
HAL Id: tel-04708433
https://theses.hal.science/tel-04708433v1

Submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feasibility of Interactions and Network Inference of
Online Social Networks

Effrosyni Papanastasiou

To cite this version:
Effrosyni Papanastasiou. Feasibility of Interactions and Network Inference of Online Social Net-
works. Networking and Internet Architecture [cs.NI]. Sorbonne Université, 2024. English. �NNT :
2024SORUS173�. �tel-04708433�

https://theses.hal.science/tel-04708433v1
https://hal.archives-ouvertes.fr

Thèse de Doctorat de Sorbonne Université
École Doctorale Informatique, Télécommunications et Électronique

Institut des Systèmes Intelligents et de Robotique

Feasibility of Interactions and Network Inference of

Online Social Networks

Effrosyni Papanastasiou

Defended publicly on July 8, 2024

Doctoral thesis defended in front of the following Committee:

Reviewers Jean-Loup Guillaume La Rochelle Université
Professor

Sylvain Lamprier Université Angers
Professor

Examiners Clémence Magnien
(Committee President)

CNRS, Sorbonne Université
Research Director

Tiphaine Viard Télécom Paris
Associate Professor

Supervisor Nicolas Baskiotis Sorbonne Université
Associate Professor

This doctoral thesis has been prepared at:
Institut des Systèmes Intelligents et de Robotique
Campus Pierre et Marie Curie
Pyramide, Tour 55
4, place Jussieu
75005 Paris
France

iii

Για τη μητέρα μου Κατερίνα..

v

Abstract

This thesis deals with the problem of network inference in the domain of Online So-

cial Networks. The main premise of network inference problems is that the network

we are observing is not the network that we really need. This is especially prevalent

in today's digital space, where the abundance of information usually comes with

crucial unreliability, in the form of noise and missing points in the data. However,

existing approaches either ignore or do not guarantee to infer networks in a way

that can explain the data we have at hand. As a result, there is an ambiguity around

themeaning of the network that we are inferring, while also having little intuition or

control over the inference itself. The goal of this thesis is to further explore this prob-

lem. To quantify how well an inferred network can explain a dataset, we introduce

a novel quality criterion called feasibility. Our intuition is that if a dataset is feasible

given an inferred network, wemight also be closer to the ground truth. To verify this,

we propose a novel network inference method in the form of a constrained, Maxi-

mum Likelihood-based optimization problem that guarantees 100% feasibility. It is

tailored to inputs fromOnline Social Networks, which are well-known sources of un-

reliable and restricted data. We provide extensive experiments on one synthetic and

one real-world dataset coming fromTwitter/X.We show that our proposedmethod

generates a posterior distribution of graphs that guarantees to explain the dataset

while also being closer to the true underlying structure when compared to other

methods. As a final exploration, we look into the field of deep learning for more

scalable and flexible alternatives, providing apreliminary framework basedonGraph

Neural Networks and contrastive learning that gives promising results.

Keywords: online social networks - network inference - Bayesian modeling - expectation

maximization - maximum likelihood - constrained optimization - graph neural networks -

contrastive learning

vii

Résumé

Cette thèse traite du problèmede l'inférence de réseau dans le domaine des réseaux

sociaux en ligne. L'hypothèse principale des problèmes d'inférence de réseau est

que le réseau que nous observons n'est pas celui dont nous avons réellement be-

soin. Cela est particulièrement vrai dans l'espace numérique actuel, où l'abondance

d'informations s'accompagnegénéralement d'unmanque crucial de fiabilité, sous la

forme de bruit et de pointsmanquants dans les données. Cependant, les approches

existantes ignorent ou ne garantissent pas l'inférence de réseaux d'une manière qui

puisse expliquer les données dont nous disposons. Il en résulte une ambiguïté sur la

signification du réseau inféré, en plus d'unmanque d'intuition et de contrôle sur l'in-

férence elle-même. L'objectif de cette thèse est d'explorer plus avant ce problème.

Pour quantifier la capacité d'un réseau inféré à expliquer un ensemble de données,

nous introduisons un nouveau critère de qualité, appelé feasibility. Notre intuition

est que si un ensemble dedonnées est ``feasible'' en ce qui concerne le réseau inféré,

celui-ci est unmeilleur candidat que le cas échéant. Pour le vérifier, nous proposons

une nouvelle méthode d'inférence de réseau sous la forme d'un problème d'opti-

misation contraint, basé sur le maximum de vraisemblance, qui garantit la feasibility

à 100%. Cette méthode est adaptée aux données provenant des réseaux sociaux

en ligne, qui sont des sources bien connues de données peu fiables et restreintes.

Nous présentons des expériences sur un ensemble de données synthétiques et don-

nées réelles provenant de la plateforme Twitter/X. Nous montrons que la méthode

proposée génère une distribution a posteriori des graphes qui garantit l'explication

de l'ensemble de données tout en étant plus proche de la véritable structure sous-

jacente. En guise d'exploration finale, nous nous penchons sur le domaine de l'ap-

prentissage profond pour trouver des alternatives plus évolutives et plus flexibles,

en fournissant un cadre préliminaire basé sur les réseaux neuronaux graphiques et

l'apprentissage contrastif qui donne des résultats prometteurs.

Mots-clés: réseaux sociaux - inférence de réseau - modélisation bayésienne - algorithme

espérance-maximisation - maximum de vraisemblance - optimisation sous contrainte -

réseaux neuronaux graphiques - apprentissage contrastif

ix

Acknowledgements

The completion of this doctoral thesis marks the ending of an important period
of my life, both academically and personally. Completing this PhD is not only
about the hours spent studying and solving problems but also about overcoming
all the challenges that come with growing up and moving to another country in
pursuit of a better future. Nothing of this would have been possible without the
support of my family, friends and many of the people that I met both inside and
outside the university.

First, I would like to thank my supervisor Nicolas Baskiotis for providing his
crucial help at all the pivotal points of this thesis and its completion. I would
also like to thank all the committee members for taking part in the examination
of this work. Jean-Loup Guillaume and Sylvain Lamprier for their extensive
review of the manuscript and their very useful and constructive feedback and
Clémence Magnien and Tiphaine Viard for very kindly agreeing to be part of
the examination jury. I am especially thankful to Clémence Magnien for her
unconditional support as a member of LIP6’s direction and parity group, whose
professionalism and compassion helped me immensely in completing this PhD.

Sometimes difficult circumstances can lead to the most beautiful surprises and
one of them was getting to know Céline Ghibaudo. Our long-hour discussions,
your determination, support, and inspiring energy helped me get through this
thesis and the challenges that may come with womanhood. I am equally grateful
for getting to know Garance and Melina, thanks for all the laughs, the support
and all of our fun, empowering discussions.

I especially cherish the memories from my short but wonderful visit in the Uni-
versity of Siena, Italy. Thanks to Franco Scarselli, Monica Bianchini and all of the
amazing students of the lab who welcomed me as if I were part of their family
(SAILab is all you need!). A special mention to Barbara Corradini, thank you for
making a whole journey from Italy to Paris just for the defense of this thesis. I
can’t thank you enough for all the support, our very constructive complaining
sessions and all of the empowering discussions we had together.

x

My warm thanks to all the members of the MLIA team where I spent most of the
time during this thesis - thank you for welcoming me and helping me whenever
needed. A special thanks to Marie for all the laughs and support and Agnés, Lise,
Nisma and Yuan for making the atmosphere of the lab so friendly. I would also
like to thank all the stuff of LIP6 and ISIR for their continuous support and both
parity groups who keep striving towards a better environment for women and
underrepresented members of the lab.

Of course, the completion of this thesis would not have been possible without the
unconditional help and love frommy friends and family. A big thanks toMarilena,
who was always there to listen and support me during this thesis. Yannis, one of
the biggest presents that this city awaited for me; thank you for the genuine love
and making life so much more fun and easy. Olga, my forever best friend, I could
write a whole new thesis with all the ways I should thank you. A big thanks to
Lazy Women for helping me put my feelings into words and actions - Zsofi, I am
so grateful for getting to know you, thank you for trusting and supporting me.
My warmest thanks to Alain, Marianne and Pauline, for making Paris feel like
home. Antoine, thank you for everything - thank you for always being by my side
and helping me become a better version of myself. All this wouldn’t have been
the same without you.

Finally, without the support and sacrifices of my family nothing would have been
possible. A big thanks to my godmother Kitty, for planting the seeds for me
to come to France and for creating a sense of family here. My grandmother
Dimitra, always ahead of her time, for showing me what a woman is capable of.
My grandfather Pantelis, for teaching me about the power of knowledge and
education - I know you would be proud. Marina and Antoni, for all the never-
ending love and help every single time I needed it. Eleni, for your unconditional
love and support, thank you for lighting upmy life and for all your valuable lessons
about life and happiness.

Lastly, and most importantly: Panteli, thank you for being the best and most
supporting brother I could ever have. Dad, thank you for always keeping my back
- no words could describe how thankful I am for having you. And lastly, this thesis
is devoted to my beloved mom whom I miss so much. Thank you for making me
who I am today and for providing me with amounts of love that can last for an
eternity - all my life’s milestones will be forever dedicated to you. We will always
have Paris.. ♥

xi

Contents

1 Introduction 1
1.1 A brief history of graphs . 2

1.1.1 The first problem using graphs 2
1.1.2 From recreational puzzles to formal definitions 3
1.1.3 The introduction of computers 4
1.1.4 Network science: graphs as complex systems 5
1.1.5 Machine learning: a modern tool for graphs 5

1.2 The network is not the data . 6
1.3 Network inference . 7

1.3.1 Why is it needed? . 7
1.3.2 The challenges . 10

1.4 Network inference for Online Social Networks 11
1.4.1 An introduction to Online Social Networks 11
1.4.2 The need for network inference 12
1.4.3 A toy example . 14

1.5 Thesis goals . 15
1.6 Thesis structure and contributions 17

2 Fundamentals of network inference 21
2.1 Network data unreliability . 22
2.2 Modeling Online Social Networks with graphs 23
2.3 Understanding the properties of Online Social Networks 26

2.3.1 Local and global graph measures 26
2.3.2 Real-world properties of Online Social Networks 30
2.3.3 Modeling the aspect of time 33
2.3.4 Modeling the diffusion of information 33

2.4 Generating networks with random graph models 35
2.4.1 The Erdős-Rényi model . 35
2.4.2 Stochastic Block Model . 37

xii

2.5 Measuring performance . 38
2.6 Conclusion . 40

3 Network inference approaches for Online Social Networks 41
3.1 Network inference with Bayesian models 42

3.1.1 The Bayesian modeling approach 42
3.1.2 Related works . 45

3.2 Recent approaches . 46
3.2.1 Similarity-based approaches 47
3.2.2 Variational inference . 47
3.2.3 Monte Carlo Markov Chain algorithms 48

3.3 Time-aware network inference . 48
3.3.1 Temporal networks as cascades 49
3.3.2 Information diffusion models 49

3.4 Conclusion and limitations of existing works 52

4 Constrained Expectation Maximization for feasible network in-
ference 55
4.1 Problem formulation . 56

4.1.1 The input dataset: a reposting network 56
4.1.2 Modeling the hidden way information diffuses 58
4.1.3 Formulating network inference for Online Social Networks 59
4.1.4 Assumptions on the diffusion of posts 60

4.2 Definition of feasibility . 61
4.3 Enforcing feasibility with a set of feasibility constraints 62
4.4 Defining probabilities of diffusion 63
4.5 Problem modeling and learning method 65

4.5.1 Erdős–Rényi prior (CEM-ER) 65
4.5.2 Stochastic block model prior (CEM-SBM) 69

4.6 Methodology . 72
4.6.1 Datasets . 72
4.6.2 Comparison . 76
4.6.3 Experimental settings . 79

4.7 Experiments on synthetic data . 80
4.7.1 Different sizes of input . 81
4.7.2 Different values of the hyperparameter λ 81
4.7.3 Difference between priors 82

xiii

4.7.4 Comparison between methods 82
4.8 Experiments on the #Élysée2017fr dataset 87

4.8.1 Different sizes of input . 87
4.8.2 Different values of the hyperparameter λ 87
4.8.3 Difference between priors 89
4.8.4 Comparison between methods 89
4.8.5 Controlling feasibility through β 94
4.8.6 Evaluation with no ground truth 95

4.9 Conclusions . 96

5 A contrastive approach using Graph Neural Networks 99
5.1 Machine learning background . 100

5.1.1 Supervised vs unsupervised learning 101
5.1.2 Graph machine learning for Online Social Networks . . . 102

5.2 Review of representation learning approaches 104
5.2.1 Modeling information diffusion 104
5.2.2 Random walk approaches 105
5.2.3 Recurrent Neural Networks 107
5.2.4 Graph Neural Networks 109
5.2.5 Focusing on contrastive learning 111

5.3 Methods for network inference . 113
5.3.1 An Encoder model for link prediction 113
5.3.2 Graph Neural Networks as better encoders 115

5.4 Proposing a simple contrastive model 117
5.4.1 Model architecture . 117
5.4.2 Model training . 118
5.4.3 Contrastive loss . 119

5.5 Experimental evaluation . 121
5.5.1 Environment . 121
5.5.2 Results . 124

5.6 Discussion and conclusion . 129

6 Conclusion 131

Bibliography 135

A Appendix for Chapter 4 156
A.1 Detailed derivations for the equations of CEM-ER 156

xiv

A.2 Detailed derivations for the equations of CEM-SBM 157

B Appendix for Chapter 5 161

xv

List of Figures

1.1 The Seven Bridges of Königsberg. 3

1.2 A hypothetical underlying network (left) and examples of two differ-
ent kinds of unreliable measurements that we might get: erroneous
(right-top) and/or missing edges (right-bottom). Both kinds of mea-
surements can distort significantly the structure of the underlying
network. 8

1.3 A toy example of a network inference setting assuming data from
the platform Twitter/X. An (unknown) underlying network gives a
dataset or posting/reposting interactions from users Alice (A), Bob
(B), andCarol (C).We can infer various combinations of connections
between the users. 14

2.1 A toy example of what kind of information could be hidden from
us. User U1 is assumed to be the author of the post and users
U2, U3, U4, U5 the ones that reposted it. The interaction network
we get is a star-shaped structure. On the right, we see one possible
way that the post could have diffused in reality, but that is hidden
from us in practice. If we assume that the users repost only the
users they follow, this network could also be showing the friendship
connections between the users. 24

2.2 The power-law distribution of a scale-free network (here, consist-
ing of 10,000 nodes) is typically depicted on a log-log scale. This
representation reveals a heavy tail, indicating that as the degree
k increases, the probability for a node to possess such a degree
decreases. 30

2.3 The binomial degree distribution of an Erdős-Rényi network with
10,000 nodes. 37

xvi

4.1 Example of a reposting networks dataset. Each data entry has the
form (pid, t, uid, rid) and reflects a post if rid = −1 and a repost
otherwise, where the value of rid gives the pid of the post that has
been reposted. 57

4.2 The hidden way that a specific post P1 authored by U1 at t0 =09:20

diffuses through the friendship network of usersG1: At timestamp t0,
post P1 appears on the Newsfeeds of U1’s followers, in this case user
U2. At a later timestamp, t1 =09:30, U2 reposts P1 on their Profile.
Their repost takes the pid = P2 and appears on the Newsfeeds of
U2’s followers, U1 and U3. Finally, U3 reposts it to their own Profile. 58

4.3 Constructing the feasibility constraints on the domain of X and σ

on the toy dataset . 64
4.4 Framework of Constrained Expectation Maximization. 72
4.5 Networks of the user-user connections provided by the #Élysée2017fr

dataset, colored according to the party they support. In the case of
the friendship graph (a) there is an edge (i, j) if j follows i. In the
case of the retweet network (b) there is a weighted edge for every
time that a user j has reposted a tweet authored by i. The size of
each node is proportional to its degree. 76

4.6 The results on Precision (left) and Recall (right) for CEM-ER and
CEM-SBM applied on the synthetic dataset. 80

4.7 Precision and Recall when applied on #Élysée2017fr. 88
4.8 Example of a subgraph inferred by each method for a diffusion

episodeD = {22, 17, 18, 81} from the synthetic dataset, connecting
its author (user 22) to every other user that retweeted it. Blue arrows
show true positive edges and red arrows the false positive ones. . . 90

5.1 Loss evolution of FeasCL-5K per epoch. 125
5.2 Results compared to the ground truth friendship graph (FeasCL-5K).126

xvii

List of Tables

4.1 Notations and definitions for the input dataset. 57
4.2 Edge parameters* . 64
4.3 Dataset statistics for the synthetic and real-world data. 74
4.4 Ground truth graph statistics for the synthetic and real-world data. 74
4.5 Performance of differentmethods on a synthetic datasetwith |Dsynth|

= 50,000 lines as input. 82
4.6 Network statistics of the network inferred by each method com-

pared to the ground truth for |Dsynth| = 50,000. 83
4.7 Performance of community detection for the synthetic network

with |Dsynth| = 50,000 lines. 86
4.8 Converged values for error parameters α, β given |Delysee| = 5,000,000. 87
4.9 Performance of each method for the #Élysée2017fr dataset∗. 89
4.10 Network statistics of the graphs inferred by each method compared

to the ground truth network for |Delysee| = 5,000,000 lines. 91
4.11 Performance of community detection for the real-world network

with |Delysee| = 5,000,000 lines. 93
4.12 Performance of CEM (λ = 1) given constant values of parameter β

for #Élysée2017fr. 94

5.1 Original (non-feasible) #Élysée2017fr dataset. 123
5.2 Feasible #Élysée2017fr dataset. 123
5.3 k-nearest neighbors comparison (in %)∗. 124
5.4 Comparison when choosing a threshold∗. 127

B.1 Configuration Parameters for the FeasCL model 161

xviii

List of Abbreviations

AI Articifical Intelligence. 100, 110

API Application Programming Interface. 12, 13, 25, 53

CEM Constrained Expectation Maximization. 18, 20, 56, 69–72, 76–97, 99, 100,
113, 117, 118, 124, 127–129, 132, 133

DL Deep Learning. 100, 108, 109, 121, 122, 128

EM Expectation Maximization. 44–47, 50, 51, 66, 69, 70, 77, 96, 105, 129, 156,
157

ER Erdős–Rényi. 35–37, 46, 52, 56, 69, 70, 72, 73, 76, 79–91, 93–95, 132

FeasCL Feasible Contrastive Learning. xvii, 120, 122, 124–130, 133, 161

FN false negative. 38, 39, 127

FP false positive. 38, 39, 127, 128

GCN Graph Convolutional Network. 116

GNNs Graph Neural Networks. 6, 19, 103, 109–113, 115–117, 122, 133

ML Machine Learning. 5, 100, 101, 103, 104, 110, 115, 128, 129, 161

MLE Maximum Likelihood Estimation. 43–47

NI network inference. 7, 21, 45, 53, 59, 111

OSNs Online Social Networks. 11, 12, 15–24, 26, 27, 29–33, 35–40, 42, 48, 49,
52, 53, 59, 62, 99–107, 109, 113, 117, 129, 162

RNNs Recurrent Neural Networks. 107–109

xix

SBM Stochastic Block Model. 37, 38, 45–48, 52, 56, 69, 71–73, 76, 78–96, 132

SNA Social Network Analysis. 26, 31, 40

SSL self-supervised learning. 111

TN true negative. 38, 39, 127

TP true positive. 38, 39, 127, 128

xx

Introduction 1
Contents

1.1 A brief history of graphs . 2

1.1.1 The first problem using graphs 2

1.1.2 From recreational puzzles to formal definitions . . . 3

1.1.3 The introduction of computers 4

1.1.4 Network science: graphs as complex systems 5

1.1.5 Machine learning: a modern tool for graphs 5

1.2 The network is not the data 6

1.3 Network inference . 7

1.3.1 Why is it needed? . 7

1.3.2 The challenges . 10

1.4 Network inference for Online Social Networks 11

1.4.1 An introduction to Online Social Networks 11

1.4.2 The need for network inference 12

1.4.3 A toy example . 14

1.5 Thesis goals . 15

1.6 Thesis structure and contributions 17

The main object of interest in this thesis is graphs, mathematical structures used
to represent relationships between any kind of mathematical or real-life entity.
The term comes from the ancient Greek word graphē, meaning the process of
writing or drawing. A common modern-day example of a graph is the structure of
the Internet, with web pages linking to each other. The invention of online social
media provides a rich terrain for exploration as well: The way users interact with
each other is inherently graph-like and can provide valuable insights into human
behavior and dynamics. In natural sciences, graphs can be used to represent
interactions between particles and other physical entities. Graphs are also widely

1

used in industrial applications, representing road networks and telecommuni-
cation infrastructures among others. Thanks to their inherent flexibility, the
potential applications of graphs are endless, promising a better understanding of
interconnected and often intricate systems.

In this thesis, we begin by introducing the scientific evolution of graphs and
exploring the various perspectives from which they can be studied. We then
highlight the importance of real-world data in the study of graphs, stressing some
important issues that arise and that have been underexplored in literature. We
introduce network inference as a class of methods that can address these problems,
particularly focusing on their usage within online social networks. This subject
will persist as the central theme throughout the remainder of the thesis.

1.1 A brief history of graphs

1.1.1 The first problem using graphs

Graph theory is the field of mathematics dedicated to the study of graphs. The
very first instance of a graph theory problem emerged in a rather recreational
context, sparked by a series of historical events: During the 18th century, the
Prussian city of Königsberg had become a thriving trading center, benefiting from
its strategic position around the Pregel River. The economic prosperity of the
locals allowed them to build seven bridges across the river, connecting the two
mainland regions to two islands. It is claimed that the citizens of Königsberg
spent their free time walking around the city, trying to devise a round-trip that
crossed each of the seven bridges only once. Failing to find a solution, a Prussian
mayor sought assistance from the renowned mathematician Leonhard Euler.
Ironically, he considered the problem trivial, believing that its “discovery does not
depend on any mathematical principle”. Nevertheless, it intrigued him enough to
continue thinking about a solution (quoted in Hopkins and Wilson, 2004):

“This question is so banal, but seemed to me worthy of attention in
that [neither] geometry, nor algebra, nor even the art of counting was
sufficient to solve it.”

Although he did not explicitly mention graphs at the time, he drewwhat we would
today identify as a graph, consisting of a set of vertices or nodes and a set of edges
or links that connect them, to solve the problem: He represented each of the four
land areas with letters A, B, C, D and connected with lines each piece of land
that had a bridge between them (Fig. 1.1a). With the help of this diagram, Euler

2 Chapter 1 Introduction

(a) Euler’s diagram

A

C

B

D

ba

e

dc g

f

(b) The Königsberg graph

Fig. 1.1. – The Seven Bridges of Königsberg.

proved in his seminal paper that there can be no continuous walking path that
crosses all the bridges while never crossing the same bridge twice (Euler, 1741).

The importance of Euler’s diagram. Euler’s proof is considered historically
significant as the first time someone used a graph to solve a mathematical prob-
lem. It hinted at the idea that graphs are mathematical structures with intrinsic
properties that are worthy of exploration, ultimately laying the foundations of
graph theory.

1.1.2 From recreational puzzles to formal definitions

The visual representation we commonly use today for graphs (Fig. 1.1b) did not
appear until the late 1800s, when mathematicians started using Euler’s diagrams
to solve the various recreational puzzles that were popular at the time1. In the
twentieth century, the formal study of graphs finally gained momentum and
evolved into an important branch of mathematics. Polish mathematician Dénes
Kőnig wrote the first textbook in graph theory laying the groundwork for further
exploration (König, 1936). Early analysis of tree structures by Cayley (1890)
inspired many papers in combinatorics, and specifically in enumerating graphs
with particular properties (Pólya, 1937; Gilbert, 1956). Meanwhile, the so-called
network flow problems were popular, providing simplified models of real-life
traffic flows, applicable to railway and road networks among others. The shortest
path problems were attracting growing interest, with algorithms proposed by

1For an extensive overview of the nineteenth century recreational puzzles that led to graph
theory, we refer the reader to the Mathematical Recreations and Essays by Ball (1893).

1.1 A brief history of graphs 3

Dijkstra and Bellman-Ford becoming highly influential for both graph theory and
computer science (Dijkstra, 1959; Ford, 1956; Bellman, 1958).

Random graphmodels. During the 1950s, a significant new branch of graph the-
ory started to emerge: Advancements in combinatorics and graph enumeration
drove the exploration of random graphs, a class of probabilistic or, equivalently,
random processes capable of generating graphs with different properties. Two
concurrent works stand out for establishing this field: (i) the seminal 1959 paper
by Paul Erdős and Alfréd Rényi that proposed a random graph generation process
where all graphs with a fixed number of vertices and a fixed number of edges are
equally likely (Erdős and Rényi, 1959); and (ii) themodel by Edgar Gilbert that was
published independently in the same year, where each edge in a random graph
has a fixed probability of being present or absent, independently of each other
(Gilbert, 1959). As we will see in Section 1.1.4, while these works were highly
influential within their discipline, their widespread adoption came decades later,
as an essential tool for analyzing large real-world systems (Barabási, 2013).

Interdisciplinary research. In the 1960s, Frank Harary published his Graph
Theory book where he emphasized how diverse the applications of graphs can be
(Harary, 1969). In his own words:

“It has become fashionable to mention that there are applications
of graph theory to some areas of physics, chemistry, communication
science, computer technology, electrical and civil engineering, architec-
ture, operational research, genetics, psychology, sociology, economics,
anthropology, and linguistics.”

Indeed, an increasing number of researchers at the time were making the con-
nections between their field and graph theory. A notable example is that of
sociologist M. S. Granovetter and his highly cited paper The strength of weak ties
(1973), where he compared the properties of the distance between individuals
in a real-life social network with the mathematical properties of the distance
between nodes in a graph.

1.1.3 The introduction of computers

Certainly, many of the early graph problems remain pertinent to this day; for
example, the problem of determining in polynomial time whether two graphs are
isomorphic (Whitney, 1932) remains unsolved. However, the way we solve these
problems and any other kind of mathematical problem in general has changed

4 Chapter 1 Introduction

drastically since. The year 1977 specifically marked a historical turning point,
when Appel, Haken, and Koch proved the Four Color Theorem by using assembly
language (1977). Their work made computer-assisted proofs a real possibility,
reshaping radically the scientific landscape (Tymoczko, 1979). Nevertheless, due
to the persisting limitations of computational resources at that time, handling
graphs on a large scale remained impossible; we lacked efficient mechanisms to
process larger structures, thereby missing many opportunities in treating real-
world examples that include millions, or even billions, of interactions at a time
(Barabási, 2013).

1.1.4 Network science: graphs as complex systems

It was thanks to the advent of the Internet in the 1990s, and numerous innovations
in the way we collect, store, and exchange information that we were finally able
to treat a wide range of large interconnected networks, also known as complex
systems. This term is used to reflect the complex interactions that may appear
between components of any real-world system and that are difficult to model
(Waldrop, 1993). Examples can be found nearly everywhere in real life, from the
neuron-level interactions in the human brain and the biological structures of a
living organism, to the broader scale systems of transportation, communication,
and finance (Gell-Mann, 1994). The study of complex systems became the goal
of network science, a field that integrates and combines theories from diverse
domains like physics, computer science, graph theory and sociology (Newman,
2018). It eventually brought interdisciplinary attention to random graph mod-
els, proposed much earlier by Erdős-Rényi and Gilbert, as simplified means to
simulate the behavior of many of these structures. Over time, new models were
introduced to incorporate more realistic elements during the network generation
process, such as the Barabási-Albert model (1999)2.

1.1.5 Machine learning: a modern tool for graphs

The technological advancements of the twenty-first century in computational
hardware and the increased accessibility of large-scale data, allowed treating
graphs with a new set of tools, derived from Deep Learning, a specialized field
of Machine Learning (ML) (LeCun et al., 2015). Central to the functioning of
these methods is the use of artificial neural networks, a set of models inspired by
the connections of neurons in the human brain (Rosenblatt, 1957). To address

2We will explore these models in further detail in Chapter 2.

1.1 A brief history of graphs 5

irregularities and intricate patterns inherent in graph-structured data, a task
also known as graph representation learning, a distinct class of artificial neural
networks was introduced, also known as Graph Neural Networks (GNNs) (Gori et
al., 2005; Scarselli et al., 2008). Particularly in recent years, GNNs are considered
an extremely efficient architecture in settings where traditional models fail to
perform, due to the interconnectivity of the input systems (T. N. Kipf and Welling,
2016).

In the present thesis

This thesis views graphs from two different perspectives: network science and

machine learning. We will use the term networks when referring to real-world

examples — such as social networks or the Internet — and the term graphswhen

discussing from a mathematical perspective.

1.2 The network is not the data

As in any scientific endeavor, when dealing with the study of graphs and networks,
access to data providing genuine interactions is necessary (Butts, 2003). This
allows for making informed decisions based on insights from real-world insights
as well as developing more reliable graph models. For example, data from real-
world networks can validate estimations made by theoretical models, and ensure
that they accurately capture reality (Newman, Watts, et al., 2002). The data
revolution that came about with the Internet democratized our access to this
kind of information (Kitchin, 2014). Although not always explicitly structured as
graphs, these public datasets detail diverse types of interactions, e.g., connections
between users on social media platforms, collaborations between researchers in
academic databases, links between web pages, etc. (Hu et al., 2020).

As suggested by Brugere et al. (2018), in many cases this data reflects reality
in a straightforward way: Are two students enrolled in the same class? Are
two researchers frequently citing each other? Are two products often purchased
together? To respond, it suffices to observe the data in question. However, in other,
more complicated examples, relationships between entities are only indirectly
observable and must be inferred in a non-trivial manner: Do two individuals who
frequently communicate online share a close friendship? During a global virus
pandemic, who has infected whom? Are two proteins observed in the laboratory

6 Chapter 1 Introduction

interacting with each other? Arguably, creating a network representation that
accurately responds to these questions is not as simple. As recently highlighted
by Newman (2018):

“Some of the data may have no bearing at all on the network structure.
Others maybe related only obliquely to it. And we may not know in
advance which data are relevant and which are not, or how accurate
any of the measurements are. Remarkably, under these seemingly
daunting circumstances we can nonetheless make progress.”

In another recent work (Peel et al., 2022), the authors emphasize the fact that
“whatever measurement we make is not necessarily “the” network we want to
study, but includes at least some amount of distortion”. These works bring for-
ward a clear distinction between the observed data that we have available, and
the real network underlying the observations. In many cases, these two can
differ significantly due to errors and discrepancies in the experiments or missing
information (Newman, 2018). Although early works in network science had
already recognized this distinction (Goldberg and Roth, 2003), taking it explicitly
into consideration remains extremely rare among practitioners (Peel et al., 2022).
Naturally, an important question comes forward: How can we access the real
network that underlies a set of measurements or observations in a collection of
data? The response can be found in the context of network inference (NI).

1.3 Network inference

In this thesis, we join the stance of research arguing that a clear distinction
between the data and the underlying network should become common practice.
We suggest that this could be addressed under a framework of network inference.
It is a term that has not been given a precise definition; rather, it serves as a way
to describe all methods employed when we wish to infer networks that are not
directly provided by the data (Butts, 2003).

1.3.1 Why is it needed?

Network inference approaches are widely used in a variety of domains, combining
tools from different fields of study such as statistics (Butts, 2003; Mukherjee and
Speed, 2008), graph theory (Albert, 2007), network science (Goldberg and Roth,
2003), and physics (Newman, 2018b; T. Peixoto, 2018). One of its earliest uses
is found in molecular biology, where it was proposed as a tool to recreate and
explain complex interactions between proteins or genes (Friedman et al., 2000).

1.3 Network inference 7

Fig. 1.2. – A hypothetical underlying network (left) and examples of two different kinds of
unreliable measurements that we might get: erroneous (right-top) and/or missing edges
(right-bottom). Both kinds of measurements can distort significantly the structure of the
underlying network.

Many network inference methods have since been applied in other fields as well.
Examples include social network analysis (Saito et al., 2008), epidemiology (X.
Zhang et al., 2021; Firestone et al., 2020), finance (Giesecke et al., 2020), physics
(Brugere et al., 2018), and telecommunications (J. Wu et al., 2022). Generalizing
to any kind of setting, we can summarize some of the most common reasons why
network inference might be needed into the following points:

– Unreliability of measurements: Many seminal works have emphasized the
fact that experimental data, including data on networks, is often unreli-
able (Von Mering et al., 2002; Deane et al., 2002; Clauset et al., 2008). We
consider two main sources of data unreliability that have been highlighted
by several studies: the presence of errors in the measurements (Goldberg
and Roth, 2003; Sprinzak et al., 2003; Butts, 2003), and missing informa-
tion (Guimerà and Sales-Pardo, 2009). Both aspects might result in data
measurements that are significantly different than the underlying network.

8 Chapter 1 Introduction

As we show in Fig. 1.2, confusing these experimental measurements of a
network for its true underlying structure, without acknowledging the unre-
liability present, involves the risk of ignoring some of its unique structural
properties. Unfortunately, ignoring this fact is still very common among
network scientists and robust methods that take it into account are still
understudied (T. Peixoto, 2018).

– Representation of networks: An interesting case in point is made by Butts
(2009) who warns that a network representation is only an approximation
of the underlying system and its construction involves assumptions that
should always be made clear and explicit. A concrete example of this can
be found in sociology: Social networks can be constructed via surveys
and questionnaires (Marsden, 1990). However, the participants may often
provide contradictory responses, posing a challenge for researchers to ac-
curately represent these relationships in a network (Butts, 2003; Kossinets,
2006). Consequently, constructing the final network structure will neces-
sarily require some assumptions or simplifications, potentially distorting
the (hidden) reality. On top of that, experts sharing their network datasets
are often omitting the assumptions made during their construction, mak-
ing it even more challenging for the community to decipher underlying
information (Pereira-Kohatsu et al., 2019).

– Data is rich and multimodal: Many datasets include measurements that
extend beyond mere interactions between nodes. Data can be rich and
multimodal, involving different sources of information such as text, video,
images, etc (Newman, 2018b). Take social networks for instance, which
can be measured by taking surveys of humans, collecting social media data,
or gathering observations of face-to-face interactions with satellite signals
(Stopczynski et al., 2014). However, not all interactions in a dataset are
equally informative about the target structure. Some interactions may be
irrelevant, making it challenging to choose among the most meaningful
connections. Network inference methods offer a valuable alternative by
indirectly deriving these connections, eliminating the need for manual
selection (Newman, 2018b).

– Collecting data is expensive: Even when one is an expert of a domain, col-
lecting data that accurately captures a target structure can be costly, time-
consuming, or even impossible in some scenarios. For example, gaining

1.3 Network inference 9

direct access to the topology of the human brain is still not experimentally
possible, and therefore inference methods might be needed to map impor-
tant brain regions in a non-invasive way (Hagmann et al., 2008). Even the
design and implementation of more straightforward data collection strate-
gies such as questionnaires and surveys can be incredibly time-consuming
and expensive, making the need for indirect methods of measuring in-
formation such as network inference an important tool (Gao and J. Liu,
2016).

1.3.2 The challenges

Although crucial, implementing network inference methods is not an easy task
(Mukherjee and Speed, 2008). Firstly, taking into account data unreliability
during inference is not as straightforward, and requires consideration of different
challenges, including quantifying the errors present, detecting the mechanisms
that produced them, and addressing inherent uncertainties (2003). Another
significant challenge thatwe have to confront is the vast space of possible networks
that can be inferred even for moderately sized data (Mukherjee and Speed, 2008).
Given that real-world networks usually involve a large number of nodes that
interact with each other, sophisticated optimization strategies might be needed
to infer networks in a time-efficient way (De Smet and Marchal, 2010).

Additionally, it is important to acknowledge that the nature of the data itself
might introduce additional challenges, as different types of networks may exhibit
distinct characteristics in terms of quality and structure. For example, it has
been suggested that missing edges might be easier to infer in social networks
compared to biological and technological networks due to properties such as the
local clustering of nodes and assortativity (Ghasemian et al., 2020). Consequently,
the development of a universal network inference method that effectively ad-
dresses all types of data is challenging. Tailor-made solutions are often necessary
to tackle specific challenges (De Smet and Marchal, 2010), which may involve
adapting existing network inference techniques or devising entirely new methods
to accommodate the unique features of the data being analyzed (Ghasemian et al.,
2020).

10 Chapter 1 Introduction

In the present thesis

Given the interdisciplinary nature of network inference applications and the do-

main expertise often needed to evaluate them in real-world scenarios, we narrow

down our focus to a single domain: online social networks. Themotivations behind

this decision will become apparent in the next section.

1.4 Network inference for Online Social Networks

1.4.1 An introduction to Online Social Networks

Together with the Internet and the data revolution came what may be regarded as
one of the most impactful innovations of the twenty-first century: social media.
Central to their functioning are the interactions between users, who engage with
each other’s content through different mechanisms, such as posts, reposts, likes,
comments, and follows, giving rise to a vast variety of Online Social Networks
(OSNs). As a result, social media provides a rich source of networks for all sorts
of domains: In politics, for example, we can illuminate the dissemination of
opinions or detect key influencers within political discourse (Cointet et al., 2021).
Similarly, in marketing, we can identify potential brand advocates or predict
consumer behavior based on social ties and interactions (Gomez-Rodriguez et
al., 2012). Given that malicious users are very prevalent on these platforms,
governments are engaging network experts to point out those responsible for
spreading misinformation or encouraging harmful behaviors like hate speech
and harassment (Shu, H. R. Bernard, et al., 2019; Pereira-Kohatsu et al., 2019;
Pitsilis et al., 2018).

The ecosystem of social media Box �.�.�

The first social media platform is considered to be SixDegrees.com,
launched in 1997, where people could create their personal profiles under
their real names and connect with their friends. Signaling an exciting new
era of communication and information exchange, many similar ventures
followed, with the likes of Friendster and Myspace gaining widespread
popularity on an international level. Many of these early platforms have
ceased to exist, but a handful of them remain extremely popular to this day:
Facebook, YouTube, Twitter (today known as X), and Reddit are some of

1.4 Network inference for Online Social Networks 11

the most notable examples, followed by later ventures, such as Weibo, Pin-
terest, Instagram, Snapchat and, more recently, TikTok. Each social media
platform presents its distinct features that affect a network’s characteris-
tics and dynamics (see Box 1.4.1). For instance, while on some platforms
like Facebook, the friendship is reciprocated, on others, like Instagram or
Twitter/X, we have asymmetric follower-followee connections. As a result,
each platform serves a different purpose with a direct impact on all aspects
of modern life, from politics, science, and art, to professional and inter-
personal relationships. Perhaps not surprisingly, their popularity is still
ever-increasing: As of January 2024, there is an estimated 5.04 billion social
media users — equating to more than 62% of the world’s total population —
and an average of more than 8 new users per second (DataReportal, 2024).

1.4.2 The need for network inference

Certainly, OSNs can provide numerous opportunities for exploration and analysis
with significant implications for diverse domains. Nonetheless, the insights we
can get, are only as good as the datasets that we have at hand or that we can
potentially collect. In addition to errors or missing information as any kind of
experimentally derived datasets, OSNs present some additional characteristics,
unique to the way they operate. In this section we present the main challenges
of dealing with this kind of data, highlighting the need for network inference
methods:

– Challenge 1: Access to social media data is limited. What we can quickly realize
when analyzing OSNs, is how challenging it is for researchers to collect data from
social media platforms. Typically, via a public API, social media platforms provide
researchers with some select information. For example, Twitter used to provide
researchers with data such as tweets, retweets, friendships, etc. However, more
informative details like who retweets whom are not included3. On top of that, in
the latest years, we have been noticing a social media policy shift, where most
major platforms are constraining access to their data. For example, since last year,
access to the users’ friendship networks, i.e., the networks that show who-follows-
whom, has been prohibited on Twitter/X. A recent study is even suggesting that

3According to the Twitter API documentation of a Tweet Object, the “retweets of retweets do
not show representations of the intermediary retweet, but only the original Tweet”.

12 Chapter 1 Introduction

we are witnessing a “post-API” era with radical changes in data scraping strategies
risking to alter research practices (Trezza, 2023). Even if we move towards plat-
forms that provide data more openly, it can still get prohibitively time-consuming
and labor-intensive to collect it (Failla and Rossetti, 2024). Consequently, in
such cases, network inference methods can be incredibly valuable. They allow
researchers to infer missing or inaccessible network structures based on available
data in a cost-effective manner, thereby facilitating analysis and exploration even
when direct data collection is challenging or restricted (Brugere et al., 2018).

– Challenge 2: Uncovering hidden information is non-trivial. Let us stay in the
example of Twitter/X and think about what kind of informationwemight leverage.
As demonstrated, the platform’s API gives us access to tweets, their retweets
and their respective timestamps, without revealing who-retweets-whom and
who-follows-whom. Given this dataset, one may pose the following question:
How does a tweet posted on the platform reach the users that retweeted it? We
can start by trying to infer the (hidden) path that each tweet has taken, starting
from its original author to the initial user that retweeted it, then to the second
one, and so forth. If we make a simplified closed-world assumption that users
retweet only from the users they follow, the inferred edges can also tell us who-
follows-whom. For instance, for the first user that retweets some tweet, we can
easily infer that they saw it directly from the author who created it, thus drawing
an edge between the two. However, as we progress in time and onto the next
users, it becomes exponentially harder to infer which edges are present or absent.
Given that a dataset may include thousands, even millions of tweets and retweets,
we are dealing with a challenging combinatorial problem. This is where a network
inference method might be needed.

– Challenge 3: Evaluating existing network inference methods is difficult. Many
methods have been proposed throughout the years that can provide solutions for
scenarios like the one above, inferring the optimal networks that most accurately
explain a set of timestamped interactions (Saito et al., 2008; Gomez-Rodriguez
et al., 2012; Newman, 2018b; T. Peixoto, 2019). Of course, the need for these
methods stems from the absence of information such as the intermediary retweet
paths or the users’ friendship networks. Therefore, we have no ground truth
available to evaluate each method’s results and an important question arises:
What is considered a useful network inference result? How can we compare the
many possible representations given by each method and what makes us prefer

1.4 Network inference for Online Social Networks 13

Fig. 1.3. – A toy example of a network inference setting assuming data from the platform
Twitter/X. An (unknown) underlying network gives a dataset or posting/reposting interac-
tions from users Alice (A), Bob (B), and Carol (C). We can infer various combinations of
connections between the users.

the one to the other (Brugere et al., 2018)? An intuitive thing we can do is to
interpret the results (i.e., the inferred edges) with respect to the input dataset. We
may try to explain for example, why we observed a specific retweet in the input
dataset, by looking into the inferred user-user connections. In the next section,
we make this concept more concrete, by using a real-life inspired example.

1.4.3 A toy example

It might be easier to understand the above challenges by looking into an example
of a toy Twitter/X dataset, as shown in Figure 1.3. We assume that an underlying
network between the users of the platform gives rise to a set of measurements/ob-
servations, which makes the final dataset that we have at hand. As we observe
in the figure, two tweets have been posted, one by user Alice and one by user
Bob. Alice’s tweet has been retweeted/reposted by Bob and then by Carol. Bob’s
tweet has been retweeted by Carol and then by Alice. The first question to ask
is: How are these three users connected to each other? Looking at Alice’s tweet
we can non-trivially infer that Bob has retweeted her directly. Under our closed-
world assumption, this means that Bob follows Alice. What about Carol? She
could have retweeted Alice, Bob, or both. However, this information is hidden
from us. Generally, we have 64 possible combinations of networks that could be
inferred between the three users. Some of these are shown on the right side of
the figure. They are directed networks, connecting the users according to the way
that information diffuses. For example, if the directed edge (A, B) exists, it means
that Alice can pass on information to Bob, or equivalently, that Bob can receive
updates from Alice, i.e., he follows her. A second important question to ask then
is: Which of these networks satisfy us the most as a result? To give a response, the

14 Chapter 1 Introduction

most intuitive way to proceed is to give an interpretation of the edges inferred
by each network. For example, the upper left network tells us the following: (i)
that Alice can diffuse information (e.g., a tweet) to user Bob; and (ii) that Bob
can diffuse information to Carol. Given these connections, we can explain the
retweets of Alice’s tweet. However, we cannot do the same for Bob’s tweet, since
there is no path for the information to diffuse from its author Bob to the user
Alice. As a result, the retweet by Alice remains unexplained, and we can therefore
claim that we are not satisfied by the edges inferred in the selected network.

Towards feasible results. Generalizing this idea, we may wish to accept only the
networks that provide sufficient explanations for all tweets and should therefore
satisfy the two following requirements:

– Requirement 1: They provide at least one path from the authors to all the
users that retweeted their tweets.

– Requirement 2: These paths abide by the temporal order of the observed
retweets.

If we now examine the upper right network inferred in Figure 1.3, we can easily
see that it satisfies the first requirement but violates the second: Bob’s tweet
cannot be explained by the inferred path B→ A→ C, since, by looking at the
retweets’ ordering, Alice could not have possibly diffused the information to
Carol who retweeted it first. Therefore, for both of the two upper networks, we
say that the dataset is not feasible given the inferred network. In the opposite case,
if a network inference result satisfies both requirements, we say that the dataset
is feasible given the inferred network, or, equivalently, that the inferred network
explains the dataset. This is the case for the two lower networks. Of course, if
we trivially inferred a complete graph, where all users were connected to each
other, the dataset would also be feasible. However, this would not reflect the
real properties of OSNs, which, as we will see in Chapter 2, present some unique
characteristics that should be taken into account during inference.

1.5 Thesis goals

Given the above challenges, we are motivated to explore the following key points
within this thesis:

– Defining feasibility on OSNs: One of the primary goals of this thesis is to
propose the metric of feasibility as a requirement that must be met by a network

1.5 Thesis goals 15

inference method applied to OSNs. This way we guarantee that the network can
reproduce and explain all interactions observed in a dataset. The intuition behind
this suggestion is that a network that can explain all the interactions and their
chronological order inside the dataset is closer to the real one. Previously, we
outlined the procedure for assessing feasibility using a specific example. Our
goal now is to devise a more general definition that can be applied to any similar
dataset derived from OSNs.

– Exploring the feasibility of current network inference methods and its relation to
the ground truth: An accompanying goal of this thesis is to examine experimen-
tally: (i) to what extent the current network inference methods provide feasible
results; and (ii) whether feasibility does indeed guide to results that are closer to
the underlying network, thus serving as an indicative metric of inference quality.
To achieve this, we gather the friendship network that underlies a real-world
Twitter/X interactions dataset. This is an important step since it will stand as a
meaningful ground truth against which we can compare the precision of the in-
ferred results and its relation to feasibility. Interestingly, this evaluation approach
has been largely overlooked in existing literature, primarily due to the scarcity
of comprehensive datasets containing both the network measurements and the
underlying connections to compare with. This is an important step of the thesis
towards bridging this gap.

– Developing a network inference method that guarantees feasibility: At first
glance, inferring networks that can explain the given dataset may seem as simple
requirement. However, as we will demonstrate in this thesis, it is a non-trivial
task to achieve, and current network inference methods do not take it into consid-
eration. As a result, another aim of this thesis is to propose a network inference
approach that can infer networks while guaranteeing the feasibility of the results.
Of course, in reality, a portion of the observed interactions can originate from
indirect sources. For example, users might encounter suggested content from
individuals they do not directly follow, as determined by the platform’s recom-
mendation algorithm. To address these scenarios, we also intend to explore ways
to relax the strictness of the feasibility requirement.

By exploring these aspects, we contribute to the literature of network inference,
particularly in the context of OSNs. We aim to provide a network inference
framework that holds particular value in scenarios characterized by unreliable
and inadequate data. This involves not only proposing a novel network inference

16 Chapter 1 Introduction

framework with which we can infer networks that can explain the input dataset
but also the introduction of a novel evaluation method based on the metric of
feasibility. It is important to highlight that although our data comes from online
social networks, the methodologies, and mathematical solutions presented in
this thesis hold potential for application in other domains as well.

1.6 Thesis structure and contributions

We will now provide an overview of the thesis’ overall structure, summarizing
the contributions of each chapter:

Chapter 2: Fundamentals of network inference

This chapter provides the network inference fundamentals designed to draw infer-
ences from unreliable datasets originating from OSNs. We begin by introducing
the concept of network data unreliability, primarily defined by the presence of
errors and missing values in the data. We explore how this unreliability impacts
information coming from OSNs, emphasizing the distinction between the raw
data and the network we aim to infer. We then demonstrate how OSNs can be
represented as graphs within a network inference framework and discuss various
metrics that characterize their unique properties, which must be considered
during inference. Additionally, we examine random graph models used to in-
fer synthetic graphs with well-defined properties, highlighting their theoretical
significance as benchmarks for comparing with real-world networks. Lastly,
we present standard metrics and best practices for assessing the inferred edges.
These concepts are crucial for this thesis, forming the foundation of the network
inference framework we aim to develop.

Chapter 3: Network inference approaches for Online Social Networks

This chapter offers an overview of the existing literature concerning network
inference fromunreliable data. We present various network inference approaches,
with the principal one being Bayesian modeling. Given that our particular case
of OSNs data comes with timestamps, we also look into the inference methods
tailored specifically to temporal data. These may pose additional challenges,
particularly in the way that the time aspect is represented. Finally, we highlight the
limitations of these existing works, especially regarding their evaluation process.
This discussion will provide additional motivation for proposing a new network

1.6 Thesis structure and contributions 17

inference evaluation metric, as well as developing a novel network inference
method that offers a better alternative to current techniques.

Chapter 4: Constrained Expectation Maximization for feasible network
inference

This chapter presents the main contribution of this thesis: a novel network infer-
ence evaluation metric called feasibility and a network inference method, namely
Constrained Expectation Maximization (CEM), to guarantee it. Given that our
algorithm relies on real-world datasets from user interactions on OSNs, we first
show how to model the information stemming from such datasets. We then
formally define the concept of feasibility in the context of OSNs. To ensure
feasible results, we develop a novel network inference algorithm that incorpo-
rates a set of feasibility constraints to account for all possible hidden paths given
timestamps of user interactions. We formulate the feasibility guarantee as a
linear constrained optimization problem, which simplifies the computation. It
eventually infers a posterior distribution of feasible underlying networks that
explain the provided dataset, while respecting the chronological order of the
interactions observed. We provide extensive experimental evaluations on both
a synthetic and a real-world Twitter dataset consisting of nearly 300,000 tweets
and over 1,600,000 retweets related to the 2017 French presidential elections. We
compare with other network inference methods in terms of feasibility and two
additional aspects: (i) their real-world properties and (ii) their proximity to the
actual underlying friendship network. To achieve the latter for the real-world
Twitter dataset, we had to manually collect the friendship network, which was
still allowed by the platform’s API at the time. As mentioned in Section 1.5, this
evaluation step is an important contribution since current network inference
methods rarely compare their results with the actual underlying network, relying
instead on heuristics or artificially generated data. We report the results sug-
gesting that our proposed method can ensure feasibility while providing better
approximations for the ground truth, compared to existing network inference
methods.

The contributions of this chapter have led to the following publications:

� Effrosyni Papanastasiou, and Anastasios Giovanidis. Constrained expectation-
maximisation for inference of social graphs explaining online user–user inter-

18 Chapter 1 Introduction

actions.” Journal of Social Network Analysis and Mining 13.1, Springer 2023: 41.
(Papanastasiou and Giovanidis, 2023)

� Effrosyni Papanastasiou, and Anastasios Giovanidis. Bayesian inference of a so-
cial graph with trace feasibility guarantees. IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), ACM, 2021.

Additionally, the Twitter friendship network that we collected for the purposes
of our study has also contributed to a different domain, beyond the scope of this
thesis, specifically in the context of opinion dynamics: � Antoine Vendeville,
Anastasios Giovanidis, Effrosyni Papanastasiou, and Benjamin Guedj. Opening
up echo chambers via optimal content recommendation. International Confer-
ence on Complex Networks and Their Applications (pp. 74-85). Cham: Springer
International Publishing. (Vendeville et al., 2022a)

� Antoine Vendeville, Anastasios Giovanidis, Effrosyni Papanastasiou, and Ben-
jamin Guedj. Recommendation of content to mitigate the echo chamber effect.
Extended abstract. Conference on Complex Systems, 2022. (Vendeville et al.,
2022b)

Chapter 5: A contrastive approach using Graph Neural Networks

Motivated by the poor scalability of constrained optimization problems for ap-
plications with large-scale data, this chapter investigates an alternative feasible
network inference framework that relies on the field of Artificial Intelligence.
We begin by briefly introducing the subfield of machine learning, then focusing
on techniques adapted to graph-shaped data. A comprehensive review of liter-
ature follows, presenting diverse modeling concepts that could be relevant to
the domain of network inference given data from OSNs. Their main difference
to the previous framework is that they learn latent node embeddings instead of
probability distributions for the entire structure. We discuss the weaknesses of
these methods, primarily focusing on their evaluation processes and their omis-
sion to account for unreliability. This motivates us to propose a novel alternative:
We first suggest representing the general network inference problem in a self-
supervised learning framework. It leverages an encoder model often employed
for link prediction tasks, based on the use of Graph Neural Networks (GNNs).
To incorporate the concept of feasibility, we propose a simple contrastive loss
that can learn node embeddings incorporating the notion of time via a simple
sampling approach. The basic idea behind this is that the node embeddings of the

1.6 Thesis structure and contributions 19

users who could potentially be connected in the underlying graph in a feasible
fashion should also be encoded closer in the latent space. We run preliminary
experiments to compare against CEM and a simple deep learning baseline. The
results are promising, and promote an exciting new direction which could poten-
tially improve the interpretability of the learning process along with the scalability
of the network inference problem.

Chapter 6: Conclusion

In this final chapter, we summarize the contributions of this thesis for the problem
of feasible network inference in the domain of OSNs and reflect on our findings.
We also address the main limitations stemming from our modeling decisions and
discuss potential avenues for future research.

∗ ∗ ∗

20 Chapter 1 Introduction

Fundamentals of network

inference
2

Contents
2.1 Network data unreliability . 22

2.2 Modeling Online Social Networks with graphs 23

2.3 Understanding the properties of Online Social Networks . . . 26

2.3.1 Local and global graph measures 26

2.3.2 Real-world properties of Online Social Networks . . 30

2.3.3 Modeling the aspect of time 33

2.3.4 Modeling the diffusion of information 33

2.4 Generating networks with random graph models 35

2.4.1 The Erdős-Rényi model 35

2.4.2 Stochastic Block Model 37

2.5 Measuring performance . 38

2.6 Conclusion . 40

As demonstrated in the introduction, graphs can be found everywhere in real life,
offering a mathematical framework to represent the intricate relationships found
in biological, physical, and social networks, among other domains (Newman,
2018c). Our ability to access these graphs is made possible by a vast repository of
publicly available datasets, accessible to everyone for exploration. However, these
datasets are unreliable, and may differ substantially from the actual networks they
represent, making necessary the use of network inference (NI) methods. In this
thesis, we are interested in the data coming from Online Social Networks (OSNs),
which, as we explained earlier present some additional challenges (Section 1.4).
As a result, this chapter presents some of the background needed to deal with
this problem. In Sections 2.1 and 2.2 we make the distinction between the
data and the network more concrete with several studies to support this claim.
Then, we show how we can formalize this problem on OSNs by representing

21

them as graphs, illustrating it with an artificial dataset example. Then, Section
2.3 presents different metrics from graph theory to characterize some of the
characteristics and real-world properties of OSNs that we would ideally wish for a
network inference method to capture. In Section 2.4, we compare the real-world
properties of OSNs to these of random networks, an important class of networks
often used as prior knowledge when the exact structure is not yet known. Finally,
Section 2.5 presents the most common metrics for experimentally evaluating
the efficacy of a network inference method, underlining the potential challenges
involved.

2.1 Network data unreliability

In the Introduction, we established that OSNs datasets providing measurements
or observations may lack reliability, a quality that is inherent to any kind of
empirical data collection process (Clauset et al., 2008). Especially in recent years,
with a wealth of network data at our disposal, there is a growing consensus
that all empirical networks include some kind of unreliability which should be
taken into account (Newman, 2018; T. Peixoto, 2018). However, incorporating it
systematically is still far from common practice among network scientists, and
the development of methods to address it is deemed as understudied (Peel et al.,
2022). The first important step towards that goal is to make a distinction between
the observed network, as given by the data, and the real network that exists
and which we are trying to capture. The difference between the two has been
extensively documented in the literature and focuses primarily on two aspects:
error and incompleteness. Though distinguishing between themmight not always
be straightforward, errors typically manifest as false positive edges (interactions
observed but not actually present in the real network), whereas incompleteness
results in false negative edges (interactions missing from the data but existing in
the real network) (Guimerà and Sales-Pardo, 2009).

Networks contain errors. The assessment of the errors in the collected data
emerged as a topic of research as early as the 1970s (Killworth and H. Bernard,
1976; H. R. Bernard et al., 1984; Freeman et al., 1987;Marsden, 1990). Sociologists,
for instance, began questioning the viability of self-report data due to concerns
about its error levels and its reliability in inferring genuine interaction patterns
(Butts, 2003). These concerns extend to other domains, most notably biological
networks such as protein-protein interaction networks, which are experimentally
derived and prone to significant false positive errors (Von Mering et al., 2002;

22 Chapter 2 Fundamentals of network inference

Deane et al., 2002; Goldberg and Roth, 2003, Sprinzak et al., 2003). Errors
may not only occur at the level of edges but also affect nodes. For instance, in
collaboration networks linking researchers who co-author papers, erroneous
nodes might appear due to individuals sharing identical names or appearing
under different spellings, formats, or affiliations (Peel et al., 2022).

Networks are incomplete. In many experimental settings, discovering network
interactions is an extremely challenging task (Clauset et al., 2008). Consequently,
the networks we gather often prove to be incomplete, failing to capture numerous
interactions critical to the task at hand (Guimerà and Sales-Pardo, 2009). For
example, studies have found that protein-protein interaction networks exhibit a
substantial number of false negatives alongside false positives: collected data may
overlook up to 90% of the interactions in the yeast interactome (Ito et al., 2001; Yu
et al., 2008), and in the case of the human interactome, this figure can rise as high
as 99.7% (Stumpf et al., 2008; Amaral, 2008). This is especially prevalent in social
sciences, where missing values may arise due to several reasons, such as survey
participants omitting responses, dropping out, or being influenced by biases
inherent in a study’s design (Kossinets, 2006; Schafer and Graham, 2002).

2.2 Modeling Online Social Networks with graphs

To proceed, we first need to define OSNs mathematically. Usually, OSNs are
defined similarly as a graph:

Graph. A dataset coming from an online social media platform can be repre-
sented by a graph G(V , E), where V is the set of user nodes (N in total) and E
is the set of edges connecting them (E in total). The edges can be directed or
undirected. A directed edge (i, j) is an edge that begins from a user node i and
points to user node j.

Directed graphs are used to model asymmetric relationships or flows of informa-
tion; an example is Instagram or Twitter/X, where one user can follow another
without being followed back. Undirected graphs are used instead to model sym-
metric interactions or relationships, such as the friendships between users on
platforms where connections are mutual, like Facebook or LinkedIn. Online
social media platforms offer various types of directed or undirected OSNs, each
capturing unique aspects of user interactions within their ecosystem. One of the
most common information that is provided by public OSNs datasets is the re-
posting behavior of users, forming what we call as interaction networks (Brugere

2.2 Modeling Online Social Networks with graphs 23

U1U2

U3

U4

U5

(a) The interaction network that is given

U1U2

U3

U4

U5

(b) The interaction network that is hidden

Fig. 2.1. – A toy example of what kind of information could be hidden from us. User U1 is
assumed to be the author of the post and users U2, U3, U4, U5 the ones that reposted it.
The interaction network we get is a star-shaped structure. On the right, we see one possible
way that the post could have diffused in reality, but that is hidden from us in practice.
If we assume that the users repost only the users they follow, this network could also be
showing the friendship connections between the users.

et al., 2018; Lin et al., 2016). On different platforms these may take different
names — on Twitter/X, for instance, they are commonly referred to as retweet
networks (Peng et al., 2011). By reposting other users’ posts (tweets) one can
express acknowledgment, endorsement, or even disagreement (Malhotra et al.,
2012).

Let us assume that we have a reposting dataset that shows that a post by a user U1

has been reposted by four other users denoted as U2, U3, U4, and U5. An example
of an interaction network that can be derived from such a dataset is shown in Fig.
2.1a. It connects the user nodes directly to the author, in a star-shaped structure.
The edges are directed, depicting the flow of information from one user to another.
For each new post that is created, we can form separate interaction networks
connecting the author and those who reposted it. To combine several posts and
reposts into a single network, we can follow a threshold policy of our choice,
drawing for example an edge if a user reposts frequently from a specific user
(S. Myers and Leskovec, 2010). The question therefore that comes up naturally
is the following: Is the network of Fig. 2.1a created by such dataset the real
interaction network? Or, equivalently: Did users U2 − U5 all really repost author
U1 directly?

Responding to this question is not as simple as it seems. As we motivated in the
introduction, a known limitation of OSNs is that they only provide partial infor-

24 Chapter 2 Fundamentals of network inference

mation about the behavior of the users, hiding the intermediate paths involved
in the process of reposting. As a result, while the provided network of Fig. 2.1a
accurately captures the endpoints of each repost interaction (i.e., the users who
reposted the content by the original author U1), it inherently lacks information
about the intermediary users that were reposted. In reality, the are many ways
through which the post could have been diffused — Fig. 2.1b shows one such
possible scenario out of the many combinations.

How can we infer what is happening in reality? And what kind of network is the
one that we should be looking for? As highlighted by Newman (2018) we lack the
ability to specify the exact nature of the connections underlying a dataset. It could
be anything between friendships, professional ties, proximity, or a combination
of these relationships that work as a driving force behind the observed data. In
the case of the interaction networks, one type of underlying information that
could be of help is the so-called friendship networks, depicting the connections
that can be formed between users by following each other. Formally, we assume
that if a user U1 follows another user U2, the final friendship network will have
a directed edge from user U2 to U1; we say that user U1 is a follower of U2, and
user U2 their followee.

A simplified assumption. If wemake the simplification that users only repost the
people they follow, one could simply look into the friendship connections, and give
the potential paths that a post has taken through the users’ reposts. However, this
approach is very often restrained by a platform’s API. This is the case of Twitter/X
for instance, which no longer provides access to users’ following and follower
networks (Trezza, 2023). Even before this policy change, public datasets rarely
were comprehensive enough to include both reposting and friendship networks,
probably because of the strenuous and labor-intensive nature of data collection
(Failla and Rossetti, 2024). As a result, we might need network inference methods
that can infer non-trivially the real network underlying the observed sets of users’
interactions/reposts.

In the present thesis

In this thesis, we assume that the target structure to be inferred given a dataset

of reposts is the friendship network. Of course, this is not always the case, since

one can also repost content from users they do not follow, e.g., after searching for

2.2 Modeling Online Social Networks with graphs 25

specific content via the platform’s search bar or from accounts suggested by the

platform’s recommendation algorithm. As Kossinets et al. (2008) emphasized:“just

because two individuals are acquainted does not imply that they have communi-

catedwithin some particular time interval, in which case no information could have

passed directly between them. Correspondingly, the indirect flow of information

between individuals requires a sequence of communication events along a path of

intermediaries linking them.” These observations introduce additional challenges

for the analysis of social networks, and can have important consequences for the

relation between network structure and information flow (Kossinets et al., 2008;

Holme, 2005; Onnela et al., 2007). For this reason, we are aiming to propose a

network inference framework that addresses these challenges while maintaining

the flexibility to adjust assumptions as necessary.

2.3 Understanding the properties of Online Social Networks

To infer the hidden network underlying our observations, we first need to un-
derstand better the structures that we have at hand. To do that, we can borrow
tools from Social Network Analysis Social Network Analysis (SNA), borrowing
different measures from network science and graph theory to understand and
analyze the complex relationships within social networks (Otte and Rousseau,
2002). Given the above definition, OSNs possess different properties that can be
quantified with several local (node-level) and global (graph-level) measures. In
this section, we present some of the most common measures and properties that
are been highlighted in this context1.

2.3.1 Local and global graphmeasures

Subgraph. In practice, it is very often the case that we may wish to look only into
the connections of users with a specific characteristic, e.g., in terms of gender,
nationality, or political affiliation. A commonway to do this is to define a subgraph
of the main graph G, by selecting a subset of nodes that interest us the most and
keeping only the edges that connect them. Formally, such subgraph can be defined
as Gs = (Vs, Es) , with a subset of nodes Vs ⊆ V and a subset of edges Es ⊆ E .

Degree. On a local level, each node in a graph G has a degree, denoted as deg(j),
equal to the number of other nodes directly connected to it via an edge. In

1For a more extensive overview of all the useful network metrics we recommend the book
Networks by Newman (2018).

26 Chapter 2 Fundamentals of network inference

directed graphs, the in-degree, is the number of incoming edges to the node,
while the out-degree is the number of its outgoing edges.

Degree distribution. On a global level, we can define a degree distribution of the
graph, denoted as P (k), showing the fraction of nodes in the graph that have a
degree k. The degree distribution can offer important insights into the network’s
global structure and connectivity patterns.

Neighborhood. The neighborhood Ni of a node i is defined as the set of its
directly connected neighbors, both in-coming and out-coming:

Ni = {j : (i, j) ∈ E ∨ (j, i) ∈ E},

We denote with Ni the number of nodes in each neighborhoodNi.

Local clustering coefficient. For a directed graph, there are Ni(Ni − 1) possi-
ble edges that could exist among the nodes in the same neighborhood Ni. An
important metric exists by making this observation that can quantify the extent
to which the nodes of G tend to cluster tightly together. It is called the local
clustering coefficient and is defined as (Watts and Strogatz, 1998):

Ci = |{(i, j) : i, j ∈ Ni, (i, j) ∈ E}|
Ni(Ni − 1) .

Its values range from 0 to 1, where a value of 1 indicates that all neighbors of a
node are also neighbors of each other, forming a complete subgraph also known
as clique. Nodes with high clustering coefficients in OSNs are often pivotal in
spreading information or influencing the behavior of other nodes within their
neighborhood.

Density. It is a measure that quantifies how many edges are present in G relative
to the number of possible ones. For example, if no self-loops are allowed in G (i.e,
a node cannot be connected to itself):

D = E

N × (N − 1)

Network density can range from 0 to 1, with a density of 0 indicating no edges
and a density of 1 indicating that all edges are present.

2.3 Understanding the properties of Online Social Networks 27

Distance and average shortest path. Thedistance d(i, j) between any two nodes
i, j in G is the number of edges in E that need to be traversed in the shortest
path that connects them. This shortest path is the path that connects the two
nodes while also minimizing the total number of edges in E traversed (without
allowing to pass from the same node twice). This path is not unique, and there
may be multiple shortest paths between two nodes with the same length. To
find the shortest path between two nodes, various efficient algorithms have been
proposed, with themost classic ones beingDijkstra’s and Bellman-Ford’s (Bellman,
1958; Dijkstra, 1959). The average shortest path is a global measure that averages
over all shortest paths in the graph.

Strongly and weakly connected component. A strongly connected component
is a subgraph of G where every node can be reachable from any other node via a
directed path. A weakly connected component instead is a subgraph of G where
all nodes are connected to each other by any path, without taking into account
the direction of the edges.

Diameter. It is a global measure of the graph’s structure which shows the maxi-
mum distance required to travel between any two nodes:

d = max
i∈V

max
j∈V

d(i, j).

If G has a small diameter it may indicate that the nodes in the graph are closely
connected, while a large diameter may indicate that the nodes in the graph are
more spread out.

Other kinds of graphs. On top of being directed or undirected, a graph G can be
classified under different definitions based on some of its measures. For example,
G is called:

– Disconnected, if there are at least two nodes that are not connected by a
path. A disconnected graph has an infinite diameter.

– Directed Acyclic (also called DAG), if it is directed and no node has a path
that returns back to itself.

– Complete, if it has a density equal to one, meaning that all possible edges
between nodes are present.

28 Chapter 2 Fundamentals of network inference

– Strongly or weakly connected, if the entire graph forms one single strongly
or weakly connected component respectively. In this case, all nodes are
connected to each other by at least one path.

In the present thesis

Of course, numerous other important metrics exist that could characterize the

components of a graph structure in greater detail. For instance, with metrics

like PageRank, closeness, and betweenness we could quantify the importance or

centrality of individual nodes within a graph (Page et al., 1999; Bavelas, 1950;

Freeman, 1977). In this thesis, we focus on measures that are able to characterize

a graph as whole, and that can be used to describe the real-world properties

of graphs coming from OSNs. As we will demonstrate shortly, evaluating these

measures in relation to each other instead of in isolation, can give us new important

insights into the properties of the observed graphs (Watts and Strogatz, 1998).

A trivial approach to network inference Box �.�.�

A trivial approach to deciding whether to infer an edge between a pair of
nodes (i, j) is to employ different statistical measures that focus on the
local or global structure. On a local level, for example, we can count the
number of neighbors that i and j share in common:

Sij = |N (i) ∩N (j)|,

whereNi denotes the set of neighbors of a node i. If we want to minimize
any biases present due to their degrees we can employ the Jaccard index:

SJaccard
ij = |N (i) ∩N (j)|

|N (i) ∪N (j)| .

In order to give different levels of importance to each neighbor, we can use
measures such as the Adamic-Adar index that sum over the inverse degrees
of the common neighbors. Instead of using measures that focus only on the
local neighbors of users, we can use global overlap measures that consider
that two nodes may be of importance to each other even if they do not
have many direct neighbors in common — for example, they belong to the

2.3 Understanding the properties of Online Social Networks 29

100 101 102

log(k)

100

101

102

103

lo
g
P

(k
)

A scale-free network (γ = 0.05)

Fig. 2.2. – The power-law distribution of a scale-free network (here, consisting of 10,000
nodes) is typically depicted on a log-log scale. This representation reveals a heavy tail,
indicating that as the degree k increases, the probability for a node to possess such a degree
decreases.

same community. Given these heuristics, we can simply assume that the
likelihood of the edge (i, j) is proportional to Sij , and set a threshold to
determine whether to infer it or not.

2.3.2 Real-world properties of Online Social Networks

Generally, Online Social Networks (OSNs) are considered to have properties of
real-world networks. This classification indicates that, when examining their spe-
cific measures as outlined above, we find that OSNs possess significant statistical
properties that differentiate them from randomly generated networks (Mislove
et al., 2007). In this section, we highlight some of the most significant of these
properties.

The scale-free property. On OSNs we often notice an interesting phenomenon:
while in principle, users have the option to follow everyone, only a select few
accumulate a significant number of followers. These individuals may already be
popular in real life (e.g., celebrities, politicians, etc) or they may have become
viral through the platform’s recommendation algorithm, which promotes their
content. This is also called preferential attachment: users who are already popular

30 Chapter 2 Fundamentals of network inference

are more likely to receive new followers (Barabási and Albert, 1999). These types
of networks are called scale-free due to having a degree distribution that follows
a power law: the probability of observing a user with a degree k decreases rapidly
as the value of k increases, formally:

P (k) ∝ k−γ,

where γ is a parameter that determines the shape of the distribution. This leads
to many small values having a very high probability, while a few very high values
have a very low probability. The few user nodes with a high degree are called
hubs and play a crucial role in the network for disseminating information. An
example of a power-law distribution of a scale-free directed graph with 10,000
nodes is shown in Fig. 2.2. It is generated with the scale_free_graph generator
function of the networkX Python package which returns a scale-free directed
graph according to the definition given by Bollobás et al. (2003).

Presence of communities. In real life, humans naturally gravitate towards those
who share similar traits or interests to them, a phenomenon known in sociology
as homophily (McPherson et al., 2001). This tendency is also evident in OSNs:
users tend to engage with content from individuals who resemble them in terms
of interests, beliefs, or demographics (Musiał and Kazienko, 2013). This leads
to the formation of communities, groups of users who share common traits and
interact frequently with each other’s content (Ganley and Lampe, 2009). From
a SNA perspective, nodes within a community are more densely connected to
each other than to nodes outside (Marin and Wellman, 2011). Communities can
be identified using various clustering algorithms, such as the Louvain method
(Blondel et al., 2008). It maximizes an important function known as modularity,
that measures the density of edges inside the communities of a network compared
to the edges between the communities (Newman and Girvan, Feb. 2004). On
OSNs this modularity is positive, indicating a strong presence of community
structure. This is also reflected in the high local clustering coefficient that is often
observed (S. A. Myers et al., 2014).

Small-world property. The small-world property refers to the idea that a node
can be reached from any other node by a relatively small number of steps, even
in a large network (Barrat and Weigt, 2000). Many real-world networks possess
this property, including OSNs (Poblete et al., 2011; Chao Yang et al., 2012; Sadri
et al., 2017; Grandjean, 2016). During SNA, this is often reflected in the values of

2.3 Understanding the properties of Online Social Networks 31

the average shortest path and the diameter, both of which are relatively small. In
sociology, this phenomenon is also known as six degrees of separation, suggesting
that any two people in the world can be connected through a chain of six people
on average (see Box. 2.3.2). In the context of OSNs, studies have shown that
the average distance between users can be even smaller than four in some cases
(S. A. Myers et al., 2014). Certainly, the average shortest path length depends on
the system size but it does not vary significantly with it. More specifically, it has
been found that the average shortest path length increases proportionally to the
logarithm of the number of nodes in a network (Newman, 2000).

We Live In a Small World Box �.�.�

The surprising phenomenon of six degrees of separation has a rich history
that traces back to a 1929 short story by Hungarian author Frigyes Karinthy:
a group of people conducts an experiment to prove that they can connect
to any person in the world through a chain of at most five others. This
narrative held a great influence on discussions around social networks, and
eventually became the subject of actual scientific research. Themost notable
example is Stanley Milgram’s Small World Experiment, which showed that
any individual in the United States can be reached by a maximum of five
connections on average (Milgram, 1967). Playwright John Guare further
popularized the small world property, linking it to a term that he coined as
six degrees of separation:

“I read somewhere that everybody on this planet is separated by
only six other people. Six degrees of separation between us and
everyone else on this planet. The President of the United States,
a gondolier in Venice, just fill in the names. I find it extremely
comforting that we’re so close.”

In 1998, Watts and Strogatz found that the small-world property extends
to other real-world networks, such as biological and electrical networks
(Watts and Strogatz, 1998). These observations have been extended to
OSNs as well: despite its immense size, Facebook users have an average
distance of 4.74 between them (Backstrom et al., 2012), while on Twitter,
this number is slightly smaller, between 3.78 and 4.37, depending on the
country of the users (S. A. Myers et al., 2014).

32 Chapter 2 Fundamentals of network inference

2.3.3 Modeling the aspect of time

Often, online social media give rise to special cases of networks that can evolve
and change over time. These are also known as temporal graphs, where the
edges and nodes of the graph can be used to represent interactions or connec-
tions occurring at different time points (Kostakos, 2009; Holme and Saramäki,
2012). Both interaction networks and their underlying friendship networks can
be treated as temporal graphs, and their analysis may require dynamic modeling
approaches (Palla et al., 2007; T. P. Peixoto and Rosvall, 2017). However, this
thesis deviates from the literature that considers OSNs as dynamically evolving
structures. Instead, we treat both reposting and friendship networks as static
graphs, disregarding the temporal evolution of the observed connections and
interactions. To do so, we focus on a snapshot of the network structure within
a relatively short time frame, during which connections can be considered un-
changed. For example, on Twitter, a span of one week could be seen as a brief
period during which friendship connections typically undergo minimal change
(Gavilanes et al., 2013).

In the present thesis

Although we are treating networks as static, we are still interested in the aspect

of time. Rather than dealing with distinct time IDs, which can complicate the

modeling process, we will concentrate on the temporal ordering of the user-user

interactions. This approach introduces the concept of time in a more intuitive

manner, allowing us to capture temporal dynamics with greater simplicity.

2.3.4 Modeling the diffusion of information

The interaction networks that are usually provided by datasets show what is
called the diffusion of a piece of information such as posts/tweets/retweets in
the network (Gruhl et al., 2004; Bourigault, Lagnier, et al., 2014). This process of
information diffusion from user to user via reposts/retweets is usually called a
cascade, referring to the sequential fashion by which any “infectious” entity, such
as information, influence, or a disease diffuses in time through the nodes of a
network (Shannon, 1948; Granovetter, 1973; Anderson and May, 1991).

2.3 Understanding the properties of Online Social Networks 33

Modeling these cascades mathematically provides valuable simplifications and
abstractions, when lacking full knowledge of the exact interactions underlying
them. In epidemiology, for example, compartmental models are very effective
in capturing the spread of an infectious disease between individuals, despite
our incomplete understanding of reality (Kermack and McKendrick, 1927). In
its simplest form, an epidemiological model assigns to each individual a state,
based on the stage of the disease that they are currently in. It assumes that at any
time, an individual can be found in one of the three following compartments or
states:

– Susceptible (S): Healthy individuals who have not yet been infected with
the disease.

– Infectious (I): Contagious individuals who have contracted the disease
and can potentially infect others.

– Recovered (R): Individuals who have been infected before, but have recov-
ered from the disease and, therefore no longer infectious.

The modeling of some diseases may include additional states, like immune indi-
viduals, who cannot be infected, or unknown individuals, who have been exposed
to the disease, but are not yet contagious (Hethcote, 2000).

Applying epidemiological models on interaction networks. Interestingly, in
many cases, this simple yet effective model can be used with small variations to
describe how information diffuses between individuals online (Saito et al., 2008).
Accordingly, if we take the simplest SI approach, and assume a reposting cascade,
a user can be found in one of the two following states at any point in time:

– Susceptible (Sp): Users who have not yet reposted the post p.

– Infectious (Ip): Users who have reposted p and therefore can transmit it to
others (e.g., their followers).

All users in a network begin from the Sp state. Once they become Infectious with
a specific post p, they are associated with a specific probability of transmitting it
to others at any time step ahead. A user that is Infectious cannot change their
state back. They can still, however, be Susceptible to other tweets, different
than p, following the same logic. We will take advantage of this simple modeling

34 Chapter 2 Fundamentals of network inference

approach later, when formalizing our problem of network inference inmore detail
(Chapter 4).

2.4 Generating networks with random graphmodels

When confronted with the challenge of network inference, where the goal is
to infer the structure of a real-world network from observed data, a randomly
generated network might be used first. This type of synthetic network can be
constructed using random graph models (Erdős and Rényi, 1959), serving as an
initial or prior approximation of the underlying structure (Allahverdyan et al.,
2010). Different random graph models can be used to generate networks with
specific properties and characteristics, based on random processes. Of course,
most of the random graph models that exist do not fully represent reality, having
many properties that are different from those of real-world networks like OSNs
(Daudin et al., 2008). However, these random graph models do provide insights
into how any of these properties can influence the global behavior of networks,
including real-world ones (Van Der Hofstad, 2013). Apart from their utility as
priors during network inference, random networks have also been extensively
used as benchmarks against which we can evaluate whether observed network
characteristics are statistically significant or arise merely by chance (Watts and
Strogatz, 1998). In this section, we present two of the most important random
graph models that we can use to generate priors within a network inference
framework.

2.4.1 The Erdős-Rényi model

The Erdős–Rényi (ER) model is a fundamental random graph model used to
generate graphs with a specified number of nodes and edges (Erdős and Rényi,
1959). There are two main variations of this model, but we will focus on the
G(N, p) model, also known as the Erdős-Rényi-Gilbert model (Gilbert, 1959).
In this variation, N represents the number of nodes in the graph, and p is the
probability of an edge existing between any two nodes. For each pair of nodes,
an edge is added with probability p, independently of other edges. Assuming that
a node cannot be connected to itself, we create an undirected graph as follows
(Barabási, 2013):

1. Begin with N disconnected nodes.

2.4 Generating networks with random graph models 35

2. Select two different nodes and generate a random number between 0 and
1. If the number exceeds p, connect them with an edge, otherwise leave
them disconnected.

3. Repeat 2 for each of the N(N − 1)/2 possible node pairs2.

We can think of the creation of such a random graph as a binomial experiment,
where the existence of an edge is a Bernoulli random variable. Therefore, the
degree distribution of such a graph is binomial, and is described by the following
probability mass function that gives the probability of a node j being connected
to exactly k other nodes:

P (k) =
(

N − 1
k

)
pk(1− p)N−1−k.

As we see, it is a product of three quantities: (i) the number of possible ways for
selecting k nodes out of the N − 1 potential ones; (ii) the probability that k nodes
are indeed connected to j; and (iii) the probability that the remaining N − 1− k

nodes are not connected to j.

Limitations. While the ER offers a principled and simple way to generate graphs,
it does not always succeed in capturing many of the properties of real-world
graphs. Although it does give graphs with a small diameter and average shortest
path, which capture well the small-world property observed in OSNs, it falls short
in capturing other important properties because of its following characteristics:

– Binomial degree distribution and absence of hubs. As the desired num-
ber of nodes N becomes larger, the distribution of an ER graph gets closer
to a Poisson degree distribution with an exponential decay: the probability
of encountering nodes with high degrees diminishes rapidly as the degree
increases (Bollobás, 1998). An example of such distribution is shown in
Fig. 2.3, on an ER network of N = 10, 000 nodes3. This contrasts with the
power-law distributions of OSNs that decay slowly, presenting heavy tails
and hubs.

2Here, we assumed the simplest case of an undirected graph. In the case of a directed graph,
we follow the same process but the number of possible node pairs will be twice the size, i.e.,
N(N − 1).

3Generated with the erdos_renyi_graph generator function of Python.

36 Chapter 2 Fundamentals of network inference

0 50 100 150 200 250 300
k

0

20

40

60

80

100

P
(k

)

An Erdős-Rényi network (p = 0.5)

Fig. 2.3. – The binomial degree distribution of an Erdős-Rényi network with 10,000 nodes.

– Low clustering coefficient. The local clustering coefficients of an ER graph
tend to be relatively small. They are independent of each node’s degree and
are inversely proportional to the number of nodes N . As a result, the graph
exhibits a homogeneous structure with a uniform clustering coefficient
across nodes. Instead, real-world OSNs display a more heterogeneous
structure where the clustering coefficient is relatively higher and decreases
with a node’s degree, while remaining largely independent of the total size
of the network N .

2.4.2 Stochastic BlockModel

The Stochastic Block Model (SBM) is a generative model for random graphs first
proposed in the 1980s by Holland et al. (1983). It offers a more nuanced approach
to graph generation by incorporating community structure. Nodes are parti-
tioned into distinct blocks or communities, with edges between nodes generated
according to the probabilities that depend on their block memberships. For the
standard SBM, we can generate a graph according to the following process:

1. Begin with N disconnected nodes.

2. Assign to each node i a unique community label Ci ∈ [1, C] where C is the
total number of communities present.

2.4 Generating networks with random graph models 37

3. Select a pair of two different nodes (i, j) and connect them with proba-
bility p if Ci = Cj (intra-community connections) and q otherwise (inter-
community connections).

4. Repeat step 4 for each of the N(N − 1)/2 possible node pairs.

To capture the presence of communities in real-world OSNs, we assume that
nodes within the same community have a higher probability of being connected
compared to nodes from different ones, i.e. p > q. This is also known as assorta-
tivity (Newman, 2002).

Limitations. While the traditional SBM can generate community structure with
denser connections inside than outside, it is still incapable of handling the scale-
free property of OSNs. This is due to its block creation process, which treats
nodes within the same community equally, without taking the individuality of
nodes into consideration (Karrer and Newman, 2011). As a result, it does not
take into account node degree heterogeneity that is observed in real-world OSNs,
where inside communities themselves we may notice nodes with higher degrees
than average.

2.5 Measuring performance

Certainly, evaluating the efficacy of a network inference method in accurately
deducing the underlying structure is a very crucial step. To explore this aspect
experimentally, access to a comprehensive dataset containing both a set of in-
teractions and their corresponding underlying structure, also referred to as the
ground truth, is essential. With such a dataset at hand, at the end of a network
inference algorithm, we can look into the edges for which the model has made
inferences or predictions regarding their existence. Generally, a prediction that a
model can make about an edge falls under two categories: positive and negative.
In comparison to the actual state of an edge (the ground truth) the prediction
can be classified as true positive (TP) if the model predicts the existence of an
edge that exists in the ground truth, false positive (FP), if the model incorrectly
predicts the existence of an edge that does not exist in the ground truth, true
negative (TN) if the model correctly predicts the absence of an edge that does not
exist in the ground truth, and false negative (FN) if the model incorrectly predicts
the absence of an edge that exists in the ground truth. Based on these, several
metrics are used to assess the overall performance of the model:

38 Chapter 2 Fundamentals of network inference

– Precision measures the fraction of correctly predicted positive edges out of
all cases predicted as positive by the model:

Precision = TP
TP + FP

– Recall measures the proportion of correctly predicted positive edges out of
all actual positive edges in the ground truth:

Recall = TP
TP + FN

– Accuracy measures the proportion of correctly predicted edges (both posi-
tive and negative) out of all edges:

Accuracy = TP + TN
TP + TN + FP + FN

– F1 score is the harmonic mean of Precision and Recall, providing a balance
between the two metrics:

F1 = 2× Precision× Recall
Precision + Recall

Usually, we cannot rely on these metrics in isolation. For example, we can achieve
misleadingly perfect Recall (= 1) if we trivially infer every possible edge as positive.
In this case, however, we will have many false positives, making the Precision
score very low. In general, deciding on the exact metrics that we rely on for
designing an algorithm is critical and requires consideration of different factors,
such as:

� Is our data imbalanced? In cases with imbalanced classes, where one class
dominates the dataset, a model might achieve high Accuracy by simply predicting
the majority class for all instances. For example, in the context of link prediction
for OSNs, where users are very sparsely connected, the negative class (absence of
edges) vastly outweighs the positive class (presence of edges). Consequently, a
trivial approach assuming no edges exist could yield a seemingly high Accuracy
metric. However, such a model would overlook the minority positive class,
resulting in low performance for the other metrics.

2.5 Measuring performance 39

� Do we prioritize false negatives or false positives? Depending on the applica-
tion, the significance of each prediction class may vary. For instance, in medical
diagnosis, a false negative (missing a positive case) could have more severe con-
sequences than a false positive. On the contrary, in the domain of OSNs, falsely
identifying a non-existent connection between users (false positive) could lead to
unnecessary recommendations by the social media platform and have a negative
impact on the overall user experience. Hence, determining the priority between
classes is vital during model evaluation, and depends on the specific application
and its objectives.

In the context of OSNs, where our data is heavily imbalanced (many negative
edges and few positives), two additional metrics can be useful: (i) the Area
Under the Receiver Operating Characteristic Curve (AUC-ROC) which assesses
the model’s ability to distinguish between positive and negative edges across
various thresholds; and (ii) the Area Under the Precision-Recall Curve (AUC-
PR) which evaluates the trade-off between Precision and Recall across different
threshold values.

2.6 Conclusion

In this chapter, we set the stage for further exploration into network inference
given data from OSNs. We show the potential inadequacies of data (e.g., interac-
tion networks) obtained from social media platforms and elaborate on a strategy
to uncover the true underlying structure (e.g. friendship networks) which might
be non-trivial to obtain. Additionally, we look into the distinctive properties
of OSNs using methodologies from graph theory and SNA that can describe
and verify their real-world structure. This is an important aspect to take into
account during network inference, as the inferred structure should ideally mirror
real-world properties. Therefore, in the experimental phase of this thesis, we
will employ these metrics and methods to assess the effectiveness of inference
methods in producing realistic structures. It is worth noting that while seemingly
straightforward, many papers proposing inference methods overlook evaluating
their inferred structures in terms of this aspect.

∗ ∗ ∗

40 Chapter 2 Fundamentals of network inference

Network inference approaches

for Online Social Networks
3

Contents
3.1 Network inference with Bayesian models 42

3.1.1 The Bayesian modeling approach 42

3.1.2 Related works . 45

3.2 Recent approaches . 46

3.2.1 Similarity-based approaches 47

3.2.2 Variational inference 47

3.2.3 Monte Carlo Markov Chain algorithms 48

3.3 Time-aware network inference 48

3.3.1 Temporal networks as cascades 49

3.3.2 Information diffusion models 49

3.4 Conclusion and limitations of existing works 52

Network inference is a topic that became prevalent at the beginning of the 21st
century, as a response to the increasing availability of data, which revealed a
common theme: the information that is given directly from datasets is often
insufficient or unreliable (Sprinzak et al., 2003). Consequently, network inference
has found application in various domains, most notably social networks, and
biology, as a way to infer hidden structures that cannot be directly observed
experimentally (Goldberg and Roth, 2003; Butts, 2003). However, the process of
inferring inaccessible network structures is challenging, demanding strategies
capable of navigating noise, incomplete information, and data complexity in an
efficient manner (Mukherjee and Speed, 2008). Given the variety of information
sources and the unique challenges of different data domains, many different
techniques have been proposed over the years. This chapter provides an overview
of these works; our objective is to assess the suitability of existing approaches for

41

inferring networks in the context of OSNs, identifying potential weaknesses and
areas of improvement.

3.1 Network inference with Bayesianmodels

One of the early formulations of network inference was given by Goldberg and
Roth (2003). They addressed the task of inferring missing edges given unreli-
able biological networks and proposed a probabilistic framework that leverages
statistical tools such as Bayes’ rule. In the same year, but in a different domain,
motivated by “the enduring problem of error in social network analysis”, Butts
(2003) proposed a family of Bayesian models which allows for the inference of
posterior social structures in the presence of errors and missing data. As we
quickly realize when overviewing the network inference literature, a significant
portion of studies like the above opt for Bayesian modeling to infer hidden struc-
tures (Gelman, 2004). This approach incorporates prior knowledge or beliefs
about different networks. In light of new observations, or data, it allows for the
use of statistical tools that can update this prior knowledge and infer unobserved
latent structures. To this day, Bayesian modeling is an important tool for network
inference due to its flexibility and suitability to a wide range of data types and
structures (Mukherjee and Speed, 2008). In this section, we present the funda-
mentals needed to understand this approach along with an overview of the works
that have used it as a model of inference.

3.1.1 The Bayesianmodeling approach

In this kind of approach, we assume that the observed data X = {x1, x2, . . . , xn}
has been generated from an unknown probability distribution with parameters θ

that we want to estimate. This is captured by a data model expressed through a
likelihood function L(θ|X) = P (X|θ), which quantifies the probability of observ-
ing the current data given the estimated parameters. Typically, we possess some
prior estimates or knowledge concerning the parameters and the distribution of
the data. However, these beliefs are liable to change in light of new evidence. To
update them, we can employ Bayes’ theorem, which allows to obtain posterior
beliefs, according to the following equation:

P (θ|X) = P (X|θ)P (θ)
P (X) , (3.1)

where:

42 Chapter 3 Network inference approaches for Online Social Networks

– P (θ|X) is the posterior distribution of the parameters θ given the observed
data X .

– P (X|θ) is the likelihood function L(θ|X), representing the probability of
observing the data given the parameter values θ.

– P (θ) is the prior distribution, representing the initial beliefs or knowledge
about the parameters before observing any data.

– P (X) is the marginal likelihood representing the probability of observing
the data under all possible parameter values.

In order to estimate the above parameters, we can use a classical statisticalmethod
known as Maximum Likelihood Estimation (MLE), which can provide estimates
for a model’s parameters by maximizing the likelihood function (Aldrich, 1997).
The primary objective is to find the parameter values θ̂ that maximize the likeli-
hood function:

θ̂ = argmax
θ

L(θ|X).

For independent and identically distributed (i.i.d.) observed data X , this likeli-
hood function is often expressed as the product of the individual likelihoods:

L(θ|X) = P (X|θ) =
n∏

i=1
P (xi|θ).

In practice, it is oftenmore convenient to work with the log-likelihood function:

log L(θ|X) = log P (X|θ) = log
n∏

i=1
P (xi|θ) =

n∑
i=1

log P (xi|θ).

Since the logarithm is a monotonic function, maximizing the log-likelihood func-
tion is equivalent to maximizing the likelihood function. Since the denominator
of Bayes’ theorem in Eq. 3.1 is independent of θ, and if we assume that the prior
P (θ) is a uniform distribution, the task can also become equivalent tomaximizing
P (θ|X), also known as the Maximum a posteriori estimate.

As we have already mentioned, it is common to assume that a dataset has missing
or unobserved values that should be taken into account when estimating the

3.1 Network inference with Bayesian models 43

parameters. Mathematically, this is expressed by assuming that the data involves
some latent variables Z and the likelihood function will now become:

L(θ|X, Z) = P (X, Z|θ).

If we consider the MLE approach for parameter estimation we will get the
marginal likelihood:

L(θ|X) =
∑
Z

P (X, Z|θ).

Unfortunately, directly maximizing this expression or its logarithm is often com-
putationally intractable due to the summation over all possible configurations of
the latent variables (Beal and Ghahramani, 2006).

Dealingwith the intractability of the inference. TheExpectationMaximization
(EM) algorithm is an iterative method that can provide a solution to the above
challenge of maximizing the log-likelihood function in the presence of latent
variables (Dawid and Skene, 1979). It was initially proposed by Dempster et al.
(1977), as a way to leverage the relationship between the unobserved data and the
latent variables of a model: If we were aware of the missing data the estimation of
the model’s variables would be straightforward. Similarly, if the model’s variables
were known, it would be possible to make unbiased estimations for the missing
data. This mutual reliance between model variables and missing data brings
forward an iterative approach, which alternates between two steps: first, estimate
the missing data based on some assumed values for the variables, and then use
these estimations to update the values of the variables (Nelwamondo et al., 2007).
From an algorithmic perspective, it consists of the following steps:

1. Initialization: Initialize the parameters θ to some initial values.

2. E-step: compute the expected value of the log-likelihood function with
respect to the conditional distribution of the latent variables given the
observed data and the current estimate of the parameters. This involves
calculating the following:

Q(θ, θt) = EZ|X,θt [log p(X, Z|θ)],

that is the posterior distribution of the latent variables given the observed
data and the current parameters.

44 Chapter 3 Network inference approaches for Online Social Networks

3. M-step: update the parameter estimates by maximizing the expected log-
likelihood Q(θ, θt) obtained in the E-step with respect to parameters θ.
This step typically involves solving an optimization problem that finds the
parameter values that maximize the expected log-likelihood:

θt+1 = argmax
θ

Q(θ, θt).

4. Iterate updates: Continue repeating steps 2 and 3 until the parameters’
updates or the log-likelihood function change by an insignificantly small
amount, indicating convergence.

In the present thesis

The EM algorithm provides a principled and effective approach to parameter esti-

mation, in cases where direct optimization of the likelihood function is challenging.

However, the EM algorithm cannot be easily adapted to NI settings with graph-

structured data. In the next chapter, we will explore how the EM algorithm can be

used to handle network data effectively.

3.1.2 Related works

The MLE approach for network inference is prevalent in a large body of work
(Brugere et al., 2018). It generally comes together with a set of prior assumptions
about the network underlying a set of observations (Mukherjee and Speed, 2008).
The choice of the model representing these assumptions can be informed by our
theoretical knowledge of the network’s nature. For example, works like the ones by
Redner (2008), Sales-Pardo et al. (2007) and Clauset et al. (2008) suggest that the
intrinsic hierarchy in biological and social networks can be modeled into an MLE
framework to reveal missing information in the data. Considering the prevalent
community structure in many real-world networks (Girvan and Newman, 2002),
the choice of the Stochastic Block Model (SBM) has been proposed as well (see
Section 2.4.2). In this context, Abbe et al. (2015) provided an exact efficient
MLE for inferring communities when using an SBM. Hayashi et al. (2016) also
provided a tractable EM-like approach to infer the clusters that nodes belong to.
However, these approaches usually focus more on accurately assigning nodes to
clusters rather than addressing the unreliability directly on the level of edges.

3.1 Network inference with Bayesian models 45

More recent works have began explicitly estimating the levels of errors during an
EM-type inference. For example, Le et al. (2018), consider a false discovery rate
that can be estimated during a set of EM-like parameter updates that assume an
SBM prior. Their work is motivated by the problem of neuroimaging applications
where edges of the original brain networks are recorded with both false positives
and false negatives. A more generalized approach in terms of parameterizing
errors was given in the same year by Newman (2018): He proposes that the
probability of observing an edge between two nodes can be parameterized by
two quantities: the true-positive rate which is the probability of observing an
edge where one truly exists, and the false-positive rate, which is the probability
of observing an edge where none exists. He incorporates these into an EM-based
inference framework which can be combined with different priors, such as the ER
model, the SBM and others. The significance of his approach lies in its flexibility
with regard to modeling the underlying structures and its ability to estimate
different kinds of important data errors in a joint inference framework. This work
will stand as an important benchmark for this thesis.

3.2 Recent approaches

In addition to the MLE approach discussed above, other methods have also
been proposed, suggesting a range of techniques that differ in their modeling
assumptions and complexity. Choosing the most appropriate one often depends
on the specific characteristics of the data and the goals of the inference task.
For instance, in a preliminary survey, Lü and Zhou (2011) divided the different
network inference approaches into statistical estimation methods and heuristic
methods, that rely on diverse similarity measures. A later survey by Brugere
et al. (2018) categorized different network inference techniques based on their
diverse applications in computational biology, climate science, neuroscience,
epidemiology, ecology, and mobile networks. They further distinguished between
parametric approaches, which utilize a probability distribution tomodel the edges
in the network (like the MLE approach) and non-parametric ones, which directly
assess the existence of each edge through statistical tests without using a model
for the entire structure.

In this section, we categorize these methods based on the inference models they
employ. Besides the MLE methods discussed above, we classify them into three
additional categories: similarity-based, variational, and Monte Carlo Markov
Chain (MCMC) based algorithms.

46 Chapter 3 Network inference approaches for Online Social Networks

3.2.1 Similarity-based approaches

An early example of similarity-based approaches can be found in a paper by
Newman (2001) who looked into collaboration networks and found that the
probability of scientists collaborating (and therefore an edge existing between
them) increases with the number of neighbors they have in common (namely,
the Common Neighbours metric). In Liben-Nowell and Kleinberg (2003), the
authors compare several node-to-node similarity metrics on large collaboration
networks, and found that information about future interactions can be extracted
from network topology alone. Likewise, Zhout et al. (2009), found that the
simplest measure of Common Neighbours has the best overall performance for
link prediction, and the Adamic-Adar index (Adamic and Adar, 2003) the second
best. Kossinets and Watts (2006) have also analyzed different network statistics
to investigate the effects of missing data on the properties of large-scale social
networks.

However, the approaches based on this kind of metrics are considered quite
inflexible, since they require a careful, hand-engineered choice of statistics which
can neither be updated nor optimized (Hamilton, 2020). Nevertheless, they
can still serve as a useful baseline to compare with more sophisticated methods
(Hamilton, 2020).

3.2.2 Variational inference

Due to the intractability of the Bayesian approach in cases with many hidden
variables, a different class of models has been proposed, called variational (Beal
and Ghahramani, 2006). The main idea is to first construct a parameterized/-
variational distribution over the latent variables of interest. The goal is to find
the parameters of this distribution that bring it as close as possible to the true,
posterior distribution of the latent variables (Jordan et al., 1999). For example,
Beal et al. (2006) presented a variational Bayesian EM algorithm for directed
graph models, which aims to optimize the divergence of the approximate to the
true posterior distribution. Its main difference to the standard EM algorithm
for MLE is that the maximization step computes a distribution over parameters,
rather than their point estimates. Other methods have combined variational
inference with an SBM model for the sampled data (Daudin et al., 2008; Latouche
et al., 2012). More recent works are proposing in a variational context the consid-
eration of missing data (Aicher et al., 2015; Tabouy et al., 2019) and errors (Priebe
et al., 2015; Balach et al., 2017).

3.2 Recent approaches 47

Although fast (Airoldi et al., 2008), variational approximators used may suffer
from severe loss of posterior accuracy, since, they do not explore the parameter
space as thoroughly (Bürkner et al., 2023). This is supported by studies showing
that they provide fewer guarantees for correct inference than other approaches,
like the Monte Carlo Markov Chain algorithm (Blei et al., 2017; Bürkner et al.,
2023).

3.2.3 Monte Carlo Markov Chain algorithms

Another approach to inference is the use of Monte Carlo Markov Chain (MCMC)
algorithms (Hoff et al., 2002; Kemp et al., 2004; Griffiths and Steyvers, 2004;
Handcock et al., 2007). In these processes, instead of directly using a probability
distribution, a sequence of data samples simulating a Markov chain is generated
to approximate the target distribution (Hastings, 1970). Guimerà and Sales-Pardo
(2009) applied this method to calculate the reliability of individual edges based
on the groups to which their respective nodes belong. They used a Metropolis-
Hastings algorithm (Hastings, 1970) for obtaining a sequence of random samples
from a probability distribution from which direct sampling is difficult. More
recently, Peixoto (2018) developed a similar approach, incorporating explicit error
considerations, including true and false positive rates as motivated by Newman’s
work (2018). Peixoto’s method utilizes a Metropolis-Hastings probability to
accept each inference solution. Its main advantage is that it adopts the Stochastic
Block Model (SBM) as the fundamental generative process, capable of inferring
hierarchical community structure simultaneously.

Despite their attractive theoretical properties, MCMC methods face practical
challenges when dealing with a large number of variables (Airoldi et al., 2008).
They are considered significantly slow, making the estimation of complex models
or their application to very large datasets practically not possible (Blei et al., 2017;
Bürkner et al., 2023).

3.3 Time-aware network inference

Up to this point, we have not discussed themethods that incorporate the temporal
information that is very commonly present in datasets coming from OSNs (see
Section 2.3.3). Early works on network inference, along with the majority of those
mentioned above, have largely overlooked this aspect. However, the increasing
availability of data on human interactions motivated researchers to acknowledge
the risks of neglecting the time dimension and started incorporating it more

48 Chapter 3 Network inference approaches for Online Social Networks

rigorously (John Tang et al., 2009). The invention of OSNs provided a rich source
of information for this task as well, providing many large-scale datasets with
temporal interactions stemming from email (Leskovec, Adamic, et al., 2007), blog
(Leskovec, McGlohon, et al., 2007), instant messaging communications (Onnela
et al., 2007; Leskovec and Horvitz, 2007), and soon after social media (Dooms
et al., 2013; Baumgartner et al., 2020; Naseem et al., 2021; Failla and Rossetti,
2024).

3.3.1 Temporal networks as cascades

In most works, it is assumed that the timestamped information observed in
datasets has been triggered by specific events or activities with which users
interact over short time scales (Kossinets et al., 2008). Notably, Kempe et al.
(2000) drew an analogy between the well-studied field of epidemics — where
diseases are triggering infection cascades (see Section 2.3.4) — and the study
of temporal networks, where paths also emerge in a cascade-like manner. They
define a temporal network as an undirected graph, where edges are labeled with
timestamps that indicate when the connected nodes interacted. It is one of the
first works that concentrated on inferring time-respecting paths, whose time
labels abide by the ordering of time. However, at the time, we were missing the
necessary theoretical tools to deal with the complexity of the problem, focusing
instead only small-scale theoretical models. Shortly, a vast body of literature
emerged, offering different models to capture the temporal dynamics of various
real-world networks in a more efficient manner. In this section, we provide an
overview of the different ways that time can be represented, most notably by
assuming models of information diffusion.

3.3.2 Information diffusionmodels

Which are the models used for the specific case of social networks coming from
OSNs? Network inference in this context is usually framed as a problem of recov-
ering influence probabilities between users, given their interaction timestamps in
the available cascades. If these interactions are incomplete, some type of diffusion
model is chosen along with the learning method to formalize the principles that
dictate the evolution of the observed cascades within a mathematical framework
(Loossens et al., 2021).

3.3 Time-aware network inference 49

Discrete TimeModels

In some types of representations, the information diffuses in discrete time steps
and the focus is on targeting the best set of users in a social network under a
certain goal, such as influence maximization, or predicting the number of users
being infected (Domingos and Matt Richardson, 2001; Matthew Richardson
and Domingos, 2002). One of the earliest works approaching the problem in
this way is by Kempe et al. (2003) who put forward two basic diffusion models,
the Independent Cascade Model (a generalized SIR model, see section 2.3.4)
and the General Threshold Model, on top of which we can build algorithms for
selecting the most influential nodes in a network. In other, more pertinent to
network inference tasks, the goal is predicting if and when an individual will be
influenced or infected. Saito et al. (2008) proposed such an approach, assuming an
Independent Cascade model of diffusion and employing an EM-based algorithm
to infer influence probabilities between users. Here, an infected user is associated
with a unique probability of infecting their graph neighbors, but if they do not
succeed in the immediate next step, no attempts are made in subsequent steps.
This is, of course, a less realistic representation of real-world information diffusion,
where influence or information can propagate over multiple steps.

Continuous Timemodels

Instead of dealing with discrete-like structures, Goyal et al. (2010) proposed
Continuous Time Models, where the influence probabilities are represented as
continuous functions of time. They apply this as a way to predict the activation
state of a user, and the time at which they are most likely to perform the action. In
another example, Yang and Leskovec (2010) propose to work in continuous spaces
where the temporal diffusion dynamics can be learned from the observations.
They formulated this as a problem of predicting which node will infect which
other node, developing a Linear Influence Model to estimate non-parametric
influence functions of users in a least squares-like formulation. However, it has
been shown that these methods suffer from expensive computation times (Goyal
et al., 2010). Another work that is very relevant to the problem we are looking
to solve, is the one by Rodriguez et al. (2011). Their model aims to infer the
continuous temporal dynamics of the underlying diffusion network, modeling
transmission happening at different rates across different edges, as is usually the
case in real-world cases. However, this model does not explicitly account for

50 Chapter 3 Network inference approaches for Online Social Networks

missing data or errors, and its evaluation is based on artificially created ground
truth with assumptions not considered during inference.

Incorporatingmissing information

A common limitation that we notice among the above approaches is that they
do not consider the inherent unreliability of data. In response, Wu et al. (2013)
created an EM method that can tolerate missing observations in a diffusion pro-
cess that follows the Continuous Independent Cascade model. Similarly, Lokhov
(2016) introduced an approximate approach that reconstructs the parameters of
an SI diffusion model, given only partial information on node activation times.
Despite these efforts, there remains a general tendency for information diffusion
models to be unable to handle both errors and missing data, often ignoring the
concept of unreliability entirely. Additionally, many of these models make un-
realistic and simplified assumptions about node-to-node interactions, such as
restricting diffusion to a single time step, as seen in the commonly used Indepen-
dent Cascade model.

Other terminologies Box �.�.�

Network inference can also be traced in literature under different defi-
nitions, notably as a problem of (i) network reconstruction and (ii) link
prediction. The problem of network reconstruction is framed as rebuilding
a network from incomplete and erroneous data, as seen in some of the
works that we already explored, by Guimerà and Sales-Pardo (2009) and
others (Lokhov, 2016; T. Peixoto, 2018; Firestone et al., 2020; Young et al.,
2021; J. Wu et al., 2022). In link prediction, on the other hand, one may
have to consider two different types of edges that are missing and should be
inferred: missing edges or future edges. According to Lü and Zou (2011),
given that both represent previously unknown connections, distinguishing
between the two types is challenging without additional context. Yet, in
practice, the task of link prediction is more often associated with predicting
edges that are likely to form in the future based on the existing structure
of the network, whereas the task of inference is associated with inferring
connections that had already been missing from the observed data.

3.3 Time-aware network inference 51

3.4 Conclusion and limitations of existing works

In this chapter, we explored various techniques for inferring networks from un-
reliable data, also applicable to the domain of OSNs. Each method has its own
advantages and disadvantages, which vary depending on the application and the
size of the data. Notably, we observed a growing need for more unified method-
ologies that account for both errors and missing information while allowing for
flexible, data-guided inference, as seen in the works by Newman (2018) and
Peixoto (2018). Strengthening this argument, it has been recently advocated in a
general perspective by Peel et al. (2022) that there is a lack of standardized ap-
proaches that address errors and incompleteness in network data. This is further
challenged by the fact that prior unreliability estimations around the way that the
data has been calculated prior to publication are often omitted (T. Peixoto, 2018).
To ensure robustness and reproducibility, it is strongly suggested to interpret
uncertain network data using statistical generative models, like the ER model and
SBM, which can naturally handle uncertainties.

On top of that, as already mentioned in Chapter 1, assessing the efficacy of
an inference method and determining the most suitable one for our specific
dataset, still presents a significant challenge. This is further exacerbated by
the empirical realization that the datasets we test these algorithms on rarely
contain both the diffusion cascades and the underlying graph for comparison.
As a result, for evaluation to be possible, one may have to artificially conceal a
portion of the dataset and treat it as missing information. However, this approach
may be problematic as it fails to consider the inherent unreliability of the data,
which already contains errors and missing interactions. Towards a more reliable
evaluation, two key points should be taken into consideration:

– Are the inferred graphs feasible? In cases where a reliable underlying
graph is unavailable, we suggest a potentially valuable metric for the evalu-
ation of our results (i.e., the inferred graph), that we call feasibility. Infor-
mally, an inferred graph that is feasible should explain all the interactions
and their chronological order inside the dataset. The main intuition behind
this is that a feasible graph may be closer to the real underlying graph that
is unavailable. This concept may become more clear when considering
the implications of non-feasibility in the context of OSNs: Suppose that in
the dataset there is an interaction by a user (e.g., a repost) that cannot be
explained by the inferred graph. Under our definition, this means that there

52 Chapter 3 Network inference approaches for Online Social Networks

is no path (one or more hops away) in the inferred graph from the author of
a post to the user who reposted it, or that the path is temporally not feasible.
Then, either the latter user found this post from some other source (e.g.,
platform recommendation), or there is an error in the inference because
the two users appear disconnected or connected in the wrong (temporally
non-feasible) direction. It is trivial to confirm that current NI methods
suffer from a lack of explicit consideration of feasibility during inference
or evaluation — our goal is to verify this experimentally by looking closer
into the results of different inference methods, eventually motivating the
development of an inference process that can guarantee feasibility.

– Are the inferred graphs realistic to the ground truth? Newman (2018)
highlights a key observation: inference algorithms lack the ability to specify
the exact nature of the connections we are inferring. Whether it is friend-
ships, professional ties, proximity, or another relationship, remains unclear
from the algorithm’s output. It merely serves as an estimate regarding
the driving force behind the observed data. In our case, when inferring
the connections underlying an interaction network from OSNs, we could
probably get a combination of friendships, influence, shared opinions, and
affiliations. Although time-consuming, it is more straightforward to collect
the friendships between users when a platform’s API allows it — hence, we
are motivated to examine to what extent an inferred network can reveal
the underlying friendship networks of the users.

Based on these points, our motivation is to investigate whether existing methods
in the literature, when applied to real-world datasets, can infer graphs that are
both feasible and close to the ground truth. To evaluate the latter aspect, we
aim to collect the real-world friendship network that connects the users that
retweeted the same set of tweets in a Twitter dataset, serving as the ground truth
graph. In contrast, the feasibility metric does not require a ground truth for
measurement; the dataset itself is sufficient. However, collecting a ground truth
is important since it enables us to explore the relationship between feasibility
and the connections that actually exist, while also closing the gap that exists in
current network inference evaluation methods that do not have a ground truth to
compare with. We hope that this investigation will provide valuable insights into
the reliability of the feasibility metric for future applications, where such ground

3.4 Conclusion and limitations of existing works 53

truth cannot be easily obtained. The next chapters of this thesis will delve deeper
into this exploration.

∗ ∗ ∗

54 Chapter 3 Network inference approaches for Online Social Networks

Constrained Expectation

Maximization for feasible

network inference

4

Contents
4.1 Problem formulation . 56

4.1.1 The input dataset: a reposting network 56

4.1.2 Modeling the hidden way information diffuses 58

4.1.3 Formulating network inference for Online Social Net-
works . 59

4.1.4 Assumptions on the diffusion of posts 60

4.2 Definition of feasibility . 61

4.3 Enforcing feasibility with a set of feasibility constraints 62

4.4 Defining probabilities of diffusion 63

4.5 Problem modeling and learning method 65

4.5.1 Erdős–Rényi prior (CEM-ER) 65

4.5.2 Stochastic block model prior (CEM-SBM) 69

4.6 Methodology . 72

4.6.1 Datasets . 72

4.6.2 Comparison . 76

4.6.3 Experimental settings 79

4.7 Experiments on synthetic data 80

4.7.1 Different sizes of input 81

4.7.2 Different values of the hyperparameter λ 81

4.7.3 Difference between priors 82

4.7.4 Comparison between methods 82

4.8 Experiments on the #Élysée2017fr dataset 87

4.8.1 Different sizes of input 87

55

4.8.2 Different values of the hyperparameter λ 87

4.8.3 Difference between priors 89

4.8.4 Comparison between methods 89

4.8.5 Controlling feasibility through β 94

4.8.6 Evaluation with no ground truth 95

4.9 Conclusions . 96

In this chapter, we introduce a novel approach to network inference, which we call
Constrained Expectation Maximization (CEM). It infers a posterior distribution
of feasible underlying graphs that explain the provided dataset while respecting
the chronological order of the interactions observed. Since the structure of the
underlying network is not known, the definition of a prior that enforces a structure
to the posterior inferred network is necessary. Wewill introduce two special cases
of CEM. The first case assumes an Erdős–Rényi (ER) prior and is called CEM-ER.
According to this prior, the underlying network that we are trying to infer has
been created under a uniform probability ρ that is the same for all edges. However,
this does not accurately reflect the structure of social media graphs, which, as we
showed in Section 2.3.2 are less random and have some important properties,
such as the existence of hubs. For that reason, we propose an additional case
that incorporates a more realistic model for the underlying graph, the Stochastic
Block Model (SBM). We call this extended method CEM-SBM.

4.1 Problem formulation

4.1.1 The input dataset: a reposting network

This thesis focuses on inferring networks from online social media datasets that
may contain missing information. Since the most common data given by the
platforms is traditionally the content of their users, our goal is to leverage this
information in order to infer the friendship graphs between users that are usually
hidden. More specifically, we will be looking into the posts and the reposts that
the users generate given by their reposting networks. On X, for example, this
corresponds to the tweets and retweets that users exchange, but we keep to a
more general notation to consider other platforms as well.

The information that is provided. The input dataset that includes the posts
and reposts is denoted by D and it includes P posts/reposts in total. For each
instance in the dataset, we keep only four types of information: its unique post

56 Chapter 4 Constrained Expectation Maximization for feasible network
inference

pid t uid rid
↓ ↓ ↓ ↓

post

repost

post

repost

repost

repost

P1, 09:20, U1, −1

P2, 09:30, U2, P1

P3, 09:35, U2, −1

P4, 09:40, U3, P1

P5, 09:45, U3, P3

P6, 09:50, U1, P3

Fig. 4.1. – Example of a reposting networks dataset. Each data entry has the form
(pid, t, uid, rid) and reflects a post if rid = −1 and a repost otherwise, where the value of
rid gives the pid of the post that has been reposted.

Tab. 4.1. Notations and definitions for the input dataset.

Notation Definition

D Dataset of P posts and reposts of the type (pid, t, uid, rid).
U Set of users that are included in D (|U| = N).
Ds ∈ D Diffusion episode of post s.
authors The uid of the author of s.
ts(i) < ts(j) User i reposted or posted s before user j.
Mij Number of diffusion episodes for which it holds true that ts(i) < ts(j).

id (pid), the time that the user posted it (t), the unique user id (uid), and the
repost id (rid) that equals −1 if the post is original, or, if it is a repost, it is equal
to some pid ∈ D which points to the post instance in the dataset. If a user is the
author of a pid we mark them as authorpid. The set that includes all the users
that participate in the dataset is denoted by U and is of size |U| = N . Figure 4.1
shows an example of a dataset D like the one described above. It includes P = 6
posts/reposts instances and N = 3 users in total. The first instance in D is an
post with pid = P1, and is posted at t = 09:20 by author U1; the second instance
with pid = P2, tells us that user U2 reposted at t = 09:30 the post with pid = P1

(mapped to the author U1), and so on.

4.1 Problem formulation 57

Friendship graph G1

Newsfeeds
U1 U2 U3

U2U1 U3

Profiles

U1 U2

U3

Information
diffusion

P2, 09:30, U2, P1

P1, 09:20, U1, −1

P1, 09:20, U1, −1

P2, 09:30, U2, P1

P2, 09:30, U2, P1

P4, 09:40, U3, P1

Fig. 4.2. – The hidden way that a specific post P1 authored by U1 at t0 =09:20 diffuses
through the friendship network of users G1: At timestamp t0, post P1 appears on the
Newsfeeds of U1’s followers, in this case user U2. At a later timestamp, t1 =09:30, U2
reposts P1 on their Profile. Their repost takes the pid = P2 and appears on the Newsfeeds
of U2’s followers, U1 and U3. Finally, U3 reposts it to their own Profile.

4.1.2 Modeling the hidden way information diffuses

Generally, a social media platform provides a Newsfeed and a Profile for each
user. The Profile includes their personal posts and reposts whereas the Newsfeed
includes the posts and reposts created by their followees. Newsfeeds are formed
based on the friendships in the network. Accordingly, Fig. 4.2 shows the possible
Newsfeeds and Profiles of the users U = {U1, U2, U3} that created the dataset D.
As we see, the Newsfeeds are a result of the way that users are connected, i.e.,
their friendship graph G1, which is what we are seeking to infer. The Profiles are
filled with individual posts from users and their interaction with Newsfeeds. If
we assume that we have access to the unknown Newsfeeds and the corresponding
friendship network of Fig. 4.2, we can infer directly that P1 diffused from user
U1 to U2 and then to U3 (assuming that users only repost the users that they
follow). Inferring this path was trivial since we assumed that we had access to
the Newsfeeds which show the intermediary pids of the reposts. However, until
today, social media platforms keep other users’ Newsfeeds private. Therefore, in
the final datasetD this information is hidden. Instead, we only have access to the
timestamps of the reposts of P1 and the author it is mapped to (user U1). For user
U2 it is trivial to infer that they reposted P1 directly from U1 (and thus follow
them) since they are the first in the dataset to repost it. However, it is non-trivial
to infer through whom U3 reposted P1; it could be through any of the users U1

or U2.

58 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Towards the inference of hidden diffusion paths

Of course, the above example is quite simplistic; we can still come up with some

trivial guesses about how the three users are connected that are not very far

from the ground truth. In reality, though, we will have to deal with datasets that

include millions of users, which makes our task much more challenging. Since

social media datasets hide the Newsfeeds and the intermediary repost IDs, we

do not know the real paths through which posts diffuse: a repost made by each

user uid points only to the author of the initial post and not to the real user that

uid reposted. Therefore, due to the dataset being only a partial view of each

user’s Profile and their interactions with their hidden Newsfeed, we cannot infer the

friendship connections between the users directly on a large scale, and provides

the motivation for a method that infers them indirectly through the intermediary

diffusion paths.

4.1.3 Formulating network inference for Online Social Networks

We formulate the problem of NI for OSNs as follows: Given a dataset D of the
activity of a set of users U , we assume that there is an underlying friendship graph
G connecting all users in U that is unknown and is what we are trying to infer.
More formally, it is a directed friendship graph G where the nodes are the N

users in U and each edge (i, j) translates to user j following user i. The graph G is
represented by an adjacency matrix A, of dimensions N ×N , where an element
Aij equals 1 if user j follows user i. The goal of NI is to infer the hidden adjacency
matrix A. Our intuition is that it is more likely that user j is following user i

(Aij = 1) if a post reaches often user j through user i, through the edge (i, j).
With this information not being directly available, we aim to infer it indirectly, via
the intermediary diffusion paths that are hidden in the dataset. This will generate
the unknown friendship graph G in question.

Users create diffusion episodes. Each original post with rid =−1 in the dataset
D is denoted by s and initiates what we call a diffusion episode of users reposting
it sequentially in time, independently from other original posts. We say that the
whole dataset D is a set of diffusion episodes D = {D1,D2, . . . ,DS}. Formally,
we define each Ds ∈ D as follows:

Definition 4.1.1 (Reposting diffusion episode): A reposting diffusion episode,
or simply, a diffusion episode of a post s is defined as a set of timestamped user

4.1 Problem formulation 59

posts and reposts Ds = (authors, ts
0) ∪ (u, ts)|u ∈ U ∧ ∃(pid, ts) : (pid, ts, u, s) ∈

D}, where authors is the user that first posted s at timestamp ts
0, and ts is the

timestamp for a user later reposting s. �

In other words, each diffusion episode Ds ∈ D includes the author of s, followed
by the users who reposted it, in chronological order. To indicate that a user i

appears in a diffusion episode Ds before j we use the notation ts(i) < ts(j). Al-
though a diffusion episode specifies who andwhen reposted a post in a network, it
does not give the underlying mechanics of how the diffusion process is created.

An intuition. Out of all the diffusion episodes inD, we count Mij where it holds
that ts(i) < ts(j). If Mij > 0, it is probable that j has reposted an s from i. In
this case, the pair is referred to as an active pair. Our intuition is that we become
more certain about the existence of a diffusion path from i to j as Mij becomes
larger. As a result, Mij is a quantity that can determine the hidden diffusion paths
and we will use it extensively in the chapter that follows.

4.1.4 Assumptions on the diffusion of posts

To infer the hidden diffusion paths that resulted in a diffusion episode, we first
need to decide on a diffusion model. In this case, we opt for a simple model, the
SI diffusion model, which has been extensively used in epidemiological models
(Daley and Gani, 1999) and apply it to social media users: when a new post
s arrives on a user’s Newsfeed, they become Susceptible. If they repost it they
become Infected with the specific post s and remain so for the rest of the diffusion.
Most existing works using the SI model consider that infection can happen only
one time step ahead, after a user becomes Susceptible. We assume, however, that
when a user posts something, they can diffuse it to their still uninfected followers
(those in the Susceptible state) during any consecutive timestamp. However,
given that at the time of the inference we are not aware of the exact followers of
users, we need to make some additional assumptions:

– Assumption 1: The author of every post s that has been reposted is included
in the dataset D.

– Assumption 2: Users repost only from the users they follow, i.e., their set of
followees. We assume that the latter are always present in D.

– Assumption 3: A post can diffuse from user i to user j only if user i has
reposted s chronologically earlier in the diffusion episode Ds than user j.

60 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Although the second assumption does not always hold in practice, it simplifies
our task. As we will see later, our approach can be expanded accordingly to take
into account instances in which someone reposts content from users who are not
inside the dataset or even from users outside their list of followees (e.g., when
Twitter users repost something from the trending hashtags or via the search
function, etc). We should also note that we can only obtain friendships between
users who have interacted with one another at least once in the available dataset
D.

4.2 Definition of feasibility

A probabilistic approach to inference. For every diffusion episode Ds in the
datasetD and every user i that reposted s at a timestamp before j, we first define
the binary variable Xij(s) ∈ {0, 1} that is equal to 1 if the post s passed from i to
j (i.e., j follows i) and 0 otherwise. As underlined in the previous section, the real
value of Xij(s) is unknown. Therefore, given the chronological order of reposts
in Ds, we may imagine many feasible routes through which the post s might
have spread to those who reposted it. These paths create a propagation graph
Gs = {Vs, Es} per diffusion episode, with the users in each diffusion episode Ds

as nodes Vs and the edges set Ds containing the (unknown) edges that we have
to infer for the given post. Every edge follows the propagation’s direction; for
instance, if an edge (i, j) is inferred in Gs it means that Xij(s) = 1.

Given the above and the motivations for the concept of feasibility given in the
Introduction, for each diffusion episode Ds, our goal is not only to infer an
underlying propagation graph Gs, but also one that is feasible. Formally, we wish
to infer a directed acyclic graph (DAG) Gs that is feasible and explains the whole
Ds sequence, according to the following definition:

Definition 4.2.1 (Feasible propagation DAG Gs per diffusion episode Ds): Given
a diffusion episode Ds from D, we say that a propagation DAG Gs is feasible,
or, equivalently, that it explains Ds, if (i) there exists (at least) one directed path
from the author authors to every other user j ∈ Ds\authors and (ii), for each
edge (i, j) of the path it holds that ts(i) < ts(j), i.e., all of its edges follow the
time-ordering of the reposts. �

If we take the union of every feasible propagation graph Gs inferred per diffusion
episode Ds, we get the full friendship graph G and we can build its adjacency

4.2 Definition of feasibility 61

matrix A as follows: we set Aij = 1 if there exists at least one Gs where the edge
(i, j) exists, and Aij = 0 otherwise.

Definition 4.2.2 (Feasible friendship graph G): An inferred graph G is called
feasible, if, for every diffusion episode Ds ∈ D, there exists a subgraph which is a
feasible propagation DAG Gs as we defined it above1. �

Why enforcing feasibility makes sense?

Enforcing feasibility makes sense in OSNs because information (e.g., tweets) is

propagated in a diffusion-like manner through the underlying friendship network

that we are trying to infer. If we assume that users rarely repost information outside

the users they follow, enforcing the feasibility constraint could help the inference

process generate the true diffusion network more accurately. Alternatively, as we

will show later, we can lower the percentage of feasibility that we expect from the

inference, if we assume that the source of information in the dataset comes outside

of the users’friendship connections (e.g. guided by the platform’s recommendation

algorithm or self-guided search).

4.3 Enforcing feasibility with a set of feasibility constraints

The main challenge of network inference in OSNs arises from the fact that the
binary value Xij(s) defined for the different user pairs is unknown. However, we
can restrict the number of solutions by imposing a set of feasibility constraints
on all the values. These constraints should ensure that all the diffusion episodes
in the dataset are feasible given the inferred network according to Definition 1.
Specifically, they should guarantee that if a user j appears in a diffusion episode
Ds they should be connected with at least one user i that appears in Ds before
them, including the author of s (i.e., it should hold that ts(i) < ts(j)). As a result,
the constraints have the following format:

∑
i∈Ds s.t. ts(i)<ts(j)

Xij(s) ≥ 1,∀j ∈ Ds\{authors}, (4.1)

Xij(s) ∈ {0, 1}, ∀i, j ∈ U , ∀Ds ∈ D. (4.2)

1Keep in mind that the full graph G is not a DAG.

62 Chapter 4 Constrained Expectation Maximization for feasible network
inference

We can again understand this expression by the simple example of Fig. 4.3, which
shows the constraints on Xij(s), given the set of diffusion episodesD = {D1,D2}.
The role of these constraints is to guide the process toward solutions that belong
to the feasible group of graphs. To do so, the constraints should be defined for
each diffusion episode Ds ∈ D, and each user that reposted s, according to Eq.
4.1. For example, as we see in Fig. 4.3, given the first constraint for diffusion
episode D1, we can derive easily that the user U2 reposted post s = 1 directly
from its author U1 (X12(1) = 1). The second constraint tells us that user U3 has
reposted s = 1 either from U1, or from U2 (or, from both). If we look closer, the
possible graphs that we marked as non-feasible earlier violate these constraints.
For example, GA violates the first constraint for D1, since X12(1) = 0. Likewise,
GB violates the last constraint for D1, since X21(2) + X31(2) = 0. As we saw in
the figure and the equations above, the Xij value of a pair (i, j) is different for
each diffusion episode that it appears in. For example, X23 appeared two times,
one time for D1 and another one for D2.

Overcoming the intractability of the solution. With all the possible combi-
nations that each Xij value can take for all active pairs and diffusion episodes
observed, we soon realize that the problem is intractable when dealing with large
datasets. The only direct knowledge we have for each pair is the constant value
Mij , i.e., the total number of times that a user i appears before j in every diffusion
episode Ds ∈ D. What we are interested in, is the number of times that a post
diffused through the edge (i, j), out of the Mij times that it could be possible.
We model this with the unknown quantity Yij which is equal to the total number
of times that j reposts from i. More formally:

Yij =
∑

Ds∈D, s.t. ts(i)<ts(j)
Xij(s). (4.3)

As we can see above, to find Yij , we sum over all diffusion episodes where it holds
that ts(i) < ts(j). This happens Mij times in total. In Table 4.2, we summarize all
the different parameters defined for the edges alongwithwhether this information
is directly available from the dataset D (column “Hidden”).

4.4 Defining probabilities of diffusion

To solve the above problem we make the following important assumption: for
every active pair (i, j) in any diffusion episode Ds ∈ D, a user j reposts an s

from i independently from other diffusion episodes with an unknown diffusion

4.4 Defining probabilities of diffusion 63

Toy dataset

tweet 1 (D1) U1

t1
0

U2

t1
1

U3

t1
2

tweet 2 (D2) U2

t2
0

U3

t2
1

U1

t2
2

Feasibility
constraints

domain of X

X12(D1) ≥ 1
X13(D1) + X23(D1) ≥ 1

for tweet 1

X23(D2) ≥ 1
X21(D2) + X31(D2) ≥ 1

for tweet 2

domain of σ

σ12 ≥ 1
σ13 + σ23 ≥ 1

σ23 ≥ 1
σ21 + σ31 ≥ 1

Fig. 4.3. – Constructing the feasibility constraints on the domain of X and σ on the toy
dataset

Tab. 4.2. Edge parameters*

Parameter Type Range Description Hidden

Aij (i, j) instance
of adjacency
matrix A

{0, 1} 1 if j follows i
in the hidden

A

3

Mij Constant,
counted

directly from
the data

N0 #times that i
appears before

j, in any
Ds ∈ D

7

Xij(s) Independent
Bernoulli r.v.

with mean σij

{0, 1} 1 if j reposted
s directly from

i

3

Yij Independent
Binomial r.v.
with mean

Mijσij

N0 #times that j
reposts

directly from i,
any s

3

σij Mean of
Xij(s)

[0, 1] Probability for
j reposting

directly from i,
any s

3

* r.v.: random variable

probability σij ∈ [0, 1]. Therefore, Xij(s) is an independent Bernoulli random
variable with a mean parameter σij which does not depend on s. In other words,
the diffusion probability σij of a user pair is the same across all diffusion episodes,
which means that there is no preference in terms of content when someone

64 Chapter 4 Constrained Expectation Maximization for feasible network
inference

chooses to repost. Of course, this does not accurately reflect reality but it serves
as a useful simplification. Therefore, for a user pair (i, j):

σij = E [Xij(s)] . (4.4)

We can now transfer our problem from searching over the binary domain of
Xij(s) to solving over the real domain of the σij values. By taking the expectation
in (4.1) and given Eq. 4.4, we get the following set of constraints:

∑
i∈Ds s.t. ts(i)<ts(j)

σij ≥ 1,∀j ∈ Ds\{authors}, (4.5)

σij ∈ [0, 1], ∀i, j ∈ U . (4.6)

From Eq. 4.3 and Eq. 4.4, Yij is the sum of Mij independent Bernoulli random
variables that have a mean value σij . In other words, Yij is an independent
Binomial random variable with mean value Mijσij :

E[Yij] =
∑

Ds∈D, s.t. ts(i)<ts(j)
E[Xij(s)] =

∑
Ds∈D, s.t. ts(i)<ts(j)

σij = Mijσij. (4.7)

4.5 Problemmodeling and learningmethod

4.5.1 Erdős–Rényi prior (CEM-ER)

As mentioned above, the prior structure of the network A is not known, and
therefore a uniform prior ρ is assumed for all edges. Hence, the prior takes the
form of a probability distribution P (A | θ), where θ is a set of hidden parameters
that give us more details on the underlying network. Given a dataset D of posts
and reposts, P (A, θ | D) is the probability that the inferred network is A and the
parameters get the value θ. The parameters θ should account for a wider range of
potential network types and data generation methods. Therefore, they are chosen
as follows:

– The probability that a user j shares content through a user i, represented
by the set of σij values that we presented in Section 4.3.

– To model the uncertainty about the structure of the graph’s adjacency
matrix A, we assumed that there is a prior probability ρ of an edge drawn
independently between any two nodes i, j (Erdős–Rényi prior).

4.5 Problem modeling and learning method 65

– The true positive utilization rate α: the probability of a post propagating
through an edge that we inferred to exist in the underlying network G.
Given the (hidden) number of interactions between users Yij , we consider
that when an edge exists in G (Aij = 1) the Yij out of the Mij experiments
are successful (we get Yij true positive edges in total), each with probability
α.

– The false positive utilization rate β: the probability of inferring that a post
propagated through edges that do not exist in G. Likewise to above, when
Aij = 0, we consider that the Yij out of Mij experiments are successful
(we get Yij false positive edges), each with probability β.

We can see that the global parameters α and β depend on whether an edge
exists in the ground truth network G. To find the most probable value of the
parameters θ given the observed data and infer A with maximum likelihood, we
will employ an Expectation–Maximization (EM) algorithm which is a standard
inference tool when some data is unknown or hidden. As suggested by its name,
an EM iteration involves two consecutive steps: an expectation (E) step, which
computes the expected log-likelihood under the most recent estimation of the
parameters in θ; then, a maximization (M) step, which determines the parameters
that maximize the expectation. Then, the computed parameters are used in the
following iteration, and so on, until we satisfy a convergence criterion.

We start constructing the EM iterations, following the method proposed by
Newman (2018) and employ the Bayes’ theorem:

P (A, θ | D) = P (D |A, θ)P (A | θ)P (θ)
P (D) . (4.8)

The probability that we get the specific set of posts and reposts D given A and
the parameters θ ={α, β, ρ, σ}, found in the numerator of the above expression,
will differ here from Newman since we have introduced the hidden number of
interactions between users, Yij . Given the ordered nodes of a diffusion episode,
each repost path is chosen independently per diffusion episode. We also assumed
as prior knowledge that between any two nodes in A an edge has been drawn
with probability ρ. Therefore, if we consider that the data D is composed of the

66 Chapter 4 Constrained Expectation Maximization for feasible network
inference

known constant values Mij and the unknown binomial random values Yij , then
D = (M, Y) and we get:

P (D |A, θ)P (A | θ) =
∏
i 6=j

[
αYij (1− α)Mij−Yij ρ

]Aij

[
βYij (1− β)Mij−Yij (1− ρ)

]1−Aij

. (4.9)

What this model tells us is that when Aij = 1, the Yij out of the Mij experiments
are successful, each with probability α. When Aij = 0, the Yij out of Mij

experiments are successful, each with probability β. This gives a simple way to
describe the different scenarios of users interacting with each other depending on
whether they are following each other or not in the underlying network. For the
whole set of parameters θ, we assume a uniform prior probability P (θ). If we sum
in (4.8) over all possible networks A, we find that P (θ | D) = ∑

A P (A, θ | D).
Then, as suggested by Newman (2018), we can apply the well-known Jensen’s
inequality on the log of P (θ | D):

log P (θ | D) = log
∑
A

P (A, θ | D) ≥
∑
A

q(A) log P (A, θ | D)
q(A) , (4.10)

where q(A) is any probability distribution over networks A satisfying
∑

A q(A) =
1. We also define the posterior probability of an edge existing between i and j by
Qij = P (Aij = 1|D, θ) = ∑

A q(A)Aij . If we take the expectation of Eq. (4.10)
we find that:

E[log P (θ | D)] ≥
∑
A

q(A) log Dij

q(A) , (4.11)

where2,

Dij = Γ
∏
i 6=j

[
ραMijσij (1− α)Mij(1−σij)

]Aij
[
(1− ρ)βMijσij (1− β)Mij(1−σij)

]1−Aij

.

(4.12)

We find that the choice of q that achieves equality of (4.11) and hence, maximizes
the right-hand side with respect to q is:

q(A) =
∏
i 6=j

QAij

ij (1−Qij)1−Aij , (4.13)

2The full derivations can be found in Appendix A.

4.5 Problem modeling and learning method 67

where, Qij is the posterior probability that the edge (i, j) exists, and we find that
it equals:

Qij = ραMijσij (1− α)Mij(1−σij)

ραMijσij (1− α)Mij(1−σij) + (1− ρ)βMijσij (1− β)Mij(1−σij) . (4.14)

The details of the above derivation are shown in Appendix A. To find the maxi-
mizing posterior distribution q(A) it suffices to find the individual maximizing
posterior probabilities Qij according to Eq. (4.14). Given these values, if we
further maximize with respect to the parameters θ ={α, β, ρ, σ} we can get the
maximum-likelihood value we seek. The updates for the first three parameters
are thus calculated to be the following:

α =
∑

i 6=j MijσijQij∑
i 6=j MijQij

, β =
∑

i 6=j Mijσij(1−Qij)∑
i 6=j Mij(1−Qij)

, (4.15)

ρ = 1
N(N − 1)

∑
i 6=j

Qij, (4.16)

where N is the number of users in the dataset. Finally, to find the whole vector σ

that includes all the σij unknown diffusion parameters, we must solve a linear
optimization problem as follows (for derivation refer to Appendix A):

max
σ

∑
i 6=j

σij(Wij − λW) (4.17)

s.t. σ ∈ Fσ,

where Wij = Mij

(
Qij log α

1− α
+ (1−Qij) log β

1− β

)
,

λ > 0 some given penalty for regularisation, and W = max
i 6=j

Wij .

We added the value λ into the optimization objective as a penalty per iteration,
since our initial goal is to infer a network that is feasible with the minimum possi-
ble number of edges. Without it, all (i, j) pairs with Wij > 0 would immediately
get their σij = 1, leading to the inference of more edges than we initially wanted.
As λ moves closer to 1, it forces the optimization goal to be negative and thus,
to be guided only by the provided constraints. It is equivalent to penalizing the
total expected number of inferred edges. As λ approaches 0, the optimization
infers the largest number of edges possible. We will explore in detail the effect

68 Chapter 4 Constrained Expectation Maximization for feasible network
inference

of the hyperparameter λ with values that vary from 0 to 1 in the Experiments
section. The final CEM-ER algorithm is shown in Algorithm 1.

4.5.2 Stochastic blockmodel prior (CEM-SBM)

Since we are working with social media data, where there is usually a strong
presence of communities, we believe it ismore realistic to assume that the network
is derived from an SBM, a generative model of community structure that was first
proposed by Holland et al. (1983). In the standard SBM, each node i participates
in a different block (community) which we indicate by gi, which may take values
in [1, G] where G is the number of hidden communities. The number of edges
between nodes i and j follows a Bernoulli distribution with mean ωgi,gj

, that is
the relative probability of intra-community (if gi = gj) or inter-community (if
gi 6= gj) connection.

As we can see, in the case of CEM-ER, the prior structure of the network A was
the only kind of unobserved data, but in this case, we have two unknowns: the
network A and the vector of the community assignments of the users g. Hence,
the prior takes the form of a probability distribution P (A, g | θ), where θ denotes
the unknown parameters of the distribution, which gives additionally the details
of the community structure. This approach, therefore, allows us to infer both the
unknown network structure and the community structure simultaneously. Given
a datasetD, P (A, g, θ | D) is the probability that we get A, the users’ community
participation vector g and a set of chosen parameters θ. The parameters set θ

that we select here includes two newly added parameters that replace the prior ρ

that we had in the CEM-ER case:

– Following the SBM for A and the users’ community participation vector g,
we suppose that there is a prior probability p of an edge existing between
any two nodes i, j that belong in the same community, i.e., gi = gj .

– The nodes that belong in different communities are connected with a prob-
ability q.

We construct the EM iterations as we did before, following Bayes’ theorem:

P (A, g, θ | D) = P (D |A, g, θ)P (A, g | θ)P (θ)
P (D) . (4.18)

4.5 Problem modeling and learning method 69

Taking into consideration the definition of the parameters above, the probability
that we get the specific dataset D, given A, g and θ ={α, β, p, q, σ} is driven by
the probabilities α and β, whereas the probability that we get A and g given θ

depends on the probabilities p and q. Therefore, assuming that each user reposts
independently from others:

P (D |A, g, θ)P (A, g | θ) =
∏
i 6=j

gi=gj

[
αYij (1− α)Mij−Yij p

]Aij

[
βYij (1− β)Mij−Yij (1− p)

]1−Aij ∏
i 6=j

gi 6=gj

[
αYij (1− α)Mij−Yij q

]Aij

[
βYij (1− β)Mij−Yij (1− q)

]1−Aij

. (4.19)

For the whole set of parameters θ, we assume again a uniform prior probability
P (θ). We sum (4.18) over all possible networks A and we find that P (θ | D) =∑

A P (A, g, θ | D). Then, we can apply the well-known Jensen’s inequality on the
log of P (θ | D):

log P (θ | D) = log
∑
A

P (A, g, θ | D) ≥
∑
A

q(A, g) log P (A, g, θ | D)
q(A, g) , (4.20)

where q(A, g) is any joint probability distribution over networks A and com-
munity assignments g satisfying

∑
A q(A, g) = 1. We also define the posterior

probability of an edge existing between i and j that belong to communities gi, gj

by Qij(gi, gj) = P (Aij = 1 | D, θ) = ∑
A q(A, g)Aij . For the E-step of the EM

algorithm, following the same derivation logic as in the CEM-ER variation (in
detail in Appendix B), we find that Qij(gi, gj) is the posterior probability that the
edge (i, j) exists and is different depending on whether users i, j belong in the
same community(gi = gj = r) or not (gi = r, gj = s, r 6= s):

Qij(r, r) = pαMijσij (1− α)Mij(1−σij)

pαMijσij (1− α)Mij(1−σij) + (1− p)βMijσij (1− β)Mij(1−σij) , (4.21)

Qij(r, s) = qαMijσij (1− α)Mij(1−σij)

qαMijσij (1− α)Mij(1−σij) + (1− q)βMijσij (1− β)Mij(1−σij) . (4.22)

70 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Notice that for Mij = 0, Qij(gi, gj) becomes equal to the prior probability p if
gi = gj and equal to q if gi 6= gj . Next, to maximize the likelihood in terms of
the parameters we find:

α =
∑

i 6=j MijσijQij(gi, gj)∑
i 6=j MijQij(gi, gj)

, (4.23)

β =
∑

i 6=j Mijσij(1−Qij(gi, gj))∑
i 6=j Mij(1−Qij(gi, gj))

, (4.24)

p = 1∑
i 6=j 1(gi = gj)

∑
i 6=j,gi=gj

Qij(gi, gj), (4.25)

q = 1∑
i 6=j 1(gi 6= gj)

∑
i 6=j,gi 6=gj

Qij(gi, gj). (4.26)

To find the diffusion probabilities σij we must solve the following linear optimiza-
tion problem:

max
σ

∑
i 6=j

σij(Wij − λW) (4.27)

s.t. σ ∈ Fσ,

where Wij = Mij

(
Qij(gi, gj) log α

1− α
+ (1−Qij(gi, gj)) log β

1− β

)
,

λ > 0 some given penalty for regularisation, and W = max
i 6=j

Wij .

The final CEM algorithm, when we choose the SBM prior is shown in Algorithm
1. It iterates between finding an optimal value for q, via the Qij values, and then
holding it constant to maximize the likelihood (the right-hand side of (A.10) in
Appendix B) with respect to θ ={α, β, p, q, σ} (M-step). We underline that the
updates of the Qij values that are essential for the E-step require the knowledge of
the communities participation vector g. It is updated in each iteration as follows:
we generate first a network from the current Qij estimations, by drawing an edge
whenever Qij > 0.5. To get the updated vector g, we apply to the generated
network the Louvain method, which returns a single community label for each
user node (Blondel et al., 2008). Our algorithm converges when the L2 norm

4.5 Problem modeling and learning method 71

Dataset D

P1, 09:20, U1, −1

P2, 09:30, U2, P1

P3, 09:35, U2, −1

(...)

Create constraints σ

Count Mij∀(i, j) ∈ U

Choose prior

CEM Graph Gc

Q

Fig. 4.4. – Framework of Constrained Expectation Maximization.

of improvement ||Qnew −Qold|| falls under some threshold ε that we choose in
advance, where Q is the matrix with the Qij values.

Our intuition is that the addition of the community detection parameters p and q,
which help the method group the users in communities, can guide the inference
towards better results. This is reflected on the updated parameter Qij(gi, gj) -
the posterior probability that the edge (i, j) exists - and is different depending
on whether users i, j belong in the same community (gi = gj = r) or not
(gi = r, gj = s, r 6= s). Before, in the CEM-ER case, we did not have this option,
as the probability for a link to exist (Qij in Eq. (4.14)) is not influenced by users’
community participation. Given that the reposting activity of users is heavily
influenced on whether they participate in the same community or not, we believe
that the addition of this parameter is the determining factor for the improvement
of CEM.

4.6 Methodology

4.6.1 Datasets

The general framework of CEM for both priors is shown in Fig. 4.4. To evaluate
our two methods CEM-ER and CEM-SBM against the ground truth and compare
them with existing methods, we will use two different datasets: a synthetic and
a real-world one. The synthetic dataset that we create aims to illustrate our
method’s efficiency when the dataset includes sufficient information about the
interactions between users. As we will show later, this is not always the case with
real-world datasets coming from OSNs, which can make the inference task even
more challenging.

72 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Algorithm 1 Iterative process of CEM
Input: prior, D, U , M
Output: Q, α, β, ρ, σ
t = 0
Random Initialisation: αt, βt, ρt, σt

1: if PRIOR = ER then
2: repeat
3: t += 1
4: Qt = update Q(αt−1, βt−1, ρt−1, σt−1) using (4.14)
5: αt = update α(Qt, σt−1) using (4.15)
6: βt = update β(Qt, σt−1) using (4.15)
7: ρt = update ρ(Qt) using (4.16)
8: σt = update σ(Qt, αt−1, βt−1) using (4.17)
9: until convergence

10: else if PRIOR = SBM then
11: Random Initialisation: gt

12: repeat
13: t += 1
14: Qt = update Q(αt−1, βt−1, pt−1, qt−1, σt−1,gt−1) using (4.21), (4.22)
15: αt = update α(Qt, σt−1) using (4.23)
16: βt = update β(Qt, σt−1) using (4.24)
17: Pt = update ρ(Qt) using (4.25)
18: qt = update ρ(Qt) using (4.26)
19: σt = update σ(Qt, αt−1, βt−1) using (4.27)
20: gt = louvain(Qt)
21: until convergence
22: end if

Synthetic dataset

For the generation of synthetic social media data, we follow the code found in
Giovanidis et al. (2021). We first create a set of N = 100 users each of which
has two random activity (posting and reposting) rates. Then, we create an SBM
network between the users, with 7 different partitions of varying sizes, that
represents the friendship network of the network. Users in the same community
are connected with probability p = 0.06 and users of different communities
are connected with probability q = 0.007. Each subgraph corresponding to a
community is a random ER with connection probability p. For each user, we
generate a set of random timestamps, that increase according to an exponential
distribution that depends on their activity rates. These timestamps represent
the times they posted or reposted something. We generate a set of 100,000
timestamp-user-activity instances in total that we call the Events set. Additionally,

4.6 Methodology 73

Tab. 4.3. Dataset statistics for the synthetic and real-world data.

Dataset statistics Synthetic #Élysée2017fr

Time span 17,459 time-steps 6 months
tweets 1,709 293,405
retweets 24,347 1,605,059
users 100 11,521
% users with # tweets > 0 27.00 70.74
% users with # retweets > 0 87.00 96.45
% user pairs with Mij > 0 78.10 5.21

Tab. 4.4. Ground truth graph statistics for the synthetic and real-world data.

Ground truth graph Synthetic #Élysée2017fr

edges 158 1,555,718
% intra-edges(labeled) 63.92 (101) 84.29 (1,311,463)
% inter-edges(labeled) 36.08 (57) 15.71 (244,255)

% edges with Mij > 0 99.36 (155) 45.23 (703,682)
% intra-edges with Mij > 0 100.00 (101) 50.13 (657,389)
% inter-edges with Mij > 0 98.25 (56) 18.95 (46,293)

we assume that each user has a Newsfeed that can hold up to 10 posts and reposts
from their followees. Based on the friendship network and the Events set, we
simulate a set of interactions between the users according to the following scheme:
when a user i visits their Newsfeed, they repost randomly one of the 10 entries
made by their followees. A new entry on the Newsfeed list will push out an
older entry of a random position. The Newsfeeds of the users that follow user i

will then be updated accordingly. Of course, in reality, users on a social media
platform may show a preference towards a specific account or topic, or even
repost something outside of the scope of their followees. The random uniform
selection, however, makes the simulation collect sufficient information for all the
edges in the friendship graph.

The simulation generates a social media dataset from which we can extract all
the quantities that are necessary for our method, as presented in Section 4.1.1.
The detailed statistics of the synthetic dataset can be found in Table 4.3. Table 4.4
shows instead the statistics of the ground truth graph. This is the network that
we will be trying to infer. The intra-edges refer to the edges inside a community,
whereas inter-edges refer to the edges between different communities.

74 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Real-world data: the #Élysée2017fr dataset

For the evaluation of our method on real-world data, we choose #Élysée2017fr, a
publicly available dataset related to the 2017 French presidential campaign on
Twitter (Fraisier et al., 2018). It features 2,414,584 tweets and 7,763,931 retweets
from 22,853 Twitter profiles discussing the election. Users have been manually
annotated by experts with political affiliations expressing support for one of the
5 main competing parties in France:

– FI: France Insoumise, far-left (Jean-Luc Mélenchon)

– PS: Parti Socialiste, left-wing (Benoît Hamon)

– EM: En Marche, center (Emmanuel Macron)

– LR: Les Républicains, right-wing (François Fillon)

– FN: Front National, far-right (Marine Le Pen)

The exact timestamps of interactions between users had not been published by
the creators of the dataset, therefore we had to crawl them using the Twitter
API. On top of that, we collected the follower-followee connections, i.e., the
friendship network of the observed user IDs, which had not been provided by the
authors. This is a crucial step since most network inference methods do not have
a ground truth to compare their results with. It is important to note that at that
time, Twitter was still providing access to the friendship networks (January 2021).
However, since then, many changes have been made to their API policies and
this information has been restricted. A visual representation of the friendship
network that we collected along with the community participation of each node
is shown in Fig. 4.5a. The network of retweets is shown in Fig. 4.5b. From these
figures, we can see that even though users follow people from other communities
(e.g., there are many friendships between the two extreme parties FI and FN),
they mostly retweet posts from authors that belong inside their community and
they do not interact much with users outside.

From this dataset, we keep only the tweets that have been retweeted by at least one
user. Additionally, we remove retweets for which we do not know the author and
retweets that have been made more than once by the same user. The statistics of
the dataset after the above pre-processing along with the statistics of the ground
truth network are shown in Tables 4.3 and 4.4.

4.6 Methodology 75

FI

LR

EM

PS

FN

(a) Friendship network (b) Retweet network

Fig. 4.5. – Networks of the user-user connections provided by the #Élysée2017fr dataset,
colored according to the party they support. In the case of the friendship graph (a) there is
an edge (i, j) if j follows i. In the case of the retweet network (b) there is a weighted edge
for every time that a user j has reposted a tweet authored by i. The size of each node is
proportional to its degree.

Insufficient information in a real-world dataset. From Tables 4.3 and 4.4 and
Fig. 4.5a and 4.5b, we notice the main challenge in working with this dataset
against the synthetic one: out of the 1,555,718 edges in the underlying friendship
graph, only 45.23% of them have a non-zero Mij value. On the other hand, the
synthetic dataset includes information for more than 99% of the 158 existing
edges. This can be partly because, in reality, users may repost their followees
with some preference, instead of randomly selecting posts from their Newsfeed
as is the case in the synthetic dataset. Therefore, many users may not appear
to interact with retweets even if there is a connection between them in reality.
However, given that the absolute numbers of the real-world dataset are quite
high, we believe that there is sufficient information to work with.

4.6.2 Comparison

Comparedmodels. Wecompare the graphs inferred by our twomodels, CEM-ER
and CEM-SBM, with those generated by the following baseline and state-of-the-
art methods:

– Star: a heuristic network inference method that draws a directed edge from
the author of every tweet s in the dataset to every user that appears in the

76 Chapter 4 Constrained Expectation Maximization for feasible network
inference

corresponding diffusion episode Ds after them. The network inferred by
Star implies that all the users that have retweeted a tweet are following its
author.

– Chain: another heuristic method that generates a single long path between
the users in each diffusion episodeDs, according to the timestamps of their
interactions with tweet s: each path first connects the author of s to the
user i that retweeted it first in time. Then, it connects i to the user j who
retweeted it second in time, j to the user who retweeted it third, and so on.

– Saito et al. (2008): a baseline EM-based algorithm that infers the influence
probabilities kij by assuming an Independent Cascade model of diffusion
between the users. For comparison, we produce the final network by
drawing an edge (i, j) whenever kij > 0.5.

– Netinf (Gomez-Rodriguez et al., 2012): in a similar way to our work,
Gomez-Rodriguez et al. identify the network that most accurately explains
the observed infection times of nodes. However, their formulation of the
problem is combinatorial and thusNP-hard to solve exactly. Therefore, they
suggest finding near-optimal networks using approximation algorithms,
by exploiting the submodularity properties of the objective, which, as we
will show in the next sections, introduces computation-time and preci-
sion issues. In contrast, we devise a continuous linear expression based
on the dataset, which allows us to find efficiently the exact solution to an
LP optimization problem. As explained by the authors, when the activity
rates are not the same for all users, the performance of the model worsens.
Therefore, we expect Netinf to perform worse than CEM in more realistic
settings such as these of the synthetic dataset, in which users have different
activity rates. It should be noted that Netinf requires that we set in advance
the parameter k, which is the number of edges that we want to infer. For
comparison, we set k equal to the number of edges of the corresponding
ground truth graph.

– Newman (2018): As mentioned before, our algorithm is an extension of
the EM formulation provided in Newman’s work. The algorithm is not
designed to consider hidden paths between users, thus it is not guaranteed
that the inferred networks will be feasible. For evaluation, we derive a

4.6 Methodology 77

network by drawing an edge (i, j) whenever the friendship probability Qij

for a user pair (i, j) estimated by this method is greater than 0.5.

– Peixoto (2019): a state-of-the-art non-parametric Bayesian method that
infers posterior distributions from dataset observations using a stochastic
blockmodel as a prior. As is the casewith ourCEM-SBMmodel, it performs
community detection together with network reconstruction. Unlike us,
however, during the inference process, the model performs sampling using
a Markov Chain Monte Carlo procedure and accepts a solution with a
Metropolis-Hastings probability. As demonstrated next, this negatively
impacts the computation time of the optimization.

Comparison metrics. The directed edges inferred by each inference method
translate to the existence of follower-followee relationships between the respective
user nodes. To evaluate and compare them against the ground truth, we will look
at the following aspects:

1. Effects of different dataset sizes and values of hyperparameterλ. Firstly,
we check howdifferent dataset sizes change the corresponding results of our
method. For example, by choosing only the first 10,000 lines of the synthetic
dataset, we obtain information for around 65% out of the N (̇N−1) = 9, 900
possible user pairs, whereas the whole dataset of 100,000 lines informs
us on about 78% of the pairs. We see therefore that as we choose more
dataset lines from the input, we get more information between users in
terms of tweets and retweets (with diminishing returns). In general, we
expect the performance of our model to improve with the increasing size
of the dataset.

2. Feasibility of the dataset. We evaluate each method presented in Section
4.6.2 in terms of the terms of the metric of feasibility. Given the ground
truth graph, we check how many diffusion episodes are feasible, according
to our definition of feasibility provided in Section 4.2.

3. Prediction performance. When the ground truth is available, we can treat
the output of the inference as a binary classification task between existing
and non-existing edges. We, therefore, choose Precision, Recall, and AUC
scores as metrics for evaluation and comparison. As shown in more detail
in Section 2.5, these metrics are used frequently to measure prediction
success in similar classification tasks. The AUC score is the area under the

78 Chapter 4 Constrained Expectation Maximization for feasible network
inference

ROC curve that represents the tradeoff between Recall (true positive rate)
and Specificity (false positive rate), not to be mixed with the true and false
positive utilization rates α and β of CEM.

4. Inferred network metrics. Additionally, we will look into different statis-
tics of the inferred network (e.g., average degree, diameter, connected
components, etc), and compare them to those of the ground truth graph.
These measures can be indicative of how much the inferred network re-
sembles the properties of a general real-world network (in cases when the
ground truth is not available), as explained in Chapter 2.

5. Detection of communities. A useful by-product of our CEM-SBM net-
work inference method is the community detection task. Therefore, we
check to what extent the inferred communities resemble the real ones pre-
sented in the ground truth. Since a node can only belong to one community,
we wish to verify whether the different pairs of users belonging to the same
or different communities are the same in the ground truth. The method
for the evaluation and comparison is the following: we first generate a
network for each model as described in Section 4.6.2 and then apply on it
the Louvain method for community detection (Blondel et al., 2008). The
detected clusters are then used to calculate the F1 as follows: we look at
each possible user pair and if the users belong to the same community
we label the edge with 1 (positive class), otherwise with 0 (negative class).
We do the same for the ground truth (with the Louvain labels). From the
true/false positive, and true/false negative rates we measure the F1, which
combines Precision and Recall. In addition, we estimate the values of p and
q between the communities in the inferred network and compare them to
the real ones.

4.6.3 Experimental settings

We run the experiments on a virtual machine with 40 vCPUs and 256 GB RAM.
For the solution to the optimization problem, we configure a Gurobi solver
through PuLP3, an open-source linear programming library for Python, using the
dual simplex optimizationmethod. The parameters set θ1 = {α, β, r, σ} and θ2 =
{α, β, p, q, σ} for CEM-ER and CEM-SBM respectively are initialized uniformly
at random in the range [0, 1]. As a convergence criterion for the optimization

3https://pypi.org/project/PuLP/

4.6 Methodology 79

20 40 60 80 100
|Tsynth| (x 1000 lines)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

CEM-er (=1)
CEM-sbm (=1)

CEM-er (=0)
CEM-sbm (=0)

20 40 60 80 100
|Tsynth| (x 1000 lines)

0.7

0.8

0.9

1.0

R
ec

al
l

CEM-er (=1)
CEM-sbm (=1)

CEM-er (=0)
CEM-sbm (=0)

(a) Results for different sizes of the synthetic dataset Dsynth.

0.0 0.2 0.4 0.6 0.8 1.0
Lambda ()

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

|Tsynth|=50,000 lines

CEM-er
CEM-sbm

0.0 0.2 0.4 0.6 0.8 1.0
Lambda ()

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

|Tsynth|=50,000 lines

CEM-er
CEM-sbm

(b) Results for different values of λ ∈ (0, 1) given |Dsynth| = 50,000 lines.

Fig. 4.6. – The results on Precision (left) and Recall (right) for CEM-ER and CEM-SBM
applied on the synthetic dataset.

we choose the L2 norm of the difference between the values of Q, i.e., ||Qnew −
Qold|| < ε, where the threshold ε is set equal to 0.001. Finally, to generate the
unknown friendship network G, we round up all edges with Qij > 0.5 to 1, and
the rest are set to 0. We run the experiments 10 times and report the average
results.

4.7 Experiments on synthetic data

We first apply our method CEM on the synthetic dataset that we presented in
Section 4.6.1. We examine the differences that we get in performance with respect
to different sizes of input for the dataset, different values for the hyperparameter
λ (see Eq. 4.17 and 4.27) and the different priors, ER and SBM. Then, we compare
CEM to the network inference methods available in the literature, presented in
Section 4.6.2.

80 Chapter 4 Constrained Expectation Maximization for feasible network
inference

4.7.1 Different sizes of input

Figure 4.6a illustrates the relationship between Precision and Recall across dataset
sizes ranging from 10,000 to 100,000 lines. Larger dataset sizes correspond to
higher Recall values, as anticipated due to the increased information availability
which helps the identification of more underlying edges. Precision presents
relatively stable behavior and is higher (= 0.869) when λ = 1. Overall, we see
that CEM-SBM has higher performance than CEM-ER in terms of Precision
which reaches up to 0.869 when λ = 1, and a slightly worse, but still competitive
performance in terms of Recall, reaching up to 0.944 for λ = 1. We conclude
therefore that CEM-SBM demonstrates greater Precision than CEM-ER while
also effectively retrieving a significant portion of the underlying edges.

4.7.2 Different values of the hyperparameter λ

In Fig. 4.6b we can see more clearly how the choice of the hyperparameter λ

inside the optimization objective (Eq. 4.17 and Eq. 4.27) affects the performance
of the inference: for λ = 0 we get very low Precision (= 0.024) regardless of
the prior since we infer the largest number of edges possible according to the
objective, which in turn results to more false positive edges. However, in this
case, the Recall value is at its highest (for example 0.954 in the case of CEM-ER).
In contrast, for λ = 1, we infer a network with the smallest number of edges
possible given the constraints and thus we get a considerably better Precision
(= 0.869, CEM-SBM). The Recall value, in this case, is still high (= 0.944). This
can be linked to the rich information that is provided in the synthetic dataset
but can also be indicative of the good prediction probabilities of our method:
we manage, with the help of the constraints, to infer the smallest set of edges
possible (by setting λ = 1), that is precise and at the same time retrieves almost
the entire ground truth graph.

Regarding the converged true positive optimization rate α, the value we obtain at
the end of the optimization is almost equal to 1 for both λ = 0 and λ = 1. This
means that there is an almost 100% probability that a post propagated through an
edge that is present in the network we inferred. On the other hand, the converged
value of β, showing the number of false positive utilized edges, is almost zero.
This suggests that a post from the dataset almost always propagates through an
edge that has been inferred4.

4The term “almost” is used to show that the converged values of α and β are nearly equal to 1
and 0 respectively, with a difference much less than 0.001.

4.7 Experiments on synthetic data 81

Tab. 4.5. Performance of different methods on a synthetic dataset with |Dsynth| =
50,000 lines as input.

Performance Precision Recall AUC runtime (secs)
Star 0.141 0.956 0.931 1.0
Chain 0.033 0.955 0.752 1.0
Saito et al. (2008) 1.0 0.051 0.525 3.0
Netinf (2012) 0.159 0.165 0.575 2,199.0
Newman (2018) 0.522 0.450 0.724 2.0
Peixoto (2019) 0.643 0.924 0.958 3,481.0

CEM-ER (λ = 0) 0.024 0.954 0.668 8.0
CEM-ER (λ = 1) 0.430 0.944 0.962 9.0
CEM-SBM (λ = 0) 0.024 0.916 0.650 1.4
CEM-SBM (λ = 1) 0.869 0.944 0.970 1.5

4.7.3 Difference between priors

As λ approaches 1, the differences between the ER and SBM priors become more
apparent (see Fig. 4.6b). SBM proves more effective in inferring true positive
connections between users whileminimizing false positives, achieving a Precision
close to 0.9. This suggests that in CEM-SBM, using priors p and q as in Eq. 4.25
and Eq. 4.26, which account for whether a user pair (i, j) belongs to the same
community, significantly improves optimization performance compared to a
global parameter r (as in Eq. 4.16) unaware of community structure.

Moreover, as detailed in Table 4.7 and further explained later, CEM-SBM is
more efficient in detecting underlying communities compared to CEM-ER: For
λ = 1, the estimated p and q values derived by CEM-SBM are much closer to
the ground truth (p = 0.063 and q = 0.006), with small relative errors (εp = 0.05
and εq = 0.143), while achieving an almost optimal F1 score (= 0.961). This
represents a significant improvement over the F1 score provided by CEM-ER
(= 0.419).

4.7.4 Comparison betweenmethods

For a first understanding of the inner workings of each method that we compare
with, we can zoom into the propagation network inferred for a random diffusion
episode Ds = {22, 17, 18, 81} from the synthetic dataset (Fig. 4.8). Each method
receives as an input the first 50,000 lines of the original dataset that contains 859
tweets and 12,236 retweets. The ground truth tells us that users 18 and 81 have

82 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Tab. 4.6. Network statistics of the network inferred by each method compared to
the ground truth for |Dsynth| = 50,000.

fe
as

ib
ili

ty
(%

)
#e

dg
es

av
g
ou

t-
de

gr
ee

m
ax

ou
t-
de

gr
ee

m
ax

in
-d

eg
re

e
di

am
et

er
av

g
sh

or
te

st
pa

th
m

ax
sc

c
(%

us
er

s)
Sy

nt
he

tic
gr

ap
h

10
0.
00

16
4

1.
64

39
15

5
2.
57

11
St

ar
10

0.
00

1,
07

2
10

.7
2

78
24

3
1.
35

10
C
ha

in
10

0.
00

4,
54

5
46

.8
6

75
71

3
1.
48

87
Sa

ito
et

al
.(

20
08

)
2.
33

8
0.
50

1
1

1
1

0
N
et

in
f(

20
12

)
34

.8
0

16
4∗

2.
49

9
12

12
4.
76

24
N
ew

m
an

(2
01

8)
72

.2
9

13
8

1.
55

77
3

1
1

0
Pe

ix
ot

o
(2

01
9)

98
.0
2

22
7

2.
34

36
11

10
3.
42

19

C
EM

-E
R

(λ
=

0)
10

0.
00

6,
17

5
±

89
63

.6
6
±

0.
92

94
.5
±

0.
17

96
2

1.
34

97
C
EM

-E
R

(λ
=

1)
10

0.
00

34
9
±

8
3.
59
±

0.
09

45
.9
±

2.
03

15
.2
±

0.
2

5
2.
23

10
C
EM

-S
BM

(λ
=

0)
10

0.
00

6,
14

1
±

24
4

63
.3
1
±

2.
52

91
.5
±

2.
95

92
.6
±

3.
4

2.
1

1.
34

97
C
EM

-S
BM

(λ
=

1)
10

0.
00

17
7
±

11
1.
83
±

0.
12

41
.3
±

1.
65

11
.3
±

0.
15

5.
2
±

0.
2

2.
61

11
.9
±

0.
6

*c
ho

se
n

a
pr

io
ri

4.7 Experiments on synthetic data 83

reposted user 17, who had previously reposted directly the author user 22. As we
see in Fig. 4.8, our method CEM-SBM (λ = 1) and Peixoto (2019) have inferred
the propagation network of the diffusion episode correctly. CEM-ER (λ = 1)
has inferred one more false positive edge from 22 to 18 whereas Star and Chain
have inferred two false positive edges. Netinf (2012) has inferred only one false
positive edge from 18 to 81 whereas the methods by Newman (2018) and Saito et
al. (2008) have inferred no edge at all. Of course, this is only one example of a
subgraph inferred by each method. We are going to see next the performance
and statistics of the entire friendships graphs inferred.

Performance comparison. Firstly, we are comparing CEM with the other meth-
ods by looking into the graphs and the performance of each model. More specif-
ically, we will compare the performance of each method in terms of Precision,
Recall, and AUC. The results are shown in Table 4.5 and are combined with
observations from each graph’s statistics, found in Table 4.65.

From there we observe that the two heuristics, Star and Chain, give 100% feasible
solutions. However, both methods infer graphs with thousands of edges (1,072
and 4,545 edges respectively) and high average out-degrees (10.72 and 46.86)
which is very far from reality: the ground truth features only 164 connections
with an average out-degree of 1.64. This may result in high Recall and AUC scores
but comes at the cost of a very low Precision rate (0.141 and 0.033 respectively,
as seen in Table 4.5). Additionally, both methods infer graphs with very small
average shortest paths (< 1.5). In contrast, the ground truth has an average
shortest path of 2.57 which is closer to the value that we would expect from a
real-world Twitter network to have. Moreover, Chain infers graphs that are too
dense, as seen from its maximum strongly connected component (last column,
Table 4.6: it includes 87% of the users, whereas the actual value is only 11%). The
above suggests that, given the synthetic dataset as input, Star and Chain infer
graphs that are feasible but demonstrate properties that are far from these of the
actual graph, and also, from these of a real-world network in general.

The method of Saito et al. (2008) is 100% precise but generates only 8 edges,
a very low number for it to be considered a sufficient solution to our problem.
Consequently, it presents a very low feasibility rate: it can only explain 2.33% of
the diffusion episodes presented in the dataset. As a result, its network properties

5The highest value is marked with boldface and the second highest value is underlined. max scc:
maximum strongly connected component.

84 Chapter 4 Constrained Expectation Maximization for feasible network
inference

are far from those of the real graph. For example, themaximumout and in-degrees
of the network are equal to 1, along with the diameter and the average shortest
path. Furthermore, the network inferred by Saito has no strongly connected
component and has a very low average out-degree of 0.5.

For the Netinf (2012) model, we set in advance k = 164 as the number of edges
that we want to infer, which is equal to the number of edges of the real network
(however such information will not be available in practice and the authors
suggest trying different values of k depending on the desired outcome). As we
see, the inferred network has feasibility = 34.8% while also performing poorly on
Precision (= 0.159), Recall (= 0.165), and AUC (=0.575). This is accompanied by
weak network statistics: it has a relatively low maximum out-degree (= 9 whereas
the real value is 39), the largest diameter out of all the methods (= 12), and its
maximum strongly connected component is more than two times bigger than
the real one (it covers 24% of the users).

The method by Newman (2018) returns a Precision = 0.522 and Recall = 0.450
which are values close to the output of a random classifier. However, it infers
a network with 138 edges and an average degree of 1.55 which is close to the
real numbers. Still, the diameter, maximum in-degree, and average shortest path
values are really small compared to the ground truth. Additionally, it presents
no strongly connected component. All in all, the network is neither feasible
(feasibility = 72.29%), nor competitive in terms of any performance or statistical
metric, which could be due to the fact that it does not consider the hidden paths
that exist between users and thus, loses a lot of information that is (indirectly)
available in the dataset.

The method by Peixoto (2019) is the most competitive out of all the above meth-
ods, with feasibility = 98%, Precision = 0.643 and Recall = 0.924. Additionally,
the network presents some properties that are similar to the ground truth. For
example, as we see in Table 4.6, the derived network has a maximum out-degree
(= 36) whose value is the second closest to the real one (= 39). However, it
generates almost 40% more edges and therefore the diameter and the maximum
strongly connected component of the network is almost two times larger than
the true one.

To compare with the above, both our methods, CEM-ER and CEM-SBM achieve
feasibility = 100% across all λ values. In addition, CEM-SBM (λ = 1) achieves

4.7 Experiments on synthetic data 85

Tab. 4.7. Performance of community detection for the synthetic network with
|Dsynth| = 50,000 lines.

Community parameters pGsynth
|εp| qGsynth

|εq| F1

Synthetic network 0.060 – 0.007 –
Star 0.148 1.467 0.091 12 0.350
Chain 0.682 10.366 0.351 49.142 0.421
Saito et al. (2008) 0.500 7.333 – – –
Netinf (2012) 0.285 3.750 0.002 0.714 0.251
Newman (2018) 0.043 0.283 0.007 0 0.526
Peixoto (2019) 0.112 0.866 0.006 0.143 0.731

CEM-ER(λ = 1) 0.085 0.416 0.021 2.000 0.419
CEM-SBM(λ = 1) 0.063 0.050 0.006 0.143 0.961

the highest performance out of all the methods in terms of Precision, Recall, and
AUC (=0.869, 0.944, 0.970 respectively). Furthermore, we see that the network
inferred by CEM-SBM for λ = 1 has network properties almost identical to the
ground truth, followed by the one inferred by CEM-ER (λ = 1).

Optimization runtime. On top of the good prediction and network statistics
results, our algorithm is scalable and achieves running times that are close to the
times of the heuristics and far lower than other alternatives (last column, Table
4.5). CEM-SBM for example runs in less than 1.5 seconds, which is close to the
runtimes of Star and Chain. The methods by Newman (2018) and Saito et al.
(2008) may have similar runtime, but they lose in accuracy. In contrast, Netinf
(2018) and Peixoto (2019) need more than half an hour to converge and still, as
we saw above, their results are not as competitive. This makes our optimization
method powerful not only in terms of the accuracy of the prediction but also in
terms of the time that is needed to reach a result.

Detection of communities. As shown in Table 4.7, our method CEM-SBM
(λ = 1) achieves the highest F1 (= 0.961) out of all the methods, followed by the
method by Peixoto (= 0.731). Interestingly, the p, q parameters of CEM-SBM
(λ = 1) are close to these of the ground truth (pGsynth

= 0.063 with relative error
|εp| = 0.05 and qGsynth

= 0.006 with relative error |εq| = 0.143). Among the other
methods, regarding p and q, we see that the method by Newman (2018) presents
the lowest relative errors regarding the real values (0.283 and 0 respectively).

86 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Tab. 4.8. Converged values for error parameters α, β given |Delysee| = 5,000,000.

(1− α∗) β∗

CEM-ER (λ = 0) 0 1.19e-10
CEM-ER (λ = 1) 1.32e-11 2.46e-12

CEM-SBM (λ = 0) 5.55e-16 1.07e-10
CEM-SBM (λ = 1) 0.004 0.001

4.8 Experiments on the #Élysée2017fr dataset

We now apply our method CEM on a real-world dataset that, as shown in Section
4.6.1, has different properties from the synthetic one. As before, we examine the
differences that we get in performance with respect to different sizes of input for
the dataset, different values for the hyperparameter λ, and the different priors.
Then, we compare to the various network inference methods in the literature.

4.8.1 Different sizes of input

Figure 4.7a shows the relationship between the metrics of Precision and Recall
given dataset sizes that range from 1 to 5 million lines. Again, as was the case
with the synthetic data, the more information we have available, the higher the
value of Recall will be. These values, however, will still stay at relatively low levels,
under 0.1. As seen in Table 4.4, this is largely due to the fact that only 45.23% of
the positive (i, j) edges in the ground truth appear in the dataset (i.e., they have
Mij > 0). The rest of them do not appear in the measurements, therefore it is
not possible to infer them given the specific dataset we have at hand. Still, we
manage to predict thousands of edges that are mostly true positive (as seen from
the Precision value). More specifically about Precision, we notice a slight drop
as the size of the dataset increases. This makes sense, since we infer more edges
the more data we get, and therefore we are more likely to make errors. The drop
is milder when λ = 1 and more noticeable when λ = 0.

4.8.2 Different values of the hyperparameter λ

From Fig. 4.7b we notice that high values of λ given a constant dataset size (=
5 million lines) correspond to higher values of Precision. Here, we observe a
trade-off between Precision and Recall, which was not evident in the synthetic
dataset: in CEM-SBM for example, the lowest Precision (= 0.213) corresponds to
the highest Recall value (= 0.185) when λ = 0 and a lower Recall value (= 0.074)
corresponds to a higher Precision (= 0.478) when λ is set to 1. Therefore, we see

4.8 Experiments on the #Élysée2017fr dataset 87

1 2 3 4 5
|Telysee| (x million lines)

0.2

0.3

0.4

0.5

0.6

Pr
ec

is
io

n

CEM-er (=1)
CEM-sbm (=1)

CEM-er (=0)
CEM-sbm (=0)

1 2 3 4 5
|Telysee| (x million lines)

0.05

0.10

0.15

0.20

R
ec

al
l

CEM-er (=1)
CEM-sbm (=1)

CEM-er (=0)
CEM-sbm (=0)

(a) For different sizes of the dataset Delysee and λ ∈ {0, 1}.

0.0 0.2 0.4 0.6 0.8 1.0
Lambda ()

0.2

0.3

0.4

0.5

Pr
ec

is
io

n

|Telysee|=5,000,000 lines

CEM-er
CEM-sbm

0.0 0.2 0.4 0.6 0.8 1.0
Lambda ()

0.075

0.100

0.125

0.150

0.175

R
ec

al
l

|Telysee|=5,000,000 lines

CEM-er
CEM-sbm

(b) For different values of λ ∈ (0, 1) given |Delysee| = 5 million lines.

Fig. 4.7. – Precision and Recall when applied on #Élysée2017fr.

that depending on our goal, we can choose to prioritize Precision over Recall and
vice-versa. This can be controlled by the correct selection of the hyperparameter
λ. The converged error parameters α, β of CEM-ER and CEM-SBM on this real-
world dataset can be seen in Table 4.8. We see that all the α values are close to 1,
meaning that there is an almost 100% probability that a post spread through an
edge that we predicted to exist in the inferred networks. For CEM-ER, the smaller
value of β, which is almost equal to zero, suggests that there are zero false positive
utilized edges. However, in the case of CEM-SBM (λ = 1), the slightly higher
value of β∗ = 0.001 suggests that there is a low, but existing probability, that a
tweet passes via an edge that does not appear in the inferred ground truth. As we
will see later, this may mean that we have missed some edges and therefore the
overall feasibility rate may be (slightly) affected. Likewise, in the same case, the
fact that 1− a∗ = 0.004 means that there is a small probability of false negative
utilized edges existing.

88 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Tab. 4.9. Performance of each method for the #Élysée2017fr dataset∗.

Performance Precision Recall AUC runtime(secs)
Star 0.446 0.133 0.565 1
Chain 0.262 0.130 0.563 1
Saito et al. (2008) 0.199 0.0001 0.500 342.00
Netinf (2012) N/A N/A N/A N/A
Newman (2018) 0.464 ± 0.031 0.066 ± 0.001 0.533 ± 0.001 25.00
Peixoto (2019) N/A N/A N/A N/A

CEM-ER (λ = 0) 0.251 0.179 0.586 37,721.00
CEM-ER (λ = 1) 0.489 0.105 0.552 35,552.00
CEM-SBM (λ = 0) 0.213 0.185 0.589 44,016.00
CEM-SBM (λ = 1) 0.478 0.074 0.537 88,504.00

* N/A: no results after 48 hours

4.8.3 Difference between priors

In contrast to the synthetic dataset case, from the above figures we notice that
CEM-ER and CEM-SBM present more similar behavior. This is largely due to
the properties of the dataset itself: we have relatively sparse information on
the edges between users that belong to different communities (we observe only
18.95% of the existing inter-edges as seen in Table 4.4, in contrast to the 98.25%
of the positive inter-edges in the case of the synthetic dataset). This makes sense
since, in reality, users between different communities interact less often, so it is
less likely that they will appear in a dataset when we collect it. Therefore, the
benefit of using the SBM instead of the ER prior cannot be easily made obvious
given the specific dataset that we have at hand. Still, the use of the SBM prior
provides the highest Recall value (= 0.185, for λ = 0) and AUC value, (= 0.589,
for λ = 0), which, as we will show later are also the largest values among all
compared methods.

4.8.4 Comparison betweenmethods

We compare the graphs inferred by our two models with the same methods
presented before, this time when real-world data is given as input. Given our
computational resources, we were not able to run the method by Peixoto (2019)
and Netinf (2012) within reasonable timeframes (in < 48 hours), therefore they
are left out of the comparison. Table 4.9 shows the Precision, Recall, and AUC
performance of each method, and Table 4.10 shows the properties of each corre-
sponding graph.

4.8 Experiments on the #Élysée2017fr dataset 89

22

17

18

81

(a) Synthetic (true)

22

17

18

81

(b) CEM-ER(λ = 1)

22

17

18

81

(c) CEM-SBM(λ = 1)

22

17

18

81

(d) Newman (2018) / Saito et
al. (2008)

22

17

18

81

(e) Star

22

17

18

81

(f) Chain

18

81

22

17

(g) Netinf (2012)

22

17

18

81

(h) Peixoto (2019)

Fig. 4.8. – Example of a subgraph inferred by each method for a diffusion episode D =
{22, 17, 18, 81} from the synthetic dataset, connecting its author (user 22) to every other
user that retweeted it. Blue arrows show true positive edges and red arrows the false
positive ones.

90 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Tab. 4.10. Network statistics of the graphs inferred by each method compared to
the ground truth network for |Delysee| = 5,000,000 lines.

In
fe
rr
ed

ne
tw

or
k
m

et
ric

s
fe
as

ib
ili

ty
(%

)
#e

dg
es

av
g
ou

t-
de

gr
ee

m
ax

ou
t-
de

gr
ee

m
ax

in
-d

eg
re

e
di

am
et

er
av

g
sh

or
te

st
pa

th
m

ax
sc

c
(%

us
er

s)
G
ro

un
d
tr
ut

h
49

.0
0

1,
55

5,
71

8
13

6.
42

5,
00

4
1,
85

3
11

2.
82

93
.2
8
(1

0,
74

7)
St

ar
10

0.
00

46
3,
29

0
40

.2
5

2,
52

4
1,
06

9
12

3.
70

66
.0
5
(7

,6
10

)
C
ha

in
10

0.
00

76
8,
12

2
66

.7
3

1,
12

2
1,
25

6
8

3.
04

95
.3
4
(1
0,
98

4)
Sa

ito
et

al
.(

20
08

)
0.
55

78
6

0.
54

2
10

8
1.
11

0
N
et

in
f(

20
12

)
N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
ew

m
an

(2
01

8)
37

.2
4

23
7,
06

3
22

.4
3

1,
20

6
±

12
7

55
8

12
.7

4.
32

52
.5
7
(6

,0
57

)
Pe

ix
ot

o
(2

01
9)

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

C
EM

-E
R

(λ
=

0)
10

0.
00

1,
10

8,
07

9
96

.2
6

2,
33

6
1,
26

2
9

3.
06

80
.3
1
(9

,2
52

)
C
EM

-E
R

(λ
=

1)
10

0.
00

33
5,
28

9
29

.1
3

2,
29

1
79

0
12

3.
82

66
.0
7
(7

,6
12

)
C
EM

-S
BM

(λ
=

0)
10

0.
00

1,
35

3,
43

2
11

7.
58

1,
36

4
1,
60

9
8

2.
95

82
.5
0
(9

,5
05

)
C
EM

-S
BM

(λ
=

1)
99

.3
7

24
0,
89

3
20

.9
7

95
5

77
5

11
3.
58

72
.8
1
(8

,3
88

)

4.8 Experiments on the #Élysée2017fr dataset 91

From Tables 4.9 and 4.10 we observe that Star and Chain give 100% feasible
solutions with Precision equal to 0.446 and 0.262 respectively and Recall values
equal to 0.133 and 0.130. However, their network statistics resemble less those
of the real graph: Star infers 463,290 edges, with max out-degree equal to 2, 524
and max in-degree equal to 1, 069. We consider these values quite high, given
the number of edges inferred (they are comparable to the ground truth which
has three times the number of edges of Star) and that’s why we consider it less
trustworthy. This result is expected due to the heuristic method of inferring the
edges, which connects directly the author of a post to its reposters.

The network by Chain, as seen in the last column of Table 4.10, has the highest
maximum strongly connected component (it includes 95.34% of all users), which
is bigger than the corresponding size in the real network (= 93.28%). Given
that the inferred network by Chain is half the size of the real graph, this high
percentage suggests that it is more densely connected than we would expect
from a real graph. What is more, in a real-world graph, most nodes have a
relatively small degree, but some of them will have a noticeably larger degree,
being connected to many other nodes. However, in Chain, we do not notice this
phenomenon.

As was the case in the synthetic dataset evaluation, the method of Saito et al.
(2008) generates only a few edges (= 768) and is therefore not feasible. The
method of Saito et al. (2008) may be again relatively precise, but presents no
strongly connected component, has a very low average out-degree (= 0.5) and
an abnormally high diameter (= 8), given the size of the graph. The above shows
that the network inferred by this method is very sparse and does not resemble
the real-world network in question. Likewise, the model by Newman (2018) is
not feasible, but in this case, seems more competitive in terms of the Precision
metric (= 0.464). However, its large diameter (= 12.7) given the size of the
inferred network (5 times smaller than the real network which has a diameter
= 11) prevents us from selecting it as a realistic option.

Compared with the above methods, our algorithm CEM, presents the highest
values in terms of every metric: Precision, Recall, or AUC. This can be regulated
either by choosing a value close to λ = 0, that returns the highest number of
nodes (>1,100,000) and therefore a high Recall (=0.178), for CEM-SBM (λ = 0))
but lower Precision, or by choosing a value closer to λ = 1 that returns less than
340,000 nodes (for both priors) and therefore a lower Recall but a high Precision

92 Chapter 4 Constrained Expectation Maximization for feasible network
inference

Tab. 4.11. Performance of community detection for the real-world network with
|Delysee| = 5,000,000 lines.

pG |εp| qG |εq| F1

Ground truth 0.0012 N/A 0.0445 N/A N/A
Star 0.0143 10.92 0.0003 0.99 0.858
Chain 0.0236 18.67 0.0004 0.99 0.889
Saito et al. (2008) 0.3834 318.5 N/A N/A 0.447
Netinf (2012) N/A N/A N/A N/A N/A
Newman (2018) 0.0093 6.75 5e-05 1 0.888
Peixoto (2019) N/A N/A N/A N/A N/A

CEM-ER (λ = 0) 0.0346 27.83 0.0005 0.99 0.888
CEM-SBM (λ = 0) 0.0425 34.42 0.0006 0.99 0.880
CEM-ER (λ = 1) 0.0103 7.58 0.0002 1 0.887
CEM-SBM (λ = 1) 0.0074 5.17 0.0001 1 0.878

(=0.489, CEM-ER (λ = 1)). When it comes to the statistics of the graph, its
diameter stays close to the real value (= 11). The same is true for the average
shortest path. This illustrates that the two best values from each category are in
favor of our CEM method.

Optimization runtime. We verify from the runtime column of Table 4.9 that
our model is scalable since we managed to solve an optimization problem with
6,922,990 unknowns and 1,605,059 constraints in only a couple of hours. We
achieve this not only by formulating the inference as a linear optimization problem
but also by taking advantage of powerful optimization solvers that are publicly
available (in our case, the Gurobi solver). On the other hand, the methods by
Saito et al. and Newman present fast computation times (342 and 25 seconds)
but, as we have seen, they present less competitive results in terms of feasibility
and performance.

Detection of communities. As shown in Table 4.11, our methods CEM-ER
(λ = 0) and CEM-ER (λ = 1) achieve a high F1 (= 0.888 and 0.887), similarly
to Newman’s method (= 0.888) and Chain (= 0.889). Chain’s high performance
does not surprise us in this case since Chain favors the creation of communities all
while inferring a very high number of edges compared to other methods. Despite
this, all the p parameters estimated on the graphs by each method are far from
the real ground truth value. This was expected since we are missing substantial
information on how edges interact between different communities and we may

4.8 Experiments on the #Élysée2017fr dataset 93

Tab. 4.12. Performance of CEM (λ = 1) given constant values of parameter β for
#Élysée2017fr.

Precision Recall AUC feasibility (%)

CEM-ER (β = 0) 0.489 0.105 0.552 100.0
CEM-ER (β = 0.5) 0.592 0.060 0.530 66.96
CEM-ER (β = 0.6) 0.604 0.052 0.526 61.21
CEM-ER (β = 0.7) 0.619 0.040 0.520 52.78
CEM-SBM (β = 0) 0.478 0.074 0.537 99.37
CEM-SBM (β = 0.5) 0.552 0.054 0.527 71.86
CEM-SBM (β = 0.6) 0.558 0.048 0.524 65.65
CEM-SBM (β = 0.7) 0.566 0.041 0.520 58.00

therefore be overestimating the value of p while underestimating q. Still, our
method for λ = 1 has the lowest relative error on the p parameter (7.58 for
CEM-ER and 5.17 for CEM-SBM) along with Newman that has an εp = 6.75.

4.8.5 Controlling feasibility through β

As expected, since 2017 (the year that the dataset was created), some Twitter
profiles have been deleted or set to private. In addition, users may have retweeted
a tweet/diffusion episode outside the scope of their followees (e.g., through
Twitter search, recommendation algorithms, Twitter trends, etc.). As a result, the
#Élysée2017fr dataset is not 100% feasible given the ground truth friendship graph.
In other words, the current view of the friendship network does not explain all
the diffusion episodes in the selected dataset; in fact, it can only explain 49% of
them.

We can therefore control the feasibility of our result to match the feasibility of the
dataset given the ground truth through the parameter β: for an inferred network
to be feasible, we want the false positive utilization rate β, i.e. the average number
of inferred edges that pass through an edge that does not exist in the inferred
graph, to be as close to 0 as possible. If β is close to a non-zero value, it means that
there is a β > 0 probability that influence has happened through a nonexistent
edge in the inferred network and therefore some diffusion episodes may be left
unexplained. Consequently, we can set β equal to a constant - instead of updating
it through Eq. 4.15 or 4.24 - whose value depends on the feasibility that we wish
the outcome to have. Hence, we will examine the relation of the inferred network
to the ground truth given different constant values of β. In general, we expect

94 Chapter 4 Constrained Expectation Maximization for feasible network
inference

the inferred network to be more precise when the feasibility rate is close to this
of the ground truth network (= 49%).

First of all, as we show in Table 4.12 when β increases feasibility decreases. For
example, when β = 0.7 the feasibility of the dataset given the inferred network
is 52.78% and 58% for CEM-ER and CEM-SBM respectively. We note that the
value of β changes only the overall number of edges inferred, which indirectly
affects the number of diffusion episodes that are explained in the dataset. Fur-
thermore, as β increases, and hence feasibility decreases, we get closer to the
actual 50% feasibility and Precision improves. We should underline that when
the feasibility rate falls lower than 50% (for β > 0.7), Precision falls dramatically
since the algorithm starts inferring edges randomly, without really respecting the
constraints.

4.8.6 Evaluation with no ground truth

Overall, we observed that the metric of feasibility can be beneficial by controlling
the quality of the inferred graph. For example, we saw that the methods with
the lowest feasibility rates infer graphs with low predictive quality and present
statistics that are far from those of the real-world graph. The benefit of CEM
over other methods is especially apparent when we have collected sufficient data
between edges, as was the case in the synthetic dataset case. Consequently, when
the underlying friendship network is not available, which is often the case in
network reconstruction problems, the feasibility rate of the inferred network
could be an effective indicator of a method’s performance. However, feasibility
is not a sufficient condition for better prediction results. As we see in the case
of Star, Chain, and CEM for λ = 0, a 100% feasibility rate cannot guarantee a
precise result. Moreover, as we showed, we can use empirical values about how
much feasibility to require in the inferred network-based, for example, on how
old the dataset is, or how often users retweet outside of their connections, e.g.,
using recommendations. On top of feasibility, we could look into the inferred
graph’s statistics and evaluate to what extent they are similar to these of a general,
real-world graph. Usual indicators of such real-world properties are the average
degree, the diameter, the average shortest path, and the strongly connected
components of the graph.

4.8 Experiments on the #Élysée2017fr dataset 95

4.9 Conclusions

As we observed above, CEM successfully produces feasible graphs that are closer
to reality when compared to heuristic and state-of-the-art methods. We validated
the results both on synthetic and real-world datasets, using two different network
priors, Erdős-Rényi (ER) and Stochastic Block Model (SBM), and noticed that
CEM produces results that in most cases return the two most accurate values
among all chosen comparedmetrics, and does so significantly faster than the state-
of-the-art. Moreover, by selecting values between 0 and 1 for the hyperparameter
λ, we can control the trade-off between the Precision and Recall of the result.
The choice of SBM as a prior was motivated by the fact that it might better inform
link inference given that it provides a model that is more realistic to the way
that users online interact with each other and form communities. An important
consequence of this choice in our case is that in each EM iteration the probability
of a link existing between the users now depends on whether we have inferred
that a user pair belongs to the same community or not. This adds an additional
type of information during the EM updates and thus returns better inference
and community detection results compared to the ER prior. We show that the
contribution of SBM is more apparent when we have sufficient information on
how nodes interact between different communities, like in the synthetic dataset
case.

Furthermore, we observe that enforcing feasibility can guide the inference process
towards more accurate, real-world graphs. For example, we show experimentally
that when the dataset is 100% feasible given the ground truth, as is the case in the
synthetic dataset, enforcing 100% feasibility produces graphs that are closer to
reality. If we assume that the source of information in the dataset comes outside
of the users’ friendship connections, we can lower the percentage of feasibility
that we expect from the inference. For example, in the case of the #Élysée2017fr

dataset, where the dataset is only 50% feasible given the real graph, we observed
that Precision improves as we force the feasibility of the inferred network to be
lower, closer to the real percentage (through the parameter β). However, if we
cannot be sure about the ground truth’s real feasibility percentage, we still suggest
working with β = 0, since it returns more realistic networks compared to other
inference methods.

Keep in mind, that as we saw in the case of Star and Chain, feasibility is not a
sufficient condition for the accuracy of the result: the graphs inferred by both

96 Chapter 4 Constrained Expectation Maximization for feasible network
inference

these methods are 100% feasible but present some extreme properties (e.g., large
diameter, lowmaximum degree) that make the results less trustworthy. Therefore,
given that the underlying data is usually not available in applications like ours, the
evaluation of an inference technique can be quite challenging and may require
looking into several metrics together with feasibility in order to decide the level
of trustworthiness of the inference results. We could for example examine the
inferred graph’s statistics to determine whether or not they are comparable to
those of a real-world graph, e.g., average degree, diameter, average shortest path,
strongly connected components, which are typical real-world network indicators.
We should note here that our method works with a specific dataset structure
that is based on the data that most social media platforms currently offer. In
principle, CEM has the potential to serve various network inference purposes, in
other fields like epidemiology, biology, physics and more. However, leveraging it
effectively in these cases would necessitate domain-specific expertise to tailor
feasibility constraints accordingly.

∗ ∗ ∗

The contributions of this Chapter have led to the following publications:

� Effrosyni Papanastasiou, and Anastasios Giovanidis. Constrained expectation-
maximisation for inference of social graphs explaining online user–user inter-
actions.” Journal of Social Network Analysis and Mining 13.1, Springer 2023: 41.
(Papanastasiou and Giovanidis, 2023)

� Effrosyni Papanastasiou, and Anastasios Giovanidis. Bayesian inference of a
social graph with trace feasibility guarantees. IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM), ACM,
2021. (Papanastasiou and Giovanidis, 2021)

Additionally, the Twitter friendship network that we collected for the purposes
of our study has also contributed to a different domain, beyond the scope of this
thesis, specifically in the context of opinion dynamics:

� Antoine Vendeville, Anastasios Giovanidis, Effrosyni Papanastasiou, and Ben-
jamin Guedj. Opening up echo chambers via optimal content recommendation.
International Conference on Complex Networks and Their Applications (pp. 74-
85). Cham: Springer International Publishing. (Vendeville et al., 2022a)

4.9 Conclusions 97

� Antoine Vendeville, Anastasios Giovanidis, Effrosyni Papanastasiou, and Ben-
jamin Guedj. Recommendation of content to mitigate the echo chamber effect.
Extended abstract. Conference on Complex Systems, 2022. (Vendeville et al.,
2022b)

∗ ∗ ∗

98 Chapter 4 Constrained Expectation Maximization for feasible network
inference

A contrastive approach using

Graph Neural Networks
5

Contents
5.1 Machine learning background 100

5.1.1 Supervised vs unsupervised learning 101

5.1.2 Graph machine learning for Online Social Networks 102

5.2 Review of representation learning approaches 104

5.2.1 Modeling information diffusion 104

5.2.2 Random walk approaches 105

5.2.3 Recurrent Neural Networks 107

5.2.4 Graph Neural Networks 109

5.2.5 Focusing on contrastive learning 111

5.3 Methods for network inference 113

5.3.1 An Encoder model for link prediction 113

5.3.2 Graph Neural Networks as better encoders 115

5.4 Proposing a simple contrastive model 117

5.4.1 Model architecture 117

5.4.2 Model training . 118

5.4.3 Contrastive loss . 119

5.5 Experimental evaluation . 121

5.5.1 Environment . 121

5.5.2 Results . 124

5.6 Discussion and conclusion . 129

As a final investigation for this thesis, this chapter introduces an alternative
method for inferring feasible OSNs graphs that avoids the need for solving a
strictly constrained optimization problem, as is the case of the previously pro-
posed CEM approach. Although methods like these can deliver nearly optimal

99

solutions, they struggle to scale when given large datasets typical of OSNs; as a re-
sult, they depend heavily on industry-level solvers for optimization (like Gurobi).
Considering the exponential growth in computational power of the 21st century,
one could naturally start looking toward Articifical Intelligence (AI) methods.
With its popular subfields like Machine Learning (ML) and Deep Learning (DL)
that are constantly witnessing new innovations, we now have promising new alter-
natives that can provide more scalable and flexible algorithms for data-dependent
applications that are too difficult to be solved via traditional methods (LeCun
et al., 2015; Alpaydin, 2020). Network inference can be considered as such a
problem, motivating us to raise the following question: Can we leverage scalable
learning techniques from the field of ML to provide equivalent solutions to the fea-
sible network inference problem for OSNs at a lower memory and computational
cost? In this case, we find it preferable to avoid the strict combinatorial approach
which demands constructing a full set of constraints as in Chapter 4, searching
instead for an AI approach that can indirectly incorporate the feasibility into the
learning process.

In this final chapter, we first provide an overview of ML and the different learning
settings where it can be applied, including when targeting the graph domain of
OSNs. In an effort to find alternatives to our CEM inference framework, we
conduct an extensive literature review of various ML and DL categories and
algorithms tailored to graphs, questioning whether they could potentially be
applied to our problem. After addressing their respective limitations when it
comes to feasible network inference in unreliable settings, we are motivated to
propose a novel, simple solution as a flexible alternative. We present our method
along with some preliminary experiments on the #Élysée2017fr dataset, which
provide promising results, and conclude with a discussion on its limitations and
potential future improvements.

5.1 Machine learning background

While traditional statistical methods focus on modeling distributions and diffu-
sion dynamics, the field of ML is primarily concerned with developing algorithms
that can make predictions based on data inputs (Goodfellow et al., 2016). ML
algorithms are mostly task-driven, providing models that can learn from data
to perform specific tasks. This approach is particularly useful for tasks that are
too complex to solve for traditional programs, which lack the ability to learn
(LeCun et al., 2015). Goodfellow et al. (2016) illustrate this difference with a

100 Chapter 5 A contrastive approach using Graph Neural Networks

simple example: If our goal is to make a robot walk, the task is walking. We could
either manually write a program with fixed rules for walking, or develop an ML
algorithm that enables the robot to learn to walk on its own, without explicit
instructions. Similarly, when we apply this line of thought to our problem of
feasible network inference, we have two options: we can either manually define
the set of feasibility constraints and solve them using statistical optimization
methods, or we can select ML algorithms capable of incorporating feasibility au-
tonomously. However, these algorithms must be adapted considerably to handle
the intricacies of graph-structured data, leading to the specialized and growing
field of graph machine learning(Hamilton, 2020). In this section, we provide a
brief overview of the standard machine learning approaches and explain how
they can be adapted to handle the specific characteristics of graph-shaped data,
particularly in the context of OSNs.

5.1.1 Supervised vs unsupervised learning

The different ML approaches that exist can be initially divided into two global
categories, according to the type of task that we are focusing on: It can either
be a supervised task, where the general goal is to predict a target output given
an input dataset, or an unsupervised task, where the goal is to detect patterns,
such as clusters of data points in the data (Berry et al., 2019; Hamilton, 2020).
Various kinds of tasks may fall under these two categories. The most common
one is the task of classification, where a program is asked to specify in which out
of k possible categories a data point belongs to (Kotsiantis et al., 2007). This is
also viewed as a process of predicting labels for each data point1. In any kind of
ML task, the dataset holds the most important role in the learning process.

The standard practice when the learning is supervised, is to divide the available
data into three different subsets: (i) the training set, which consists of a certain
portion of the data points with known labels from which the model will learn; (ii)
the validation set, which consists of the same splitting technique but on a different
subset of points, typically used to tune and monitor the model’s performance
during training; and (iii) the test set, which serves as an unseen set of data points
for which we make predictions after training, providing an unbiased estimate of
how well the model is expected to perform on new data points (Raschka, 2018).
Partitioning the data into training-validation-test sets is crucial to ensure that

1For a more extensive list of the various ML tasks, we refer the reader to the book “Deep learning:
foundations and concepts” by Bishop and Bishop (2024).

5.1 Machine learning background 101

the model generalizes effectively to unseen data. Various splitting techniques
are available, and the ideal split ratio usually varies depending on the application.
Generally, the training set should be large enough to capture the inherent vari-
ability in the data, but not so large to result in overfitting (Ying, 2019). A common
approach for example involves dividing the data into 60-80% for training, 10-20%
for validation, and 10-20% for testing (Dobbin and Simon, 2011).

When the learning is unsupervised instead of supervised, it is considered more
challenging since it assumes that there are no labeled data points to guide the
learning process. In this setting, the focus is less on predicting accurate labels
and more so on exploratory data analysis tasks such as clustering, anomaly de-
tection, and visualization, among others (James et al., 2023). In our case, the
problem of network inference in OSNs deviates from supervised learning, since,
by definition, the dataset set at hand does not provide reliable or sufficient in-
formation. As a result, the data-splitting strategy is not as straightforward and
traditional supervised learning approaches cannot be directly applied to the task.
Instead, we may need to look further into the unsupervised learning techniques
that do not rely on labels, while also addressing the additional challenge of han-
dling graph-structured data. These techniques will be examined in the following
sections.

5.1.2 Graphmachine learning for Online Social Networks

When dealing with graphs composed of multiple components, it becomes im-
portant to categorize the machine learning task based on the specific parts of
the graph we are examining, rather than simply distinguishing between super-
vised and unsupervised methods. We can either stay on a local level, extracting
information about individual nodes or edges, or broaden our understanding to a
global level, learning about clusters, communities, or the overall structure of the
graph (Hamilton, 2020). Below we list some of the most well-known tasks for
graphs and examples of their usage given datasets from OSNs:

– Node classification is the task of learning how to classify the nodes of a
graph into different classes or labels. Depending on the application, a
node can have one or more labels (binary versus multi-label classification)
(Bhagat et al., 2011). In the context of OSNs for example, depending on
how we represent a graph, we can use this task to classify whether a user
node is a bot or a human, if a tweet includes false or true information, or

102 Chapter 5 A contrastive approach using Graph Neural Networks

the kind of community that a user belongs to (community detection) (Xiao
et al., 2022).

– Link prediction or link classification focuses on classifying the edges of
a graph (Martínez et al., 2016). As in the case of node classification, the
labels of the edges can either be binary, e.g., predicting if an edge exists
or not, or belong to a wider set of categories. Social media platforms are
benefiting greatly from link prediction algorithms, utilizing them as tools
to predict the type of content a user is likely to engage with or the formation
of connections between users, among various other applications (Hasan
and Zaki, 2011; Daud et al., 2020).

– Graph classification aims to classify entire graphs based on their overall
structure. In these problems, multiple graphs are available, and the goal is
to learn how to classify each one of them into distinct classes (Cai et al.,
2018). For example, in the context of OSNs, the structure of a tweet can be
represented as an individual graph and the goal of graph classification will
be to detect whether they contain false information (Shu and H. Liu, 2022).

Although the general learning process for these tasks remains similar, extending
ML methods to graph-shaped data requires some additional attention. This is
because, in standard machine learning models, the individual data points are
assumed to be independent and identically distributed (i.i.d.) to allow for the
model to generalize to new data points. However, this assumption is violated
in graphs where the nodes are interconnected and dependent on each other
(Hamilton, 2020). Thus, it is crucial to model the relationships between nodes
rather than treating them as independent data points.

To address this, research has suggested leveraging a key property of real-world
graph structures known as homophily — the tendency of nodes to connect to
other nodes with similar characteristics (refer to Section 2.3.2 for more details).
Motivated by the concept of homophily, we can develop learning models that
assign similar labels to nodes within the same neighborhoods, capturing the inter-
dependencies and contextual information that are unique to a graph’s structure.
This intuition has led to novel strategies, extending beyond conventional machine
learning techniques, with many of them relying on deep neural networks, such
as Graph Neural Networks (GNNs) (Scarselli et al., 2008).

5.1 Machine learning background 103

In the present thesis: focusing on link prediction

Since the focus of network inference is on edges, rather than on node labels, the

task that is more relevant to our context is link prediction. From a statistical stand-

point, there is a valid question about whether the term “inference” can be used

interchangeably with the term“prediction”, as is often the case in machine learn-

ing. Central to this debate is the need for a distinction between the concept of

inference as used in statistics, which typically involves inferring latent variables

and addressing associated uncertainties, and prediction/inference as part of an ML

algorithm, which focusesmore on generating accurate predictions. For this chapter

of the thesis, we adopt a broader interpretation of “inference”, encompassing all

approaches aimed at providing edges that have not yet been provided by the data.

5.2 Review of representation learning approaches

When looking for more scalable and flexible solutions to modeling feasible net-
work inference for OSNs, the first step is to dive into the existing literature that
may already provide some alternatives. Indeed, at the beginning of the 2010s, a
growing number of works started looking into different models that may provide
such flexibility. Falling under the general category of graph representation learn-
ing, these techniques may intersect between different fields, such as graph theory,
statistics and machine learning, among others (F. Chen et al., 2020). The general
principle is the assumption of a latent space, where nodes are embedded into their
lower-dimensional vector representations that can be learned through different
algorithms. We can detect different related approaches in the literature. The first,
expands the information diffusion paradigm, which models node interactions
using node embeddings instead of solely edge probabilities. A different line of
work avoids using models of diffusion, and can be decomposed into various ap-
proaches, such as random walks, recurrent and graph neural networks, and other
more targeted unsupervised learning strategies. This section aims to present
these different categories, along with their limitations, exploring whether they
could offer the network inference alternatives that we are looking for.

5.2.1 Modeling information diffusion

Some of the earliest graph representation methods expanded the existing diffu-
sion modeling approaches (see Section 3.3.1), with the main goal of accurately
predicting whether a node will be “infected” by a cascade or not. Kurashima et

104 Chapter 5 A contrastive approach using Graph Neural Networks

al. (2014) were among the first to learn node embeddings using this approach.
They assume that each node has latent coordinates in the visualization space and
that diffusion of information is more likely between nodes that are placed closer
to each other. To learn the coordinates that best explain the observed cascades,
they devise a model based on maximum a posteriori estimation. In the same year,
Bourigault et al. (2014) proposed a method that projects nodes in a continuous
representation space in such a way that information diffusion can be modeled
using a heat diffusion process. They employ a classical stochastic gradient descent
method to optimize a diffusion kernel, ensuring that the proximity of nodes in
the latent space corresponds to the proximity of their infection times in cascades.
However, the primary focus is not on modeling the dynamics of diffusion but
rather on accurately estimating which nodes will be infected given a set of initial
seeders. In a later work, Bourigault et. al. (2016) proposed a diffusion model that
learns probability distributions capable of capturing the hidden influence rela-
tionships between users. They assume an Independent Cascade model embeds
users into distinct sender and receiver representations and learns them through
an EM process. These approaches are pretty similar to the classical methods
in the information diffusion literature, with the added flexibility of assuming a
latent space for the users that can be learned according to our goals. In a different
work, Zhang et al. (2018) observe a gap in previous works, noticing the absence
of consideration for communities within domains like OSNs. They proposed an
approach to learn embeddings that preserve these community structures from
timestamped cascades. Their method assumes a Gaussian mixture model as prior
on the users’ embeddings, and learns its parameters with an EM algorithm. All in
all, we quickly notice that the goal of this line of work is not so much determining
directly the network underlying the user interactions, but more so making the
correct predictions on the diffusion process itself.

5.2.2 Randomwalk approaches

While the methods discussed focus on modeling temporal processes using diffu-
sion models, a new branch of techniques was being developed in parallel, using
random walk sampling. The key idea is that the embeddings of two nodes should
become more similar if they frequently appear together in short random walks
across a graph (Xia et al., 2019). The pioneering method in this field is DeepWalk,
drawing inspiration from the rapid advancements in language modeling of that
time (Perozzi et al., 2014). As a result, Deepwalk treats random walks on a graph
as the equivalent of sentences in a language: each node corresponds to a word,

5.2 Review of representation learning approaches 105

and a random walk corresponds to a sentence. To learn the node representations,
it uses techniques from natural language processing, such as the SkipGrammodel,
which maximizes the co-occurrence probability among the words that appear
within a specific window in a sentence (Mikolov et al., 2013). DeepWalk has
been particularly successful in domains such as OSNs where capturing the local
neighborhood structure of nodes is important.

With these methods, we are now able to scale the representation algorithms to
graphs of larger sizes, leveraging various random path sampling algorithms to
capture both local and global structural information (Sajjad et al., 2019). For
example, Tang et al. (2015), designed LINE, a model that can capture both first-
order and second-order node proximity information in networks with millions of
nodes. A later significant contribution by Grover and Leskovec (2016) introduced
Node2Vec — while DeepWalk uniformly samples random walks, Node2Vec intro-
duces hyperparameters that enable an interpolation between walks, prioritizing
either breadth-first search or depth-first search across the graph. This allows
for the exploration of both local neighborhoods and global network structures,
providing more informative node embeddings. Concurrently with these works,
GraphSAGE was introduced by Hamilton et al. (2017) as an alternative method
to integrate both local and global graph structures. It achieves this by employing
a sampling strategy that selects and aggregates features from a node’s neighbors,
both immediate and higher-order ones2.

Still, these methods were not explicitly designed to target unreliable data settings.
Subsequent works began applying random-walk approaches with assumptions of
uncertain conditions. For example, Wang et al. (2019) employed a joint optimiza-
tion problem that maximizes both the likelihood of the observed cascades and
a random walk-based objective that regularizes learned representations. They
showed that when the network is sparse or relatively inaccurate, the performance
of DeepWalk and Node2Vec, drops down remarkably. However, they claim that
this is not surprising since both methods assume a deterministic graph struc-
ture without explicitly accounting for unreliability in the data. Integrating the
dimension of time into these approaches poses a challenge as well. Nguyen et al.
(2018) addressed this by devising a framework enabling random walk methods to
incorporate temporal dependencies into existing node embeddings. They argue

2For an extensive comparison between these works we recommend the paper by Khosla et al.
2019.

106 Chapter 5 A contrastive approach using Graph Neural Networks

that by preserving temporal ordering during learning, inaccuracies or impossible
event sequences can be avoided. However, their framework still primarily focuses
on optimizing prediction tasks for future links. Shi et al. (2019) proposed a
sampling procedure derived from simulating the diffusion structure underlying
the network. They view this as a means to augment random walks’ ability to
capture proximity information. According to their findings, compared to random
walk sampling, diffusion processes generate more informative traces and ensure
that nodes co-occurring in the same cascades receive similar representations.

The limitations of random walk sampling were discussed in Lyu et al. (2017)
highlighting that local node sequences mapped directly into the latent space
fail to capture global information. Another drawback of the most popularized
random walk approaches like Deepwalk and Node2Vec is their heavy reliance on
an existing graph of known relations as input. This prerequisite is problematic in
our setting since we assume that the input graph is not always available, or may
not accurately represent the true diffusion pathways of the network. Additionally,
other research has found that both of these methods, even if they operate on
directed random walks, are still ignoring edge directionality in practice (Khosla
et al., 2019). This is significant when considering the importance of the notion of
direction during the diffusion of information.

5.2.3 Recurrent Neural Networks

The node embedding techniques we examined above employed a shallow em-
bedding approach by optimizing individually the embedding vectors for each
node. However, in a time-dependent setting such as information diffusion the
history of a node is crucial in understanding a network’s dynamics (Lamprier,
2018). As a result, we need an architecture that is capable of incorporating this
aspect in its modeling, such as Recurrent Neural Networks (RNNs). They are
a class of artificial neural networks (see Section 1.1.5), designed to model long
sequences of data, such as time series or natural language (Salehinejad et al.,
2017). RNNs include feedback loops where the output from the previous time
step is fed back into the network as input for the current time step. This way,
RNNs can maintain a hidden state that captures information from the past. They
are therefore particularly useful for tasks where the input data is sequential and
the past history is important, as is the case with the interactions observed on
OSNs.

5.2 Review of representation learning approaches 107

Various works have attempted this approach for diffusion prediction tasks. For
example, the paper by Cao et al. (2017), encoded the dynamics of cascades
combining Hawkes processes and RNNs, taking advantage of both generative
processes and DL techniques to predict retweet cascades. In our case, when
modeling the information propagation process, it is important to consider the im-
pact of the underlying network topology on propagation. In a paper by Lamprier
(2018) the challenge of not having available the topology of diffusion during learn-
ing is emphasized. A work that tackled this is by Wang et al. (2017), where they
assume that a cascade is not only a sequence of nodes ordered by their respective
timestamps, but contains a richer structure that guides the diffusion process over
a network. To model this, they incorporate possible diffusion topologies in the
hidden infected node states of an RNN architecture. However, this work ignores
the past trajectory of a cascade; in response, Lamprier (2018), proposes a varia-
tional model that incorporates it. It is assumed that the diffusion probabilities
between nodes depend on a latent space encapsulating the nodes’ past trajectory
of the diffused content. This can be incorporated into an RNN mechanism that
models the process of diffusion. Trajectory distributions can then be inferred
from the observed infections, creating an iterative learning process that estimates
node-node infection probabilities. One of the targets of this work is to assess the
model’s ability to pinpoint the true infectors in the observed diffusion episodes,
which is very similar to what we are trying to achieve. However, on top of not
taking explicit consideration for the hidden paths or the erroneous information
between the nodes, the model is limited to an evaluation on a synthetic dataset
where the infectors are known.

Attention mechanism. To enhance prediction results, various models integrate
additional types of information when estimating edge probabilities, such as user-
user similarities (Feng et al., 2018), and other forms ofmicroscopic ormacroscopic
information (Cheng Yang et al., 2021). Instead of manually engineering these
features, an attention mechanism can be embedded within the RNN architecture.
This mechanism guides the model to focus on important structural or spatial
properties of the data. For example, Wang et al. (2017) developed a model that
uses an attention mechanism in RNNs to estimate the conditional probabilities
of subsequent resharing actions. Additionally, Wang et al. (2018) proposed a
structural attention mechanism that merges users’ diffusion contexts, and, more
recently, Zhihao et al. (2021) introduced an attention mechanism that captures
the spatial relationships among social network users. However, as was the case

108 Chapter 5 A contrastive approach using Graph Neural Networks

in the previous categories, the focus of these works, rather than pinpointing the
structures underlying the diffusion, is generating representations that can predict
the next user in an information spread as accurately as possible. In general, while
RNNs can indeed capture long-range time dependencies, overcoming the primary
weakness of Markov models (Lipton et al., 2015), an important limitation arises in
the context of graph data: Two nodes that are nearby in terms of graph topology
may be far apart in the sequential node ordering. This results in the so-called
long-term bottleneck (Liao et al., 2019).

5.2.4 Graph Neural Networks

In response to the RNNs bottleneck, Graph Neural Networks (GNNs) present a
compelling alternative for representing complex relational structures in OSNs,
including the way that information is diffusing. Unlike RNNs, which operate
sequentially, GNNs operate directly on the graph topology, allowing for simulta-
neous consideration of node attributes and graph structure (Scarselli et al., 2008).
Graph convolutional networks (GCNs) are the most standard and widely used
type of GNN models — they bridge the gap between spectral graph theory whose
representation potentials are often limited, and the more recent advancements
of graph theory (T. N. Kipf and Welling, 2016a) (see next section for more).

An example that combines GNNs and the notion of information diffusion is the
model DeepInf by Qiu et al. (2018). They incorporate both network structure
with a GNN model and user-specific features via an attention mechanism, to
predict a user’s future infection status. Other works, instead of focusing on
individual user embeddings, focus on entire subgraphs of cascades (X. Chen et al.,
2019; Q. Zhao et al., 2022). For example, the model by Chen et al. (2019) first
samples representations of sub-cascade networks and then trains these using
graph convolutions for a prediction task. However, an overemphasis on subgraphs
may lead to poor model interpretability (B. Zhou et al., 2024).

Bayesian deep learning. When it comes to incorporating uncertainty in graph-
like or other data, a notable recent line of work involves the integration of the
established theory of Bayesian modeling with DL architectures. For example,
Zhang et al. (2019) have proposed a Bayesian framework for GCNs, viewing ob-
served graphs as samples from a random graph family. By inferring the joint pos-
terior of graph parameters and node labels using assortative mixed-membership
stochastic block models, their approach enhances performance, particularly with
limited labeled data. In a different context, Ryu et al (2019) devised a Bayesian

5.2 Review of representation learning approaches 109

GCN to deal with uncertain molecular data and found that Bayesian inference
can be indeed reliable in making predictions. This verifies the results of Kendall
and Gal (2017), who were among the first to claim that uncertainty in AI tasks
such as computer vision can be addressed with novel Bayesian deep learning tools.
Their Bayesian deep learning framework emphasizes the distinction between
aleatoric uncertainties, which are data-driven and epistemic uncertainty, which
captures our ignorance about the model that generated the available data. Other
works have followed in the context of graphs, proposing different Bayesian graph
neural network architectures (Hasanzadeh et al., 2020). Yet again, these methods
prioritize the improvement of the prediction’s accuracy over utilizing uncertainty
estimates to address the unreliability of the data itself.

Graph autoencoders. A category of models that seems to be concurrent to
the Bayesian approach, is that of graph autoencoders (VGAEs), a special class
of unsupervised neural networks tailored to extract latent graph representa-
tions (T. N. Kipf and Welling, 2016b; T. Kipf et al., 2018). Unlike traditional
autoencoders, VGAEs encode the topology and features of a graph over a latent
probabilistic space and then decode it back to reconstruct the original graph.
They have gained traction for their ability to capture complex graph structures
for all kinds of ML tasks without the explicit need for labels. For example, in our
context of information diffusion, the model by Sankar et al. (2020) has proposed
a variational autoencoder coupled with GNNs to model social homophily and
temporal influence for a diffusion prediction task. Most notably, Elinas et al.
(2020) provided a more general VGAE framework for GCNs, solving a gap in
the graph machine learning literature that considers networks as noiseless. As
a solution, they designed a mechanism that explicitly deals with the absence of
predefined input graphs or with noisy/adversarially perturbed structures. They
proposed a joint probabilistic model that incorporates a prior distribution over
graphs and a GCN-based likelihood, employing stochastic variational inference to
estimate graph posteriors on top of the GCN parameters. Their approach seems
to outperform existing Bayesian and non-Bayesian GCN algorithms, particularly
in semi-supervised classification tasks. Unfortunately, although they do make
direct posterior estimates, they do not take advantage of them to make inferences
about the network, focusing instead on the accuracy of downstream prediction
tasks.

110 Chapter 5 A contrastive approach using Graph Neural Networks

Combinatorial optimization for GNNs. A very recent and promising line of re-
search is aiming to solve graph combinatorial optimization problems with GNNs,
instead of powerful solvers like Gurobi. According to Karalias and Loukas (2020),
this is a task that is very challenging for GNNs, especially in the absence of labeled
instances. As a solution, they proposed an unsupervised learning framework for
solving the maximum clique problem, training a GNN to identify distributions
of solutions that provably abide by the constraints of the combinatorial prob-
lem. They show that their approach is able to obtain valid solutions, remaining
competitive with Gurobi in terms of accuracy, while also being faster. However,
existing GNN architectures might not be able yet to detect important structural
patterns in the data for these purposes, while more expressive approaches may
lack scalability when handling large-scale inputs. A very recent article provides
an extensive review of these key limitations, along with the recent advancements
and promising avenues for this emerging field (Cappart et al., 2023).

5.2.5 Focusing on contrastive learning

Up to this point, the majority of the studies we have examined for inferring/pre-
dicting edges have operated under the assumption that either some labels are
available or that the input structure is an accurate portrayal of its genuine dynam-
ics, disregarding potential data unreliability. However, if we take into account the
intrinsic uncertainty surrounding edge existence and equate NI to the problem
of link prediction with limited or no labels, we should focus on the techniques
that consider these settings as the default. As a result, we are now targeting
fields like unsupervised learning, and self-supervised learning (SSL) techniques
which operate independently of labels (Y. Liu et al., 2022; Ghahramani, 2003).
Particularly in the last years, the field of SSL has been standing out as a novel
field with promising potential (Jin et al., 2020). It is a framework that leverages
the inherent patterns and relationships that are present within the input data
itself, enabling the creation of meaningful node representations. Intuitively, these
could potentially capture the existence of edges as well.

A special category of SSL techniques is contrastive learning, which leverages
latent information already existent in the data without the need for any labels.
The general concept is learning representations of unstructured information
by contrasting similar pairs of data points with dissimilar ones (Hadsell et al.,
2006; Van Den Oord et al., 2018; Bachman et al., 2019; T. Chen et al., 2020).
The basic contrastive framework consists of selecting data points as samples

5.2 Review of representation learning approaches 111

of three different types: the anchor, which is a random data point from the
dataset; its positive samples, data points belonging to the same type or distribution
as the anchor; and its negative samples, data points belonging to a different
distribution. A model is then trained to maximize the similarity in the learned
latent space between the representations of the anchor and the positive samples,
while simultaneously maximizing the distance (or minimizing the similarity)
between the anchor and the negative samples. Contrastive learning originally
enabled the success of computer vision tasks, serving as a way to learn on a large
scale how to differentiate between different classes of visual images without the
need for labeling which might be expensive to get (T. Chen et al., 2020; Le-Khac
et al., 2020).

Contrastive learning and graphs. However, in the domain of graphs, contrastive
learning is a subject that remains relatively underexplored. Only recently, we
have noticed a growing trend in extending contrastive learning methods to graph
data using GNNs (Xie et al., 2023). Many such methods are focused on learning
representations of entire graph instances and are based on the following principle:
For each graph, we first generate different views or transformations. Two samples
from the views generated from the same graph instance stand as a positive pair and
two samples from the views generated from different instances stand as a negative
pair. Their representations can then be learned with the help of a GNNmodel that
is guided by a contrastive loss, and can be used later for downstream tasks, more
commonly graph classification (Xie et al., 2023). Contrastive learning in a link
prediction setting is less straightforward: the objective is to infer edges between
nodes, without having access to any ground truth labels during training (Jaiswal
et al., 2020). Additionally, generating views or transformations, as explained
earlier, might be more complicated on an edge level, especially considering the
uncertainty associated with the presence of edges.

An alternative approach could be to leverage the concept of positive/negative pairs
with a different strategy, focusing on a node level instead. Intuitively, in the context
of our feasible network inference problem, this may involve sampling nodes in a
way that indirectly captures the presence of edges in the underlying graph, while
also accounting for the temporal aspect of the observed interactions.

112 Chapter 5 A contrastive approach using Graph Neural Networks

In the present thesis: accounting for feasibility

After reviewing the literature, we quickly realize that while many papers model

the way information diffuses online, most of them emphasize increasing predic-

tion accuracy for a specific task, rather than uncovering the hidden structures

underlying the interactions. As a result, for these works, when prediction results

are satisfactory, there is little interest in explicitly modeling the unreliability of

the data. In this thesis, we aim to bridge this gap by focusing on what happens

one step before the final task: What can the learned node representations of now

standardizedmodels like Node2Vec tell us about the underlying interactions in the

context of OSNs? Can they guide us toward structures that are feasible, and if not,

how can we devise a learning method that guides us toward representations that

account for feasibility without relying on labels? The rest of this chapter is focused

on exploring these questions.

5.3 Methods for network inference

Building on these questions, we aim to devise an alternative to our previously
proposed CEM method, targeting a representation learning method that can
infer the network underlying a set of node-to-node interactions while also incor-
porating the notion of feasibility. First, we need to introduce the key methods
and functions that will be employed, requiring careful consideration of various as-
pects. Following the general graph representation learning framework proposed
by Hamilton (2020), we will utilize an Encoder model which model assumes
that nodes can be encoded into meaningful representations optimized through
an iterative learning process. For the encoding part, many models can be used,
but GNNs are the most commonly preferred. Consequently, in this section, we
present the Encoder model that can be tailored to our task, along with an in-
troduction to GNNs, their functions, and the critical factors to consider when
selecting them as encoding models.

5.3.1 An Encoder model for link prediction

Why would an Encoder model be needed for inferring meaningful edges between
nodes? If we consider the standard link prediction framework, one could simply
leverage knowledge about the nodes and edges of a graph that is readily avail-
able. In the domain of OSNs, for example, we might have information on the
characteristics of the nodes (e.g., political affiliation, gender, country of origin,

5.3 Methods for network inference 113

etc), also known as node features. Based on these, we could infer the presence or
absence of an edge between nodes by quantifying the similarity between them.
The question that arises is what kind of similarity measure is the most appropriate
to achieve this. While we could manually test different measures (see Box 2.3.1),
this approach quickly becomes inflexible and time-consuming. On top of that,
the availability of reliable labels is not always guaranteed and collecting them is a
very strenuous task to achieve (Northcutt et al., 2021). Instead, we can indirectly
learn how similar they are via graph representation learning techniques. One
general framework that is very commonly used in these cases is the Encoder
model. Rather than modeling information diffusion through explicit probability
distributions and diffusion models, this approach involves embedding the entities
of a network into a latent space, capturing indirectly the underlying features and
relationships that influence the formation of links (Kurashima et al., 2014). We
should note here that in this section we give the general framework, without
going into the details of how it can be adapted to our problem, feasible network
inference.

The Encoder. Encoding is the process of transforming the raw input dataset (in
this case, the graph G = (V , E) and node features) into an embedding of a latent
dimension d. Formally, the Encoder is defined as the mapping of nodes i ∈ V to
their latent embeddings zi ∈ Rd:

ENC : V → Rd.

An Encoder can either be shallow, relying simply on each node’s unique ID to
map it to an embedding, or may include richer information, such as the node
features. Overall, it is important that the Encoder preserves a semantic meaning,
ensuring that similar inputs are mapped to nearby points in the embedding space
according to a given definition of proximity.

Learning the representations. In most traditional applications, we operate
within a supervised learning setting, meaning that we possess a dataset of training
data D where the edges between nodes are known in advance. However, in the
case of network inference, where we have no labels, the problem can be regarded
as a self-supervised or contrastive learning one. In this case, the model can be
trained on the whole dataset or informative parts of it with different sampling
methods (Jaiswal et al., 2020). After sampling the data, the primary objective is
to train the Encoder so that the pairwise node connections of the training set D

114 Chapter 5 A contrastive approach using Graph Neural Networks

are effectively reconstructed. To achieve this, the most common approach is to
minimize a reconstruction loss L over D:

L =
∑

(i,j)∈D
` (zi, zj) ,

where ` : R× R→ R is a loss function that estimates the similarity between the
learned representations of zi, zj that we are trying to learn. This general learning
architecture allows the model to automatically learn the respective parameters
of the encoding mechanism in a way that resembles the existence of important
connections.

5.3.2 Graph Neural Networks as better encoders

As we saw in Section 5.2, the simplest way to encode nodes into their latent
representations is to treat themas shallow individual vectors that can be optimized
via the above Encoder architecture (Hamilton, 2020). However, this way we may
be missing valuable information that exists in the structure of the graph and that
is not taken into account during the encoding. This can be alleviated instead
with the use of GNNs, a general ML framework explicitly designed to capture
the relational information encoded in graph-structured data, as we introduced
it in Section 5.2.4 (Gori et al., 2005; Scarselli et al., 2008). Their key concept is
that they can learn node representations by aggregating information from their
neighboring nodes, thereby encoding the local graph structure on top of any node
features that may be available (Hamilton, 2020).

Message passing updates. The most fundamental mechanism of a GNN is that
it uses a form of message passing between nodes that is updated iteratively via an
architecture composed of several artificial neural network layers (Scarselli et al.,
2008). This update is expressed by the following equation, which is called the
message-passing function:

h(l+1)
i = UPDATE(l)

(
h(l)

i , AGGREGATE(l)
(
{h(l)

j ,∀j ∈ N (i)}
))

= UPDATE(l)
(
h(l)

i , m
(l)
N (i)

)
,

where:

– h(l)
j is the representation, or hidden embedding, of node i at layer l.

– N (i) is the set of neighboring nodes of node i.

5.3 Methods for network inference 115

– AGGREGATE(l) is a permutation invariant function that combines the
representations of neighboring nodes, and potentially the nodes themselves,
if self-loops are included.

– mN (i) is the message that is aggregated from i’s neighborhoodN (i).

– UPDATE(l) is an arbitrary function responsible for updating the represen-
tation of a node i at layer l based on its current representation h(l) and the
aggregated messages from its neighboring nodes.

Graph convolutional networks (GCNs) are one of the most popular baseline
GNNs, introduced by Kipf and Welling (2016). They suggest a simple, symmetric-
normalized aggregation function, that includes self-loops. Following the same
format as presented above, the message-passing function is defined as:

h(l)
i = σ

W(l) ∑
j∈N (i)∪{i}

hj√
|N (i)||N (j)|

 ,

where σ denotes an element-wise non-linear function, such as the cosine function
(Luo et al., 2018) or ReLU (Eckle and Schmidt-Hieber, 2019), and W is a trainable
parameter matrix.

An intuitive explanation. The core idea behind GNNs is the concept of message
passing, where nodes exchange information with their neighbors to update their
own representations. By iteratively passing and aggregatingmessages through the
nodes, GNNs can capture the relational dependencies and structural information
encoded in the graph, enabling them to learn rich and informative representations
of nodes. GNNs leverage both local and global information present in the graph.
At each layer, nodes aggregate information from their immediate neighbors, al-
lowing them to capture local structural patterns. For example, according to the
message-passing function, after the first layer (l = 1), every node embedding
incorporates information from its 1-hop neighborhood (the neighbors which can
be reached by a path of length 1 in the graph); after the second iteration (l = 2) ev-
ery node embedding incorporates information from its 2-hop neighborhood, and
so on. As messages propagate through the graph, nodes accumulate information
from distant parts, enabling them to capture more global graph properties.

Parameters of a GNN model. The strength of a GNN model is its flexibility
to adapt to diverse datasets and tasks by changing its different parameters and

116 Chapter 5 A contrastive approach using Graph Neural Networks

functions. They define the GNN’s overall architecture and behavior and can
be tuned during training to optimize predicting performance. The flexibility of
the GNNs lies in its design (You et al., 2020), which gives the ability to the user
to define and tune an important set of parameters such as: (i) the number of
layers, which allows the model to capture more complex structures while con-
trolling overfitting (Ying, 2019); (ii) the dimensionality of hidden representations,
affecting the model’s expressive power and computational complexity; (iii) the
activation function (such as ReLU and cosine) which introduces non-linearity to
capture complex patterns (Sharma et al., 2017; Kulathunga et al., 2020); and (v)
the learning rate, which impacts the convergence speed of the training process.

5.4 Proposing a simple contrastive model

After establishing this general perspective on representation learning, we now
formalize the setting in which we aim to offer a more adaptable alternative to
our network inference method, CEM. As in the previous chapter, we stay in the
context of OSNs and assume that we have a dataset of interactions among a set
U of N user nodes expressed as a set D = {D1,D2, . . . ,Ds, . . . } of diffusion
episodes (e.g., tweets), where a node i may have interacted with any Ds ∈ D
episode at a timestamps ts(i) by posting or reposting it. Our goal is to learn
the latent representations z ∈ Rd of users, according to a contrastive learning
technique that takes into account the temporal order of the observed interactions.
Despite the apparent simplicity of this requirement, it is still far from common
practice to explicitly take temporal dynamics into account in a contrastive learning
framework.

5.4.1 Model architecture

An important aspect of our approach is to assume that users can take the roles
of senders or receivers of information, which, in a graph, is usually reflected in
the direction of edges. However, the latent space of node embeddings lacks an
inherent notion of direction, making it non-trivial to capture during the learning
process. Our intuition is that a user’s latent representation can differ significantly
based on whether they send or receive information. The same intuition was given
by an early work in representation learning by Bourigault et al. (2014), providing
two distinct user representations for their sending and receiving behavior. In
the domain of contrastive learning, this idea has been implemented in a broader
context, rather than being specifically tailored to the temporal direction of in-
formation flow. For example, a recent model provides two different embeddings

5.4 Proposing a simple contrastive model 117

to distinguish whether the node pairs are connected from a feature or structure
perspective (J. Zhao et al., 2023). More formally, in our case, we introduce two
distinct types of embeddings zs

i , zr
i ∈ Rd, which can capture a user’s sending

and receiving behavior respectively in a decoupled fashion. Our intuition is that
this will allow for a more explicit representation of the two roles that a user may
take in a diffusion process and can potentially improve the quality of the learned
embeddings.

The encoder. A neural encoder will be trained to extract the user-level represen-
tations zs, zr ∈ Rd for their sender and receiver behavior respectively. Each row
in these two matrices corresponds to a different user i ∈ U . As we explained in
Section 5.3, this encoder is quite flexible and can be any kind of GNN such as
GCN (T. N. Kipf and Welling, 2016a), GAT (Veličković et al., 2017), GraphSAGE
(2017), and many others (J. Zhou et al., 2020).

5.4.2 Model training

In order to learn the latent user representations in a contrastive setting, we have
to define our own contrastive learning sampling process that does not rely on
explicit labels. Towards that goal, an idea is to devise a temporally feasible set of
sample pairs capable of capturing the potential interactions within the dataset. In
this Chapter the term “feasible” takes on a more loose interpretation, indicating
that the sampled pairs should be created according to the temporal ordering of
the observed interactions instead of a strict set of constraints as in the case of
CEM. Our strategy unfolds as follows: First, we select an anchor user (a) that
acts as the reference point for constructing the pair. Next, we randomly choose a
diffusion episode Ds from the dataset D = {D1,D2, . . . ,Ds, . . . } with which the
anchor user has interacted by posting or reposting it. Then, we sample positive
and negative user samples according to the following:

– Positive samples represent the potential recipients of a diffusion episode
Ds ∈ D (e.g., tweet) directly from the anchor a. To capture the feasible
ordering of time, we select as positive sample a user j that has interacted
with Ds at a later timestamp than the anchor user, ts(j) > ts(a).

– Negative samples correspond to users that are unlikely to receive a diffusion
episode from the anchor user a. This can occur either because they have
not interacted with Ds at all, ts(j) =∞, or because their interaction took
place at a non-feasible time, i.e. ts(j) < ts(a). Recognizing this distinction

118 Chapter 5 A contrastive approach using Graph Neural Networks

allows us to develop a more sophisticated selection strategy for negative
samples, compared to selecting them in a random, time-agnostic fashion.

This is a similar sampling approach to the SimGRL model by Huang et al (2023),
with the difference that in their case they depend on pre-known positive/negative
labels whereas we establish our own nuanced definition of these labels based on
the concept of temporal feasibility. In Algorithm 2, we describe the details of
the sampling process for each anchor user. The final contrastive pairs of users
that are sampled are structured as (anchor, positive, negative). In practice, we only
choose a predefined number of positive and negative samples for each anchor,
that can be tuned by the user. Since the underlying graph is known to be sparse
(meaning few positive edges), we limit the positive user samples of each user to
only one, and we experiment with different sizes of negative samples. If we had
both positive and negative samples of size one, we would be dealing with triplets;
however, this is mostly preferred in the domain of computer vision tasks, and in
our case it would be less informative (Weinberger and Saul, 2009; Yingying Zhang
et al., 2019). By employing this simple sampling strategy, our aim is to equip the
model with feasible sample pairs that take into account the temporal ordering
of observed interactions. We believe that this approach can allow the model to
capture meaningful patterns in the data via a training process that can be more
easily interpreted.

5.4.3 Contrastive loss

Let zi represent the embedding of a user i that is unknown and has to be learned
in a contrastive fashion. A triplet loss could then be computed for each pair of
anchor (a), positive (p), and negative (n) samples. The general principle is to
enforce the similarities between the embeddings of the anchor and its positive
samples to be higher than the similarities between the anchor and its negative
samples, by at least a margin m. The function used to measure this similarity is
denoted as sim(·, ·) and the contrastive objective function, originally proposed
in the context of face recognition by Schroff et al. (2015), is defined as:

L =
∑

(a,p,n)∈T
max(0, sim(za, zp)− sim(za, zn) + m),

5.4 Proposing a simple contrastive model 119

where T is the set of all sampled pairs of users. In the context of our problem,
where we use different embeddings for the sending and receiving behavior of
users it would become:

L =
∑

(a,p,n)∈T
max(0, sim(zs

a, zr
p)− sim(zs

a, zr
n) + m),

With this simple change in formula, we are using instead the similarity between
each user’s sending behavior vector zs

i and every other user’s receiving behavior
vector zr

j . This step is crucial, since it incorporates a notion of “direction” in the
way that information diffuses from user to user, from the “sender” of an item to
its potential timely feasible “receiver”. However, since we do not only want to
focus on triplets, but on multiple samples of neighbors at a time, we can use the
following formula, similar to the InfoNCE loss (Van Den Oord et al., 2018):

LF easCL = − log esim(zs
a,zr

p)

esim(zs
a,zr

p) +∑
n esim(zs

a,zr
n) . (5.1)

We call this the Feasible Contrastive Loss (FeasCL). In some cases, the exponents
can be divided by a temperature τ to control the impact of the similarity function
(X. Liu et al., 2021; Jovanović et al., 2021):

LF easCL = − log esim(zs
a,zr

p)/τ

esim(zs
a,zr

p)/τ +∑
n esim(zs

a,zr
n)/τ

, (5.2)

where we choose the cosine as a measure of similarity:

sim(zs
a, zr

p) =
zs

a · zr
p

‖zs
a‖‖zr

p‖
. (5.3)

The main idea is that the node embeddings of users who could be feasibly con-
nected in the underlying network should also be moved closer together in the
latent space. By using this contrastive loss we can guide the similarities between
the sender embeddings of the anchor and the receiver embeddings of its timely
feasible (positive) samples, to be higher than the similarities with the receiver
embeddings of its timely non-feasible (negative) samples in the latent space. No-
tice again how in the loss we only choose the sender embeddings for the anchor
samples, while keeping only the receiver embedding for the positive and negative
samples. The intuition behind this choice is to give a nuance of direction in the
latent space during the process of learning.

120 Chapter 5 A contrastive approach using Graph Neural Networks

Mini-batching. The optimization of DL architectures is typically based on
stochastic gradient methods (Robbins and Monro, 1951; Bottou et al., 2018).
The main principle is the use of stochastic gradient descent update rules that pro-
vide an approximation of the expected value of the gradient of the loss function
over the training data (Masters and Luschi, 2018). This stochastic approximation
is based on using small subsets of training examples, known asmini-batches (Mas-
ters and Luschi, 2018). While mini-batching is more commonly associated with
tasks on large-scale datasets such as in image classification or natural language
processing, it can also be beneficial for training on graphs (Berg et al., 2017). In
our case therefore we can train the model to learn the encodings {zs

i , zr
i}N

i=1 by
using mini-batches of nodes, reducing the memory footprint required to store
the contributions to the loss function, which can be particularly important for
graphs of larger sizes (Berg et al., 2017).

5.5 Experimental evaluation

5.5.1 Environment

The dataset

In the preceding chapter, we discussed how since its 2017 creation, the Twitter
dataset #Élysée2017fr has most certainly undergone important changes, such as
profile deletions and users unfollowing each other (see Section 4.8.5). As we
explained, it is also common for users to retweet content beyond their immediate
followees, utilizing features like the search function, the platform’s recommen-
dation algorithm, or trending topics. Consequently, the #Élysée2017fr reposting
dataset itself may not be entirely explained by the ground truth friendship graph
that we had collected (as we showed, the latter can only explain 49% of the diffu-
sion episodes in their entirety). In order to get a clearer view of the performance
of our method, as a pre-processing step, we opt to keep only the subset of users
and episodes that are adequately explained by the #Élysée2017fr friendship graph.
The way we achieve this is as follows: we look into each diffusion episodeDs ∈ D,
and if there is no feasible subgraph (as defined in Section 4.2) that connects all
the users in Ds, we remove Ds from the episodes set. In the end, we only keep
the subset of users that are participating in the remaining episodes.

As a result, instead of having 293,405 episodes as before, we now have 144,264.
For completeness, Tables 5.1 and 5.2 show in detail the differences between the
original (non-feasible) dataset and the final feasible one for both the friendship

5.5 Experimental evaluation 121

and the retweet network. By comparing against a less noisy ground truth that
adequately explains the provided dataset, it will be easier to evaluate whether
the model can indeed infer edges that exist in the ground truth friendship graph.
The most substantial difference is in the number of edges connecting the users,
which directly affects the graph’s density. Interestingly, the decrease in the size of
the most strongly connected component (max(scc)) of the friendship network is
relatively smaller. This suggests that, despite a reduction in overall connectivity,
there remains a core group of users who are strongly connected to each other.

Learning process

For the encoding part of the training, we choose a GNN architecture and a graph
structure G to provide as input. Since we assume that the underlying friendship
graph is unknown during training, we construct a baseline graph structure G
from the available reposting interactions, by drawing an edge (i, j) from i to
j if ts(i) < ts(j) for at least one diffusion episode Ds ∈ D. This represents
the fact that it is possible for the information to have passed through the edge.
Although unrealistic, this graph allows for the nodes to incorporate information
from a wider set of possible neighbors. We opt for the GraphSAGE model as
the core GNN architecture (Hamilton et al., 2017) due to its stochastic sampling
of node neighborhoods (see Section 5.2.4). Since we do not assume to have any
node features available, we give randomly initialized vectors as features, which
surprisingly, has not been found to not affect the performance of GNNs (Abboud
et al., 2020). We train the FeasCL loss on one NVIDIA GPU, with a batch size
of 640 and a temperature τ = 10, on well-known Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.01. It is widely used in DL as an efficient way
to optimize the parameters of neural networks, leading to faster convergence
and improved performance in a more flexible fashion compared to traditional
optimization algorithms. As is usually the case in a DL context, our model
involves many parameters that can be tweaked to optimize its performance (You
et al., 2020). We list all of them in more detail in Appendix B.

Hard negative sampling

A key factor we identified for optimizing FeasCL is an additional hard sampling
that we should perform from the set of negative samples after the first iteration.
Specifically, instead of sampling negative users as usual, most of whom might
already be dissimilar to the anchor and thus contribute little to the triplet loss, we
further refine the sampling process. This is achieved by looking into the learned

122 Chapter 5 A contrastive approach using Graph Neural Networks

Tab. 5.1. Original (non-feasible) #Élysée2017fr dataset.

Source Users Edges Density Average degree #scc max(scc) intra inter

Friendship network 11,404 1,555,718 0.0120 136.42 641 10,747 0.84 0.16
Retweet network 11,404 6,922,990 0.0523 601.42 527 10,984 0.77 0.23

Tab. 5.2. Feasible #Élysée2017fr dataset.

Source Users Edges Density Average degree #scc max(scc) intra inter

Friendship network 8,437 260,247 0.0004 30.85 883 7,479 0.95 0.05
Retweet network 8,437 470,539 0.0066 55.77 1,712 6,712 0.92 0.07

representations at the end of each epoch and selecting only those negative samples
(a predefined number of them) that are still the most similar to the anchor. These
hard negatives stand as sample points that are the most difficult to distinguish
from an anchor point. It is a strategy that has been recently proven beneficial
for contrastive learning tasks (Robinson et al., 2020). Moving these negative
samples farther away will have a stronger impact on the loss, helping to correct
the semantic “mistakes” more quickly (Schroff et al., 2015; Oh Song et al., 2016).
In our case, a “mistake” refers to a negative user who could not have possibly
received a piece of information from the anchor (meaning that no path should
exist between them) due to their time ordering of interactions not justifying it in
the reposting dataset provided as input. In practice, this either means that the
anchor has reposted something after the negative sample, and therefore it is not
possible for them to have passed on the information to the negative user, or that
they have not appeared in the same diffusion episode at all.

Evaluationmetric

At the end of the training, our model provides a set of latent user representations
zs, zr that we need to verify whether they correspond to any real underlying
friendship connections. Given that we do not explicitly receive graph edges as
output, we can indirectly examine the k most similar neighbors j for each user
i in terms of the chosen similarity metric sim(zs

i , zr
j). In accordance with the

optimization process, we keep the use of the cosine similarity, and examine the
mean Precision results, compared to the ground truth friendship network, and
across all users, for different values of k.

5.5 Experimental evaluation 123

Comparison

We compare our results with two methods: our previous approach, CEM, and
Node2Vec (Grover and Leskovec, 2016), which is very often employed in link
prediction tasks (H. Wu et al., 2022). Node2Vec generates node embeddings
through unsupervised learning using randomwalk sampling (refer to Section 5.2.2
for details). It is important to note that the aim of this comparison is not to provide
an exhaustive evaluation against the various other existing graph representation
learning methods that could have been applied. Rather, our primary goal is
to compare first the results to CEM, exploring whether a simple and intuitive
contrastive approach can indeed provide node representations that incorporate
feasibility for the problem of network inference. This can potentially serve as a
promising and more scalable baseline for future exploration.

5.5.2 Results

In this section, we train FeasCL for a different number of epochs (500/1,000/5,000)
according to the methods described above and report the results in Table 5.3. As
explained before, for each sending user in the user set U , we examine the mean
Precision in selecting their k most similar receiving neighbors in terms of their
embeddings. We notice that our initial method, CEM, still performs the best in
this feasible dataset, achieving a Precision of almost 77% on average for the k = 1
closest neighbor of users. However, FeasCL provides a relatively close Precision
of 71.25%, which is competitive. However, we notice that as the number of k

increases, the performance gap between CEM and FeasCL narrows. For instance,
at the average node degree in the friendship graph, which is 30 (see Table 5.1), the
mean Precision of CEM is 29.87%, while FeasCL achieves 27.52%. Additionally,

Tab. 5.3. k-nearest neighbors comparison (in %)∗.

Mean Prec@k @1 @2 @3 @5 @10 @15 @20 @30 @40 @50 @100

CEM-ER 76.32 67.94 62.20 54.78 44.48 38.63 34.56 29.13 25.53 22.89 15.62
CEM-SBM 76.91 68.95 63.58 56.11 45.61 39.59 35.41 29.87 26.16 23.46 15.93

Node2Vec 0 13.21 14.83 14.11 11.46 9.64 8.43 6.9 5.97 5.36 3.95

FeasCL-5K 71.25 63.76 58.61 51.89 42.01 36.31 32.50 27.52 24.32 22.03 15.70
FeasCL-1K 68.14 58.89 53.54 46.88 36.94 31.87 28.65 24.49 21.93 20.07 14.55
FeasCL-500 66.06 57.07 51.95 44.82 35.43 30.64 27.62 23.86 21.32 19.57 14.24

FeasCL-5K-40 61.15 52.10 48.24 42.17 33.55 29.16 26.24 22.71 20.38 18.68 13.68
FeasCL-5K-60 62.14 53.31 49.07 42.79 34.15 29.52 26.64 23.14 20.74 18.98 13.86
FeasCL-5K-125 69.35 60.15 54.86 48.13 38.62 33.54 30.17 25.84 23.03 20.99 15.28

* -5K, -1K, -500 is the number of epochs, -40, -60, -125 is the number of dimensions for the output

124 Chapter 5 A contrastive approach using Graph Neural Networks

0 1000 2000 3000 4000 5000
epoch

1500

2000

2500

3000
Loss evolution

Fig. 5.1. – Loss evolution of FeasCL-5K per epoch.

we notice that FeasCL is outperforming significantly the baseline Node2Vec
results, which exhibit very low performance. The most important takeaway is
that a simple random walk strategy on a noisy graph does not adequately capture
its underlying interactions. This outcome is less surprising when we consider that
Node2Vec has not been explicitly designed to handle such unreliable cases. This
result underscores the importance of making a clear distinction between the data
and the graph that underlies it. It also shows the ability of a simple contrastive
strategy to make this distinction possible, without the need for any labels or node
features, relying only on the temporal information provided by the data.

Regarding the impact of hidden dimensions, increasing their size allows themodel
to capture more complex patterns and nuanced relationships within the data.
Specifically, as shown in Table 5.3, Precision improves from 61.15% to 62.14%
and then to 69.35% as we increase the output node representations’ dimension
from 40 to 60 and then to 125. Higher-dimensional representations provide the
model with a greater capacity to move the user representations around closer or
farther away in the latent space, which is beneficial when subtle differences in
latent node relationships are crucial.

We should note that the results we report for FeasCL represent the best outcomes
from various parameter combinations we tried. A critical point that we identified
experimentally is the improvement in Precision levels as we increase both the
number of epochs and the size of the hidden dimensions. As shown in Table

5.5 Experimental evaluation 125

negative ground-truth edges positive ground-truth edges

predicted similarity

-1 0 1

predicted similarity

-1 0 1

0

2.5

0

8

10^7 10^4

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

Hit position for true positives

Fig. 5.2. – Results compared to the ground truth friendship graph (FeasCL-5K).

5.3, mean Precision increases from 66.06% to 68.14% and then to 71.25% as the
number of epochs rises from 500, to 1,000 and then to 5,000. Figure 5.1, which
shows the triplet loss of the FeasCL-5K model, may explain this trend: the loss
of the model rapidly decreases in the first hundreds of epochs, but, after 1,000
epochs, it reaches a point where little to no changes occur. This plateau may
indicate that the model has sufficiently learned the relationships within the data
and further updates provide diminishing returns. In our case, this may reflect
the difficulty in pushing farther away from the anchor the appropriate negative
samples as training continues — initially, the model can easily find dissimilar
negative samples, but as the learning progresses, most negative samples become
less informative for improving the triplet loss, leading to slower improvements.

126 Chapter 5 A contrastive approach using Graph Neural Networks

Tab. 5.4. Comparison when choosing a threshold∗.

Method (%) AUROC AVGPR PR ACC REC TN FP FN TP

CEM-ER 84.36 44.58 85.85 99.74 34.04 70,908,123 14,599 171,651 88,596
CEM-SBM 85.28 44.13 86.98 99.73 30.31 70,910,911 11,811 181,375 78,872

Node2Vec(>0) 87.44 1.52 0.37 0.67 100 216,434 70,706,288 8 260,239
Node2Vec(>0.5) 1.55 77.23 97.72 54,722,508 16,200,214 5,926 254,321

FeasCL-5K(>0) 96.91 24.47 1.77 80.20 97.75 56,830,745 14,091,977 5,869 254,378
FeasCL-5K(>0.5) 57.50 99.64 6.33 70,910,544 12,178 243,769 164,788

∗an edge from i to j is drawn if sim(zs
i , zr

j) > threshold

To examine the overall pairwise similarities that FeasCL has learned, we can
look into Figure 5.2. It shows the learned similarities for all possible user pairs
(N(N − 1) in total) against the information of whether the edge exists in the
ground truth friendship graph or not. For non-existent edges in the ground truth
(top left figure), the learned similarities correctly weigh around 0 and toward the
negative x-axis. In contrast, for existent ground truth edges (top right figure),
the similarities weigh higher than 0. Still, the majority of edges are predicted
between 0 and 0.5, which may be due to the loss struggling to push away the
negative samples from the anchor as we explained before. It leads to a challenge
in distinguishing between existing and non-existing edges in the final friendship
graph via a strict threshold, as done in the case of CEM (refer to Section 4.6.3). In
the bottom figure, showing the positions where we have first found a true positive
neighbor for each user, we see the following: for the vast majority of users, the
neighbors that are ranked the closest to them (in the first 1-5 positions) are the
ones that are also existing in the ground truth graph (true positives). This means
that if in absolute values the similarities are not high, looking into the neighbor
rankings for each user individually may give us some useful insights regarding
the existing underlying connections.

Consequently, the above further reinforces our choice of the k-closest neighbors
as a more suitable metric for comparison. To explore this more in practice, we
can look into Table 5.4. It displays the results for different performance metrics
when inferring the edges in the final graph using a threshold strategy. Specifically,
it considers the scenario of inferring a directed edge (i, j) in the final friendship
graph whenever the user-user similarity sim(zs

i , zr
j) learned by FeasCL is greater

than a threshold. Given that the cosine similarity gives values between -1 and 1
we try two thresholds for Node2Vec and FeasCL-5K (0 and 0.5). For CEM, we
show only the results for a threshold of 0.5, since the derived edge probabilities

5.5 Experimental evaluation 127

are between 0 and 1 (as in Section 4.6.3). As we see, in the case of the threshold
0, the results of FeasCL are less informative, notably because of the inference of
too many positive edges, resulting in many false positives (FP). This may result in
a high Recall (=97.75), compared to CEM (=34.04), but with a heavily penalized
metric of Precision (PR) (=1.77). However, the metrics of the Area under the
ROC Curve (AUROC) and the Average Precision (AVGPR) perform relatively
better (96.91 and 24.47), showing the impact that different thresholds can have
on the performance (they are reported only once in the Table for each method,
because they try all possible thresholds to give the results, instead of just one).

Overall, FeasCL still performs significantly better than Node2Vec when following
the same threshold strategy, especially compared to the metrics of Accuracy
(ACC) and Precision. As we see, Node2Vec draws many positive edges, which is
not surprising since it has not been tailored to the task of inferring underlying
graphs of connections, but rather to traditional ML classification tasks. When
we draw a stricter threshold of 0.5 for both methods, we see that Precision for
FeasCL-5k increases significantly (=57.50), at the expense of Recall (=6.33). This
means that we draw fewer edges, but more precise ones. This is not the case
for Node2Vec however, which still draws many false positives. Here we notice
a trade-off between FeasCL-5k and CEM, with the latter drawing fewer true
positive edges (TP) than FeasCL-5k, but showing also less false negatives (FP).
This raises the question of what kind of prediction class we are prioritizing (see
Section 2.5). If our goal is to draw as much as positive edges as possible, with a
relatively good Precision, one could choose FeasCL. If, however, Precision is a
priority, CEM would be the preferable choice.

For the same reasons, it is more challenging to compute the feasibility of the
inferred graph, since we do not have available a reliable posterior structure as
in the case of CEM. However, if we keep the strict threshold strategy presented
above, we find that it gives 100% feasibility — in this case, however, this is less
informative since the number of positive edges inferred is very high, and feasibility
is trivial. If we increase the threshold to 0.5, the feasibility becomes significantly
lower, equal to 26%.

As we show in the Appendix (B), the optimization process of FeasCL, like most
DL models, may include many parameters that need tuning but offers significant
advantages in memory and running costs compared to a strict optimization
approach. For example, one epoch in FeasCL might take less than 15 seconds on

128 Chapter 5 A contrastive approach using Graph Neural Networks

average (including the relatively expensive function of hard sampling) whereas an
iteration in CEM can take several minutes each, on top of the large memory cost
of storing constraints and its heavy reliance on professional tools like Gurobi for
faster convergence.

5.6 Discussion and conclusion

With the FeasCL approach, we attempted to show that a simple and scalable
contrastive strategy can give promising results when trying to infer the graph
underlying a set of user-user interactions in a timely feasible manner. Most
importantly, this can be achieved without the need for any labels or node features,
relying solely on the temporal information provided by the data itself. The goal
is to provide an alternative to the method CEM that we proposed in Chapter 4,
which relies on constrained combinatorial optimization and can be both memory-
demanding (due to the explicit set of feasibility constraints) and time-consuming
to solve. FeasCL proposes instead a more relaxed interpretation of feasibility,
that does not require explicit constraints, learning instead from the data in a
contrastive, time-aware fashion.

However, it is crucial to highlight that achieving these promising results involved
extensive experimentation with various parameters and settings. This stands as
one of the main weaknesses of this method compared to traditional optimization
approaches. Additionally, for more competitive results, we had to substantially
increase the number of epochs for the loss function, consequently prolonging the
computation time. Nevertheless, the method requires less memory since it no
longer relies on an explicit set of feasibility constraints for inference that need to be
stored at each update step. It also allows for applicability in more domains where
the exact constraints for feasibility might not be as straightforward to construct as
in the case of OSNs. However, as we demonstrated, this lack of explicit guidance
may affect its performance penalizing the precision performance in the inferred
connections. Yet, it may be more suitable in the common real-life scenario where
the ground truth is not 100% feasible itself, relaxing the requirement for feasibility
in the inference.

Moreover, unlike traditional statistical methods such as CEM that provide prin-
cipled ways to derive posterior distributions for edge probabilities using well-
established ML and EM methods, FeasCL lacks direct access to them. Instead,
it estimates the existence of edges indirectly via similarity functions like cosine

5.6 Discussion and conclusion 129

similarity. As a solution, in this contrastive setting, we showed that it would
be preferable to focus on the user neighborhoods, as they might provide more
informative insights into the true underlying connections.

Of course, all these provide opportunities for further refinement. For instance,
incorporating a time-decaying effect between sampled users or exploring alterna-
tive, more refined sampling strategies, could enhance the model’s performance.
Furthermore, investigating more expressive GNN architectures, or incorporating
explicitly some notion of Bayesian modeling into the contrastive setting could
also lead to improvements. On top of that, one should certainly compare with
more relevant architectures aside from Node2Vec, that are more expressive and
can deal with similar contrastive settings. This will provide further evaluation
insights regarding the potential of the existing representation learning algorithms
to provide intuitive underlying structures in unreliable and time-dependent set-
tings.

All in all, we believe that FeasCL stands as a promising foundation, fromwhich one
can continue building representation learning techniques in unreliable settings,
in a fashion that is intuitive and incorporates the concept of time feasibility. It also
emphasizes the importance of evaluating the graph structure that can be inferred
from the learned representations, which happens to be completely overlooked in
standard practices, where the focus instead is on optimizing downstream tasks.

∗ ∗ ∗

130 Chapter 5 A contrastive approach using Graph Neural Networks

Conclusion 6
In this thesis, we tackled the problem of network inference in the context of
Online Social Networks, where the available data is often unreliable, containing
noise and missing information. Our work aligns with recent research emphasiz-
ing the necessity to acknowledge the unreliability inherent in all forms of data,
including those derived from networks. Although a simple idea, it is an aspect
that is frequently overlooked in practice, potentially compromising the quality of
findings and conclusions. This hints at the existence of an underlying network
shaping the dataset, which is often very challenging or impossible to access.

Further investigating this problem, we reviewed various inference techniques
that exist and could infer the network underlying a set of temporal interactions.
These methods span from statistical methods, using concepts like information
diffusion, maximum likelihood, and expectation maximization, to more recent
deep learning and graph representation learning techniques. However, we identi-
fied only a minority of works explicitly tackling unreliable settings, and potential
shortcomings in the methods employed to evaluate their performance. More
specifically, the absence of public evaluation datasets containing both the data and
the real underlying network, often led to an over-reliance on artificially created
datasets, or heuristics which might be insufficient in providing a full assessment.
Most notably, many works completely ignored to evaluate the network inferred,
optimizing instead on indirect goals and downstream tasks.

Bridging this gap, this thesis introduces the novel evaluation metric of feasibility,
evaluating to what extent the final network inferred can explain the dataset that
we gave as input. This metric is specifically tailored to assess inference methods,
since it does not depend on a ground truth, but rather on an intuitive explanation
of the inferred results. It takes into account not only the existence of hidden paths
between nodes, but also the dimension of time, ensuring that the inferred paths
respect the temporal ordering of the node-to-node interactions observed in the
dataset. The intuition behind this is that, if a dataset is feasible given an inferred
network, then the result is also close to the true network that we are trying to
infer. Perhaps not surprisingly, we found that the existing inference methods do

131

not guarantee feasibility, leading to results that cannot explain the dataset and
are thus less intuitive in their assessment.

We provided a novel network inference method, called Constrained Expectation
Maximization (CEM), to ensure the inference of a 100% feasible network when
given datasets consisting of repost events from Online Social Networks. The
assumption behind this is that users repost users they follow, and therefore the
underlying network we are targeting is their friendship network. In practice,
we incorporated into an Expectation Maximization-based optimization process,
a series of additional linear optimization updates to account for the notion of
hidden paths and feasibility constraints. This eventually guides the inference
process towards feasibility. We presented two variations of CEM, each assuming
either an Erdős–Rényi (ER) or an Stochastic Block Model (SBM) prior for the
underlying graph’s distribution.

Extensive experimentation on both synthetic and real-world Twitter datasets
showed that regardless of the prior chosen, CEM can generate a posterior distribu-
tion of graphs that is 100% feasible, while closely approximating the ground truth.
Notably, when employing the SBM prior, CEM simultaneously infers clusters
of users during optimization, offering an additional benefit. We also proposed
a heuristic to adapt the inference process to lower feasibility requirements, ex-
ploring its impact on precision. On top of feasibility, we evaluated the inferred
networks in terms of a well-studied set of graph measures, evaluating to what
extent they demonstrate real-world properties. All in all, in terms of feasibility,
precision and real-world properties of the result, we found that CEMoutperforms
baselines as well as more novel algorithms.

These findings suggest that feasible graphs may indeed better approximate the
underlying graph compared to non-feasible ones. Certainly, feasibility alone
cannot guarantee accuracy, as evidenced by the unrealistic properties of some
heuristically inferred networks despite them being 100% feasible. As a result, we
recommend that in a network inference setting, where an underlying graph is not
available for evaluation, the metric of feasibility should be explored on top of the
different graph theory metrics to verify their real-world properties. We should
also note that our method has only been validated given a very specific dataset
structure that is based on the data that most social media platforms currently
offer. To apply this method to other datasets, domain expertise might be needed
to adapt the concept of feasibility accordingly.

132 Chapter 6 Conclusion

As a final investigation, we explored recent advancements in graph representation
learning, identifying machine and deep learning methods as potential flexible
and scalable alternatives. The main difference to the CEM framework, is that
the goal is no longer to derive feasible posterior distributions of the entire graph
structure but to learn meaningful node embeddings. We provided an extensive
literature review of such methods, relevant either directly to the inference of
information diffusion or more general machine learning approaches that do
not require supervision on known labels. We identified certain limitations in
these methods regarding their applicability to our problem. The majority did not
consider network unreliability and ignored to evaluate the underlying structure
that was being inferred, optimizing instead on other machine learning tasks such
as classifying the nodes in the correct classes.

The above prompted our proposal of a novel feasible network inference alternative,
called Feasible Contrastive Learning (FeasCL): Initially, we suggested framing the
general network inference problem within a self-supervised learning framework.
This approach utilized an encoder model commonly deployed for link prediction
tasks, leveraging Graph Neural Networks (GNNs). To integrate the concept of
feasibility, we introduced a straightforward contrastive loss mechanism capable
of learning node embeddings while considering time through a basic sampling
technique. The main idea is that the node embeddings of users who could be
feasibly connected in the underlying graph should also be encoded closer together
in the latent space. We conducted preliminary experiments, comparing our
approach against CEM and a deep learning baseline Node2Vec. The results were
promising; they seemed to be competitive in terms of precision against CEM and
significantly better than Node2Vec. As future improvements, we could explore
the utilization of a more expressive GNN architecture, a refined sampling strategy,
or integrate Bayesianmodeling into the contrastive framework to explicitly handle
uncertainty. Moreover, for a more thorough validation, conducting additional
experiments across a broader spectrum of datasets and comparing them with
state-of-the-art methods is an essential step. Nevertheless, the results hint at
an exciting new direction that could enhance the interpretability of the learning
process and the general scalability of the network inference problem.

In future endeavors, one could extend our method and constraints to diverse
data types and graph inference scenarios, adapting them to a broader spectrum
of networks used in epidemics, biology, physics, and other domains. In any

133

case, we believe that the concept of feasibility proposed in this thesis could be
of greater interest to the scientific community, especially in today’s era of “black
box” Artificial Intelligence, promoting the development of algorithms that could
guarantee more intuitive and interpretable results.

∗ ∗ ∗

134 Chapter 6 Conclusion

Bibliography

Abbe, Emmanuel, Afonso S Bandeira, and Georgina Hall (2015). “Exact recovery in the
stochastic block model”. In: IEEE Transactions on information theory 62.1, pp. 471–487
(cit. on p. 45).

Abboud, Ralph, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz (2020).
“The surprising power of graph neural networks with random node initialization”. In:
arXiv preprint arXiv:2010.01179 (cit. on p. 122).

Adamic, Lada A and Eytan Adar (2003). “Friends and neighbors on the web”. In: Social
networks 25.3, pp. 211–230 (cit. on p. 47).

Aicher, Christopher, Abigail Z Jacobs, and Aaron Clauset (2015). “Learning latent block
structure in weighted networks”. In: Journal of Complex Networks 3.2, pp. 221–248
(cit. on p. 47).

Airoldi, Edo M, David Blei, Stephen Fienberg, and Eric Xing (2008). “Mixed membership
stochastic blockmodels”. In: Advances in neural information processing systems 21
(cit. on p. 48).

Albert, Réka (2007). “Network inference, analysis, and modeling in systems biology”. In:
The Plant Cell 19.11, pp. 3327–3338 (cit. on p. 7).

Aldrich, John (1997). “RA Fisher and the making of maximum likelihood 1912-1922”. In:
Statistical science 12.3, pp. 162–176 (cit. on p. 43).

Allahverdyan, Armen E, Greg Ver Steeg, and Aram Galstyan (2010). “Community detec-
tion with and without prior information”. In: Europhysics Letters 90.1, p. 18002 (cit. on
p. 35).

Alpaydin, Ethem (2020). Introduction to machine learning. MIT press (cit. on p. 100).

Amaral, Luis A Nunes (2008). “A truer measure of our ignorance”. In: Proceedings of the
National Academy of Sciences 105.19, pp. 6795–6796 (cit. on p. 23).

Anderson, Roy M and Robert M May (1991). Infectious diseases of humans: dynamics
and control. Oxford university press (cit. on p. 33).

Appel, Kenneth, Wolfgang Haken, and John Koch (1977). “Every planar map is four
colorable. Part II: Reducibility”. In: Illinois Journal of Mathematics 21.3, pp. 491–567
(cit. on p. 5).

135

Bachman, Philip, R Devon Hjelm, and William Buchwalter (2019). “Learning repre-
sentations by maximizing mutual information across views”. In: Advances in neural
information processing systems 32 (cit. on p. 111).

Backstrom, Lars, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna (2012).
“Four degrees of separation”. In: Proceedings of the 4th Annual ACM Web Science
Conference, pp. 33–42 (cit. on p. 32).

Balach, Prakash, Eric D Kolaczyk, Weston D Viles, et al. (2017). “On the propagation
of low-rate measurement error to subgraph counts in large networks”. In: Journal of
Machine Learning Research 18.61, pp. 1–33 (cit. on p. 47).

Ball, Walter William Rouse (1893). “Mathematical Recreations and Essays”. In: Bulletin
des sciences mathématiques 17, pp. 105–107 (cit. on p. 3).

Barabási, Albert-László (2013). “Network science”. In: Philosophical Transactions of the
Royal SocietyA:Mathematical, Physical andEngineering Sciences 371.1987, p. 20120375
(cit. on pp. 4, 5, 35).

Barabási, Albert-László and Réka Albert (1999). “Emergence of scaling in random net-
works”. In: Science 286.5439, pp. 509–512 (cit. on pp. 5, 31).

Barrat, Alain and Martin Weigt (2000). “On the properties of small-world network
models”. In: The European Physical Journal B-Condensed Matter and Complex Systems
13, pp. 547–560 (cit. on p. 31).

Baumgartner, Jason, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Black-
burn (2020). “The pushshift reddit dataset”. In: Proceedings of the international AAAI
conference on web and social media. Vol. 14, pp. 830–839 (cit. on p. 49).

Bavelas, Alex (1950). “Communication patterns in task-oriented groups”. In: The journal
of the acoustical society of America 22.6, pp. 725–730 (cit. on p. 29).

Beal, Matthew J and Zoubin Ghahramani (2006). “Variational Bayesian learning of di-
rected graphical models with hidden variables”. In: (cit. on pp. 44, 47).

Bellman, Richard (1958). “On a routing problem”. In: Quarterly of applied mathematics
16.1, pp. 87–90 (cit. on pp. 4, 28).

Berg, Rianne van den, Thomas N Kipf, and Max Welling (2017). “Graph convolutional
matrix completion”. In: arXiv preprint arXiv:1706.02263 (cit. on p. 121).

Bernard, H Russell, Peter Killworth, David Kronenfeld, and Lee Sailer (1984). “The prob-
lem of informant accuracy: The validity of retrospective data”. In: Annual review of
anthropology 13.1, pp. 495–517 (cit. on p. 22).

Berry, Michael W, Azlinah Mohamed, and Bee Wah Yap (2019). Supervised and unsuper-
vised learning for data science. Springer (cit. on p. 101).

136 Bibliography

Bhagat, Smriti, Graham Cormode, and S Muthukrishnan (2011). “Node classification in
social networks”. In: Social network data analytics, pp. 115–148 (cit. on p. 102).

Bishop, Christopher M and Hugh Bishop (2024). “Deep learning: foundations and con-
cepts”. In: (No Title) (cit. on p. 101).

Blei, David M, Alp Kucukelbir, and Jon D McAuliffe (2017). “Variational inference: A
review for statisticians”. In: Journal of the American statistical Association 112.518,
pp. 859–877 (cit. on p. 48).

Blondel, Vincent, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre (2008).
“Fast unfolding of communities in large networks”. In: Journal of Statistical Mechanics:
Theory and Experiment (cit. on pp. 31, 71, 79).

Bollobás, Béla (1998). Random graphs. Springer (cit. on p. 36).

Bollobás, Béla, Christian Borgs, Jennifer T Chayes, and Oliver Riordan (2003). “Directed
scale-free graphs.” In: SODA. Vol. 3. Baltimore, MD, United States, pp. 132–139 (cit. on
p. 31).

Bottou, Léon, Frank E Curtis, and Jorge Nocedal (2018). “Optimization methods for
large-scale machine learning”. In: SIAM review 60.2, pp. 223–311 (cit. on p. 121).

Bourigault, Simon, Cedric Lagnier, Sylvain Lamprier, Ludovic Denoyer, and Patrick
Gallinari (2014). “Learning social network embeddings for predicting information
diffusion”. In: Proceedings of the 7th ACM international conference on Web search and
data mining, pp. 393–402 (cit. on pp. 33, 105, 117).

Bourigault, Simon, Sylvain Lamprier, and Patrick Gallinari (2016). “Representation learn-
ing for information diffusion through social networks: an embedded cascade model”.
In: Proceedings of the 9th ACM International Conference on Web Search and Data
Mining, pp. 573–582 (cit. on p. 105).

Brugere, Ivan, Brian Gallagher, and Tanya Y Berger-Wolf (2018). “Network structure
inference, a survey: Motivations, methods, and applications”. In: ACM Computing
Surveys (CSUR) 51.2, pp. 1–39 (cit. on pp. 6, 8, 13, 14, 23, 45, 46).

Bürkner, Paul-Christian, Maximilian Scholz, and Stefan T Radev (2023). “Some models
are useful, but how do we know which ones? Towards a unified Bayesian model
taxonomy”. In: Statistic Surveys 17, pp. 216–310 (cit. on p. 48).

Butts, Carter T (2003). “Network inference, error, and informant (in) accuracy: a Bayesian
approach”. In: social networks 25.2, pp. 103–140 (cit. on pp. 6–10, 22, 41, 42).

– (2009). “Revisiting the foundations of network analysis”. In: science 325.5939, pp. 414–
416 (cit. on p. 9).

Bibliography 137

Cai, Hongyun, Vincent W Zheng, and Kevin Chen-Chuan Chang (2018). “A compre-
hensive survey of graph embedding: Problems, techniques, and applications”. In: IEEE
transactions on knowledge and data engineering 30.9, pp. 1616–1637 (cit. on p. 103).

Cao, Qi, Huawei Shen, Keting Cen, Wentao Ouyang, and Xueqi Cheng (2017). “Deep-
hawkes: Bridging the gap between prediction and understanding of information cas-
cades”. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 1149–1158 (cit. on p. 108).

Cappart, Quentin, Didier Chételat, Elias B Khalil, et al. (2023). “Combinatorial opti-
mization and reasoning with graph neural networks”. In: Journal of Machine Learning
Research 24.130, pp. 1–61 (cit. on p. 111).

Cayley, Arthur (1890). “On the theory of the analytical forms called trees”. In: Mathemat-
ical papers 3, pp. 242–246 (cit. on p. 3).

Chen, Fenxiao, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo (2020). “Graph representa-
tion learning: a survey”. In: APSIPA Transactions on Signal and Information Processing
9, e15 (cit. on p. 104).

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton (2020). “A
simple framework for contrastive learning of visual representations”. In: International
conference on machine learning. PMLR, pp. 1597–1607 (cit. on pp. 111, 112).

Chen, Xueqin, Fan Zhou, Kunpeng Zhang, et al. (2019). “Information diffusion prediction
via recurrent cascades convolution”. In: 2019 IEEE 35th international conference on
data engineering (ICDE). IEEE, pp. 770–781 (cit. on p. 109).

Chen, Zhihao, Jingjing Wei, Shaobin Liang, Tiecheng Cai, and Xiangwen Liao (2021).
“Information cascades prediction with graph attention”. In: Frontiers in Physics 9,
p. 739202 (cit. on p. 108).

Clauset, Aaron, Cristopher Moore, and Mark EJ Newman (2008). “Hierarchical structure
and the prediction of missing links in networks”. In: Nature 453.7191, pp. 98–101
(cit. on pp. 8, 22, 23, 45).

Cointet, Jean-Philippe, Dominique Cardon, Andreı�Mogoutov, et al. (2021). “Uncovering
the structure of the French media ecosystem”. In: arXiv preprint arXiv:2107.12073
(cit. on p. 11).

Daley, Daryl J and Joseph Gani (1999). Epidemic modelling: an introduction. Cambridge
University Press (cit. on p. 60).

DataReportal (2024). Digital 2024: Global Overview Report. Available online: https :
//datareportal.com/reports/digital-2024-global-overview-report (cit. on p. 12).

138 Bibliography

https://datareportal.com/reports/digital-2024-global-overview-report
https://datareportal.com/reports/digital-2024-global-overview-report

Daud, Nur Nasuha, Siti Hafizah Ab Hamid, Muntadher Saadoon, Firdaus Sahran, and
Nor Badrul Anuar (2020). “Applications of link prediction in social networks: A review”.
In: Journal of Network and Computer Applications 166, p. 102716 (cit. on p. 103).

Daudin, J-J, Franck Picard, and Stéphane Robin (2008). “A mixture model for random
graphs”. In: Statistics and computing 18.2, pp. 173–183 (cit. on pp. 35, 47).

Dawid, Alexander Philip and Allan M Skene (1979). “Maximum likelihood estimation
of observer error-rates using the EM algorithm”. In: Journal of the Royal Statistical
Society: Series C (Applied Statistics) 28.1, pp. 20–28 (cit. on p. 44).

De Smet, Riet and Kathleen Marchal (2010). “Advantages and limitations of current
network inference methods”. In: Nature Reviews Microbiology 8.10, pp. 717–729 (cit.
on p. 10).

Deane, Charlotte M, Łukasz Salwinski, Ioannis Xenarios, and David Eisenberg (2002).
“Protein interactions: two methods for assessment of the reliability of high throughput
observations”. In: Molecular & Cellular Proteomics 1.5, pp. 349–356 (cit. on pp. 8, 23).

Dempster, Arthur P, Nan M Laird, and Donald B Rubin (1977). “Maximum Likelihood
from Incomplete Data via the EM Algorithm”. In: Journal of the Royal Statistical Society
(cit. on p. 44).

Dijkstra, EW (1959). “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1.1, pp. 269–271 (cit. on pp. 4, 28).

Dobbin, Kevin K and Richard M Simon (2011). “Optimally splitting cases for training
and testing high dimensional classifiers”. In: BMC medical genomics 4, pp. 1–8 (cit. on
p. 102).

Domingos, Pedro and Matt Richardson (2001). “Mining the network value of customers”.
In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 57–66 (cit. on p. 50).

Dooms, Simon, Toon De Pessemier, and Luc Martens (2013). “Movietweetings: a movie
rating dataset collected from twitter”. In: Workshop on Crowdsourcing and human
computation for recommender systems, CrowdRec at RecSys. Vol. 2013, p. 43 (cit. on
p. 49).

Eckle, Konstantin and Johannes Schmidt-Hieber (2019). “A comparison of deep networks
with ReLU activation function and linear spline-type methods”. In: Neural Networks
110, pp. 232–242 (cit. on p. 116).

Elinas, Pantelis, Edwin V Bonilla, and Louis Tiao (2020). “Variational inference for graph
convolutional networks in the absence of graph data and adversarial settings”. In:
Advances in neural information processing systems 33, pp. 18648–18660 (cit. on p. 110).

Bibliography 139

Erdős, Paul and Alfréd Rényi (1959). “On random graphs I”. In: Publicationes Mathemati-
cae Debrecen 6.290-297, p. 18 (cit. on pp. 4, 35).

Euler, Leonhard (1741). “Solutio problematis ad geometriam situs pertinentis”. In: Com-
mentarii academiae scientiarum Petropolitanae, pp. 128–140 (cit. on p. 3).

Failla, Andrea and Giulio Rossetti (2024). “” I’m in the Bluesky Tonight”: Insights from a
Year Worth of Social Data”. In: arXiv preprint arXiv:2404.18984 (cit. on pp. 13, 25, 49).

Feng, Shanshan, Gao Cong, Arijit Khan, et al. (2018). “Inf2vec: Latent representation
model for social influence embedding”. In: 2018 IEEE 34th International Conference
on Data Engineering (ICDE). IEEE, pp. 941–952 (cit. on p. 108).

Firestone, Simon M, Yoko Hayama, Max SY Lau, et al. (2020). “Transmission network
reconstruction for foot-and-mouth disease outbreaks incorporating farm-level covari-
ates”. In: PLoS One (cit. on pp. 8, 51).

Ford, Lester Randolph (1956). “Network flow theory”. In: (cit. on p. 4).

Fraisier, O, O Cabanac, Y Pitarch, R Besançon, and M Boughanem (2018). “#Elysee2017fr:
The 2017 French Presidential Campaign on Twitter”. In: Proceedings of the 12th Inter-
national AAAI Conference on Web and Social Media (cit. on p. 75).

Freeman, Linton C (1977). “A set of measures of centrality based on betweenness”. In:
Sociometry, pp. 35–41 (cit. on p. 29).

Freeman, Linton C, A Kimball Romney, and Sue C Freeman (1987). “Cognitive structure
and informant accuracy”. In: American anthropologist 89.2, pp. 310–325 (cit. on p. 22).

Friedman, N, M Linial, I Nachman, and D Pe’er (2000). “Using Bayesian networks to
analyze expression data”. In: Journal of Computational Biology 7, pp. 601–620 (cit. on
p. 7).

Ganley, Dale and Cliff Lampe (2009). “The ties that bind: Social network principles in
online communities”. In: Decision support systems 47.3, pp. 266–274 (cit. on p. 31).

Gao, Chao and Jiming Liu (2016). “Network-based modeling for characterizing human
collective behaviors during extreme events”. In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 47.1, pp. 171–183 (cit. on p. 10).

Gavilanes, Ruth Garcia, Neil O’Hare, Luca Maria Aiello, and Alejandro Jaimes (2013).
“Follow my friends this Friday! An analysis of human-generated friendship recom-
mendations”. In: Social Informatics: 5th International Conference, SocInfo 2013, Kyoto,
Japan, November 25-27, 2013, Proceedings 5. Springer, pp. 46–59 (cit. on p. 33).

Gell-Mann, Murray (1994). “Complex adaptive systems”. In: SANTA FE INSTITUTE
STUDIES IN THE SCIENCES OF COMPLEXITY-PROCEEDINGS VOLUME-. Vol. 19.
ADDISON-WESLEY PUBLISHING CO, pp. 17–17 (cit. on p. 5).

140 Bibliography

Gelman, Andrew (2004). “Parameterization and Bayesian modeling”. In: Journal of the
American Statistical Association 99.466, pp. 537–545 (cit. on p. 42).

Ghahramani, Zoubin (2003). “Unsupervised learning”. In: Summer school on machine
learning. Springer, pp. 72–112 (cit. on p. 111).

Ghasemian, Amir, Homa Hosseinmardi, Aram Galstyan, Edoardo M Airoldi, and Aaron
Clauset (2020). “Stacking models for nearly optimal link prediction in complex net-
works”. In: Proceedings of the National Academy of Sciences 117.38, pp. 23393–23400
(cit. on p. 10).

Giesecke, Kay, Gustavo Schwenkler, and Justin A Sirignano (2020). “Inference for large
financial systems”. In: Mathematical Finance, pp. 3–46 (cit. on p. 8).

Gilbert, Edgar Nelson (1956). “Enumeration of labelled graphs”. In: Canadian Journal of
Mathematics 8, pp. 405–411 (cit. on p. 3).

– (1959). “Random graphs”. In: The Annals of Mathematical Statistics 30.4, pp. 1141–
1144 (cit. on pp. 4, 35).

Giovanidis, Anastasios, Bruno Baynat, Clémence Magnien, and Antoine Vendeville
(2021). “Ranking online social users by their influence”. In: IEEE/ACM Transactions
on Networking 29.5, pp. 2198–2214 (cit. on p. 73).

Girvan, Michelle and Mark EJ Newman (2002). “Community structure in social and bio-
logical networks”. In: Proceedings of the national academy of sciences 99.12, pp. 7821–
7826 (cit. on p. 45).

Goldberg, Debra S and Frederick P Roth (2003). “Assessing experimentally derived
interactions in a small world”. In: Proceedings of the National Academy of Sciences
100.8, pp. 4372–4376 (cit. on pp. 7, 8, 23, 41, 42).

Gomez-Rodriguez, Manuel, Jure Leskovec, and Andreas Krause (2012). “Inferring net-
works of diffusion and influence”. In: ACM Transactions on Knowledge Discovery from
Data (TKDD) (cit. on pp. 11, 13, 77, 82–86, 89–91, 93).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press
(cit. on p. 100).

Gori, Marco, GabrieleMonfardini, and Franco Scarselli (2005). “A newmodel for learning
in graph domains”. In: Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005. Vol. 2. IEEE, pp. 729–734 (cit. on pp. 6, 115).

Goyal, Amit, Francesco Bonchi, and Laks VS Lakshmanan (2010). “Learning influence
probabilities in social networks”. In: Proceedings of the third ACM international confer-
ence on Web search and data mining, pp. 241–250 (cit. on p. 50).

Bibliography 141

Grandjean, Martin (2016). “A social network analysis of Twitter: Mapping the digital
humanities community”. In: Cogent arts & humanities 3.1, p. 1171458 (cit. on p. 31).

Granovetter, Mark S (1973). “The strength of weak ties”. In: American journal of sociology
78.6, pp. 1360–1380 (cit. on pp. 4, 33).

Griffiths, Thomas L and Mark Steyvers (2004). “Finding scientific topics”. In: Proceedings
of the National academy of Sciences 101.suppl_1, pp. 5228–5235 (cit. on p. 48).

Grover, Aditya and Jure Leskovec (2016). “node2vec: Scalable feature learning for net-
works”. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 855–864 (cit. on pp. 106, 124).

Gruhl, Daniel, Ramanathan Guha, David Liben-Nowell, and Andrew Tomkins (2004).
“Information diffusion through blogspace”. In: Proceedings of the 13th international
conference on World Wide Web, pp. 491–501 (cit. on p. 33).

Guimerà, Roger and Marta Sales-Pardo (2009). “Missing and spurious interactions and
the reconstruction of complex networks”. In: Proceedings of the National Academy of
Sciences 106.52, pp. 22073–22078 (cit. on pp. 8, 22, 23, 48, 51).

Hadsell, Raia, Sumit Chopra, and Yann LeCun (2006). “Dimensionality reduction by
learning an invariant mapping”. In: 2006 IEEE computer society conference on computer
vision and pattern recognition (CVPR’06). Vol. 2. IEEE, pp. 1735–1742 (cit. on p. 111).

Hagmann, Patric, Leila Cammoun, Xavier Gigandet, et al. (2008). “Mapping the structural
core of human cerebral cortex”. In: PLoS biology 6.7, e159 (cit. on p. 10).

Hamilton, William L (2020). Graph representation learning. Morgan & Claypool Publish-
ers (cit. on pp. 47, 101–103, 113, 115).

Hamilton, William L, Zhitao Ying, and Jure Leskovec (2017). “Inductive representation
learning on large graphs”. In: Advances in neural information processing systems 30
(cit. on pp. 106, 118, 122, 162).

Handcock, Mark S, Adrian E Raftery, and Jeremy M Tantrum (2007). “Model-based
clustering for social networks”. In: Journal of the Royal Statistical Society Series A:
Statistics in Society 170.2, pp. 301–354 (cit. on p. 48).

Harary, Edgar N (1969). Graph Theory. Adisson-Wesley (cit. on p. 4).

Hasan, Mohammad Al and Mohammed J Zaki (2011). “A survey of link prediction in
social networks”. In: Social network data analytics, pp. 243–275 (cit. on p. 103).

Hasanzadeh, Arman, Ehsan Hajiramezanali, Shahin Boluki, et al. (2020). “Bayesian graph
neural networks with adaptive connection sampling”. In: International conference on
machine learning. PMLR, pp. 4094–4104 (cit. on p. 110).

142 Bibliography

Hastings, W Keith (1970). “Monte Carlo sampling methods using Markov chains and
their applications”. In: (cit. on p. 48).

Hayashi, Kohei, TakuyaKonishi, andTatsuroKawamoto (2016). “A tractable fully bayesian
method for the stochastic block model”. In: arXiv preprint arXiv:1602.02256 (cit. on
p. 45).

Hethcote, Herbert W (2000). “The mathematics of infectious diseases”. In: SIAM review
42.4, pp. 599–653 (cit. on p. 34).

Hoff, Peter D, Adrian E Raftery, and Mark S Handcock (2002). “Latent space approaches
to social network analysis”. In: Journal of the american Statistical association 97.460,
pp. 1090–1098 (cit. on p. 48).

Holland, Paul W, Kathryn Blackmond Laskey, and Samuel Leinhardt (1983). “Stochastic
blockmodels: First steps”. In: Social networks, pp. 109–137 (cit. on pp. 37, 69).

Holme, Petter (2005). “Network reachability of real-world contact sequences”. In: Physical
Review E 71.4, p. 046119 (cit. on p. 26).

Holme, Petter and Jari Saramäki (2012). “Temporal networks”. In: Physics reports 519.3,
pp. 97–125 (cit. on p. 33).

Hopkins, Brian and Robin J Wilson (2004). “The truth about Königsberg”. In: The College
Mathematics Journal 35.3, pp. 198–207 (cit. on p. 2).

Hu, Weihua, Matthias Fey, Marinka Zitnik, et al. (2020). “Open graph benchmark:
Datasets formachine learning on graphs”. In:Advances in neural information processing
systems 33, pp. 22118–22133 (cit. on p. 6).

Huang, Da, Fangyuan Lei, and Xi Zeng (2023). “SimGRL: a simple self-supervised graph
representation learning framework via triplets”. In: Complex & Intelligent Systems 9.5,
pp. 5049–5062 (cit. on p. 119).

Ito, Takashi, Tomoko Chiba, Ritsuko Ozawa, et al. (2001). “A comprehensive two-hybrid
analysis to explore the yeast protein interactome”. In: Proceedings of the National
Academy of Sciences 98.8, pp. 4569–4574 (cit. on p. 23).

Jaiswal, Ashish, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee,
and Fillia Makedon (2020). “A survey on contrastive self-supervised learning”. In:
Technologies 9.1, p. 2 (cit. on pp. 112, 114).

James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan Taylor
(2023). “Unsupervised learning”. In: An Introduction to Statistical Learning: with
Applications in Python. Springer, pp. 503–556 (cit. on p. 102).

Jin, Wei, Tyler Derr, Haochen Liu, et al. (2020). “Self-supervised learning on graphs: Deep
insights and new direction”. In: arXiv preprint arXiv:2006.10141 (cit. on p. 111).

Bibliography 143

Jordan, Michael I, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul (1999).
“An introduction to variational methods for graphical models”. In: Machine learning
37, pp. 183–233 (cit. on p. 47).

Jovanović, Nikola, Zhao Meng, Lukas Faber, and Roger Wattenhofer (2021). “Towards
robust graph contrastive learning”. In: arXiv preprint arXiv:2102.13085 (cit. on p. 120).

Karalias, Nikolaos and Andreas Loukas (2020). “Erdos goes neural: an unsupervised
learning framework for combinatorial optimization on graphs”. In: Advances in Neural
Information Processing Systems 33, pp. 6659–6672 (cit. on p. 111).

Karrer, Brian and Mark EJ Newman (2011). “Stochastic blockmodels and community
structure in networks”. In: Physical review E 83.1, p. 016107 (cit. on p. 38).

Kemp, Charles, Thomas L Griffiths, and Joshua B Tenenbaum (2004). “Discovering latent
classes in relational data”. In: (cit. on p. 48).

Kempe, David, Jon Kleinberg, and Amit Kumar (2000). “Connectivity and inference
problems for temporal networks”. In: Proceedings of the thirty-second annual ACM
symposium on Theory of computing, pp. 504–513 (cit. on p. 49).

Kempe, David, Jon Kleinberg, and Éva Tardos (2003). “Maximizing the spread of influence
through a social network”. In: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 137–146 (cit. on p. 50).

Kendall, Alex and Yarin Gal (2017). “What uncertainties do we need in bayesian deep
learning for computer vision?” In: Advances in neural information processing systems
30 (cit. on p. 110).

Kermack, William Ogilvy and Anderson G McKendrick (1927). “A contribution to the
mathematical theory of epidemics”. In: Proceedings of the royal society of london. Series
A, Containing papers of a mathematical and physical character 115.772, pp. 700–721
(cit. on p. 34).

Le-Khac, PhucH, GrahamHealy, andAlan F Smeaton (2020). “Contrastive representation
learning: A framework and review”. In: Ieee Access 8, pp. 193907–193934 (cit. on p. 112).

Khosla, Megha, Vinay Setty, and Avishek Anand (2019). “A comparative study for unsu-
pervised network representation learning”. In: IEEE Transactions on Knowledge and
Data Engineering 33.5, pp. 1807–1818 (cit. on pp. 106, 107).

Killworth, Peter and H Bernard (1976). “Informant accuracy in social network data”. In:
Human organization 35.3, pp. 269–286 (cit. on p. 22).

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (cit. on p. 122).

144 Bibliography

Kipf, Thomas, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel (2018).
“Neural relational inference for interacting systems”. In: International conference on
machine learning. PMLR, pp. 2688–2697 (cit. on p. 110).

Kipf, Thomas N and Max Welling (2016a). “Semi-Supervised Classification with Graph
Convolutional Networks”. In: CoRR abs/1609.02907. arXiv: 1609.02907 (cit. on pp. 6,
109, 116, 118).

– (2016b). “Variational graph auto-encoders”. In: arXiv preprint arXiv:1611.07308 (cit. on
p. 110).

Kitchin, Rob (2014). The data revolution: Big data, open data, data infrastructures and
their consequences. Sage (cit. on p. 6).

König, Dénes (1936). “Theorie der endlichen und unendlichenGraphen: Kombinatorische
Topologie der Streckenkomplexe”. In: (No Title) (cit. on p. 3).

Kossinets, Gueorgi (2006). “Effects of missing data in social networks”. In: Social networks
28.3, pp. 247–268 (cit. on pp. 9, 23, 47).

Kossinets, Gueorgi, Jon Kleinberg, and Duncan Watts (2008). “The structure of informa-
tion pathways in a social communication network”. In: Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 435–
443 (cit. on pp. 26, 49).

Kostakos, Vassilis (2009). “Temporal graphs”. In: Physica A: Statistical Mechanics and its
Applications 388.6, pp. 1007–1023 (cit. on p. 33).

Kotsiantis, Sotiris B, Ioannis Zaharakis, P Pintelas, et al. (2007). “Supervised machine
learning: A review of classification techniques”. In: Emerging artificial intelligence
applications in computer engineering 160.1, pp. 3–24 (cit. on p. 101).

Kulathunga, Nalinda, Nishath Rajiv Ranasinghe, Daniel Vrinceanu, et al. (2020). “Effects
of the nonlinearity in activation functions on the performance of deep learningmodels”.
In: arXiv preprint arXiv:2010.07359 (cit. on p. 117).

Kurashima, Takeshi, Tomoharu Iwata, Noriko Takaya, and Hiroshi Sawada (2014). “Prob-
abilistic latent network visualization: Inferring and embedding diffusion networks”. In:
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 1236–1245 (cit. on pp. 105, 114).

Lamprier, Sylvain (2018). “A variational topological neural model for cascade-based
diffusion in networks”. In: arXiv preprint arXiv:1812.10962 (cit. on pp. 107, 108).

Latouche, Pierre, EtienneBirmele, andChristopheAmbroise (2012). “Variational Bayesian
inference and complexity control for stochastic block models”. In: Statistical Modelling
12.1, pp. 93–115 (cit. on p. 47).

Bibliography 145

https://arxiv.org/abs/1609.02907

Le, CanM., Keith Levin, and Elizaveta Levina (2018). “Estimating a network frommultiple
noisy realizations”. In: Electronic Journal of Statistics, pp. 4697–4740 (cit. on p. 46).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: nature
521.7553, pp. 436–444 (cit. on pp. 5, 100).

Leskovec, Jure, Lada A Adamic, and Bernardo A Huberman (2007). “The dynamics of
viral marketing”. In: ACM Transactions on the Web (TWEB) 1.1, 5–es (cit. on p. 49).

Leskovec, Jure and Eric Horvitz (2007). Worldwide buzz: Planetary-scale views on an
instant-messaging network. Tech. rep. Technical report, Microsoft Research (cit. on
p. 49).

Leskovec, Jure, Mary McGlohon, Christos Faloutsos, Natalie Glance, and Matthew Hurst
(2007). “Patterns of cascading behavior in large blog graphs”. In: Proceedings of the 2007
SIAM international conference on data mining. SIAM, pp. 551–556 (cit. on p. 49).

Liao, Renjie, Yujia Li, Yang Song, et al. (2019). “Efficient graph generation with graph
recurrent attention networks”. In: Advances in neural information processing systems
32 (cit. on p. 109).

Liben-Nowell, David and Jon Kleinberg (2003). “The link prediction problem for social
networks”. In: Proceedings of the twelfth international conference on Information and
knowledge management, pp. 556–559 (cit. on p. 47).

Lin, Xialing, Kenneth A Lachlan, and Patric R Spence (2016). “Exploring extreme events
on social media: A comparison of user reposting/retweeting behaviors on Twitter and
Weibo”. In: Computers in human behavior 65, pp. 576–581 (cit. on p. 24).

Lipton, Zachary C, John Berkowitz, and Charles Elkan (2015). “A critical review of
recurrent neural networks for sequence learning”. In: arXiv preprint arXiv:1506.00019
(cit. on p. 109).

Liu, Xiao, Fanjin Zhang, Zhenyu Hou, et al. (2021). “Self-supervised learning: Generative
or contrastive”. In: IEEE transactions on knowledge and data engineering 35.1, pp. 857–
876 (cit. on p. 120).

Liu, Yixin, Ming Jin, Shirui Pan, et al. (2022). “Graph self-supervised learning: A survey”.
In: IEEE transactions on knowledge and data engineering 35.6, pp. 5879–5900 (cit. on
p. 111).

Lokhov, Andrey (2016). “Reconstructing parameters of spreading models from partial
observations”. In: Advances in Neural Information Processing Systems, pp. 3467–3475
(cit. on p. 51).

Loossens, Tim, Francis Tuerlinckx, and Stijn Verdonck (2021). “A comparison of continu-
ous and discrete time modeling of affective processes in terms of predictive accuracy”.
In: Scientific reports 11.1, p. 6218 (cit. on p. 49).

146 Bibliography

Lü, Linyuan and Tao Zhou (2011). “Link prediction in complex networks: A survey”. In:
Physica A: statistical mechanics and its applications 390.6, pp. 1150–1170 (cit. on
pp. 46, 51).

Luo, Chunjie, Jianfeng Zhan, Xiaohe Xue, et al. (2018). “Cosine normalization: Using
cosine similarity instead of dot product in neural networks”. In: Artificial Neural
Networks and Machine Learning–ICANN 2018: 27th International Conference on
Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27.
Springer, pp. 382–391 (cit. on p. 116).

Lyu, Tianshu, Yuan Zhang, and Yan Zhang (2017). “Enhancing the network embedding
quality with structural similarity”. In: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pp. 147–156 (cit. on p. 107).

Malhotra, Arvind, Claudia Kubowicz Malhotra, and Alan See (2012). “How to get your
messages retweeted”. In: MIT Sloan Management Review 53.2, pp. 61–66 (cit. on p. 24).

Marin, Alexandra and Barry Wellman (2011). “Social network analysis: An introduction”.
In: The SAGE handbook of social network analysis, pp. 11–25 (cit. on p. 31).

Marsden, Peter V (1990). “Network data andmeasurement”. In:Annual review of sociology
16.1, pp. 435–463 (cit. on pp. 9, 22).

Martínez, Víctor, Fernando Berzal, and Juan-Carlos Cubero (2016). “A survey of link
prediction in complex networks”. In: ACM computing surveys (CSUR) 49.4, pp. 1–33
(cit. on p. 103).

Masters, Dominic and Carlo Luschi (2018). “Revisiting small batch training for deep
neural networks”. In: arXiv preprint arXiv:1804.07612 (cit. on p. 121).

McPherson, Miller, Lynn Smith-Lovin, and James M Cook (2001). “Birds of a feather:
Homophily in social networks”. In:Annual review of sociology 27.1, pp. 415–444 (cit. on
p. 31).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Efficient estimation
of word representations in vector space”. In: arXiv preprint arXiv:1301.3781 (cit. on
p. 106).

Milgram, Stanley (1967). “The small world problem”. In: Psychology today 2.1, pp. 60–67
(cit. on p. 32).

Mislove, Alan, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby
Bhattacharjee (2007). “Measurement and analysis of online social networks”. In: Pro-
ceedings of the 7th ACM SIGCOMM conference on Internet measurement, pp. 29–42
(cit. on p. 30).

Bibliography 147

Mukherjee, Sach and Terence P Speed (2008). “Network inference using informative
priors”. In: Proceedings of the National Academy of Sciences 105.38, pp. 14313–14318
(cit. on pp. 7, 10, 41, 42, 45).

Musiał, Katarzyna and Przemysław Kazienko (2013). “Social networks on the Internet”.
In: World Wide Web 16, pp. 31–72 (cit. on p. 31).

Myers, Seth and Jure Leskovec (2010). “On the convexity of latent social network infer-
ence”. In: Advances in neural information processing systems 23 (cit. on p. 24).

Myers, Seth A, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin (2014). “Information
network or social network? The structure of the Twitter follow graph”. In: Proceedings
of the 23rd International Conference on World Wide Web, pp. 493–498 (cit. on pp. 31,
32).

Naseem,Usman, ImranRazzak,MatloobKhushi, PeterWEklund, and JinmanKim (2021).
“COVIDSenti: A large-scale benchmark Twitter data set for COVID-19 sentiment
analysis”. In: IEEE transactions on computational social systems 8.4, pp. 1003–1015
(cit. on p. 49).

Nelwamondo, Fulufhelo V, Shakir Mohamed, and Tshilidzi Marwala (2007). “Missing
data: A comparison of neural network and expectation maximization techniques”. In:
Current Science, pp. 1514–1521 (cit. on p. 44).

Newman, Mark EJ (2002). “Assortative mixing in networks”. In: Physical review letters
89.20, p. 208701 (cit. on p. 38).

– (2001). “Clustering and preferential attachment in growing networks”. In: Physical
review E 64.2, p. 025102 (cit. on p. 47).

– (2018a). “Estimating network structure from unreliable measurements”. In: Physical
Review E (cit. on pp. 25, 53).

– (2000). “Models of the small world”. In: Journal of Statistical Physics 101, pp. 819–841
(cit. on p. 32).

– (2018b). “Network structure from rich but noisy data”. In: Nature Physics 14, pp. 67–75
(cit. on pp. 7, 9, 13, 22, 46, 48, 52, 66, 67, 77, 82–86, 89–93).

– (2018c). Networks. Oxford university press (cit. on pp. 5, 21, 26).

Newman, Mark EJ and Michelle Girvan (Feb. 2004). “Finding and evaluating community
structure in networks”. In: Phys. Rev. E 69 (2), p. 026113 (cit. on p. 31).

Newman,Mark EJ, Duncan JWatts, and StevenHStrogatz (2002). “Randomgraphmodels
of social networks”. In: Proceedings of the national academy of sciences 99.suppl_1,
pp. 2566–2572 (cit. on p. 6).

148 Bibliography

Nguyen, Giang Hoang, John Boaz Lee, Ryan A Rossi, et al. (2018). “Continuous-time
dynamic network embeddings”. In: Companion proceedings of the the web conference
2018, pp. 969–976 (cit. on p. 106).

Northcutt, Curtis G, Anish Athalye, and Jonas Mueller (2021). “Pervasive label errors in
test sets destabilizemachine learning benchmarks”. In: arXiv preprint arXiv:2103.14749
(cit. on p. 114).

Oh Song, Hyun, Yu Xiang, Stefanie Jegelka, and Silvio Savarese (2016). “Deep metric
learning via lifted structured feature embedding”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4004–4012 (cit. on p. 123).

Onnela, J-P, Jari Saramäki, Jorkki Hyvönen, et al. (2007). “Structure and tie strengths in
mobile communication networks”. In: Proceedings of the national academy of sciences
104.18, pp. 7332–7336 (cit. on pp. 26, 49).

Otte, Evelien and Ronald Rousseau (2002). “Social network analysis: a powerful strategy,
also for the information sciences”. In: Journal of information Science 28.6, pp. 441–453
(cit. on p. 26).

Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd (1999). The PageRank
citation ranking: Bringing order to the web. Tech. rep. Stanford infolab (cit. on p. 29).

Palla, Gergely, Albert-László Barabási, and Tamás Vicsek (2007). “Quantifying social
group evolution”. In: Nature 446.7136, pp. 664–667 (cit. on p. 33).

Papanastasiou, Effrosyni and Anastasios Giovanidis (2021). “Bayesian inference of a
social graph with trace feasibility guarantees”. In: Proceedings of the 2021 IEEE/ACM
International Conference onAdvances in Social Networks Analysis andMining, pp. 317–
324 (cit. on p. 97).

– (2023). “Constrained expectation-maximisation for inference of social graphs explain-
ing online user–user interactions”. In: Social Network Analysis and Mining 13.1, p. 41
(cit. on pp. 19, 97).

Peel, Leto, Tiago Peixoto, and Manlio De Domenico (2022). “Statistical inference links
data and theory in network science”. In: Nature Communications, pp. 1–15 (cit. on
pp. 7, 22, 23, 52).

Peixoto, Tiago (2019). “Network reconstruction and community detection from dynam-
ics”. In: Physical Review Letters (cit. on pp. 13, 78, 82–86, 89–91, 93).

– (2018). “Reconstructing networks with unknown and heterogeneous errors”. In: Physi-
cal Review X 8.4, p. 041011 (cit. on pp. 7, 9, 22, 48, 51, 52).

Peixoto, Tiago P andMartin Rosvall (2017). “Modelling sequences and temporal networks
with dynamic community structures”. In: Nature communications 8.1, p. 582 (cit. on
p. 33).

Bibliography 149

Peng, Huan-Kai, Jiang Zhu, Dongzhen Piao, Rong Yan, and Ying Zhang (2011). “Retweet
modeling using conditional random fields”. In: 2011 IEEE 11th international conference
on data mining workshops. IEEE, pp. 336–343 (cit. on p. 24).

Pereira-Kohatsu, Juan Carlos, Lara Quijano-Sánchez, Federico Liberatore, and Miguel
Camacho-Collados (2019). “Detecting and monitoring hate speech in Twitter”. In:
Sensors 19.21, p. 4654 (cit. on pp. 9, 11).

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena (2014). “Deepwalk: Online learning
of social representations”. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 701–710 (cit. on p. 105).

Pitsilis, Georgios K, Heri Ramampiaro, andHelge Langseth (2018). “Effective hate-speech
detection in Twitter data using recurrent neural networks”. In: Applied Intelligence 48,
pp. 4730–4742 (cit. on p. 11).

Poblete, Barbara, Ruth Garcia, Marcelo Mendoza, and Alejandro Jaimes (2011). “Do all
birds tweet the same? Characterizing Twitter around the world”. In: Proceedings of
the 20th ACM international conference on Information and knowledge management,
pp. 1025–1030 (cit. on p. 31).

Pólya, George (1937). “Kombinatorische anzahlbestimmungen für gruppen, graphen und
chemische verbindungen”. In: (cit. on p. 3).

Priebe, Carey E,Daniel L Sussman,MinhTang, and JoshuaTVogelstein (2015). “Statistical
inference on errorfully observed graphs”. In: Journal of Computational and Graphical
Statistics 24.4, pp. 930–953 (cit. on p. 47).

Qiu, Jiezhong, Jian Tang, Hao Ma, et al. (2018). “Deepinf: Social influence prediction
with deep learning”. In: Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 2110–2119 (cit. on p. 109).

Raschka, Sebastian (2018). “Model evaluation, model selection, and algorithm selection
in machine learning”. In: arXiv preprint arXiv:1811.12808 (cit. on p. 101).

Redner, Sid (2008). “Teasing out the missing links”. In: Nature 453.7191, pp. 47–48 (cit. on
p. 45).

Richardson, Matthew and Pedro Domingos (2002). “Mining knowledge-sharing sites for
viral marketing”. In: Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 61–70 (cit. on p. 50).

Robbins, Herbert and Sutton Monro (1951). “A stochastic approximation method”. In:
The annals of mathematical statistics, pp. 400–407 (cit. on p. 121).

Robinson, Joshua, Ching-YaoChuang, Suvrit Sra, and Stefanie Jegelka (2020). “Contrastive
learning with hard negative samples”. In: arXiv preprint arXiv:2010.04592 (cit. on
p. 123).

150 Bibliography

Rodriguez,Manuel Gomez, David Balduzzi, and Bernhard Schölkopf (2011). “Uncovering
the temporal dynamics of diffusion networks”. In: arXiv preprint arXiv:1105.0697 (cit.
on p. 50).

Rosenblatt, Frank (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory (cit. on p. 5).

Ryu, Seongok, Yongchan Kwon, and Woo Youn Kim (2019). “A Bayesian graph con-
volutional network for reliable prediction of molecular properties with uncertainty
quantification”. In: Chemical science 10.36, pp. 8438–8446 (cit. on p. 109).

Sadri, Arif Mohaimin, Samiul Hasan, Satish V Ukkusuri, and Juan Esteban Suarez Lopez
(2017). “Analyzing social interaction networks from twitter for planned special events”.
In: arXiv preprint arXiv:1704.02489 (cit. on p. 31).

Saito, Kazumi, Ryohei Nakano, and Masahiro Kimura (2008). “Prediction of information
diffusion probabilities for independent cascade model”. In: International conference
on knowledge-based and intelligent information and engineering systems. Springer,
pp. 67–75 (cit. on pp. 8, 13, 34, 50, 77, 82–84, 86, 89–93).

Sajjad, Hooman Peiro, Andrew Docherty, and Yuriy Tyshetskiy (2019). “Efficient rep-
resentation learning using random walks for dynamic graphs”. In: arXiv preprint
arXiv:1901.01346 (cit. on p. 106).

Salehinejad, Hojjat, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee
(2017). “Recent advances in recurrent neural networks”. In: arXiv preprint arXiv:1801.01078
(cit. on p. 107).

Sales-Pardo, Marta, Roger Guimera, André A Moreira, and Luís A Nunes Amaral (2007).
“Extracting the hierarchical organization of complex systems”. In: Proceedings of the
National Academy of Sciences 104.39, pp. 15224–15229 (cit. on p. 45).

Sankar, Aravind, Xinyang Zhang, Adit Krishnan, and Jiawei Han (2020). “Inf-VAE: A
variational autoencoder framework to integrate homophily and influence in diffusion
prediction”. In: Proceedings of the 13th international conference on web search and data
mining, pp. 510–518 (cit. on p. 110).

Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini (2008). “The graph neural network model”. In: IEEE transactions on neural
networks 20.1, pp. 61–80 (cit. on pp. 6, 103, 109, 115).

Schafer, Joseph L and John W Graham (2002). “Missing data: our view of the state of the
art.” In: Psychological methods 7.2, p. 147 (cit. on p. 23).

Schroff, Florian, Dmitry Kalenichenko, and James Philbin (2015). “Facenet: A unified
embedding for face recognition and clustering”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 815–823 (cit. on pp. 119, 123).

Bibliography 151

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In: The
Bell system technical journal 27.3, pp. 379–423 (cit. on p. 33).

Sharma, Sagar, Simone Sharma, and Anidhya Athaiya (2017). “Activation functions in
neural networks”. In: Towards Data Sci 6.12, pp. 310–316 (cit. on p. 117).

Shi, Yong, Minglong Lei, Hong Yang, and Lingfeng Niu (2019). “Diffusion network em-
bedding”. In: Pattern Recognition 88, pp. 518–531 (cit. on p. 107).

Shu, Kai, H Russell Bernard, and Huan Liu (2019). “Studying fake news via network
analysis: detection and mitigation”. In: Emerging research challenges and opportunities
in computational social network analysis and mining, pp. 43–65 (cit. on p. 11).

Shu, Kai and Huan Liu (2022). Detecting fake news on social media. Springer Nature
(cit. on p. 103).

Sprinzak, Einat, Shmuel Sattath, and Hanah Margalit (2003). “How reliable are exper-
imental protein–protein interaction data?” In: Journal of molecular biology 327.5,
pp. 919–923 (cit. on pp. 8, 23, 41).

Stopczynski, Arkadiusz, Vedran Sekara, Piotr Sapiezynski, et al. (2014). “Measuring
large-scale social networks with high resolution”. In: PloS one 9.4, e95978 (cit. on p. 9).

Stumpf, Michael PH, Thomas Thorne, Eric De Silva, et al. (2008). “Estimating the size of
the human interactome”. In: Proceedings of the National Academy of Sciences 105.19,
pp. 6959–6964 (cit. on p. 23).

Tabouy, Timothée, Pierre Barbillon, and Julien Chiquet (2019). “Variational inference for
stochastic block models from sampled data”. In: Journal of the American Statistical
Association (cit. on p. 47).

Tang, Jian,MengQu,MingzheWang, et al. (2015). “Line: Large-scale information network
embedding”. In: Proceedings of the 24th international conference on world wide web,
pp. 1067–1077 (cit. on p. 106).

Tang, John, Mirco Musolesi, Cecilia Mascolo, and Vito Latora (2009). “Temporal distance
metrics for social network analysis”. In: Proceedings of the 2nd ACM workshop on
Online social networks, pp. 31–36 (cit. on p. 49).

Trezza, Domenico (2023). “To scrape or not to scrape, this is dilemma. The post-API
scenario and implications on digital research”. In: Frontiers in Sociology 8, p. 1145038
(cit. on pp. 13, 25).

Tymoczko, Thomas (1979). “The four-color problem and its philosophical significance”.
In: The journal of philosophy 76.2, pp. 57–83 (cit. on p. 5).

152 Bibliography

Van Den Oord, Aaron, Yazhe Li, and Oriol Vinyals (2018). “Representation learning with
contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748 (cit. on pp. 111,
120).

Van Der Hofstad, Remco (2013). “Random graphs and complex networks”. In: Lecture
notes (cit. on p. 35).

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, et al. (2017). “Graph attention
networks”. In: arXiv preprint arXiv:1710.10903 (cit. on p. 118).

Vendeville, Antoine, Anastasios Giovanidis, Effrosyni Papanastasiou, and Benjamin
Guedj (2022a). “Opening up echo chambers via optimal content recommendation”.
In: International Conference on Complex Networks and Their Applications. Springer,
pp. 74–85 (cit. on pp. 19, 97).

– (2022b). “Recommendation of content to mitigate the echo chamber effect”. In: Con-
ference on Complex Systems (cit. on pp. 19, 98).

Von Mering, Christian, Roland Krause, Berend Snel, et al. (2002). “Comparative assess-
ment of large-scale data sets of protein–protein interactions”. In: Nature 417.6887,
pp. 399–403 (cit. on pp. 8, 22).

Waldrop, Mitchell M (1993). Complexity: The emerging science at the edge of order and
chaos. Simon and Schuster (cit. on p. 5).

Wang, Jia, Vincent W Zheng, Zemin Liu, and Kevin Chen-Chuan Chang (2017). “Topo-
logical recurrent neural network for diffusion prediction”. In: 2017 IEEE international
conference on data mining (ICDM). IEEE, pp. 475–484 (cit. on p. 108).

Wang, Yongqing, Huawei Shen, Shenghua Liu, Jinhua Gao, and Xueqi Cheng (2017).
“Cascade Dynamics Modeling with Attention-based Recurrent Neural Network.” In:
IJCAI. Vol. 17, pp. 2985–2991 (cit. on p. 108).

Wang, Zhitao, Chengyao Chen, and Wenjie Li (2018). “A sequential neural information
diffusionmodel with structure attention”. In: Proceedings of the 27th ACM international
conference on information and knowledge management, pp. 1795–1798 (cit. on p. 108).

– (2019). “Information diffusion prediction with network regularized role-based user
representation learning”. In: ACM Transactions on Knowledge Discovery from Data
(TKDD), pp. 1–23 (cit. on p. 106).

Watts, Duncan J and Steven H Strogatz (1998). “Collective dynamics of ‘small-world’net-
works”. In: nature 393.6684, pp. 440–442 (cit. on pp. 27, 29, 32, 35).

Weinberger, Kilian Q and Lawrence K Saul (2009). “Distance metric learning for large
margin nearest neighbor classification.” In: Journal of machine learning research 10.2
(cit. on p. 119).

Bibliography 153

Whitney, Hassler (1932). “Congruent Graphs and the Connectivity of Graphs”. In: Ameri-
can Journal of Mathematics 54.1, p. 150 (cit. on p. 4).

Wu, Haixia, Chunyao Song, Yao Ge, and Tingjian Ge (2022). “Link prediction on complex
networks: An experimental survey”. In: Data Science and Engineering 7.3, pp. 253–278
(cit. on p. 124).

Wu, Jia, Jiahao Xia, and Fangfang Gou (2022). “Information transmission mode and IoT
community reconstruction based on user influence in opportunistic social networks”.
In: Peer-to-Peer Networking and Applications, pp. 1398–1416 (cit. on pp. 8, 51).

Wu, Xiaojian, Akshat Kumar, Daniel Sheldon, and Shlomo Zilberstein (2013). “Parameter
learning for latent network diffusion”. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 2923–2930 (cit. on p. 51).

Xia, Feng, Jiaying Liu, Hansong Nie, et al. (2019). “Random walks: A review of algo-
rithms and applications”. In: IEEE Transactions on Emerging Topics in Computational
Intelligence 4.2, pp. 95–107 (cit. on p. 105).

Xiao, Shunxin, Shiping Wang, Yuanfei Dai, and Wenzhong Guo (2022). “Graph neu-
ral networks in node classification: survey and evaluation”. In: Machine Vision and
Applications 33.1, p. 4 (cit. on p. 103).

Xie, Yaochen, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji (2023). “Self-
Supervised Learning of Graph Neural Networks: A Unified Review”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 45.2, pp. 2412–2429 (cit. on
p. 112).

Yang, Chao, Robert Harkreader, Jialong Zhang, Seungwon Shin, and Guofei Gu (2012).
“Analyzing spammers’ social networks for fun and profit: a case study of cyber criminal
ecosystem on twitter”. In: Proceedings of the 21st international conference on World
Wide Web, pp. 71–80 (cit. on p. 31).

Yang, Cheng, Hao Wang, Jian Tang, et al. (2021). “Full-scale information diffusion predic-
tion with reinforced recurrent networks”. In: IEEE Transactions on Neural Networks
and Learning Systems 34.5, pp. 2271–2283 (cit. on p. 108).

Yang, Jaewon and Jure Leskovec (2010). “Modeling information diffusion in implicit
networks”. In: 2010 IEEE international conference on data mining. IEEE, pp. 599–608
(cit. on p. 50).

Ying, Xue (2019). “An overview of overfitting and its solutions”. In: Journal of physics:
Conference series. Vol. 1168. IOP Publishing, p. 022022 (cit. on pp. 102, 117).

You, Jiaxuan, Zhitao Ying, and Jure Leskovec (2020). “Design space for graph neural
networks”. In: Advances in Neural Information Processing Systems 33, pp. 17009–17021
(cit. on pp. 117, 122).

154 Bibliography

Young, Jean-Gabriel, Giovanni Petri, and Tiago Peixoto (2021). “Hypergraph reconstruc-
tion from network data”. In: Communications Physics 4.1, p. 135 (cit. on p. 51).

Yu, Haiyuan, Pascal Braun,MuhammedAYıldırım, et al. (2008). “High-quality binary pro-
tein interaction map of the yeast interactome network”. In: Science 322.5898, pp. 104–
110 (cit. on p. 23).

Zhang, Xiaoqi, Zi-Ke Zhang, Wenbo Wang, et al. (2021). “Multiplex network reconstruc-
tion for the coupled spatial diffusion of infodemic and pandemic of COVID-19”. In:
International Journal of Digital Earth 4, pp. 401–423 (cit. on p. 8).

Zhang, Yingxue, Soumyasundar Pal, Mark Coates, and Deniz Ustebay (2019). “Bayesian
graph convolutional neural networks for semi-supervised classification”. In:Proceedings
of the AAAI conference on artificial intelligence. Vol. 33. 01, pp. 5829–5836 (cit. on
p. 109).

Zhang, Yingying, Qiaoyong Zhong, Liang Ma, Di Xie, and Shiliang Pu (2019). “Learning
incremental triplet margin for person re-identification”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 33. 01, pp. 9243–9250 (cit. on p. 119).

Zhang, Yuan, Tianshu Lyu, and Yan Zhang (2018). “Cosine: Community-preserving social
network embedding from information diffusion cascades”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 32 (cit. on p. 105).

Zhao, Jianan, Qianlong Wen, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye (2023). “Self-
supervised graph structure refinement for graph neural networks”. In: Proceedings of
the Sixteenth ACM International Conference onWeb Search and DataMining, pp. 159–
167 (cit. on p. 118).

Zhao,Qihang, YuzheZhang, andXiaodong Feng (2022). “Predicting information diffusion
via deep temporal convolutional networks”. In: Information Systems 108, p. 102045
(cit. on p. 109).

Zhou, Bangzhu, Xiaodong Feng, and Hemin Feng (2024). “Structural-topic aware deep
neural networks for information cascade prediction”. In: PeerJ Computer Science 10,
e1870 (cit. on p. 109).

Zhou, Jie, Ganqu Cui, Shengding Hu, et al. (2020). “Graph neural networks: A review of
methods and applications”. In: AI open 1, pp. 57–81 (cit. on p. 118).

Zhou, Tao, Linyuan Lü, and Yi-Cheng Zhang (2009). “Predicting missing links via local
information”. In: The European Physical Journal B 71, pp. 623–630 (cit. on p. 47).

Bibliography 155

Appendix for Chapter 4 A
A.1 Detailed derivations for the equations of CEM-ER

For the E-step, we modify the Newman algorithm by taking the expectation over
the set of random variables Yij at both sides of (4.10):

E[log P (θ | T)] ≥ E[
∑
A

q(A) log P (A, θ | T)
q(A]

=
∑
A

q(A)
(
E[log P (A, θ | T)]− log q(A

)
). (A.1)

To find E[log P (A, θ | T)], we replace (4.9) into (4.8). Setting Γ = P (θ)/P (T),
the expectation of the log of (4.8) becomes:

E[log P (A, θ | T)] = logΓ +
∑
i 6=j

[
Aij

(
log ρ + E[Yij] log α+

+(Mij − E[Yij]) log (1− α)
)

+ (1− Aij

(
log(1− ρ)+

+E[Yij] log β + (Mij − E[Yij]) log (1− β)
)]

. (A.2)

Then, by replacing (4.7) into (A.2), and then (A.2) into (A.1), we get:

E[log P (θ | T)] ≥
∑
A

q(A) log Dij

q(A) (A.3)

where, Dij = Γ
∏
i 6=j

[
ραMijσij (1− α)Mij(1−σij)

]Aij

×
[
(1− ρ)βMijσij (1− β)Mij(1−σij)

]1−Aij

. (A.4)

For the M-step of the EM algorithm, the function that we want to maximize
is E[log P (θ | T)]. To do so, we need to find the unknown values, q(A) and
θ ={α, β, ρ, σ}, that maximize the expectation on the left-hand side of (4.11),
under the feasibility constraints on the parameters set θ. From these, only the σij

have an important constraint set, specified in (4.5) and (4.6).

156

Solution with respect to q(A). We notice that the choice of q(A) that achieves
equality (i.e. maximizes the right-hand side) in (4.11) is:

q(A) = Dij∑
A Dij

, (A.5)

which leads us to Eq. (4.13).

Solution with respect to α, β, ρ. To maximize the right-hand side of (4.11) in
terms of parameter α we differentiate it with respect to α and then setting it equal
to zero (while holding σij , q constant):

∑
i 6=j

QijMij

(
σij

α
− 1− σij

1− α

)
= 0. (A.6)

After rearranging, we get the updates shown in Eq. (4.15), and we repeat likewise
for β and ρ.

Solution with respect to σij . If we take into account that Qij = ∑
A q(A)Aij and

also that
∑

A q(A) = 1, by rearranging the right-hand side of (4.11), the problem
becomes equivalent to maximizing:

∑
A

q(A)
∑
i 6=j

σijMij

(
Aij log α

1− α
+ (1− Aij) log β

1− β

)

=
∑
i 6=j

σijMij

(
Qij log α

1− α
+ (1−Qij) log β

1− β

)
. (A.7)

This leads us to the constrained optimization problem of Eq. (4.17).

A.2 Detailed derivations for the equations of CEM-SBM

For the E-step of the EM algorithm, we modify the Newman algorithm by taking
the expectation over the set of random variables Yij at both sides of (4.20):

E[log P (θ | T)] ≥ E[
∑
A

q(A, g) log P (A, g, θ | T)
q(A, g)]

=
∑
A

q(A, g)
(
E[log P (A, g, θ | T)]− log q(A, g

)
). (A.8)

TofindE[log P (A, g, θ | T)], we replace (4.19) into (4.18). SettingΓ = P (θ)/P (T),
the expectation of the log of (4.18) becomes:

A.2 Detailed derivations for the equations of CEM-SBM 157

E[log P (A, g, θ | T)] = logΓ +
∑
i 6=j

gi=gj

[
Aij

(
log p + E[Yij] log α +

+(Mij − E[Yij]) log (1− α)
)

+ (1− Aij)
(

log(1− p) +

+E[Yij] log β + (Mij − E[Yij]) log (1− β)
)]

+
∑
i 6=j

gi 6=gj

[
Aij

(
log q +

+E[Yij] log α + (Mij − E[Yij]) log (1− α)
)

+ (1− Aij)
(

log(1− q)+

+E[Yij] log β + (Mij − E[Yij]) log (1− β)
)]

. (A.9)

By replacing (4.7) into (A.9), and then (A.9) into (A.8), we get:

E[log P (θ | T)] ≥
∑
A

q(A, g) log D(A, g)
q(A, g) , (A.10)

where,

D(A, g) = Γ
∏
i 6=j

gi=gj

[
pαMijσij (1− α)Mij(1−σij)

]Aij

[
(1− p)βMijσij (1− β)Mij(1−σij)

]1−Aij ∏
i 6=j

gi 6=gj

[
qαMijσij (1− α)Mij(1−σij)

]Aij

[
(1− q)βMijσij (1− β)Mij(1−σij)

]1−Aij

. (A.11)

For the M-step of EM, we maximize the expectation E[log P (θ | T)] as we did in
the CEM-er prior.

Solution with respect to q(A, g). We notice that the choice of q(A, g) that
achieves equality (i.e. maximizes the right-hand side) in (A.10) is:

q(A, g) = D(A, g)∑
A D(A, g) . (A.12)

158 Appendix A

Appendix for Chapter 4

From (A.12), in a similar fashion to Newman’s method [Eq. (13), 20], and because
Γ cancels out, we get:

q(A, g) =
∏

i 6=j,(gi=gj)
Qij(gi, gj)Aij (1−Qij(gi, gj))1−Aij

∏
i 6=j,(gi 6=gj)

Qij(gi, gj)Aij (1−Qij(gi, gj))1−Aij . (A.13)

Hence, given Eq. (A.11), the values of Qij are found to be the ones in Eq. (4.21)
and (4.22). Our goal is to find the unknown parameters θ ={α, β, p, q, σ} that
maximize the right-hand size of (A.10), given the maximising distribution for
q(A, g) in (A.12), hence given the values of Qij(gi, gj) in (A.13).

Solution with respect to α, β, p, q. To maximize the right-hand side of (A.10)
in terms of parameter α, we differentiate the equation with respect to α and we
set it equal to zero (while holding the rest of the parameters θ constant):

∑
i 6=j

Qij(gi, gj)Mij

(
σij

α
− 1− σij

1− α

)
= 0. (A.14)

After rearranging, we get the value in Eq. (4.23). By repeating the same procedure
for β, we get Eq. (4.24). Likewise, differentiating the r.h.s. of (A.10) with respect
to p and then setting it equal to zero we get:

∑
A

q(A, g)
∑
i 6=j

gi=gj

(Aij

p
− 1− Aij

1− p
) = 0. (A.15)

This is how we get the updates for p in Eq. (4.25), and, likewise, for q in Eq.
(4.26).

Solutionwith respect toσij . If we take into account thatQij(gi, gj) = ∑
A q(A, g)Aij

and also that
∑

A q(A, g) = 1, by rearranging the right-hand side of (A.10), the
problem becomes equivalent to maximizing:

∑
A

q(A, g)
∑
i 6=j

σijMij

(
Aij log α

1− α
+ (1− Aij) log β

1− β

)

=
∑
i 6=j

σijMij

(
Qij(gi, gj) log α

1− α
+ (1−Qij(gi, gj)) log β

1− β

)
. (A.16)

A.2 Detailed derivations for the equations of CEM-SBM 159

This leads us to the optimization problem of Eq. (4.27) through which we can
find the σij values.

∗ ∗ ∗

160 Appendix A

Appendix for Chapter 4

Appendix for Chapter 5 B
In this section of the Appendix, we provide more detailed information on how
we configured the algorithms to obtain the reported results. For Node2Vec,
we use the Python implementation already provided by https://github.com/eliorc/

node2vec. We use dimensions=8 (we found that increasing them penalized Pre-
cision), walk_length=3, num_walks=30 and for the model fit we use window=4,
min_count=1, and batch_words=1000. The code for our model FeasCL was writ-
ten using Python and PyTorch, a machine learning library that is very commonly
used in ML applications. To generate the results for FeasCL reported in Table
5.3, we experimented with various parameters affecting the training process. The
description of these parameters is given in Table B.1.

First, since we assumed no features were available for the user nodes, we had
to randomly initialize their sender and receiver embeddings. We observed that
increasing the initial dimension INPUT_DIM had a positive effect on the results.
This might suggest that a higher dimension allows the algorithm more freedom
to learn within the latent space. Consequently, the most optimal results (FeasCL-
5k) were achieved with a very large dimension of 1500. We also experimented
with a smaller dimension of 500 (as indicated in the last three lines of Table
B.1). As shown, in this case, the Precision slightly decreases. Additionally, we

Tab. B.1. Configuration Parameters for the FeasCL model

Parameter Type Description
–INPUT_DIM int Size of initial dimensions

–OUTPUT_DIM int Size of output dimensions
–TEMP bool Use of temperature
–TPOS float Temperature for positive samples
–TNEG float Temperature for negative samples

–NUM_POS_SAMPLES int Number of positives samples for each node
–NUM_NEG_SAMPLES int Number of negative samples for each node

–NUM_HARD_NEG_SAMPLES int Number of hard negative samples
–BATCH_SIZE int Number of batches

–LR float Learning rate
–EPOCHS float Number of epochs

161

https://github.com/eliorc/node2vec
https://github.com/eliorc/node2vec

set the dimensionality of the sender and receiver embeddings for the output
(OUTPUT_DIM) to 375 each.

Next, we needed to decide whether to incorporate a temperature parameter for
the contrastive loss, choosing between Eq. 5.1 and Eq. 5.2. We discovered that
setting a global temperature for both types of samples to τ = 0.10 significantly
improved the results. For the loss function, we selected a learning rate (LR) of
0.01, with 5000 EPOCHS, and a BATCH_SIZE of 640.

In the sampling process for positive and negative samples, we first selected a dif-
fusion episode DS where the anchor appears. Then, we chose NUM_POS_SAM-
PLES=1 positive sample and NUM_NEG_SAMPLES=2000 negative samples for
each anchor. We found that the best strategy for sampling these negatives was
to include users who have interacted in the same diffusion episode Ds as the
anchor, but their connection is not feasibly possible, as well as the users who
have not interacted at all with it (Algorithm 2). We selected these numbers to
reflect the higher chance for a user to be a negative than a positive neighbor
(given the sparsity of OSNs). We also found that maintaining a hard negative
sampling strategy (see Section 5.5.1) consistently had a positive effect on the
results. Consequently, for each anchor, out of the 2000 negatives, we hard sample
the NUM_HARD_NEG_SAMPLES=50 users that are the most similar to the
anchor in terms of the learned embeddings.

For the encoder model, we used 3 graphsage layers (using the sageconv
PyTorch operator), with relu as activation function and a dropout strategy (see
Algorithm 4). The input graph structure GD is built from D by drawing an edge
(i, j) from i to j if ts(i) < ts(j) for at least one diffusion episode Ds. This might
be considered a weakness of the model, since we had to provide a deterministic
graph structure as input, which is not realistic enough. This is why we selected
graphsage which has the ability to sample the node neighbors, instead of using
full neighborhoods (Hamilton et al., 2017).

∗ ∗ ∗

162 Appendix B Appendix for Chapter 5

Algorithm 2 Function sample_neighbors for sampling contrastive user pairs
Require: U : Set of users
Require: D: Set of diffusion episodes
1: for anchor in U do
2: Ds← {Ds ∈ D : anchor ∈ Ds}
3: positives← {j ∈ Ds : ts(j) > ts(anchor)}
4: negatives← {j ∈ U : j 6∈ positives}
5: return (anchor, positives , negatives)
6: end for

Algorithm 3 Training epoch for FeasCL
Require: xs, xr: initialized sender, receiver embeddings
1: for anchors, positives, negatives in batch(sample_neighbors) do
2: zs = encoder(xs)
3: zr = encoder(xr)
4: zanchors = zs[anchors]
5: zpositives = zr[positives]
6: znegatives = zr[negatives]
7: loss = feascl_loss(zanchors, zpositives, znegatives) according to Eq. 5.2
8: loss.backward()
9: optimizer.step()

10: end for

Algorithm 4 encoder function
Require: x: node embeddings
Require: GD: input graph
1: x = graphsage(x, G)
2: x = relu(x)
3: x = dropout(x)
4: x = graphsage(x, G)
5: x = relu(x)
6: x = dropout(x)
7: x = graphsage(x, G)
8: return x

163

164 Appendix B Appendix for Chapter 5

	Titlepage
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 A brief history of graphs
	1.1.1 The first problem using graphs
	1.1.2 From recreational puzzles to formal definitions
	1.1.3 The introduction of computers
	1.1.4 Network science: graphs as complex systems
	1.1.5 Machine learning: a modern tool for graphs

	1.2 The network is not the data
	1.3 Network inference
	1.3.1 Why is it needed?
	1.3.2 The challenges

	1.4 Network inference for Online Social Networks
	1.4.1 An introduction to Online Social Networks
	1.4.2 The need for network inference
	1.4.3 A toy example

	1.5 Thesis goals
	1.6 Thesis structure and contributions

	2 Fundamentals of network inference
	2.1 Network data unreliability
	2.2 Modeling Online Social Networks with graphs
	2.3 Understanding the properties of Online Social Networks
	2.3.1 Local and global graph measures
	2.3.2 Real-world properties of Online Social Networks
	2.3.3 Modeling the aspect of time
	2.3.4 Modeling the diffusion of information

	2.4 Generating networks with random graph models
	2.4.1 The Erdős-Rényi model
	2.4.2 Stochastic Block Model

	2.5 Measuring performance
	2.6 Conclusion

	3 Network inference approaches for Online Social Networks
	3.1 Network inference with Bayesian models
	3.1.1 The Bayesian modeling approach
	3.1.2 Related works

	3.2 Recent approaches
	3.2.1 Similarity-based approaches
	3.2.2 Variational inference
	3.2.3 Monte Carlo Markov Chain algorithms

	3.3 Time-aware network inference
	3.3.1 Temporal networks as cascades
	3.3.2 Information diffusion models

	3.4 Conclusion and limitations of existing works

	4 Constrained Expectation Maximization for feasible network inference
	4.1 Problem formulation
	4.1.1 The input dataset: a reposting network
	4.1.2 Modeling the hidden way information diffuses
	4.1.3 Formulating network inference for Online Social Networks
	4.1.4 Assumptions on the diffusion of posts

	4.2 Definition of feasibility
	4.3 Enforcing feasibility with a set of feasibility constraints
	4.4 Defining probabilities of diffusion
	4.5 Problem modeling and learning method
	4.5.1 Erdős–Rényi prior (CEM-ER)
	4.5.2 Stochastic block model prior (CEM-SBM)

	4.6 Methodology
	4.6.1 Datasets
	4.6.2 Comparison
	4.6.3 Experimental settings

	4.7 Experiments on synthetic data
	4.7.1 Different sizes of input
	4.7.2 Different values of the hyperparameter
	4.7.3 Difference between priors
	4.7.4 Comparison between methods

	4.8 Experiments on the #Élysée2017fr dataset
	4.8.1 Different sizes of input
	4.8.2 Different values of the hyperparameter
	4.8.3 Difference between priors
	4.8.4 Comparison between methods
	4.8.5 Controlling feasibility through
	4.8.6 Evaluation with no ground truth

	4.9 Conclusions

	5 A contrastive approach using Graph Neural Networks
	5.1 Machine learning background
	5.1.1 Supervised vs unsupervised learning
	5.1.2 Graph machine learning for Online Social Networks

	5.2 Review of representation learning approaches
	5.2.1 Modeling information diffusion
	5.2.2 Random walk approaches
	5.2.3 Recurrent Neural Networks
	5.2.4 Graph Neural Networks
	5.2.5 Focusing on contrastive learning

	5.3 Methods for network inference
	5.3.1 An Encoder model for link prediction
	5.3.2 Graph Neural Networks as better encoders

	5.4 Proposing a simple contrastive model
	5.4.1 Model architecture
	5.4.2 Model training
	5.4.3 Contrastive loss

	5.5 Experimental evaluation
	5.5.1 Environment
	5.5.2 Results

	5.6 Discussion and conclusion

	6 Conclusion
	Bibliography
	A Appendix for Chapter 4
	A.1 Detailed derivations for the equations of CEM-ER
	A.2 Detailed derivations for the equations of CEM-SBM

	B Appendix for Chapter 5

