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Abstract

A cryptographic protocol establishes a series of interactions among users to deliver a
given functionality while ensuring various properties, a protocol being considered secure
when it successfully ensures all intended properties. Accomplishing these properties
requires the need of cryptographic primitives, whose usage may entail computation
overhead, limiting the scalability of the protocol. Throughout this manuscript, we focus
on three problems dealing with multiple users.

The first contribution focuses on the design of a federated multi-armed bandits frame-
work where a federation server, acting as a learning agent, sequentially pulls a bandit
arm, the environment responding with a reward coming from an unknown distribution
associated with the chosen bandit. In this contribution, we introduce Tango, a secure
federated multi-armed bandits protocol fixing and extending our initial attempt Samba

shown to be insecure. Tango is proved to prevent the federation server to learn the
reward distribution, the obtained rewards and the pulled bandit arm, at the cost of a
large computation overhead due to the usage of expensive cryptographic primitives. In
the second part of this contribution, we introduce Salsa a secure federated multi-armed
bandits protocol moving away from the blueprint of Samba and Tango, still preventing
the federation server to learn sensitive data while achieving high-performance.

The second contribution of this manuscript addresses a problem involving a large
number of users, since it concerns the design of a ticketing system. Indeed, despite the
high-demand, these systems provide very restricted guarantees. For instance, one may
easily resell a ticket twice. To go further, tickets are nominative, revealing the identity
of the ticket’s owner. Using standard cryptographic primitives, we propose two scalable
ticketing systems called Applause and Spotlight, ensuring anonymity of users while
featuring ticket purchasing, ticket refunding, ticket validation and ticket transferability.
The difference between Applause and Spotlight lies in the ability to recover the
identity of an attendee: In Applause, the anonymity of every user is guaranteed at any
time, a property that still hold with Spotlight except for an additional third-party able
to recover the identity of an attendee, at the cost of a slightly longer ticket validation.

Our third and final contribution deals with the problem of file transfer by broadcast-
ing, which involves sharing a file with a group of users. The trivial solution of storing
files on a single, publicly accessible server falls short for instance when the server is
down or when the server handles a high number of requests. In this contribution, we
introduce a universally composable and efficient protocol allowing one to share a file
with a specified group of users while ensuring confidentiality, integrity of the file and
sender authentication.
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Résumé

Un protocole cryptographique établit une série d’interactions parmi des utilisateurs pour
fournir une fonctionnalité donnée tout en garantissant diverses propriétés. Un protocole
est considéré comme sécurisé lorsqu’il assure avec succès toutes les propriétés attendues.
Pour ce faire, il utilise de primitives cryptographiques dont l’usage peut entraîner un
surcoût de calcul et donc limiter la scalabilité du protocole. Tout au long de ce manuscrit,
nous nous concentrons sur trois problèmes impliquant plusieurs utilisateurs.

La première contribution se concentre sur la conception d’un framework de ban-
dits fédérés, où un serveur de fédération agissant en tant qu’agent d’apprentissage, tire
successivement un bandit, ce qui produit une récompense provenant d’une distribution
inconnue associée au bandit choisi. Dans cette contribution, nous introduisons Tango,
un protocole de bandits fédérés sécurisé corrigeant et étendant notre première tentative
Samba, qui s’est révélée être non sécurisée. Nous prouvons que Tango empêche le
serveur de fédération d’apprendre les récompenses générées ainsi que le bandit choisi, au
prix d’un surcoût de calcul important dû à l’utilisation de primitives cryptographiques
coûteuses. Dans la deuxième partie de cette contribution, nous introduisons Salsa,
un protocole de bandits fédérés sécurisé s’éloignant de l’esprit de Samba et Tango,
empêchant le serveur de fédération d’apprendre des données sensibles tout en obtenant
des performances élevées.

La deuxième contribution de ce manuscrit traite de la conception d’un système de
billetterie, impliquant un grand nombre d’utilisateurs. Malgré la forte demande, ces
systèmes offrent des garanties très restreintes. Par exemple, il est facile de revendre un
billet deux fois. Pire, la majorité des billets sont nominatifs, permettant d’identifier le
propriétaire d’un billet. En utilisant des primitives cryptographiques standards, nous
proposons Applause et Spotlight, deux systèmes de billets garantissant l’anonymat
des utilisateurs tout en proposant l’achat, le remboursement, la validation et le transfert
d’un billet. La différence entre Applause et Spotlight réside dans la capacité de lever
l’anonymat d’un utilisateur : dans Applause, l’anonymat d’un utilisateur est garanti.
Ceci est toujours valable dans Spotlight sauf pour une partie externe capable de lever
l’anonymat d’un utilisateur. Toutefois, lever l’anonymat dans Spotlight est possible
au prix d’une validation de billet plus longue.

Notre troisième contribution se concentre sur le problème de diffusion d’un fichier
à un groupe d’utilisateurs. La solution triviale consistant à stocker des fichiers sur
un seul serveur disponible publiquement est insuffisante, notamment lorsque le serveur
est hors service. Dans cette contribution, nous introduisons un protocole efficace et
universellement composable permettant à un utilisateur de partager un fichier avec un
groupe d’utilisateurs, tout en garantissant la confidentialité et l’intégrité du fichier ainsi
que l’authentification de l’expéditeur.
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Chapter 1
Introduction

Just as a reader needs to comprehend English to understand this manuscript, computers
require a clearly defined set of interactions to understand requests coming from other
computers, and act. A protocol corresponds to this definition: Defining interactions and
their content between two or more computers, in order to offer a functionality. As an
example, suppose an employee having an important document to share with a group of
coworkers. A protocol corresponds to the interactions between the employee, potentially
one or more servers, and the coworkers. Ultimately, at the end of the rotocol execution,
the group of coworkers have access to the document.

A functionality ensured by the protocol comes with a set of constraints. Back to
our previously mentioned example, the document has to be shared only with a group
of coworkers. Hence, coworkers outside of the specified group should not access the
document. These constraints constitute the security properties that the protocol aims
to respect. This manuscript is dedicated to the design of protocols respecting security
properties. Before going any further, it is important to understand that absolute secu-
rity, in the sense that no practical attack exists against a protocol, is hard to obtain.
Even protocols that are widely used around the world might be attacked, as demon-
strated again, recently, with the Secure Shell protocol, leading to more than ten millions
of vulnerable servers [FB23]. Back in the past, a protocol was considered secure (i.e.,
respecting the security properties) if no attack was discovered. This proof methodol-
ogy falls short when an attack exists but is kept secret and used as a backdoor. The
most striking historical example was Enigma, broken by British cryptographers in 1942,
subsequently enabling all Enigma-encrypted communications to be decrypted.

In the wake of successive failures, cryptography has gradually moved closer to the
field of mathematics. This new approach requires the protocol designer to formally prove
that his protocol is correct and safe i.e., ensuring all the desired security properties. This
paradigm is better known as provable security. The crucial point is that the security of
a protocol is only valid under certain assumptions. Indeed, the security of a protocol
is studied under the prism of a so-called security model, delimiting the capabilities of
an adversary trying to attack the protocol. Its capabilities include for instance the
corrupted parties involved in the protocol and thus its access to some knowledge and
its possible actions on the protocol. Hence, one of the most important tasks for the
protocol designer, as done in this manuscript, is to carefully model the desired security,
otherwise limiting the interest of the protocol.

The security brought by the usage of cryptographic primitives in a protocol is
achieved at the cost of additional computation time due to cryptographic operations
and, most of the time, to a greater amount of information transmitted between the
parties involved in the protocol. In addition to the security considerations, a protocol

11
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Figure 1.1: Federated Multi-Armed Bandits Architecture.

designer has to study the context in which the protocol is used, including for instance
the number of users. The holy grail for a protocol designer is to be able to build a
protocol that meets security requirements, while being effective even for large scale to
reach scalability. In this manuscript, we particularly focus on the multi-users setting
in which several users are involved in the running protocol. The considered number of
users may drastically impact the performance of the protocol: A scalable protocol nat-
urally supports a large number of users and hence is more suitable for large use-cases.
This manuscript covers three subjects operating at different scales. In our first subject,
at most 100 users are interacting with a federation server, in order to solve a reward
maximisation problem. Our second and third case of study operates with potentially
thousands of users, focusing respectively on the design of secure anonymous ticketing
system and secure efficient distributed file transfer. Whereas the involvement of thou-
sands of users is clear in the ticketing system context, the distributed file transfer needs
more explanations: Our file transfer protocol addresses the case of a distributed com-
pany, in which a file is sent from a sender to a potentially large group of employees. We
explain in details the problems we consider in this manuscript.

Secure Federated Multi-Armed Bandits. A bandit is a casino machine equipped
of an arm. Once a coin has been inserted in the bandit and the arm pulled, the bandit
produces a reward with a fixed probability ε or not reward with probability 1 − ε. In
the sequel, a bandit is called a Data Owner (DO) without distinction, since it owns the
reward probability ε. The reward maximisation problem asks to a stateful user, having
a finite budget of N coins, and facing K bandits, to maximise its reward. This problem,
intensively used in recommender systems [LCLS10] to game playing [KS06], belongs to
the line of reinforcement learning research, in which the user has to choose the best
among a finite set of actions, in our case by pulling the arm of its choice adaptively,
following a stochastic approach.

Numerous algorithms have been introduced in the literature, allowing a user to
maximise its rewards. In this work, we focus on the federated multi-armed bandits,
depicted in Figure 1.1: The user initially sends the budget N to a new party referred
as the server, in charge to execute a rewards maximisation algorithm. For each coin of
the budget, the server pulls a bandit of its choice following the reward maximisation
algorithm strategy. At the end, the server sends back the obtained rewards to the user.

In practice, the reward probability εi is unknown by the data ownerDOi. To estimate
it, DOi has at its disposal the number of obtained rewards si and the number of pulls
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ni, both with respect to data owner DOi. The estimation, computed following the
reward maximisation strategy, is called a score. The estimation of εi, computed by DOi
is referred as the score and denoted vi. During an interaction between the server and
data owners, each score vi is sent to the server, and has to chose the best machine, still
following the reward maximisation strategy. The response from the server to the data
owners consists of K bits b1, . . . , bK , where exactly one bit bi equals one, meaning that
the i-th data owner has been chosen by the server. The constraints, or the security
properties, that we aim to achieve are the following: The server should not learn any
score vi, as well as any obtained rewards ri. In addition, the chosen data owner, should
not be identified by the server.

Few works related to this problem have been proposed in the literature [TD16,
CLLS19, CLLS20, SS21]. Almost all of these works are not specific to the targeted
federated learning architecture. In the order to fill the gap, we introduced in 2022 a
federated learning framework called Samba [CLMS22], designed to solve the reward
maximisation problem in the federated learning architecture, using simple yet efficient
cryptographic primitives including secret-key encryption and masking. However, after
investigation, it appears that Samba suffers from correctness and security issues. In
addition, no security definition has been provided in the literature yet addressing the
reward maximisation problem in the federated learning setting, later referred as the
secure federated multi-armed bandits problem.

The presented contribution starts by a formal security definition of a secure federated
multi-armed bandits protocol, based on the real-ideal paradigm. In a nutshell, our
security definition models that a party involved in the protocol should not learn any
information on the score vi provided by a data owner, on any selection bit bi but also on
the cumulative rewards si, and by extension on the total cumulative rewards s sent to
the user. Equipped with our security definition, we present two secure federated multi-
armed bandits protocols Tango and Salsa achieving our security definition. Our first
protocol extends and fixes the flawed Samba protocol using homomorphic encryption,
keeping in mind to respect the initial blueprint of Samba. This protocol relies on two
federation servers, and is constructed using secret-key and public-key encryptions, as well
as additive and fully homomorphic encryption. Compared to Samba, Tango ensures
correctness but also genericity, in the sense that any standard multi-armed bandits
algorithm, traditionally executed by a single party, can be plugged into Tango and
hence enjoying the security offered by Tango, without impacting the total cumulative
rewards returned to the user. In addition, Tango is said resistant against data owner
failures, allowing to return the same total cumulative rewards to the user, even in case
where a data owner is offline until the end of the protocol.

Due to the homomorphic computations, we have shown that Tango suffers from a
high computation overhead. To overcome this issue, we have proposed a second protocol
Salsa, respecting all the aforementioned properties including genericity, correctness,
security and resistance against data owner failure, while being particularly efficient. For
the sake of concreteness, whereas Tango requires more than 2.5 seconds to select the
best among 9 arms, Salsa requires 0.15 millisecond. The efficiency of Salsa is achieved
thanks to secure two-party computations, in which computations are performed over a
so-called share. Briefly, given a data v, a data owner derives two shares ⟨v⟩0 and ⟨v⟩1
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Figure 1.2: Ticketing System Architecture.

that are later distributed to two distinct and non-colluding servers. Given only one
share, it is infeasible to recover the data v, ensuring the privacy of v. Despite that the
data v has been shared, it remains possible for the two servers to obtain the shares
⟨f(v)⟩0 and ⟨f(v)⟩1 where f(v) corresponds to an arbitrary circuit f evaluated on the
data v. In Salsa, we take advantage of this ability of running arbitrary computations
while being privacy-preserving to solve the reward maximisation problem efficiently.

Anonymous Auditable Transferable E-Ticket. Ticketing is a commonly used
system where a user obtains a ticket for a show. During the Covid period, many shows
have been either cancelled, or more commonly, postponed to a later date. Due to the
date change, many users were unable to attend the event, for various reasons. Users had
two options for obtaining a refund: Either to contact the agency from which the ticket
was purchased, or to resell the ticket to another user, usually via a third-party platform.
Unfortunately, most of these third-party platforms are not ticket-specific and do not
check the validity of tickets. As a result, a number of malicious users have managed to
resell the same ticket several times. From the point of view of the user who is the victim
of such a scam, the consequences can be considerable when you take into account the
price of the ticket, transport and accommodation, but also the psychological aspect, a
concert being awaited sometimes for several months.

In this manuscript, our aim is to design a ticketing protocol secure against the
aforementioned attack. As any traditional ticketing system, our construction proposes
purchase, refund of a ticket, but also transfer of a ticket between two users. An overview
of the protocol is depicted in Figure 1.2: First, a user is allowed to purchase a ticket at
a dedicated entity called Ticket Distributor and denoted D. If the user cannot attend
the event anymore, the user is allowed to proceed to a refund, again with the Ticket
Distributor D. The keystone of the protocol is the ability, for the user, to transfer its own
ticket to another user. Using our protocol, a user having received (and kept) a ticket
via the transfer procedure is guaranteed to be accepted at the event. This is solved
by preventing the same ticket to be transferred twice, thanks to the Ticket Transfer
Authority T , whose the role is to guarantee the fairness of the ticket transfer. Finally,
when the user attends the event, the protocol allows a user to validate its ticket at a
validation point, physically located at the entrance of the event, called a validator and
denoted V.

In addition to the traditional functionalities, in contrast to all other ticketing sys-
tems, we have focused our attention on a ticketing system ensuring anonymity of users.
This anonymity feature is crucial to ensure a complete privacy of users, and should be
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preserved against the system (composed of the Ticket Distributor D, the Ticket Trans-
fer Authority T and Validators V), but also against other users, particularly during
the ticket transfer. Our first ticketing system called Applause includes all traditional
functionalities. It is secure against double-spending of the same ticket, but also provides
anonymity for users during every interaction with the system. We stress that anonymity
in Applause is strong, in the sense that the identity of a user is never involved during
an interaction. But more importantly, each individual interaction (e.g., purchase of a
ticket) cannot be linked with another interaction as coming from the same user.

In addition to the design of Applause, we have focused our attention on some edge
cases such as fire or terrorism in which an external authority would be allowed to identify
users attending the event for civil security purposes. This interesting feature, however, is
facing anonymity of users preventing a user to be identified by the system. Observe that
in such setting, anonymity of users still holds against all entities, except for an additional
explicitly identified authority allowing to reveal the identity of users. In this context, we
propose Spotlight combining Applause and this identity revealing feature. In this
protocol, a user is still able to purchase, refund and transfer a ticket while preserving
its anonymity against other users and the system. However, this additional authority
called the Judge, denoted J , is able to reveal the identity of the user.

Our motivation for creating two distinct protocols lies on two important observations:
First, the ability to reveal identity of users introduces a risk of excessive of misuses. For
instance, in our model in which Spotlight is considered secure, the identity revealing
key must be kept secret by the judge. Otherwise, anonymity is trivially broken for any
user. In contrast, this judge-leakage scenario never happens with Applause. Second,
the auditability feature comes at the price of an additional trusted third-party as well as
a slightly slower ticket validation, requiring 165 milliseconds instead of 45 milliseconds,
which is still practical. Let elaborate more on the practicality of these two protocols.
Thanks to our proof of concept, written in Rust, we have shown that Applause and
Spotlight are efficient. A complete interaction including a ticket purchase, trans-
fer and validation requires 100 milliseconds for Applause at most 250 milliseconds
for Spotlight, to perform all the cryptographic operations (communication times ex-
cluded). Therefore, Applause and Spotlight are guaranteed to be suitable for events
dealing with a large number of attendees.

From a security standpoint, we have proved that Applause and Spotlight ensure
ticket unforgeability, ticket privacy, resistance against double-spending of the same ticket
anonymity of users using the game-based computational model.

Secure Distributed File Transfer Protocol. Sending a file to a server through
internet is a very simple and common action. A typical file transfer architecture is
composed of several clients and a central server, handling file download and upload. This
architecture, however, suffers from drawbacks: Suppose a world-scale company having
several offices. A user localised far away from the server, attempting to download a given
file, may suffer from a longer communication delay, inherent of the network size, used
to contact the server. Second, a server is, by definition, limited by its computational
resources and hence is able to handle a finite number of requests at the same time. Last
but not least, in case where the server is down, the file cannot be downloaded anymore.
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Distributed Storage Network

Alice(f) Low-rate Medium Bob

(3) Link l (3) Link l

(1) Upload c (2) Get Link l (4) Send Link l (5) Download c

Figure 1.3: Representation of our system where a sender shares a file f to a receiver.

A Distributed file storage system, solving all of these issues, acts similarly to a graph,
in which nodes are servers and edges are connection between servers. When a file is
uploaded on a server, the file is propagated through the network. The direct advantage
of a distributed file storage system as presented below, is a fault-tolerance system, since
the crash of a server does not impact files accessibility. More importantly, since a file
is propagated, it can be accessed using a closer server, reducing communication delay,
leading to a more efficient file access.

In this manuscript, we focus our attention on the specific case of a world-scaled
company, and study a design of a file transfer protocol ensuring file accessibility using
a distributed file storage system. The security properties of a company-focused file
transfer system are identical to secure mail exchange: First, the file transfer system may
be in charge of transferring sensitive files, accessible only by precisely defined users or
groups, defined as the confidentiality of the file. Second, the integrity of the file property
prevents any modification during the file transfer, a useful property, for instance, when
a juridic-valued contract is exchanged. Third and last, authentication of the sender
prevents, for example identity theft.

In this work, we have constructed a simple but efficient file transfer protocol address-
ing all the aforementioned properties. The general overview of our protocol, described
in Figure 1.3, works as follow: Suppose Alice having a file f , which she wants to send
to Bob. First, Alice stores the encryption of f , denoted c, at the closest storage server
in a distributed file system. As a response, Alice obtains a link l, associated to the file.
Next, we assume a low-rate communication channel between all users of the system,
used by Alice to transfer her link l to Bob. We stress that this communication channel
is not intended to send a file, but short messages having a size being independent of the
(potentially large) file f . Later, Bob contacts the closest storage server of the distributed
file system with the link l, and obtains as a response c. Finally, Bob recovers f from c

using a dedicated secret decryption key (previously obtained from an authority).

In contrast with the two first works, in which the security has been proven secure
under the game-based variant of the computational model, the security of this protocol
has been proven under the Universal Composability (UC) model, introduced for the first
time by Canetti [Can20]. These two approaches, while sharing some similarities, lead
to a radically different protocol modelisation and formalisation. Putting aside technical
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details, UC models all security properties as a single modelisation, referred in UC as the
ideal functionality, shown later to be indistinguishable to the real protocol. The major
feature of UC is the composability feature allowing ideal functionalities to be composed
together in order to construct protocols, realising more complex ideal functionalities. In
contrast to existing works providing no implementation, based on a proof-of-concept in
Rust, we claim that our solution is efficient, thanks to the simplicity of our approach.

Manuscript Organisation. The manuscript is organised following the same order of
the work presented above: In Chapter 3, we present our work introducing the two secure
federated multi-armed bandits protocols Tango and Salsa. These two protocols are
still under submission, and must be seen as the following works of our initial contribu-
tion of Samba published at the Journal of Artificial Intelligence Research in [CLMS22].
In Chapter 4, we present our two secure ticketing systems Applause and Spotlight,
being part of our contribution accepted to the 19th ACM ASIA Conference on Com-
puter and Communications Security (AsiaCCS 2024). Finally, in Chapter 5, we intro-
duce our work accepted to the 15th International Conference on Cryptology in Africa
(AFRICACRYPT 2024), focusing the design of iUC-secure file transfer system based on
standard attribute-based encryption and distributed file storage system. To make the
manuscript more accessible, we introduce in Chapter 2 the formalism required to grab
the introduced works.

Published Works. Below are presented the title and the abstract of the five works
published during this thesis, including the works of Samba [CLMS22] being the starting
point of the work introduced in Chapter 3, as well the work of Applause and Spotlight

published at the AsiaCCS conference.

• Ciucanu, R., Lafourcade, P., Marcadet, G., and Soare, M. (2022). SAMBA: A
Generic Framework for Secure Federated Multi-Armed Bandits. Journal of Artifi-
cial Intelligence Research, 73.

Abstract. The multi-armed bandit is a reinforcement learning model where a learn-
ing agent repeatedly chooses an action (pull a bandit arm) and the environment
responds with a stochastic outcome (reward) coming from an unknown distribu-
tion associated with the chosen arm. Bandits have a wide-range of application such
as Web recommendation systems. We address the cumulative reward maximisa-
tion problem in a secure federated learning setting, where multiple data owners
keep their data stored locally and collaborate under the coordination of a central
orchestration server. We rely on cryptographic schemes and propose Samba, a
generic framework for Secure federated Multi-armed BAndits. Each data owner
has data associated to a bandit arm and the bandit algorithm has to sequentially
select which data owner is solicited at each time step. We instantiate Samba for
five bandit algorithms. We show that Samba returns the same cumulative reward
as the non-secure versions of bandit algorithms, while satisfying formally proven
security properties. We also show that the overhead due to cryptographic primi-
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tives is linear in the size of the input, which is confirmed by our proof-of-concept
implementation.

• Lafourcade, P., Marcadet, G., Olivier-Anclin, O., and Mahmoud, D. (2024). Au-
ditable, Anonymous, Transferable Ticketing System. The 19th ACM ASIA Con-
ference on Computer and Communications Security (ACM ASIACCS 2024).

Abstract. Digital ticketing systems typically offer ticket purchase, refund, valida-
tion, and, optionally, anonymity of users. However, it would be interesting for
users to transfer their tickets, as is currently done with physical tickets. We pro-
pose Applause, a ticketing system allowing the purchase, refund, validation, and
transfer of tickets based on trusted authority, while guaranteeing the anonymity
of users, as long as the used payment method provides anonymity. To study
its security, we formalise the security of the transferable E-Ticket scheme in the
game-based paradigm. We prove the security of Applause computationally in the
standard model and symbolically using the protocol verifier ProVerif. Applause

relies on standard cryptographic primitives, rendering our construction efficient
and scalable, as shown by a proof-of-concept. In order to obtain Spotlight, an
auditable version of the protocol that we also proved to be secure, users will re-
main anonymous except for a new third party, which will be able to disclose their
identity in the event of a disaster.

• Marcadet, G., Ciucanu, R., Lafourcade, P., Soare, M., and Amer-Yahia, S. (2022)
Samba: A System for Secure Federated Multi-Armed Bandits. 38th IEEE Inter-
national Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia,
May 9-12, 2022, 3154–3157.

Abstract. The federated learning paradigm allows several data owners to contribute
to a machine learning task without exposing their potentially sensitive data. We
focus on cumulative reward maximisation in Multi-Armed Bandits (MAB), a clas-
sical reinforcement learning model for decision making under uncertainty. We
demonstrate Samba, a generic framework for Secure federAted Multi-armed BAn-
dits. The demonstration platform is a Web interface that simulates the distributed
components of Samba, and which helps the data scientist to configure the end-to-
end workflow of deploying a federated MAB algorithm. The user-friendly interface
of Samba, allows the users to examine the interaction between three key dimensions
of federated MAB: Cumulative reward, computation time, and security guaran-
tees. We demonstrate Samba with two real-world datasets: Google Local Reviews
and Steam Video Game.

• Lafourcade, P., Marcadet, G. and Robert, L. (2023). RMC-PVC: A Multi-Client
Reusable Verifiable Computation Protocol. In J. Hong, M. Lanperne, J. W. Park,
T. Cerný, and H. Shahriar (Eds.), Proceedings of the 38th ACM/SIGAPP Sym-
posium on Applied Computing, SAC 2023, Tallinn, Estonia, March 27-31, 2023
(pp. 1558–1565). ACM.
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Abstract. The verification of computations performed by an untrusted server is a
cornerstone for delegated computations, especially in multi-clients setting where
inputs are provided by different parties. Assuming a common secret between
clients, a garbled circuit offers the attractive property to ensure the correctness of
a result computed by the untrusted server while keeping the input and the function
private. Yet, this verification can be guaranteed only once.

Based on the notion of multi-key homomorphic encryption (MKHE), we propose
RMC-PVC a multi-client verifiable computation protocol, able to verify the cor-
rectness of computations performed by an untrusted server for inputs (encoded
for a garbled circuit) provided by multiple clients. Thanks to MKHE, the garbled
circuit is reusable an arbitrary number of times. In addition, each client can verify
the computation by its own. Compared to a single-key FHE scheme, the MKHE

usage in RMC-PVC allows to reduce the workload of the server and thus the
response delay for the client. It also enforces the privacy of inputs, which are
provided by different clients.

• Dailly, A., Lafourcade, P., and Marcadet, G. (2024). How did they design this
game? Swish: complexity and unplayable positions, 12th International Conference
on Fun with Algorithms, FUN 2024, June 4 to June 8, 2024, Maddalena Island,
Sardinia, Italy.

Abstract. Swish is a competitive pattern recognition card-based game, in which
players are trying to find a valid cards superposition from a set of cards, called
a “swish”. By the nature of the game, one may expect to easily recover the logic
of the Swish’s designers. However, even with a reverse engineering of Swish, no
justification appears to explain the number of cards, of duplicates, but also under
which circumstances no player can find a swish. In this work, we formally inves-
tigate Swish. In the commercial version of the game, we observe that there exist
large sets of cards with no swish, and find a construction to generate large sets of
cards without swish. More importantly, in the general case with larger cards, we
prove that Swish is NP-complete.

• Lafourcade, P., Marcadet, G. and Robert, L. (2024). iUC-Secure Distributed File
Transfer From Standard Attribute-based Encryption. 15th International Confer-
ence on Cryptology in Africa, AFRICACRYPT 2024, July 10-12, 2024, Douala,
Cameroon.

Abstract. Attribute-Based Encryption (ABE) stands as a cryptographic corner-
stone, enabling access control to messages based on user attributes. The security
definition of standard ABE is shown to be impossible in Universal Composability
(UC) against an active adversary. To overcome this issue, existing formal UC se-
curity definitions of ABE rely on additional properties for ABE, necessary to prove
security against an active adversary, excluding standard ABE by definition. In light
of the composability feature offered by UC and the absence of ideal functionality
tailored for standard ABE, we propose the two following contributions: (1) We
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construct the first ideal functionality FABE for ABE which, under reasonable hy-
pothesis against static corruption, can be realised using an IND-CCA2-secure ABE
scheme; and (2) our FABE leads us to propose a protocol solving a simple yet highly
practical, world-scaled company-focused problem: Efficient file transfer. The pro-
posed construction provides data integrity, sender authentication, attribute-based
file access, featured with constant data size transferred between users. This is
achieved by relying on two efficient building blocks: ABE and signature, which
are layered atop of the hash-based distributed storage system IPFS. Our protocol,
strengthened by a formal security definition and analysis under the Universally
Composable (UC) framework called iUC, is proved to realise our problem-oriented
authenticated attribute-based file transfer ideal functionality. Finally, we imple-
ment our proposal with a proof-of-concept written in Rust, and show it is practical
and efficient.
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Throughout this manuscript, we focus on cryptographic protocols built using cryp-
tographic primitives. For the sake of clarity, we present in this chapter our notation
as well as the essential primitives and hypothesis. we also introduce tools used in our
proofs of security.

2.1 Notations

We introduce the most common notations used in this manuscript. More specific nota-
tions are introduced when required.

• By a ← A(), we denote the affectation of the output of the algorithm A to the
variable a.

• By a←$ S, we denote the random sampling from the set S, affected to the variable
a.

• By λ, we denote the security parameter.
• By [x1, . . . , xn], we denote the list containing, in order, the elements x1, . . . , xn.
• Given integers x and y such that x ≤ y, by Jx, yK, we denote the list [x, x+1, . . . , y].

By JxK we denote the list [1, . . . , x].
• An algorithm is written as Alg(·), whereas a protocol between parties A1, . . . ,An

is written as Proto⟨A1(·), . . . ,An(·)⟩ → A1(·), . . . ,An(·). Parties which do not
receive an output from the protocol are sometimes omitted.

• By [xi]i∈JnK we denote the list [x1, . . . , xn].
• By Z, we denote the set of integers {. . . ,−1, 0, 1, . . . }. By Zn = Z/nZ, we denote

the set {0, . . . , n − 1} and Z∗n corresponds to the set of invertible integers in Zn
i.e., integers a ∈ Zn for which there exist an integer b ∈ Zn where a · b = 1.

21
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Figure 2.1: Encryption Model and Encryption Primitives.

• By X p= Y , we express the perfect indistinguishability between the two distribu-
tions X and Y . Similarly, the notation X

s≈ Y expresses the statistical indistin-
guishability between the two distributions X and Y .

2.2 Black-Box Model

A protocol designer constructing protocols can be viewed as an architect, drawing up
a plan of a house. The architect first needs a set of available materials, which when
assembled will produce the desired result. The toolbox of a cryptographic protocol
designer is composed of essential constructions, called cryptographic primitives, later
combined to construct protocols. For the sake of clarity, we will first focus on secret-key
encryption, allowing to respectively encrypt and decrypt a message, using the same key
(justifying the “secret-key” term) to preserve the confidentiality of the message.

Unifying Cryptographic Primitives. Numerous encryption primitives have been
proposed in the literature. We will focus on three well-studied secret-key encryption
primitives: Triple-DES (or 3-DES for short) [BM17], Advanced Encryption Standard
(AES) [DBN+01] and ASCON [STMC+23]. Each of these primitives have a different
internal behaviour: Triple-DES generates three distinct DES keys of 56 bits each, and
then encrypts a message m three times sequentially using DES encryption algorithm,
producing a ciphertext c. Decryption is the exact inverse operation. AES, in contrast,
generates a single key of 128 or 256 bits depending on the desired security level, and
encrypts a message m by applying sequentially four distinct and invertible operations
during multiple rounds, producing a resulting ciphertext c. Finally, ASCON generates
a seed s as a key, used to generate a pseudo-random bitstring r (a bitstring that seems
completely chosen at random), used to mask the message m, producing a ciphertext
c defined as m + r. Decryption requires to recompute the pseudo-random bitstring r

based on the seed s, and then to remove the random from the ciphertext with c − r,
returning m. Even with a strictly minimal level of details, the difference between these
three secret-key encryption algorithms is striking. In addition, due to the distinct inter-
nal behaviour, the performance of these three primitives are not the same [AEAKH10].
Suppose a protocol designer constructing an arbitrary protocol using AES as the sym-
metric encryption algorithm. Will the protocol become insecure if we replace AES with
ASCON ? Hopefully, replacing a secret-key encryption with another does not affect the
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security. Therefore, a protocol designer does not select a particular secret-key encryp-
tion; instead, he considers a generic secret-key encryption model, viewed as a “black-box”,
leading to a more general protocol. In Figure 2.1, we have depicted a visual represen-
tation of the three mentioned secret-key encryption primitives, fitting the secret-key
encryption model defined as three algorithms: The key generation algorithm KeyGen,
the encryption algorithm Enc, and the decryption algorithm Dec. A direct advantage
happens when a new effective attack is found on a primitive. Indeed, replacing a broken
primitive with a secure one does not affect the overall behaviour of the protocol. In the
following part of the manuscript, every cryptographic primitive is viewed as black-box,
hiding the internal behaviour. This approach to construct protocol is referred as the
black-box model. In the following of this manuscript, the “primitive” term directly refers
to its black-box representation, unless specified.

2.3 Cryptographic Primitives

In this manuscript, the security of the presented protocols relies on cryptographic prim-
itives, whose definition are introduced.

2.3.1 Secret-Key and Public-Key Encryption

Encryption allows one to send a message over an untrusted communication channel,
while preserving the confidentiality of the sent messages. In the literature, we distinguish
two paradigms for encryption. The first paradigm corresponds to secret-key encryption,
denoted SKE throughout this work, in which encrypting and decrypting messages re-
quires the same (secret) key. These kinds of encryption are very efficient [AEAKH10,
Pan16] and hence are designed to encrypt a large size of data.

Definition 1 (Secret-Key Encryption, SKE). A secret-key encryption scheme is defined
by the tuple (KeyGen,Enc,Dec) of polynomial-time algorithms where:

• KeyGen(1λ)→ k: Given the unary representation of the security parameter λ,
outputs the secret key k.

• Enc(k,m)→ c: Given the secret key k and a plaintext m, outputs a ciphertext c.
• Dec(k, c)→ m: Given the secret key k and a ciphertext c, outputs a plaintext m.

Communicating over an insecure channel using secret-key encryption requires be-
forehand to agree on the used secret key. Transmitting a message securely to another
user without having agreed on a secret key is done by considering a public encryption
key, say pk , accessible by anyone, while having a private decryption key, say sk , used
by the message recipient to decrypt every sent message. This is exactly the aim of the
second paradigm, called public-key encryption, denoted PKE.

Definition 2 (Public-Key Encryption, PKE). A public-key encryption scheme is defined
by the tuple (KeyGen,Enc,Dec) of polynomial-times algorithms where:

• KeyGen(1λ)→ (sk , pk): Given the unary representation of the security parameter
λ, outputs the public key pk and the secret key sk .

• Enc(pk ,m)→ c: Given the public key pk and a plaintext m, outputs a ciphertext
c encrypting the plaintext m under the public key pk .
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• Dec(sk , c)→ m: Given the private key sk and a ciphertext c encrypting the plain-
text m, outputs m.

Correctness of Encryption. For both secret-key and public-key encryption, the
decryption procedure applied on a ciphertext encrypting a message m should result
with the message m. This property is called decryption correctness, and is formally
defined as follows: For every security parameter λ, any secret-key k ← SKE.KeyGen(1λ)

and any key pair (sk , pk) ← PKE.KeyGen(1λ), any message m, correct decryption is
ensured if we have:

m = SKE.Dec(k,SKE.Enc(k,m)) = PKE.Dec(sk ,PKE.Dec(pk ,m))

This definition considers the case of perfect decryption in which the decryption pro-
cedure always succeeds. A more general definition called correct decryption with prob-
ability ϵ, modelling a decryption procedure that succeeds with probability 1− ϵ.

Definition 3 (ϵ-decryption correctness of SKE and PKE). For every security parameter
λ, any secret key k ← SKE.KeyGen(1λ) and any key pair (sk , pk) ← PKE.KeyGen(1λ),
any message m, we say that SKE and PKE ensure ϵ-decryption correctness if we have:

Pr [m = SKE.Dec(k, SKE.Enc(k,m))] = Pr [m = PKE.Dec(sk ,PKE.Dec(pk ,m))] = 1− ϵ

The Security Definition Formalism. As we will see in a moment, the security of a
cryptographic primitive are most of the time expressed following a game-based formal-
ism. A game takes the form of an algorithm executed by a polynomial-time algorithm
denoted C called the challenger, playing against a polynomial-time algorithm denoted
A and called the adversary. A standard structure of a game is described as follows:
The challenger performs some computations, potentially provides some inputs to the
adversary and, ultimately awaits an output from the adversary. Eventually, the adver-
sary responds to the challenger. If the response fulfils the winning conditions, then we
say that the adversary wins the game. If necessary, the challenger allows the adver-
sary to call polynomial-time algorithms called oracles executed by the challenger. By
y ← AOFunc(a,·)(x), we denote the challenger inputting x to the adversary and awaiting
for y. When the adversary A performs computation, it is allowed to call the oracle
OFunc, taking two arguments where the first one is set to a by the challenger, for ev-
ery execution of the oracle. For clarity, we assume that any variable provided by the
challenger can be modified by the oracle, useful for example to add or remove elements
from some set. In the provided security definitions, we will intensively use the notion
of “negligible advantage” for an adversary to win a given game. This notion highlights
that for any (polynomial-time) adversary A, it has intuitively of very low probability to
win a game. Formally, a function f : N→ R is said negligible if for every polynomial p,
there exist an integer n such that for every x ≥ n:

|f(x)| ≤ 1

p(x)
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ExpIND-CPA
A,Π (λ)

1 : k ← Π.KeyGen(1λ)

2 : m0,m1 ← AEnc(k,·)(λ)

3 : b←$ {0, 1}
4 : c← Π.Enc(k,mb)

5 : b′ ← A(c)
6 : return b = b′

ExpIND-CPA
A,Π (λ)

1 : (sk , pk)← Π.KeyGen(1λ)

2 : m0,m1 ← A(λ, pk)
3 : b←$ {0, 1}
4 : c← Π.Enc(pk ,mb)

5 : b′ ← A(c)
6 : return b = b′

ExpIND-CCA2
A,Π (λ)

1 : (sk , pk)← Π.KeyGen(1λ)

2 : m0,m1 ← AODec(sk,⊥,·)(λ, pk)

3 : b←$ {0, 1}
4 : c← Π.Enc(pk ,mb)

5 : b′ ← AODec(sk,c,·)(c)

6 : return b = b′

Oracle ODec(sk , c, c′)

1 : if c = c′ : return ⊥
2 : m← Π.Dec(sk , c′)

3 : return m

Figure 2.2: Security experiments for the IND-CPA property using secret-key encryption
(experiment at the top left corner) and public-key encryption (experiment at the top
right corner), and for the IND-CCA2 property (experiment at the bottom left corner).

Along this manuscript, we denote by negl(λ) a polynomial negligible in the security
parameter λ, defining the desired security level (e.g., 128 or 256 bits of security). We
are now ready to explore the different security definitions introduced in this manuscript,
starting with the security definition for secret-key and public-key encryption.

Security of Secret-Key and Public-Key Encryption. Both secret-key and public-
key encryptions are used to communicate over an insecure communication channel. The
expectation from a security standpoint should be the same. Intuitively, an encryption
scheme is said to be secure if for any polynomial-time adversary, it preserves the confi-
dentiality of the encrypted message. In other words, it cannot distinguish between the
encryption of a message, say m0, from another message, say m1, even if m0 and m1 are
chosen by the adversary. More than choosing the challenge messages, we have to assume
that the adversary has the ability to obtain the encryption of any message of his choice,
before and after obtaining the challenge ciphertext. Under the prism of the secret-key
encryption, this encryption oracle perfectly models the ability for an attacker to send a
request to a running server accepting some message and returning its encryption. The
formal definition of this experiment is called Indistinguishability under Chosen-Plaintext
Attack (IND-CPA) that we have depicted in Figure 2.2.

Definition 4 (Indistinguishability under Chosen-Plaintext Attack, IND-CPA). Let Π

be an encryption scheme defined by the tuple (KeyGen,Enc,Dec). Then, Π is said
IND-CPA secure if for every adversary A, we have:

AdvIND-CPA
A,Π =

∣∣∣∣Pr
[
ExpIND-CPA
A,Π (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ)
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Suppose now that the adversary has still access to any encryption of the plaintext of
its choice, but now has access to a decryption oracle, allowing to decrypt the ciphertext
of its choice to recover the underlying message of a given ciphertext (obtained or com-
puted) by the adversary, excluding the challenger ciphertext. This setting is commonly
known as the Indistinguishability under Chosen-Ciphertext Attack (IND-CCA). We can
refine this setting by allowing or not the adversary to decrypt any ciphertext of its
choice after having obtained the challenge ciphertext. The setting where the adversary
does not have access the decryption oracle after obtaining the challenge ciphertext is
called IND-CCA1, whereas the setting where the adversary has access to the decryption
oracle after obtaining the challenger ciphertext is called IND-CCA2. In this work, we
are particularly interested by the IND-CCA2 security, whose formal security game is
depicted in Figure 2.2 (Note that we present chosen-ciphertext attack experiment only
for public-key encryption).

Definition 5 (Indistinguishability under Chosen-Ciphertext Attack, IND-CCA2). Let
Π be an encryption scheme defined by the tuple (KeyGen,Enc,Dec). Then, Π is said
IND-CCA2 secure if for every adversary A, we have:

AdvIND-CCA2
A,Π =

∣∣∣∣Pr
[
ExpIND-CCA2
A,Π (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ)

2.3.2 Homomorphic Encryption

During the 70s, an intuition arises in the cryptography community, formulated for
the first time by Rivest, Adleman and Dertouzos [RLRD78], stating that there exist en-
cryption schemes allowing to perform operations directly on the encrypted data, without
relying on the decryption key. Until now, numerous encryption schemes have been devel-
oped, commonly called Homomorphic Encryption. Over the years, many homomorphic
encryption schemes has been developed, improving efficiency [Gao18, BV14, CGGI16]
and functionality [CZW17, AJJM20].

As any (single-key) encryption scheme, a homomorphic encryption scheme is com-
posed of a key generation algorithm KeyGen, an encryption algorithm Enc and a decryp-
tion algorithm Dec. In contrast, homomorphic encryption schemes are augmented with
an evaluation algorithm denoted Eval, allowing to evaluate a given circuit C over one or
more ciphertexts. The supported class of circuits and the depth of these circuits highly
depends on the scheme.

Partially Homomorphic Encryption. Most older schemes supporting homomor-
phic property typically allow only a single operation on the ciphertext an arbitrary
number of times e.g., addition or multiplication. These schemes supporting a single ho-
momorphic operation are commonly called partially homomorphic encryption schemes.
In this work, we are interested in partially homomorphic encryption schemes having
the additively homomorphic property i.e., performing only addition over encrypted inte-
gers. We formally refer to these schemes as Additively Homomorphic Encryption (AHE),
formalised below.
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Definition 6 (Additively Homomorphic Encryption, AHE). Let Π be an additively ho-
momorphic encryption scheme defined by (KeyGen,Enc,Add,Dec) the tuple of polynomial-
time algorithms where:

• KeyGen(1λ)→ (sk , pk): Given the unary representation of the security parameter
λ, returns (sk , pk).

• Enc(pk ,m)→ c: Given the public encryption key encryption pk and a message m,
outputs the ciphertext c.

• Add(c1, . . . , cn)→ c: Given n ciphertext c1, . . . , cn encrypting respectively mes-
sages m1, . . . ,mn, outputs a ciphertext c encrypting the sum m1 + · · ·+mn.

• Dec(sk , c)→ m : Given the secret decryption key sk and a ciphertext c, outputs
the message m.

Correctness of Additively Homomorphic Encryption. In contrast with secret-
key and public-key encryption, an additively homomorphic encryption scheme has to
ensure correctness for freshly computed ciphertext i.e., ciphertext produced by the Enc

algorithm, but also for ciphertext derived during the computation via the Add algorithm.
Following the notion from [ABC+15], we distinguish between these two correctness prop-
erties by referring to the first one as decryption correctness, while we refer to the second
one as evaluation correctness.

Definition 7 (ϵ-decryption correctness for AHE [ABC+15]). An additively homomor-
phic encryption scheme Π defined as the tuple (KeyGen,Enc,Add,Dec) ensures correct
decryption with probability ϵ if for every security parameter λ ∈ N, every (sk , pk) ←
KeyGen(1λ), every message m, we have:

Pr [Dec(sk ,Enc(pk ,m)) = m] = 1− ϵ

Definition 8 (ϵ-evaluation correctness for AHE [ABC+15]). An additively homomor-
phic encryption scheme Π defined as the tuple (KeyGen,Enc,Add,Dec) ensures correct
evaluation with probability ϵ if for every security parameter λ ∈ N, every ciphertexts
c1, . . . , cn encrypting messages m1, . . . ,mn, every (sk , pk)← KeyGen(1λ), we have:

Pr [Dec(sk ,Add(c1, . . . , cn)) = m1 + · · ·+mn] = 1− ϵ

A well-known additively homomorphic encryption scheme is the Paillier cryptosys-
tem [Pai99], introduced in 1999 and allowing to perform an arbitrary number of addi-
tions, whose plaintext space is defined in Zn:

• KeyGen(1λ)→ (sk , pk): Generates two prime numbers p and q according to λ, sets
n ← p · q and Λ ← lcm(p − 1, q − 1) (i.e., the least common multiple), generates
the group (Z∗n2 , ·), randomly picks g ∈ Z∗n2 such that M = (L(gΛ mod n2))−1

mod n exists, with L(x) = (x− 1)/n. It sets sk ← (Λ,M), pk ← (n, g), it returns
(sk , pk).

• Enc(pk ,m)→ c: Randomly picks r ∈ Z∗n and outputs c← gm · rn mod n2.
• Add(c1, c2)→ c3: To compute the homomorphic addition of two plaintexts m1

and m2 in Zn, one can compute the product of the two associated ciphertexts
with the public key pk = (n, g), denoted c1 = Enc(pk ,m1) = gm1 · rn1 mod n2 and
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c2 = Enc(pk ,m2) = gm2 · rn2 mod n2. Indeed, we have:

Enc(pk ,m1) · Enc(pk ,m2) = c1 · c2 mod n2

= (gm1 · rn1 ) · (gm2 · rn2 ) mod n2

= (gm1+m2 · (r1 · r2)n) mod n2

= Enc(pk ,m1 +m2) .

This function can handle n ciphertexts by applying the two-by-two addition con-
secutively as well.

• Dec(sk , c)→ m : Computes m← L(cΛ mod n2) ·M mod n, and outputs m.

Fully Homomorphic Encryption. Introduced for the first time by Craig Gen-
try [Gen09], fully homomorphic encryption stands as a generalisation of partially homo-
morphic encryption, by introducing the ability to evaluate an arbitrary function, instead
of a single operation such as addition [Pai99] or multiplication [Elg85a]. A fully homo-
morphic encryption shares similarities with partially homomorphic encryption with the
key generation, encryption and decryption algorithms. The major difference lies on the
expressivity of the evaluation algorithm, called Eval in FHE instead of Add in AHE.

Definition 9 (Fully Homomorphic Encryption, FHE). Let Π be a fully homomorphic
encryption scheme be defined by the tuple (KeyGen,Enc,Eval,Dec) where:

• KeyGen(1λ)→ (sk , pk , evk): Given the unary representation of the security pa-
rameter λ, outputs the public key pk , the secret key sk and a public evaluation
key evk .

• Enc(pk ,m)→ c: Given the public key pk and a plaintext m, outputs a ciphertext
c encrypting m.

• Eval(evk , f, c1, . . . , cn)→ c: Given the evaluation key evk , a function f , as well as
n ciphertexts, outputs an encrypted evaluation of the function f . Sometimes,
we denote the evaluation of the function f over the ciphertexts c1, . . . , cn by
f(c1, . . . , cn).

• Dec(sk , c)→ m: Given the secret key sk and a ciphertext c, outputs a plaintext
m.

Correctness of Fully Homomorphic Encryption. Similarly to additively homo-
morphic encryption, a fully homomorphic encryption scheme has to respect two defi-
nitions to be said correct: The first definition, decryption correctness, states that the
decryption of a fresh ciphertext encrypting a message m must output m.

Definition 10 (ϵ-decryption correctness for FHE [ABC+15]). A fully homomorphic
encryption scheme Π defined as the tuple (KeyGen,Enc,Eval,Dec) ensures correct de-
cryption with probability ϵ if for every security parameter λ ∈ N, every (sk , pk) ←
KeyGen(1λ), every message m, we have:

Pr [Dec(sk ,Enc(pk ,m)) = m] = 1− ϵ
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The evaluation correctness is similar to the decryption correctness except that the
ciphertext inputted in the decryption procedure is the result of the evaluation of a
function f over a set of ciphertexts. Note that the definition of evaluation correctness
for a FHE scheme is a generalisation of the evaluation correctness for an AHE scheme, a
meaningful statement since FHE is a generalisation of AHE by definition.

Definition 11 (ϵ-evaluation correctness for FHE [ABC+15]). A fully homomorphic en-
cryption scheme Π defined as the tuple (KeyGen,Enc,Eval,Dec) ensures correct evalua-
tion with probability ϵ if for every security parameter λ ∈ N, every ciphertexts c1, . . . , cn
encrypting messages m1, . . . ,mn, every function f , every (sk , pk)← KeyGen(1λ):

Pr [Dec(sk ,Eval(evk , f, c1, . . . , cn)) = f(m1, . . . ,mn)] = 1− ϵ

Security of Additively and Fully Homomorphic Encryption. Even if homo-
morphic encryption supports computations over encrypted data, its standard security
definition remains unchanged compared to the encryption security. In other words, both
AHE and FHE are supposed to be IND-CPA-secure, as stated in Definition 4.

2.3.3 Attribute-based Encryption

A practical problem in real-time streaming faced by the industry consists of sending the
streamed content from a broadcasting server, to all customers having paid to receive the
content. A trivial solution is to encrypt the streamed content for each user. However,
in a scenario with a large number of users, this solution is impractical.

A more elegant solution should allow the broadcasting server to compute the encryp-
tion of the streamed content once, and then allowing only the subscribers to decrypt the
content. Attribute-based Encryption (ABE) is a generalisation of the above scenario,
allowing a fine-grained access to the plaintext: On one hand, each decryption key sk is
associated to a set of attributes x. On the other hand, the encryption algorithm is now
equipped with an access-policy y, producing a ciphertext cy. Remark that a policy can
be viewed as a set of all accepted attributes. We represent the statement “the attribute
x respects the policy y” by x ∈ y.

Definition 12 (Attribute-Based Encryption, ABE). An attribute-based encryption
scheme is defined by the tuple (Setup,Enc,KeyGen,Dec) where:

• Setup(1λ)→ (msk ,mpk) : Given the unary representation of the security parame-
ter λ, outputs a master key pair.

• Enc(mpk , y,m)→ cy : Given the master public key mpk , the policy y and a mes-
sage m, outputs the ciphertext cy.

• KeyGen(msk , x)→ skx: Given the master secret key msk and an attribute x, out-
puts the secret key skx associated to the attribute x.

• Dec(skx, cy)→ m ∪ ⊥ : Given the secret key skx associated to the attribute x and
the ciphertext cy encrypting the message m associated to the policy y, outputs m
if and only if x ∈ y, or ⊥ otherwise.

Correctness of Attribute-Based Encryption. The correctness of an attribute-
based encryption scheme states that a ciphertext cy associated to an access policy y and
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encrypting a message m, that is inputted to the decryption procedure along a secret
decryption key skx whose attribute x satisfies y should result into the message m.

Definition 13 (ϵ-decryption correctness for ABE). An attribute-based encryption scheme
Π defined as the tuple (Setup,KeyGen,Enc,Dec) ensures correct decryption with prob-
ability ϵ if for every master key pair (msk ,mpk) ← Setup(1λ), every message m and
access policy y, every ciphertext cy ← Enc(mpk , y,m), every attribute x satisfying y

and every decryption key skx ← KeyGen(msk , x), the following probability holds:

Pr [Dec(skx, cy) = m] = 1− ϵ

Security of Attribute-Based Encryption. The security of an attribute-based en-
cryption must reflect the same intuition compared to a traditional encryption scheme:
Every polynomial-time adversary A trying to guess if a ciphertext encrypts either m0

or m1 must have a negligible chance to succeed. However, attribute-based encryption
follows a different architecture with an administration owning the master secret key
msk and the master public key mpk , allowed to distribute decryption keys associated to
some provided attribute. Therefore, an attribute-based encryption has to be considered
secure even if decryption keys are provided, except decryption keys allowed to decrypt
the challenge ciphertext. In this work, we particularly focus on the IND-CCA2 security
of attribute-based encryption, defined in Figure 2.3.

ExpIND-CCA2
A (λ)

(msk ,mpk)← Setup(1λ)

X ← ∅
O ← {OKeyGen(msk ,X ,⊥; ·),ODec(msk ,⊥; ·, ·)}

(y∗,m0,m1), state← AO
1 (mpk)

b←$ {0, 1}
ψy∗ ← Enc(mpk , y∗,mb)

O′ ← {OKeyGen(msk ,X , y∗; ·),ODec(msk , ψy∗ ; ·, ·)}

b′ ← AO′
2 (ψy∗ , state)

return b = b′ ∧ (∄x ∈ X : x ∈ y∗)

Oracle OKeyGen(msk ,X , y∗;x)
if x ∈ y∗ : return ⊥
X ← X ∪ {x}
skx ← KeyGen(msk , x)

return skx

Oracle ODec(msk , ψy∗ ;ψy, x)

if ψy∗ = ψy then return ⊥
skx ← KeyGen(msk , x)

m← Dec(skx, ψy)

return m

Figure 2.3: Experiment of the IND-CCA2 security for an ABE scheme.

2.3.4 Digital Signature

Digital signature is a useful cryptographic primitive allowing a user to authenticate
messages. In a signature, the signer of a message holds a secret signature key sk used
to compute a signature of a given message m, denoted σm along this manuscript. The
public verification key pk , as its name suggests, is public and used to authenticate the
message via the signature σm. Since the verification of the signature relies on the public
key, the verification procedure is public. Moreover, in case where the public key is
certified to be associated to a specific user, say U , then the signature σm proves that U
authenticates m.
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Definition 14 (Digital Signature, Sig). A digital signature scheme is defined by the
tuple (KeyGen,Sign,Verif) where:

• KeyGen(1λ)→ (sk , pk) : Given the unary representation of the security parameter
λ, outputs a key pair.

• Sign(sk ,m)→ σm : Given the secret signature key sk and a message m, outputs a
signature σm.

• Verif(pk , σm,m)→ b: Given the public signature key pk , a message m and a signa-
ture σm, outputs a bit b at one if the signature σm authenticates m, zero otherwise.

Correctness for Digital Signature. A digital signature scheme ensures correctness
if a message authenticated by a signer can be verified by a verifier having the valid public
verification key.

Definition 15 (ϵ-correctness for Sig). A digital signature scheme Π defined by the
tuple (KeyGen,Sign,Verif) is ϵ-correct if for all security parameter λ, every (sk , pk) ←
KeyGen(1λ), every message m and every signature σm ← Sign(sk ,m), we have:

Pr [Verif(pk , σm,m) = 1] = 1− ϵ

Note that the above correctness definition of digital signature is a generalisation in
the sense that ϵ can be set as close to zero as desired. Indeed, the signature algorithm
Sign produces a signature using the private signature key sk from which the public verifi-
cation key pk is derived. Hence, the signature algorithm is able to check the consistency
of the computed signature locally. If the computed signature is invalid, it suffices for
the signature algorithm to restart the signature generation algorithm again until the
signature verification succeeds. Assuming the probability ϵ1 be the probability that
the computed signature is invalid for a single iteration, then by iterating the signature
algorithm n times, the probability ϵn to obtain an invalid signature after n iterations
equals ϵn = ϵ1 · ... · ϵ1 = ϵn1 which tends to zero. Therefore, given a carefully chosen n,
the probability to obtain an invalid signature ϵ in the definition can be set as ϵn1 .

Security of Digital Signature. The security of a digital signature scheme relies
on the hardness for an adversary to produce a signature authenticating a message m′,
not signed by the user having the secret key sk . This security is formally known as
Existential-Unforgeability under Chosen-Message Attack (EUF-CMA) security and is
defined in the Figure 2.4.

ExpEUF-CMA
A,Π,b (λ)

1 : (sk , pk)← Π.KeyGen(λ)

2 : M← ∅

3 : (m∗, σ∗)← AOSign(M,sk,·)(λ)

4 : return m∗ /∈M∧Π.Verif(pk ,m∗, σ∗) = ⊤

Oracle OSign(M, sk ,m)

1 : σm ← Π.Sign(sk ,m)

2 : add m inM
3 : return σm

Figure 2.4: Security experiment for the EUF-CMA property.
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Definition 16 (Existential-Unforgeability under Chosen-Message Attack, EUF-CMA).
Let Π be a digital signature scheme. Then, Π is said EUF-CMA if for every adversary
A we have:

AdvEUF-CMA
A,Π = Pr

[
ExpEUF-CMA
A,Π (λ)→ 1

]
≤ negl(λ)

2.3.5 Pseudo-Random Permutation

A pseudo-random permutation is a very intuitive and interesting tool in cryptography,
allowing one to randomly permute an arbitrary sequence of values v1, . . . , vn, producing
the permuted sequence vk(1), . . . , vk(n) for some permutation k.

Definition 17 (Pseudo-Random Permutation, PRP). A pseudo-random permutation
scheme is defined by the tuple (Gen,Perm, Inv) where:

• Gen(n)→ k: Given the unary representation of the security parameter λ, outputs
the permutation key k.

• Perm(k,m1, . . . ,mn)→ mk(1), . . . ,mk(n): Given the permutation key k and n el-
ements m1, . . . ,mn, it outputs the same n elements in a permuted order, the
permutation being defined by the permutation key k.

• Inv(k,mk(1), . . . ,mk(n))→ m1, . . . ,mn: Given the permutation key k and n ele-
ments in a permuted order, it outputs the same n elements in the initial order.

Security of Pseudo-Random Permutation. In contrast with other primitives, a
pseudo-random permutation does not require a game formalisation. Indeed, the argu-
ment is statistical: Given a value vk(i) from a permuted sequence vk(1), . . . , vk(n), the
probability to recover i is 1

n , even having access to the full permuted sequence.

2.3.6 Hash Function and Random Oracle Model

Hash functions are intensively used in cryptography, for instance to ensure integrity.
Mathematically, a hash function H is a function mapping an arbitrary-sized element
in {0, 1}∗, to a constant-sized element in {0, 1}λ. The value of H(m) for a message
m ∈ {0, 1}∗ is called the hash. Formally, a hash function is defined as follows:

H : {0, 1}∗ 7→ {0, 1}l

m→ H(m)

Due to the nature of the source ensemble, a hash function has collision i.e., there
always exist two distinct messages m0 and m1 in {0, 1}∗ where H(m0) = H(m1). To
prove security, it is generally common to model hash functions in the so-called Random
Oracle Model (ROM) introduced in [BR93]. This model is an idealisation of the hash
function, taking the form of an oracle denoted RO, working as follows: This publicly-
available oracle accepts any request containing a message m. If it is the first time that m
has been seen, the oracle randomly chooses a value h from {0, 1}λ, and internally stores
the couple (m,h) and returns h. In case where m has already been received during a
previous request, then the oracle retrieves the couple (m,h) from its internal storage



CHAPTER 2. BACKGROUND 33

and returns h. A direct remark is that given h ← RO(m), we have the guarantee that
m cannot be learned, since h has been sampled at random from {0, 1}λ.

2.4 Tools for Security Proofs

A security property modelled in the game-based model is represented as a game, in which
the adversary is asked to solve a given problem, most of the time consisting of breaking a
given property. A security proof in the game-based model starts from this security game,
denoted G0. In general, proving the security in G0 is hard i.e., the claimed security is
not straightforward. The security proofs consist of applying a small modification in G0,
obtaining G1, and to prove that G0 and G1 are indistinguishable. We repeat the same
operation on G1, until reaching a game, say Gn, where it is easy to prove the security.
This proof methodology is commonly called a sequence of games. The most difficult
part in realising a sequence of games is to prove that for every game Gi with i ∈ JnK, Gi

is indistinguishable from the previous game Gi−1. From the probability to distinguish
between to Gi−1 and the Gi, it is possible to construct a so-called upper-bound on the
probability to distinguish between the initial game G0 in which proving the security is
hard, and the last game Gn in which proving the security is easy. To obtain this upper-
bound on the probability to distinguish, a calculation method is used on the sequence of
games where probability to distinguish between each intermediate game is the same i.e.,
on a uniform sequence of games. In general, the sequence of games is not uniform, but is
composed of uniform sub-sequences of games. Assuming sequence of games G0, . . . ,Gn

for a constant n, whose value does not vary during the protocol execution, then the
probability for an adversary to distinguish between the first game G0 and the game Gn,
denoted by AdvDist

A,G0,Gn , is defined as follows:

AdvDist
A,G0,Gn =

∣∣Pr
[
A(1λ,G0(1λ)) = 1

]
− Pr

[
A(1λ,Gn(1λ)) = 1

]∣∣
≤

n∑
i=1

∣∣Pr
[
A(1λ,Gi(1λ)) = 1

]
− Pr

[
A(1λ,Gi−1(1λ)) = 1

]∣∣
To obtain the probability to distinguish between a game Gi and the previous game

Gi−1, several approaches exist, being dependent on the transition we have applied in Gi.
Based on [Sho04], we distinguish three types of transitions: Transition based on indis-
tinguishability, transition based on failure events and bridging transitions. In transition
based on indistinguishability, the view of the adversary differs from the previous game
Gi−1 and the game Gi, but the adversary notices the difference only with a negligible
probability. Generally, this type of transition is based on the indistinguishability as-
sumption of some cryptographic primitive such as IND-CPA security. The transition
based on failure events consists to add a failure event in the game Gi. When this hap-
pens, the adversary will be able to distinguish between the two games. This transition
is particularly useful with signatures: To prove the authenticity of a message, we add a
failure event in Gi aborting if a received signature is considered valid but has not been
produced by the challenger running Gi. An adversary being able to forge a signature
would trivially distinguish between these two games. However, if the best probability
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for any adversary to forge a signature is negligible, then the probability to distinguish
between Gi−1 and Gi is negligible as well. This intuition is commonly known as the
Difference Lemma [PS00] and is formalised as follows:

Definition 18 (Difference Lemma [PS00]). Let A,B and F be three events associated
with the probabilities Pr [A] ,Pr [B] and Pr [F ]. Assuming A ∧ ¬F ⇐⇒ B ∧ ¬F then
|Pr [A]− Pr [B]| ≤ Pr [F ].

The bridging transition is crucial during sequence of games to prepare the future
transitions, by integrating, removing or more generally modifying a game without mod-
ifying the view of the adversary. This last point is essential: In such transitions, the
probability for any polynomial-time adversary to win the game Gi−1 should equal the
probability to win the game Gi, or more formally Pr

[
Gi−1A (1λ)→ 1

]
= Pr

[
GiA(1

λ)→ 1
]
.
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Federated learning is a machine learning paradigm where multiple data owners col-
laborate in solving a learning problem, under the coordination of a central orchestration
server [KMea21]. Each data owner’s raw data is stored locally and not exchanged or
transferred. The development of machine learning algorithms in federated learning set-
tings is a timely topic, which touches several communities: “A longstanding goal pursued
by many research communities (including cryptography, databases, and machine learn-
ing) is to analyse and learn from data distributed among many owners without exposing
that data” [KMea21]. We tackle this goal by relying on cryptographic techniques to
develop a secure framework for learning on distributed data.

In particular, we focus on multi-armed bandits, a reinforcement learning model where
a learning agent needs to sequentially decide which “arm” to choose among several arms
(with unknown reward distributions) available in the environment. After each arm
selection, the environment responds with a stochastic reward drawn from the reward
distribution associated with the chosen arm. To maximise the cumulative reward, the
learning agent has to continuously face the so-called exploration-exploitation dilemma:
Based on values provided by the data owners referred later as the scores, it decides
whether to explore by choosing arms with more uncertain associated scores, or to ex-
ploit the information already acquired by choosing the arm with the seemingly largest
associated scores. The historical application of bandits was to discover the best drug
within a limited number of trials, the reward drawn from the environment being the
effect of the drug on the patient. Bandits have also practical applications such as Web

35
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recommender systems, where the arms are the recommended items and the rewards are
given by the user ratings. More specifically, we tackle the problem of secure cumula-
tive reward maximisation in federated multi-armed bandits, a problem that has not been
extensively studied in the literature.

We describe the federated learning architecture we are considering, depicted in Fig-
ure 3.1, starting with the localisation of the data at the heart of the federated learning
model. In the federated multi-armed bandits, we assume that the data, distributed over
K data owners (DO1, . . . ,DOK), takes the form of reward functions associated to K

bandit arms. The data and all related values are potentially sensitive, hence should not
be seen in clear by any participant other than its owner. As typically done in federated
learning, we assume that the learning algorithm is done by a server mentioned here as
the controller (C). The user (U) sends a budget N to the controller and, later, receives
the cumulative reward s. Moreover, we assume that the participants in Figure 3.1 (data
owners, controller, and user) are honest-but-curious i.e., they correctly do the required
computations, but try to gain as much information as possible based on the data that
they see. In particular, we aim at minimising the data leakage to the controller e.g.,
the server cannot see rewards produced by each data owner. Additionally, an external
observer that has access to all messages exchanged between the aforementioned partic-
ipants should not be able to learn any input, output, or intermediate data.

Controller C User U

· · ·Data Owner DO1 Data Owner DOK

· · ·

Budget N

Total cumulative
rewards s

Figure 3.1: Instantiation of the federated learning paradigm for cumulative reward max-
imisation in multi-armed bandits.

To motivate our problem setting, we present an example based on federated learning
in recommendation systems [SS21, LSF20] applied on financial investment. Suppose a
user having a budget N (i.e., the total money to be invested). The user selects K actions
and lets the controller C decide which actions to select in order to optimise its income.
For example, a positive income would be a positive reward whereas a negative income
would not be rewarded. Ideally, the chosen arm should be unknown to the system, even
if the chosen arm is the most optimised one. The aforementioned investment system
example can be easily adapted to other classical federated learning applications where
security is of paramount importance e.g., commercial and medical domains [KMea21].

Our goal is to build a generic federated learning framework such that, given a bandit
algorithm Alg, we are able to plug Alg in our framework and obtain the same cumulative
reward as Alg, while guaranteeing data security. This interesting genericity property has
already been put forward in the literature by our initial publication [CLMS22], intro-
ducing the Samba framework focusing on the reward maximisation problem specifically
in the architecture we are considering in this work. Theoretically, any multi-armed
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bandits algorithm satisfying a precise definition is guaranteed to be plugged within the
Samba framework, enjoying all the claimed security properties without loss of correct-
ness. However, as we will show later, Samba suffers from correctness and security issues,
allowing for instance the federation server to learn the scores of the data owners. Badly,
Samba is currently the most recent and state-of-the-art protocol for secure federated
multi-armed bandits. Furthermore, to the best of our knowledge, no security definition
has yet been suggested for secure federated multi-armed bandits. Such a definition is
necessary in order to be able to compare existing protocols.

Summary of Contributions

Our contribution starts with the introduction of the formal security definition of a
secure federated multi-armed bandits in the computational model following the real-
ideal paradigm. Equipped of our security definition, we propose two secure federated
multi-armed bandits protocols Tango and Salsa, following two distinct philosophies.

Our first secure federated multi-armed bandits protocol Tango aims to fix the cor-
rectness and security issues of Samba, with the ambition to remain close to the Samba

framework. In a nutshell, our fix consists of replacing a flawed mask technique being at
the heart of the security of Samba, with fully homomorphic encryption. Briefly, this
approach allows us to delegate the best arm identification task to a server called the
proxy, over encrypted scores, instead of a second server, solving at the same time the
correctness and the security issues found in Samba. Hence, thanks to our fix, Tango

enjoys the following properties: Genericity, correctness and security. In addition, we
have identified an easy-to-achieve and interesting property that we refer in this work as
the resistance against failures property, which allows a protocol to return (almost) the
same total cumulative rewards, even in a scenario where a data owner fails and leaves
the protocol before the end. Despite all these interesting properties, Tango suffers
from a high latency due to the homomorphic computations, making it less valuable for
applications whose arm selection is expected to be fast.

Our second secure federated multi-armed bandits protocol Salsa drastically moves
away from the blueprint of Samba and Tango. Indeed, whereas Samba and Tango rely
on cryptographic primitives such as encryption, Salsa bases its correctness and security
on the secure two-party computations, in which two servers evaluate an arbitrary circuit
on private input without learning any information on the input. Briefly, each input is
split into two shares, one for each server involved in the computations. Given a share
of every input, the two servers are able to evaluate the circuit directly on the shares.
The evaluation on the shares results into new shares which once combined, provide the
desired output. Compared to homomorphic encryption, computation over shares offers
high-performance. Interestingly, in Salsa a data owner does not have to setup any key.

In contrast with Samba, we have chosen to design Tango and Salsa to deal with
discrete multi-armed bandits. Indeed, the scores in multi-armed bandits algorithms are
traditionally represented as floating-point values. Discretizing a problem is an already
studied and approved solution to make it easier to solve using standard techniques, for in-
stance applied on discrete deep neural network inference [BMMP18, BGGJ19, SFB+23,
TTS+24]. Both protocols Tango and Salsa ensure the same properties mentioned ear-
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Data
Participant DOi DOj ̸=i User (U) Controller (C)

Total cumulative rewards s X
Cumulative rewards si for DOi X
Number of pulls ni for DOi X
Score of DOi at time t X
Pulled arm index M at time step t X⋆

Figure 3.2: Security properties that we aim to respect. By X, we mean that the
participant can see in clear the concerned piece of data, whereas an empty case means
the opposite. The ⋆ means that the DOi only knows the pulled arm index M if and
only if it is pulled at time step t.

lier, namely genericity, correctness, security and resistance against failures. We describe
how Tango and Salsa achieve all these properties.

Genericity. The genericity property enjoyed by Tango and Salsa allows any dis-
crete bandit algorithm that satisfies the two following properties to be plugged: (1)
Computing the score of an arm does not depend on the other arms, and (2) selecting
the arm to be pulled is performed using an argmax function. We stress that these two
properties, and more particularly the second one actually, reject multi-armed bandits
algorithms initially supported by Samba. This choice is motivated by our security def-
inition being designed specifically for argmax-based multi-armed bandits. In practice,
other multi-armed bandits might be plugged both in Tango and Salsa but would re-
quire a dedicated or a more generalised security definition that goes beyond this initial
contribution. In the literature, three multi-armed bandits meet these conditions, namely
UCB, Thompson Sampling and ϵ-greedy.

Correctness. The correctness property offered by Tango and Salsa ensures that
the returned total cumulative rewards of a multi-armed bandits algorithm plugged in
Tango is the same as the total cumulative rewards returned by the standalone execution
of the discrete multi-armed bandits algorithm. In Tango, correctness is achieved via
homomorphic encryption, allowing to operate directly over the encrypted data. Once
decrypted, the obtained result equals the desired output with very high probability. In
Salsa, the computations are no more performed on the encrypted data whose compu-
tation incurs a large execution time overhead. Rather, computations are performed di-
rectly over the so-called shares using secure two-party computation techniques [DSZ15],
offering correctness and high-performance.

Security. The presented protocols are strengthened by a formal security analysis in
the computational model, whose security properties are summarised in Figure 3.2. In
details, for each time step, the score of each data owner remains hidden, a crucial
property since a score can be deterministic (for instance with the ϵ-greedy algorithm)
following a small and non-uniform distribution. In addition, the pulled arm index M

should not be identified both by the controller but also by other data owners (different
of the one that has been pulled). In other words, only the pulled data owner knows
that it has been chosen, otherwise has one chance over K− 1 to identify the pulled data
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owner. Similarly, the cumulative rewards si as well as the number of pulls ni for a data
owner DOi should remain private and unknown to all other parties. In contrast, the
total cumulative rewards s calculated as the sum of all cumulative rewards si, should
be unknown to all parties except to the user U expecting the total cumulative rewards
at the end of the protocol execution.

Resistance Against Failures. By the nature of federated learning, a data owner is
sensitive to failure and hence to be disconnected from the protocol before the end of
its execution. Badly, due to the considered federated learning architecture and data
distribution, a data owner leaving a running protocol execution directly impacts the
total cumulative rewards returned to the user U . Surprisingly, this interesting property
has never been studied in the context of federated multi-armed bandits. To motivate
our interest to tackle this issue, we introduce the following example with three data
owners having the following cumulative rewards s1, s2 and s3 respectively set at 4, 6

and 10. Suppose that the third data owner has left the protocol before the end of the
protocol. The worst case for the user consists of receiving a total cumulative rewards s
equal to s1 + s2 which equals 10, half of the expected total cumulative rewards of 20 in
our example, due to the data owner DO3 being offline and hence not able to share its
cumulative rewards s3. Thanks to the design of Tango or Salsa, we are able to handle
this case and still to return the exact total cumulative rewards 20. We stress that this
case in the most desirable. As we will see later, the mechanism we have put in place
to solve this issue consists of regularly and privately updating a register maintained
by the federation server. We do not want to oversell our reward saving mechanism:
There is a case where a reward is definitively lost, if a chosen data owner DOi lefts the
protocol before registering its cumulative rewards si. This edge case is impossible to
avoid since in our setting DOi is the only one party allowed to obtain a reward based
on its reward probability µi. That is, using this reward saving mechanism, the returned
total cumulative rewards s equals

∑K
i=1 si − h where h is the number of data owners

having left the protocol without updating the register. This lost of reward h is independent
of every cumulative rewards si which constitutes a substantial improvement compared
to the lost of every cumulative rewards si. Tango and Salsa support dynamic joins
as well. Indeed, in both protocols we do not leverage on any commonly-shared secret
which stands in contrast with Samba for which a shared secret-key is required to join
the protocol execution, as we will see in a moment.

Overall Description of Tango. A secure federated multi-armed bandits protocol
is divided into two distinct parts: The arm selection and the total cumulative rewards
sending. As its name suggests, the arm selection, replayed as many times as the budget
provided by the user, consists of identifying the next arm being pulled. In this phase,
every data owner inputs the arm selection protocol with a score, the arm selection
protocol being played between all the data owners and the controller C, and expects as
a response a selection bit. At time step t ∈ JNK, the selection bit received by the data
owner DOi is denoted as bi,t. The constraint is that only one selection bit is supposed
to equal one in order to model the fact that a single arm can be chosen at each time
step. In Tango, this arm selection protocol relies on the controller C which is splitted
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into two nodes, namely a proxy node P and a reflector node R. Briefly, the proxy node
P, observing only encrypted messages, receives K scores along K encrypted secret-
keys, K being the number of data owners. The proxy node P performs a homomorphic
comparison on the K encrypted scores resulting into the encryption of the best arm
index M used to construct K encrypted selection bits. These K encrypted selection
bits and these K encrypted secret-keys are later shared with the reflector node R able
to decrypt each of these ciphertexts. The only goal of the reflector node R, as its name
suggests, is to decrypt the obtained selection bits and to re-encrypt them again, with the
appropriate received and decrypted secret-key. All these selection bits, encrypted using
the provided secret-key, are sent back to the proxy node P before being shared with
the appropriate data owner. The interesting point is that none of these two nodes are
able to identify either the bandit arm scores or the pulled arm at some time, identified
by the single positive selection bit. This is achieved for the proxy node P thanks to
the indistinguishability of the used FHE scheme, but also against the reflector node R
thanks to a permutation, randomly chosen and applied by the proxy node P, permuting
the encrypted selection bits and on the encrypted secret-keys. In a sense, these two
nodes are preventing each other to learn any information while performing the desired
arm selection functionality.

At the end of the protocol execution, when all the budget has been spent, the total
cumulative rewards sending is executed. This phase is designed to securely send the total
cumulative rewards s corresponding to the sum of all the cumulative rewards si locally
stored by each data owner to the final user U . Since the correctness and security issues
of Samba [CLMS22] does not affect this phase, we have decided to not modify the total
cumulative rewards sending phase, relying on additively homomorphic encryption such
as the Paillier cryptosystem [Pai99]. Hence, the total cumulative rewards s is obtained
by summing up the cumulative rewards si from each data owner directly in the encrypted
domain. Hence, neither the data owners nor the server nodes can see in clear the total
cumulative rewards: Only the user U that invested a budget for computing the total
cumulative rewards is able to decrypt it.

Overall Description of Salsa. In contrast with Tango, Salsa does not rely on
cryptographic primitives such as (homomorphic) encryption but on secure two-party
computations. In the vein of the ABY framework [DSZ15, PSSY21], every computations
in Salsa are performed over the so-called shares. In few words, in secure two-party
computations, two shares are derived from a private data, one share being insufficient to
recover the initial private data. Each of these shares are sent to a different computation
server. Then, both servers are executing an arbitrary circuit in a synchronised manner
to update their respective shares with respect to the executed circuit. As a result, each
server obtains a share which once combined, recovers the desired output of the executed
circuit on the initial private data.

In our setting, the computation servers correspond to the controller C being splitted
into two nodes C0 and C1. During the arm selection protocol, every data owner DOi
computes the two following shares denoted ⟨vi,t⟩0 and ⟨vi,t⟩1 of its score vi,t, the first
share being sent to C0 and the second share to C1. Given the shares of every score, the
computation servers evaluate an arm selection algorithm which is essentially an argmax
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producing a best arm index M followed by K equality tests, one for each arm index i

ranging from 1 to K. And since the equality test between the best arm index M and the
arm index i results into a bit 1 (i.e., M equals i) or a bit 0 (i.e., M not equals i), this
circuit results into K bits that we refer as the selection bits. By construction, only the
bit of the chosen arm, bM , equals one. Since every computation in Salsa is performed
on shares, the resulting selection bits are shared among the two servers C0 and C1, and
hence remain unknown from the computation servers, under the assumption that C0 and
C1 do not collude. In particular, the first server C0 knows ⟨bi,t⟩0 for every data owner
DOi whereas the second server C1 knows ⟨bi,t⟩1 for every data owner DOi. The shares
of each bi,t is sent to the i-th data owner, which now has access to the two shares ⟨bi,t⟩0

and ⟨bi,t⟩1 and hence is able to reconstruct bi,t. We have used a similar efficient sharing
technique to perform the total cumulative rewards sending, which stands in contrast
with Samba and Tango relying on additively homomorphic encryption.

Related Work

Our work takes position to the federated learning setting in which many parameters can
be adjusted, including for example the data distribution or the behaviour of the data
owners. We first precise our federated learning setting in which this work takes place.
Then, we compare our work with existing approaches developed by the cryptographic
community which can be used for the reward maximisation problem. Finally, we focus
on existing secure federated multi-armed bandits protocols.

Positioning in the Federated Learning Paradigm. Several parameters can be
adjusted in the federated learning setting. We position our work for each of these
parameters defined in the influential federated learning survey published in [KMea21]:

• Data distribution. Data is generated locally and remains decentralised. Each data
owner stores its own data and cannot read the data of the other data owners.

• Orchestration. A central orchestration server organises the learning, but never sees
raw data.

Moreover, among the main federated learning settings (cross-silo vs cross-device), our
framework pertains to the cross-silo federated learning setting [KMea21], whose typical
characteristics are:

• Distribution scale. There are rather few data owners, which can be different or-
ganisations e.g., stores, hospitals.

• Data owner failure. Each data owner is allowed to be offline at some point during
the protocol execution.

• Primary bottleneck. In general, it might be the computation and communication
costs. In our framework, both costs have the same asymptotic big-O complexity.

• Addressability. Each data owner has an id that allows the central orchestration
server to access it specifically.

• Statefulness. Each data owner is stateful i.e., it maintains local variables through-
out the execution of the entire framework.
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• Data partition. The partition should be fixed. In our case, we assume feature-
partitioned (vertical) data i.e., each data owner has data pertaining to a single
bandit arm.

• Incentive mechanisms. There is the need for incentive mechanisms to ensure honest
participation of the data owners, since they may also be business competitors e.g.,
the local stores from our motivating example from the introduction. We assume
a monetary incentive derived from data customer’s budget.

As a federated learning threat model, we assume that all participants (data owners,
user and controller) are honest-but-curious, which means that they can inspect all re-
ceived messages but cannot tamper the data and computations needed for the learning
algorithm. We assume the classical formulation [Gol04] (Chapter 7.5, where honest-but-
curious is denoted semi-honest), in particular (i) each node is trusted: It correctly does
the required computations, it does not sniff the network and it does not collude with
other nodes, and (ii) an external observer has access to all exchanged messages.

Positioning w.r.t. Federated and Secure Bandits. Being an active research topic,
at the intersection of several communities, there are multiple interesting variants of the
cross-silo federated learning setting that we consider here. Most of them are still open
problems, in particular in settings of sequential decision making [KMea21], such as in the
multi-armed bandit model. The very few recent works that we are aware of are on the
related best arm identification problem. (i) A recent study focuses on federated learning
aspects such as the incentivization of data owners [SXXS21], but without considering
the data security aspect. In their setting, all DOs share the same K arms where an arm i

yields different rewards from a DO to another. The goal of each DO is selfish: They want
to collect as much reward as possible during a certain time horizon. They assume that
the server can observe the rewards from all DOs and use them to compute the arm with
the highest average reward over all DOs. (ii) Another study tackles the robustness with
respect to Byzantine adversaries in federated best arm identification [MHP21]. In their
setting, each DO has access to a subset of the K arms and to ensure robustness, their
method implies that each subset of arms is sampled by multiple DOs. In contrast, in our
proposed framework Tango, the data of a DO is locally stored and never exchanged,
hence it is hidden from all the other participants. Furthermore, a main characteristic is
that Tango does not affect the arm selection strategy compared to the standard (non
federated, non secure) discretized bandit algorithm.

Federated multi-armed bandits is an emerging topic, with few recent works that con-
sider the federated learning paradigm for sequential decision making problems, where
data is observed in response to interactions with an unknown environment. At each
time step, the learner has only limited feedback about the arm that is pulled and
this makes the setting more challenging compared to the typical supervised learning
scenarios, where all training data is available from the beginning of the learning pro-
cess. The recent works tackling federated bandits, consider different models: Stan-
dard stochastic [SS21, LSF20], bandits with graph structure [ZZLL21], and linear ban-
dits [DP20, HWYS21]. For all these works, the main focus in on adapting bandit
algorithm to the federated setting, and some of them additionally rely on differential
privacy [DR14] to protect the data.
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In particular, the first works on cumulative reward maximisation in (private) feder-
ated multi-armed bandits [SS21, LSF20, ZZLL21, SSY21] focus on the analysis of the
gain in sharing data coming from multiple DOs for obtaining better local (DO-specific)
and respectively global cumulative rewards (for all participants in the federated learning
process). The typical assumption is that all DOs have access to the same subset of arms,
which corresponds to an horizontal data partition. Another typical assumption from all
these works is that the DOs exchange information about the rewards they observe and
about the indices of their selected arms with their neighbours [LSF20, ZZLL21], re-
spectively with the central orchestration server [SS21, ZZLL21]. Before sharing these
pieces of information, as done in [RBCS23], DOs apply differential privacy mechanisms
to inject noise in their local data to keep it private from the other participants. For
the next time steps, the bandit algorithm will continue to select arms based on the
differentially-private information that is transmitted between participants.

A differentially-private bandit algorithm takes roughly the same computation time
as the standard algorithm, but because of the noise that is injected in the data to
ensure differential privacy, the arm selection strategy is altered. Thus, the modified
selection strategy leads to a different output and a reduced performance (increased
regret) compared to that of the standard discretized bandit algorithm. Even more,
the injected noise has to be carefully computed to ensure differential privacy while
limiting the regret. In our cryptographic-based approach, the security is independent of
the used multi-armed bandits algorithm. Although we share the common goal of data
protection in federated bandits, the use of different techniques (differential privacy in
the related works vs cryptography in our work) leads to complementary systems, whose
different architecture and trade-offs are not comparable. In addition, in contrast with all
previous federated multi-armed bandit frameworks for cumulative reward maximisation,
we focus on a vertical data partition and our secure framework guarantees that local
data maintained by each DO is hidden from the other participants.

There exist only a few cryptography-based secure protocols for bandits, in set-
tings where all data is outsourced to the honest-but-curious cloud [CLLS20, CLLS19,
CLMS22]. The protocols of [CLLS19, CLLS20] also consider the problem of secure cu-
mulative reward maximisation for standard stochastic bandits, but in a considerably
different architecture. The protocol of [CLLS19] considers a single data owner holding
all the arms. In a nutshell, the protocol of [CLLS20] supposes a cloud divided into
K+1 parties: K arm nodes, each arm node denoted Ri having access to its own reward
probability µi in clear, provided by the data owner; but also an orchestration node. The
arm selection protocol proceeds using a ring communication round: Each arm node is
inputted from another randomly chosen arm node with the current best arm index M
and its score BM . It inputs the next arm node either with the couple (i, Bi) when Bi is
higher than Bm, or it simply forwards the couple (M,BM ) to the next arm node oth-
erwise. The last arm node in the chain only forwards the index M to the orchestration
node, which responds to each arm node with the appropriate selection bit. The order
of the arm nodes in the chain is randomly chosen by the orchestration server and is
changed at each round. We note major differences between [CLLS20] and our protocol
Tango. First, the data distribution assumptions are different: They assume that all
data is outsourced to the cloud, whereas Tango focuses on a federated learning setting
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Figure 3.3: Overview of Samba for argmax-based multi-armed bandits.

where data is stored locally by each owner and never exchanged. In addition, due to
the federated learning setting, communication between the data owners (corresponding
to the arm nodes in [CLLS20] but being now independent of the cloud) are no more al-
lowed. Consequently, the respective distributed architectures are intrinsically different.
Second, their protocol is catered for securing the UCB algorithm, whereas Tango is
a generic framework where multiple bandit algorithms can be plugged in. Among the
algorithms supported in Tango, we have UCB and similar argmax-based algorithms.
Last but not least, the protocol of [CLLS20] as well as the work of Samba [CLMS22]
may not return the exact output compared to traditional UCB algorithm, whereas our
construction does. We elaborate on this correctness issue below.

Positioning w.r.t. Samba. Introduced in [CLMS22] and depicted in Figure 3.3,
Samba is the closest work to our protocol Tango. Indeed, Tango aims to fix and
improve Samba in several points, which explains the proximity between these two pro-
tocols. Briefly, Samba combines two-party computation and (additively only) homo-
morphic encryption, following the same cross-silo data partition. Samba solves the best
arm identification for federated multi-armed bandits by using two nodes for the server
(as done in this work), that we denote simply as C0 and C1. The arm selection protocol
starts with every data owner DOi having its score vi. To hide its score vi to the system,
Samba assumes the existence of shared mask denoted α known by every data owners
and different at each time step. This mask α is multiplied with the score vi, leading to
the value αvi referred later as the masked score. Once computed, every masked score
is encrypted under a secret-key encryption scheme SKE using a secret-key k, carefully
shared between all the data owners and the server C1. Observe that at each round, the
used mask is the same for all data owners thanks to a previously shared seed that we
omit for simplicity. The first node C0 receives an encrypted masked score from each data
owner, constructs a list of these ciphertexts (encrypting the masked score) and permutes
this list using a permutation, denoted π in Figure 3.3. The resulting permuted list of
ciphertexts is then shared with the second node C1 having the shared secret key (un-
known from C0). After the decryption of each ciphertext, C1 obtains a permuted list
of masked scores that are compared to identify the best arm. Let M be the index of
the best arm, and π(M) be the permuted best arm index observed by C1. From π(M),
C1 constructs a list of K selection bits b1, . . . , bK where only bπ(M) equals one. These
selection bits are forwarded to the first node C0 which invert the permutation before to
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forward each selection bit to the appropriate data owner, having the shared decryption
key to recover the selection bit.

We omit the other part of Samba since two problems arise here. In Samba, the
(multiplicative) mask is used in the spirit of the one-time pad to prevent C1 to recover
the real value of the scores. However, recall that the mask is the same for every data
owners and hence corresponds to a K-time pad, insecure by definition. Indeed, C1 can
easily derive v1

v2
by evaluating αv1

αv2
. For this reason, Samba does not provide secrecy

of the scores thus does not provide secrecy of both the number of pulls ni and the
cumulative rewards si. In addition, due to the multiplicative property of the mask, a
score at zero is always revealed, since the mask as once chance over the large mask space
to equal zero.

The second issue in Samba occurs when at least two scores vi and vj are equal
in the list of scores. For the sake of clarity, we exemplify this issue with three data
owners having respectively the reward probabilities µ1 = 0.75, µ2 = 0.25 and µ3 = 0.1.
Suppose that we have chosen the ϵ-greedy algorithm, leading at the first time step t = 1

to this list of the scores v = [v1 = 1, v2 = 1, v3 = 0]. Following the standard ϵ-greedy
definition in its exploitation stage selecting an arm based on the argmax function, the
chosen arm should be the first one. However, recall that in Samba, C0 permutes the
list of scores, so suppose the permuted list π(v) = [v2 = 1, v3 = 0, v1 = 1]. In this case,
the argmax evaluation results into the second arm instead of the first arm v1. That
is, instead of sampling a reward from the Bernoulli distribution parameterised by the
reward probability µ1 = 0.75, the reward distribution is parameterised by the reward
probability µ2 = 0.25. In the general case, this invalid arm selection does not result in a
significant reward difference, but it is sufficient to invalid the claim stating that Samba

returns the exact same reward compared to the standard ϵ-greedy. We stress that this
correctness issue also happens in [CLLS20] again due to a random permutation defining
the chain of data owners in the ring. In addition to these two issues, due the shared seed
and shared secret key, a data owner trying to join the protocol needs first to obtain these
shared values. This stands in contrast with our protocols Tango and Salsa, which at
the cost of a reduced set of three supported algorithms (instead of five for Samba), we
provide at the same time correctness with respect to a discretized multi-armed bandits
algorithm, privacy-preserving with respect to the score, but also supports the dynamic
join and failure of a data owner during the protocol execution.

Positioning w.r.t. Homomorphic Encryption. Theoretically, our reward maximi-
sation problem itself related to the best arm identification problem, could be solved by
a single-server running all the best arm identification algorithm homomorphically. Ho-
momorphic encryption allows a natural and non-interactive class of protocols in which
each data owner sends an encrypted score to the server to perform the computation. In
contrast to multi-party computations, homomorphic encryption needs encryption and
decryption keys which have to be correctly managed to prevent data leakage. The initial
definition of homomorphic encryption as suggested by Gentry [Gen09] is referred here
as a single-key fully homomorphic encryption, perfectly fitting the client-server setting
where the client wants to delegate the computation of a function f over a private data
x to an honest-but-curious and powerful server. However, our federated learning setting
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supposes several clients i.e., the K data owners, and it is not desirable to assume a
shared secret decryption key between all the data owners, as supposed in the Samba

framework. Homomorphic encryption for multiple clients precisely solves this issue and
is an active research area [CDKS19, CCS19, Par21, KMS22, AKO24]. Based on the work
of Kwak et al. [KLSW24], we distinguish two paradigms for multi-clients homomorphic
encryption, namely Multi-Parties Homomorphic Encryption (MPHE) and Multi-Key
Homomorphic Encryption (MKHE). The difference between these two paradigms oc-
curs at the key generation for the different parties: In MPHE, a key generation protocol
is executed between all clients resulting for the i-th client to obtain the secret key sk i

and a joint public key pk while in MKHE each client generates its own key pair (sk i, pk i)
independently of the other clients. In both paradigms, the decryption of a ciphertext
requires all the decryption keys [KLSW24] which requires the collaboration of all the
data owners to decrypt the result. Since we have assumed the potential failure of a data
owner, a secret-key sk i may be missing, making the resulting ciphertext undecipherable
for the other data owners. In addition, multi-clients homomorphic encryption leads to a
reduced performance compared to the single-key homomorphic encryption. For instance,
the Nand gate evaluation using single-key variant of TFHE [CGGI19] takes approxi-
mately 8 milliseconds, while the multi-clients variant [KMS22] takes approximately 270

milliseconds for four parties. Our first protocol Tango, fixing the Samba protocol us-
ing fully homomorphic encryption, only requires a single-key homomorphic encryption
scheme by splitting the controller C (i.e., the federation server) into two non-colluding
federation servers called respectively the proxy node P and the reflector node R. This
approach allows Tango to rely on more efficient fully homomorphic encryption schemes
and to avoid a complex decryption procedure.

Positioning w.r.t. Secure Multi-Party Computations. Identifying the best arm
can be transposed to the so-called Millionaire problem, introduced by Yao [Yao82]:
In its original two-party definition, the problem consists for two millionaires to define
which of the two millionaires is the richest one, without revealing the value of their
respective fortunes. Stated as above, this problem does not directly fit our needs since
we are solving the best arm identification for at least three data owners. Indeed, in
case when K equals two, a data owner can easily infer private data on the other data
owner. For instance, a data owner being pulled, let’s say 4 times with a budget N of
6, infer the number of times the other arm has been pulled by subtracting N with its
local number of pulls, resulting to 2. While the Yao protocol [Yao82] considers of two
millionaires, we are addressing the more general case with K higher than two bandits.
Recently, Tassa and Yanai [TY24] has introduced a cryptographic solution to address
the millionaire problem for an arbitrary number of millionaires based on Arithmetic
Black-Box (ABB) modelled as an ideal functionality, able to evaluate any n-fan gates
while being privacy-preserving. At this point it becomes essential to understand the
meaning of the comparison. When applied on two values, let say u and v, the two-fan
gate comparison denoted u ≤ v is expected to return a bit at 1 if v is higher or equal
than u, 0 otherwise. A problem occurs when generalising the comparison operator to
n values, particularly in cases where two or more values are equal. Indeed, following
the definition of [TY24], a comparison between n values results for the i-th millionaire
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to obtain a bit bi at 1 if the i-th millionaire is the highest fortune. In other words,
by denoting the fortune of the n millionaires by v1, . . . , vn and vM being the highest
fortune, a multi-millionaires protocol responds positively for every millionaire i when
vi equals vM . Unfortunately, by definition, the equality case results for two or more
millionaires to obtain a bit at 1. This behaviour is absolutely not desired in our case
because of a user can spent only one coin to a bandit at a time. During a multi-armed
bandits algorithm execution, especially at the beginning, two or more bandits have a
non-negligible probability to obtain the same score. This is particularly true for the
ϵ-greedy algorithm whose score i.e., the performance of the arm, is computed using the
empirical mean defined as vi = si

ni
where si corresponds to the cumulative rewards and

the ni is the number of times the arm has been pulled (note that both si and ni lives
in N and si ≤ ni). In this setting when ni equals 1, the score of each arm is either
0 or 1. In a scenario with at least three bandits, we have necessarily a collision, and
the multi-millionaires protocol fails in case where all scores vi equal 0. Because of this
restriction to select exactly one bandit at a time, protocols solving the multi-millionaires
problem are not directly suitable for multi-armed bandits.

In the same spirit of [TY24], Demmler, Schneider and Zohner have introduced the
ABY framework [DSZ15], later improved in [PSSY21], supporting a large variety of
computations, able for instance to solve the multi-millionaires problem. Because of its
versatility, the ABY framework represents a great candidate to solve the secure federated
multi-armed bandits problem. Since the secure federated multi-armed bandits has been
focused by only few papers in the literature, to the best of our knowledge, currently no
work has put forward a secure federated multi-armed bandits protocol based on secure
multi-party computation. This is exactly the motivation of our second protocol Salsa,
relying intensively on secure two-party computations, and more precisely on (a part of)
the ABY framework.

Chapter Organisation

In Section 3.1, we introduce the basic notions on bandit algorithms. In Section 3.2,
we introduce a formal security model, clearly defining the expected security of a secure
federated multi-armed bandits. In Section 3.3, we present our first protocol Tango,
prove its correctness with respect to the discretized multi-armed bandits, its security
but also an empirical study of Tango. Finally, in Section 3.4, we present our second
protocol Salsa, including a correctness, security and empirical performance analysis.

3.1 Multi-Armed Bandits Algorithms

The historical motivation [Tho33] behind the multi-armed bandit model concerns the
adaptive design of clinical trials. For a given disease, a doctor can choose amongK drugs
with probability of success µ1, . . . , µK unknown at the beginning of the clinical trial. At
each time step t, the doctor chooses a drug i ∈ JKK for a patient. If the drug i heals the
patient, we say that drug generates a reward 1; otherwise, we say that the reward is 0.
The K bandit arms model the effectiveness of the K treatments available in the clinical
trial. The assumption is that the rewards observed from each arm i are independent
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samples drawn from a Bernoulli distribution associated to arm i. Maximising the sum
of observed rewards means maximising the number of healed patients from the clinical
trial. The design of efficient multi-armed bandit strategies is a dynamic research topic,
also motivated by good empirical performance in a wide range of modern applications,
from Web advertisement and recommender systems [LCLS10] to game playing [KS06].
In this chapter, we consider the typical setting of stochastic multi-armed bandits with
Bernoulli rewards. Next, we introduce the notation related to bandit algorithms.

Notations for Multi-Armed Bandits. A bandit algorithm takes as input the bud-
get N and the number of arms K, and gives as output the sum of observed rewards
for all arms. The unknown environment of the bandit algorithm consists of K dis-
tributions associated to the K arms. We consider Bernoulli distributions with expected
values µ1, . . . , µK unknown to the learning agent. The agent has access to a reward
function pull(·) that can be called N times. For a chosen arm i, a call to the func-
tion pull(i) randomly returns 0 or 1 according to the associated Bernoulli distribution,
i.e., the probability of returning 1 is µi and the probability of returning 0 is 1–µi.
The agent sequentially selects the N arms to be pulled with the goal of maximising
the sum of rewards. We illustrate Tango using a selection of three textbook algo-
rithms [SB18, KP14, RVK+18], which represent a variety of strategies. To minimise
redundancy when presenting the aforementioned collection of algorithms, we present
what is common to all of them in Figure 3.4. In particular, each bandit algorithm needs
to store, for each arm i ∈ JKK, two variables si (sum of rewards) and ni (number of
pulls), based on which it can compute µ̂i = si

ni
(empirical mean). Each bandit algorithm

has its own strategy for choosing M for each time t, that we present in Figure 3.5. We
stress that at each time t only one arm is pulled, thus only the corresponding variables
sM and nM will be updated, while the sum of rewards and the number of pulls for all
other arms are not affected. To simplify notation, we drop the index indicating the
time t whenever the variables to be updated at time t are obvious for the context. In
the sequel, by (arm) score of a bandit algorithm Alg we mean, depending on Alg the
argument of the argmax.

Generic Multi-Armed Bandits Model

To be suitable in our framework, a multi-armed bandits algorithm has first to fit a
federated setting, excluding existing multi-armed bandits algorithm that cannot be in-
stantiated in such a setting. To precisely define what we mean by “suitable in our
framework”, we have introduced a general multi-armed bandits model tailored for our
federated learning setting, featuring local arm scores and best arm selection properties.
Let us focus on the first property: While the basic Alg algorithm is executed by a sin-
gle party, the federated version states that each arm is represented by a distinct party,
namely a data owner DOi, having only access to its internal state including the cumula-
tive rewards si and the number of pulls ni, to produce a score. This observation excludes
directly every multi-armed bandits algorithm whose score computation is not exclusively
dependent of si and ni, as done in the Reinforcement Comparison [SB18] algorithm. The
second property is focused on the arm selection once the score is computed, and is inher-
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/* Initialization: pull each arm once & initialise variables */
1 : for i ∈ JKK
2 : r ← pull(i) /* Random reward for arm i */
3 : si ← r /* Sum of observed rewards for arm i */
4 : ni ← 1 /* Number of pulls of arm i */

/* Exploration-exploitation: pull one arm at each time step t */
5 : for t ∈ JNK

6 : Choose M according to algorithm Alg

7 : r ← pull(M )

8 : sM ← sM + r

9 : nM ← nM + 1

10 : return s1 + . . .+ sK

Figure 3.4: Generic cumulative reward maximisation with bandit algorithm Alg.

ently dependent of our framework capabilities. In particular, our framework precisely
focuses on argmax-based multi-armed bandits algorithms. This is a necessary condition
to provide a complete and formal security analysis of our scheme. We stress that despite
these constraints, three multi-armed bandits algorithms fit our model, denoted MAB.
Note that an algorithm that can be instantiated in this generic model can be used in
our framework directly. Our generic model is composed of five suggestive algorithms
Init, ScoreArm, BestArm, SelectArm and PullArm, presented in Definition 19 that we now
describe.

The Init algorithm, called only once at the beginning of the MAB execution, is used
to initiate the state of an arm composed of only two variables: The cumulative rewards
si and the number of pulls ni. As depicted in Figure 3.4 between Line 1 and Line 4, each
arm is pulled once to construct a preliminary (yet limited) knowledge on the rewards
probabilities for all arms. Recall that the pulling of an arm is based on a hidden and
unknown reward probability µ. In our model, we assume the existence of the pull

algorithm which given no parameter outputs a reward (zero or one) depending on the
unknown reward probability µ. This pull algorithm is made available inside the Init

algorithm. The output of Init, namely the number of pulls ni is assumed to equal 1,
while the cumulative rewards si may equal either zero or one depending on the unknown
reward probability µi, depending on the output of the pull algorithm.

The identification of the best arm is based on a score denoted vi with i being the
index of the data owner DOi. To fit our federated setting in which a data owner DOi
has only access to its cumulative rewards si and its number of pulls ni, the score of a
candidate multi-armed bandits must be computable from si and ni, and nothing else.
For this reason, we have introduced the ScoreArm algorithm expecting as an input for a
data owner DOi the number of the cumulative rewards si and the number of pulls ni.
The current time step t is also inputted to include multi-armed bandits algorithm such
as UCB [SB18] whose score depends on the time step t.



CHAPTER 3. SECURE FEDERATED MULTI-ARMED BANDITS 50

Since we are focusing argmax-based multi-armed bandits algorithms, we have intro-
duced the MAB.BestArm which given K scores outputs the index M of highest score.
While this algorithm can be omitted and replaced by the argmax function, as done
in our framework Tango, the MAB.BestArm is necessary for the completeness of our
model. To fit in our framework, the index of the best arm M is not sufficient. Indeed,
in our framework, we expect each arm to receive a selection bit notifying if the arm has
been chosen. This transformation from best arm index M to a list of K selection bits
is performed by the SelectArm algorithm, expected as an input the best arm index M ,
the current time step t, and outputting K selection bits b1, . . . , bK .

A chosen arm represented by a data owner DOi has to pull a reward r, used to
update its cumulative rewards si and its number of pulls ni. For this purpose our model
includes the PullArm algorithm used specifically to obtain a reward using pull algorithm,
to increment the number of pulls ni by one and, in the eventuality that the obtained
reward r equals one, to increment the cumulative rewards si by one as well.

Definition 19 (Generic Multi-Armed Bandits ). A multi-armed bandits fits our generic
model if it can be instantiated using the following algorithms:

• MAB.Init()→ (si, ni): Given no parameter, this algorithm outputs ni the number
of times that the arm has been pulled along the cumulative rewards si. Since each
arm is supposed to be pulled once at the beginning, we expect ni to equal 1.

• MAB.ScoreArm(si, ni, t)→ vi,t: Given the cumulative rewards si, the number of
pulls ni as well as the current time step t, it outputs the score vi,t of the arm i.

• MAB.BestArm(v1, . . . , vK)→M : Given K scores vi for i in JKK, it outputs the
index M of the best arm. In other words, M equals argmax(v1, . . . , vK).

• MAB.SelectArm(M, t)→ b1, . . . , bK : Given the index M ∈ JKK corresponding to
the best arm and current time step t ∈ JNK, outputs n bits where every bi equals
0, except bM which equals 1, corresponding to the chosen bandit.

• MAB.PullArm(t, bi, si, ni;µi)→ (s′i, n
′
i): Given the current time t ∈ JNK, a selec-

tion bit bi, the cumulative rewards si and the number of pulls ni, outputs the
updated cumulative rewards and the updated number of pulls. We stress that
when bi equals 0, the both s′i and n′i equal respectively si and ni. In the other case
where bi equals 1, n′i equals ni+1 and s′i equals si+ri,t for some value ri,t ∈ {0, 1}
randomly obtained depending on the (hidden and unknown) reward probability
µi. This reward probability µi is considered most of the time unknown. Later,
this probability will be provided by the adversary hence it is interesting to model
this probability.

By construction, a multi-armed bandits algorithm fitting in our MAB model needs to
feature two properties. The first property, that we call the arm score locality property,
stating that the score vi for a data owner DOi can be computed only from the cumulative
rewards si and the number of arms ni, as well as the current time step t. It also suggests
that the arm selection should be performed only based on the highest score, called the
best score selection property. This second property is necessary since our framework is
specifically designed to select an arm based on the highest score. We show that three
multi-armed bandits algorithms are indeed instantiable in our generic MAB model and
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Algorithm Alg Strategy for choosing the arm at time t

ε-greedy with fixed
or decreasing ε

return{
argmaxi∈JKK µ̂i , with probability 1− ε (exploit)
a random arm, with probability ε (explore)

UCB return argmaxi∈JKK(µ̂i +
√

2 ln(t)
ni

)

Thompson Sampling
for i ∈ JKK

sample θi ∼ Beta(si + 1, ni − si + 1)
return argmaxi∈JKK θi

Figure 3.5: Instantiation of three cumulative reward maximisation algorithms. Recall
that for each arm i ∈ JKK, ni is the number of pulls, si is the sum of rewards, and
µ̂i =

si
ni

is the empirical mean.

hence in our framework, namely ε-greedy, UCB and Thompson Sampling, explained
in [KP14] and depicted in Figure 3.5.

Instantiable Algorithms. We first focus on the two UCB and Thompson Sam-
pling multi-armed bandits algorithms. In these two algorithms, the arm selection strat-
egy always consist of selecting the higher score using the argmax function. Hence, for
both of these algorithms and given the index M of the highest score, the MAB.SelectArm

algorithm is programmed to return K selection bits b1, . . . , bK where bM equals one. The
only difference between these two algorithms is the computation of the score vi,t. In

UCB, the score is computed as µ̂i +
√

2 ln(t)
ni

where µ̂i = si
ni

is the empirical mean of
the obtained rewards estimating the unknown reward probability µi. In contrast, the
Thompson Sampling algorithm computes its score by sampling a random value from
the (α, β)-Beta distribution, where α equals si + 1 and where β equals ni − si + 1.
Hence, only the MAB.ScoreArm algorithm differs in order to compute the appropriate
score according to the desired strategy to use.

The ϵ-greedy algorithm requires more attention because of its dual arm selection
strategy. The score of each arm is computed as the empirical mean of the obtained
rewards µ̂i = si

ni
, estimating the unknown reward probability µi. During an exploit

phase, the arm selection intuitively selects the arm having the higher reward probability
µi and hence the highest estimation µ̂i. The exploration, in contrast, randomly choose
an arm, hence ignoring scores. The decision to either explore or exploit at each time
step t ∈ JNK is randomly chosen based on the probability ϵ. The ϵ probability has to
be carefully chosen. Indeed, in case where ϵ is fixed and small then the arm selection
strategy will exploit most of the time. Conversely, a fixed and high probability ϵ will
lead to explore most of the time. An intermediate strategy used to set the probability
ϵ is to decrease the value of ϵ over the time. To be instantiated in our MAB model,
we have to deal with this dual arm selection strategy, namely the exploitation and
the exploration strategies, with respect to the current probability ϵ. Observe that this
probability is completely independent of the cumulative rewards si and the number of
pulls ni and hence can be made public without loss of security. To instantiate ϵ-greedy
in our model, we only have to modify the behaviour of the MAB.ScoreArm algorithm:
During the exploit, each arm computes and returns the empirical mean µ̂i, whereas
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during the exploration each data owner randomly chooses a score from an arbitrary but
fixed distribution, say in JKK. Indeed, since we are performing an argmax on the scores,
when the scores are random then the best arm is chosen at random as well.

Non-instantiable Algorithm. For the sake of illustration, we focus on the Rein-
forcement Comparison [SB18] algorithm that cannot be instantiated in our MAB model.
Briefly, this algorithm maintains a preference πi,t for each arm i ∈ JKK. At time step t,
the probability to select arm i is given by pi,t = eπi,t∑K

j=1 e
πj,t

. Suppose that at time step t,
the arm i has been selected and generated a reward rt. Then, the preference for arm i

is updated as πi,t+1 = πi,t+β(rt− r̄t), where r̄t is the reference reward that depends on
all arms. At the end of each time step t, r̄t+1 is updated as r̄t+1 = (1−α)r̄t+αrt. Both
α and β are learning rates between 0 and 1. To sum up, the probability of selecting an
arm i in Reinforcement Comparison depends on r̄t, which is obtained by averaging over
the observed rewards r1, . . . , rt, which come from all K arms. Therefore, computing the
score of an arm does not respect the arm score locality property required by our model.

3.2 Security Model for Secure Federated Multi-Armed

Bandits

A Secure Federated Multi-Armed Bandits (SFMAB) protocol consists ofK+2 parties: K
data owners where each data owner maintains its own cumulative rewards si and number
of pulls ni as well as the reward function pull i (associated to the reward probability µi),
a user U providing the budget N and expecting the total cumulative rewards s, and the
Controller C in charge of the arm selection.

The protocol starts with a setup stage in which every entity obtains its secret and
public keys, used later in the protocol. This setup phase is programmed as three distinct
and independent key generation algorithms, one for each involved party: A key gener-
ation algorithm denoted DOKeyGen for all the data owners, a key generation for the
controller denoted CKeyGen and a key generation algorithm for the user UKeyGen. We
sometimes refer to the key generation algorithms being executed by all the parties as the
setup phase. To authenticate the public keys, we assume a Public-Key Infrastructure
(PKI), where every public keys are implicitly stored.

Once the setup stage is executed, the arm selection protocol, called SelectArm, is
executed for each time step t ∈ JNK where N is the budget between the K data owners
and the controller C. The SelectArm protocol starts with every data owner inputting its
score vi,t obtained via the MAB.ScoreArm algorithm. The execution of the SelectArm

ends with every data owner having a selection bit. Observe that from a security point-
of-view, the fact that a single data owner (representing an arm) is selected at time step
t is considered yet not explicit, since this property is more related to the correctness
definition of a multi-armed. The uniqueness of the selected bandit is formally defined in
our generic multi-armed bandits model in Definition 19, itself included in our security
definition. Let us denote the selection bit obtained from the data owner DOi at the
time step t by bi,t. Independently of the value of bi,t, the data owner DOi inputs the
MAB.PullArm algorithm, along the cumulative rewards si and number of pulls ni. The
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output of the MAB.PullArm algorithm, consisting of the updated cumulative rewards s′i
and number of pulls n′i, is modified if and only if the provided selection bit bi,t equals
one. Remark that SelectArm is modelled as protocol to cover a large set of protocols.

Once all the budget has been spent, each data owner owns a cumulative rewards
si. The last step of the SFMAB protocol execution consists of sending of the sum of
all cumulative rewards to the final user U , via the rewards sending protocol denoted
SendRewards. In this protocol, all data owners are involved, in addition to the final user
receiving the rewards, and the controller C. SendRewards is also modelled as a protocol
to cover a large set of secure federated multi-armed protocols.

Definition 20 (Secure Federated Multi-Armed Bandits, SFMAB). Let Π be a secure
federated multi-armed bandits protocol defined by the triplet of polynomial-time algo-
rithm and protocols (DOKeyGen, CKeyGen,UKeyGen,SelectArm,SendRewards) where:

• DOKeyGen(1λ)→ (sk i, pk i): Given the unary representation of the security pa-
rameter, outputs the secret key sk i and the public key pk i of the data owner
DOi.

• CKeyGen(1λ)→ (skC , pkC): Given the unary representation of the security param-
eter, outputs the secret key skC and the public key pkC of the controller C.

• UKeyGen(1λ)→ (skU , pkU ): Given the unary representation of the security pa-
rameter, outputs the secret key skU and the public key pkU of the user U .

• SelectArm⟨DO1(sk1, s1, n1, v1), ...,DOK(skK , sK , nK , vK), C(skC)⟩ → DO1(b1), ...,

DOK(bK): Given each data owner DOi having the secret key sk i, cumulative re-
wards si, number of pulls ni and score vi, given the controller C having the secret
key skC , the SelectArm protocol ends with each DOi having the selection bit bi.
We stress that the returned selection bits should satisfy the two following con-
straints: First, b1 + · · ·+ bK equals 1, meaning that there is exactly one selection
bit bM at one, every other selection bits being at zero. Second, we must have
b1, . . . , bK ← MAB.SelectArm(MAB.BestArm(v1, . . . , vK), t) to ensure correctness
of the multi-armed bandits algorithm.

• SendRewards⟨DO1(sk1, s1), ...,DOK(skK , sK), C(skC),U(skU )⟩ → U(s): Given ev-
ery DOi having the cumulative rewards si, given the controller C having the secret
key skC and the user U having the secret key skU , the SendRewards protocol ends
with the user U having the total cumulative rewards s which equals s1 + ...+ sn.

Observe that SelectArm and SendRewards obtain as an input some data computed
outside of the SFMAB specification. For instance the SelectArm protocol expects as an
input the score vi computed from the MAB.ScoreArm algorithm, as well as the cumulative
rewards si and the number of pulls ni maintained by the data owner. This behavior is
desired since a SFMAB is only interesting when communications between the parties are
involved i.e., during the arm selection and the sending of the total cumulative rewards.

3.2.1 Correctness Definition

The correctness of a SFMAB scheme Π consists of returning the same total cumula-
tive rewards s for the user U , with respect to a multi-armed bandits algorithm MAB,
assuming the same random coins for the arm selection and rewards. For clarity, we
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MAB-Rewards(MAB, N,K)

1 : (s1, n1), ..., (sK , nK)← MAB.Init(K)

2 : for t ∈ JNK
3 : ∀i ∈ JKK, vi,t ← MAB.ScoreArm(si, ni, t)

4 : (b1, . . . , bK)← MAB.SelectArm(MAB.BestArm(v1,t, . . . , vK,t), t)

5 : ∀i ∈ JKK, si, ni ← MAB.PullArm(t, bi, si, ni)

6 : return s1 + · · ·+ sK

SFMAB-Rewards(MAB,Π, N,K, λ)

1 : ∀i ∈ JKK, (si, ni)← MAB.Init()

2 : (sk1, pk1), . . . , (skK , pkK)← Π.DOKeyGen(1λ)

3 : (skC , pkC), (skU , pkU )← Π.CKeyGen/Π.UKeyGen(1λ)
4 : for t ∈ JNK
5 : ∀i ∈ JKK, vi,t ← MAB.ScoreArm(t, si, ni) /* Local score evaluation */
6 : Π.SelectArm⟨DO1(sk1, s1, n1, v1,t), ...,DOK(skK , sK , vK , vK,t), C(skC)⟩

→ DO1(b1,t), ...,DOK(bK,t)

7 : ∀i ∈ JKK, (si, ni)← MAB.PullArm(t, bi,t, si, ni) /* Local arm pulling */
8 : Π.SendRewards⟨DO1(sk1, s1), ...,DOK(skK , sK), C(skC),U(skU )⟩ → U(s)
9 : return s

Figure 3.6: Execution of the standard multi-armed bandits algorithm (above) and its
SFMAB version (below).

have depicted in Figure 3.6 the execution of a standard multi-armed bandits algorithm
denoted MAB and its SFMAB version, both returning the total cumulative rewards s.

Definition 21 (p-correctness for SFMAB). Let K be the number of arms and N the
budget, and let µ1, . . . , µK be the reward probabilities for all arms. Then, assuming a
multi-armed bandits algorithm denoted MAB, and its SFMAB version denoted Π, then
Π is said p-correct for some probability p if for every security parameter λ ∈ N, the
following probability holds:

Pr [MAB-Rewards(MAB, N,K) = SFMAB-Rewards(MAB,Π, N,K, λ)] = p

3.2.2 Security Definition

As explained in the introduction of this chapter, we assume that all entities involved
in the SFMAB protocol are honest-but-curious, in the sense that every party acts as
expected, but tries to learn some information based on the received inputs. More im-
portantly, we consider that each party does not collude with other parties. If a SFMAB

requires to have a trusted setup (which is not the case with our construction) one may
consider an honest trusted setup authority, acting only to generate and distribute keys.
Since multi-armed bandits are mostly used in a setting where the server and the final
user are publicly identified, we assume the two followings hypotheses: First, there is a
Public-Key Infrastructure (PKI) authenticating public keys of the server and the final
user. Second, we assume authenticated and confidential channels between every party.
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ExpRealCA (λ,N,K)

1 : µ1, . . . , µK ← A(N,K)

2 : ∀i ∈ JKK, (si, ni)← MAB.Init()

3 : (sk1, pk1), . . . , (skK , pkK), (skC, pkC), (skU , pkU )← DOKeyGen/CKeyGen/UKeyGen(1
λ)

4 : for t ∈ JNK
5 : ∀i ∈ JKK, vi,t ← MAB.ScoreArm(t, si, ni)

6 : SelectArm⟨DO1(sk1, s1, n1, v1,t), ...,DOK(skK , sK , vK , vK,t), C(skC)⟩
→ DO1(b1,t), ...,DOK(bK,t)

7 : ∀i ∈ JKK, (si, ni)← MAB.PullArm(t, bi,t, si, ni;µi)

8 : SendRewards⟨DO1(sk1, s1), ...,DOK(skK , sK), C(skC),U(skU )⟩ → U(s)
9 : return A(skC , pkU , pkC , pk1, ..., pkK ,View(C))

ExpIdealCA,S (λ,N,K) with a simulator S = (S0,S1)
1 : µ1, . . . , µK ← A(N,K)

2 : ∀i ∈ JKK, (si, ni)← MAB.Init()

3 : (sk1, pk1), . . . , (skK , pkK), (skC, pkC), (skU , pkU )← DOKeyGen/CKeyGen/UKeyGen(1
λ)

4 : for t ∈ JNK
5 : (s′1, n

′
1, v

′
1,t), ..., (s

′
K , n

′
K , v

′
K,t)← S0(t,K)

6 : SelectArm⟨DO1(sk1, s
′
1, n

′
1, v

′
1,t), ...,DOK(skK , s

′
K , n

′
K , v

′
K,t), C(skC)⟩

→ DO1(b1,t), ...,DOK(bK,t)

7 : s′1, ..., s
′
K ← S1(K)

8 : SendRewards⟨DO1(sk1, s
′
1), ...,DOK(skK , s

′
K), C(skC),U(skU )⟩

→ U(s′1 + ...+ s′K)

9 : return A(skC , pkU , pkC , pk1, ..., pkK ,View(C))

Figure 3.7: Security games for a real execution of the protocol and the simulation of the
protocol denoted respectively ExpRealCA and ExpIdealCA for the corruption case of C.

Our second hypothesis remains practical since the server is publicly identified, allowing
one to establish secure and authenticated channel using, for instance, TLS [Res18].

Security Properties. Based on the aforementioned hypotheses, we present the ex-
pected security properties of a SFMAB scheme. In this work, we have chosen to follow
a simulation-based security formalism, in which an adversary is asked to distinguish
between two security games called respectively the real world and the ideal world: The
real world corresponds to a real execution of the protocol, whereas the ideal world cor-
responds to a protocol execution in which a simulator denoted S simulates parts of the
protocol, using limited information. This approach is more commonly known as the
real-ideal paradigm. In this work, our security definition is divided into three distinct
security experiments following the real-ideal paradigm, one for each party involved in
the protocol execution.

The simulation security for the controller C, following the real-ideal paradigm, con-
siders the real experiment RealC consisting of the real protocol execution, and the ideal
experiment IdealC consisting of the ideal protocol execution, both depicted in Figure 3.7.
The real world modelled in the ExpRealDA experiment starts by generating the arm states
as well as generating the key pair for every party in the protocol. Then, the arm selection
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protocol SelectArm is executed N times. Once the budget has been spent, the experi-
ment executes the rewards sending protocol SendRewards ending with the final user U
having the total cumulative rewards s. At the end of the experiment, the adversary is
inputted with the public key of every party, as well as the secret key of the controller C
along his view, denoted View(C). Note that the exact information contained in the view
of C depends on the concrete protocol and hence cannot be inferred for the moment.
The ideal world depicted in the ExpIdealCA experiment, in contrast to the RealC exper-
iment, is equipped of the simulator S = (S0,S1). Compared to the real experiment,
the arm scores generation is omitted at each time step t ∈ JNK, the real scores vi,t for
i ∈ JKK being replaced with values obtained by running our first simulator S0, inputted
with the number of arms K and the current time step t. Indeed, the simulator S0 is
asked to output a list of tuples (s′i, n

′
i, v
′
i,t) where s′i is a random cumulative rewards,

n′i is a random number of pulls and v′i,t is a random score. The design of our simu-
lator is motivated since it is asked to produce inputs for each data owner having only
access to the number of arms K and the current time step t ∈ JNK. If the adversary
A, corrupting the controller C in this experiment, cannot distinguish between the real
world and the ideal world, then we can conclude that C learns nothing about the scores,
otherwise is able to distinguish by comparing the scores distribution. The selection bits
outputted by the data owners are honestly computed over the provided random scores,
trivially leading to a random arm selection. A protocol exposing the selection bits to
the adversary would trivially break the simulation by observing a different distribution
of the selected arm. Our second simulator S1 taking place in our ideal world during
the sending of the rewards with the user U , is inputted with the number of arms K.
It outputs K random cumulative rewards s′i that is inputted to the data owner DOi
instead of the real cumulative rewards si. Again, if the adversary cannot distinguish,
then we expect that the adversary A corrupting C does not learn any information about
both each cumulative rewards but also the total cumulative rewards s.

Definition 22 (Simulation security against C). A SFMAB protocol Π defined by the
tuple (DOKeyGen, CKeyGen,UKeyGen,SelectArm,SendRewards) is said SimC-secure with
respect to the budget N and the number of arms K if for every security parameter λ
and every adversary A, there exist a simulator S such that:

AdvSimC
A,Π =

∣∣∣Pr
[
ExpRealCA,Π (1λ, N,K)→ 1

]
− Pr

[
ExpIdealCA,S,Π(1

λ, N,K)→ 1
]∣∣∣

≤ negl(λ)

The simulation security for the user U follows the real-ideal paradigm with the ideal
experiment IdealU and the real experiment RealU. Since the real experiment remains
unchanged compared to the previous definition, we omit the description. During the
arm selection protocol, namely SelectArm, the user U is not involved. However, it is
involved during the rewards sending protocol, namely SendRewards. At the end of the
protocol, U is expected to obtain the total cumulative rewards s computed as the sum
of the cumulative rewards si for every i ∈ JKK. To complete a successful simulation, we
have to care about the honest execution of the multi-armed bandits algorithm. Indeed,
the random sampling of a total cumulative rewards s′ instead of the total cumulative
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rewards s necessarily modifies the view of the adversary, allowing it to distinguish. This
stands in contrast with the simulation for the controller C whose honest execution of
the multi-armed bandits algorithm is not mandatory. From a security standpoint, we
expect the user U not to learn any information on the score of an arm, on the cumulative
rewards si of a given data owner DOi, but also on the selected arm, which can be inferred
via the selection bits.

Once again, our ideal experiment IdealU is equipped of the simulator S = (S0,S1).
Our first simulator S0 is focused on the simulation of values inputted to the SelectArm

protocol. Our simulator is inputted with a very limited information, namely, the current
time step t and the number of arms K. The output of S0 consists of K tuples of the
form (s′i, n

′
i, v
′
i,t) where s′i is a random cumulative rewards, n′i is a random number of

pulls and v′i,t is a random score. Note that the correctness of the multi-armed bandits
algorithms is ensured by the challenger running the experiment. The arm selection
protocol is inputted with completely random values, leading to a random arm selection.
Similarly to the IdealC experiment, if no adversary can distinguish between the arm
selection inputted with valid or random values, based on the U ’s view, then it ensures
that U does not learn any information on the cumulative rewards, on the number of pulls
but also on the selected arm. The second simulator S1 is inputted only with the number
of arms and the total cumulative rewards s computed as the sum of the cumulative
rewards, as well as the number of arms K. The simulator S1 is expected to return K

cumulative rewards s′i whose sum equals the total cumulative rewards s. Clearly, if the
cumulative rewards si can be replaced by random ones without affecting the view of U ,
then we can conclude that every si is not in the view of U .

Definition 23 (Simulation security against U). A SFMAB protocol Π defined by the
tuple (DOKeyGen, CKeyGen,UKeyGen,SelectArm,SendRewards) is said SimU-secure with
respect to the budget N and the number of arms K if for every security parameter λ
and every adversary A, there exist a simulator S such that:

AdvSimU
A,Π =

∣∣∣Pr
[
ExpRealUA,Π (1λ, N,K)→ 1

]
− Pr

[
ExpIdealUA,S,Π(1

λ, N,K)→ 1
]∣∣∣

≤ negl(λ)

The simulation security for a (single) data owner DOi brings a different security.
Indeed, a data owner DOi has access to the cumulative rewards si, the number of
pulls ni but also the selection bit bi,t at each time step. Hence, we have to ensure the
correctness of the arm selection at any time, otherwise is able to distinguish between a
correct execution of the multi-armed bandits and an altered one. To correctly do the
simulation, the security experiment starts with the adversary providing the corrupted
data owner index j. In contrast to all other security definitions, we input the simulator S0
with the current time step t, the number of arms K but also two additional information:
The score vj,t of the corrupted data owner DOj and a bit identifying if the best arm
index M , evaluated on the real scores, equals the corrupted data owner index j. In
other words, the simulator S0 knows if the corrupted data owner DOj owns the best
score or at least if it has to be chosen. Indeed, in case where the corrupted data owner
has to be chosen by the arm selection protocol, then the simulator S0 has to output
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ExpRealUA (λ,N,K)

1 : µ1, . . . , µK ← A(N,K) /* The reward probabilities are implicitly used. */
2 : ∀i ∈ JKK, (si, ni)← MAB.Init()

3 : (sk1, pk1), . . . , (skK , pkK), (skC, pkC), (skU , pkU )← DOKeyGen/CKeyGen/UKeyGen(1
λ)

4 : for t ∈ JNK
5 : ∀i ∈ JKK, vi,t ← MAB.ScoreArm(t, si, ni)

6 : SelectArm⟨DO1(sk1, s1, n1, v1,t), ...,DOK(skK , sK , vK , vK,t), C(skC)⟩
→ DO1(b1,t), ...,DOK(bK,t)

7 : ∀i ∈ JKK, (si, ni)← MAB.PullArm(t, bi,t, si, ni;µi)

8 : SendRewards⟨DO1(sk1, s1), ...,DOK(skK , sK), C(skC),U(skU )⟩ → U(s)
9 : return A(skU , pkU , pkC , pk1, ..., pkK ,View(U))

ExpIdealUA,S (λ,N,K) with a simulator S = (S0,S1)
1 : µ1, . . . , µK ← A(N,K)

2 : ∀i ∈ JKK, (si, ni)← MAB.Init()

3 : (sk1, pk1), . . . , (skK , pkK), (skC , pkC), (skU , pkU )← DOKeyGen/CKeyGen/UKeyGen(1
λ)

4 : for t ∈ JNK
5 : ∀i ∈ JKK, vi,t ← MAB.ScoreArm(t, si, ni)

6 : (s′1, n
′
1, v

′
1,t), ..., (s

′
K , n

′
K , v

′
K,t)← S0(t,K)

7 : SelectArm⟨DO1(sk1, s
′
1, n

′
1, v

′
1,t;µ1), ...,DOK(skK , s

′
K , n

′
K , v

′
K,t;µK), C(skC)⟩

8 : M ← argmax(v1,t, ..., vK,t)

9 : (sM , nM )← MAB.PullArm(t, 1, sM , nM ;µM )

10 : s′1, ..., s
′
K ← S1(s1 + ...+ sK ,K)

11 : SendRewards⟨DO1(sk1, s
′
1), ...,DOK(skK , s

′
K), C(skC),U(skU )⟩ → U(s)

12 : return A(skU , pkU , pkC , pk1, ..., pkK ,View(U))

Figure 3.8: Security games for a real execution of the protocol and the simulation of the
protocol denoted respectively ExpRealUA and ExpIdealUA against U .

a list of scores such that DOj receives a positive selection bit bj,t. Otherwise, DOj
has to receive a negative selection bit. Note that in this case, the simulator S0 does
not have any information on the arm selection that has to be chosen. Hence, the arm
selection is inputted with random scores (for all the data owners except for the corrupted
one) leading to a random arm selection. We stress that the selection bits obtained by
uncorrupted data owners are ignored, only the M -th data owner is pulled thanks to the
challenger. Without having access to the real total cumulative rewards and individual
cumulative rewards si, the second simulator S1 is asked to return the cumulative rewards
s′i for every honest data owner (i.e., for all data owners except the corrupted data owner
denoted DOj).

Definition 24 (Simulation security against DOi). A SFMAB protocol Π defined by
the tuple (DOKeyGen, CKeyGen,UKeyGen,SelectArm,SendRewards) is said to be SimDO-
secure with respect to the budget N and the number of arms K if for every security
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ExpRealDO
A (λ,N,K)

1 : µ1, . . . , µK ← A(N,K) /* The reward probabilities are implicitly used. */
2 : ∀i ∈ JKK, (si, ni)← MAB.Init()

3 : (sk1, pk1), . . . , (skK , pkK), (skC , pkC), (skU , pkU )← DOKeyGen/CKeyGen/UKeyGen(1
λ)

4 : j ← A(pkU , pkC , pk1, ..., pkK)

5 : for t ∈ JNK
6 : ∀i ∈ JKK, vi,t ← MAB.ScoreArm(t, si, ni)

7 : SelectArm⟨DO1(sk1, s1, n1, v1,t), ...,DOK(skK , sK , vK , vK,t), C(skC)⟩
→ DO1(b1,t), ...,DOK(bK,t)

8 : ∀i ∈ JKK, (si, ni)← MAB.PullArm(t, bi,t, si, ni)

9 : SendRewards⟨DO1(sk1, s1), ...,DOK(skK , sK), C(skC),U(skU )⟩ → U(s)
10 : return A(sk j ,View(DOj))

Security game ExpIdealDO
A,S (λ,N,K) with a simulator S = (S0,S1)

1 : µ1, . . . , µK ← A(N,K) /* The reward probabilities are implicitly used. */
2 : ∀i ∈ JKK, (si, ni)← MAB.Init()

3 : (sk1, pk1), . . . , (skK , pkK), (skC , pkC), (skU , pkU )← DOKeyGen/CKeyGen/UKeyGen(1
λ)

4 : j ← A(pkU , pkD, pkP , pk1, ..., pkK)

5 : for t ∈ JNK
6 : ∀i ∈ JKK, vi,t ← MAB.ScoreArm(t, si, ni)

7 : M ← argmax(v1,t, ..., vK,t)

8 : {(s′i, n′
i, v

′
i,t)}i∈JKK,i ̸=j ← S0(t,K,M

?
= j, vj,t)

9 : ∀i ∈ JKK, i ̸= j;V ′
i,t ← (s′i, n

′
i, v

′
i,t)

10 : Vj,t ← (sj , nj , vj,t)

11 : SelectArm⟨DO1(sk1, V
′
1,t), ...,DOj(sk j , Vj,t), ...,DOK(skK , V

′
K,t), C(skC)⟩

→ DO1(b1,t), ...,DO1(bj,t), ...,DOK(bK,t)

12 : (sM , nM )← MAB.PullArm(t, 1, sM , nM ;µM )

13 : s′1, ..., s
′
j−1, s

′
j+1, ..., s

′
K ← S1(K, j)

14 : SendRewards⟨DO1(sk1, s
′
1), ...,DOj(sk j , sj), ...,DOK(skK , s

′
K), C(skC),U(skU )⟩

→ U(s′1 + ...+ sj + ...+ s′K)

15 : return A(sk j ,View(DOj))

Figure 3.9: Security games for a real execution of the protocol and the simulation of the
protocol denoted respectively ExpRealDO

A and ExpIdealDO
A against an individual data owner.

parameter λ and every adversary A, there exist a simulator S such that:

AdvSimDO
A,Π =

∣∣∣Pr
[
ExpRealDO
A,Π (1λ, N,K)→ 1

]
− Pr

[
ExpIdealDO
A,S,Π (1λ, N,K)→ 1

]∣∣∣
≤ negl(λ)

3.3 Tango: A Secure Federated Bandits Protocol

We propose Tango, our construction of SFMAB scheme relying on K+3 parties. First,
we have K data owners in charge of maintaining their cumulative rewards si and number
of pulls ni. We have also the user U , involved at the beginning to provide the budget N
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and at the end to obtain the total cumulative rewards s. Finally, we have the controller
C, that is splitted here into two distinct parties, namely the proxy node P and the
reflector node R. Before introducing our construction, since we are splitting C into two
distinct parties, some clarifications are needed about the security model we consider. As
already assumed during the security definition statement (see Section 3.2.2), we assume
that P and R are honest-but-curious. Another assumption we do, P and R should not
collude. We stress that this assumption is a standard and common hypothesis in multi-
party computations. For the sake of comprehension, let us first introduce an overview
of our construction, whose design follows the blueprint of Samba [CLMS22].

Overview of Tango. The best arm identification consists of computing the index of
the arm having the highest score. This is achieved in Tango using the key mechanism
that we call the homomorphic best arm identification. In a nutshell, the best arm
identification is performed directly over encrypted approximate scores, in the encrypted
domain thanks to the fully homomorphic encryption (FHE) scheme. Note that the
scores inputting the argmax function follow the order of the data owner index, which
preserves the equality of the argmax when two or more scores are equal. Once the best
arm index has been obtained, say M , it is still encrypted under the FHE scheme and
hence unknown to the proxy node. Given this encrypted index M , the proxy node P
computes every selection bit bi for each data owner DOi, by testing the equality function
between the current data owner index i and the best arm index M . As a result, the
proxy node P obtains K encrypted selection bits, where only the encrypted bit bM
equals one (since only the M -th data owner the index M). These encrypted selection
bits, along with K secret-keys of a secret-key encryption (SKE) scheme encrypted under
a public-key encryption (PKE) scheme, received at each time step from every data owner,
are permuted thanks to a permutation pt generated by P at each time step t ∈ JNK.
These permuted encrypted selection bits and permuted encrypted secret-keys are shared
with the reflector node R, having the private decryption key for both the PKE and
FHE schemes. After the decryption of all the received ciphertexts, the reflector node
R obtains K permuted secret-keys and K permuted selection bits. It encrypts every
i-th selection bit with i-th received secret-key of the SKE scheme. The K resulting
ciphertexts, encrypting permuted selection bits, are sent back to the proxy node P which
inverts the permutation before forwarding the encrypted selection bit to the appropriate
data owner, having the secret-key to decrypt the selection bit.

We recall that during the protocol execution, a data owner DOi maintains a cu-
mulative rewards si that needs to be aggregated and sent to the final user during the
SendRewards protocol. During this reward sending protocol, every DOi encrypts its
cumulative rewards si using an additively homomorphic encryption scheme AHE whose
private decryption key is owned by the user U . The resulting ciphertext that we denote
as csi , is then shared with the proxy node P, that does the homomorphic sum resulting
into the encryption of the total cumulative rewards s, later sent to the user U recovering
s. To support the failure of a data owner DOi, at every time step t, DOi encrypts its cu-
mulative rewards si using the additively homomorphic encryption scheme and shares the
resulting ciphertext csi to the proxy node P which registers the pair (i, csi ), overwriting
the entry (i, ·) if such an entry exists.
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DOKeyGen (1λ)

1 : sk i ← ∅
2 : pk i ← ∅
3 : return (sk i, pk i)

PKeyGen (1λ)

1 : skP ← ∅
2 : pkP ← ∅
3 : return (skP , pkP)

RKeyGen (1λ)

1 : (skFHE
R , pkFHE

R )← FHE.KeyGen(λ)

2 : (skPKE
R , pkPKE

R )← PKE.KeyGen(λ)

3 : skR ← (skPKE
R , skFHE

R )

4 : pkR ← (pkPKE
R , pkFHE

R )

5 : return (skR, pkR)

UKeyGen (1λ)

1 : (skAHE
U , pkAHE

U )← AHE.KeyGen(λ)

2 : skU ← skAHE
U

3 : pkU ← pkAHE
U

4 : return (skU , pkU )

Figure 3.10: Presentation of the setup of Tango

Setup of Tango (Figure 3.10)

In Tango the setup, being depicted in Figure 3.10, is represented by four independent
key generation algorithms, one for each party involved in the protocol. In Tango, a
data owner DOi as well as the proxy node P are keyless. Hence, the key generation
for each data owner DOi as well as the proxy node P, returning an empty private and
public keys. During the protocol execution, the reflector node R and the user U have to
decrypt ciphertexts, hence are required to generate one or more encryption key pairs.
On a hand, the reflector node R needs to decrypt the encrypted permuted selection
bits bpt(i),t, that are computed homomorphically using a fully homomorphic encryption
scheme. On another hand, it has to decrypt a permuted list of encrypted secret-keys,
encrypted by the data owners using the encryption public-key of R. Hence, during
the setup, the reflector node R generates two encryption key pairs, one for the fully
homomorphic encryption scheme FHE and another one for the public-key encryption
scheme PKE. On its side, the user U receives at the end of the SendRewards protocol a
ciphertext encrypting the total cumulative rewards s, computed as the sum of encrypted
cumulative rewards si, thanks to the additively homomorphic encryption scheme AHE.
Hence, the user U generates a key pair for the AHE scheme. All public keys are assumed
to be registered in the PKI.

Arm Selection Protocol of Tango (Figure 3.11)

The arm selection protocol, called SelectArm, starts with every data owner DOi being
inputted at the time step t with their respective scores vi,t as well as the cumulative
rewards si and the number of pulls ni. To allow the proxy node P to homomorphically
evaluate the argmax function, each DOi encrypts its score vi,t using the R’s encryption
key of the FHE scheme. DOi also generates a secret-key ki,t that is encrypted using the
R’s encryption public key of the PKE scheme. Finally, to handle the case of failure, each
DOi encrypts its cumulative rewards si using the U ’s encryption public key of the AHE

scheme. These three resulting ciphertexts respectively denoted cvi,t, cki,t and csi,t are sent
to the proxy node P.
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Description of the SelectArm protocol at time t ∈ JNK:

DOi(sk i, si, ni, vi,t) P(skP) R(skR)

(1) (cvi,t, c
k
i,t, c

s
i,t)← Score(ski, si, ni, vi,t)

(2) {(cMpt(i),t, c
k
pt(i),t

)}i∈JKK ← Perm(skP , {cvi,t, c
k
i,t, c

s
i,t}i∈JKK)

(3) {cbpt(i),t}i∈JKK ←

Select(skR, {(cMpt(i),t, c
k
pt(i),t

)}i∈JKK)

(4) {cbi,t}i∈JKK ← Inv(skP , {cbpt(i),t}i∈JKK)

(5) (si, ni, ri,t)← Pull(ski, si, ni, c
b
i,t)

DOi sends (cvi,t, c
k
i,t, c

s
i,t) to P

P sends {(cMpt(i),t, c
k
pt(i),t

)}i∈JKK to R

R sends {cbpt(i),t}i∈JKK to P

P sends cbi,t to DOi

C

DOi Score(sk i, si, ni, vi,t)

1 : ki,t ← SKE.KeyGen(λ)

2 : cvi,t ← FHE.Enc(pkFHE
R , vi,t)

3 : cki,t ← PKE.Enc(pkPKE
R , ki,t)

4 : csi,t ← AHE.Enc(pkAHE
U , si)

5 : return (cvi,t, c
k
i,t, c

s
i,t)

P Perm(skP , {(cvi,t, cki,t, csi,t)}i∈JKK)

1 : ∀i ∈ JKK,Store (i, csi,t)

2 : pt ← PRP.Gen(K)

3 : cMt ← FHE.Eval(argmax, cv1,t, ..., c
v
K,t)

4 : ∀i ∈ JKK, cMi,t ← FHE.Eval(Equal, cMt , i) /* Ciphertext-Plaintext equality */

5 : {cMpt(i),t}i∈JKK ← PRP.Perm({cMi,t}i∈JKK)

6 : {ckpt(i),t}i∈JKK ← PRP.Perm({cki,t}i∈JKK)

7 : return {(cMpt(i),t, c
k
pt(i),t)}i∈JKK

R Select(skR, {(cMpt(i),t, c
k
pt(i),t

)}i∈JKK)

1 : ∀i ∈ JKK, kpt(i),t ← PKE.Dec(skPKE
R , ckpt(i),t)

2 : ∀i ∈ JKK, bpt(i),t ← FHE.Dec(skFHE
R , cMpt(i),t)

3 : ∀i ∈ JKK; cbpt(i),t ← SKE.Enc(kpt(i),t, bpt(i))

4 : return {cbpt(i),t}i∈JKK

P Inv(skP , {cbpt(i),t}i∈JKK)

1 : {cbi,t}i∈JKK ← PRP.Inv({cbpt(i),t}i∈JKK)

2 : return cbA,t, . . . , c
b
K,t

DOi Pull(sk i, si, ni, cbi,t)

1 : bi,t ← SKE.Dec(ki,t, c
b
i,t)

2 : return bi,t

Figure 3.11: Presentation of the SelectArm protocol for Tango. The padlock means
that an authenticated secure channel is used to communicate.
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Once all the ciphertexts are received, thanks to the homomorphic property of the
FHE scheme, P evaluates the argmax function over the encrypted scores, resulting into
the index M , still encrypted under the R’s encryption public key of the FHE scheme.
The proxy node P converts this best arm index into K selection bits bi,t, obtained via
the homomorphic equality testing between the index i of a data owner DOi and the
encrypted best arm index M . For clarity, let us denote the encrypted selection bit for
DOi at a time step t ∈ JNK by cMi,t and its encrypted secret-key by cki,t. At this point,
P generates a pseudo-random permutation pt using the PRP scheme and permutes the
encrypted selection bits and the encrypted secret-keys, resulting into the ciphertexts
cMpt(i),t and ckpt(i),t for every i ∈ JKK at some time step t ∈ JNK. These permuted
ciphertexts are then shared with the reflector node R having the private decryption key
for both the PKE and FHE schemes. After the decryption of these ciphertexts, R obtains
K secret-keys kpt(i),t of the SKE scheme and K selection bits bpt(i),t whose only pt(M)

equals one. Each selection bit bpt(i),t is encrypted using the secret-key kpt(i),t resulting
into the SKE ciphertext denoted cbpt(i),t.

Observe that R has now K ciphertexts, each one encrypting a selection bit. These
encrypted selection bits, this time under the SKE scheme, are sent back to the proxy node
P, which does not have any key to decrypt the selection bits. Note that the secret-key
being permuted by the proxy node are encrypted using the public-key encryption scheme
PKE and hence prevents the proxy node to learn any information from these secret-
keys, thanks to the IND-CPA security of the PKE scheme. Knowing the permutation
pt, the proxy node P can invert the permutation of the permuted list of encrypted
selection bits cbpt(1),t, . . . , c

b
pt(K),t using the permutation inverse p−1t , resulting into the

list cb1,t, . . . , cbK,t. Hence, each encrypted selection bit cbi,t is sent to i-th data owner DOi,
having the secret-key ki,t of the SKE scheme to decrypt the ciphertext. Recall that the
arm selection protocol ends with every data owner DOi having a selection bit bi,t, later
used to pull itself using the MAB.PullArm algorithm. Hence, SelectArm ends with the
return of the selection bit bi,t.

We have omitted the role of the ciphertext csi,t encrypting the cumulative rewards
si, transmitted by every data owner DOi at each time step t to the proxy node P. This
ciphertext is not relevant for the arm selection but is useful to provide resistance against
failure of a data owner: Suppose that a data owner DOi becomes suddenly offline at
some time t ∈ JNK. Since a data owner does not hold any secret decryption key (except
the one of the SKE scheme that is generated at each time step), the protocol is able to
continue the arm selection without the offline data owner. However, if this data owner
has been pulled, it is interesting to remember how much rewards it has produced. This
is exactly for this reason that the encryption of si is sent at each time step to the proxy
node P, storing the pair (i, csi,t). Later during the rewards sending protocol, if the data
owner becomes offline, the saved cumulative rewards si. This prevents the loss of all the
cumulative rewards collected by the data owner, even if the data owner remains offline
until the end of the secure federated multi-armed bandits protocol execution.
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Description of the SendRewards Protocol:

DOi(sk i, si, ni) P(skP) U(skU )
csi ← AHE.Enc(pkAHE

U , si)

send csi to P receive csi from DOi

For all csi not received, get (i, csi ) from storage

cs ← AHE.Add(cs1, . . . , c
s
K)

send cs to U receive cs from P

s← AHE.Dec(skAHE
U , cs)

Figure 3.12: Presentation of the SendRewards protocol for Tango. The padlock
means that an authenticated secure channel is used to communicate.

Total Cumulative Rewards Sending Protocol of Tango (Figure 3.12)

At the end of the protocol, the user U expects to obtain the total cumulative rewards
s corresponding to the sum of the cumulative rewards si, owned by the data owners.
To perform the secure aggregation of the cumulative rewards, we rely on the additively
homomorphic property of the AHE scheme. The SendRewards protocol starts by each
data owner inputted with its cumulative rewards si, encrypting si using the U ’s en-
cryption public-key of the AHE scheme. The resulting ciphertext denoted csi is sent to
the proxy node P, performing the secure aggregation using the additively homomorphic
property of the AHE scheme. The encrypted total cumulative rewards s, denoted as the
ciphertext cs is shared with the user U , owning the private decryption key and hence
recovers the total cumulative rewards s.

3.3.1 Correctness of Tango

To prove the correctness of Tango, we have to show that all the cryptographic opera-
tions do not affect the arm selection as well as the computation of the total cumulative
rewards. To prove this statement, we will proceed to a sequence of modifications start-
ing from Tango, in which all the cryptographic operations are removed one-by-one. To
model potential errors due to cryptography, we explicitly denote by ϵFHE the probability
of error of the fully homomorphic encryption scheme FHE during the argmax evaluation,
and ϵAHE the probability of error of the additively homomorphic encryption scheme AHE

during the secure aggregation. Note that these probabilities of error refer to the evalu-
ation correctness definition (see Definition 8 and Definition 11) and not the decryption
correctness, the second one ensuring correctness of decryption only for fresh ciphertexts.
While in general secret-key and public-key encryption schemes without homomorphic
property provides perfect correctness, for the sake of formalism, we denote by ϵSKE and
ϵPKE the probability of decryption error respectively for the secret-key encryption scheme
SKE and for the public-key encryption scheme PKE.

Removal of the Permutation. The permutation pt generated at each time t is used
to hide the identity of the arm chosen M . As a response, the proxy node obtains K
selection bits cbpt(i),t encrypted under the SKE scheme, that are permuted with respect
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to the permutation pt randomly chosen by P. Since P knows the permutation, it inverts
the permutation with p−1t leading the ordered encrypted selection bit cbi,t. Hence, the
selection bits are correctly assigned. Thus the correctness is ensured even in the presence
of the permutation, so removing the permutation does not affect the arm selection.

Removal of the Homomorphic Arm Selection. The homomorphic evaluation of
the argmax function using the FHE scheme results in the index M . The correctness
of the multi-armed bandits algorithm, modelled under the MAB model, heavily holds
under the hypothesis that M is indeed correctly evaluated using the FHE scheme. Due
to the probability of error during the homomorphic argmax evaluation followed by the
K equality tests, the returned total cumulative rewards s can differ with and without
the FHE scheme. Assuming the error probability ϵFHE that an error occurs during the
decryption procedure after the homomorphic evaluation of the argmax evaluation and
the K equality tests, since the reflector node R decrypts K FHE ciphertexts, at each
time step the probability that no decryption error occurs equals (1− ϵFHE)K . Then, this
probability for all the time steps equals (1− ϵFHE)NK .

Removal of the Secret-Key and Public-Key Encryptions. At this point, the
permutation pt as well as the FHE scheme are removed. This let us with a hybrid
version of Tango, where only the secret-keys of the SKE scheme, the selection bits and
the cumulative rewards are encrypted. Following the same approach as above, for each
time step, we remove the encryption of the SKE and the PKE schemes, transmitting all
the data in clear instead. This transition does not affect the total cumulative rewards
s as long as that the decryption of the K secret-keys and the K selection bits are
correctly decrypted respectively by the reflector node R and by every data owner. The
probability that no error occurs during the decryption for all the time steps equals
(1− ϵSKE)NK · (1− ϵPKE)NK .

Removal of the Homomorphic Aggregation. The remaining cryptographic op-
erations occur in the SendRewards protocol, in which each cumulative rewards si is
encrypted with the U ’s encryption public key of the AHE scheme. After the homomor-
phic addition performed by P, the resulting ciphertext encrypting s is sent to the user
U . The resulting total cumulative rewards s obtained by U is valid if and only if the
homomorphic addition using the AHE scheme is correct, which happens with probability
1 − ϵAHE. Note that this probability is the same even in case of the failure of a data
owner DOi using our reward saving mechanism in the sense that it does not involve an
additional encryption, addition or decryption.

The resulting protocol, that we denote FedMab for clarity, no more contains any
cryptographic operation and hence corresponds to the MAB-Rewards algorithm depicted
in Figure 3.6. In FedMab, the correctness of the multi-armed bandits algorithm is clear:
The arm selection is computed via the argmax function evaluated over unencrypted
scores. As we have observed during this sequence, the returned total cumulative rewards
s between FedMab and Tango are identical, at condition that all cryptographic decryp-
tions act correctly. By aggregating all the aforementioned probabilities, we can infer the
probability p that no error occurs due to cryptography (hence returning the same total
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KeyGen SelectArm, N times SendRewards
DOi P R U DOi P R U DOi P R U

SKE.KeyGen 1
Enc K
Dec 1

PKE.KeyGen 1
Enc 1
Dec K

FHE.KeyGen 1
Enc 1
Eval O(K)
Dec K

AHE.KeyGen 1
Enc 1 1
Add K-1
Dec 1

Figure 3.13: Cryptographic operations performed in the protocol.

cumulative rewards s), defined as p = (1−ϵFHE)NK ·(1−ϵSKE)NK ·(1−ϵPKE)NK ·(1−ϵAHE).
Then, we state Tango ensures p-correctness.

3.3.2 Complexity of Tango

During our protocol, five cryptographic primitives are necessary, namely the fully ho-
momorphic encryption scheme FHE, the secret-key and public key encryption schemes
SKE and PKE, the additive homomorphic encryption scheme AHE as well as the pseudo-
random permutation PRP. We omit the pseudo-random permutation from our analysis
since it is a fairly straightforward and efficient primitive, which leave us with four cryp-
tographic primitives. For the sake of clarity, we have depicted in Figure 3.13 a summary
of the usage of each primitive during the key generation and the two protocols SelectArm
and SendRewards.

During the setup, the user U as well as the reflector node R generate key pairs for
the public-key encryption schemes including the public-key encryption scheme PKE, the
additively homomorphic encryption scheme AHE and the fully homomorphic encryption
scheme FHE.

During the arm selection protocol SelectArm, every data owner DOi encrypts its own
score, its own cumulative rewards as well as its own freshly generated secret-key, using
three distinct schemes, namely the FHE, AHE and PKE schemes. At the end of the
protocol, DOi receives a ciphertext encrypting its selection bit that has to be decrypted
using the SKE scheme. Since the SelectArm is executed for each time step t ∈ JNK,
the asymptotic complexity of DOi for all the executions of the SelectArm protocol is
O(N ·(O(FHE.Enc)+O(AHE.Enc)+O(PKE.Enc)+O(SKE.Dec))). From a cryptographic
standpoint, the proxy node P performs the most time-consuming operation consisting
of the homomorphic evaluation of the argmax function (applied on K scores) followed
by K equality testings. For simplicity, we hide all these operations under the FHE.Eval

algortihm. Since this step is performed N times, the asymptotic complexity of P for
all the executions of SelectArm is O(NK · FHE.Eval). The reflector node R, on its side,
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decrypts the encrypted selection bits, encrypted under the FHE scheme as well as the
secret-keys encrypted under the PKE scheme. It also encrypts all the selection bits
using the SKE scheme. Since we have K encrypted secret-keys to decrypt with PKE, K
selection bits to decrypt with PKE and K selection bits to encrypt with SKE, and since
the SelectArm protocol is executed N times, then for all the executions of SelectArm, R
has an asymptotic complexity of O(NK · (O(PKE.Dec) +O(SKE.Enc) +O(FHE.Dec))).

During the SendRewards protocol, every data owner DOi encrypts its own cumula-
tive rewards si using the AHE scheme. Hence, the asymptotic complexity of DOi during
the SendRewards protocol is O(AHE.Enc). The proxy node P aggregates the cumula-
tive rewards si to obtain the encryption of the total cumulative rewards s using the
homomorphic property of the AHE scheme. Hence, the asymptotic complexity of the
proxy node during the SendRewards protocol is O(K · O(AHE.Add)). Finally, the user
U receives and decrypts the encryption of s, still using the AHE scheme, leading to the
complexity O(AHE.Dec).

The final asymptotic complexities for all the parties involved in the protocol are now
easy to deduce by summing all the asymptotic complexities. In particular, a data owner
DOi has complexity O(N · (O(FHE.Enc)+O(AHE.Enc)+O(PKE.Enc)+O(SKE.Dec))+
AHE.Enc). The proxy node P has complexity O(NK · (O(FHE.Eval) + K · AHE.Add)
having the NK factor, which is similar to the asymptotic complexity of the reflector
R of O(NK · (O(PKE.Dec) + O(FHE.Dec) + O(SKE.Dec))). Finally, the user U has
complexity O(AHE.Dec).

3.3.3 Security of Tango

To prove the security of Tango, we proceed for each party into a sequence of games,
starting from the real protocol to the ideal protocol where the security is easy to prove.
We start the security proof by the controller, implemented in Tango by the proxy and
reflector nodes, then we prove the security for the user and finally for a data owner.

Security Proofs for Proxy and Reflector

We first focus on the case of the controller C, being splitted into two distinct non-
colluding nodes, namely the reflector node R and the proxy node P. To prove that
the controller C does not learn any information on any score vi,t, on any cumulative
rewards ni, on any number of pulls for a data owner DOi at some time step t, or on the
total cumulative rewards s, we proceed with two lemmas. The first lemma considers the
case of the (honest-but-curious) corruption of the reflector node R, whereas the second
lemma considers the case of a the (honest-but-curious) corruption of the proxy node
P. For clarity, we denote by RealR (respectively RealP) the real experiment being the
same of the real experiment RealC, except that the adversary corrupts R (respectively
P). Similarly, we denote by IdealR (respectively IdealP) the ideal experiment being the
ideal experiment IdealC, except that the adversary corrupts only R (respectively P). To
prove the simulation security SimC of Tango, it suffices to prove these two lemmas.

Lemma 1. Let N ∈ N be the budget and K ∈ N be the number of arms. Then,
for every security parameter λ ∈ N, every polynomial-time adversary A, there exists a
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simulator S such that Tango is statistically SimR-secure:

Pr
[
GRealR
A (1λ, N,K)→ 1

] s≈ Pr
[
GIdealR
A,S (1λ, N,K)→ 1

]
Proof. Recall that our security definition requires the definition of the view of R, de-
noted View(R), containing every piece of data collected during the SelectArm protocol,
including {kpt(i),t, bpt(i),t}i∈JKK,t∈JNK. In order to prove the above theorem, we first
construct the simulator S = (S0,S1) used in the game ExpIdealRA,S :

• Simulator S0. Our first simulator S0 obtains as an input the current time t ∈ JNK
and the number of arms K. At the end of the execution, for some time step
t ∈ JKK, the simulator S0 is required to output a K-sized list of tuples (s′i, n′i, v′i,t)
for i ∈ JKK where s′i is a random cumulative rewards, n′i is a random number of
pulls and v′i,t is a random score.
The simulator S0 starts by choosing randomly K scores v′1,t, . . . , v′K,t, K random
cumulative rewards s′1, . . . , s′K and K random number of pulls n′1, . . . , n′K . Finally,
it outputs the list of tuples (s′i, n

′
i, v
′
i,t) for every i ∈ JKK.

• Simulator S1. Our second simulator S1 obtains as an input the number of arms
K, and produces the simulated cumulative rewards s′i randomly chosen from an
arbitrary space, say N, for each arm i ∈ JKK.

By construction, our simulator S = (S0,S1) is polynomial-time and hence is a suit-
able simulator. We are ready to prove the indistinguishability of the real world cor-
responding to the real experiment ExpRealRA , and the ideal world corresponding to the
experiment ExpIdealRA,S .
Game G0. This game corresponds to our real experiment ExpRealRA , hence:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
ExpRealRA (1λ, N,K)→ 1

]
Game G1. This game is the same as G0, except that we introduce our simulator S =

(S0,S1) in the game. Our first simulator S0 is inputted at each time t ∈ JNK with
the appropriate inputs i.e., the current time t and the number of arms K. Our second
simulator S1 is also added to the game, inputted with the number of arms K. Note that
the outputs of our simulator, including the list of tuples (s′i, n

′
i, v
′
i,t) for each i ∈ JKK

and for each time step t ∈ JNK is not used as well as the outputted random cumulative
rewards s′i at the end of the protocol execution. Thus it does not impact the view of R,
providing no advantage for the adversary to distinguish:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
G1
A,S(1

λ, N,K)→ 1
]

Game G2. This game is the same as G1 except that we focus on the cumulative rewards
si inputted to the SendRewards protocol, allowing the user U to obtain the total cumu-
lative rewards s. Remark that no information about the total cumulative rewards s or
on any cumulative rewards si is contained on the view of R. Therefore, in this game, we
are allowed to replace the real cumulative rewards by the random cumulative rewards
computed by our simulator S1, inputted with the number of arms K, and outputting
K random cumulative rewards s′1, ..., s′K . Observe that the view of R is completely
independent of this modification, leading to a perfect indistinguishability between the
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game G1 and the game G2:

Pr
[
G1
A,S(1

λ, N,K)→ 1
] p= Pr

[
G2
A,S(1

λ, N,K)→ 1
]

Game G3. This game is the same as G2 except that we focus on the cumulative rewards
si and the number of pulls ni inputted to the SelectArm protocol. In Tango, each
cumulative rewards si is sent encrypted under the AHE scheme to the proxy node P in
order to continue the protocol execution even in case of a data owner shutdown. Observe
that all encrypted cumulative rewards si remain on the proxy node P and thus are not
in the view of the reflector node R. Hence, as done previously, we are allowed to replace
the real cumulative rewards si by the random cumulative rewards s′i computed by our
simulator S0, while having a perfect indistinguishability between G2 and G3:

Pr
[
G2
A,S(1

λ, N,K)→ 1
] p= Pr

[
G3
A,S(1

λ, N,K)→ 1
]

Game G4. This game is the same as G3, except that at each time t ∈ JNK, each score
vi,t for i ∈ JKK is replaced by the random score v′i,t.

Let us explain why this game is statistically indistinguishable from G3: Recall that
the view of R is composed at each time step t ∈ JNK of K permuted selection bits
bpt(1),t, . . . , bpt(K),t computed via the homomorphic argmax evaluation over the provided
scores, where pt is the pseudo-random permutation chosen by P. The view of R also
contains the secret-key kpt(i),t obtained after the decryption. Observe that by replacing
each real score vi,t with a completely random score v′i,t, the best arm index M will
necessary be altered. Let denote M ′ the best arm index computed over random scores.
Clearly, without the permutation pt the reflector node R would notice this modification.
This fact is strengthened by the fact that the adversary provides the reward probabilities
for all the arms. Thanks to the permutation pt, R has to distinguish between the case
where the only one selection bit equaling one is bpt(M),t and the case where the only
selection bit equaling one is bpt(M ′),t. Furthermore, note that the permutation pt is
different and randomly chosen at each time step t ∈ JNK, hence the probability to
have bpt(M ′),t at one equals the probability to receive bp′t(M),t for some permutation p′t.
In other words, R cannot distinguish between the case where the argmax has been
performed over real or random scores, given only the permuted index pt(M) where
bpt(M) equals one. This argument holds if the generated pseudo-random permutation pt
is indeed random, otherwise an adversary would be able to distinguish using a statistical
attack. As a result, the view of R is statistically indistinguishable between G3 and G4:

Pr
[
G3
A,S(1

λ, N,K)→ 1
] s≈ Pr

[
G4
A,S(1

λ, N,K)→ 1
]

Observe that the game G4 is exactly our ideal world, corresponding to the IdealR exper-
iment, leading to the following equality:

Pr
[
G4
A,S(1

λ, N,K)→ 1
] p= Pr

[
ExpIdealRA,S (1λ, N,K)→ 1

]
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Hence, we have shown that:

Pr
[
ExpRealRA (1λ, N,K)→ 1

]
s≈ Pr

[
ExpIdealRA,S (1λ, N,K)→ 1

]

Lemma 2. Let N ∈ N be the budget and K ∈ N be the number of arms. Then,
assuming an IND-CPA-secure secret-key encryption scheme SKE, an IND-CPA-secure
public-key encryption scheme PKE, an IND-CPA-secure fully homomorphic encryption
scheme FHE and an IND-CPA-secure additively homomorphic encryption scheme AHE

for every security parameter λ ∈ N, then polynomial-time adversary A, there exists a
polynomial-time simulator S such that Tango is SimP-secure with the following bound:∣∣∣Pr

[
ExpRealPA (1λ, N,K)→ 1

]
− Pr

[
ExpIdealPA,S (1λ, N,K)→ 1

]∣∣∣
≤ 2NK · (AdvIND-CPA

A,PKE + AdvIND-CPA
A,SKE + AdvIND-CPA

A,FHE + AdvIND-CPA
A,AHE ) + 2K · AdvIND-CPA

A,AHE

Proof. Recall that our security definition requires the definition of the view of P, de-
noted View(P), containing the encrypted total cumulative rewards cs, all the ciphertexts
exchanged during the arm selection protocol (including {csi,t, cvi,t, cki,t, cbi,t, pt}i∈JKK,t∈JNK)

and all the ciphertexts exchanged during the sending of the total cumulative rewards
(including {si, ni, csi}i∈JKK). In order to prove the above theorem, we first construct the
simulator S = (S0,S1) used in the game ExpIdealPA,S :

• Simulator S0. Our first simulator S0 obtains as an input the current time t ∈ JNK
and the number of arms K. At the end of the execution, the simulator S0 is
required to output two lists: A K-sized list of tuples (s′i, n′i, v′i,t) for i ∈ JKK where
s′i is a random cumulative rewards, n′i is a random number of pulls and v′i,t is a
random score.

Observe that in the ExpIdealPA,S experiment, the simulator S0 is not required to ensure
correctness of the multi-armed bandits execution, since the view of P is only com-
posed of ciphertexts. Hence, our simulator independently samples each random
score v′i,t from an arbitrary space, say JNK.

• Simulator S1. Our second simulator S1 obtains as an input the number of arms
K, and produces the random rewards s′i randomly chosen from an arbitrary space,
say N for each arm i ∈ JKK.

By construction, our simulator S = (S0,S1) is polynomial-time and hence is a suitable
simulator. We are ready to prove the indistinguishability of the real world corresponding
to the experiment ExpRealRA , and the ideal world corresponding to ExpIdealRA,S .
Game G0. This initial game corresponds to the ExpRealPA experiment, hence:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
ExpRealPA (λ,N,K)→ 1

]
Game G1. This game is the same as G0, except that we introduce our simulator S =

(S0,S1) as follows: The first simulator S0 is inputted at each time t ∈ JNK with the
appropriate inputs i.e., the number of arms K. The output of S0 is composed of K
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tuples where each tuple contains a random cumulative rewards s′i, a random number
of pulls n′i and a random score v′i,t. Note that at this point, this output is not used.
The second simulator S1 is inputted with the number of arms K. The output of the
simulator S1 consists of K random rewards s′i for each i ∈ JKK, and is also not used for
the moment. Since the output of the simulator S is not used, the view of the adversary
remains unchanged. Then, G0 and G1 are perfectly indistinguishable:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
G1
A,S(1

λ, N,K)→ 1
]

Game Gk for k ∈ J2,K+1K. This game is the same as Gk−1, except that we replace the
encryption of cumulative rewards si inputted to the SendRewards protocol, i being the
(k − 1)-th data owner, with an encryption of the random cumulative rewards s′i chosen
by the simulator S1. Since the view of P contains the encryption of s′i, then its view
is modified. Now we prove that P cannot distinguish between this game Gk and the
previous game Gk−1 thanks to computational indistinguishability of the AHE scheme.

For the sake of contradiction, suppose a polynomial-time adversary A having a non-
negligible advantage AdvDist

A,Gk−1,Gk to distinguish between the distribution of Gk−1 and
Gk, following the view of P. We construct an adversary B against the IND-CPA security
of the AHE scheme, working as follows: After generating the key pair (skAHE, pkAHE),
the challenger for the ExpIND-CPA

B experiment sends the public encryption key pkAHE to
the adversary B, simulating the GkA,S experiment against A. The adversary B considers
pkAHE as pkAHE

U . Since B has access to the public key pkAHE
U , every encryption can be

directly computed by B in the simulated experiment. Before to encrypt the cumulative
rewards si, given the random cumulative rewards s′i outputted by our second simulator
S1, the adversary B sends m0 = si and m1 = s′i to the challenger of the IND-CPA

experiment, and expects as a response the challenge ciphertext encrypting mb for a
random bit b chosen by the IND-CPA challenger. The returned ciphertext is considered
as csi . Then, B continues the protocol execution, sending csi to P following the protocol
specification, and hence in the view of A. At the end of the experiment, A responds
to B with a prediction bit b′, forwarded to the challenger. Clearly, the advantage of B
against the IND-CPA security of AHE highly depends on the advantage of A:

AdvIND-CPA
B,AHE =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣
=

∣∣∣∣12 · Pr [b′ = 0|b = 0] +
1

2
· Pr [b′ = 1|b = 1]− 1

2

∣∣∣∣
=

∣∣∣∣12 · Pr [b′ = 0|b = 0] +
1

2
· (1− Pr [b′ = 1|b = 0])− 1

2

∣∣∣∣
=

∣∣∣∣12 · (Pr [b′ = 0|b = 0]− Pr [b′ = 1|b = 0])

∣∣∣∣
=

1

2
· AdvDist

A,Gk−1,Gk
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Therefore, the advantage for the adversary to distinguish between Gk−1 and the game
Gk is bounded by the indistinguishability of the AHE scheme:∣∣∣Pr

[
Gk−1A,S (1

λ, N,K)→ 1
]
− Pr

[
GkA,S(1

λ, N,K)→ 1
]∣∣∣ ≤ 2 · AdvIND-CPA

B,AHE

Hence, we conclude that the game G2 is computationally indistinguishable from the
game GK+1 with the following bound:∣∣∣Pr

[
G2
A,S(1

λ, N,K)→ 1
]
− Pr

[
GK+1
A,S (1λ, N,K)→ 1

]∣∣∣ ≤ 2K · AdvIND-CPA
B,AHE

We now proceed to N sequences of 4K games. Intuitively, we will replace part of
the SelectArm protocol including the encrypted cumulative rewards s′i, the encrypted
secret-key ki,t, the encrypted selection bit b′i,t and the encrypted score vi,t by random
values. For the sake of clarity, we denote by Gk,l the l-th game of the k-th sequence of
games, with k ranging from 1 to N and l ranging from 1 to 4K. The game Gk,0 for
some k refers to the game Gk−1,4K , the game G0,4K being the game GK+1. For clarity,
we subdivide the k-th sequence of 4K games in four sequences of K games where l is
ranging respectively from 1 to K in the first sequence, from K + 1 to 2K in the second
sequence, from 2K+1 to 3K in the third sequence and from 3K+1 to 4K in the fourth
and last sequence.
Game Gk,l for k ∈ J1, NK and for l ∈ J1,KK. In this game indexed by k, we focus on the
ciphertext csi,t sent by each data owner DOi with i at l during the SelectArm protocol.
Note that we are modifying the SelectArm protocol from each DOi for a given time step
t, from the last time step N to the first time step where t equals 1 in this order. Hence,
t equals N − k − 1. In this game, we replace the cumulative rewards si by the random
cumulative rewards s′i generated by the first simulator S0 at time t. The view of P
contains the ciphertext csi,t and hence the view of P is modified. We now show that this
modification is indistinguishable, thanks to the indistinguishability of the AHE scheme.

For the sake of contradiction, suppose a polynomial-time adversary A having a non-
negligible advantage AdvDist

A,Gk,l−1,Gk,l to distinguish between the distribution of Gk,l−1 and
Gk,l, following the view of P. We construct an adversary B against the IND-CPA security
of the AHE scheme, working as follows: After generating the key pair (skAHE, pkAHE), the
challenger of the IND-CPA experiment for the AHE scheme sends the public encryption
key pkAHE to the adversary B, simulating the experiment Gk,lA,S against A, considering
pkAHE as pkAHE

R . Since B has access to the public key pkAHE
R , every encryption can

be directly computed by B in the simulated experiment. During the time t, before to
encrypt the cumulative rewards si, the adversary B defines the two message m0 and m1

such that m0 = si and m1 = s′i to the challenger. It expects as a response the challenge
ciphertext encrypting mb for a random bit b chosen by the challenger. The returned
ciphertext is considered as csi,t. Then, B continues the protocol execution by sending csi,t
to P and hence in the view of A. At the end of the experiment, A responds to B with
a prediction bit b′, forwarded to the challenger. Clearly, the advantage of B against the
IND-CPA security of AHE highly depends on the advantage of A, defined as follows:

AdvIND-CPA
B,AHE =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ = 1

2
· AdvDist

A,Gk,l−1,Gk,l
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Therefore, the advantage for the adversary to distinguish between Gk,l−1 and the
game Gk,l is bounded by the computational indistinguishability of the AHE scheme:∣∣∣Pr

[
Gk,l−1A,S (1λ, N,K)→ 1

]
− Pr

[
Gk,lA,S(1

λ, N,K)→ 1
]∣∣∣ ≤ 2 · AdvIND-CPA

B,AHE

By induction, we conclude that the game Gk,1 is computationally indistinguishable
from the game Gk,K with the following bound:∣∣∣Pr

[
Gk,1A,S(1

λ, N,K)→ 1
]
− Pr

[
Gk,KA,S(1

λ, N,K)→ 1
]∣∣∣ ≤ 2 ·K · AdvIND-CPA

B,AHE

Game Gk,l for k ∈ J1, NK and for l ∈ JK + 1, 2KK. In this game indexed by k, we
focus on the ciphertext cki,t sent by the data owner DOi with i at l − K during the
SelectArm protocol. Similarly to our previous sequence of games, we are modifying the
SelectArm protocol from the last time step N to the first time step where t equals 1.
Hence t equals N − k − 1. In this game, we replace the freshly generated key ki,t by
a completely random key k′i,t. Since ki,t is used once during all the protocol execution
and transmitted encrypted once to P, the only difference between Gk,l−1 and Gk,l in the
view of P is the ciphertext cki,t. We have now to prove the view of P between these two
games are computationally indistinguishable, thanks to the indistinguishability of the
public encryption scheme PKE.

For the sake of contradiction, suppose a polynomial-time adversary A having a non-
negligible advantage AdvDist

A,Gk,l−1,Gk,l to distinguish between the distribution of Gk,l−1 and
Gk,l, following the view of P. We construct an adversary B against the IND-CPA security
of the PKE scheme, working as follows: After generating the key pair (skPKE, pkPKE),
the challenger sends the public encryption key pkPKE to the adversary B, simulating
the experiment Gk,lA,S against A, considering pkPKE as pkPKE

R . Since B has access to the
public key pkPKE

R , every encryption can be directly computed by B in the simulated
experiment. During the time t, before to encrypt the generated key ki,t, the adversary
B randomly chooses a random value k′i,t. After sending m0 = ki,t and m1 = k′i,t to the
challenger, B expects as a response the challenge ciphertext encrypting mb for a random
bit b chosen by the challenger. The returned ciphertext is considered as cki,t. Then,
B continues the protocol execution, sending cki,t to P and hence in the view of A. At
the end of the experiment, A responds to B with a prediction bit b′, forwarded to the
challenger. Clearly, the advantage of B against the IND-CPA security of PKE highly
depends on the advantage of A, defined as follows:

AdvIND-CPA
B,PKE =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ = 1

2
· AdvDist

A,Gk,l−1,Gk,l

Therefore, the advantage for the adversary to distinguish between Gk,l−1 and the
game Gk,l is bounded by the computational indistinguishability of the PKE scheme:∣∣∣Pr

[
Gk,l−1A,S (1λ, N,K)→ 1

]
− Pr

[
Gk,lA,S(1

λ, N,K)→ 1
]∣∣∣ ≤ 2 · AdvIND-CPA

B,PKE
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By induction, we conclude that the game Gk,K+1 is computationally indistinguishable
from the game Gk,2K with the following bound:∣∣∣Pr

[
Gk,K+1
A,S (1λ, N,K)→ 1

]
− Pr

[
Gk,2KA,S (1λ, N,K)→ 1

]∣∣∣ ≤ 2K · AdvIND-CPA
B,PKE

Game Gk,l for k ∈ J1, NK and for l ∈ J2K + 1, 3KK. In this game, we are focused on
the selection bit bi,t sent by the data owner DOi with i at l− 2K during the SelectArm

protocol. In this game proceed to the replacement of the selection bit bi,t for the time
step t at N − k. In this game, we replace the selection bit bi,t by a randomly chosen
selection bit b′i,t from the binary space {0, 1}.

For the sake of contradiction, suppose a polynomial-time adversary A having a non-
negligible advantage AdvDist

A,Gk,l−1,Gk,l to distinguish between the distribution of Gk,l−1

and Gk,l, following the view of P. We construct an adversary B against the IND-CPA

security of the SKE scheme, working as follows: Since the secret-key is kept by the
challenger, the adversary B simulating the experiment Gk,lA,S against A has now access
to an encryption oracle to compute SKE’s ciphertexts. After sending to the IND-CPA

challenger the two messages m0 corresponding to the real selection bit bi,t, and m1

corresponding to a random selection bit b′i,t, B expects as a response the challenge
ciphertext encrypting mb for a random bit b chosen by the challenger. The returned
ciphertext is considered as cbi,t. Then, B continues the protocol execution, sending cbi,t
to P and hence in the view of A. At the end of the experiment, A responds to B with a
prediction bit b′, forwarded to the challenger. We obtain the advantage of B as follows:

AdvIND-CPA
B,SKE =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ = 1

2
· AdvDist

A,Gk,l−1,Gk,l

Therefore, we obtain the following bound:∣∣∣Pr
[
Gk,l−1A,S (1λ, N,K)→ 1

]
− Pr

[
Gl,kA,S(1

λ, N,K)→ 1
]∣∣∣ ≤ 2 · AdvIND-CPA

B,SKE

By induction, we conclude that the game Gk,l−1 is computationally indistinguishable
from the game Gk,l with the following bound:∣∣∣Pr

[
Gk,2K+1
A,S (1λ, N,K)→ 1

]
− Pr

[
Gk,3KA,S (1λ, N,K)→ 1

]∣∣∣ ≤ 2 ·K · AdvIND-CPA
B,SKE

Game Gk,l for k ∈ J1, NK and for l ∈ J3K+1, 4KK. In this game indexed by k, we focus
on the data owner DOi with i at l − 3K, sending during (N − k)-th execution of the
SelectArm protocol the score vi,t. In this game, we replace cvi,t encrypting the score vi,t
by an encryption of the random score v′i,t chosen by the simulator S0.

For the sake of contradiction, suppose a polynomial-time adversary A having a non-
negligible advantage AdvDist

A,Gk,l−1,Gk,l to distinguish between the distribution of Gk,l−1 and
Gk,l, following the view of P. We construct an adversary B against the IND-CPA security
of the FHE scheme, working as follows: The adversary B simulating the experiment Gk,lA,S
againstA have access to the public encryption key pkFHE

R , useful to send encrypted scores.
During the time t, before to encrypt the score vi,t the adversary B sends m0 = vi,t

corresponding to the real score and m1 = v′i,t the random score chosen by the simulator
S0, to the challenger. As a response, B obtains the challenge ciphertext encrypting mb
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for a random bit b chosen by the challenger. The returned ciphertext is considered as
cvi,t. Then, B continues the protocol execution, sending cvi,t to P and hence in the view
of A. At the end of the experiment, A responds to B with a prediction bit b′, forwarded
to the challenger. We obtain the advantage of B as follows:

AdvIND-CPA
B,FHE =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ = 1

2
· AdvDist

A

Therefore, we obtain the following bound:∣∣∣Pr
[
Gk,l−1A,S (1λ, N,K)→ 1

]
− Pr

[
Gk,lA,S(1

λ, N,K)→ 1
]∣∣∣ ≤ 2 · AdvIND-CPA

B,FHE

By induction, we conclude that the game Gk,3K+1 is computationally indistinguish-
able from the game Gk,4K with the following bound:∣∣∣Pr

[
Gk,3K+1
A,S (1λ, N,K)→ 1

]
− Pr

[
Gk,4KA,S (1λ, N,K)→ 1

]∣∣∣ ≤ 2 ·K · AdvIND-CPA
B,FHE

Game GN,4KA,S . Observe that this game, obtained at the end of our previous sequence
of games, corresponds to the ideal experiment ExpIdealPA,S : Our simulator S = (S0,S1) is
integrated and acts as specified by the ideal world depicted in the ExpIdealPA,S . Therefore:

Pr
[
GN,4KA,S (1λ, N,K)→ 1

]
p= Pr

[
ExpIdealPA,S (λ,N,K)→ 1

]
Since the previous sequence of 4K games is executed N times, one for each time

step, we deduce the bound obtained during this proof to distinguish between our real
experiment ExpRealPA and our ideal experiment ExpIdealPA,S , described below:∣∣∣Pr

[
ExpRealPA (1λ, N,K)→ 1

]
− Pr

[
ExpIdealPA,S (1λ, N,K)→ 1

]∣∣∣
≤ N · (2K · AdvIND-CPA

A,PKE + 2K · AdvIND-CPA
A,SKE + 2K · AdvIND-CPA

A,FHE + 2K · AdvIND-CPA
A,AHE )

+ 2K · AdvIND-CPA
A,AHE

≤ 2NK · (AdvIND-CPA
A,PKE + AdvIND-CPA

A,SKE + AdvIND-CPA
A,FHE + AdvIND-CPA

A,AHE ) + 2K · AdvIND-CPA
A,AHE

And since we have assumed the IND-CPA security for all of our encryption schemes,
all advantages to distinguish are negligible, hence we state that our real experiment
ExpRealPA and our ideal experiment ExpIdealPA,S are computationally indistinguishable, con-
cluding our proof.

By Lemma 1 and Lemma 2, we know that the honest-but-curious corruption of
the reflector node R or the proxy node P does not allow the adversary to learn any
information on the scores, on the cumulative rewards, on the total cumulative rewards
but also on the pulled armed. And since the controller C is composed of the two nodes
R and P, we achieve the simulation security for the controller C.

Security Proof for User

Theorem 1. Let N ∈ N be the budget and K ∈ N be the number of arms. Then,
for every security parameter λ ∈ N, every polynomial-time adversary A, there exists a
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simulator S such that Tango is perfectly SimU-secure:

Pr
[
ExpRealUA (1λ, N,K)→ 1

]
p= Pr

[
ExpIdealUA,S (1λ, N,K)→ 1

]
Proof. The view of U , denoted View(U), consists of the single ciphertext cs encrypting
the total cumulative rewards s. In order to prove the above theorem, we first construct
the simulator S = (S0,S1) used in the game ExpIdealUA,S :

• Simulator S0. Our first simulator S0 obtains as an input the current time t ∈ JNK
and the number of arms K. At the end of its execution, the simulator S0 is
required to output a list of tuples scores (s′i, n′i, v′i,t) whose first element is a random
cumulative rewards, the second element is a random number of pulls and the third
and last element is a random score.
The simulator S0 generates and returns K random scores v′i,t, K random number
of pulls n′i and K cumulative rewards s′i independently.

• Simulator S1. Our second simulator S1 obtains as an input the number of arms K
as well as the total cumulative rewards s, and produces the simulated cumulative
rewards s′i randomly chosen from N for each arm i ∈ JKK.

By construction, our simulator S = (S0,S1) is polynomial-time and hence is a suit-
able simulator. We are ready to prove the indistinguishability of the real world cor-
responding to the real experiment ExpRealUA , and the ideal world corresponding to the
experiment ExpIdealUA,S .
Game G0. This initial game corresponds to the ExpRealUA experiment. Therefore, we
have a perfect indistinguishability:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
ExpRealUA (λ,N,K)→ 1

]
Game G1. This game works exactly as the game G0 except that we replace the ex-
ecution of the MAB.PullArm algorithm executed for all arms, by a single execution of
MAB.PullArm for the data owner indexed by M , the index of the data owner having the
highest score. As a result, the selection bits outputted by the arm selection protocol are
now ignored. By correctness of the arm selection protocol SelectArm, this modification
does not affect the selected arm at each time step and hence does not affect the total
cumulative rewards returned to the user U . Hence, we have a perfect indistinguishability
between the game G0 and the game G1:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
G1
A(λ,N,K)→ 1

]
Game G2. In this game, we focus on the integration of our first simulator S0: The
simulator S0 is inputted at each time t ∈ JNK with t and the number of arms K. Recall
that the output of the simulator S0 is composed of a K-sized list of tuples (s′i, n

′
i, v
′
i,t).

During the execution of the SelectArm protocol, at each time t ∈ JNK each data owner
DOi is inputted with its secret key sk i and a random cumulative rewards s′i, a random
number of pulls n′i and a random score v′i,t. The obtained selection bits at the end of
the arm selection protocol are ignored.

The view of the user U is limited to the total cumulative rewards s. The arm cho-
sen by the SelectArm protocol is random since the arm selection protocol is inputted
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with completely random values. However, thanks to the challenger executing the cor-
rect MAB.PullArm algorithm for the arm having the best score, the correctness of the
multi-armed bandits algorithm is guaranteed. Therefore, the returned total cumulative
rewards is perfect indistinguishability between this game and the previous game G1:

Pr
[
G1
A(1

λ, N,K)→ 1
] p= Pr

[
G2
A,S0(λ,N,K)→ 1

]
Game G3. In this game, we focus on the integration of our second simulator S1, inputted
at the end of the protocol with the number of arms K and the total cumulative rewards
s, corresponding to the sum of all cumulative rewards (i.e.,

∑K
i=1 si). The simulator S1

is asked to output a K-sized list of random scores s′1, . . . , s′K , where each s′i is inputted
to DOi at the beginning of the SendRewards protocol execution. From the observation
that both s1 + · · · + sK (computed by the real multi-armed bandits execution) and
s′1 + · · ·+ s′K (randomly sampled from the simulator S0) equals s, so we conclude that
the view of U between the game G3 and the game G2 is perfectly indistinguishable:

Pr
[
G2
A,S0(1

λ, N,K)→ 1
] p= Pr

[
G3
A,S(λ,N,K)→ 1

]
And since G3 corresponds to the ideal experiment ExpIdealUA,S , we observe a perfect indis-
tinguishability between ExpRealUA and ExpIdealUA,S :

Pr
[
ExpRealUA (1λ, N,K)→ 1

]
p= Pr

[
ExpIdealUA,S (λ,N,K)→ 1

]

Security Proof for a Data Owner

Theorem 2. Let N ∈ N be the budget and K ∈ N be the number of arms. Then,
for every security parameter λ ∈ N, every polynomial-time adversary A, there exists a
simulator S such that:

Pr
[
ExpRealDO
A (1λ, N,K)→ 1

]
p= Pr

[
ExpIdealDO
A,S (1λ, N,K)→ 1

]
Proof. The view of the corrupted data owner DOj , denoted View(DOj), contains the
cumulative rewards si as well as the number of pulls ni. It also contains every score
vj,t and every selection bit bj,t for each time step t ∈ JNK. In order to prove the above
theorem, we first construct the simulator S = (S0,S1):

• Simulator S0. Our first simulator S0 obtains as an input the current time t ∈ JNK,
the number of arms K, the index j of the corrupted data owner DOj chosen by
the adversary A, its real score vj,t and a bit associated to the value M ?

= j, where
the index M corresponds to the arm index having its best score. At the end
of the execution, the simulator S0 outputs a (K − 1)-sized list of tuples of the
form (s′i, n

′
i, v
′
i,t) whose first element is a random cumulative rewards, the second

element is a random number of pulls and the third element is a random score.
Our simulator S0 acts differently depending on the value of M ?

= j. For the sake of
clarity, let denote the value of M ?

= j by the bit beq. If the bit beq equals one, then
the corrupted data owner DOj expects to receive a positive selection bit. Hence,
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given its score vj,t, the simulator generates K − 1 random scores v′i,t with the
condition that every v′i,t is strictly lower than vj,t. This ensures that the selected
data owner will be the corrupted one. At the opposite, when beq is a negative bit,
then the simulator generates K− 1 random scores with the condition that at least
one score v′i,t is strictly higher than vj,t. Note that the selected arm here is chosen
at random since the simulator does not have any information on the index M .
This models an idealized situation in which a data owner that is not pulled has at
most 1

K−1 chance to correctly identify the chosen arm. The cumulative rewards
and the number of pulls returned by the simulator are chosen at random.

• Simulator S1. Our second simulator S1 obtains as an input the number of arms K
as well as the index j of the corrupted data owner, and produces K − 1 simulated
cumulative rewards s′1, . . . , s′j−1, s′j+1, . . . , s

′
K randomly chosen from an arbitrary

space, say N.
By construction, our simulator S = (S0,S1) is polynomial-time and hence is a suit-

able simulator. We are ready to prove the indistinguishability of the real world cor-
responding to the real experiment ExpRealDO

A , and the ideal world corresponding to the
experiment ExpIdealDO

A,S .
Game G0. This initial game corresponds to the ExpRealDO

A experiment. Therefore, we
have a perfect indistinguishability:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
ExpRealDO
A (λ,N,K)→ 1

]
Game G1. This game works exactly as the game G0 except that we replace the ex-
ecution of the MAB.PullArm algorithm executed for all arms, by a single execution of
MAB.PullArm for the data owner indexed by M , the index of the data owner having the
highest score. As a result, the selection bits outputted by the arm selection protocol
are now ignored. By correctness of the arm selection protocol SelectArm, this modi-
fication does not affect the selected arm at each time step and hence does not affect
the selection bits received by the corrupted data owner DOj Hence, we have a perfect
indistinguishability between G0 and G1:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
G1
A(λ,N,K)→ 1

]
Game G2. This game is the same as G1, except that we introduce our simulator S =

(S0,S1). The simulator S0 is inputted at each time step t ∈ JNK with the current time
t, the number of arms K, the index j of the corrupted data owner DOj , its real score
vj,t, as well as the bit beq associated to the value M ?

= j. The simulator S1 is inputted
with the number of arms K and the corrupted index j. For the moment, the output
of S is not used. Therefore, the view of DOj remains unchanged leading to a perfect
indistinguishability between G1 and G2:

Pr
[
G1
A(1

λ, N,K)→ 1
] p= Pr

[
G2
A,S(1

λ, N,K)→ 1
]

Game G3. This game is the same as G2 except that at each time t ∈ JNK, given the
index j of the corrupted data owner DOj , the real score vi,t for i different of j is replaced
by the random score v′i,t computed by the simulator S0. We do the same replacement
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Figure 3.14: Obtained total cumulative rewards with the standard multi-armed bandits
algorithm (left figure) and its discrete version (right figure), using UCB, ϵ-greedy and
Thompson Sampling. We have set ϵ at 0.1. The two plots show identical results.

for the cumulative rewards and the number of pulls. When the chosen data owner
is the corrupted data owner DOj , then the simulator S0 receives a positive selection
bit. Otherwise, the arm selection selects randomly an arm among all honest data owner
leading to a random arm selection. By construction of the experiment, the correctness is
preserved thanks to the challenger running the appropriate arm pulling. As a result, the
execution of the multi-armed bandits is still valid (even if random scores are provided),
leading to a perfect indistinguishability between G2 and G3:

Pr
[
G2
A,S(1

λ, N,K)→ 1
] p= Pr

[
G3
A,S(1

λ, N,K)→ 1
]

Game G4. This game is the same as G3 except that during the SendRewards proto-
col execution, the real cumulative rewards s1, . . . , sj−1, sj+1, . . . , sj are replaced by the
random cumulative rewards s′1, . . . , s′j−1, s′j+1, . . . , s

′
j obtained at the output of the sim-

ulator S1. Observe that this modification does not affect the view of the corrupted data
owner DOj since it does contain any cumulative rewards si for i different of j. As a
result, we obtain a perfect indistinguishability between G3 and G4:

Pr
[
G3
A,S(1

λ, N,K)→ 1
] p= Pr

[
G4
A,S(1

λ, N,K)→ 1
]

And since G4 corresponds to the ideal experiment ExpIdealDO
A,S , we observe a perfect

indistinguishability between ExpRealDO
A and ExpIdealDO

A,S :

Pr
[
ExpRealDO
A (1λ, N,K)→ 1

]
p= Pr

[
ExpIdealDO
A,S (λ,N,K)→ 1

]

3.3.4 Empirical Study of Tango

Comparison Between Standard and Discrete Bandits

Our framework Tango works with discrete multi-armed bandits. However, we have
focused our attention on the most standard multi-armed bandits such as UCB, working
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Figure 3.15: Graphical representation of the binary-tree comparison of four couples
(i, vi) where vi is the score of the i-th party.

with floating-point values. To fill this gap, our approach consists of following the score
computation of the standard multi-armed bandits returning a floating-point score, say v,
by obtaining an approximation of v: This score is multiplied by a scale factor ∆, carefully
chosen to fit the plaintext space of the FHE scheme. The scaled score ∆v is rounded,
resulting into the its integer version v′, which equals ⌊∆v⌋. In our implementation, we
have set ∆ as 1010 allowing us to consider 10 decimals. One may expect a decrease of the
returned total cumulative rewards due to the approximation. To motivate the interest
of our approach, we have studied the impact of the approximation on the returned total
cumulative rewards: We have implemented the three multi-armed bandits algorithms in-
stantiated in Tango, namely UCB, ϵ-greedy and Thompson Sampling, in their standard,
floating-point scores version, but also in their discretized version. The resulting total
cumulative rewards are presented in Figure 3.14. The used dataset, MovieLens [HK16],
is composed of 100 arms and the highest reward probability is approximatively 0.53.
Surprisingly, the returned total cumulative rewards between the standard multi-armed
bandits algorithm and its approximated (i.e., discrete) version are the same. While this
fact strengthened our contribution, we stress however that this does not hold in general.
Before to apply a multi-armed bandits algorithm in Tango, it is interesting to first
analyze the impact of the approximation on the outputted total cumulative rewards.
The reward maximization performance of Tango should be compared with respect to
its discretized version of the instantiated multi-armed bandits algorithm, rather that its
standard version that may diverge due to the approximation.

Execution Time of Tango

We propose an empirical study of the required execution time to run Tango. More pre-
cisely, we have implemented Tango in Rust. For the encryption schemes, we have used
AES-256-GCM [AES07] as our secret-key encryption scheme, ElGamal [Elg85a] as our
public-key encryption scheme, Paillier [Pai99] for our additively homomorphic encryp-
tion scheme and TFHE [CGGI19] as our fully-homomorphic encryption scheme. While
the three first encryption schemes seem a natural choice, TFHE is more specifically
designed for boolean arithmetic. Within the Concrete [Zam20] library implementing
TFHE, an integer (up to 128 bits) is represented by its binary representation, all stan-
dard operations being performed over boolean gates. While this approach involves more
gates, it has the advantage to be perfectly correct and particularly flexible, enjoying
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Figure 3.16: Execution time of Tango. The presented execution times are the mean of
10 iterations. When varying the budget N , the number of arms K is set to 9. When
varying the number of arms K, the budget N is set to 1000.

all the circuit optimization literature brings by the processor architecture. By nature,
the boolean computation has the advantage to be correct, potential errors coming from
the homomorphic encryption scheme only. It stands in contrast with other arithmetic
fully homomorphic encryption schemes such as BGV [BGV12], supporting polynomial
evaluation (involving addition, multiplication and constant exponentiation with coeffi-
cients over Zp for some prime p). Indeed, to model comparison, it is usually common to
rely on the sign function, which given a number x returns 1 if 0 ≤ x and −1 otherwise.
Badly, this function cannot be directly computed using only arithmetics. Instead, we
approximate the sign function using a polynomial approximation [CKK20]. This poly-
nomial approximation may produce invalid result, a problem that we do not have with
the binary computation, even if it implies a larger amount of transmitted data (we have
now one ciphertext for one bit).

We have implemented the homomorphic argmax function evaluation in order to
optimize at the same time the execution time, and the noise consumption due to the
homomorphic computation. More precisely, we have chosen to implement the argmax

function following a binary tree structure, depicted in Figure 3.15. To return the index
of maximal value in the list, we do the binary-tree comparison on the couples (i, vi),
where i corresponds to the index the data owner DOi having sent vi. Given two couples
(1, v1) and (2, v2), the comparison results into the couple (M,vM ) where M equals 1 if v1
is higher than v2 and 2 otherwise. The score vM equals the highest score. This binary-
tree comparison allows at the same time to compare in parallel using multi-threading,
but also to limit the noise consumption involved by the homomorphic computation, by
comparing a score with another only log2(K) times instead of K− 1 times. The binary-
tree comparison results into the couple (M,vM ). The next step consists of performing
the equality test between the resulting encrypted best arm index M with every possible
index i in JKK. Remark that since the index i is known by the server, the equality
test can be optimized using the plaintext-ciphertext equality supported by the Concrete
library, which can be parallelized as well.

The resulting execution times of Tango, depicted in Figure 3.16, has been per-
formed on a server embedding an Intel Xeon Gold 6136 processor equipped of 16 cores
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and cadenced at 3.00GHz, and having 50Gb of memory. The plotted execution times,
being the mean of 10 iterations, show the execution time respectively of SelectArm and
SendRewards. For completeness, we have studied the execution time when varying the
budget N (between 200 and 1000 with a step of 200) and the number of armsK (between
3 and 9 with a step of 2). When the number of arms K does not vary, we observe a linear
execution time with respect to the budget N , ranging from 500 seconds for a budget
of 200 to 2300 seconds for a budget 1000. This linearity is explained by the fact that
we are executing the arm selection protocol N times. The execution time for the setup
and the rewards sending being independent of the budget N and negligible compared
to the arm selection protocol, there are not relevant in the overall protocol execution
time. When the budget N does not vary and when the number of arms K varies, we
study the impact of adding an arm on the execution time. As shown in Figure 3.16, the
execution time for the arm selection protocol when varying K is linear, ranging from
1000 seconds for 3 arms to 2300 seconds for 9 arms.

The execution of the arm selection involves homomorphic computation, largely im-
pacting the overall performance of the arm selection protocol. For instance, assuming
9 arms and a budget N of 1000, more than 2300 seconds are required to spend all the
budget. It wipes out any hope to apply Tango on real-time constrained applications.
Although, Tango is still interesting for applications in which the result of the arm
selection can be precomputed and later delivered. It occurs for instance with movie
recommendation: Once the user has watched the suggested movie, the user provides a
rating, which will be used to suggest new movies. Between two screenings, the feder-
ation server executes the arm selection and then obtains a new suggestion. Assuming
9 categories, since the arm selection protocol is executed once between two screenings,
the user waits at most 2.3 seconds corresponding to a single execution of the SelectArm

protocol obtained via our implementation.

Obtained Rewards using Tango

By construction of Tango, several multi-armed bandits strategies can be plugged and
executed, enjoying the security offered by Tango. Using the same server presented
above, we have executed the three discretized multi-armed bandits UCB, ϵ-greedy and
Thompson Sampling algorithms in Tango and observed the obtained total cumulative
rewards over the time. As seen previously, Tango is more suitable for a small numbers
of arms, hence we have run Tango over 9 arms extracted from the MovieLens dataset,
the highest reward probability being approximatively 0.34. In Figure 3.17, we observe
that all the plugged algorithms produce rewards following closely the theoritical max-
imum (obtained by always pulling the best arm). For a budget N of 1000, our best
strategy ϵ-greedy returns 301 rewards, followed by Thompson Sampling returning ap-
proximatively 288 rewards, followed by our last strategy, UCB, returning 220 rewards.
These rewards performance are consistent with [CLMS22], where UCB needs a very
large budget (around 105) to be more efficient than ϵ-greedy.
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Figure 3.17: Obtained total cumulative rewards using 9 arms extracted from the Movie-
Lens dataset over a budget N of 1000. We set ϵ at 0.1. The theoritical maximum
corresponds to the situation in which the best arm is always chosen, the highest reward
probability in this experiment is 0.34. Hence, for a budget N of 1000, the theoritical
maximum rewards is 1000 · 0.34 = 340.

Obtained Rewards on Failure

Our protocol Tango is said to be resistant to the scenario where one or more data owners
are suddenly offline. This property is particularly interesting in federated learning and is
empirically confirmed in Tango. This property is achieved by sending at each time step
t ∈ JNK the encryption of the cumulative rewards si of every (online) data owner DOi.
As a result, if a data owner DOi becomes offline at some point during the protocol, the
cumulative rewards si remains known by the proxy node P, rather than being lost since
it is only known by DOi.

To empirically confirm the failure resistance of Tango, several parameters have to
be considered, including the used data set, the number of data owners K, the budget
N , the multi-armed bandits algorithm, the frequency of failures and the data owners to
disconnect. Due to the potentially large number of cases, we have focus our attention
on the most impactful: We have chosen to apply the UCB multi-armed bandits algo-
rithm, chosen for its deterministic score computation, on the MovieLens [HK16] data
set equipped of 100 arms with a budget N of 1000. To emphasize the impact of the
data owners being offline, we voluntary disconnect respectively 0%, 25%, 50%, 75% and
100% of the data owners having the highest reward probability, at time step 500 i.e., at
the middle of the multi-armed bandits execution. Hence, with 0% of the data owners
being disconnected, we expect no difference between the total cumulative rewards with
and without the saving of cumulative rewards. Let’s move on the case where half of the
data owners, having the highest reward probabilities, are considered offline. Remember
that we disconnect the arms in the reward probability, in the decreasing order. Observe
that since half of the arms including all the best arms are offline, the remaining budget,
used for the next 500 time steps, are expected to provide less rewards.

The obtained total cumulative rewards with and without the saving of cumulative
rewards is presented in Figure 3.18. All the results are the mean of 200 successive itera-
tions. Note that all the computations performed are in clear, allowing us to increase the
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Figure 3.18: Obtained total cumulative rewards over the time using UCB when respec-
tively 0%, 25%, 50%, 75% and all the data owners are going offline at the 500-th time
step, without our rewards saving mechanism on the left and with our rewards saving
mechanism on the right. The presented results are the mean of 200 iterations.

number of iterations considerably. The first figure, which depicts the multi-armed ban-
dits execution without the saving of the cumulative rewards, shows a sudden decrease
in the total cumulative rewards whereas the execution of the multi-armed bandits exe-
cution with the saving of the cumulative rewards does not. The sudden decrease reflects
the way in which we have counted the total cumulative rewards. At each time step t ∈ N,
for the scenario without the saving of the cumulative rewards, we add every cumulative
rewards si of all online data owners DOi. That is, an offline data owner DOi, more
precisely its cumulative rewards si is no more counted in the current total cumulative
rewards s after that DOi lefts the protocol at the 500-th time step, explaining the sud-
den decrease of the total cumulative rewards s at the time step where the data owners
disconnect. It correctly models the real scenario where the locally stored cumulative
rewards si of an offline data owner DOi being not accessible anymore. In contrast, with
the saving of the cumulative rewards put in practice in Tango, the cumulative rewards
si of the offline data owner DOi is preserved in the memory of P.

Observe that when all the data owners are offline, without the saving of the cumu-
lative rewards, the returned total cumulative rewards is zero, whereas with the saving
of the cumulative rewards, the returned total cumulative rewards corresponds to the
cumulative rewards that have been received at the time step 499 (the 500-th time step
being the step where all data owners are assumed to disconnect). After this time step t,
since all data owners are offline, the UCB algorithm is not able to obtain new rewards
since there is no more arm to pull, explaining the flat curve.

3.4 Salsa: A Scalable Secure Federated Bandits

As we have observed, Tango offers correctness and security but suffers from a high
latency during the arm selection due to the homomorphic operations. Hence, Tango is
not suitable for real-time applications whose delay to obtain the selection bits is reduced.
For these applications, we propose a new scalable secure multi-armed bandits protocol,
this time based on secure three-party computations.
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Overview of Salsa. Compared to Tango respecting the architecture and the phi-
losophy of Samba, Salsa drastically moves away to focus on secure multi-party com-
putations: Rather to rely on two servers, one acting as a proxy for the other one, Salsa

relies on two servers denoted C0 and C1 to perform computations over shared scores, in
the vein of the ABY framework [DSZ15]. In a nutshell, at the beginning of the arm
selection protocol execution at time step t ∈ JNK, every data owner DOi computes the
two shares of its score vi,t, denoted respectively ⟨vi,t⟩0 and ⟨vi,t⟩1. The first share ⟨vi,t⟩0

is sent to C0 while the second share ⟨vi,t⟩1 is sent to C1. Using secure two-party computa-
tion techniques each server Cj ends with the share of every selection bit ⟨bi,t⟩j for every
data owner DOi. As we will see later in the detailed description of the arm selection pro-
tocol, the two servers are supported by an additional server acting as a trusted random
provider, providing sharings of particular randoms, required by the servers C0 and C1 to
evaluate the arm selection. Given the two shares ⟨bi,t⟩0 and ⟨bi,t⟩1, the data owner DOi
reconstructs bi,t efficiently before to execute the arm pulling function MAB.PullArm.

At the end of protocol, every data owner shares its cumulative rewards si with
the servers, via the transmission of an additional share ⟨si⟩0 for the server C0 and the
share ⟨si⟩1 for the server C1. Using additive property of secret sharing, from the shares
⟨s1⟩j , . . . , ⟨sK⟩j the server Cj is able to derive the share ⟨s⟩j . Then, the shares ⟨s⟩0 and
⟨s⟩1 computed respectively by the server C0 and C1 are transmitted to the user U , which
given these two shares, can efficiently reconstruct the total cumulative rewards s.

Setup of Salsa

Compared to Tango which is built based on cryptographic primitives, Salsa does not
necessitate keys, thanks to the secure multi-party computation paradigm. Instead, the
privacy of the data is guaranteed using information-theoretic argument, in the spirit
of the one-time pad security. Indeed, the arithmetic sharing [DSZ15] that we use in
Salsa, consists for a value v if defining two shares ⟨v⟩0 and ⟨v⟩1 where ⟨v⟩0 equals r
and ⟨v⟩1 equals v − r. Observe that given only one share, it is theoretically infeasible
to recover v. Indeed, since v is independent of the first share ⟨v⟩0 consisting of r, and
since the second share v − r consists of a one-time pad, it is theoretically infeasible to
recover v. It’s interesting to note that, in the same way as Tango, we assume here
that all communications are authenticated and secure, a reasonable hypothesis since the
identity of the servers is publicly known, which is sufficient to establish an authenticated
secure channel. This hypothesis is used to prevent a party to observe a communication
between two other parties.

Arm Selection of Salsa (Figure 3.19)

In Salsa, at time step t ∈ JNK, the arm selection protocol SelectArm depicted in Fig-
ure 3.19 starts with every data owner being inputted with a score vi,t, its cumulative
rewards si and the number of pulls ni. Recall that Salsa, as well as Tango, are sup-
posed to work for discretized multi-armed bandits algorithm. For this reason, the score
vi,t can be represented using its binary representation over l bits. Let us denote the
binary representation of vi,t as vi,t[1], . . . , vi,t[l] where vi,t[p] denotes the p-th bit of vi,t.
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C0
Xor

And

⟨b0⟩0, ⟨b1⟩0 ⟨b0 ⊕ b1⟩0

⟨b0⟩0, ⟨b1⟩0 ⟨b0 · b1⟩0

C1

Xor

And

⟨b0⟩1, ⟨b1⟩1 ⟨b0 ⊕ b1⟩1

⟨b0⟩1, ⟨b1⟩1 ⟨b0 · b1⟩1

P⟨e⟩0, ⟨f⟩0 ⟨e⟩1, ⟨f⟩1

⟨x⟩0
⟨y⟩0
⟨z⟩0

⟨x⟩1
⟨y⟩1
⟨z⟩1

DOi

(1) ⟨si⟩0, {⟨vi,t[p]⟩0}p∈JlK

(3) ⟨bi,t⟩0

(1) ⟨si⟩1, {⟨vi,t[p]⟩1}p∈JlK

(3) ⟨bi,t⟩1

(2) Evaluation of SharedSelectionBits (See Figure 3.20)

Figure 3.19: Representation of an arm selection protocol execution in Salsa. At step
(1), every data owner distributes the share of its binary-decomposed score on which the
servers C0 and C1 computes the shares of the selection bits, sent back at step (3). All
communications between the parties are assumed to be authenticated and secure.

Each data owner DOi starts the arm selection protocol by computing two shares of
each bit vi,t[p], denoted respectively ⟨vi,t[p]⟩0 and ⟨vi,t[p]⟩1. These shares working on bits
are called binary shares and follows the same spirit of arithmetic share: The two shares
⟨b⟩0 and ⟨b⟩1 of a bit b are computed respectively as r and b⊕ r for a randomly chosen
bit r. Following this sharing method, every bit vi,t[p] is shared as ⟨vi,t[p]⟩0 = r and
⟨vi,t[p]⟩1 = vi,t[p]⊕r for a random bit r. Then, the shares ⟨vi,t[1]⟩j , . . . , ⟨vi,t[l]⟩j are sent
the server Cj . Given all these binary shares, the servers C0 and C1 are able to evaluate the
argmax circuit resulting into the best arm index M , then compared with every index i ∈
JKK resulting into K selection bits. This procedure described in Figure 3.20 has access
to two functions SharedArgmax and SharedEq, depicted respectively in Figure 3.23 and
Figure 3.21, executing respectively the argmax function and the equality test function
using only Xor and And (from which Or and Not binary gates can be derived). As
we will see in a moment, these functions are not difficult, the only particularity being
that Xor and And binary gates are executed over shares instead of bits, following the
computation sharing techniques from [DSZ15].

SharedSelectionBitsj,t({⟨v1,t[p]⟩j}p∈JlK, . . . , {⟨vK,t[p]⟩j}p∈JlK)

Subroutines: SharedArgmax (See Figure 3.23), SharedEq (See Figure 3.21)

Constants: ⟨1[1]⟩j , . . . , ⟨1[l]⟩j , . . . , ⟨K[1]⟩j , . . . , ⟨K[l]⟩j /* Shared constant indexes */

⟨M [1]⟩j , . . . , ⟨M [l]⟩j ← SharedArgmaxj,t({⟨v1,t[p]⟩
j}p∈JlK, . . . , {⟨vK,t[p]⟩j}p∈JlK)

for ⟨i[1]⟩j , . . . , ⟨i[l]⟩j ∈ JKK

⟨bi,t⟩j ← SharedEqj,t({⟨M [p]⟩j}p∈JlK, {⟨i[p]⟩j}p∈JlK)

return ⟨b1,t⟩j , . . . , ⟨bK,t⟩j

Figure 3.20: The selection bits generation function inputted with binary-decomposed
shared scores.
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Before introducing these algorithms, we first describe the following SharedIfThenElse
and SharedEq subroutines depicted in Figure 3.21. The SharedIfThenElse simulates the
behaviour of a conditional branching written as if b then { x } else { y } where
b is a bit respresenting a condition and where x and y are l-bits values. Specialized to
handle bit sharings, this function expects as an input 2l+ 1 sharings: A bit sharing for
b and 2l bit sharings for x and y. The function returns l binary sharings corresponding
to the bits of x if b equals true, otherwise it returns l bit sharings corresponding to the
bits of y. The SharedEq function expects 2l bit sharings x and y and returns a single
bit sharing of 1 if x equals y, otherwise it returns a single bit sharing of 0.

SharedIfThenElsej,t(⟨b⟩j , ⟨x[1]⟩j , . . . , ⟨x[l]⟩j , ⟨y[1]⟩j , . . . , ⟨y[l]⟩j)
for p ∈ JlK : ⟨r[p]⟩j ← Or(And(⟨b⟩j , ⟨x[p]⟩j),And(Not(⟨b⟩j), ⟨y[p]⟩j))

return ⟨r[1]⟩j , . . . , ⟨r[l]⟩j

SharedEqj,t(⟨x[1]⟩j , . . . , ⟨x[l]⟩j , ⟨y[1]⟩j , . . . , ⟨y[p]⟩j)
return Not(Or(Xor(⟨x[1]⟩j , ⟨y[1]⟩j), . . . ,Xor(⟨x[p]⟩j , ⟨y[p]⟩j)))

Figure 3.21: Instantiation of the SharedIfThenElse and SharedEq functions.

We provide an additional function SharedLessThan described in Figure 3.22 which
simulates the behaviour of a < b for two l-bit values. More precisely, this function takes
as an input 2l binary sharings corresponding to the bits of x and y, and returns a single
bit sharing of 1 if x is strictly less than y, otherwise it returns a single bit sharing of 0.
Intuitively, the SharedLessThan function identifies a position p ∈ JlK for which x[i] and
y[i] are different. In particular, if y[i] equals one and no higher bits differs between x

and y, then we directly conclude that y is stricly higher than x. A sharing ⟨f⟩j is used
to stop the modification of the result sharing ⟨r⟩j when a difference has been detected.
Observe that the two variables r and f are not modified only in case where a difference
has been found or if there is no difference between x and y. This function assumes the
sharing of the two constants 0 and 1, which is generated once and reuse over all the
executions.

SharedLessThanj,t(⟨x[1]⟩j , . . . , ⟨x[l]⟩j , ⟨y[1]⟩j , . . . , ⟨y[l]⟩j)
Constants: ⟨0⟩j , ⟨1⟩j

⟨f⟩j ← ⟨1⟩j , ⟨r⟩j ← ⟨0⟩j

for p ∈ Jl, . . . , 1K

⟨d⟩j ← Xor(⟨x[p]⟩j , ⟨y[p]⟩j)

⟨b⟩j ← And(⟨f⟩j , ⟨d⟩j)

⟨¬b⟩j ← Not(⟨b⟩j)

⟨r⟩j ← Or(And(⟨b⟩j ,And(⟨d⟩j , ⟨y[p]⟩j)),And(⟨¬b⟩j , ⟨r⟩j)

⟨f⟩j ← Or(And(⟨b⟩j ,Not(⟨f⟩j)),And(⟨¬b⟩j , ⟨f⟩j))

return ⟨r⟩j

Figure 3.22: Instantiation of the SharedLessThan function.
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The SharedArgmax function depicted in Figure 3.23 takes as an input K scores where
each score is decomposed of l bit sharings. Our instantiation directly relies on the
previously introduced functions and follows the natural argmax definition.

SharedArgmaxj,t({⟨v1,t[p]⟩j}p∈JlK, . . . , {⟨vK,t[p]⟩j}p∈JlK)

Subroutines: SharedLessThan (See Figure 3.22), SharedIfThenElse (See Figure 3.21)

Constants: ⟨1[1]⟩j , . . . , ⟨1[l]⟩j , . . . , ⟨K[1]⟩j , . . . , ⟨K[l]⟩j

⟨v[1]⟩j , . . . , ⟨v[l]⟩j ← ⟨v1,t[1]⟩j , . . . , ⟨v1,t[l]⟩j

⟨M [1]⟩j , . . . , ⟨M [l]⟩j ← ⟨1[1]⟩j , . . . , ⟨1[l]⟩j /* Constant shares of index 1 */

for ⟨i[1]⟩j , . . . , ⟨i[l]⟩j ∈ J2,KK /* Constant shares of index i */

⟨b⟩j ← SharedLessThan(⟨v[1]⟩j , . . . , ⟨v[l]⟩j , ⟨vi,t[1]⟩j , . . . , ⟨vi,t[l]⟩j)

⟨v[1]⟩j , . . . , ⟨v[l]⟩j ← SharedIfThenElse(⟨b⟩j , ⟨vi,t[1]⟩j , . . . , ⟨vi,t[l]⟩j , ⟨v[1]⟩j , . . . , ⟨v[l]⟩j)

⟨M [1]⟩j , . . . , ⟨M [l]⟩j ← SharedIfThenElse(⟨b⟩j , ⟨i[1]⟩j , . . . , ⟨i[l]⟩j , ⟨M [1]⟩j , . . . , ⟨M [l]⟩j)

return ⟨M [1]⟩j , . . . , ⟨M [l]⟩j

Figure 3.23: Instantiation of the SharedArgmax function.

An interesting fact about binary sharing is that a Xor gate can be computed locally
without any interaction between the two servers. Suppose two bits b0 and b1 whose
respective shares are defined as follows: Let denote the shares of b0 as ⟨b0⟩0 = r0,
⟨b0⟩1 = b0 ⊕ r0 and let denote the shares of b1 as ⟨b1⟩1 = r1, ⟨b1⟩1 = b1 ⊕ r1. To obtain
the output of the Xor gate denoted b2 = b0 ⊕ b1, a server Cj simply evaluates ⟨b2⟩j as
⟨b0⟩j ⊕ ⟨b1⟩j , leading to the shares ⟨b2⟩0 = r0 ⊕ r1 and ⟨b2⟩1 = b0 ⊕ b1 ⊕ r0 ⊕ r1. Hence,
if we rewrite r0⊕ r1 by a random bit r′, then we have ⟨b2⟩0 = r′ and ⟨b2⟩1 = b0⊕ b1⊕ r′

which constitutes a valid sharing of b2, without implying any communication between
the two servers.

This stands in contrast with the And gate which requires an interaction between
the two servers. For the sake of clarity, suppose the shares ⟨b0⟩0 = r0, ⟨b0⟩1 = b0 ⊕ r0
and ⟨b1⟩1 = r1, ⟨b1⟩1 = b1 ⊕ r1 of two bits b0 and b1. To evaluate the And gate, the
two servers are required to have the so-called correlated randomness1. This correlated
randomness takes the form of a triplet (x, y, z) where x and y are two random bits and
z equals x ∧ y. Each server is assumed to have a share of each of these bits. Hence,
the server Cj is supposed to have the triplet of shares (⟨x⟩j , ⟨y⟩j , ⟨z⟩j). Assuming this
triplet, the server Cj computes ⟨e⟩j as ⟨b0⟩j ⊕⟨x⟩j and the share ⟨f⟩j as ⟨b1⟩j ⊕⟨y⟩j . At
this point, each server Cj communicates its shares ⟨e⟩j and ⟨f⟩j with the other server
C1−j and proceeds to the reconstruction of e and f . Then, each server Cj computes the
resulting share ⟨b2⟩j of the And gate as j · e · f ⊕ f · ⟨y⟩j ⊕ e · ⟨x⟩j ⊕ ⟨z⟩j [DSZ15]. As
we have observed, the evaluation of the And gate requires a bilateral communication
between the two servers. Hence, the efficiency of the And gate highly depends on the
efficiency of the network latency between the two servers C0 and C1. Hopefully, in our
architecture, the two servers are publicly identified and does not change over the time.
Hence, it is realistic to assume a low-latency communication channel between these two
servers. Furthermore, the evaluation of a single And gate involves the communication
of 4 bits, one bit for each share of e and f .

1In the literature, it is sometimes referred as a multiple triplet or a Beaver’s triplet.
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To evaluate an And gate while ensuring the privacy of the computation, a corre-
lated randomness triplet can be used once. However, in our best arm identification
problem, the evaluation of an argmax circuit over ten 64-bits values followed by ten
64-bits equality test involves the evaluation of more than 9500 And gates. Even more,
a budget N of 1000 requires to execute the arm selection protocol 1000 times leading
to the evaluation of more than 9 millions of And gates. Therefore, the efficiency of th
correlated randomness generation is crucial to limit as most as possible the computation
overhead. Based on [DSZ15], it is possible to obtain a correlated randomness triplet via
additive homomorphic encryption such as the Paillier cryptosystem [Pai99]. However, it
is recommended to perform these computations during a setup phase when the input is
unknown, to avoid the computation of these triplets when receiving the input. However,
due to the potentially high numbers of triplets to be generated, this solution is not ideal.
Instead, we have chosen to include in our architecture an additional server, referred as
P (for Provider), acting as a trusted correlated randomness provider. The provider P
generates two random bits x and y, and computes the sharing ⟨x⟩0 and ⟨x⟩1 and the
sharings ⟨y⟩0 and ⟨y⟩1. In addition, it computes z = x ⊕ y as well as the associated
shares ⟨z⟩0 and ⟨z⟩1. Finally, it provides the triplet (⟨x⟩j , ⟨y⟩j , ⟨z⟩j) to the server Cj .
With our approach, we avoid additive homomorphic encryption while transmitting only
6 bits for a single And gate, 3 bits by server. Observe that to evaluate 9 millions of
And gates, approximately 3.4 megabytes have to be transmitted between the trusted
provider P and a server Cj using a low-latency communication network.

Given the Xor and And gates, the servers C0 and C1 are able to evaluate the argmax

function using shares on the binary decomposition of the scores, leading to the shared
best arm index M , followed by an equality test between M and every shared index
i ∈ JKK. At the end of the evaluation, the server Cj obtains K shares ⟨b1,t⟩j , . . . , ⟨bK,t⟩j .
Each share ⟨bi,t⟩j is sent back to the data owner DOi, leading for DOi to have the
two shares ⟨bi,t⟩0 and ⟨bi,t⟩1. Using the binary sharing reconstruction method, DOi
computes ⟨bi,t⟩0 ⊕ ⟨bi,t⟩1 = r ⊕ bi,t ⊕ r leading to the reconstruction of bi,t. Given its
selection bit, every data owner DOi pulls itself as specified by our generic multi-armed
bandits model.

We do not have mentionned it for brevity, but along the shares of the score’s bits,
every data owner computes and sends the arithmetic share ⟨si⟩j to the server Cj , where
⟨si⟩0 equals ri and ⟨si⟩1 equals si− ri for some random ri. This constitutes the heart of
our rewards saving mechanism, allowing our protocol Salsa to be secure against data
owners failures.

Total Cumulative Rewards Sending Protocol of Salsa (Figure 3.24)

At the end of the protocol execution, the user U expects to have the total cumula-
tive rewards s corresponding to the sum of all the cumulative rewards si. For clar-
ity, suppose that all data owners are online. The rewards sending protocol starts
with every data owner computing and sending the arithmetic share ⟨si⟩j to the server
Cj , where ⟨si⟩0 equals ri and ⟨si⟩1 equals si − ri for some random ri. As a result,
the first server C0 obtains the shares ⟨s1⟩0, . . . , ⟨sK⟩0 corresponding to the randoms
r1, . . . , rK , whereas the second server C1 obtains the shares ⟨s1⟩1, . . . , ⟨sK⟩1 correspond-
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C0

(2) ⟨s⟩0 ←
∑K
i=1⟨si⟩0

C1

(2) ⟨s⟩1 ←
∑K
i=1⟨si⟩1

DOi

(1) ⟨si⟩0 = ri

(1) ⟨si⟩1 = si − ri

U

(3) ⟨s⟩0 =
∑K
i=1 ri

(3) ⟨s⟩1 =
∑K
i=1 si − ri

Figure 3.24: Representation of the total rewards sending protocol execution in Salsa.
All communications are assumed to be authenticated and secure.

ing to s1 − r1, . . . , sK − rK . The shares ⟨s⟩0 and ⟨s⟩1 are efficiently computable as
⟨s⟩0 =

∑K
i=1 ri and ⟨s⟩1 =

∑K
i=1 si −

∑K
i=1 ri. These two resulting shares are then

forwarded to the user U which recovers the total cumulative rewards s by computing
⟨s⟩0+ ⟨s⟩1. Thanks to the previously sent shares ⟨s⟩j , the shares of a data owner having
left the protocol before the end can be replaced by the shares receiving during the arm
selection protocol.

3.4.1 Correctness of Salsa

By construction, the correctness of Salsa heavily holds on the correctness of the arith-
metic and binary sharing techniques. We first focus on the correctness of the arithmetic
sharing by supposing two values a and b and their shares ⟨a⟩0 = ra, ⟨a⟩1 = a − ra of a
and the shares ⟨b⟩0 = rb, ⟨b⟩1 = b− rb. The reconstruction of the sharings of a, denoted
⟨a⟩0+⟨a⟩1, is to recover a and hence validates the correctness of the reconstruction. The
addition c = a+ b can be computed non-interactively with ⟨c⟩0 = ⟨a⟩0 + ⟨b⟩0 = ra + rb

and ⟨c⟩1 = ⟨a⟩1 + ⟨b⟩1 = a + b − ra − rb. The reconstruction of c performed via the
addition of ⟨c⟩0 and ⟨c⟩1 results into a + b which confirms the correctness of the ary-
thmetic sharings. Since the total cumulative rewards sending protocol is only based on
reconstruction and shared addition to share the total cumulative rewards s with the user
U , the correctness of this part of the protocol follows.

The arm selection protocol, in contrast, relies on binary shares. The shares ⟨b⟩0 = r

and ⟨b⟩1 = b⊕ r can be efficiently reconstructed as ⟨b⟩0⊕⟨b⟩1 in order to recover the bit
b. Binary sharings support the evaluation of the Xor and And gates. Since Xor is by
essence an addition over F2, the correctness of the Xor gate evaluation holds under the
same argument for the addition using arithmetic sharings. The And gate requires more
explanation since it is involving a correlated randomness. Suppose b0 and b1 two bits, as
well as two random bits x and y. Let denote by z the evaluation of the And gate over x
and y, written as x · y. The And gate evaluation assumes that the server Cj has access
to the correlated randomness (⟨x⟩j , ⟨y⟩j , ⟨z⟩j), and involves the reconstruction of e and
f defined respectively as b0 ⊕ x and b1 ⊕ y [DSZ15]. Assuming b2 being the resulting
shared bit obtain after evaluation of the And gate over the shared bits b0 and b1, the
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reconstruction of the sharing ⟨b2⟩0 and ⟨b2⟩1 of b2 can be obtained as follows:

⟨b2⟩0 ⊕ ⟨b2⟩1 = (f · ⟨x⟩0 ⊕ e · ⟨y⟩0 ⊕ ⟨z⟩0)⊕ (e · f ⊕ f · ⟨x⟩1 ⊕ e · ⟨y⟩1 ⊕ ⟨z⟩1)

= f · (⟨x⟩0 ⊕ ⟨x⟩1)⊕ e · (⟨y⟩0 ⊕ ⟨y⟩1)⊕ e · f ⊕ ⟨z⟩0 ⊕ ⟨z⟩1

= f · x⊕ e · y ⊕ e · f ⊕ z

= (b1 ⊕ y) · x⊕ (b0 ⊕ x) · y ⊕ (b0 ⊕ x)(b1 ⊕ y)⊕ x · y

= (b1 ⊕ y) · (x⊕ b0 ⊕ x)⊕ (b0 ⊕ x) · y ⊕ x · y

= (b1 ⊕ y) · b0 ⊕ (b0 ⊕ x) · y ⊕ x · y

= b0 · b1 ⊕ y · b0 ⊕ y · b0 ⊕ x · y ⊕ x · y

= b0 · b1

Since b0 · b1 equals one if and only if both bits equal one, the reconstruction of the
outputted sharings leads to a valid result. Furthemore, since all the arm selection compu-
tations are based on these Xor and And gates, the correctness of binary computations
and by extension our SharedSelectionBits algorithm, are ensured.

3.4.2 Security of Salsa

In contrast with Tango whose security is based on computational hypothesis, Salsa

relies on information theoretic arguments thanks to the secure two-party computations.
By design, both binary and arithmetic shares ⟨v⟩0 and ⟨v⟩1 prevents one to learn v

given only one share. Before providing the security proof of Salsa, we give the overall
intuition on the privacy-preserving property of sharings.

Security of Arithmetic Shares

In Salsa, arithmetic shares are used during the SelectArm protocol to share the cumu-
lative rewards si and during the SendRewards protocol in which addition over sharings
is performed. Let focus on the SendRewards protocol being the most insightful, in which
the first server C0 has access to first share ⟨si⟩0 which equals ri, and where the second
server C1 has access to the second share ⟨si⟩1 which equals si − ri. Whereas it is clear
that C0 has no particular advantage to recover si from ri, since ri is randomly chosen by
DOi, by the one-time pad security, the second server C1 has no advantage to recover si
from si − ri. And since every computation performed by the servers C0 and C1 are lim-
ited to use the additive property of arithmetic shares, implying no communication, the
server Cj has a statistical advantage to distinguish between a share ⟨si⟩j real cumulative
rewards si and a share ⟨s′i⟩j of a random cumulative rewards s′i.

Security of Binary Shares

The binary shares are used in Salsa during the arm selection protocol to obtain the
selection bits from the (shared) scores provided by the data owners. The selection bits
generation circuit takes as an input the binary representation of the scores, where each
bit of vi,t is shared among the two servers C0 and C1, using the binary sharing technique.
Similarity to arithmetic shares, the first share ⟨b⟩0 of a bit b is defined by a random bit
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r chosen by the data owner DOi, and the second share ⟨b⟩1 equals b ⊕ r. As we have
observed, the construction of the Xor gate does not involve an interaction between the
two servers. However, due to the complexity of the circuit we are trying to evaluate
to obtain the selection bits, we have also to evaluate the And gate which requires an
exchange of shares, implying the input bits and the intermediate data. Indeed, each
server Cj is expected the shares ⟨e⟩1−j and ⟨f⟩1−j of the other server to reconstruct
respectively e and f , which by definition equal respectively b0⊕x and b1⊕ y. The value
of x and y are randomly and privately chosen in the protocol by the trusted provider P
which is assumed to not collude with the other servers and with a data owner. These
values e and f are then used to construct the resulting shares, which once combined,
recover the output of the And gate. Since the value of x and y are never revealed
and randomly chosen by the trusted random provider P then under the one-time pad
security, both C0 and C1 cannot distinguish between the p-th bit of a score and a random
bit [DSZ15].

Security Proofs for the Server Cj and the Trusted Provider P

We first focus on the case of the controller C, being splitted into three distinct non-
colluding servers: Two servers C0 and C1 performing the computations and a trusted
random provider P. To prove that the controller C does not learn any information on
any score vi,t, on any cumulative rewards ni, on any number of pulls for a data owner
DOi at some time step t, or on the total cumulative rewards s, we proceed in two
lemmas. The first lemma considers the case of the (honest-but-curious) corruption of Cj
for j in {0, 1}, whereas the second lemma considers the case of a the (honest-but-curious)
corruption of the trusted provider P.

For clarity, we denote by RealCj (respectively RealP) the real experiment being the
same of the real experiment RealCj , except that the adversary corrupts Cj (respectively
P). Similarly, we denote by IdealCj (respectively IdealP) the ideal experiment being the
ideal experiment IdealCj , except that the adversary corrupts only Cj (respectively P).
To prove the simulation security SimC of Salsa, it suffices to prove these two lemmas.

Lemma 3. Let N ∈ N be the budget and K ∈ N be the number of arms. Then,
for every security parameter λ ∈ N, every polynomial-time adversary A, there exists a
simulator S such that Salsa is statistically SimCj-secure:

Pr
[
Exp

RealCj

A (1λ, N,K)→ 1
]

s≈ Pr
[
Exp

IdealCj

A,S (1λ, N,K)→ 1
]

Proof. The view of Cj , denoted View(Cj) is composed of the shares ⟨vi,t[p]⟩j for every
p ∈ JlK, ⟨bi,t⟩j and ⟨si⟩j for every i ∈ JKK and every time step t ∈ JtK, as well as
the share ⟨s⟩j . It also includes all intermediate shares obtained during the SelectArm

execution protocol. In order to prove the above lemma, we first construct the simulator
S = (S0,S1) used in the game Exp

IdealCj

A,S :

• Simulator S0. Our first simulator S0 obtains as an input the current time t ∈ JNK
and the number of arms K. At the end of the execution, for some time step
t ∈ JKK, the simulator S0 is required to output a K-sized list of tuples (s′i, n′i, v′i,t)
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for i ∈ JKK where s′i is a random cumulative rewards, n′i is a random number of
pulls and v′i,t is a random score.
The simulator S0 starts by randomly chosen K scores v′1,t, . . . , v′K,t, K random
cumulative rewards s′1, . . . , s′K and K random number of pulls n′1, . . . , n′K . Finally,
it outputs the list of tuples (s′i, n

′
i, v
′
i,t) for every i ∈ JKK.

• Simulator S1. Our second simulator S1 obtains as an input the number of arms
K, and produces the simulated cumulative rewards s′i randomly chosen from an
arbitrary space, say N, for each arm i ∈ JKK.

By construction, our simulator S = (S0,S1) is polynomial-time and hence is a suit-
able simulator. We are ready to prove the indistinguishability of the real world cor-
responding to the real experiment Exp

RealCj

A , and the ideal world corresponding to the
experiment Exp

IdealCj

A,S .

Game G0. This game corresponds to our real experiment Exp
RealCj

A , hence:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
Exp

RealCj

A (1λ, N,K)→ 1
]

Game G1 . This game is the same as G0, except that we introduce our simulator
S = (S0,S1) in the game. Our first simulator S0 is inputted at each time t ∈ JNK
with the appropriate inputs i.e., the current time t and the number of arms K. Our
second simulator S1 is also added to the game, inputted with the number of arms K.
Note that the outputs of our simulator, including the list of tuples (s′i, n

′
i, v
′
i,t) for each

i ∈ JKK and for each time step t ∈ JNK is not used as well as the outputted random
cumulative rewards s′i at the end of the protocol execution. Thus it does not impact the
view of Cj , providing no advantage for the adversary to distinguish, leading to a perfect
indistinguishability:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
G1
A,S(1

λ, N,K)→ 1
]

Game G2. In this game, we replace the K executions of the arm pulling algorithm
inputted with the selection bits, with a single execution of the arm pulling algorithm
inputted with the best arm M computed by the challenger running the game. Based on
the correctness of the SelectArm protocol, the adversary should not notice any modifi-
cation and hence we obtain a perfect indistinguishability between this game G2 and the
previous game G1:

Pr
[
G1
A,S(1

λ, N,K)→ 1
] p= Pr

[
G2
A,S(1

λ, N,K)→ 1
]

In the following K games, we will replace the cumulative rewards in the rewards
sending protocol. To improve clarity, we index these games as G3,k for k ranging from
1 to K, in which we focus on k-th data owner DOk. The game G3,0 refers to G2.

Game G3,k for k ∈ J1,KK. In this game, we replace the cumulative rewards sk sent by
the data owner DOk during rewards sending protocol SendRewards, with the randomly
chosen cumulative rewards s′k produced by the simulator S1. Hence, instead of receiving
the share ⟨sk⟩j , the server Cj receives the share ⟨s′k⟩j from which it cannot recover
sk or s′k based on the security of the arithmetic share. Hence, we have a statistical
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indistinguishability between G2,k−1 and G2,k:

Pr
[
G2,k−1
A,S (1λ, N,K)→ 1

]
s≈ Pr

[
G2,k
A,S(1

λ, N,K)→ 1
]

In the following N ·K games, we replace the cumulative rewards si whose shares are
sent by the data owner DOi at a time step t ∈ JNK during the arm selection protocol,
used in our rewards saving mechanism. The following games are denoted G4,t,i for
t ∈ JNK and i ∈ JKK, the game G4,t,0 referring to the game G4,t−1,K and the game
G4,0,K being the game previous game G3,K .
Game G4,t,i for t ∈ JNK, i ∈ JKK. In this game, we replace the cumulative rewards si
sent by the data owner DOi with the randomly chosen cumulative rewards s′i produced
by the simulator S0. Hence, instead of receiving the share ⟨si⟩j , the server Cj receives the
share ⟨s′i⟩j . The indistinguishability between holds under the security of the arithmetic
share. Hence, we have a statistical indistinguishability between G4,t,i−1 and G4,t,i:

Pr
[
G4,t,i−1
A,S (1λ, N,K)→ 1

]
s≈ Pr

[
G4,t,i
A,S (1

λ, N,K)→ 1
]

In the following N ·K · l games, we are going to replace the p-th bit of the score vi,t
produced by the data owner DOi at time step t ∈ JNK with the p-th bit the random
score v′i,t chosen by the simulator S0. For clarity, we denote the following games as
G5,t,i,p for t ∈ JNK, i ∈ JKK and p ∈ JlK. The game G5,1,1,0 refers to the previous game
G4,N,K and the game G5,t,i,0 refers to the game G5,t,i−1,l.
Game G5,t,i,p for t ∈ JNK, i ∈ JKK, p ∈ JlK. In this game, we replace the p-th bit
of the score vi,t by a p-th bit of the random score v′i,t chosen by the simulator S0.
Hence, instead of receiving the share ⟨vi,t⟩j , the server Cj receives the share ⟨v′i,t⟩j . The
indistinguishability of these two games is based on the security of the binary share. Note
that the modification of a bit breaks the correctness of the SelectArm protocol. This
does not bring any advantage for the server Cj since its view only contains shares and
hence does not learn any plaintext information related on the protocol execution. This
leads to a statistical indistinguishability between G5,t,i,p−1 and G5,t,i,p:

Pr
[
G5,t,i,p−1
A,S (1λ, N,K)→ 1

]
s≈ Pr

[
G5,t,i,p
A,S (1λ, N,K)→ 1

]
In the last game G5,N,K,l, the server Cj observes shares of random values chosen by

the simulator, which corresponds to the ideal experiment Exp
IdealCj

A,S . As a result, we
have:

Pr
[
Exp

RealCj

A (1λ, N,K)→ 1
]

s≈ Pr
[
Exp

IdealCj

A,S (1λ, N,K)→ 1
]

Lemma 4. The view of the trusted randomness provider P, denoted View(P) is limited
to the all the randoms and associated shares, transmitted with the servers C0 and C1.
The security proof of P is straightforward in the sense that view of P is fundamentally
independent of the scores, selection bits and cumulative rewards. Indeed, the trusted
randomness provider is not inputted with a sensitive data and never receive any infor-
mation from another party, its single task being to generate and distribute a correlated
randomness for the And gates evaluation. Hence, any modification of the scores, the
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selection bits or the cumulative rewards does not provide any advantage for P. There-
fore, it is clear that we obtain a perfect indistinguishability between the real experiment
ExpRealPA and the ideal experiment ExpIdealPA :

Pr
[
ExpRealPA (1λ, N,K)→ 1

]
p= Pr

[
ExpIdealPA,S (1λ, N,K)→ 1

]
By Lemma 3 and Lemma 4, we know that the honest-but-curious corruption of the

servers Cj or the trusted provider P does not allow the adversary to learn any information
on the scores, on the cumulative rewards, on the total cumulative rewards but also on
the pulled armed. And since the controller C is composed of these nodes, we achieve the
simulation security for the controller C.

Security Proof for User

Theorem 3. Let N ∈ N be the budget and K ∈ N be the number of arms. Then,
for every security parameter λ ∈ N, every polynomial-time adversary A, there exists a
simulator S such that Salsa is perfectly SimU-secure:

Pr
[
GRealU
A (1λ, N,K)→ 1

] p= Pr
[
GIdealU
A,S (1λ, N,K)→ 1

]
Proof. The view of U , denoted View(U), consists of the single ciphertext cs encrypting
the total cumulative rewards s. In order to prove the above theorem, we first construct
the simulator S = (S0,S1) used in the game ExpIdealUA,S :

• Simulator S0. Our first simulator S0 obtains as an input the current time t ∈ JNK
and the number of arms K. At the end of its execution, the simulator S0 is
required to output a list of tuples scores (s′i, n′i, v′i,t) whose first element is a random
cumulative rewards, the second element is a random number of pulls and the third
and last element is a random score.
The simulator S0 generates and returns K random scores v′i,t, K random number
of pulls n′i and K cumulative rewards s′i independently.

• Simulator S1. Our second simulator S1 obtains as an input the number of arms K
as well as the total cumulative rewards s, and produces the simulated cumulative
rewards s′i randomly chosen from N for each arm i ∈ JKK.

By construction, our simulator S = (S0,S1) is polynomial-time and hence is a suit-
able simulator. We are ready to prove the indistinguishability of the real world cor-
responding to the real experiment ExpRealUA , and the ideal world corresponding to the
experiment ExpIdealUA,S .

Game G0. This initial game corresponds to the ExpRealUA experiment. Therefore, we
have a perfect indistinguishability:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
ExpRealUA (λ,N,K)→ 1

]
Game G1. This game works exactly as the game G0 except that we replace the ex-
ecution of the MAB.PullArm algorithm executed for all arms, by a single execution of
MAB.PullArm for the data owner indexed by M , the index of the data owner having the
highest score. As a result, the selection bits outputted by the arm selection protocol are
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now ignored. By correctness of the arm selection protocol SelectArm, this modification
does not affect the selected arm at each time step and hence does not affect the total
cumulative rewards returned to the user U . Hence, we have a perfect indistinguishability
between G0 and G1:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
G1
A(λ,N,K)→ 1

]
Game G2. In this game, we focus on the integration of our first simulator S0: The
simulator S0 is inputted at each time t ∈ JNK with t and the number of arms K. Recall
that the output of the simulator S0 is composed of a K-sized list of tuples (s′i, n

′
i, v
′
i,t).

During the execution of the SelectArm protocol, at each time t ∈ JNK each data owner
DOi is inputted with its secret key sk i and a random cumulative rewards s′i, a random
number of pulls n′i and a random score v′i,t. The obtained selection bits at the end of
the arm selection protocol are ignored.

The view of the user U is limited to the total cumulative rewards s. The arm cho-
sen by the SelectArm protocol is random since the arm selection protocol is inputted
with completely random values. However, thanks to the challenger executing the cor-
rect MAB.PullArm algorithm for the arm having the best score, the correctness of the
multi-armed bandits algorithm is guaranteed. Therefore, the returned total cumulative
rewards is perfect indistinguishability between this game and the previous game G1:

Pr
[
G1
A(1

λ, N,K)→ 1
] p= Pr

[
G2
A,S0(λ,N,K)→ 1

]
Game G3. In this game, we focus on the integration of our second simulator S1, inputted
at the end of the protocol with the number of arms K and the total cumulative rewards
s, corresponding to the sum of all cumulative rewards (i.e.,

∑K
i=1 si). The simulator S1

is asked to output a K-sized list of random scores s′1, . . . , s′K , where each s′i is inputted
to DOi at the beginning of the SendRewards protocol execution. From the observation
that both s1 + · · · + sK (computed by the real multi-armed bandits execution) and
s′1 + · · ·+ s′K (randomly sampled from the simulator S0) equals s, so we conclude that
the view of U between the game G3 and the game G2 is perfectly indistinguishable:

Pr
[
G2
A,S0(1

λ, N,K)→ 1
] p= Pr

[
G3
A,S(λ,N,K)→ 1

]
And since G3 corresponds to the ideal experiment ExpIdealUA,S , we observe a perfect indis-
tinguishability between ExpRealUA and ExpIdealUA,S :

Pr
[
ExpRealUA (1λ, N,K)→ 1

]
p= Pr

[
ExpIdealUA,S (λ,N,K)→ 1

]

Security Proof for a Data Owner

Theorem 4. Let N ∈ N be the budget and K ∈ N be the number of arms. Then,
for every security parameter λ ∈ N, every polynomial-time adversary A, there exists a
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simulator S such that:

Pr
[
GRealDO
A (1λ, N,K)→ 1

] p= Pr
[
GIdealDO
A,S (1λ, N,K)→ 1

]
Proof. The view of the corrupted data owner DOj , denoted View(DOj), contains the
cumulative rewards si as well as the number of pulls ni. It also contains every score
vj,t and every selection bit bj,t for each time step t ∈ JNK. In order to prove the above
theorem, we first construct the simulator S = (S0,S1):

• Simulator S0. Our first simulator S0 obtains as an input the current time t ∈ JNK,
the number of arms K, the index j of the corrupted data owner DOj chosen by
the adversary A, its real score vj,t and a bit associated to the value M ?

= j, where
the index M corresponds to the arm index having its best score. At the end of
the execution, the simulator S0 is required to output a (K − 1)-sized list of tuples
of the form (s′i, n

′
i, v
′
i,t) whose first element is a random cumulative rewards, the

second element is a random number of pulls and the third element is a random
score.
Our simulator S0 acts differently depending on the value of M ?

= j. For the sake of
clarity, let denote the value of M ?

= j by the bit beq. If the bit beq equals one, then
the corrupted data owner DOj expects to receive a positive selection bit. Hence,
given its score vj,t, the simulator generates K − 1 random scores v′i,t with the
condition that every v′i,t is strictly lower than vj,t. This ensures that the selected
data owner will be the corrupted one. At the opposite, when beq is a negative bit,
then the simulator generates K− 1 random scores with the condition that at least
one score v′i,t is strictly higher than vj,t. Note that the selected arm here is chosen
at random since the simulator does not have any information on the index M .
This models an idealised situation in which a data owner that is not pulled has at
most 1

K−1 chance to correctly identify the chosen arm. The cumulative rewards
and the number of pulls returned by the simulator are chosen at random.

• Simulator S1. Our second simulator S1 obtains as an input the number of arms K
as well as the index j of the corrupted data owner, and produces K − 1 simulated
cumulative rewards s′1, . . . , s′j−1, s′j+1, . . . , s

′
K randomly chosen from an arbitrary

space, say N.

By construction, our simulator S = (S0,S1) is polynomial-time and hence is a suit-
able simulator. We are ready to prove the indistinguishability of the real world cor-
responding to the real experiment ExpRealDO

A , and the ideal world corresponding to the
experiment ExpIdealDO

A,S .

Game G0. This initial game corresponds to the ExpRealDO
A experiment. Therefore, we

have a perfect indistinguishability:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
ExpRealDO
A (λ,N,K)→ 1

]
Game G1. This game works exactly as the game G0 except that we replace the ex-
ecution of the MAB.PullArm algorithm executed for all arms, by a single execution of
MAB.PullArm for the data owner indexed by M , the index of the data owner having the
highest score. As a result, the selection bits outputted by the arm selection protocol
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are now ignored. By correctness of the arm selection protocol SelectArm, this modi-
fication does not affect the selected arm at each time step and hence does not affect
the selection bits received by the corrupted data owner DOj Hence, we have a perfect
indistinguishability between G0 and G1:

Pr
[
G0
A(1

λ, N,K)→ 1
] p= Pr

[
G1
A(λ,N,K)→ 1

]
Game G2. This game is the same as G1, except that we introduce our simulator S =

(S0,S1). The simulator S0 is inputted at each time step t ∈ JNK with the current time
t, the number of arms K, the index j of the corrupted data owner DOj , its real score
vj,t, as well as the bit beq associated to the value M ?

= j. The simulator S1 is inputted
with the number of arms K and the corrupted index j. For the moment, the output
of S is not used. Therefore, the view of DOj remains unchanged leading to a perfect
indistinguishability between G1 and G2:

Pr
[
G1
A(1

λ, N,K)→ 1
] p= Pr

[
G2
A,S(1

λ, N,K)→ 1
]

Game G3. This game is the same as G2 except that at each time t ∈ JNK, given the
index j of the corrupted data owner DOj , the real score vi,t for i different of j is replaced
by the random score v′i,t computed by the simulator S0. We do the same replacement
for the cumulative rewards and the number of pulls. When the chosen data owner
is the corrupted data owner DOj , then the simulator S0 receives a positive selection
bit. Otherwise, the arm selection selects randomly an arm among all honest data owner
leading to a random arm selection. By construction of the experiment, the correctness is
preserved thanks to the challenger running the appropriate arm pulling. As a result, the
execution of the multi-armed bandits is still valid (even if random scores are provided),
leading to a perfect indistinguishability between G2 and G3:

Pr
[
G2
A,S(1

λ, N,K)→ 1
] p= Pr

[
G3
A,S(1

λ, N,K)→ 1
]

Game G4. This game is the same as G3 except that during the SendRewards proto-
col execution, the real cumulative rewards s1, . . . , sj−1, sj+1, . . . , sj are replaced by the
random cumulative rewards s′1, . . . , s′j−1, s′j+1, . . . , s

′
j obtained at the output of the sim-

ulator S1. Observe that this modification does not affect the view of the corrupted data
owner DOj since it does contain any cumulative rewards si for i different of j. As a
result, we obtain a perfect indistinguishability between G3 and G4:

Pr
[
G3
A,S(1

λ, N,K)→ 1
] p= Pr

[
G4
A,S(1

λ, N,K)→ 1
]

And since G4 corresponds to the ideal experiment ExpIdealDO
A,S , we observe a perfect

indistinguishability between ExpRealDO
A and ExpIdealDO

A,S :

Pr
[
ExpRealDO
A (1λ, N,K)→ 1

]
p= Pr

[
ExpIdealDO
A,S (λ,N,K)→ 1

]
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3.4.3 Empirical Study of Salsa

Compared to Tango, which is based on cryptographic primitives whose security holds
under computational hypothesis, Salsa relies on secure two-party computations, more
precisely on computation over shares, featuring an incredibly fast computation. For
instance, the binary Xor gate requires the execution of a single ⊕ operation, hence
without overhead. The arithmetic share enjoys the same computational efficiency. The
And gate over shares, in constrast, requires a previously computed and shared corre-
lated randomness whose computation is performed efficiently thanks to our randomness
provider. The And gate evaluation performed by the servers requires few bit multipli-
cations and few exclusive-or, which are efficient.

For all these reasons, Salsa is expected to be fast and hence scalable. This desired
efficiency is confirmed by our implementation whose execution time (ignoring the com-
munication times being highly dependent of the network configuration), following the
same execution parameters of the benchmark of Tango, are presented in Figure 3.25.
Our proof-of-concept achieves a thousand sequential executions of the SelectArm protocol
in less than 150 milliseconds. Compared to Tango where a thousand sequential execu-
tion of Tango.SelectArm requires 2500 seconds. As a result, we obtain an approximated
16666 speedup factor. Based on these results, it is clear that Salsa is particularly fast
and scalable. The presented execution times for the SendRewards protocol are negligible
compared to the SelectArm protocol since it is executed only once, independently of the
budget N . And since SendRewards requires only addition of shares, it is particularly
efficient as well. Furthermore, Salsa does not require any setup, hence we have omitted
its execution time.
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Figure 3.25: Execution time of Salsa. The presented execution times are the mean of
10 iterations. When varying the budget N , the number of arms K is set to 9. When
varying the number of arms K, the budget N is set to 1000.

3.5 Conclusion & Discussion

The reward maximization problem in the federated multi-armed bandits setting, is a
very interesting problem having several applications including recommendation systems,
financial investment and medical treatment. In the previous works, this reward max-
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imization problem was not studied under the prism of the federated learning, or with
insufficient solutions such as our initial attempt Samba suffering from correctness and
security issues.

In this chapter, we have first proposed a new formal security definition using the real-
ideal paradigm, putting forward the desired security properties: Any party involved in
the protocol should not learn any information on the score of a data owner (revealing
sufficient information to recover reward probability), on the chosen arm, but also on
the rewards generated by a data owner. Then, we have proposed two protocols fitting
our security definition: Tango whose design aims to be closer than Samba, and Salsa

based on a different paradigm, namely secure two-party computations.
Our first protocol Tango enjoys several features: First, it has been formally proved

secure with respect to our security definition. Second, it is generic in the sense that any
discrete multi-armed bandits following a precise and formal definition can be plugged in
Tango, to enjoy the security features without affecting the returned total cumulative
rewards. Third and last, Tango provides resistance against failures of one or more
data owners. This useful property allows to return almost the same cumulative rewards
which would be normally stored by a data owner being offline, even until the end of the
protocol. We have provided an empirical evaluation of Tango confirming the advantage
of our construction. First, despite the transposition of a standard multi-armed bandits
algorithm into a discrete one, requiring the approximation of every score, we do not
have observed any loss in the returned total cumulative rewards. Second, the returned
total cumulative rewards using Tango is almost optimal, which confirms the interest of
our approach to maximize the reward. Third and last, despite its simplicity, our failure
resistance turns out to be an effective solution to limit the loss of rewards in case when
some data owners go offline.

Despite all the mentioned advantages, it appears that Tango is not suitable for
real-time applications due to the time-consuming homomorphic operations performed
during the arm selection, requiring more than 2.5 seconds to pull the best among 9

arms. However, our construction remains interesting for applications where the arm
selection is allowed to be performed in a longer delay. For instance, this is suitable for
movie recommendation systems where a user pays to have recommendation for movies to
watch. In this scenario, the delay between two movies seen by the user is long enough to
evaluate the arm selection and later to recommend a new movie. The security properties
enjoyed by Tango prevent the system to learn the recommanded movie.

To overcome the execution time bottleneck due to the homomorphic comparison in
Tango, we have proposed a second protocol Salsa, offering all the same advantages
offered by Tango, including correctness, genericity, security, and resistance against
data owner failure, while featuring a fast arm selection, performed in less than 0.15

millisecond. Hence, Salsa is suitable for real-time applications.
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Electronic tickets (E-Ticket) have become the standard. The rationale behind the
digitisation of the ticket industry is both practical and economical. More sales can be
achieved by allowing users to purchase tickets from anywhere. The practical aspect of
ticket digitisation entails significant drawbacks, resulting in a negative impact on the
second-hand market and the protection of users’ privacy. In a world where privacy is
a central concern, it is essential to preserve the multiple facets of a paper ticket, such
as the right to trade them, and ensure full confidence in their validity. However, the
original property of non-replicable paper tickets is often lost with the development of
E-Tickets. A formal security model for electronic ticketing is needed to ensure their
security, and a system that combines the best properties of both worlds is necessary.

The research has focused on multiple cryptographic technologies with properties sim-
ilar to their physical counterparts. The subject of e-cash [BCFK15, BFQ21, TH16],
e-coupon [CES+05, LMY14, Ngu06] (e-coupon are similar to e-cash with items cho-
sen when redeeming an e-coupon remains unknown to the service provider) or n-times
anonymous authentication [TFS04, CHK+06] appears to be closely associated with our
issue. Even though they have been studied in the literature, their design makes them
incompatible with being used as a ticketing system. In numerous electronic cash sys-
tems [BCFK15, BFQ21, TH16], the practice of double-spending, wherein a coin is spent
twice, is mitigated by a central bank that maintains a record of the spent coins. When
receiving a coin from a merchant, the bank checks to ensure that it does not belong to the
list of spent coins. Therefore, the bank is able to detect if a coin has been double-spent,
and can compensate the scammed merchant. This mechanism, however, is not suitable
to construct a desirable ticketing system, since a scam would be left undetected by a
second merchant accepting the same coin until they both reach the bank. This fraud can

101
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be generalised to transfer of coins in transferable e-cash. Putting it in different terms,
cheaters could resell twice a ticket and this would be left undetected until they try to
access the event. On the other hand, in e-coupon systems [CES+05, LMY14, Ngu06],
the transfer may appear unfavourable or even atypical, as a coupon has been issued by
a merchant to a specific customer with the intention of gaining their loyalty, whereas n-
times anonymous authentication [TFS04], cannot be safely transferred. With e-tickets,
it is imperative to guarantee the validity of a ticket at any time in order to avoid double-
spent tickets. This primary concern renders every electronic cash system that prevents
double-spending at coin deposit irrelevant to our issue. Additionally, a coin is validated
by the bank during the deposit process in e-cash [BFQ21]. In the case of e-ticketing, a
ticket can be validated by one of the many terminals. All of these disparities substanti-
ate the necessity for a specific approach to electronic ticketing. E-ticketing systems have
been studied both in the industry [Ave16, Pro16] for practical purposes and in academia
for understanding social behaviours regarding ticket resale and the incentives behind
this process [LS14, CDŞ14]. The majority of the present ticketing systems that have
been developed by the industry are centred on the “standard” functionality of electronic
tickets, which entails the provision and validation of tickets. These systems are not
designed to ensure secure ticket transfer. Hence, an honest client has high chances of
buying a duplicated ticket from a malicious user. More advanced systems, attempting
to address this issue, provide authentication via a distributed architecture, such as the
blockchain [Ave16, Pro16]. Even if ticket validity is now ensured during a transfer (by
checking if the ticket is valid in the blockchain), it moves away from the current e-
ticketing system organisation where the tickets are stored in a database. These methods
however, are in opposition to the currently centralised event organisation and implies
a larger energy consumption [dV18, SBFK20]. Users’ anonymity in e-ticketing systems
has not been considered in the latest protocols [Ave16, HAY12, NAJ15, Pro16]. Never-
theless, anonymity is guaranteed by physical tickets, and it remains crucial to prevent
the event organisers from collecting the identity of ticket purchasers unless necessary.
Blockchain-based solutions can serve this purpose [Ave16, Pro16], but for the aforemen-
tioned argumentation, we exclude them from our investigation.

Summary of Contribution

Considering the above problems and the lack of existing formalism, we design an e-
ticket scheme with proven security. It features three central aspects as it is centralised,
transferable and anonymous, with the latter property that can be mitigated by auditable
feature at need. We discuss the requirements of such a protocol, its capabilities, and
limitations, and encompass it in a model. We introduce the first security model for
E-Ticket Scheme (ETS). The security is formalised through experiments, modelling
unforgeability, ticket privacy, anonymity of users, and no-double-spending, preventing to
execute a refund, transfer or validate twice with the same ticket.

Our provably secure E-Ticket scheme is called Applause. It allows users to purchase,
refund, validate tickets, but also transfer their tickets to another user. During all the
interactions, users’ anonymity from the event organiser point-of-view is ensured. We
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propose a protocol addressing all the above-mentioned properties. Its security is proven
based on computational proofs in the random oracle.

Payments can be made during at least three steps of our process: The purchase, the
refund, and the transfer of tickets. Traditional payment does not guarantee anonymity,
therefore, using it in our construction would trivially break the anonymity of users. For
instance, the most standard payment protocol EMV [EMV11] does not protect privacy.
In our protocol, the payment is modelled as a generic cryptographic building block,
requiring anonymity, a mandatory assumption only required to ensure full anonymity.
More precisely, our protocol is as anonymous as the payment method in use. We stress
that it is not specific for our protocol but can be applied for every protocol ensur-
ing anonymity and involving payment. Alternative payment protocols that guarantee
anonymity of users exist, ranging from simple anonymous payment method [Pay18] to
more advanced constructions [DGGB22, MSJP22], can be used in our protocol. To reveal
the identity of users, reaching auditability, we present Spotlight, an extended version
of Applause, where the identity of all users can be revealed only by a third-party called
the judge, employing auditable anonymous credentials.

Related Work

Most of the production-ready deployed systems guarantee the “standard” functionality
of ticket payment and delivery. Our system provides users with the ability to transfer
a ticket to another user, while maintaining anonymity, in addition to the standard
functionalities. All existing systems that allow for additional functionalities that we
identify rely on blockchains [Ave16, Pro16]. Blockchain-based ticketing systems can
easily achieve transfer of a ticket by checking if the ticket is still valid on the blockchain,
and can achieve anonymity by the design of the blockchain. However, the blockchain
requires the upkeep of a distributed ledger and numerous signatures, which means that
numerous servers are needed to safeguard the validity of the network. Low-consumption
and optimised computation has been a keystone of cryptography. As shown in [dV18,
SBFK20], blockchains are more computationally demanding than a centralised design,
but also require large-scale procedures. Our system is centralised to enhance efficiency
and align with the existing topology of event organisation.

Previous works, initiated by [LLG01] in 2001 and followed up by a number of papers,
essentially evaluating either the practicality [HCE05], the interface design [XTB04] or
the security [SSV08] of existing systems in the public transport. Subsequent works have
proposed a novel ticketing system. They can be divided into three categories. The
first category focuses on the design of a ticketing system [HAY12, NAJ15], ensuring the
validity of a ticket, without considering privacy. The second category aims to guarantee
the privacy of the user, however it does not permit transfer or auditability. In [KLG13],
they study the possibility of a ticketing system with privacy of users, including the
billing step. The authors of [Gud13, GSK14] have studied the possibility of using RFID
and NFC while ensuring privacy of users, using unlinkable certified tokens [MDND15]
for public transport ticketing or anonymous credentials [HCS+21] for general purposes
tickets. Furthermore, construction of [HCS+21] takes a few seconds whereas our protocol
Applause requires 130 milliseconds to purchase, transfer and validate a ticket, and 250
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Figure 4.1: Representation of the ETS model.

milliseconds for Spotlight, making our contribution scalable. Unlike [HCS+21], we
include the payment process in the protocol as well. The third line of research proposes
ticketing systems based on a distributed ledger, which are less efficient compared to
a centralised setting, due to the number of involved servers and communication time.
The first paper to propose such a system is presented in [LNGH19], which is based on
blockchain. Recently, a new ticketing system has been proposed in [YZ22] based on
NFT. For practical and efficiency reasons depicted above, our work moves away from
the distributed approach.

This work is compared to publications in less specialised areas, which includes e-
cash [BCFK15, BFQ21, TH16] and e-coupon [CES+05, LMY14, Ngu06], in which a
trusted authority generates tokens attached to a value. Due to double-spending en-
forcement checked only by the bank, followed by a compensation process, they miss the
guarantees of ticket validity upon transfer. On the other hand, n-times anonymous au-
thentication[TFS04, CHK+06] allows a limited number of authentications before leaking
user’s identity, limiting the ticket purchasing, as well as the interest of this approach for
ticketing. In [CHK+06], restrictions of the concept are augmented by time frames that
further limit the authentication process, yet it falls short in ensuring transfer guarantees.

Considerations could also be given to Anonymous Credentials [Cha85, CDLPK22,
MSM23] or Attribute-Based Signatures [BK19, MPR11]. These mechanisms are dedi-
cated for authentication based on predicate matching, identifying information about the
signer. Yet again, transferability remains unaddressed as a standalone aspect in this
particular work.

Chapter Organisation

In Section 4.1, we present the general overview of a ticketing system, including the
desired architecture and the setting in which this work takes place. In Section 4.2, we
introduce the security model defining the features and the security that an anonymous
transferable ticketing system is expected to achieve. In Section 4.3, we introduce our first
transferable ticketing protocol Applause, ensuring ticket unforgeability, ticket privacy
as well as anonymity for users. In Section 4.4, we introduce our second transferable
ticketing protocol Spotlight in which an additional incorruptible third-party called the
judge is able to reveal the identity of users, allowing Spotlight to achieve auditability.
Finally, in Section 4.5 we study the overhead due to the cryptographic operations by
studying our implementation of Applause and Spotlight written in Rust.
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4.1 Overview of Electronic Tickets

We move away from the decentralised approach used in previous work to focus on the
currently used and centralised architecture. Our system divides the ticket handling into
three phases, namely ticket purchase, ticket transfer, and ticket refund or validation.
These phases can be increased with a judge for auditability.

Architecture. A user U willing to purchase a ticket for an event, contacts the ticket
distributor D, which issues a ticket tk to U in exchange of a payment. Once U holds a
ticket, it can authenticate itself to a validator terminal V in order to get access to the
designated event. In some cases, a user U1 holding a ticket might not be able to benefit
from its purchase, in such cases our protocol offers two options: A refund, or a transfer
of its ticket to another user e.g., to U2. The refund is proceeded between user U1 and
the ticket distributor D. The transfer scenario encompasses both the cases where U1
sells its ticket to another user U2 or offers it. The latter consisting of the same transfer
protocol without the payments. The ticket transfer is modeled as an interaction between
U1, U2, and a transfer authority T acting as a guarantee of the exchange. T ensures
the validity of the ticket to U2, prevents U1 to resell a ticket for profit by controlling the
price, but also prevents U2 to obtain a ticket without paying it. While ticket sale is a
fairly straightforward process, its transfer can be achieved through multiple scenarios.
It has been shown in [EY80] that a fair transfer between two users is impossible without
a third party. To make the designation of the ticket receiver possible, we assume a
communication between U1 and U2 before the transfer of the ticket, allowing them to
exchange keys. This communication channel can be obtained for instance via Bluetooth
during a physical meeting. Last, to attend to an event, U has to validate a ticket against
a validator V through an anonymous validation. At any time during the process, the
Judge J can open a ticket to recover the associated user’s identity.

Anonymity and Auditability. Anonymity of users is ensured during every interac-
tion with the system (i.e., the ticket distributor D, the transfer authority T and the
validator V) and all over the process. During the protocol, either authentication is not
required or users authenticate themselves using randomised identities i.e., randomised
keys. If desired, our protocol Applause can be turned into an auditable version called
Spotlight, where an external authority refers as the judge denoted J , recovers the
identity of U. The auditability setting remains consistent with the one presented for
Auditable Anonymous Credentials in [CDLPK22]. In a nutshell, given a certificate is-
sued by the judge J , the user U computes a so-called “proof” denoted π, attesting the
ownership of the certificate to the validator V. Given such a proof π, kept on a record, J
retrieves the public key of the user U having generated the proof π, hence obtaining the
identity of U. The identity of a user still remains private against D, T or V, thanks to
the anonymity property of the proof π. Notably, π is being publicly verifiable meaning
that anyone can verify the ownership of the certificate by the user having generated
π. We stress that if the judge is compromised, only the users’ anonymity would be at
risk. The tickets remain valid, ensuring that honest individuals can utilize their tickets
without any issues. A compromised judge J would not have the capability to forge new
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tickets or alter the validity status of previously issued tickets. The purpose of auditabil-
ity is not to prevent double spending, but rather to fulfill legal mandates concerning
participant identity recovery. This aspect is crucial in unforeseen circumstances such as
force majeure or disasters.

Validation Setting. Large scale events often result in an overloaded network due
to the number of attendees. Multiple terminals are needed to validate the tickets si-
multaneously. Hence, communications coming to and from the validation terminals are
limited in size and number. One would like to assume that the validator is offline after
an initial setup. As a single ticket should be valid for any terminal, and without com-
munication between the terminals, the same ticket could be accepted by each of them,
constituting a forgery for any ticketing system. Hence, the validators must be online
and communicate. For efficiency, we rely on a central authority instead of a distributed
ledger to agree on valid tickets at time t. A validation protocol has to ensure anonymity
of users, and thus cannot authenticate the user. However, an adversary able to relay all
communications between a legitimate user and a validator, can easily perform what is
called a relay attack [RNTS07], where the adversary can have the access granted with-
out paying a ticket, by simply blocking and sending all messages sent by a legitimate
user to the validator, in its own name. As a result, the validator grants the access to
the adversary instead of the legitimate user. Badly, neither the user or the validator
can notice this attack. To prevent this issue, we have chosen to construct a validation
protocol based on a physical channel (such as QRcode [Int06] scanned by the validator
or Bluetooth’s password shared verbally [NSI+15]) during the last step of the protocol
to prevent relay attacks by an adversary. U gets a token, compared through this channel
to the token sent by V.

4.2 Definition of Ticketing System

Most ticketing systems are designed to allow the sale of a seat at an event, with each
seat being associated with a metadata such as the seat number. This can be more
general, and we consider a scenario where tickets are characterised by an event identifier
ide ∈ IDE ⊂ N and by a serial number idp ∈ IDP ⊂ N. The set of identifiers and the
set of serial numbers referred to event and seat number, are assumed publicly known.
Below, we define an E-Ticket Scheme based on a security parameter 1λ. Recall that by
P⟨E1(i1), . . . ,En(in)⟩ → E1(o1), . . . ,En(on); we denote the protocol P played between
parties Ej , taking as input ij and outputting oj . For simplicity, we may omit a party in
the output part of the notation if the party does not produce output.

Definition 25 (ETS). An E-Ticket Scheme Π = (DKeyGen, T KeyGen, VKeyGen,
UKeyGen, Purchase, Refund, Transfer, Validate) is a tuple of PPT algorithms:

• DKeyGen/T KeyGen/VKeyGen/UKeyGen(1λ)→ (sk , pk): Given a security param-
eter 1λ, outputs a key pair (sk , pk).

• Purchase⟨U(skU , (ide, idp)),D(skD, st)⟩ → U(tk),D(b, (ide, idp), tk, st): At the be-
ginning of the ticket purchase protocol between the user U and the ticket dis-
tributor D, U identifies the desired seat of the event using the assumed publicly-
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available couple of event and seat identifiers (ide, idp). At the end of the purchase
protocol, the user obtains and returns the purchased ticket tk, while D updates st
and returns a success bit b, the event and seat identifiers (ide, idp), the ticket tk

and the updated shared state st.
• Refund⟨U(skU , tk),D(skD, st)⟩ → U(b),D(b, tk, st): Given a ticket tk and its key
skU , U asks the ticket distributor D for a refund. Both entities output a success
bit b, while D additionally updates st and returns tk.

• Transfer⟨U1(skU1 , tk), T (skT , st),U2(skU2 , p)⟩ → U1(b), T (b, p, tk, tk
′, st),U2(tk′) :

The transfer protocol allows the user U1 owning a secret key skU1 and a ticket tk,
to transfer tk′ to the user U2 holding a secret key skU2 . The protocol relies on T
inputting the secret key skT and the shared state st. As a result, U1 and T output
a success bit b, while T also updates the shared state st and outputs p = (ide, idp),
the transferred tk, the new ticket tk′ and the updated shared state st. Finally
U2 obtains and returns a new ticket tk’ for the same event and seat identifiers
(ide, idp).

• Validate⟨U(skU , tk),V(skV , st)⟩ → U(b),V(b, tk, st): User U inputs a ticket tk and
its key skU , and interacts with V inputting its key skV and a state st in order to
validate the ticket tk. The protocol ends with U and V returning a validation bit
b, a ticket tk and the state st from the validator V.

The Shared State. The above model includes a state st, shared between the ticket
distributor D, the transfer authority T and the validator V. The shared state allows
to synchronise ticket status among the different entities. It prevents, for instance, a
double validation or a validation after a refund. This shared state could be seen as
a white-list or a blacklist, the latter being used in our protocol. In our model, this
state is not kept secret: All adversaries have read-only access to the state at any time
using an oracle called OLeakState. This state can be implemented as a dedicated server
maintaining a database. Note that D, T , and V share a common state while being
represented as distinct entities. This modelling choice aligns with the actual structure
of the organisation under consideration, reflecting its physical reality.

Security Properties of Electronic Ticket

The most basic property that a ticketing system is required to provide is correctness,
which briefly states that an honestly purchased or ticket received via a ticket transfer
should be either refunded or validated. Note that a ticket should not be accepted for
both, otherwise leading to a double spending of the same ticket. This double acceptation
of a ticket constitutes a property on its own and is referred in this work as the double-
spending property. Listening the communication between a user and the ticketing system
should not allow another user to forge a new ticket but also to reveal the ticket owned
by user. These two properties are called respectively ticket unforgeability and ticket
privacy. Finally, the property at the heart of our contribution is the user anonymity.
This anonymity property is subdivided into two distinct properties: First, we have
the pseudonymity property stating in a nutshell that interacting with a user does not
reveal its identity, and unlinkability stating that an interaction with a user cannot be
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linked with a previous interaction, preventing the system to identify if two interactions
is coming from the same user.

Correctness

The correctness of an ETS scheme consists, for any ticket tk obtained via the honest
execution of Purchase or Transfer protocols to be accepted by the Refund or Validate

protocols, producing a success bit b equalling 1, even if Transfer is executed sequentially
over any sequence of n users U = U1, . . . ,Un where each user Ui is equipped of a key
pair (sk i, pk i). Therefore, for every security parameter λ ∈ N, any state st where the
place (ide, idp) is not already purchased, it holds that:

(skD, pkD)← DKeyGen(1λ), (skT , pkT )← T KeyGen(1λ), (skV , pkV)← VKeyGen(1λ)

Purchase⟨U1(sk1, (ide, idp)),D(skD, st)⟩ → U(tk1),D(1, (ide, idp), tk1, st)

∀i ∈ J1, n− 1K, j ← i+ 1, p← (ide, idp) :

Transfer⟨Ui(sk i, tki), T (skT , st),Uj(sk j , p)⟩ → Ui(1), T (1, p, tki, tkj , st)

then Refund⟨U(skn, tkn),D(skD, st)⟩ → Un(1),D(1, tkn, st)

or Validate⟨U(skn, tkn),V(skV , st)⟩ → Un(1),V(1, tkn, st)

Oracles Description

A ticketing system is considered secure with respect to a security definition if it is proven
resistant against any adversary having capabilities. In our game-based security defini-
tion, the capabilities of an adversary are modelled using oracles. Since the introduced
oracles require specific parameters such that set of users to work properly, we begin our
description by providing the meaning of the symbols used. The symbol SU = {Uk}k
denote the set of initialised users, potentially empty at the beginning. Each user Uk
is associated with a set TKk representing the tickets it owns. Observe that a ticket in
TKk is not only composed of a real ticket tk, but is a triplet consisting of the ticket tk

itself (produced by the ETS scheme during the purchase or the transfer), the targeted
event, the set of identifiers and a boolean, equalling true if the ticket is valid. By st, we
denote the shared state among D, T , and V, initially empty and gradually populated
with elements corresponding to revoked tickets.

User Creation and Corruption Oracles. During the execution of the security
experiments where the challenger runs the system, the adversary A has access to two
oracles OCreateUser and OCorruptUser depicted in Figure 4.2 allowing respectively to
create an honest user but also to corrupt a user of its choice. The first oracle OCreateUser
does not expect any parameter from the adversary and runs the key generation algorithm
UKeyGen, before storing the obtained keys in the SU set where each entry Ui is composed
of four elements: Its private key, its public key, its set of tickets TKi and a bit corri to
remember if Ui is corrupted. The user corruption oracle OCorruptUser expects as an
input from the adversary the index i, modelling the desire for the adversary to corrupt
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Ui. The corruption oracle ends by returning the secret information of Ui namely its
secret key skUi as well as its set of tickets TKi.

OCreateUser(SU)
1 : i← |SU|, (skUi , pkUi

)← UKeyGen(pp)
2 : SU ← SU ∪ {Ui = (skUi , pkUi

, ∅, 0)}
3 : return (i, pkU)

OCorruptUser(SU ; i)

1 : SU p→ {Uk}k,Ui
p→ (skUi , pkUi

,TKi, corri)

2 : corri ← 1

3 : return (skUi ,TKi)

Figure 4.2: Description of OCreateUser and OCorruptUser oracles.

State Leakage Oracle. The security of a ticketing system should be secure even in
case where the shared state is made publicly available. For this reason, to allow the
adversary to read the shared state, we have introduced the OLeakState oracle depicted
in Figure 4.3 expecting no parameter from the adversary and returning the shared state.
Note that the adversary is not allowed to write on the shared state.

OLeakState(st)

1 : return st

Figure 4.3: Description of the OLeakState oracle.

Ticket Purchase Oracle. The ticket purchase oracle OPurchase depicted in Fig-
ure 4.4 expects from the adversary an index i as well as a place identifier (ide, idp). This
oracle simulates the purchase of a ticket for the designated place provided by the adver-
sary. The oracle supports the ticket purchase for honest users since the secret key of the
user is owned by the challenger, but also for corrupted users since the ticket purchase
requires the involvement of the ticket distributor D, whose secret key skD is owned by
the challenger. In case where the ticket purchase succeeds, the state of the user Ui is
updated to integrate the freshly purchased ticket.

Ticket Refund Oracle. The ticket refund oracle ORefund depicted in Figure 4.5
works similarly to the ticket purchase oracle OPurchase, except that the executed pro-
tocol is the Refund protocol.

Ticket Transfer Oracle. The ticket transfer oracle OTransfer depicted in Figure 4.6
expects from the adversary two indexes i and j representing respectively the user Ui
being the sender of the ticket and Uj being the receiver of the ticket. In addition, the
adversary provides the seat identifier (ide, idp). As previously done, the ticket transfer
oracle OTransfer runs the Transfer protocol between the ticket transfer authority T and
the two designated users. The oracle behaviour depends on the corruption state of
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OPurchase(SU , skD; i, (ide, idp))

1 : SU p→ {Uk}k,Ui
p→ (skUi , pkUi

,TKi, corri)

2 : if corri = 1: /* Corrupted user */
3 : Purchase⟨A(·, ·), C(skD, st)⟩ → A(·), C(b, (ide, idp), tk, st)
4 : if b = ⊤ : Ui ← (skUi , pkUi

,TKi ∪ {(tk, (ide, idp), 1)}, corri)
5 : else : /* Honest user */

6 : (ide, idp)
$← IDE × IDP

7 : Purchase⟨C(skUi , (ide, idp)), C(skD, st)⟩ → C(tk), C(b, (ide, idp), tk, st)
8 : if b = ⊤ : Ui ← (skUi , pkUi

,TKi ∪ {(tk, (ide, idp), 1)}, corri)

Figure 4.4: Description of the OPurchase oracle.

ORefund(SU , skD; i, (ide, idp))

1 : SU p→ {Uk}k,Ui
p→ (skUi , pkUi

,TKi, corri)

2 : if corri = 1: /* Corrupted user */
3 : Refund⟨A(·, ·), C(skD, st)⟩ → A(·), C(b, tk, st)
4 : if b = ⊤ : Ui ← (skUi , pkUi

,TKi ∪ {tk, (ide, idp), 0}, corri)
5 : else : /* Honest user */

6 : TKi
p→ {tk, (ide, idp), v}

7 : Refund⟨C(skU , tk), C(skD, st)⟩ → C(b), C(b, tk, st)
8 : if b = ⊤ : Ui ← (skUi , pkUi

,TKi ∪ {tk, (ide, idp), 0}, corri)

Figure 4.5: Description of the ORefund oracle.

the users. For instance, if both users are corrupted then Transfer protocol is executed
between the challenger simulating the ticket transfer authority T and the adversary
simulating both users. At the opposite, if no user is corrupted, then all interactions are
simulated by the challenger running the OTransfer oracle.

Ticket Validation Oracle. The validation oracle OValidate depicted in Figure 4.7
expects from the adversary the index i designating the user Ui, as well as a seat identifier
(ide, idp). Similarly to ORefund and OValidate, the ticket validation oracle runs the ticket
validation protocol Validate. Again, depending on the corruption state of the designated
user Ui, the oracle runs either the Validate protocol with the adversary if Ui is corrupted,
or with himself in case where the adversary is not corrupted.

Oracles for Anonymity. All the previously introduced oracles are specifically de-
signed for the case where the challenger simulates the system including D, T and V.
These oracles are not particularly suited for security experiments where the challenger
does not simulate the system, for example with the anonymity. Indeed, in this case, the
anonymity of a ticketing system has to be provided even against the system. For this
reason, we introduce four anonymity-focused oracles OPurchaseb,ORefundb,OTransferb

and OValidateb.
The ticket purchase oracle OPurchaseb depicted in Figure 4.8 expects from the ad-

versary a seat identifier (ide, idp) and executes the Purchase protocol where the ticket
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OTransfer(SU , skT ; i, j, (ide, idp))

1 : SU p→ {Uk}k,Ui
p→ (skUi , pkUi

,TKi, corri),

2 : Uj
p→ (skUj , pkUj

,TKj , corrj)

3 : if corri = 1 ∧ corrj = 1: /* Corrupted users */
4 : Transfer⟨A(·, ·), C(skT , st),A(·)⟩ → A(·), C(b, (ide, idp), tk, tk′, st),A(·)
5 : else if corri = 1: /* Corrupted sender */
6 : Transfer⟨A(·, ·), C(skT , st), C(skUj , (ide, idp))⟩ → A(·), C(b, (ide, idp), tk, tk

′, st), C(tk′)
7 : else if corrj = 1: /* Corrupted receiver */
8 : TKi → {tk, (ide, idp), v}
9 : Transfer⟨C(skUi , tk), C(skT , st),A(·)⟩ → C(b), C(b, (ide, idp), tk, tk′, st),A(·)

10 : else : /* No corruption */
11 : TKi → {tk, (ide, idp), v}
12 : Transfer⟨C(skUi , tk), C(skT , st), C(skUj , (ide, idp))⟩

→ C(b), C(b, (ide, idp), tk, tk′, st), C(tk′)
13 : if b = ⊤ : TKi ← TKi ∪ {(tk, (ide, idp), 0)},TKj ← TKj ∪ {(tk′, (ide, idp), 1)}

Figure 4.6: Description of the OTransfer oracle.

OValidate(SU , skV ; i, (ide, idp))

1 : SU p→ {Uk}k,Ui
p→ (skUi , pkUi

,TKi, corri)

2 : if corri = 1: /* Corrupted user */
3 : Validate⟨A(·, ·), C(skV , st)⟩ → A(·), C(b, tk, st)
4 : if b = ⊤ : Ui ← (skUi , pkUi

,TKi ∪ {tk, (ide, idp), 0}, corri)
5 : else : /* Honest user */
6 : TKi → {tk′, (ide, idp), b}
7 : Validate⟨C(skUi , tk

′), C(skV , st)⟩ → C(b), C(b, tk, st)
8 : if b = ⊤ : Ui ← (skUi , pkUi

,TKi ∪ {tk, (ide, idp), 0}, corri)

Figure 4.7: Description of the OValidate oracle.

distributor D is executed by the adversary. Note that in contrast with previous oracles,
the challenger provides skUb the secret key of the user Ub generated by the challenger.

OPurchaseb(TK, skUb ; (ide, idp))

1 : Purchase⟨C(skUb , (ide, idp)),A(·, ·)⟩ → C(tk|TK|),A(·)
2 : if tk|TK| ̸= ⊥ : TK← TK ∪ {(ide, idp, tk|TK|)}

Figure 4.8: Description of OPurchaseb oracle.

The ticket refund oracle Refundb depicted in Figure 4.9 expects from the adversary
an index i designating the ticket tki to refund. The challenger provides to the oracle, in
addition to the set of tickets TK and the secret key skUb a seat identifier (ide, idp). This
seat identifier is used to prevent a challenge ticket to be refunded. This is a necessary
condition to prevent trivial attack consisting to verify if a runs owns a ticket by checking
the output of the Refund protocol (or any other protocol).
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ORefundb(TK, skUb , (ide, idp); i)

1 : TK
p→ {(idej , idpj , tkj)}j

2 : if (ide, idp) = (idei, idpi) : return ⊥ /* Prevent trivial distinguishing attack */
3 : Refund⟨C(skUb , tki),A(·, ·)⟩ → C(b),A(·, ·, ·)

Figure 4.9: Description of ORefundb oracle.

The ticket transfer oracle OTransferb depicted in Figure 4.10 expects from the ad-
versary an index i designating the ticket to transfer, a role role and a seat identifier
(ide′i, idp

′
i). The provided role specifies the behaviour of the oracle during the transfer,

either simulating a user transferring a ticket or simulating a user receiving a ticket. In
case where the user is expected to transfer its i-th ticket, the oracle runs the ticket
transfer where both the system and the user receiving the ticket are executed by the
adversary. The second case is similar except that the oracle simulates the user receiving
the ticket instead. The oracle rejects ticket transfer request from the adversary when
the transferred ticket is the challenge ticket, explicitly handled by the challenger.

OTransferb(TK, skUb , (ide, idp); i, role, (ide
′
i, idp

′
i))

1 : if role = sell :

2 : TK
p→ {(idej , idpj , tkj)}j

3 : if (ide, idp) = (idei, idpi) : return ⊥
4 : Transfer⟨C(skUb , tki),A(·, ·),A(·)⟩ → C(b),A(·, ·, ·),A(·)
5 : if role = buy :

6 : Transfer⟨A(·, ·),A(·, ·), C(skUb , (ide
′
i, idp

′
i))⟩ → A(·),A(·, ·, ·), C(tk|TK|)

7 : if tk|TK| ̸= ⊥ : TK← TK ∪ {(ide′i, idp′i, tk|TK|)}

Figure 4.10: Description of OTransferb oracle.

The ticket validation oracle OValidateb depicted in Figure 4.11 expects from the
adversary an index i designating the i-th ticket that Ub is asked to validate. The oracle
runs the ticket validation protocol with the system simulated by the adversary. Note
that the challenger simulating the oracle rejects ticket validation attempts from the
adversary when the designated ticket is the challenge seat.

OValidateb(TK, skUb , (ide, idp); i)

1 : TK
p→ {(idej , idpj , tkj)}j

2 : if (ide, idp) = (idei, idpi) : return ⊥
3 : Validate⟨C(skUb , tki),A(·, ·)⟩ → C(b),A(·, ·, ·)

Figure 4.11: Description of OValidateb oracle.

Security Experiments Description

Unforgeability The unforgeability of a ticket depicted in Figure 4.12 prevents an
adversary A from creating a new valid ticket. This property is described in ExpUFA . The
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adversary wins the unforgeability game if it produces a ticket not been produced by the
system (i.e., tk /∈ TK) that is accepted either for a refund, a transfer, or a validation. In
the security experiment, these winning conditions are represented respectively by the bit
b0 and b1. This property must be ensured for any PPT adversary, with read-only access
to the shared state and the oracles OCreateUser, OCorruptUser, OLeakState, OPurchase,
ORefund, OTransfer and OValidate, corresponding to possible actions of the users and
represented in the set of oracles O.

ExpUFA (1λ)

1 : (skD, pkD), (skT , pkT ), (skV , pkV)← DKeyGen/T KeyGen/VKeyGen(1
λ)

2 : SU ← ∅, st← ∅

3 : (tk,Alg)← AO(pkD, pkT , pkV)

4 : b0 ← tk /∈ TK // Ticket not produced by challenger
5 : if Alg ∈ {Refund,Validate} :
6 : sk ← skD if Alg = Refund else sk ← skV

7 : Alg⟨A(·, ·), C(sk , st)⟩ → A(·), C(b1, tk, st)
8 : else : Transfer⟨A(·, ·), C(skT , st),A(·)⟩ → A(·), C(b1, (ide1, idp1), tk, tk

′, st),A(·)
9 : return b0 ∧ b1

Figure 4.12: Description of the unforgeability experiment.

Ticket privacy. The ticket privacy depicted in Figure 4.13 prevents from an adversary
A, external to the system, stealing a ticket from a designated user. The adversary
has the capability to generate, manipulate through oracles OCreateUser, OCorruptUser,
OLeakState, OPurchase, ORefund, OTransfer and OValidate contained in the O set. The
ticket privacy is focused against entities that are external to the system. In the associated
experiment, ExpPRIVA , user U1 is the adversary’s target. U1 purchases a ticket tk and A
wins if (1) the purchase went through, (2) A outputted a ticket tk∗ such that tk∗ = tk

and (3) A did not corrupt U1. During this process, the adversary has read-only access
to the shared state at any point during the experiment. The challenger simulates the
user purchasing the ticket targeted for recovery by the adversary, but also D, T , and
V, otherwise making the ticket privacy trivially broken as the system requires the ticket
for verification purposes.

No-double-spending Once purchased, a ticket should be usable only once: The ticket
can be refund once, transferred once or validated once. In other words, as done in our
security model, none of Refund, Validate or Transfer executed by the challenger against
a corrupted user would accept the same ticket twice. This notion differs from what has
been formalised in e-cash [BCFK15]. Taking as example the protocol introduced by
Baldimtsi et al. [BCFK15], their model allows execution of a function Spend twice for
the same coin and postpone the double spending verification to a second algorithm call
Deposit. Applied to ticketing, since the verification occurs after the ticket spent, the
consequence for users is the possibility to buy already spent ticket, leading to a ticket
rejection (during the second execution of Deposit of the same ticket). Following our
notion, an honest client should not acquire a already transferred ticket.
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ExpPRIVA (1λ)

1 : (skD, pkD), (skT , pkT ), (skV , pkV)← DKeyGen/T KeyGen/VKeyGen(1
λ)

2 : (skU1 , pkU1
)← UKeyGen(1λ)

3 : st← ∅,SU ← U1 = {(skU1 , pkU1
,⊥, 0)}

4 : (ide, idp)← AO(pkU , pkD, pkT , pkV)

5 : Purchase⟨C(skU , (ide, idp)), C(skD, st)⟩ → C(tk), C(b, (ide, idp), tk, st)

6 : tk∗ ← AO(pkU , pkD, pkT , pkV)

7 : SU p→ {Uk}k,U1
p→ (skU1 , pkU1

,TK1, corr1)

8 : return b ∧ (tk
?
= tk∗) ∧ (corr1

?
= 0)

Figure 4.13: Description of the ticket privacy experiment.

The security notion preventing the adversary to double-transfer a ticket, and more
generally to interact twice with the system using the same ticket is denoted as Double-
Spending (DS), formally introduced in the experiment ExpDS

A depicted in Figure 4.14:
The challenger simulates the system and allowsA to invoke actions through OCreateUser,
OCorruptUser, OLeakState, OPurchase, ORefund, OTransfer and OValidate oracles, thereby
providing a view of the shared state. The adversary subsequently outputs a ticket tk and
two actions, Alg1 and Alg2, selected from {Validate,Refund,Transfer}. Remark that the
two specified algorithms Alg1 and Alg2 are not required to be the same, modelling every
possible combination of attack. The adversary succeeds if the following three winning
conditions are respected: (1) Both algorithm executions are successful, (2) the tickets
tk1 and tk2 presented to the validator match the committed ticket tk, and (3) the tickets
share identical identifiers ide and idp. Both executions are dependent since the shared
state st is updated after the first execution and used the second time.

ExpDS
A (1λ)

1 : (skD, pkD), (skT , pkT ), (skV , pkV)← DKeyGen/T KeyGen/VKeyGen(1
λ)

2 : SU ← ∅, st← ∅

3 : (tk,Alg1,Alg2)← A
O(pkD, pkT , pkV)

4 : for k ∈ {1, 2} :
5 : if Algk = Refund : Refund⟨A(·, ·), C(skD, st)⟩ → A(·), C(bk, tkk, st)
6 : if Algk = Validate : Validate⟨A(·, ·), C(skV , st)⟩ → A(·), C(bk, tkk, st)
7 : else : Transfer⟨A(·, ·), C(skT , st),A(·)⟩ → A(·), C(b1, (idek, idpk), tkk, ·, st),A(·)

8 : return b1 ∧ b2 ∧ ((ide1, idp1)
?
= (ide2, idp2)) ∧ (tk

?
= tk1

?
= tk2 ̸=⊥)

Figure 4.14: Description of the double-spending experiment.

Anonymity. To model the properties of non-nominative physical tickets, an ETS

should preserve the anonymity of a ticket holder U against the system. This is modelled
with two levels of anonymity properties called respectively pseudonymity and unlinkabil-
ity. In a nutshell, pseudonymity ensures that the identity of users cannot be associated
to an identity. In contrast, unlinkability models a stronger anonymity property, in which
a ticket could not be linked by the system as coming from the same holder nor be linked
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to a user. We stress that unlinkability is not intended to prevent a ticket to be tracked
by the system, but rather to put forward the independence of protocols in which a
ticket is inputted. Said differently, our definition of unlinkability guarantees that two
distinct tickets cannot be linked as being purchased or used by the same user. For both
pseudonymity and unlinkability, the adversary controls the system i.e., D, T , and V
and thus can generate and control other users. For the sake of clarity in the following
experiments, we introduce a subroutine DefineAnoOraclesb depicted in Figure 4.15 which
given the secret key skU of a user, a set of tickets TK and a challenge seat identifier
(ide, idp), returns a configured set of oracles.

DefineAnoOracles(skU ,TK, (ide, idp))

1 : O1 ← OPurchaseb(TK, skU ; ·)
2 : O2 ← ORefundb(TK, skU , (ide, idp); ·)
3 : O3 ← OTransferb(TK, skU , (ide, idp); ·, ·, ·)
4 : O4 ← OValidateb(TK, skU , (ide, idp); ·)
5 : return {O1,O2,O3,O4}

Figure 4.15: Description of the DefineAnoOracles subroutine.

Experiment ExpPSEA depicted in Figure 4.16 models pseudonymity : The challenger
generates two users, denoted as U0 and U1, represented by their respective public keys
pkU0 and pkU1 . A can invoke oracles OPurchaseb, ORefundb, OTransferb, and OValidateb,
for a given b ∈ {0, 1}. Note that in pseudonymity, there is no challenge seat, justifying
the ⊥ symbol in the oracles declaration. For A to succeed, it must produce a bit b∗ that
matches the input bit b provided in the oracles. Then determining which one of U0 and
U1 responded to the oracle calls.

ExpPSEA (1λ)

1 : (skU0 , pkU0
), (skU1 , pkU1

)← UKeyGen(1λ)

2 : TK← ∅, b $← {0, 1}
3 : Ob ← DefineAnoOracles(skUb ,TK,⊥)

4 : b∗ ← AOb(pkU0
, pkU1

)

5 : return b
?
= b∗

Figure 4.16: Description of the pseudonymity experiment.

Experiment ExpUNLA depicted in Figure 4.17 models unlinkability, in which the chal-
lenger once again simulates the behaviours of two users, denoted as U0 and U1. Initially,
the adversary interacts with both users by making calls to the oracles OPurchaseb,
ORefundb, OTransferb and OValidateb for every bit b ∈ {0, 1}. Following this prelim-
inary phase, the adversary provides a seat identifier (ide, idp). Then, given this seat
identifier, the challenger randomly chooses a bit b ∈ {0, 1} and purchases a ticket
the designated seat in the belief of Ub. Then, it executes an action from the set
{Validate,Refund,Transfer} for the obtained ticket. The adversary succeeds in the ex-
periment if it can correctly guess which user performed the action.
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ExpUNLA (1λ)

1 : (skU0 , pkU0
), (skU1 , pkU1

)← UKeyGen(1λ)
2 : O0,O1 ← DefineAnoOracles(skU0 ,TK,⊥),DefineAnoOracles(skU1 ,TK,⊥)

3 : (ide, idp)← AO0,O1(pkU0
, pkU1

)

4 : O0,O1 ← DefineAnoOracles(skU0 ,TK, (ide, idp)),DefineAnoOracles(skU1 ,TK, (ide, idp))

5 : b
$← {0, 1}

6 : Purchase⟨C(skUb , (ide, idp)),A(·, ·)⟩ → C(tk),A(·, ·, ·)

7 : Alg← AO0,O1()

8 : if Alg ∈ {Refund,Validate} : Alg⟨C(skUb , (ide, idp)),A(·, ·)⟩ → C(tk),A(·, ·, ·)
9 : else : Transfer⟨C(skUb , tk),A(·, ·),A(·, ·, ·)⟩ → C(b),A(·, ·, ·, ·),A(·)

10 : b∗ ← AO0,O1(b)

11 : return b
?
= b∗

Figure 4.17: Description of the unlinkability experiment.

Auditability. We mitigate anonymity by introducing Auditable E-Ticket scheme en-
abling user’s identity recovery under the supervision of a judge. Auditable E-Ticket
scheme achieves the previous properties but Audit requests for U0 and U1 are not al-
lowed for the adversary during the pseudonymity and unlinkability experiments.

Definition 26 (Auditable ETS). An Auditable E-Ticket scheme ETS is an E-Ticket
scheme increased with the following algorithms:

• JKeyGen(1λ)→ (skJ , pkJ ) : Given 1λ, outputs a key pair.
• Audit(skJ , tk)→ pkU : Given a secret key skJ and a ticket tk, returns the public

key associated to user U.

Definition of Anonymous Payment

Ticket purchasing, transferring, and refunding necessitate payments. However, con-
ventional online payment methods (such as card payments based on the EMV proto-
col [EMV11]) disclose the user’s identity, posing a challenge to ensure user anonymity
in a ETS setting. Therefore, the anonymity within an ETS protocol is contingent on the
anonymity provided by the underlying payment protocol. Rather than omitting the pay-
ment process, as observed in [HCS+21], we’ve opted to incorporate the payment protocol.
Specifically, to maintain user anonymity, the incorporated payment, termed Anonymous
Payment and utilised as a foundational component, must enable participants to make
payments without disclosing their identities. This building block is voluntary generic to
let any anonymous payment method, to be plugged in our protocol.

Definition 27 (Anonymous Payment, AP). An anonymous payment protocol AP is
defined by the tuple (KeyGen,GenToken,AP) where:

• KeyGen(1λ)→ (stk , spk , pd) : Given the unary representation of the security pa-
rameter 1λ, outputs (stk , spk , pd) where stk is the secret token generation key,
spk is the secret payment key used to approve payment and pd is the publicly
accessible data. This last parameter, not used later, is intended to model existing
public (and static) parameters involved by the payment protocol.
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• GenToken(stk)→ tkn: Given the secret token generation key stk outputs a pay-
ment token tkn.

• AP⟨U1(spk1, tkn),U2(spk2, tkn)⟩ → U1(b),U2(b) : Let two users U1 and U2 where
U1 proceeds to a payment with U2. On a hand, the user U1 obtains as an input
the secret payment key spk1 and a token tkn generated via the token generation
algorithm GenToken(stk) inputted with an arbitrary secret token generation key
stk . On the other hand, the user U2 obtains as an input the secret payment key
spk2 as well as the token tkn. At the end, a success bit b is returned, confirming
the success of the payment. In this model, we allow the payment to be performed
both from U1 to U2 and from U2 to U1, even with a negative amount (which is just
a refund). This choice is motivated to keep our definition simple and flexible. A
valid payment occurs when both parties agree on the payment, whose the setting of
the payment (e.g., source of the payment, destination of the payment, the amount)
is contained in the payment token tkn.

In order to be agnostic of the used anonymous payment scheme, we employ generic
security definitions for anonymous payment: Unlinkability ensuring that two transac-
tions from the same user are not linkable, pseudonymity ensuring that a user identity
remains undisclosed., but also unforgeability ensuring that it is infeasible to retrieve a
token to accept a payment. During the experiments, the adversary has access to the
oracle OAP in which the adversary provides a payment token tkn and then runs the
payment protocol with the user:

Oracle OPay(spk , stk ; tkn)

1 : if tkn = ⊥ then tkn ← GenToken(stk)

2 : AP⟨C(spk , tkn),A(tkn)⟩

Description of Pseudonymity. The experiment of pseudonymity depicted in Fig-
ure 4.18 starts by the generation of two keys for two distinct users and provide the both
public data to the adversary. At any time, the adversary has access to the oracle to
interact with both users. At some point, the adversary is asked to produce a payment
token tkn that is used to generate a payment with the user Ub for a bit b randomly
chosen by the challenger. Ultimately, the adversary is asked to produce a prediction bit
b∗ used by the challenger, returning 1 if the prediction bit equals the random bit b.

ExpAPPseA (1λ)

1 : (stk0, spk0, pd0), (stk1, spk1, pd1)← KeyGen(1λ)

2 : b
$← {0, 1}

3 : b∗ ← AOPay(spkb,stkb;·)(pd0, pd1)

4 : return b
?
= b∗

Figure 4.18: Description of pseudonymity for anonymous payment.
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Definition 28 (Pseudonymity for AP). An anonymous payment scheme AP defined by
the triplet of PPT algorithm (KeyGen,GenToken,AP) ensures pseudonymity if for every
security parameter λ and any PPT adversary A, we have:

AdvAPPseA =

∣∣∣∣Pr
[
ExpAPPseA (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ)

Description of Unlinkability. The unlinkability property depicted in Figure 4.19
works similarly to the pseudonymity property, except that the challenger generates two
distinct users U0 and U1, and allows the adversary to interact with both users using
dedicated payment oracles. Then, the challenger randomly selects a random bit b, and
allows the adversary to interact only with Ub using the payment oracle OAP inputted
with parameters of the user Ub. Eventually, the adversary responds with a prediction
bit b∗, and wins the experiment if the prediction bit b∗ equals the randomly chosen bit
b.

ExpAPUnlA (1λ)

1 : (stk0, spk0, pd0), (stk1, spk1, pd1)← KeyGen(1λ)

2 : b
$← {0, 1}

3 : O0,O1 ← OPay(spk0, stk0; ·),OPay(spk1, stk1; ·)

4 : b
$← {0, 1}

5 : tkn ← AO0,O1(pd0, pd1)

6 : if tkn = ⊥ then tkn ← GenToken(stk)

7 : AP⟨C(spkb, tkn),A(tkn)⟩

8 : b∗ ← AO0,O1()

9 : return b
?
= b∗

Figure 4.19: Description of unlinkability for anonymous payment.

Definition 29 (Unlinkability for AP). An anonymous payment scheme AP defined by
the triplet of PPT algorithm (KeyGen,GenToken,AP) ensures unlinkability if for every
security parameter λ and any PPT adversary A, we have:

AdvAPUnlA =

∣∣∣∣Pr
[
ExpAPUnlA (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ)

Description of Unforgeability. The unforgeability property starts with the chal-
lenger generating a payment key pair, and allows the adversary to interact with the
generated payment key using the payment oracle OPay. Later, the challenger generates
a payment token tkn using the secret token generation key stk . Finally, without having
any information on the token, the adversary is asked to proceed to a payment with the
challenger. The resulting success bit obtained at the end of the payment protocol execu-
tion is returned as the output bit of the unforgeability experiment. In other words, the
adversary breaks the unforgeability property of the anonymous payment if it is possible
for the adversary to force the payment without having any information on the token
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and hence on the current transaction. This property is particularly useful to ensure
authentication of the payment between both parties.

ExpAPUFA (1λ)

1 : (stk , spk , pd)← KeyGen(1λ)

2 : O ← OPay(spk , stk ; ·)
3 : tkn ← GenToken(stk)

4 : AP⟨C(spk , tkn),AO(pd)⟩ → C(b)
5 : return b

Figure 4.20: Description of unforgeability for anonymous payment.

Definition 30 (Unforgeability for AP). An anonymous payment scheme AP defined by
the triplet of PPT algorithm (KeyGen,GenToken,AP) ensures unforgeability if for every
security parameter λ and any PPT adversary A, we have:

AdvAPUFA = Pr
[
ExpAPUFA (1λ)→ 1

]
≤ negl(λ)

We do not cover how to plug anonymous payment formally, since deciding which
payment protocol to use is highly dependent of the context where our ticketing system
is deployed. One straightforward yet inefficient payment method that maintains user
anonymity is through a one-time payment card like PaySafeCard [Pay18], purchasable
locally with physical currency. Blockchain based methods such as Monero [Sab13] pro-
vides payment unlinkability and pseudonymity using one-time payment identity in a
sense that may differ slightly from our definitions. Another example uses cash or its
digital counterpart like CashApp [Cas18], where payments are executed using randomly
generated identifiers. Anonymous transferable e-cash [BCFK15] also matches our re-
quirements, providing a solution to exchange anonymously coins between users.

We stress that the anonymity in Applause and Spotlight directly relies on the
anonymity of the payment scheme. A secure anonymous payment scheme perfectly
fitting our definition allows our protocol to ensure the anonymity of users. At the oppo-
site, a payment scheme ensuring only pseudonymity allows our protocol to ensure only
pseudonymity and not unlinkability. An already-in-used protocol, the EMV specification
for Tokenization [EMV22], provides pseudonymity but falls short in providing unlink-
ability. If the context in which our protocol is deployed does not require unlinkability,
one may relies on such a payment method.

4.3 Anonymous Ticketing System with Applause

In the protocol, the participants interact using personal encryption keys (skPKE, pkPKE)

and signature keys (skSign, pkSign) and proceed to payment using dedicated keys denoted
(stkAP, spkAP, pdAP). A shared state st is updated by the ticket distributorD, the transfer
authority T and the validator V, acting as a blacklist. To purchase a ticket through
Purchase, the user first selects an event and a free seat (ide, idp), and it also draws a
nonce rc. It obtains a signature σc on the hash of the triple (ide, idp, rc). The event
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and seat identifiers (ide, idp) along the nonce rc and the signature σc represent the ticket
of the client. Hence a ticket tk is defined as ((ide, idp, rc), σc). The ticket validation
process involves the showing of these two values to the validator and the agreement
on a challenge value through a physical channel to authenticate the ticket owner. The
first showing is similar to the Refund process before the client is given back its funds
or during the Transfer, as the transfer authority T refunds the owner of the ticket, and
performs the ticket purchase protocol with the new owner of the ticket.

4.3.1 Description of Applause

Subroutines. Before explaining our protocol, we first describe subroutines that we
use to increase the readability and the clarity of the overall protocol description. In
particular, we introduce three suggestive algorithms KeyGen, CheckTk and RandKey,
allowing respectively to generate a key pair, to verify the validity of a ticket and finally
to randomize a key pair.

• KeyGen(1λ): This algorithm starts by generating a signature key pair denoted
(skSign, pkSign) ← Sign.KeyGen(1λ), as well as an encryption key pair denoted
(skPKE, pkPKE) ← PKE.KeyGen(1λ). In addition, a payment key composed of
the triplet (stkAP, spkAP, pdAP) ← AP.KeyGen(1λ) is generated. Finally, it re-
turns the key pair (sk , pk) where the secret key sk is composed of the triplet
(skSign, skPKE, stkAP, spkAP) and where the public key pk is composed of the triplet
(pkSign, pkPKE, pdAP).

The ticket verification subroutine CheckTk expects as an input a ticket tk and the
current shared state st (containing only hashes c) checks if the provided ticket tk should
be considered valid. This subroutine, denoted CheckTk works as follows:

• CheckTk(tk, st): First, this algorithm parses the provided ticket tk defined as
((ide, idp, rc), σc). Then, it computes the hash c as H(ide, idp, rc) using the hash
function H over the event and seat identifiers ide and idp, but also the random
rc. Finally, the algorithm checks if one among the ticket distributor D and the
transfer authority T is authenticating this ticket, by executing both the signature
verification function Sign.Verif(pkSign

D , σc, c) using the signature public key of D,
and the signature verification function Sign.Verif(pkSign

T , σc, c) using the verifica-
tion public key pkSign

T . This double signature verification is required since a ticket
can be authenticated by the ticket distributor D during the purchase of the ticket,
but also by the transfer authority T during the transfer of the ticket. If one of
the two signature verifications succeeds, then the algorithm checks that the hash
c is not contained in the set of invalid tickets st provided as an input, by checking
if c /∈ st. If all the previously mentioned verifications succeed, then the algorithm
returns ⊤ meaning that the ticket is valid, otherwise returns ⊥ meaning that the
ticket is invalid.

The randomization key algorithm RandKey is especially used in our protocol to ran-
domize the key pair (skU , pkU) of a user U, providing randomized key that are statistical
indistinguishability from the original key pair of the user. We notify that in Applause,
a user key pair outputted by the user key generation algorithm UKeyGen exactly corre-
sponds to the key pair outputted by the KeyGen algorithm.
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• RandKey(skU , pkU)→ (skU ′ , pkU ′): Let skU be the secret key of user U composed

of the signature secret siganture key skSign
U , the secret decryption key skPKE

U , and
two secret payment keys stkAP

U and spkAP
U . The public key pkU is composed of

the public signature verification key pkSign
U , the public encryption key pkPKE

U and
the public payment data pdAP

U . We stress that depending on if the used signature
and encryption schemes are randomizable, the RandKey subroutine may act dif-
ferently without loss of security. For the moment, let suppose that both signature
and encryption are equipped with some Rand algorithm which given a secret key
sk , a random public key pk and a random r, outputs the randomized secret key
sk ′ and randomized public key pk ′. In our proof-of-concept, we use the ElGa-
mal [Elg85a] encryption scheme, which is naturally adapted for such randomized
algorithm: For a prime p, let sk ← s where s $← Zp be a secret key, g be the gen-
erator of a group G and pk ← gs with gs ∈ G be the public key. Given a random
r ∈ Zp, randomizing the secret and public key naturally follows as sk ′ ← r · s
and pk ′ ← gr·s. Assuming such Rand algorithm for both encryption and signature
schemes, the randomization algorithm RandKey samples two randoms r and r′,
before to compute the two randomization (skPKE

U ′ , pkPKE
U ′ )← Rand(skPKE

U , pkPKE
U , r)

and (skSign
U ′ , pk

Sign
U ′ ) ← Rand(skSign

U , pkSign
U , r′). The outputted randomized secret

key skU ′ is composed of the tuple (skSign
U ′ , sk

PKE
U ′ , stkAP

U , spkAP
U ) consisting of ran-

domized signature and encryption keys, along the payment keys. The outputted
randomized public key is composed of the couple (pkSign

U ′ , pk
PKE
U ′ ). We do the follow-

ing observations: First, the public data pdAP
U is not outputted in the randomized

public key since it is not mandatory to proceed to the payment. Second, the
payment keys are not randomized since the payment already satifies all of our
expectations to ensure a full anonymity. Third and last, if the used signature and
encryption schemes do not support randomization, in this case the Rand algorithm
generates a new key signature or encryption key pair, without loss of security. In-
deed, without knowledge of the used random to randomise, a freshly generated key
pair and its randomised version are statistically indistinguishable. This argument,
intensively used during the anonymity security proofs, allows us to never rely on
the key pair of a user and hence to obtain unlinkability and pseudonimity.

Formal Description of Applause. Assuming the KeyGen subroutine introduced
above, we provide the different key generation algorithms for the parties involved in our
protocol:

• DKeyGen(1λ): Given the unary representation of the security parameter λ, outputs
the key pair (skD, pkD) computed as KeyGen(1λ).

• T KeyGen(1λ): Given the unary representation of the security parameter λ, outputs
the key pair (skT , pkT ) computed as KeyGen(1λ).

• UKeyGen(1λ): Given the unary representation of the security parameter λ, outputs
the key pair (skU , pkU) computed as KeyGen(1λ).

• VKeyGen(1λ): Given the unary representation of the security parameter λ, it gen-
erates the signature key pair (skSign

V , pkSign
V )← Sign.KeyGen(1λ), and an encryption

key pair (skPKE
V , pkPKE

V )← PKE.KeyGen(1λ). To authenticate a validator, we pro-
vide a certificate certV consisting of the signature of the public signature key pkSign

V
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and the public encryption key pkPKE
V signed by D. Finally, it returns the triplet

(skV , pkV , certV) where the secret key skV is (skSign
V , skPKE

V ) and the public key pkV

is (pkSign
V , pkPKE

V ).

U(skU , (ide, idp)) D(skD, st)

rc
$← {0, 1}λ

tkn ← GenToken(stkAP
U )

Enc(pkPKE
D , ide, idp, rc, tkn)

c← H(ide, idp, rc)
st← st ∪ {c}
σc ← Sign(skSign

D , c)

σc

AP⟨U(spkAP
U , tkn),D(spkAP

D , tkn)⟩

tk ← ((ide, idp, rc), σc) st← st \ {c}

Figure 4.21: Diagram of Purchase protocol.

• Purchase⟨U(skU , (ide, idp)),D(skD, st)⟩: Before the execution of the Purchase pro-
tocol whose diagram of communications is depicted in Figure 4.21, the user U
chooses the event of the ticket denoted by ide← IDE , and a serial or seat number
idp ← IDP . The protocol starts by the user U sampling a random rc from space
{0, 1}λ, and generating a new payment token tkn by executing the token generation
algorithm GenToken(stkAP

U ). Then it sends to the ticket distributor D a ciphertext
denoted Enc(pkPKE

D , ide, idp, rc, tkn), encrypting the desired place specified by the
identifier (ide, idp), the random rc as well as the payment token, under the public
encryption key pkPKE

D . After the ciphertext decryption, the ticket distributor D
checks that desired seat identified by (ide, idp) has not been purchased before. If
the seat is still available, D computes H(ide, idp, rc) the hash c over the desired seat
(ide, idp) along the random rc. It includes the obtained hash c into the set of invalid
tickets st← st∪ {c} preventing the ticket to be valid and used until the reception
of the payment. The ticket distributor D computes the last element constituting
a valid ticket, by signing the hash c as σc ← Sign(skSign

D , c). This signature σc is
forwarded to the user U. At the reception of the signature σc, the user U verifies
the validity of σc with the signature verification function Sign.Verif(pkSign

D , σc, c).
In case where the signature is valid, guaranteeing the approval of the ticket dis-
tributor D, the user U proceeds to the payment using the anonymous payment
protocol with AP⟨U(spkAP

U , tkn),D(spkAP
D , tkn)⟩ → U(b),D(b). As a result, both

the user U and the ticket distributor D obtain a validation bit b, equaling 1 in case
of successful payment. In such case, U returns the success bit b along with the
ticket tk = ((ide, idp, rc), σc). On the other side, still assuming a valid payment,
the ticket distributor D removes the hash c from shared state st← st \ {c}, allow-
ing the created ticket tk to be used. As a response to the protocol, D returns the
validation bit b as well as the updated shared state st.

• Refund⟨U(skU , tk),D(skD, st)⟩: The Refund protocol, depicted in Figure 4.22 starts
with the user U generating a payment token tkn using the token generation algo-
rithm GenToken(stkAP

U ). Then the user encrypts its ticket tk = ((ide, idp, rc), σc)
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U(skU , tk) D(skD, st)

tkn ← GenToken(stkAP
U )

Enc(pkPKE
D , tk, tkn)

CheckTk(tk, st)

AP⟨U(spkAP
U , tkn),D(spkAP

D , tkn)⟩

st← st ∪ {c}

Figure 4.22: Diagram of Refund protocol.

along the payment token tkn under the public encryption key of the ticket distribu-
tor D, resulting into the ciphertext PKE.Enc(pkPKE

D , tk, tkn). After the decryption,
the ticket distributor D checks the validity of the received ticket by running the
ticket verification algorithm CheckTk(tk, st). If the ticket is valid, the ticket dis-
tributor D proceeds to the refund of the ticket by the mean of a payment via the
anonymous payment protocol, resulting into the execution of the payment proto-
col AP⟨U(spkAP

U , tkn),D(spkAP
U , tkn)⟩ → U(b),D(b). If the payment succeeds with

b equals ⊤, then the ticket has been refund and should not be considered valid
anymore: The hash of the ticket c (computed over the event and seat identifiers
ide, idp and the random rc) is inserted in the shared state st. Observe that once
inserted, the CheckTk procedure will always reject this ticket since it belongs to
the set of invalid tickets. In case where the payment does not succeed, when b

equals 0, the ticket distributor D does not insert the ticket inside the set of invalid
tickets and aborts the refund. As a result of the refund procedure, both parties
return b, and D additionally returns the shared state st along the ticket tk.

We now focus on the transfer of ticket between two users denoted U1 and U2, assisted
by the ticket transfer authority T , running the Transfer protocol. This tranfer protocol
starts with a preliminary step in which users U1 and U2 are locally exchanging each
other their randomised public key. At the end of this preliminary step, user U1 is
owning the randomized public key pk ′U2 of user U2, and conversely. This step is required
to guarantee that U2 will be the new owner of the ticket. These randomized public keys
can be exchanged easily for instance via Bluetooth [NSI+15] during a physical meeting.

• Transfer⟨U1(skU1 , tk1), T (skT , st),U2(skU2 , (ide, idp))⟩: The ticket transfer protocol
Transfer, depicted in Figure 4.23, starts with the user U1 authenticating the ran-
domized public key of the user U2 and the random rc with Sign(skSign

U ′
1
, pkU ′

2
, rc) later

denoted σT,1. We do the following two observations: First, the secret signature key
used by U1 to authenticate the randomized public key, is also randomized. Second,
the signature not only authenticates the randomized public key of U2 but also the
random rc, being part of the ticket of U1. Whereas the first observation introduces
a risk of usurpation by not authenticating the signing key of user, the second ob-
servation mitigates this potential authentication issue with the random rc included
in the signature σT,1, known only by the original owner of the ticket. In addition,
the user U1 generates a payment token tkn1 used at the end of the transfer protocol
to obtain the refund of the ticket. Then, U1 initiates the first communication with
the transfer authority T with the triplet (pkU ′

1
, σT,1,Enc(pk

PKE
T , c, tk, tkn1)).
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U1(skU1
,pkU′

2
,tk1) T (skT , st) U2 (skU2

,pkU′
1
,(ide, idp))

Parse tk1 as ((ide, idp, rc), σc)
(skU′

1
, pkU′

1
)← RandKey(skU1

, pkU1
)

tkn1 ← GenToken(stkAP
U1

)

σT,1 ← Sign(skSign

U′
1
, pkU′

2
, rc)

(skU′
2
, pkU′

2
)← RandKey(skU2

, pkU2
)

tkn2 ← GenToken(stkAP
U2

)

σT,2 ← Sign(skSign

U′
2
, pkU′

1
, tkn2)

pk′U1
, σT,1, Enc(pk

PKE
T , c, tk, tkn1) pk ′

U2
, σT,2, Enc(pk

PKE
T , tkn2)

Verif(pkSign

U′
1
, (pkU′

2
, rc), σT,1)

Verif(pkSign

U′
2
, (pkU′

1
, Enc(pkPKE

T , tkn2)), σT,2)

CheckTk(tk, st)
st← st ∪ {c}
σp ← Sign(skSign

T , ide, idp, pkU′
2
, pkU′

1
)

σ′
p ← Sign(skSign

T , ide, idp, pkU′
1
, pkU′

2
)

σp

Verif(pkSign
T , ide, idp, pkU′

2
, pkU′

1
, σp)

r′c
$← {0, 1}λ

Enc(pkPKE
T , ide, idp, r′c)

c′ ← H(ide, idp, r′c)
st← st ∪ {c′}
σ′
c ← Sign(skSign

T , c′)
σ′
c

AP⟨U2(spkAP
U2
, tkn2), T (spkAP

T , tkn2)⟩

tk ← ((ide, idp, r′c), σ
′
c)st← st \ {c′}

σ′
p

Verif(pkSign
T , (ide, idp, pkU′

1
, pkU′

2
), σ′

p)

AP⟨U(spkAP
U1
, tkn1), T (spkAP

T , tkn1)⟩

Figure 4.23: Diagram of sequences for the Transfer protocol.

At the same time, the user U2 generates a payment token tkn2 used to purchase
the ticket. Then, the user U2 authenticates the randomized public key of U1
as well as the payment token using the signing algorithm Sign(skSign

U ′
2
, pkU ′

1
, tkn2),

producing the signature σT,2. The first communication with the transfer authority
T from U2 is composed of the triplet (pkU ′

2
, σT,2,Enc(pk

PKE
T , tkn2)), composed of

the randomized public key of U2, the signature σT,2 as well as the encryption of
the payment token under the (authenticated) public encryption key of the transfer
authority T .
At this point, the transfer authority T has received the randomized public keys
of both users U1 and U2, the signatures σT,1 and σT,2 but also the transferred
ticket of U1 and the two payment tokens obtained after decryption of the two
received ciphertexts. First, T verifies the validity of σT,1 and σT,2 by executing the
signature verification algorithm Sign.Verif inputted with the previsouly obtained
parameters. If the verification succeeds, both users are authenticating each other.
Otherwise, the verification has failed and the transfer is aborted. Then, T checks
the validity of the received ticket by executing the ticket verification algorithm
CheckTk(tk, st). Again, if the verification fails, the transfer is aborted. Otherwise,
the transferred ticket (the ticket containing the random rc) is inserted in the shared
state of invalid ticket st, preventing the ticket to be used during the transfer. At
any moment before the payment of U2, if any verification fails then the transferred
ticket is removed from set of invalid tickets st and the transfer is aborted. T
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computes two signatures σp and σ′p, expressing the agreement of T to proceed
to the transfer. The first signature σp, signed using the signing key skSign

T of T ,
authenticates the event and seat identifier ide and idp, the randomized public key
pkU ′

2
of U2 and the randomized public key pkU ′

1
of U1, in this order. This signature

σp is sent to the user U2 which verifies the authenticity of the signature. An invalid
signature verification does not lead to an abort, but is rejected by U2 without any
response. Then, the user U2 proceeds to the part of the Transfer protocol, close
to our Purchase protocol, consisting of generating a new ticket for the same event
and seat identifiers: A new random r′c is sampled from {0, 1}λ and sent to T ,
carefully encrypted using the public encryption key pkPKE

T of T , along the event
and seat identifiers. Once received, the ticket transfer computes the hash c′ as
the evaluation of the hash function H(ide, idp, r′c), inserts c′ in the set of invalid
tickets st to prevent its usage before the payment, and responds to U2 with the
signature of σc′ of c′ using the signing key skSign

T . Then, except if the σc′ is rejected
by the signature verification algorithm, the user U2 proceeds to the payment using
the payment token tkn2. Again, if the payment does not succeed, the tranfer is
aborted and the set of invalid tickets reverted to its initial state, allowing the
transferred ticket (containing the random rc) to be used. Otherwise, the payment
is successful. Therefore, the hash c′ is removed from the set of invalid tickets.
At this point, the ticket tk1 owned by the user U1 has been transferred and hence
should not be valid anymore. Observe that it is already ensured by the set of invalid
tickets containing the hash c, computed from the ticket tk1. Any attempt to use
the ticket tk1 would lead to a direct failure. The last step consists of performing
the refund to the user U1. The signature σ′p computed by the transfer authority
T is sent to user U1, notifying the success of the ticket transfer. After a necessary
verification of the authenticity of T using the signature verification algorithm, U1
proceeds to the refund with T using the payment token tkn1 exchanged at the
beginning of the transfer protocol execution.

The validation protocol requires for its last interaction a physical channel, to prevent
relay attacks where an active external adversary blocks the ticket in the network, and
play it in the validation process.

• Validate⟨U(skU , tk),V(skV , st)⟩: The validation protocol, depicted in Figure 4.24
starts with the validator V, providing its public key pkV along its certificate certV
to the user U attempting to attend the event. Recall that the public key pkV is
the triplet containing the public encryption key pkPKE

V and the public signature
key pkSign

V . The authenticity of the validator public key pkV is verified by the user
U using the signature verification algorithm Verif(pkSign

D , (pkSign
V , pkPKE

V ), certV). If
the signature is rejected, the user U aborts the verification protocol. Otherwise,
U executes the key randomization algorithm RandKey(skU , pkU) to obtain a new
key pair (skU ′ , pkU ′), used to compute a ciphertext Enc(pkPKE

V , pkU ′ , tk) encrypting
the randomized public key pkU ′ along the ticket tk, sent to the validator V. After
decryption, the validator executes the ticket verification CheckTk(tk, st). If the
ticket is valid, the validator V inserts the hash c computed from the received ticket
tk in the state of invalid ticket st, and creates a challenge s sampled from {0, 1}λ,
which is carefully encrypted under the provided randomized public encryption
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U(skU , tk) V (skV , st)

pkV , certV

CheckCert(pkD, pkV , certV)
(skU′ , pkU′ )← RandKey(skU , pkU )

Enc(pkPKE
V , pkU′ , tk)

CheckTk(tk, st)

s
$← {0, 1}λ

σs ← Sign(skSign
V , s)

σs, ψs ← Enc(pkPKE
U′ , s)

s′ ← Dec(skPKE
U′ , ψs)

s′
?
= s

Figure 4.24: Diagram of Validate protocol. The dashed line is the physical channel.

key pkPKE
U ′ . The resulting ciphertext, denoted ψs, is signed by the signature key

skSign
V of the validator V, producing the signature σs. The ciphertext ψs and

the signature σs are sent as a response to U. After a necessary verification of the
authenticity of the signature σs, and the decrypted challenge s′, values s and s′ are
compared through a physical channel. If the verification fails, then the validator
V removes the hash c from the set of invalid tickets st and halts. Otherwise, both
parties commonly terminate with a success bit b at ⊤. Recall that the validation
protocol relies on a physical channel, as explained in Section 4.1. This necessary
hypothesis allows us to prevent an arbitrary to block the ultimate interaction from
U and replay the obtained response to the challenge to attend the event, instead of
the legimate user. We stress that this physical channel, preserving the anonymity
of the user, is already used in practice using QRCode scanner. Eventually, other
approachs such that Bluetooth [NSI+15] or NFC [CHY23] are plausible candidates
to achieve our expectations.

4.3.2 Security Proofs of Applause

We present the security proofs for Applause, with respect to the security model pre-
sented in Section 4.2. Through this section, we operate proofs divided into sequences of
games G0, . . . ,Gn for some n ∈ N. We refer to the i-th game as GiA(1

λ) for a given PPT
algorithm A and a security parameter 1λ. Recall that the security proofs of Applause

presented in Section 4.3, rely on the Random Oracle Model (ROM).

Theorem 6. Assuming an EUF-CMA-secure signature scheme, then for every polyno-
mial time adversary A, Applause provides unforgeability with the following bound:

Pr[ExpUFA (1λ)→ 1] ≤ 2 · AdvEUF-CMA
A

Proof of Unforgeability. Let A be a PPT adversary and assume by contradiction that
the following probability Pr[ExpUFA (1λ) → 1] is non-negligible. This proof relies on the
ROM, meaning that A has access to an oracle Ohash replacing the function H and
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programmed by the challenger C. The random oracle maintains an internal storage
consisting of a list of message-hash pairs of the form (m,h). On a call for a message
m, the oracle checks if there exists a hash h such that the pair (m,h) is stored, and
returns h in such case. Otherwise, it samples a random a value h representing the hash
associated to m, it stores the pair (m,h) and returns the sampled value h to the caller.

Game G0. The initial game corresponds to the ExpUFA experiment. That is, we ob-
serve a perfect indistinguishability (denoted p=) between our initial game and the ExpUFA
experiment:

Pr
[
G0
A(1

λ)→ 1
] p= Pr

[
ExpUFA (1λ)→ 1

]
Game G1. In this game, we now reject tickets with valid signatures from D that are not
produced by the challenger. To distinguish such signature from the originally produced
ones, C keeps updated a set SD = {mi, σi} containing all the signatures produced by
D during the protocol. A signature is deemed valid if the message-signature pair is
contained in this set, otherwise invalid. This prevents A from forging a signature,
which was previously possible with probability AdvEUF-CMA

A . Therefore by the difference
lemma [PS00], we obtain the following upper bound:

∣∣Pr
[
G0
A(1

λ)→ 1
]
− Pr

[
G1
A(1

λ)→ 1
]∣∣ ≤ AdvEUF-CMA

A

Game G2. The game works as the previous game, except that we now reject valid
signatures of T that are not produced by the challenger, by following the same approach
of the previous game. As a result, no forged signature can be injected by the adversary
A. Again, by the difference lemma [PS00], we obtain the following upper bound:

∣∣Pr
[
G1
A(1

λ)→ 1
]
− Pr

[
G2
A(1

λ)→ 1
]∣∣ ≤ AdvEUF-CMA

A

In G2, every received ticket tk, containing a signature σc either computed by the ticket
distributor D or transfer authority T , has been produced by the challenger, otherwise
rejected. Observe that, by construction of the protocol, this argument is not sufficient
to ensure unforgeability of the ticket, the adversary being able to obtain any signature
of the hash c computed over (ide, idp, rc) for a random rc of its choice. Indeed, during
the Purchase protocol execution, the ticket distributor D distributes the signature with
the user, and waits until the success of the payment, in which the hash c is removed
from the state of invalid tickets. The adversary A does not proceed to the payment, it
obtains the signature σc of c, allowing adversary A to constitute the apparently valid
ticket tk = ((idp, idp, rc), σc. The same scenario occurs with the Transfer protocol as
well.

However, it does not mean that the adversary A has successfully obtained a valid
ticket from the point of the view of the system: Whereas all parts of the produced ticket
tk is valid, the crucial and missing last step, performed by the system, is the supression
of the hash c from the shared state st. Since the payment does not occur, the ticket is
not removed from the set of invalid tickets and hence is not directly usable. As a result,
the evaluation of CheckTk over the ticket tk always leads to an invalid validation result,
preventing the ticket to be accepted, aborting the running protocol.
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As a direct consequence of the above remarks, the probability for the adversary A
to produce a valid ticket not crafted by the challenger is Pr

[
G2
A(1

λ)→ 1
]
= 0. As a

result, we obtain the following upper bound:

Pr
[
ExpUFA (1λ)→ 1

]
≤ 2 · AdvEUF-CMA

A

By hypothesis on the EUF-CMA property of the signature Sign, we know that
AdvEUF-CMA

A is negligible, leading to a negligible quantity on the right hand side of the in-
equation, giving a direct contraction with the initial hypothesis. Hence, Pr[ExpUFA (1λ)→
1] is negligible and Applause has Unforgeability.

Theorem 7. Instantiated with an IND-CPA encryption scheme, for any PPT A, Ap-

plause provides privacy under the random oracle model with the following upper bound:

Pr
[
ExpPRIVA (1λ)→ 1

]
≤ 2−λ + 8 · AdvIND-CPA

A

Proof of Privacy. We prove secrecy of rc through this proof. Assume A has a PPT
algorithm. If an adversary A is unable to recover rc, then it is unable to win against
ExpPRIVA (1λ), or at least with a negligible probability. Notice that U, the user simulated by
C which has generated tk, cannot be corrupted, otherwise A would fail to the experiment
under corr1 = 0. The following modification applied to the oracles are assumed to append
only when the ticket tk is involved during the execution of the oracle.
Game G0. The initial game corresponds to the experiment ExpPRIVA , hence:

Pr
[
G0(1λ)→ 1

] p= Pr[ExpPRIVA (1λ)→ 1]

Game G1. First, we modify the Purchase algorithm happening in the experiment. When
tk is purchased, the challenger sends a random element as the first message from U1,
thus replacing EncpkPKE

D
(ide, idp, rc, c) by a random sampled uniformly from [EncpkPKE

D
]. D

being also simulated by C it still has access to ide, idp, rc, c and then is able to continue
the Purchase protocol.

We observe that the difference between G0 and G1 occurs only in the encryption of
this message. Under the IND-CPA hypothesis, a distinguisher would have negligible
chances to distinguish between these two experiments. Hence we obtain the

∣∣Pr
[
G0(1λ)→ 1

]
− Pr

[
G1(1λ)→ 1

]∣∣ ≤ 2 · AdvIND-CPA
A,PKE

Game G2. The second game replaces the encryption of tk under the key pkE
D during

a call to ORefund by a random element sampled uniformly from [EncpkPKE
D

]. This is the
same argument as before, we directly conclude to

∣∣Pr
[
G1(1λ)→ 1

]
− Pr

[
G2(1λ)→ 1

]∣∣ ≤ 2 · AdvIND-CPA
A,PKE

Game G3. The third game replaces the encryption of tk under the key pkE
T during a

call to OTransfer by a random element sampled uniformly from [EncpkPKE
D

]. As seen in
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G1 and in G2, we have

∣∣Pr
[
G2(1λ)→ 1

]
− Pr

[
G3(1λ)→ 1

]∣∣ ≤ 2 · AdvIND-CPA
A,PKE

Game G4. In the last game, concluding this proof, we replace the encryption of
pk ′U , tk, cert′U under pkE

V by a random element sampled uniformly from [EncpkPKE
D

]. Still
using the indistinguishability argument we have

∣∣Pr
[
G3(1λ)→ 1

]
− Pr

[
G4(1λ)→ 1

]∣∣ ≤ 2 · AdvIND-CPA
A,PKE

Since A has no more advantage, and since rc is randomly picked at uniformly in
{0, 1}λ, A has probability 2−λ to guess correctly, hence Pr

[
G4(1λ)→ 1

]
= 2−λ. Finally,

we observe that:

AdvPRIVA (1λ) = Pr[ExpPRIVA (1λ)→ 1] ≤ 8 · AdvIND-CPA
A,PKE + 2−λ

Theorem 8. Applause provides no-double-spending unconditionally.

Proof of No-Double-Spending. Let A be a PPT adversary. We show that the probability
Pr[ExpDS

A (1λ)→ 1] is negligible. In the game ExpDS
A , A is free to take advantage of any

sequence of execution it has chosen. We show that under any chosen sequence, it is
impossible for A to success the same algorithm twice with the same ticket tk. The proof
relies on the consistency of the state st, updated by the challenger C during the protocol.
We argue that this state prevents any double-spending, indeed acting as a blacklist
containing every ticket tk used in any of the protocols. We proceed by analyzing the
update of the state through the algorithms: In the Refund protocol, on the reception
of tk, D executes the CheckTk algorithm which checks that σc is signed either by D or
by T , but also that c is not contained in st. If not, c is inserted in st. Suppose now
that A replays the refund protocol again, then the signature still verifies, but since tk

is now contained in st, then the refund fails. The ticket transfer holds on the same
principle. When transferring tk, algorithm CheckTk is executed, ensuring that tk is not
already contained in st. Exactly as the previous protocols, on the reception of ticket tk,
the validation executes the CheckTk checking that tk is not contained in st. When the
algorithm successfully ends, then tk is required to be contained in st to notify that the
ticket is now considered as invalid.

All algorithms taking a ticket tk as an input ends with a state st containing tk.
Since the state st is fully controlled by C and cannot be modified by A, we can directly
conclude that for every PPT adversary, Pr[ExpDS

A (1λ) → 1] is zero, meaning that the
double-spending, in any sequence, is prevented.
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Theorem 9. Instantiated with statistically indistinguishable randomisable keys, and an
anonymous payment scheme, for every security parameter λ ∈ N and every adversary A,
Applause provides pseudonymity with the upper bound:

∣∣∣Pr
[
ExpPSEA (1λ)→ 1

]
− 1

2

∣∣∣ ≤
8 · AdvAPPseA .

Proof of Pseudonymity. We start by considering an initial game G0 consisting of the
ExpPSEA experiment, in which the adversary has access to the public keys of both users
and interact only with the user Ub for a random bit b chosen by the challenger. To
prove the pseudonymity, we replace all the keys associated to both users U0 and U1 by
a new key pair which are not associated with any user. Therefore, the adversary does
not have any advantage to identify the chosen user and hence no chance to break the
pseudonymity.

Game G0. The initial game corresponds to experiment ExpPSEA , hence we have a perfect
indistinguishability between this game and the ExpPSEA experiment:

Pr
[
G0
A(1

λ)→ 1
] p= Pr

[
ExpPSEA (1λ)→ 1

]
Game G1. In our initial game, the adversary (adversary) can interact with either user
U0 or U1. In this modified game, we introduce the generation of new anonymous payment
keys stkAP

new and spkAP
new. Instead of using the payment keys of U0 for all payments, the

challenger now uses freshly generated payment keys. The indistinguishability between
this game, denoted as G1, and our initial game, denoted as G0, holds assuming our
anonymous payment ensures pseudonymity, where the adversary has access to a payment
oracle for only one of the two users.

For contradiction, suppose there exists an adversary A for which the advantage in
distinguishing between G0 and G1 is non-negligible. Specifically, let p0 be the probability
of success of A in G0 and p1 be the probability of failure of A in G1. Denote by ϵ the
distinguishing probability p0 − p1.

We construct an adversary B which utilizes A to break the pseudonymity property of
the anonymous payment scheme. Let C represent the challenger running the experiment
ExpAPPseB . At the beginning, C generates two payment keys: One for U0 and another
independent of U0. On the other hand, B executing ExpPSEA holds the payment keys for
U1. At the start of the experiment, B samples a bit b′ and interacts with A using the
payment key of U1 if b′ equals one, or it uses the payment keys chosen by C based on a
randomly chosen bit b. If b is zero, C provides a payment oracle for the payment keys
of U0, and B runs G0. Otherwise, when b is one, the provided payment oracle relies on
the freshly generated payment keys, and B runs G1.

During the payment oracle execution, when b′ is zero, B acts as a proxy between C and
A to enable A to proceed with a payment using the payment keys held by C. However,
when b′ is one, the payment oracle is not called by B since B owns the payment keys
of U1. At the end of ExpPSEA , A (assumed to distinguish between G0 and G1) outputs a
prediction bit b∗ to B, which is forwarded to the challenger C.
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Pr [b = b∗] =
1

4
Pr [b∗ = 0|b = 0 ∧ b′ = 0] +

1

4
Pr [b∗ = 0|b = 0 ∧ b′ = 1]

+
1

4
Pr [b∗ = 1|b = 1 ∧ b′ = 0] +

1

4
Pr [b∗ = 1|b = 1 ∧ b′ = 1]

=
1

2
+

1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 0]− Pr [b∗ = 0|b = 1 ∧ b′ = 0])

+
1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 1]− Pr [b∗ = 0|b = 1 ∧ b′ = 1])

=
1

2
+

1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 0]− Pr [b∗ = 0|b = 1 ∧ b′ = 0])

=
1

2
+

1

4
(p0 − p1)

And since the success probability Pr [b = b∗] equals Pr
[
ExpAPPseB (1λ)→ 1

]
, it follows

that:

AdvAPPseA =

∣∣∣∣Pr
[
ExpAPPseB (1λ)→ 1

]
− 1

2

∣∣∣∣ = ∣∣∣∣12 +
1

4
ϵ− 1

2

∣∣∣∣ = 1

4
ϵ

And since we have assumed that the following advantage AdvAPPseA is negligible for
any adversary, then it follows that ϵ is negligible which enter in contradiction with
our hypothesis. Therefore, under the assumption that AdvAPPseA is negligible for all
polynomial time adversary A then G0 and G1 are computationally indistinguishable:

∣∣Pr
[
G0
A(1

λ)→ 1
]
− Pr

[
G1
A(1

λ)→ 1
]∣∣ ≤ 4 · AdvAPPseA (1λ)

Game G2. In this game, we proceed exactly as done previously, except that we now
replace the payment keys of U1. Note that in this game, the payment keys of U0 is no
more used to proceed for a payment. Since the reduction works exactly as before, we
directly conclude that the upper-bound to distinguish between this game G2 and game
G1 is defined as follows:

∣∣Pr
[
G1
A(1

λ)→ 1
]
− Pr

[
G2
A(1

λ)→ 1
]∣∣ ≤ 4 · AdvAPPseA (1λ)

Game G3. Instead of randomizing the key pair in Validate when A calls OValidateb, we
generate a new signature and encryption key pairs. The resulting keys are unrelated to
the key pair of the user. Since randomized keys are statistical indistinguishability from
freshly generated keys, we obtain a statistical indistinguishability (denoted s≈) between
the games G2 and G3:

Pr
[
G3
A(1

λ)→ 1
] s≈ Pr

[
G2
A(1

λ)→ 1
]

Game G4. On each call of A to OTransferb, the same modification is put in place in
Transfer. As for the previous modification, games are therefore statistically indistin-
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guishable. This leads to the statistical indistinguishability between G4 and G3:

Pr
[
G4
A(1

λ)→ 1
] s≈ Pr

[
G3
A(1

λ)→ 1
]

In this game G4, none of (skU0 , pkU0) or (skU1 , pkU1) are used by the challenger
during the experiment. Hence, the adversary has no mean to recover b and then no
advantage in breaking the pseudonymity. Hence, we obtain Pr

[
G4
A(1

λ)→ 1
]
= 1

2 . We
now derive the upper bound as follows:

∣∣Pr
[
G0(1λ)→ 1

]
− Pr

[
G4(1λ)→ 1

]∣∣ = ∣∣∣∣Pr
[
ExpPSEA (1λ)→ 1

]
− 1

2

∣∣∣∣
≤ 8 · AdvAPPseA

By hypothesis on the anonymity property of considered anonymous payment, the
advantage AdvAPPseA is negligible. Therefore, assuming that our anonymous payment
scheme ensures pseudonymity, Applause provides pseudonymity.

Theorem 10. Instantiated with an anonymous payment having the property of ran-
domisable keys, then for any PPTA, Applause provides unlinkability with the following
upper bound: ∣∣∣∣Pr

[
ExpUNLA (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ 16 · AdvAPUnlA

Recall that in our construction, a ticket tk is defined by the place (ide, idp), the ran-
dom rc and the signature σc. From an information theory perspective, tk is completely
unrelated from any user U. Then, our proof simply consists to show that at any moment,
the identity of U (i.e., the public key pkU) is used during the communication.

Proof of Unlinkability. Our proof is designed as a sequence of games where the initial
game G0 corresponds the game ExpUNLA , and our last game corresponds to the game
ExpUNLA where C does not rely on the users keys. We show that both games are indis-
tinguishable through a sequence of negligible modifications. During this sequence, we
focus our attention on the part of the experiment in which the adversary A interacts
with the user Ub. In this challenge phase, a single ticket is purchased by Ub and later
transfered, refunded or validated, based on the choice of A. Let A be a PPT adversary,
we show that it has probability to succeed at ExpUNLA close to 1/2.
Game G0. The initial game corresponds to the experiment ExpUNLA Hence, for every
adversary A, we have:

Pr
[
G0
A(1

λ)→ 1
] p= Pr

[
ExpUNLA (1λ)→ 1

]
Game G1. In this game, we focus on the anonymous payment performed during the
execution of the ticket purchase via the Purchase protocol in the challenge phase. At
the beginning of the experiment ExpUNLA of the ticketing system, two user key pairs are
generated, one for the user U0 and a second for the user U1. The adversary A is allowed,
via specific oracles OPurchasel,ORefundl,OTransferl,OValidatel oracles for l ∈ {0, 1}, to
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interact with both users. Then, at some point, the experiment selects a random bit b
and purchases a ticket for a seat (ide, idp) designated by the adversary.

In this game, we introduce the two payment keys generation, one for each user U0
and U1. For clarity, let denote these keys by (stk ′0, spk

′
0) and (stk ′1, spk

′
1). Instead of

using the payment keys of user U0, in this game we rely on the freshly generated payment
keys (stk ′0, spk

′
0). That is, the payment keys would not be used in the Purchase protocol

anymore. Note that in the ExpUNLA experiment, a bit b is randomly chosen and lead to
the usage of payment keys of the user Ub. When b equals zero, then the used payment
key is changed whereas when b equals one, the view of the adversary remains unchanged.

Let suppose an adversary against the ExpUNLA experiment. We construct an adversary
B which relies on A to break the unlinkability of the anonymous payment scheme, whose
experiment ExpAPUnlB is simulated by the challenger C. In the ExpAPUnlB experiment of
the anonymous payment scheme, simulated by the challenger C, two payment keys are
generated. During the challenge phase, one of these two payment keys is used, the
decision to use the first or the second key is based on a randomly chosen bit b, chosen
by C. These two keys are associated by the adversary B to the payment keys of Ub and
to the freshly generated payment keys (being independent of U0 and U1). In addition,
to this decision bit b, the adversary B chooses a random bit b′. When, b′ equals zero,
then B relies either on the payment keys of U0 or on the freshly generated payment keys,
both payment keys being owned by C. In contrast, when b′ equals one, then it relies
on the payment keys of user U1, generated and owned by B. To be a valid reduction,
the adversary B has to provide valid OPurchasel,ORefundl,OTransferl,OValidatel oracles
for l ∈ {0, 1} to A. The adversary B running the ExpUNLA experiment, it has access to
the payment oracles OPay0 and OPay1, working respectively with the payment keys of
U0 and the freshly generated payment keys (stk ′0, spk

′
0). During the running of B, an

execution of the oracle OPurchase0 involves payments using the payment oracle OPay0,
whereas the execution of the oracle OPurchase1 involves payments using the payment key
of user U1 owned by B. Other oracles in ExpUNLA follows the same principle. Under the
assumption that b′ equals zero, when the challenger C running the ExpAPUnlB experiment
randomly chooses a bit b which equals zero then B runs the game G0 since the used
payment keys belong to U0. Still assuming that b′ equals zero, when b equals one, then
B runs the game G1 in which the freshly generated payment keys replace the payment
keys of U0. However, when b′ equals one, B relies on the payment keys of user U1
during the Purchase protocol evaluation in the challenge phase. In this case, there is no
difference between G0 and G1, replacing only the payment keys of U0. For this reason,
when b′ equals one, the adversary A has no advantage to distinguish.

The indistinguishability between these two games holds under the assumption that
the used anonymous payment scheme ensures unlinkability. Suppose that our adversary
A is the probability p0 to win at the game G0 and p1 to fail at the game G1. At the end
of the ExpUNLA experiment, the adversary B receives a prediction bit b∗ from A that is
forwarded to the challenger C. The probability of success of the adversary B based on
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the adversary A against the challenger C running the ExpAPUnlB is defined as follows:

Pr [b = b∗] =
1

4
Pr [b∗ = 0|b = 0 ∧ b′ = 0] +

1

4
Pr [b∗ = 0|b = 0 ∧ b′ = 1]

+
1

4
Pr [b∗ = 1|b = 1 ∧ b′ = 0] +

1

4
Pr [b∗ = 1|b = 1 ∧ b′ = 1]

=
1

2
+

1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 0]− Pr [b∗ = 0|b = 1 ∧ b′ = 0])

+
1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 1]− Pr [b∗ = 0|b = 1 ∧ b′ = 1])

=
1

2
+

1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 0]− Pr [b∗ = 0|b = 1 ∧ b′ = 0])

=
1

2
+

1

4
(p0 − p1)

Hence, the advantage AdvAPUnlB equals 1
4 (p0 − p1). Therefore, the indistinguishability

between G0 and G1 is bounded by the upper-bound 4AdvAPUnlB , or more formally:

∣∣Pr
[
G0
A(1

λ)→ 1
]
− Pr

[
G1
A(1

λ)→ 1
]∣∣ ≤ 4 · AdvAPUnlB

Game G2. In this game, we proceed exactly as in G1 except that we focus on the payment
keys of U1. Since the indistinguishability between G1 and G2 holds the unlinkability of
the anonymous payment scheme. And since the reduction follows the same methodology
as done previously, we directly deduce that the following upper-bound:

∣∣Pr
[
G1
A(1

λ)→ 1
]
− Pr

[
G2
A(1

λ)→ 1
]∣∣ ≤ 4 · AdvAPUnlB

Game G3. In this game, we proceed exactly as done in G1 and G2 except that we focus
on the payment keys of U0, this time on the Refund and Transfer protocols (the Validate

protocol does not require a payment). In all these protocols, we replace the payment
keys of U0 by the generated payment keys (stk ′0, spk

′
0) introduced in G1. Observe that we

have to replace payments keys of U0 in both protocols. We proceed to the replacement
via a case disjunction, one for each protocol, the choice of the protocol to use is let to
the adversary A. In each case, the reduction methology is the same as seen previously.
Hence, for each of these two cases (Refund and Transfer), we have the upper-bound
4AdvAPUnlB . By summing the upper-bound for these two cases, we obtain the upper-
bound to distinguish between G2 and G3, defined below:

∣∣Pr
[
G2
A(1

λ)→ 1
]
− Pr

[
G3
A(1

λ)→ 1
]∣∣ ≤ 8 · AdvAPUnlB

Game G4. In this game, we replace the randomized signature and encryption keys of
users U0 and U1 by freshly generated keys. Among the Purchase, Refund, Transfer and
Validate protocols, only the Transfer and Validate protocols are modified. Indeed, both
the validator in Validate and the other user in Transfer receive the randomized public
key of Ub (for a b ∈ {0, 1} chosen in ExpUNLA ). By the statistical indistinguishability of
the randomised keys, we obtain statistical indistinguishability between G3 and G4:

Pr
[
G3
A(1

λ)→ 1
] s≈ Pr

[
G4
A(1

λ)→ 1
]
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Remark that in G4, neither the public key of U0 or the public key of U1 are involved,
all replaced by freshly generated keys being independent of both U0 and U1. Therefore,
in G4 the adversary A has no advantage to distinguish between U0 and U1 leading to the
probability Pr

[
G4
A(1

λ)→ 1
]
= 1

2 . Therefore, by summing all the previously mentioned
bounds, we conclude our sequence of games as follows:

∣∣Pr
[
G0
A(1

λ)→ 1
]
− Pr

[
G4
A(1

λ)→ 1
]∣∣ = ∣∣∣∣Pr

[
ExpUNLA (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ 16 · AdvAPUnlA

By hypothesis, for every polynomial time adversary A, the advantage AdvAPUnlA is
negligible, meaning that the probability to distinguish is negligible as well. Hence,
Applause provides unlinkability.

4.4 Auditability with Spotlight

As shown in Section 4.3, Applause provides full anonymity for users. This property
is desirable in general, but there exist edge cases in which the full anonymity is not
desirable, such as fire during an event. Identifying missing attendees is crucial in this
context, but is hard using a fully anonymous ticketing system like Applause. To deal
with this issue, we introduce a method to convert Applause into an auditable scheme
called Spotlight, using Protego [CDLPK22], an auditable anonymous credential, based
on structure-preserving signatures on equivalence classes [FHS19].

4.4.1 Overview of Protego

In a nutshell, Protego [CDLPK22] is an Attribute-Based Credentials (ABC) in which a
user obtains a credential from an organisation, attesting that the user owns a particular
set of attributes X . Traditionally, this credential is transferred to a verifier, accepting
the credential if and only if the provided credential is valid. In Protego, the “showing” of
this credential slightly differs in order to provide several features on which we leverage
to construct Spotlight: The credential is still provided by an organisation but is not
shared with the verifier anymore. Instead, given its secret key and its credential X , the
user computes a proof attesting that it owns a subset of attributes S ⊆ X and that it
not own a set of attributes D ⊈ X . Even more, an accepted proof is valid if the proof
has been generated by a user holding its private key. In other words, a user cannot
create a proof using only public data from another user. The key point of Protego is
that the proof is at the same time publicly verifiable, but privacy-preserving in the sense
that the identity of the user having generated the proof is never involved in the proof
verification. In other words, Protego ensures anonymity of users. Protego provides an
additional feature at the heart of Spotlight: Auditability. An additional authority
having its own key pair, is able to extract the identity of the user having generated
the proof π. Before introducing Protego formally, we highlight that Protego supports
revocation of the users. This revocation feature is not desired in our construction. For
this reason, we voluntary omit RAKeyGen, RSetup and Revoke algorithms. We stress
that this only limits the features of Protego and does not affect security.
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Definition 31 (Protego [CDLPK22]). Assuming a security parameter λ and an universe
of attributes Ω, then Protego is defined as follows:

• Setup(1λ, aux )→ pp: Given the security parameter λ and some auxiliary informa-
tion defining the universe of attribute Ω, it outputs the public parameters pp.

• OKeyGen(pp)→ (osk , opk): Given the public parameters, it outputs the key pair
for the organisation.

• AAKeyGen(pp)→ (ask , apk): Given the public parameters, it outputs the key pair
for the auditor.

• UKeyGen(pp)→ (usk , upk): Given the public parameters, it outputs the key pair
for the user.

• Issue⟨U(usk ,X ,nym),O(osk ,X ,nym)⟩ → U(cred): The Issue protocol is running
between a user U expecting a credential and the organisation O issuing the creden-
tial. The obtained credential cred authenticates the user with the set of attributes
X ⊂ Ω. Note that even if we do not rely on the revocation feature, we have in-
cluded the pseudonym nym, used only during the revocation, for completeness of
the provided definition.

• Show(usk , cred ,X ,S,D, aux )→ π: The showing algorithm, taking the private key
usk of the user U , the credential cred , the set of attributes X and two sets S and
D, returns a proof π proving that the user U owns the attributes S and does not
owns the attributes D.

• Verify(opk , π,X ,S,D, aux )→ b: Given the organization’s public key opk and the
proof π, it outputs the verification bit b which equals 1 if the proof is valid, 0

otherwise.
• AuditEnc(upk , apk)→ (c, α): Given the user’s public key upk and the auditor’s

public key apk , it outputs the encryption of the user’s public key under the audi-
tor’s public key, and some auxiliary information α.

• AuditDec(ask , c)→ upk : Given the auditor’s private key ask and the ciphertext c,
it outputs the user’s public key.

• AuditPrv(usk , c, α)→ π′: Given the user’s private key, the ciphertext c encrypting
the user’s public key under the auditor’s public key and the auxiliary information
α, it outputs a proof π′.

• AuditVerify(apk , π′)→ b: Given the auditor’s public key and proof π′, it outputs
a bit b which equals one if the provided proof π′ is valid, zero otherwise.

Auditability Algorithms in Protego. As the definition suggests, Protego is com-
posed of algorithms used to generate and prove the ownership of a credential (i.e.,
Issue, Show and Verif) and algorithms to perform the audit (i.e., AuditEnc, AuditDec,
AuditPrv and AuditVerify). While these two categories of algorithms seem at first glance
disjoint in their functionalities, the construction of Protego reveals that the AuditEnc,
AuditPrv and AuditVerify algorithms are subroutines of the Show and Verify algorithms.
Indeed, in Protego the auditability-related ciphertext c and proof π′ are generated and
integrated in the computation of the proof π. To be more concrete, the ciphertext c
and the proof π′ are contained in the proof π. Note that π′ is tied with π since π′ is
inputted into an hash function, whose obtained hash is used to compute π. A verifier
running the Verify algorithm over the proof π has access to c and π′. Therefore, since
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Symbol Definition
N Set of all pseudonyms
NYM Set of assigned pseudonyms
HU Set of honest users
CU Set of corrupted users
USK Private keys of users
UPK Public keys of users
CRED List of credentials
OWNR Owner of the credential (|OWNR| = |CRED|)
ATTR Attributes authenticated by the credentials (|ATTR| = |CRED|)
ILoR Users involved in the challenge
JLoR Credentials involved in the challenge

Table 4.1: Definition of symbols used in the anonymity property of Protego.

AuditEnc, AuditPrv and AuditVerify are subroutines of Show and Verify, we remove these
three algorithms and introduce Audit(usk , π) which extracts c from π and returns the
output of AuditDec(usk , c). This modification does not alter the security, in particular
the anonymity property in which no oracle for the audit is considered in [CDLPK22].
Hence, this modification is purely functional and does not affect the security at all.

Correctness of Protego. The correctness of Protego states an honestly generated
proof π for any security parameter λ > 0, for any set of attributes X with 0 < |X | ≤ q,
for any non-empty subset of attributes S ⊂ X , any non-empty disjoint set of attributes
D ⊈ X , for any non-empty set of valid pseudonyms NYM ⊆ N with 0 < N ≤ q′, for all
nym ∈ NYM it holds that:

pp ← Setup(1λ, (1q, 1q
′
));

(ask , apk)← AAKeyGen(pp); (osk , opk)← OKeyGen(pp), (usk , upk)← UKeyGen(pp);

Issue⟨U(usk ,X ,nym),O(osk ,X ,nym)⟩ → U(cred)

π ← Show(usk , cred ,S,D); 1← Verify(opk , π,X ,S,D)

Anonymity in Protego. The anonymity property of Protego states that an adversary
is not able to distinguish the showings of multiple proofs π coming from a user PU0

or a user PU1. In other words, the proof is not tied with the identity of the user
having generated the proof. The security definition of anonymity introduces five oracles
OHonestUser, OCorrUser, OIssue, OShow and OLoR that we describe in the following
paragraphs. All important symbols are summarised in Table 4.1.

Oracles for Honest and Corrupted Users. During the execution of the anonymity
experiment, the challenger provides two oracles OHonestUser and OCorrUser depicted in
Figure 4.25 to respectively create honest users and corrupt users.

The oracle OHonestUser expects as an input from the adversary an integer i, which
has to be read as the i-th user. The oracle aborts if i has already be assigned to a user.
This test is performed using the set of honest users HU and corrupted users CU. In case
where the index i has not been assigned yet, then the oracle generates a new user key
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pair (usk , upk) added into the sets USK and UPK respectively, and it adds the index i
in HU. The freshly generated user’s public key upk is returned to the adversary.

The oracle OCorrUser takes as an input an index i as well as a user public key
upk . The oracle checks that the i-th user has not already been corrupted (otherwise no
additional work is necessary), but also checks that i does not belong to the ILoR set. In
a nutshell, this set contains all users involved in the OLoR oracle, as will see later. If the
user is honest, then the oracle transfers the index i from the set HU to the set CU and
leaks to the adversary the private key of the user as well as all its obtained credentials.
In case where the index i does not belong to the set HU ∪ CU, the user has not been
created by the challenger. In this case, the challenger creates a corrupted user whose
secret key is not known and whose public key is the one provided by the adversary.

Oracle OHonestUser(i)

1 : if i ∈ HU ∪ CU then return ⊥
2 : (USK[i],UPK[i])← UKeyGen(pp)
3 : add i in HU

4 : return UPK[i]

Oracle OCorrUser(i, upk)

1 : if i ∈ CU ∨ i ∈ ILoR then return ⊥/* Corrupted or involved in the challenge */
2 : if i ∈ HU then /* Corruption of an honest user */
3 : remove i from HU

4 : add i in CU

5 : C ← {CRED[j]}for all j where OWNR[j] = i

6 : return (USK[i], C) /* Leakage of user’s private key and obtained credentials */
7 : else /* i /∈ HU ∧ i /∈ CU */
8 : add i in CU

9 : UPK[i]← upk

Figure 4.25: Description of the OHonestUser and OCorrUser oracles.

Oracles for Credential Issuing and Showing. The anonymity of Protego allows
the adversary to ask the i-th user to obtain a credential for a set of attributes X of its
choice, but also to obtain a proof π for the credential of its choice with respect to a set
of owned S and disjoint attributes D. These two features are modelled respectively as
the oracles OIssue and OShow depicted in Figure 4.26.

The oracle OIssue expects as an input from the adversary an index i (corresponding
to the i-th user), a pseudonym nym and a set of attributes X . The oracle runs the
Issue protocol only for honest users with an organisation played by the adversary A.
For this reason, the user has to be honest. At condition that the Issue protocol ended
successfully, the generated credential cred is inserted in the CRED set containing all the
generated credentials for all users. To link the ownership of the credential, the index i
is inserted in the OWNR set. The oracle also inserts the attributes X in the ATTR set
and the used pseudonym nym in the NYM set.

The oracle OShow expects as an input from the adversary the index j referring to
the j-th credential in the CRED set, as well as two sets of attributes S and D. The
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oracle runs the Show algorithm for the i-th user being the owner the j-th credential,
resulting into a proof π that is returned to the adversary. The i-th user is required to
be honest, otherwise leading to an abort of the oracle.

Oracle OIssue(i,nym,X )
1 : if i /∈ HU then return ⊥
2 : Issue⟨U(USK[i],nym,X ),A⟩ → U(cred)
3 : if cred = ⊥ then return ⊥
4 : add (i, cred ,X ,nym) in (OWNR,CRED,ATTR,NYM)

Oracle OShow(j,S,D)
1 : i← OWNR[j]

2 : if i /∈ HU then return ⊥
3 : π ← Show(USK[i],CRED[j],ATTR[j],S,D)
4 : return π

Figure 4.26: Description of the OIssue and OShow oracles.

Left-or-Right Oracle. The Left-or-Right oracle, denoted as OLoR and depicted in
Figure 4.27, allows the adversary to obtain a proof π for one among two credentials
indexed respectively by j0 and j1. Hence, the oracle OLoR expects as an input j0 and
j1, as well as the two sets of attributes S and D inputted into the proof generation
algorithm. The oracle works using two specific sets denoted ILoR and JLoR. The first
set ILoR of cardinality two contains the index of (honest) users holding the credentials
referred by the index j0 and j1. These two credential indexes are saved in the JLoR set.
The anonymity property holds even in case of multiple showings of the same credential.
This is exactly for this reason, that the challenge takes the form of a Left-or-Right
oracle. However, the credentials has to be the same over the time, which explains why
the OLoR oracle aborts when the adversary inputs a pair of credentials (j′0, j

′
1) different

of (j0, j1). The oracle also aborts in case where at least one user holding either CRED[j0]
or CRED[j1] is corrupted. Indeed, in such case, no security can be proven. Additional
verifications are performed by the oracle on the provided sets of attributes S and D,
required to satisfy the attributes ATTR[j0] and ATTR[j1]. The oracle generates a proof
π for the credential CRED[jb] for the ib-th user where b is randomly chosen by the
challenger at the beginning of the experiment, once and for all the oracle executions.

Description of Anonymity in Protego. The experiment for the anonymity of Pro-
tego denoted ExpProAnoA and depicted in Figure 4.28, takes as an input the security pa-
rameter 1λ as well as two integers q and q′, limiting respectively the number of defined
attributes and pseudonyms. The challenger running the experiment initiates with the
Setup execution to generate the public parameters pp. The auditor key pair is generated,
only the auditor’s public key is shared with the adversary. A random bit b is chosen
by the challenger and runs the adversary with an access to the oracles OHonestUser,
OCorrUser, OIssue, OShow and OLoR. Given all this oracles, the adversary eventually
returns a prediction bit b∗ and wins the anonymity experiment if b equals b∗.
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Oracle OLoR(j0, j1,S,D)
1 : if JLoR ̸= ∅ ∧ JLoR ̸= {j0, j1} then return ⊥
2 : (i0, i1)← (OWNR[j0],OWNR[j1])

3 : if i0 /∈ HU ∨ i1 /∈ HU then return ⊥
4 : if S ⊈ ATTR[j0] ∩ ATTR[j1] then return ⊥
5 : if D ∩ (ATTR[j0] ∪ ATTR[j1]) ̸= ∅ then return ⊥
6 : JLoR ← {j0, j1}
7 : ILoR ← {i0, i1}
8 : π ← Show(USK[ib],CRED[jb],ATTR[jb],S,D)
9 : return π

Figure 4.27: Description of the OLoR oracle.

ExpProAnoA (1λ, q, q′)

1 : pp ← Setup(1λ, 1q, 1q
′
)

2 : (ask , apk)← AAKeyGen(pp)

3 : b
$← {0, 1}

4 : b∗ ← AOHonestUser,OCorrUser,OIssue,OShow,OLoR(apk)

5 : return b
?
= b∗

Figure 4.28: Description of the anonymity experiment of Protego.

Definition 32 (Anonymity of the Simplified Protego). Protego is said anonymous if for
security parameter λ, every q, q′ > 0 and every polynomial-time adversary A, we have:

AdvProAnoA =

∣∣∣∣Pr
[
ExpProAnoA (1λ, (1q, 1q

′
))→ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ)

4.4.2 Description of Spotlight

We start by giving the description of our auditable anonymous ticketing system called
Spotlight, standing in contrast with Applause, by allowing users to be authenticated
by an additional, incorruptible authority called the judge and denoted J . In a nutshell,
the judge owns the key pair of both the organisation and the auditor as defined in
the Protego definition. Therefore, the judge plays at the same time the role of the
organisation delivering the credential and the role of the auditor revealing the identity
of an attendee. Spotlight corresponds mostly to our original protocol Applause,
the only difference being the integration of Protego used to generate a proof during
the ticket validation protocol. The integration also supposes that during the key pair
generation, a user U generates a Protego key pair (usk , upk), and runs the certification
protocol Certify with the judge J to obtain a credential cred . Then, at every interaction,
the user U generates a new proof π that is integrated in the communication. We will
explain the integration of the proof later. Once received by the system, the proof π
is stored and associated with the (purchased, transferred, refund or validated) ticket.
Later, given a ticket tk containing the proof, the judge is allowed to recover the public
key of the user. Observe here an interesting fact about the integration of Protego: The
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desired degree of auditability can be modified depending on the integration of the proof
π in the ticketing system. In other words, if every protocol execution (i.e., Purchase,
Transfer, Refund and Validate) contains the proof, then every action can be linked to
the user initiating the protocol, only from the view of the auditor authority. Another
possible integration of the proof followed in this work, is to integrate the proof π only
during the ticket validation protocol Validate. This way, only users attending the event
can be identified from the view of the J . It follows that a user having purchased a ticket
(or received from another user via the ticket transfer) cannot be identified if it does not
attend the event. As explained during the introduction of this work, our ambition is to
identify attendees of the event in case of a disaster and only this case. Hence, we will
focus our attention on integrating the proof π only in the ticket validation protocol.

Dedicated State for Auditability. In Applause, the state st shared among all
parties, contains hashes c of tickets. In Spotlight, we require a differently formatted
state to store both hashes, used to ensure validity of tickets, but also to store received
proofs during the validation. Formally, we defined the shared state st as the couple
of states (stc, stπ), used respectively to store hashes c and to store couples of the form
(c, π). We stress that our hypothesis on the public readability still holds, meaning that
the judge J is able to read and reveal the identity of users attending the event.

Formal Description of Spotlight. To obtain auditability, we modify the UKeyGen
and Validate algorithms introduced in Applause, and introduce the two new algorithms
JKeyGen and Audit, used respectively to generate the key pair for the judge and to
recover the public key of the user U. In order to facilitate the readability, we omit
the DKeyGen, T KeyGen, VKeyGen, Purchase and Transfer definitions, which remain un-
changed. For clarity, all algorithms and protocols referring to the Protego scheme are
prefixed with PTGO.

• JKeyGen(1λ)→ (skJ , pkJ ): Given the unary representation of the security pa-
rameter λ, the judge key generation algorithm starts by generating the public
parameters of the Protego scheme PTGO.Setup(1λ, (1q, 1q

′
)) producing the public

parameters pp. The upper-bound q on the number of existing attributes is set at
two while the upper-bound q′ of the number of pseudonyms is set two one. We have
chosen these values to respect the requirements to satisfy the correctness definition
of Protego. Indeed, in Spotlight, we do not rely on the attributes property of
Protego. A natural choice for the universe of attributes might be Ω = {user}, but
recall that Protego requires two non-empty sets S and D to generate a proof for a
credential attesting the ownership of attributes X . The set S ⊆ X is supposed to
contain attributes that are owned by the user having the credential cred , whereas
D ⊈ X contains the attributes not authenticated by the credential. And since
D cannot be the empty set, we have to consider an additional attribute, never
assigned and always inserted in D. Therefore, the universe of attributes is defined
as {x, x̂}, which explains the upper-bound q at two for the possible attributes.
The upper-bound q′ is set to one since we only rely on a single pseudonym for
all existing users. Note that pseudonyms are only used for the revocation feature
that we do not require, and a pseudonym can be replayed several times without
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loss of correctness and security as suggested by the definition of Protego. Hence
we set the constant pseudonym nym once and for all users.
In addition to the setup of Protego, this algorithm generates the organisation
key pair (osk , opk)← PTGO.OKeyGen(1λ) and the auditor key pair (ask , apk)←
PTGO.AAKeyGen(1λ). The outputted key pair (skJ , pkJ ) where skJ is composed
of (osk , ask) and where pkJ is composed of (opk , apk , pp).

• UKeyGen(1λ)→ (skU , pkU): Given the unary representation of the security param-

eter λ, this algorithm computes a signature key pair denoted (skSign
U , pkSign

U ) ←
Sign.KeyGen(1λ), as well as an encryption key pair denoted (skPKE

U , pkPKE
U ) ←

PKE.KeyGen(1λ). In addition, a payment key (stkAP
U , spkAP

U , pdAP
U ) is generated us-

ing the anonymous payment key generation algorithm AP.KeyGen(1λ). It runs the
Protego’s user key generation algorithm PTGO.UKeyGen(pp) of Protego to obtain
the key pair (usk , upk). Once the user’s key pair obtained for the Protego scheme,
the credential issuing protocol Issue⟨U(usk ,X , nym),J (osk ,X , nym)⟩ → U(cred)
in order to obtain the credential cred for the set of attributes X = {x}. Fi-
nally, it returns the key pair (skU , pkU) where the secret key skU is composed of
(skSign, skPKE, stkAP, spkAP, usk , cred ,X ) and where the public key pkU is composed
of (pkSign, pkPKE, pdAP, upk). We stress that the RandKey ignores keys Protego’s
keys in the outputted randomised key.

The required modification in the ticket validation protocol for the user consists of gen-
eratating a proof π, integrated in the (already existing) ciphertext encrypting the ran-
domised public key and the ticket. On its side the validator, in addition to the existing
validations, verifies the validity of the proof. If the proof is valid, then it stores the hash
c and the proof π in the shared state stπ.

• Validate⟨U(skU , tk),V(skV , st)⟩: The validation protocol starts with the validator
V, providing its public key pkV along its certificate certV to the user U attempting
to attend the event. Recall that the public key pkV contains the public encryption
key pkPKE

V and the public signature key pkSign
V . The authenticity of the validator

public key pkV is verified by the user U using the signature verification algorithm
Verif(pkSign

D , (pkSign
V , pkPKE

V ), certV). If the signature is rejected, the user U aborts
the verification protocol. Otherwise, the user U generates a proof π using the
Protego’s proof generation algorithm PTGO.Show(usk , cred ,X ,S,D) with the set
of attributes X = {x}, the set S = {x} and with the set D = {x̂}. The user also
runs the key randomisation algorithm RandKey(skU , pkU) to obtain a new key pair
(skU ′ , pkU ′). The ciphertext Enc(pkPKE

V , pkU ′ , tk, π) encrypting the randomised
public key pkU ′ , the ticket tk and the proof π, is sent to the validator V. After
decryption, the validator executes the ticket verification CheckTk(tk, st) and the
proof verification PTGO.Verify(opk , π,X ,S,D). If both the ticket and the proof
are valid, the validator V inserts the hash c computed from the received ticket tk in
the state of invalid ticket st, and creates a challenge s sampled from {0, 1}λ, which
is carefully encrypted under the provided randomised public encryption key pkPKE

U ′ .
The resulting ciphertext, denoted ψs, is signed by the signature key skSign

V of the
validator V, producing the signature σs. The ciphertext ψs and the signature σs
are sent as a response to U. After a necessary verification of the authenticity of the
signature σs, and the decrypted challenge s′, values s and s′ are compared through
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a physical channel. If the verification fails, then the validator V removes the hash
c from the set of invalid tickets st and halts. Otherwise, the validator inserts the
couple (c, π) in the shared state stπ and both parties commonly terminates with
a success bit b at ⊤.

• Audit(skJ , π)→ pkPU : The audit algorithm, run by the judge J , expects as an
input the secret key skJ of the judge, but also a proof π. Observe that by hypoth-
esis on the public readability of the shared state st, and hence stπ by construction,
the judge can obtain the proof π by its own. To recover the Protego’s public key
upk of the user U, the judge returns the output of PTGO.Audit(ask , π).

4.4.3 Security Proofs of Spotlight

Because of the clear similarity between Applause and Spotlight, most of the security
claims remain unchanged. This is particularly true for the unforgeability of the ticket,
ticket privacy and prevention of double spending property, which is not affected by this
modification. Indeed, the added authentication material, consisting of new keys from
Protego, a credential kept secret by the user, and a proof π sent to the validator. Since
all these modifications does not affect the state (at least, not the state stc used to verify
validity of the ticket), the double-spending remains prevented. Similarly, the proof π
is completely independent of any random rc and the hash c is already in the view of
the adversary and hence does not bring any additional advantage. As a result, the
ticket privacy is not impacted. Finally, the signature mechanism, used to authenticate
approved tickets, remains unchanged, hence provides unforgeability.

On the other side, the pseudonymity property, have to be restated for Spotlight.
Indeed, we need to guarantee that the additional authentication and auditing material
does not affect the pseudonymity of users. Recall that the pseudonymity property of an
auditable ETS scheme remains exactly the same compared to a traditional ETS scheme,
as no additional security property and no oracle are added. In particular, the judge is
simulated by the challenger and does not provide any auditing oracle to the adversary.

Theorem 12. Instantiated with statistically indistinguishable randomisable keys, a
secure anonymous payment scheme ensuring pseudnonimity and Protego, for every se-
curity parameter λ ∈ N and every polynomial-time adversary, Spotlight provides
pseudonymity under probability:∣∣∣∣Pr

[
ExpPSEA (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ 8 · AdvAPPseA (1λ) + 8 · AdvProAnoA (1λ)

Proof of Pseudonymity. By the construction of Spotlight, sharing many similarities
with Applause, the pseudonymity security proof remains almost identical. For this
reason, we omit the five first games in which no difference occurs. Hence, following our
pseudonymity proof of Applause, the advantage to distinguish between G0 and G4 is
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negligible based on the upper-bound defined as follows:

∣∣Pr
[
G0(1λ)→ 1

]
− Pr

[
G4(1λ)→ 1

]∣∣ = ∣∣∣∣Pr
[
ExpPSEA (1λ)→ 1

]
− 1

2

∣∣∣∣
≤ 8 · AdvAPPseA

Game G5. At this point, the two users U0 and U1 are still identified by their respec-
tive credentials denoted cred0 and cred1. In this game, we introduce a new key pair
(usk ′0, upk

′
0) and its associated credential cred ′0. Later, any showing of the proof π gen-

erated via the credential cred0 of U0 is now performed using the credential cred ′0 being
independent of the identity of U0.

By contradiction, suppose there exists an adversary A for which the advantage in
distinguishing between G4 and G5 is non-negligible. Specifically, let p0 be the probability
of success of A in G4 and p1 be the probability of failure of A in G5. Denote by ϵ the
distinguishing probability p0 − p1.

We construct an adversary B which utilizes A to break the anonymity of Protego.
Let C be the challenger running the ExpProAnoB against the adversary B. The challenger
C holds the key pairs (usk0, upk0) and (usk ′0, upk

′
0) as well as the credentials cred0 and

cred ′0. The adversary B obtains the keys (usk1, upk1) and the credential cred1 of the
user U1, via the execution of the honest user creation followed by the corruption of the
user. During the execution of the ExpPSEA experiment, especially during the execution of
the Validate protocol in the OValidate0 oracle, the adversary B obtains a showing of the
credential cred0 using the OShow oracle provided by the challenger C in the ExpProAnoB

experiment. The execution of the OValidate1 oracle, on its side, is completely simulated
by B having the secret key usk1 of U1 and its credential cred1, hence B is able to compute
any showing if its choice. Note that the OShow oracle expects the index of a credential.
By construction, only three credentials are involved: Two credentials cred0 and cred ′0

hold by the challenger C and a credential cred1 holds by the adversary B.

At the beginning of ExpPSEA experiment simulated by B, a random bit b′ is chosen
designating between the user U0 (whose protego keys and credential are held by C) and
the user U1, supposed to interact with A. In addition, at some point in the execution
of the ExpProAnoB experiment, a random bit b is chosen by C designating the credential
to use between cred0 and cred ′0. Without loss of generality, suppose that C uses cred0

when b is zero, or uses cred ′0 otherwise. Observe that when b′ equals one, the adversary
A interacts with U1 and hence has no chance to guess the bit b. However, when b′ equals
zero, then A is interacting with U0, whose Protego keys and credential, held by C are
either the real one (when b equals zero) or an independent keys and credential (when b
equals one).

At the end of the experiment, the adversary A responds with a prediction bit b∗ to
B which is forwarded to C. The probability of a correct guess, defined by the probability
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Pr [b = b∗], follows:

Pr [b = b∗] =
1

4
Pr [b∗ = 0|b = 0 ∧ b′ = 0] +

1

4
Pr [b∗ = 0|b = 0 ∧ b′ = 1]

+
1

4
Pr [b∗ = 1|b = 1 ∧ b′ = 0] +

1

4
Pr [b∗ = 1|b = 1 ∧ b′ = 1]

=
1

2
+

1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 0]− Pr [b∗ = 0|b = 1 ∧ b′ = 0])

+
1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 1]− Pr [b∗ = 0|b = 1 ∧ b′ = 1])

=
1

2
+

1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 0]− Pr [b∗ = 0|b = 1 ∧ b′ = 0])

=
1

2
+

1

4
(p0 − p1) =

1

2
+

1

4
ϵ

Therefore, assuming an adversary A having a non-negligible advantage ϵ to distin-
guish between G4 and G5, then there exist an adversary B able to break the anonymity
of Protego with a non-neglible advantage ϵ

4 . Therefore, we have the following distin-
guishing advantage:

∣∣Pr
[
G4
A(1

λ)→ 1
]
− Pr

[
G5
A(1

λ)→ 1
]∣∣ ≤ 4 · AdvProAnoA

Game G6. In this game, we apply the exact same metholody except that we now
replace the credential cred1 with a freshly generated credential cred ′1 obtained from
an independent Protego user key pair (usk ′1, upk

′
1). Following the same reduction, we

obtain the following distinguishing advantage:

∣∣Pr
[
G5
A(1

λ)→ 1
]
− Pr

[
G6
A(1

λ)→ 1
]∣∣ ≤ 4 · AdvProAnoA

At this point, the public key of both users U0 and U1 are not used anymore. It
includes the signature key, the anonymous payment keys, the encryption key but also
the Protego keys. Therefore, the success probability in game G6 formally defined as
Pr

[
G6(1λ)→ 1

]
equals 1

2 . As a result, the distinguishing advantage between our initial
game G0 and our game G6 is defined as follows:

∣∣Pr
[
G0
A(1

λ)→ 1
]
− Pr

[
G6
A(1

λ)→ 1
]∣∣ = ∣∣∣∣Pr

[
ExpPSEA (1λ)→ 1

]
− 1

2

∣∣∣∣
≤ 8 · AdvAPPseA + 8 · AdvProAnoA

By assumption, the advantages AdvAPPseA and AdvProAnoA are negligible and hence,
Spotlight provides pseudonymity.
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Theorem 13. Instantiated with an anonymous payment ensuring pseudonimity, Pro-
tego, and randomisable keys, then for any PPT A, Spotlight provides unlinkability
under the following probability:

|Pr[ExpUNLA (1λ)→ 1]− 1

2
| ≤ 16 · AdvAPUnlA + 8 · AdvProAnoA

Proof. Because of the proximity between Spotlight and Applause, the unlinkability
proof of Spotlight shares similarities with the proof of Applause. More concretely,
we omit the five first games in which no difference occurs and extend the sequence of
games to take in account Protego keys and showings in the Validate protocol. Recall
that the unlinkability proofs of Applause is composed of five games ranging from G0

to G4 whose distinguishing advantage is upper-bounded as follows:

∣∣Pr
[
G0
A(1

λ)→ 1
]
− Pr

[
G4
A
]∣∣ ≤ 16 · AdvAPUnlA

Game G5. In the previous game, all anonymous payements, signature and encryp-
tion keys, the only cryptographic material being linked to the identity of a user, are
currently not used and replaced by completely independent keys. Only the Protego ma-
terial remain, especially the triplet (usk0, upk0, cred0) and (usk1, upk1, cred1) associated
respectively with user U0 and U1.

In this game, during the challenge phase in which the advantage A interacts only
with Ub for some bit b chosen in the experiment ExpUNLA , we replace (usk0, upk0, cred0)

associated by the user U0 by the triplet (usk ′0, upk
′
0, cred

′
0) being independent of U0.

Note that the triplet associated to U1 is still used.
For contradiction, suppose there exists an adversary A for which the advantage in

distinguishing between G4 and G5 is non-negligible. Specifically, let p0 be the probability
of success of A in G4 and p1 be the probability of failure of A in G5. Denote by ϵ the
distinguishing probability p0 − p1.

We construct an adversary B which utilizes A to break the anonymity of Protego.
Let C be the challenger running the ExpProAnoB against the adversary B. The challenger
C holds the key pairs (usk0, upk0) and (usk ′0, upk

′
0) as well as the credentials cred0 and

cred ′0. The adversary B obtains the keys (usk1, upk1) and the credential cred1 of the
user U1, via the execution of the honest user creation oracle OHonestUser followed by the
corruption of the user via the user corruption oracle OCorrUser. During the execution of
the ExpUNLA experiment, especially during the execution of the Validate protocol in the
OValidate0 oracle, the adversary B obtains a showing of the credential cred0 using the
OShow oracle provided by the challenger C in the ExpProAnoB experiment. The execution
of the OValidate1 oracle, on its side, is completely simulated by B having the secret key
usk1 of U1 and its credential cred1, hence B is able to compute any showing if its choice.
Note that the OShow oracle expects the index of a credential. By construction, only
three credentials are involved: Two credentials cred0 and cred ′0 hold by the challenger
C and a credential cred1 holds by the adversary B.

During the challenge phase in the ExpUNLA experiment simulated by B, a random bit
b′ is chosen designating between the user U0 (whose protego keys and credential are held



CHAPTER 4. ANONYMOUS, TRANSFERABLE, AUDITABLE TICKETS 147

by C) and the user U1, supposed to interact with A. In addition, at some point in the
execution of the ExpProAnoB experiment, a random bit b is chosen by C designating the
credential to use between cred0 and cred ′0. Without loss of generality, suppose that C
uses cred0 when b is zero, or uses cred ′0 otherwise. Observe that when b′ equals one, the
adversary A interacts with U1 and hence has no chance to guess the bit b. However, when
b′ equals zero, then A is interacting with U0, whose Protego keys and credential, held
by C are either the real one (when b equals zero) or an independent keys and credential
(when b equals one).

At the end of the experiment, the adversary A responds with a prediction bit b∗ to
B which is forwarded to C. The probability of correct guess, defined by the probability
Pr [b = b∗], follows:

Pr [b = b∗] =
1
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Pr [b∗ = 0|b = 0 ∧ b′ = 0] +
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2
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=
1

2
+

1

4
(Pr [b∗ = 0|b = 0 ∧ b′ = 0]− Pr [b∗ = 0|b = 1 ∧ b′ = 0])

=
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(p0 − p1) =

1

2
+
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4
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Therefore, assuming an adversary A having a non-negligible advantage ϵ to distin-
guish between G4 and G5, then there exist an adversary B able to break the anonymity
of Protego with a non-neglible advantage ϵ

4 . Therefore, we have the following distin-
guishing advantage:

∣∣Pr
[
G4
A(1

λ)→ 1
]
− Pr

[
G5
A(1

λ)→ 1
]∣∣ ≤ 4 · AdvProAnoA

Game G6. In this game, we replace the triplet (usk1, upk1, cred1) being the Protego
material associated with the user U1, with a freshly generated triplet (usk ′1, upk

′
1, cred

′
1)

being independent of U1. Again, since the indistinguishability between this game G6 and
the previous game G5 holds under the same assumption following the same principle and
hence following the same reduction method, we directly conclude that the distinguishing
advantage between G5 and game G6 is upper-bounded by the following advantage:

∣∣Pr
[
G5
A(1

λ)→ 1
]
− Pr

[
G6
A(1

λ)→ 1
]∣∣ ≤ 4 · AdvProAnoA

In our final game G6, the keys of both U0 and U1 are not used anymore. Hence, in
our last game G6, the advantage to distinguish between U0 and U1 during the challenge
phase of the experiment ExpUNLA , defined by the probability Pr

[
G6
A(1

λ)→ 1
]

equals 1
2 .

Therefore, the probability to distinguish between G0 and G6 is upper-bounded by the
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following advantage:

∣∣Pr
[
G5
A(1

λ)→ 1
]
− Pr

[
G6
A(1

λ)→ 1
]∣∣ = ∣∣∣∣Pr

[
ExpUNLA (1λ)→ 1

]
− 1

2

∣∣∣∣
≤ 16 · AdvAPUnlA + 8 · AdvProAnoA

And by hypothesis, the advantages AdvAPUnlA and AdvProAnoA are negligible, meaning
that Spotlight provides unlinkability.

4.5 Implementation of Applause and Spotlight

A proof-of-concept of Applause and Spotlight has been written in Rust and is avail-
able in [LMMOA24]. This implementation showcases the protocol’s completeness and
highlights the anticipated low computational cost of the cryptographic operations within
our proposal. In our implementation, we have measured the impact of up to a thou-
sand participants event purchasing a ticket. After the purchase, all acquired tickets
are transferred to load the shared state while generating the new (transferred) tickets.
Subsequently, the refund and validation processes are executed with these tickets.

Our analysis specifically focuses on cryptographic operations, excluding communica-
tion time and payment processes. Communication time is highly dependent on the net-
work infrastructure, and our protocol allows for multiple anonymous payment methods
to be integrated. These presented execution times should be considered as a baseline.

We rely on standard cryptographic primitives: We used the Curve25519 elliptic
curve [Ber06] for ElGamal [ElG85b] and Schnorr signatures [Sch91]. To achieve key
randomisation for Schnorr scheme, we rely on the generic algorithm generating a new
key pair. Benchmarks over 200 iterations from 1 ticket in the database up to 1000
tickets in it have highlighted the constant time execution of all process. On an Ubuntu
laptop equipped with an Intel i7-12800H processor and 32 GB of RAM, our Applause

implementation gives an average execution times of 17 ms for a purchase, 68 ms for a
transfer, 25 ms for a refund and 45 ms for a validation, hence emphasising the high
efficiency of all cryptographic operations. On a hand, since Spotlight is constructed
using the same Purchase, Refund and Transfer protocols compared to Applause, the
same execution times are expected which has been empirically confirmed. On the other
hand, since the ticket validation protocol Validate is equipped on an additional proof
generation and verification using Protego, Validate in Spotlight is supposed to be
slower, which is confirmed by our implementation of Spotlight achieving 165 ms for a
single execution of Validate.

Hence, the overhead brought by securing Applause and Spotlight is acceptable.
Moreover, these timings are within the same order of magnitude as 1 Round-Trip Time.
The overhead introduced by securing the protocol appears acceptable at any step of the
process. Finally, the measurement of the shared state update shows that it is negligible,
always lower than 1 millisecond. Therefore, our instantiation is efficient and scalable.
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Figure 4.29: Mean execution times (in milliseconds) of the cryptographic operations
involved in Applause (left) and Spotlight (right) over 200 iterations, depending on
the number of handled tickets.

4.6 Conclusion

We presented Applause, a ticketing system that preserves the physical aspects of paper
tickets while ensuring that any user can buy, refund, validate, or transfer a ticket. The
system additionally safeguards the privacy of users. Applause achieves unforgeability,
no-double-spending and privacy of the tickets. It also preserves anonymity of users,
ensuring that the identity of users remains private but also that any interaction with
the system cannot be linked to a previous interaction as coming from the same user.
The anonymity ensured by Applause highly depends on the anonymity property of
the used payment method that we chosen to include in a generic fashion. We have
additionally extended Applause to obtain an auditable version called Spotlight, in
which at the cost of a slighlty increased execution time overhead during the ticket
validation (around 165 milliseconds instead of 45 milliseconds), an additional third-
party called the judge can reveal the identity of all users attending an event, whereas
other entities are unable to discern whether a user has purchased a ticket and for which
event. Our proof-of-concept of Applause and Spotlight shows a great performance
of our ticketing system, following the order of three-digits milliseconds for a complete
execution of Applause and Spotlight.
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Chapter 5
UC-Secure Distributed File Transfer

Attribute-based encryption (ABE) is a fine-grained access encryption scheme in which a
user securely shares a message to a group of users once, every user of this group being
able to recover the encrypted message while all other users out of this group do not.
Briefly, the formal definition of the aforementioned “group” is realised by associating to
each user an attribute x and by adding an access policy y to the ciphertext, the decryp-
tion procedure failing if the attribute x does not satisfy the access policy y. In ABE, the
attribute x takes the form of a decryption key being computed and sent by a trusted
authority holding a so-called master key pair. ABE has received lot of attention over the
years to construct interesting primitives [AC17, HLWW23]. From a security standpoint,
similarly to standard encryption schemes where indistinguishability holds only if the
decryption key has not been corrupted, in ABE the indistinguishability for a ciphertext
c holds only if the adversary does not have access to an attribute that can decrypt c. In
game-based security, this is prevented by adding a winning condition preventing the ad-
versary to decrypt the challenge ciphertext. Sadly, this mitigation cannot be transposed
directly to the Universally Composable (UC) paradigm. Indeed in UC, traditional ideal
functionalities for encryption aim to replace all plaintexts whose indistinguishability can
be ensured by leakages. This way, the privacy of the message is direct in the sense that
it is never revealed to the adversary. However, in ABE, several decryption keys are dis-
tributed among the users based on their attributes, even during the protocol execution.
Observe that when the adversary has access to a decryption key associated to an at-
tribute of its choice at any time, referred here as the active attribute corruption setting,
a trivial attack to reveal if a ciphertext c encrypts a leakage or a real message arises:
The adversary requires a decryption key whose associated attribute satifies the access
policy of c, leading to the recovery of the underlying message. Hence, no security can
be obtained with the standard ABE definition under active attribute corruption. This
issue has already been noticed by [LW16] in a similar field of Role-Based Access Control
(RBAC), where a user grants an access to some resources based on attributes. Security
of ABE against active attribute corruption has already been achieved, for example by
Camenisch et al. [CDEN12] using ABE equipped of an interactive decryption procedure
between the user owning a ciphertext and a trusted third-party, owning decryption key
for users. On one hand, security against active adversary is achieved, but on the other
hand, protocols using standard ABE have to integrate a more complex ABE primitive to
fit in UC. This replacement is not always desirable, for instance with protocols whose
architecture requirements do not allow an additional third-party to support interactive
decryption, and may prefer standard ABE, even at the cost of a restricted security set-
ting. However, due to the need of additional features, we observe a natural gap where
no ideal functionality for standard ABE has been provided yet.
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Figure 5.1: Representation of our system where a sender shares a file f to a receiver.

Summary of Contribution

Considering standard ABE, we propose the first ideal functionality FABE secure in the
static attribute corruption setting. The protocol execution is divided into two distinct
phases. The first phase, being viewed as a setup phase, consists for the adversary to
instantiate any parties of its choice with the possibility to corrupt them, allowing it to
recover any decryption key associated to an attribute of its choice. During the second
phase, the adversary is still allowed to instantiate parties but corruption of parties
asking for decryption keys is no longer accepted. Then, assuming this constraint and an
IND-CCA2-secure ABE scheme 1, we prove that our real protocol PABE securely realise
our ideal functionality FABE. To increase usability, we have written FABE and PABE using
the iUC framework, having the particularity to rely on the same formalism to express
ideal, real and hybrid protocols. Based on the IITM model [KTR20a], this framework
has been designed to be user-friendly, a welcomed feature to limit the complexity of
reading and writing UC protocols.

To motivate the usability of our ideal functionality FABE, already strengthened by
the easy-to-use iUC framework, we put it in practice to solve an apparently simple
problem consisting of transferring a potentially large file between two or more users while
ensuring integrity, authenticity, confidentiality and efficiency at the same time, which is
particularly interesting for large-scaled companies. With this problem in mind, we have
constructed a protocol allowing a user to share efficiently a potentially large document,
let say, to all users working in a department. Attribute-based encryption is naturally
designed to be used in this setting to provide confidentiality of the transferred files and
hence is part of the protocol. To ensure authenticity and integrity of the transferred file
in our file transfer protocol, our protocol also relies on digital signature. In addition to
all these security properties obtained by the combination of attribute-based encryption
and digital signature, we dedicate our system to be particularly efficient in the case of
large transferred files. To reach this efficiency, our construction has the particularity
to be constructed atop of a distributed storage network, a system composed of many
servers whose general behaviour is similar to a graph. A neat feature, compared to the
single-server setting, is that it faces communication delay and workload issues. Inter-
Planetary File System (IPFS) is a hash-based distributed storage system in which a
server maintains a list of link-file pair (l, f) where l is the link of the file f , computed
with a cryptographic hash function h as l ← h(f). Later on, given the link, the server

1An IND-CCA2-secure scheme can be efficiently derived from any IND-CPA-secure scheme via the
Fujisaki-Okamoto transform [FO13].



CHAPTER 5. UC-SECURE DISTRIBUTED FILE TRANSFER 153

easily recovers and returns the file. We give an overview of our protocol in Figure 5.1,
acting between a sender and a receiver. The sender obtains as an input a (potentially
large) file f as well as some access policy y, and sends the file to every receiver having
an attribute x satisfying y. As depicted in Figure 5.1, during step (1), the sender
computes an encryption of f denoted cy using attribute-based encryption where y is
the access policy, and sends the couple (y, cy) on a storage server of its choice. At step
(2), the storage server responds with a link l computed as the hash of (y, cy). At step
(3), the sender computes σl the signature of l and sends the tuple (l, σl) through a
limited communication medium, restricted to transmit data having length independent
of the message. When the receiver obtains the link l and the associated signature σl,
it obtains a proof of integrity and authenticates the sender simultaneously. At step (4)

and (5), the receiver downloads the couple (y, cy) using the link l, decrypts the result
and checks authenticity of l using σl. This protocol is proved to securely realise our
Authenticated Attribute-based File Transfer ideal functionality FAAFT, but also to be
highly-practical, confirmed by our proof-of-concept fully-written in Rust and available
at [DAF24], sending up to 450 megabytes of data in 474 milliseconds.

Related Work

As explained above, the state-of-the-art for ABE in UC already proposes ideal function-
ality, but is always equipped with an additional property or having a different design
to guarantee security against active adversary. Abe and Ambrona [AA22] introduced
an ideal functionality for ABE where the key generation is replaced by a blind key gen-
eration procedure including a non-interactive zero-knowledge proof. To obtain active
security, Camenisch et al. [CDEN12] propose to rely on a trusted third party owning
the decryption key of users. To decrypt a ciphertext, the ABE protocol is equipped of an
interactive decryption procedure with the third party, which is not able to identify which
ciphertext is being decrypted. These two works need an ABE scheme having either a
blind key generation or interactive decryption procedure, excluding every standard effi-
cient attribute-based encryption scheme such as the Agrawal and Chase scheme [AC17].
To the best of our knowledge, there is no ideal functionality tailored for standard ABE.

We stress that our hybrid protocol PAAFT, putting into application our ideal function-
ality FABE, constitutes a novel improvement in distributed file-transfer literature. Intro-
duced by Garay et al. [GGJR98], distributed file transfer is a highly practical problem
consisting of transmitting a data from a user to other users using several intermediate
servers used for the data transmission. This problem is related to decentralised social
media in which a user publishes content for users with whom it has relations, without
relying on a centralized social medial owner. In both settings, the privacy of transmitted
data is crucial [CMÖ11, CMÖ12] but the social medial setting brings context-oriented
features that are not included in the distributed file transfer setting. For instance,
the Safebook protocol [CMÖ11] allows a user to establish a trust relation with other
users. This trust relation feature, inherent to social medial, is difficult to represent in a
distributed file transfer system designed for a multi-site company.

In [GGJR98], Garay et al. proposes a system based on a verifiable secret sharing,
ensuring both confidentiality by distributing shares among the storage servers, as done
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in the more recent system called SAFE [BDF+20] with critical security and performance
improvements. Due to the nature of secret sharing, confidentiality is only ensured with
several storage servers and need to reconstruct the file. In contrast, by the confidentiality
ensured by ABE, our system is still secure even with a (possibly corrupted) single storage
server. Role-Based Access Control (RBAC) systems, a closely related topic, allows (or
restricts) users to access some resources based on owned attribute. When a user accesses
some content, it has first to be authenticated by an access-granting server. This is the
case for the SESAME protocol [VGV97], a RBAC based itself on Kerberos. The work
of Freudenthal et al. [FPP+02], proposes to check the access permission of users with
multiple trust authorities (e.g., a public key infrastructure). The role-based access for
distributed storage system is presented in [HKN05]. They proposed a fix for the Object
Store Devices specification [Web04] where unrestricted delegation is possible, in which
confidentiality cannot be ensured. The proposed solution elegantly modifies the original
protocol by adding secure channels and signature, to enforce role-based access to the
files, without modifying the specification. All of these papers differ from our contribu-
tion by the introduction of authorities in charge of granting an access to some content.
Our work requires trusted authorities to handle public keys and to provide decryption
keys, but are involved only during the initialisation, no authorisation is required here-
inafter. Introduced by Rizwan Ashgar et al. [AIRC13], ESPOON is a protocol working
as RBAC but in outsourced environment with untrusted entities. Integrity is not en-
sured, whereas our work ensures the integrity and confidentiality of data in addition to
sender authentication. The work of [FFW13] proposes a solution between RBAC and a
storage system. They formally defined a new security definition of RBAC, in the spirit of
encryption indistinguishability. The adversary is asked to guess an encrypted message,
and is assumed to have a full-control on a file system where the encrypted message is
stored. It can also corrupt any user of its choice. To achieve the proposed definition, a
new protocol is introduced relying on attribute-based encryption, as done hereinafter.
Our work adds more features: We ensure data integrity and data authentication (thanks
to hash-based distributed storage and signatures, respectively) in addition to data con-
fidentiality brought by the attribute-based encryption. Universal Composability (UC)
has already been applied on the RBAC, initiated by Halevi et al. [HKN05] proposing
a UC model which requires at every communication a secure channel between the two
parties, even if the entity is corrupted (but in this case, the secret key might be leaked),
a standard assumption in UC. In our work, we have chosen to avoid any particular prop-
erty on communication channels for two reasons. First, secrecy is not always possible
for example with anonymous protocols, or even desirable for example when transferred
data can be read in clear by the adversary. Second, authenticity is traditionally achieved
using digital signature, that can also be used to sign messages in other protocols. In-
troducing an ideal functionality for digital signature is hence more appropriate. Even
if it does not constitute an issue, their UC model is built on the original UC model
of Canetti [Can01] in which session identifier prevents communication between sessions.
In comparison, our protocol is proven under the iUC framework, where every entity is
allowed to communicate with the others without restriction, a useful property for ex-
ample with signature ideal functionality, whose signing key are used in practice across
multiple protocols.
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Chapter Organisation

In Section 5.1, we briefly introduce all the necessary notions and terminology to under-
stand our modelisation. In Section 5.2, we present our ideal functionality FABE and real
protocol PABE along the proof of realisation. In Section 5.3, we present the application
of FABE on the authenticated attribute-based file transfer with our ideal functional-
ity FAAFT along our hybrid protocol PAAFT and our proof-of-concept.

5.1 On the iUC Framework

We provide an overview of the iUC framework. We refer readers interested by the
iUC framework to the original paper [CKKR19]. A party pid involved in a protocol is
traditionally equipped with session identifier sid, and acts in the protocol following a
code specification called a role, and denoted role. The combination of the party identifier,
the session identifier and the role, constitute the triplet (pid, sid, role) and is called an
entity. The existing role is specific to the designed protocol; for example a signature
protocol consists of a role signer to sign messages and a role verifier to verify signed
messages. The notion of entity is at the heart of the iUC framework, sharing similarities
with object-oriented programming. In iUC, a machine denoted Mrole implementing a
role role corresponds to a class, both equipped with internal state used to store data. In
a real protocol, a machine manages a single entity i.e., represents a single party running
in a single protocol execution. Yet, notice that a machine can be naturally extended
to manage arbitrary number of entities, having different roles as well, the internal state
being now used to share data across entities. For example, a signature ideal functionality
benefits from this feature by adding authenticated messages in the internal state. In
iUC, a machine, just like a class, can be instantiated several times, an instantiation
being called an instance. Two important observations are to be made: First, the notion
of entities and machines is sufficient to handle both real and ideal protocols. Second, a
machine is not required to only handle entities sharing the same sid but any entities, a
particularly useful property to handle cross-protocols party such as certificate authority.

The iUC framework provides algorithms to describe behaviour of instances e.g., the
number of accepted entities, the corruption model, the instance and entity initialisation,
and more. When an entity with identity (pid, sid, role) is contacted for the first time,
the identity is submitted to every instance implementing the role role, until one instance
accepts the entity, decided by the CheckID algorithm. If the instance does not have any
accepted entity yet, then she executes the Initialization algorithm to initialise its inter-
nal state shared among all the accepted entities. When omitted, the CheckID accepts
only a single entity, meaning that an instance a single entity. A similar initialisation
function EntityInitialization is proposed to handle the initialisation for a single entity.
Once initialised, an entity executes the Main block containing the code to be executed.
The framework proposes several corruption types. We limit our introduction to the
used corruption types i.e., the uncorruptible type where no entity of the instance can be
corrupted, and static corruption type where an entity can be corrupted only after the
entity Initialization, and before to perform any action. We say that an entity “is deter-
mining its initial corruption status” when entity runs, after the initialisation and before
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the main function, the DetermineCorrStatus function deciding if the entity is considered
corrupted at the begins of the protocol. Once corrupted, the LeakedData specified what
information has to be returned once corrupted, whereas AllowAdvMessage may prevents
the adversary to send message to subroutines (of the same party), especially useful to
model trusted execution environment. One may also prevent any corruption, for ex-
ample for random oracle or certificate authorities, by programming the AllowCorruption
algorithm to always return false. The code defined in Main is executed by uncorrupted
entities. Each role is associated with either a public or a private visibility. A public role
is accessible to the environment, whereas a private role is limited to entities inside the
protocol. An entity accepts requests coming from the environment via the input-output
interface I/O, but also requests coming from the adversary via the network interface
NET, possibly modelling interactions of an ideal functionality with the simulator. When
needed, an entity may also accept requests from more specific entities.

The iUC framework supports the notion of responsive environment, restricting the
adversary to respond to a given request, before performing any interaction with the
protocol. This feature prevents many attacks that are only conceptual. For example,
suppose a signature ideal functionality Fsig, performing an initialisation request to the
adversary to obtain signature and verification algorithms. Without response from the
adversary, the ideal functionality is not initialised and hence the algorithms remains
undefined, causing errors that the protocol designer has to care about. We stress that
such errors are only conceptual and does not lead to practical attack on the protocol.
Now, let perform the same initialisation request responsively. Then, the adversary is
forced to respond as expected, preventing executions of undefined algorithms.

The current running entity (pidcur, sidcur, rolecur) is denoted entitycur. A higher-protocol
calling entity (pidcall, sidcall, rolecall) is denoted entitycall. An instance has access to the set
of managed entities that has been corrupted, denoted by CorruptionSet. An entity has
to be considered if a subroutine has been corrupted, the corruption of an entity being
verified by the corri algorithm returning true if the entity provided as an input has
been corrupted, false otherwise. By alg(p) we denote the execution of an algorithm alg
whose execution time is bounded by the polynomial p.

Concurrent Composition Theorem. The composition theorem in the iUC frame-
work needs a notion of polynomial run-time, that has been shown to be non-trivial in
UC [HMU05]. Compared to other UC frameworks, the iUC framework, based on the
IITM framework [KTR20a], provides a simpler notion of polynomial run-time execution.
Let P be a protocol, a be the input and λ be the security parameter. We said that P is
environmentally bounded if for every environment E , the protocol E|P has an execution
time bounded by the polynomial p(λ, |a|). Similarly, an environment E is universally
bounded if for every protocol P, the run-time execution of the system E|P is bounded
by p(λ, |a|). We recall in Theorem 14 the concurrent composition theorem of the iUC
framework. We recall the few notions required by the theorem: Let P and Q be two
protocols. We said that P is complete if every subroutine role is part of P. We denote
by Comb(Q,P) the set of all protocols obtained by combining Q and P.
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Theorem 14 (Concurrent Composition Theorem [CKKR19]). Let P and F be two pro-
tocols such that P ≤ F . Let Q be another protocol such that Q and F are connectable.
Let R ∈ Comb(Q,P) and let I ∈ Comb(Q,F) such that R and I have the same sets of
public roles. If R is environmentally bounded and complete, then R ≤ I.

5.2 Standard Attribute-based Encryption Realisation

Attribute-based Encryption allows to broadcast a message to all users, where only users
having the read access with respect to an access policy associated to the message are
able to read the message. We say that a user has a read access when it is associated to
some attribute, say x, respecting the policy of the message, say y. This statement is rep-
resented by x ∈ y. Let recall the ABE definition introduced in Definition 12 at page 29.
A standard ABE scheme is defined by four algorithms, namely Setup,Enc,KeyGen and
Dec. The Setup algorithm takes as an input the unary representation of the security
parameter λ and it outputs a master key pair (msk ,mpk). The encryption algorithm
Enc expects as an input the master public key mpk , the access policy y and a message
m, and it outputs the ciphertext cy. To decrypt a message, one may previously ask to
the authority owning the master key pair a decryption key denoted skx associated to
some attribute x. This decryption key generation is handled by the KeyGen algorithm
taking as input the master secret key msk as well as the attribute x and outputs the
decryption key skx. This decryption key skx along a ciphertext cx are provided to the
decryption algorithm Dec, returning either the underlying plaintext m if and only if
x ∈ y, or ⊥ otherwise. An ABE scheme is said correct if for every master key pair
(msk ,mpk)← Setup(1λ), every ciphertext cy ← Enc(mpk , y,m) for any message m and
access policy y, every decryption key skx ← KeyGen(msk , x) for any attribute x with
x ∈ y, we have Pr [Dec(skx, cy) = m] = 1 − ϵ for some negligible probability ϵ. In this
work, we require an IND-CCA2-secure ABE which informally states that it must be
infeasible to tell if a ciphertext cy encrypts either the message m0 or m1 as long as no
corrupted user has a secret key skx allowing to decrypt cy. The security experiment is
presented in Figure 2.3 at page 30.

Standard Attribute-Based Encryption Ideal Functionality

The ideal functionality FABE, presented in Figure 5.2, proposes an instance managing
several encryptors and decryptors as well as a single setup entity designated by the
setup role. This setup entity, as its name suggests, deals with the setup algorithm
and hence owns the master key pair, which has to remain private. Observe that using
hierarchical session identifier property of iUC, an entity in FABE is supposed to have
a session identifier sid of the form (pid′, sid′) with pid′ the party identifier of the setup
entity.

During the initialisation, the ideal functionality sends a responsive request via the
NET interface to the simulator in order to obtain the master public key mpk as well
as the encryption and decryption algorithms. In addition to this request, the ideal
functionality parses the session identifier of the entity being accepted by the instance
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Ideal functionality FABE = (setup, encryptor, decryptor):
Participating roles: setup, encryptor, decryptor
Corruption model: static corruption
Protocol parameters:

• A polynomial p ∈ Z[x] used to bound the runtime execution of provided algorithms.
• A deterministic length-preserving leakage function L used to compute leakages.
• A time T ∈ N delimiting phase in which decryption keys are provided, from the phase

where encryption and decryption are operated. We denote by t ∈ N the current time.
Msetup,encryptor,decryptor:

Implemented role(s): setup, encryptor, decryptor
Internal state:

• msgList ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ {Set of encrypted messages
• keys ⊂ ({0, 1}∗)3 7→ {0, 1}∗ × {0, 1}∗
• (mpk ,Enc,Dec) ∈ ({0, 1}∗ ∪ ⊥)3 = (⊥,⊥,⊥)
• pidsetup ∈ {0, 1}∗ ∪ {⊥} = ⊥
• corrAttr ⊆ {0, 1}∗ = ∅

CheckID(pid, sid, role): Check that sid = (pid′, sid′), then accept every entity with the same SID,

otherwise reject.

Corruption behavior:
• AllowCorruption(pid, sid, role): Returns false if role = setup or role =

decryptor and T < t, otherwise returns true.
Initialization:

send responsively InitABE to NET

wait for (Init, (mpk’,Enc,Dec))
(mpk ,Enc,Dec)← mpk’,Enc,Dec
parse sidcur as (pid, sid)
pidsetup← pid

Main:
recv (InitAttr, x) from I/O to (_,_, decryptor) s.t. keys[entitycall] ̸= ⊥ :

send responsively (InitReceiver, x) to NET

wait for (Init, skx)
for (m, y, cy) ∈ msgList:
m′ ← Dec(p)(skx, cy)
if (x ∈ y ∧m′ ̸= L(λ,m)) ∨ (x /∈ y ∧m′ ̸= ⊥):

send (Registered, x, 0) to NET {Decryption correctness failure
keys[entitycall]← (x, skx)
send (Registered, x, 1) to NET

recv (CorrAttr, x) from NET s.t. t ≤ T :
add x to corrAttr

recv PubKey? from _ to (pidsetup,_, setup) :
reply (PubKey,mpk)

recv (Encrypt, y,m,mpk’) from I/O to (_,_, encryptor) s.t. T < t :
if mpk ̸= mpk’ ∨ ∃x ∈ corrAttr s.t. x ∈ y:
cy ← Enc(p)(mpk’, y,m)
reply (Ciphertext, cy)

m′ ← L(λ,m)
cy ← Enc(p)(mpk’, y,m′)
for (_, (x, skx)) ∈ keys:

if (x ∈ y ∧ Dec(p)(skx, cy) ̸= m′) ∨ (x /∈ y ∧ Dec(p)(skx, cy) ̸= ⊥):
reply (Ciphertext, ⊥) {Encrytion correctness failure

add (m, y, cy) to msgList
reply (Ciphertext, cy)

recv (Decrypt, cy) from I/O to (_,_, decryptor) s.t. T < t ∧ keys[entitycur] ̸= ⊥ :
(x, skx)← keys[entitycur]
if ∄(_,_, cy) ∈ msgList: reply (Plaintext,Dec(p)(skx, cy))
if ∃m,m′ s.t. (m,_, cy), (m′,_, cy) ∈ msgList ∧m ̸= m′: reply (Plaintext,⊥)
get(m, y, cy) from msgList
if x /∈ y: reply (Plaintext,⊥) {Incompatible policy-access
reply (Plaintext,m)

Figure 5.2: Description of our ideal functionality FABE.
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in order to recover the party identifier pidsetup of the setup entity. Note that the setup
entity cannot be corrupted, thanks to the AllowCorruption definition.

Recall that when encrypting a message, the set of corrupted attributes is required
to be static i.e., the environment is not allowed to dynamically obtain decryption key,
otherwise is able to trivial distinguish by looking for a ciphertext encrypting a leakage,
so being impossible to prove secure as shown in [LW16]. Many scenarios are possible to
obtain static corruption of attributes. We have chosen to divide the time in two distinct
phases separated by a time T ∈ N. The first phase happens when t ≤ T and must be
seen as a setup phase, in which the environment is allowed to instantiate entities includ-
ing encryptors and decryptors. Our ideal functionality allows static corruption meaning
that the environment is allowed to corrupt an entity directly after its initialization only.
The corruption of a decryptor allows the environment, on the behalf of the corrupted
decryptor, to obtain a decryption key associated to the attribute of its choice. The
corruption of an attribute is formalised in the ideal functionality using the CorrAttr

request sent by the simulator via the NET interface. This notification sent by the sim-
ulator allows the ideal functionality to update the set of corrupted attributes corrAttr
later used to distinguish ciphertext in which the ciphertext can be decrypted by the
environment from ciphertext that does not. During the second phase, when t > T , the
environment is no more allowed to corrupt a decryptor but also to obtain a decryption
key using a previously corrupted decryptor.

During the second phase, the encryptor handles Encrypt requests used to encrypt a
message, sent via the I/O interface. It expects as an input a message m to be encrypted,
an access policy y as well as the master public key denoted mpk ′ that can be accessed
by the environment via the PublicKey? instruction. The security of the ABE ideal
functionality states that for a given valid master public key mpk , a message m and
an access policy y, if mpk is the valid master public key and if there is no corrupted
attribute x such that x ∈ y, then it must be infeasible to distinguish the real message m
encrypted in the real protocol and the encryption of the leakage L(λ,m) where L is the
length-preserving deterministic leakage function. In other words, if the provided master
public key is not the provided master public key or if the environment has a decryption
key allowing to decrypt the ciphertext encrypting m, then the indistinguishability of the
ciphertext cannot be guaranteed. This mentioned leakage function is given as a protocol
parameter, and can be instantiated by a higher-protocol if required. It is clear that a
winning adversary against the indistinguishability property of the ABE scheme can be
used to construct a distinguisher against FABE and a real ABE protocol. In case where
the ciphertext encrypts a leakage, the ciphertext and the associated message are stored
in the internal state of the instance, later used for the decryption.

Still during the second phase, entities having the decryptor role are allowed to re-
ceive decryption request from the environment via the I/O interface. The ciphertext
decryption function expects as an input a ciphertext cy. The procedure is only exe-
cuted under two conditions: The function should be executed during the second phase
and when the decryptor entity has been registered, meaning that the decryptor has a
decryption key skx associated to some attribute x provided by the environment via the
InitAttr request. Observe that this InitAttr function is not limited to be used only
during the setup phase where t ≤ T but can be used at any time. Indeed, since the ideal
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functionality supports static corruption and since the Main block of the ideal function-
ality is executed only by honest entities, then by construction a decryptor running the
InitAttr function is necessary honest as well.

In case where the received ciphertext is stored in the internal state, along the asso-
ciated plaintext then the plaintext is directly returned as a response. If the ciphertext
is not stored in the internal state, then the ciphertext has been computed outside of
the ideal functionality and hence no security can be proven. So we decrypt cy using the
provided decryption algorithm Dec and return the output as the plaintext response.

Standard Attribute-Based Encryption Protocol

Our attribute-based encryption protocol PABE, presented in Figure 5.3, is composed of
three distinct instances, one used to manage a single setup, one used to manage a single
encryptor and one used to manage a single decryptor. This stands in contrast with the
ideal functionality whose single instance manages at the same time the setup party as
well as all encryptors and decryptors related to this setup party (thanks to the entity
acceptation mechanism rejecting entities having a distinct session identifier).

In the real protocol, the setup entity generates the master key pair (msk ,mpk)

and handles master public key access and decryption registration requests, returning
respectively the master public key mpk and a freshly generated decryption key skx

associated to an attribute x. Observe in Figure 5.3 that the registration requests are
only accepted if the initiator of the request is a decryptor which makes sense since a
decryption key is used only by a decryptor. Since a decryptor is allowed to have a
single decryption key, we reject registration request if the decryptor having initiated the
request has already obtained a decryption key. In the real protocol, the setup entity is
made incorruptible thanks to the AllowCorruption specification.

An encryptor in the real protocol handles plaintext encryption request from the
environment via the I/O interface, only during the second phase when T < t. It runs
the encryption algorithm inputted with the master public key mpk , the plaintext m and
the access policy y provided by the environment and returns the resulting ciphertext as
a response. The decryptor in the real protocol handles attribute initialisation request
InitAttr, obtaining as an input an attribute x that is sent to the setup entity for
registration. If the key generation succeeds then it updates its internal state (only
accessible by the current decryptor) with the received decryption key skx. Observe
that this code is only executed by honest decryptors. Corrupted decryptors are allowed
to send a registration request (and hence to get a decryption key) only during the
first phase, thanks to the AllowAdvMessage blocking registration requests sent by the
environment in the behalf of the corrupted decryptor during the second phase. In
addition to the initialisation request, a decryptor handles the ciphertext decryption
running the decryption algorithm on the previously obtained decryption key skx and
the provided ciphertext cy, before to return the obtained plaintext.

Theorem 15. Assuming the existence of a perfectly-correct and IND-CCA2-secure
attribute-based encryption Π = (Setup,Enc,KeyGen,Dec), then PABE ≤ FABE.
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Protocol PABE = (setup, encryptor, decryptor):
Participating roles: setup, encryptor, decryptor
Corruption model: static corruption
Protocol parameters:

• An IND-CCA2 attribute-based encryption scheme Π = (Setup,KeyGen,Enc,Dec)
• A time T ∈ N from which corruption and decryption keys are not allowed. We denote

by t ∈ N the current time.
Msetup:

Implemented role(s): setup
Internal state:

• mpk ∈ {0, 1}∗ ∪ {⊥} = ⊥
• msk ∈ {0, 1}∗ ∪ {⊥} = ⊥
• pidsetup ∈ {0, 1}∗ ∪ {⊥} = ⊥
• keys : ({0, 1}∗)3 → {0, 1}∗

CheckID(pid, sid, role): Check that sid = (pid′, sid′). Accept a single entity.

Corruption behavior:
• AllowCorruption(pid, sid, role): return false

Initialization:
(msk ,mpk)← Setup(1λ)
parse sidcur as (pid, sid)
pidsetup← pid

Main:
recv PubKey? from _ to (pidsetup,_, setup) :

reply (PubKey,mpk)

recv (Register, x) from (_,_, decryptor) to (pidsetup,_, setup) :
if keys[entitycall] ̸= ⊥: reply (Registered,⊥)
skx ← KeyGen(msk , x)
keys[entitycall]← skx

reply (Registered, skx)

Mencryptor:
Implemented role(s): encryptor
CheckID(pid, sid, role): Check that sid = (pid′, sid′). Accept a single entity.

Corruption behavior:
• AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): Check that (pid =

pidrecv). Otherwise, returns rolerecv ̸= setup or m does not start with Register.
Main:

recv (Encrypt, y,m,mpk) from I/O s.t. T < t :
cy ← Enc(mpk, y,m)
reply (Ciphertext, cy)

Mdecryptor:
Implemented role(s): decryptor
Internal state: (x, skx) ∈ {0, 1}∗ × {0, 1}∗ = (⊥,⊥) {Decryption key
CheckID(pid, sid, role): Check that sid = (pid′, sid′). Accept a single entity.

Corruption behavior:
• AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): If rolerecv = setup

and m starts with Register and T < t, outputs false. Otherwise, outputs pid =

pidrecv.
Main:

recv (InitAttr, x) from I/O s.t. skx = ⊥ :
parse sidcur as (pid, sid)
send (Register, x) to (pid, sidcur, setup)
wait for (Registered, sk ′

x)
if sk ′

x ̸= ⊥: skx ← sk ′
x

recv (Decrypt, cy) from I/O s.t. T < t ∧ skx ̸= ⊥ :
m← Dec(skx, cy)
reply (Plaintext,m)

Figure 5.3: Description of the protocol PABE.
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Proof. Suppose a perfectly-correct IND-CCA2-secure attribute-based encryption Π. We
start by giving the description of our simulator S, used with our ideal functionality FABE

in order to show that PABE ≤ FABE. The simulator S starts the simulation by generating
a new master key pair (msk ,mpk)← Π.Setup(1λ), and it sends the Initialization request
(mpk ,Π.Enc,Π.Dec) to FABE. When a request of the form (InitReceiver, x) is sent
from FABE to S, a honest decryptor is initialised and hence the simulator generates the
decryption key skx ← Π.KeyGen(msk , x) and responds with skx. A notification of the
form (Registered, x, b) is then received from the ideal functionality. If the bit b equals 1,
then S registers than this decryptor has claimed the attribute x, otherwise it ignores the
notification. Recall that we under static corruption, the adversary is allowed to corrupt
only an entity directly after its initialisation and only at this point of the entity lifetime.
In details, the static corruption is initiated by the entity, asking to the environment
E its initial corruption status. We now specify the behaviour of our simulator acting
differently depending on the current time t ∈ N with respect to the time T ∈ N:

• Case t ≤ T : In case where the adversary corrupts (directly after the initialisation) a
decryptor and asks in the decryptor’s name to obtain a decryption key to the setup
entity using a request of the form (Register, x) in the simulated real protocol,
then the simulator executes honestly the decryption key generation code, but also
notifies the ideal functionality of the corruption of x with the CorrAttr request.

• Case T < t: By construction of our real protocol, every Register request is
blocked and hence no more decryption key is provided to the environment.

Since we assume static corruption, every corruption request sent by the environment
to initialise entities is blocked by the simulator, preventing dynamic corruption (under
which no security can be proven). To be more clear, we suppose without loss of security
that E always use the valid master public encryption key to an encryptor, since it does
not provide any advantage for E to break the security of Π.
Game 0. this game corresponds to the execution of the ideal protocol S|FABE with the
environment E .
Game 1. In this game, we replace S|FABE with S ′|FFwd where S ′ simulating S|FABE

and where FFwd is a forwarding IITM, transferring every request from S ′ to E and E
to S ′. Requests coming from the network interface of S ′ are directly transferred to S.
Since we do not have perform any modification, we have perfect indistinguishability:
Pr

[
(E|S|FABE)(1

λ)→ 1
]
= Pr

[
(E|S ′|FFwd)(1

λ)→ 1
]
. For more clarity, we index all the

simulators by the index of the current game, hence S ′ is referred as S ′1.
Game 2. Observe that by the perfect correctness of the attribute-based encryption,
the correctness issues occurring during both the register procedure (ensuring valid gen-
eration of decryption keys) and during encryption cannot occurs. Hence in this game,
we modify S ′1 to construct S ′2 in which we remove these correctness validation proce-
dures in this game without impacting the view of E . Hence, Pr

[
(E|S ′1|FFwd)(1

λ)→ 1
]
=

Pr
[
(E|S ′2|FFwd)(1

λ)→ 1
]
.

Game i ∈ J3, n + 3K. In this game, we focus on the i-th encryption request sent to
the simulator S ′i. In this game, we replace the encryption of the leakage L(λ,mi) by
the encryption of the message mi. Suppose that E is able to distinguish with a non-
negligible probability between (E|S ′i|FFwd)(1

λ) and (E|S ′i−1|FFwd)(1
λ). We construct

an adversary A = (A1,A2) against the security of Π, simulating E and whose role is
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create a perfect simulation of S ′i|FFwd without having access to the master secret key
msk owned by the challenger of the IND-CCA2 game. In details, A1 is running before
obtaining the challenge ciphertext, and A2 continues the run of the simulation of E after
that the challenge ciphertext was obtained. The adversary A1 obtains as the input
the encryption key mpk , and has access to the key generation oracle OKeyGen and the
decryption oracle ODec. The adversary A1 works as follows:

• When receiving a PublicKey? request, it responds (PublicKey,mpk).
• When receiving a InitAttr request, it simulates a Register request with the

same provided parameters, described below.
• When E sends a key generation request of the form (Register, x) from a decryptor

entity: If there is no record (entity,_,_) yet, then it calls the OKeyGen oracle to
generate a secret decryption key skx associated to the provided attribute x, it
registers (entity, skx, x) and returns skx. Otherwise, it returns an error.

• When E sends a request of the form (Encrypt,mpk , yj ,mj) for some j < i, then
A1 computes cj ← Enc(mpk , yj ,mj) and responds with (Ciphertext, cj). When
j = i, then A1 computes the leakage m̄j ← L(λ,mj) where L is a length-preserving
leakage function, and encodes its all internal state in the st variable, and sends to
the challenger the challenge response ((yj ,mj , m̄j), st).

• When E sends a decryption request of the form (Dec, cj) from entity for j < i,
it checks that the entity has already asked for decryption key skx by checking if
there is a record (entity, skx, x). If there is no match, aborts with (Plaintext,⊥).
Otherwise, computes mj ← Π.Dec(skx, cj) and returns (Plaintext,mj).

We now describe our second adversary A2 taking as an input the challenge ciphertext
ci and the state st constructed by A1 used to continue the simulation of E . The adversary
A2 works as follows:

• The adversary A2 begins its simulation by sending the ciphertext ci to E , that is
supposed to encrypt either mi or m̄i. Observe that when mi is encrypted, then A
is simulating (E|S ′i) or (E|S ′i−1) otherwise.

• The InitAttr and Register requests are the same as defined for A1.
• When E sends a request of the form (Encrypt,mpk , yj ,mj) for some j > i, then it

computes cj ← Enc(mpk , yj , L(λ,mj)) and records (cj , y,m) and finally responds
with (Ciphertext, cj).

• When E sends a decryption request of the form (Dec, cj) from entity for j > i:
If there is no record (entity, skx, x) or no record (cj , y,mj) then it responds with
a failure. The case where there is several records for the same ciphertext is not
considered since prevented by the attribute-based encryption scheme Π. If x ∈ y,
then it responds with (Plaintext,m), otherwise it responds with (Plaintext,⊥).

• When E stops the simulation, A2 outputs 1 if E outputs 1. Otherwise, A2 outputs
0.

It is clear that our adversary A is polynomial-time. Since E is universally bounded,
hence A constitutes a valid adversary for our IND-CCA2 experiment. Hence, we have:
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AdvIND-CCA2
A,Π =

∣∣∣∣12 · Pr [b′ = 0|b = 0] +
1

2
· Pr [b′ = 1|b = 1]− 1

2

∣∣∣∣
=

∣∣∣∣12 · (Pr [b′ = 0|b = 0]− Pr [b′ = 1|b = 0])

∣∣∣∣
=

1

2
·
∣∣Pr [(E|S ′i|FFwd)(λ)→ 1]− Pr

[
(E|S ′i−1|FFwd)(λ)→ 0

]∣∣
Therefore, E|S ′3|FFwd and and E|S ′n+3|FFwd are indistinguishable:

∣∣Pr [(E|S ′3|FFwd)(λ)→ 1]− Pr
[
(E|S ′n+3|FFwd)(λ)→ 0

]∣∣
≤ n ·

n+3∑
i=3

∣∣Pr [(E|S ′i|FFwd)(λ)→ 1]− Pr
[
(E|S ′i−1|FFwd)(λ)→ 0

]∣∣
≤ 2n · AdvIND-CCA2

A,Π

Game n + 4. Observe that at this point, every ciphertext is encrypting the real message.
Hence, instead of performing a plaintext recovery from the internal state of our simulator,
our modified simulator S ′n+4 ignores the ciphertext register and directly performs the de-
cryption. As a consequence, we do not perform the attribute validation check x ∈ y, that
we remove from the (simulated) ideal functionality FABE. By correctness of the attribute-
based encryption, we have Pr

[
(E|S ′n+3|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S ′n+4|FFwd)(1

λ)→ 1
]
.

Game n + 5. This game works exactly as the previous game except that we do not
share the master public key in the simulated FABE. Instead, the simulated FABE asks
the simulator S ′n+5 to obtain the master public key and is returned back to the en-
vironment. Since the master public key initially stored in the simulated FABE is al-
ready the master public key generated by the simulator, then the view of E is not
changed. Similarly, the encryption and the decryption procedures done in the simulated
ideal functionality FABE are delegated to the simulators, forwarding for instance the
request (Encrypt, y,m,mpk) to the same encryptor in the simulated PABE. We follow
the same approach for decryption requests. The response produced by the encryptor
or the decryptor in the simulated protocol PABE is returned back to the simulated ideal
functionality FABE, forwarding the response to the environment E . Finally, since the
simulated FABE does note use its internal state anymore, we remove it. Observe that
all these modifications does not affect the view of E since the simulated ideal func-
tionality FABE was not performing any check or internal state access. Hence, we have
Pr

[
(E|S ′n+4|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S ′n+5|FFwd)(1

λ)→ 1
]
.

At this point, our simulator S ′n+5 constitutes the most interesting part of the pro-
tocol, encrypting, decrypting and generating keys for entities, without performing any
attribute validation (as done in our original FABE i.e., x ∈ y), and does not consider any
internal state between the simulated entities. In other words, S ′n+5 is our real proto-
col PABE. Even more, the simulated ideal functionality FABE is now limited to forward
the machine. As result, our simulator S ′n+5 is now connected to the environment via
the intermediate of two forwards machines. By removing these two forward machines
FFwd from S ′|FFwd|FFwd and connect all wires from the environment via the I/O inter-
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face directly to S ′n+5, all these modifications being structural, we are ensured to have
a perfect indistinguishability. Since all parties are simulated by FABE and each party
follows the instruction of the real protocol PABE without having access to any shared
register between entities, we have (E|S ′n+5) = (E|PABE). By our sequence of games, we
have shown that (Enc|S|FABE) ≡ (Enc|PABE), thus PABE ≤ FABE. Since the protocol is
environmentally bounded and complete, then the Theorem 15 holds.

5.3 Authenticated Attribute-based File Transfer

5.3.1 Description of our Ideal Functionality FAAFT

Our authenticated attribute-based file transfer ideal functionality FAAFT depicted in
Figure 5.4, has been designed to allow a higher-protocol to easily rely on authenticated
attribute-based file transfer. Each entity managed by the instance of FAAFT is associated
with one of two following roles: A role sender representing an entity sending a file
and a role receiver receiving a file. The ideal functionality maintains three distinct
internal states attr, sentFiles and receivedFiles used respectively to remember inputted
and corrupted attributes, to authenticate files sent by honest senders and finally to store
valid received files, eventually shared with the environment via the Collect request.

A sender handles only Send requests coming from the I/O interface, expecting as a
parameter the input data file f as well as the access policy y. A short tag r is uniformly
sampled from {0, 1}λ and stored along the file f and the access policy y into the sentFiles
internal states, shared between all entities (sharing the same session identifier). This
set consists of all authenticated files. To send the file, the ideal functionality shares
the file to the simulator S using one of two manners depending on the corruption of
attributes: If the environment has an attribute x ∈ y then confidentiality of the file f
cannot be ensured, hence shared with S. On the other hand, if the environment does
not have an attribute x ∈ y, the file is not shared with the simulator S. It models
confidentiality in the sense that it remains safely in the ideal functionality, following the
standard encryption in UC such as [KTR20b] producing ciphertext encrypting a leakage
instead of the real plaintext. In contrast with the Send request handling requests from
the higher-protocol, the file reception modelled by the Receive request is received from
the NET interface i.e., from the simulator. This is motivated by the real-life mail system
in which the server receives files from the network, awaiting the user to connect in order
to collect messages. It is up to the simulator to correctly simulates the protocol and
notifies the ideal functionality if a receiver receives a file. Observe that the code for
Receive ensures, in case of honest sender, authentication and file access depending on
the attribute x owned by the current receiver by checking if x ∈ y. If the sender is
corrupted, then authentication and file access is delegated to the simulator.

Observe that the Send and CorrAttr functions are accessible only if the current
time t ∈ N is strictly greater than a constant time T ∈ N defined as a parameter of
the protocol, a crucial restriction to include the ABE ideal functionality in our hybrid
protocol. This restriction leads us to separate the time in two distinct phases. During the
first phase, we allow the environment to instantiate any entities but also to statically
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Ideal functionality FAAFT = (sender, receiver):
Participating roles: sender, receiver
Corruption model: static corruption
Protocol parameters:

• A time T ∈ N delimiting phase in which file sending is not accessible. We denote by
t ∈ N the current time.

Msender,receiver:
CheckID(pid, sid, role): Accept all entities with the same SID.

Corruption behavior:
• AllowCorruption(pid, sid, role): Returns role ̸= decryptor or t < T .

Internal state:
• attr ⊆ ({0, 1}∗)3 × {0, 1}∗ × {0, 1} = ∅
• sentFiles ⊆ ({0, 1}∗)3 × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ = ∅
• receivedFiles ⊆ ({0, 1}∗)3 × {0, 1}∗ = ∅

Main:
recv (InitAttr, x) from I/O to (_,_, receiver) s.t. ∄(entitycur, ·, ·) ∈ attr :

add (entitycur, x, 0) to attr
send (Registered, x) to NET

recv (CorrAttr, receiver, x) from NET s.t. t ≤ T :
get (receiver, x, b) from attr
b← 1

recv (Send, f, y) from I/O to (_,_, sender) s.t. T < t :
r

$← {0, 1}λ
add (entitycur, y, r, f) to sentFiles
if ∃ (·, x, 1) s.t. x ∈ y:

send (SendCorrupted, y, r, f) to NET

else:
send (SendHonest, y, r, |f |) to NET

recv (Receive, y, r, sender) from NET to (_,_, receiver) :
if ∄ (sender, ·, r, ·) ∈ sentFiles:

send responsively (WaitFile, y, r, sender) to NET

wait for (ProvideFile, b, f)
if b = 1:

add (entitycur, f) to receivedFiles
else:

get (sender, y, r, f) from sentFiles
if attr[entitycur] ∈ y:

add (entitycur, f)

recv Collect from I/O to (_,_, receiver) :
reply F = {f : (entitycur, f) ∈ receivedFiles}

Figure 5.4: Description of our ideal functionality FAAFT.

corrupt any entity of its choice, including receivers and hence to obtain attributes.
During the second phase, we prevent the environment to corrupt a receiver, and allow
the environment to send a file.

5.3.2 Our Hybrid Protocol PAAFT

Depicted in Figure 5.5, our protocol PAAFT is proved to realise our ideal functional-
ity FAAFT. Our protocol relies at the same time on the real subroutine IPFS (being part
of our contribution) but also on idealised subroutines including a certificate authority,
the random oracle, digital signatures. Observe that following the UC terminology, since
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our protocol PAAFT is built above real and idealised subroutines, PAAFT is said hybrid.
We first present all these subroutines before introducing our hybrid protocol PAAFT.

storagePIPFS FABE setup encryptor decryptor Fsig-CA signer verifier

randomOracleFRO retrievalregistrationFCA

sender receiverPAAFT

Subroutines of Sender
Subroutines of Receiver
Subroutines of subroutines

Figure 5.5: Graphical representation of our protocol PAAFT. The random oracle ideal
functionality FRO comes from [KTR20b], whereas the ideal functionalities for digital
signature Fsig-CA and certificate authority FCA comes from [CKKR19]. The link between
roles A and B means that A depends on B, and must be read from top to bottom.

Certificate Authority Ideal Functionality

The Certificate Authority (CA) allows to register public keys and certifying that a given
public key corresponds to some user. The modelisation of FCA presented in Figure 5.6
is taken from [CKKR19], consisting of two roles registration and retrieval . The
registration role allows a calling entity to register a public key pk . The registration
is modelled using the internal state of the (unique) instance associating the public key
pk to the identification pair (pid, sid). Later, the public key is returned thanks the
retrieval returning the public key pk associated to the provided identification pair
(pid, sid). This ideal functionality enforces that the unique instance of FCA cannot be
corrupted by the adversary which is standard hypothesis in numerous protocols.

Ideal functionality FCA = (registration, retrieval):
Participating roles: registration, retrieval
Corruption model: incorruptible

Mregistration,retrieval:
Implemented role(s): {registration, retrieval}
Internal state:

• keys : ({0, 1}∗)2 → {0, 1}∗ ∪ {⊥}
CheckID(pid, sid, role): Accept all entities.

Main:
recv (RegisterKey, key) from I/O to (_,_, registration) :

if keys[pidcall, sidcall] ̸= ⊥:
reply (RegisteredKey, false)

else:
keys[pidcall, sidcall]← key
reply (RegisteredKey, true)

recv (RetrieveKey, (pid, sid)) from _ to (_,_, retrieval) :
reply (RetrievedKey, keys[pid, sid])

Figure 5.6: Ideal functionality FCA [CKKR19].
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Random Oracle Ideal Functionality

The ideal functionality FRO introduced in [KTR20b] and presented in Figure 5.7 exposes
a single role denoted randomOracle. This ideal functionality handles Hash requests
which given an arbitrary-sized bitstring m, associates a λ-sized random bitstring h. In
particular, if m was never queried before, then FRO generates a random bitstring h,
stores the couple (m,h) and returns h. Otherwise (m has already been queried), and
thus FRO returns the h associated to m. Similarly to FCA, we assume that the ideal
functionality FRO manages all entities, meaning that there is a single instance of FRO in
the protocol.

Ideal functionality FRO = (randomOracle):
Participating roles: randomOracle
Corruption model: incorruptible

MrandomOracle:
Implemented role(s): randomOracle
Internal state:

• H ⊆ {0, 1}∗ × {0, 1}λ = ∅
CheckID(pid, sid, role): Accept all entities.

Main:
recv (Hash,m) from _ :

if ∃(m,h) ∈ H:
reply (Hashed, h)

else:
h

$← {0, 1}λ
add (m,h) to H
reply (Hashed, h)

Figure 5.7: Ideal functionality FRO [KTR20b].

Inter-Planetary File System Protocol

An Inter-Planetary File System (IPFS) network consists of connected servers. Every
server in the network maintains an internal state associating to a file f a link l where l is
the hash of f computed using the cryptographic hash function. IPFS plays a central role
in the efficiency of our construction by allowing a potentially large data to be transferred
over a distributed storage network rather than to be sent between each user directly.
We have modelled a single storage server in iUC as a real protocol denoted PIPFS and
depicted in Figure 5.8. A storage server having the role storage, relies on the random
oracle FRO used to hash files. It is equipped of the three following functions: Upload

used to store files, Links returning all saved links, and Download which given a link l

returns the file f associated with l. A storage server is not intended to provide more
than the efficiency in our construction. Hence it can be dynamically corrupted without
erasure i.e., corruption occurs at any time, leaving the full control of the corrupted
server to the adversary, all its internal state being leaked.

Digital Signature Ideal Functionality

The ideal functionality for digital signature Fsig-CA, introduced in [CKKR19] and recalled
in Figure 5.9, is composed of the two roles signer and verifier, allowing respectively
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Protocol PIPFS = (storage):
Participating roles: storage
Corruption model: dynamic corruption without erasure

Mstorage:
Subroutines: FRO : randomOracle
Implemented role(s): storage
Internal state:

• files : {0, 1}∗ → {0, 1}∗ = ∅ {Stored files
CheckID(pid, sid, role): Accept a single entity.

Main:
recv (Upload, f) from _ :

send (Hash, f) to (pidcur, sidcur,FRO : randomOracle)
wait for (Hashed, l)
files[l]← f
reply (Uploaded, l)

recv Links from _ :
reply {l : ∀l 7→ f ∈ files}

recv (Download, l) from _ :
reply (Downloaded, files[l])

Figure 5.8: Protocol PIPFS for a storage server in the IPFS network.

to create a signature of a given message and to verify a signature. During the instance
initialisation, the party identifier pid′ of the signer is obtained from the session identifier
having the form sid = (pid′, sid′). Before providing any signature, the signer expects from
the higher protocol an initialisation request allowing the signer to register the verification
key pk to the certificate authority, modelled via the FCA ideal functionality. After this
initialisation step, the signer is allowed to sign any message. Note that before returning
the signature, the signer stores the signed message m in a set of authenticated messages
managed by the instance, used later for the signature verification. To verify a signature,
an entity having the verifier role expects as an input a message m, a signature σm and
a public verification key pk . The security of a digital signature is modelled by the ideal
functionality by always rejecting every valid signature σm coming from an uncorrupted
signer whose message m does not belong to the set of authenticated messages, and whose
provided verification key pk is the valid one (i.e., the public verification key provided
by the adversary in the ideal functionality).

Hybrid Authenticated Attribute-based File Transfer Protocol

We are now ready to introduce our hybrid authenticated attribute-based file transfer
protocol presented in Figure 5.10 and Figure 5.11 and denoted PAAFT. It is based on the
real protocol PIPFS modelling IPFS but also on the attribute-based encryption, digital
signatures, certificate authority and random oracle ideal functionalities. The protocol is
composed of the two roles sender and receiver modelling respectively the file sender
and the file receiver.

Observe in Figure 5.10 and Figure 5.11 that our protocol defines the two protocol
parameters being the time T used to separate the setup phase and the execution phase,
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Ideal functionality Fsig-CA = (signer, verifier):
Participating roles: signer, verifier
Corruption model: static corruption
Protocol parameters:

• A polynomial p ∈ Z[x] used to bound the runtime execution of provided algorithms.
Msigner,verifier:

Implemented role(s): signer, verifier
Subroutines: FCA : registration
Internal state:

• (Sign,Verif, pk , sk) ∈ ({0, 1}∗ ∪ {⊥})4 = (⊥,⊥,⊥,⊥)
• pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥
• msgList ⊆ {0, 1}∗ = ∅
• KeysGenerated ∈ {ready,⊥} = ⊥

CheckID(pid, sid, role): Check that sid has a (pid′, sid′) format. If the check fails, return false,

otherwise accept all entities with the same SID.

Corruption behavior:
• LeakedData(pid, sid, role): If called while (pid, sid, role) determines its initial cor-

ruption status, use the default behavior of LeakedData. That is, output the initially
received message and the sender of that message. Otherwise, if role = signer and
pid = pidowner, return KeysGenerated. In all other cases, return ⊥.

• AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): Check that (pid =

pidrecv). If rolerecv = FCA : registration, also check that role = signer and sid =

(pid, sid′). If all checks succeed, output true, otherwise output false.
Initialization:

send responsively InitMe to NET

wait for (Init, (Sign,Verif, pk, sk))
(Sign,Verif, pk , sk)← (Sign,Verif, pk, sk)
parse sidcur as (pid, sid)
pidowner← pid

Main:
recv InitSign from I/O to (pidowner,_, signer) :

send (RegisterKey, pk) to (pidcur, ϵ,FCA : registration)
wait for (RegisterKey,_)
KeysGenerated← true
reply (InitSign, 1)

recv (Sign,m) from I/O to (pidowner,_, signer) s.t. KeysGenerated = true :
σm ← Sign(p)(m, sk)
b← Verif(p)(m,σm, pk)
if σm = ⊥ ∨ b ̸= 1:

reply (Signature,⊥)
else:

add m to msgList
reply (Signature, σm)

recv (Verify,m, σm, pk) from I/O to (_,_, verifier) :
b← Verif(p)(m,σm, pk)
if pk = pk ∧ b = 1 ∧m /∈ msgList ∧ (pidowner, sidcur, signer) /∈ CorruptionSet:

reply (VerResult, false) {Prevents the signature forgeries
reply (VerResult, b)

Figure 5.9: Description of the ideal functionality Fsig-CA [CKKR19].
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as well as the pidsetup parameter defining the party identifier of entity in charge of
generating the master key pair of the ideal functionality.

Protocol PAAFT = (sender, receiver):
Participating roles: sender, receiver
Subroutines: FABE,Fsig-CA,FCA : retrieval,FRO,PIPFS

Corruption model: static corruption
Protocol parameters:

• The party identifier pidsetup, identifying the entity of the ABE scheme handling the
master keys.

• A time T ∈ N delimiting phase in which decryption keys are provided, from the phase
where encryption and decryption are operated. We denote by t ∈ N the current time.

Msender:
Implemented role(s): sender
CheckID(pid, sid, role): Accept a single entity.
Internal state:

• mpk ∈ {0, 1}∗ ∪ {⊥} = ⊥
Corruption behavior:

• DetermineCorrStatus(pid, sid, role): return corri(pid, (pid, ϵ), signer) or
corri(pid, (pidsetup, sid), encryptor).

• AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): Check that (pid =

pidrecv).
Initialization:

send PubKey? to (pidsetup, (pidsetup, sidcur),FABE : setup)
wait for mpk′

mpk ← mpk′

send InitSign to (pidcur, (pidcur, ϵ)),Fsig-CA : signer)
wait for _

Main:
recv (Send, y, f) from I/O s.t. T < t :

send responsively Storage? to NET

wait for (Storage, storage)
parse storage as (_,_,PIPFS : storage)
send (Encrypt, y, f,mpk) to (pidcur, sidcur,FABE : encryptor)
wait for (Ciphertext, cy)
send (Upload, (y, cy)) to storage
wait for _
send (Hash, (y, cy)) to (pidcur, sidcur,FRO : randomOracle)
wait for (Hashed, l)
send (Sign, l) to (pidcur, (pidcur, ϵ),Fsig-CA : signer)
wait for (Signature, σl)
send (Sent, l, σl) to NET

Figure 5.10: Description of our hybrid protocol PAAFT (Part 1).

In our protocol, an entity having the sender role is managed by a single instance,
as specified by the CheckID algorithm. As we will see in a moment, a sender relies on
the signature verification key. Within the iUC framework, the environment is allowed
to corrupt any entity of its choice while the corruption model is respected. Thanks to
the composability feature, an entity of an ideal functionality may have another entity
coming from another ideal functionality as a subroutine, which might be corrupted
by the environment. This subroutine corruption is particularly interesting to model
protocols whose security must hold even in case where a (part of a) secret owned by a
party is revealed, for instance with post-compromise security in secure messaging where
the protocol regains security even after the leakage of a key [Rob22]. In PAAFT, the
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Mreceiver:
Implemented role(s): receiver
Internal state:

• initiated ∈ {0, 1} = 0
• files ⊆ {0, 1}∗ = ∅

CheckID(pid, sid, role): Check that sid = (pid′, sid′). Accept a single entity.

Corruption behavior:
• AllowCorruption(pid, sid, role): Returns t < T .
• DetermineCorrStatus(pid, sid, role): return

corri(pid, (pidsetup, sid), decryptor).
• AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): Check that (pid =

pidrecv).
Main:

recv (InitAttr, x) from I/O s.t. initiated = 0 :
initiated← 1
send (InitAttr, x) to (pidcur, sidcur, FABE: decryptor)

recv (Receive, sender, storage, l, σl) from NET s.t. T < t ∧ initiated = 1 :
parse storage as (_,_,PIPFS : storage), sender as (pid,_, sender)
send (Download, l) to storage
wait for (Downloaded, (y, cy))
send (RetreiveKey, (pid, ϵ)) to (pidcur, sidcur,FCA : retrieval)
wait for (RetreivedKey, pk)
send (Verify, l, σl, pk) to (pidcur, (pid, ϵ),Fsig-CA : verifier)
wait for (VerResult, b)
send (Hash, (y, cy)) to (pidcur, sidcur, randomOracle)
wait for (Hashed, l′)
send (Decrypt, cy) to (pidcur, (pidsetup, sidcur),FABE : decryptor)
wait for (Plaintext, f)
if l = l′ ∧ b = 1 ∧ f ̸= ⊥: add f to files

recv Collect from I/O :
reply files

Figure 5.11: Description of our hybrid protocol PAAFT (Part 2).

corruption of a party leads to the corruption of all its subroutines, and conversely. Hence,
if the signature key of the sender is corrupted, the sender is corrupted as well. This
corruption relation is modelled within the iUC framework using the DetermineCorrStatus.
Observe that in addition to the corruption relation between the sender and the signature
key, we define a corruption relation between the sender and the encryptor used by the
sender to encrypt a file.

As an initialisation, the sender entity asks the attribute-based ideal functionality for
the master public key used later to encrypt file. In addition to this master public key
access request, the sender notifies the signature ideal functionality for initialisation, in
which the instance of the digital signature ideal functionality obtains a signature key
pair and registers the verification public key to the certificate authority FCA.

The file sending, supported only during the second phase where T < t, obtains as an
input a file f as well as an access policy y. The sender starts the file sending procedure
with a responsive request to the environment to determine the storage server to use in
the IPFS network. Then, the sender encrypts f using the ideal functionality FABE to
obtain the ciphertext cy. This ciphertext is hashed to obtain the link l and is sent to
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the storage (chosen by environment E). After having obtained the signature σl for l, the
sender shares the link l along the signature σl with the environment E .

The file reception is handled by an entity having the receiver role. Before accept-
ing files, a receiver has to be initialised with an attribute x that is used to initialise the
decryptor of the ABE ideal functionality FABE. In contrast with the Send function han-
dling file sending request from the environment via the I/O interface, Receive requests
are sent by the environment via the NET interface. Remark that the received files are not
intended to be directly forwarded to the higher-protocol but to be collected using the
dedicated Collect function. The file reception function receives as an input the sender
and storage identities along a link l and a signature σl. The file reception downloads the
ciphertext for the designated storage server in the IPFS network, retrieves the signature
public verification key of the designated sender and asks the signature ideal function-
ality Fsig-CA to verify the received signature σl. In addition, the file reception function
obtains the hash l′ of the previously received ciphertext cy and compare the computed
hash l with the link l′ obtained as an input. Finally, the ciphertext cy is decrypted
recovering the file f . Under the condition that both links l and l′ are identical, that the
link verification succeeds and that the returned file f is valid, then f is stored in the set
of received files files of the receiver.

Theorem 16. Assuming the real protocol PIPFS for the IPFS network, assuming the
ideal functionalities for certificate authority FCA, for digital signature Fsig-CA and for the
(standard) attribute-based encryption FABE, then we have:

(sender, receiver|FRO,FABE,Fsig-CA,FCA,PIPFS) ≤ FAAFT

Proof. We start this proof by giving a description of our simulator S, used with the ideal
functionality FAAFT to show that PAAFT ≤ S|FAAFT. In a nutshell, S runs a simulation
of the real protocol and handles request coming from both the environment and the
ideal functionality. During the simulation, without loss of security and functionality, we
require the leakage function L(λ,m) used by the ideal functionality FABE to return a
zero-string 0|m|. We now provide the description of S:

• When receiving a notification request of the form (Registered, x) from the ideal
functionality (simulating a receiver), attesting the access to some attribute x.
In such case, inputs the same receiver in the simulated real protocol with the
(InitAttr, x) request.

• When receiving a corruption request from the environment to corrupt the entity
entity defined by the triplet (pid, sid, role). If the current time t < T , then it
accepts the corruption request. Otherwise, ignore the corruption request. Each
time a corruption request leads to the corruption either of a sender or a receiver,
the simulator notifies the ideal functionality as well, leading to a synchronization
of senders and receivers corruption between the simulated real protocol and the
ideal functionality. In case where the entity in charge of handling the master
secret keys receives a decryption key, assuming t < T , then the decryption key
skx is computed and sent back to the corrupted decryptor. Observe that by
construction, a corrupted decryptor equals a corrupted receiver. The simulator
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S notifies the ideal functionality that the environment is allowed to decrypt any
ciphertext associated with a policy access y whose x ∈ y by sending the request
(CorrAttr, x) to FAAFT.

• When receiving a request of the form (SendHonest, y, r, |f |) or the request of the
form (SendCorrupted, y, r, f) from the initial functionality, the simulator inputs
the simulated sender of PAAFT with the access policy y and the real file f in the
case of SendCorrupted, or the zero-string 0|f | of the case of SendHonest. In
addition, in case of SendHonest, the simulator records the pair (r, cy) where cy is
the ciphertext obtained via the simulated encryptor from the ideal functionality
FABE. This record is used later to provide the random r to the ideal functionality
FAAFT.

• When receiving a request of the form (Receiver, sender, storage, l, σl) from the en-
vironment E via the network interface, then it inputs the simulated real receiver,
running all sanity checks including decryption, signature verification and link val-
idation. Let cy be the ciphertext obtained during the execution of the simulated
receiver in PAAFT. If all checks succeed, then if the simulator recovers the pair
(r, cy) and sends (Receive, y, r, sender) to the ideal functionality FAAFT, and no
response is expected later. Otherwise, there is no records (r, cy) and hence it sends
(Receive, y,⊥, sender) to the ideal functionality. By construction, the ideal func-
tionality FAAFT responds with a responsive request (WaitFile, y, r, sender) where
r equals ⊥. At this point, the ideal functionality expects a file f to register. Since
there is no records by the simulator but the decryptor file f being authenticated,
the simulator responds to this responsive request with (ProvideFile, 1, f).

It is clear that our simulator S is polynomial-time. We are now ready to initiate our
sequence of games, where our first game consists of the (S|FAAFT) ideal protocol, and
our last game is our hybrid protocol PAAFT:
Game 0. This game is the execution of the ideal protocol (S|FAAFT) with the envi-
ronment E , connected respectively to the NET interface of S and to the I/O interface of
FAAFT, with S being connected to the NET interface of FAAFT.
Game 1. This game works as the previous game, except that we now execute the
protocol (S ′|FFwd) where S ′ runs the simulated ideal protocol (S|FAAFT) and where FFwd

simply forwards every request from the environment E to S ′ and conversely. Since this
modification is only structural without any modification on the ideal protocol behaviour,
then we have a perfect indistinguishability between these two games. In the following,
for a better clarity, we index each simulator S ′ with the index of the current game,
hence: Pr

[
(E|S ′1|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S|FAAFT)(1

λ)→ 1
]
.

Game 2. This game works as the previous game, except that we introduce a new
simulator S ′2 consisting of S ′1 where we delegate the all attribution verification both
during the Send and Receive requests to the simulator S. First, let focus on the Send

part of the ideal functionality FAAFT, currently simulated by our simulator S ′2. We
rewrite the code of Send to remove the random r as well as the corrupted attribute
condition, all of these lines being replaced only by a request of the form (Send, y, f).
The code still stores files being sent by an honest sender, but omits the random r

i.e., it records a tuple of the form (sender, y, f). The file reception request in the
ideal functionality FAAFT, handling requests of the form (Receive, y, r, sender), now
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handles requests of the form (Receive, y, f, sender). The condition verifying of there
is no tuple of the form (sender, ·, r, ·) is still performed but with the tuple of the form
(sender, ·, f). The random r is replaced by ⊥ in the code which is executed when the
condition is checked. The executed code when the condition fails, including the attribute
verification (x ∈ y), is replaced by the insertion of the file f to the received file register.
The simulator, on its side, does not register the pair (r, cy) anymore.

Observe that all these modifications are hidden to the environment, and we claim
that the view of the environment remains unchanged. This can be easily deduced since
the at this point, the ideal functionality does not perform the attribute verification
by itself but rather delegate this task to the ideal functionality FABE, which is secure
and correct by design. However, compared to the previous game, the received file is
now always f instead of the zero-string. In case where the environment does not have
a valid decryption key to decrypt cy, it encrypts the leakage L(λ, f) in this game,
instead of L(λ, 0|f |) in the previous one. Thanks to our specification of L, always
outputting a zero-string, both of these leakages are the same. Therefore, by construction
of the ideal functionality FABE and by the leakage function L, the environment cannot
distinguish, otherwise breaking the security of FABE. Hence, Pr

[
(E|S ′2|FFwd)(1

λ)→ 1
]
=

Pr
[
(E|S ′1|FFwd)(1

λ)→ 1
]
.

Game 3. At this point, the (simulated) ideal functionality FAAFT still maintain a set
of sent files, essentially used to provide authentication of the files for honest senders.
An honest receiver, on its side, verifies that a received file f belongs to the set of
sent files (with respect to the provided sender) and responds to the simulator via the
network interface if the file is not found. Observe that in this case, the simulator
already activates the (honest) receiver with a request Receive if and only if the provided
signature σl authenticates the link l, which corresponds to the hash of the ABE ciphertext
cy. Hence, by construction, authentication of the file with respect to the provided sender
is already ensured by the signature ideal functionality Fsig-CA. Hence, the condition in
the ideal functionality FAAFT is no more necessary and all the code handling Receive

requests is now limited to add the received file f (added in the previous game) to the
set of received files. This constitutes our new simulator S ′3. Since the authentication
in the ideal functionality Fsig-CA is correct and secure by definition, this modification
does not impact the view of the environment E and hence Pr

[
(E|S ′3|FFwd)(1

λ)→ 1
]
=

Pr
[
(E|S ′2|FFwd)(1

λ)→ 1
]
.

Game 4. This game works as the previous game, except that we remove the attribute
state attr that are not used anymore in this game. Additionally, we replace the internal
state receivedFiles by a local internal state specific to each receiver. This last modifi-
cation clearly does not affect the view of the the environment E , and hence we have
Pr

[
(E|S ′4|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S ′3|FFwd)(1

λ)→ 1
]
.

Observe that in our last game, the ideal functionality FAAFT simulated in our last
simulator S ′4 never rely on internal state and essentially constitutes a forward machine
between the simulated game protocol and the I/O interface where the environment is con-
nected. As a result, we claim that Pr

[
(E|S ′4|FFwd)(1

λ)→ 1
]
= Pr

[
(E|PAAFT)(1

λ)→ 1
]
.

As a result, we have PAAFT ≤ FAAFT.
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5.3.3 Implementation of PAAFT

Our open-source proof-of-concept [DAF24] written in Rust confirms the practicality of
our protocol. We have chosen the Schnorr signature over the Curve25519 [Ber06] curve
as our EUF-CMA digital signature. Since our cryptographic hash function handles po-
tentially large files, we have chosen to construct a parallelized Merkle-tree-based hash
function using the standard SHA-256 [Dan15] cryptographic hash function as the un-
derlying building block. To construct our IND-CCA2-secure ABE, we have applied the
Fujisaki-Okamoto transform [FO13] on the Agrawal-Chase IND-CPA Ciphertext-Policy
ABE scheme [AC17] following the idea of Green, Hohenberger and Waters [GHW11].
We have used AES-256-CTR as the secret-key encryption within the transform. Bench-
marks have been performed on an Ubuntu, embedding a 64 bits Intel Core i5-6500
processor cadenced at 3.20GHz including four cores, and embedding 16Gb of memory.
In Figure 5.12a is depicted the execution time of the sending and receiving procedures
depending on the input file size. We directly observe that both procedures are mlinear.
For a 450 megabytes file the sending procedure requires approximately 216 milliseconds,
whereas the file receiving procedure expects 258 milliseconds. The difference between
the sending and reception is explained by the Fujisaki-Okamoto transform, executing
during the reception the encryption algorithm, used to reject malformed ciphertext.
In Figure 5.12b, we compare the amount of data sent by a sender to a receiver through
the low-rate medium between the naive corresponding to the situation where the en-
crypted file is directly sent to the receiver (for example with OpenPGP [FDC+07]),
and the approach motivated in the PAAFT protocol. Compared to the naive approach,
our solution provides a constant amount of transferred data of 96 bytes corresponding
to the link (i.e., the hash of the encrypted file) and the signature σl. This constant
communication size is explained by the encrypted file being sent over the distributed
storage network instead of being directly transferred, still with the guarantee to have
confidentiality and integrity of the file but also authentication of the sender.
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5.4 Conclusion

Facing the lack of ideal functionality tailored for standard attribute-based encryption, we
have propose the first ideal functionality FABE whose realisation called PABE is modelled
using standard attribute-based encryption under the iUC framework.

To emphasise the usability of our FABE ideal functionality, we have proposed a study
case focusing the Authenticated Attribute-based File Transfer (AAFT) allowing to trans-
fer a file from a sender to a receiver following an access policy y, while ensuring authen-
ticity and integrity of the transferred file. The ideal functionality FAAFT implementing
all these properties ensures that a receiver having an attribute x such that x ∈ y has
access to the file. All other receivers where x /∈ y does not have access to the given
file, ensuring confidentiality. In addition, the file is authenticated with respect to some
authentication proof produced by the sender, authenticated at the same time the file
integrity and the sender.

We have proposed PAAFT, proved to realize FAAFT, based on attribute-based encryp-
tion ideal functionality FABE, digitial signature ideal functionality Fsig-CA, certificate
authority ideal functionality FCA and the random oracle ideal functionality FCA. To
improve efficiency for the file transfer, PAAFT is also based on the hash-based distributed
storage system called IPFS for which we have proposed a protocol within the iUC frame-
work.

From a performance standpoint, the praticality of our protocol has been confirmed
by our implementation of PAAFT fully written in Rust. Indeed, the observed performance
shows that only 216 milliseconds are necessary to send 450 megabytes of data and 258

milliseconds to receive the same amount of data, for a total of 474 milliseconds.
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Chapter 6
Conclusion & Perspectives

Three contributions have been introduced in this manuscript, focusing on three dis-
tinct problems dealing with multiple users. As with any research work, the presented
contributions are designed to tackle precise problems. We draw the future of these
contributions and identify possible perspectives.

Secure Federated Multi-Armed Bandits

The two protocols Tango and Salsa presented in this manuscript are proven to securely
solve the reward maximisation problem in the federated multi-armed bandits setting,
in which the controller (also referred to as the federation server in the literature) acts
as a learning agent trying to maximise its rewards by choosing the bandit associated
with the highest reward probability. In the federated learning setting, a bandit is mod-
elled as a data owner, holding the unknown reward distribution and interacting only
with the controller. A secure federated multi-armed bandits protocol should prevent
the controller from learning any information about the bandit having the best reward
distribution but also on the generated rewards.

This problem has already been focused on by our recently published protocol called
Samba [CLMS22], based on standard cryptographic primitives and working with two
controllers. However, we have shown that Samba suffers from correctness and security
issues. Our first protocol Tango follows the initial blueprint of Samba, fixing the pro-
tocol using fully homomorphic encryption and extending the set of provided properties
by allowing a data owner either to join or to leave the protocol dynamically. Due to the
usage of fully homomorphic encryption, Tango suffers from a significant computation
overhead, around 2.3 seconds to identify the best among 9 bandits.

Motivated to overcome this computation overhead, we have introduced a more scal-
able protocol called Salsa, moving away from the blueprint of Samba and Tango.
Indeed, Salsa works using three distinct controllers whose two servers are involved in
secure two-party computations, allowing one to delegate the computation of an arbitrary
function over private input without revealing any information on the input, the output,
and any intermediate data. This approach has the advantage of being significantly faster,
requiring only 0.15 milliseconds to select the best among 9 bandits, allowing Salsa to
handle even more bandits at the same time and hence to be scalable.

Despite all these interesting properties, notably from a performance and security
standpoint, both Tango and Salsa appear to be more limited regarding the general-
ity property enjoyed by Samba: All of these protocols aim to be generic in the sense
that any multi-armed bandits algorithm respecting a precise definition can be plugged
into the protocol. It turns out that Samba has a more general definition, allowing
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to plug in five multi-armed bandits algorithms whereas Tango and Salsa allow only
three multi-armed bandits algorithms to be plugged in. Briefly, Tango and Salsa sup-
port multi-armed bandits algorithms whose arm selection depends only on the argmax

function. This restriction is due to our security definition considering argmax-based
multi-armed bandits algorithm. An interesting future work may consist of designing a
more generalised security definition supporting a larger class of algorithms. Given this
generalised security definition, one may easily convert Tango or Salsa to support this
larger class of multi-armed bandits algorithms.

As an orthogonal future work, we are interested in the linear multi-armed bandits
version where a data owner now runs an multi-armed bandits algorithm, locally updating
its own local model. Regularly at some time step, the federation server receives the local
models from the data owners before to perform the aggregation, leading to an aggregated
model replacing the data owner’s local model. Adapting our protocols for this setting
is an interesting question that we delegate as a future work.

Anonymous, Transferable, Auditable Tickets

Currently deployed ticketing systems offer standard functionalities, namely ticket pur-
chasing, ticket refunding, and ticket validation but suffer from vulnerabilities, including
the ability for a user to sell the same ticket several times or to use nominative tickets,
preventing a user from using the system anonymously.

Facing these issues, we have developed two ticketing systems called respectively
Applause and Spotlight, whose design should provide all standard features, namely
ticket purchasing, ticket refunding, and ticket validation. In cases where a user cannot
attend an event for which it owns a ticket, Applause and Spotlight provide the ticket
transferability feature, allowing the user to transfer its ticket to another user. In contrast
with currently deployed ticketing systems relying on nominative tickets, Applause and
Spotlight allow a user to use the system without having to reveal its identity.

Despite all these similarities, an important difference remains between Applause

and Spotlight. In Applause, the anonymity of users is guaranteed at every time
against both the system and all other users. In contrast, Spotlight brings an addi-
tional third-party, referred to as the judge, able to reveal the identity of a user attending
an event, hence does not ensure anonymity of users against the judge. Despite this addi-
tional third-party, Spotlight still guarantees the anonymity of users against the system
and other users. As we have observed, this auditability feature implies a slightly longer
ticket validation due to the usage of the more complex cryptographic building block Pro-
tego [CDLPK22], increasing execution time from 45 for Applause to 165 milliseconds
for Spotlight, which is still practical. Other interactions including ticket purchasing,
ticket refunding, and ticket validation achieve great performance of 17 milliseconds to
purchase a ticket, 68 milliseconds to transfer a ticket, and 25 milliseconds to refund a
ticket.

The presented execution times take into account only the time necessary to perform
the cryptographic operations. However, during each of these interactions such as ticket
purchasing, a few communications occur between a user and the system. One may be
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interested in the impact of the network latency on the protocol efficiency, particularly
during the ticket validation stage where performance is crucial. Hence, one possible
perspective for Applause and Spotlight would be to initiate performance on a more
real case.

To purchase a ticket while guaranteeing the anonymity of users, both Applause

and Spotlight rely on a generic anonymous payment scheme. However, as we have
mentioned, unlinkability of the payments, an important property to ensure unlinkability
of interactions between a user and the system, is particularly hard to obtain using well-
deployed, commonly used payment systems such as the EMV protocol [EMV22]. Trivial
anonymous payment schemes such as anonymous currency like cash or prepaid cards
are possible candidates but lack practicality compared to online payment using credit
cards. The design of a completely anonymous payment scheme enjoying friction-less
interaction for the user is a very interesting research topic that deserves to be explored
in future work.

UC-Secure Distributed File Transfer

In Chapter 5, we have focused our attention on the design of a file transfer protocol based
on three distinct building blocks: Attribute-based encryption, digital signature and a
distributed storage network. In our protocol, the attribute-based encryption allows a
user to broadcast a short piece of data, referred later as a link, to an a priory known
group of users. The so-called link refers to an address on the distributed storage system
which is associated to an encrypted of the transferred file. Thanks to the attribute-based
encryption, only users having an appropriate attribute are able to recover the transferred
file. Along the link, the file sender provides a signature of the link using its signature
key of the digital signature scheme, used by a recipient to verify the authenticity of the
link and hence the authenticity of the file.

This distributed file transfer protocol has been proven secure under the Universal
Composability (UC) paradigm and more particularly under the iUC framework, whose
the design has required an ideal functionality for a standard attribute-based encryption,
being part of the contribution. From a performance standpoint, the protocol has shown
a great performance with approximately 216 milliseconds to send a 450 megabytes file,
whereas the file receiving procedure expects 258 milliseconds.

The introduced protocol supports file confidentiality as well as file authenticity and
integrity. These three properties are interesting for most use-cases but are not ex-
haustive. Indeed, it is possible to integrate more functionalities within the protocol,
such as anonymity of the sender using group signatures [CvH91, KTY04] or ring signa-
tures [BKM06, FS07], which in a nutshell allows one to sign a message in the behalf of
a group. Extending this work constitutes a very exciting direction of improvement.



182



Bibliography

[AA22] Masayuki Abe and Miguel Ambrona. Blind key-generation attribute-based
encryption for general predicates. Designs, Codes and Cryptography, 90,
08 2022.

[ABC+15] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen,
Angela Jäschke, Christian A. Reuter, and Martin Strand. A guide to fully
homomorphic encryption. IACR Cryptol. ePrint Arch., 2015:1192, 2015.

[AC17] Shashank Agrawal and Melissa Chase. FAME: fast attribute-based mes-
sage encryption. In Bhavani Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, pages 665–682. ACM, 2017.

[AEAKH10] Diaa Salama Abd Elminaam, Hatem Mohamed Abdual-Kader, and Mo-
hiy Mohamed Hadhoud. Evaluating the performance of symmetric en-
cryption algorithms. Int. J. Netw. Secur., 10(3):216–222, 2010.

[AES07] Recommendation for BlockCipher Modes of Operation:Galois/Counter
Mode (GCM) and GMAC. https://nvlpubs.nist.gov/nistpubs/

Legacy/SP/nistspecialpublication800-38d.pdf, 2007. NIST Special
Publication 800-38D.

[AIRC13] Muhammad Rizwan Asghar, Mihaela Ion, Giovanni Russello, and Bruno
Crispo. Espoon erbac: Enforcing security policies in outsourced envi-
ronments. Cryptology ePrint Archive, Paper 2013/587, 2013. https:

//eprint.iacr.org/2013/587.

[AJJM20] Prabhanjan Vijendra Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio
Malavolta. Multi-key fully-homomorphic encryption in the plain model.
In TCC, 2020.

[AKO24] Yavuz Akın, Jakub Klemsa, and Melek Önen. A practical tfhe-based multi-
key homomorphic encryption with linear complexity and low noise growth.
In Computer Security – ESORICS 2023: 28th European Symposium on
Research in Computer Security, The Hague, The Netherlands, September
25–29, 2023, Proceedings, Part I, page 3–23, Berlin, Heidelberg, 2024.
Springer-Verlag.

[Ave16] Aventus. https://aventus.io/, 2016.

183

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://eprint.iacr.org/2013/587
https://eprint.iacr.org/2013/587
https://aventus.io/


BIBLIOGRAPHY 184

[BCFK15] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf
Kohlweiss. Anonymous transferable e-cash. In International Workshop
on Public Key Cryptography. Springer, 2015.

[BDF+20] Johannes Buchmann, Ghada Dessouky, Tommaso Frassetto, Ágnes Kiss,
Ahmad-Reza Sadeghi, Thomas Schneider, Giulia Traverso, and Shaza
Zeitouni. Safe: A secure and efficient long-term distributed storage
system. Cryptology ePrint Archive, Paper 2020/690, 2020. https:

//eprint.iacr.org/2020/690.

[Ber06] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
Public Key Cryptography - PKC 2006, pages 207–228, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[BFQ21] Balthazar Bauer, Georg Fuchsbauer, and Chen Qian. Transferable e-cash:
A cleaner model and the first practical instantiation. In IACR Interna-
tional Conference on Public-Key Cryptography, pages 559–590. Springer,
2021.

[BGGJ19] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar P.
Jetchev. Simulating homomorphic evaluation of deep learning predictions.
In Dolev S.Hendler D.Lodha S.Yung M., editor, 3rd International Sym-
posium on Cyber Security Cryptography and Machine Learning, CSCML
2019, volume 11527, pages 212–230, Beer-Sheva, France, 2019.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
page 309–325, New York, NY, USA, 2012. Association for Computing
Machinery.

[BK19] Osman Bicer and Alptekin Kupcu. Versatile abs: Usage limited, re-
vocable, threshold traceable, authority hiding, decentralized attribute
based signatures. Cryptology ePrint Archive, Paper 2019/203, 2019.
https://eprint.iacr.org/2019/203.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring Signatures:
Stronger Definitions, and Constructions Without Random Oracles, page
60–79. Springer Berlin Heidelberg, 2006.

[BM17] Elaine Barker and Nicky Mouha. Recommendation for the Triple Data
Encryption Algorithm (TDEA) block cipher. November 2017.

[BMMP18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier.
Fast homomorphic evaluation of deep discretized neural networks. In Ho-
vav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III, volume

https://eprint.iacr.org/2020/690
https://eprint.iacr.org/2020/690
https://eprint.iacr.org/2019/203


BIBLIOGRAPHY 185

10993 of Lecture Notes in Computer Science, pages 483–512. Springer,
2018.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
Conference on Computer and Communications Security, CCS ’93, page
62–73, New York, NY, USA, 1993. Association for Computing Machinery.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) $\mathsf{LWE}$. SIAM J. Comput.,
43(2):831–871, 2014.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,
pages 136–145. IEEE Computer Society, 2001.

[Can20] Ran Canetti. Universally composable security. J. ACM, 67(5):28:1–28:94,
2020.

[Cas18] CashApp. CashApp. https://www.cash.app/, 2018.

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Multi-key homomorphic
encryption from tfhe. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology – ASIACRYPT 2019, pages 446–472, Cham, 2019.
Springer International Publishing.

[CDEN12] Jan Camenisch, Maria Dubovitskaya, Robert R Enderlein, and Gregory
Neven. Oblivious transfer with hidden access control from attribute-based
encryption. In Security and Cryptography for Networks: 8th International
Conference, SCN 2012, Amalfi, Italy, September 5-7, 2012. Proceedings 8,
pages 559–579. Springer, 2012.

[CDKS19] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient multi-key ho-
momorphic encryption with packed ciphertexts with application to obliv-
ious neural network inference. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page
395–412, New York, NY, USA, 2019. Association for Computing Machin-
ery.

[CDLPK22] Aisling Connolly, Jérôme Deschamps, Pascal Lafourcade, and Octavio
Perez Kempner. Protego: Efficient, revocable and auditable anonymous
credentials with applications to hyperledger fabric. In International Con-
ference on Cryptology in India, pages 249–271. Springer, 2022.

[CDŞ14] Yao Cui, Izak Duenyas, and Özge Şahin. Should event organizers prevent
resale of tickets? Management Science, 60(9):2160–2179, 2014.

[CES+05] Liqun Chen, Matthias Enzmann, Ahmad-Reza Sadeghi, Markus Schnei-
der, and Michael Steiner. A privacy-protecting coupon system. In Finan-
cial Cryptography and Data Security: 9th International Conference, FC

https://www.cash.app/


BIBLIOGRAPHY 186

2005, Roseau, The Commonwealth Of Dominica, February 28–March 3,
2005. Revised Papers 9, pages 93–108. Springer, 2005.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryp-
tology - ASIACRYPT 2016 - 22nd International Conference on the Theory
and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes
in Computer Science, pages 3–33, 2016.

[CGGI19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Tfhe: Fast fully homomorphic encryption over the torus. Journal of Cryp-
tology, 33, 04 2019.

[Cha85] David Chaum. Security without identification: Transaction systems to
make big brother obsolete. Communications of the ACM, 28(10):1030–
1044, 1985.

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: Efficient periodic
n-times anonymous authentication. In Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS ’06. Association
for Computing Machinery, 2006.

[CHY23] Younghwan Choi, Yong-Geun Hong, and Joo-Sang Youn. Transmission of
IPv6 Packets over Near Field Communication. RFC 9428, July 2023.

[CKK20] J. H. Cheon, D. Kim, and D. Kim. Efficient Homomorphic Compari-
son Methods with Optimal Complexity. In International Conference on
the Theory and Application of Cryptology and Information Security (ASI-
ACRYPT), pages 221–256, 2020.

[CKKR19] Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. iuc:
Flexible universal composability made simple. In Steven D. Galbraith and
Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT 2019 - 25th
International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part III, volume 11923 of Lecture Notes in Computer Science, pages 191–
221. Springer, 2019.

[CLLS19] R. Ciucanu, P. Lafourcade, M. Lombard-Platet, and M. Soare. Secure Best
Arm Identification in Multi-Armed Bandits. In International Conference
on Information Security Practice and Experience (ISPEC), pages 152–171,
2019.

[CLLS20] R. Ciucanu, P. Lafourcade, M. Lombard-Platet, and M. Soare. Secure Out-
sourcing of Multi-Armed Bandits. In IEEE International Conference on
Trust, Security and Privacy in Computing and Communications (Trust-
Com), pages 202–209, 2020.



BIBLIOGRAPHY 187

[CLMS22] Radu Ciucanu, Pascal Lafourcade, Gael Marcadet, and Marta Soare.
SAMBA: A generic framework for secure federated multi-armed bandits.
J. Artif. Intell. Res., 73:737–765, 2022.

[CMÖ11] Leucio Antonio Cutillo, Refik Molva, and Melek Önen. Safebook: A dis-
tributed privacy preserving online social network. In 12th IEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia Net-
works, WOWMOM 2011, Lucca, Italy, 20-24 June, 2011, pages 1–3. IEEE
Computer Society, 2011.

[CMÖ12] Leucio Antonio Cutillo, Refik Molva, and Melek Önen. Privacy preserv-
ing picture sharing: enforcing usage control in distributed on-line social
networks. In Eiko Yoneki, Davide Frey, and Ian Brown, editors, Proceed-
ings of the Fifth Workshop on Social Network Systems, Bern, Switzerland,
April 10, 2012, page 6. ACM, 2012.

[CvH91] David Chaum and Eugène van Heyst. Group Signatures, page 257–265.
Springer Berlin Heidelberg, 1991.

[CZW17] Long Chen, Zhenfeng Zhang, and Xueqing Wang. Batched multi-hop
multi-key fhe from ring-lwe with compact ciphertext extension. In Yael
Kalai and Leonid Reyzin, editors, Theory of Cryptography, pages 597–627,
Cham, 2017. Springer International Publishing.

[DAF24] Daft: Proof-of-concept. https://anonymous.4open.science/r/DAFT/,
2024.

[Dan15] Quynh H. Dang. Secure Hash Standard. July 2015.

[DBN+01] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced encryption standard
(aes), 2001-11-26 2001.

[DGGB22] Yuhao Dong, Ian Goldberg, Sergey Gorbunov, and Raouf Boutaba. As-
trape: Anonymous payment channels with boring cryptography. In
Giuseppe Ateniese and Daniele Venturi, editors, Applied Cryptography and
Network Security - 20th International Conference, ACNS 2022, Rome,
Italy, June 20-23, 2022, Proceedings, volume 13269 of Lecture Notes in
Computer Science, pages 748–768. Springer, 2022.

[DP20] A. Dubey and A. Pentland. Differentially-Private Federated Linear Ban-
dits. In Conference on Neural Information Processing Systems (NeurIPS),
2020.

[DR14] C. Dwork and A. Roth. The Algorithmic Foundations of Differential
Privacy. Foundations and Trends in Theoretical Computer Science, 9(3-
4):211–407, 2014.

[DSZ15] Daniel Demmler, T. Schneider, and Michael Zohner. Aby - a framework
for efficient mixed-protocol secure two-party computation. In Network and
Distributed System Security Symposium, 2015.

https://anonymous.4open.science/r/DAFT/


BIBLIOGRAPHY 188

[dV18] Alex de Vries. Bitcoin’s growing energy problem. 2:801–805, 05 2018.

[Elg85a] T. Elgamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985.

[ElG85b] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE transactions on information theory, 1985.

[EMV11] EMVCo. Book 1: Application independent icc to terminal interface re-
quirements. 2011.

[EMV22] LLC EMVCo. Emv payment tokenisation specification technical frame-
work v2.3. EMVCo: Foster City, CA, USA, 2022.

[EY80] Shimon Even and Yacov Yacobi. Relations among public key signature
systems. Technical report, Computer Science Department, Technion, 1980.

[FB23] Jörg Schwenk Fabian Bäumer, Marcus Brinkmann, 2023.

[FDC+07] Hal Finney, Lutz Donnerhacke, Jon Callas, Rodney L. Thayer, and
Daphne Shaw. OpenPGP Message Format. RFC 4880, November 2007.

[FFW13] Anna Lisa Ferrara, George Fuchsbauer, and Bogdan Warinschi. Crypto-
graphically enforced rbac. Cryptology ePrint Archive, Paper 2013/492,
2013. https://eprint.iacr.org/2013/492.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 2019.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. J. Cryptol., 26(1):80–101, 2013.

[FPP+02] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti. drbac:
distributed role-based access control for dynamic coalition environments.
In Proceedings 22nd International Conference on Distributed Computing
Systems, pages 411–420, 2002.

[FS07] Eiichiro Fujisaki and Koutarou Suzuki. Traceable Ring Signature, page
181–200. Springer Berlin Heidelberg, 2007.

[Gao18] Shuhong Gao. Efficient fully homomorphic encryption scheme. Cryptology
ePrint Archive, Paper 2018/637, 2018. https://eprint.iacr.org/2018/
637.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting, STOC ’09, page 169–178, New York, NY, USA, 2009. Association
for Computing Machinery.

https://eprint.iacr.org/2013/492
https://eprint.iacr.org/2018/637
https://eprint.iacr.org/2018/637


BIBLIOGRAPHY 189

[GGJR98] Juan A. Garay, Rosario Gennaro, Charanjit Jutla, and Tal Rabin. Se-
cure distributed storage and retrieval. Cryptology ePrint Archive, Paper
1998/025, 1998. https://eprint.iacr.org/1998/025.

[GHW11] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the
decryption of ABE ciphertexts. In 20th USENIX Security Symposium
(USENIX Security 11), San Francisco, CA, August 2011. USENIX Asso-
ciation.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic
Applications. Cambridge University Press, 2004.

[GSK14] Ivan Gudymenko, Felipe Sousa, and Stefan Kopsell. A simple and secure e-
ticketing system for intelligent public transportation based on NFC. In The
First International Conference on IoT in Urban Space, Urb-IoT. ICST,
2014.

[Gud13] Ivan Gudymenko. On protection of the user’s privacy in ubiquitous e-
ticketing systems based on RFID and NFC technologies. In PECCS 2013
- Proceedings of the 3rd International Conference on Pervasive Embedded
Computing and Communication Systems. SciTePress, 2013.

[HAY12] N. Abdul Hamid, M. F. Al A’zhim, and M. L. Yap. e-ticketing system for
football events in malaysia. In 7th International Conference for Internet
Technology and Secured Transactions, ICITST. IEEE, 2012.

[HCE05] Wan Huzaini Wan Hussin, Paul Coulton, and Reuben Edwards. Mobile
ticketing system employing trustzone technology. In International Con-
ference on Mobile Business. IEEE Computer Society, 2005.

[HCS+21] Jinguang Han, Liqun Chen, Steve Schneider, Helen Treharne, and Stephan
Wesemeyer. Privacy-preserving electronic ticket scheme with attribute-
based credentials. IEEE Trans. Dependable Secur. Comput., 2021.

[HK16] F. M. Harper and J. A. Konstan. The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems (TiiS),
5(4):19:1–19:19, 2016.

[HKN05] Shai Halevi, Paul A. Karger, and Dalit Naor. Enforcing confinement in
distributed storage and a cryptographic model for access control. IACR
Cryptol. ePrint Arch., page 169, 2005.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Reg-
istered attribute-based encryption. In Advances in Cryptology – EU-
ROCRYPT 2023: 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon, France, April 23-
27, 2023, Proceedings, Part III, page 511–542, Berlin, Heidelberg, 2023.
Springer-Verlag.

https://eprint.iacr.org/1998/025


BIBLIOGRAPHY 190

[HMU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Polyno-
mial runtime in simulatability definitions. In 18th IEEE Computer Secu-
rity Foundations Workshop, (CSFW-18 2005), 20-22 June 2005, Aix-en-
Provence, France, pages 156–169. IEEE Computer Society, 2005.

[HWYS21] R. Huang, W. Wu, J. Yang, and C. Shen. Federated Linear Contextual
Bandits. In Conference on Neural Information Processing Systems (NIPS),
2021.

[Int06] International Organization for Standardization. Information technology
— automatic identification and data capture techniques — qr code 2005
bar code symbology specification. ISO/IEC 18004:2006, 2006.

[KLG13] Florian Kerschbaum, Hoon Wei Lim, and Ivan Gudymenko. Privacy-
preserving billing for e-ticketing systems in public transportation. In Pro-
ceedings of the 12th annual ACM Workshop on Privacy in the Electronic
Society, WPES 2013. ACM, 2013.

[KLSW24] Hyesun Kwak, Dongwon Lee, Yongsoo Song, and Sameer Wagh. A gen-
eral framework of homomorphic encryption for multiple parties with non-
interactive key-aggregation. In Christina Pöpper and Lejla Batina, editors,
Applied Cryptography and Network Security, pages 403–430, Cham, 2024.
Springer Nature Switzerland.

[KMea21] P. Kairouz, H. B. McMahan, and et al. Advances and Open Problems
in Federated Learning. Foundations and Trends in Machine Learning,
14(1–2):1–210, 2021.

[KMS22] Hyesun Kwak, Seonhong Min, and Yongsoo Song. Towards practical multi-
key tfhe: Parallelizable, key-compatible, quasi-linear complexity. IACR
Cryptol. ePrint Arch., 2022:1460, 2022.

[KP14] V. Kuleshov and D. Precup. Algorithms for Multi-Armed Bandit Prob-
lems. CoRR, abs/1402.6028, 2014.

[KS06] L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. In
European Conference on Machine Learning (ECML), 2006.

[KTR20a] Ralf Küsters, Max Tuengerthal, and Daniel Rausch. The IITM model:
A simple and expressive model for universal composability. J. Cryptol.,
33(4):1461–1584, 2020.

[KTR20b] Ralf Küsters, Max Tuengerthal, and Daniel Rausch. Joint state composi-
tion theorems for public-key encryption and digital signature functionali-
ties with local computation. J. Cryptol., 33(4):1585–1658, 2020.

[KTY04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable Signatures,
page 571–589. Springer Berlin Heidelberg, 2004.



BIBLIOGRAPHY 191

[LCLS10] L. Li, W. Chu, J. Langford, and R. E. Schapire. A Contextual-bandit
Approach to Personalized News Article Recommendation. In International
Conference on World Wide Web (WWW), 2010.

[LLG01] Xiaoshan Li, Zhiming Liu, and Zhensheng Guo. Formal object-oriented
analysis and design of an online ticketing system. In 8th Asia-Pacific
Software Engineering Conference (APSEC 2001). IEEE Computer Society,
2001.

[LMMOA24] Pascal Lafourcade, Dhekra Mahmoud, Gael Marcadet, and Charles
Olivier-Anclin. Transferable, auditable and anonymous ticketing proto-
col, 2024. https://github.com/gamarcad/ETS.

[LMY14] Weiwei Liu, Yi Mu, and Guomin Yang. An efficient privacy-preserving e-
coupon system. In International Conference on Information Security and
Cryptology. Springer, 2014.

[LNGH19] Xuelian Li, Jie Niu, Juntao Gao, and Yue Han. Secure electronic ticketing
system based on consortium blockchain. KSII Trans. Internet Inf. Syst.,
2019.

[LS14] Phillip Leslie and Alan Sorensen. Resale and rent-seeking: An application
to ticket markets. Review of Economic Studies, 81(1):266–300, 2014.

[LSF20] T. Li, L. Song, and C. Fragouli. Federated Recommendation System via
Differential Privacy. In International Symposium on Information Theory
(ISIT), pages 2592–2597, 2020.

[LW16] Bin Liu and Bogdan Warinschi. Universally composable cryptographic
role-based access control. Cryptology ePrint Archive, Paper 2016/902,
2016. https://eprint.iacr.org/2016/902.

[MDND15] Milica Milutinovic, Koen Decroix, Vincent Naessens, and Bart De Decker.
Privacy-preserving public transport ticketing system. In Data and Appli-
cations Security and Privacy- 29th Annual IFIP WG 11.3 Working Con-
ference, DBSec. Springer, 2015.

[MHP21] A. Mitra, H. Hassani, and G. Pappas. Exploiting Heterogeneity in Robust
Federated Best-Arm Identification. CoRR, abs/2109.05700, 2021.

[MPR11] Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-
based signatures. In Cryptographers’ track at the RSA conference, pages
376–392. Springer, 2011.

[MSJP22] Akash Madhusudan, Mahdi Sedaghat, Philipp Jovanovic, and Bart Pre-
neel. Nirvana: Instant and anonymous payment-guarantees. IACR Cryp-
tol. ePrint Arch., page 872, 2022.

[MSM23] Omid Mir, Daniel Slamanig, and René Mayrhofer. Threshold delegatable
anonymous credentials with controlled and fine-grained delegation. IEEE
Transactions on Dependable and Secure Computing, 2023.

https://github.com/gamarcad/ETS
https://eprint.iacr.org/2016/902


BIBLIOGRAPHY 192

[NAJ15] Lekshmi S. Nair, V. S. Arun, and Sijo Joseph. Secure e-ticketing system
based on mutual authentication using RFID. In Proceedings of the Third
International Symposium on Women in Computing and Informatics, WCI
2015. ACM, 2015.

[Ngu06] Lan Nguyen. Privacy-protecting coupon system revisited. In Financial
Cryptography and Data Security: 10th International Conference, FC 2006
Anguilla, British West Indies, February 27-March 2, 2006 Revised Selected
Papers 10, pages 266–280. Springer, 2006.

[NSI+15] Johanna Nieminen, Teemu Savolainen, Markus Isomaki, Basavaraj Patil,
Zach Shelby, and Carles Gomez. IPv6 over BLUETOOTH(R) Low Energy.
RFC 7668, October 2015.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, Advances in Cryptology — EU-
ROCRYPT ’99, pages 223–238, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[Pan16] Madhumita Panda. Performance analysis of encryption algorithms for
security. In 2016 International Conference on Signal Processing, Commu-
nication, Power and Embedded System (SCOPES), pages 278–284. IEEE,
2016.

[Par21] Jeongeun Park. Homomorphic encryption for multiple users with less com-
munications. IEEE Access, 9:135915–135926, 2021.

[Pay18] PaySafeCard. Paysafecard. https://www.paysafecard.com/fr/, 2018.

[Pro16] GET Protocol. GUTS Ticketing. https://guts.tickets/, 2016.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. J. Cryptol., 13(3):361–396, 2000.

[PSSY21] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame.
ABY2.0: Improved Mixed-Protocol secure Two-Party computation. In
30th USENIX Security Symposium (USENIX Security 21), pages 2165–
2182. USENIX Association, August 2021.

[RBCS23] Alexandre Rio, Merwan Barlier, Igor Colin, and Marta Soare. Multi-agent
best arm identification with private communications. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 29082–29102. PMLR, 23–29 Jul 2023.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, August 2018.

[RLRD78] Len Adleman Ronald L. Rivest and Michael L. Dertouzos. On data banks
and privacy homomorphisms. 1978.

https://www.paysafecard.com/fr/
https://guts.tickets/


BIBLIOGRAPHY 193

[RNTS07] Jason Reid, Juan M Gonzalez Nieto, Tee Tang, and Bouchra Senadji.
Detecting relay attacks with timing-based protocols. In Proceedings of
the 2nd ACM symposium on Information, computer and communications
security, pages 204–213, 2007.

[Rob22] Léo Robert. Design and analysis of provably secure protocols: Applications
to messaging and attestation. (Conceptions et analyses de protocoles en
sécurité prouvable: applications aux messageries et à l’attestation). PhD
thesis, University of Clermont Auvergne, Clermont-Ferrand, France, 2022.

[RVK+18] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen. A Tutorial
on Thompson Sampling. Foundations and Trends in Machine Learning,
11(1):1–96, 2018.

[Sab13] Nicolas Van Saberhagen. Monero Research Paper, 2013.

[SB18] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[SBFK20] Johannes Sedlmeir, Hans Buhl, Gilbert Fridgen, and Robert Keller. The
energy consumption of blockchain technology: Beyond myth. Business &
Information Systems Engineering, 62, 12 2020.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Jour-
nal of cryptology, 1991.

[SFB+23] Andrei Stoian, Jordan Frery, Roman Bredehoft, Luis Montero, Celia Kher-
fallah, and Benoit Chevallier-Mames. Deep neural networks for encrypted
inference with tfhe. Cryptology ePrint Archive, Paper 2023/257, 2023.
https://eprint.iacr.org/2023/257.

[Sho04] Victor Shoup. Sequences of games: A tool for taming complexity in secu-
rity proofs. IACR Cryptology ePrint Archive, 2004:332, 01 2004.

[SS21] C. Shi and C. Shen. Federated Multi-Armed Bandits. In AAAI Conference
on Artificial Intelligence, 2021.

[SSV08] Marc Sel, Stefaan Seys, and Eric R. Verheul. The security of mass trans-
port ticketing systems. In ISSE 2008 - Securing Electronic Busines Pro-
cesses, Highlights of the Information Security Solutions Europe 2008 Con-
ference, 2008.

[SSY21] C. Shi, C. Shen, and J. Yang. Federated Multi-armed Bandits with Per-
sonalization. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 2917–2925, 2021.

[STMC+23] Meltem Sonmez Turan, Kerry McKay, Donghoon Chang, Lawrence E
Bassham, Jinkeon Kang, Noah D Waller, John M Kelsey, and Deukjo
Hong. Status report on the final round of the NIST lightweight cryptogra-
phy standardization process. June 2023.

https://eprint.iacr.org/2023/257


BIBLIOGRAPHY 194

[SXXS21] C. Shi, H. Xu, W. Xiong, and C. Shen. (Almost) Free Incentivized Ex-
ploration from Decentralized Learning Agents. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[TD16] A. C. Y. Tossou and C. Dimitrakakis. Algorithms for Differentially Pri-
vate Multi-Armed Bandits. In AAAI Conference on Artificial Intelligence,
pages 2087–2093, 2016.

[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-times anonymous
authentication (extended abstract). In Advances in Cryptology - ASI-
ACRYPT 2004. Springer, 2004.

[TH16] Hitesh Tewari and Arthur Hughes. Fully anonymous transferable ecash.
Cryptology ePrint Archive, 2016.

[Tho33] W. R. Thompson. On the Likelihood that One Unknown probability Ex-
ceeds Another in View of the Evidence of Two Samples. Biometrika,
25:285–294, 1933.

[TTS+24] Daniel Truhn, Soroosh Tayebi Arasteh, Oliver Lester Saldanha, Gus-
tav Müller-Franzes, Firas Khader, Philip Quirke, Nicholas P. West,
Richard Gray, Gordon G.A. Hutchins, Jacqueline A. James, Maurice B.
Loughrey, Manuel Salto-Tellez, Hermann Brenner, Alexander Brobeil,
Tanwei Yuan, Jenny Chang-Claude, Michael Hoffmeister, Sebastian Fo-
ersch, Tianyu Han, Sebastian Keil, Maximilian Schulze-Hagen, Peter Is-
fort, Philipp Bruners, Georgios Kaissis, Christiane Kuhl, Sven Nebelung,
and Jakob Nikolas Kather. Encrypted federated learning for secure decen-
tralized collaboration in cancer image analysis. Medical Image Analysis,
92:103059, 2024.

[TY24] Tamir Tassa and Avishay Yanai. The multiple millionaires’ problem. Cryp-
tology ePrint Archive, Paper 2024/005, 2024. https://eprint.iacr.

org/2024/005.

[VGV97] M. Vandenwauver, R. Govaerts, and J. Vandewalle. Role Based Access
Control in Distributed Systems, pages 169–177. Springer US, Boston, MA,
1997.

[Web04] Object storage devices. https://webstore.ansi.org/standards/

incits/ansiincits4002004, 2004. Accessed: 2010-09-30.

[XTB04] Minhui Xie, Mark Tomlinson, and Bobby Bodenheimer. Interface design
for a modern software ticketing system. In Proceedings of Annual Southeast
Regional Conference. ACM, 2004.

[Yao82] Andrew C. Yao. Protocols for secure computations. Annual Symposium
on Foundations of Computer Science - Proceedings, pages 160–164, 1982.

[YZ22] Yuan YuanJiang and Ji Ting Zhou. Ticketing system based on NFT.
In 24th IEEE International Workshop on Multimedia Signal Processing,
MMSP 2022. IEEE, 2022.

https://eprint.iacr.org/2024/005
https://eprint.iacr.org/2024/005
https://webstore.ansi.org/standards/incits/ansiincits4002004
https://webstore.ansi.org/standards/incits/ansiincits4002004


BIBLIOGRAPHY 195

[Zam20] Zama. Concrete tfhe library from zama. https://docs.zama.ai/

tfhe-rs, 2020.

[ZZLL21] Z. Zhu, J. Zhu, J. Liu, and Y. Liu. Federated Bandit: A Gossiping Ap-
proach. Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems, 5(1), 2021.

https://docs.zama.ai/tfhe-rs
https://docs.zama.ai/tfhe-rs


BIBLIOGRAPHY 196



Appendix A
Résumé Long

La notion de protocole est centrale dans la diffusion d’information et la communication
au sein d’un réseau. Un protocole se définit par une séquence d’échanges entre plusieurs
machines dans le but de réaliser une tâche spécifique. Prenons comme exemple celui du
protocole HyperText Transfer Protocol Secure (HTTPS), qui permet le transfert sécurisé
de pages internet. Plus généralement, un protocole comme HTTPS doit garantir un
ensemble de propriétés de sécurité telles que l’intégrité, l’authenticité et la confidentialité
des données échangées.

Une propriété de sécurité est une contrainte que le protocole doit respecter. Pour
satisfaire les propriétés de sécurité, le concepteur de protocoles dispose d’un ensemble
de primitives cryptographiques. Ces primitives cryptographiques englobent un large
éventail de fonctionnalités, allant du chiffrement des données à la signature électronique,
en passant par le calcul directement sur des données chiffrés. Une fois intégrées dans
une séquence d’échanges, ces primitives cryptographiques seront utilisées pour fournir
une preuve démontrant que le protocole respecte l’ensemble des propriétés de sécurité
exigées et qu’il constitue ainsi une solution viable pour réaliser une tâche donnée, tout
en respectant les contraintes de sécurité.

Une multitude de protocoles cryptographiques peuvent exister permettant de ré-
soudre un problème donné, tout en respectant un ensemble de contraintes de sécurité.
Ces protocoles ne sont pas tous équivalents. En effet, l’utilisation d’une primitive cryp-
tographique peut entraîner des différences drastiques de performance par rapport à une
autre primitive. De plus, un nombre élevé d’utilisateurs du protocole impose une con-
trainte de performance que le concepteur doit prendre en compte pour proposer des
protocoles pertinents.

Dans ce manuscrit, nous nous intéressons à trois problèmes impliquant plusieurs util-
isateurs, d’une dizaine à plusieurs centaines. Dans le premier chapitre, nous étudions la
conception d’un système de recommandation basé sur de l’apprentissage par renforce-
ment. Le second et troisième problèmes se focalisent respectivement sur la conception
d’un système de billets, capable de supporter jusqu’à un millier de visiteurs, et la con-
ception d’un système de transfert de fichiers efficaces conçu pour une grande entreprise
répartie sur plusieurs sites.

Protocole de Bandits Sécurisé dans un Contexte Fédéré

Un algorithme de bandits est un algorihme d’apprentissage par renforcement, dans lequel
un agent dipose d’un ensemble de choix. Chaque choix est associé à une probabilité de
produire une récompense binaire: soit zéro, l’agent n’est alors pas récompensé, soit un et
l’agent est récompensé. La probabilité d’obtenir une récompense en choisissant le i-ème
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choix, dénotée µi. En disposant de toutes les probabilités de récompenses, il est facile
de maximiser ses récompenses en ne faisant que le choix de la plus haute probabilité de
récompense. Toutefois, le problème devient plus délicat lorsque l’agent ne dipose pas
des probabilités des récompenses.

Ce problème est référé dans la litérature comme le problème de maximisation des
récompense des bandits, dont la représentation commune est celle d’un casino: Sup-
posons un agent disposant de N pièces face à K bandits, un bandit étant une machine
à sous équipé d’un bras mécanique que l’agent actionne après avoir inséré une pièce,
le bandit retournant soit une récompense avec une certaine probabilité µ soit aucune
récompense avec probabilité 1 − µ. L’agent va au fur et à mesure de ses tirages, ori-
enter son tirage sur le bandit avec la plus haute probabilité de récompense. Beaucoup
d’algorithmes présents dans la litérature sont capables de résoudre ce problème, comme
par exemple les algorithmes UCB, Thompson Sampling ou bien encore ϵ-greedy intro-
duits dans [KP14].

Ce problème de maximisation des récompenses pour des bandits peut prendre des
formes très diverses selon le contexte. Dans ce travail, nous nous focalisons sur une ar-
chitecture dîte fédérée, où chaque bandit est indépendant des autres bandits. Dans cette
architecture fédérée, l’agent souhaitant maximiser ses récompenses est représenté par un
serveur de fédération. Cette architecture distribuée est représentée en Figure A.1. Bien
que le problème semble identique, nous pouvons faire deux remarques: premièrement,
chaque bandit est indépendant des autres, le i-ème bandit est capable de produire une
récompense dont la probabilité est paramétrée par une probabilité µi. En pratique, µi
n’est pas connu par le i-ème bandit, mais dispose d’une fonction noté pull capable de
produire une récompense, cette fonction étant spécifique au contexte dans lequel on se
place. Par exemple, dans un contexte de recommandation de catégorie de films, le i-
ème bandit peut correspondre à un genre de films par exemple- aux films d’actions, une
possible implémentation de pull serait ainsi de jouer une film d’action et de retourner 1

si les retours d’un spectateur cible sont bons, 0 autrement.

...

ServeurUtilisateur

K
Bandits

(1) Envoie du Budget N

(3) Envoie des Récompenses
(2) Intéragit N fois

Figure A.1: Architecture des Bandits à Fédérés.

Dans le contexte fédéré, le serveur permet à un utilisateur du système de déléguer
la tâche de maximisation des récompenses au serveur, lui donnant le budget initial
N , qui lui retourne la somme de toutes les récompenses générées par les bandits une
fois le problème de maximisation des récompenses résolu dans un contexte fédéré par
un des algorithmes mentionnés. Toutefois, dans un souci de confidentialité, il serait
souhaitable que le serveur ne puisse pas identifier le bandit. Par ailleurs, le serveur
ne doit pas connaître l’ensemble des récompenses obtenues, même si celui-ci reçoit les
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récompenses générées localement par les bandits avec d’en faire la somme et de retourner
le somme des récompenses générées à l’utilisateur. Toutes ces contraintes, en plus du
problème initial de maximisation des récompenses pour des bandits dans un contexte
fédéré, constitue le problème de maximisation des récompenses pour des bandits fédéré
sécurisé.

Ce problème a déjà été considéré par notre publication datant de 2022, introduisant
le framework nommé Samba [CLMS22]. Informellement, ce framework permet à un
algorithme de bandits, respectant une condition précise, de se voir intégrer dans Samba

pour résoudre le problème de maximisation des récompenses fédéré sécurisé. Ainsi, ce
framework transforme un algorithme de bandits en un protocole pour résoudre le même
problème, cette fois dans un contexte fédéré et de façon sécurisé, c’est-à-dire sans que le
serveur ne puisse identifier le bandit ayant la meilleure probabilité de récompenses, mais
également les récompenses générées. Toutefois, nous avons montré que Samba souffre
de deux problèmes: tout d’abord, il apparaît que la récompense retournée par un algo-
rithme de bandits intégré dans Samba ne soit pas identique dans tous les cas comparé
à l’algorithme de bandits seul. Par ailleurs, le serveur peut malgré tout retrouver de
l’information, en particulier sur la probabilité des scores ce qui compromet la sécurité
attendue de Samba.

Pour surmonter ces deux faiblesses, nous présentons deux protocoles appelés re-
spectivement Tango et Salsa, capables de résoudre le problème de maximisation des
récompenses pour les bandits dans un contexte fédéré. Informellement, Tango repose
sur la même architecture que Samba, la différence majeure étant la répartition du tra-
vail et ainsi des primitives utilisées: dans Samba, le serveur est en réalité deux serveurs,
l’un des deux servant de proxy recevant K valeurs provenant des bandits, qui sont en-
suites transférées à l’autre serveur pour identifier le meilleur bandit. Ces valeurs sont
cruciales dans l’algorithme de bandit mais doivent être gardées secrètes, même s’il est
nécessaire de les comparer pour identifier le meilleur bandit. À la différence de Samba,
dans Tango, cette comparison est réalisée directement par le proxy sur des valeurs qui
sont ici chiffrées [Gen09]. Le résultat de la comparaison est ensuite transmis au second
serveur. Nous avons montré formellement que Tango garantie la confidentialité des
récompenses générées et de l’identité du bandit choisi pour chaque pièce disponible, et
donc par extension l’identité du bandit avec la meilleure probabilité de récompenses. La
sécurité de Tango a été montrée au regard d’un modèle de sécurité capturant toutes
les contraintes de sécurité, modèle que nous avons introduit.

Bien que sûr, Tango a un problème majeur: Tango est construit à l’aide d’un
chiffrement sur lequel il est possible de faire des calculs. Appelé chiffrement homomor-
phe, ce genre de chiffrement souffre d’un temps d’exécution significatif. Ainsi, Tango

peut paraître lent. En effet, identifier le meilleur parmi 9 bandits nécessite 2.3 secondes,
ce qui est problématique vis-à-vis des cas d’applications temps réel comme par exemple
en finance pour des recommandations d’actions.

Pour pallier à ce problème, nous proposons un autre protocole Salsa, dont l’approche
change considérablement. En effet, ce protocole se base sur du calculs multi-parties
sécurisées, dont l’idée générale consiste à répartir une donnée sur plusieurs serveurs,
chaque serveur reçevant ce qui est appelé une part, une part n’étant pas suffisant pour
recouvrer la donnée initiale. Toutefois, comme il a été démontré, il est possible de simuler
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un circuit arbitraire sur les parts de sorte à ce que de nouvelles parts, une fois combinée,
produise le résultat attendu [DSZ15, PSSY21]. Cette approche nous permet d’atteindre
de bonnes performances, nécessitant seulement 0.15 milliseconde pour choisir le meilleur
bandit parmi neufs, là où il faut 2.3 secondes pour Tango. La sécurité de Salsa a été
démontré formellement en utilisant le même modèle de sécurité que Tango.

Système Auditable de Billets Anonyme Transférable

Les systèmes de billets actuellement en place et utilisés par des milliers d’utilisateurs
fournissent les fonctionalités standards includant l’achat et le remboursement d’un billet,
mais également la validation du billet à l’entrée de l’événement. Toutefois, avec la
dématérialisation des billets, il est devenu facile de dupliquer son billet ou bien encore
de le vendre en ligne. Par ailleurs, un billet est systèmatiquement nominatif ce qui
impliques deux faits: premièrement, il est devient alors impossible pour un utilisateur
de transférer son billet à un autre utilisateur, par exemple à un proche. De plus un
utilisateur du système devient alors parfaitement identifiable.

Dans un soucis de conserver la vie privée des utilisateurs, nous avons décider de con-
vevoir un système de billets qui surmonte ces limitations. Nommé Applause, ce proto-
cole offre à l’utilisateur les fonctionalités standards includant l’achat et le reboursement
d’un billet, mais également la validation d’un billet à l’entrée d’un événement. Mais il
permet également de transférer son billet à un proche, une fonctionalité qui nous paraît
essentielle qui permet une résoudre une situation courante où un utilisateur ne peut
plus se rendre à l’événement. En plus de ces fonctionalités, un utilisateur est garanti
que quelque soit l’intéraction qu’il établit avec le système ou avec un autre utilisateur,
l’identité de l’utilisateur ne sera jamais divulgué, lui garantissant ainsi son anonymat.

Autorité de Transfer TDistributeur D Validateur V

Utilisateur U1 Utilisateur U2
(3) Remboursement

(1) Achat (2a) Communication

(2b) Transfert (2b) Transfert

(3) Validation

Figure A.2: Architecture pour le Système de Billets.

Informellement, notre protocole Applause est construit selon l’architecture présen-
tée en Figure A.2. Pour acheter un billet, un utilisateur doit intéragir avec le Distributeur
D avec qui il va exécuter le protocole d’achat. Ce protocole résulte pour l’utilisateur
en l’obtention d’un ticket valide. Le Distributeur peut également procédé à son rem-
boursement s’il le souhaite en exécutant le protocole de Remboursement. Par ailleurs,
l’utilisateur peut transférer son billet à un autre utilisateur. Pour garantir la validité du
transfert, une autorité est considérée dont le rôle est exclusivement dédiée à la validation
du transfert. Le transfer d’un billet ne suppose pas nécessairement que les deux utilisa-
teurs se connaissent mais doivent disposer d’un moyen de communication comme par
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exemple du Bluetooth [NSI+15] afin d’échanger du matériel cryptographique essentiel
au bon déroulement du protocole de tranfert. Enfin, le système permet à un utilisa-
teur détenant un billet de le valider auprès du validateur à l’entrée de l’événement,
l’entrée étant autorisée seulement si le billet détenu est valide. Le protocole dans son
intégralité repose sur un ensemble de primitives efficaces, ce qui lui permet d’atteindre
des performances cryptographiques élevées: 17 milisecondes pour l’achat d’un billet, 68
millisecondes pour le transfert d’un billet, 25 millisecondes pour le remboursement et 45
millisecondes pour la validation, les temps présentés prenant en compte seulement les
opérations cryptographiques et non le temps de communication.

L’anonymat d’un utilisateur est une propriété intéressante. Mais dans une situation
extrême comme un incendie, il est impératif d’être en mesure d’identifier les utilisa-
teurs participants un événements. Toutefois, l’anonymat étant garantie quelque soit
l’intéraction avec le système, il devient alors difficile de surmonter ces contraintes.
Pour pallier à ce problème, nous avons construit une variante d’Applause nommée
Spotlight, capable de retrouver l’identité d’un utilisateur ayant accédé à l’événement.
Plus précisément, lors de l’entrée à l’événement, le validateur va demander à l’utilisateur
de lui fournir ce que l’on désigne par une preuve qu’il détient un certificat, fourni par
une entité tierce nommée le juge. Le point clé pour obtenir cette capacité à retrou-
ver l’identité de l’utilisateur réside dans la capacité du juge à retrouver l’identité de
l’utilisateur à partir de cette preuve. Le reste du système reste incapable d’identifier
l’utilisateur, même ayant accès à cette preuve fournie par l’utilisateur lors de l’entrée à
l’événement. En terme de performance, de par sa proximitié avec Applause, notre pro-
tocole Spotlight reproduit presque les mêmes temps d’exécution. La seule différence
apparaît pendant la validation du billet qui passe de 45 millisecondes à 165 millisecondes,
ce qui reste tout de même pertinent pour un cas d’usage réél.

Transfert de Fichiers Distribuées Basé sur Attributs

Le transfer de fichiers en utilisateurs, en particulier lorsqu’un nombre d’utilisateurs
devient grand, doit être efficace. Actuellement, la solution la plus courante pour envoyer
un fichier entre un utilisateur et un groupe d’utilisateurs consiste à envoyer le fichier par
courriel, le fichier étant conservé sur le serveur de mail pour récupération. Toutefois, cela
n’est pas optimal lorsque le nombre d’utilisateurs augmentent, encore plus lorsque les
utilisateurs sont éloignés du serveur, ce qui accroît la durée nécessaire pour récupérer
un fichier dû à la latence du réseau sur lequel les données transmises. Ce problème
s’intensifie lorsque de nouvelles propriétés doivent être garanties comme la confidentialité
des fichiers échangés, l’intégrité du fichier ou bien encore l’authenticité du fichier.

Notre objectif est de répondre à cette problèmatique en envisgeant une solution
efficace et capable de s’adapter à un problème à large échelle, comme par exemple dans
le cas d’une entreprise mondiale disposant d’une multitude de bureaux répartis à travers
le monde. Notre protocole, présenté en Figure A.3, répond à cette problématique de
façon efficace via l’utilisation de primitives simples. En substance, le protocole démarre
avec un utilisateur diposant d’un fichier qu’il souhatie envoyer à un groupe d’utilisateur.
Chaque utilisateur de ce groupe dispose d’un attribut qui l’identifie comme faisant partie
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de ce groupe. Ceci est crucial car l’expéditeur va alors chiffrer son fichier en associant
une politique d’accès. Plus précisément, seuls les utilisateurs disposant d’un attribut
satisfaisant cette politique d’accès est susceptible de déchiffrer ce fichier. De ce chiffré
sera ensuite dérivé un lien qui sera par la suite signé, garantissant l’intégrité du fichier
retourné.

Réseau de Stockage Distribué

Alice(f) Canal de Communication (Lent) Bob

(3) Lien l (3) Lien l

(1) Envoie c (2) Réception Lien l (4) Envoie Lien l (5) Télécharge c

Figure A.3: Représentation de notre système où un expéditeur partage un fichier f à
un receveur.
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