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Avant-Propos 

Cette thèse s’inscrit dans le cadre d’une collaboration internationale entre Lebanese 

German University (LGU), American University of Science and Technology (AUST) et 

l’Université de Bordeaux (UBx), au sein de l'équipe CRONE du Groupe Automatique du 

laboratoire IMS, UMR 5218 du CNRS.  

Cette collaboration a débuté en 2008 (figure 1) avec Clovis FRANCIS, aujourd’hui 

Professeur à l’Université Libanaise et membre du Conseil National de la Recherche 

Scientifique du Liban (CNRS-L). En 13 ans, cette collaboration internationale a donné lieu à 4 

thèses soutenues, 1 thèse en cours (objet de ce mémoire), une prochaine thèse (septembre 

2021), une HDR en cours de préparation, 13 publications dans des Revues Internationales avec 

Comité de Lecture (RICL), 33 communications dans des Conférences Internationales avec 

Comité de Lecture (CICL), 5 chapitres d’ouvrages, 2 ouvrages de synthèse, …  

 

Figure 1 – Chronogramme illustrant 13 ans de collaboration avec le Liban 

 

Les travaux présentés dans ce mémoire de thèse concernent les Systèmes à Dérivées Non 

Entières (SDNE) dans le domaine de l’acoustique avec l’étude des pertes viscothermiques dans 

un instrument à vent. 

Contrairement aux travaux menés, par exemple, à l’IRCAM (Institut de Recherche et 

Coordination Acoustique/Musique) ou dans des laboratoires d’acoustique, les travaux 

présentés dans ce mémoire de thèse n’abordent pas le sujet sous l’angle de l’acoustique 

musicale, mais sous l’angle de l’Automatique, c’est-à-dire l’étude de la dynamique des 

systèmes complexes. La flûte à bec ne constitue qu’un support dont le domaine d’étude défini 

dans ce mémoire est beaucoup plus restreint que celui envisageable avec un instrument à vent. 
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Organisation et Contenu de la Thèse 

Le mémoire de thèse comporte quatre chapitres dont la logique d’enchainement est 

illustrée à l’aide de la Figure 2.  
 

 
Figure 2 – Illustration de la progression et de la logique d’enchainement des chapitres du mémoire de 

thèse 

Ainsi, le chapitre 1, intitulé: « Etude des pertes viscothermiques au sein du résonateur 

d’un instrument à vent », est consacré, dans un premier temps, à la modélisation du résonateur 

seul en tant que tube acoustique (tous les trous permettant de faire varier la longueur apparente 

sont supposés fermés), modélisation qui aboutit à l’impédance générale Y(x,s,L) 

(débit/pression) du résonateur en fonction, notamment, de la longueur L et de la position x 

comprise entre 0 (entrée du résonateur) et L (sortie du résonateur). Ensuite, une approche 

système (au sens de l’Automatique) permet de décomposer l’impédance d’entrée Yin(s,L) = 

Y(0,s,L) en sous-systèmes, facilitant ainsi l’analyse notamment lors du passage d’un système 

semi-infini à un système fini. De plus, l’introduction d’une extension de l’expression 

fractionnaire utilisée pour la prise en compte des pertes viscothermiques, où l’ordre m est 

habituellement égal à 0.5, permet de faire une première analyse de l’influence de l’ordre m, 

compris en 0 (système conservatif) et 1, sur la réponse fréquentielle de l’impédance du 

résonateur. Enfin, ce chapitre se termine par la présentation d’une méthode permettant de 

passer de la forme fractionnaire de l’impédance à ses formes rationnelles cascade et parallèle 

indispensables pour la simulation temporelle. 

Le chapitre 2, intitulé: « Etude du couplage entre l’excitateur non linéaire et le 

résonateur d’un instrument à vent », est dédié, dans le cas habituel où l’ordre m est égal à 0.5, 

à l’étude du couplage entre l’excitateur non linéaire et le résonateur. Sur la base d’une synthèse 

bibliographique, un modèle non linéaire fréquemment utilisé dans la littérature est développé. 

Ensuite, après avoir insisté sur le mauvais conditionnement numérique d’un tel modèle, une 

solution est proposée permettant la mise en oeuvre d’un simulateur numérique programmé sous 

MatLab/Simulink. Pour un domaine d’étude défini par une pression constante à l’entrée du bec 

de flûte bornée par une valeur minimale de 400 Pa et une valeur maximale de 1000 Pa, une 

analyse détaillée des réponses temporelles simulées met en évidence la présence de trois phases 

durant lesquelles les variations 

Qsv(t)

Pm(t)

Bouche artificielle

Chapitre 1 = Résonateur

Chapitre 2 = Excitateur + Résonateur

Chapitre 3 = Bouche artificielle + Bec

Chapitre 4 = Bouche artificielle + Bec + Excitateur + Résonateur

Pression

Débit délivré

par la servovalve

Pression mesurée
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- de la pression à l’entrée du résonateur,  

- de la vitesse acoustique  

- et du déplacement latéral du jet d’air  

restent petites autour de zéro. Ce constat permet le développement de manière légitime et 

réaliste de deux modèles linéarisés, l’un pour l’analyse de la phase de démarrage de la 

simulation, l’autre pour celle de la phase des auto-oscillations (régime périodique stationnaire), 

facilitant ainsi la compréhension des phénomènes mis en jeu. 

Le chapitre 3, intitulé: « Conception et implémentation d’une bouche artificielle pour 

un instrument à vent », se focalise sur la démarche de conception et sur l’implémentation 

d’une bouche artificielle nécessaire pour contrôler la pression à l’entrée du bec de flûte. Durant 

la phase de conception, un premier simulateur a été développé sur la base d’une synthèse 

bibliographique concernant les bouches artificielles utilisées en acoustique musicale. Ce 

premier simulateur a permis de bien comprendre le fonctionnement d’un tel système, facilitant 

ainsi le choix et le dimensionnement des composants de la boucle de régulation (servovalve de 

débit, capteurs de débit et de pression, volume de la capacité pneumatique,…). A l’issue de la 

réalisation de la bouche artificielle, un travail de modélisation de ce dispositif expérimental a 

conduit à un deuxième simulateur. Ce dernier a fait l’objet d’un recalage à partir de 

comparaisons entre des résultats expérimentaux et de simulation. Ainsi, pour une flûte à bec 

bien réelle (en plastique dont la longueur du résonateur L = 30 cm, son rayon moyen r = 5 mm, 

l’ordre fractionnaire associé aux pertes viscothermiques m = 0.5, avec une fenêtre de 

l’excitateur dont les dimensions sont 1 cm x 0.4 cm, une hauteur du canal du bec h = 1 mm,…), 

le simulateur reproduit avec une bonne précision les conditions d’étude spécifiées au chapitre 

2. Ce comportement bien réel (reproduit en simulation) est considéré au chapitre 4 comme le 

comportement nominal de référence. 

Enfin, l’objectif du chapitre 4, intitulé: « Analyse de l’influence de l’ordre fractionnaire 

sur le régime périodique stationnaire », est d’étudier l’influence de l’ordre m compris entre 0 

et 1, autour de sa valeur nominale m0 = 0.5, sur le régime périodique stationnaire. Ce chapitre 

commence par présenter l’organisation du simulateur global développé sous MatLab/Simulink 

à partir des travaux présentés dans les trois premiers chapitres. Ensuite, une analyse dans le 

domaine fréquentiel de l’influence de l’ordre m est développée, d’abord dans le cas de 

l’impédance du résonateur établie au chapitre 1, puis dans le cas de la fonction de transfert en 

boucle ouverte définie au chapitre 2. Cette analyse se poursuit dans le domaine temporel avec 

les réponses issues du simulateur global en reprenant les scénarios des deux exemples du 

chapitre 2. Ainsi, à partir de l’extension du modèle fractionnaire proposée au chapitre 1, il est 

possible avec un seul paramètre de haut niveau, l’ordre m en l’occurrence, de faire varier 

facilement les pertes viscothermiques, alors que d’un point de vue expérimental, il faudrait 

fabriquer et tester un nombre important de résonateurs avec des dimensions, des rugosités et 

des matériaux différents. 

Xavier MOREAU 

Directeur de thèse 
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Motivation 

 

Music has always been the source of creativity and imagination for most thinkers and a 

relaxing tool for stress and depression. The greatest minds and thinkers like Albert Einstein, 

Mozart, and Frank Lloyd Wright all had something in common in that they were constantly 

exploring their imagination and creativity through music to make discoveries, innovations and 

many other different fields. Music and sound synthesis are two faces for the same coin. Sound 

synthesis started with the wish to generate any kind of music (or sound) using mathematical 

techniques, and by research improvement, it became possible to generate or transform any 

sound conceivable. The available sound synthesis techniques are capable of a perfect 

reproduction of sound but not actually a perfect generation of a sound; this is why model-based 

digital instruments should be available. The main advantage behind model-based synthesis is 

the more control over the physical variables (which influence the sound reproduction) it gives 

for the player.  

Thus, this work aims to model and control a flute wind musical instrument for better 

numerical performance. To have a completely automated system, the mouth and the flute 

musical instrument parts will be modeled and implemented. So, based on the delivered air 

pressure by the artificial mouth, a certain frequency will be generated from the instrument.   

To achieve the preset goal, the physical implementation of the artificial mouth is first 

established. Then, a study for every part of the flute will be conducted, starting by the resonator 

and then the exciter. This resonator is of a particular importance as it has been shown that the 

air flow within its boundaries is subject to visco-thermal losses that are being modeled by a 

fractional transfer function of order 0.5.  

The last stage of this work will be to confront the already presented theoretical study with 

the experimental measurements and the implementation of a system that most closely 

resembles the real system. Note that this Ph.D. thesis will be the first block in a much larger 

project that will aim to reach the final objective already listed. Thus, the outcome of this work 

is not to have a complete autonomous system as a first step but to be able to model this 

complicated system and to generate sound while controlling the mouth pressure and/or flow. 
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List of Abbreviations 

CRONE    Command Robuste d ‘Order Non Entier 

PID    Proportional Integrator Derivative 

v    Speed of light 

p    Accoustic Pressure 

U    Particle Velocity 

k    wave number 

Jm    Bessel Function 

ζ    Damping Factor
 

𝛾     Normalized elastic material constant. 

dB    Decibel 

w    Angular Frequency 

ωr,m    Transitional Frequency 

h(t)    Impulse response 

Qv(t)   Air Flow 

𝑄    Resonance Factor 

  Visco-thermal losses 

  Specific Heat Ratio 

S  Cross Section 

s  Laplace variable 

(j)  Complex Wave Number 

tanh  Tangent hyperbolic function 

L  Length 

r  Radius 

Y  Acoustic Admittance 

Z  Acoustic Impedance 

H  Transfer Function 

i  Amplification Factor 

e
vC   Convection speed 
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General Overview 

1 – Introduction  

The flute wind instrument family encompasses an extensive range of instrument types, 

each exhibiting notable differences in terms of sound production, instrument geometry, 

materials used, and their respective musical contexts (Terrien, 2015). Notched flutes such as 

the Latin American quena and the Japanese shakuhachi, along with pan flutes and globular 

flutes like the ocarina, are part of this diverse family. Additionally, transverse flutes, recorders, 

and mouth organ pipes contribute to the rich variety of instruments in this category. 

One notable aspect highlighting the diversity within this family is the varying influence 

of the instrument itself and the musician on the instrument's geometry, and subsequently, sound 

production. Instruments like the recorder or mouth organ pipes have fixed geometries, 

determined by the instrument builder during construction. However, in flute types such as the 

quena or transverse flutes, the musician has the freedom to adapt geometric parameters while 

playing, as the channel is formed by the musician's lips. This flexibility grants the player more 

autonomy but poses challenges in controlling the instrument effectively. 

Despite the multitude of instrument types within the flute family, they share a common 

mechanism for producing sound, involving the oscillation of an air jet around a bevel. This 

mechanism forms the foundation for generating the characteristic sounds associated with flutes, 

regardless of the specific instrument's design or playing technique employed. A state of the art 

of the different wind musical instruments, the sound formation, the main components of the 

flute and the problem statement will be discussed in the following sections of this general 

overview.  

 

2 – Wind Musical Instrument 

In this section, the human voice will be presented as it is the main source for the 

generation of sound. The voice is one of the most colorful interfaces for musical expression. It 

is certainly the most personal of all instruments (each voice is unique) – and the only one 

capable of presenting both words and musical sound simultaneously. Voices are classified by 

their tone-color, register and range. One can identify the following groups (FactMonster, 2001): 

• soprano: highest female voice; 

• mezzo-soprano: rich female voice mixing soprano and alto colors; 

• contralto or "alto": lowest female voice; 

• countertenor: a very high male voice; 
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• tenor: high male voice; 

• baritone: rich male voice mixing tenor and bass colors; 

• bass: very low male voice; 

Hereafter, the different families of the wind musical instruments will be presented. For 

each family, the corresponding instruments will be shown along with their properties. 

2.1 – Woodwind Family 

The woodwind family as in Figure 3 is composed of wooden instruments that the player 

must blow into to create a musical sound. Most members of the modern woodwind family are 

"reed" instruments (a piece of wooden reed attached to its mouthpiece that adds character to 

the sound). The complete woodwind family became a standard part of the orchestra by the early 

1800’s. Common woodwind instruments include (FactMonster, 2001) : 

• the piccolo (very high) and various-sized flutes; 

• the oboe and the "English" Horn (a tenor oboe); 

• the bassoon and contrabassoon (very low bassoon); 

• various-sized clarinets; 

• various-sized saxophones; 

• various-sized recorders (ancestors to the modern flute family); 

The standard range categorization of this family is the flute (soprano), the oboe (alto), 

the clarinet (tenor) and the bassoon (bass). 

 

 
Figure 3 – Common Woodwind Instruments 
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2.2 – Brass Family 

The brass family in Figure 4 is composed from powerful metallic instruments that must 

be blown into by the player to produce a musical sound. The tone-color (timbre) of most brass 

instruments can be altered by the use of various types of mutes which are inserted into the large 

end of the instrument. Until the invention of the valve, brass instruments could only produce a 

limited number of pitches, which lessened their usefulness to composers. Instrument builders 

experimented with various valves that would avail more pitch varieties to these instruments. 

Many modern brass instruments have a system of three valves that can be combined in 

various combinations to produce different pitches. The modern "rotary" valve was invented in 

the early romantic period (c. 1830) – an invention that made the brass family more responsive 

and reliable. As a result, romantic composers made greater use of the brass family. The most 

common types of brass instruments include (FactMonster, 2001): 

• various-sized trumpets (use valves to change pitch); 

• various-sized trombones (use a slide instead of valves to change pitch); 

• the "French Horn" (use valves to change pitch); 

• the Tuba—a very low brass instrument (uses valves to change pitch); 

The standard range categorization of this family is the trumpet (soprano), the alto 

trombone (alto), the tenor trombone that is equivalent to the upper french horn (tenor), the bass 

trombone that is equivalent to the low french horn (bass). 

 
Figure 4 – Common Brass Instruments 
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2.3 – Flute Musical Instrument 

The initial stages of modeling and understanding the functioning of flute-like instruments 

can be traced back to separate works conducted by Mersenne and Bernoulli (De la Cuadra, 

2005). Their studies focused on analyzing the resonance frequencies of the instrument's bore. 

This approach remains relevant today and provides valuable insights into various construction 

properties, including the position and diameter of the resonator, height of the chimney, tone 

hole placements, and shape corrections. Please refer to Figure 5 for further details (Mersenne, 

1636) (Bernoulli, 1762) (Terrien, 2015). 

 
 

Figure 5 – Overall Flute System (see (Terrien, 2015)) 

Subsequent to the initial resonance frequency analysis, the modeling process advances to 

encompass the description of source mechanisms. This stage was pioneered by Helmholtz and 

Rayleigh. Helmholtz conceptualized the sources as flow sources or monopoles, while Rayleigh 

argued that due to their action at the open end of the bore, they should be characterized as 

dipoles (Rayleigh, 1984). 

Interestingly, in the vicinity of the open end of the resonator, significant velocity 

fluctuations occur while the pressure fluctuations remain small. This observation led Helmholtz 

to revise his initial perspective, as reflected in the modified comments in the second version of 

his book. Surprisingly, a similar debate resurfaced in the 1960s between Elder Coltman and 

Fletcher, raising the same discussion. However, Coltman's pragmatic and astute approach, 

evident in his works, ultimately brought a definitive resolution to the debate (Coltman J. , 1968) 

(Elder, 1973). 

In the early 1960s, Powell's research on the edge-tone phenomenon introduced a feedback 

loop model. The model considered various components as separate blocks that were 

subsequently interconnected. By analyzing the loop gain, the necessary phase and magnitude 

for sustained oscillations were determined, along with predictions for the conditions and 

frequency of oscillation in a linear model. However, for accurately predicting the amplitude of 
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the oscillations, a nonlinear model is required. Powell's approach has since served as inspiration 

for numerous descriptions based on loop systems in the field (Fletcher, 1979). 

A significant phase in the advancement of flute models occurred with the research 

conducted by Mc Intyre et al.. They introduced a time simulation approach using simplified 

equations derived from physical models. Their models appeared elegant and promising, leading 

many researchers to believe that the essence of flute functioning had been captured within a 

physical model. However, it was eventually discovered that the model was more suitable for 

the violin and clarinet, as the published values did not result in oscillation for the flute. Fine-

tuning the parameters and incorporating nonphysical elements, such as a DC blocking filter 

and white noise input, enabled the model to produce sound. Nonetheless, it became challenging 

to establish a direct relationship between the model's quantities and physical variables 

(McIntyre, 1983).  

A more comprehensive approach, considering fluid mechanics and aero-acoustics, has 

been pursued by researchers such as Howe for the flute and Crighton and Elder for edge-tones. 

Simultaneously, a group based in Eindhoven, Netherlands, adopted an intermediate approach 

that drew inspiration from various researchers in the field. Their methodology strikes a balance 

between rigorous formulations and simplified descriptions, resulting in high-quality sound 

synthesis through models that incorporate lumped elements while incorporating a sufficient 

level of aero-acoustic considerations (Elder, 1973) (Howe, 1975). 

 Modern flute musical instruments are usually depicted from old versions of this instrument 

with some additions on the shape, size, and other effects. Although the normal old versions of 

flutes are more likely preferred by musicians, modern flutes are being used numerically with 

the help of embedded systems and computers adding new features to the way of playing and to 

the quality of sound (Heller, 2017). However, what is no doubt with is that playing a typical 

old musical flute naturally will produce the perfect sound associated with feelings and that 

what numerical flutes are not able to do so far. 

The flute, as shown in the Figure 6, is mainly composed from three main parts: the exciter 

which contains the mouth piece and the whistle (exciter), the resonator that contains the holes, 

and the horn which act as a reflector of the output waves.  

 

Figure 6 – Traditional flute musical instrument 
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Figure 7 shows a block diagram representation of this musical instrument. The system is 

composed from the musician’s ear that serves as a sensor to form the loop and to act 

accordingly on the flow delivered by its mouth towards the flute exciter. The radiation at the 

output of this system is generated at the flute horn level. 

 

Figure 7 – Artificial loop based on the ear of the musician 

Flutes are generally made from plastic, steel, or bamboo. Each type of material has a 

different effect on the quality of sound produced. This is due to the different types of materials 

used and to the visco-thermal effect of each material. 

There are several types of flutes some are named according to the culture it is being used 

in (Chinese, Western, Indian, Irish, etc.), and others according to its shape and style (modern 

D, classical C, modern B, classical D, etc.). Every type has its own number of holes and their 

sizes and its own different shape and thus a different number of notes. For example, classical 

C flute has 6 holes and due to its shape, it can offer 8 notes. As for the classical D flute, it has 

the same number of holes (6 holes) but with only 6 notes because the D foot is smaller than the 

C foot; same number of holes, but different shape and size, give different number of notes. 

Classical flared flute has a larger number of holes (8 holes) and thus can offer more notes (23 

notes) whereas baroque flute has 7 holes (less than classical flared flute) but yet can provide 

more notes due to its shape and size (32 notes to be precise). Figure 8 shows an illustration of 

these three types of flutes. 

 

Figure 8 – Types of flutes: (a) Class D, (b) Classical Flared and (c) Baroque 
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3 – Sound Formation in Flutes 

When a musician blows into the instrument, the pressure inside their mouth creates a flow 

within the channel (Terrien, 2015). This channel can either be a part of the instrument itself (as 

seen in Figure 5 – case of recorders) or formed by the musician's lips, as in the case of flutes. 

As the flow exits the channel, the viscosity of the air causes it to detach from the boundaries of 

the flute, resulting in the formation of an air jet. This jet is inherently unstable, and any 

disturbances it encounters will be amplified over time.  

In the case of flutes, the jet generated at the exit of the channel remains confined within 

the window region until it encounters the bevel. The interaction between the jet and the bevel 

leads to a hydrodynamic feedback effect, which is a key mechanism responsible for the 

production of distinct bevel sounds. This phenomenon plays a significant role in shaping the 

acoustic characteristics of the flute (Powell, 1961) (Coltman J. , 1976). While the phenomenon 

of hydrodynamic feedback may become negligible once the steady state of the instrument is 

reached, it still plays a crucial role in the initial oscillation of the jet. The interaction between 

the jet and the bevel introduces the first disturbances to the jet, initiating its oscillation. As a 

result of the inherent instability of the air jet, these disturbances naturally amplify along the 

jet's path from the channel exit to the bevel, leading to oscillations on both sides of the bevel. 

This mechanism contributes to the sustained oscillation of the jet and influences the overall 

sound production of the flute (Verge M. , 1995)  

As a result of the jet oscillation, flow alternately enters and exits the instrument, serving 

as the aero-acoustic source of pressure that supplies energy to the resonator (Chaigne & 

Kergomard, 2008). This pressure variation generates acoustic waves within the resonator, 

which propagate and primarily reflect at the first open hole. The superposition of outward and 

reflected waves forms a standing wave system within the resonator, disrupting the jet back to 

the level of the channel exit. This closure of the self-oscillation loop sustains the oscillation of 

the jet and, consequently, the sound production mechanism. The initial disturbance within the 

jet, amplified and maintained from the channel exit to the bevel, is instrumental in upholding 

the oscillatory behavior of the jet and the overall process of sound production. 

In contrast to percussion, struck or plucked string instruments, the instruments within the 

flute family, along with reed instruments, bowed strings, and brass instruments, belong to the 

category of self-oscillating instruments. This classification arises from their ability to generate 

oscillations, specifically acoustic waves, from a continuous energy source supplied by the 

musician, or from slowly varying acoustic variables. The self-oscillation mechanism is 

inherently tied to the non-linear nature of these instruments. In musical acoustics, a common 

approach involves representing the instrument, as depicted in Figure 9, as a nonlinear excitation 

system coupled with a passive linear resonant system (McIntyre, 1983) (Rayleigh, 1984). 
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Figure 9 – Block diagram of the mechanism of sound production in auto-oscillatory musical instruments 

(Terrien, 2015) 

 

 

3.1 – Acoustic Resonator of Wind Instruments 

The resonator depicted in Figure 9 represents a passive linear resonator, extensively 

studied for centuries (Terrien, 2015). Due to its linear nature, it is relatively easier to describe, 

although some approximations may be required. In wind instruments like the flute, the 

resonator comprises the air column within the instrument's body, delimited by the instrument's 

hole or opening, which defines the geometric shape of the resonator. 

The geometric characteristics of the air column, including conditions at the ends, size 

and position of note holes, and variations in bore section, play a significant role in governing 

the propagation of acoustic waves within the resonator. These characteristics directly influence 

the resonator's response to the provided excitation. 

As shown in Figure 5, which provides an overview of the key components of a recorder, 

a substantial portion of flute family instruments possess two open ends, distinguishing them 

from most other wind instruments. 

 

3.2 – Flute Exciter  

While the propagation phenomena within the resonator continue to raise numerous 

questions, the characteristics of the exciter and its interaction with the resonator, which serves 

as its energy source, present an even greater complexity due to their non-linear nature. 

Flutes possess a distinctive feature in terms of the exciter, as it involves the vibration of 

a solid body, unlike other wind instruments where reed blades or the instrumentalist's lips are 

involved. In the case of flutes, the excitation mechanism arises from the oscillation of an 

inherently unstable air jet around a bevel, as depicted in Figure 5. 



22 | P a g e  
 

 

In flutes, the self-oscillation mechanism relies on the synchronization between the 

oscillating jet and the acoustic waves. Similar to how one must continuously impart energy to 

a swing to maintain its oscillations, the jet-bevel system must excite the resonator periodically 

or at multiples of this periodicity within the sound field. This synchronization ensures the 

sustained oscillation of the jet and the generation of the desired sound. 

 

3.3 – Closed-loop system 

The generic modeling of self-oscillating instruments, represented by the looped system 

in Figure 9 (Terrien, 2015), can have specific applications tailored to the instruments within 

the flute family. Figure 10 illustrates a diagram highlighting the key physical phenomena 

incorporated in the state-of-the-art model for this particular family of instruments (Terrien, 

2015). 

This model takes into account the unique characteristics and mechanisms involved in 

flute instruments, encompassing the excitation of the resonator, propagation of acoustic waves, 

and the interaction between the jet and the bevel. By capturing these essential elements, the 

model provides a comprehensive representation of the flute family instruments' behavior and 

sound production. 

 

Figure 10 – Closed-Loop system of the self-oscillation mechanism of flute family instruments (Terrien, 

2015) 
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4 – Literature Review  

 The production of a musical note by an instrument involves an intricate interplay between 

the instrument itself and the musician playing it (Terrien, 2011). Achieving the desired sound 

requires the instrumentalist to continuously adjust and adapt various parameters available to 

them. However, from an experimental standpoint, it can be challenging to expect a musician to 

precisely control and set all of these parameters simultaneously. 

 In fact, the system as shown in Figure 10 depends on two main entities, the musician and 

the flute instrument. As the ear and the musical experience of the musician plays a major role 

in controlling the air flow blowing in the exciter of the flute, the objective of this work will be 

to model all the parts of the system and then find some physical equivalence in order to be able 

to get the required frequency output precisely based on a closed loop control system.  

Many researchers have been interested in the field of wind musical instruments (Mignot 

R. , 2009) (Lefebvre, 2011). They have studied this field from many perspectives. Some tried 

to model wind instruments mathematically as will be demonstrated in the coming discussions, 

others tried to control the blowing part, and few went deeply in discussing the visco-thermal 

losses and their effects on the musical output. 

The work of Mignot dealt with the physical modelling of cylindrical acoustic tubes for 

digital simulation in real-time. The main application is the sound synthesis of wind instruments, 

with a realistic model, a modular method and a low-cost digital implementation. The acoustic 

model of “Webster-Lokshin”, used in this work, is a unidimensional model which takes into 

account the “curvature” of the profile and the visco-thermal losses at the wall. With this 

acoustic model, a framework for simulation which is compatible with the “Waveguides” 

approach was obtained: a tube is then represented by a system with delays and closed loops, 

involving several sub-systems without internal delay (Mignot R. , 2009). Figure 11 shows a 

representation of the flute using the tools that Mignot has developed.  

Digital waveguide synthesis models are computational physical models for certain 

classes of musical instruments (string, winds, brasses, etc.) which are made up of delay lines, 

digital filters, and often nonlinear elements. Digital waveguide models typically share the 

following characteristics:  

• Sampled acoustic traveling waves; 

• Follow geometry and physical properties of a desired acoustic system; 

• Efficient for nearly lossless distributed wave media (strings, tubes, rods, membranes, 

plates, vocal tract); 

• Losses and dispersion are consolidated at sparse points along each waveguide (Smith, 

2006). 
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Figure 11 – Example of the musical wind instrument array 

 The structure shown in Figure 11 disregards the effects of sections (representing the 

coupling between two adjacent blocks), slopes at each extremity of the section, curvature and 

loss, and isolates wave propagators through the tube. Thus, it does not pretend to replace them, 

but allows to extend these models to a higher degree of refinement, considering the curvature 

and visco-thermal losses of the tube. Finally, the number of sections is imposed by the sampling 

frequency. 

 Another work presented a number of methods for the computational analysis of 

woodwind instruments which is the Transmission-Matrix Method (TMM) for the calculation 

of the input impedance. The latter is an approach based on the Finite Element Method (FEM) 

and it is applied to the determination of the transmission-matrix parameters of woodwind 

instrument tone holes, from which new formulas are developed that extend the range of validity 

of current theories. This approach is applied as well to tone holes on a conical bore, and, as a 

result, the tone hole transmission matrix parameters developed on a cylindrical bore are equally 

valid for use on a conical bore. A boundary condition for the approximation of the boundary 

layer losses for use with the FEM was developed, and it enables the simulation of complete 

woodwind instruments. The comparison of the simulations of instruments with many open or 

closed tone holes with calculations using the TMM reveal discrepancies that are most likely 

attributable to internal or external tone hole interactions. The maximal error is found to be 

smaller than 10 cents (Musical intervals are often expressed in cents, a unit of pitch based upon 

the equal tempered octave such that one tempered semitone is equal to 100 cents) (Lefebvre, 

2011). Figure 12 shows an example of the different musical notes with their corresponding 

frequencies and the active holes that produces them. 
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Figure 12 – Diagram of Keefe’s flute 

 

 Furthermore, initial investigations using an artificial mouth specifically designed for the 

recorder have revealed previously unknown phenomena associated with this instrument 

(Terrien, 2011). These discoveries have sparked numerous inquiries and opened up new 

avenues of exploration to better understand the recorder and its intricate mechanisms.  

 First phenomenon: In certain fingerings, it has been observed that sounds can be detected 

at lower feed pressures than those typically used, sometimes even below the threshold for 

oscillation of the intended note. These oscillation phenomena resemble the "Aeolian sounds" 

observed in specific organ pipes or cross-sections, which manifest at very low supply pressures. 

While these sounds are sometimes musically utilized during organ decay or cross-blending, 

their presence in recorders has only recently been brought to light, and their distinctions from 

the "conventional" oscillation systems are not yet well understood. Further investigation is 

needed to elucidate these differences. 

 Second phenomenon: Indeed, there appears to be a significant diversity of behaviors, 

particularly concerning changes in pitch, depending on the specific fingering employed in the 

recorder. For certain fingerings, a bifurcation towards a higher note can be observed. From this 

new note, a subsequent bifurcation towards the original note occurs, gradually diminishing in 

strength. When conducting similar experiments with alternative fingerings, such as the B flat 

fingering, a transition to a quasi-periodic system can be perceived audibly, resulting in a rolling 

note effect. These observations underscore the intricate and varied dynamics at play in recorder 

playing, which contribute to the instrument's rich tonal palette (Terrien S. , 2011). 

  Added to that, Matignon classified the wind instrument into three main blocks which are 

the cup, pipe, bell, and radiation as shown in Figure 13. This design was represented in the 

form of blocks of delay lines which allowed each block to be modelled as a separate waveguide 

element, thus allowed to a more advanced sound synthesis technique (Matignon D. , 2014). 
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Figure 13 – Trumpet-like instrument- Decomposition into elementary subsystems 

  

 The musical instruments of the brass family are intricate physical systems that involve 

various phenomena, including the mechanics of deformable solids (such as muscles and 

tissues), fluid dynamics (jet and turbulence), and acoustic propagation (Lopes, 2016). From a 

dynamic systems perspective, they can be characterized as self-oscillating, nonlinear, and 

chaotic systems. Mastering the control of these instruments requires extensive training and 

expertise from musicians. Due to their complexity, the modeling, analysis, simulation, and 

control of brass instruments are active research areas. One approach involves the use of an 

artificial mouth coupled to an acoustic system, as depicted in Figure 14, to conduct calibrated 

and reproducible experiments. At IRCAM (Institut de Recherche et Coordination 

Acoustique/Musique), the robotic design of an artificial mouth specifically designed for brass 

instruments has been initiated. This work aims to develop models and simulations for the mouth 

system (including the lips and the instrument), while also creating a robotic version for studying 

control strategies. The "Hamiltonian formulation with ports" is a suitable approach for 

modeling complex physical systems, as it ensures well-balanced energy transfer and preserves 

passivity. Thus, this work encompasses the fields of musical acoustics, robotics, and control, 

bringing together expertise from these disciplines (Lopes, 2016). 
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Figure 14 – Diagram of copper type instrument operation coupled to the musician (first resonance) 

 

 Current modeling of the flute family instruments allows a good prediction of their 

operation in transient and steady state. They allow to interpret a large part of the phenomena 

observed when the control parameters of the instrument vary slowly with respect to the time 

response of the instrument. The musician, however, constantly varies these parameters to 

articulate the musical discourse. During sudden spikes in particular, an instant variation in the 

supply pressure induce a gradual oscillation of the instrument. The birth of sound plays an 

important role in the perception of sound, the control of these sudden spikes is therefore an 

essential point in learning the concept of making flute instruments. The works presented focus 

on the study of sudden transients in flute instruments. The study is restricted to instruments 

whose jet geometry is fixed by the manufacturer. 

At the end of this section, we have to mention the recent work presenting a comprehensive 

study of visco-thermal effects in quasi-2D artificial structures which are designed to exhibit 

double-negative behavior using a digital waveguide approach. The building units consist of 

structured cylinders made of a rigid material having air cavities penetrating deeply into the 

waveguide. The reported experimental characterization of these types of metamaterials is 

unable to demonstrate any features confirming double-negative effects. Extensive numerical 

simulations based on the boundary-element method were treated, which has been improved 

and adapted to tackle visco-thermal losses in these metamaterial structures. These structures 

are very efficient in absorbing the energy of acoustic waves traveling through them. For 

frequencies within the first passband, the absorbed energy reaches values as high as 80% of the 

amount of absorbance being directly proportional to the reciprocal of the group velocity in the 

band. The visco-thermal losses, which are enhanced due to the extremely low value of the 

group velocity inside this narrow-band region, in addition to the possibility of reducing the 

relevance of losses by applying a scaling factor to the dimensions of the initial samples were 

treated. So, the study lead to the conclusion that final based metamaterial structures are not 

able to exhibit the predicted double-negative behavior because of the strong dissipation 
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associated with visco-thermal losses. A large amount of losses has also been reported in other 

rigid-based structures with embedded resonances, where the lack of a significant signal in the 

transmitted energy made them unfeasible for developing practical devices. These results may 

indicate that visco-thermal losses are relevant to any rigid-based double negative 

metamaterials. The rigid-based metamaterial structures could become interesting alternatives 

to conventional absorbers in particular situations, e.g., when treating low frequencies or when 

the excitation is narrow banded, such as damped and low-frequency resonances in room 

acoustics (Henríquez & Chocano, 2017). 
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Chapter 1- Study of Viscothermal Losses Within the 

Resonator of a Wind Musical Instrument 

1.1 – Introduction 

Historically, the first efficient and inexpensive simulations introduced for simple models 

(conservative plane waves) were based on signal processing tools: the so-called digital 

waveguide formalism (Tassart, 1999) (Helie T. , 2003) (Helie, Mignot, & Matignon, 2011) and 

more specifically, a factored form introduced by Kelly-Lochbaum (Matignon, Mignot, & Helie, 

2007). The initial idea rested on the factoring of the alembertian of the equation of plane waves 

into two transport operators who each govern decoupled “round trip” progressive waves, from 

which we could derive a form in efficient delay system for the simulation (Mignot R. , 2009) 

(Helie T. , 2006). 

Furthermore, 3D and 2D models with realistic boundary conditions are far too complex to 

be considered, especially in real-time sound synthesis. They can be effectively reduced to a 1D 

wave equation including a term that models the tube profile. It is about the equation of the 

pavilions also called model of Webster. A more elaborated version of this conservative model 

includes the effect of visco-thermal losses due to the boundary layers in the vicinity of the 

walls. This dissipative model, known as de Webster-Lokshin 1D (Lokshin & Rok, 1978) 

(Haddar, Hélie, & Matignon, 2003) (Haddar & Matignon, 2008), includes a term which 

involves a fractional derivation in time of order 3/2. This operator plays a crucial role from a 

perceptual point of view on sound realiazation (Vigué, Vergez, Lombard, & Cochelin, 2019). 

The objective of this chapter is, first, to establish a knowledge model from partial 

differential equations which define the Webster-Lokshin model of an acoustic tube of constant 

radius r. Thus, a conventional resolution in the operational field leads to the analytical 

expression of the acoustic impedance and admittance of the tube as a function of the position 

x, its length L and its radius r. This working methodology will be similar to the one used for 

the modelling of the diffusive phenomenon in a semi-infinite homogeneous tube already 

proposed in previous works (Assaf, 2015). Then, a system vision is proposed aiming to causally 

decompose the whole model into sub-models in order to facilitate the analysis in the frequency 

domain. In addition, the introduction of uncertainty at the fractional order level makes it 

possible to study its influence on visco-thermal losses. Finally, for the time domain simulation 

in Chapters 2 and 4, two rational forms composed of an integrator and N second-order cells, 

one in cascade and the other in parallel, are introduced in as a role model. The parametric 

values of the cascaded rational form are then determined using the Frequency Domain System 

Identification (FDSI) module of the CRONE Toolbox, with the frequency response of the 
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knowledge model as target. As for the parametric values of the parallel form, they are obtained 

by the decomposition of the cascade form into simple elements. 

1.2 – Modelling 

1.2.1 – System Definition 

Consider an acoustic tube of length L and constant radius r subjected to an acoustic flow 

(also called volume flow) Qv(t) with 0=x  where  Lx ;0  (Figure 1.1). 

 

Figure 1.1 – One-dimensional description of an acoustic tube of radius r = constant and of finite length L 

subjected to an acoustic flow Qv(t) with x = 0 

When an acoustic wave propagates in the air, this sets the particles of the fluid in motion 

which vibrate at a speed v(t) around their equilibrium position. The acoustic flow Qv(t) then 

measures the flow [in m3/s] of this speed through a surface and present it as a scalar quantity 

(Blanc, 2009) (Ducasse E. , 1990) (Ségoufin C. , 2000) (Ducasse E. , 2001) (Terrien., 2014). 

The acoustic impedance Zac (also called specific acoustic impedance, because it is an 

intensive quantity) of a medium is defined in steady state by the ratio between the acoustic 

pressure [in Pa] and the speed [in m/s] of the associated particle. When the medium is air, Zac 

is equal to the product between the density of air, ρa, and the speed of sound in air, ca, thus Zac 

= ρa ca. These two parameters depend also on the air temperature Ta. For more illustration, 

Table 1.1 gives the values of the speed of the sound ca, the density ρa and the characteristic 

acoustic impedance Zac as a function of the temperature Ta of the air. 

Table 1.1 – Values of the speed of sound ca, the density ρa and the characteristic acoustic impedance Zac as 

a function of the air temperature Ta 

T a  (°C) -10 -5 0 5 10 15 20 25 30

c a  (m/s) 325.4 328.5 331.5 334.5 337.5 340.5 343.4 346.3 349.2

r a  (kg/m
3
) 1.341 1.316 1.293 1.269 1.247 1.225 1.204 1.184 1.164

Z ac  (Pa s/m) 436.5 432.4 428.3 424.5 420.7 417 413.5 410 406.6
 

The model used in this work is that of Webster-Lokshin (Haddar, Hélie, & Matignon, 

2003). It is a model with mono-spatial dependence which characterizes the linear propagation 

of acoustic waves in tubes with axial symmetry. This model takes also into account visco-

thermal losses at the wall boundaries with the assumption of wide tubes (Mignot R. , 2009). 

0 L

x

x

r Qv(t)
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Thus, in an axisymmetric tube of constant section S = π r2, the acoustic pressure P(x,t,L) and 

the acoustic flow Qv(x,t,L) are governed by the equation of the pavilions, also called Webster-

Lokshin, and Euler equation, leading to system (1.1): 

( ) ( ) ( )  

( ) ( )





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LtxP

tc

r

v
a

aa

r



  ,  (1.1) 

where  is a parameter associated with visco-thermal losses. More precisely,  is given by the 

relation: 

 ( ) hv llK
r

K
1with, 0

0 −+==    ,   (1.2) 

where vl  and lh represent the characteristic lengths of viscous ( vl = 4 x 10-8 m) and thermal      

(lh = 6 x 10-8 m) effects,  being the ratio of specific heats. 

The phenomenon of visco-thermal losses is a dissipative effect at the wall of the tube, 

which is due to the viscosity of the air and to the thermal conduction (Mignot R. , 2009) 

(Boutin, Le Conte, Le Carrou , & Fabre, 2018). For the case of wind musical instruments 

resonators, the assumption of wide tubes is used. This hypothesis is expressed by the following 

relation: 

r ≫ max [ rv = (lv λ)0.5; rh = (lh λ)0.5],     (1.3) 

where λ = ca/f represents the wavelength (in m) and f the frequency (in Hz).  

Thus, for a speed of the sound ca and a frequency fmin corresponding to the lower limit of 

the frequency domain of study of the model, it is possible to determine the minimum value of 

the radius rmin of the acoustic tube below which the model is not valid. 

As an illustration where lv = 4 x 10-8 m, lh = 6 x 10-8 m and ca = 346.3 m/s (at a constant 

temperature Ta = 25°C), Figure 1.2 presents the curves of rv(f) = (lv ca/f)
0.5 (in red) and rh(f) = 

(lh ca/f)
0.5 (in blue) with respect to the frequency f. 

If we consider that the frequency domain of study of the Webster-Lokshin model is that of 

the frequencies audible by the human ear, frequencies ranging between 20 Hz (most serious 

frequency) and 20 000 Hz (most acute frequency), then fmin = 20 Hz. For this value of fmin, the 

model is valid for acoustic tube radius greater than 1 mm (in next section, entitled 1.2.3 - 

Frequency Response Analysis, r = 5 mm). 
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Figure 1.2 – Curves rv(f) = (lv ca/f)0.5 (in red) and rh(f) = (lh ca/f)0.5 (in blue) with respect to the frequency f 

 

1.2.2 Resolution in the Symbolic Domain 

Under the assumption of zero initial conditions, the Laplace transformation applied to the 

system (1.1) leads to: 
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with ( ) ( ) LtxPLsxP ,,TL,, =  and ( ) ( ) LtxQLsxQ vv ,,TL,, = , s being the Laplace variable 

and TL its transformation. 

Solving the Webster-Lokshin equation (Haddar, Hélie, & Matignon, 2003) gives the 

solution ( )LsxP ,,  in the general form: 

 ( )
( ) ( ) ( ) ( )sxsx

r

sB

r

sA
LsxP − += ee,,   , (1.5) 
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where A(s) and B(s) are rational functions of s which depend on the boundary conditions, and 

(j) = j k(ω), k(ω) being a standard complex wave number. (s) is given in the Laplace domain 

by (Mignot, Hélie, Matignon, & ., 2011): 

 𝛤(𝑠) =  √(
𝑠

𝑐𝑎
)

2

  +  2𝜀  (
𝑠

𝑐𝑎
)

3 2⁄

 , with 𝑅𝑒(𝛤(𝑠))   ≥   0  if  𝜀  ≥ 0  . (1.6) 

The expression of the solutions of ( )LsxQv ,,  is deduced in two ways: 

1- Using the Euler equation in the Laplace domain (second equation of the system (1.4)), 

that is: 

 ( ) ( )LsxP
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S
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a

v ,,
1

,,
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
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r
, (1.7) 

2- By introducing the general solution of ( )LsxP ,, in relation (1.7), that is: 
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Finally, the solution of ( ), ,vQ x s L is expressed in relation (1.9): 
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Taking into account the boundary conditions makes it possible to determine the two 

unknowns A(s) and B(s), and finally the impedance ( ) ( ) ( )LsxQLsxPLsxZ v ,,/,,,, =  of the 

finite medium of length L. 

As an example, consider a zero impedance at x = L, that is Z (L, s, L) = 0, which leads to 

( ) 0,, =LsLP . According to relation (1.5), we obtain: 

 
( ) ( ) ( ) ( ) 0ee =+ − sLsL

r

sB

r

sA
  , (1.10) 

from which we deduce that 

 ( ) ( ) ( )sLsAsB −= 2e   . (1.11) 

Then, replacing B(s) by its expression (1.11) in the relation (1.5) of ( )LsxP ,, , it comes: 

 ( )
( ) ( ) ( ) ( )( )sxLsx

r

sA
LsxP − −= 2e1e,,   . (1.12) 

In the same way, by replacing B(s) by its expression (1.10) in the relation (1.8) of 

( )LsxQv ,, , we obtain: 
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Finally, the impedance ( ) ( ) ( )LsxQLsxPLsxZ v ,,/,,,, =  is given by the relationship of 

relations (1.11) and (1.12), that is: 
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which gives after simplification: 
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knowing that tanh(y) = - (1 - e2y)/(1 + e2y), tanh(.) being the tangent hyperbolic function, 

( )
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( ) ( )( )sxL
s

s

S
LsxZ a −


= tanh,,

r
  . (1.16) 

From the perspective of a system approach, the function (s) defined by the relation (1.5) 

is rewritten by putting the term s/ca into factor, that is: 
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or again, in canonical form, 
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where ωr,m is a transitional frequency (in rad/s). Note that in the theoretical case where the 

system is conservative, that is to say ɛ = 0, the function Г(s) (relation (1.17)) is reduced to Г(s) 

= s/ca. By replacing Г(s) of relation (1.18) in relation (1.14), ( )LsxZ ,,  can be expressed as 

follows: 
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or again, by introducing the characteristic acoustic impedance Zac = ra ca and the transitional 

frequency ωLx = ca/(L-x) (in rad/s), 
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Thus, from the analytical expression of the impedance Z(x,s,L) (1.20), knowing the flow 

( )LsxQv ,,  at any point x of the acoustic tube of length L makes it possible to deduce the pressure

( )LsxP ,,  (Hélie, Gandolfi, & Hezard, 2014). 

 Remarks 

At x = L, 1/Lx = 0 hence, knowing that tanh(0) = 0, we verify that ( ) 0,, =LsLZ . 

At x = 0, the input impedance ( ) ( )LsZLsZ in ,,0, = of the finite medium of length L is given by: 
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Always at x = 0, but for a semi-infinite medium ( →L ), knowing that 1)tanh(lim =
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y
y

 the 

input impedance ( ) ( )= ,,0, sZsZin becomes: 
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Finally, in the theoretical case of a purely conservative system (ɛ = 0) the acoustic impedance 

Z(x, s, L), noted in this case Z0(x, s, L), of a finite medium is reduced to 
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and that of a semi-infinite medium, denoted Z0(x,s,  ), at 
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  . (1.24) 
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Note that the conservative case, although purely theoretical, allows by comparison to better 

observe the effect of visco-thermal losses.  

To conclude this paragraph concerning the resolution in the symbolic domain, the study 

of asymptotic behaviors of Z(x,s,L), that is 
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and 

 ( )lim , , ac

s

Z
Z x s L cst

S→
→ =   , (1.26) 

highlights that Z(x,s,L) tends towards a behavior of the following types: 

- fractional derivative of order m+1, i.e. 1.5 with m = 0.5, when s tends to zero; 

- proportional, whose gain value is fixed by Zac/S, when s tends to infinity. 

 

1.2.3 - Frequency Response Analysis 

In stationary harmonic system, the frequency response Z(x,jω,L) is given by: 
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where the transitional frequencies r,m and L,x have the following expressions: 
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  . (1.28) 

Thus, showing that r,m decreases when the radius r increases and that, on the contrary, 

L,x increases when the position x considered moves away from the origin and approaches the 

end of the acoustic tube, L. 

For illustration, and in order to plot the frequency response Z(x,jω,L) in stationary 

harmonic system, let us consider an acoustic tube whose nominal dimensions are as follows: 

- radius r = 5 x 10-3 m (value perfectly in accordance with the domain of validity of 

the Webster-Lokshin model); 
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- length L = 0.3 m;   

- temperature of 25°C; 

- density ρa = 1.184 kg/m3 and a speed of sound in the air ca = 346.3 m/s (refer to 

Table 1.1).  

Note that these values of r and L representing the resonator of a recorder lead to the values 

of the transitional frequencies ωr,m = 4.92 rad/s (0.78 Hz) and ωL,x = 1154 rad/s (184 Hz) with 

x = 0, thus showing for such an instrument that ωr,m << ωL,x. 

Figure 1.3 presents in x = 0 the Bode diagrams of Z(0,j,L) on the range [20; 20,000] Hz 

of the audible frequencies by the human ear (Figure 1.3.a) and on the range [20; 4000] Hz of 

the frequencies attainable with a recorder (Figure 1.3.b). 

 Although an in-depth analysis of the frequency response of the model is developed in the 

following paragraph, the observation of these diagrams over the range of audible frequencies 

leads to a remark which concerns the existence of two very distinct behaviors: 

- The first on the frequency range [20; L,x /2 = ] Hz with a derivative behavior of 

order 1, highlighting the absence of the fractional behavior on this frequency range 

which exists for frequencies lower than r,m /2 =  Hz ; 

- The second on the frequency range [L,x /2 =   20 000] Hz with an alternation of 

resonances and anti-resonances. 
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(a) 

 
(b) 

Figure 1.3 – Bode Diagrams of Z(0,jω,L) on the range [20 ; 20 000] Hz of the frequencies audible by the 

human ear (a) and on the range [20 ; 4 000] Hz of frequencies attainable with a recorder (b) 
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1.3 - System Approach 

As a reminder, the resonator is only a part of our simulator which includes a non-linear 

exciter (Chapter 2), an artificial mouth (Chapter 3), and the simulation of the whole system 

(Chapter 4).  

From a causal point of view, the input of the resonator at x = 0 is defined by the pressure 

at the output of the nonlinear exciter. This is the reason why the system approach developed in 

this paragraph considers the admittance Y(x,s,L) = Z-1(x,s,L) and not the impedance Z(x,s,L). 

More specifically, it is the input admittance at x = 0, denoted Yin(s,L) = Y(0,s,L). Note that this 

consideration of the admittance Yin(jω,L) leads to an integrative behavior for frequencies lower 

than L,x (derivative for Z(x,s,L)), thus respecting integral causality, a fundamental notion in a 

system approach. 

In addition, the global admittance Y(x,s,L) is broken down into a cascade of local transfer 

functions of which all the parameters, as well as all the input and output variables will have a 

physical meaning. This decomposition then facilitates the frequency analysis of the Webster-

Lokshin model, thus reaching a reduced model to be implemented in the simulator. 

 

1.3.1 Decomposition of Admittance Y (x, s, L) into Subsystems 

The admittance Y(x,s,L) = Z-1(x,s,L) of an acoustic tube of length L at a point x between 0 

and L is therefore defined by the expression: 
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  , (1.29) 

relation that can be expressed as follows, 

 ( ) ( ) ( )LsxTsIHLsxY m ,,,, 0=   , (1.30) 

by taking 

 
aaac c

S

Z

S
H

r
==0   , (1.31) 
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and 
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For the following, the concept of acoustic admittance ( ) ( ) ( )LsxPLsxQLsxY v ,,/,,,, = is 

replaced by the concept of transfer function ( )LsxH ,, defined between the pressure source

( ) ( )sxPsPin ,0==  at the input of the tube at x = 0 and the flow ( )LsxQv ,,  at any point x of the 

tube of length L (middle finite) and of constant radius r, that is: 

 ( )
( )
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,,

,, 0== .    (1.35) 

At x = 0, for this finite medium, the admittance of input Yin(s,L) has the expression: 
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v
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 At x = 0, but for a semi-infinite medium ( →L ), the admittance of input Yin(s,  ) is 

reduced to: 

 ( ) ( )
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v
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
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Figure 1.4 presents the block diagrams associated with this system approach where the 

different transfer functions are defined by: 
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Note that the quantity ( )sPH in0
 is homogeneous at a flow, noted ( )sQin

, corresponding to 

the conversion of the pressure source applied at x=0 (Dirichlet condition) into an equivalent 

source of flow always applied at x=0 (Neumann condition) (Assaf, 2015). 

 

(a) 

 

 
(b) 

 

 
(c) 

Figure 1.4 – Block diagrams associated with the system approach: Whatever x is between 0 an L (a),  

at x=0 for the finite system L (b), at x=0 for a semi finite system (c) 

 

1.3.2 - Analysis in the Frequency Domain 

In stationary harmonic system, the relation (1.35) becomes: 
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and 
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The remaining part of this paragraph is dedicated to a detailed analysis of the frequency 

responses Im(j), F(x,jL) and T(x,jL) of each subsystem, then of the frequency response 

H(x,jL) of the overall system. 

 

1.3.2.1 - Analysis of Im(jω) 

The analysis of Im (jω) highlights two behaviors whose transition zone is fixed by the 

transitional frequency ωr,m, these behaviors are: 

- for ω << ωr,m, a fractional integrative behavior of order m/2 = 0.25,  
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- for ω >> ωr,m, unit proportional behavior, 
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 As an illustration, let us take the acoustic tube whose nominal dimensions are fixed by a 

radius r = 5 x 10-3 m and a length L = 0.3 m at a temperature of 25 °C, with ra = 1.184 kg/m3 

and ca = 346.3 m/s. In this case, and as a reminder, the numerical value of the transitional 

frequency r,m (relation (1.28)) and 4.92 rad/s (0.784 Hz).  
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 Figure 1.5 presents the Bode diagrams of the frequency response Im(j) over the range 

[10-4; 104] Hz. The two behaviors appear clearly: 

- for  << r,m, a gain diagram with a straight line with slope p = -m/2*20 dB/dec    = 

-5 dB/dec and a phase diagram with a horizontal line at -m/2*90° = -22.5°; 

- for  >> r,m, a gain diagram with a horizontal line at 0 dB and a phase diagram 

with a horizontal line at 0°. 

Figure 1.6 presents the same frequency response of Im(j) but only on the range [20; 

20,000] Hz of the frequencies audible by the human ear, and this with a gain diagram in linear-

linear scale and a phase diagram with the frequency axis also in linear scale. The observation 

of this answer makes it possible to affirm, for this representative example of a recorder, that 

the unit proportional behavior is dominant, that is: 
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Thus, for the area of study considered in this work, area defined by the range               [20; 

20,000] Hz of the audible frequencies, the transfer Im(s) can be reduced to the unit which leads 

to ( ) ( )sQsQ inv =,,0 , leading to a reduction in the block diagrams of Figure 1.4. 

The direct consequence is that in the case of a semi-infinite medium at x = 0 (Figure 1.4.c), 

the fractional integrative behavior has no influence on the range of audible frequencies. 

 

Figure 1.5 – Bode diagrams of Im (jω) on the range [10-4; 104] Hz 
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Figure 1.6 – Frequency response of Im(jω) on the range [20; 20,000] Hz of the audible frequencies 
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Knowing that in the case of a recorder ωr,m << ωL,x, the analysis of F(0,jω,L) again 
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is: 

- for ω << ωr,m, a fractional derivative behavior of order (1- m/2) = 0.75, 
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hence the module and the argument are defined as follows: 
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- for ωr << ω, a derivative behavior of order 1, 
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Figure 1.7 presents at x = 0 the Bode diagrams of the frequency response F(0,jω,L) on the 

range [10-4 ; 104] Hz. The two behaviors appear clearly: 

- for ω << ωr,m, a gain diagram with a straight line with p1 = (1-m/2)*20 dB/dec           = 

15 dB/dec and a phase diagram with a horizontal line at (1-m/2)*90° = 67.5° ; 

- for ω >> ωr,m, a gain diagram with a straight line with slope p2 = 20 dB/dec of this a 

phase diagram with a horizontal straight line at 90 °. 

 

Figure 1.7 – Bode diagrams of F(0, jω,L) on the range [10-4; 104] Hz 
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with, for ω << ωr,m, an orderly fractional integrative behavior - (1- m/2) = - 0.75, that is 
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and, for ωr,m << ω, a derivative behavior of order 1, that is 
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- for ωL,x << ω, a behavior composed of an alternation of anti-resonances and 

resonances, giving the expression of T(x,jω,L),  

 ( )


















































+















=

m

mr

m

mr

xL

xL

j

j
j

LjxT

,

,

,

,

1

tanh

1
,,,













  
. (1.52) 

Figure 1.8 shows the Bode diagrams of 1/F(0,jω,L) (in red) and of T(0,jω,L) (in blue) over 

the range [10-4 ; 104] Hz (Figure 1.8.a) and on the range [20; 4000] Hz of the audible and 

achievable frequencies with a recorder (Figure 1.8.b). 

Below the first cutoff frequency [10-4; ωLx/2π = 184] Hz, the responses of 1/F(0,jω,L) (in 

red) and T(0,jω,L) (in blue) overlap where: 

- a fractional integration behavior of order -0.75 over the range [10-4; ωr/2π = 0.784] Hz 

is observed; 

- an integrative behavior of order 1 over the range [ωr,m/2π = 0.784 ; ωLx/2π = 184] Hz is 

observed. 

Beyond 184 Hz, the frequency response T(0,jω,L) (in blue) clearly presents an alternation 

of anti-resonances and resonances introduced by the hyperbolic tangent function. 
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(a) 

 
(b) 

Figure 1.8 – Bode diagrams of 1/F(0,jω,L) (in red) and of T(0,jω,L)  (in blue) on the range [10-4; 104] Hz 

(a) and on the range [20; 4000] Hz of audible and achievable frequencies with a recorder (b) 
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1.3.2.4 - Analysis of H(x,jω,L)  

The analysis of H(x,jω,L) highlights three behaviors whose transition zones are fixed by 

the transitional frequencies ωr and ωLx: 

- for ω << ωr << ωLx, an orderly fractional integrative behavior - (1- m/2) = - 0.75, that 

is 
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- for ωr,m << ω << ωLx, a derivative behavior of order 1, that is: 
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- for ωLx << ω, a behavior composed of an alternation of anti-resonances and 

resonances, that is: 
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Figure 1.9 presents at x = 0 (ωLx/2π = 184 Hz), in x = L/2 (ωLx/2π = 368 Hz) and at x = 3L/4 

(ωLx/2π = 735 Hz) the Bode diagrams of H(0,jω,L) (in black), of H(L/2,jω,L) (in blue) and of 

H(3L/4,jω,L) (in red) on the range [20; 4000] Hz of the audible and achievable frequencies 

with a recorder. 

Over the range [20; ωLx/2π] Hz, the three responses of H(x,jω,L) present an integration 

behavior of order 1. The fractional integration behavior of order -0.75 does not appear over this 

range as it is present within a much lower frequency (0.784 Hz). Beyond ωLx, the three 

responses present a succession of alternation of anti-resonances and resonances introduced by 

the hyperbolic tangent (tanh) function. In the journal (Abou Haidar, Moreau, & Abi Zeid Daou, 

2021), the authors show that the influence of the order m is essentially located: 

- for gain diagrams, at the peaks of resonances and anti-resonances, quantifiable effects using 

quality factors for anti-resonances and for resonances illustrating well the phenomenon of 

dissipation associated with visco-thermal losses; 

- for phase diagrams, at the crossing points at 0° with a local slope which is important as the 

order is small where the slope becomes infinite for m = 0 (purely conservative case). 
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Moreover, note that the farther the position x moves away from the origin, the higher the 

transitional frequency ωLx pushes the anti-resonance and resonance frequencies towards the 

high frequencies.  

In addition, the position x has no influence on the transitional frequency ωr,m, the fractional 

integrative behavior of order -0.75 still does not appear on this frequency range. 

 

Figure 1.9 – Bode diagrams in x = 0 (ωLx/2π = 184 Hz), in x = L/2 (ωLx/2π = 368 Hz) and in x = 3L/4 

(ωLx/2π = 735 Hz) of x = 3L/4 (ωLx/2π = 735 Hz) (in black), of H(L/2,jω,L) (in blue) and of H(3L/4,jω,L) (in 

red) in the range [20; 4000] Hz of audible and achievable frequencies 

 

1.3.3 - Study of the Influence of the Fractional Order m 

  In the Webster-Lokshin model, the fractional order m has the value 0.5. The objective of 

this paragraph and the rest of this chapter is to analyze the influence of the order m on the 

behavior of the resonator by considering that m belongs to the interval [0; 1] with a nominal 

value m0 = 0.5, a consideration which facilitates the introduction of the concept of parametric 

uncertainty (additive or multiplicative) at the fractional order level. Thus, by generalizing the 

expression of the parameter  = K0/r (relation (1.2)) associated with visco-thermal losses in the 

Webster-Lokshin model at  = 2 m K0/r (relation (1.18) which for m = 0.5 gives the same 

expression), the analytical link is naturally established between visco-thermal losses and 

fractional order. 

Thus, the fractional order occurs only in the presence of visco-thermal losses. In the 

theoretical case of a purely conservative system, the parameter  is zero which is equivalent to 
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m = 0, taking into account the relation (1.17). In this case, the expression of the acoustic transfer 

H (x, s, L), denoted as H0 (x, s, L), of a finite medium is reduced to: 
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Figure 1.10 shows the Bode diagrams at x = 0 of H(0,jL) for different values of the 

fractional order over the range [20; 4000] Hz of the audible and achievable frequencies with a 

recorder (Figure 1.10). 

In order to magnify the different curves in Figure 1.9 for better observation, Figure 1.11 

presents the reduced frequency responses H(0,jL)/H0 with the frequency axis on a linear scale 

over the range [20; 1000] Hz. 

The observation of these frequency responses shows that the influence of the order m is 

essentially located: 

- for gain diagrams, at the peaks of resonances and anti-resonances, quantifiable effects 

using quality factors Qzi for anti-resonances and Qpi for resonances illustrating well the 

phenomenon of dissipation associated with visco-thermal losses; 

- for phase diagrams, at the crossing points at 0° with a local slope which is all the more 

important as the order is small, slope which becomes infinite for m = 0 (purely 

conservative case). 

 

Figure 1.10 – Bode diagrams at x = 0 of H(0, jω,L) for different values of the fractional order m on the 

range [20; 4000] Hz of audible and achievable frequencies with a recorder 
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Figure 1.11 – Reduced frequency responses H(0, jω,L) / H0 with the frequency axis on a linear scale over 

the range [150; 750] Hz 

 

1.4 - From the Simplified Fractional Model to its Rational Forms 

For the area of study defined by the range [20; 20,000] Hz of the audible frequencies, the 

analysis presented in the previous paragraph shows that the frequency response Im(j), is: 
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can be reduced to the unit (see paragraph 1.3.2.1). This is the reason why for this field of study 

the frequency response H (x, j, L) defined, as a reminder, by 
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 It is important to note that this simplification does not concern T(x,j,L) because the 

absence of Im(j) in relation (1.59) corresponds to the conservative case where  and m are zero 

(see paragraph 1.3.3 relation (1.55)). Figure 1.12 shows the block diagrams associated with 

this simplification in the field of study. 

 

(a) 

 

(b) 

 

(c) 

Figure 1.12 – Block diagrams associated with the simplified model: whatever x is between 0 and L (a),         

at x = 0 for the finite system of length L (b) and at x = 0 for a semi-infinite system (c) 
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or in a rational form of N cells in parallel, noted ( )LsxH pN ,,
~

,
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with A0 = H0 L,x where the zi and zi represent the frequencies and the damping factors 

associated with the anti-resonances, pi and pi the frequencies and the damping factors 

associated with the resonances while changing from the cascade form (1.60) to the parallel 

form (1.61) by decomposing into simple elements. Note that the parallel rational form 

facilitates the return to the time domain by inverse Laplace transform and that it is often 

associated with a decomposition in a modal space (Debut, 2004).  

From a theoretical point of view, zi corresponds to the roots of the numerator of T(x,j,L), 

that is: 
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and the pi correspond to the roots of the denominator of T(x,j,L), that is: 
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 From a practical point of view, finding these roots by analytical resolution is complex, if 

not impossible (Fabrice, 2009). On the other hand, the search by numerical resolution does not 

pose any particular problem. For example, it is possible to use the fact that the alternation of 

zi and pi appears clearly on the phase from when passing at 0 °, from -90 ° to + 90 ° for zi, 

and from + 90 ° to -90 ° for pi.  

In the context of the work of this thesis, the rational forms of N cells in cascade and in 

parallel are considered as behavior models whose numerical values of the parameters are 

obtained using an optimal approach aiming to minimize the difference between the target 

frequency response defined by the fractional form ( )LsxH ,,
~

 and the frequency response of the 

rational cascade form ( )LsxH cN ,,
~

,
. This digital procedure is available in the Frequency 

Domain System Identification (FDSI) module of the CRONE Toolbox (Malti & Victor, 2015). 

 As an illustration, let us take the acoustic tube used as an example throughout this chapter: 

r = 5x10-3 m, L = 0.3 m, ra = 1.184 kg/m3, ca = 346.3 m/s, L,x = 1,154 rad/s at x = 0, H0 = 

19.15x10-8 m3s-1Pa-1 and A0 = 22.11x10-5 rad/s. Figure 1.13 shows two screenshots from the 

CRONE Toolbox before optimization (Figure 1.13.a) and after optimization (Figure 1.13.b) at 

x = 0 in the nominal case m = 0.5. 
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 The procedure consists, in a first step, from generating the target frequency response 

( )LjxH ,,
~

  of the fractional form which appears in red (Data) in Figure 1.13.a. Then, cells 

are added one after the other by clicking on the "Add New Cell" command in the "Cells actions" 

menu (in green at the top right), then by positioning the mouse cursor on the phase diagram at 

point considered where the cutting phase of ( )LjxH ,,
~

  axis 0°, and going from the lowest 

values (left) to the most important (right). Note that in this graphical interface, the term "cell" 

corresponds to a polynomial (numerator or denominator). Thus, with each addition in the 

“Transfer function” menu (in purple at the bottom) a column in blue for the numerator and in 

yellow for the denominator appears. The first line "Cell Frequency" gives the value in rad/s of 

zi or pi, the second "Cell Order" the highest order of the polynomial (here +2 for the 

numerator and -2 for the denominator), the third "Local Order" is equal to +1 (for the 

numerator) and -1 (for the denominator) insofar as these are explicit forms (Malti & Victor, 

2015), and finally the fourth "Damping Factor" gives the value of zi or pi. All these values 

in the columns can be modified by clicking in the corresponding box. Thus, in the case of the 

resonator, all the values of zi or pi are initialized to 0.01. 

 This first stage of the procedure therefore makes it possible to fix the structure of the 

behavior model, as well as the initial values of its parameters. The second step is an 

optimization step launched using the "Tools" menu (in orange at the bottom right). For the 

example of illustration, the result appears in Figure 1.13.b in particular the optimal values of 

zi, pi, zi and pi. 

 Thus, the blue curve corresponds to the frequency response ( )LsjH cN ,,
~

,   of the rational 

cascade form (gain and phase) obtained before optimization (Figure 1.13.a) and after 

optimization (Figure 1.13.b). As for the green lines, these are asymptotic lines. 
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(a) 

 

 

(b) 

Figure 1.13 – Screenshots from the CRONE Toolbox before optimization (a) and after optimization (b)    

at x = 0 in the nominal case m = 0.5 

 

 In summary, the cascade form defined by the relation (1.60) comprises N = 4 cells, that is 

2N = 8 "cells" as defined in Figure 1.13, to which we must add the integrating cell A0/s, either 

in total N + 1 = 5 cells, or else 2N + 1 = 9 "cells". 

 Remark 

 In linear systems dynamics, in the general case of a polynomial of order 2 having 1 pair 

of conjugate complex roots, the damping factor  and the resonance factor Q associated with 

this pair are linked by a relation of the form : 
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 In instrument acoustics (Chaigne & Kergomard, 2013), and in particular in the specific 

case of resonators of wind instruments, the damping factors are very small compared to the 

unit. This is the reason why the relation (1.64) is reduced to: 
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 Note that in instrument acoustics, the term quality factor is used in place of the resonance 

factor. Thus, in many works, the taking into account of the visco-thermal losses is made directly 

using the parallel rational form defined by the relation (1.62) in which the pi are replaced by 

the corresponding Qpi (relation (1.66 )) (Chaigne & Kergomard, 2013) without going through 

fractional models.  

 Table 1.2 summarizes the final numerical values of the parameters zi, zi, Qzi, pi, pi and 

Qpi of the N = 4 cells of the cascade form (relation (1.60)) to which we must not forget the cell 

number zero, namely the integrator A0/s. 

As for Table 1.3, it gives the numerical values of the parameters Ai, Bi, pi,  pi and Qpi of 

N = 4 cells of the parallel form (relation (1.61)) to which cell A0/s is added. 

Table 1.2 – Final numerical values of the parameters ωzi, zi, Qzi, ωpi, pi and Qpi of the N = 4 cells of the 

cascade form 

N  zi (rad/s)  zi Q zi  pi (rad/s)  pi Q pi

1 1780 18 10
-3 27.78 3580 12.9 10

-3 38.76

2 5380 10.5 10
-3 47.62 7190 9.2 10

-3 54.35

3 8990 8.12 10
-3 61.8 10800 7.47 10

-3 66.93

4 12600 6.92 10
-3 72.25 14500 6.37 10

-3 78.5
 

Table 1.3 – Numerical values of parameters Ai, Bi, ωpi, pi and Qpi of N = 4 cells of the parallel form 

N A i B i  pi (rad/s)  pi Q pi

1 36.02 10
-12

16.63 10
-10

3580 12.9 10
-3 38.76

2 98.24 10
-13

64.99 10
-11

7190 9.2 10
-3 54.35

3 53.38 10
-13

43.07 10
-11

10800 7.47 10
-3 66.93

4 58.98 10
-13

54.47 10
-11

14500 6.37 10
-3 78.5

 

 Figure 1.14 presents the Bode diagrams of the response ( )LsjH cN ,,
~

,   of the cascade form 

(in blue) and the response ( )LsjH pN ,,
~

,   of the parallel form (in green) on the range [100: 

2000] Hz where we observe the perfect superposition of the two curves. 
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Figure 1.14 – Bode diagrams of the response 𝑯̃𝑵,𝑪(𝒋𝝎, 𝒔, 𝑳) of the cascade form (in blue) and of the 

response 𝑯̃𝑵,𝑷(𝒋𝝎, 𝒔, 𝑳) of the parallel form (in green) over the range [100: 2000] Hz 

 

  Thus, the procedure presented in this paragraph, and illustrated in the nominal case m = 

0.5, must be repeated for each value of m considered over the interval [0; 1].  

 

1.5 – Conclusion 

 The structure and progression of this chapter are organized in a didactic way so that readers 

with no idea about visco-thermal losses in wind instruments can understand the dynamic 

behavior of an acoustic tube of constant radius. From the two partial differential equations 

which define the Webster-Lokshin model, a classical resolution in the operational domain leads 

to the analytical expression of the acoustic impedance and admittance of the function tube of 

position x, its length L and its radius r. 

Moreover, a system vision is proposed aiming to causally decompose the global model 

into sub-models, thus facilitating analysis in the frequency domain. One of the conclusions of 

this frequency analysis is that the fractional model can be simplified over the range [20; 20,000] 

Hz of the audible frequencies. In Addition, the introduction of an uncertainty at the level of the 

fractional order (whose value considered as nominal is that of the initial Webster-Lokshin 

model, namely m0 = 0.5) allows to study the influence of the order m when this varies between 

0 (conservative case) and 1. Although the fractional order behavior (fractional integrator) is 

only present for very low non-audible frequencies (less than 1 Hz), the influence of the 

fractional order m does appear at resonances and anti-resonances (in the audible frequencies), 

illustrating well the phenomenon of dissipation associated with visco-thermal losses. 

The simulation in the time domain of fractional models requires the establishment of 

rational forms. Thus, two rational forms composed of an integrator and N second-order cells, 
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one in cascade and the other in parallel, are introduced. The parameters of the cascade form are 

then determined using the Frequency Domain System Identification (FDSI) module of the 

CRONE Toolbox. As for the parameters of the parallel form, they are obtained by a 

decomposition into simple elements of the cascade form. 

 More generally in the fractional model, this study of visco-thermal losses within the 

resonator of a wind instrument leads to a finding similar to that already made in other fields. 

Indeed, the main interest of the fractional form resides in the parametric parsimony, that is to 

say the capacity which the integral-differential operator of non-integer order has to model the 

greatest number dynamic phenomena with a minimum of parameters. Thus, the study of 

parametric sensitivity, in particular in the frequency domain, is simpler. 

In the case of visco-thermal losses treated in this chapter, the study of the sensitivity is 

reduced to the only parameter m. The same parametric sensitivity study in the frequency 

domain with one of the two rational forms presented here is much more complex because this 

form has 4N parameters (4 parameters for each of the N cells, i.e. 16 for the example of 

illustration presented corresponding at the only value m = 0.5). The transition to one of the 

rational forms is then carried out only for time simulation. 
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Chapter 2- Study of the Nonlinear Exciter of a Wind 

Musical Instrument 

2.1 – Introduction 

The self-oscillation mechanism is defined by the instrument's capability to generate an 

acoustic wave from an energy source that remains stationary or quasi-stationary concerning the 

acoustic variables. This characteristic is closely linked to the instrument's nonlinear nature. In 

the realm of musical acoustics, a conventional method outlined by Kergomard and Chaigne 

(Kergomard & Chaigne, 2013)  depicts the instrument (refer to Figure 2.1, (Terrien, 2015)) as 

a nonlinear excitation system connected to a passive linear resonant system, as discussed in 

Chapter 1. 

 

Figure 2.1 – Schematic representation of the mechanism of sound production in self-oscillating musical 

instruments (see (Terrien, 2015)) 

 Due to its non-linear nature, modeling the exciter and its coupling with the resonator that 

is the energy source is very complex. Indeed, the phenomenon results from the oscillation of a 

naturally unstable air jet around a bevel (Figure 2.2). Thus, the self-oscillation mechanism 

relies on a synchronization of the oscillation of the jet and the acoustic waves. It is therefore 

necessary that the jet-bevel system excites the resonator at the periodicity of the acoustic field.  

 In order to fully understand the phenomena involved and to be able to reproduce them by 

numerical simulation, this chapter proposes, first of all, a modeling by the proper diagram and 

parameters of the various essential elements of the system, then by recalling the mechanism of 

sound production. Then, from a bibliographic synthesis, a complete nonlinear model frequently 

used in the literature is developed. Moreover, after focusing on the poor digital conditioning of 

such a model, a solution is proposed in order to be able to develop a digital simulator 

programmed in MatLab/Simulink. A scenario is then defined for several values of the pressure 

at the input of the mouthpiece of the flute. This scenario is defined by respecting, not only the 
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domain of validity of the nonlinear model, but also the values of pressure achievable 

experimentally by the artificial mouth presented in chapter 3. Thus, for this field of study, a 

detailed analysis of the time responses simulated is proposed. This analysis makes it possible, 

in particular, to observe that the variations of a certain number of physical quantities (pressure 

at the input of the resonator, acoustic speed, etc.) are small and around zero. On the basis of 

this observation, a linearization is developed leading to two linearized models, one for the 

analysis of the start-up phase of the simulation (phase 1), the other for that of the self-

oscillations (phase 3). Finally, the last paragraph analyzes the conditions of self-oscillation of 

such a system. 

 

2.2 – Modelling 

2.2.1 – Schematic and Configuration of the Exciter 

Figure 2.2 (which is a more detailed representation of the flute shown in Figure 1.3 in 

Chapter 1) shows a cross section of a recorder, as well as a schematic representation of its 

exciting mechanism (consisting of the interaction of an air jet with a bevel) where the notations 

that appear in the figure are defined by: 

- 1: outlet of the channel; 2: bevel; 3: resonator (air column); 4: exciter; 

- ( ); ;R o x y= : local reference associated with the jet; 

- h: height of the spout channel; 

- w: distance between the outlet of the channel and the tip of the bevel; 

- x0: lateral offset of the tip of the bevel from the longitudinal y axis of the channel; 

- ( ) ( )e
m m mP t P p t= + : pressure generated at the input of the mouthpiece, 

e
mP  is the stationary 

component at the operating point and ( )mp t  the variation around 
e

mP . 

 

Figure 2.2 – Cross section of a recorder and schematic representation of its excitation mechanism 

consisting of the interaction of an air jet with a bevel with: 

1: spout channel output; 2: bevel; 3: resonator (air column); 4: exciter (see (Terrien, 2015)) 
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2.2.2 - Sound Production Mechanism: Reminder 

From a causal point of view, the generation of a pressure input Pm(t) at the mouthpiece of 

the flute (imposed by the musician or by an artificial mouth device as defined in chapter 3) 

gives rise to a flow in the spout channel (Figure 2.2). Upon exiting the channel, the viscosity 

of the air hinders the flow from adhering to the walls' geometry (Terrien S. , 2015). 

Consequently, the flow deviates from the walls, resulting in an air jet with an initial speed 

denoted as Uj(x = 0, t) at x = 0. This air jet exhibits inherent instability (Kergomard & Chaigne, 

2013). While the flow near the origin at x = 0 may initially display a well-ordered pattern, the 

development of eddies becomes apparent as the flow moves away from the starting point. The 

inherent instability of the air jet causes even the slightest disturbance to be magnified over time 

(Kergomard & Chaigne, 2013). 

The jet created at the channel output flows inside the excitation window. It meets the bevel, 

the point of which is located at a distance w from the channel output and laterally offset by x0 

with respect to the longitudinal axis y  of the flow. The interaction between the jet and the 

bevel induces a hydrodynamic feedback on the jet, a crucial element in initiating the jet's 

oscillation by introducing its initial disturbances (Terrien, 2015). Given the inherent instability 

of the air jet, disturbances naturally magnify along its path from the channel exit to the bevel, 

resulting in oscillations on both sides of the bevel. This oscillation leads to a periodic 

alternation of flow injection into and out of the instrument, forming the aero-acoustic source 

of pressure that channels energy to the resonator (Kergomard & Chaigne, 2013). 

The acoustic waves generated within the resonator, as discussed in Chapter 1, propagate 

and undergo reflection, primarily occurring at the first open hole. The combination of the 

outgoing wave and its reflected counterpart results in a series of standing waves within the 

resonator. These standing waves, in turn, influence the returning jet at the channel exit, 

completing the self-oscillation loop. The initial disturbance of the jet, caused by the standing 

waves, perpetuates its oscillation, sustaining the mechanism responsible for sound production. 

2.2.3 - From a Phenomenon with Distributed Parameters to a Model with Localized 

Parameters 

The sound production models in flutes are founded on the loop system depicted in Figure 

2.3 (Terrien, 2015). These models intricately involve the representation and modeling of each 

of the three primary phenomena:  

- the instability of the jet; 

- the aero-acoustic sources related to the jet-bevel interaction; 

- the propagation of acoustic waves in the resonator. 
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Figure 2.3 – Functional diagram of the loop system describing the self-oscillation mechanism of 

instruments of the flute family (see (Terrien, 2015)) 

 

The division of the three key phenomena in action and the assumption that their 

interactions are localized give rise to a distinctive and significant limitation in this 

representation. This approach might appear counterintuitive as the boundaries between these 

distinct elements remain somewhat indistinct. An illustrative example is the challenge of 

determining the precise location of flow sources arising from the oscillation of the jet (Terrien 

2015). The inherent complexity lies in the interconnected nature of these phenomena, making 

it challenging to precisely define their individual boundaries within the system. 

Nevertheless, these phenomena operate on different scales, necessitating distinct 

hypotheses. For low frequencies, corresponding to the initial acoustic resonances, the region 

affected by the developing unstable air jet is relatively small compared to the wavelengths of 

the acoustic waves. Consequently, the jet can be analyzed under the assumption of 

incompressibility, a hypothesis that becomes incompatible with the description of wave 

propagation within the resonator. As highlighted by Fabre and Hirschberg (Hirschberg, 2000), 

the ability to represent these diverse phenomena as distinct blocks with localized interactions 

is made possible precisely because they are described under different, albeit seemingly 

paradoxical, assumptions. In the functional diagram of Figure 2.3, each highlighted block 

represents a specific aspect of the system, with the physical phenomena in action and their 

corresponding models explained in the subsequent part of this paragraph. This comprehensive 

model, incorporating different assumptions for various phenomena, stands as the most widely 

utilized in the literature (Hirschberg, 2000). 

 

2.2.3.1 - Receptivity: Initial Disturbance of the Jet 

 Once self-oscillations are established, the disturbance of the jet is induced by the acoustic 

field within the resonator. Because of the assumption of a non-viscous fluid used in describing 

the jet, this phenomenon, termed receptivity, is considered to be localized at the point where 

the jet separates, specifically at the channel exit at x = 0 (Kergomard & Chaigne, 2013). 

Various receptivity models have been proposed in the literature, notably by Fabre and 
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Hirschberg (Hirschberg, 2000) and by Blanc (F Blanc, 2014). These models offer insights into 

how the acoustic field influences and triggers disturbances in the jet, contributing to a more 

comprehensive understanding of the self-oscillation mechanism. 

 In the rest of this chapter, the applied model refers the one proposed by de la Cuadra 

(Cuadra P. d., 2005). It is based on Schlieren visualizations of a jet subjected to a transverse 

acoustic field. One of the hypotheses which reduces the domain of validity of this model is that 

the pressure ( ) ( )e
m m mP t P p t= + in the musician's mouth or the artificial mouth (see Chapter 3) 

is assumed to be stationary (or quasi-stationary), an assumption which leads to a central jet 

speed ( ) ( )0, 0,e
j j jU x t U u x t= = + =  at the exit of the channel also stationary. This is the 

reason why in the rest of this chapter, we consider that: 

( )

( )0,

e
m m

e
j j

P t P

U x t U

 


= 

,       (2.1) 

where, according to Bernoulli's law in stationary system at the channel exit (Cuadra P. d., 

2005) , 

 
2 e

e m
j

P
U

r
=  , (2.2) 

r being the density of air. 

 Thus, for this domain of validity, the initial disturbance of the jet at x = 0 at the exit of the 

channel is represented by a transverse displacement 0(x = 0, t), noted 0(t), linked to the 

acoustic speed vac(t) of the resonator always at x = 0 by a relation of the form: 

 ( ) ( )0 ace
j

h
t v t

U
 =  . (2.3) 

 

2.2.3.2 - Jet Instability: Amplification and Convection of Disturbances 

 As previously mentioned, the air jet extending between the channel exit and the bevel is 

inherently unstable. This instability, recognized as Kelvin-Helmholtz instability (Reid, 2002), 

arises from the natural instability of shear layers characterized by different velocities, 

essentially the interfaces between the jet and the stationary external environment. The innate 

instability of the jet leads to the amplification and propagation of even the slightest 

disturbances. Rayleigh (Rayleigh, 1984) ) was the first to propose a linear description of this 

phenomenon, specifically in the context of small perturbations affecting a semi-infinite jet. The 

amplification of perturbations was expressed as an exponential function correlated with the 

convection distance. 
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 In flute family instruments, the jet evolves within an excitation window, bounded on one 

end by the channel at x = 0 and on the other by the interacting bevel at x = w. An experimental 

investigation conducted by de la Cuadra (Cuadra P. d., 2005) demonstrated that the exponential 

amplification of the initial disturbance 0(t) with the convection distance x remains a 

reasonably accurate approximation. In the case of the flute, specifically at the bevel located at 

x = w, the transverse displacement η(w, t) of the disturbance can be expressed as follows: 

 ( ) ( ) ( )0, exp ix w t t w   = = −  , (2.4) 

where, still according to de la Cuadra (Cuadra P. d., 2005), the estimate of the amplification 

factor i as a function of the height h of the channel is approximated by: 

 
0.4

i
h

   . (2.5) 

 The delay , introduced in equation (2.4) is linked to the convection time of the initial 

disturbance 0(t) through the jet, from the exit of the channel at x = 0 to the wedge at x = w. 

Several experimental results (Cuadra, Vergez , & Fabre, 2007) (Nolle, 1998) and theoretical 

studies (Rayleigh, 1984) have revealed that, in a steady state, the convection speed 
e
vC  of 

transverse disturbances along a jet is correlated with the difference in speed between the jet 

and the external environment 0.3 ; 0.5e e e
v j jC U U 

 
. Therefore, through this chapter, the mean 

value 0.4e e
v jC U=  is used and the expression of the delay   can be represented as follows: 

 
0.4 e

j

w

U
 =  . (2.6) 

 

2.2.3.3 - Jet-Bevel Interaction: Aero-Acoustic Sources 

 In wind instruments, the oscillation of the jet around the bevel serves as an exciter, 

generating the acoustic energy transmitted to the resonator. While Helmholtz initially described 

this source using a monopole, the dipole modeling introduced by Rayleigh (Rayleigh, 1984), 

is now commonly employed. The jet-drive model, initially proposed by Coltman (Coltman J. , 

1976), and later refined by Verge (Verge M. , 1995) (Verge, Hirschberg, & Caussé, 1997) is 

based on the representation of the source term through a force. Figure 2.4 schematically 

illustrates the behavior of the jet in this context. 



65 | P a g e  
 

 

Figure 2.4 – Schematic representation of the behavior of the jet, according to Fabre in [Chaigne, 2013]: 

(a) disturbance of the jet at the outlet of the channel by the acoustic field present in the resonator; (b) 

convection and amplification of the disturbance (c) oscillation of the jet around the bevel which gives rise 

to the aero-acoustic sources  

 

 Based on the bevel (Figure 2.4.a), the jet, experiencing a transverse displacement (w,t), 

oscillates on both side of this bevel (Figure 2.4.b). The flow rate associated with the jet is 

subsequently split into two separate flow rates: the first one Qin(t) enters the resonator whereas 

the second Qout(t) leaves the resonator (Figure 2.4.c). Both flow sources in phase opposition 

are located at two distinct points close to the bevel; however, they separated by an equivalent 

distance d. To calculate the potential difference, Verge (Verge M. , 1995) estimated: 

4
2d h w


  .       (2.7) 

 Since this equivalent distance d is tiny compared to the acoustic wavelengths, the mass of 

air situated between the two flow injection points can be treated as incompressible. The 

reciprocal sloshing motion of this air mass, prompted by the oscillation of the jet, imparts a 

force on the acoustic field. This force is represented by a pressure difference, denoted as 

psrc(t), whose expression is described as follows (Terrien S. , 2015): 

 ( )
( ) 0,

tanh

e
d j

src

b U w t xd
p t

w dt b

r     − 
  =   
     

 , (2.8) 

where b indicates the estimated half-thickness of the jet and is expressed as follows (M P Verge 

B. F., 1994) (Ségoufin C. , 2000): 
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2

5
b h=  , (2.9) 

where tanh(.) represents the hyperbolic tangent function. 

 Additionally, the excitation window of the flute, spanning from the channel exit at x = 0 to 

the bevel at x = w, represents both an open end and a constriction when viewed from the 

resonator's perspective. In practice, its cross-sectional area is often smaller than the bore section 

of the instrument. Consequently, the acoustic speeds observed in this region can be significant 

and generally cannot be disregarded in relation to the speed of the jet. The presence of a sharp 

edge (the bevel), in conjunction with the effects of viscosity, induces flow separation at this 

juncture (Kergomard & Chaigne, 2013). This, in turn, leads to the detachment of vortices at 

the level of the bevel, as experimentally illustrated by Fabre and Hirschberg (B Fabre, 1996). 

 Considering this phenomenon associated with energy loss in instrument models appears 

crucial for accurately describing the mechanisms governing the saturation of oscillation 

amplitude (B Fabre, 1996) (R Auvray, 2012). While various models have been suggested to 

address this phenomenon (B Fabre, 1996), a commonly adopted approach, primarily due to its 

simplicity (Kergomard & Chaigne, 2013)), involves modeling it through an additional pressure 

difference plos(t) between the two sides of the bevel, as follows: 

 ( )
( )

( )
2

sign
2

ac
los ac

vc

v t
p t v t

r



 
 = −     

 
 , (2.10) 

where vc is a factor corresponding to the effect of vena contracta, estimated at 0.6 in the case 

of a sharp arrest (Falkovich, 2011) and where represents using the sign function.  

Finally, the aero-acoustic pressure source p(t) at the bevel is expressed as follows 

(Terrien S. , 2015): 

 ( ) ( ) ( )src losp t p t p t =  +   . (2.11) 

 

2.2.3.4 – Complete Model 

 The complete model of the instrument retained within the framework of this study is finally 

composed of a system of three equations, each one being linked to a given element of the 

looped system shown in (Figure 2.5), namely: 
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

 ,(2.12) 

where S and L represent the section and the length of the resonator, Yin(s,L) its input admittance 

(defined in Chapter 1) and P(s) = TL{p(t)}, TL designating the Laplace Transform. 

 

Figure 2.5 – Functional diagram of the complete model 

 

2.2.3.5 - Limits of the Model: Reminder of the Validated Domain 

 The capability of the comprehensive model to qualitatively replicate numerous phenomena 

observed experimentally has been established in various studies (Auvray, Fabre, & Lagrée, 

2012) (S Terrien, 2012) . However, like any model, its validity is confined to a specific range, 

and this constraint should be considered when interpreting the results. 

 The theoretical validity of the linear description of jet instability is limited to small 

amplitudes of transverse deflection (x,t). When the value of (x,t) approaches the thickness 

of the jet, the jet folds upon itself, creating a sequence of vortices that can be represented as a 

Von Karman alley  (Kergomard & Chaigne, 2013). It's important to note that the model 

presented by the system of equations (2.12) does not incorporate this nonlinear phenomenon. 

 On the other hand, when the jet speed 
e
jU  becomes sufficiently high, a transition to a 

turbulent state can be observed. As a reminder (Terrien S. , 2015), , the transition from a laminar 

(linear) flow to a turbulent (nonlinear) flow typically occurs at a Reynolds number between 

2500 and 3000. The Reynolds number represents the ratio between inertial forces and viscous 



68 | P a g e  
 

forces. According to Fabre (Kergomard & Chaigne, 2013), in the case of a turbulent flow at 

the channel exit, the modeling should account for various factors not addressed in the current 

model. 

 Finally, the model is well suited (Terrien S. , 2015) for: 

- low values of the number of Strouhal   defined by: 

 0e
j

w
f

U
 =  , (2.13) 

where f0 represents the self-oscillation frequency in Hz of the waves within the resonator;  

- jets with a thin thickness compared to the length w;  

- rather large hydrodynamic wavelengths. 

 

2.3 – Numerical Simulation 

2.3.1 – Digital Packaging Problem 

The complete model, as defined by the system of equations (2.12), is poorly conditioned 

from a numerical point of view. Indeed, the presence of a derivation in the second equation of 

the system (2.12) reveals a causality problem. Moreover, assuming that the derivation can be 

programmed without posing a numerical problem, if the initial conditions associated with the 

variables (w,t), vac(t) and p(t) are zero (which is the case physically as long as the pressure 

Pm(t) at the mouthpiece input is zero), then there is no generating process to initiate the start of 

a transient system which must then make it possible to reach a steady periodic system imposed 

by the self-oscillation conditions. Finally, the presence of the flow speed Uj(t) at the 

denominator of the first equation of the system (2.12) excludes any zero initial value of this 

speed at the start of the digital simulation, and therefore of the pressure Pm(t) at the entry of the 

mouthpiece of the flute, a situation however very physically realistic.  

The solution adopted in this thesis concerning the derivation is the use of a frequency 

truncated differentiator whose expression D(s) in the symbolic domain is defined by: 

 ( )

1
hn

c

s
D s

s



=
 

+ 
 

 , (2.14) 

c being the cutoff pulse (in rad/s) and nh the order of the low-pass filter. The useful effect of 

the low-pass filter is to prevent D(s) from tending to infinity as s tends to infinity (i.e. the first 

instants taking into account the applicable time-frequency duality to this linear operator), the 

parasitic effect being its phase shift all the more important as the order nh is important. Faced 

with this dilemma, a good compromise is nh = 2 which leads to: 

 ( )lim 0

s

D s

→

→  . (2.15) 
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 This value of nh must be combined with a cut-off pulse c compared to the largest natural 

un-damped pulse pi of the rational form of the impedance Yin(s,L) as defined in Chapter 1.  

 It is important to note that the choice of this operator makes it possible, not only to solve 

the numerical problem related to the derivation, but also to introduce a generator process 

allowing, in the presence of zero initial conditions, to initially trigger the start of a transient 

system then leading to a stationary periodic system (self-oscillation conditions). The following 

paragraph illustrates and then demonstrates this result. 

 

2.3.2 - Simulator Developed using MatLab / Simulink 

 The complete model in the presence of operator D(s) is programmed in MatLab / Simulink 

with the following parametric values: 

r =1.184 kg/m3:  density of air at 25°C; 

 = 15.6x10-6 m2/s:  kinematic viscosity of air at 25°C; 

h = 10-3 m:   height of the spout channel; 

w = 4.25x10-3 m:  distance between the outlet of the nozzle channel and the tip of the     

bevel; 

b = 0.4x10-3 m:   half-thickness of the jet; 

d = 3.7x10-3 m:  equivalent distance between the 2 sources of flow Qin and Qout at the 

level of the bevel 

vc = 0.6:   effect factor vena contracta; 

x0 =0.1x10-3 m: lateral offset of the tip of the bevel from the longitudinal axis of the 

channel; 

L = 0.3 m:   length of the resonator tube; 

r = 5x10-3 m:   radius of the resonator tube; 

S = 7.854x10-5 m2: section of the resonator tube; 

nh = 2:    order of the low-pass filter of the operator D(s); 

c = 2x50 000 rad/s: cutoff pulse of the low-pass filter of the operator D(s). 

 

 As a reminder (see Chapter 1), Figure 2.6 shows the frequency response of the input 

admittance Yin(s,L) of the resonator on the range [100; 2000] Hz and Table 2.1 gives the 

numerical values of the parameters Ai, Bi, pi,  pi and Qpi of its parallel rational form for the N 

= 4 first modes of the resonator. 
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Figure 2.6 – Frequency response of the input admittance Yin(s, L) of the resonator considered over the 

range [100; 2000] Hz. 

 

Table 2.1 – Numerical values of the parameters Ai, Bi, pi,  pi and Qpi of the parallel rational form of the 

input admittance Yin(s,L) for the N = 4 first modes of the resonator 

N A i B i  pi (rad/s)  pi Q pi

1 36.02 10
-12

16.63 10
-10

2 570 12.9 10
-3 38.76

2 98.24 10
-13

64.99 10
-11

2 1145 9.2 10
-3 54.35

3 53.38 10
-13

43.07 10
-11

2 1720 7.47 10
-3 66.93

4 58.98 10
-13

54.47 10
-11

2 2309 6.37 10
-3 78.5

 

 Remark 2.1 

 With a ratio c/p4, the cut-off pulsation c = 2 x 50,000 rad/s of the low-pass filter of 

the operator D(s) is sufficiently large compared to the largest natural non-damped pulsation 

p4 = 2 x 2,309 rad/s of the rational form of the impedance Yin(s,L). Thus for times t >> c = 

1/c = 3.18 x 10-6 s, the two differentiation operators, D(s) and s, have the same behavior. 

 

 Remark 2.2 

 In the dynamics of linear systems, in the general case of a polynomial of order 2 having 1 

pair of conjugate complex roots, the natural undamped pulsation n and the resonance 

pulsation r are linked by a relation of the form 
21 2r n  = −  where  represents the 

associated damping factor. In acoustic instruments, and in particular in the particular case of 

wind instrument resonators, the damping factors pi are very small compared to unity (see table 

2.1). This is the reason why the natural un-damped pulses pi and the resonance pulses ri 

associated with each of the i modes of the resonator are almost equal, which is to say that the 
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ratio 21 2ri ni pi  = −  is close to unity. For more illustration, table 2.2 gives the numerical 

values of this ratio for the first 4 modes of the resonator considered in table 2.1. 

 

Table 2.2 – Numerical values of the ratio for the first 4 modes of the resonator considered 

N  pi  ri /  ni 

1 12.9 10
-3 0.9998

2 9.2 10
-3  0.9999

3 7.47 10
-3 0.9999

4 6.37 10
-3 1

 

  

 Figure 2.7 shows the parametric configuration chosen for the Simulink solver. 

 

Figure 2.7 – Parametric configuration retained for the Simulink solver 

The initial conditions of the various simulations carried out are: 
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

=



=

 = 



 =

 , (2.16) 

and this for 13 different values of the pressure 
e
mP  between 400 Pa and 1000 Pa, with a step of 

50 Pa. For each of its simulations, three phases appear: 

- phase 1: start-up with a convergent transient system;  

- phase 2: divergent transient system;  

- phase 3: stationary periodic system.  
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 Among these 13 tests, two (corresponding to the limits of the membership interval of 
e
mP ) 

are presented and analyzed by way of illustration: 

- example 1: 400 Pae
mP = , 26 m/se

jU =  and  = 0.409 ms ; 

- example 2: 1000 Pae
mP = ,  41 m/se

jU =  and  = 0.259 ms.  

 For each of these two examples, three families of time responses are proposed for: 

- the total duration of the simulation from t0 to tmax, with t0 = 0 s and tmax = 1 s; 

- phase 1 from t0 to t1; 

- phase 3 from t2 to tmax = 1 s. 

 Figure 2.8, for a pressure 
e
mP = 400 Pa (on the left) and 

e
mP = 1000 Pa (on the right), shows 

the time responses of the pressure p(t) at the input of the resonator ((a) and (b) ), the acoustic 

velocity vac(t) ((c) and (d)) and the transverse displacement (w,t) of the jet ((e) and (f)). 

Observing the results allows us to make the following remarks: 

- the duration of phase 1 depends on the value of the delay  and therefore on the value of 
e
mP

. Thus, the lower the delay  (that is, the greater the
e
mP pressure), the shorter phase 1. Focusing 

on 
e
mP = 400 Pa (left), the convergent transient system of phase 1 is not visible for 

e
mP = 1000 

Pa (right) because the divergent transient system of phase 2 quickly overlaps; 

- The shorter the duration of phase 2 is the greater the pressure 
e
mP , thus leading to the onset 

of the steady-state periodic system of phase 3 more quickly. 

 Taking into account these remarks, Figure 2.9 presents, only for a pressure 
e
mP = 400 Pa, 

the time responses obtained during phase 1 of the pressure p(t) at the input of the resonator 

(a), of the acoustic speed vac(t) (b) and the transverse displacement (w,t) of the jet (c). A 

detailed analysis of this phase 1 is proposed in paragraph 2.4 - Linearized model. 
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(a)           (b) 

 
(c)           (d) 

 
(e)           (f) 

Figure 2.8 – Time responses obtained for a pressure = 400 Pa (on the left) and = 1000 Pa (on the right) 

concerning: - the pressure p(t) at the input of the resonator (a) and (b); - the acoustic speed vac(t) (c) and 

(d); - the transverse displacement  (w, t) of the jet (e) and (f) 
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(a) 

 
(b) 

 
(c) 

Figure 2.9 –  Time responses obtained in phase 1 for a pressure = 400 Pa concerning: - the pressure p(t) 

at the input of the resonator (a); - the acoustic speed vac(t) (b); - the transverse displacement  (w, t) of the 

jet (c) 

 

 Figure 2.10, for Example 1, and Figure 2.11, for Example 2, show the time responses 

obtained during phase 3: 

- (a) the pressure 
e
mP  (in blue) and the pressure p(t) at the input of the resonator (in green); 

- (b) speed 
e
jU  (in blue) and acoustic speed vac(t) (in green); 

- (c) transverse displacements 0(t) (in blue), 0(t-) (in green) and (w,t) (in red); 

- (d) pressures p(t) (in black), psrc(t) (in red) and plos(t) (in blue). 
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 The observation of these responses leads to the following remarks: 

- Figures 2.10.a and 2.11.a: the pressure  p(t) (in green) at the input of the resonator (relation 

(2.11)), which oscillates around 0, has a low amplitude compared to the pressure 
e
mP  (in blue); 

 

- Figures 2.10.b and 2.11.b: at the level of the channel output at x = 0, same remark for the 

acoustic speed vac(t) (in green) which oscillates around 0 and has a low amplitude compared to 

flow velocity 
e
jU  (in blue); 

 

- Figures 2.10.c and 2.11.c: the instability of the jet (which results in an amplification of its 

transverse displacement (x,t) (relation (2.4)) appears clearly by comparing the amplitudes of 

 (x=w,t)  (in red) and (x=0,t-) = 0(t-) (in green); 

 

- Figures 2.10.d and 2.11.d: the pressure plos(t) (in blue) linked to the loss of energy at the 

level of the bevel (relation (2.10)) remains low compared to the pressure p(t) (in black) at the 

input of the resonator (relation (2.11)). 

 
(a)          (b) 

 
(c)       (d) 

Figure 2.10 – Time responses obtained for a pressure = 400 Pa: (a) pressure (in blue) and pressure p(t) 

at the input of the resonator (in green); (b) speed (in blue) and acoustic speed vac(t) (in green); (c) 
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transverse displacements 0(t) (in blue), 0(t-) (in green) and (w,t) (in red) (d) pressures p(t) (in black), 

psrc(t) (in red) and plos(t) (in blue) 

 
(a)          (b) 

 

 
(c)          (d) 

Figure 2.11 – Time responses obtained for a pressure = 1000 Pa 

(a) pressure (in blue) and pressure p(t) at the input of the resonator (in green); 

(b) speed (in blue) and acoustic speed vac(t) (in green); 

(c) transverse displacements 0(t) (in blue), 0(t-) (in green) and (w,t) (in red) 

(d) pressures p(t) (in black), psrc(t) (in red) and plos(t) (in blue) 

 

2.4 – Linearized Models 

 In order to facilitate the analysis of phase 1 (start of the simulation) and phase 3 (self-

oscillation conditions), a linearization is developed leading to two linearized models, one for 

the analysis of the phase 1, the other for that of phase 3. Note that in phase 3, that is to say for 

time t >> c = 1/c = 3.18 x10-6 s (time constant of the low pass filter, see Remark 2.1) the 

two linearized models exhibit the same behavior.  

 Thus, the observation of the simulations presented in the previous paragraph allows us to 

affirm that the variations of (w,t), vac(t) and p(t) are indeed around zero. This is the reason 

why the linearization of the system of equations (2.12) is done around this value. 

 More precisely, a first non-linearity appears in expression (2.8) of psrc(t) with the function 

tanh(.) and a second non-linearity appears in expression (2.10) of plos(t) with the acoustic 
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speed vac(t) squared. The expansion limited to the first order of the function tanh(.) around  = 

0 leads to: 

 
( )

( )

2
0

0 0

0

1 tanh
,

tanh tanh ,

x

w t x bx
w t

b b b





=

    − −  −        − +         
 
 

 , (2.17) 

form relation 

( )
( )0

0 1

0

,
tanh ,

w t x
c c w t

b





=

− 
 + 

 
 ,      (2.18) 

taking 

 

0
0

2
0

1

tanh

1 tanh

x
c

b

x

b
c

b

  
= − 

 
   

− −   
   =



 , (2.19) 

c0 and c1 being constants. 

 As for the first-order limited expansion of [vac(t)]
2 around 0, its expression is given by: 

 ( ) ( )
2

0

0 2 0 0

ac

ac ac
v

v t v t
=

 +       . (2.20) 

 From these developments limited to the first order, two linear models are proposed: 

- a consideration in the time domain of the derivation operator d/dt, called the theoretical 

linearized model; 

- the other considering in the operational field the derivative operator D(s), called the 

programmed linearized model. 

 

2.4.1 – Theoretical Linearized Model 

 The derivative with respect to time of relation (2.17) gives: 

 
( )

( )

2
0

0

1 tanh
,

tanh ,

x

w t x bd d
w t

dt b b dt




    − −   −         
    

 
 

 . (2.21) 

 Thus, the expression (2.8) of psrc(t) linearized around 0 is given by: 
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 ( ) ( )

2
01 tanh

,

e
d j

src

x

b U b d
p t w t

w b dt

r 


    − −   
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  
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 
 

 , (2.22) 

or again, after simplification by b, 

 ( ) ( )1 ,src
d

p t K w t
dt

   , (2.23) 

taking, 

 

2
0

1 1 tanh ed
j

x
K U

w b


r

    = − −      

 , (2.24) 

K1 being a constant. 

 

Finally, the linearization of the system of equations (2.12) around 0 leads to: 

 

( ) ( )

( ) ( )
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 , (2.25) 

where ( )0 exp e
i jK h w U=  is a constant. The Laplace transform of the system (2.25), under 

the assumption of zero initial conditions, is then given by: 
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

 , (2.26) 

where ( ) ( ) , TL ,w s w t = . 

 This theoretical linearized model is used in section 2.5 for the analysis of the auto-

oscillation conditions (phase 3). 

 

2.4.2 Programmed Linearized Model  

 As specified in paragraph 2.3.1 - Numerical conditioning problem, the solution adopted 

to solve the causality problem lies in the use of a derivation operator D(s) as defined by the 

relation (2.14) with nh = 2 and c = 2 50 000 rad/s. Thus, the application in the symbolic 

domain of this derivation operator D(s) to relation (2.17) leads to an expression of the pressure 

P(s)of the form: 
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 ( ) ( ) ( )* 0
1 1 ,

c
P s K D s c w s

s


 
 = + 

 
 , (2.27) 

where *
1

ed
j

b
K U

w

r 
= is a constant. 

 By distributing the operator D(s), we show that the pressure P(s) (relation (2.27)) is 

composed of the sum of two terms, P0(s) and P1(s), that is: 

 ( ) ( ) ( )0 1P s P s P s =  +   , (2.28) 

taking,  
( ) ( )

( ) ( ) ( )

0
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1 1 ,

C
P s D s

s

P s C D s w s
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 , (2.29) 

with,  

*
0 0 1 0
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1 1 1 1

ed
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b
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  
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  


  = =    

 , (2.30) 

where it is important to note that the two constants C0 and C1 are proportional to the value of 

the stationary speed 
e
jU  and therefore (taking into account the relation (2.2)) to the value of 

the pressure 
e

mP . Thus, p0(t) = TL-1{P0(s)} represents the step response of the operator D(s) 

to a step  of amplitude C0 (proportional to 
e

mP ), or again, to the extent that 

 
( ) 1

1
hn

c

D s

s s



=
 

+ 
 

 , (2.31) 

p0(t) also represents the impulse response of the low-pass filter of order nh = 2 multiplied by 

the constant C0, that is 

 ( )
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 
 

 = = 
−  

+  
  

 . (2.32) 

 For a pressure 
e
mP = 400 Pa and for the first moments of phase 1, Figure 2.12 presents the 

time responses of the pressure p0(t) obtained with the relation (2.32) (curve 1 in green), the 

nonlinear model (curve 2 in red) and the linearized model (curve 3 in blue). 

 Thus, in the first moments of phase 1 where the variations are of low amplitude, the 

responses of the linearized model (curve 3 in blue) are identical to those of the nonlinear model 

(curve 2 in red). These answers clearly illustrate the legitimacy of the analysis made in the first 
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moments using the linearized model which leads to the analytical expression (2.32) of the 

pressure pulse (curve 1 in green). 

 

Figure 2.12 – For a pressure equal to 400 Pa and for the first moments of phase 1, time responses of the 

pressure p0(t) obtained with:  

- relation (2.30) (curve 1 in green);  

- the nonlinear model (curve 2 in red);  

- the linearized model (curve 3 in blue) 

 

 Figure 2.13 presents the time responses obtained for a pressure 400 Pae
mP = with the 

linearized model (in blue) and the nonlinear model (in red) during the first instants of phase 1 

(start-up) over a time interval [0 ; 5] x10-5 s (left) and [0 ; 5] x 10-4 s (right), time responses of 

the pressure p(t) at the input of the resonator ((a) and (b)), of the acoustic speed vac(t) ((c) and 

(d)) and the transverse displacement (w,t) ((c) and (d)) at the level of the bevel at x = w.  

 Observation of these responses allows us to make the following remarks:  

- the pressure pulse p0(t) as defined by relation (2.32) clearly appears from t = 0 s to t = 3x10-

5 s with a maximum amplitude of 310 Pa (Figure 2.13.a). This pressure pulse at the input of the 

resonator is at the origin of the appearance of the response of the acoustic speed vac(t) (Figure 

2.13.c) and of the transverse displacement (w,t) of the jet in x = w (Figure 2.13.e); 

- from t = 3x10-5 s to t = 4x10-4 s, the pressure p0(t) is zero (the pressure pulse is over, Figure 

2.13.b), while the transient system of the acoustic speed vac(t) (Figure 2.13.d) and the transverse 

displacement (w,t) is not finished (Figure 2.13.f); 

- from t = 4x10-4 s (value of the order of the delay  = 0.4 ms), under the effect of the looping 

of the system, a transient system associated with the pressure p0(t) appears (Figure 2.13 .b) 

leading to an additional transient system for the acoustic speed vac(t) (Figure 2.13.d) and the 
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transverse displacement (w,t) (Figure 2.13.f), transient system which is superimposed on that 

still in course resulting from the initial pressure pulse.  
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(a)         (b) 

 

(c)         (d) 

 

(e)         (f) 

Figure 2.13-  Time responses obtained for a pressure = 400 Pa with the linearized model (in blue) and the 

non-linear model (in red) during the first moments of phase 1 (start-up) over a time interval               [0; 

5]x10-5 sec (left) and [0; 5]x10-4 s (right): 

- pressure p(t) at the input of the resonator ((a) and (b)); 

- acoustic speed vac(t) ((c) and (d)); 

- transverse displacement (w,t) ((c) and (d)) 

 

2.5 – Analysis of Auto-Oscillation Conditions 

Figure 2.14 shows the variation in flow velocity 
e
jU  and the variation in frequency f0 

(in Hz) of phase 3 self-oscillations as a function of pressure 
e
mP . For constant pressures 

e
mP  
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- between 400 Pa and 550 Pa, the average frequency f0 of the self-oscillations is 569.6 Hz, 

lower value and close to the resonance frequency fr1 of the 1st mode of the resonator (Figure 

2.6); 

- between 600 Pa and 1000 Pa, the average frequency f0 of the self-oscillations is 1130 Hz, a 

value also lower and close to the resonance frequency fr2 of the 2nd mode of the resonator 

(Figure 2.6). 

 
(a)         (b) 

Figure 2.14 - Variations in the flow speed of the jet at the outlet of the channel (a) and the frequency f0 of 

the self-oscillations (b) as a function of the pressure 

 The remainder of this paragraph is devoted to the detailed analysis of the stationary periodic 

system present during phase 3. 
 

2.5.1 – Hydrodynamic Modes of the Jet and Acoustic Modes of the Resonator 

The sound production mechanism is intricately tied to the interaction between the jet and 

the acoustic resonator (Terrien, 2015). Various playing modes arise depending on the 

hydrodynamic k and acoustic i modes at play. Just as the acoustic resonator exhibits multiple 

resonance modes, the jet can oscillate across different hydrodynamic modes, as illustrated in 

Figure 2.15. 

 

(a)          (b)         (c) 

Figure 2.15 - Schematic representation of the different hydrodynamic modes of the jet: 

the first hydrodynamic mode k = 1 (a) corresponds to the case where one observes 1/2 wavelength 

between the outlet of the channel and the bevel; 

for the second k = 2 (b) and third k = 3 (c) hydrodynamic modes, we observe respectively 3/2 and 5/2 

wavelengths over this same distance (see (Terrien, 2015)) 

  

 The normal functioning of the instrument aligned with the coupling of an acoustic mode i 

with the first hydrodynamic mode k = 1 of the jet (M P Verge B. F., 1997). In this scenario, we 

observe we observe approximately half a hydrodynamic wavelength between the channel 

output and the bevel. The coupling of this hydrodynamic mode with each acoustic mode of the 
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resonator results in the various registers of the instrument. Therefore, the ith register 

corresponds to the pairing of the hydrodynamic mode k = 1 of the jet with the ith acoustic mode 

of the resonator. The manifestation of a particular register is tied to the selection of parameters 

under the control of the musician and configured by the instrument maker. 

 In specific instances, the coupling of an acoustic mode with a hydrodynamic mode of order 

k greater than 1 can be observed, resulting in the formation of a wind system (Kergomard & 

Chaigne, 2013) (Meissner, 2001) (Terrien, Vergez, & Fabre, 2013). For a wind system linked 

to the kth hydrodynamic mode of the jet (with k> 1), (2k − 1) / 2 wavelength is observed along 

the jet (Figure 2.10). For the kth hydrodynamic mode, this condition on the wavelength is 

defined as follows: 

 
2 1

2

k
w 

−
=  , (2.33) 

where  represents the wavelength whose expression is generated by  = 
e
vC  T0, with T0 = 1/f0 

the period of the self-oscillations. Considering the expression for the delay  = w/
e
vC  (relation 

2.6), one can get: 

 0
2 1

2

e e
v v

k
C C T

−
=  , (2.34) 

or, simplifying by 
e
vC , 

 0
2 1

2

k
T

−
=  . (2.35) 

 Thus, for wind systems (k > 1), the delay   is greater than the oscillation period T0, while 

in normal operation (k = 1)  < T0. In the musical context, wind systems are obtained for small 

values of the pressure Pm(t). 

 

2.5.2 – Self-Oscillation Conditions 

The examination of the self-oscillation conditions within the looped system (Figure 2.5) 

provides insights into the mechanisms underlying the emergence of different types of systems 

(additional details can be found in (Terrien, Vergez, & Fabre, 2013)). Such a looped system 

can initiate self-oscillation if the frequency response (j) of the open-loop transfer of the 

linearized system is equal to the unit. In other words, it should satisfy the two self-oscillation 

conditions outlined (Fletcher N. H., 1993): 

- the modulus, u = | (ju)|, is equal to 1, where u being the pulsation at unity gain, 

- the phase, u = arg[(ju)], is zero or equal to a relative whole multiple n of 2 n Z . 

 

 In steady harmonic system, the system of equations (2.26) becomes: 
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( ) ( )

( ) ( )

( ) ( ) ( )

0

1

,

,

,

1

j
ac

ac in

w j K e V j

P j K j w j

V j j P j
S

Y L

   

   

  

−

 =


 

 = 


 , (2.36) 

from which we easily deduce the expression of (j), that is: 

 ( ) ( )0 ,j
inj j e jY L     −=  , (2.37) 

with 0 a constant whose expression is given by: 

 
( )

2
0 1 0

0

exp
1 tanhi ed

je
j

h wK K x
U

S w bS U

 
 r

    = = − −      

 , (2.38) 

or again, after simplification by 
e
jU , 

 
( )

2
0

0

exp
1 tanhi dh w x

S w b

 
 r

    = − −      

 . (2.39) 

The gain  and the phase of (j) therefore ultimately have the following expression: 

 

( ) ( ) ( )

( ) ( ) ( )

0

arg a
2

,

r ,g

in

in

j j

j

Y L

Y j L

      


      

 = =



= = − +


 . (2.40) 

 It is to highlight that: 

- the gain () of the open loop does not depend on the flow speed 
e
jU  at the channel output 

and therefore on the pressure 
e
mP  at the mouthpiece input; 

- the phase () of the open loop depends on the speed of flow 
e
jU  through the delay 

0.4 e
j

w

U
 = , the latter being as much greater as 

e
jU  is weak. 

 

 By illustration, Figure 2.16 shows the frequency responses of the gain () and of the phase 

() for Examples 1 (in black) and 2 (in green) defined in paragraph 2.3. 
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Figure 2.16 – Frequency responses of gain () and phase () for examples 1 (in black) and 2 (in green)  

 

 From a physical standpoint, the value of n is associated with the hydrodynamic mode of 

the jet. In fact, based on the relation concerning the phase () of the open loop as given in 

equation (2.40), we can verify retrospectively that for a given steady harmonic system, the self-

oscillation threshold is situated at a frequency f0 lower than the resonant frequency. Therefore, 

at 0 = 2f0, it becomes possible to make the approximation. The self-oscillation condition on 

the phase of the open loop, namely ( )0arg 2,inY j L   then simplifies to: 

0 2π n π − =  ,              (2.41) 

or again, knowing that 0 = 2T0, 

 
0

1 2 2n
T


− =  , (2.42) 

finally: 

 0
1 2

2

n
T

−
=  . (2.43) 

By comparing Equations (2.35) and (2.43), 

 0 0
2 1 1 2

2 2

k n
T T

− −
=  , (2.44) 

Then, 

 1n k= −  . (2.45) 

 Hence, the value of n is directly linked to the hydrodynamic mode k of the jet. In typical 

operation (n = 0), the hydrodynamic mode is k = 1. All cases where |n| > 1 correspond to the 

wind systems necessarily obtained for low values of
e
mP  and 

e
jU , indicating large values of . 

Once the wind system can no longer be obtained, it becomes possible to examine the oscillation 
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conditions 
e
jU  for registers of higher orders (i.e., for resonance modes of larger order). This 

progression moves from the first register to the second, then to the third, and so forth. 

 These findings align with experimental observations (Kergomard & Chaigne, 2013). In 

recorders, wind sounds were historically considered nonexistent, due to the low value of the 

w/h ratio (Kergomard & Chaigne, 2013). However, the development of an artificial mouth 

regulated in pressure (refer to Chapter 3) enables the demonstration of the emergence of these 

systems in recorders, particularly at low pressure 
e
mP  values not used by the musician in normal 

music playing conditions.  

 For the two examples of illustrations presented in this chapter, the observation of (Figure 

2.16) makes it possible to affirm that the self-oscillation conditions in the two cases are 

obtained for n = 0 (normal operation), that is to say u = 0, which targets frequencies that 

satisfy the condition: 

 ( ),arg
2

inY Lj


  + =  . (2.46) 

Graphically, the solution frequencies of this equality are located at the intersections 

between the phase of the input admittance Yin(j,L) increased by /2 and the phase lines   

whose slopes  depend on the speed flow 
e
jU  and therefore pressure 

e
mP . Figure 2.17 shows 

the frequency responses of arg(Yin(j,L)+90° (in blue) and of   for examples 1 (
e
mP  = 400 

Pa, 26 m/se
jU = , in black) and 2 (

e
mP  = 1000 Pa,  41 m/se

jU = , in green) defined in 

paragraph 2.3. 

 

Figure 2.17 – Frequency responses of argYin (j, L) + 90 ° (in blue) and of * for  

example 1 (Pm = 400 Pa, Uj = 26 m/s, in black)  

and example 2 (Pm = 1000 Pa, Uj = 41 m / s, in green) defined in paragraph 2.3 
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 Taking into account the very low values of the damping factors of the input admittance 

Yin(j,L) of the resonator (see Remark 2.2), the anti-resonance and resonance frequencies are 

easily identified in (Figure 2.17).  They correspond to the intersection of the horizontal dotted 

line at 90°with the blue phase curve in the areas: 

- positive slopes for the anti-resonance frequencies; 

- negative slopes for the resonant frequencies. 

 Thus, still observing (Figure 2.17), it is interesting to note that the two intersections of the 

black line and the three intersections of the green line with the areas of positive slopes of the 

blue phase curve correspond to highly unstable operating points. (around anti-resonance 

frequencies) (Auvray R. , 2010). Conversely, the two intersections of the black line and the 

three intersections of the green line with the areas of negative slopes of the blue phase curve 

correspond to operating points where ranges of playing frequencies (registers) are accessible 

(around resonant frequencies).  

 This phase analysis must be completed by an analysis of the gain () of the open loop. If 

for a given playing frequency the latter is strictly greater than unity, then a perturbation (w,t) 

at the operational frequency is amplified. When this disturbance becomes too great, the non-

linear phenomena (saturation of the tanh(.) function) provide the conditions for self-oscillation. 

 

2.6 - Conclusion 

 The different elements of the sound production mechanism recalled in this chapter make 

it possible to capture the main phenomena observed, in particular, in recorder-type instruments. 

From the complete nonlinear model frequently used in the literature, a solution to improve its 

digital conditioning is proposed, allowing its programming using MatLab / Simulink. For the 

defined field of study, a detailed analysis of the simulated time responses highlights the 

presence of three phases during which the variations of the pressure at the inlet of the resonator, 

of the acoustic speed and of the lateral displacement of the air jet remain small around zero. 

The assumption of small variations being thus perfectly legitimate and realistic, two linearized 

models, one for the analysis of phase 1 (start of the simulation), the other for that of phase 3 

(self-oscillations) are used to further understand the phenomena involved.  

However, one should be aware of the limitations of this model when interpreting the 

results and comparing them with experimental data. This is the subject of Chapters 3 and 4. 
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Chapter 3- Design and Implementation of an Artificial 

Mouth for Wind Musical Instrument 

3.1 – Introduction 

Blowing machines, so-called artificial mouths, are used in musical acoustics when studying 

wind instruments, at least since 80 years (Ferrand & Vergez, 2008). As proposed in the 

literature review (Ferrand D. , Vergez, Fabre , & Blanc, 2010) (Takanishi, 2010) (Maki-Patola, 

2004) (Hamilton, 2019) (Paine, 2013) (R. Saar, 2014) (V. Chatziioannou, 2008), the objective 

of controlling the pressure inside the artificial mouth is considered in many applications: 

- to ensure quasi-static variation in order to analyze experimental bifurcation diagrams;  

- to reproduce typical signals (Heaviside step function, sinus, ramps…) to compare the 

dynamics of the real instrument to the one obtained through numerical simulations; 

- to mimic the time evolutions recorded on real musicians in order to analyse the 

strategies discovered over the years of practice. 

 

The objective of this chapter is the study of visco-thermal losses in a wind musical 

instrument from a hardware-in-the-loop simulation platform. The hardware part of the platform 

is made up of an automatic blowing machine connected to the mouthpiece of a wind instrument 

(Abou Haidar, Abi Zeid Daou, & Moreau, 2019). 

The software part of the platform is composed of resonator numerical model of the wind 

instrument including visco-thermal losses based on fractional model and the Control System 

(CS) used for regulating the pressure inside the artificial mouth. The first part of the project 

was the Computer Aided Design (CAD) of the platform. Thus, a digital simulator was 

developed with MatLab/Simulink software based on wind instruments artificial mouths found 

in several publications (Ferrand & Vergez, 2008) (Ferrand D. , Vergez, Fabre , & Blanc, 2010). 

The second part, presented in this chapter, is based on the realization of the test bench from the 

first part. The objective is to adjust the dynamic behavior of the numerical simulator to the real 

dynamic behaviour of test bench. The third and last part consists in modelling and analysing 

the visco-thermal losses present in the resonator of the wind instrument from fractional models 

(Andréa & Matignon , 1995).  
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3.2 – System Description 

The test bench is presented in Figure 3.1. A servo-valve is connected to an air compressor 

through a pressure reducer. The maximum pressure available is around 6 bars, and the pressure 

reducer (with its manometer) is used to adjust the pressure P1 upstream the servo-valve. The 

servo-valve is connected at the entrance of the artificial mouth itself whose internal volume V 

= 343 cm3 is the place where the air pressure Pm must be controlled. The artificial mouth blows 

into the mouthpiece of a recorder flute. A MatLab/Simulink/LabVIEW program is used in 

order to control the air pressure Pm. Added to that, a flow meter, a temperature and a pressure 

transducers are used in order to characterize the behavior of the different parts of this system.  

 

 Remark 

For the rest of the chapter, the following notation is adopted for a variable X(t): 

 ( ) ( )txXtX e +=  , (3.1) 

where Xe is a constant value fixed by a given operating point and x(t) the fluctuation around 

Xe. Moreover, ( )tX
~

 represents a measurement of X(t) and ( )tX̂  an estimate of X(t). 

 

Figure 3.2 presents the scheme of the experimental setup and Figure 3.3 the block diagram 

associated.  
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Figure 3.1 – Test bench photos 

 

 

 

Figure 3.2 – Scheme of the experimental setup 
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Figure 3.3 – Block diagram of the experimental setup 

 

3.3 – Specifications for the Control 

In the classical use of an artificial mouth, the pressure ( ) ( )tpPtP m

e

mm +=  upstream the 

mouthpiece of the recorder flute (inside the artificial mouth) is tuned by hand through the 

pressure reducer and its manometer. When the compressed air is produced by a compressor 

such as that presented in Figure 3.1, the pressure ( ) ( )tpPtP e

111 +=  upstream the servo-valve, 

fluctuates because the compressor tank being in need to be recharged once its pressure becomes 

below a certain level. This is the reason why it is difficult to manually control the pressure. 

Thus, the purpose of automatic pressure control inside the artificial mouth is to increase the 

accuracy by rejecting the pressure fluctuation p1(t) considered as a disturbance, while satisfying 

robust tracking of the reference pressure Pref(t) (Ferrand & Vergez, 2008). To recall, the final 

objective of this work project is the study of visco-thermal losses in a wind instrument based 

on fractional model. In order to facilitate the analysis of this complex problem, the reference 

pressure is chosen such as: 

 ( ) ( ) ( )tfPPtpPtP ref

e

refref

e

refref 0

0 2cos +=+= . (3.2) 

For all these reasons, the architecture of the control system presented in Figure 3.4 consists 

of a Pref(t) reference generator, a Uff(t) feedforward control and a Ufb(t) feedback control, the 

robust controller of which is designed with the CRONE methodology (Oustaloup A. , 1995) 

(Oustaloup A. , 1991) (P. Lanusse, 2013) (Lanusse P. , 1994) (Lanusse P. , 2010). 

 

 

Figure 3.4 – Architecture of the Control System (CS) 
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3.4 – System Modelling and Validation 

As presented in Figure 3.3, the experimental setup is divided into two parts:  

 

- the first one consists of a voltage-current amplifier, a servo-valve connected to an air 

compressor via a pressure reducer. The inputs of this part are P1(t) the pressure upstream 

the servo-valve and Uc(t) = Uff(t) + Ufb(t) the control signal generated from MatLab/ 

Simulink/ LabVIEW, whereas the output is Qsv(t) the flow rate delivered by the servo-

valve. This last device presents a nonlinear behavior;  

- the second part is the artificial mouth and the mouthpiece of the recorder flute. The input 

of this part is Qsv(t) the flow rate from the servo-valve, whereas the output is ( )tPm

~
 the 

pressure measured within the artificial mouth, ( ) ( ) ( )tntPtP mm +=
~

 where n(t) is the 

measurement noise. 

 

3.4.1 – Modelling and Validation of the Servo-Valve 

The servo-valve is designed by Bürkert firm (ref. Bürkert 2871). Based on previous works 

(Ferrand & Vergez, 2008) (Ferrand D. , Vergez, Fabre , & Blanc, 2010) (Abou Haidar., Abi 

Zeid Daou, & Moreau, 2018) (G. Abou Haidar, 2019), it has been shown that the servo-valve’s 

behavior can be divided in two parts: a nonlinear static part and a linear dynamic part.  

Figure 3.5 shows the block diagram of the servo-valve. In order to express the output of the 

nonlinear part, a static flow Qstat is introduced. 

 

 

Figure 3.5 – Block diagram of the servo-valve 

 

The linear dynamic part between Qstat and Qsv(t) is represented by a second order transfer 

function Hsv(s) with a unit static gain (Ferrand & Vergez, 2008) (Ferrand D. , Vergez, Fabre , 

& Blanc, 2010)  (Abou Haidar., Abi Zeid Daou, & Moreau, 2018) (Abou Haidar, Abi Zeid 

Daou, & Moreau, 2019): 

 ( )
( )2

00 //21

1

 ss
sH sv

++
= , (3.3) 

where  = 0.3 and ω0 = 2π 240 rad/s. 
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As already mentioned, the output flow rate Qsv = f(Uc, P1) depends on the control voltage 

signal Uc (that may vary between 0 and 10V) and the pressure P1 upstream the servo- (max[P1] 

= 6 bar). 

Figure 3.6 shows the static operating domain obtained from measurements for 

  V10;0cU  and  bar6;11 P .  

 

 

Figure 3.6 – Static operating domain obtained from measurements 

 

We can see a dead zone where Qsv = 0 whatever the value of ( ) 1min;0 PUUc  , and a 

variation zone of Qsv where the saturation, max[Qsv], depends on max[Uc] = 10 V and max[P1] 

= 6 bar. In the variation zone, for a given operating point O defined by ( )ee

c PUO 1; , the flow 

rate Qsv(t, Uc, P1) can be written as follow: 

 ( ) ( ) ( )111 ,,,,, PUtqPUQPUtQ csv

ee

c

e

svcsv += , (3.4) 

where 

 ( ) ( ) ( ) ( ) ( )tpPUKtuPUKPUtq ee

cqpc

ee

cqucsv 1111 ,,,, += , (3.5) 

and ( ) ( )
e

e
c

e

e
c

P

U

svee

cqp

P

Uc

svee

cqu
p

Q
PUK

u

Q
PUK

11

1

11 ,,,



=




=  . (3.6) 

The estimated value quK̂  of the static gain Kqu is obtained from: 

 ( )
  ( )

( ) 
  ( )1min

1max

1.Vl.mn

1
max

0,
~

max
~

ˆ
11 PUU

PUQ

PU

Q
PK

c

sv

c

sv
qu

−

−
=




=

−−

, (3.7) 

with Umax = max[Uc] = 10 V. 
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Figure 3.7 shows the variation of quK̂  versus  bar6;11 P  that can be considered as linear 

and modelled by: 

 ( )
   

BPAPKqu +=
−− bar

1

.Vl.mn

1
11

ˆ , (3.8) 

with 




=

= −

1-1-

1-1-1

.Vl.mn4.3

.bar.Vl.mn99.0

B

A
. (3.9) 

 

Figure 3.7 – Variation of 𝑲̂𝒒𝒖versus 𝑷𝟏 ∈ [𝟏; 𝟔]𝒃𝒂𝒓 

 

The non-linear static part and the linear dynamic part of the servo-valve are integrated in a 

digital simulator programmed with MATLAB / Simulink. 

 

3.4.2 – Choosing an Operating Point 

The limits of the servo-valve operating domain being estimated, the choice of an operating 

point ( )ee

c PUO 1;  and the amplitude of the variations around this point is essential in order 

to avoid the risks of saturation of the flow rate Qsv(t). 

After observing the pressure P1(t) during numerous tests, the fluctuations p1(t) are 

considered to be limited between -1 and + 1bar. This is the reason why we chose bar51 =eP , 

and so  bar6;41 P . For this variation range of P1, the variation range of Uc without 

saturation of Qsv has as limits ( ) V55.7bar4min1min ==PU  and Umax = 10 V, so: 

 ( ) ( ) ( ) V10V55.7 += tUtUtU fbffc , (3.10) 

with ( ) ( )0

0 2cos fUUtU c

e

cff += . (3.11) 

 By choosing V5.8=e

cU  and V5.00 =cU , the variation range of the feed-forward control 

signal Uff is given by: 
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( ) 
( ) 





==−=

==+=

V55.7V8min

V10V9max

min

0

max

0

UUUtU

UUUtU

c

e

cff

c

e

cff
, (3.12) 

and the variation range of the feedback control signal Ufb is given by: 

 
( )  ( ) 
( )  ( ) 





−=−=

+=−=

V45.0minmin

V1maxmax

min

max

tUUtU

tUUtU

fffb

fffb

. (3.13) 

Figure 3.8 shows the chosen operating point ( )bar5;V5.8 1 == ee

c PUO  and the linear 

static operating domain defined by   V10;55.7cU  and  bar6;41 P . 

 

Figure 3.8 – Operating point O and linear static operating domain 

 

3.4.3 – Modelling and Validation of the Artificial Mouth 

The artificial mouth is implemented using a cubic box whose input is the flow rate Qsv(t) 

coming from the servo-valve and the output is the pressure Pm(t) inside the box. The expression 

of the pressure Pm(t) is given by the state equation of perfect gases: 

 ( ) ( )tM
V

Tr
tPm = , (3.14) 

where  

- r = 287 J.kg-1.K-1, the thermodynamic constant of air;  

- T =293.5°K, the temperature of air inside the box;  

- M(t) is the mass of the air inside the box of volume V. This value depends on the variation 

of the flow between the input (represented by Qsv(t)) and the output (represented by 

Qmp(t)). As small variations are considered, the air density ρ is considered to be constant. 

Thus, the expression of M(t) is given by:  
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 ( ) ( ) ( )( ) ( )0
0

MdQQtM

t

mpsv +−=  r , (3.15) 

where the expression of Qmp(t) is given by Bernoulli law (Ferrand D. , Vergez, Fabre , & Blanc, 

2010): 

 
( ) ( )tPtQ mpmp =   , (3.16)  

where α is a coefficient estimated from measurements and ΔPmp(t) = Pm(t) - Patm (Patm is the 

relative atmospheric pressure which is zero by definition, so ΔPmp(t) = Pm(t)). By introducing 

in relation (3.15) the pressure Pm(t) from relation (3.14), namely: 

 ( ) ( ) ( )( ) ( )0
0

M
V

Tr
dQQ

V

Tr
tP

t

mpsvm +−=  
r

, (3.17) 

we obtain 

 ( ) ( ) ( )( ) ( )0
1

0

m

t

mpsv

am

m PdQQ
C

tP +−=   , (3.18) 

where Cam is the pneumatic capacity associated with the volume V of the artificial mouth given 

by: 

 
Tr

V
Cam

r
=  , (3.19) 

and Pm(0) the initial value of the pressure Pm(t) given by 

 ( ) ( )00 M
V

Tr
Pm =  . (3.20) 

It is important to note that in static e

sv

e

mp QQ = , and for a quasi-static variation ( ) ( )tQtQ svmp  .  

Figure 3.9 shows the plot of Qsv(t) versus Pm(t)0.5 for a quasi-static variation. The linear 

fitting (in red) of the measurements (x) leads to an estimate ̂  given by: 

 -0.5-136-0.5-1 Pa.s.m1033.18Pa.l.mn1.1ˆ −== . (3.21) 
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Figure 3.9 - Plot of Qsv(t) vs sqrt(Pm(t)) for a quasi-static variation 

 

 From relations (3.16), (3.17) and (3.20), the behavior of the artificial mouth is integrated 

in the digital simulator programmed with MATLAB / Simulink. 

3.4.4 – Linearized Model of the Plant 

In order to design the CRONE controller in frequency domain, a linearized model of the 

plant is derived around the operating point O. Thus, the pressure Pm(t) and the flow rate Qmp(t) 

can be expressed as follows:  
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 , (3.22) 

where ( ) ( )tp
R

tqPQ m

mp
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e

m

e

mp

1
and ==  , (3.23)  

with  
e

mPPm

mp

mp PP

Q

R e
mm

2

1 
=




=

=

 . (3.24)  

Figure 3.10 shows the block diagram of the artificial mouth linearized model. 

 

Figure 3.10 – Block diagram of the artificial mouth linearized model 
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The transfer function H1(s) between ( ) ( ) tpsP mm LT=  and ( ) ( ) tqsQ svsv LT= , where LT 

represents Laplace Transform, is given by: 

 ( )
( )
( ) 1

0
1

/11 s

H

sCR

R

sQ

sP
sH

ammp

mp

sv

m

+
=

+
== , (3.25) 

where  
1110 /1and,  === ammpmp CRRH .  (3.26) 

Finally, the complete linearized model used for the design of the control law is represented 

by the transfer function G(s,P1) between ( )sPm
 and ( )sUc

 as follow:  

 ( )
( )

( )( )( )1

2

00

10
1

/1//21
,

 sss

PG
PsG

+++
=  , (3.27)  

where  

 G0(P1) = Kqu(P1) H0. (3.28) 

 

For the design of the robust control law, the main parameter’s values used are: 

 

 
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
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=
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−−−

−−−

rad/s8.172;VPa5.412;325

mPa1038.3;msPa1065.2ˆ

Vsm1057.15;27.12
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1

1

0

3936

1135

1

G

CR

K

PP

ambec

qu

e

m

  , (3.29) 

and three transfer functions are defined for the minimum (4 bar), the nominal (5 bar) and the 

maximum (6 bar) cases: 

 ( ) ( ) ( )bar6,,bar5,,bar4, sGsGsG maxnommin  . (3.30) 

 

Figure 3.11 presents the Bode plots of G(jω) for three values of the pressure: P1 = 4 bar (in 

blue), P1 = 5 bar (in black) and P1 = 6 bar (in red).  



100 | P a g e  
 

 

Figure 3.11 – Bode plots of G(j) for three values of the pressure:  

P1= 4 bar (in blue), P1 =5 bar (in black), P1 =6 bar (in red) 

 

3.5 – Controller Design 

The feedforward part is based on the nominal inverse static gain of the linearized model 

(G0_nom = G0(5 bar)) used for the design of the feedback control law, namely: 

 ( ) ( )tPGtU refnomff

1

_0

−=    . (3.31)  

 

3.5.1 – User Specifications 

The user specifications of the control system defined from a preliminary work (Ferrand & 

Vergez, 2008) (Lanusse P. , 1994) are the following: 

- a phase margin MØ > 40°; 

- an open-loop gain crossover frequency ωu   2π 10 rad/s; 

- a steady-state error equal to 0; 

- a variation range of Ufb given by V1V45.0 − fbU . 

 

3.5.2 – CRONE Control-System Design (CSD) Methodology 

The CRONE CSD methodology is a frequency-domain approach developed since the 

eighties (Oustaloup A. , 1995) (Oustaloup A. , 1991) (Lanusse P. , 1994). It is based on the 

common unity-feedback configuration presented in Figure 4. Three CRONE CSD methods 

have been developed, each one of them denotes a generation of CRONE design. The general 

form of the nominal open-loop transfer function βnom(s) of the second generation CRONE 

control is defined by: 
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 The first part of the above equation (3.32) represents the behavior at low frequencies with 

an integer order nl, the second represents the behavior at middle frequencies with non-integer 

order n varying between 1 and 2 around ωu, and the last represents the behavior at high 

frequencies with an integer order nh. As for the gain β0, it is defined by (Lanusse P. , 1994): 

 ( ) ( )( )( )
( )( )( ) 2/22/2

0 /1/1/
nn

hu

nn

lu

n

lu

hl
l

−−

++=  .  (3.33) 

With MØ = 45°, ωu = 2π10 rad/s,  Pa/V5.412;3250 G  and in accordance with the 

methodology described in (Oustaloup A. , 1991), the parameter’s values of the open-loop 

transfer function are: 

 




===

===

SI92.32,rad/s44420,rad/s79.5

2,5.1,2

0 hl

hl nnn
 . (3.34) 

 When the nominal open-loop transfer is determined, the fractional controller CF(s) is 

defined by its frequency response:  

 ( ) ( ) ( ) jGjjC nomnomF /=  . (3.35) 

 The synthesis of the ideal frequency response CF(j) consists of identifying a rational 

frequency response CR(j) given by:  

 ( ) ( ) ( ) jAjBjCR /=  , (3.36) 

where B(jω) and A(jω) are polynomials of specified integer degrees nB and nA. All the 

frequency-domain system identification techniques can be used (Oustaloup A. , 1991). Figure 

3.12 presents the Bode plot of the controller CR(jω).  
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Figure 3.12 – Bode plot of CR(j) 

 

3.6 – System Performance 

3.6.1 – Frequency Domain 

Figure 3.13 presents the Bode plots (a) and the Nichols loci (b) of the open-loop transfer 

function β(jω) and Figure 3.14 the Bode plots of complementary sensitivity function T(jω) (a), 

of sensitivity function S(jω) (b), of control effort sensitivity function CS(jω) (c) and of plant 

input sensitivity function GS(jω) (d) obtained with the CRONE controller for the three cases 

(min, nom, max).  

As one can observe, the phase margin MØ (Figure 3.13.b) and the resonant peaks QT of T(jω) 

(Figure 3.14.a) and QS of S(jω) (Figure 3.14.b) remain constant for all the cases thus showing 

the robustness of stability degree (Oustaloup A. , 1991).  
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(b) 

Figure 3.13 – Bode plots (a) and Nichols loci (b) of β(jω) obtained with the CRONE controller for the 

three cases: min (4 bar in blue), nom (5 bar in black) and max (6 bar in red) 
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(a)          (b) 

 

(c)          (d) 

 

Figure 3.14 – Bode plots of T(jω) (a), of S(jω) (b), of CS(jω) (c) and GS(jω) (d) obtained with the CRONE 

controller for the three cases: min (4 bar in blue), nom (5 bar in black) and max (6 bar in red) 

 

3.6.2 – Time Domain 

The reference pressure Pref(t) is chosen such as: 
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0

  , (3.37) 

with t0 = 0.1 s, T0 = 1 s, Pa750=e

refP  and Pa1850 =refP . 

It is important to note that the gain of the feedforward part is calculated only for the nominal 

case P1 = 5 bar and that it is not adjusted when P1 varies upstream the servo-valve. 

Figure 3.15 presents time responses of Pref(t) and Pm(t) (a) (b), of error signal ɛ(t) = Pref(t) - 

Pm(t) (c) (d), and of control signal Uc(t) (e) (f) obtained without feedback (a) (c) (e) and with 

feedback (b) (d) (f) for the three cases (min, nom, max).  
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We observe that the robust feedback and feedforward control system ensures a good 

pressure tracking (b) (d), not only for the nominal case (P1 = 5 bar), but also for the minimal 

(P1 = 4 bar) and maximal (P1 = 6 bar) cases. Without the robust feedback control system (a) 

(c), pressure tracking is less effective. In all cases, the control signal Uc(t) (e) (f) remains within 

the variation range defined by Umin and Umax. 

 
(a)           (b) 

 
(c)           (d) 

 
(e)           (f) 

Figure 3.15 – Time responses of Pref(t) and Pm(t) (a) (b), of error signal ɛ(t) (c) (d), and of control signal 

Uc(t) (e) (f) obtained without feedback (a) (c) (e) and with feedback (b) (d) (f) for the three cases:  

min (4 bar in blue), nom (5 bar in black) and max (6 bar in red) 
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3.7 – Conclusion 

The first important work of this chapter was to mathematically describe, model, and 

simulate the linear and nonlinear parts of the servo valve and the artificial mouth and try to 

linearize their modeled equations. Moreover, understanding the influence of pressure P1 on the 

limits of the servo-valve operating range is essential in order to be then able to define a strategy 

for automatic pressure Pm control inside the artificial mouth. The second important step is the 

design of the control architecture for a robust control of the pressure Pm. The application of the 

CRONE system design methodology was able to achieve the target set with very good dynamic 

performance and respecting the linear operating range of the servo valve.  
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Chapter 4- Analysis of the Influence of Fractional 

Order on the Stationary Periodic System 

4.1 – Introduction 

This chapter 4 uses the developments of chapters 1, 2 and 3 in order to analyze the 

influence of the fractional order m on the stationary periodic system. As a reminder, Figure 4.1 

illustrates the progression and sequencing of the chapters of this thesis. 

 

Figure 4.1 - Illustration of the progression and sequencing of the chapters of the thesis dissertation 

 

Thus, from the extension of the fractional model proposed in chapter 2, it is possible with 

a single high-level parameter, the order m in this case, to easily vary in numerical simulation, 

the visco-thermal losses, while from an experimental point of view, it would be necessary to 

manufacture and test a large number of resonators with dimensions (length L and radius r), 

roughness (or surface condition) and different materials (wood, plastic, etc.). 

This chapter therefore begins by recalling the organization of the global simulator 

developed under MatLab / Simulink from the work presented in the first three chapters. Then, 

an analysis in the frequency domain of the influence of the order m is developed, first in the 

case of the impedance of the resonator established in Chapter 2, then in the case of the defined 

open-loop transfer function in Chapter 3. This analysis continues in the time domain with the 

responses from the global simulator by using the scenarios of the two examples of Chapter 3. 

Finally, the main contributions of this chapter are recalled in the conclusion. 

 

 

Qsv(t)

Pm(t)

Artificial mouth

Part 1 = Resonator

Part 2 = Exciter + Resonator

Part 3 = Artificial mouth + Mouth piece

Part 4 = Artificial mouth + Mouth piece + Exciter + Resonator
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4.2 – Simulator of the Artificial Mouth – Recorder Set: Reminder 

 Figure 4.2 shows the block diagram of the global simulator used in this chapter. It consists 

of: 

- the artificial mouth simulator (Chapter 3); 

- the exciter simulator (Chapter 2). 

 

The artificial mouth simulator has undergone a readjustment with respect to the test bench 

developed specifically for this study. The regulation loop makes it possible, in particular, to 

limit the sensitivity of the pressure Pm(t) within the pneumatic capacity to variations in the 

supply pressure P1(t) of the servo valve. As part of the analysis of the influence of fractional 

order on the stationary periodic system, the reference pressure Pref(t) is a constant equal to 400 

Pa (example 1) and 1000 Pa (example 2). 

The exciter simulator, on the other hand, is the one developed in Chapter 2. The fractional 

order is present in the acoustic tube model studied in Chapter 1 as a resonator. 

 

Figure 4.2 - Functional diagram of the entire simulator 

 

4.3 – Frequency domain analysis of the influence of fractional order 

4.3.1 – Case of the Resonator Impedance 

As a reminder (refer to Chapter 2) and for the field of study defined within the framework 

of this thesis work, the input admittance Yin(s) of the acoustic tube (resonator) of length L and 

radius r has the expression: 

 ( ) ( )
( )( )

1

tanh
in m

ac

S
Y s I s

Z z s
=   , (4.1) 
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and ( )
,

,

1

m

r m

m
L

r m

s

s
z s

s







 
+      =  

   
  
 

  , (4.3) 

where Zac = raca represents the characteristic acoustic impedance, S the section of the acoustic 

tube, and where the transitional frequencies r,m, and L have the expression: 

  (4.4) 

 

Still as a reminder, the numerical values retained for the study are r = 5x10-3m, L = 0.3 m, 

with a temperature of 25°C where ra = 1.184 kg/m3 and ca = 346.3 m/s, K0 = 2.98x10-4. In this 

case, L = 1 154 rad/s (184 Hz). As for r,m, Figure 4.3 shows its plot as a function of the order 

m and Table 4.1 gives precisely the values corresponding to the 5 orders retained thereafter.  

 

Figure 4.3 – Plot of ωr,m as a function of the order m 

 

 

Table 4.1 – Values of ωr,m as a function of the order m 
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0 0.25 0.5 0.75 1

rad/s 0 4.4 10
-3 4.92 34.88 82.55

Hz 0 7 10
-4 0.783 5.55 13.14

m

 r,m

 

 

In addition, the expression (4.1) of Yin(s) can be put in a form YN(s) composed of an 

integrator of order 1 in cascade with N fractional cells of order 2, namely: 

 ( ) ( )limin N
N

Y s Y s
→

=   , (4.5) 

with ( )

2 2

0
2 2

1

1 2

1 2

m

N zi
zi zi

N m
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pi
pi pi

s s

Y
Y s

s
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 
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 

−

−
=

 
    

+ +    
    =

    
 + +   

    
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   , (4.6) 

where 0
a

S
Y

Lr
=    (4.7) 

and 

( )

( )

0
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zi zi L zi
zi
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pi pi L pi
pi

K L
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r c

K L
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r c

  

  

  
 = =  
  


 
= =    

  

  , (4.8) 

where czi and cpi are constants resulting from the procedure allowing to pass from Yin(s) to 

YN(s). This procedure, presented in appendix A, is composed of 4 steps: 

- Step 1: finite expansion of the function tanh(z) into a continuous fraction in z; 

- Step 2: reduction of the continuous fraction to a ratio of two polynomials in z; 

- Step 3: factorization of each polynomial in z; 

- Step 4:  rewriting Yin(s) in the form YN(s), namely an integrator of order 1 in cascade with a 

product of N fractional cells of order 2. 

From a numerical point of view, there is no limitation on the choice of the number of cells 

N, the precision being the better the number N is high. Theoretically, N must be infinite. Thus, 

any finite value of N causes an edge effect on the last cell linked to the truncation. This is the 

reason why we must choose an expansion of order N + 1 to have good precision with N cells. 

From an analytical point of view, the search for the roots of the polynomials obtained in 

step 2 (research necessary for factorization at the level of step 3) limits N to 2. Taking into 



111 | P a g e  
 

account the edge effects, the analytical developments do not can only be used for the first cell 

which corresponds to the first mode of the resonator. 

Figure 4.4 shows on the range [100; 2000] Hz for m = 0.5 the frequency responses of Yin(s) 

(in black) and of YN(s) (in red) for N = 2. The integrative behavior of order 1 present at low 

frequencies is perfectly reproduced by the equation (4.6), as well as the behavior associated 

with anti-resonance and resonance of the first mode. Beyond that, the side effect linked to the 

truncation (N = 2) appears clearly. 

 

Figure 4.4 – In the range [100; 2000] Hz and for m = 0.5, frequency responses of Yin(s) (in black) and of YN 

(s) (in red) for N = 2 

 

However, the analysis of expressions (4.6) and (4.8) shows that each cell of rank i is 

completely defined as soon as the two constants czi and cpi are known. Based on this 

observation, a specific method is proposed in 3 steps. 

Step 1 consists of determining the pulsations zi and pi solutions of the equation: 

 ( )arg 0inY j =   , (4.9) 

knowing that the phase curve alternates between -90 ° and + 90 ° (Figure 4.4), and that the 

zi correspond to solutions for which the slope of the phase curve of Yin(j) is positive (anti- 

resonance), i.e.: 
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and the pi to the solutions for which the slope of the phase curve of Yin(j) is negative 

(resonance), namely: 

 ( )arg 0

pi

in
d

Y j
d  


 =

 . (4.11) 

Given the complexity of the expression of Yin(j), the search for the roots is done 

numerically at the scale of each cell of rank i.  

Then, for a given pulse L, the constants czi and cpi are calculated in step 2 in accordance 

with relations (4.8), namely: 

and 

zi
zi

L

pi
pi

L

c

c










=




 =


  . (4.12) 

Finally, for a given order m, step 3 makes it possible to calculate the damping factors zi 

and pi of YN(s) in accordance with relations (4.8), namely: 

 

( )

( )

0

0

2

2

m

zi
zi

m

pi
pi

K L
m m

r c

K L
m m

r c





  
 =  
  




 
=    

 

  . (4.13) 

Figure 4.5 shows on the range [100; 4000] Hz for m = 0.75 the frequency responses of 

Yin(s) (in black) and of YN(s) (in red) for N = 4, minimum value to cover the field of study 

defined within the framework of this thesis work. Comparing the responses in Figure 4.4 allows 

us to appreciate the effectiveness of the proposed method. Indeed, the behavior associated with 

the anti-resonance and the resonance of the first three modes is perfectly reproduced. Beyond 

that, the side effect linked to the truncation (N = 4) appears clearly. 
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Figure 4.5 – In the range[100; 4000] Hz and for m = 0.75, frequency responses of Yin(s) (in black) and of 

YN(s) (in red) for N = 4 

 

 Remark 

The denominator Den(s) of YN(s) is defined by: 

 ( ) ( )
1

N

i

i

Den s s Den s

=

=    , (4.14) 

with ( )

2 2

1 2

m

i pi
pi pi

s s
Den s 

 

−
   

= + +   
   
   

  . (4.15) 

The roots of Den(s) are solution of Den(s) = 0. Apart from the obvious root s = 0, the 

search for the roots is done by solving 

 ( )
1

0

N

i

i

Den s

=

=   , (4.16) 

which amounts to looking for the roots of each Deni(s) polynomial. 

The interested reader will find in the thesis (Ivanova, 2017) developments concerning, in 

particular, the search for the roots of a polynomial of the form of Deni(s).  
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Note that the ratio pi/zi only depends on cpi and czi namely: 

pi pi

zi zi

c

c






=


  ,         (4.17) 

and that the ratio pi/zi depends on cpi, czi and m, that is to say: 

i i

i i

m

p z

z p

c

c





 
=  

 
 

  .          (4.18) 

Like the recursive factors  and  used by Oustaloup (Oustaloup A. , 1995) to establish 

the link between non-integer derivation and frequency recursion, ratios i and i (whose values 

depend here on rank i) are introduced: 
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
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  . (4.19) 

Taking into account relations (4.18) and (4.19), the ratio of the damping factors zi and 

pi of the same cell of rank i is then written only as a function of i and of the order m, that is 

to say: 

 
1

1i

i

p

m
z i



 
=    , (4.20) 

and the passage relations of the parameters of the cell of rank i and those of the cell of rank i 

+ 1, are given by 
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

  . (4.21) 

Relations (4.21) show that: 

- the resonance frequencies pi and anti-resonance zi are independent of the order m and 

increase with rank i; 

- the damping factors depend on the order m and decrease with rank i for a fixed m. 



115 | P a g e  
 

Table 4.2 specifies the different parametric values which characterize the cells of ranks 1 

to 4 within the framework of the work of this thesis. 

Table 4.2 – Parametric values which characterize the cells of ranks 1 to 4 in the framework of the work of 

this thesis 

Rank i 1 2 3 4

 zi  (rad/s) 1814 5412 9030 12660

 pi  (rad/s) 3639 7218 10860 14460

c zi 1.572 4.688 7.823 10.967

c pi 3.153 6.253 9.408 12.527

 i 2 1.334 1.203 1.142

 i 1.487 1.251 1.166

 i  i 2.983 1.668 1.402  

 

Figure 4.6 presents the variation of the damping factors z1 and p1 of rank 1 (1st mode of 

the resonator) according to the order m ranging between 0 and 1. These plots are obtained from 

the analytical relations (4.13). 

These plots show two zones: 

- Zone 1, where the damping factors increase with the order m, with m = 0 (conservative case) 

up to a maximum value, that is to say: max [z1] = 0.0265 for m = 0.6 and max [p1] = 0.0186 

for m = 0.43; 

- Zone 2, where, on the contrary the damping factors decrease until a value of z1 = 0.0228 and 

p1 = 0.0113 for m = 1. 
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Figure 4.6 – Variation of the damping factors ζz1 and ζp1 of the first mode of the resonator as a function of 

the order m between 0 and 1 

 

Moreover, the expressions (4.13) of z1 and p1 clearly show that for a given rank i and an 

order m, the damping factors are all the greater (and therefore the visco-thermal losses) as the 

length L of the acoustic tube is large and its radius r is small. 

Figures 4.7 and 4.8 show the frequency responses of the input admittance Yin(s) of the 

resonator for different values of the fractional order m between 0 and 1, with the frequency axis 

scaled: 

- logarithmic over the range [100; 2000] Hz (Figure 4.7); 

- linear over the range [100; 1400] Hz (Figure 4.8). 

0 0.25 0.5 0.75 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Order m

D
a
m

p
in

g
 f

a
c
to

r

 

 


z1


p1



117 | P a g e  
 

 

Figure 4.7 – Bode plots of the admittance Yin(s) of the resonator for different values of the fractional order 

m over the range [100; 2000] Hz 

 

Figure 4.8 – Frequency responses Yin(jω) of the resonator admittance for different values of the fractional 

order m with the linear scale frequency axis in the range [100; 1400] Hz 
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In addition to Figures 4.7 and 4.8, Figures 4.9 to 4.11 present the distributions: 

- anti-resonance zi(o) and pi(x) resonance frequencies (Figure 4.9), 

- damping factors zi (Figure 4.10.a) and pi (Figure 4.10.b), 

- constants czi and cpi (Figure 4.11.a), as well as factors i, i and i*i (Figure 4.10.b), 

according to the first 4 modes admittance of the Yin(s) of the resonator. 

All its figures clearly illustrate the remarks already made concerning the different 

parameters of YN(s) as a function of rank i. 

 

Figure 4.9 – Distribution of anti-resonance ωzi (o) and resonance ωpi (x) frequencies according to the first 

4 modes of the admittance Yin(s) of the resonator 
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(a) 

 
(b) 

Figure 4.10 – Distribution of damping factors ωzi (a) and ωpi (b)according to the first 4 ranks of the YN(s) 

admittance of the resonator for 5 values of the order m (0; 0.25; 0.5; 0.75; 1) 
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(a) 

 

(b) 

Figure 4.11 – Distribution of the constants czi(o) and cpi(x) (a); αi (o), ηi (x) and αi (o)*ηi (x) (b) according to 

the first 4 ranks of the admittance YN(s) of the resonator 
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4.3.2 - Case of the Open Loop Transfer Function 

The frequency domain analysis of the influence of the fractional order m continues in this 

section with the open-loop transfer function, (s), established in Chapter 3.  

As a reminder, its frequency response (j) in steady harmonic system resulting from the 

linearization carried out in Chapter 3 has the expression: 

 ( ) ( )0 in
jj j e jY     −=  , (4.22) 

with 0 a constant whose expression is given by: 

 
( )

2
0

0

exp
1 tanhi dh w x

S w b

 
 r

    = − −      

 , (4.23) 

the gain and the phase of (j) expressed as: 

 

( ) ( ) ( )

( ) ( ) ( )
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

= = − +


 . (4.24) 

Always as a reminder: 

- the gain () of the open loop does not depend on the flow speed 
e
jU at the output of the 

channel and therefore on the pressure Pm = cst at the input of the mouthpiece; 

- on the other hand, the phase () of the open loop depends on the speed of flow 
e
jU   through 

the delay 
0.4 e

j

w

U
 = , the latter being as much greater as 

e
jU is weak. 

In addition, for this linearized loop system within the scope of study of this thesis work, 

the two auto-oscillation conditions are: 

and 

( ) ( )

( ) ( )

0 1
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u u u u

u u
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j j

     


     

 = = =





= = − + =

 , (4.25) 

u being the pulsation at unity gain. 

In fact, as already specified in Chapter 3, the stationary periodic system observed in the 

time domain (see following paragraph), in particular in example 1 (Pm = 400 Pa) and example 

2 (Pm = 1000 Pa), does not result from these self-oscillation conditions. This system is the result 

of an unstable behavior (in closed loop) which associated with the nonlinear phenomenon of 

saturation of the tanh(.) function leads to this steady periodic system. 
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These conditions of stationary periodic system (in closed loop) result in open loop by a 

gain () strictly greater than the unit with the pulsation  for which the phase () is zero, 

that is to say: 

If at  = ,  

 

( ) ( ) ( )

( ) ( ) ( )

0 0 0 0

0 0 0 0 0

arg arg 0
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in
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j jY
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
= = − + =





= = 


 , (4.26) 

then the system is unstable (closed loop). 

For the five values of the order m (0; 0.25; 0.5; 0.75; 1), Figures 4.12 and 4.13 show the 

frequency responses (j) of the open-loop transfer function in the planes: 

- from Bode (Figure 4.12); 

- from Black-Nichols (Figure 4.13), 

for 

- Pm = 400 Pa (Figures 4.12.a and 4.13.a); 

- Pm = 1000 Pa (Figure 4.12.b and 4.13.b). 

Figure 4.14 is a zoom of Figure 4.13 in the Black-Nichols plane around the point (0°, 0 dB), or 

(0°, 1), thus allowing to better visualize the conditions (4.26). 
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(a) 

 
(b) 

Figure 4.12 – Bode diagrams of the frequency response β(jω) in open loop  

for Pm = 400 Pa (a) and for Pm = 1000 Pa (b),  

for 5 values of the order m (0; 0.25; 0.5; 0.75; 1) 
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(a) 

 
(b) 

Figure 4.13 – Frequency responses β(jω) in open loop in the Black-Nichols plane  

for Pm = 400 Pa (a) and for Pm = 1000 Pa (b), 

for 5 values of the order m (0; 0.25; 0.5; 0.75; 1) 
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(a) 

 

(b) 

Figure 4.14 – Zoom of the frequency responses β(jω) in open loop in the Black-Nichols plane  

around the point (0°; 0 dB)  

for Pm = 400 Pa (a) and for Pm = 1000 Pa (b),  

for 5 values of the order m (0; 0.25; 0.5; 0.75; 1) 
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The observation of the frequency responses (j) of the open loop, in particular in the 

Black-Nichols plane with Figure 4.13, makes it possible to affirm that for the two values of the 

pressure Pm = 400 Pa and 1000 Pa, and whatever the value of m between 0 and 1, at the pulse 

0 for which the phase of the open loop is equal to 0° (horizontal line in blue on the phase 

diagrams of Figures 4.12.a and 4.12. b), the open loop gain value is greater than 1 (i.e. 0 dB). 

As a reminder, the analysis of the stationary periodic system presented in Chapter 3 shows 

that for a constant pressure Pm at the entrance of the mouthpiece (that is to say at the level of 

the artificial mouth) belonging to a very precise interval, the pulsation 0 (for which the phase 

(0) is zero) is very close to the pulsation pi of the mode i concerned. To illustrate graphically 

the search for the value of 0, the condition (0)  = 0 is rewritten in the form: 

 ( ) ( )0 0 00 arg
2

in jY


    = = + =  , (4.27) 

the solution  resulting from the intersection of the plots associated with the expressions 

located to the right and to the left of the equal sign of relation (4.27). 

Thus, Figure 4.15 presents the frequency responses of /2 + arg(Yin(j)) for five values of 

the order m, as well as the line associated with the expression   for: 

- example 1 where Pm = 400 Pa (right in blue Figure 4.15.a) and where mode 1 is concerned 

(p1 = 3 639 rad/s, is 579.5 Hz), the solution being 0
 = 3 577 rad/s (570 Hz); 

- example 2 where Pm = 1000 Pa (right in purple Figure 4.15.b) and where mode 2 is concerned 

(p2 = 7 218 rad/s, is 1 149 Hz), the solution being 0
 = 7 096.4 rad/s (1 130 Hz). 

Finally, Figure 4.16 shows for the two examples Pm = 400 Pa ( ) and Pm = 1 000 Pa (

), the variation of the open loop gain (0) in dB scale (Figure 4.16.a) and in linear scale 

(Figure 4.16.b) as a function of the fractional order m between 0 and 1 on a linear scale. 

Observation of these plots leads to two remarks: 

- for a given order m, the value of the open loop gain (0) greater than unity increases with 

the pressure Pm; 

- for a given pressure Pm, the curves of (0) as a function of the order m show a different local 

minimum depending on the value of Pm. 
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(a) 

 
(b) 

Figure 4.15 – For Pm = 400 Pa (a) and for Pm = 1000 Pa (b), plots of the line τ ω and the frequency 

responses π/2 + arg(Yin(jω)) for 5 values of the order m ( 0; 0.25; 0.5; 0.75; 1). 

The solution ω0 results from the intersection of these two paths which is marked in the figure by a small 

rectangle 
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(a) 

 

(b) 

Figure 4.16 – For Pm = 400 Pa ( ) and for Pm = 1000 Pa ( ), variation of the open loop gain β(ω0) in 

dB scale (a) and in linear scale (b) as a function of the order m 
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4.4 - Time Domain Illustration of the Influence of Fractional Order 

As a reminder (see Chapter 3), the time simulations carried out at Pm = cst reveal three 

phases: 

- phase 1: start-up with a convergent transient system; 

- phase 2: divergent transient system; 

- phase 3: stationary periodic system. 

The objective of this paragraph is to illustrate through time simulation the influence of 

order m on the periodic system of phase 3. 

Thus, for this periodic system of phase 3, Figures 4.17 to 4.19 show for: 

- the two pressures Pm = 400 Pa (example 1) and Pm = 1000 Pa (example 2) 

- and the five values of the order m (0; 0.25; 0.5; 0.75; 1), 

time responses: 

- transverse displacement (w, t) of the jet (Figure 4.17), 

- the pressure p(t) at the input of the resonator (Figure 4.18), 

- the acoustic speed vac(t) (Figure 4.19). 

To help the reader to identify the variables (w,t),  p(t) and vac(t), the functional diagram 

of the recorder is recalled at the beginning of each of these figures with the concerned variable 

in red. 

Observation of all of these time responses leads to the following remarks. 

For a given pressure Pm and for the five values of the order m (0; 0.25; 0.5; 0.75; 1), the 

amplitudes of the time responses are all maximum for m = 0 (conservative case) and minimum 

for an order m included between 0.5 and 0.75. 

Although one cannot analytically establish a link between open-loop behavior and that 

observed in closed-loop due to the non-linear character, a trend emerges regarding the influence 

of the order m on the amplitudes of the time responses. Indeed, we observe in the time domain 

a similarity with the influence of the order m on the open loop gain (0) (Figure 4.16). An 

analysis based on the method of the first harmonic or a decomposition in series of Volterra, for 

example, is a prospect which should make it possible to confirm this tendency. 
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(a) 

 
(b) 

 
(c) 

Figure 4.17 – Time responses of the transverse displacement η(w, t) of the jet (a) for 5 values of the order 

m (0; 0.25; 0.5; 0.75; 1), for a pressure Pm = 400 Pa (b) and Pm = 1000 Pa (c) 
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(a) 

 
(b) 

 

(c) 

Figure 4.18 –  Time responses of the pressure Δp(t) at the input of the resonator (a) for 5 values of the 

order m (0; 0.25; 0.5; 0.75; 1), for a pressure Pm = 400 Pa (b) and Pm = 1000 Pa (c) 
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(a) 

 
(b) 

 
(c) 

Figure 4.19 – Time responses of the acoustic velocity vac(t) (a) for 5 values of the order m (0; 0.25; 0.5; 

0.75; 1), for a pressure Pm = 400 Pa (b) and Pm = 1000 Pa (c) 
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4.5 – Conclusion 

One of the most important contributions of this chapter is related to the impedance of the 

resonator with the development of a method in several stages allowing to pass from the form 

Yin(s) (relation (4.1)) from Chapter 2 to the form YN(s) (relation (4.5)). 

Indeed, even if the form Yin(s) remains the reference for the plot of the frequency 

responses, the form YN(s) makes it possible to reveal in an explicit way the parameters zi, zi, 

pi, pi which characterize the resonator modes. 

The step of determining the constants czi and cpi (relations (4.12)) makes it possible to 

define each cell of rank i from the 4 parameters z1, z1, p1, p1 of the cell of rank 1 (obtained 

using an analytical development: Appendix A) and the 2 factors i and i (relations (4.19)) of 

the cell of rank i (obtained numerically). 

This method, allowing to switch from the form Yin(s) to the form YN(s), facilitates the 

analysis of the influence of the order m. Thus, it is demonstrated that the order m: 

- has no influence on the pulsations zi and pi, 

- has an influence on the damping factors zi and pi. 

More precisely, for a given rank i and for a variation of the order of m from 0 to 1, the 

damping factors are zero for m = 0 (conservative case), go through a maximum, then decrease. 

In addition, for a fixed order m, the damping factors decrease with rank i. 

Note that the expressions (4.8) of zi and pi clearly show that for a given rank i and an 

order m, the damping factors are all the greater (and therefore the visco-thermal losses) as the 

length L of the acoustic tube is large and its radius r is small. 

Finally, the analysis of the influence of the order m on the conditions of existence of the 

stationary periodic system observed in the time domain is an important contribution which 

completes the first analysis presented in Chapter 3. Indeed, these conditions are reflected in 

open loop by a gain () strictly greater than the unit with the pulsation  for which the phase 

() (of the open loop) is null. Thus, for a given order m, the value of the open loop gain (0) 

(greater than unity) increases with the pressure Pm at the mouthpiece input (i.e. in the artificial 

mouth) and for a given pressure Pm, the curves of  (0) as a function of the order m have a 

different local minimum depending on the value of Pm. 
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General Conclusion and Perspective 

The interpretation and discussion of the main results presented in this thesis are the subject 

of the general conclusion.  

Chapter 1 constitutes the first essential modeling step for the reader unfamiliar with wind 

instruments. Indeed, due to its structuring and its didactic progression, it allows to "soak up" 

the dynamic behavior of an acoustic tube of constant radius including the effect of visco-

thermal losses due to the boundary layers in the vicinity of the walls. The knowledge model 

used in this work, called Webster-Lokshin 1D, is mono-spatial dependent. It characterizes the 

linear propagation of acoustic waves in axially symmetrical tubes taking into account visco-

thermal losses. Thus, in an axisymmetric tube of constant section, the sound pressure and the 

sound flow rate are governed by the horn equation, known as Webster-Lokshin, and the Euler 

equation. This dissipative model includes a term that involves a fractional derivation of order 

m = 0.5. The classical resolution in the operational domain of the system of partial differential 

equations leads to the analytical expression of the acoustic impedance and admittance of the 

tube as a function of its length L, of its radius r and of the position x of the tube point considered. 

One of the contributions of this chapter is the introduction of an extension of the fractional 

expression used to take into account visco-thermal losses where the order m is usually equal to 

0.5. This extension makes it possible to consider an uncertainty of the order m, whose domain 

bounds are 0 (conservative system) and 1. Another contribution is the introduction of a system 

vision aiming to causally decompose the global model into sub models, to facilitate analysis in 

the frequency domain. One of the conclusions of this frequency analysis is that the fractional 

model can be simplified over the range [20; 20,000] Hz audible frequencies. Finally, for the 

simulation in the time domain, two rational forms composed of an integrator of order one and 

N cells of the second order, one in cascade and the other in parallel, are introduced as a model 

of behavior. The parametric values of the rational cascade form are determined using the 

Frequency Domain System Identification (FDSI) module of the CRONE Toolbox with the 

frequency response of the knowledge model as target. As for the parametric values of the 

parallel form, they are obtained by a decomposition into simple elements of the cascade form. 

Chapter 2 falls within the framework of the dynamics of complex systems. Indeed, the 

self-oscillation mechanism, characterized by the ability of the instrument to produce an 

acoustic wave from a stationary or quasi-stationary energy source with respect to the acoustic 

variables, is inseparable from the non-nature. linearity of the exciter and its coupling with the 

resonator. This phenomenon results from the oscillation of a naturally unstable air jet around a 

bevel. Thus, the self-oscillation mechanism relies on a synchronization of the oscillation of the 

jet and the acoustic waves. The jet-bevel system must therefore excite the resonator at the 

periodicity of the acoustic field. 
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From a bibliographic synthesis, a complete nonlinear model frequently used in the 

literature is developed in this chapter. Faced with the poor digital conditioning of this model, 

a solution is proposed in order to be able to develop a digital simulator programmed under 

MatLab / Simulink. This solution constitutes a first contribution in this chapter. A scenario is 

then defined while respecting, not only the domain of validity of the nonlinear model, but also 

the values of pressure attainable experimentally by the artificial mouth presented in chapter 4. 

The detailed analysis of the simulated time responses makes it possible, in particular, to observe 

that the variations of a certain number of physical quantities (pressure at the input of the 

resonator, acoustic speed, etc.) are small and around zero. This observation allows us to 

legitimize the realism of the hypothesis of small variations. Thus, two linearized models, one 

for the analysis of phase 1 (start of the simulation), the other for that of phase 3 (self-

oscillations) are developed and used to better understand the phenomena brought to light. 

clearance, especially the self-oscillation conditions. 

Chapter 3 presents the model-based design approach of an artificial mouth, its realization 

and the experimental characterization of each of its components, in order to adjust the nonlinear 

models integrated in the digital simulator associated with this part. The use of an artificial 

mouth, in the context of comparative studies of the complex dynamic phenomena present in 

wind instruments, is necessary to ensure reproducibility of test conditions that are difficult to 

achieve with a human being. This three-step engineering approach is essential to fully 

understand the non-linear behavior of each component, define the limits of their operating 

range and establish the influence of different physical quantities on the pressure at the 

mouthpiece inlet. Note that this last point is essential to understand the need for a pressure 

regulation loop. Thus, the first step in this approach was the development of a first simulator 

on the basis of a bibliographic synthesis concerning artificial mouths used in musical acoustics. 

This first simulator made it possible to fully understand the operation of such a system, thus 

facilitating the choice and sizing of the components of the regulation loop (the flow servo valve, 

the sensors (flow, pressure and temperature), the volume of the pneumatic capacity, etc.), as 

well as the summary of the pressure control (feedforward and feedback parts). The second step 

was the realization of the test bench with the assembly of the various parts and their tuning. 

Finally, the third step consisted of a second iteration, not only of modeling applied precisely to 

the experimental device produced, but also of synthesis of the pressure control. This step lead 

to a second digital simulator. The latter was the subject of a retiming from comparisons between 

experimental and simulation results. Thus, for a real recorder (made of plastic with a length of 

the resonator L = 30 cm, an average radius r = 5 mm, a fractional order associated with visco-

thermal losses m = 0.5, ...), the simulator reproduces with a good precision the study conditions 

specified in chapters 2 and 3. This very real behavior (reproduced in simulation) is considered 

in chapter 4 as the nominal reference behavior. 

Finally, Chapter 4 brings together the developments and results of the first three chapters 

to deepen the analysis of the influence of the fractional order m on the mechanism leading to 

the stationary periodic system. 
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One of the strong points of this chapter concerns the development of a method allowing to 

pass from the initial fractional form of the Yin(s) impedance from chapter 1, where the modes 

of the resonator appear implicitly through the periodicity from the tanh(.) function, to another 

fractional form YN(s) where, on the contrary, the modes of the resonator appear explicitly 

through the product of N fractional cells of order 2. Indeed, even if the form Yin(s) remains the 

reference for the plot of the frequency responses, the form YN(s) makes it possible to reveal in 

an explicit way the parameters zi, zi, pi, pi which characterize the modes of the resonator. 

This method facilitates the analysis by showing that the order m has no influence on the 

pulsations zi and pi, but that it does have an influence on the damping factors zi and pi. For 

a given rank i and for a variation of the order of m from 0 to 1, the damping factors are zero for 

m = 0 (conservative case), go through a maximum, then decrease. In addition, for a fixed order 

m, the damping factors decrease with rank i. Finally, the analysis of the influence of the order 

m on the conditions of existence of the stationary periodic system observed in the time domain 

using the complete simulator (artificial mouth + nonlinear exciter + resonator) is an important 

contribution. which completes the first analysis made in chapter 2. Indeed, these conditions 

result in open loop by a gain () strictly greater than the unit with the pulsation  for which 

the phase () (of the open loop) is zero. Thus, for a given order m, the value of the open loop 

gain () (greater than unity) increases with the pressure Pm at the entrance to the mouthpiece 

(i.e. in the artificial mouth) and for a given pressure Pm, the curves of () as a function of the 

order m have a different local minimum depending on the value of Pm. 

More generally in terms of fractional models, this study of the influence of order m on 

visco-thermal losses leads to a finding similar to that already made in other fields. Indeed, the 

main interest of the fractional form lies in the parametric parsimony, that is to say the capacity 

possessed by the integro-differential operator of non-integer order to model with a minimum 

of parameters the greatest number of dynamic phenomena.  

The medium-term outlook falls directly within the continuity of the work in progress, that 

is to say within the framework of the dynamics of complex systems. 

From a modeling point of view, a first perspective concerns the introduction of the 

extension of the fractional expression used to take account of visco-thermal losses in the more 

general framework of the pavilion equation as encountered in the literature. wind instruments. 

Indeed, in this case, the radius of the acoustic tube depends on the longitudinal position x of 

the point considered within the resonator. In addition, its apparent length may vary depending 

on the number of closed holes. Thus, taking into account a fractional order m between 0 and 1, 

associated with variations in radius and apparent length, should make it possible to extend the 

domain of validity of the model developed in Chapter 1. 

At the same time, the increase in the field of study defined in chapters 2 and 4 by 

considering a pressure Pm at the entrance to the mouthpiece, no longer constant, but variable 

(like that generated by a musician) constitutes a second perspective. To achieve this goal, it is 
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necessary to solve the problem of causality due to the presence of a shunt in the model used to 

describe the interaction between the air jet and the bevel. The solution proposed in this thesis, 

namely the use of a frequency bounded derivation operator, only makes it possible to better 

condition the model numerically for a constant pressure Pm from the initial moment of the 

simulation. 

From a systems theory point of view, an interesting perspective is the definition of a 

fractional resonator with one degree of freedom (1 dof). The first step will consist in defining 

its structure from the decomposition into simple elements of the product of the N fractional 

cells of order 2 present in the expression of the acoustic impedance YN(s) introduced in chapter 

4. Then, the structure being perfectly defined, the study of the fundamental properties of this 

fractional resonator with 1 dof will constitute the second stage. The progression proposed 

within the framework of systems whose dynamics are described by differential equations of 

integer orders, with first the study of systems with 1 dof, then that of systems with q dof which 

in the modal space are in the form of q 1-DOF systems, will be generalized to SDNE (Non-

Integer Derivative Systems which include the dynamic systems of integer orders). 

Finally, from an experimental point of view at the level of the artificial mouth, the 

integration of components designed specifically for the medical sector, in particular those used 

in automatic respiratory assistance devices (servo valves, sensors, etc.), should make it possible 

to improve the performance of the test bench. 

 

 

 

 

 

 

 

 

 

Appendix -A 

From the initial form of the fractional impedance Yin(s) 

from chapter 1 to its fractional form YN(s) from chapter 4 
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This appendix presents the details of the analytical developments allowing to pass from 

the initial form of the fractional impedance Yin(s) of chapter 1 to its form YN(s) of chapter 4. 

Thus, as a reminder and for the field of study defined within the framework of this thesis 

work, the input admittance Yin(s) of the acoustic tube (resonator) of length L and radius r has 

the expression: 
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The expression (A.1) of Yin(s) can be put in a form YN(s) composed of an integrator of order 

1 in cascade with N fractional cells of order 2, namely: 
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where czi and cpi are constants resulting from the procedure allowing to pass from Yin(s) to YN(s) 

This procedure consists of 4 steps: 

- Step 1: finite expansion of the function tanh(z) into a continuous fraction in z; 

- Step 2: reduction of the continuous fraction to a ratio of two polynomials in z; 

- Step 3: factorization of each polynomial in z; 

- Step 4: rewriting Yin(s) in the form YN(s), namely an integrator of order 1 in cascade with a 

product of N fractional cells of order 2. 

 

Step 1 

The finite expansion of the function tanh(z) into a continuous fraction in z is given by 

(Wyman & Wyman, 1985) 
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or, by adopting a more condensed writing convention, 

 ( )
2 2 2 2
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z z z z z
tanh z = + + + + +   . (A.9) 

Step 2 

The reduction of the continued fraction defined by relation (A.8) leads to an expression in 

the form of a product of the variable z and a ratio of two polynomials in z voluntarily limited 

to an order of 4/4 for the analytical developments, namely: 
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Step 3 

Factoring each polynomial in z requires finding their roots. To do this, we perform the 

change of variable by setting X = z2, hence the system to be solved: 

with 
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Solving this system made up of two quadruple equations in X does not present any 

particular difficulty. Each polynomial in X has two distinct real roots, namely: 

- for the numerator: 
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- for the denominator: 
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Finally, the expression (A.10) of tanh(z) is rewritten as: 
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Step 4 

Finally, knowing that 
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the introduction of the expression (A.17) of z(s) in the relation (A.16) of tanh(z) leads to: 
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Taking into account the expression (A.1) of Yin(s), where Im(s) is defined by: 
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the introduction of the relation (A.18) in the expression (A.1) allows (after some manipulations 

and simplifications) the transition to the form YN(s) for N = 2, that is: 
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with the generalization of the relation (A.20) to any N is developed in chapter 4. 
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