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ECOLE DOCTORALE

.° i Particules, hadrons, énergie et noyau:
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Titre: Approches continues de QCD et structure 3D des hadrons
Mots clés: Distribution de Partons Généralisées, Fonctions d'onde du céne de lumiére, Chromo-
dynamique quantique, Processus exclusifs, Equations de Dyson-Schwinger, Moment angulaire

orbital des quarks

Résumé: La plupart de la masse visible
de l'univers est contenue dans les nucléons.
Cependant, l'origine de cette masse reste mys-
térieuse, la portion issue du mécanisme de
Higgs dans les schémas de renormalisation
standards ne correspondant qu'a quelques
pourcents de la masse totale. La réponse est
a chercher dans la dynamique de l'interaction
forte, décrite par la théorie de la chromody-
namique quantique (QCD) en termes de quarks
et de gluons. Ainsi, l'interaction entre quarks
et gluons est responsable de I'émergence des
propriétés connues et mesurées des hadrons
comme leur masse ou leur spin. Il ex-
iste aujourd’hui une forte dynamique a la
fois théorique et expérimentale pour chercher
a déterminer la structure 3D des hadrons
en terme de quarks et gluons. D'un point

de vue théorique, les outils classiques de
théorie quantique des champs, a savoir le
développement perturbatif, ne permettent
pas d'étudier les propriétés émergentes des
hadrons. Ces derniéres sont intrinséquement
non-perturbatives. Le but de cette these est
de développer et d'utiliser un formalisme non-
perturbatif en partant des équations de Dyson-
Schwinger et de Bethe-Salpeter pour déter-
miner la structure 3D des hadrons, en partic-
ulier du nucléon. On utilisera différentes hy-
potheses dynamiques, afin d'obtenir une car-
tographie 3D de la charge, de la masse et des
effets de moment angulaire orbital. Une con-
frontation des résultats obtenus avec les don-
nées expérimentales sera menée de concert
avec les autres membres de LSN.

Title: Continuum QCD approaches to the 3D structure of the nucleon
Keywords: Generalized Parton Distributions, Lightfront Wave Functions, Quantum Chromody-
namics, Exclusive processes, Dyson-Schwinger equations, Quarks orbital angular momentum

Abstract: Most of the visible mass of the uni-
verse is contained in nucleons. However, the
origin of this mass remains mysterious, with
the portion from the Higgs mechanism in stan-
dard renormalization schemes corresponding
to only a few percent of the total mass. The an-
swer is to be found in the dynamics of strong
interaction, described by the theory of quan-
tum chromodynamics (QCD) in terms of quarks
and gluons. Thus, the interaction between
quarks and gluons is responsible for the emer-
gence of known and measured properties of
hadrons such as their masses or spins. There
is now a strong theoretical and experimen-
tal dynamic to determine the 3D structure of
hadrons in terms of quarks and gluons. From

a theoretical point of view, the classical tools of
quantum field theory, namely perturbative ex-
pansion, do not allow the study of the emerg-
ing properties of hadrons. The latter are inher-
ently non- disruptive. The aim of this thesis is
to develop and use a non-perturbative formal-
ism based on the Dyson-Schwinger and Bethe-
Salpeter equations to determine the 3D struc-
ture of hadrons, in particular the nucleon. Dif-
ferent dynamic assumptions will be used to ob-
tain a 3D mapping of the charge, mass and or-
bital angular momentum effects. A compari-
son of the results obtained with the experimen-
tal data will be carried out in collaboration with
the other LSN members.
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2 - Introduction

In this chapter’s first section, preliminary experimental clues for the non-
elementarity of the nucleon (a collective word for protons and neutrons) will
be discussed. In the second, Quantum Chromodynamics (QCD), the theory
of the corresponding interior particles, will be introduced. In the third and
fourth sections, experimental processes used to probe the interior nature of
the nucleon will be delineated, along with the properties of the objects used
to describe the corresponding nuclear structure being probed. In the final
section, descriptions of these objects via methods based on discrete models
of spacetime, will be explored as a primer for the second chapter on the use
of data produced via such methods.

2.1. Nonelementarity of the Nucleon

2.1.1. Experimental Clues for Nonelementarity

Fundamental particles, those which are not composed of smaller con-
stituents, exhibit point-like (spatial) charge distributions. In practice, this means
that regardless of the situation in which a measurement of such a particle’s
charge distribution occurs, the same point-like result should be observed.
However, experiments lead by R. Hofstadter at Hansen Experimental Physics
Laboratory (HEPL) in the 1950s measuring the charge distributions of various
nuclei allowed for the extrapolation of data to the conclusion that the spatial
distribution of the charge of the nucleon varies with respect to the momen-
tum transfer between the probe and the target of the experiment [1]. This
was the first landmark evidence for the non-elementarity of the nucleon.
Other evidence of nucleon non-elementarity came from measurement of the
proton magnetic moment. The magnetic moment of any elementary spin 3
particle is a function of natural constants and the mass of the particle ([2])
given by % with e the elementary charge, i the reduced Plank’s constant,
and m the mass of the nucleon in question. However, measurements of the
proton magnetic moment at Stanford Linear Accelerator Center (SLAC) in the
1950s confirmed the proton moment to deviate from the value expected by
assuming its elementarity by a factor of 2.79284734463(82) [3]. Given this ex-
perimental evidence for the non-elementarity of the nucleon, physicists be-
gan to postulate the properties of possible constituents.

2.1.2. PreQCD Explanations

In the 1960s, Gell-Mann proposed a constituent quark model of the nu-
cleon and various other baryons in order to explain a large spectrum of mass,
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spin, and charge values [4]. In order to do so, Gell-Mann introduced three
flavors of spin % fermions (quarks) called "up" (u), "down" (d) and "strange"
(s), with the u quark possessing an electric charge of % and the d and s
quarks an electric charge of —%. In this model, the quark spin vectors were
constrained to (anti)align so as to reproduce the spin of the baryons which
they constituted. However, the existence the particle consisting of three u
quarks, named the A™* due to its total +2 charge, was particularly prob-
lematic as it required three quarks of the same flavor to remain in the same
state, whereas the exclusion principle for fermions, which precludes such a
state, was already well understood at the time. As a consequence, [5]&[6]
introduced independently a new "color" gauge group, SU(3), in order to pro-
vide an additional quantum number to the model. This property, called "color
charge", was set to take on three distinct values. By postulating that each of
the three u quarks in the A™* takes on one of these three distinct values
of color charge, the exclusion principle could be satisfied. However, the new
gauge group introduced (SU(3)), being non-Abelian, would have far reaching
consequences on the scale dependence of the newly formed theory of the
strong force, QCD.

2.2.QCD

2.2.1. QCD and QED Lagrangians

The Lagrangian (density) of Quantum Electrodynamics (QED) is given by
(%8))

- 1.,
Laep = i7" DI —m)ijihj — L F* Fyu, (2.1)

where v# denotes the Dirac matrices, ¢ represents a bispinor field of spin-1/2
particles (e.g., electron-positron field), and ¢ = 1149 its Dirac adjoint. D, =
Oy +ieA, is the gauge covariant derivative, where e represents the coupling
constant, the electric charge of the bispinor field. A, denotes the covariant
four-potential of the electromagnetic field. The symbol m signifies the mass
of the electron or positron. F),, = d,A, — 0,4, denotes the electromagnetic
field tensor, the curvature of the gauge field.

The Lagrangian density of QCD describes the dynamics of quarks and gluons.
It is given by

I 1 vV a
Laco = i(iy"DIP — m)ijib; — ZG’; GS,. (2.2)

where ~+* still denotes the Dirac matrices. Here, 3 represents a bispinor field
of spin-1/2 quarks (i.e., up, down, strange), and ¢ = 4" denotes its Dirac
adjoint. The QCD gauge covariant derivative, D, = 0, + igsTaAZ, includes
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the strong coupling constant g, representing the strength of the strong inter-
action, and Aj; denotes the gluon field, which is the covariant four-potential
of the color force, associated with the SU(3) gauge symmetry of QCD. T, rep-
resents the generators of the SU(3) group. The symbol m denotes the quark
mass. The term G}, = 0, A7 — 0, Aj, + gsfabcAZAi represents the gluon field

tensor, where f,;. are the structure constants of the SU(3) group.

2.2.2. Scale Dependence

Given these two theories of distinct gauge groups, what conclusions may
be made about their behaviors at different energy scales? More specifically,
how might the energy of an interaction in each theory affect the strengths of
their respective couplings e/gs, or, as they are usually discussed in the context
of scale dependence, aqep = % and o, = %? The answer to this question is
encoded in the g function of each theory, which determines the dependence
on the energy scale y of « via a differential equation in the coupling and p of
the form

Ble;gs) = udfl/f) 2.3)
In practice, the § function of each theory may be approximated in perturba-
tion theory. As a consequence of the Abelianity of its U(1) gauge group, the
resulting behavior of «(u) is such that the coupling increases with p. In fact,
the one loop behavior of the QED S function is given by ([8])
__2a2

Bla) = 3 (2.4)

At some finite energy scale, including all orders of perturbation theory, the
QED coupling aqep function diverges to +oo, signifying infinite interaction
strength. This phenomenon is called "the presence of the QED Landau pole".
However, the behavior of the QCD $ function is quite different. In[9] and [10],
it is shown that non-Abelian QFTs may possess negative 3 functions. The QCD
B function is given by

2ns . a?

= (11 - =1)= 2.
Blas) = —(11 = =5) 5%, (2.5)
which results in the approximate behavior
. bBo
as(p) ~ (/A (2.6)

where f is a constant, A is the location of the QCD Landau pole, and n; is
the number of quark flavors, present in the corresponding perturbative QCD
(pQCD). As a result, the coupling decreases as the energy scale i increases
at high energy scales, and diverges at the Landau pole. Consequently, we
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say that quarks undergo "asymptotic freedom" at high energies (UV), as their
behavior asymptotically approaches that of free particles as 4 — oo. Con-
versely, at low energies (IR), the coupling is quite large and even diverges at
the Landau pole, resulting in what is called "confinement". Given this range of
behaviors, it has been long suggested that only color neutral states are phys-
ically isolable, a property which is named "color confinement". While color
confinement has not been proven, only color neutral states have been ob-
served. When QCD bound states are ripped into pieces via high energy inter-
actions, the resulting pieces end up color neutral as the (anti)quark-quark po-
tentials become so great during the separation process (at "large" distances)
that new particles are created and partnered with those pieces such that only
color neutral bound states remain.

2.3 . Deep Inelastic Scattering

2.3.1. The Diagram

In order to compare experimental results with theoretical predictions, it
is necessary to interface the two. What form, then, should theoretical pre-
dictions take in order to be compared to experiment? On the experimental
side, interactions are initiated, their results are measured, and the relative
probabilities of such results are tabulated. These probabilities may be eas-
ily used to calculate what are called "cross sections". Cross sections may be
expressed as the norm squared of sums of amplitudes of various interac-
tions. Amplitudes, in turn, may be expressed via various methods. One such
method is perturbation theory. After defining the Lagrangian density of the
theory in which one would like to perform computations, one may define the
path integral of the theory in order to express amplitudes of a given order in
perturbation theory. That is, one may express amplitudes in terms of func-
tional derivatives of the generating functional of the theory with respect to
the source fields J, as

(5;) ie(1,...n)] (2.7)

lfl
1

where APie{l....n} is the amplitude one would like to calculate, S is expressed
as a spacetime integral over the Lagrangian density of the theory in a given

configuration of the fields ¢;c1,.. n}, J (H?:l dqb,-) expresses an integral over

all possible field configurations, and the Jic(y .. ) are named the source fields.
In perturbation theory one expands the exponential as a formal power series
in the coupling appearing in the definition of the Lagrangian density. For a
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sufficiently small coupling, computation of the first few terms may often be
used to predict experimental results.

In QED, one may use the coupling e for such an expansion at scales suffi-
ciently low for the coupling to be low enough for such an expansion to be
useful. Admittedly, at some large energy scale the QED coupling will diverge,
making such an expansion useless. However, this scale is likely higher than
the Planck scale [171]. The QED Landau pole is therefore of no practical con-
cern given the energy scales involved in modern experimentation.

In QCD, on the other hand, the divergent behavior occurs at the relatively
low energy scale Aqcp, a perturbatively estimable quantity which determines
where pQCD is precisely useless. Therefore, purely pQCD will not yield useful
results at the energy scales at which the dynamics of QCD should be under-
stood if one would like to explore nucleon substructure. However, before
deciding how to tackle this problem, one should clearly understand the suc-
cesses and limitations of perturbation theory in QCD by determining when it
is appropriate to use, and when it breaks down.

Figure 2.1: A Feynman-like diagram of DIS is shown. On the top left, an incom-
ing lepton [~ emits a virtual photon v*(q) (Q? = —¢?), resulting in an outgoing
lepton [~. Further, v* is absorbed by the active quark of momentum k of the
incoming nucleon of momentum P. Said active quark is permanently sepa-
rated from the nucleon, whose remaining pieces form an arbitrary product
named X.

As a seminal example, let us consider Deeply Inelastic Scattering (DIS) of
a nucleon target employing an electron probe (See Fig. 2.1). In this process,
the so-called "active" quark of momentum fraction z of an incoming nucleon
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of momentum p interacts with an electron probe of momentum k& via the
exchange of a virtual photon of four momentum ¢ (Q? = —¢?). In the final
state one finds the electron probe of momentum k' = k& — ¢ as well as any
number of QCD bound states created as the active quark is ripped away from
the nucleon via the interaction. As is convention, we denote these final state
contents (apart from the final state electron) as X. We define the Bjorken
variable ([12])
2

. (2.8)

One way to view this is to define the very useful coordinate system called
lightcone coordinates, writing for a general four-vector v

0,3 0_ .3
+_vFv _ v —=w
v= (v = , 01 = (v1,02),0 = , 29
( \/§ 1 ( 1 2) \/ﬁ ) ( )
and to subsequently define two lightcone vectors
p = (1,0,0), (2.10)

n = (0,0.,1),

which point in the + and — directions respectively.
We can now directly write down the expression for the differential cross sec-
tion do as
31.0 .4
do= ke L™ (k, K YW (p, q), (2.12)
2|k 11673 (p + k)2Q*

where L is the so-called "Leptonic Tensor", which encodes perturbative infor-
mation regarding the leptonic part of the cross section and W' is the hadronic
contribution, and where the cross section is differential in 3 and not 4 dimen-
sions of the variable k£ because we have chosen to work at fixed lightcone
time, corresponding to having completely integrated away the minus compo-
nent of k [13].
One way of expressing the hadronic tensor is via a decomposition of a current
matrix element into

ey p-q p-q
W = (;T — guw)F1(z, QQ) + (Pp — %L?)(pu - QV?)F2($7 Q2)7 (2.13)

with the F} o expressible in terms of convolutions of perturbatively calculable
coefficient functions C7 and the quark in nucleon PDFs ¢/ (z, Q2, ), which is
related to the probability of "finding" a quark of flavor f in the unpolarized
nucleon carrying a given fraction of the nucleon’s momentum 0 < z < 1 at
a given value of Q? and at a given strong coupling «; which depends on the
renormalization scale u. That is,

2

1 2 M
Fi: d Cf f76277 S f ) 27 s +07> 2.14
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where M? << @Q? is the hadron mass. Here, the Cs do not depend on the
long distance, low energy behavior of the composite hadronic system. How-
ever, at higher orders in the strong coupling, the C's receive logarithmic cor-
rections in Q2, which is one of the milestone predictions of QCD [14].
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Figure 2.2: Shown is a summary of the F5 (defined in Eq. (2.34)) structure func-
tion measurements by the H1 [15], [16] and ZEUS [1 7] collaborations at HERA
and also by fixed target experiments BCDMS [18] and NMC [19] as shown in
[14].

In contrast with the C, however, the PDFs ¢ (see Eqg. (2.50)) do not depend
on the short distance, high energy behavior of the interaction between the
electron probe and the active quark. The idea that one can separate a cross
section into independent parts due to the difference in the scales on which
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they depend, only needing to convolute them over internal variables in order
to predict said cross section, is called factorization and has been proven to
all orders for DIS in [20] via careful diagrammatic power counting, as well as
via other methods. In practice, what this means is that the behavior of any
process which involves a given species-in-species PDF, up to a process depen-
dent kernel, is dictated by the universal behavior of said PDF. This concept of
universality has allowed for the community to focus on computing a set of
universal objects, whose determination in one context will allow for predic-
tions in experimental processes not yet measured. However, corresponding
to their value, universal objects are difficult to extract from experimental data
as the convolution involved in computing cross sections may contain a singu-
lar kernel, preventing direct inversion of the convolution to yield predictions
for the forms of such universal objects. This is the case with objects to be
introduced later in this document, but the kernel connecting the PDF to the
DIS cross section is not singular. Rather, it features a sum over quark flavors,
making flavor separation extremely difficult.

Motivated by DIS measurements at SLAC, the European Muon Collaboration
(EMQ) [21] performed measurements relating to nucleon structure, resulting
in the so-called spin crisis. While it was expected that the nucleon spin would
receive by far its largest contribution from QCD bound states in which the
three valence quark spins were (anti)aligned to create a total spin of +1 itwas
found that these states contributed only 20-25% of the nucleon spin. This dis-
covery forced the community to begin to consider unexpectedly substantial
contributions from the infinite number of QCD states, called generally Fock
states in QFT, which match the quantum numbers of the nucleon, including
not only the three nucleonic valence quarks but also contributions from po-
tentially infinitely many gluons and quark-antiquark pairs and combinations
thereof. And though not a "crisis" today, the proton spin crisis inspired in-
vestigation of states including quarks and gluons of various values of Orbital
Angular Momentum (OAM), which Generalized Parton Distributions (GPDs),
the subject of this chapter’'s next section, are used to formalize and investi-
gate.

2.4 . Generalized Parton Distributions

2.4.1. Deeply Virtual Compton Scattering & Deeply Virtual Meson
Production

An important experimental process in the study of distributions even more
complicated than the PDF is that of Deeply Virtual Compton Scattering (DVCS)
([22]), (see Fig. 2.4) in which an incoming leptonic probe interacts with a nu-
cleonic target. This contrasts DIS, in which the nucleonic target is in general
broken into arbitrary pieces, making DIS an inclusive process, DVCS features
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an unbroken nucleon in the final state, along with a second, final state pho-
ton and lepton. This second photon, being real, is detected, allowing for the
reconstruction of much of the kinematics of the associated partonic interac-
tion, letting one probe the partonic substructure of the nucleonic target. A
closely related experimental process is that of Deeply Virtual Meson Produc-
tion (DVMP) (See Fig. 2.5), in which a meson is produced in the final state. Of
these two cases, one aspect unique to DVCS is that of the Bethe Heitler inter-
ference term. In addition to the DVCS term, which describes the amplitude of
the process shown in Fig. 2.4, contributions to the total measured scattering
cross section from the Bethe-Heitler (BH) (see Fig. 2.3) process are present,
and actually dominate the statistics of modern DVCS measurements [23].
Further, much as in the case of DIS, factorization for DVCS and DVMP have
been proven for some time [24, 25, 26, 27]. Due to the exclusivity of DVCS in
which the nucleon is not broken, factorization in the DVCS case occurs at the
level of the DVCS amplitude rather than at the level of the cross section. What
kinds of contributions have been factorized, once again up to a convolution,
then?

Unlike in the inclusive DIS, the exclusive processes DVCS and DVMP involve
a more complicated soft part which is in general off-diagonal in momentum
space. That is, there is a non-zero momentum transfer between the probe
and the target. In this case, this new object entering the game is called a GPD,
whose properties will be delineated in the following subsection. The unpolar-
ized nucleon GPDs (H and E) to be discussed here are given in terms of the
matrix element

;/d;;eixp+z—<P/‘qf(_22_),Y+qf(f<72_)|P>
= 21.% <H Fx, &, )a(P Yy a(P) + Ef (z, &, t)u(P') w;f”u(P))zn 5)
where we have introduced the momentum difference
A=P - P (2.16)
and
t= A% (2.17)

Further, the average nucleon momentum is given by

P+ P

P= 2.18
5 (2.18)
and the average active quark momentum is correspondingly given by
- K4k
F=tlt (2.19)
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Using these definitions the average quark momentum fraction is defined as

Pl
T

(2.20)

8
11

iav]
+

and the lightcone "kick" imparted on this active parton is parametrized by

A+
¢=5v (2.21)

Here we have fixed the gauge as A%" = 0, referred to as lightcone gauge. For
more details, see the following section on definitions and properties related
to GPDs. Further, the quark field operators in the nucleon GPD matrix ele-
ment definition provided in Eqg. (2.15), to be specified in a later chapter, are
defined at zero lightcone time (21 = 0) and also occur on the lightcone with
no transverse component Z; =0, .

The two unpolarized nucleon GPDs H and E are relevant here in part because
they are "leading twist" (leading order in Q! = (QQ)*%). Twist, (1) discussed
in the appendix (see Sec. 8.4) in the context of experimental processes such
as DIS, DVCS, and DVMP refers to the suppression via (Q~')"~2 correspond-
ing to a given term in a tensorial parametrization of a general matrix element,
such as the one defined in the following section’s Eq. (2.24), of which the GPDs
H and F are the leading contributions [28].

Figure 2.3: A Feynman-like diagram of the Bethe-Heitler process is shown.
The lepton probe and the nucleonic target interact via a photon exchange,
and the second photon is emitted by the incoming (outgoing) (anti)lepton.
Thus, the CFF of the nucleon in question is not probed.
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Figure 2.4: A leading order (LO) pQCD Feynman-like diagram of DVCS is
shown. On the top left, an incoming lepton [~ emits a virtual photon v*(q)
(Q? = —¢?), resulting in an [~. v* is absorbed by the active quark of momen-
tum k of the incoming nucleon P, which then emits another photon ~(¢'),
resulting in an active quark of momentum &’ of an outgoing nucleon of mo-
mentum P’

(x+g)P

Figure 2.5: A leading order (LO) pQCD Feynman-like diagram of DVMP is
shown. On the top left, an incoming lepton [~ emits a virtual photon v*(q)
(Q? = —¢?), resulting in an outgoing lepton [~. ~v* is absorbed by the active
quark of momentum k of the incoming nucleon P, resulting in a gluon ex-
change and creation of an outgoing meson and a final state active quark of
momentum k£’ of an outgoing nucleon of momentum P’.

This is an example of one of the common themes of matrix element treat-
ment in quantum field theories (QFTs). We write down the matrix element

21



we would like to compute, and then write down a convenient tensorial ba-
sis using all of the structures available with the same Lorentz transformation,
Dirac, and CPT properties as the matrix element. On the lightcone there is an
additional final round of this game. One can further decompose the tenso-
rial structures used in one's matrix element parametrization into structures
of definite twist, as mentioned in the previous paragraph. Why make such a
twist decomposition? By studying the arguments of factorization proofs, one
realizes that factorization is often particularly valid in the limit that the hard
scale of the process (the virtuality Q? in this case) is much larger than the in-
volved masses and any other relevant energy scales. As a consequence, one
may take advantage of this behavior by writing one’s matrix element in terms
of structures with definite twist, such that one might prioritize the computa-
tion of term(s) with the lowest twist, knowing all the while that it is precisely
those terms which will contribute the most to one’s matrix element at high
virtuality.

In addition to the GPD contribution, the DVMP amplitude, involving the cre-
ation of a QCD bound state (meson) from a quark-antiquark pair, also in-
volves a soft part describing such a meson formation, referred to as a Distri-
bution Amplitude (DA), which we will not treat here.

How do GPDs enter the expression for the amplitude of DVCS in the relevant
experimental cross section? As previously mentioned, they enter via a convo-
lution in the longitudinal momentum fraction. That is, for a given contributing
GPD € {H(z,¢,t), E(x,&,t)} the corresponding convoluted function, referred
to as the corresponding Compton Form Factor (CFF), is given by [29]

1
CFF/ (6,t) = / dzGPD/ (z, &, t)2ze}((¢ — ie)® —a?) . (2.22)
-1

Here, this LO kernel is not dependent on the scale Q2. However, as in the case
of the PDF (see Eq. (2.14)), at higher orders in a; this kernel will receive scale
dependent corrections in the form of logarithms In(Q?). The CFFs, along with
their polarized counterparts derived from the polarized nucleon GPDs to be
discussed in Ch. 4, are then used directly in the expression for the cross sec-
tion. The interested reader can find more details in [24, 25].

In the case of DVMP, we do not enter all of the details, but merely state that
the nucleon GPD contributes in analogous way due to the analogous factor-
izations of the corresponding soft parts of the DVCS and DVMP amplitudes.
This takes advantage of the property that the GPD, like the PDF, is a univer-
sal object in the sense that once one has proven factorization for a given
process in which the GPD contributes, one has automatically shown that the
contributing GPD is precisely the same nucleonic structure function as that
which contributes to DVCS and DVMP as elaborated here. Like in the case of
PDFs, universality makes GPDs highly valuable objects for experimental pre-
diction.
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Now that we have understood the relevant context for GPD physics, let us
take the opportunity to discuss their properties as well as related quantities.

2.4.2 . GPD Properties and Related Objects
A general quark operator matrix element is here defined as ([30, 31, 32])

Wi, ky, €t 1) (2.23)

= NW/ddeZle“f = eikifpr, h’|qf(”)mrr(f5 %) f(g)yp; h),
where 2zt = 0 and Ny is a normalization constant, and y is an often omit-
ted renormalization scale on which this and all other distributions discussed
here depend implicitly, ¢ is a quark field operator with g it's conjugate, both
of which are defined in the third chapter (Ch. 4). f is the flavor index of
the quark, and color and Dirac indices have been suppressed. The ket (bra)
|P("); h("))(") represents the incoming (outgoing) nucleon state of momen-
tum P(’) and helicity k(') = +3, where T represents Hermitian conjugation,
where helicity is proportional to the overlap of a particle’s spin vector and it's
momentum vector. I' is a Dirac algebra element which will be used to project
onto various twist structures, and the Wilson line included to preserve gauge
invariance, 20, is to be defined in the less general case of the GPD below.
The W function defined in Eq. (2.23) is often referred to as the Fourier trans-
form with respect to A | of a Wigner distribution in analogy with the Wigner
distributions defined in quantum mechanics. Corresponding to the 5 dimen-
sional structure of this object, it is difficult to compute and work with.

In this thesis, we work instead with the three dimensional GPDs ([33]), which
can be viewed as Wigner distributions with the k, dependence integrated
away, or z; = 0, which are given in terms of the amplitudes ([34],[35])

Mo (2,6, 1) (2.24)
= 2\/@2/ e (P g f(—g)m( o 2)7 qf( )|P,h),
(2.25)

where I' = 4" has been chosen to project the matrix element onto its leading
twist (twist two) components and where 2J(— now a — direction Wilson
line, is defined as

2’2)

%
—ig [ dy= A*(0,y7,07)
%,g) — Pe 3 , (2.26)
AT = AT (2.27)

w(—

where P represents path ordering. As mentioned in the previous subsection,
it is convention to discuss such matrix elements in the language of the GPDs
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H and E, given the decomposition

]- d T + - /| —
3 [ e Pl St Gl 2.28)
1 p NIoTVA,
= 5p7 (H (@& 0P u(P) + B (2.6 hu(P) = u(P) ),

and for gluons

z/dzzw (PG (=2)G ) (5)IP)zv iz, 0

ioTHA,

_ (Hg(:c,é“,t)a(P’)7+u(P)+E9(x,£,t)u(P’) T u(P)).(2.29)

Inverting the relationship established in Egs. (2.15) & (2.24), one may also
express the GPDs in terms of the helicity dependent amplitudes HLF

29m|A
HY (v,6t) = H, + §2mi2 | - %f; (2.30)
(A1 +1iA9)y/1 — &2 4£m
2
Ef(x,6,t) = 2m|AL V1 ¢ .. (2.31)

(Al + ’LAQ) 45277112 —t

When |z| > [£] and x < 0, the left part of the Dokshitzer-Gribov- -Lipa-
tov-Altarelli-Parisi (DGLAP) ([36],[371,[38]) region, an antiquark is probed, and
when |z| > [{| and z > 0, the right part of the DGLAP region, a quark is probed
(see Fig. 2.6).

24



Figure 2.6: The DGLAP and ERBL ([39],[40]) regions are shown in the z, £ plane.

Further, when [¢| > |z|, the Efremov-Radyushkin-Brodsky-Lepage (ERBL)
region, a quark-antiquark pair is probed.
GPDs must obey various constraints. In particular, the imposition of time
reversal symmetry implies even parity of spin % GPDs with respect to £. In
fact, due to Lorentz invariance and time reversal symmetry one can show
that the GPD’s Mellin moments with respect to z must obey the polynomiality
property, which may be stated as ([41, 42])

1 (3]
/ dza"HY (z,€,t) = fQiAf

n,2i
-1 i=0

NIE

(t) + mod(n, 2)Cr ()€™, (2.32)

which, as mentioned, may be derived from Lorentz invariance as shown in
[22, 43, 26] and where [3] represents the floor function applied to § and
mod(n, 2) is the remainder of the division of n by 2.

This property can be ensured via the use of the so-called Double Distribu-
tions (DDs). It can be shown that, writing a GPD as the Radon transform of
non-pathological functions F and D as

HY (z,6,1) = /dQ(Ff(B,a,t) +§5(5)Df(a,t)), (2.33)
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where d2 = dfdad(z — B — af) and |a| + |B] < 1, where the function D of
the final term, called the "D-term", is odd with respect to a [44]. Taking the
specific example of the polynomiality property in the n = 0 case, we find the
definitions of the Dirac and Pauli Electromagnetic Form Factors (EFFs) which
depend only on the squared momentum transfer Mandelstam ¢:

1
F = [ bl

-1

1
1240 / dzE! (z,¢,1). (2.34)

-1

The nucleon EFFs are then expressed in terms of the quark ones as

. on BN PN .
. u
n =2 nl =1 nl =1 n)=2 (2.35)

Further, one non-relativistic definition of the EM charge radius is given in
terms of the FFs as

(o) = 00230 (ems (RO + POl 239
!

where the c; are the corresponding charges. Other definitions are certainly
possible, however. Averaging the n = 1 cases of the GPDs H and E and taking
the limit ¢ — 0 gives the total angular momentum contribution to the proton
spin of a quark flavor f as (or for gluons labeled by g)

g = ;/dxx(Hf(x,ﬁ,O)—i—Ef(x,f,O)) (2.37)
J9 = ;/dx(Hg(:c,g,O)+E9(x,£,0)),

which is known as Ji's sum rule [29].
This relation may also be reflected in terms of some elements of the decom-
position of the following matrix element of the energy momentum tensor
(EMT), given by [45, 46]:

PHAY PV~
(PITio)P) = (T
+A’”AV _ UMVAQ

M

i(PtovP + ProvP)A,

co(t) + Mn"”@a(t))u(P), (2.38)

A% (L) +

where the index a may be a quark flavor f or g representing the correspond-
ing gluon contributions, C and C are related to the stress and shear forces
of the EMT [47, 48, 49, 50] and the form factor C' is related to the previously
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established DD D-term. Some of the objects defined here are constrained by

angular momentum conservation ([29, 51, 52, 53])
}:14f )+ A9(0) =1 (2.39)
ZBf + B9(0) =0 (2.40)
Z CI(t) + C(t (2.41)

where Zf denotes summation over the considered quark flavors. They are
connected to GPDs as particular examples of the previously discussed Mellin
moments:

1
/ deaH! (,6,t) = A () + 46207 (1), (2.42)
-1

/1mmﬁm§w—Bﬁw—%%ﬂw (2.43)

The total angular momentum carried by each quark flavor J/ is given by ([29])
1
tﬂzimﬁm+BNm% (2.44)

which is a restatement of the Ji sum rule in the quark case, as promised.

If instead of integrating out the x dependence one Fourier transforms the ma-
trix elements given in Eq. (2.15), one recovers the so-called Impact Parameter
Distributions (IPDs), which are given by ([54])

z [ R T £

Tio(z,6,8) = 47T/0d(]D))JO(|ID>\b\)(H—1_§2E) (2.45)
= 1p2—ipt [>® . L\ D

e = g | a@) 5 (BIE) e, 240

where b, referred to as the impact parameter, is a spatial vector Fourier con-
jugate to the momentum

. .
p - P (2.47)
1-¢ 1+4¢
limD = A. (2.48)
£—0

These are the so-called "skewed IPDs". If the skewness is taken to zero, the
"normal" IPDs, which offer a 3D probabilistic interpretation in mixed position
(transverse) and momentum (longitudinal) space, are recovered [55].
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If instead of Fourier transforming with respect to A, one does so with re-
spect to x, one recovers the loffe-time distributions in terms of the Fourier
conjugate of z, v = Pz~ as ([56, 57])

GPD(v,&,t) = /dzemGPD(a:,g,t), (2.49)

where GPDe {H, E'}.
One other simplification of the GPD is to the PDF in the "forward limit", where
the momentum difference between the incoming and outgoing states is set
to 0. This is given by

H (2,0,0) = ¢f (2)0(x) — ¢ (~2)0(~2), (2.50)

for the quark flavor f. The PDF is employed in one of the "positivity" prop-
erties of the GPD. Positivity refers to a set of conditions GPDs must satisfy in
the DGLAP region, one of which is given in [34] as

x—£ 1

e @5)

2
Y (0.6,0) — g B .60 < \/qfq e

2.5. Introduction to the Lattice

As discussed earlier in this chapter, quantum field theoretic calculation of
cross sections requires writing down amplitudes which describe all possible
ways in which an interaction might occur. The part of the previous sentence
doing the heavy listing is the phrase "all possible". From the perspective of
a perturbation theorist, a functional definition of this phrase can be derived
by considering that one should, order by order in the coupling, expand the
path integral of the QFT with which they work, computing at each order more
precise contributions to the quantity they desire. Neglecting the fact that this
doesn't work to arbitrarily high precision even in theory as the perturbation
series involved eventually diverges, it is a nice, procedural understanding of
how to handle the path integral. However, when perturbation theory is not a
viable possibility, i.e., when it breaks down as in QCD, other methods may be
used.

One such method is that of the lattice simulation. Lattice field theory is
a method of computing quantities on a finite box of countably many dis-
crete spacetime points. In addition to being finite, and therefore computable,
modern lattice calculations in QED and QCD, theories which are defined in
Minkowski space, are defined on the lattice rather in Euclidean space, that is,
with a positive definite metric. Such Euclidean calculations of the results of
Minkowskian theories is achieved by extending theories defined in Minkowski
space to "imaginary time", thereby introducing an additional — sign into the
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metric and making it positive definite (up, possibly, to a phase). In general, in-
tegrals in imaginary time may be related to their real time counterparts using
contour integration, but this becomes a messy game as such a "Wick rota-
tion" requires intimate knowledge of the singular structure of the integrand
(moments of the exponential of the action) in the complex plane [58]. If it
is indeed so difficult to perform physically relevant computations in imagi-
nary time, what practical reason could exist to willingly endure such pain?
The exponential of the action, forming a complicated part of the integrand
involved in path integral computations of amplitudes in QFTs, is oscillatory in
the sense that the imaginary unit ¢ multiplies the action when time is taken to
be real. When time is taken imaginary, the integration measure used to com-
pute the action introduces an additional complex unit, therefore making the
action exponential real. As a result, correlations computed on an Euclidean
lattice are characterized by exponential decay instead of oscillatory behavior.
Therefore, with a sufficiently large lattice, one is able to estimate correlation
functions.

However, if one wants to make physical predictions one should ideally make
them using quantities which are independent of the size of a finite box and
the spacing between its points. What lattice practitioners, who do not work in
such ideal situations, do to remedy this situation is "extrapolate to the contin-
uum". This may be achieved by computing the same physical quantity using
different lattices of various sizes and lattice spacings, and using the set of cor-
responding results to extrapolate towards the continuum.

In GPD computations, the situation is even worse. GPDs and related objects
are defined on the lightcone. However, vectors pointing in light-like directions
(v?> = 0) collapse to points in Euclidean space unless one is willing to work
with complex coordinates, whose entry in the lattice game would trigger se-
vere complications. Therefore, in addition to being required to extrapolate all
results to the continuum, those lattice practitioners computing distributions
defined at lightcone distances are limited to computations of similar distri-
butions defined off of the lightcone, and matching them to the lightcone.
Worse, it is not necessarily the case that the prescription used to go to the
continuum commutes with that used to go to the lightcone [59]. As a result,
getting a handle on lightcone distributions on the lattice is no trivial task and
all of the associated limits must be carefully handled. In the following subsec-
tion of this chapter we will discuss two such formalisms and touch upon their
comparisons to experiment.

2.5.1. Pseudo and Quasi Formalisms

Pseudo-GPDs are derived through Fourier transforms of loffe-time-dependent
distributions onto space-like intervals and provide a generalized framework
for GPDs. By being defined as Fourier transforms of generalizations of loffe-
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time-dependent distributions they ensure a covariant definition of the aver-
age momentum fraction z, and their support is naturally constrained within
—1 <z <1 dueto the properties of the associated diagrams [60].
Quasi-GPDs are defined as Fourier transforms of matrix elements employing
longitudinal separations z = z3 on the lattice [61]. As a consequence, the
pseudo formalism employs a generalization of the lightcone matrix elements
used to define various distributions, while the quasi formalism exchanges
lightcone distances for space-like ones and, by taking an increasing limit of
the average nucleon momentum, approximate the lightcone counterparts of
quantities defined at light-like separations.

In Fig. 2.7, a comparison of Pseudo-PDF results to various experimental PDF
extractions is shown. In the valence region (0.2 < z < 0.6) there is some dis-
agreement between the set of experimental PDF extractions and the lattice
Pseudo-PDF shown in purple, however, this discrepancy is rather small and is
due to a lack of understanding of systematic effects.

Correspondingly, in Fig. 2.8, a lattice Quasi-PDF computation is compared to
a separate experimental PDF extraction. The relatively large disagreement
when compared to that mentioned in the pseudo case above is due to an
even greater lack of control of systematic uncertainties. Taking a further look
at purely quasi results, in Fig. 2.9 two quasi-GPDs as well as a corresponding
quasi-PDF are shown. Importantly, the presented GPDs are discontinuous on
the line z = £ which contributes to an undefined DVCS amplitude via unde-
fined CFFs as one can see from Eq. (2.22).

For this reason, the mock lattice data explained and employed in the follow-
ing chapter is based on Pseudo-PDF data, as we will see.
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Figure 2.7: Here is shown Fig. 18b from [62] comparing experimental Next to
Leading Order (NLO) PDF extractions from JLab and Fermilab data [63] (CJ15,
grey/black), a global analysis based NLO PDF determination [64] (MSTW, yel-
low), a Next to Next to Leading Order (NNLO) PDF from a joint PDF and FF
determination via Monte Carlo analysis of high-energy lepton-lepton, lepton-
hadron and hadron-hadron scattering data [65], (JAM20, green), a NNLO PDF
determined from a global analysis of Tevatron, Large Hadron Collider beauty
(LHCb), A Toroidal LHC Apparatus (ATLAS), and Compact Muon Solenoid (CMS)

data [66] (NNPDF, teal), a phenomenological PDF model [62] (fy, (2, %) %72,

red), a valence quark leading twist lattice Pseudo-PDF [62], (fq, .~ (2, ;P)!fm],

purple), and three corresponding subleading twist lattice Pseudo-PDF analy-
ses (O(a/z) 1, yellow), (O(2*Agcp).7, brown), (O(z*Agcp) s, blue), as well as the
corresponding 3¢ bands All shown curves are PDFs of quarks in the nucleon.
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Figure 2.8: A comparison of z(u — d) where u, d represent the u, d quark PDFs
as a function of x as extracted from (fit to) a range of experimental data (red),
a (fit of) quasi-PDF lattice data (yellow) and a joint fit of the two data sets
(blue), each including the corresponding 30 bands is shown in Fig. 1 of [67].
All shown curves are PDFs of quarks in the nucleon.
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Figure 2.9: Fig. 3 of [68]. The GPD H for ¢ = 0 (blue)and ¢ = |%| (green), along
with the unpolarized PDF (violet) for P, = 1.25 GeV, are shown [68], as well as
each of the corresponding 30 bands. The region between the vertical dashed
lines denotes the ERBL region (see Fig. 2.6). There is a clear discontinuity of
in H at z = £. All shown curves are given in the quark in the nucleon case.
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3 - Reweighting

In a continuous effort to discriminate amongst the infinitude of candidate
GPDs in an unbiased way while simultaneously ensuring that all such candi-
date functions satisfy all of the properties of GPDs discussed in the previous
chapter (see Subsec. 2.4.2), there have been efforts to model GPDs using
Artificial Neural Networks (ANNs). One such case conducted by some of my
colleagues is that of [69], in which Goloskokov-Kroll (GK) [70, 71, 72, 73] GPD
pseudodata was used to train a set of ANNs whose architecture ensures the
satisfaction by all produced candidate functions of most GPD properties. To
analyze the impact of further discrimination amongst the produced candidate
functions via the introduction of lattice data, mock lattice data which varies
systematically with respect to its compatibility with the set of candidate func-
tions was introduced. In this chapter’s first two sections, the configuration
of the ANNs used for generation of the GPD candidates is described. In the
third section, the input data and statistical methods used in the analysis are
discussed. In the fourth and fifth, the motivation of the use of the mock lattice
QCD data, its generation, and the method of using it to discriminate amongst
the candidate GPD replicas is delineated. In the subsequent two sections, the
results of such discrimination, called reweighting, are discussed. In the final
section, the chapter will be concluded.

3.1. Artificial Neural Networks

Neural networks are made up of layers of nodes. Feed forward neural
networks are those neural networks in which there exist connections only
between nodes of adjacent layers (Fig. 3.1). In feed forward ANNs, the output
of each node j in layer i > 1 (where i = 1 represents the input layer), is
denoted as n; j, is calculated as

Ni—1

i = @i Z Wik - Ni—1,k + bij) (3.1)
k=1

where w; ;. is the weight between the kth node in layer i — 1 and the jth
node in layer ¢, and b; ; is the bias parameter for node j in layer i. IV;_; is the
number of nodes in the previous layer (i —1), and a; ; is an activation function.
In the context of ANNs, there exist universal approximation theorems which
guarantee that given a sufficiently large network, regardless of its width or
depth, it can accurately approximate any continuous function defined on a
compact set [74].

The activation functions used are often step functions or sigmoid functions.
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The sigmoid is defined as
aij(p) = (L+e)7, (3.2)

which interpolates between 0 asp — —oc and 1 as p — oc.

One important aspect which differs greatly between the description of com-
mon ANNs and those employed in the study described here is that of the
form of the argument to the activation functions. Due to the constraint of the
reproduction of the forward limit (Eq. (2.50)), the arguments to the activation
functions feature nonlinearity in the input DD arguments « and . Further,
modeling directly in DD space allows automatic fulfillment of the polynomial-
ity property of GPDs (Eq. (2.33)).

Explicitly, the neurons of the network’s single hidden layer perform output

nok = (az2k(bok +waoiklB] + w22 ka/(1—18]))
—agk(ba g + w21 kBl + w22k))

+(az,k(bok — wa1 kB — w2 ra/(1—|B]))
—ag i (ba — wo,1.k|B] —w22k)) (3.3)

Figure 3.1: A diagram of a three layer neural network including the input and
output layers, as well as one hidden layer, is shown from [69]. The DD argu-
ments « and [ are received in the input layer and the output layer consists of
a single node.

where the by, are biases and the wy.2 1 are weights, all of which are free
parameters. The functional form «/(1 — |3|) has been chosen in order to
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ensure that the resulting DD vanish at the boundary |a| 4+ |3| = 1 in order to
avoid singular behavior apart from at the point z = £ = 0. The output layer,
made up of a sole neuron, has the output

> =wapanak (3.4)

k

which notably lacks bias parameters, and employs a purely linear activation
function. Three extractions of GPDs using pseudo-data generated with the
GK model were performed using such ANNs, a diagram of which is presented
in Fig. 3.1. In the first test case, training was done on a dataset where = # ¢,
aimed to reproduce GPD models like GK, and unlike GK this test's model in-
cluded a D-term contribution to be discussed in the following section (Sec.
3.2). Further, the positivity constraint (Eq. (2.51)) was not enforced as it would
have also required simultaneous fit of the GPD E.

In the second test case, only z = £ data were used, showcasing the capac-
ity for reconstruction of GPDs from processes like DVCS described at LO. The
positivity constraint was not enforced in this test, and no D-terms was in-
cluded. Extremely large uncertainties resulted except for on the ¢ = x line
(see Fig. 3.2). This highlighted the importance of the inclusion of shadow
distribution contributions, which are those GPDs whose contributions to the
DVCS amplitude are yielded null as they are eigenvectors of eigenvalue zero
of the DVCS kernel [75].
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Figure 3.2: From [69], with £ = 0.1. Top left panel: The ANN model is shown
to reproduce GK data. Top right panel: The lack of constraint from positivity
(2.51) (where the GPD E is taken to be zero) results in extremely large uncer-
tainty. Bottom panel: Enforcing positivity, while killing most of the replicas
generated, results in much less extreme values of uncertainty.

In the third test case, the same conditions as in the second one were em-
ployed, but the positivity inequality was enforced to show its impact on re-
ducing uncertainties, which was quite large.

What can be surmised from these three cases? In the first case, the artificial
neural network (ANN) model successfully replicates the GK data, demonstrat-
ing its capability. However, in the second case, the absence of constraint from
positivity, as represented by equation (2.51) with the GPD E assumed to be
zero, leads to a notable issue: an exceedingly high level of uncertainty. Con-
versely, in the third case, a potential remedy emerges: by enforcing positivity,
albeit at the expense of discarding the majority of generated replicas, the
extreme values of uncertainty are significantly reduced. This approach effec-
tively addresses the problem of excessively high uncertainty, offering a more
balanced outcome.

In this analysis, the minimization procedure, which involved constraining free
parameters, was conducted using a genetic algorithm [76]. The genetic al-
gorithm operated iteratively, evaluating multiple sets of free parameters (re-
ferred to as "candidates" in the literature) simultaneously against a fitness
function. Following evaluation, the best candidates—those characterized by
the highest values of the fitness function—were subjected to crossover in the
hope of producing even better candidates for subsequent iterations. Crossover
was followed by mutation, where a number of free parameters were ran-
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domly altered, significantly reducing the risk of converging to a local mini-
mum. Itis noted that since the fitness function was simultaneously evaluated
for all candidates in a given iteration of the genetic algorithm, multithreaded
computing could be employed to enhance minimization performance.

As observed in other analyses using effectively nonparametric models, regu-
larization had to be employed to avoid biased results caused by overfitting. If
regularization was not applied, the training data tended to be described ex-
tremely precisely by an (ANN), resulting in minimal variance. However, this
precision did not necessarily translate into equally accurate descriptions of
other data or predictive power. Generally, bias could manifest due to exces-
sive focus on describing the training data, leading to poor representation of
general trends. Many types of regularization methods exist, and the selec-
tion of a particular method typically depends on the specific problem under
consideration. In this analysis, the dropout method [77] was utilized. In this
method, a predefined fraction of neurons (in this case, 10%) was randomly
dropped in each iteration of the minimization algorithm (referred to here as
the genetic algorithm). This resulted in some neurons becoming inactive and
not processing signals, while the output of other neurons was correspond-
ingly scaled to compensate for the loss. Effectively, each iteration probed a
different architecture of the ANN, preventing fixation on details solely charac-
terizing the training sample.

3.2. GPD Modeling with ANNs

The current chapter of the thesis focuses only on results related to the
GPD H(xz,&,t) where t is set to zero in order to focus solely on the = — ¢
plane. The reader is reminded how such a GPD may be represented in terms
of the Radon transform of a DD as in Eq. (2.33). The ANN models described
here and in [69] model the DDs corresponding to the GPD H. Specifically, the
odd combination H4*)(z,£,0) = H(z,£,0) — Hi(—x,£,0), the sea quark
GPD, will be studied.

To achieve a satisfactory flexibility and reproduction of known limits, this DD
model is written as the sum of three terms as

(1 —2%)Fo(B,a) + (22 — €3)Fs(8,a) + £EFp(B, ), (3.5)

with F intended to reproduce the forward limit (Eq. (2.50)) and flexibly
model on the x = £ line, Fs intended to reproduce the uncertainty inher-
ent to deconvolution with a singular perturbative kernel with an explicit lack
of contribution both in the forward limit and at = = &, and Fp designed to
model the D-term, as discussed in Eqg. (2.33),

1

Fo(B,a) = f(ﬁ)hc(ﬁv@)m~ (3.6)
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Introduced in the study is the equation (3.6), where F (3, «) is defined, en-
suring the proper reduction to the forward limit and providing the necessary
flexibility to model the z = £ line, which holds particular relevance for the
current GPD phenomenology due to the access provided to this kinematic re-
gion via CFFs (see Subsec. 2.4.1). The prefactor (1 — 22) of Fo(B,a) in (3.5),
combined with 1/(1 — 32) in (3.6), facilitates the fulfillment of the positivity
constraint (2.51). Denoted by f(3), the forward limit represents the unpo-
larised PDF for the GPD H, while h¢ (S, «) is a profile function given in the
study by:

he(B,a) = l_wAlNNC(W’ @) (3.7)

/ daANNe(|4], @)

—1+|8]

The neural network ANN¢(|5], «), even with respect to both 5 and « variables
due to a special design of the activation function and the use of the absolute
value, vanishes at the edge of the support region |3| + |a| = 1. The evenness
in 5 maintains the resulting GPD as an odd function of z, relevant for the phe-
nomenology of DVCS, while the evenness in «a is mandatory for the time re-
versal property, ensuring invariance under ¢ — —¢ exchange. Normalization
by the integral over «, achievable analytically, enforces the proper forward
limit, while the rest of the model typically trains to reproduce the diagonal
x = £ at LO probed by amplitudes of processes like DVCS, TCS, and DVMP.
Additionally, due to the tight constraints on the term F¢ (3, «), necessitated
by the reproduction of both ¢ = 0 and x = ¢ lines, an additional term Fg(53, o)
is introduced. This term explicitly vanishes on these lines, not contributing to
the fit of Fi-(3, a) on the phenomenological inputs. Instead, (2% —£2)Fs(3, @)
aims to reproduce the deconvolution uncertainty of exclusive processes, cor-
responding to a LO shadow distribution as defined and studied in [/5]. Fs as
follows:

Fs(B,a) = f(B)hs(B, ), (3.8)

where:

A
hs(B,a)/Ng = 1_WNNS(|5|,O¢)
/ daANN (], )
—1+|8]
B ANNg (|58], c) ' 9

1-|8]
| daanNg(sla)
—148]

During training, efforts focused on maximizing the Ng normalization factor in
(3.9) within positivity limits to leverage maximal flexibility. By writing hs(8, «)
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as the difference of two profile functions characterized by ANNg(|3], «) and
ANNg (]3], ), one ensures Fs(3, o) adds no contribution to the forward limit,
while the f(5) factor helps enforce positivity.

Lastly, Fip(3, «) provides the additional flexibility necessary to model the D-
term, which, as mentioned previously, is a degree of freedom of GPDs asso-
ciated with the final terms in £&"! in (2.32), crucial in characterizing partonic
matter [/8, 48, 44, 47]. Itis given by:

Fp(B,a) =6(8)D(a), (3.10)
and
N 3
D(a) = (1—0a®)) diC?(e), (3.11)
=1
odd

where d; are coefficients of the expansion of the D-term into Gegenbauer
polynomials, and where N = 5 is an arbitrary truncation parameter.

3.3 . Experimental Data and Uncertainty Estimation

For the purpose of a proof of concept via the implementation of the net-
work architectured to be employed for GPD modeling, it was incumbent upon
the author’s colleagues to use reliable experimental data in whichever kine-
matic ranges they preferred in the x — £ plane. As a result, GK pseudodata
was used, as opposed to proper experimental data. The GK model will be
explained and explored in this section’s first subsection. In the second, a sta-
tistical technique for estimating the standard deviation when one is unsure
how to usefully define outliers of a data set, known as Median Absolute De-
viation (MAD), will be explained as it is the basis of the statistical analysis of
this impact study.

3.3.1. GK Pseudodata

The GK pseudo-experimental data used for the ANN GPD modeling (replica
generation) performed as a precursor to the impact study regarding lattice
data explained in this thesis was generated based on the following model.
The GK model, originally published as a phenomenological ansatz for the ap-
proximation of cross sections in the context of DVMP, has been widely suc-
cessful in terms of its capacity to reproduce experimentally measured DVMP
cross sections low z and high photon virtuality Q2 [70, 71, 72, 73], (see Fig.
2.5). Much like the processes of DIS and DVCS, the DVMP cross section can
be factorized into a hard process which is calculable order by order in pertur-
bation theory, and the GPD of the nucleon (in this case) [72, 71]. However,
there is a third amplitude involved in DVMP resulting most directly in me-
son production referred to as a DA. This DA must be convolved properly with
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the nucleon GPD and the corresponding perturbative kernel in order to accu-
rately represent the process shown in the diagram Fig. 2.5.

This thesis will not discuss further the DA and its properties. Rather, as dis-
cussed in the previous chapter in the contexts of DIS and DVCS, we merely
point out that a proof of factorization of DVMP exists [27]. Given the univer-
sality of GPDs discussed in the same section, the GPD ansatz employed in the
GK model has been applied to other processes such as DVCS [79].

This ansatz was created in DD space in order to preserve the polynomiality
property of the GPD [71, 72, 73]. Correspondingly, this pseudodata is limited
by GK'’s previously discussed kinematic modeling assumptions.

025
015

01

xH(x, §

0.05

Figure 3.3: The ANN modeling, fitted to GK pseudodata, is compared to said
pseudodata as a test of reproducibility at Q> = 4 GeV?. When constraining
the ANN model with 400 points assessed using the GK model [71, 72, 73] for
sea quarks in the = # £ scenario, without enforcing positivity, all three contri-
butions (Fe (8, «), Fs(8, ), Fp(B, «)) are incorporated in the presentation of
results. Fig. directly from [69].

Fig. 3.3 provides an example of how well the behavior of the used GK
pseudo-data is reproduced by the ANN models described in Secs. 3.1 & 3.2.

3.3.2. MAD

Call this median of a data set X indexed by i mx = Median(X;). Awell un-
derstood reason for employing the median, as opposed to the mean or other
values, as an estimator of a data set’s central value is its lack of sensitivity to
extreme values, which one may consider outliers.
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Figure 3.4: A simple example of the resistance of the median to outliers
whose effect on the corresponding mean is greatly exaggerated is shown.
The blue points have been sampled from the underlying standard normal
distribution shown in black. The introduced black point is present at a dis-
tance of 50 = 5 from the central value of the distribution. In purple is the
mean of the set of blue points only, and in red is their median. In gray, the
mean of the set of blue points and the black point is shown, while in brown is
their median. The vertical coordinates of all points are of no significance and
only serve for visual ease of comprehension.

As an example, consider Fig. 3.4. Sampled from the shown standard nor-
mal distribution whose mean and median are both 0 are 5 points shown in
blue. The vertical coordinates of all shown points are assigned only for ease
of viewing and carry no significance. The mean of this sample is shown in pur-
ple, and the corresponding median is shown in red. As one expects, there is
no major difference between these two estimators of central value given the
significant clustering of the data near the center of the distribution. Upon the
inclusion of the black point, five standard deviations from the central value of
the distribution, the resulting mean of the group of 6 points is shown in gray,
whereas their median is given in brown. While the median of these 6 points
is relatively resistant to the addition of the 6th point, which one might con-
sider an outlier, the means including and excluding this point are significantly
distinct. In this clear cut example, exclusion of the outlier shown in black for
any further analysis of the data set would be reasonable. However, it is not
always clear how to define outliers in general. How should one decide which
points should be excluded from further analysis of an arbitrary data set? In
lieu of answering this question directly, let's take a look at the following sce-
nario. Later, an explicit example regarding the trouble of defining outliers in
the case of the replica set will be provided.

Given a "small" set of data values, X; one knows first of all how to establish
the median value of such values. In general, one may ask why the mean and
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the median of X may widely vary with respect to one another based on the
underlying distribution governing the data set X. X may contain asymme-
tries, etc. which contribute to this difference. As such, one may decide to
estimate the central value of X using a modified definition of "mean", which
takes into account most but not all of the data set X, excluding points which
contribute the most to the deviation of the mean from the median m x. These
excluded points are named "outliers". What remains unclear during this ex-
planation of the origin of the idea of outliers, however, is how to precisely
determine which points should be considered as such. To illustrate this point,
one might imagine constructing various subsets of X, all of whose means re-
produce well the median value m x. Which such subset should one choose for
the rest of their analysis? To avoid the arbitrariness inherent to this question,
one may simply use the median mx directly as their estimation of the central
value of X. However, when it comes to estimating higher moments of the dis-
tribution underling X, such as the standard deviation, one is seemingly forced
to decide whether or not to include only a subset of X which reproduces a
more representative estimation of such moments at the cost of inclusion of
arbitrariness, or to instead deal with a nonarbitrary estimator which poorly
reproduces the underlying distribution of X. An assumption inherent in this
discussion is that of prior intuition regarding the shape of the underlying dis-
tribution governing the sample set X, which from here on we choose to be a
normal distribution, which notably has zero statistical skewness (unrelated to
the skewness ¢ of the GPDs discussed in this thesis). In light of this assump-
tion and the desire to avoid defining outliers, we turn to the MAD estimator
of standard deviation, which, as its name suggests, estimates the standard
deviation of a sample distribution as the median of the set of absolute devi-
ations of the data set from its central value. We will hereon use the median
mx of X as the corresponding central value estimator. The MAD estimation
of the standard deviation of X, is given by [80]

& ~ 1.4826 » Median (| X; — mx]|). (3.12)

The presented factor of 1.4826 is derived from the earlier stated assumption
that the underlying distribution of the data set is normal.

Understanding now that such a robust second moment estimator may be de-
fined in analogy with the median, one might be tempted to explore analogous
definitions for higher moments related to the statistical skewness, kurtosis,
etc.. However, given our assumption of a normal distribution for all data
sets presented in this work, this thesis will not employ any such definitions.
Rather, consider once more the simple example presented in Fig. 3.4. Visu-
alised in addition this time are the spreads of the data sets calculated using
the standard deviation and the MAD estimator of standard deviation, shown
in Fig. 3.5.
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Figure 3.5: A continuation of the example shown in Fig. 3.4 of the resistance
of the median to outliers whose effect on the corresponding mean is greatly
exaggerated is shown. In addition, each mean is outfitted with error bars de-
noting the corresponding standard deviation and each median with the cor-
responding MAD estimated standard deviation. The blue points have been
sampled from the underlying standard normal distribution shown in black.
The introduced black point is present at a distance of 50 = 5 from the central
value of the distribution. In purple is the mean of the set of blue points only,
and in red is their median. In gray, the mean of the set of blue points and
the black point is shown, while in brown is their median. The vertical coor-
dinates of all points are of no significance and only serve for visual ease of
comprehension.

What is most striking about this example is that the standard deviation
including all 6 points (shown in gray) is so much larger than that of the set
of only blue points (shown in purple). The corresponding spread change us-
ing the MAD estimator without the black point (shown in red) and with the
black point (shown in brown) is expectedly robust with respect to this inclu-
sion. However, observe also that while robust, the MAD estimator provides
an inflated assessment of the spread of the blue points with respect to the
traditional standard deviation. The difference is however a cheap price for
the avoidance of outlier definition.

3.4. Mock Lattice QCD Data Generation

Now understanding both the origin of the GPD replicas (candidate func-
tions) and an important statistical estimator to be employed later in this chap-
ter, it is necessary to take a look at the reasoning for which and method by
which mock lattice data has been generated for the forthcoming impact study
of its discriminating effect with respect to the ANN GPD replicas. These two
points will be respectively delineated in the following subsections.
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3.4.1. Precision and Correlation

The choice to use mock lattice data for this impact study is informed by
two key points. The first of these reasons is a lack of access to lattice data.
The second, which is an advantage rather than a disadvantage of using mock
data, is the ability to systematically control the agreement of the mock data
with the set of GPD replicas considered. This systematic control was achieved
via the use of parameters controlling the precision and the correlation of the
mock lattice data.
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Figure 3.6: An example of realistic lattice data from [62](Fig. 4) is shown.

Based on actual lattice studies such as [62] one draws the conclusion that
current state of the art lattice GPD extractions are not equally facilitated in
all kinematic ranges. Taking a look at Fig. 3.6 in this reference, lattice data is
plotted as a function of loffe time v = P - z, the Fourier conjugate of the mo-
mentum fraction z. Indeed, lattice GPD data is presented in general in loffe
time space in various references as such calculations occur on an Euclidean
spacetime lattice, and not in momentum space. However, it is worth noting
that the lattice data after which the mock lattice data generated in this study
was modeled was not matched to the lightcone, but, as is the case with all
lattice data, exists along some Euclidean direction, as was discussed in Sub-
sec. 2.5.1. Therefore a proper study comparing replica to mock lattice data
would not have taken place on the lightcone, but off the lightcone.HERE Eu-
clidean replicas are obtained via the convolution of the lightcone one by a
matching kernel. This kernel was neglected as in perturbative QCD it is unity
up to corrections involving the renormalization scale p at hand, which was
also neglected in the previously described ANN models. Therefore, all cal-
culations in this thesis comparing and combining ANN GPD replicas to mock
lattice data are performed in loffe time space. As the ANN fitted singlet GPD,
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H, of the nucleon is that which is treated here, its odd parity in the longitu-
dinal momentum fraction z allows the limitation of the corresponding loffe
time studies to the imaginary part of H. That s,

1

H(v, &t =0) = / dee™ HIH) (2, ¢t = 0), (3.13)
1

where the real part RH (v, £) vanishes by parity. We choose for the rest of this
chapter for H(x, ) and its Fourier transform H (v, £) to be distinguished only
by their arguments.

As can be seen in the previously referenced Fig. 4b from [62], at loffe time
values greater than v = 10 the signal quickly becomes dominated by noise
and compatible with 0. In order to systematically produce mock lattice data in
line with this characteristic of current state of the art lattice data, we chose to
write down a function of loffe time which saturates to 5% error at v = 0, and
100% at v = 10 using an exponential interpolation between these two points
to determine the behavior of the relative errors in the corresponding 0 <
v < 10 range. The most general exponential function given these endpoint
constraints is given by

s(bY — bmax) £ 1 — b
1 — prmex ’

g(v; b, s = 5%, Vmax = 10) = (3.14)

where the parameter b, the base of this exponential function, determines the
intermediate behavior of this interpolating function. As b — 1, the corre-
sponding behavior of g becomes linear, whereas as b — oo, g approaches a
shifted and scaled step function in the given range. That is

. 1—-0.05
bl_1>1{1+ g(v;b,s = 5%, Vmax = 10) = TV +0.05 (3.15)

blim g(v;b,s = 5%, vmax = 10) = 0.950(rv —10) +0.05,  (3.16)
—00
for 0 < v <10, where

Owv)= 0, v<o0 (3.17)
1, 0<v (3.18)

In practice, the precision associated with mock lattice data points generated
at "low" loffe times increases quickly when b is "low" (b — 1) and slowly when
b is "high". As such, we have chosen two values of b = 1.1,2 corresponding
to low and high precision mock lattice data generation respectively, which are
shown in Fig. 3.7.
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Figure 3.7: The function g(v;b,s = 5%, Vmax = 10) is shown for b = 1.1 in
green and forb=2inred.

Now that our systematic control over the precision of the mock lattice
data to be produced has been explained, it is important to determine what
the corresponding central values should be. In practice, one never expects re-
alistic lattice data to coincide exactly with the central values of replicas fitted
from experimental data. What is important, rather, is that our produced data
coincide more or less within their corresponding precisions with the central
values of the replica set as a function of loffe time. Therefore, we choose
to randomly distribute the set of mock lattice data points around the replica
band's central value using the relative precision function g.

The used procedure is then as follows. Firstly, a set of loffe time values v;
are chosen corresponding roughly to the density of points provided in the
Fig. 4b [62]. At each such value y;, the central value of the replica band ;
is computed. Then, a single point is sampled from a multidimensional nor-
mal distribution whose central values are given by the f; and whose corre-
sponding standard deviations are given by g(v;;b,u = 10,v = 0.05)p;. The
coordinates of this point, called it®, then serve as the central values of the
generated mock lattice data, and the corresponding errors are given once
more by 0% = g(v;b,u = 10,v = 0.05)i;.

This method therefore generates mock lattice data which is in general com-
patible with the (central value of the) band of replicas within the precision
generated by the function g. However, it is important to note that thus far, the
data generation treats all mock lattice data points as uncorrelated. Decorrela-
tion of realistic lattice data, while probable when regarding data from distinct
lattice collaborations, is unlikely when referring to that of any single collabo-
ration. To take this into account in our impact study, therefore, we have cho-
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sen to generate mock lattice data in three distinct loffe time regions, wherein
intracollaboration correlationissetto 0 < ¢ < 1, and intercollaboration corre-
lation is set to zero. Effectively, this means that the correlation matrix of the
multidimensional Gaussian distribution from which the mock lattice data is
sampled takes on a block diagonal form, where each block of the correlation
matrix C, Cj, is of the form

Cjiiir = (C +(1— 6)5i,¢f)aicri/, (3.19)

where j is an index labeling the various blocks and the 4,4 are indices cor-
responding to the loffe time values v; included in said jth block. In the jth
block, the correlation matrix C,; + is constructed such that the diagonal terms
are given by the corresponding variances assigned to the mock lattice data
points. The off-diagonal terms are proportional to the correlation parameter
¢, which is multiplied by the product of the corresponding pair of standard
deviations.

Note that a correlation value of ¢ = 1 is not permitted as it corresponds to a
singular correlation matrix (see Eq. (3.20)). This singularity is a problem both
for the calculation of the y? values of each of the replica points as discussed
in the following section of this chapter, and due to the nature of the expres-
sion for the multidimensional correlated normal distribution employed in the
data generation procedure defined above. Explicitly, this distribution is given
in terms of the full N x N correlation matrix C' as

N
2

(det(C))Fe~ d Srcupan 0-H I Dl

Latt.)/J
)

(2m)” (3.20)

where the independent variables are given by y [81].

In reality, the correlation matrices of lattice data are more complicated than
that used to generate our mock lattice data here. Such correlation matrices
are not constant with respect to the loffe time distances between different
pairs of points, nor are they constant with respect to the GPD skewness &. As
such, one way to perform studies more refined than that presented explicit
here would be to include such complicated correlations. Further, it would be
excellent for lattice practitioners to publish their correlation matrices along
with their lattice results, as without such matrices inclusion of lattice data in
any kind of global fit or analysis yields conclusions with very limited scope.
Looking forward to the remainder of this chapter, it is important to specify
the three "blocks" in which mock lattice data will be produced. They are given

by
e 02< ;<2 Av=0.2
0 22<y; <4, Av=0.2

o 4.4<y; <6, Av =0.4,
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where Av is the distance along the loffe time axis between points. Given
that the use of three blocks is intended to reproduce the effects of the use
of lattice data of three collaborations, it is worth noting that in practice the
kinematic ranges of actual lattice data would overlap. These non-overlapping
blocks have been chosen as a mere matter of simplicity as the analysis de-
scribed here does not require the mock lattice data subsets be kinematically
nonoverlapping. These blocks have been purposely chosen at relatively small
loffe time values in order to reproduce most accurately the kinds of v ranges
for which GPD lattice results are most often presented in the current state of
the art, and are therefore the most informative ranges to use for an impact
study such as this [82]. Further, the relative sparsity of the chosen values in
the block of highest loffe time values has been chosen to reflect such sparsity
in previous lattice results.

Fig. 3.8 illustrates a mock lattice dataset (depicted as orange points) overlaid
with the replicas generated by our GPD model. The four panels showcase
the impact of different combinations of the correlation coefficient ¢ and the
noise parameter b. Higher values of ¢ amplify the influence of one central
value on the selection of others within a specific block in v, while increas-
ing the parameter b leads to a dataset more closely concentrated around the
maximum likelihood of the GPD model.

3.5. Bayesian Reweighting

With a method for generating systematically controlled mock lattice data
in terms of both

e its precision and adherence to the set of GPD replicas and

e the correlation between all such generated data in hand. It is now pos-
sible to influence the associated uncertainty of the replica band using
such mock lattice data in order to assess the potential discriminating
ability of lattice data.

In the study discussed here, we chose to use a Bayesian reweighting proce-
dure employing the mock lattice data as a prior, with the intention of inves-
tigating the resulting uncertainty of the set of GPD replicas without needing
to perform costly refits. It is important to note that so far the discussion has
largely ignored the skewness of the GPD despite its inclusion in the replica
generation process, in order to focus on analysis in z and v. In the final sec-
tions of this chapter, discussions of skewness will play an important role as a
lack of positivity constraint on the GPD in the ERBL region has resulted in less
coherence of the replica band in the ERBL region. In this section, however, it
is first necessary to outline the Bayesian reweighting procedure employed in
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Figure 3.8: Shown are the ensemble of GPD replicas spanning loffe times
fromv =0tov =6 até = 0.1 (indicated in green), along with their median (in
blue) and the 1o band (in red), which corresponds to b = 1.1 (top) and b = 2
(bottom). Additionally, the mock lattice data set generated accordingly with
¢ = 0 (left) and ¢ = 0.5 (right) is depicted in orange.

our analysis in order to allow such skewness related discussions to take place.
In the rest of this section the precise procedure used will be delineated.

3.5.1. Procedure

The goal of this section is to arrive at an understanding of how the mock
lattice data, whose generation procedure was outlined in the previous sec-
tion, has been combined with the GPD replica set at a given value of the
skewness . We assume here that a set of mock lattice data points with central
values pf2" and errors o2 have been produced using the given procedure
at a given base of precision value b € {1.1,2} and using a particular value
of ¢ € {0,0.5}. We would eventually like to assign a relative priority value to
each of the replicas with respect to the generated corresponding mock lattice
data, so we define first a value of x7, where k indexes R, the set of N replicas.
We therefore write

Eo= 2 Y R (CT) (= Ru)). (321)

blocks 1,1’
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We then choose to prescribe each replica Ry a corresponding weight from
the normalized set of corresponding weights given by

: (3.22)

whose functional form avoids 1. that a weight of 1 be assigned to a replica
which corresponds with the central value of the replica set and a weight of 0
be assigned to all of the others, which ensures that the standard distribution
of the replica set be non-zero, while 2. assigning smaller weights to replicas
in less agreement with the mock lattice data [283].

One can further characterize the effective fraction of replicas R that align with
the new dataset by defining:

exp(— > wi In(wy))

T N s

(3.23)

where the exponentiated value represents the Shannon entropy of the weight
set [84]. Being a function purely of the set of weights, 7 is equal in momen-
tum and position spaces, and therefore the most global metric used here of
discrimination among the replica set.

Each weight w;, has now been properly defined to assess the relative agree-
ment of the corresponding replica Ry with mock lattice data generated from
the entire set of replicas. How might this prioritization now be employed to
provide uncertainty reduction on the band of replicas? In order to accom-
plish this task, we choose to define a set of (re)weighted statistics. That is,
we define the reweighted median of the replica set to be our representation
of a reweighted central value. This reweighted median is defined as follows.
At each loffe time value v’ the replica values Ry (') are (re)ordered such that
Ry (V') < Ryry1(V'). We say that fi,(v') = Ry(V') is the reweighted median of
the set of Nyep replica values Ry, (1) given the weight set wy once we find the
value of I’ such that

'—1 1 Nrep 1
> wp < 5 & > ww < 5 (3.24)
1<k’ UV+1<k’/

Note that in all expressions concerning the definition of this reweighted me-
dian, the fact that it is defined in loffe time is not explicitly used other than
to specify the set of replica values whose reweighted central value we wish to
calculate. We can therefore perform an identical procedure in = space, and
this is indeed how we establish the replica bundle’s reweighted median as a
function of = as well. This is possible as the set of weights is robust with re-
spect to Fourier transformation due to its linearity, and in this sense we are
able to assess uncertainty reduction resulting from the outlined reweighting
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procedure in both spaces.

The corresponding reweighted standard deviation of the replica set is de-
fined in both spaces in an analogous sense as follows. At a given value of
v the replica absolute deviations from the reweighted median fi,(?), |y (7) —
Ry, ()| are (re)ordered such that |, () — R, (9)] < [fw(?) — R;,  (7)]. We say
that 6, = 1.4826 * |, (P) — R;(7)| is the reweighted MAD estimator of the
set of Nep replica absolute deviations from the reweighted median i, (),
| i (0) — Ry, ()] once we find the value of [ such that

-1 1 Nrep 1
Doy & Y wp<g (3.25)
1<k I+1<k

where once again the robustness of the weights with respect to Fourier trans-
formation may be exploited to define an analogous quantity in momentum
space, and we assume a normal distribution of the replica set around the
reweighted central value. This imposition of normal statistics is only an as-
sumption in the sense that we assume the Bayesian reweighting procedure
ought to result in such a distribution. In addition, note that in the case v/ = 7,
' #£1and Ry # R; in general as the reordering of the replicas & in terms of
their values at ¢/ is in general not equivalent to the reordering of the replicas’
absolute deviations from the median k at o = v/

We then go on to define an analogous function also defined in both spaces
which is intended to assess the uncertainty reduction via the Bayesian proce-
dure at the local level as

) (3.26)

with y € {v,z}. We also define the average value of ¥ in each space as a
global measure of uncertainty retainment after reweighting, where in = space
it is defined on a logarithmic scale in mere correspondence with the our loga-
rithmic plotting convention in momentum space to be viewed in the remain-
ing sections of this chapter as

1 Vmax
[, a2
Vmax = Vmin Juy;,
1 Tmax d.:f
I e, o (3.28)
Inz 1n<l’max/$min) /acmin .’L' ( )

These final three objects are referred to here as "retainments of uncertainty"
as they are precisely multiplicative quantifications of the relative amount of
uncertainty of the reweighted replica band with respect to that of the un-
weighted replica bands. As they approach 0, one may interpret that the
reweighting procedure has erased all of the corresponding uncertainty, and
as they grow to 1 one may conclude that the effect of the inclusion of mock
lattice data has had a minimal effect on their uncertainty band.
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3.5.2. Three o Outlier Rejection

As promised, an example of why defining outliers is a messy business will
be given in this subsection. Consider Fig. 3.9. The set of GPD "Cleaned" (de-
fined shortly) replicas is shown in a particular kinematic region. In addition,
the central value, 10, and 30 bands of the replica set are shown under the
name "Cleaned", which refers to the rejection of replicas. The process of re-
jection was performed as follows. Firstly, at each considered value of loffe
time (not shown), the central value and standard deviation were computed in
the traditional way. Secondly, if any replicas were outside of the 30 band at
any point in loffe time, they were identified as potential outliers. Thirdly, the
replica with the highest cumulative quadrature-summed standard deviation
of those potential outliers was discarded. After each discarding, this process
was repeated until there were no more potential outliers defined in some it-
eration of the second step. The remaining replicas are called the "Cleaned"
replica set. Another set of bands, entitled "Reweighted", were defined and
computed using a Bayesian reweighting process to be explained later in Sec.
3.5. Importantly, the low x behavior of the cleaned replica o, 30 bands is con-
cerning, as while the set of replicas mostly tightens towards the z axis as x
decreases, the spread of these bands increases. In particular, this is an effect
of the equal prioritization of all replicas in loffe time space, which prioritizes
replicas which in x space may or may not lend themselves to properly de-
scribing the behavior of the majority of the replica set due to the presence of
outliers. Given this situation, it was quickly decided that there was a need to
use estimations of spread robust with respect to outlier inclusion or exclusion
so that defining outlier replicas at all would not be necessary.

2*GPD(x) at £=0.5, t=-0.1 GeV2, p2=2 GeV2, Correlation=0.95, b=2, N.;; =24.33

0.4 ! Cleaned Reps C.

y Cleaned Reps 30

0.3 \ Cleaned Reps 1o

l‘ == Cleaned Reps Central Value
Reweighted Reps 30
Reweighted Reps 1o

0.2
0.1 Reweighted Reps Central Value

0.0 1

z*GPD(x)

—0.1
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Figure 3.9: An example of the use of the local 3o rule for outlier determination
is shown. "Cleaned" replicas, central values, and ¢, u + 30 bands are shown.
"Reweighted" central values and o, p &+ 30 bands are shown as well.
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3.6 . Monokinematic Reweighting

In this section we will take a look at the results of the reweighting proce-
dure on the statistics of the replica band at two different values of the skew-
ness. One such value, £ = 0.1, lying close to the forward limit of skewness
& =0, features large amounts of DGLAP support, and therefore a high result-
ing replica set coherence. The other, £ = 0.5, a midrange skewness featuring
therefore much less DGLAP support and thus via positivity Fig. 3.10, displays
a correspondingly small degree of coherence. A comparison of the replica
sets at these two skewness values as well as to that of ¢ = 0.9, an even more
extreme case, is provided in Fig. 3.10.
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Figure 3.10: The set of GPD replicas SH (v, &,t = 0) between loffe timesv = 0
and v = 20 at £ = 0.1 (top), & = 0.5 (middle), £ = 0.9 (bottom) and their
corresponding one standard deviation bands. Due to waning support x > £
as ¢ increases, the replicas become less constrained by positivity, oscillate
more heavily, and decohere. Where (z) is the imaginary part of a complex
number z.

One should keep in mind that these results are intended to direct future
lattice studies by exploring the possible discriminability of such replica sets
using realistic lattice data of various qualities and internal correlations whose
true characteristics are bound to be more complicated than the mock data
shown here, and that in the following section we will also introduce varia-
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Figure 3.11: Upper plots: The collection of GPD replicas at £ = 0.1, repre-
sented in both momentum space (green, left) and loffe times space (green,
right), displaying their central value (blue-dashed), one standard deviation
band (red-dashed), as well as the reweighted central value (pink-solid) and
reweighted one standard deviation band (purple-solid). The mock lattice data
was produced using b = 2 (high precision) and ¢ = 0 (no correlation) at
¢ = 0.1 (orange-dotted, right). Lower plots: Depicting the ratio of reweighted
to initial uncertainty (purple-solid), the average uncertainty retention in both
Z (e = 0.78) and v (r, = 0.16) (green-dashed), and the interval within which
the lattice data was generated, from v = 0 to v = 6 (orange-shade, right).
The corresponding effective fraction of replicas retained after reweighting is
denoted by 7 = 0.3.

tions of the quantity of mock lattice data across multiple values of the skew-
ness. Therefore, let us draw the attention of the reader in particular to the
uncertainty reductions resulting both in the regions in which the mock lattice
data is introduced and also those present over the entire loffe time regions
displayed in the figures. The distinction between the effects of reweighting
using data placed realistically in the low lying loffe time region on the statis-
tics in the same region and those in the higher v region, keeping in mind that
the higher loffe time region corresponds to the highly oscillatory behavior of
the GPD replicas in momentum space, should be kept in mind during the dis-
cussion and will be invoked throughout. The tools of Bayesian reweighting
are now applied using a GPD model fitted on phenomenological inputs as a
prior, and mock data as the new information. In monokinematic reweighting,
mock data is added at a single value of ¢, and its impact on the GPD extraction
at the same value is measured. It's noted that as b increases, the generated
mock lattice data gets closer to the most likely output of the prior model on
average. With increasing ¢, the mock lattice data consistently remains above
or below the central value of the prior model.

Results for b = 2 (high precision), ¢ = 0 (uncorrelated data), and ¢ = 0.1
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Figure 3.12: Same caption as Fig. 3.11 up to the fact that the GPD is shown at
& = 0.5, with mock data added at £ = 0.5 and similarly b = 2 (high precision)
and ¢ = 0 (no correlation). The average uncertainty retainments are ry,, =
0.54and r, = 0.25, 7 = 0.11.

are shown in Fig. 3.11, while Fig. 3.12 presents the results for ¢ = 0.5 under
the same parameters. The effect of reweighting in loffe time is significant,
leading to a large reduction in uncertainty, which extends beyond the range
of the data. However, fluctuations are more pronounced at £ = 0.5 due to
lesser coherence of the replica bundle. The average uncertainty retainment
in loffe timeisr, =0.16at¢( =0.1andr, = 0.25at £ = 0.5.

On the other hand, the reduction of uncertainty in momentum space is less
remarkable, with a larger reduction observed at £ = 0.5 compared to £ = 0.1.
Retainment of uncertainty remains high at ¢ = 0.1, while it decreases at
& = 0.5. This discrepancy illustrates the inversion problem discussed ear-
lier. The origin of the large coherence at £ = 0.1 in momentum space is the
tight positivity constraint on the GPD, particularly for > 0.1. This constraint
limits the model's flexibility in this region, making reweighting less effective in
momentum space.

To compare the effect of reweighting at various ¢ values, Fig. 3.16 shows
the effective fraction of surviving replicas 7 and the uncertainty retainment
in loffe time and momentum space as functions of £&. The reduction of un-
certainty is consistently better in loffe time compared to momentum space
due to the imputation problem. However, using better and uncorrelated data
(b =2, c = 0) results in a more significant reduction of uncertainty in loffe time
than in other configurations.

Please note that in general it is possible that at some point X(v;z) > 1. This
seems to suggest that on the local level the introduction of mock lattice data
actually increases the uncertainty associated with the replica set. How might
adding information increase uncertainty? In cases in which such a breach of
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1 occurs, either itis not in the kinematic region in which mock lattice data has
been used to assign weights to the replicas (see Sec. 3.7), or it takes place
in momentum space where no mock lattice data was introduced (Fig. 3.11).
A replica set coherent at a given skewness in a given loffe time range is not
guaranteed to be as coherent at all values of skewness and loffe time ranges.
Therefore, the prioritization of the replicas via the introduction of mock lat-
tice data in one kinematic region may prioritize most highly some replicas
which deviate significantly from the replica band in another kinematic region,
resulting in an apparent loss of precision in the second region. However, this
is no reason to abandon reweighting as a method for data incorporation. As
a proof of this claim, consider that the computed values of 7,5 ., the global
metrics of uncertainty retainment, never surpass 1. This suggests that even
when presented with local gains of uncertainty, global uncertainty is reduced
via the introduction of additional information i.e. lattice data. This effect may
also be due to the lack of statistics in terms of replica numbers. With such
a small number of replicas, it may be too easy to prioritize too few of them,
allowing small decoherent fluctuations outside of the region of data introduc-
tion.

3.7 . Multikinematic Reweighting
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Figure 3.13: Same caption as Fig. 3.11 up to the fact that the GPD is shown at
& = 0.5, with mock data added at £ = 0.1, b = 1.1 (low precision) and ¢ = 0.5
(correlated data). The average uncertainty retainments are r,, = 1.15 and
r, = 0.93, 7 = 0.83.

Now that we have seen the effects of reweighting at a single skewness at
both low and midrange skewness, it is time to move on to an exploration of
the compensatory effect of the inclusion of additional mock lattice data from
various values of skewness with respect to the waning discriminability at mid
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Figure 3.14: Same caption as Fig. 3.11 up to the fact that the GPD is shown
at & = 0.5, with mock data added at £ = {0.1,0.2,0.3}, b = 1.1 (low precision)
and ¢ = 0.5 (correlated data). The average uncertainty retainments are r,, =
1.0andr, = 0.82, 7 = 0.77.

range skewness. The goal of this section is to compare, therefore, the uncer-
tainty retainments due to various amounts of mock lattice data at low to mid
skewness levels ¢ € {0.1}, £ € {0.1,0.2,0.3}, £ € {0.1,0.2,0.3,0.4,0.5} to that
seen in the previous section at purely midrange skewness. We will find that
large amounts of relatively imprecise, highly correlated mock lattice data re-
produce the uncertainty reductions corresponding to low amounts of precise,
correlated data at purely midrange skewness. This will form a basis for the
study’s conclusionary recommendations to lattice QCD practitioners regard-
ing the most useful yield based on kinematic choices, and will fuel a conclu-
sionary discussion regarding optimization on the replica generation side. The
impact of reweighting on other £ values is explored. Fig. 3.13 shows the result
of reweighting where data is added at £ = 0.1 but observed at £ = 0.5, with
b = 1.1 (low precision) and ¢ = 0.5 (correlated data). With large uncertainties,
reweighting does not significantly reduce uncertainty in loffe time at £ = 0.5
(r, = 0.93) and even increases uncertainty in momentum space (rj,, = 1.15)
by smearing the distribution. Adding data for £ € {0.1,0.2,0.3} while keeping
b= 1.1 and ¢ = 0.5 decreases uncertainty retainment at { = 0.5to r, = 0.82
and r, = 1.0 (Fig. 3.14). Further adding data for ¢ € {0.1,0.2,0.3,0.4,0.5}
tightens uncertainty retainment at ¢ = 0.5 to r, = 0.65 and r, = 0.75 (Fig.
3.15). However, this is not better than direct b = 2, ¢ = 0.5 reweighting at
& = 0.5, resulting in r, = 0.58 and r,, = 0.64. This shows that adding data
at one ¢ value has minimal effect on other higher ¢ values within the GPD
model.

57



0.5 1 0.6 4 Replicas

-

0.44 == pEo
I

—_— i, 5,

“Lml .o Latt

2xH(z)
\
N

Im H(v)

10-2 10-! 100 5 10 15 20 Data Region

Figure 3.15: Same caption as figures 3.11 up to the fact that the GPD is shown
at & = 0.5, with mock data added at ¢ = {0.1,0.2,0.3,0.4,0.5}, b = 1.1 (low
precision) and ¢ = 0.5 (correlated data). The average uncertainty retainments
are r,, = 0.75and r, = 0.65, 7 = 0.57.

Data Results

&used Precision Correlation  &spown T r, Tl

0.1 Low Low 0.1/05 0.47 0.25/0.92 0.82/1.24

0.1 Low High 0.1/0.5 083 0.85/0.93 1.02/1.15

0.1 High Low 0.1/0.5 030 0.16/0.90 0.78/1.08

0.1 High High 0.1/0.5 046 0.23/0.91 0.82/1.23
0.5 Low Low 0.5 0.36 0.44 0.67
0.5 Low High 0.5 0.52 0.58 0.64
0.5 High Low 0.5 0.11 0.25 0.54
0.5 High High 05 037 051 0.77
0.10.20.3 Low Low 0.5 0.30 0.62 0.95
0.10.20.3 Low High 0.5 0.77 0.82 1.00
0.10.20.3 High Low 0.5 0.10 0.34 0.54
0.10.20.3 High High 05 030 0.6 0.73
0.10.20.30.40.5 Low Low 0.5 0.16 0.19 0.66
0.10.20.30.40.5 Low High 0.5 0.57 0.65 0.75
0.10.20.30.40.5 High Low 0.5 0.03 0.13 0.45
0.10.20.30.40.5 High High 0.5 0.18 0.25 0.77

Table 3.1: Results as dependent on the reweighting parameters. Low
Correlation: ¢ = 0, High Correlation: ¢ = 0.5, Low Precision: b = 1.1,
High Precision: b = 2. my,,: Average uncertainty retainment in z, r,:
Average uncertainty retainment in v, 7: Effective fraction of replicas
retained post-reweighting.

Fig. 3.16 illustrates the comparison of reweighting effects at various val-
ues of £ by presenting the effective fraction of retained replicas 7 and the
preservation of uncertainty in both loffe time and momentum space. As &
increases, indicating a higher degree of replica bundle decoherence, 7 dimin-
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ishes rapidly. Beyond ¢ > 0.7, a complete refit appears necessary due to
insufficient statistics. Notably, we consistently observe a greater reduction
in uncertainty in loffe time compared to momentum space, as anticipated
due to the imputation issue. When utilizing improved and uncorrelated data
(b = 2, ¢ = 0), there is generally a marked decrease in uncertainty in loffe
time compared to other configurations, though this improvement is not mir-
rored in momentum space. Notably, for b = 1.1 (low precision), uncertainty
in momentum space decreases with larger £ values. The erratic behavior of
uncertainty for b = 2 can be attributed to the small value of 7, rendering re-
sults unreliable at higher £ values, thus emphasizing the restrictive nature of
the new data compared to the prior model.

3.8. Conclusion

We conducted a study examining how mock lattice QCD data, with mod-
erate values of ¢, affects a GPD model. This model, based on machine learn-
ing techniques, is fitted to the forward limit and diagonal z = £ of the phe-
nomenological GK model, which encapsulates typical experimental informa-
tion on GPDs. We also impose a positivity constraint, significantly restricting
the model's freedom in the = > £ region.

Our findings indicate that uncertainties in our model are largely autocorre-
lated in the small loffe-time region at small £. Consequently, lattice data only
minimally reduces uncertainty in momentum space. The reduction in uncer-
tainty in momentum space is consistently lower than that in loffe time space
due to the challenge of relating the two representations of GPDs, known as
the inverse problem.

Moreover, adding data at low £ values minimally impacts GPD at higher £ val-
ues, particularly when neglecting t-dependence. However, the use of lattice
data at non-zero t is expected to increase the impact of reweighting once ANN
modeling is performed in the non-zero ¢ region.

In addition, taking a look at Fig. 3.16, one sees that at mid-range skewness,
the effective fraction of replicas retained after the reweighting process 7 is
roughly equal in the low correlation low precision and high correlation high
precision cases. This suggests a trade off between these two parameters in
the sense that it implies that for a given value of one there is a value of the
other which allows for a Bayesian reweighting'’s ability to discriminate among
replicas in an equally effective way. This compensatory relationship between
precision and skewness to produce similar results at the level of reweighting
may be exploited by lattice practitioners in their decisions as to how to focus
their computational resources.

We employ a Bayesian method to combine experimental and lattice knowl-
edge on GPDs, which proves effective when lattice data aligns well with the
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Figure 3.16: The effective fraction of replicas retained following reweighting
T (illustrated by the green curve), preservation of uncertainty in loffe time
(shown by the blue curve), and in momentum space (represented by the red
curve) for various combinations of high and low noise (designated as b = 1.1
and 2 respectively) and low and high correlation (indicated as ¢ = 0 and 0.5
respectively).

prior model and from which one can expect a 40% uncertainty at mid-range
skewness. However, our study underscores the importance of addressing
correlations within lattice data for a joint extraction, as real lattice data often
exhibit high degrees of correlation and systematic effects that require careful
management to prevent biases in uncertainty assessment.
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4 - Continuum Techniques

This chapter involves a change of focus with respect to the previous topic.
Although this thesis will continue to treat nucleon GPDs, the remaining in-
formation will pertain to continuum techniques and modeling. This chapter
analyzes GPDs as matrix elements which can be expanded in terms of over-
laps of other functions, LFWFs, to which the following chapter will be devoted.
The outline is as follows. The first section contains a delineation of the rela-
tionships between the nucleonic states involved in Eq. (2.15) and amplitudes
defined on the light front. In the second, the characterization of such ampli-
tudes in terms of quark OAM will be discussed. Finally, the representation of
GPDs in terms of such amplitudes will be explained.

4.1. Fock Expansion of the Nucleonic States and Light Front
Wave Functions

The matrix elements involved in Eq. (2.15) contain nucleonic state vec-
tors and a quark field operator. The easier of the two with which to deal
is the quark field operator, whose algebraic properties are understood (see
Sec. 4.1.1). The more complicated substructure includes the nucleonic bra
and ket, each of which represents a state which is in principle a linear combi-
nation of an infinite number of states whose quantum numbers match that
of the nucleon. By writing down systematic truncations of these linear combi-
nations explicitly, one may manipulate the resulting sum of matrix elements,
gaining a physical intuition of which pairs of incoming and outgoing states
survive the quark bilinear operator. In this section such an expansion is justi-
fied in the first subsection, and the implications of the corresponding trunca-
tion are discussed in the second.

4.1.1. Nucleonic States
We start with a Fock expansion of the nucleonic state ([85])

o Sp

[Py h) = ZZ/ann,s(SE1,E1L;$2,Eu;-~-;$n>EnL)|@1,s,@2,s,---,Qn,s%

n=3 s=1

4.1
where

e n corresponds to the number of particles in each state whose minimum
value of 3 corresponds to the three valence quarks of the nucleon,

e s indexes all states with particle number n, with a maximum value S,,
which depends on n,
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e o, IS an expansion coefficient named a Light Front Wave Function
(LFWF) depending on the momenta and quantum numbers of the par-
tons involved in the state to which it corresponds which are not con-
strained by the equal lightcone time required for this expansion, and

e the ©,, ; represent the quantum numbers of all such partons including
momentum,

e the momentum conserving integration measure D,, « (H?:l dxidQI%Q

(5(1 =30 )8 (>, Eu)>, up to a normalization constant to be dis-
cussed in the next chapter,

e and the limits of the z; integration are 0 to 1, and the integration with
respect to k;, is over the entire R2.

This kind of sum takes place over, as previously discussed, all Fock states with
quantum numbers « compatible with those of the nucleonic state, which is an
infinite number of states with no upper boundary on the associated particle
number. In addition, the coefficient functions ¢,, ; cannot depend on the full
4-momenta of the partons as the — component of each parton momentum
has already been integrated out. To see this, require that the lightcone time
z*, the Fourier conjugate of k;, has been set to zero, equivalent to integrating
over k; .

Written in a less precise, more practical way, this sum can be expanded as

|Pih)y =) /D380§‘@§>+ > /D4<P§©§>+ > /D5<P§’©§>7+---
s€qqq 3€qqqg 3€q9qqq

(4.2)

where the hats (") identify each of the variables as a symbolic version of it's
precise counterpart in Eq. (4.1). This way of writing down the Fock expansion
of the nucleonic state | P; h) makes explicit that the infinitude of contributing
states includes the three valence quarks (gqq), as well arbitrarily many gluons
(¢9) and quark-antiquark pairs (¢q). To construct practical models for comput-
ing GPDs and related distributions such as those presented in Subsec. 2.4.2
of this thesis one may choose to truncate this sum by particle number. In
fact, that is what will be done here.

However, such a truncation is a matter of practicality. Plugging directly the
illustrational expansion given in Eq. (4.2) into a matrix element of the quark
bilinear operator Oy, = q;(—%)frq;(%) of Eq. (2.24), where we decide mo-
mentarily to omit the corresponding integrals over all momenta, yields

(P's1|Oggl Pih) = D> D > wbips(Ds

¢,c’eN sec §ec

Oqq| D), (4.3)
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where the ¢(") run over all infinitely many particle configuration contributions
N.
The quark field operators are defined as

. dkt d@k, .
Gpmm) = [ G ) S ko ()
A

Xefi(l#z——luzl) + di:rf(kJr? kl)va,/\(k+7 kL)ei(lﬁz——klzL),

(4.4)

where v and v are lightcone spinors and b and d are the annihilation operators
respectively for a quark and an antiquark. « (suppressed in this discussion)
is a Dirac index, f a flavor index and ¢ a color one, while quark light-front
helicity is denoted with A. The creation (b) and annihilation (d) operators fulfill
the following anticommutation relations:

{05, (kT k), b5 (6 W)Y = {dS (kT k), 5T (R K) (4.5)
=167k Tk — k)P (kL — K\)0s10eerOans

where we remind the reader that A € {3} is a helicity, c a color index, and f
a flavor index. They act on the vacuum as (in the direction of [34], we ignore
here possible complications related to zero-modes.)

|Qa k+a kl) )‘7 C, f> = bif(k—h kJ_)|O>7
@k kL, e, f) = dST (R k1)(0), (4.6)

and g = ¢f1°.

Now that it is clear at the level of particle number and species which QCD
Fock states contribute to matrix elements such as Egs. (2.24) & (2.15), an
issue with Fock space truncation is apparent. Even setting the gluon num-
ber to zero as will be done in the remainder of this thesis, the bilocal quark
operator qu may create a quark-antiquark pair. If the incoming state is a
three-quark one, the outgoing state may be a five particle one. The required
outgoing states whose contributions are necessary for consistent modeling
of the three-quark state |qqq) are then given by |qqq) and |qqqqq). Carrying
on the logic, one soon realizes that in order to model the contributions of
three-quark Fock contributions to hadronic states one needs to involve an
untenable infinite number of Fock states. This infinite set of ever increasing
quantities of contributions is often referred to as an "infinite tower of states"
and is impractical for modeling purposes [34].

However, not all hope is gone. By limiting the computation to a particular
kinematic region in which the operator qu is limited only to quark annihi-
lation and creation, that is, no antiquark bilinear, this infinite tower can be
scaled systematically. In the following subsection (Subsec. 4.1.2) it will be
shown how to do precisely that before settling on only the lowest, three-quark
contributions for the remainder of this thesis.
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4.1.2. Truncation of the Fock space and Limitation to the DGLAP
Region
In the DGLAP region, one can consistently choose to truncate the Fock
space used to expand the nucleonic states, as has been chosen to be the case
in the remainder of this thesis. This choice can be made because, as stated
explicitly in the previous chapter, a quark (antiquark) will be probed in the
right (left) region. However, in the ERBL region such a consistent truncation
cannot be made of the Fock states involved, as the corresponding probed
parton is a quark-antiquark pair. As illustrated in the previous subsection
(Subsec.), quark-antiquark pair creation or annihilation in the context of a two
field interpolation operator requires an infinite tower of states to be treated
consistently at the level of Fock expansion contributions. For this reason, the
ERBL region is not treated in the remainder of this work.
This thesis will stick to the very first term in Eqg. (4.3). That is, the approxima-
tion

S7L
’P;h> ~ Z(STLE}Z/,DTLSOTLS mbkll_axQ?kQJ_a“ xnak J_)
’91,87 92757 sy Qn,s> (47)

3
= Z/D3<P3,s($1,ku;1‘2,k‘u;ﬂvs,k3L)|@1,s,@2,s,©3,s>, (4.8)

will be employed. This is a "valence" quark approximation to the nucleonic
Fock expansion. In the proceeding section of this chapter (Subsec. 4.1.1),
finer questions about the states and combinations thereof will be presented.
As mentioned in the first chapter there has been some successful pioneering
work completed which extends DGLAP results into the ERBL region in the
case on the pion using finite element methods, DDs, and the inverse Radon
transform [86, 87, 88, 89]. Such is the intention behind part of this thesis,
which studies the nucleon in the DGLAP region such that an ERBL extension
might be performed.

4.2 . LFWF characterization and OAM

As discussed in the previous chapter, LFWFs capture the full momentum
space content corresponding to Fock states in the expansion of a quantum
field theoretic state. Further, by characterizing all LFWFs contributing to a
given hadronic state one may compute parton distributions, transition ampli-
tudes, expectation values, etc. as the LFWFs fully characterize the hadronic
state in question, making them an extremely valuable tool for modeling such
objects [34]. Corresponding to their high value they are indubitably difficult
to consistently compute. Given the uncountably infinite quantity of normaliz-
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able functional forms which LFWFs may take a priori, one must find a method
for discrimination in a large functional space, i.e. modeling. In the next chap-
ter a full characterization of the modeling used to compute LFWFs in this the-
sis will be given. For now, it suffices to admit that one fundamental aspect
of such modeling is its dependence on the computation of matrix elements
characterizing the overlaps of various Fock states with the nucleon state in
question. But before one can dream of computing such matrix elements,
and therefore LFWFs, in such a model, one must characterize their relation-
ships in a consistent way.

In this section’s first subsection, the matrix element to be used to access the
LFWF contributions to the nucleon will be introduced. In the second, said ma-
trix element will be parametrized. In the third and fourth subsections, such
parametrization will be explored. In the fifth, the three-quark Fock states con-
tributing to the nucleonic state will be given.

4.2.1. The Matrix Element

We will now build a matrix element which will be used to consistently
characterize the set of three-quark Fock states contributing to the nucleonic
state |P; h). Without loss of generality we will consider here only the value
h = +% as corresponding states for h = —% can be easily obtained from the
results. For the sake of simplicity, we now write | P), where dependence on h
is implicit.

Let us write down an operator creating a general color neutral three-quark
state.

e 6}_1701 ;01 (21)6};702,02 (2’2)@}:703@3 (22)’ (4'9)
2z = (27 = 0,2Z.1,2,) where Z,., is a vector transverse to the lightcone,
€12 s the completely antisymmetric Levi-Civita tensor in color space with
the convention €123 = 1, the « are Dirac indices, and we have used the lead-
ing twist (+) components of the spinor parts of the quark operators, which
are defined by

1
—+ — + _
Ufes =3 ( Ty > g1 (4.10)

Notice that the Dirac indices of the three involved quark field operators are
open. This is key for two reasons. Firstly, it will allow for transparency dur-
ing the process of parametrizing the matrix elements in a Dirac basis whose
terms will be chosen based on constraints via Lorentz symmetry. That is, all
terms in the sum of said parametrization will be required to carry such in-
dices. Secondly, and as a consequence, it will allow for the use of a diverse
set of Dirac structures onto which this matrix element may be projected via
tracing. Each choice of Dirac structure will (anti)align the quark helicities in a
manner which can be used to consistently compute contributions from each
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quark helicity configuration. As we will see in the final section of this chapter,
due to conservation of angular momentum, each quark helicity configuration
corresponds to a particular value of quark OAM (qOAM). By writing the nu-
cleon GPDs as a sum of overlaps of nucleonic states of definite and diverse
gOAM, the relative contributions of these states to the overall nucleon spin
will be elucidated. Further, the spatial shapes of these distinct states will be
of particular interest, and may inform our understanding of the relative con-
tributions of these states to the shape of the nucleon.

With this parametrization of the set of operators creating the states whose
contributions to the nucleon state we wish to investigate in hand, we can
now write down the matrix element to be parametrized in momentum space
as

3
fﬂNgMQ «=Np([] /dz;d’é’zue“szi—mm)) (4.11)
4 7 r=1

<0’€CI e q;_'l =u,C1,01 (Zl )q};:u7027a2 (22)q};:d7637a3 (Z3) ‘P> ’

where fy is a normalization constant, N is a normalization constant cor-
responding to the involved 3D Fourier transform, and in expressions such
as these the label « is a Dirac multiindex of the three-quark helicities o =
{a1,a2,a3}. For any choice of quark helicities, which will be controlled by
projection on a Dirac basis as explained later in this chapter, this matrix ele-
ment represents none other than the overlap of the resulting state with the
nucleonic one. However, it is as of now unclear how exactly each such over-
lap will be computed. Let us therefore move on to the parametrization of this
matrix element in terms of all of the available Dirac and Lorentz structures
which transform as this matrix element does. In doing so, we will set the
stage for the modeling of LFWFs in the following chapter.

4.2.2 . Matrix Element Parametrizations

Given that LFWFs are the coefficients in a Fock expansion of hadronic
states on the light front, each LFWF should be related to the inner product of
the Fock state to which it corresponds with the full hadronic state. To consis-
tently compute a combination of three-quark in nucleon LFWFs this and the
following sections follow and elaborate upon methods established in [90]. In
this subsection one of the usual tricks of matrix element decomposition is
employed. The matrix element to be parametrized will be introduced, a full
list of tensorial structures which Lorentz transforms like the matrix element
available is given and condensed into a basis. Finally, the LFWFs will be given
in terms of the linear combinations of the coefficients of basis tensors in the
parametrization.

4.2.3 . Tensorial Basis
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We now explore a set of tensorial structures from the literature [90]. As
is done in [91], the nucleon momentum may be decomposed in terms two of
light-like vectors n and p as

2

M
W:W+M%%. (4.12)

In addition to these vectors which define the lightcone, we have access to
two of three transverse components of the quark momenta, where the third
can be rewritten in terms of the other two and the nucleon momentum due
to momentum conservation. Their plus components are proportional to the
nucleon momentum’s plus component, and their minus components have
been integrated away. They must carry purely transverse indices i, j € {1, 2}.
Further, on the Dirac side we have access to v matrices, 75, the leading twist
component of the nucleon spinner N, the Dirac slashed lightcone vectors
#, 1t and the charge conjugation matrix C' = iv24°. Employing the index p
as a Lorentz index we now write down a twelve element tensorial basis T}
(1 <t < 12)for the matrix element M, with the same CPT properties

To = { = (CParas(5N oy, (4.13)

1 i i i f
Z(CP)OHOZQ (’757 N+)013( 1+ k2ES3)7
(Cp)amzeijkik%NJr

a3

_(C¢75)Q1Q2No—l—37
1 i i i
_Z(C¢75)a1a2 (7 N+)O¢3 (kl - k2E83)7

(0?75)a1a2 Eijklik% (75N+)a3 )
1

372 (nﬂamc)m a2 (7i75N+)a3 )

1 1 i i 7
g(nual C)ala2 (75N+)a3(k1 + kQES:z)?
1 . o L
g(nMO'WC)QIQQN;BGW (k{ + k%ESS)’
1 i J + 5110 1.7 i1Jf
5( no C)OqOéQ (’Y ’75N )043|€ |(k1k1 + k2k2ES3)’
1 i 05178 1.9 [ d
@(nuaﬂ 0)061062 ’6 ]|k1k%(7j75N+)0437
1 i i7.J 330\ (]
55 10" Carn (KK — K] (725N )y |

where || = §; 3_; is a coefficient dependent on i and j, and is not a con-
tracted tensor, and where Es, exchanges the first two argument of a function
coming directly afterwards. S is defined as the set of permutations of 3 and
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denoted by

S1={1,2,3} So ={1,3,2} (4.14)
Sg = {2, 1,3} 84 = {2,3, 1}
S5 ={3,1,2} S¢ = {3,2,1}.

Unless otherwise specified, the argument exchange operators Egm exchange
momentum degrees of freedom. Now let us project these objects according
to all possible helicites of the quarks. That is, in order to find out how such
tensorial structures simplify when contributing to the matrix element defined
in Eq. (4.11). We project it using a helicity projector (Eq. (4.23)) for each quark
operator. We use the relations

[P ys] = 0 (4.15)
1
Prys = 24P he {5}, (4.16)
Prst = sj, (4.17)
Y5sy = 2Xsy, (4.18)
Py = AP (4.19)
PUCPP? = 0y aPMpC (4.20)
PMCOPpysPY = (=2M\1)0),, 0PN PO, (4.21)
PUGHOPY2 = 6y, 0,PMMC, (4.22)
where s is a spinor and where
1+ (1) 295

A =\—F= 5= )‘/ / .

UfcB —( 9 ) g LfeB = Phpds.css (4.23)

defines the helicity projection operator. In fact, it is truly a chirality projection
operator which is extended to a helicity projection operator in the infinite
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momentum frame even for massive particles. We then write

Ew

i

Palaz)
l

= {_ 5/\1, )\2 P)\ Cp)alaz(Q)\SN )a3a

1

15)\1,—>\2 (P lcp)a1a2(_2)‘37iNj)\3)Oé3 (ki + kéESs)ﬂ

5)\1,*)\2 (IP)\I Cp)OQOQ eijkl kj N)—\’;, ;ag?
2>\15>\1,—>\2 (’PAI C?)Oéloéz Ny

A3;as3

1 i i i g
7(2)‘1)5& —A2 (PAlcﬁ)alaz( Nj A3 )043 (kl - k2E§3)7

_2)\15)\1 -2 (P)\ Cp)OélOéQe”kl kj2)\3 /\3 a3z’
1
32

g(s/\lz)\Q (nupklamc)mm 2)\3]\7)—\;;0{3( i + k%ES:;)v

250012 (n“P/\l O.MZC)OCIOQ (—2X3) (’YZN_)\g)as )

1 .
75/\1 A2 (n#,PAl U’“C)al o Ny

A3;as3

€ (k] + k) Bs,),

(4.24)

1 ) R PR
326)\1,)\2 (n,upklo-mc)aloQ(_2)‘3)(7JNj)\3)043|€Z]|(k1k{ + k2k%ESB)a
1 .

330 (P M C) oy €7 [ K (—2X3) (W N s

1

32

5002 (0P 0 C)asay (K] = R5]) (=22) (4 N ) |-

To clarify, in the following chapter we will introduce a method for modeling
of the matrix element defined in Eq. (4.11). In this section, we will shortly
write the helicity projection of said matrix element as a linear combination of
the elements of the projected basis given above. Therefore, it will be useful
to catalog here a set of projectors to be used to isolate the coefficients of
that linear combination. We choose to do so in the form of a set of Dirac
traces. We will list these projectors in turn, and by cataloging them here, we

69



will iluminate the connection between this basis and gOAM.

TR, = TA(NYPnp) 1 206C)ape, N, (4.25)
= {20, 0, TR R, —2)1, 0,40 Age T kiR,
0,0,0,0,0,0}

TARL = To(INT P p) ' 200C) anar (VN oy
= On. 2 {0,2X3(E5 + k3 Es,), 0,0, —2X (k5 — k3Es,), 0,
0,0,0,0,0,0}
To?(lN;;lQn -p)_12(ipl,CJW)a2alNJ3
Oxy g (0 — 2iX167){0,0,0,0,0,0,
0,2X3,2X1,0,0,0} (k7 + k) Es,,)
TARY = TH(INT P p) ' 2(ipuo™ Cagar (VNT as
= Ox i (Oir — 200 €M)
2X3{0,0,0,0,0,0,
016,00, [€ (K k5 + kiks Es,), €| ki k3, €k k3 },

T R3

« «

where r and s are transverse indices, and we have defined the projectors
Rg€{1’2’3’4}. In practice, these trace formulae, in combination with the unique
momentum-dependent structures associated with the non-zero elements of
each set, allow one to identify the contribution of each individual structure
defined in Eqg. (4.13) to any model of the matrix element defined in Eq. (4.11).

4.2.4 . Symmetric Constraints

The set of twelve tensorial structures is given in Eq. (4.13) represent a ba-
sis for the expansion of the three-quark matrix element defined in Eq. (4.11)
at leading twist. In the previous subsection, Dirac tracing against appropri-
ately chosen tensorial structures has illuminated one way to identify these
individual structure’s contributions for example, when modeling such a ma-
trix element, in Eq. (4.25). In this work, we treat quark flavor as labels only,
in the sense that we work in the isospin limit, treating u and d quarks as pos-
sessing the same mass. Further, the exchange of the two u quarks, due to
their flavor symmetry, must leave the matrix element unchanged. As a con-
sequence, the full list of tensorial structures enumerated without this limit
in mind actually admits a set of simplifications at the level of the coefficient
functions which will appear in the expansion.
Taking a look at the contribution identification trace formulas presented in
Egs. (4.25), let's identify sets of tensorial structures with related momentum-
dependent coefficients. The indices of the structure sets are

1. 1:1,4,7

2. €ikik): 3,6,12
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3. (Kl £ kiFs,): 2,5, 8,9

4. |9 |kLE]: 10,11
with a,b € {1,2}. Now it becomes clear why this basis has been chosen. The
first two bullets point in the preceding list corresponds to zero units of pro-
jected qOAM, the second to two units in opposing directions, the third to one
unit, and the fourth to two units in the same direction.

Now we take a proper look at the symmetries of the matrix elements. Sym-
metry under the exchange of the u quarks is defined as

Moo (K) = Mao(rs;), (4.26)
and isospin symmetry imposes
o= Y Ml (4.27)
we{l,4,5}

where the generally omitted flavor labels of the matrix element have been
restored for illustrational purposes. The relation given in Eq. (4.27) is due
to a group theoretical three-quark (valence) expansion of the proton state in
terms of total quark helicity Ay, = h = i% 921

1
|P;h) = \/TTg( 2uulrd="y 4 2|d Pty 4 2ultd Y (4.28)
—’Uhu_hdh> . |dhu_huh> . |Uhdhu_h>
—|uMudhy — |dhu Ty — jumhdr Y,
which is symmetric under the exchange of any two of the quarks. This ex-
pression’s overlap with any expression of the form

S lapar ), (4.29)
we{l,4,5}
is zero, as one may easily verify. The key insight here is that these conditions
(Egs. (4.26) & (4.27)) apply even when the matrix element is helicity projected
(Eq. (4.24)) although they do not continue to apply when individual contribu-
tions are selected by a trace (Eq. (4.25)). This is due to the difference between
these two projections. The trace projection is basis-specific as the set of pro-
jectors R was chosen with respect to the projected basis defined in Eq. (4.24),
whereas the form of the quark helicity projectors (Eq. (4.23)) does not depend
on any choice of basis.
Let us finally define the parametrization of the matrix element defined in Eq.
(4.11) and its helicity projected counterpart as
fN 12

T NoMao = > The(k) (4.30)
t=1

IN v e ALt
INO'MC!,G' = ZTQQZ)(R):



where we have defined the momentum dependent basis coefficient functions
¢ (k).

Using the Fierz identity, a way of decomposing products of Dirac spinor outer
products in a Dirac matrix basis with coefficients which are functions of inner
products of those spinors as outlined in [93], one may identify from the helic-
ity projected parametrization provided in Eq. (4.30) in addition to the isospin
symmetry constraint specified in Eq. (4.27) that

= (Es, + Es,)(2X30" — 2016%) — 2X307 (4.31)
i(Es, — Es,)(¢® — 4\ A30°%) — 23012
(1 + Es, — Es; — Es)(2030° + 2)16°)

= 2X30° — 200" — B 40 ¢° — Es, (2034% — 201¢°)

= "+ (BEs, + Bs, — Es, — Es,)0"°.

o O O o O

Each of these statements implies that there is a smaller set of amplitudes to
be chosen, which form an isospin symmetric, u-quark symmetric basis for the
full set of amplitudes. Still following the discussion outlined in the work [90],
we define

P = ol 4 wel (4.32)
P2 = 3 4 web (4.33)
I = P+ we® (4.34)
(=B ) = 56+ (4.35)
WO = %gbm, (4.36)
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with w = —4A; A3 = £1 such that we may write the set of inverted relations
¢ = %(w“” +yh7) (4.37)
by = S YE)
b5 = G4 PAY)
o1 = M-yt
d5 = S -yt
b = S -
¢" = (Es, + Es,)0""

A~ )\ N
& = (- Be )+ D Ea T e, Y )

¢’ = (1—ESQ)¢5 2;\3( 61p3 w.|_E (¢3,w_w377w)>
0 = 28
o' = 2(Es, + Bs, — Bs, — By, )y

% = 2\3i(Es, — Fs, )Y,

The lack here of an amplitude named 1# is due to an adherence of our nota-
tion to the notation of [90], which performs this aspect of the analysis in the
slightly more limited case of a strictly spin up nucleon. In our notation the
equivalent amplitude is denoted as ¢3!

We can now write down the helicity projected matrix element defined in (4.30)
in terms of the v basis. To clarify the presentation of this matrix element, we
contract with a helicity h projected nucleon spinor as well in order to make
manifest the contributions of the two spin states h = i%. The matrix ele-
ment now reads

{TNN;Z oMo, (4.38)
= —2X300, 1 T2 Y + 66y —n T2 (Bs, + Es, )Yt
FOxg n TP + 23105, _n 102 (B, — Es, )™
1 R R I\ X o
+§(5)\37—h(_2)‘3To)¢\72 - 2)‘1To>c\75) - 76}\3, (T£78E85 - T£79E86))w37w

1 . . 2\
+7(5A37,h(—2)\3T0’é\’2 4o Ty - 22

2>\
+ 5 0 (T2 = T0°) Es g™ W+5A3h<T*8+T”><1—ESQ>w

(5)\3 h(TA 8ES5 + T)\ 9E ))w3,—w

+25}\3,—h(To/¢\ 10 T3711(ES1 + ES:; - ESs - ES4))w6-

Taking a look at this matrix element, a few comments are in order.
Firstly, the full amplitude ¢/° is never used. The projector 1 — Es, eliminates
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the contribution to it which is even under the exchange of arguments 2 and
3.

Secondly, the inversion relations given in Egs. (4.37) for ¢"®%12 appear con-
tradictory in the sense that the functions ¢° are \; 3 independent, and yet
they are apparently related to each other via \; 3 dependent coefficients in
the isospin limit. For example, let us take a look at the first the relations pro-
vided in the Egs. (4.31)

0 = (Es, + Fs,) (2030 — 2X10%) — 22307
— ¢7 = (ESQ + ES4)(¢1 + Q¢4)'

This relation is indeed intended to be presented as true whether ¢ = +1 or
q = —1. How is this possible? The solution to this puzzle is to recognize that
the imposition of isospin symmetry and the consequent reduction of the set
of independently contributing amplitudes ¢! has been performed here only
once our matrix element of interest has been fully projected onto quark he-
licities. That is, we have used the second of Egs. (4.30) to impose isospin
symmetry, and as a consequence the resulting relations in terms of the auxil-
iary functions ¢ maintain manifest dependence on the quark helicities.

To see this a different way, take a look at the set tensorial basis defined in Eq.
(4.13). These basis elements, yet to be projected onto the three-quark helici-
ties, are by definition linearly independent. Therefore, their coefficients can-
not be related in linear combinations except among identical structures via
imposition of the symmetry conditions provided in Eq. (4.27) and Eq. (4.26).
Therefore, when we write an expression here such as those given in the Egs.
(4.31) it is to be understood that such simplifying relationships are given in
the context of a particular set of quark helicity projections and change ac-
cording to such projections.

To isolate each of the eight amplitudes «° defined in Egs. (4.32) we can use
the corresponding trace formulas given by

fi\f NaMgv 27 Rl _ .Qn‘N;\t;’2(2)\3w1’_2>\3 _ Gijkik%¢27_2>\3)
fNN Mg, 1 R2 — Pm a2 s.3-2\3 | 15 Fr 32X
T o | )\3| 2)\3(k1¢ + k2ESg¢ )
N 1 l /\ . A
%NNU( 2N a3 s y © 126,20k (1 — By, )o® +
11 11
%Ng(Méjé’A3+ wd TR = PN P2l KAy

(4.39)

where ... denotes similar terms with distinct momentum dependence such
that the written term may be readily identified.

4.2.5. The Fock Basis
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Let us restate a modified version of Eq. (4.39) in which we define a new
set of helicity projected tensorial structures Ta* such that dependence on
the quark and nucleon helicities, the quark momenta, and the functions
defined in Eq. (4.32) is made manifest, and all other dependencies are sum-
marized in the TQ’*. We choose to write

f;TNNh;UMé,O'

= 2300, 0n AgOrg h T Y+ Oxy O —AgOng,—n T (Bs, + B, )™
0,20 Ony AsOng n T P € K RG>
F2X3107, Ao O, —2gOng,—n T 2 (K K — ksk] ) (Bs, — B, )0*"
1 . A R . A .
+500,-%s (70,2000, n(—2AT22(k] + K5 Bsy) — 2T (k] — K B,)
2 - . R . - . . R
—715A1,A25A3,h(T3’8(/€i + kb Es, ) Bs, — T2 (k] + kéEsg)Esﬁ)W?”w
1 . A R . . .
+§5>\17—>\3 (6)\1,—)\25/\3,—71(_2/\31—272( i + k%ESa) + 2>‘1To/¢\75(k§ - k;Egg))
2
2

2\ 3 . o -
735A1,A25A1,7A35A3,h(TQ’B( |+ KyEs,) — T (k] + k) Bs,)) By ™

+5)\17>\25>\17/\35>\37h(j10/4\78( i + k;E&) + T279€ij(k{ + k%ES?,))(l - ESQ)w5
+2(_2)‘3)5>\1,>\25A1,>\36>\3,—h(Ta)\710’61]|(kik€ + kék%)
""_To)z\’ll‘ﬁij‘kll'k%(E& + ES?, - E§5 - E§4))w67

Sni raOng n (TS (kY + Ky Bs,) By + To%¢ (k] + kéEs;;)Ese)Wg’_w

+

(4.40)

where any apparent instances of a lack of summation over i, j is due to a lack
of display of these indices in the corresponding objects T2 to avoid further
clutter.

We therefore write down all contributing Fock states in terms of the functions
1 and quark field operators acting on the vacuum and categorize them in
terms of their quark helicities, nucleon helicities, and consequent qOAM in
Tab. 4.1
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g cat? |Fock) U | QOAM
— (k¥ 4 ik¥ )b jutu2d2) — jurd 2uE) [ Wy s | 1
(k¥ 4 ik?) (k3 + ikd)o® juru2d2) — [uid TumE) | Uy s 2
— o (kRS — kYRS )] ju2ut2d2) — [uid TutE) | Uy a0
(k + k> + (kg + ikY) Bg, ™! | [utiu—2d72) — [ut2d 2u2) | Uy 4 1
(k¥ — ik)p3 1 4 (k% — ikd) Bs, 0™ | [u—2ut2d*2) — [u-2dtzutz) Vo1 -1
YL i (KPR — kVES )2t utTu2d*E) — [utidtiui) | 0, 0
—(k* — ikY) (k2 — ik¥)yS utTutad e — [utidtauti) | Uy s | 2
—(k* — ikY)y® utTutad*E) — [utrdtiuti) | U -1

Table 4.1: The LFWFs ¥, ,,, are defined as momentum dependent coef-
ficients of the Fock expansion of a nucleonic state and are categorized
in terms of the nucleon helicity h and the total three-quark (z) helicity
projection Ay of the Fock states to which they correspond. Conser-
vation of OAM allows for deduction of the corresponding total gOAM
values, which are shown in the third column and are given by h — As.

where we have defined the implicitly labeled LFWFs ¥}, » . (x) which implicitly
carry all of the flavor, color, and helicity labels of the Fock state correspond-
ing to ¥y, »,, (k) in addition to its momentum dependence.

A few comments are in order. Firstly, how were such Fock states computed?
Comparing Tab. 4.1 to Eq. (4.40) which makes manifest the contributions
to the matrix element defined in Eq. (4.11) in terms of the full set of quark
and nucleon helicity (anti)alignment configurations, one can identify a drastic
simplification merely in the number of terms present? Why so? For the Fock
components of gqOAM value i%, there are three contributing Fock states cor-
responding to the three-quark helicity configurations associated with such a
totalvalue (le. £ = (3 +2 -0 =x£F -1+ 5 =£(-L+5+1). The
corresponding Fock components presented in Tab. 4.1 are sums of the cor-
responding states.

A second, subtler point implicit in the previous, and mentioned earlier in this
sections is that of the antisymmetric momentum-dependent structures fea-
tured in the matrix element decomposition, such as €/ ki kJ. These structures
contribute no projected qOAM, but do correspond to two opposing units of
gOAM, each one on a distinct quark. As a result, even if not explicitly stated,
discussion regarding individual gOAM contributions here implicitly reference
total gOAM contributions corresponding to given LFWF contributions.

4.3 . Overlap Representation of GPDs
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Given that the remainder of this thesis will be focused on the contribu-
tions of three-quark states to GPDs and related objects, it is important to
characterize precisely which pairs of states will contribute. In the subsection
of this section, the formula describing the kinds of pairs of three-quark Fock
states which will contribute, called the overlap representation of GPDs, will
be presented.

4.3.1. Overlap Formula

In order to understand in a relatively transparent manner the require-
ments for Fock contributions to GPDs, let us take a look at the GPD matrix
element-based definition given in the first chapter (2.15). Let us consider
GPDs in the context of DVCS, only to extend the resulting formulae to other
experimental processes via GPD universality. In DVCS, the involved quark bi-
linear operator, physically motivated by the change in momentum received
by the active quark via its joint interaction with both the virtual initial photon
and its on shell final state counterpart, imparts in general a non-zero mo-
mentum difference on the joint nucleonic system by modifying the momen-
tum of only the active quark. Therefore, the remaining two quarks should
exhibit identical momenta and other quantum numbers before and after the
interaction. However, for the chiral even GPDs considered in this work, the
initial and final state momenta of the active quark should reflect precisely
the difference imparted by the interaction with the photon-electron probe
system. All quantum numbers of the active quark must otherwise be un-
changed. The momentum equivalence presented here for the inactive quarks
is of course the case in any given frame, so this thesis will work with three
frames, following the work in [34]. These three frames are incoming (hadron
in) in which the z direction is that of the incoming nucleon’s motion, outgoing
(hadron out) in which the z direction is that of the outgoing nucleon’s mo-
tion, and the so-called "symmetric frame" in which the momentum transfer
is evenly distributgd among thg incoming and outgoing nucleonic states i.e.:
0=P =P, + &+ = P — 5*. In the symmetric frame the » direction is
that of the nucleon’s average momentum. The associated symmetric frame
variables are labeled as

) (4.41)
= A
@Fs . FiFSh), (4.42)

where the index i always labels spectator parton-related quantities and j
those of the active parton, and where the — signs correspond to the incoming
state, whereas the + signs correspond to the outgoing state (See Fig. 4.1).
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Interaction

Inactive Partons (i)

Figure 4.1: Here a general schematic for the incoming and outgoing states,
and the corresponding transitional interaction is shown.

In the incoming frame the quark longitudinal momentum fractions and
transverse momenta are given in terms of their counterpoints in the sym-
metric momentum frame as well as the skewness &, and A | as

z . = z A
L= kuEku+1_§7l
Tj+ . = 1-zA
Tj = 1]_5, ij_E L — 1—5% (4.43)

The corresponding outgoing frame variables are given in terms of the same
basis as

W - T A

’L—l_'_f? il = il 1_1_5 2

;T =& o7 1_j&L

= — 2L 4.44
x] 1+€7 jJ_ _]J_+1+€ 27 ( )

where we remind the reader that our convention for ¢ is opposite in sign
with respect to the definition given in [34]. We also define a shorthand for
denotation of the quark momenta as

ki = (1, kL), (4.45)
we also define
Sk — k) = 8(axy — )82 (K — k1), (4.46)
and the integration measure
dry = dayd?ky.. (4.47)

Now it is necessary to provide a proper definition of the quantum numbers
Dn,s introduced as a catch-all in Eq. (4.1). They are nothing but the momenta,
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helicities, colors, and flavors of the quarks in question we select using the
index | € {1,2,3} as k;, A, ¢;, and fj, respectively, whose collective labels are
correspondingly given by k = (k1,k2,k3), A = (A1, A2, A3), ¢ = (c1,¢2,¢3),
f = (f1, f2, f3). The collective label for a given quark’s quantum numbers is
defined as Q; = (k;, A, ¢, f1) such that one may write

0" = d(ky — k)83 et a1 (4.48)
and
Q" =k, Q=) =c¢ =/ (4.49)

We also define the collective Q = (Q;, Q2, Q3) and write
3 o
Q _ !
08 =]]45" (4.50)
=1

and then denote the corresponding "reshuffling" of the collective labels' (A, f,
¢, and Q) elements (using Q as an example) according to S as

N

(Sa(Q)) = s, - (4.51)

As such, we give the nucleonic Fock expansion
[Py h) = i Po;n| Q) (4.52)

Q
where
3 €l-33
IE/D;gH( 3 ZZ)EQ, (4.53)
Q =1 9 & o

where €7* is the completely antisymmetric Levi-Civita tensor, po.p is the LFWF
labeled by the indices of the Fock state to which it corresponds, which is given
by the ordered product

3 A
19) = (T a0 o, (9)10) = agl0). (4.59)

where we have implicitly defined the three-quark field operator qo, and em-
ployed helicity projected quark operators P,

Though generally Dirac indices (3(’)) are suppressed in this subsection. We
have now built all of the tools to write down the overlap formula for the he-
licity dependent amplitude defined in Eq. (2.24). We will also include the
polarization index P € {0,1}. For P = 0 recover the unpolarized amplitudes
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defined in Eq. (2.24). For P = 1 we find their polarized counterparts as de-
fined in the appendix Sec. 8.3. We write

Hh,h(a: & t)

\/@2/ za:p 2= P/ h’\qf(—f)’y+(75)qug(g)]P,h)
1 dz lm z-
- WZ/% p+ Zii%m' Al

A=l"or "o

x<SA<Q’>rq*c;<—§>v+<%>“”qf<§>|Q>

3

= E 5 /DéDgg@i< ©Yo:n E (5{5(%‘[ — i’)(SIgn()\l))P
_ Sa(Q") Sa(Q);h! ) 1
/1 52 I ( A — [

= Of’ [@SA(QI);}LH@Q;}IJ(jvéat)’ (4.55)

where the computation between the second and third lines has been per-
formed using the corresponding commutation relations of the creation and
annihilation relations provided.

In the final line of Eq. (4.55), the notation O(¢’, ¢) has been used to repre-
sent this overlap, but also to emphasize an analogy with atomic orbitals. In
the following chapter the analogy will become clearer as we will character-
ize a basis of functions ¢ of definite qOAM. Indeed, the remaining chapters
of this thesis are intended ultimately to develop a method of using LFWFs to
examine the effects of diverse gOAM states on the "shape" of the nucleons
by investigating precisely how such states contribute to nucleonic structure
functions such as GPDs.

4.3.2 . Master Overlap Formula: GPDs and Subresults

The reader is reminded that the GPDs are given in terms of the helicity
dependent amplitudes H as [34]

. A 2— IP’2M A ~
HIF = Hi o+ s 2My|2, ] Hf’[f . (456)
22 (Aq 4 i) m 4§2m2 —3:3
; 2MN|A V1 — €2 ¢
EMF = N|AL M§ nr (4.57)
{P(Al +ZA2) 4£ 1 —t 2’2
In terms of definite gOAM, one has
HIE = (Of P(U, 2,0, 1)+ OFF(W, 1 0, ) (4.58)
272 272 272 27 2
+Of’P(\I/; ;,W;;) Of’P(\Ifl 3,@’;7;))
272 272 27 2
W = (0P W 0) + OF (W, 5w 5)). (459)
272 27 2 272 272 207 2



One sees from this that the helicity conserving (hy = h’N) function H{]i

receives contributions from qOAM zero (first term), one (second and th?;é
terms), and two (fourth term) whereas the helicity flip (hy = —//y) function

”Hf’]f) , receives contributions only from qOAM one (first term) and two (sec-

272
ond term). As the GPD E is a function of only one of these (the helicity flip
function ”Hf’llp ,) it receives no qOAM zero contributions. Calculation of the

nucleon PDFé’f/ieIds

[P () = HIF|_eo= (4.60)
(Of’P(\Ifl 1,U1 ;)—I-Of’P(\Ill 1,‘1’;7;)
2°2 2°2 2 3735
+OIB(W, 3,1 5) + OFF (W, 5,0, §))\t eo,
272 272 27 2 27 2

where the incoming and outgoing momenta are now identical. For the con-
venience of the reader the appendix section Sec. 8.5 contains expressions
for the FFs and the EM radius expectation values in terms of the overlaps O.
Now that we have expressed all of the quantities which interest us in terms of
the LFWF basis and it is completely manifest which contributions correspond
to each value of qOAM, it is now expedient to build the LFWFs in a particular
model. While doing so, we will discuss some previous work on LFWFs, includ-
ing those which employ a point-like diquark, and illustrate how and why this
thesis's use of a non-point-like diquark provides access to a more complete
set of contributions than those obtained in the case point-like diquark based
models.

4.4. An Example: Calculation of O"°(¥, 1,V 1)

We start with the general expression specified to the case at hand

(’)“’0(\111 L) (4.61)
ZI&Q /D3z>3\1; \Ifllth(Schxl—:L‘)
/7_ Q) 1154 (Q")sh
1 52 A=1 o',0 =1

and cite the corresponding Fock element, decomposing it into its two terms
U, (jutzuzdte) — jutadtiem2)) =Ty + T, (4.62)
’2
We then list all of the possible permutations S:

Sl = {1, 2,3} SQ = {1,3,2} (463)
Ss ={2,1,3} Sy =12,3,1}
Ss ={3,1,2} Se¢ ={3,2,1}.
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We arrive at (where the active quark variables are shown by the Dirac § in
each term in the sum):
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Figure 4.2: A demonstration of how we first consider all possible options for
active quark flavor and permutation (first panel), then filter by flavor (second
panel), all quark helicities (third panel), and active flavor (fourth panel) using
the corresponding Kronecker deltas. At this point all dependence on color,
flavor, and quark helicity have been considered, leaving only the momentum
dependence.

In Fig. 4.2, the overlap selection process unfolds in a sequence of pan-
els, each refining the considerations for active quark flavor and permutation.
Initially, in the first panel, all conceivable options for active quark flavor and
permutation are explored. Subsequently, in the second panel, filtration by
flavor ensues, followed by an assessment of all quark helicities in the third
panel. Finally, the fourth panel refines the selection further by focusing on ac-
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tive flavor, employing corresponding Kronecker deltas for each step. Through
this iterative process, all dependencies on color, flavor, and quark helicity are
meticulously accounted for, culminating in the isolation of momentum de-
pendence as the sole remaining consideration.
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5 - LFWF Modeling

Starting from the goal of computing nucleon GPDs and related subresults,
the latter half of this thesis has traced backwards, seeking to characterize the
nucleonic states present in the matrix element definition of GPDs via a Fock
expansion at equal lightcone time, in turn characterizing the coefficients in
this expansion, LFWFs, in terms of matrix elements involving the contribu-
tions of individual Fock states to nucleonic states. Now it is time to start from
a model of such matrix elements to construct LFWFs and build up to GPDs,
FFs, PDFs, and the EM radius. In the first section of this chapter the quark-
diquark model used to model this three-body system is presented. In the fol-
lowing two sections a discussion presenting the Euclidean model employed,
as well as the method of Mellin of moments used to extend Euclidean results
to the lightcone, are presented. Finally, an example LFWF is presented and
plotted.

5.1. The Quark-Diquark Model

One aspect differentiating this work from previous discussions of quark-
diquark correlation based models of the nucleon is this work’s treatment of
the diquark as a two body quark system. That is, the diquark is not treated
here as point-like. While simplifying the problem extensively from a three-
body to a two-body system, the point-like diquark approach kills any p-wave
correlations internal to the diquark, thus forcing one’s decomposition of GPDs
into distinct gqOAM state transitions to be an incomplete picture, even at the
valence level. A review of some important works regarding the point-like di-
quark will be given, along with a short motivation, in the following two sec-
tions. What maintains this work, then, as one regarding quark-diquark corre-
lations is the use of the tensorial structures associated with the quark-diquark
amplitude, which will be presented along with the corresponding diagrams in
the final two subsections of this section.

5.1.1. Motivation

The standard way to extract information about bound states in Quantum
Field Theory is often by relying on the pole structure of N-point functions. In
the case of baryons, the quark 6-point function (5.1) is of particular interest,
where T represents the standard time-ordered product.

G(w1, 22,73, y1, Y2, y3) = (0| T{q(21)q(x2)q(w3)q(y1)q(y2)q(ys) }[0).  (5.1)
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Its Fourier transform yields:

3
G(plap27p37qlaq27Q3) :/Hdmjdyjezpja:jeijij(xla$27$37y17y27y3)' (52)
j=1

Introducing P = ). p; and Q = >, ¢;, the Green function G can be simplified
when P — Q and P? — M? where M represents the nucleon mass, as shown
in equation (5.3). The residue at the pole, x, serves as the Faddeev wave
function, as defined in equation (5.4).

~ X\P1,P2,P3 X 41,492,493
G(p17p27p37q17QQ7q3) P:’Q ( P2 z ]54.2 ) (53)

The Euclidean space Faddeev wave function y is defined in terms of matrix
element in coordinate space as

3

OT{atal2)a) PN = (ivNa(P) [T[dWhe s s
j=1

S (P = kj)xo (k1. k2, k3).
J

Following references [94, 95], the transposition operator ' is used on one
of the quark fields, simplifying the three-spinor algebra into the standard
4 x 4 Dirac structure and the direct product of a Dirac spinor. x, can be
computed using relativistic-three body bound state Bethe-Salpeter equations
[96], sometimes called Faddeev equations. Equation (5.5) presents the solu-
tion for y, involving various irreducible kernels. Defining G, the disconnected
product of three dressed quark propagators, x is the solution of

3
X=GoKx with K=K®+3 (kP @5, (5.5)

% %
i=1

where K2 and K®) are respectively the two and three quarks irreducible
kernels, i labels the quark not participating to the two-particle kernel, the
first equation represents the integral convolution of Gy, K, and x, and S; is
the propagator of the ith quark (see Fig. 5.1).
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Figure 5.1: The Faddeev kernel for three quarks (left) is a sum of contributions
of the three two-quark kernels K () (right, first three panels) and the three-
quark kernel K (right, bottom panel), where "..." signifies corrections due
to higher order interactions.

The two-quark irreducible kernel K2 contributes at lower order in a;
than the three-quark irreducible K3 as K®) contributions vanish by sym-
metry at the first order in «, at which K2 provides non-zero contributions.
Additionally, solving the kernel K2 results in diquark poles in the scattering
kernel for three quarks, indicating the accuracy of the diquark approximation
[97]. The Bethe-Salpeter wave function formalism provides advantages when
studying hadron properties. First, it allows the exploitation of a fully covariant
formalism, and thus, the utilization of standard QFT tools. Furthermore, it al-
lows the differentiation between characteristics of the quark and gluon inter-
action entering the two-body kernel K and observables. Although successful
in describing hadron electromagnetic and transition form factors, the formal-
ism has drawbacks, such as difficulty in evaluating systematic uncertainties
arising from the choice of the kernel. Recent improvements in the meson
sector include the availability of more refined kernels [98, 99, , ]. Addi-
tionally, it's worth mentioning that the Faddeev wave function does not rep-
resent a "true" wave function in the Quantum Mechanical sense, as it is not
associated with probability amplitudes. To recover a probabilistic interpre-
tation, projection of the fully-covariant Faddeev wave function onto the light
front is necessary, as explained in the next section.

5.1.2. The Point-Like diquark

As previously stated, two-quark interactions appear at a lower order in
the strong coupling than three-quark interactions at the level of the Faddeev
kernel used to solve for the three body fully covariant Faddeev amplitude of
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the nucleon. Observing this and wishing to work with simpler toy models
in which exact expressions for various amplitudes involved in nucleonic am-
plitudes can be computed directly using a Lagrangian approach, some have
investigated scalar diquark models involving a fundamental scalar field cou-
pled to a quark field (For an inexhaustive set of discussion of this topic in the
literature is can be found for example in [102, , , , , 1. This
simplicity is the primary motivation for studying such models, but by assum-
ing a point-like scalar diquark field and thereby erasing the contributions of
the internal degrees of freedom of the scalar diquark correlations, one im-
mediately kills any p-wave correlations internal to the diquark. Further, when
comparing to the other dominant contribution of two body diquarks, the ax-
ial vector diquark, one sees that the positing of a fundamental diquark field
removes some p-wave contributions from the picture as well. In this work we
work with a scalar diquark truly formed of two dynamical bodies, and thus
restore p-wave contributions internal to the diquark with respect to any such
point-like models. In essence, this is another simplification in that, instead of
the singular two body problem present in the point-like diquark models we
work with two simultaneous two body problems, one "inside" of the other.
This "middle of the road" level simplification of the full three body problem,
while more complicated than the point-like toy models, provides access to
contributions of quark states of diverse values of qOAM. In addition, it allows
for solutions of the Faddeev equation to be propagated directly to the level
of three-quark GPDs, a development which in point-like diquark methods is
impossible. In the rest of this chapter we will develop such contributions in
the Euclidean space model to be elucidated in the following section.

5.1.3. Diagrams

Considering the three quarks of the nucleon system which we consider
in this thesis, there are correspondingly 3 ways of choosing two quarks to
form a diquark. We can visualize these three ways using the following three
corresponding diagrams:
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Figure 5.2: At the top left, an expression of the full Faddeev amplitude, is
written in the diquark approximation as a sum over the three basis diagrams
each involving a unique diquark correlation allowed at leading Fock (three
valence quarks only), which are shown on the right and on the bottom. The
top right diagram, involving a two u diquark, only contributes significantly
when considering axial-vector diquark correlations as there is no way to form
a scalar diquark correlation from two quarks of identical flavor.

As mentioned previously in this chapter, all four of the four possible di-
quark correlations which one may posit are not equally probable. The scalar
and axial vector diquark correlations are the most probable [10&]. In the fol-
lowing section, the set of tensorial structures available for the diquark ampli-
tude will be given for those two cases only. However, as a matter of conduct-
ing a proof of concept study, only the simplest structure in the scalar diquark
case will be considered. The methods presented, however, are intended to
be readily generalizable to the remaining tensorial structures. In fact, some
Mathematica code to do just that has been developed during this thesis. In
this subsection, it suffices to admit that, due to the Pauli exclusion principle, a
scalar diquark correlation containing two quarks of the same flavor is not per-
mitted. As such, the diagram including the diquark formed by two « quarks
will no longer be considered. It is worth noting that this diquark is relevant in
the case of the axial vector diquark, however, as it is of spin parity J© = 1+

[108].

5.1.4. Tensorial Structures
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In expressing the set of possible tensorial structures which may contribute
to diquark correlations, it is necessary to choose a basis. This is because, for
each set of tensorial structures one can imagine which transform like the cor-
responding amplitude, one can choose an arbitrary set of linearly indepen-
dent linear combinations of such structures as another basis. Naturally, we
have chosen a basis which comes directly from the literature.

From [109] we explain that the quark-diquark Faddeev amplitudes are com-
puted using the following setup. The Faddeev amplitude representing the
nucleon is given by

Uy ="y + Wy + U3, (5.6)

where the subscripts denote the bystander quark, (the quark which does not
participate in the diquark), all three of which are related to one another by
exchanging corresponding indices. The nucleon, possessing spin and isospin
1/2, is a combination of scalar and axial-vector diquark correlations, the latter
of which we mention only for completeness as we will not model it here. That
is

Wy (k123,123 71,23) =N£+ +/\/'yl+, y€{1,2,3} (5.7)

with (k12.3, 1,23, 71 2,3) representing the momentum, spin, and isospin labels
of the constituent quarks, and P = k; + ks + k3 representing the total mo-
mentum of the system. This example scalar diquark component is expressed
as:

N (s onpsmas) = [P (g K)J2E A (K) [A” (5 Pu(P)2

Q203 aq?

(5.8)
where the spinor satisfies the Euclidean Dirac equation
(iy- P+ M)u(P)=0=u(P) (iy- P+ M), (5.9)

with M being the mass obtained by solving the Faddeev equation. Here,
Kgjy = ki + ki quy) = ki — ki Lgjyy = (—Kij + 2ky) /3, A" represents
the pseudoparticle propagator for the scalar diquark formed from quarks 1
and 2, and T°" is the Bethe-Salpeter Amplitude (BSA) of the scalar diquark.
K, q, and [ the diquark momentum, the diquark’s internal momentum dif-
ference, and the remaining momentum dependence respectively have been
chosen as our momentum basis in part because of the nice property that in
Euclidean space they are real, which will be elaborated further later in this
chapter. Further, they are imparted with the subscript labels {ij}, [ij], and
{ij}y respectively in order to allow for all possible ways of forming a diquark
out of the three quarks available. Furthermore, A4, a 4 x 4 Dirac matrix, is

90



the BSA of the quark-diquark system. Ensuring that A" (I; P) represents a
positive energy nucleon implies

APy =3 & P TG P, (5.10)
n=1
T{NGP) =1, T3P P) = (i -1-1- P) (5.11)
where (Ip)ys = 6rs, 2 = 1, P2 = —1. In the nucleon rest frame, s1,2 de-

scribe, respectively, the upper, lower component of the bound-state nucleon’s
spinor.

5.2. The Euclidean Model

Although the objects this thesis seeks to compute exist on the lightcone,
the tensorial structures presented, as well as the rest of the associated com-
putation, will take place in Euclidean spacetime. Fundamentally, this is be-
cause the solutions to the Faddeev equations used were computed in Eu-
clidean space. A three-body relativistic equation of state, the Faddeev equa-
tion gives rise to solutions named Faddeev amplitudes.

5.2.1. Issues with Going to the Lightcone

To continue quantities defined in Minkowski space with the metric 7, =
8,.00,0 — S22 8,0, into Euclidean space one requires an entirely positive
definite or negative definite metric. As a consequence we choose to per-
form such a continuation by defining ly.r = —ilp.as and writing previously
Minkowski vectors as Euclidean vectors using such a convention as

I = (loas, ) = lg = (1 g = —ilo.ar) (5.12)

where M and E are subscripts labeling Minkowskian and Euclidean vectors
respectively, and which we will often drop when facilitated by context clues
for ease of legibility.

This kind of coordinate transformation is often called a "Wick rotation", and
is used in lattice field theory as well as in continuum techniques due to its
tendency to send Minkowskian propagators with poles on the real axis in mo-
mentum space integrands to Euclidean propagators with poles off the real
axis in the complex plane as

S (kar)
k%/[ — p?

s Sp(kp) = 2E2%E) (5.13)

Sm (k) = R

where the subscripts M and E label Minkowskian and Euclidean objects, re-
spectively, whereas to avoid confusion the propagator mass is given by x, and
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fu,E represents a general propagator numerator which depends on the spin
of the excitation in question.

Some have employed Euclidean space techniques to solve the Faddeev equa-
tion, rather than solve it directly in Minkowski space to avoid once again poles
on the real axis in momentum space [110, ]. However, once such a so-
lution is computed numerically, Wick rotating in the opposite direction to re-
cover Minkowskian results from Euclidean ones is a highly nontrivial task. This
is due to conceivably hidden pole structures in the complex plane.

Im M

\

Figure 5.3: One contour of integration which may be used to relate the in-
tegral over the real axis and that over the imaginary axis is shown. Points
representing possible problematic pole locations are shown as well. If these
poles are not present (i.e. the function is analytic inside and on the integra-
tion contour), then no such problems arise.

As shown in Fig. 5.3, Wick rotation relates integration over the real and
imaginary axes by closing a contour in the complex plane at infinity in two
quadrants of the complex plane. Integration along the contour is divided into
four pieces. I} and I3 represent the contributions to the integral I from the
real and imaginary axes, respectively. Is and I, represent the contributions
to the integral I from the quarter-circle terms (which are taken with infinite
radius R, corresponding to I;.3 representing integrations over entire axes)
which vanish if the integrand decreases towards zero as the radius R goes to
infinity. When the integrand is analytic everywhere in the complex plane, one
can relate the two resulting integrals as

4 2
I=1 I, =1 Isi_1=0. 5.14
A 2T i D T (5:14

=1

However, if the integrand possesses poles in the two quadrants in question,
one must modify the previous relation of the two integrals using the residue
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theorem as

4 2
I = lim Zli = Rlirn ZIQj_l = Residue Contribution. (5.15)
—00
j=1

R—o00

i=1

The situation in the presence of branch cuts or other singular or pathological
behaviors is even more complicated and we do not enter the details here.
However, the bottom line is that with a mere numerical solution in Euclidean
space, i.e. without an algebraic functional form in hand, one simply cannot
compute the corresponding Minkowskian result, even numerically, as one is
unaware of the pole structure in the quadrants in which the contributions I».4
are computed.

This issue is compounded when considering the previously introduced light-
cone coordinates. The + coordinates of a vector in lightcone coordinates cor-
respond to the extents of that vector as projected onto two light-like vectors,
say p and n. That is

2
e =T+ 17p+ ) L, (5.16)
=1

where the ¢; is a basis vector for the ith transverse direction. The impor-
tant point here is that the lightcone basis vectors p and n, being light-like,
square to 0, which does not change when going to Euclidean space. How-
ever, whereas in Minkowski space one has access to infinitely many vectors
of norm 0, Euclidean space possesses only a single vector, the zero vector, un-
less one is willing to go to complex coordinates which we do not enter here
and, numerically, would require modeling in higher dimensions. As a conse-
quence, any practical Euclidean space numerical methods employed in the
state of the art today will face such an issue of "going to the lightcone", in
the sense that results computed numerically in Euclidean space, such as so-
lutions to the Faddeev equation, cannot be directly brought to the lightcone,
as full reconstruction of the behavior of such an amplitude in a two dimen-
sional subspace from its value at a single point requires access to information
impossible to contain at such a single point [111].

5.3. Mellin Reconstruction

Given the previously stated issues with going to the lightcone directly from
a computation performed in Euclidean space, it will be necessary to be clever
when attempting to set the lightcone time arguments of our Faddeev ampli-
tude expressions to zero. That is, we want to transform Faddeev amplitudes
into LFWFs, amplitudes defined on the lightcone, by performing integration
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with respect to some parameters. In Minkowski space we would like to com-
pute

U(xy, k5w, ko)) = N/dkl_;Mdkz_;MX(kl;MakZM); (5.17)

for some normalization N. Given that we work instead in Euclidean space,
we use a trick. We write down a kernel allowing us to trade = dependence
for m dependence, referred to as a Mellin moment computation of order m.
Because of momentum conservation, only two momentum fractions z; out
of the possible three are independent. There, to reconstruct on the light-
cone, we perform such a transform in both the 1 and 2 momentum variables
[112]. This is performed in order to exploit Mellin moment uniqueness to
avoid messy contour integration. The Mellin moment of order m of the func-
tion f is given by

/ dza™ f(x), (5.18)

where the integration bounds are 0 < x < 1. Digressing further, in non-
pathological cases two functions all of whose Mellin moments are identical
are equivalent [113]. Thatis

/dmcmf(x) = /dxxmg(x), Vm e N (5.19)
= flz) = g(@)

For a given longitudinal momentum fraction x;, expressing this as a momen-
tum fraction according to Eqg. (2.20) and rewriting in terms of the Euclidean
variables, it can be expressed as

ms _ (kg -ngp)™
where it is simply necessary to know that the nilpotent vector n2, = 0 projects
vectors onto their + lightcone components. In the next subsection of this
section, the uniqueness of Mellin moments will be stated. This will allow us
to reconstruct the z; » dependence of the LFWFs via the relation

(5.20)

1 1-x1 o o
/ dl‘l / dxgxflmx;ng\ll(xl,ku_;a:g,kgj_) (5.21)
0 0

(kg -ne)™ (kg - ng)™
(Pg-ng)™ (Pg-ng)™

= Normalization / Ak} pdki, pdk3, pdks. g

TrDirac{FProj.X(kl;E, kQ;E) }>

which is the Mellin moment reconstruction employed in[112, 112], and where
I'proj. is a Dirac structure designed to project out the relevant contribution. In
the following subsection we will then discuss how this method can be used to
reconstruct the x dependence from the Euclidean Faddeev amplitudes.
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5.3.1. Identification of Mellin Variables

We demonstrate the computation of the fundamental contributions to
the six light front wave functions mentioned previously by employing a Eu-
clidean quark-diquark correlation model of the nucleon. Our approach in-
volves the introduction of tensorial structures, which we then contract to
obtain an entity that transforms akin to our target matrix element. Subse-
quently, we determine the Mellin moments of this entity on the lightcone con-
cerning its longitudinal momenta. By projecting the resultant tensorial struc-
tures, we extract their contributions to the (LFWFs). Let's define the quark
propagator as:

S(p) = [—iv-p+ M D, (), (5.22)
1
Duy(s) = YL (5.23)

and a Nakanishi ([114]) representation of the diquark vertex using the basis [
and ¢ given below:

1
mlSCT = iy / dzpy(2)Da,(q2), (5.24)
-1
where p, is a polynomial [115] and we define
z,2
L = (=P —1)., 5.25
q ¢+ 53 ) (5.25)

We also define the diquark propagator in terms of the diquark momentum K
and a Nakanishi representation of the quark-diquark correlation s; as follows:

1

AT (K) _, (5.26)
K? + M?
+1 1 3
s1 = in/ dz, p(2)|[——5=]", (5.27)
L PR
(5.28)
where §(z) is a distinct polynomial, and
3
P = (0,0,0,iMy)=> ki (5.29)
i=1
P K 3/
ki = —+0=—+— 5.30
5+ 5 T3 (5.30)
P / K
g o= ot 5.31
j D) +4q 5 +4q (5.31)
P / K
k, = ———-—qg=— — 5.32
k 3 3 47579 (5.32)

where we now use a positive-definite metric and where we have omitted
quark number indices on K, g, and ¢. Next, we decompose the Faddeev wave
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function into three diquark contributions. To work with a general example,
we will perform this computation in the case that quark 1 is not included in
the diquark, that is the diagram-dependent indices i, j, k labeling the three
quarks in Eq. (5.32) given by i = 1, j = 2, k = 3. The corresponding projected
Faddeev amplitude is given by:

X'Or[i’]‘ = S(kQ)aza [ (Q7 )]aéagS(k3)a3agAOST(kl)oz)’lquoz’l,U' (5.33)

The projected wave function in the scalar case is expressed as:

Xbiazhss = (ALY, Saqn(ka) TSR SKa, (k) (5.34)

X (LT (CHT L azar Sayag (1) Say o A(ka + k3).

To extract the leading twist operator part of this matrix, we project on 4* as
follows:

%fyl,Tr[fy”yiLTS(kg)FOTST(kQ)(L%/LT(CT)TLTS(kl)S]A(kQ +hy)

= WTH(nY — gy S (s ST (ko) (VO (L o5 (k)]s (€, P)A(hs + k)

1
_ iyyn”Tr[S(k‘g)FOTST(@)L¢CT¢LT]as(k1)sl(E, P)A(ky + k3)

- iv,,Tr[s@g)rOTST(kz>L¢OT¢LT1TrWLTS<k1>51<& P)JA (k2 + k3)
(5.35)

Consequently, we obtain a trace dependent on the internal diquark constituent
and a trace on the remaining quark and nucleon quark-diquark Bethe-Salpeter
Amplitude.

Let's start evaluating the trace associated with the diquark:

[CT?/L1 5 iy (@PQE) —q) + M)ivs (5.36)
xc*<—w-<q+% 2‘£>+M>T<1‘2”5>1
= 2M(§P—£)-n:2MK-n, (5.37)
where we utilized:
Ciyl'C = —,, (5.38)
with CT = CT = —C. Next, let's handle the denominator and introduce the

Feynman parameters u, v, and y, leading to the following expression: with

B=u—v+yz. (5.39)
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M, /3

Figure 5.4: The contour of integration is intended to be understood as closed
at infinity on the left and right. The resulting shift off of the real axis as ex-
plained in Subsec. 5.2.1 is valid provided that there are no other poles (con-
trolled by the masses and Nakanishi A parameters) in the strip between the
red and blue arrows.

Giventhat P = (0,0,0,iMy), we analyze the integral in the complex plane
of ¢4 before shifting it (see Fig. 5.4). We introduce:

_ M
Ky= ks iB =g (5.40)
with k4 = g4 — ¢ real. This results in:

— M2
R(KZ) = k- B2AY

1 5.41
(k) = 2kypHx, (5.41)

where R(z) is the real part of an arbitrary complex number z. We search for
poles in the k), complex plane, which occur if and only if:

2_4 2
2403,

B2 — B2ME 4 (u o) M2 yAZ + (o4 y? — p)EMY = g 5.42)
_ _4 .
kB + (ut vy — U = 0,
It is noted that (u + v + y2? — 3?) is always positive:
w4 v+ yzt — 32 (5.43)

= u(l —u)+v(l —v)+22(1 —u—v)(u+v)
—2u(l—u—v)z—2(u+ (1 —u—2v)z)v)
= w(l—u)(1-2)24+v(1—-0v)1+2)*+2uv(l - 2?) > 0.

The condition for the real part, in the most extreme case of ¢ = 0, yields:

2

_ M
ki + (u+v)M? 4+ yA2 — (u—i—v—i—yzQ)TN = 0. (5.44)
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Thus, for M and A, larger than My /3, the condition is never satisfied and no
poles cross the integration line of k). Hence, we assume this condition for
this example calculation. The complex conjugate poles remain on either side
of the k] line, allowing us to close the contour through the real axis, resulting
in a real integral. We introduce 3 = 152 such that 0 < 5 < 1. Asn? = 0, the
only non-zero contribution is from (K - n)™2, leading to:

_(Knm“ .

I = T / dz/dﬁdudv T pu(2)(1 —u — )Vt

1T(2 + )F(V+1) . pY;
T orw) ((‘“_ 2

(3P — 0)%\—(v+1)

)

01)% + (u+v)M* + yA?

+u+v+(1—u—v)2%—(1-258)% (5.45)

A this point, defining 4 = 1 —u, we can then define an effective mass MZ%; and
effective momentum ¢¢ such that:

(I—a+v)M? + (a—v)A?

Meﬂ_4(1 —a+v+ (1—v)22 — (1 —2B)2) (5.46)
(I—a+v)M?+ (u—v)AZ (@)
= — — — = u—"v
BeBE-2+A+aw-p)
off\2 (qu — 2002 (gL — 52201)? -
O = =~ GaG -+ h r e
(5.47)
and the previous integrals can be written as:
1 (K- ”m2+1 e, L 4Y)
I = Gn) (P / dz / dpduadvp, (z,)(a — v) 2M7(y)
X[(_(U(B - 2) +B) +a(v — B2 T My + KTV
(5.48)
We then continue
1 145 . 1
ZTr[yi 5 (—i(P = K)-v+ M|y = §M7/i. (5.49)
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We can apply the same Feynman parametrization technique as previously.

(P-n —ml/ dz/daz —M%h(ky - n)™ p(2)[(2/3P — £)> + M?) ™!
1+32
6

X[(ﬁ - P) + A?V]*U[(g_i_ P/g) + MQ}fl (5.50)
x[M + (¢7) + (2/3P — )77+

= (P-n)™™ / d%/[daﬂéM%/i(kl -n)™ pagta6(1 — a1 — az — a3 — ay)
-1

Fo+3+v) 9 9 ) — ) o
|l —a— M A M M e
8 L(e)(v+1) <( 43 )"+ arM” + asAy + asM” + aa(Mpp + (4T)°)
1+32 P2\ —(o0+34+v)
+(a1 + as( 5 )2 +4a3—|—4a4—a)9) 7

= (P-n _ml/ dz/daZ ~M*p(ky -n)™ pag tayd(1 —ay — ag — az — aq)

I'(oc+3+v) P, 5 M? o1 A2 (1+32)?
ST (g g M el _
MQ 4 M eff + ( ) 4 042 *(U+3+V)
+a3(]\412\[9)+a4(]\4]2v9)+9) )
(5.51)
with [da;] = dajdasdagday and we make the change of variables & = —a; +

az 53 + 2a3 + 2a4. Just like in the case of the scalar diquark, we are now

facing an integral in the ¢, complex plane. In analogy with the previous case,
mass ratios such that:

M? 1 A% (14 32)2

——=)>0, o >0,

(M}’V 9) (M2 36 )

M2 4 Mz 4

——-)>0, — =) >0, 5.52
M3 9) My 9) (5:52)

would guarantee the absence of poles. Only the last one cannot be tuned
anymore and requlres further study. We investigate the most extreme case
by setting k:1 21 = Ol

(a—v)(l—-a+ v)M? + (i — v)A2)

Vet = TG D ra - P T P >33

Mz (v—P)2M2 + (a—v) (A2 — M?)(2B% + (v — % + vB% — 4B +v?)
ou [wB(8 - 2) +a(v — %) + B

= ((v = B)*M? + (u — v)(Ag = M*)[(B1L — @) + (B — v)) (B —v)

(5.54)
+o(a— )1 = BWB(B - 2) +ulv - %) + 57

>0 for A2 > M2 (5.55)
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Computing the gradient, one realizes that the minimum value is obtained for

either z or v equal to j3 if we assume A2 > M?. We therefore have for u = 3:
M2 _ A2 —M? 4

M2 > ——— + (B —v) =L > —M% since M?>
=B p) B1-PB) "9

Consequently, the pole structure allows us to close the Cauchy contour on

the real axis, and we therefore end up with a real-valued integral. We now

introduce & = (1 + «)/3, a1 = 1 — a1 and as4 = asg + a4. Introducing also:

M3, (5.56)

O =

(1+32)?2 1 (@ — asq) 9
A= ——— > = (32—~ -1 1)~. 5.57
36 36 (3( a1 — as4 ) + ) ( )
We obtain in the end:
M2 27r R 2 _ o v
= WL/ df]—- el ——" (@1 — aza)” ' (azs — az)

J—|-3+1/)1 F(a+y+2)
T(o)[(v+1)20(0(0 + v+ 3)
M? 1 A%

&ml (1 o d)m2+13m2

X [53_ + M]QV(l — al)(M7]2V — §) + MJQV((_M — CL34)(W —A)
M? 4 M2+ (¢¢)2 4
2 2 i 1
+a3MN(M7]2V - §) + (a34 — a3)MN(eM7]2V - 5)
1 —(o+24v)
+M3(a - 3 2}

x[B(v(B —2) + ) + a(v— F*)] 7" H(a— v)

1 1 B 1 a 1 as4
/[df]:/ da/ dﬁ/ dv/_ du/ da34/ dal/ das.  (5.59)
0 0 0 B 0 a 0

The last step is to define 3/ = (1 — &), together with ' = (1 — a)u and
= (1 — a)v. J then becomes:

with:

= ™ (@ — ag))T Mo — a2 EY)
J = (2r)? /[df] AT (@1 — as4)”" (azs — a3) T ()
o - M? 1 _ A%
X O 1(1—04)6/ 2[62 _|_MN( )(M2 —§)—|—M]2V(a1—a34)(W—)\)
M2 4
+03MJ2V(M7]2V - §)
o MZE+ (5T 4 o, 1 g1-(et2+)
+(ass — a3)MN(T - §) + My (o — g)
N

x[B(B -21-a)+p(1-a)+d@1-a)— B (560

X(ﬂ/ _ ,U/)Qz/—l(l o d)”H,
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with corresponding modifications of Mg and q‘ff and with

1 1-a B’ 1-a a 1 as34
/[df’] :/ d@/ dﬁ’/ dv’/ du’/ da34/ dal/ das. (5.61)
0 0 0 4 0 a 0

Now it is possible to invoke the uniqueness of Mellin moments to identify J
with ! (k). We identify

1 1—zg - -
/ dzs / dxlelxgw?/Jl(n) = J(my,ma, k11, ko) (5.62)
0 0

_ /
— T = Q, $2:,87

where for clarity we remind the reader that x, (the set of the transverse
quark momenta) is subject to the condition 0, = 23:1 EM. This Mellin mo-
ment reconstruction method is one of the main tricks used in the literature
to reconstruct dependence of amplitudes calculated in Euclidean space to the
lightcone at equal lightcone time. One question worth asking in this situation
is why we choose to integrate directly using a Dirac Delta to enforce the re-
lationship between x and it's lightcone definition presented in Eq. (10.13).
This is a subtle issue which will not be completely explored here. Suffice it
to say that reconstructing z; » dependence in using such a method requires
intimate knowledge of the singular structure in the complex plane of the inte-
grand, because the Dirac Delta made to enforce our constraint must contain
a complex argument. This requires, for example, an extended definition of
the Dirac Delta in the complex plane, which is no trivial task [116]. Some re-
cent and impressive results using similar methods can be found here [111]
for the interested reader. We are limited to integrating along a small range
of contours parallel to the real axes of the Euclidean variables in this thesis,
so we leave this discussion aside. Let us now move on to view some plots of
b ~1, which are the first numerical results of this half of this thesis.

5.3.2. LFWF Plots

In this section we show plots of the LFWF 1% for various configurations
of the transverse momenta in Figs. 5.6, 5.7, 5.8, 5.9, 5.10, 5.11.

101



7| Ul| Oq | N |Eu| |E2L| 012
0 0 | U1 0 0 u
2 0 0 u
3 0 0 u
01 0 | U |1 0 0.01 u
2| 0.01 0 u
3| 0.01 0.01 T
0O (01U 1] 001 |0.0025 T
2 | 0.0025 .01 T
3] 0.0025 | 0.0025 0
011010 1] 0.01 |0.0025 0
2| 0.0225 .01 ™
3] 0.0025 | 0.0225 T
01101 5 | 1] 001 |0.0125 | 2.03444
2| 0.0125 .01 2.03444
31 0.0125 | 0.0125 | 2.2143
0101 7 | 1| 0.01 |0.0225 ™
2 | 0.0025 .01 0
3] 0.0225 | 0.0225 ™

Figure 5.5: Here we present the relationship between the magnitude of the
diquark internal transverse momentum g, the magnitude of the transverse

momentum [, the angle between them 6, = cos( \j}l.lll} ‘ ), and the correspond-
L
ing values of the magnitudes of the tranverse momenta k; » an the angle be-

tween them 65 = cos(%). U, present only when one or both of the
corresponding vectors are of magnitude 0, means undefined. n marks the
bystander quark. The analytic versions of these relations are provided in the
appendix Sec. 8.6. This correspondence depends on which quark is chosen
to be the bystander i.e. which quark does not participate in the diquark corre-
lation i.e. the diagram of those presented in Fig. 5.2, which determines which

of the ¢1%" receives a contribution.
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|k"|J_|=0; |k2J_|=0;
|QL|:0

d(xs)

O =N WO

0.8

0.2 04 06 0.8
u(x)

Figure 5.6: Plots of the function ¢~ for |ky,| = |ky1| = 0 is shown. This
plot is a contour plot, given on a triangular domain due to the momentum
conservational constraint 1 = Y% | z;. The normalization has not been set
due to any physical constraints, and is consistent among all of the LFWF plots
given in this document. The normalization is calculated by computing the
largest value of 1y~ among all of the computed values, and scaling all plots
such that that maximum value becomes 6, in order to align with the color
scales of these plots. We remind the reader that the transverse momenta are
given in units of the nucleon mass My.
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|k1J_|=O; |k2L|=% ,
|QL|=1

O =N WO

0.2 04 06 0.8
u(x»)

Figure 5.7: Identical to Fig. 5.6 except that |ky | = 0, |ks. | = 0.5 is shown.

104



=2 ; 6q=2.03

O =N W,

Figure 5.8: Identical to Fig. 5.6 except that |E1L| = |E2L| = 0.5,6012 =0is
shown. Ok, is defined to be the angle between the total and internal diquark
momenta, and is called the internal angle of the diquark.
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=2 ; 6q=2.03

O =N W,

Figure 5.9: Identical to Fig. 5.6 except that |E1l| = |IZ2L| = 0.5 012 = § is
shown.
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1 | 1 | | | |
Ik1J_|:_ ) |k2J_|:_= 612:J [,
2 2

|QJ_I=% : equo

O =N WO

u(X)

Figure 5.10: Identical to Fig. 5.6 except that |E1L| = |E2L| = 0.5 01 =mis
shown.
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|k1J_|=% , |k2J_|=O;
|QL|:%

u(X)

Figure 5.11: Identical to Fig. 5.6 except that |k, | = 0.5, k2. | = 0 is shown.

In Fig. 5.6, symmetry between the quark u2 and the d quark is relatively
clear. That is to say that, neglecting noise, exchanging their axes yields an
identical plot. This is also the case in Fig. 5.7, as the internal diquark trans-
verse momentum remains zero. In the remaining plots slight deformations
from this symmetry are present and can be understood as due to asymmetry
between the contributions of the two non-bystander quarks are no longer in-
terchangeable when their longitudinal momenta are not equal. In particular,
the internal angle of the diquark 6, x, when nonzero, results in an asymmetric
share of longitudinal momentum of the diquark’s constituents. In addition, it
is clear that the bystander quark tends to carry the majority of the longitudi-
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nal momentum.
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6 - Further Results

In this section are shown corresponding PDF plots, as well as those of re-
lated distributions. However, these results are not numerically stable at the
current moment. This is mostly due to the large dimensionality of the numer-
ical integration necessary to tackle in order to compute the overlap of two
LFWFs which are each written as definite integrals over five Feynman param-
eters. In addition, all of the objects which we would like to compute via the
overlap representation of LFWFs (GPDs, FFs, PDFs, IPDs) require the integra-
tion over the quark transverse momenta, as can be seen from the definition
of the overlaps O as given in Eq. (4.55). For this second reason, we choose to
compute the integrals over the quark transverse momenta analytically. This
process will now be demonstrated before we choose to display any further
results as well as the difficulties associated with the subsequent multidimen-
sional numerical integration. Afterwards, some further improvements that
might be made to improve the computation of more contributions to our dis-
tributions of interest as well as any future goals for subsequent studies will
be delineated.

6.1. Preparation for Numerical Integration

In order to compute the contributions of various LFWFs to Wigner distri-
butions and their associated limits we must first compute their overlaps. Let
us begin with the contribution to the function W'~ as elucidated in the pre-
vious section. We drop here the arrows of the transverse vector notation for
legibility. It is proportional to

v = N(v0) / [df) (@ — asa)” 2 (azs — a3)" (1 — a) 2 M PO
2 M2 1 A2 M? 4
X |5+ (L—a) (g — o)+ (@ —aa) (35 =N +as(5 — o)
[M]%, MZ 9 M2, MZ 9
M2+ (62 4 1.7 (0+2+v)
+(ass — a:’s)(egMi]gvl )t (@2 5)2
x[21 (V' (21 — 2(1 — @2)) + 21 (1 — 32)) + @ (V' (1 — 22) — (21)?)] 7!
(@ — '), 6.1)

where N(v,0) is a normalization factor depending on v and o, the Nakan-
ishi model exponents. To calculate the contribution of this function’s over-
lap with itself to the GPD H when quark 1 is active we first take at a look at
the transverse momentum dependent term, combining with a new Feynman
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parametrization as

a —a
(1+ ﬁﬁ)ki + (ass — as)k3, (6.2)
— N o ~ o] —(o+24v)
2y R | a
—14+x in
az4 — ag as4 —as - -
+mfﬁ%)k’i + (azs — az)k3| + Qmelk‘u kL
~ o] —(o+24v)
MQ]
+ out

1
= / dh [Alkﬂ + Aok2 | + A3A% + Agkyy Koy
0

+Asky - AL+ Agko - A+ A7]—2(U+2+V)7

where M is a collection of all non-transverse-momentum-dependent terms
to be dealt with later and where h is the new Feynman parameter and the co-
efficients A;_g of the six kinematic combinations resulting from use the def-
initions of the incoming and outgoing momenta from Egs. (4.43) and (4.44),
as well as the term Ay, are given in Egs. (8.18). In order to integrate over the
transverse quark momenta we first shift them along the real axis by defining

- _ = Ay - As
ki, = kg + TAlku_ + EAJ— (6.3)
kot = koy + AsAL
. = Ay - ~ As
A As— A
k11 k11 2A1k‘2¢+( 6 2A1) 1

kot = kot — AgA .

Here we define for convenience

- A2
Ay = Ay — — 6.4
2 27 1A, (6.4)
= Ay As
Ag = Ag—
6 6 24,
. A2
A3 = A3— =5
2As
The expression now reads
1 - B _— —2(c+24v)
/ dh [Alku + Ask2, + AsA? + Ay . (6.5)
0
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Integrating over both /%1,2 then gives

[510) [ ldfilpouar — 3"t — a0)"(1 — )2 (6.6)
x[r1 (v (21 — 2(1 — 22)) + 21 (1 — 22))
+ﬂ'(v'(1 _ 1'2) _ (£E1)2)]_V_1(’L_Ll _ U/)Qz/—l:|

[N(% o) /[dfm]ﬁpy(c‘zl — az4)” *(azs — a3)” (1 — z)"*?
X[x1 (v (21 — 2(1 — 22)) + 21(1 — 2))
—i—ﬁl(vl(l - $2) o (x1)2>]—1/—1(a/ o U/)Zu—1:|

out

} —2(c+14v) [

2 1 B 5 -1
><”2/ dh[AgAi+A7 A1A3(0+y+1)(3+20+2y)} .
0

Restoring the relevant prefactors then allows us to compute the overlap con-
tribution of ¥~ The resulting PDF contributions are shown in Fig. 9.3.

4;
3 = e u2
— uf
oL —d
— u
1 -
1 n n n 1 n n n 1 Il 1
0.2 0.4 0.6 0.8 1.0

Figure 6.1: The results for the forward limit of b= self overlaps (PDFs) are
shown. The red curve corresponds to that of the bystander quark «1, the
blue to the participant quark 2, the brown to the participant quark d(3), and
the purple to the total u quark contribution. This result has been computed
using AMC integration with 1001 points along the z axis, and is extremely
noisy. Even so, there is a clearly visibile signal which is not compatible with
zero.

6.2 . Difficulties with Numerical Integration

There are two numerical integration methods which we will explain here,
both implemented natively in Mathematica. The first is integration in quadra-
ture using the Gauss-Kronrod rule, which is more numerically stable but ex-
tremely computationally costly due to the high dimensionality of the inte-
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grand, taking more than 20 times as long as the second method to be de-
scribed below. This method combines Gauss quadrature and Kronrod exten-
sion points to estimate definite integrals accurately. Firstly, Gauss quadra-
ture points, points chosen for their accuracy in estimating polynomials up
to a certain degree based on corresponding weights which determine their
contributions to the integral, are employed within the integration interval to
compute an initial integral estimate [117]. Additionally, Kronrod extension
points are incorporated to enhance accuracy, particularly for functions with
rapid variations or singularities [118]. The integration process then follows
an adaptive strategy, where subintervals are initially divided, and estimates
using Gauss quadrature and Kronrod extension points are computed. The
algorithm recursively subdivides the interval and computes new estimates if
the estimated error for a subinterval exceeds a specified tolerance level. This
process continues until the estimated error falls below the tolerance level or
after a predetermined number of iterations. Finally, contributions from all re-
gions are summed to provide an estimation of the total value of the integral.
The more efficient but less reliable integration method to which we compare
quadrature integration is Adaptive Monte Carlo (AMC). AMC integration is a
numerical technique used to estimate a definite integral’s value by randomly
sampling points within the corresponding domain. The integration domain
is initially divided into regions, from each of which random points are sam-
pled. At each sample point, the integrand is evaluated, then the average of
the function over all such sample points is calculated. This average value is
then multiplied by the size of the integration domain in order to estimate
the integral. The algorithm repeatedly adjusts the number of sample points
and their distribution based on error estimates, focusing more sampling in
regions where the integrand varies significantly or where the error is high-
est, and reducing sampling in regions where the function is relatively flat or
where the error is low. This adaptive process is iterative, continuing until the
estimated error is found to be below a specified tolerance level or until a
maximum number of iterations is achieved. By adjusting the sampling strat-
egy adaptively based on the local behavior of the integrand, AMC integration
provides accurate estimates of integrals even for functions with complex be-
havior.

Taking a look at the Fig. 9.3, it is clear that the function U~ contributes to
the PDFs of all three quarks. In addition, it contributes symmetrically to us
and d, which reflects their participation in the diquark correlation involved
in the modeling of this function. In addition, as observed in the auxiliary
function ! plots above, the large share of longitudinal momentum frac-
tion taken on by the bystander quark is reflected in the large x tail of the
bystander quark (red curve).
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6.3 . Looking Forward

6.3.1. Analytic Traces and Mellin Moments

The computation of the Mellin moment integrations as explained in the
previous chapter is one of the most technically challenging parts of the entire
computation. This is due to the wealth of tensorial structures as presented
in Eg. (5.11). Computing the corresponding traces and the consequent in-
tegration requires code which may systematically compute vector integrals
analytically, extrapolating the trends of various example integrals (low order
Mellin moments) to all orders, which is a highly nontrivial task.

6.3.2. Mass Relationships

As explained in the previous chapter, results presented for the nucleon
LFWFs are only valid for particular relationships between the quark masses,
the nucleon masses, the diquark correlation mass, and the Nakanishi mass
parameters. This is because the integration technique relies on a contour
shiftin the complex plane, whose validity is dependent on the lack of the pres-
ence of poles inside the corresponding contour. This presents the masses
and parameters from falling below a minimum value, accounting for which
would require computation using residues. Further, it is well known that the
quark masses are not constant, but tend to run with the momentum of the
corresponding quark in a way shown in Fig. 6.2.

0.6 0.6
> 0.5
(]
0.5 (2 0.4
NZ 0.3
> 04 .02
o = 01
= 0.0
g 03 0.0 05 10 15 20
G 2/ GeV?
S )2 P
0.1
0.0
-3 -2 -1 0 1 2 3 4
Logso[p?/GeV?]

Figure 6.2: An example of the running quark mass is graphed here in a figure
from [119].

In order to allow for this running mass behavior, one would need to deal
with a denominator with more complicated behavior, contributing in turn to
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more complicated contributions to the numerator in the Mellin moment com-
putations. Such computations have been computed directly in the complex
plane for example in [111].

6.3.3. Extension to the ERBL and Comparison to Experiment

Once more contributions at the level of diverse tensorial structures have been
computed, it would be necessary to compare the resulting distributions to
those extracted from experimental data. In order to do so, it would be nec-
essary at the level of the GPD to extend the results to the ERBL region. A
procedure developed by the authors of [86], employing finite element Radon
transform inversion, would likely be used to perform such a numerical exten-
sion. The numerical extension relies on the polynomiality property given in
Eqg. (2.32). As a consequence of covariance, we know that the polynomiality
propery must hold if the GPD can be written as a the Radon transform of a
DD. In fact, in a recent paper it has been shown that merely partial DGLAP
knowledge of a GPD is (nearly) enough to construct a unique DD representa-
tion, from which the ERBL region contribution of the GPD may be computed
[120]. Because the polynomiality property involves integration over the en-
tire x domain at all relevant values of ¢, its satisfaction is only achieved when
the GPD model involved is defined over the entire domain of interest, which
involves both the DGLAP and ERBL regions. For this reason, [86] features a
covariant extension which passes first to DD space.

In order to start with a DGLAP GPD model and arrive at a corresponding DD
expression, one needs to compute an inverse Radon transform. One can
then covariantly extend uniquely to the ERBL region up to D-term-like contri-
butions.

In [86], the authors use a finite element method for numerical inversion of
the Radon transform, an ill-posed problem, in which integrals over "DGLAP
lines” in DD space takes place. These DGLAP lines are defined as

i —f—a& =0 (6.7)

with z¢ & &; chosen such that z; > &;, ensuring they correspond to the DGLAP
condition.

With such numerical results in hand, we would then choose to evolve them
to experimental scales for direct comparison to experimental results. In the
case of comparison with DVCS data, this would involve convolution with a
perturbatively calculable kernel for computation of the CFFs and the resultant
cross section.
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7 - Concluding Remarks

As discussed in the introductory chapter, the GPDs enter the descriptions
of various experimental processes including DVCS and DVMP. Corresponding
to this universality, which is ensured by proofs of factorization, GPDs are ex-
tremely valuable for experimental predictions. This value is compensated by
the difficulty of their extraction from experimental data of these processes,
cross sectional data, which is related to the GPDs via obscuring convolutions
with perturbatively calculable kernels. For this reason, constraint on the pre-
cise functional forms of various GPDs from a practical perspective should in-
volve inputs from lattice QCD computations, continuum techniques, etc. in
order to be compared to experiment.

In the second chapter it was explained that by employing a Bayesian reweight-
ing of ANN GPD candidates using lattice data a large uncertainty reduction of
the corresponding replica bundle may result. This requires that the correla-
tion of said lattice data be known, as highly correlated data, even albeit pre-
cise, simply chooses a single replica, thereby yielding unuseful results in any
loffe-time region in which such lattice data is introduced. Lattice data may
also be chosen/computed in a manner complementary to the shortcomings
resulting from the singular structure of the perturbative kernel associated
with the experimental data to which the ANNs were fitted, thereby providing
access to regions of the space of candidate functions to which the experimen-
tal data are insensitive.

In its third chapter, this thesis contains a specification of the overlap rep-
resentation of polarized and unpolarized DGLAP region GPDs via LFWFs of
definite gOAM derived from the decomposition a matrix element character-
izing contributions of three-quark Fock states of definite quark helicities in a
leading twist tensorial basis to the nucleonic state with definite helicity. This
characterization can be thought of in analogy with atomic physics, in which
(nonrelativistic) wave functions of distinct angular momentum-related quan-
tum numbers contribute to the total atomic configuration. It is also note-
worthy that LFWFs of non-zero qOAM contribute to the GPD H, implying that
they contribute even in the forward limit. This means that the polarized PDF
is sensitive to contributions of non-zero qOAM, which is striking given that we
associate the generalization of the PDF, the GPD, with direct access to qOAM
contributions via the Ji sum rules [29]. A simple Faddeev amplitude based
model for such LFWFs has been introduced in the fourth chapter, where it
has been outlined how they might be computed from a wealth of tensorial
structures, along with a simple example computation. These functions may
also be used to compute objects apart from GPDs, such as DAs [121],[112],
and the corresponding methods may be used to look at aspects of the bary-
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onic spectrum [109].

To compare these models to experiment, it will be necessary to first extend
the resulting DGLAP GPDs to the ERBL region, and subsequently to evolve the
resulting GPDs up to experimental scales, as has been done in the case of the
pion [86].

Further, there is much work to do on the modeling side. In this thesis it was
already a difficult task to calculate the contributions to the basis LFWFs of only
the simplest tensorial structure as a matter of proof of concept. As discussed
in the previous chapter, systemization of the incorporation of further tenso-
rial structures is a must for a proper understanding of contributions of gOAM
to the nucleon. In addition, more complicated methods of integrating in the
complex plane to recover lightcone amplitudes from Faddeev wave functions
may be used in conjunction with a running mass, as discussed in the previous
chapter.
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8 - Appendix

8.1. Notation and Conventions

8.1.1. Notation

1 .
+ 0 3
= (v’ £+7). 8.1
v \/5(7 7°) (8.1)
8.1.2. Fourier Convention
i =k, (8.2)
» — Y =ik, (8.3)
Pl — — kK (8.4)
8.1.3. Lightcone Vectors
For any Lorentz vector v
0., ,3 0_,3
+_v+v _ v =
vo= , U = , U N 8.5

8.2. Identities

8.2.1. Feynman Parametrization

One may rewrite integrals with many factors in the denominator as inte-
grals of sums over such factors by paying the price of introducing additional
integration parameters as

1 - Tlar+---+ay)
AT AT T () T(a) &0

[ LD SUAE
0 ! o (0 up Ag) Xk=1 7

where () > 0 and where the smallest possible subset of the complex
plane containing all of said quantities A; must not include 0 [122].
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8.3 . Polarized GPDs

We now turn to the polarized skewed quark distributions (marked by P =
1), H1(z,&;t) and E9(z,¢;t), defined by the Fourier transform of the axial
vector matrix element ([34])

1/ f = # Z iT Ptz VI R A e ?
o = sama X [ 5™ P IR
— Dl LI\~ _
_ U(P,fl)’}/ 75u(P7h) Hq(li‘,f;t) (87)
2P+,/1— &2
= / / / —+ .
+u(P,h),7)\)A vsu(P, h) Bz 1),
4m P+/1 - ¢2
Wi = - & (8.8)
++ —— 1_&2
TRy ALl V-t & =
Hor =00 = Ay 2m el 89
8.4 . Twist

As discussed in the third chapter, there are three linearly independent
Dirac algebraic structures whose contribution (as I') to the matrix element
defined in Eq. (2.24) yields a leading twist structure. They receive contribu-
tions from twist 7 = 2 GPDs, implying they do not receive suppression with
respect to Q. These structures are given by

I =~"9%y%, 0", (8.10)

where i is a transverse Lorentz index.
However, decompositions have been made for the same matrix element in
the case of DVCS for the Dirac structures (see [28])

I = *, 7%y, (8.11)

where € {0,1,2,3} is a Lorentz index. Because of the range of the index
u, the transverse and — indices are included in such decompositions, and
correspondingly higher twist structures enter the game. In [28], such twist
T = 3 structures are enumerated, and receive suppression with respect to

QI

8.5. Overlap Formulas
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Calculating the EFFs one finds

FEe) = [ denfPwo.0 = [ (0,0, )
1 1 22 272
Of’P(\Ifl 1,1 1)+ OPF (W 5,0 )
27 2 272 272
+Of’P(‘If; ET 2N g))\g -0 (8.12)

; 2My|A |

F{fe) = / deET® (2,0, 1) /d ML

2" (1) B @, (A1 + iDo)y/—1
GRS
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And their squared electric radii are expressed in these terms as

(EN7) = 6120 (FPYO0) + o FEYO(0) ) i (8.14)

2k = A L
MN(A;[ + iAg)

Oy
1

X/ dx(OO’“(\llfl 3,V §)+OO’“(\IJ
1 272 22

RN VA |
MN(Al + iAQ)

O

1
X / da:(@o’d(\l/_l 5, U1 s) + OM(T s, 0y _§)>\t=£=0
—1 27 2 22 272 2'7 3
N RN AL |
vV —tMN(Al +iA2)
1
X / dw(OO’u(‘P_l 5, Uy ) FOY(W_ 5,0, _§)) li—¢=0
-1 27 2 272 272 27 2
WAL
2/ —tMN(Al +7,A2)
1
X / dJI(OO’d(‘I/_; 5, W1 5) +FOYT_y 5, Ty _§)>\t=§=0
1 272 22 23 273

8.6 . Euclidean Modeling Coefficients

We now state the equations used to rewrite dependence on the [, ¢ basis
and the k1, k9 as a function of which quark does not participate in the diquark,
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which is labeled as the nth quark.

- 2 02

k| = 61,n€2+52,n(z+€-q+q2)+5g,n(z—£~q+q2) (8.15)

7 62 2 2 62 2

|koy| = 51,n(z—£-q+q)+5g,n€ +537n(z+€-q+q) (8.16)
2_20-q)01 2 +20-9)69n

b1y = cos (oL 200 (F+200)0on (g4

VR =4l g+4¢%) PP q+ @)
T (£2 — 4q2)537n )
V(2 422 —160-¢2)"

8.7 . Overlap Coefficients

The coefficients A;_7 are provided in their full glory for the case that the
active quark is the u1 and also that quark «1 is the bystander quark. Similarly
awful expressions exist for the other choices of active and bystander quark.
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The index i (o) labels incoming (outgoing) variables.

A = (h(—(—f tay—1) (8.18)
((€ + 22 — 1)(—asai(2] — €)%azso(x] — €)* + azig’
+aziz] — 2a3;€>
x% — a30§4 — agoafl1 + 2a30§2x% — 453 — 45:6% + 45:6%332 + 453:131
+4&xq +4§x1x§
—8Cw1my + 4E%2) — (€ — V(21 — &)
(§+z1 + 212 — 2)
x(ag4i (€ + 1) — agi(€ + z1)?
+HE =22+ 1)%) + (£ — Dug(—E+ 32— 1)
X((6 = D)€+ ma — 1) — (21 — £)?)(azai(€ + 21)% — as;
€+ @) + (€ —22+1)%)
+(€+ 1)v(€ +x1)
(€4 22 — 1) (=€ + 21 + 29 — 2)(a310(21 — &) — azo(z1 — £)?
HE+ a2 — 1)) = (h=1)(E+ Dy
(E 4z — D€+ Dvj(=E + 22— 1) + (E+21))
X (az40(w1 — €)= azo(x1 — €)* + (£ + 12 — 1)%) — (€ + 21)
€+ — D€+ Dy
X(=&+ x4+ 229 —2) — (E+21)
(=& + 22 — 1)) (asso(z1 — £)* — azo(w1 — &)?
(e + 22— 1) (
(€ + Dui((€+ Dvj(=E + w2 = 1) + (E+21)%) = (€ + 1)
x((€+1)v;
(=€+ a1+ 225 = 2) = (§+ 21)(=€ + 22 = D)) ((§ = D
x((§ = 1)y,
(E+m2—1) = (21— €)*) (@1 — (£ — Dy,
(E+ 1 + 220 — 2)

-1
= E+a 1)
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Ay = (h(a34i —az;) (=& +x2 — 1)3> (8.19)
X

(6 + V(€ + 1oi(=¢ + 22 = 1) + (€ +21)%)

(€t ) (€ + VY€ a1 +205 —2) — (E+ ) (€ +ar 1))
<a340 —1)( §+x2—1))

x((e - Wh(§+22—1) = (21 = §)°)

(01 = (€ = Vopl + 71 +222 = ) + (21 = O(§ + 72— 1))

+<CL30 -1) é—i—xg—l))
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8.8. Acronyms

ANN: Artificial Neural Network

AMC: Adaptive Monte Carlo

BH: Bethe-Heitler

BSA: Bethe-Salpeter Amplitude

CFF: Compton Form Factor

DA: Distribution Amplitude

DD: Double Distribution

DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

DIS: Deep Inelastic Scattering
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e DVCS: Deeply Virtual Compton Scattering

e DVMP: Deeply Virtual Meson Production

e EMC: European Muon Collaboration

e EMT: Energy Momentum Tensor

e ERBL: Efremov-Radyushkin-Brodsky-Lepage

e (E)FF: (Electromagnetic) Form Factor

e GK: Goloskokov-Kroll

e GPD: Generalized Parton Distribution

e HEPL: Hansen Experimental Physics Laboratory
e IPD: Impact Parameter Distribution

e IR: Infrared (Low energy)

e LFWF: Light Front Wave Function

e MAD: Median Absolute Deviation

o (NY)LO: (Next to)’ Leading Order

e (q)OAM: (quark) Orbital Angular Momentum

e PDF: Parton Distribution Function

e (p)QCD: (perturbative) Quantum Chromodynamics
e QFT: Quantum Field Theory

e SLAC: Stanford Linear Accelerator Center

e UV: Ultraviolet (High energy)

8.9 . Abbreviations

e eff: Subscript, "Effective", labels objects related to the remnants of
mass and momentum dependence left over after the ¢>* dependence

e rep: Subscript, labels objects of or pertaining to GPD replicas i.e. ANN
generated candidate GPDs

e Latt.: Superscript, "Lattice", labels statistics of the generated mock lat-
tice data

134



9 - Résumé détaillé en Francais

9.1. Introduction

In the 1960s, Gell-Mann proposed a quark model to explain a large spec-
trum of spin and charge values [4]. He introduced three flavors of spin-3
quarks: "up" (u), "down" (d), and "strange" (s), with charges 2, —3, and —3,
respectively. Quark spins were constrained to (anti)align to match the baryon
spins. The A™™ particle, with three u quarks and a total charge of +2, was
problematic due to the exclusion principle. To solve this, [5, 6] introduced a
"color" gauge group, SU(3), adding a quantum number called "color charge"
with three values. This allowed each u quark in the AT to have a different
color, satisfying the exclusion principle.

The non-Abelian SU(3) gauge group had significant consequences for the strong
force, leading to Quantum Chromodynamics (QCD). The Lagrangian density
of Quantum Electrodynamics (QED) describes spin-1/2 particles (e.g., elec-
trons) and electromagnetic fields, including terms for the fermionic field 1,
gauge covariant derivative D,,, electromagnetic field tensor F,,, and fermion
mass m. QCD's Lagrangian density describes quarks and gluons, including
terms for the quark field v, gauge covariant derivative D, with strong cou-
pling constant gs, gluon field tensor G, and quark mass m. The 3 functions
of QED and QCD determine the scale dependence of their coupling constants.
In QED, the coupling increases with energy scale, leading to the Landau pole.
In QCD, the coupling decreases at high energies (asymptotic freedom) and in-
creases at low energies, leading to confinement. This implies that only color-
neutral states are observable, a property known as color confinement.

9.1.1. Comparison with Experiment

To compare experimental results with theoretical predictions, theoretical
calculations must be structured to match experimental observables. Exper-
imental interactions and their probabilities are tabulated as cross sections,
calculated from sums of interaction amplitudes. Perturbation theory is one
method to express these amplitudes theoretically. In Quantum Electrody-
namics (QED), the coupling constant e allows for useful perturbative expan-
sions at low energy scales, with the QED Landau pole presenting no practi-
cal issue for calculations corresponding to current experiments. However, in
Quantum Chromodynamics (QCD), the Landau pole occurs at a relatively low
energy scale Aqcp, rendering perturbative QCD (pQCD) ineffective alone for
understanding nucleon substructure.

Deeply Inelastic Scattering (DIS) is a process revealing nucleon structure. Fac-
torization, the process of separating the cross section into perturbatively cal-
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culable and hard parts and corresponding perturbatively inaccessible soft
parts, has been proven for DIS, allowing predictions based on Parton Distri-
bution Functions (PDFs). However, extracting these PDFs from experimental
data poses challenges due to the convolution involved which makes the sep-
aration of the contributions due to individual quark flavors difficult.

The European Muon Collaboration (EMC) "discovered" the nucleon spin crisis,
revealing unexpected contributions to nucleon spin from QCD states beyond
valence quarks, inspiring investigations into Generalized Parton Distributions
(GPDs) to understand nucleon structure further. Deeply Virtual Compton
Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) are experi-
mental processes that allow probing the partonic substructure of nucleonic
targets. DVCS involves an incoming leptonic probe interacting with a nucle-
onic target, resulting in an unbroken nucleon in the final state along with a
second, final state photon and lepton. DVMP, on the other hand, produces
a meson in the final state in place of DVCS's final state photon. Both pro-
cesses involve factorization, where contributions from the soft and hard parts
of the interaction are separated. The nucleon Generalized Parton Distribu-
tions (GPDs), denoted as H(z,&,t) and E(x,&,t), describe the correlations of
the average partonic momentum fraction x for the active parton, the light-
cone kick parameter ¢, called the skewness, and the ¢, the squared momen-
tum transfer of the nucleon in the interaction. They are given in terms of
matrix elements involving quark and gluon fields. They satisfy various con-
straints, such as even parity with respect to £ and polynomiality properties.
These GPDs contribute to Compton Form Factors (CFFs), which are convo-
lutions of GPDs with a kernel function. These CFFs are used in the expres-
sion for the experimental cross-section. Furthermore, GPDs are connected to
Electromagnetic Form Factors (EFFs), which describe the internal structure of
nucleons The total angular momentum carried by quarks is related to the first
Mellin moments of the quark GPDs and is known as Ji's sum rule. Addition-
ally, Impact Parameter Distributions (IPDs) and loffe-time distributions pro-
vide alternative representations of GPDs in position-momentum space and
momentum-spatial space, respectively.

In addition, in the coming years, in addition to experimental data we expect
lattice QCD to provide useful data.

9.2. Reweighting

9.2.1. Artificial Neural Networks

In an ongoing effort to distinguish among the myriad candidate General-
ized Parton Distributions (GPDs) in an unbiased manner while ensuring ad-
herence to all necessary theoretical constraints. Artificial Neural Networks
(ANNs) have been employed to model GPDs. An example is the work by
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Dutrieux et al. [69], where Goloskokov-Kroll (GK) GPD pseudodata was uti-
lized to train ANNs. These ANNs were designed to produce candidate func-
tions satisfying most GPD properties. To assess further discrimination among
the candidate functions, mock lattice QCD data, systematically varied for com-
patibility with the candidate functions, was introduced.

Neural networks consist of layers of nodes. Feed forward neural networks,
like the ones used in this study, have connections only between adjacent lay-
ers. The output of each node j in layer ¢ > 1 is calculated using activation
functions and weighted sums of inputs from the previous layer. Universal
approximation theorems guarantee that sufficiently large networks can ap-
proximate any continuous function on a compact set. Activation functions,
often sigmoid functions, interpolate between 0 and 1. Notably, in the ANN
models used here, the activation function arguments feature nonlinearity in
the input variables a and § to ensure the fulfillment of certain GPD proper-
ties.

The ANN’s hidden layer neurons perform specific calculations to reproduce
certain properties of GPDs. Three extractions of GPDs using pseudo-data
generated with the GK model were performed, with different training datasets
and constraints. The genetic algorithm was employed for parameter mini-
mization, with regularization used to prevent biased results due to overfit-
ting. Dropout regularization was utilized, randomly dropping a predefined
fraction of neurons in each iteration of the minimization algorithm to pre-
vent fixation on training data details. This section focuses on the modeling of
the GPD H(z,¢&,t), with ¢ set to zero to examine the z — ¢ plane exclusively.
Represented in terms of the Radon transform of a Double Distribution (DD),
the ANN models discussed here aim to model the DDs corresponding to H.
Specifically, the odd combination H¢H) (z,£,0) = H9(z,£,0) — HY(—x,€,0),
representing the sea quark GPD, is studied. To achieve flexibility and repro-
duce known limits, the DD model comprises three terms: F¢, Fg, and Fp.
F¢ is designed to reproduce the forward limit and model the x = £ line, Fg
aims to reproduce deconvolution uncertainty and vanishes at certain lines,
and Fp models the D-term. F¢ is defined to ensure the proper reduction to
the forward limit and flexibility to model the z = ¢ line. Fg aims to repro-
duce deconvolution uncertainty and is written as the difference of two profile
functions. Lastly, Fp provides flexibility to model the D-term, crucial in char-
acterizing partonic matter.

Instead of using proper experimental data, Goloskokov-Kroll (GK) pseudodata
was employed as a proof of concept for the implementation of the network
architecture used in GPD modeling. The GK model, originally developed for
DVMP, has been successful in reproducing experimental measurements. The
GK pseudodata is limited by the assumptions inherent in the GK model.

9.2.2. Analysis
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Statistical techniques such as Median Absolute Deviation (MAD) are dis-
cussed as a method for estimating uncertainty, particularly when defining
outliers in the data set is challenging. MAD provides a robust estimation of
standard deviation without the need for defining outliers explicitly, making it
suitable for analyzing data sets where defining outliers may be arbitrary. The
comparison between standard deviation and MAD illustrates the robustness
of MAD in estimating the spread of data sets, particularly in the presence
of outliers. Now understanding both the origin of the GPD replicas (candi-
date functions) and an important statistical estimator to be employed later
in the corresponding chapter, it is necessary to take a look at the reasoning
for which and method by which mock lattice data has been generated for the
forthcoming impact study of its discriminating effect with respect to the ANN
GPD replicas. These two points are respectively delineated as well.

9.2.3. Mock Lattice Data

The choice to use mock lattice data for this impact study is informed by
two key points. The first of these reasons is a lack of access to lattice data.
The second, which is an advantage rather than a disadvantage of using mock
data, is the ability to systematically control the agreement of the mock data
with the set of GPD replicas considered. This systematic control was achieved
via the use of parameters controlling the precision and the correlation of the
mock lattice data. Based on actual lattice studies such as the one cited, one
draws the conclusion that current state-of-the-art lattice GPD extractions are
not equally facilitated in all kinematic ranges. Lattice GPD data is typically pre-
sented in loffe-time space, as calculations occur on an Euclidean spacetime
lattice, rather than in momentum space. However, it is worth noting that
the lattice data after which the mock lattice data generated in this study was
modeled was not matched to the lightcone, but exists along some Euclidean
direction. Therefore, a proper study comparing replica to mock lattice data
would not have taken place on the lightcone, but off the lightcone. Therefore,
all calculations comparing and combining ANN GPD replicas to mock lattice
data are performed in loffe-time space. As the ANN fitted singlet GPD, H,
of the nucleon is that which is treated here, its odd parity in the longitudinal
momentum fraction z allows the limitation of the corresponding loffe-time
studies to the imaginary part of H. This method generates mock lattice data
which is in general compatible with the central value of the band of replicas
within the precision generated by the function g. However, thus far, the data
generation treats all mock lattice data points as uncorrelated. To take this into
account in our impact study, mock lattice data is generated in three distinct
loffe-time regions, wherein intracollaboration correlationissetto 0 < ¢ < 1,
and intercollaboration correlation is set to zero. Fig. 9.1 illustrates a mock
lattice dataset overlaid with the replicas generated by our GPD model. With a
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Figure 9.1: Shown are the ensemble of GPD replicas spanning loffe times
fromv =0tov =6 até = 0.1 (indicated in green), along with their median (in
blue) and the 1o band (in red), which corresponds to b = 1.1 (top) and b = 2
(bottom). Additionally, the mock lattice data set generated accordingly with
¢ = 0 (left) and ¢ = 0.5 (right) is depicted in orange.

method for generating systematically controlled mock lattice data in terms of
both its precision and adherence to the set of GPD replicas, and the correla-
tion between all such generated data in hand, it is now possible to influence
the associated uncertainty of the replica band using such mock lattice data
to assess the potential discriminating ability of lattice data. In the study dis-
cussed here, a Bayesian reweighting procedure employing the mock lattice
data as a prior was chosen, aiming to investigate the resulting uncertainty of
the set of GPD replicas without costly refits. So far, the discussion largely ig-
nored the skewness of the GPD, focusing on analysis in z and v. In the final
sections, discussions of skewness will play an important role, necessitating
an outline of the Bayesian reweighting procedure employed. The precise pro-
cedure delineates the assignment of weights to each replica based on their
agreement with the mock lattice data, leading to a reweighted median and
standard deviation of the replica set. These quantities provide a measure of
uncertainty reduction on the band of replicas.
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9.2.4 . Results of Reweighting

Data Results

Eused Precision Correlation  &shown T r, Tlng

0.1 Low Low 0.1/0.5 047 0.25/0.92 0.82/1.24

0.1 Low High 0.1/05 0.83 0.85/093 1.02/1.15

0.1 High Low 0.1/0.5 030 0.16/0.90 0.78/1.08

0.1 High High 0.1/05 046 0.23/091 0.82/1.23
0.5 Low Low 0.5 0.36 0.44 0.67
0.5 Low High 0.5 0.52 0.58 0.64
0.5 High Low 0.5 0.1 0.25 0.54
0.5 High High 0.5 0.37 0.51 0.77
0.10.20.3 Low Low 0.5 0.30 0.62 0.95
0.10.20.3 Low High 0.5 0.77 0.82 1.00
0.10.20.3 High Low 0.5 0.10 0.34 0.54
0.10.20.3 High High 0.5 0.30 0.61 0.73
0.10.20.30.40.5 Low Low 0.5 0.16 0.19 0.66
0.10.20.30.40.5 Low High 0.5 0.57 0.65 0.75
0.10.20.30.40.5 High Low 0.5 0.03 0.13 0.45
0.10.20.30.40.5 High High 0.5 0.18 0.25 0.77

Table 9.1: Results as dependent on the reweighting parameters. Low
Correlation: ¢ = 0, High Correlation: ¢ = 0.5, Low Precision: b = 1.1,
High Precision: b = 2. r,,: Average uncertainty retainment in z, r,:
Average uncertainty retainment in v, 7: Effective fraction of replicas
retained post-reweighting.

We compare the uncertainty retainments resulting from different amounts
of mock lattice data at low to mid skewness levels (¢ € {0.1}, £ € {0.1,0.2,0.3},
¢ € {0.1,0.2,0.3,0.4,0.5}) with those observed in the previous section at
purely midrange skewness. The key findings include:

e Reweighting with large uncertainties and low precision (b = 1.1) and
correlated data (¢ = 0.5) significantly reduces uncertainty in loffe-time
at& =0.5.

e Adding data at ¢ = 0.1 improves uncertainty retainment at ¢ = 0.5, but
furtherinclusion of dataat¢ € {0.1,0.2,0.3}and ¢ € {0.1,0.2,0.3,0.4,0.5}
tightens uncertainty retainment at ¢ = 0.5. However, direct reweighting
at ¢ = 0.5 with b = 2 and ¢ = 0.5 yields better results.

Furthermore, we present a Tab. (9.1) illustrating the impact of varying levels
of noise and correlation on the retention processes. Additionally, we use Fig.
9.2 to compare reweighting effects at various values of £ by presenting the
effective fraction of retained replicas (7) and the retainment of uncertainty in
both loffe-time and momentum space.
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Figure 9.2: The effective fraction of replicas retained following reweighting
T (illustrated by the green curve), preservation of uncertainty in loffe time
(shown by the blue curve), and in momentum space (represented by the red
curve) for various combinations of high and low noise (designated as b = 1.1
and 2 respectively) and low and high correlation (indicated as ¢ = 0 and 0.5
respectively).
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Examining Fig. 9.2, we observe that at mid-range skewness, the effective frac-
tion of retained replicas after reweighting (7) is roughly equal in both low cor-
relation low precision and high correlation high precision scenarios. This com-
pensatory relationship between precision and correlation could guide lattice
practitioners in allocating computational resources effectively.

It is important to note that by employing a Bayesian approach to merge ex-
perimental and lattice knowledge on GPDs, proving effective when lattice
data aligns well with the prior model, has yielded approximately 40% uncer-
tainty at midrange skewness. Nonetheless, our study underscores the ne-
cessity of addressing correlations within lattice data for a joint extraction, as
real lattice data often exhibit high degrees of correlation and systematic ef-
fects that require careful management to prevent biases in uncertainty as-
sessment.

9.3 . Continuum Techniques for GPD Modeling

The analysis pursued here of generalized parton distributions of nucleons

involves expanding matrix elements using light-front wave functions (LFWFs).
This approach elucidates the connection between nucleonic states and the
amplitudes defined on the light front, offering insights into definite quark or-
bital angular momentum (OAM) contributions to GPDs and related objects.
By examining the Fock expansion of nucleonic states in which LFWFs appear
as momentum and quantum number dependent coefficient functions, one
can consistently truncate such Fock expansions for practical computations,
at the cost of limiting the kinematics of the computation to |z| < |¢]. This
allows the representation of GPDs to be expressed in terms of overlaps of
LFWFs, including only the contributions from valence quarks.
The matrix element used to characterize the three-quark Fock states con-
tributing to a nucleon state |P; k) (with h = +3) involves an operator that
creates a color-neutral three-quark state. In momentum space, we repre-
sent this matrix element in terms of various tensorial structures which we
then project onto definite quark helicity projection states, which correspond
to definite qOAM values. This tensorial basis’ components, imparted with
corresponding coefficient functions called auxiliary functions some of whose
linear combinations give the Light-Front Wave Functions, then provide a way
to extract such LFWFs from a given model for such a matrix element via selec-
tive Dirac traces. By reducing the employed tensorial basis into a smaller set
of tensors by enforcing u-quark symmetry and isospin symmetry, the LFWFs
may be identified as has been done in the literature [90].

9.4. Overlap Representation of GPDs
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To characterize the contributions of three-quark states to Generalized
Parton Distributions (GPDs) and related objects, we can take advantage of
the overlap representation of GPDs [34]. This approach clarifies which pairs
of three-quark Fock states contribute to GPDs by using their overlaps. Before
beginning this section we define the convenient lightcone coordinates:

) 403 5

, U = (v1,v2),v =
N (v1,v2) 7

9.4.1. Overlap Formula

). 9.1)

The active quark’s initial and final state momenta reflect the momentum
transfer due to the interaction with the photon. To see which combinations
of incoming and outgoing Fock combinations contribute, let's look at the in-
volved quantum numbers. The collective quantum numbers Q; for the Ith
quark are defined as:

Momentum: x; = (xl,Ell),

Helicity: )\;,

Color: ¢,

Flavor: f;,

The overlap formula for the helicity dependent amplitude H,{,h(:f:, &, t)is given
by:

My (2. 6.1) = WZ [ TP K- D )P
(9.2)
= Of [SOSA(QI);}ZI7 ()OQ;h:| (x7§7t)7 (93)

where f is the active quark flavor, ¢ is a color index, P(’) and h(’) are the
incoming (outgoing) nucleon momenta and helicities, z = (27 = 0,2, =
0.,2") is a minus direction spatial vector, P is the average plus momentum
of the nucleon, (jf(—f)fy qf( ) is a bilocal quark field bilinear, and S is the
Ath permutation of the permutation group S3 over all six of which we sum.
Here, O/ [/, ¢] represents the overlap function between the LFWFs of the
initial and final states.

9.4.2 . Master Overlap Formula: GPDs and Subresults
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The GPDs H/ and E/ are expressed in terms of the helicity dependent
amplitudes:

; ; 29 My|A
o =wl |+ §2My| A —— 1/, (9.4)
PED) A1+7/A2 \/752 4§m 272
;i 2My|ALV1-€8 f
B = LARETE (9.5)
462 M2 —315

(A1 +iAg) i —t

We can represent the helicity dependent amplitudes in terms of LFWF over-
laps, where our LFWFs ¥, 5 are labeled by the corresponding proton helicity
h and the total quark helicity projection Ay, such that gOAM=h — Ax. In terms
of our definite quark orbital angular momentum (qOAM) LFWFs we have:

i, = (Of(\pl LU ) 0N W ) (9.6)
53 272 272 2 272
+Of<\I/;§,\I/;§)—|—Of(\I/1 3 qf;_g))
22 272 2 2:7 %
Hfllz (Of(\I/_;_g,\Ifl§)+Of(\1’_;§,\111_§)>. (9.7)
T 202 27 2 272 272 277 2

While the helicity conserving amplitude receives only diagonal contributions
in gOAM, the helicity flip one receives only off-diagonal contributions. This
does not violate our expectations, as it means that the helicity flip GPD F,
which receives contributions only from the helicity flip amplitude H_1 1, re-
ceives only off-diagonal contributions in qOAM. Further, the PDF, which is re-
lated to the probability of finding a parton (quark here) of a particular flavor
carrying a particular fraction of the longitudinal momentum of the nucleon,
is given in the forward limit of the expression for the GPD H as

ff’P(xBJ) = HIP t=¢=0 = (9.8)
(Of’P(\I/%},‘IJ )+Of’P(\I/%,7%,‘1/

N

1
2

M

—l—C’)f’P(\I/ 3, §)+(9f’P(\I/; _3,¥ _§)>\t=5=07
2 2 27 2 27 2

N

3
which, though receiving only diagonal contributions in qOAM, interestingly
receives non-zero qOAM contributions.

Now that we have specified the overlap representation to the three quark
case and to the objects of our interest, and we know how to extract the LFWFs
from a general three quark matrix element from the literature, we turn to
modeling such a matrix element in order to perform such extractions.

9.5. The Diquark Model

This work focuses on modeling nucleon properties using a quark-diquark
approach, treating the diquark as a composite two-body system rather than
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a point-like entity, which allows for the inclusion of diquark internal p-wave
correlations often neglected in simpler models [103]. The analysis herein em-
ploys Bethe-Salpeter formalism and Faddeev equations [96] to characterize
nucleon states and extends Euclidean space results to the lightcone through
Mellin moments. This method involves constructing Light-Front Wave Func-
tions (LFWFs) by addressing the complexities of translating models from Eu-
clidean space (model Fadeev amplitudes) to the lightcone (as LFWFs).

9.5.1. Mellin Reconstruction

To transform Faddeev amplitudes computed in Euclidean space into Light-
Front Wave Functions (LFWFs) defined on the lightcone, we need to manage
the transition of lightcone time arguments to zero. This involves integrating
over specific parameters to handle momentum fractions and projections. In
Minkowski space, the LFWF is given by:

U(xy, ki ;a0,ket) = N/dkl;Mdkg;MX(kl;MakZJW)a (9.9)

where N is a normalization constant. Since computations are in Euclidean
space, we use the Mellin transform to avoid complex contour integrations.
The Mellin moment of a function f(z) of order m is:

/da:xmf(x), (9.10)

with bounds 0 < z < 1. Two functions with identical Mellin moments are
equivalent [1713]:
/dxa:mf(:c) = /dmxmg(x), Vm e N (9.11)
= flx) = g(x). (9.12)
The longitudinal momentum fraction z; in Euclidean variables is:

ma (kg - ng)™
gt o= SETE) (9.13)
(Pg - ng)™

where n% = 0 ensures projection onto the + lightcone component. Using
Mellin moments, we reconstruct the z; » dependence of LFWFs with:

1 1—x1
m m
/ dazl/ daox" x5 U (21, ki1 2, kal)
0 0

(kg -nE)™ (kg2 -ng)™
(PE . nE)m1 (PE . TLE)m2

Trpirac {eroj. X (k125 k2;5) } (9.14)

= Normalization / Ak} pdky, pdk3, pdks. g

where I'prq;. is a Dirac structure used for extracting contributions. This method
is discussed in [112].
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9.5.2 . Identification of Mellin Variables

To compute fundamental contributions to the six LFWFs, a Euclidean quark-
diquark correlation model of the nucleon is used. Tensorial structures are
introduced, contracted, and Mellin moments are calculated to extract contri-
butions to the LFWFs. Define the quark propagator as:

S(p) = [~iv-p+ M, D, (p?), (9.15)
1
Dy(s) = ST M2 (9.16)

and the Nakanishi representation of the simplest tensorial contribution to the
diquark vertex using the basis / and ¢:

1

nlHCt = i%/ldzpu(Z)DAq(qz), (9.17)

with ¢. = ¢+ % (3P — ¢) and p,(z) a Nakanishi weight function taken to be a
polynomial. The diquark propagator in terms of diquark momentum K and a
Nakanishi representation of the simplest tensorial contribution to the quark-
diquark correlation are given respectively by:

1
AT(K) = ———, 9.18
) = 918
‘ 1 R 1 3

Here, P is defined as (0,0, 0,iMy) and quark momenta are:

P

ki = 3 + /£, (9.20)
P 7

ko= 5 o5a (9.21)
P 7

where ¢ is the diquark internal momentum difference and [ is another vari-
able crafted to be real. The projected Faddeev amplitude when quark 1 is not
included in the diquark (bystander) is:

ZJ\L

33

X 7; = S(k2)oz2oz’2 [FO (Q) K)]agags(ki%)a:;ag AOST(kl)O/lOél S1af,0 (9.23)

Which can then be projected onto the quark helicity projections contributing
to auxiliary function 1!, the simplest qOAM= 0 auxiliary function

Xaiazls, = (ALY, o Saor (ka)TRN S, (k2) (9.24)

(LT (CHT L asar Sayay (F1)$1040 A (ks + k3). (9.25)
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Projecting on + for the leading twist operator:

T LTS (k)T ST (ko) (LM (O LTS (k) SIA (ks + )

= S TS (ks T ST (ho) ML o (b s (6, Po) ey BT A + )]
The essential approach for extraction is to compute the Mellin moments of
the quark-diquark correlation model and use them to directly extract LFWFs.
This avoids the complications of particularly messy contour integrations and
leverages the integral moments to obtain LFWFs.

To combine the denominators of all of the structures of our model we use
the Feynman parametrization, introducing quite a few variables over which to
integrate. We can then identify the Mellin moments of the auxiliary function
wl,—l as

1 1—x1
m1,.ma,;1,—1 oo L
/ dxl/ dagx™ x5 (1, k115 @2, ko)
0 0

1 1-a B’ 1-a a
= / do_z/ dﬂ// dv’/ du// dasy (9.26)
0 0 0 4 0
1 asq
/ dCLl/ das

—ml /m2g( B/ U U a347a17a37k1L7k2L)
p /
h@, B!\ v'y aga, a1, az, k1, ko)

— Ny, Ky we, ko)
1—x1 x1
= / dv/ du/ da34/ dal/ das
0
g(x1, 9,0/, V', azq, a1, az, k11, ko) (9.27)

h(I’l, X2, U/, Ulv as34, ala as, liJ kZL)

While we must perform a 5D integral over Feynman parameters to compute
411 at a single point, we now have an expression we can use. In the next
section we show an example plot of zero transverse quark momentum.

9.6 . Results

Here we show a contour plot of the ;23 dependence of the auxiliary
function 1»>~1. There is a noticeable symmetry between the momentum frac-
tions 2 3. Although there is some clear numerical instability, the longitudinal
momentum fraction z1, corresponding to the bystander quark (the one which
does not participate in the diquark), carries in general a preferentially high
portion of the longitudinal momentum.
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Figure 9.3: A Plot of the function %! for |k; | = |k2.| = 0 is shown. This
plot is a contour plot, given on a triangular domain due to the momentum
conservational constraint 1 = 7 | x;. The normalization has not been set
due to any physical constraints, and is consistent among all of the LFWF plots
given in this document. The normalization is calculated by computing the
largest value of 1:~! among all of the computed values, and scaling all plots
such that that maximum value becomes 6, in order to align with the color
scales of these plots. We remind the reader that the transverse momenta are

given in units of the nucleon mass My.

9.6.1. The PDF

To compute contributions of various Light-Front Wave Functions (LFWFs)
to GPDs and their limits, we must first compute their overlaps. Starting with
the function ¢ 1

pht = N(v,0) /[df]ﬁpu(al —az4)” *(azs —az)’(1 — zg)””MX,Q("”*”)

4l M1 A% M4
x [M_fv +(1- al)(M_JQV - §) + (a1 - a34)(M_12v A+ ag(M—JQV - 5)
M3 o2 4 1,1 (0+2+v)
+(az4 — as)(%;vqﬁ —g)t (@2 5)2]
x[z1(V (21 — 2(1 — 22)) + 21(1 — 22)) + @' (V' (1 — 2) — (1))
(@ -y, (9.28)
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Here, N (v, o) is a normalization factor. To calculate the contribution of this
function’s overlap with itself to the GPD H when quark 1 is active, we start
with the transverse momentum dependent term, using a new Feynman parametriza-

tion:

a —a
(1+ ﬁﬁ)kﬁ + (ags — ag)k2, (9.29)
— N o ~ o] —(0+24v)
+2a3fiag$1k‘u kil + MQ] , [(1
—1 4z in
a34 — a as4 —az - -
"‘ﬁﬂf%)k%L + (CL34 — ag)k%L + 2—317—|—1';))x1klj‘ . ]’ClL
~ o] —(0+24v)
M2]
+ out

1
= / dh [Alki + Aok3 ) + AsAT + Agkry ko
0

FAsk1L AL+ Agkay - Ay + Aq]2ot2H)

where M includes non-transverse-momentum terms. By shifting the trans-
verse momenta:

~ - Ay As
= — — A .30
ki1 k‘u+2Alk‘2L+2Al 1 (9.30)
kot = kot + AgAl,
we redefine for convenience:
- A2
Ay = Ay— 4 9.31
2 2~ 14, ( )
~ AyAs
A = _
6 6 9,
~ i2
A3 = 3 — A~6 .
245
The expression simplifies to:
1 - B _— —2(c+24v)
/ dh [Alku + Ask2, + AsA? + Ay . (9.32)
0
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Integrating over both k; » gives:

[N(V, o) /[dfm]ﬁp,,(al - a34)‘7—2(a34 —a3)’(1 - 1:2)”+2 (9.33)
x[r1 (v (21 — 2(1 — 22)) + 21(1 — 22))

—l—’l_L/('Ul(l _ x2) _ ($1)2)]_V_1(1_L/ _ U/)Qu—l:|in

[500) [ ldfilpouar — a)” (o — ) (1 — 22)*
X[z (V' (21 — 2(1 — 22)) + 21 (1 — x2))
—H]/(U/(l o xg) o ($1)2)]_V_1(ﬂ/ o U/)2u—1}

out

—2(o+1+4v) ~ -1
} [A1A3(0+1/+1)(3—|—20—|—21/)} .

a2 [l ~
x/ dh[AgAi+A7
2 Jo

In order to compute the GPD (or PDF) at a given point we must therefore
compute a 13-dimensional numerical integral, as we must integrate over the
11 Feynman parameters as well as the inactive longitudinal momentum frac-
tion z9 and the transverse momentum angle #,5. This large dimensional inte-
gration involves some noisiness, especially if we would like to compute such
integrals efficiently. We chose to use Adaptive Monte-Carlo integration, and
not Gauss-Kronrod, which is more accurate but less efficient [118, 1.

We therefore show the contributions of the auxiliary function %! to the
PDF. While noisy, there is a clear non-zero signal. Further, the large x; tail
reflects the previously mentioned tendency for the longitudinal momentum
to be held by the bystander quark, ;. In addition, as previously mentioned,
there is an approximate us-d3 symmetry, as they are the diquark participants.
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Figure 9.4: The results for the forward limit of ¥~ self overlaps (PDFs) are
shown. The red curve corresponds to that of the bystander quark w1, the
blue to the participant quark u2, the brown to the participant quark d(3), and
the purple to the total u quark contribution. This result has been computed
using Adaptive Monte-Carlo integration with 1001 points along the z axis,
and is extremely noisy. Even so, there is a clearly visible signal which is not
compatible with zero.

9.7 . Conclusion and Outlook

GPDs are essential for making experimental predictions in processes such
as DVCS and DVMP, due to their universal nature ensured by factorization
proofs. However, extracting GPDs from experimental data is complex due to
convolutions with calculable kernels. Practical constraints on GPDs should
incorporate inputs from lattice QCD computations and other techniques for
comparison with experiments.

Bayesian reweighting of ANN GPD candidates using lattice data can signifi-
cantly reduce uncertainty, provided the data's correlation is known. Comple-
mentary lattice data can address the limitations of the perturbative kernel in
experimental data, offering insights into otherwise inaccessible regions.
Polarized and unpolarized DGLAP region GPDs can be represented through
LFWFs of definite qOAM, contributing to the GPD H even in the forward limit,
linking polarized PDFs to qOAM contributions via the Ji sum rules. A simple
model for such LFWFs demonstrates computation from tensorial structures.
To align these models with experimental data, extending DGLAP GPDs to the
ERBL region and evolving them to experimental scales is necessary. Further
efforts in modeling, including systemizing tensorial structures and integrating
complex plane methods with a running mass, are crucial for a more intimate
understanding of definite gOAM contributions to the nucleon.
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10 - Résumé détaillé en Francgais

10.1. Introduction

Dans les années 1960, Gell-Mann a proposé un modeéle de quarks pour
expliquer un large spectre de valeurs de spin et de charge [4]. Il a introduit
trois saveurs de quarks de spin-% > "up” (u), "down" (d) et "strange" (s), avec
des charges de 2, —1, et —1, respectivement. Les spins des quarks étaient
contraints de s'(anti)aligner pour correspondre aux spins des baryons. La
particule A**, avec trois quarks u et une charge totale de +2, posait prob-
léme en raison du principe d’exclusion. Pour résoudre cela, [5, 6] ont introduit
un groupe de jauge "couleur", SU(3), ajoutant un nombre quantique appelé
"charge de couleur" avec trois valeurs. Cela permettait a chaque quark u dans
la ATT d'avoir une couleur différente, satisfaisant ainsi le principe d'exclusion.
Le groupe de jauge non abélien SU(3) avait des conséquences significatives
pour la force forte, conduisant a la Chromodynamique Quantique (QCD). La
densité lagrangienne de I'Electrodynamique Quantique (QED) décrit les par-
ticules de spin-1/2 (par exemple, les électrons) et les champs électromagné-
tiques, incluant des termes pour le champ fermionique 1, la dérivée covari-
ante de jauge D, le tenseur de champ électromagnétique F),, et la masse
du fermion m. La densité lagrangienne de la QCD décrit les quarks et les glu-
ons, incluant des termes pour le champ de quarks v, la dérivée covariante
de jauge D, avec la constante de couplage forte g, le tenseur de champ de
gluons G, et la masse du quark m. Les fonctions 3 de la QED et de la QCD
déterminent la dépendance a I'échelle de leurs constantes de couplage. En
QED, le couplage augmente avec 'échelle d'énergie, menant au pdéle de Lan-
dau. En QCD, le couplage diminue a hautes énergies (liberté asymptotique)
et augmente a basses énergies, menant a la confinement. Cela implique que
seuls les états neutres en couleur sont observables, une propriété connue
sous le nom de confinement de couleur.

10.1.1 . Comparaison avec I'Expérience

Pour comparer les résultats expérimentaux avec les prédictions théoriques,
les calculs théoriques doivent étre structurés pour correspondre aux observ-
ables expérimentales. Les interactions expérimentales et leurs probabilités
sont répertoriées sous forme de sections efficaces, calculées a partir de sommes
d'amplitudes d'interaction. La théorie des perturbations est une méthode
pour exprimer ces amplitudes théoriquement. En Electrodynamique Quan-
tique (QED), la constante de couplage e permet des développements pertur-
batives utiles a des échelles d'énergie basses, le p6le de Landau de la QED ne
posant pas de probléeme pratique pour les calculs correspondant aux expéri-
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ences actuelles. Cependant, en Chromodynamique Quantique (QCD), le pble
de Landau se produit a une échelle dénergie relativement basse Aqcp, ren-
dant la QCD perturbative (pQCD) inefficace seule pour comprendre la sous-
structure du nucléon.

La Diffusion Inélastique Profonde (DIS) est un processus révélant la structure
du nucléon. La factorisation, le processus de séparation de la section efficace
en parties calculables perturbativement et parties inaccessibles perturbative-
ment, a été prouvée pour la DIS, permettant des prédictions basées sur les
Distributions des Partons (PDFs). Cependant, extraire ces PDFs des données
expérimentales pose des défis en raison de la convolution impliquée, ce qui
rend difficile la séparation des contributions dues aux différentes saveurs de
quarks.

La Collaboration Européenne des Muons (EMC) a "découvert" la crise du spin
du nucléon, révélant des contributions inattendues au spin du nucléon provenant
des états de la QCD au-dela des quarks de valence, inspirant des recherches
sur les Distributions Généralisées des Partons (GPDs) pour comprendre da-
vantage la structure du nucléon. La diffusion Compton a grande virtualité
(DVCS) et la production de mésons a grande virtualité (DVMP) sont des pro-
cessus expérimentaux permettant de sonder la sous-structure partonique
des cibles nucléoniques. La DVCS implique une sonde leptonique entrante
interagissant avec une cible nucléonique, résultant en un nucléon non brisé
dans l'état final ainsi qu'un second photon et un lepton dans l'état final. La
DVMP, quant a elle, produit un méson dans l'état final a la place du photon
de I'état final de la DVCS. Les deux processus sont factorisables, ou les con-
tributions des parties molles et dures de l'interaction sont séparées. Les Dis-
tributions Généralisées des Partons (GPDs) des nucléons, notées H (z, &, t) et
E(x,&,t), décrivent les corrélations de la fraction moyenne d'impulsion par-
tonique = pour le parton actif, le paramétre de coup de cone de lumiere &,
appelé la skewness, et le ¢, le transfert d'impulsion carré du nucléon dans
I'interaction. Elles sont données en termes d'éléments de matrice impliquant
les champs de quarks et de gluons. Elles satisfont diverses contraintes, telles
que la parité paire par rapport a & et les propriétés de polynomialité. Ces
GPDs contribuent aux Facteurs de Forme de Compton (CFFs), qui sont des
convolutions de GPDs avec une fonction noyau. Ces CFFs sont utilisés dans
I'expression de la section efficace expérimentale. De plus, les GPDs sont liées
aux Facteurs de Forme Electromagnétiques (EFFs), qui décrivent la structure
interne des nucléons. Le moment angulaire total porté par les quarks est
lié aux premiers moments de Mellin des GPD des quarks et est connu sous
le nom de regle de somme de Ji. De plus, les Distributions des Parametres
d'Impact (IPDs) et les distributions du temps d'loffe fournissent des représen-
tations alternatives des GPDs dans l'espace position-impulsion et 'espace impulsion-
spatial (longitudinal-transversale), respectivement.
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De plus, dans les années a venir, en plus des données expérimentales, nous
nous attendons a ce que la QCD sur réseau fournisse des données utiles.

10.2. Repondération

10.2.1. Réseaux de Neurones Artificiels

Dans un effort continu pour distinguer parmi la myriade de candidats
pour les Distributions Généralisées des Partons (GPDs) de maniére impartiale
tout en garantissant le respect de toutes les contraintes théoriques néces-
saires, les réseaux de neurones artificiels (ANNs) ont été utilisés pour mod-
éliser les GPDs. Un exemple est le travail de Dutrieux et al. [69], ou les
pseudo-données GPD du modele Goloskokov-Kroll (GK) ont été utilisées pour
entrainer les ANNs. Ces ANNs ont été congus pour produire des fonctions
candidates satisfaisant la plupart des propriétés des GPDs. Pour évaluer da-
vantage la discrimination parmiles fonctions candidates, des données fictives
de QCD sur réseau, systématiquement variées pour étre compatibles avec les
fonctions candidates, ont été introduites.

Les réseaux de neurones consistent en des couches de noceuds. Les réseaux
de neurones a action directe, comme ceux utilisés dans cette étude, ont des
connexions uniguement entre les couches adjacentes. La sortie de chaque
nceud j dans la couche¢ > 1 est calculée en utilisant des fonctions d'activation
et des sommes pondérées des entrées de la couche précédente. Les théorémes
d'approximation universelle garantissent que des réseaux suffisamment grands
peuvent approximer toute fonction continue sur un ensemble compact. Les
fonctions d'activation, souvent des fonctions sigmoides, interpolent entre 0
et 1. Notamment, dans les modéles ANN utilisés ici, les arguments de la fonc-
tion d'activation présentent une non-linéarité dans les variables d'entrée « et
B pour garantir le respect de certaines propriétés des GPDs.

Les neurones de la couche cachée de 'ANN effectuent des calculs spécifiques
pour reproduire certaines propriétés des GPDs. Trois extractions de GPDs
utilisant des pseudo-données générées avec le modéle GK ont été réalisées,
avec différents ensembles de données d’entrainement et contraintes. Lalgorithme
génétique a été utilisé pour la minimisation des parametres, avec une régu-
larisation utilisée pour éviter des résultats biaisés dus au surajustement. La
régularisation par dropout a été utilisée, éliminant aléatoirement une frac-
tion prédéfinie de neurones a chaque itération de l'algorithme de minimisa-
tion pour empécher la fixation sur les détails des données d'entrainement.
Cette section se concentre sur la modélisation de la GPD H (z, &, t), avec t fixé

a zéro pour examiner exclusivement le plan x — £. Représenté en termes de
la transformée de Radon d'une Double Distribution (DD), les modéles ANN
discutés ici visent a modéliser les DDs correspondant a H. Spécifiquement,
la combinaison impaire H4) (z,£,0) = HY(z,£,0) — HY(—x,£,0), représen-
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tant la GPD des quarks de mer, est étudiée. Pour obtenir de la flexibilité et
reproduire les limites connues, le modele DD comprend trois termes : F¢,
Fg et Fp. Fe est congu pour reproduire la limite avancée et modéliser la
ligne x = &, Fg vise a reproduire l'incertitude de déconvolution et disparait
a certaines lignes, et F'p modélise le terme D. F est défini pour assurer la
réduction correcte a la limite avancée et la flexibilité pour modéliser la ligne
x = &. Fg vise a reproduire l'incertitude de déconvolution et est écrit comme
la différence de deux fonctions de profil. Enfin, Fp fournit de la flexibilité
pour modéliser le terme D, crucial pour caractériser la matiere partonique.
Au lieu d'utiliser des données expérimentales appropriées, les pseudo-données
Goloskokov-Kroll (GK) ont été employées comme preuve de concept pour la
mise en ceuvre de l'architecture du réseau utilisée dans la modélisation des
GPDs. Le modele GK, initialement développé pour la DVMP, a réussi a repro-
duire les mesures expérimentales. Les pseudo-données GK sont limitées par
les hypothéses inhérentes au modéle GK.

10.2.2. Analyse

Des techniques statistiques telles que la médiane de la déviation absolue
(MAD) sont discutées comme méthode d'estimation de l'incertitude, en par-
ticulier lorsque définir des valeurs aberrantes dans le jeu de données est
difficile. MAD fournit une estimation robuste de l'écart type sans avoir be-
soin de définir explicitement des valeurs aberrantes, ce qui le rend adapté
a l'analyse des jeux de données ou la définition des valeurs aberrantes peut
étre arbitraire. La comparaison entre 'écart type et MAD illustre la robustesse
de MAD dans l'estimation de la dispersion des jeux de données, en particulier
en présence de valeurs aberrantes. Comprenant maintenant a la fois l'origine
des répliques GPD (fonctions candidates) et un estimateur statistique impor-
tant a utiliser plus tard dans le chapitre correspondant, il est nécessaire de
jeter un coup d'ceil au raisonnement pour lequel et la méthode par laque-
lle des données de réseau fictives ont été générées pour l'étude d'impact a
venir de son effet discriminant par rapport aux répliques ANN GPD. Ces deux
points sont également délimités.

10.2.3. Données de Réseau Fictives

Le choix d'utiliser des données de réseau fictives pour cette étude d'impact
est informé par deux points clés. La premiére de ces raisons est un manque
d'acces aux données de réseau. La seconde, qui est un avantage plutét qu'un
inconvénient de l'utilisation de données fictives, est la capacité a contrdler
systématiquement l'accord des données fictives avec 'ensemble des répliques
GPD considérées. Ce contrble systématique a été réalisé via l'utilisation de
parameétres contrdlant la précision et la corrélation des données de réseau
fictives. Basé sur des études réelles de réseau telles que celle citée, on en
conclut que les extractions actuelles de GPD sur réseau a la pointe de la tech-
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nologie ne sont pas également facilitées dans toutes les plages cinématiques.
Les données GPD de réseau sont généralement présentées dans l'espace-
temps loffe, car les calculs se déroulent sur un réseau dans l'espace des co-
ordonnées, plutét que dans l'espace des impulsions. Cependant, il convient
de noter que les données de réseau apreés lesquelles les données de réseau
fictives générées dans cette étude ont été modélisées ne sont pas appar-
iées au cone de lumiére, mais existent le long de certaines directions Euclidi-
ennes. Par conséquent, une étude appropriée comparant les répliques aux
données de réseau fictives n'aurait pas eu lieu sur le cone de lumiere, mais
hors du céne de lumiére. Par conséquent, tous les calculs comparant et com-
binant les répliques ANN GPD aux données de réseau fictives sont effectués
dans l'espace-temps loffe. Comme la GPD singulet ajustée ANN, H, du nu-
cléon est celle traitée ici, sa parité impaire dans la fraction d'impulsion lon-
gitudinal z permet de limiter les études correspondantes a l'espace-temps
loffe a la partie imaginaire de H. Cette méthode génére des données de
réseau fictives qui sont en général compatibles avec la valeur centrale de la
bande de répliques dans la précision générée par la fonction g. Cependant,
jusqu'a présent, la génération de données traite tous les points de données
de réseau fictives comme non corrélés. Pour en tenir compte dans notre
étude d'impact, des données de réseau fictives sont générées dans trois ré-
gions distinctes de l'espace-temps loffe, ou la corrélation intracollaboration
est fixée a 0 < ¢ < 1, et la corrélation intercollaboration est fixée a zéro.
La fig. 10.1 illustre un jeu de données de réseau fictives superposé aux ré-
pliques générées par notre modele GPD. Avec une méthode pour générer des
données de réseau fictives contrblées systématiquement en termes de pré-
cision et d'adhérence a 'ensemble des répliques GPD, et la corrélation entre
toutes ces données générées en main, il est maintenant possible d'influencer
l'incertitude associée de la bande de répliques en utilisant ces données de
réseau fictives pour évaluer la capacité discriminante potentielle des don-
nées de réseau. Dans l'étude discutée ici, une procédure de repondération
bayésien utilisant les données de réseau fictives comme a priori a été choisie,
visant a enquéter sur l'incertitude résultante de 'ensemble des répliques GPD
sans ajustements codteux. Jusqu'a présent, la discussion a largement ignoré
la déformation de la GPD, se concentrant sur l'analyse en z et v. Dans les
sections finales, les discussions sur la déformation joueront un réle impor-
tant, nécessitant un apercu de la procédure de repondération bayésien util-
isée. La procédure précise délimite l'attribution de poids a chaque réplique
en fonction de leur accord avec les données de réseau fictives, conduisant
a une médiane repondérée et a un écart type de I'ensemble des répliques.
Ces quantités fournissent une mesure de la réduction de l'incertitude sur la
bande de répliques.
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Figure 10.1: Il est montré l'ensemble des répliques des GPD couvrant les
temps d'loffedev = 0av = 6 a{ = 0.1 (indiqués en vert), avec leur mé-
diane (en bleu) et la bande a 1o (en rouge), correspondant a b = 1.1 (en haut)
et b = 2 (en bas). De plus, 'ensemble de données de réseau fictif généré en
conséquence avec ¢ = 0 (a gauche) et ¢ = 0.5 (a droite) est représenté en

orange.
Données
Sutilise Précision Corrélation

0.1 Basse Basse

0.1 Basse Haute

0.1 Haute Basse

0.1 Haute Haute

0.5 Basse Basse

0.5 Basse Haute

0.5 Haute Basse

0.5 Haute Haute
0.10.20.3 Basse Basse
0.10.20.3 Basse Haute
0.10.20.3 Haute Basse
0.10.20.3 Haute Haute
0.10.20.30.40.5 Basse Basse
0.10.20.30.40.5 Basse Haute
0.10.20.30.40.5 Haute Basse
0.10.20.30.40.5 Haute Haute

Eaffiche
0.1/0.5

0.1/0.5

0.1/0.5

0.1/0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

-
0.47
0.83
0.30
0.46
0.36
0.52
0.1
0.37
0.30
0.77
0.10
0.30
0.16
0.57
0.03
0.18

Résultats
Ty
0.25/0.92
0.85/0.93
0.16/0.90
0.23/0.91
0.44
0.58
0.25
0.51
0.62
0.82
0.34
0.61
0.19
0.65
0.13
0.25

Tz
0.82/1.24
1.02/1.15
0.78/1.08
0.82/1.23

0.67
0.64
0.54
0.77
0.95
1.00
0.54
0.73
0.66
0.75
0.45
0.77

Table 10.1: Résultats en fonction des paramétres de repondération.
Basse Corrélation: ¢ = 0, Haute Corrélation: ¢ = 0.5, Basse Précision:
b = 1.1, Haute Précision: b = 2. m58 Maintien moyen de l'incertitude
en z, r,: Maintien moyen de l'incertitude en v, 7: Fraction effective des
répliques retenues apres repondération.
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Figure 10.2: La fraction effective des répliques retenues apres repondération
7 (illustrée par la courbe verte), préservation de l'incertitude en temps loffe
(montrée par la courbe bleue), et en espace d'impulsion (représentée par la
courbe rouge) pour diverses combinaisons de bruit élevé et faible (désigné
comme b = 1.1 et 2 respectivement) et de corrélation faible et élevée (in-
diquée comme ¢ = 0 et 0.5 respectivement).

Nous comparons les maintiens de l'incertitude résultant de différentes
quantités de données de réseau fictives a des niveaux d'obliquité bas a moyens
(€£€0.1,£€0.1,02,0.3 £ €0.1,0.2,0.3,0.4,0.5) avec ceux observés dans la
section précédente a des niveaux de déformation purement moyens. Les
principales conclusions incluent:

e Le repondération avec de grandes incertitudes et une faible précision
(b = 1.1) et des données corrélées (¢ = 0.5) réduit significativement
I'incertitude en temps loffe a ¢ = 0.5.

e Lajout de données a ¢ = 0.1 améliore le maintien de l'incertitude a
& = 0.5, mais l'inclusion supplémentaire de données a ¢ € 0.1,0.2,0.3
et¢ €0.1,0.2,0.3,0.4,0.5 resserre le maintien de l'incertitude a ¢ = 0.5.
Cependant, le repondération direct a & = 0.5 avecb = 2 etc = 0.5
donne de meilleurs résultats.

De plus, nous présentons une Table (10.1) illustrant I'impact de différents
niveaux de bruit et de corrélation sur les processus de maintien. En outre,
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nous utilisons la Fig. 10.2 pour comparer les effets du repondération a di-
verses valeurs de £ en présentant la fraction effective des répliques retenues
(1) et le maintien de l'incertitude a la fois en temps loffe et en espace d'impulsion.
En examinant la Fig. 10.2, nous observons qu‘a des niveaux de déformation
moyens, la fraction effective des répliques retenues aprés repondération (1)
est a peu pres égale dans les scénarios de faible corrélation et de faible pré-
cision ainsi que de haute corrélation et de haute précision. Cette relation
compensatoire entre précision et corrélation pourrait guider les praticiens
du réseau dans l'allocation efficace des ressources informatiques.

Il est important de noter qu'en utilisant une approche bayésienne pour fu-
sionner les connaissances expérimentales et celles du réseau sur les GPD,
prouvant efficace lorsque les données du réseau s'alignent bien avec le mod-
ele a priori, a permis de réduire d'environ 40% lincertitude a des niveaux
de déformation moyens. Néanmoins, notre étude souligne la nécessité de
traiter les corrélations au sein des données de réseau pour une extraction
conjointe, car les données réelles du réseau présentent souvent des degrés
élevés de corrélation et des effets systématiques qui nécessitent une gestion
soigneuse pour éviter les biais dans I'évaluation de l'incertitude.

10.3. Techniques du Continuum pour la Modélisation des GPD

Lanalyse poursuivie ici des distributions de partons généralisées des nu-
cléons implique le développement des éléments de matrice en utilisant des
fonctions d'onde sur le cdne de lumiére (LFWFs). Cette approche éclaire la
connexion entre les états nucléoniques et les amplitudes définies sur le céne
de lumiere, offrant des apercus sur les contributions définies du moment an-
gulaire orbital (OAM) des quarks aux GPD et objets connexes. En examinant le
développement de Fock des états nucléoniques dans lesquels les LFWFs ap-
paraissent comme des fonctions de coefficient dépendantes des impulsions
et des nombres quantiques, on peut tronquer de maniére cohérente de telles
développements de Fock pour des calculs pratiques, au prix de limiter la ciné-
matique du calcul a |z| > [£|. Cela permet a la représentation des GPD d'étre
exprimée en termes de recouvrements de LFWFs, en incluant uniquement les
contributions des quarks de valence.

L'élément de matrice utilisé pour caractériser les états de Fock a trois quarks
contribuant a un état nucléon | P; h) (avec h = +%) implique un opérateur qui
crée un état a trois quarks neutre en couleur. Dans l'espace des impulsions,
nous représentons cet élément de matrice en termes de diverses structures
tensoriales que nous projetons ensuite sur des états de projection de hélic-
ité des quarks définis, correspondant a des valeurs définies de qOAM. Les
composantes de cette base tensorielle, dotées de fonctions de coefficient
correspondantes appelées fonctions auxiliaires dont certaines combinaisons
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linéaires donnent les fonctions d'onde sur le cone de lumiére, fournissent
alors un moyen d'extraire ces LFWFs d'un modele donné pour cet élément
de matrice via des traces de Dirac sélectives. En réduisant la base tensorielle
employée en un ensemble plus petit de tenseurs en appliquant la symétrie
des quarks u et la symétrie isospin, les LFWFs peuvent étre identifiées comme
cela a été fait dans la littérature [90].

10.4 . Représentation par recouvrements des GPD

Pour caractériser les contributions des états a trois quarks aux Distribu-
tions de Partons Généralisées (GPD) et objets connexes, nous pouvons tirer
parti de la représentation par recouvrements des GPD [34]. Cette approche
clarifie quelles paires d'états de Fock a trois quarks contribuent aux GPD
en utilisant leurs recouvrements. Avant de commencer cette section, nous
définissons les coordonnées de cone de lumiére:

00 + 03 . -

7 U1 = (v1,v2),v = 7 ).

10.4.1. Formule de recouvrement

(10.1)

Les impulsions initiaux et finaux de I'état du quark actif refletent le trans-
fert d'impulsion dd a l'interaction avec le photon. Pour voir quelles combi-
naisons d'états de Fock entrants et sortants contribuent, examinons les nom-
bres quantiques impliqués. Les nombres quantiques collectifs Q; pour le -
ieme quark sont définis comme suit :

e Impulsion : x; = (2, k1),
e Hélicité: )\,
e Couleur: ¢,
e Saveur: f,

La formule de recouvrement pour 'amplitude dépendante de I'hélicité H,’:,h(f, & t)
est donnée par:

; 1 dz= . pt.— s, 2 5, 2
f — U< iaPTz P W1 (=~ ol (2 P
Hh/h(x7€7t> 2\/@ g/ ot e < 7h ’q]c( 2)7 qf<2)| 7h'>
(10.2)
= Of [SOSA(Q/);}LMSOQ;h} (l’,g,t), (10.3)

ou f estla saveur du quark actif, ¢ est un indice de couleur, P(’) et h(’) sont les
impulsions et les hélicités des nucléons entrants (sortants), z = (:* = 0,7, =
0.,2") estun vecteur spatial dans la direction moins, P est Iimpulsion plus
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moyen du nucléon, (j}%(—g)fy*q?(%) est un champ de quark bilocal bilinéaire,

et S, est la A-iéme permutation du groupe de permutations S3 sur lesquelles
nous faisons la somme.
Ici, Of [¢/, ¢] représente la fonction de recouvrement entre les LFWFs des
états initiaux et finaux.

10.4.2 . Formule maitresse du recouvrement: GPDs et Sous-Résultats

Les GPDs H/ et B/ sont exprimés en termes des amplitudes dépendantes
de I'hélicité :

. 22 My |A
Hf:H{l+ $ LCH D) 11 (10.4)
TP (A i) T -t P
o 2My|AL|VI-&
E) = i H L, (10.5)
(Al—l-iAQ) 62*1]\] —t 22

Nous pouvons représenter les amplitudes dépendantes de I'hélicité en ter-
mes de recouvrements de LFWF, ou nos LFWFs ¥, .. sont étiquetées par
I'hélicité correspondante du proton h et la projection totale du moment angu-
laire des quarks Ay, telle que qOAM=h — Ay. En termes de nos LFWFs définis
par le moment angulaire orbital (QOAM), nous avons :

7‘[{ L = (Of(‘l’l 1, U1 1)+0f(‘1’; 1, U1 1) (10.6)
313 227 202 27 2:72
+OF (U1 5,1 3)+ O (U1 3,0, _§)>
279 919 27 2 2 2
H o, = (Of(‘l’ 3, U a) + O 15,0, _§)>- (10.7)
—53 272 2'2° 2072

Tandis que l'amplitude conservant I'hélicité recoit uniquement des contribu-
tions diagonales en gOAM, 'amplitude de changement d’hélicité recoit unique-
ment des contributions hors-diagonales. Cela ne viole pas nos attentes, car
cela signifie que le GPD de changement d’hélicité E, qui recoit des contri-
butions uniquement de 'amplitude de changement d'hélicité H_ By recoit
uniquement des contributions hors-diagonales en qOAM. De plus, la PDF, qui
est liée a la probabilité de trouver un parton (quark ici) d'une saveur parti-
culiere portant une fraction particuliére de l'impulsion longitudinale du nu-
cléon, est donnée dans la limite avant de I'expression pour le GPD H comme

N|—=

HFag) = HIF|oeeo = (10.8)
(Of’]?(‘l’; LU )+ ONFW 1 W )
22 22 2,72 272
272 272 27 2 27 2

qui, bien qu'il recoive uniquement des contributions diagonales en qOAM,
recoit intéressamment des contributions non nulles en gOAM.
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Maintenant que nous avons spécifié la représentation par recouvrement au
cas des trois quarks et aux objets de notre intérét, et que nous savons com-
ment extraire les LFWFs d'un élément de matrice général a trois quarks a par-
tir de la littérature, nous nous tournons vers la modélisation d'un tel élément
de matrice afin de réaliser ces extractions.

10.5. Le Modéle Diquark

Ce travail se concentre sur la modélisation des propriétés des nucléons
en utilisant une approche quark-diquark, en traitant le diquark comme un
systeme composite a deux corps plutdt que comme une entité ponctuelle, ce
qui permet 'inclusion de corrélations internes en onde p du diquark souvent
négligées dans des modeles plus simples [103]. Lanalyse ici utilise le formal-
isme de Bethe-Salpeter et les équations de Faddeev [96] pour caractériser
les états nucléoniques et étend les résultats de l'espace euclidien au cbne de
lumiere a travers les moments de Mellin. Cette méthode implique la con-
struction des Fonctions d’'Onde sur le cbne de lumiére (LFWFs) en abordant
les complexités de la traduction des modeéles de l'espace euclidien (modéle
d'amplitudes de Faddeev) au cbne de lumiere (comme LFWFs).

10.5.1. Reconstruction de Mellin

Pour transformer les amplitudes de Faddeev calculées dans l'espace eu-
clidien en Fonctions d’'Onde sur le cone de lumiére (LFWFs) définies sur le
cbne de lumiere, nous devons gérer la transition des arguments de temps du
cbne de lumiére a zéro. Cela implique d'intégrer sur des parametres spéci-
fiques pour traiter les fractions d'impulsion et les projections. Dans l'espace
Minkowskien, la LFWF est donnée par :

U(xy, kry;a0,ke)) = N/dk‘l;Mdk‘g;MX(k?l;Makz;M), (10.9)

ol N est une constante de normalisation. Etant donné que les calculs sont
dans l'espace euclidien, nous utilisons la transformation de Mellin pour éviter
les intégrations complexes en contour. La impulsion de Mellin d'une fonction
f(z) dordre m est:

/dwxmf(x), (10.10)

avec des bornes 0 < z < 1. Deux fonctions ayant des moments de Mellin
identiques sont équivalentes [113]:

/d:ca:mf(a:) = /dxmmg(x), Vm e N (10.11)
= flz) = g(@) (10.12)
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La fraction de I'impulsion longitudinale z; en variables euclidiennes est:

m; _  (kpy-np)™
gmo= 2 R (10.13)
(Pg - npg)™
ol n% = 0 assure la projection sur le composant + du cone lumineux. En
utilisant les moments de Mellin, nous reconstruisons la dépendance x; » des
LFWFs avec:

1 1—x1
m m
/ dxl/ daoa" a5 V(21 ki1 22, ko)
0 0

(kg -nE)™ (kg2 -ngp)™
(Pg-ng)™ (Pg-ng)™

Troirac {Tproj. X (k1.5, k2,E) } (10.14)

= Normalisation / Ak} pdki, pdk3, pdks. g

ou I'proj. €St une structure de Dirac utilisée pour extraire les contributions.
Cette méthode est discutée dans [112].

10.5.2 . Identification des Variables de Mellin

Pour calculer les contributions fondamentales aux six LFWFs, un modéle
de corrélation quark-diquark euclidien du nucléon est utilisé. Les structures
tensoriales sont introduites, contractées, et les moments de Mellin sont cal-
culés pour extraire les contributions aux LFWFs. Définir le propagateur de
quark comme:

S(p) = [—iv-p+ Mg D, (p?), (10.15)
1
Dy (s) = PR VR (10.16)

et la représentation de Nakanishi de la contribution tensorielle la plus simple
au vertex diquark en utilisant la base l et ¢ :

1
nlSCt = i'y5/1dzp,,(z)DAq(qz), (10.17)

avecq. = g+ % (2P — {) et p,(z) une fonction de poids de Nakanishi donnée
comme un polyndme. Le propagateur diquark en termes de l'impulsion du
diquark K et une représentation de Nakanishi de la contribution tensorielle
la plus simple a la corrélation quark-diquark sont donnés respectivement par

A"(K) = K?lz\72 (10.18)
+

1 1 3
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Ici, P est défini comme (0,0, 0,:My) et les impulsions des quarks sont :

P
o= Dt (10.20)
P 7
= = — = 10.21
k; 3 5 T (10.21)
P ¢
k = ——-—gq. 10.22
k 3 54 ( )

ou ¢ est la différence de l'impulsion interne du diquark et [ est une autre
variable faconnée pour étre réelle. lamplitude projetée de Faddeev lorsque
le quark 1 n'est pas inclus dans le diquark (témoin) est:

sz’g\,l’;g = S(kQ)oeza’Q [FO (Q7 K)]a’zag‘s’(k?))agag AOST(kl)o/log 510/170(1 0.23)

Ce qui peut ensuite étre projeté sur les projections d’hélicité du quark con-
tribuant a la fonction auxiliaire ¢/, la fonction auxiliaire la plus simple avec
OAM= 0:

Xeiuigl = (BLYy oy Sasr (k) TS5 Sha, (k2) (10.24)
< (LT (CNT L anay Sayar (k1)51070A (k2 + k3). (10.25)

En projetant sur v pour l'opérateur de twist principal:

%%Trh”%LTS(k:g)FOTST(kg)(L%T(CT)TLTS(kl)S}A(kQ +ky)

_ %%nVTr[S(kg)POTST(kQ)L¢CT¢LT]aS(k1)81(5, Po)Trly LT A (ks + ks)].

Lapproche essentielle pour l'extraction est de calculer les moments de Mellin
du modele de corrélation quark-diquark et de les utiliser pour extraire di-
rectement les LFWFs. Cela évite les complications des intégrations en contour
particulierement difficiles et utilise les intégrales définissant les moments
pour obtenir les LFWFs.

Pour combiner les dénominateurs de toutes les structures de notre modéle,
nous utilisons la paramétrisation de Feynman, introduisant un grand nom-
bre de variables sur lesquelles intégrer. Nous pouvons alors identifier les
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1,-1

moments de Mellin de la fonction auxiliaire 1) comme

1 1—x1
miy,_ma 5 1,—1 . .
/dfcl/ dzox " wy b (x1, k11 v, ko)
0 0

1 1-a B8 1-a @
= / d@/ dﬁ'/ dv’/ du'/ dasy (10.26)
0 0 0 4 0
1 as4
/ dal/ das
a 0

—mlﬁlmgg( ﬂ/ uf U CL34,CL1,CL3,]€1L,]€2L)
ha, B, v aga, a1, az, Ky g, ko )

1
— Ny, Ky @, ko)

1—x1
= / dv/ du/ da34/ dal/ das

g(,fCth,'U,,'U,a347d17a37k1l7k2J-) (10 27)

h(x1, o, u, v, azq, a1, a3, k11, ka1 )

Bien que nous devons effectuer une intégrale 5D sur les parametres de Feyn-
man pour calculer ¢»»~! & un point donné, nous avons maintenant une ex-
pression que nous pouvons utiliser. Dans la section suivante, nous montrons
un exemple de tracé pour une impulsion transverse nul des quarks.

10.6 . Résultats

Ici, nous montrons un graphique de contour de la dépendance de z1 23
de la fonction auxiliaire /> =1, Il y a une symétrie notable entre les fractions
d'impulsion x5 3. Bien qu'il y ait une certaine instabilité numérique claire,
la fraction d'impulsion longitudinalee x;, correspondante au quark témoin
(celui quine participe pas au diquark), porte généralement une portion préféren-
tiellement élevée d'impulsion longitudinalee.
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|k'|J_|=O; |k2J_|=O;
|QJ.|=O

5
4
3
2
1
0
0.2 04 06 0.8
u(xy)
Figure 10.3: Un graphique de la fonction 4%~ pour |k | = |kei| = 0

est montré. Ce graphique est un graphique de contour, donné sur un do-
maine triangulaire en raison de la contrainte de conservation de l'impulsion
1 = Y% 2. La normalisation n‘a pas été définie en raison de contraintes
physiques, et est cohérente parmi tous les graphiques de LFWF donnés dans
ce document. La normalisation est calculée en déterminant la plus grande
valeur de b1 parmi toutes les valeurs calculées, et en mettant a l'échelle
tous les graphiques de maniere a ce que cette valeur maximale devienne 6,
afin de s'aligner avec les échelles de couleurs de ces graphiques. Nous rap-
pelons au lecteur que les impulsions transverses sont donnés en unités de la
masse du nucléon My.

10.6.1. La PDF

Pour calculer les contributions des diverses Fonctions d'Onde sur le cone
de lumiére (LFWFs) aux GPDs et leurs limites, nous devons d'abord calculer
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leurs recouvrements. En commencant par la fonction ¢~ :

Yt = N(v,o0) / [df15pu (@1 — aza)”2(aza — ag)” (1 — w2) Y202
@ oMo A3 M? 4
X3 + 0 -G — )+ @ a7 = ) +as(yz — )
MZ+ (@ 4 1] (2e)
Hogs = ag) (SRt = 5+ (22— )]
[z (V' (@1 = 2(1 = 22)) + 21(1 = @2)) + @' (' (1 = 22) — (21)*)] "7
(@' — "), (10.28)

Ici, N (v, o) est un facteur de normalisation. Pour calculer la contribution de
ce recouvrement de fonction avec elle-méme au GPD H lorsque le quark 1 est
actif, nous commencgons par le terme dépendant de lI'impulsion transverse,
en utilisant une nouvelle paramétrisation de Feynman :

a4 — as
(1+ mﬁ)kﬁ + (azq — az)k3| (10.29)
asy —as - - ~ o1~ (0+2+0)
225 B R+ MQ] | [(1
—14+x9 in
az4 — asg as4 —as - -
+mfﬁ%)k’ﬁ + (azs — az)k3| + 2_17_i_a:29€1ku k1o
~ o1 —(o+2+v)
MQ]
+ out

1
= / dh [z‘hkﬂ + AgkzgL + A3Ai - Agkyy kol
0
+Aski - AL+ Agko - A+ A7]—2(U+2+1/)7

ou M inclut des termes non transversaux-impulsion. En décalant les mo-
ments transverses :

- - Ag 7 As
k = k —k —A .
1L 1L+2A1 2L+2A1 1 (10.30)
kol = koy +AgAlL,
nous redéfinissons pour la commodité:
- A2
Ay = Ay— L 10.31
2 2~ 1A, ( )
~ Ay As
Ag = As—
6 6~ 94,
- A2
Ag = 3 — ~6 .
24,
L'expression se simplifie en:
1 = < =y _ —2(c+2+v)
/ dh [Alku + Aok2, + A3A2 + A . (10.32)
0
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Lintégration sur les deux k; 2 donne :

|:N(V, O') /[dfm]ﬁpy(al — a34)”_2(a34 — ag)y(l — $2)V+2 (10.33)
x[r1 (V' (21 — 2(1 — 22)) + 21(1 — 22))
—|—’l_1/(’()/(1 _ $2) _ ($1)2)]_V_1(’a/ _ U/)QV—1:|

[N(% o) /[dfm]ﬁpu(al — az4)” *(azs — a3)” (1 — z)"*?
X[z (v (21 — 2(1 — 22)) + 21(1 — 2))
—|—’U,/(’U/(1 o x2) o (xl)Z)]—V—l(a/ - U/)ZV—1:|

out

} —2(c+14v) [

2 1 B 5 -1
><7T2/ dh[AgAi+A7 A1A3(0+y+1)(3+2a+2u)} .
0

Afin de calculer la GPD (ou PDF) a un point donné, nous devons donc calculer
une intégrale numérique de 13 dimensions, car nous devons intégrer sur les
11 parametres de Feynman ainsi que la fraction de I'impulsion longitudinalee
inactive xo et l'angle de lI'impulsion transverse ;5. Cette grande intégration
dimensionnelle implique un certain bruit, surtout si nous souhaitons calculer
ces intégrales de maniere rapide. Nous avons choisi d'utiliser I'intégration de
Monte-Carlo adaptative, et non Gauss-Kronrod, qui est plus précise mais plus
lente [118, 1. Nous montrons donc les contributions de la fonction auxili-
aire ¢»>~1 & la PDF. Bien que bruité, il y a un signal non nul clairement visible.
De plus, la grande taille de x; reflete la tendance mentionnée précédemment
pour que l'impulsion longitudinale soit détenu par le quark témoin, u;. En
outre, comme mentionné précédemment, il y a une symétrie approximative
ug-ds, car ce sont les participants au diquark.
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Figure 10.4: Les résultats pour la limite en avant des recouvrements de W1~
(PDFs) sont montrés. La courbe rouge correspond a celle du quark témoin
ul, la bleue au quark participant w2, la brune au quark participant d(3), et
la violette a la contribution totale du quark u. Ce résultat a été calculé en
utilisant I'intégration de Monte-Carlo adaptative avec 1001 points le long de
l'axe z, et est extrémement bruité. Néanmoins, il y a un signal clairement
visible qui n'est pas compatible avec zéro.

10.7 . Conclusion et Perspectives

Les GPDs sont essentielles pour faire des prévisions expérimentales dans
des processus tels que la DVCS et la DVMP, en raison de leur nature uni-
verselle assurée par les preuves de factorisation. Cependant, extraire les
GPDs des données expérimentales est complexe en raison des convolutions
avec des noyaux calculables. Les contraintes pratiques sur les GPDs devraient
incorporer des entrées provenant des calculs sur réseau QCD et d'autres tech-
niques pour la comparaison avec les expériences. Le repondération bayési-
enne des candidats GPD ANN en utilisant les données sur réseau peut réduire
considérablement l'incertitude, a condition que la corrélation des données
soit connue. Les données sur réseau complémentaires peuvent résoudre
les limitations du noyau perturbatif dans les données expérimentales, of-
frant des perspectives sur des régions autrement inaccessibles. Les GPDs
polarisées et non polarisées de la région DGLAP peuvent étre représentées
a travers des LFWFs de qOAM défini, contribuant au GPD H méme dans la
limite en avant, reliant les GPDs aux contributions de qOAM via les regles de
somme de Ji. Un modeéle simple pour de telles LFWFs démontre le calcul a
partir de structures tensorielles. Pour aligner ces modeles avec les données
expérimentales, il est nécessaire détendre les GPDs DGLAP a la région ERBL
et de les faire évoluer vers les échelles expérimentales. Des efforts supplé-
mentaires dans la modélisation, y compris la systématisation des structures
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tensorielles et 'intégration des méthodes du plan complexe avec une masse
variable, sont cruciaux pour une compréhension plus intime des contribu-
tions gOAM définies au nucléon.
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