
HAL Id: tel-04712693
https://theses.hal.science/tel-04712693v1

Submitted on 27 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of the abstraction capabilities of neural language
models
Bingzhi Li

To cite this version:
Bingzhi Li. Study of the abstraction capabilities of neural language models. Linguistics. Université
Paris Cité, 2023. English. �NNT : 2023UNIP7255�. �tel-04712693�

https://theses.hal.science/tel-04712693v1
https://hal.archives-ouvertes.fr


Université Paris Cité
École doctorale Sciences du Language (ED 622)
Laboratoire de Linguistique Formelle (LLF)

Study of the Abstraction Capabilities of Neural Language
Models

ParBingzhi LI

Thèse de doctorat de SCIENCES DU LANGUAGE

Dirigée par Benoît CRABBÉ
Et co-encadrée par Guillaume WISNIEWSKI

Présentée et soutenue publiquement le 28 novembre 2023

Devant un jury composé de:

Barbara HEMFORTH, DR, CNRS et Université Paris Cité, présidente du jury
Thierry POIBEAU, DR, CNRS, ENS-PSL et Université Sorbonne Nouvelle, rapporteur
François YVON, DR, CNRS et Sorbonne Université, rapporteur
Dieuwke HUPKES, PhD, Meta AI, examinatrice
Benoît CRABBÉ, PR, Université Paris Cité, directeur de thèse
Guillaume WISNIEWSKI, MCF, Université Paris Cité, co-encadrant de thèse



Titre : Étude des capacités abstractives de modèles de langue neuronaux

Résumé (court) : Les théories linguistiques traditionnelles postulent que la compétence
linguistique humaine est fondée sur des propriétés structurelles innées et des représentations
symboliques. Cependant, les modèles de langue à base de Transformeurs excellent dans
diverses tâches de traitement automatique des langues (TAL) sans intégrer explicitement
de tels prérequis linguistiques. Leur succès empirique remet en question ces hypothèses
linguistiques établies et soulève des interrogations sur les mécanismes sous-jacents des
modèles. Cependant, leur opacité et complexité, liées à un grand nombre de paramètres,
rendent difficile la compréhension de leur fonctionnement interne. Cette thèse vise à éclaircir
si les Transformeurs se basent essentiellement sur la reconnaissance de motifs superficiels
pour représenter des structures syntaxiques, ou s’ils sont capables d’abstraire implicitement
des règles plus générales. Deux objectifs principaux guident cette recherche : i) évaluer
le potentiel du modèle de langue Transformeur autoregressif comme outil explicatif du
traitement syntaxique humain ; ii) améliorer l’interprétabilité du modèle. Nous abordons
ces objectifs en examinant les abstractions syntaxiques des modèles Transformeur sur deux
niveaux : leur capacité à modéliser des structures hiérarchiques, et leur capacité à généraliser
compositionnellement des structures observées. Nous introduisons un cadre d’analyse in-
tégré comprenant trois niveaux interdépendants : évaluation comportementale à travers
des ensembles de test de défis, analyse représentationnelle à l’aide de sondes linguistiques,
et analyse fonctionnelle par interventions causales. Nous évaluons d’abord le modèle sur
des tests syntaxiques afin de déterminer sa capacité à reproduire le comportement linguis-
tique humain. Ensuite, nous utilisons des sondes linguistiques et des interventions causales
pour mesurer l’adéquation des représentations internes du modèle avec les théories linguis-
tiques établies. Nos résultats montrent que les Transformeurs parviennent à représenter
des structures hiérarchiques pour une généralisation syntaxique nuancée. Cependant, au
lieu de s’appuyer sur des règles compositionnelles systématiques, il semble qu’ils se basent
davantage sur l’abstraction lexico-catégorielle et des analogies structurelles. Si cela leur
permet de gérer une forme sophistiquée de productivité grammaticale pour des structures
familières, ils rencontrent des difficultés avec des structures qui nécessitent une applica-
tion systématique des règles compositionnelles. Cette étude met en évidence à la fois la
promesse et les limitations potentielles des modèles Transformeur autoregressifs comme
outils explicatifs pour le traitement syntaxique humain, et fournit un cadre méthodologique
pour leur analyse et leur interprétabilité.

Mots-clés: Traitement automatique des langues, modèles de langue neuronaux, inter-
prétabilité, généralisation, abstraction linguistique, representation syntaxique, structures
hiérarchiques, compositionalité
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Title: Study of the abstraction capabilities of neural language models

Abstract: Traditional linguistic theories have long posited that human language compe-
tence is founded on innate structural properties and symbolic representations. However,
Transformer-based language models, which learn language representations from unanno-
tated text, have excelled in various natural language processing (NLP) tasks without explicitly
modeling such linguistic priors. Their empirical success challenges these long-standing lin-
guistic assumptions and also raises questions about the models’ underlying mechanisms for
linguistic competence. However, the black-box nature and complexity of these models, due
to their numerous parameters, make it difficult to understand their internal workings. While
research in this area is growing, the extent of their linguistic abstraction capabilities remains
an open question. This thesis seeks to determine whether Transformer models primarily
rely on surface-level patterns for representing syntactic structures, or if they also implicitly
capture more abstract rules. The study serves two main objectives: i) assessing the potential
of an autoregressive Transformer language model as an explanatory tool for human syntactic
processing; ii) enhancing the model’s interpretability. To achieve these goals, we assess the
syntactic abstractions in Transformer models on two levels: first, the ability to represent hier-
archical structures, and second, the ability to compositionally generalize observed structures.
We introduce an integrated linguistically-informed analysis framework that consists of three
interrelated layers: behavioral assessment through challenge sets, representational probing
using linguistic probes, and functional analysis through causal intervention. Our analysis
starts with assessing the model’s performance on syntactic challenge sets to see how closely
it mirrors human language behavior. Following this, we use linguistic probes and causal
interventions to assess how well the model’s internal representations align with established
linguistic theories. Our findings reveal that Transformers manage to represent hierarchical
structures for nuanced syntactic generalization. However, instead of relying on systematic
compositional rules, they seem to lean more towards lexico-categorical abstraction and
structural analogies. While this allows them to handle a sophisticated form of grammatical
productivity for familiar structures, they encounter challenges with structures that require
a systematic application of compositional rules. This study highlights both the promise
and potential limitations of autoregressive Transformer models as explanatory tools for
human syntactic processing, and provides a methodological framework for its analysis and
interpretability.

Keywords: natural language processing, neural language models, linguistic abstraction,
interpretability, generalization, syntactic representation, hierarchical structures, composi-
tionality
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Chapter 1

Introduction

Human beings possess a remarkable capacity for abstraction and generalization, espe-
cially evident in our linguistic competence. Traditional linguistic theories suggest that
human linguistic competence is rooted in complex built-in structures and symbolic pro-
cessing (Chomsky, 1965, 1986; Pinker and Prince, 1988). These theories emphasize that
language has a hierarchical structure, where larger linguistic structures are recursively
constructed from smaller components. This recursive construction enables us to generate a
large, potentially infinite number of sentences from a limited set of input elements (Hauser
et al., 2002). The principle of compositionality bridges the syntactic structures to semantic
understanding. It posits that the meaning of a sentence depends on the meanings of its
parts and how they are syntactically combined (Frege, 1948; Partee, 1984), underpinning the
immense productivity of language and our ability to understand numerous sentences, even
those never encountered before.

Recent artificial neural networks (NNs) have achieved human-comparable performance
in many natural language processing (NLP) tasks, ranging from machine translation to
reading comprehension (Bubeck et al., 2023). Impressively, Transformer-based language
models can generate apparently coherent and human-like grammatical text, appearing to
possess an effective grasp of linguistic structures (Brown et al., 2020; OpenAI, 2023). Unlike
traditional NLP models that rely on supervised learning and symbolic representations
like parse trees or logical formulas (Jurafsky, 2000), the Transformer architecture does
not explicitly model hierarchical structures and does not manipulate symbols. Instead,
Transformers use matrix operations and non-linear transformations, processing information
simultaneously. This allows them to perform tasks such as sentence completion by predicting
what comes in the next slot given the prefix of a sentence (Elman, 1990; Vaswani et al.,
2017). During this process, they learn to encode words and sentences into vectors directly
from raw text without any grammatical guidance. These vector-based representations of
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language, known as word or sentence embeddings, are now central to most NLP tasks
and have demonstrated remarkable efficacy (Devlin et al., 2019; González-Carvajal and
Garrido-Merchán, 2020; Choi et al., 2021).

Essentially, a Transformer language model is a model that can predict words from a
given set of context words. This approach starkly differs from the traditional view of human
linguistic competence, believed to be based on innate structural properties and symbolic-
based processing. How can these models, which do not inherently embody hierarchical
structures or execute symbolic operations, achieve such proficiency? The complexity of
these “black-box" models, with millions or even trillions of parameters, makes it challenging
to understand their inner workings. Their empirical success not only challenges these
long-standing linguistic assumptions for language processing, but also prompts questions
about the mechanisms underlying models’ linguistic proficiency. One key question, which is
also the focus of this thesis, is whether Transformers implicitly construct a form of abstract
hierarchical representation.

1.1 Research question and objectives

The core research question we pose in this context is: How do neural language models
(NLMs) represent syntactic structures: do they essentially leverage surface-level
patterns to mimic human language, or do they also implicitly learn abstract rules?

This question engages with a longstanding debate in computational linguistics about
the essential role of hierarchical, rule-based structures in language processing. While Trans-
formers have excelled in various NLP tasks, theoretical studies suggest that they are limited
in their ability to represent context-free grammars that capture hierarchical structures (Bhat-
tamishra et al., 2020; Hahn, 2020). The empirical evidence, however, offers a more complex
view. On the one hand, evidence suggests that Transformers can capture complex syntactic
structures (Goldberg, 2019; Wolf, 2019), even mimic tree-like structures (Jawahar et al., 2019)
and acquire structural biases from raw linguistic data (Warstadt and Bowman, 2020). On the
other hand, some studies propose that these models may navigate structure-sensitive tasks
by leveraging statistical regularities or heuristics in the training data (Wei et al., 2021; Sinha
et al., 2021; McCoy et al., 2019; Da Costa and Chaves, 2020). Additionally, the capacity for
extensive memorization in these models is well recognized (Halevy et al., 2009; Zhang et al.,
2021), leading some to describe Transformer language models (LMs) as “stochastic parrots”
that primarily memorize and shallowly recombine observed examples (Bender et al., 2021).

Given this divergence in existing research, coupled with the inherently opaque nature of
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Transformer models, it remains an open question whether they are capable of constructing
abstract hierarchical representations and achieving a level of human-like syntactic gener-
alization. The crux of the inquiry lies in understanding how these models arrive at their
predictions. Do they abstract complex rules akin to human-like syntactic understanding,
or do they exploit statistical regularities that just happen to align with human language
structure? The distinction is subtle, but it has profound implications for both our understand-
ing of these models and their practical applications. Our research aims to characterize the
model’s syntactic abstraction capacity by disentangling these potential strategies, providing
nuanced insights into the underlying mechanisms. The study serves two main objectives: i)
assessing the potential of an autoregressive Transformer language model as an explanatory
tool for human syntactic processing; ii) improving the model’s interpretability.

1.1.1 Feasibility as explanatory model for human language process-
ing

From both linguistic and cognitive science standpoints, studying the abstraction capabilities
of neural language models is essential to understand how these models mirror or diverge
from human linguistic cognition. It offers insights into whether these architectures can
be considered analogs to human cognitive processes or just powerful pattern recognizers.
Inspired by the research of Hupkes (2020), which confirmed the utility of recurrent neural
language models as explanatory tools for human linguistic processing, we extend their
foundational concepts to explore Transformer-based models, the current state-of-the-art.
The first objective of this dissertation is to assess whether Transformer-based language
models can provide a feasible computational framework for human syntactic processes.

Research has long probed the functional architecture of language in the brain through
diverse techniques ranging from neuroimaging to behavioral experiments and computational
modeling. Modern tools such as EEG, with high temporal but low spatial resolution, and
fMRI, with high spatial but low temporal resolution, present challenges in studying the neural
dynamics of linguistic behavior and cognition. Behavioral experiments, often involving
small sets of artificial stimuli designed to be manageable for participants, may not capture
the full complexity and variability of natural language. Furthermore, human subjects bring
variability in terms of attention, fatigue, and motivation, which can introduce confounds into
the experimental results. Both methodologies primarily offer a correlational view of brain
activity, and more direct interventions, like neurosurgery or electrical stimulation, raise
serious ethical concerns and may not be feasible in many cases, limiting causal inferences.

In this context, neural networks present a compelling alternative for studying language
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processing, addressing many limitations inherent in traditional approaches. They enable
large-scale experiments that can encompass the vast complexity and variability of natural
language. Unlike human participants, models are free from confounds like fatigue and
attention lapses, ensuring a controlled environment and consistent results. Crucially, these
models allow for experimental manipulations to deduce causality without any ethical issues.

The idea of using neural networks for modeling human language processing traces
its roots back to the connectionist models of the 1980s (Rumelhart et al., 1986). Early
models were often trained on limited datasets, covering only a narrow spectrum of linguistic
phenomena (Elman, 1991). Additionally, their architectures were generally simple and
lacked computational resources to process large datasets or execute intricate language tasks.
These constraints led to skepticism about their capability to capture the full complexity of
human language, from syntax to semantics and beyond (Pinker and Prince, 1988; Fodor and
Pylyshyn, 1988; Marcus, 1998). In contrast, the emergence of Transformer-based language
models has redefined the field. Rather than questioning if these models can capture human-
like linguistic behavior, the focus has shifted to understanding how they achieve it. Their
remarkable performance in a variety of NLP tasks underscores their potential as explanatory
tools for human language processing.

To effectively serve as an explanatory framework for human language processing, a
computational model must meet certain foundational criteria. These criteria, which we
outline below, guide the model selection and experimental design of this dissertation.

Our research focuses on the autoregressive Transformer language model (Vaswani
et al., 2017).1 This choice is motivated by the model’s language modeling objective (§2.2),
which aligns closely with the incremental word prediction characteristic of human language
processing (Hale, 2001; Lappin and Bernardy, 2022). Such autoregressive language models
are trained on vast amounts of text data, optimizing their weights to predict the next token
based on the preceding tokens in a sequence. During language acquisition, humans are
exposed to a large amount of data, and incremental word prediction plays a critical role in
human language processing (Landauer and Dumais, 1997; Hale, 2001; Kuperberg and Jaeger,
2016; Levy, 2008) and more generally in cognition (Bar, 2007; Clark, 2015). We believe that a
model intended to shed light on human language processing should align with this critical
aspect of language acquisition and usage.2

1Autoregressive language model is also referred to as causal language model, we consistently use “autore-
gressive” in this dissertation.

2Incremental prediction is of course not the only task that humans undertake during language acquisition,
designing and integrating more human-like learning tasks into computational models remains an active and
open area of research.
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Behavioral similarity For a model to offer insight into human linguistic processing of a
particular phenomenon, it must first demonstrate the ability to replicate human usage of
that phenomenon. Given the impressive human-like textual outputs of recent autoregressive
LMs (Radford et al., 2019; Bubeck et al., 2023), it is clear that they possess a sophisticated
capacity for general linguistic imitation. It remains to be seen whether they can capture
more nuanced, structure-dependent phenomena. In this dissertation, our exploration centers
on two pivotal facets of human language: hierarchical structure and compositionality. We
aim to determine the extent to which Transformer-based models can behaviorally mimic
these fundamental linguistic characteristics.

Representational adequacy While achieving behavioral imitation of syntactic phenom-
ena is an essential prerequisite, it is not enough. For a model to shed light on human syntactic
processing, it must capture the intricacies of linguistic structures, going beyond surface
patterns or rote memorization, areas where they are known to excel (McCoy et al., 2019;
Kodner and Gupta, 2020). In this dissertation, we further probe the internal representation
of Transformer-based models to assess whether they encode a form of abstract hierarchical
structure and if these structures align with well-established linguistic theories.

Controllability and interpretability Lastly, for a model to serve as an explanatory tool
for a given linguistic phenomenon, it is essential that we have a certain understanding of its
underlying workings in implementing this phenomenon. This understanding should allow
us to exert a degree of control over the model’s behavior. Symbolic models inherently offer
this transparency due to their explicit symbolic representations and the deterministic nature
of the rules governing them. However, neural networks, particularly those as complex
as Transformers, operate as “black boxes”. This obscurity has historically been a primary
critique against neural networks as cognitive models (McCloskey, 1991).

In light of these challenges, we aim to explore and develop techniques that can penetrate
this obscurity, revealing the inner mechanisms that drive specific linguistic behaviors in these
models. In addition, we seek to employ interpretability tools, such as causal interventions,
to identify and potentially influence the network components responsible for particular
linguistic behaviors. While the vast number of parameters in these models makes complete
control and interpretation challenging, our efforts seek to offer a degree of control that
enables targeted manipulation and understanding of the models’ decision-making processes.
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1.1.2 Improving model interpretability

From a machine learning perspective, understanding what models know and how they know
it, especially in relation to linguistic structures, is a prerequisite to improve these systems
towards more interpretable and robust models. For instance, probing for the linguistic
structure in models has been shown to be important in understanding their ability to adapt
to new, unseen data (Marasovic, 2018). Delving into the syntactic abstraction capacity of
thesemodels offers a dual advantage: it provides insight into the nature of the representations
they form and the factors driving their success, while also exposing their inherent limitations,
which could help guide the creation of more effective architectures (Lake et al., 2017; Marcus,
2018).

Although Transformer-based models have achieved, and in some tasks surpassed, human-
level performance in various fields (Otter et al., 2020; Lertvittayakumjorn and Toni, 2021;
Khurana et al., 2023), they often exhibit fragility and their failures are distinctly unhuman-
like (Firestone, 2020). For example, they can be derailed by minor input perturbations that
humans easily handle (Firestone, 2020; Wang et al., 2022); models capable of generating
human-like coherent text struggle with parsingmoderately complex recursive structures (Yao
and Koller, 2022). This raises concerns about the robustness and generalization capacity of
Transformers models to less frequent patterns. Recognizing these challenges, researchers
have sought to enhance neural networks using human linguistic biases. For example, in-
tegrating hierarchical structures as inductive bias into neural models has demonstrated
improved efficiency in learning phenomena sensitive to structure (Kuncoro et al., 2018b;
Wilcox et al., 2019; Qian et al., 2021). Similarly, integrating compositional structure biases
can significantly boost a model’s out-of-distribution compositional generalization (Qiu
et al., 2022a). These linguistically motivated enhancements, driven by insights into model
limitations, aim to enable faster and more robust learning (Lake et al., 2017; Besold et al.,
2017), marking a promising research avenue.

With this backdrop, the second objective of this dissertation is to develop a linguistically-
informed analysis framework. This framework combines and enhances current interpretabil-
ity techniques, positioning challenge sets, probing classifiers, and causal analysis within
an integrated epistemological structure. Its primary goal is to elucidate the underlying
mechanisms that drive the linguistic behaviors of models, particularly in relation to syntac-
tic structures. Additionally, it seeks to identify potential limitations in models’ syntactic
processing. This framework can serve as an analytic tool to measure progress and guide
future improvements in these domains.
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1.2 Contributions

This dissertation seeks to improve the understanding of Transformer-based models and
evaluate the potential of autoregressive Transformer language models as explanatory models
for human syntactic processing. Our exploration spans two abstraction levels within NLMs:

1.2.1 Assessing model capacity to represent syntactic structures

To better understand how Transformer language models represent hierarchical linguistic
structures, we examine two superficially similar long-distance relationships — subject-verb
and object-past participle agreements. Our contributions in this domain are multifaceted:

Heuristic-based evaluation protocol To distinguish between deep structural patterns
and surface-level heuristics inherent in language, we introduce a novel heuristic-based
evaluation protocol (§4.2.4). Our protocol uses a tiered evaluation system that emphasizes
results from the most abstract cases. This protocol lays the groundwork for the development
of model interpretation techniques in this dissertation and can also be instrumental in
guiding linguistic experiments probing human syntactic capabilities.

Linguistically-informed analysis framework We introduced an integrated analysis
framework that merges and expands upon recent interpretability techniques with a linguistic
lens. At its heart, this framework examines two syntactic phenomena that, while outwardly
similar, possess distinct linguistic modeling. We probe whether Transformer-based models
can form distinct representations aligned with established linguistic analysis. Spanning
behavioral assessments, representational probing, and functional analysis of inner mecha-
nisms, our framework offers a comprehensive template for testing linguistic or cognitive
hypotheses with computational models.

Dataset creation We created two challenge sets from naturalistic corpora: one for
subject-verb agreement across relative clauses (27,582 sentences) and another for object-past
participle agreement (68,794 sentences) in French. Instead of the common English-centric,
template-generated methods in existing literature (Marvin and Linzen, 2018; Warstadt et al.,
2019, ; i.a.), our sets emphasize the intricacies and diversity of natural language, ensuring
ecological validity.

Pretrained model developmentWe pre-trained three word-based French neural lan-
guage models: an LSTM network, an autoregressive Transformer, and a masked Transformer
LM, tailored for linguistic experiments. In contrast to the widespread use of sub-word-based
models such as BERT (Devlin et al., 2019) or OpenAI’s GPT2 (Radford et al., 2019), our
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word-based models simplify linguistic experiments by avoiding sub-word intricacies.3 Our
pre-trained models can be readily used for other linguistic experiments.

1.2.2 Assessing model capacity to generalize compositionally ob-
served structures

Our investigation not only evaluates NLMs’ ability to represent syntactic structures but also
delves into their capacity for compositional structural generalization. We examine whether
Transformer-based models rely on syntactic generalization that aligns with human inductive
biases to interpret new, unseen linguistic patterns effectively.

Many existing benchmarks, such as SCAN (Lake and Baroni, 2018) and COGS (Kim and
Linzen, 2020), predominantly address lexical generalization — interpreting novel combina-
tions of known lexical items and known linguistic structures, structural generalization tasks,
where a model needs to combine known structures into a novel structure, are often under-
represented. To provide a more comprehensive perspective on the syntactic generalization
capabilities of NLMs, we extend COGS to a compositional challenge set targeting structural
generalization, covering syntactic elements like recursion and filler-gap dependencies.

Using our challenge set, we assess various Transformers models as well as a symbolic
parser. Our findings underscore the specific limitations inherent to each architecture,
highlighting areas of potential improvement. Furthermore, the findings provide a nuanced
perspective on Transformers’ abilities to make grammar-based generalizations. While these
models can approximate compositional behavior to some degree, they don’t seem to rely on
the kind of syntactic generalization rooted in systematic compositional rules.

1.2.3 Publications

The research presented in this dissertation includes contributions that have been previously
published and presented at conferences:

• Section 4.2 elaborates on an article published at EMNLP (Li et al., 2021).

• Section 4.3 builds on articles published at ACL (Li et al., 2022a) and TALN (Li et al.,
2022b).

• Section 4.4 expands upon an article published in the journal TACL (Li et al., 2023b)
3Previous studies often used sub-word-based pretrained models, which necessitate constraints such as

filtering evaluation sentences based on target-word appearances as single word pieces (Goldberg, 2019) or
computing joint probabilities of sub-word sequences (Wolf, 2019).
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• Section 4.5 presents entirely new, unpublished research.

• Chapter 5 is an expanded version of an article accepted by EMNLP (Li et al., 2023a).

For transparency and further research, all datasets we created, models we pretrained,
and all associated code from this dissertation have been made publicly available in the
repositories provided below:

• https://gitlab.huma-num.fr/bli/syntactic-ability-nlm

• https://gitlab.huma-num.fr/bli/syntactic-info-distribution

• https://github.com/bingzhilee/contrastive_analysis

• https://github.com/bingzhilee/SLOG

1.3 Outline

This dissertation consists of two main parts, each examining a different aspect of syntactic
abstraction within neural language models. Chapter 4 assesses the extent to which the
Transformer language model captures hierarchical structures, and Chapter 5 explores the
capability of such models to compositionally generalize observed structures. Before the
main parts, Chapter 2 provides essential background knowledge and highlights recent
methodologies in the literature for analyzing the representation of linguistic structures
in NLMs. Additionally, Chapter 3 offers a review of key studies that use long-distance
agreement tasks as a tool for gauging NLM’s syntactic capabilities.

Part 1 Chapter 4 introduces a three-tier epistemological framework for a contrastive study
of Transformer LM’s ability to represent syntactic structures. Our experiments specifically
probe the model’s capacity to represent long-distance relationships, indicative of hierarchical
structure understanding. We use long-distance subject-verb agreement and object past-
participle agreement in French as case studies and employ ecological training and evaluation
data. This framework unfolds in a sequential manner, where each level of analysis builds
upon the findings of the previous one.

• Behavioral level (Challenge sets): The foundational layer of our contrastive study is
rooted in behavioral assessment. In section 4.2, we introduce a novel heuristic-based
evaluation protocol to mitigate task-related confounds. Using this protocol, we assess
the Transformer LM’s syntactic awareness through number agreement tasks. The
robust performance of the model indicates its ability to capture substantial syntactic
information, moving beyond mere surface heuristics. This underscores its ability to
meet the behavioral-level prerequisite for genuine syntactic generalization.
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• Representational level (linguistic probes): Building upon the empirical findings,
the next phase shifts to the model’s internal representations. If the model excels in
syntactic tests, it stands to reason that it encodes this syntactic information within
its internal representations. The section 4.3 seeks to uncover where this syntactic
information is encoded, moving from mere performance outcomes to the intricacies
of internal encoding.

• Functional level (Causal intervention): The final level delves into causality. Simply
detecting syntactic information in a model’s representations does not guarantee that
the model actively uses it. In section 4.4 and section 4.5, we use causal interventions to
determine which components with relevant structural information actively influence
the model’s behavior during syntactic tasks.

Part 2 In Chapter 5, we develop a challenge test designed to evaluate compositional
structural generalization. Using this test, we evaluate various Transformer-based models
and a structure-informed parsing model. This test, crafted using a template-based synthetic
data approach, operates within a semantic parsing framework. The models are tasked
with translating English sentences into logic-based meaning representations. There is a
systematic shift between training and evaluation sets: the constructions in the evaluation set
differ structurally from the training set, but can be interpreted by rearranging components
present within the training data. For example, in the training set, relative clauses (RC)
modify noun phrases (NP) only in object positions, as in “Jimmy saw the cat that the man
held”. The test challenges models with RCs modifying NPs in the subject position, like
“The cat that Emma saw ran”. This study extends beyond the scope of Chapter 4, which
focused on representing hierarchical structures. Instead, it examines the genuine syntactic
generalization akin to what symbolic compositional rules would support.
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This chapter provides the background knowledge necessary for understanding the core
discussions of this dissertation. Section 2.1 presents key linguistic assumptions regarding
human language structures. Section 2.2 introduces neural language models, with a special
focus on the autoregressive Transformer language model — the main investigation object of
this thesis. Lastly, Section 2.3 offers a review of research methodologies that analyze the
representation of linguistic structures in neural NLP models.

2.1 Structure in human language

Human language, in its essence, is a structured system that enables communication and the
expression of thoughts and meaning, showcasing our unparalleled cognitive capabilities.
Traditional linguistic theories, tracing back to seminal work by Chomsky and his peers, have
long argued that the foundation of our linguistic abilities lies in the presence of intricate,
innate structures within the human brain (Chomsky, 1965, 1986).

Central to these theories is the emphasis on the hierarchical nature of language. Rather
than viewing sentences as mere strings of words, traditional linguistics posits that sentences
have an underlying structure, where larger linguistic structures are recursively built from
smaller components. This hierarchical arrangement allows for the nesting of linguistic
elements within one another, leading to the creation of complex sentences and intricate
meanings. According to this view, humans are born with a Universal Grammar — a set of
fundamental principles that govern the structure of all human languages. The recursive
nature of this symbolic system, using finite means (words and rules), enables the gener-
ation of an infinite number of expressions, showcasing the remarkable productivity of
language (Chomsky, 1965; Hauser et al., 2002).

Linguistics often represents the hierarchical and recursive nature of language using
discrete, symbolic representations like categorical labels and tree-like hierarchical struc-
tures (Berwick and Chomsky, 2016). Words are categorized based on their roles and functions
in sentences, referred to as their grammatical or syntactic categories, commonly known as
part of speech (PoS) tags in NLP (e.g., noun, verb). This hierarchical organization of words
in sentences can be visualized as syntactic trees (Figure 2.1), where nodes represent syntactic
categories (e.g., noun phrases (NP) or verb phrases (VP)), or individual words. Edges connect
these nodes, with their left or right positioning indicating ordered relationships. Through
this representation, the tree captures the hierarchical relationships between words and
phrases.1

1Note that the provided syntactic tree is merely illustrative. In actual linguistic practice, the labels and
structures vary according to the specific linguistic formalism being used.
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Figure 2.1: Syntactic tree: a hierarchical representation of word organization in sentences
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saw
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Figure 2.2: The sentence’s meaning is derived compositionally from the meaning of its
components, in line with its syntactic structure in Figure 2.1

Linguists largely agree that the principle of compositionality underpins the productivity
of language, with a common focus on semantic compositionality. As articulated by Frege
and later expanded by Partee, the principle of compositionality posits that the meaning of a
linguistic expression is derived from the meanings of its individual components and their
syntactic arrangement (Frege, 1948; Partee, 1984). This principle is crucial as it explains
our ability to understand and produce a vast array of sentences, even those we have never
previously encountered. Using tools from symbolic logic, formal semantics maps syntactic
structures — how words are arranged — to semantic structures (their associated meanings).
This approach allows us to clearly illustrate, as illustrated in Figure 2.2, how the meaning of
a sentence is derived from the meanings of its constituent parts.

In essence, traditional linguistic theories advocate for a symbolic representation of
language. They argue that our linguistic competence does not solely emerge from statistical
learning or exposure to language data. Instead, it is rooted in complex, innate structures that
guide our understanding and production of language (Chomsky, 1965; Hauser et al., 2002).
This perspective has been foundational in shaping our understanding of human language
and continues to influence linguistic research and debate.

Traditional NLP models have deep roots in linguistic theory. A typical NLP pipeline
incorporates a range of intermediate linguistic modules, each designed to extract specific
linguistic knowledge from human-annotated data, such as POS tagging, syntactic parsing,
and semantic role labeling. Thesemodules help transform textual information into structured,
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symbolic forms that can be readily processed and analyzed. Before the rise of deep learning,
these symbolic representations served a crucial role in NLPmodels. They were either directly
incorporated into models as input data — obtained through linguistic feature engineering —
or indirectly learned through models that extract linguistic patterns from corpora annotated
by human linguists. Despite their interpretability benefits, these traditional models heavily
depend on time-consuming feature engineering and extensive linguistic annotation, which
limit their scalability and their capacity to generalize across different languages and domains.
Furthermore, given the vast complexity and variability inherent to natural language, these
models often struggle to effectively handle language processing based solely on small
amounts of manually annotated data.

2.2 Neural language models

Neural language models (NLMs), central to the deep learning tsunami in natural language
processing, fundamentally shift the paradigm from manual feature engineering to directly
learning language representations from raw text data (Manning, 2015). In this section, we
delve into a comprehensive overview of neural language models. Section 2.2.1 introduces
the concept of language modeling — the task that enables NLMs to incorporate their under-
standing of different facets of language into their internal representations. Following this,
Section 2.2.2 offers an in-depth look at the Transformer-based neural language models, in
particular the autoregressive language model, a sub-type of NLMs and the main focus of
this dissertation. In this subsection, we outline the Transformer architecture and describe
the mathematics and intuitions behind its various components, with a particular focus on
the self-attention mechanism.

2.2.1 Language modeling

For a language denoted as L, a language model is a probability distribution over L such
that the sum of probabilities for all possible sentences equals 1. This probability distribution
estimates the likelihood of words or word sequences appearing in L. For example, it could
predict that “The cat on the mat meowed” is much more likely to appear in a text than “The
cat on the mat shouted”.

A language model computes the probability of a sequence as the joint probability of
each word, which can be decomposed into the product of conditional probabilities using the
chain rule of probability:
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P(s) = P(The cat on the mat meowed) = P(The) · P(cat | The) · P(on | The cat)·
P(the | The cat on) · P(mat | The cat on the)·
P(meowed | The cat on the mat)

where P(meowed | The cat on the mat) represents the conditional probability of the word
“meowed” given the context of the previous words “The cat on the mat”. More generally, for
a sequence of words s = w1, w2, ..., wt, its probability is calculated as:

P(s) = P(w1, w2, ..., wt) = P(w1) · P(w2|w1) · P(w3|w1, w2) · ... · P(wt|w1, ..., wt−1)

=
t∏

i=1

P(wi|w1:i−1) (2.1)

In computational linguistics, this conditional probability P(wi|w1 . . . wi−1) is particularly
useful as it allows to predict the next word wi based on its preceding context w1 . . . wi−1 in
the sentence.

Language modeling involves training language models on large text corpora to approxi-
mate the probability distribution of sequences in a language, using the next word prediction
task. Through this training process, the model learns statistical patterns and word relation-
ships, enabling it to predict word sequences effectively. This capacity is crucial for various
NLP tasks. For example, in text generation, a chatbot can produce contextually relevant and
coherent responses by predicting the most probable next words based on the given input.

N-gram languagemodels Traditional languagemodels estimate probabilities by counting
word and word sequence frequencies in a training corpus. Predicting the next word wi based
on its entire preceding context w1, ..., wi−1 is challenging due to the exponential growth of
possible word combinations. Long sequences suffer from the curse of dimensionality, leading
to sparse representations. To address this, early models like n-grams introduce the Markov
assumption. It simplifies the task by assuming that the probability of a word depends only
on the last n−1 words, instead of the entire context. For instance, in a bigram model (where
n = 2), wi is assumed to depend only on the previous word wi−1. So, instead of computing
P(meowed | The cat on the mat), a bigrammodel approximates it as P(meowed | mat). This
estimated probability can then be computed as the count of the bigram C(wi−1wi) over the
sum of all the bigrams starting with wi−1 in the training data:

P(wi|w1, ..., wi−1) ≈ P(wi|wi−1) =
C(wi−1wi)∑
w C(wi−1w)

(2.2)

For the general case of an n-gram language model, the estimated probability of the entire S
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is given by:

P(S) = P(w1, w2, ..., wt) ≈
t∏

i=1

P(wi|wi−(n−1), ..., wi−1) (2.3)

N-gram models marked a shift from rule-based to statistical methods, foundational
for early speech recognition and machine translation (Jelinek, 1998; Brown et al., 1993).
However, they exhibit significant limitations. Most prominently, their parameters increase
exponentially with n-gram order and face data sparsity challenges. They cannot handle
unseen n-grams and struggle with long-distance word dependencies due to their fixed
context window.

The limitations of the N-gram model prompted a shift to neural language models, which
use artificial neural networks (i.e., learnable functions) for language modeling. Instead
of relying solely on word counts, they learn continuous representations, which are high-
dimensional vectors (known as word embeddings), for words and their contexts. This allows
them to generalize to unseen word sequences. Moreover, they allow for the processing of
longer sequences, thus enabling them to consider larger context windows.

Artificial neural networks (NN) are computational models originally inspired by biologi-
cal neural networks (McCulloch and Pitts, 1943; Rosenblatt, 1958). As shown in Figure 2.3,
the basic building block of an NN is the artificial neuron, referred to as a “node” or “unit”.
These neurons are grouped into layers: the input layer receives data features, the hidden
layers learn patterns, and the output layer produces predictions. Neurons in one layer
connect to those in the next through weighted connections. Each neuron processes its input
by applying a weighted sum followed by a nonlinear activation function. It then sends this
processed output to the subsequent neurons. During training, the weights are adjusted
using an error backpropagation algorithm to minimize the difference between the network’s
output and the actual targets (Rumelhart et al., 1985). Mathematically, a neuron’s operation
is:

y = f

(∑
i

wixi + b

)
(2.4)

where xi represents inputs, wi are weights, b is a bias term, and f is a non-linear activation
function like the sigmoid or relu. The power of NNs comes from their ability to approximate
almost any function given enough neurons and layers.

Feed-forward neural language model (FFNLM) The FFNLM applies a feed-forward
neural network, a subtype of NN with unidirectional information flow (i.e., without looping
back or cycles), for language modeling (Bengio et al., 2003). Similar to n-gram models, it
employs a Markov assumption by considering a fixed number of previous words as context
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Figure 2.3: Forward inference in a feed-forward neural language model with window size of
two, at timestep i+ 1. To predict the next word wi+1, the model concatenates embeddings
of the two preceding words, ei and ei−1, multiplies them by Win, and applies an activation
function to produce the hidden layer. This layer is then transformed byWout and a softmax
to estimate the probability of each word in its vocabulary being the next word wi+1.

to predict the next word. In this model, words are first transformed into word embeddings.
The embeddings from preceding k words are then fed into a feed-forward neural network,
which in turn produces a probability distribution over possible next words. For instance,
Figure 2.3 illustrates how to predict the next word wi+i in an FFNLM with a context window
size of k = 2. Formally, the defining equations at timestep i+ 1 are:

P (wi+1|wi−1wi) = softmax(Wouth
i + bout)

hi = g(Win

[
ei

ei−1

]
+ bin) (2.5)

where Win ∈ Rdh×2d, Wout ∈ R|V |×dh , with dh denoting the hidden layer size, d the embed-
ding size, |V | the vocabulary size and g refers to the activation function.

However, despite being an advance over n-gram models, FFNLMs still have a fixed
context size, which restricts their ability to capture long-range dependencies in text.

RNN language model Recurrent neural network (RNN) language models (Elman, 1990;
Mikolov et al., 2010) overcome the limitations of the Markov assumption through recurrence.
Unlike the feed-forward model, an RNN iteratively updates its hidden layers to capture
information about the previous steps in the sequence. It processes the text one element at
a time, predicting the next word based on the current word and the previous hidden state.
Theoretically, this allows the model to retain information from the sentence’s start to the
present word, eliminating fixed context size constraints. As shown in Figure 2.4, while the

18



forward inference of RNN is very similar to that of feed-forward NLM, the key distinction
lies in the RNN’s capacity to maintain and use a memory of prior timesteps through its
hidden states. Formally, the defining equations at timestep i+ 1 are:

P(wi+1|w1 . . . wi) = softmax(Wouth
i + bout)

hi = g(Winei + bin +Wrech
i−1) (2.6)

Here, hi is an update of hi−1, integrating the information from the current word, ei. Essen-
tially, hi can be considered as a vector encoding the information from the starting word e1

up to the current word ei.

meows

Input
embeddings

hidden layer

Output layer

A cat on the mat

softmax

Win

WoutWrec

Figure 2.4: Forward inference in an RNN language model at timestep i+ 1. To predict the
next word after the context “A cat on the mat”, the model takes the embedding of the current
word ‘mat’ and multiplies it by Win. Concurrently, it multiplies the hidden layer of the
previous timestep hi−1 byWrec. These values are summed and passed through an activation
function to produce the current hidden layer, hi, which is then transformed by Wout and a
softmax to produce a probability distribution over the vocabulary.

RNNs, with their recurrent nature, can capture longer dependencies but face challenges
with extended sequences due to the vanishing or exploding gradient issue. The Long Short-
Term Memory (LSTM) network, an advanced RNN variant, tackles the gradient problems
through its sophisticated gated architecture. This structure helps the model decide when
to keep or discard information across longer sequences, enhancing its ability to handle
long-distance dependencies. Even with these improvements, LSTM still struggles with very
long sequences.

Transformer-based language models Introduced by (Vaswani et al., 2017), the Trans-
former architecture has revolutionized NLP. At the heart of the Transformer architecture is
the self-attention mechanism, detailed in Subsection 2.2.2, which theoretically allows each
word to relate directly with every other word, irrespective of distance. The original model
consists of an encoder-decoder structure, where the encoder is trained to convert input
sequences into contextualized representations, while the decoder generates task-specific
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output sequences, using the previous output for context at each step. This design, often re-
ferred to as sequence-to-sequence (Seq2Seq), is intended for Seq2Seq tasks, such as machine
translation and text summarization.

Due to its parallel processing capability and the ability to capture long-range depen-
dencies effectively, the Transformer architecture has been adapted for language model-
ing (Radford et al., 2018, 2019; Devlin et al., 2019) and has become the foundation for modern
NLMs. Language modeling in Transformer models can be broadly categorized into two
types: autoregressive and masked.

Autoregressive Transformer language models, such as the Generative Pre-trained Trans-
formers (GPT) series (Radford et al., 2018, 2019; Brown et al., 2020; OpenAI, 2023) and more
recent LLaMa (Touvron et al., 2023), predict the next word in a sequence based on all preced-
ing words. They typically use only the decoder component of the original Transformer and
are widely applied in natural language generation tasks. The main project of this dissertation
(§4) focuses on a GPT2-like autoregressive Transformer LM, and we test LLaMa in our SLOG
project (§5).

In contrast, masked Transformer language models such as Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin et al., 2019), FlauBERT (Le et al., 2019),
generate token representations by considering both prior and subsequent tokens in a se-
quence. They are pre-trained using amasked language modeling objective,2 where a
certain percentage of input tokens are masked and the model is trained to predict these
masked tokens from their surrounding context. These models are typically built using the
encoder layers of the original Transformer. While they don’t directly model the probability
of input sequences as autoregressive models do, making them less suited for generation tasks,
they excel at generating contextually rich token representations, widely used in natural
language understanding tasks.

Blending the strengths of both approaches, Seq2Seq language models like T5 (Raffel
et al., 2020) frame all NLP tasks as text-to-text problems. During pre-training, various spans
of text are masked (similar to BERT), and then the model is trained to predict full sequences
autoregressively. This dual nature makes them versatile and suitable for a wide range of
NLP tasks, from text generation to classification and translation. We test the structural
generalization ability of T5 in Chapter 5.

Transformer-based pre-trained language models have become foundational elements
in modern NLP systems due to their ability to learn generic transferable linguistic rep-
resentations from vast unlabeled text corpora (Kalyan et al., 2021). Such contextualized

2Also called “denoising” objectives (Taylor, 1953)
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representations can be used directly as inputs for task-specific text processing models. The
transfer-learning paradigm, which includes pre-training followed by various fine-tuning
methodologies (Devlin et al., 2019; Pruksachatkun et al., 2020; Liu et al., 2019b), further equips
these models with task-specific knowledge. More recently, prompt tuning has emerged as
an efficient technique that exploits these models to generate context-aware outputs from
given prompts (Liu et al., 2021b). Over the past couple of years, Transformer-based language
models offer groundbreaking improvements in NLP capabilities, models like GPT-4 can
generate coherent human-like text (Bubeck et al., 2023). Moreover, they have inspired
architectures in other domains, becoming a cornerstone in the expanding generative AI,
which also includes image generation (Ramesh et al., 2022), and code generation (Chen et al.,
2021).

On the theoretical front, these contextualized representations have also become a fo-
cus of research on language and human language processing (Baroni, 2020; Linzen and
Baroni, 2021; Baroni, 2022; McCoy et al., 2018; Liu et al., 2019a; Yedetore et al., 2023, ; i.a.).
Researchers have leveraged these representations to investigate how these models process
and understand language, what kind of linguistic knowledge they implicitly learn, and
how their understanding aligns with or diverges from our knowledge of human language
processing. The insights gained from such investigations can help inform both the design of
more effective computational models and the theoretical understanding of human language.

Evaluation of language models Perplexity is a probability-based metric to evaluate the
quality of language model on its training task — predicting next word based on previous
words in a sequence. While a language model’s performance can always be assessed through
improvements in downstream applications, such extrinsic evaluation can be computationally
expensive and affected by various task-specific factors. Intrinsic evaluation like perplexity
provides a direct and more efficient way to measure the potential improvement of LMs,
aiding in model development and comparison.

Formally, for a language model trained on a corpus and tested on a held-out test set,
Dt = w1, w2, ..., wN , the model’s perplexity PPL on this test set is defined as the inverse
probability of the test set, normalized by the number of words N :

P(Dt) = P (w1, w2, ..., wN)
− 1

N

=

(
N∏
i=1

1

P (wi|w1, . . . , wi−1)

) 1
N

(2.7)

In practice, working with log probabilities is often preferred as sequence probabilities can
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become extremely small through multiplication. As language models are typically trained
to maximize the log likelihood of the corpus, this definition of perplexity corresponds to
exponentiating the average negative log-likelihood:

P (W ) = 2−
1
N

∑N
i=1 log2 P (wi|w1,...,wi−1) (2.8)

Conceptually, perplexity can be viewed as the weighted average branching factor of a
language. It represents the average number of plausible subsequent words that can follow
any given word sequence. Thus, the perplexity of a language model on a test set is the
average number of equally probable word predictions that the model makes for each actual
word in the test set. A lower perplexity score indicates a better language model.

2.2.2 Transformer-based neural language model

In the previous section, we have seen that various neural networks can be used for lan-
guage modeling; in this section, we delve into the Transformer, the current state of the art
architecture for language modeling, with a specific focus on the autoregressive variant.

Overview of the Transformer architecture Transformer-based models consist of a
series of identical Transformer blocks stacked together. As shown in Figure 2.5, a standard
Transformer block has two main components: a self-attention layer, followed by a fully-
connected feed-forward network. Each of these two sub-layers includes a residual connection
and is followed by a layer normalization operation.

The self-attention layer, a key innovation of the Transformer architecture, enables the
model to focus on different parts of the input when predicting the output for a particular
position. This is accomplished by computing a weighted sum of the input sequence, where
the weights are determined by the relevance of input elements related to the current position.

The feed-forward network (§2.2.1) applies a position-wise transformation to the attention
outputs and allows the model to learn complex patterns. This transformation is the same
at each position and includes two linear transformations with a relu activation function in
between.

Residual connections play a crucial role in information preservation. These connections
allow information from earlier layers to be passed unaltered to later layers, addressing issues
such as vanishing gradients (He et al., 2016). Specifically, in Transformer blocks, the output
of each sub-layer (self-attention and feed-forward network) is added to its input before
being normalized. Layer normalization (Ba et al., 2016) is applied to these summed vectors to
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Figure 2.5: Components of a typical Transformer block: self-attention, feed-forward network,
layer normalization, and residual connections.

maintain the hidden layer values within an optimal range for gradient-based training. This
process involves transforming the inputs to achieve a mean of 0 and a standard deviation of
1 across each layer.

The original Transformer consists of both encoder and decoder stacks, with each stack
containing six identical Transformer layers. Early adaptations of Transformer-based models
typically stack l ∈ {6, 10, 12, 16, 24} such layers, while the rise of large language models
such as GPT-3 has led to architectures with nearly a hundred layers or more (Brown et al.,
2020; OpenAI, 2023). In addition to these Transformer blocks, the model includes an input
and output embedding layer. The input embedding layer converts each word in the input
sequence to a high-dimensional vector, which is then combined with its position encoding
to incorporate word order within the sequence. The output layer, on the other hand, is a
linear layer followed by a softmax function to produce a probability distribution over the
vocabulary for the next word prediction.
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A standard formulation of the full Transformer stack is as follows:

For each layer l = 1 to L :

Self-Attention: Z(1)
l = SelfAttn(Zl−1) + Zl−1

Normalization: Z(2)
l = LayerNorm(Z

(1)
l )

Feed Forward: Z(3)
l = FFN(Z(2)

l ) + Z
(2)
l

Normalization: Zl = LayerNorm(Z
(3)
l ) (2.9)

where l is the layer number, L is the total number of layers, Z(1)
l is the output of the self-

attention mechanism at layer l, Z(2)
l is the normalized self-attention output, Z(3)

l is the
output of the feed-forward network at layer l, and Zl is the final output of layer l after
normalization.

Self-attention mechanism The core principle behind the attention-based approach is its
ability to assess the relevance of different elements within a sequence in relation to a target
element. Let’s consider an example sentence, “The cat on the mat ate a fish". As shown
in Figure 2.6, while predicting the next word after “ate", self-attention draws comparisons
between the current word “ate" and all preceding words, including itself. Each pair of words
is then assigned a relevance score, which can be calculated as a dot product. To compute
the final representation for “ate", the mechanism takes each word’s vector representation
seen so far, weighs it by the corresponding relevance score, and sums these weighted
representations. As a result, words that are more relevant to “ate" will contribute more to its
final representation.

The cat on the mat ate a fish

Figure 2.6: Masked self-attention in autoregressive Transformer language models: each
token is processed considering all the preceding tokens and itself, future tokens are excluded.

Transformers introduce a more sophisticated way of representing how each word con-
tributes to the understanding of other words within a sequence. The attention process
discerns three distinct roles: the query (Q), the key (K), and the value (V). The query
corresponds to the current focus of attention, the key represents the preceding input item
being compared to the attention focus, and the value is employed to compute the output for
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the current position. To capture these three roles, the self-attention mechanism uses three
weight matrices Wq , Wk, Wv , which are learned during the training. They transform each
input vector to represent its specific role as a query, key, or value. Given these projections,
the score between a current word xi, and a token in the preceding context, xj , is computed
as the dot product of their respective query and key vectors — qi · kj . To achieve more
stable gradients, this score is normalized by dividing it by the square root of the key vectors’
dimension. Given a query and the set of keys, { k1, k2, ..., ki }, these individual scores are
then passed through a softmax function to obtain the attention distribution:

α1 . . . αi = softmax
(
qi · k1√

dk
, . . . ,

qi · ki√
dk

)
(2.10)

This attention distribution is then used to weigh the respective value vectors of the tokens.
The result is a weighted sum of all the value vectors, which serves as the output of the self-
attention mechanism for the token under consideration. This process is formally expressed
as:

yi =
∑
j≤i

αj · Vj (2.11)

Since each output yi is computed independently, this entire attention process can be paral-
lelized using matrix multiplication by considering all the N tokens of the input sequence as
a single matrix X ∈ RN×d. The entire self-attention process for a sequence of N tokens is
computed as:

SelfAttention (Q,K,V) = softmax
(
Q ·KT

√
dk

)
V (2.12)

Masked Transformer LMs directly use this self-attention computation. However, the
autoregressive Transformer has to maintain the autoregressive property, where a token’s
prediction relies only on preceding tokens and not future ones. To achieve this, a causal
attention mask is applied. The causal mask matrix is formally defined as:

maskij =

−∞ if j > i

0 otherwise
(2.13)

Here, the upper triangle (future positions related to the current token), is filled with negative
infinity and the lower triangle has zeros. Incorporating this causal mask, the output of a
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single self-attention layer becomes:

SelfAttention (Q,K,V) = softmax
(
Q ·KT

√
dk

+ mask
)
V (2.14)

Here, adding a very large negative number (from the mask) to the future positions, ensures
that when the softmax function is applied in the next step, these positions will have an
attention score of nearly 0. This forces the self-attention mechanism to attend only to its
previous words and itself, thereby preventing information flow from any future words.
This causal attention mask, as suggested by Haviv et al. (2022) may implicitly introduce
positional information into the self-attention layer.

Words within a sentence are interconnected inmultiple ways. Consider the sentence “The
cat on themat ate a fish", the verb “ate" has a subject-verb syntactic dependencywith “cat" and
also shares a semantic relationship, where “cat" is the agent of the action. To capture these
different aspects of the syntactic, semantic, and even discourse relationships simultaneously,
the Transformer employs multi-head attention. Specifically, each of the h attention heads in
a self-attention layer uses its unique learned set of weight matrices: WK

h ,W
Q
h andWV

h , to
determine the respective query, key, and value vectors. Consequently, the output of the
multi-head layer with h heads consists of h distinct vectors, each representing a different
facet of the token’s contextual relationships. For instance, one head might focus on learning
grammatical structures, while another might specialize in capturing thematic relationships.
These head-specific outputs are then concatenated and linearly transformed via WO, to
produce the final output for each token.

In mathematical terms, for an attention head i, the output, headi, for a given sequence
of N tokens, X ∈ RN×d, is computed as follows:

headi = SelfAttention (Q,K,V)

Q = XWQ
i ;K = XWK

i ;V = XWV
i (2.15)

where WQ
i ∈ Rd×dk ,WK

i ∈ Rd×dk ,WV
i ∈ Rd×dv with d denoting the dimensionality of

both the input to and output from the model, dk for the key and query embedding dimensions
and dv for the value embedding dimension. Outputs from each head are concatenated and
linearly transformed, producing the final output of a multi-head attention layer:

MultiHeadAttention (X) = (head1 ⊕ head2, ...,⊕headh)W
O (2.16)

whereWO ∈ Rhdv×d, and h is the total number of attention heads, ⊕ denotes the concate-
nation operation.
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Position embeddings Unlike RNN, which inherently handles word order information by
processing input sequences one element at a time, the Transformer architecture is inherently
agnostic to the order of tokens by considering all tokens in the input sequence simultaneously.
However, the order of words is crucial to the semantics and syntax of a sequence and is often
crucial in many tasks, such as language modeling and sequence-to-sequence translation. To
overcome this limitation and inject some sense of position or order into the model, position
embeddings were introduced.

One straightforward solution is to directly add positional embeddings to the input
embeddings. Just as the model learns an embedding for a word like “cat”, it can also learn a
specific embedding for its position in a sequence such as “The cat on the mat”, identifying it
as the second word. In the original Transformer architecture, positional embeddings are
generated using fixed sinusoidal functions. These functions convert integer positions into
real-valued vectors, creating a unique positional embedding for each position. Specifically,
each dimension of the positional embedding receives a value from a sine or cosine function
of a different frequency. Formally, for position p and dimension i, the values are defined as:

PE(p,2i) = sin

(
p

10000
2i
d

)
PE(p,2i+1) = cos

(
p

10000
2i
d

)
(2.17)

where d is the dimension of the embeddings. These fixed positional embeddings are then
added to the standard word embeddings, giving the model a sense of each token’s position
in the sequence. This position encoding scheme has been extended to learned instead
of fixed positional embedding in subsequent models such as BERT (Devlin et al., 2019),
Reformer (Kitaev et al., 2020), RoBERTa (Liu et al., 2019c), etc.

While absolute position embeddings provide a sense of sequence order, they don’t directly
capture the relative distances between tokens. For instance, by modifying “the cat ate a fish”
to “Yesterday, the cat ate a fish”, the absolute positions change but not the core meaning.
What matters for meaning is the relative position between “cat” and “fish”, regardless of
their absolute position in the sequence. To better capture such relational dynamics, relative
position embeddings are introduced (Shaw et al., 2018; Dai et al., 2019). These embeddings
shift the focus from the absolute position of a token in a sequence to the relative distances
or positional differences between pairs of tokens.

Numerous subsequent models have proposed alternative position encoding schemes. For
instance, some approaches integrate position information into the attention matrix instead
of the input (Dai et al., 2019; Raffel et al., 2020). Others represent positions structurally based
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on the distances on a sentence’s parse tree representation (Wang et al., 2019; Shiv and Quirk,
2019). Improving position representations is an ongoing research focus. The study by Dufter
et al. (2022) provides a comprehensive review of position encoding within the Transformer
architecture.

2.3 Analysis of linguistic structure in neural NLPmodels

The study of linguistic structures in computational models has a long history, dating back
to the work of Elman (1990, 1991) and Tabor (1994). Their pioneering research provided
early evidence of the potential for neural networks to learn and embody abstract syntactic
structures from non-annotated language data. Transitioning from these early insights to the
modern era, the scale and complexity of current models like Transformers have significantly
increased. As discussed in previous section, they generate output in the form of complex
probability distributions over a large vocabulary of words or sub-words. This, in combination
with their high-dimensional representation for inputs and millions of parameterized weights
for operations, makes the interpretation of these models challenging.

In recent years, a myriad of analysis methods have been developed to better understand
the inner mechanics of NLMs. Many studies suggest that these models have learned a
substantial amount of syntactic knowledge that resembles human understanding, while
others question the degree to which these models develop abstract structural representations
of language. Although recent large language models demonstrate an apparently human-like
ability to generate fluent and grammatically correct text (Bubeck et al., 2023), there is yet no
consensus on whether these Transformer-based models truly understand and incorporate
the linguistic structure.

In this section, we will explore three core methods for interpreting and analyzing the
representation of linguistic structure in neural NLP models and also discuss their associated
limitations.

2.3.1 Challenge sets

Challenge sets, also known as test suites, have a long-standing tradition in NLP, tracing
back to work like Lehmann et al. (1996). These carefully curated sets include a wide range
of linguistic phenomena, often targeting specific syntactic, semantic, or pragmatic proper-
ties (King and Falkedal, 1990; Sennrich, 2017; Isabelle et al., 2017; Naik et al., 2018, ; i.a.).
While they were initially employed primarily for evaluating machine translation systems,
the evolution and success of neural language models have broadened their application.
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Largely inspired by the experimental paradigms in psycholinguistics, challenge sets have
become one of the important methodologies for investigating the fine-grained linguistic
knowledge embodied within NLMs. This approach attempts to answer questions like: How
well do neural language models capture linguistic principles, and to what extent do they
exhibit human-like grammatical competence?

In psycholinguistics literature, a paradigmatic test for human syntactic capacity comes
from agreement phenomena (Bock and Cutting, 1992; Bock and Miller, 1991; Bock et al.,
2001). For instance, subject-verb agreement in English as illustrated in (1): the form of the
verb “are” is determined by its syntactic subject “keys”, irrespective of the linear distance
between them or the presence of the intervening noun, “cabinet”, which carries a different
grammatical number than the subject, and is often referred to as agreement attractor (Bock
and Miller, 1991). Such long-distance agreement phenomenon exemplifies the hierarchical
organization of language rather than a simple linear structure (Everaert et al., 2015).

(1) The old rusty keys to the cabinet are on the table.

Linzen et al. (2016) pioneered the use of subject-verb agreement to assess the syntactic
sensitivity of modern NLM. They collected 1.35 million English sentences with present-tense
verbs from an auto-parsed Wikipedia corpus and annotated each with the main verb’s
grammatical number. The model’s syntactic ability was then evaluated through a number
agreement (NA) prediction task. In this task, an LSTM took as input the sentence prefixes
like the one in (2), and was trained to predict the grammatical number of the subsequent
verb, either Singular or Plural.

(2) The old rusty keys to the cabinet

Linzen and colleagues tested an LSTM with 50 hidden units and found that the model
demonstrated near perfect overall accuracy on unseen sentence prefixes. Even in the most
challenging cases with four attractors like (3)3, the accuracy of the number prediction was
still 82%.

(3) Yet the ratio of men who survive to the women and children who survive in these
events is not clear.

From these results, the authors concluded that LSTM models, when provided with explicit
supervision, can capture significant grammatical structures, enabling them to reasonably
approximate structure-sensitive dependencies.

Building on this experimental approach, Gulordava et al. (2018) further showed that
such long-distance agreement is learnable for an LSTM trained on language modeling (i.e.,

3Agreement attractors are highlighted with an underline. The subject and target verb are marked in bold.
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without explicit supervision). Subsequent research has delved deeper into understanding
the capability of NLMs to abstractly represent sentence structures during agreement resolu-
tion. This exploration spans various dimensions: different languages (Ravfogel et al., 2018;
Gulordava et al., 2018; Lakretz et al., 2021b), diverse models (Bernardy and Lappin, 2017;
Goldberg, 2019), and potential confounding factors such as lexical co-occurrences (Gulor-
dava et al., 2018; Lasri et al., 2022a) or surface-level heuristics (Kuncoro et al., 2018a). Our
research contributes to this body of work, with a focus on French agreement phenomena
and autoregressive Transformer LM (Li et al., 2021). The majority of these studies converge
on the positive finding that neural language models are capable of learning a considerable
amount of non-trivial structure information from the (unannotated) training data. More
detailed discussions on related work that approaches long-distance agreement tasks can be
found in Chapter 3.

Another significant line of research has sought to expand this experimental approach
beyond agreement phenomena to encompass a wider array of syntactic phenomena, such as
anaphora, licensing, argument structure alternation, and filler-gap dependencies (Marvin
and Linzen, 2018; Kann et al., 2019; Warstadt et al., 2019; Wilcox et al., 2018; Hu et al., 2020, ;
i.a.). These studies typically create precisely drafted templates to generate challenge sets
featuring specific linguistic phenomena, and then evaluate a neural network’s grammaticality
judgement on minimally differing sentence pairs based on grammaticality. Evaluations
are conducted either through binary acceptability classification, similar to the number
agreement prediction task proposed by Linzen et al. (2016), or by comparing the probabilities
that a language model assigns to whole sentences. More recently, Warstadt et al. (2020)
introduced BLiMP, a benchmark of linguistic minimal pairs covering a wide range of English
grammatical phenomena. Generally, in these studies, NLMs’ performance varies significantly
across linguistic phenomena. While the models demonstrate robust knowledge of some
syntactic phenomena, such as local subject-verb agreement, ellipsis, and control/raising, they
struggle with more subtle semantic and complex syntactic phenomena, including licensing
and extraction islands.

Formal languages Analyzing NLMs’ ability to handle linguistic structures is complex due
to the intertwining of syntactic, semantic, and statistical regularities in human languages. To
precisely focus on syntax-processing, researchers also employ formal languages in challenge
sets. Typically, a study using formal languages designs a formal grammar to generate
a corpus of sentences. A language model (§2.2) is then trained on this corpus, and the
evaluation focuses on the model’s capability to recognize sequences from the training set
and to generalize these learnings to unseen sequences.
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Some studies focus on formal languages that correspond to specific classes in the Chom-
sky hierarchy, investigating which language classes can be theoretically or empirically
learned by NLMs. Early studies have shown that certain regular (Giles et al., 1992) and
context-free (Elman, 1991) languages can be learned by different RNNmodels. Subsequent re-
search found that, with proper parametrization, LSTMnetworks could learn context-sensitive
languages, such as anbncn, and generalize to longer sequences (Gers and Schmidhuber, 2001;
Weiss et al., 2018; Suzgun et al., 2019). In contrast, Transformer models have demonstrated,
in theoretical studies, more limited capacities compared to LSTMs when handling regular
languages and context-free languages (Bhattamishra et al., 2020; Hahn, 2020). However,
empirical findings like (Ebrahimi et al., 2020) have shown that Transformers can learnDyckk

languages from finite samples, matching the performance of LSTMs.

Others craft formal grammars that mirror specific structures present in natural language.
For instance, Lakretz et al. (2021a) used a probabilistic Context-Free grammar (PCFG) to
investigate RNN’s ability to handle recursively nested subject-verb agreements, Hupkes et al.
(2020) used a set of PCFGs to assess NLMs’ capacity in processing hierarchical compositional
structure. Notably, Sennhauser and Berwick (2018) evaluated LSTMs using bracket prediction
tasks as a measure of understanding linguistic hierarchical structures. While their findings
confirmed that LSTMs can learn context-free grammar, they also observed that models’ good
performance stemmed more from efficiently handling nuisance variables rather than truly
learning the underlying context-free rules. Hahn (2020) has theoretically demonstrated that
Transformer-based models struggle with bracket closing and iterated negation tasks, both
computations are considered to be essential to hierarchical structure.

Limitations Challenge sets shed light on models’ fine-grained linguistic capabilities by
assessing their responses to specific inputs. However, this approach offers limited insight
into the internal representations that the model has learned. Confounding factors, such
as the inability to distinguish genuine syntactic comprehension from superficial pattern
recognition like frequency-based heuristics, can make their results hard to interpret. To get a
more comprehensive picture of NLMs’ syntactic abilities, these tests should be supplemented
with other methods, such as probing tasks or interpretability techniques that can provide
insights into the models’ internal workings.

2.3.2 Probing classifiers

The probing classifier approach, also known as auxiliary prediction tasks (Adi et al., 2016),
diagnostic classifiers (Veldhoen et al., 2016), or linguistic probes (Zhu and Rudzicz, 2020),
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is widely used to analyze the linguistic capabilities of neural NLP models. At its core, this
approach involves training a classifier — a “probe” — on a model’s internal representation
to predict specific linguistic properties. Success in this prediction indicates that the model
has encoded the relevant linguistic features. The basic premise is that if a model captures
a particular linguistic property, this information should be extractable from its internal
representation (Hupkes et al., 2018). This approach thus seeks to address the question: What
linguistic properties are encoded in a model’s internal representations, and where are they
located within the model?

Formally, we define amodel under investigation as a function, NN : x⇝ r, that generates
a representation, r, for an input element. A probing dataset, denoted as D = {r(i), z(i)},
pairs each representation with its associated linguistic property. The probing classifier can
then be defined as a function C that maps the model’s representation to a linguistic property
of interest:

C : r ⇝ z (2.18)

In an early application of this approach, Shi et al. (2016) probed the syntactic information
in neural machine translation. They extracted the hidden states of an RNN encoder and used
them to train a logistic regression classifier, predicting labels related to morpho-syntax, such
as PoS tags, constituent labels (e.g., NP, VP), voice, and tense. Their results, showing high
probing accuracy relative to baseline measures, led them to conclude that the RNN captures
significant syntactic information at both the word and sentence levels. Furthermore, they
used probing classifiers to identify where syntactic information was stored across layers,
observing that local features were often encoded in lower layers, while more abstract, global
information was found in upper layers.

This probing methodology has since expanded to investigate other syntactic facets in
RNNmodels, such as surface sentence structure (Adi et al., 2016),4 parse tree depth (Conneau
et al., 2018), syntactic agreement (Giulianelli et al., 2018) and even semantic properties (Et-
tinger et al., 2016). This methodology has also been extensively applied to Transformer-based
models (Tenney et al., 2019; Liu et al., 2019a; Jawahar et al., 2019; Klafka and Ettinger, 2020, ;
i.a.). Collectively, these investigations have yielded promising results, consistently indicating
that neural NLP models trained on vast data do encode a wide array of linguistic properties
within their internal representations. An interesting extension of this methodology is the
structural probe introduced by Hewitt and Manning (2019). This probe, distinct yet related
to the probing classifier, identified a linear transformation that could extract syntactic parse
tree structures from word representation spaces in models like ELMo and BERT, but not

4Surface sentence structure refers to sentence length, word identities and word order in Adi et al. (2016).
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from simpler baseline representations. (See Table 2.1 for a categorization of representative
work using the probing classifiers.)

Linguistic
properties

Probing
classifiers Probed models Baseline models Papers

PoS, tense,voice,
constituents

Logistic
regression LSTM encoder Phrase/syntax-

based system
Shi et al. (2016)

Surface sentence
structure MLP LSTM encoder CBOW Adi et al. (2016)

Surface structure,
parse tree depth,
top constituents

MLP BiLSTM,
ConvNet Unigram, Human Conneau et al.

(2018)
Syntactic agreement Linear LSTM LM – Giulianelli et al.

(2018)
PoS,
dependency edge Linear &MLP ELMo Control tasks Hewitt and

Liang (2019)

8 core NLP
labeling tasks MLP CoVe, ELMo,

GPT, BERT

Lexical baselines,
randomized ELMo,
word-level CNN

Tenney et al.
(2019)

Entire parse tree Linear ELMo, BERT Non-contextual
models Hewitt and Man-

ning (2019)

Table 2.1: A categorization of some representative studies using probing classifiers to inves-
tigate syntactic structures in NLMs, according to linguistic properties examined, classifier
types, probed models, and baseline models.

On the other hand, recent studies also highlight potential pitfalls in the probing classifier
approach, emphasizing that learned properties should be interpreted in comparison to control
baselines. This can be achieved through techniques such as training probes on randomized
representations (Conneau et al., 2018; Tenney et al., 2019), using control functions (Maudslay
et al., 2020), or implementing control tasks (Hewitt and Liang, 2019; Ravichander et al.,
2021). Specifically, control tasks are designed in a way that they can only be solved if the
probe memorizes the task. Based on this, Hewitt and Liang (2019) introduced the concept
of selectivity, which is defined as the performance gap between a probing task and its
control counterpart. Using this metric to guide probe selection, they found that, while linear
probes are highly selective, nonlinear probes are generally less so. The effectiveness of
such probes with respect to its complexity remains a topic of discussion (Maudslay et al.,
2020; Ravichander et al., 2021), Belinkov (2022) provides a comprehensive review on probing
methods.
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Limitations A main limitation of probing classifiers is that they only reveal correlations
between linguistic properties and a network’s inner representations, but do not necessarily
indicate causality. Since these probes operate independently from the model’s original
task, they do not provide any insight on whether the information discovered by the probe
influences the model’s predictions. Only a few studies we have seen so far, like the one
by Giulianelli et al. (2018), address this limitation; we will further explore and categorize
such efforts in the following subsection, focusing on the causal analysis approach.

2.3.3 Causal intervention analysis

While linguistic probes are instrumental in revealing what linguistic properties might be
encoded within neural models, they often fail to establish a causal relationship between these
properties and the probed model’s prediction. Causal intervention analysis fills this gap: it
assesses the direct influence of specific model components on predictions by manipulating
parts of the model and tracking resultant output changes. In this way, we can answer the
causal question: which information is actually being used by neural models? Causal analysis
is commonly paired with behavioral tests or probing tasks, providing a comprehensive
framework for both uncovering and validating the model’s linguistic behaviors.

Causal interventions in neural models vary based on where they are applied within the
model. Broadly, these interventions can be grouped into three categories:

• Input-level interventions (Zmigrod et al., 2019; Vig et al., 2020; Amini et al., 2023)

• layer-level interventions (Giulianelli et al., 2018; Elazar et al., 2021; Vig et al., 2020;
Ravfogel et al., 2021; Feder et al., 2021, ; i.a.)

• neuron unit-level interventions (Bau et al., 2018; Lakretz et al., 2019; Vig et al., 2020;
Mueller et al., 2022)

In one of the pioneering works, Giulianelli et al. (2018) combined causal intervention
with probing classifiers to explore an NLM’s syntactic capabilities. They showed that by
intervening on an NLM’s internal representations — guided by the gradients from a probing
classifier targeting the subject’s plurality — the model’s predictions in the subject-verb
agreement task could be altered. Thus, the authors concluded that probing classifiers
can identify features that are actually used by the model. Later, the study by Elazar et al.
(2021) presents a nuanced view. They explored the effects of erasing specific linguistic
information from BERT’s representation layers on language modeling. Using the iterative
null space projection method (INLP; Ravfogel et al. (2020)), they systematically erased
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linguistic information, such as Part-of-Speech and syntactic dependencies, from BERT’s
internal representations. The INLP process involves training (linear) probing classifiers
to detect these linguistic properties and iteratively erasing the associated features until
the representations are no longer predictive of the target property. When comparing the
language modeling performance before and after such interventions, they observed that
the removal of certain properties, such as phrase boundaries, which had high probing
performance, didn’t significantly impact language modeling performance. This led them to
a conclusion contrasting with Giulianelli et al. (2018): probing classifiers may not always
detect information that the model actively uses for its predictions.

Further expanding the scope, Vig et al. (2020) explored gender bias in pre-trained Trans-
former LMs through a comprehensive causal intervention analysis. They manipulated the
grammatical gender in the input, attention weights, and individual neurons to measure their
causal impacts on the model’s behavior. They found that gender bias predominantly resides
in a small part of the network and this bias can be traced back to both direct input influences
and indirect pathways via individual neurons and attention heads. The implications of this
study extend beyond gender bias, offering a structural-behavioral framework for broader
research aimed at interpreting and understanding the inner workings of neural NLP models.

Limitations Causal intervention analysis presents a unique perspective for establishing
causality in interpreting deep NLP models, thus addressing certain limitations of challenge
tests and probing classifiers. However, its implementation can be computationally expensive,
especially in complex scenarios like neural-level interventions, and establishing clear cause-
and-effect relationships within expansive networks is intricate. These complexities limit its
practical application, particularly with state-of-the-art models.
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Part II

Assessing model capacity to represent
syntactic structures
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Chapter 3

Long-distance agreement in neural lan-
guage models

After surveying the landscape of various approaches and diverse conclusions on the linguistic
capacities of neural NLP models, we now move into a focused review of one widely used
approach: long-distance agreement tasks. This approach provides a compelling lens through
which to investigate the ability of neural models to capture syntactic structure. At its core,
syntactic agreement is a fundamental aspect of syntax, where certain sentence elements must
align in features like number, gender, or person. Long-distance dependencies inherently
require an understanding of how components in a sentence relate across spans of text, and
crucially, morphological cues such as number and gender explicitly denote these long-term
dependencies, offering a clear means to assess whether models effectively establish these
connections.

In this chapter, we present several key studies that used the long-distance agreement
paradigm — especially subject-verb agreement — to evaluate the ability of neural language
models to capture syntactic information.

Subject-verb agreement processing, a well-established paradigm in psycholinguistics,
is commonly used to study human syntactic ability. Studies in this domain suggest that
humans rely on hierarchical structures to ensure syntactic coherence (Bock and Cutting,
1992; Bock and Miller, 1991; Bock et al., 2001). The work of Elman (1991), one of the first
to analyze the syntactic capacity of neural networks, used the resolution of subject-verb
agreement to demonstrate that a simple recurrent network is capable of encoding relevant
grammatical relations and hierarchical structures in its distributed representation. This
experimental approach, revitalized by the seminal work of Linzen et al. (2016) (detailed in
§2.3.1), has since been used in a tremendous number of works to explore the capacity of
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neural networks to capture abstract information about linguistic structures (Wilcox et al.,
2018; Gulordava et al., 2018; Giulianelli et al., 2018; Jumelet et al., 2019; Lasri et al., 2022b, ;
i.a.).

Naturalistic data Using this paradigm, early studies (Linzen et al., 2016; Bernardy and
Lappin, 2017) showed that RNN models could handle the subject-verb number agreement
task when given explicit supervision. Lately, Gulordava et al. (2018), expanding on Linzen
et al. (2016), revealed that an LSTM language model, pre-trained only to predict the next
word in an unannotated corpus, could effectively handle long-distance agreement in an
unsupervised manner.

Specifically, Gulordava and colleagues trained an LSTM language model on a corpus
from Wikipedia with 100M tokens. This model was then tested on its ability to handle
long-distance number agreements using sentences extracted from Universal Dependency
treebanks. The evaluation method involves presenting the pre-trained model with sentence
prefixes up to the target verb, and then comparing the probabilities that the model assigned
to the singular and plural form of the target verb. For instance, in example (4), if the
model predicts a higher probability for “are” over “is”, it is deemed to have made the correct
prediction for that sentence. Consequently, the overall accuracy for the agreement prediction
task is calculated as the percentage of test instances in which the verb form with the higher
probability is indeed the correct one.

(4) The old rusty keys to the cabinet
P(are|prefix) > P(is|prefix)⇒ predict “are"

Using this method, Gulordava et al. (2018) showed that LSTM achieved high accuracy in
various constructions in the four languages tested: English, Italian, Hebrew, and Russian.
In the case of Italian, the authors also conducted experiments with human subjects. The
performance of the LSTM language model was at pair with human performance.

Furthermore, Gulordava and colleagues introduced a control setting to ensure that the
model did not use collocational information to determine the correct verb form. For instance,
in the sentence “The cats on the mat meow loudly”, a language model may prefer the
correct agreement by encoding information about what typically meows (cats) and what
does not (mat), without relying on the target abstract structural rule. Such a confounding
factor could overstate model success and raise questions about whether surface statistical
patterns rather than the intended abstract syntactic information are driving performance.
Chomsky (1957) claimed that grammaticality should be considered as a pure matter of
syntax and structure, independent from semantic meaning or significance. Therefore, a
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sentence like “Colorless green ideas sleep furiously”, despite being nonsensical, remains
grammatically well-formed. If a model can capture the syntactic structure exemplified by
agreement phenomena in naturalistic datasets, it should also be able to learn the syntactic
constraints of nonsensical sentences. Inspired by this concept, Gulordava and colleagues also
evaluated LSTMs on grammatically well-formed yet semantically implausible test instances,
with the same number agreement prediction task. Specifically, a nonsensical evaluation set
was created by replacing each content word of the original corpus-extracted sentence with
a random word sharing the same PoS and morphological features:

(5) Original: The old rusty keys to the cabinet (are/∗is) ...
Nonce: The colorless green ideas to the door (are/∗is)... (paraphrasing Chomsky)

Their results showed that LSTM model’s performance on nonsensical sentences was only
slightly lower than on original ones; in Italian, this difference was just 6.6%, a similar
performance drop was observed in human subjects. This highlights model’s ability to predict
agreement in the absence of lexical or semantic cues and thus rules out the possibility that
the LSTM decisions relied solely on surface information.

Formal languages Another way to isolate genuine syntactic processing from semantic
information is to use formal languages. Lakretz et al. (2021a) investigated RNN’s ability
to handle recursively nested subject-verb agreements, using artificial data generated by a
PCFG. To illustrate, consider the example:

(6) a2 a1 n3[sg] a5 a3 n1[pl] a2 a2 v5[pl] a4 a1 v4[sg] a2 a5

Here, tokens starting with ‘a’,‘n’ and‘v’ represent adjective-, noun- and verb-like tokens,
respectively. Tokens marked with number information, highlighted in bold, ensure that
nouns and verbs at each nested depth (in this case, depth= 2) exhibit number agreement.
The surrounding adjective-like tokens control dependency length, spanning two units in
length on either side. Lakretz and colleagues created such training datasets, varying in terms
of nested tree depths and dependency lengths. They then assessed RNN language models,
trained with a language modeling objective, on subject-verb agreement tasks in controlled,
incrementally challenging scenarios. Findings from this study indicated that while RNN
language models could generalize to longer dependencies, they struggled with deeper tree
structures.

Synthetic data Given the sparsity of complex syntactic sentences in treebanks (Gulordava
et al., 2018) and the limited scope of the formal language approach, which often explores
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specific syntactic facets in artificial settings, the use of synthetic data becomes an appealing
alternative. Marvin and Linzen (2018) developed a template-based syntactic evaluation
dataset, which features pairs of sentences, identical in all respects except for their gram-
maticality as shown in (7), targeting diverse structures-sensitive phenomena. In exploring
the subject-verb agreement, their work delved into well-controlled challenging scenarios,
where intervening elements such as prepositional phrases, relative clauses, or verb phrase
coordination, separate the target subject and verb. For evaluation, instead of solely com-
paring the probability an LM assigns to a pair of words, they assessed the probabilities of
entire sentences, determining if the model favored the grammatical over the ungrammatical
sentence.

(7) P(sentence a.)
?
> P(sentence b.)

a. The farmer that the parents love swims.

b. ∗The farmer that the parents love swim.

This evaluation method extends to scenarios where multiple words may contribute to
ungrammaticality, such as negative-polarity items. Their findings highlighted that while
RNN language models excelled at local subject-verb agreements (i.e., no attractor), they
exhibited sensitivity to specific lexical items and faced difficulties with rarer patterns, such as
agreement across an object relative clause. Subsequent studies broadened the scope to include
other phenomena considered by linguists to be sensitive to hierarchical structures, such as
argument structure alternation, and filler-gap dependencies, as detailed in Section 2.3.1.

Abstract representations On the other hand, several studies have pointed out the limita-
tions of relying solely on the agreement prediction approach to assess the representation of
abstract syntactic structures by neural models. For instance, Kuncoro et al. (2018a) found
that artificial neural networks may exploit spurious correlation in agreement tests without
actually acquiring the desired syntactic competence: In the test set from Linzen et al. (2016),
the agreement controller is the first noun in 80% of sentences with multiple attractors. This
means that a simplistic heuristic, like agreeing with the first noun, can handle most of the
complex agreement cases.

In addition, Newman et al. (2021) raised concerns regarding the hand-crafted minimal
pair setting commonly used in agreement prediction tasks. While evaluating models based
on their agreement outputs does not provide insights on their internal representations, this
minimal pair setting further limits this approach to systematically capture a model’s syntactic
behavior. For instance, when given the prefix “The keys to the cabinet", the commonly used
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metric compares only one verb pair’s probabilities: is/are, as illustrated in (8a). However,
this evaluation does not account for the model’s overall probability distribution across
vocabulary. So, even if a model correctly predicts “are" for the be pair, it could err in other
contexts, such as favoring “exists” over “exist”, as shown in (8b), when not restricted to
choose specific verb forms. To assess the broader syntactic understanding of a model,
complementary methodologies going beyond behavioral tests are required.

(8) The keys to the cabinet

a. P(are|prefix) > P(is|prefix)⇒ predict “are", plural form

b. P(exists|prefix) > P(exist|prefix)⇒ predict “exists", singular form

Delving deeper, another research strand has focused on exploring models internal repre-
sentations and inner workings. Giulianelli et al. (2018) conducted one of the first studies
to investigate mechanisms tracking subject-verb agreement in LSTMs. After replicating
the number agreement experiments of Gulordava et al. (2018), they used probing classi-
fiers (§2.3.2) to analyze where and how LSTMs represented the agreement information:
Classifiers were trained to predict the number information of the target subject (‘singular’
or ‘plural’) from LSTM’s internal representations for all tokens in a sentence. The results
revealed that in sentences where the LSTM accurately predicted the verb, the classifiers
could retrieve the agreement information with high accuracy. Intriguingly, in cases where
the LSTM chose an ungrammatical verb, the error in number encoding occurred early on,
long before the verb’s appearance. Furthermore, the study used the gradients of the classi-
fiers to rectify the model’s internal states at the timestep when the classifier first detected
incorrect number encoding. After this single intervention, the model showed a significant
improvement in its number agreement predictions, indicating that such encoded information
detected by probing classifiers directly influenced the LSTM model’s predictions.

Lakretz et al. (2019) investigated the neuron-level mechanisms within the RNN model of
Gulordava et al. (2018), examining how the model processed long-distance agreement. Using
neuron-level ablations, where specific neuron activations were set to 0, they assessed the
impact of individual neurons on the model’s syntactic performance. Within the model, only
two units were identified as responsible for encoding grammatical number for long-distance
dependencies; deactivating these units caused the network’s performance approach chance
level. These two long-range “number units” were intricately connected to a distinct set of
“syntax units” that encoded the syntactic structures. One such syntax unit was specialized
in tracking the main subject-verb dependency, indicating when to store or erase number
information within the long-range number units. On top of these structure-aware units, a set
of short-range number units was identified, which determined agreement based on linear-
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distance — the most recent noun. This interaction created a sparse mechanism, consisting
of only three units for long-range agreement, which enables the model to carry the main
subject’s grammatical number over long distances. However, such a sparse mechanism
makes nested long-range dependencies challenging. For example, in (9), after recording
the outer dependency and number (keys, plural), the model lacked available long-range
units. Thus, the agreement in the embedded clause agreement (man–holds) had to rely
on short-range units, which can be misled by attractors. This deep dive into the RNN’s
agreement mechanism provides a foundation for comparative studies between the model’s
syntactic behavior and human cognition. It provides actionable hypotheses that can be
tested to better understand human syntactic processing (Lakretz et al., 2020, 2021b).

(9) The keys1 [that theman2 near the cabinets holds2 ] are1 rusty.

Shift to Transformer-based models The studies reviewed so far in this chapter have
focused on RNN language models. As I began my thesis, Transformer-based models began
to redefine the state-of-the-art in NLP and other fields, leading to a noticeable shift in
the community’s focus towards them. Consequently, in the realm of interpretability and
explainability, a plethora of research has emerged to evaluate the linguistic capabilities
of Transformer models. Among these investigations, the long-distance agreement task
remains a popular tool to probe the structure-sensitive generalization capabilities of these
Transformer models.

After BERT and GPT’s impressive syntactic capabilities were confirmed by replicating
the agreement experiments of Linzen et al. (2016) and Gulordava et al. (2018) in studies
like Goldberg (2019) and Wolf (2019), later research aimed to uncover the mechanisms
behind these models’ proficiency in handling long-distance dependencies. For instance,
many studies, ours included, applied causal intervention analysis on Transformer models
to uncover their strategies for resolving long-distance agreements (Finlayson et al., 2021;
Lasri et al., 2022b; Li et al., 2022a). Others explored how subject-verb agreement resolution
in Transformers was influenced by factors independent of structure, examining frequency
effects as in Wei et al. (2021), lexical information as in Lasri et al. (2022a) and surface
heuristics as in our work Li et al. (2021).

More recent research has expanded beyond English, with numerous studies assessing
Transformer models on non-English linguistic structures, leading to varied conclusions about
their syntactic capabilities. For example, Guarasci et al. (2023) evaluated BERT’s ability to
learn Italian syntax, and de Dios-Flores et al. (2023) probed BERT’s understanding of control
dependencies in Spanish and Galician, highlighting model’s difficulty with non-adjacent
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dependencies. Meanwhile, many non-English challenge sets have also been introduced. For
instance Wilkens et al. (2023) developed a dataset for Brazilian Portuguese that included
various grammatical structures, in particular agreement phenomena. Someya and Oseki
(2023) introduced the Japanese benchmark of linguistic minimal pairs, covering 11 intricate
linguistic phenomena, and highlighted challenges in verbal agreement and binding. An et al.
(2023) crafted a French synthetic benchmark for subject-verb agreement, modeling it after a
visual pattern detection task inspired by Raven (1941).

In this chapter, I have outlined several key studies1 that employ the long-distance agree-
ment task to assess the ability of neural language models to capture syntactic information.
Their methodologies and diverse conclusions form the premise of the following chapter, in
which we combine challenge sets, probing classifiers, and causal interventions to investi-
gate the mechanisms tracking long-distance agreement in an autoregressive Transformer
language model.

1It is worth noting that this overview is not exhaustive, recently, this field has seen numerous follow-up
studies and related work that I have not been able to cite or detail extensively.
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This chapter, forming the centerpiece of this dissertation, builds directly upon the studies
reviewed in Chapter 3. We expand previous research by conducting a contrastive analysis
of a Transformer model through two carefully crafted long-distance agreement tasks in
French. We aim to investigate how well the Transformer can handle these two strucutre-
sensitive phenomena, and whether its performance stems from its ability to build an abstract,
high-level (maybe hierarchical) sentence representation (Giulianelli et al., 2018; Lakretz
et al., 2019) or merely because it captures surface statistical regularities, as suggested by
previous studies (Sennhauser and Berwick, 2018; Chaves, 2020; Li and Wisniewski, 2021). To
effectively evaluate the model’s syntactic capacity, we first introduce a novel heuristic-based
evaluation protocol, which enables us to probe the model’s ability to handle agreement tasks
beyond superficial heuristics. We then use probing approaches, paired with causal analysis,
to identify the location of the syntactic information within the model and determine how
the model actually uses this information for agreement resolution.

Chapter outline This chapter is structured as follows: Section 4.1 introduces the research
question and relevant background concepts, as well as the two agreement tasks that are
central to our study. In Section 4.2, we revisit the number agreement tasks through a
heuristic-based evaluation protocol to address potential confounding factors. These refined
tasks and the evaluation protocol serve as the foundation for all subsequent experiments
outlined in this chapter. In Section 4.3, we investigate the specific location of syntactic
information within the autoregressive Transformer language model. Following this, Section
4.4 analyses how the model uses this encoded syntactic information to process long-distance
agreement phenomena. In Section 4.5, we explore the relationship between the model’s
ability to abstract syntactic structure and the sequential word order information presented
in the input sequences. The chapter concludes with Section 4.6, where we recapitulate our
findings and discuss their implications.

4.1 Introduction

Transformers-based language models (Vaswani et al., 2017; Devlin et al., 2019; Brown et al.,
2020) have reshaped NLP with their unparalleled performance across a wide range of
language tasks. Their empirical success, coupled with the findings of previous studies
(see Section 2.3), indicates that these models potentially have acquired a certain level of
abstraction in understanding language structure. Since Linzen et al. (2016), the long distance
agreement task has been a paradigmatic test for assessing the ability of NLMs to uncover
syntactic information from raw texts: a model able to predict the long-distance agreement
dependency, has to, to some extent, develop an abstract representation of the syntactic
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structure and encode it in its internal representations.

In this study, we investigate how Transformer language models process and represent
syntactic structure through long-distance agreements tasks. The essential research question
we aim to explore is: When resolving long-distance agreements, to what extent do models
abstract their representations from surface pattern recognition, and are they able to develop
meaningful, syntactically driven representations of linguistic structure?

By addressing this question, we can evaluate model’s representational adequacy for
modeling syntactic structures and develop linguistically-informed analysis tools to enhance
our understanding and control over these models. Such insights are crucial for evaluating
these models as potential explanatory explanatory models for human language processing.
Moreover, delving into the linguistic abstraction of these models can provide insight into the
properties that contribute to the success of NLMs but also identify their limitations, which
could help guide the creation of more effective architectures. For instance, previous studies
find that modeling explicitly hierarchical structure as an inductive bias of RNN models helps
them learn structure-sensitive phenomena more effectively (Kuncoro et al., 2018b; Wilcox
et al., 2019). Despite the remarkable empirical success of Transformer-based models, they
can be fragile, especially when faced with noisy or adversarial inputs (Wang et al., 2022).
Integrating human linguistic priors into these models might provide added robustness and
optimize learning efficiency (Lake et al., 2017; Besold et al., 2017).

To explore this question, we focus on two types of number agreement phenomena in
French, both feature morphological markings:

(10) Les
The_Pl

chat·s
cats_Pl

[
[
que
that

Noûr
Noûr

aime
likes_Sg

bien
a_lot

]RC

]RC

jou·ent
play_Pl

dans
in

le
the

jardin.
garden.

(11) Les
The_Pl

chat·s
cats_Pl

[
[
que
that

Noûr
Noûr

a
has

adopté·s
adopted_Pl

]RC

]RC

sont
are_Pl

mignons.
cute_Pl

Example (10) demonstrates a subject-verb agreement between the noun “chats” and the
main verb “jouent” across a relative clause, while (11) showcases an object-past participle
agreement between the same noun “chats” and the past participle “adoptés”. At first glance,
(10) and (11) may appear to represent identical agreements between a noun and a verbal form
separated by a few words. Yet from a linguistic perspective they are substantially different:
while the former involves the subject controlling the main verb’s number, the latter involves
anaphora resolution and movement—operations that are fundamentally different from the
phrase structure embedding in the subject-verb agreement (see §4.2.1 for more detailed
description).

46



It is unclear whether and how a Transformer language model can identify these abstract
representations based merely on the words sequence. The present work aims to contrast
how Transformer handles these two kinds of agreement. Specifically, we seek to determine
whether the Transformer LM encodes the same abstract structure in its internal representa-
tions to capture the information required for agreement resolutions, or if it instead encodes
an abstract structure that reflects the distinction made in the theoretical modeling of these
two agreements. This contrast will shed new light on our understanding of the internal
workings of Transformer models.

This chapter offers two key contributions. First, we expand the existing syntactic
evaluation paradigm by conducting a contrastive analysis of a Transformer model’s ability
to abstractly represent two superficially similar syntactic phenomena in French: long-
distance subject-verb agreement and a less studied phenomenon, object-past participle
agreement. Second, we introduce an integrated linguistically-informed analysis framework
that can serve as a template for empirically testing linguistic or cognitive theories with
computational models.

As an initial step, we introduce a novel heuristic-based evaluation protocol to revisit
conventional number agreement tasks. This helps to discern whether the model relies
on structural patterns or surface-level heuristics. Our findings indicate that Transformer
models excel at both agreement tasks, successfully abstracting away from potential lexical
or heuristic confounds. Subsequently, we use probing classifiers and causal intervention
on self-attention to examine where the Transformer model encodes syntactic information
internally and how the model uses it in agreement resolution tasks. The results reveal
that for both phenomena, even though the long-distance agreement information is mainly
encoded locally across the tokens between the two agreeing elements, Transformer model
deploys distinct, linguistically motivated strategies to process each phenomenon. Lastly,
through ablation studies, we explore the role of positional embeddings in the Transformer’s
architecture.

4.2 Revisiting number agreement tasks via a heuristic-
based evaluation protocol

As discussed in Chapter 3, many recent studies have demonstrated that unsupervised
sentence representations generated by neural language models encode syntactic information,
as evidenced by their success in predicting long-distance agreements. However, conventional
behavioral assessments, which focus solely on output, fall short of determining whether a
model’s success in these tasks arises from genuine syntactic understanding or from exploiting
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superficial patterns in the data.

To address this issue, we introduce a heuristic-based evaluation protocol tailored for
agreement tasks. This protocol enables us to identify cases where the correct answer
cannot be inferred through simple surface-level heuristics. If the model still performs well
under these conditions, it would strongly suggest that it has indeed acquired a level of
non-superficial syntactic competence. We further complement this with control experiments
aimed at assessing other confounding factors that might influence the model’s predictions.
This multi-faceted evaluation strategy lays the groundwork for the subsequent development
and assessment of different interpretation techniques, as we will explore in Sections 4.3 and
4.4.

4.2.1 Syntactic phenomena

In this study, we extend the agreement predictions approach to non-English languages
by considering French, a morpho-syntactically richer language. Unlike English, where
agreement is primarily limited to subject-verb pairs in the third person, singular present
tense, French exhibits a wider range of agreement features, including gender and number
agreement across various grammatical categories like adjectives, pronouns, articles, and
past participles. This complexity provides a richer testing ground for exploring the syntactic
capabilities of neural language models.

The number agreement tasks in our study address two agreement phenomena: subject-
verb agreement across relative clauses (henceforth S-V agreement) and object-past participle
agreement (henceforth O-PP agreement) in French. In the following sections, for both types
of agreement we refer to the noun item providing the agreement information the cue, and
the verbal item as the target. We focus exclusively on sentences involving object relatives
such as those analyzed in Figure 4.1, where the words that intervened between the cue and
the target contain at least one relative clause. Despite the superficial similarities between
the two phenomena — both featuring a relationship between a noun and a verbal form
separated by a few words containing relative clause elements — they receive significantly
different linguistic analyses.

The subject-verb agreement across relative clauses is a case that clearly necessitates
hierarchical representation. In (4.1a), the main verb miaulent (meow) must agree in number
with its syntactic subject chats (cats), regardless of the intervening elements. The relative
pronoun que (that) and the entire embedded clause are not relevant for determining the
form of the main verb. The model needs to distinguish the main clause subject (chats) from
the embedded subject (Marie) and ignore irrelevant attractors like jardin. This requires a
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Les chat·s dans le jardin que Marie nourrit régulièrement __ miaul·ent .
The_Pl cats_Pl in the garden_Sg that Marie feeds regularly meow_Pl .

cue target

nsubj

(a) Example of subject-verb agreement

Les chat·s dans le jardin que Marie a adopté·s __ miaulent .
The_Pl cats_Pl in the garden_Sg that Noûr has adopted_Pl meow_Pl .

cue target

antecedent object

(b) Example of object-past participle agreement

Figure 4.1: In (a), the number of the main verb (miaulent, in red) is determined by the head
of the subject chats. In (b), the past participle in the relative clause (adopté, in blue) has to
agree in gender and number with its object (also in blue) when the latter precedes the verb.

.

nuanced representation of clause-specific syntax and verb argument structure.

Compared to subject-verb dependency, the agreement of the past participle in object
relative clauses relies on an abstract set of relations between words occurring in different
clauses. In French, the past participle conjugated with the auxiliary avoir (have) in compound
tenses, such as passé composé, must agree in number and gender with the direct object that
precedes it.1 As shown in Figure 4.1b, the past participle within relative clause agrees in
number and gender with its complement (the cue) in the main clause, because the latter
moves before it. Specifically, when agreement is required, a -s suffix (resp. -e) is added to
the singular masculine form for plural objects (resp. feminine). This agreement resolution
involves an anaphora (indicated by the antecedent arc) and a filler-gap dependency. The filler
is que (that) and the gap, indicated with an underscore in Figure 4.1, is an empty syntactic
position licensed by the filler (Kayne and Benincà, 1989). In the example (4.1b), the relative
pronoun que is the pre-verbal direct object of the past participle adoptés and triggers the
agreement of the past participle. To obtain its agreement features, the relative pronoun
has to be linked by anaphora to its nominal antecedent chats. In other words, to correctly
agree the past participle in theory, it is necessary to identify the object relative pronoun que
and its antecedent. Additionally, the model has to ignore the effect of attractors occurring
between the antecedent of the relative pronoun and the past participle.

We only consider number agreement as i) number agreement is the only feature shared
1Although in standard French, normative grammars indicate object-past participle agreement under wh-

movement as obligatory, it in fact appears to be optional in colloquial French, where the past participle is often
produced in its default form, which, in French, corresponds to the singular, masculine form of the participle
(Belletti, 2017). Please refer to §4.2.3 for a relevant analysis of the training data used in this study.
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by the two agreements we consider;2 ii) the main purpose is to design reasonably simple
patterns allowing to extract a sufficiently large number of representative examples. These
restrictions allow us to carry out a fine-grained contrastive analysis of NLMs ability to
extract syntactic generalizations from non-annotated corpora (§4.2.4).

4.2.2 Datasets construction

As discussed in Chapter 3, common approaches for creating challenge sets typically rely on
template-based generation or extraction from gold parses. Template-based synthetic data,
similar to the artificial stimuli employed in human linguistic experiments, provides controlled
testing grounds. Yet, they may lack ecological validity and the variability of natural language.
For example, our Transformer language model, trained on French Wikipedia text, achieved a
perplexity score of 27. However, the score rises to 308 for materials from human experiments
on French object-past participle agreement used in Villata (2017), and increases to 654 on a
synthetic corpus for French subject-verb agreement across relative clauses fromMueller et al.
(2020). This score discrepancy highlights the potential detachment of synthetic data from the
natural linguistic landscape, which could, in turn, affect the assessment of model capabilities.
On the other hand, while gold parses from existing treebanks ensure accuracy, they may
not provide a sufficient number of syntactically challenging examples. For instance, only 41
sentences were available for English in the study by Gulordava et al. (2018).

To overcome these limitations, we adopt an approach focusing on naturally occurring
sentences. This approach not only respects the ecological validity, but also reflects the
complexity and diversity inherent in natural language. By extracting our target sentences
from a large automatically parsed corpus, we collect a substantial and varied set of test items.
Furthermore, we conduct a qualitative evaluation of our automatic parsing and extraction
pipeline to guarantee the quality of the evaluation sets.

Overview To construct the evaluation datasets for the number agreement tasks we con-
sider, sentences were automatically extracted from the French part of Project Gutenberg,3

which contains over 8 million sentences. We used the French dependency parser (Grobol
and Crabbé, 2021) along with pretrained French model from spaCy (Honnibal et al., 2020) to
parse the corpora,4 from which examples of target agreement phenomena were extracted

2In French, the verb has to agree in number with its subject, and the past participle conjugated with the
auxiliary avoir agrees in number and in gender with its direct object if the latter appears before it.

3https://www.gutenberg.org/
4The parser by Grobol and Crabbé (2021) annotated only the part-of-speech tags and dependency relations,

spaCy supplemented these annotations with morphological features.
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using simple rules (detailled in the following paragraph). This resulted in two evaluation sets:
one for object-past participle agreement (O-PP agreement), consisting of 68,794 sentences
(65% with a singular target and 35% with a plural one), and spanning 837 past participle
lemmas and 2,489 word forms. Another for subject-verb agreement (S-V agreement) across
relative clauses, consisting of 27,582 sentences (70% with a singular target 30% with a plural
one), and spanning 536 verb lemmas and 1533 verb forms. Both sets consist of sentences
including at least one object relative clause between the cue and target. There are fewer
items in the S-V agreement set because noun phrases modified by relative clause(s) occur
more frequently in the object position than in the subject position of the main clause. In
these two evaluation sets, an arbitrary number of words can occur between the cue and
target: an average of five tokens occur between the antecedent and the past participle,
and 11 tokens between the head of the subject and the main verb. These “intervening”
tokens include varied constructions such as prepositional phrases, participials, or nested
relative clauses, which can pose additional challenges for agreement tasks. See Section A.3
in the Appendix for sample sentences from the two evaluation sets. Note that in all our
experiments, we ensure that the evaluation sets were completely separate from models
training data.

NOUN PRON VERB VERB
Les chat·s que Noûr aime bien jou·ent dans le jardin .

The_Pl cats_Pl that Noûr loves well play_Pl in the garden_Sg .
cue target

nsubj

object

(a) Example of the extraction pattern for subject-verb agreement across relative clauses

NOUN PRON VERB
Il aime les chat·s dans le jardin que Noûr a adopté·s .
He loves the_Pl cats_Pl in the garden_Sg that Noûr has adopted_Pl .

cue target

acl:relcl
object

(b) Example of the extraction pattern for object-past participle agreement

Extraction procedure The extraction rules used to construct evaluations datasets are
based on the predicted dependency structure and morphological information of sentences.
As illustrated in Figure 4.2a, for subject-verb agreement, a valid example must include a
Noun and Verb connected by a nsubj dependency and at least one relative pronoun que
acting as a direct object between them. For object-past participle agreement, as shown
in Figure 4.2b, a valid example has to include a Noun and Verb connected by an acl:relcl
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(1) Le disque et les livres qu’ il a achetés
The disk and the books that he has bought
The disk and books that he has bought...

(2) Les propositions de la fédération qu’ il a faites
The proposals of the federation that he has made
The proposals of the federation that he has made...

Figure 4.3: The test set excludes sentences with coordinate cue as shown in (1). But it
includes syntactic phrases as cue cases like in (2), as the antecedent of the relative pronoun
is unambiguous.

dependency, with a direct object que preceding the Verb, and the auxiliary used by the
target Verb must be avoir (to have).

In the next step, we filtered out sentences containing ambiguous or non-agreement
target-cue pairs. Based on syntactic-morphological information, we excluded sentences
that involved the cue being part of a coordination structure, such as example (1) in Figure 4.3,
and those with number-ambiguous cue or target, including collective nouns or nouns and
verbs with identical singular and plural forms.5 However, we retained syntactic phrases as
cue cases, because they are typically endocentric: the head determines without ambiguity
the agreement requirements for the entire phrase. For instance, in example (2) of Figure 4.3,
the word propositions heads the entire NP modified by a prepositional phrase, and the
upcoming verb should agree with propositions in number. We also excluded sentences in
which the noun and the verb do not agree in number (and in gender for past participle
agreement cases), as well as those in which not all words from the cue to the target were
present in the language model’s vocabulary.

Qualitative evaluation of extraction procedure Given that our evaluation sets are
extracted from automatically parsed corpora, there is an inherent risk of introducing errors
into the dataset (Bender et al., 2011). This makes a qualitative analysis especially crucial for
our study. To assess the effectiveness of our automatic parsing and extraction procedure,
we conducted a qualitative analysis based on the French Universal Dependency treebanks.6

Using the object-past participle agreement pattern in Figure 4.2b, we identified a set of 107
valid sentences (68% singular and 32% plural) from the gold annotations of French treebanks.

5We filtered out nouns with endings in -s,-x,-z and past-participles that ends with -s, as these forms
often remain the same in both singular and plural in French.

6https://universaldependencies.org/, we used the version 2.7 of the UD project.
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We then used the parsers from our previously established automatic extraction procedure to
parse the French treebanks. From this analysis, we extracted 106 instances of object-past
participle agreement, achieving a precision of 99% and a recall of 98%. The single error,
illustrated in (12), involves the incorrect identification of the antecedent as manière (way),
instead of révolution (revolution). However, since we do not need to correctly identify the
cue to create a valid test item for number agreement tasks, this error is inconsequential.
Additionally, two instances were missed due to incorrect annotation of the intervening
relative pronoun qu’ in (13), and a verb attachment error, respectively. These high scores
suggest that our automated process is reliable for the aims of this study.

(12) Une
A

manière
way

de
of

révolution
revolution_Fem_Sg

sur
on

lui-même
himself

,
,
qu’il
that he

a
has

opérée
operated_Fem_Sg

en
in

1981
1981

(13) la
the

formule
formula_Fem_Sg

qu’avec
that with

un
a

sens
sense

de
of

la
the

nuance
nuance

plus
more

marseillais
Marseillais

que
than

britannique,
British,

le
the

président
president

de
of

l’académie
the academy

a
has

appliquée
applied_Fem_Sg

4.2.3 Experimental setup

Models In this chapter, we focus on an autoregressive Transformer language model while
also including an LSTM langauge model as a strong baseline for comparison. Both of these
generative language models (See detailed description in §2.2) are designed to estimate the
probability of a sentence x as:

P(x) =
n∏

i=1

P(xi|x1 . . . xi−1) (4.1)

All models are trained to compute P(xi|x1 . . . xi−1) and they all use the same generic tem-
plate:

P(xi|x1 . . . xi−1) = softmax(Wdecci−1 + b) (4.2)

ci−1 = context(e1 . . . ei−1) (4.3)

ei = Wencxi (4.4)

where xi is one-hot word vector; Wenc and Wdec are tied parameter matrices, the latter
being the transpose of the former, encoding respectively the word embeddings and the
output layer of the language model. A context model (context) is either an incremental
LSTM or a Transformer decoder where the sequence of embeddings ei . . . en is masked
(i.e. the probability of the i-th word is estimated knowing only the first (i-1) words of the
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sentences, contrary to the “standard” Transformer models which assume that the whole
sentence is known). The context vector c returned by the context model is either the hidden
vector of the LSTM at step i−1 or the vector returned by the upper layer of the Transformer
at step i− 1.

Prior research mainly used sub-word-based pretrained models, which could only directly
score words represented as a single wordpiece. Studies such as those by Goldberg (2019)
and Lasri et al. (2022b) dealt with this limitation by restricting their evaluations to verbs
that appear as single wordpieces in the model’s vocabulary. We avoid such compromises
by implementing word-based RNN and Transformer models using the PyTorch library,7

offering a more suitable and flexible framework for linguistic experiments.

The studies in this chapter focus mainly on the Transformer model with 16 layers and 16
heads, featuring a total of 127 million parameters, denoted as M. This model is comparable
in size to the GPT-2 base model (Radford et al., 2019; Solaiman et al., 2019). To provide a
strong baseline, we additionally incorporate a 2-layer LSTM model in Section 4.2, as it has
shown a strong ability in resolving various number agreement tasks in English in prior
research.8 To provide a more nuanced comparison between the two architectures, we also
include in Section 4.2, two Transformers language models that have a number of parameters
comparable to our LSTM model: one featuring 2 layers, denoted as Mshallow, while the
other,Mshared, has 16 layers with weights shared across all layers (Dehghani et al., 2018)
(see Table 4.1 for details).9 All models use embeddings of size 768 and are pre-trained on
the same data, allowing for a reasonably fair comparison across models. For Transformers
we add positional embeddings to the word embeddings ei using the sinusoidal scheme
and weighting described by Vaswani et al. (2017). We bound the vocabulary to the 50,000
most frequent tokens found in the training data and use an <unk> token to encode the least
frequent tokens.

Language model training To train the language models, we extracted raw text from
a French Wikipedia dump10 usingWikiExtractor (Attardi, 2015). We then segmented and
tokenized it with theMoses tokenizer (Koehn et al., 2007). To ensure the quality of the dataset,
we filtered out sentences withmore than 5% unknownwords based on the lemma annotations
generated by TreeTagger (Schmid, 1995). Once filtered, we sampled a subset containing 100
million tokens, which mirrors the linguistic exposure of an 8-year-old (Brysbaert et al., 2016).

7https://gitlab.huma-num.fr/bli/syntactic-ability-nlm
8Many previous related studies have focused on LSTM, including LSTM models in this work also facilitates

a comparison of subject-verb agreement results obtained in French with those from other languages reported
in the literature.

9Considering an LSTM model with a larger number of parameters is computationally not tractable.
10We used the version of 2020-11-09 from: https://dumps.wikimedia.org/frwiki/
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#layers #attention heads #param (×106) PPL
LSTM 2 – 48 36.9±0.1

M 16 16 127 27.0±0.2

Mshallow 2 16 49 37.8±0.7

Mshared 16 16 48 30.7±0.6

Table 4.1: Parameters and perplexities (average across five models) of neural language
models examined in this section.

This subset was then split into training, validation, and test sets with an 8:1:1 proportion.

We pre-trained all of our models using a language modeling objective, as described in
Section 2.2.1. Training was carried out with stochastic gradient descent, with an initial
learning rate to 0.02 and a cosine scheduling for 100 epochs without annealing. The first
epoch was dedicated to warm-up, with a linear incremental schedule for the learning rate.
The batch size was set to 64, running in parallel on 8 GPUs, except during the warm-up,
where the size was fixed to 8. Hyperparameters were selected by minimizing the perplexity
on the validation set, and the optimal combination of hyperparameters was used to train
five models for each architecture. All results presented in this work are averaged across
these five models. For further details regarding the models and hyperparameters tuning,
please refer to Section A.1 in the Appendix.

Evaluation procedure We use the number agreement task (§3) to evaluate neural lan-
guage models’ ability to capture syntactic information. Language models provide us with a
straightforward, unsupervised way to predict agreement: Let P(wi|w1, ..., wi−1) represent
the predicted probability of a wordw at position i in a sequence, conditioned on all preceding
words w1, ..., wi−1 in the sequence. For each sentence in the number agreement test sets, we
examine whether the condition in (4.5) holds. Specifically, we evaluate whether the model,
given all the tokens preceding the target, allocates a higher probability to the correctly
inflected target verb than to the verb inflected with the opposite number. We refer to this
evaluation metric as target verb evaluation.

P(wtarget|w1, ..., wi−1) > P(w¬ number
target |w1, ..., wi−1) (4.5)

For instance, a pre-trained model is fed with a sentence prefix “Les chats dans le jardin
que Marie a” in example (14), the expected upcoming target verb is in plural — adoptés.
We then compare the probabilities the model assigns to the singular form adopté and the
plural form adoptés. We consider the model has predicted the agreement correctly if the
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form with the correct number has a higher probability than the form with the incorrect
number, as illustrated in example 14a. Therefore, a model’s syntactic ability is measured by
the percentage of sentences for which the verb form with the higher probability is the one
that respects the agreement rules of the language (i.e. matches the number of the cue).

(14) prefix: Les
The_Pl

chats
cats_Pl

dans
in

le
the

jardin
garden

que
that

Marie
Marie

a
has

__
__

Expected verb: adoptés, plural

a. P(adoptés|prefix) > P(adopté|prefix)⇒ predict “adoptés", plural ✓

b. P(adopté|prefix) > P(adoptés|prefix)⇒ predict “adopté", singular ✗

4.2.4 Heuristic-based evaluation protocol

Overall accuracy As shown in Table 4.2, all models achieve over 80% accuracy in both
long-distance agreement tasks. Specifically, the LSTM made correct number prediction
in 94.3% of the subject-verb agreement cases and in 82.1% of the object past participle
agreement cases, a performance similar to those reported in the literature.11 In most cases,
the Transformer variants outperformed the LSTM model. These overall results support
the conclusion, drawn by many studies, that neural networks are capable of tracking long-
distance dependencies with high accuracy, which constitutes evidence that they encode a
substantial amount of abstract syntactic information (§3).

Models & Baselines S-V O-PP
LSTM 94.3±0.3 82.1±1.1

M 98.9±0.04 94.6 ±0.2

Mshallow 90.8±0.4 84.7 ±0.7

Mshared 97.8±0.3 89.0 ±0.3

Majority class 69.7 65.1
Surface rule: first noun 83.7 69.5

Table 4.2: Average accuracy (%) for both agreement tasks across five models for each
architecture, compared to baselines.

However, we believe that this conclusion must be taken with great care. Confounding
factors may enable a language model to produce correct predictions without genuinely

11For instance, for the subject-verb agreement task, Gulordava et al. (2018) reported an overall accuracy of
93.3% for Italian and Mueller et al. (2020) of 83% for a wide range of constructions in French.
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capturing syntactic rules, as discussed in Chapter 3. For instance, the model could exploit
surface-level patterns in natural language, where often the subject happens to be the first
noun (Kuncoro et al., 2018a). In our subject-verb agreement evaluation set, a simplistic
model that always matches the verb form with the first noun in the sentence can achieve
an accuracy of 83.7%. This high score raises questions about the true nature of our models’
capabilities. Given that both the abstract linguistic rule and the superficial pattern could
lead to the same correct answer in most cases, it becomes hard to tell if a model is actually
relying on the underlying hierarchical structure of sentence — the verb should match its
grammatically determined subject in number, or simply exploiting the sequential pattern
present in the data — the verb should match the first noun in number.

Heuristic-based evaluation Expanding upon the observation of Kuncoro et al. (2018a),
we introduce five shallow heuristics in our framework that a statistical model could exploit
to predict the verb’s number only from surface information. These heuristics are organized
in increasing order of complexity, and each one assumes that the target verb agrees in
number systematically with:

h1. the nearest token marked for grammatical number;

h2. the nearest noun;

h3. the first noun of the sentence;

h4. the majority number expressed before the target;

h5. the noun preceding the closest que before the target.

It is worth noting that the fifth heuristic, which involves identifying relative pronouns, is
arguably more complex and may not be as purely “surface-level" as the preceding ones.

(15) (h4)Les
ThePl

chats(h3)
catsPl

dans
in

les
thePl

champs(h5)
fieldsPl

que
that

Marie
MarieSg

nourrit
feedsSg

__Pl

__Pl...
...

For instance, in the example (15), the sentence prefix anticipates a plural main verb, the
correct verb form could be selected by applying heuristics of agreeing with the first noun
(h3, plural), or agreeing with the noun preceding that (h5, plural), or the majority number
expressed in the prefix (h4, plural). These heuristics are not tailored to the prediction of
the two types of agreement in French, but can easily be adapted to other relevant tasks in
different languages.
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Interestingly, the accuracy of these heuristics on our evaluation sets ranges from 60.3%
(for h1) to 95.7% (for h5), most of which are above the majority-class baselines, and the h5
heuristic even outperforms the best model in the object past participle agreement task.12

These observations call into question our previous conclusion, suggesting that the good
performance of neural language models on agreement tasks could also result from their
ability to extract and combine surface patterns rather than their capacity to learn underlying
hierarchical structures. Given that the hierarchical structures appearing in natural language
frequently co-occur with superficial statistical regularities, we propose in this study a
heuristic-based evaluation protocol, which aims to mitigate this issue and provide a clearer
understanding of NLM’s capabilities in learning and processing language structures.

This novel evaluation protocol forms the first contribution of this dissertation. We
propose using these heuristics to measure the prediction ‘difficulty’ of sentences in our
evaluation sets. Specifically, for each test sentence, we count how many heuristics correctly
predict the form of the target verb. The more heuristics that match, the easier the prediction
task becomes. Therefore, a higher count of heuristics implies a lower prediction difficulty for
a given sentence. Subsequently, we divide our test set into six subsets, each corresponding
to the count of heuristics that match the form of the target verb. We then assess model
performance across these varying levels of difficulty.

Count of
heuristics

Difficulty
of agreement Examples

5 --- (4)Si les idées(3)(5) que ces mots(2) représentent(1) ne sont pas ...
If the ideas that these words represent are not...

4 -- (4)Les choses(3)(5) que nous avions vues cent fois avec indifférence nous(1) touchent...
The things that we had seen a hundred times with indifference touch us ...

3 - Un philosophe est curieux de savoir si les idées(5)(2) qu’il a semées(1) auront...
A philosopher is curious to know if the ideas that he has sown have...

2 + Les emblèmes(3)(5) qu’on y rencontre à chaque pas disent ...
The emblems that we meet at each step say ...

1 ++ Les qualités(3) qui t’ont fait arriver si jeune au grade que tu as doivent te porter ...
The qualities that made you arrive so young at the rank you have shouldPl bring you ...

0 +++ Ce soir les hommes que j’ai postés sur la route que doit suivre le roi prendront ...
Tonight the men that I have posted on the road that the king must follow will_takePl ...

Table 4.3: Examples from our evaluation set of subject-verb agreement, stratified by the
count of surface heuristics predicting the target’s number, a proxy to the task difficulty. The
target verbs and their subjects are in bold. The orange numbers in parentheses indicate the
presence of different types of heuristics.

As illustrated in Table 4.3, the 5-heuristic group gathers the ‘easiest’ examples: For
instance, in the prefix “Si lesPl idéesPl que cesPl motsPl représententPl ne sontPl”, all
five heuristics match the target’s number — plural. A model can easily predict the correct

12For a detailed breakdown of accuracies by each surface heuristic, see Table A.4 in the Appendix.
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form of the target verb by simply applying any of the five surface heuristics (e.g. the
target form should match the first noun/the nearest noun/...). In contrast, examples in the
0-heuristic group are the most difficult. In the prefix “CeSg soirSg, lesPl hommesPl que
j’aiSg postésPl sur laSg routeSg que doitSg suivre leSg roiSg prendrontPl...”, all five defined
superficial heuristic predict singular, while the target verb should be in plural. Therefore, a
model that successfully predicts the plural form for this instance, must have learned a more
abstract representation of the sentence, enabling it to track the long-distance subject-verb
dependency. On the other hand, a model that relies on the surface heuristic strategies would
be expected to fail on this instance. The evaluation analyses in the following studies will
primarily focus on the more challenging cases (i.e. 0 and 1 heuristic subsets), as correctly
predicting the verb form in these instances would offer compelling evidence of a model’s
syntactic ability.

Constructions Size
(in sentences)

LSTM
(# 47M)

M
(# 126M)

Mshallow

(# 49M)

Mshared

(# 47M)

Subject-verb across object relative clause
Overall 27,582 94.3±0.3 98.9±0.04 90.8±0.4 97.8±0.3

5 heuristics 14,708 98.6±0.1 99.6±0.05 97.6±0.2 99.5±0.1

4 heuristics 3,799 95.2±0.5 99.0±0.1 92.2±0.5 97.9±0.2

3 heuristics 4,189 91.3±0.8 98.4±0.1 85.7±0.4 96.6±0.2

2 heuristics 3,166 84.8±1.0 97.7±0.1 77.0±1.8 94.5±0.4

1 heuristic 1,451 81.2±1.8 96.8±0.1 67.4±2.1 92.8±0.3

0 heuristic 269 74.7±2.2 94.1±0.5 63.9±2.3 87.0±0.6

Object past participle
Overall 68,497 82.1±1.1 94.6 ±0.2 84.7±0.7 89.0±0.3

5 heuristics 32,149 95.3 ±0.6 99.2 ±0.1 96.7±0.4 98.5±0.2

4 heuristics 12,711 85.9 ±1.0 96.5 ±0.1 89.7±0.8 92.9±0.2

3 heuristics 9,159 71.9 ±1.6 91.6 ±0.4 75.0±1.3 82.8±0.4

2 heuristics 10,621 62.2 ±2.4 87.6 ±0.4 66.1±2.1 74.4±0.5

1 heuristic 2,870 37.4 ±4.1 77.9 ±0.8 42.5±4.3 58.6±2.3

0 heuristic 987 40.2 ±2.7 76.1 ±1.0 44.2±3.1 56.0±2.1

Table 4.4: Accuracies(%) achieved by LSTM and Transformer models as a function of the
agreement prediction difficulty. Transformer modelM uses 16-layer decoders each with
16 heads, Mshallow has 2 layers each with 16 heads and Mshared is a variant of M using
shared parameters across all 16 layers.

Results The breakdown of model performance based on the heuristic-based protocol, as
shown in Table 4.4, reveals more nuanced results. With respect to the type of agreement, we
observe that both LSTM and Transformer models achieve much better performance in S-V
agreement compared to the O-PP agreement, especially in the most challenging cases (i.e. 0
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& 1 heuristic subsets). This is despite the fact that the linear distance between the cue and
the target in the subject-verb dependency is, on average, twice as long as that in the O-PP
agreement (11 tokens vs. 5 tokens). One possible explanation for this performance difference
is the frequency of agreement patterns in the training data. Subject-verb agreement occurs
in nearly every sentence of the training data, while only 0.35% of the training sentences
involve an object-past participle agreement.13 However, we do find a consistent pattern
across both agreement tasks: model performance always decreases as the task difficulty
increases. This is particularly evident for O-PP agreement, where models show over 95%
accuracy in the simplest cases (5-heuristic subset), but see a sharp decline in performance
with increasing task difficulty. In the most difficult cases (0-heuristic subset), LSTM and
Mshallow achieve below 45% accuracy. Furthermore, these observations show that the impact
of surface heuristics is not limited to a relatively infrequent and complex agreement, but also
extends to more frequent subject-verb agreement. This underscores the need for cautious
interpretation of results on long-distance agreement tasks, and surface heuristics should be
taken into account when evaluating model performance.

Regarding the model architecture, the Transformer modelM with the largest number
of parameters consistently achieves the best performance across all subsets. For both types
of agreement, M predicts the correct verb form most of the time, even in the hardest cases
where the LSTM and the shallow Transformer struggle.14 When comparing models with a
similar number of parameters as LSTM, the shallow Transformer with two layers performs
worse than the LSTM on the S-V agreement task, but slightly better on O-PP agreement.
Interestingly,Mshared, lightweight Transformer with shared parameters across all 16 layers,
performs significantly better than the LSTM on both agreement tasks, especially in the
harder subsets. This performance trend aligns with the model perplexity scores, echoing
the findings of Dehghani et al. (2018) on Universal Transformers that the depth of the
Transformer architecture is crucial for structure-sensitive tasks.

Above all, this comparison highlights the remarkable ability of Transformers to capture
syntactic information that even the LSTM, a robust baseline upon which many conclusions
about the syntactic capacity of neural networks have been drawn, struggles to capture. The
Transformer model, M, is able to generalize beyond superficial heuristics on long-distance
agreement tasks, suggesting that it can extract certain abstract generalizations.

13See Section 4.2.5 for detailed analysis of frequency effects
14This is not to say that the Transformer model acquire perfect rule-based syntactic competence. It still

struggles with complex structures such as subject inversion and nested clauses. For a qualitative analysis of
error patterns, please refer to Section A.2.1 in the Appendix.
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4.2.5 Control experiments

In the previous section, our experiments using the heuristic-based evaluation protocol
revealed that the Transformer LM is able to abstract away from superficial heuristics. To
corroborate these findings and address some known pitfalls of the agreement task (§3), we
perform a set of control experiments and analyses, focusing on the impact of semantic cues,
frequency effects, and the choice of evaluation metrics.

Experiment 1: Impact of semantic or collocational information

A well-known confounding factor in syntactic evaluation tests is the influence of semantic
or collocational information. To investigate this, we first perform an exploratory analysis to
assess the impact of collocational information on model performance in agreement tasks.
Specifically, we examine the performance of models on cue-target pairs that either co-
occurred or never appeared together in the same sentence during training. An evaluation
sentence is considered as ‘unseen’ if the cue-target pair never appeared in the same sentence
during training. Table 4.5 shows that both models significantly outperform a baseline that
simply predicts the more frequently observed cue-target pairs. However, both models show
a decrease in performance on the unseen subset: the Transformer exhibits a drop of less
than 5%, the LSTM experiences a decrease of over 10%. This observation indicates that
while both models are somewhat influenced by collocational information, the Transformer
exhibits greater robustness when encountering unseen cue-target combinations.

S-V O-PP
Seen Unseen Seen Unseen

Transformer 99.0%±0.1 98.4%±0.1 95.7%±0.2 90.8%±0.4

LSTM 96.2%±0.3 84.5%±0.9 84.8%±0.9 72.0%±2.4

Argmaxv(cue-target) 75.2%±0.0 38.3%±0.0 83.1%±0.0 37.7%±0.0

Table 4.5: Accuracy breakdown based on whether the cue-target pair was seen (occurrence
> 0) or unseen (occurrence = 0) during pre-training. The baseline argmaxv(cue-target)
consistently predicts the more frequently observed pairs. If both the target and competing
pairs were unseen, this baseline model randomly selects one pair.

To further investigate the impact of collocational information beyond the cue-target pair
and consider the overall context of target constructions, we adopt the method introduced
by Gulordava et al. (2018) (§3). This approach aims to assess models’ syntactic abilities in
the absence of meaningful semantics or collocational cues, by transforming the original
evaluation set into a nonsensical but syntactically well-formed evaluation set, which we
refer to as the Nonce set. For each original sentence, we generate three nonsensical sen-
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tences by replacing every content word with a random word that shares the same POS and
morphological features.15 Below is an example of a nonsensical sentence (16b) generated
from its original counterpart (16a):

(16) Original sentence→ nonce sentence:
a. Original: Les offres que le directeur a acceptées __

The offers_Pl that the director has accepted_Pl __
b. Nonce:

Les omellettes que le professeur a attachées __
The omelettes_Pl that the professor has attached_Pl __

During the substitution procedure, we excluded word forms that appeared in the treebank
with more than one PoS annotations to ensure that all randomly selected words have
unambiguous PoS. For example, données is not a suitable random word candidate because
it can be a plural noun (data) or the plural past participle of the verb donner (to give). To
maintain argument structure constraints, the target verb can only be replaced by another
random transitive word, and all function words (e.g., prepositions, conjunctions, ...) and
punctuation remain unchanged. Consequently, the Nonce set preserves the grammatical
syntax of the original sentences, but is highly semantically implausible.

Using the evaluation metric described in Section (§4.2.4), we also evaluate the syntactic
abilities of the models in the Nonce set for the same number agreement tasks. Figure 4.4
reports models performance on the Nonce set compared to the original set. Overall, both
architectures exhibit only a mild degradation in accuracy relative to the original setting
across the two agreement tasks. Interestingly, the extent of performance degradation
seems to correlate with the complexity of the agreement prediction task. As sentences
become more abstract, semantic cues appear to have a greater impact on model decisions.
Specifically, for the most challenging S-V agreement subset, the Transformer’s accuracy
drops by 11.6 percentage points, while the LSTM’s drops by 16.7 points. For the most difficult
O-PP agreement subset, the declines are 6.9 and 4.4 points for the Transformer and LSTM,
respectively.16 Across both agreement tasks, the observed drops in accuracy are similar in
scale to what has been reported in prior studies by Gulordava et al. (2018) and Goldberg
(2019), suggesting that semantic or collocational confounds have only a moderate impact on
our models’ performance in agreement prediction tasks.17 It further implies that our models
primarily rely on syntactic information to determine the correct form of the verb.

15The random words were selected from the version 2.7 of the Universal Dependency French treebanks
16For detailed scores, please refer to Table A.5 in the Appendix.
17See Section A.2.2 in the Appendix for an analysis on lexical variation in the results.
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Figure 4.4: Average accuracy of LSTM (indicated by lighter color bars) and Transformer
models on the Nonce set, represented by orange bars, and the Original set, indicated by blue
bars.
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Experiment 2: Impact of frequency effects

In French, as in many other languages, there is a considerable frequency disparity between
singular and plural verbs. In written French, singular third-person verbs are observed
to be five to ten times more common than their plural equivalents (Ågren and Van de
Weijer, 2013). Such frequency effects, which can influence various levels of human language
processing (Marantz, 2013), tend to reduce errors when higher-frequency forms are the
target and induce errors when a competing lower-frequency form is the target (Ambridge
et al., 2015). Empirical studies on agreement tasks involving human subjects reflect this trend.
For instance, Villata (2017) observed that French speakers tend to produce more correct
agreement for the O-PP agreement when the target is singular. This trend is often attributed
to human’s general bias towards the production of default singular forms (Greenberg et al.,
1963; Corbett and Fraser, 2000). These findings prompt us to investigate further: Do neural
language models exhibit similar biases as humans in number agreement tasks? To what
extent are the decisions made by these models a reflection of the frequency distributions
encountered during training?

S-V O-PP
Singular Plural Singular Plural

Transformer 99.4±0.05 97.8±0.1 99.2±0.1 86.2±0.4

LSTM 98.0±0.3 85.9±1.5 95.4±0.7 57.2±2.9

Argmaxv(target) 99.3±0.0 0.5±0.0 93.2±0.0 8.6±0.0

Table 4.6: Accuracy breakdown based on the grammatical number of the target. The baseline
argmaxv(target) consistently predicts the more frequently observed number of the target.

As shown in Table 4.6, our further breakdown of the experimental results in Section 4.2
reveals consistent trends across both agreement tasks. Transformer and LSTM achieve
over 95% accuracy in singular conditions, but show consistent lower performance in plural
conditions, suggesting a model bias towards singular forms under our current evaluation
metric. Additionally, this performance disparity correlates with the frequency ratio of the
target form to the competing form in the pre-training data, as shown in Figure 4.5. This
echoes the findings of Ambridge et al. (2015) that higher-frequency forms as targets tend
to reduce errors. Interestingly, even though the frequency ratios for the singular class in
S-V and O-PP agreements are similar, and a similar trend exists for plurals across both tasks
(Figure 4.5), the performance gap between the plural and its corresponding singular is less
pronounced in S-V agreement than in O-PP agreement (Table 4.6).

In the case of S-V agreement, the Transformer model shows only a minor drop of 1.6
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Figure 4.5: Frequency ratio of target form to competing form. For instance, for the S-V sing
condition, a ratio of 101 indicates that the target verb form (singular) occurs 10 times more
frequently in the pretraining data than its competing form (plural).

percentage points in accuracy for plural conditions, compared to the near-perfect accuracy
with singular forms. This contrasts sharply with the near-zero accuracy of the heuristic
baseline, demonstrating the Transformer’s consistent preference for less frequent but gram-
matically correct verb forms over more frequently occurring forms. These results suggest
that Transformer generally applies the subject-verb agreement rules with high accuracy,
even when faced with a strong frequency bias.

In contrast, the models’ performance in O-PP agreement exhibits a significant difference
between singular and plural conditions. Specifically, Transformer models experience a 13%
drop in accuracy for plural forms, while LSTMs see a more substantial decrease of over 38%.
This suggests that both types of model struggle more with plural forms in O-PP agreement
compared to S-V agreement. Given that the O-PP agreement is a relatively rare syntactic
phenomenon compared to the S-V agreement, as discussed in §4.2.4, this could partially
explain the lower overall accuracy of the model in the former task. Additionally, we observe
a marked discrepancy in the absolute frequency of target verbs between S-V agreement
and O-PP agreement. As depicted in Figure 4.6, target verbs in S-V agreement are much
more frequent in models’ pretraining data compared to those in O-PP agreement. For plural
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Figure 4.6: Absolute frequency of target verbs in pre-training data, with medians displayed
in white numbers

forms, our results align with Wei et al. (2021), indicating that more frequent target verbs
are more likely to be correctly inflected in number agreement tasks. This is consistent
with the frequency effects observed in human language processing. However, for singular
forms, despite the absolute training frequency discrepancy of target forms across the two
agreement tasks, models show equivalently high performance on singular conditions for
both tasks. This suggests that, similar to humans, neural language models, may also default
to using singular forms when handling number agreement tasks in French, corroborating
previous research on default reasoning in language models (Jumelet et al., 2019). Notably,
the Transformer model appears to be capable of effectively leveraging syntactic structures to
override this default reasoning in plural conditions, as evidenced by its strong performance
in both singular and plural agreement tasks.

While frequency effects could partially account for the observed asymmetry between
singular and plural, task complexity also appears to play a significant role in models’
lower performance in plural conditions. Further analysis of our evaluation sets reveals a
consistent correlation between class distribution and task difficulty (measured by the count
of heuristics; §4.2.4). In the easiest cases, where any of the five heuristics can solve the task
(5-heuristic subset), singular target forms predominate, accounting for 94% of the cases in
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O-PP agreement and 91% in S-V agreement. In contrast, in the most challenging cases where
no heuristic allows to predict the agreement (0-heuristic subset), the plural class becomes the
dominant category (O-PP: 99%, S-V: 96%). This correlation holds true for both O-PP and S-V
agreement. It suggests that in natural corpora, plural verbs tend to appear in more complex
and potentially confounding long-distance agreement contexts compared to their singular
counterparts. This further explains the models’ lower performance in plural conditions. The
reasons behind this empirical observation remain elusive. We intend to delve deeper into
its implications in future research, using controlled experiments that account for syntactic
complexity and class balance.

In summary, our analysis reveals that both Transformer and LSTM models consistently
exhibit better performance in singular conditions than in plural ones across two agreement
tasks. This trend suggests that these models might possess a frequency-driven bias in number
agreement tasks, similar to that observed in humans. Notably, the Transformer model is
better at mitigating this singular bias when processing plural conditions, highlighting
its ability to leverage syntactic structures. The observed performance asymmetry could
arise from several factors, including the higher frequency of singular verbs in the French
language, the imbalanced distribution of grammatical number among syntactic constructions
of varying complexity, and potential distinctions in how the models encode singularity and
plurality, as suggested by Jumelet et al. (2019).

Experiment 3: Top-k evaluation metric

The evaluation metric we have adopted, which aligns with common practices in the literature
(§3), may introduce its own set of biases into our assessment. Specifically, our metric focuses
on the model’s ability to discriminate between the singular and plural forms of a target verb
that naturally occur in a corpus. This approach does not necessarily capture the model’s
ability to generate a verb form that is both contextually appropriate and correctly inflected
for number. This limitation has been noted in previous work, such as the study by Newman
et al. (2021), which observed that language models perform better on verbs they predict to be
contextually likely. These considerations raise an important question regarding whether our
evaluation metric faithfully reflects the models’ likely behavior. In other words, do the most
likely words, predicted by the models given a sentence prefix, exhibit consistent agreement
features as those obtained from our target verb evaluation metric?

To address this question, we propose an alternative evaluation metric, referred to as the
top-3 evaluation metric, to better measure models likely behavior. Instead of comparing
the probabilities of two forms given an evaluation sentence prefix, we focus on the words
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the models consider most likely to occur. Specifically, we sample the top ten most probable
word predictions made by the models for a given sentence prefix. From these words, we
use the morphologizer of a pre-trained French model in spaCy (Honnibal et al., 2020),18

to get the three most probable verbs. We then consider the majority number expressed
among these three verbs as the models’ agreement prediction for that sentence. To ensure a
fair comparison between our initial evaluation metric and this top-3 evaluation metric, we
exclude sentences where the top ten most probable word predictions from the models do
not contain any verbs.19
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Figure 4.7: Comparison of models’ accuracy in two agreement tasks using top-3 evaluation
metric (orange bars) and target verb evaluation metric (blue bars).

As shown in Figures 4.7a and 4.7b, the trends observed with the top-3 evaluation metric
closely align with those of the target verb evaluation metric. For both Transformer and
LSTM, the two metrics demonstrate a persistent performance asymmetry between singular
and plural conditions in both agreement tasks. The performance breakdown based on task
difficulty (Table A.6 and A.7 in the Appendix) also indicates that all models performance
decrease with the task difficulty. Notably, for the Transformer, a high level of consistency is
observed between the two metrics, with an inter-agreement rate surpassing 92% in both
tasks (see Table A.8 in the Appendix for full results).

For the Transformer model, the two evaluation metrics yield similar scores for the S-V
agreement and the singular condition of O-PP agreement. However, a decrease of 8.3% is
observed in the plural condition of the O-PP agreement when using the top-3 metric. This
decrease may be partially attributed to the presence of part-of-speech ambiguous words (e.g.,

18https://spacy.io/models/fr, we used the model: fr_dep_news_trf
19For the Transformer model, we excluded 7.9% (resp. 29.8% for LSTM) of the total evaluation sentences

(27,582) in the S-V agreement. Similarly, in the O-PP agreement task, 0.3% of the total evaluation sentences
(68,497) were excluded for the Transformer, compared to 45.7% for the LSTM. Among the excluded sentences,
the top ten LSTM predictions are mainly punctuation, prepositions, articles, or nouns.
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“données" can be both a noun and a verb) or number ambiguous words (e.g., “appris" can be
both a singular and plural form). In contrast, the strong baseline model, LSTM, consistently
exhibits lower accuracy across the board when evaluated with the top-3 metric. Additionally,
for both agreement tasks, over 29% of the top ten predictions of LSTM (compared to less than
8% for Transformers) do not contain any verbs. This finding indicates that the Transformer
model demonstrates similar behavior under the two evaluation metrics and exhibits more
robust syntactic behavior compared to the baseline LSTM model.

Given the similar performance trends of the Transformer on both agreement tasks across
two evaluation metrics, we consider the differences between these metrics minor enough to
proceed with the main objective of our study: investigating how the Transformer LM repre-
sents syntactic structures when handling two superficially similar long-distance agreement
phenomena. Additionally, we want to avoid the potential noise introduced by the top-3
evaluation metric, which relies on a pre-trained model to predict morphological features.
Therefore, all subsequent experiments are conducted using the target verb evaluation metric,
aligning with the common practice in the literature (§3).

Interestingly, our findings based on naturalistic corpora diverge from the observations
of Newman et al. (2021). While their study, using synthetic data, suggests that models
perform better on verbs predicted to be the most likely in context, we did not observe this
improvement in our study. Future research could further investigate the contributing factors
to the observed performance asymmetry between singular and plural forms. This could
involve artificially manipulating the relative frequency of singular and plural nouns within
different constructions in the model’s training data to better understand their influence on
performance.

4.2.6 Conclusion

In this section, we evaluated the autoregressive Transformer’s ability to process two syntax-
sensitive phenomena in French, using number agreement tasks. Our initial experiments
demonstrate strong overall performance for both types of agreement, indicating that the
model’s behavior aligns closely with human language use. Furthermore, we investigated
the impact of surface heuristics and other known confounding factors on the model’s per-
formance. These findings lend further support to existing research (Section 2.3), confirming
that the Transformer model exhibits a robust capability to capture and generalize syntactic
information beyond surface heuristics and semantic or collocational cues.

We observed that while the Transformer does show some sensitivity to frequency effects,
it generally displays a consistent preference for grammatically correct forms, effectively
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overcoming strong biases present in the training data. Compared to the LSTM, a strong
baseline in the literature for evaluating syntactic abilities of NLMs (§3), the Transformer
is less influenced by surface heuristics and frequency effects, and exhibits more consistent
performance under different evaluation metrics. These findings suggest that the Transformer
meets the first criterion — behavioral-level similarity — for genuine syntactic generalization.

Additionally, it is important to recognize that humans also make agreement errors (Bock
and Miller, 1991), and also display a bias favoring singular forms, leading to fewer agreement
errors for these forms in French object-past participle agreement tasks, as observed by
Villata (2017). In this context, the heuristics that affect the model’s performance might hold
relevance not just for the domain of artificial neural networks, but could also offer valuable
insights into the study of human linguistic abilities. Specifically, these heuristics could
stimulate the development of testable hypotheses for experiments aimed at understanding
human syntactic performance. Our heuristic-based approach for crafting evaluation sets
could help to build stimuli that effectively measure human capacity for rule-based linguistic
generalization.

4.3 Locating syntactic information in Transformer lan-
guage model

The experiments presented in the previous section demonstrate that the Transformer lan-
guage model consistently outperforms the strong baseline model, LSTM, in long-range
subject-verb and object-past participle agreements. Crucially, Transformer is able to abstract
away from potential confounds such as lexical co-occurrences or superficial heuristics. This
successful behavioral assessment allows us to delve deeper to evaluate the Transformer’s
representational adequacy as a model that helps to explain human syntactic processing. In
light of this success, which aligns with prior research indicating that Transformers capture a
“substantial amount” of syntactic information (§2.3), two questions emerge naturally: First,
where is this syntactic information located within the Transformer’s internal representa-
tions? Second, given the superficial similarities between the two types of agreement tasks
we studied, does the Transformer model use a uniform internal representation for both, or
are there distinct representations that reflect the theoretical nuances of each task?

In this section, focusing on Transformer LM, we investigate the question of where
syntactic information is encoded from two perspectives.20 First, in Section 4.3.1, we use
probing classifiers, detailed earlier in Section 2.3.2, to identify token positions where the

20Datasets and code: https://gitlab.huma-num.fr/bli/syntactic-info-distribution
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agreement information is encoded within the model’s internal representation. This analysis
enables us to localize the agreement feature across token representations within a sentence.
Second, in Section 4.3.2, we use a feature selection method associated with probing to
identify the specific subspace within the Transformer’s representations that encodes the
relevant agreement information.

4.3.1 Distribution of syntactic agreement information across token
positions

In this section, we investigate where the Transformer encodes the syntactic information nec-
essary for predicting the correct target form in the two types of agreement tasks. Specifically,
we explore whether this agreement information is distributed across all tokens following the
cue in the sentence, as theoretically allowed by the self-attention mechanism and observed by
Klafka and Ettinger (2020). Alternatively, is this information encoded more locally, centered
around the cue and target tokens, as predicted by the specific agreement rules?

To investigate these hypotheses, we use probing classifiers following the approach of
Giulianelli et al. (2018) (§3). In our study, we denote the representation generated by a
Transformer LM for the token t at layer l by:

rt = Transformerl(t) (4.6)

Given an evaluation sentence, our goal is to examine whether the representation of a token t

within the sentence contains the relevant syntactic agreement feature, denoted as A, which
corresponds to the number of the cue (either ‘Singular’ or ‘Plural’). To achieve this, we
train a classifier defined as a function C that maps the representation of each token to the
agreement feature of the sentence, A:

C : rt ⇝ A,with A ∈ {Singular, Plural} (4.7)

The core assumption underlying this approach is that if the Transformer has encoded
syntactic agreement information within its representation space, then a probing classifier
should be able to “extract” this information from the corresponding token representations
produced by the Transformer (§2.3.2). In this study, we use a logistic regression classifier,21

defined as:
σ(θT rt + b)⇝ A,with rt ∈ R768 (4.8)

21This choice follows the recommendation of Hewitt and Liang (2019), who found that non-linear probes
tend to memorize the probing task by leveraging surface pattern recognition, rather than relying on the
information captured in the representations of the probed model.

71



Here, rt is the token representation extracted from the Transformer’s last layer (i.e., the 16th
layer in our experiments) for the token t, σ denoting the sigmoid function. The parameters
vector (i.e., coefficients) is represented by θ, and b represents the bias term.

Sans doute ces moments de bonheur que son frère lui a donnés __ resteront ...
No doubt these moments_Pl of happiness_Sg that his brother_Sg (to) him has given_Pl will_stay_Pl ...

cue target

antecedent object

Figure 4.8: For the O-PP agreement, the prefix is highlighted in blue, the context in yellow
and the suffix in green.

Training To train the probing classifiers, we construct a training set D = {x(i),A(i)} as
follows. For each token in the sentences of our evaluation set, we extract its representations
from the last layer of the Transformer and associate it with a labelA(i) ∈ {Singular, Plural}
indicating the number of the cue. Next, as illustrated in Figure 4.8, we divide each sentence
into three parts:

• prefix: words before the cue and its dependent words;
• context: words from the cue (and its dependent words) to just before the target;
• suffix: words following the target

We train individual probing classifiers for each category of word within each part of the
sentences. This approach allows each classifier to specialize in PoS-specific representations
of long-distance agreement information. To ensure fair comparison across sentence parts,
we exclude tokens with PoS tags that occur less than 100 times, namely SYM, SCONJ, INTJ,
PART, and X. This results in a total of 11 token categories in each sentence part, giving us
11 ∗ 3 probing classifiers.

For training and evaluation, we split the examples into 80% training data and 20%
evaluation data. Each classifier is trained using three different train/test splits.22 The
averaged results are reported in Table 4.7, and more detailed results per word category are
provided in Figure A.1 of the Appendix.

Results The average accuracy achieved by our probes on different parts of the sentence
is presented in Table 4.7. We observe a similar pattern for both O-PP and S-V agreement:
the syntactic agreement information about the number of the cue is essentially encoded

22All classifiers were implemented with the scikit-Learn library Pedregosa et al. (2011). A grid search
with 5-fold cross-validation was performed to select the optimal value of the regularization parameter C . The
max_iter parameter was set to 1,000 during the training process. Random_state = 0, 20 and 42
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Mean probing Accuracy
O-PP agreement S-V agreement

prefix 58.6%±0.1 59.5%±0.2

context 92.3%±0.2 93.0%±0.1

suffix 73.6%±0.2 78.1%±0.2

Table 4.7: Probing results across different sentence parts (see Figure 4.1). The reported scores
represent the average accuracy of all PoS-based classifiers for each sentence segment.

within the tokens of the context. It is not distributed across all tokens following the cue in
the sentence.

As expected, in both tasks, the probe performance on the prefix is very low. Given the
autoregressive nature of the model, token representations in the prefix cannot attend to the
cue, and thus, cannot encode its number information. The accuracy observed on the prefix
mainly reflects the difference in prior probabilities of the two grammatical number classes
within the evaluation set.23 In contrast, when using tokens from the context as input features,
the probe accuracy is consistently high for both agreement types. However, the accuracy
significantly drops for the suffix tokens, though it remains higher than that observed for
the prefix. This suggests that the information required to predict the correct target form
is distributed across all tokens between the cue (where the number of the target verb is
specified) and the target (where this information is being ‘used’). This finding, to some
extent, challenges the observations of Wisniewski et al. (2021), who discovered that gender
information in a neural translation system is distributed throughout the source and target
representations. However, it should be noted that their study focused on a different type of
information and was limited to sentences with a simple structure.

Results so-far indicate that the agreement information related to cue is mainly distributed
across all tokens in the context part of the sentences. To gain a more precise understanding
of how the Transformer model tracks this agreement information from cue to target, we
conduct an experiment that focused on a specific sentence pattern with a fixed six-word
context. Specifically, we focus on sentences where cue is separated from the relative pronoun
only by a prepositional phrase. This pattern applies to sentences such as the one shown in
(17) for long-distance subject-verb agreement, and (18) for object-past participle agreement.

(17)
Sentence: ... bureau·x en métal qu’ il aime coût·ent ...

... desks Prep. metal that he loves cost ...
Pattern: ... Subject ADP NOUN que PRON V target V...

23As discussed in §4.2.2, within the two evaluation sets, 65% of the target past participles in O-PP agreement
are singular, while 70% of the target verbs in S-V agreement are singular.
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(18)
Sentence: ... bureau·x en métal qu’ il a trouvé·s ...

... desks Prep. metal that he has found_Pl ...
Pattern: ... Antecedent ADP NOUN que PRON AUX target PP ...

Training To examine the distribution of the agreement information between the cue and
the target, we build a dataset for each agreement phenomenon, following the previously
defined patterns with a fixed six-word context. Each position within the context is labeled
with the corresponding PoS tag of the tokens, as illustrated in (17) and (18). Additionally,
we also consider the five tokens before and after the six-word context window, denoted as bi
(for tokens before) and ai (for tokens after), where i represents the position relative to the
pattern, as illustrated by the X-axis labels in Figure 4.9.

For the training set, we randomly sample 800 examples for each agreement phenomenon,
ensuring a balance between singular and plural forms. For the test set, we sample a balanced
set of 200 examples, with 100 sentences where the embedded noun (at the ‘NOUN’ position
within the context) is an attractor, and 100 sentences where this noun has the same number
as the cue.24 Unlike the previous experiment where we trained probing classifiers on
representations of all words in the sentence based on their word categories and their location
in the sentence, in this experiment, we train distinct classifiers for each position within the
defined scope of sentences.

Results We plot in Figure 4.9 the average probing accuracy at different positions of the
specific construction for both agreement phenomena. The results show a consistent pattern:
the accuracy of the probes is initially low in the prefix (i.e., b-positions) but starts to increase
from the position just before the cue. This position often corresponds to determiners or
adjectives that need to agree in number with the cue. As we move into the context, the
accuracy stabilizes, with probes achieving very high accuracy, even at the attractor position.
The accuracy then drops sharply after passing the target, especially when an attractor is
present in the context. It appears that once the target has been encountered and the number
information of the cue is no longer relevant, subsequent tokens no longer encode it. This
trend is consistently observed for both types of agreement phenomena.

Unsurprisingly, the probes achieve perfect scores at and just after the cue positions, as
well as at the position immediately following the target. This suggests that the Transformer
has learned to recognize and store the number information of the cue and target in its
internal representations. And this information is encoded in a linearly extractable manner.

24We conducted the sampling process using three different seeds, and for each sampling, we performed
three train/test splits. The reported scores are averaged across all splits.
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Figure 4.9: Average probing accuracy at each position based on the number of the cue. The bi
(resp. ai) position denotes the i-th token before (resp. after) the pattern. The position labeled
as ‘Noun’ corresponds to a noun with the opposite number as the cue in the 1-attractor
subset, and a noun with the same number as the cue in the 0-attractor subset.
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A particularly interesting observation arises when considering the 1-attractor subset.
The accuracy of the probes only slightly degrades at positions immediately following the
attractor, which carries the opposite number to the probed grammatical number. Intriguingly,
at the target position, where the agreement information from the cue is being used, the
probe accuracy shows a reboost, in particular in S-V agreement. This suggests that the
model appears to know where to pinpoint the syntactic number information, enabling it to
avoid potential misleading cues. These observations suggest a coherent and robust flow of
agreement information within the Transformer’s representations.

4.3.2 Probing internal representations components

Our previous experiment using probing classifiers revealed that agreement information is
encoded across all tokens within the context. In this study, we aim to determinewherewithin
the Transformer’s representation space this information is encoded. Specifically, we want
to identify which components of the token representations generated by the Transformer
are most crucial for capturing this syntactic agreement information.

To achieve this, we use an ℓ1-regularized logistic regression model, known for its ten-
dency to produce sparse feature vectors by driving many feature coefficients, denoted by wi

in the equation (4.9), towards zero (Tibshirani, 1996; Ng, 2004). This characteristic makes it
well-suited for feature selection tasks, allowing us to identify the most relevant components
within the Transformer’s representations that are responsible for capturing the agreement
information. The ℓ1-regularized logistic regression model follows the formulation:

Pw,b(y = Singular|xi) = σ(wTxi + b),

where wTxi = w1 ∗ x1 + w2 ∗ x2 + . . .+ w768 ∗ x768

(4.9)

where w represents the parameter (i.e., coefficients) vector, xi denotes the token represen-
tation at position i in a sentence, and y represents the grammatical number of the cue,
which is the agreement information. This model minimizes the objective function with an
ℓ1 regularization term:

n∑
i=1

− logP (yi|xi;w) +
1

C
||w||1 (4.10)

where, C represents the inverse of regularization strength. As the value of C increases, the
number of features with non-zero coefficients wi also increases. By varying the values of C ,
we can control the sparsity level of the solution w, thereby identifying the most relevant
components of the Transformer’s representations for the probing tasks.
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Figure 4.10: Probing accuracy as a function of the count of dimensions (for 768-dimension
token representations) with non-zero coefficients, obtained through feature selection using ℓ1
regularized logistic regression for each position within context. The X-axis denotes the count
of non-zero coefficient dimensions, and the Y-axis represents probing accuracy. Vertical
dashed lines indicate the points at which the accuracy reaches 90%.
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Training In contrast to the previous experiment where we assessed probing accuracy
with a fixed optimal regularization parameter C , in this study we vary the values of C in
the ℓ1-regularized logistic model as a means for feature selection. We replicate the same
task from Section 4.3.1: training a classifier to map token representations to a binary label
indicating the grammatical number of the cue. We use the same training and evaluation
dataset: sentences of six-word context (§4.3.1). For each position within the context, we train
a separate classifier (total of six classifiers). We first determine the lowest bound for C such
that the feature coefficients are guaranteed to be non-zero.25 C is then increased evenly
on a log space to decrease the regularization strength. Finally, we compute and plot the
regularization path of models from most to least regularized.

Results Figure 4.10 reports the regularization path of the probing classifiers for each
position within the context. It is clear that high probing accuracy can be achieved using
only a small number of dimensions in most positions. Remarkably, at the cue position, the
probe can distinguish the grammatical number feature with just one dimension of token
representations, reaching over 90% accuracy for both agreement phenomena. Moreover,
7 out of the top 9 dimensions with the most significant coefficients are shared between
the two types of cue. This observation aligns with the observations of (Amini et al., 2023),
suggesting that the Transformer’s representation linearly encodes the grammatical number
information of nouns within a few dimensions. We additionally found that for the ADP

(immediately following cue) and que positions, which do not possess inherent grammatical
number features, fewer than ten dimensions are required for the probing classifier to achieve
an accuracy greater than 90%. These crucial dimensions differ between the two types of
agreement constructions and also vary from one position to another.

Interestingly, even when the most relevant dimensions26 identified by the feature se-
lection process are removed from these representations, probes trained on the remaining
dimensions still achieve over 90% accuracy. This holds true for both types of agreement
phenomena, suggesting that the agreement information is redundantly encoded in the
Transformer’s representations.

4.3.3 Conclusion

In this section, we explored the encoding and location of syntactic agreement information
in a Transformer language model that demonstrates strong overall performance in number

25We used the l1_min_c function in scikit-learn Pedregosa et al. (2011) to compute this lowest bound.
26The minimal dimensions that enable the respective probe to achieve over 90% accuracy.
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agreement tasks (§4.2). Our probing experiments provided clear evidence of a localized dis-
tribution of agreement information within the context tokens, even though the self-attention
mechanism theoretically allows this information to spread across all subsequent tokens after
the cue. Additionally, we used a feature selection method to investigate the localization
of agreement information within contextualized representations. Our findings reveal that
while this information is encoded in a small number of highly correlated dimensions, it is
also fuzzily encoded in a redundant way across the remaining dimensions.

The results of the probing experiments indicate that the Transformer language model en-
codes syntactic agreement information in a very similar way for both long-range agreements.
In terms of acquired abstractions, the probing methodology does not provide evidence to
suggest that the model acquires substantially different representations for each agreement
phenomenon.

4.4 Right for the right reason: Exploring mechanisms of
agreement computations

In the previous section, we used probing classifiers to locate the encoding of agreement
information, revealing that it is primarily encoded across all token representations between
the cue and the target. However, probing comes with a notable limitation as outlined by Be-
linkov and Glass (2019): it only reveals a correlation between the representations and the
syntactic information measured by the probe, without providing insight into whether and
how this information is actually involved in the model’s prediction process. Consequently,
the validity of conclusions drawn from probing experiments has been a subject of debate
(§2.3.3).

In this section, we take inspiration from more recent work (Elazar et al., 2021; Finlayson
et al., 2021; Ravfogel et al., 2021, ; i.a.) that focuses on understanding the causal relationship
between the linguistic properties of interest and the model’s behavior. We propose a novel
causal framework for intervening in the self-attention mechanism to identify which tokens
are genuinely responsible for providing the number information used by themodel during the
agreement resolution process. This not only contributes to our understanding of the model’s
inner workings but also serves to assess its representational adequacy. Specifically, we aim
to examine whether the Transformer’s approach to resolving S-V and O-PP agreements
aligns with established linguistic theories. In light of its empirical success in behavioral
assessment, this theoretical alignment can serve as the second critical requirement for using
the Transformer model to offer explanatory insights into human syntactic processing.
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This section is structured as follows. First, in Section 4.4.1, we present the causal
framework and define the testable hypotheses. Subsequently, we describe the experimental
setup and present the results in section 4.4.2. Finally, we provide an in-depth discussion,
analyzing the implications of our findings, and draw conclusions in section 4.4.3.

4.4.1 The Causal Framework

This study aims to investigate the causal relationship between the Transformer model’s
behavior in number agreement tasks and its encoding of agreement information within its
representations. Specifically, we seek to understand if the linear encoding of agreement
information within the context, as revealed by the probing classifiers (§4.3), causally affects
the Transformer’s prediction for NA tasks. To address this question, we propose a causal
framework inspired by the theory of causal inference (Pearl and Mackenzie, 2018). Central to
our approach is the concept of causal interventions, where we modify the state of a specific
variable — in this case, the encoding function to compute the token representation for the
target — to observe the resulting effects on the system’s behavior. This methodology allows
us to explore counterfactual scenarios: How would the Transformer’s behavior change if it
were deprived of access to certain token representations, and consequently, the agreement
information encoded within them? By answering this counterfactual question, we can
measure the usefulness of specific information to the model’s prediction and compare how
the Transformer actually uses this encoded information in handling both types of agreement.

Causal intervention on self-attention computation Transformers rely on self-attention
mechanism to build a contextualized representation for each token by iteratively computing
(as a first approximation) the token representation as a linear combination of all previous to-
ken representations in the sentence (Figure 4.11). To investigate the causal impact of specific
tokens on the model’s agreement prediction at the target position, we propose an analysis
method based on causal intervention. This method involves cutting the direct attention
from the target position to the tokens of interest, effectively neutralizing their contribution
to the construction of the target’s representation. For instance, in Figure 4.11, when the
Transformer is predicting the target verb, the intervention prevents the self-attention from
attending to the “que” token. This intervention enables us to build a counterfactual repre-
sentation for the target that does not take into account the representation of the “que” token,
thus removing any direct access to the agreement information encoded in the representation
of the neutralized token — “que”. This neutralization process thus approximates the do (•)
operator in the causal inference literature.
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target

< bos > Les cadeaux que le directeur a acceptés

✗

Figure 4.11: With the initial masked self-attention mechanism, the next token representation
is computed as a weighted sum of all previous token representations. To assess the impact of
“que” on the model’s agreement behavior, the causal intervention involves cutting the direct
attention from the target position to the token “que” (denoted by ✗), and then comparing
the Transformer’s prediction before and after this intervention.

By comparing the model’s prediction on the agreement tasks before and after different
interventions, we can assess whether the representations of one or several specific token(s)
have a direct impact on the model’s behavior. Table 4.8 provides an example from our
evaluation set, highlighting the effect of an intervention targeting the token “que”. As the
intervention occurs only when the target verb is being predicted, there is no impact on
the tokens preceding it (i.e., no changes in log probabilities have been observed up to the
target). In this example, the Transformer originally assigned a higher probability to the
correct plural form “accepté·s” than to the incorrect singular form “accepté”. However, after
the intervention, the situation is reversed, and the model prefers the (incorrect) singular
form. This shift indicates that, for this specific sentence, the direct attention to the token
“que” has a crucial causal impact on the model’s agreement behavior.

<bos> Les cadeaux que le directeur a accepté·s / accepté* A
The_Pl gifts_Pl that the director has accepted_Pl / accepted_Sg*

Original -2.8 -9.5 -7.3 -1.8 -6.1 -3.9 -5.9 / -8.3 1
Mask ‘que’ -2.8 -9.5 -7.3 -1.8 -6.1 -3.9 -13.7 / -11.9 0

Table 4.8: Comparison of log-probabilities for each token of example sentences processed by
our Transformer LM, before and after the intervention on “que”. Sentences contain either the
plural form of the target verb acceptés, or its singular form accepté. A-column: 1 indicates a
predicted agreement feature matching the gold label, 0 indicates no match.

Specifically, we perform interventions on self-attention across all layers and heads of
our Transformer language model. As discussed in Section 2.2.2, the original attention mask
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matrix, mask ∈ {0,−∞}n×n, is defined as:

maskij =

−∞ if j > i

0 otherwise
(4.11)

The mask sets future positions (relative to the current token) to negative infinity and past
positions to zero. By adding this mask to raw attention scores before applying the softmax
function, future positions get an attention score of 0 — this is because the softmax of negative
infinity is 0. Previous and current positions remain unchanged since adding zero does not
alter their raw scores. As a result, we effectively zero out the attention scores for all positions
in the future.

To implement our causal interventions, we extend the original attention mask by ad-
ditionally setting the weights of specific tokens of interest to be zero. For instance, in a
sentence where the position of “que” is denoted as q and the target position as t, we modify
the initial attention mask, mask, by setting maskl

t,q = −∞ across all attention layers and
heads. This effectively cuts the direct attention from the target position to the token “que”
while keeping the rest of the self-attention mask unchanged, as shown in Figure 4.11.

We specifically aim to estimate the causal effect of direct attention from target to specific
tokens on the model’s behavior. It’s worth mentioning that agreement information may
not be exclusively conveyed through direct attention; intermediate tokens can also convey
relevant details (Klafka and Ettinger, 2020; Lasri et al., 2022b). In Figure 4.11, for instance, the
intermediate tokens between “que” and target continue to incorporate “que” directly into
their representations. Since the representation of target indeed relies on the representations
of all preceding unmasked tokens, the information encoded in “que” can still be indirectly
considered.

Abstract causal model We now formalize the causal intervention by defining an abstract
causal model as illustrated in Figure 4.12:

Al rt A

Figure 4.12: Causal model showing dependencies between the attention weights Al at layer
l, the target’s contextualized representation rt and Transformer’s predicated agreement
feature A.

Given a sentence prefix S =< Sp, Sc, Sq, Si > for NA tasks, we aggregate groups of
tokens into the following abstract variables (as illustrated in Figure 4.13):
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target

αp αc αq αi

Mais les cadeaux que le directeur a acceptés

Sp Sc Sq Si

Figure 4.13: Target representation as a linear combination of all preceding token representa-
tions, weighted by their attention scores Al

t =< αp, αc, αq, αi >

• Sc: cue and its dependent words
• Sq: relative pronoun “que”
• Si: intermediate tokens between the cue and target, excluding those in Sc and Sq

• Sp: tokens preceding Sc

The corresponding aggregated contextualized representations and attention weights are
denoted as R = < rp, rc, rq, ri > and Al = < αp, αc, αq, αi >, respectively. The target
representation, rt, is obtained as the output of a pre-trained Transformer LM when given
the sentence prefix S as input: rt = Transformer(S). The causal model’s outcome, denoted
as A ∈ {0, 1}, indicates if the Transformer’s predicted agreement feature matches the gold
label, and is defined as the output of our NA tasks A = NA(rt).

Causal assumptions Wemake the following causal assumptions and formulate two types
of hypotheses related to the most relevant tokens that influence the Transformer’s agreement
predictions. It is important to note that these hypotheses are not mutually exclusive.

• rt is causally dependent on Al. The contextualized representation for the target is
computed, in a simplified view, as a linear combination of all the preceding token
representations, R, weighted by the attention scores Al

t.

- Linear combination hypothesis: rc, rq, ri contribute similarly to rt and thus
affect the model’s prediction for S-V and O-PP agreement in a similar way.27

Our probing experiments in Section 4.3 reveal very similar distribution patterns
of agreement information across S-V and O-PP agreement: it is mainly encoded
across tokens between the cue and the target.

27We exclude Sp from our analysis in this study, as the low probing accuracy in probing experiments (§4.3)
suggests that the agreement information is not encoded (in a useful way) in rp.
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- Linguistic motivated hypothesis: The tokens involved in the respective agree-
ment rules serve as the main source of the agreement feature encoded in rt.
Therefore, for the S-V agreement, Sc is predominantly responsible for providing
the agreement feature. In the case of the O-PP agreement, both Sc and Sq play
important roles.

• A is causally dependent on rt, as agreement feature predictions are obtained by
applying NA task through rt.

In causal inference theory, the do(•) operator denotes an intervention on a causal diagram.
In this study, we intervene on the attention weights between the target and Sc, Sq, Si —
tokens that encode linearly extractable agreement information, and some of which are
relevant to agreement rules. Concretely, the example in Figure 4.11 illustrates a do(αq = 0)
operation, which means intervening on the causal graph by setting Al

t,q — the attention
to “que” — to be zero without changing any other variables. As the relative pronoun “que”
plays a very different role in S-V agreement and O-PP agreement according to theoretic
linguistics, we would expect different intervention effects resulting from do(αq = 0) for the
two types of agreement if the Transformer bases its predictions mainly on tokens involved in
relevant agreement rules. Following the linguistic motivated hypothesis, we also expect that
do(αc = 0), which remove the direct contribution of the cue, would result in a substantial
degradation in the model’s agreement prediction for both NA tasks.

Causal effect We define the causal effect of a variable αi on A = NA(rt) as the difference
in A between the original scenario (with original masked attention weights) and a counter-
factual scenario (with the weight of αi set to zero). Formally, for a specific sentence-variable
pair (S,αi), the individual causal effect of αi on A is:

∆(S, αi) = NA(rt)− NA(r′t), where

rt = Transformer(S,Al)

r′t = Transformer(S,Al, do(αi = 0)) (4.12)

The NA(rt) function implements our number agreement tasks, inputting target form represen-
tations and outputting agreement feature A. The Transformer model, Transformer(S,Al)

function, processes the sentence prefix and yields rt. Here, the causal effect of a token i

(whose attention weight to target is αi) onA can be measured by∆(S, αi). For instance, in
Table 4.8, for the original sentence prefix, the model predicts the correct agreement feature
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(NA(rt) = 1). After the intervention of forcing the attention weight between ‘que’ and the
target to be zero, the model’s prediction does not match the gold label, thus NA(r′t) = 0. The
causal effect of the token ‘que’ on model’s prediction A for this sentence is ∆(S, αq)= 1.

4.4.2 Causal experiments and results

Experimental setup Our experiments are based on the same NA tasks discussed in
Section 4.2. In this study, the evaluation sets for both types of agreement only include
sentences for which the Transformer LM correctly predicted the agreement feature, based
on the results described in Section 4.2.4. More specifically, for S-V agreement, we have
a dataset denoted as D′

s−v = {S(i),A(i)}, where i =27,278, covering 98.9% of the total
examples in the entire S-V agreement evaluation set. Similarly, for O-PP agreement, we
have D′

o−pp = {S(i),A(i)}, with i =64,798, representing 94.6% of the total examples from
the entire O-PP agreement evaluation set (§4.2.2). Here, (S(i),A(i)) stands for the pairing
of a sentence prefix with the grammatical number of the cue. Given the causal model in
Figure 4.12 and the equation of individual causal effect (4.12), before any intervention, the
outcome A = NA(rt) is consistently 1 across both evaluation sets.

We then execute the NA tasks with the Transformer LM again (Section 4.2), but with a
twist: when predicting the target verb (only at this moment!), we apply causal interventions.
These involve eliminating the direct attention from the target to:

i) Sc, which includes the cue and its dependents;

ii) Sq, representing the relative pronoun que in the context;

iii) both Sc and Sq;

iv) Si, which consists of all tokens in the context excluding Sc and Sq.

Average causal effect Considering the individual causal effect equation (4.12) and an eval-
uation setD (for which the probed model achieved 100% accuracy before any interventions),
we define the average causal effect (ACE) of a specific intervention αi as:

ACE =

∑
(S,A)∈D ∆(S, αi)

|D| (4.13)

Simply put, ACE denotes the proportion of initially correctly predicted examples that
are incorrectly labeled after an intervention (do)(αi = 0). ACE can also be interpreted
here as the performance degradation caused by a particular intervention.
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Figure 4.14: Average causal effect of interventions on Transformer’s NA task performance,
quantified by drop in accuracy before and after different interventions, and further broken
down based on prediction difficulty measured by the number of heuristics. The term cue here
refers to the antecedent and its modifiers (determiners and adjectives) in O-PP agreement,
and to the subject and its modifiers in S-V agreement.
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Results In Figure 4.14, we report the changes caused by different interventions, as quan-
tified by the average causal effect. This effect represents the drop in performance on NA
tasks for both S-V and O-PP agreement.28 These causal effects are further dissected based
on task difficulty. As noted in Section 4.2.4, our investigation primarily focuses on the more
challenging cases (i.e. 0 and 1 heuristic subsets), which cannot be resolved via surface heuris-
tics and thus provide robust evidence of a model’s capacity to capture sentence structure
information.

As observed, the cue (i.e. the antecedent or subject groups) turns out to be critical for
predicting the corresponding agreement for both types of agreement. Masking these tokens
strongly degrades Transformer’s performance on the 0-, 1-heuristic subsets. For the O-PP
agreement, we notice a performance drop of over 59%, and for the S-V agreement, a decline
of over 25%. Interestingly, the impact of other interventions on the two types of agreement
displays marked differences. The role of the relative pronoun “que” in determining the form
of the target verbs in these two agreement phenomena significantly diverges. In the case of
O-PP agreement, masking the relative pronoun leads to a significant decrease in prediction
accuracy, decreasing by over 57%. Conversely, it has minimal effect on the prediction of
subject-verb agreement, with accuracy decreasing by no more than 7 percentage points.
This suggests that that even though the two agreement phenomena exhibit highly similar
surface forms and the model encodes agreement information in a similar manner (as detailed
in Section 2.3.2), the Transformer uses separate agreement mechanisms to handle the S-V
and O-PP agreements. This distinction thereby lends support to the linguistically-motivated
hypothesis.

Figure 4.14 also demonstrates that, for S-V agreement across object relatives, the context
tokens excluding the cue and “que”, contribute more significantly to the model’s decision
than the subject group tokens (i.e., the subject and its dependents) with which the verb
agrees. This indicates that target receives more agreement information from intermediate
tokens than from the direct attention to the nominal subject and its dependent words. This
pattern contrasts with the O-PP agreement, where direct attention to the two linguistically-
motivated components (i.e., antecedent and “que”) can induce an over 80% performance drop,
compared to a maximum causal effect of 24% for context tokens. This surprising observation
appears to confirm the findings of Ravfogel et al. (2021), who suggested that to predict
S-V agreement, the model uses information about relative clause boundaries encoded in its
representations. To account for this intriguing observation, we hypothesize that while the
agreement information is distributed across all tokens in the context segment, the relative
clause boundary information is vital for the model to determine how to use this information

28See the Table A.9 in the Appendix for the full results.
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to inflect the main verb. This would clarify why the context tokens play such a crucial role
in controlling the agreement. However, further experiments are necessary to confirm this
hypothesis.

4.4.3 Conclusion

In this section, our objective is to identify which tokens mainly provide the agreement
information used by the model to resolve the NA tasks, and further determine whether
the usage pattern reflects the distinct theoretical modeling of S-V and O-PP agreement
phenomena. To this end, we designed a causal experiment based on self-attention interven-
tions. In this framework, the model performed the NA tasks from Section 4.2, but with a
twist: when predicting the target, we cut the direct attention from the target to tokens
proposed to provide agreement information, based on two hypotheses: the linguistically
motivated hypothesis and the linear combination hypothesis (supported by probing results
in Section 4.3). The model’s post-intervention performance was then compared with the
pre-intervention performance, with the performance drop indicative of the causal effect of
the intervened tokens.

Our experimental findings reveal a distinct pattern in how Transformers use encoded
agreement information across the S-V and O-PP agreements. In the case of O-PP agreement,
both the cue and relative pronoun “que” serve as crucial sources of agreement information.
In contrast, for S-V agreement across relative clauses, while the cue plays an important
role in determining the target’s number, the relative pronoun “que” has minimal impact on
the model’s agreement behavior. This discrepancy aligns with the linguistically motivated
hypothesis and resonates with the theoretical linguistic analysis of the two agreement
phenomena, supporting the Transformer’s representational adequacy for capturing syntactic
information. Additionally, this reinforces the findings of Elazar et al. (2021); Hanna et al.
(2023), suggesting that the encoding of linguistic properties, as revealed by probing classifiers,
may not necessarily be functionally relevant to the model’s predictions. This highlights
the importance of transitioning from correlational analysis to causal approaches for a more
accurate understanding of model behavior.

This study also opens up several avenues for future research. A primary focus could be
on identifying token positions that provide misleading agreement information, leading to
incorrect model behavior. To address this, a more controlled experimental setup is needed:
Common error patterns from the model’s predictions can be extracted (§A.2.1), serving as
the basis for creating a template-based evaluation set. Subsequently, the causal framework
presented in this section could be applied to individual token positions to identify the
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sources of the model’s erroneous predictions. Additionally, questions persist about the
underlying mechanisms that allow the target token to obtain precise agreement information
from intermediate tokens, as well as how the model encodes and uses information about
relative boundaries. These questions present compelling areas for future investigation.

4.5 Word order: the impact of positional encoding on
NLM’s syntactic abstraction capacity

In the preceding section, we explored the inner workings of the Transformer language
model by applying causal intervention on its self-attention mechanism. Our results indicate
that the model is capable of leveraging the hierarchical structure of sentences for nuanced,
grammar-based generalization. Yet, one might wonder how a Transformer-based language
model can approximate a hierarchical understanding of sentence structure when it processes
all tokens simultaneously from linear sequence input. To address this, the current section
shifts focus to a critical aspect of language that the self-attentionmechanism is not inherently
equipped to handle: word order information.

Unlike RNNs, which naturally encode word-order information by sequentially processing
input elements, the Transformer model processes all tokens in a sequence simultaneously.
As a result, the Transformer does not inherently account for the order of the tokens. This
order is crucial for many languages where position encodes grammatical functions. Even in
free-order languages, token order remains significant, especially given tokenization into
sub-word units, making it essential for tasks like language modeling.

To address this, the Transformer integrates positional embeddings with token embed-
dings before feeding them into the self-attention mechanism. As detailed in Section 2.2.2,
autoregressive language models use an incrementally applied masked self-attention mecha-
nism, which forces the model to attend only to preceding words. This could make positional
embeddings redundant, as observed in recent work Haviv et al. (2022). In contrast, masked
language models do not have this inherent order modeling, making positional embeddings
the sole source of order information.

This study aims to investigate the role of positional embeddings in language modeling
and their impact on the syntactic abstraction capacity of Transformer-based languagemodels.
Building on the methodology of ablation studies (Meyes et al., 2019), we perform a targeted
ablation experiment that focuses on positional embeddings. We compare the performance of
autoregressive Transformer LM with and without positional embeddings, and then we run
similar experiments with bidirectional Transformer LM (Devlin et al., 2019). Our experiment
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is designed to understand the relationship between the model’s ability to abstract syntactic
structures and its awareness of token order within a sequence.

4.5.1 Positional embeddings in Autoregressive Transformer LM

Experimental setup In all our previous experiments, we considered an autoregressive
Transformer LM, denoted as M, with the sinusoidal positional embeddings described in
Vaswani et al. (2017), which is the standard setting. To delve deeper into the role of explicit
position encoding within Transformer LMs, we consider a variant of this model without
positional embeddings, denoted as Mnopos. The training process for this position-deprived
Transformer LM mirrors that of the original model, using the same training data and the
same hyperparameters (§A.1.1).

To assess the importance of positional embeddings for the language modeling objective
itself, we conducted an intrinsic evaluation by comparing the validation set perplexity of
the modelMnopos and the original modelM. As suggested by Hu et al. (2020), perplexity
scores do not always give us a clear picture of a model’s syntactic ability. Therefore, we
also conduct an extrinsic evaluation by comparing the performance of both models, Mnopos

and M, on NA tasks. This evaluation helps us assess the importance of explicit position
encoding in the model’s syntactic abstraction capacity.

Results In terms of the perplexity obtained on the validation set, the model without posi-
tional embeddings,Mnopos, has an average score of 27.2 across five pre-trained instances,
which is strikingly close to the score of 27.0 for the original Transformer. This counterintu-
itive result suggests that explicit positional encoding may not be as crucial as we thought
for pre-training the autoregressive Transformer LM.

When it comes to accuracy onNA tasks, as shown in Figure 4.15, the ablation of positional
embeddings surprisingly has a negligible impact. This holds true for both the overall
accuracy and the stratified accuracies across subsets of varying difficulty, as determined by
our heuristic-based evaluation protocol. Again, this is particularly striking considering the
often crucial role of word order in encoding syntactic relationships in languages like French.

A plausible explanation for these surprising results is that the autoregressive Trans-
former’s incremental attention mask, which forces each token to attend only to its preceding
tokens, may inherently encode word order information. Although all tokens in a sequence
are processed simultaneously, the ability of the model to take into account the predecessors
of a given token may effectively allow it to deduce its position within the sequence. We
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explore this hypothesis in the following experiment.
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Figure 4.15: Accuracy comparison of autoregressive Transformer LM on two NA tasks with
and without positional embeddings. Detailed scores are reported in Appendix Table A.10.

4.5.2 Positional embeddings in masked Transformer LM

The previous experiment reveals that an autoregressive Transformer LM deprived of posi-
tional embeddings can still perform comparably in language modeling and NA tasks. This
leads us to hypothesize that the incremental self-attention mask might be enabling the
model to implicitly reconstruct word order position information during the pretraining.
To test this hypothesis, we extend our ablation experiment to a Transformer language
model trained with a masked language modeling objective (Devlin et al., 2019). Unlike
autoregressive language modeling, where the model predicts each subsequent word based
on previous tokens, masked language modeling entails predicting randomly masked tokens
using both preceding and succeeding context (§2.2.1). In this context, positional embeddings
serve as the sole source of order information. When removed, the MLM generates token
representations independent of the actual position of tokens in the input sequence, behaving
like a bag-of-words model. The goal here is to investigate whether MLMs can also implicitly
learn word order during pre-training without explicit positional embeddings. If they cannot,
it would suggest that the incremental attention mask indeed plays a crucial role in the
autoregressive model’s ability to learn word order information.

Experimental setup We adapted our generic languagemodel to implement a bidirectional
Transformer model, which was then trained using a masked language modeling objective
(Devlin et al., 2019). We pre-trained the MLMs both with and without positional embeddings
on the same training data (as described in 4.2.3), following the same training process used for
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the autoregressive models. For each model, we train five different seeds using the optimal
hyperparameter configuration.29 We repeat the ablation experiment from §4.5.1 to compare
the perplexity scores of the pretrained MLMs and their performance on NA tasks in the
absence of positional embeddings.

As discussed in Section 2.2.1, perplexity is a standard metric for evaluating autoregressive
LMs. This metric is not suitable for models trained using a masked language modeling
objective, where a masked token wi is predicted based on its surrounding context S\i.
To evaluate MLMs, we adopt the pseudo-perplexity approach from Salazar et al. (2020),
calculated as the average of the conditional log probabilities logPMLM(wi|S\i) for each
token. While not comparable to conventional perplexity, it allows for a direct comparison
between MLMs. More details can be found in the appendix A.1.2.
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Figure 4.16: Masked Transformer LM’s accuracy on twoNA tasks with andwithout positional
embeddings. Detailed scores are reported in Appendix Table A.11

Results Our experiments show a substantial difference in pseudo-perplexity scores be-
tween the masked language models with and without positional embeddings. The position-
aware MLM converges to a very low score of 5.6, whereas the nopos MLM performs sig-
nificantly worse, with a score of 57.2. This result aligns with the observations of previous
studies such as Sinha et al. (2021) and Haviv et al. (2022), which noted that MLMs deprived
of explicit position encoding suffer a substantial decline in pretraining task performance.

Regarding the performance on number agreement tasks, as seen in Figure 4.16, the
ablation of positional embeddings leads to a substantial decrease in accuracy across both
agreement tasks. Particularly, in the most challenging cases, the performance drop reaches
66% for S-V agreement and 53% for O-PP agreement. These findings indicate that explicit

29Please refer to §A.1.1 for details on the hyperparameters.
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position encoding plays a critical role in MLM’s syntactic abstraction ability. This, in
turn, provides evidence supporting our initial hypothesis concerning autoregressive LM,
suggesting that the incremental attention mask may enable it to implicitly reconstruct
absolute word position information.

4.5.3 Conclusion

In this study, we have performed a set of positional embedding ablation experiments with
both autoregressive and bidirectional Transformer LMs. These models are evaluated based
on their performance in language modeling and number agreement tasks, comparing the
outcomes of models with positional embeddings against those without. Our results show
that the autoregressive language model deprived of positional embeddings (nopos) achieves
competitive performance compared to its original counterpart in both the language model-
ing task and the NA tasks. In contrast, bidirectional language models without positional
embeddings experience substantial performance degradation in both language modeling
and NA tasks. This stark contrast highlights the critical role positional embeddings play in
bidirectional models in identifying token positions. Meanwhile, autoregressive LMs appear
to leverage the incremental attention mask to implicitly reconstruct word order information,
thereby the absence of explicit position encoding has very little impact on the model’s
performance.

4.6 Conclusion and discussion

In this chapter, we conducted a contrastive study to explore the core question of my thesis:
Does the Transformer language model exploit abstract sentence structures, or does it pri-
marily rely on surface patterns when handling structure-sensitive phenomena? Our primary
goals are twofold: to assess the behavioral and representational adequacy of the autore-
gressive Transformer model in relation to human syntactic processing, and to develop a
linguistically-informed framework to enhance the interpretability of this complex model. To
achieve this, we use number agreement tasks to explore how the Transformer LM processes
two forms of agreement in French: long-distance subject-verb and object-past participle
agreements, both involving object relative clauses. While these two types of agreement
share superficial similarities in word sequences, their linguistic analyses fundamentally
diverge.

Our approach begins with the proposal of a heuristic-based evaluation protocol, which
effectively constrains the impact of surface heuristics in conventional number agreement

93



tasks, providing a robust groundwork for our subsequent experiments. In our initial set
of experiments, we assessed the ability of an autoregressive Transformer language model
to predict these two types of agreement. The results indicate that the model exhibits high
predictive accuracy, even under challenging conditions where all surface heuristics fall short.
Further control experiments underscore the Transformer’s ability to generalize beyond
collocational cues and strong frequency biases. Taken together, these results strongly
suggest that the Transformer is not merely exploiting surface patterns, but may be capturing
some form of abstract sentence structure. This evidence indicates that Transformer meets
the first prerequisite — behavioral-level similarity — for genuine syntactic generalization.

Building on the strong behavioral performance of the Transformer, we took a more
in-depth investigation to assess where syntactic agreement information is located within the
model’s inner representations, as a measure of its representational adequacy. Our second set
of experiments, using a probing approach, reveal that the relevant agreement information is
mainly linearly encoded across all tokens between the cue and the target. Interestingly,
within the contextualized representations, this information is found in a small number of
highly correlated dimensions, while also being fuzzily encoded in a redundant manner
across the remaining dimensions. Notably, we observe a very similar distribution pattern of
agreement information for both types of agreement phenomenon.

To go beyond the limitations of probing, which mainly reveals correlations between
encoded information and the model behavior, we introduced a causal framework. This frame-
work relies on counterfactual analysis and involves intervening directly on the model’s
self-attention mechanism. Our causal experiments provide further evidence that the Trans-
former model’s success is based on linguistically justified cues, consistent with French
grammar. Importantly, the abstract structure uncovered by the Transformer model aligns
with the distinct theoretical modeling of the two structure-sensitive phenomena we exam-
ined. This alignment supports the Transformer’s representational adequacy for capturing
syntactic information, suggesting that its internal mechanisms are not merely statistically
efficient but also linguistically meaningful. Consequently, this lends additional credibility to
the potential of the Transformer as an explanatory tool for human syntactic processing.

Additionally, to investigate how Transformer language models approximate syntactic
structures from string input, we conducted a set of positional embedding ablation experi-
ments with autoregressive and bidirectional Transformer LMs. We find that explicit position
encoding has little impact on the general function and syntactic abstraction ability of the
autoregressive LM. This is likely because the model can leverage the absolute word order
information from the incremental attention mask.
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Our study represents an initial step towards a deeper understanding of how neural
language models function. Our analysis framework, which begins with behavioral syn-
tactic tasks fortified by heuristic-based evaluation, then pairs with linguistic probes, and
finally explores through counterfactual analysis via causal intervention, provides a robust
methodology to assess the syntactic abstraction capacity of neural language models. Notably,
our findings regarding the linguistically motivated distribution of syntactic information
in Transformers’ representations could extend easily to other linguistic phenomena and
languages.

Nevertheless, many questions remain unresolved, such as the precise mechanism by
which Transformers track agreement information and how they encode long-distance
dependencies from linear word sequences. It is also of interest to explore whether the model
can emulate a human-like rule-based generalization to dynamically recombine familiar
structures in novel situations. These avenues represent exciting directions for further
investigation. Our work thus far only marks the beginning of a rich and exciting journey
toward deciphering the complex inner workings of neural language models.
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Part III

Assessing model capacity to generalize
compositionally observed structures
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In the previous part of this dissertation, we assessed the syntactic capabilities of an autore-
gressive Transformer, specifically focusing on its ability to handle two syntax-sensitive
phenomena. Our findings indicate that the model acquires remarkably nuanced representa-
tions of sentence structure, as evidenced by its strong performance on both behavioral-level
tasks and measures of representational adequacy when evaluated on unseen, held-out
evaluation sets.

However, this leads us to another critical dimension of inquiry: the nature and depth
of the model’s observed syntactic generalization. Early studies by Fodor and Lepore (2002)
and Marcus (2003) posited that neural language models like RNNs may lack the capacity
for genuine compositional syntactic generalization due to the absence of explicit symbolic
representation. These models, they argued, often rely on similarity-based inference derived
from patterns encountered during training. This notion is supported by recent studies,
such as Bender et al. (2021), which describe language models as “stochastic parrots” that
primarily memorize and shallowly recombine observed examples. Additionally, the capacity
for extensive memorization in neural models is well recognized in the literature (Halevy
et al., 2009; Zhang et al., 2021).

Let’s consider the case of subject-verb agreement across relative clauses, as detailed
in Section 4.2.1. Our findings from Chapter 4 suggest that the Transformer leverages the
structural relationships between words to accurately predict the long-distance dependency
illustrated in (19).

(19) Target sentence: NP1 + Relative Clause1 + V1

(20) Compositional generalization:
a. NP2 + V2

b. ... V + NP3 + Relative Clause3.

(21) Similarity-based generalization: NP4 + Relative Clause4 + V4

As proposed by Fodor and Marcus, we can hypothesize two potential ways the model learns
such a structural relationship. First, the model might rely on training sentences such as
(20a) and (20b). By compositionally combining these structures, the model could infer the
long-distance dependency relationship in (19). This approach exemplifies compositional
generalization. Second, the model might extrapolate grammatical knowledge from training
sentences like in (21) to the target sentence (19) based on their structural similarity. In
this process, the model could grasp concepts like syntactic subjecthood, morpho-syntactic
number, and the boundaries of relative clauses, subsequently formulating distributional rules
at these abstract category levels. By recapitulating its training data through structural simi-
larity and lexico-categorical abstraction, the model can generalize to unfamiliar sentences
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with known structures. Given that in Chapter 4 we do not control the types of syntactic
structures in the model’s pretraining data, it is plausible that the model’s performance on
unseen sentences is driven more by memorization of structures encountered in the training
data than by genuine compositional generalization.

This brings us to the core questions: To what extent do these models rely on memorizing
structures they have encountered during training? More importantly, can these models
achieve generalizable abstractions by compositionally applying observed syntactic rules to
interpret new, unseen linguistic patterns? While systematic compositional generalization
is a key component in human linguistic cognition, it remains an open question whether
these neural models can also dynamically recombine known elements in a compositionally
consistent manner with their underlying syntactic structure.

To explore these questions, the current chapter introduces a compositional generalization
challenge test. This test aims to directly probe the model’s capability to compositionally
interpret unseen syntactic constructions through the combination of known structures, and
will include experiments with similar Transformer-based models.

Outline In this chapter,1 Section 5.1 outlines the foundational aspects of compositional
generalization and the semantic parsing task, followed by an introduction to the COGS
benchmark (Kim and Linzen, 2020), which serves as the starting point of this study. Section
5.2 provides an overview of our SLOG benchmark, a dataset specifically constructed to focus
on compositional structural generalization. Section 5.3 details the dataset generation, and
Section 5.4 describes the experimental setting, discussing the models evaluated and the
evaluation metric. Moving on to Section 5.5, we present the findings of our investigation
into three Transformers-based models and a structure-informed parsing model. And Section
5.6 provides a summarizing conclusion.

5.1 Introduction

The immense productivity of human language enables us to understand and produce a
potentially infinite number of sentences from finite input elements (Chomsky, 1965; Hauser
et al., 2002). This linguistic productivity is generally attributed to the principle of composi-
tionality — the assumption that the meaning of an expression is a function of the meanings

1This chapter stems from my visiting project at New York University, mentored by Prof. Tal Linzen and
Dr. Najoung Kim, and conducted in collaboration with Alexander Koller, Yuekun Yao, and Lucia Donatelli.
This chapter draws largely from our paper titled “SLOG: A Structural Generalization Benchmark for Semantic
Parsing”, which I primarily authored and has been accepted by EMNLP 2023.
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of its components and the way they are syntactically combined (Frege, 1948; Partee, 1984).
Reflecting this principle, human linguistic competence exhibits compositional generalization:
the algebraic capacity to understand and produce novel sentences by reassembling known
elements (Montague, 1974).

Central to this compositional generalization are two key concepts: systematicity and
productivity, as presented by Fodor and Pylyshyn (1988). Systematicity refers to the con-
sistent application of compositional rules to linguistic elements to derive meaning. This is
analogous to how algebraic functions are consistently applied to appropriate variables. In
practical terms, systematicity allows humans to extend their understanding to sentences or
concepts that are systematically related. Productivity, on the other hand, is the ability to
generate an infinite variety of sentences or thoughts from a finite set of words or concepts.
In language, this is seen in our ability to produce and understand new sentences that we
have never encountered before.

A classic illustration of this, presented by Fodor, is that people who know the meaning
of John loves Mary, along with its underlying syntactic rules, can naturally understand the
meaning ofMary loves John, despite never having encountered it before (Fodor and Pylyshyn,
1988). This exemplifies the systematicity in human language, where understanding such
sentences involves the application of the same rules to recombine the same lexical units. In
these two sentences, the verb loves operates as a function, taking two variables (the subject
and the object) and recombining the lexical units John and Mary in a way that generates
different semantic meanings. This rule-based systematic generalization mechanism is widely
assumed as the means humans use to handle linguistic productivity.

Recent advances in NLP, particularly those based on neural networks, do not explicitly
rely on the principle of compositionality. Despite this, their empirical success in various tasks
suggests that they must have some form of effective generalization. This raises the question:
Do these models learn to generalize in a manner similar to human-like compositional
understanding, capturing both systematicity and productivity? In recent years, a growing
body of research has explored whether models possess such capability. Benchmarks for
compositional generalization in semantic parsing have emerged as a useful tool to assess
model’s compositional capability (Lake and Baroni, 2018; Hupkes et al., 2020; Keysers et al.,
2007; Kim and Linzen, 2020). Semantic parsing tasks in these studies involve translating
natural language expressions into semantic representations. The models are evaluated on a
generalization set, which is sampled from a distribution that systematically differs from the
training distribution. This shift from training to evaluation is designed under the principle
of compositionality and often includes new combinations of lexical units and observed rules,
deeper recursions of observed patterns, or longer sequences.
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(a) Lexical generalization: object→ subject (COGS)
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(b) Structural generalization: deeper recursion depths (COGS & SLOG)
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(c) Structural generalization: RC object→ RC subject (SLOG)

Figure 5.1: Examples of lexical generalization in COGS — (a), and structural generalization
in COGS — (b) and in SLOG — (b, c). The SLOG task requires mapping the generalization
examples to their logical forms; the corresponding logical forms are shown in Table 5.1.

The COGS (COmpositional Generalization Challenge based on Semantic Interpretation)
dataset (Kim and Linzen, 2020) in particular has become a widely used benchmark, as it
is designed to expose a generalization gap between training and testing data that many
recent semantic parsers still struggle with. COGS distinguishes two types of generalization
challenges that require different types of algebraic compositional strategies: lexical general-
ization tests the ability to interpret novel combinations of known lexical items and known
linguistic structures (Figure 5.1a), and structural generalization tests the ability to combine
known structures into a novel structure (Figure 5.1b and 5.1c). Importantly, the majority of
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generalization types in COGS target lexical generalization (18 of 21 generalization types, 86%
of the dataset). As lexical generalization is arguably easier than structural generalization
(e.g., solvable by simple slot-filling), this imbalance may lead to overall performance numbers
that are overly optimistic with regard to a model’s capacity to generalize compositionally,
as pointed out by Weißenhorn et al. (2022) and Yao and Koller (2022).

To facilitate a more comprehensive evaluation of structural generalization, we introduce
SLOG, a Structural LOng-distance dependencies Generalization benchmark. SLOG extends
COGS to include 17 cases of structural generalization in total (14 new cases and 3 existing
cases from COGS) (§5.2). The novel generalizations we introduce target two key structural
features of human language: recursion and filler-gap dependencies.

Prior research has extensively investigated the processing of recursive constructions,
a key feature of human language enabling the creation of complex, nested structures and
hierarchical relationships (Hauser et al., 2002). This area of study spans both artificial neural
networks and human cognition (Christiansen and Chater, 1999; Lakretz et al., 2021a; McCoy
et al., 2021, ; i.a.). Using artificial languages to isolate syntactic properties, research has
shown that humans can learn and extrapolate nested patterns to deeper levels (McCoy
et al., 2021). In contrast, the capabilities of Transformer-based models in capturing recursive
regularities have yielded mixed results (Bhattamishra et al., 2020; Hahn, 2020; Ebrahimi
et al., 2020; Lakretz et al., 2021a). For filler-gap dependencies, a particularly challenging type
of long-distance dependency involves generalization about the absence of material. Prior
work has centered on syntactic tasks involving wh-questions or relative clauses (Wilcox
et al., 2018; Marvin and Linzen, 2018; Li et al., 2023b, ; i.a.). These studies primarily use
language modeling as the task and do not require mapping to semantic representations.
SLOG diverges from these works by incorporating recursion and filler-gap dependency in
a more naturalistic setting and directly assess the semantic mapping. Importantly, rather
than isolating syntactic generalization from linguistic meaning, our approach aims to assess
whether models rely on syntactic generalization that aligns with human inductive biases to
derive the meaning of complex sentences.

We use SLOG to evaluate a Seq2Seq Transformer model trained from scratch (Vaswani
et al., 2017), two pre-trained Transformers (T5-base; Raffel et al. 2020 and LLaMA; Touvron
et al. 2023), and a structure-informed2 model (AM-Parser; Weißenhorn et al. 2022). In
comparison to their overall performance on COGS, all models exhibit considerably lower
performance on SLOG (§5.5). The generalization accuracy of Transformer-based models,
including pre-trained ones, only reaches 40.6%, and even a structure-informed parser, while

2In this study, ‘structure-informed’ refers specifically to models that incorporate explicit representations of
linguistic structure.
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exhibiting near-perfect generalization on COGS structural cases, only achieves 70.8% on
SLOG. The cases in which models struggle exhibit distinct patterns and suggest varied
approaches of models to solving the task. An error analysis reveals that the AM-Parser
generalizes well on existing structural generalization cases in COGS but struggles with
the gap constructions introduced in SLOG due to inherent structural limitations, which
we discuss in Section §5.5.3. Transformers tend to erroneously repeat frequent meaning
representation subsequences observed during training. Even with pretraining, they struggle
with unseen long-distance dependencies, which we attribute to their bias towards shorter
predicate-argument dependencies (§5.5.2).

Overall, the discrepancy in performance between SLOG and COGS illuminates the
notable gap between models’ lexical and structural generalization abilities. It highlights
the utility of SLOG in exposing the limitations of current models that have been shown to
achieve high performance on existing generalization benchmarks, and helps foreground the
different weaknesses of these models. While Transformer-based models can approximate
compositional behavior to a certain extent, our findings suggest that they do not seem to
rely on the kind of syntactic generalization rooted in symbolic compositional rules, which
are believed to drive human linguistic systematicity and productivity.

5.2 Overview of SLOG benchmark

SLOG follows the semantic parsing format used in COGS, where the task is to translate
English expressions into logic-based meaning representations (Table 5.1). The dataset
structure follows the basic design principles of COGS: there is a systematic gap between
the training set and the generalization set, where target constructions in the generalization
set are not included in the training set, but pieces of the training set can be recombined to
arrive at their correct meanings. For example, as illustrated in example (c) of Table 5.1, noun
phrases that appear only in object position during training must be reinterpreted in subject
position during generalization.

SLOG is generated using manually specified rules (§5.3), adopting the same meaning
representation as COGS. The COGS logical form (LF), derived from Reddy et al. (2017), is
based on Neo-Davidsonian view of verbal arguments. In this approach, the semantic units
are mapped to indexed variables. For example, in:

(22) The cat ran.
⇝ *cat(x1); run.agent(x2, x1)

The variable x1 denotes an entity that is both a cat and the agent of a running event, while
x2 represents the running event. The variable indices are determined by the linear position

103



Training Generalization

COGS (a)The cat ran.
⇝ *cat(x1); run.agent(x2, x1)
Emma saw the dog.
⇝ *dog(x3);see.agent(x1,Emma) ∧
see.theme(x1, x3)

The dog ran.
⇝ *dog(x1); run.agent(x2, x1)

COGS
&

SLOG

(b) Emma saw the dog on a mat in a box.
⇝ *dog(x3);see.agent(x1,Emma) ∧
see.theme(x1, x3) dog.nmod.on(x3, x6)
∧ mat(x6) ∧ mat.nmod.in(x6, x9) ∧
box(x9)

Emma saw the dog on a mat in a box in a
house.
⇝*dog(x3);see.agent(x1,Emma) ∧
see.theme(x1, x3) dog.nmod.on(x3, x6)
∧ mat(x6) ∧ mat.nmod.in(x6, x9) ∧
box(x9) ∧ box.nmod.in(x9, x12) ∧
house(x12)

SLOG (c) The cat ran.
⇝ *cat(x1); run.agent(x2, x1)
Emma saw the dog that Max held.
⇝ *dog(x3); see.agent(x1,Emma) ∧
see.theme(x1, x3) ∧ dog.nmod(x3, x6)
∧ hold.agent(x6,Max) ∧
hold.theme(x6, x3)

The dog that Max saw ran.
⇝ *dog(x1); see.agent(x4,Max) ∧
see.theme(x4, x1) ∧ dog.nmod(x1, x4)
∧ run.agent(x5, x1)

Table 5.1: Examples of two distinct types of generalization: lexical generalization in COGS —
(a), structural generalization in COGS—(b) and in SLOG — (b, c). The symbol⇝ indicates
the task of translating an English sentence into its corresponding meaning representation.

of the phrasal head in the input sentence. For example, cat corresponds to x1, since, under
0-indexing, cat appears in linear position 1 of the English sentence The cat ran. Definite
descriptions are marked by a preceding asterisk and are placed at the beginning of the LF:
*cat(x1) is separated from the remaining conjuncts by a ‘;’.3 This format can represent
coreferential relations effectively, for example:

(23) Emma saw the dog that Max held __.⇝
*dog(x3); see.agent(x1, Emma) ∧ see.theme(x1, x3) ∧ dog.nmod(x3, x6)

∧ hold.agent(x6, Max) ∧ hold.theme(x6, x3)

The variable x3 denotes a dog entity that is both the theme of a seeing event in the main
clause and the theme of a holding event in the relative clause.

SLOG contains 17 structural generalization cases grouped into four categories. These
generalization cases are primarily motivated by frequency asymmetries in natural lan-

3Proper nouns, treated as constants, are not represented by numbered variables but by their actual word
forms as illustrated in the example (23).
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guage, where simpler structures are more common than complex ones; in other words,
SLOG assesses whether NLP models can extrapolate from frequent patterns to their less
frequent counterparts. We describe the four categories below; see Table 5.2 for the full list
of generalization cases.

5.2.1 Novel recursion depth

Recursion allows small, hierarchical phrases to be combined to create larger phrases com-
posed of identical substructures. This combination process can be repeated an unbounded
number of times. The COGS dataset tests a model’s ability to apply recursion via two cases:
sentential complements (e.g. (24); tail complementizer phrase (CP) recursion henceforth)
and nominal prepositional phrase modifiers (e.g. (25); PPs recursion henceforth). For both
cases, the training set contains recursive depths of 0–2 (0 indicating no PP/CP), and the
generalization set contains strictly greater depths of 3–12.

(24) Tail CP recursion depths 2:

Mary knows [that John knows [that Emma cooks]CP ]CP

(25) PP recursion depths 2:

Ava saw the ball [in the bottle [on the table]PP ]PP

By contrast, the SLOG training set includes recursion of depth 0–2 and 4, and the
generalization set contains both an intermediate depth of 3 and deeper depths of 5–12.
Including both shallower and deeper embeddings allows us to determine if any difficulty in
generalizing to an unseen embedding depth is a consequence of the model’s more general
difficulty in processing longer sequences than observed in training (Lake and Baroni, 2018;
Herzig et al., 2021; Anil et al., 2022) rather than a more specific issue with applying recursion
to generate novel constructions.

In addition to this new depth split, SLOG introduces a new recursion construction.
COGS involves only tail recursion, which features recursive PPs and CPs with right-branch
embeddings. SLOG extends this with center embedding, where a phrase is embedded in the
middle of another phrase of the same type, leaving elements on both side of the embedded
component and producing well-parenthesized long-distance dependencies, as illustrated by
the subscripts in (26).

(26) Eva saw the mouse [that the cat1 [ that the dog2 chased2 ] held1 ].

At the same recursion depths, the average LF length increases from PP recursion to tail CP
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Generalization cases Training Generalization
§5.2.1 Novel Recursion Depth

Deeper depth generalization
✓Prepositional phrase (PP)
max depth 4→ depth 5-12

Ava saw the ball in the bottle on
the table.

Ava saw the cat in the box on the
mat on the bed on the floor in the
room.

✓Tail CP recursion
max depth 4→ depth 5-12

Ava believed that Emma said that
a fish froze.

Ava said that Emma liked that Max
believed that Noah found that Liam
saw that the cat slept.

Center embedding
max depth 4 → depth 5-12

Eva saw the cat that the horse
that the dog liked chased.

Ava held the dress that a store that a
girl that a boy that a cat that a man
drew saw loved knew sold.

Shallower depth generalization
PP recursion
max depth 4 → depth 3

Emma saw the ball in the bottle
on the table on the floor in the
office.

Ava saw the cat on the mat on the
floor in the office.

Tail CP recursion
max depth 4 → depth 3

Ava believed that Emma said that
Max found that a cat saw that a
fish froze.

Ava said that Emma liked that Max
believed that the cat slept.

Center embedding
max depth 4 → depth 3

Eva saw the cat that the horse
that the dog that the man that
the girl loved found liked chased.

Emma bought the dress that the
store that the woman that Mike
knew liked sold.

§5.2.2 Novel Combination of Modified Phrases and Grammatical Roles
PP in direct object NPs
✓→ PP in subject NPs Noah ate the cake on the plate. The cake on the table burned.
→ PP in indirect object NPs Noah ate the cake on the plate. Max gave a fish to a cat on a table.

PC in direct object NPs
→ RC in subject NPs Noah saw the cat that froze. The cat that froze smiled.
→ RC in indirect object NPs Noah saw the cat that froze. Max gave a fish to a cat that ran.

§5.2.3 Novel Gap positions
Subject, direct object-extracted RC
→ Indirect object-extracted RC

Noah saw the cat that gave a fish
to Liam. ⊕ Noah saw the cat that
Liam liked _.

Noah saw the cat that Emma gave a
cake to _ .

Subject, direct object wh-questions
→ Indirect object wh-questions

Who saw the cat?
⊕ What did Emma see _?

Who did Noah give the cake to _?

§5.2.4 NovelWh-questions
Subject, object wh-Q of simple transitives

→ Active subject wh-questions Who saw the cat?
⊕ Emma wanted to sleep. Who wanted to sleep ?

→ Passive subject wh-questions Who did Emma see _?
⊕ The boy was found by Emma. Who was helped by Emma?

→ Direct object wh-questions
with ditransitive verbs

What did Emma see _?
⊕ Emma gave a fish to the cat. What did Emma give _ to the cat?

→Wh-questions with modified NPs What did the cat see _?
⊕ the cat on the mat What did the cat on a table see _?

→Wh-questions long movement What did the cat see _? ⊕ Emma
said that the cat saw a fish.

What did Emma say that the cat
found _?

Table 5.2: A full list of SLOG generalization cases. Each sentence in the table corresponds to
a (sentence, logical form) pair, as illustrated in Figure 5.1. ⊕ denotes the combination of two
observed structures, which allows to interpret the target novel structure. Some cases cover
multiple sub-case constructions: e.g. all ditransitive verbs include both double-object and
prepositional constructions. Due to space limitations, only one example is provided for each
case. The three cases marked with ‘✓’ are already present in the COGS dataset.
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recursion to center embedding.

In natural language, the depth of recursion is rarely greater than five and center embed-
ding is generally limited to two levels (Karlsson, 2007, 2010). SLOG tests deeper recursive
patterns up to depth 12. While this may surpass human processing abilities for reasons
presumed to be linked to memory constraints (Gibson and Thomas, 1999; Karlsson, 2007),
deeper embedding depth remains grammatical, echoing Chomsky’s competence versus
performance distinction. Importantly, we also note that our goal with SLOG is to assess the
linguistic competence of NLP models and to investigate whether they achieve their perfor-
mance through human-like inductive biases that favor compositional generalization. Testing
at these greater depths allows us to more comprehensively probe the models’ capabilities
and limitations.

5.2.2 Novel combination of modified phrases and grammatical roles

SLOG also tests the capacity to generalize complex NPs to new syntactic positions. SLOG
introduces relative clause modifiers, in addition to PP modifiers already included in COGS.

Prepositional Phrase modifiers

The most challenging case in COGS involves interpreting prepositional phrases (PPs) within
subject NPs (27), while the training set only contains PPs within direct object NPs (28).
Recent Seq2Seq models consistently failed to handle this case (Akyurek and Andreas, 2021;
Zheng and Lapata, 2022; Yao and Koller, 2022). To further investigate what makes this
challenging generalization hard for models, we take a two-fold approach in SLOG. First, we
additionally include generalization targeting indirect object modification, as illustrated in
(29).

(27) [The cat on the mat]subj ran.

(28) Emma saw [the cat on a table]dobj .

(29) Sub-cases of indirect object modification:
a. Emma gave [a cat on the mat]iobj a fish.
b. Emma gave a fish to [a cat on the mat ]iobj .
c. A fish was given to [a cat on the mat ]iobj .

We expect sub-cases of indirect object modification to pose challenges of varying diffi-
culty, depending on the distance of the predicate-argument dependency. For example,
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generalization to indirect object modification in active oblique datives (29a) introduces an
unobserved long-distance dependency between the verb gave and the direct object a fish
across a non-argument NP the mat.4 In contrast, sub-cases like (29b) and (29c), where the
non-argument NP the mat occurs at the end of the sentences, do not introduce this kind of
predicate-argument dependency across an intervening NP and are therefore expected to be
relatively easier.

Second, SLOG’s training set additionally includes standalone PP-modified NPs, as exem-
plified in (31a), to prevent modifiers from being associated with only a particular range of
token indices, as pointed out by Wu et al. (2023): In COGS, PPs were restricted to the object
position, such as in (30a), where the modifier conjunct in the logic form — cat.nmod.on

(xi, xj) — applies only for i>=3, so models never observed the association of modifiers with
linearly-earlier indices (e.g., in (32), cat.nmod.on (xi, xj), with i=1 ). This makes it difficult
to isolate the impact of indices correlation from structural generalization. The inclusion of
such fragments in SLOG, absent in COGS but common in child-directed speech (Wells and
Bridges, 1981; Cameron-Faulkner et al., 2003), serve as a signal that the range of variables
indices associated with PP modifiers is not restricted to the object position.5

(30) COGS Training
a. Emma saw the cat on a table⇝ *cat(x3); see.agent(x1, Emma) ∧

see.theme(x1, x3) ∧ cat.nmod.on(x3, x6) ∧ table(x6)

b. The dog ran.⇝ *dog(x1); run.agent(x2, x1)

(31) SLOG Training
a. the cat on a table⇝ *cat(x1); cat.nmod.on(x1, x4) ∧ table(x4)

b. COGS Training

(32) Generalization
The cat on a mat ran.⇝ *cat(x1); cat.nmod.on(x1, x4) ∧ map(x4) ∧ run.agent
(x5, x1)

Relative clause modifiers

Similar to PP modifiers, NPs with relative clause (RC) modifiers, as in (33), can occupy any
position that an unmodified NP can fill. We expect RC modifiers to pose a greater challenge
compared to PP modifiers, as they involve gap constructions, in which a phrase needs to

4This observation holds true for the generalization to subject modification shown in (27).
5This phenomenon is also evident in the CHILDES corpora, where we observed many standalone PP-

modified NPs (e.g., the CD on the desk!) in child-directed speech.
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be interpreted in a position other than its canonical position in a declarative clause — we
will refer to this as extraction (Sag, 2010). We mark gap positions with an underscore. In
(33), the dog should be interpreted as if it occupies the gap position as the direct object of
held; in the logical form, this is represented by the fact that x3 is filling both see.theme and
hold.theme.

(33) Emma saw the dog that Max held __.

⇝ *dog(x3); see.agent(x1, Emma) ∧ see.theme(x1, x3) ∧ dog.nmod(x3, x6)

∧ hold.agent(x6, Max) ∧ hold.theme(x6, x3)

To test for generalization to RC-modified NPs in unseen grammatical roles, SLOG’s training
set contains RC modifiers in direct object NPs (34b) as well as standalone RC-modified NPs
like (34a), and the generalization set contains RC modifiers in subject NPs such as (35a) and
indirect object NPs (35b). This is analogous to the PP modifier cases.

(34) Training
a. the cat that Liam fed __
b. Emma saw [the cat that Max held __]dobj

(35) Generalization
a. [The cat that Emma found __]subj smiled.
b. Liam gave [a cat that Emma held __]iobj a fish.

5.2.3 Novel gap positions

SLOG’s training set contains both subject and direct object-extraction; these are the most
frequent extraction positions in both written and spoken English corpora (Roland et al.,
2007; Atkinson et al., 2018). We test generalization to a less frequent extraction position:
indirect object. In this case, the training set only includes subject-extracted and direct
object-extracted examples as in (36). Models must then interpret indirect object-extracted
relative clauses like (37).

(36) Training
a. Liam saw the boy that ate a cake.
b. Liam saw the boy that Emma loved __ .

(37) Generalization
a. Liam saw the boy that Emma gave a cake to __ .

109



SLOG also tests the interpretation of novel gap positions in wh-questions. As with relative
clauses, subject and direct object-extracted questions are provided in training (38), and the
generalization set contains indirect object-extracted questions (39).

(38) Training
a. Who ate a cake?
b. Who did Emma love __?

(39) Generalization
a. Who did Emma give a cake to _?.

In a wh-question (38b), a wh-filler (who) in the initial position of the clause is interpreted as
if it occupied the gap (again indicated with an underscore) in the direct object position of
the verb love.

5.2.4 Novel wh-questions

While the previous category targets an unseen gap position (indirect object), SLOG further
assesses extraction generalizations that involve familiar gap positions — subject and direct
object — paired with verb types that have never been observed in wh-questions during
training. For this case, the training set containswh-questions with simple transitive verbs (40)
and declarative sentences with various verb types: transitive, intransitive and ditransitive.
The generalization set includes five novel types of wh-questions that have not been observed
during training, though their declarative counterparts have.

The novel wh-questions have varying distance between the wh-filler and the gap. Subject
wh-questions, which maintain the same word order as their declarative counterparts, exhibit
no gap. Questions about the direct objects of ditransitive verbs (41c), as well as questions
with NPs modified by either a PP or an RC (41d),6 have moderately long filler-gap distances.
The filler-gap distance is longest for object extraction out of embedded clauses (41e).

(40) Training
(Includes also declarative counterparts with the verbs used in the questions in (41))
a. Who saw a cat ?
b. What did Emma see __?

(41) Generalization
6Wh-questions with PP- or RC-modified NPs include various constructions where modifiers appear in

subjects, direct objects, or indirect objects, exhibiting an average filler-gap distance similar to ditransitive verb
wh-questions.
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a. Who froze ?
b. What was frozen ?
c. What did the boy give __ to Liam?
d. What did Max give a cat that slept __?
e. What did a boy say that Max believed that the cat saw __?

5.3 Dataset generation

Grammar and logical forms Our dataset7 is generated from a probabilistic Synchronous
Context-Free Grammar (SCFG) using Alto (Gontrum et al., 2017), which simultaneously
generates the English expressions and their corresponding meaning representations. Since
SCFG cannot handle logical variables (Wong and Mooney, 2007), we use a variable-free
representation proposed by Qiu et al. (2022a) (42a) as an intermediate representation during
generation. The variable-free LF can be deterministically postprocessed into the original
COGS LF (42b) with additional information and specific constraints: (i) We rely on the word
order information in the input sentence to label the Skolem constants (i.e. variables); (ii)
While the variable-free LF is unable to represent binding relations correctly as pointed out
by Wu et al. (2023), an additional constraint that disallows duplicate nouns enables the
intended binding relations to be identified unambiguously.

(42) A cat slept.⇝
a. Variable-free LF:

sleep(agent=cat)

b. COGS LF:
cat(x1) ∧ sleep.agent(x2, x1)

(43) A cat wanted to sleep.⇝

a. Variable-free LF:
want(agent=cat, xcomp=sleep(agent=cat))

b. COGS LF:
cat(x1) ∧ want.agent(x2,x1) ∧ want.xcomp(x2, x4) ∧ sleep.agent(x4,x1)

In the original COGS LF, entities or events specified by the predicates are represented by
indexed variables (42b). In its variable-free counterpart (42a), sleep denotes the sleeping
event, cat expresses the existence of a cat entity and fills the agent role of the sleeping event.
In this way, each predicate in the LF has a set of arguments directly connected to their
thematic roles without using variables.

7https://github.com/bingzhilee/SLOG
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Since the variable-free LF often results in a more compact LF, it has been adopted
as the primary meaning representation in several prior work (Qiu et al., 2022b; Drozdov
et al., 2022). We move away from this practice and keep the original COGS LF as the main
meaning representation — as briefly mentioned above, the variable-free LF cannot represent
binding relations accurately unless some external heuristic or constraint is introduced
for disambiguation. For example, the variable-free LF in (43a) is ambiguous between the
meaning of A cat wanted to sleep and A cat wanted a (different) cat to sleep, whereas the
COGS LF in (43b) unambiguously represents the meaning of A cat wanted to sleep. While
we release the SLOG dataset in both LFs and report the results using the variable-free LF in
Appendix A.7 to enable comparison with existing work, we strongly recommend using the
original COGS LF for evaluation on SLOG in future work.

Following COGS, our grammar implements simplified selectional restrictions, focusing
mainly on animacy constraints. For instance, the subjects of unergative verbs are limited
to animate entities, as in the cat smiled. As a result, our generated sentences may include
semantically odd but syntactically well-formed sentences, such as non-edible object being the
theme of eat or spatial incongruities like a house in a bottle. While these semantic limitations
are unlikely to affect models trained from scratch, they may influence the performance of
models that have been pretrained on naturalistic language data. It’s important to note that
our primary aim is to assess the extent to which models rely on compositional structural
generalization to derive meaning. In line with the classic example “colorless green ideas sleep
furiously” Chomsky (1957), which demonstrates that syntactic structure can be independent
of semantic coherence, we argue that a model capable of compositional generalization should
be able to map such sentences to an appropriate logical form as long as they are structurally
well-formed.

Training and generalization sets We follow a similar sampling procedure to COGS.
A total of 10,607 sentences are sampled from the probabilistic SCFG and then split into
training, in-domain validation and in-domain test sets with an 8:1:1 ratio. The splits are
then merged with the corresponding COGS splits. We then add 100 standalone PP-modified
NPs and 100 standalone RC-modified NPs to the training set, as discussed in Section 5.2.2.

We also include what we refer to as primitive exposure examples for each ditransitive
verb and verb accepting CP arguments,8 totaling 40 primitives. These are standalone verb
lexical meanings, such as, hope ⇝ λa.λb.λe.hope.agent(e,b) ∧ hope.ccomp(e,a).
This results in a final training set of 32,755 examples, and 4046 in both validation and

8Primitive examples of these two verb types let us incorporate their infinitive forms, used in wh-questions,
into SLOG’s vocabulary.
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in-distribution test sets.

For the generalization set, we use separate grammars for each generalization case. We
sample 1000 examples from each of the 17 cases, yielding a total of 17,000 examples. For the
training set and the generalization set, the maximum lengths of the input English sentences
are 28 and 61 tokens, respectively. The maximum lengths of the corresponding output logic
forms are 229 and 599 tokens. See Appendix A.5 for more details.

5.4 Experimental setup

5.4.1 Models

We evaluate the performance of Seq2Seq, autoregressive and structure-informed models
on SLOG. For seq2seq, we trained a Transformer model on SLOG from scratch (vanilla
Transformer henceforth; Vaswani et al. 2017); and finetuned a pretrained Transformer model
(T5; Raffel et al. 2020) that has demonstrated strong performance on multiple compositional
generalization tasks (Herzig et al., 2021). We also finetuned LLaMa, a recently released
pretrained autoregressive Transformer (Touvron et al., 2023), on SLOG.

(a) Ella cooked the meal .

() (S1(), S2()) (S0()) () ⊥

APPS1

root

MODS0

APPS2

(b) Ella

cook

S2

theme

S1

agent

the

S0

iota meal

Figure 5.2: Example of an AM dependency tree: (b) displays the supertags assigned to each
token, while (a) presents the dependency tree connecting them.

To provide a valuable point of comparison, we finally evaluate a structure-informed
model: AM-Parser (Groschwitz et al., 2018), which achieves near-perfect accuracy on COGS
(Weißenhorn et al., 2022). This allows us to measure how closely Transformer-based models
can approximate the performance of a parser that explicitly incorporates compositional
biases. Previous work has shown that structure-informed models perform well on composi-
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tional generalization tasks, specifically those involving structural generalization (Yao and
Koller, 2022). Following Weißenhorn et al. (2022), we first have the AM-Parser predict an
intermediate dependency tree (as shown in Figure 5.2), and then convert it to a graph-based
representation of the SLOG logical form. The AM dependency tree labels each token with a
supertag, a small graph as illustrated in Figure 5.2b, which captures the lexical meaning of
each word. The tree’s edges (Fig. 5.2a) represent the compositional structure of the sentence,
which specifies how the meaning of the sentence is recursively computed from the supertags.
For example, the second supertag in Figure 5.2b represents the meaning of cooked in the
sentence Ella cooked the meal. The blue markers “S1” and “S2” indicate that two arguments
are needed to fill the agent and theme roles of cook.

We use the A* AM-parser from Lindemann et al. (2020) for our experiments, as it yields
the best overall results compared to alternative versions of AM-parser, such as the one in
Groschwitz et al. (2018).9

Hyperparameters The architecture of the vanilla Transformer model is the same as in
original COGS, which consists of 2 encoder and 2 decoder layers, 4 attention heads per layer,
and a feedforward dimension of 512. We use the best combination of hyperparameters from
Csordás et al. (2021) on COGS: a learning rate of 0.0001 with no label smoothing, warmup,
or early stopping. Absolute positional embeddings with down scaling scheme (He et al.,
2015; Csordás et al., 2021) is used due to stability issues observed with relative positional
embeddings in recursive depth generalization cases, a similar phenomenon also noted in
Csordas and colleague’s experiments. Models are trained for 50k steps with a batch size of
128.

For the T5 experiments, we finetune T5-base10 using a learning rate of 1.5e-5 and no
label smoothing, warmup or early stopping. We finetune the model for 50k steps using a
batch size of 2048.

For the LLaMA experiments, we finetune llama-7b-hf with LoRA Hu et al. (2021).11 We
set the learning rate to 3e-4, LoRA rank to 8, alpha to 32 and dropout to 0.1. We finetune the
model for 5K steps with a batch size of 64, with 100 warmup steps and no label smoothing
or early stopping. We apply LoRA toWq andWv weight matrices in the model.

All our experiments were run five times, using different random seeds. The final check-
points from each run were used for evaluation on both the in-domain test and out-of-domain
generalization sets.

9For a more detailed discussion on alternative AM-parser models, please refer to Section 5.5.3.
10https://huggingface.co/t5-base
11Low-Rank Adaptation of Large Language Models: https://github.com/tloen/alpaca-lora
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5.4.2 Evaluation metric

Most studies report exact match accuracy on COGS. This metric has two limitations that may
lead to an underestimation of a model’s generalization capacity. First, because the COGS LF
is conjunctive, any reordering of the conjuncts are semantically equivalent; yet, under exact
match accuracy, only a single order is considered correct. Second, the COGS LF uses Skolem
constants with a naming scheme tied to the linear indices of phrasal heads in the input.
For example, in (44a), the constant saturating baby is x3 because, assuming 0-indexing,
baby appears in linear position 3 of the English expression What did the baby eat?. While a
commitment to a systematic naming scheme is necessary for consistent evaluation, different
naming schemes up to the renaming of the constants in the gold LF yield equivalent LFs
(e.g., (44a) vs. (44b)). Such LFs would be considered incorrect under exact match.

To incorporate semantic equivalence up to conjunct reordering and constant renaming,
at evaluation time, we alphabetically sort the conjuncts of the gold LFs, and subsequently
index variables based on their appearance order in the sorted LFs. The same modifications
are applied to the model output. This process results in the reformatted output as shown
in (45); applying these modifications to (44a) and (44b) yields the same outcome. Then,
computing the exact match on these postprocessed LFs captures the targeted semantic
equivalence.

(44) Gold LF and model-predicted LF forWhat did the baby eat? :
a. Gold: eat.theme (x4, ?) ∧ eat.agent (x4, x3) ∧ baby (x3)

b. Out: eat.agent (x3, x6) ∧ eat.theme (x3,?) ∧ baby(x6)

(45) Re-indexed and re-ordered version:
a. baby (y2) ∧ eat.agent (y1, y2) ∧ eat.theme (y1, ?)

This reformatted exact match metric is used for all results reported in the main text; see
Appendix A.6.1 and Table A.12 for more details.

5.5 Results

Overall, seq2seq Transformers, both trained from scratch and pretrained, display low accu-
racy on SLOG (Figure 5.3), in line with earlier studies on structural generalization in seq2seq
models (Yao and Koller, 2022). This is also the case for the more recent autoregressive
Transformer LLaMa, whose performance is similar to that of T5.
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Figure 5.3: Accuracy on SLOG, with error bars indicating variations across five runs. We
also show the best published results on COGS (indicated with †), as reported in Yao and
Koller (2022).
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Figure 5.4: Aggregate accuracy on SLOG by generalization category, with error bars denoting
the variations across generalization cases within each category over five model runs.
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As Figure 5.3 shows, high accuracy on the full COGS dataset, where 86% of the gen-
eralization cases are lexical, can obscure low performance on structural generalization,
highlighting the need for the expanded structural generalization tests included in SLOG.

SLOG additionally reveals weaknesses in the AM-Parser that COGS did not. While AM-
Parser achieves 90% accuracy on the structural generalization subset of COGS (Figure 5.3), it
faces systematic difficulties with several generalization types introduced in SLOG (Figure 5.4).
We provide a detailed discussion of these difficulties in Section 5.5.3.

Performance varied substantially across generalization categories (Figure 5.4); in partic-
ular, all models achieve near-perfect accuracy on Active subject wh-questions and Shallower
PP recursion. These cases were the least structurally complex in their respective categories
(§5.2.3 and §5.2.1). We highlight several error patterns in individual generalization cases in
more detail in the remainder of this section; see Appendix A.6 for full results and additional
error analysis.

5.5.1 Unobserved depth and length both affect depth generalization

The maximum depth observed in training was four levels of embedding for all three recursive
structures tested. All models achieve greater than 90% accuracy on unseen shallower PP
recursion (three levels of embedding). A considerable lower performance is observed
for Seq2Seq models with shallower tail CP recursion (<61%); in particular, the vanilla
Transformer consistently fails to generalize to shallower center embedding, with zero
accuracy overall. Transformer models show systematically lower performance on deeper
recursions (5-12 levels of embedding), whereas the structure-informed parsing model is
robust to depth variation.

Vanilla
Transformer T5 LLaMa AM

parser
Within max training length
PP recursion 29.3 37.0 46.0 100.0
Tail CP recursion 3.0 17.7 40.2 100.0
Center embedding 0.0 0.0 0.0 100.0
Beyond max training length
PP recursion 0.0 0.0 0.0 100.0
Tail CP recursion 0.0 0.0 0.0 100.0
Center embedding 0.0 0.0 0.0 100.0

Table 5.3: Mean accuracy (%) on unseen deeper recursion cases within and beyond the range
of training output lengths (maximum training output = 229 tokens).
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We investigate the relation between length and depth generalization further by dividing
the deeper depth generalization cases into examples that are shorter vs. longer than the
maximum output length observed in training (229 output tokens). Results are shown in
Table 5.3. Both the vanilla Transformer and two pretrained models are unable to generalize
to examples longer than the maximum output length observed in training; this result is
consistent with the difficulty of length extrapolation observed in the literature (Hupkes et al.,
2020; Anil et al., 2022). Length extrapolation does not capture the full story, however: their
performance is limited even when the length of the generalization examples fall within the
range of observed output lengths. This indicates that unobserved depth indeed plays a role
in these models’ poor generalization to deeper structures, in addition to known difficulties
in length generalization.

5.5.2 Unobserved long-distance dependencies make generalization
difficult

Generalizing to subject modification (both PP and RC) is one of the most challenging cases
in SLOG, Seq2seq models achieve near-zero accuracy, even with the additional cue from
the standalone modified NPs that modification can appear outside of object positions. This
challenge echoes previous findings on COGS (Akyurek and Andreas, 2021; Zheng and Lapata,
2022; Yao and Koller, 2022). The remainder of this subsection focuses on the analysis of PP
modification cases, but similar patterns are observed for RC modifiers, which we discuss in
Appendix A.6.2.

Common error patterns across vanilla Transformer and two pre-trained models reveal a
model bias towards shorter predicate-argument dependencies, which partly explains the
difficulty of this generalization case. For instance, in sentences like A cat on the mat froze,
models often misinterpret the closer NP the mat as the subject of froze.

A further breakdown of themodifier generalization performance (Table 5.4) illustrates the
difficulty of long-distance dependencies clearly. As discussed in Section 5.2.2, the sub-cases
in indirect object modification feature predicate-argument dependencies of varying distance.
We can see that generalization examples involving long predicate-argument dependency
(i.e., there is an intervening non-argument NP between the predicate and the argument)
tend to be more difficult for all models. However, the vanilla Transformer and pre-trained
models show a stronger bias towards linearly adjacent predicate-argument structures.

For both constructions involving long predicate-argument dependencies, indirect object
position seems less challenging than subject position. A possible explanation is that the
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Generalization cases Long pred-arg
dependency?

Vanilla
Transformer T5 LLaMa AM

parser
Sub-case: Passive indirect objects

A fish was given to [ a cat on the mat ]iobj.
✗ 95.5 97.5 98.2 93.6

Sub-case: Indirect object in PP datives

Emma gave a fish to [ a cat on the mat ]iobj.
✗ 22.9 50.5 75.5 100.0

Sub-case: Indirect object in double object datives

Emma gave [ a cat on the mat ]iobj a fish. ✓ 4.5 9.7 36.3 77.9

Subject

[A cat on a mat]subj ate a fish.
✓ 0.0 0.8 28.9 57.6

Table 5.4: Performance of PP modification generalization broken down by construction.
Bold orange words denote long predicate-argument dependencies, while bold black words
indicate short ones.

former has a closer surface resemblance to direct object modification — modifiers attach to
an immediate post-verb NP. Indeed, we observe that a higher proportion of indirect object
modifications are partially correct; models correctly predicted the PP-modified NP, but erred
in the argument structure.

We furthermore note that the results in Table 5.4 also show lower performance of Trans-
former models for Indirect object in PP datives compared to Passive indirect objects, although
neither subcase introduces long predicate-argument dependencies. The predominant error
pattern in the former subcase is the incorrect attachment of PP modifiers to the direct object
NP. For example in (46b), NP inside the modifier on the mat denoted by x9 was attached to
a fish instead of the cat. This suggests that Transformers additionally apply the incorrect
modification rule “attach PPs to NPs in immediate post-verb position”, which is compatible
with the training data but does not lead to correct generalization.

(46) Gold LF and model-predicted LF for Emma gave a fish to the cat on the mat:
a. Gold: *cat (x6); *mat(x9);

give.agent (x1,Emma) ∧ give.theme (x4, x3) ∧ give.recipient (x1, x6)∧
fish(x3) ∧ cat.nmod.on (x6, x9)

b. Out: *cat (x6); *mat(x9);

give.agent (x1,Emma) ∧ give.theme (x4, x3) ∧ give.recipient (x1, x6)∧
fish(x3) ∧ fish.nmod.on (x3, x9)

5.5.3 Gap generalizations are challenging for all tested models

All tested models encounter significant difficulties with gap constructions, as evidenced by
their low accuracy and considerable variability across runs. In the case of indirect object-
extracted relative clauses (47), a common error pattern emerges across all models: they
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tend to mirror the training pattern of direct object-extracted RCs, as demonstrated by the
incorrect output (47b). In contrast, when handling wh-questions, the models show distinct
difficulties, revealing varied error patterns.

(47) Input: Ella cooked the servant that Emma gave a tool to __.
a. Gold: *servant(x3);cook.agent(x1, Ella) ∧ cook.theme(x1, x3)

∧ servant.nmod( x3, x6) ∧ give.agent(x6, Emma) ∧ give.theme (x6, x8)

∧ give.recipient(x6, x3) ∧ tool (x8)

b. Models output: *servant(x3);cook.agent(x1, Ella) ∧ cook.theme(x1, x3)

∧ servant.nmod( x3, x6) ∧ give.agent(x6, Emma) ∧ give.theme (x6, x3)

∧ give.recipient(x6, x8) ∧ tool (x8)

Direct and indirect wh-questions The vanilla Transformer and LLaMa frequently mis-
interpret the theme role in direct object wh-questions. For example, they often fail to map
wh-words to ‘?’ as illustrated in (48b):

(48) Input: What did Emma sell to Liam ?
a. Gold:sell.theme (x3, ?)∧ sell.agent (x3, Emma) ∧ sell.recipient(x3,Liam)

b. Output of vanilla Transformer and LLaMa:
sell.theme (x3, x3) ∧ sell.agent (x3, Emma)∧ sell.recipient(x3,Liam)

c. AM parser’s output:
sell.agent (x3, ?) ∧ sell.theme (x3, Emma)∧ sell.recipient(x3,Liam)

This error pattern can be traced back to frequency of the subsequences in the training
data. Three types of tokens can appear post-comma in the output LF space: x, ? (denoting
wh-words), or a proper noun (PropN), such as Emma. The subsequence theme(xi, xj) is
20 times more frequent than theme(xi,?) and theme(xi,PropN). This discrepancy does
not affect all models equally; in fact, T5 can generalize correctly for some constructions
despite this skewed label distribution, achieving near-perfect accuracy for direct object
wh-questions. However, when it comes to less frequent constructions — indirect object
wh-questions, T5 overgeneralizes. In 94.6% of these cases, it erroneously produces the
observed direct object wh-questions pattern theme(xi,?), instead of the correct but unseen
recipient(xi,?). This observation aligns with the findings of Wu et al. (2023); Yao and
Koller (2022), who noted that the decoder of Transformer models tends to exhibit a heavy
bias towards generating observed n-grams.

AM-Parser shows considerable fluctuation in performance across different runs on
the indirect and direct object wh-questions cases, with accuracies ranging from 0 to 80
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What did Emma sell to Liam ?
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Figure 5.5: AM dependency tree for a direct object wh-question. (a) displays the gold
supertags and (b) shows the incorrect predicted supertags.

depending on the random seed. This is because at the bottom of its compositional process,
the AM-Parser predicts the lexical meaning for each token in the sentence (supertag). In
these generalization types, the gold meaning representations in the test set require supertags
that are infrequent in training.

We show an example of AM dependency trees for an direct object wh-question sentence
in Figure 5.5, with gold supertags in Figure 5.5a and predicated supertags in Figure 5.5b. The
issue here is that the model predicts the wrong supertag for sell, treating What as its agent
instead of theme, and Emma as its theme rather than agent, which results in the erroneous
output LF as shown in (48c). The AM-Parser is limited to using supertags that it observed at
training time (possibly with different node labels to accommodate novel lexical material). In
this case, the correct supertag was actually present in the training data, but it was much
less frequent than the one in Figure 5.5b. We conjecture that the AM-Parser was overly
sensitive to the supertag distribution in the training data in this case, pointing to a further
architectural limitation.

Thus, while the AM-Parser can compensate the distribution shift of the meaning rep-
resentations as a whole, SLOG exposes its weakness to distribution shifts in the lexical
supertags.

Wh-questions with long movement All models achieve very low accuracy when gen-
eralizing to longer filler-gap dependency across CPs.
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In example (49b), we show an example of a wh-question with long movement, with its
gold meaning representation (49a) and the most common errors produced by Transformer-
based models. As shown in (49b), the vanilla Transformer commonly misinterprets the
complementizer that (corresponding to ccomp in the LF) as a relative pronoun (nmod). Addi-
tionally, it tends to interpret the wh-word as the direct object of the CP verb, e.g., say. In the
most common errors for T5 and LLaMa (49c), the whole gap conjunct (paint.theme(x7, ?))
is missing, revealing their difficulties in establishing long-range filler-gap dependencies
between the initial wh-word and the embedded gap position.

(49) Input: What did Liam say that the bear painted __ ?
a. Gold: *bear(x6); say.agent(x3,Liam) ∧ say.ccomp(x3,x7) ∧

paint.agent(x7,x6) ∧ paint.theme(x7,?)

b. Output of vanilla Transformer: *bear(x6); say.agent(x3,Liam) ∧
say.theme(x3,?) ∧ say.nmod(x3,x7) ∧ paint.agent(x7,x6) ∧
paint.theme(x7,?)

c. Output of T5 and LLaMa: *bear(x5); say.agent(x3,Liam) ∧
say.ccomp(x3,x7) ∧ paint.agent(x7,x5)

The AM parser fails on all test instances in the case of wh-questions with long movement.
We present a predicted AM dependency tree for such a sentence in Figure 5.7, contrasted
with the corresponding gold standard AM dependency tree in Figure 5.6. Notably, for
wh-questions with long movement, the required dependency trees are nonprojective, as
illustrated in Figure 5.6: the edge from the embedded verb to the wh-pronoun (the edge
snapped -> Who) crosses the matrix verb (root -> appreciate). However, the A* AM-
Parser used in our study only supports projective dependency trees, leading to incorrect
prediction of sentence structure as shown in Figure 5.7.12

Note that the A* AM-Parser’s limitation to projective structures is shared by many other
compositional semantic parsers. For instance, the LeAR model of Liu et al. (2021a) uses
phrase-structure trees as compositional structures. Similarly, the CSL-T5 parser of Qiu et al.
(2022a) uses phrase-structure trees during the data augmentation process. Since phrase
structure trees are equivalent to projective dependency trees, these parsers are likely to

12Instead of the A* parser, one could instead use the fixed-tree decoder of Groschwitz et al. (2018), which
is capable of predicting non-projective AM dependency trees. This parser achieves nonzero accuracy (36%)
on wh-questions with long movement, confirming our hypothesis that the projectivity is the issue. However,
the A* parser outperforms the fixed-tree decoder on most other generalization types, which is why we only
report its results in the main body of the paper. The transition-based AM-Parser of Lindemann et al. (2020) can
also predict non-projective trees, but uses a different probability model that is incompatible with the training
algorithm of Groschwitz et al. (2021) that we use here.
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Who did the cat appreciate that Oliver snapped ?
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Figure 5.6: Example of gold AM dependency tree for wh-questions with long movement

Who did the cat appreciate that Oliver snapped ?
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Figure 5.7: Example of predicted AM dependency tree for wh-questions with long movement

encounter similar difficulties on SLOG. Thus, this specific type of generalization can serve
as a diagnostic tool to identify structural limitations in compositional semantic parsers.
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5.6 Conclusion

Transformer-based models, despite lacking explicit symbolic representation, have demon-
strated a remarkable ability to acquire nuanced syntactic representations, enabling them
to handle structure-sensitive phenomena effectively, as discussed in Chapter 4. To further
probe the extent to which their performance is driven by genuine syntactic generalization,
aligned with symbolic compositional rules, as opposed to relying on structural similarity-
based memorization derived from their training data, we introduced SLOG. This semantic
parsing challenge set expands upon the COGS benchmark, and specifically targets structural
generalization, which is often underrepresented in current compositional generalization
benchmarks.

Using SLOG, we assessed the structural generalization capacity of Transformer models
(both pretrained and trained from scratch), as well as AM-Parser, a structure-informed
parsing model. While all models achieve good overall accuracy on COGS (≥ 78%), their
performance on SLOG is substantially lower. This was particularly evident for Transformer
models, which scored below 41%, lagging behind the structure-informed parser (70.8%) by
a wide margin. This performance discrepancy between SLOG and COGS illuminates the
notable gap between models’ lexical and structural generalization abilities.

Prior studies have shown that RNN models often struggle with learning complex long-
range relations from simpler formal languages (Avcu et al., 2017; Mahalunkar and Kelleher,
2019). Our results on SLOG reveal that unseen long-distance predicate-argument dependen-
cies pose considerable difficulty for Transformer-based models as well (§5.5.2). Additionally,
these Transformer models struggle with deeper recursive constructions. Our results corrob-
orate the observations of Hupkes et al. (2020) and Lakretz et al. (2021a), and further highlight
challenges posed by unobserved deeper patterns, which persist beyond the recognized issue
of length extrapolation (§5.5.1). On the other hand, the AM-Parser, despite its stronger
overall performance (70.8%), displays categorical failures on gap generalization due to its
inherent parser design limitations (§5.5.3).

These findings underscore the utility of SLOG in exposing the limitations of current
semantic parsing models, which have previously been claimed to achieve good compositional
generalization. SLOG thus can serve as a useful analytic tool for guiding future improvements.
Furthermore, these results indicate that while Transformer-based models can approximate
compositional behavior to a certain extent, they do not seem to rely on the kind of syntactic
generalization rooted in systematic compositional rules. This insight lends support to
the hypothesis that the Transformer model’s ability to leverage hierarchical structures for
nuanced syntactic generalization, as explored in Chapter 4, might be more attributable to
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structural similarity-based analogies at the lexico-categorical abstraction level, rather than
the internalization and application of systematic grammatical rules. This enables the models
to handle a sophisticated form of language productivity; however, they falter when faced
with novel linguistic structures that require the induction of systematic compositional rules.

The evaluation conducted with the SLOG challenge set represents only the first step —
behavioral level — of our integrated three-level analysis framework as detailed in Chapter 4.
This study thereby lays the groundwork for future research, particularly aimed at under-
standing what makes structural generalization so hard for Transformer models. The logical
progression would be to advance to the representational and functional levels of analysis,
using probing classifiers and causal intervention methodologies to delve into the model’s
difficulties with SLOG.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

This dissertation explored the abstraction capabilities of Transformer language models for
syntactic processing. We sought to determine if these models rely mainly on surface-level
patterns from their training data, or if they also implicitly construct abstract syntactic rules.
Our research had two main objectives: first, to assess the potential of the autoregressive
Transformer model as an explanatory tool for human syntactic processing; and second, to
enhance interpretability methods for Transformer-based models.

Our research makes two main contributions. First, we have introduced an integrated
framework for assessing the linguistic capacities of Transformer-based models. Second, we
applied this framework to evaluate the models on two aspects of syntactic abstraction: the
capacity to represent hierarchical structures and the capacity to compositionally generalize
observed structures. These evaluations conducted align closely with the key prerequisites
specified in Section 1.1, which are essential for a computational model to serve as a credible
explanatory tool for human language processing. Our findings reveal that Transformers
manage to represent hierarchical structures for nuanced syntactic generalization. However,
instead of relying on systematic compositional rules, they seem to lean more towards
lexico-categorical abstraction and structural similarity-based analogies (§5). This study
both highlights the potential of autoregressive Transformer models as explanatory tools for
human syntactic processing and provides a methodological framework for their analysis
and interpretability.

From amethodological standpoint, we introduce a comprehensive linguistically-informed
analysis framework that builds upon and enhances recent interpretability techniques. The
framework operates on three interrelated levels. First, behavioral assessment, grounded in
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challenge sets that target specific syntactic phenomena, serves as the foundational layer. This
level assesses whether the model meets the requirement of reflecting human grammatical
behavior. Although it reveals how the model behaves in response to certain inputs, it
provides limited insight into its internal representations. Addressing this, the next level uses
probing classifiers to locate the distribution of relevant syntactic information within the
models. With these patterns identified, we introduce causal interventions as the third layer
to decipher the underlying mechanisms driving a model’s behavior and to evaluate their
alignment with established linguistic analyses. This sets the stage for eventually modulating
the model’s behavior by tweaking the core components. In essence, our methodological
framework serves two primary functions: it transforms linguistic theories into actionable,
testable hypotheses, and enhances our ability to interpret and even guide Transformer-based
models. In doing so, this framework takes a step toward fulfilling the ‘interpretability
and controllability’ criteria, essential for using Transformers to explain human language
processing (§ 1.1).

Our findings were twofold. First, our results in Chapter 4 indicate that the Transformer
model acquires remarkably nuanced representations of sentence structure, as evidenced
by its strong performance on both behavioral-level tasks and measures of representational
adequacy. Specifically, we curated challenge sets for subject-verb agreement across rela-
tive clauses and object past-participle agreement, which differ fundamentally in linguistic
analysis despite their surface similarity. We then assessed whether the Transformer forms
distinct representations for resolving these two agreements. Our heuristic-based evalua-
tion in Section 4.2 highlights the model’s strong ability for nuanced, structure-dependent
generalizations that go beyond mere surface heuristics. Further exploration using probing
classifiers (§4.3) shows that syntactic information is mainly linearly encoded across all token
representations between the two agreeing elements within a sentence. Despite this similar
agreement information distribution pattern for both types of agreement, causal interventions
experiments (§4.4) indicate that the model’s predictions rely on linguistically relevant cues.
These cues exhibit distinct patterns for different agreement phenomena, consistent with
theoretical expectations. This evidence suggests that the autoregressive Transformer LM
aligns with the key prerequisites for behavioral similarity and representational adequacy, as
outlined in Section 1.1. Along with our interpretability framework, this makes the model a
promising tool for studying human syntactic processing.

Our second set of findings in Chapter 5 presents a contrasting narrative. When subjected
to the SLOG tasks, designed to assess compositional generalization, Transformer models
encountered significant difficulties. SLOG involves a semantic parsing task (i.e., mapping
linguistic expressions to meaning representations). The test is designed to have a systematic
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shift between training and evaluation sets, ensuring that success in the latter demands a level
of compositional generalization. In this phase, we evaluated various Transformer models
as well as a symbolic neural parser. While all models excelled in the in-domain test set,
Transformer models, even the recent pre-trained ones, struggle to generalize to sentences
with longer dependency and deeper levels of recursion — areas where the symbolic parser
performs much better. This divergence from human-like generalization, which allows for
the interpretation of unfamiliar frames by systematically recombining known structures,
suggests that Transformer models may rely on different or possibly insufficient underlying
mechanisms.

The contrasting conclusions from Chapter 4, which highlights the model’s proficiency
in approximating hierarchical structures, and Chapter 5, which underscores its limited
compositional generalization capacity, paint a nuanced picture of Transformer models’
syntactic abstraction capabilities. This suggests that Transformer-based models primarily
rely on lexico-categorical abstraction and structural similarity-based analogies for syntactic
representation. While this enables them to generalize over unseen sentences with familiar
structures, thus handling a sophisticated form of grammatical productivity, they struggle
to handle novel linguistic structures that require inducing systematic compositional rules.
These results corroborate previous findings with RNN (Baroni, 2020) and offer further
empirical evidence that NLMs can achieve a certain level of abstraction for grammatical
productivity without being truly compositional. Overall, this study highlights both the
promise and potential limitations of autoregressive Transformer models as explanatory tools
for human syntactic processing, and provides a methodological framework for its analysis
and interpretability.

From a linguistic and cognitive science perspective, our positive results regarding the
Transformer model’s ability to represent hierarchical structures challenge the theory of
syntactic nativism, which emphasizes innate structural properties. Our research reveals that
an autoregressive Transformer language model, when exposed to human-scale learning data
and trained merely to predict subsequent words, can grasp the intricacies of hierarchical-
sensitive phenomena. This implies that the complexity of human syntactic competence
could potentially be derived from exposure and general-purpose learning alone, without
relying on innate linguistic priors. In this context, the Transformer model can set plausible
lower bounds on the learnability of such abstractions, and provide a comparative baseline
for understanding human syntactic processing.

These positive results, coupled with the limitations observed in models’ compositional
structural generalizations, indicate that Transformermodels can achieve structure-dependent
generalization without systematically following compositional rules. Instead, they seem to
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rely mainly on lexico-categorical abstraction and analogies based on structural similarity.
This provides constructive hypotheses about the learning and implementation of linguistic
structure. On the other hand, while symbolic rules and recursive structures have traditionally
been viewed as fundamental to our understanding of human language processing, they might
not be the sole mechanisms for effective language processing. In particular, natural languages
host many productive linguistic phenomena that follow less compositional, more complex
principles, such as linguistic idiosyncrasies (Dankers et al., 2022), irregular inflections, and
semi-lexicalized syntactic constraints (Goldberg and Jackendoff, 2004). Moving forward,
investigating howTransformermodels handle these phenomena could shed light on potential
alternative cognitive strategies that remain underexplored in both human cognition and
machine learning, presenting novel perspectives on computational approaches for linguistic
productivity beyond the conventional rule-based compositionality.

From a deep learning perspective, our research highlights both the capabilities and
limitations of data-driven neural models like Transformers. While excel in tasks where vast
amounts of data guide them, they seem to struggle when faced with genuine structural and
compositional challenges. This prompts the question: Can we enhance the compositional
capabilities of these models to boost their learning efficiency without scarifying generality?
Current research trends point in this direction, with a focus on harnessing the intrinsic
nature of language to refine neural network architectures. Recent efforts, such as the study
of Smolensky et al. (2022) on neurocompositional computing, suggest that by merging
Compositionality and Continuity principles, there is potential to bridge the gap between
symbolic and neural paradigms, pushing neural language models towards more robust
compositional generalization. The SLOG test we developed (§5) can be a valuable tool
to measure progress and guide model development. Crucially, by aligning models with
compositional principles, we move closer to mirroring human cognitive processes, which
could enhance their role as tools for understanding human language processing.

6.2 Future work

This dissertation highlights the potential of autoregressive Transformer language models
as explanatory tools for the theoretical study of language and human linguistic processes.
We introduced a methodological framework that facilitates testing linguistic hypotheses
and conducting comparative studies between model behavior and human cognition. The
next logical progression is to employ the model as an explanatory tool for human syntactic
processing.

130



Autoregressive Transformer model as an explanatory tool for language processing:
One direction that we initially aimed to explore in my thesis was the comparative analysis
between human judgment and neural model behaviors on the two target agreement phe-
nomena. While we have touched upon this topic preliminarily, a detailed study has not yet
been conducted due to time limitations. Psycholinguistic studies have shown that humans
also make agreement errors, with plural attractors being particularly error-prone. This is
traditionally attributed to the markedness of plurals, whose features are more salient than
the unmarked singular form during human language processing (Bock and Miller, 1991;
Eberhard et al., 2005). Our evaluation of neural language models on number agreement
tasks (§4.2.4) revealed that performance drops with increasing sentence complexity (quan-
tified by the heuristic count). This leads to pertinent questions: Do the patterns of errors
echo between models and humans? Are human judgments also influenced by surface-level
heuristics? Moreover, as detailed in Section 4.2.5, while models exhibited the capacity to
extrapolate syntactic generalization even in semantically implausible contexts, one won-
ders: To what extent are rules governing linguistic structures separate from those guiding
linguistic meanings?

Additionally, there is an evident human tendency to produce more accurate agreement
when dealing with singular controllers1 (Villata, 2017). This asymmetry is often linked
to an inherent human bias towards producing default singular forms (Greenberg et al.,
1963; Corbett and Fraser, 2000). Notably, our observations in Section 4.2.5 reveal a similar
singularity-plurality asymmetry within neural language models, with potential roots in the
frequency-based biases of target verbs. This observation triggers a set of compelling inquiries:
How does this resonate with established biases in the human cognitive system? How do
humans navigate and extract generalities from their linguistic stimuli? And, importantly, can
the autoregressive Transformer language model shed light on the origins of these behaviors,
especially when we manipulate model training data — like data quantity, sentence structure
complexity, and verb frequencies?

Another promising avenue for future research is to correlate model predictions with
behavioral data. Number agreement tasks (§3) demonstrate how the outputs of the autore-
gressive language model can be directly used through minimal-pair comparisons. Another
approach in the literature involves using the surprisal metric, calculated as the log of the
inverse of the conditional word probability (Hale, 2001; Levy, 2008). Given that in psycholin-
guistics, a word’s surprisal linearly affects the reading time of native speakers (Goodkind
and Bicknell, 2018; Hale, 2001), using surprisal as a linking function allows comparisons
between model output and human reading behavior, facilitating the testing of linguistic and

1Controllers correspond to “cues” in our dissertation.
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cognitive theories. This could, for example, offer insights into the parallels between the
Transformer model’s attention mechanism and human working memory during reading
tasks. Recent integrative modeling approaches, such as the one by Schrimpf et al. (2021),
linked neuropsychological data, behavioral responses, and computational model predictions.
This establishes connections between neural activations, human responses to linguistic
stimuli, and model-based surprisal values. Such endeavors can enhance our understanding
of human language processing and refine our computational models to align more closely
with human cognition.

Model interpretability To effectively leverage Transformer language models for explain-
ing human language processing, there is a pressing need to further illuminate their inner
workings. Our framework, rooted in linguistic analysis, employs challenge sets, probing,
and causal intervention methodologies. Yet, many interpretability methods lie outside the
scope of our current exploration in this dissertation.

A notable direction for further exploration is the neural-level analysis techniques, as
detailed in the survey by Sajjad et al. (2022). These techniques shed light on how models
organize, specialize, and redundantly store knowledge, aligning well with our objectives.
For instance, Bau et al. (2018) and Dai et al. (2022) have demonstrated how understanding
neurons can help control the output of a model. Furthermore, such a granular understanding
can guide the optimization of model architectures, possibly minimizing the required param-
eters (Voita et al., 2019; Sajjad et al., 2020; Dalvi et al., 2020). Aligning these capabilities with
our objective can reinforce the potential of Transformer models as explanatory tools for
human linguistic behaviors.

In Chapter 5, we highlighted the challenges faced by Transformer models in composi-
tional structural generalization. As a future endeavor, we aim to understand what makes
compositional generalization difficult for NLMs. Specifically, how do Transformer models
combine token-based information into representations for larger linguistic structures? Addi-
tionally, exploring recent hybrid methodologies, which blend symbolic and neural network
paradigms, appears promising, for instance, neurocompositional computing by Smolensky
et al. (2022).
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Résumé

Les théories linguistiques supposent que la compétence linguistique humaine est fondée sur
des structures innées et des représentations symboliques (Chomsky, 1965, 1986). Cependant,
les modèles de langues basés sur le Transformeur, sans intégrer explicitement ces principes,
ont atteint des performances comparables à celles de l’être humain dans de nombreuses
tâches de traitement automatique de langues (TAL) (Lertvittayakumjorn and Toni, 2021;
Bubeck et al., 2023). Contrairement aux modèles traditionnels basés sur l’apprentissage su-
pervisé et des représentations symboliques tels que les arbres syntaxiques, les Transformeurs
apprennent leur représentation du langage directement à partir de textes bruts, sans guid-
ance grammaticale. Ce succès remet en question l’importance des structures hiérarchiques
en traitement du langage, et suscite également des interrogations sur les mécanismes qui
sous-tendent la compétence linguistique des Transformeurs. Une question clé, qui est égale-
ment le cœur de cette thèse, est de savoir si les Transformeurs construisent implicitement
une forme de représentation hiérarchique abstraite. La complexité de ces modèles, avec leurs
nombreux paramètres, rend difficile la compréhension de leur fonctionnement interne. Bien
que la recherche dans ce domaine soit en plein essor, l’étendue de la capacité d’abstraction
linguistique des Transformeur reste une question ouverte. Certains travaux soulignent la
compétence du modèle à capturer des nuances syntaxiques complexes, tandis que d’autres
suggèrent une possible dépendance excessive à des régularités statistiques ou une simple
mémorisation des données. Cette thèse vise à éclaircir si les Transformeurs représentent
principalement des structures syntaxiques à travers des motifs de surface ou s’ils forment
également des règles plus abstraites. En abordant cette question, nous cherchons à explorer
les niveaux d’abstraction syntaxique que ces modèles peuvent atteindre et les mécanismes
qui guident leurs prédictions. L’étude poursuit deux objectifs principaux : i) évaluer le
potentiel d’un modèle de langue Transformeur autorégressif comme outil explicatif pour le
traitement syntaxique humain ; ii) améliorer l’interprétabilité du modèle.

Nous abordons ces objectifs en examinant les abstractions syntaxiques des modèles
Transformeur sur deux niveaux : leur capacité à modéliser des structures hiérarchiques,
présentée dans le Chapitre 4, et leur capacité à généraliser de manière compositionnelle les
structures apprises, exposée dans le chapitre 5. Ces deux aspects sont essentiels à la cognition
linguistique humaine. Notre étude se concentre sur le modèle de langue Transformeur
autorégressif, car son objectif de modélisation du langage est en phase avec la prédiction
incrémentale des mots, caractéristique fondamental du traitement linguistique humain (Hale,
2001; Kuperberg and Jaeger, 2016; Levy, 2008)

Nous avons introduit un cadre d’analyse intégré comprenant trois niveaux interdépen-
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dants: évaluation comportementale à travers des ensembles de test de défis, analyse représen-
tationnelle à l’aide de sondes linguistiques, et analyse fonctionnelle par intervention causale.
Dans le chapitre 4, nous avons déployé ce cadre pour mener une étude contrastive sur la
capacité du modèle Transformer à représenter des structures hiérarchiques. L’étude se
focalise sur deux phénomènes d’accord à longue distance en français : l’accord sujet-verbe à
travers des propositions relatives (S-V désormais) illustré par (1), et l’accord objet-participe
passé (O-PP désormais) illustré par (2).

(1) Les chat·s [ que Noûr aime bien ]RC jou·ent dans le jardin.
(2) Les chat·s [ que Noûr a adopté·s ]RC sont mignons.

Bien que les phrases (1) et (2) semblent similaires en surface, elles diffèrent fondamentalement
en théorie linguistique. La première concerne un accord sujet-verbe à travers une proposition
relative, tandis que la seconde met en jeu un accord entre un antécédent dans la proposition
principale et un participe passé dans la relative, ce qui la résolution d’anaphore et un
mouvement. Nous cherchons à évaluer la capacité du Transformer à réaliser ces deux types
d’accord et si ses représentations internes reflètent cette distinction linguistique.

Partie 1: La capacité du Transformeur à modéliser des structures hiérarchiques

Évaluation comportementale Pour évaluer le comportement syntaxique du modèle,
nous avons extrait, à l’aide d’heuristiques simples, deux jeux de données d’évaluation à
partir de corpus Gutenberg : un pour l’accord S-V (27 582 phrases) et un pour l’accord O-PP
(68 794 phrases). Dans ces phénomènes, le nom qui détermine l’accord (soit le sujet, soit
l’antécédent) est nommé indice. Le verbe s’accordant avec cet indice est la cible. Le segment
de phrase allant de l’indice (y compris ses dépendants) jusqu’à la cible (non incluse) est
désignée comme le contexte. Ces deux jeux de données contiennent des phrases avec au
moins une proposition relative entre l’indice et la cible. Après avoir pré-entraîné le modèle
de langue Transformeur sur un sous-ensemble de Wikipedia, nous avons évalué sa capacité
syntaxique à l’aide de tâches d’accord en nombre. La tâche demande au modèle de prédire
le mot suivant à partir d’un préfixe de phrase, comme dans l’exemple “Les chats que Noûr a
__”. Le modèle calcule alors une distribution de probabilités pour chaque mot du vocabulaire.
Nous évaluons sa performance en comparant la probabilité qu’il donne au verbe correct
“adoptés” par rapport à la variante au singulier “adopté”. Si la forme correct a une probabilité
plus élevée, le modèle est considéré comme ayant correctement accordé l’exemple.

Alors que le modèle obtient une performance globale élevée (> 94% de précision) pour
les deux tâches d’accord, notre analyse (Section 4.2.4) montre que des heuristiques simple
(p. ex., accorder le verbe systématiquement avec le premier nom) peuvent produire des
résultats comparables. Il est donc difficile de déterminer si le modèle s’appuie sur la structure
syntaxique de la phrase ou sur des motifs superficiels. Pour évaluer cette capacité syntaxique
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au-delà des motifs superficielles, nous introduisons un protocole d’évaluation basé sur des
heuristiques. D’abord, nous définissons cinq heuristiques de surface qu’un modèle statistique
pourrait exploiter pour prédire le nombre du verbe à partir d’indices superficiels. Chacune
suppose que le verbe cible s’accorde systématiquement en nombre avec :

h1. le mot le plus proche marqué pour le nombre grammatical ;
h2. le nom le plus proche ;
h3. le premier nom de la phrase ;
h4. le nombre majoritaire exprimé dans la séquence fournie au modèle ;
h5. le nom qui précède le que le plus proche;

Ensuite, nous utilisons ces heuristiques pour mesurer la difficulté de la prédiction d’accord.
Pour chaque phrase de test, nous comptons combien d’heuristiques prédisent correctement
la forme du verbe cible, puis nous répartissons notre ensemble de test en six sous-ensembles
selon ce nombre. Plus il y a d’heuristiques qui correspondent, plus la tâche de prédiction est
considérée comme facile. Dans la suite de cette thèse, nos analyses se focalisent sur les cas
les plus complexes (sous-groupes d’heuristiques 0 et 1).

Nos résultats montrent que la performance des modèles pour les deux tâches d’accord
diminue avec la difficulté de la tâche. Toutefois, le Transformeur maintient une précision
de 94% dans le cas le plus difficile pour l’accord S-V et de 76% pour l’accord O-PP. Cela
met en évidence sa capacité à généraliser des informations syntaxiques au-delà des simples
heuristiques. De plus, des expériences de contrôle confirment que le Transformer présente
des généralisations grammaticales robustes, même en absence d’indices sémantiques et
malgré un fort biais de fréquence, ce qui suggère qu’il satisfait au premier critère, la similarité
comportementale, en tant qu’outil explicatif du traitement syntaxique humain.

Analyse représentationnelle Les évaluations comportementales montrent comment le
modèle réagit à certains stimulis, mais elles offrent une vision limitée de ses représentations
internes. Pour approfondir cette compréhension, dans la section 4.3, nous avons utilisé des
sondes linguistiques pour déterminer où les informations syntaxiques sont encodées dans le
modèle et s’il utilise des représentations distinctes qui reflètent les nuances théoriques de
chaque phénomène d’accord. Une sonde est un classifieur entraînés à prédire des propriétés
linguistiques à partir des représentations générées par le modèle. Si le Transformer a bien
capturé l’information sur l’accord, alors une sonde devrait pouvoir l’identifier dans ses
représentations internes.

Notre objectif est de déterminer quelles représentations de mots dans une phrase en-
codent le nombre grammatical de l’indice. Pour ce faire, chaque phrase de nos jeux de
données est associée à une étiquette indiquant le nombre de l’indice (le sujet ou l’antécédent).

159



La tâche est de prédire cette étiquette à partir des représentations de mots extraites de la
dernière couche du Transformeur, en utilisant un classifieur de régression logistique. Nos
résultats montrent que, pour les deux types d’accord étudiés, les informations requises pour
prédire la forme correcte de la cible sont principalement encodées dans tous les mots entre
l’indice (où le nombre de la cible est spécifié) et la cible (où l’information est « utilisée »).

De plus, nous avons exploré la localisation de cette information sur l’accord dans l’espace
de représentation du Transformeur. Pour ce faire, nous avons refait l’expérience de sondes
linguistiques en utilisant cette fois des classifieurs logistiques régularisés ℓ1 pour sélectionner
les caractéristiques pertinentes. Les résultats révèlent que, pour les deux phénomènes étudiés,
l’information sur l’accord est principalement encodée dans quelques dimensions fortement
corrélées (moins de 10 sur 768). En outre, cette information est aussi diffusément présente,
de manière redondante, dans les autres dimensions.

Analyse fonctionnelle L’approche des sondes linguistiques révèle que le modèle encode
de manière similaire des informations syntaxiques pour les deux types d’accord, mais elle
ne met en évidence qu’une corrélation sans établir de causalité. Elle ne clarifie donc pas la
manière dont le modèle mobilise ces informations encodées pour effectuer des prédictions
d’accord. Pour combler cette lacune, dans la section 4.4, nous avons introduit des interven-
tions causales pour comprendre comment le Transformer utilise ces informations lors des
prédictions d’accord et vérifier leur alignement avec les théories linguistiques établies.

Les Transformeurs utilisent unmécanisme d’auto-attention pour construire une représen-
tation contextualisée de chaque mot, en réalisant une somme pondérée des représentations
des mots précédents. Pour étudier l’impact causal de mots spécifiques sur la prédiction
d’accord à la position cible, nous avons neutralisé leur contribution en coupant l’attention
directe depuis la position cible vers ces mots. En comparant les prédictions avant et après
ces interventions, nous mesurons l’influence causale de certains mots sur la décision du
modèle dans les tâches d’accord. Nous reproduisons les mêmes tâches d’accord (§4.2.4) avec
le Transformeur, mais cette fois, lors de la prédiction de la cible (et seulement à ce moment)
nous supprimons l’attention directe depuis la cible vers :

i1. L’indice et ses dépendants;
i2. le pronom relatif que dans le contexte;
i3. i1 et i2;
i4. tous les mots dans le contexte sauf i1 et i2.

Bien que les sondes linguistiques révèlent une distribution similaire de l’information syntax-
ique pour les deux phénomènes d’accord (4.3), le Transformeur utilise ces informations de
manière différente pour réaliser l’accord selon la tâche. Pour l’accord O-PP, l’antécédent
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et le pronom relatif “que” sont déterminants dans la prédiction du modèle. Tandis que
pour l’accord S-V, le sujet est important, mais le “que" influence peu la prédiction. Cette
distinction concorde avec les analyses linguistiques théoriques, soulignant l’adéquation
représentationnelle du Transformeur pour la modélisation de l’information syntaxique.

De plus, pour analyser l’impact des plongements positionnels sur la capacité d’abstraction
syntaxique du modèle, nous avons réalisé des expériences d’ablation où nous avons retiré
ces plongements de modèles Transformeur (autorégressif et bidirectionnel). Les résultats
indiquent que ces plongements positionnels n’ont qu’un impact très limité sur la performance
générale et la capacité d’abstraction syntaxique du Transformeur autorégressif. Cela est
probablement dû à la capacité du modèle à inférer l’information sur l’ordre des mots via le
masque d’attention incrémental.

En conclusion du Chapitre 4, nos analyses montrent que le modèle réussit à capturer les
structures hiérarchiques nécessaires à une généralisation fine, basée sur la grammaire. Son
excellente performance, aussi bien dans les tâches comportementales que dans l’évaluation
de l’adéquation de ses représentations, suggère que le Transformer autorégressif remplit
les critères essentiels (§1.1) pour servir de modèle explicatif. En combinant cela avec notre
cadre d’interprétabilité, le modèle Transformer se présente comme un outil prometteur pour
étudier le traitement syntaxique humain.

Partie 2: La capacité du Transformeur à généraliser de manière compositionnelle
les structures observées

Le Chapitre 4 a démontré la capacité du Transformer à exploiter des relations syntax-
iques pour prédire des dépendances à longue distance. Toutefois, il reste à élucider si cette
généralisation syntaxique découle de sa capacité à combiner de manière compositionnelle
des constituants vus lors de l’entraînement ou d’une mémorisation fondée sur des similarités
structurelles. Le Chapitre 5 évalue si les Transformeurs peuvent appliquer les règles syntax-
iques de manière compositionnelle pour interpréter de nouvelles structures linguistiques.
Nous introduisons un test en parsing sémantique où les modèles doivent convertir des
phrases anglaises en représentations sémantiques. Ce test présente une variation systéma-
tique entre les ensembles d’entraînement et d’évaluation, mettant en évidence la capacité
du modèle à interpréter des structures non vues en recombinant des composants déjà ren-
contrés à l’entraînement. Par exemple, comme illustré dans (3), l’ensemble d’entraînement
contient des propositions relatives (RC) modifiant des phrases nominales (NP) uniquement
en position d’objet , tandis que l’ensemble d’évaluation teste la capacité à interpréter des RC
modifiant le NP en position de sujet, comme dans (4).
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(3) Entrînement
a. Emma saw [ the cat that the man held ]obj .
b. The dog ran.
c. the cat that the man held

(4) Généralisation
[The cat that Emma saw]subj ran.

En utilisant cet ensemble de tests, nous avons évalué la capacité de généralisation structurelle
de divers modèles Transformer ainsi que d’un parser symbolique. Alors que tous les modèles
interprètent correctement des phrases non vues mais avec des structures familières, les
Transformers, y compris les plus récents, ont des difficultés avec des phrases présentant
des dépendances plus longues ou une récursion plus profonde — cas dans lesquels le parser
symbolique est beaucoup plus performant. Cette différence, notable par rapport à la ca-
pacité humaine de généraliser en recombinant des structures familières, suggère que les
modèles Transformeur pourraient s’appuyer sur des mécanismes sous-jacents différents ou
insuffisants.

Les conclusions contrastées du Chapitre 4, qui met en avant la compétence du modèle à
approximer les structures hiérarchiques, et du Chapitre 5, qui souligne sa capacité limitée à
la généralisation compositionnelle, offrent une vision nuancée des capacités d’abstraction
syntaxique des modèles Transformeur. Cela suggère qu’ils s’appuient principalement sur
l’abstraction lexico-catégorielle et des analogies basées sur des similarités structurelles. Bien
que cela leur permette de généraliser sur des phrases non vues avec des structures familières,
gérant ainsi une forme sophistiquée de productivité grammaticale, ils peinent face à de
nouvelles structures linguistiques qui nécessitent l’induction de règles compositionnelles
systématiques. Dans l’ensemble, cette étude met en lumière à la fois les promesses et les
limites potentielles des modèles Transformeur autoregressifs comme outils explicatifs pour
le traitement syntaxique humain, tout en proposant un cadre méthodologique pour leur
analyse et interprétabilité.
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Appendix A

A.1 Neural language models

A.1.1 Hyperparameters

The LSTM model have a total of 47,900,241 parameters. A grid search was conducted for the
optimal hyperparameters in the following range: batch size from {32,64}, dropout rate from {
0.0, 0.1, 0.2, 0.3 }, and learning rate from { 0.1, 0.01, 0.001, 0.0001 }. The configuration yielding
the lowest perplexity score (37.1) comprises a batch size of 64, a dropout rate of 0.1, and
a learning rate of 0.0001. Subsequent training of four additional LSTM models, using this
optimal hyperparameter combination, yielded perplexity scores of 36.8, 36.8, 36.9, and 37.0.

Each Transformer model ∈ {M,Mshallow,Mshared,Mnopos, MLM, MLMnopos} has an
architecture with 16 attention heads, a hidden size of 768, and feed forword dimensions
of 2048. ModelM, the main focus of our study, has a total of 126,674,513 parameters. To
identify optimal hyperparameters, we conducted a grid search in the range of learning rates {
0.01, 0.01, 0.02, 0.03 } and dropout rates { 0.0, 0.1, 0.2, 0.3, 0.4 }, yielding 16 combinations. The
combination with the lowest perplexity of 27.0 had a learning rate of 0.02 and a dropout rate
of 0.2. We further trained four more Transformer models with these parameters, achieving
perplexities of 26.8, 27.0, 27.1, and 27.2.

Training was performed with stochastic gradient descent with a fixed initial learning
rate of 0.02 and cosine scheduling across 100 epochs without annealing. The first epoch
was dedicated to warmup with a linear incremental schedule for the learning rate. We used

PPL # params # layers lr dropout tied layers use positional
embedding

LSTM 36.9±0.1 47.9M 2 0.0001 0.1 False –
M 27.0±0.2 126.7M 64 0.02 0.2 False True
Mshallow 37.8±0.7 49.5M 2 0.002 0.0 False True
Mshared 30.7±0.6 47.8M 16 0.002 0.0 True True
Mnopos 27.4±0.3 126.7M 16 0.01 0.1 False False
MLM † 5.6±1.2 130.5M 16 0.02 0.2 False True
MLMnopos

† 57.2±2.3 130.5M 16 0.02 0.2 False False

Table A.1: Hyperparameter configurations for each model and their corresponding average
perplexity scores. † denotes pseudo-perplexity scores used for MLM evaluation (§4.5.2), not
comparable with conventional perplexity scores.
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batch sizes of 64 and bptt_chunk of 150, running on 8 GPUs, except during warmup when
we fixed the batch size to 8. Each model was trained up to 72 hours. We trained five seeds
for each best hyperparameter configuration. All experiments results are averaged across
these five instances. All other Transformer-based LMs followed the same training procedure
as the modelM.

A.1.2 Perplexities in language model evaluation

As discussed in Section 2.2.1, perplexity is a common metric for evaluating conventional
language models, which predict the next word in a sequence based on the preceding context.

The perplexity of a LM on a word sequence S = w1, w2, ..., wt is computed using the
preceding tokens w1:i−1 and applying the chain rule

∑N
i=1 log2 PLM(wi|w1:i−1), as shown:

PPL(S) = 2−
1
N

∑N
i=1 log2 PLM (wi|w1:i−1) (A.1)

However, this metric doesn’t apply to models trained with a masked language modeling
objective. MLM predicts a masked token wi based on its surrounding context S\i, rather
than directly modeling the conditional probability P(wi|w1:i−1). To evaluate MLMs, we
use the pseudo-perplexity, computed as the average of the conditional log probabilities
logPMLM(wi|S\i) for each token, as proposed by Salazar et al. (2020). Given a pretrained
MLMwith parameters denoated asΘ, and a sequence S, we mask each token in the sequence
iteratively and compute the log-probability for each word in S. The pseudo-perplexity score
is defined as:

PPPL(S) =
1

|S|
∑
w∈S

logPMLM(w|S\w; Θ) (A.2)

To estimate the PPPL score of our validation set Dv, we use bootstrap sampling following
Sinha et al. (2021). We draw 1000 samples five times with replacement and compute the
bootstrap perplexity (BPPL):

BPPLDv = exp
(
− 1

N

∑
S∈W

PPPL(S)

)
(A.3)

We use BPPL as the final pseudo-perplexity score for evaluating MLMs. While it’s not
equivalent to the perplexity metric for autoregressive language models, it allows for a direct
comparison between MLMs.
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A.2 Error analyses

A.2.1 Qualitative error pattern analysis

For each agreement task, we sampled 100 sentences for which the Transformer made
incorrect number predictions in the majority of its 5 runs. We present common error
patterns in these results to inform future experiments. In the following examples from the
evaluation set, we bold the cue (subject or antecedent) and target verb; in each case, the
Transformer predicted the opposite number from the target verb.

S-V agreement across relative clauses Only about 1.1% of the sentences (303 in total)
received incorrect number predictions from the Transformer. The majority of these errors
align with the five heuristics outlined in Section 4.2.4, particularly those related to local
nouns or pronoun attractions. Here, we examine three main categories of errors.

The model seems to associate the conjunction “et” (and) with plural verb forms. For
instance, in examples (5) and (6), the model incorrectly chose the plural form for the target
verbs. Notably, none of these examples feature plural nouns, and all 5 heuristics defined
earlier (§4.2.4) predict a singular form.

(5) Le sentierSg qu’ ils suivaient , lui et la fée , descendait ...
The path they followed, he and the fairy, descendedSg ...

(6) le charmSg que la manière , la cadence et l’accent peuvent ajouter à un organe
apparaîtSg ...
the charm that manner, cadence and accent can add to an organ appears...

In most cases of long-distance subject-verb agreement, the Transformer accurately
predicted the number of the target verb, resisting the influence of local attractor nouns.
However, it struggles with non-canonical constructions like the inversion of noun subjects
and verbs in object relative clauses. In French, the standard word order places the noun
subject before the predicate. Stylistic inversion (Kayne, 1972) allows users to reverse this
order, as shown in examples (7) and (8), where the predicate is in blue and the subject in
orange. When faced with these inversions, the Transformer tends to make much more
errors, basing its agreement on the most recent nouns, which are the inverted subjects of
the embedded relatives. This suggests that the model struggles with handling such less
frequent, optional stylistic inversions phenomena.
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(7) les colonsPl, craignant la concurrence commerciale qu’allait leur faire la compagnie,
déclarèrentPl ...
the colonistsPl, fearing the commercial competition that the company was going to bring
them, declaredPl

(8) afin que la liqueurSg , en suivant les sillons que forment les plis , pûtSg arriver à la
pointe du cône
so that the liquorSg , following the grooves that the folds form, couldSg reach the tip of the
cone.

Sentences with multiple instances of “que” (that) in the prefix seem to be particularly
error-prone for the model. This holds true whether it is two relative pronouns “que”, as
in example (9), or a conjunction “que” followed by a relative pronoun “que”, as in exam-
ple (10). In the first example, the model incorrectly predicts a singular form despite the
absence of any singular nouns in the prefix. In the second example, the model appears to
misidentify “papiers” (papers) as the subject of the target verb, instead of the closer noun
“lettre” (letter), leading to an incorrect plural prediction. These errors could be indicative
of the model’s difficulty in managing nested or complex syntactic structures that require a
nuanced understanding of contextual and hierarchical relationships.

(9) LesmotsPl que je devine , que je sens tout près de vous sontPl très beaux
The wordsPl that I guess, that I feel so close to you, arePl very beautiful.

(10) les papiers ne me paraissent pas si terribles que la lettreSg que vous m’avez envoyée
semblaitSg le faire craindre
The papers don’t seem as terrible as the letterSg that you sent memadeSg it appear to be.

O-PP agreement About 5.4% of the sentences (3 698 in total) received incorrect number
predictions from the Transformer. Here, we examine two main categories of errors.

The model frequently struggled with identifying the correct head nouns in prepositional
phrases. For instance, in example (11), the model incorrectly agreed the past participle
with “chevalerie” (chivalry), the closer but incorrect noun, rather than the correct head
noun “exploits”. Conversely, in example (11), the model wrongly predicted a plural form,
aligning with the more distant noun “personnes" (peoplePl) instead of the correct, closer
noun “compagnie” (company). These errors indicate that the model has not fully grasped
the structure of French prepositional phrases.

(11) Je ferai les plus fameux exploitsPl de chevalerieSg qu’on ait vusPl

I’ll make the most famous exploits of chivalry that one has seenPl
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(12) Il y avait deux ou trois cents personnesPl de la meilleure compagnieSg que j’aie
vueSg en Italie.
There were two or three hundred peoplePl from the best companySg I’ve seenSg in Italy.

(13) L’un des instruments les plus puissants que Dieu ait confiés ...
One of the most powerful instruments that God has configured...

(14) Aucun des sentimentsPl que j’ai éprouvésPl jusque-là ne mérite le nom d’amour.
None of the feelingsPl I’ve experiencedPl so far deserves the name of love.

Another systematic error observed in the Transformer’s predictions involves constructions
“l’un des” (one of the) and “aucun des” (none of the), as illustrated in (13) and (14). In both cases,
the model incorrectly matched the past participle with the quantifiers, which semantically
imply singularity — either ‘one’ or ‘none’. However, past participles should actually agree
with the plural nouns that these quantifiers modify. This indicates that the model has not
fully understood the intricate interplay between semantics and morphosyntax in the context
of quantifier agreement.

Much like the difficulties encountered in S-V agreement, the stylistic inversion of the
noun subjects (highlighted in blue) within relative clauses also complicates O-PP agreement
cases for the models. They tend to leverage the grammatical number of the auxiliary verb
(underlined) immediately preceding the target to predict its number. For example, in (15),
all preceding nouns are plural, yet both LSTM and Transformer models predicted a singular
form. A detailed analysis of this non-canonical construction (in total 1,599 sentences) shows
that when the number of the intervening auxiliary differs from that of the past participle,
the LSTM’s accuracy drops to 42%, while the Transformer maintains an 80% accuracy rate.

(15) J’étudiai les sculptures symboliques dans les chambres intérieures des pagodes que
n’aSg vues nul œil profane et où une robe de brahme me permettait de pénétrer.
I studied the symbolic sculptures in the inner chambersPl of the pagodas that no profane
eye has seenPl, and where a Brahmin robe allowed me to enter.

(16) ... qu’il faut attribuer tous lesmalheurs qu’aSg éprouvés notre belle France.
that we must attribute all the misfortunesPl that our beautiful France has experiencedPl.

A.2.2 Lexical variation

There is a noticeable lexical variation in the results. Table A.2 highlights this disparity: the
top-performing verbs in both agreement tasks achieved 100% accuracy. Conversely, while
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the least accurate past participles consistently scored 0%, the lowest-scoring verbs in S-V
agreement still attained an accuracy rate of over 81%.

This disparity might be attributed to frequency effects. Both the occurrence (absolute
frequency) and the frequency ratio of a target form relative to its competing form play roles.
Typically, the more frequent a verb or past participle is, the more likely it is to be predicted
correctly. In contrast, less frequent lexical items, predominantly in their plural forms, often
lag behind. For instance, the verb “dits” posed challenges; its singular counterpart is 11 times
more prevalent, leading the model to consistently predict the more frequent, but incorrect
form. Such variations indicate that the Transformer language model may form less robust
number representations for infrequent verbs and struggle when the frequency bias heavily
favors one form over another.

Form Accuracy(%) Total Sentences Target Occurrences Ratio( Target form
Competing form )

S-V across relatives
Best-performing V
serait 100 196 11426 3.3
fit 100 128 8361 5.2
eut 100 126 6101 4.2
vient 100 122 7682 2.6
furent 100 94 17318 0.3
worst-performing V
mettaient 90 10 188 0.4
suffisent 89.3 28 270 0.2
contenait 88.2 17 698 3.2
auront 87.5 24 1363 0.3
disaient 81.8 11 150 0.2

Object-past participle
Best-performing PPs
fait 100 2030 112263 20.8
eu 100 961 14544 193.9
envoyé 100 272 3499 23.8
laissées 100 270 389 0.7
dit 100 246 15369 11.0
Worst-performing PPs
dits 0.0 60 1398 0.09
mérités 0.0 29 704 4.5
crus 0.0 18 238 0.2
éveillés 0.0 11 38 0.3
désirés 0.0 10 45 0.2

Table A.2: Verbs (at least 10 sentences) yielding the highest and lowest accuracy for the
Transformer-LM. ‘Target Occurrences’ refers to the frequency of the target form in pretrain-
ing data. ‘Ratio’ signifies the frequency ratio of the target form to its competing form (i.e.,
with the opposite number) in the pretraining data.
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S-V across relatives
Worst-performing verbs

(1) Sans doute en étant sans cesse auprès de l’Empereur témoin ou collaborateur, l’on
pouvait bien deviner ou préjuger les intentions qui le maîtrisaient, et les conséquences
que l’on tirait de ce que l’ on croyait à peu près savoirmettaient sur les traces mêmes
de ce qu’il pouvait y avoir d’occulte dans sa conduite apparente .
(2) Sous un ciel toujours clément , quelques aunes de toile suffisent pour vêtir le Napolitain
, comme quelques pièces de basse monnaie qu’il gagne sans fatigue lui suffisent pour se
procurer la nourriture
(3) Toutes les phrases qu’elle me disait, discrètes à la fois et vives, contenaient autant
d’interrogations sur ma vie depuis que je l’avais quittée ...
(4) Une fois que le médecin aura ainsi pris position, les conseils qu’il donnera , non
seulement sur l’hygiène mentale , mais sur l’hygiène alimentaire , musculaire , auront
toutes chances d’ être suivis;
(5) Son génie éclatait, austère et convulsif, Comme celui de Dante ou de Savonarole, Les
bouches qu’il ouvrait disaient d’autres paroles...

O-PP agreement
Worst-performing verbs

(1) voici les mots mêmes qu’il m’a dits, je vous les répète.
(2) Votre affectation à n’en pas parler aura fait naître ces soupçons que j’ai si peumérités,
et dont je ne me consolerai jamais.
(3) La belle-sœur du prince de Schwartzenberg, entendant sortir de la salle embrasée des
cris qu’elle a crus poussés par sa fille aînée, ...
(4) Je te l’ai dit , il faut aller vers le nord pour échapper aux soupçons qu’a éveillés ton
absence.
(5) Elle ne me donna pas sur cette affaire tous les renseignements que j’aurais désirés.

Table A.3: Examples of sentences for the worst performing verbs and past participles in
Table A.2, the words in bold indicate the cue-target pairs.

A.3 Sample sentences fromevaluation sets for long-distance
S-V and O-PP agreements

In this section, we provide an extract of sentences used in the experiments of Chapter 4, aimed
at assessing model capacity to process structure-sensitive phenomena. These sentences
are organized into subsets following the heuristic-based evaluation protocol established in
Section 4.2.4. All sentences are sampled directly from the evaluation sets and are presented
as they are after tokenization. This format is specifically tailored for our word-based neural
language models and may not adhere to standard French writing rules, for instance, elisions
are separated into two words, ‘l’esprit’ appears as ‘l’ esprit’.
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A.3.1 Long-distance S-V agreement

Sentences exhibiting long-distance S-V agreement in Chapter 4 refers to sentences where
the main verb and its syntactic subject are separated by one or more object relative clauses.
The entire evaluation set consists of 27,582 sentences (§4.2.2). The main verb and the head
of its subject are highlighted in bold.

5-heuristic subset

1). Monvel , me dit-il enfin , vous avez raison , le mariage que je vous avais proposé est
impossible .

2). L’ esprit de parti qui règne ici et qui augmente par la faiblesse du gouvernement ,
lequel cependant fait ce qu’ il peut , rend ce séjour de plus en plus odieux .

3). Adieu , je vous bénis , ne maudissez jamais ma mémoire ; rappelez-vous que la plus
grande douleur que j’ éprouve dans mon supplice est celle de mourir loin de mes
enfants.

4). Ainsi donc le mouvement de substance que nous appelons génération , ne doit être
attribué qu’ à Dieu .

5). Et puis , il faut bien le dire , les paroles que répètent les perroquets tombent quelque-
fois avec tant d’ à-propos , qu’ ils vous ont l’ air d’ avoir une intelligence surprenante.

4-heuristic subset

1). Les oeuvres extraordinaires que ces hommes produisent , dit Goethe , supposent
une organisation très-délicate.

2). A trois heures précises , le cercueil qu’ on m’ avait réservé reçut ma très viable et
très vitale dépouille ,

3). Ainsi , répondit-il , le motif que vous me donnez est le seul qui vous pousse à me
quitter ?

4). Monsieur , cet ouvrage que je vous présente vous appartient , puisque tout ce qui
est à moi est à vous .

5). À trois heures du matin tout était en mouvement par un temps sombre et pluvieux
, et les caissons qu’ on brûlait ou qu’ on faisait sauter faute de les pouvoir atteler ,
ajoutaient de sinistres lueurs et de plus sinistres détonations à cette retraite .
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3-heuristic subset

1). Ainsi , Monseigneur , la demande que le roi d’ Espagne aura faite au roi de ces quatre
vaisseaux devient aussi inutile que le projet du Conseil des Indes

2). Il restera à savoir si les six cents hommes qu’ on pourrait laisser dans ce fort pour-
raient s’ y défendre trente ou quarante jours et attendre le retour de l’ armée ;

3). Au surplus , comme le premier but que je me propose , le plus ardent de tous mes
désirs , est de suivre précisément les intentions de Sa Majesté.

4). Évidemment ses adversaires l’ appréciaient à sa juste valeur : depuis le commencement
de la guerre française , il s’ était distingué parmi les plus braves ; les précieux services
qu’ il avait rendus aux forts anglais établis sur les frontières l’ avaient rendu légendaire
parmi les Indiens .

5). À ma grande surprise , j’ ai été nommé membre de l’ Académie des beaux-arts de l’
Institut , et si , quand j’ y prends la parole de temps en temps , les observations que
je fais sur nos usages académiques sont assez inutiles et restent sans résultats , je n’ ai
pourtant avec mes confrères que des relations amicales et de tout point charmantes .

2-heuristic subset

1). Ainsi , les devoirs que nous impose la famille sont en contradiction avec ceux que
nous impose l’ humanité .

2). Assurément , les effets qu’ elle a produits jusqu’ à présent sont relativement faibles ;

3). Depuis quelques jours , le bruit du départ de don Carlos pour l’ Espagne s’ était répandu
à Londres , mais les détails qu’ on donnait sur cet événement étaient tellement vagues
et contradictoires qu’ il était difficile d’ y ajouter foi .

4). Herr von BethmannHollweg affirme que les papiers que nous avons trouvés dans les
archives du ministère des Affaires étrangères à Bruxelles ,montrent que l’ Angleterre
, en 1911 , était déterminée à jeter des troupes en Belgique ...

5). Mes enfants , pensez toujours que l’ homme que vous aurez en face de vous peut
être le père , le frère de votre camarade Brussanes , et cela retiendra , j’ en suis certain
, les mains trop promptes .

1-heuristic subset
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1). Quand j’ entrai chez Éliane , elle était seule , couchée sur une chaise longue ; ses longs
cheveux noirs , que j’ avais toujours vus bouclés avec le plus grand soin , tombaient
en désordre sur ses épaules ;

2). À mon âge , les promesses que l’ on fait à la raison ne tiennent guère .

3). Toutes les portes étaient ouvertes et sans gardes ; mais le respect qu’ inspirait la
présence des princes suffit seul pour empêcher le désordre et la confusion .

4). Sibylle était allée au-devant de cette recommandation , et les instructions que la
duchesse lui transmit , en se gardant bien de lui en révéler l’ origine , se trouvèrent
superflues .

0-heuristic subset

1). Ça le réjouissait de savoir qu’ on fêtait la République , et les souvenirs de la Révolution
qu’ il tenait de son père et de son grand-père , lui revenaient à la mémoire.

2). Les douaniers de Néphélococcygie font bonne garde : toute la fumée des sacrifices
que les hommes offrent aux anciens dieux est interceptée .

3). Le public intelligent et lettré verra bien , de son côté , que les arcanes de l’ érudition
qu’ il craint , respecte et méprise à la fois , ne sont pas si mystérieux ni si redoutables
lorsque les questions sur lesquelles s’ exercent les érudits sont mises au point et
discutées avec simplicité .

4). Le pauvre diable avait beau faire des efforts , il ne pouvait avancer , car il était pris entre
deux arbres , et les deux bottes de paille qu’ il avait de chaque côté , l’ empêchaient
de passer .

5). Le goût italien moderne nous gagne , et la contagion est telle que les coins réservés
aux artistes , dans ce grand bazar populaire et bourgeois qu’ on vient de fermer , y
prenaient aussi des aspects de réclame et d’ étalage forain .

A.3.2 O-PP agreement

The entire evaluation set consists of 68,497 sentences (§4.2.2). The antecedent and the target
past participle are highlighted in bold.

5-heuristic subset
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1). À onze heures du soir , ils hallèrent en effet le Ouest-Sud-Ouest , et puis après ils
tournèrent au Sud : désespérés de ne rien trouver sur les vagues qu’ ils avaient battues
pendant plusieurs heures , nos pilotes se décidèrent à gouverner sur Ouessant , où leurs
familles devaient s’ inquiéter de ne pas les avoir vus rentrer à l’ heure accoutumée.

2). À part l’ enivrement des premiers regards , Maurice s’ était trouvé au-dessous de son
attente dans la réception que lui avait faite Geneviève , et il comptait sur la solitude
pour regagner le chemin qu’ il avait perdu , ou du moins qu’ il paraissait avoir perdu
dans la route de ses affections .

3). À midi , mon excellent montagnard était de retour avec la réponse que le capitaine
avait écrite devant lui , dans son bureau du quartier général où il doit , soit dit en
passant , terriblement peiner , lui qui est seul là-bas pour recevoir , répondre , et parer
à l’ imprévu !

4). À mesure que j’ ai appris à connaître le terrible et singulier gouvernement , régularisé ,
pour ne pas dire fondé par Pierre Ier , j’ ai mieux compris l’ importance de lamission
que le hasard m’ avait confiée .

5). toujours est-il que le visage de Bessie se couvrait d’ un voile de tristesse que John ne
lui avait jamais vu , et qui ajoutait à son charme , comme l’ ombre ajoute au charme
de la lumière .

4-heuristic subset

1). "tous ces gens-là sont venus au monde par une incision que l’ art a faite "

2). serait-il possible que des cœurs brûlant d’ un zèle aussi pur pour votre prospérité ,
pour votre gloire , eussent renoncé à des sentiments plus chers que leur vie , qu’ ils
ont tant de fois exposée pour vous ?

3). ne serait-ce pas plutôt une intrigue avec quelqu’une de la ferme que tu aurais prise
pour Tatiana ?

4). Vous êtes en train de perdre dans ce désert les bellesmanières que vous avez apprises
à l’ Université de Californie .

5). Vous verrez que je suis digne de mettre à vos pieds le plus magnifique amour que
jamais homme ait offert à une femme .

3-heuristic subset
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1). Vous verrez lesmûriers que mon grand-père a plantés , et le gros figuier qui est sous
ma fenêtre , tout peuplé de nids de tourterelles !

2). Quant aux impressions que vous m’ avez confiées , tout ce que je puis vous dire , c’
est que vous êtes , je crois , dans un cas où l’ on a plus besoin de conseils s’ appliquant
à l’ âme qu’ au corps .

3). Si nous sommes en paix et que notre état actuel ne soit qu’ un état de mésintelligence
, la France doit liquider tout le tort que ses corsaires vous auront fait .

4). –Un de vos amis , repris-je avec ironie , le meilleur même de vos amis ; je suis
reconnaissant de la place que vous m’ avez faite , mais cette place , je ne m’ en sens
pas digne .

5). À cette époque-là , les jeunes gens de la bourgeoisie tiraient une grande vanité de
pouvoir montrer un sabre de gendarme qu’ ils avaient acheté à quelque voyou après la
fête , ou une égratignure qu’ ils s’ étaient faite en semettant à la fenêtre précipitamment
, pour regarder .

2-heuristic subset

1). À cette voix , qui lui rappelait les seules affections qu’ elle eût jamais connues , Jane
rouvrit les yeux , regarda Dolly , et lui sourit en murmurant

2). Biscarre , surpris par des poursuites que son imprudence lui avait attirées , a disparu
depuis plus de trois semaines sans fairr e connaître sa résidence actuelle ;

3). À Rome , au temps de Néron , certain tribun des soldats , fils d’ un honnête publicain
, montrait dans l’ administration militaire des talents qu’ il avait précédemment
exercés dans l’ administration civile .

4). vous étiez prêt à renoncer à Pénélope qui vous attend , à Ulysse que vous verrez , à
Ithaque où vous devez régner , à la gloire et à la haute destinée que les dieux vous
ont promise par tant de merveilles qu’ ils ont faites en votre faveur : vous renonciez
à tous ces biens pour vivre déshonoré auprès d’ Eucharis !

5). Un de nos blessés mourut ; mais je ne crois pas que sa mort fut la suite de la blessure
qui l’ avait alité , ce fut la puissance narcotique de la drogue que les natifs avaient
mise dans le café .

1-heuristic subset
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1). Tout cela , ce sont les restes de la montagne , que les eaux ont réduite en menus
fragments , transportée en détail et déversée en énormes alluvions à l’ issue des
grandes vallées .

2). Étudiant à Paris , c’ est là qu’ il avait traversé les dernières années de la Restauration
et les premières qui suivirent la révolution de 1830 , belles années que le siècle n’ a
pas revues depuis , qu’ il ne reverra pas .

3). non , je ne me plains pas de vous , car je vous dois les quelques jours de bonheur que
j’ ai passés auprès de Blanche .

4). À cette lettre noble et touchante , qu’ appuyaient auprès du roi les éminents services
que , depuis son avènement , lui avait rendus le prince de Condé , il ne pouvait ne
pas répondre par une adhésion sans réticences .

5). vous ne laisserez donc pas tomber ce masque d’ hypocrisie dont vous avez couvert
des forfaits qu’ aucune langue humaine n’ a décrits .

0-heuristic subset

1). Si elle vous coûte trop à dire , renvoyez-moi seulement mes billets et la boucle de
cheveux que vous avez emportée ; je vous comprendrai et ..... Ah !

2). Seule , la pénurie de matériel et le manque d’ information ont pu , au début de la
guerre , permettre les opérations sans examen radiologique préalable , que , plus
tard, on eût considérées comme criminelles .

3). voici l’ instant de t’ appliquer quelques-uns de ces coups de fouet qu’ on t’ a ordonnés
pour le désenchantement de Dulcinée !

4). Un vif rayon de soleil perçant les nuages vint resplendir sur deux grands portraits
placés de chaque côté de la cheminée , que le juif n’ avait pas encore remarqués ,
et qui , peints en pied et de grandeur naturelle , représentaient , l’ un une femme , l’
autre un homme .

5). Quand je pense à la date de ces traités de 1814 , aux difficultés de tout genre que j’ ai
éprouvées ...

A.4 Additional figures and tables
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Models S-V O-PP
LSTM 94.3±0.3 82.1±1.1

M 98.9±0.04 94.6 ±0.2

Mshallow 90.8±0.4 84.7 ±0.7

Mshared 97.8±0.3 89.0 ±0.3

Majority class 69.7 65.1
(1) first noun 83.7 69.5
(2) Most recent noun 77.5 88.6
(3) Most recent token 66.9 60.3
(4) Majority number in prefix 75.9 70.0
(5) Noun before “que” 91.6 95.7

Table A.4: Accuracy (%) achieved by our models (averaged across 5 models for each architec-
ture), compared to accuracies predicted by the 5 surface heuristics considered in this work
on long-distance agreement tasks.

Constructions Original Nonce
LSTM Transformer LSTM Transformer

S-V agreement
overall 94.3±0.3 98.9±0.04 87.0±0.4 95.5±0.2

5 heuristics 98.6 ±0.1 99.6 ±0.05 94.9±0.6 98.2±0.1

4 heuristics 95.2 ±0.5 99.0 ±0.1 87.9±0.8 95.5±0.3

3 heuristics 91.3 ±0.8 98.4 ±0.1 80.8±1.2 93.4±0.3

2 heuristics 84.8 ±1.0 97.7 ±0.1 70.4±2.2 90.3±0.5

1 heuristic 81.2 ±1.8 96.8 ±0.1 63.6±1.8 88.5±0.7

0 heuristic 74.7 ±2.2 94.1 ±0.5 58.0±3.0 82.5±1.6

O-PP agreement
overall 82.1 ±1.1 94.6 ±0.2 77.1 ±2.3 93.9 ±0.2

5 heuristics 95.3 ±0.6 99.2 ±0.1 91.1 ±1.5 98.7 ±0.1

4 heuristics 85.9 ±1.0 96.5 ±0.1 80.5 ±1.7 95.7 ±0.3

3 heuristics 71.9 ±1.6 91.6 ±0.4 65.9 ±3.1 91.3 ±0.4

2 heuristics 62.2 ±2.4 87.6 ±0.4 56.6 ±4.6 87.3 ±0.7

1 heuristic 37.4 ±4.1 77.9 ±0.8 30.3 ±5.5 73.1 ±1.0

0 heuristic 40.2 ±2.7 76.1 ±1.0 35.8 ±5.0 69.2 ±0.5

Table A.5: Average accuracy (%) of LSTM and Transformer models on the Nonce set versus
the Original set by prediction difficulty.
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Corpus Target verb eval Top3 eval
S-V agreement

overall 99.5±0.1 99.2 ±0.1

5 heuristics 99.8 ±0.05 99.6 ±0.1

4 heuristics 99.3 ±0.1 98.5 ±0.2

3 heuristics 99.3 ±0.2 98.7 ±0.3

2 heuristics 99.2 ±0.2 99.1 ±0.2

1 heuristic 98.7 ±0.5 98.4 ±0.3

0 heuristic 97.6 ±0.6 97.2 ±0.5

O-PP agreement
overall 94.4 ±0.6 91.7 ±1.0

5 heuristics 99.2 ±0.1 99.0 ±0.2

4 heuristics 96.6 ±0.5 95.3 ±0.6

3 heuristics 91.3 ±0.6 87.0 ±0.9

2 heuristics 86.9 ±1.1 80.2 ±1.8

1 heuristic 76.6 ±0.8 62.2 ±1.5

0 heuristic 74.8 ±0.4 77.1 ±1.2

Table A.6: Comparison of Transformer LM’s accuracy in two agreement tasks using top3
evaluation metric and target verb evaluation metric (§4.2.3). For a fair comparison, sentences
were excluded where the top ten predicted words do not include any verbs, which account
for 7.9% of sentences in S-V agreement and 0.3% in O-PP agreement.

Figure A.1: Probing accuracy based on tokens PoS tags and their positions in the sentences,
from left to right: prefix, context, suffix
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Corpus Target verb eval Top3 eval
S-V agreement

overall 95.3±0.4 90.2 ±0.6

5 heuristics 98.6 ±0.2 94.5 ±0.1

4 heuristics 95.6 ±0.3 86.4 ±1.2

3 heuristics 92.6 ±1.1 87.0 ±0.8

2 heuristics 87.8 ±1.2 82.7±0.9

1 heuristic 86.3 ±0.9 81.7 ±1.0

0 heuristic 79.3 ±1.6 76.2 ±2.1

O-PP agreement
overall 81.9 ±1.8 67.3 ±2.3

5 heuristics 96.1 ±0.5 83.7 ±0.2

4 heuristics 87.5 ±1.1 73.5 ±0.6

3 heuristics 71.1 ±1.6 51.3 ±0.9

2 heuristics 59.0 ±2.4 34.2 ±1.8

1 heuristic 31.7 ±3.7 22.2 ±1.5

0 heuristic 37.7 ±2.5 34.3 ±1.2

Table A.7: Comparison of LSTM LM’s accuracy in two agreement tasks using top3 evaluation
metric and target verb evaluation metric (§4.2.3). For a fair comparison, sentences were
excluded where the top ten predicted words do not include any verbs, which account for
29.8% of sentences in S-V agreement and 45.7% in O-PP agreement.

Transformer LSTM
S-V agreement 99.5±0.1 88.5±0.3

O-PP agreement 92.7±0.2 70.4±0.5

Table A.8: Inter-agreement (%) between the target verb evaluation metric and the top3
evaluation metric.
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Subject-verb across object relative

Subsets Mask context tokens
except cue que

Mask cue Mask que Mask cue⊕que

Overall 16.7±0.7 10.6±1.3 2.6±0.3 13.5±0.6

5 heuristics 5.0±0.5 2.4±0.4 0.5±0.1 4.0±0.3

4 heuristics 15.3±1.0 10.1±1.6 3.0±0.4 12.5±0.6

3 heuristics 28.1±0.8 19.8±3.0 5.7±0.4 24.3±1.1

2 heuristics 44.1±1.4 21.1±3.2 7.0±0.8 35.4±1.3

1 heuristics 44.7±1.9 25.3±2.3 3.2±0.6 30.8±1.9

0 heuristics 42.6±2.0 31.1±1.9 6.7±1.0 34.3±1.9

Object-past participle

Overall 8.4±1.0 25.6±0.8 17.9±0.5 30.1±0.3

5 heuristics 3.6±0.1 7.8 ±0.3 6.7±0.2 10.5±0.5

4 heuristics 7.9±1.1 24.0±0.7 15.3±0.4 27.6±0.4

3 heuristics 11.6±1.7 24.8±1.4 19.4±1.0 28.5±0.4

2 heuristics 12.6±3.3 40.5±1.6 39.8±1.4 53.8±0.5

1 heuristic 15.8±3.3 67.5±1.4 57.7±1.0 80.7±0.4

0 heuristic 24.0±3.4 59.0±3.1 64.0±1.1 88.4±1.3

Table A.9: Average causal effect of interventions on Transformer’s NA task performance,
quantified by drop in accuracy before and after different interventions, and further broken
down based on prediction difficulty measured by the number of heuristics. The term cue here
refers to the antecedent and its modifiers (determiners and adjectives) in O-PP agreement,
and to the subject and its modifiers in S-V agreement.

Constructions M MNoPos

Perplexity 27.0 27.4
S-V agreement

overall 98.9%±0.04 98.8% ±0.1

5 heuristics 99.6% ±0.05 99.6% ±0.1

4 heuristics 99.0% ±0.1 98.5% ±0.2

3 heuristics 98.4% ±0.1 98.1% ±0.2

2 heuristics 97.7% ±0.1 97.6% ±0.1

1 heuristic 96.8% ±0.1 97.2% ±0.2

0 heuristic 94.1% ±0.5 94.8% ±0.7

O-PP agreement
overall 94.6% ±0.2 94.3% ±0.3

5 heuristics 99.2% ±0.1 99.0% ±0.1

4 heuristics 96.5% ±0.1 95.9% ±0.2

3 heuristics 91.6% ±0.4 91.3% ±0.6

2 heuristics 87.6% ±0.4 87.5% ±0.6

1 heuristic 77.9% ±0.8 78.1% ±1.0

0 heuristic 76.1% ±1.0 75.6% ±1.3

Table A.10: Autoregressive Transformer LM’s accuracy on two NA tasks with and without
positional embeddings.
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Constructions MMLM MMLM
NoPos

S-V agreement
overall 99.3±0.2 84.9 ±0.8

5 heuristics 99.7 ±0.1 96.7 ±0.1

4 heuristics 99.3 ±0.1 87.3 ±0.3

3 heuristics 99.0 ±0.2 77.1 ±0.5

2 heuristics 98.6 ±0.1 60.1 ±1.1

1 heuristic 98.1 ±0.3 46.5 ±2.1

0 heuristic 95.5 ±0.3 29.4 ±1.8

O-PP agreement
overall 95.1 ±0.2 72.5 ±2.3

5 heuristics 99.4 ±0.05 92.2 ±0.1

4 heuristics 96.7 ±0.1 79.3 ±0.7

3 heuristics 92.2 ±0.3 55.6 ±1.6

2 heuristics 88.4 ±0.5 35.4 ±1.8

1 heuristic 82.2 ±0.7 30.3 ±4.1

0 heuristic 75.1 ±1.1 22.1 ±2.5

Table A.11: Masked Transformer LM’s accuracy on two NA tasks with and without positional
embeddings.
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A.5 Grammar and sampling details

SLOG expands upon the COGS vocabulary, which consists of 503 nouns and 113 verbs, to
additionally include wh-words (who, what) and that used as a relative pronoun. In SLOG,
for the sake of simplicity, we only consider restrictive relative clauses introduced by that
regardless of the animacy of the head NPs. For indirect object-extracted instances, we use
the preposition stranding structure, such as the boy that Emma give a cake to, rather than
the boy to whom Emma gave a cake.

The dataset includes the 30,000 examples from the initial COGS training set, and new
examples that fall into one of the following categories:

• Relative clauses within object NPs, equal in number to instances with PP modifications
• Subject and object wh-questions matching the quantity of their corresponding declar-
ative sentences

• An equal number of four-level-nesting recursion constructions as the depth-2 instances
in initial COGS

• A primitive example for each ditransitive verbs and verbs accepting complement
clause (CP) arguments

Finally, the SLOG sampling process excludes sentences with duplicate nouns (e.g. Emma
saw Emma.).

A.6 SLOG Full results and additional analyses

We report the full results of the experiments discussed in Section 5.5 in Table A.12.

A.6.1 Effect of the reformatted exact-match metric

All models exhibit higher overall accuracy with the reformatted exact-match evaluation
compared to the initial metric, notably pretrained models with an over 10 percentage
point increase (Table A.12). This suggests that the initial exact-match metric may have
underestimated model performance.

A.6.2 RC Modifiers in unseen positions

Generalizing RCmodifiers to unseen positions presents a similar challenge as PPmodification
cases, due to unobserved long-distance dependencies. As shown in Table A.13, all models
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Generalization cases Vanilla
Transformer T5 LLaMa AM-Parser

Deeper PP recursion 13.1±1.5 13.1±1.5 15.7±0.7 16.6±1.0 19.8±1.1 20.6±1.0 100.0±0.0

Deeper tail CP recursion 0.2±0.1 0.9±0.3 0.8±0.2 5.3±0.4 3.9±0.4 12.1±0.7 100.0±0.0

Deeper center embedding 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 99.5±0.4

Shallower PP recursion 98.7±0.8 98.7±0.8 90.2±2.2 93.1±1.9 97.3±0.9 98.9±0.6 100.0±0.0

Shallower tail CP recursion 32.6±3.6 55.2±4.2 44.8±2.8 60.9±2.1 85.4±3.6 98.1±0.7 100.0±0.0

Shallower center embedding 0.0±0.0 0.0±0.0 0.0±0.0 64.1±19.1 0.0±0.0 50.7±5.7 100.0±0.0

PP in subject NPs 0.0±0.0 0.0±0.0 0.0±0.0 0.8±0.5 12.3±4.4 28.9±3.5 57.6±8.1

PP in indirect object NPs 42.5±2.2 42.5±2.2 50.1±1.7 53.8±1.4 55.0±3.9 71.2±4.2 90.4±8.1

RC in subject NPs 0.0±0.0 0.0±0.0 0.0±0.0 0.2±0.2 3.4±1.6 29.5±3.4 55.8±8.4

RC in indirect object NPs 34.4±6.0 34.8±6.1 35.1±1.9 36.6±2.1 48.6±1.9 55.0±2.1 74.4±6.4

Indirect object-extracted RC 4.7±5.6 4.7±5.7 0.0±0.0 0.0±0.0 0.1±0.3 2.5±3.2 0.0±0.0

Indirect object wh-questions 35.9±8.3 42.4±13.5 0.0±0.0 0.4±0.7 27.9±9.3 73.5±18.4 41.4±42.4

Active subject wh-questions 96.7±2.6 97.1±2.4 90.5±4.0 98.1±1.7 92.8±6.4 93.3±6.0 99.8±0.6

Passive subject wh-questions 27.4±1.7 31.9±5.4 20.3±3.8 100.0±0.0 4.8±4.5 15.3±17.5 100.0±0.1

Direct object wh-questions 2.8±3.4 16.0±12 47.2±1.0 98.5±0.9 0.5±0.5 8.6±5.7 29.4±33.5

Wh-questions with modified NPs 17.6±0.9 17.8±1.3 20.5±1.0 36.8±0.4 15.8±0.6 20.8±2.4 55.6±12.5

Wh-questions long movement 4.0±7.8 4.9±9.5 23.3±4.3 24.9±5.1 0.8±1.4 3.0±4.7 0.0±0.0

Overall 24.2±1.0 27.1±2.0 23.4±1.1 40.6±1.0 27.6±1.0 40.1±1.8 70.8±4.3

Table A.12: Mean accuracy (%) using exact-match is shown in gray, accuracy using refor-
matted exact-match described in Section 5.4 is shown in black. AM-Parser’s graph-based
output yields identical scores for both metrics hence only a single column is reported.

Generalization cases Long pred-arg
dependency?

Vanilla
Transformer T5 LLaMa AM

parser
Sub-case: Passive indirect objects

A fish was given to [ a cat that slept ]iobj.
✗ 72.0±6.6 74.2±2.7 97.1±1.2 99.5±0.6

Sub-case: Indirect object in PP datives

Emma gave a fish to [ a cat that slept ]iobj.
✗ 27.0±9.8 38.9±5.3 72.7±7.8 99.3±1.1

Sub-case: Indirect object in double object datives

Emma gave [ a cat that slept ]iobj a fish. ✓ 7.9±8.5 0.2±0.2 0.3±0.3 28.9±17.2

Subject

[A cat that slept]subj ate a fish.
✓ 0.0±0 0.2±0.2 29.4±3.4 51.7±8.4

Table A.13: Performance of RC modification generalization broken down by construction.

exhibit a significant performance discrepancy between constructions involving unseen long
predicate-argument dependencies and those that do not.

For novel positions that introduce long predicate-argument dependencies, RC modifica-
tion in the indirect object appears more difficult than in the subject position, contrary to the
case with PP modifiers. The primary error pattern (18) demonstrates that models struggle
to detect the RC boundary when the relative clause ends with a verb. They systematically
misinterpret the indirect object a fish of the main verb gave as the direct object of the
adjacent embedded verb slept.
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A.6.3 Passive subject wh-questions

For subject wh-questions, which exhibit no gap, T5 and AM-Parser perform near-perfectly
on both active and passive subject questions. Vanilla Transformer and LLaMa also perform
well on active subject questions, but achieve much lower performance on passive subject
questions. This performance discrepancy is the most evident in sub-cases where passive
subjects function as theme (e.g., (17))—the vanilla Transformer has near-zero accuracy for
these sub-cases, systematically failing to map wh-words to ‘?’ as in (17b):

(17) Input: What was eaten by Emma ?
a. Gold: eat.theme (x2, ?) ∧ eat.agent (x2, Emma)

b. Output of Vanilla Transformer and LLaMa: eat.theme (x2, x4) ∧ eat.agent

(x2, Emma)

As discussed in Section 5.5.3, this error pattern may result from the highly imbalanced label
distribution in training output space. Both LLaMa and vanilla Transformer are inclined to
repeat the substantially more common subsequence theme(xi, xj) over theme(xi,?).

(18) Gold LF and model-predicted LF for Emma gave a cat that slept a fish:
a. Gold: give.agent (x1,Emma) ∧ give.recipient (x1, x3) ∧ give.theme (x1, x7)∧

cat(x3) ∧ cat.nmod (x3, x5) ∧ sleep.agent(x5, x3) ∧ fish(x7)

b. Out: give.agent (x1,Emma) ∧ give.theme (x1, x3) ∧ cat(x3) ∧ cat.nmod

(x3, x5) sleep.agent(x5, x3) ∧ sleep.theme(x5, x7) ∧fish(x7)

A.6.4 Wh-questions with modified NPs

In wh-questions with PP and RC modifiers, even though the SLOG training set only contains
wh-questions with unmodified NPs, all models generalize well (accuracy > 80%) to direct
object NPs with modifiers (e.g., Who ate a cake on the table?). These are cases where the
modification pattern is observed in training as a part of declarative sentences. In contrast,
performance declines when models encounter wh-questions with modifiers in the indirect
object position (i.e., modification structure not observed as part of declarative sentences).
Similarly, for wh-questions with subject position modifiers, the performance is very low:
both T5 and vanilla Transformers achieve near-zero accuracy, and LLaMa achieves around
5%.

This observation mirrors the patterns discussed in §5.5.2, attributed to difficulties intro-
duced by unseen subject-verb dependencies across PPs or RCs. In contrast, the structure-
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aware model exhibits significantly better performance in wh-question with subject modifi-
cation.

A.7 SLOG: Results of variable-free LFs

Generalization cases Vanilla
Transformer T5 LLaMa

Deeper PP recursion 7.8±1.8 63.0±2.9 90.9±3.3

Deeper tail CP recursion 1.0±0.5 46.2±2.6 44.1±7.9

Deeper center-embedding 0.0±0.0 7.8±1.1 9.4±2

Shallower PP recursion 98.2±1.6 99.6±0.9 100.0±0.0

Shallower tail CP recursion 89.3±3.3 99.3±1.6 100.0±0.0

Shallower center-embedding 0.1±0.2 99.8±0.3 99.8±0.4

PP in subject NPs 0.2±0.3 73.2±9.0 93.4±4.8

PP in indirect object NPs 29.3±10.7 97.4±2.1 98.1±1.9

RC in subject NPs 0.1±0.1 60.8±6.3 73.9±13.5

RC in indirect object NPs 4.0±1.9 71.9±0.8 73.6±3.9

Indirect object-extracted RC 0.0±0.0 62.4±7.5 3.3±2.8

Indirect object wh-questions 34.1±31.1 93.4±4.8 83.8±11.3

Active subject wh-questions 99.0±0.5 99.8±0.3 96.2±2.6

Passive subject wh-questions 57.3±23.8 99.9±0.1 96.0±3.0

Direct object wh-questions 41.8±3.8 48.4±0.4 44.1±4.6

Wh-questions with modified NPs 18.1±2.3 68.0±1.9 69.4±6.8

Wh-questions long movement 7.4±3.7 45.6±4.6 35.7±6.5

Total 28.7±4.1 72.7±1.1 71.3±3

Table A.14: Mean accuracy (%) on SLOG using the variable-free logical form of Qiu et al.
(2022a).

Table A.14 reports the accuracy on SLOG using variable-free logical forms. The AM-
Parser is unable to handle the variable-free format and therefore is omitted. The hyperpa-
rameters for the three tested models are the same as the experiments described in Section 5.4.

The variable-free LF, as discussed in Section 5.3 and Wu et al. (2023), exhibits certain
limitations and ambiguities which render direct comparisons with variable-based LF results
inappropriate. Regardless, all three models achieve higher accuracy scores on the variable-
free LFs compared to the COGS LFs, with pretrained models experiencing a particularly
significant boost. This aligns with the observations of Qiu et al. 2022b.

Despite the change in LF, the overall trends and challenges remain consistent. The
vanilla Transformer struggles with the same generalization cases, failing to extrapolate
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to deeper recursion depths and struggling with cases involving unseen long-distance de-
pendencies. Pretrained models, while exhibiting better overall performance, continue to
struggle with more structurally complex generalization cases in their respective categories.
These include deeper center-embedding, indirect object-extracted RC and wh-questions
with long movement.

A.8 Discussion and limitations

While SLOGoffers a targeted andwell-controlled approach to assess structural generalization,
it presents some limitations.

First, SLOG is a synthetic corpus and covers only a fraction of the diverse structures
in English. Furthermore, previous research has demonstrated that the design of meaning
representation (MR) can have a nontrivial effect on model performance in semantic parsing
tasks (Guo et al., 2019; Herzig et al., 2021; Qiu et al., 2022b). For example, as noted by Wu
et al. (2023), the variable indexing scheme may introduce additional semantically irrelevant
challenges when assessing structural generalization. SLOG’s reformatted exact-match
evaluation metric partially addresses this concern by taking into consideration several
variations of MRs that are semantically equivalent including MRs that are equivalent up to
constant renaming. However, a more comprehensive study of the effect of artifacts from the
formalism is left to future work.

Second, there also exist challenges specific to the evaluation of pretrained models. That
is, distributional shift between training and generalization sets intended by SLOG, such
as withholding the constructions PPs modifying subject NPs from training, is difficult to
strictly enforce when pretraining is involved Kim et al. (2022). This potential violation of
distributional control makes the interpretation of the obtained results difficult; we cannot
disentangle whether generalization success in pretrained models derives from genuine
compositional capabilities or simply exposure during pretraining to the target constructions
meant to bewithheld from the evaluatedmodels. Still, corpus analyses such as Karlsson (2007)
suggest that deep center-embedding beyond three levels is very rare in naturally occurring
data, so it is possible that very deep embedded structures are withheld as intended even from
models exposed to large amounts of pretraining data. We hope the additional structural
generalization cases that SLOG offers can also help with future work investigating the
interaction between structures available in pretraining data and structural generalization.

185


	Abstract
	Acknowledgments
	List of figures
	List of tables
	List of abbreviations
	Introduction
	Research question and objectives
	Feasibility as explanatory model for human language processing
	Improving model interpretability

	Contributions
	Assessing model capacity to represent syntactic structures
	Assessing model capacity to generalize compositionally observed structures 
	Publications

	Outline

	I Background
	Structure of language and neural language models
	Structure in human language
	Neural language models
	Language modeling
	Transformer-based neural language model

	Analysis of linguistic structure in neural NLP models
	Challenge sets
	Probing classifiers
	Causal intervention analysis



	II Assessing model capacity to represent syntactic structures 
	Long-distance agreement in neural language models
	A contrastive study of NLM's syntactic abstraction based on long-distance agreement 
	Introduction
	Revisiting number agreement tasks via a heuristic-based evaluation protocol
	Syntactic phenomena
	Datasets construction
	Experimental setup
	Heuristic-based evaluation protocol
	Control experiments
	Conclusion

	Locating syntactic information in Transformer language model
	Distribution of syntactic agreement information across token positions
	Probing internal representations components
	Conclusion

	Right for the right reason: Exploring mechanisms of agreement computations
	The Causal Framework
	Causal experiments and results
	Conclusion

	Word order: the impact of positional encoding on NLM's syntactic abstraction capacity 
	Positional embeddings in Autoregressive Transformer LM
	Positional embeddings in masked Transformer LM 
	Conclusion

	Conclusion and discussion


	III Assessing model capacity to generalize compositionally observed structures 
	SLOG: A Structural Generalization Test for Semantic Parsing
	Introduction
	Overview of SLOG benchmark
	Novel recursion depth
	Novel combination of modified phrases and grammatical roles
	Novel gap positions
	Novel wh-questions

	Dataset generation
	Experimental setup
	Models
	Evaluation metric

	Results
	Unobserved depth and length both affect depth generalization
	Unobserved long-distance dependencies make generalization difficult
	Gap generalizations are challenging for all tested models

	Conclusion


	IV Conclusion
	Conclusions and perspectives
	Conclusions
	Future work

	Bibliography
	Résumé
	Appendix


