
HAL Id: tel-04707173
https://theses.hal.science/tel-04707173v1

Submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical analysis of Poisson-Nernst Planck system of
equations to study the propagation of a transient signal

in neurons
Paul Paragot

To cite this version:
Paul Paragot. Numerical analysis of Poisson-Nernst Planck system of equations to study the propa-
gation of a transient signal in neurons. Numerical Analysis [math.NA]. Université Côte d’Azur, 2024.
English. �NNT : 2024COAZ5020�. �tel-04707173�

https://theses.hal.science/tel-04707173v1
https://hal.archives-ouvertes.fr


 

Analyse numérique du système d’équations 

Poisson-Nernst Planck pour étudier la 

propagation d’un signal transitoire dans les 

neurones. 
 

Paul PARAGOT 
Laboratoire de Mathématiques J.A. Dieudonné 

 

Présentée en vue de l’obtention  

du grade de docteur en Mathématiques 

d’Université Côte d’Azur 

Dirigée par : Stella Krell 

Codirection : Claire Guerrier 

Soutenue le : 11 Juin 2024 

 

 

Devant le jury, composé de :  

Franck Boyer, Professeur des 

Universités, Université Toulouse 3 

Yves Coudière, Professeur des 

Universités, Institut de Mathématiques 

de Bordeaux 

Claire Guerrier, Chargée de Recherche, 

Université Côte d’Azur 

Stella Krell, Maîtresse de Conférences, 

Université Côte d’Azur  

Pascal Omnes, Directeur de Recherche, 

Université Paris 13 

Romain Veltz, Chargé de Recherche, 

INRIA Sophia Antipolis 

 

 

 

 
 



Université Côte d’Azur - UFR Sciences
École Doctorale de Sciences Fondamentales et Appliquées

THÈSE
pour obtenir le titre de

docteur en mathématiques
de l’Université Côte d’Azur

Discipline : Mathématiques

présentée et soutenue par
Paul Paragot

Analyse numérique du système d’équations
Poisson-Nernst Planck pour étudier la propagation

d’un signal transitoire dans les neurones.

Département de Mathématiques : Laboratoire J.A. Dieudonné

Thèse dirigée par
Stella Krell

et
Claire Guerrier

soutenue le 11 Juin 2024

devant le jury composé de

Franck Boyer Professeur Université Toulouse 3 Rapporteur
Yves Coudière Professeur Institut de Mathématiques de Bordeaux Rapporteur
Claire Guerrier Chargée de Recherche Université Côte d’Azur Directrice de thèse
Stella Krell Maîtresse de Conférences Université Côte d’Azur Directrice de thèse
Pascal Omnes Directeur de Recherche Université Paris 13 Examinateur
Romain Veltz Chargé de Recherche INRIA Sophia Antipolis Examinateur



empty text

Copyright © 2023 Université Côte d’Azur - Faculty of Science
All rights reserved. No part of the publication may be reproduced in any form by print, photoprint,
microfilm, electronic or any other means without written permission from the publisher.



Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration for
any other degree or qualification in this, or any other university.

This dissertation is my own work that I carried out independently and only with the cited refer-
ences and professional sources.

In Nice, October 2023



Dedication

Tout d’abord, je souhaite remercier mes directrices de thèse Stella et Claire qui m’ont donné cette
opportunité professionnelle dont je garderai un beau souvenir malgré les moments de doute, de frus-
tration et de difficultés.

Merci également aux membres du jury qui ont accepté d’en faire partie.

Durant ces années de thèse, j’ai connu des étapes difficiles qui m’ont mis à l’épreuve. J’ai pu re-
cevoir beaucoup de soutien de personnes proches ou non, qui m’ont permis d’aller de l’avant et de
finir ce challenge qu’est une thèse. On ne pense jamais aux difficultés qui peuvent surgir lorsqu’on
commence une thèse, et c’est pour cela qu’il est important d’être bien entouré et d’être bienveillant
envers les autres car, même ne serait-ce qu’un petit encouragement peut tout changer dans le travail
d’un doctorant.

C’est pour cela que je tiens à remercier les personnes du laboratoire qui ont été humainement présentes
durant ces années. Je pense surtout à Jean-Marc Lacroix, Roland Ruelle, Martine Smolders, Anna
Tykhonenko, Elena Di Bernardino, Roland Diel et Sebastian Minjeaud. Je tiens à remercier Olivier
Pantz qui, lorsque j’ai apparu dans son bureau, n’a pas hésité une seule seconde à m’aider dans
l’implémentation d’un multi-domaine sous FreeFEM++.

Je pense aussi à Thibault et Christian, deux doctorants du labo sur qui j’ai pu compter pendant
cette thèse. Également, Florent et Cambyse, deux post-doctorants qui m’ont apporté bienveillance et
conseils.

Que dire de mes amis également, Rémy, Marie, Alexis, Jorge, Driss, Joel, Julie, Cédric, Hubert,
Alex, Anto, Clément et Steph. Merci d’être là, merci de votre soutien.

Je remercie également ma tante Marie-Paule qui m’a apporté du réconfort et des conseils lorsque
j’en avais le plus besoin.

Je ne remercierai jamais assez mes parents qui, depuis toujours, me soutiennent corps et âme dans ce
que j’entreprends. Véronique, François, c’est grâce à vous, merci. Je ne vous exprimerai jamais assez
ma gratitude.

Enfin, je ne pouvais pas faire des remerciements sans écrire sur toi, Sara. Que dire que tu ne sais
pas déjà ? Quels que soient les moments, on s’est battus tous les deux pour finir nos thèses respectives,
on s’est épaulés jusqu’au bout. Si ma thèse a pu voir le jour, c’est en grande partie grâce à ton soutien
quotidien et à tes conseils. Merci de faire partie de ma vie, ma compagne.

Merci encore à toutes ces personnes.



6

Abstract. Neuroscientific questions about dendrites include understanding their structural plas-
ticity in response to learning and how they integrate signals. Researchers aim to unravel these aspects
to enhance our understanding of neural function and its complexities. This thesis aims at offering
numerical insights concerning voltage and ionic dynamics in dendrites. Our primary focus is on mod-
eling neuronal excitation, particularly in dendritic small compartments. We address ionic dynamics
following the influx of nerve signals from synapses, including dendritic spines. To accurately represent
their small scale, we solve the well-known Poisson-Nernst-Planck (PNP) system of equations, within
this real application. The PNP system is widely recognized as the standard model for characterizing
the electrodiffusion phenomenon of ions in electrolytes, including dendritic structures. This non-linear
system presents challenges in both modeling and computation due to the presence of stiff boundary
layers (BL). We begin by proposing numerical schemes based on the Discrete Duality Finite Volumes
method (DDFV) to solve the PNP system. This method enables local mesh refinement at the BL,
using general meshes. This approach facilitates solving the system on a 2D domain that represents
the geometry of dendritic arborization. Additionally, we employ numerical schemes that preserve the
positivity of ionic concentrations. Chapters 1 and 2 present the PNP system and the DDFV method
along with its discrete operators. Chapter 2 presents a "linear" coupling of equations and investigate
its associated numerical scheme. This coupling poses convergence challenges, where we demonstrate its
limitations through numerical results. Chapter 3 introduces a "nonlinear" coupling, which enables ac-
curate numerical resolution of the PNP system. Both of couplings are performed using DDFV method.
However, in Chapter 3, we demonstrate the accuracy of the DDFV scheme, achieving second-order
accuracy in space. Furthermore, we simulate a test case involving the BL. Finally, we apply the DDFV
scheme to the geometry of dendritic spines and discuss our numerical simulations by comparing them
with 1D existing simulations in the literature. Our approach considers the complexities of 2D dendritic
structures. We also introduce two original configurations of dendrites, providing insights into how den-
dritic spines influence each other, revealing the extent of their mutual influence. Our simulations show
the propagation distance of ionic influx during synaptic connections. In Chapter 4, we solve the PNP
system over a 2D multi-domain consisting of a membrane, an internal and external medium. This
approach allows the modeling of voltage dynamics in a more realistic way, and further helps check-
ing consistency of the results in Chapter 3. To achieve this, we employ the FreeFem++ software to
solve the PNP system within this 2D context. We present simulations that correspond to the results
obtained in Chapter 3, demonstrating linear summation in a dendrite bifurcation. Furthermore, we
investigate signal summation by adding inputs to the membrane of a dendritic branch. We identify an
excitability threshold where the voltage dynamics are significantly influenced by the number of inputs.
Finally, we also offer numerical illustrations of the BL within the intracellular medium, observing small
fluctuations. These results are preliminary, aiming to provide insights into understanding dendritic
dynamics. Chapter 5 presents collaborative work conducted during the Cemracs 2022. We focus on
a composite finite volume scheme where we aim to derive the Euler equations with source terms on
unstructured meshes.

Key-words. Poisson-Nernst Planck equations, Discrete Duality Finite Volumes, ion transport, FreeFem++.



Résumé. Les questions neuroscientifiques concernant les dendrites incluent la compréhension de
leur plasticité structurale en réponse à l’apprentissage et la manière dont elles intègrent les signaux. Les
chercheurs visent à élucider ces aspects pour améliorer notre compréhension de la fonction neuronale
et de ses complexités. Cette thèse vise à offrir des perspectives numériques concernant la dynamique
du voltage et des ions dans les dendrites. Notre objectif est de modéliser l’excitation neuronale dans les
dendrites. Nous abordons la dynamique ionique suite à l’afflux de signaux nerveux. Pour les simuler
précisémment, nous résolvons le système d’équations Poisson-Nernst-Planck (PNP). Le système PNP
est reconnu comme le modèle standard pour caractériser le phénomène d’électrodiffusion des ions dans
les électrolytes, y compris les structures dendritiques. Ce système non linéaire présente des défis en
modélisation et en calcul en raison de la présence de couches limites rigides (BL). Nous proposons des
schémas numériques basés sur la méthode des volumes finis Discrete Duality Finite Volumes (DDFV)
pour résoudre le système PNP. Elle permet un raffinement local du maillage au niveau de la BL, en
utilisant des maillages généraux. Cette approche facilite la résolution du système sur un domaine 2D
représentant la géométrie des dendrites. Nous utilisons des schémas numériques préservant la positivité
des concentrations ioniques. Chapitres 1 et 2 présentent le système PNP et la méthode DDFV ainsi
que ses opérateurs discrets. Le chapitre 2 présente un couplage "linéaire" des équations et explore son
schéma numérique associé. Ce couplage a des problèmes de convergence, où nous illustrons ses limites
à travers des résultats numériques. Le chapitre 3 introduit un couplage "non linéaire", permettant
une résolution numérique précise du système PNP. Les deux couplages sont effectués avec la méthode
DDFV. Dans le chapitre 3, nous illustrons la convergence d’ordre 2 en espace. Nous simulons un cas
test impliquant la BL. Nous appliquons le schéma DDFV à la géométrie des épines dendritiques en
2D et discutons nos simulations en les comparant avec des simulations en 1D de la littérature. Nous
introduisons également deux configurations originales de dendrites, fournissant des informations sur la
manière dont les épines dendritiques s’influencent mutuellement, révélant l’étendue de leur influence
mutuelle. Nos simulations montrent la distance de propagation de l’influx ionique lors des connexions
synaptiques. Dans le chapitre 4, nous résolvons le système PNP sur un système multi-domaines 2D
composé d’une membrane, d’un milieu interne et d’un milieu externe. Cette approche permet la mod-
élisation de la dynamique du voltage de manière plus réaliste, et aide également à vérifier la cohérence
des résultats du chapitre 3. Nous utilisons le logiciel FreeFem++ pour résoudre le système PNP dans
ce contexte. Nous présentons des simulations correspondant aux résultats du chapitre 3, démontrant
la sommation linéaire dans une bifurcation dendritique. Nous étudions la sommation des signaux en
ajoutant des entrées à la membrane d’une branche dendritique. Nous identifions un seuil d’excitabilité
où la dynamique du voltage est significativement influencée par le nombre d’entrées. Nous offrons
également des illustrations numériques de la BL à l’intérieur du milieu intracellulaire, observant de
petites fluctuations. Ces résultats sont préliminaires, visant à fournir des informations pour compren-
dre la dynamique dendritique. Le chapitre 5 présente un travail collaboratif mené lors du Cemracs
2022. Nous nous concentrons sur un schéma de volumes finis composite où nous visons à dériver les
équations d’Euler avec des termes sources sur des maillages non structurés.

Mots-clés. Poisson-Nernst Planck équations, Discrete Duality Finite Volumes, transport d’ions,
FreeFem++.
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Introduction

In this thesis, we use the so-called Discrete Duality Finite Volume (DDFV) method and the
FreeFEM++ software to investigate the voltage propagation and ionic dynamics in neurons. This
introduction is dedicated to introducing the biological context, its motivations, along with a compre-
hensive description of each subsequent chapter.

Short description of neurons

Neurons, the fundamental units of the nervous system, play a crucial role in information processing.
A neuron, consisting of a soma, dendrites, an axon, and synapses (see Figure 1 below), orchestrates
complex signaling within the nervous system. To be more precise, neurons operate through an exci-
tation process wherein a neuron becomes activated and produces an electrical signal called an action
potential. This excitation occurs when the neuron receives signals, often in the form of chemical or
electrical messages, from other neurons.

Figure 1. Example of a neuron geometry using Biorender https://www.biorender.com/

For the sake of scientific curiosity and clarity, let us dive into the neuron’s geometry: first, the
soma, also known as the cell body or perikaryon, serves as the core center for integrating synaptic
inputs. Structurally characterized by a spherical or oval shape, it houses the cell nucleus and essential
organelles responsible for protein synthesis. The soma plays a central role in influencing the neuron’s
excitability and responsiveness to incoming electrochemical signals. Notably, the soma operates at a
macroscopic scale, typically ranging from 5 to 100 micrometers in diameter.

As far as dendrites are concerned, these branched extensions in a neuron that emanate from the
soma, are primary sites for receiving synaptic inputs. On the dendrites, the post-synaptic terminal
receiving the neurotransmitter is often a specific neuronal compartment called a dendritic spine.
This mushroom-like protrusion is characterized by a thin cylindrical neck surrounded by a bulky head.

https://www.biorender.com/
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It serves to compartmentalize and enhance synaptic communication, playing a crucial role in synaptic
plasticity and neural connectivity. While dendrites receive signals, dendritic spines facilitate the trans-
mission and processing of those signals at specific synaptic sites. The spatial and temporal summation
of signals on dendrites determines whether the neuron generates an action potential, contributing
significantly to overall excitability. It is to mention that dendrites operate at a microscopic scale,
extending over distances of hundreds of micrometers to several millimeters.

The axon, also known as a nerve fiber, facilitates the unidirectional transmission of electrical sig-
nals between the soma and synaptic terminals. One important feature of the axon is its ability to
enhance nerve impulse propagation, with myelinated axons exhibiting increased conduction speed due
to saltatory conduction, while non-myelinated axons also contribute to efficient signal transmission
through other mechanisms. In non-myelinated axons, local regeneration of the nerve impulse is facili-
tated by ion channels distributed along the axon, ensuring continuous and effective signal transmission.
Axon terminals release neurotransmitters at synapses, crucial for transmitting information to other
neurons or effector cells. Further, the axon acts at varying scales, ranging from a few millimeters to
over a meter for humans, depending on the neuron type and anatomical location.

When it comes to synapses, these are specialized junctions critical for transmitting information
within the nervous system. They facilitate neurotransmitter release and reception. Dynamic and
flexible, synapses exhibit plasticity necessary for learning and memory. Besides, at a microscopic scale,
the size of the synaptic cleft, the minuscule gap between the presynaptic and postsynaptic membranes,
is measured in nanometers. This dimensional specificity ensures precise and rapid transmission of
information between neurons.

Focusing on the creation of an action potential, pictured in Figure 2 below, if the incoming signals (or
stimulus) are strong enough and reach a certain threshold, they trigger the neuron to fire an action
potential. This phenomena implies rapid changes in membrane potential through the opening and
closing of voltage-gated ion channels. Recall that, this electrical signal allows neurons to communicate
with each other and is fundamental to various functions in the nervous system, including transmitting
information and coordinating actions in the body.

Figure 2. Formation of an action potential in a neuron.

bla
Classical model for voltage propagation

Lord Kelvin, in the 19th century, laid the foundation for mathematical models of electrical conduction
in neurons. Kelvin introduced the theory of the cable, presenting an analytical framework for under-
standing the transmission of electrical signals along biological structures. The cable theory, proposed
in the 1850s, conceptualized the neuron as a cylindrical cable with electrical resistance and capacitance.
Formally, the model described how electrical signals attenuate and propagate along the length of the
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neuron, taking into account factors such as membrane resistance and capacitance [58, 62]. The basic
equation derived from the cable theory is:

(0.1)
1

Rl

∂2V

∂x2
= Cm

∂V

∂t
+

1

Rm
V.

Here, Rl represents the longitudinal intracellular resistance, Rm is the membrane resistance, Cm

is the membrane capacitance, V is the membrane potential, t is time, and x is the position along the
cable.
In the mid-20th century, the pioneering work of Alan Hodgkin and Andrew Huxley [55] marked a
significant advancement in understanding the neuronal electrical dynamics. In 1963, Hodgkin and
Huxley were awarded the Nobel Prize in Physiology or Medicine for their development of the Hodgkin-
Huxley (HH) model, which was experimentally studied using the squid giant axon (see Figure 3).

Figure 3. The giant axon from a squid was utilized by experimentalists to quantify
the voltage drop along the length of the axon (source: NIH photographers Website).

This model [55] provided a comprehensive description of the generation and propagation of action
potentials in neurons. It consists of a set of differential equations that describe the dynamics of ion
channels, membrane potential, and conductances. The above equation (0.1) derived from the cable
theory involves an additional key equation, and rewrites as:

1

Rl

∂2V

∂x2
= Cm

∂V

∂t
+ Iion, with(0.2)

Iion = ḡNam
3h(V − ENa) + ḡKn

4(V − EK) + ḡL(V − EL).

In the above expressions, Cm is the membrane capacitance, V is the membrane potential, Iion is
the total ion current, ḡNa and ḡK are the maximum sodium and potassium conductances, m, h, and
n are gating variables, and ENa, EK, and EL are respectively the equilibrium potentials for sodium,
potassium, and leak channels.
The HH model’s experimental validation on the squid giant axon demonstrated its accuracy in predict-
ing action potential behavior. Subsequent models, such as compartmental models, have been developed
to account for both the variability of channels distribution and the tree-like geometry of dendritic ar-
bor. These models provide more accurate representations of electrical behaviors in complex neuronal
structures like dendrites. Despite their success at the macroscopic scale, these models based on (0.2)
have limitations when applied to finer neuronal structures like dendrites. Indeed, it does not consider
the dynamics of ionic concentrations within the neuronal cytoplasm, which influence is expected to be
significant within small neuronal compartments such as dendrites.
In parallel to the development of the model (0.2), another crucial mathematical framework emerged
in the form of the Poisson-Nernst-Planck (PNP) system [61]. The PNP system, introduced in the
mid-20th century, represents a set of partial differential equations (PDEs) that describe the dynamics

https://www.flickr.com/photos/historyatnih/albums/72157645031352542/
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of ions in an electrolyte solution, accounting for diffusion and electrostatic interactions. Initially for-
mulated for studying ion transport in electrolytes, the PNP system found applications in neuroscience,
particularly in modeling ion dynamics within dendrites. The Nernst Planck (NP) equations establish
a connection between the distribution of ionic concentrations ci for some species i, and the electric
potential V through the ion conservation equation, by means of an associated drift-diffusion flux Jci .
Jci is further decomposed into a diffusion term, Jdiff, and a convective term, Jconv. Jdiff represents the
Brownian motion of ions according to Fick’s law:

Jdiff = −Di∇ci,
where Di is the diffusion coefficient for species i. Jconv accounts for ion transport induced by the
electric field:

Jconv = −FDizi
RTθ

ci∇V.
where F is the Faraday constant, zi the respective valences for species i, R the gas constant and Tθ
the absolute temperature.
This set of equations is then combined with the Poisson equation governing voltage dynamics, thereby
forming the comprehensive PNP system of equations:

∂tci = −∇ · Jci + fci ,

−∇ · (εε0∇V ) =
∑
i

Fzici + fV ,

where ε0 is the vacuum permittivity, ε the relative permittivity of the solution, fci and fV are the
respective source terms. The PNP system is therefore characterized by the coupling of parabolic and
elliptic equations. This system gained prominence for its ability to capture the intricate dynamics of
ion movement within complex geometries, such as dendritic structures. Dendrites exhibit a high degree
of spatial and chemical heterogeneity, making the task of accurate modeling challenging. The PNP
system, with its adaptability in microscopic scale, proved suitable for describing the transport of ions
within the fine and intricate branches of dendrites, especially the effects of local ionic concentrations
and variations on ion mobility. This level of detail is crucial when considering the small dendritic
compartments such as dendritic spines, where ionic dynamics play a significant role in signal process-
ing and integration. In summary, the PNP system, with its rich history rooted in electrochemistry,
has found a remarkable application in neuroscience, especially in the modeling of ionic dynamics in
dendrites. Its flexibility and ability to incorporate detailed geometrical and chemical information make
it a valuable tool for unraveling the complexities of electrical signaling in the intricate structures of
neuronal dendrites.
Furthermore, given the ever-growing significance of technological progress [87, 32], the use of the PNP
system appears indispensable to study the finer aspects of neuronal structure. Indeed, advanced imag-
ing technologies, such as two-photon microscopy (for instance, see Figure 4 below, from [63]), have
enhanced our ability to observe ionic and voltage dynamics at the level of dendrites and individual
spines.
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Figure 4. A1: Typical morphologies of dendrites in the superficial layer of the neo-
cortex detected by in vivo two-photon microscopy. Scale bar, 10 µm . A2: Higher
magnification view of the dendritic segment marked by the rectangle in A1. Extracted
from [63].

In addition, an examination of dendritic activity reveals that neuronal communication occurs
at synapses. In this process, neurotransmitters released from a presynaptic neuron bind to specific
receptors on dendrites, thereby influencing the membrane potential of the postsynaptic cell. Therefore,
it is imperative to investigate the behavior of dendrites and dendritic spines once again to enhance our
understanding of their influence on information propagation.

In the above context of neurons, the main interest of my thesis is studying dendrites and dendritic
spines. Indeed, dendritic spines are of key importance in influencing signal integration, synaptic
strength, and plasticity (see Figure 5). The investigation of these spines contributes to a deeper
understanding of how neuronal communication and information processing occur at the microscopic
level within the intricate architecture of dendritic structures.

Figure 5. Example of a dendritic spine with synapse using Biorender .

Academic and scientific research concerning dendrites and dendritic spines, continue to raise nu-
merous intriguing questions. Among the numerous open questions on this subject, my thesis addresses
the following inquiries:

• Synaptic integration in dendrites: How are signals integrated from multiple influxes
situated on dendrites ? In other words, how does the summation of the signal occur when it
originates from multiple dendritic branches?

https://www.biorender.com/
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• Signal propagation in dendrites: How do electrical signals propagate along dendrites,
especially through their complex ramifications and different dendritic zones? What is the
impact of dendritic morphology on signal propagation?

• Communication between dendrites: How are signals exchanged between different den-
drites of the same neuron? What is the impact of this dendritic communication on neuronal
function?

Additional open questions that represent an engaging avenue for future research in neuroscience exist,
and are beyond the scope of this thesis:

• Role of dendritic spines: What is the functional diversity of different forms of dendritic
spines? How do these structures influence synaptic transmission and neuronal plasticity?

• Synaptic plasticity at the dendritic level: What role do dendritic spines play in synaptic
plasticity?

• Calcium dynamics in dendrites: How do fluctuations in calcium levels within dendrites
influence synaptic regulation and plasticity? What are the underlying mechanisms of calcium
dynamics in these cellular compartments?

• Advanced experimental measures: How can experimental techniques be improved to
precisely study activities at the level of dendrites and dendritic spines? What new technologies
are necessary for better visualization and manipulation of these structures at the nanoscale?

These questions illustrate the complexity and diversity of challenges yet to be addressed in understand-
ing the functioning of neurons, particularly regarding dendrites and dendritic spines. Answers to these
questions can not only expand our fundamental knowledge of the brain but also have implications for
the treatment of neurological diseases and the development of advanced neurological technologies.

In contemporary neuroscience, a synergistic approach combining experimental biology, computational
modeling, and robust numerical methods is imperative. This integrative methodology ensures a com-
prehensive understanding of neuronal function, providing insights into complex phenomena such as
synaptic plasticity and network dynamics.

Motivated by these questions, throughout this thesis, we aimed at numerically providing partial answers
or validation regarding the behaviors of signals within dendrites. We focused on modeling synaptic in-
puts, particularly within small compartments such as dendrites and dendritic spines. Indeed, we model
the nerve influx originating from the synapse directly on the membrane of the dendrite. To be precise
and account for their very small scale, we chose to solve the PNP system using the DDFV method
on a single two-dimensional domain. Subsequently, an exploratory study is proposed, considering the
PNP equations on a multi-domain representing dendritic branches, using FreeFEM++.

In doing so, we model the dynamics of ions and voltage within the dendrite during synaptic ex-
citation. In chapters 3 and 4, we endeavor to understand how dendritic spines influence each other
during excitation and how electrical signals propagate in dendritic branches.

Review of some existing PNP modeling and applications

As mentionned before, the PNP system of equations is a well-established framework for describing the
movement of ions and the variations of the electric field in an electrolyte [61]. It is a topic of substan-
tial interest which is widely used in various fields such as semiconductor devices [59], electrophoresis
models [60], or biological systems [5, 37]. Solving the PNP system analytically and numerically is
challenging due to the nonlinear coupling between the electrostatic potential and the concentrations
of ionic species. Also, the system can present, depending on the domain and boundary conditions, a
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stiff boundary layer. A standard example is a binary electrolyte between parallel-plate electrodes, a
system showing a boundary layer near the electrodes, characterized by significant ionic concentration
gradients [5].

Accurate numerical schemes for the PNP equations have garnered significant attention in the recent
years. Several numerical methods have been developed using finite element methods [30, 70, 78] and
finite volume methods [20, 74, 72, 88].
Other studies specifically focused on preserving the ionic concentration positivity: in 1D, [40] pre-
sented a mass-conservative finite difference scheme, while [39] proposed a free energy dissipative finite
difference scheme. These approaches required the use of uniform cells, and did not allow for local mesh
refinement. For the 2D PNP equations, a mass-conservative finite difference scheme was introduced by
[48]. Building upon this work, [49] developed a semi-implicit linearized finite difference scheme with
proof of positivity and free energy dissipation. Positivity-preserving finite difference schemes with mass
conservation, steady state, energy dissipation, and proof of convergence were presented by [57, 66]
and [67]. These methods did not focus on capturing the behavior at the boundary layer. Finally, in
[82], the authors presented a numerical scheme integrating both the positivity of ionic concentrations
and a mesh refinement at the boundary layer. The method is based on a combination of finite volumes
and finite elements methods.

In neuroscience, it is rather recent that models using the PNP system of equations are developed.
They follow the latest innovations in experimental techniques now reaching the nano-scale, which cre-
ate the need for modeling at the same precision [77, 56]. Indeed, as mentioned earlier, the classical
model describing voltage propagation in neurons is the cable theory, the one-dimensional macroscopic
model that makes an analogy between the neuron and a wire, assuming voltage propagates as in a RC
electrical circuit [62]. In particular, this model neglects the variations of ionic concentrations within
the neuronal cytoplasm. Such assumption is valid while considering large axons, but is not relevant in
smaller neuronal structures [77], where we expect the influence of the ionic dynamics on the electric
field to be important. In contrast to this one-dimensional approach, the PNP system of equations
describes the dynamics of ionic charges due to both diffusion and electric field, and is highly suitable
to capture such dynamics in small neuronal compartments.
Various computational models have been developed and simulated to determine ionic and voltage dy-
namics in neurons. In [69], a three-dimensional computational model of the PNP equations, combined
with a Hodgkin-Huxley formalism [55] for reproducing ionic channels dynamics was introduced. This
model was designed to simulate the electrodiffusion of ions within a neuronal node of Ranvier during
an action potential. The numerical study focused on an axon model with a diameter of 15µm , utilizing
classical finite volume techniques with Delaunay-Voronoi dual meshes. The authors compared their
simulations with the one-dimensional cable equations, and their results demonstrated remarkable sim-
ilarities between the two models. [76] extended this exploration by focusing on studying the boundary
layer (BL) formed near the membrane of neuronal axons. This two-dimensional investigation explicitly
addressed BL phenomena using finite element methods, with the Hodgkin-Huxley model applied as a
Neumann boundary condition on the membrane. These works laid the foundation for understanding
BL in axons but did not address the case of smaller neuronal compartments such as dendrites or den-
dritic spines. Due to their microscopic scale, experimental investigations of voltage and ionic dynamics
in spines remain challenging, making it crucial to develop models at the same level of precision [56].

The main objective of this thesis is to investigate the Poisson-Nernst Planck (PNP) system of equa-
tions, particularly in the context of the aforementioned challenges encountered in neuroscience. Among
these, we pay particular attention to synaptic integration and signal propagation within dendrites, as
well as communication between dendrites. In this thesis, my specific areas of interest focused on:

• The coupling of the PNP system using the Discrete Duality Finite Volume method (DDFV).

• The coupling of the PNP system over a multi-domain employing the FreeFEM++ software.
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Note that the use of FreeFEM++ is motivated by its suitability for multi-domain exploration within a
more lightweight framework compared to DDFV. Also, the need of modeling not only the interior of the
domain, but the entire domain at hand, allows for a more natural model avoiding the imposition of a
boundary condition on the potential at the membrane. Indeed, such a boundary condition can influence
the dynamics and deviate from the expected physical behavior. In this regard, the FreeFEM++ code
is used for comparison with results obtained in Chapter 3 based on the DDFV method.

The thesis begins with a concise overview of the PNP system of equations and delves into its
relevance in current neuroscience research, particularly in the context of dendrite arborization. Sub-
sequently, we introduce the DDFV method, outlining the reasons behind our choice of this particular
approach. Following this, we present two numerical schemes designed for solving the PNP system of
equations using the DDFV method over a two dimensional domain. We apply our implementation to
numerical and neuroscience-derived cases, providing detailed results and physiological insights in den-
drites. In this approach, it is noteworthy that our model imposes a homogeneous Neumann boundary
condition on the potential at the membrane wall. Finally, we employ the FreeFEM++ software to
solve the PNP system of equations on a multi-domain representing samples of dendrite. This latter
approach allows for imposing a continuity condition at the membrane interfaces for the potential in-
stead of the homogeneous Neumann boundary condition, which is a much more natural choice for the
dynamics of the physical phenomenon. Ultimately, both approaches enlighten our comprehension of
the inherent complexities within neuronal structures.

PNP coupling strategies with DDFV method

In view of the aforementioned neuroscientific issues, the modeling of dendrites and their associated
spines requires a comprehensive study of the PNP system. Indeed, we recall that the latter system
governs the dynamics occurring within these neuronal components. In this regard, during the thesis,
we begin by developing finite volume approaches in order to solve the PNP system of equations, using
the DDFV framework, this while preserving the positivity of ionic concentrations. The DDFV method
is a finite volume method that ensures local conservativity and the divergence theorem. The flux
exiting one cell is equal to the flux entering the neighboring cell. In our study, we specifically focus
on the 2D case. Therefore, the DDFV method is particularly attractive for numerically solving the
PNP equations over a complex geometry, because of its robustness with respect to mesh distortion.
This finite volume method, introduced by [53, 35] in the early 2000s, enables the study of the Laplace
equation on various 2D meshes, accommodating nonconformal and deformed meshes. Indeed, DDFV
schemes consider discrete unknowns at both the vertices and the centers of initial mesh. In addition,
the DDFV method operates on three staggered meshes: the "primal mesh" (denoted with M ∪ ∂M),
the "dual mesh" (denoted with M∗ ∪ ∂M∗), centered on the vertices of the primal mesh, and the
"diamond mesh" (denoted with D), which is centered on the edges of the primal mesh. We refer to
the illustration in Fig. 6 for clarification. The union of primal and dual mesh will be denoted as T .
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Figure 6. DDFV meshes: the primal mesh M = M ∪ ∂M (gray), the dual mesh
M∗ = M∗ ∪ ∂M∗ (blue) and the diamond mesh D (green).
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The set of unknowns is then defined within RT the linear space of scalar fields that are constant
over the cells of M and M∗, such as:

uT ∈ RT ⇐⇒ uT =
(
(uK)K∈M, (u

K∗
)K∗∈M∗

)
.

It allows for the definition of a full discrete gradient on the diamond mesh. Hence, the method can be
used on general meshes that do not necessarily satisfy classical orthogonality conditions, as required
by the two-point scheme (known as the classical finite volume method [84]). The DDFV methods
construct two discrete operators, the gradient and the divergence, that are in duality in a discrete
sense as in the continuous setting [3]. Several studies have demonstrated the numerical advantages of
DDFV methods for PDEs, and several methods have been developed for a large number of models. A
telling example concerns a DDFV scheme discretizing the Peaceman model - that describes miscible
displacement in porous media - on which a convergence result is proved [27]. Numerical analysis of
systems similar to PNP in the field of semiconductors was carried out by the authors [9]. Then, a
positivity-preserving scheme was introduced in [18], to investigate the existence and large time behav-
ior of solutions in Fokker-Planck equations. Positivity was ensured by using a non-linear reformulation
of the equation.

In Chapters 2 and 3 of the present thesis, we propose two numerical schemes, one for the linear
and another for the non-linear coupling of the PNP system, inspired by the study within [18].

First, in Chapter 2, we consider the case of one ionic species P with its respective valence +1 and
concentration cP . The PNP system consists of a Nernst-Planck equation for cP ∈ L2(Ω× [0, Tf ]) with
a Poisson equation for V ∈ L2(Ω× [0, Tf ]) the voltage. The latter is then defined over Ω× [O, Tf ], a
connected open bounded domain Ω ⊂ R2 and Tf > 0 a finite time:

∂tcP = ∇ · (cP∇ (log cP + V )) + fcP ,

−∇ · (∇V ) = cP ,

where fcP ∈ L2(Ω× [0, Tf ]) is a non-zero source term.
We provide a time-splitting strategy to couple the equations of the system and suggest a spatial dis-
cretization using DDFV. It implies solving the Poisson equation with a concentration cP at the previous
time step, and then, using the obtained potential, calculating a new concentration as in [18]. Also,
the nonlinearity of the system is handled by a Newton algorithm. This coupling strategy is called
as linear coupling and does not lead to accurate numerical results, unfortunately. We give results of
test cases for this coupling in the form of convergence tables. Additionally, we present a numerical
study of our implementation, including comparaisons of the Jacobian matrices generated by our code
with those from [18]. In conclusion, we discern that the coupling of the nonlinear PNP system using
a linear strategy does not yield precise approximations. Hence, it becomes imperative to introduce a
new strategy, to achieve more accurate outcomes.

Afterwards, in Chapter 3, we focus our study on the case of two ionic species P and N , with re-
spective valences +1 and −1, and concentration cP ∈ L2(Ω × [0, Tf ]) and cN ∈ L2(Ω × [0, Tf ]). The
PNP system is then defined over Ω× [O, Tf ]:

∂tcP = ∇ · (DP cP∇ (log cP + βV )) + fcP ,

∂tcN = ∇ · (DNcN∇ (log cN − βV )) + fcN ,

−∇ · (γ∇V ) = cP − cN + fV .

where V ∈ L2(Ω × [0, Tf ]) is the voltage. DP ∈ R+∗ (resp. DN ∈ R+∗) is the diffusion coefficient of
species P (resp. N). fcP ∈ L2(Ω× [0, Tf ]), fcN ∈ L2(Ω× [0, Tf ]) and fV ∈ L2(Ω× [0, Tf ]) are the re-
spective source terms of cP , cN and V . The coefficients γ ∈ R+∗ and β ∈ R+∗ are defined in Chapter 3.
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Within this context, we shift to a new strategy by introducing a non-linear coupling that allows
solving the system of equations with DDFV in spatial discretization and an implicit Euler scheme in
time. Indeed, the set of unknowns in this strategy is now (cP , cN , V ), where the idea is to solve all
three equations of the system at each time step. In this case, the Jacobian matrix is computed from
the entire system. The Newton algorithm is thus generated for the entire nonlinear system at each
time step. In order to check consistency of our method, based on simulations, we present numerical
results in the form of convergence tables and compare them with existing literature results for similar
numerical methods using finite elements [66]. As expected, we numerically obtain a convergence order
equal to 2, confirming the method’s performance on the PNP system.

Furthermore, we assess the accuracy of our numerical results by comparing them to a test case enabling
the visualization of the BL from [81] (see Figure 7). In the latter, we extend the 1D results derived in
[81] to a 2D framework by introducing a new modeling of boundary conditions.

Figure 7. Simulation from the DDFV scheme on the test case allowing the visual-
ization of the BL, in a neighborhood of x = 0 and at fixed time. The discrete values
of cP show a steep gradient inside the BL which has a thickness of 0.01.

In view of our neurobiological interests addressed earlier, we model real applications in neuro-
science, using our DDFV scheme to provide biological insights into dendritic tree behavior. We begin
our exploration by examining the propagation of ion influx in a dendritic bifurcation, as seen in Figure
8. To this end, various sizes of dendrites are studied, where we gradually increase the chosen distance
from the bifurcation point to what is called an ionic reservoir, i.e. the connexion with a larger branch
such as the dendritic shaft, where we expect the ionic concentration to remain constant (corresponding
to the boundary at x = −22 in Figure 8). In the case of Figure 8, this distance represents the largest
configuration.

Figure 8. Simulation from the DDFV scheme on the dendrite bifurcation. We show
the discrete values of cP at fixed time. We model the ion influx from both thin
branches at x = 15.

Comparing different distance configurations as mentioned above, we are able to establish a distance
of approximately 20 microns from the bifurcation in order to ensure minimal influence of an ionic
reservoir. An additional aspect is to examine the propagation of ions from both branches to the rest
of the bifurcation. Indeed, we compare the signals when:
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• only one branch is "active" (synaptic input at the end of the branch),
• both branches are "active" (synaptic input at the end of both branches).

Therefore, we demonstrate that two signals simultaneously reaching the bifurcation exhibit linear
summation.
In further simulations, still within Chapter 3, we shift our focus to dendritic spines, investigating how
their distinct geometry affects voltage and ionic concentration dynamics. While a 1D approximation
suffices for the neck region, a more intricate 2D approach is imperative for understanding the dynamics
within the head, as depicted in Figure 9.

Figure 9. Simulation from the DDFV scheme on the dendritic spine. We show the
discrete values of cP at fixed time. We model the ion influx at the top of the head.

Subsequently, we delve into the mutual influence of two neighboring spines, especially when an
influx of ions is initiated in one spine. Similarly to the dendrite bifurcation, we vary the lengths of
each ionic reservoir (corresponding to the boundaries at x = −6 and x = 8 in the example of Figure
10) from either side of the spines and also, the distances between both spines.

Figure 10. Simulation from the DDFV scheme on the two neighboring dendritic
spines. We show the discrete values of cP at fixed time. We model the ion influx at
the top of the head of the left dendritic spine.

Our simulations show that the close proximity of an ionic reservoir such as the dendritic shaft or
any large compartment, is killing the signal, preventing it from propagating and invading close neu-
ronal structures such as thin branches at a bifurcation or dendritic spines. On the opposite, a signal
arriving at the leading edge of the dendritic tree, far from an ionic reservoir and where only small
branches are present, will propagate at a larger distance and invade neighboring dendritic spines.
From the spine point of view, these results show that the same spine at different positions in the tree
would behave differently: a spine close to the dendritic shaft would more likely act as an autonomous
compartment, compared to a collection of spines located in small dendritic protrusions, that would be
keener to signal invasion and to influence each other. Hence, in addition to the geometry of the spine,
the local geometry of the dendritic tree is shaping spine behavior, in that the same spine at different
positions in the tree would behave differently. Consequently, the position of a dendritic spine relative
to the entire tree (i.e. close to the soma versus at the distal edge of the tree) shapes its function,
making plasticity not at the level of the spine, but at the level of the full dendritic geometry.
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Chapter 3 is under review at the Journal of Computational Physics. A preprint version is avail-
able at https://cnrs.hal.science/hal-04385924

PNP coupling over a multi-domain using FreeFEM++

In this chapter, we once again examine the ionic and voltage dynamics of dendrites. However, we
modify our model in several aspects. Indeed, we transition from a single 2D domain to a 2D multi-
domain containing the intracellular medium, the extracellular medium and the membrane. The interest
is that we can model continuity conditions at the membrane interfaces for the potential, instead of the
homogeneous Neumann boundary condition we imposed on the single-domain framework. We believe
that this latter approach provides a more realistic study of ion dynamics and voltage, acknowledging
that the propagation of electrical signals also occurs within the membrane. In essence, electricity is
ubiquitously present around the whole dendrite. We implement this new approach using FreeFEM++.

FreeFEM++ is an open-source software [51, 50] for solving PDEs using finite element methods. It has
emerged as a powerful tool in the realm of scientific computing. Its development can be traced back to
the late 1990s, with continuous enhancements and a growing user community making it a prominent
player in numerical simulation. FreeFEM++ employs the finite element method, a powerful numerical
technique for approximating solutions to PDEs [45, 43]. This method involves discretizing the domain
of interest into simple geometric shapes (elements) and constructing a piecewise polynomial solution
over these elements. FreeFEM++ excels in handling problems with complex geometries and diverse
physics, providing a versatile platform for researchers and engineers.

Also, FreeFEM++ supports the modeling of multi-domain problems [73], allowing researchers to
study ion dynamics in different regions and their interactions. Thus, this is one opportunity to solve
in a multi-domain framework the PNP system modelling the dendrite dynamics. As mentioned earlier,
the multi-domain consists of three disjoint sets: the cytosol (the liquid part of the cytoplasm), the
membrane and the external space of course. The idea of modeling a multi-domain allows us to avoid
the homogeneous Neumann condition on the potential imposed when considering a single domain in
the modeling of electrical potential boundary conditions. As the membrane acts as an electrical in-
sulator, we therefore incorporate parameters such as the electric permittivity coefficients present in
each medium (cytosol, membrane, external medium). These coefficients play a role in the Poisson’s
equation and vary according to each sub-domain. The equation is thus solved over the entire domain
(the electric potential "exists" everywhere), with only the permittivity coefficients dependent on the
different domains.For the NP equations, which are the equations for the ionic concentrations, we solve
them within the intra- and extracellular domains, and we model synaptic inputs on certain parts of
the membrane wall. Thanks to this new approach, we aim at observing the presence of an EBL. In the
previous chapter, the boundary conditions modeled on the potential, such as homogeneous Neumann,
did not allow us to numerically illustrate the EBL. In other words, we believe that, numerically, our
model "kills" the presence of an EBL. In Chapter 4, we present a multi-domain model, solving the
PNP system of equations on 2D dendritic branch geometries that include intracellular, extracellular,
and membrane environments. Studying and solving the PNP system on a multi-domain model repre-
senting a dendritic branch is a complex task. In [69], the authors successfully accomplished this task
applied to the axon with Ranvier nodes. To achieve this, they solved the PNP system modelling the
HH formalism as membrane boundary conditions. In our study, we solve the PNP system without
using the HH model. Consequently, two biological scenarios are considered to model dendrites: a
branch bifurcation (Figure 11) and a large rectangular branch (Figure 12). Accordingly, we analyze
the dynamics of ionic concentrations and voltage within these scenarios. In the bifurcation scenario
(Figure 11), we observe linear summation of signals from two thin branches and compare these results
with those presented in Chapter 3.

https://cnrs.hal.science/hal-04385924
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Figure 11. Simulation from the FreeFem++ code on the dendrite bifurcation. We
show the discrete values of cP at fixed time. We model the ion influx from both thin
branches.

Subsequently, we simulate several influxes on the large rectangular branch, providing insights into
the excitability threshold of a membrane potential reached through the summation of synaptic currents,
when neighboring synapses generate close influxes on the membrane wall (see Figure 12).

Figure 12. Simulation from the FreeFem++ code on the rectangular branch. We
show the discrete values of V at fixed time. We model 7 ionic influxes at different
positions. The dashed white arrows represent the locations where we model synaptic
inputs, i.e the 7 ionic influxes.

Typically, we start with a single influx and progressively add more along the dendrite’s walls. It is
observed that, adding five influxes yields a significant increase in voltage, with the signal peak reaching
a value similar to the voltage threshold during an action potential.

Finally, with this new modeling approach, which avoids numerically "killing off" the EBL along the
wall, we are able to numerically highlight the existence of the EBL through our multi-domain mod-
eling. To achieve this, we consider a smaller rectangular branch with smooth angles. Afterwards, we
succeed at catching small fluctuations in ionic concentrations and voltage within the interior EBL.
Further details can be found in Chapter 4. However, despite this approach, we were unable to capture
significant fluctuations and provide results for the exterior side of the membrane. We faced challenges
in FreeFEM++ regarding modeling sufficient refinement near the walls, leading us to refine only within
the interior medium. One solution to this issue would be to implement the multi-domain approach
using a method like DDFV, with an adapted mesh.
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DDFV advantages vs FreeFEM++

In the realm of numerical methods for solving partial differential equations (PDEs), the DDFV ap-
proach has emerged as a powerful alternative, offering distinct advantages over conventional Finite
Volume methods (VF4) and Finite Element methods (FEM). While both VF4 and FEM have been
extensively employed, their limitations in capturing discontinuities and dealing with complex spatial
variations necessitate exploration of more advanced techniques.

Here, we highlight the unique advantages that DDFV brings to the table in comparison to FreeFEM++.
Note that FreeFEM++ is often regarded as a "black box" due to its ease of implementation.

Advantages of DDFV over FreeFEM++:

• Handling discontinuities in diffusion coefficients with flux continuity at the interface between
domains, a feature not present in FreeFEM, makes DDFV well-suited for problems with
abrupt changes.

• Handling complex mesh structures: the DDFV method demonstrates superior capabilities
in dealing with complex mesh structures, ensuring robustness and reliability in simulations.
This becomes particularly crucial in scenarios where FreeFEM++ might face challenges in
efficiently handling intricate geometries or irregular mesh configurations.

The task of implementing the coupling of the PNP system across multiple domains using the DDFV
method is time-consuming. Throughout this thesis, we successfully implemented PNP system coupling
with two strategies using the DDFV method on a single domain-namely, a "linear" approach and a
"nonlinear" one. However, I couldn’t implement the multi-domain with DDFV in the course of this
thesis, because of time limitation. Hence, I chose to realize an exploratory work on the multi-domain
framework, using the more accessible FreeFEM++ software. To achieve this, I drew inspiration from
the "nonlinear" approach with DDFV.

Cemracs Project: A composite finite volume scheme for the Euler equations with
source term on unstructured meshes

Lastly, during this thesis, I collaborated in the annual CEMRACS event with M. Boujoudar, E. Franck,
P. Hoch, C. Lasuen and Y. Le Hénaff. The project focuses on an adaptation of the method described
in [54], to derive source terms in the 2D Euler equations. This adaptation extends conventional 1D
solvers (e.g., VFFC, Roe, Rusanov) to the two-dimensional case, specifically on unstructured meshes.
The resulting schemes are categorized as composite, as they can be expressed as a convex combination
of a purely node-based scheme and a purely edge-based scheme. We combine this extension with the
ideas from the work of Alouges, Ghidaglia, and Tajchman, as presented in a preprint [2], primarily
focused on the 1D scenario. Our contribution involves proposing two strategies for discretizing the
source term in the Euler equations, aiming to enhance the preservation of stationary solutions. To eval-
uate these discretization procedures, we provide a comparative analysis with the conventional centered
discretization approach across various numerical examples. We propose two strategies:

• a local method utilizing sub-volumes of computational cells,

• a global method involving the solution of a Poisson equation across the entire domain.

The local approach demonstrates slightly superior performance at a comparable computational com-
plexity. However, the global approach, while solving a Poisson equation for the entire domain, brings
out significantly higher costs without yielding a substantial improvement in performance.
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Chapter 5 is under review at the ESAIM : Proceedings and Surveys.
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Preamble

Presentation of the continuous problem

Introduction. This thesis investigates the Poisson-Nernst-Planck (PNP) system, a crucial model
characterizing ion movement in a static solvent via diffusion and electrostatic drift. By combining the
Nernst-Planck (NP) equations with the Poisson equation, electrodiffusion and voltage dynamics are
effectively captured. This system comprises parabolic and elliptic equations that govern the behavior
of ionic species within a polygonal open bounded domain Ω ⊂ R2 over a finite time Tf > 0. The
PNP system of equations is indeed essential in studying various physical models, including neuronal
dynamics.

In this thesis, we first solve numerically the PNP system using the DDFV method, and realize simu-
lations in several geometries representing neuronal microdomains. We then investigate the ionic and
voltage dynamics in these domains. In addition, we explore solving the system while preserving the
positivity of ion concentrations (see Chapters 2 and 3). This requires the use of a numerical scheme
with a non-linear reformulation of the flux, which raises an additional numerical challenge, and is
computationally demanding. Hence, one needs to solve the latter system with an appropriate strat-
egy. Additionally, the presence of Boundary Layers (BL) introduces numerical challenges due to their
abrupt gradients. In the preamble, we introduce some notations that we will require within both
chapters 2 and 3. In a second step, we delve into solving the PNP system on a multi-domain without
necessary preserving the positivity of ionic concentrations, using the FreeFEM++ software (Chapter
4). This entails defining an even more complex model, taking into account three distinct environments:
the intracellular media, the extracellular media, and the membrane.

The objective is to use our numerical simulations to provide insights on questions coming from neuro-
science, such as signal summation in the fine parts of the dendritic tree, or the effects of the colocaliza-
tion of dendritic spines on votage propagation. Simulating the PNP system in such specific dendritic
geometry is a significant challenge. In the first section below, we describe the PNP system and describe
the corresponding notations for initial and boundary conditions.

Poisson-Nernst-Planck equations. In the preamble, we present the PNP system of equations,
which describes the movement of ions in an electrolyte. The Nernst Planck equation links the distribu-
tion of the ionic concentrations ci of species i to the electric potential V through the ion conservation
equation, using a drift-diffusion flux Jci . Jci divides into a diffusion term that models the Brownian
motion of ions according to Fick’s law, as well as a convective term that describes the ion transport
resulting from the electric field. This set of equations is then combined with the Poisson equation for
voltage dynamics, creating the PNP system of equations. It is worth noting that the PNP system
consists of a combination of parabolic and elliptic equations.
We consider in this paper the case of two ionic species P and N , with respective valences +1 and −1,
and concentration cP and cN - our methods in Chapters 3 and 4 can be extended to any number of
ions without difficulties.
Let Ω ⊂ R2 be a connected open bounded domain and Tf > 0 a finite time. The PNP system of
equations on Ω× [0, Tf ] writes as:
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(0.3)

∂tcP = −∇ · JcP + fcP ,

∂tcN = −∇ · JcN + fcN ,

−∇ · (εε0∇V ) = F (cP − cN ) + fV ,

with:

(0.4)

JcP = −DP∇cP − FDP

RTθ
cP∇V,

JcN = −DN∇cN +
FDN

RTθ
cN∇V.

In system (0.3), the first (resp. second) equation represents the dynamics of species P (resp. N),
with drift-diffusion flux JcP (resp. JcN ) and source term fcP (resp. fcN ). The third equation cor-
responds to the Poisson equation, where ε0 is the vacuum permittivity, ε the relative permittivity of
the solution, and fV a source term. Eqs. (0.4) describe the drift-diffusion fluxes, with DP > 0 (resp.
DN >0) the diffusion coefficient of species P (resp. species N), R the gas constant, Tθ the absolute
temperature, and F the Faraday constant. In the rest of the paper, we will consider that the source
terms fcP , fcN , fV are in L2(Ω× Tf ).

We define:

(0.5) γ =
εε0RTθ
F 2

, β =
F

RTθ
,

such that the system rewrites:

(0.6)

∂tcP = ∇ · (DP (∇cP + cPβ∇V )) + fcP ,

∂tcN = ∇ · (DN (∇cN − cNβ∇V )) + fcN ,

−∇ · (γβ∇V ) = cP − cN + fV .

In Chapters 2 and 3, we use a positivity-preserving DDFV scheme as presented in [18] to ensure
the positivity of ionic concentrations. The method is based on the reformulation of the fluxes JcP and
JcN :

(0.7)
JcP = −DP cP∇ (log cP + βV ) ,

JcN = −DNcN∇ (log cN − βV ) .

Finally, the system (0.3), defined on Ω× [0, Tf ], rewrites:

(0.8)

∂tcP = ∇ · (DP cP∇ (log cP + βV )) + fcP ,

∂tcN = ∇ · (DNcN∇ (log cN − βV )) + fcN ,

−∇ · (γβ∇V ) = cP − cN + fV .

Now, we turn our attention to the initial conditions and boundary values. First, we consider initial
conditions of the PNP system (0.8) in Ω such that:

(0.9) cP (x, t = 0) = c0P (x), cN (x, t = 0) = c0N (x), V (x, t = 0) = V 0(x) ∀x ∈ Ω.
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with c0P , c
0
N , V

0 ∈ L2(Ω).

Then, concerning Chapters 2 and 3, we decompose the domain boundaries as ∂Ω = ΓDir ∪ ΓNeu,
where ΓDir and ΓNeu represent respectively the subsets of the boundary corresponding to Dirichlet
and Neumann conditions. The Dirichlet boundary conditions write as:

(0.10) cP = cDir
P , cN = cDir

N , V = V Dir,

with (cDir
P , cDir

N , V Dir) ∈ L2(ΓDir × [0, Tf ]).
Neumann boundary conditions write as:

(0.11) JcP · n = g, JcN · n = 0, ∇V · n = 0,

where n is the unit outward normal to Ω, and g ∈ L2(ΓNeu × [0, Tf ]).

In Chapter 4, we will delve into the system (0.6) applied over a multi-domain, i.e Ω will consist
of several disjoint subsets. Thus, we will explicit the entire model with respective domain boundaries,
extending the notations introduced here for the multi-domain representation.
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CHAPTER 1

DDFV Method

Introduction

This chapter presents the Discrete Duality Finite Volume (DDFV) method used in Chapters 2 and
3 to couple the Poisson and the Nernst Planck equations.
The DDFV method is a finite volume method which ensures the local conservativity and the divergence
theorem. The flux that comes out in one cell is the same as that enters in the neighboring cell. In
our study, we specifically focus on the 2D case. The DDFV method was developed in the early 2000s,
with the initial introduction and exploration of DDFV schemes found in references [35, 53], aimed at
approximating the Laplace equation on a general 2D meshes, including non-conformal and distorted
meshes.

The DDFV method considers unknowns at each vertex and center of the mesh and derives its name,
"Discrete Duality", from the established duality between the discrete gradient ∇D (see (1.3)) and the
discrete divergence divT (see (1.4)). DDFV’s advantage lies in its ability to discretely reconstruct and
mimic the dual properties of these continuous differential operators.

The DDFV method operates on three staggered meshes: the primal mesh (denoted as M∪∂M), the
dual mesh (denoted as M∗∪∂M∗) centered on the vertices of the primal mesh, and the diamond mesh
(denoted as D) centered on the edges of the primal mesh (see Fig. 1 and Fig. 2 for an illustration). The
union of the primal and dual meshes is denoted as T . This choice of unknowns and meshes facilitates
the approximation of the gradient operator while preserving the structure of the continuous problem,
including symmetry, which proves beneficial in handling nonlinearities. Hence, this method can readily
accommodate general meshes without encountering numerical difficulties.

The chapter is organized as follows: Section 1.1 revisits the description of DDFV meshes, followed
by the exploration of approximation spaces. Discrete unknowns and operators are introduced in Section
1.2, and Section 1.3 delves into the definition of discrete projections.

1.1. Meshes and notations

In this section, we present the DDFV scheme and introduce three distinct meshes using the same
notations as [3]: the primal mesh, the dual mesh, and the diamond mesh (see Figure 1 and 2). The
primal mesh, denoted as M = M∪ ∂M, is composed of the interior primal mesh M and the boundary
primal mesh ∂M. The interior primal mesh M is a partition of Ω with polygonal cells. The boundary
primal mesh ∂M is the set of boundary edges of M. Notice that these cells are treated as degenerate
cells.
For each element K ∈ M, we associate a point xK called the center of the cell K. In practice, we
choose the barycenter. The set of vertices of the primal mesh is denoted as X∗. We differentiate
between interior vertices and boundary vertices: for a given xK∗ ∈ X∗ such that xK∗ is not on the
boundary ∂Ω, we define a dual cell K∗ by connecting the centers of all K that share xK∗ as a vertex.
This set of polygons K∗ forms the interior dual mesh M∗.
For each xK∗ ∈ X∗ ∩ ∂Ω, i.e. xK∗ is on the boundary, we construct a dual cell K∗ by joining xK∗ and
the xK where K ∈ M, that share xK∗ as a vertex. This set of polygons defines the boundary dual
mesh ∂M∗. We denote the dual mesh as M∗ = M∗ ∪ ∂M∗. Fig. 1 illustrates two examples of a primal
and a dual mesh. The measure of cell K (resp. K∗) is denoted as |K| (resp. |K∗|).

For two neighboring primal cells, K and L, we consider the intersection of their boundaries, denoted
as ∂K ∩ ∂L, which corresponds to a line segment and is referred to as an edge of the mesh M. We
denote this edge as σ = K|L. The set of edges that lie within the interior of the domain is denoted
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Figure 1. Left: Example of a primal mesh (grey). Black dots are the centers of
each primal cell K, denoted by xK . One cell is colored in light grey. Right: the
corresponding dual mesh (blue). Blue dots are the centers of each dual cell K∗ (resp.
L∗) which are denoted by xK∗ (resp. xL∗). An example of a dual cell is colored in
light blue.

as Eint. The set of primal edges on the boundary is denoted Eext. The total set of primal edges is
E = Eint ∪ Eext. Similarly, the set of edges in the interior of the dual mesh is denoted as E∗

int, the
set of edges on the boundary of the dual mesh is E∗

ext, and we define E∗ = E∗
int ∪ E∗

ext, the total set
of dual edges. For each pair (σ, σ∗) ∈ E × E∗, where σ = (xK∗ , xL∗) and σ∗ = (xK , xL), we define
a quadrilateral diamond cell, denoted as D, with σ and σ∗ as its diagonals. In the case where σ is
a boundary edge, the diamond D degenerates into a triangle. The entire set of diamond cells forms
the diamond mesh, denoted as D, which can be expressed as D = Dext ∪Dint. Here, Dext represents
the set of boundary diamonds, where σ ⊂ ∂Ω, and Dint represents the set of interior diamonds, where
σ ̸⊂ ∂Ω.
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xL∗
•

•
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xK

τK∗,L∗

σ nσK

σ∗
τK,L

nσ∗K∗

Figure 2. Left: Diamond mesh D (green). One cell is colored in light green. Right:
A diamond D (green) with direct basis (τK∗,L∗ ,nσK) and (nσ∗K∗ , τK,L). σ (resp. σ∗)
is the primal (resp. dual) edge.

In summary, the DDFV mesh T consists in the union of the primal mesh M and the dual mesh
M∗. For a diamond D with vertices (xK∗ , xL, xL∗ , xK), we define xD as its center, |D| as its measure,
|σ| as the length of the primal edge σ, |σ∗| as the length of the dual edge σ∗, and αD as the angle
between the vectors (xL, xK) and (xL∗ , xK∗). Additionally, we define two mutually orthogonal basis
vectors, (τK∗,L∗ ,nσK), and (nσ∗K∗ , τK,L), where nσK is the unit vector normal to σ oriented from K

to L, nσ∗K∗ is the unit vector normal to σ∗ oriented from K∗ to L∗, τK∗,L∗ is the unit tangent vector to
σ oriented from xK∗ to xL∗ , and τK,L is the unit tangent vector to σ∗ oriented from xK to xL (Fig. 2).
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It is worth noting that the area of a diamond cell D is given by |D| = 1

2
|σ||σ∗| sin(αD). Furthermore,

we define two subsets for the diamond cells as follows:

DK = {D ∈ D, σ ∈ EK}, DK∗ = {D ∈ D, σ∗ ∈ EK∗}.
where:

- EK is the set of edges of K ∈ M ∪ ∂M. Note that for all K ∈ ∂M, EK is reduced to one edge, i.e.
σ = K.
- EK∗ is the set of edges of K∗ ∈ M∗ ∪ ∂M∗.

We consider mixed boundary conditions, and thus define four subsets of the boundary mesh. The
boundary primal and dual meshes for the Dirichlet boundary condition are:

∂MDir = {K ∈ ∂M : xK ∈ ΓDir}, ∂M∗
Dir = {K∗ ∈ ∂M∗ : xK∗ ∈ ΓDir}.

The boundary dual mesh for the Neumann boundary condition is:

∂M∗
Neu = {K∗ ∈ ∂M∗ : xK∗ ∈ ΓNeu\ΓDir}.

Finally, the boundary diamond mesh for the Neumann boundary condition is:

Dext,Neu = {D ∈ Dext : σ ∈ D ∩ ΓNeu}.
Note that per definition, there is a one-to-one relationship between the edges of primal cells and
diamonds, and between the edges of dual cells and diamonds.
We finally denote Z∗

S the set of dual cells on a segment S defined as:

(1.1) Z∗
S = {K∗ ∈ M∗, such that K∗ ∩ S ̸= ∅}

and K∗
X the unique dual cell containing a point X:

(1.2) K∗
X = {K∗ ∈ M∗, such that K∗ ∩X ̸= ∅}

1.2. Discrete unknowns and operators

The DDFV method enables the construction of two-dimensional discrete gradient and divergence
operators that exhibit duality in a discrete sense. A description of the duality framework can be found
in [35] and [3]. In this subsection, we introduce the discrete unknowns, the discrete gradient and
divergence operators, as well as the reconstruction operator, that maps the unknowns on the primal
and dual meshes on the diamond mesh. We first describe the sets of discrete unknowns. We define RT

the linear space of scalar fields that are constant over the cells of M and M∗:

uT ∈ RT ⇐⇒ uT =
(
(uK)K∈M, (u

K∗
)K∗∈M∗

)
.

We set
(
R2
)D the linear space of vector fields constant on the diamonds:

ξD ∈
(
R2
)D ⇐⇒ ξD =

(
ξD
)
D∈D

.

We also denote RD as the set of scalar fields that are constant over the diamonds. The discrete gradient
operator is defined as a mapping from RT to

(
R2
)D, denoted by ∇DuT = (∇DuT )D∈D for all uT ∈ RT .

For each diamond D ∈ D:

(1.3) ∇DuT =
1

2|D| [|σ|(u
L − uK)nσK + |σ∗|(uL∗ − uK

∗
)nσ∗K∗ ].

The discrete divergence operator is a mapping from
(
R2
)D to RT given by, for all ξD ∈

(
R2
)D:

(1.4) divT ξD =
(
divMξD,div∂MξD,divM

∗
ξD,div∂M

∗
ξD
)
.

The divergence on the primal mesh is divMξD = (divKξD)K∈M and div∂MξD = 0, with:

divKξD =
1

|K|
∑

D∈DK

|σ|ξD · nσK , ∀K ∈ M.
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The divergence on the dual mesh is as well divM
∗
ξD = (divK

∗
ξD)K∗∈M∗ and div∂M

∗
ξD =

(divK
∗
ξD)K∗∈∂M∗ with:

divK
∗
ξD =

1

|K∗|
∑

D∈DK∗

|σ∗|ξD · nσ∗K∗ , ∀K∗ ∈ M∗,

divK
∗
ξD =

1

|K∗|

 ∑
D∈DK∗

|σ∗|ξD · nσ∗K∗ +
∑

D∈DK∗∩Dext

|σ|
2
ξD · nσK

 , ∀K∗ ∈ ∂M∗.

We introduce rD, a reconstruction operator on diamonds that maps RT to RD. For any uT ∈ RT ,
rD[uT ] is defined as (rD(uT ))D∈D, where D ∈ D and its vertices are denoted as (xK , xK∗ , xL, xL∗):

rD(uT ) =
1

4

(
uK + uL + uK

∗
+ uL

∗
)
.(1.5)

1.3. Discrete notations

In the following, we introduce some useful notations. Let N be a positive integer. We denote
dt = Tf/N and tn = n × dt for n ∈ {0, ..., N}. We define the discrete space RT ,dt :=

(
RT )N+1

and its associated discrete vector uT ,dt ∈ RT ,dt. We also define the discrete space RT ×T ,dt :=

(RT ×T )
N+1. Furthermore, for n ∈ N and a given function u, we define the discrete projection

PT ,n
m u = (PM,n

m u,PM∗,n
m u,P∂Ω,n

m u) as follows:

PM,n

m u =

(
1

|K|

∫
K

u(tn,x)dx

)
K∈M

, PM∗,n

m u =

(
1

|K∗|

∫
K∗

u(tn,x)dx

)
K∗∈M∗

,

P∂Ω,n

m u =

((
1

|K|

∫
K

u(tn,x)dx
)

K∈∂M

,

(
1

|K∗|

∫
K∗

u(tn,x)dx
)

K∗∈∂M∗

)
.

Also, we give Dirichlet discrete projections:

P∂MDir,n

m u =

(
1

|K|

∫
K

u(tn,x)dx
)

K∈∂MDir

, P∂M∗
Dir,n

m u =

(
1

|K∗|

∫
K∗

u(tn,x)dx
)

K∗∈∂M∗
Dir

.

Thereafter, we define PT ,dt
m , P∂MDir,dt

m and P∂M∗
Dir,dt

m such that:

PT ,dt

m u := (PT ,n

m u)n∈{0,...,N} ,

P∂MDir,dt

m u := (P∂MDir,n

m u)n∈{0,...,N} , P∂M∗
Dir,dt

m u :=
(
P∂M∗

Dir,n

m u
)
n∈{0,...,N}

.

Building upon the previous sections, the source terms are discretized as follows:

fT ,dt

u = PT ,dt

m fu,

and the initial conditions such as:

uT ,0 = PT ,0

m u0.

Next, we define the discretization for the Dirichlet boundary condition functions:

u
∂MDir,dt

Dir = P∂MDir,dt

m uDir, u
∂M∗

Dir,dt

Dir = P∂M∗
Dir,dt

m uDir.

The same way, we define the discretization of the Neumann boundary condition functions g:
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gDext,dt
Neu =

(
(gσ,n)σ∈Dext,Neu

)
n∈{0,...,N}

with gσ,n =

∫
σ

g(tn,x)dx.

Finally, in Chapters 2 and 3, we present numerical results in the form of convergence tables containing
numerical errors and associated convergence orders. For this specific purpose, we define the discrete
norm L2(Ω):

(1.6) ∀uT ∈ RT , ∥uT ∥T ,2
=

1

2

∑
K∈M

|K||uK |2 + 1

2

∑
K∗∈M∗

|K∗||uK∗ |2

1

2
.

Additionally, we define the discrete norm L∞((0, Tf );L
2(Ω)) by:

(1.7) ∀uT ,dt ∈ RT ,dt, ∥uT ,dt∥T ,dt,∞ = max
n∈{0,...,N}

1

2

∑
K∈M

|K||uK,n|2 + 1

2

∑
K∗∈M∗

|K∗||uK∗,n|2

1

2
.
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CHAPTER 2

Linear coupling of the Poisson-Nernst Planck system of
equations using the DDFV method

Introduction

This chapter presents a linear scheme, coupling the Poisson and the Nernst Planck equation within
the DDFV framework. We introduce the coupling method on a PNP system consisting of a single
Nernst-Planck (NP) equation for the concentration of one ionic species cP , and the Poisson equation
for the potential V . We choose to consider only one species, as we expect that this coupling strategy
would not always converge. Also, we set the coefficients DP , β, and γ equal to 1. Consequently,
we realize several numerical tests on this linear coupling and draws the conclusion that the linear
coupling is not appropriate for our system of equations. For spatial discretization, we employ the
DDFV method, which was introduced in Chapter 1, along with an implicit Euler scheme for time
discretization. Furthermore, only Dirichlet boundary conditions are considered.
Let Ω ⊂ R2 be a connected open bounded domain and Tf > 0 a finite time. The Poisson equation is
defined as follows:

(2.1)

−∇ · (∇V ) = cP , in Ω× [0, Tf ],

V = V Dir, on ∂Ω× [0, Tf ],

V (x, t = 0) = V 0 in Ω.

where V Dir ∈ L2(ΓDir × [0, Tf ]) and V 0 ∈ L2(Ω).
The Nernst-Planck (NP) equation is defined as follows, using the same reformulation as [18] to ensure
the positivity of the concentration:

(2.2)

∂tcP = ∇ · (cP∇ (log cP + V )) + fcP , in Ω× [0, Tf ],

cP = cDir
P , on ∂Ω× [0, Tf ],

cP (x, t = 0) = c0P in Ω.

where cDir
P ∈ L2(ΓDir × [0, Tf ]), c0P ∈ L2(Ω) and fcP ∈ L2(Ω× [0, Tf ]) is a non-zero source term.

In this chapter, we will draw comparisons between solving the NP equation (2.2) with a potential V
given by an analytical formula (as in [18]), that we call the NP-solver and solving the PNP equations
(2.1)-(2.2) with a linear coupling, called the LC-solver. The latter system involves solving Poisson’s
equation (2.1) with a concentration cP given at the previous time step. Then, using the obtained
potential, a new concentration is calculated as in [18]. It is important to note that the difference
between the two approaches is whether the potential V in (2.2) is given by an analytical function or
derived from solving the Poisson equation.
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Numerical scheme of the NP-solver

We now describe the numerical scheme solving the NP equations alone (NP-solver), as in [18].
We denote cT ,dt ∈ RT ,dt the numerical solution of the NP equation (2.2) obtained using an analytical
potential Vex that is projected such that V T ,dt

ex = PT ,dt
m V ex, with dt the time step. The Dirichlet

boundary conditions of the solution c of (2.2) are discretized such as:

c
∂MDir,dt

Dir = P∂MDir,dt

m cDir, c
∂M∗

Dir,dt

Dir = P∂M∗
Dir,dt

m cDir.

In the same way, the initial conditions of c, the source term fc and the manufactured potential
Vex are also discretized:

cT ,0 = PT ,0

m c0, fT ,dt

c = PT ,dt

m fc, V T ,dt

ex = PT ,dt

m V ex.

The numerical scheme of the NP equation (2.2) is integrated over M and M∗, seeking solutions cT ,dt ∈
RT ,dt that satisfy the following nonlinear problem for all n ≥ 0:

cK,n+1 − cK,n

dt
+ divK

(
JD,n+1
c

)
= fK,n+1

c , ∀K ∈ M,

(2.3)

cK
∗,n+1 − cK

∗,n

dt
+ divK

∗ (
JD,n+1
c

)
= fK∗,n+1

c , ∀K∗ ∈ M∗,

JD,n+1
c = −rD(cT ,n+1)∇D

(
log cT ,n+1 + V T ,n+1

ex

)
cK,n+1 = cK,n+1

Dir , ∀K ∈ ∂MDir,

(2.4)

cK
∗,n+1 = cK

∗,n+1

Dir , ∀K∗ ∈ ∂M∗
Dir.

The presence of the logarithm introduces nonlinearity, which is handled by a Newton algorithm at
each time step:

(2.5) uk+1 = uk − J−1
k F (uk)

where k ≥ 0 is the Newton iteration, uk the unknown, Jk is the Jacobian matrix and F the function
that should vanish. For the NP-solver, the components of the Newton’s algorithm are denoted as
MT ,dt

NP ∈ RT ×T ,dt for the Jacobian J and FT ,dt

NP ∈ RT ,dt for the function F . The latter is defined by:

FK,n+1
NP =

cK,n+1 − cK,n

dt
+ divK

(
JD,n+1
c

)
− fK,n+1

c , ∀K ∈ M,

FK∗,n+1
NP =

cK
∗,n+1 − cK

∗,n

dt
+ divK

∗ (
JD,n+1
c

)
− fK∗,n+1

c , ∀K∗ ∈ M∗,

(2.6)

FK,n+1
NP = cK,n+1 − cK,n+1

Dir , ∀K ∈ ∂MDir,

FK∗,n+1
NP = cK

∗,n+1 − cK
∗,n+1

Dir , ∀K∗ ∈ ∂M∗
Dir.
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Numerical analysis of the reformulated equation (2.3)-(2.4) has been published in [18], where
the authors determine that it exists a solution for this problem. They also show a second order of
convergence in space in the L∞((0, Tf );L

2(Ω)) norm.

In this chapter, we build a linear coupling of the PNP system of equation (2.1)-(2.2) in the DDFV
framework (the LC-solver), from two existing Fortran90 programs: one solving the Poisson equation
(2.1), and the NP-solver described above, coming from [18], that addresses the NP equation (2.2) with
the nonlinear reformulation of the flux term.
We then run simulations of the LC-solver, and investigate the results of the coupling through detailed
numerical tests. Indeed, we begin by comparing the discrete solutions obtained from manufactured test
cases using our LC-solver approach and the approximate solutions obtained from the NP-solver. After-
wards, we analyze the accuracy of the Jacobian matrix computed in both codes during the simulations.
We observe that, after a several time iterations, the LC-solver does not give a good approximation of
the solutions, since the error does not decrease with the decrease of mesh size.
We finally present results from a Scilab code as a benchmark to our coupling approach. More precisely,
the Scilab code serves as a numerical debugging tool and solves our PNP system on a cartesian mesh
consisting of four equal cells within a unit square domain. The purpose of the latter code is to replicate
the LC-solver of the PNP system at a single time iteration. Based on the same test case, we obtain
identical solutions as in the LC-solver at each iteration, confirming the correct implementation of the
LC-solver on this small domain. However, we cannot assert that the LC-solver works perfectly on all
types of meshes.
In the present chapter, we strive to explain the numerical reasons behind this non-convergence. Unfor-
tunately, despite our extensive numerical testing of the LC-solver, yet we have not been able to show
a concrete reason for its non-convergence.

The present chapter is organized as follows: in Section 2.1, we present the structure of the LC-
solver and introduce the corresponding numerical scheme. Section 2.2 presents our simulation results,
as well as the numerical tests. Finally, in Section 2.3, we use the Scilab code, as previously mentioned,
to check the mechanism of the LC-solver in a unit square domain consisting of four Cartesian equal
cells.

2.1. Presentation of the linear coupling of the PNP system

In this section, we present the numerical scheme for the LC-solver. The PNP system consists in
two equations (2.1)-(2.2) with two unknowns (cP , V ). The numerical simulations are conducted using
both triangular and cartesian meshes within an unit square domain. Each of the two mesh families
consists of four refinement levels with progressively smaller spatial steps. The main goal is to examine
the performance of the LC-solver method and to analyze the behavior of the PNP system (2.1)-(2.2)
within this context. The discrete unknowns of the system are denoted as (cT ,dt

P , V T ,dt) ∈ RT ,dt.
As previously mentioned, the coupling of the system (2.1)-(2.2) is achieved by injecting the initial
condition cT ,0

P ∈ RT into the routine solving the Poisson equation, resulting in an approximate solution
V T ,1 ∈ RT . Subsequently, V T ,1∈ RT is injected into the routine solving the NP equation to obtain
cT ,1

P ∈ RT . This process is then iterated over time points with respect to some chosen time step, as
mapped in Figure 1.
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cT ,0

P

V T ,1

cT ,1

P

V T ,2

cT ,n

P

V T ,n+1

cT ,n+1

P

Routine for Poisson equation

Routine for Nernst-Planck equation

Routine for Poisson equation

Routine for Nernst-Planck equation

Figure 1. Structure of the LC-solver using separate routines for V in Poisson equa-
tion and for cP in NP equation.

Building upon the previous Section 1.3, the source terms and initial conditions are discretized as
follows:

fT ,dt
cP = PT ,dt

m fcP , fT ,dt

V = PT ,dt
m fV ,

cT ,0

P = PT ,0
m c0P , V 0

T = PT ,0
m V 0.

In addition, we define the discretizations for the Dirichlet values:

c
∂MDir,dt

P,Dir = P∂MDir,dt

m cDir
P , V

∂MDir,dt

Dir = P∂MDir,dt

m V Dir,

c
∂M∗

Dir,dt

P,Dir = P∂M∗
Dir,dt

m cDir
P , V

∂M∗
Dir,dt

Dir = P∂M∗
Dir,dt

m V Dir.

Therefore, we solve the numerical scheme by integrating equations (2.1)-(2.2) over M and M∗,
seeking solutions (cT ,dt

P , V T ,dt) ∈ RT ,dt that satisfy the following nonlinear problem for all n ≥ 0:

− divK(∇DV K,n+1) = cK,n

P , ∀K ∈ M,(2.7)

− divK
∗
(∇DV K∗,n+1) = cK

∗,n

P , ∀K∗ ∈ M∗,(2.8)

cK,n+1

P − cK,n

P

dt
+ divK

(
JD,n+1
cP

)
= fK,n+1

cP , ∀K ∈ M,(2.9)

cK
∗,n+1

P − cK
∗,n

P

dt
+ divK

∗ (
JD,n+1
cP

)
= fK∗,n+1

cP , ∀K∗ ∈ M∗,(2.10)

JD,n+1
cP = −rD(cT ,n+1

P )∇D (log cT ,n+1

P + V T ,n+1) .(2.11)

The discrete Dirichlet boundary conditions are expressed as:

cK,n+1

P = cK,n+1

P,Dir, ∀K ∈ ∂MDir, cK
∗,n+1

P = cK
∗,n+1

P,Dir , ∀K∗ ∈ ∂M∗
Dir,(2.12)
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V K,n+1 = V K,n+1

Dir , ∀K ∈ ∂MDir, V K∗,n+1 = V K∗,n+1

Dir , ∀K∗ ∈ ∂M∗
Dir.(2.13)

The existence of a solution (cP , V ) of (2.9)-(2.12) is proved in [18]. The components of the
Newton’s algorithm for (2.9)-(2.12) are denoted as MT ,dt

LC ∈ RT ×T ,dt for the Jacobian matrix and
FT ,dt

LC ∈ RT ,dt for the function F under the LC-solver. The latter is defined by:

FK,n+1
LC =

cK,n+1

P − cK,n

P

dt
+ divK

(
JD,n+1
cP

)
− fK,n+1

cP , ∀K ∈ M,

FK∗,n+1
LC =

cK
∗,n+1

P − cK
∗,n

P

dt
+ divK

∗ (
JD,n+1
cP

)
− fK∗,n+1

cP , ∀K∗ ∈ M∗,

(2.14)

FK,n+1
LC = cK,n+1

P − cK,n+1

P,Dir, ∀K ∈ ∂MDir,

FK∗,n+1
LC = cK

∗,n+1

P − cK
∗,n+1

P,Dir , ∀K∗ ∈ ∂M∗
Dir.

2.2. Numerical tests and analysis

In this section, we present the results obtained from three numerical test cases. Those test cases
are constructed using manufactured solutions of the system (2.1)-(2.2). In the current chapter, the
computational domain Ω is set to ]0, 1[2. In our simulation procedure, we use families of increasingly
refined meshes generated by the cartesian mesh family and the triangular mesh family. For each
mesh in the family, the matching spatial steps h range from 7.071 × 10−1 to 8.839 × 10−2, and from
4.692× 10−1 to 6.253× 10−2 respectively. The time step dt is initially given for the first mesh in the
family. For subsequent meshes, the time step is divided by 4. Specifically, the second mesh has a time
step of dt/4, the third mesh has a time step of dt/42, and the last mesh has a time step of dt/43. For
each simulation, we provide the involved time related parameters, i.e, the time step and the final time.
The first test case for the system (2.1)-(2.2) is denoted Test 1. The exact solutions (cP,ex, V ex) are:


cP,ex(t, x, y) = 2t2 + 6x+ 4,

V ex(t, x, y) = −x3 − 2y2 − t2x2,

(2.15)

and the source term is:

fcP (t, x, y) = 54x2 + (36t2 + 48)x+ 4t4 + 16t2 + 4t+ 16.(2.16)

Then, Test 2 is defined such as:


cP,ex(t, x, y) = 10 + t+ 12y2,

V ex(t, x, y) = −5x2 − 0.5tx2 − y4,

(2.17)

with corresponding source term:

fcP (t, x, y) = t2 + (20 + 24y2)t+ 77 + 240y2 + 240y4.(2.18)

Finally, we define Test 3 by:
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
cP,ex(t, x, y) = 10 + 6y + 2t,

V ex(t, x, y) = −y3 − ty − 5x2,

(2.19)

where the source term is:

fcP (t, x, y) = 4t2 + (36y + 40)t+ 54y2 + 120y + 102.(2.20)

The exact solutions will be projected onto RT ,dt, which we denote {cT ,dt

P,ex, V
T ,dt
ex } and define as follows:

cT ,dt

P,ex = PT ,dt

m cP,ex, V T ,dt

ex = PT ,dt

m V ex.

2.2.1. Comparative analysis of the convergence orders from LC-solver and NP-solver. In
this section, the simulations are conducted with a time step dt = 5 × 10−3 (which correspond to
a number of time steps N = 100) and a final time Tf = 0.5. We present two convergence tables,
each displaying the L∞((0, Tf );L

2(Ω)) errors of the discrete solutions of system (2.9)-(2.12) and (2.3)-
(2.4) respectively, along with their corresponding convergence orders, based on the refinement levels
of the used meshes (both Cartesian and triangular). To compute the errors, we use the discrete
norm (1.7) defined in Section 1.3, and define the three errors ErrCp = ∥cT ,dt

P − cT ,dt

P,ex∥T ,dt,∞
, ErrV =

∥V T ,dt − V T ,dt
ex ∥T ,dt,∞ from the LC-solver (2.9)-(2.12) and ErrC = ∥cT ,dt − cT ,dt

ex ∥T ,dt,∞ from the NP-
solver (2.3)-(2.4). In Tables 1 and 2, we provide for each mesh family, the value of the three errors.
Table 1 and Table 2 differ only in the meshes used, namely Cartesian for Table 1 and triangular
for Table 2. Notably, we observe that the convergence orders stemming from the LC-solver exhibit
significant deviations, including negative values, which is in contrast to the NP-solver whose orders
tend towards 2. Indeed, the L∞((0, Tf );L

2(Ω)) errors associated with the LC-solver grow with an
increasing number of cells.

Cartesian Convergence orders from LC-solver Convergence orders from NP-solver
h ErrCp Order ErrV Order ErrC Order

7.071E−1 6.769E−2 · 1.794E−1 · 1.150E−1 ·
3.536E−1 8.074E−2 -0.25 1.089E−1 0.72 2.755E−2 2.06
1.768E−1 8.901E−2 -0.14 9.609E−2 0.18 6.669E−3 2.05
8.839E−2 9.308E−2 -0.06 9.338E−2 0.04 1.628E−3 2.03

Table 1. The error ErrCp, ErrV, ErrC and convergence orders from both codes
for Test 1 on the cartesian mesh family (h = 7.071 × 10−1 to 8.839 × 10−2), with
dt = 5× 10−3 and Tf = 0.5.

Triangular Convergence orders from LC-solver Convergence orders from NP-solver
h ErrCp Order ErrV Order ErrC Order

4.692E−1 8.127E−2 · 1.075E−1 · 2.717E−2 ·
2.341E−1 8.917E−2 -0.13 9.63E−2 0.16 7.256E−3 1.90
1.212E−1 9.304E−2 -0.06 9.349E−2 0.04 1.842E−3 2.08
6.253E−2 9.497E−2 -0.03 9.272E−2 0.01 4.486E−4 2.13

Table 2. The error ErrCp, ErrV, ErrC and convergence orders from both codes for
Test 1 on the triangular mesh family (h = 4.692 × 10−1 to 6.253 × 10−2), with
dt = 5× 10−3 and Tf = 0.5.
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As we point out non-convergence of the coupling strategy, we provide thereafter the corresponding
convergence tables of the LC-solver and the NP-solver, for both Test 2 and Test 3 on the triangular
meshes. Thus, as previously, we exhibit the L∞((0, Tf );L

2(Ω)) errors of the same quantities and the
orders from both solvers in Table 3 and Table 4, respectively.

Triangular Convergence orders from LC-solver Convergence orders from NP-solver
h ErrCp Order ErrV Order ErrC Order

4.692E−1 5.897E−2 · 4.696E−2 · 5.659E−3 ·
2.341E−1 5.977E−2 -0.02 4.584E−2 0.03 1.625E−3 1.79
1.212E−1 6.051E−2 -0.02 4.546E−2 0.01 4.136E−4 2.08
6.253E−2 6.109E−2 -0.01 4.536E−2 0.00 1.024E−4 2.11

Table 3. The error ErrCp and ErrV, ErrC and convergence orders from both codes
for Test 2 on the triangular mesh family (h = 4.692 × 10−1 to 6.253 × 10−2), with
dt = 5× 10−3 and Tf = 0.5.

Triangular Convergence orders from LC-solver Convergence orders from NP-solver
h ErrCp Order ErrV Order ErrC Order

4.692E−1 1.584E−1 · 9.545E−2 · 2.376E−2 ·
2.341E−1 1.617E−1 -0.03 9.466E−2 0.01 6.619E−3 1.84
1.212E−1 1.633E−1 -0.01 9.426E−2 0.01 1.69E−3 2.07
6.253E−2 1.644E−1 -0.01 9.415E−2 0.00 4.123E−4 2.13

Table 4. The error ErrCp and ErrV, ErrC and convergence orders from both codes
for Test 3 on the triangular mesh family (h = 4.692 × 10−1 to 6.253 × 10−2), with
dt = 5× 10−3 and Tf = 0.5.

Note that for Test 2 and Test 3, the NP-solver provides similar convergence orders as in Test 1
from Table 2. As observed above, we obtain similar results from all cases for the LC-solver. In light
of these non-converging results for the coupling approach, we closely examine results of a single time
iteration. In the following, we consider only Test 1, as the behavior for the other two tests are very
similar. minimal.

2.2.2. Comparative analysis of the convergence orders from LC-solver and NP-solver at
specific iterations. Hereafter, we provide a convergence table displaying the L2(Ω) errors at the
first iteration n = 1 of the solutions obtained from both solvers: cT ,1

P and V T ,1 for the LC-solver
(2.9)-(2.12), and cT ,1 for the NP-solver (2.3)-(2.4). Again, the errors are computed with respect to the
discrete L2(Ω) norm (1.6) already defined in Section 1.3.

Triangular Errors from LC-solver at n = 1 Errors from NP-solver at n = 1

h ErrCp1 Order ErrV1 Order ErrC1 Order
4.692E−1 2.978E−4 · 3.397E−3 · 1.985E−3 ·
2.341E−1 1.164E−4 1.35 8.508E−4 1.99 6.344E−4 1.64
1.212E−1 3.610E−5 1.77 2.12E−4 2.11 1.746E−4 1.95
6.253E−2 9.742E−6 1.97 5.282E−5 2.09 4.495E−5 2.05

Table 5. The error ErrCp1, ErrV1, ErrC1 and convergence orders from both codes
for Test 1 on the triangular mesh family (h = 4.692×10−1 to 6.253×10−2) at n = 1,
corresponding to t = 5× 10−3. Simulations are run with the same dt = 5× 10−3 and
Tf = 0.5.

In Table 5, we give the value of the different errors at the first iteration denoted ErrCp1 =

∥cT ,1

P − cT ,1

P,ex∥T ,2
, ErrV1 = ∥V T ,1 − V T ,1

ex ∥T ,2 from the LC-solver (2.9)-(2.12) and ErrC1 = ∥cT ,1 − cT ,1
ex ∥T ,2

from the NP-solver (2.3)-(2.4). Additionally, alongside these errors, we determine the corresponding
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convergence orders of the solutions at the first iteration. One observe diminishing errors with in-
creasing mesh refinement levels. At the highest refinement level, the error for cT ,1 is 10−5 for the
NP-solver, whereas for the LC-solver, we obtain 10−5 for V T ,1 and 10−6 for cT ,1

P . The errors are
very similar between both solvers; we even observe a smaller error on the concentration cT ,1

P for the
LC-solver. This leads us to believe that the LC-solver appears to be accurate in the first iteration.
Also, the convergence results at n = 1 are in great accordance with the results from the NP-solver,
which depicts an order of 2. In other words, the results from both solvers exhibit close similarity. It
appears that, in the initial iteration, the LC-solver provides a good approximation of the solutions, and
the non-convergence observed in the preceding section does not arise from the first time-step resolution.

Subsequently, in the LC-solver, we observe that the L2(Ω) error of solution cP start to increase
at iteration 2, with the convergence order decreasing. This increase is more important with mesh
refinement. We present the relative numerical results of iteration n = 5 in Table 6, for the three errors
ErrCp5 = ∥cT ,5

P − cT ,5

P,ex∥T ,2
, ErrV5 = ∥V T ,5 − V T ,5

ex ∥T ,2 and ErrC5 = ∥cT ,5 − cT ,5
ex ∥T ,2

. Concerning the
potential, the error decreases with the successive mesh refinement, but the order decreases, and reach
0.75 for the most refined mesh, when an order 2 would be expected. In the opposite, the numerical
errors for the NP-solver behaves as expected, with a significant decreases, and a numerical convergence
order around 2.

Triangular Errors from LC-solver at n = 5 Errors from NP-solver at n = 5

h ErrCp5 Order ErrV5 Order ErrC5 Order
4.692E−1 6.016E−4 · 3.539E−3 · 3.716E−3 ·
2.341E−1 1.753E−4 1.77 9.72E−4 1.85 9.38E−4 1.98
1.212E−1 1.104E−4 0.70 3.456E−4 1.57 2.379E−4 2.08
6.253E−2 1.187E−4 -0.10 2.093E−4 0.75 6.448E−5 1.97

Table 6. The error ErrCp5, ErrV5, ErrC5 and convergence orders from both codes
for Test 1 on the triangular mesh family (h = 4.692×10−1 to 6.253×10−2) at n = 5,
corresponding to t = 0.025. Simulations are conducted with the same dt = 5 × 10−3

and Tf = 0.5.

These results indicate that with the current parameter settings, achieving a sufficiently high level
of accuracy to match the results obtained from the NP-solver is not feasible. Consequently, our focus
shifts toward obtaining more coherent results by changing the time parameters.

2.2.3. Analysis of convergence orders w.r.t time-related parameters for LC-solver. In this
subsection, we now exclusively examine the results of the LC-solver. We change the time parameters
(dt and Tf ) in the aim to decrease the error and get a second order for the convergence. We set
the final time to Tf = 0.006. Consequently, we present the results ErrCp = ∥cT ,dt

P − cT ,dt

P,ex∥T ,dt,∞
,

ErrV = ∥V T ,dt − V T ,dt
ex ∥T ,dt,∞ from the LC-solver (2.9)-(2.12) in Table 7, with dt = 6 × 10−5. These

results are carried out by employing the triangular mesh family. The simulations are conducted for
Test 1.

Triangular Convergence orders from LC-solver
h ErrCp Order ErrV Order

4.692E−1 3.950E−4 · 3.411E−3 ·
2.341E−1 1.453E−4 1.44 8.610E−4 1.99
1.212E−1 3.921E−5 1.89 2.217E−4 1.96
6.253E−2 1.061E−5 1.89 6.326E−5 1.81

Table 7. The error ErrCp, ErrV and convergence orders for Test 1 (2.15)-(2.16) on
the triangular mesh family (h = 4.692 × 10−1 to 6.253 × 10−2) with Tf = 0.006 and
dt = 6× 10−5.



37

Fortunately, these simulations yield consistent results. Indeed, the convergence orders of both
cP and the potential V , almost reach the expected value 2. These results demonstrate that the LC-
solver (2.9)-(2.12) performs well for small final time and time step. Thereupon, one might naturally
attempt replicating these results using the same time step, but with a larger final time, for instance
take Tf = 0.5. ErrCp and ErrV from the LC-solver (2.9)-(2.12) are presented in Table 8 below:

Triangular Convergence orders from LC-solver
h ErrCp Order ErrV Order

4.692E−1 9.324E−2 · 9.504E−2 ·
2.341E−1 9.444E−2 -0.01 9.316E−2 0.03
1.212E−1 9.541E−2 0.00 9.268E−2 0.01
6.253E−2 9.602E−5 0.001 9.192E−2 0.02

Table 8. The error ErrCp, ErrV and convergence orders for Test 1 (2.15)-(2.16) on
the triangular mesh family (h = 4.692 × 10−1 to 6.253 × 10−2) with Tf = 0.5 and
dt = 6× 10−5.

Based on the setting of Table 8, one may remark that the newly derived results do not exhibit
convergence. The L∞((0, Tf );L

2(Ω)) errors in the solution cP increase as the mesh refinement pro-
gresses. A similar behavior is observed for the error on the potential V , ErrV. We then run simulation
with an smaller time step, dt = 10−7, and show ErrCp and ErrV in Table 9.

Triangular Convergence orders from LC-solver
h ErrCp Order ErrV Order

4.692E−1 9.247E−2 · 9.501E−2 ·
2.341E−1 9.36E−2 -0.01 9.302E−2 0.03
1.212E−1 9.534E−2 -0.02 9.219E−2 0.01
6.253E−2 9.623E−2 -0.01 9.328E−2 -0.01

Table 9. The error ErrCp, ErrV and convergence orders for Test 1 (2.15)-(2.16) on
the triangular mesh family (h = 7.071 × 10−1 to 8.839 × 10−2) with Tf = 0.5 and
dt = 1× 10−7.

The outcomes obtained with this excessively small time step reaffirm that the solutions non-
converge. Consequently, the LC-solver (2.9)-(2.12) fails to accurately reconcile the solutions of cP and
V within the PNP system (2.1)-(2.2).

The numerical results indicate that the LC-solver (2.9)-(2.12) is limited to a very small final time.
For instance, it shows consistent performance when the final time is set to Tf = 0.006 within the
framework of Test 1. After these observations, we tried to achieve convergence orders close to 2 with
a larger final time Tf = 0.5. Regrettably, despite employing a time step (dt = 6 × 10−5) akin to
that of the reference effective final time (Tf = 0.006) (see Table 7), the results persistently exhibit
inconsistency (see Table 8). Analogous conclusions were drawn from both Test 2 and Test 3, both of
which exhibit inconsistency as well. Thus, our results do not allow to conclusively check whether the
PNP system is properly coupled under the LC-solver, as the solutions non-converge.

2.2.4. Comparative analysis of the Jacobian matrices from LC-solver and NP-solver at
initial iteration. The present section is dedicated to verifying the implementation of the Jacobian
matrix J under the Newton algorithm involved in the LC-solver (2.9)-(2.12) of the PNP system (2.1)-
(2.2). Given the nonlinear nature of the system, Jacobian matrices are built up at each time step. The
goal is to compare the outcomes of the two Jacobian matrices produced by both solvers at iteration
n = 1 and n = 5 within the simulations of Section 2.2.1. Then, we assess the differences between
those matrices, following the setting of Test 1. The Jacobian matrices are determined by calculating
the derivatives of the functions F associated with each code, specifically FT ,dt

NP and FT ,dt

LC , as defined
in equations (2.6) and (2.14), respectively. Accordingly, these matrices are represented as MT ,dt

NP and
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MT ,dt

LC . The components of each respective matrix are stored in a single column vector, wherein each
row is concatenated sequentially. For the iteration in time n = 1 (resp. n = 5), we denote these vectors
as VecT ,1

LC (resp. VecT ,5

LC) for the LC-solver and VecT ,1

NP (resp. VecT ,5

NP) for the NP-solver, respectively.

We run simulation with Tf = 0.5 and dt = 5 × 10−3, with triangular meshes with refinement lev-
els ranging from h = 4.692 × 10−1 to 6.253 × 10−2. In Table 10, we provide the infinity norm errors
ErrM1 = max |VecT ,1

LC − VecT ,1

NP| for n = 1 and ErrM5 = max |VecT ,5

LC − VecT ,5

NP| for n = 5.

Triangular n = 1 n = 5

h ErrM1 Order ErrM5 Order
4.692E−1 1.62E−2 · 2.4E−2 ·
2.341E−1 5.3E−3 1.60 6.1E−3 1.96
1.212E−1 1.5E−3 1.91 1.5E−3 2.09
6.253E−2 4E−4 1.99 3.7E−4 2.12

Table 10. The errors ErrM1, ErrM5 and their convergence orders for Test 1 on the
triangular mesh family (h = 4.692 × 10−1 to 6.253 × 10−2) at n = 1 and n = 5.
Simulations are conducted with dt = 5× 10−3 and Tf = 0.5.

The infinity norm errors between the Jacobian matrices from both solvers at both iterations (n = 1

and n = 5) decrease with increasing refinement levels. Furthermore, we compute the associated
convergence orders, observing coherent values that approach 2 as refinement levels increase. These
results indicate that the implementation of the Jacobian matrix in the LC-solver (2.9)-(2.12) is correct.

Thereafter, for each solver (LC-solver and NP-solver), we aim at checking the differentiability of
the function F involved in Newton’s procedure, as one potential clue to the previous non-converging
results. Thus, we compare the rate of change of the function F at a given point, say (F (x+ℓy)−F (x))/ℓ,
with the value of the Jacobian matrix times y, denoted M · y. To be more precise, we take randomly
selected points x and y within the range of 0 to 1, and compute each term in (2.21) below, for both
LC-solver (2.9)-(2.12) and NP-solver (2.3)-(2.4). Note that in order to evaluate the approximated
errors associated to the quantity of interest (2.21), we decrease ℓ = 0.1, 0.01, 0.0001 from both solvers
at each time step. Thus, if the Jacobian matrix is well approximated, one hopes to observe that:

(2.21) |(F (x+ ℓy)− F (x))/ℓ−M · y| −−−→
ℓ→0

0.

The approximated values corresponding to (2.21) offer insights into the difference between both the
rate of change of F and its Jacobian matrix.

Hence, in what follows, we compute the estimated maximum errors ErrFn
LC for the LC-solver (2.9)-

(2.12) and ErrFn
NP for the NP-solver (2.3)-(2.4), respectively. These aforementioned maximum errors

are defined as:
ErrFn

LC(x, y, ℓ) := max

∣∣∣∣FT ,n

LC (x+ ℓy)− FT ,n

LC (x)

ℓ
− MT ,n

LC · y
∣∣∣∣ ,

ErrFn
NP(x, y, ℓ) := max

∣∣∣∣FT ,n

NP (x+ ℓy)− FT ,n

NP (x)

ℓ
− MT ,n

NP · y
∣∣∣∣ .

Also, we work under the triangular mesh with h = 4.69 × 10−1 and simulations are conducted with
the same dt = 5 × 10−3 and Tf = 0.5. To illustrate the error evolutions for each ℓ, we select specific
iterations in time such as n = 1, 10, 50, 99. Also, we present two tables where we make a distinction
between primal and dual nodes. Specifically, in Table 11 (resp. Table 12), we only display results for
the cell centers (resp. vertices), i.e., when y = 0 for the vertices (resp. centers). In other words, we
define a vector yM ∈ RT (resp. yM

∗ ∈ RT ) such that we set yK∗ = 0 for Table 11 (resp. yK = 0 for
Table 12).
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ErrFn
LC(x, y

M, ℓ) from LC-solver ErrFn
NP(x, y

M, ℓ) from NP-solver
ℓ n = 1 n = 10 n = 50 n = 99 n = 1 n = 10 n = 50 n = 99
0.1 3.6E−3 4.9E−3 6.1E−3 5.2E−3 9.2E−3 8.7E−3 5.5E−3 5E−3
0.01 6.24E−4 8.26E−4 4.79E−4 7.82E−4 7.1E−4 4E−4 4.3E−4 1E−3
0.0001 9.96E−6 5.6E−6 5.94E−6 7.46E−6 5.6E−6 4.3E−6 6.1E−6 3.5E−6

Table 11. Values of ErrFn
LC(x, y

M, ℓ) and ErrFn
NP(x, y

M, ℓ) for Test 1 on the trian-
gular mesh (h = 4.692E−1) at n = 1, 10, 50, 99, for several ℓ = 0.1, 0.01, 0.0001 and
for the cell centers. Simulations are conducted with dt = 5× 10−3 and Tf = 0.5.

ErrFn
LC(x, y

M∗
, ℓ) from LC-solver ErrFn

NP(x, y
M∗

, ℓ) from NP-solver
ℓ n = 1 n = 10 n = 50 n = 99 n = 1 n = 10 n = 50 n = 99
0.1 2.8E−3 2.2E−3 3.4E−3 2.4E−3 2.5E−3 2.4E−3 2.7E−3 2.3E−3
0.01 2.79E−4 1.41E−4 3.06E−4 2.25E−4 2.1E−4 3.75E−4 1.3E−4 4.6E−4

0.0001 3.05E−6 2.2E−6 3.98E−6 2.33E−6 1.7E−6 1.8E−6 1.5E−6 2.1E−6

Table 12. Values of ErrFn
LC(x, y

M∗
, ℓ) and ErrFn

NP(x, y
M∗

, ℓ) for Test 1 on the tri-
angular mesh (h = 4.692E−1) at n = 1, 10, 50, 99, for several ℓ = 0.1, 0.01, 0.0001 and
for the cell vertices. Simulations are conducted with dt = 5× 10−3 and Tf = 0.5.

Tables 11 and 12 illustrate that as ℓ decreases, the computed errors ErrFn
LC and ErrFn

NP converge
towards zero. For instance, when ℓ = 0.0001, values of ErrFn

LC are below 10−5, with a minimum value
of 5.6 × 10−6 (resp. 2.2 × 10−6) occurring at n = 10 in Table 11 (resp. in Table 12). Moreover, for
each iteration n, the ErrFn

LC values appear very similar as they have same order (for instance, when
ℓ = 0.1, for each n, the errors are about 10−3). It is worth mentioning that all these maximum errors
are attained every time at the centers of the cells, i.e., in Table 11. Additionally, it is notable that we
observe highly similar results for the ErrFn

NP errors. This outcome affirms that the LC-solver correctly
computes the partial derivatives embedded within the Jacobian matrix.

2.3. Comparison with an other implementation on a simple mesh

In this final section, we focus on the coupling mechanism by manually replicating the coupling
of the PNP equations (2.1)-(2.2) using the Scilab programming software at a single time iteration.
This approach allows to verify whether the LC-solver (2.9)-(2.12) we have implemented in Fortran90
is correct on a simple Cartesian mesh. We want to check if we obtain the same results between the
code run in Scilab and the LC-solver at both the first (n = 1) and last (n = 100) iterations, for the
simulation conducted in Section 2.2.1 on Test 1 with dt = 5 × 10−3 and Tf = 0.5. To be precise,
the Scilab code simulates the entire numerical process "manually", meaning it reproduces the Newton
algorithm by constructing the Jacobian matrix and its associated function F at each Newton iteration.
To achieve this, we use the coarsest possible Cartesian grid, i.e., h = 7.071× 10−1 where we apply the
DDFV method. We showcase this grid in Figure 2.
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Figure 2. Cartesian mesh with h = 7.071 × 10−1. The mesh consists of 21 nodes,
including centers in blue and vertices in red.

In Scilab, to apply the DDFV method on this grid, we assign a number to each grid node. For the
Newton algorithm, we define F T ,dt

S ∈ RT ,dt as the F function within the Scilab Code. Additionally,
MT ,dt

S ∈ RT ×T ,dt represents the Jacobian matrix. We begin by laying out the implementation steps of
our Scilab code:

(1) From Test 1 in the LC-solver, we retrieve cT ,0

P (resp. cT ,99

P,S ) and V T ,1 (resp. V T ,100) as ini-
tialisations of the Scilab code. They are defined as column vectors, sized according to the
number of nodes on the grid, which consists of the 21 points representing the centers and
vertices of the domain Ω (Figure 2).

(2) We define the measures of each cell (Figure 2) and the time parameters of the time-stepping
scheme.

(3) We define numerical functions F T ,dt

S and MT ,dt

S for the Newton algorithm on each cell (Figure
2) and their connections with other nodes, based on the DDFV method.

(4) We apply the Newton algorithm and we denote cT ,1

P,S (resp. cT ,100

P,S ) the solution for the first
time step (resp. for the last time step).

(5) We compare our Scilab results cT ,1

P,S for the first time step (resp. cT ,100

P,S for the last time step)
with cT ,1

P (resp. cT ,100

P ) the solutions for the LC-solver (2.9)-(2.12) presented in Section 2.2.1.

Thereafter, we will explicit the implementation of step (3) of the Scilab code described earlier. As a
result, we consider only nodes 10, 11, 12, and 13 for the centers of interior primal cells, along with
node 5 for the vertex of the single interior dual cell (see Figure 2). The functions F T ,dt

S and their
associated Jacobians MT ,dt

S have thus been implemented based on these nodes and their corresponding
contributing nodes. Here, we only describe the components for the interior cells of the domain. The
treatment of the boundary is straightforward since we employ Dirichlet-type conditions. We outline
the implemented quantities of interest of node 5, corresponding to the single interior dual cell.

Details for the other nodes, namely 10, 11, 12, and 13, located at the centers of the four interior primal
cells, are provided in the Appendix A. We begin by manually implementing the function F T ,dt

S (5) while
applying the DDFV method, that is, explicitly writing contributions of node 5 with the other nodes
2, 4, 6, 8, 10, 11, 12, 13 in the domain (see Figure 2).
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F T ,dt

S (5) =
|K∗|
dt

(cT ,n+1

P (5)− cT ,n

P (5))− fn+1
cP (5)

+
1

4
(cT ,n+1

P (5) + cT ,n+1

P (6) + cT ,n+1

P (11) + cT ,n+1

P (13))
|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)

− log(cT ,n+1

P (6))− V T ,n+1(6)
)

+
1

4
(cT ,n+1

P (5) + cT ,n+1

P (8) + cT ,n+1

P (12) + cT ,n+1

P (13))
|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)

− log(cT ,n+1

P (8))− V T ,n+1(8)
)

+
1

4
(cT ,n+1

P (5) + cT ,n+1

P (4) + cT ,n+1

P (12) + cT ,n+1

P (10))
|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)

− log(cT ,n+1

P (4))− V T ,n+1(4)
)

+
1

4
(cT ,n+1

P (5) + cT ,n+1

P (2) + cT ,n+1

P (11) + cT ,n+1

P (10))
|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)

− log(cT ,n+1

P (2))− V T ,n+1(2)
)
.

Node 5 has coordinates (x, y) = (0.5, 0.5), as depicted in Figure 2. Therefore, fn+1
cP (5) corresponds

to the source term computed at node 5 for Test 1 (2.15)-(2.16) in this chapter.

Based on the formula of F T ,dt

S (5), we calculate and implement the partial derivatives corresponding
to each element of the Jacobian matrix MT ,dt

S for node 5. We recall that we have Dirichlet boundary
conditions throughout the domain. All elements of the matrix in question are defined below. We begin
by defining as follows the contributions of primal nodes with node 5, that is, the centers of the domain
numbered 10, 11, 12, and 13:
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MT ,dt

S (5, 11) =
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (6)) + V T ,n+1(6))

+ log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (2)) + V T ,n+1(2))
)

MT ,dt

S (5, 13) =
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (6)) + V T ,n+1(6))

+ log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (8)) + V T ,n+1(8))
)

MT ,dt

S (5, 12) =
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (8)) + V T ,n+1(8))

+ log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (4)) + V T ,n+1(4))
)

MT ,dt

S (5, 10) =
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (4)) + V T ,n+1(4))

+ log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (2)) + V T ,n+1(2))
)
.

Next, we carry on these implementations by now defining the contributions of dual node 5 with
the other dual nodes connected to it, namely nodes 6, 8, 4, and 2:

MT ,dt

S (5, 6) =
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (6)) + V T ,n+1(6))

− (cT ,n+1

P (11) + cT ,n+1

P (13) + cT ,n+1

P (5) + cT ,n+1

P (6))
1

cT ,n+1

P (6)

)

MT ,dt

S (5, 8) =
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (8)) + V T ,n+1(8))

− (cT ,n+1

P (12) + cT ,n+1

P (13) + cT ,n+1

P (5) + cT ,n+1

P (8))
1

cT ,n+1

P (8)

)

MT ,dt

S (5, 4) =
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (4)) + V T ,n+1(4))

− (cT ,n+1

P (10) + cT ,n+1

P (12) + cT ,n+1

P (5) + cT ,n+1

P (4))
1

cT ,n+1

P (4)

)

MT ,dt

S (5, 2) =
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (2)) + V T ,n+1(2))

− (cT ,n+1

P (11) + cT ,n+1

P (10) + cT ,n+1

P (5) + cT ,n+1

P (2))
1

cT ,n+1

P (2)

)
.

The final contribution involves implementing contributions from node 5, i.e., on node 5 itself. The
element of the Jacobian matrix is derived as follows:
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MT ,dt

S (5, 5) =
|K∗|
dt

+
1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (6)) + V T ,n+1(6))

+ (cT ,n+1

P (11) + cT ,n+1

P (13) + cT ,n+1

P (5) + cT ,n+1

P (6))
1

cT ,n+1

P (5)

)
+

1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− log(cT ,n+1

P (8))− V T ,n+1(8)

+ (cT ,n+1

P (12) + cT ,n+1

P (13) + cT ,n+1

P (5) + cT ,n+1

P (8))
1

cT ,n+1

P (5)

)
+

1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− (log(cT ,n+1

P (4)) + V T ,n+1(4))

+ (cT ,n+1

P (10) + cT ,n+1

P (12) + cT ,n+1

P (5) + cT ,n+1

P (4))
1

cT ,n+1

P (5)

)
+

1

4

|σ∗|2
|D|

(
log(cT ,n+1

P (5)) + V T ,n+1(5)− log(cT ,n+1

P (2))− V T ,n+1(2)

+ (cT ,n+1

P (10) + cT ,n+1

P (11) + cT ,n+1

P (5) + cT ,n+1

P (2))
1

cT ,n+1

P (5)

)
.

Last but not least, once the Scilab code is implemented, we compute the L2(Ω) errors between the
solutions from the LC-solver and the solutions from the Scilab code, at the first iteration n = 1 (resp.
the last iteration n = 100). In Table 13, we display these errors defined such as ErrS1 = ∥cT ,1

P − cT ,1

P,S∥T ,2

for n = 1 and ErrS100 = ∥cT ,100

P − cT ,100

P,S ∥
T ,2

for n = 100, respectively.

Cartesian Errors between Scilab code and LC-solver
h blabla ErrS1 blabla ErrS100

4.692E−1 1E−14 1E−14

Table 13. The L2(Ω) error between cT ,1

P,S and cT ,1

P (resp. cT ,100

P,S and cT ,100

P ) for Test
1 (2.15)-(2.16) on the cartesian mesh h = 4.692× 10−1, at n = 1 (resp. n = 100).

As one may remark, we obtain errors exactly equal to zero (machine error 1E−14) for both itera-
tions. These results demonstrate that the LC-solver (2.9)-(2.12) of the system of equations (2.1)-(2.2)
behaves correctly for this particular cartesian mesh.

The Scilab code yields results that align with the implementation of the LC-solver and its associ-
ated solutions. However, it is essential to note that this code serves primarily as a debugging tool,
intended for performance on the simplest cartesian mesh. On another note, we cannot totally guarantee
the efficiency of the LC-solver method across all mesh types. Nevertheless, based on the comprehensive
testing performed throughout this chapter, our implementation appears coherent.

At the end, our analysis of these outcomes prompts a relevant question regarding the viability
of the so-called "linear" coupling approach when applied to systems of equations characterized by
non-linearity.

Conclusion

In conclusion, this chapter has delved deeply into the complexities of the initial coupling approach,
referred to as "linear," applied to the challenging Poisson-Nernst-Planck (PNP) system.

Our investigation began by introducing the coupling method involving two key equations: the Nernst-
Planck equation for cP and the Poisson equation for V . This one ionic species system embodied by
cP , was a deliberate choice. Indeed, the inherent complexities and potential issues associated with the
coupling process, bring out a substantial risk of numerical non-convergence. We embarked on a compre-
hensive exploration of this coupling method through various numerical tests conducted post-coupling.
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These tests not only provided valuable insights into the coupling’s strengths but also uncovered its
profound limitations when confronted with the PNP system. Thereafter, our LC-solver implementa-
tions encountered a numerical issue: after a certain duration of simulation time, our solutions began to
non-converge. We examined this behavior by identifying the moment in time when discrete solutions
began to deviate from accurate approximations. Indeed, the initial iteration seemed to progress cor-
rectly, achieving a convergence order of 2 for the approximated solutions, as expected with the DDFV
method. However, from the fifth iteration, non-convergence became apparent, yielding inconsistent
convergence orders. Subsequently, we adjusted the temporal parameters to obtain consistent results
with a short final simulation time and to identify the non-convergence issue. We also investigated the
implementation of the Jacobian matrix in the Newton resolution. To enrich our analysis, we incor-
porated results from a Scilab code, which effectively performed as a numerical tool for our coupling
methodology. The Scilab code mirrored our coupling process on a simplest Cartesian mesh, revealing
that our numerical implementation of the LC-solver effectively couples the equations of the system, as
evidenced by the results on this simplified mesh. All these investigations reinforced the coherence of
our LC-solver implementation.

In light of these findings, we draw the conclusion that the LC-solver method, while initially promising
at first iterations, fails in its suitability for tackling the complexities of the PNP system. This real-
ization sets the stage for the subsequent introduction of a "non-linear" coupling method in the next
chapter, motivated by the limitations encountered in the linear approach, with the aim of obtaining
highly accurate numerical solutions for the PNP system.
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CHAPTER 3

Nonlinear coupling of the Poisson-Nernst Planck system of
equations using the DDFV method, application to ionic and

voltage dynamics in neuronal compartments

This chapter is under review at Journal of Computational Physics (JCP). A preprint version is
available at https://cnrs.hal.science/hal-04385924

Introduction

Abstract. The Poisson-Nernst-Planck system of equations is widely recognized as the standard
model for characterizing the electrodiffusion of ions in electrolytes, including ionic dynamics in the
cellular cytosol. This non-linear system presents challenges for both modeling and simulations, due
to the presence of a stiff boundary layer tightly related to the choice of boundary conditions. In this
article, we propose a numerical scheme based on the Discrete Duality Finite Volumes method (DDFV)
to solve the Poisson-Nernst-Planck system of equations, while preserving the positivity of ionic con-
centrations. The DDFV method can use general meshes as local mesh refinement, for instance, at
the boundary layer. Through several simulations, we illustrate the accuracy of our scheme, achieving
second-order accuracy in space. Furthermore, using a specific test case, we show that our method can
resolve steep gradients, such as the ones in boundary layer. Finally, we apply our scheme to several
geometries inspired by neuronal shapes. We investigate the propagation and attenuation of an ionic
influx in small neuronal compartments of the dendritic tree: a branch bifurcation and a dendritic
spine - the mushroom-like protrusions that receive neuronal inputs. We show that a two-dimensional
model is required to capture ionic and voltage dynamics in the bulbous head of spines. Considering
the connection of our neuronal compartments to an ionic reservoir, that could be the dendritic shaft,
we observe that depending on the distance to the closest ionic reservoir, a spine can either act as an
isolated compartment, or be subject to signal invasion. This result means that the local geometry of
the dendritic tree has a major influence on spine behavior, making plasticity being not only at the
level of the spine, but at the level of the full dendritic geometry.

Context. In this chapter, we address a new strategy to couple the PNP system of equations. We
delve into a non-linear coupling of the PNP system using the DDFV method, along with an Euler
implicit scheme. Again, we make use of a Newton algorithm at each time step to deal with the
nonlinearity of the system. Thus, we ensure the positivity of ionic concentrations using a positivity-
preserving DDFV scheme. In this context, to facilitate readability, we recall the studied system of
equations. We therefore consider the case of two ionic species P and N , with respective valences +1

and −1, and concentration cP and cN . The PNP system of equation on Ω× [0, Tf ] writes as:

(3.1)
∂tcP = ∇ · (DP cP∇ (log cP + βV )) + fcP ,

∂tcN = ∇ · (DNcN∇ (log cN − βV )) + fcN ,

−∇ · (γβ∇V ) = cP − cN + fV .

The chapter is organized as follows: Section 3.1 provides a detailed description of the numerical
scheme corresponding to (3.1) above. Section 3.2 presents the numerical simulations and convergence

https://cnrs.hal.science/hal-04385924


46

results. Section 3.3 focuses on applications in neuroscience. Finally, the discussion and conclusion are
presented in the last section.

3.1. DDFV scheme for the PNP system

In this section, we follow the notations and definitions introduced in Preamble and Chapter 1.
We provide the numerical counterpart of the theoretical system of equations (0.8)-(0.11). We give the
DDFV scheme in which the source terms are discretized as follows:

fT ,dt

cP = PT ,dt

m fcP , fT ,dt

cN = PT ,dt

m fcN , fT ,dt

V = PT ,dt

m fV ,

and the initial conditions such as:

cT ,0

P = PT ,0

m c0P , cT ,0

N = PT ,0

m c0N , V T ,0 = PT ,0

m V 0.

Next, we define the discretization for the Dirichlet values:

c
∂MDir,dt

P,Dir = P∂MDir,dt

m cDir
P , c

∂MDir,dt

N,Dir = P∂MDir,dt

m cDir
N , V

∂MDir,dt

Dir = P∂MDir,dt

m V Dir,

c
∂M∗

Dir,dt

P,Dir = P∂M∗
Dir,dt

m cDir
P , c

∂M∗
Dir,dt

N,Dir = P∂M∗
Dir,dt

m cDir
N , V

∂M∗
Dir,dt

Dir = P∂M∗
Dir,dt

m V Dir.

We define the discretization for the Neumann values for all g:

gDext,dt
Neu =

(
(gσ,n)σ∈Dext,Neu

)
n∈{0,...,N}

with gσ,n =

∫
σ

g(tn,x)dx.

We now present the numerical scheme for the PNP system (0.8)-(0.11). In order to ensure stability,
we adopt an implicit Euler scheme for time discretization. At each time step, we employ the Newton
method to solve the nonlinear system of coupled equations. By integrating equations (0.8)-(0.11)
over M and M∗ ∪ ∂M∗

Neu, we find the solutions (cT ,dt

P , cT ,dt

N , V T ,dt) ∈ RT ,dt that satisfy the following
nonlinear problem for all n ≥ 0:

cK,n+1

P − cK,n

P

dt
+ divK

(
JD,n+1
cP

)
= fK,n+1

cP , ∀K ∈ M,(3.2)

cK
∗,n+1

P − cK
∗,n

P

dt
+ divK

∗ (
JD,n+1
cP

)
= fK∗,n+1

cP , ∀K∗ ∈ M∗ ∪ ∂M∗
Neu,(3.3)

cK,n+1

N − cK,n

N

dt
+ divK

(
JD,n+1
cN

)
= fK,n+1

cN , ∀K ∈ M,(3.4)

cK
∗,n+1

N − cK
∗,n

N

dt
+ divK

∗ (
JD,n+1
cN

)
= fK∗,n+1

cN , ∀K∗ ∈ M∗ ∪ ∂M∗
Neu,(3.5)

− divK(γβ∇DV K,n+1) + cK,n+1

N − cK,n+1

P = fK,n+1

V , ∀K ∈ M,(3.6)

− divK
∗
(γβ∇DV K∗,n+1) + cK

∗,n+1

N − cK
∗,n+1

P = fK∗,n+1

V , ∀K∗ ∈ M∗ ∪ ∂M∗
Neu,(3.7)

JD,n+1
cP = −DP r

D(cT ,n+1

P )∇D (log cT ,n+1

P + βV T ,n+1) ,(3.8)

JD,n+1
cN = −DNr

D(cT ,n+1

N )∇D (log cT ,n+1

N − βV T ,n+1) .(3.9)
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The discrete mixed boundary conditions can be expressed as:

V K,n+1 = V K,n+1

Dir , cK,n+1

P = cK,n+1

P,Dir, cK,n+1

N = cK,n+1

N,Dir, ∀K ∈ ∂MDir

(3.10)

V K∗,n+1 = V K∗,n+1

Dir , cK
∗,n+1

P = cK
∗,n+1

P,Dir , cK
∗,n+1

N = cK
∗,n+1

N,Dir , ∀K∗ ∈ ∂M∗
Dir

(3.11)

|σ|∇DV T ,n+1 · nσK = 0, |σ|JD,n+1
cP · nσK = gσ,n+1, |σ|JD,n+1

cN · nσK = 0, ∀D ∈ Dext,Neu.

(3.12)

The existence of the discrete solution of (3.2)-(3.12) is an oncoming work, that is not the focus
of the current paper. It requires a paper in itself, dedicated to the study of existence, positivity of
solution and convergence, inspired by [75].

3.2. Performance of the DDFV scheme

In this section, we present numerical simulations to test the performance of our DDFV scheme
(3.2)-(3.12). In subsection 3.2.1, we evaluate the accuracy of the DDFV scheme by considering two test
cases with known exact solutions of the PNP system (0.8)-(0.11). In the first test case, we compare our
numerical results with an analytical solution of the PNP equations. In the second one, we compare our
numerical results with existing analytical and numerical results coming from [66]. In subsection 3.2.2,
we show the numerical behavior of our DDFV results in the presence of boundary layer, using a test
case inspired by the one-dimensional study in [81]. The coefficients β, DP and DN are set to 1 in all
the section.

3.2.1. Convergence results. To evaluate the accuracy of our DDFV scheme (3.2)-(3.12), we compare
it with exact solutions at various mesh resolutions, using the discrete norm L∞((0, Tf );L

2(Ω)), ∀uT ,dt ∈
RT ,dt:

∥uT ,dt∥T ,∞ = max
n∈{0,...,N}

1

2

∑
K∈M

|K||uK,n|2 + 1

2

∑
K∗∈M∗

|K∗||uK∗,n|2

1

2
.

The computational domain Ω is set to ]0, 1[2 and the final time Tf = 1. We consider only Dirichlet
boundary conditions on ∂Ω, i.e., ΓNeu = ∅, and we set γ = 1. For the first test case, we consider cP,ex,
cN,ex and Vex, the exact solution of (0.6), defined as follows:

cP,ex(t, x, y) = 7x+ 5 + 3t2,

cN,ex(t, x, y) = x+ 1 + t2,

Vex(t, x, y) = −x3 − 2y2 − t2x2.

(3.13)

with boundary conditions, initial conditions, and source terms being:

fcP (t, x, y) = 6t4 + (46x+ 22)t2 + 6t+ 63x2 + 58x+ 20,

fcN (t, x, y) = −2t4 + (−10x− 6)t2 + 2t− 9x2 − 10x− 4,

fV (t, x, y) = 0.

The projection on RT ,dt of these exact solutions, {cT ,dt

P,ex, c
T ,dt

N,ex, V
T ,dt
ex } are defined by:

cT ,dt

P,ex = PT ,dt

m cP,ex, cT ,dt

N,ex = PT ,dt

m cN,ex, V T ,dt

ex = PT ,dt

m Vex.

We simulate the system (3.2)-(3.12) on several increasingly refined meshes generated by the quadrangle
mesh family. One example mesh is depicted in Figure 1, with a mesh size h = 2.341E−1. The respective
mesh size h for each mesh ranges from 4.692E−1 to 6.253E−2. The time step dt is initially set to
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10−2 for the mesh with the largest h = 4.692E−1. For subsequent meshes, the time step is divided by
4. Recall that at each time step, we run a Newton algorithm to solve our non-linear problem. This
Newton algorithm converges, with on average 2 to 1 iterations depending on the mesh refinement. The
maximal number of iterations for all the time steps over all the meshes is 3.

Figure 1. Example of a quadrangle mesh with h = 2.341E−1.

h dt ecP Order ecN Order eV Order
4.692E−1 1.0E − 2 2.593E−3 · 1.443E−3 · 2.070E−2 ·
2.341E−1 2.5E − 3 8.109E−4 1.67 4.713E−4 1.61 5.137E−3 2.00
1.212E−1 6.25E − 4 2.066E−4 2.08 1.220E−4 2.05 1.312E−3 2.07
6.253E−2 1.56E − 4 4.897E−5 2.18 2.843E−5 2.20 3.182E−4 2.14

Table 1. The errors ecP , ecN and eV , as well as the convergence order for the first
test case (3.13) on the quadrangle mesh family.

To illustrate the convergence of our method, we define the error according to the norm L∞((0, Tf );L
2(Ω)),

between a numerical vector y and the corresponding exact solution yex:

(3.14) ey = ∥yT ,dt − yT ,dt

ex ∥T ,∞.

The errors ecP , ecN , and eV , for the different meshes, as well as the convergence order obtained
numerically are given in Table 1. For both the concentrations cP and cN and the electrostatic potential
V , we observe a convergence of order two.

We then investigate the convergence and robustness of our method by comparing our results with
a test case proposed in [66]. In this paper, the authors introduced a finite difference scheme for
approximating the PNP solutions in 2D while preserving the positivity of the ionic concentrations.
The computational domain Ω is set to ] − 1, 1[2, the final time Tf = 0.1 and γ = 1. The boundary
conditions are all Dirichlet (i.e., ΓNeu = ∅). The exact solutions of the second test case are defined as
follows: 

cP,ex(t, x, y) = e−t cos(2πx) sin(2πy) + 2,

cN,ex(t, x, y) = e−t sin(2πx) cos(2πy) + 2,

Vex(t, x, y) = e−t sin(2πx) sin(2πy).

(3.15)
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The boundary and the initial conditions, as well as the source terms are:

fcP (t, x, y) = −16 cos(2πx)e−t

(
e−tπ2

(
cos(2πy)2 − 3

4

)
sin(2πx) + sin(2πy)

(
−π

2

2
+

1

16

))
+16π2e−t sin(2πx) sin(2πy),

fcN (t, x, y) = cos(2πy)(8π2 − 1)e−t sin(2πx) + 16

(
cos(2πx)2 − 3

4

)
π2e−2t sin(2πy) cos(2πy)

−16π2e−t sin(2πx) sin(2πy),

fV (t, x, y) = e−t
(
8π2 sin(2πy) + cos(2πy)

)
sin(2πx)− e−t cos(2πx) sin(2πy).

We run simulations using the same family of Cartesian meshes and the same time step dt = h2 as in
[66]. At each time step, our Newton algorithm converges with a maximum of 3 iterations. The average
number of iterations is between 1 and 2, depending on the mesh refinement.

h dt ecP Order ecN Order eV Order
1E−1 1.0E−2 4.086E−3 · 4.077E−3 · 5.453E−3 ·
5E−2 2.5E−3 1.038E−3 1.98 1.036E−3 1.98 1.372E−3 1.99
2.5E−2 6.25E−4 2.606E−4 1.99 2.600E−4 1.99 3.436E−4 2.00
1.25E−2 1.56E−4 6.519E−5 2.00 6.504E−5 2.00 8.593E−5 2.00

Table 2. The errors ecP , ecN and eV , as well as the convergence order for the second
test case (3.15), using Cartesian meshes.

In Table 2, we give the value of the errors ecP , ecN , eV (eq. (3.14)). We obtain again a convergence
of order 2 for cP , cN and V . For each mesh size, the L∞((0, Tf );L

2(Ω)) errors - between the numerical
solutions of (3.2)-(3.12) and the exact solution - obtained from our DDFV scheme is nearly 10 times
smaller than the one obtained in [66]. As an example, we obtain a value for ecP of 6.519E−5 to
compare with a value of 3.093E−4 in [66] (h = 1.25E−2). Put differently, to obtain an error with the
same order of magnitude, our DDFV scheme requires a mesh with half the number of cells than the
finite difference scheme proposed in [66], which significantly reduces computation costs.

3.2.2. Comparative analysis of the DDFV scheme at the boundary layer. We consider in
this part a test case with a boundary layer initially presented in [81]. This test case is defined on the
one-dimensional domain ]0, 1[, with the following boundary conditions:

cP (t, 0) = 1 + t, cN (t, 0) = 1, V (t, 0) = 0,

cP (t, 1) = 1, cN (t, 1) = 1 + t, V (t, 1) = 0.

This system has two boundary layer regions, ]0, 0.01[ and ]0.99, 1[. In [81], the authors propose a finite
difference scheme preserving the positivity of the concentration. They adopt a mesh size ∆x = 8×10−4

in the boundary layer region, and a larger one ∆x = 3× 10−3 in the bulk region ]0.01, 0.99[.
We build our third test case by adapting this 1D test case to our 2D framework. Our computational

domain Ω is ]0, 1[2, and we adapt the Dirichlet boundary conditions so that they also depend on the
space variable:

cDir
P (t, x, y) = 1 + (1− x)t, cDir

N (t, x, y) = 1 + xt, V Dir(t, x, y) = 0.(3.16)

We set the source terms of the system (0.8) to zero. The initial conditions are computed using
eq. (3.16) at t = 0. The final time Tf = 1, with a time step dt = 10−2 and γ = 0.01. We use
a fixed non-uniform mesh with a mesh size in the x-direction of ∆x = 10−3 in the boundary layer
region, namely ]0, 0.01[×]0, 1[ and ]0.99, 1[×]0, 1[, gradually increasing to ∆x = 10−2 in the bulk region
]0.01, 0.99[×]0, 1[. For all cells, we set the mesh size in the y-direction equal to ∆y = 10−2. The mesh
has 11800 quadrilateral cells (rectangles). At each time step, the Newton algorithm converges with a
maximum of 2 iterations.

In Figure 2, we plot on the left (A-C-E) the dual values of the concentrations cP and cN and
the electrostatic potential V at final time Tf = 1, that is (cK

∗,100
P )K∗∈M∗ , (cK

∗,100
N )K∗∈M∗ and
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(V K∗,100)K∗∈M∗ . On the right (B-D-F), we plot a zoom of cP , cN and V at final time Tf = 1,
on the boundary layer region [0, 0.05]× [0.47, 0.52], where we observe significant gradients.

A B

C D

E F

Figure 2. Simulation results of the third test case adapted from [81] at Tf = 1. A:
(cK

∗,100
P )K∗∈M∗ . C: (cK

∗,100
N )K∗∈M∗ . E: (V K∗,100)K∗∈M∗ . Zoom on the boundary

layer region [0, 0.05]× [0.47, 0.52] for cP in B, cN in D and V in F.

We plot in Figure 3 the dual discrete concentrations (cK
∗,50

P )K∗∈Z∗
y=0.5

(resp. (cK
∗,100

P )K∗∈Z∗
y=0.5

)

and (cK
∗,50

N )K∗∈Z∗
y=0.5

(resp. (cK
∗,100

N )K∗∈Z∗
y=0.5

) and the dual discrete electrostatic potential (V K∗,50)K∗∈Z∗
y=0.5

(resp. (V K∗,100)K∗∈Z∗
y=0.5

) at t = 0.5 (resp. t = 1) with a linear trend of the potential. We recall
that the definition of Z∗

y=0.5 is given by eq. (1.1). This figure can be compared to Fig. 2 in [81]. We
obtain similar behavior and significant gradients near the walls. Additionally, our DDFV scheme takes
approximately 30 minutes to solve on a laptop (CPU: Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz;
MEMORY: DIMM DDR4 Synchronous Registered (Buffered) 2933 MHz (0.3 ns)), compared to 1 hour
in [81].
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Figure 3. A: Dual discrete values (cK
∗,50

P )K∗∈Z∗
y=0.5

, (cK
∗,50

N )K∗∈Z∗
y=0.5

,

(cK
∗,100

P )K∗∈Z∗
y=0.5

and (cK
∗,100

N )K∗∈Z∗
y=0.5

at t = 0.5 and t = 1. B: Dual dis-
crete values (V K∗,50)K∗∈Z∗

y=0.5
, and (V K∗,100)K∗∈Z∗

y=0.5
at t = 0.5 and t = 1. Black

curves represent linear trends of the potential V in the bulk.

We observe that outside of the boundary layer, the ionic concentration cP and cN are very close,
which corresponds to an electroneutral bulk. We compute the absolute value of this difference at time
t = 0.5: qK∗∈M∗ := (|cK

∗,50
P − cK

∗,50
N |)K∗∈M∗ . In [81], the authors reported a maximum value for this

difference of 3.6 × 10−6 in the interval [0.25, 0.75] at t = 0.5. We plot the values for qK∗∈M∗ cut at
3.6 × 10−6, and color the regions where q > 3.6 × 10−6 in black (Fig. 4A). We observe that in our
simulations, the x-boundary of the region such that qK∗∈M∗ ≤ 3.6× 10−6 is [0.075, 0.925], which is a
larger region than the segment [0.25, 0.75] in [81]. Note that the maximum for qK∗∈Z∗

[0.25,0.75]×{0.5}
on

[0.25, 0.75] × {0.5} is 1.5 × 10−6, which is half the value 3.6 × 10−6 observed in [81]. In Fig. 4B, we
plot the values of qK∗∈Z∗

[0.075,0.925]×{0.5}
(see (1.1)). The error is decreasing from the boundaries (x = 0

and x = 1) to the center x = 0.5. At x = 0.5, the error is reaching the machine error 10−14.

0.075 0.5 0.925
10

-14

10
-11

10
-8

10
-5

A B

Figure 4. A: Absolute difference between cP and cN at time t = 0.5, qK∗∈M∗ =

(|cK
∗,50

P − cK
∗,50

N |)K∗∈M∗ . qK∗∈M∗ goes from 10−14 to 3.6 × 10−6. Regions where
qK∗∈M∗ > 3.6 × 10−6 are colored in black. B: Plot of qK∗∈Z∗

[0.25,0.75]×{0.5}
on the

segment [0.075, 0.925]× {0.5}, in logarithmic scale.

We show with this test case that our DDFV scheme can capture well the boundary layer dynamics.
Compared to [81], our electroneutral zone is larger, suggesting that the perturbation of the numerical
results due to the high gradients inside the boundary layer, is less pronounced with our scheme.

3.3. Applications to neuroscience

In the last section, we apply our DDFV scheme to investigate the dynamics of voltage and ionic
concentration in different neuronal geometries. We consider two specific geometries in 2D: a bifurcation
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in the dendritic tree, and a dendritic spine. The dendritic tree has a tree-like geometry, and a bifurca-
tion corresponds to the location where one branch divides into two branches (Fig. 5). Dendritic spines
are mushroom-like protrusions of a few micrometers, found on the dendritic tree. In section 3.3.1,
we consider a dendrite bifurcation with two thin branches connecting to a larger one and simulate
the propagation of an influx of ions arriving at the edge of one of the thin branches. We investigate
three scenarios: the influence of an ionic reservoir on voltage and ionic concentration dynamics, the
summation of two simultaneous influx of ions and the propagation of a single influx in the rest of the
domain. Section 3.3.2 focuses on dendritic spines. We first investigate the influence of the spine head
geometry on voltage and ionic concentration dynamics. We then consider two neighboring spines and
investigate the invasion of an influx of ions arriving in one spine on the other. We recall here the
definitions of the initial and boundary conditions given in section 0.9 (values are given in Table 3):

(3.17) cP (t = 0,x) = c0P , cN (t = 0,x) = c0N , V (t = 0,x) = V 0 ∀x ∈ Ω.

We impose constant Dirichlet boundary condition on ΓDir:

cP = c0P , cN = c0N , V = V 0, on ΓDir × (0, Tf ).

We consider ∂Ωr for homogenous and ∂Ωi for non homogeneous Neumann boundary conditions, such
that ΓNeu = ∂Ωr∪∂Ωi. The homogeneous Neumann boundary condition on ∂Ωr models the imperme-
ability of the neuronal membrane to ions. The non-homogeneous boundary condition on ∂Ωi models
the influx of ions I received by the dendrite, at specific locations called synapses:

∇V · n = 0, on ∂Ωi ∪ ∂Ωr ×(0, Tf ),

∇cN · n = 0, on ∂Ωi ∪ ∂Ωr ×(0, Tf ),

∇cP · n = 0, on ∂Ωr ×(0, Tf ),

∇cP · n = I, on ∂Ωi ×(0, Tf ).

(3.18)

I(t) =
Istim(t)

πr2i FDP
, where

(3.19) Istim(t) = Imax
t

τ
exp

(
− t

τ
+ 1

)
represents the injected synaptic current, inspired by [21]. Note that in this section, the source terms
fcp , fcn and fV are set to zero. We define a time t0 for each simulation, corresponding to the time at
which the concentration cP is maximal on Ω. Note that it corresponds to a maximum in both space
and time. We precise the value of t0 in each case. We use electrodiffusion parameters as defined in
Table 3. Finally, we present in this section the numerical results for cP , as the results for cN are
qualitatively similar.

F 96485 A.s.mol−1 Faraday constant
ε 80 Dielectric permittivity [21]
ε0 8, 8.10−12 F.m−1 Permittivity of vacuum
Tθ 293,15 K Absolute temperature
R 8,314 J.K−1.mol−1 Gas constant
DP 200 µm .m2.s−1 Diffusion coefficient for anion [21]
DN 200 µm .m2.s−1 Diffusion coefficient for cation [21]
γ 1.8431× 10−4 Eq. (0.5)
β 39.5877 Eq. (0.5)
c0P 163 mM Initial concentration for species P [21]
c0N 163 mM Initial concentration for species N [21]
V 0 0 mV Initial electric potential [21]
Imax 300 pA Maximum of the injected current, eq. (3.19) [21]
τ 0.055 s Decay time constant of the injected current [21]

Table 3. Electrodiffusion parameters.
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3.3.1. Propagation of an influx of ions at a dendritic tree bifurcation. In this part, we model
signal propagation at a bifurcation in the dendritic tree. We consider a domain ΩB representing the
bifurcation, where a large branch divides into two thinner ones (Fig. 5). We model the influx of ions as
a current I(t) (eq. (3.19)) injected at the end of the two thin branches (∂Ωup

i for the upper branch, and
∂Ωdown

i for the lower branch, Fig. 5, ∂Ωi = ∂Ωup
i ∪∂Ωdown

i ). We impose Dirichlet boundary conditions
at the end of the large branch (ΓDir on Fig. 5), to represent the connection with a larger dendrite. This
large dendrite is considered an ionic reservoir due to its large size, i.e. it has fixed ionic concentrations.
The different lengths and nodes defining the domain ΩB are described in Fig. 5, with the length values
and node coordinates given in Table 4.

We define two positions near the end of each branch, namely (I) and (J), to compare the voltage
and concentration dynamics in the branches. We use a triangular mesh with 6655 cells and a mesh
size h = 0.36. The simulations are performed with a final time of Tf = 1.5 sec, and a time step of
dt = 5× 10−3 sec.

Figure 5. Geometry of the bifurcation domain ΩB , in the configuration L5 = 11 µm
. The specific line y1 = [0, 11] × {1}, where we monitor concentration and voltage
dynamics is plotted in dashed red. The coordinates of each node are given in Table 4.

L5 11 µm Lengths for the sample of the dendrite
L6 4 µm Length for both branches
D3 2 µm Diameter for the dendrite trunk
D4 1 µm Diameter neck for both branches at the junction
ri 0.12 µm Radius of ∂Ωi in Figure 5 for ΩB

(D) (0,2) Position (x,y) of node D
(E) (11,2) Position (x,y) of node E
(F) (15,5) Position (x,y) of node F
(G) (15,4.4) Position (x,y) of node G
(H) (11,1) Position (x,y) of node H
(I) (14.8,4.6) Position (x,y) of node I
(J) (14.8,-2.6) Position (x,y) of node J
(K) (15,-2.4) Position (x,y) of node K
(L) (15,-3) Position (x,y) of node L
(M) (11,0) Position (x,y) of node M
(N) (0,0) Position (x,y) of node N

Table 4. Geometric parameters for domain ΩB , representing a dendritic bifurcation.

3.3.1.1. Effect of the distance to an ionic reservoir on voltage and concentration dy-
namics. Our model considers that the end of the large branch is connected with a wider one, called
an ionic reservoir, such that the ionic concentrations at ΓDir are constant. The distance between this
ionic reservoir and the bifurcation influences the dynamics of voltage and ionic concentrations every-
where on the domain ΩB . We expect that the longer the large branch (i.e. the longer L5, Fig. 5),
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the smaller the influence on the dynamics close to the bifurcation point. To measure this influence,
we apply a current at the end of the two thin branches (∂Ωi on Fig. 5). We then realize simulations
for different values of L5 ranging from 11 µm to 33 µm (see Fig. 6 for the case L5 = 33 µm ). We
finally compute the difference between each numerical solution, and consider this difference relative to
the peak amplitude. We consider that the influence of the Dirichlet boundary condition on ionic and
voltage dynamics is small when this relative difference is below 3.6%.
We realize numerical simulations in domain ΩB for three different values of L5: 11 µm , 22 µm and
33 µm . Note that for each value of L5, the domain is modified, and so is the mesh. We indicate
the different coordinates and parameter values that are modified in the three configurations of do-
main ΩB in Table 5. To account for the mesh modifications in the discrete solution for the different
configurations, we note cT ,n

P,q the discrete value of the concentration cP in the case L5 = q µm .

Value of L5 11 µm 22 µm 33 µm
Number of triangular cells 6655 7279 7863

h 3.6× 10−1 3.9× 10−1 4× 10−1

Position (x,y) of node (D) (0,2) (-11,2) (-22,2)
Position (x,y) of node (N) (0,0) (-11,0) (-22,0)

Table 5. Different coordinates and parameter values that are modified in the three
configurations of domain ΩB : L5 = 11 µm , L5 = 22 µm and L5 = 33 µm .

In Figure 6, we plot the dual values
(
cK

∗,21
P,33 − c0P

)
K∗∈M∗

, corresponding to the concentration

cP − c0P at time t0 = 0.105 sec, in the case L5 = 33 µm . We observe that the maximum of the
solution, A = max

K∗∈M∗

(
cK

∗,21
P,33 − c0P

)
= 93.8 mM, is reached at the injection boundary ∂Ωi. Along x,

the solution decreases to reach the value c0P at the Dirichlet boundary ΓDir.

Figure 6. Dual values
(
cK

∗,21
P,33 − c0P

)
K∗∈M∗

of the concentration cP − c0P at time
t0 = 0.105 sec, in the case L5 = 33 µm .

We compare the numerical solutions obtained on different domains, by evaluating their difference
on two straight lines y1 : [0, 11] × {1} (see Fig. 5), and y2 : [−11, 11] × {1}. Note that the line y2
extends the line y1 for the configurations L5 = 22 µm and L5 = 33 µm .
We note

(
eK

∗,n
p,q

)
K∗∈Z∗

yi

the absolute value of the difference of the dual values for cP , on line yi (see

(1.1)), for the domains with L5 = p and L5 = q, at time iteration n, for i = 1, 2:

(3.20)
(
eK

∗,n
p,q

)
K∗∈Z∗

yi

=

∣∣∣∣(cK∗,n
P,p

)
K∗∈Z∗

yi

−
(
cK

∗,n
P,q

)
K∗∈Z∗

yi

∣∣∣∣ .
Finally, we compute the percentage difference relative to A, between the simulation results on

line yi for t = 0 to t = 0.5 sec (time steps n = 0, .., 100), and plot the result in Fig. 7: e1 :=((
eK

∗,n
11,22

A

)
K∗∈Z∗

y1

)
n=0,...,100

(A), e2 :=

((
eK

∗,n
11,33

A

)
K∗∈Z∗

y1

)
n=0,...,100

(B) and e3 :=

((
eK

∗,n
22,33

A

)
K∗∈Z∗

y2

)
n=0,...,100

(C).
We observe that the difference between the solutions is always maximal at the Dirichlet boundary
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condition, at time t = 0, (Fig. 7). The maximal percentage difference between the concentration
values cP for L5 = 11 µm and L5 = 22 µm is 9.1 % (A). For L5 = 11 µm and L5 = 33 µm , the
maximum percentage difference is 10.4 % (B), and finally, for L5 = 22 µm and L5 = 33 µm , to 3.6 %
(C). Finally, we conclude that as expected, the influence of the Dirichlet boundary condition ΓDir (i.e.
the ionic reservoir) on concentration dynamics cP , decreases when the length L5 of the large branch
increases. Specifically, for our geometry, the influence is small if the reservoir is at a distance larger
than 20 microns.

A B

C

Figure 7. Comparison of the numerical solution between the three domains with
L5 = 11 µm , L5 = 22 µm and L5 = 33 µm . A (resp. B, resp. C): Plots of e1 (resp.
e2, resp. e3) the absolute values of the differences of the dual values for cP , on line y1
(resp. y1, resp. y2), for the domains with L5 = 11 µm and L5 = 22 µm , (resp. L5

= 11 µm and L5 = 33 µm , resp. L5 = 22 µm and L5 = 33 µm ). Note that line y2
ranges in [−11, 11], so as the x-axis in panel C.

3.3.1.2. Signal summation. We now study signal summation at a bifurcation in the dendritic
tree, when the ionic reservoir is far from the bifurcation. We compare ionic concentration and voltage
dynamics in two different scenarios: when only the upper branch receives the influx (∂Ωup

i in Fig. 5,
scenario 1, ∂Ωdown

i is turned into a homogeneous Neumann boundary condition) and when there is an
influx of ions at both ends of the two thin branches (∂Ωup

i and ∂Ωdown
i in Fig. 5, scenario 2). We will

call a branch ’active’ if it receives an influx of ions, and ’inactive’ if it does not. We run simulations
in the domain with L5 = 33 µm (Fig. 5 and Table 5). We consider the line y3 = [−22, 11]× {1}, and
the set of dual cells Z∗

y3
(see (1.1)). In Fig. 8, we compare the concentration (cK

∗,21
P − c0P )

i
K∗∈Z∗

y3

and

voltage (V K∗,21)iK∗∈Z∗
y3

at time t0 = 0.105 sec, for the two scenarios 1 and 2. In both graphs, the
brown curve represents scenario 1 with one active branch, while the blue curve corresponds to scenario
2 where the two branches are active. We observe that, on line y3, the concentration and potential
values in scenario 2 (blue) are twice the values in scenario 1 (brown).
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Figure 8. Evolution of the concentration and voltage dynamics on line y3 for the
two scenarios 1 and (resp. 2), with one (resp. two) active branch(es). A: Dual values
(cK

∗,21
P − c0P )

i
K∗∈Z∗

y3

, at peak time t0 = 0.105 sec, for i = 1 in brown and i = 2 in

blue. In dashed red, we plot 2(cK
∗,21

P − c0P )
1
K∗∈Z∗

y3

. B: Dual values (V K∗,21)iK∗∈Z∗
y3

,
at peak time t0 = 0.105 s, for i = 1 in brown and i = 2 in blue. In dashed red, we
plot 2(V K∗,21)1K∗∈Z∗

y3

.

In Fig. 9, we plot the time evolution of the concentration cP − c0P and the potential V at position
(H), i.e. (cK

∗
H ,n

P −c0P )in=0,··· ,N and (V K∗
H ,n)in=0,··· ,N for the two scenarios. We recall that the definition

of K∗
H is given by (1.2). As in Fig. 8, we observe that the potential and concentration dynamics in

scenario 2 are twice the dynamics in scenario 1.
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Figure 9. Evolution of the concentration and voltage dynamics at point (H) for
the two scenarios 1 and 2. A: Dual values (c

K∗
H ,n

P − c0P )
i
n=0,··· ,N for i = 1

in brown and i = 2 in blue. In dashed red, we plot 2(c
K∗

H ,n
P − c0P )

1
n=0,··· ,N(

max
n=0,··· ,N

∣∣∣(cK∗
H ,n

P )2 − 2(c
K∗

H ,n
P )1

∣∣∣ = 5× 10−3

)
. B: Dual values (V K∗

H ,n)in=0,··· ,N for

i = 1 in brown and i = 2 in blue. In dashed red, we plot 2(V K∗
H ,n)1n=0,··· ,N . We have(

max
n=0,··· ,N

∣∣(V K∗
H ,n)2 − 2(V K∗

H ,n)1
∣∣ = 0.3

)
.

We finally compute the absolute difference between the concentration
(
(cK

∗,n
P − c0P )

2
K∗∈Z∗

y3

)
n=0,··· ,N

and twice the concentration
(
(cK

∗,n
P − c0P )

1
K∗∈Z∗

y3

)
n=0,··· ,N

on line y3 and for t ∈ [0, Tf ]. This differ-

ence is zero at the Dirichlet boundary condition (x = - 22 µm , for all t), and stays below 10−2 mM
up to x = 8 µm (resp. 10−1 mV up to x = 8 µm ) for the concentration (resp. the potential). It
then steeply increases to 0.33 mM (resp. 0.35 mV) for the concentration (resp. the potential) close
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to x = 11 µm (bifurcation point (H)). In summary, the signal in the large branch is doubled when
two branches are active compared to only one active branch. This result is coherent with a linear
summation of the signal in passive dendrites observed experimentally [22].

3.3.1.3. Branch invasion. We now investigate the invasion of a signal in an inactive branch, by
plotting the evolution of the concentration and potential dynamics in the small branches in scenario
1 (only the upper branch is active). We consider the nodes (I) and (J) toward the end of the upper
and lower branches respectively, far from the bifurcation point (See Fig. 5 and Table 5). In Fig. 10,
we plot the time evolution of the concentrations (c

K∗
I ,n

P − c0P )
1
n=0,··· ,N and (c

K∗
J ,n

P − c0P )
1
n=0,··· ,N and

the potential (V K∗
I ,n)1n=0,··· ,N and (V K∗

J ,n)1n=0,··· ,N at the points (I) and (J) (see eq. (1.2)).
We observe that the influx of ions arriving at the upper branch creates a transient rise in the

concentration and in the potential that invades the lower branch. We compare the time and amplitude
of cP and the potential at the two positions (I) and (J) and observe that the maximum of the signal
arrives in (J) with a delay of 0.21 sec, and an amplitude reduced by 82 %, decreasing from 81.43 mM
in node (I) to 14.57 mM in node (J) (A). Interestingly, the concentration curves overlap at (I) and
(J), for t > 0.5 sec. We hypothesize that this is due to the vanishing of the potential at t > 0.5 sec,
highlighting the role of the convective term in ionic dynamics (ion transport resulting from the electric
field). Concerning the potential dynamics, the maximum of the signal arrives in (J) with no delay and
a decrease in amplitude of 31 %, decreasing from 44.81 mV to 30.91 mV. In summary, we observe a
discrepancy between a rapid and strong invasion of the electrical signal in the inactive branch, and a
low invasion of the ionic concentration signal, with a delay of a few hundred ms.
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Figure 10. Time evolution of the dynamics of cP and V in the small branches for
scenario 1. A: (cK

∗
J ,n

P − c0P )
1
n=0,..,N , at position (J) in red and (c

K∗
I ,n

P − c0P )
1
n=0,..,N , at

position (I) in blue. B: (V K∗
J ,n)1n=0,..,N , at position (J) in red and (V K∗

I ,n)1n=0,..,N , at
position (I) in blue.

3.3.2. Modeling and simulation of ionic and voltage dynamics in dendritic spines. In this
section, we investigate the effect of the specific geometry of dendritic spines on voltage and ionic dy-
namics. Dendritic spines are located on the dendritic tree and serve as sites for receiving synaptic input
in the form of an influx of ions. Their variations in size and shape are usually associated with the
neuronal coding of learning and memory. Extensive efforts have been made to develop experimental
techniques for visualizing and analyzing ionic and electric field dynamics in dendritic spines. However,
due to their microscopic scale, such experimental investigations remain challenging.

3.3.2.1. Influence of the spine head geometry on ionic and voltage dynamics. Dendritic
spines have a bulbous head connected to a thin neck, that we model in 2D by a domain ΩS composed
of a circle with radius r (the head) connected to a rectangle of length L1 and width D1 (the neck)
(Fig. 11). All parameters related to domain ΩS are defined in Table 6. The influx of ions is modeled,
as in the previous section, with a non-homogeneous Neumann boundary condition on ∂Ωi. We set,
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as previously described, homogeneous boundary conditions on ∂Ωr, as well as Dirichlet boundary
conditions on ΓDir (see Fig. 11).

The mesh used in our simulations is gradually refined along the boundary ∂ΩS of domain ΩS and
consists of 6589 triangular cells with a mesh size of h = 7.33× 10−2. As an example, Figure 11 shows
a zoomed-in view of the mesh at the junction between the head and the neck.

∂Ωi

∂Ωr

ΓDir

ΩS
r

L1

D1

ri
A B

Figure 11. A: Domain ΩS representing a dendritic spine. B: Mesh for domain ΩS

zoomed-in at the head-neck junction where it is refined close to the boundaries. The
mesh size is h = 7.33× 10−2.

r 0.5 µm Radius of the head
L1 1 µm Length of the neck
D1 0.2 µm Diameter of the neck
ri 0.04 µm Length of ∂Ωi (Fig. 11)

Table 6. Geometric parameters for domain ΩS , representing a dendritic spine

In the following, we present the numerical simulations of the scheme (3.2)-(3.12) on domain ΩS ,
with boundary conditions (3.18). The simulation is performed with a final time of Tf = 0.5 sec and a
time step of dt = 5× 10−3 sec.
In Fig. 12, we plot the ionic concentration and voltage dynamics at time t0 = 0.075 sec in domain ΩS .
Panel A (resp. panel B) shows the dual concentration values (cK

∗,15
P −c0P )K∗∈M∗ (resp. (V K∗,15)K∗∈M∗

of the potential V ), at time t0 = 0.075 sec.
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A B

Figure 12. A: Dual values
(
cK

∗,15
P − c0P

)
K∗∈M∗

of cP − c0P in domain ΩS at t0 =

0.075 sec. B: Dual values
(
V K∗,15

)
K∗∈M∗ of the potential V at t0 = 0.075 sec.

We now investigate the effects of the specific geometry of the spine on ionic concentration and
voltage dynamics, and in particular the spatial variations of voltage and ionic concentration in the
spine head. We then compare our 2D-simulation results with the 1D results presented in [21]. In
[21], the authors introduced a temporal deconvolution procedure (STAR method) to recover voltage
dynamics in dendritic spines, from fluorescence images of a genetically-encoded voltage sensor. This
procedure is based on the PNP system of equations. From a domain similar to ΩS , the authors derived
a 1D equivalent model reducing the spine head as a point and simulated the PNP system of equations
using COMSOL. Note that we use the same input current at ∂Ωi as in [21].

We consider several lines on the domain ΩS : {x = 0} and the lines {y = k} for k ∈ {0.5, 1, 1.3, 1.5, 1.7, 1.9, 2}
(Fig. 13). We finally define the points Pk, at the intersection between {x = 0} and {y = k}, i.e. the
points (0, k).

Figure 13. Schematic representation of a dendritic spine, illustrating the lines {x =
0} (dashed black) and {y = k} (dashed red) for k ∈ {0.5, 1, 1.1, 1.3, 1.5, 1.7, 1.9, 2}.
The points Pk are the intersections between the lines {x = 0} and {y = k} (red star).
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We plot in Fig. 14 the time evolution of the dual concentration value (c
K∗

Pk
,n

P − c0P )n=0,..,N (A)
and the dual potential value (V K∗

Pk
,n)n=0,..,N (B) at points Pk (eq. (1.2)). We observe that the peak

amplitude for cP − c0P (resp. V ) is equal to 38.59 mM (resp. 6.37 mV) at (P2) and decreases to 26.16

mM (resp. 4.36 mV) at (P1), i.e. a decrease of more than 30 % for both the concentration and voltage.
We also observe that the decrease is faster in the neck, with the peak amplitude reaching 13.35 mM
(resp. 2.31 mV) at P0.5 for the concentration (resp. voltage).
In [21] the peak amplitude of cP − c0P (resp. V ) at the point representing the head, reaches around 33
mM (resp. around 5 mV) (see Fig. 4C, resp. Fig. 2D-E in [21]), which is very close to our 2D results
at point P2. Nevertheless, our results indicate that almost a third of the signal is lost within the head,
highlighting the necessity to simulate the dynamics inside the head.
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Figure 14. Time evolution of the ionic concentration cP − c0P and voltage V in

the dendritic spine, at position Pk, for k ∈ {0.5, 1, 1.3, 1.5, 1.7, 1.9, 2}. A: (c
K∗

Pk
,n

P −
c0P )n=0,..,N . B: (V K∗

Pk
,n)n=0,..,N .

We finally investigate the spatial variation of cP − c0P within the spine, at peak time t0=0.075 sec.
In Fig. 15A, we plot the dual concentration values (cK

∗,15
P − c0P )K∗∈Z∗

x=0
(see eq. (1.1)). We observe

that the concentration decreases linearly within the neck, reaching the Dirichlet boundary condition
at (x, y) = (0, 0), which suggests that a 1D approximation is relevant in the neck. Nevertheless, in the
head, the variation of the concentration profile is more complex, with a higher gradient at the top of
the head, near the influx of ions (∂Ωi), followed by a lower gradient down to the neck. In Fig. 15B,
we plot (cK

∗,15
P − c0P )K∗∈Z∗

y=k
for k ∈ {0.5, 1, 1.3, 1.5, 1.7, 1.9, 2.0} (eq. (1.1)). The variations along

the lines Y0.5 and Y1, located inside the neck, are very small. In contrast, the geometry of the head
creates concentration gradients, that are more pronounced close to the boundary receiving the influx
of ions, and close to the head-neck junction. On line Y1.9, the concentration decreases from 35.46 mM
at position x = 0, to 33.33 mM at the boundary (black curve on Fig. 15D), which corresponds to a

decrease of 6% relative to the reference value c
KP∗

1.9
,15

P − c0P = 35.46 mM. Note that the voltage has
qualitatively the same behavior.
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Figure 15. A: Spatial evolution of (cK
∗,15

P − c0P )K∗∈Z∗
x=0

on line x = 0 at
time t0 = 0.075 sec. B: Spatial evolution of (cK

∗,15
P − c0P )K∗∈Z∗

y=k
for k ∈

{0.5, 1, 1.3, 1.5, 1.7, 1.9, 2.0} at time t0 = 0.075 sec.

In summary, we observe that the ionic and voltage dynamics in the neck of dendritic spines are
well captured by a 1D model. In contrast, to capture the specific dynamics of voltage and concentra-
tion inside the head, one needs to take into account its bulbous geometry. In particular, in our 2D
simulations, we observe that the peak amplitude is decreased by almost 30 % between the top of the
head and the head-neck junction, and the decrease is non-linear. This justifies the need for at least a
2D approach to obtain accurate simulations of ionic concentration dynamics in a spine.

3.3.2.2. Influence of the distance between an ionic reservoir and a dendritic spine on
the ionic and voltage dynamics. In this part, we consider two neighboring dendritic spines and
investigate the influence of a signal arriving in one spine, on the ionic and voltage dynamics of the other
(Fig. 16). We test the hypothesis that dendritic spines act as autonomous compartments, isolating the
material located at their head from the rest of the dendritic tree [52], versus the hypothesis of signal
invasion, when the voltage and concentration in a spine is substantially increased by an ionic influx
arriving in a neighboring one.

Figure 16. Domain Ω2S , representing two neighboring dendritic spines. Each spine
has a head (circle with centers (A) and (E)) and a neck (thin vertical rectangle). They
are both connected to a dendrite (large horizontal rectangle, with points (B), (C) and
(D)).
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We consider the domain Ω2S (Fig. 16), with parameters given in Table 7. Within one of the spines,
which we call the active spine, we model an influx of ions at boundary ∂Ωi, using a non-homogeneous
Neumann boundary condition, similar to the previous subsections, eq. (3.19). The spine that does not
receive an influx of ions is called the inactive spine. We address the questions of the distance at which
the influx of ions propagates from the active spine, and to what extent the inactive spine perceives
this influx. We use a triangular mesh with 2385 cells and a mesh size h = 0.16. The simulations are
performed with a final time of Tf = 5 sec, and a time step of dt = 5× 10−3 sec.

Two Spines parameters
r 0.5 µm Radius head for both spines
L1 1 µm m Length neck for both spines
L2 1.8 µm Distance between the two spines
L3 0.9 µm Distance between the spine neck and the ionic reservoir.
L4 4 µm Total dendrite length
D1 0.2 µm Spine neck width.
D2 0.5 µm Dendrite width.
ri 0.1 µm Length of ∂Ωi

(A) (0,1.5) Coordinates of point (A)
(B) (0,0) Coordinates of point (B)
(C) (1,-0.25) Coordinates of point (C)
(D) (2,0) Coordinates of point (D)
(E) (2,1.5) Coordinates of point (E)

Table 7. Parameters for the domain Ω2S , representing two neighboring dendritic
spines (Fig. 16).

We investigate the effect of the distance L3, between a spine and the Dirichlet boundary condition
ΓDir, on voltage and ionic dynamics. We consider several domains with L3 ranging from 0.9 µm to
23.9 µm . In each configuration, the length L4 is modified such that L4 = 2L3 + 2D1 + L2, and L2 is
set to 1.8 µm (Fig. 16). The different mesh information are given in Table 8.

Value for L3 0.9 µm 2.9 µm 5.9 µm 11.9 µm 23.9 µm
Value for L4 4 µm 8 µm 14 µm 26 µm 50 µm

Number of triangular cells 2385 3365 4840 7773 17548
h 1.6× 10−1 1.6× 10−1 1.6× 10−1 1.6× 10−1 1.6× 10−1

Table 8. Parameter values that are modified in the five configurations of domain Ω2S .

Fig. 17 illustrates the influence of the length L3 on the dynamics of cP − c0. We plot the dual
values (cK

∗,20
P − c0)K∗∈M∗ , (cK

∗,20
P − c0)K∗∈M∗ and (cK

∗,20
P − c0)K∗∈M∗ at times t0 = 0.1 sec, for three

domains Ω2S with L3 = 0.9 µm , 2.9 µm and 5.9 µm . Note that the minimum value for cP − c0 is
imposed by the Dirichlet boundary condition at ΓDir (cP − c0 = 0 mM, with c0 = 163 mM, Table
3). We observe that the size of the domain influences the values of the concentration within the two
heads, with a larger L3 leading to a higher concentration in the active spine, and a lower concentration
value in the inactive one. We also observe a slight increase in cP − c0 peak time when L3 increases.
Hence, the results suggest that the farther the spine is from a large ionic reservoir, the farther the
signal propagates.
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A B

C

Figure 17. Spatial variations of the concentration cP in three domains with increas-
ing L3. We plot the dual values (cK

∗,20
P − c0)K∗∈M∗ in domain Ω2S , with L3 = 0.9 µm

(A), L3 = 2.9 µm (B) and L3 = 5.9 µm (C) at t0 = 0.1 sec. The range of the colorbar
is fixed between plots, with a maximum value cP − c0 = 180.2 mM, corresponding to
the maximum of cP − c0 in the configuration with L3 = 5.9 µm .
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Figure 18. Time evolution of (cK
∗
X ,n

P − c0P )n=0,..,N , for different values of L3 ranging
from 0.9 to 23.9 µm , at positions (A)-(B)-(C)-(D)-(E). A: (cK

∗
A,n

P − c0P )n=0,..,N . B:
(c

K∗
B ,n

P − c0P )n=0,..,N . C: (cK
∗
C ,n

P − c0P )n=0,..,N . D: (cK
∗
D,n

P − c0P )n=0,..,N . E: (cK
∗
E ,n

P −
c0P )n=0,..,N .

We then investigate the propagation of the concentration within the dendrite and inactive spine at
several specific points (A) - (E) (Fig. 16, Table 7) in the five different configurations (L3 ranging from
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0.9 µm to 23.9 µm ). We plot in Fig. 18 the time evolution of the concentrations (cK
∗
X ,n

P − c0P )n=0,..,N

(see (1.2)). Note that the curves plotted in D and E almost superimpose, with a difference between
them lower than 1 mM. We observe the effect of the Dirichlet boundary condition on the time evolution
of the concentration. As expected, the shorter L3, the bigger the impact on signal propagation. Indeed,
for L3 = 0.9 µm (red), we observe that the max of cP − c0 goes from 109.62 mM in (A) to 6.60 mM in
(B), and is below 10−5 mM at (C), (D) and (E), i.e. the signal does not propagate inside the dendrite
and the inactive spine. This means that for short L3 the active spine behaves as an autonomous
compartment, isolating its material from the rest of the dendritic tree.
For L3 = 2.9 µm , the max of cP − c0 goes from 145.95 mM in (A) to 55.92 mM in (B), and 24.90

mM in (E). Hence, the ratio of signal reaching (E), defined as rcA−E =
max

n=0,..,N

(
c
K∗

E,n

P −c0P

)
max

n=0,..,N

(
c
K∗

A
,n

P −c0P

) , is 17 %.

For L3 = 11.9 µm and 23.9 µm , a threshold seems to emerge, with 32 % of the peak concentration
in (A) transmitted to (E). We also observe a shift in the peak time between position (A) and (E),
denoted by ∆c

A−E , going from 0.03 sec for L3 = 0.9 µm , to 0.09 sec for L3 = 2.9 µm and 0.16
sec for L3 = 23.9 µm . We observe similar behavior for the voltage, where the ratio of the signal

reaching (E), rVA−E =
max

n=0,..,N

(
V K∗

E,n
)

max
n=0,..,N

(
V K∗

A
,n

) , is 8% (resp. 63%, resp. 81%) for L3 = 0.9 µm (resp. L3

=11.9 µm , resp. L3 =23.9 µm ). The shift in the peak time between the electrical signal in (A) and
the electrical signal in (E), denoted by ∆V

A−E , is below 0.02 sec in all curves. Table 9 gives, for each

configuration, the time shift ∆c
A−E , the peak amplitude max

n=0,..,N

(
c
K∗

E ,n
P − c0P

)
at position (E) and the

ratio rcA−E of signal reaching (E), for the concentration dynamics, as well as the time shift ∆V
A−E ,

the peak amplitude max
n=0,..,N

(
V K∗

E ,n
)

at position (E) and the ratio rVA−E of signal reaching (E) for the

potential dynamics. This indicates that in this condition, a signal arriving in a spine is influencing the
ionic concentration and voltage in its inactive neighbors, which we call a signal invasion. The voltage
invasion is more important than the ionic concentration invasion. To summarize, our simulations
suggest that depending on the distance to the closest ionic reservoir, a spine can either act as an
autonomous compartment isolated from its neighbors or be subject to signal invasion.

L3 ∆c
A−E max

n=0,..,N

(
c
K∗

E ,n
P − c0P

)
rcA−E ∆V

A−E max
n=0,..,N

(
V K∗

E ,n
)

rVA−E

0.9 µm 0.03 sec 10−5 mM 0 % 0.01 sec 1.65 mV 8 %
2.9 µm 0.09 sec 24.9 mM 17 % 0.01 sec 7.62 mV 26 %
5.9 µm 0.09 sec 40.94 mM 27 % 0.02 sec 17.58 mV 44 %
11.9 µm 0.16 sec 52.44 mM 32 % 0.02 sec 38.41 mV 63 %
23.9 µm 0.16 sec 53.45 mM 32 % 0.02 sec 103.46 mV 81 %

Table 9. Time shift ∆c
A−E in the concentration signal, peak amplitude

max
n=0,..,N

(
c
K∗

E ,n
P − c0P

)
of the concentration at position (E), ratio rcA−E of the concen-

tration signal in (A) reaching the inactive spine (E), time shift ∆V
A−E of the electrical

signal, peak amplitude max
n=0,..,N

(
V K∗

E ,n
)

at position (E) and ratio rVA−E of the elec-

trical signal from (A) reaching (E), for the five different configurations with L3 going
from 0.9 µm to 23.9 µm .

3.3.2.3. Influence of the distance between two spines on signal invasion. This part fo-
cuses on varying the distance L2 between two spines (Fig. 16). We consider five different values of L2,
ranging from 0.9 to 10.8 µm , and set L3 to 23.9 µm , to ensure that we reach the plateau in signal
invasion observed in subsection 3.3.2.2, for all the configurations. The mesh information are given in
Table 10.
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Value for L2 0.9 µm 1.8 µm 3.6 µm 7.2 µm 10.8 µm
Value for L4 49.1 µm 50 µm 51.8 µm 55.4 µm 59 µm

Number of triangle cells 17598 17548 17548 17546 17548
h 1.6× 10−1 1.6× 10−1 1.6× 10−1 1.6× 10−1 1.6× 10−1

Position (x, y) of the node (D) (1.1,0) (2,0) (3.8,0) (7.4,0) (11,0)
Position (x, y) of the node (E) (1.1,1.5) (2,1.5) (3.8,1.5) (7.4,1.5) (11,1.5)

Table 10. Parameter values that are modified in the five configurations of domain Ω2S .

Fig. 19 illustrates the time evolution of the concentration cP − c0, at position (E) (Fig. 16),
corresponding to the center of the head of the inactive spine. We plot the dual values (c

K∗
E ,n

P −
c0P )n=0,..,N at each time step, for the five configurations of domain Ω2S .

0 1 2 3 4 5
0

10

20

30

40

50

60

A B

Figure 19. A: Time evolution of (c
K∗

E ,n
P − c0P )n=0,..,N , for different values of L2

ranging from 0.8 to 10.8 µm , at position (E). B: Example of the mesh employed for
the simulations, in the case L2 = 0.9 µm , zoomed on the spines.

We observe, as expected, that concerning the variation of concentration, the closer the two spines,
the larger the signal received by the inactive one. The shift in the peak time between position (A) and
(E), ∆c

A−E , increases when the distance between the spines L2 increases. We observe a significant shift
in the peak concentration time in the inactive spine compared to the active one, going from ∆c

A−E =
0.145 sec in the case of close spines (L2 = 0.9 µm ) to ∆c

A−E = 0.535 sec for spines that are farther
away (L2 = 10.8 µm ). The ratio rcA−E of signal reaching (E) decreases while increasing L2, going
from 37 % when L2 = 0.9 µm , to 14 % for L2 = 10.8 µm .
Concerning the potential dynamics, the shift in the peak time ∆V

A−E is one order of magnitude smaller,
going from 0.02 sec for L2 = 0.9 µm to 0.03 sec for L2 = 10.8 µm . The ratio rVA−E of the electrical
signal reaching (E) goes from 84% for L2 = 0.9 µm , to 62% for L2 = 10.8 µm .
In Table 11 we give, for each configuration, the time shift ∆c

A−E , the peak amplitude max
n=0,..,N

(
c
K∗

E ,n
P − c0P

)
at position (E), and the ratio rcA−E of signal reaching (E) for the concentration dynamics, as well as
the time shift ∆V

A−E , the peak amplitude max
n=0,..,N

(
V K∗

E ,n
)

at position (E) and ratio rVA−E of signal

reaching (E) for the potential dynamics. These results suggest that spines receive electrical signals
from other spines far away, as a spine at a 10.8 µm distance still receives 63 % of the signal, with
tens of ms of delay. The variation in concentration is sensed to a lesser extent, as a spine at a 10.8 µm
distance only perceives 14% of the variation of concentration, with a delay superior to 0.5 sec.
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L2 ∆c
A−E max

n=0,..,N

(
c
K∗

E ,n
P − c0P

)
rcA−E ∆V

A−E max
n=0,..,N

(
V K∗

E ,n
)

rVA−E

0.9 µm 0.145 sec 59.26 mM 37 % 0.02 sec 107.33 mV 84 %
1.8 µm 0.165 sec 53.45 mM 32 % 0.02 sec 103.46 mV 81 %
3.6 µm 0.215 sec 44.01 mM 27 % 0.03 sec 97.06 mV 77 %
7.2 µm 0.355 sec 31.35 mM 19 % 0.03 sec 87.24 mV 69 %
10.8 µm 0.535 sec 23.68 mM 14 % 0.03 sec 77.12 mV 62 %

Table 11. Time shift ∆c
A−E in the concentration signal, peak amplitude

max
n=0,..,N

(
c
K∗

E ,n
P − c0P

)
of the concentration at position (E), ratio rcA−E of the concen-

tration signal in (A) reaching the inactive spine (E), time shift ∆V
A−E of the electrical

signal, peak amplitude max
n=0,..,N

(
V K∗

E ,n
)

at position (E) and ratio rVA−E of the elec-

trical signal from (A) reaching (E), for the five different configurations with L2 going
from 0.9 to 10.8 µm .

3.4. Discussion and conclusion

In this chapter, we present an algorithm for simulating the Poisson-Nernst Planck system of equa-
tions in two dimensions using the DDFV method, while preserving the positivity of ionic concentration.
We challenge our algorithm using different test cases and achieve a second-order accuracy in space,
which is consistent with existing results coming from literature. We also show that our system can
capture a boundary layer when present. The proof of the existence of the discrete solution of (3.2)-
(3.12) is both too long and not the goal of the present chapter. Hence, a following work will detail the
existence of a solution, as well as positivity and convergence, most probably using similar techniques
as in [75].
Using our DDFV framework, we then investigate the ionic and voltage dynamics in two-dimensional
specific geometries of the neuronal dendritic tree: a branch bifurcation and a dendritic spine. First,
our two-dimensional results show that the voltage and ionic dynamics in a dendritic spine are not
well approximated by one-dimensional models. Indeed, if a one-dimensional approximation for both
voltage and concentration is relevant in the neck, the bulbous geometry of the head requires at least a
two-dimensional approach, as the space dynamics is highly non-linear, with steep gradients at the top
of the head and around the head-neck junction.
Our numerical results also highlight that dendritic spines can sense electrical signals far away on a
thin branch, whereas it is not the case for ionic concentration transients, that reach only close spines.
In our configuration, a spine at a distance 10.8 µm of a spine receiving a signal will get 62% of the
electrical signal and only 14% of the concentration signal. One direct consequence of this, is that
calcium imaging cannot be used as a tool to observe sub-threshold electrical signal propagation in
neuronal compartments, especially when voltage-gated calcium channels are not opening. The actual
development of voltage sensors could resolve this difficulty.
Our final result concerns the influence of an ionic reservoir on voltage and calcium dynamics. This
reservoir can represent any large branch that the neuronal compartment is connected to. The rationale
behind this is that the large branch being so large compared to the thin branch, we can consider the
ionic concentrations and voltage to be constant at the connection. In the equations, the reservoir is
modeled using a Dirichlet boundary condition and behaves as a sink. Our simulations show that the
close proximity of an ionic reservoir such as the dendritic shaft or any large compartment, is killing the
signal, preventing it from propagating and invading close neuronal structures such as thin branches at
a bifurcation or dendritic spines. On the opposite, a signal arriving at the leading edge of the dendritic
tree, far from an ionic reservoir and where only small branches are present, will propagate at a larger
distance and invade neighboring dendritic spines.
From the spine point of view, these results show that the same spine at different positions in the tree
would behave differently: a spine close to the dendritic shaft would more likely act as an autonomous
compartment, compared to a collection of spines located in small dendritic protrusions, that would be
keener to signal invasion and to influence each other. Hence, in addition to the geometry of the spine,
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the local geometry of the dendritic tree is shaping spine behavior, in that the same spine at different
positions in the tree would behave differently. Hence, the position of a dendritic spine relative to the
entire tree (i.e. close to the soma versus at the distal edge of the tree) shapes its function, making
plasticity not at the level of the spine, but at the level of the full dendritic geometry.
These results are in line with several experimental observations showing that synaptic development is
spatially regulated inside the dendritic tree [36, 68]. In particular, the electrical compartmentalization
of dendritic spines is nowadays a leading question in developmental neuroscience, with various experi-
mental studies showing a variety of results depending on the types of cells or on their developmental
stages, and going from signals spreading locally and invading neighboring spines to compartmentaliza-
tion [32, 86, 64, 87]. Our study would suggest considering these differences in relation to the actual
size of the dendritic tree, and especially the presence of large dendrites. In the same way, the distance
to the nearest large dendritic compartment should be considered while investigating cooperative, ho-
mosynaptic and heterosynaptic plasticity [29, 80].
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CHAPTER 4

Solving the Poisson-Nernst Planck system of equations over
multi-domains using the FreeFEM++ software

Introduction

In this chapter, we delve into the PNP system within a new context. The previous chapters of this
thesis have revolved around coupling the system of equations within a single domain. This domain
models the internal environment of dendrites and dendritic spines. In this mono-domain approach,
it is necessary to define a boundary condition for the potential, which has an impact on voltage and
ionic dynamics. In Chapter 3, which we choose to set an homogeneous Neumann boundary condition
(∇V · n = 0), which means that the membrane is a perfect insulator. Such boundary condition is
restrictive, as it prohibits any electric flux from crossing the membrane. This, as observed numerically,
lead to the absence of an electric boundary layer near the membrane wall. To get rid of the problem
of choosing a boundary condition for the potential, we propose in this chapter to use a multi-domain
approach to represent the interior of the dendrite, the membrane, and the exterior media. The condi-
tion for the potential then becomes a simple continuity condition across the membrane.
We therefore incorporate to the model the dielectric permittivity coefficients present in each medium
(cytosol, membrane, external medium). The electric permittivity plays a role in the Poisson’s equation
and vary according to the sub-domain. The equation is thus solved over the entire domain (the elec-
tric potential "exists" everywhere), with only the permittivity coefficients dependent on the different
domains. Moreover, through this new modeling framework, one may gain further insights regarding
the boundary layer.
In this chapter, the coupling of equations across this multi-domain is performed using the FreeFEM++
software. This choice of numerical method was made due to time constraints and may serve as an
initial result for future numerical comparisons with other existing numerical methods such as DDFV.
FreeFEM++ enables to determine complex numerical solutions of nonlinear system problems like the
PNP system, based on a variational formulation of the system of equations and its boundary conditions
(according to the desired physical problem). The software further handles the Finite Element Method
for spatial discretization. We solve the PNP system using an implicit Euler time discretization, akin
to the approach tackled in the previous chapters, notably in the nonlinear coupling, Chapter 3. To
address the nonlinearity of the system, we apply a Newton algorithm at each time step. Furthermore,
it is important to note that our numerical scheme under FreeFEM++ does not inherently ensure the
preservation of ion concentration positivity. We subsequently consider the PNP system in eq. (0.6)
(i.e without the nonlinear reformulation) and define it over the multi-domain. In the following sec-
tions, we give an in-depth exploration of our domain, providing all the essential elements required for
its construction and expliciting our modeling choices. We introduce the PNP system as applied over
this particular domain together with the appropriate boundary conditions. We then delve into the
variational formulation of the system, which we have implemented using FreeFEM++. This section
includes specific details regarding our numerical implementation.
In this chapter, we consider three distinct geometries representing neuronal compartments:

(1) a dendrite bifurcation, Figure 1,
(2) a large rectangular portion of dendrite, Figure 2,
(3) a smaller portion of dendrite designed with smooth angles on the membrane walls, Figure 3.
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Figure 1. Illustration of the bi-
furcation (Section 4.2.1).

Figure 2. Illustration of the large
rectangular branch (Section 4.2.2).

Figure 3. Illustration of the smaller portion with smooth angles (Section 4.2.3).

The three domains in Figure 1, 2 and 3, are designed within one main rectangular box, representing
the external medium. Inside this box, we consider the intracellular medium and the membrane.

We first study the signal summation within the dendrite bifurcation, Figure 1. Indeed, we observe lin-
ear summation of two signals coming from two neighboring branches, similarly to Chapter 3. Then, we
compare this latter approach with single-domain models, under FreeFEM++ and DDFV, which con-
sider homogeneous Neumann boundary condition for the potential on the membrane, as the modelling
in Chapter 3, Section 3.3.1.2.. We observe analogous results on ionic dynamics and voltage, thereby
reinforcing the coherence of our approaches. Finally, we provide outcomes on the voltage summation
within the membrane, under the multi-domain only.

Next, under the simpler rectangular modeling (2), we consider several scenarios. We examine the
signal invasion over the dendrite when multiple ion influxes occur along the dendrite’s walls. We in-
vestigate up to how many influxes we observe a drastic change in ion and voltage dynamics. We start
with a single influx and progressively add more along the dendrite’s walls. It is observed that, adding
five influxes yields a significant increase in voltage, with the signal depolarizing. However, regarding
concentrations, we do not observe remarkable variations. Nonetheless, we still observe a spatial inva-
sion of ions propagating within the dendrite, which we hardly see when there is only one influx at the
branch’s end.

Finally, we present results related to the boundary layer within the intra-cellular media only, due
to computational constraints. To achieve this, we consider a dendrite branch (3) that is a domain
smaller than the rectangular branch (2). The employed mesh allows to take into account nodes close
to the interior membrane wall and inside the boundary layer, which has a thickness of few nanometers.

These preliminary results are already demanding in terms of computation time. In future work,
it will be necessary to focus on mesh refinement and to delve deeper into the functionalities of
FreeFEM++ in order to consider a mesh adapted to the boundary layer. Still, within the bound-
ary layer, we observe a small peak in intra-cellular ionic concentration and voltage. Beyond its thin
layer, a relatively constant behavior for ionic concentrations and voltage is observed, which corresponds
to the electroneutrality of the media. These results provide preliminary insights into the existence of
the boundary layer and demonstrate that our model numerically catches the boundary layer. Still, we
were unable to create a more suitable mesh where refinement would be more flexible and optimized
for the boundary layer. We believe that a method like DDFV would be more suitable for addressing
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the boundary layer.

This chapter serves as an exploration of a multi-domain modeling of dendritic branches, where we
aim at providing new understandings of several biological questions within the dendritic tree. We aim
at understanding how the electrical signal behaves in dendrites by providing information about its
dynamics in the cytosol and within the membrane. We also seek to provide insights into the influence
of synaptic inputs during neuronal excitation, for instance, during significant depolarization. Addi-
tionally, we aim to comprehend whether ions aggregate near the wall in the Debye layer and if this
behavior influences voltage propagation or ionic dynamics.

This chapter is organized as follows: Section 4.1 presents the model over the multi-domain. Sec-
tion 4.2 focuses on the numerical applications. Discussion and conclusion are provided in the last
section.

4.1. Presentation of the model

4.1.1. Continuous Problem in a Multi-Domain. In view to accurately model the electrodiffusion
processes within the dendrite geometry, it is crucial to establish the continuous problem for the multi-
domain approach. In all subsequent sections, we set the interior as Ωi, the membrane as Ωm, and
the external environment as Ωe (see Figure 4). Intuitively, each domain requires specific boundary
conditions to ensure a fair representation of the physical conditions.

Figure 4. Multi-domain representation showing a large rectangular branch of den-
drite with the interior as Ωi (cytosol), the membrane as Ωm, and the external envi-
ronment as Ωe. The membrane boundaries are defined as ∂Ωm,D ∪ ∂Ωme

∪ ∂Ωmi
∪

∂Ωri ∪ ∂Ωre . ∂Ωe,D is the outer boundary of Ωe and ∂Ωi,D is the connection with a
larger dendrite within Ωi.

We now describe the different boundaries. First, ∂Ωe,D forms the outer boundary of Ωe, modeling
the very distant bulk region. Then, ∂Ωi,D forms the connection with a larger dendrite. This large
dendrite in question is considered as an ionic reservoir due to its large size, i.e. with fixed ionic concen-
tration. In the same way, ∂Ωm,D characterizes the membrane boundary at the junction with the rest
of the media. Next, ∂Ωme

designates the outer impermeable membrane wall, and ∂Ωmi
the equivalent

for the inner wall. Ultimately, ∂Ωri and ∂Ωre , located on the inner and outer walls of the membrane,
portray the influx of ions from a neighboring synapse.

Let us note that each medium within the domain possesses distinct electrodiffusive characteristics.
To be more precise, the dielectric permittivity, for instance, varies across the neuron’s environment.
Consequently, for each medium we introduce a parameter, denoted ηq (akin to γ eq. (0.5) introduced
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in the Preamble), where q designates the given medium, i.e., i, m, or e. ηq is based on these afore-
mentioned electrodiffusive quantities, such as the dielectric permittivity for each medium (εq) exposed
in Table 1, with q = i, m, or e. The values of the latter coefficients are presented for each medium in
Table 1 below.

F 96485 A.s.mol−1 Faraday constant
εi 80 Dielectric permittivity in Ωi [21]
εe 80 Dielectric permittivity in Ωe [21]
εm 4 Dielectric permittivity in Ωm [21]
ε0 8, 8.10−12 F.m−1 Permittivity of vacuum
Tθ 293, 15 K Absolute temperature
R 8, 314 J.K−1.mol−1 Gas constant
β 39.5877 Eq. (0.5)
DP 200 µm2.s−1 Diffusion coefficient for anion [21]
DN 200 µm2.s−1 Diffusion coefficient for cation [21]
c0P,i 170 mM Initial concentration for anion URL
c0P,e 146 mM Initial concentration for anion URL
c0N,i 183 mM Initial concentration for cation URL
c0N,e 131 mM Initial concentration for cation URL
V 0
m,i −75 mV Initial electric potential URL
V 0
e 0 mV Initial electric potential URL

Imax 300 pA Maximal current [21]
τ 0.055 s Decay time constant [21]

Table 1. Electrodiffusion parameters.

The Poisson equation is defined over the whole domain Ω = Ωi ∪Ωm ∪Ωe and both NP equations
are defined in the intra- and extra-cellular space, but not in the membrane medium, as we consider
that there are no charges inside the membrane (Fig. 4). We have:

(4.1)

∂tcP = −∇ · (DP (∇cP + βcP∇V )) , in Ωi ∪ Ωe,

∂tcN = −∇ · (DN (∇cN − βcN∇V )) , in Ωi ∪ Ωe,

−∇ · (ηqβ∇V ) = cP − cN , in Ωi ∪ Ωm ∪ Ωe,

where ηq =
εqε0RTθ
F 2

with q = i, e,m.
We provide in the following section the initial and boundary conditions associated with the framework
above.

4.1.2. Initial and Boundary Conditions. In this section, we describe the boundary conditions of
the considered multi-domain, highlighting the essential role they play in capturing the behaviors of
ionic species and electric potential at the interfaces between the environments. Each interface raises
specific challenges, so that it is crucial to select appropriate boundary conditions to replicate physio-
logical conditions effectively.

We introduce below the definitions of the initial and boundary conditions within the domain (see
Fig. 4). Notice that we consider initial boundary conditions following the notations and definitions of
Table 1, such that:

http://fr.wikipedia.org/w/index.php?title=Potentiel_%C3%A9lectrochimique_de_membrane&oldid=210211915
http://fr.wikipedia.org/w/index.php?title=Potentiel_%C3%A9lectrochimique_de_membrane&oldid=210211915
http://fr.wikipedia.org/w/index.php?title=Potentiel_%C3%A9lectrochimique_de_membrane&oldid=210211915
http://fr.wikipedia.org/w/index.php?title=Potentiel_%C3%A9lectrochimique_de_membrane&oldid=210211915
http://fr.wikipedia.org/w/index.php?title=Potentiel_%C3%A9lectrochimique_de_membrane&oldid=210211915
http://fr.wikipedia.org/w/index.php?title=Potentiel_%C3%A9lectrochimique_de_membrane&oldid=210211915
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cP (t = 0,x) = c0P,i, cN (t = 0,x) = c0N,i, V (t = 0,x) = V 0
i , ∀x ∈ Ωi,

cP (t = 0,x) = c0P,e, cN (t = 0,x) = c0N,e, V (t = 0,x) = V 0
e , ∀x ∈ Ωe,

V (t = 0,x) = V 0
m, ∀x ∈ Ωm.

(4.2)

Then, we impose Dirichlet boundary condition on ∂ΩD = ∂Ωe,D ∪ ∂Ωi,D ∪ ∂Ωm,D, since we model an
ionic reservoir inside and outside the dendrite. In addition, we consider ∂Ωm,D as the junction with
the rest of the membrane. We define the Dirichlet values to be those given in Table 1:

cP,e = c0P,e, cN,e = c0N,e, Ve = V 0
e , on ∂Ωe,D × (0, Tf ),

cP,i = c0P,i, cN,i = c0N,i, Vi = V 0
i , on ∂Ωi,D × (0, Tf ),

Vm = V 0
m, on ∂Ωm,D × (0, Tf ).

(4.3)

Thereafter, we define V 0 such as:

V 0 =


V 0
e on ∂Ωe,D

V 0
i on ∂Ωi,D

V 0
m on ∂Ωm,D

(4.4)

In this paragraph, we focus on modeling boundary conditions on concentrations only. Indeed, as
mentioned earlier, the potential "lives" everywhere and is therefore considered as continuous across
the three domains. Hence, the only boundary condition for the potential is the Dirichlet boundary
condition on ∂ΩD. Hence, for the concentration, we set Neumann boundary conditions on ∂Ωme ∪
∂Ωmi ∪ ∂Ωri ∪ ∂Ωre . We model the ion influx at two distinct boundaries, denoted as ∂Ωri and ∂Ωre ,
where the ion influx is modelled as an output within Ωe and as an input within Ωi. For the remaining
part of the membrane, we apply a homogeneous Neumann boundary condition to model impermeability
of the membrane for positive and negative ions. Altogether, the system of boundary conditions for the
membrane is as follows:

∇cN,e · n = 0, on ∂Ωme
∪ ∂Ωre × (0, Tf ),

∇cN,i · n = 0, on ∂Ωmi ∪ ∂Ωri × (0, Tf ),

∇cP,e · n = 0, on ∂Ωme
× (0, Tf ),

∇cP,i · n = 0, on ∂Ωmi × (0, Tf ),

∇cP,e · n = −I, on ∂Ωre × (0, Tf ),

∇cP,i · n = I, on ∂Ωri × (0, Tf ).

(4.5)

In the above, the ion influx I injected into our model is similar to the one introduced in Chapter
3, taken from [21]. We recall its definition:

(4.6) I(t) =
Istim(t)

πr2FDP
,
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where the variable r is defined depending on the studied domain, and where:

(4.7) Istim(t) = Imax
t

τ
exp

(
− t

τ
+ 1

)
.

4.1.3. Variational Formulation with FreeFEM++. To solve the PNP system within our multi-
domain representation, we employ FreeFEM++ [51], a versatile tool for numerical solutions of complex
physical problems. In this chapter, we use classical Finite Elements in the sense of Ciarlet [31]. And
more precisely, we choose the polynomial space P1 of degree 1. We recall that:

Definition 4.1. For each k ∈ N, we denote Pk as the space of polynomials of total degree less than or
equal to k. The space P1 corresponds to the space of affine functions:

P1 = {p; p(x) = a0 + a1x1 + a2x2, ai ∈ R}

The Finite Element mesh, denoted Th, is a union of triangles denoted K such that Ω = ∪
K∈Th

K. The

Finite Element space is defined as

Ph = {vh ∈ C0(Ω); ∀K ∈ Th vh|K ∈ P1}
and

P0,h = {vh ∈ Ph; vh = 0 on ∂ΩD}
where ∂ΩD represents the Dirichlet boundary condition. Since we impose non-homogeneous Dirichlet
boundary condition, we use the trace operator denoted γ0 [1].

We indicate by e or i the domains Ωe and Ωi. For instance, for Ωe, we denote the Finite Element
space P e

h , and the same for i. Thanks to FreeFem, the meshes are conform and compatible in the sense
that the mesh of Ω restricted to Ωe is the same to the mesh of Ωe. We use an implicit Euler time
discretization. The variational formulation is:

(4.8)



Seek (cn+1,e
h,P , cn+1,e

h,N , cn+1,i
h,P , cn+1,i

h,N , V n+1
h ) ∈ P e

h × P e
h × P i

h × P i
h × Ph such that

Fn,e
cP (cn+1,e

h,P , V n+1
h , veh) = 0, ∀veh ∈ P e

0,h,

γ0(c
n+1,e
h,P ) = c0P,e on ∂Ωe,D,

Fn,e
cN (cn+1,e

h,N , V n+1
h , veh) = 0, ∀veh ∈ P e

0,h,

γ0(c
n+1,e
h,N ) = c0N,e on ∂Ωe,D,

Fn,i
cP (cn+1,i

h,P , V n+1
h , vih) = 0, ∀vih ∈ P i

0,h,

γ0(c
n+1,i
h,P ) = c0P,i on ∂Ωi,D,

Fn,i
cN (cn+1,i

h,N , V n+1
h , vih) = 0, ∀vih ∈ P i

0,h,

γ0(c
n+1,i
h,N ) = c0N,i on ∂Ωi,D,

Fn
V (V

n+1
h , cn+1,e

h,P , cn+1,e
h,N , cn+1,i

h,P , cn+1,i
h,N , vh) = 0, ∀vh ∈ P0,h,

γ0(V
n+1
h ) = V 0 on ∂ΩD,
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where

Fn,e
cP (cn+1,e

h,P , V n+1
h , veh) =

∫
Ωe

(
cn+1,e
h,P − cn,eh,P

dt
veh −DP∇cn+1,e

h,P ∇veh −DPβc
n+1,e
h,P ∇V n+1

h ∇veh

)
dX

−
∫
∂Ωre

(I(t)veh) ds.

Fn,e
cN (cn+1,e

h,N , V n+1
h , veh) =

∫
Ωe

(
cn+1,e
h,N − cn,eh,N

dt
veh −DN∇cn+1,e

h,N ∇veh +DNβc
n+1,e
h,N ∇V n+1

h ∇veh

)
dX.

Fn,i
cP (cn+1,i

h,P , V n+1
h , vih) =

∫
Ωi

(
cn+1,i
h,P − cn,ih,P

dt
vih −DP∇cn+1,i

h,P ∇vih −DPβc
n+1,i
h,P ∇V n+1

h ∇vih

)
dX

+

∫
∂Ωri

(I(t)vih) ds.

Fn,i
cN (cn+1,i

h,N , V n+1
h , vih) =

∫
Ωi

(
cn+1,i
h,N − cn,ih,N

dt
vih −DN∇cn+1,i

h,N ∇vih +DNβc
n+1,i
h,N ∇V n+1

h ∇vih

)
dX.

Fn
V (V

n+1
h , cn+1,e

h,P , cn+1,e
h,N , cn+1,i

h,P , cn+1,i
h,N , vh) =

∫
Ω

(−ηqβ∇V n+1
h ∇vh) dX +

∫
Ωe

(cn+1,e
h,P − cn+1,e

h,N )vh dX

+

∫
Ωi

(cn+1,i
h,P − cn+1,i

h,N )vh dX.

and with
c0,eh,P = c0P,e, c0,eh,N = c0N,e, c0,ih,P = c0P,i, c0,ih,N = c0N,i.

We define the function F as

(4.9) F (V n+1
h , cn+1,e

h,P , cn+1,e
h,N , cn+1,i

h,P , cn+1,i
h,N , veh, v

i
h, vh) =



Fn
V (V

n+1
h , cn+1,e

h,P , cn+1,e
h,N , cn+1,i

h,P , cn+1,i
h,N , vh)

Fn,e
cP (cn+1,e

h,P , V n+1
h , veh)

Fn,i
cP (cn+1,i

h,P , V n+1
h , vih)

Fn,e
cN (cn+1,e

h,N , V n+1
h , veh)

Fn,i
cN (cn+1,i

h,N , V n+1
h , vih)


We use the Newton algorithm to solve F equal to zero, and denote J the Jacobian matrix. We first
define the differential of the Fn

V

(4.10)

Jn
V (V

n+1
h , vh) = −

∫
Ω

ηqβ∇V n+1
h ∇vh dX

Jn
ciP ,V (c

n+1,i
h,P , vh) =

∫
Ωi

cn+1,i
h,P vh dX

Jn
ceP ,V (c

n+1,e
h,P , vh) =

∫
Ωe

cn+1,e
h,P vh dX

Jn
ciN ,V (c

n+1,i
h,N , vh) = −

∫
Ωi

cn+1,i
h,N vh dX

Jn
ceN ,V (c

n+1,e
h,N , vh) = −

∫
Ωe

cn+1,e
h,N vh dX
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Then, we define the differential of the Fn,e
cP

(4.11)

Jn,e
V,cP

(cn+1,e
h,P , V n+1

h , veh) = −
∫
Ωe

DPβc
n+1,e
h,P ∇V n+1

h ∇veh dX

Jn,e
cP (cn+1,e

h,P , veh) =

∫
Ωe

(
cn+1,e
h,P

dt
veh −DP∇cn+1,e

h,P ∇veh −DPβc
n+1,e
h,P ∇V n+1

h ∇veh

)
dX

and the differential of the Fn,e
cN

(4.12)

Jn,e
V,cN

(cn+1,e
h,N , V n+1

h , veh) =

∫
Ωe

DNβc
n+1,e
h,N ∇V n+1

h ∇veh dX

Jn,e
cN (cn+1,e

h,N , veh) =

∫
Ωe

(
cn+1,e
h,N

dt
veh −DN∇cn+1,e

h,N ∇veh +DNβc
n+1,e
h,N ∇V n+1

h ∇veh

)
dX.

Then, we define the differential of the Fn,i
cP

(4.13)

Jn,i
V,cP

(cn+1,i
h,P , V n+1

h , vih) = −
∫
Ωi

DPβc
n+1,i
h,P ∇V n+1

h ∇vih dX

Jn,i
cP (cn+1,i

h,P , vih) =

∫
Ωi

(
cn+1,i
h,P

dt
vih −DP∇cn+1,i

h,P ∇vih −DPβc
n+1,i
h,P ∇V n+1

h ∇vih

)
dX

and the differential of the Fn,i
cN

(4.14)

Jn,i
V,cN

(cn+1,i
h,N , V n+1

h , vih) =

∫
Ωi

DNβc
n+1,i
h,N ∇V n+1

h ∇vih dX

Jn,i
cN (cn+1,i

h,N , vih) =

∫
Ωi

(
cn+1,i
h,N

dt
vih −DN∇cn+1,i

h,N ∇vih +DNβc
n+1,i
h,N ∇V n+1

h ∇vih

)
dX.

Finally, we define the Jacobian matrix J by storing each differentials above, associated with the
components of F (also previously defined in (4.9)):

(4.15) J =


Jn
V Jn

ceP ,V Jn
ciP ,V

Jn
ceN ,V Jn

ciN ,V

Jn,e
V,cP

Jn,e
cP 0 0 0

Jn,i
V,cP

0 Jn,i
cP 0 0

Jn,e
V,cN

0 0 Jn,e
cN 0

Jn,i
V,cN

0 0 0 Jn,i
cN


We recall that this numerical implementation does not guarantee the preservation of positivity in ionic
concentrations, unfortunately. Still, the numerical applications of this chapter do not yield negative
concentrations, as hoped for.

4.2. Applications

In the current section, we apply our FreeFEM++ implementation to investigate the dynamics of
potential and ionic concentrations in dendrites, dealing with three different multi-domain geometries:
a bifurcation in the dendritic tree, a large dendritic branch and a smaller branch with smooth angles.
We also consider a mono-domain representing the interior domain of the bifurcation, similar to the
domain described in 3, section 3.3.1.2, to compare the dynamics obtained with the DDFV framework,
to the dynamics obtained with the FreeFEM++ approach.



77

In subsection 4.2.1.1, we consider the bifurcation under the multi-domain geometry, where we add
the membrane thickness and the exterior media within one main rectangular box (Figure 1). The den-
drite bifurcation has two thin branches connected to a larger one. We investigate the scenario of the
summation of two simultaneous influxes of ions. We observe as previously a linear summation when
the two signals meet, i.e., at the bifurcation point. A final point consists, here, in comparing our results
with those coming from the intracellular medium, using FreeFEM++ and DDFV. Consequently, we
compare both the DDFV and FreeFEM++ codes only on the intracellular medium (single-domain)
with the multi-domain approach. To achieve this, we simulate the propagation of an influx of ions
arriving at the edge of both small branches. We observe a slight difference between the numerical
results. Additionally, our multi-domain approach allows us to observe the evolution of the potential
within the membrane. In subsection 4.2.1.2, we investigate the signal summation within the membrane
medium where we observe a linear summation too. Then, section 4.2.2 focuses on a single and large
rectangular branch within one large rectangular box (Figure 2). In this study case, we first inspect
the signal invasion on this geometry while increasing the number of influxes. We observe that when
synaptic inputs are added, the potential increases significantly until reaching a strong excitability
threshold. This leads us to believe that the co-localization of synaptic inputs play an important role
during neuron depolarization.

In the last section 4.2.3, we examine the ion dynamics and the potential propagation near the mem-
brane, i.e., in the boundary layer. The results reveal some fluctuations near the membrane wall,
suggesting the presence of a boundary layer.

According to the previous chapter, we define a time t0 for each simulation, corresponding to the
time at which the concentration reaches its maximum value on the whole domain. Notice that the
latter maximum is achieved in both space and time. The value of t0 will be precised in each case.
Besides, the reader may refer to Table 1, for a recall upon the electrodiffusion parameters at hand.
Finally, in all the following sections, we present the numerical results for cP,i and cP,e, since those for
cN,i and cN,e are qualitatively similar.
Finally, throughout this chapter, we define Xh as the set of P1 vertices of Th (see Definition 4.1), K∗

a vertex of X∗
h and n as the time iteration in the simulations. Then, in a similar fashion as Chapter 3,

we consider the set Z∗
S as the set of vertices on the segment S such that:

(4.16) Z∗
S = {K∗ ∈ X∗

h, such that K∗ ∩ S ̸= ∅}
and K∗

X as the unique vertex which is the closest of the point X.

In this section, the time step is equal to dt = 5 × 10−3, however the final time is equal to Tf = 3 sec
for Section 4.2.1 and Section 4.2.2, and it is equal to Tf = 1 with dt = 5× 10−5 sec for the last Section
4.2.3.

4.2.1. Propagation of an influx of ions at a dendritic tree bifurcation. In this section, we
showcase application of the multi-domain approach with initial conditions from Table 1, aimed at
studying the summation on a bifurcation domain, similar to Chapter 3. Then, we compare our results
from the multi-domain with single-domain results under FreeFEM++ and DDFV. Finally, we observe
electric propagation within the membrane, which is an advantage of the multi-domain approach. Our
objective is therefore to model signal propagation at a bifurcation in the dendritic tree, where a large
branch divides into two thinner ones (Fig. 5). We consider a multi-domain Ω = Ωi∪Ωe∪Ωm representing
the intracellular (Ωi), extracelllular (Ωe) and membrane media (Ωm). We model the influx of ions as a
current I(t) (eq. (4.7)) injected at the end of the two thin branches (∂Ωup

ri , ∂Ωup
re for the upper branch,

and ∂Ωdo
ri , ∂Ωdo

re for the lower branch, with ∂Ωri = ∂Ωup
ri ∪ ∂Ωdo

ri and ∂Ωre = ∂Ωup
re ∪ ∂Ωdo

re , as defined
in Section 4.1.2). We impose Dirichlet boundary conditions at the end of the large branch (∂Ωi,D on
Fig. 5), to represent the connection with a larger dendrite (ionic reservoir, similarly to Chapter 3).
We consider the initial and boundary conditions defined in Section 4.1.2 and Table 1. The different
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lengths and nodes defining the domain Ω are described in Fig. 5, with the length values and nodes
coordinates given in Table 2.

( )

( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

Figure 5. Illustration of the bifurcation multi-domain Ω = Ωi ∪Ωm ∪Ωe. Note that
the domain is not to scale. The coordinates of each node are given in Table 2 accord-
ingly. We consider the lines y1 = [−22, 11] × {2.0035}, y2 = [−22, 11] × {−0.0035},
y3 = [−22, 11]× {1}.

r 0.12 µm Radius of ∂Ωri ,Ωre in Figure 5 for Ω
(A) (-22,10) Position (x,y) of node A
(B) (20,10) Position (x,y) of node B
(C) (-22,-8) Position (x,y) of node C
(D) (20,-8) Position (x,y) of node D
(E) (-22,2.007) Position (x,y) of node E
(F) (-22,-0.007) Position (x,y) of node F
(G) (11,2.007) Position (x,y) of node G
(H) (11,-0.007) Position (x,y) of node H
(I) (-22,2) Position (x,y) of node I
(J) (11,2) Position (x,y) of node J
(K) (-22,0) Position (x,y) of node K
(L) (11,0) Position (x,y) of node L
(M) (15.007, 5.012)up, (15.007,−2.4)do Position (x,y) of node M
(N) (15.007, 4.76)up, (15.007,−2.64)do Position (x,y) of node N
(O) (15.007, 4.64)up, (15.007,−2.76)do Position (x,y) of node O
(P) (15.007, 4.4)up, (15.007,−3.012)do Position (x,y) of node P
(Q) (15, 5)up, (15,−2.4)do Position (x,y) of node Q
(R) (15, 4.76)up, (15,−2.64)do Position (x,y) of node R
(S) (15, 4.64)up, (15,−2.76)do Position (x,y) of node S
(T) (15, 4.4)up, (15,−3)do Position (x,y) of node T
(U) (11,1) Position (x,y) of node U
(V) (11.007,1) Position (x,y) of node V

Table 2. Geometric parameters for multi-domain Ω, representing a dendritic bifur-
cation (Figure 5).

As mentioned earlier, our model considers that the end of the large branch is connected with a
wider one, called an ionic reservoir, such that the ionic concentrations at ∂Ωi,D are constant. The
distance between this ionic reservoir and the bifurcation influences the dynamics of potential and ionic
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concentrations everywhere on Ωi (see Chapter 3). In the following, we consider the longest branch
where the distance between (I) and (J) is equal to 33 µm , as in Chapter 3.

4.2.1.1. Bifurcation within the multi-domain. We now consider the multi-domain model rep-
resenting the bifurcation. The objective is to observe how the signal sums up under this model
where the potential is modeled with continuity conditions at the membrane interfaces, as explained
in Section 4.1. To achieve this, we use a triangular mesh with 461377 cells and a mesh size with
{hmin = 0.002, hmax = 8.4}. The electrodiffusion parameters are taken from Table 1. In particular,
the potential is initially −75mV within the interior medium and the membrane. In Figure 6, we plot
the discrete values

(
c21,ih,P − c0P,i

)
and

(
c21,eh,P − c0P,e

)
, corresponding to the concentration cP,i − c0P,i and

cP,e − c0P,e at time t0 = 0.105 sec. We observe that the maximum (resp. minimum) of the solution,
Ai = max

K∗∈Th

(
c21,iK∗,P − c0P,i

)
= 119.7 mM (resp. Ae = min

K∗∈Th

(
c21,eK∗,P − c0P,e

)
= −25.98 mM), is reached at

the injection boundary ∂Ωri (resp. ∂Ωre). At the injection boundary, we observe the transfer of ionic
concentration from the extracellular medium Ωe to the intracellular medium Ωi. As we move from
the thinner branches to the larger one, the solution decreases, reaching the value c0P,i at the Dirichlet
boundary ∂Ωi,D.

Figure 6. Discrete values
(
c21,ih,P−c0P,i

)
and

(
c21,eh,P −c0P,e

)
of the concentration cP,i−c0P,i

and cP,e − c0P,e at time t0 = 0.105 sec.

We compare ionic concentration and potential dynamics in two different scenarios as in Chapter
3. We recall that in scenario 1, only the upper branch receives the influx ((∂Ωup

ri , ∂Ωup
re ) in Fig. 5),

whereas in scenario 2, there is an influx of ions at both ends of the two thin branches ((∂Ωup
ri , ∂Ωup

re )
and (∂Ωdo

ri , ∂Ωdo
re ) in Fig. 5). In scenario 1, (∂Ωdo

re , ∂Ωdo
ri ) is turned into an homogeneous Neumann

boundary condition. Once again, we will call a branch "active" if it receives an influx of ions, and "in-
active" if it does not. We run simulations in domain of Fig. 5. In Fig. 7, we compare the concentration(
c21,iK∗,P − c0P,i

)s
K∗∈Z∗

y3

and potential
(
V 21
K∗

)s
K∗∈Z∗

y3

at time t0 = 0.105 sec, for the two scenarios s = 1

and s = 2.

In both graphs, the blue curve represents the scenario 1 with one active branch, while the red curve cor-
responds to scenario 2 where the two branches are active. We observe that, on line y3 = [−22, 11]×{1}
(see Fig. 5), the concentration and potential values in the scenario 2 (red) are twice the values in sce-
nario 1 (blue).
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Figure 7. Evolution of the concentration and potential dynamics on line y3 for the
two scenarios 1 and (resp. 2), with one (resp. two) active branch(es). A: Discrete
values

(
c21,iK∗,P − c0P,i

)s
K∗∈Z∗

y3

, at peak time t0 = 0.105 sec, for the two scenarios: s = 1

in blue and s = 2 in red. In black, we plot 2
(
c21,iK∗,P − c0P,i

)1
K∗∈Z∗

y3

. B: Discrete values(
V 21
K∗

)s
K∗∈Z∗

y3

, at peak time t0 = 0.105 sec, for s = 1 in blue and s = 2 in red. In

black, we plot 2
(
V 21
K∗

)1
K∗∈Z∗

y3

.

In Fig. 8, we plot the time evolution of the concentration cP,i−c0P,i and the potential V at position
(U), i.e.

(
cn,iK∗

U ,P − c0P,i

)s
n=0,··· ,N and

(
V n
K∗

U

)s
n=0,··· ,N for the two scenarios s = 1 and s = 2. We recall

that K∗
U is the unique vertex which is the closest of the point (U). We observe that the potential and

concentration dynamics in scenario 2 is twice the dynamics in scenario 1.

0 1 2 3
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Figure 8. Evolution of the concentration and potential dynamics at point (U) for
the two scenarios 1 and 2. A: Discrete values

(
cn,iK∗

U ,P − c0P,i

)s
n=0,··· ,N , for the two

scenarios: s = 1 in blue and s = 2 in red. In black, we plot 2
(
cn,iK∗

U ,P − c0P,i

)1
n=0,··· ,N .

Notice that max
n=0,··· ,N

∣∣∣(cn,iK∗
U ,P − c0P,i

)2 − 2
(
cn,iK∗

U ,P − c0P,i

)1∣∣∣ = 0.98. B: Discrete values(
V n
K∗

U

)s
n=0,··· ,N for s = 1 in blue and s = 2 in red. In black, we plot 2

(
V n
K∗

U

)1
n=0,··· ,N .

Notice that max
n=0,··· ,N

∣∣∣(V n
K∗

U

)2 − 2
(
V n
K∗

U

)1∣∣∣ = 1.1.

We finally compute the absolute differences between the concentration
((
cn,iK∗,P−c0P,i

)2
K∗∈Z∗

y3

)
n=0,··· ,N

and twice the concentration
((
cn,iK∗,P − c0P,i

)1
K∗∈Z∗

y3

)
n=0,··· ,N

on the line y3 and for t ∈ [0, Tf ]. In other

words, we are interested in the following quantity:
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e :=

∣∣∣∣∣((cn,iK∗,P − c0P,i

)2
K∗∈Z∗

y3

)
n=0,··· ,N

− 2
((
cn,iK∗,P − c0P,i

)1
K∗∈Z∗

y3

)
n=0,··· ,N

∣∣∣∣∣.(4.17)

The difference e remains below 0.3 mM up to x = 0 µm and oscillates between 0 mM and 0.6 mM
up to x = 11 µm (bifurcation at point (U)). Concerning the potential, this difference remains close to
1 mV along y3. Still, we achieve coherent summation results consistent with experimentally observed
linear summation of signals in passive dendrites [22].

Afterwards, our aim is to compare the results for the bifurcation obtained with our FreeFEM++
implementation to the DDFV method for spatial discretization (Chapter 3). To achieve this, we will
consider three distinct cases:

• the multi-domain approach under FreeFEM++, denoted by case (1),

• the single-domain approach under FreeFEM++, denoted by case (2),

• the single-domain approach under DDFV method, denoted by case (3).

Recall that here both branches are actives. For the case (2) and (3), we only consider Ωi, the
intracellular domain of the bifurcation and we impose homogeneous Neumann boundary conditions to
the potential as describe in Chapter 3. For case (2), we choose a mesh size with {hmin = 0.006, hmax =

0.31}, containing 7016 triangular cells. For case (3), we use the same mesh as Chapter 3, the mesh
has 7863 triangular cells and the mesh size is between {hmin = 0.05, hmax = 0.4}. For all cases, we
took initial conditions from Table 1. Furthermore, in order to clearly distinguish between the discrete
values of the three cases, we denote:

• (cdt,ih,P , V
dt,i
h ) for case (1),

• (cdth,P , V
dt
h ) for case (2),

• (cT ,dt
P , V T ,dt) for case (3).

In Figure 9, we plot the FreeFEM discrete values
(
c21h,P − c0P,i

)
, from case (2), corresponding to the

concentration cP − c0P,i at time t0 = 0.105 sec. We observe that the maximum of the FreeFEM discrete
solution for (2), A2 = max

K∗∈Th

(
c21K∗,P − c0P,i

)
= 119.7 mM, is reached at the injection boundary ∂Ωri .

Along x, the solution decreases to reach the value c0P,i at the Dirichlet boundary ∂Ωi,D. We obtain
the same values as Ai, the maximum from case (1). In case (3), we found a value of A3 = 93.8 mM,
which is smaller. We believe this variation is due to the difference in mesh resolution near the inputs,
(hmin = 0.002 for (1), hmin = 0.006 for (2) and hmin = 0.05 for (3)). Unfortunately, in FreeFEM++,
we were unable to create exactly the same mesh as that used in the DDFV approach (3), especially
near the inputs.

Figure 9. FreeFEM discrete values
(
c21h,P − c0P,i

)
of the concentration cP,i − c0P,i at

time t0 = 0.105 sec, from (2).
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Then, we consider the line y3 and the set of vertices Z∗
y3

(see (4.16)). We compare the evolution
of concentrations and potential along y3 at time t0, for all cases. For scenario s = 2, we retrieve the
red curves of discrete values

(
c21,iK∗,P − c0P,i

)2
K∗∈Z∗

y3

and
(
V 21,i
K∗

)2
K∗∈Z∗

y3

, at peak time t0 = 0.105 sec,

from Figure 7, corresponding to case (1). Then, we compare these curves with those obtained from
simulations on the single-domain, i.e, discrete values

(
c21K∗,P − c0P,i

)
K∗∈Z∗

y3

and
(
V 21
K∗

)
K∗∈Z∗

y3

for case

(2) and
(
cK

∗,21
P − c0P,i

)
K∗∈Z∗

y3

and
(
V K∗,21

)
K∗∈Z∗

y3

for case (3). We plot these results on the same

graphs in Figure 10, with the multi-domain results in red for case (1), the single-domain results in
blue for case (2) and in green for case (3). We observe that in the FreeFEM++ cases (1) and (2),
the concentration and potential curves overlap. However, in the DDFV setting, which is case (3), the
curves are slightly below those of cases (1) and (2).
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Figure 10. Evolution of the concentration and potential dynamics on line y3 for all
cases, at peak time t0 = 0.105 sec. A: FreeFEM discrete values

(
c21,iK∗,P − c0P,i

)2
K∗∈Z∗

y3

in red for case (1). FreeFEM discrete values
(
c21K∗,P − c0P,i

)
K∗∈Z∗

y3

in blue for case (2).

DDFV discrete values
(
cK

∗,21
P −c0P,i

)
K∗∈Z∗

y3

in green for case (3). B: FreeFEM discrete

values
(
V 21,i
K∗

)2
K∗∈Z∗

y3

in red for case (1). FreeFEM discrete values
(
V 21
K∗

)
K∗∈Z∗

y3

in blue

for case (2). DDFV discrete values
(
V K∗,21

)
K∗∈Z∗

y3

in green for case (3).

As a result, we calculate the differences between the curves of Figure 10 pairwise, as displayed in
Figure 11 below. For completeness, the quantities appearing in Figure 11 are formally given by:

ecP ,12 :=
∣∣∣(c21,iK∗,P − c0P,i

)
K∗∈Z∗

y3

−
(
c21K∗,P − c0P,i

)
K∗∈Z∗

y3

∣∣∣,
ecP ,13 :=

∣∣∣(c21,iK∗,P − c0P,i

)
K∗∈Z∗

y3

− (cK
∗,21

P − c0P,i)K∗∈Z∗
y3

∣∣∣,
ecP ,23 :=

∣∣∣(c21K∗,P − c0P,i

)
K∗∈Z∗

y3

− (cK
∗,21

P − c0P,i)K∗∈Z∗
y3

∣∣∣.
In other words, ecP ,12 is the error between the cP -concentrations of cases (1) and (2), while ecP ,13 is
that between the cP -concentrations of case (1) and (3), and so on. The above quantities are analogously
defined for the potential curves of Figure 10B, with according errors denoted by:

eV,12 :=
∣∣∣(V 21,i

K∗

)
K∗∈Z∗

y3

−
(
V 21
K∗

)
K∗∈Z∗

y3

∣∣∣,
eV,13 :=

∣∣∣(V 21,i
K∗

)
K∗∈Z∗

y3

− (V K∗,21)K∗∈Z∗
y3

∣∣∣,
eV,23 :=

∣∣∣(V 21
K∗

)
K∗∈Z∗

y3

− (V K∗,21)K∗∈Z∗
y3

∣∣∣.
From Figure 11A below, one may observe that the error ecP ,13 for the cP -concentrations between

cases (1) and (3) increases till the bifurcation point, i.e the merging point between the two branches
(located at x = 11). The same observation holds for ecP ,23. In other words, the cP values computed
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based on the multi-domain with FreeFEM++ and the DDFV single-domain differs. This is also the
case when considering the single-domain with both FreeFEM++ and DDFV. In contrast, the error
ecP ,12 is rather flat and approaching zero. The latter means that the multi-domain modeling with
FreeFEM++ yields similar values for cP as the single-domain with FreeFEM++.

From Figure 11B, we further remark that the tendency for the potential errors eV,12, eV,13 and
eV,23 is analogous to the above behavior of respective cP -errors.
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Figure 11. Absolute differences between the results from all cases. A: ecP,12
in blue

with max(ecP,12
) = 2.91. ecP,13

in brown with max(ecP,13
) = 6.35. ecP,23

in green with
max(ecP,23

) = 6.81. B: eV,12 in blue with max(eV,12) = 0.61. eV,13 in brown with
max(eV,13) = 2.41. eV,23 in green with max(eV,23) = 2.87.

We summarize the results of the three approaches in Table 3, where we present the percentages of
these differences on y3.

Error ecP,12
eV,12 ecP,13

eV,13 ecP,23
eV,23

Maximum 2.91 0.61 6.35 2.41 6.81 2.87
Percentage 8 % 1 % 19 % 4 % 17 % 5 %

Table 3. Summary of the errors for all relative cases (1), (2) and (3): Maximum
values and according percentages with respect to Fig. 11.

The relatively high differences 19% (resp. 17%) for ecP ,13 (resp. ecP ,23), can be explained by the
difference in meshes used within each framework. Indeed, near the inputs, the FreeFEM++ mesh of
both cases (1) and (2), is 10 times finer than the mesh employed in Chapter 3 that is in case (3).
For the first two cases with FreeFEM++, we were unable to create a coarser mesh near the wall
where we model the inputs, otherwise we would have had too few cells. Still, while we do remark
differences between the overall results of Table 3, we qualitatively observe similar behaviors for all pair
of comparative cases of study. Regarding the two studies under FreeFEM++, cases (1) and (2), we
note differences of 8 % (resp. 1 %) for the concentration cP (resp. the potential V ). For this test
case, there is no significant differences in the FreeFEM discrete solution between the multi and mono
domain. This suggests that the homogeneous Neumann boundary condition on the potential is not
perturbing much the solution.

4.2.1.2. Signal summation within the membrane. An interesting advantage of the multi-
domain approach is the ability to observe events within the membrane. To achieve this, we selected
multiple points at different positions within the membrane and studied the potential behavior therein.
It is worth noting that, once again, only the potential exists within the membrane. In Figure 12, we
depict the potential evolution for both scenarios within the membrane. We plot in A the potential
on y1, at the time t = 0.105 sec, i.e the discrete values

(
V 21
K∗

)s
K∗∈Z∗

y1

. In addition, we plot in B(
V n
K∗

GJ

)s
n=0,··· ,N at the midpoint between points (G) and (J), denoted as GJ , for both scenarios.
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Figure 12. Evolution of the potential dynamics for both scenarios 1 and 2. A:
Discrete values

(
V 21
K∗

)s
K∗∈Z∗

y1

on y1 for s = 1 in blue and s = 2 in red, at the time

t = 0.105 sec. In black, we plot 2
(
V 21
K∗

)1
K∗∈Z∗

y1

. B: Discrete values
(
V n
K∗

GJ

)s
n=0,··· ,N

for s = 1 in blue and s = 2 in red, at point GJ . In black, we plot 2
(
V n
K∗

GJ

)1
n=0,··· ,N .

We observe that linear summation of potential also occurs within the membrane. Furthermore, an
important observation is that, spatially, the potential dynamics are the same, as the values of V on
lines y1 and y2 are almost equal, even when one branch is active. This result appears to be in line with
the fact that the potential propagates along the membrane. We also observe on graph A a sudden
change (from approximately −37.5 mV to −75 mV) near the Dirichlet boundary (x = −22). This
abrupt change is due to the membrane being very thin, making it difficult to refine near the Dirichlet
boundary, where we imposed -75 mV.
Furthermore, we can conclude that to obtain results such as linear summation, the single-domain ap-
proach is sufficient. However, it remains limited since we have no information within the membrane and
outside the dendrite. Thus, there is a trade-off between the time cost of multi-domain implementation,
its complexity, and obtaining information inside the membrane.

4.2.2. Effect of influxes on a large rectangular branch of dendrite. The present setup is ded-
icated to investigating the signal invasion on the multi-domain by increasing the number of ionic
influxes from i = 1 to i = 7, with i the number of influxes. This choice of the number of ion influxes is
determined based on considerations related to numerical and biological aspects, elucidated in detailed
explanations, further in this section.

The initial scenario is denoted as s = 1, corresponding to a single influx (i = 1) at position 1. Subse-
quently, with the introduction of each additional influx onto the membrane, we label the scenario as
s = i for i supplementary influxes at distinct positions i. We demonstrate that the potential signifi-
cantly increases as the number of influxes increases as well, resulting in an important depolarisation.
About the ionic dynamics, we observe less significant changes in their quantity during the numerical
simulations, in comparison to the potential.

In what follows, we use a triangular mesh containing 251357 cells and a mesh size with {hmin =

0.002, hmax = 8.4}. We detail the domain dimensions with the coordinates of each point in Table 4
and Table 5.

In this model, similar to the active and inactive branches (section 4.2.1), we define locations on the
membrane where ion influxes occur. Depending on the scenario, these ion influxes are either active or
inactive. We model seven locations corresponding to the entries of ions, which entails defining: ∂Ωri =

∂Ω1
ri∪∂Ω2

ri∪∂Ω3
ri∪∂Ω4

ri∪∂Ω5
ri∪∂Ω6

ri∪∂Ω7
ri and ∂Ωre = ∂Ω1

re∪∂Ω2
re∪∂Ω3

re∪∂Ω4
re∪∂Ω5

re∪∂Ω6
re∪∂Ω7

re .
We illustrate these boundaries in Figure 13 below. We choose to define variable distances between them



85

modelling the existing distances between ion influxes within dendrites. These distances vary between
1 et 10 µm in the dendrite arborization, as commonly encountered in the biological literature [83].

Figure 13. Geometry of the multi-domain containing a large rectangular dendrite.
The domain is not to scale. The specific lines yc = [0, 49.993] × {55} and yV =
[0, 80]× {55}, where we monitor concentration and potential dynamics are plotted in
dashed black and dashed light green, respectively. The dimensions are provided in
Table 4 and Table 5.
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(A) (0,80) Position (x,y) of node A
(B) (80,80) Position (x,y) of node B
(C) (0,30) Position (x,y) of node C
(D) (80,30) Position (x,y) of node D
(E) (0,58.007) Position (x,y) of node E
(F) (0,52) Position (x,y) of node F
(G) (50,58.007) Position (x,y) of node G
(H) (50,52) Position (x,y) of node H
(I) (0,58) Position (x,y) of node I
(J) (49.993,68) Position (x,y) of node J
(K) (0,52.007) Position (x,y) of node K
(L) (49.993,52.007) Position (x,y) of node L
(M) (49.993,55.1)1 Position (x,y) of node M1

(N) (49.993,54.9)1 Position (x,y) of node N1

(O) (50,55.1)1 Position (x,y) of node O1

(P) (50,54.9)1 Position (x,y) of node P1

(Q) (35,55) Position (x,y) of node Q
(R) (45,55) Position (x,y) of node R
(S) (49.996,55) Position (x,y) of node S
(T) (55,55) Position (x,y) of node T

Table 4. Geometric parameters for the multi-domain, representing the large dendrite.

(M) (30, 58)2, (25.8, 52.007)3 Position (x,y) of node M2,M3

(M) (35, 58)4, (31.8, 52.007)5 Position (x,y) of node M4,M5

(M) (39, 58)6, (39.8, 52.007)7 Position (x,y) of node M6,M7

(N) (30.2, 58)2, (26, 52.007)3 Position (x,y) of node N2,N3

(N) (35.2, 58)4, (32, 52.007)5 Position (x,y) of node N4,N5

(N) (39.2, 58)6, (40, 52.007)7 Position (x,y) of node N6,N7

(O) (30, 58.007)2, (25.8, 52)3 Position (x,y) of node O2,O3

(O) (35, 58.007)4, (31.8, 52)5 Position (x,y) of node O4,O5

(O) (39, 58.007)6, (39.8, 52)7 Position (x,y) of node O6,O7

(P) (30.2, 58.007)2, (26, 52)3 Position (x,y) of node P2,P3

(P) (35.2, 58.007)4, (32, 52)5 Position (x,y) of node P4,P5

(P) (39.2, 58.007)6, (40, 52)7 Position (x,y) of node P6,P7

Table 5. Geometric parameters of influxes for s = {2,3,4,5,6,7}.

In our context of rectangular dendritic branch with three domains (intracellular, extracellular, and
membrane), ion influxes are incrementally added, reaching up to 7 influxes. As stated earlier, we call
Scenario i the case where we consider i single influx(es), i = 1, . . . , 7. We run 2D simulations for all
scenarios for which we provide a non-exhaustive numerical analysis, but we depict exclusively scenario
1 and scenario 7 for visualization. We focus on the dynamics of potential V in Fig. 14 - for s = 1 in A
and s = 7 in B - and ion concentrations cP,i, cP,e in Fig. 15 - for s = 1 in A and s = 7 in B. We show
simulations at respective peak time t0, which we specify and denote as tc0 for the concentrations and
tV0 for the potential. We observe a significant difference between the potential in scenario 1 (Fig. 14A)
and scenario 7 (Fig. 14B). The maximum potential for scenario 1 is 1.83 mV, whereas for scenario 7,
it skyrocketed till 81.14 mV. Additionally, we notice that for s = 1, the potential within the dendrite
remains overall between -37 mV and -75 mV, which is insufficient to reach a significant depolarization.
Moreover, for s = 7, we surpass this value substantially within the dendrite, with a peak at 81.14 mV
located near the influx i = 1. In Figure 15, we do not observe significant differences between the
concentrations in both scenarios 1 and 7. Indeed, the maximum concentrations within the interior of
the dendrite are 44.13 mM and 51.74 mM for s=1 and s=7, respectively, which is less pronounced
compared to the potential. However, approximately half of the branch exhibits a different dynamic.
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Indeed, the ion concentration cP,i, which was elevated only near the influx for scenario 1, increases
spatially between approximately x = 20 and x = 50 µm in scenario 7. In the same way, we also note
the absence of significant changes in the exterior concentrations.

Figure 14. Spatial variation of the potential in the domain with scenario i = 1,7.
Discrete values

(
V 12
h

)i of the potential V at time tV0 = 0.06 sec.

Figure 15. Spatial variation of the concentrations in the domain with scenario
i = 1,7. Discrete values

(
c21,ih,P −c0P,i

)i and
(
c21,eh,P −c0P,e

)i of the concentration cP,i−c0P,i

and cP,e − c0P,e at time tc0 = 0.105 sec.

Following the visualizations above, we compare numerical solutions derived for the different sce-
narios described earlier, by evaluating their evolution on two straight lines yc = [0, 50]× {55} for the
concentration cP,i at tc0 and yV = [0, 80]× {55} for the potential V at tV0 . We consider the according
sets of cells Z∗

yc
and Z∗

yV
. In Figure 16, we compare the concentration

(
c21,iK∗,P − c0P,i

)s
K∗∈Z∗

yc

at tc0 and

potential
(
V 12
K∗

)s
K∗∈Z∗

yV

at tV0 for all scenarios s = 1, . . . ,7. Notably, the signal invasion along x within
the dendrite is observed. Regarding the potential, the creation of significant depolarization becomes
evident with at least i = 5 nearby ion influxes (scenario s = 5), and a maximum value of potential of
33.33 mV. Additionally, as one moves away from these influxes and gets closer to the ionic reservoir,
the potential decreases. Beyond the membrane, outside the dendrite, we observe that the potential
tends toward a constant value of 0 mV, as one may expect. Concerning the concentration dynamics,
we observe that the maximum is always located at the influx i = 1. Furthermore, the addition of
influxes creates an increasingly significant fluctuation between approximately x = 20 µm and x = 40

µm , from 0 mM with i = 1 to almost 27 mM with i = 7.
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Figure 16. Evolution of the potential and concentration dynamics on yV and yc for
all the scenarios s = {1,2,3,4,5,6,7}. A: Discrete values

(
V 12
K∗

)s
K∗∈Z∗

yV

at peak time

tV0 = 0.06 sec. B: Discrete values
(
c21,iK∗,P − c0P,i

)s
K∗∈Z∗

yc

at peak time tc0 = 0.105 sec.

We recall that in Chapter 3, we established that when two neighboring dendritic spines are 10.8 µm
away from each other, one of them perceives 62 % of the electrical signal from the other. This result
suggests that, in our setting of increasing influxes, the electrical signal from an influx will influence
the one coming from its neighbor, based on the distance between them both. Thus, we present further
investigations involving the temporal evolution of potential and ion concentration dynamics at several
specific points (Q)-(R)-(S)-(T) (Fig. 13, Table 4).

We plot in Figure 17 the time evolution of the potential
(
V n
K∗

X

)s
n=0,...,N

for the scenarios s = {1,4,5,7}.
Inside and outside the dendritic branch, we clearly observe the effect of adding influxes. Note that
the curves in graph C of Fig. 17 overlap, i.e., the potential in the membrane remains the same for
all scenarios. Outside the membrane (position (T)) in graph D, the potential varies overall from 0
to negative values along the time sub-interval [0, 0.2] (sec), then a depolarization is observed until a
resting state where the potential tends towards 1 mV. Within the dendrite, i.e., in graph A (position
(Q)) and graph B (position (R)), we observe a large depolarization starting from scenarios 5,6 and 7
only.
These results remarkably suggest that a significant number, at least i = 5 influxes, of closely spaced
influxes, is needed to generate a sufficient excitability threshold of the potential within a dendritic
branch.
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Figure 17. Time evolution of
(
V n
K∗

X

)s
n=0,...,N

for the scenarios s = {1,4,5,7} at po-
sitions (Q)-(R)-(S)-(T). A:

(
V n
K∗

Q

)s
n=0,...,N

. B:
(
V n
K∗

R

)s
n=0,...,N

. C:
(
V n
K∗

S

)s
n=0,...,N

. D:(
V n
K∗

T

)s
n=0,...,N

.

Concerning the concentrations inside the dendrite, we examine their dynamics at positions (Q)-
(R) for scenarios 1, 4, 5, and 7. In Fig. 18, we plot the time evolution of concentrations

(
cn,iK∗

X ,P −
c0P,i

)s
n=0,...,N

for scenarios s = {1,4,5,7}. We observe that, for a single influx (s = 1), the concentra-
tion peak is very close to its initial value c0P,i, while the peak within the other scenarios s > 1 increases
with the number of influxes.

In graphs A and B of Fig. 18, the concentration peak of scenario 7 has a value approaching 40
mM, suggesting that ion concentrations add up. The signal invasion is therefore more significant with
seven times more influxes contributing to an important depolarization of the potential within the neu-
ron. Also, we observe a sublinear summation of influxes, contrary to the bifurcation case in Section
4.2.1. This result is coherent with the work of [22] where the authors find a sublinear summation when
inputs are on the same branch.
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Figure 18. Time evolution of the concentration
(
cn,iK∗

X ,P − c0P,i

)s
n=0,...,N

for the sce-

narios s = {1,4,7} at positions (Q)-(R). A:
(
cn,iK∗

Q,P − c0P,i

)s
n=0,...,N

. B:
(
cn,iK∗

R,P −
c0P,i

)s
n=0,...,N

.

To summarize, the potential invasion is more important than the ionic concentration invasion
with neighboring and increasing influxes. This result is coherent with the results found in Chapter 3.
As expected, the dendrite requires multiple nearby influxes from neighboring synapses to generate a
sufficient excitability threshold. We locally remark that, along a 50 µm long dendrite (see Fig. 15),
five influxes are needed to significantly influence information transmission. These influxes are highly
frequent in dendrites for signal propagation, validating that dendrites play a crucial role in the func-
tioning and generation of action potentials [85].

4.2.3. Numerical illustration of the boundary layer. When electrolytes are in contact with solid
surfaces, especially charged ones, they give rise to a phenomenon known as the electrical double layer
(EDL). This EDL consists of two layers of opposite charge: one layer composed of ions adhering to
the surface (the Stern layer) and another layer of diffuse ions extending into the bulk solution. This
complex interface, often referred to as the Electric Boundary Layer (EBL), is of immense importance
in fields ranging from electrochemistry to biophysics.

Understanding the dynamics of ions within the EBL is critical for elucidating processes such as
neural signaling. However, its very small size poses challenges for numerical illustration. The thickness
of the Debye length, that is the thickness of the EBL denoted λD, can be computed with the formula:

λD =

√
εiε0RTθ
F 2c0P,iL

2
(4.18)

where L is the typical length of the system. In our study, the EBL thickness λD is then approxi-
mately 7 nm.
In Chapter 3, the homogeneous Neumann boundary condition on the potential at the membrane wall,
kills numerically the EBL. This boundary condition modeling seems coherent when dealing with a
single domain representing only the interior of the neuron. Indeed, existing works in the literature
have shown that the membrane behaves like an electrical insulator in the absence of ion channels, see
[42]. In contrast, within our multi-domain modeling, since the Poisson equation lives throughout the
domain, only the electrical permittivity coefficients vary among different media. This modeling avoids
the need to impose boundary conditions for the potential at the membrane. Furthermore, this setting
is consistent with the physiological behavior of the membrane, where its coefficient ϵm = 4 (see Table
1) is very small, indicating that the membrane walls barely allow potential propagation. Using our
multi-domain approach, we thus expect to capture the EBL in our simulations. Therefore, in this final
section, we try to examine the ion dynamics and the potential propagation near the membrane, i.e.,
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within the EBL. We show that there is a fluctuation within this layer for the ion concentrations and
the potential.

To achieve this, we consider new dimensions of a smaller multi-domain consisting of a dendrite
branch (see Figure 19), similar to the previous sections. This domain is smaller to ensure nodes
within λD = 0.007 µm , once again the thickness of the EBL (4.18), close to membrane walls.
This choice implies an important number of cells, i.e we use 567128 cells and a mesh size with
{hmin = 0.0002, hmax = 8.4}. The simulation time is set to Tf = 1 sec with a time step dt = 5× 10−5.
Additionally, we adjusted the right corners of the branch to avoid numerical singularities due to the
large number of cells and the Neumann boundary conditions at the membrane walls for the concen-
trations. Indeed, right angles within a mesh can pose issues when not adequately addressed, as simple
finite elements may struggle to accurately represent the solution within these regions. This challenge
arises from the localized nature of the shape functions associated with these finite elements, which
may struggle to capture rapid or abrupt variations in the solution near corners. Also, when a large
number of cells is used, numerical singularities can be increased due to high solution gradients near
corners. This can lead to numerical instabilities or poor solution convergence. Hence, we believe that
the DDFV method will be better suited to numerically resolve the EBL. The results of this section
were challenging to implement via FreeFEM++, i.e., the refinement very close to the wall was chal-
lenging, and we could not guarantee mesh points in the EBL on the outside of the membrane. We only
guarantee these points inside. Therefore, we encountered numerical issues, and we believe these are,
once again, preliminary results. We depict the domain in Figure 19, with its dimensions in Table 6.

Figure 19. Geometry of the multi-domain containing a dendrite branch. The domain
is not to scale. The dimensions are provided in Table 6.

In this study, we ensure the presence of 1 to 3 nodes within the "interior" EBL and observe small
fluctuations. However, we encounter limitations in further refinement. Therefore, we believe that the
standard mesh is insufficient and that a more suitable mesh, closer to the boundary layer, would be
necessary for future work, particularly with the DDFV method, where the freedom to choose the mesh
would be more straightforward. In addition, we compare our results with those provided in Chapter
3, subsection 3.2.2, where we showed the numerical behavior of our DDFV results in the presence of
boundary layer, using a test case inspired by the one-dimensional study conducted in [81].
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(A) (0,52) Position (x,y) of node A
(B) (0,54.5) Position (x,y) of node B
(C) (0,54.507) Position (x,y) of node C
(D) (0,55.5) Position (x,y) of node D
(E) (0,55.507) Position (x,y) of node E
(F) (0,58) Position (x,y) of node F
(G) (20,58) Position (x,y) of node G
(H) (20,52) Position (x,y) of node H
(I) (9.995,55.507) Position (x,y) of node I
(J) (9.988,55.5) Position (x,y) of node J
(K) (10,55.502) Position (x,y) of node K
(L) (9.993,55.495) Position (x,y) of node L
(M) (9.993,55.1) Position (x,y) of node M
(N) (9.993,54.9) Position (x,y) of node N
(O) (10,55.1) Position (x,y) of node O
(P) (10,54.9) Position (x,y) of node P
(Q) (9.993,54.512) Position (x,y) of node Q
(R) (9.988,54.507) Position (x,y) of node R
(S) (9.995,54.5) Position (x,y) of node S
(T) (10,54.505) Position (x,y) of node T

Table 6. Geometric parameters for the multi-domain, representing the dendrite branch.

Then, we present a zoom of our simulation Figure 20, close to the wall, in order to illustrate
the EBL. We show the discrete values

(
c2,ih,P

)
of the concentration cP,i at time t1 = 0.001 sec. The

zoom is between x = [9.981, 9.993] and y = [54.662, 54.676]. We observe a small fluctuation of the
concentrations from the wall x = 9.993 to the end of the EBL x = 9.986. Then, we observe a constant
value of the concentration within the bulk region x = [9.981, 9.986] in Figure 20.

Figure 20. Spatial variation of the concentrations in the domain. Discrete values(
c2,ih,P

)
of the concentration cP,i at time t1 = 0.001sec, between x = [9.981, 9.993] and

y = [54.662, 54.676]. We depict the bulk region with "inside" x = [9.981, 9.986] and
the EBL region with "EBL thickness" x = [9.986, 9.993], corresponding to λD. The
membrane wall is at x = 9.993.

We observe a similar behavior to that shown in Figure 2B in Chapter 3, where we investigated
the existence of a boundary layer in a 2D test case adapted from the study by [81]. Consequently, in
Fig. 21, we plot along the line yEBL

i = [9.96, 9.993]×{54.67}, the concentrations
(
c2,iK∗,P

)
K∗∈Z∗

yEBL
i

and(
c2,iK∗,N

)
K∗∈Z∗

yEBL
i

in graph A, and the potential
(
V 2
K∗

)
K∗∈Z∗

yEBL
i

in graph B.

In graph A, we observe that from the bulk at x = 9.96, both concentrations are equal with a value
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of 176.5 mM, indicating a resting concentration. Indeed, in graph B, we similarly observe that the
potential appears to tend towards a constant value in the bulk region. Next, for the concentrations
in graph A, as we reach the EBL, we observe a gradual peak for cP,i (resp. a symmetrically opposite
peak for cN,i) before decreasing to approximately 175.5 mM (resp., increasing to approximately 177.5
mM for cN,i) towards the membrane wall. Regarding the potential in graph B, from the bulk to the
EBL, we observe a slight decrease upon reaching x = 9.986, followed by a gradual increase towards
the membrane wall. The fluctuations observed for V are of the order of 0.06 mV, which is very small.

9.96 9.971 9.982 9.993
175

176

177

178

9.96 9.971 9.982 9.993
-75.45

-75.415

-75.38

Figure 21. Evolution of cP,i, cN,i and V , on the line yEBL
i , close to the mem-

brane walls at t1 = 0.001 sec. A: Discrete values
(
c2,iK∗,P

)
K∗∈Z∗

yEBL
i

in red and(
c2,iK∗,N

)
K∗∈Z∗

yEBL
i

in blue. The thickness of the EBL, λD, is shown with dashed blue,

i.e between x = [9.986, 9.993]. B: Discrete values
(
V 2
K∗

)
K∗∈Z∗

yEBL
i

. The thickness of

the EBL, λD, is shown with dashed black, i.e between x = [9.986, 9.993].

Our results exhibit a behavior similar to those calculated in Figure 3, Chapter 3. Indeed, elec-
troneutrality is attained beyond λD. The two concentrations overlap in the bulk region ’inside’, Figure
21A. However, we observe very small fluctuations whereas we expected strong gradients within the
EBL. In addition, we were unable to create a mesh with enough nodes in the domain to illustrate the
exterior EBL. Due to time constraints, we were unable to explore all the features of FreeFEM++ to
create a highly refined mesh only at the boundary layer. We believe that DDFV should be better at
addressing this EBL issue in a multi-domain setting.

Discussion and conclusion

In this chapter, we provide an algorithm to simulate the Poisson-Nernst-Planck system of equations
in two dimensions across three distinct domains: intracellular, extracellular, and the membrane, using
the FreeFEM++ software. Modeling multiple domains offers the advantage of avoiding the imposi-
tion of the homogeneous Neumann condition inherent in the modeling of electrical potential boundary
conditions within a single domain. Given that the membrane acts as an electrical insulator, we inte-
grate parameters such as electric permittivity coefficients specific to each medium (cytosol, membrane,
external medium). These coefficients are defined in Poisson’s equation and exhibit variation across sub-
domains. Consequently, the equation is solved across the whole domain, where the electric potential is
present everywhere, with only the permittivity coefficients varying over the distinct domains. Based
on this algorithm, we examine the dynamics of ions and potential within two specific 2D geometries of
the dendritic tree: a branching structure and a large rectangular branch. Built on the results obtained
in the previous chapter, where the DDFV framework was challenged on numerical applications of the
dendritic tree with a single intracellular domain, we came up with consistent outcomes regarding the
linear summation of signals from two thin branches modeling ion influx. Furthermore, we compare
multi-domain and single-domain approaches, concluding that given the similar results regarding the
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signals, the single-domain approach appears to be adequate for such studies. However, it remains
limited for investigating the dynamics of the potential within the membrane, where the multi-domain
approach is necessary.

Subsequently, we realize that adding ion influxes to a large dendritic branch allows us to obtain a
sufficiently high excitability threshold, such that the potential undergoes depolarization with a peak
reaching 30 mV and beyond. Even though we do not model the potential-gated channels contribut-
ing to action potential generation, we understand that the colocalization of synaptic currents plays a
major role in neuron depolarization. We locally observe that, along a 50 µm long dendrite, at least
5 influxes on each side of the dendritic membrane are required for sufficient electrical signal depo-
larization. Finally, we emphasize that our algorithm enables the visualization of the existence of the
electric boundary layer (EBL) at the membrane boundary, even if a weak gradient was observed. These
results suggest that all three domains must be considered in order to capture fluctuations in the EBL,
requiring a very fine mesh and, consequently, a robust and precise algorithm.
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CHAPTER 5

Cemracs Project: A composite finite volume scheme for the
Euler equations with source term on unstructured meshes

This chapter presents an independent work issued from a CEMRACS project (in 2022); it is a joint
work with M. Boujoudar, E. Franck, P. Hoch, C. Lasuen and Y. Le Hénaff and it has been submitted
to ESAIM: Proceedings and Surveys.

This work is a revised version for ESAIM: Proceeding and Surveys.

Abstract. In this work we focus on an adaptation of the method described in [54] in order to deal
with source term in the 2D Euler equations. This method extends classical 1D solvers (such as VFFC,
Roe, Rusanov) to the two-dimensional case on unstructured meshes. The resulting schemes are said
to be composite as they can be written as a convex combination of a purely node-based scheme and a
purely edge-based scheme. We combine this extension with the ideas developed by Alouges, Ghidaglia
and Tajchman in a preprint [2] – focused mainly on the 1D case – and we propose two attempts at
discretizing the source term of the Euler equations in order to better preserve stationary solutions. We
compare these discretizations with the “usual” centered discretization on several numerical examples.

5.1. Framework

In this work we study a numerical scheme for the 2D fluid Euler system with source term:

(5.1) ∂tU + divF(U) = S(x,U).
The unknown is U = (ρ, ρu, ρE)

T ∈ R4. The density of the fluid is ρ ∈ R+, its velocity is u = (u1, u2) ∈
R2 and its total energy is E ∈ R+. The space variable is denoted by x ∈ R2. The physical flux reads:

(5.2) F(U) = (F1(U) F2(U)) =


ρu1 ρu2

ρu21 + P ρu1u2
ρu1u2 ρu22 + P

(ρE + P )u1 (ρE + P )u2

 , P = (γ − 1)ρ

(
E − 1

2
∥u∥2

)
.

The pressure P is given by the ideal gas law and γ = 1.4 is the ideal gas constant. The source
term S = S(x,U) can be any smooth function of its two variables. We focus on the following cases:

• independent from U , S = S(x),
• gravity type S = (0, ρ∇ζ, ρ∇ζ · u)T , where ζ = ζ(x) is a smooth function,
• friction type S =

(
0,−λρu,−αλρ∥u∥2

)T , where α and λ are constants.

The purpose of this study is to generalize on arbitrary two-dimensional polygonal meshes the ideas
developed in [2]. In that work, the authors detail a discretization of the source term that allows to
exactly preserve the stationary solutions to (5.1), in the one-dimensional case. We will focus on the two-
dimensional framework, and discuss the one-dimensional counterpart in Section 5.2 as an introduction
to their method.

The main objective of the method presented in [2] is not different from the motivation of well-
balancedness as introduced in the pioneering works [46, 47]: the idea is to discretize Equation (5.1)
in such a way that stationary solutions to the continuous problem – or at least a subclass of them –



96

are also stationary solutions to the discretized problem. Well-balanced methods have been studied for
almost three decades now (e.g., [13, 23, 25, 28]), and their efficiency is not to be proved anymore.
They have been used in many applications, among others: [65, 79, 15, 4, 26, 19, 38] for shallow
waters equations, or [34, 24, 7] for the Burgers’ or Euler’s equations.

The difference between well-balancedness and Enhanced consistency (a term coined in [2]) lies in
the way the source term is discretized. In the former approach, the source term is generally treated in a
particular way, different from the discretization of the other quantities in (5.1). In the latter approach,
the source term is written as the divergence of some (approximate) function, and the two divergence
operators on the LHS and RHS can then be discretized in the same way. We are using the ideas of
[2] thoughout this work, and to emphasize the difference of discretization between their method and
other well-balanced method, we shall use the term Enhanced consistency for the ideas presented in
this work.

The notion of numerical fluxes and their computation in pratice are essential parts of Finite Volume
schemes. When arbitrary polygonal meshes are used, one can decide to approximate the numerical
fluxes either at the nodes or edges. The first approach is called pure nodal finite volume method
because the numerical fluxes are approximated at the nodes of the mesh, and the second approach is
called pure edge finite volume method because they are approximated at the edges of the mesh.

Several studies showed that node-based methods are efficient in Lagrangian update hydrodynamics
[33, 71] and allow to obtain a local mesh update that is consistent with geometric conservation laws.
It is not the case for the edge-based approach [6]. However, the node-based methods sometimes display
parasitic behaviors that may be treated using ad-hoc processes [33, 41]. On the other hand, pure edge
finite volume schemes perform well and benefit most from the one-dimensional numerical flux design
theory. For first order explicit finite volume schemes, the propagation is performed via cell adjacency
(i.e, edges), and this may generate an important CFL constraint on certain specified meshes (see for
instance [54, Sect. 1]).

This motivates the use of composite schemes, which make a continuous bridge between edge-based
and node-based finite volume schemes. This type of schemes was introduced in [54] to solve the
homogeneous 2D Euler equations. The numerical results show that these schemes perform well in
terms of stability. For instance, in [8, 14, 54] the polygonal pure nodal GLACE scheme from [33]
and the composite GLACE conical degenerate extension from [8, 14] were compared on the Sedov test
(for the Euler Gas Dynamics) solved with Lagrange update formulation. The authors of these papers
showed that the composite GLACE conical degenerate extension provides robust numerical results.
However, the pure nodal scheme exhibits numerical instability due to lack of numerical viscosity in the
diagonal direction, and furthermore both schemes are first order in time and space.

The purpose of the present work is to develop a composite flux scheme that extends the ideas of
[2] in the 2D case. In this unpublished but publicly available work, the authors develop a promising
method to discretize the source term in order to numerically preserve stationary solutions. However,
upon a closer look, we believe the computations in the section devoted to the 2D case needed more
investigations, and this justifies our work.

This paper is organised as follows: in Section 5.2 we give a brief overview of the VFFC scheme
in the 1D framework (see also [44]), and we recall the main idea of [2]. In Section 5.3 we define a
composite scheme along the lines of [54], which is a generalization of the VFFC scheme in 2D. Section
5.4 is devoted to the treatment of the source term and several methods are detailed. Eventually, some
numerical tests are provided in order to compare the different methods.

5.2. 1D Scheme

In this Section, we briefly recall the 1D VFFC scheme from [44], which discretizes the 1D version
of (5.1). This scheme is an Eulerian flux-based scheme. We also present the notion of enhanced
consistency as introduced in [2], which consists in discretizing the source term so as to preserve exactly
the stationary solutions of (5.1).
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5.2.1. Flux based scheme. We consider a space discretization
{
xj+1/2

}
j+1/2

of a given interval
[0, L], and define the cells Ωj = [xj−1/2, xj+1/2]. Their length is denoted by ∆xj = xj+1/2 − xj−1/2

and we also need to define their centroid {xj}j : xj = (xj+1/2 + xj−1/2)/2.

xj−1/2 xj+1/2 xj+3/2

Ωj Ωj+1

xj xj+1

∆xj+1

2
∆xj

Figure 1. 1D discretization

A classical finite volume scheme in time writes :

(5.3) ∆xj
Un+1
j − Uj

∆t
+ Gj+1/2 − Gj−1/2 = Qj , ∀j,

where the exponent n, denoting current time, has been removed in order to simplify the notations.
The numerical source term is denoted by Qj and can be computed using several formulas, see Section
5.2.2.

The quantity Gj+1/2 is the numerical flux between the cells j and j + 1. To obtain a flux-based
scheme, we define it as:

Gj+1/2 =
Fj + Fj+1

2
+ Λj+ 1

2

Fj −Fj+1

2
, Λj+ 1

2
= sign(J(Uj+1/2)),

where the sign of a matrix is defined in Definition 5.1. Here, J(Uj+1/2) denotes the Jacobian matrix of
the mapping U 7→ F(U) evaluated at Uj+1/2. The quantity Uj+1/2 is an approximation of the solution
at the interface between the cells Ωj and Ωj+1. One of the simplest approximations is the VFFC
average (see [44]), and in this case Uj+1/2 is given by Uj+1/2 = (Uj + Uj+1)/2. We emphasize the fact
that Uj and Uj+1 are only the unknowns of the Finite Volume scheme, and no additional knowledge
about the solution is required to compute Gj+1/2. The matrix Λj+ 1

2
is called an “upwind matrix”. We

also emphasize that the exponent j+1/2 in Gj+1/2 has to be understood now as a “global index” in the
mesh, and that Gj+1/2 is the numerical flux evaluated at the degree of freedom (dof) j + 1/2. More
details about the notion of “global” or “local” indices are given in Section 5.3.

A natural way of discretizing the source term is the following:

(5.4) Qj = S(xj ,Uj)∆xj .

However, as explained in [2], this choice of Qj does not allow to preserve exactly the stationary
solutions. We present in Section 5.2.2 the method designed in [2] aimed at preserving numerically the
stationary solutions.

Definition 5.1 (Sign of a matrix). Let J ∈ Rm×m be a diagonalizable matrix of size m × m. Let
{λi}i its eigenvalues, R the matrix composed of the eigenvectors associated to the eigenvalues, and L
the matrix associated to the left eigenvectors of J (i.e the eigenvectors of JT ). We have:

J = R diag ({λi})L, RL = LR = Im,

and we define:

(5.5) sign(J) = R diag ({sign(λi)})L.

In Definition 5.1, unless stated explicitely, the term “eigenvector” refers to the right eigenvectors,
that is the vectors v such that Jv = λv for some eigenvalue λ.

5.2.2. Enhanced consistency. One of the main disadvantages of the discretization (5.4) is that,
even if the scheme were to be initialized with an exact stationary solution, the approximate solution
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eventually drifts away from the stationary solution. However, it is desirable to be able to recover the
exact stationary solutions at the discrete level.

Criterion 5.2. If, at some iteration n, we have:

∀j, Un(xj) = U∗(xj) with
d

dx
F(U∗) = S(x,U∗(x)),

then
∀j, Un+1(xj) = Un(xj).

We want the scheme to be able to “capture” continuous stationary solutions. We define Φ = F(U∗).
As explained in [2], a way of satisfying Criterion 5.2 is to define the source term as:

Qj =
1

2

[
(I + Λj+1/2)Φ(xj) + (I − Λj+1/2)Φ(xj+1)− (I + Λj−1/2)Φ(xj−1)− (I − Λj−1/2)Φ(xj)

]
=

1

2

[
(I − Λj+1/2)(Φ(xj+1)− Φ(xj)) + (I + Λj−1/2)(Φ(xj)− Φ(xj−1))

]
.(5.6)

Owing to the well-known formula:

Φ(xj+1)− Φ(xj) =

∫ xj+1

xj

S (y,U∗(t, y)) dy,

we are able to rewrite (5.6) as

Qj =
1

2

(∫ xj+1

xj−1

S (y,U∗(t, y)) dy − Λj+1/2

∫ xj+1

xj

S (y,U∗(t, y)) dy + Λj−1/2

∫ xj

xj−1

S (y,U∗(t, y)) dy

)
.

Since U∗ is not known apriori, we define the source term as
(5.7)

Qj =
1

2

(∫ xj+1

xj−1

S (y,U(t, y)) dy − Λj+1/2

∫ xj+1

xj

S (y,U(t, y)) dy + Λj−1/2

∫ xj

xj−1

S (y,U(t, y)) dy
)
,

and Criterion 5.2 is still satisfied. As noticed in [2], when S is piecewise constant (S = Sj = S(xj ,Uj)

on cell j), Equation (5.7) can be reformulated in a simpler way:

(5.8) Qj =
1

2

(
I + Λj−1/2

)(∆xj−1

2
Sj−1 +

∆xj
2

Sj

)
+

1

2

(
I − Λj+1/2

)(∆xj
2

Sj +
∆xj+1

2
Sj+1

)
.

5.3. 2D Scheme

Let Ω = [0, 1]2, and define T a polygonal mesh over Ω. We denote by Ωj a polygonal cell of the
mesh T , and let xr−1, xr and xr+1 three consecutive vertices of the polygon Ωj . Define

• the middle of the edge [xr,xr+1]: xr+ 1
2
=

xr + xr+1

2
,

• the outward normal to the edge directed from xr to xr+1, [xr,xr+1]: C
r+ 1

2
j = −(xr+1−xr)

⊥,

• the normal to the node r: Cr
j = 1

2

(
C

r+ 1
2

j +C
r−1/2
j

)
,
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xr+1

xr+ 1
2

xr

xr−1/2

xr−1

C
r+ 1

2
j

C
r−1/2
j

Cr
j

Ωj

Figure 2. Normal vectors at nodes and edges: composite set

where for any vector ξ = (ξ1, ξ2) ∈ R2 we use the usual notation ξ⊥ = (−ξ2, ξ1) which corresponds
to a rotation of angle +π

2 . In what follows we present the composite schemes, as a combination of

“nodal-based schemes” – which involve Cr
j – and “edge-based schemes” – which involve C

r+ 1
2

j . This is
not new, and very much inspired from [54].

Remark 5.3. We acknowledge that it normally does not make sense to talk about a “normal vector to
a node”. However, the definition we use (which has been borrowed from [54]) is always well-defined for
polygonal meshes. For all of our purposes, it is well-suited and we shall use this definition throughout
this work.

For the sake of clarity, we start by explaining below the different sums that can be performed over
the mesh, for an arbitrary function g = g(x). By convention, for any given cell we will use integers
r to denote vertices of the cell, also called nodes. They are supposed to be labelled consecutively, so
that it makes sense to talk about the edge [xr,xr+1]. Moreover, we implicitely suppose r ∈ {1, . . . , V }
for a polygonal cell with V vertices (with the loop convention that xV+1 = x1). We also denote by
half-integers r + 1

2 the middle of the edge [xr,xr+1]. Our conventions are illustrated in Figure 2.
For a given cell Ωj we denote by dof ∈ {r : r ∈ Ωj} ∪ {r + 1

2 : r + 1
2 ∈ Ωj} any degree of freedom

of Ωj (it can be a node or the middle of an edge), and the notation gdofj denotes the evaluation of
the function g at the node or edge dof in cell Ωj . Sometimes dof will also denote a general degree of
freedom in the mesh, i.e it can be any node or middle of an edge in the mesh. The meaning of dof
will be clear from the context (think of r and r + 1

2 as “local indices” within a given cell, and of dof
as either a “local” or “global” index, depending on the context).

• ∑r∈Ωj
grj : sum over all the vertices of the cell j,

• ∑r+ 1
2∈Ωj

g
r+ 1

2
j : sum over all the mid-edge points of the cell j,

• Ndof =
∑

i:dof∈i 1: number of cells that contains the given degree of freedom dof ,
• ∑i:dof∈Ωi

gdofi : sum, for a given degree of freedom in the mesh, over all the cells that contains
this degree of freedom,

• ∑j∈T gj : sum over all cells in the mesh,
• ∑r∈nodes(T ) g

r: sum over all nodes in the mesh,
• ∑r+ 1

2∈edges(T ) g
r+ 1

2 : sum over all mid-edge points in the mesh,
• h : the maximum edge length among all edges in the mesh.

The normal vectors Cr
j satisfy the following equalities:

(5.9)
∑
r∈Ωj

Cr
j =

∑
r+ 1

2∈Ωj

C
r+ 1

2
j = 0, ∀j ∈ T ,
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and, for any degree of freedom dof ,

(5.10)
∑

i:dof∈Ωi

Cdof
i = 0.

Moreover, we have the following result, whose proof can be found in [12]:

Proposition 5.4. Let g ∈ C2(R2;R). Then, for all θ ∈ [0, 1]:

(5.11)
1

|Ωj |

∫
∂Ωj

gn =
1

|Ωj |

(1− θ)
∑
r∈Ωj

g(xr)C
r
j + θ

∑
r+ 1

2∈Ωj

g(xr+ 1
2
)C

r+ 1
2

j

+O(h),

and the remainder term in (5.11) vanishes if g is an affine function.

We define the sub-volumes (see also Figure 3)

(5.12) |Ωr
j | =

1− θ

2
(xr − xj) ·Cr

j , |Ωr+1/2
j | = θ

2
(xr+1/2 − xj) ·Cr+1/2

j ,

so that the volume of the cell Ωj reads

|Ωj | =
∑
r∈Ωj

|Ωr
j |+

∑
r+ 1

2∈Ωj

|Ωr+ 1
2

j | =
∑

dof∈Ωj

|Ωdof
j |.(5.13)

We end this section by giving a definition that will be useful in the rest of the paper, and which
generalizes Definition 5.1 to the two-dimensional case.

Definition 5.5. We define the Jacobian matrix of the physical flux function F , given by (5.2), along
the unit direction vector n = (n1, n2) as

J(U ,n) = n1∇F1(U) + n2∇F2(U).
This matrix is diagonalizable because the system (5.1) is hyperbolic. Moreover, we have:

(5.14) J(U ,n) = −J(U ,−n),

hence, by (5.5),

(5.15) sign (J(U ,n)) = −sign (J(U ,−n)) .

5.3.1. Edge-based schemes. We now present a 2D edge-based extension of the 1D VFFC scheme
described in Section 5.2. First, integrate Equation (5.1) on a given cell Ωj , then use Proposition 5.4
with θ = 1, so that the flux is approximated as∫

Ωj

divF(U) =
∫
∂Ωj

F(U) · n ≈
∑

r+ 1
2∈Ωj

Gr+ 1
2 ·Cr+ 1

2
j .

Consider an edge labelled r + 1
2 that does not lie at the boundary of the computational domain (we

will deal later with the boundary conditions), and let j, k the labels of its two support cells. That is,
r + 1

2 ∈ Ωj ∩ Ωk. We define:

(5.16) Gr+ 1
2 =

Fj + Fk

2
+ Λ

r+ 1
2

j

Fj −Fk

2
, Λ

r+ 1
2

j = signJ
(
Ur+ 1

2
,n

r+ 1
2

j

)
,

where the sign of a matrix is defined in Definition 5.5, and n
r+ 1

2
j = C

r+ 1
2

j

/
∥Cr+ 1

2
j ∥ . Moreover, by

Definition 5.5,

(5.17) Λ
r+ 1

2
j = −Λ

r+ 1
2

k .

Using (5.17), we note that equation (5.16) writes:

(5.18) Gr+ 1
2 =

1

Nr+ 1
2

∑
i:r+ 1

2∈Ωi

(
I + Λ

r+ 1
2

i

)
Fi,

which will be useful in Section 5.3.2. Moreover, equation (5.17) also yields:

(5.19)
∑

i:r+ 1
2∈Ωi

Λ
r+ 1

2
i = 0.
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Finally, the average state Ur+ 1
2

is given by the VFFC average (see [44]):

(5.20) Ur+ 1
2
=

|Ωj |Uj + |Ωk|Uk

|Ωj |+ |Ωk|
.

5.3.2. Generalization to the nodes and composite scheme. We present here the composite
scheme as defined in [54]. Using Proposition 5.4, we have∫

∂Ωj

F(U) · n ≈ (1− θ)
∑
r∈Ωj

Gr ·Cr
j + θ

∑
r+ 1

2∈Ωj

Gr+ 1
2 ·Cr+ 1

2
j ,

and the composite scheme reads:

(5.21) |Ωj |
Un+1
j − Uj

∆t
+ (1− θ)

∑
r∈Ωj

Gr ·Cr
j + θ

∑
r+1/2∈Ωj

Gr+ 1
2 ·Cr+1/2

j = Qj .

The edge flux Gr+ 1
2 is defined in Equation (5.18), and we define the node flux Gr in a similar manner:

(5.22) Gr =
1

Nr

∑
i:r∈Ωi

(I + Λr
i )Fi.

A natural choice for defining Λr
i would be

Λr
i = Λ̃r

i , Λ̃r
i :=

1

Nr − 1

∑
k:r∈Ωk, k ̸=i

signJ(U(i,k),n
r
i ).

where U(i,k) is given by the VFFC average between cells i and k (see Equation (5.20)) and nr
i =

Cr
i /∥Cr

i ∥ . However, contrary to equation (5.19), we do not have apriori :

(5.23)
∑

i:r∈Ωi

Λr
i = 0.

This property is essential to ensure the consistency of the scheme: indeed, this is a key argument
in the proof of Proposition 5.7. A way of satisfying equation (5.23) is to define Λr

i as:

(5.24) Λr
i = Λ̃r

i −
1

Nr

∑
k:r∈Ωk

Λ̃r
k.

One can recover the edge-based scheme (resp. the node-based scheme) by setting θ = 1 (resp. θ = 0)
in the scheme (5.21).

5.3.3. Dirichlet boundary conditions. We implement Dirichlet boundary conditions as follows. Let
dof be a degree of freedom where the solution is imposed to be Uboundary. The numerical flux is given
by: Gdof = F (Uboundary). We make the assumption that the exact solution is known on the boundary
of the computation domain.

This is a strong assumption, but we recall that the purpose of this work is to look for new ways of
discretizing the source term, and not to deal with boundary conditions. This is why we consider the
most simple situation.

5.3.4. Properties of the composite scheme.

Proposition 5.6 (Global conservativity). The scheme (5.21) is globally conservative:∑
j∈T

|Ωj |Un+1
j =

∑
j∈T

|Ωj |Uj +∆t
∑
j∈T

Qj ,

up to some boundary terms.

Proof. We sum (5.21) over j ∈ T :∑
j∈T

(
|Ωj |

Un+1
j − Un

j

∆t
−Qj

)
= −(1− θ)

∑
j∈T

∑
r∈Ωj

Gr ·Cr
j − θ

∑
j∈T

∑
r+ 1

2∈Ωj

Gr+ 1
2 ·Cr+ 1

2
j .
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We can then exchange the sum over {j ∈ T } and the ones over {r ∈ Ωj} and
{
r + 1

2 ∈ Ωj

}
, and use

the relation (5.10) to obtain:∑
j∈T

∑
r∈Ωj

Gr ·Cr
j =

∑
r∈nodes(T )

∑
i:r∈Ωi

Gr ·Cr
i =

∑
r∈nodes(T )

Gr ·
( ∑

i:r∈Ωi

Cr
i

)
︸ ︷︷ ︸

=0

= 0,

and: ∑
j∈T

∑
r+ 1

2∈Ωj

Gr+ 1
2 ·Cr+ 1

2
j =

∑
r∈edges(T )

∑
i:r+ 1

2∈Ωi

Gr+ 1
2 ·Cr+ 1

2
i

=
∑

r+ 1
2∈edges(T )

Gr+ 1
2 ·

 ∑
i:r+ 1

2∈Ωi

C
r+ 1

2
i


︸ ︷︷ ︸

=0

= 0.

□

Proposition 5.7 (Consistency of the fluxes). The fluxes (5.16) and (5.22) are consistent.

Proof. Let r + 1
2 be the index of an inner edge and j, k the indices of its support cells. If

Uj = Uk = Ū , then using (5.16), we have G = F
(
Ū
)
. Similarly, let r be the index of an inner node,

meaning it does not lie on the boundary of the computational domain. Assuming that Ui = Ū for any
cell i such that r ∈ Ωi, we have, using equations (5.22) and (5.23) :

Gr = F
(
Ū
)
+

1

Nr

( ∑
i:r∈Ωi

Λr
i

)
︸ ︷︷ ︸

=0

F
(
Ū
)
= F

(
Ū
)
.

□

5.4. Discretization of the source term

In this Section, we study differents ways of computing the numerical source term Qj which
satisfy a 2D version of Criterion 5.2 (ideally) and are different from the classical discretization:
Qj = |Ωj |S(xj ,Uj).

5.4.1. Enhanced consistency in 2D. The reasoning is identical to Section 5.2.2. We want to com-
pute Qj so as to satisfy the following property, which a 2D generalization of Criterion 5.2:

Criterion 5.8. If, at some iteration n, we have:

∀j, Un(xj) = U∗(xj) with divF(U∗) = S(x,U∗(x)),

then
∀j, Un+1(xj) = Un(xj).

We define Φ∗ = F(U∗), and consider the edge (resp. node) flux as defined in (5.18) (resp. (5.22)).
In order to satisfy Criterion 5.8, the source term has to be equal to:

Qj = (1− θ)
∑
r∈Ωj

1

Nr

[ ∑
i:r∈Ωi

(I4 + Λr
i ) Φ

∗
i

]
·Cr

j + θ
∑

r+ 1
2∈Ωj

1

Nr+ 1
2

 ∑
i:r+ 1

2∈Ωi

(
I4 + Λ

r+ 1
2

i

)
Φ∗

i

 ·Cr+ 1
2

j .

However, we do not know apriori Φ∗ nor U∗. Therefore we define Qj as:
(5.25)

Qj = (1− θ)
∑
r∈Ωj

1

Nr

[ ∑
i:r∈Ωi

(I4 + Λr
i ) Φi

]
·Cr

j + θ
∑

r+ 1
2∈Ωj

1

Nr+ 1
2

 ∑
i:r+ 1

2∈Ωi

(
I4 + Λ

r+ 1
2

i

)
Φi

 ·Cr+ 1
2

j ,
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where Φ is a solution to div Φ = S(x,Un). The upwind matrices are still given by equations (5.16)
and (5.24). The scheme (5.21) can then be written as:

(5.26) |Ωj |
Un+1
j − Un

j

∆t
+ (1− θ)

∑
r∈Ωj

G̃r ·Cr
j + θ

∑
r+1/2∈Ωj

G̃r+ 1
2 ·Cr+1/2

j = 0,

with:

(5.27) G̃dof =
1

Ndof

∑
i:dof∈Ωi

(
I4 + Λdof

i

)
(Fi − Φi).

However, in contrast with the 1D case, it is not possible in the general case to find an expression
of Qj as a function of S and therefore to end up with a formula that is similar to (5.7). In Section
5.4.2 we present a way of computing Φ by solving a Poisson equation, and in Section 5.4.3, we try to
generalize formula (5.8) to the 2D framework, without guarantying that Property 5.8 is still satisfied.

5.4.2. Anti-derivative using a Poisson equation. First of all, let us clarify what we are looking for
in this section. By “anti-derivative”, it is meant a function ψ such that ∇ψ = Φ. In a one-dimensional
setting, the gradient of a function is simply its derivative, hence the anti-derivative is the same as the
primitive function. It is then unique up to an additional constant.

This idea comes from [2]. In order to solve div Φ = S we solve the following problem:

∆ψ = S, Φ = ∇ψ.
We impose homogeneous Dirichlet boundary conditions for ψ. The construction of the scheme is
detailed in Appendix B. With this method, the unknowns (Φi)i that appear in (5.27) are given by:

(5.28) |Ωj |Φj =
∑
r∈Ωj

|Ωr
j |Φr +

∑
r+ 1

2∈Ωj

|Ωr+ 1
2

j |Φr+ 1
2
, Φr+ 1

2
=

Φr +Φr+1

2
,

where the sub-volumes are defined in (5.12) and the anti-derivative at the nodes satisfies

(5.29)
∑
r∈Ωj

Φr ·Cr
j = |Ωj |Sj ,

with

(5.30)

 ∑
i|r∈Ωi

Cr
i ⊗ (xi − xr)

ΦT
r =

∑
i|r∈Ωi

ψi ⊗Cr
i .

Equations (5.29) and (5.30) define a linear system whose size is the number of cells and whose unknown
is ψ. Once this system is solved, we compute the anti-derivative at the nodes with equation (5.30) and
the values at the centers of the cells with equation (5.28).

Dirichlet boundary conditions. Let dof be a degree of freedom where the solution is imposed to be
Uboundary. The numerical flux (5.27) is given by: G̃dof = F (Uboundary) − Φdof , where Φdof is defined
in (5.29) (5.30).

5.4.3. Sub-volumes upwinding. We propose here to discretize the source term by upwinding the
sub-volumes around r or r + 1/2:

Qj =
∑

dof∈Ωj

1

Ndof

∑
i:dof∈Ωi

(
I4 + Λdof

i

)
|Ωdof

i |Si or(5.31)

=
∑
r∈Ωj

1

Nr

∑
i:r∈Ωi

(I4 + Λr
i ) |Ωr

i |Si +
∑

r+1/2∈Ωj

1

2

∑
i:r+1/2∈Ωi

(
I4 + Λ

r+1/2
i

)
|Ωr+1/2

i |Si,(5.32)

where |Ωr
i | (resp. |Ωr+ 1

2
i |) is the sub-volume in cell i linked to node r (resp. mid-edge r + 1

2 ). See
Figure 3 in the case 0 < θ < 1.
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xr−1/2
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Figure 3. Left: Generic cell Ωj with its sub-cells Ωdof
j defined around nodes r and

edges r + 1
2 . Right: Associated composite dual cell around node xr: Ωr = ∪i;r∈iΩ

r
i ,

and around edge xr+ 1
2
: Ωr+1/2 = Ω

r+1/2
j ∪ Ω

r+1/2
k .

For example: for θ = 1, noting k the adjacent cell of j with respect to local edge (r+1/2) (Figure
3), the formula (5.31) gives:

(5.33)
∑

r+1/2∈Ωj

1

2

((
I4 + Λ

r+1/2
k

)
|Ωr+1/2

k |Sk +
(
I4 + Λ

r+1/2
j

)
|Ωr+1/2

j |Sj

)
.

Knowing that Λ
r+1/2
j = −Λ

r+1/2
k , this formula gives a fully upwinding discretization at r+ 1/2 in cell

j. Indeed, if one consider that all eigenvalues are all strictly positives (resp. all strictly negatives), we
recover a local source flux at r + 1/2 equal to |Ωr+1/2

j |Sj (resp. |Ωr+1/2
k |Sk).

For edge discretization flux at r + 1/2 (θ = 1), a more natural extension in terms of geometric
interpretation of the 1D case with integral form (5.8),

(5.34)
∑

r+1/2∈Ωj

1

2

(
I4 − Λ

r+1/2
j

)(
|Ωr+1/2

k |Sk + |Ωr+1/2
j |Sj

)
,

Unfortunately, this formula (5.34) has not yet been tested and like the 1D case, it does not satisfy the
full upwinding property. In the following, using the discretizations 5.4.2 and 5.4.3, we now compare
them against the usual centered Qj = Sj |Ωj |.

5.5. Numerical results

We present here some numerical tests to compare the two discretizations of the source term pre-
sented in the Section 5.4. The computational domain is Ω = [0, 1]2. Some analytical solutions are
known for all the test cases, are stationary, and thus we also use them as initial data. We recall that
only Dirichlet boundary conditions are considered.

The timestep is given by ∆t = CCFL∆x with the coefficient CCFL depending on the test case.
We perform convergence analysis on Cartesian and random meshes. A random mesh is defined as a
uniform Cartesian mesh where the inner nodes are randomly perturbed (see Figure 4). The final time
is T = 0.1.
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For each numerical case, we display the results obtained with θ = 0, 12 ,
π
4 , 1. The values 0, 12 , 1

correspond respectively to a purely node scheme, to a scheme exactly halfway between node and edge
scheme, and to a purely edge scheme. The value θ = π

4 ≈ 0.78 correspond to the value obtained when
considering a conical mesh with curved edges and letting the curvature tend to zero (see [54]).

Figure 4. Example of a random mesh.

5.5.1. 1D gravity. We set u = 0. We add a source term of the form S = (0, ρ∇ζ, ρ∇ζ · u)T with
ζ(x) = g · x and g = (−g, 0). In the 1D framework, Equation (5.1) reads as:

(5.35)
dP

dx
= −ρg, P = (γ − 1)ρE.

We choose P of the form: P (x) = 2g(x0 − x) > 0, x0 = 1.5. The density is ρ = 2. We set
CCFL = 0.25. The results obtained on an uniform mesh with different discretizations of the source
term are given in Figures 5, 6, 7 and 8 (resp. for θ = 0, 12 ,

π
4 , 1). The results obtained on a random

mesh with different discretizations of the source term are given in Figures 9, 10, 11 and 12. (resp. for
θ = 0, 12 ,

π
4 , 1). We can see that all the methods are first order convergent for θ = 1

2 ,
π
4 , 1. However the

purely nodal scheme (θ = 0) is problematic because it seems not to be first order convergent.

Figure 5. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.1 on uniform meshes with θ = 0.
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Figure 6. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.1 on uniform meshes with θ = 1

2 .

Figure 7. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.1 on uniform meshes with θ = π

4 .
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Figure 8. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.1 on uniform meshes with θ = 1.

Figure 9. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.1 on random meshes with θ = 0.
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Figure 10. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.1 on random meshes with θ = 1

2 .

Figure 11. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.1 on uniform meshes with θ = π

4 .
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Figure 12. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.1 on random meshes with θ = 1.

5.5.2. 2D gravity. We set u = 0. We add a source term of the form S = (0, ρ∇ζ, ρ∇ζ · u)T with
ζ(x) = −g∥x− x0∥2. Equation (5.1) reads as:

∇P = ρ∇ζ, P = (γ − 1)ρE.

A solution writes: P = ρ = eζ and E = 1/(γ − 1). We set CCFL = 0.25. The results obtained on
an uniform mesh with different discretizations of the source term are given in Figures 13, 14 and 15
(resp. for θ = 1

2 ,
π
4 , 1). The results obtained on a random mesh with different discretizations of the

source term are given in Figures 16, 17 and 18 (resp. for θ = 1
2 ,

π
4 , 1). The schemes are all first order

convergent for θ = 1
2 ,

π
4 , 1. However we also observed issues with the purely nodal scheme (θ = 0) and

we chose not to plot the results in this case.
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Figure 13. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.2 on uniform meshes with θ = 1

2 .

Figure 14. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.2 on uniform meshes with θ = π

4 .
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Figure 15. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.2 on uniform meshes with θ = 1.

Figure 16. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.2 on random meshes with θ = 1

2 .
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Figure 17. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.2 on random meshes with θ = π

4 .

Figure 18. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.2 on random meshes with θ = 1.

5.5.3. Friction source term. The source term is given by S = (0,−λρu,−αλρ∥u∥2)T with α =

γ/(γ − 1) and λ = 1. A solution to the system (5.1) writes:

ρ = 1, u =
1√
2
(1, 1), E(x) = − λ

γ − 1
u · x+ 1 +

2λ

γ − 1
.

One can easily check that E > ∥u∥2/2. We set CCFL = 0.25. The results obtained on an uniform
mesh with different discretizations of the source term are given in Figures 19, 20 and 21 (resp. for
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θ = 1
2 ,

π
4 , 1). The results obtained on a random mesh with different discretizations of the source term

are given in Figures 22, 23, and 24 (resp. for θ = 1
2 ,

π
4 , 1). The methods all are first order convergent

for θ = 1
2 ,

π
4 , 1. However we also observed issues with the purely nodal scheme (θ = 0) and we chose

not to plot the results in this case.

Figure 19. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.3 on uniform meshes with θ = 1

2 .

Figure 20. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.3 on uniform meshes with θ = π

4 .
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Figure 21. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.3 on uniform meshes with θ = 1.

Figure 22. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.3 on random meshes with θ = 1

2 .



115

Figure 23. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.3 on random meshes with θ = π

4 .

Figure 24. L1 error on ρ (up left), ρE (up right), ρu1 (down left) ρu2 (down right)
for the test case 5.5.3 on random meshes with θ = 1.

5.6. Discussion and conclusion

In this work we presented several methods to compute the numerical source term of the 2D Euler
equations using ideas from [2, 54]. The fluxes are discretized using a composite scheme that generalizes
the VFFC scheme (see [44]) to unstructured 2D meshes. We compared the “classical” (or “usual”)
discretization of the source term (discretized at the center of computational cells) against a local and
a global approach. The local approach uses the sub-volumes of computational cells, and performs
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slightly better for a computational complexity of the same order of magnitude. The global approach
solves a Poisson equation on the whole domain, however it is much more costful and does not perform
significantly better.
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In this Appendix, we provide additional supports for the Chapter 2. We plot in Figure 1 the
corresponding convergence orders of the solutions. On the left, the convergence orders for cP are
depicted in red, while on the right, those for V are shown in blue. The quantities Err cP and Err V
represent the L∞(L2) errors defined in the convergence Table 5. We present the graphs on a logarithmic
scale, plotting curves with a slope of 2 in dashed lines. This visualization allows us to observe the
outcomes of our simulations at the first iteration, where the convergence orders align with the expected
value of 2, as established in the work of [18].
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Figure 1. Convergence analysis of cP and V errors at initial iteration n = 1.
Left: L∞(L2) error of cP (Err cP = ∥cT ,dt

P − cT ,dt

P,ex∥T ,∞
) in red with logarithmic

scale. Red dashed lines represent slope equals 2. Right: L∞(L2) error of V
(Err V = ∥V T ,dt − V T ,dt

ex ∥T ,∞) in blue with logarithmic scale. Blue dashed lines rep-
resent slope equals 2.

The next figures illustrate the convergence orders at n = 5. We proceed to plot the logarithmic
scale curves of the quantities Err cP and Err V in red and blue, respectively. In contrast to the graphs
in Figure 1, these curves exhibit a markedly distinct behavior. Specifically, the red curve representing
cP no longer aligns with the dashed line of slope 2 beyond the second data point, corresponding to
the logarithmic error (logErr cP ) of the second mesh refinement level in Table 6. Similarly, for the
potential V , the logarithmic error curve changes slope at the third data point, corresponding to the
third mesh refinement level.
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Figure 2. Convergence analysis of cP and V errors at initial iteration n = 5.
Left: L∞(L2) error of cP (Err cP = ∥cT ,dt

P − cT ,dt

P,ex∥T ,∞
) in red with logarithmic

scale. Red dashed lines represent slope equals 2. Right: L∞(L2) error of V
(Err V = ∥V T ,dt − V T ,dt

ex ∥T ,∞) in blue with logarithmic scale. Blue dashed lines rep-
resent slope equals 2.

Next, for the Scilab section, we add the component definitions of all nodes. We begin by the F
functions of the centers {10, 11, 12, 13}:
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Then, we turn our attention to the Jacobian implementations. For center 10:
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1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (14)) + V n+1
T (14)

)
+ log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (15)) + V n+1
T (15)

))
.

MT ,dt

S (10, 5) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (11)) + V n+1
T (11)

)
+ log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (12)) + V n+1
T (12)

))
.

MT ,dt

S (10, 2) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (11)) + V n+1
T (11)

))
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (14)) + V n+1
T (14)

))
.

MT ,dt

S (10, 4) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (12)) + V n+1
T (12)

))
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (15)) + V n+1
T (15)

))
.
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MT ,dt

S (10, 11) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (11)) + V n+1
T (11)

)
−
(
cT ,n+1

P (10) + cT ,n+1

P (11) + cT ,n+1

P (5) + cT ,n+1

P (2)
) 1

cT ,n+1

P (11)

)
.

MT ,dt

S (10, 12) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (12)) + V n+1
T (12)

)
−
(
cT ,n+1

P (10) + cT ,n+1

P (12) + cT ,n+1

P (5) + cT ,n+1

P (4)
) 1

cT ,n+1

P (12)

)
.

MT ,dt

S (10, 14) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (14)) + V n+1
T (14)

)
−
(
cT ,n+1

P (10) + cT ,n+1

P (14) + cT ,n+1

P (1) + cT ,n+1

P (2)
) 1

cT ,n+1

P (14)

)
.

MT ,dt

S (10, 15) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (10)) + V n+1
T (10)−

(
log(cT ,n+1

P (15)) + V n+1
T (15)

)
−
(
cT ,n+1

P (10) + cT ,n+1

P (15) + cT ,n+1

P (4) + cT ,n+1

P (1)
) 1

cT ,n+1

P (15)

)
.
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For center 11:

MT ,dt

S (11, 11) =
|K|
dt

+
1

4

|σ|2
|D|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (13)) + V n+1
T (13))

+ (cT ,n+1

P (11) + cT ,n+1

P (13) + cT ,n+1

P (5) + cT ,n+1

P (6))
1

cT ,n+1

P (11)

)
+

1

4

|σ|2
|D|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− log(cT ,n+1

P (10))− V n+1
T (10)

+ (cT ,n+1

P (11) + cT ,n+1

P (10) + cT ,n+1

P (5) + cT ,n+1

P (2))
1

cT ,n+1

P (11)

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (17)) + V n+1
T (17))

+ (cT ,n+1

P (11) + cT ,n+1

P (17) + cT ,n+1

P (6) + cT ,n+1

P (3))
1

cT ,n+1

P (11)

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− log(cT ,n+1

P (16))− V n+1
T (16)

+ (cT ,n+1

P (11) + cT ,n+1

P (16) + cT ,n+1

P (3) + cT ,n+1

P (2))
1

cT ,n+1

P (11)

)
.

MT ,dt

S (11, 3) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (17)) + V n+1
T (17))

+ log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (16)) + V n+1
T (16))

)
.

MT ,dt

S (11, 5) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (10)) + V n+1
T (10))

+ log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (13)) + V n+1
T (13))

)
.

MT ,dt

S (11, 2) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (10)) + V n+1
T (10))

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (16)) + V n+1
T (16))

)
.

MT ,dt

S (11, 6) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (13)) + V n+1
T (13))

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (17)) + V n+1
T (17))

)
.
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MT ,dt

S (11, 13) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (13)) + V n+1
T (13))

− (cT ,n+1

P (11) + cT ,n+1

P (13) + cT ,n+1

P (5) + cT ,n+1

P (6))
1

cT ,n+1

P (13)

)
.

MT ,dt

S (11, 10) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (10)) + V n+1
T (10))

− (cT ,n+1

P (11) + cT ,n+1

P (10) + cT ,n+1

P (5) + cT ,n+1

P (2))
1

cT ,n+1

P (10)

)
.

MT ,dt

S (11, 17) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (17)) + V n+1
T (17))

− (cT ,n+1

P (11) + cT ,n+1

P (17) + cT ,n+1

P (3) + cT ,n+1

P (6))
1

cT ,n+1

P (17)

)
.

MT ,dt

S (11, 16) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (11)) + V n+1
T (11)− (log(cT ,n+1

P (16)) + V n+1
T (16))

− (cT ,n+1

P (11) + cT ,n+1

P (16) + cT ,n+1

P (2) + cT ,n+1

P (3))
1

cT ,n+1

P (16)

)
.
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For center 12:

MT ,dt

S (12, 12) =
|K|
dt

+
1

4

|σ|2
|D|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (13)) + V n+1
T (13))

+ (cT ,n+1

P (12) + cT ,n+1

P (13) + cT ,n+1

P (5) + cT ,n+1

P (8))
1

cT ,n+1

P (12)

)
+

1

4

|σ|2
|D|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− log(cT ,n+1

P (10))− V n+1
T (10)

+ (cT ,n+1

P (12) + cT ,n+1

P (10) + cT ,n+1

P (5) + cT ,n+1

P (4))
1

cT ,n+1

P (12)

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (18)) + V n+1
T (18))

+ (cT ,n+1

P (12) + cT ,n+1

P (18) + cT ,n+1

P (7) + cT ,n+1

P (4))
1

cT ,n+1

P (12)

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− log(cT ,n+1

P (20))− V n+1
T (20)

+ (cT ,n+1

P (12) + cT ,n+1

P (20) + cT ,n+1

P (8) + cT ,n+1

P (7))
1

cT ,n+1

P (12)

)
.

MT ,dt

S (12, 7) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (18)) + V n+1
T (18))

+ log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (20)) + V n+1
T (20))

)
.

MT ,dt

S (12, 5) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (10)) + V n+1
T (10))

+ log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (13)) + V n+1
T (13))

)
.

MT ,dt

S (12, 4) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (10)) + V n+1
T (10))

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (18)) + V n+1
T (18))

)
.

MT ,dt

S (12, 8) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (13)) + V n+1
T (13))

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (20)) + V n+1
T (20))

)
.
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MT ,dt

S (12, 13) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (13)) + V n+1
T (13))

− (cT ,n+1

P (12) + cT ,n+1

P (13) + cT ,n+1

P (5) + cT ,n+1

P (8))
1

cT ,n+1

P (13)

)
.

MT ,dt

S (12, 10) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (10)) + V n+1
T (10))

− (cT ,n+1

P (12) + cT ,n+1

P (10) + cT ,n+1

P (5) + cT ,n+1

P (4))
1

cT ,n+1

P (10)

)
.

MT ,dt

S (12, 18) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (18)) + V n+1
T (18))

− (cT ,n+1

P (12) + cT ,n+1

P (18) + cT ,n+1

P (7) + cT ,n+1

P (4))
1

cT ,n+1

P (18)

)
.

MT ,dt

S (12, 20) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (12)) + V n+1
T (12)− (log(cT ,n+1

P (20)) + V n+1
T (20))

− (cT ,n+1

P (12) + cT ,n+1

P (20) + cT ,n+1

P (8) + cT ,n+1

P (7))
1

cT ,n+1

P (20)

)
.
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For center 13:

MT ,dt

S (13, 13) =
|K|
dt

+
1

4

|σ|2
|D|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (11)) + V n+1
T (11))

+ (cT ,n+1

P (13) + cT ,n+1

P (11) + cT ,n+1

P (5) + cT ,n+1

P (6))
1

cT ,n+1

P (13)

)
+

1

4

|σ|2
|D|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− log(cT ,n+1

P (12))− V n+1
T (12)

+ (cT ,n+1

P (13) + cT ,n+1

P (12) + cT ,n+1

P (5) + cT ,n+1

P (8))
1

cT ,n+1

P (13)

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (19)) + V n+1
T (19))

+ (cT ,n+1

P (13) + cT ,n+1

P (19) + cT ,n+1

P (6) + cT ,n+1

P (9))
1

cT ,n+1

P (13)

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− log(cT ,n+1

P (21))− V n+1
T (21)

+ (cT ,n+1

P (13) + cT ,n+1

P (21) + cT ,n+1

P (8) + cT ,n+1

P (9))
1

cT ,n+1

P (13)

)
.

MT ,dt

S (13, 9) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (19)) + V n+1
T (19))

+ log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (21)) + V n+1
T (21))

)
.

MT ,dt

S (13, 5) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (11)) + V n+1
T (11))

+ log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (12)) + V n+1
T (12))

)
.

MT ,dt

S (13, 6) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (11)) + V n+1
T (11))

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (19)) + V n+1
T (19))

)
.

MT ,dt

S (13, 8) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (12)) + V n+1
T (12))

)
+

1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (21)) + V n+1
T (21))

)
.
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MT ,dt

S (13, 11) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (11)) + V n+1
T (11))

− (cT ,n+1

P (13) + cT ,n+1

P (11) + cT ,n+1

P (5) + cT ,n+1

P (6))
1

cT ,n+1

P (11)

)
.

MT ,dt

S (13, 12) =
1

4

|σ|2
|D|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (12)) + V n+1
T (12))

− (cT ,n+1

P (13) + cT ,n+1

P (12) + cT ,n+1

P (5) + cT ,n+1

P (8))
1

cT ,n+1

P (12)

)
.

MT ,dt

S (13, 19) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (19)) + V n+1
T (19))

− (cT ,n+1

P (13) + cT ,n+1

P (19) + cT ,n+1

P (6) + cT ,n+1

P (9))
1

cT ,n+1

P (19)

)
.

MT ,dt

S (13, 21) =
1

4

|σ|2
|Dext|

(
log(cT ,n+1

P (13)) + V n+1
T (13)− (log(cT ,n+1

P (21)) + V n+1
T (21))

− (cT ,n+1

P (13) + cT ,n+1

P (21) + cT ,n+1

P (8) + cT ,n+1

P (9))
1

cT ,n+1

P (21)

)
.
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APPENDIX B

Appendix for Chapter 5
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Construction of the diffusion scheme (5.29)
We follow [16, 11, 12] and propose here a composite scheme to solve the following Poisson problem:

(B.1) ∆v = f,

where v and f are scalar valued functions and with homogeneous Dirichlet boundary conditions.
Equation (B.1) is integrated over a cell Ωj :

(B.2)
∫
∂Ωj

∇v · n =

∫
Ωj

f.

Using Proposition 5.4, we can approximate:

(B.3)
∫
∂Ωj

∇v · n ≈ (1− θ)
∑
r∈Ωj

(∇v)(xr) ·Cr
j + θ

∑
r+ 1

2∈Ωj

(∇v)(xr+ 1
2
) ·Cr+ 1

2
j .

The gradient at the nodes is computed as follows. Using a Taylor expansion, one can write:

(B.4) vj = vr + (∇v)(xr) · (xj − xr) +O(h2).

Multiplying (B.4) by Cr
j and summing over all the cells around r:

∑
i|r∈Ωi

viC
r
i = vr

∑
i|r∈Ωi

Cr
i +

 ∑
i|r∈Ωi

Cr
i ⊗ (xi − xr)

 (∇v)(xr) +O(h3).

The sum vr
∑

i|r∈Ωi
Cr

i always vanishes. Indeed, if the node r is inside the domain, we have∑
i|r∈Ωi

Cr
i = 0. Otherwise, the node r is on the boundary and vr is given by the Dirichlet boundary

condition, which is 0. Therefore a good approximation of the gradient at node r, denoted by wr, reads
as:

(B.5)

 ∑
i|r∈Ωi

Cr
i ⊗ (xi − xr)

wr =
∑

i|r∈Ωi

viC
r
i ,

and the gradient at the edge r + 1/2 is defined by:

(B.6) wr+1/2 =
wr +wr+1

2
.

Therefore wdof is well defined and is consistent with ∇v(xdof ). In addition, using (B.6), the
diffusion flux (B.3) reads as:

(1− θ)
∑
r∈Ωj

wr ·Cr
j + θ

∑
r+ 1

2∈Ωj

wr+ 1
2
·Cr+ 1

2
j =

∑
r∈Ωj

wr ·Cr
j .

Eventually, the matrix in (B.5) is proved to be invertible if the mesh is not too deformed (see [17]
and [10]). In practice, it is invertible as soon as the number of cells that contain the node r is different
from 1. For the nodes located at the corner of the mesh (only one support cell, denoted as j ), we
approximate: wr = vjC

r
j/∥Cr

j∥2.


	Introduction
	 Preamble
	Presentation of the continuous problem
	Introduction
	Poisson-Nernst-Planck equations


	Chapter 1.  DDFV Method
	Introduction
	1.1. Meshes and notations
	1.2. Discrete unknowns and operators
	1.3. Discrete notations

	Chapter 2.  Linear coupling of the Poisson-Nernst Planck system of equations using the DDFV method
	Introduction
	2.1. Presentation of the linear coupling of the PNP system
	2.2. Numerical tests and analysis
	2.2.1. Comparative analysis of the convergence orders from LC-solver and NP-solver
	2.2.2. Comparative analysis of the convergence orders from LC-solver and NP-solver at specific iterations
	2.2.3. Analysis of convergence orders w.r.t time-related parameters for LC-solver
	2.2.4. Comparative analysis of the Jacobian matrices from LC-solver and NP-solver at initial iteration

	2.3. Comparison with an other implementation on a simple mesh
	Conclusion

	Chapter 3.  Nonlinear coupling of the Poisson-Nernst Planck system of equations using the DDFV method, application to ionic and voltage dynamics in neuronal compartments
	Introduction
	3.1. DDFV scheme for the PNP system
	3.2. Performance of the DDFV scheme
	3.2.1. Convergence results
	3.2.2. Comparative analysis of the DDFV scheme at the boundary layer

	3.3. Applications to neuroscience
	3.3.1. Propagation of an influx of ions at a dendritic tree bifurcation
	3.3.2. Modeling and simulation of ionic and voltage dynamics in dendritic spines

	3.4. Discussion and conclusion

	Chapter 4.  Solving the Poisson-Nernst Planck system of equations over multi-domains using the FreeFEM++ software
	Introduction
	4.1. Presentation of the model
	4.1.1. Continuous Problem in a Multi-Domain
	4.1.2. Initial and Boundary Conditions
	4.1.3. Variational Formulation with FreeFEM++

	4.2. Applications
	4.2.1. Propagation of an influx of ions at a dendritic tree bifurcation
	4.2.2. Effect of influxes on a large rectangular branch of dendrite
	4.2.3. Numerical illustration of the boundary layer

	Discussion and conclusion

	Chapter 5.  Cemracs Project: A composite finite volume scheme for the Euler equations with source term on unstructured meshes
	5.1. Framework
	5.2. 1D Scheme
	5.2.1. Flux based scheme
	5.2.2. Enhanced consistency

	5.3. 2D Scheme
	5.3.1. Edge-based schemes
	5.3.2. Generalization to the nodes and composite scheme
	5.3.3. Dirichlet boundary conditions
	5.3.4. Properties of the composite scheme

	5.4. Discretization of the source term
	5.4.1. Enhanced consistency in 2D
	5.4.2. Anti-derivative using a Poisson equation
	5.4.3. Sub-volumes upwinding

	5.5. Numerical results
	5.5.1. 1D gravity
	5.5.2. 2D gravity
	5.5.3. Friction source term

	5.6. Discussion and conclusion

	Bibliography
	Appendix A.  Appendix for Chapter 2
	Appendix B.  Appendix for Chapter 5

