as private information and MEV,

future studies can enhance our understanding of decentralized finance and contribute to the development of

more robust and efficient decentralized exchange protocols.

In Chapter 3, we turned our attention to financial contagion within Compound V2, a decentralized

lending protocol on the Ethereum blockchain. Leveraging network analysis and stress testing methodologies,

we unveil the interconnectedness of Compound’s liquidity pools and evaluate their susceptibility to contagion

risks. By simulating various stress scenarios, we identify pivotal pools and potential triggers for cascading

defaults, offering insights into the robustness and resilience of decentralized lending protocols. Our findings

underscore the importance of transparency and real-time monitoring in mitigating systemic risks within the
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DeFi ecosystem.

In conclusion, this thesis has provided a comprehensive examination of DeFi, spanning from the theo-

retical foundations of AMMs to the empirical analysis of market microstructure and systemic risk within

lending protocols. By elucidating the intricacies of CFMMs, exploring the dynamics of price accuracy in

Uniswap, and uncovering the potential for financial contagion within Compound V2, we have advanced our

understanding of the decentralized financial landscape. Moving forward, addressing the challenges identified

in this thesis will be essential for fostering the resilience and sustainability of DeFi ecosystems, paving the

way for further innovation and growth in DeFi.
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Résumé : Alors que le monde de la finance
continue d’évoluer rapidement, l’émergence des
marchés décentralisés et de la technologie Block-
chain présente à la fois des opportunités et des défis.
Opérant de manière autonome et autorégulées, les
marchés décentralisés introduisent un changement
de paradigme qui exige une compréhension approfon-
die. Cette thèse se concentre sur la compréhension
de ces nouveaux marchés et sur l’évaluation de leur
stabilité, avec pour objectif plus large de contribuer
à la stabilité de l’ensemble de l’écosystème financier.
Le premier chapitre propose une analyse approfon-
die des ”Automated Market Makers” (AMM) pour les
échanges décentralisés (DEXs). Il retrace l’évolution
historique des AMM depuis leurs origines dans les
marchés de prédiction jusqu’à leur application ac-
tuelle dans la finance décentralisée (DeFi). Le cha-
pitre met en lumière le passage de cahiers d’ordres
(Limit Order Books) complexes aux ”Constant Func-
tion Market Makers” (CFMM), qui utilisent des fonc-
tions de trading déterministes pour fixer le prix des
actifs. Ce chapitre examine les recherches théoriques
et empiriques sur les CFMM, illustrant leur capacité
à reproduire les instruments financiers traditionnels
et à optimiser les surplus des traders et des four-
nisseurs de liquidité. De plus, ce chapitre explore la
dynamique concurrentielle entre les échanges cen-
tralisés et décentralisés et aborde la question cri-
tique de la valeur maximale extractible (MEV), pro-
posant des solutions potentielles. Le deuxième cha-
pitre se concentre sur la microstructure des DEXs,
avec un accent particulier sur Uniswap. Uniswap fa-
cilite les échanges de cryptomonnaies pair-à-pair en

utilisant un CFMM et des pools de liquidité plutôt que
des livres d’ordres. Ce chapitre examine comment les
coûts d’inventaire supportés par les traders affectent
la capacité d’Uniswap à synchroniser ses prix avec
ceux des marchés centralisés, considérés comme
marchés de référence. Un modèle de microstruc-
ture est développé et calibré à l’aide des données
de prix de clôture par minute des marchés Uniswap
et Binance, de mai 2020 à décembre 2022. L’ana-
lyse révèle que les coûts d’inventaire réduisent la
réactivité des traders aux écarts de prix. Le troisième
chapitre présente un examen détaillé de la conta-
gion financière au sein de Compound V2, un pro-
tocole de prêt décentralisé. En construisant les bi-
lans des pools de liquidité de Compound, le chapitre
caractérise son réseau financier et identifie les ac-
tivités prédominantes des utilisateurs, comme l’em-
prunt de stablecoins et la participation à l’extrac-
tion de liquidité. Des tests de stress simulent des
scénarios de défauts de pool et de chocs de prix
significatifs sur Bitcoin et Ether, révélant que bien
que des défaillances en cascade soient possibles,
elles nécessitent des chocs de prix importants. Les
pools de stablecoins sont plus susceptibles de faire
défaut, tandis que les pools de Bitcoin et Ether sont
plus susceptibles de déclencher des réactions en
chaı̂ne. Dans l’ensemble, cette thèse vise à améliorer
la compréhension de l’écosystème DeFi en explorant
sa microstructure de marché et les risques de conta-
gion. Les conclusions tirées de cette recherche contri-
buent au débat sur la finance décentralisée, promou-
vant un écosystème financier plus résilient et durable.



Title : Essays on Market Dynamics and Stability in Decentralized Finance

Keywords : Blockchain, Decentralized Finance, Cryptocurrency, Market Microstructure, Systemic Risks, Digi-
tal Economy

Abstract : As the world of finance continues to evolve
rapidly, the emergence of decentralized markets and
Blockchain technology presents both opportunities
and challenges. Operating autonomously and self-
regulated, decentralized markets introduce a para-
digm shift that demands a thorough comprehension.
This thesis focuses on understanding these new mar-
kets and assessing their stability, with a broader aim of
contributing to the stability of the entire financial eco-
system. The first chapter provides an in-depth ana-
lysis of Automated Market Makers (AMMs) for De-
centralized Exchanges (DEXs). It traces the histori-
cal evolution of AMMs from their origins in prediction
markets to their current application in Decentralized
Finance (DeFi). The chapter highlights the shift from
complex Limit Order Books (LOBs) to Constant Func-
tion Market Makers (CFMMs), which use deterministic
trading functions to set asset prices. It reviews theo-
retical and empirical studies on CFMMs, demonstra-
ting their ability to replicate traditional financial instru-
ments and optimize trader and liquidity provider sur-
pluses. Additionally, this chapter explores the com-
petitive dynamics between centralized and decentra-
lized exchanges and addresses the critical issue of
Miner Extractable Value (MEV), proposing potential
solutions. The second chapter focuses on the micro-
structure of DEXs, with a particular emphasis on Unis-
wap. Uniswap facilitates peer-to-peer cryptocurrency

exchanges using a CFMM and liquidity pools instead
of order books. This chapter examines how inventory
holding costs incurred by traders affect Uniswap’s abi-
lity to synchronize its quoted prices with those of cen-
tralized markets, considered as reference markets.
A microstructure model is developed and calibrated
using 1-minute closing price data from Uniswap and
Binance markets from May 2020 to December 2022.
The analysis reveals that inventory holding costs re-
duce trader responsiveness to price deviations. The
third chapter presents a detailed examination of finan-
cial contagion within Compound V2, a decentralized
lending protocol. By constructing the balance sheets
of Compound’s liquidity pools, the chapter characte-
rizes its financial network and identifies predominant
user activities, such as borrowing stablecoins and li-
quidity mining. Stress tests simulate scenarios of pool
defaults and significant price shocks in Bitcoin and
Ether, revealing that while cascading failures are pos-
sible, they require substantial price shocks. Stablecoin
pools are more susceptible to default, whereas Bitcoin
and Ether pools are more likely to initiate chain reac-
tions. Overall, this thesis aims to enhance the unders-
tanding of the DeFi ecosystem by exploring its mar-
ket microstructure, and contagion risks. The insights
gained from this research contribute to the broader
discourse on decentralized finance, promoting a more
resilient and sustainable financial ecosystem.
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