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“In life, nothing is to be feared, everything is to be understood. 

Now is the time to understand more, 

so that we may fear less." 

- Marie Curie 

 

 

“Just Like Science,  

Emerging Infectious Diseases Know No Borders.”  
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Summary  

Arboviruses (Arthropod-Borne Viruses), specifically those belonging to the Flaviviruses genus, 

including Dengue virus, Zika virus, Japanese Encephalitis Virus, and others, pose significant 

threats to public health. These emerging infectious diseases put millions at risk of infection, 

causing thousands of deaths worldwide, each year. Tropical and subtropical regions have been 

highly susceptible to these viruses due to a combination of several factors, including 

conductive humid climate, rich natural biodiversity, abundant breeding sites, rapid 

urbanization, increased globalization, extensive travel, as well as limited resources for vector 

control. Dengue is considered one of the fastest and most dangerous tropical fever diseases 

transmitted to humans by mosquitoes. Due to its widespread occurrence and high morbidity 

and mortality rates, it is identified as the leading cause of fever after Malaria. La Réunion 

Island, a French department located in the Southwest of the Indian Ocean, has been 

significantly impacted by the emergence and re-emergence of dengue epidemics since 1977. 

Since then, this has been considered a major health problem as it has caused thousands of 

infections and hundreds of fatalities. These epidemics were triggered by the primary mosquito 

vector for Dengue virus on the island, Aedes albopictus, one of the most invasive mosquito 

species. Based on specific environmental and biological factors, mosquito populations in La 

Réunion had developed a susceptibility to the infection by the four-dengue virus (DENV) 

serotypes, contributing to high transmission efficiency and creating a complex interplay 

between environmental and biological factors. Thus, understanding the biology of Aedes 

albopictus competence towards the DENV serotypes circulating locally is crucial for devising 

effective strategies to mitigate Dengue transmission in La Réunion. As of today, no medically 

confirmed treatment has been established for Dengue virus. Thus, vector control, limiting the 

density of vector mosquitoes is the most used method to break the transmission chain. An 

emphasized biological control strategy is the use of Wolbachia bacterium. Naturally present 

in many insects, notably Aedes albopictus, it is one of the biological intrinsic factors that might 

affect vector competence toward DENV. Different studies have shown that Wolbachia can 

limit the DENV infection in Aedes mosquitoes by manipulating several physiological traits.   

My thesis aims to characterize the genetic and phylogeny of the DENV-1 circulating in La 

Réunion Island during the last epidemic and to explore both extrinsic and intrinsic factors 

influencing the competence of Aedes albopictus towards the DENV-1 and DENV-2 serotypes 

that have emerged. A significant portion of the research is dedicated to exploring the 

symbiotic relationship between Aedes albopictus and the Wolbachia bacterium, emphasizing 

its influence on intestinal balance both after ingestion of a blood meal and the Dengue virus. 

Keywords: Aedes albopictus, Dengue Virus, Wolbachia, Vector competence, La 

Réunion Islands, Dengue epidemics, midgut, Intestinal Stem Cells, Apoptosis, Intestinal 

homeostasis. 
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Résumé : 

Les arbovirus (virus transmis par les arthropodes), en particulier ceux appartenant au genre 

des Flavivirus, tels que le virus de la Dengue, le virus Zika, le virus de l'Encéphalite Japonaise, 

et d'autres, représentent une menace importante pour la santé publique. Ils sont à l’origine 
de maladies infectieuses émergentes qui mettent en danger la santé des populations infectées 

par ces virus et causent de milliers de décès dans le monde chaque année. Les régions 

tropicales et subtropicales sont particulièrement touchées par la circulation de ces virus en 

raison d'une combinaison de plusieurs facteurs, notamment un climat humide propice, une 

riche biodiversité naturelle, des sites de reproduction abondants pour les vecteurs, une 

urbanisation rapide, une mondialisation accrue, ainsi que des ressources limitées pour le 

contrôle des vecteurs. La Dengue est considérée comme l'une des maladies fébriles tropicales 

les plus rapides et dangereuses transmises à l'homme par les moustiques. En raison de sa 

prévalence généralisée et de ses taux élevés de morbidité et de mortalité, elle est identifiée 

comme la principale cause de fièvre après le paludisme. L'île de La Réunion, un département 

français situé au sud-ouest de l'océan Indien, a été fortement impactée par l'émergence et la 

réémergence d'épidémies de Dengue depuis 1977. Depuis lors, il s'agit d'un problème de santé 

majeur, ayant causé des milliers d'infections et des centaines de décès. Ces épidémies ont été 

déclenchées par le moustique vecteur principal sur l'île, Aedes albopictus, l'une des espèces 

de moustiques les plus invasives. Sur la base de facteurs environnementaux et biologiques 

spécifiques, les populations de moustiques à La Réunion ont développé une susceptibilité à 

l'infection par les quatre sérotypes du virus de la Dengue (DENV), contribuant à une efficacité 

élevée de transmission et créant une interaction complexe entre les facteurs 

environnementaux et biologique. Ainsi, comprendre la compétence vectroielle d'Aedes 

albopictus vis-à-vis des sérotypes de DENV circulant localement est crucial pour élaborer des 

stratégies efficaces de lutte contre la transmission de la Dengue à La Réunion. À ce jour, aucun 

traitement médicalement confirmé n'a été établi pour le virus de la Dengue. Ainsi, le contrôle 

des vecteurs, en limitant la densité des moustiques vecteurs, est la méthode la plus utilisée 

pour rompre la chaîne de transmission. Une stratégie de contrôle biologique mise en avant 

est l'utilisation de la bactérie Wolbachia. Naturellement présente chez de nombreux insectes, 

notamment chez Aedes albopictus, elle est l'un des facteurs intrinsèques biologiques qui 

pourraient affecter la compétence vectorielle vis-à-vis de DENV. Différentes études ont 

montré que cette dernière peut limiter l'infection par DENV chez les moustiques Aedes en 

manipulant plusieurs traits physiologiques. 

Ma thèse a visé à caractériser la génétique et la phylogénie du DENV-1 circulant à La Réunion 

lors de la dernière épidémie et à explorer les facteurs extrinsèques et intrinsèques influençant 

la compétence d'Aedes albopictus vis-à-vis des sérotypes DENV-1 et DENV-2 qui ont émergé a 

cette époque. Une part importante de la recherche a été consacrée à l'exploration de la 

relation symbiotique entre Aedes albopictus et la bactérie Wolbachia, en mettant l'accent sur 

son influence sur l'équilibre intestinal tant après l'ingestion d'un repas sanguin que du virus 

de la Dengue. 
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Thesis structure  

This Ph.D. thesis manuscript is organized into five distinct parts, enabling a thorough 

exploration of the complex interactions between the Dengue virus, its vectors, and the 

environmental and biological factors influencing its transmission in La Réunion Island, 

contributing significantly to the field of virology and vector biology: 

Part I. Introduction to Flaviviruses: This initial section provides a comprehensive introduction 

to the history of Flaviviruses, with a particular focus on the global emergence of the Dengue 

virus and the widespread distribution of its primary vectors, the Aedes spp. mosquitoes. It lays 

the foundation for understanding the context and significance of the research conducted. 

Part II. Thesis research program: In this section, we will address the general background of 

the thesis as well as the axes and the objectives of the study. 

Part III. Research results: This part is divided into 3 chapters. In each one, we will present the 

results of the thesis in the form of an article.  

Chapter 1: Dengue virus emergence in La Réunion island: This part investigates the 

history of the Dengue virus emergence on La Réunion Island. It specifically examines the 

recent appearance of the DENV-1 serotype during the epidemic from 2018 to 2021. 

- First key research question: Were the DENV-1 strains, which appeared in the 

neighboring islands—the Seychelles during 2015-2016 and La Réunion during 2019-

2021, introduced from a common source? 

- Research objective: To perform molecular and phylogenetic characterization of 

DENV-1 in La Réunion Island and the Seychelles through partial and complete 

genome sequencing of DENV-1 isolated from patients in both locations. 

Chapter 2: Vector competence of Aedes albopictus: This part assesses the vector 

competence of various Aedes albopictus populations from La Reunion Island for the 

circulating DENV-1, exploring infection rates, dissemination efficiency, transmission 

efficiency, and both extrinsic and intrinsic factors influencing this competence. 

- Second key research question: Do biological factors, particularly the presence of the 

Wolbachia endosymbiont, impact the vector competence of the Reunionese Aedes 

albopictus populations for Dengue virus strains? 

- Research objective: To better understand the vector competence of Aedes 

albopictus populations from Reunion Island for local DENV epidemic strains, 

considering their Wolbachia infection status. 

Chapter 3: Wolbachia effect on midgut structure and homeostasis in Aedes albopictus: 

This section focuses on the structure and homeostasis of the Aedes albopictus midgut, 

emphasizing its role as a primary barrier against foreign invaders. It specifically highlights 

the role of the Wolbachia bacterium in maintaining midgut homeostasis. 

- Third key research question: Does Wolbachia maintain intestinal homeostasis in 

Aedes albopictus after a normal blood meal and DENV-1 infection? 

- Research objective: To investigate Wolbachia's role in preserving the integrity of the 

intestinal epithelium of Aedes albopictus, including its impact on cellular division, 
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apoptosis, and visceral muscle structure, under normal conditions and following 

Dengue virus ingestion. 

Part IV. General discussion and conclusions: The final part offers a comprehensive discussion 

on the thesis work, addressing its limitations and outlining perspectives that provide insights 

into potential strategies for understanding vector competence and reducing Dengue virus 

transmission by the Aedes albopictus mosquito. 

Part V. References 
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“Emerging Infectious Diseases, a global threat” 

  

Part I:  General introduction 

 

In this general introduction, first, we will present vector-borne diseases, 

specifically those induced by the Flavivirus, which are recognized as a global 

health problem affecting many countries worldwide. 

 

Second, we will present the most dangerous tropical fever disease caused 

by the Dengue virus (DENV), with a focus on its incurred incidence over 

centuries.  

 

Third, we will introduce the primary and secondary vectors of DENV, Aedes 

aegypti and Aedes albopictus, respectively. We will focus on the rapid 

expansion of Aedes albopictus population, recognized as an important threat, 

putting millions of people at risk of infection every year.  
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Part I. General introduction 

I. A. Origin and history of infectious vector borne-disease and transmission 

I.A.1. Vector-Borne diseases and Flaviviruses 

Throughout history, Emerging Infectious Diseases (EIDs) have been among the most 

feared scourges of the past. Infections have either recently appeared or resurfaced with 

higher occurrence and wider spread in the population, driven by advantages related to 

evolving conditions (1,2). Each year, over 700,000 deaths caused by EIDs are reported, such 

as Dengue, Zika, Chikungunya, Yellow Fever, Japanese Encephalitis, Rift Valley fever, West Nile 

virus;  Malaria, Schistosomiasis, Human African Trypanosomiasis, Leishmaniasis, Chagas, and 

Onchocerciasis (3). Data from 1952 to 2017, showed that at least one arbovirus (arthropod-

borne virus) was reported in one country/territory by 146 nations, with 123 reporting more 

than one. Specifically, 85 countries/territories reported autochthonous occurrences of Zika 

virus (ZIKV), 111 of dengue virus (DENV), 106 of Chikungunya (CHIKV), 43 of Yellow Fever Virus 

(YFV), and 39 of Rift Valley fever (RVF) (4) (Figure 1). 

For decades, even centuries, the global emergence of arboviral diseases has been 

caused by viruses belonging to the Flaviviridae family, tormenting humanity and causing 

millions of deaths worldwide. They appear unexpectedly in human populations, often causing 

spectra of potentially serious diseases and are a major cause of death. These are considered 

major pathogens for both humans and animals. They are transmitted mainly by arthropods 

and ticks. So far, more than 70 Flavivirus genera have been identified as arthropod-borne 

viruses. Unlike other genera in the Flaviviridae family, Flaviviruses can infect both vertebrate 

and invertebrate species (5,6). 

The temporal origin of Flaviviruses diversification has been subject to debate due to 

inherent challenges in dating the deep evolution of RNA viruses. Phylogenetic analysis 

suggests that Flaviviruses originated approximately ~85,000 (64,000–110,000) years ago from 

a common ancestor. The split of the first group of Flaviviruses into three subgroups — those 

transmitted by mosquitoes, ticks, and those with unknown vectors — dates back to around 

40,000 years (7,8).  

Figure 1 : Global occurrences of the DENV, ZIKV, CHIKV, YFV, and RFV arboviral diseases at the 

country level. The color gradient ranges from white, indicating no occurrences, to red, 

representing the presence of all selected arboviral diseases (Leta S. et al., 2017). 
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 Tick-transmitted Flaviviridae, including tick-borne encephalitis virus, Louping III virus, 

Omsk Hemorrhagic Fever virus, and Kyasanur Forest Disease virus, form a closely related 

and monophyletic group known as of a "serocomplex," despite variations in the diseases 

they caused (8). 

 The mosquito-transmitted Flaviviridae subgroup is more diverse and it includes the 

serological complex of Japanese encephalitis virus (JEV), Yellow Fever Virus (YFV), West 

Nile Virus (WNV), and the four serotypes of Dengue Virus (DENV) (DENV-1, DENV-2, 

DENV-3, and DENV-4) (8). 

 The "No-Known-Vector" group constitutes the third group within the Flavivirus genus, 

where vertebrates such as rodents (transmitting Modoc virus,) and bats (transmitting Rio 

Bravo virus) are the sole hosts, with no arthropod vectors involved in their maintenance 

or transmission so far (8). 

Our study focuses on the mosquito-transmitted Flaviviridae group, which can be broadly 

divided into two sub-groups: 

 Viruses transmitted by Culex spp. Mosquitoes, primarily associated with encephalitic 

Flaviviruses like JEV and WNV, which cause invasive neurological diseases. 

 Viruses transmitted by Aedes spp. Mosquitoes, primarily associated with viscerotropic 

Flaviviruses such as DENV, ZIKV, and YFV, which cause severe hemorrhagic fever (7) 

(Figure 2) (9).  

While the main mosquito-transmitted viruses have existed for thousands of years, the 

separation of DENV, YFV, and JEV groups dates back over 3000 years. The cladogenesis period 

for DENV and JEV occurred in the last two centuries, with most other lineages diverging more 

recently (10). Initially discovered in tropical regions like Africa, South America, and certain 

parts of Asia, the majority of Flaviviruses have now  become widely dispersed and are causing 

diseases globally  (11). 

Figure 2 : Phylogeny of Flaviviruses: Maximum likelihood analysis of selected members of the Flavivirus 

genus. Scale bars indicate amino acid substitutions per site. Branch labels denote virus abbreviations. 

(Roudy CM et al., 2023). 
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I.A.2. Flavivirus infection symptoms 

Flavivirus infection can result in a spectrum of diseases, ranging from subclinical 

infection to neurological or hemorrhagic illnesses leading to organ impairment and death 

(Figure 3). For instance, in the case of YFV disease, the severe form typically follows a biphasic 

pattern. The “infection phase” presents symptoms resembling flu, including fever, fatigue, 

headaches, and muscle pains, which may progress to complications such as hyperemia, 

conjunctival injection, and liver tenderness. Subsequently, some patients enter the “toxicity 

phase” characterized by hemorrhagic disease and organ dysfunction, as evidenced by 

jaundice, nausea, vomiting, and neurological and hemorrhagic manifestations (8,12). 

Similarly, infection with JEV and WNV manifests in symptoms such as headaches, muscle 

pains, diarrhea, and vomiting. As neurotropic viruses, JEV and WNV can lead to complications, 

including neurological signs such as opisthotonos, acute flaccid paralysis, seizures, mental 

confusion, fixed facies, and cogwheel rigidity. Severe forms of the disease may progress to 

severe encephalitis, meningitis, loss of consciousness, coma, and death in 20-30% of patients. 

Additionally, approximately 30-50% of individuals who survive a severe form of the disease 

may experience neurological sequelae occur, including seizures, physical disabilities, and 

cognitive deficits (13). 

   
Figure 3: Flaviviruses general neurological and hemorrhagic symptoms 
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I.A.3. Historical epidemics caused by Flavivirus  

I. A. On the global scale and in the tropical and sub-tropical regions 

Over the past 50 years, the emergence of several arboviruses, has led to countless 

global epidemics. The burden of these diseases is highest in tropical and subtropical regions. 

Ecological factors have been proposed to explain the increase in human infections, linked to 

heightened transmission by Aedes mosquito vectors. Potential factors that have contributed 

to the rise in vector populations and their transmission include changes in land use and 

demographic changes that expose individuals to increased contact with a previous/unknown 

microbe or its natural host, thereby facilitating its propagation, climate changes, population 

growth, population migration to urban areas, and the lack of vaccination leading to low 

immunity among populations (14–16). Since 2014, significant outbreaks of DENV, CHIKV, YFV, 

and ZIKV have afflicted populations in tropical territories, causing deaths, and overwhelming 

healthcare systems (17). Here we will present the global history of emergences of major 

arboviral diseases, related to the Yellow Fever Virus, Japanese Encephalitis Virus, Zika virus, 

and Usutu Virus (arthropod-borne viruses). Dengue virus history, origin of emergence, and 

circulation will be presented in the next sections since we will focus on its emergence on La 

Réunion Island as well as its interaction with the mosquito vector.  

Yellow Fever Virus (YFV), transmitted by Aedes aegypti and Aedes albopictus mosquito 

species, was the first filterable pathogen demonstrated to cause human disease and the first 

virus proven to be transmissible by an arthropod vector (18). The first documented probable 

outbreak of YFV occurred in 1495 mainly in America, in Hispaniola, today known as the 

Dominican Republic (19). However, the first reported epidemic took place either in Barbados 

or St. Kitts in 1647, and in 1648, an epidemic in the Caribbean spread to Yucatan, Mexico, and 

caused afterward regular outbreaks in Cuba (20). Subsequently, major epidemics began to 

affect America. In 1793, the YFV caused the death of about 10% of the population in 

Philadelphia, followed by the largest outbreak in 1878 along the southern Mississippi River 

between Memphis and New Orleans. This epidemic resulted in over 20,000 death cases, with 

estimates of around 120,000 reported cases (21). YFV epidemics persisted in the United States 

until 1905 when the last documented outbreak occurred in New Orleans before the 

appearance of the vaccine (22). However YFV it was still endemic in tropical and subtropical 

regions of Africa and South America, especially among children and the elderly with weakened 

immune systems (23,24). According to the World Health Organization, in 2016-2017, an 

outbreak of YFV in Angola caused 2,267 infections and the death of 293 individuals (25). 

Sporadic cases have been reported primarily in the Amazonian states, with incursions into the 

Southeast in 2002 and 2008, and in the south from 2008 to 2018. A recent epidemic peak was 

recorded in Brazil from 2016 to 2018, with 2,050 registered cases and 681 deaths (19) (Figure 

4.a). 

Japanese Encephalitis Virus (JEV) is an arbovirus primarily transmitted during the 

warm season, in most temperate regions in Asia, which can lead to significant epidemics. Its 

first detection dates to the year 1871 in Japan. Later, in 1924, a major epidemic affected 6,000 

people and resulted in a 60% fatality rate (26). Subsequent outbreaks occurred in 1927, 1935, 

and 1964.  JEV was first isolated from Culex tritaeniorhynchus mosquitoes in 1938 (26). In the 
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following years, initial cases were recorded in several regions worldwide, including mainland 

China in 1940, the Philippines in 1950, Pakistan in 1983, Papua New Guinea in 1995, and the 

northern extension to Australia (27). Three billion people living in 24 areas were affected by 

JEV  (28). In 2006, the annual incidence of JEV was estimated between 30,000 and 50,000 

cases (29) but in 2011 it increased to approximately 67,900 cases (with 50% of these cases 

reported in China), with an estimated fatality rate between 14,000 and 20,500 per year. In 

endemic regions, the incidence rate depends on vaccination, as 55,000 cases (81%) occur in 

areas with developed JEV vaccination programs, while nearly 12,900 cases (19%) occur in 

areas without vaccination programs (30) (Figure 4.b). In tropical and subtropical areas, 

transmission may persist throughout the year but typically intensifies during the rainy season, 

characterized by an increase in vector populations. Major outbreaks occur at intervals of 2-15 

years (31). 

Zika virus (ZIKV), was first isolated in 1947 from the serum of a sentinel rhesus macaque 

monkey in the Zika Forest of the Entebbe Peninsula in Uganda and secondly from Aedes 

africanus mosquito species  (32).  After its discovery, the virus remained confined for the first 

60 years within the equatorial zone across Africa and Asia. The virus began its first emergence 

outside this zone in 2007, when it has primarily emerged in the Pacific and the Americas, 

spreading to Yap Island with 49 confirmed cases (33). In 2013-2014, it was spread eastward to 

New Caledonia, Pacific islands, and French Polynesia, with an estimated 28,000 cases (11% of 

the population) (34,35). It finally reached Latin America and Brazil in 2015, causing significant 

incidents (36), and further disseminated into North America in 2016 (34,37) (Figure 4.c). Until 

today, ZIKV continues its emergence throughout the tropical regions of the Americas. As of 

now, a total of 89 countries and territories in Africa and Asia have reported evidence of ZIKV 

infection transmitted by mosquitoes. These epidemics have underscored the potential of the 

ZIKV to traverse its territory and spread to new geographic locations, capable of causing large-

scale outbreaks. Through species distribution modeling techniques, a recent study predicted 

that a significant portion of the tropical and subtropical regions of the globe present favorable 

environmental conditions but have not yet reported symptomatic cases of Zika virus infection. 

In these regions, over two billion people living in these areas are at risk of being affected by 

ZIKV as populations of Flavivirus vector mosquitoes are expanding (38,39). 

The Usutu Virus (USUV), is a “newly discovered Flavivirus”, an African Mosquito-

Borne Flavivirus of the Japanese Encephalitis Virus Group, it was first identified in Austria in 

2001 when it was found outside of the African continent (40). In the following years, USUV 

causes unusual bird mortality in neighboring countries including Italy, Germany, Spain, 

Hungary, Switzerland, Poland, England, Czech Republic, Greece, and Belgium. The first two 

USUV human infections were reported in Italy in 2009 and in Croatia in 2013. Its natural life 

cycle relies on ornithophilic mosquitoes, primarily Culex spp., as a vector, and wild birds, 

predominantly, as an amplifying host. The primary clinical symptoms of USUV infection 

include nausea, vomiting, headache, fever, nuchal rigidity, hand tremor, and hyperreflexia. In 

more severe cases, it can lead to encephalitis or meningoencephalitis, especially affecting 

immunocompromised patients (41–43). Despite its harmful effects on bird populations and 

the potential threat to human health, there is currently a lack of molecular tools available for 

studying USUV (Figure 4.d). 
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Many other major Flaviviruses continue to emerge and re-emerge in populations 

worldwide, by different vector species, causing significant rates of morbidity and mortality. 

The emergences of these viruses are presented in Table 1.  

I.A.3.2. In La Réunion Island 

La Réunion is a French Island located in the southwestern Indian Ocean and has been 

at risk of the emergence of several Flavivirus species for hundreds of years. 

JEV, YFV, and ZIKV emergences had never been reported on the island. However, there is 

an increased risk of introduction of these viruses. Indeed, there are numerous ongoing human 

and commercial exchanges between Southeast Asia, where JE is endemic, and other regions 

including Africa, the Americas, and the Pacific where ZIKV and YF are endemic. Additionally, 

factors related to vectors such as the expansion of vector populations like Culex and Aedes 

mosquitoes, and amplifying hosts such as pigs and chickens in the island increase the risk of 

the viruses being introduced  (39,44).  

  

Figure 4: Worldwide Historical highlights of Mosquito-borne Flavivirus epidemics (YF: Yellow Fever Virus; JE: 

Japanese Encephalitis Virus; USUTU: USUTUV Virus and ZIKV: Zika Virus 
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Table 1: The table below describes the transmission route and diseases caused by Flaviviruses, outlining the main 

geographical distribution, zoonotic reservoir, clinical syndrome, and estimated number of infections for a given Flavivirus 

(Pierson T. et al., 2020) 

 

  

Virus 

Primary 

geographical 

distribution 

Vectorial 

transmission 
Human disease Cases per year 

Dengue 

Central America, 

North America, 

Asia, Australia, 

Africa 

Aedes aegypti 

Aedes albopictus 

Dengue fever, 

Hemorrhagic Severe 

Dengue 

390 millions cases 

per year 

Zika 

Central America, 

South America, 

Africa, Asia, North 

America 

Aedes aegypti 

Aedes albopictus 

Sexual transmission 

Vertical (mother to 

fetus) 

Febrile syndrome, Guillain-

Barré syndrome, 

Congenital anomaly, 

Microcephaly 

Thousands to 

millions, depending 

on the year (since 

2013) 

West Nile 
North America, 

Middle East, Africa, 

Europe, Australia 

Culex pipiens 

Culex tarsalis 

Febrile syndrome, 

Meningitis, Encephalitis, 

Acute flaccid paralysis 

 

<10 000 cases per 

year 

Japanese 

encephalitis 
Asia, Australia 

Culex 

tritaeniorhynchus 

Culex annulirostris 

Febrile syndrome, 

Meningitis, Encephalitis 

70 000 cases per 

year 

Yellow fever 
Africa, South 

America 
Aedes aegypti 

Febrile syndrome, Hepatic 

failure, Hemorrhagic 

syndrome 

130,000 severe 

cases per year (case 

fatality rate > 50%) 

Powassan 
North America, 

Eastern Europe 

Ixode cookei 

Ixode scapularis 

Febrile syndrome, 

Meningitis, Encephalitis 
Hundreds 

Usutu Africa - Europe Culex pipiens 

Febrile syndrome, 

Meningitis Encephalitis, 

Acute flaccid paralysis 

Hundreds to 

thousands 

Ilheus 
South America, 

Central America 

Culex pipiens 

Ochlerotatus serratus 

Sabethes 

Haemagogus 

Febrile syndrome, 

Encephalitis 
Unknown 

Rocio 
South America 

(Brazil only) 

Culex pipiens 

Culex tarsalis 

Psorophora ferox 

Febrile syndrome 

Encephalitis 
Unknown 

Wesselsbron Africa 

Aedes spp. 

(Aedes caballus and 

Aedes 

circumluteolus) 

Febrile syndrome Unknown 

Spondweni 
Africa, North 

America (?) 

Aedes, Culex, Eretma

podites & Mansonia 

Febrile syndrome Vascular 

leakage (shock), 

Neurological 

impairment 

Unknown 
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I. B. Dengue virus 

The Dengue virus is a vector-borne disease, currently considered one of the fastest, 

most dangerous, and neglected tropical diseases transmitted by mosquitoes worldwide. Due 

to its high incidence and mortality rate, it has been classified as the most dangerous and 

diagnosed cause of fever after Malaria (45). The incidence of DENV is increasing over time due 

to climate changes, urbanization, the distribution of vector mosquitoes, and the geographic 

expansion of its two main mosquito vectors, Aedes aegypti and Aedes albopictus considered 

as its primary and secondary vector, respectively (16,46) (Table 2).  

I.B.1. History of the Dengue virus expansion  

The earliest suspected cases resembling dengue-like epidemics were documented in 

1635 in Martinique and Guadeloupe, and in 1699 in Panama. However, the precise origins of 

the first reported outbreaks remain uncertain. Benjamin Rush's account of the first recognized 

outbreak in Philadelphia, United States, in 1780, offers a clear depiction of the first dengue 

fever syndrome caused by DENV (47,48). Since then the virus has already become a 

cosmopolitan agent, causing almost simultaneous epidemics in the three continents, Asia, 

Africa and North America, suggesting that these viruses and their mosquito vectors have been 

widely distributed across the tropics worldwide for over 200 years (10,48). One hundred years 

later, in 1889, the virus was detected in the eastern end of the Mediterranean. In July 1901, 

the city of Beirut was touched by an epidemic of dengue, and two years later, Graham 

discovered its transmission by the vector Aedes mosquito (49,50). From this epidemic until 

1940, diseases associated with symptoms similar to those of DENV were characterized by 

relatively infrequent but often significant outbreaks (15). 

The ecological disruption that occurred in the regions of Southeast Asia and the Pacific 

during and after World War II created ideal conditions for an increase in the transmission of 

mosquito-borne diseases, especially DENV (15,51). In 1943, the first DENV epidemic detected 

in the Southwest Indian Ocean was in Comoros (52). In the United States and its territories, 

the transmission of DENV primarily occurs in tropical and subtropical areas such as Puerto 

Rico, the U.S. Virgin Islands, American Samoa, and the Pacific Islands associated with the 

United States. Hawaii has experienced DENV outbreaks since 1944 (53). During this epidemic, 

two DENV strains circulated in Hawaii originating from Tahiti. This illustrates the ease with 

which DENV can be transported over distances of several thousand miles. Later, several 

epidemics occurred sporadically in non-endemic regions, such as Florida, where mosquito 

vectors exist, and their circulation increases due to favorable ecological and climatic 

conditions (54–56). DENV continued its initial introductions in Southeast Asia in 1950, and in 

1953 it emerged for the first time in the Philippines. Emergences spread 20 years later 

throughout Southeast Asia (15,52).  

The surge in disease incidence began in 1970 and continues to the present day. Lately, 

large and dangerous epidemics are being recorded worldwide. This is attributed to the 

increased prevalence of DENV hemorrhagic fever due to the extensive expansion of mosquito 

vectors in many new countries with suitable socio-environmental conditions (15,51,57–59). 
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I.B.2. Dengue recent emergences and epidemiology on the global & tropical scales 

The geographical and genetic evolution of DENV and its vectors triggered increase 

epidemics, leading to a global pandemic characterized by the simultaneous circulation of 

several serotypes of the virus (DENV-1, DENV-2, DENV-3, and DENV-4). Infection with one 

DENV serotype provides lifelong immunity to the particular serotype but subsequent infection 

with another DENV serotype increases the risk of developing severe DENV (15,51). 

In tropical and subtropical regions, Dengue is considered one of the most dangerous 

diseases, as its incidence has increased more than 30 times in the last two decades (16). In 

these regions, approximately 2.5 billion people are at risk of infection, resulting in 50 to 100 

million infections each year (4,60). Worldwide, since 1950, sociological and climatic changes 

have been reshaping and expanding geographically EIDs, notably DENV, contributing to urgent 

consequences for public health (61,62). These conditions are causing the emergence of the 

virus in more remote and new regions, not only in the tropical and subtropical regions but in 

the entire world (63,64). According to the World Health Organization, before 1970, only nine 

countries had experienced severe dengue epidemics. Today, the disease is endemic in more 

than 100 countries. It has emerged and re-emerged in many tropical and subtropical regions, 

as well as in the Americas and Asia, causing numerous epidemics over the years (65).  

 From 1970 until 2000 

After 1970, Dengue fever epidemics grew larger and spread to new areas, becoming a 

major cause of childhood hospitalization and death (15). The disease re-emerged in the Pacific 

Islands, Americas, and tropical islands. Large outbreaks occurred, like the one in Seychelles 

(1976-77) infecting 80% of the population (66). The Caribbean also saw an epidemic in 1977, 

followed by outbreaks on other islands. The US reported its first case since 1945 in 1980, and 

Cuba had the first dengue hemorrhagic fever epidemic in the Americas in 1981 (57). The US 

reported its first case since 1945 in 1980, and Cuba had the first dengue hemorrhagic fever 

epidemic in the Americas in 1981 (67). The 1980s and 1990s saw intensified transmission, with 

outbreaks in Comoros (1993) and imported cases among travelers returning from Southeast 

Asia and the Americas (68–70). 

 From 2000 until 2010 

Over the past 2 decades, explosive epidemics have occurred worldwide, and the 

number of DENV cases has multiplied by more than 8, increasing from 505,430 cases in 2000 

to over 2.4 million in 2010, and then 5.2 million in 2019. The reported number of deaths has 

increased from 960 in 2000 to 4,032 in 2015. Asia accounts for approximately 70% of the 

global disease burden (71–74). Several micro-epidemics occurred in the 2000s during an inter-

epidemic period (46). From 2001 to 2006, a major epidemic was reported in the Pacific and 

Asia (53). From 2003 to 2004, more than 400 patients were diagnosed in Seychelles (75). Two 

years later, DENV caused an epidemic in the east of Madagascar  (76). In 2009, in Mauritius, 

234 cases were reported, and in the following year, 54 autochthonous cases were reported in 

Mayotte (77). 

 From 2011 until 2018 

Dengue outbreaks have been observed worldwide in recent years. In non-endemic 

regions such as the United States and Europe, indigenous cases have been reported annually. 
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In Croatia, France, and Portugal, local transmissions were recorded between 2010 and 2015. 

(73). Tropical regions also experienced DENV circulation, notably in the Comoros in 2011 and 

in Mayotte and La Réunion in subsequent years (77). With Malaysia Tropical zones battled 

ongoing outbreaks, experiencing a significant surge from 2014 to 2015 (78–83). Similarly, the 

Americas saw a major outbreak in Brazil in 2016 (73,84). Even Sri Lanka wasn’t immune, with 

a record-breaking number of cases in 2017 (85,86). The spread even reached Europe, with 

over 3,000 cases reported across 27 countries in 2017-2018.(87,88). 

 From 2019 until today 

 Dengue fever cases have continued to rise globally, with the highest number reported in 

2019. All regions were affected, including previously unaffected areas like Afghanistan. The 

Americas alone reported 3.1 million cases, including over 25,000 severe cases. Significant 

outbreaks were also reported in Bangladesh, Malaysia, the Philippines, and Vietnam in Asia 

(45). Between 2020 and 2021 numerous countries in  the Americas, Asia, and several islands 

experienced significant outbreaks(Figure 5-6) (73,89,90). As of December 2023, over 6 million 

cases and over 6000 dengue-related deaths were reported from 92 countries/territories 

(Figure 7) (91). In January 2024, over half a million dengue cases and over 100 dengue-related 

deaths were reported globally (92). Far this year, 392,724 probable cases of dengue have been 

documented with 54 deaths confirmed as attributable to the disease (93) (Table 2) (94).  

Today, the virus threatens more than 120 countries globally, including regions in Africa, 

the Americas, the Eastern Mediterranean, Southeast Asia, the Western Pacific, and the Indian 

Ocean. Its annual global incidence is estimated at 3,97 billion people at risk of infection each 

year, with 50 million infections, of which 96 million present clinical symptoms (71–74). The 

sporadic outbreaks in non-endemic regions emphasize the importance of vector surveillance 

and control measures, even in areas where DENV is not commonly present. This highlights the 

need for early detection, a rapid response, and public health interventions to prevent the 

establishment and spread of DENV in new regions and countries.  
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Figure 5: Geographical Distribution of Dengue Cases Worldwide in 2021 (European 

Centre for Disease Prevention and Control – 2021) 

Figure 6 : Geographical distribution of Dengue cases by country of EU/EEA, in 2021 

(European Center for Diseases Prevention and Control - 2021). 

Figure 7: Geographical Distribution of Dengue Cases Worldwide between September 2023 

and february 2024 (European Centre for Disease Prevention and Control – 2023). 
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Regions Outbreak 
Years 

First introduction in the Americas  1600 

Philadelphia, Java, Jakarta, Bavaria, Cairo and Alexandria   1779-1780 

eastern end of the Mediterranean 1889 

Beyrouth 1901 

Multiple countries (World war era) 1916-1918 

Hawaii  1944 

Comoro Islands  1948 

Southeast Asia 1950 

Philipines  1953 

Pacific Islands  1970 

La Réunion 1975 

Seychelles 1976-1977 

Caribbean 1977 

Puerto , Southeastern Mexico 1978 

Seychelles 1978-1979 

America 1980 

Cuba 1981 

Worldwide spread 1980-1990 

Comoros  1993 

The Pacific and Asia 2001-2006 

Seychelles and La Réunion 2003-2004 

Madagascar 2006 

La Réunion 2007-2008 

Mauritius 2009 

Croatia  2010 

Comoros  2011 

France 2010-2015 

Portugal, Mayotte, La Réunion 2012 

Western Pacific Region, Comoros, Mayotte, La Réunion 2014 

Malaysia  2014-2015 

The Pacific, Asia, the seychelles, Madagascar, Martitus and La Réunion   2015-2016 

Americas - Brazil 2016 

Highest Number of Dengue cases 2019 

Afghnista, Bangladesh, Malaysia, the Philippines, and Vietnam 2019 

Bangladesh, Brazil, the Cook Islands, Ecuador, India, Indonesia, Maldives, 
Mauritania, Mayotte (Fr), Nepal, Singapore, Sri Lanka, Sudan, Thailand, 
and Timor-Leste 

2020 
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 Table 2: Worldwide highlighted and most important reported Dengue outbreaks since 1600 until 2020 

 

Regions Outbreak Years 

First introduction in the Americas  1600 

Philadelphia, Java, Jakarta, Bavaria, Cairo and Alexandria   1779-1780 

eastern end of the Mediterranean 1889 

Beyrouth 1901 

Multiple countries (World war era) 1916-1918 

Hawaii  1944 

Comoros Islands  1948 

South East Asia 1950 

Philippines  1953 

Worldwide spread 1970-2023 

Pacific Islands  1970 

La Réunion 1975 

Seychelles 1976-1977 

Caribbean 1977 

Puerto Rico, Southeastern Mexico 1978 

Seychelles 1978-1979 

America 1980 

Cuba 1981 

Americas 1980-1990 

Comoros  1993 

Tamaulipas 1995-1996 

South-east Asia, western Pacific, and Latin America 1998 

Thailand, Philippines, India 1998-1999 

The Pacific and Asia 2001-2006 

Seychelles and La Réunion 2003-2004 

Madagascar 2006 

La Réunion 2007-2008 

Mauritius 2009 

Croatia  2010 

Comoros  2011 

France 2010-2015 

Portugal, Mayotte, La Réunion 2012 

Western Pacific Region, Comoros, Mayotte, La Réunion 2014 

Malaysia  2014-2015 

The Pacific, Asia, the Seychelles, Madagascar, Mauritius and La Réunion   2015-2016 

Americas – Brazil 2016 

Sri-Lanka  2017 

Europe – 27 countries 2017-2018 

Highest Number of Dengue cases 2019 

Afghanistan, Bangladesh, Malaysia, the Philippines, and Vietnam 2019 

Bangladesh, Brazil, the Cook Islands, Ecuador, India, Indonesia, Maldives, Mauritania, 
Mayotte (Fr), Nepal, Singapore, Sri Lanka, Sudan, Thailand, and Timor-Leste 

2020 

Brazil, India, Vietnam, Philippines, Colombia and 27 countries in Europe 2021 

Italy, France, and Spain, also in Africa, Americas, South-East Asia, Western Pacific and 
Eastern Mediterranean 

2022-2024 
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I.B.3. Dengue virus genome and structure 

The Dengue virus, roughly 50 nm in diameter, features a lipid bilayer enveloping the 

particle, housing two transmembrane viral proteins. This lipid bilayer forms a glycoprotein 

envelope with of 90 pairs of envelope proteins (E), facilitating virus’ attachment to host cells 

(95). The second layer comprises the membrane protein (prM/M), which, in immature DENV 

particles, forms spikes on the virion’s surface with trimeric arrangement (96). These proteins 

govern viral penetration into human cells. The capsid protein houses the viral genome, 

consisting of a single-stranded positive-sense RNA around 11 Kb in size, encapsidated in a lipid 

membrane. The RNA consists of a single open reading frame flanked by untranslated regions 

(UTR) at the 5' and 3' ends. The 5'UTR (~100 nucleotides) has a methylated cap, while the 

3'UTR (~450 nucleotides) lacks a polyadenylated tail (97,98). The ORF flanking by UTRs 

encodes for three structural proteins (capsid, membrane, and envelope) and for seven non-

structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (18). Dengue comprises four 

antigenically and genetically similar serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) with 

60% to 70% amino acid sequence identity (99). Despite shared complications and clinical 

manifestations, biological differences may arise due to a 30% divergence in polyproteins 

among the four serotypes and factors influencing interactions, such as serotype-vector and 

serotype-host relationships (46,99) (Figure 8). 

  

Figure 8 : Structural Organization of Dengue Virus Genome. The structure of the Dengue virus is 

encased within a lipid layer, comprising the capsid protein (C) as its core component. This core is 

further enveloped with an envelope protein (E) and the precursor membrane protein (prM) during 

the immature phase of virions. As the virus matures, the prM transforms into the M protein, 

solidifying its anchorage within the viral structure. The viral genome consists of the 5' UTR, an open 

reading frame (ORF), and the 3' UTR. The ORF encoding the polyprotein serves as a template for the 

translation of three structural proteins ( C, PrM, and E) and seven non-structural proteins (NS1, 

NS2A, NS2B, NS3, NS4A, NS4B, NS5). 
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I.B.4. Cycle of dengue virus  

The virus attaches to host cells, primarily monocytes, through interactions with surface 

glycoproteins and several receptors that are not yet well-defined. Monocytes are important 

target cells for DENV, as they express a crucial receptor, Fcλ, through which the Virus-Antibody 

complex internalizes the cell through endocytosis in a clathrin-coated pit. The early endosome 

is marked by a pH of around 6.5, which matures to a lower acidic pH, approximately 5.5, once 

separated from the surface. This acidic pH leads to various conformational changes allowing 

the fusion of the host membrane with the viral envelope by the E protein and the release of 

the encapsulated viral genome which is presented to the rough Endoplasmic Reticulum (ER) 

(100). In the ER, viral RNA undergoes translation into a singular polyprotein. This process is 

catalyzed by a multiprotein complex composed of viral and host proteins. The viral RNA is 

replicated through an intermediate negative strand, which serves as a template to produce 

excessive amounts of positive-strand progeny. It is then translated into a single polypeptide 

cleaved into ten proteins, and afterward, the viral genome will be replicated. The newly 

synthesized structure proteins and the newly formed RNA are assembled to form new 

immature virions. Immature viral particles cluster by budding on the surface of the 

endoplasmic reticulum and are transported through the host's secretory pathway, the trans-

Golgi network. During release, virions transform into their infectious form by undergoing a 

maturation step defined by the cleavage of the prM protein by the furin protease. Mature 

viruses are then released from the cell and can infect other cells (Figure 9) (101,102).   

Figure 9: Schema illustrating intracellular viral cycle. (1) DENV binds to various host cell receptors for entry through 

receptor-mediated endocytosis. (2) A clathrin-coated pit serves as the site of internalization, and the virus is 

endocytosed into a clathrin-coated vesicle. (3) Clathrin is released, initiating endocytosis. (4) Conformational changes 

lead to the fusion of the viral envelope on the host membrane and the release of the encapsulated viral genome (capsid-

bound RNA) into the cytoplasm. (5) In the Endoplasmic Reticulum, the viral RNA serves as a template for translation 

and replication. (6) The replicated genome and translated viral proteins are assembled, forming an immature viral 

particle in the ER. (7) This immature virus undergoes furin-mediated maturation in the trans-Golgi network (TGN). (8) 

The mature virus is then excreted from the infected cell, completing the infection cycle 
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I.B.5. Dengue disease’s symptoms 

Each of the four serotypes can contribute to DENV infection, ranging from 

Asymptomatic, Mild or Dengue fever (DF), to Severe Dengue Hemorrhagic Fever (DHF), or 

Dengue Shock Syndrome (DSS), potentially fatal (73,99,103). DF can be debilitating, causing 

spontaneously severe fever (5 to 7 days), severe headaches, retro-orbital pain, myalgia, 

arthralgia, nausea, vomiting, petechiae, leukopenia, thrombocytopenia, severe general body 

pains, and rashes. These symptoms may sometimes be accompanied by hemorrhagic 

complications (99). Along with the DF complications, DHF is characterized by hemorrhagic 

manifestations and plasma leakage that determine the severity of the disease. DHF can reach 

a critical phase marked by a rapid increase in temperature and circulatory disturbances, 

including plasma leakage, hemoconcentration, and thrombocytopenia. If not properly 

treated, DHF can progress to DSS infection, characterized by a rapid drop in blood pressure, 

caused by excessive bleeding and blood loss, leading to circulatory shock and organ failure. It 

can be fatal in most cases and kill the patient within 12 to 24 hours (104). 

The assessment of DHF/DSS infection can be correlated with host immunity, age, virus 

genomics, and other factors, but the greatest risk is a heterotypic secondary infection by 

DENV–multiple successive infections or co-infections with different serotypes in a single 

patient. Usually, this triggers Antibody-Dependent Enhancement (ADE). ADE postulates that 

non-neutralizing antibodies secreted during the first infection at a specific concentration can 

interact with the virus from the second infection and instead of neutralizing the virions, they 

facilitate viral entry into cell lines (105,106).  The progression of dengue to its severe form can 

be initiated by an increase in viral uptake, leading to increased viral replication and viral load  

(105). Large and dangerous hyperendemic typically occur during the simultaneous co-

circulation of multiple serotypes and in the absence of collective immunity against one of the 

Figure 10: Severe Dengue Hemorrhagic fever and Shock Syndrome Symptoms 
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four serotypes, or when a new epidemic strain of the virus emerges in an area where another 

serotype has already been introduced (46). 

I. C. Dengue virus main vectors – Aedes aegypti and Aedes albopictus 

Except Antarctica, all other parts of the world are home to mosquitoes, both within 

the Arctic Circle and in oases amidst deserts (107). Numerous significant mosquito vectors 

play a crucial role in transmitting dangerous pathogens.  

Firstly, the Culex mosquito serves as a vector for a range of mosquito-borne viruses, including 

the WNV, USTUV, RFV, Sindbis virus, Tahyna virus, and others. Secondly, the Anopheles 

mosquito is equally significant as it is linked to the transmission of diseases such as Malaria, 

Filariasis, and various arbovirus infections. Additionally, mosquitoes belonging to the Aedes 

species, particularly Aedes aegypti and Aedes albopictus, transmit dangerous mosquito-borne 

like DENV, CHIKV, ZIKV, YFV, and RFV. These species have caused important emergences and 

epidemics throughout history and pose significant public health risks (9,17,108–110).  

According to Mitchell C et al. 1995, confirming the vector-host transmission cycle, 

specifically implicating Aedes spp. as a vector of DENV, involves various field evidence and 

criteria: i) Isolating DENV from mosquito populations collected in nature; ii) demonstrating 

DENV infection in a mosquito after feeding on an infected host; iii) demonstrating virus 

transmission through a bite to the host; iv) detection the virus in the vector’s saliva; v) aligning 

the timing of epidemics with the emergence of mosquito populations in the same region 

(111,112). 

In the next section, we will introduce both vectors responsible for transmitting DENV: 

Aedes aegypti and Aedes albopictus. Our focus will be on Aedes albopictus, given its role as 

the primary vector of the DENV virus in La Réunion. 

I.C.1. Aedes aegypti mosquito Vector – Origin, history & emergences  

The Aedes aegypti species (Figure 11) is an invasive mosquito thriving primarily in 

tropical and subtropical regions but also found to some extent in temperate climates 

worldwide (109,113) . It serves as the primary urban vector for DENV. Studies have shown 

varying degrees of susceptibility to different DENV serotypes among mosquito populations 

during epidemics (114,115). Climate and temperature play a crucial role in determining the 

Figure 11: Aedes aegypti mosquito 
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geographic range of this mosquito species. However, several other factors also impact the 

suitability of its habitat. Notably, the close association of Aedes aegypti with humans and 

domestic environments allows it to thrive in areas that might otherwise be deemed unsuitable 

based solely on climatic conditions (113,116). 

 

The emergence of Aedes aegypti was first thought to be from the New World, but the 

presence of similar species in Africa suggests its likely origin there (117–119). From the 15th 

to 19th centuries, the slave trade and globalization led to its spread, causing DENV epidemics 

in Africa, Asia, and North America (120). Aedes aegypti is believed to have arrived in tropical 

Asia in the late 19th century, coinciding with the onset of urban dengue (121).  In the 1990s, 

its distribution decreased in North America due to the rise of Aedes albopictus (122). Aedes 

aegypti thrived in warm regions of the Americas but couldn't survive in the cold northeast, 

where new outbreaks could occur through ship arrivals (123). 

At present Aedes aegypti is found in 143 countries/islands worldwide across the tropics, and 

sub-tropical regions, including the southeastern United States, the Middle East, Southeast 

Asia, the Indian Ocean territories, the Pacific and Indian Islands and Northern Australia 

(109,124–126). 

 The initial emergence of significant epidemics occurred in the Americas from 1600 to 

1946. Later, in the 1960s, intensive eradication efforts led to a decline in the abundance and 

spread of Aedes aegypti mosquitoes (123). In Europe, notable outbreaks occurred, including 

a significant one in Athens and neighboring regions of Greece from 1927 to 1928 (109).  

Subsequent re-infestations resulted in two dengue epidemic waves between 1971 and 1999, 

and again between 2000 and 2010 (47). In the Indian Ocean, Aedes aegypti was responsible 

for the emergence of DENV-1 in the Comoros in 1993 (77). This latter is still causing a re-

emergence of dengue and the occurrence of hemorrhagic dengue fever is still reported 

worldwide (Figure 12) (48,127,128). 

Figure 12: Global distribution of Aedes aegypti using climatic & surveillance data 

collected up to 2015 (Lwande et al., 2019). 
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I.C.2. Aedes albopictus vector 

I.C.2.1- Origin and history 

The tiger mosquito (Figure 13), or the striped mosquito of Bengal Aedes albopictus is 

at the forefront of public health concerns as it transmits numerous pathogens to both humans 

and animals. It is considered one of the 100 most important invasive species with a rapidly 

expanding worldwide population. In laboratory conditions, Aedes albopictus has been shown 

to transmit more than 22 viruses (111,129).  Despite the frequent isolation of DENV from 

mosquitoes captured in the wild, there is no evidence indicating that Aedes albopictus is a 

significant urban vector for dengue, except in a limited number of countries where Aedes 

aegypti is absent, such as parts of China, the Seychelles, historically in Japan, and most 

recently in Hawaii (111). However, lately, the occurrence of DENV epidemic outbreaks in the 

absence of Aedes aegypti, but in the presence of Aedes albopictus, led to the conclusion that 

the latter species is an important vector (111). 

 

It is native to Southeast Asia (119,121), and was introduced in the Indian Ocean in the 

last centuries when it was first reported in Madagascar and, the Seychelles (130). Over the 

past decades, it has spread to new countries in Africa, the Middle East, Europe, Islands in the 

Indian Ocean, and the Americas (North and South) after extending its distribution eastward 

through Pacific islands in the early 20th century (131). Aedes albopictus can currently be found 

in temperate and tropical Asia (its original zone), Europe, America, and Africa, in addition to 

various locations in the Pacific and Indian Oceans (119). Between 1940 and 2020, Aedes 

albopictus was reported for the first time in 86 countries. The initial DENV outbreak in Japan 

from 1942 to 1944 implicated Aedes albopictus.  In 1944, due to human movements and goods 

transportation during World War II, this species expanded to Australia and Pacific countries 

for the first time (111).  

Figure 13: Aedes albopictus Tiger mosquito 
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I.C.2.2- Recent emergences  

Over the past 30 years, Aedes albopictus has invaded several countries worldwide 

causing important emergences of DENV all over the regions, including the Mediterranean 

basin. From 1970 onwards, it has been detected in several Pacific countries (Papua New 

Guinea, Solomon Islands, and Fiji). It was confirmed in Albania in 1979, followed by Italy in 

1990. In 2005, the tiger mosquito was detected in the Torres Strait Islands, but vector 

surveillance and control prevented Aedes albopictus from establishing itself on the Australian 

continent (132,133). From the year 2000, its emergence has been reported in new several 

countries such as Hawaii in 2001 (134), the Greek islands in 2003, Madagascar in 2006 (76), 

Gabon in 2007 (135), China in 2004 and 2010 (136,137), Malta in 2009, Ibiza in 2014, and the 

Tyrrhenian Islands in 2016 (138). The first epidemic likely attributed to Aedes albopictus in 

Europe occurred in 2007 in Ravenna, Italy, followed by a second epidemic in 2010 in southern 

France . Recent findings indicate that in the insular regions of Madagascar, Aedes albopictus 

has demonstrated a competitive advantage over its counterpart, Aedes aegypti. Specifically, 

it was identified in 13 out of 15 breeding sites in Madagascar, whereas Aedes aegypti was only 

found in six sites within native forests and natural reserves (141) (Figure 14) (142). Future 

climate changes and wetter/warmer conditions anticipate the risk of Aedes albopictus 

establishment in northern Europe, including regions of Germany and the southernmost parts 

of the UK. The introduction of Aedes albopictus into countries where it has not been previously 

identified is commonly regarded as a serious threat and thus it is seen as a potential or actual 

vector of arboviruses and new epidemics (143,144). 

Important emergences of Aedes albopictus in La Réunion island have been recorded for 

decades. A detailed description of its history in the island will be presented in the next chapter. 

I.C.2.3- Rapid Expansion of Aedes albopictus population 

Aedes aegypti, taking to emerge predominantly in tropical world, contrasts with the 

more rapid emergence of Aedes albopictus. The latter has swiftly spread across all continents 

within a few decades, now present on five of the six continents, posing a significant threat to 

humanity. For Aedes aegypti and Aedes albopictus emergences regions, there is substantial 

variation in the suitability range among countries and territories, with many tropical regions 

Figure 14 : Distribution range of Aedes albopictus. The map indicates the year of first detections (interceptions 

and vector surveillance of Aedes albopictus) by country and whether established populations have formed 

(solid color). (Swan T. et al., 2022) 
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globally exhibiting high suitability over extensive areas. Aedes albopictus has suitability foci in 

197 countries/territories, whereas Aedes aegypti is suitable in 188 countries (Figure 15) (4). 

The rapid expansion compared to the primary vector, is likely facilitated by factors such as 

human population growth, increased mobility, urbanization, modern transportation, and the 

global trade of goods, including potential mosquito breeding sites like used tires and bamboo 

(figure 16). 

Additionally, the rapid emergence and expansion of Aedes albopictus are partly linked to 

its biology and particularly to its ability to withstand various environmental stresses under 

highly contrasting climates. This adaptability is exemplified by the eggs of this species, which 

can enter diapause and withstand desiccation to persist in the environment throughout the 

dry season. During the following rainy season, the larvae and adults are capable of hatching 

and traveling over long distances on inert surfaces containing water (145,146). 

I.C.2.4- Rapid expansion in La Réunion Island  

For decades until today, La Réunion Island has been severely affected by DENV 

epidemics, primarily caused by the circulation of Aedes albopictus which is considered as its 

main vector on the island (131,147–151). This is primarily due to its abundance on the island, 

including regions at altitudes higher than 1,200 m, and to the relative absence of its sister 

vector species, Aedes aegypti  (127,129,152).  Moreover, this involvement of Aedes albopictus 

in DENV transmission in La Réunion is evidenced by the observation of DENV transmission 

peaks aligning with periods of elevated population densities of this vector (153). Additionally, 

a DENV-1 strain was identified in pools of Aedes albopictus collected during the 2004 epidemic 

in Réunion (Santé Publique France 2007), beside other studies that have demonstrated that 

Aedes albopictus from Réunion can be infected with both DENV-1 (154) and DENV-2 (152).  

  

Figure 15: Global predicted habitat suitability of Aedes aegypti and Aedes albopictus (Leta S. et al., 2017) 
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Part II. Thesis research program  

II.A. Rationale 

The frequency and severity of Dengue virus epidemics, transmitted by Aedes 

mosquito vectors worldwide, are alarmingly increasing annually. La Réunion Island has 

been grappling with the resurgence of DENV for decades. Despite the vector control 

measures implemented by the ARS (Agence Régionale de Santé) from 2016 to 2021, 

the transmission intensity has continued to rise. Hospital services reported a surge in 

cases and deaths annually, with symptoms becoming more severe. This escalation is 

attributed to the successive and/or simultaneous circulation of three DENV serotypes 

(DENV-1, DENV-2, and DENV-3) during the latest outbreak. Therefore, the molecular 

and genetic characterization of DENV, along with exploring their emergence origins, 

are crucial for tracing their introduction route and understanding the link between 

epidemic territories. 

Moreover, distinct Aedes albopictus populations in Réunion may be involved in the 

DENV transmission on the island. These populations have probably undergone 

significant adaptation and competence for transmitting the virus under specific 

regional conditions. Hence, investigating the influence of socio-environmental 

conditions and biological factors on vector competence is crucial for understanding 

how the vector adapts to regional and biological conditions.  

Furthermore, delving into the intricate biological factors influencing vector 

competence for DENV is crucial for comprehensively addressing and mitigating its 

transmission. Both historical and contemporary literature emphasize the ability of the 

Wolbachia bacterium to modulate various biological mechanisms within its host, 

particularly Aedes albopictus. In this context, our research aims to elucidate 

Wolbachia’s potential role in regulating intestinal homeostasis under normal 

physiological conditions and its response following DENV ingestion, which could 

potentially exacerbate stress and epithelial damage. 
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II.B. Axes and objectives 

To address these inquiries, my Ph.D. thesis was structured around three 

complementary chapters presented in the next part (Part III). 

- The first chapter focused on the genetic characterization of DENV-1 and 

investigating its emergence origin in La Réunion and neighboring Seychelles. 

Objective of the first study: Perform molecular and phylogenetic analysis on 

circulating DENV-1 strains in La Réunion Island and Seychelles by sequencing 

partial and full genomes of DENV-1 isolated from patients in both regions. 

- The second chapter involved exploring the impact of extrinsic geographical 

and intrinsic factors on the development of vector competence toward DENV-

1 and DENV-2 strains among various wild populations of Aedes albopictus 

during the recent outbreak. 

Objective of the second study: Gain insights into the vector competence of 

Aedes albopictus populations from Reunion Island for endemic DENV strains, 

while accounting for their Wolbachia infection status. 

- The third chapter examined the effect of Wolbachia on intestinal homeostasis 

in a laboratory population of Aedes albopictus under normal conditions and 

following DENV-1 infection 

Objective of the third study: Investigate the role of Wolbachia in maintaining 

the integrity of the intestinal epithelium in Aedes albopictus. This entails 

examining the effects of Wolbachia on cellular division, apoptosis, and visceral 

muscle, as well as the expression of candidate genes associated with cellular 

division and apoptosis. 

 

In the forthcoming part, each identified axis will be thoroughly examined within 

its respective chapter. Every chapter will be initiated with a detailed literature review 

to furnish the necessary context and background, setting the stage for the ensuing 

study. Subsequently, the findings will be articulated in the form of a scholarly article. 

After each chapter, a detailed summary will encapsulate the research implications, 

seamlessly bridging to the next chapter and enhancing the overall coherence of the 

study. 
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Part III. Chapter 1: 

Transmission of Dengue 

virus by Aedes mosquito in 

La Réunion Island 
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“La Réunion, a target for the Dengue virus?” 

  

 

In this chapter, we will focus on Dengue virus emergence and the 

epidemics caused by Aedes albopictus vector, in La Réunion island.  

 

First, we will track the history of the primary vector on the Island, Aedes 

albopictus. 

Second, we will present the DENV epidemiology since 1977 until today. 

Third we will trace the origin of the emergence of DENV during the last 

epidemic. 

 

In this axis, we will present our findings related to the genetic 

characterization of the DENV-1 serotype and explore the origin territory of 

its emergence to the island. 

 

Part III. Chapter 1: 

Transmission of Dengue virus by Aedes mosquito 

in La Réunion island 
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Part III. Chapter 1: Dengue virus transmission by Aedes mosquito in La 

Réunion Island 

III.1.A. Aedes mosquito’s emergence in La Réunion Island  

Reunion Island is an overseas French department located in the South-Western Indian 

Ocean, about 700 km east of Madagascar. Between 1901 and 1902, the Aedes aegypti 

mosquito was the first recorded mosquito species on the island. The population distribution 

was limited to a few artificial or natural larval habitats such as rock holes and certain ravines 

on the west coast, at elevations between 300 and 650 meters (155). The insecticide treatment 

campaigns against Malaria for vector elimination contributed to its disappearance in 1950, 

but it was rediscovered in 1980. From 1985, its population began to diminish again and was 

replaced by the population of Aedes albopictus. The Asian tiger mosquito, Aedes albopictus, 

was first reported in La Réunion in 1913, but it may have been introduced several years earlier 

through trade with the Indian/Indonesian subcontinent or from the coast of Madagascar 

(149,155). Later, in the period between 1985 and 1986, during the mosquito-control 

campaigns, only 73 larval habitats containing Aedes aegypti larvae were found, compared to 

177 habitats containing Aedes albopictus larvae. Aedes albopictus started dominating the 

Aedes aegypti population and this latter was no longer found in their habitats, and its 

populations were pushed to less anthropized areas  (127,155,156). 

In La Réunion, among the 12 species of Culicidae, since the 1950s, Aedes albopictus has 

been the dominant species in inhabited areas below 1,200 meters and was responsible for the 

last two epidemics of Dengue virus, which took place in 1977 and 2017 (131,150,157). During 

the last decades, Aedes albopictus contributed to significant outbreaks of arboviruses, 

Including DENV and CHIKV, not only in La Réunion but in all the neighboring Islands in the 

south west of the Indian Ocean (77,151,158)  

Aedes albopictus is considered as an urban vector, the main dispersion pathways of the 

tiger mosquito on the island results from the transportation of used tires and used vehicles. 

Additionally, the trade of bamboo containing eggs and the passive transport of Aedes 

albopictus by riverboat also pose potential risks of dispersion. Furthermore, fluctuations in 

temperature, rainy seasons, urbanization, and increased global transit all heighten the risk of 

vector transportation. Adapted breeding sites near residential areas, such as stagnant water, 

create favorable conditions for vector adaptation and sustained circulation (142). Additionally, 

human populations with inadequate sanitation and low immunity are particularly vulnerable 

to the expansion of vector populations. These factors elevate the risk of DENV infection over 

time (159–161)  (Figure 16).  

All these factors have contributed to the increased circulation of DENV on the island, 

facilitated by the expansion of the vector population, Aedes albopictus, in favorable 

environmental conditions.  



61 
 

     

Figure 16: Favorable factors contributing to the expanison of mosquito's vector populations and pathogens 
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III.1.B. Epidemiology of Dengue virus in La Réunion Island  

La Réunion Island has been a victim of the emergence and re-emergence of the 4 DENV 

serotypes since 1977, DENV-1, DENV-2, and DENV-3 in autochthonous cases, and all four 

serotypes in imported cases (77). In 1977 and 1978, the DENV-2 strain emerged, contributing 

to a significant epidemic over two years, affecting 30% of the population (162). The second 

epidemic occurred in 2004, involving the circulation of DENV-1, causing 228 suspected cases. 

From 2004 to 2015, there was an inter-epidemic period on the island with sporadic recorded 

cases. Between January 1, 2007, and October 5, 2009, five autochthonous cases were 

confirmed, along with five imported cases (from Southeast Asia) and 71 probable cases. All 

five confirmed autochthonous cases occurred in Saint-Louis during two consecutive clusters 

(75). Subsequently, moderate dengue episodes occurred in 2016 and 2017. In 2016, 230 cases 

were recorded, with an incidence rate of 26 autochthonous cases per 100,000 people, and no 

death related to dengue was confirmed. In 2017, a slight decrease in the annual number of 

cases was observed with 103 dengue cases and an incidence rate of 11 autochthonous cases 

per 100,000 people (77) (Table 3). 

Since late 2017, a significant epidemic began and continued until 2022. This recent DENV 

outbreak on the island is considered one of the largest and most dangerous epidemics and 

was reposted across all the regions of the island (Figure 17) (163). Epidemic circulation has 

been on the rise, with a very high number of confirmed cases. By the end of 2018, 6,701 

autochthonous cases were confirmed with 149 hospitalizations and 6 deaths (164). Until 

August 2021, 29,000 cases of DENV, over 1,000 hospitalizations, and 33 deaths were recorded 

(147) (Figure 18). Up until 2022, 70,978 confirmed cases, 2,672 hospitalizations, and 75 deaths 

have been reported since the beginning of the epidemic (77,147). This significant burden of 

morbidity and mortality were caused as all three dengue serotypes (DENV-1, DENV-2, and 

DENV-3) were circulating simultaneously on the island. DENV-2 was the first to circulate widely 

in the population in 2018. DENV-1 was introduced and co-circulated with DENV-2 in 2019 and 

it showed dominance starting at the end of 2019. A very low circulation of DENV-3 in 2020 

was isolated in the east of the island (77,147,165) (Table 3). 

 

Over the past two years (2022-2023), La Réunion Island has not experienced any significant 

epidemics. In 2022, there was no notable epidemic peak, with only the DENV-1 serotype 

circulating. The number of confirmed cases decreased by over a thousand compared to 

previous years, resulting in 3 deaths and 61 hospitalizations (148) (Figure 18). In 2023, the 

DENV-2 serotype began to circulate. There have been 218 reported cases of dengue, leading 

to 12 hospitalizations, including 2 severe cases primarily in the southern region, similar to the 

situation observed in 2022 (166) (Table 3). 
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Table 3: Summary of the number of confirmed cases of dengue and severe dengue disease in Reunion 

from 1977 to 2023.  (Modified from Hafsia et al.,2022). 

aSerotype identified in autochthonous cases. 
iSerotype identified in imported cases. 

*In 2021, data available only from January to the beginning of October. 

 ND, unavailable data 

 

Year 
Total number 

of cases 

Autochth-

onous cases 

Imported 

cases 

Dengue Severity DENV 

serotypes Hospitalizations  Severe cases  Deaths 

1977- 1978 ND ND ND ND ND ND 2a 

2004 228 228 ND ND ND ND 1a 

2005 ND ND ND ND ND ND ND 

2006 ND ND ND ND ND ND ND 

2007 28 28 ND 7 0 0 1a 

2008 48 44 4 ND ND ND 1a,3i 

2009 12 8 4 ND ND ND 2i 

2010 32 18 14 1 0 0 1i+3a+I,4i 

2011 4 2 2 6 0 0 ND 

2012 38 31 7 0 0 0 1a,3a 

2013 33 21 12 4 0 0 1a+i, 3a+i 

2014 44 29 15 0 0 0 2a+i 

2015 10 6 4 0 0 0 ND 

2016 231 221 10 18 3 0 1a,2a,3a 

2017 103 94 9 14 0 0 1i,2a+I,4i 

2018 6,771 6,759 11 154 27 6 2a 

2019 18,217 18,217 ND 620 75 14 1a,2a,3a 

2020 16,414 16,414 ND 787 108 22 1a+i,2a+I,3a 

2021* 29,577 29,577 ND 1,111 245 33 1a 

2022 1,183 1,183 ND 61 15 3 1a 

2023 218 121 ND 12 2 0 2a 

Figure 18 : Localization of confirmed Dengue 

cases across La Réunion in 2021, by Health Data 

Department (S14 & 15), (source ARS-LAV) 

Figure 17 : Distribution of the number of Dengue cases 

per week of symptom onset, Réunion Island (S01/2018 to 

S48/2022).  

Public Health France, regional epidemiology report-2022 
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III.1.C. Thesis first publication: The origin of different dengue strains circulating in 

La Réunion from 2018 to 2021  

III.1.C.1. Articles’ background and objectives  

Islands located in the SWIO exhibit common conditions conducive to the spread of 

DENV. These conditions include the presence of DENV-competent vectors, similar 

environmental and climatic factors, limited mosquito control measures, rapid population 

growth, uncontrolled urbanization, in addition to inadequate water supply and waste 

management systems (167,168). These common factors shared between the islands in the 

same region explain the simultaneous outbreaks of DENV experienced over time suggesting a 

probable ongoing but low-level transmission of the disease across all the neighboring islands 

of the SWIO. 

As mentioned above, several documented epidemics support this association. In 1976 

and 1977 a large outbreak of DENV-2 was recorded in the Seychelles and subsequently in La 

Réunion islands in 1977 and 1978 and the dispersion of the virus to the Mayotte island was 

also suggested (80,169). Sporadic imported cases have been reported in La Réunion Island 

since 2005. It was demonstrated that these cases were originated from neighboring islands 

including Madagascar and Mayotte (81). In 2010, the same DENV circulation was reported in 

the Comoros and Mayotte islands (170). Similarly, in 2012, DENV micro epidemics took place 

in Mayotte and La Réunion. Likewise, in 2014, the Comoros, Mayotte, and La Réunion Islands 

were also affected by the same small epidemics (77). 

In 2016, a notable epidemic was documented in the Seychelles, spreading to nearby 

islands such as Madagascar and Mauritius, and subsequently affecting La Réunion locally (78–
82). The onset of this epidemic can be traced back to La Réunion towards the end of 2017, 

with the circulation of DENV-2, followed by the emergence of DENV-1 by the conclusion of 

2018. This succession of viral strains contributed to an epidemic crisis that endured until 2022 

(77,171). Between March and May 2018, 2 autochthonous cases of DENV-2 were reported in 

La Réunion, whose sequences showed similarity to those of Israeli travelers infected in the 

Seychelles in 2015. Alongside the strain circulating in the Seychelles, La Réunion strain was 

grouped within the Cosmopolitan genotype of DENV-2. This genotype contains sequences 

from China and India, from which both La Réunion and Seychelles strains may originate (172). 

Sequencing and alignment of both DENV-2 strains, isolated from La Réunion in 2018 and 

Seychelles in 2015, revealed that the two genomes shared a similarity of 99.8% and exhibited 

93% identity with the genomic sequence of a DENV-2 strain from Thailand (79). 

During the recent epidemic in La Réunion Island, DENV-1 was introduced and co-

circulated with DENV-2 in 2019, and it became the dominant strain circulating in 2021 (157). 

The same introduction of DENV-1 was recorded also in Seychelles in 2016 (MOH Seychelles). 

Simultaneously with the circulation of the 2 serotypes DENV-1 and DENV-2, circulation of the 

DENV-3 serotype was detected in 2020 (SPF, August 11, 2020), increasing the risk of the 

Antibody-Dependent Enhancement phenomenon (46,105).  

Given the circulation of the DENV-2 strain in Réunion in 2018 having the same origins 

as the DENV-2 circulating strain in Seychelles in 2015 (172), we hypothesized a possible link 
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between the DENV-1 strain that emerged in Réunion Island in 2019 and DENV-1 that 

circulated few years ago in Seychelles. Thus, the objectives of our first study were to 

characterize genetically the DENV-1 strains from the two Islands and deduce, when possible, 

its origin. 

III.1.C.2. Thesis first publication 

Genetic characterization of dengue virus serotype 1 circulating in 

Reunion Island, 2019–2021, and the Seychelles, 2015–2016 

Hafsia, Barbar et al. BMC Infectious Diseases (2023) 23:294 

https://doi.org/10.1186/s12879-023-08125-y  

 

https://doi.org/10.1186/s12879-023-08125-y
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III.1.C.3. Perspectives  

Despite Seychelles and La Réunion experiencing introductions of DENV-2 from the 

same source in recent years, the DENV-1 outbreaks in 2016 and 2019 on both islands were 

instigated by distinct genotypes that traced back to Asia. Moreover, the non-synonymous 

mutations identified in the circulating DENV-1 strains hint at the potential for genetic 

evolution, leading to the emergence of new variants within these regions. This phenomenon 

highlights the risk of novel DENV variants developing increased virulence in future epidemics 

and their capability to disperse across both proximate and remote areas. Consequently, 

further research is imperative to examine these mutations and their impacts on variant 

selection and virulence within specific regions. 

Aedes albopictus populations circulating across the island during 2017-2021 developed 

specific competence towards the DENV-1, and DENV-2 serotypes/genotypes emerging. Highly 

competent vectors are behind the transmission of the virus to humans and the incidence 

burden. Therefore, conducting a comprehensive study on the influence of various factors and 

conditions on vector competence is crucial. It helps in understanding the adaptation of 

vectors, as well as the development of vector competence and the virus virulence in the 

circulating vector. 

In the subsequent chapter, we will delve into an examination of various parameters 

associated with vector competence and the factors influencing them. Specifically, in the 

upcoming study (article 2), we aim to conduct a comprehensive analysis to improve our 

understanding of the vector competence exhibited by several Aedes albopictus populations in 

Réunion, particularly in the local DENV epidemic. We will investigate the impact of  

the geographical zones of different populations of mosquitoes, population generations, 

kinetics, and the natural presence of Wolbachia on the different aspects of vector 

competence. 
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Part III. Chapter II: 

Vector competence of 

Aedes albopictus from 

La Réunion Island 
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“How does Aedes albopictus develop their competence in  

La Réunion Island?”  

 

In this chapter, we will focus on the interaction between Aedes albopictus 

vector and Dengue virus. 

 

First, we will explain the transmission of DENV by mosquito vector to the host 

Second, we will define the different parameters of vector competence 

Third, we will present extrinsic and intrinsic factors that can affect vector 

competence.  

 

In this axis of the study, we will show how we explored the socio-

environmental factors that might affect the vector competence toward DENV-1 

and DENV-2 of different Aedes albopictus populations emerging in different 

regions of La Réunion Island.  

 

Part III. Chapter 2: 

Vector competence of Aedes albopictus from La 

Réunion Island 
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Part III. Chapter 2: Aedes albopictus vector competence in La Réunion 

Island 

III.2.A. Dengue virus transmission cycles 

Two distinct DENV transmission cycles are recognized: 

 Sylvatic/Zoonotic Cycle: This cycle involves mostly non-human primates and several 

different Aedes mosquitoes found in natural forest habitats of Asia and Africa (173,174). 

In this cycle, arboviruses are transmitted from infected to naive animals by arboreal 

mosquitoes (175). 

 Endemic/Epidemic Cycle: In this cycle, the inter-human transmission of the viruses is 

facilitated by urban mosquito species Aedes aegypti and Aedes albopictus in urban areas  

(174,176). 

The virus can be transmitted from animals to humans, contributing to a cycle switch that 

occurs when people encroach on forest habitats and are bitten by mosquitoes carrying the 

arbovirus, or when infected mosquitoes move from the forest into areas of human habitation. 

This transition from the sylvatic to urban transmission cycle is referred to as "spillover" (176). 

This transmission occurs through (i) Vector switching from arboreal Aedes mosquitoes to 

anthropophilic mosquitoes like Aedes albopictus and Aedes aegypti and (ii) reservoir host 

switching from non-human primates to humans (177) (Figure 18).  

 

  

Figure 19: The transmission cycles of DENV in sylvatic/zoonotic cycle and the endemic cycle. The 

“Zone of emergence” is where the spill-over of both cycles happens. 
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III.2.B. Dengue virus-human transmission cycle 

 The Dengue virus maintains its life cycle through successful replication in both the 

human host and the mosquito vector. The hematophagous mosquito’s species require a blood 

meal, crucial for their reproductive cycle, particularly in the development of eggs, as blood 

proteins and lipids are converted into yolk proteins in developing oocytes essential for egg 

maturation (178). 

The febrile viremia period of an infected human is when the virus begins circulating in the 

host blood. Meanwhile, if an uninfected mosquito bites this infected person, the virus will be 

ingested in the mosquito’s intestine. Afterward, the mosquito will become infectious after 

entering the Extrinsic Incubation Period (EIP), which can last from up to 21 days (15).  

During the EIP, the virus first infects midgut cells, which can take up to 14 days for some 

arboviruses like DENV. Then, on the 14th day, it spreads through the mosquito's body, 

reaching the salivary glands where it replicates. By day 21, the mosquito becomes infectious 

and can transmit the virus to another person during a blood meal. The mosquito remains 

infectious throughout its life and can infect every person it feeds on (179).  

 

When an individual is bitten by the infected mosquito, the virus will be incubated in the 

human body for an average of 4 to 7 days before the onset of symptoms (acute fever, 

headaches, fatigue, other) and entering the febrile viremia period. Even if individuals do not 

show symptoms, they remain viremic during this period (161,180) (Figure 18).  

To complete and maintain this vector-human transmission cycle, the Aedes albopictus 

vector must exhibit competence for DENV. Vector competence comprises 3 essential 

parameters that the virus must fulfill: Infection, Dissemination, and Transmission. In the 

following section, we will present the concept of vector competence and the factors 

influencing it.  

Figure 20 : Transmission cycle of Dengue virus to human by Aedes albopictus vector 
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III.2.C. Vectoral competence parameters  

Vector competence has three parameters: Infection, Dissemination, and transmission. 

It is defined as the intrinsic permissiveness and ability of the vector to be infected by a 

pathogen, allow its dissemination in the body, and, subsequently, its transmission to another 

host (Figure 21). 

Infection: Following a blood meal from a host during the viremic febrile period, DENV (or 

other arboviruses) are ingested into the mosquito's intestine. During the EIP, the intestine is 

the first tissue to become infected. This organ serves as the primary entry point for pathogens 

into the mosquito's body, acting as the initial barrier against microbes and representing the 

mosquito’s defense mechanism against enemies ingested from the external environment. 
Within the midgut, DENV infects cells and undergoes replication, leading to the production of 

more viral particles. The viral titer typically peaks in the midgut between 7 and 10 days post-

blood meal (181). 

Dissemination: After infection, degenerated and translucent cells with vesicular nuclei 

are detected in the epithelium of the anterior and posterior midgut. Around these cells, the 

basal lamina (BL) forming an extracellular matrix surrounding and supporting the intestinal 

structure, is often disrupted. This suggests the potential dissemination of DENV virions, 

through the BL to the hemocoel, considered as a continuum for viral dissemination to the rest 

of the body (182,183). Viral dissemination to secondary tissues depends on various factors, 

most importantly the virus and viral titer (184,185). Normally, dissemination occurs to adipose 

tissue, hemocytes, and nervous tissues, while only certain viruses, like WNV and Venezuelan 

Equine Encephalomyelitis Virus, have been found in the muscle tissue of the midgut (182,186–
188). The latter has never been detected in the Malpighian tubules or ovaries of infected 

mosquitoes even after 21 days following EIP (188). However, DENV is detected in the ovaries 

of Aedes albopictus starting 5 days post-infection but interestingly it was not detected in the 

intestinal muscular structure  (181). Viral titer peaks in the mosquito’s body between 7 and 

17 days post-blood meal (189). 

Transmission: Via the hemocoel, DENV will reaches the salivary glands and the head. The 

dissemination and the replication of the virus in the salivary glands will allow its passage to 

the saliva. From there, it will be transmitted to another host during the next mosquito’s bite, 

12 to 18-days post-blood meal (15,46,152).  

The efficiency of vector competence and the incubation periods of every parameter vary 

based on different interactions between vectors and infectious agents. These interactions can 

be influenced by many factors that depend on the environment, as well as on factors related 

to the virus and the vector biology and genetics (15,16,46,58,189). 
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III.2.D. Extrinsic and intrinsic factors affecting vector competence. 

In the same population of the same species, the level of vector competence can vary 

significantly based on several extrinsic and intrinsic factors (189–191). 

Variable extrinsic ecological factors affect the interaction between viruses and their 

vectors and their ability to transmit them. Among these factors, we can mention insecticide 

resistance, climatic changes, the rainy season, mosquito population density, and the presence 

of suitable habitats, such as wet areas, small water bodies, or damp building basements (192–
194). A study demonstrated that Aedes albopictus exhibited higher vector competence for 

ZIKV, DENV-2, and CHIKV when its resistance to insecticides was well-developed (195). Other 

studies showed that the increasing temperature with climatic changes shorten the EIP of the 

virus within the vectors. (189,193). This explains the risk of new epidemic waves with time and 

season (Figure 20). 

As extrinsic factors, intrinsic factors play a major role in modulating the vector's 

competence for viral transmission. Population genetics or mosquito gene coding show a swift 

evolution rate, offering insights into population relationships. The genetic background of 

mosquito populations influences the vector's susceptibility to viral infection and its ability to 

replicate the virus. Studies analyzing the genetic mapping of genes responsible for regulating 

viral infection and maintaining barriers against it have unveiled a genetic pattern suggesting 

variations among genotypes in : i) the density of virus receptors on midgut cells, ii) the 

abundance of intracellular factors required for viral replication, or iii) the abundance of 

intracellular inhibitors that mitigate viral replication (191,196,197). Furthermore, intrinsic 

factors often manifest as inherited traits. An intriguing discovery in population genetics is the 

inferred correlation between genetic markers and vector competence, such as the 

susceptibility of subpopulations of Aedes mosquitoes to viral infection. It has been 

demonstrated to influence the mosquito's resistance and susceptibility to viral infections, 

particularly DENV infection, among different geographical populations (197). Studies have 

revealed that the susceptible phenotype of Aedes aegypti can be transformed into a refractory 

Figure 21 : The various parameters of vector competence 
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phenotype, and crossing experiments between susceptible and resistant Aedes albopictus to 

DENV-2 strains have resulted in hybrid progeny with intermediate susceptibility 

(190,198,199).  

 

Intraspecific variability in vector competence appears to be associated with multiple barrier 

systems that hinder the infection of different tissues in mosquitoes. These barrier systems, 

regulated by genetic factors, vary in their presence and strength across individuals within a 

mosquito species. Consequently, they influence the epidemiological dynamics of arboviral 

diseases. These findings indicate that the susceptibility to DENV in Aedes albopictus and Aedes 

aegypti is genetically determined. 

 

Another crucial intrinsic factor affecting vector competence parameters is the mosquito’s 
microbiome. This can influence vector competence in multiple ways, directly i) by suppressing 

or activating the immune system against viral infection, ii) by producing factors that impair a 

pathogen's viability or infectivity, iii) reactive oxygen species (ROS) production, and iv) other 

physiological mechanisms (200–203). Indirect inhibition occurs by competition between 

symbionts and pathogens for limited resources that are essential for the life cycle of both 

microorganisms (204–206). The multifactorial role of the microbiome in vector competence 

and viability is very large. More detailed explanations will be presented in the next chapter.  

It is crucial to note interconnectedness of extrinsic and intrinsic factors. For instance, the 

viral titer ingested during blood feeding, which depend on the circulating virus load in the 

host’s bloodstream, the presence of antibodies, proteins, and microbes in the blood, and the 

type of the blood ingested. These elements can influence specific intrinsic factors by affecting 

mosquito physiology, potentially influencing viral replication and the expression of genetically 

determined factors related to vector competence (190,207–209). 

Figure 22: Schema representing the extrinsic and intrinsic factors affecting the vector competence 

parameters 
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III.2.E. Thesis second publication: Vector competence of Aedes albopictus field 

populations from La Réunion Island exposed to local epidemic Dengue 

viruses 

III.2.E.1. Article’s background and objectives   

Reunionese populations of Aedes albopictus found on the island were responsible for 

the significant DENV outbreak that occurred between 2017 and 2021. The interplay between 

extrinsic factors present on the island and intrinsic factors specific to each population 

contributed to the development of distinct vector competence toward the emerging DENV-1 

and DENV-2 serotypes during the outbreak. As depicted in Figure 17, the distribution of DENV 

cases across the island in 2021 was not uniform (147). This observation suggests that socio-

environmental conditions in each region may have had an impact on the population-specific 

characteristics influencing the transmission of DENV-1 and DENV-2 by vectors. 

Therefore, in the upcoming article, we aim to investigate the impact of socio-

environmental conditions and the presence of the Wolbachia bacterium, naturally occurring 

in Aedes albopictus, on the vector competence. We will assess parameters such as infection 

rate, dissemination efficiency, and transmission efficiency, using one strain of DENV-1 and two 

strains of DENV-2 isolated from local patients. The study involved collecting wild mosquito 

populations in 2020 and 2021 from 10 regions across the Island. We will consider the natural 

infection status of mosquitoes by Wolbachia, known for its potential to modulate vector 

competence.  

III.2.E.2. Thesis second publication 

Vector competence of Aedes albopictus field populations from Reunion 

Island exposed to local epidemic dengue viruses 

Article under submission 
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 26 

Abstract 27 

Dengue virus (DENV) is the most prevalent mosquito-borne Flavivirus that affects humans 28 

worldwide. Aedes albopictus, which is naturally infected with the bacteria Wolbachia, is 29 

considered to be a secondary vector of DENV. However, it was responsible for a recent DENV 30 

outbreak of unprecedented magnitude in Reunion Island, a French island in the South West 31 

Indian Ocean. Moreover, the distribution of the cases during this epidemic showed a spatially 32 

heterogeneous pattern across the island, leading to questions about the differential vector 33 

competence of mosquito populations from different geographic areas. The aim of this study 34 

was to gain a better understanding of the vector competence of the Ae. albopictus populations 35 

from Reunion Island for local DENV epidemic strains, while considering their infection by 36 

Wolbachia. Experimental infections were conducted using ten populations of Ae. albopictus 37 

sampled across Reunion Island and exposed to three DENV strains: one strain of DENV 38 

serotype 1 (DENV-1) and two strains of DENV serotype 2 (DENV-2). We analyzed three vector 39 

competence parameters including infection rate, dissemination efficiency and transmission 40 

efficiency, at different days post-exposition (dpe). We also assessed whether there was a 41 

correlation between the density of Wolbachia and viral load/vector competence parameters. 42 

Our results show that the Ae. albopictus populations tested were not able to transmit the two 43 

DENV-2 strains, while transmission efficiencies up to 40.79% were observed for the DENV-1 44 

strain, probably due to difference in viral titres. Statistical analyses showed that the 45 

parameters mosquito population, generation, dpe and area of sampling significantly affect the 46 

transmission efficiencies of DENV-1. Although the density of Wolbachia varied according to 47 

mosquito population, no significant correlation was found between Wolbachia density and 48 
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either viral load or vector competence parameters for DENV-1. Our results highlight the 49 

importance of using natural mosquito populations for a better understanding of transmission 50 

patterns of dengue.  51 

 52 

Keywords: dengue virus, Aedes albopictus, vector competence, Reunion Island, 53 

epidemiological patterns. 54 

 55 
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Introduction  56 

Dengue is the most widespread mosquito-borne disease affecting humans, with half of the 57 

global population located in 128 tropical and subtropical countries, at risk of infection [1,2]. 58 

Most of the 96 million symptomatic cases per year are dengue fevers, which are characterized 59 

by a panel of mild symptoms [3]. However, some cases demonstrate much more severe 60 

syndromes called severe dengue (which can include severe plasma leakage, severe 61 

hemorrhagic syndrome, with or without shock, and various organ dysfunctions). Severe 62 

dengue is responsible for 20,000 deaths each year [4,5]. The etiological agent of the disease, 63 

the dengue virus (DENV), is a positive single-stranded linear RNA genome (11 kilobases), 64 

belonging to the genus Flavivirus (Flaviviridae family). Four different DENV serotypes exist, 65 

each of which is divided into several genotypes based on molecular analyses [6–8]. Long term 66 

serotype-specific immunity follows a DENV infection and lasts for several decades [9], whereas 67 

secondary infection with a heterologous serotype can lead to severe disease manifestations 68 

through the antibody-dependent enhancement effect [10,11]. The DENV is transmitted to 69 

humans through the bite of infected female mosquitoes, mostly of the Aedes genus. Globally, 70 

the mosquito species Aedes aegypti is considered as the primary DENV vector, with Aedes 71 

albopictus recognized as a secondary vector [5,12–14]. However, outbreaks of dengue 72 

involving Ae. albopictus have been reported in some countries, such as in Japan (in 1942 and 73 

in 2014) [15,16], Hawaii (in 2001) [17], Madagascar (in 2006) [18], Gabon (in 2007) [19], China 74 

(in 2004 and 2010) [20,21] and more recently in Reunion Island (in 2017) [22].  75 

 76 

Reunion Island is an overseas French department located in South-Western Indian Ocean 77 

(SWIO), about 700 km east of Madagascar. Several dengue outbreaks have been documented 78 
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on the island, with the first officially recorded one dating back to 1977 [23]. Subsequently, 79 

low-intensity outbreaks have been reported for several years, with less than 230 cases per 80 

year and no death related to dengue. However, Reunion Island has faced unprecedented 81 

epidemiological patterns from 2017 to 2021. During this period, 71,636 confirmed cases, 542 82 

severe forms and 78 deaths were reported [22]. All four DENV serotypes have been detected 83 

in Reunion Island since 1977: the three serotypes DENV-1, DENV-2 and DENV-3 in 84 

autochthonous cases, and all four serotypes in imported cases [22]. A strong seasonal pattern 85 

in dengue incidence has been reported on the island, with peaks occurring between March 86 

and June (i.e., during the hot and rainy season) [22]. Besides this seasonality, the geographic 87 

distribution of dengue cases is often heterogeneous across the island, with the western and 88 

the southern parts being the most affected compared to the northern, eastern and central 89 

parts [22]. Although factors related to human populations (demography, geographic mobility, 90 

immunity) and DENV genetics may explain the transmission pattern of DENV in Reunion Island, 91 

the role of mosquito populations should also be taken into account [22].  92 

 93 

Among the 12 species of mosquitoes encountered in Reunion Island, both Ae. aegypti and Ae. 94 

albopictus are present [24–26]. However, Ae. albopictus is the most abundant and is 95 

commonly found everywhere on the island, including at altitudes higher than 1,000 m [24,27]. 96 

This mosquito species was identified as the main vector responsible for a large chikungunya 97 

outbreak that hit Reunion Island in 2005-2006 [28], but also as the major vector involved in 98 

epidemics of dengue on the island [23,29–31]. The role of Ae. albopictus in the transmission 99 

of DENV in Reunion Island is supported by its large distribution across the island and the 100 

occurrence of peaks of DENV transmission that coincide with periods of high population 101 

https://www.zotero.org/google-docs/?XCz3k3
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densities of this vector [32,33]. DENV-1 was detected in pooled samples of Ae. albopictus 102 

collected in Reunion Island during the 2004 epidemic [30]. Other studies have shown that Ae. 103 

albopictus from Reunion Island are capable of being infected with both DENV-1 [34] and 104 

DENV-2 [35,36]. However, these data do not provide a clear picture of the vector competence 105 

variability (the ability of a vector to be infected and to transmit a pathogen) among Ae. 106 

albopictus populations from Reunion Island and their potential role in the geographical 107 

contrasts of dengue cases. 108 

 109 

The aim of this study was to examine vector competence of natural populations of Ae. 110 

albopictus from Reunion Island, collected in areas of high and low DENV transmission. A 111 

laboratory line of Ae. aegypti from Reunion Island was used as a control. Experimental 112 

infections were performed using local epidemic DENV-1 and DENV-2 strains. Since no 113 

geographic structure of the genetic diversity of Ae. albopictus populations has been observed 114 

in Reunion Island [37,38], we also assessed the influence of the density of endosymbiotic 115 

bacteria Wolbachia on vector competence phenotypes. Aedes albopictus is naturally infected 116 

with two Wolbachia strains, namely wAlbA and wAlbB [39], which can interfere with the 117 

replication and transmission of DENV [35,40,41]. The results of this investigation may help to 118 

better understand the role of Ae. albopictus populations in the epidemiological patterns of 119 

dengue in Reunion Island.  120 

 121 

 122 

 123 
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Materials and Methods 124 

Mosquitoes  125 

Aedes albopictus specimens were collected as eggs, larvae and pupae in 10 localities across 126 

Reunion Island in 2020 and 2021: Sainte-Marie (F0_SM), Saint-André (F0_SA), Saint-Gilles les 127 

Hauts (F0_SG), Saint-Philippe (F0_SPh), Saint-Paul (F1_SPa), Saint-Louis (F1_SL), Ligne Paradis 128 

(F1_LP), Sainte-Clotilde (F2_SC), Bras-Panon (F2_BP) and Trois Bassins (F2_TB) (Fig 1 and S1 129 

Table). Field samples (F0 generation) were reared in the laboratory under standard conditions 130 

[26 ± 1°C, 80% relative humidity (RH), 12 h light/12 h dark photoperiod]. Larvae were fed with 131 

yeast tablets, and adults were provided with 10% sucrose solution. Samples collected as eggs 132 

were amplified for one generation (F1) or two generations (F2) before vector competence 133 

experiments. To achieve this, adult females were artificially fed with bovine blood using the 134 

Hemotek feeding system (Hemotek Limited, Great Harwood, UK) covered by pig intestine. 135 

Experimental infections were conducted using four Ae. albopictus populations of F0 generation 136 

(F0_SM, F0_SA, F0_SG and F0_SPh), three populations of F1 generation (F1_SPa, F1_SL and 137 

F1_LP), and three populations of F2 generation (F2_SC, F2_BP and F2_TB) (S1 Table). A 138 

laboratory colony of Ae. aegypti (F31 and F37 generations), established from mosquitoes 139 

collected in the Trois Bassins locality in 2014 (F31_Aeg and F37_Aeg), was also used (Fig 1 and 140 

S1 Table).  141 

 142 

Viral strains  143 

Three clinical DENV strains isolated from autochthonous human cases from Reunion Island 144 

were used: one DENV-1 strain of genotype 1, (GenBank accession number: ON631277), and 145 
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two DENV-2 strains of the same lineage inside the cosmopolitan genotype, DENV-2_JUL 146 

(GenBank accession number: MN272404) and DENV-2_EVAg (EVAg reference: UVE/DENV-147 

2/2018/RE/47099). The DENV-1 strain was isolated on Vero E6 cells (ATCC, ref. CRL-1586) from 148 

a serum sampled in 2019 [42]. The DENV-2_JUL was isolated on Vero E6 cells from a blood 149 

sample collected from a patient in 2018 [43]. The DENV-2_EVAg was purchased as lyophilizate 150 

from the European Virus Archive goes global (EVAg) at passage 4. This latest DENV strain was 151 

isolated from a traveler returning from Reunion Island to mainland France in 2018. Before viral 152 

production, the lyophilized DENV-2_EVAg was resuspended into 200 μl distilled water. Viral 153 

stocks of the three DENV strains used in experimental infections were amplified on Vero E6 154 

cells at a MOI of 0.1 in an Eagle’s minimum essential medium (MEM) supplemented with 2% 155 

heat-inactivated fetal bovine serum (FBS), 2 mmol/l L-glutamine, 1 mmol/l sodium pyruvate, 156 

10 U/ml of penicillin, 0.1 mg/ml of streptomycin and 0.5 μg/ml of fungizone (PAN Biotech, 157 

Aidenbach, Germany). Vero cells were maintained at 37°C with a 5% CO2 atmosphere. For all 158 

virus stocks, supernatants were harvested three to five days post-infection after the onset of 159 

cytopathic effects and then frozen at -80°C until use. The final titers of DENV stocks were 1×107 160 

PFU/ml, 4.5×105 PFU/ml and 1.02×106 PFU/ml for DENV-1 (passage 3), DENV-2_JUL (passage 161 

6) and DENV-2_EVAg (passage 6), respectively. 162 

 163 

Experimental infections 164 

Seven to fifteen-day-old female mosquitoes were isolated in small cages (16×16×16 cm) and 165 

starved for 24 to 30 hours. After this starvation period, they were allowed to feed for 45 166 

minutes on infectious blood meals consisting of 1 ml of washed rabbit erythrocytes, 1 ml of 167 

DENV suspension and 5 mM (21 µl) of adenosine triphosphate used as a phagostimulant. The 168 

https://www.zotero.org/google-docs/?91Qfai
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infectious blood meal was delivered to mosquitoes using the Hemotek feeding system 169 

(Hemotek Limited, Great Harwood, UK) covered with pig intestine. Because we were unable 170 

to increase the titers of viral stocks of the two DENV-2 strains for experimental infections, 171 

infectious blood meals were performed with the maximum possible virus titer which differed 172 

between DENV strains with 7×106 PFU/ml, 6.8×104 PFU/ml and 3.2×105 PFU/ml for DENV-1, 173 

DENV-2_JUL and DENV-2_EVAg, respectively. Then, mosquitoes were cold-anesthetized, and 174 

engorged females were transferred into a climatic chamber (26±1°C, 80% of RH and with a 175 

photoperiod of 12 h light/12 h dark) where they were maintained with a 10% sucrose solution 176 

for a maximum of 28 days. Seven Ae. albopictus populations were infected with DENV-1 177 

(F0_SM, F0_SG, F0_SPh, F0_SA, F2_SC, F2_BP, F2_TB), three populations were infected with 178 

DENV-2_JUL (F1_SPa, F1_SL, F1_LP), and four populations with DENV-2_EVAg (F0_SM, F0_SG, 179 

F0_SPh, F0_SA) (S1 Table). The Ae. aegypti colony (F31 and F37 generations) was infected with 180 

the three DENV strains (S1 Table).   181 

 182 

Vector competence analysis 183 

At 14, 21, and 28 days post-exposure (dpe) to infectious blood meals, legs and wings of 184 

mosquitoes (N= 5 to 76, S1 Table) were removed before salivation [44]. Saliva from individual 185 

mosquitoes was collected for 30 min by inserting the proboscis into a pipette tip containing 5 186 

µl of FBS. Afterwards, the solution contained in the tip was transferred to 45 µl of complete 187 

MEM medium (i.e. MEM supplemented with l-glutamine, sodium pyruvate, penicillin, 188 

streptomycin and fungizone as described above). Then the head and the body (thorax and 189 

abdomen) were separated and ground in 200 µl of complete MEM medium supplemented 190 

with 2% FBS. After a centrifugation at 10,000×g for 5 minutes to pellet tissue debris, 150 µl of 191 

https://www.zotero.org/google-docs/?V4Qthz
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the supernatant of each sample was stored at -80°C until detection and titration of DENV. For 192 

bodies, pellets were stored in -80°C for the measurement of Wolbachia density (see below). 193 

The detection of DENV in bodies, heads and saliva was performed by plaque forming unit (PFU) 194 

assays on Vero cells. For bodies and heads, 48-well culture plates were seeded with 5×104 195 

Vero E6 cells per well. For saliva, 12-well plates were seeded with 3×105 Vero E6 cells per well. 196 

The following day, cells were incubated for 2 hours (37°C, 5% CO2) with 100 µl of ten-fold 197 

dilutions of body or head homogenates, or with 250 µl of ten-fold dilutions of the solution 198 

containing saliva. All dilutions were performed with complete MEM medium supplemented 199 

with 2% FBS. Then, 200 µl (for bodies and heads) or 1 ml (for saliva) of MEM medium 200 

supplemented with 5% of FBS and 0.8% of carboxymethylcellulose sodium salt (CMC; Sigma-201 

Aldrich, Saint-Quentin-Fallavier, France) were added to each well. After 5 days of incubation 202 

(37°C, 5% CO2), supernatants were removed, cells were washed twice with PBS, fixed with 203 

3.7% paraformaldehyde (Sigma-Aldrich), and stained with 0.5% crystal violet (Sigma-Aldrich) 204 

dissolved in ethanol 20%. Vector competence of each population was evaluated based on 205 

three parameters: the infection rate (IR), the dissemination efficiency (DE), and the 206 

transmission efficiency (TE). IR, DE and TE correspond respectively to the proportion of 207 

infected bodies, head and saliva among the total number of mosquitoes tested.  208 

 209 

Viral RNA extraction and amplification 210 

Viral loads in the bodies of infected F0 Ae. albopictus mosquitoes (N=43) previously exposed 211 

to DENV-1 and collected at 21 and 28 dpe were quantified using the reverse transcription 212 

quantitative real-time PCR (RT-qPCR). These samples are sub-samples of those tested for 213 

vector competence (infection rates). RNA from mosquito bodies was individually extracted 214 
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using the QIAcube HT robotic workstation and the associated Cador Pathogen 96 QIAcube HT 215 

Kit (QIAGEN) following manufacturer’s recommendations with slight modifications. Extracted 216 

RNA was eluted in 100 µl of AVE buffer (QIAGEN). The RT-qPCR was then performed using the 217 

QIAGEN OneStep RT-PCR Kit according to the manufacturer’s recommendations. For this, a 218 

mixed solution was prepared with RNA template (5 μl), a TaqMan probe (FAM-219 

ACACCTCAAGCTAA-TAMRA), and primers (Forward 5’-GAACATGGRACAAYTGCAACYAT-3’; 220 

Reverse 5’-CCGTAGTCDGTCAGCTGTATTTC-3’) specific for the DENV-1 viral envelope gene. The 221 

thermocycler program consisted of a reverse transcription step of 45 min at 45°C, 222 

denaturation for 5 min at 95°C followed by 40 cycles of amplification (72°C for 5 s and 56°C 223 

for 60 s). The number of viral RNA copies was estimated against a standard curve following 224 

the methodology published by the HAS (Haute Autorité de Santé, France). Briefly, plasmids 225 

containing targeted DENV-1 were synthesized by GeneCust (France) and used as the standard 226 

curve at concentrations of 101 to 108 RNA copies per μl. 227 

 228 

Wolbachia density 229 

Wolbachia were quantified in bodies of F0 Ae. albopictus mosquitoes (N=75) previously 230 

exposed to DENV-1 and collected at 21 and 28 dpe. DNA was extracted from individual body 231 

carcasses, previously stored in -80°C from samples used to test vector competence (infection 232 

rates), using the QIAcube HT robotic workstation and the associated Cador Pathogen 96 233 

QIAcube HT Kit (QIAGEN) following the manufacturer’s recommendations with slight 234 

modifications. Afterwards, DNA was eluted in 100 µl of AVE buffer (QIAGEN) and stored at -235 

20°C until molecular investigations. Real-time quantitative PCRs were performed with the 236 

CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) to estimate the 237 
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number of Wolbachia genome copies in each sample. Two PCRs that specifically amplified the 238 

Wolbachia surface protein gene wsp for the strains wAlbA and wAlbB were performed using 239 

newly designed primers for wAlbA (wspA: wspA_F 5’-TAACAGCAATTTCAGGACTAG-3’ and 240 

wspA_R 5’-CTGTTTTGATTATTTATAGCGG-3’) and wAlbB (wspB: wspB_F 5’-241 

GTGGCAGTATTTTCAGGATTG-3’ and wspB_R 5’-CTGCACTAGCTTCTGAAGG-3’) that amplify 140 242 

bp and a 130 bp fragments, respectively. Wolbachia genomes were quantified relative to 243 

mosquito genomes. To this end, a fragment of the Ae. albopictus 40S ribosomal protein S7 244 

(RSP7) gene of 140 bp was amplified with designed primers (RSP7_F 5’-245 

ATCGAGTTCAACAGCAAGAA-3’ and RSP7_R 5’-CGACGTGCTTGCCGGAGAAC-3’). About 5 ng of 246 

genomic DNA was mixed with 10 μl of QuantiNova Probe RT-PCR master mix (QIAGEN), 1 μl 247 

(10 μM) of each primer and 3.6 μl of RNase-free water. PCRs were run with activation for 2 248 

mins at 95°C followed by 45 cycles (95°C for 5s and 60°C for 5s). Each DNA template was 249 

analyzed in triplicate for wspA, wspB and RSP7. A standard curve was generated for each qPCR 250 

run to standardize the signals with the RSP7 reference. The relative mean genome number of 251 

wAlbA and wAlbB strains was obtained per RSP7 copy number.  252 

 253 

Statistical analysis 254 

Vector competence for DENV 255 

A first analysis was performed on all data using the proportion test to compare IR, DE and TE 256 

parameters between mosquito populations for each dpe and each DENV strain separately. A 257 

Bonferroni correction was applied for multiple comparisons [45]. A second analysis was 258 

performed to study the effects of four explanatory parameters on the vector competence of 259 

Ae. albopictus populations to DENV-1 using generalized linear models (GLM) with a binomial 260 

https://www.zotero.org/google-docs/?araieL
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error structure (or quasi-binomial in case of over-dispersed data). The explanatory parameters 261 

tested were all categorical: ‘population’ (seven modalities: F0_SM, F0_SA, F0_SG, F0_SPh, 262 

F2_SC, F2_BP and F2_TB), ‘generation’ (two modalities: F0 and F2), ‘dpe’ the day post-exposure 263 

(three modalities: 14 dpe, 21 dpe, and 28 dpe), and ‘area’ (four modalities: North, East, South 264 

and West). The GLM analyses were made independently for each of the three vector 265 

competence parameters (i.e. IR, DE, and TE) used as binary response variables (DENV infected 266 

and non-infected). As each population had only one generation, the effect of the two 267 

parameters ‘population’ (of F0 or F2 generation) and ‘generation’ were also analyzed 268 

independently to avoid any confounding effect. Therefore, three distinct models were used: 269 

GLM1 with the following maximal model on F0 generation only “population * dpe”, GLM2 with 270 

on F2 generation only “population * dpe”, and GLM3 on all populations with “(generation + 271 

dpe + area)^2”. Selection of the minimal model was assessed using the likelihood ratio test 272 

(LRT), and the significance of the selected parameters addressed by Anova from the car R 273 

package [46]. Based on the minimal model selected, the emmeans R package [47] was used 274 

to assess the statistical difference between the modalities. 275 

 276 

Wolbachia density 277 

We first compared Wolbachia density (wAlbA, wAlbB, or wAlbTot) according to dpe for each 278 

population using the Mann_Whitney test for unpaired samples and no significant difference 279 

was noted between 21 and 28 dpe either for wAlbA, wAlbB, or wAlbTot (Mann_Whitney tests; 280 

all p-values > 0.0789). Therefore, subsequent analyses were carried out by combining samples 281 

from both dpe (N=75, 41 samples from 21 dpe and 34 samples from 28 dpe). The 282 

Mann_Whitney test was also used to compare the densities of the two Wolbachia strains for 283 

https://www.zotero.org/google-docs/?nfdJMl
https://www.zotero.org/google-docs/?Ca5Cpd
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each mosquito population. The effect of population on Wolbachia density (wAlbA, wAlbB, or 284 

wAlbTot) was explored using the non-parametric Kruskal-Wallis analysis followed by pairwise 285 

post-hoc comparisons of medians with a Dunn’s test. To assess the influence of Wolbachia on 286 

vector competence parameters, mosquitoes were first classified according to four IDT 287 

(Infection, Dissemination, Transmission) scores (0, 1, 2 or 3). These IDT scores were defined 288 

as follows: the IDT score 0 for mosquitoes with no infectious DENV-1 particles either in the 289 

body, head or saliva; the IDT score 1 for samples with only infected bodies; the IDT score 2 for 290 

mosquitoes with infectious particles in the bodies and the heads; and the IDT score 3 for 291 

mosquitoes with infectious DENV-1 particles in the bodies, heads and saliva (S2 Table). Then 292 

Wolbachia density medians were compared between different combinations of these IDT 293 

scores using Mann_Whitney tests for unpaired samples. The correlation between Wolbachia 294 

densities and DENV-1 viral load in the bodies of infected mosquitoes was examined using a 295 

Pearson correlation coefficient test in a sub-sample of DENV-1 infected Ae. albopictus (N=43). 296 

The effect of mosquito population on DENV-1 viral load was also explored using the non-297 

parametric Kruskal-Wallis analysis followed by pairwise post-hoc comparisons of medians 298 

with a Dunn’s test. 299 

 300 

All the statistical analyses were performed in R software (v.3.6.2) (R Core Team 2019) with 301 

also the following packages: PropCIs [48], stats (R Core Team 2019), ggplot2 [49], rstatix [50], 302 

ggbreak [51], and glm2 [52]. 303 

 304 

 305 

 306 

https://www.zotero.org/google-docs/?W4UrC5
https://www.zotero.org/google-docs/?XPteKS
https://www.zotero.org/google-docs/?BI6JTC
https://www.zotero.org/google-docs/?AmmCBz
https://www.zotero.org/google-docs/?2BqzHa
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Results 307 

Aedes albopictus populations of three generations (F0, F1 and F2) collected in different 308 

geographic areas (North, East, South and West) in Reunion Island, and a laboratory colony of 309 

Ae. aegypti (F31 and F37 generations) used as control, were exposed to three DENV strains: one 310 

DENV-1 and two DENV-2 that have circulated on the island between 2018-2020 (S1 Table).  311 

 312 

No transmission of DENV-2 strains by Aedes albopictus populations 313 

Three Ae. albopictus populations of F1 generation (F1_SPa, F1_SL and F1_LP) were exposed to 314 

the DENV-2_JUL strain and vector competence parameters were examined at 14 dpe. Low IR 315 

were observed with values ranging between 5.88% (95% Confidence Interval = 1.05 - 26.98%) 316 

and 11.76% (3.29 - 34.34%) (S3 Table) but no significant differences between populations 317 

were observed in pairwise comparisons (all p-values > 0.99). No dissemination or transmission 318 

of DENV-2_JUL was observed for the three Ae. albopictus populations (S3 Table). In 319 

comparison, a laboratory colony of Ae. aegypti exposed to DENV-2_JUL was examined at 14 320 

and 21 dpe. Similar to Ae. albopictus, low IRs were observed: 9.38% (3.24 - 24.22%) and 8.82% 321 

(3.05 - 22.96%) at 14 and 21 dpe, respectively, and no dissemination or transmission of the 322 

DENV-2_JUL strain at either dpe (S3 Table).  323 

 324 

Four Ae. albopictus populations of F0 generation (F0_SM, F0_SA, F0_SG, and F0_SPh) were 325 

exposed to the DENV-2_EVAg strain and vector competence parameters were examined at 326 

14, 21, and 28 dpe for F0_SM and F0_SA, and only at 28 dpe for F0_SG and F0_SPh. The Ae. 327 

albopictus populations also showed very low vector competence to DENV-2_EVAg. In F0_SM 328 
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and F0_SA populations, only one infected body was observed at 14 dpe (IR=2.08%; 0.37 - 329 

10.90%; for both populations), and no infection was observed later at 21 or 28 dpe (S4 Table). 330 

At 28 dpe, no infected body was observed in the F0_SG population (S4 Table), while IR in the 331 

F0_SPh population was estimated at 25% (10.18 - 49.50%), and was significantly higher than 332 

in F0_SM and F0_SA population (IR=0.00%; 0.00 - 7.41% for both populations; and p-values = 333 

0.009 for both comparisons). No dissemination or transmission was observed for the different 334 

populations and dpe considered (S4 Table). For Ae. aegypti, IR was 8.57% (2.96 - 22.38%) at 335 

14 dpe, and, unlike Ae. albopictus populations, virus dissemination was observed (DE=2.86%; 336 

0.51 - 14.53%) for the DENV-2_EVAg strain. However, as with the Ae. albopictus populations, 337 

no transmission was observed at 14 dpe for Ae. aegypti (S4 Table).  338 

 339 

Transmission of the DENV-1 strain by Aedes albopictus populations 340 

We examined the vector competence of four Ae. albopictus populations of F0 generation 341 

(F0_SM, F0_SA, F0_SG and F0_SPh) and three populations of F2 generation (F2_SC, F2_BP and 342 

F2_TB), as well as a laboratory colony of Ae. aegypti, at 14, 21, and 28 dpe after exposure to 343 

the DENV-1 strain (Fig 2 and S5 Table). All populations were susceptible to DENV-1 infection 344 

(Fig 2A and S5 Table): IRs values ranged from 9.38% (3.24 - 24.22%) to 64.58% (50.44 - 76.57%) 345 

at 14 dpe, from 18.75% (10.19 - 31.94%) to 68.75% (54.67 - 80.05%) at 21 dpe, and from 9.38% 346 

(3.24 - 24.22%) to 68.42% (57.30 - 77.77%) at 28 dpe (Fig 2A and S5 Table). Statistical analysis 347 

of IR showed that the explanatory parameters "dpe", and "area" were not retained in the 348 

minimal models of the three GLMs, and therefore had no effect on the IR values (Table 1). 349 

Only the "generation" parameter showed a significant influence on IR (GLM3, X² = 51.024, df 350 

= 1, p-value < 0.0001), with a higher IR for populations of F2 generation (IR=58.09%; 53.25 - 351 
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62.78%) than for populations of F0 generation (IR=24.19%; 20.63 - 28.15%; p-value < 0.0001, 352 

S6 Table) but no significant difference was noted between populations of the same generation 353 

(all p-values > 0.05). 354 

 355 

All Ae. albopictus populations, as well as the Ae. aegypti colony, were able to disseminate 356 

DENV-1 (Fig 2B and S5 Table). Similar to IR, pairwise comparisons revealed significantly higher 357 

DE for populations of F2 generation compared to those of F0 generation, but only at 21 and 28 358 

dpe (S6 Table), and no significant difference was noted between populations of the same 359 

generation (all p-values P > 0.05). Analyzing both generations separately, DE were not 360 

different between populations ("population" parameters not retained in the GLM1 and GLM2 361 

minimal models; Table 1), whereas the "generation" parameter showed a significant influence 362 

(GLM3, X² = 61.320, df = 1, p-value < 0.0001) with higher mean DE for populations of F2 363 

generation (DE=44.61%; 39.86 - 49.46%) than for populations of F0 generation (DE=12.90%; 364 

10.24 - 16.14%; p-value < 0.0001). In contrast to IR, statistical analyses showed a significant 365 

effect of dpe, with DE increasing over time for populations of F2 generation (GLM2, X² =30.485, 366 

df = 2, p-value < 0. 0001) from 17.97% (12.28 - 25.52%) at 14 dpe to 51.49% (43.11 - 59.79%) 367 

at 21 dpe or to 61.64% (53.55 - 69.14%) at 28 dpe (pairwise comparison, p-value = 0.0003 and 368 

p-value < 0.0001, respectively). For populations of F0 generation, no effect of "dpe" was 369 

observed (GLM1, Table 1), with mean DEs ranging from 3.13% (0.55 - 15.74%) to 15.63% (6.86 370 

- 31.75%) at 14 dpe, from 12.50% (5.86 - 24.70%) to 25.00% (14.92 - 38.78%) at 21 dpe, and 371 

from 6.25% (1.73 - 20.15%) to 20.83% (11.73- 34.26%) at 28 dpe (S5 Table). When both 372 

generations are analyzed together, “dpe” significantly influenced DE (GLM3, X² =29.334, df = 373 

2, p-value < 0.0001) with DE significantly increasing between 14 dpe (DE=12.11%; 8.66 - 374 
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16.68%) and 21 dpe (DE=30.98%; 26.21 - 36.20%) or 28 dpe (DE=35.40%; 30.38 - 40.77%) 375 

(pairwise comparison, p-value = 0.0001 and p-value < 0.0001, respectively). Finally, and as for 376 

the IR, the “area” parameter was not retained in the GLM3 minimal model, demonstrating no 377 

influence on the DE values (Table 1).  378 

 379 

The Ae. albopictus populations and the Ae. aegypti colony tested were all able to transmit the 380 

DENV-1 strain tested at 21 dpe, with F0_SM, F0_SA and F2_BP populations containing 381 

infectious virus particles in the saliva as soon as 14 dpe (Fig 2C and S5 Table). As with the DE, 382 

significantly higher TE was found for populations of F2 generation compared to populations of 383 

F0 generation at both 21 and 28 dpe (S6 Table), but no significant difference was noted 384 

between populations of the same generation (all p-values > 0.05). Only the “dpe” parameter 385 

was retained in the GLM2 minimal model (GLM2, X² = 60.324, df = 2, p-value < 0.0001), with 386 

a significantly lower TE for the populations of F2 generation at 14 dpe (TE=0.78%; 0.14 - 4.29%) 387 

than at 21 dpe (26.12%; 19.42 - 34.15%, p-value = 0.002) or than at 28 dpe (36.99%; 29.58 - 388 

45.06%, p-value = 0.0003). TE were not significantly different between the populations of F0 389 

generation (GLM1) and ranged from 3.13% (0.55 - 15.74%) to 9.38% (3.24 - 24.22%) at 14 dpe, 390 

from 2.08% (0.37 - 10.90%) to 14.58% (7.25 - 27.17%) at 21 dpe, and from 3.13% (0.55 - 391 

15.74%) to 12.50% (5.86 - 24.70%) at 28 dpe (Fig 2C and S5 Table). For the GLM3, all the 392 

explanatory parameters and their two-by-two interactions were retained in the minimal 393 

model (Table 1). Post-hoc analyses showed differences in TE between generations within 394 

certain areas. In the West, the population of F2 generation had a significantly higher TE 395 

(TE=23.84%; 18.09 - 30.73%) than that of F0 generation (TE=3.91%; 1.68 - 8.82%; p-value < 396 

0.0001). In the East, the population of F2 generation had a significantly higher TE (TE=25.90%; 397 
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19.84 - 33.06%) than that of F0 generation (TE=8.04%; 4.29 - 14.57%; p-value < 0.0001). 398 

Moreover, TE increased over time according to the area with, for example, a mean TE for the 399 

northern populations increasing significantly between 14 dpe (TE=1.56%; 0.28 - 8.33%) and 21 400 

dpe (TE=17.44%; 10.86 - 26.80%; p-value < 0.0001) and between 14 and 28 dpe (TE=12.50%; 401 

5.86 - 24.70%; p-value < 0.0001). The Ae. aegypti colony presented similar TEs to Ae. 402 

albopictus with 12.50% (5.86 - 24.70%) and 16.67% (7.34 - 33.56%) at 21 and 28 dpe, 403 

respectively (Fig 2C and S5 Table).  404 

 405 

Table 1. Statistical analyses of vector competence parameters of Ae. albopictus populations infected 406 

with the DENV-1 strain. Mosquitoes were examined at 14, 21 and 28 days post-exposure (dpe). In these 407 

analyses, the influence of mosquito population, dpe, generation and area were tested. d.f. is the 408 

degree of freedom and X² is the Chi-square value.  409 

 Maximal model 
Parameters retained 

in the minimal model 
Generation 

IR DE TE 

X² d.f. p-value X² d.f. p-value X² d.f. p-value 

GLM1 
population of F0 

generation + dpe 

population 
F0 

- - - - - - - - - 

dpe - - - - - - - - - 

GLM2 
population of F2 

generation + dpe 

population 

F2 

- - - - - - - - - 

dpe - - - 30.485 2 <0.0001 60.324 2 0.0001 

GLM3 
(generation + dpe 

+ area)^2 

generation x dpe 

All 

- - - - - - 154.34 2 <0.0001 

generation x area - - - - - - 38.09 2 <0.0001 

dpe x area - - - - - - 185.61 6 <0.0001 

generation 51.024 1 <0.0001 61.320 1 <0.0001 461.31 1 <0.0001 

dpe - - - 29.334 2 <0.0001 811.59 2 <0.0001 

area - - - - - - 47.41 3 <0.0001 

 410 

We also tested the influence of the sampling period on vector competence to the DENV-1 411 

strain by comparing IRs, DEs and TEs at 14, 21 and 28 dpe between two populations collected 412 
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in the same location (F0_SM) a month apart. No significant difference was observed between 413 

the two populations for either IRs (p-values > 0.760, for all the dpe tested), DEs (p-values > 414 

0.356), or TEs (p-values > 0.425) (see S7 Table for all proportion data). 415 

 416 

No effect of Wolbachia on the replication of DENV-1 in Aedes albopictus 417 

We measured the density of Wolbachia strains wAlbA, wAlbB and of both strains (wAlbTot, 418 

i.e. wAlbA + wAlbB) in individual Ae. albopictus mosquitoes (N=75) from the four populations 419 

of F0 generation (F0_SM, F0_SG, F0_SPh, F0_SA) previously exposed to DENV-1 infectious 420 

blood meals and collected at 21 and 28 dpe. These two dpe were selected because they 421 

showed higher values of vector competence parameters in particular DE and TE (see Fig 2), 422 

thus allowing testing the correlation between Wolbachia densities and vector competence 423 

referred as IDT scores (S2 Table). The wAlbA strain presented a significantly higher density 424 

than the wAlbB strain in the four populations (Mann_Whitney tests; p-value = 0.002 for F0_SM 425 

and for F0_SA; p-value < 0.001 for F0_SG and for F0_SPh), with median densities per 426 

population ranging from 2.20 (0.70 - 2.20) to 9.00 (3.90 - 24.80) bacteria/cell for wAlbA and 427 

from 0.40 (0.23 - 0.60) to 1.95 (1.40 - 2.30) bacteria/cell for wAlbB (S8 Table). The density of 428 

both Wolbachia strains varied according to mosquito populations (S8 Table), with the lowest 429 

densities observed in the F0_SG population, followed by the F0_SPh population and higher 430 

densities in the F0_SM and F0_SA populations (S1 Fig and S8 Table).  431 

 432 

To examine the influence of Wolbachia density on Ae. albopictus vector competence, the 433 

samples from the four populations and from both 21 and 28 dpe were gathered (since no 434 
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significant difference was found between dpe and between populations for F0 generation, i.e. 435 

GLM1, see Table 1). They were then classified according to their IDT score (N = 12 to 19 436 

mosquitoes per IDT score, S9 Table). No significant difference in Wolbachia density was 437 

observed between the IDT score 0 (i.e. no infection) and all three other IDT groups (1, 2 and 438 

3) gathered (i.e. with at least one infected tissue) either for wAlbA (Mann_Whitney test, p-439 

value = 0.609), wAlbB (p-value = 0.613), or wAlbTot (p-value = 0.696), suggesting that 440 

Wolbachia density did not affect the ability of mosquitoes to become infected after exposure 441 

to DENV-1 (S2 Fig, S9 Table). Similarly, no significant difference was found by comparing the 442 

Wolbachia density between the score IDT 1 on one hand, and the scores 2 and 3 gathered on 443 

the other hand (S9 Table) (Mann_Whitney tests; p-value = 0.434 for wAlbA; p-value = 0.066 444 

for wAlbB; p-value = 0.494 for wAlbTot), suggesting that Wolbachia density did not affect the 445 

ability of mosquitoes to disseminate the DENV-1 after being infected (S2 Fig). Wolbachia 446 

density had also no impact on the ability of mosquitoes to transmit DENV-1 after 447 

dissemination in the heads, a result highlighted by the absence of any significant difference 448 

between the Wolbachia density of IDT scores 2 and 3 (S9 Table) (Mann_Whitney tests; p-value 449 

= 0.151 for wAlbA; p-value = 0.238 for wAlbB; p-value = 0.113 for wAlbTot) (S2 Fig). 450 

 451 

Finally, we examined the correlation between Wolbachia density (wAlbTot i.e. wAlbA+wAlbB) 452 

and the number of DENV-1 RNA copies in the bodies of the infected mosquitoes (N = 43 453 

positive samples for DENV-1). Firstly, we compared the Wolbachia density (Fig 3A) or the 454 

DENV-1 viral load (Fig 3B) between the four populations. The mosquito population showed a 455 

significant effect on the median Wolbachia density (Kruskal-Wallis test, X² = 16.86, d.f. = 3, p-456 

value < 0.001) and on the median number of DENV-1 RNA copies (Kruskal-Wallis test, X² = 457 
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13.48, d.f. = 3, p-value = 0.004). Although both Wolbachia density and DENV-1 viral load vary 458 

significantly according to mosquito populations (Fig 3A and Fig 3B), no significant correlation 459 

between the two parameters was noted (Pearson correlation coefficient test, cor = -0.190, 460 

95% CI = [-0.464;0.117], t = -1.236, d.f. = 41, p-value = 0.224) (Fig 3C), suggesting a lack of 461 

association between Wolbachia density and DENV-1 viral load.  462 

 463 

Discussion 464 

In this study, we examined the vector competence of Ae. albopictus populations from Reunion 465 

Island exposed to local epidemic DENV-1 and DENV-2 strains that had been previously isolated 466 

and genetically characterized [42,43]. The mosquito populations used for experimental 467 

infections were collected in different geographic areas across Reunion Island and were of F0, 468 

F1 and F2 generations. The use of F0 populations allowed experimental conditions to be as 469 

close as possible to those of natural mosquito populations. We also assessed the vector 470 

competence of a laboratory colony of Ae. aegypti as control because this species is considered 471 

as the primary DENV vector [5,7,53–57]. In general, no significant difference between vector 472 

competence of Ae. albopictus populations and the Ae. aegypti colony was observed, in 473 

agreement with the results of Florida mosquito populations exposed to a DENV-1 strain [58], 474 

or of China vector populations exposed with DENV-2 strains [59].  475 

  476 

Contrasting results were observed when Ae. albopictus populations were exposed to DENV-1 477 

and DENV-2 strains. None of the tested populations was able to transmit the DENV-2 strains, 478 

while the DENV-1 strain was transmitted by all populations with TEs reaching 40.8% (in the 479 

https://www.zotero.org/google-docs/?J2p4IO
https://www.zotero.org/google-docs/?hRfdxY
https://www.zotero.org/google-docs/?V5twvi
https://www.zotero.org/google-docs/?Dhhq2i
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F2_TB population at 28 dpe). Our results are different from those observed with Ae. albopictus 480 

populations from other geographic regions which generally show higher levels of transmission 481 

with DENV-2 strains compared to DENV-1 strains [60]. For instance, higher viral loads were 482 

described in saliva of an Ae. albopictus population from Vietnam exposed to DENV-2 483 

compared to specimens infected with DENV-1 [57]. The results observed in Ae. aegypti are 484 

quite similar to those described in Ae. albopictus with no transmission of DENV-2 strains, while 485 

TEs of 12.5% and 16.7% were observed with DENV-1 at 21 and 28 dpe, respectively (the means 486 

TEs for Ae. albopictus being 15.5% and 17.3% at 21 and 28 dpe, respectively). The observed 487 

difference in the transmission of the two DENV serotypes by Ae. albopictus and Ae. aegypti 488 

mosquitoes could be explained by two non-exclusive hypotheses. Firstly, the viral titers in 489 

infectious blood meals were higher for the DENV-1 strain (7×106 PFU/ml) than for the DENV-490 

2 strains (between 6.8×104 PFU/ml and 3.2×105 PFU/ml), and viral titers in blood meals are 491 

known as a factor affecting the vector competence of mosquitoes [57,61–63]. Secondly, the 492 

difference in vector competence between DENV-1 and DENV-2 strains could be linked to a 493 

greater replicative fitness or affinity of the DENV-1 local strain with the Ae. albopictus and Ae. 494 

aegypti from Reunion Island compared to the two DENV-2 strains. It is recognized that vector 495 

competence for a given virus is the result of interactions between a viral strain, a mosquito 496 

population and a given environment [41,55,59,62,64–66]. The hypothesis of a better 497 

replicative fitness is reinforced by a previous investigation with Colombian DENV strains 498 

showing a greater replicative fitness of DENV-1 compared to DENV-2 in the human hepatocyte 499 

cell line (Huh-7) [67]. It would be interesting in future investigations to compare replicative 500 

fitness of DENV-1 and DENV-2 strains from Reunion Island in human cell lines, Ae. albopictus 501 

cell lines as well as in Ae. albopictus populations using identical viral titers for both DENV 502 

serotypes. 503 

https://www.zotero.org/google-docs/?cW4pCT
https://www.zotero.org/google-docs/?XnF6fW
https://www.zotero.org/google-docs/?dvyMv4
https://www.zotero.org/google-docs/?FWTf14
https://www.zotero.org/google-docs/?VqO3Dc
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 504 

Among the four explanatory parameters including “population”, “dpe”, “generation”, and 505 

“area” that can affect the three vector competence parameters (IR, DE, and TE), three 506 

parameters (“dpe”, “generation”, and “area”) showed a significant effect. Concerning the 507 

“dpe”, a global increase of IRs, DEs and TEs occurred over time, higher values being observed 508 

in older mosquitoes in particular at 28 dpe compared to 21 and 14 dpe. This result reflects the 509 

kinetics of replication of arboviruses inside mosquitoes, from the initial midgut infection to 510 

the release of infectious viral particles in saliva following a dissemination phase in all the 511 

tissues [68]. The other significant parameter was the “generation”, with higher vector 512 

competence parameters observed in mosquito populations of F2 generation than that of F0 513 

generation. The effect of generation on vector competence could be explained by a reduced 514 

genetic diversity in mosquitoes reared in the laboratory due to a founder effect. The rearing 515 

of mosquitoes in the laboratory for two generations could alter the mosquito genetic diversity 516 

as well as their microbiota [62,69–72]. Indeed, mosquito microbiota, in particular midgut 517 

bacteria, have been shown to modulate vector competence in several mosquito species 518 

[56,62,73–78] including Ae. albopictus [79]. This result shows the importance of working with 519 

mosquito populations of F0 generation to better understand the transmission patterns of 520 

arboviruses in the field. Finally, as the geographic distribution of dengue cases is often 521 

heterogeneous across the island, with the western and the southern parts being the most 522 

affected compared to the northern, eastern and central parts [22], mosquito populations used 523 

in this study were collected in areas of high (West and South) and low (North and East) DENV 524 

transmission. Our data indicated a significant influence of the area of collection on TEs alone, 525 

but also in interaction either with the “dpe” parameter or with the “generation” parameter. 526 

However, the number of mosquito populations from each area was too low (between one and 527 

https://www.zotero.org/google-docs/?1w0i7R
https://www.zotero.org/google-docs/?epDSrO
https://www.zotero.org/google-docs/?4EfKUj
https://www.zotero.org/google-docs/?U4vCSr
https://www.zotero.org/google-docs/?uOlPGI
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three populations) to conclude whether the geographic origin of mosquitoes affects the vector 528 

competence.  529 

 530 

We examined whether the density of the Wolbachia strains wAlbA and wAlbB, naturally 531 

occurring in the Ae. albopictus from Reunion Island, affect vector competence and DENV-1 532 

replication inside the mosquitoes, since Wolbachia have been shown to affect the replication 533 

and transmission of pathogens such as DENV, Chikungunya virus, or Zika virus in mosquito 534 

vectors [80–86]. For all examined populations, the density of the strain wAlbA was higher than 535 

that of the strain wAlbB in accordance with results described in populations from Thailand 536 

[87] and Madagascar [88]. However, other studies have reported a higher density of wAlbB 537 

strain than wAlbA in Ae. albopictus populations from China [41,89], Taiwan [40], Greece and 538 

Corsica [90], and Thailand [87]. We observed variations in Wolbachia density between 539 

populations, the F0_SG population (from the West) exhibited the lowest Wolbachia density, 540 

followed by the F0_SPh population (from the South), the F0_SM population (from the North), 541 

and the F0_SA population (from the East) with the highest Wolbachia density. We also 542 

described a variation in the quantity of DENV-1 viral RNA copies in the bodies of infected 543 

mosquitoes according to their population of origin. However, no significant correlation was 544 

observed between Wolbachia density and DENV-1 viral load, and no difference in Wolbachia 545 

density was found between IDT scores, suggesting that Wolbachia did not influence vector 546 

competence parameters (i.e. infection, dissemination or transmission) of Ae. albopictus 547 

populations exposed to DENV-1. Although it has been previously shown that the Wolbachia 548 

strains infecting Ae. albopictus can affect the vector competence towards DENV [35,40,41], 549 

this interference could depend on the mosquito populations and DENV strains.  550 

https://www.zotero.org/google-docs/?X8mbFB
https://www.zotero.org/google-docs/?KTdknL
https://www.zotero.org/google-docs/?o0cVSq
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 551 

Conclusion  552 

Our study shows that Ae. albopictus populations from Reunion Island are experimentally 553 

competent for the transmission of the local DENV-1 epidemic strain, but not the DENV-2 554 

strains. However, the low viral titres of DENV-2 used means that these results must be taken 555 

with caution. We observed a significant effect of generation on vector competence 556 

parameters: mosquitoes of F0 generation showing significantly lower infection rates, 557 

dissemination efficiencies and transmission efficiencies than those of F2 generation. No 558 

significant correlation was found between Wolbachia density and either vector competence 559 

parameters or viral loads of DENV-1 in infected Ae. albopictus mosquitoes. Taken together, 560 

our results highlight the importance of using natural mosquito populations and considering 561 

various parameters for a better understanding of DENV transmission by mosquito vectors in 562 

the field.  563 
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List of Figures 806 

 807 

Fig 1. Map of sampling sites of Aedes albopictus and Aedes aegypti in Reunion Island. For Ae. 808 

albopictus, the sampling sites are colored according to geographic regions: orange, South; blue, West; 809 

purple, North; and green, East. The unique Ae. aegypti population is colored in gray. Population codes 810 

are given in brackets. The generation (i.e. F0, F1, F2, F31, or F37 generation) at which mosquitoes were 811 

used for the vector competence experiments is noted before the locality. Map was extracted and 812 

modified from Conseil Régional de La Réunion website (Conseil Régional de La Réunion, 2006).  813 

 814 
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 815 

Fig 2. Vector competence parameters of Aedes albopictus and Aedes aegypti populations from 816 

Reunion Island exposed to the DENV-1 strain. (A.) Infection rates (IR), (B.) dissemination efficiencies 817 

(DE), and (C.) transmission efficiencies (TE) of mosquito populations according to geographic areas 818 

(orange: South; blue: West; purple: North; and green: East). Data obtained with Ae. aegypti are shown 819 
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in gray. Vector competence parameters were examined at 14, 21, and 28 days post-exposure (dpe) to 820 

the DENV-1 strain via an infectious blood meal. Error bars correspond to the 95% confidence intervals. 821 

ND= not determined.  822 

 823 

 824 

Fig 3. Correlation between Wolbachia density and viral load of the DENV-1 strain in Aedes albopictus 825 

mosquitoes from Reunion Island. The mosquitoes tested belong to the populations of F0 generation 826 

from Sainte-Marie (F0_SM), Saint-Gilles les Hauts (F0_SG), Saint-Philippe (F0_SPh), or Saint-André 827 
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(F0_SA), and were collected 21 or 28 days post-exposure (dpe) to the DENV-1 local strain. (A.) The total 828 

Wolbachia density (wAlbTot i.e. wAlbA+wAlbB) is given based on the ratio between the Wolbachia and 829 

RSP7 concentrations (DNA copies/cell) in the body of the mosquitoes according to their population of 830 

origin, ratio which provided the number of Wolbachia genomes relative to the Ae. albopictus genomes, 831 

in other words the Wolbachia density per mosquito cell. **p < 0.01, Dunn’s tests. (B.) Number of DENV-832 

1 RNA copies in the body of the mosquitoes according to their population of origin. In graphs A and B, 833 

the line inside each boxplot represents the median and the diamond corresponds to the mean of each 834 

population.*p < 0.05, **p < 0.01, Dunn’s tests. (C.) Number of DENV-1 RNA copies according to the 835 

total Wolbachia density in the body of each mosquito tested (N=43).  836 

 837 

Supporting information 838 

Mosquitoes 

DENV strain 

Number of samples 

examined 

Species 
Location of collection 

(Population code) 

Area of 

collection 
Generation Date of collection 14 dpe 21 dpe 28 dpe 

Aedes 

albopictus 

Sainte-Marie (F0_SM) North F0 

April 2021 DENV-1 32 48 48 

May 2021 
DENV-2_EVAg 48 48 48 

DENV-1 24 24 26 

Sainte-Clotilde (F2_SC) North F2 February to March 2020 DENV-1 32 38 0 

Saint-Gilles les Hauts 

(F0_SG) 
West F0 April 2021 

DENV-1 32 48 48 

DENV-2_ EVAg 0 0 5 

Saint Paul (F1_SPa) West F1 February to March 2020 DENV-2_JUL 17 0 0 

Trois Bassins (F2_TB) West F2 February to March 2020 DENV-1  48 48 76 

Saint-Philippe (F0_SPh) South F0 April 2021 
DENV-1 32 48 48 

DENV-2_EVAg 0 0 16 

Saint-Louis (F1_SL) South F1 February to March 2020 DENV-2_JUL 22 0 0 

Ligne Paradis (F1_LP) South F1 February to March 2020 DENV-2_JUL 17 0 0 

Saint-André (F0_SA) East F0 April 2021 
DENV-1 32 48 32 

DENV-2_EVAg 48 48 48 

Bras-Panon (F2_BP) East F2 February to March 2020 DENV-1 48 48 70 

Aedes 

aegypti 

Trois Bassins (F31_Aeg 

or F37_Aeg) 

Laboratory 

population 

F31 
2014 

DENV-2_EVAg 35 0 0 

DENV-2_JUL 32 0 0 

F37 DENV-1 32 48 30 

 839 

S1 Table. General information about mosquito populations and DENV strains used in this study. For 840 

each population and condition, the number of samples examined after DENV exposure are indicated. 841 

dpe = days post-exposure.  842 
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 21 dpe 28 dpe  

IDT score F0_SM F0_SG F0_SPh F0_SA F0_SM F0_SG F0_SP
h 

F0_SA Total 

0 3 3 3 3 2 3 3 3 23 

1 1 2 3 1 0 3 1 1 12 

2 3 4 3 3 3 3 2 0 21 

3 3 2 1 3 3 3 3 1 19 

Total 10 11 10 10 8 12 9 5 75 

 843 

S2 Table. Number of mosquitoes tested for Wolbachia density by categories studied. The categories 844 

are defined by the day post-exposure studied (21 or 28 dpe), the vector competence score (IDT score), 845 

and the population (F0_SM: Sainte-Marie, F0_SG: Saint-Gilles les Hauts, F0_SP: Saint-Philippe, or 846 

F0_SA: Saint-André).  The IDT score (0, 1, 2 or 3) was defined as follows: the IDT score 0 for 847 

mosquitoes with no infectious DENV-1 particles either in the body, head or saliva; the IDT 848 

score 1 for samples with only infected bodies; the IDT score 2 for mosquitoes with infectious 849 

particles in the bodies and the heads; and the IDT score 3 for mosquitoes with infectious 850 

DENV-1 particles in the bodies, heads and saliva. 851 

Population 

14 dpe 21 dpe 

IR DE TE IR DE TE 

F1_SPa 

11.76%  

[3.29 - 34.34%] 

(2/17) 

0.00% 

[0.00 - 18.43%] 

 (0/17) 

0.00% 

[0.00 - 18.43%] 

 (0/17) 

ND ND ND 

F1_SL 

9.09% 

[2.53 - 27.81%] 

 (2/22) 

0.00% 

[0.00 - 14.87%] 

 (0/22) 

0.00% 

[0.00 - 14.87%] 

 (0/22) 

ND ND ND 

F1_LP 

5.88%  

[1.05 - 26.98%] 

(1/17) 

0.00% 

[0.00 - 18.43%] 

 (0/17) 

0.00% 

[0.00 - 18.43%] 

 (0/17) 

ND ND ND 

F31_Aeg 

9.38% 

[3.24 - 24.22%] 

 (3/32) 

0.00% 

[0.00 - 10.72%] 

(0/32) 

0.00% 

[0.00 - 10.72%] 

 (0/32) 

8.82%  

[3.05 - 22.96%] 

(3/34) 

0.00% 

[0.00 - 10.15%] 

 (0/34) 

0.00% 

[0.00 - 10.15%] 

 (0/34) 

 852 

S3 Table. Vector competence parameters of Aedes albopictus and Aedes aegypti populations 853 

exposed to the DENV-2_JUL strain. Infection rates (IR), dissemination efficiencies (DE), and 854 
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transmission efficiencies (TE) were examined at 14 and 21 days post-exposure to an infectious blood 855 

meal (dpe). IR = number of infected bodies among the mosquitoes tested (%); DE = number of infected 856 

heads among the mosquitoes tested (%); TE = number of infected saliva among the mosquitoes tested 857 

(%). The numbers in square brackets correspond to the 95% confidence interval, and the fraction in 858 

brackets represents the number of positive samples out of the total number of samples tested. ND = 859 

not done. F1_SPa, F1_SL and F1_LP correspond to Ae. albopictus populations and F31_Aeg is the Ae. 860 

aegypti population. 861 

 862 

S4 Table. Vector competence parameters of Aedes albopictus and Aedes aegypti populations 863 

exposed to the DENV-2_EVAg strain. Infection rates (IR), dissemination efficiencies (DE), and 864 

transmission efficiencies (TE) were examined at 14, 21, and 28 days post-exposure to an infectious 865 

blood meal (dpe). IR = number of infected bodies among the mosquitoes tested (%); DE = number of 866 

infected heads among the mosquitoes tested (%); TE = number of infected saliva among the 867 

mosquitoes tested (%). The numbers in square brackets correspond to the 95% confidence interval, 868 

and the fraction in brackets represents the number of positive samples out of the total number of 869 

samples tested. ND = not done. F0_SM, F0_SA, F0_SG and F0_SPh correspond to Ae. albopictus 870 

populations and F31_Aeg is the Ae. aegypti population. 871 

Population 
14 dpe 21 dpe 28 dpe 

IR DE TE IR DE TE IR DE TE 

F0_SM 

2.08%  

[0.37 - 

10.90%] 

(1/48) 

0.00 % 

[0.00 - 7.41%] 

(0/48) 

0.00 % 

[0.00 - 

7.41%]  

(0/48) 

0.00 % 

[0.00 - 

7.41%] (0/48) 

0.00 % 

[0.00 - 

7.41%] 

(0/48) 

0.00 % 

[0.00 - 

7.41%] 

(0/48) 

0.00 %  

[0.00 - 7.41%] 

(0/48) 

0.00 % 

[0.00 - 7.41%] 

 (0/48) 

0.00 % 

[0.00 - 7.41%] 

 (0/48) 

F0_SA 

2.08% 

[0.37 - 

10.90%] (1/48) 

0.00 %  

[0.00 - 7.41%] 

(0/48) 

0.00 % 

[0.00 - 

7.41%] 

 (0/48) 

0.00 % 

[0.00 - 

7.41%] 

 (0/48) 

0.00 % 

[0.00 - 

7.41%] 

(0/48) 

0.00 % 

[0.00 - 

7.41%] 

 (0/48) 

0.00 % 

[0.00 - 7.41%] 

(0/48) 

0.00 % 

[0.00 - 7.41%] 

 (0/48) 

0.00 % 

[0.00 - 7.41%] 

 (0/48) 

F0_SG ND ND ND ND ND ND 

0.00 % 

[0.00 - 43.45%] 

(0/5) 

0.00 % 

[0.00 - 

43.45%] (0/5) 

0.00 %  

[0.00 - 

43.45%] 

(0/5) 

F0_SPh ND ND ND ND ND ND 

25.00% 

[10.18 - 

49.50%] (4/16) 

0.00 % 

[0.00 - 

19.36%] (0/16) 

0.00 %  

[0.00 - 

19.36%] 

(0/16) 

F31_Aeg 

8.57% 

[2.96 - 

22.38%]  

(3/35) 

2.86% 

[0.51 - 

14.53%]  

(1/35) 

0.00%  

[0.00 - 

9.89%] (0/35) 

ND ND ND ND ND ND 
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Population 
14 dpe 21 dpe 28 dpe 

IR DE TE IR DE TE IR DE TE 

F0_SM 

28.13% 

[15.56 - 45.37%] 

(9/32) 

3.13% 

[0.55 - 15.74%] 

(1/32) 

3.13% 

[0.55 - 15.74%] 

(1/32) 

27.08% 

[16.57 - 41.00%] 

(13/48) 

25.00% 

[14.92 - 38.78%] 

(12/48) 

14.58% 

[7.25 - 27.17%] 

(7/48) 

20.83% 

[11.73- 34.26%] 

(10/48) 

20.83% 

[11.73- 34.26%] 

(10/48) 

12.50% 

[5.86 - 24.70%] 

(6/48) 

F0_SA 

31.25% 

[17.95 - 48.57%] 

(10/32) 

15.63% 

[6.86 - 31.75%] 

(5/32) 

9.38% 

[3.24 - 24.22%] 

(3/32) 

18.75% 

[10.19 - 31.94%] 

(9/48) 

16.67% 

[8.70 - 29.58%] 

(8/48) 

10.42% 

[4.53 - 22.17%]  

(5/48) 

9.38% 

[3.24 - 24.22%] 

(3/32) 

6.25% 

[1.73 - 20.15%] 

(2/32) 

3.13% 

[0.55 - 15.74%] 

(1/32) 

F0_SG 

9.38% 

[3.24 - 24.22%] 

(3/32) 

0.00%  

[0.00 - 10.72%] 

(0/32) 

0.00% 

[0.00 - 10.72%] 

 (0/32) 

37.50% 

[25.22 - 51.64%] 

(18/48) 

12.50% 

[5.86 - 24.70%] 

(6/48) 

4.17% 

[1.15 - 13.98%]  

(2/48) 

31.25% 

[19.95- 45.33%] 

(15/48) 

12.50% 

[5.86 - 24.70%] 

(6/48) 

6.25% 

[2.15- 16.84%] 

(3/48) 

F0_SPh 

15.63% 

[6.86 - 31.75%] 

 (5/32) 

6.25% 

[1.73 - 20.15%] 

(2/32) 

0.00%  

[0.00 - 10.72%] 

(0/32) 

37.50% 

[25.22 - 51.64%] 

(18/48) 

12.50% 

[5.86 - 24.70%] 

(6/48) 

2.08%  

[0.37 - 

10.90%](1/48) 

14.58% 

[7.25 - 27.17%] 

(7/48) 

12.50% 

[5.86 - 24.70%] 

(6/48) 

8.33% 

[3.29- 19.55%] 

(4/48) 

F2_SC 

40.63% 

[25.52 - 57.74%] 

(13/32) 

12.50% 

[4.97 - 28.07%] 

(4/32) 

0.00% 

[0.00 - 10.72%] 

 (0/32) 

52.63% 

[37.26 - 67.52%] 

(20/38) 

42.11% 

[27.85 - 57.81%] 

(16/38) 

21.05% 

[11.07 - 36.35%]  

(8/38) 

ND ND ND 

F2_BP 

64.58% 

[50.44 - 76.57%] 

(31/48) 

25.00% 

[14.92 - 38.78%] 

(12/48) 

2.08% 

[0.37 - 10.90%] 

(1/48) 

68.75% 

[54.67 - 80.05%] 

(33/48) 

64.58% 

[50.44 - 76.57%] 

 (31/48) 

35.42% 

[23.43 - 49.56%]  

(17/48) 

57.14% 

[45.48- 68.06%] 

(40/70) 

55.71% 

[44.08- 66.75%] 

(39/70) 

32.86%  

[23.00- 44.50%] 

(23/70) 

F2_TB 

54.17% 

[40.29 - 67.42%] 

(26/48) 

14.58% 

[7.25 - 27.17%] 

(7/48) 

0.00% 

[0.00 - 7.41%] 

(0/48) 

45.83% 

[32.58 - 59.71%] 

(22/48) 

45.83% 

[32.58 - 59.71%]  

(22/48) 

20.83% 

[11.73- 34.26%]  

(10/48) 

68.42% 

[57.30- 77.77%] 

(52/76) 

67.11% 

[55.94- 76.62%] 

(51/76) 

40.79%  

[30.44- 52.02%] 

(31/76) 

F37_Aeg 

62.50% 

[45.25 - 77.07%] 

 (20/32) 

6.25% 

[1.73 - 20.15%] 

 (2/32) 

0.00% 

[0.00 - 10.72%] 

 (0/32) 

52.08% 

[38.33 - 65.53%] 

 (25/48) 

41.67% 

[28.85 - 55.72%] 

 (20/48) 

12.50% 

[5.86 - 24.70%] 

 (6/48) 

66.67% 

[48.78 - 80.77%] 

 (20/30) 

53.33% 

[36.14 - 69.77%] 

 (16/30) 

16.67% 

[7.34 - 33.56%] 

 (5/30) 

 872 

S5 Table. Vector competence parameters of Aedes albopictus and Aedes aegypti populations 873 

exposed to the DENV-1 strain. Infection rates (IR), dissemination efficiencies (DE), and transmission 874 

efficiencies (TE) were examined at 14, 21, and 28 days post-exposure to an infectious blood meal (dpe). 875 

IR = number of infected bodies among the mosquitoes tested (%); DE = number of infected heads 876 

among the mosquitoes tested (%); TE = number of infected saliva among the mosquitoes tested (%). 877 

The numbers in square brackets correspond to the 95% confidence interval, and the fraction in 878 

brackets represents the number of positive samples out of the total number of samples tested. ND = 879 

not done. F0_SM, F0_SA, F0_SG, F0_SPh, F2_SC, F2_BP and F2_TB correspond to Ae. albopictus 880 

populations and F37_Aeg is the Ae. aegypti population. 881 

Variable 
Day post-

exposure 

Population 1 Population 2 
p-value<0.05 pairwise 

proportion test 
Population code Variable value Population code Variable value 

IR 

14 dpe 

F2_BP 
64.58% 

[50.44 - 76.57%]  (31/48) 

F0_SG 9.38%     [3.24 - 24.22%]     (3/32) 6.55E-05 

F0_SPh 15.63%   [6.86 - 31.75%]     (5/32) 9.35E-04 

F2_TB 
54.17% 

[40.29 - 67.42%]  (26/48) 

F0_SG 9.38%     [3.24 - 24.22%]     (3/32) 2.53E-03 

F0_SPh 15.63%   [6.86 - 31.75%]     (5/32) 2.58E-02 

21 dpe F2_BP 68.75% F0_SA 18.75%   [10.19 - 31.94%]   (9/48) 4.67E-05 
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[54.67 - 80.05%]  (33/48) F0_SM 27.08%   [16.57 - 41.00%]   (13/48) 2.18E-03 

F2_SC 52.63% 

[37.26 - 67.52%]  (20/38) 
F0_SA 18.75%   [10.19 - 31.94%]   (9/48) 4.48E-02 

28 dpe 

F2_BP 
57.14% 

[45.48- 68.06%]   (40/70) 

F0_SA 9.38%     [3.24 - 24.22%]     (3/32) 2.37E-04 

F0_SM 20.83%   [11.73- 34.26%]    (10/48) 2.86E-03 

F0_SPh 14.58%   [7.25 - 27.17%]     (7/48) 1.30E-04 

F2_TB 
68.42% 

[57.30- 77.77%]   (52/76) 

F0_SA 9.38%     [3.24 - 24.22%]     (3/32) 1.03E-06 

F0_SM 20.83%   [11.73- 34.26%]    (10/48) 9.64E-06 

F0_SPh 14.58%   [7.25 - 27.17%]     (7/48) 2.24E-07 

F0_SG 31.25%   [19.95- 45.33%]    (15/48) 1.70E-03 

DE 

21 dpe 

F2_BP 
64.58% 

[50.44 - 76.57%]  (31/48) 

F0_SA 16.67%   [8.70 - 29.58%]     (8/48) 1.01E-04 

F0_SM 25.00%   [14.92 - 38.78%]   (12/48) 4.63E-03 

F0_SPh 12.50%   [5.86 - 24.70%]     (6/48) 1.01E-05 

F0_SG 12.50%   [5.86 - 24.70%]     (6/48) 1.01E-05 

F2_TB 
45.83% 

[32.58 - 59.71%]  (22/48) 

F0_SPh 12.50%   [5.86 - 24.70%]     (6/48) 1.59E-02 

F0_SG 12.50%   [5.86 - 24.70%]     (6/48) 1.59E-02 

28 dpe 

F2_BP 
55.71% 

[44.08- 66.75%]   (39/70) 

F0_SA 6.25%     [1.73 - 20.15%]     (2/32) 9.72E-05 

F0_SM 20.83%    [11.73- 34.26%]   (10/48) 5.02E-03 

F0_SPh 12.50%    [5.86 - 24.70%]    (6/48) 7.87E-05 

F0_SG 12.50%    [5.86 - 24.70%]    (6/48) 7.87E-05 

F2_TB 
67.11% 

[55.94- 76.62%]   (51/76) 

F0_SA 6.25%      [1.73 - 20.15%]    (2/32) 3.91E-07 

F0_SM 20.83%    [11.73- 34.26%]   (10/48) 1.99E-05 

F0_SPh 12.50%    [5.86 - 24.70%]    (6/48) 1.28E-07 

F0_SG 12.50%    [5.86 - 24.70%]    (6/48) 1.28E-07 

TE 

21 dpe F2_BP 
35.42% 

[23.43 - 49.56%]  (17/48) 

F0_SPh 2.08%      [0.37 - 10.90%]    (1/48) 1.84E-03 

F0_SG 4.17%      [1.15 - 13.98%]    (2/48) 7.04E-03 

28 dpe 

F2_BP 
32.86%  

[23.00- 44.50%]   (23/70) 

F0_SA 3.13%      [0.55 - 15.74%]    (1/32) 3.63E-02 

F0_SG 6.25%      [2.15- 16.84%]     (3/48) 2.06E-02 

F2_TB 
40.79%  

[30.44- 52.02%]   (31/76) 

F0_SA 3.13%      [0.55 - 15.74%]    (1/32) 3.45E-03 

F0_SM 12.50%    [5.86 - 24.70%]    (6/48) 2.43E-02 

F0_SPh 8.33%      [3.29- 19.55%]     (4/48) 3.15E-03 

F0_SG 6.25%      [2.15- 16.84%]     (3/48) 9.79E-04 

 882 
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S6 Table. Pairwise proportion tests showing significant differences between the vectorial 883 

competence parameters of Aedes albopictus populations after exposure to an infectious blood meal 884 

containing the DENV-1 strain. All dpe were tested independently. The populations are referenced by 885 

their generation and the initial of the collection location on the field (generation_location). The 886 

comparison of the vectorial competence parameters (IR, DE, or TE) were realized with pairwise 887 

proportion comparison tests for each parameter and each dpe independently. Only comparisons with 888 

a significant difference (P < 0.05) are presented in the table.   889 

Population 

14 dpe 21 dpe 28 dpe 

IR DE TE IR DE TE IR DE TE 

F0_SM 

28.13% 

[15.56 - 

45.37%] 

 (9/32) 

3.13%  

[0.55 - 

15.74%] 

(1/32) 

3.13%  

[0.55 - 

15.74%] 

(1/32) 

27.08% 

[16.57 - 

41.00%] 

 (13/48) 

25.00% 

[14.92 - 

38.78%] 

 (12/48) 

14.58%  

[7.25 - 

27.17%] 

(7/48) 

20.83% 

[11.73 - 

34.26%] 

 (10/48) 

20.83% 

[11.73 - 

34.26%] 

 (10/48) 

12.50%  

[5.86 - 

24.70%] 

(6/48) 

F0_SM-bis 

25.00% 

[12.00 - 

44.90%] 

 (6/24) 

0.00%  

[0.00 - 

13.80%] 

(0/24) 

0.00%  

[0.00 - 

13.80%] 

(0/24) 

25.00%  

[12.00 - 

44.90%] 

(6/24) 

12.50%  

[4.34 - 31.00%] 

(3/24) 

8.33% 

[2.32 - 

25.85%] 

 (2/24) 

26.92%  

[13.70 - 

46.08%] 

(7/26) 

15.38% 

[6.15 - 33.53%] 

 (4/26) 

3.85% 

[0.68 - 

18.89%] 

 (1/26) 

 890 

S7 Table. Vector competence parameters of two Aedes albopictus populations exposed to the DENV-891 

1 strain and previously collected at the same location in Sainte-Marie at two different times of the 892 

year. Infection rates (IR), dissemination efficiencies (DE), and transmission efficiencies (TE) were 893 

examined at 14, 21, and 28 days post-exposure to an infectious blood meal (dpe). IR = number of 894 

infected bodies among the mosquitoes tested (%); DE = number of infected heads among the 895 

mosquitoes tested (%); TE = number of infected saliva among the mosquitoes tested (%). The numbers 896 

in square brackets correspond to the 95% confidence interval, and the fraction in brackets represents 897 

the number of positive samples out of the total number of samples tested. ND = not done. F0_SM and 898 

F0_SM-bis correspond to Ae. albopictus populations of Sainte-Marie collected on the field in April and 899 

May 2021, respectively. 900 

 901 

S1 Fig. Densities of Wolbachia strains wAlbA and/or wAlbB in Aedes albopictus populations from 902 

Reunion Island. The mosquitoes of F0 generation from four populations (N=75) namely Sainte-Marie 903 
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(F0_SM),  Saint-Gilles les Hauts (F0_SG), Saint-Philippe (F0_SPh) and Saint-André (F0_SA) were tested 904 

for their Wolbachia densities after being exposed to infectious blood meals containing the DENV-1 905 

strain. For each sample, the value provided corresponds to the mean of a triplicate measure. The 906 

densities of Wolbachia wAlbA (orange), or wAlbB (green), or both (violet), are given based on the ratio 907 

between the Wolbachia and RSP7 concentrations which provided the number of Wolbachia genomes 908 

relative to the Ae. albopictus genomes. dpe = days post-exposure. The “population” parameter showed 909 

a significant effect on the median of all the Wolbachia densities (Kruskal-Wallis tests; X² = 17.72, d.f. = 910 

3, p-value < 0.001 for wAlbA; X² = 35.42, d.f. = 3, p-value < 0.001 for wAlbB; X² = 20.85, d.f. = 3, p-value 911 

< 0.001 for wAlbTot). For the wAlbA strain, a significantly lower median density of 2.20 (0.70 - 2.70) 912 

wAlbA/cell was observed for the F0_SG population compared to the medians of 4.75 (2.20 - 11.22) and 913 

9.00 (3.90 - 24.80) wAlbA/cell for the F0_SM (Dunn test, p-value = 0.047) and the F0_SA (Dunn test, p-914 

value < 0.001) populations, respectively. For the wAlbB strain, both F0_SG and F0_SPh populations had 915 

significantly lower median densities, of 0.45 (0.27 - 0.80) and 0.40 (0.23 - 0.60) wAlbB/cell respectively, 916 

compared with medians of 1.95 (1.40 - 2.30) and 1.80 (1.00 - 4.70) wAlbB/cell for the F0_SM and F0_SA 917 

populations, respectively (Dunn tests; all p-values < 0.001). Regarding the overall Wolbachia density, 918 

the results are equivalent to those for wAlbA, with the F0_SG population presenting a significantly 919 

lower median density of 2.60 (1.22 - 3.30) wAlbTot/cell, compared with the medians of 6.60 (4.20 - 920 

12.94) and 12.80 (6.91 - 26.90) wAlbTot/cell for the F0_SM (Dunn test, p-value = 0.012) and F0_SA ( 921 

Dunn test, p-value < 0.001) populations, respectively. 922 

 923 

Population 
wAlbA wAlbB wAlbTot 

median 95% CI median median 95% CI median median 95% CI median 

F0_SM (N=18) 4.75    2.20 - 11.22 1.95 1.40 - 2.30 6.60    4.20  - 12.94 

F0_SG (N=23) 2.20    0.70 -   2.70 0.45 0.27 - 0.80 2.60 1.22 - 3.30 

F0_SPh (N=19)  4.00    2.50 -  7.79 0.40 0.23 - 0.60 4.81 2.80 - 8.11 

F0_SA (N=15) 9.00     3.90 -  24.80 1.80 1.00 - 4.70 12.80    6.91 - 26.90 
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S8 Table. Parameters of the Wolbachia wAlbA, wAlbB and wAlbTot (wAlbA + wAlbB) densities in 924 

Aedes albopictus from Reunion Island according to their populations of origin and after exposure to 925 

a DENV-1 local strain. The mosquitoes of F0 generation, belonging to the populations of Sainte-Marie 926 

(F0_SM), Saint-Gilles les Hauts (F0_SG), Saint-Philippe (F0_SPh), or Saint-André (F0_SA), were 927 

examined at 21 and 28 days after being exposed to infectious blood meals containing the DENV-1 local 928 

strain. In this table N = number of mosquitoes tested; 95% CI, 95% confidence interval. 929 

 930 

S9 Table. Parameters of the Wolbachia wAlbA, wAlbB, and wAlbTot (wAlbA + wAlbB) densities in 931 

the Aedes albopictus bodies according to their IDT score groups and after exposure to a DENV-1 local 932 

strain. The mosquitoes of F0 generation, belonging to the populations of Sainte-Marie (F0_SM), Saint-933 

Gilles les Hauts (F0_SG), Saint-Philippe (F0_SPh), or Saint-André (F0_SA) and examined at 21 and 28 934 

days after being exposed to infectious blood meals containing the DENV-1 local strain, were pooled 935 

according to their IDT score as follows: IDT score 0 for mosquitoes with no infectious DENV-1 particles 936 

either in the body, head or saliva; the IDT score 1 for samples with only infected bodies; the IDT score 937 

2 for mosquitoes with infectious particles in the bodies and the heads; and the IDT score 3 for 938 

mosquitoes with infectious DENV-1 particles in the bodies, heads and saliva. In this table: N, number 939 

of mosquitoes tested; 95% CI, 95% confidence interval.  940 

 941 

Score IDT 
wAlbA wAlbB wAlbTot 

median 95% CI median median 95% CI median median 95% CI median 

IDT 0 

(N=23) 
3.70     2.30 - 10.04 1.00 0.48 - 1.75 4.18    2.80 - 11.88 

IDT 1 

(N=12) 
3.95    0.60 - 7.79 0.31 0.20 - 0.97 5.61    0.74 - 9.90 

IDT 2 

(N=21) 
5.48    2.60 - 11.22 1.72 0.50 - 2.10 6.90 4.81 - 12.94 

IDT 3 

(N=19) 
 2.95    2.07 - 6.26 0.80 0.40 - 1.54 4.40 2.60 - 7.20 

IDT 1+2+3  

(N=52) 
4.20 2.60 - 6.11 0.80 0.50 - 1.40 5.72 4.20 - 7.50 

IDT 2+3 

(N=40) 
4.41 2.60 - 6.20 0.86 0.60 - 1.80 5.72 4.20 - 7.70 
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 942 

S2 Fig. Densities of Wolbachia strains wAlbA and wAlbB in Aedes albopictus mosquitoes according 943 

to vector competence parameters represented by IDT scores. These analyses were performed using 944 

individual mosquito of F0 generation, belonging to the populations of Sainte-Marie (F0_SM), Saint-945 

Gilles les Hauts (F0_SG), Saint-Philippe (F0_SPh), or Saint-André (F0_SA) and examined at 21 and 28 946 

days after being exposed to infectious blood meals containing the DENV-1 strain. The densities of 947 

Wolbachia wAlbA (orange), or wAlbB (green), or both (violet) are given based on the ratio between 948 

the Wolbachia and RSP7 concentrations which provided the number of Wolbachia genomes relative 949 

to the Ae. albopictus genomes. We measured the density of Wolbachia in individuals (N=75) classified 950 

according to their IDT scores (0, 1, 2 or 3) that were defined as follows: the IDT score 0 for mosquitoes 951 

with no infectious DENV-1 particles either in the body, head or saliva; the IDT score 1 for samples with 952 

only infected bodies; the IDT score 2 for mosquitoes with infectious particles in the bodies and the 953 

heads; and the IDT score 3 for mosquitoes with infectious DENV-1 particles in the bodies, heads and 954 

saliva. dpe = days post-exposure. 955 
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III.2.E.3. Perspectives 

In summary, our comprehensive analysis revealed that the Aedes albopictus local 

mosquitoes are competent to transmit of DENV virus. Moreover, it has unveiled a multitude 

of interactions and factors influencing every aspect of vector competence, IR, DE, and TE. The 

conditions of the regions where mosquito populations emerge, encompassing factors such as 

temperature, altitude, host types, and urbanization, in addition to intrinsic factors related to 

the vector, such as age and generation, were identified as crucial determinants affecting the 

transmission of the DENV. Our study underscores also the probable diverse effects of the 

natural environment conditions and the adaptation to laboratory conditions. 

Another pivotal aspect investigated was the Wolbachia bacterium, naturally presented 

in various organs of Aedes albopictus. Recognized for its ability to limit viral infection and 

transmission through various physiological mechanisms (152,210). Wolbachia's role was 

assessed and did not exhibit an effect on DENV-1 IR, DE, and TE in our populations. Despite 

variations in Wolbachia density between populations, our study did not reveal any significant 

correlation between Wolbachia density differences and its effects on competence parameters 

on the macro scale of Aedes albopictus Reunionese populations.  

However, we decided to go further and explore at the micro-scale of an Aedes 

albopictus laboratory population, the ability of Wolbachia to maintain intestinal homeostasis 

in basal conditions and after DENV infection. We believe that Wolbachia might play a role in 

preserving the integrity of the intestinal epithelium and restricting DENV proliferation within 

intestinal cells. Thus, it might indirectly assist in limiting viral infection and dissemination 

throughout the intestinal barrier to the vector's body. 

In the next chapter, we will explore various physiological antiviral mechanisms 

employed by Wolbachia and focus on its impact on intestinal homeostasis, along with the 

molecular mechanisms involved in intestinal cellular proliferation and apoptosis. 
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“Is the midgut microbiota a major contributor to the defense 

system of Aedes albopictus?”  
 

 

Part III. Chapter 3: 

Wolbachia impact on 

Aedes albopictus intestinal homeostasis 

 

In this chapter, we will study Wolbachia's implication in maintaining Aedes 

albopictus intestinal homeostasis. 

 

First, we will describe structural aspects of the midgut tissue, blood digestion 

and homeostatic self-renewal of the adult mosquito midgut. 

Second, we will delve into the bibliography of mosquitoes' microbiota in 

general, the effect of blood on microbes’ population composition, and its 
protective role. 

Third, we will focus on the presence of Wolbachia in the midgut and its impact 

on the vector defense system, especially against DENV in Aedes vectors. 

 

In this context, we will present our findings on the role of Wolbachia in 

preserving the intestinal homeostasis of Aedes albopictus, particularly after 

consuming both normal and DENV-infected blood meal.    
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Part III. Chapter 3: Wolbachia as a biological factor involved in midgut 

protection against viral infections 

III.3.A. The mosquito midgut 

III.3.A.1. Midgut structure and function 

The midgut is the entry point of the blood meal into the mosquito’s body and plays a 
vital role as the initial site for digestion and absorption of essential nutrients, crucial for the 

mosquito's physiology and longevity (211–213). In addition, ingesting vertebrate blood is 

essential for mosquito eggs’ production by providing essential proteins, digested into amino 

acids, required for vitellogenin synthesis (214–216). 

The midgut is delimited by two ectodermal sections, the foregut and hindgut, each playing a 

crucial role in essential processes for blood digestion, reproduction, and viability (Figure 23) 

The anterior section, the foregut, comprises the buccal cavity, pharynx, esophagus, 

dorsal diverticula, and crop (217). From the pharynx, food proceeds to the proventriculus 

before being gradually released into the midgut for digestion and absorption  (215,218,219). 

The posterior section, the hindgut is associated with the Malpighian tubules, after 

which the ileum extends to the rectum. In the posterior digestive tract, wastes are 

transformed into urine and undergo numerous processes of absorption and secretion before 

being expelled from the rectum (215,220).  

The midgut has a sac-like structure composed of a simple columnar epithelium resting 

on a basal lamina surrounded by a well-organized structure of circular and longitudinal fibers 

forming a complex muscular network (221,222). The apical membrane features a microvillous-

associated network formed by the membrane strands of epithelial cells. The basolateral 

membrane exhibits deep folds and invaginations constituting the basal labyrinth without 

intercellular junctions (211).  The microvillous-associated network renders the midgut lumen 

complex and stratified, aids in protecting the epithelium from pathogens ingested with the 

blood meal,  and increases the surface for enzyme secretion and nutrient absorption (223). 

III.3.A.2. Midgut epithelium cellular composition 

As previously mentioned, the midgut acts as the primary site where the mosquito's 

body receives the blood meal. After its ingestion, a cascade of reactions occurs along the 

entire digestive tract. Midgut epithelium contributes to the digestion and absorption of 

proteins and essential nutrients crucial for the mosquito's physiology and egg production 

(211–213).  

The midgut epithelium consists of four cell types (Figure 23). The two most abundant cell 

types are the columnar epithelial cells, also known as Enterocytes (EC), constituting up to 80% 

of epithelial cells, and the Enteroendocrine cells (EE)  (224).  

Enterocytes present microvilli on the apical surface and extensive invaginations on the cell's 

basal membrane. These features, along with the presence of rough endoplasmic reticulum, a 

complex Golgi network, and secretory vesicles, explain their involvement in enzyme secretion 

and nutrient absorption from the blood meal (222,225–228).  



138 
 

Enteroendocrine cells are chemo-sensitive cells. They play a crucial role in hormonal 

stimulation as well as the production and secretion of digestive enzymes, such as proteinase 

and trypsin(225,229).Two other types of cells have been described in the midgut of 

hematophagous insects: Intestinal Stem Cells (ISC) and Enteroblasts (EB) (224). ISCs are 

involved in the epithelium renewal dynamic, a process typically occurring every 3-7 days as 

known in Drosophila (230,231), and in the repair mechanism activated in response to 

bacterial, chemical, or injury-induced  midgut damages (224,232–235). 

 

Intestinal Stem Cells or regenerative cells are the only cell type in the midgut undergoing 

mitosis (230). The ISCs play a crucial role in tissue regeneration following damage in the 

midgut (236) (discussed later). In Drosophila, ISCs derive from adult midgut precursors known 

as AMPs. These AMPs, originating from endodermal cells, are specified during the early stages 

of embryonic development and contribute to the formation of the embryonic midgut (237). 

In the adult female midgut, they are located in the basal intestinal epithelium, in direct contact 

with the basal lamina, and are evenly distributed beneath the ECs (238). The mitotic 

asymmetrical division of these stem cells gives rise to two cells, one retaining its stem cell 

properties and the other becomes an Enteroblast or pre-EE (239) (Figure 25).  

Enteroblasts, are undifferentiated progenitor cells adjacent to ISCs. They respond to 

maturation signals and differentiate mainly into ECs (or sometime to EEs) (230). Moreover, 

EBs play a role in secreting cytokines and growth factors that influence the proliferation and 

differentiation of ISCs (240,241). 

III.3.A.3. Blood digestion  

In addition to digesting nutrients from sources such as nectar or sugar-based foods, 

the gut epithelium also processes blood meals to support reproductive functions. 

Figure 23 : Digestive tract anatomy and intestinal cellular 
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Transcriptomic analysis showed that, in Aedes aegypti, after a standard blood meal, various 

mechanisms involved in the expression of antimicrobial peptides, blood digestion and 

absorption exhibit distinct regulation in midgut. These include the repression or depletion of 

multiple cohorts of peptidases crucial for protein digestion (218). Vertebrate blood, rich in 

proteins, requires the action of proteinase enzymes, such as trypsin, specialized in breaking 

down proteins, for digestion in mosquito gut (267). This process involves also upregulating 

peptidase ferritin to sequester iron, along with activating immune effectors and modulators 

(210,268,269). The nutrients derived from the blood meal can be stored as nutritional reserves 

for use in other metabolic processes(242). As an example, a significant portion of the digested 

amino acids from the blood meal is utilized in synthesizing yolk protein precursor, crucial for 

vitellogenesis and essential for mosquito reproduction and egg production (171).  

III.3.A.4. Microbe infections by oral route 

Besides being the primary organ for digesting blood meals, the midgut acts as the initial 

point of contact between the mosquito and pathogens that might be ingested during feeding. 

It plays a significant role in the mosquito's defense against accidentally ingested microbes, 

limiting their potential infection and transmission.  

The gut epithelium is actively involved in these processes and deploys numerous mechanisms. 

After a DENV-infected blood meal, viral particles could be prevented to enter or replicate into 

the intestinal epithelium cells, which represent the Midgut Infection Barrier (MIB). A second 

barrier, the Midgut Escape Barrier (MEB), could limits the virus’s dissemination from the 
midgut to the rest of the mosquito’s body. When altered, the MEB allows the virus to bypass 
and spread to the hemocoel and eventually to another part of the mosquito body, including 

the salivary glands and saliva (190,243,244). In Aedes vectors, the MIB and MEB are major 

determinants of the vector competence for Flaviviruses (245), influencing the permissiveness 

of epithelial cells for viral infection and transmission (246,247) (Figure 23). Additionally, DENV 

ingestion triggers immune responses by activating antiviral genes and innate immunity 

pathways such as Toll, Jak/Stat, and IMD, which effectively defend against viral infections 

(248–251) (figure 24). Additional research has concentrated on examining the midgut 

transcriptomic reactions to DENV infection within Aedes mosquitoes. These studies have 

identified genes that are either upregulated or downregulated, primarily also linked to the 

vector's immune response. Furthermore, these genes were observed to be expressed at 

different time points following blood feeding in each respective study (252–254) . 

Together, these studies highlighted that the refractoriness displayed by most Aedes 

strains against DENV infection may be linked to reactions occurring in the midgut, 

underscoring the importance of maintaining homeostatic balance in this tissue. 
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III.3.A.5. Homeostatic self-renewal of the adult mosquito midgut 

Maintaining healthy midgut epithelial tissue throughout life relies on the fundamental 

balance between eliminating old or damaged cells and generating new ones. Typically, these 

functions are orchestrated by the intestinal stem cells localized within particular sites or niches 

(236,255,256). Thus, a series of studies have focused on exploring the ISCs turnover in insects 

to maintain integrity in normal conditions or after induced damage.  

The discovery of stem cells in the adult midgut of Drosophila melanogaster has 

profoundly advanced our understanding of the ISCs role in maintaining physiological intestinal 

balance in Diptera (238,256,257). The adult Drosophila midgut serves as a robust model 

system for studying host-microbial interactions as well and exploring diverse cellular and 

molecular dynamics associated with the ISC behavior (256). Normal self-renewal of the 

intestinal epithelium in Drosophila relies on tightly regulated activity in multiple conserved 

signaling pathways, including Delta, Notch, JAK/STAT, and EGFR (256). In response to various 

stressors and factors compromising epithelial integrity (231,238,258), such as chemical and 

microbial damage, the adult posterior Drosophila midgut exhibits remarkable rapid and 

effective regeneration of the midgut epithelium. This regeneration involves the rapid division 

and differentiation of ISCs to restore the midgut homeostasis, mediated by conserved 

signaling pathways such as JNK, Hippo, JAK/Stat, Hippo, EGFR, and Dpp/BMP signaling 

(230,241,259–264) (Figure 25).  

In Aedes aegypti, the examination of the cellular homeostatic response and the 

expression of cellular markers following blood feeding, conducted through RNA sequencing, 

revealed significant changes in genes involved the overall cellular structure of the intestinal 

epithelium. This led to the identification of 20 distinct cell-type clusters post-blood meal 

ingestion, along with an increase in the proportions of EC/EC-like cells and ISCs (224). 

However, the response of ISCs after damages in the Aedes mosquito remains largely 

unexplored. Limited research has explored these physiological reactions, revealing that in 

response to different stressors such as chemical and bacterial damage, divided ISCs are 

observed in the Aedes intestine (219,232,255). This response is often accompanied by a 

Figure 24 : Schematic Overview of Mosquito Infection and Escape Barriers to DENV Infection. 

1.Multiplication of DENV within epithelial cells while traversing the midgut infection barrier 

(MIB). 2.DENV passage through the midgut escape barrier (MEB) and subsequent dissemination 

throughout the mosquito's body  
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noticeable disruption of the intestinal muscular structure (219,232,255). After DENV-2 

infection in the Aedes aegypti, DNA synthesis was detected in the midgut, suggesting the 

presence of divided ISCs (235,265). These observations underscore the adaptability of the 

midgut epithelium in mosquitoes' physiological responses to various challenges (Figure 25). 

Another response induced by viral stress in the midgut is cellular apoptosis (Figure 25). 

Essential components of the apoptotic machinery include caspases, inhibitors of apoptosis 

(IAP proteins), IAP antagonists, Bcl-2 family members, and hid/grim/reaper (263,266–268). 

Depending on specific viruses and vector combinations, the apoptotic response can positively 

or negatively correlate with the vector competence. Some viruses actively exploit apoptosis 

or caspases as integral components of their replication cycle in the vector mosquito. This 

exploitation may occur either because they require host cell lysis for release or because 

caspase-mediated cleavage of viral proteins is essential for specific steps in viral replication 

(269). However, apoptosis can also serve as a significant cellular defense response against 

various viruses. These reactions may correlate with vector refractoriness, as they facilitate the 

removal of both infected cells and pathogens from the host and negatively impact the virus’s 
ability to replicate and spread to new hosts (270). Previous studies have demonstrated an 

increase in the expression of apoptotic genes, apoptotic protein production, and apoptotic 

cell rates in the refractory strain of Aedes aegypti refractory following DENV infection 

(268,271–275). Thus, midgut epithelium cellular apoptosis and ISC division could have major 

impact on influencing barrier permissiveness.  

  

Figure 25 : Illustration of Stress Impact on Midgut Epithelium and Cellular Turnover. Exposure to 

bacterial, or viral stress triggers cellular apoptosis within the midgut epithelium. This apoptotic 

process prompts intestinal stem cells (ISCs) to undergo turnover through symmetric or asymmetric 

division. This turnover mechanism leads to cellular differentiation and maturation, ultimately 

leading to the regeneration of the midgut epithelium and compensating for the cellular loss 

resulting from apoptosis. 
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Similarly to extrinsic factors discussed earlier, intrinsic factors within the midgut can 

impact intestinal integrity and vector longevity. One of the most important factors in the midgut 

is the microbiota. The microbiota profoundly influences nutrition, reproduction, development, 

and defense against adversaries, thus affecting vector longevity, survival, reproduction, and 

vector competence (276–280).  In essence, they form a vital mutualistic partnership, further 

enhancing their significance in insect biology. Therefore, examining the microbiota composition 

and understanding its implication in intestinal homeostasis could provide novel biological 

strategies potentially altering vector competence.  

III.3.B.2. The Microbiota 

III.3.B.1. Definition and composition 

 The microbiota, consisting of host-associated microorganisms, resides in various 

organs within the mosquito’s body, including ovaries, salivary glands, and midgut (281,282). 

It consists of a diverse, dynamic, and variable population comprising both intra and 

extracellular microorganisms such as fungi, viruses, archaea, bacteria, and protozoans (190). 

Insects acquire their gut microbiota, through various modes, with some inheriting it directly 

from parents or other individuals, while others primarily acquire it from the environment. 

Additionally, the composition and density of the intestinal microbiota are complex and vary 

among mosquito genera and species. They depend on factors such as the mosquito's 

developmental stage, gender, ecological reproductive site, and are influenced by blood-

feeding and ingested pathogens (203,283–286).   

The majority of bacteria identified in the mosquito microbiota are gram-negative 

bacteria, belonging to the phyla of Proteobacteria, Firmicutes, Bacteroidetes, and 

Actinobacteria (280,287). A study conducted on both species of Aedes aegypti and Aedes 

albopictus originating from Sri Lanka revealed that the phyla Proteobacteria, Actinobacteria, 

and numerous species of Firmicutes (constituting 99% of the microbial population) belonging 

to 14 genera, such as Terribacillus, Lysinibacillus, Agromyces, and Kocuria are present in the 

gut of both adult mosquitoes (288). The main bacterial families found in Aedes albopictus 

populations studied from Virginia, include Enterobacteriaceae (making up half of the bacterial 

population), Enterococcaceae, Pseudomonadaceae, Bacillaceae, Flavobacteriaceae, 

Acetobacteraceae, and Sphingobacteriaceae  (289). One of the most important bacterial 

genera naturally residing in the Aedes albopictus mosquitoes’ intestines is Wolbachia, which 

is implicated in numerous biological and physiological mechanisms essential to mosquito 

survival.  A comprehensive explication of these mechanisms will follow subsequently.  

III.3.B.2. Blood feeding and microbiota interaction 

The microbiota affects midgut function and intricately influences the blood's digestion 

mechanisms (290,291). The reduction of bacteria impacts red blood cell lysis, thereby slowing 

protein digestion, hindering oocyte maturation, and reducing the production of vial eggs 

(290). Studies have shown that the gut of Aedes aegypti devoid of microbiota produces fewer 

eggs and exhibits extended lifespan with lower metabolic rates (292). Conversely, blood-

feeding can alter the microbial community‘s homogeneity in the intestine without affecting 

the microbial richness and regularity (293,294). However, the influence of the host blood meal 
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source on microbial diversity and density can vary (209,295). In hematophagous mosquitoes, 

the number of bacteria increases 24 hours after blood ingestion, peaking 48 hours post-meal 

(287). This shift leads to an abundance of Proteobacteria (Pseudomonas, Comamonadaceae, 

Ralstonia, and Delftia). In Aedes albopictus, six hours after a blood meal, there is an increase 

in Anaplasmatacea, Actinobacteria, and Rhodospirillaceae families (209). Wolbachia 

bacterium belonging to Anaplasmatacea showed an increase following the blood meal (209). 

Interestingly, another study showed that the density of Wolbachia in the midgut does not 

change after feeding (296). 

III.3.B.3. Microbiota effect on ingested pathogens 

  Various pathogens can be ingested through blood-feeding, leading to different forms 

of stress and damage in the midgut. The microbiota plays a significant role in maintaining 

stable physiological conditions following ingestion of these pathogens. In addition to the 

mosquito's innate immunity, reciprocal interactions occur between pathogens, the 

microbiota, and the immune system. The gut microbiota triggers/primes immune activity that 

can combat pathogens infections and influence vector competence, particularly towards 

DENV (201,297–299).  

 Research has shown that altering the microbiome through antibiotic treatment increases 

viral titer in mosquitoes by modulating immune responses to DENV infection (249). Similarly, 

reintroducing endosymbiotic bacteria in the vector microbiome limits the pathogen infectivity 

for DENV and Plasmodium by altering the expression of immune genes (200,276,300). 

Additionally,  in Anopheles mosquito, Serratia marcescens, and Enterobacter bacteria can 

render the vector 99% resistant to Plasmodium infection by disrupting the parasite 

development before it invades the midgut epithelium (301–303).  

Among microbiota bacteria, Wolbachia is one of the most prominent symbiotic microbes. 

Extensive research has been conducted to investigate this bacterium and understand its ability 

to influence host physiology and manipulate various biological mechanisms crucial for 

mosquito survival and longevity. This research will contribute to the development of effective 

strategies to understand and adapt better biological mechanisms to limit arboviral infections 

in vectors and subsequently their transmission to humans. 

III.3.C. Wolbachia endosymbiont 

III.3.C.1. Definition 

Wolbachia was first discovered in the reproductive tissues of the mosquito Culex 

pipiens by Hertig and Wolbach in 1924. Later named Wolbachia pipientis, it belongs to 

Anaplasmatacea family. Natural colonization of Wolbachia has been demonstrated in up to 

66% of insect species today (304,305). As an obligatory intracellular proteobacterium (306), 

Wolbachia resides in the cell cytoplasm and is present in several tissues with different 

densities, including ovaries, midgut, and head (307–309). It is vertically transmitted from one 

generation to another and manipulates host reproduction through mechanisms, such as 

feminization, male killing, parthenogenesis, and cytoplasmic incompatibility (277,310–313).  
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III.3.C.2. Protective and antiviral role of Wolbachia  

A significant aspect of Wolbachia biology lies in its ability to influence the replication 

and transmission of pathogens across various mosquito vectors and insects, coupled with its 

widespread distribution and reproductive parasitism (314–318). Consequently, researchers 

are increasingly exploring its potential use as a biological control against numerous 

arboviruses. 

In Drosophila melanogaster infected by the wMelpop Teixeira et al. (2008) 

demonstrated a significant beneficial effect of Wolbachia infection with an increase in 

survival, reduce viral titers of Drosophila C virus, Nora virus, and Flock House virus after 

infection, and enhance resistance to viral infection (319,320). Additionally, Osborne et al. 

observed a positive correlation between pathogen blocking and Wolbachia wMel density in 

several organs, including the head, gut, and Malpighian tubules (321). This suggests that the 

significance of different tissues in pathogen blocking may vary, influenced by their Wolbachia 

densities or their specific functional roles in Wolbachia-mediated pathogen blocking. 

 

In cell culture, it has been shown that high Wolbachia density in Aedes aegypti and Aedes 

albopictus cellular lines correlates with strong DENV blocking (322,323). In vivo, studies 

involving transinfection of wAlbB and wMel strains in Aedes aegypti have demonstrated their 

high density in the mosquitoes’ body and their effectiveness in blocking DENV. This results in 
reduced viral infection, transmission, and dissemination, along with increase mosquito 

survival (210,324–326). The host response induced by Wolbachia against DENV typically 

involves the induction of ROS species and activation of the host's innate immunity, such as 

Toll and IMD pathways (202,327). Additionally, Wolbachia indirectly reduces DENV infection 

by competing for essential intracellular resources that both microorganisms need, as they are 

both intracellular dependent (204,205).  

The Aedes albopictus mosquito, a vector of DENV, naturally harbors two Wolbachia 

strains, wAlbA and wAlbB (328), in several organs, including the midgut (45,329).  Despite this 

natural association, Aedes albopictus remains competent for DENV transmission, as 

demonstrated previously. Few studies have shown that wAlbA and wAlbB strains increase the 

survival rate of Aedes albopictus, and modulate the vector competence towards DENV 

(203,210). Furthermore, transinfection with the Drosophila wMel strain confers high 

resistance to DENV in Aedes albopictus (330). This challenges the belief that Aedes 

albopictus lack the necessary genetic makeup for Wolbachia-induced viral interference, 

suggesting the potential for natural induction of resistance. However, the low density of 

Wolbachia in somatic tissues of Aedes albopictus may limit its effectiveness compared to 

transinfected Aedes aegypti. These findings suggest that Wolbachia may contribute to viral 

resistance in Aedes albopictus. 

Investigations conducted on Aedes aegypti have revealed a shift in the bacterial 

makeup prompted by Wolbachia, with a prevalence of Serratia sp. in mosquitoes harboring 

Wolbachia compared to higher abundance of Pseudomonas sp. and Acinetobacter sp. in those 

devoid of Wolbachia (331). This underscores Wolbachia's influence, suggesting a role in 

modulating the colonization of specific bacterial taxa through competitive interactions. In 
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Drosophila, Wolbachia significantly shapes the composition of the midgut microbiome 

throughout developmental stages, although its impact is not direct (306). These findings 

highlight the need to consider gut microbiome composition background in studies 

investigating Wolbachia-induced phenotypic changes. 

Despite Wolbachia’s significant impact on mosquito biology, its role in the midgut remains 

poorly understood. Further investigations are needed to elucidate Wolbachia’s role in the 
midgut, particularly its effect on epithelial barriers, which are crucial for modulating vector 

competence. Consequently, further investigations are imperative to understand the role of 

this bacterium within the midgut, particularly exploring its effect on the epithelial barriers, 

which play a crucial role in modulating vector competence.  

III.3.D. Third thesis publication: Wolbachia maintains intestinal homeostasis In 

Aedes albopictus after blood-meal  

III.3.D.1. Article’s background and objectives 

Insects depend on mutualistic relationships with microorganisms residing in various 

organs to sustain their survival and physiology. The microbiota in the mosquito's midgut plays 

a crucial role in modulating basic physiological responses, particularly in fighting pathogens 

that could induce considerable cellular damage and turnover in the midgut tissue (201,297). 

This symbiotic relationship is also crucial under normal conditions, such as during blood meals 

(290,292). 

Studies have underscored Wolbachia’s significance in Aedes mosquitoes for its 

capability to manipulate the host's defense system against pathogens. This manipulation 

involves biological mechanisms like activating the host's immunity (310,332). Intriguingly, 

Wolbachia may potentially restrict the spread of DENV from the midgut epithelium to the rest 

of the body, thereby impacting vector competence (210,324–326). 

Despite the midgut pivotal role as the primary site for blood meal intake and pathogens 

entry, along with its involvement in various aspects of the vector's defense system, research 

on the natural occurrence of Wolbachia in Aedes albopictus’ midgut remains limited. Previous 

study have elucidated cellular turnover mechanisms crucial for maintaining epithelium 

renewal and stability following various types of damage. We aim to investigate Wolbachia’s 
role in maintaining intestinal homeostasis in vector mosquitoes. Our objectives are based on 

studies demonstrating Wolbachia’s crucial involvement in regulating cellular turnover and 

homeostasis across different organisms. For instance, it regulates stem cell division in Filarial 

nematodes and Drosophila ovaries (333,334), as well as cellular apoptosis in Asobara tabida 

wasp and Culex quinquefasciatus mosquito ovaries (335,336). These findings reveal the vital 

dependency organisms have developed on Wolbachia’s presence.   

Recognizing the importance of effective and stable midgut barriers in limiting viral 

spread, along with Wolbachia's ability to regulate cellular division and apoptosis in other 

organs and species, our upcoming study seeks to investigate Wolbachia's potential in 

preserving midgut epithelium integrity in Aedes albopictus following both regular and DENV-

infected blood meals. Our investigation will examine the cellular and molecular mechanisms 
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governing cell division and apoptosis, as well as the structural integrity of the midgut 

musculature. A comprehensive study employing RNAseq analysis will be briefly mentioned in 

the general discussion section, even though preliminary results from this study we conducted 

will not be included in the current version of the manuscript. 

III.3.D.2. Thesis third publication 

Wolbachia plays a major role in the maintenance of midgut homeostasis 

in Aedes albopictus 

Article under submission  
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ABSTRACT 13 

Wolbachia, a symbiotic bacterium residing within various tissues of Aedes albopictus 14 

mosquito, affects various aspects of host biology and defense mechanisms against 15 

arboviruses like Dengue virus (DENV). Although Wolbachia is prevalent in the mosquito 16 

midgut—the portal of nutrient assimilation and first barrier against foreign invaders— little is 17 

known about its influence on intestinal homeostasis. Our research addresses this gap by 18 

analyzing the intestinal cellular dynamics in mosquitoes with and without Wolbachia, under 19 

standard conditions and following DENV infection. In the absence of Wolbachia, we observed 20 

a marked increase in both intestinal stem cell (ISC) division and in apoptosis one day after 21 

blood meal consumption. Interestingly, DENV infection mildly decreases apoptosis without 22 

influencing ISC division one day postinfection. Furthermore, the lack of Wolbachia leads to 23 

midgut muscular contraction, a condition that DENV infection slightly intensifies. These 24 

findings not only highlight the essential role of the Wolbachia endosymbiont in regulating 25 

intestinal homeostasis and cell turnover, but also open new paths for exploring midgut-26 

endosymbiotic relationships as potential targets for innovative mosquito management 27 

strategies.  28 
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AUTHORS SUMMARY 29 

Wolbachia is an intracellular bacterium that resides within many insects, including the Aedes 30 

albopictus mosquito, a known vector of dengue fever. This bacterium is recognized for 31 

influencing the mosquito lifespan, reproduction, and virus transmission capabilities. Our study 32 

unveils a critical effect of Wolbachia in maintaining the health of the mosquito midgut, 33 

demonstrating the endosymbiont’s involvement in regulating cell division and cell death to 34 

preserve gut integrity. This regulatory function is vital for the mosquito ability to recover from 35 

the stress of blood feeding and operates independently of dengue virus infection. Our findings 36 

reinforce the importance of understanding symbiotic relationships between mosquitoes and 37 

their microbial inhabitants, opening new avenues to disrupt disease transmission and enhance 38 

public health protections.   39 
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INTRODUCTION  40 

Mutualistic interactions between microbiota and their hosts are fundamental for maintaining 41 

physiological equilibrium in a diverse array of life forms, spanning from plants and animals to 42 

humans (1). Within the insect kingdom, relationships with endosymbiotic bacteria notably 43 

influence host survival by regulating essential functions such as nutrition, reproduction, 44 

development, and defense against pathogens (2). 45 

Wolbachia, a prevalent gram-negative endosymbiont found in arthropods, infects an 46 

estimated 66% of species (3,4). In Aedes mosquitoes, Wolbachia significantly alters their host 47 

biology and vectorial capacity through various mechanisms. These include cytoplasmic 48 

incompatibility, which promotes its spread by affecting host reproduction (5,6); pathogen 49 

blocking, which diminishes the transmission of pathogens like the dengue virus (7–9); and 50 

influences on host fitness, including changes in longevity and fecundity (10,11). Additionally, 51 

Wolbachia can engage in horizontal gene transfer with its host genome and modulate the host 52 

immune system, enhancing resistance to some pathogens while potentially increasing 53 

susceptibility to others (9,12,13). These diverse interactions underscore Wolbachia' crucial role 54 

in mosquito biology and its potential in vector-borne disease management strategies.     55 

In the Asian mosquito Aedes albopictus, Wolbachia naturally inhabits various organs, 56 

including the midgut (14,15) . Despite the critical roles of the midgut in nutrient assimilation, 57 

pathogen defense, and preventing microbial dissemination within the host, research on 58 

Wolbachia' influence on the structural integrity of the midgut epithelium was not investigated 59 

yet. Previous studies have identified significant cellular processes within the midgut epithelium, 60 

such as intestinal stem cell proliferation and regulated cell death, which are vital for its 61 

maintenance and resilience under different conditions (16–19). However, Wolbachia potential 62 

impact on these cellular activities and its ability to maintain midgut homeostasis, both under 63 

normal conditions and in response to external threats, remains underexplored. This gap is 64 

especially intriguing given the evidence of Wolbachia critical role in modulating stem cell 65 
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dynamics (20,21) and apoptosis in other arthropod tissues (22,23), suggesting its regulatory 66 

influence might extend to midgut homeostasis. 67 

This study examines the impact of Wolbachia on Aedes albopictus intestinal 68 

homeostasis, focusing on cellular dynamics including division and apoptosis following a 69 

standard blood meal or in Dengue virus (DENV) infection conditions. Our findings reveal that 70 

Wolbachia plays a pivotal role in regulating normal intestinal stem cell proliferation rates, as its 71 

absence leads to an accelerated regenerative state in the midgut at one day after blood meal 72 

consumption. This increased cell division rate coincided with a higher proportion of apoptotic 73 

cells in the midgut when Wolbachia was absent, indicating a disrupted balance within the 74 

intestinal epithelium. Additionally, the overall structural organization of the visceral muscle was 75 

significantly compromised in the absence of Wolbachia, leading to disordered tissue 76 

architecture. Unexpectedly, the expression levels of Keren and DIAP, key regulatory proteins 77 

in the midgut involved in the division (24) and apoptosis (25) pathways respectively—did not 78 

account for the observed alterations. Interestingly, the effects mediated by Wolbachia were not 79 

modulated by the presence of the DENV one day postinfection, highlighting a direct role of this 80 

bacterium in maintaining gut integrity independent of external challenges.  81 

METHODS 82 

Mosquito rearing 83 

Two Aedes albopictus lines were used for the experiments. The first line, called S.RUN, was a 84 

local strain collected in La Réunion and naturally infected with wAlbA and wAlbB. The second 85 

line, named S.RUN Asymb, was a Wolbachia-free line obtained from the S.RUN population 86 

after treatment with a tetracycline antibiotic to eliminate Wolbachia. To confirm the 87 

absence of Wolbachia, individuals were screened using PCR with primers 81F (5'-TGG TCC 88 

AAT AAG TGA TGA AGA AAC) and 691R (5'-AAA AAT TAA ACG CTA CTC CA), which specifically 89 

amplify the Wolbachia surface protein gene wsp for the wAlbA and wAlbB strains (26). Both 90 
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S.RUN (W+) and S.RUN Asymb (W-) populations were maintained in the insectary at 28 °C 91 

± 1°C, with 80% relative humidity and a 12-hour light/12-hour dark photoperiod. Larvae 92 

were fed with yeast tablets, while adults were provided with a 10% sucrose solution. During 93 

the experiments, the S-RUN population was reared from F30 to F52 generations, while the 94 

S.RUN Asymb population was reared from F20 to F28 generations. To maintain and amplify 95 

both populations, adult females were artificially fed with bovine blood using the Hemotek 96 

feeding system (Hemotek Limited, Great Harwood, UK) covered with pig intestine, once or 97 

twice a week.  98 

DENV production 99 

The DENV-1 strain used for the experimental mosquito infection was isolated from the serum 100 

of a patient from La Reunion Island in 2018 (namely RUN1-1583; Genbank accession number: 101 

ON63127). To produce viral stocks for experimental infections, the RUN1-1583 strain was 102 

amplified on Vero E6 cells at a Multiplicity of Infection (MOI) of 0.1 in Eagle’s Minimum 103 

Essential Medium (MEM). The MEM was supplemented with 2% heat-inactivated fetal bovine 104 

serum (FBS), 2 mmol/l l-glutamine, 1 mmol/l sodium pyruvate, 10 U/ml penicillin, 0.1 mg/ml 105 

streptomycin, and 0.5 μg/ml fungizone (PAN Biotech, Aidenbach, Germany). The Vero cells 106 

were maintained at 37°C with a 5% CO2 atmosphere. Supernatants containing virus particles 107 

were collected three to five days postinfection when cytopathic effects appeared and then 108 

centrifuged and stored at −80°C until use. The final titers of the DENV stocks were determined 109 

to be 3.3×107 PFU/ml. 110 

Experimental infection 111 

Female mosquitoes, aged five to eight days, were confined in small cages (16×16×16 cm) and 112 

subjected to a 24 to 30-hour starvation period. Following this fasting phase, they were allowed 113 

a 45-minute feeding session on infectious blood meals, consisting of 1 ml of washed rabbit 114 

erythrocytes, 1 ml of DENV suspension, and 5 mM (21 µl) of adenosine triphosphate as a 115 
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phagostimulant. The Hemotek feeding system was used to provide the infectious blood meal 116 

to the mosquitoes. To assess the stability of viral titers during blood feeding, blood samples 117 

were collected before and after the 45-minute feeding period and stored at -80°C for 118 

subsequent titration. Then, mosquitoes were cold-anesthetized, and fully engorged females 119 

were transferred to a climatic chamber (26±1°C, 80% RH, with a photoperiod of 12 h light/12 120 

h dark), where they were maintained on a 10% sucrose solution for 24 hours before proceeding 121 

with experiments. After feeding both mosquito populations, including Wolbachia and 122 

Wolbachia-free individuals, on DENV-uninfected and infected blood meals, four categories of 123 

mosquitoes were obtained: W+/D-, W+/D+, W-/D-, & W-/D+ (Fig. 1). 124 

Dissection of mosquito midguts  125 

One day post blood meal, mosquitoes were anesthetized by placing cages containing 126 

engorged mosquitoes into a +4°C cold chamber. Mosquitos were then transferred one by one 127 

onto a glass slide in a drop of 50% ethanol for the isolation of midguts under a light 128 

stereomicroscope. Using fine forceps, the mosquito head was severed, and the abdomen was 129 

pulled from the posterior end until the midgut detached. A small incision was made using the 130 

forceps to allow blood bolus to be evacuated from the intestine. Once the midgut was 131 

completely blood-free, it was then placed in a 1.5 ml Eppendorf tube containing 1X PBS and 132 

kept on ice. 133 

Immunostaining 134 

Isolated guts were fixed in a 4% Paraformaldehyde (VWR, USA) solution in 1XPBS for 30 135 

minutes. Then, the guts underwent three 15-minute washes in 0.1% PBS-Triton to allow 136 

permeabilization. Blocking was then performed for 30 minutes by adding a solution of 1X PBS 137 

-Triton 0.1%-BSA 1%. Following blocking, the primary rabbit α-Phosphorylated-histone-3 (α-138 

PH3) antibodies (ABCAM, UK) were added (1:1000 in 1X PBS-Triton 0.1%-BSA 1%), and 139 

incubated overnight at 4 °C. α-PH3 it is a highly specific marker for condensed chromosomes 140 

and is used to assess the number of mitotic ISC (27). After three 15-minute washes in PBS-141 
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Triton 0.1%, the secondary antibodies Alexa Fluor® 555 (ABCAM, UK) were added (1:1000 in 142 

PBS-Triton 0.1%-BSA 1%) and incubated overnight at 4 °C. Phalloidin coupled to Alexa Fluor® 143 

647 (ABCAM, UK), was added for one hour at room temperature (1:1000 in PBS-Triton 0.1%-144 

BSA 1%). Once phalloidin was removed, DAPI stain was applied at a concentration of 1:1000 145 

for 30 minutes, followed by three 15-minute washes in PBS-Triton 0.1%. The guts were 146 

mounted on microscope slides in 50% glycerol:1xPBS mounting medium, and the coverslips 147 

were sealed with colorless nail varnish. 148 

TUNEL staining 149 

Pools of 3-4 midguts were fixed in 4% paraformaldehyde-1XPBS for 30 minutes. They were 150 

then dehydrated in a Tris-buffered saline (TBS) gradient of 25%–50%–75%–100% methanol, 151 

with each step taking 5 minutes, and stored at 4 °C in 100% methanol until further processing. 152 

To rehydrate the midguts, they were placed back in the same TBS methanol gradient, but in 153 

reverse order. Next, the midguts were permeabilized in 20 µg/mL proteinase K for 5 minutes 154 

at room temperature, rinsed twice, and washed twice for 5 minutes in TBS.  Then they were 155 

fixed in 4% paraformaldehyde in TBS for 10 minutes (28). TUNEL reactions were performed 156 

using equilibration buffer and labeling mix from the Millipore FragEL™ DNA Fragmentation 157 

Detection Kit, Fluorescent (FITC conjugated) (QIA39-1EA) following the manufacturer’s 158 

recommendations.  159 

Cell counting and statistical analysis 160 

The slides prepared were examined using a confocal microscope (Confocal NIKN C2si) for the 161 

counting of targeted cells, and image acquisition was conducted using NIIS Software. Cell 162 

counts were analyzed using GraphPad Prism software, and an unpaired t-test was carried out. 163 

Primers generation  164 

DIAP and Keren genes were identified on VectorBase for Aedes albopictus and Aedes aegypti 165 

species. Multiple isoforms were found for each gene, exhibiting distinct loci and positions within 166 
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the genome. For DIAP, the isoforms include AALF001357, AALFPA_051841, AALF001458, 167 

AALF019523, AALFPA_056496, and AALFPA_076435. The Keren isoforms comprise 168 

AALFPA_047463, AALFPA_061379, AALFPA_070949, AALFPA_071273, AALFPA_075378, 169 

AALFPA_054420, and one set of Keren primers is copied from (16). An alignment of isoforms 170 

was performed using the online tool CulstalOmega (https://www.ebi.ac.uk/Tools/msa/clustalo/) 171 

to identify shared consensus sequences. Five DIAP isoforms and three Keren isoforms were 172 

identified, and primers were generated using the website https://www.dkfz.de/signaling/e-173 

rnai3/0. The primers sets are named DIAP1, DIAP2, DIAP3, DIAP4, DIAP5, Keren1, Keren2, 174 

and Keren3. (Table S.1) (Table 1).  175 

We conducted several experiments to select the optimal sets of primers for our Aedes 176 

albopictus populations.  For each of the four mosquito modalities (W+/D-, W+/D+, W-/D-, and 177 

W-/D+), we pooled 10 midguts in 1.5 mL Eppendorf tube. Three replicates for each modality 178 

were used. Total RNA was extracted using TRIzol™ Reagent from Invitrogen (15596026). 179 

Samples were treated with TURBO™ DNase (AM2238) to remove any DNA contamination. 180 

The extracted RNAs were quantified using the QUBIT RNA HS ASSAY (Q32855), and 400 ng 181 

of RNA were used for reverse transcription into cDNA using the LunaScript® RT SuperMix Kit 182 

(NEB #E3010S/L). All experiments were performed according to the manufacturer’s 183 

instructions. A PCR was conducted to ascertain the specificity of the primer hybridization on 184 

DIAP and Keren RNA sequences within the 4 modalities. Amplicons were purified and 185 

sequenced (GenoScreen, France) to validate their sequences. Real-time quantitative PCRs 186 

were performed using SYBR green (Qiagen) with the CFX96 Touch Real-Time PCR Detection 187 

System (Bio-Rad, Hercules, CA, USA) to identify primers that exhibited optimal performance 188 

across different modalities. Three independent experiments were conducted and the results 189 

were averaged. Two-way ANOVA and unpaired t-tests were employed for statistical analysis. 190 

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.dkfz.de/signaling/e-rnai3/0
https://www.dkfz.de/signaling/e-rnai3/0
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RESULTS  191 

Temporal effects of Wolbachia on intestinal cell division after blood meals in Aedes 192 

albopictus 193 

To determine the best time for evaluating Wolbachia influence on intestinal homeostasis of 194 

Aedes albopictus, we performed a kinetic study, synchronizing our analysis with the sequential 195 

stages of blood meal digestion. This investigation was structured around three distinct phases: 196 

the early phase (1DPB), occurring on the first day post-blood meal and reflecting the initial 197 

interaction with the gut lining; the middle phase (5DPB), corresponding to the completion of 198 

blood digestion five days later; and the late phase (13DPB), taking place thirteen days after 199 

digestion, during which the mosquitoes reverted to sugar consumption (Fig. 1A). 200 

Our examinations focused on the midguts of Aedes albopictus with Wolbachia (W+) 201 

and without Wolbachia (W-), dissected at the specified time points (1DPB, 5DPB, and 13DPB) 202 

after a standard rabbit blood meal. At 1DPB, to facilitate blood coagulation, dissected midguts 203 

were treated with 50% ethanol, followed by the creation of a small incision in the epithelium to 204 

extract the blood bolus (Fig. 1A). Subsequently, we applied a staining protocol utilizing an anti-205 

PH3 antibody to specifically highlight phosphorylated histone H3 within condensed chromatin, 206 

enabling the quantification of mitotic cells. 207 

Microscopic examination (Fig. 1B) revealed that midguts from W+ mosquitoes 208 

displayed a limited distribution of small ISCs, intensely marked with PH3 labeling, indicative of 209 

minimal cell division. In contrast, midguts from W- mosquitoes showed a significant increase 210 

in ISC division, characterized by a high frequency of PH3-positive nuclei with a distinctive 211 

coffee-bean shape, resulting from the recent division of a progenitor cell. Further analysis of 212 

nuclear structure (Fig. 1B’) showed that W+ mosquitoes maintained organized, uniform nuclei, 213 

while W- specimens exhibited a loss of nuclear uniformity and nuclear membrane irregularities. 214 
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A statistical comparison of mitotic cell counts (Fig. 1C) revealed marked differences 215 

between the W+ and W- strains at 1DPB, with the W- mosquitoes displaying a wider range of 216 

mitotic cell counts (5-61 cells/midgut) compared to their W+ counterparts (0-20 cells/midgut). 217 

This variance underscores Wolbachia crucial role in maintaining cellular division equilibrium 218 

and intestinal homeostasis. At 5DPB, the mitotic cell counts between the two strains showed 219 

no significant disparity, both presenting low levels of cell division. Conversely, at 13DPB, the 220 

W- mosquitoes exhibited a higher frequency of mitotic cells than the W+ mosquitoes, albeit 221 

with numbers reduced from those observed at 1DPB. 222 

These observations emphasize the critical juncture at 1DPB for investigating Wolbachia 223 

modulation of the Aedes albopictus intestinal epithelium. The absence of Wolbachia leads to 224 

a disruption in nuclear structure and an increase in ISC proliferation, possibly reflecting an 225 

enhanced apoptosis as a consequence to the endobacterium removal. 226 

Impact of Wolbachia removal on basal  intestinal cell apoptosis 227 

To explore the role of Wolbachia in modulating apoptosis within the mosquito midgut, we 228 

applied the Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay 229 

on Aedes albopictus specimens at 1DPB from both W+ and W- groups. This method enabled 230 

the detection and quantification of apoptotic cells, facilitating a comparative analysis of 231 

apoptosis rates in the midguts of the two mosquito populations (Fig. 2A). W+ mosquito midguts 232 

exhibited fewer TUNEL-positive cells, indicating lower levels of apoptosis. In contrast, W- 233 

mosquito midguts displayed a significantly higher count of TUNEL-positive cells, aligning with 234 

the nuclear disruption observed in Figure 1B and B’. Quantification of TUNEL-positive cells 235 

revealed a marked increase in apoptotic cell numbers following Wolbachia removal, with cell 236 

counts reaching a maximum of 62 cells/midgut in W+ mosquitoes compared to 150 237 

cells/midgut in W- mosquitoes (Fig. 2B). This difference was statistically significant (****p < 238 

0.0001), denoting a substantial rise in apoptosis levels post-Wolbachia elimination. 239 

In correlation with the our findings on mitotic cell variance, the apoptotic cell data further 240 

emphasized the discrepancy between Wolbachia-presence and -absence scenarios. While the 241 
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W+ group showed a relatively stable range of apoptotic cells, from 0 to 45 cells/midgut (with 242 

an exception of two midguts reaching 62 cells/midgut), the W- group exhibited a wider 243 

variance, from 0 to 150 cells/midgut. This observation underlines Wolbachia critical role in 244 

stabilizing intestinal epithelial homeostasis and maintaining controlled levels of cellular 245 

apoptosis, which become disrupted upon the endosymbiont removal. 246 

Influence of Wolbachia on visceral muscular architecture  247 

To investigate the role of Wolbachia in the structural integrity of the midgut muscle layer, we 248 

employed phalloidin, a fluorescent dye that binds specifically to actin filaments, to visualize the 249 

muscular framework within the midguts of both W+ and W- Aedes albopictus strains. This 250 

approach allowed us to assess the structural differences attributable to the presence or 251 

absence of Wolbachia (Fig. 3). 252 

Observations revealed that the midgut muscles of W+ mosquitoes exhibited a robust 253 

and orderly arrangement, characterized by straight and uniformly aligned actin filaments, 254 

reflective of a healthy and stable muscular structure. Conversely, in the midguts of W- 255 

mosquitoes, a noticeable deviation was observed; the actin filaments appeared irregular and 256 

wavy, suggesting a compromised structural integrity. This distortion was further corroborated 257 

by the increased density and contraction of actin filaments in W- mosquitoes, hinting at an 258 

induced stress response from the absence of Wolbachia.  259 

These findings emphasize the significant impact of Wolbachia on maintaining the 260 

muscular structure of the Aedes albopictus midgut, indicating that the symbiotic relationship 261 

extends beyond cellular regulation to include physical aspects of tissue architecture, which 262 

could have implications for gut function and overall mosquito health. 263 

Exploring the molecular footprint of Wolbachia on classical cell cycle and apoptosis 264 

regulators 265 
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To gain insights into the molecular determinants conveying Wolbachia effects within the Aedes 266 

albopictus midgut, we examined the expression of two genes, DIAP (Hippo pathway) and 267 

Keren (EGFR pathway), as prime candidates due to their known roles in regulating apoptosis 268 

and cellular proliferation within the midgut, respectively (24,29–31). To probe their expressions 269 

primer sets were synthesized (Table S1), targeting the RNA sequences of DIAP and Keren 270 

across various isoforms and genes (Fig. 4A for DIAP primers), referencing the Cytochrome 271 

Oxidase I (COI) gene for housekeeping purposes and the 40S ribosomal protein gene S7 272 

(RSP7) as an additional normalization marker. Our PCR screening revealed that only the 273 

DIAP57/41 and Keren genes are actively expressed in the midgut, steering our subsequent 274 

analysis toward these targets (Figure S1).  275 

To quantify these two genes’ expression dynamics, real-time quantitative PCR assays were 276 

conducted on cDNA derived from RNA extracted from pooled samples of ten midguts, across 277 

three replicate experiments for each mosquito group. Normalization of expression levels 278 

against the RSP7 reference gene did not unveil any significant differences between 279 

mosquitoes harboring Wolbachia and those without, for both the DIAP57/41 and Keren genes 280 

(Figs. 4B and 4C).  281 

This result suggests that the regulatory impact of Wolbachia on midgut homeostasis at 282 

the studied time points does not mainly go through the modulation of these genes, diverging 283 

from patterns observed in responses to pathogenic bacterial infections, particularly concerning 284 

the Keren gene (30,31) 285 

Protective effects of Wolbachia on midgut homeostasis are unaffected by DENV infection 286 

After showing that Wolbachia is required to maintain midgut homeostasis in Aedes albopictus, 287 

we next asked whether the different Wolbachia effects described above could be modulated 288 

by DENV infection. We first observed that in the presence of Wolbachia (W+/D+), midgut nuclei 289 

exhibit only minor disruptions compared to the stable structure observed without DENV 290 

infection (W+/D-) (Fig.5A). Conversely, in Wolbachia-absent (W-/D+) conditions, significant 291 
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nuclear distortions were noted, potentially intensified by DENV, in agreement with the earlier 292 

findings shown in figure 1B’.  293 

When examining the ISC division at 1-day post-DENV infection, no substantial impact 294 

was detected, regardless of Wolbachia presence. The division rates between DENV-infected 295 

and uninfected groups remained comparable, in the presence or absence of Wolbachia. 296 

Notably, in Wolbachia-free midguts post-DENV infection, ISC division increased, contrasting 297 

with the more stable division rates in Wolbachia-positive scenarios. This pattern suggests that 298 

DENV infection does not alter Wolbachia's protective effects on ISC division.  299 

In addition, apoptotic cell counts were unaffected in the context of DENV infection when 300 

Wolbachia was present. Apoptosis rates stayed consistent in Wolbachia-positive conditions, 301 

irrespective of DENV presence. However, a slight reduction in apoptosis was observed in 302 

Wolbachia-negative scenarios following DENV infection, underlining Wolbachia's significance 303 

in maintaining cellular equilibrium even amidst viral challenges.  304 

Finally, exploring the DENV impact on the intestinal muscular structure highlighted Wolbachia's 305 

protective role (Fig. 5D). In Wolbachia-positive mosquitoes with DENV (W+/D+), the muscular 306 

structure exhibited minimal disruption, maintaining integrity that contrasts starkly with the 307 

compromised structure seen in Wolbachia-negative and DENV-infected (W-/D+) mosquitoes, 308 

where significant muscular distortion was evident.  309 

Collectively, these findings underscore Wolbachia's crucial function in safeguarding 310 

midgut homeostasis, particularly in ISC division, apoptosis regulation, and muscular structure 311 

preservation. Wolbachia's protective mechanism seems unaffected by DENV at the observed 312 

stage, highlighting its potential as a stabilizing force within mosquito midgut ecology, 313 

regardless of viral infection dynamics. This elucidates the symbiont's broader role in host 314 

protection and disease transmission, emphasizing the complexity of host-microbe-pathogen 315 

interactions.  316 
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DISCUSSION  317 

In this comprehensive study, we elucidate the temporal dynamics of Wolbachia's influence on 318 

the intestinal homeostasis of Aedes albopictus. Our findings provide compelling evidence that 319 

Wolbachia plays a pivotal role in modulating cellular dynamics within the mosquito midgut, 320 

including ISC division, apoptosis, and the structural integrity of the visceral muscle. These 321 

effects collectively highlight the endosymbiont’s significance far beyond its previously 322 

recognized impacts on reproduction (5,32), pathogen defense (7–9), and host fitness (10,11), 323 

positioning it as a key regulator of midgut physiology with potential implications for the 324 

mosquito's vectorial capacity.  325 

Our research delineates a clear temporal pattern in Wolbachia regulatory effects. At 1 326 

DPB, the presence of Wolbachia significantly stabilizes mitotic activity within the midgut, a 327 

critical period for initial regenerative responses to feeding. This stabilizing effect is absent by 328 

5 DPB, suggesting a transient yet crucial role in immediate post-feeding homeostasis. 329 

However, by 13 DPB, the resurgence of mitotic activity in Wolbachia-free mosquitoes 330 

underscores the endosymbiont's long-term influence on cellular turnover and midgut 331 

regeneration. These findings highlight specific periods where Wolbachia regulatory functions 332 

are most pronounced, providing insights into its role in the mosquito lifecycle that were 333 

previously unexplored. Examining potential mechanisms, we inferred a role of apoptosis in 334 

Wolbachia-mediated intestinal cell turnover at 1 DPB. Wolbachia elimination led to a significant 335 

increase in apoptotic cells, highlighting its role in apoptosis inhibition and the preservation of 336 

intestinal epithelium homeostasis. The correlation between the pronounced increase in ISC 337 

division and midgut cell apoptosis in Wolbachia-free mosquitoes immediately following a blood 338 

meal emphasized the bacterium's role in moderating the regenerative response to feeding, 339 

potentially leading to midgut epithelial stability and controlled responses to environmental 340 

challenges. Additionally, the impact of Wolbachia on the muscular architecture of the midgut 341 

underlines its broader influence on tissue integrity and function. The disorganized actin 342 

filaments observed in Wolbachia-free mosquitoes point to a disruption of gut motility and 343 
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nutrient absorption efficiency, which could have significant implications for mosquito health, 344 

oogenesis, and vector competence. Similar cellular events were described in the midgut of 345 

Drosophila melanogaster following various damages (27,33,34,34–37), which induce cell 346 

death and consequently ISC proliferation, highlighting the involvement of conserved regulatory 347 

networks in maintaining gut integrity across Diptera.  348 

Interestingly, the crucial involvement of Wolbachia in regulating cellular turnover and 349 

tissue homeostasis has been previously underscored across different organisms. For example, 350 

Wolbachia has been shown to stimulate stem cell division in filarial nematodes and Drosophila 351 

mauritiana ovaries (20,21). Additionally, its influence encompasses cellular apoptosis, as 352 

evidenced in the Asobara tabida parasitic wasp, Drosophila melanogaster, and Culex 353 

quinquefasciatus ovaries  (22,23). Notably, Wolbachia's presence in these species acts to 354 

suppress/increases apoptosis in ovarian cells, facilitating normal oogenesis. Therefore, our 355 

findings, within the context of Aedes albopictus midgut homeostasis, alongside the regulatory 356 

roles observed in other hosts, illustrate the vital dependency that a diverse range of organisms 357 

have developed on Wolbachia presence for maintaining tissue integrity and functions.  358 

At the molecular scale, the absence of significant changes in the expression levels of 359 

classical cell proliferation and apoptosis regulators, such as Keren and DIAP, suggests that 360 

influence of Wolbachia extends through more complex or alternative pathways. Future 361 

research could explore the involvement of other signaling pathways, such as JNK, JAK/STAT 362 

and Wnt, known for their roles in apoptosis and cell proliferation (25,38,39). Such 363 

investigations could reveal novel targets for manipulating Wolbachia-mosquito interactions to 364 

control mosquito populations and disease transmission. 365 

Remarkably, the absence of pronounced Wolbachia-modulated changes in response 366 

to DENV infection suggests that the bacterium protective effects on gut homeostasis operate 367 

independently of external challenges. This autonomy features the potential of Wolbachia as a 368 

stabilizing force within the mosquito intestinal environment, capable of safeguarding against 369 



163 
 

both endogenous and exogenous perturbations. It also highlights the complexity of interactions 370 

between mosquito, symbiont, and pathogen, indicating that the benefits conferred by 371 

Wolbachia may extend beyond direct pathogen blocking to include enhancement of the host's 372 

physiological resilience. 373 

Our findings have significant implications for mosquito management strategies, 374 

particularly in the context of Wolbachia-based interventions aimed at controlling vector-borne 375 

diseases (8,40–43). By elucidating the mechanisms by which Wolbachia contributes to midgut 376 

homeostasis, our study opens new avenues for exploring how modulation of this symbiotic 377 

relationship can influence mosquito fitness, pathogen transmission, and ultimately, disease 378 

spread. For instance, enhancing Wolbachia's beneficial effects on gut physiology could 379 

potentially augment the vector's resistance to pathogens or reduce its lifespan, thereby 380 

decreasing disease transmission risk. Moreover, the identification of molecular signatures 381 

associated with Wolbachia regulatory effects offers potential targets for novel control 382 

strategies. Understanding the specific genes and pathways involved in mediating these effects 383 

could lead to the development of genetic or chemical interventions designed to mimic or 384 

enhance Wolbachia's protective role, offering a complementary strategy to existing Wolbachia 385 

release programs (44,45). 386 

In conclusion, our study sheds light on the essential role of Wolbachia in maintaining 387 

midgut homeostasis in Aedes albopictus, revealing intricate interactions that contribute to the 388 

mosquito health and its capacity to transmit diseases. Further research is needed to unravel 389 

the complex regulatory networks involved and to explore the full potential of leveraging 390 

Wolbachia-midgut relationships for public health benefits. Additionally, elucidating the long-391 

term effects of Wolbachia removal on mosquito fitness and disease transmission could offer 392 

valuable insights into its role in the ecological and evolutionary dynamics of Aedes albopictus. 393 

Consistently, the broad spectrum of Wolbachia influence across various hosts offers a 394 

compelling insight into the evolutionary significance of this symbiotic relationship. It suggests 395 

that Wolbachia role in biological processes is deeply embedded in the life history of numerous 396 
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species, indicating a co-evolutionary trajectory that has allowed these organisms to harness 397 

the symbiont regulatory capabilities for their survival and reproductive success. This shared 398 

evolutionary path underscores the potential of Wolbachia as a target for novel biological control 399 

strategies, leveraging its universal influence on host biology.   400 
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Figure 1: Wolbachia controls ISC proliferation status in Aedes albopictus midgut. 517 

(A) Overview of the experimental design, where Aedes albopictus mosquitoes, both 518 

Wolbachia-infected (W+) and uninfected (W-), were subjected to blood feeding and 519 

subsequently dissected at 1, 5, and 13 days post-blood meal (1DPB, 5DPB, and 13DPB) to 520 

analyze ISC proliferation. 521 

(B) Representative fluorescence microscopy images show mitotic cells (highlighted with green 522 

fluorescent anti-PH3 antibodies), cell nuclei are stained with DAPI in blue. Green arrows point 523 

to the mitotic cells. Close-up images in (B’) detail the nuclear structure of epithelial cells for 524 

both W+ and W- mosquito lines, offering insights into proliferation differences. 525 

(C) Quantitative analysis of mitotic cell counts in the midguts across different time points 526 

(1DPB, 5DPB, and 13DPB). Counts were obtained from anti-PH3 antibody staining and 527 

analyzed using a t-test to compare W+ and W- groups. Experiments were conducted in 528 

triplicates, and statistical significance is indicated with asterisks: ****P<0.0001, *P<0.05, 529 

indicating significant differences, and ns (P>0.05) indicating non-significance.  530 
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 531 

Figure 2: Wolbachia reduces apoptosis in Aedes albopictus midgut at 1DPB 532 

(A) This panel features representative images of apoptotic cells stained in green fluorescent 533 

following TUNEL staining, along with DAPI nuclear staining. Arrows indicate apoptotic cells 534 

identified by TUNEL. Arrows point to the apoptotic cells distinguished by TUNEL staining. In 535 

the zoomed-in view (A’), the structure of nucleus cells is detailed for both W+ and W- lines.  536 

(B) Apoptotic cell quantification: the number of apoptotic cells per midgut was quantified for 537 

both W+ and W- lines at 1DPB. Statistical analysis was performed using t-test to compare the 538 
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differences in apoptotic cell numbers between W+ and W- mosquitoes. The study was 539 

performed in triplicate, ensuring reliability. Statistical significance is denoted by ****P<0.0001, 540 

**P<0.01, *P<0.05, and ns (P>0.05) for non-significant differences. 541 

 542 

Figure 3: The absence of Wolbachia affects midgut muscular structure in mosquitoes. 543 

This illustration presents the muscular architecture of the midgut in mosquito lines with (W+) 544 

and without (W-) Wolbachia infection. Muscular structures were visualized using Phalloidin 545 

staining, a specific marker for actin filaments, to detail the organization within the midgut. The 546 

upper images display the overall structure of the midgut musculature, while the lower images 547 

offer detailed views, emphasizing the arrangement and distribution of actin filaments. 548 

  549 
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 550 

Figure 4: DIAP and Keren gene expression unaffected by Wolbachia presence in Aedes 551 

albopictus midgut 552 

(A) Schematic detailing the annealing sites for DIAP gene-specific primers. Primers 553 

DIAP57/41, DIAP96, and DIAP35 target the DIAP gene isoforms 554 

AALF001357/AALFPA_051841, AALFPA_056496, and AALFPA_076435, respectively. 555 

Forward primers are marked with red arrows, and reverse primers with green arrows. 556 

(B) The relative expression levels of DIAP57/41 RNA were normalized to the housekeeping 557 

gene RSP7:  Analysis shows no significant difference in DIAP mRNA expression between W+ 558 

and W- midguts. 559 



175 
 

(C) The relative expression levels of Keren RNA were normalized to the housekeeping gene 560 

RSP7: Keren mRNA expression levels at 1DPB do not significantly differ between W+ and W- 561 

midguts. 562 

Statistical analysis: Mean differences are categorized as follows: ***, mean difference >1.4; **, 563 

mean difference >1.3; *, mean difference >1; ns, mean difference <0.01. Significance levels 564 

are denoted by *P<0.05, with ns indicating a lack of significant difference (P>0.05). 565 
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 566 

Figure 5: Limited effects of Dengue virus on midgut homeostasis  567 

(A) Nuclear structure in midgut cells is depicted for W+ and W- strains following DENV 568 

infection, alongside a control group DENV-uninfected W+ strain. 569 

(B) Quantification of mitotic cells post-DENV infection showcases the cell division ratios in 570 

W+/D+ compared to W+/D- controls, and in W-/D+ relative to W-/D- controls. Additionally, the 571 
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impact of Wolbachia in the context of DENV is evaluated by comparing cell division ratios in 572 

W-/D+ against W+/D+ controls and W+/D- against W-/D- controls. 573 

(C) Apoptotic cell ratios in W+/D+ are contrasted with W+/D- controls, and in W-/D+ versus W-574 

/D- controls. Furthermore, the influence of Wolbachia amidst DENV infection is analyzed by 575 

comparing apoptotic cell ratios in W-/D+ to W+/D+ controls. Statistical significance is 576 

determined using T-tests, denoted as follows: ****P<0.0001, *P<0.05, indicating significance, 577 

and ns (P>0.05) indicating non-significance. (D) Magnified views show changes in the 578 

intestinal muscular structure of the midgut following DENV infection in both W+ and W- strains. 579 

The left image represents the muscular structure in the control W+/D- strain for reference, 580 

while the middle and right images display observed alterations post-DENV infection in W+ and 581 

W- strains, respectively.  582 
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SUPPORTING INFORMATION: 583 

 584 

S1 Figure. Transcriptional profiling of DIAP Isoforms in Aedes albopictus midgut. 585 

Assessment of the transcriptional levels of DIAP isoforms, utilizing DIAP57/41, DIAP58, and 586 

DIAP35 primers, at 1DPB in both W+ and W- mosquito strains. A two-way ANOVA multiple 587 

comparison statistical test revealed that the relative expression of the DIAP57/41 isoform was 588 

approximately 1.5 times higher compared to DIAP58 and DIAP35 in both mosquito strains.  589 

 590 

S1 Table. DIAP and Keren genes’ isoforms. Table presenting i) the Length [nt], Tm [°C], and 591 

%GC information for “Primers” forward and reversed synthesized sequences on www.dkfz.de., 592 

ii) the locus, location, of Keren and DIAP genes’ isoforms found on VectorBase for Keren in 593 

Aedes albopictus and DIAP in Aedes albopictus and Aedes aegypti594 

Primer Length Tm GC[%] Primer Length Tm GC[%]

DIAP_AALF001357 JXUM01S001116 195,570..199,532(-)

DIAP_AALFPA_051841 SWKY01000002 59,574,634..59,652,855(+)

DIAP_AALF001458 AGGCAAGTCCACCGATTCC 19 62.380 57.895 TAGCGGTAATCACCTTTGGC 20 60.096 50.000 174 JXUM01S008787 27,615..34,357(-)

DIAP_AALF019523 AGATGAAGAACTCGAGCCC 20 59.950 50.000 ACCGGACAATTCGTTACTGC 20 60.000 50.000 486 JXUM01S004611 10,180..12,309(+)

DIAP_AALFPA_056496 TAGGTGCTTCCCCAAATGTC 20 59.933 50.000 AGCCGACGACTACTTCTCCA 20 60.012 55.000 494 SWKY01000007 66,299,401..66,311,733(-)

DIAP_AALFPA_076435 TTCTCTGAGCACCATTGACG 20 59.984 50.000 GACAGGGTCGACGATACGTT 20 59.997 55.000 468 SWKY01000009 43,700,706..43,809,807(-)

Keren_AALFPA_047463 SWKY01000050 999,788..1,055,274(+)

Keren_AALFPA_061379 SWKY01000050 2,931,433..2,953,633(+)

Keren_AALFPA_070949 SWKY01000050 1,796,869..1,867,442(+)

Keren_AALFPA_071273 TCCCTACGTTGCAATTTTCC 20 59.938 45.000 GAGATCCAAATGGTCGCTTC 20 59.635 50.000 500 SWKY01000038 2,617,079..2,835,848(-)

Keren_AALFPA_075378 TGTTGGAAACGACATTCGAC 20 59.547 45.000 CCAGAACCAATGCAACAATG 20 59.964 45.000 498 SWKY01000038 184,870..387,959(+)

Keren_AALFPA_054420 TCCGACGGCTAGACCAAATA 20 60.597 50.000 GTGAGATCCAAATGGTCGCT 20 60.081 50.000 409 SWKY01000664 238,054..245,625(+)

Keren (Janeh et al., 2017) TGATGATCCATTTCGCAAGA CTTATCCGTCTCCTGCCTGA

40.000 493

59.830 45.000 453

GACCTCGTCGGCAAAGATTA 20 60.214 50.000 TGATTGGAAACAATGCAGGA 20 60.049

CAAGGACTGGGAAGCTGAAG 20 59.982 55.000 ACATTGGTGAAAGGTTTCCG 20

Gene
Primer Forward Primer Reverse Amplicon 

Length 
Locus Location 
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III.3.D.3. Perspectives 

Our study unveils a critical mutualistic relationship between the endosymbiont Wolbachia 

and the Asian tiger mosquito, Aedes albopictus. Wolbachia appears to be essential for 

mosquito midgut health, regulating cellular processes like division and apoptosis while 

maintaining the structure of midgut cells and muscles. This highlights the dependency Aedes 

albopictus has developed on Wolbachia. Interestingly, DENV infection caused no significant 

changes in midgut physiology, suggesting Wolbachia's protective role outweighs viral damage 

and ensures midgut homeostasis. 

To gain a deeper understanding of the molecular mechanisms involved, RNA sequencing 

can be employed. This technique allows us to analyze the complete set of RNA molecules 

(transcriptome) within the midgut. Employing RNAseq can offer a deeper understanding of 

the molecular mechanisms implicated in midgut physiology, potentially manipulated by 

Wolbachia. Thus, we might be able to identify genes that might be responsible for the 

observed physiological effects and represent potential targets for manipulation. 

Further research directions can also include the investigation of this Wolbachia-midgut 

relationship in other arbovirus vectors, both naturally infected and those amenable to 

transinfection by Wolbachia. Moreover, delving deeper into the Wolbachia-DENV interaction 

within the midgut to determine if the lack of cellular phenotype changes is due to Wolbachia's 

protection, delayed DENV effects, or specific intestinal responses. Similar studies could be 

conducted with other arboviruses like Zika, Yellow Fever, and West Nile. 

Our findings offer a strong foundation for developing a vital biological control strategy 

against arboviruses. By targeting mosquito fitness, longevity, and resistance to viral infection, 

we can explore novel approaches to curb the spread of DENV by the Aedes albopictus vector. 
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Part IV. General discussion and perspectives 

Given the emergence of arbovirus epidemics in human populations, investigating the 

factors influencing interactions between arboviruses and mosquito vectors is a significant 

challenge. Our study aims to explore the interaction between circulating dengue strains and 

the local Aedes albopictus vector. 

After genetically characterizing the DENV-1 and tracing the origin of its emergence 

during the last epidemic, which caused a significant burden of incidence (objective 1, article 

1), we pursued the second objective of this thesis consisting of characterizing, at the local 

interpopulation level of Aedes albopictus, the impact of extrinsic factors on the overall vector 

competence toward DENV-1 (objective 2, article 2). Finally, the third objective focused on 

exploring the effect of an intrinsic biological factor, the Wolbachia bacterium, on the 

maintenance of intestinal homeostasis. This interaction was studied at the intrapopulation 

level of a Reunionese Aedes albopictus laboratory population, under basal conditions and 

following dengue virus ingestion (article 3). 

Our research has unveiled numerous novel discoveries. We have demonstrated that 

the recent outbreaks of DENV-1 in La Réunion Island and the Seychelles were initiated by the 

introduction of distinct DENV-1 genotypes originating from Asia. Additionally, the complete 

genome sequencing of DENV-1 identified fifteen non-synonymous mutations, warranting 

further investigation into their biological and functional significance. 

In the subsequent phase, we revealed two key findings. First, we demonstrated that 

extrinsic parameters, including mosquito generations, days post-infection, and the 

geographical areas of mosquito location, significantly influence vector competence towards 

DENV-1. Secondly, we elucidated the significant impact of the intrinsic biological parameter, 

Wolbachia, on maintaining the intestinal homeostasis of Aedes albopictus following a blood 

meal. Moreover, we observed that this protective effect persists after DENV-1 infection, as in 

the absence of Wolbachia, the virus-induced modulation of the apoptotic rate of midgut cell 

epithelium. This modulation may contribute to the maintenance of viral replication in the 

Aedes albopictus midgut. 

In the following section, we will delve into the three major concerns of the thesis, 

discussing further investigations and exploring new perspectives based on the results we have 

obtained. 

 

IV.A. DENV-1 epidemic strain harbors genomic characteristics that may contribute 

to its virulence and transmission potential 

In 2016, a significant epidemic was recorded in the Seychelles, then spreading to 

neighboring islands, including Madagascar and Mauritius, and locally impacting La Réunion 

(78–82). The emergence of this epidemic began in La Réunion at the end of 2017 when DENV-

2 circulated, followed by DENV-1 in early 2019, contributing to an epidemic crisis that 

persisted until the end of 2022 (77,171). The link between emergences in both Réunion and 

Seychelles was suggested, as the DENV-2 circulating strains were clustered together in the 

Cosmopolitan sub-lineage 1, which contains sequences from India and China (172). Both 

DENV-2 genomes share 99.8% identity and showed 93% identity with the genomic sequence 
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of the DENV-2 strain from Thailand, suggesting an Asiatic origin in the emergence of DENV-2 

in the Seychelles and La Réunion (79).  

Considering the shared origin of the emerged DENV-2 strains in both islands, along with their 

close geographical proximity, and the frequent exchanges and interactions between residents 

and travelers, there also appears to be a likely connection between the recent DENV-1 

outbreaks in both countries. Surprisingly, our initial study revealed a contrast: DENV-1 strains 

that emerged on each island in 2016 and earlier in 2019 belong to different genotypes. La 

Réunion strain belongs to genotype I, whereas the Seychelles strain belongs to genotype V, 

and both probably originated from different countries in Asia. This mirrors the spread of 

DENV-1 in 2003 and 2004 in La Réunion and Seychelles, and in the eastern of Madagascar two 

years later, when no regional links were revealed for those emergences (75,76). 

Interestingly, the observation of fifteen non-synonymous amino acid mutations in both 

structural and non-structural proteins across all La Réunion DENV-1 full genome sequences 

suggests discrete micro-evolutionary processes that may either be neutral or contribute to 

positive or negative selection. In all cases, their prevalence will be influenced by natural 

selection pressures within the environment, leading to either their disappearance or their 

persistence in a minority (337,338). These findings offer insights into the heightened 

transmission of DENV-1 by the vector and its infectious virulence among Reunionese patients 

during the last epidemics, particularly as some mutations occur within proteins associated 

with DENV virulence. The fifteen non-synonymous amino acid mutations occurred in 

structural and non-structural proteins (NS1, NS2B, NS3, NS4B, and NS5). The NS1 protein 

serves as a marker for rapid DENV diagnosis, plays a pivotal role in efficient virus production, 

is responsible for DENV-1 virulence, and is linked to disease severity. It modulates host 

immunity and causes hemorrhage and vascular leakage. NS1 mutations impact dengue clinical 

detection and are associated with higher viral production, secretion, and greater disease 

severity (341–343). Mutations were also detected in NS2B and NS5, both of which play a role 

in NS3 protease activity, a therapeutic target against Flaviviruses. Moreover, NS3 and NS5 

proteins play important roles in viral replication through interactions with viral or host 

proteins to regulate important pathways and enzymatic activities (344,345). It was 

demonstrated that mutations in NS2B can enhance ZIKA transmission potential and provide 

evasion from pre-existing DENV immunity (346). In addition, the link between NS5 mutations 

and DENV fatality was established, as they contributed to higher viral replication, and thermal 

stability  (347). However, affecting NS3 protein activity through NS2B and NS5 mutations can 

negatively impact DENV selection. Studies have shown that affecting NS3 functionality by 

substitution mutations of alanine at ultra-conserved residues abolishes NS3 protease activity, 

resulting in reduced viral protein production and RNA replication (345,348). 

These observations indicate that these mutations would affect the virus virulence and 

replication of the DENV-1 in the vector, the host, or both simultaneously. This possibly explains 

the increased virulence observed in patients infected during the last epidemic, as well as the 

high rate of transmission by the mosquitoes (147). Thus, it is crucial to further investigate the 

functionalities of these genomic mutations to have a clearer idea if these genetic variations 

can affect negatively or positively viral virulence. This could be achieved by utilizing viral 

infectious clones of the DENV-1 strains from La Réunion and the Seychelles, into which the 
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non-synonymous mutations can be engineered. The infectivity of the mutated strain could be 

assessed in several ways: i) in vitro using appropriate Aedes albopictus cell lines such as the 

Aag4 lineage, ii) in vivo within the vectors by studying the infectivity of the new viral strains in 

the mosquito midgut, and iii) transmission within the mosquito's body and dissemination 

through the salivary glands. 

IV.B. Extrinsic factors of different regions In La Réunion Island as potential 

contributors in shaping the vector competence of Aedes albopictus. 

We conducted a study to explore the Vector Competence (VC) of different populations 

of Aedes albopictus towards the DENV-1 serotype together with the DENV-2 serotype. VC is a 

key factor in determining the capacity of mosquitoes to transmit DENV and it is affected by 

numerous extrinsic factors. Here, we focused on three majors of them: geography zone of 

collection, mosquito generation, and days post-exposure (dpe) after the infected blood meal. 

Furthermore, given that the viral titers of the two DENV-2 strains were low and Aedes aegypti 

has been included mainly as a control, in the following paragraphs we restricted our discussion 

on VC towards the DENV-1 strain, which presented viral titer suitable for such study and was, 

fortunately, also used in all the work done in the thesis. 

We found that Aedes albopictus species exhibit a higher transmission efficiency for DENV-

1, as expected. Moreover, our study, conducted from 2020 to 2021, overlapped with the peak 

of DENV-1 circulation and the decline in DENV-2 cases (350). These observations are align with 

what was observed previously in different countries where DENV-1 circulated in areas 

dominated by Aedes albopictus (351,353,354). 

When investigating the influence of selected extrinsic factors, differences were observed. 

These factors may provide insights into the evolutionary processes shaping vector 

permissiveness to viral infection and virulence. 

The impact of dpe on VC parameters is significant, with higher values observed as more 

dpe passes and as mosquitoes age. This correlation is attributed to the dynamics of viral 

infection within the mosquito's body and the duration of the EIP. Furthermore, the aging 

process of mosquitoes can influence their immune response to viral infections (355), 

potentially enhancing vector competence and susceptibility. 

Consistently, few studies show that at both small and large scales, Aedes albopictus 

exhibits different levels of VC and is responsible for transmitting specific arboviruses within 

particular regions (356,357), also we showed that the geographic areas within La Réunion 

island have an impact on the VC. Despite the presence of Aedes aegypti in La Réunion in 

certain isolated areas, Aedes albopictus is considered the primary vector, responsible for the 

epidemic of DENV as well as other arboviruses such as CHIKV (77). These observations 

highlight the influence of regional factors such as climate, temperature, humidity, host blood 

source, etc. on the species VC for specific arboviruses. A notable impact of the collection area 

was observed on TE of Aedes albopictus mosquitoes, where the number of infected individuals 

per generation or DPE varied depending on the collection area. Previous studies show that 

this effect was consistent across Aedes albopictus mosquito populations from various regions 

within a territory such as China and temperate regions in Europe (352,358), as well as Aedes 
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aegypti populations tested from specific regions (197). The demographic history of Aedes 

albopictus populations reflects rapid and intricate patterns of historical lineage diversification 

and divergence, which have an impact on the populations' genetics and evolution (359). The 

genetic differences between populations affect their physiology and consequently, their 

competence (191,196,197). Thus, this competence may vary depending on species migration 

and colonization in regions with specific environmental conditions. 

Furthermore, a significant difference was detected between F0, F1, and F2 generations 

(F2 generations were more adapted to laboratory conditions) for IR, DE, and TE. F2 Aedes 

albopictus mosquitoes that are more adapted to laboratory conditions have higher vector 

competence. This suggests the probable implication of other ecological and natural factors in 

modulating the VC. Numerous distinctions between laboratory and field populations, such as 

genetic variability, midgut microbiota, and host blood source, could account for the 

discrepancies observed in VC outcomes (208,360,361). Moreover, in laboratory settings, 

modifications in traits due to adaptation can occur as a result of inbreeding and genetic drift. 

Laboratory environments often lack diversity and complexity, which may lead to reduced 

selective pressures associated with fluctuating conditions, thereby diminishing the selection 

for stress tolerance, fitness, and competence in the natural environment (362). 

Given the wide range of methodologies utilized in laboratories for VC analysis, it is 

important to consider the preparation of the viral titer utilized for experimental bloodmeal, 

and the recognition of the importance of research on natural populations compared to 

laboratory populations. Thus, for future investigations, it would be interesting to compare the 

replicative fitness of DENV-1 and DENV-2 strains from La Réunion in Aedes albopictus field 

populations using similar viral titers for both DENV serotypes. Additionally, it is essential to 

note that findings derived from studies conducted on laboratory or field populations cannot 

be universally applied or validated across other populations. This limitation arises from the 

potential divergence observed within the same species reared in different laboratories, as well 

as the high selection, genetic, and physiological alterations occurring over successive 

generations in natural populations (360). 

In addition, the adaptation of the virus and vector within a region, and the adaptation of 

mosquitoes to laboratory conditions, would affect the genetics of both the vector and the 

pathogen. Thus, it is crucial to conduct a comprehensive genetic analysis of mosquito 

determinants of VC to ascertain the independence of these populations and explore the actual 

molecular mechanisms controlling VC development. Several factors can be explored and 

explained by the genetic analysis. This includes variations in genetic diversity between 

laboratory and natural populations, the influence of specific environmental factors like 

climate change and temperature (210,363), and the role of vertebrate hosts and blood sources 

within specific geographic regions (208). These factors collectively influence the molecular 

regulation of several genes involved in the VC of the host and the infectivity of the virus (364).  

Besides, it is suggested that the MIB and MEB in mosquitoes are quantitative traits 

influenced by multiple genes that likely regulate VC and determine infection and transmission 

rates within populations. Strong MIBs and MEBs reduce the potential for transmission 

(115,365). Thus, it would be interesting to genetically analyze the effect of extrinsic factors on 
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the MIB and MEB efficiencies in limiting viral infection and dissemination in vectors. Also, the 

difference in midgut microbiota diversity between laboratory and field populations can be 

analyzed through metagenomics, to explore on the molecular level, its implication in the VC 

modulating within specific environments. This approach will open up several perspectives 

regarding the interactions between extrinsic and intrinsic factors and their effect on VC 

towards DENV or other arboviruses. 

We discovered that at the inter-population level of Aedes albopictus populations, 

Wolbachia density varies among populations within specific regions (article 2). Despite the 

studies demonstrating the role of Wolbachia in manipulating the VC (203,210,352), in 

Reunionese populations, Wolbachia does not seem to affect viral infectivity or any of the VC 

parameters. Consistent with our findings, Wolbachia does not significantly impact DENV 

replication nor vector susceptibility in the Aedes albopictus population in Malaysia (354). The 

variability in these observations, emphasizes the importance of dual transcriptomics and 

metagenomics in analyzing on the molecular level how environmental conditions across 

different regions affect the genetic expression of Wolbachia and its potential effect on VC. 

Our second study contributed to a more comprehensive analysis of the impact of various 

local extrinsic ecological factors and an intrinsic factor simultaneously on the VC of Aedes 

albopictus in Réunion Island. Through the differentiation of VC in different regions, we aim to 

develop more efficient methods for anticipating future outbreaks. This will enhance our ability 

to prevent the circulation of new epidemics in regions conducive to vector population growth. 

IV.C. Wolbachia influences the Aedes albopictus intestinal homeostasis 

Although the impact of Wolbachia on  Aedes albopictus VC was not significant in our 

second study, this bacterium is known to manipulate the defense system of the vector against 

pathogens through several biological mechanisms (202,210,324–326,332). However, there is 

a lack of understanding regarding its role in the vector midgut, which serves as the major entry 

point of pathogens. Therefore, in our third study, we investigated the potential of Wolbachia 

to sustain the intestinal homeostasis of Aedes albopictus under basal conditions, – during 

normal blood digestion –, and following DENV ingestion via blood feeding. 

Based on our findings, after a standard blood meal, removing Wolbachia from Aedes 

albopictus disrupts intestinal muscular structure and intestinal homeostasis by altering cells' 

nuclear phenotypes, leading to epithelial cell apoptosis. To compensate, intestinal stem cell 

division is triggered.  We sought to investigate whether this effect occurs during normal blood 

digestion or also after DENV ingestion via blood meal. In the presence of Wolbachia, DENV did 

not modulate epithelial apoptosis; instead, apoptotic and dividing cell rates remained stable. 

This was demonstrated on the molecular level in Aedes malayensis when DENV affected the 

regulation of only one apoptotic gene at 1 dpi (254). Conversely, without Wolbachia, DENV 

slightly decreased cellular apoptosis, possibly to support viral replication in intestinal cells, as 

seen in previous studies (268,273). Refractory mosquito strains with higher apoptosis rates 

limit DENV proliferation (271,272). Our findings highlight the effect of Wolbachia on intestinal 

homeostasis through ISC division, cellular apoptosis, and changes in nuclear and muscular 

structure. Moreover, the fundamental reliance and evolution organisms have developed on 
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the presence of Wolbachia and the important role that this bacterium plays in the biology and 

physiology of the Aedes albopictus was observed.  

To enhance understanding, Aedes aegypti used to be infected by Wolbachia  (366), yet 

throughout its evolution, the presence of this bacterium is no longer naturally observed in this 

species. Therefore, investigating intestinal homeostasis regulation and epithelial integrity in 

this species is crucial. Such analysis allows for comparison to determine whether this effect is 

specifically and solely governed by Wolbachia in Aedes albopictus. 

Despite the importance of understanding gene expression dynamics and their regulation 

in the mosquitoes’ midgut under normal conditions or following viral infections, only, a few 

studies have delved into the analysis of these processes at the molecular level. Previous 

studies have investigated the maintenance of Aedes aegypti midgut integrity post-blood meal 

by analyzing the overall transcriptome and proteome. After a normal blood meal in Aedes 

aegypti, they identified genes related to nutrient uptake, metabolism, cellular stress 

responses, innate immunity, and peritrophic matrix formation (367). Additionally, single-

nucleus RNA sequencing studies explored individual midgut and function, revealing changes 

in ISC/EB proportion and ISC differentiation into EB and ECs (224). Other studies focused on 

midgut transcriptomic responses to DENV infection in Aedes mosquitoes, with upregulated or 

downregulated genes primarily associated with vector immune response, expressed at various 

time points post-blood feeding in each study (252–254). Therefore, our study raises the 

question remains whether Wolbachia also affects the overall midgut transcriptome in Aedes 

albopictus following a normal and DENV-infected blood meal. 

The transcriptomic analysis of Wolbachia and the host elucidated the involvement of 

various molecular genes and mechanisms manipulated by Wolbachia. These may include 

epithelium regeneration processes directly affecting intestinal homeostasis, as well as 

immune responses and metabolic and digestion mechanisms that might indirectly impact 

intestinal homeostasis. Using RNAi or CRISPR/Cas9 (373, 374), we can validate the implication 

of these mechanisms by inhibiting the expression of candidate genes, thereby visualizing their 

direct or indirect implication in epithelium integrity and maintenance.  

Another important question to explore is: how does Wolbachia influence the cellular 

composition of the intestinal epithelium during blood digestion and after DENV ingestion? This 

analysis can be carried out by labeling specific intestinal epithelial cells (such as ECs, EEs, ISCs, 

and EBs) with fluorescent markers and observing changes in the overall cellular composition 

of the intestine after both normal and DENV-infected blood meals, with and without 

Wolbachia. In Drosophila, bacterial stress alters ISC division and differentiation, resulting in a 

shift in epithelial composition marked by an increase number of EEs and ECs (236,255). Given 

the similarities between Aedes and Drosophila in morphology, physiology and midgut cell 

types (224), insights from Drosophila observations may shed light on potential changes in 

Aedes albopictus midgut cellular composition during homeostasis perturbations. Such 

investigations would reveal Wolbachia's ability, at the cellular and molecular levels, to 

modulate midgut epithelial cell fate during regeneration under normal conditions or following 

stress induced by DENV infection. This understanding is crucial for effectively maintaining 

intestinal integrity and homeostasis. 
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As demonstrated in previous studies, Wolbachia can alter the bacterial composition of 

the midgut microbiota in both Aedes aegypti and Drosophila  (306,331). Hence, is the observed 

effect of Wolbachia on the midgut linked to changes in overall microbiota composition? To 

respond to this, two research approaches could be undertaken. Firstly, analyzing the bacterial 

metagenome of both Wolbachia-free and Wolbachia-infected populations to compare the 

impact of Wolbachia elimination on intestinal microbiota composition would clarify whether 

Wolbachia directly triggers the observed effect or indirectly affects the microbiota 

composition. Additionally, exploring intestinal homeostasis after reintroducing Wolbachia 

into Wolbachia-free Aedes albopictus females and stabilizing the strain for several generations 

would allow a comparison to determine if the presence of Wolbachia directly influences 

intestinal homeostasis.  

To generalize observations from our study, several experiments could be conducted. 

Firstly, previous studies have shown that chemical and bacterial stresses induce similar ISCs 

division responses in Aedes albopictus midguts (219,232). Hence, inducing such stress in 

populations with and without Wolbachia could reveal if the response is specific to viral stress 

or a common reaction to various damages. Second, given the global transmission of the four 

DENV serotypes by Aedes albopictus (189,351,352,354,368), studying the effect of Wolbachia 

on intestinal homeostasis following infection with each serotype would elucidate different 

interactions between Wolbachia and serotype, even why not the genotypes. Third, 

considering that rearing mosquitoes in laboratory settings for multiple generations affects 

microbiota variability (369,370), studying natural mosquito populations (F0) from various 

regions would provide deeper insights into arbovirus dynamics in natural conditions across 

multiple mosquito vector populations (185,289,300,371,372). This emphasizes the 

importance of investigating mosquito microbiota, particularly midgut bacteria, in modulating 

vector competence. 

Our study lays the groundwork for future inquiries into the maintenance of intestinal 

homeostasis, epithelial integrity, and stem cell regeneration within the midgut of the Aedes 

mosquitoes. Furthermore, our research helps fill knowledge gaps regarding the endosymbiotic 

relationship between Wolbachia and one of the most significant arbovirus vectors, Aedes 

albopictus. Additionally, our findings will assist in developing innovative biological control 

methods to limit arbovirus invasion of the vector's midgut and subsequent transmission to 

humans. 
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