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Preface

In an era where precision timing and synchronization are paramount to the functioning of our modern
technological society, the development of increasingly accurate timekeeping devices has become impera-
tive. Among these devices, atomic clocks stand as unrivalled timekeepers, setting the gold standard for
accuracy and stability in the measurement of time intervals. Over the years, these clocks have evolved
from large, laboratory-scale instruments to compact, portable devices, yet their fundamental operating
principles have remained rooted in the properties of atoms and their response to electromagnetic fields.

Simultaneously, a couple of decades have passed since the development of atomic sensors, and since
then, a lot of improvements have been made. Clever people smash into interesting walls: as physicists
have gotten rid of the technical noise, we have reached the fundamental limits of our sensors, notably
quantum projection noise (QPN). This limit arises from the fact that our interferometers tend to prepare
atoms in such a way that their internal states are independent of each other, limiting the amount of
information we can extract from them due to statistical fluctuations. This fundamental limit was reported
in the Caesium fountains at Syrte in 1999; it was later reported in a Sagnac interferometer in 2009, and
even today, new commercial gravimeters, such as the one recently presented last year by iXblue and Syrte,
have reached this barrier.

An important development in the last two decades was the invention and development of atom chips,
a concept that not only promises unprecedented levels of miniaturization but also opens the door to novel
techniques and capabilities of control of quantum systems. Specifically, we present the second iteration of
the Trapped-atom Clock on a Chip (TACC) experiment. This is a metrology-grade clock, upgraded with
on-chip fibre-based Fabry-Pérot cavities. We used this cavity-QED platform to create squeezed states of
spin as a key enabler in enhancing the precision and performance of compact atomic clocks.

Squeezed states, a manifestation of quantum mechanics, offer a unique way to manipulate the uncer-
tainties associated with atomic measurements. Squeezed states allow us to reduce the uncertainty in one
observable (e.g., the phase of the atomic transition) at the expense of increasing the uncertainty in another
(e.g., the number of atoms). This trade-off holds the potential to dramatically improve the short-term
accuracy of atomic clocks on a chip. In this thesis, we delve into the intricacies of the squeezing mecha-
nisms, particularly via quantum non-destructive (QND) measurements and the practical challenges faced
in achieving precision beyond the standard quantum limit (SQL).

It is our hope that this research contributes not only to the field of precision timekeeping but also to
the broader spectrum of applications, including navigation, communication, and fundamental tests of
physics, all of which rely on the ever-advancing capabilities of atomic clocks.

Structure of the Manuscript

The manuscript is divided into four main parts:

1. Context. In this part, we present the field of Quantum metrology, particularly from the point of view
of clock and inertial sensors. We provide a general framework for quantum metrology and introduce
the notion of spin squeezing. We go into detail about the generation of spin-squeezing via QND
measurements and present some technical limitations in TACC-2.



4

2. Experimental Apparatus. In this second part, we present the more relevant components of the experi-
mental apparatus. Some relevant characterisations have been presented elsewhere, and thus, we limit
ourselves to what is relevant to the results presented in this manuscript.

3. Spin Squeezing and Spatial Correlations. In this part, we present our first results generating spin-
squeezed states and their lifetime. We observe and investigate the interplay between the spin dynamics
and the external degrees of freedom of the atoms in the phenomenon we have called amplification and
present a semiclassical model of it.

4. Clock Operation. In this final part, we propose a protocol for phase measurements in the presence of
amplifications. We investigate different approaches to control such dynamics and apply our model to
a phase measurement under QPN.

Additionally, the fifth part contains some additional calculations that, although interesting or relevant,
would have disrupted the flow of the text.

Throughout the text, you will find footnotes in the margins. These are meant to add context when
confusion may arise. Sometimes, they are also there as a reference for future students who may be getting
familiar with the experiment, for example, when naming explicitly device models for a quick search of
their documentation. With respect to the figure, I don’t adopt any particular convention when placing
them on the margins or in the centre of the text; this has been done exclusively from the point of view of
aesthetics, i. e., a picture on the margins is not meant to be less relevant as a picture on the main text, at
least not intentionally.



Acknowledgement

It would be remiss of me to say that this work comes from my hands alone. I have been surrounded at
every step by an army watching my back and to whom I would like to express my gratitude.

I want to start with my thesis supervisor, Carlos Garrido, who, from the beginning, has made me feel
like a valuable member of his team. From him, I have received both an appreciation for fundamental
physics and a broad perspective on the applications of our profession. His pragmatism has been relevant
to me in times of scientific doubt, and his empathy has made the days of personal doubts lighter. Also,
I owe a lot to my co-director Jakob Reichel. It is always motivating to see the emotion in a professor’s
eyes when he explains something to you, from the technical subtleties of a laboratory device to the simple
steps of a cooking recipe. Jakob has treated me as an equal when discussing ideas, and I am sure that
the exchanges we have had have built my understanding of my project. I apologise to both of you for
my character flaws, and thank you for your patience and support. I must not pass up the opportunity to
thank my third advisor, the unofficial one, Myles. This thesis stands on the shoulders of his work. From
him, I learned the know-how necessary to inherit TACC, from laser construction to electronics. Myles has
been present from the time I arrived at my M2 internship until the last day of writing my manuscript,
passing through one or two confinements.

I am grateful to my colleagues at the Paris Observatory. At the time, Frank, Sebastian and Arnaud
answered questions and made experimental recommendations for problems that seemed daunting at the
time, helping me to move forward. A special mention goes to José, from the electronics department, who
always found the time to help us with our circuits, and to Michel, who explained to me the doubts that
even I did not know I had every time he saw the confusion in my eyes before a circuit. I was also lucky
enough to spend some of my afternoons at ENS with the atom chips team. It is always rewarding to go
and enjoy a cup of coffee as it should be made. I especially thank Romain and Alice, who were always
willing to listen to our doubts and try to help us find the next step when it was not very clear what to do.
Let’s not forget Etienne, my successor, that has appreciated my dark humor for... some years now.

On a more personal note, let’s go with some anecdotes: I arrived in Paris twice, once in 2016 and
once in 2018. On both occasions, I arrived with the unconditional support of María, who believed that I
could try harder even in the times when I didn’t believe it. I thank you for giving me the pen to write
this chapter of my life. On my first arrival, I met Manuel Joffre, who was my stay supervisor during
my exchange program. He motivated me to do my master’s in France, and because of him, I ended up
applying to ICFP, which eventually brought me to this project. At the same time, I met his collaborator,
Adeline Bonvalet, who, in addition to always having a valuable conversation, taught me his tricks for
aligning, which have been very useful to date.

I thank both Faruck Morcos and Rafael Medina, who have been both my mentors and my friends for
many years. They have made me the scientist that I am today and have informed many of my ideas on
science and education. Thanks to my team at Morcos Lab back in Dallas, particullarly Charisse that have
manage to have our projects move foward. I express my utmost appreciation to my friends, the professors
at ITESM, Raul and Carlos, who have received my calls over the years and discussed everything and
nothing at the same time. I cannot forget Professor Rodolfo Rodriguez, who has inspired me over the
years, not only for his pioneering work on cold atoms in Mexico but also for his kindness.



6

With respect to my friends, All of you are dear to me, and I’m lucky that you are so numerous, although
that complicates this task for me.

For those in Mexico. Bendita sea la tecnología que nos ha permitido seguir en contacto. Jacqueline, Mike,
Raul, Emilio, Thelma, Diego, Victoria, Manuel, Grace, Andrés, Mariel... ustedes me han escuchado a lo
largo de los años, a veces del otro lado del teléfono, a veces del otro lado de la mesa. En crisis y extasis
me han sostenido y han estado para escuchar desde mis ideas más extrañas hasta mis proyectos más
intrepidos. Mención obligada a Claudette que se encargo de ponerme en forma para poder escribir esta
tesis y creer en mi mismo.

He tenido encuentros y reencuentros incidentales con personas esplendidas que me han hecho extrañar
mi tierra: Sam que me hizo reenamorarme de mi ciudad, Alfredo que me inspira con su amor literario
y romanticismo, El profe Eriko siempre listo con un mezcal para platicar y una guitarra para hacerme
soñar, y Cilau que me inspira orgullo por la historia que se escribe en Nayarit. Y Jordi... tu amistad es
una de las semillas que más frutos me ha dado sembrar.

For those in Europe. Astrid, bless you and your family that have received me so lovingly when my own
is so far. Lukas and Timothée (well, sometimes in France), you have been good and sincere friends and
it is always a pleasure to share a movie, a beer or conversation with both of you. Thank you Kathy, for
the sporadic, but gorgeous experiences like bouldering and baking. Tamara, te has asegurado de que este
bien acompañado y de que disfrutara la playa cuando me hacia falta. Sophia, you have been there for me
since the very beginning until today; your presence has always bring me the joy to stay positive on what’s
ahead. Special mention to all the art-inclined friends I’ve crossed here like Zeca, Elodie, Claudia, Lorena,
Andrea and Marcelo; obrigado!

Marlet, pasan los años y aqui seguimos avanzando, te veo poco, pero te veo con gusto, gracias por
tantos años. Erick, tu nunca te vas, es un placer compartir una misma amistad y una misma fe contigo.
Carolina, prefiero no decir nada, porque tengo mucho que decir y estos acknowledgement ya parecen una
novela; dejemoslo en gracias y lo demás te lo sigo diciendo en los años que vendrán. Catalina y Agustín,
ustedes se volvieron mi familia aquí y esta tesis sólo se escribió porque ustedes estuvierón presentes los
años que me tomo hacer este doctorado. Cesia, la perdida, te has esforzado por estar en cada uno de mis
cumpleaños desde que nos conocemos; no sabes lo mucho que me ha servido tu compañia. Finally, Jonas:
I am fortunate to call you my friend; you have received me in your family and you have been there in my
crucial moments these years. You are all great.

To my family. Quiero agradecerles a todos. Se que no siempre estoy en contacto, pero cada que nos
hemos encontrado me han recibido en sus casas, me han llevado a comer, me han abrazado. Sea en
ciudad de México, San Juan de Abajo, Monterrey, San Diego, etc... Siempre me han recibido con amor
y se los reconozco. En particular, agradezco a mi tía Susana, a Alexia y a Mariela, que no sólo me
han recibido y tratado con cariño a lo largo de los años, sino que han acompañado a mis padres en mi
ausencia, lo cual me es invaluable. Gracias también, Carlos, que has hecho un verdadero esfuerzo por ser
mi familia independientemente si estamos en el mismo continente o no. A ti, Felix, te agradezco que te
has mantenido cerca a pesar de lo lejos que estamos, estoy muy feliz de llamarte mi hermano.

Finalmente, le agradezco a mis padres Felix de la Paz y Guadalupe Espinosa. Ustedes me hicieron lo
que soy. Todo el interés que tengo por la ciencia, la pasión por el trabajo y la ambición viene de ustedes.
Les reconozco el trabajo que han realizado a lo largo de los años para cuidarme. Ustedes creyeron que
yo podía aun cuando no había evidencias y me amaron cada vez que no pude. Los amo y esta tesis está
dedicada a ustedes.



7





Contents

PART I Context

1 Quantum Metrology 15

1.1 Inertial Sensors and Atomic Clocks 15

1.2 Atom chips and Rubidium Trapped Clocks 16

1.3 Quantum Metrology 18

1.4 Fisher Information and Standard Quantum Limit 21

2 Spin Squeezing 23

2.1 Spin Squeezed States 23

2.2 Measurement Generated Squeezing 24

2.3 Technical Limitations for Our Experiment 27

PART II Experimental Apparatus

3 TACC and TACC-2 platforms 33

3.1 Atom Chip 33

3.2 Vacuum System 35

3.3 Imaging 36

3.4 Microwave and RF photons 38

3.5 Trapping and Transport 40

3.6 Interrogation Pulses 42

4 Optical Modules: Main, 2DMOT and Probe Bench 47

4.1 Main Bench, Mirror MOT and Detection. 48

4.2 2D MOT Bench 48

4.3 Probe Laser Bench 50

5 Cavity Probe 53

5.1 Laser and Cavity Lock 53

5.2 Cavity Lock and Shift Inference 57



10 improving an atomic clock on a chip via spin-squeezing

5.3 Common Configuration 58

PART III Spin Squeezing and Spatial Correlations

6 Spin Squeezing Measurement Protocol 65

6.1 Previous Calibrations. 65

6.2 Spin squeezing measurement 66

7 Amplification 71

7.1 Experimental Observations of Amplification 71

7.2 Ingredients for amplification 72

7.3 Microscopic semi-classical model of amplification 74

7.4 Energy-Coupling Relationship 77

7.5 A model for noise under amplification 79

PART IV Clock Operation

8 Effect of Amplification on the Local Oscillator Phase Measurement 85

8.1 Ramsey Sequence with Conditionally Squeezed States 86

8.2 Phase shift inference 87

8.3 First Phase Measurement 88

9 Amplification Control 93

9.1 Influence of Probing Scheme in Amplification 93

9.2 Red probing 94

9.3 Bichromatic probing 97

9.4 Lower Atom Number 98

9.5 Phase Measurements in Other Probing Schemes 101

10 Conclusion and Outlook 107

PART V Appendices and Calculations

11 Inference 111

11.1 Cavity Shift Inference Calculations 111

11.2 Maximum Likelihood Calculations for Linear Regression 113

12 Geometric Calculations 117

12.1 Bi-Variate Gaussian Distribution 117

12.2 Moments Calculation in Presence of One-Body Losses 118



Introduction

Notation

Here, I present a list of the notation used in this manuscript. When
adequate, the definition will be expanded in the text; otherwise, it
will be assumed to have the usual convention.

Math

General
∂x Derivative with respect to x
(θ, φ) Direction described by n⃗ = (sin θ cos φ, sin θ sin φ, cos θ) in Cartesian coordi-

nates.

Statistics
X ∼ Y Random variable X is distributed according to Y
X|Y X conditioned on Y
Xi A realisation of a random variable X
N (µ, σ2) Normal distribution with mean µ and variance σ2

Var (Y|X) = Var (Y)− (Cov(X,Y))2

Var(X)
Variance of Y|X for (X, Y) distributed like bivariate Gaussian variables

Physics

General
R̂n̂(α) Rotation operator with angle α around axis n̂ in the corresponding space
R̂(α; φ) Rotation operator with angle α around axis (π/2, φ) in the corresponding space
π̂(ϑ), π̂

2 (ϑ) π and π/2 rotation operator around axis (cos ϑ, sin ϑ, 0) in the corresponding
space

PSN Photon Shot Noise
QPN Quantum Projection Noise

From experiment
δω Cavity Shift in units of angular frequency
p Probe detuning in units of angular frequency
M Measured cavity shift
ωat
2π = 6.83468261090429(9) GHz Angular frequency for the F = 1 → F′ = 2 transition of the hyperfine manifold

52S1/2 of Rubidium 87[1]
Γat
2π = 6.065(9) MHz Natural Line Width of the Rubidium 87 D2 (52S1/2 −→ 52P3/2) optical

transition[1]
ni,j, Mi,j Detected photon number and inferred cavity shift from ith probe of the jth mea-

surement
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Context





1
Quantum Metrology

1.1 Inertial Sensors and Atomic Clocks

1.1.1 A Brief History of Clocks

Since the birth of quantum mechanics in the XX century, experiments
to interfere with matter have been proposed to probe the subtleties
of this new framework. In 1937 and 1938, Rabi [2] proposed the
first interferometric measurements of atomic properties [3]. His work
eventually led to the invention of the first atomic clock based on
ammonia in 1948 by Harold and Husten [4]. In 1950, Ramsey [5]
developed a new interrogation method that, up to this day, is the
conceptual basis for all atomic interferometers.

Since the fifties, efforts were made all around the world to develop
an atomic standard of time, gaining at least an order of magnitude
per decade [6]. This led to the redefinition of the second in 1968,
referenced to the frequency of the ground state hyperfine transition
in the caesium-133 atom[7]. The development of laser and cooling
technologies[8] allowed for the development of caesium fountains in
the nineties. The first of such devices, developed in Paris, reached
record accuracies, at the time, of 3 × 10−15[9]. More recently, new
technologies such as optical clocks [10–12] have reached stabilities on
the order of 10−18, bringing with them new technological challenges
and new physics[13].

Figure 1.1: Photograph of the back side
of ammonia maser, the first molecular
clock with B. F. Husten and E. D. Heber-
ling.

1.1.2 On Portability and Inertial Sensors

The use of clocks is not exclusive to the creation of primary time ref-
erences. Different applications may require different sizes of clocks,
notably in the interest of portability. Modern commercial and portable
clocks have stabilities on the order of 10−12, and it is of particu-
lar interest to increase this stability for at least an order of magni-
tude while keeping a portable device. Some proposals have reached
stabilities of 10−13 in the short term and gaining at least an order
of magnitude after long integration [14–18]. Apart from building
clocks, Bordé [19] propose the use of atomic recoil in an interferom-
eter to measure both rotations and accelerations as frequency shifts
in Ramsey fringes. This principle was demonstrated only two years
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later[20–24]. Since then, numerous teams around the world have
worked to improve both the accuracy and sensitivity of such sen-
sors. This research has been motivated by the practical applications
of such technologies in inertial guidance, geophysics, and fundamen-
tal physics [25].

Although we do not deal with inertial sensors in this thesis, we
consider it relevant to mention them as they face similar challenges
to compact clocks in terms of portability and the use of resources.
Particularly, both compact atomic clocks and inertial sensors may
benefit from the use of entangled states to improve their sensitivity,
as will be discussed in section 1.4. The approach of using these states
is the main subject of this manuscript. For reference on cold atom
sensors, we direct the reader to [26] as a general reference of the field;
[27] discusses more directly the problem of portability and transport.
Finally, [25] gives a review of the field, particularly focusing on the
efforts of the last 10 years.

1.2 Atom chips and Rubidium Trapped Clocks

An atom chip is a specialized device used for the manipulation and
control of atoms using electromagnetic fields. It typically consists
of a microfabricated substrate, onto which extremely small and pre-
cise wire structures are patterned. These wire structures generate
magnetic fields and electric potentials that can trap, guide, and ma-
nipulate clouds of ultra-cold atoms. Additionally, it is possible to
apply mirror coating to the chip surface, allowing for the formation
of magneto-optical traps (MOT) near the surface of the chip [28]. The
operation of an atom chip relies on the principles of magnetic trap-
ping. When a current flows through the wires on the chip, it creates
a magnetic field distribution around them. This magnetic field can
be tailored with the help of external bias fields to create complex ge-
ometries as traps for the atoms. By adjusting the currents in real time,
one can manipulate the position and motion of the trapped atoms.
A pedagogical explanation of the most common trap geometries is
presented in the thesis by Reinhard [29].

Atom chips have found widespread use in experiments involv-
ing cold atoms [30]. They have been used to study properties of
Bose-Einstein condensates [31–33], and are also crucial for develop-
ing practical applications in quantum information [34] and atom in-
terferometry [35]. A complete overview of these technologies can be
found in [28] and [30].

1.2.1 A Trapped Rubidium Clock

We chose Rubidium 87 (87Rb) as the atomic species for this experi-
ment. The reduced interatomic interaction, compared to Cs, results
in a reduction of the collisional shift, facilitating both trapping and
cooling. The hyperfine splitting of 87Rb is in the microwave range,
making it useful as a secondary standard. Particularly, we make
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use of the two-photon transition between the magnetically trappable
states. |↓⟩ ≡ |F = 1, mF = −1⟩ and |↑⟩ ≡ |F = 2, mF = 1⟩; this tran-
sition is shown in figure 1.2 c) . An important advantage of such
states is that their energy difference reaches a minimum at a “magic
field” Bm where the transition frequency is first-order insensitive to
the magnetic field, as shown in figure 1.2 b).
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Figure 1.2: The Rb clock transition for
trapped atoms and pseudo-magic trap
in; adapted from [36]. a) Energy of
the 52S1/2 hyperfine ground states of
87Rb in a magnetic field, calculated us-
ing the Breit-Rabi formula [1]. b) En-
ergy difference between the clock states
|↓⟩ and |↑⟩ showing a magic field at
Bm = 3.229 G. c) Two-photon transi-
tion implemented in TACC, with ∆i =
500 kHz. d) Mutual compensation
between the inhomogeneous Zeeman
shift ∆νB and the mean-field collisional
shift ∆νmf, at the bottom field slightly
lower than Bm (∆B < 0). The compen-
sation is slightly compromised due to
gravitational sag that shifts the cloud
away from the trap centre.

Zeeman shift. More precisely, in a harmonic trap with trapping fre-
quencies ωx, ωy and ωz, the Zeeman shift ∆B is described by [37]:

∆νB (⃗r) =
bm2

µ2
B

(
ω2

xx2 + ω2
z

(
y2 + z2

)
− 2gz + ∆B

µB

m

)2
, (1.1)

where m is the atomic mass, g the gravitational acceleration, µB the
Bohr magneton, ∆B = B − Bm, and b ≈ 431.356Hz/G2. The second
to last term is the shift due to gravitational sag. The curvature of the
shift at the trap centre can have different signs depending on the bias
field ∆B.

Density shift. For cold thermal clouds, we consider that the ensem-
ble can be treated classically, and the atomic density is given by the
Maxwell-Boltzmann distribution at temperature T[38]:

n(⃗r) =
N

(2π)3/2xTyTzT
exp

[
− x2

2x2
T

]
exp

[
− y2

2y2
T

]
exp

[
− z2

2z2
T

]
(1.2)

where N is the number of atoms, kB the Boltzmann constant, and
xT =

√
kBT/ (mω2

x) (similar for yT and zT). The collision between
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atoms induces a frequency shift that depends on this density. A
mean-field treatment leads to a negative shift ∆νmf ∝ n(⃗r)[39].

Partial Shift Compensation. While the collisional shift is stronger to-
wards the cloud centre (a positive curvature), the Zeeman shift can
be tuned (∆B < 0) to have the opposite curvature that almost cancels
the inhomogeneity close to the trap centre. The imperfections are
twofold: different forms of the magnetic potential (quadratic) and
the density (Gaussian), and the fact that gravitational sag displaces
the centre of the density profile away from that of the magnetic po-
tential (See figure 1.2).

1.3 Quantum Metrology

The primary tool behind measuring physical quantities is a probe
interacting with the system of interest; such interaction modifies the
state of the probe in a sensible, well-characterised and controlled
manner. Quantum metrology uses the quantum nature of the in-
volved system via non-classical states and entanglement in order to
improve the measurement precision. Notably, this can be done by
mapping the quantity we are interested in into a phase shift θ to be
determined by interferometric techniques.

Grosso modo, an initial N-particle state, described by a density op-
erator (matrix) ρ̂(0) is produced and then is subjected to an evolu-
tion ∂tρ̂ = i[ρ̂, Ĥφ] induced by a Hamiltonian Ĥφ that depends on the
quantity we want to measure φ1. This procedure encondes φ into a

1 h̄ = 1 for this section.

state that depends on it as ρ̂(0) 7→ ρ̂(t f ) = ρ̂φ. A set of measure-
ments2 is then performed onto the system, yielding an ensemble of

2 General measurements are described
by probability-operator-valued mea-
sures (POVM) [40], a set of operators Êr
associated with a set of results r such
that Êr ≥ 0 and ∑r Êr = I. Given a
state described by the density operator
ρ̂, the probability of obtaining a result r
is given by P(r) = Tr

{
ρ̂Êr
}

nR measurement results µ⃗ = {µ1, µ2, · · · }. This set of measurement
results is then used to calculate an estimate Θ(µ⃗) of the phase shift
[41]. If the particles are independent, the phase sensitivity, i. e., stan-
dard deviation ∆φ, scales as 1√

N
. This corresponds to the classical

scaling of independent variables, the Standard Quantum Limit (SQL)
[42]. This limit has been demonstrated in different metrology scale
instruments [43]. However, taking advantage of entangled states, the
SQL can be overcome in metrologically useful manners [41, 44]. The
most relevant metrological states in this project are the spin-squeezed
states, which will be introduced in the following sections.

1.3.1 Spin Representation and Collective Spin

Figure 1.3: Bloch sphere representation
of a single qubit. The latitude of a par-
ticular state represents the z component
of the spin and is related to the ampli-
tude of each state in the {|↑⟩ , |↓⟩} basis.
The longitude relative to x represents
the relative phase between both states.

Single atom. We consider a two-level system with a particular basis
{|↑⟩ , |↓⟩}. This represents the two levels of an atomic system sus-
ceptible to a phase accumulation correlated to the physical quantity
to measure. For example, they could be two hyperfine states of an
atom, as in the case of an atomic clock, to measure the detunings of
a local oscillator with respect to the energy difference of these states.
Alternatively, those could be two momentum states, as with inertial
sensors that could measure rotations and accelerations. This identi-
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fication allows us to treat the system as an effective spin-1/2 where
each normalised pure-state can be parametrised as

|θ, φ⟩ = cos
θ

2
e−i φ

2 |↑⟩+ sin
θ

2
ei φ

2 |↓⟩ =
(

cos θ
2 e−i φ

2

sin θ
2 ei φ

2

)
, (1.3)

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. This parameterisation allows us to as-
sign a point on the unitary sphere n⃗(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ)

to each effective spin-1/2. This parametrisation3, named the Bloch 3 In the text, we will use the physics
convention of Spherical coordinates: r
for the radial distance r, polar angle θ,
and azimuthal angle φ.

sphere, allows for a representation as the one shown in Fig 1.3, where
each point corresponds to a spin state. Furthermore, any unitary
transformation on the system can be regarded as a rotation on the
sphere around an axis n⃗ and by an angle α, acting on the spin Hilbert
space through the representation4: 4 Here, σ⃗ · n⃗ denotes ∑i σini , where σi

stands for the three Pauli matrices. For
more details, one can refer to Chapter 3

of Sakurai and Napolitano [45]
R̂n⃗ (α) = e−i α

2 σ⃗·⃗n = cos
(α

2

)
I − i sin

(α

2

)
σ⃗ · n⃗. (1.4)

For later use, we introduce the following notation:

π̂(ϑ) ≡R̂n⃗ϑ
(π) =

(
0 e−iϑ

eiϑ 0

)
,

π̂

2
(ϑ) ≡R̂n⃗ϑ

(π

2

)
=

( 1√
2

− i√
2

e−iϑ

− i√
2

eiϑ 1√
2

)
,

ϕ̂ ≡R̂z⃗ (ϕ) =

(
e−i ϕ

2 0

0 ei ϕ
2

)
,

where n⃗ϑ = n⃗(π/2, ϑ) and z⃗ = n⃗(0, 0)

Figure 1.4: Generalised Bloch sphere
representation of a CSS. The centre of
the distribution represents the expected
value of the collective spin operator
ˆ⃗S. The distribution around the cen-
tre of the state represents the uncer-
tainty of measurements in the corre-
sponding quadrature for the case of a
CSS. More generally, this representation
is the pictorial representation of some
quasi-distribution of the atomic state
projected on the unitary sphere[41].

Many atoms. To describe an ensemble of atoms, we consider the

collective spin vector ˆ⃗S = ∑N
i

ˆ⃗si with ˆ⃗si = 1
2

(
σ̂
(i)
x , σ̂

(i)
y , σ̂

(i)
z

)
, where

the σ̂
(i)
x,y,z are Pauli matrices for the ith atom. The measurement of

the ensemble’s z component is given by the population difference
⟨Sz⟩ = (N↑ − N↓)/2, where N↑ and N↓ are the atom numbers in
|↑⟩ and |↓⟩ states, respectively. The collective spin vector, as such
defined, obeys the angular momentum algebra with the expected
commutation relationships between its components.

The simplest pure state that can be created from an ensemble of
N atoms is called a Coherent Spin State (CSS) and consists of all
atoms prepared along the same axis in spin space. For an axis n⃗ =

(sin θ cos φ, sin θ sin φ, cos θ), we defined the corresponding CSS as

|θ, φ; N⟩ =
N⊗
i
|θ, φ⟩i , (1.5)

with
〈 ˆ⃗S
〉

= N
2 (sin θ cos φ, sin θ sin φ, cos θ). These collective states

can be represented in a generalised Bloch sphere through a quasi-
probability distribution of the state, as described by Pezzè et al. [41].
For the case of a CSS with a large N, this distribution approximates
a Gaussian around the expected value of the state. We pictorically5

5 Unless otherwise specified, the Bloch
sphere representation of many-atom
states we use is mostly pictorial.

represent this in figure 1.4.
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The generalised Bloch sphere representation allows us to exploit
our intuitions and notions of rotations. If we rotate every spin around
the same axis n⃗ by an angle α, we can represent this through a col-
lective rotation operator

⊗N
i e−i α

2 σ⃗i ·⃗n = e−iαS⃗·⃗n. This type of opera-
tor describes most classical operators used in atomic interferometers.
The type of interactions used to create superpositions addresses the
atoms independently from each other, rotating them along the same
axis6. For all practical purposes, when calculating collective rota- 6 The case of inhomogeneous coupling

can be treated via an effective spin of
reduced length S as described by Hu
et al. [46].

tions, we can manipulate the single spin state and then consider the
effect on the complete state. However, as discussed below, other evo-
lutions can also be induced through interactions between the spins
or via interactions with external systems.

Second quantisation approach. The Dicke states are a natural basis for
the collective spin state formed by the states that are symmetric un-
der particle exchange for a given atom number N. These are the
common eigenbasis |S, Sz⟩ of the Ŝ2, Ŝz operators, with S = N

2 and
Sz ∈ {−S, · · · , S}. The CSS can be written in terms of Dicke states
as [47]:

|θ, φ; N⟩ =
S

∑
Sz=−S

C(Sz, θ, φ) |S, Sz⟩ , (1.6)

C(Sz, θ, φ) =

(
2S

S + Sz

)1/2 (
sin

θ

2

)S+Sz (
cos

θ

2

)S−Sz

e−i(S+Sz)ϕ.

(1.7)

This basis allows us to consider Sz as symmetrical excitations with
well-defined population differences. Furthermore, in addition to
the previous angular momentum formalism of spin states, we can
use second quantisation and introduce bosonic operators a, b for the
states |↑⟩ and |↓⟩ respectively7. Spin operators can now be written 7 For these states N̂↑ = a†a, N̂↓ = b†b

and[
a, a†

]
= 1,

[
b, b†

]
= 1, [a, b] = 0.

as:

Ŝx ≡1
2

(
a†b + b†a

)
, (1.8)

Ŝy ≡ 1
2i

(
a†b − b†a

)
, (1.9)

Ŝz ≡
1
2

(
a†a − b†b

)
. (1.10)

This formalism will allow us to deal with varying numbers of atoms
in sections 2.3.3 and 12.2[48, 49].

1.3.2 Ramsey Interferometer

A Ramsey interferometer is a measurement scheme where an atomic
ensemble is initially prepared in a coherent superposition along the
equator of the Bloch sphere. Then, the ensemble state can accumu-
late a phase φ during a free evolution time td. In the case of an
atomic clock, the phase that we care about is proportional to the
detuning of the local oscillator ∆LO with respect to the atomic transi-
tion: φ = ∆LOtd. Finally, a second rotation of the internal state turns
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this phase into a population difference that can be measured. This
sequence of steps can be modelled by a pair of rotations separated by
a time td. In the case of relatively small detuning, this corresponds to
π/2-rotations. Different combinations of the relative phases of these
pulses allow us to make the final measurement more or less sensitive
to the value of interest. Take, for example, the sequence where the
two pulses have a phase difference of π:

π̂

2
(π + ϑ) · ϕ̂ · π̂

2
(ϑ) = R̂ϑ+π/2 (ϕ) .

Figure 1.5: Ramsey sequence where the
two π/2 pulses that open and close the
interferometer have opposite phases.

This sequence is illustrated in figure 1.5, where the accumulated
phase transfers into a population difference. For an initial state |↓⟩⊗N

and ϑ = −π
2 , the final state of the interferometer is |π − φ, π

2 ; N⟩, for
which

⟨Sz⟩ = −N
2

cos φ, ∆Sz =

√
N

2
sin φ. (1.11)

From equation (1.11), the phase uncertainty is given by:

∆φ =
∆Sz
d⟨Sz⟩

dφ

=
1√
N

. (1.12)

This noise level is the Standard Quantum Limit (SQL), to be dis-
cussed more generally in the next section.

1.4 Fisher Information and Standard Quantum Limit

Whenever we consider a separable spin state |ψ⟩ = ⊗N
i |ψi⟩, a CSS,

for example, we can treat the measurements performed on it as an
ensemble of independent measurements. From this, we expect the
information we obtain to be limited by the statistics of uncorrelated
random variables that scale with the squared root of the number of
variables; for the interferometer, this is the number of atoms.

Fisher Information. More generally, given a general quantum state
and a POVM {Êµ}, we may define a probability distribution over
the results µ, conditioned on the encoded parameter φ as P(µ|φ) =
Tr
{

ρ̂φÊµ

}
. From this distribution, we may build the Fisher informa-

tion defined as;

F(φ) ≡ ∑
µ

P(µ|φ)
(

d ln P(µ|φ)
dφ

)2

, (1.13)

which is a measure on how much the distribution P(µ|φ) changes as
the parameter φ changes [40]. More intuitively, the Fisher informa-
tion describes how easy it is to distinguish two different values of the
parameter ϕ from the results we obtained by measuring them. With
this quantity, it is possible to bound the uncertainty on the inference
on the parameter φ for one measurement as:

∆φ ≥ ∆φCR =
1√

F(φ)
. (1.14)

This bound is known to be saturated by the Maximum Likelihood
estimator of φ value, and it is known as the Cramér-Rao Bound.
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Information relevant bounds. Furthermore, it is possible to extend this
notion by considering the set of all possible POVM on ρ̂φ, giving rise
to an upper bound on the Fisher information known as the Quantum
Fisher Information (QFI):

FQ[ρ̂φ] = max
{Êµ}

F(φ).

where the maximization is taken over the set of all possible POVMs.
The QFI tells us about the potential of a state described by the density
matrix ρ̂φ to give information about the quantity φ when choosing
the best possible measurement scheme. Therefore, by construction,

∆φCR ≥ ∆φQCR =
1√

FQ[ρ̂φ]
. (1.15)

Two relevant bounds have been shown by Pezzé and Smerzi [44] to
be the Heisenberg limit:

FQ[ρ̂φ] ≤ N2, (1.16)

valid for any spin state, giving the maximum phase sensitivity. On
the other hand, we found that for separable states

FQ[ρ̂φ] ≤ N. (1.17)

Pure states saturate these bounds and are a more general version of
the SQL we described above. Violations of this bound are criteria
for entanglement8. Furthermore, this construction allows us to dis- 8 It should be noted that not all entan-

gled states reduce the uncertainty on
the phase estimations, but the only vi-
olations for this bound can come from
entangled spin states.

tinguish which states are helpful or not for metrology. Some of the
useful entangled states that are of common interest are Dicke states,
NOON states9, and squeezed states, to be introduced in the next

9 Also known as Greenberger-Horne-

Zeilinger (GHZ), defined as |↑⟩⊗N+|↓⟩⊗N
√

2

section.

Figures of merit. With these bounds, we can introduce three relevant
figures of merit. Maybe the most evident metric in this context is the
metrological gain, 1/ζ2 with respect to the QFI [50]:

ζ2 =
N

FQ[ρ̂φ]
.

However, in practice, we measure population difference, i. e., Sz. Thus,
we prefer the notion of number squeezing, which compares the vari-
ance of the adequate spin component with the result we expect from
an optimal pure and separable state, a CSS:

ξ2
N =

(
∆Sz

∆Sz|CSS

)2
=

4 (∆Sz)
2

N
. (1.18)

Finally, an intermediate between these two metrics is the Wineland
parameter, which considers the “available resources”, including the
coherence of the state via the contrast C of the Ramsey fringes:

ξ2 = N
(∆Sz)

2∣∣∣〈S⃗
〉∣∣∣2 =

4 (∆Sz)
2

NC2 . (1.19)

We note that this quantity is the actual metrological gain we obtained
from using this particular state [51–53].
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Spin Squeezing

2.1 Spin Squeezed States

Consider a collective spin state prepared along a direction n⃗(π/2, φ)

axis in such a way that
〈
Ŝn⃗
〉
≈ |

〈
S⃗
〉
| = S. Given the two orthogonal

directions φ⃗ and z⃗, both perpendicular to n⃗, the uncertainty principle
implies that

(∆Sφ)
2(∆Sz)

2 ≥ 1
4

S2 =
N2C2

16
. (2.1)

Rewriting equation (2.1) in terms of the squeezing parameter, we get

4(∆Sφ)2

NC2
4(∆Sz)2

N
= ξ2

φ · ξ2
N,z ≥ 1. (2.2)

Figure 2.1: Bloch sphere representa-
tion of an SSS. In red, we see the
squeezed quadrature and in blue, the
anti-squeezed component, in this case,
SZ .

This tells us that any metrological gain on the phase measurement
is accompanied by an increase in the uncertainty of the z-component
of the spin ensemble. Such states are referred to as spin-squeezed
states (SSS). They were first introduced by Wineland et al. [51] in
1992, and Kitagawa and Ueda [53] proposed its application to inter-
ferometry. These are the primary states of interest for this work, and
in the following subsection, we discuss the mechanism for generat-
ing them and their characterisation.

2.1.1 Squeezing via Interactions

The first mechanism for generating squeezing is via spin interactions
[53]. Some of the typical Hamiltonians to achieve this are of the form:

H1−axis = −h̄χŜ2
z , One-axis twisting;

H2−axis = h̄χ
(

Ŝ2
y − Ŝ2

x

)
, Two-axis counter twisting;

HTaT = h̄ΩHFŜx + h̄χŜ2
z , Twist and turn,

where the χ is the shearing parameter, describing the strength of
spin-spin interactions, and a coupling strength ΩHF given by the mi-
crowave and radio-frequency radiation, this is a rotation term corre-
sponding to an external drive. Quadratic Hamiltonians as such, par-
ticularly the one-axis twist and the twist-and-turn, can be and have
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been achieved experimentally before through atomic collisions[54–
60]. Alternatively, one can introduce interactions through the cou-
pling with light. For example, we can couple the atomic ensemble
with the mode ĉ of a cavity with Hamiltonians including the term

Hlight−atom = −h̄Ωn̂cŜz, (2.3)

where n̂c is the photon number operator and Ω is the lightshift per
single photon. The intracavity photon number depends on the spin
state, leading to an effective quadratic term on spin[61]. Indeed, the
atoms inside the cavity produce a refractive index shift in the cavity
resonance, therefore modifying the ability to couple light into the
cavity.

Figure 2.2: Pictorical representation of
the one-axis twist action. The rota-
tion speed in the Bloch sphere depends
on the value of the Sz component, ef-
fectively stretching the collective spin
state.

A complete treatment of this approach has been detailed else-
where [50, 53, 61]. The basic idea is that, in a rotating frame of
reference, given a Hamiltonian h̄∆LOŜz, the spin state precess at an
angular speed of ∆LO. A Hamiltonian with a second-order term,
such as h̄(∆LO + χŜz)Ŝz has the effect of changing the rate of rota-
tion of the state to ∆LO + χŜz, making it dependent on the z spin-
component. This mechanism produces the stretching of its distribu-
tion, as depicted in figure 2.2, squeezing the state along an oblique
quadrature.

2.2 Measurement Generated Squeezing

This approach consists of entangling another quantum system with
the atomic ensemble, usually a cavity light mode. Measuring the
light state then allows one to infer information about the atomic
state, reducing the uncertainty on a spin component without de-
stroying the state coherence. The amount of information obtained
by this method will be limited by the fundamental fluctuations of
the light state used. In our system, as we will se below, we have a
superposition of coherent states condition on the atomic state; this
sets our fundamental limit at Photon Shot Noise (PSN1). We utilize

1 A coherent state |α⟩, has the statis-
tics of Poisson variable when measur-
ing photon number, in particular, its
mean and variance follow the relation:

⟨n⟩ = Var (n) = |α|2

The fluctuations when measuring the
photon umber n for such states are
named Photon Shot Noise.

this method for creating squeezing and will thoroughly explain the
involved steps. The following treatment is adapted from [62].

Figure 2.3: Energy level structure and
the cavity-probing scheme for Rubid-
ium 87.

Consider a spin ensemble with two hyperfine ground states equally
coupled to an excited state |e⟩, with opposite detunings ±∆ via a sin-
gle cavity mode described by ĉ and effective linewidth γ (HWHM).
Adiabatic elimination of the excited level in the low-saturation regime
leads to the evolution governed by the Hamiltonian h̄(δ + Ω)Ŝzn̂c +

iηp(ĉ† − ĉ), where δ is the probe detuning with respect to the empty-
cavity, ηp is the cavity pumping rate and Ω

2γ is the single-photon
light shift. Initially, the atoms are prepared in a coherent state on the
equator of the Bloch sphere; from equation (1.7):

|φ; S⟩ = ∑
m

Cm(φ) |m⟩ , m ∈ [−S, S] (2.4)

where Cm(φ) =
√
( 2S

S+m)2
−Se−i(S+m)φ ≈ (πS)−1/4e−

m2
2S −i(S+m)φ. Light

is then sent at a pumping rate ηp. There are no light-light interac-
tions for a small enough pumping rate (η2

p/γ2 ≪ 1), and the cavity
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reaches a superposition of coherent states conditioned to the atomic
state for times larger than γ−1. Written in terms of the intracavity
light field, the state after interaction will be given by

|ψat+lightin⟩ =∑
m

Cm(φ) |m⟩ ⊗ |αin,m⟩ , m ∈ [−S, S]

αin,m =
ηp

γ + i(δ + mΩ)
.

Considering a decay rate due to transmission κt and symmetrical
losses2 κt, the state of the system after transmission through the cav- 2 For a pair of identical mirrors with

transmission T and losses L, we have
κt = 2γ T

T +L
ity is:

|ψat+light⟩ =∑
m

Cm(φ) |m⟩ ⊗ |αm⟩ , m ∈ [−S, S] , (2.5)

αm =

(
κt

4γ

)
ηp

γ + i(δ + mΩ)
. (2.6)

Photon detection. We focus now on the detection of the light compo-
nent of our state. The light component is measured with a photon
counter with efficiency η. This can be modelled with a beamsplitter
B with transmittance η at the output port of the cavity[63]. We take
a two-mode light-state |α, 0⟩, where |α⟩ represents the light state to
be (imperfectly) detected and |0⟩ is the vacuum state entering the
second port of the beamsplitter. In this two-mode representation, B
can be represented by a unitary matrix

B =

(
cos ϑ i sin ϑ

i sin ϑ cos ϑ

)
, η = cos2 ϑ.

When acting on a bi-coherent state |α, β⟩, the action of the beam
splitter can be calculated by applying B directly to the amplitudes of
the coherent states individually[64]:

B · |α, β⟩ = |α′, β′⟩ , where

(
α′

β′

)
= B−1

(
α

β

)
.

Applying this to the cavity mode, we obtain the output state before
measurement:

|ψfinal⟩ = ∑
m

Cm(φ) |m⟩ ⊗ |αm cos ϑ,−iαm sin ϑ⟩ , (2.7)

where we have access only to the photon counts of the first mode,
while the rest are lost. Finally, to describe the final state in the cloud,
we first trace over the lost photons3:

3 We simplify the second line using
∑n |n⟩ ⟨n| = I. For simplicity, we drop
the explicit dependence on φ

ρ̂measurable = Trlost {|ψfinal⟩ ⟨ψfinal|}
= ∑

n,m,m′
CmC̄m′ ⟨n | −iαm sin ϑ⟩ ⟨−iαm′ sin ϑ | n⟩ |m; αm cos ϑ⟩

〈
m′; αm′ cos ϑ

∣∣
= ∑

m,m′
CmC̄m′ ⟨−iαm′ sin ϑ | −iαm sin ϑ⟩ |m; αm cos ϑ⟩

〈
m′; αm′ cos ϑ

∣∣
= ∑

m,m′
Am,m′ |m; αm cos ϑ⟩

〈
m′; αm′ cos ϑ

∣∣ ,
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where we introduce the matrix element

Am,m′ =CmC̄m′ ⟨−iαm′ sin ϑ | −iαm sin ϑ⟩

≈ 1√
πS

e−
m2+m′2

2S −i(m−m′)φe−
sin2 ϑ

2 (|αm |2+|αm′ |2−2ᾱm′αm).

Observe that the distribution of the spin state is not affected by the
fact that this photons are not detected by us (nothing learnt, implies
the same noise as the original CSS)

P(m) = A(m, m) ≈ 1√
πS

e
− m2

2 S
2 , m ∼ N

(
0,

S
2

)
. (2.8)

Photon distribution. The probability of detecting n photons is given
by:

P(n) = Tr {Trat {ρ̂measurable} |n⟩ ⟨n|}

= ∑
m
A(m, m)e−|αm cos ϑ|2 1

n!
(|αm|2 cos2 ϑ)n

= ∑
m

P(m)
e−η⟨n⟩m(η ⟨n⟩m)

n

n!
.

which is simply the conditional probability of finding the atoms in a
particular state m and measuring the associated Poisson distribution
for the state that corresponds, |αm|2 = ⟨n⟩m, scaled with a parameter
η for the detection efficiency.

2.2.1 Internal State After Measurement

Let us say we measure nd photons at the photon counter. The atomic
component of the system is then described by ρ̂f,atoms ∝ ⟨nd | ρ̂measurable | nd⟩
with

ρ̂f,atoms ∝ ⟨nd | ρ̂measurable | nd⟩

= ∑
m,m′

Am,m′ e− cos2 ϑ
|αm |2+|αm′ |2

2
(αmᾱm′ cos2 ϑ)nd

nd!
|m⟩

〈
m′∣∣

= ∑
m,m′

Am,m′ e−η
|αm |2+|αm′ |2

2
(αmᾱm′η)nd

nd!
|m⟩

〈
m′∣∣ .

We can now focus on the diagonal terms, which give us the spin
distribution conditioned to the detected photon number. Moreover,
for large mean photon numbers. we can approximate the resulting
Poisson’s factor with a normal distribution N (η ⟨n⟩m , η ⟨n⟩m)

P(m|nd) = A(m, m)e−η⟨n⟩m
(⟨n⟩m η)nd

nd!
≈ e

− m2

2 S
2 e−

(nd−η⟨n⟩m)2

2η⟨n⟩m . (2.9)

Note that our coupling4 is such that mΩ ≪ γ. We define the n0 as the

4 For our experiment Ω̂ = 2π × 16.2(3)
kHz, γ = 2π × 22.9(3) MHz, while m is
“bounded” by QPN with

√
N

2 ≲ 160 for

all experiments presented, or Ω
√

N
2 ≲

2π × 2.6 MHz
expected number of photons to be detected after several realisations,

i.e. n0 =
(

κt
4γ

)2 η

γ2
|γp |2

1+
(

δ
γ

)2 . Then, one can linearise the cavity profile,
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as will be seen in equation 7.4:

η|αm|2 = n0(1 − βΩm),

β =
1

1 + (δ/γ)2
2δ

γ2 .

If we write m̄ the inferred spin from the measured nd, and approx-
imate the variance of the distribution by taking nd ≈ n0 in the de-
nominator of the second exponential of equation (2.9), we obtain:

P(m|m̄) ∝ e
− m2

2 S
2 exp

− (m̄ − m)2

2 1
n0β2Ω2

 ,

and the conditional distribution

m|m̄ ∼ N

 m̄ S
2

S
2 + 1

n0β2Ω2

,
S
2

1
n0β2Ω2

S
2 + 1

n0β2Ω2

 (2.10)

∼ N

 m̄
1 + 4

n0Ω2β2 NC
,

S
2

1 + Nn0β2Ω2

4

 . (2.11)

Here, the metrological gain is brought by the denominator of the
variance5: 5 Note that the initial spin distribution

brings the term S before the light inter-
action, thus S = N

2 without the contrast
term.ξ2 =

4Var (m)

NC2 =

(
1 +

Nn0β2Ω2

4

)−1

C−2. (2.12)

2.3 Technical Limitations for Our Experiment

The use of SSS is limited by the mechanism used to generate them,
the states’ lifetime and particular limits from our cavity experiment.
With respect to its generation, the light in the cavity induces a loss
in contrast due to the back-action of the scattered photons, which
collapses atoms[61] and due to the dephasing induced by the inho-
mogeneous lightshift[65]. Also, the scattering processes can lead to
spin flips (Raman scattering). Secondly, for values of ⟨Sz⟩ = 0, the
antisqueezed component of the state contributes to the noise of the
squeezed component due to the curvature of the Bloch sphere[61, 66]
leading to a loss of contrast. Finally, once the SSS is created, the atom
losses in the magnetic trap lead to a degradation of the spin state. In
the next subsections, we detail these phenomena.

2.3.1 Contrast Loss

Every time a photon is scattered into free space, the scattering atom
loses its coherence with the rest of the ensemble. If the number of
photons scattered by atoms is given by ns, the contrast loss due to
scattering is Csc = e−ns . The number of photons scattered is propor-
tional to the number of photons in the cavity and the cooperativity
C. We can relate the number of photons inside the cavity to the num-
ber of photons detected via the decay rate due to losses, i. e., κt and
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the detection efficiency η. It can be shown that ns = n0
4γC
ηκt

(
ωat
Γat

)2
,

leading to

Csc = e−
n0
γ1 , γ1 =

ηκt

4γC

(
Γat

ωat

)2
≈ 1.05 × 105. (2.13)

On the other hand, the antisqueezed component of the state wraps
around the sphere, leading to a further reduction of the of the spin

length. Introducting the shearing strength 6[53, 61, 67], Q = Nn0
2η

(
Ω
γ

)2
, 6 This parameter quantifies the shearing

effect described in 2.1.1 with Q ∝ χ and
can be defined as Q ≡ Nχτ.

the reduction of contrast due to this back-action can be approximated

by CBA = e−
Q2
2N [61], or in terms of the average photon number de-

tected:

CBA = e−
(

n0
γ2

)2

, γ2 = 2η

√
2
N

( γ

Ω

)2
. (2.14)

2.3.2 Effects on Noise due to Antisqueezing

Figure 2.4: Radial component of the
antisqueezed component. Say that the
extend of the antisqueezed component
is measured to be ∆Sy = ∆Sθ=90◦ =
S sin θA. The associated radial compo-
nent would be (∆SA)r = S(1 − cos θA)

Besides the loss of contrast, another effect of the antisqueezed com-
ponent due to the curvature of the Bloch sphere is the addition of
noise in the radial direction. Consider, for example, figure 2.4 where
a squeezed state, regarded from the z-axis with antisqueezed quadra-
ture Sy wraps around the arc, adding noise in the Sx quadrature. Let
(∆Sz)2 = S

2 ξ2
S and (∆Sy)2 = S

2 ξ2
A be the squeezed and antisqueezed

components of the spin state7. Braverman et al. [68] showed that
7 Non-unitary squeezing could prevent
the saturation of the Heisenberg limit
such that A = ξSξA ≥ 1

within the Holstein-Primakoff approximation[48, 69, 70], the vari-
ance of the radial component can be written as

(∆SA)
2
r ≈ 1

8

(
ξ2

A − ξ−2
A

)2
. (2.15)

Consider the perspective of the sphere with respect to the Sz axis as
in figure 2.5. From this, it is clear that the contribution from the anti-
squeezing to the uncertainty on Sz is given by (∆SA)z = (∆SA)r sin φ.
Considering both components as independent contributions to the
measurement noise, the variance for a measurement M2 of the z com-
ponent of spin would be given by

(∆Sz)
2
∣∣∣

M2
=

S
2

ξ2
S +

sin2 φ

8

(
ξ2

A − ξ−2
A

)2
+ γ2

M2
, (2.16)

where we have included a term to consider the noise associated with
any verification measurement, in our case, the photon shot noise
associated with the cavity measurement.

Figure 2.5: Contribution of antisqueez-
ing to the noise on Sz.

2.3.3 One-body Losses

The atoms in the magnetic trap have a finite lifetime; in our case,
by the vacuum’s quality, the atom lifetime due to 1-body losses is
γ−1

1b = 3.0(1) s. The effect of atom loss is two-fold: the decrease
of the spin size and a random walk on the spin space. The former
is the decrease of the size of the spin length according to S(t) =

S(0)e−γ1bt. The latter comes from the fact that, since an atom goes
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out of the trap, it does not contribute to the superposition anymore
and has no label on whether it was in the up or down state. For
an analytical treatment, we use the formalism introduced in 1.3.1
based on [49, 71]. Assume that both modes have the same one-body
loss rate γ1b. Using the jump operators

√
γ1ba,

√
γ1bb, the master

equation in the interaction picture is:

dρ

dt
= γ1b

(
aρa† − 1

2
{a†a, ρ}+ bρb† − 1

2
{b†b, ρ}

)
.

Which leads to:
d
dt

⟨Si⟩ =− γ1b ⟨Si⟩ ,
d
dt

⟨N⟩ =− γ1b ⟨N⟩ .

We can also calculate an extensive list of higher moments, and some
calculations, for illustration, can be found in 12.2. In particular, no-
tice that:

d
dt

⟨Si⟩2 = 2 ⟨Si⟩
d
dt

⟨Si⟩ = −2γ1b ⟨Si⟩2 ,

d
dt

〈
S2

z

〉
= −2γ1b

〈
S2

z

〉
+

γ1b
4

⟨N⟩ .

Combining the two equations, we end up with the system

d
dt

⟨N⟩ =− γ1b ⟨N⟩ ,

d
dt

∆S2
z =− 2γ1b∆S2

z + γ1b
⟨N⟩

4
.

with the solution given by

∆S2
z (t) = ∆S2

z (0) e−2γ1bt +
⟨N⟩

4
(
1 − e−γt) . (2.17)

The first term accounts for the reduction of the spin length, while
the second term accounts for the uncorrelated losses from each spin

state. Written in terms of the number squeezing, ξ2
N = 4∆S2

z
⟨N⟩ :(

ξ2
N(t)− 1

)
=
(

ξ2
N(0)− 1

)
e−γ1bt. (2.18)

2.3.4 Overall Squeezing

Consider a preparation where the spin state is squeezed through the
cavity measurement and left to evolve during a time t before a con-
firmation measurement is applied. Since no additional rotations are
induced on the state, we expect no phase accumulation and, thus,
no particular evolution of the state. This allows us to ignore the
antisqueezed component’s effect due to the radial component’s pro-
jection. However, we cannot neglect the modification of the contrast.
In this case, the expected squeezing from this state is:

ξ2
th(t) =

((
1 +

n0N0β2Ω2

4

)−1

e−2γ1bt +
(
1 − e−γ1bt)) C−2, (2.19)

C = e−
n0
γ1

−
(

n0
γ2

)2

. (2.20)

Notice that we replaced S = 2N0. The atom number is the initial one
since this term comes from the prior given by the initial CSS that the
measurement has now updated.
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3
TACC and TACC-2 platforms

Our experiment is based on the trapped-atom clock on a chip (TACC)
described in [72, 73], with the particularity that now it incorporates
two fibre Fabry-Pérot cavities [74]. The magnetic hyperfine states
|↓⟩ ≡ |F = 1, mF = −1⟩ and |↑⟩ ≡ |F = 2, mF = 1⟩ are chosen as
clock states [39, 72]. The cavities mounted on the chip allow for prob-
ing of the hyperfine states. Used as a clock with standard Ramsey
interrogation and coherent spin states (CSSs), the experiment cur-
rently reaches fractional frequency stability of 6.5× 10−13 s−1/2. Due
to background collisions, it has a phase-coherence time of 20 s, longer
than the trap lifetime.

Figure 3.1: Photograph of the chip as-
sembly before glueing to the vacuum

Complete descriptions of the experimental apparatus can be found
in the thesis by Ott [75] and Huang [67]. This chapter presents the
electronic and mechanical components of the experiment relevant to
this manuscript. For further details, we refer to the previously men-
tioned theses. All the descriptions of the optical system are relegated
to chapter 4.

3.1 Atom Chip
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Figure 3.2: a) Atom Chip Layout. Red
Patterns are on the science chip on top
of the yellow patterns of the base chip.
The walls of the glass vacuum cell are
shown in green. b) Zoom-in of the cav-
ity region.

The atom chip is a bonded two-layered structure: the case chip
and the science chip. Both layers are on an aluminium nitride sub-
strate with electroplated gold conductors patterned by photolithog-
raphy. The complete layout of the chip is shown in figure 3.2 a). We
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recognise two major regions, separated by 9 mm: The mirror-MOT
site on the left and the cavity region on the right. Both sites are
crossed by a U-shaped coplanar waveguide (CPW) used to deliver
the microwave (MW) photons for interrogation. The central conduc-
tor of the CPW also produces DC currents for magnetic confinement
at both sites; this conductor is referred to as the Stripline in the text.
A wire parallel to the Stripline (S6) delivers the RF photons. In the
centre of the chip, we also find a circular Omega wire, used for trap-
ping at the MOT site and transport between the MOT site and the
cavity region. A transversal wire runs through the middle of the base
chip, referred to as the Dimple. The Dimple generates magnetic traps
on both sides, while the parallel cables help shift the centre of such
trap for alignment with the cavity centre.

To assist in creating magnetic fields for confinement, the chip is
backed by a copper block containing a U-shape conductor (macro-
U) used during the initial MOT. On the same structure, there is a
bent copper wire (macro-I) used for the compressed MOT and the
first magnetic trap (see section 3.5). Both conductors are parallel
to the Stripline at the MOT site. Also, external coils surrounding the
vacuum cell provide magnetic bias fields in the x, y, and z directions.
Finally, a water cooling system stabilises the temperature of the chip
to reduce thermal effect due to heating by the currents on the chip.

Mirror-MOT site. The mirror-MOT site captures atoms at the be-
ginning of an experimental cycle. A 2D-MOT in the lower part of
the set-up (see section 3.2) provides a cooled atomic beam that can
be captured with the macro-U and appropriate bias fields. As men-
tioned above, this site is crossed by both the Stripline and the Omega
wires. We can choose whether to create the magnetic traps using ei-
ther of both wires, depending on whether we want to interrogate
the atoms directly on site or if we’re going to transport them to the
cavity region. The macro-I wire is aligned parallel to the Stripline at
the MOT site to assist in generating the magnetic field for the com-
pressed MOT.

Figure 3.3: Photograph of the fibre cav-
ities glued to the chip.

Cavity Region. After capture and initial cooling, the atoms are then
transported to the cavity region using the Omega wire (see section
3.5). In the cavity region, two fibre cavities are mounted and glued to
the chip side by side1. Figure 3.3 shows a photograph of the cavities

1 The cavity closer to the Omega wire
is the low finesse cavity, at 2.69 ± 0.1 ×
103, referred in the text as science cavity,
while the second cavity is at a finesse of
38.2 ± 2.1 × 103 at 780 nm

hanging about 400 µm from the surface of the chip.
Both cavities share a common piezo stack on each side. Each side

can be controlled independently from the other side, but both cav-
ities move together. The shared bridge then allows to lock of the
length of both cavities with the locking light exclusively at the high
finesse cavity, while the science cavity only has the interrogating
light. This mode of lock was tested and reported by Huang [67].
A low-frequency relative drift between cavities was found and some
schemes to correct this were proposed, but we opted to keep the
single-cavity lock system described in chapter 5 since the theoretical
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limit on this locking system could be made smaller than PSN which
seemed to be enough at the time2. 2 It should be mentioned that the sec-

ond cavity could also allow to study
interrogation at another finesse regime;
we left this for future studies. No fur-
ther studies were conducted using the
second cavity for this thesis.

A close-up of the cavity region wires can be found in figure 3.2
b). A light shading on top of the Stripline shows the science cavity.
Cables S2, S3 and S4 are used for the parallel transport of the cloud
into the cavity (see section 3.5). The Dimple wire generates confine-
ment in the x direction, while the wires B2 and B4 align the atomic
cloud with the centre of the cavity.

Current Sources and Connections. Silver wires are bonded to the chip
conductors using silver-filled conductive glue and soldered to cop-
per. Those silver wires connect to a printed circuit adaptor board.
The connection goes to standard ribbon wires on the other side of
the adaptor.

All DC currents passing through the chip are generated using
SYRTE-made low-noise current sources designed by Reinhard [29].
They can deliver up to 3 A and have a relative rms noise (band-
width from 20 Hz to 100 kHz) below 4 × 10−6, with a long-term rel-
ative stability of about 10−5 . In addition, homemade switches were
added to almost all current sources to invert the polarity. Currents
used to generate bias fields By and Bx are also from such sources.
Macro-U, Macro-I and a bias field By are produced using commer-
cial Delta Elektronika sources3. All currents are controlled with a 3 The By bias field is mainly generated

using the low-noise sources. The Delta
source is used exclusively during the
first mirror-MOT and the evaporative
cooling.

digital signal from a National Instrument card with a 16-bit resolu-
tion programmed using GoodTime, a software developed by Jakob
Reichel.

3.2 Vacuum System

nexTorr pump

pressure gauge

chip + cell

in-line valve

2D MOT chamber

Rb resevoir

ge�er

2 l/s ion pump

20 l/s ion pump

Figure 3.4: Schematics of the vacuum
system. The main chamber with the
atom chip is at the top. An in-line valve
connects The main chamber to the 2D
MOT chamber, allowing for differential
pumping between chambers. The main
chamber is pumped by a 100 l/s get-
ter pumper, a 5 l/s ion pump (Nextorr
D 100-5) and a 20 l/s ion pump (Var-
ian StarCell). The 2D-MOT chamber is
pumped by a 50 l/s getter (SEAS GP-
50) and a 2 l/s ion pump (Varian). The
Rb reservoir can be found at the bot-
tom.

There are two vacuum chambers, depicted in figure 3.4: the main
vacuum cell and the 2D MOT chamber. The main cell, seen in figure
3.5, is a cubic AR-coated Pyrex cell with one of its walls replaced by
the chip. A hole at the bottom allows the atomic beam to enter from
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the 2D MOT chamber. Two 1 mm2 trenches were cut at the sides
to let through the fibres and later sealed with UHV-glue (EPO-TEK
353ND).

Figure 3.5: Photograph of the main vac-
uum chamber and the chip glued to
it. Electrical connections and the water
cooling tubes can be seen on the side.
Fibre supports are coming out from the
sides of the chamber. The copper block
holding the macro-I and macro-U is vis-
ible at the top.

The 2D MOT is there to shorten the loading time of the MOT[76].
The differential pumping provides a pre-cooled atomic flux while
keeping a good vacuum in the main chamber. The 2D MOT chamber
is made of titanium alloy with indium-sealed windows. A Rubidium
reservoir made from pure metal is in a glass cell inside the enclosing.
The cell is broken after the vacuum is placed, releasing the Rb.

The pressure achieved after bake-out and once the chip was in
place was around 3.0 × 10−10 mbar, but degraded gradually until
reaching 1.5 × 10−9 mbar at the pressure gauge. A similar pressure
was achieved in the previous experiment (TACC). However, at the
time, the atom lifetime in the trap was much higher, almost 6 s. This
led us to hypothesize that outgassing occurs at the main chamber,
degrading the atom lifetime to around 2 or 3 s, depending on the
chip’s temperature.

3.3 Imaging

Figure 3.6: Schematics of the optics on
the optical hat seen from the top. Three
cameras allow for imaging at different
sites of the chip. A CCD finger cam-
era captures the MOT fluorescence at
the mirror-MOT site. A CMOS cam-
era (Ueye) is aligned along the x direc-
tion; this camera is used to image the
mirror-MOT site. A CCD camera (An-
dor) aligned along the y axis images the
atoms through the cavity.

Around the main chamber, optical components are aligned on top
of an aluminium plate. Non-magnetic fibre connectors feed the light
necessary for detection, optical pumping, and the horizontal beams
for the mirror-MOT. The main components can be seen in figure 3.6.
Three imaging systems are present: a finger camera to capture the
MOT’s fluorescence, a CMOS camera to see the mirror-MOT site, and
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a CCD camera to image through the cavity.

MOT Camera and Fluorescence. A finger camera to capture the fluo-
rescence of the MOT has been placed inside the magnetic shielding.
This camera facilitates the adjustment of the relative intensity of the
beams at the MOT site. A photodiode was also introduced to capture
the fluorescence signal during the MOT phase, allowing for feedback
control of the MOT loading time.

CMOS (uEye) camera. As mentioned, we can use a CMOS camera
to image the MOT site. The detection along x is only used for the
characterisation of the traps at the MOT site, hence the use of an
economical industrial camera 4. This camera has a CMOS sensor 4 IDS uEye UI-3070CP

with 3 MP resolution, a frame rate of 120 fps and a QE of 32% at 780
nm.

CCD (Andor) camera. Imaging along the y direction requires low-
noise detection for clock operation in the cavity. We use a CCD
camera5 with a QE of 95% operating at −60◦C to reduce noise and 5 Andor iKon M934-BRDD

dark current. To account for the presence of the cavity, the beam
was shaped to avoid scattering with the fibres or the bridge holding
them. An aperture is imaged to the atom’s plane in the cavity, then
imaged again into the CCD camera. Because of this solution, it is not
possible to use this camera to image the MOT site. Additionally, the
imagining lens has a limited NA and is partially obstructed by the
chip. To avoid fringes due to diffraction, we require a minimum of 1
ms TOF to image a thermal cloud.

Absorption Imaging and ARP. At the end of an experimental cycle,
atoms are released from their trap. Imaging of the atoms in |F = 2⟩
is performed by a detection beam resonant on the F = 2 → F′ = 3
cycling transition. A second image (bright frame) is subsequently
performed once the atoms are removed. The two frames are then
combined to obtain the absorption image of the atomic cloud. The
absorption is governed by the atomic density integrated over the
imaging axis. We work at a strong saturation regime to achieve a
high signal-to-noise ratio (SNR) while also reducing PSN[77].

A typical way to detect the two clock states is to perform a dou-
ble detection scheme, where a repumper is added during the bright
frame. The two states get spatially separated due to the free fall, al-
lowing for the second image to work as a bright frame for the state
|F = 2⟩. However, this scheme is susceptible to power and frequency
fluctuations between frames, and the detectivity of both states is dif-
ferent due to the repumping process.

An alternative method for detection, developed in TACC-1, con-
sists of transferring the atoms in |↓⟩ into |2, 0⟩ via an adiabatic rapid
passage (ARP)[78]. We sweep the transition frequency by varying
the bottom field in an integrated Blackman profile while ramping up
the MW delivered by the CPW. We achieve 100% transfer efficiency
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limited by detection noise. The atoms in |2, 0⟩ begin to fall while the
atoms in |↑⟩ remain trapped. Once the two clouds are sufficiently
separated, the atoms in |↑⟩ are released and imaged after 2.5 ms
TOF. Technical noise is common for both clouds, and the difference
in detection efficiency between |2, 0⟩ and |↑⟩ is negligible. The main
drawback of this detection scheme is the perturbation of the cloud’s
temperature due to the applied MW, particularly in the x direction.
This could be avoided by a frequency sweeping of the MW instead.

Detection Noise. The main contribution to noise comes from PSN,
which, at saturation, is about 2.2 atoms per pixel[67, 78]. More
precisely, we can decompose the noise on a measurement of P↑ =

N↑/(N↑ + N↓) into:

σ2
P↑ =

σ2
det

2N2 +
1

4N
+ σ2

tech. (3.1)

The first term in equation 3.1 is the contribution of the photoelec-
tron’s shot noise noise to detection; the second term is the quantum
projection noise (QPN) contribution and, finally, σ2

tech is the technical
noise, which is bounded below 10−6 and can be neglected for this
analysis6. Here, we have introduced the detection noise σdet as the 6 Already, the QPN term is on the or-

der of 10−5 for the number of atoms we
typically use.

standard deviation in the atom number of each state, assuming it to
be the same for both spin states. At the time, Huang [67] measured
σdet to be around 48.2. For our typical atom number, between 1× 103

and 2 × 104 atoms, the contribution due to detection is between 23%
and 46% in variance7. 7 The shape of the imaged cloud is ellip-

tical. This means that we have a contri-
bution of noise from 22% of the pixel,
which does not contain atoms. We
have recently added an elliptical digi-
tal mask around the atom cloud to re-
duce the impact of noise by detection,
but this has not been thoughtfully char-
acterised since we have focused mostly
on the detection of the state via the cav-
ity.

Another contribution to the detection noise is the optical fringes
due to vibrations or frequency fluctuation between the two frames.
We apply postprocessing of the images to remove optical fringes by
reconstructing a bright frame that perfectly matches the image frame
in the region, excluding the atoms from a basis of previously taken
images. The efficiency of the fringe recomposition has been analysed
in [78].

3.4 Microwave and RF photons

The clock transition between the clock states |1,−1⟩ and |2, 1⟩ re-
quires two photons in σ+ polarisation, via an off-resonant interme-
diate state |2, 0⟩. This is accomplished with one photon close to the
hyperfine splitting, about 6.834 GHz, and the other close to the Zee-
man splitting in RF, generated by a homemade frequency chain and
a direct digital synthesiser (DDS), respectively. The detuning to the
intermediate state is about 500 kHz, which sets an upper bound for
the Rabi frequency between the clock states.

3.4.1 Microwave Chain

Our MW source is a homemade low-noise synthesiser, referenced to
the stable 100 MHz reference available at SYRTE. The architecture
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is presented in figure 3.7. The principle is to phase-lock a dielectric
resonator oscillator (DRO) running at 6.434 GHz to the 100 MHz
SYRTE reference, buffered by a phase-locked quartz oscillator8[79]. 8 NEL frequency controls Inc., a 100

MHz oscillator internally multiplied
from a 10 MHz crystal

A stable 6.4 GHz signal is generated by the quartz reference through
a non-linear process to lock the DRO, with a tunable offset of about
34 MHz provided by a DDS.

A second signal at 400 MHz is derived from the quartz oscillator.
A voltage variable attenuator9 is used to control the power of this 9 Minicircuits TFAS-1SM+

signal. The stabilized signal from the DRO then drives the output
mixer, combined with the 400 MHz, to control the output power.
This approach allows for easy control of the output power of the
MW chain but introduces a phase imbalance that depends on power.
Such imbalance is fairly replicable and can thus be simply accounted
for during the configuration of the interrogation pulses (see section
3.6.4).

Figure 3.7: Schematics of the genera-
tion of MW and RF photons. Only a
simplified scheme of the MW chain is
shown. The DDS1 is temporally a Rigol
DG1032Z, with frequency-shift keying
(FSK) functionality. DDS2 is based
on AD9910, allowing faster switch-
ing between 8 stored output profiles.
OCXO: oven-controlled crystal oscilla-
tor; NLTL: non-linear transmission line.

3.4.2 The RF Photons

The RF photons are generated directly by a DDS AD9910 that has
been referenced to a 10 MHz signal down-converted from the sta-
bilised 100 MHz reference. Both the phase and frequency control
of the applied pulses is done directly through the RF photons. The
AD9910 can store 8 output profiles (independent frequency, phase
and amplitude) that can be selected in real time. The switching is
phase continuous and stabilises within 1.5 µs (at 1.7 MHz output). A
homemade controller allows to toggle between these profiles with a
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single trigger. It adds a delay of 100 ns, negligible for our application.

Teensy Microprocessor. Previously, all control of the phase, frequency
and amplitude of the RF pulses was programmed at the beginning
of the experimental cycles and change “on the way” with the afore-
mentioned trigger. However, our recent work requires us to change
the phase of some of the applied pulses during the sequence it-
self. This is to account for the phase imprinted by the probe pho-
tons into the atomic state (see section 8.1). These phase changes
cannot be instructed directly from the usual communication using
GoodTime due to the time constraints of the sequence and cannot be
programmed ahead of time since they depend on the results of the
cavity measurement. Our solution is to use a Teensy 4.0 micropro-
cessor. The Teensy is a USB-based microcontroller that can perform
similar tasks to an Arduino but with a faster CPU performance[80].

When a phase correction is needed, we send a copy of the raw
signal from the photon counter monitoring the cavity transmission
(see section 4.3) to one of the Teensy ports. Using the FreqCount
library[81], the Teensy microprocessor is capable of counting the
number of pulses received accurately under 15 MHz rates10. An ex- 10 In practice, our probe pulses always

have photon rates under 3 MHz.ternal trigger synchronised with the experimental sequence indicates
when to begin and finish the photon counting. The corresponding
phase correction ϑ is calculated by the Teensy in real-time according
to independent calibrations (see 6.1.2). The adequate instructions are
codified into some of the Teensy pins for parallel communication
with the AD9910. The instructions are finally sent when a second
trigger from Goodtime instructs the Teensy, overwriting the current
profile in use during the sequence.

3.5 Trapping and Transport

We now describe the steps that are followed for a typical experimen-
tal cycle to capture, transport and evaporate the atoms until getting
them to the clock trap. The optical benches required to produce the
corresponding light beams are presented in chapter 4.

Figure 3.8: Photograph of mirror-MOT
loading through the finger camera.

2D MOT. Atoms are initially cooled down in the 2D MOT chamber
under the main chamber. A part of the beam used for cooling the 2D
MOT is split to generate a push beam that sends an atom into the
main chamber. No detailed characterisation of the atomic beam has
been done or required.

Mirror 3D MOT. While the 2D MOT is illuminated, the 3D MOT
loads. A coarse alignment of the 45-MOT beams and horizontal
beams is done with the help of the finger camera; a picture of the
loading can be seen in figure 3.8. A more precise alignment can be
done with a precise measurement of the atom number using absorp-
tion imaging. The loading of the mirror-MOT with the assistance of
the 2D MOT can reach atom numbers on the order of 107 in 300 ms.
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Compressed MOT and Molasses. After capture, the atoms are trans-
ferred to a compressed MOT to get them closer to the atom chip. The
macro-I assists the Omega wire in creating the main confinement of
the trap. A molasses stage follows the compressed MOT. The cloud
can reach about 5 µK in molasses. An image of the molasses ob-
tained with the uEye camera is shown in figure 3.9. At the end of
the molasses, a short optical pumping is performed at the 1 − 1 and
2 − 2 transitions.

Figure 3.9: Absorption imaging of the
molasses with the uEye camera.

First Magnetic Trap and Rotation. After optical pumping, the atoms
are captured at the first magnetic trap. The Dimple forms the trap
for the confinement in the x direction, while the Omega wire and
the macro-I form the main confinement. Once loaded, the atoms
are immediately transported into the transport trap. The trap for
rotation is a quadrupole trap formed by the Omega wire and the
combined Bx and By fields. By varying the strength of both bias
field components, the minimum of the quadrupole trap displaces,
rotating the atoms along the Omega wire. The temperature of the
atoms when loading the rotation trap is around 50 µK.

Parallel Parking. Once the atom cloud has reached the cavity region,
we begin the parallel transfer. We refer to figure 3.2 for context.
The first transport turns off the Omega wire while ramping up the
current through the S3 wire. At the same time, perpendicular wires
B2 and B4 form a U-type trap, keeping the trap a quadrupole trap.
The second transport from S3 to S4 ramps up the Dimple to form a
Dimple trap, and this shape is maintained as the S4 is turned off and
the Stripline is ramped up.

Evaporation Trap. Once below the Stripline, the trap is tightened to
begin evaporative cooling. At this point, the atoms are in the state
|1,−1⟩. An RF signal, blue-detuned from the |1,−1⟩ → |1, 0⟩ tran-
sition, expells the atoms at higher energies. By sweeping the RF
frequency closer to the Zeeman splitting while allowing sufficient
time for the atoms left in the trap to reach thermal equilibrium, the
atoms are cooled down. The RF radiation used for this process is
provided by an SRS DS345, using its internal exponential frequency
sweep and analogue amplitude modulation to control the power.

Figure 3.10: Atom clouds imaged
through the cavity after being released
from the clock trap. Upper cloud corre-
sponds to state |↑⟩ and the lower cloud
are atoms in state |↓⟩

Interrogation Trap. After evaporation, the trap is decompressed to
form a dimple trap that will serve as the main clock trap. The de-
compression is performed in two stages described in [67] to reduce
residual oscillations. To correct for the centre’s positions inside the
cavity, the Dimple is assisted by the B2 wire to move the cloud in the
x direction. Also, an additional bias Bz is used to displace the cloud
in the y direction. Figure 3.10 shows an image of a state prepared
at the equator of the Bloch sphere, obtained with the Andor camera.
As explained in section 3.3, an ARP is used to transfer all the atoms
in |↓⟩ into |2, 0⟩ and begin falling. After 2.5 ms, the current through
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the stripline is cut, releasing the atoms in state |↑⟩. After 2.5 ms, both
clouds are imaged as shown where the upper cloud are the atoms in
|↑⟩, while the atoms in the lower cloud are those in |↓⟩.

3.6 Interrogation Pulses

Here, we briefly describe the basic tuning procedures of the inter-
rogation pulse. We first introduce our criteria for the pulse length
based on the field inhomogeneity. Then, once the magic bias field is
found11, one can adjust the frequency and amplitude of the MW and

11 The determination of magic field was
described by Huang [67]. This is
when the energy splitting is immune
to magnetic field fluctuations to the
first order. The basic idea is to use
Rabi spectroscopy with approximately
well-calibrated pulses to recover the
quadratic relationship between the bias
field Bx and the transition frequency.

RF pulses such that the light shift induced by them compensates for
each other.

3.6.1 Field Inhomogeneity

The excitation fields delivered by the chip wires are intrinsically in-
homogeneous as the field strength decays away from the conductor.
We have observed evidence of the field inhomogeneity [67]. How-
ever, this inhomogeneity can be largely ignored as long as the mini-
mal pulse length is kept a multiple of the oscillation period12 of the 12 Additionaly, we have found evidence

of the state |2, 2⟩ being populated for
shorter pulses, probably due to the
extended spectral width of a shorter
pulse.

trap in the z direction, i. e., 8.85 ms.
To make sure the field inhomogeneity can be neglected, we adjust

the length of our pulses such that Tπ = 120 ms so that our π/2 pulses
are at least 6 times the oscillation of the trap. We also need shorter
π pulses to perform echo protocols. To account for the reduction of
the pulse length, we make use of composite pulses (see section 3.6.3.

3.6.2 Two-photon Lightshift

Due to the imperfect polarisations of the RF pulses, there is a residual
light shift induced on the clock transition. Interestingly, the sign of
the light shift depends on which side of the chip wire we deliver the
RF signal. We choose the one that gives an opposite sign to the one
induced by the MW photons. We chose the MW and RF amplitudes
such that the light shift induced by both pulses cancels each other.
Note that there is a linear relationship between the induced shift
for each field and its amplitude. Thus, this configuration does not
eliminate the linear dependence on amplitude fluctuations of each
field.

We can determine the light shift of the RF or the MW separately
by comparing a normal Ramsey sequence with one keeping either
the RF or the MW field on during the Ramsey time, respectively.
As the π/2 pulses are in common, the difference between the cen-
tral fringes directly indicates the frequency shift during the Ramsey
time. By running three Ramsey spectroscopy sequences (normal, RF
on during td, and MW on during td), one can determine the associ-
ated shift. To choose the amplitude to be used, we recall from the
adiabatic elimination method [82] that the Rabi frequency associated
with a two-photon transition is proportional to the amplitude of both
fields. Also, the light shift induced by each field follows a quadratic
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Figure 3.11: Typical data of two-photon
light shift compensation, by letting RF
or MW field on during td.

relationship to its amplitude. Using this, we can adjust the ampli-
tude of both fields such that the lightshift is compensated. Typical
data for this sequence is shown in figure 3.11.

3.6.3 Composite Measurements and Composite Pulses

To partially compensate for the light shift induced by the probe beam
on the atoms, we make use of an echo sequence: A first probe im-
prints a phase on the atoms in the trap. A π pulse is sent to the
atoms, effectively reversing the shift imprinted by the probe. Finally,
a second probe also imprints a phase that partially compensates for
the one induced by the first one. For this scheme to make sense, the
time between the two probe pulses is required to be as short as possi-
ble. However, we are confronted with the limitations on the duration
of pulses due to field inhomogeneities that we discussed in section
3.6.1.

Figure 3.12: The contrast of Rabi oscil-
lations after a composite measurement
as a function of detected probe pho-
tons. The probe detuning is adjusted
at half transmissions. The data after a
single probe (open black circles) is com-
pared with the composite measurement
with a SCROFOLOUS pulse in between
probes (solid blue circles).

To solve this issue, we used composite pulses. Composite pulses
are combinations of pulses that are able to compensate for imper-
fections in both amplitude and frequency. These combinations of
pulses have wide applications in the field of nuclear magnetic reso-
nance (NMR) [83]. There is a large selection of composite pulses[84];
we settled for the SCROFOLOUS pulses, i. e., π̂(ϑ − π/3) · π̂(ϑ +

π/3) · π̂(ϑ − π/3). Other pulses we tried are U(3), U(5) and Waltz.
We choose to have the constituent π pulses to have a fixed length
of 8.85 ms to allow for averaging along the oscillation period. We
kept the shortest pulses (three pi pulses instead of five) that have the
better population transfer. The effect on contrast of the atomic state
is shown in figure 3.12.

To calibrate our composite pulses, we first adjust for single 8.85
ms π pulses. We proceed as we described in section 3.6.2: Three
different Ramsey interrogations are used to measure the lightshift
induced by the probe. Then, we use this measurement to obtain
new values for the amplitude of the MW and RF such that the RF
light shift cancels the light shift induced by the MW. We perform
Rabi interrogation after a cavity measurement with a single probe
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to obtain a contrast measurement as a function of the number of
photons in the probe. We do the same protocol after a composite
measurement. Some typical data of this comparison is shown in
figure 3.12. We can note a clear improvement with respect to the use
of a single probe. The contrast loss with composite measurement
follows the description presented in section 2.3.1.

3.6.4 Phase Calibrations

Figure 3.13: Phase calibration proto-
cols. The blue and green rectangles
show MW+RF pulses on the clock tran-
sition. The blue rectangles are π/2
pulses with a duration of 60 ms. The
green rectangles are composite SCRO-
FOLOUS pulses. The global phase of
the pulses is shown in parentheses. The
red line marks the absorption imag-
ined. a) We leave the phase of the
first π/2 pulse fixed and leave enough
time to apply a composite measure-
ment. Then, we scan the phase ϑ of
a second π/2 pulse. This allows us
to find the phase accumulated at the
second pulse due to imperfect calibra-
tion of the RF frequency. b) We leave
the phase of the first π/2 pulse fixed.
We introduce a SCROFOLOUS pulse
identical to the one we use in compos-
ite measurement with enough time be-
fore and after to send the correspond-
ing probe pulses. Then, we send a π/2
pulse with a fixed phase. Then, we scan
the global phase ϑ of the composite π
pulse. This allows us to find the phase
correction of the composite pulse due
to the phase imbalance introduced by
the power control (see section 3.4.1). c)
We repeat the same process, this time
leaving the phase of the SCROFOLOUS
pulse fixed. We leave a time td pass af-
ter the second π/2 pulse. We then send
a π/2 pulse after a delay correspond-
ing to the sequence we would like to
run (see section 8 for an example) and
scan its phase ϑ. This allows us to find
the phase due to imperfect calibration
of the RF frequency

When measuring the phase accumulated by the atomic state, it is
important to account for the contributions coming from an imperfect
calibration. As mentioned in section 3.4.1, the power control used at
the MW chain introduces a phase imbalance that has to be compen-
sated for. Also, imperfect calibration of the RF frequency can intro-
duce a phase that has to be accounted for when orienting the spin
state in the Bloch sphere. We use a complete protocol of adjustment
like the one described in section 3.6.2 at least once a month. How-
ever, we routinely verify the duration and frequency of our pulses.
We show in figure 3.13 the routine protocols we use to calibrate the
adequate phase offsets.

All phases are referred to the first π/2 pulse, creating the CSS in
the equator of the Bloch sphere. We take as convention its phase to
be −π/2. To account for the phase due to imperfect calibration of the
RF frequency, we send a π/2 pulse after a delay of 46 ms and scan its
phase. We measure the final population difference with absorption
imaging and use the corresponding Ramsey fringe to find the phase
shift. This protocol is shown in figure 3.13 a). Once the phase of the
second π/2 pulse is accounted for, we introduce an SCROFOLOUS
pulse in between both π/2 pulse and scan its phase. This measures
the phase imbalance introduced by the MW power control that we
discussed in section 3.4.1. This protocol is shown in figure 3.13 b).
Finally, we leave the phase of the three pulses fixed and we add
third long π/2 pulse after a time td corresponding to the desired
accumulation (see chapter 8).
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3.6.5 Clock Stability

0 1 2 3 4 5
Ramsey time TR (s)

0.0

0.2

0.4

0.6

0.8

1.0

P

decay time 33±11 s decay time 20±3 s
/2 scan TR /2 imaging, = 1.5 Hz, Trad 220 nK Figure 3.14: Ramsey fringes in the time

domain, showing the coherence of the
system. The LO is strongly detuned
(1.5 Hz) to see fringes as a function
of TR. Two sets of data are for two
slightly different traps: {ωx , ωy, ωz} ≈
2π × {5, 97, 84} Hz at ∆B = −40 mG
(solid blue) and {ωx , ωy, ωz} ≈ 2π ×
{3, 110, 99} Hz, ∆B = −30 mG (open
red). The latter is the one used for clock
measurements in figure 3.15. The dif-
ference in ∆B is the main cause of the
different decay times. Retrieved from
[67]

One of the main objectives of TACC-2 is not to use squeezed states
as a simple proof of principle. TACC-2 was designed and built to
function in metrologically relevant regimes even without the use of
entangled states. Huang [67] characterised both the phase coherence
time to be on the order of 20 s as shown in figure 3.14 for our trap
geometry. The coherence time is much longer than the trap lifetime
of the atoms, which allows us to see the effects to be described in
chapter 6.

Preliminary characterisation of the clock stability at TR = 1 s
shows a stability figure of 6.5 × 10−13τ−1/2 as shown in figure 3.15.
This is comparable with the previous TACC iteration, which reached
a fractional frequency stability of 5.8 × 10−13 at 1 s [73]. Other
compact clocks using thermal vapour and buffer gas or laser-cooled
atoms have reached short-term stabilities in the same order of mag-
nitude [14–18] on their record performances.

Figure 3.15: One of the best clock stabil-
ity results at TR = 1 s. The initial atom
number is 2.7 × 104. The QPN alone
contributes nearly half of the noise. Re-
trieved from [67].





4
Optical Modules: Main, 2DMOT and Probe Bench

The experiment TACC-2 has three separate fuctional optical tables

1. Main Bench: For generating cooling beams for the mirror MOT
on the chip and detection beams.

2. 2D MOT bench: For generating cooling beams used at the 2D
MOT and the push beam to send the atoms to the chip.

3. Probe laser bench: For generating beams used for cavity lock and
atom interrogation.

Most of the main and 2D MOT benches remain as described by
Huang [67], so we include them together in this chapter as a refer-
ence for completeness and to point out recent changes. We treat the
probe bench and frequency lock in this chapter but leave the cavity
lock and probing analysis for the next chapter.

Both modules discussed in this chapter make use of SYRTE-designed
extended-cavity diode lasers (ECDL) as the ones described in [85],
with laser diodes from Thorlabs. Most current sources for our lasers
and locking electronics are also made at SYRTE, with the exception
of the current sources for the cooling laser at the 2D MOT bench
and the slave laser of the main bench, both being also commercially
available at Thorlabs.

Figure 4.1: Diagram of laser frequency
generation, including that of the 2D-
MOT. AOM: acousto-optic modulator.
Retrieved from Huang [67].
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Figure 4.2: Main module. Functional-
ities colour laser beams: green: SAS;
orange: offset lock; yellow: repump-
ing; blue: optical pumping; purple:
imaging; grey: monitoring; red: cool-
ing; and others. ISO: optical isola-
tor; HWP: half waveplate; QWP: quar-
ter waveplate; (N)PBS: (non-)polarising
beam splitter; PD: photodiode. Re-
trieved from Huang [67].

4.1 Main Bench, Mirror MOT and Detection.

The laser module for the Mirror MOT remains as described by Lacroûte
[86] for TACC and Huang [67] for TACC-2, except for the repumper
laser that has been replaced due to the degradation of the previous
diode. All lasers are frequency referenced to the repumper laser1.

1 Most of the main bench was used for
TACC-2 as it was done for TACC-1,
with the exception of an additional split
of the repumper beam to allow for it to
be used when imaging through the cav-
ity.

Repumper is locked between the 87Rb transitions 52S1/2(F = 1) →
52P3/2(F′ = 1)and 52S1/2(F = 1) → 52P3/2(F′ = 2) by saturated ab-
sorption spectroscopy (SAS) [87] to access both transitions for pump-
ing and repumping, respectively. The master laser (master in the
sense of the slave diode) is locked to the repumper by beat-note,
hence more widely tunable, to generate either the cooling beams
near the 52S1/2(F = 2) → 52P3/2(F′ = 3) transition or the pumping
beam at the 52S1/2(F = 2) → 52P3/2(F′ = 2) transition.

4.2 2D MOT Bench

Most of the laser module for the 2D MOT bench remains in a sim-
ilar configuration as described by Huang [67]. The repumper is an
Extended-Cavity Laser Diode (ECLD) from SYRTE, locked via SAS
to the 87Rb transition 52S1/2(F = 1) → 52P3/2(F′ = 2) by directly
modulating the diode current at 70 kHz.

The cooling laser originally was a self-seeded tapered amplifier
(TA) laser (TAL-780-1000). After the first squeezing measurements
reported in part III, this cooling laser went out of service and was
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replaced with another homemade ECLD2. The power measured at 2 Thorlabs LD785-SH300

the output seemed to be less than the one obtained by the TA laser.
However, in the latter, an important amount of optical power was lost
to fluorescence, and mode quality was suboptimal due to the large
divergence of the beam and difficulty in aligning its lenses. Besides,
fabrication and alignment of the ECLD is simpler, so we opted for
this solution. The cooling laser is frequency locked to the repumper
via beat note with a ∼ 6.6 GHz offset to be close to the 87Rb transi-
tion 52S1/2(F = 2) → 52P3/2(F′ = 3). For simplicity, the push beam
is split from the cooling beam, incapable of independent frequency
tuning. Due to the long distance (∼ 0.7 m) between the 2D-MOT and
the atom chip, the MOT loading is very sensitive to the push beam
power and alignment, exhibiting a clear optimum. The characteris-
tics of the atomic beam out of the 2D-MOT have not been rigorously
examined. But loading the mirror-MOT works reasonably well so
that 107 atoms can be loaded in the MOT within 0.5 s, sufficient for
our experiments.

Figure 4.3: 2D-MOT module. Laser
beams are colour-labelled based on
function: green: SAS; orange: offset
lock; yellow: repumping; blue: optical
pumping; purple: imaging; grey: mon-
itoring; red: cooling and the rest. ISO:
optical isolator; HWP: half waveplate;
QWP: quarter waveplate; (N)PBS: (non-
)polarising beam splitter; PD: photodi-
ode. Updated from Huang [67].

Atom Number Fluctuations. During the last 3 years, we have ob-
served an increase in the fluctuations in atom number both in the
shot-to-shot number and the average fluctuation, particularly being
affected by the room’s temperature. A first solution for this was to
isolate the 2D MOT bench with a cover; this improved the situation
marginally. We found a defect on the breadboard3 on what the bench 3 We are working on a replacement for

this bench with a more rigid bread-
board. We also plan to modify the ge-
ometry of the paths, particularly be-
fore the fibre coupling, to reduce power
fluctuations.

is mounted, which made it susceptible to mechanical deformations.
However, after replacing the TA laser with the ECLD, the fluctua-
tions decreased; this may be because the TA laser required a large
heat dissipator attached to the side that deformed the surface of the
breadboard



50 improving an atomic clock on a chip via spin-squeezing

Figure 4.4: Schematics of the complete
laser setup for cavity probing and sta-
bilisation. Here, we show direct Pound-
Drever-Hall (PDH) locking of the sci-
ence cavity. Electronics are shown in
grey. APD: avalanche photodiode; DM:
dichroic mirror; FPD: fast photodiode;
PZT: piezoelectric stack; SPCM: single
photon counting module; TEC: thermo-
electric cooler. Retrieved from Huang
[67].

4.3 Probe Laser Bench

No relevant changes in the generation of the probing light have been
realized since Huang [67] reported it. A diagram of the bench is
shown in figure 4.4. Our setup uses a fibre-based 1560 nm laser from
RIO4 amplified with a fibre amplifier5. A fibre-injected periodically- 4 PLANEX 1550 nm Laser Diode

5 Keopsys CEFA-C-PB-HPpoled lithium niobate (PPLN) crystal generates a frequency-doubled
780 nm laser into free space. One part is sent to reference the source
laser via a modulation transfer spectroscopy (MTS) on Rb vapour[88,
89] with correction signal onto the current control of the laser diode.
We lock the laser to the cycling transition of 85Rb (F = 3 → F′ = 4).
The 780 nm light is coupled again to another fibre. Both the 780

nm and 1560 are passed through EOM6 to generate sidebands (see 6 EOSPACE PM-5V5-UV for the 1560

nm light and iXblue NIR-MPX800-LN-
05 for the 780 nm.

next paragraph). Both are sent into free space; the 780 nm light
goes through a double-pass AOM used as an optical switch before
recombining in free space with the 1560 nm light to be coupled with
the science-cavity fibre.
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Lock and frequency control. To implement QND measurements of Sz

in the dispersive regime, the cavity resonance is detuned in between
the 87Rb transitions 52S1/2(F = 1) → 52P3/2 and 52S1/2(F = 2) →
52P3/2, a detuning so large that we can neglect hyperfine splittings
of the excited state. For the science cavity, our target mode is about
800 MHz away from the laser at 1560 nm, while the 780 nm is about
2.5 GHz away from the 85Rb reference. We apply a PDH modula-
tion at 805 MHz to the 1560 nm light and lock the cavity to the blue
sideband. This has the secondary effect of reducing the amount of
locking light in the cavity to reduce its trapping effect. As the de-
tuning determines the atom-cavity coupling for the two clock states,
a precise and stable adjustment of the cavity frequency is required.
The probe laser frequency should also be independently tunable to
vary the detuning to the cavity mode. For this, an electro-optical
modulator (EOM) is fed by a 2.4 GHz signal7 to generate sidebands. 7 Agilent PSG Vector Signal Generator

(E8267D)We use the higher frequency one as a probe with the unwanted car-
rier and red sideband being sufficiently filtered by the cavity. Its
power and frequency are easily tunable by both the Agilent genera-
tor and the AOM used as a switch. The general frequency scheme
for the probing system is shown in figure 4.4. To control whether
we perform an interrogation on the red or blue profile of our cavity,
we use an Frequency-shift keying (FSK) scheme centred around the
cavity resonance with a shift of ±20 MHz depending on the desired
profile8.

8 We use a 40 MHz step instead of a 45.8
MHz step due to the limitation for the
frequency toggle of the FSK available at
the device (Agilent VSG). However, this
does not seem to be detrimental to the
measurements (see βΩ values in section
5.3)

Figure 4.5: Frequency scheme for the
cavity locking light and probe. Re-
trieved from Huang [67].





5
Cavity Probe

One of the key differences between TACC-2 and its predecessor is
the use of fibre cavities.[67, 75]. The set-up includes a Low Finesse
cavity (LF), also referred to as the Science cavity and a High Finesse
(HF) cavity1. The difference in finesse could allow us to study the 1 The high and low finesse are relative

to the 780 nm light. Both have relatively
high finesse for the 1560 nm light.

system in different atom-cavity coupling regimes while having two
cavities could serve to lock the cavity length with one cavity while
the other one is used for interrogation, as they are both glued to the
same mechanical holder. This locking scheme has been discussed by
Huang [67]. For the work on this thesis, we focus almost exclusively
on the science cavity both for lock and interrogation. However, we
do describe some of the common cavity parameters for both of them
for reference. A more detailed description of both the fabrication and
characterisation can be found in [74, 74, 90, 91].

5.1 Laser and Cavity Lock

5.1.1 Experimental Realisation of the Fibre Cavities

Both the high and low finesse cavities are machined using a multi-
shot technique to achieve a large radius of curvature [74, 90, 91]. The
cavity length is approximately 1.2 mm, which is particularly long.
Because of this, the mode size at the mirror could be particularly
large with respect to some single-mode fibres. To account for this,
a large-mode photonic crystal (PC) fibre (LMA-20) is at the input
to improve the mode-matching to potentially 60%. The output fibre
employs a multi-mode (MM) fibre to ensure maximum collection of
the intra-cavity photons.

In TACC-2, atoms should be trapped magnetically, so the com-
mensurate wavelength is not essential for a squeezed clock. We
adopted this scheme for technical convenience and also for the pos-
sibility of exploring intra-cavity lattice experiments with optimum
coupling. However, the mirror phase shift is only correctly engi-
neered for the LF cavity. For the HF cavity, the 780 nm mode and
the exact-double-wavelength 1560 nm mode are not resonant at the
same time but with a detuning of 25 GHz of the 1560 nm mode.
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Parameter Units Low Finesse (LF)

Length L µm 1215 ± 20
ROCMM µm 1612
ROCPC µm 1559
ROCeff µm 1560
zR µm 745
νFSR GHz 123 ± 2

780 nm 1560 nm

w0 µm 13.6 19.2
wmirror µm 17.5 24.8
κ

2π = γ
π MHz 45.8 ± 0.6 5.35 ± 0.08

F ×103 2.69 ± 0.1 23.06 ± 0.8
T(δ = 0) % 25.8 10.8
R(δ = 0) % 10.4 40.8
R(δ ≫ κ) % 42.1 65.0
g0
2π MHz 10.9 -

C0 =
4g2

0
κΓ 1.9 -

Ω0
2π =

4g2
0

ωat
kHz 69.5 -

Ceff 0.42 -
Ωeff
2π kHz 17.1 -

Table 5.1: Cavity parameters recovered
from [67] for both 780 and 1560 nm.
ROCeff are deduced from the higher-
order mode spectra [75]. κ

2π is FWHM,
while γ

2π is HWHM. g0, C0 and Ω0 =
4g2

0
ωat

use the D2 dipole matrix elements
summed over all sublevels. The effec-
tive values, however, use the σ+ tran-
sitions relevant in the experiment and
assume a cloud at T = 200 nK in the
trap with ωz = 2π × 110 Hz. The effec-
tive values are calibrated in sequences
described later in the text.

Figure 5.1: Transmission and reflection
spectra of the (a) 780 nm mode and the
(b) 1560 nm mode in the science cavity.
A High-order mode close to the funda-
mental mode in 780 nm is visible in (a).

We notice that, due to mode-matching issues, the overall trans-
mission is about one-fourth of full transmission at resonance with
the 780 nm mode, as can be seen in figure 5.1. Considering a trans-
mission function given by:

T(δ) =
(

κt

2γ

)2 1

1 +
(

δ
γ

)2 , (5.1)

we can deduce that κt = 1.01587γ ≈ γ. This is the approximation
we will use for the rest of the text. A second peak on the upper
side of the cavity profile may be more relevant for our system. This
is a higher-order mode about 100 MHz away from the fundamental
mode. Previous simulation by Ott [75] showed this mode to be com-
patible with a 7-th order mode and it weakly couples with the atoms
when placed in the cavity, as will be seen later.

5.1.2 Cavity Lock, Feedback and Feedfoward

We use a Pound-Drever-Hall (PDH) scheme feeding the error sig-
nal to lock the cavity through a PI scheme [92, 93]. An 800 MHz
modulation is applied to the 1560 nm light through an EOM to gen-
erate the PDH signal. This EOM is passively-stabilized to prevent
temperature-dependant residual amplitude modulation (RAM)2. We 2 The RAM is limited to 2.5%; this is not

the limiting factor of the lock.lock to the blue sideband to reduce the leakage of the 1560 nm light,
reducing lightshift and trapping effects. More precisely, the squeez-
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Figure 5.2: Locking cavity system. A
PDH signal is produced with a 800
MHz modulation, reference to an ex-
ternal highly-stable 10 MHz reference.
The signal is amplified, demodulated,
and low-pass filtered before being sent
to the Red Pitaya. The signal is passed
through the IIR filter implemented from
the PyRPL library before applying a
second-order LP filter and being sent
to the PID module. An external mod-
ule shifts the locking signal by +1V (See
paragraph on quantisation noise) and
is finally amplified before being sent to
the cavity piezo. Home-made elements
are marked in grey, while ready-made
devices are marked in light blue.

ing measurements were performed at 9 nW in-coupled power, keep-
ing the lightshift on the order of a couple of tenths of mHz as re-
ported by Huang [67]. On the other hand, more recent measurements
for clock sequences ran at 20 nW in-coupled power, leading to about
−500 mHz lightshift. This increase in power was due to technical
difficulties with the cavity lock, which will be explained below.
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Figure 5.3: Power spectral density of
cavity lock. Blue and black curves show
slow lock before IIR implementation.
Blue curve is taken after acoustic isola-
tion with PVC curtains around the ex-
periment. In red, we see the improve-
ment of the lock up to the 20 kHz cross-
ing. Retrieved from [67]

Mechanical Resonances. Mechanical resonances of the cavity can limit
the locking bandwidth. In usual PID feedback loops, the error signal
has to be filtered below the lowest resonance of the system[92]. Us-
ing a network analyser, our cavity has been characterized to possess
resonances at 2.6 kHz, 8.8 kHz and 10 kHz, corresponding to flexure
modes. This had the effect of limiting the lock bandwidth to about
100 Hz. A digital solution to avoid imposing such frequency cut-off
is the use of Infinite Impulse Response (IIR) filters[93]. In practice,
such filters can be best implemented digitally. For this, we make use
of a Red Pitaya3 device paired with the Python Red Pitaya LockBox 3 This is a low-cost field programmable

gate array by STEMlab with integrated
microprocessor and 14-bit ADC as in-
put and 14-bit DAC as output

(PyRPL) developed by Neuhaus et al. [94]. The library already con-
tains a network analyzer module that allows the measurement of the
transfer function of the cavity and calculates an IIR filter accordingly.
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After implementation, this solution extends the locking bandwidth
to 20 kHz (see figure 5.3).

Thermal Drift and Feedforward. The DC currents used to generate the
trap, mainly from the stripline, induce a strong thermal drift that
perturbs the cavity length. During a typical experimental cycle, the
cavity resonance can be shifted by up to 8.5 GHz, which is much
larger than the range of capture of the lock. However, the thermal
drift becomes reproducible for cycles of fixed length after some time.

We fixed the time the stripline is on to 2.2 s from the moment
the atoms are placed in the clock trap, the moment it is turned off
for imaging the atoms, and turn on again for the empty cavity mea-
surements. Scanning the cavity length, we find the resonance and
interpolate a spline over 5 consecutive cycles. Inverting this signal
gives a feedforward signal that we send to an amplifier and then to
the piezo that is not controlled by the locking signal. This signal re-
duces the thermal drift to about 100 MHz in the 1560 nm light, which
can be easily followed by the PDH lock as long as the feedforward
signal is smooth enough.

Quantisation Noise and RedPitaya. A drawback of using a Red Pitaya
is the introduction of quantisation noise, which can limit the lock
quality. The RedPitaya has a DAC at the output with a range from
0 to 2 V in 14 bits, corresponding to 122 µV for the least significant
bit, implying a quantisation noise of 35.2 µV rms4. The output of 4 Considering a uniformly distributed

noise from LSD of mean 0 and range
122 µV, leading to a standard deviation
of 1/

√
12 of the range

the RedPitaya is later displaced by -1 V to bring it to a ±1V range.
This range is insufficient to drive our cavity’s piezo, so it is later
amplified outside the FPGA. To determine the effect of the quanti-
sation noise, we perform a scan of the cavity length by modulating
the piezo at a fixed amplification until we are able to see the PDH
error signal, particularly the sideband. The width of the PDH signal
corresponds to half the cavity width at the 1560 nm of the modula-
tion5 at a given amplification, which allows to obtain a conversion 5 γ1560

2π = 2.675 MHz

factor between the output voltage of the FPGA and the effect in fre-
quency. Reducing the signal amplification reduces the quantisation
noise but makes the lock unstable. For usual, stable amplifications,
the inferred quantisation noise at the 780 nm cavity mode is about
30 kHz, about one-fourth of PSN (see 5.2.1), which is good enough
in principle.

However, in 2016 L. Neuhaus [95] noted that for some gains, the
DAC from the RedPitaya behaved nonmonotonically. This is due to
the RedPitaya deriving the −1 V offset after the DAC directly from
the 3.3 V digital supply voltage while lacking integrated voltage reg-
ulators. Because of this, every time the indicator LED flickers or the
bits of the DAC itself toggle, the offset voltage is affected; this can
remove at least 3 significant digits of precision6, which in our case 6 A factor of 6.6 in noise power accord-

ing to L. Neuhaus [95]is already of the same order of magnitude as PSN. We followed the
solution proposed by L. Neuhaus [96]: We modified the RedPitaya
card and connected the output of its DAC directly to the SMA con-
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nector. Then we shifted the output with a homemade level shifter
that added a 1 V shift from a low-noise 2.5 V reference7 connected to 7 MAX6325: 1ppm/°C Max and

1.5 µVpp Noise (0.1Hz to 10Hz)the fixed voltage divider.

5.2 Cavity Lock and Shift Inference

5.2.1 Cavity Shift Inference

To reduce the influence of low-frequency noise and eventual drifts
of the cavity lock, we inferred the cavity shift by comparing the cav-
ity resonance frequency in the presence of atoms with its bare reso-
nance frequency during the same cycle. To reach this goal, at the end
of each experimental cycle, after the atoms have left the cavity, the
stripline current is turned on again to recover the same thermal con-
ditions of the chip. With the cavity still locked, two probes are sent,
one after the other, on both sides of the cavity profile to reconstruct
the cavity profile. This cavity profile is used to compare the relative
shift induced by the atoms.

Empty cavity shift. We set a relative origin at the centre frequency
of the FSK toggle8. The cavity profile is known to have a line-width 8 Recall from section 4.3 that the probes

are generated as a sideband of the 780

nm beam through an EOM. We choose
a central frequency of about 2.41 GHz
and toogle by ±20 MHz to probe either
side

(FWHM) of κ = 2π × 45.8(6) MHz. For convenience, we introduce
γ = κ/2. Let nb, nr be the number of photons measured at transmis-
sion for the probes at the blue and red profile, respectively. We use a
photon counter of efficiency η. If the probes are detuned by ±p with
respect to some reference. The cavity profile, centred at ω0 can be
described by the Lorentzian shape9: 9 With respect to our previous notation,

δ = ω0 ± p, and I =
(

κt
4γ

)2 η

γ2 |ηp|2, also
for simplicity of calculations we intro-
duce χ = nb/nr

nb =
I

1 +
(

p−ω0
γ

)2 , nr =
I

1 +
(

p+ω0
γ

)2 , (5.2)

from which we can infer the cavity centre as

ω̃0 =


p

(
nb+nr
nb−nr

−
√(

nb+nr
nb−nr

)2
− 1 −

(
γ
p

)2
)

if nb < nr

0 if nb = nr

p

(
nb+nr
nb−nr

+

√(
nb+nr
nb−nr

)2
− 1 −

(
γ
p

)2
)

if nb > nr

and the maximal detected transmission at resonance, as we can sim-
ply solve for I:

Ĩ =
nb
2

(
1 +

(
p − ω̃0

γ

)2
)
+

nr

2

(
1 +

(
p + ω̃0

γ

)2
)

. (5.3)
Figure 5.4: Knowing the cavity
linewidth (HWHM) and two measure-
ments on both profiles of the cavity
transmission line, we can reconstruct a
cavity profile to take our measurements
of the cavity shift with respect to it.

Atoms in the cavity. When atoms are present in the cavity, a shift in
the profile centre can be measured due to the phase shift induced by
the atoms. Consider a probe with detuning sp, where s stands for
the sign of the detuning. We detect n photons and assume that the
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presence of atoms does not affect the cavity’s maximal transmission.
We can infer the new cavity centre ω′

0 as:

˜δωc = ω̃′
0 − ω̃0 = ps − sγ

√
Ĩ
n
− 1 − ω̃0,

All our measurements are expected to be limited by photon shot
noise. To account for this, we study the deviations10 around ω0 = 10 Details and calculations can be found

in 11.1.0 where ⟨nb⟩ = ⟨nr⟩ = n. Since both photon measurements are
not correlated, and σ2

nb
= σ2

nr = n we have from the typical error
propagation formula[97]:

σω0 ≈
√∣∣∂nb ω0

∣∣2 σ2
nb
+ |∂nr ω0|2 σ2

nr =

√
2n
(

p2 + γ2

4np

)2

=
p2 + γ2
√

8np
≈ 16.341 MHz√

n
,

σI ≈
√∣∣∂nb I

∣∣2 σ2
nb
+ |∂nr I|2 σ2

nr =

√
2n
(

p2 + γ2

4γ2

)2

=

√
n

2
√

2

(
1 +

(
p
γ

)2
)

≈ 0.623
√

n.

When we have atoms in the cavity, we measure ns photons on the s
side of the cavity. As before ω0 ≈ 0 and also ω′

0 ≈ 0. If the empty
cavity calibration is done using n photons per probe and the interro-
gation is done using ns, we can consider the typical error propagation
formula11: 11 We ignore any correlation between Ĩ

and ω̃0.

σδωc =
γ2

p

(
1 +

p2

γ2

)√
1

8n
+

n
32n2

s
+

1
4ns

.

Moreover, we can introduce rp = ns/n:

σδωc =
γ2

2p
√

n

(
1 +

p2

γ2

)√
1
2
+

1
rp

+
1

8r2
p

. (5.4)

In practice, we consider two interrogation schemes to infer the cavity
shift: the first consists of a first interrogation with ns = n followed by
an echo MW+RF pulse and a second probe, then both measurements
are considered together for the inference, i.e. rp = 2. The second
method considers a single long probe such that ns = 6n, rp = 6.
Notice that there is a lower bound when rp → ∞ such that:

σδωc ≥
γ2

2p
√

2n

(
1 +

p2

γ2

)
≈ κ

2
√

2n
, (5.5)

as expected for an interrogation of the cavity at σ detuning with 2n
photons [67].

5.3 Common Configuration

Most experiments described in the rest of this thesis are performed in
similar conditions. To avoid redundancy, here is a description of the
standard configuration used for the rest of the text unless otherwise
specified.
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.

Figure 5.5: Magnetic trap and cavity
scheme. 87Rb atoms are magnetically
trapped by the atom chip (the dashed
orange curve illustrates the trap po-
tential). The transmitted photons are
collected by a single-photon counter
(SPC). The absorption images are taken
along ŷ. The cavity-locking light at 1560
nm is not shown. Figure retrieved from
[65]

The trap. In the interrogation trap, the magnetic field at the bottom
of the trap points along x̂ and has a value Bx = Bm − 35 mG, where
Bm = 3.229 G is the “magic” field for which the linear differential
Zeeman shift between the clock states vanishes [39]. The 35-mG off-
set maximizes the coherence time [72]. The trap is cigar shaped,
with frequencies {ωx, ωy, ωz}/2π ≈ {7.5, 122, 113}Hz, with the cav-
ity axis along x̂. We operate at typical temperatures of T ≈ 200 nK
transversely and atom numbers N between 6 × 103 and 2.1 × 104.
The cloud is in the collisionless regime such that each atom pre-
serves its motional energy over many oscillations in the trap (see the
time scales in 5.2).

The cavity. The optical cavity is symmetric with a finesse F = 2.7(1)×
103 for the 780-nm mode. The cavity has a mode waist (1/e radius)
w0 = 13.6 µm, length L = 1215(20) µm, and line width (full width
at half maximum) κ/2π = 45.8(6)MHz. This gives a maximum
single-atom cooperativity C0 = 24F/πk2

780w2
0 ≈ 1.9, where k780 is

the wave vector of the probe laser. Considering the inhomogeneity
for our trapped cloud with T ∼ 200 nK, the effective cooperativity is
Ceff ≈ 0.42. The cavity is simultaneously resonant for a stabilisation
wavelength at 1560 nm. The stabilisation laser is constantly on dur-
ing the experiment, but its intracavity intensity is sufficiently weak
to prevent trapping of the atoms (trap depth ≲ 20 nK).

Spin-cavity coupling. The cavity is tuned midway between the 780-
nm D2 transitions |↓⟩ → 5P3/2 and |↑⟩ → 5P3/2, such that to a good
approximation δω = Ω̄Sz, where Ω̄ = ∑N

i Ωi/N is the ensemble-
averaged shift per spin flip and Ωi is the coupling strength of the i-th
atom. The value Ω̄ = 2π × 16.3(3) kHz has an uncertainty limited
by the temperature and is determined experimentally by measuring
the cavity shift after preparing a CSS with different ⟨Sz⟩.

Probe lightshift We calibrate the phase shift induced by the cavity
probe using a Ramsey sequence (with the probe pulse occurring dur-
ing the Ramsey time). We obtain the ensemble-average phase shift
per detected photon ϕ̄d = 4.16(2)× 10−4 π rad. Ideally, for a given
atom i, the phase shift is given by ϕi =

Ωi
κt

nt, where nt is the trans-
mitted photon number and κt = T c/(2L) ≈ γ is the transmission
rate, in which T = 1000 parts per million is the designed mirror
transmission and c the speed of light. This allows us to estimate the
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overall photon detection efficiency η ≈ 0.63(2) by comparing ϕ̄d with
the expected phase shift per transmitted photon (⟨ϕi⟩ /nt = Ωe/κt).

Probing scheme. In our experiment, the inhomogeneity of the cou-
pling Ωi is predominantly in the transverse directions due to the
cavity mode intensity profile. In contrast, it is almost averaged out
by atomic motion along the cavity axis. To reduce inhomogeneity-
induced dephasing [98, 99], we fix the probe-pulse duration to the
vertical trap period, τp = 8.85 ms = 2π/ωz ≈ 2π/ωy. Thus, Ωi

only depends on the transverse motional energy of an atom and re-
mains constant until a lateral collision occurs. The remaining inho-
mogeneity between atoms with different motional energies is further
suppressed by employing a spin-echo sequence as in previous exper-
iments [98, 99].

For the first sequence of squeezing experiments described in 6.2,
we measure δω with a probe laser blue detuned from the cavity res-
onance by approximately γ [Fig. 5.6] and detect the transmitted pho-
tons using a single-photon counter, with an overall detection effi-
ciency η = 0.63(2). For the experiments after that one, we change to
an FSK protocol that can toggle the frequency by p = ±2π × 20 MHz
with respect to the cavity resonance at Sz = 0. It will be clarified
which probing scheme is being used when pertinent to do so. For
each probing scheme, we have introduced the shape parameter β in
equation (7.5); some typical values are:

β|p=γ =
7.07424 × 10−4

Ω̄

β|p=2π×20 MHz =
7.00988 × 10−4

Ω̄

where we have included the factor 1/Ω̄ for convenience.

Figure 5.6: The energy level structure
and the cavity-probing scheme. Figure
retrieved from [65]

Atomic coherence To determine the atomic coherence after a com-
posite measurement M1, we apply a second π/2 pulse after a first
composite measurement M1, forming a Ramsey sequence with M1

occurring during the Ramsey time. By varying the phase of the sec-
ond π/2 pulse, we obtain Ramsey fringes (Sz versus phase). How-
ever, M1 induces an average phase shift depending on the measured
Sz value, which fluctuates from shot to shot due to quantum pro-
jection noise. We correct this phase shift in the data analysis using
the calibrated phase shift per detected photon and the number of
detected photons in M1 in each shot. We can then obtain the con-
trast with a sinusoidal fit to the Ramsey fringes. We fit the con-
trast decay as a function of average detected photons per probe to
C(n0) = exp[−n0/γ1 − (n0/γ2)

2], in accordance to (2.20) yielding
γ1 = 1.3(6)× 105, γ2 = 9.4(4)× 103.

Optimal interrogation Using (2.19) and our contrast calibration, we
can infer an optimal number of photons yielding the best squeezing.
Numerical optimisation with p = 2π × 20 MHZ and our γ1, γ2 and
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γ as above using N ≈ 1.8 × 104, give an optimal squeezing of −8.18
dB with n0 ≈ 4.3 × 103 photons. Moreover, the squeezing remains
below 8 dB for n ∈ (4.0 × 103, 7.0 × 103)

Imaging. N↑ and N↓ are also measured by absorption imaging after
the time of flight (TOF). The state-resolved imaging starts with a MW
pulse that adiabatically transfers atoms from |↓⟩ to |F = 2, mF = 0⟩,
where they are no longer trapped and start to fall. The trap is turned
off several milliseconds later to release atoms in |↑⟩ so that the two
clouds are well separated and imaged in a single shot or picture.
However, the adiabatic transfer also perturbs the trap, so the tem-
perature estimation is slightly biased. We verify that both cavity and
absorption measurements agree within the noise of the absorption
imaging, which is close to the SQL [Fig. 5.7].

Figure 5.7: Typical data of the correla-
tion of a cavity measurement with ab-
sorption imaging. The correlation with
absorption imaging is limited by imag-
ing noise, ∆(N↑ − N↓) ∼ 100, compa-
rable to the SQL. Figure retrieved from
[65]

PSN threshold for cavity shift Considering an interrogation at p = 20
MHz and equation (5.4), we can evaluate both possible interrogation
schemes: double with rp = 2 and single long probe with rp = 6

σδωc |γ=2 =
γ2

p
√

n

(
1 +

p2

γ2

) √
66

16
≈ 23.47 MHz√

n
, (5.6)

σδωc |γ=6 =
γ2

p
√

n

(
1 +

p2

γ2

) √
386
48

≈ 18.92 MHz√
n

. (5.7)

Also, we include the lower bound proposed in (5.5) for completeness:

σδωc |γ→∞ =
γ2

p
√

8n

(
1 +

p2

γ2

)
≈ 16.34 MHz√

n
.

5.3.1 Time Scales

Table 5.2 summarizes the relevant time scales involved in the exper-
iment.

Transverse trap frequency ωy
2π , ωz

2π ≈ 120 Hz
Longitudinal trap frequency ωx

2π ∼ 7.5 Hz
Spin-exchange rate ωex

2π = 2h̄|a↑↓|n̄/m ∼ 1 Hz

Lateral collision rate γc =
32
√

π
3 a2

↑↓n̄vT ∼ 0.3 Hz
Background loss rate γ1b ∼ 0.33 Hz

Phase-decoherence time ∼ 0.05 Hz

Table 5.2: A summary of the experi-
mental time scales, in which n̄ ∼ 1.6 ×
1011 cm−3 is the average atomic density,
a↑↓ ≈ 98.09a0, with a0 = 0.0529 nm, is
the relevant scattering length, m is the
atomic mass, vT is the thermal velocity
vT ≈

√
kBT/m and kB is the Boltzmann

constant.
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6
Spin Squeezing Measurement Protocol

Most sections of this chapter and the following one are recovered
from our work in [65]. However, I extended our model to describe
more recent measurements and to improve our understanding. Be-
cause of this, some of the notation has been modified to simplify the
matters.

6.1 Previous Calibrations.

6.1.1 Average spin coupling

To measure Ω̄, we prepare CSSs with different ⟨Sz⟩ via Rabi oscilla-
tions, i. e.by applying a weak MW+RF pulse of variable length. Cav-
ity transmission spectra are obtained by scanning a weak probe laser
over 20 cavity line widths in 50 ms. We obtain the prepared ⟨Sz⟩
from the imaging data. A linear fit of the cavity frequency versus
the prepared ⟨Sz⟩ yields Ω̄. Our preparation procedure leads to a
small dependence between the temperature and the prepared atom
number. Therefore, the measured Ω̄ depends slightly on N (1.5%
deviation for 10% change in N).

Figure 6.1: Cavity shif as a function of
the population difference with σ+ po-
larisation. The population difference is
measured by absorption imaging. A
linear fit obtains Ω̄. A two-mode fit
shows the higher-order mode present
on the red profile of the cavity: This
mode couples with the atoms modify-
ing the linear response of the cavity for
large, negative vallues of Sz. The fre-
quency axis is taken from the modula-
tion applied to the EOM that generates
this sideband.

6.1.2 Probe lightshift

We calibrate the phase shift induced by the cavity probe using a
Ramsey sequence with the probe pulse occurring during the Ram-
sey time. We obtain the ensemble-average phase shift per detected
photon ϕ̄d = 4.16(2)× 10−4 π rad = (7.49(4)× 10−2)◦. Ideally, for a
given atom i, the phase shift is given by ϕi =

Ωi
κt

nt, where nt is the
transmitted photon number and κt = T c/(2L) ≈ σ is the transmis-
sion rate, in which T = 1000 parts per million is the designed mirror
transmission and c the speed of light. This allows us to estimate the
overall photon detection efficiency η by comparing ϕ̄d with the ex-
pected phase shift per transmitted photon, i. e.⟨ϕi⟩ = Ω̄n0

ηκt
= ϕ̄d

η . This
leads to the reported η = 0.63(2). In practice, the expected lightshift
⟨ϕi⟩ was calculated from Monte-Carlo simulations by Huang [67] to
consider the thermal distribution and the spread of the cloud at 200
nK. However, the same result, within the resolution, can be obtained
replacing Ω̄ → Ωeff, where Ωeff is introduced in section 7.2.1 and
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obtained numerically.

6.1.3 Coherence measurements

To determine the atomic coherence after a composite measurement
[Fig. 6.4(b) and Fig. 7.5, inset], we apply a second π/2 pulse after
M1, forming a Ramsey sequence with M1 occurring during the Ram-
sey time. By varying the phase of the second π/2 pulse, we obtain
Ramsey fringes (Sz versus phase). However, M1 induces an average
phase shift depending on the measured Sz value, which fluctuates
from shot to shot due to quantum projection noise. We correct this
phase shift in the data analysis using the calibrated phase shift per
detected photon and the difference between the number of detected
photons in the two probes that constitute M1. We can then obtain
the contrast with a sinusoidal fit to the Ramsey fringes.

6.2 Spin squeezing measurement

As described in section 2.2, monitoring the transmission of a cavity
allows us to perform a measurement that reduces the uncertainty of
the spin state. When captured by a magnetic field, we expect Sz to
behave like a constant of motion, except for the one-body loss con-
tribution, i. e.⟨Sz(t)⟩ = ⟨Sz(0)⟩ e−γ1bt. A way to verify this reduction
would be to measure the spin state again once the squeezing has
been performed. If the technical noise coming from the second mea-
surement and the one-body loss contribution is small enough, the
discrepancy between the first and second measurements would be
less than QPN; this is what we call conditional squeezing.

6.2.1 Experimental sequence

Figure 6.2: Squeezing and verification
sequence. An experimental sequence
with two composite cavity measure-
ments, M1 and M2, for squeezing ver-
ification. The green boxes represent
pulses on the clock transition, and the
red boxes cavity-probe transmission,
from which δω± are deduced. The
delay td between measurements varies
from milliseconds to 1 s. π̃ denotes a
composite π pulse. Figure retrieved
from [65]

An ensemble of N ∼ 2 × 104 87Rb atoms is magnetically trapped
as in the trap described in section 5.3. As shown in Fig. 6.2. We start
with all atoms in |↓⟩ and apply a π/2 pulse on the clock transition
to prepare a CSS on the equator of the Bloch sphere. A composite
cavity measurement M1 measures the cavity detuning to determine
Sz. A cavity measurement comprises two cavity-probe pulses sepa-
rated by a π pulse on the clock transition [Fig. 6.2]. The measured
Sz is deduced from the cavity shifts δω± of the two probe pulses
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as Sz = M/Ω̄ where M ≡ (δω+ − δω−)/2. Then, a second identi-
cal measurement M2 after a minimum delay td = 6 ms verifies the
measurement uncertainty and spin squeezing.

Figure 6.3: A squeezing measurement.
Ensemble of 200 cycles for squeez-
ing verification. Green dotted lines
at ±σQPN. The black dot is a repre-
sentative data point; the vertical grey
region represents 1σ PSN around the
data point. The horizontal grey re-
gion representing 1σ of conditional
noise

√
Var (M2|M1) around the data

point. The orange shading represents
±
√

Var (M2|M1) around a simple lin-
ear data fit. For context, in this set
n̄s ≈ 4782.97 photons, N̄ ≈ 23 × 103.

A QND measurement produces “conditional squeezing”: M1 yields
a different result every time, following the quantum fluctuations of
the CSS. The squeezing manifests itself in the correlation with the
second measurement M2, which for a squeezed state agrees with M1

to be better than the SQL [41]. A typical ensemble of measurements
would look like figure 6.3. We expect the noise distribution of the
first measurement as a CSS with Var (M1) ≈ σ2

QPN + σ2
PSN where

σQPN =
√

N
2 Ω̄ and σPSN = 23.255 MHz√

n from equation (5.7) with p = γ

for this data set1. We have marked ±σQPN in green. Suppose we treat 1 We emphasise here that we would
also expect Var (M1) ≈ Var (M2) since
for such a short delay, the one-body
losses should be negligible. However,
Var (M2) /Var (M1) = 1.45 for this data
set for reasons to be discussed in the
next part of the manuscript.

both measurements like a pair of correlated Gaussian variables. In
that case, we can evaluate the uncertainty on predicting M2 given M1

as the conditional variance Var (M2|M1) = Var (M2) − Cov(M1,M2)
2

Var(M1)

which we would expect to correspond with2 Var (Sz|M1) Ω̄2 + σ2
PSN.

2 Ignoring one-body losses terms.Given one data point, as the one marked in black, we can associate a
conditional spin state within its PSN resolution (shown in the vertical
grey shading); then, we can associate a confidence interval where we
expect M2 to be found approximately within Var (M2|M1) (shown in
the horizontal grey shading), the reduction of this confidence inter-
val with respect to σQPN is the conditional squeezing. As we will see
in the following subsection, our experiments do show a reduction
of noise3, but it does not follow a simple relationship as the ones 3 Var (M2|M1) /σ2

QPN ≈ 8.12 dB for the
data plotted.described above due to spin interactions to be discussed in the next

part of this manuscript.
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Figure 6.4: a) Conditional squeezing
results for N = 1.8(1) × 104 atoms
and minimum delay (td = 6 ms) be-
tween measurements M1 and M2. The
variance values are normalized to the
SQL (N/4) and expressed in decibels.
The cavity measurement without atoms
(open circles) approaches the photon-
shot-noise (PSN) limit (the boundary of
the shaded zone). The number squeez-
ing ξ2

N (purple circles) (Eq. 6.1) de-
creases to below −12 dB. After normal-
izing by the independently measured
coherence (panel b)), we obtain the
metrological squeezing (red squares),
reaching an optimum of 8.6+1.8

−1.3 dB for
13.0(2) × 103 photons. The error bars
indicate 1σ confidence and are obtained
with a bootstrapping method. b) The
Ramsey contrast C as a function of the
measurement strength. The curve is a
fit to C = exp[−ns/γ1 − (ns/γ2)

2] (See
5.3). Its thickness indicates the fit un-
certainty. c, The spin-noise tomogra-
phy at ⟨n1⟩ = 4.5(1) × 103, measured
by inserting, between M1 and M2, a ro-
tation θ around

〈
Ŝ
〉
. The grey curve

represents the theoretical minimum un-
certainty state, while the red curve con-
siders the phase noise induced by the
PSN of M1. Figure retrieved from [65]

6.2.2 Spin squeezing by QND measurement

Noise is quantified from the variance of 200 repetitions of this se-
quence. First, we perform this protocol with no atoms in the cavity
to determine the noise floor [Fig. 6.4(a), open black circles]. The re-
sult is close to the photon shot noise (PSN) of the detected photons,

given by ∆Ml |PSN = 33γ2

32ns
, where ns = ⟨nl1⟩ ⟨nl2⟩ is the average num-

ber of detected photons per probe on each measurement (l = 1, 2).
For the atom number N = 1.8(1)× 104 used here, the PSN falls be-
low the SQL for ns ≳ 500 detected photons, allowing for spin-noise
reduction by the cavity measurement.

With two measurements performed on the same sample with neg-
ligible delay, the spin noise of the state after M1 can be quantified as(

∆Sz|M1

)2
=

1
Ω̄2

[
Var (M2 − ζM1)− (∆M2|PSN)

2
]

, (6.1)

where ζ is chosen such that it minimizes the variance4 (and hence

4 This does not look like the measure
of noise we presented in the previous
paragraph Var (M2|M1), but one can
prove that:

min
ζ

Var (M2 − ζM1) = Var (M2|M1)
accounts for systematic differences between the two measurements)
[100]. To assess the spin noise after M1, it is legitimate to subtract
the detection noise of the verification measurement M2, which con-

tains the PSN,
(

∆Mpsn
2

)2
, plus technical noises such as cavity-lock

fluctuations. In Eq. 6.1, we conservatively subtract only the PSN to
obtain an upper bound for ∆2Sz. Fig. 6.4(a) (purple circles) shows it
as a function of the number of detected photons in M1. It is normal-
ized to the SQL to give the number squeezing ξ2

N = 4∆2Sz/N [53].
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The metrological squeezing ξ2 = N∆2Sz/|
〈
Ŝ
〉
|2 = ξ2

N/C2, which
characterizes the enhancement in angular resolution on the Bloch
sphere compared to the SQL [52], additionally requires assessing the
coherence, namely, the Ramsey-fringe contrast C = 2|

〈
Ŝ
〉
|/N. We

do this by applying a second π/2 pulse with a variable phase after
M1 and then measuring Sz by imaging [Fig. 6.4(b)]. The resulting
Wineland squeezing factor is shown as red squares in Fig. 6.4(a). We
obtain a maximum metrological squeezing at optimal parameters of
8.6+1.8

−1.3 dB, with about ns = 6500 detected probe photons. The opti-
mum results from the competition between photon shot noise, which
favours a higher photon number, and photon-induced decoherence.

Spin Tomography. To fully characterize the squeezed state, we also
perform spin-noise tomography [98, 101] by inserting a pulse on the
clock transition between M1 and M2 to rotate the noise distribu-
tion around ⟨S⟩ [Fig. 6.4(c)]. Notice that for Sz ̸= 0, the number
of photons detected will differ by approximately 2n0βΩ̄Sz between
the first and second probe in M1. The discrepancy on the detected
number of photons translates into a phase fluctuation due to the in-
duced lightshift by the probe5. The data shown in figure 6.4(c) is 5 More precisely ϕ̄ = 2n0 βΩ̄2

κtη Sz as we
will show in section 7.3taken with ns = 4.5(1) × 103. To ensure we rotate around ⟨S⟩, we

post-select for all measurements such that Sz = 0 within PSN. For
reference, we consider a state that saturates the uncertainty bound
σsσa = N

4 , (figure 6.4(c), grey curve6). The figure shows an ex- 6 The noise distribution for a gaussian
state with principal quadratures σs, σa
rotated an angle θ around its centre is

given by σ(θ) =
√

σ2
s cos2 θ + σ2

a sin2 θ

cess anti-squeezing of 7.4 dB (at 90◦ rotation) above the minimum-
uncertainty state. Once we include the PSN contribution7 via shot-

7

√
Var (Sz)

∣∣∣
ϕ̄
≈ NC

2 sin
(

Ω̄
ηκt

√
n0

)to-shot fluctuation of phase, we obtain the red curve; thus, we mostly
attribute the excess atnisqueezing to the shot-to-shot phase noise
caused by the PSN in M1.

6.2.3 Lifetime

The long phase-coherence time in our experiment allows us to ob-
serve the evolution of the spin-squeezed states over much longer
time scales than in previous experiments. From the formula (2.18),
we expect the state’s squeezing to have a lifetime comparable to the
lifetime of the atoms in the trap, i. e.3.0(1) s. This is expected to be
an upper bound since our theory did not consider other loss mecha-
nisms apart from one-body losses.

To verify this, we perform the verification measurement M2 after
longer times Td up to 1 s. Tracing M2 as a function of M1, we notice
immediately that M2 ̸= M1. However, we find that a strong linear
correlation between the measurements persists for all measurement
times, but surprisingly, its slope depends on Td [Fig. 6.5(a)]. The
slope α of a linear fit to the data increases to values up to approxi-
mately 4 for times td ≲ 300 ms, then decays back to values close to
1 [Fig. 6.5(b)]. We included in green σQPN corresponding to the fi-
nal atom number measured. Notice that M2 exceeds QPN by many
factors, which should be visible through imaging if this came from a
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Figure 6.5: a) Same protocol as the
one depicted in figure 6.2 with a larger
delay td between M1 and M2. Lin-
ear dependence between the two mea-
surements remains, while the second
measurement shows an amplified cav-
ity shift with respect to the first one
as M2 = αM1. Once again, σQPN is
marked in green. b) The slope obtained
by simple least-square for different de-
lays. An increase is observed around
250 ms and then reduces back to 1.

correlated change in Sz.
Using absorption imaging, we confirm that Sz itself does not mea-

surably evolve when α increases, with Var
(

N2−N1
2

)
remaining well

within [0.57, 1.45]σ2
QPNC2, indicating that the amplification of M2 is

linked to the measurement rather than to the spin state itself. More
precisely, as elaborated in the next chapter, the origin of the amplifi-
cation is not a change in the mean spin direction but a change in the
effective coupling between the cavity and the atoms due to spin-spin
interactions.



7
Amplification

7.1 Experimental Observations of Amplification

Figure 7.1: In the vertical axis, P2 is in-
ferred directly from camera data, while
the horizontal axis shows the count of
the two probes, both in the blue profile
of the cavity. We notice that for some
cases, the transmission almost doubles,
corresponding to a shift of half a cavity
width. We notice that, after some point,
the difference decreases as the number
of photons in the first probe increases.
Today, we can understand this due to
the loss of contrast induced by inhomo-
geneous dephasing, which hides the ef-
fect to be described in this chapter.

We first observed the measurement of amplification in TACC 2 in
2018. A first probe was sent through the atomic ensemble, followed
by a π/2 pulse and a second identical measurement. For short de-
lays, of around 10 ms both measurements remained identical within
the expected photon shot noise and well below QPN from 1000.
However, when the separation between probes increased, the differ-
ence between both measurements increased significantly depending
on the relative detuning of the probe with respect to the cavity reso-
nance. Further investigation showed that the cavity transmission of
the second probe was amplified due to an unexpected cavity shift
after the first probe.

The magnitude of the shift seemed to increase as a function of the
delay after the first probe until it plateaus, sometimes after a short
dip. The maximal shift increases with the number of atoms for fixed
trap frequencies. A statistical ensemble was prepared, and the same
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experiment was conducted instead of using a CSS. A shift on the
cavity transmission was observed, but the dependence on time was
no longer there, implying that what was being observed came from
a coherent process. Finally, the spin state was checked using the
camera; the shift was large enough for it to be noticeable within the
resolution of the camera if Sz had changed. This implied that it was
a change in the way the atoms were coupled to the cavity instead of
a change in the z component of spin.

Discussions with collaborators at the time pointed to the work
Piéchon et al. [102] that developed an explanation of different effects
of spin segregation [103–105] and other dynamics based on mecha-
nisms of Identical Spin Rotation Exchange (ISRE). This allowed us
to develop a model in which phase inhomogeneities correlated with
the state of motion of the atoms in the trap, together with spin inter-
action, led to the observed effect. As a result of these discussions, a
model based on energy classes was presented by Huang [67] for his
thesis. Here, I present a version of the model we presented in [65]
that allows us to discuss how different probing schemes give us con-
trol over the amplification. We first discuss how the inhomogeneous
coupling gives rise to a correlated dephasing, how the interactions
transfer this dephasing into the coupling of the z component of spin
and how this gives rise to the amplification.

7.2 Ingredients for amplification

7.2.1 Inhomogeneous coupling

The atom-field coupling in the cavity is a function of the atomic tra-
jectory r⃗(t) and is determined by the cavity geometry:

Ω(⃗r) = Ω0 cos2 (k780x)
(w0

w

)
exp

[
−2

y2 + z2

w2

]
, (7.1)

where w = w0

√
1 + x2/L2

R, in which LR = k780w2
0/2 ≈ 750 µm the

Rayleigh length. The maximum shift Ω0 can be obtained from the ex-
perimentally measured Ω̄ and agrees with the value obtained from
a cavity quantum electrodynamic calculation. The time-integral of
Ω(⃗r) over the pulse duration τp yields the effective coupling Ωi =
1
τp

∫ τp
0 dtΩ(⃗ri) for the i-th atom. Assuming harmonic oscillation, the

position dependence in the transverse directions reduces to a func-
tion of the motional energies Ey,i and Ez,i:

Ωi ≈ Ω0

(
1 −

x2
i

L2
R

)
e
−
(

Ey,i
εy +

Ez,i
εz

)
I0

(Ey,i

εy

)
I0

(
Ez,i

εz

)
, (7.2)

where εy ≡ mω2
yw2

0
2 and εz ≡

mω2
z w2

0
2 . In the experiment, the averaging

is imperfect along ŷ since ωy and ωz are not precisely equal. I0(·) is
the modified Bessel function of the first kind. Note that we assume
that the standing wave in x̂ can be averaged out and that the position
dependence on x is weak as the cloud size ≪ LR. As a result, the



amplification 73

atoms contribute differently to the quantum fluctuations of δω =

Ω̄Sz.
Nevertheless, the system can be described as a uniformly coupled

one with a slightly reduced effective atom number Neff =
(∑N

i Ωi)
2

∑N
i Ω2

i

and coupling Ωeff =
∑N

i Ω2
i

∑N
i Ωi

, as long as the couplings do not change

over time[46]. Note that1 as 1 The coefficients Neff ≈ 0.90N and
Ωeff ≈ 1.11Ω̄ where obtained via Mon-
tecarlo simulation of the cloud at the
corresponding temperature and atom
number.

NeffΩeff = NΩ̄ and ξ2 = 4(∆Sz)
2|M1 /(NC2) ∝ 1/NΩ̄2,

the squeezing will appear higher if Neff and Ωeff are used. For our
system, Neff ≈ 0.90N and Ωeff ≈ 1.11Ω̄, so that the effect on ξ2 is
within 10%. We use N (measured by imaging) and Ω̄ to obtain a
conservative estimate of squeezing. Also, Var (Ω) = 0.1131Ω̄2

7.2.2 Spin-Exchange Interaction

The Identical Spin Rotation Effect (ISRE) is a phenomenon in spin-
polarized systems that has manifested itself in cold atom systems.
This is at the origin of spin waves, first predicted by Bashkin [106]
and Lhuillier and Laloë [107]; since then, it has been reported in
multiple experimental set-ups [39, 72, 104, 105, 108–113], accom-
panied by the development of the theory necessary to study such
systems[102, 103, 114–117]. The effect can be explained from the
difference of effective energy interaction between parallel and an-
tiparallel spins[107]; this asymmetry leads to precession between the
triplet and singlet states[118].

Consider two spin- 1
2 particles with two-body collision interaction

Ĥint described by a term proportional to P̂singlet, the projector to the
singlet state. It is possible to show that Ĥint ∝ 1

4 − ŝ1 · ŝ2. The en-
ergy split coming from the term ŝ1 · ŝ2 gives rise to the spin rotation;
this is apparent directly from the equation of motion ∂t ŝ1 ∝ −ŝ1 ∧ ŝ2,
which resembles an equation describing the precession of ŝ1 around
a magnetic field proportional to ŝ2. In the case of 87Rb, the scat-
tering lengths a↑↑, a↓↓ and a↑↓ are almost identical2. This shift the 2 More precisely[119]:

a↑↑ = 95.47a0,

a↓↓ = 100.44a0,

a↑↓ = 98.09a0.

spin-symmetric triplet states by the same energy, but not the singlet,
leading to the same spectrum as that of a fermion, allowing us to
treat it as such [72, 103, 120].

A complete mean-field treatment [36, 36, 72, 102] yields a simi-
larly intuitive picture. Considering an energy-dependent spin den-
sity S(Ex, Ey, Ez, t):

∂tS + γc (S − ⟨S⟩) ≈ (∆D e⃗z + ωex ⟨S⟩) ∧ S. (7.3)

The term ∆D is energy-dependent, including the Zeeman shift
from the harmonic trap and the mean-field shift contribution from
the density. The second term in equation (7.3), ωex ⟨S⟩ ∧ S, is the
ISRE term that manifests as a rotation of the spin distribution around
its average value with an exchange rate given by the forward scat-

tering rate ωex
2π =

2h̄|a↑↓ |n̄at
mRb

. Additionally, we find a diffusion term

proportional to the lateral collision rate γc = 32
√

π
3 a2

↑↓n̄atvT . Notice
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that, for low temperatures, the thermal velocity vT tends to zero, sup-
pressing the lateral collisions. In our experiment, ωex

2π > γc, which
allows us to see the effect of the spin exchange before damping out.

We remark that the dephasing term ∆D is at the origin of dynam-
ics previously reported in TACC-1 [72]: a dephasing arises due to the
harmonic shape of the trap, then the forward-collision term allows
for the “exchange” of the direction of dephasing, effectively rephas-
ing the spin of the sample. In TACC-2, this term is still present, but
it is not the main driver of our dynamics. In TACC-2, the inhomoge-
neous lightshift, correlated with the transversal energy distribution,
induces dephasing. We could think of it as a term ∆D that is present
only during the probe or as the initial conditions for the evolution
dominated by the exchange term after the probe.

7.2.3 Cavity in linear-regime

For this section, we consider a linear approximation of the cavity
shape for our analytical treatments3. To avoid carrying a factor of 2π 3 All data analysis considers the shape

T(δω) =
(

κt
4γ

)2
1

1+(δω/γ)2 to infer the
cavity detuning, where δω is the detun-
ing with respect to resonance in radians
per second. Due to mode matching, we
note that our experiment is such that
κt ≈ γ

everywhere, we write all detuning in radians per second. For a cavity
detuning of p, we introduce the raw transmission as T0 = T(±|p|)
and expand around p:

T(p + Ω̄Sz) = T0

(
1 − 1

1 + (p/γ)2
2p
γ2 Ω̄Sz

)
= T0(1 − βΩ̄Sz).

Say we send a fixed-duration probe for a total amount of np photons.

�� ��Theorem 1 (Transmitted photons in linear regime):

For a photon detection efficiency η and np probe photons, the
linear relationship between the z component of spin and the de-
tected cavity transmission

n = n0(1 − βΩ̄Sz) (7.4)

β = − 1
nΩ

dn
dSz

∣∣∣∣
Sz=0

=
1

1 + (p/γ)2
2p
γ2 (7.5)

n0 = npT0η

Notice that for a CCS prepared in the equator of the Bloch sphere,
n0 is the average of detected photons across many cycles, while n0/η

is the average number of transmitted photons

7.3 Microscopic semi-classical model of amplification

Here, we formulate a simple semiclassical model that reproduces the
amplification effect. We make the following assumptions:

1. Ωi is only determined by Ey,i and Ez,i, which are conserved during
the experiment (Eq (7.2)). The coupling of the ensemble Ω̄ =
1
N ∑N

i Ωi is then a constant.
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Figure 7.2: Intuitive picture of the
amplification effect in the single-atom
Bloch sphere. Atoms are prepared in
phase by the π/2 pulse (left column).
The centre column shows the situation
just after the measurement M1. Two
cases are shown, one where the mea-
surement result was Sz > 0 (upper row)
and one where it was Sz < 0 (lower
row). Each arrow depicts a single atom,
with its colour representing the cou-
pling Ωi , which depends on motional
energy (blue: higher energy, Ωi < Ω̄;
red: lower energy, Ωi > Ω̄ ). Cold,
well-coupled atoms (red arrows) lead
when Sz > 0 (upper row) and lag when
Sz < 0 (lower row). During evolu-
tion under ISRE (right column), indi-
vidual spins rotate around their sum,
acquiring different individual sz com-
ponents while the total Sz is conserved.
For short times, well-coupled atoms ro-
tate above (below) the average if Sz >
0 (Sz < 0). As these atoms make an
above-average contribution to the cav-
ity shift, the second measurement per-
formed at this stage yields an amplified
signal. Note that if Sz = 0 is measured,
atoms remain in phase (thick grey ar-
row), and no spin dynamics occur.

2. The spin rotation is modelled as a simple rotation of each spin
around the average of the ensemble with the same rate Cωex, de-
termined by the atomic coherence. We ignore other sources of
dephasing, such as dephasing from the trapping potential.

3. We also assume a perfect π pulse on the clock transition for the
spin echo and no spin dynamics during the composite measure-
ment.

The general idea of the model is depicted in figure 7.2. During a
given sequence, atoms are initially prepared in a CSS on the equator,
say |π

2 , 0; N⟩. A first measurement M1 projects the spin component
close to the equator, say Sz > 0 for a particular sequence cycle. The
fact that the number of photons in both probes of M1 leads to an
uncompensated phase shift that is correlated with the spin we just
measured. For a given atom i, this phase shift also depends on its
coupling Ωi, so that we have ϕi ∝ ΩiSz. As Ωi, in turn, depends
on the transverse motional energy of the atom, this corresponds to
a spin-orbit coupling where atoms with small oscillation amplitude
experience above-average phase shift. This correlation persists until
collisions redistribute motional energy, i.e., for a time on the order of
3 s in our experiment.

Second, spin-exchange interaction rotates individual spins about
the axis of total spin at rate ωex, thus converting the phase-shift devi-
ation δϕi of an atom from the ensemble mean into population differ-
ence δsz,i. 4 While this interaction conserves total spin, it does con-

4 Note, however, that the squeezed axis
remains unchanged, i. e., along z, be-
cause the interaction can be described
by a Hamiltonian ∝ Ŝ · Ŝ which is a con-
stant of motion that commutes with Ŝz
[110].

vert the initial correlation δϕi ∝ Ωi into a correlation δsz,i ∝ Ωi, which
will affect the result of a subsequent cavity measurement. In the case
of our measurement scheme, the spin-rotation direction is such that
for short times, atoms with above-average coupling (Ωi > Ω̄) acquire
δsz,i > 0 if Sz > 0 and vice versa: strongly coupled atoms acquire an
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increased population difference, ⟨sz,i⟩ |Ωi>Ω̄ = ASz/N with A > 1.
As these atoms make a dominant contribution to the cavity shift, a
second cavity measurement is amplified with respect to M1.

The phase shift induced by M1 is obtained from the number of
photons transmitted n1k in the two probe pulses. With a linear ap-
proximation of the cavity transmission (probe detuning pk), n1k =
n0
η (1 ∓ βkΩ̄Sz), from which n0 = ⟨n1k⟩ η is the average detected pho-

ton number during the M1k interrogation5. According to our sign 5 We distinguish the shape param-
eter βk for both first and second
probe to consider different interroga-
tion schemes, the reason for this will be
elaborated in section.

convention, the first probe gives ϕi1 = Ωi
κt

n0
η (1 − β1Ω̄Sz) (note the

sign of Sz, which acquires another minus sign after the spin-echo
pulse). The second probe gives ϕi2 = Ωi

κt

n0
η (1 + β2Ω̄Sz) and the total

phase shift in M1 reads

ϕi = ϕi2 − ϕi1 =
Ωi
κt

n0

η
(β2 + β1)Ω̄Sz. (7.6)

For small phase deviations, the mean phase is

ϕ̄ = arctan
(

∑i sin(ϕi)

∑i cos(ϕi)

)
≈ 1

N ∑
i

ϕi

=
Ω̄
κt

n0

η
Ω̄(β2 + β1)Sz. (7.7)

From which the phase deviation from the mean of atom i is:

∆ϕi = ϕi − ϕ̄ =
n0

ηκt
(β2 + β1)Ω̄(Ωi − Ω̄)Sz = χδiSz, (7.8)

where we introduce the precursor factor χ = n0
ηκt

(β2 + β1)Ω̄ of the

probing scheme and the coupling discrepancy6 δi = Ωi − Ω̄. The 6 Note that this definition leads to
∑i δi = 0cavity would not measure this phase distribution until the spin-

exchange collisions rotate individual spins about the total spin [72,
102]. The effect of the ISRE is then to rotate individual spins about
their sum. The rotation rate is determined by Cωex. While the total
Sz is conserved, the sz values of individual atoms evolve as

sz,i(t) = s0
z +

∆ϕi
2

sin Cωext. (7.9)

The initial value is close to s0
z = Sz/N for all atoms due to the QND

measurement, and the plus sign is determined by the relevant scat-
tering lengths in 87Rb [103]. We then obtain cavity shift of M2:

δω(t) =
N

∑
i

Ωisz,i(t)

=
N

∑
i

Ωi

(
s0

z +
∆ϕi

2
sin Cωext

)

= Ω̄Sz +
χ

2
Sz sin Cωext

N

∑
i

Ωiδi. (7.10)

The last term is simply the statistical variance7 of the spin-cavity

7 Note that:
N

∑
i

Ωiδi =
N

∑
i

δ2
i + Ω̄

N

∑
i

δi

= (N − 1)VarΩ

Considering the Bessel correction for
variance. Since N > 104, we use N1 ≈
N in the text. To agree with the text in
[65], we use (∆Ω)2 for this variance.

couplings N(∆Ω)2. We can then write the cavity shift as

δω(t) =
(

1 +
1
2

χN
(∆Ω)2

Ω̄
sin Cωext

)
Ω̄Sz = α(t)Ω̄Sz. (7.11)
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We find that

α(t)− 1 =
χN
2

(∆Ω)2

Ω̄
sin Cωext

=
n0(β2 + β1)Ω̄

2ηκt
N
(∆Ω)2

Ω̄
sin Cωext. (7.12)

is the time-dependent amplification factor.
We thus expect an amplification that depends on the atom num-

ber, the probe photon number, and, not on the coupling strength, but
on the coupling inhomogeneity and that increases for t ≲ π/(2Cωex).
While this simplified model predicts an oscillation of α(t), we expect
it to damp out for times approaching the lateral collision time scale,
as these collisions destroy the correlation between external and in-
ternal states.

7.4 Energy-Coupling Relationship

The model also predicts that a correlation should arise between the
spin state and motional energy. For example, when M1 is performed
in the blue profile of the cavity, and it yields Sz > 0, the ISRE converts
the phase shift of colder atoms into an increased probability of being
in |↑⟩ and that of hotter atoms into an increased probability of |↓⟩,
for times t < π/(Cωex).

More quantitatively, we consider the motional energy Et,i of atom
i in the transverse directions (t = y, z). Ωi is a monotonically de-
creasing function of Et,i (see Eq. 7.2), and here we approximate it
by δi ≈ −ε(Et,i − Ēt), where Ēt = 1

N ∑N
i Et,i = kBT and ε is a pos-

itive constant8. It follows that (∆Ω)2 ≈ ε2Var (Et) = ε2(kBT)2, so 8 Both the average value and fluctuation
of the energy are derived directly from
the Boltzmann distribution

ft(xt, vt) ∝ exp
(

1
2kBT

mv2
t

+
1

2kBT
mω2

t x2
t

)
Alternatively, one could take the high-
temperature limit of the heat capacity of
a harmonic oscillator together with the
identity Var (E) = KBT2C, for canonical
ensemble[38].

ε = ∆Ω/kBT. Overall, the average energy of |↑⟩ can be written as
Et,↑ ≈ 1

N↑
∑N

i P↑,iEt,i, where P↑,i =
1
2 − sz,i and N↑ = ∑N

i P↑,i and sim-

ilarly for |↓⟩, with P↓,i = 1
2 + sz,i. Note the replacement sz → −sz

due the π pulse before in M2.
The ISRE furthermore correlates sz,i with Et,i through Ωi. Using

Eq. 7.9, after an evolution time t,

Et,↑ ≈
1

N↑

N

∑
i

(
1
2
− sz,i

)(
Ēt −

δi
ε

)

≈ Ēt

N↑

N

∑
i

(
1
2
− sz,i

)
+

1
N↑

N

∑
i

(
sz,i −

1
2

)(
δi
ε

)

≈ Ēt

N↑

(
N
2
− Sz

)
+

1
εN↑

N

∑
i

sz,i (Ωi − Ω̄) .

Note that the first term in the last summation is simply the cavity
shift we derived in equation (7.11) and the second term factors out
another factor Ω̄.

Et,↑ ≈
Ēt

N↑

(
N
2
− Sz

)
+

Ēt

∆ΩN↑
(α(t)− 1) Ω̄Sz.

The experimentally measured transverse temperature directly links
to the average energy as Tt,↑(↓) ≈ Et,↑(↓)/kB. Furthermore, the first
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term is Ēt(N↑/N − 1) which tends toward Ēt for large N as N↑ ≈
N/2. This leads to

Tt,↑(↓) ≈ T
(

1 ± 2
(

α(t)− 1
∆ΩN

)
Ω̄Sz

)
. (7.13)

Thus, we find that the final transverse temperature should correlate
with the measured Sz for 0 < t < π/(Cωex). Eq. 7.13 also predicts
that the fluctuation ∆Tt,↑(↓) should have a time evolution similar to
that of the amplification factor (Eq. 7.12), given the quantum fluctu-
ations ∆Sz =

√
N/2 of the initial state. Specifically, ignoring other

fluctuations in temperature,

∆Tt,↑(↓) ≈ ±T
(

α(t)− 1
∆Ω

√
N

)
Ω̄ ∝ α(t)− 1 . (7.14)
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Figure 7.3: The spin-orbit correlation
from temperature measurements. a)
The temperatures along ẑ of states |↓⟩
(light green dots) and |↑⟩ (dark green
dots) versus M1 from the same data
set (the offset between the initial tem-
peratures is due to the state-dependent
imaging procedure). There is a clear
correlation between Tz,↑ and M1 (anti-
correlation for |↓⟩) for td = 0.2 s and
0.5 s, where α > 1. b) The time evo-
lution of the temperature fluctuations
(standard deviation) of Tz,↑. The evo-
lution closely resembles that of the am-
plification factor α (open circles, right
axis), further corroborating the amplifi-
cation mechanism described in the text.
Figure retrieved from [65]

The time-of-flight imaging yields state-resolved temperatures T↑
and T↓ for every shot, providing an experimental test for this mecha-
nism. If sz,i is correlated with Ωi and hence with the motional energy
as outlined above, then the temperatures of the two spin components
should be correlated with M1, and the correlation should have op-
posite signs for the two states. Indeed, when T↑ and T↓ are plotted
against M1 [Fig. 7.3(a)], a correlation is clearly visible for times td

where α > 1 and has the expected sign: the higher the measured Sz
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in M1, the lower is T↓ (taking into account the base change (π pulse)
in M2) and the higher is T↑. The amount of temperature change also
depends on α in the expected manner, as can be seen by plotting the
shot-to-shot temperature fluctuations (standard deviation ∆Tz) as a
function of td [Fig. 7.3(b), green diamonds]. For short times where
α ∼ 1, fluctuations are very low, limited by measurement noise. As
α increases, they rise up to approximately 18 nK, and their time evo-
lution closely follows that of α for our measurement time.

A semiclassical Monte Carlo simulation where atoms move on
classical trajectories and evolve under mean-field spin exchange equa-
tion reproduces the time evolution of the amplification factor quite
well, as shown in figure 7.4. The simulation includes a damping rate
that is estimated from the decay rate of centre-of-mass oscillations
mostly induced by the cavity-locking light. The quantitative agree-
ment is satisfactory despite the simplicity of the model and the fact
that the simulations do not consider quantum correlations.

Figure 7.4: Amplification factor as a
function of time with Montecarlo simu-
lation. An additional dampening term
related to the centre-of-mass residual
oscillations is included.

The observed temperature correlation and the simulation results
thus provide strong evidence for the amplification effect resulting
from the inhomogeneous measurement-induced phase shift combined
with spin exchange interaction acting on the squeezed state on the
long-time scales explored here for the first time. This is in contrast
to the non-interacting case usually considered, where differences in
atom-cavity coupling merely reduce the effective atom number [46]
and a small dephasing does not affect the measurement as it remains
confined to an axis that is not observed. Also note the difference
with respect to “quantum phase magnification” effects [121, 122]:
while in these effects, interactions modify the spin state itself, here it
is the correlations between the spin and motional degrees of freedom
that are modified and lead to the observed amplification.

7.5 A model for noise under amplification

From the qualitative understanding of the amplification mechanism
outlined in the main text and supported by the temperature correla-
tion with M1 (Fig. 7.3), we can formulate a simple phenomenological
model of the time evolution of the cavity measurement. We start by
formulating the time evolution of Sz given a measurement M1 as:

Sz(t)|M1 = e−γ1btSz(0)|M1 + δSz(t) , (7.15)

where Sz(0)|M1 follows the conditional probability distribution of Sz

after M1, i.e., approximately a normal distribution centred around
M1/Ω̄ with a variance given9 by Var

(
δMn

1
)

/Ω̄2. δSz(t) represents 9 We use δMn
l to represent the noise of

measurement l = 1, 2 which is much
lower than atomic projection noise, and
the lower bound of which is given
by photon shot noise Var

(
δMn

l
)

≥
(∆ Ml |PSN)2.

all spin noise occurring after M1 (such as the loss-induced noise [71]);
e−γ1bt accounts for the reduction of the spin ⟨Sz⟩ due to one-body
loss. The spin variance is thus given by

∆2Sz(t)|M1 = e−2γ1btVar (δMn
1 ) /Ω̄2 + Var (δSz(t)) . (7.16)
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On the other hand, we expect M2 to follow a statistical distribution
given by

M2(t) = Ω̄
[

α(t)Sz(0)|M1
+ δSz(t)

]
+ δMn

2 , (7.17)

where α = α′e−γ1bt includes both the pure amplification effect α′ and
the reduction of the spin ⟨Sz⟩ due to one-body loss. Note that the
amplification mechanism acts on the phase correlation imprinted in
M1 but does not modify the cavity coupling of the spins.
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Figure 7.5: Inferred squeezing in the
spin degree of freedom. The purple cir-
cles show the inferred upper limit of
the number squeezing in the spin de-
gree of freedom (Eq. 7.20). The evo-
lution is consistent with the theoreti-
cal lower bound given by atom loss
(dashed curve). The red squares show
the resulting metrological squeezing,
obtained as usual by dividing the num-
ber squeezing by the measured Ramsey
contrast shown in the inset. For com-
parison, the solid curve is the theoret-
ical limit normalized to the fit of the
experimental Ramsey contrast. The in-
set shows the Ramsey contrast data (cir-
cles) as a function of td and their expo-
nential fit (shaded curve), which yields
τ = 7.7(6) s. Figure retrieved from [65].

To infer ∆2Sz(t)|M1 from our cavity measurements M1 and M2, we
use the minimum conditional variance as in Eq. 6.1 (ζ = α minimizes
the variance). Assuming the three contributions in Eq. 7.17 to be
statistically independent, we have

Var (M2 − αM1) =

α2Var (δMn
1 ) + Ω̄2Var (δSz(t)) + Var (δMn

2 ) . (7.18)

Note that we dropped the time dependence for convenience. We
find that this variance does contain information about Var (δSz(t))
but it is affected by the noise of M1 amplified by α (first term on the
right-hand side).

Nevertheless, knowing α(t) from our data allows us to infer the
actual spin noise ∆2Sz(t)

∣∣
M1

(Eq. 7.16, i.e., the correlation only in the
spin degree of freedom rather than the combined spin-orbit observ-
able seen by M2) by comparing it with Eq. 7.18:

∆2Sz(t)
∣∣∣

M1
= Ω̄−2[Var (M2(t)− α(t)M1)

− (α(t)2 − e−2γ1bt)Var (δMn
1 )− Var (δMn

2 )] . (7.19)

Taking a conservative limit by assuming the minimum PSN from the
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cavity measurements, we obtain Eq. 7.20.

∆2Sz(t)|M1 = Ω−2
e [Var (M2 − αM1)

− (α2 − e−2γ1bt)(∆MPSN
1 )2 − (∆MPSN

2 )2] , (7.20)

where we drop the time dependence of α and M2 for simplicity, and
the only noise we subtract is the PSN, ∆2MPSN

l . We find that the con-
tribution from the noise of M1 (second term in the square brackets)
is also affected by the amplification mechanism (α2), and the expo-
nential comes from the decay of the total spin.

7.5.1 Lower bound of conditional variance

To get a lower bound on this quantity, we can identify the term δSz(t)
in equation (7.16) with the uncorrelated one-body losses shown in
equation (2.17) and bound δMn

2 with PSN:

Var (αM1 − M2) ≥

α2(∆MPSN
1 )2 + (∆MPSN

2 )2 +
Ω̄2N

4
(1 − e−γ1bt), (7.21)

or in terms of the inferred spin variance:

∆2Sz(t)|M1 ≥ e−2γ1bt(∆MPSN
1 )2 +

Ω̄2N
4

(1 − e−γ1bt). (7.22)

The upper limit we calculate from only subtracting PSN (purple cir-
cles in Fig. 7.5) approaches the lower limit due to losses (dashed line
in Fig. 7.5) to within 3 dB, except in the time interval where α is sig-
nificantly larger than 1. The larger difference at those times may
come from fluctuation in the amplification dynamics themselves.

We also plot the metrological squeezing factor by combining these
data with the independently measured coherence as a function of
time (Fig. 7.5, inset). The inferred metrological squeezing remains
below 0 dB up to 600 ms. This is about 2 orders of magnitude longer
than in previous squeezing experiments with cold alkali atoms and
compatible with the typical interrogation time for primary-standard
atomic clocks.

The next steps in our experiment will be to devise more sym-
metric measurement pulse schemes as discussed in Sec. 9.1, and to
implement the real-time feedback that allows measurement-based
squeezing to be integrated into the full Ramsey-measurement cycle.
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Figure 7.6: Squeezing and amplifica-
tion. Same data of figure 6.4. The
dash purple curve shows the theoreti-
cal curve from equation (2.19). The red
dashed curve shows the same noise la-
bel scale by α2 as derived from a simple
linear regression between M1 and M2.

7.5.2 Noise amplification

Combining the effects of one-body losses and amplification, we ar-
rive at a noise model that looks like equation (7.21), while the actual
spin variance behaves as expected from (2.19). We can interpret this
as the amplification restricting our ability to know the actual spin
state, not due to a degradation of the spin itself but due to the change
of effective coupling inside the cavity. This can be appreciated even
in our squeezing measurements of section 6.2 as shown in figure 7.6.
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The presence of amplification reduces the squeezing we inferred
by up to 3.5 dB at 1800 photons detected per probe with respect to
the level expected from 1-body losses and PSN. Moreover, we notice
a 1σ improvement for 6500 photons, the optimal level we measured,
with respect to the theoretical curve. We notice that α ≈ 0.89 for this
particular value. This means that α could both increase or decrease
the conditional variance Var (M2|M1) depending on whether α > 1
or α < 1, respectively. We will study the significance of this in the
final part of the manuscript.



Part IV

Clock Operation





8
Effect of Amplification on the Local Oscillator Phase
Measurement

Figure 8.1: We can distinguish three
main moments of a sequence cycle.
First, a state preparation in which a su-
perposition and measurement are used
to generate the squeezed state. This
first part would be absent in a classi-
cally operated clock. The second part
corresponds to the actual interferome-
ter in which a phase accumulation be-
gins; a first pulse orients the state prop-
erly to the accumulated phase, and a
second one brings back the state so that
the accumulated phase can be detected
a population difference. A third part
corresponds to the state measurement,
which could be both a cavity or a cam-
era measurement.

Now that we have convinced ourselves of the presence of squeez-
ing, we would like to use our states to measure phase accumulation
in a Ramsey sequence. As described in section 1.3.2, a Ramsey inter-
ferometer is an interrogation scheme composed by a starting pulse to
the atomic ensemble into the equator of Bloch Sphere, followed by
a phase accumulation period and a closing pulse to transfer the ac-
cumulated phase into a population difference to be ultimately mea-
sured. In the case of a squeezed state, there are two relevant caveats
to consider. The first one is that we should orient our state ade-
quately so that the squeezed component is in the direction of the
phase accumulation through a rotation of the Bloch sphere. A sec-
ond point to consider is the fact that the position of our state depends
on the results of the first measurement in a two-fold way. Firstly, due
to the nature of conditional squeezing, the z component of the spin
state is determined by M1. Secondly, a global phase is imprinted on
the state by the light shift caused by the probe. The echo protocol
partially corrects for this shift; however, since the number of photons
in both probe pulses forming M1 differs by an amount proportional
to Sz, this global phase itself depends on M1.
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8.1 Ramsey Sequence with Conditionally Squeezed States

We now propose the following protocol to measure a phase ϕ0, de-
picted in figure 8.1:

1. We start with a preparation stage where a π̂
2 (−π/2) pulse brings

the state to the equator of the Bloch sphere.

2. Immediately after, a composite measurement M1 squeezes our
state. Based on the result of M1, the phase shift on the state is
estimated by ϑ = ϕd(n1,2 − n1,1) from an independent calibration
of ϕd as described in section 6.1.

3. After calculation, a π̂
2 (ϑ) pulse is applied, bringing the state to the

equator and in the proper orientation to begin the phase accumu-
lation1.

1 Both the calculation of the global
phase ϑ and the instruction for the DDS
that generates the RF pulse are per-
formed with the Teensy microprocessor
described in subsection 3.4.2

4. The state is left to evolve during a time td where a phase ϕ0 is
accumulated

5. After accumulation, another pulse π̂
2 (ϑ + π) reverts the previous

one. For this configuration, if ϕ0 = 0 our state will be at the same
place it was after M1; else, it will be shifted in Sz.

6. Finally, a second cavity measurement M2 checks the final state
and the absorption imaging follows right after for verification.

How would the result of this interrogation look? We claimed that
the amplification comes from the spin distribution around its mean
and not from the actual value of the mean itself; thus, we expect
the phase accumulation to happen “as usual”. Considering equation
(7.17), we can attribute the phase accumulation part of M2 to the
δSz(t) term.

Figure 8.2: Simulated data for the phase
measurement of two values of phase.
The amplification factor is fixed for a
fixed number of atoms at the same
temperature and a fixed delay between
measurements. The combination of M1
and M2 allows us to assign a phase
value to the cycle, and our uncertainty
is given by how much our data points
spread around the corresponding line
for a given phase value.

More precisely, we pose that the cavity shift δω1 before the start of
the interferometer relates to the shift δω2 at the end of the sequence
by the expression:

δω2 =αδω1 + f (ϕ0) + ϵ1b, (8.1)

f (ϕ0) =
CNΩ̄

2
sin(ϕ0), (8.2)

where ϵ1b is the contribution due to uncorrelated losses and technical
noise, bounded from below by one-body losses, and α is the ampli-
fication factor that would only affect the contribution coming from
M1, but not the actual displacement form the phase accumulation.
In practice, for a fixed atom number, identical interrogations in the
first measurement, i. e., the same average photon number per probe,
and the same separation between the two measurements, we expect
the same amplification α to be seen as predicted by equation (7.12).
For two different values of ϕ0, repeated measurements of δω2 vs δω1

would be accumulated around two lines shifted by f (ϕ) as depicted
in figure 8.2. Given a measurement (M1, M2) of (δω1, δω2), the un-
certainty to distinguish two values of ϕ0 is given by the spread of an
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ensemble of measurements around the corresponding line (blue and
orange shading respectively on figure 8.2), this itself is the same as
the uncertainty for predicting M2 given M1 for fixed α and ϕ0. The
comparison between this width and the one associated with QPN is
the metrological gain due to our scheme.

8.2 Phase shift inference

The inferred cavity shift can only be known up to photon shot noise.
For the rest of this section, we refer to the measured cavity shift as
M1 for the first cavity measurement and M2 for the second one. More
simply:

M1|δω1 ∼ N (δω1, σ2
1 ), M2|δω2 ∼ N (δω2, σ2

2 ), (8.3)

where σ1 and σ2 are the noise associated to photon shot noise for M1

and M2 and they are similar for identical2 measurements M1, M2. 2 Notice that this is not always the case.
Recently, we opted for increasing the
number of photons used in M2 since af-
ter the phase accumulation, we do not
care about preventing the dephasing of
the spins, allowing for a stronger sec-
ond measurement

The first measurement, if well prepared on the equator, should cor-
respond to a random variable around zero with a spread given by
the QPN

δω1 ∼ N (0, σ2
QPN), (8.4)

where σ2
QPN = N

4 Ω2. The atom losses during the phase accumulation
will affect the second measurement. As shown in section 2.3.3, for
a state with initial variance ∆Sz(0) of the z-component of spin, one
can describe the one-body losses of the spin state as

∆S2
z (t) = ∆S2

z (0) e−2γ1bt +
⟨N (t)⟩

4
(
1 − e−γ1bt) . (8.5)

The exponential decay due to the reduction of the length of spin
can be included in α, scaling the expression we obtained in equation
(7.12) by e−γ1bt, while we assign the uncorrelated losses to ϵ1b as:

ϵ1−b ∼ N (0, σ2
1b), (8.6)

σ2
1b = Ω̄2 ⟨N (t)⟩

4
(
1 − e−γ1bt) . (8.7)

Figure 8.3: Measured data for phase
measurement. The amplification factor
is fixed for a fixed number of atoms at
the same temperature and a fixed de-
lay between measurements. The com-
bination of M1 and M2 allows us to
assign a phase value to the cycle, and
our uncertainty is given by how much
our data points spread around the
corresponding line for a given phase
value. The shading in this case shows
±
√

Var (M2|M1).

We would like to answer two questions about this scheme. First,
given an ensemble of measurements, what’s the best calibration for
α that we can get? And secondly, given a pair of measurements
M1, M2, what is the best guess we can have on φ and the uncertainty
associated to this inference? The complete model for the sampled
data is then given by:

P(M1, M2, δω1, δω2; α, f ) =P(M1, M2|δω1, δω2; α, f ) (8.8)

× P(δω2|δω1; α, f )P(δω1). (8.9)

Where, by construction, P(δω1; α, f ) = P(δω1). It follows immedi-
ately that:

P(δω1, δω2; α, f |M1, M2) =
P(M1, M2|δω1, δω2; α, f )P(δω2|δω1; α, f )P(δω1)

P(M1, M2)

P(δω1, δω2; α, f |M1, M2) ∝ P(M1|δω1)P(M2|δω2)P(δω2|δω1; α, f )P(δω1).
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One can show (see 11.2) that the Maximum Likelihood parameters
α, φ for an ensemble of N points are given by

f (ϕ) = ⟨M2⟩ −
α ⟨M1⟩

1 + σ2
1

σ2
QPN

, (8.10)

α =
Cov (M1, M2)

σ2
QPN

. (8.11)

In practice, we would use a large number of interrogation cycles to
give a proper calibration of α, then, for a fixed α, the inference of
f (ϕ) can be done using equation (8.10). The limit on the precision of
this inference can be obtained from the calibration set itself as:

Var
(

f̃ (ϕ0)
)
= Var

M2 −
αM1

1 + σ2
1

σ2
QPN


= Var (M2)−

Cov (M1, M2)
2

Var (M1)
= Var (M2|M1) . (8.12)

This itself is limited by the Cramer-Rao bound [40], derived in the
appendix 11.2 as well:

(δ f )2 ≥ σ2
2 + σ2

1b + α2 σ2
1 σ2

QPN(
σ2

QPN + σ2
1

) . (8.13)

Here, the first two noise contributions are from the technical noise
of detecting M2 due to one-body losses and PSN. The third term is
the conditional variance from updating a prior gaussian distribution
with variance σ2

QPN with a measurement of resolution σ1, as we did
in section 2.2, with the resulting noise amplified by α. Figure 8.3
shows an example of the protocol described in the previous section
for an ensemble of 100 points. The straight line comes from the ML
estimator, and the blue shading marks the conditional variance as
defined by equation (8.12).

8.3 First Phase Measurement

We would like to verify that the phase accumulation is undisturbed
by the presence of interactions giving rise to the amplification. To
do so, we can scan the phase of the pulse closing the interferometer
sequence detailed in figure 8.1. This is, instead of closing with a
pulse π̂

2 (π + ϑ), we send a pulse π̂
2 (π + ϑ − ϕ). For a small ϕ, this

would simply shift the lines as in figure 8.2 corresponding to a phase
ϕ0 + ϕ. This will allow us to assign a value of phase to each of the
curves that can later be used as a reference.

8.3.1 Experimental Sequence

The sequence follows the same preparation protocol as the squeezing
measurements, with the same magnetic trap geometry we described
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in section 6.2.1. We implement the sequence shown in figure 8.1.
An ensemble of N ∼ 1.9 × 104 87Rb atoms are magnetically trapped.
We start with all atoms in |↓⟩ and apply a π̃

2
(
−π

2
)

pulse on the
clock transition to prepare a CSS on the equator of the Bloch sphere.
This sequence’s calibration has the three π/2 pulses being 60 ms of
duration, while the composite π pulses used during the composite
measurements are 26.55 ms. A composite cavity measurement M1

measures n1,1, n1,2 photons from which we infer the initial cavity de-
tuning, squeezing the state. Immediately after, a π̃

2 (ϑ) MW+RF pulse
turns the squeezed quadrature of the state in the direction of phase
accumulation. Here ϑ = ϕd(n1,2 − n1,2) is the average uncompen-
sated phase shift with ϕd being the phase shift induced per detected
photon as calibrated from the previous section 6.1.2.

After a 5 ms delay, a third pulse π̃
2 (ϑ + π − ϕ) brings the squeezed

quadrature towards the population difference direction and a second
identical composite measurement is performed. Finally, N↑, N↓ is
measured by absorption imaging after a 2.5 ms TOF for |↑⟩ and 5 ms
for |↓⟩. After imaging, the stripline is turned on again so that the
cavity lock is maintained, and two light pulses with the same power
are sent on both sides of the cavity profile to use as a reference for the
cavity shift as described in section 5.2.1. We tried 5 different values
of phase ϕ = 0, 2, 4, 6, 8◦. We leave ϕ fixed for 100 sequence cycles
before changing to the following value. The four pulses forming the
two composite cavity measurements have identical average photon
numbers ⟨n1,1⟩ = ⟨n1,2⟩ = 5.1(8) × 103 having a duration of 8.85
ms each corresponding with the period of transversal oscillations in
the trap. Considering the length of the π/2 pulses, the separation
between the cavity measurements is 125 ms, and we thus expect the
amplification to be close to the maximum, as we observed in figure
6.5.

Figure 8.4: Ensemble of data for phase
measurement and calibration. Each
colour corresponds to a different ϕ
value with a fixed number of atoms
and measurement strength on the blue
side of the cavity profile. The de-
lay between composite measurements
is fixed at 125 ms. The shading, in this
case, shows ±

√
Var (M2|M1) around

the corresponding line.

8.3.2 Amplification Stability and Phase Inference

In figure 8.4, we can see the ensemble of measurements for the dif-
ferent values of ϕ; as we expected from our model, the correlation
between M1 and M2 is maintained similarly to what we would have
expected from an amplification measurement. We are left to evalu-
ate if α is stable enough and to associate a phase value to each of
the M2-intersects. We perform a bootstrap analysis with 103 resam-
plings of the same size as the original data; the resulting average α

and with error bars from statistical standard deviation are shown in
figure 8.5. For ϕ > 0, the inferred amplification factors are identi-
cal within statistical error bars. The amplification factor for ϕ = 0◦

seems to be larger than the rest. Verifying the raw experimental data,
we can see that the photon number measured for ϕ = 0◦ is 2% larger
than that of the rest of the sequences3 corresponding to almost twice 3 This could be due to thermal fluctua-

tions before stabilisation after some se-
quence cycles from both the lock or the
AOM used as interrupters.

PSN, however, according to our model (see equation (7.12)), this is
not enough to account for an increase in α. The difference falls within
1-σ of the statistical resolution corresponding to a p-value of 0.33; we
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treat them as equal for all practical purposes.

Figure 8.5: Amplification factor and in-
tersect f (ϕ). Error bars obtained from
bootstrapping with 1000 resampling.

Phase inference from camera. We first verify that the phase accumula-
tion occurred as expected from the camera data so that we can ignore
any amplification effect in the probe. Figure 8.6 a) shows the average
z component, Sz = 1

2 (N↑ − N↓) along the 100 repetitions for each
value of ϕ as obtained from the camera. Error bars are obtained di-
rectly from the sample standard deviation of the camera data. We
observe an excess of noise from QPN, depicted in the coloured shad-
ing since this is unconditional data and the camera itself is limited in
resolution close to QPN.

From the camera data we can infer the phase ϕ0 accumulated dur-
ing td and the applied ϕ from the closing pulse as:

ϕ̃ + ϕ̃0|cam = arcsin
(

1
Ccam

N↑ − N↓
N↑ + N↓

)
, (8.14)

where the contrast Ccam is obtained from the fit presented in sec-
tion 5.3, considering the contrast reduction due to the total photon
number detected n1, n2 in the two-cavity measurement preceding the
imaging, i. e., Ccam = C(n1)C(n2). Results are shown with squares in
figure 8.6 b), a linear fit between the applied ϕ and the inferred phase
is shown in the red dashed line, compatible with our idea that the
amplification does not affect the direction of the overall spin.

Phase inference from cavity. Once convinced that the phase accumu-
lation happens as expected, we can use this information to measure
the phase shift from the cavity shift adequately. For a fixed α that
we obtained from equation (8.11), we can deduce4 the phase associ- 4 For the following, the tilde above a

quantity X̃ marks the inference of a
quantity X

ated to a particular data point (M1, M2) by projecting it back to the
M2-axis via the formula

f̃ (ϕ) = M2 − α
M1

1 + σ2
PSN

σ2
QPN

.

From f̃ , we can recover the ϕ + ϕ0 as:

ϕ̃ + ϕ̃0|cav = arcsin
(

2
CNΩ̄

f̃ (ϕ)
)

, (8.15)
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Figure 8.6: a) Average Sz =
1
2 (N↑ − N↓)

component as calculated from the cam-
era data for each value of ϕ applied.
Error bars are the standard deviation,
and shading shown is the QPN from
the camera as

√
N/2. b) Comparison

between the inferred phase ϕ̃ and the
phase ϕ applied to the closing pulse of
the interferometer. Coloured dots and
error bars correspond to data acquired
from the cavity detection with an ad-
justed contrast of C = 0.575(1). Error
bars marked the conditional standard
deviation

√
Var (M2|M1) from boot-

strapping. Shading marks the ± 1√
N

as
the limit of QPN for phase. The dashed
black line is a simple linear fit between
the inference ϕ̃0 from the cavity and
the applied ϕ. The coloured squared is
inferred from the absorption imaging.
The red dashed line is a simple linear fit
between the inference ϕ̃0 from the cam-
era and the applied ϕ.

where C = 0.575(1) is obtained from a least-square fit on the model
described by equation (8.15) and the applied ϕ to the closing pulse,
figure 8.6 shows the results of such treatment, we have used our
Ω̄ = 16.3 kHz as in our previous calibrations, and N is obtained
from the camera. We notice that the accumulation does follow a
direct relation as ϕ̃cav = 1.00(2)ϕ − 2.0(1)◦. This tells us that we can
use this scheme to measure a phase with the appropriate calibration
of the contrast.

Effect of amplification on noise. Knowing the average phase is not
enough to justify the scheme’s use. In figure 8.6 b), we have included
the shading corresponding to QPN, i. e., ± 1√

N
. The uncertainty on

ϕ exceeds QPN by a factor of at least 4.1 in variance for the best
case. We obtained an improvement with respect to the camera mea-
surements, but the limit on the resolution of the absorption imaging
itself could account for this. A reason for this excess was discussed
in section 7.5 and can be seen directly from the Cramer-Rao bound
in equation (8.13). The amplification we observe does not affect how
the atomic state accumulates the phase. However, it does amplify
the noise associated with the first measurement. Consider figure 8.4:
the uncertainty on the phase measurement is directly related to our
ability to distinguish between the different lines accounting for dif-
ferent values of ϕ. This distinguishability comes from the spread of
the points around the corresponding line. As α increases, the line
is stretched vertically, increasing the spread and thus reducing the
distinguishability between the lines.





9
Amplification Control

We concluded chapter 8 with the claim that the effect of the amplifi-
cation factor was not on phase accumulation by the atomic state but
on its noise distribution. We also claimed that, as our measurement
M2 is amplified, we lose the ability to distinguish different values
of phase. In this chapter we study two approches to control and re-
duce the amplification effect: modifying the detuning of the probe
pulse with respect to the cvity resonance and reducing the number
of atoms.

The first three sections of this chapter describe the effect of chang-
ing the detuning of the the probe beam with respect to the cavity
resonance. First we tried using a red-detuned probe to invert the
relationship between the measured Sz and the inhomogeneous light-
shift induced by the probe. We then study the effect of combining
both red and blue detuned probes in effort to eliminated the effect
completely. In section 9.4, we reduced the number of atoms in the
cavity to decrease both the rate of collisions and some of the statis-
tical terms that appear in equation (7.12). Finally, in section 9.5 we
combine both approaches in a phase-measurement procotol, as de-
screbed in chapter 8 and show some preliminary results on phase
measurements below QPN.

Figure 9.1: Comparison between the
conditional variance with respect to
PSN as a function of α2 for the first
900 ms for the sequence shown in figure
6.5. A strong correlation can be seen be-
tween the measured noise and the am-
plification factor α (r2 = 0.75)

9.1 Influence of Probing Scheme in Amplification

To connvince uouselves that the amplification of our measurement
streches the noise distriution contidion on M1, we refer back to the
data we presented at the end of chapter 6. In figure 9.1, we plotted
the conditional variance, i. e., the vertical extension as a function of α2

for the data1 in figure 6.5. This indicates that for us to be able to use 1 We only included the first 900 ms to
neglect any effect due to lateral colli-
sions

the squeezing generated via QND, we need to reduce or eliminate
the amplification. This is the objective of this chapter.

We have seen in section 7.3 that the composite measurement M1

imprints a global phase ϕ̄ due to the probe light shift as given by
equation 7.7. This lightshift can be corrected by an adequate choice
of phase of the following pulses as we have done in chapter 8. How-
ever, there is also a residual phase shift distribution due to the inho-
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mogeneous coupling given by

∆ϕi = χδiSz, (9.1)

where the δi = Ωi − Ω̄ is the deviation of the atom’s coupling to the
cavity with respect to the average of the ensemble and χ = n0

ηκt
(β2 +

β1)Ω̄. This inhomogeneous shift, in our model, gives rise to the
amplification factor as:

α(t) = (1 + χ f (t)) e−γ1bt, (9.2)

with the additional exponential dampening included to account for
the reduction of the spin size due to 1-body losses2. So far, χ > 0 2 One could also include an additional

dampening term to account for the lat-
eral collisions and other effects as the
dampening of the centre-of-mass oscil-
lations as mentioned in [65], but this is
not necessary for the discussion in this
section.

since we have been probing the blue side of the cavity profile, such
that β > 0. If we were to probe the red side of the cavity profile, we
would be able to revert the sign of β and thus the sign of χ, leading
to a de-amplification; we refer to this as Red Probing. Moreover, if the
two probe pulses used in M1 were to be applied on opposite sides of
the cavity profile, the average number of photons in both would be
the same within PSN, leading not only to a better compensation of
the global shift ϕ̄, but also a reduction of on the left inhomogeneous
phase shift. We now test both hypotheses.

9.2 Red probing

Consider a protocol like the one we followed in section 6.2.1. An
ensemble of N ∼ 1.8(2) × 104 87Rb atoms is magnetically trapped.
We start with all atoms in |↓⟩ and apply a π/2 pulse on the clock
transition to prepare a CSS on the equator of the Bloch sphere. A
composite cavity measurement M1 measures the cavity detuning to
determine Sz. This time, the two probe pulses are red-detuned by
20 MHz with respect to the cavity resonance having ⟨n11⟩ = ⟨n12⟩ =
6.4(1)× 103 photons. The cavity shift δω1 is deduced from the cav-
ity shifts δω± of the two probe pulses as δω1 ≡ (δω+ − δω−)/2.
Then, after a delay td, a second identical measurement M2 verifies
the cavity shift.

The first panel of figure 9.2a) shows the same behaviour as the
blue probing for short delays. The conditional noise from M2 given
M1 (red shading) is less than QPN, as expected from a squeezed
state. As we allow time to pass between measurements, the lin-
ear relationship remains, but it decreases until it becomes negative,
however maintaining a conditional noise that remains below QPN.
In figure 9.2b) we can see that the evolution of the factor α follows a
similar behaviour to the blue probing, but in the opposite direction in
accordance with our expectation from equation (9.2). The “excess” or
“deficit” α − 1 only differs by the sign, which can be explained from
our model in equation (7.12): For a fixed trap geometry and temper-
ature the inhomogeneity of the coupling (∆Ω) would be the same,
giving the same “excess” α − 1 for both cases, except for the sign of
β1 + β2. The minimum value of amplification is achieved roughly at
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Figure 9.2: a) Squeezing measurement
using a Red probe. The linear de-
pendence between the two measure-
ments remains. We include the lin-
ear fit from MLE and the conditional
noise from Var (M2|M1) shown around
it in red shading.. Green dashed lines
show the estimated QPN for the cor-
responding atom number. b) The am-
plification factor as inferred by equa-
tion (8.11); the error bars are ob-
tained from bootstrapping with 1000

samplings. The second measurement
shows a slope that decreases gradu-
ally and turns negative in accordance
with our model in equation (9.2). As
we observed with the blue probing
scheme, there seems to be a dampen-
ing effect on the evolution. c) Con-
dition variance compared to QPN cal-
culated from final average atom num-
ber, error bars from bootstrapping. The
red dashed line shows the Cramer-Rao
lower bound from equation (8.12), with
shading showing the error given PSN.
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the same time as the maximum for the blue probing scheme, between
200 and 300 ms. This can be explained as well by the fact that the
dynamics is mostly determined by ωex and γc, which are the same
in both cases since we kept density and temperature the same.

Figure 9.3: The spin-orbit correlation
from temperature measurements. a)
The temperatures along ẑ of states |↓⟩
(light green dots) and |↑⟩ (dark green
dots) versus M1 from the same data
set (the offset between the initial tem-
peratures is due to the state-dependent
imaging procedure). There is a clear
correlation between Tz,↑ and M1 (anti-
correlation for |↓⟩). b) The time evo-
lution of the temperature fluctuations
(standard deviation) of Tz,↑. The evo-
lution resembles that of the amplifica-
tion factor α (open circles, right axis)
but partially departs for larger delays.

With respect to the noise estimation, we show in figure 9.2c) the
conditional variance Var (M2|M1) along 150 repetitions for each de-
lay with respect to QPN. As before, we have a gradual degradation
of the gain, in particular when compared with the one-body losses
bound (shown in the green dashed line). However, this degradation
is less drastic than the one we observed in the case of blue probing,
and we do not see the large peak at short delays that we had when
α increased. The loss of squeezing can be attributed to the amplifi-
cation itself since. This can be seen in the CR bound we derived in
equation (8.12) where the α2 terms tell us that, as long |α| > 1, we
would reduce our ability to predict M2 given M1, degrading at the
same time our ability to measure a phase. It is important to note that
this is not the whole story since, |α| < 1, we expect some gain on
the noise distribution, but this is not apparent in our experimental
results.

For completeness, we include an analysis of the correlation be-
tween the amplification and the temperature distribution of both the
|↑⟩ and |↓⟩ clouds. As before, temperatures T↑ and T↓ are obtained
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Figure 9.4: a) Squeezing measurement
using a Bichromatic scheme. The lin-
ear dependence between the two mea-
surements remains but degrades much
faster than in the other cases. We
include the linear fit from MLE and
the conditional noise from Var (M2|M1)
shown around it in blue shading. Green
dashed lines show the estimated QPN
for the corresponding atom number
b) Amplification factor as inferred by
equation (8.11); error bars from boot-
strapping with 1000 samplings. There
is an increase in the slope that remains
close to one as opposed to what we
expected. c) Condition variance com-
pared to QPN calculated from final av-
erage atom number, error bars from
bootstrapping. The red dashed line
shows the Cramer-Rao lower bound
from equation (8.12), with blue shad-
ing showing the error given PSN. We
see that the noise level increases signif-
icantly in a much shorter time scale.

from the time-of-flight imaging for every shot, providing an experi-
mental test for this mechanism. Similarly to the red probing, a corre-
lation between T↓ and M1 [Fig. 9.3(a)], is clearly visible. However, in
this case, the correlation degrades much faster. The amount of tem-
perature change also depends on α in the expected manner, as can be
seen by plotting the shot-to-shot temperature fluctuations (standard
deviation ∆Tz) as a function of td [Fig. 9.3(b), green diamonds]. As
α decreases, the fluctuations are reduced, limited by measurement
noise.

9.3 Bichromatic probing

Consider a protocol like the one we followed in section 6.2.1. An
ensemble of N ∼ 1.7(2) × 104 87Rb atoms is magnetically trapped.
We start with all atoms in |↓⟩ and apply a π/2 pulse on the clock
transition to prepare a CSS on the equator of the Bloch sphere. A
composite cavity measurement M1 measures the cavity detuning to
determine Sz. This time, the first pulse is blue-detuned by 20 MHz
with respect to the cavity resonance, while the second one is red-
detuned by the same amount having ⟨n11⟩ = ⟨n12⟩ = 6.3(3) × 103

photons. The cavity shift δω1 is deduced from the cavity shifts δω±
of the two probe pulses as δω1 ≡ (δω+ − δω−)/2. Then, after a
delay td, a second identical measurement M2 verifies the cavity shift.



98 improving an atomic clock on a chip via spin-squeezing

The first panel of figure 9.4a) shows the same behaviour as the
blue probing for short delays. The conditional noise from M2 given
M1 (blue shading) is less than QPN, as expected from a squeezed
state. As we allow time to pass between measurements, the linear
relationship remains, but the correlation decreases rapidly, exceed-
ing QPN in less than 200 ms. In figure 9.4b) we can see that there
is some residual amplification α > 1. Moreover, there seems to be
an increase in the amplification factor. This could be due to an im-
perfect compensation of the inhomogeneous dephasing. Indeed, as
discussed before, the red profile of our cavity is close to a higher or-
der mode, possibly bringing a different transversal profile to the red
side of the probing; this would not allow for a complete compensa-
tion of the phase inhomogeneity. This leads to reduced amplification.
Besides, one should consider that the atoms have been moving dur-
ing the time of the echo pulse, with a duration of 26.55 ms; this is a
multiple of the oscillation period in the transversal direction, but we
would still expect the atoms not to see exactly the same light profile
in both probe pulse.

Concerning the noise estimation, we show in figure 9.4c) the con-
ditional variance Var (M2|M1) along 150 repetitions for each delay
with respect to QPN. We have a quick degradation of the gain, even
considering the CR bound (shown in the red dashed line). It is not
clear to us the origin of this quick degradation of the squeezing. Still,
it may be attributed to more complex spin dynamics due to the dif-
ferent transversal intensity profiles of the two probes. We manage to
get rid of the “linear” term of the amplification process, but this is
not enough to preserve a useful state.

9.4 Lower Atom Number

In our model, the atom number has two main contributions to the
amplification effect. In equation (7.12), we see that a factor of N ac-
companies the inhomogeneity term (∆Ω)2 due to the scaling of the
sum in equation (7.10). This could be understood simply as more
atoms being involved in the effect “pulling” the cavity resonance in
the amplified direction. From this observation, we would expect that
the discrepancy α − 1 will be reduced proportionally to a reduction
in the atom number N. The second effect comes from the depen-
dence of the spin-exchange rate ωex and lateral-collisional γc. These
rates govern the amplification dynamics and are proportional to the
atomic density. A reduction in atom number should slow down the
dynamics, giving a larger time before an |α| > 1 is reached.

Experimental protocol. To verify our claims, we followed the protocol
in the previous section identically (see section 9.1), shown in figure
6.2. An ensemble of N = 1.0(1) × 104 87Rb atoms is magnetically
trapped. We start with all atoms in |↓⟩ and apply a π/2 pulse on the
clock transition to prepare a CSS on the equator of the Bloch sphere.
A composite cavity measurement M1 measures the cavity detuning
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Figure 9.5: Amplification for N =
1.0(1)× 104 atoms. a) The amplification
factor inferred by equation (8.11) for
each of the three probing schemes; error
bars from bootstrapping with 1000 sam-
plings. A slower evolution can be ob-
served when reducing the atom num-
ber. Moreover, the excess α − 1 roughly
halves as the atom number is reduced
by half with respect to the previous
analysis. b) The conditional variance
compared to QPN calculated from the
final average atom number. The error
bars are obtained from bootstrapping
with 1000 samples. We include the PSN
threshold in grey shading.

to determine Sz. We perform 50 repetitions for each delay using each
of the 3 probing schemes: Blue interrogation, meaning both probes
are blue-detuned by 20 MHz with respect to the cavity resonance.
Red interrogation, when both probes are red-detuned by 20 MHz
with respect to the cavity resonance. Finally, we tried a red and blue
interrogation, where the first pulse of the composite measurement is
red-detuned, while the second one is blue-detuned. The cavity shift
δω1 is deduced from the cavity shifts δω± of the two probe pulses
as δω1 ≡ (δω+ − δω−)/2. Then, after a delay td, a second identical
measurement M2 verifies the cavity shift.

Effect on α The overall results are shown in figure 9.5. If we compare
the first panel of 9.5 a) with figure 6.5 b), we can see a reduction on
the discrepancy α − 1: When we used 1.8 × 104, this discrepancy
reaches a maximum value of 3 in about 200 ms before decreasing.
Here, a reduction of 40% in the atom number brings down the excess
close to 1.8 within the statistical resolution3, consistent with equation 3 All other things being equal, the larger

error bars on α for the blue probing
might come from a larger fluctuation in
the atom number compared to the other
probing schemes due to the tempera-
ture regulation problems in the room
that we had at the time of taking the
blue probe measurements.

(7.12). Moreover, there is no evident reduction in the amplification
factor as observed for larger atom numbers after 300 ms. This is
as predicted from the ωex reduction, which should slow down the
dynamics.

For the red probing case, we can compare the second panel of fig-
ure 9.5 a) with figure 9.2 b). Once again, for higher atom numbers,
the discrepancy |α − 1| reaches a maximum in between 200 and 300
ms with a maximum value of around 3. When we reduce the atom
number by 40% of the previous sequence, the maximum discrepancy
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is reduced to |α − 1| ≈ 2. Moreover, this maximum is reached at a
later time, with not a clear trend of decrease afterwards. Interest-
ingly, this allows us to keep the amplification factor within |α| < 1,
which, we have already established, prevents a degradation on the
phase inference protocol of chapter 8.

Finally, for the bi-chromatic probing, we can compare figure 9.4
b) with the third and last panel of figure 9.5 a). We first point out
that, contrary to the analysis in section 9.3, the first probe pulse is
red-detuned in this case. As before, residual amplification seems to
occur in the sense direction. This is consistent with the idea that a
first probe triggers the amplification mechanism and that the second
probe compensates for this partially but does not get rid of the phe-
nomenon due to differences in the transversal profile of the light in
the cavity and the movement of the atoms in the trap. In the case
of a low atom number, the evolution seems to have fewer fluctua-
tions, but the maximum discrepancy |α − 1| seems larger than in a
higher atom number. In neither of both cases, we have a clear time
dependence of the amplification itself.

Effect on the Conditional Variance. We now evaluate the effect on the
conditional variance Var (M2|M1) with respect to QPN. As we have
discussed in chapter 8, this is directly related to our ability to distin-
guish two different values of the accumulated phase by our state4. 4 As a reminder,

√
Var (M2|M1) mea-

sures the vertical spread of M2 around
the line M2 = αM1 + f (ϕ0) and we have
claimed in equation (8.12) that this is
the noise figure for f (ϕ).

The ensemble of results for the three different probing schemes are
shown in figure 9.5 b). Comparing the red and blue probing schemes,
we observe that both begin with roughly the same squeezing, around
−7 dB. However, for the blue interrogation, the conditional variance
degrades as |α| increases, while the red probing seems to have a mo-
mentary reduction in its conditional variance as α approaches zero.
This is consistent with equation (8.13), where, for α = 0, the only
expected contributions to noise are those related to one-body losses
and detection. We have included the PSN contribution of a single
measurement normalised to QPN in grey shading for comparison.
Then, the conditional variance increases again as α turns negative.

For the case of red and blue probing, the last panel of figure 9.5 b),
a trend consistent with our model, is harder to distinguish. We still
observe degradation of the conditional noise as with the case of a
higher atom number we observed in figure 9.4 c). However, this loss
seems to be slower and less drastic since, as opposed to the high-N
case, the noise distribution remains under QPN.

Use in Phase Measurements. There is a strong case for the use of low
atom numbers due to the decrease and slow down of dynamics we
observe. This may be the best approach if the objective is to ob-
serve the phase measurement below QPN. Nevertheless, in practice,
the metrological gain obtained by reducing amplification should be
evaluated against the metrological loss due to the reduction of the
atom number itself. For example, in our base case, for td = 200 ms in
red probing, the low atom number shows −9 dB of conditional vari-
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ance, compared with the −4 dB in the case of a high atom number,
but the QPN itself is shifted by 5 dB in terms of phase uncertainty
when reducing the atom number by 40% as we did.

As for the bi-chromatic probing, these results may not seem par-
ticularly encouraging, but one must still consider the effect of the
global phase shift imprinted on the atoms. We have implemented a
correction on the phase of our pulses in the protocol described in the
previous chapter 8. This correction is, however, limited by PSN itself
and may introduce additional noise to our measurement of phase ϕ.
Choosing ϑ = ϕd(n1,2 − n1,1) with an erroneous calibration will not,
on average, bias our result on inferring ϕ, but would introduce ad-
ditional noise and may transfer part of the anti-squeezed quadrature
into our measurement. For a bi-chromatic scheme, the global shift
imprinted by the probe is null, at least within PSN. This may reduce
the effect of noise introduced by the phase correction. Therefore, we
should not immediately discard this probing scheme.

9.5 Phase Measurements in Other Probing Schemes

We have established different probing schemes to control the ampli-
fication. Now, we can study using these probing schemes to measure
a phase. For this effect, we will proceed with the same experimen-
tal protocol we followed to test the blue probing in section 8.3. We
will try these schemes in the “low atom number” case. More pre-
cisely, we use ⟨NRed⟩ = 1.1(1)× 104 atoms at time of detection for
red probing and ⟨NBi⟩ = 1.0(1)× 104 atoms at time of detection for
the bichromatic probing5. 5 In this protocol, bi-chromatic was

study using an initial blue probe, fol-
lowed by a red one for M1.

9.5.1 Experimental Sequence

As a reminder, in this protocol, we prepare a coherent state in the
equator of the Bloch sphere. A first composite measurement M1

squeezes the state, conditioned on the detected number of photons
n1,1, n1,2. Immediately after, a π̃

2 (ϑ) MW+RF pulse6 turns the squeezed 6 Both the calculations and program-
ming of the phase pulse into the DDS
that generates the RF component of the
pulse are performed in a Teensy micro-
processor on every sequence shot.

quadrature of the state in the direction of phase accumulation. Here
ϑ = ϕd(n1,2 − n1,2) is the average uncompensated phase shift with ϕd

being the phase shift induced per detected photon as calibrated from
the previous section 6.1.2.

After a 11 ms delay, a third pulse π̃
2 (ϑ + π − ϕ) brings the squeezed

quadrature towards the population difference direction and a second
identical composite measurement is performed. Finally, N↑, N↓ is
measured by absorption imaging after a 2.5 ms TOF for |↓⟩ and 5
ms for |↓⟩. After imaging, the stripline is turned on again so that
the cavity lock is maintained, and two light pulses with the same
power are sent on both sides of the cavity profile to use as a ref-
erence for the cavity shift as described in section 5.2.1. We tried 5
different values of phase ϕ = 0, 2, 4, 6, 8◦. We leave ϕ fixed for 100
sequence cycles before changing to the following value. The pulses
forming the composite cavity measurements have identical average
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photon numbers: ⟨n1,1⟩ = ⟨n1,2⟩ = 6.1(1) × 103 for the blue prob-
ing scheme and ⟨n1,1⟩ = ⟨n1,2⟩ = 6.1(3) × 103 for the bi-chromatic
scheme. In both schemes, the probe pulses have a duration of 8.85
ms, corresponding with the period of transversal oscillations in the
trap.

The total duration of a composite measurement is 45 ms, includ-
ing a short time gap between the probes and the composite π pulse.
The duration of the π/2 pulses that open and close the interferom-
eter is 60 ms. This implies that the two composite measurements,
M1, M2, are separated by 131 ms. A composite measurement has
passed when measuring the atom number via absorption imaging,
together with the two π/2 pulses and the phase accumulation time.
This 176 ms is corrected from the measured atom number to infer
the initial atom number.

9.5.2 Amplification Stability and Phase Inference

Figure 9.6: Ensemble of data for phase
measurement and calibration. Each
colour corresponds to a different ϕ
value with a fixed number of atoms
and measurement strength on the blue
side of the cavity profile. The de-
lay between composite measurements
is fixed at 125 ms. The shading, in this
case, shows ±

√
Var (M2|M1) around

the corresponding fitted line.

In figure 9.6, we can see the ensemble of measurements for the
different values of ϕ for each of the probing schemes; as we expected
from our model, the correlation between M1 and M2 is maintained
similarly to what we would have expected from an amplification
measurement. We are left to evaluate if α is stable enough and to
associate a phase value to each M2-intersects. We perform a boot-
strap analysis with 103 resamplings of the same size as the original
data; the resulting average α and with error bars from statistical stan-
dard deviation are shown in figure 9.7. For the red probing scheme,
the amplification factor α is consistent with the results in figure 9.5
a) considering a slight increase of 10% in both the atom number and
the number of photons per probe. The inferred amplification factors
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are identical within statistical error bars. Similarly, for the bichro-
matic probing, we again observe a marginal increase in α due to the
initial dephasing imparted by the blue probe. We remark larger er-
ror bars associated with the bichromatic probing; these could be due
to an asymmetry between the transversal intensity profile on both
sides of the cavity due to the higher order mode. Unfortunately, we
are unable to assess this hypothesis at this time. We refer now to the

Figure 9.7: Amplification factor α and
intersect f (ϕ) for the model proposed
in section 8.2 for both probing schemes.
Error bars obtained from bootstrapping
with 1000 resamplings.

intersect f (ϕ) in figure 9.7 b). For the red probing scheme, the accu-
mulation seems to follow a regular behaviour as expected for small
phases ϕ. However, for the bichromatic probing, there appears to be
a lower average shift for ϕ = 6◦ and ϕ = 8◦ compared to smaller val-
ues of ϕ. This can be explained by a drop of 10% in the atom number
during the experimental cycle due to temperature fluctuations in the
room.

9.5.3 Phase Inference and Noise Figures

To obtain the accumulated phase by the atomic state, we proceed in
the same way we did in section 8.3.2. First, we obtain an α from
equation (8.11) equation. For a fixed α, we can deduce by projecting
it back to the M2-axis via the formula

f̃ (ϕ) = M2 − α
M1

1 + σ2
PSN

σ2
QPN

.

From f̃ , we can recover the ϕ + ϕ0 using equation (8.15). Again,
the contrast is obtained from a least-square fit on the model de-
scribed by equation (8.15). For the red probing, we obtain CRed =

0.797(1), while CBichrom = 0.720(4) for the bichromatic probing7. As 7 Note that this degradation of the con-
trast of the bichromatic could be ac-
counted by the reduction on the atom
number we observed for ϕ = 6◦.

expected, the accumulation does follow a direct relation between the
applied phase ϕ and the inferred one ϕ̃ for both probing schemes.

As for the noise, the bichromatic probing exceeds QPN as marked
by the coloured shading in figure 9.8 in a similar way that we saw
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Figure 9.8: Comparison between the in-
ferred phase ϕ̃ and the phase ϕ ap-
plied to the closing pulse of the in-
terferometer for both probing schemes.
The coloured dots and error bars corre-
spond to data acquired from the cav-
ity detection with an adjusted con-
trast of C = 0.575(1). The error bars
marked the conditional standard de-
viation

√
Var (M2|M1) from bootstrap-

ping. The shading marks the ± 1√
N

as
the limit of QPN for phase. The dashed
black line is a simple linear fit between
the inference ϕ̃0 and the applied ϕ. The
red dots are inferred from saturated ab-
sorption.

Figure 9.9: Metrological gain for both
probing schemes. In analogy with the
Wineland parameter, we compare the
conditional variance Var (M2|M1) with

respect to
NeffΩ2

effC
2

4 .

for the blue probing in figure 8.6. However, for red probing, the
situation seems to be better. To be more precise, we compare the
conditional variance in units of spin Var (M2|M1) /Ω2 in analogy
with the Wineland parameter as

ξ2
Amp = Neff

Var (M2|M1)

Ω2
∣∣∣〈S⃗
〉∣∣∣2 =

4Var (M2|M1)

NeffΩ2
effC2

; (9.3)

results are shown in figure 9.9. We seem to have at least three phase
values for which the phase measurement is below QPN for the red
probing scheme. Is this consistent with our expectations? There is a
clear degradation of the noise level with respect to what we showed
in figure 9.5 b). The inclusion of the contrast term could account
for this in the following way: The PSN level for this measurement
is about ξ2

N,PSN = −9.5 dB in variance normalised to NΩ2

4 . If we
consider this as the limit for the conditional squeezing in our model
presented in 8.2, equation (8.12) tells us that the best figure of noise
we could expect is given by

ξ2
Amp ≥ C−2

(
(1 + α2)ξ2

N,PSN + e−γ1bt(1 − e−γ1bt
)

(9.4)
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For this set of measurements, this is approximately −4.9 dB. This is at
least 2 dB better than our best set, but it clearly degrades for the other
values of phase. We hypothesise that this additional degradation
comes from an imperfect calibration of the phase correction applied.
More recent measurements have shown a discrepancy in ϕd when
measured on different sides of the cavity profile, being systematically
larger for the red profile compared to the blue. This discrepancy is
probably due to a difference in the transversal intensity profile of the
probe on both sides of the profile due to the parasitic higher-order
mode.





10
Conclusion and Outlook

Moi seul, je sais ce que j’aurais pu faire. . .
Pour les autres, je ne suis tout au plus qu’un peut-être.

Le Rouge et le Noir, Stendhal

In this thesis, we have continued the work following the design[75] and set-up[67] of TACC-2. After
the open questions left by Huang [67], we have improved our understanding of the interplay between
the squeezed states and the spin dynamics brought about by ISRE. In Chapter 6, we have presented and
extended some of the results that were published this year in [65], where we have presented a metrological
squeezing of 8.6 dB. In Chapter 7, we extended our model for the amplification mechanism and used it
to infer information on the spin states that we are able to produce. We showed that our state remains
squeezed even after 0.6 s, making it comparable to interrogation times used in applications.

In Chapter 8, we showed a first-phase measurement using squeezed states in the presence of amplifi-
cation. To this effect, we proposed an experimental protocol for calibration and introduced a statistical
analysis based on MLE for the treatment of the data coming from such an approach. Once convinced
that our model is capable of explaining the phenomena we observe, we proceed in Chapter 9 to study
different approaches to control these spin dynamics. After some exploration, we concluded Chapter 9

with a phase measurement below QPN using a reduced number of atoms (N ≈ 104) in a red probing
scheme. Although these results are preliminary, they remain encouraging.

One could reasonably believe that we are studying some pathological or esoteric phenomena, a side
effect of our apparatus; I want to say a few words about this claim. The phenomenon of spin waves and
spin interactions has been largely studied through the years. Originally, this was a subject that concerned
condensates and Fermi gases. Both TACC and TACC-2, with their long coherence lifetime and ease of
control, open the doors to study new regimes in the interplay between internal and external degrees of
freedom. Conversely, more detailed and rigorous treatments of such interaction would help to understand
the effect of this interaction in the entanglement of the spin degree of freedom.

From a more pragmatic point of view, we expect these interactions to be ubiquitous in other trapped
atom experiments using squeezed states. Previous squeezing experiments with alkali atoms have been
limited to timescales of a few milliseconds (e.g. 5 ms in [123], 2 ms in [101], 1 ms in [124], 8 ms in [125]),
while interrogation times in real clocks and sensors are typically ten to hundred times longer [126–128].
We expect that, as coherence and interrogation times get longer, the question won’t be whether such
effects are present but instead how they affect the functioning of the device and how to circumvent it or
benefit from it.

With respect to the future, we are confident that our understanding is sufficient to reduce the task of
having an operating clock with squeezed states to a simple exploration on a reduced space of parameters.
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The first step is to take care of the problems mentioned in some of the notes at the margins: Replace
the 2D MOT bench to improve the atom number stability shot-to-shot, fix the temperature regulation of
the room, characterise some of the components that have degraded over time, etc. Other steps are more
complex but reachable in the immediate future. These include characterising the influence of the phase
calibration mentioned in section 6.1.2, studying the effect of the parasitic mode in the red side of the
cavity profile and implementing a way to measure the atom number at the beginning of the sequence via
a QND measurement.



Part V

Appendices and
Calculations





11
Inference

11.1 Cavity Shift Inference Calculations

As described in 5.2.1, the number of photons detected at the photon
counter when probing the red and blue profiles of the empty cavity
can be written as

nb =
I

1 +
(

p−ω0
γ

)2 nr =
I

1 +
(

p+ω0
γ

)2 . (11.1)

Introducing χ = nb/nr

χ − 1 =
1 +

(
p+ω0

γ

)2

1 +
(

p−ω0
γ

)2 − 1 =

(
p+ω0

γ

)2
−
(

p−ω0
γ

)2

1 +
(

p−ω0
γ

)2 =
4pc

γ2 + p2 + ω2
0 − 2pω0

ω2
0 − 2p

χ + 1
χ − 1

ω0 + γ2 + p2 = 0.

Note that ω0 > 0 if χ > 1 and ω0 < 0 if χ < 1 for small shifts.
Then, we conclude that the correct expression for the cavity shift is
as follows:

ω̃0 =


p

(
χ+1
χ−1 −

√(
χ+1
χ−1

)2
− 1 −

(
γ
p

)2
)

if χ < 1

0 if χ = 1

p

(
χ+1
χ−1 +

√(
χ+1
χ−1

)2
− 1 −

(
γ
p

)2
)

if χ > 1

plugin back the photon number1: 1 We use χ+1
χ−1 = nb+nr

nb−nr

ω̃0 =


p

(
nb+nr
nb−nr

−
√(

nb+nr
nb−nr

)2
− 1 −

(
γ
p

)2
)

if nb < nr

0 if nb = nr

p

(
nb+nr
nb−nr

+

√(
nb+nr
nb−nr

)2
− 1 −

(
γ
p

)2
)

if nb > nr

and we can solve for I:

Ĩ =
nb
2

(
1 +

(
p − ω̃0

γ

)2
)
+

nr

2

(
1 +

(
p + ω̃0

γ

)2
)
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Once the atoms are in the cavity, the centre shifts to ω′
0. Assuming

that the cavity maximal transmission is not affected by this, we can
infer the new cavity centre ω′

0. Assume the cavity is probed at ps
with s = ±1 for the blue or red probing

n =
I

1 +
(

ps−ω′
0

γ

)2 ⇒
(

ps − ω′
0

γ

)2

=
I
n
− 1.

Note that, since |p| ∼ γ > |ω0| in general, the sign of ps − ω′
0 is

determined by s leading to the cavity shift:

˜δωc = ω̃′
0 − ω̃0 = ps − sγ

√
Ĩ
n
− 1 − ω̃0.

11.1.1 Photon Shot Noise

To infer the photon shot noise contribution to the cavity inference we
will consider the limit2 when ⟨nb⟩ = ⟨nr⟩ = n, or χ = 1, which leads 2 In this limits:

lim
χ→1

∂χω̃0 =
p2 + γ2

4p
,

∂nb χ =
χ

nb
,

∂nr χ =− χ

nr

to

∂nb ω̃0
∣∣
nb=nr

=
p2 + γ2

4np
∂nr ω̃0|nb=nr

= − p2 + γ2

4np
.

While for Ĩ:

∂nb Ĩ =
1
2

(
1 +

(
p − ω̃0

γ

)2
)
− nb

((
p − ω̃0

γ2

) (
∂nb ω̃0

))
,

∂nb Ĩ
∣∣
nb=nr

=
1
4

(
1 +

(
p
γ

)2
)

, ∂nr Ĩ
∣∣
nb=nr

=
1
4

(
1 +

(
p
γ

)2
)

.

Thus, the Jacobian of the transformation is:

∂(I, ω0)

∂(nb, nr)

∣∣∣∣
ω̃0=0

=

(
∂nb I ∂nr I

∂nb ω0 ∂nr ω0

)∣∣∣∣∣
ω̃0=0

=
p2 + γ2

4

(
1

γ2
1

γ2

1
np − 1

np

)
.

Using error propagation:

σω0 ≈
√∣∣∂nb ω0

∣∣2 σ2
nb
+ |∂nr ω0|2 σ2

nr =

√
2n
(

p2 + γ2

4np

)2

=
p2 + γ2
√

8np
=

γ2
√

8np

(
1 +

p2

γ2

)
,

σI ≈
√∣∣∂nb I

∣∣2 σ2
nb
+ |∂nr I|2 σ2

nr =

√
2n
(

p2 + γ2

4γ2

)2

=

√
2n
4

(
1 +

p2

γ2

)
.

When atoms are present in the cavity, we measure ns photons on the
s side of the cavity shifting the cavity according to

˜δωc = ω̃′
0 − ω̃0 = ps − sγ

√
Ĩ
n
− 1 − ω̃0.



inference 113

As before ω0 ≈ 0 and also ω′
0 ≈ 0, with ∂ω0 δωc|ω0=0,ω′

0=0 = −1.

Using that γ
√

I
ns

− 1 = p − sω′
0 we have:

∂Iδωc|ω0=0,ω′
0=0 = − sγ2

2(p − sω′
0)ns

∣∣∣∣
ω′

0=0
= − sγ2

2pns
,

∂ns δωc|ω0=0,ω′
0=0 =

sγ

2
√

I
ns

− 1

I
n2

s

∣∣∣∣∣∣
ω0=0,ω′

0=0

=
sγ2

2pns

(
1 +

p2

γ2

)
.

From error propagation and σ2
ns = ns:

σδωc =
√
|∂ω0 δωc|2 σ2

c + |∂Iδωc|2 σ2
I + |∂ns δωc|2 σ2

ns

=
γ2

p

(
1 +

p2

γ2

)√
1

8n
+

n
32n2

s
+

1
4ns

.

If we introduce the factor rp = ns
n

σδωc =
γ2

p

(
1 +

p2

γ2

)√
1

8n
+

1
32r2

pn
+

1
4rpn

=
γ2

2p
√

n

(
1 +

p2

γ2

)√
1
2
+

1
rp

+
1

8r2
p

.

11.2 Maximum Likelihood Calculations for Linear Re-
gression

To simplify notation, we identify M1 → X, and M2 → Y. As it was
described in section 8.2 The reduced model for the sampled data is
then given by:

P(δω1, δω2; α, φ|X, Y) ∝ P(X|δω1)P(Y|δω2)

× P(δω2|δω1; α, φ)P(δω1). (11.2)

11.2.1 Marginalisation

We can then marginalise with respect to δω2:

∫
dδω2 P(Y|δω2)P(δω2|δω1; α, φ) ∝

∫
dδω2 e

− (Y−δω2)
2

2σ2
y

− (δω2− ˆδω2)
2

2σ2
1b

∝ exp

{
− (Y − ˆδω2)

2

2(σ2
1b + σ2

y )

}
,

from which

P(δω1; α, φ|X, Y) ∝ P(X|δω1)P(δω1) exp

{
− (Y − ˆδω2)

2

2σ2
Y

}
, (11.3)

where we have introduced σ2
Y = σ2

1b + σ2
y to simplify notation and

also ˆδω2 = αδω1 + f (φ). Finally we can marginalise with respect to

δω1, introducing3 σ2
T =

(
1

σ2
x
+ 1

σ2
QPN

+ α2

σ2
Y

)−1
:

3 We will make use of the identity

∂ασ2
T = −2α

σ4
T

σ2
Y

later.
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P(α, φ|X, Y) ∝
∫

dδω1 exp

{
− (X − δω1)

2

2σ2
x

−
δω2

1
2σ2

QPN

}
exp

{
− (Y − ˆδω2)

2

2σ2
Y

}

∝ σT exp

−

(
α2 +

σ2
Y

σ2
QPN

)
X2 +

(
1 + σ2

x
σ2

QPN

)
(Y − f (φ))2 − 2αX(Y − f (φ))

2σ2
x σ2

Y/σ2
T

 . (11.4)

11.2.2 Maximum Likelihood

In practice, we would measure n points (Xi, Yi) with the same exper-
imental conditions to infer α as a calibration parameter. Whenever
we refer to statistical averages of such ensemble we write ⟨.⟩. We can
simply proceed using a MLE to infer α and f (φ). The log-likelihood
is given:

L(α, f ) =
n
2

ln σ2
T − ∑

i

(
α2 +

σ2
Y

σ2
QPN

)
X2

i +

(
1 + σ2

x
σ2

QPN

)
(Yi − f )2 − 2αXi(Yi − f )

2σ2
x σ2

Y/σ2
T

,

L(α, f )
n

=
1
2

ln σ2
T −

(
α2 +

σ2
Y

σ2
QPN

) 〈
X2

i
〉
+

(
1 + σ2

x
σ2

QPN

) 〈
(Yi − f )2〉− 2α ⟨XiYi⟩+ 2α ⟨Xi⟩ f

2σ2
x σ2

Y/σ2
T

.

We proceed to obtain the gradients with respect to the parameter
to find the adequate maxima:

∂ f L(α, f )
n

= σ2
T

(
1 + σ2

x
σ2

QPN

)
(⟨Yi⟩ − f )− α ⟨Xi⟩

σ2
x σ2

Y
.

Now, with respect to α:

∂αL(α, f )
n

=
ασ4

T
σ2

x σ2
Y

[
−
〈

X2
i
〉

σ2
x

+

(
1 +

σ2
x

σ2
QPN

) 〈
(Yi − f )2〉

σ2
Y

+

(
1

σ2
T
− 2α2

σ2
Y

)
(⟨XiYi⟩ − ⟨Xi⟩ f )

α

]
.

For later use, we also calculate the second derivative with respect to
f (φ):

∂2
f L(α, f ) = −σ2

Tn

(
1 + σ2

x
σ2

QPN

)
σ2

x σ2
Y

= −
n
(

1 + σ2
x

σ2
QPN

)
σ2

Y

(
1 + σ2

x
σ2

QPN
+ α2 σ2

x
σ2

Y

) .

The resulting condition is:

α ⟨X⟩ =
(

1 +
σ2

x

σ2
QPN

)
(⟨Yi⟩ − f (φ))

0 = α2 σ2
x

σ2
Y

Cov (X, Y) + α

[
Var (X)− Var (Y)

σ2
x

σ2
Y

(
1 +

σ2
x

σ2
QPN

)]
− Cov (X, Y)

(
1 +

σ2
x

σ2
QPN

)
.

Note that when σx = 0, as expected, we recover the usual linear
regression

f (φ) = ⟨Yi⟩ − α ⟨Xi⟩ ,

α =
Cov (Xi, Yi)

Var (Xi)
.
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In practice, we may infer σx and σy from the PSN bound we de-
rived in section 5.3, σQPN can be measured from σ2

QPN = Var (X)−
σ2

x . Finally, notice that

σ1b = Ω̄

√
N(t)
2

(1 − e−γ1bt)

= Ω̄

√
N(0)
2

(1 − e−γ1bt)e−
γ1b

2 t = σQPN(1 − e−γ1bt)e−
γ1b

2 t.

We can approximate Var (Yi) ≈ α2σ2
QPN + σ2

Y which simplifies to:

f (φ) = ⟨Yi⟩ −
α ⟨Xi⟩

1 + σ2
x

σ2
QPN

, (11.5)

α =
Cov (Xi, Yi)

σ2
QPN

. (11.6)

Figure 11.1: Simulation of the inference
(σPSN = 0.3, σQPN = 1.0, σ1b = 0 and
α = 2). 100 points were sampled to
simulate the cavity shift of the two mea-
surements in blue. From those, 100

“measured” points were sampled, in or-
ange (in blue) for f (ϕ) = −5 ( f (ϕ) =
−0). The infrared line is shown in
green.

For a fixed α, this inference is limited by the Cramer-Rao bound:

(δ f )2 ≥ − 1
∂2

f L(α, φ)
=

σ2
Y

(
1 + σ2

x
σ2

QPN
+ α2 σ2

x
σ2

Y

)
n
(

1 + σ2
x

σ2
QPN

) ,

=
σ2

Y
n

−
α2σ2

x σ2
QPN

n
(

σ2
QPN + σ2

x

) . (11.7)

We can know the α with arbitrary precision since the uncertainty
of the inference will decrease as 1√

n . In practice, one would gather
a large number of samples to calibrate α with high precision. Figure
11.1 shows a fit for two f (ϕ) values with the same α for typical values
of QPN and PSN. Montecarlo’s estimates show that ∆α

α may vary by
up to 15% independently of its actual value 4, but ∆ f remains within 4 Fluctuactions of α coming from sta-

tistical analysis depend mainly on the
magnitude of σx , σY and σQPN. The
exact value is limited by CR, but the
resulting expression is not particularly
elucidating.

10% of the CR bound, being more exact for values closer to 1.





12
Geometric Calculations

12.1 Bi-Variate Gaussian Distribution

Consider an ellipse described by r⃗(α) = (a cos α, b sin α). For a point
(s, t) in this curve, the corresponding tangent vector is given by
r⃗′(α) = (−a sin α, b cos α). The slope of the corresponding line would
thus be m = − b

a cot α. If an angle of β has rotated the ellipse and we
care about the resulting y extension, this is the same as measuring
the distance to the origin of a tangent line to the ellipse with a slope
of m = − tan β.

Figure 12.1: Level curve of a Gaussian
distribution; it has the shape of an el-
lipse, the blue lines are tangents to the
curve, and the distance of such tan-
gents to the origin is the extension of
the marginalised distribution once the
distribution has been rotated by an an-
gle β.

Now, consider the equation of the corresponding line y − t =

m(x − s) or, equivalently y − mx + ms − t = 0. The distance of this
line to the origin is given by:

d =
|ms − t|√

1 + m2
= |s sin β + t cos β|.

But we know that tan α = b
a cot β. Then
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d =

∣∣∣∣a sin β cos arctan
(

b
a

cot β

)
+ b cos β sin arctan

(
b
a

cot β

)∣∣∣∣
d =

∣∣∣∣∣∣ a
2 sin β + b2 cos β cot β√

a2 + b2 cot2 β

∣∣∣∣∣∣ =
∣∣∣∣∣∣ a2 sin2 β + b2 cos2 β√

a2 sin2 β + b2 cos2 β

∣∣∣∣∣∣
d =

√
a2 sin2 β + b2 cos2 β.

Thus, for a bivariate Gaussian distribution for uncorrelated vari-
ables x, y with variances σ2

x , σ2
y , if we marginalised along a rotated

axis, the resulting distribution will have a variance of σ2
β = σ2

x sin2 β+

σ2
y cos2 β

12.2 Moments Calculation in Presence of One-Body
Losses

We derive a simple expression for the one-body loss contribution to
noise. For a more complete derivation, refer to [49]. We assume
that both modes have the same one-body loss rate γ1b. Using the
jump operators

√
γ1ba,

√
γ1bb, the master equation in the interaction

picture is:

dρ

dt
= γ1b

(
aρa† − 1

2
{a†a, ρ}+ bρb† − 1

2
{b†b, ρ}

)
.

Using
〈
Ô
〉
= Tr

{
ρÔ
}

and the master equation, we can calculate the
evolution of the moments

12.2.1 Some examples

Notice that [Ni, a] = −aδi,a, [Ni, b] = −bδi,b, where Na = a†a, Nb =

b†b. Then

d
dt

⟨Ni⟩ =
d
dt

Tr {ρNi} = Tr
{

Ni
dρ

dt

}
=γ1bTr

{
Ni

(
aρa† − 1

2
{Na, ρ}+ bρb† − 1

2
{Nb, ρ}

)}
=γ1bTr

{
a†Niaρ − Ni Naρ + b†Nibρ − Ni Nbρ

}
,

where we use the cyclic property of the trace and commutation rela-
tionships1. We focus now on i = a, the other case is analogous: 1 [Ni , Nj] = 0

d
dt

⟨Na⟩ =γ1bTr
{

a†Naaρ − NaNaρ + b†Nabρ − NaNb, ρ
}

=γ1bTr
{

a†(aNa − a)ρ − NaNaρ + Nab†bρ − NaNb, ρ
}

=− γ1bTr
{

a†aρ
}
= −γ1b ⟨Na⟩ .

Similarly d
dt ⟨Nb⟩ = −γ1b ⟨Nb⟩. The rest of the first and second

moments are calculated in a similar manner, for completeness, we
list them below, but for brevity, we omit the steps of the calculations.
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First moments

d
dt

〈
a†b
〉
=− γ1b

〈
a†b
〉 d

dt
⟨N⟩ =− γ1b ⟨N⟩ ,

d
dt

〈
b†a
〉
=− γ1b

〈
b†a
〉 d

dt
⟨Si⟩ =− γ1b ⟨Si⟩ ,

d
dt

⟨Ni⟩ =− γ1b ⟨Ni⟩ .

Second moments

d
dt

〈
N2

i

〉
=− 2γ1b

〈
N2

i

〉
+ γ1b ⟨Ni⟩

d
dt

⟨NaNb⟩ =− 2γ1b ⟨NaNb⟩ ,

d
dt

〈
a†a†bb

〉
=− 2γ1b

〈
a†a†bb

〉 d
dt

〈
aab†b†

〉
=− 2γ1b

〈
aab†b†

〉
.

From which the spin second moments are

d
dt

〈
S2

z

〉
=

1
4

d
dt

〈
N2

a + N2
b − 2NaNb

〉
=− 1

2
γ1b

〈
N2

a + N2
b − 2NaNb

〉
+

1
4

γ1b ⟨Na + Nb⟩

=− 2γ1b

〈
S2

z

〉
+ γ1b

⟨N⟩
4

,

d
dt

〈
S2

x

〉
=

1
4

d
dt

〈
a†a†bb + aab†b† + Nabb† + Nbaa†

〉
=

1
4

d
dt

〈
a†a†bb + aab†b† + 2NaNb + N

〉
=− γ1b

2

〈
a†a†bb + aab†b† + 2NaNb

〉
− γ1b

4
⟨N⟩

=− 2γ1b

〈
S2

x

〉
+ γ1b

⟨N⟩
4

.

Time-Evolution It’s clear from the above equations that ⟨N⟩ = N0e−γ1bt

and ⟨Si⟩ = ⟨Si(0)⟩ e−γ1bt, where we introduce N0 = ⟨N(0)⟩. We then
have:

d
dt

〈
S2

z

〉
+ 2γ1b

〈
S2

z

〉
=

γ1bN0

4
e−γ1bt.

This has as solution:〈
S2

z(t)
〉
=e−2γ1bt

(〈
S2

z(0)
〉
+

N0

4
(eγ1bt − 1)

)
Var (Sz(t)) =e−2γ1bt

(
Var (Sz(0)) +

N0

4
(eγ1bt − 1)

)
.

This leads us to an expression for the variance in terms of the
current atom number:

Var (Sz(t)) = Var (Sz(0)) e−2γ1bt +
⟨N⟩

4
− ⟨N⟩

4
e−γ1bt. (12.1)

Notice that this can be written in terms of the number squeezing
ξ2

N = 4
⟨N(t)⟩Var (Sz(t)) as

ξ2
N(t)− 1 = (ξ2

N(0)− 1)e−γ1bt. (12.2)
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collective-spin states of atomic ensembles under nonuniform atom-light interaction. Physical Re-
view A, 92(6):063816, December 2015. doi: 10.1103/PhysRevA.92.063816. URL https://link.aps.

org/doi/10.1103/PhysRevA.92.063816. Publisher: American Physical Society.

[47] Jonathan P. Dowling, G. S. Agarwal, and Wolfgang P. Schleich. Wigner distribution of a general
angular-momentum state: Applications to a collection of two-level atoms. Physical Review A, 49(5):
4101–4109, May 1994. doi: 10.1103/PhysRevA.49.4101. URL https://link.aps.org/doi/10.1103/

PhysRevA.49.4101. Publisher: American Physical Society.

https://pubs.aip.org/aqs/article/1/1/014702/997236/Compact-chip-scale-guided-cold-atom-gyrometers-for
https://pubs.aip.org/aqs/article/1/1/014702/997236/Compact-chip-scale-guided-cold-atom-gyrometers-for
https://www.theses.fr/2011PA066742
https://doi.org/10.1007/s00340-009-3451-x
https://doi.org/10.1007/s00340-009-3451-x
https://link.aps.org/doi/10.1103/PhysRevA.66.053616
https://link.aps.org/doi/10.1103/PhysRevA.66.053616
https://link.aps.org/doi/10.1103/RevModPhys.90.035005
https://link.aps.org/doi/10.1103/RevModPhys.90.035005
https://link.aps.org/doi/10.1103/PhysRevLett.96.010401
https://link.aps.org/doi/10.1103/PhysRevLett.96.010401
https://link.aps.org/doi/10.1103/PhysRevLett.82.4619
https://link.aps.org/doi/10.1103/PhysRevLett.102.100401
https://link.aps.org/doi/10.1103/PhysRevA.92.063816
https://link.aps.org/doi/10.1103/PhysRevA.92.063816
https://link.aps.org/doi/10.1103/PhysRevA.49.4101
https://link.aps.org/doi/10.1103/PhysRevA.49.4101


BIBLIOGRAPHY 127

[48] L.-M. Duan, J. I. Cirac, and P. Zoller. Quantum entanglement in spinor Bose-Einstein condensates.
Physical Review A, 65(3):033619, February 2002. doi: 10.1103/PhysRevA.65.033619. URL https:

//link.aps.org/doi/10.1103/PhysRevA.65.033619. Publisher: American Physical Society.

[49] Yun Li, Y. Castin, and A. Sinatra. Optimum Spin Squeezing in Bose-Einstein Condensates with
Particle Losses. Physical Review Letters, 100(21):210401, May 2008. doi: 10.1103/PhysRevLett.100.
210401. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.210401. Publisher: American
Physical Society.

[50] Manuel H. Muñoz-Arias, Ivan H. Deutsch, and Pablo M. Poggi. Phase-Space Geometry and Optimal
State Preparation in Quantum Metrology with Collective Spins. PRX Quantum, 4(2):020314, April
2023. ISSN 2691-3399. doi: 10.1103/PRXQuantum.4.020314. URL https://link.aps.org/doi/10.

1103/PRXQuantum.4.020314.

[51] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen. Spin squeezing and
reduced quantum noise in spectroscopy. Physical Review A, 46(11):R6797–R6800, December 1992.
doi: 10.1103/PhysRevA.46.R6797. URL https://link.aps.org/doi/10.1103/PhysRevA.46.R6797.
Publisher: American Physical Society.

[52] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen. Squeezed atomic states and projection
noise in spectroscopy. Physical Review A, 50(1):67–88, July 1994. doi: 10.1103/PhysRevA.50.67. URL
https://link.aps.org/doi/10.1103/PhysRevA.50.67. Publisher: American Physical Society.

[53] Masahiro Kitagawa and Masahito Ueda. Squeezed spin states. Physical Review A, 47(6):5138–5143,
June 1993. doi: 10.1103/PhysRevA.47.5138. URL https://link.aps.org/doi/10.1103/PhysRevA.

47.5138. Publisher: American Physical Society.

[54] Roman Schmied, Jean-Daniel Bancal, Baptiste Allard, Matteo Fadel, Valerio Scarani, Philipp Treut-
lein, and Nicolas Sangouard. Bell correlations in a Bose-Einstein condensate. Science, 352(6284):
441–444, April 2016. doi: 10.1126/science.aad8665. URL https://www.science.org/doi/10.1126/

science.aad8665. Publisher: American Association for the Advancement of Science.

[55] W. Muessel, H. Strobel, D. Linnemann, D. B. Hume, and M. K. Oberthaler. Scalable Spin Squeezing
for Quantum-Enhanced Magnetometry with Bose-Einstein Condensates. Physical Review Letters, 113

(10):103004, September 2014. doi: 10.1103/PhysRevLett.113.103004. URL https://link.aps.org/

doi/10.1103/PhysRevLett.113.103004. Publisher: American Physical Society.

[56] Caspar F. Ockeloen, Roman Schmied, Max F. Riedel, and Philipp Treutlein. Quantum Metrology
with a Scanning Probe Atom Interferometer. Physical Review Letters, 111(14):143001, October 2013.
doi: 10.1103/PhysRevLett.111.143001. URL https://link.aps.org/doi/10.1103/PhysRevLett.

111.143001. Publisher: American Physical Society.

[57] A. Sørensen, L.-M. Duan, J. I. Cirac, and P. Zoller. Many-particle entanglement with Bose–Einstein
condensates. Nature, 409(6816):63–66, January 2001. ISSN 1476-4687. doi: 10.1038/35051038. URL
https://www.nature.com/articles/35051038. Number: 6816 Publisher: Nature Publishing Group.

[58] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler. Nonlinear atom interferometer
surpasses classical precision limit. Nature, 464(7292):1165–1169, April 2010. ISSN 1476-4687. doi:
10.1038/nature08919. URL https://www.nature.com/articles/nature08919. Number: 7292 Pub-
lisher: Nature Publishing Group.

[59] Max F. Riedel, Pascal Böhi, Yun Li, Theodor W. Hänsch, Alice Sinatra, and Philipp Treutlein.
Atom-chip-based generation of entanglement for quantum metrology. Nature, 464(7292):1170–1173,
April 2010. ISSN 1476-4687. doi: 10.1038/nature08988. URL https://www.nature.com/articles/

nature08988. Number: 7292 Publisher: Nature Publishing Group.

https://link.aps.org/doi/10.1103/PhysRevA.65.033619
https://link.aps.org/doi/10.1103/PhysRevA.65.033619
https://link.aps.org/doi/10.1103/PhysRevLett.100.210401
https://link.aps.org/doi/10.1103/PRXQuantum.4.020314
https://link.aps.org/doi/10.1103/PRXQuantum.4.020314
https://link.aps.org/doi/10.1103/PhysRevA.46.R6797
https://link.aps.org/doi/10.1103/PhysRevA.50.67
https://link.aps.org/doi/10.1103/PhysRevA.47.5138
https://link.aps.org/doi/10.1103/PhysRevA.47.5138
https://www.science.org/doi/10.1126/science.aad8665
https://www.science.org/doi/10.1126/science.aad8665
https://link.aps.org/doi/10.1103/PhysRevLett.113.103004
https://link.aps.org/doi/10.1103/PhysRevLett.113.103004
https://link.aps.org/doi/10.1103/PhysRevLett.111.143001
https://link.aps.org/doi/10.1103/PhysRevLett.111.143001
https://www.nature.com/articles/35051038
https://www.nature.com/articles/nature08919
https://www.nature.com/articles/nature08988
https://www.nature.com/articles/nature08988


128 improving an atomic clock on a chip via spin-squeezing

[60] W. Muessel, H. Strobel, D. Linnemann, T. Zibold, B. Julia-Díaz, and M. K. Oberthaler. Twist-
and-turn spin squeezing in Bose-Einstein condensates. Physical Review A, 92(2):023603, August
2015. doi: 10.1103/PhysRevA.92.023603. URL https://link.aps.org/doi/10.1103/PhysRevA.92.

023603. Publisher: American Physical Society.

[61] Zeyang Li, Boris Braverman, Simone Colombo, Chi Shu, Akio Kawasaki, Albert F. Adiyatullin,
Edwin Pedrozo-Peñafiel, Enrique Mendez, and Vladan Vuletić. Collective Spin-Light and Light-
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Atoms with Reduced Quantum Uncertainty. Physical Review Letters, 104(7):073604, February 2010.
doi: 10.1103/PhysRevLett.104.073604. URL https://link.aps.org/doi/10.1103/PhysRevLett.

104.073604. Publisher: American Physical Society.

[99] J. G. Bohnet, K. C. Cox, M. A. Norcia, J. M. Weiner, Z. Chen, and J. K. Thompson. Reduced spin
measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Na-
ture Photonics, 8(9):731–736, September 2014. ISSN 1749-4893. doi: 10.1038/nphoton.2014.151. URL
https://www.nature.com/articles/nphoton.2014.151. Number: 9 Publisher: Nature Publishing
Group.

[100] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik. Mesoscopic
atomic entanglement for precision measurements beyond the standard quantum limit. Proceedings
of the National Academy of Sciences, 106(27):10960–10965, July 2009. doi: 10.1073/pnas.0901550106.
URL https://www.pnas.org/doi/full/10.1073/pnas.0901550106. Publisher: Proceedings of the
National Academy of Sciences.

[101] Kevin C. Cox, Graham P. Greve, Joshua M. Weiner, and James K. Thompson. Deterministic
Squeezed States with Collective Measurements and Feedback. Physical Review Letters, 116(9):093602,
March 2016. doi: 10.1103/PhysRevLett.116.093602. URL https://link.aps.org/doi/10.1103/

PhysRevLett.116.093602. Publisher: American Physical Society.

[102] F. Piéchon, J. N. Fuchs, and F. Laloë. Cumulative Identical Spin Rotation Effects in Collisionless
Trapped Atomic Gases. Physical Review Letters, 102(21):215301, May 2009. doi: 10.1103/PhysRevLett.
102.215301. URL https://link.aps.org/doi/10.1103/PhysRevLett.102.215301. Publisher: Amer-
ican Physical Society.

[103] J. N. Fuchs, D. M. Gangardt, and F. Laloë. Internal State Conversion in Ultracold Gases. Physical
Review Letters, 88(23):230404, May 2002. doi: 10.1103/PhysRevLett.88.230404. URL https://link.

aps.org/doi/10.1103/PhysRevLett.88.230404. Publisher: American Physical Society.

[104] H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell. Observation of Anoma-
lous Spin-State Segregation in a Trapped Ultracold Vapor. Physical Review Letters, 88(7):070403,
January 2002. doi: 10.1103/PhysRevLett.88.070403. URL https://link.aps.org/doi/10.1103/

PhysRevLett.88.070403. Publisher: American Physical Society.

[105] X. Du, L. Luo, B. Clancy, and J. E. Thomas. Observation of Anomalous Spin Segregation in a
Trapped Fermi Gas. Physical Review Letters, 101(15):150401, October 2008. doi: 10.1103/PhysRevLett.
101.150401. URL https://link.aps.org/doi/10.1103/PhysRevLett.101.150401. Publisher: Amer-
ican Physical Society.

[106] E. P. Bashkin. Spin waves in polarized paramagnetic gases. ZhETF Pisma Redaktsiiu, 33:11, January
1981. URL https://ui.adsabs.harvard.edu/abs/1981ZhPmR..33...11B. ADS Bibcode: 1981Zh-
PmR..33...11B.

[107] C. Lhuillier and F. Laloë. Transport properties in a spin polarized gas, I. Journal de Physique, 43(2):
197–224, February 1982. ISSN 0302-0738, 2777-3396. doi: 10.1051/jphys:01982004302019700. URL
http://dx.doi.org/10.1051/jphys:01982004302019700. Publisher: Société Française de Physique.

https://nvlpubs.nist.gov/nistpubs/jres/70C/jresv70Cn4p263_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/70C/jresv70Cn4p263_A1b.pdf
https://link.aps.org/doi/10.1103/PhysRevLett.104.073604
https://link.aps.org/doi/10.1103/PhysRevLett.104.073604
https://www.nature.com/articles/nphoton.2014.151
https://www.pnas.org/doi/full/10.1073/pnas.0901550106
https://link.aps.org/doi/10.1103/PhysRevLett.116.093602
https://link.aps.org/doi/10.1103/PhysRevLett.116.093602
https://link.aps.org/doi/10.1103/PhysRevLett.102.215301
https://link.aps.org/doi/10.1103/PhysRevLett.88.230404
https://link.aps.org/doi/10.1103/PhysRevLett.88.230404
https://link.aps.org/doi/10.1103/PhysRevLett.88.070403
https://link.aps.org/doi/10.1103/PhysRevLett.88.070403
https://link.aps.org/doi/10.1103/PhysRevLett.101.150401
https://ui.adsabs.harvard.edu/abs/1981ZhPmR..33...11B
http://dx.doi.org/10.1051/jphys:01982004302019700


132 improving an atomic clock on a chip via spin-squeezing

[108] J. M. McGuirk, H. J. Lewandowski, D. M. Harber, T. Nikuni, J. E. Williams, and E. A. Cornell. Spatial
Resolution of Spin Waves in an Ultracold Gas. Physical Review Letters, 89(9):090402, August 2002.
ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.89.090402. URL https://link.aps.org/doi/

10.1103/PhysRevLett.89.090402.

[109] L. Parisi, G. E. Astrakharchik, and S. Giorgini. Spin Dynamics and Andreev-Bashkin Effect
in Mixtures of One-Dimensional Bose Gases. Physical Review Letters, 121(2):025302, July 2018.
doi: 10.1103/PhysRevLett.121.025302. URL https://link.aps.org/doi/10.1103/PhysRevLett.

121.025302. Publisher: American Physical Society.

[110] M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M.
Rey, and Jun Ye. A Quantum Many-Body Spin System in an Optical Lattice Clock. Science, 341

(6146):632–636, August 2013. doi: 10.1126/science.1236929. URL https://www.science.org/doi/

10.1126/science.1236929. Publisher: American Association for the Advancement of Science.

[111] A. D. Ludlow, N. D. Lemke, J. A. Sherman, C. W. Oates, G. Quéméner, J. von Stecher, and A. M. Rey.
Cold-collision-shift cancellation and inelastic scattering in a Yb optical lattice clock. Physical Review
A, 84(5):052724, November 2011. doi: 10.1103/PhysRevA.84.052724. URL https://link.aps.org/

doi/10.1103/PhysRevA.84.052724. Publisher: American Physical Society.

[112] G. K. Campbell, M. M. Boyd, J. W. Thomsen, M. J. Martin, S. Blatt, M. D. Swallows, T. L. Nicholson,
T. Fortier, C. W. Oates, S. A. Diddams, N. D. Lemke, P. Naidon, P. Julienne, Jun Ye, and A. D. Ludlow.
Probing Interactions Between Ultracold Fermions. Science, 324(5925):360–363, April 2009. doi: 10.
1126/science.1169724. URL https://www.science.org/doi/10.1126/science.1169724. Publisher:
American Association for the Advancement of Science.

[113] N. D. Lemke, J. von Stecher, J. A. Sherman, A. M. Rey, C. W. Oates, and A. D. Ludlow. $p$-Wave
Cold Collisions in an Optical Lattice Clock. Physical Review Letters, 107(10):103902, August 2011.
doi: 10.1103/PhysRevLett.107.103902. URL https://link.aps.org/doi/10.1103/PhysRevLett.

107.103902. Publisher: American Physical Society.

[114] J. E. Williams, T. Nikuni, and Charles W. Clark. Longitudinal Spin Waves in a Dilute Bose Gas. Phys-
ical Review Letters, 88(23):230405, May 2002. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.
88.230405. URL https://link.aps.org/doi/10.1103/PhysRevLett.88.230405.

[115] M. Ö. Oktel and L. S. Levitov. Internal Waves and Synchronized Precession in a Cold Vapor. Physical
Review Letters, 88(23):230403, May 2002. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.88.
230403. URL https://link.aps.org/doi/10.1103/PhysRevLett.88.230403.

[116] M. Ö. Oktel and L. S. Levitov. Collective dynamics of internal states in a Bose-Einstein gas. Physical
Review A, 65(6):063604, May 2002. ISSN 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.65.063604.
URL https://link.aps.org/doi/10.1103/PhysRevA.65.063604.

[117] A. M. Rey, A. V. Gorshkov, C. V. Kraus, M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko,
J. Ye, N. D. Lemke, and A. D. Ludlow. Probing many-body interactions in an optical lattice clock.
Annals of Physics, 340(1):311–351, January 2014. ISSN 0003-4916. doi: 10.1016/j.aop.2013.11.002.
URL https://www.sciencedirect.com/science/article/pii/S0003491613002546.

[118] Kurt Gibble. Keeping atoms synchronized for better timekeeping. Physics, 3:55, July 2010.
doi: 10.1103/PhysRevLett.105.020401. URL https://physics.aps.org/articles/v3/55. Publisher:
American Physical Society.

[119] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Verhaar. Interisotope
Determination of Ultracold Rubidium Interactions from Three High-Precision Experiments. Physical

https://link.aps.org/doi/10.1103/PhysRevLett.89.090402
https://link.aps.org/doi/10.1103/PhysRevLett.89.090402
https://link.aps.org/doi/10.1103/PhysRevLett.121.025302
https://link.aps.org/doi/10.1103/PhysRevLett.121.025302
https://www.science.org/doi/10.1126/science.1236929
https://www.science.org/doi/10.1126/science.1236929
https://link.aps.org/doi/10.1103/PhysRevA.84.052724
https://link.aps.org/doi/10.1103/PhysRevA.84.052724
https://www.science.org/doi/10.1126/science.1169724
https://link.aps.org/doi/10.1103/PhysRevLett.107.103902
https://link.aps.org/doi/10.1103/PhysRevLett.107.103902
https://link.aps.org/doi/10.1103/PhysRevLett.88.230405
https://link.aps.org/doi/10.1103/PhysRevLett.88.230403
https://link.aps.org/doi/10.1103/PhysRevA.65.063604
https://www.sciencedirect.com/science/article/pii/S0003491613002546
https://physics.aps.org/articles/v3/55


Review Letters, 88(9):093201, February 2002. doi: 10.1103/PhysRevLett.88.093201. URL https://

link.aps.org/doi/10.1103/PhysRevLett.88.093201. Publisher: American Physical Society.

[120] Kurt Gibble. Decoherence and Collisional Frequency Shifts of Trapped Bosons and Fermions. Phys-
ical Review Letters, 103(11):113202, September 2009. doi: 10.1103/PhysRevLett.103.113202. URL
https://link.aps.org/doi/10.1103/PhysRevLett.103.113202. Publisher: American Physical So-
ciety.

[121] Emily Davis, Gregory Bentsen, and Monika Schleier-Smith. Approaching the Heisenberg
Limit without Single-Particle Detection. Physical Review Letters, 116(5):053601, February 2016.
doi: 10.1103/PhysRevLett.116.053601. URL https://link.aps.org/doi/10.1103/PhysRevLett.

116.053601. Publisher: American Physical Society.

[122] O. Hosten, R. Krishnakumar, N. J. Engelsen, and M. A. Kasevich. Quantum phase magni-
fication. Science, 352(6293):1552–1555, June 2016. doi: 10.1126/science.aaf3397. URL https:

//www.science.org/doi/10.1126/science.aaf3397. Publisher: American Association for the Ad-
vancement of Science.

[123] Ian D. Leroux, Monika H. Schleier-Smith, and Vladan Vuletić. Orientation-Dependent Entangle-
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Sujet : Amelioration de un horloge Atomique sur Puce avec des états du spin
comprimés

Résumé : Les capteurs atomiques sont des dispositifs très sensibles utilisés dans les étalons de temps et de
fréquence, la détection inertielle et les mesures de précision des champs électromagnétiques. Aujourd’hui, ils
sont développés au point d’être limités par leur nature quantique, c’est-à-dire la limite quantique standard
(SQL). Cette limite découle du comportement individuel et non corrélé des atomes utilisés. Toutefois, il a été
démontré que l’on peut surmonter cette limite en générant des corrélations quantiques et un enchevêtrement
entre les atomes. La preuve de principe de la génération d’intrication peut être accomplie via différents
protocoles, mais cela a très rarement été fait dans des dispositifs de qualité métrologique. Dans cette thèse,
nous utilisons une plateforme d’électrodynamique quantique en cavité (cQED) pour créer un type d’état
corrélé quantique dit état comprimé de spin. Nous utilisons comme plateforme une horloge à atomes piégés
sur puce (TACC) pour générer ces états intriqués. Ce dispositif de qualité métrologique nous permet d’étudier
la dynamique due aux interactions de spin sur une longue échelle de temps, de l’ordre de la seconde. La
stabilité de l’appareil est confirmée par une déviation fractionnelle de la fréquence d’Allan de 6 × 10−13 à 1

s, une performance battant les horloges à atomes compactes disponibles dans le commerce.

Mots clés : Metrologie quantique, Puce à atomes, Intrication, Horloge Atomique, États Comprimés de Spin,
Electrodynamique Quantique en Cavité

Subject : Improving an Atomic Clock on a Chip via Spin-squeezing

Abstract: Atom sensors are highly sensitive devices used in time and frequency standards, inertial sensing
and precision measurements of electromagnetic fields. Nowadays, they are developed to the extent that they
can be limited by their quantum nature, i.e., the standard quantum limit (SQL). This limit arises from the
individual and uncorrelated behaviour of the used atoms. However, it has been demonstrated that one can
overcome this limit via the generation of quantum correlations and entanglement between the atoms. Proof of
principle entanglement generation can be accomplished via different protocols, but this has very seldom been
done in metrology-grade devices. In this thesis, we use a cavity quantum electrodynamics (cQED) platform
to create a type of quantum correlated state named spin squeezed. We use as a platform a trapped-atom
clock on a chip (TACC) to generate these entangled states. This metrology-grade device allows us to study
the dynamics due to spin interactions in the long time scale, on the order of a second. The stability of the
apparatus is confirmed by a fractional frequency Allan deviation of 6 × 10−13 at 1 s, a performance beating
commercially available compact atom clocks.

Keywords: Quantum Metrology, Atom Chip, Entanglement, Atomic Clock, Spin-squeezed States, Cavity
Quantum Electrodynamics
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