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Résumé: La plupart de la masse visible

de l’univers est contenue dans les nucléons.

Cependant, l’origine de cette masse reste mys-

térieuse, la portion issue du mécanisme de

Higgs dans les schémas de renormalisation

standards ne correspondant qu’à quelques

pourcents de la masse totale. La réponse est

à chercher dans la dynamique de l’interaction

forte, décrite par la théorie de la chromody-

namique quantique (QCD) en termes de quarks

et de gluons. Ainsi, l’interaction entre quarks

et gluons est responsable de l’émergence des

propriétés connues et mesurées des hadrons

comme leur masse ou leur spin. Il ex-

iste aujourd’hui une forte dynamique à la

fois théorique et expérimentale pour chercher

à déterminer la structure 3D des hadrons

en terme de quarks et gluons. D’un point

de vue théorique, les outils classiques de

théorie quantique des champs, à savoir le

développement perturbatif, ne permettent

pas d’étudier les propriétés émergentes des

hadrons. Ces dernières sont intrinsèquement

non-perturbatives. Le but de cette thèse est

de développer et d’utiliser un formalisme non-

perturbatif en partant des équations de Dyson-

Schwinger et de Bethe-Salpeter pour déter-

miner la structure 3D des hadrons, en partic-

ulier du nucléon. On utilisera différentes hy-

pothèses dynamiques, afin d’obtenir une car-

tographie 3D de la charge, de la masse et des

effets de moment angulaire orbital. Une con-

frontation des résultats obtenus avec les don-

nées expérimentales sera menée de concert

avec les autres membres de LSN.

Title: Continuum QCD approaches to the 3D structure of the nucleon
Keywords: Generalized Parton Distributions, Lightfront Wave Functions, Quantum Chromody-
namics, Exclusive processes, Dyson-Schwinger equations, Quarks orbital angular momentum

Abstract: Most of the visible mass of the uni-
verse is contained in nucleons. However, the

origin of this mass remains mysterious, with

the portion from the Higgs mechanism in stan-

dard renormalization schemes corresponding

to only a few percent of the total mass. The an-

swer is to be found in the dynamics of strong

interaction, described by the theory of quan-

tum chromodynamics (QCD) in terms of quarks

and gluons. Thus, the interaction between

quarks and gluons is responsible for the emer-

gence of known and measured properties of

hadrons such as their masses or spins. There

is now a strong theoretical and experimen-

tal dynamic to determine the 3D structure of

hadrons in terms of quarks and gluons. From

a theoretical point of view, the classical tools of

quantum field theory, namely perturbative ex-

pansion, do not allow the study of the emerg-

ing properties of hadrons. The latter are inher-

ently non- disruptive. The aim of this thesis is

to develop and use a non-perturbative formal-

ism based on the Dyson-Schwinger and Bethe-

Salpeter equations to determine the 3D struc-

ture of hadrons, in particular the nucleon. Dif-

ferent dynamic assumptions will be used to ob-

tain a 3D mapping of the charge, mass and or-

bital angular momentum effects. A compari-

son of the results obtainedwith the experimen-

tal data will be carried out in collaboration with

the other LSN members.
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2 - Introduction
In this chapter’s first section, preliminary experimental clues for the non-

elementarity of the nucleon (a collective word for protons and neutrons) will

be discussed. In the second, Quantum Chromodynamics (QCD), the theory

of the corresponding interior particles, will be introduced. In the third and

fourth sections, experimental processes used to probe the interior nature of

the nucleon will be delineated, along with the properties of the objects used

to describe the corresponding nuclear structure being probed. In the final

section, descriptions of these objects via methods based on discrete models

of spacetime, will be explored as a primer for the second chapter on the use

of data produced via such methods.

2.1 . Nonelementarity of the Nucleon
2.1.1 . Experimental Clues for Nonelementarity

Fundamental particles, those which are not composed of smaller con-

stituents, exhibit point-like (spatial) charge distributions. In practice, thismeans

that regardless of the situation in which a measurement of such a particle’s

charge distribution occurs, the same point-like result should be observed.

However, experiments lead by R. Hofstadter at Hansen Experimental Physics

Laboratory (HEPL) in the 1950s measuring the charge distributions of various

nuclei allowed for the extrapolation of data to the conclusion that the spatial

distribution of the charge of the nucleon varies with respect to the momen-

tum transfer between the probe and the target of the experiment [1]. This

was the first landmark evidence for the non-elementarity of the nucleon.

Other evidence of nucleon non-elementarity came frommeasurement of the

proton magnetic moment. The magnetic moment of any elementary spin
1
2

particle is a function of natural constants and the mass of the particle ([2])

given by
e~
2m , with e the elementary charge, ~ the reduced Plank’s constant,

and m the mass of the nucleon in question. However, measurements of the

proton magnetic moment at Stanford Linear Accelerator Center (SLAC) in the

1950s confirmed the proton moment to deviate from the value expected by

assuming its elementarity by a factor of 2.79284734463(82) [3]. Given this ex-

perimental evidence for the non-elementarity of the nucleon, physicists be-

gan to postulate the properties of possible constituents.

2.1.2 . PreQCD Explanations
In the 1960s, Gell-Mann proposed a constituent quark model of the nu-

cleon and various other baryons in order to explain a large spectrum of mass,

11



spin, and charge values [4]. In order to do so, Gell-Mann introduced three

flavors of spin
1
2 fermions (quarks) called "up" (u), "down" (d) and "strange"

(s), with the u quark possessing an electric charge of
2
3 , and the d and s

quarks an electric charge of −1
3 . In this model, the quark spin vectors were

constrained to (anti)align so as to reproduce the spin of the baryons which

they constituted. However, the existence the particle consisting of three u

quarks, named the ∆++
due to its total +2 charge, was particularly prob-

lematic as it required three quarks of the same flavor to remain in the same

state, whereas the exclusion principle for fermions, which precludes such a

state, was already well understood at the time. As a consequence, [5]&[6]

introduced independently a new "color" gauge group, SU(3), in order to pro-

vide an additional quantum number to the model. This property, called "color

charge", was set to take on three distinct values. By postulating that each of

the three u quarks in the ∆++
takes on one of these three distinct values

of color charge, the exclusion principle could be satisfied. However, the new

gauge group introduced (SU(3)), being non-Abelian, would have far reaching

consequences on the scale dependence of the newly formed theory of the

strong force, QCD.

2.2 . QCD
2.2.1 . QCD and QED Lagrangians

The Lagrangian (density) of Quantum Electrodynamics (QED) is given by

([7])

LQED = ψ̄i(iγ
µDQEDµ −m)ijψj −

1

4
FµνFµν , (2.1)

where γµ denotes the Dirac matrices, ψ represents a bispinor field of spin-1/2

particles (e.g., electron–positron field), and ψ̄ ≡ ψ†γ0
its Dirac adjoint. Dµ ≡

∂µ + ieAµ is the gauge covariant derivative, where e represents the coupling

constant, the electric charge of the bispinor field. Aµ denotes the covariant

four-potential of the electromagnetic field. The symbol m signifies the mass

of the electron or positron. Fµν = ∂µAν − ∂νAµ denotes the electromagnetic
field tensor, the curvature of the gauge field.

The Lagrangian density of QCD describes the dynamics of quarks and gluons.

It is given by

LQCD = ψ̄i(iγ
µDQCDµ −m)ijψj −

1

4
Gµνa Gaµν , (2.2)

where γµ still denotes the Dirac matrices. Here, ψ represents a bispinor field

of spin-1/2 quarks (i.e., up, down, strange), and ψ̄ ≡ ψ†γ0
denotes its Dirac

adjoint. The QCD gauge covariant derivative, Dµ ≡ ∂µ + igsTaA
a
µ, includes
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the strong coupling constant gs representing the strength of the strong inter-

action, and Aaµ denotes the gluon field, which is the covariant four-potential

of the color force, associated with the SU(3) gauge symmetry of QCD. Ta rep-

resents the generators of the SU(3) group. The symbolm denotes the quark

mass. The term Gaµν = ∂µA
a
ν − ∂νAaµ + gsfabcA

b
µA

c
ν represents the gluon field

tensor, where fabc are the structure constants of the SU(3) group.

2.2.2 . Scale Dependence
Given these two theories of distinct gauge groups, what conclusions may

be made about their behaviors at different energy scales? More specifically,

how might the energy of an interaction in each theory affect the strengths of

their respective couplings e/gs, or, as they are usually discussed in the context

of scale dependence, αQED ≡ e2

4π and αs ≡
g2
s

4π ? The answer to this question is

encoded in the β function of each theory, which determines the dependence

on the energy scale µ of α via a differential equation in the coupling and µ of

the form

β(e; gs) ≡ µ
d(e; gs)

dµ
. (2.3)

In practice, the β function of each theory may be approximated in perturba-

tion theory. As a consequence of the Abelianity of its U(1) gauge group, the

resulting behavior of α(µ) is such that the coupling increases with µ. In fact,

the one loop behavior of the QED β function is given by ([8])

β(α) =
2α2

3π
. (2.4)

At some finite energy scale, including all orders of perturbation theory, the

QED coupling αQED function diverges to +∞, signifying infinite interaction
strength. This phenomenon is called "the presence of the QED Landau pole".

However, the behavior of the QCD β function is quite different. In [9] and [10],

it is shown that non-Abelian QFTsmay possess negative β functions. The QCD

β function is given by

β(αs) = −(11− 2nf
3

)
α2
s

2π
, (2.5)

which results in the approximate behavior

αs(µ) ≈ β0

ln(µ/Λ)
, (2.6)

where β0 is a constant, Λ is the location of the QCD Landau pole, and nf is

the number of quark flavors, present in the corresponding perturbative QCD

(pQCD). As a result, the coupling decreases as the energy scale µ increases

at high energy scales, and diverges at the Landau pole. Consequently, we
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say that quarks undergo "asymptotic freedom" at high energies (UV), as their

behavior asymptotically approaches that of free particles as µ → ∞. Con-
versely, at low energies (IR), the coupling is quite large and even diverges at

the Landau pole, resulting in what is called "confinement". Given this range of

behaviors, it has been long suggested that only color neutral states are phys-

ically isolable, a property which is named "color confinement". While color

confinement has not been proven, only color neutral states have been ob-

served. When QCD bound states are ripped into pieces via high energy inter-

actions, the resulting pieces end up color neutral as the (anti)quark-quark po-

tentials become so great during the separation process (at "large" distances)

that new particles are created and partnered with those pieces such that only

color neutral bound states remain.

2.3 . Deep Inelastic Scattering
2.3.1 . The Diagram

In order to compare experimental results with theoretical predictions, it

is necessary to interface the two. What form, then, should theoretical pre-

dictions take in order to be compared to experiment? On the experimental

side, interactions are initiated, their results are measured, and the relative

probabilities of such results are tabulated. These probabilities may be eas-

ily used to calculate what are called "cross sections". Cross sections may be

expressed as the norm squared of sums of amplitudes of various interac-

tions. Amplitudes, in turn, may be expressed via various methods. One such

method is perturbation theory. After defining the Lagrangian density of the

theory in which one would like to perform computations, one may define the

path integral of the theory in order to express amplitudes of a given order in

perturbation theory. That is, one may express amplitudes in terms of func-

tional derivatives of the generating functional of the theory with respect to

the source fields J , as

Apj∈{1,...,n} =
n∏
j=1

( δpj

δJ
pj
j

)
Z[Ji∈{1,...,n}] (2.7)

≡
n∏
j=1

( δpj

δJ
pj
j

)∫ ( n∏
i=1

dφi

)
e
iS(φi∈{1,...,n})+

∑n
j=1

Jjφj ,

where Apj∈{1,...,n} is the amplitude one would like to calculate, S is expressed
as a spacetime integral over the Lagrangian density of the theory in a given

configuration of the fields φi∈{1,...,n},
∫ (∏n

i=1 dφi

)
expresses an integral over

all possible field configurations, and the Ji∈{1,...,n} are named the source fields.
In perturbation theory one expands the exponential as a formal power series

in the coupling appearing in the definition of the Lagrangian density. For a
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sufficiently small coupling, computation of the first few terms may often be

used to predict experimental results.

In QED, one may use the coupling e for such an expansion at scales suffi-

ciently low for the coupling to be low enough for such an expansion to be

useful. Admittedly, at some large energy scale the QED coupling will diverge,

making such an expansion useless. However, this scale is likely higher than

the Planck scale [11]. The QED Landau pole is therefore of no practical con-

cern given the energy scales involved in modern experimentation.

In QCD, on the other hand, the divergent behavior occurs at the relatively

low energy scale ΛQCD, a perturbatively estimable quantity which determines

where pQCD is precisely useless. Therefore, purely pQCD will not yield useful

results at the energy scales at which the dynamics of QCD should be under-

stood if one would like to explore nucleon substructure. However, before

deciding how to tackle this problem, one should clearly understand the suc-

cesses and limitations of perturbation theory in QCD by determining when it

is appropriate to use, and when it breaks down.

l- l-

𝛄*(q)

P

X

Figure 2.1: A Feynman-like diagram of DIS is shown. On the top left, an incom-

ing lepton l− emits a virtual photon γ∗(q) (Q2 = −q2
), resulting in an outgoing

lepton l−. Further, γ∗ is absorbed by the active quark of momentum k of the
incoming nucleon of momentum P . Said active quark is permanently sepa-
rated from the nucleon, whose remaining pieces form an arbitrary product

namedX .

As a seminal example, let us consider Deeply Inelastic Scattering (DIS) of

a nucleon target employing an electron probe (See Fig. 2.1). In this process,

the so-called "active" quark of momentum fraction x of an incoming nucleon
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of momentum p interacts with an electron probe of momentum k via the

exchange of a virtual photon of four momentum q (Q2 ≡ −q2
). In the final

state one finds the electron probe of momentum k′ = k − q as well as any
number of QCD bound states created as the active quark is ripped away from

the nucleon via the interaction. As is convention, we denote these final state

contents (apart from the final state electron) as X . We define the Bjorken

variable ([12])

xBj ≡
Q2

2p · q . (2.8)

One way to view this is to define the very useful coordinate system called

lightcone coordinates, writing for a general four-vector v

v = (v+ ≡ v0 + v3

√
2

, ~v⊥ ≡ (v1, v2), v− ≡ v0 − v3

√
2

), (2.9)

and to subsequently define two lightcone vectors

p = (1,~0⊥, 0), (2.10)

n = (0,~0⊥, 1), (2.11)

which point in the + and − directions respectively.
We can now directly write down the expression for the differential cross sec-

tion dσ as

dσ ≡ d3k′e4

2|~k′2|16π3(p+ k)2Q4
Lµν(k, k′)Wµν(p, q), (2.12)

where L is the so-called "Leptonic Tensor", which encodes perturbative infor-

mation regarding the leptonic part of the cross section andW is the hadronic

contribution, and where the cross section is differential in 3 and not 4 dimen-

sions of the variable k because we have chosen to work at fixed lightcone

time, corresponding to having completely integrated away the minus compo-

nent of k [13].

One way of expressing the hadronic tensor is via a decomposition of a current

matrix element into

Wµν ≡ (
qµqν
q2
− gµν)F1(x,Q2) + (pµ − qµ

p · q
q2

)(pν − qν
p · q
q2

)F2(x,Q2), (2.13)

with the F1,2 expressible in terms of convolutions of perturbatively calculable

coefficient functions Cf and the quark in nucleon PDFs qf (x,Q2, α), which is

related to the probability of "finding" a quark of flavor f in the unpolarized

nucleon carrying a given fraction of the nucleon’s momentum 0 ≤ x ≤ 1 at

a given value of Q2
and at a given strong coupling αs which depends on the

renormalization scale µ. That is,

Fi =
∑
f

∫ 1

0
dyCfi (

x

y
,
Q2

µ2
, αs)q

f (y,Q2, αs) +O(
M2

Q2
), (2.14)
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where M2 << Q2
is the hadron mass. Here, the Cs do not depend on the

long distance, low energy behavior of the composite hadronic system. How-

ever, at higher orders in the strong coupling, the Cs receive logarithmic cor-

rections in Q2
, which is one of the milestone predictions of QCD [14].

Figure 2.2: Shown is a summary of theF2 (defined in Eq. (2.34)) structure func-

tion measurements by the H1 [15], [16] and ZEUS [17] collaborations at HERA

and also by fixed target experiments BCDMS [18] and NMC [19] as shown in

[14].

In contrast with the C , however, the PDFs q (see Eq. (2.50)) do not depend

on the short distance, high energy behavior of the interaction between the

electron probe and the active quark. The idea that one can separate a cross

section into independent parts due to the difference in the scales on which
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they depend, only needing to convolute them over internal variables in order

to predict said cross section, is called factorization and has been proven to

all orders for DIS in [20] via careful diagrammatic power counting, as well as

via other methods. In practice, what this means is that the behavior of any

process which involves a given species-in-species PDF, up to a process depen-

dent kernel, is dictated by the universal behavior of said PDF. This concept of

universality has allowed for the community to focus on computing a set of

universal objects, whose determination in one context will allow for predic-

tions in experimental processes not yet measured. However, corresponding

to their value, universal objects are difficult to extract from experimental data

as the convolution involved in computing cross sections may contain a singu-

lar kernel, preventing direct inversion of the convolution to yield predictions

for the forms of such universal objects. This is the case with objects to be

introduced later in this document, but the kernel connecting the PDF to the

DIS cross section is not singular. Rather, it features a sum over quark flavors,

making flavor separation extremely difficult.

Motivated by DIS measurements at SLAC, the European Muon Collaboration

(EMC) [21] performed measurements relating to nucleon structure, resulting

in the so-called spin crisis. While it was expected that the nucleon spin would

receive by far its largest contribution from QCD bound states in which the

three valence quark spins were (anti)aligned to create a total spin of±1
2 , it was

found that these states contributed only 20-25% of the nucleon spin. This dis-

covery forced the community to begin to consider unexpectedly substantial

contributions from the infinite number of QCD states, called generally Fock

states in QFT, which match the quantum numbers of the nucleon, including

not only the three nucleonic valence quarks but also contributions from po-

tentially infinitely many gluons and quark-antiquark pairs and combinations

thereof. And though not a "crisis" today, the proton spin crisis inspired in-

vestigation of states including quarks and gluons of various values of Orbital

Angular Momentum (OAM), which Generalized Parton Distributions (GPDs),

the subject of this chapter’s next section, are used to formalize and investi-

gate.

2.4 . Generalized Parton Distributions
2.4.1 . Deeply Virtual Compton Scattering & Deeply Virtual Meson

Production
An important experimental process in the study of distributions evenmore

complicated than the PDF is that of Deeply Virtual Compton Scattering (DVCS)

([22]), (see Fig. 2.4) in which an incoming leptonic probe interacts with a nu-

cleonic target. This contrasts DIS, in which the nucleonic target is in general

broken into arbitrary pieces, making DIS an inclusive process, DVCS features
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an unbroken nucleon in the final state, along with a second, final state pho-

ton and lepton. This second photon, being real, is detected, allowing for the

reconstruction of much of the kinematics of the associated partonic interac-

tion, letting one probe the partonic substructure of the nucleonic target. A

closely related experimental process is that of Deeply Virtual Meson Produc-

tion (DVMP) (See Fig. 2.5), in which a meson is produced in the final state. Of

these two cases, one aspect unique to DVCS is that of the Bethe Heitler inter-

ference term. In addition to the DVCS term, which describes the amplitude of

the process shown in Fig. 2.4, contributions to the total measured scattering

cross section from the Bethe-Heitler (BH) (see Fig. 2.3) process are present,

and actually dominate the statistics of modern DVCS measurements [23].

Further, much as in the case of DIS, factorization for DVCS and DVMP have

been proven for some time [24, 25, 26, 27]. Due to the exclusivity of DVCS in

which the nucleon is not broken, factorization in the DVCS case occurs at the

level of the DVCS amplitude rather than at the level of the cross section. What

kinds of contributions have been factorized, once again up to a convolution,

then?

Unlike in the inclusive DIS, the exclusive processes DVCS and DVMP involve

a more complicated soft part which is in general off-diagonal in momentum

space. That is, there is a non-zero momentum transfer between the probe

and the target. In this case, this new object entering the game is called a GPD,

whose properties will be delineated in the following subsection. The unpolar-

ized nucleon GPDs (H and E) to be discussed here are given in terms of the

matrix element

1

2

∫
dz−

2π
eixP

+z−〈P ′|q̄f (−z
−

2
)γ+qf (

z−

2
)|P 〉

=
1

2P+

(
Hf (x, ξ, t)ū(P ′)γ+ū(P ) + Ef (x, ξ, t)u(P ′)

iσ+ν∆ν

2M
u(P )

)
,(2.15)

where we have introduced the momentum difference

∆ ≡ P ′ − P, (2.16)

and

t ≡ ∆2. (2.17)

Further, the average nucleon momentum is given by

P̄ ≡ P ′ + P

2
, (2.18)

and the average active quark momentum is correspondingly given by

k̄ ≡ k′ + k

2
. (2.19)
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Using these definitions the average quark momentum fraction is defined as

x ≡ k̄+

P̄+
, (2.20)

and the lightcone "kick" imparted on this active parton is parametrized by

ξ ≡ ∆̄+

2P̄+
. (2.21)

Here we have fixed the gauge as Aa+ = 0, referred to as lightcone gauge. For

more details, see the following section on definitions and properties related

to GPDs. Further, the quark field operators in the nucleon GPD matrix ele-

ment definition provided in Eq. (2.15), to be specified in a later chapter, are

defined at zero lightcone time (z+ = 0) and also occur on the lightcone with

no transverse component ~z⊥ = ~0⊥.
The two unpolarized nucleon GPDsH andE are relevant here in part because

they are "leading twist" (leading order in Q−1 ≡ (Q2)−
1
2 ). Twist, (τ ) discussed

in the appendix (see Sec. 8.4) in the context of experimental processes such

as DIS, DVCS, and DVMP refers to the suppression via (Q−1)τ−2
correspond-

ing to a given term in a tensorial parametrization of a general matrix element,

such as the one defined in the following section’s Eq. (2.24), of which the GPDs

H and E are the leading contributions [28].

l- l-

𝛄*

P P’

𝛄

P P’

𝛄*

l- l- 𝛄

Figure 2.3: A Feynman-like diagram of the Bethe-Heitler process is shown.

The lepton probe and the nucleonic target interact via a photon exchange,

and the second photon is emitted by the incoming (outgoing) (anti)lepton.

Thus, the CFF of the nucleon in question is not probed.
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l- l-

𝛄*(q)

(𝑥+𝝃)P+

P P’

(𝑥-𝝃)P+

𝛄

Figure 2.4: A leading order (LO) pQCD Feynman-like diagram of DVCS is

shown. On the top left, an incoming lepton l− emits a virtual photon γ∗(q)
(Q2 = −q2

), resulting in an l−. γ∗ is absorbed by the active quark of momen-
tum k of the incoming nucleon P , which then emits another photon γ(q′),
resulting in an active quark of momentum k′ of an outgoing nucleon of mo-
mentum P ′.

l- l-

𝛄*(q)
⍴, 𝜋,…

(𝑥-𝝃)P+ (𝑥+𝝃)P+

P P’

Figure 2.5: A leading order (LO) pQCD Feynman-like diagram of DVMP is

shown. On the top left, an incoming lepton l− emits a virtual photon γ∗(q)
(Q2 = −q2

), resulting in an outgoing lepton l−. γ∗ is absorbed by the active
quark of momentum k of the incoming nucleon P , resulting in a gluon ex-
change and creation of an outgoing meson and a final state active quark of

momentum k′ of an outgoing nucleon of momentum P ′.

This is an example of one of the common themes of matrix element treat-

ment in quantum field theories (QFTs). We write down the matrix element
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we would like to compute, and then write down a convenient tensorial ba-

sis using all of the structures available with the same Lorentz transformation,

Dirac, and CPT properties as the matrix element. On the lightcone there is an

additional final round of this game. One can further decompose the tenso-

rial structures used in one’s matrix element parametrization into structures

of definite twist, as mentioned in the previous paragraph. Why make such a

twist decomposition? By studying the arguments of factorization proofs, one

realizes that factorization is often particularly valid in the limit that the hard

scale of the process (the virtuality Q2
in this case) is much larger than the in-

volved masses and any other relevant energy scales. As a consequence, one

may take advantage of this behavior by writing one’s matrix element in terms

of structures with definite twist, such that one might prioritize the computa-

tion of term(s) with the lowest twist, knowing all the while that it is precisely

those terms which will contribute the most to one’s matrix element at high

virtuality.

In addition to the GPD contribution, the DVMP amplitude, involving the cre-

ation of a QCD bound state (meson) from a quark-antiquark pair, also in-

volves a soft part describing such a meson formation, referred to as a Distri-

bution Amplitude (DA), which we will not treat here.

How do GPDs enter the expression for the amplitude of DVCS in the relevant

experimental cross section? As previously mentioned, they enter via a convo-

lution in the longitudinal momentum fraction. That is, for a given contributing

GPD ∈ {H(x, ξ, t), E(x, ξ, t)} the corresponding convoluted function, referred
to as the corresponding Compton Form Factor (CFF), is given by [29]

CFF
f
i (ξ, t) =

∫ 1

−1
dxGPDf (x, ξ, t)2xe2

f ((ξ − iε)2 − x2)−1. (2.22)

Here, this LO kernel is not dependent on the scaleQ2
. However, as in the case

of the PDF (see Eq. (2.14)), at higher orders in αs this kernel will receive scale

dependent corrections in the form of logarithms ln(Q2). The CFFs, along with

their polarized counterparts derived from the polarized nucleon GPDs to be

discussed in Ch. 4, are then used directly in the expression for the cross sec-

tion. The interested reader can find more details in [24, 25].

In the case of DVMP, we do not enter all of the details, but merely state that

the nucleon GPD contributes in analogous way due to the analogous factor-

izations of the corresponding soft parts of the DVCS and DVMP amplitudes.

This takes advantage of the property that the GPD, like the PDF, is a univer-

sal object in the sense that once one has proven factorization for a given

process in which the GPD contributes, one has automatically shown that the

contributing GPD is precisely the same nucleonic structure function as that

which contributes to DVCS and DVMP as elaborated here. Like in the case of

PDFs, universality makes GPDs highly valuable objects for experimental pre-

diction.
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Now that we have understood the relevant context for GPD physics, let us

take the opportunity to discuss their properties as well as related quantities.

2.4.2 . GPD Properties and Related Objects
A general quark operator matrix element is here defined as ([30, 31, 32])

Wf (x, ~̄k⊥, ξ, t;µ) (2.23)

≡ NW

∫
dzd2~z⊥e

ik̄+z−ei
~̄k⊥·~z⊥〈P ′;h′|q̄f (−z

2
)ΓW(−z

2
,
z

2
)qf (

z

2
)|P ;h〉,

where z+ = 0 and NW is a normalization constant, and µ is an often omit-

ted renormalization scale on which this and all other distributions discussed

here depend implicitly, q is a quark field operator with q̄ it’s conjugate, both

of which are defined in the third chapter (Ch. 4). f is the flavor index of

the quark, and color and Dirac indices have been suppressed. The ket (bra)

|P (′);h(′)〉(†) represents the incoming (outgoing) nucleon state of momen-
tum P (′) and helicity h(′) = ±1

2 , where
†
represents Hermitian conjugation,

where helicity is proportional to the overlap of a particle’s spin vector and it’s

momentum vector. Γ is a Dirac algebra element which will be used to project

onto various twist structures, and the Wilson line included to preserve gauge

invariance,W, is to be defined in the less general case of the GPD below.

TheW function defined in Eq. (2.23) is often referred to as the Fourier trans-

form with respect to ~∆⊥ of a Wigner distribution in analogy with the Wigner
distributions defined in quantum mechanics. Corresponding to the 5 dimen-

sional structure of this object, it is difficult to compute and work with.

In this thesis, we work instead with the three dimensional GPDs ([33]), which

can be viewed as Wigner distributions with the k̄⊥ dependence integrated
away, or z⊥ = 0, which are given in terms of the amplitudes ([34],[35])

Hfh′h(x, ξ, t) (2.24)

≡ 1

2
√

1− ξ2

∑
c

∫
dz−

2π
eix̄p̄

+z−〈P ′, h′|q̄cf (−z
2

)W(−z
2
,
z

2
)γ+qcf (

z

2
)|P, h〉,

(2.25)

where Γ = γ+
has been chosen to project the matrix element onto its leading

twist (twist two) components and whereW(− z
2 ,

z
2), now a − direction Wilson

line, is defined as

W(−z
2
,
z

2
) = P e

−ig
z
2∫
− z2

dy−A+(0,y−,0T )

, (2.26)

A+ ≡ Aa+T a, (2.27)

where P represents path ordering. As mentioned in the previous subsection,

it is convention to discuss such matrix elements in the language of the GPDs

23



H and E, given the decomposition

1

2

∫
dz−

2π
eixP

+z−〈P ′|q̄f (−z
−

2
)γ+qf (

z−

2
)|P 〉, (2.28)

=
1

2P+

(
Hf (x, ξ, t)ū(P ′)γ+u(P ) + Ef (x, ξ, t)u(P ′)

iσ+ν∆ν

2M
u(P )

)
,

and for gluons

2

∫
dz−

2π
〈P ′|G+µ(−z

2
)G+

µ (
z

2
)|P 〉z+=|~z⊥|=0

=
(
Hg(x, ξ, t)ū(P ′)γ+u(P ) + Eg(x, ξ, t)u(P ′)

iσ+µ∆µ

2M
u(P )

)
. (2.29)

Inverting the relationship established in Eqs. (2.15) & (2.24), one may also

express the GPDs in terms of the helicity dependent amplitudesHf±+

Hf (x, ξ, t) = Hf++ +
ξ22m|~∆⊥|

(∆1 + i∆2)
√

1− ξ2
√

4ξ2m2

ξ2−1
− t
Hf−+ (2.30)

Ef (x, ξ, t) =
2m|~∆⊥|

√
1− ξ2

(∆1 + i∆2)
√

4ξ2m2

ξ2−1
− t
Hf−+. (2.31)

When |x| > |ξ| and x < 0, the left part of the Dokshitzer–Gribov– –Lipa-

tov–Altarelli–Parisi (DGLAP) ([36],[37],[38]) region, an antiquark is probed, and

when |x| > |ξ| and x > 0, the right part of the DGLAP region, a quark is probed

(see Fig. 2.6).
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Figure 2.6: The DGLAP and ERBL ([39],[40]) regions are shown in the x, ξ plane.

Further, when |ξ| > |x|, the Efremov-Radyushkin-Brodsky-Lepage (ERBL)
region, a quark-antiquark pair is probed.

GPDs must obey various constraints. In particular, the imposition of time

reversal symmetry implies even parity of spin
1
2 GPDs with respect to ξ. In

fact, due to Lorentz invariance and time reversal symmetry one can show

that the GPD’s Mellin moments with respect to xmust obey the polynomiality

property, which may be stated as ([41, 42])

∫ 1

−1
dxxnHf (x, ξ, t) =

[n
2

]∑
i=0

ξ2iAfn,2i(t) + mod(n, 2)Cn(t)ξn+1, (2.32)

which, as mentioned, may be derived from Lorentz invariance as shown in

[22, 43, 26] and where [n2 ] represents the floor function applied to n
2 and

mod(n, 2) is the remainder of the division of n by 2.

This property can be ensured via the use of the so-called Double Distribu-

tions (DDs). It can be shown that, writing a GPD as the Radon transform of

non-pathological functions F andD as

Hf (x, ξ, t) =

∫
dΩ
(
F f (β, α, t) + ξδ(β)Df (α, t)

)
, (2.33)
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where dΩ = dβdαδ(x − β − αξ) and |α| + |β| ≤ 1, where the function D of

the final term, called the "D-term", is odd with respect to α [44]. Taking the

specific example of the polynomiality property in the n = 0 case, we find the

definitions of the Dirac and Pauli Electromagnetic Form Factors (EFFs) which

depend only on the squared momentum transfer Mandelstam t:

F f1 (t) ≡
∫ 1

−1
dxHf (x, ξ, t),

F f2 (t) ≡
∫ 1

−1
dxEf (x, ξ, t). (2.34)

The nucleon EFFs are then expressed in terms of the quark ones as

FP,N ;p
i (t) =

2nP,Nu
3

F p,ui (t)− nP,Nd
3

F p,di (t)

nPu = 2, nPd = 1, nNu = 1, nNd = 2. (2.35)

Further, one non-relativistic definition of the EM charge radius is given in

terms of the FFs as

〈(rE)2〉 = 6~2
∑
f

∂t

(
cfnf (F1(t) +

t

4M2
N

F2(t))
)
|t=0. (2.36)

where the cf are the corresponding charges. Other definitions are certainly

possible, however. Averaging the n = 1 cases of the GPDsH andE and taking

the limit t→ 0 gives the total angular momentum contribution to the proton

spin of a quark flavor f as (or for gluons labeled by g)

Jf =
1

2

∫
dxx

(
Hf (x, ξ, 0) + Ef (x, ξ, 0)

)
(2.37)

Jg =
1

2

∫
dx
(
Hg(x, ξ, 0) + Eg(x, ξ, 0)

)
,

which is known as Ji’s sum rule [29].

This relation may also be reflected in terms of some elements of the decom-

position of the following matrix element of the energy momentum tensor

(EMT), given by [45, 46]:

〈P ′|T {µν}a (0)|P 〉 = ū(P ′)
(Pµγν + P νγµ

M
Aa(t) +

i(P̄µσνρ + P̄µσνρ)∆ρ

4M
Bq(t)

+
∆µ∆ν − ηµν∆2

M
Ca(t) +MηµνC̄a(t)

)
u(P ), (2.38)

where the index amay be a quark flavor f or g representing the correspond-

ing gluon contributions, C and C̄ are related to the stress and shear forces

of the EMT [47, 48, 49, 50] and the form factor C is related to the previously
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established DDD-term. Some of the objects defined here are constrained by

angular momentum conservation ([29, 51, 52, 53])∑
f

Af (0) +Ag(0) = 1 (2.39)

∑
f

Bf (0) +Bg(0) = 0 (2.40)

∑
f

C̄f (t) + C̄g(t) = 0 (2.41)

where
∑

f denotes summation over the considered quark flavors. They are

connected to GPDs as particular examples of the previously discussed Mellin

moments: ∫ 1

−1
dxxHf (x, ξ, t) = Af (t) + 4ξ2Cf (t), (2.42)∫ 1

−1
dxxEf (x, ξ, t) = Bf (t)− 4ξ2Cf (t). (2.43)

The total angular momentum carried by each quark flavor Jf is given by ([29])

Jf =
1

2
(Af (0) +Bf (0)), (2.44)

which is a restatement of the Ji sum rule in the quark case, as promised.

If instead of integrating out the x dependence one Fourier transforms thema-

trix elements given in Eq. (2.15), one recovers the so-called Impact Parameter

Distributions (IPDs), which are given by ([54])

I++(x, ξ,~b) =
1

4π

∫ ∞
0
d(~D2)J0

(
|~D||~b|

)
(H − ξ2

1− ξ2
E) (2.45)

I−+(x, ξ,~b) =
1

4π

b2 − ib1
|~b|

∫ ∞
0
d(~D2)J1

(
|~D||~b|

) |~D|
2m

E, (2.46)

where b, referred to as the impact parameter, is a spatial vector Fourier con-

jugate to the momentum

~D =
~P ′

1− ξ −
~P

1 + ξ
(2.47)

lim
ξ→0

~D = ~∆. (2.48)

These are the so-called "skewed IPDs". If the skewness is taken to zero, the

"normal" IPDs, which offer a 3D probabilistic interpretation in mixed position

(transverse) and momentum (longitudinal) space, are recovered [55].
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If instead of Fourier transforming with respect to ~∆⊥ one does so with re-
spect to x, one recovers the Ioffe-time distributions in terms of the Fourier

conjugate of x, ν = P̄+z− as ([56, 57])

GPD(ν, ξ, t) =

∫
dxeixνGPD(x, ξ, t), (2.49)

where GPD∈ {H,E}.
One other simplification of the GPD is to the PDF in the "forward limit", where

the momentum difference between the incoming and outgoing states is set

to 0. This is given by

Hf (x, 0, 0) = qf (x)Θ(x)− q̄f (−x)Θ(−x), (2.50)

for the quark flavor f . The PDF is employed in one of the "positivity" prop-

erties of the GPD. Positivity refers to a set of conditions GPDs must satisfy in

the DGLAP region, one of which is given in [34] as

|Hf (x, ξ, t)− ξ2

1− ξ2
Ef (x, ξ, t)| ≤

√
qf (

x+ ξ

1− ξ )qf (
x− ξ
1− ξ )

1

1− ξ2
. (2.51)

2.5 . Introduction to the Lattice
As discussed earlier in this chapter, quantum field theoretic calculation of

cross sections requires writing down amplitudes which describe all possible

ways in which an interaction might occur. The part of the previous sentence

doing the heavy listing is the phrase "all possible". From the perspective of

a perturbation theorist, a functional definition of this phrase can be derived

by considering that one should, order by order in the coupling, expand the

path integral of the QFT with which they work, computing at each order more

precise contributions to the quantity they desire. Neglecting the fact that this

doesn’t work to arbitrarily high precision even in theory as the perturbation

series involved eventually diverges, it is a nice, procedural understanding of

how to handle the path integral. However, when perturbation theory is not a

viable possibility, i.e., when it breaks down as in QCD, other methods may be

used.

One such method is that of the lattice simulation. Lattice field theory is

a method of computing quantities on a finite box of countably many dis-

crete spacetime points. In addition to being finite, and therefore computable,

modern lattice calculations in QED and QCD, theories which are defined in

Minkowski space, are defined on the lattice rather in Euclidean space, that is,

with a positive definite metric. Such Euclidean calculations of the results of

Minkowskian theories is achieved by extending theories defined in Minkowski

space to "imaginary time", thereby introducing an additional − sign into the
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metric and making it positive definite (up, possibly, to a phase). In general, in-

tegrals in imaginary time may be related to their real time counterparts using

contour integration, but this becomes a messy game as such a "Wick rota-

tion" requires intimate knowledge of the singular structure of the integrand

(moments of the exponential of the action) in the complex plane [58]. If it

is indeed so difficult to perform physically relevant computations in imagi-

nary time, what practical reason could exist to willingly endure such pain?

The exponential of the action, forming a complicated part of the integrand

involved in path integral computations of amplitudes in QFTs, is oscillatory in

the sense that the imaginary unit imultiplies the action when time is taken to

be real. When time is taken imaginary, the integration measure used to com-

pute the action introduces an additional complex unit, therefore making the

action exponential real. As a result, correlations computed on an Euclidean

lattice are characterized by exponential decay instead of oscillatory behavior.

Therefore, with a sufficiently large lattice, one is able to estimate correlation

functions.

However, if one wants to make physical predictions one should ideally make

them using quantities which are independent of the size of a finite box and

the spacing between its points. What lattice practitioners, who do not work in

such ideal situations, do to remedy this situation is "extrapolate to the contin-

uum". This may be achieved by computing the same physical quantity using

different lattices of various sizes and lattice spacings, and using the set of cor-

responding results to extrapolate towards the continuum.

In GPD computations, the situation is even worse. GPDs and related objects

are defined on the lightcone. However, vectors pointing in light-like directions

(v2 = 0) collapse to points in Euclidean space unless one is willing to work

with complex coordinates, whose entry in the lattice game would trigger se-

vere complications. Therefore, in addition to being required to extrapolate all

results to the continuum, those lattice practitioners computing distributions

defined at lightcone distances are limited to computations of similar distri-

butions defined off of the lightcone, and matching them to the lightcone.

Worse, it is not necessarily the case that the prescription used to go to the

continuum commutes with that used to go to the lightcone [59]. As a result,

getting a handle on lightcone distributions on the lattice is no trivial task and

all of the associated limits must be carefully handled. In the following subsec-

tion of this chapter we will discuss two such formalisms and touch upon their

comparisons to experiment.

2.5.1 . Pseudo and Quasi Formalisms
Pseudo-GPDs are derived through Fourier transforms of Ioffe-time-dependent

distributions onto space-like intervals and provide a generalized framework

for GPDs. By being defined as Fourier transforms of generalizations of Ioffe-
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time-dependent distributions they ensure a covariant definition of the aver-

age momentum fraction x, and their support is naturally constrained within

−1 ≤ x ≤ 1 due to the properties of the associated diagrams [60].

Quasi-GPDs are defined as Fourier transforms of matrix elements employing

longitudinal separations z = z3 on the lattice [61]. As a consequence, the

pseudo formalism employs a generalization of the lightcone matrix elements

used to define various distributions, while the quasi formalism exchanges

lightcone distances for space-like ones and, by taking an increasing limit of

the average nucleon momentum, approximate the lightcone counterparts of

quantities defined at light-like separations.

In Fig. 2.7, a comparison of Pseudo-PDF results to various experimental PDF

extractions is shown. In the valence region (0.2 ≤ x ≤ 0.6) there is some dis-

agreement between the set of experimental PDF extractions and the lattice

Pseudo-PDF shown in purple, however, this discrepancy is rather small and is

due to a lack of understanding of systematic effects.

Correspondingly, in Fig. 2.8, a lattice Quasi-PDF computation is compared to

a separate experimental PDF extraction. The relatively large disagreement

when compared to that mentioned in the pseudo case above is due to an

even greater lack of control of systematic uncertainties. Taking a further look

at purely quasi results, in Fig. 2.9 two quasi-GPDs as well as a corresponding

quasi-PDF are shown. Importantly, the presented GPDs are discontinuous on

the line x = ξ which contributes to an undefined DVCS amplitude via unde-

fined CFFs as one can see from Eq. (2.22).

For this reason, the mock lattice data explained and employed in the follow-

ing chapter is based on Pseudo-PDF data, as we will see.
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Figure 2.7: Here is shown Fig. 18b from [62] comparing experimental Next to

Leading Order (NLO) PDF extractions from JLab and Fermilab data [63] (CJ15,

grey/black), a global analysis based NLO PDF determination [64] (MSTW, yel-

low), a Next to Next to Leading Order (NNLO) PDF from a joint PDF and FF

determination via Monte Carlo analysis of high-energy lepton-lepton, lepton-

hadron and hadron-hadron scattering data [65], ( JAM20, green), a NNLO PDF

determined from a global analysis of Tevatron, Large Hadron Collider beauty

(LHCb), A Toroidal LHC Apparatus (ATLAS), and Compact Muon Solenoid (CMS)

data [66] (NNPDF, teal), a phenomenological PDF model [62] (fqv ,N (x, µ2)n=2
C ,

red), a valence quark leading twist lattice Pseudo-PDF [62], (fqv ,N (x, µ2)
[4132]
J ,

purple), and three corresponding subleading twist lattice Pseudo-PDF analy-

ses (O(a/z)J , yellow), (O(z2Λ2
QCD

)J , brown), (O(z4Λ4
QCD

)J , blue), as well as the
corresponding 3σ bands All shown curves are PDFs of quarks in the nucleon.
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Figure 2.8: A comparison of x(u− d) where u, d represent the u, d quark PDFs
as a function of x as extracted from (fit to) a range of experimental data (red),
a (fit of) quasi-PDF lattice data (yellow) and a joint fit of the two data sets

(blue), each including the corresponding 3σ bands is shown in Fig. 1 of [67].
All shown curves are PDFs of quarks in the nucleon.

Figure 2.9: Fig. 3 of [68]. The GPDH for ξ = 0 (blue) and ξ = |13 | (green), along
with the unpolarized PDF (violet) for Pz = 1.25 GeV, are shown [68], as well as
each of the corresponding 3σ bands. The region between the vertical dashed
lines denotes the ERBL region (see Fig. 2.6). There is a clear discontinuity of

inH at x = ξ. All shown curves are given in the quark in the nucleon case.
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3 - Reweighting
In a continuous effort to discriminate amongst the infinitude of candidate

GPDs in an unbiased way while simultaneously ensuring that all such candi-

date functions satisfy all of the properties of GPDs discussed in the previous

chapter (see Subsec. 2.4.2), there have been efforts to model GPDs using

Artificial Neural Networks (ANNs). One such case conducted by some of my

colleagues is that of [69], in which Goloskokov-Kroll (GK) [70, 71, 72, 73] GPD

pseudodata was used to train a set of ANNs whose architecture ensures the

satisfaction by all produced candidate functions of most GPD properties. To

analyze the impact of further discrimination amongst the produced candidate

functions via the introduction of lattice data, mock lattice data which varies

systematically with respect to its compatibility with the set of candidate func-

tions was introduced. In this chapter’s first two sections, the configuration

of the ANNs used for generation of the GPD candidates is described. In the

third section, the input data and statistical methods used in the analysis are

discussed. In the fourth and fifth, themotivation of the use of themock lattice

QCD data, its generation, and the method of using it to discriminate amongst

the candidate GPD replicas is delineated. In the subsequent two sections, the

results of such discrimination, called reweighting, are discussed. In the final

section, the chapter will be concluded.

3.1 . Artificial Neural Networks
Neural networks are made up of layers of nodes. Feed forward neural

networks are those neural networks in which there exist connections only

between nodes of adjacent layers (Fig. 3.1). In feed forward ANNs, the output

of each node j in layer i > 1 (where i = 1 represents the input layer), is

denoted as ni,j , is calculated as

ni,j = ai,j(

Ni−1∑
k=1

wi,j,k · ni−1,k + bi,j) (3.1)

where wi,j,k is the weight between the kth node in layer i − 1 and the jth

node in layer i, and bi,j is the bias parameter for node j in layer i. Ni−1 is the

number of nodes in the previous layer (i−1), and ai,j is an activation function.

In the context of ANNs, there exist universal approximation theorems which

guarantee that given a sufficiently large network, regardless of its width or

depth, it can accurately approximate any continuous function defined on a

compact set [74].

The activation functions used are often step functions or sigmoid functions.
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The sigmoid is defined as

ai,j(p) = (1 + e−p)−1, (3.2)

which interpolates between 0 as p→ −∞ and 1 as p→∞.
One important aspect which differs greatly between the description of com-

mon ANNs and those employed in the study described here is that of the

form of the argument to the activation functions. Due to the constraint of the

reproduction of the forward limit (Eq. (2.50)), the arguments to the activation

functions feature nonlinearity in the input DD arguments α and β. Further,

modeling directly in DD space allows automatic fulfillment of the polynomial-

ity property of GPDs (Eq. (2.33)).

Explicitly, the neurons of the network’s single hidden layer perform output

n2,k = (a2,k(b2,k + w2,1,k|β|+ w2,2,kα/(1− |β|))
−a2,k(b2,k + w2,1,k|β|+ w2,2,k))

+(a2,k(b2,k − w2,1,k|β| − w2,2,kα/(1− |β|))
−a2,k(b2,k − w2,1,k|β| − w2,2,k)), (3.3)

. . . }w
α

|β|

n2,1

n2,2

n2,w-1

n2,w

ANN

i=1 i=2 i=3

Figure 3.1: A diagram of a three layer neural network including the input and

output layers, as well as one hidden layer, is shown from [69]. The DD argu-

ments α and β are received in the input layer and the output layer consists of
a single node.

where the b2,k are biases and the ω1;2,1,k are weights, all of which are free

parameters. The functional form α/(1 − |β|) has been chosen in order to
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ensure that the resulting DD vanish at the boundary |α|+ |β| = 1 in order to

avoid singular behavior apart from at the point x = ξ = 0. The output layer,

made up of a sole neuron, has the output

∑
k

= ω2,k,1n2,k (3.4)

which notably lacks bias parameters, and employs a purely linear activation

function. Three extractions of GPDs using pseudo-data generated with the

GK model were performed using such ANNs, a diagram of which is presented

in Fig. 3.1. In the first test case, training was done on a dataset where x 6= ξ,

aimed to reproduce GPD models like GK, and unlike GK this test’s model in-

cluded a D-term contribution to be discussed in the following section (Sec.

3.2). Further, the positivity constraint (Eq. (2.51)) was not enforced as it would

have also required simultaneous fit of the GPD E.

In the second test case, only x = ξ data were used, showcasing the capac-

ity for reconstruction of GPDs from processes like DVCS described at LO. The

positivity constraint was not enforced in this test, and no D-terms was in-

cluded. Extremely large uncertainties resulted except for on the ξ = x line

(see Fig. 3.2). This highlighted the importance of the inclusion of shadow

distribution contributions, which are those GPDs whose contributions to the

DVCS amplitude are yielded null as they are eigenvectors of eigenvalue zero

of the DVCS kernel [75].
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Figure 3.2: From [69], with ξ = 0.1. Top left panel: The ANN model is shown
to reproduce GK data. Top right panel: The lack of constraint from positivity

(2.51) (where the GPD E is taken to be zero) results in extremely large uncer-
tainty. Bottom panel: Enforcing positivity, while killing most of the replicas

generated, results in much less extreme values of uncertainty.

In the third test case, the same conditions as in the second one were em-

ployed, but the positivity inequality was enforced to show its impact on re-

ducing uncertainties, which was quite large.

What can be surmised from these three cases? In the first case, the artificial

neural network (ANN) model successfully replicates the GK data, demonstrat-

ing its capability. However, in the second case, the absence of constraint from

positivity, as represented by equation (2.51) with the GPD E assumed to be

zero, leads to a notable issue: an exceedingly high level of uncertainty. Con-

versely, in the third case, a potential remedy emerges: by enforcing positivity,

albeit at the expense of discarding the majority of generated replicas, the

extreme values of uncertainty are significantly reduced. This approach effec-

tively addresses the problem of excessively high uncertainty, offering a more

balanced outcome.

In this analysis, the minimization procedure, which involved constraining free

parameters, was conducted using a genetic algorithm [76]. The genetic al-

gorithm operated iteratively, evaluating multiple sets of free parameters (re-

ferred to as "candidates" in the literature) simultaneously against a fitness

function. Following evaluation, the best candidates—those characterized by

the highest values of the fitness function—were subjected to crossover in the

hope of producing even better candidates for subsequent iterations. Crossover

was followed by mutation, where a number of free parameters were ran-
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domly altered, significantly reducing the risk of converging to a local mini-

mum. It is noted that since the fitness function was simultaneously evaluated

for all candidates in a given iteration of the genetic algorithm, multithreaded

computing could be employed to enhance minimization performance.

As observed in other analyses using effectively nonparametric models, regu-

larization had to be employed to avoid biased results caused by overfitting. If

regularization was not applied, the training data tended to be described ex-

tremely precisely by an (ANN), resulting in minimal variance. However, this

precision did not necessarily translate into equally accurate descriptions of

other data or predictive power. Generally, bias could manifest due to exces-

sive focus on describing the training data, leading to poor representation of

general trends. Many types of regularization methods exist, and the selec-

tion of a particular method typically depends on the specific problem under

consideration. In this analysis, the dropout method [77] was utilized. In this

method, a predefined fraction of neurons (in this case, 10%) was randomly

dropped in each iteration of the minimization algorithm (referred to here as

the genetic algorithm). This resulted in some neurons becoming inactive and

not processing signals, while the output of other neurons was correspond-

ingly scaled to compensate for the loss. Effectively, each iteration probed a

different architecture of the ANN, preventing fixation on details solely charac-

terizing the training sample.

3.2 . GPD Modeling with ANNs
The current chapter of the thesis focuses only on results related to the

GPD H(x, ξ, t) where t is set to zero in order to focus solely on the x − ξ

plane. The reader is reminded how such a GPD may be represented in terms

of the Radon transform of a DD as in Eq. (2.33). The ANN models described

here and in [69] model the DDs corresponding to the GPDH . Specifically, the

odd combination Hq(+)(x, ξ, 0) = Hq(x, ξ, 0) − Hq(−x, ξ, 0), the sea quark

GPD, will be studied.

To achieve a satisfactory flexibility and reproduction of known limits, this DD

model is written as the sum of three terms as

(1− x2)FC(β, α) + (x2 − ξ2)FS(β, α) + ξFD(β, α), (3.5)

with FC intended to reproduce the forward limit (Eq. (2.50)) and flexibly

model on the x = ξ line, FS intended to reproduce the uncertainty inher-

ent to deconvolution with a singular perturbative kernel with an explicit lack

of contribution both in the forward limit and at x = ξ, and FD designed to

model theD-term, as discussed in Eq. (2.33),

FC(β, α) = f(β)hC(β, α)
1

1− β2
. (3.6)
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Introduced in the study is the equation (3.6), where FC(β, α) is defined, en-

suring the proper reduction to the forward limit and providing the necessary

flexibility to model the x = ξ line, which holds particular relevance for the

current GPD phenomenology due to the access provided to this kinematic re-

gion via CFFs (see Subsec. 2.4.1). The prefactor (1 − x2) of FC(β, α) in (3.5),

combined with 1/(1 − β2) in (3.6), facilitates the fulfillment of the positivity

constraint (2.51). Denoted by f(β), the forward limit represents the unpo-

larised PDF for the GPD H , while hC(β, α) is a profile function given in the

study by:

hC(β, α) =
ANNC(|β|, α)∫ 1−|β|

−1+|β|
dαANNC(|β|, α)

. (3.7)

The neural networkANNC(|β|, α), even with respect to both β and α variables

due to a special design of the activation function and the use of the absolute

value, vanishes at the edge of the support region |β|+ |α| = 1. The evenness

in β maintains the resulting GPD as an odd function of x, relevant for the phe-

nomenology of DVCS, while the evenness in α is mandatory for the time re-

versal property, ensuring invariance under ξ → −ξ exchange. Normalization
by the integral over α, achievable analytically, enforces the proper forward

limit, while the rest of the model typically trains to reproduce the diagonal

x = ξ at LO probed by amplitudes of processes like DVCS, TCS, and DVMP.

Additionally, due to the tight constraints on the term FC(β, α), necessitated

by the reproduction of both ξ = 0 and x = ξ lines, an additional term FS(β, α)

is introduced. This term explicitly vanishes on these lines, not contributing to

the fit of FC(β, α) on the phenomenological inputs. Instead, (x2−ξ2)FS(β, α)

aims to reproduce the deconvolution uncertainty of exclusive processes, cor-

responding to a LO shadow distribution as defined and studied in [75]. FS as

follows:

FS(β, α) = f(β)hS(β, α), (3.8)

where:

hS(β, α)/NS =
ANNS(|β|, α)∫ 1−|β|

−1+|β|
dαANNS(|β|, α)

− ANNS′(|β|, α)∫ 1−|β|

−1+|β|
dαANNS′(|β|, α)

. (3.9)

During training, efforts focused onmaximizing theNS normalization factor in

(3.9) within positivity limits to leverage maximal flexibility. By writing hS(β, α)
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as the difference of two profile functions characterized by ANNS(|β|, α) and

ANNS′(|β|, α), one ensuresFS(β, α) adds no contribution to the forward limit,

while the f(β) factor helps enforce positivity.

Lastly, FD(β, α) provides the additional flexibility necessary to model the D-

term, which, as mentioned previously, is a degree of freedom of GPDs asso-

ciated with the final terms in ξn+1
in (2.32), crucial in characterizing partonic

matter [78, 48, 44, 47]. It is given by:

FD(β, α) = δ(β)D(α), (3.10)

and

D(α) = (1− α2)
N∑
i=1
odd

diC
3
2
i (α), (3.11)

where di are coefficients of the expansion of the D-term into Gegenbauer

polynomials, and where N = 5 is an arbitrary truncation parameter.

3.3 . Experimental Data and Uncertainty Estimation
For the purpose of a proof of concept via the implementation of the net-

work architectured to be employed for GPDmodeling, it was incumbent upon

the author’s colleagues to use reliable experimental data in whichever kine-

matic ranges they preferred in the x − ξ plane. As a result, GK pseudodata
was used, as opposed to proper experimental data. The GK model will be

explained and explored in this section’s first subsection. In the second, a sta-

tistical technique for estimating the standard deviation when one is unsure

how to usefully define outliers of a data set, known as Median Absolute De-

viation (MAD), will be explained as it is the basis of the statistical analysis of

this impact study.

3.3.1 . GK Pseudodata
The GK pseudo-experimental data used for the ANNGPDmodeling (replica

generation) performed as a precursor to the impact study regarding lattice

data explained in this thesis was generated based on the following model.

The GK model, originally published as a phenomenological ansatz for the ap-

proximation of cross sections in the context of DVMP, has been widely suc-

cessful in terms of its capacity to reproduce experimentally measured DVMP

cross sections low x and high photon virtuality Q2
[70, 71, 72, 73], (see Fig.

2.5). Much like the processes of DIS and DVCS, the DVMP cross section can

be factorized into a hard process which is calculable order by order in pertur-

bation theory, and the GPD of the nucleon (in this case) [72, 71]. However,

there is a third amplitude involved in DVMP resulting most directly in me-

son production referred to as a DA. This DA must be convolved properly with
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the nucleon GPD and the corresponding perturbative kernel in order to accu-

rately represent the process shown in the diagram Fig. 2.5.

This thesis will not discuss further the DA and its properties. Rather, as dis-

cussed in the previous chapter in the contexts of DIS and DVCS, we merely

point out that a proof of factorization of DVMP exists [27]. Given the univer-

sality of GPDs discussed in the same section, the GPD ansatz employed in the

GK model has been applied to other processes such as DVCS [79].

This ansatz was created in DD space in order to preserve the polynomiality

property of the GPD [71, 72, 73]. Correspondingly, this pseudodata is limited

by GK’s previously discussed kinematic modeling assumptions.

10-2 10-1

x

0

0.05

0.1

0.15

0.2

x	H
(x
,	ξ
)

Figure 3.3: The ANN modeling, fitted to GK pseudodata, is compared to said

pseudodata as a test of reproducibility at Q2 = 4 GeV2
. When constraining

the ANN model with 400 points assessed using the GK model [71, 72, 73] for
sea quarks in the x 6= ξ scenario, without enforcing positivity, all three contri-
butions (FC(β, α), FS(β, α), FD(β, α)) are incorporated in the presentation of
results. Fig. directly from [69].

Fig. 3.3 provides an example of how well the behavior of the used GK

pseudo-data is reproduced by the ANN models described in Secs. 3.1 & 3.2.

3.3.2 . MAD

Call this median of a data setX indexed by i mX = Median(Xi). A well un-

derstood reason for employing the median, as opposed to the mean or other

values, as an estimator of a data set’s central value is its lack of sensitivity to

extreme values, which one may consider outliers.
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Figure 3.4: A simple example of the resistance of the median to outliers

whose effect on the corresponding mean is greatly exaggerated is shown.

The blue points have been sampled from the underlying standard normal

distribution shown in black. The introduced black point is present at a dis-

tance of 5σ = 5 from the central value of the distribution. In purple is the
mean of the set of blue points only, and in red is their median. In gray, the

mean of the set of blue points and the black point is shown, while in brown is

their median. The vertical coordinates of all points are of no significance and

only serve for visual ease of comprehension.

As an example, consider Fig. 3.4. Sampled from the shown standard nor-

mal distribution whose mean and median are both 0 are 5 points shown in

blue. The vertical coordinates of all shown points are assigned only for ease

of viewing and carry no significance. Themean of this sample is shown in pur-

ple, and the corresponding median is shown in red. As one expects, there is

no major difference between these two estimators of central value given the

significant clustering of the data near the center of the distribution. Upon the

inclusion of the black point, five standard deviations from the central value of

the distribution, the resulting mean of the group of 6 points is shown in gray,

whereas their median is given in brown. While the median of these 6 points

is relatively resistant to the addition of the 6th point, which one might con-

sider an outlier, the means including and excluding this point are significantly

distinct. In this clear cut example, exclusion of the outlier shown in black for

any further analysis of the data set would be reasonable. However, it is not

always clear how to define outliers in general. How should one decide which

points should be excluded from further analysis of an arbitrary data set? In

lieu of answering this question directly, let’s take a look at the following sce-

nario. Later, an explicit example regarding the trouble of defining outliers in

the case of the replica set will be provided.

Given a "small" set of data values, Xi one knows first of all how to establish

the median value of such values. In general, one may ask why the mean and
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the median of X may widely vary with respect to one another based on the

underlying distribution governing the data set X . X may contain asymme-

tries, etc. which contribute to this difference. As such, one may decide to

estimate the central value of X using a modified definition of "mean", which

takes into account most but not all of the data set X , excluding points which

contribute themost to the deviation of themean from themedianmX . These

excluded points are named "outliers". What remains unclear during this ex-

planation of the origin of the idea of outliers, however, is how to precisely

determine which points should be considered as such. To illustrate this point,

one might imagine constructing various subsets ofX , all of whose means re-

produce well themedian valuemX . Which such subset should one choose for

the rest of their analysis? To avoid the arbitrariness inherent to this question,

one may simply use the medianmX directly as their estimation of the central

value ofX . However, when it comes to estimating higher moments of the dis-

tribution underlingX , such as the standard deviation, one is seemingly forced

to decide whether or not to include only a subset of X which reproduces a

more representative estimation of such moments at the cost of inclusion of

arbitrariness, or to instead deal with a nonarbitrary estimator which poorly

reproduces the underlying distribution of X . An assumption inherent in this

discussion is that of prior intuition regarding the shape of the underlying dis-

tribution governing the sample set X , which from here on we choose to be a

normal distribution, which notably has zero statistical skewness (unrelated to

the skewness ξ of the GPDs discussed in this thesis). In light of this assump-

tion and the desire to avoid defining outliers, we turn to the MAD estimator

of standard deviation, which, as its name suggests, estimates the standard

deviation of a sample distribution as the median of the set of absolute devi-

ations of the data set from its central value. We will hereon use the median

mX of X as the corresponding central value estimator. The MAD estimation

of the standard deviation ofX , is given by [80]

σ̂ ≈ 1.4826 ∗Median(|Xi −mX |). (3.12)

The presented factor of 1.4826 is derived from the earlier stated assumption

that the underlying distribution of the data set is normal.

Understanding now that such a robust secondmoment estimator may be de-

fined in analogy with themedian, onemight be tempted to explore analogous

definitions for higher moments related to the statistical skewness, kurtosis,

etc.. However, given our assumption of a normal distribution for all data

sets presented in this work, this thesis will not employ any such definitions.

Rather, consider once more the simple example presented in Fig. 3.4. Visu-

alised in addition this time are the spreads of the data sets calculated using

the standard deviation and the MAD estimator of standard deviation, shown

in Fig. 3.5.
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Figure 3.5: A continuation of the example shown in Fig. 3.4 of the resistance

of the median to outliers whose effect on the corresponding mean is greatly

exaggerated is shown. In addition, each mean is outfitted with error bars de-

noting the corresponding standard deviation and each median with the cor-

responding MAD estimated standard deviation. The blue points have been

sampled from the underlying standard normal distribution shown in black.

The introduced black point is present at a distance of 5σ = 5 from the central
value of the distribution. In purple is the mean of the set of blue points only,

and in red is their median. In gray, the mean of the set of blue points and

the black point is shown, while in brown is their median. The vertical coor-

dinates of all points are of no significance and only serve for visual ease of

comprehension.

What is most striking about this example is that the standard deviation

including all 6 points (shown in gray) is so much larger than that of the set

of only blue points (shown in purple). The corresponding spread change us-

ing the MAD estimator without the black point (shown in red) and with the

black point (shown in brown) is expectedly robust with respect to this inclu-

sion. However, observe also that while robust, the MAD estimator provides

an inflated assessment of the spread of the blue points with respect to the

traditional standard deviation. The difference is however a cheap price for

the avoidance of outlier definition.

3.4 . Mock Lattice QCD Data Generation
Now understanding both the origin of the GPD replicas (candidate func-

tions) and an important statistical estimator to be employed later in this chap-

ter, it is necessary to take a look at the reasoning for which and method by

whichmock lattice data has been generated for the forthcoming impact study

of its discriminating effect with respect to the ANN GPD replicas. These two

points will be respectively delineated in the following subsections.
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3.4.1 . Precision and Correlation
The choice to use mock lattice data for this impact study is informed by

two key points. The first of these reasons is a lack of access to lattice data.

The second, which is an advantage rather than a disadvantage of using mock

data, is the ability to systematically control the agreement of the mock data

with the set of GPD replicas considered. This systematic control was achieved

via the use of parameters controlling the precision and the correlation of the

mock lattice data.

Im
 H

(𝝂
,ξ

=0
)

Figure 3.6: An example of realistic lattice data from [62](Fig. 4) is shown.

Based on actual lattice studies such as [62] one draws the conclusion that

current state of the art lattice GPD extractions are not equally facilitated in

all kinematic ranges. Taking a look at Fig. 3.6 in this reference, lattice data is

plotted as a function of Ioffe time ν = P · z, the Fourier conjugate of the mo-
mentum fraction x. Indeed, lattice GPD data is presented in general in Ioffe

time space in various references as such calculations occur on an Euclidean

spacetime lattice, and not in momentum space. However, it is worth noting

that the lattice data after which the mock lattice data generated in this study

was modeled was not matched to the lightcone, but, as is the case with all

lattice data, exists along some Euclidean direction, as was discussed in Sub-

sec. 2.5.1. Therefore a proper study comparing replica to mock lattice data

would not have taken place on the lightcone, but off the lightcone.HERE Eu-

clidean replicas are obtained via the convolution of the lightcone one by a

matching kernel. This kernel was neglected as in perturbative QCD it is unity

up to corrections involving the renormalization scale µ at hand, which was

also neglected in the previously described ANN models. Therefore, all cal-

culations in this thesis comparing and combining ANN GPD replicas to mock

lattice data are performed in Ioffe time space. As the ANN fitted singlet GPD,
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H , of the nucleon is that which is treated here, its odd parity in the longitu-

dinal momentum fraction x allows the limitation of the corresponding Ioffe

time studies to the imaginary part ofH . That is,

H(ν, ξ, t = 0) =

∫ 1

−1
dxeiνxHq(+)(x, ξ, t = 0), (3.13)

where the real part<H(ν, ξ) vanishes by parity. We choose for the rest of this

chapter forH(x, ξ) and its Fourier transformH(ν, ξ) to be distinguished only

by their arguments.

As can be seen in the previously referenced Fig. 4b from [62], at Ioffe time

values greater than ν = 10 the signal quickly becomes dominated by noise

and compatible with 0. In order to systematically producemock lattice data in

line with this characteristic of current state of the art lattice data, we chose to

write down a function of Ioffe time which saturates to 5% error at ν = 0, and

100% at ν = 10 using an exponential interpolation between these two points

to determine the behavior of the relative errors in the corresponding 0 ≤
ν ≤ 10 range. The most general exponential function given these endpoint

constraints is given by

g(ν; b, s = 5%, νmax = 10) =
s(bν − bνmax) + 1− bν

1− bνmax , (3.14)

where the parameter b, the base of this exponential function, determines the

intermediate behavior of this interpolating function. As b → 1, the corre-

sponding behavior of g becomes linear, whereas as b → ∞, g approaches a
shifted and scaled step function in the given range. That is

lim
b→1+

g(ν; b, s = 5%, νmax = 10) =
1− 0.05

10
ν + 0.05 (3.15)

lim
b→∞

g(ν; b, s = 5%, νmax = 10) = 0.95Θ(ν − 10) + 0.05, (3.16)

for 0 ≤ ν ≤ 10, where

Θ(ν) = 0 , ν < 0 (3.17)

Θ(ν) = 1 , 0 ≤ ν (3.18)

In practice, the precision associated with mock lattice data points generated

at "low" Ioffe times increases quickly when b is "low" (b→ 1) and slowly when

b is "high". As such, we have chosen two values of b = 1.1, 2 corresponding

to low and high precision mock lattice data generation respectively, which are

shown in Fig. 3.7.
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Figure 3.7: The function g(ν; b, s = 5%, νmax = 10) is shown for b = 1.1 in
green and for b = 2 in red .

Now that our systematic control over the precision of the mock lattice

data to be produced has been explained, it is important to determine what

the corresponding central values should be. In practice, one never expects re-

alistic lattice data to coincide exactly with the central values of replicas fitted

from experimental data. What is important, rather, is that our produced data

coincide more or less within their corresponding precisions with the central

values of the replica set as a function of Ioffe time. Therefore, we choose

to randomly distribute the set of mock lattice data points around the replica

band’s central value using the relative precision function g.

The used procedure is then as follows. Firstly, a set of Ioffe time values νi
are chosen corresponding roughly to the density of points provided in the

Fig. 4b [62]. At each such value νi, the central value of the replica band µ̄i
is computed. Then, a single point is sampled from a multidimensional nor-

mal distribution whose central values are given by the µ̄i and whose corre-

sponding standard deviations are given by g(νi; b, u = 10, v = 0.05)µ̄i. The

coordinates of this point, called µ̄Latt.i , then serve as the central values of the

generated mock lattice data, and the corresponding errors are given once

more by σLatt.i = g(νib, u = 10, v = 0.05)µ̄i.

This method therefore generates mock lattice data which is in general com-

patible with the (central value of the) band of replicas within the precision

generated by the function g. However, it is important to note that thus far, the

data generation treats all mock lattice data points as uncorrelated. Decorrela-

tion of realistic lattice data, while probable when regarding data from distinct

lattice collaborations, is unlikely when referring to that of any single collabo-

ration. To take this into account in our impact study, therefore, we have cho-
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sen to generate mock lattice data in three distinct Ioffe time regions, wherein

intracollaboration correlation is set to 0 ≤ c < 1, and intercollaboration corre-

lation is set to zero. Effectively, this means that the correlation matrix of the

multidimensional Gaussian distribution from which the mock lattice data is

sampled takes on a block diagonal form, where each block of the correlation

matrix C , Cj , is of the form

Cj;i,i′ =
(
c+ (1− c)δi,i′

)
σiσi′ , (3.19)

where j is an index labeling the various blocks and the i, i′ are indices cor-
responding to the Ioffe time values vi included in said jth block. In the jth

block, the correlationmatrixCj;i,i′ is constructed such that the diagonal terms

are given by the corresponding variances assigned to the mock lattice data

points. The off-diagonal terms are proportional to the correlation parameter

c, which is multiplied by the product of the corresponding pair of standard

deviations.

Note that a correlation value of c = 1 is not permitted as it corresponds to a

singular correlation matrix (see Eq. (3.20)). This singularity is a problem both

for the calculation of the χ2
values of each of the replica points as discussed

in the following section of this chapter, and due to the nature of the expres-

sion for the multidimensional correlated normal distribution employed in the

data generation procedure defined above. Explicitly, this distribution is given

in terms of the full N ×N correlation matrix C as

(2π)−
N
2 (det(C))−

1
2 e−

1
2

∑
1≤κ,ρ≤N (y−µLatt.)κ(C−1)κ,ρ(y−µLatt.)ρ , (3.20)

where the independent variables are given by y [81].

In reality, the correlation matrices of lattice data are more complicated than

that used to generate our mock lattice data here. Such correlation matrices

are not constant with respect to the Ioffe time distances between different

pairs of points, nor are they constant with respect to the GPD skewness ξ. As

such, one way to perform studies more refined than that presented explicit

here would be to include such complicated correlations. Further, it would be

excellent for lattice practitioners to publish their correlation matrices along

with their lattice results, as without such matrices inclusion of lattice data in

any kind of global fit or analysis yields conclusions with very limited scope.

Looking forward to the remainder of this chapter, it is important to specify

the three "blocks" in which mock lattice data will be produced. They are given

by

• 0.2 ≤ νi ≤ 2,∆ν = 0.2

• 2.2 ≤ νi ≤ 4,∆ν = 0.2

• 4.4 ≤ νi ≤ 6,∆ν = 0.4,
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where ∆ν is the distance along the Ioffe time axis between points. Given

that the use of three blocks is intended to reproduce the effects of the use

of lattice data of three collaborations, it is worth noting that in practice the

kinematic ranges of actual lattice data would overlap. These non-overlapping

blocks have been chosen as a mere matter of simplicity as the analysis de-

scribed here does not require the mock lattice data subsets be kinematically

nonoverlapping. These blocks have been purposely chosen at relatively small

Ioffe time values in order to reproduce most accurately the kinds of ν ranges

for which GPD lattice results are most often presented in the current state of

the art, and are therefore the most informative ranges to use for an impact

study such as this [82]. Further, the relative sparsity of the chosen values in

the block of highest Ioffe time values has been chosen to reflect such sparsity

in previous lattice results.

Fig. 3.8 illustrates a mock lattice dataset (depicted as orange points) overlaid

with the replicas generated by our GPD model. The four panels showcase

the impact of different combinations of the correlation coefficient c and the

noise parameter b. Higher values of c amplify the influence of one central

value on the selection of others within a specific block in ν, while increas-

ing the parameter b leads to a dataset more closely concentrated around the

maximum likelihood of the GPD model.

3.5 . Bayesian Reweighting
With a method for generating systematically controlled mock lattice data

in terms of both

• its precision and adherence to the set of GPD replicas and

• the correlation between all such generated data in hand. It is now pos-
sible to influence the associated uncertainty of the replica band using

such mock lattice data in order to assess the potential discriminating

ability of lattice data.

In the study discussed here, we chose to use a Bayesian reweighting proce-

dure employing the mock lattice data as a prior, with the intention of inves-

tigating the resulting uncertainty of the set of GPD replicas without needing

to perform costly refits. It is important to note that so far the discussion has

largely ignored the skewness of the GPD despite its inclusion in the replica

generation process, in order to focus on analysis in x and ν. In the final sec-

tions of this chapter, discussions of skewness will play an important role as a

lack of positivity constraint on the GPD in the ERBL region has resulted in less

coherence of the replica band in the ERBL region. In this section, however, it

is first necessary to outline the Bayesian reweighting procedure employed in
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Figure 3.8: Shown are the ensemble of GPD replicas spanning Ioffe times

from ν = 0 to ν = 6 at ξ = 0.1 (indicated in green), along with their median (in
blue) and the 1σ band (in red), which corresponds to b = 1.1 (top) and b = 2
(bottom). Additionally, the mock lattice data set generated accordingly with

c = 0 (left) and c = 0.5 (right) is depicted in orange.

our analysis in order to allow such skewness related discussions to take place.

In the rest of this section the precise procedure used will be delineated.

3.5.1 . Procedure
The goal of this section is to arrive at an understanding of how the mock

lattice data, whose generation procedure was outlined in the previous sec-

tion, has been combined with the GPD replica set at a given value of the

skewness ξ. We assume here that a set ofmock lattice data points with central

values µLatt.i and errors σLatt.i have been produced using the given procedure

at a given base of precision value b ∈ {1.1, 2} and using a particular value
of c ∈ {0, 0.5}. We would eventually like to assign a relative priority value to
each of the replicas with respect to the generated corresponding mock lattice

data, so we define first a value of χ2
k, where k indexes R, the set ofN replicas.

We therefore write

χ2
k =

∑
blocks

∑
i,i′

(µLatt.i −Rk(νi))
(
C−1

)
i,i′

(µLatt.i′ −Rk(νi′)). (3.21)
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We then choose to prescribe each replica Rk a corresponding weight from

the normalized set of corresponding weights given by

ωk =
(χ2
k)

N−1
2 e−

χ2
k
2∑

k′(χ
2
k′)

N−1
2 e−

χ2
k′
2

, (3.22)

whose functional form avoids 1. that a weight of 1 be assigned to a replica

which corresponds with the central value of the replica set and a weight of 0

be assigned to all of the others, which ensures that the standard distribution

of the replica set be non-zero, while 2. assigning smaller weights to replicas

in less agreement with the mock lattice data [83].

One can further characterize the effective fraction of replicasR that align with

the new dataset by defining:

τ ≡ exp(−∑k ωk ln(ωk))

N
, (3.23)

where the exponentiated value represents the Shannon entropy of the weight

set [84]. Being a function purely of the set of weights, τ is equal in momen-

tum and position spaces, and therefore the most global metric used here of

discrimination among the replica set.

Each weight ωk has now been properly defined to assess the relative agree-

ment of the corresponding replica Rk with mock lattice data generated from

the entire set of replicas. How might this prioritization now be employed to

provide uncertainty reduction on the band of replicas? In order to accom-

plish this task, we choose to define a set of (re)weighted statistics. That is,

we define the reweighted median of the replica set to be our representation

of a reweighted central value. This reweighted median is defined as follows.

At each Ioffe time value ν ′ the replica values Rk(ν ′) are (re)ordered such that
Rk′(ν

′) ≤ Rk′+1(ν ′). We say that µ̄ω(ν ′) = Rl′(ν
′) is the reweighted median of

the set ofNrep replica values Rk(ν
′) given the weight set ωk′ once we find the

value of l′ such that

l′−1∑
1≤k′

ωk′ ≤
1

2
&

Nrep∑
l′+1≤k′

ωk′ ≤
1

2
. (3.24)

Note that in all expressions concerning the definition of this reweighted me-

dian, the fact that it is defined in Ioffe time is not explicitly used other than

to specify the set of replica values whose reweighted central value we wish to

calculate. We can therefore perform an identical procedure in x space, and

this is indeed how we establish the replica bundle’s reweighted median as a

function of x as well. This is possible as the set of weights is robust with re-

spect to Fourier transformation due to its linearity, and in this sense we are

able to assess uncertainty reduction resulting from the outlined reweighting
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procedure in both spaces.

The corresponding reweighted standard deviation of the replica set is de-

fined in both spaces in an analogous sense as follows. At a given value of

ν̂ the replica absolute deviations from the reweighted median µ̄ω(ν̂), |µ̄ω(ν̂)−
Rk(ν̂)| are (re)ordered such that |µ̄ω(ν̂)−Rk̂(ν̂)| ≤ |µ̄ω(ν̂)−Rk̂+1(ν̂)|. We say
that σ̄ω = 1.4826 ∗ |µ̄ω(ν̂) − Rl̂(ν̂)| is the reweighted MAD estimator of the
set of Nrep replica absolute deviations from the reweighted median µ̄ω(ν̂),

|µ̄ω(ν̂)−Rk(ν̂)| once we find the value of l̂ such that
l̂−1∑
1≤k̂

ωk̂ ≤
1

2
&

Nrep∑
l̂+1≤k̂

ωk̂ ≤
1

2
(3.25)

where once again the robustness of the weights with respect to Fourier trans-

formation may be exploited to define an analogous quantity in momentum

space, and we assume a normal distribution of the replica set around the

reweighted central value. This imposition of normal statistics is only an as-

sumption in the sense that we assume the Bayesian reweighting procedure

ought to result in such a distribution. In addition, note that in the case ν ′ = ν̂,

l′ 6= l̂ and Rl′ 6= Rl̂ in general as the reordering of the replicas k
′
in terms of

their values at ν ′ is in general not equivalent to the reordering of the replicas’
absolute deviations from the median k̂ at ν̂ = ν ′.
We then go on to define an analogous function also defined in both spaces

which is intended to assess the uncertainty reduction via the Bayesian proce-

dure at the local level as

Σ(y) ≡ σ̄ω(y)

σ̄(y)
, (3.26)

with y ∈ {ν, x}. We also define the average value of Σ in each space as a

global measure of uncertainty retainment after reweighting, where in x space

it is defined on a logarithmic scale in mere correspondence with the our loga-

rithmic plotting convention in momentum space to be viewed in the remain-

ing sections of this chapter as

rν =
1

νmax − νmin

∫ νmax

νmin

dνΣ(ν), (3.27)

rlnx =
1

ln(xmax/xmin)

∫ xmax

xmin

dx

x
Σ(x). (3.28)

These final three objects are referred to here as "retainments of uncertainty"

as they are precisely multiplicative quantifications of the relative amount of

uncertainty of the reweighted replica band with respect to that of the un-

weighted replica bands. As they approach 0, one may interpret that the

reweighting procedure has erased all of the corresponding uncertainty, and

as they grow to 1 one may conclude that the effect of the inclusion of mock

lattice data has had a minimal effect on their uncertainty band.
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3.5.2 . Three σ Outlier Rejection
As promised, an example of why defining outliers is a messy business will

be given in this subsection. Consider Fig. 3.9. The set of GPD "Cleaned" (de-

fined shortly) replicas is shown in a particular kinematic region. In addition,

the central value, 1σ, and 3σ bands of the replica set are shown under the

name "Cleaned", which refers to the rejection of replicas. The process of re-

jection was performed as follows. Firstly, at each considered value of Ioffe

time (not shown), the central value and standard deviation were computed in

the traditional way. Secondly, if any replicas were outside of the 3σ band at

any point in Ioffe time, they were identified as potential outliers. Thirdly, the

replica with the highest cumulative quadrature-summed standard deviation

of those potential outliers was discarded. After each discarding, this process

was repeated until there were no more potential outliers defined in some it-

eration of the second step. The remaining replicas are called the "Cleaned"

replica set. Another set of bands, entitled "Reweighted", were defined and

computed using a Bayesian reweighting process to be explained later in Sec.

3.5. Importantly, the low x behavior of the cleaned replica σ, 3σ bands is con-

cerning, as while the set of replicas mostly tightens towards the x axis as x

decreases, the spread of these bands increases. In particular, this is an effect

of the equal prioritization of all replicas in Ioffe time space, which prioritizes

replicas which in x space may or may not lend themselves to properly de-

scribing the behavior of the majority of the replica set due to the presence of

outliers. Given this situation, it was quickly decided that there was a need to

use estimations of spread robust with respect to outlier inclusion or exclusion

so that defining outlier replicas at all would not be necessary.

Figure 3.9: An example of the use of the local 3σ rule for outlier determination
is shown. "Cleaned" replicas, central values, and σ, µ ± 3σ bands are shown.
"Reweighted" central values and σ, µ± 3σ bands are shown as well.
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3.6 . Monokinematic Reweighting
In this section we will take a look at the results of the reweighting proce-

dure on the statistics of the replica band at two different values of the skew-

ness. One such value, ξ = 0.1, lying close to the forward limit of skewness

ξ = 0, features large amounts of DGLAP support, and therefore a high result-

ing replica set coherence. The other, ξ = 0.5, a midrange skewness featuring

therefore much less DGLAP support and thus via positivity Fig. 3.10, displays

a correspondingly small degree of coherence. A comparison of the replica

sets at these two skewness values as well as to that of ξ = 0.9, an even more

extreme case, is provided in Fig. 3.10.
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Figure 3.10: The set of GPD replicas =H(ν, ξ, t = 0) between Ioffe times ν = 0
and ν = 20 at ξ = 0.1 (top), ξ = 0.5 (middle), ξ = 0.9 (bottom) and their
corresponding one standard deviation bands. Due to waning support x > ξ
as ξ increases, the replicas become less constrained by positivity, oscillate
more heavily, and decohere. Where =(z) is the imaginary part of a complex
number z.

One should keep in mind that these results are intended to direct future

lattice studies by exploring the possible discriminability of such replica sets

using realistic lattice data of various qualities and internal correlations whose

true characteristics are bound to be more complicated than the mock data

shown here, and that in the following section we will also introduce varia-
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Figure 3.11: Upper plots: The collection of GPD replicas at ξ = 0.1, repre-
sented in both momentum space (green, left) and Ioffe times space (green,

right), displaying their central value (blue-dashed), one standard deviation

band (red-dashed), as well as the reweighted central value (pink-solid) and

reweighted one standard deviation band (purple-solid). The mock lattice data

was produced using b = 2 (high precision) and c = 0 (no correlation) at
ξ = 0.1 (orange-dotted, right). Lower plots: Depicting the ratio of reweighted
to initial uncertainty (purple-solid), the average uncertainty retention in both

x (rlnx = 0.78) and ν (rν = 0.16) (green-dashed), and the interval within which
the lattice data was generated, from ν = 0 to ν = 6 (orange-shade, right).
The corresponding effective fraction of replicas retained after reweighting is

denoted by τ = 0.3.

tions of the quantity of mock lattice data across multiple values of the skew-

ness. Therefore, let us draw the attention of the reader in particular to the

uncertainty reductions resulting both in the regions in which the mock lattice

data is introduced and also those present over the entire Ioffe time regions

displayed in the figures. The distinction between the effects of reweighting

using data placed realistically in the low lying Ioffe time region on the statis-

tics in the same region and those in the higher ν region, keeping in mind that

the higher Ioffe time region corresponds to the highly oscillatory behavior of

the GPD replicas in momentum space, should be kept in mind during the dis-

cussion and will be invoked throughout. The tools of Bayesian reweighting

are now applied using a GPD model fitted on phenomenological inputs as a

prior, and mock data as the new information. In monokinematic reweighting,

mock data is added at a single value of ξ, and its impact on the GPD extraction

at the same value is measured. It’s noted that as b increases, the generated

mock lattice data gets closer to the most likely output of the prior model on

average. With increasing c, the mock lattice data consistently remains above

or below the central value of the prior model.

Results for b = 2 (high precision), c = 0 (uncorrelated data), and ξ = 0.1
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Figure 3.12: Same caption as Fig. 3.11 up to the fact that the GPD is shown at

ξ = 0.5, with mock data added at ξ = 0.5 and similarly b = 2 (high precision)
and c = 0 (no correlation). The average uncertainty retainments are rlnx =
0.54 and rν = 0.25, τ = 0.11.

are shown in Fig. 3.11, while Fig. 3.12 presents the results for ξ = 0.5 under

the same parameters. The effect of reweighting in Ioffe time is significant,

leading to a large reduction in uncertainty, which extends beyond the range

of the data. However, fluctuations are more pronounced at ξ = 0.5 due to

lesser coherence of the replica bundle. The average uncertainty retainment

in Ioffe time is rν = 0.16 at ξ = 0.1 and rν = 0.25 at ξ = 0.5.

On the other hand, the reduction of uncertainty in momentum space is less

remarkable, with a larger reduction observed at ξ = 0.5 compared to ξ = 0.1.

Retainment of uncertainty remains high at ξ = 0.1, while it decreases at

ξ = 0.5. This discrepancy illustrates the inversion problem discussed ear-

lier. The origin of the large coherence at ξ = 0.1 in momentum space is the

tight positivity constraint on the GPD, particularly for x > 0.1. This constraint

limits the model’s flexibility in this region, making reweighting less effective in

momentum space.

To compare the effect of reweighting at various ξ values, Fig. 3.16 shows

the effective fraction of surviving replicas τ and the uncertainty retainment

in Ioffe time and momentum space as functions of ξ. The reduction of un-

certainty is consistently better in Ioffe time compared to momentum space

due to the imputation problem. However, using better and uncorrelated data

(b = 2, c = 0) results in amore significant reduction of uncertainty in Ioffe time

than in other configurations.

Please note that in general it is possible that at some point Σ(ν;x) > 1. This

seems to suggest that on the local level the introduction of mock lattice data

actually increases the uncertainty associated with the replica set. How might

adding information increase uncertainty? In cases in which such a breach of
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1 occurs, either it is not in the kinematic region in which mock lattice data has

been used to assign weights to the replicas (see Sec. 3.7), or it takes place

in momentum space where no mock lattice data was introduced (Fig. 3.11).

A replica set coherent at a given skewness in a given Ioffe time range is not

guaranteed to be as coherent at all values of skewness and Ioffe time ranges.

Therefore, the prioritization of the replicas via the introduction of mock lat-

tice data in one kinematic region may prioritize most highly some replicas

which deviate significantly from the replica band in another kinematic region,

resulting in an apparent loss of precision in the second region. However, this

is no reason to abandon reweighting as a method for data incorporation. As

a proof of this claim, consider that the computed values of rν;ΛNx, the global

metrics of uncertainty retainment, never surpass 1. This suggests that even

when presented with local gains of uncertainty, global uncertainty is reduced

via the introduction of additional information i.e. lattice data. This effect may

also be due to the lack of statistics in terms of replica numbers. With such

a small number of replicas, it may be too easy to prioritize too few of them,

allowing small decoherent fluctuations outside of the region of data introduc-

tion.

3.7 . Multikinematic Reweighting
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Figure 3.13: Same caption as Fig. 3.11 up to the fact that the GPD is shown at

ξ = 0.5, with mock data added at ξ = 0.1, b = 1.1 (low precision) and c = 0.5
(correlated data). The average uncertainty retainments are rlnx = 1.15 and
rν = 0.93, τ = 0.83.

Now that we have seen the effects of reweighting at a single skewness at

both low and midrange skewness, it is time to move on to an exploration of

the compensatory effect of the inclusion of additional mock lattice data from

various values of skewness with respect to the waning discriminability at mid
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Figure 3.14: Same caption as Fig. 3.11 up to the fact that the GPD is shown

at ξ = 0.5, with mock data added at ξ = {0.1, 0.2, 0.3}, b = 1.1 (low precision)
and c = 0.5 (correlated data). The average uncertainty retainments are rlnx =
1.0 and rν = 0.82, τ = 0.77.

range skewness. The goal of this section is to compare, therefore, the uncer-

tainty retainments due to various amounts of mock lattice data at low to mid

skewness levels ξ ∈ {0.1}, ξ ∈ {0.1, 0.2, 0.3}, ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} to that
seen in the previous section at purely midrange skewness. We will find that

large amounts of relatively imprecise, highly correlated mock lattice data re-

produce the uncertainty reductions corresponding to low amounts of precise,

correlated data at purely midrange skewness. This will form a basis for the

study’s conclusionary recommendations to lattice QCD practitioners regard-

ing the most useful yield based on kinematic choices, and will fuel a conclu-

sionary discussion regarding optimization on the replica generation side. The

impact of reweighting on other ξ values is explored. Fig. 3.13 shows the result

of reweighting where data is added at ξ = 0.1 but observed at ξ = 0.5, with

b = 1.1 (low precision) and c = 0.5 (correlated data). With large uncertainties,

reweighting does not significantly reduce uncertainty in Ioffe time at ξ = 0.5

(rν = 0.93) and even increases uncertainty in momentum space (rlnx = 1.15)

by smearing the distribution. Adding data for ξ ∈ {0.1, 0.2, 0.3} while keeping
b = 1.1 and c = 0.5 decreases uncertainty retainment at ξ = 0.5 to rν = 0.82

and rx = 1.0 (Fig. 3.14). Further adding data for ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
tightens uncertainty retainment at ξ = 0.5 to rν = 0.65 and rx = 0.75 (Fig.

3.15). However, this is not better than direct b = 2, c = 0.5 reweighting at

ξ = 0.5, resulting in rν = 0.58 and rx = 0.64. This shows that adding data

at one ξ value has minimal effect on other higher ξ values within the GPD

model.
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Figure 3.15: Same caption as figures 3.11 up to the fact that the GPD is shown

at ξ = 0.5, with mock data added at ξ = {0.1, 0.2, 0.3, 0.4, 0.5}, b = 1.1 (low
precision) and c = 0.5 (correlated data). The average uncertainty retainments
are rlnx = 0.75 and rν = 0.65, τ = 0.57.

Data Results

ξUsed Precision Correlation ξShown τ rν rlnx
0.1 Low Low 0.1 / 0.5 0.47 0.25 / 0.92 0.82 / 1.24

0.1 Low High 0.1 / 0.5 0.83 0.85 / 0.93 1.02 / 1.15

0.1 High Low 0.1 / 0.5 0.30 0.16 / 0.90 0.78 / 1.08

0.1 High High 0.1 / 0.5 0.46 0.23 / 0.91 0.82 / 1.23

0.5 Low Low 0.5 0.36 0.44 0.67

0.5 Low High 0.5 0.52 0.58 0.64

0.5 High Low 0.5 0.11 0.25 0.54

0.5 High High 0.5 0.37 0.51 0.77

0.1 0.2 0.3 Low Low 0.5 0.30 0.62 0.95

0.1 0.2 0.3 Low High 0.5 0.77 0.82 1.00

0.1 0.2 0.3 High Low 0.5 0.10 0.34 0.54

0.1 0.2 0.3 High High 0.5 0.30 0.61 0.73

0.1 0.2 0.3 0.4 0.5 Low Low 0.5 0.16 0.19 0.66

0.1 0.2 0.3 0.4 0.5 Low High 0.5 0.57 0.65 0.75

0.1 0.2 0.3 0.4 0.5 High Low 0.5 0.03 0.13 0.45

0.1 0.2 0.3 0.4 0.5 High High 0.5 0.18 0.25 0.77

Table 3.1: Results as dependent on the reweighting parameters. Low

Correlation: c = 0, High Correlation: c = 0.5, Low Precision: b = 1.1,
High Precision: b = 2. rlnx: Average uncertainty retainment in x, rν :
Average uncertainty retainment in ν, τ : Effective fraction of replicas
retained post-reweighting.

Fig. 3.16 illustrates the comparison of reweighting effects at various val-

ues of ξ by presenting the effective fraction of retained replicas τ and the

preservation of uncertainty in both Ioffe time and momentum space. As ξ

increases, indicating a higher degree of replica bundle decoherence, τ dimin-
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ishes rapidly. Beyond ξ > 0.7, a complete refit appears necessary due to

insufficient statistics. Notably, we consistently observe a greater reduction

in uncertainty in Ioffe time compared to momentum space, as anticipated

due to the imputation issue. When utilizing improved and uncorrelated data

(b = 2, c = 0), there is generally a marked decrease in uncertainty in Ioffe

time compared to other configurations, though this improvement is not mir-

rored in momentum space. Notably, for b = 1.1 (low precision), uncertainty

in momentum space decreases with larger ξ values. The erratic behavior of

uncertainty for b = 2 can be attributed to the small value of τ , rendering re-

sults unreliable at higher ξ values, thus emphasizing the restrictive nature of

the new data compared to the prior model.

3.8 . Conclusion
We conducted a study examining how mock lattice QCD data, with mod-

erate values of ξ, affects a GPD model. This model, based on machine learn-

ing techniques, is fitted to the forward limit and diagonal x = ξ of the phe-

nomenological GK model, which encapsulates typical experimental informa-

tion on GPDs. We also impose a positivity constraint, significantly restricting

the model’s freedom in the x > ξ region.

Our findings indicate that uncertainties in our model are largely autocorre-

lated in the small Ioffe-time region at small ξ. Consequently, lattice data only

minimally reduces uncertainty in momentum space. The reduction in uncer-

tainty in momentum space is consistently lower than that in Ioffe time space

due to the challenge of relating the two representations of GPDs, known as

the inverse problem.

Moreover, adding data at low ξ values minimally impacts GPD at higher ξ val-

ues, particularly when neglecting t-dependence. However, the use of lattice

data at non-zero t is expected to increase the impact of reweighting once ANN

modeling is performed in the non-zero t region.

In addition, taking a look at Fig. 3.16, one sees that at mid-range skewness,

the effective fraction of replicas retained after the reweighting process τ is

roughly equal in the low correlation low precision and high correlation high

precision cases. This suggests a trade off between these two parameters in

the sense that it implies that for a given value of one there is a value of the

other which allows for a Bayesian reweighting’s ability to discriminate among

replicas in an equally effective way. This compensatory relationship between

precision and skewness to produce similar results at the level of reweighting

may be exploited by lattice practitioners in their decisions as to how to focus

their computational resources.

We employ a Bayesian method to combine experimental and lattice knowl-

edge on GPDs, which proves effective when lattice data aligns well with the
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Figure 3.16: The effective fraction of replicas retained following reweighting

τ (illustrated by the green curve), preservation of uncertainty in Ioffe time

(shown by the blue curve), and in momentum space (represented by the red

curve) for various combinations of high and low noise (designated as b = 1.1
and 2 respectively) and low and high correlation (indicated as c = 0 and 0.5
respectively).

prior model and from which one can expect a 40% uncertainty at mid-range

skewness. However, our study underscores the importance of addressing

correlations within lattice data for a joint extraction, as real lattice data often

exhibit high degrees of correlation and systematic effects that require careful

management to prevent biases in uncertainty assessment.
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4 - Continuum Techniques
This chapter involves a change of focus with respect to the previous topic.

Although this thesis will continue to treat nucleon GPDs, the remaining in-

formation will pertain to continuum techniques and modeling. This chapter

analyzes GPDs as matrix elements which can be expanded in terms of over-

laps of other functions, LFWFs, to which the following chapter will be devoted.

The outline is as follows. The first section contains a delineation of the rela-

tionships between the nucleonic states involved in Eq. (2.15) and amplitudes

defined on the light front. In the second, the characterization of such ampli-

tudes in terms of quark OAM will be discussed. Finally, the representation of

GPDs in terms of such amplitudes will be explained.

4.1 . Fock Expansion of the Nucleonic States and Light Front
Wave Functions

The matrix elements involved in Eq. (2.15) contain nucleonic state vec-

tors and a quark field operator. The easier of the two with which to deal

is the quark field operator, whose algebraic properties are understood (see

Sec. 4.1.1). The more complicated substructure includes the nucleonic bra

and ket, each of which represents a state which is in principle a linear combi-

nation of an infinite number of states whose quantum numbers match that

of the nucleon. By writing down systematic truncations of these linear combi-

nations explicitly, one may manipulate the resulting sum of matrix elements,

gaining a physical intuition of which pairs of incoming and outgoing states

survive the quark bilinear operator. In this section such an expansion is justi-

fied in the first subsection, and the implications of the corresponding trunca-

tion are discussed in the second.

4.1.1 . Nucleonic States
We start with a Fock expansion of the nucleonic state ([85])

|P ;h〉 =

∞∑
n=3

Sn∑
s=1

∫
Dnϕn,s(x1,~k1⊥;x2,~k2⊥; ...;xn,~kn⊥)|D1,s,D2,s, ...,Dn,s〉,

(4.1)

where

• n corresponds to the number of particles in each state whoseminimum
value of 3 corresponds to the three valence quarks of the nucleon,

• s indexes all states with particle number n, with a maximum value Sn
which depends on n,
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• ϕn,s is an expansion coefficient named a Light Front Wave Function
(LFWF) depending on the momenta and quantum numbers of the par-

tons involved in the state to which it corresponds which are not con-

strained by the equal lightcone time required for this expansion, and

• theDn,s represent the quantum numbers of all such partons including

momentum,

• themomentum conserving integrationmeasureDn ∝
(∏n

i=1 dxid
2~ki⊥

)
(
δ(1 −∑n

i=1 xi)δ
2(
∑

i
~ki⊥)

)
, up to a normalization constant to be dis-

cussed in the next chapter,

• and the limits of the xi integration are 0 to 1, and the integration with

respect to ~ki⊥ is over the entire R2
.

This kind of sum takes place over, as previously discussed, all Fock states with

quantum numbers α compatible with those of the nucleonic state, which is an

infinite number of states with no upper boundary on the associated particle

number. In addition, the coefficient functions ϕn,s cannot depend on the full

4-momenta of the partons as the − component of each parton momentum
has already been integrated out. To see this, require that the lightcone time

z+
, the Fourier conjugate of k−i , has been set to zero, equivalent to integrating

over k−i .
Written in a less precise, more practical way, this sum can be expanded as

|P ;h〉 =
∑
ŝ∈qqq

∫
D3ϕŝ|D̂ŝ〉+

∑
ŝ∈qqqg

∫
D4ϕŝ|D̂ŝ〉+

∑
ŝ∈qqqqq̄

∫
D5ϕŝ|D̂ŝ〉,+...

(4.2)

where the hats (ˆ) identify each of the variables as a symbolic version of it’s

precise counterpart in Eq. (4.1). This way of writing down the Fock expansion

of the nucleonic state |P ;h〉makes explicit that the infinitude of contributing
states includes the three valence quarks (qqq), as well arbitrarily many gluons

(g) and quark-antiquark pairs (qq̄). To construct practical models for comput-

ing GPDs and related distributions such as those presented in Subsec. 2.4.2

of this thesis one may choose to truncate this sum by particle number. In

fact, that is what will be done here.

However, such a truncation is a matter of practicality. Plugging directly the

illustrational expansion given in Eq. (4.2) into a matrix element of the quark

bilinear operator Ôq̄q ≡ q̄cf (− z
2)γ+qcf ( z2) of Eq. (2.24), where we decide mo-

mentarily to omit the corresponding integrals over all momenta, yields

〈P ′;h′|Ôq̄q|P ;h〉 =
∑
c,c′∈N

∑
ŝ∈c

∑
ŝ′∈c′

ϕ∗ŝ′ϕŝ〈D̂ŝ′ |Ôq̄q|D̂ŝ〉, (4.3)
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where the c(′) run over all infinitely many particle configuration contributions
N.
The quark field operators are defined as

qcα,f (z−, z⊥) =

∫
dk+

2k+

d
(2)k⊥

(2π)3
θ(k+)

∑
λ

(bcλ,f (k+, k⊥)uα,λ(k+, k⊥)

×e−i(k+z−−k⊥z⊥) + dc,†λ,f (k+, k⊥)vα,λ(k+, k⊥)ei(k
+z−−k⊥z⊥),

(4.4)

where u and v are lightcone spinors and b and d are the annihilation operators

respectively for a quark and an antiquark. α (suppressed in this discussion)

is a Dirac index, f a flavor index and c a color one, while quark light-front

helicity is denoted with λ. The creation (b) and annihilation (d) operators fulfill

the following anticommutation relations:

{bcλ,f (k+, k⊥), bc
′,†
λ′,f ′(k

+′ , k′⊥)} = {dcλ,f (k+, k⊥), dc
′,†
λ′,f ′(k

+′ , k′⊥)} (4.5)

= 16π3k+δ(k+ − k+′)δ(2)(k⊥ − k′⊥)δff ′δcc′δλλ′ ,

where we remind the reader that λ ∈ {±1
2} is a helicity, c a color index, and f

a flavor index. They act on the vacuum as (in the direction of [34], we ignore

here possible complications related to zero-modes.)

|q; k+, k⊥, λ, c, f〉 = bc†λ,f (k+, k⊥)|0〉,
|q̄; k+, k⊥, λ, c, f〉 = dc†λ,f (k+, k⊥)|0〉, (4.6)

and q̄ ≡ q†γ0
.

Now that it is clear at the level of particle number and species which QCD

Fock states contribute to matrix elements such as Eqs. (2.24) & (2.15), an

issue with Fock space truncation is apparent. Even setting the gluon num-

ber to zero as will be done in the remainder of this thesis, the bilocal quark

operator Ôq̄q may create a quark-antiquark pair. If the incoming state is a

three-quark one, the outgoing state may be a five particle one. The required

outgoing states whose contributions are necessary for consistent modeling

of the three-quark state |qqq〉 are then given by |qqq〉 and |qqqqq̄〉. Carrying
on the logic, one soon realizes that in order to model the contributions of

three-quark Fock contributions to hadronic states one needs to involve an

untenable infinite number of Fock states. This infinite set of ever increasing

quantities of contributions is often referred to as an "infinite tower of states"

and is impractical for modeling purposes [34].

However, not all hope is gone. By limiting the computation to a particular

kinematic region in which the operator Ôq̄q is limited only to quark annihi-

lation and creation, that is, no antiquark bilinear, this infinite tower can be

scaled systematically. In the following subsection (Subsec. 4.1.2) it will be

shown how to do precisely that before settling on only the lowest, three-quark

contributions for the remainder of this thesis.
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4.1.2 . Truncation of the Fock space and Limitation to the DGLAP
Region

In the DGLAP region, one can consistently choose to truncate the Fock

space used to expand the nucleonic states, as has been chosen to be the case

in the remainder of this thesis. This choice can be made because, as stated

explicitly in the previous chapter, a quark (antiquark) will be probed in the

right (left) region. However, in the ERBL region such a consistent truncation

cannot be made of the Fock states involved, as the corresponding probed

parton is a quark-antiquark pair. As illustrated in the previous subsection

(Subsec.), quark-antiquark pair creation or annihilation in the context of a two

field interpolation operator requires an infinite tower of states to be treated

consistently at the level of Fock expansion contributions. For this reason, the

ERBL region is not treated in the remainder of this work.

This thesis will stick to the very first term in Eq. (4.3). That is, the approxima-

tion

|P ;h〉 ≈
∞∑
n=3

δn,3

Sn∑
s=1

∫
Dnϕn,s(x1,~k1⊥;x2,~k2⊥; ...;xn,~kn⊥)

×|D1,s,D2,s, ...,Dn,s〉 (4.7)

=

S3∑
s=1

∫
D3ϕ3,s(x1,~k1⊥;x2,~k2⊥;x3,~k3⊥)|D1,s,D2,s,D3,s〉, (4.8)

will be employed. This is a "valence" quark approximation to the nucleonic

Fock expansion. In the proceeding section of this chapter (Subsec. 4.1.1),

finer questions about the states and combinations thereof will be presented.

As mentioned in the first chapter there has been some successful pioneering

work completed which extends DGLAP results into the ERBL region in the

case on the pion using finite element methods, DDs, and the inverse Radon

transform [86, 87, 88, 89]. Such is the intention behind part of this thesis,

which studies the nucleon in the DGLAP region such that an ERBL extension

might be performed.

4.2 . LFWF characterization and OAM
As discussed in the previous chapter, LFWFs capture the full momentum

space content corresponding to Fock states in the expansion of a quantum

field theoretic state. Further, by characterizing all LFWFs contributing to a

given hadronic state one may compute parton distributions, transition ampli-

tudes, expectation values, etc. as the LFWFs fully characterize the hadronic

state in question, making them an extremely valuable tool for modeling such

objects [34]. Corresponding to their high value they are indubitably difficult

to consistently compute. Given the uncountably infinite quantity of normaliz-
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able functional forms which LFWFs may take a priori, one must find a method

for discrimination in a large functional space, i.e. modeling. In the next chap-

ter a full characterization of the modeling used to compute LFWFs in this the-

sis will be given. For now, it suffices to admit that one fundamental aspect

of such modeling is its dependence on the computation of matrix elements

characterizing the overlaps of various Fock states with the nucleon state in

question. But before one can dream of computing such matrix elements,

and therefore LFWFs, in such a model, one must characterize their relation-

ships in a consistent way.

In this section’s first subsection, the matrix element to be used to access the

LFWF contributions to the nucleon will be introduced. In the second, said ma-

trix element will be parametrized. In the third and fourth subsections, such

parametrization will be explored. In the fifth, the three-quark Fock states con-

tributing to the nucleonic state will be given.

4.2.1 . The Matrix Element
We will now build a matrix element which will be used to consistently

characterize the set of three-quark Fock states contributing to the nucleonic

state |P ;h〉. Without loss of generality we will consider here only the value
h = +1

2 as corresponding states for h = −1
2 can be easily obtained from the

results. For the sake of simplicity, we now write |P 〉, where dependence on h
is implicit.

Let us write down an operator creating a general color neutral three-quark

state.

εc1,c2,c3 q̄+
f1,c1,α1

(z1)q̄+
f2,c2,α2

(z2)q̄+
f3,c3,α3

(z2), (4.9)

zr = (z+
r = 0, ~zr⊥, z−r ) where ~zr⊥ is a vector transverse to the lightcone,

εc1,c2,c3 is the completely antisymmetric Levi-Civita tensor in color space with

the convention ε1,2,3 ≡ 1, the α are Dirac indices, and we have used the lead-

ing twist (+) components of the spinor parts of the quark operators, which

are defined by

q̄±f,c,β ≡
1

2

(
γ∓γ±

)
β,β′

q̄f,c,β′ . (4.10)

Notice that the Dirac indices of the three involved quark field operators are

open. This is key for two reasons. Firstly, it will allow for transparency dur-

ing the process of parametrizing the matrix elements in a Dirac basis whose

terms will be chosen based on constraints via Lorentz symmetry. That is, all

terms in the sum of said parametrization will be required to carry such in-

dices. Secondly, and as a consequence, it will allow for the use of a diverse

set of Dirac structures onto which this matrix element may be projected via

tracing. Each choice of Dirac structure will (anti)align the quark helicities in a

manner which can be used to consistently compute contributions from each
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quark helicity configuration. As we will see in the final section of this chapter,

due to conservation of angular momentum, each quark helicity configuration

corresponds to a particular value of quark OAM (qOAM). By writing the nu-

cleon GPDs as a sum of overlaps of nucleonic states of definite and diverse

qOAM, the relative contributions of these states to the overall nucleon spin

will be elucidated. Further, the spatial shapes of these distinct states will be

of particular interest, and may inform our understanding of the relative con-

tributions of these states to the shape of the nucleon.

With this parametrization of the set of operators creating the states whose

contributions to the nucleon state we wish to investigate in hand, we can

now write down the matrix element to be parametrized in momentum space

as

fN
4
NσMα,σ ≡ NF (

3∏
r=1

∫
dz−r d

2~zr⊥e
i(z−r k

+
r −~zr⊥·~kr⊥)) (4.11)

〈0|εc1,c2,c3q+
f1=u,c1,α1

(z1)q+
f2=u,c2,α2

(z2)q+
f3=d,c3,α3

(z3)|P 〉,

where fN is a normalization constant, NF is a normalization constant cor-

responding to the involved 3D Fourier transform, and in expressions such

as these the label α is a Dirac multiindex of the three-quark helicities α ≡
{α1, α2, α3}. For any choice of quark helicities, which will be controlled by
projection on a Dirac basis as explained later in this chapter, this matrix ele-

ment represents none other than the overlap of the resulting state with the

nucleonic one. However, it is as of now unclear how exactly each such over-

lap will be computed. Let us therefore move on to the parametrization of this

matrix element in terms of all of the available Dirac and Lorentz structures

which transform as this matrix element does. In doing so, we will set the

stage for the modeling of LFWFs in the following chapter.

4.2.2 . Matrix Element Parametrizations
Given that LFWFs are the coefficients in a Fock expansion of hadronic

states on the light front, each LFWF should be related to the inner product of

the Fock state to which it corresponds with the full hadronic state. To consis-

tently compute a combination of three-quark in nucleon LFWFs this and the

following sections follow and elaborate upon methods established in [90]. In

this subsection one of the usual tricks of matrix element decomposition is

employed. The matrix element to be parametrized will be introduced, a full

list of tensorial structures which Lorentz transforms like the matrix element

available is given and condensed into a basis. Finally, the LFWFs will be given

in terms of the linear combinations of the coefficients of basis tensors in the

parametrization.

4.2.3 . Tensorial Basis
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We now explore a set of tensorial structures from the literature [90]. As

is done in [91], the nucleon momentummay be decomposed in terms two of

light-like vectors n and p as

Pµ = pµ + nµ
M2
N

2p · n. (4.12)

In addition to these vectors which define the lightcone, we have access to

two of three transverse components of the quark momenta, where the third

can be rewritten in terms of the other two and the nucleon momentum due

to momentum conservation. Their plus components are proportional to the

nucleon momentum’s plus component, and their minus components have

been integrated away. They must carry purely transverse indices i, j ∈ {1, 2}.
Further, on the Dirac side we have access to γ matrices, γ5, the leading twist

component of the nucleon spinner N , the Dirac slashed lightcone vectors

/p, /n, and the charge conjugation matrix C ≡ iγ2γ0
. Employing the index µ

as a Lorentz index we now write down a twelve element tensorial basis T t
α

(1 ≤ t ≤ 12) for the matrix elementMα with the same CPT properties

Tα =
{
− (C/p)α1α2(γ5N

+)α3 , (4.13)

1

4
(C/p)α1α2(γ5γ

iN+)α3(ki1 + ki2ÊS3),

(C/p)α1α2ε
ijki1k

j
2N

+
α3
,

−(C/pγ5)α1α2N
+
α3
,

−1

4
(C/pγ5)α1α2(γiN+)α3(ki1 − ki2ÊS3),

(C/pγ5)α1α2ε
ijki1k

j
2(γ5N

+)α3 ,

1

32
(nµσ

µiC)α1α2(γiγ5N
+)α3 ,

1

8
(nµσ

µiC)α1α2(γ5N
+)α3(ki1 + ki2ÊS3),

1

8
(nµσ

µiC)α1α2N
+
α3
εij(kj1 + kj2ÊS3),

1

32
(nµσ

µiC)α1α2(γjγ5N
+)α3 |εij |(ki1kj1 + ki2k

j
2ÊS3),

1

32
(nµσ

µiC)α1α2 |εij |ki1kj2(γjγ5N
+)α3 ,

1

32
(nµσ

µiC)α1α2(ki1k
j
2 − ki2kj1)(γjγ5N

+)α3

}
,

where |εij | = δi,3−j is a coefficient dependent on i and j, and is not a con-
tracted tensor, and where ÊS3 exchanges the first two argument of a function

coming directly afterwards. S is defined as the set of permutations of ∫3 and
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denoted by

S1 ≡ {1, 2, 3} S2 ≡ {1, 3, 2} (4.14)

S3 ≡ {2, 1, 3} S4 ≡ {2, 3, 1}
S5 ≡ {3, 1, 2} S6 ≡ {3, 2, 1}.

Unless otherwise specified, the argument exchange operators ÊSw exchange

momentum degrees of freedom. Now let us project these objects according

to all possible helicites of the quarks. That is, in order to find out how such

tensorial structures simplify when contributing to the matrix element defined

in Eq. (4.11). We project it using a helicity projector (Eq. (4.23)) for each quark

operator. We use the relations

[Pλ, γ5] = 0 (4.15)

Pλγ5 = 2λPλ |λ ∈ {±1

2
} , (4.16)

Pλs+ ≡ s+
λ , (4.17)

γ5s
+
λ = 2λs+

λ , (4.18)

Pλγi = γiP−λ , (4.19)

Pλ1C/pPλ2 = δλ1,−λ2Pλ1/pC , (4.20)

Pλ1C/pγ5Pλ2 = (−2λ1)δλ1,−λ2Pλ1/pC , (4.21)

Pλ1σµνCPλ2 = δλ1,λ2Pλ1σµνC, (4.22)

where s is a spinor and where

qλf,c,β ≡
(1 + (−1)λ−

1
2γ5

2

)
ββ′
qf,c,β′ ≡ Pλββ′qf,c,β′ , (4.23)

defines the helicity projection operator. In fact, it is truly a chirality projection

operator which is extended to a helicity projection operator in the infinite
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momentum frame even for massive particles. We then write

T̂ λα ≡
( 3∏
l=1

Pλl
αlα
′
l

)
Tα′ (4.24)

=
{
− δλ1,−λ2(Pλ1C/p)α1α2(2λ3N

+
λ3

)α3 ,

1

4
δλ1,−λ2(Pλ1C/p)α1α2(−2λ3γ

iN+
−λ3

)α3(ki1 + ki2ÊS3),

δλ1,−λ2(Pλ1C/p)α1α2ε
ijki1k

j
2N

+
λ3;α3

,

2λ1δλ1,−λ2(Pλ1C/p)α1α2N
+
λ3;α3

1

4
(2λ1)δλ1,−λ2(Pλ1C/p)α1α2(γiN+

−λ3
)α3(ki1 − ki2ÊS3),

−2λ1δλ1,−λ2(Pλ1C/p)α1α2ε
ijki1k

j
22λ3N

+
λ3;α3

,

1

32
δλ1,λ2(nµPλ1σµiC)α1α2(−2λ3)(γiN+

−λ3
)α3 ,

1

8
δλ1,λ2(nµPλ1σµiC)α1α22λ3N

+
λ3;α3

(ki1 + ki2ÊS3),

1

8
δλ1,λ2(nµPλ1σµiC)α1α2N

+
λ3;α3

εij(kj1 + kj2ÊS3),

1

32
δλ1,λ2(nµPλ1σµiC)α1α2(−2λ3)(γjN+

−λ3
)α3 |εij |(ki1kj1 + ki2k

j
2ÊS3),

1

32
δλ1,λ2(nµPλ1σµiC)α1α2 |εij |ki1kj2(−2λ3)(γjN+

−λ3
)α3 ,

1

32
δλ1,λ2(nµPλ1σµiC)α1α2(ki1k

j
2 − ki2kj1)(−2λ3)(γjN+

−λ3
)α3

}
.

To clarify, in the following chapter we will introduce a method for modeling

of the matrix element defined in Eq. (4.11). In this section, we will shortly

write the helicity projection of said matrix element as a linear combination of

the elements of the projected basis given above. Therefore, it will be useful

to catalog here a set of projectors to be used to isolate the coefficients of

that linear combination. We choose to do so in the form of a set of Dirac

traces. We will list these projectors in turn, and by cataloging them here, we
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will illuminate the connection between this basis and qOAM.

T̂ λαR
1
α ≡ T̂ λα (|N+

λ3
|2n · p)−12(/nC)α2α1N

+
α3

(4.25)

= δλ1,−λ2{2λ3, 0,−εijki1kj2,−2λ1, 0, 4λ1λ3ε
ijki1k

j
2,

0, 0, 0, 0, 0, 0}
T̂ λαR

2
α ≡ T̂ λα (|N+

−λ3
|2n · p)−12(/nC)α2α1(γsN+)α3

= δλ1,−λ2{0, 2λ3(ks1 + ks2ÊS3), 0, 0,−2λ1(ks1 − ks2ÊS3), 0,

0, 0, 0, 0, 0, 0}
T̂ λαR

3
α ≡ T̂ λα (|N+

λ3
|2n · p)−12(ipνCσ

νr)α2α1N
+
α3

= δλ1,λ2(δi,r − 2iλ1ε
ir){0, 0, 0, 0, 0, 0,

0, 2λ3, 2λ1, 0, 0, 0}(kj1 + kj2ÊS3)

T̂ λαR
4
α ≡ T̂ λα (|N+

−λ3
|2n · p)−12(ipνσ

νrC)α2α1(γsN+
−λ3

)α3

= δλ1,λ2(δi,r − 2iλ1ε
ir)

2λ3{0, 0, 0, 0, 0, 0,
δi,s, 0, 0, |εis|(ki1ks1 + ki2k

s
2ÊS3), |εis|ki1ks2, εiski1ks2},

where r and s are transverse indices, and we have defined the projectors

R
g∈{1,2,3,4}
α . In practice, these trace formulae, in combination with the unique

momentum-dependent structures associated with the non-zero elements of

each set, allow one to identify the contribution of each individual structure

defined in Eq. (4.13) to any model of the matrix element defined in Eq. (4.11).

4.2.4 . Symmetric Constraints
The set of twelve tensorial structures is given in Eq. (4.13) represent a ba-

sis for the expansion of the three-quark matrix element defined in Eq. (4.11)

at leading twist. In the previous subsection, Dirac tracing against appropri-

ately chosen tensorial structures has illuminated one way to identify these

individual structure’s contributions for example, when modeling such a ma-

trix element, in Eq. (4.25). In this work, we treat quark flavor as labels only,

in the sense that we work in the isospin limit, treating u and d quarks as pos-

sessing the same mass. Further, the exchange of the two u quarks, due to

their flavor symmetry, must leave the matrix element unchanged. As a con-

sequence, the full list of tensorial structures enumerated without this limit

in mind actually admits a set of simplifications at the level of the coefficient

functions which will appear in the expansion.

Taking a look at the contribution identification trace formulas presented in

Eqs. (4.25), let’s identify sets of tensorial structures with related momentum-

dependent coefficients. The indices of the structure sets are

1. 1: 1, 4, 7

2. εijki1k
j
2: 3, 6, 12
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3. (ki1 ± ki2ÊS3): 2, 5, 8, 9

4. |εij |kiakjb : 10, 11

with a, b ∈ {1, 2}. Now it becomes clear why this basis has been chosen. The
first two bullets point in the preceding list corresponds to zero units of pro-

jected qOAM, the second to two units in opposing directions, the third to one

unit, and the fourth to two units in the same direction.

Now we take a proper look at the symmetries of the matrix elements. Sym-

metry under the exchange of the u quarks is defined as

Mα,σ(κ) ≡Mα,σ(κS3), (4.26)

and isospin symmetry imposes

0 ≡
∑

w∈{1,4,5}
MfSw

α,σ , (4.27)

where the generally omitted flavor labels of the matrix element have been

restored for illustrational purposes. The relation given in Eq. (4.27) is due

to a group theoretical three-quark (valence) expansion of the proton state in

terms of total quark helicity λΣ = h = ±1
2 ([92])

|P ;h〉 =
1√
18

( 2|uhuhd−h〉+ 2|d−huhuh〉+ 2|uhd−huh〉 (4.28)

−|uhu−hdh〉 − |dhu−huh〉 − |uhdhu−h〉
−|u−huhdh〉 − |dhuhu−h〉 − |u−hdhuh〉,

which is symmetric under the exchange of any two of the quarks. This ex-

pression’s overlap with any expression of the form∑
w∈{1,4,5}

|qλf1
q±λf2

q∓λf3
〉fSw , (4.29)

is zero, as one may easily verify. The key insight here is that these conditions

(Eqs. (4.26) & (4.27)) apply even when the matrix element is helicity projected

(Eq. (4.24)) although they do not continue to apply when individual contribu-

tions are selected by a trace (Eq. (4.25)). This is due to the difference between

these two projections. The trace projection is basis-specific as the set of pro-

jectorsR was chosen with respect to the projected basis defined in Eq. (4.24),

whereas the form of the quark helicity projectors (Eq. (4.23)) does not depend

on any choice of basis.

Let us finally define the parametrization of the matrix element defined in Eq.

(4.11) and its helicity projected counterpart as

fN
4
NσMα,σ ≡

12∑
t=1

T t
αφ

t(κ) (4.30)

fN
4
NσM̂λ

α,σ ≡
12∑
t=1

T̂ λtα φ
t(κ),
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where we have defined themomentum dependent basis coefficient functions

φt(κ).

Using the Fierz identity, a way of decomposing products of Dirac spinor outer

products in a Dirac matrix basis with coefficients which are functions of inner

products of those spinors as outlined in [93], one may identify from the helic-

ity projected parametrization provided in Eq. (4.30) in addition to the isospin

symmetry constraint specified in Eq. (4.27) that

0 = (ÊS2 + ÊS4)(2λ3φ
1 − 2λ1φ

4)− 2λ3φ
7

(4.31)

0 = i(ÊS2 − ÊS4)(φ3 − 4λ1λ3φ
6)− 2λ3φ

12

0 = (1 + ÊS2 − ÊS5 − ÊS6)(2λ3φ
8 + 2λ1φ

9)

0 = 2λ3φ
8 − 2λ1φ

9 − ÊS54λ1φ
5 − ÊS6(2λ3φ

2 − 2λ1φ
5)

0 = φ11 + (ÊS5 + ÊS4 − ÊS1 − ÊS3)φ10.

Each of these statements implies that there is a smaller set of amplitudes to

be chosen, which form an isospin symmetric, u-quark symmetric basis for the

full set of amplitudes. Still following the discussion outlined in the work [90],

we define

ψ1,w ≡ φ1 + wφ4
(4.32)

ψ2,w ≡ φ3 + wφ6
(4.33)

ψ3,w ≡ φ2 + wφ5
(4.34)

(1− ÊS2)ψ5 ≡ 1

2
(φ8 + φ9) (4.35)

ψ6 ≡ 1

2
φ10, (4.36)
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with w ≡ −4λ1λ3 = ±1 such that we may write the set of inverted relations

φ1 =
1

2
(ψ1,w + ψ1,−w) (4.37)

φ2 =
1

2
(ψ3,w + ψ3,−w)

φ3 =
1

2
(ψ2,w + ψ2,−w)

φ4 =
q

2
(ψ1,w − ψ1,−w)

φ5 =
q

2
(ψ3,w − ψ3,−w)

φ6 =
w

2
(ψ2,w − ψ2,−w)

φ7 = (ÊS2 + ÊS4)ψ1,w

φ8 = (1− ÊS2)ψ5 +
2λ3

2
(ÊS6ψ

3,−w + ÊS5

w

2
(ψ3,w − ψ3,−w))

φ9 = (1− ÊS2)ψ5 − 2λ3

2
(ÊS6ψ

3,−w + ÊS5

w

2
(ψ3,w − ψ3,−w))

φ10 = 2ψ6

φ11 = 2(ÊS1 + ÊS3 − ÊS5 − ÊS4)ψ6

φ12 = 2λ3i(ÊS2 − ÊS4)ψ2,w.

The lack here of an amplitude named ψ4
is due to an adherence of our nota-

tion to the notation of [90], which performs this aspect of the analysis in the

slightly more limited case of a strictly spin up nucleon. In our notation the

equivalent amplitude is denoted as ψ3,−1
.

We can nowwrite down the helicity projectedmatrix element defined in (4.30)

in terms of the ψ basis. To clarify the presentation of this matrix element, we

contract with a helicity h projected nucleon spinor as well in order to make

manifest the contributions of the two spin states h = ±1
2 . The matrix ele-

ment now reads

fN
4
Nh;σM̂λ

α,σ (4.38)

= −2λ3δλ3,hT̂
λ,1
α ψ1,w + δλ3,−hT̂

λ,7
α (ÊS2 + ÊS4)ψ1,w

+δλ3,hT̂
λ,3
α ψ2,w + 2λ3iδλ3,−hT̂

λ,12
α (ÊS2 − ÊS4)ψ2,w

+
1

2
(δλ3,−h(−2λ3T̂

λ,2
α − 2λ1T̂

λ,5
α )− 2λ1

2
δλ3,h(T̂ λ,8α ÊS5 − T̂ λ,9α ÊS6))ψ3,w

+
1

2
(δλ3,−h(−2λ3T̂

λ,2
α + 2λ1T̂

λ,5
α )− 2λ1

2
δλ3,h(T̂ λ,8α ÊS5 + T̂ λ,9α ÊS6))ψ3,−w

+
2λ3

2
δλ3,h(T̂ λ,8α − T̂ λ,9α )ÊS6ψ

3,−w + δλ3,h(T̂ λ,8α + T̂ λ,9α )(1− ÊS2)ψ5

+2δλ3,−h(T̂ λ,10
α + T̂ λ,11

α (ÊS1 + ÊS3 − ÊS5 − ÊS4))ψ6.

Taking a look at this matrix element, a few comments are in order.

Firstly, the full amplitude ψ5
is never used. The projector 1 − ÊS2 eliminates
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the contribution to it which is even under the exchange of arguments 2 and

3.

Secondly, the inversion relations given in Eqs. (4.37) for φ7,8,9,12
appear con-

tradictory in the sense that the functions ψs
are λ1,3 independent, and yet

they are apparently related to each other via λ1,3 dependent coefficients in

the isospin limit. For example, let us take a look at the first the relations pro-

vided in the Eqs. (4.31)

0 = (ÊS2 + ÊS4)(2λ3φ
1 − 2λ1φ

4)− 2λ3φ
7

→ φ7 = (ÊS2 + ÊS4)(φ1 + qφ4).

This relation is indeed intended to be presented as true whether q = +1 or

q = −1. How is this possible? The solution to this puzzle is to recognize that

the imposition of isospin symmetry and the consequent reduction of the set

of independently contributing amplitudes φt has been performed here only

once our matrix element of interest has been fully projected onto quark he-

licities. That is, we have used the second of Eqs. (4.30) to impose isospin

symmetry, and as a consequence the resulting relations in terms of the auxil-

iary functions φmaintain manifest dependence on the quark helicities.

To see this a different way, take a look at the set tensorial basis defined in Eq.

(4.13). These basis elements, yet to be projected onto the three-quark helici-

ties, are by definition linearly independent. Therefore, their coefficients can-

not be related in linear combinations except among identical structures via

imposition of the symmetry conditions provided in Eq. (4.27) and Eq. (4.26).

Therefore, when we write an expression here such as those given in the Eqs.

(4.31) it is to be understood that such simplifying relationships are given in

the context of a particular set of quark helicity projections and change ac-

cording to such projections.

To isolate each of the eight amplitudes ψs
defined in Eqs. (4.32) we can use

the corresponding trace formulas given by

fN
4
NσM̂

1
2
,− 1

2
,λ3

α,σ R1
α =

p · n
2
|N+

λ3
|2(2λ3ψ

1,−2λ3 − εijki1kj2ψ2,−2λ3)

fN
4
NσM̂

1
2
,− 1

2
,λ3

α,σ R2
α =

p · n
2
|N+

λ3
|22λ3(ks1ψ

3,−2λ3 + ks2ÊS3ψ
3,2λ3)

fN
4
Nσ(M̂

1
2
, 1
2
,λ3

α,σ + M̂−
1
2
,− 1

2
,λ3

α,σ )R3
α =

p · n
2
|N+

λ3
|2δi,r2λ3k

i
1(1− ÊS2)ψ5 + ...

fN
4
Nσ(M̂

1
2
, 1
2
,λ3

α,σ + M̂−
1
2
,− 1

2
,λ3

α,σ )R4
α =

p · n
2
|N+

λ3
|2δi,r2λ3|εis|ki1ks1ψ6 + ...,

(4.39)

where ... denotes similar terms with distinct momentum dependence such

that the written term may be readily identified.

4.2.5 . The Fock Basis
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Let us restate a modified version of Eq. (4.39) in which we define a new

set of helicity projected tensorial structures T̃ λ,tα such that dependence on

the quark and nucleon helicities, the quark momenta, and the functions ψ

defined in Eq. (4.32) is made manifest, and all other dependencies are sum-

marized in the T̃ λ,tα . We choose to write

fN
4
Nh;σM̂λ

α,σ

= −2λ3δλ1,−λ2δλ1,λ3δλ3,hT̃
λ,1
α ψ1,w + δλ1,λ2δλ1,−λ3δλ3,−hT̃

λ,7
α (ÊS2 + ÊS4)ψ1,w

+δλ1,−λ2δλ1,λ3δλ3,hT̃
λ,3
α εijki1k

j
2ψ

2,w

+2λ3iδλ1,λ2δλ1,−λ3δλ3,−hT̃
λ,12
α (ki1k

j
2 − ki2kj1)(ÊS2 − ÊS4)ψ2,w

+
1

2
δλ1,−λ3

(
δλ1,−λ2δλ3,−h(−2λ3T̃

λ,2
α (ki1 + ki2ÊS3)− 2λ1T̃

λ,5
α (ki1 − ki2ÊS3))

−2λ1

2
δλ1,λ2δλ3,h(T̃ λ,8α (ki1 + ki2ÊS3)ÊS5 − T̃ λ,9α εij(kj1 + kj2ÊS3)ÊS6)

)
ψ3,w

+
1

2
δλ1,−λ3

(
δλ1,−λ2δλ3,−h(−2λ3T̃

λ,2
α (ki1 + ki2ÊS3) + 2λ1T̃

λ,5
α (ki1 − ki2ÊS3))

−2λ3

2
δλ1,λ2δλ3,h(T̃ λ,8α (ki1 + ki2ÊS3)ÊS5 + T̃ λ,9α εij(kj1 + kj2ÊS3)ÊS6)

)
ψ3,−w

+
2λ3

2
δλ1,λ2δλ1,−λ3δλ3,h(T̃ λ,8α (ki1 + ki2ÊS3)− T̃ λ,9α εij(kj1 + kj2ÊS3))ÊS6ψ

3,−w

+δλ1,λ2δλ1,λ3δλ3,h(T̃ λ,8α (ki1 + ki2ÊS3) + T̃ λ,9α εij(kj1 + kj2ÊS3))(1− ÊS2)ψ5

+2(−2λ3)δλ1,λ2δλ1,λ3δλ3,−h(T̃ λ,10
α |εij |(ki1kj1 + ki2k

j
2)

+T̃ λ,11
α |εij |ki1kj2(ÊS1 + ÊS3 − ÊS5 − ÊS4))ψ6,

(4.40)

where any apparent instances of a lack of summation over i, j is due to a lack

of display of these indices in the corresponding objects T̃ λ,tα to avoid further

clutter.

We therefore write down all contributing Fock states in terms of the functions

ψ and quark field operators acting on the vacuum and categorize them in

terms of their quark helicities, nucleon helicities, and consequent qOAM in

Tab. 4.1
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∑
d cdψ

d |Fock〉 Ψh,λΣ
qOAM

−(kx1 + iky1)ψ5 |u− 1
2u−

1
2d−

1
2 〉 − |u− 1

2d−
1
2u−

1
2 〉 Ψ− 1

2
,− 3

2
1

(kx1 + iky1)(kx3 + iky3)ψ6 |u− 1
2u−

1
2d−

1
2 〉 − |u− 1

2d−
1
2u−

1
2 〉 Ψ 1

2
,− 3

2
2

−ψ1,−1 + i(kx1k
y
2 − ky1kx2 )ψ2,−1 |u− 1

2u+ 1
2d−

1
2 〉 − |u− 1

2d−
1
2u+ 1

2 〉 Ψ− 1
2
,− 1

2
0

(kx1 + iky1)ψ3,−1 + (kx2 + iky2)ÊS3ψ
3,1 |u+ 1

2u−
1
2d−

1
2 〉 − |u+ 1

2d−
1
2u−

1
2 〉 Ψ 1

2
,− 1

2
1

(kx1 − iky1)ψ3,−1 + (kx2 − iky2)ÊS3ψ
3,1 |u− 1

2u+ 1
2d+ 1

2 〉 − |u− 1
2d+ 1

2u+ 1
2 〉 Ψ− 1

2
, 1
2

-1

ψ1,−1 + i(kx1k
y
2 − ky1kx2 )ψ2,−1 |u+ 1

2u−
1
2d+ 1

2 〉 − |u+ 1
2d+ 1

2u−
1
2 〉 Ψ 1

2
, 1
2

0

−(kx1 − iky1)(kx3 − iky3)ψ6 |u+ 1
2u+ 1

2d+ 1
2 〉 − |u+ 1

2d+ 1
2u+ 1

2 〉 Ψ− 1
2
, 3
2

-2

−(kx1 − iky1)ψ5 |u+ 1
2u+ 1

2d+ 1
2 〉 − |u+ 1

2d+ 1
2u+ 1

2 〉 Ψ 1
2
, 3
2

-1

Table 4.1: The LFWFsΨh,λΣ
are defined asmomentum dependent coef-

ficients of the Fock expansion of a nucleonic state and are categorized

in terms of the nucleon helicity h and the total three-quark (z) helicity
projection λΣ of the Fock states to which they correspond. Conser-

vation of OAM allows for deduction of the corresponding total qOAM

values, which are shown in the third column and are given by h− λΣ.

where we have defined the implicitly labeled LFWFs Ψh,λΣ
(κ) which implicitly

carry all of the flavor, color, and helicity labels of the Fock state correspond-

ing to Ψh,λΣ
(κ) in addition to its momentum dependence.

A few comments are in order. Firstly, how were such Fock states computed?

Comparing Tab. 4.1 to Eq. (4.40) which makes manifest the contributions

to the matrix element defined in Eq. (4.11) in terms of the full set of quark

and nucleon helicity (anti)alignment configurations, one can identify a drastic

simplification merely in the number of terms present? Why so? For the Fock

components of qOAM value ±1
2 , there are three contributing Fock states cor-

responding to the three-quark helicity configurations associated with such a

total value (i.e. ±1
2 = ±(1

2 + 1
2 − 1

2) = ±(1
2 − 1

2 + 1
2) = ±(−1

2 + 1
2 + 1

2)). The

corresponding Fock components presented in Tab. 4.1 are sums of the cor-

responding states.

A second, subtler point implicit in the previous, and mentioned earlier in this

sections is that of the antisymmetric momentum-dependent structures fea-

tured in the matrix element decomposition, such as εijki1k
j
2. These structures

contribute no projected qOAM, but do correspond to two opposing units of

qOAM, each one on a distinct quark. As a result, even if not explicitly stated,

discussion regarding individual qOAM contributions here implicitly reference

total qOAM contributions corresponding to given LFWF contributions.

4.3 . Overlap Representation of GPDs

76



Given that the remainder of this thesis will be focused on the contribu-

tions of three-quark states to GPDs and related objects, it is important to

characterize precisely which pairs of states will contribute. In the subsection

of this section, the formula describing the kinds of pairs of three-quark Fock

states which will contribute, called the overlap representation of GPDs, will

be presented.

4.3.1 . Overlap Formula
In order to understand in a relatively transparent manner the require-

ments for Fock contributions to GPDs, let us take a look at the GPD matrix

element-based definition given in the first chapter (2.15). Let us consider

GPDs in the context of DVCS, only to extend the resulting formulae to other

experimental processes via GPD universality. In DVCS, the involved quark bi-

linear operator, physically motivated by the change in momentum received

by the active quark via its joint interaction with both the virtual initial photon

and its on shell final state counterpart, imparts in general a non-zero mo-

mentum difference on the joint nucleonic system by modifying the momen-

tum of only the active quark. Therefore, the remaining two quarks should

exhibit identical momenta and other quantum numbers before and after the

interaction. However, for the chiral even GPDs considered in this work, the

initial and final state momenta of the active quark should reflect precisely

the difference imparted by the interaction with the photon-electron probe

system. All quantum numbers of the active quark must otherwise be un-

changed. Themomentum equivalence presented here for the inactive quarks

is of course the case in any given frame, so this thesis will work with three

frames, following the work in [34]. These three frames are incoming (hadron

in) in which the z direction is that of the incoming nucleon’s motion, outgoing

(hadron out) in which the z direction is that of the outgoing nucleon’s mo-

tion, and the so-called "symmetric frame" in which the momentum transfer

is evenly distributed among the incoming and outgoing nucleonic states i.e.:

~0 = ~̄P⊥ = ~P⊥ +
~∆⊥
2 = ~P ′⊥ −

~∆⊥
2 . In the symmetric frame the z direction is

that of the nucleon’s average momentum. The associated symmetric frame

variables are labeled as

(x̄i , ~̄ki⊥), (4.41)

(x̄j ∓
ξ

2
, ~̄kj⊥ ∓

~∆⊥
2

), (4.42)

where the index i always labels spectator parton-related quantities and j

those of the active parton, and where the− signs correspond to the incoming
state, whereas the + signs correspond to the outgoing state (See Fig. 4.1).
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Figure 4.1: Here a general schematic for the incoming and outgoing states,

and the corresponding transitional interaction is shown.

In the incoming frame the quark longitudinal momentum fractions and

transverse momenta are given in terms of their counterpoints in the sym-

metric momentum frame as well as the skewness ξ, and ~∆⊥ as

xi ≡
x̄

1− ξ ,
~ki⊥ ≡ ~̄ki⊥ +

x̄

1− ξ
~∆⊥
2

xj ≡
x̄j + ξ

1− ξ ,
~kj⊥ ≡ ~̄kj⊥ −

1− x̄
1− ξ

~∆⊥
2
. (4.43)

The corresponding outgoing frame variables are given in terms of the same

basis as

x′i ≡
x̄

1 + ξ
, ~k′i⊥ ≡ ~̄ki⊥ −

x̄

1 + ξ

~∆⊥
2

x′j ≡
x̄j − ξ
1 + ξ

, ~k′j⊥ ≡ ~̄kj⊥ +
1− x̄
1 + ξ

~∆⊥
2
, (4.44)

where we remind the reader that our convention for ξ is opposite in sign

with respect to the definition given in [34]. We also define a shorthand for

denotation of the quark momenta as

κl = (xl,~kl⊥), (4.45)

we also define

δ(κl − κl′) = δ(xl − xl′)δ2(~kl⊥ − ~kl′⊥), (4.46)

and the integration measure

dκl ≡ dxld2~kl⊥. (4.47)

Now it is necessary to provide a proper definition of the quantum numbers

Dn,s introduced as a catch-all in Eq. (4.1). They are nothing but the momenta,
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helicities, colors, and flavors of the quarks in question we select using the

index l ∈ {1, 2, 3} as κl, λl, cl, and fl, respectively, whose collective labels are
correspondingly given by κ = (κ1, κ2, κ3), λ = (λ1, λ2, λ3), c = (c1, c2, c3),

f = (f1, f2, f3). The collective label for a given quark’s quantum numbers is

defined as Ql ≡ (κl, λl, cl, fl) such that one may write

δ
Ql′
Ql = δ(κl − κl′)δλl′λl δ

cl′
cl δ

fl′
fl
, (4.48)

and

Qκ = κ, Qλ = λ, Qc = c, Qf = f. (4.49)

We also define the collective Q = (Q1,Q2,Q3) and write

δQ
′

Q ≡
3∏
l=1

δ
Q′l
Ql , (4.50)

and then denote the corresponding "reshuffling" of the collective labels’ (λ, f ,

c, and Q) elements (using Q as an example) according to S as

(ŜA(Q))l = QSA,l . (4.51)

As such, we give the nucleonic Fock expansion

|P ;h〉 =
∑∫
Q

ϕQ;h|Q〉, (4.52)

where

∑∫
Q

≡
∫
D3

3∏
l=1

( ∈{− 1
2
, 1
2
}∑

Qλl

∑
Qcl

∑
Qfl

)
εQ

c
, (4.53)

where εijk is the completely antisymmetric Levi-Civita tensor, ϕQ;h is the LFWF

labeled by the indices of the Fock state to which it corresponds, which is given

by the ordered product

|Q〉 ≡
( 3∏
l=1

q
Qλl
Qfl ,Qcl

(Qκl )
)
|0〉 ≡ qQ|0〉, (4.54)

where we have implicitly defined the three-quark field operator qQ, and em-
ployed helicity projected quark operators Pλ.
Though generally Dirac indices (β(′)) are suppressed in this subsection. We
have now built all of the tools to write down the overlap formula for the he-

licity dependent amplitude defined in Eq. (2.24). We will also include the

polarization index P ∈ {0, 1}. For P = 0 recover the unpolarized amplitudes
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defined in Eq. (2.24). For P = 1 we find their polarized counterparts as de-

fined in the appendix Sec. 8.3. We write

Hf̂ ,Ph′h(x̄, ξ, t)

≡ 1

2
√

1− ξ2

∑
ĉ

∫
dz−

2π
eix̄p̄

+z−〈P ′, h′|q̄ĉ
f̂
(−z

2
)γ+(γ5)Pqĉ

f̂
(
z

2
)|P, h〉

=
1

2
√

1− ξ2

∑
ĉ

∫
dz−

2π
eix̄p̄

+z−
6∑

A=1

∑∫
Q′

∑∫
Q

ϕ∗ŜA(Q′);h′ϕQ;h

×〈ŜA(Q′)|q̄ĉ
f̂
(−z

2
)γ+(γ5)Pqĉ

f̂
(
z

2
)|Q〉

=
1

2
√

1− ξ2

6∑
A=1

∑∫
Q′,Q

δQ
ŜA(Q′)

∫
D′3D3ϕ

∗
ŜA(Q′);h′ϕQ;h

3∑
l̄=1

δf̂fl̄
δ(xl − x̄)(sign(λl))

P

≡ Of̂ ,P
[
ϕŜA(Q′);h′ , ϕQ;h

]
(x̄, ξ, t), (4.55)

where the computation between the second and third lines has been per-

formed using the corresponding commutation relations of the creation and

annihilation relations provided.

In the final line of Eq. (4.55), the notation O(ϕ′, ϕ) has been used to repre-

sent this overlap, but also to emphasize an analogy with atomic orbitals. In

the following chapter the analogy will become clearer as we will character-

ize a basis of functions ϕ of definite qOAM. Indeed, the remaining chapters

of this thesis are intended ultimately to develop a method of using LFWFs to

examine the effects of diverse qOAM states on the "shape" of the nucleons

by investigating precisely how such states contribute to nucleonic structure

functions such as GPDs.

4.3.2 . Master Overlap Formula: GPDs and Subresults
The reader is reminded that the GPDs are given in terms of the helicity

dependent amplitudesH as [34]

H f̂ ,P = Hf̂ ,P1
2
, 1
2

+
ξ2−P2MN |~∆⊥|

(∆1 + i∆2)
√

1− ξ2
√

4ξ2m2

ξ2−1
− t
Hf̂ ,P− 1

2
, 1
2

(4.56)

E f̂ ,P =
2MN |~∆⊥|

√
1− ξ2

ξP(∆1 + i∆2)
√

4ξ2M2
N

ξ2−1
− t
Hf̂ ,P− 1

2
, 1
2

. (4.57)

In terms of definite qOAM, one has

Hf̂ ,P1
2
, 1
2

=
(
Of̂ ,P(Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
) +Of̂ ,P(Ψ 1

2
,− 1

2
,Ψ 1

2
,− 1

2
) (4.58)

+Of̂ ,P(Ψ 1
2
, 3
2
,Ψ 1

2
, 3
2
) +Of̂ ,P(Ψ 1

2
,− 3

2
,Ψ 1

2
,− 3

2
)
)

Hf̂ ,P− 1
2
, 1
2

=
(
Of̂ ,P(Ψ− 1

2
,− 3

2
,Ψ 1

2
, 3
2
) +Of̂ ,P(Ψ− 1

2
, 3
2
,Ψ 1

2
,− 3

2
)
)
. (4.59)
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One sees from this that the helicity conserving (hN = h′N ) function H
f̂ ,P
1
2
, 1
2

receives contributions from qOAM zero (first term), one (second and third

terms), and two (fourth term) whereas the helicity flip (hN = −h′N ) function
Hf̂ ,P− 1

2
, 1
2

receives contributions only from qOAM one (first term) and two (sec-

ond term). As the GPD E is a function of only one of these (the helicity flip

function Hf̂ ,P− 1
2
, 1
2

) it receives no qOAM zero contributions. Calculation of the

nucleon PDFs yields

f f̂ ,P(xBJ) = H f̂ ,P|t=ξ=0 = (4.60)(
Of̂ ,P(Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
) +Of̂ ,P(Ψ 1

2
,− 1

2
,Ψ 1

2
,− 1

2
)

+Of̂ ,P(Ψ 1
2
, 3
2
,Ψ 1

2
, 3
2
) +Of̂ ,P(Ψ 1

2
,− 3

2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0,

where the incoming and outgoing momenta are now identical. For the con-

venience of the reader the appendix section Sec. 8.5 contains expressions

for the FFs and the EM radius expectation values in terms of the overlaps O.
Now that we have expressed all of the quantities which interest us in terms of

the LFWF basis and it is completely manifest which contributions correspond

to each value of qOAM, it is now expedient to build the LFWFs in a particular

model. While doing so, we will discuss some previous work on LFWFs, includ-

ing those which employ a point-like diquark, and illustrate how and why this

thesis’s use of a non-point-like diquark provides access to a more complete

set of contributions than those obtained in the case point-like diquark based

models.

4.4 . An Example: Calculation of Ou,0(Ψ1, 1
2
,Ψ1, 1

2
)

We start with the general expression specified to the case at hand

Ou,0(Ψ1, 1
2
,Ψ1, 1

2
) (4.61)

≡ 1

2
√

1− ξ2

6∑
A=1

∑∫
Q′,Q

δQ
ŜA(Q′)

∫
D′3D3Ψ∗

1,1;ŜA(Q′);h′Ψ1,1;Q;h

3∑
l̄=1

δf̂fl̄
δ(xl − x̄),

and cite the corresponding Fock element, decomposing it into its two terms

Ψ1, 1
2
(|u+ 1

2u−
1
2d+ 1

2 〉 − |u+ 1
2d+ 1

2u−
1
2 〉) = T1 + T2. (4.62)

We then list all of the possible permutations S:

S1 ≡ {1, 2, 3} S2 ≡ {1, 3, 2} (4.63)

S3 ≡ {2, 1, 3} S4 ≡ {2, 3, 1}
S5 ≡ {3, 1, 2} S6 ≡ {3, 2, 1}.
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We arrive at (where the active quark variables are shown by the Dirac δ in
each term in the sum):

Ou,0(Ψ1, 1
2
,Ψ1, 1

2
) =

1

2

∫
[Dκ̄]

(
2Ψ∗

1, 1
2

(
x̄1 + ξ

1 + ξ
, ~̄k1⊥ +

1− x̄1

1 + ξ

~∆⊥
2

;
x̄2

1 + ξ
,

~̄k2⊥ −
x̄2

1 + ξ

~∆⊥
2

;
x̄3

1 + ξ
, ~̄k3⊥ −

x̄3

1 + ξ

~∆⊥
2

)

×Ψ1, 1
2

(
x̄1 − ξ
1− ξ ,

~̄k1⊥ −
1− x̄1

1− ξ
~∆⊥
2

;
x̄2

1− ξ ,

~̄k2⊥ +
x̄2

1− ξ
~∆⊥
2

;
x̄3

1− ξ ,
~̄k3⊥ +

x̄3

1− ξ
~∆⊥
2

)δ(x− x̄1)

+Ψ∗
1, 1

2

(
x̄1

1 + ξ
, ~̄k1⊥ −

x̄1

1 + ξ

~∆⊥
2

;
x̄2 + ξ

1 + ξ
,

~̄k2⊥ +
1− x̄2

1 + ξ

~∆⊥
2

;
x̄3

1 + ξ
, ~̄k3⊥ −

x̄3

1 + ξ

~∆⊥
2

)

×Ψ1, 1
2

(
x̄1

1− ξ ,
~̄k1⊥ +

x̄1

1− ξ
~∆⊥
2

;
x̄2 − ξ
1− ξ ,

~̄k2⊥ −
1− x̄2

1− ξ
~∆⊥
2

;
x̄3

1− ξ ,
~̄k3⊥ +

x̄3

1− ξ
~∆⊥
2

)δ(x− x̄2)

+Ψ∗
1, 1

2

(
x̄1

1 + ξ
, ~̄k1⊥ −

x̄1

1 + ξ

~∆⊥
2

;
x̄2

1 + ξ
,

~̄k2⊥ −
x̄2

1 + ξ

~∆⊥
2

;
x̄3 + ξ

1 + ξ
, ~̄k3⊥ +

1− x̄3

1 + ξ

~∆⊥
2

)

×Ψ1, 1
2

(
x̄1

1− ξ ,
~̄k1⊥ +

x̄1

1− ξ
~∆⊥
2

;
x̄2

1− ξ ,

~̄k2⊥ +
x̄2

1− ξ
~∆⊥
2

;
x̄3 − ξ
1− ξ ,

~̄k3⊥ −
1− x̄3

1− ξ
~∆⊥
2

)δ(x− x̄3)

+Ψ∗
1, 1

2

(
x̄3

1 + ξ
, ~̄k3⊥ −

x̄3

1 + ξ

~∆⊥
2

;
x̄2

1 + ξ
,

~̄k2⊥ −
x̄2

1 + ξ

~∆⊥
2

;
x̄1 + ξ

1 + ξ
, ~̄k1⊥ +

1− x̄1

1 + ξ

~∆⊥
2

)

×Ψ1, 1
2

(
x̄1 − ξ
1− ξ ,

~̄k1⊥ −
1− x̄1

1− ξ
~∆⊥
2

;
x̄2

1− ξ ,

~̄k2⊥ +
x̄2

1− ξ
~∆⊥
2

;
x̄3

1− ξ ,
~̄k3⊥ +

x̄3

1− ξ
~∆⊥
2

)δ(x− x̄1)

+Ψ∗
1, 1

2

(
x̄3 + ξ

1 + ξ
, ~̄k3⊥ +

1− x̄3

1 + ξ

~∆⊥
2

;
x̄2

1 + ξ
,

~̄k2⊥ −
x̄2

1 + ξ

~∆⊥
2

;
x̄1

1 + ξ
, ~̄k1⊥ −

x̄1

1 + ξ

~∆⊥
2

)

×Ψ1, 1
2

(
x̄1

1− ξ ,
~̄k1⊥ +

x̄1

1− ξ
~∆⊥
2

;
x̄2

1− ξ ,

~̄k2⊥ +
x̄2

1− ξ
~∆⊥
2

;
x̄3 − ξ
1− ξ ,

~̄k3⊥ −
1− x̄3

1− ξ
~∆⊥
2

)δ(x− x̄3)
)
. (4.64)
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Figure 4.2: A demonstration of how we first consider all possible options for

active quark flavor and permutation (first panel), then filter by flavor (second

panel), all quark helicities (third panel), and active flavor (fourth panel) using

the corresponding Kronecker deltas. At this point all dependence on color,

flavor, and quark helicity have been considered, leaving only the momentum

dependence.

In Fig. 4.2, the overlap selection process unfolds in a sequence of pan-

els, each refining the considerations for active quark flavor and permutation.

Initially, in the first panel, all conceivable options for active quark flavor and

permutation are explored. Subsequently, in the second panel, filtration by

flavor ensues, followed by an assessment of all quark helicities in the third

panel. Finally, the fourth panel refines the selection further by focusing on ac-
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tive flavor, employing corresponding Kronecker deltas for each step. Through

this iterative process, all dependencies on color, flavor, and quark helicity are

meticulously accounted for, culminating in the isolation of momentum de-

pendence as the sole remaining consideration.
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5 - LFWF Modeling
Starting from the goal of computing nucleon GPDs and related subresults,

the latter half of this thesis has traced backwards, seeking to characterize the

nucleonic states present in the matrix element definition of GPDs via a Fock

expansion at equal lightcone time, in turn characterizing the coefficients in

this expansion, LFWFs, in terms of matrix elements involving the contribu-

tions of individual Fock states to nucleonic states. Now it is time to start from

a model of such matrix elements to construct LFWFs and build up to GPDs,

FFs, PDFs, and the EM radius. In the first section of this chapter the quark-

diquark model used to model this three-body system is presented. In the fol-

lowing two sections a discussion presenting the Euclidean model employed,

as well as the method of Mellin of moments used to extend Euclidean results

to the lightcone, are presented. Finally, an example LFWF is presented and

plotted.

5.1 . The Quark-Diquark Model

One aspect differentiating this work from previous discussions of quark-

diquark correlation based models of the nucleon is this work’s treatment of

the diquark as a two body quark system. That is, the diquark is not treated

here as point-like. While simplifying the problem extensively from a three-

body to a two-body system, the point-like diquark approach kills any p-wave

correlations internal to the diquark, thus forcing one’s decomposition of GPDs

into distinct qOAM state transitions to be an incomplete picture, even at the

valence level. A review of some important works regarding the point-like di-

quark will be given, along with a short motivation, in the following two sec-

tions. What maintains this work, then, as one regarding quark-diquark corre-

lations is the use of the tensorial structures associated with the quark-diquark

amplitude, which will be presented along with the corresponding diagrams in

the final two subsections of this section.

5.1.1 . Motivation
The standard way to extract information about bound states in Quantum

Field Theory is often by relying on the pole structure of N -point functions. In

the case of baryons, the quark 6-point function (5.1) is of particular interest,

where T represents the standard time-ordered product.

G(x1, x2, x3, y1, y2, y3) = 〈0|T{q(x1)q(x2)q(x3)q̄(y1)q̄(y2)q̄(y3)}|0〉. (5.1)
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Its Fourier transform yields:

G̃(p1, p2, p3, q1, q2, q3) =

∫ 3∏
j=1

dxjdyje
ipjxjeiqjyjG(x1, x2, x3, y1, y2, y3). (5.2)

Introducing P =
∑

i pi andQ =
∑

i qi, the Green function G̃ can be simplified

when P → Q and P 2 →M2
whereM represents the nucleonmass, as shown

in equation (5.3). The residue at the pole, χ, serves as the Faddeev wave

function, as defined in equation (5.4).

G̃(p1, p2, p3, q1, q2, q3) ∼
P→Q

P2→M2

χ(p1, p2, p3)χ̄(q1, q2, q3)

P 2 −M2
. (5.3)

The Euclidean space Faddeev wave function χ is defined in terms of matrix

element in coordinate space as

〈0|T{q(z1)q(z2)q(z3)}|P, λ〉 =
1

4
fNNσ(P, λ)

∫ 3∏
j=1

d(4)kje
−ikjzj (5.4)

δ(4)(P −
∑
j

kj)χσ(k1, k2, k3).

Following references [94, 95], the transposition operator
T
is used on one

of the quark fields, simplifying the three-spinor algebra into the standard

4 × 4 Dirac structure and the direct product of a Dirac spinor. χσ can be

computed using relativistic-three body bound state Bethe-Salpeter equations

[96], sometimes called Faddeev equations. Equation (5.5) presents the solu-

tion for χ, involving various irreducible kernels. DefiningG0, the disconnected

product of three dressed quark propagators, χ is the solution of

χ = G0Kχ with K = K(3) +

3∑
i=1

(K
(2)
i ⊗ S−1

i ), (5.5)

where K(2)
and K(3)

are respectively the two and three quarks irreducible

kernels, i labels the quark not participating to the two-particle kernel, the

first equation represents the integral convolution of G0, K , and χ, and Si is

the propagator of the ith quark (see Fig. 5.1).
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Figure 5.1: The Faddeev kernel for three quarks (left) is a sum of contributions

of the three two-quark kernels K(2)
(right, first three panels) and the three-

quark kernel K(3)
(right, bottom panel), where "..." signifies corrections due

to higher order interactions.

The two-quark irreducible kernel K(2)
contributes at lower order in αs

than the three-quark irreducible K(3)
as K(3)

contributions vanish by sym-

metry at the first order in αs at which K
(2)
provides non-zero contributions.

Additionally, solving the kernel K(2)
results in diquark poles in the scattering

kernel for three quarks, indicating the accuracy of the diquark approximation

[97]. The Bethe-Salpeter wave function formalism provides advantages when

studying hadron properties. First, it allows the exploitation of a fully covariant

formalism, and thus, the utilization of standard QFT tools. Furthermore, it al-

lows the differentiation between characteristics of the quark and gluon inter-

action entering the two-body kernelK and observables. Although successful

in describing hadron electromagnetic and transition form factors, the formal-

ism has drawbacks, such as difficulty in evaluating systematic uncertainties

arising from the choice of the kernel. Recent improvements in the meson

sector include the availability of more refined kernels [98, 99, 100, 101]. Addi-

tionally, it’s worth mentioning that the Faddeev wave function does not rep-

resent a "true" wave function in the Quantum Mechanical sense, as it is not

associated with probability amplitudes. To recover a probabilistic interpre-

tation, projection of the fully-covariant Faddeev wave function onto the light

front is necessary, as explained in the next section.

5.1.2 . The Point-Like diquark
As previously stated, two-quark interactions appear at a lower order in

the strong coupling than three-quark interactions at the level of the Faddeev

kernel used to solve for the three body fully covariant Faddeev amplitude of
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the nucleon. Observing this and wishing to work with simpler toy models

in which exact expressions for various amplitudes involved in nucleonic am-

plitudes can be computed directly using a Lagrangian approach, some have

investigated scalar diquark models involving a fundamental scalar field cou-

pled to a quark field (For an inexhaustive set of discussion of this topic in the

literature is can be found for example in [102, 103, 104, 105, 106, 107]). This

simplicity is the primary motivation for studying such models, but by assum-

ing a point-like scalar diquark field and thereby erasing the contributions of

the internal degrees of freedom of the scalar diquark correlations, one im-

mediately kills any p-wave correlations internal to the diquark. Further, when

comparing to the other dominant contribution of two body diquarks, the ax-

ial vector diquark, one sees that the positing of a fundamental diquark field

removes some p-wave contributions from the picture as well. In this work we

work with a scalar diquark truly formed of two dynamical bodies, and thus

restore p-wave contributions internal to the diquark with respect to any such

point-like models. In essence, this is another simplification in that, instead of

the singular two body problem present in the point-like diquark models we

work with two simultaneous two body problems, one "inside" of the other.

This "middle of the road" level simplification of the full three body problem,

while more complicated than the point-like toy models, provides access to

contributions of quark states of diverse values of qOAM. In addition, it allows

for solutions of the Faddeev equation to be propagated directly to the level

of three-quark GPDs, a development which in point-like diquark methods is

impossible. In the rest of this chapter we will develop such contributions in

the Euclidean space model to be elucidated in the following section.

5.1.3 . Diagrams

Considering the three quarks of the nucleon system which we consider

in this thesis, there are correspondingly 3 ways of choosing two quarks to

form a diquark. We can visualize these three ways using the following three

corresponding diagrams:

88



=

+

k1

k2

k3

k1

k2

k3

k1

k2
k3

k1k2

k3
+

Figure 5.2: At the top left, an expression of the full Faddeev amplitude, is

written in the diquark approximation as a sum over the three basis diagrams

each involving a unique diquark correlation allowed at leading Fock (three

valence quarks only), which are shown on the right and on the bottom. The

top right diagram, involving a two u diquark, only contributes significantly
when considering axial-vector diquark correlations as there is no way to form

a scalar diquark correlation from two quarks of identical flavor.

As mentioned previously in this chapter, all four of the four possible di-

quark correlations which one may posit are not equally probable. The scalar

and axial vector diquark correlations are the most probable [108]. In the fol-

lowing section, the set of tensorial structures available for the diquark ampli-

tude will be given for those two cases only. However, as a matter of conduct-

ing a proof of concept study, only the simplest structure in the scalar diquark

case will be considered. The methods presented, however, are intended to

be readily generalizable to the remaining tensorial structures. In fact, some

Mathematica code to do just that has been developed during this thesis. In

this subsection, it suffices to admit that, due to the Pauli exclusion principle, a

scalar diquark correlation containing two quarks of the same flavor is not per-

mitted. As such, the diagram including the diquark formed by two u quarks

will no longer be considered. It is worth noting that this diquark is relevant in

the case of the axial vector diquark, however, as it is of spin parity JP = 1+

[108].

5.1.4 . Tensorial Structures
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In expressing the set of possible tensorial structures whichmay contribute

to diquark correlations, it is necessary to choose a basis. This is because, for

each set of tensorial structures one can imagine which transform like the cor-

responding amplitude, one can choose an arbitrary set of linearly indepen-

dent linear combinations of such structures as another basis. Naturally, we

have chosen a basis which comes directly from the literature.

From [109] we explain that the quark-diquark Faddeev amplitudes are com-

puted using the following setup. The Faddeev amplitude representing the

nucleon is given by

ΨN = Ψ1 + Ψ2 + Ψ3, (5.6)

where the subscripts denote the bystander quark, (the quark which does not

participate in the diquark), all three of which are related to one another by

exchanging corresponding indices. The nucleon, possessing spin and isospin

1/2, is a combination of scalar and axial-vector diquark correlations, the latter

of which we mention only for completeness as we will not model it here. That

is

Ψy(k1,2,3, α1,2,3, τ1,2,3) = N 0+

y +N 1+

y , y ∈ {1, 2, 3} (5.7)

with (k1,2,3, α1,2,3, τ1,2,3) representing themomentum, spin, and isospin labels

of the constituent quarks, and P = k1 + k2 + k3 representing the total mo-

mentum of the system. This example scalar diquark component is expressed

as:

N 0+

1 (k1,2,3, α1,2,3, τ1,2,3) = [Γ0+
(q;K)]τ2τ3α2α3

∆0+
(K) [A0+

(l;P )u(P )]τ1α1
,

(5.8)

where the spinor satisfies the Euclidean Dirac equation

(iγ · P +M)u(P ) = 0 = ū(P ) (iγ · P +M), (5.9)

with M being the mass obtained by solving the Faddeev equation. Here,

K{ij} = ki + kj , q[ij] = ki − kj , l{ij}y := (−Kij + 2ky)/3, ∆0+
represents

the pseudoparticle propagator for the scalar diquark formed from quarks 1

and 2, and Γ0+
is the Bethe-Salpeter Amplitude (BSA) of the scalar diquark.

K , q, and l the diquark momentum, the diquark’s internal momentum dif-

ference, and the remaining momentum dependence respectively have been

chosen as our momentum basis in part because of the nice property that in

Euclidean space they are real, which will be elaborated further later in this

chapter. Further, they are imparted with the subscript labels {ij}, [ij], and

{ij}y respectively in order to allow for all possible ways of forming a diquark
out of the three quarks available. Furthermore, A, a 4 × 4 Dirac matrix, is
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the BSA of the quark-diquark system. Ensuring that A0+
(l;P ) represents a

positive energy nucleon implies

A0+
(l;P ) =

2∑
n=1

c0+;n
A (l;P ) T 0+;n

A (l;P ) , (5.10)

T 0+;1
A (l;P ) = 1, T 0+;2

A (l;P ) = (iγ · l − l · P̂ ) (5.11)

where (ID)rs = δrs, ˆ̀2 = 1, P̂ 2 = −1. In the nucleon rest frame, s1,2 de-

scribe, respectively, the upper, lower component of the bound-state nucleon’s

spinor.

5.2 . The Euclidean Model
Although the objects this thesis seeks to compute exist on the lightcone,

the tensorial structures presented, as well as the rest of the associated com-

putation, will take place in Euclidean spacetime. Fundamentally, this is be-

cause the solutions to the Faddeev equations used were computed in Eu-

clidean space. A three-body relativistic equation of state, the Faddeev equa-

tion gives rise to solutions named Faddeev amplitudes.

5.2.1 . Issues with Going to the Lightcone
To continue quantities defined in Minkowski space with the metric ηµν =

δµ,0δν,0 −
∑3

i=1 δµ,iδν,i into Euclidean space one requires an entirely positive

definite or negative definite metric. As a consequence we choose to per-

form such a continuation by defining l4;E ≡ −il0;M and writing previously

Minkowski vectors as Euclidean vectors using such a convention as

lM = (l0;M ,~l)→ lE = (~l, l4;E = −il0;M ) (5.12)

where M and E are subscripts labeling Minkowskian and Euclidean vectors

respectively, and which we will often drop when facilitated by context clues

for ease of legibility.

This kind of coordinate transformation is often called a "Wick rotation", and

is used in lattice field theory as well as in continuum techniques due to its

tendency to send Minkowskian propagators with poles on the real axis in mo-

mentum space integrands to Euclidean propagators with poles off the real

axis in the complex plane as

SM (kM ) =
fM (kM )

k2
M − µ2

→ SE(kE) =
fE(kE)

k2
E + µ2

, (5.13)

where the subscriptsM and E label Minkowskian and Euclidean objects, re-

spectively, whereas to avoid confusion the propagator mass is given by µ, and
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fM ;E represents a general propagator numerator which depends on the spin

of the excitation in question.

Some have employed Euclidean space techniques to solve the Faddeev equa-

tion, rather than solve it directly in Minkowski space to avoid once again poles

on the real axis in momentum space [110, 111]. However, once such a so-

lution is computed numerically, Wick rotating in the opposite direction to re-

coverMinkowskian results from Euclidean ones is a highly nontrivial task. This

is due to conceivably hidden pole structures in the complex plane.

Im

Re

k4

Figure 5.3: One contour of integration which may be used to relate the in-

tegral over the real axis and that over the imaginary axis is shown. Points

representing possible problematic pole locations are shown as well. If these

poles are not present (i.e. the function is analytic inside and on the integra-

tion contour), then no such problems arise.

As shown in Fig. 5.3, Wick rotation relates integration over the real and

imaginary axes by closing a contour in the complex plane at infinity in two

quadrants of the complex plane. Integration along the contour is divided into

four pieces. I1 and I3 represent the contributions to the integral I from the

real and imaginary axes, respectively. I2 and I4 represent the contributions

to the integral I from the quarter-circle terms (which are taken with infinite

radius R, corresponding to I1;3 representing integrations over entire axes)

which vanish if the integrand decreases towards zero as the radius R goes to

infinity. When the integrand is analytic everywhere in the complex plane, one

can relate the two resulting integrals as

I = lim
R→∞

4∑
i=1

Ii = lim
R→∞

2∑
j=1

I2j−1 = 0. (5.14)

However, if the integrand possesses poles in the two quadrants in question,

one must modify the previous relation of the two integrals using the residue
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theorem as

I = lim
R→∞

4∑
i=1

Ii = lim
R→∞

2∑
j=1

I2j−1 = Residue Contribution. (5.15)

The situation in the presence of branch cuts or other singular or pathological

behaviors is even more complicated and we do not enter the details here.

However, the bottom line is that with a mere numerical solution in Euclidean

space, i.e. without an algebraic functional form in hand, one simply cannot

compute the corresponding Minkowskian result, even numerically, as one is

unaware of the pole structure in the quadrants in which the contributions I2;4

are computed.

This issue is compounded when considering the previously introduced light-

cone coordinates. The± coordinates of a vector in lightcone coordinates cor-
respond to the extents of that vector as projected onto two light-like vectors,

say p and n. That is

lM = l+n+ l−p+

2∑
i=1

liêi, (5.16)

where the êi is a basis vector for the ith transverse direction. The impor-

tant point here is that the lightcone basis vectors p and n, being light-like,

square to 0, which does not change when going to Euclidean space. How-

ever, whereas in Minkowski space one has access to infinitely many vectors

of norm 0, Euclidean space possesses only a single vector, the zero vector, un-

less one is willing to go to complex coordinates which we do not enter here

and, numerically, would require modeling in higher dimensions. As a conse-

quence, any practical Euclidean space numerical methods employed in the

state of the art today will face such an issue of "going to the lightcone", in

the sense that results computed numerically in Euclidean space, such as so-

lutions to the Faddeev equation, cannot be directly brought to the lightcone,

as full reconstruction of the behavior of such an amplitude in a two dimen-

sional subspace from its value at a single point requires access to information

impossible to contain at such a single point [111].

5.3 . Mellin Reconstruction
Given the previously stated issues with going to the lightcone directly from

a computation performed in Euclidean space, it will be necessary to be clever

when attempting to set the lightcone time arguments of our Faddeev ampli-

tude expressions to zero. That is, we want to transform Faddeev amplitudes

into LFWFs, amplitudes defined on the lightcone, by performing integration
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with respect to some parameters. In Minkowski space we would like to com-

pute

Ψ(x1,~k1⊥;x2,~k2⊥) = N

∫
dk−1;Mdk−2;Mχ(k1;M , k2;M ), (5.17)

for some normalization N . Given that we work instead in Euclidean space,

we use a trick. We write down a kernel allowing us to trade x dependence

for m dependence, referred to as a Mellin moment computation of order m.

Because of momentum conservation, only two momentum fractions xi out

of the possible three are independent. There, to reconstruct on the light-

cone, we perform such a transform in both the 1 and 2momentum variables

[112]. This is performed in order to exploit Mellin moment uniqueness to

avoid messy contour integration. The Mellin moment of orderm of the func-

tion f is given by ∫
dxxmf(x), (5.18)

where the integration bounds are 0 ≤ x ≤ 1. Digressing further, in non-

pathological cases two functions all of whose Mellin moments are identical

are equivalent [113]. That is∫
dxxmf(x) =

∫
dxxmg(x), ∀m ∈ N (5.19)

⇒ f(x) = g(x).

For a given longitudinal momentum fraction xi, expressing this as a momen-

tum fraction according to Eq. (2.20) and rewriting in terms of the Euclidean

variables, it can be expressed as

xmii ≡
(kE;i · nE)mi

(PE · nE)mi
, (5.20)

where it is simply necessary to know that the nilpotent vector n2
E = 0 projects

vectors onto their + lightcone components. In the next subsection of this

section, the uniqueness of Mellin moments will be stated. This will allow us

to reconstruct the x1,2 dependence of the LFWFs via the relation∫ 1

0
dx1

∫ 1−x1

0
dx2x

m1
1 xm2

2 Ψ(x1,~k1⊥;x2,~k2⊥) (5.21)

≡ Normalization

∫
dk3

1;Edk
4
1;Edk

3
2;Edk

4
2;E

(kE;1 · nE)m1

(PE · nE)m1

(kE;2 · nE)m2

(PE · nE)m2

TrDirac

{
ΓProj.χ(k1;E , k2;E)

}
,

which is theMellinmoment reconstruction employed in [112, 112], andwhere

ΓProj. is a Dirac structure designed to project out the relevant contribution. In

the following subsection we will then discuss how this method can be used to

reconstruct the x dependence from the Euclidean Faddeev amplitudes.
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5.3.1 . Identification of Mellin Variables
We demonstrate the computation of the fundamental contributions to

the six light front wave functions mentioned previously by employing a Eu-

clidean quark-diquark correlation model of the nucleon. Our approach in-

volves the introduction of tensorial structures, which we then contract to

obtain an entity that transforms akin to our target matrix element. Subse-

quently, we determine theMellin moments of this entity on the lightcone con-

cerning its longitudinal momenta. By projecting the resultant tensorial struc-

tures, we extract their contributions to the (LFWFs). Let’s define the quark

propagator as:

S(p) =
[
− iγ · p+Mq

]
DMq(p

2), (5.22)

DM (s) =
1

s+M2
, (5.23)

and a Nakanishi ([114]) representation of the diquark vertex using the basis l

and q given below:

η0Γ0
µC
† = iγ5

∫ 1

−1
dzρν(z)DΛq(qz), (5.24)

where ρν is a polynomial [115] and we define

qz = q +
z

2
(
2

3
P − `)., (5.25)

We also define the diquark propagator in terms of the diquark momentumK

and a Nakanishi representation of the quark-diquark correlation s1 as follows:

∆0+(K) =
1

K2 + M̃2
, (5.26)

s1 = iη

∫ +1

−1
dz, ρ̃(z)[

1

(`2z + Λ2
N )

]3, (5.27)

(5.28)

where ρ̃(z) is a distinct polynomial, and

P ≡ (0, 0, 0, iMN ) =
3∑
i=1

ki (5.29)

ki ≡
P

3
+ ` =

K

2
+

3`

2
(5.30)

kj ≡
P

3
− `

2
+ q =

K

2
+ q (5.31)

kk ≡ P

3
− `

2
− q =

K

2
− q, (5.32)

where we now use a positive-definite metric and where we have omitted

quark number indices onK , q, and `. Next, we decompose the Faddeev wave
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function into three diquark contributions. To work with a general example,

we will perform this computation in the case that quark 1 is not included in

the diquark, that is the diagram-dependent indices i, j, k labeling the three

quarks in Eq. (5.32) given by i = 1, j = 2, k = 3. The corresponding projected

Faddeev amplitude is given by:

χ↑,↓,↑α3;σ = S(k2)α2α′2
[Γ0(q,K)]α′2α′3S(k3)α3α′3

∆0S
T (k1)α)′1α1

Sα′1,σ. (5.33)

The projected wave function in the scalar case is expressed as:

χh1,h2,h3
α1α2α3;σ = (/nL

↑
α′3α3

Sα3λ(k3)Γ0T
λλ′S

T
λ′α2

(k2) (5.34)

×(L↓/nT (C†)TL↑)α2α1Sα1α′1
(k1)Sα′1σ∆(k2 + k3).

To extract the leading twist operator part of this matrix, we project on γν as

follows:

1

4
γνTr[γ

ν/nL↑S(k3)Γ0TST (k2)(L↓/nT (C†)TL↑S(k1)S]∆(k2 + k3)

=
1

4
γνTr[(2n

ν − /nγν)S(p3)Γ0TST (k2)(L↓C(−)/nL↑σS(k1)]s1(`, P )∆(k2 + k3)

=
1

2
γνn

νTr[S(k3)Γ0TST (k2)L↓C†/nL↑]σS(k1)s1(`, P )∆(k2 + k3)

=
1

4
γνTr[S(k3)Γ0TST (k2)L↓C†/nL↑]Tr[γν/nL↑S(k1)s1(`, P )]∆(k2 + k3)

. (5.35)

Consequently, we obtain a trace dependent on the internal diquark constituent

and a trace on the remaining quark and nucleon quark-diquark Bethe-Salpeter

Amplitude.

Let’s start evaluating the trace associated with the diquark:

Tr[C†/n
1 + γ5

2
(−iγ · ((2

3P − `)
2

− q) +M)iγ5 (5.36)

×C†(−iγ · (q +
2
3P − `

2
) +M)T (

1− γ5

2
)]

= 2M(
2

3
P − `) · n = 2MK · n, (5.37)

where we utilized:

C†γTµC = −γµ, (5.38)

with C† = CT = −C. Next, let’s handle the denominator and introduce the
Feynman parameters u, v, and y, leading to the following expression: with

β = u− v + yz. (5.39)
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Im

Re

i𝛽MN/3

k4

Figure 5.4: The contour of integration is intended to be understood as closed

at infinity on the left and right. The resulting shift off of the real axis as ex-

plained in Subsec. 5.2.1 is valid provided that there are no other poles (con-

trolled by the masses and Nakanishi Λ parameters) in the strip between the
red and blue arrows.

Given that P = (0, 0, 0, iMN ), we analyze the integral in the complex plane

of q4 before shifting it (see Fig. 5.4). We introduce:

k′4 = k̄4 + iβ
MN

3
, (5.40)

with k̄4 = q4 − β
2 ` real. This results in:

<(k′24 ) = k̄2
4 − β2M

2
N

9

=(k′24 ) = 2k̄4β
MN

3 ,
(5.41)

where <(z) is the real part of an arbitrary complex number z. We search for

poles in the k′4 complex plane, which occur if and only if:

k̄2
4 − β2M

2
N

9 + (u+ v)M2 + yΛ2
q + (u+ v + yz2 − β2)

`2− 4
9
M2
N

4 = 0

2k̄4β
MN

3 + (u+ v + yz2 − β2)
`4− 4

3
MN

4 = 0.
(5.42)

It is noted that (u+ v + yz2 − β2) is always positive:

u+ v + yz2 − β2
(5.43)

= u(1− u) + v(1− v) + z2(1− u− v)(u+ v)

−(2u(1− u− v)z − 2(u+ (1− u− v)z)v)

= u(1− u)(1− z)2 + v(1− v)(1 + z)2 + 2uv(1− z2) > 0.

The condition for the real part, in the most extreme case of ` = 0, yields:

k̄2
4 + (u+ v)M2 + yΛ2

q − (u+ v + yz2)
M2
N

9
= 0. (5.44)
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Thus, forM and Λq larger thanMN/3, the condition is never satisfied and no

poles cross the integration line of k′4. Hence, we assume this condition for
this example calculation. The complex conjugate poles remain on either side

of the k′4 line, allowing us to close the contour through the real axis, resulting
in a real integral. We introduce β̄ = 1−β

2 such that 0 < β̄ < 1. As n2 = 0, the

only non-zero contribution is from (K · n)m2 , leading to:

I =
(K · n)m2+1

(P · n)m2

2π

(2π)2

∫ 1

−1
dz

∫
dβ̄dudv

4M

1− u− vρν(z)(1− u− v)ν−1

×1

2

Γ(2 + ν)Γ(ν + 1)

Γ(ν + 2)Γ(ν)
β̄m2

(
(q⊥ −

1− 2β̄

2
`⊥)2 + (u+ v)M2 + yΛ2

q

+(u+ v + (1− u− v)z2 − (1− 2β̄)2)
(2

3P − `)2

4

)−(ν+1)
. (5.45)

A this point, defining ū = 1−u, we can then define an effective massM2
e�
and

effective momentum qe�⊥ such that:

M2
e� = 4

(1− ū+ v)M2 + (ū− v)Λ2
q

(1− ū+ v + (ū− v)z2 − (1− 2β̄)2)
(5.46)

=
(1− ū+ v)M2 + (ū− v)Λ2

q

(β̄(v(β̄ − 2) + β̄) + ū(v − β̄2))
(ū− v),

(qe�⊥ )2 = 4
(q⊥ − 1−2β̄

2 `⊥)2

(u+ v + yz2 − β2)
=

(q⊥ − 1−2β̄
2 `⊥)2

(β̄(v(β̄ − 2) + β̄) + ū(v − β̄2))
(ū− v),

(5.47)

and the previous integrals can be written as:

I =
1

(2π)

(K · n)m2+1

(P · n)m2

∫ 1

−1
dz

∫
dβ̄dūdvρν(zν)(ū− v)2ν−12M

Γ(1 + ν)

Γ(ν)

×[(β̄(v(β̄ − 2) + β̄) + ū(v − β̄2)]−ν−1[M2
eff +K2]−ν−1β̄m2 .

(5.48)

We then continue

1

4
Tr[/n

1 + γ5

2
(−i(P −K) · γ +M)γµ]γµ =

1

2
M/n. (5.49)
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We can apply the same Feynman parametrization technique as previously.

(P · n)−m1

∫ 1

−1
dz̃

∫
[dai]

i

2
M2/n(k1 · n)m1 ρ̃(z̃)[(2/3P − `)2 + M̃2]−1

×[(`− 1 + 3z̃

6
P )2 + Λ2

N ]−σ[(`+ P/3)2 +M2]−1
(5.50)

×[M2
e� + (qe�⊥ )2 + (2/3P − `)2]−(ν+1)

= (P · n)−m1

∫ 1

−1
dz̃

∫
[dai]

i

2
M2/n(k1 · n)m1 ρ̃aσ−1

2 aν4δ(1− a1 − a2 − a3 − a4)

× Γ(σ + 3 + ν)

Γ(σ)Γ(ν + 1)

(
(`− αP

3
)2 + a1M

2 + a2Λ2
N + a3M̃

2 + a4(M2
eff + (qe�⊥ )2)

+(a1 + a2(
1 + 3z̃

2
)2 + 4a3 + 4a4 − α2)

P 2

9

)−(σ+3+ν)
,

= (P · n)−m1

∫ 1

−1
dz̃

∫
[dai]

i

2
M2/n(k1 · n)m1 ρ̃aσ−1

2 aν4δ(1− a1 − a2 − a3 − a4)

× Γ(σ + 3 + ν)

Γ(σ)Γ(ν + 1)

(
(`− αP

3
)2 +M2

N (a1(
M2

M2
N

− 1

9
) + a2(

Λ2
N

M2
N

− (1 + 3z̃)2

36
)

+a3(
M̃2

M2
N

− 4

9
) + a4(

M2
eff + (qe�⊥ )2

M2
N

− 4

9
) +

α2

9
)
)−(σ+3+ν)

,

(5.51)

with [dai] = da1da2da3da4 and we make the change of variables α = −a1 +

a2
1+3z̃

2 + 2a3 + 2a4. Just like in the case of the scalar diquark, we are now

facing an integral in the `4 complex plane. In analogy with the previous case,

mass ratios such that:

(
M2

M2
N

− 1

9
) > 0, (

Λ2
N

M2
N

− (1 + 3z)2

36
) > 0,

M̃2

M2
N

− 4

9
) > 0, (

M2
eff

MN2

− 4

9
) > 0, (5.52)

would guarantee the absence of poles. Only the last one cannot be tuned

anymore and requires further study. We investigate the most extreme case

by setting ~k1,2⊥ = ~0⊥.

M2
eff =

(ū− v)(1− ū+ v)M2 + (ū− v)Λ2
q)

vβ̄(β̄ − 2) + ū(v − β̄2) + β̄2
. (5.53)

∂M2
eff

∂ū
=

(v − β̄)2M2 + (ū− v)(Λ2
q −M2)(2β̄2 + ū(v − β̄2 + vβ̄2 − 4vβ̄ + v2)

[vβ̄(β̄ − 2) + ū(v − β̄2) + β̄2]2

= ((v − β̄)2M2 + (ū− v)(Λ2
q −M2))[(β̄(1− ū) + (β̄ − v))(β̄ − v)

(5.54)

+ v(ū− β̄)(1− β̄)][vβ̄(β̄ − 2) + ū(v − β̄2) + β̄2]−2

> 0 for Λ2
q ≥M2. (5.55)
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Computing the gradient, one realizes that the minimum value is obtained for

either ū or v equal to β̄ if we assume Λ2
q ≥M2

. We therefore have for ū = β̄:

M2
eff ≥

M2

β̄(1− β̄)
+ (β̄ − v)

Λ2
q −M2

β̄(1− β̄)
≥ 4

9
M2
N since M2 ≥ 1

9
M2
N . (5.56)

Consequently, the pole structure allows us to close the Cauchy contour on

the real axis, and we therefore end up with a real-valued integral. We now

introduce ᾱ = (1 + α)/3, ā1 = 1− a1 and a34 = a3 + a4. Introducing also:

λ =
(1 + 3z̃)2

36
=

1

36
(3(2

(ᾱ− a34)

ā1 − a34
− 1) + 1)2. (5.57)

We obtain in the end:

J = i/n

∫
[df ]

M2

2

2π

(2π)2
ρ̃ρν

2

ā1 − a34
(ā1 − a34)σ−1(a34 − a3)ν

× Γ(σ + 3 + ν)

Γ(σ)Γ(ν + 1)

1

2

Γ(σ + ν + 2)

Γ(Γ(σ + ν + 3)
ᾱm1(1− ᾱ)m2+1β̄m2

×
[
`2⊥ +M2

N (1− ā1)(
M2

M2
N

− 1

9
) +M2

N (ā1 − a34)(
Λ2
N

M2
N

− λ)

+a3M
2
N (

M̃2

M2
N

− 4

9
) + (a34 − a3)M2

N (
M2

e�
+ (qe�⊥ )2

M2
N

− 4

9
)

+M2
N (ᾱ− 1

3
)2
]−(σ+2+ν)

×[β̄(v(β̄ − 2) + β̄) + ū(v − β̄2)]−ν−1(ū− v)2ν−1 Γ(ν + 1)

Γ(ν)

1

2π
,(5.58)

with: ∫
[df ] =

∫ 1

0
dᾱ

∫ 1

0
dβ̄

∫ β̄

0
dv

∫ 1

β̄
dū

∫ ᾱ

0
da34

∫ 1

ᾱ
dā1

∫ a34

0
da3. (5.59)

The last step is to define β′ = (1 − ᾱ)β̄, together with u′ = (1 − ᾱ)ū and

v′ = (1− ᾱ)v. J then becomes:

J =
i/n

(2π)2

∫
[df ′]

M

2
ρ̃ρν

1

ā1 − a34
(ā1 − a34)σ−1(a34 − a3)ν

Γ(σ + 2 + ν)

Γ(σ)Γ(ν)

×ᾱm1(1− ᾱ)β′m2

[
`2⊥ +M2

N (1− ā1)(
M2

M2
N

− 1

9
) +M2

N (ā1 − a34)(
Λ2
N

M2
N

− λ)

+a3M
2
N (

M̃2

M2
N

− 4

9
)

+(a34 − a3)M2
N (
M2

e�
+ (qe�⊥ )2

M2
N

− 4

9
) +M2

N (ᾱ− 1

3
)2
]−(σ+2+ν)

×[β′(v′(β′ − 2(1− ᾱ)) + β′(1− ᾱ)) + u′(v′(1− ᾱ)− (β′)2)]−ν−1
(5.60)

×(ū′ − v′)2ν−1(1− ᾱ)ν+1,
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with corresponding modifications ofMe� and q
e�

⊥ and with

∫
[df ′] =

∫ 1

0
dᾱ

∫ 1−ᾱ

0
dβ′

∫ β′

0
dv′
∫ 1−ᾱ

β′
du′
∫ ᾱ

0
da34

∫ 1

ᾱ
dā1

∫ a34

0
da3. (5.61)

Now it is possible to invoke the uniqueness of Mellin moments to identify J

with ψ1(κ). We identify

∫ 1

0
dx2

∫ 1−x2

0
dx1x

m1
1 xm2

2 ψ1(κ) = J(m1,m2,~k1⊥,~k2⊥) (5.62)

→ x1 = ᾱ, x2 = β′,

where for clarity we remind the reader that κ⊥ (the set of the transverse
quark momenta) is subject to the condition ~0⊥ =

∑3
r=1

~kr⊥. This Mellin mo-
ment reconstruction method is one of the main tricks used in the literature

to reconstruct dependence of amplitudes calculated in Euclidean space to the

lightcone at equal lightcone time. One question worth asking in this situation

is why we choose to integrate directly using a Dirac Delta to enforce the re-

lationship between x and it’s lightcone definition presented in Eq. (10.13).

This is a subtle issue which will not be completely explored here. Suffice it

to say that reconstructing x1,2 dependence in using such a method requires

intimate knowledge of the singular structure in the complex plane of the inte-

grand, because the Dirac Delta made to enforce our constraint must contain

a complex argument. This requires, for example, an extended definition of

the Dirac Delta in the complex plane, which is no trivial task [116]. Some re-

cent and impressive results using similar methods can be found here [111]

for the interested reader. We are limited to integrating along a small range

of contours parallel to the real axes of the Euclidean variables in this thesis,

so we leave this discussion aside. Let us now move on to view some plots of

ψ1,−1
, which are the first numerical results of this half of this thesis.

5.3.2 . LFWF Plots

In this section we show plots of the LFWF ψ1,2;w
for various configurations

of the transverse momenta in Figs. 5.6, 5.7, 5.8, 5.9, 5.10, 5.11.
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|~q⊥| |~l⊥| θql n |~k1⊥| |~k2⊥| θ12

0 0 U 1 0 0 U

2 0 0 U

3 0 0 U

0.1 0 U 1 0 0.01 U

2 0.01 0 U

3 0.01 0.01 π
0 0.1 U 1 0.01 0.0025 π

2 0.0025 .01 π
3 0.0025 0.0025 0

0.1 0.1 0 1 0.01 0.0025 0

2 0.0225 .01 π
3 0.0025 0.0225 π

0.1 0.1 π
2

1 0.01 0.0125 2.03444
2 0.0125 .01 2.03444
3 0.0125 0.0125 2.2143

0.1 0.1 π 1 0.01 0.0225 π
2 0.0025 .01 0
3 0.0225 0.0225 π

Figure 5.5: Here we present the relationship between the magnitude of the

diquark internal transverse momentum q, the magnitude of the transverse

momentum l, the angle between them θql ≡ cos( ~q⊥·~l⊥
|~q⊥||~l⊥|

), and the correspond-

ing values of the magnitudes of the tranverse momenta k1,2 an the angle be-

tween them θ12 ≡ cos(
~k1⊥·~k2⊥
|~k1⊥||~k2⊥|

). U , present only when one or both of the

corresponding vectors are of magnitude 0, means undefined. n marks the
bystander quark. The analytic versions of these relations are provided in the

appendix Sec. 8.6. This correspondence depends on which quark is chosen

to be the bystander i.e. which quark does not participate in the diquark corre-

lation i.e. the diagram of those presented in Fig. 5.2, which determines which

of the ψ1,2;w
receives a contribution.
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Figure 5.6: Plots of the function ψ1,−1
for |~k1⊥| = |~k2⊥| = 0 is shown. This

plot is a contour plot, given on a triangular domain due to the momentum

conservational constraint 1 =
∑3

i=1 xi. The normalization has not been set
due to any physical constraints, and is consistent among all of the LFWF plots

given in this document. The normalization is calculated by computing the

largest value of ψ1,−1
among all of the computed values, and scaling all plots

such that that maximum value becomes 6, in order to align with the color
scales of these plots. We remind the reader that the transverse momenta are

given in units of the nucleon massMN .
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Figure 5.7: Identical to Fig. 5.6 except that |~k1⊥| = 0, |~k2⊥| = 0.5 is shown.
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Figure 5.8: Identical to Fig. 5.6 except that |~k1⊥| = |~k2⊥| = 0.5, θ12 = 0 is
shown. θKq is defined to be the angle between the total and internal diquark
momenta, and is called the internal angle of the diquark.
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Figure 5.9: Identical to Fig. 5.6 except that |~k1⊥| = |~k2⊥| = 0.5, θ12 = π
2 is

shown.
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Figure 5.10: Identical to Fig. 5.6 except that |~k1⊥| = |~k2⊥| = 0.5, θ12 = π is
shown.
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Figure 5.11: Identical to Fig. 5.6 except that |~k⊥| = 0.5, |~k2⊥| = 0 is shown.

In Fig. 5.6, symmetry between the quark u2 and the d quark is relatively

clear. That is to say that, neglecting noise, exchanging their axes yields an

identical plot. This is also the case in Fig. 5.7, as the internal diquark trans-

verse momentum remains zero. In the remaining plots slight deformations

from this symmetry are present and can be understood as due to asymmetry

between the contributions of the two non-bystander quarks are no longer in-

terchangeable when their longitudinal momenta are not equal. In particular,

the internal angle of the diquark θqK , when nonzero, results in an asymmetric

share of longitudinal momentum of the diquark’s constituents. In addition, it

is clear that the bystander quark tends to carry the majority of the longitudi-
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nal momentum.
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6 - Further Results
In this section are shown corresponding PDF plots, as well as those of re-

lated distributions. However, these results are not numerically stable at the

current moment. This is mostly due to the large dimensionality of the numer-

ical integration necessary to tackle in order to compute the overlap of two

LFWFs which are each written as definite integrals over five Feynman param-

eters. In addition, all of the objects which we would like to compute via the

overlap representation of LFWFs (GPDs, FFs, PDFs, IPDs) require the integra-

tion over the quark transverse momenta, as can be seen from the definition

of the overlaps O as given in Eq. (4.55). For this second reason, we choose to
compute the integrals over the quark transverse momenta analytically. This

process will now be demonstrated before we choose to display any further

results as well as the difficulties associated with the subsequent multidimen-

sional numerical integration. Afterwards, some further improvements that

might be made to improve the computation of more contributions to our dis-

tributions of interest as well as any future goals for subsequent studies will

be delineated.

6.1 . Preparation for Numerical Integration
In order to compute the contributions of various LFWFs to Wigner distri-

butions and their associated limits we must first compute their overlaps. Let

us begin with the contribution to the function Ψ1,−
as elucidated in the pre-

vious section. We drop here the arrows of the transverse vector notation for

legibility. It is proportional to

Ψ1,− = Ñ(ν, σ)

∫
[df ]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2M

−2(σ+2+ν)
N

×
[ `2⊥
M2
N

+ (1− ā1)(
M2

M2
N

− 1

9
) + (ā1 − a34)(

Λ2
N

M2
N

− λ) + a3(
M̃2

M2
N

− 4

9
)

+(a34 − a3)(
M2

e�
+ (qe�⊥ )2

M2
N

− 4

9
) + (x2 −

1

3
)2
]−(σ+2+ν)

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2)) + ū′(v′(1− x2)− (x1)2)]−ν−1

(ū′ − v′)2ν−1, (6.1)

where Ñ(ν, σ) is a normalization factor depending on ν and σ, the Nakan-

ishi model exponents. To calculate the contribution of this function’s over-

lap with itself to the GPD H when quark 1 is active we first take at a look at

the transverse momentum dependent term, combining with a new Feynman
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parametrization as

[
(1 +

a34 − a3

(x2 − 1)2
x2

1)k2
1⊥ + (a34 − a3)k2

2⊥ (6.2)

+2
a34 − a3

−1 + x2
x1
~k1⊥ · ~k1⊥ + M̂2

]−(σ+2+ν)

in

[
(1

+
a34 − a3

(x2 − 1)2
x2

1)k2
1⊥ + (a34 − a3)k2

2⊥ + 2
a34 − a3

−1 + x2
x1
~k1⊥ · ~k1⊥

+M̂2
]−(σ+2+ν)

out

=

∫ 1

0
dh
[
A1k̄

2
1⊥ +A2k̄

2
2⊥ +A3∆2

⊥ +A4k̄1⊥ · k̄2⊥

+A5k̄1⊥ ·∆⊥ +A6k̄2⊥ ·∆⊥ +A7]−2(σ+2+ν),

where M̂ is a collection of all non-transverse-momentum-dependent terms

to be dealt with later and where h is the new Feynman parameter and the co-

efficients A1−6 of the six kinematic combinations resulting from use the def-

initions of the incoming and outgoing momenta from Eqs. (4.43) and (4.44),

as well as the term A7, are given in Eqs. (8.18). In order to integrate over the

transverse quark momenta we first shift them along the real axis by defining

k̃1⊥ ≡ k̄1⊥ +
A4

2A1
k̄2⊥ +

A5

2A1
∆⊥ (6.3)

k̃2⊥ ≡ k̄2⊥ + Ã6∆⊥

k̄1⊥ = k̃1⊥ −
A4

2A1
k̃2⊥ + (Ã6 −

A5

2A1
)∆⊥

k̄2⊥ = k̃2⊥ − Ã6∆⊥.

Here we define for convenience

Ã2 ≡ A2 −
A2

4

4A1
(6.4)

Ã6 ≡ A6 −
A4A5

2A1

Ã3 ≡ A3 −
Ã2

6

2Ã2

.

The expression now reads

∫ 1

0
dh
[
A1k̃

2
1⊥ + Ã2k̃

2
2⊥ + Ã3∆2

⊥ +A7

]−2(σ+2+ν)
. (6.5)
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Integrating over both k̃1,2 then gives[
Ñ(ν, σ)

∫
[dfin]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2

(6.6)

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2))

+ū′(v′(1− x2)− (x1)2)]−ν−1(ū′ − v′)2ν−1
]
in[

Ñ(ν, σ)

∫
[dfin]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2))

+ū′(v′(1− x2)− (x1)2)]−ν−1(ū′ − v′)2ν−1
]
out

×π
2

2

∫ 1

0
dh
[
Ã3∆2

⊥ +A7

]−2(σ+1+ν)[
A1Ã3(σ + ν + 1)(3 + 2σ + 2ν)

]−1
.

Restoring the relevant prefactors then allows us to compute the overlap con-

tribution of Ψ1,−
. The resulting PDF contributions are shown in Fig. 9.3.

0.2 0.4 0.6 0.8 1.0

1

2

3

4

u2

u1

d

u

Figure 6.1: The results for the forward limit of Ψ1,−
self overlaps (PDFs) are

shown. The red curve corresponds to that of the bystander quark u1, the
blue to the participant quark u2, the brown to the participant quark d(3), and
the purple to the total u quark contribution. This result has been computed
using AMC integration with 1001 points along the x axis, and is extremely
noisy. Even so, there is a clearly visibile signal which is not compatible with

zero.

6.2 . Difficulties with Numerical Integration
There are two numerical integration methods which we will explain here,

both implemented natively in Mathematica. The first is integration in quadra-

ture using the Gauss-Kronrod rule, which is more numerically stable but ex-

tremely computationally costly due to the high dimensionality of the inte-
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grand, taking more than 20 times as long as the second method to be de-

scribed below. This method combines Gauss quadrature and Kronrod exten-

sion points to estimate definite integrals accurately. Firstly, Gauss quadra-

ture points, points chosen for their accuracy in estimating polynomials up

to a certain degree based on corresponding weights which determine their

contributions to the integral, are employed within the integration interval to

compute an initial integral estimate [117]. Additionally, Kronrod extension

points are incorporated to enhance accuracy, particularly for functions with

rapid variations or singularities [118]. The integration process then follows

an adaptive strategy, where subintervals are initially divided, and estimates

using Gauss quadrature and Kronrod extension points are computed. The

algorithm recursively subdivides the interval and computes new estimates if

the estimated error for a subinterval exceeds a specified tolerance level. This

process continues until the estimated error falls below the tolerance level or

after a predetermined number of iterations. Finally, contributions from all re-

gions are summed to provide an estimation of the total value of the integral.

The more efficient but less reliable integration method to which we compare

quadrature integration is Adaptive Monte Carlo (AMC). AMC integration is a

numerical technique used to estimate a definite integral’s value by randomly

sampling points within the corresponding domain. The integration domain

is initially divided into regions, from each of which random points are sam-

pled. At each sample point, the integrand is evaluated, then the average of

the function over all such sample points is calculated. This average value is

then multiplied by the size of the integration domain in order to estimate

the integral. The algorithm repeatedly adjusts the number of sample points

and their distribution based on error estimates, focusing more sampling in

regions where the integrand varies significantly or where the error is high-

est, and reducing sampling in regions where the function is relatively flat or

where the error is low. This adaptive process is iterative, continuing until the

estimated error is found to be below a specified tolerance level or until a

maximum number of iterations is achieved. By adjusting the sampling strat-

egy adaptively based on the local behavior of the integrand, AMC integration

provides accurate estimates of integrals even for functions with complex be-

havior.

Taking a look at the Fig. 9.3, it is clear that the function Ψ1,−1
contributes to

the PDFs of all three quarks. In addition, it contributes symmetrically to u2

and d, which reflects their participation in the diquark correlation involved

in the modeling of this function. In addition, as observed in the auxiliary

function ψ1,−1
plots above, the large share of longitudinal momentum frac-

tion taken on by the bystander quark is reflected in the large x tail of the

bystander quark (red curve).
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6.3 . Looking Forward
6.3.1 . Analytic Traces and Mellin Moments

The computation of the Mellin moment integrations as explained in the

previous chapter is one of the most technically challenging parts of the entire

computation. This is due to the wealth of tensorial structures as presented

in Eq. (5.11). Computing the corresponding traces and the consequent in-

tegration requires code which may systematically compute vector integrals

analytically, extrapolating the trends of various example integrals (low order

Mellin moments) to all orders, which is a highly nontrivial task.

6.3.2 . Mass Relationships
As explained in the previous chapter, results presented for the nucleon

LFWFs are only valid for particular relationships between the quark masses,

the nucleon masses, the diquark correlation mass, and the Nakanishi mass

parameters. This is because the integration technique relies on a contour

shift in the complex plane, whose validity is dependent on the lack of the pres-

ence of poles inside the corresponding contour. This presents the masses

and parameters from falling below a minimum value, accounting for which

would require computation using residues. Further, it is well known that the

quark masses are not constant, but tend to run with the momentum of the

corresponding quark in a way shown in Fig. 6.2.

Figure 6.2: An example of the running quark mass is graphed here in a figure

from [119].

In order to allow for this running mass behavior, one would need to deal

with a denominator with more complicated behavior, contributing in turn to
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more complicated contributions to the numerator in theMellin moment com-

putations. Such computations have been computed directly in the complex

plane for example in [111].

6.3.3 . Extension to the ERBL and Comparison to Experiment
Oncemore contributions at the level of diverse tensorial structures have been

computed, it would be necessary to compare the resulting distributions to

those extracted from experimental data. In order to do so, it would be nec-

essary at the level of the GPD to extend the results to the ERBL region. A

procedure developed by the authors of [86], employing finite element Radon

transform inversion, would likely be used to perform such a numerical exten-

sion. The numerical extension relies on the polynomiality property given in

Eq. (2.32). As a consequence of covariance, we know that the polynomiality

propery must hold if the GPD can be written as a the Radon transform of a

DD. In fact, in a recent paper it has been shown that merely partial DGLAP

knowledge of a GPD is (nearly) enough to construct a unique DD representa-

tion, from which the ERBL region contribution of the GPD may be computed

[120]. Because the polynomiality property involves integration over the en-

tire x domain at all relevant values of ξ, its satisfaction is only achieved when

the GPD model involved is defined over the entire domain of interest, which

involves both the DGLAP and ERBL regions. For this reason, [86] features a

covariant extension which passes first to DD space.

In order to start with a DGLAP GPD model and arrive at a corresponding DD

expression, one needs to compute an inverse Radon transform. One can

then covariantly extend uniquely to the ERBL region up to D-term-like contri-

butions.

In [86], the authors use a finite element method for numerical inversion of

the Radon transform, an ill-posed problem, in which integrals over "DGLAP

lines” in DD space takes place. These DGLAP lines are defined as

xi − β − αξi = 0 (6.7)

with xξ & ξi chosen such that xi > ξi, ensuring they correspond to the DGLAP

condition.

With such numerical results in hand, we would then choose to evolve them

to experimental scales for direct comparison to experimental results. In the

case of comparison with DVCS data, this would involve convolution with a

perturbatively calculable kernel for computation of the CFFs and the resultant

cross section.
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7 - Concluding Remarks
As discussed in the introductory chapter, the GPDs enter the descriptions

of various experimental processes including DVCS and DVMP. Corresponding

to this universality, which is ensured by proofs of factorization, GPDs are ex-

tremely valuable for experimental predictions. This value is compensated by

the difficulty of their extraction from experimental data of these processes,

cross sectional data, which is related to the GPDs via obscuring convolutions

with perturbatively calculable kernels. For this reason, constraint on the pre-

cise functional forms of various GPDs from a practical perspective should in-

volve inputs from lattice QCD computations, continuum techniques, etc. in

order to be compared to experiment.

In the second chapter it was explained that by employing a Bayesian reweight-

ing of ANN GPD candidates using lattice data a large uncertainty reduction of

the corresponding replica bundle may result. This requires that the correla-

tion of said lattice data be known, as highly correlated data, even albeit pre-

cise, simply chooses a single replica, thereby yielding unuseful results in any

Ioffe-time region in which such lattice data is introduced. Lattice data may

also be chosen/computed in a manner complementary to the shortcomings

resulting from the singular structure of the perturbative kernel associated

with the experimental data to which the ANNs were fitted, thereby providing

access to regions of the space of candidate functions to which the experimen-

tal data are insensitive.

In its third chapter, this thesis contains a specification of the overlap rep-

resentation of polarized and unpolarized DGLAP region GPDs via LFWFs of

definite qOAM derived from the decomposition a matrix element character-

izing contributions of three-quark Fock states of definite quark helicities in a

leading twist tensorial basis to the nucleonic state with definite helicity. This

characterization can be thought of in analogy with atomic physics, in which

(nonrelativistic) wave functions of distinct angular momentum-related quan-

tum numbers contribute to the total atomic configuration. It is also note-

worthy that LFWFs of non-zero qOAM contribute to the GPDH , implying that

they contribute even in the forward limit. This means that the polarized PDF

is sensitive to contributions of non-zero qOAM, which is striking given that we

associate the generalization of the PDF, the GPD, with direct access to qOAM

contributions via the Ji sum rules [29]. A simple Faddeev amplitude based

model for such LFWFs has been introduced in the fourth chapter, where it

has been outlined how they might be computed from a wealth of tensorial

structures, along with a simple example computation. These functions may

also be used to compute objects apart from GPDs, such as DAs [121],[112],

and the corresponding methods may be used to look at aspects of the bary-
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onic spectrum [109].

To compare these models to experiment, it will be necessary to first extend

the resulting DGLAP GPDs to the ERBL region, and subsequently to evolve the

resulting GPDs up to experimental scales, as has been done in the case of the

pion [86].

Further, there is much work to do on the modeling side. In this thesis it was

already a difficult task to calculate the contributions to the basis LFWFs of only

the simplest tensorial structure as a matter of proof of concept. As discussed

in the previous chapter, systemization of the incorporation of further tenso-

rial structures is a must for a proper understanding of contributions of qOAM

to the nucleon. In addition, more complicated methods of integrating in the

complex plane to recover lightcone amplitudes from Faddeev wave functions

may be used in conjunction with a running mass, as discussed in the previous

chapter.
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8 - Appendix
8.1 . Notation and Conventions
8.1.1 . Notation

γ± ≡ 1√
2

(γ0 ± γ3). (8.1)

8.1.2 . Fourier Convention

i∂j = kj , (8.2)

∂̃j → εjl(−i)kl, (8.3)

∂̃j∂j → −εjlklkj , (8.4)

8.1.3 . Lightcone Vectors
For any Lorentz vector v

(v+ ≡ v0 + v3

√
2

, v− ≡ v0 − v3

√
2

, ~v⊥), (8.5)

8.2 . Identities
8.2.1 . Feynman Parametrization

One may rewrite integrals with many factors in the denominator as inte-

grals of sums over such factors by paying the price of introducing additional

integration parameters as

1

Aα1
1 · · ·Aαnn

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · ·Γ(αn)
(8.6)∫ 1

0
du1 · · ·

∫ 1

0
dun

δ(1−∑n
k=1 uk) u

α1−1
1 · · ·uαn−1

n

(
∑n

k=1 ukAk)
∑n
k=1 αk

,

where <(αj) > 0 and where the smallest possible subset of the complex

plane containing all of said quantities Aj must not include 0 [122].

119



8.3 . Polarized GPDs
We now turn to the polarized skewed quark distributions (marked by P =

1), H̃q(x̄, ξ; t) and Ẽq(x̄, ξ; t), defined by the Fourier transform of the axial

vector matrix element ([34])

H̃fh′h ≡ 1

2
√

1− ξ2

∑
c

∫
z.
−

2π
ei x̄

¯̄P+z− 〈P ′, λ′|p̄sicq(−
z

2
) γ+γ5ψ

c
q(
z

2
)|P, h〉

=
ū(P ′, h′)γ+γ5u(P, h)

2P̄+
√

1− ξ2
H̃q(x̄, ξ; t) (8.7)

+
ū(P ′, h′), λ′)∆+γ5u(P, h)

4mP̄+
√

1− ξ2
Ẽq(x̄, ξ; t),

H̃f++ = H̃f−− = H̃f − ξ2

1− ξ2
Ẽf (8.8)

H̃f−+ = (H̃f+−)∗ =
|~∆⊥|

(∆1 + i∆2)

√
t0 − t
2m

ξ√
1− ξ2

Ẽf . (8.9)

8.4 . Twist
As discussed in the third chapter, there are three linearly independent

Dirac algebraic structures whose contribution (as Γ) to the matrix element

defined in Eq. (2.24) yields a leading twist structure. They receive contribu-

tions from twist τ = 2 GPDs, implying they do not receive suppression with

respect to Q. These structures are given by

Γ = γ+, γ5γ+, σ+i, (8.10)

where i is a transverse Lorentz index.

However, decompositions have been made for the same matrix element in

the case of DVCS for the Dirac structures (see [28])

Γ = γµ, γ5γµ, (8.11)

where µ ∈ {0, 1, 2, 3} is a Lorentz index. Because of the range of the index
µ, the transverse and − indices are included in such decompositions, and
correspondingly higher twist structures enter the game. In [28], such twist

τ = 3 structures are enumerated, and receive suppression with respect to

|Q|−1
.

8.5 . Overlap Formulas
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Calculating the EFFs one finds

F f̂ ,P1 (t) ≡
∫ 1

−1
dxH f̂ ,P(x, 0, t) =

∫ 1

−1
dx
(
Of̂ ,P(Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
)

+Of̂ ,P(Ψ 1
2
,− 1

2
,Ψ 1

2
,− 1

2
) +Of̂ ,P(Ψ 1

2
, 3
2
,Ψ 1

2
, 3
2
)

+Of̂ ,P(Ψ 1
2
,− 3

2
,Ψ 1

2
,− 3

2
)
)
|ξ=0 (8.12)

F f̂ ,P2 (t) ≡
∫ 1

−1
dxE f̂ ,P(x, 0, t) =

∫ 1

−1
dx

2MN |~∆⊥|
(∆1 + i∆2)

√−t(
Of̂ ,P(Ψ− 1

2
,− 3

2
,Ψ 1

2
, 3
2
)Of̂ ,P(Ψ− 1

2
, 3
2
,Ψ 1

2
,− 3

2
)
)
|ξ=0.

(8.13)
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And their squared electric radii are expressed in these terms as

〈(rP,NE )2〉 = 6~2∂t

(
FP,N ;0

1 (t) +
t

4M2
N

FP,N ;0
2 (t)

)
|t=0 (8.14)

= 6~2∂t

(2nP,Nu
3

F 0,u
1 (t)− nP,Nd

3
F 0,d

1 (t)

+
t

4M2
N

(
2nP,Nu

3
F 0,u

2 (t)− nP,Nd
3

F 0,d
2 (t))

)
|t=0

= 4~2nP,Nu ∂t

∫ 1

−1
dx
(
O0,u(Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
) +O0,u(Ψ 1

2
,− 1

2
,Ψ 1

2
,− 1

2
)

+O0,u(Ψ 1
2
, 3
2
,Ψ 1

2
, 3
2
) +O0,u(Ψ 1

2
,− 3

2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0

−2~2nP,Nd ∂t

∫ 1

−1
dx
(
O0,d(Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
) +O0,d(Ψ 1

2
,− 1

2
,Ψ 1

2
,− 1

2
)

+O0,d(Ψ 1
2
, 3
2
,Ψ 1

2
, 3
2
) +O0,d(Ψ 1

2
,− 3

2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0

−2~2nP,Nu
√−t|~∆⊥|

MN (∆1 + i∆2)
∂t

×
∫ 1

−1
dx
(
O0,u(Ψ− 1

2
,− 3

2
,Ψ 1

2
, 3
2
) +O0,u(Ψ− 1

2
, 3
2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0

+
~2nP,Nd

√−t|~∆⊥|
MN (∆1 + i∆2)

∂t

×
∫ 1

−1
dx
(
O0,d(Ψ− 1

2
,− 3

2
,Ψ 1

2
, 3
2
) +O0,d(Ψ− 1

2
, 3
2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0

+
~2nP,Nu |~∆⊥|√−tMN (∆1 + i∆2)

×
∫ 1

−1
dx
(
O0,u(Ψ− 1

2
,− 3

2
,Ψ 1

2
, 3
2
) +O0,u(Ψ− 1

2
, 3
2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0

− ~2nP,Nd |~∆⊥|
2
√−tMN (∆1 + i∆2)

×
∫ 1

−1
dx
(
O0,d(Ψ− 1

2
,− 3

2
,Ψ 1

2
, 3
2
) +O0,d(Ψ− 1

2
, 3
2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0.

8.6 . Euclidean Modeling Coefficients

We now state the equations used to rewrite dependence on the l, q basis

and the k1, k2 as a function of which quark does not participate in the diquark,
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which is labeled as the nth quark.

|~k1⊥| = δ1,n`
2 + δ2,n(

`2

4
+ ` · q + q2) + δ3,n(

`2

4
− ` · q + q2) (8.15)

|~k2⊥| = δ1,n(
`2

4
− ` · q + q2) + δ2,n`

2 + δ3,n(
`2

4
+ ` · q + q2) (8.16)

θ12 = cos−1(− (`2 − 2` · q)δ1,n√
`2(`2 − 4` · q + 4q2)

− (`2 + 2` · q)δ2,n√
l4 + 4`2(` · q + q2)

(8.17)

+
(`2 − 4q2)δ3,n√

l4((`2 + 4q2)2 − 16` · q2)
).

8.7 . Overlap Coefficients

The coefficients A1−7 are provided in their full glory for the case that the

active quark is the u1 and also that quark u1 is the bystander quark. Similarly

awful expressions exist for the other choices of active and bystander quark.
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The index i (o) labels incoming (outgoing) variables.

A1 =
(
h(−(−ξ + x2 − 1) (8.18)

((ξ + x2 − 1)(−a34i(x
2
1 − ξ2)2a34o(x

2
1 − ξ2)2 + a3iξ

4

+a3ix
4
1 − 2a3iξ

2

x2
1 − a3oξ

4 − a3ox
4
1 + 2a3oξ

2x2
1 − 4ξ3 − 4ξx2

1 + 4ξx2
1x2 + 4ξ3x1

+4ξx1 + 4ξx1x
2
2

−8ξx1x2 + 4ξ3x2)− (ξ − 1)v′o(x1 − ξ)
(ξ + x1 + 2x2 − 2)

×(a34i(ξ + x1)2 − a3i(ξ + x1)2

+(ξ − x2 + 1)2)) + (ξ − 1)u′o(−ξ + x2 − 1)

×((ξ − 1)v′o(ξ + x2 − 1)− (x1 − ξ)2)(a34i(ξ + x1)2 − a3i

(ξ + x1)2 + (ξ − x2 + 1)2)

+(ξ + 1)v′i(ξ + x1)

(ξ + x2 − 1)(−ξ + x1 + 2x2 − 2)(a34o(x1 − ξ)2 − a3o(x1 − ξ)2

+(ξ + x2 − 1)2))− (h− 1)(ξ + 1)u′i
(ξ + x2 − 1)((ξ + 1)v′i(−ξ + x2 − 1) + (ξ + x1)2)

×(a34o(x1 − ξ)2 − a3o(x1 − ξ)2 + (ξ + x2 − 1)2)− ((ξ + x1)

(ξ + x2 − 1)((ξ + 1)v′i
×(−ξ + x1 + 2x2 − 2)− (ξ + x1)

(−ξ + x2 − 1))(a34o(x1 − ξ)2 − a3o(x1 − ξ)2

+(ξ + x2 − 1)2))
)(

((ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1) + (ξ + x1)2)− (ξ + x1)

×((ξ + 1)v′i
(−ξ + x1 + 2x2 − 2)− (ξ + x1)(−ξ + x2 − 1)))((ξ − 1)u′o
×((ξ − 1)v′o
(ξ + x2 − 1)− (x1 − ξ)2)(x1 − ξ)((ξ − 1)v′o
(ξ + x1 + 2x2 − 2)

+(x1 − ξ)(ξ + x2 − 1)))
)−1

,
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A2 =
(
h(a34i − a3i)(−ξ + x2 − 1)3

)
(8.19)

×
(

(ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1) + (ξ + x1)2)

−(ξ + x1)((ξ + 1)v′i(−ξ + x1 + 2x2 − 2)− (ξ + x1)(−ξ + x2 − 1))
)−1

−
(
a34o(h− 1)(ξ + x2 − 1)3

)
×
(

(ξ − 1)u′o((ξ − 1)v′o(ξ + x2 − 1)− (x1 − ξ)2)

+(x1 − ξ)((ξ − 1)v′o(ξ + x1 + 2x2 − 2) + (x1 − ξ)(ξ + x2 − 1))
)
−1

+
(
a3o(h− 1)(ξ + x2 − 1)3

)
×
(

(ξ − 1)u′o((ξ − 1)v′o(ξ + x2 − 1)− (x1 − ξ)2)

+(x1 − ξ)((ξ − 1)v′o(ξ + x1 + 2x2 − 2) + (x1 − ξ)(ξ + x2 − 1))
)−1

,
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A3 =
(

(h− 1)u′i(x2 + ξ − 1)((x1 + ξ)2 + v′i(x2 − ξ − 1)(ξ + 1))

×((a34o − a3o)x
4
1 − 2(a34o − a3o)(ξ + 1)x3

1 + ((x2 + ξ − 1)2

+a34o(2x
2
2 + 2(ξ − 1)x2 + ξ2 + 4ξ + 1) (8.20)

−a3o(2x
2
2 + 2(ξ − 1)x2 + ξ2 + 4ξ + 1))x2

1

−2((a34o(ξ + 1)− a3o(ξ + 1) + 1)x2
2

+(ξ − 1)(a34o(ξ + 1)− a3o(ξ + 1) + 2)x2

+(a34o − a3o + 1)ξ2 + (a34o − a3o − 2)ξ + 1)x1

+(a34o − a3o)x
4
2 + a34oξ

2 − a3oξ
2 + ξ2

+2(a34o − a3o)x
3
2(ξ − 1)− 2ξ

+2x2(ξ − 1)(a34oξ − a3oξ + 1)

+x2
2(a34o(ξ

2 + 1)− a3o(ξ
2 + 1) + 1) + 1)(ξ + 1)3

+(x1 + ξ)(x2 + ξ − 1)(v′i(x1 + 2x2 − ξ − 2)(ξ + 1)

−(x2 − ξ − 1)(x1 + ξ))((a34o − a3o)x
4
1

−2(a34o − a3o)(ξ + 1)x3
1 + ((x2 + ξ − 1)2

+a34o(2x
2
2 + 2(ξ − 1)x2 + ξ2 + 4ξ + 1)

−a3o(2x
2
2 + 2(ξ − 1)x2 + ξ2 + 4ξ + 1))x2

1

−2((a34o(ξ + 1)− a3o(ξ + 1) + 1)x2
2

+(ξ − 1)(a34o(ξ + 1)− a3o(ξ + 1) + 2)x2

+(a34o − a3o + 1)ξ2 + (a34o − a3o − 2)ξ + 1)x1

+(a34o − a3o)x
4
2 + a34oξ

2 − a3oξ
2 + ξ2

+2(a34o − a3o)x
3
2(ξ − 1)− 2ξ

+2x2(ξ − 1)(a34oξ − a3oξ + 1) + x2
2(a34o(ξ

2 + 1)

−a3o(ξ
2 + 1) + 1) + 1)(ξ + 1)2

−h(u′o(x2 − ξ − 1)(v′o(ξ − 1)(x2 + ξ − 1)− (x1 − ξ)2)

×((a34i − a3i)x
4
1 − 2(a34i − a3i)(x2 − 2ξ)x3

1

+((a34i − a3i + 1)x2
2

−2(2a34iξ − 2a3iξ + ξ + 1)x2

+(4a34i − 4a3i + 1)ξ2 + (−2a34i + 2a3i + 2)ξ + 1)x2
1

−2(x2
2 − ((a34i − a3i + 2)ξ + 2)x2

+(2a34i − 2a3i + 1)ξ2 + 2ξ + 1)x1 + x2
2 + a34iξ

2 − a3iξ
2

+ξ2 − 2x2 − 2x2ξ + 2ξ + 1)(ξ − 1)3

+v′i(x1 + 2x2 − ξ − 2)(ξ + 1)3(x1 + ξ)

×(x2 + ξ − 1)((a34o − a3o)x
4
1

−2(a34o − a3o)(ξ + 1)x3
1 + ((x2 + ξ − 1)2

+a34o(2x
2
2 + 2(ξ − 1)x2 + ξ2 + 4ξ + 1)

−a3o(2x
2
2 + 2(ξ − 1)x2 + ξ2 + 4ξ + 1))x2

1
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−2((a34o(ξ + 1)− a3o(ξ + 1) + 1)x2
2

+(ξ − 1)(a34o(ξ + 1)− a3o(ξ + 1) + 2)x2

+(a34o − a3o + 1)ξ2 + (a34o − a3o − 2)ξ + 1)x1

+(a34o − a3o)x
4
2 + a34oξ

2 − a3oξ
2 + ξ2

+2(a34o − a3o)x
3
2(ξ − 1)− 2ξ

+2x2(ξ − 1)(a34oξ − a3oξ + 1) + x2
2(a34o(ξ

2 + 1)

−a3o(ξ
2 + 1) + 1) + 1)

+(x2 − ξ − 1)(v′o(x1 − ξ)(ξ − 1)3(x1

+2x2 + ξ − 2)((a34i − a3i)x
4
1

−2(a34i − a3i)(x2 − 2ξ)x3
1 + ((a34i − a3i + 1)x2

2

−2(2a34iξ − 2a3iξ + ξ + 1)x2

+(4a34i − 4a3i + 1)ξ2 + (−2a34i + 2a3i + 2)ξ + 1)x2
1

−2(x2
2 − ((a34i − a3i + 2)ξ + 2)x2

+(2a34i − 2a3i + 1)ξ2 + 2ξ + 1)x1 + x2
2

+a34iξ
2 − a3iξ

2 + ξ2 − 2x2 − 2x2ξ + 2ξ + 1)

×(x2 + ξ − 1)(−a34iξ
2x6

1 + a3iξ
2x6

1 − a34ix
6
1

+a3ix
6
1 + 2a34iξx

6
1 − 2a3iξx

6
1 − 2a34iξ

3x5
1

+2a3iξ
3x5

1 + 4a34iξ
2x5

1 − 4a3iξ
2x5

1 + 2a34ix2ξ
2x5

1

−2a3ix2ξ
2x5

1 + 2a34ix2x
5
1 − 2a3ix2x

5
1

−2a34iξx
5
1 + 2a3iξx

5
1 − 4a34ix2ξx

5
1 + 4a3ix2ξx

5
1

+3a34iξ
4x4

1 − 3a3iξ
4x4

1 − 4a34iξ
3x4

1

+4a3iξ
3x4

1 + 4x2ξ
3x4

1 − a34ix
2
2x

4
1 + a3ix

2
2x

4
1

−a34ix
2
2ξ

2x4
1 + a3ix

2
2ξ

2x4
1 − a34iξ

2x4
1

+a3iξ
2x4

1 + 2a34ix
2
2ξx

4
1 − 2a3ix

2
2ξx

4
1

+4x2
2ξx

4
1 + 2a34iξx

4
1 − 2a3iξx

4
1 − 4x2ξx

4
1 + 4a34iξ

5x3
1

+4a3iξ
5x3

1 + 4ξ5x3
1 − 8a34iξ

4x3
1 + 8a3iξ

4x3
1 − 6a34ix2ξ

4x3
1

+6a3ix2ξ
4x3

1 + 2a34i

×x2
2ξ

3x3
1 − 2a3ix

2
2ξ

3x3
1 + 4x2

2ξ
3x3

1

+4a34iξ
3x3

1 − 4a3iξ
3x3

1 + 10a34ix2ξ
3x3

1

−10a3ix2ξ
3x3

1 − 8ξ3x3
DF1 − 4a34ix

2
2ξ

2x3
1

+4a3ix
2
2ξ

2x3
1 − 2a34ix2ξ

2x3
1 + 2a3ix2ξ

2x3
1

+2a34ix
2
2ξx

3
1 − 2a3ix

2
2ξx

3
1 − 4x2

2ξx
3
1

−2a34ix2ξx
3
1 + 2a3ix2ξx

3
1 + 4ξx3

1 − 4a34iξ
6x2

1

+4a3iξ
6x2

1 + 2a34iξ
5x2

1 − 2a3iξ
5x2

1 + 4a34ix2ξ
5x2

1

−4a3ix2ξ
5x2

1 + 4x2ξ
5x2

1 − 8ξ5x2
1

−a34ix
2
2ξ

4x2
1 + a3ix

2
2ξ

4x2
1 + 7a34iξ

4x2
1
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−7a3iξ
4x2

1 − 4a34ix2ξ
4x2

1 + 4a3ix2ξ
4x2

1

+2a34ix
2
2ξ

3x2
1 − 2a3ix

2
2ξ

3x2
1 − 4x2

2ξ
3x2

1

−4a34iξ
3x2

1 + 4a3iξ
3x2

1 − 4a34ix2ξ
3x2

1

+4a3ix2ξ
3x2

1 − 16x2ξ
3x2

1 + 16ξ3x2
1 − a34ix

2
2ξ

2x2
1

+a3ix
2
2ξ

2x2
1 − a34iξ

2x2
1 + a3iξ

2x2
1

+4a34ix2ξ
2x2

1 − 4a3ix2ξ
2x2

1 − 4x2
2ξx

2
1

+12x2ξx
2
1 − 8ξx2

1 + 4a34iξ
6x1 − 4a3iξ

6x1 − 6a34iξ
5x1

+6a3iξ
5x1 − 2a34ix2ξ

5x1 + 2a3ix2ξ
5x1 − 8x2ξ

5x1

+4ξ5x1 + 4a34ix2ξ
4x1 − 4a3ix2ξ

4x1 − 4x2
2ξ

3x1

+2a34iξ
3x1 − 2a3iξ

3x1 − 2a34ix2ξ
3x1 + 2a3ix2ξ

3x1

+16x2ξ
3x1 − 8ξ3x1 + 4x2

2ξx1

−8x2ξx1 + 4ξx1 − a34iξ
6 + a3iξ

6 + 2a34iξ
5

−2a3iξ
5 + 4x2ξ

5 − a34iξ
4 + a3iξ

4

+4x2
2ξ

3 − 4x2ξ
3 + a34o(ξ + 1)2(x1 + ξ)2(x2

1 − (ξ + 1)x1

+x2
2 + x2(ξ − 1) + ξ)2

−a3o(ξ + 1)2(x1 + ξ)2(x2
1 − (ξ + 1)x1

+x2
2 + x2(ξ − 1) + ξ)2)))

)(
4(ξ2 − 1)2

×((ξ + x1)((ξ + 1)v′i(−ξ + x1 + 2x2 − 2)

−(ξ + x1)(−ξ + x2 − 1))− (ξ + 1)u′i
×((ξ + 1)v′i(−ξ + x2 − 1) + (ξ + x1)2))

×((ξ − 1)u′o((ξ − 1)v′o(ξ + x2 − 1)

−(x1 − ξ)2) + (x1 − ξ)((ξ − 1)v′o

×(ξ + x1 + 2x2 − 2)(x1 − ξ)(ξ + x2 − 1)))
)−1

,
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A4 =
(
− 2(h(a34i − a3i)(ξ + x1)(ξ − x2 + 1)2

(8.21)

×((ξ − 1)u′o((ξ − 1)v′o(ξ + x2 − 1)− (x1 − ξ)2)

+(x1 − ξ)((ξ − 1)v′o(ξ + x1 + 2x2 − 2)

+(x1 − ξ)(ξ + x2 − 1)))− a34o(h− 1)(x1 − ξ)
×(ξ + x2 − 1)2((ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1)

+(ξ + x1)2)− (ξ + x1)((ξ + 1)v′i
×(−ξ + x1 + 2x2 − 2)− (ξ + x1)(−ξ + x2 − 1)))

+a3o(h− 1)(x1 − ξ)(ξ + x2 − 1)2

×((ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1)

+(ξ + x1)2)− (ξ + x1)((ξ + 1)v′i(−ξ + x1 + 2x2 − 2)

−(ξ + x1)(−ξ + x2 − 1))))
)

×
(

((ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1)

+(ξ + x1)2)− (ξ + x1)

×((ξ + 1)v′i(−ξ + x1 + 2x2 − 2)

−(ξ + x1)(−ξ + x2 − 1)))((ξ − 1)u′o((ξ − 1)v′o(ξ + x2 − 1)

−(x1 − ξ)2) + (x1 − ξ)((ξ − 1)v′o

×(ξ + x1 + 2x2 − 2) + (x1 − ξ)(ξ + x2 − 1)))
)−1

,
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A5 =
(

(h− 1)u′i(x2 + ξ − 1)((x1 + ξ)2
(8.22)

+v′i(x2 − ξ − 1)(ξ + 1))((a34o − a3o)x
3
1

−(a34o − a3o)(2ξ + 1)x2
1 + ((a34o − a3o + 1)x2

2

+(a34o − a3o + 2)(ξ − 1)x2

+(a34o − a3o + 1)ξ2 + 2(a34o − a3o − 1)ξ + 1)x1

−a34oξ
2 + a3oξ

2 − ξ2 + 2ξ

−x2(ξ − 1)(a34oξ − a3oξ + 2)

+x2
2(−a34oξ + a3oξ − 1)− 1)(ξ + 1)2 + (x1 + ξ)

×(x2 + ξ − 1)(v′i(x1 + 2x2 − ξ − 2)(ξ + 1)

+(x2 − ξ − 1)(x1 + ξ))((a34o − a3o)x
3
1

−(a34o − a3o)(2ξ + 1)x2
1 + ((a34o − a3o + 1)x2

2

+(a34o − a3o + 2)(ξ − 1)x2

+(a34o − a3o + 1)ξ2 + 2(a34o − a3o − 1)ξ + 1)x1

−a34oξ
2 + a3oξ

2 − ξ2 + 2ξ

−x2(ξ − 1)(a34oξ − a3oξ + 2)

+x2
2(−a34oξ + a3oξ − 1)− 1)(ξ + 1)

−h(u′o(x2 − ξ − 1)(v′o(ξ − 1)(x2 + ξ − 1)

−(x1 − ξ)2)((a34i − a3i)x
3
1 − (a34i − a3i)

×(x2 − 3ξ)x2
1 + (x2

2 − ((a34i − a3i + 2)ξ + 2)x2

+(2a34i − 2a3i + 1)ξ2

+(−a34i + a3i + 2)ξ + 1)x1 − x2
2 − a34iξ

2

+a3iξ
2 − ξ2 + 2x2 + 2x2ξ − 2ξ − 1)(ξ − 1)2

+v′i(x1 + 2x2 − ξ − 2)(ξ + 1)2(x1 + ξ)(x2

+ξ − 1)((a34o − a3o)x
3
1 − (a34o − a3o)

×(2ξ + 1)x2
1 + ((a34o − a3o + 1)x2

2

+(a34o − a3o + 2)(ξ − 1)x2 + (a34o − a3o + 1)ξ2

+2(a34o − a3o − 1)ξ + 1)x1 − a34oξ
2

+a3oξ
2 − ξ2 + 2ξ − x2(ξ − 1)(a34oξ − a3oξ + 2)

+x2
2(−a34oξ + a3oξ − 1)− 1)

+(x2 − ξ − 1)(v′o(x1 − ξ)(x1 + 2x2 + ξ − 2)((a34i − a3i)2(x3
1

−(a34i − a3i)(x2 − 3ξ)x2
1

+(x2
2 − ((a34i − a3i + 2)ξ + 2)x2 + (2a34i − 2a3i + 1)ξ2

+(−a34i + a3i + 2)ξ + 1)x1 − x2
2 − a34iξ

2 + a3iξ
2

−ξ2 + 2x2 + 2x2ξ − 2ξ − 1)(ξ − 1)2

+(x2 + ξ − 1)((−ξa3i + a3i + a3o + a34i(ξ − 1)

+a3oξ − a34o(ξ + 1))x5
1
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+(−((a34i − a3i)(x2 − ξ)(ξ − 1)) + a34o(ξ + 1)

−a3o(ξ + 1))x4
1 + (2a34oξ

3 + 3a3iξ
3

−2a3oξ
3 + 2a34oξ

2 − 2a3iξ
2 − 2a3oξ

2

+2ξ2 − a3iξ + a34i(−3ξ3 + 2ξ2 + ξ)

+x2
2(ξa3o + a3o − a34o(ξ + 1)− 2)

−x2(ξ − 1)(−a34iξ + a3iξ + 4ξ + a34o(ξ + 1)

−a3o(ξ + 1) + 4)− 2)x3
1 + ((−a34i + a3i − 4)ξ4

+2(a34i − a34o − a3i + a3o)ξ
3

+(−a34i − 2a34o + a3i + 2a3o + 2)ξ2 − x2(ξ − 1)

×((−a34i + a34o + a3i − a3o)ξ
2

+(a34o − a3o − 4)ξ − 4) + x2
2(−4ξ2 − a34o(ξ + 1)ξ

+a3o(ξ + 1)ξ + 2) + 2)x2
1

+ξ2(−a34oξ
3 − 2a3iξ

3 + a3oξ
3 − a34oξ

2

+a3iξ
2 + a3oξ

2 + 6ξ2 + a3iξ

+a34i(2ξ
2 − ξ − 1)ξ + x2

2(a34o(ξ + 1)− a3o(ξ + 1) + 2)

+x2(ξ − 1)(−a34iξ + a3iξ − 4ξ + a34o(ξ + 1)

−a3o(ξ + 1)− 4)− 6)x1

+ξ2((−a34i + a34o + a3i − a3o)ξ
3

+(a34i + a34o − a3i − a3o − 2)ξ2

+x2(a34oξ − a3oξ + 4)(ξ2 − 1)

+x2
2(a34oξ(ξ + 1)− a3oξ(ξ + 1) + 2) + 2))))

)
×
(

(ξ − 1)(ξ + 1)((ξ + x1)((ξ + 1)v′i

×(−ξ + x1 + 2x2 − 2)− (ξ + x1)(−ξ + x2 − 1))

−(ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1)

+(ξ + x1)2))((ξ − 1)u′o((ξ − 1)v′o(ξ + x2 − 1)

−(x1 − ξ)2) + (x1 − ξ)((ξ − 1)v′o(ξ + x1 + 2x2 − 2)

+(x1 − ξ)(ξ + x2 − 1)))
)−1

,
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A6 =
(
h(ξ − 1)(a34i − a3i)(ξ − x2 + 1)2

(8.23)

×(−ξ + x2
1 + 2ξx1 − x1x2)((ξ − 1)u′o

×((ξ − 1)v′o(ξ + x2 − 1)− (x1 − ξ)2)

+(x1 − ξ)((ξ − 1)v′o(ξ + x1 + 2x2 − 2)

+(x1 − ξ)(ξ + x2 − 1)))

−a34o(h− 1)(ξ + 1)(ξ + x2 − 1)2

×(ξ + x2
1 − (ξ + 1)x1 + x2

2 + (ξ − 1)x2)

×((ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1)

+(ξ + x1)2)− (ξ + x1)((ξ + 1)v′i
×(−ξ + x1 + 2x2 − 2)− (ξ + x1)(−ξ + x2 − 1)))

+a3o(h− 1)(ξ + 1)(ξ + x2 − 1)2(ξ + x2
1

−(ξ + 1)x1 + x2
2 + (ξ − 1)x2)((ξ + 1)

×u′i((ξ + 1)v′i(−ξ + x2 − 1) + (ξ + x1)2)

−(ξ + x1)((ξ + 1)v′i
×(−ξ + x1 + 2x2 − 2)− (ξ + x1)

×(−ξ + x2 − 1)))
)(

(ξ − 1)(ξ + 1)

×((ξ + x1)((ξ + 1)v′i(−ξ + x1 + 2x2 − 2)

−(ξ + x1)(−ξ + x2 − 1))

−(ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1) + (ξ + x1)2))

×((ξ − 1)u′o((ξ − 1)v′o
×(ξ + x2 − 1)− (x1 − ξ)2)

+(x1 − ξ)((ξ − 1)v′o(ξ + x1 + 2x2 − 2)

+(x1 − ξ)(ξ + x2 − 1)))
)−1

,
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A7 = h((ā1i − a34i)(Λ
2
N − (ā1i(ξ + 1) (8.24)

+2a34i(ξ + 1)− 3x2)2(9(ξ + 1)2(ā1i − a34i)
2)−1)

+(1− ā1i)(M
2 − 1

9
)(a34i − a3i)

×(−((ξ + 1)(u′i − v′i)(ξ − x2 + 1)(λ2
q(ξ + 1)(u′i − v′i)

+M2(ξ − (ξ + 1)u′i + ξv′i + v′i − x2 + 1)))

×((ξ + 1)u′i((ξ + 1)v′i(−ξ + x2 − 1)

+(ξ + x1)2)− (ξ + x1)((ξ + x1)(ξ − x2 + 1)

−(ξ + 1)v′i(ξ − x1 − 2x2 + 2)))−1 − 4

9
)

+a3i(M̃
2 − 4

9
) + (

x2

ξ + 1
− 1

3
)2)

+(1− h)((ā1o − a34o)(Λ
2
N − ((ā1o(ξ − 1)

+2a34o(ξ − 1) + 3x2)2)(9(ξ − 1)2(ā1o − a34o)
2)−1)

+(1− ā1o)(M
2 − 1

9
)

+(a34o − a3o)(((ξ − 1)(u′o − v′o)(ξ + x2 − 1)

×(λ2
q(ξ − 1)(u′o − v′o)

+M2(ξ − ξu′o + u′o + (ξ − 1)v′o + x2 − 1)))

×((ξ − 1)u′o((ξ − 1)v′o(ξ + x2 − 1)

−(x1 − ξ)2) + (x1 − ξ)((ξ − 1)v′o(ξ + x1 + 2x2 − 2)

+(x1 − ξ)(ξ + x2 − 1)))−1

−4

9
) + a3o(M̃

2 − 4

9
) + (

x2

1 + ξ
− 1

3
)2),

8.8 . Acronyms
• ANN: Artificial Neural Network

• AMC: Adaptive Monte Carlo

• BH: Bethe-Heitler

• BSA: Bethe-Salpeter Amplitude

• CFF: Compton Form Factor

• DA: Distribution Amplitude

• DD: Double Distribution

• DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi

• DIS: Deep Inelastic Scattering
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• DVCS: Deeply Virtual Compton Scattering

• DVMP: Deeply Virtual Meson Production

• EMC: European Muon Collaboration

• EMT: Energy Momentum Tensor

• ERBL: Efremov-Radyushkin-Brodsky-Lepage

• (E)FF: (Electromagnetic) Form Factor

• GK: Goloskokov-Kroll

• GPD: Generalized Parton Distribution

• HEPL: Hansen Experimental Physics Laboratory

• IPD: Impact Parameter Distribution

• IR: Infrared (Low energy)

• LFWF: Light Front Wave Function

• MAD: Median Absolute Deviation

• (Nj )LO: (Next to)jLeading Order

• (q)OAM: (quark) Orbital Angular Momentum

• PDF: Parton Distribution Function

• (p)QCD: (perturbative) Quantum Chromodynamics

• QFT: Quantum Field Theory

• SLAC: Stanford Linear Accelerator Center

• UV: Ultraviolet (High energy)

8.9 . Abbreviations
• eff: Subscript, "Effective", labels objects related to the remnants of
mass and momentum dependence left over after the q3,4

dependence

• rep: Subscript, labels objects of or pertaining to GPD replicas i.e. ANN
generated candidate GPDs

• Latt.: Superscript, "Lattice", labels statistics of the generated mock lat-
tice data
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9 - Résumé détaillé en Français
9.1 . Introduction
In the 1960s, Gell-Mann proposed a quark model to explain a large spec-

trum of spin and charge values [4]. He introduced three flavors of spin-
1
2

quarks: "up" (u), "down" (d), and "strange" (s), with charges
2
3 , −1

3 , and −1
3 ,

respectively. Quark spins were constrained to (anti)align to match the baryon

spins. The ∆++
particle, with three u quarks and a total charge of +2, was

problematic due to the exclusion principle. To solve this, [5, 6] introduced a

"color" gauge group, SU(3), adding a quantum number called "color charge"

with three values. This allowed each u quark in the ∆++
to have a different

color, satisfying the exclusion principle.

The non-Abelian SU(3) gauge group had significant consequences for the strong

force, leading to Quantum Chromodynamics (QCD). The Lagrangian density

of Quantum Electrodynamics (QED) describes spin-1/2 particles (e.g., elec-

trons) and electromagnetic fields, including terms for the fermionic field ψ,

gauge covariant derivativeDµ, electromagnetic field tensor Fµν , and fermion

mass m. QCD’s Lagrangian density describes quarks and gluons, including

terms for the quark field ψ, gauge covariant derivative Dµ with strong cou-

pling constant gs, gluon field tensor G
a
µν , and quark massm. The β functions

of QED andQCD determine the scale dependence of their coupling constants.

In QED, the coupling increases with energy scale, leading to the Landau pole.

In QCD, the coupling decreases at high energies (asymptotic freedom) and in-

creases at low energies, leading to confinement. This implies that only color-

neutral states are observable, a property known as color confinement.

9.1.1 . Comparison with Experiment
To compare experimental results with theoretical predictions, theoretical

calculations must be structured to match experimental observables. Exper-

imental interactions and their probabilities are tabulated as cross sections,

calculated from sums of interaction amplitudes. Perturbation theory is one

method to express these amplitudes theoretically. In Quantum Electrody-

namics (QED), the coupling constant e allows for useful perturbative expan-

sions at low energy scales, with the QED Landau pole presenting no practi-

cal issue for calculations corresponding to current experiments. However, in

Quantum Chromodynamics (QCD), the Landau pole occurs at a relatively low

energy scale ΛQCD, rendering perturbative QCD (pQCD) ineffective alone for

understanding nucleon substructure.

Deeply Inelastic Scattering (DIS) is a process revealing nucleon structure. Fac-

torization, the process of separating the cross section into perturbatively cal-

135



culable and hard parts and corresponding perturbatively inaccessible soft

parts, has been proven for DIS, allowing predictions based on Parton Distri-

bution Functions (PDFs). However, extracting these PDFs from experimental

data poses challenges due to the convolution involved which makes the sep-

aration of the contributions due to individual quark flavors difficult.

The European Muon Collaboration (EMC) "discovered" the nucleon spin crisis,

revealing unexpected contributions to nucleon spin from QCD states beyond

valence quarks, inspiring investigations into Generalized Parton Distributions

(GPDs) to understand nucleon structure further. Deeply Virtual Compton

Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) are experi-

mental processes that allow probing the partonic substructure of nucleonic

targets. DVCS involves an incoming leptonic probe interacting with a nucle-

onic target, resulting in an unbroken nucleon in the final state along with a

second, final state photon and lepton. DVMP, on the other hand, produces

a meson in the final state in place of DVCS’s final state photon. Both pro-

cesses involve factorization, where contributions from the soft and hard parts

of the interaction are separated. The nucleon Generalized Parton Distribu-

tions (GPDs), denoted as H(x, ξ, t) and E(x, ξ, t), describe the correlations of

the average partonic momentum fraction x for the active parton, the light-

cone kick parameter ξ, called the skewness, and the t, the squared momen-

tum transfer of the nucleon in the interaction. They are given in terms of

matrix elements involving quark and gluon fields. They satisfy various con-

straints, such as even parity with respect to ξ and polynomiality properties.

These GPDs contribute to Compton Form Factors (CFFs), which are convo-

lutions of GPDs with a kernel function. These CFFs are used in the expres-

sion for the experimental cross-section. Furthermore, GPDs are connected to

Electromagnetic Form Factors (EFFs), which describe the internal structure of

nucleons The total angular momentum carried by quarks is related to the first

Mellin moments of the quark GPDs and is known as Ji’s sum rule. Addition-

ally, Impact Parameter Distributions (IPDs) and Ioffe-time distributions pro-

vide alternative representations of GPDs in position-momentum space and

momentum-spatial space, respectively.

In addition, in the coming years, in addition to experimental data we expect

lattice QCD to provide useful data.

9.2 . Reweighting
9.2.1 . Artificial Neural Networks

In an ongoing effort to distinguish among the myriad candidate General-

ized Parton Distributions (GPDs) in an unbiased manner while ensuring ad-

herence to all necessary theoretical constraints. Artificial Neural Networks

(ANNs) have been employed to model GPDs. An example is the work by
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Dutrieux et al. [69], where Goloskokov-Kroll (GK) GPD pseudodata was uti-

lized to train ANNs. These ANNs were designed to produce candidate func-

tions satisfying most GPD properties. To assess further discrimination among

the candidate functions, mock lattice QCD data, systematically varied for com-

patibility with the candidate functions, was introduced.

Neural networks consist of layers of nodes. Feed forward neural networks,

like the ones used in this study, have connections only between adjacent lay-

ers. The output of each node j in layer i > 1 is calculated using activation

functions and weighted sums of inputs from the previous layer. Universal

approximation theorems guarantee that sufficiently large networks can ap-

proximate any continuous function on a compact set. Activation functions,

often sigmoid functions, interpolate between 0 and 1. Notably, in the ANN

models used here, the activation function arguments feature nonlinearity in

the input variables α and β to ensure the fulfillment of certain GPD proper-

ties.

The ANN’s hidden layer neurons perform specific calculations to reproduce

certain properties of GPDs. Three extractions of GPDs using pseudo-data

generatedwith the GKmodel were performed, with different training datasets

and constraints. The genetic algorithm was employed for parameter mini-

mization, with regularization used to prevent biased results due to overfit-

ting. Dropout regularization was utilized, randomly dropping a predefined

fraction of neurons in each iteration of the minimization algorithm to pre-

vent fixation on training data details. This section focuses on the modeling of

the GPD H(x, ξ, t), with t set to zero to examine the x − ξ plane exclusively.
Represented in terms of the Radon transform of a Double Distribution (DD),

the ANN models discussed here aim to model the DDs corresponding to H .

Specifically, the odd combination Hq(+)(x, ξ, 0) = Hq(x, ξ, 0) − Hq(−x, ξ, 0),

representing the sea quark GPD, is studied. To achieve flexibility and repro-

duce known limits, the DD model comprises three terms: FC , FS , and FD.

FC is designed to reproduce the forward limit and model the x = ξ line, FS
aims to reproduce deconvolution uncertainty and vanishes at certain lines,

and FD models the D-term. FC is defined to ensure the proper reduction to

the forward limit and flexibility to model the x = ξ line. FS aims to repro-

duce deconvolution uncertainty and is written as the difference of two profile

functions. Lastly, FD provides flexibility to model the D-term, crucial in char-

acterizing partonic matter.

Instead of using proper experimental data, Goloskokov-Kroll (GK) pseudodata

was employed as a proof of concept for the implementation of the network

architecture used in GPD modeling. The GK model, originally developed for

DVMP, has been successful in reproducing experimental measurements. The

GK pseudodata is limited by the assumptions inherent in the GK model.

9.2.2 . Analysis
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Statistical techniques such as Median Absolute Deviation (MAD) are dis-

cussed as a method for estimating uncertainty, particularly when defining

outliers in the data set is challenging. MAD provides a robust estimation of

standard deviation without the need for defining outliers explicitly, making it

suitable for analyzing data sets where defining outliers may be arbitrary. The

comparison between standard deviation and MAD illustrates the robustness

of MAD in estimating the spread of data sets, particularly in the presence

of outliers. Now understanding both the origin of the GPD replicas (candi-

date functions) and an important statistical estimator to be employed later

in the corresponding chapter, it is necessary to take a look at the reasoning

for which and method by which mock lattice data has been generated for the

forthcoming impact study of its discriminating effect with respect to the ANN

GPD replicas. These two points are respectively delineated as well.

9.2.3 . Mock Lattice Data
The choice to use mock lattice data for this impact study is informed by

two key points. The first of these reasons is a lack of access to lattice data.

The second, which is an advantage rather than a disadvantage of using mock

data, is the ability to systematically control the agreement of the mock data

with the set of GPD replicas considered. This systematic control was achieved

via the use of parameters controlling the precision and the correlation of the

mock lattice data. Based on actual lattice studies such as the one cited, one

draws the conclusion that current state-of-the-art lattice GPD extractions are

not equally facilitated in all kinematic ranges. Lattice GPD data is typically pre-

sented in Ioffe-time space, as calculations occur on an Euclidean spacetime

lattice, rather than in momentum space. However, it is worth noting that

the lattice data after which the mock lattice data generated in this study was

modeled was not matched to the lightcone, but exists along some Euclidean

direction. Therefore, a proper study comparing replica to mock lattice data

would not have taken place on the lightcone, but off the lightcone. Therefore,

all calculations comparing and combining ANN GPD replicas to mock lattice

data are performed in Ioffe-time space. As the ANN fitted singlet GPD, H ,

of the nucleon is that which is treated here, its odd parity in the longitudinal

momentum fraction x allows the limitation of the corresponding Ioffe-time

studies to the imaginary part of H . This method generates mock lattice data

which is in general compatible with the central value of the band of replicas

within the precision generated by the function g. However, thus far, the data

generation treats all mock lattice data points as uncorrelated. To take this into

account in our impact study, mock lattice data is generated in three distinct

Ioffe-time regions, wherein intracollaboration correlation is set to 0 ≤ c < 1,

and intercollaboration correlation is set to zero. Fig. 9.1 illustrates a mock

lattice dataset overlaid with the replicas generated by our GPD model. With a
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Figure 9.1: Shown are the ensemble of GPD replicas spanning Ioffe times

from ν = 0 to ν = 6 at ξ = 0.1 (indicated in green), along with their median (in
blue) and the 1σ band (in red), which corresponds to b = 1.1 (top) and b = 2
(bottom). Additionally, the mock lattice data set generated accordingly with

c = 0 (left) and c = 0.5 (right) is depicted in orange.

method for generating systematically controlled mock lattice data in terms of

both its precision and adherence to the set of GPD replicas, and the correla-

tion between all such generated data in hand, it is now possible to influence

the associated uncertainty of the replica band using such mock lattice data

to assess the potential discriminating ability of lattice data. In the study dis-

cussed here, a Bayesian reweighting procedure employing the mock lattice

data as a prior was chosen, aiming to investigate the resulting uncertainty of

the set of GPD replicas without costly refits. So far, the discussion largely ig-

nored the skewness of the GPD, focusing on analysis in x and ν. In the final

sections, discussions of skewness will play an important role, necessitating

an outline of the Bayesian reweighting procedure employed. The precise pro-

cedure delineates the assignment of weights to each replica based on their

agreement with the mock lattice data, leading to a reweighted median and

standard deviation of the replica set. These quantities provide a measure of

uncertainty reduction on the band of replicas.
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9.2.4 . Results of Reweighting

Data Results

ξUsed Precision Correlation ξShown τ rν rlnx
0.1 Low Low 0.1 / 0.5 0.47 0.25 / 0.92 0.82 / 1.24

0.1 Low High 0.1 / 0.5 0.83 0.85 / 0.93 1.02 / 1.15

0.1 High Low 0.1 / 0.5 0.30 0.16 / 0.90 0.78 / 1.08

0.1 High High 0.1 / 0.5 0.46 0.23 / 0.91 0.82 / 1.23

0.5 Low Low 0.5 0.36 0.44 0.67

0.5 Low High 0.5 0.52 0.58 0.64

0.5 High Low 0.5 0.11 0.25 0.54

0.5 High High 0.5 0.37 0.51 0.77

0.1 0.2 0.3 Low Low 0.5 0.30 0.62 0.95

0.1 0.2 0.3 Low High 0.5 0.77 0.82 1.00

0.1 0.2 0.3 High Low 0.5 0.10 0.34 0.54

0.1 0.2 0.3 High High 0.5 0.30 0.61 0.73

0.1 0.2 0.3 0.4 0.5 Low Low 0.5 0.16 0.19 0.66

0.1 0.2 0.3 0.4 0.5 Low High 0.5 0.57 0.65 0.75

0.1 0.2 0.3 0.4 0.5 High Low 0.5 0.03 0.13 0.45

0.1 0.2 0.3 0.4 0.5 High High 0.5 0.18 0.25 0.77

Table 9.1: Results as dependent on the reweighting parameters. Low

Correlation: c = 0, High Correlation: c = 0.5, Low Precision: b = 1.1,
High Precision: b = 2. rlnx: Average uncertainty retainment in x, rν :
Average uncertainty retainment in ν, τ : Effective fraction of replicas
retained post-reweighting.

We compare the uncertainty retainments resulting fromdifferent amounts

ofmock lattice data at low tomid skewness levels (ξ ∈ {0.1}, ξ ∈ {0.1, 0.2, 0.3},
ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}) with those observed in the previous section at
purely midrange skewness. The key findings include:

• Reweighting with large uncertainties and low precision (b = 1.1) and

correlated data (c = 0.5) significantly reduces uncertainty in Ioffe-time

at ξ = 0.5.

• Adding data at ξ = 0.1 improves uncertainty retainment at ξ = 0.5, but

further inclusion of data at ξ ∈ {0.1, 0.2, 0.3} and ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
tightens uncertainty retainment at ξ = 0.5. However, direct reweighting

at ξ = 0.5 with b = 2 and c = 0.5 yields better results.

Furthermore, we present a Tab. (9.1) illustrating the impact of varying levels

of noise and correlation on the retention processes. Additionally, we use Fig.

9.2 to compare reweighting effects at various values of ξ by presenting the

effective fraction of retained replicas (τ ) and the retainment of uncertainty in

both Ioffe-time and momentum space.
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Figure 9.2: The effective fraction of replicas retained following reweighting

τ (illustrated by the green curve), preservation of uncertainty in Ioffe time

(shown by the blue curve), and in momentum space (represented by the red

curve) for various combinations of high and low noise (designated as b = 1.1
and 2 respectively) and low and high correlation (indicated as c = 0 and 0.5
respectively).
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Examining Fig. 9.2, we observe that at mid-range skewness, the effective frac-

tion of retained replicas after reweighting (τ ) is roughly equal in both low cor-

relation low precision and high correlation high precision scenarios. This com-

pensatory relationship between precision and correlation could guide lattice

practitioners in allocating computational resources effectively.

It is important to note that by employing a Bayesian approach to merge ex-

perimental and lattice knowledge on GPDs, proving effective when lattice

data aligns well with the prior model, has yielded approximately 40% uncer-

tainty at midrange skewness. Nonetheless, our study underscores the ne-

cessity of addressing correlations within lattice data for a joint extraction, as

real lattice data often exhibit high degrees of correlation and systematic ef-

fects that require careful management to prevent biases in uncertainty as-

sessment.

9.3 . Continuum Techniques for GPD Modeling
The analysis pursued here of generalized parton distributions of nucleons

involves expanding matrix elements using light-front wave functions (LFWFs).

This approach elucidates the connection between nucleonic states and the

amplitudes defined on the light front, offering insights into definite quark or-

bital angular momentum (OAM) contributions to GPDs and related objects.

By examining the Fock expansion of nucleonic states in which LFWFs appear

as momentum and quantum number dependent coefficient functions, one

can consistently truncate such Fock expansions for practical computations,

at the cost of limiting the kinematics of the computation to |x| < |ξ|. This
allows the representation of GPDs to be expressed in terms of overlaps of

LFWFs, including only the contributions from valence quarks.

The matrix element used to characterize the three-quark Fock states con-

tributing to a nucleon state |P ;h〉 (with h = +1
2 ) involves an operator that

creates a color-neutral three-quark state. In momentum space, we repre-

sent this matrix element in terms of various tensorial structures which we

then project onto definite quark helicity projection states, which correspond

to definite qOAM values. This tensorial basis’ components, imparted with

corresponding coefficient functions called auxiliary functions some of whose

linear combinations give the Light-Front Wave Functions, then provide a way

to extract such LFWFs from a given model for such a matrix element via selec-

tive Dirac traces. By reducing the employed tensorial basis into a smaller set

of tensors by enforcing u-quark symmetry and isospin symmetry, the LFWFs

may be identified as has been done in the literature [90].

9.4 . Overlap Representation of GPDs
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To characterize the contributions of three-quark states to Generalized

Parton Distributions (GPDs) and related objects, we can take advantage of

the overlap representation of GPDs [34]. This approach clarifies which pairs

of three-quark Fock states contribute to GPDs by using their overlaps. Before

beginning this section we define the convenient lightcone coordinates:

v = (v+ ≡ v0 + v3

√
2

, ~v⊥ ≡ (v1, v2), v− ≡ v0 − v3

√
2

). (9.1)

9.4.1 . Overlap Formula
The active quark’s initial and final state momenta reflect the momentum

transfer due to the interaction with the photon. To see which combinations

of incoming and outgoing Fock combinations contribute, let’s look at the in-

volved quantum numbers. The collective quantum numbers Ql for the lth
quark are defined as:

• Momentum: κl = (xl,~kl⊥),

• Helicity: λl,

• Color: cl,

• Flavor: fl,

The overlap formula for the helicity dependent amplitudeHf̂h′h(x̄, ξ, t) is given

by:

Hf̂h′h(x, ξ, t) =
1

2
√

1− ξ2

∑
ĉ

∫
dz−

2π
eixP̄

+z−〈P ′, h′|q̄ĉ
f̂
(−z

2
)γ+qĉ

f̂
(
z

2
)|P, h〉

(9.2)

≡ Of̂
[
ϕŜA(Q′);h′ , ϕQ;h

]
(x, ξ, t), (9.3)

where f̂ is the active quark flavor, ĉ is a color index, P (′) and h(′) are the
incoming (outgoing) nucleon momenta and helicities, z = (z+ = 0, ~z⊥ =
~0⊥, z−) is a minus direction spatial vector, P̄+

is the average plus momentum

of the nucleon, q̄ĉ
f̂
(− z

2)γ+qĉ
f̂
( z2) is a bilocal quark field bilinear, and ŜA is the

Ath permutation of the permutation group S3 over all six of which we sum.

Here, Of̂ [ϕ′, ϕ] represents the overlap function between the LFWFs of the

initial and final states.

9.4.2 . Master Overlap Formula: GPDs and Subresults
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The GPDs H f̂
and E f̂ are expressed in terms of the helicity dependent

amplitudes:

H f̂ = Hf̂1
2
, 1
2

+
ξ22MN |~∆⊥|

(∆1 + i∆2)
√

1− ξ2
√

4ξ2m2

ξ2−1
− t
Hf̂− 1

2
, 1
2

(9.4)

E f̂ =
2MN |~∆⊥|

√
1− ξ2

(∆1 + i∆2)
√

4ξ2M2
N

ξ2−1
− t
Hf̂− 1

2
, 1
2

, (9.5)

We can represent the helicity dependent amplitudes in terms of LFWF over-

laps, where our LFWFsΨh,λΣ
are labeled by the corresponding proton helicity

h and the total quark helicity projection λΣ such that qOAM=h− λΣ. In terms

of our definite quark orbital angular momentum (qOAM) LFWFs we have:

Hf̂1
2
, 1
2

=
(
Of̂ (Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
) +Of̂ (Ψ 1

2
,− 1

2
,Ψ 1

2
,− 1

2
) (9.6)

+Of̂ (Ψ 1
2
, 3
2
,Ψ 1

2
, 3
2
) +Of̂ (Ψ 1

2
,− 3

2
,Ψ 1

2
,− 3

2
)
)

Hf̂− 1
2
, 1
2

=
(
Of̂ (Ψ− 1

2
,− 3

2
,Ψ 1

2
, 3
2
) +Of̂ (Ψ− 1

2
, 3
2
,Ψ 1

2
,− 3

2
)
)
. (9.7)

While the helicity conserving amplitude receives only diagonal contributions

in qOAM, the helicity flip one receives only off-diagonal contributions. This

does not violate our expectations, as it means that the helicity flip GPD E,

which receives contributions only from the helicity flip amplitude H− 1
2
, 1
2
, re-

ceives only off-diagonal contributions in qOAM. Further, the PDF, which is re-

lated to the probability of finding a parton (quark here) of a particular flavor

carrying a particular fraction of the longitudinal momentum of the nucleon,

is given in the forward limit of the expression for the GPDH as

f f̂ ,P(xBJ) = H f̂ ,P|t=ξ=0 = (9.8)(
Of̂ ,P(Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
) +Of̂ ,P(Ψ 1

2
,− 1

2
,Ψ 1

2
,− 1

2
)

+Of̂ ,P(Ψ 1
2
, 3
2
,Ψ 1

2
, 3
2
) +Of̂ ,P(Ψ 1

2
,− 3

2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0,

which, though receiving only diagonal contributions in qOAM, interestingly

receives non-zero qOAM contributions.

Now that we have specified the overlap representation to the three quark

case and to the objects of our interest, and we know how to extract the LFWFs

from a general three quark matrix element from the literature, we turn to

modeling such a matrix element in order to perform such extractions.

9.5 . The Diquark Model
This work focuses on modeling nucleon properties using a quark-diquark

approach, treating the diquark as a composite two-body system rather than
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a point-like entity, which allows for the inclusion of diquark internal p-wave

correlations often neglected in simpler models [103]. The analysis herein em-

ploys Bethe-Salpeter formalism and Faddeev equations [96] to characterize

nucleon states and extends Euclidean space results to the lightcone through

Mellin moments. This method involves constructing Light-Front Wave Func-

tions (LFWFs) by addressing the complexities of translating models from Eu-

clidean space (model Fadeev amplitudes) to the lightcone (as LFWFs).

9.5.1 . Mellin Reconstruction
To transform Faddeev amplitudes computed in Euclidean space into Light-

Front Wave Functions (LFWFs) defined on the lightcone, we need to manage

the transition of lightcone time arguments to zero. This involves integrating

over specific parameters to handle momentum fractions and projections. In

Minkowski space, the LFWF is given by:

Ψ(x1,~k1⊥;x2,~k2⊥) = N

∫
dk−1;Mdk−2;Mχ(k1;M , k2;M ), (9.9)

where N is a normalization constant. Since computations are in Euclidean

space, we use the Mellin transform to avoid complex contour integrations.

The Mellin moment of a function f(x) of orderm is:∫
dxxmf(x), (9.10)

with bounds 0 ≤ x ≤ 1. Two functions with identical Mellin moments are

equivalent [113]:∫
dxxmf(x) =

∫
dxxmg(x), ∀m ∈ N (9.11)

⇒ f(x) = g(x). (9.12)

The longitudinal momentum fraction xi in Euclidean variables is:

xmii ≡ (kE;i · nE)mi

(PE · nE)mi
, (9.13)

where n2
E = 0 ensures projection onto the + lightcone component. Using

Mellin moments, we reconstruct the x1,2 dependence of LFWFs with:∫ 1

0
dx1

∫ 1−x1

0
dx2x

m1
1 xm2

2 Ψ(x1,~k1⊥;x2,~k2⊥)

≡ Normalization

∫
dk3

1;Edk
4
1;Edk

3
2;Edk

4
2;E

(kE;1 · nE)m1

(PE · nE)m1

(kE;2 · nE)m2

(PE · nE)m2

TrDirac

{
ΓProj.χ(k1;E , k2;E)

}
, (9.14)

whereΓProj. is a Dirac structure used for extracting contributions. Thismethod

is discussed in [112].
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9.5.2 . Identification of Mellin Variables
To compute fundamental contributions to the six LFWFs, a Euclidean quark-

diquark correlation model of the nucleon is used. Tensorial structures are

introduced, contracted, and Mellin moments are calculated to extract contri-

butions to the LFWFs. Define the quark propagator as:

S(p) = [−iγ · p+Mq]DMq(p
2), (9.15)

DM (s) =
1

s+M2
, (9.16)

and the Nakanishi representation of the simplest tensorial contribution to the

diquark vertex using the basis l and q:

η0Γ0
µC
† = iγ5

∫ 1

−1
dzρν(z)DΛq(qz), (9.17)

with qz = q + z
2

(
2
3P − `

)
and ρν(z) a Nakanishi weight function taken to be a

polynomial. The diquark propagator in terms of diquark momentumK and a

Nakanishi representation of the simplest tensorial contribution to the quark-

diquark correlation are given respectively by:

∆0+(K) =
1

K2 + M̃2
, (9.18)

s1 = iη

∫ 1

−1
dz ρ̃(z)

[
1

(`2z + Λ2
N )

]3

. (9.19)

Here, P is defined as (0, 0, 0, iMN ) and quark momenta are:

ki ≡
P

3
+ `, (9.20)

kj ≡
P

3
− `

2
+ q, (9.21)

kk ≡ P

3
− `

2
− q. (9.22)

where q is the diquark internal momentum difference and l is another vari-

able crafted to be real. The projected Faddeev amplitude when quark 1 is not

included in the diquark (bystander) is:

χ↑,↓,↑α3;σ = S(k2)α2α′2
[Γ0(q,K)]α′2α′3S(k3)α3α′3

∆0S
T (k1)α′1α1

s1α′1,σ
. (9.23)

Which can then be projected onto the quark helicity projections contributing

to auxiliary function ψ1,−1
, the simplest qOAM= 0 auxiliary function

χh1,h2,h3
α1α2α3;σ = (/nL

↑
α′3α3

Sα3λ(k3)Γ0T
λλ′S

T
λ′α2

(k2) (9.24)

×(L↓/nT (C†)TL↑)α2α1Sα1α′1
(k1)s1α′1σ

∆(k2 + k3). (9.25)
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Projecting on γν for the leading twist operator:

1

4
γνTr[γ

ν/nL↑S(k3)Γ0TST (k2)(L↓/nT (C†)TL↑S(k1)S]∆(k2 + k3)

=
1

2
γνn

ν
Tr[S(k3)Γ0TST (k2)L↓C†/nL↑]σS(k1)s1(`, PE)Tr[γν/nL↑∆(k2 + k3)].

The essential approach for extraction is to compute the Mellin moments of

the quark-diquark correlation model and use them to directly extract LFWFs.

This avoids the complications of particularly messy contour integrations and

leverages the integral moments to obtain LFWFs.

To combine the denominators of all of the structures of our model we use

the Feynman parametrization, introducing quite a few variables over which to

integrate. We can then identify the Mellin moments of the auxiliary function

ψ1,−1
as ∫ 1

0
dx1

∫ 1−x1

0
dx2x

m1
1 xm2

2 ψ1,−1(x1,~k1⊥;x2,~k2⊥)

=

∫ 1

0
dᾱ

∫ 1−ᾱ

0
dβ′

∫ β′

0
dv′
∫ 1−ᾱ

β′
du′
∫ ᾱ

0
da34 (9.26)∫ 1

ᾱ
dā1

∫ a34

0
da3

ᾱm1β′m2
g(ᾱ, β′, u′, v′, a34, ā1, a3,~k1⊥,~k2⊥)

h(ᾱ, β′, u′, v′, a34, ā1, a3,~k1⊥,~k2⊥)

→ ψ1,−1(x1,~k1⊥;x2,~k2⊥)

=

∫ x2

0
dv′
∫ 1−x1

x2

du′
∫ x1

0
da34

∫ 1

x1

dā1

∫ a34

0
da3

g(x1, x2, u
′, v′, a34, ā1, a3,~k1⊥,~k2⊥)

h(x1, x2, u′, v′, a34, ā1, a3,~k1⊥,~k2⊥)
(9.27)

While we must perform a 5D integral over Feynman parameters to compute

ψ1,−1
at a single point, we now have an expression we can use. In the next

section we show an example plot of zero transverse quark momentum.

9.6 . Results
Here we show a contour plot of the x1,2,3 dependence of the auxiliary

function ψ1,−1
. There is a noticeable symmetry between the momentum frac-

tions x2,3. Although there is some clear numerical instability, the longitudinal

momentum fraction x1, corresponding to the bystander quark (the one which

does not participate in the diquark), carries in general a preferentially high

portion of the longitudinal momentum.
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Figure 9.3: A Plot of the function ψ1,−1
for |~k1⊥| = |~k2⊥| = 0 is shown. This

plot is a contour plot, given on a triangular domain due to the momentum

conservational constraint 1 =
∑3

i=1 xi. The normalization has not been set
due to any physical constraints, and is consistent among all of the LFWF plots

given in this document. The normalization is calculated by computing the

largest value of ψ1,−1
among all of the computed values, and scaling all plots

such that that maximum value becomes 6, in order to align with the color
scales of these plots. We remind the reader that the transverse momenta are

given in units of the nucleon massMN .

9.6.1 . The PDF
To compute contributions of various Light-Front Wave Functions (LFWFs)

to GPDs and their limits, we must first compute their overlaps. Starting with

the function ψ1,−1
:

ψ1,−1 = Ñ(ν, σ)

∫
[df ]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2M

−2(σ+2+ν)
N

×
[ `2⊥
M2
N

+ (1− ā1)(
M2

M2
N

− 1

9
) + (ā1 − a34)(

Λ2
N

M2
N

− λ) + a3(
M̃2

M2
N

− 4

9
)

+(a34 − a3)(
M2

e�
+ (qe�⊥ )2

M2
N

− 4

9
) + (x2 −

1

3
)2
]−(σ+2+ν)

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2)) + ū′(v′(1− x2)− (x1)2)]−ν−1

(ū′ − v′)2ν−1, (9.28)
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Here, Ñ(ν, σ) is a normalization factor. To calculate the contribution of this

function’s overlap with itself to the GPD H when quark 1 is active, we start

with the transversemomentumdependent term, using a new Feynman parametriza-

tion:

[
(1 +

a34 − a3

(x2 − 1)2
x2

1)k2
1⊥ + (a34 − a3)k2

2⊥ (9.29)

+2
a34 − a3

−1 + x2
x1
~k1⊥ · ~k1⊥ + M̂2

]−(σ+2+ν)

in

[
(1

+
a34 − a3

(x2 − 1)2
x2

1)k2
1⊥ + (a34 − a3)k2

2⊥ + 2
a34 − a3

−1 + x2
x1
~k1⊥ · ~k1⊥

+M̂2
]−(σ+2+ν)

out

=

∫ 1

0
dh
[
A1k̄

2
1⊥ +A2k̄

2
2⊥ +A3∆2

⊥ +A4k̄1⊥ · k̄2⊥

+A5k̄1⊥ ·∆⊥ +A6k̄2⊥ ·∆⊥ +A7]−2(σ+2+ν),

where M̂ includes non-transverse-momentum terms. By shifting the trans-

verse momenta:

k̃1⊥ ≡ k̄1⊥ +
A4

2A1
k̄2⊥ +

A5

2A1
∆⊥ (9.30)

k̃2⊥ ≡ k̄2⊥ + Ã6∆⊥,

we redefine for convenience:

Ã2 ≡ A2 −
A2

4

4A1
(9.31)

Ã6 ≡ A6 −
A4A5

2A1

Ã3 ≡ A3 −
Ã2

6

2Ã2

.

The expression simplifies to:

∫ 1

0
dh
[
A1k̃

2
1⊥ + Ã2k̃

2
2⊥ + Ã3∆2

⊥ +A7

]−2(σ+2+ν)
. (9.32)
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Integrating over both k̃1,2 gives:

[
Ñ(ν, σ)

∫
[dfin]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2

(9.33)

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2))

+ū′(v′(1− x2)− (x1)2)]−ν−1(ū′ − v′)2ν−1
]
in[

Ñ(ν, σ)

∫
[dfin]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2))

+ū′(v′(1− x2)− (x1)2)]−ν−1(ū′ − v′)2ν−1
]
out

×π
2

2

∫ 1

0
dh
[
Ã3∆2

⊥ +A7

]−2(σ+1+ν)[
A1Ã3(σ + ν + 1)(3 + 2σ + 2ν)

]−1
.

In order to compute the GPD (or PDF) at a given point we must therefore

compute a 13-dimensional numerical integral, as we must integrate over the

11 Feynman parameters as well as the inactive longitudinal momentum frac-

tion x2 and the transverse momentum angle θ12. This large dimensional inte-

gration involves some noisiness, especially if we would like to compute such

integrals efficiently. We chose to use Adaptive Monte-Carlo integration, and

not Gauss-Kronrod, which is more accurate but less efficient [118, 117].

We therefore show the contributions of the auxiliary function ψ1,−1
to the

PDF. While noisy, there is a clear non-zero signal. Further, the large x1 tail

reflects the previously mentioned tendency for the longitudinal momentum

to be held by the bystander quark, u1. In addition, as previously mentioned,

there is an approximate u2-d3 symmetry, as they are the diquark participants.
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Figure 9.4: The results for the forward limit of Ψ1,−
self overlaps (PDFs) are

shown. The red curve corresponds to that of the bystander quark u1, the
blue to the participant quark u2, the brown to the participant quark d(3), and
the purple to the total u quark contribution. This result has been computed
using Adaptive Monte-Carlo integration with 1001 points along the x axis,
and is extremely noisy. Even so, there is a clearly visible signal which is not

compatible with zero.

9.7 . Conclusion and Outlook
GPDs are essential for making experimental predictions in processes such

as DVCS and DVMP, due to their universal nature ensured by factorization

proofs. However, extracting GPDs from experimental data is complex due to

convolutions with calculable kernels. Practical constraints on GPDs should

incorporate inputs from lattice QCD computations and other techniques for

comparison with experiments.

Bayesian reweighting of ANN GPD candidates using lattice data can signifi-

cantly reduce uncertainty, provided the data’s correlation is known. Comple-

mentary lattice data can address the limitations of the perturbative kernel in

experimental data, offering insights into otherwise inaccessible regions.

Polarized and unpolarized DGLAP region GPDs can be represented through

LFWFs of definite qOAM, contributing to the GPDH even in the forward limit,

linking polarized PDFs to qOAM contributions via the Ji sum rules. A simple

model for such LFWFs demonstrates computation from tensorial structures.

To align these models with experimental data, extending DGLAP GPDs to the

ERBL region and evolving them to experimental scales is necessary. Further

efforts in modeling, including systemizing tensorial structures and integrating

complex plane methods with a running mass, are crucial for a more intimate

understanding of definite qOAM contributions to the nucleon.
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10 - Résumé détaillé en Français
10.1 . Introduction
Dans les années 1960, Gell-Mann a proposé un modèle de quarks pour

expliquer un large spectre de valeurs de spin et de charge [4]. Il a introduit

trois saveurs de quarks de spin-
1
2 : "up" (u), "down" (d) et "strange" (s), avec

des charges de
2
3 , −1

3 , et −1
3 , respectivement. Les spins des quarks étaient

contraints de s’(anti)aligner pour correspondre aux spins des baryons. La

particule ∆++
, avec trois quarks u et une charge totale de +2, posait prob-

lème en raison du principe d’exclusion. Pour résoudre cela, [5, 6] ont introduit

un groupe de jauge "couleur", SU(3), ajoutant un nombre quantique appelé

"charge de couleur" avec trois valeurs. Cela permettait à chaque quark u dans

la∆++
d’avoir une couleur différente, satisfaisant ainsi le principe d’exclusion.

Le groupe de jauge non abélien SU(3) avait des conséquences significatives

pour la force forte, conduisant à la Chromodynamique Quantique (QCD). La

densité lagrangienne de l’Électrodynamique Quantique (QED) décrit les par-

ticules de spin-1/2 (par exemple, les électrons) et les champs électromagné-

tiques, incluant des termes pour le champ fermionique ψ, la dérivée covari-

ante de jauge Dµ, le tenseur de champ électromagnétique Fµν et la masse

du fermionm. La densité lagrangienne de la QCD décrit les quarks et les glu-

ons, incluant des termes pour le champ de quarks ψ, la dérivée covariante

de jauge Dµ avec la constante de couplage forte gs, le tenseur de champ de

gluons Gaµν , et la masse du quark m. Les fonctions β de la QED et de la QCD

déterminent la dépendance à l’échelle de leurs constantes de couplage. En

QED, le couplage augmente avec l’échelle d’énergie, menant au pôle de Lan-

dau. En QCD, le couplage diminue à hautes énergies (liberté asymptotique)

et augmente à basses énergies, menant à la confinement. Cela implique que

seuls les états neutres en couleur sont observables, une propriété connue

sous le nom de confinement de couleur.

10.1.1 . Comparaison avec l’Expérience
Pour comparer les résultats expérimentaux avec les prédictions théoriques,

les calculs théoriques doivent être structurés pour correspondre aux observ-

ables expérimentales. Les interactions expérimentales et leurs probabilités

sont répertoriées sous forme de sections efficaces, calculées à partir de sommes

d’amplitudes d’interaction. La théorie des perturbations est une méthode

pour exprimer ces amplitudes théoriquement. En Électrodynamique Quan-

tique (QED), la constante de couplage e permet des développements pertur-

batives utiles à des échelles d’énergie basses, le pôle de Landau de la QED ne

posant pas de problème pratique pour les calculs correspondant aux expéri-

153



ences actuelles. Cependant, en Chromodynamique Quantique (QCD), le pôle

de Landau se produit à une échelle d’énergie relativement basse ΛQCD, ren-

dant la QCD perturbative (pQCD) inefficace seule pour comprendre la sous-

structure du nucléon.

La Diffusion Inélastique Profonde (DIS) est un processus révélant la structure

du nucléon. La factorisation, le processus de séparation de la section efficace

en parties calculables perturbativement et parties inaccessibles perturbative-

ment, a été prouvée pour la DIS, permettant des prédictions basées sur les

Distributions des Partons (PDFs). Cependant, extraire ces PDFs des données

expérimentales pose des défis en raison de la convolution impliquée, ce qui

rend difficile la séparation des contributions dues aux différentes saveurs de

quarks.

La Collaboration Européenne des Muons (EMC) a "découvert" la crise du spin

du nucléon, révélant des contributions inattendues au spin du nucléon provenant

des états de la QCD au-delà des quarks de valence, inspirant des recherches

sur les Distributions Généralisées des Partons (GPDs) pour comprendre da-

vantage la structure du nucléon. La diffusion Compton à grande virtualité

(DVCS) et la production de mésons à grande virtualité (DVMP) sont des pro-

cessus expérimentaux permettant de sonder la sous-structure partonique

des cibles nucléoniques. La DVCS implique une sonde leptonique entrante

interagissant avec une cible nucléonique, résultant en un nucléon non brisé

dans l’état final ainsi qu’un second photon et un lepton dans l’état final. La

DVMP, quant à elle, produit un méson dans l’état final à la place du photon

de l’état final de la DVCS. Les deux processus sont factorisables, où les con-

tributions des parties molles et dures de l’interaction sont séparées. Les Dis-

tributions Généralisées des Partons (GPDs) des nucléons, notéesH(x, ξ, t) et

E(x, ξ, t), décrivent les corrélations de la fraction moyenne d’impulsion par-

tonique x pour le parton actif, le paramètre de coup de cône de lumière ξ,

appelé la skewness, et le t, le transfert d’impulsion carré du nucléon dans

l’interaction. Elles sont données en termes d’éléments de matrice impliquant

les champs de quarks et de gluons. Elles satisfont diverses contraintes, telles

que la parité paire par rapport à ξ et les propriétés de polynomialité. Ces

GPDs contribuent aux Facteurs de Forme de Compton (CFFs), qui sont des

convolutions de GPDs avec une fonction noyau. Ces CFFs sont utilisés dans

l’expression de la section efficace expérimentale. De plus, les GPDs sont liées

aux Facteurs de Forme Électromagnétiques (EFFs), qui décrivent la structure

interne des nucléons. Le moment angulaire total porté par les quarks est

lié aux premiers moments de Mellin des GPD des quarks et est connu sous

le nom de règle de somme de Ji. De plus, les Distributions des Paramètres

d’Impact (IPDs) et les distributions du temps d’Ioffe fournissent des représen-

tations alternatives des GPDs dans l’espace position-impulsion et l’espace impulsion-

spatial (longitudinal-transversale), respectivement.
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De plus, dans les années à venir, en plus des données expérimentales, nous

nous attendons à ce que la QCD sur réseau fournisse des données utiles.

10.2 . Repondération
10.2.1 . Réseaux de Neurones Artificiels

Dans un effort continu pour distinguer parmi la myriade de candidats

pour les Distributions Généralisées des Partons (GPDs) demanière impartiale

tout en garantissant le respect de toutes les contraintes théoriques néces-

saires, les réseaux de neurones artificiels (ANNs) ont été utilisés pour mod-

éliser les GPDs. Un exemple est le travail de Dutrieux et al. [69], où les

pseudo-données GPD du modèle Goloskokov-Kroll (GK) ont été utilisées pour

entraîner les ANNs. Ces ANNs ont été conçus pour produire des fonctions

candidates satisfaisant la plupart des propriétés des GPDs. Pour évaluer da-

vantage la discrimination parmi les fonctions candidates, des données fictives

de QCD sur réseau, systématiquement variées pour être compatibles avec les

fonctions candidates, ont été introduites.

Les réseaux de neurones consistent en des couches de nœuds. Les réseaux

de neurones à action directe, comme ceux utilisés dans cette étude, ont des

connexions uniquement entre les couches adjacentes. La sortie de chaque

nœud j dans la couche i > 1 est calculée en utilisant des fonctions d’activation

et des sommes pondérées des entrées de la couche précédente. Les théorèmes

d’approximation universelle garantissent que des réseaux suffisamment grands

peuvent approximer toute fonction continue sur un ensemble compact. Les

fonctions d’activation, souvent des fonctions sigmoïdes, interpolent entre 0

et 1. Notamment, dans les modèles ANN utilisés ici, les arguments de la fonc-

tion d’activation présentent une non-linéarité dans les variables d’entrée α et

β pour garantir le respect de certaines propriétés des GPDs.

Les neurones de la couche cachée de l’ANN effectuent des calculs spécifiques

pour reproduire certaines propriétés des GPDs. Trois extractions de GPDs

utilisant des pseudo-données générées avec le modèle GK ont été réalisées,

avec différents ensembles de données d’entraînement et contraintes. L’algorithme

génétique a été utilisé pour la minimisation des paramètres, avec une régu-

larisation utilisée pour éviter des résultats biaisés dus au surajustement. La

régularisation par dropout a été utilisée, éliminant aléatoirement une frac-

tion prédéfinie de neurones à chaque itération de l’algorithme de minimisa-

tion pour empêcher la fixation sur les détails des données d’entraînement.

Cette section se concentre sur la modélisation de la GPDH(x, ξ, t), avec t fixé

à zéro pour examiner exclusivement le plan x − ξ. Représenté en termes de
la transformée de Radon d’une Double Distribution (DD), les modèles ANN

discutés ici visent à modéliser les DDs correspondant à H . Spécifiquement,

la combinaison impaire Hq(+)(x, ξ, 0) = Hq(x, ξ, 0) −Hq(−x, ξ, 0), représen-
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tant la GPD des quarks de mer, est étudiée. Pour obtenir de la flexibilité et

reproduire les limites connues, le modèle DD comprend trois termes : FC ,

FS et FD. FC est conçu pour reproduire la limite avancée et modéliser la

ligne x = ξ, FS vise à reproduire l’incertitude de déconvolution et disparaît

à certaines lignes, et FD modélise le terme D. FC est défini pour assurer la

réduction correcte à la limite avancée et la flexibilité pour modéliser la ligne

x = ξ. FS vise à reproduire l’incertitude de déconvolution et est écrit comme

la différence de deux fonctions de profil. Enfin, FD fournit de la flexibilité

pour modéliser le termeD, crucial pour caractériser la matière partonique.

Au lieu d’utiliser des données expérimentales appropriées, les pseudo-données

Goloskokov-Kroll (GK) ont été employées comme preuve de concept pour la

mise en œuvre de l’architecture du réseau utilisée dans la modélisation des

GPDs. Le modèle GK, initialement développé pour la DVMP, a réussi à repro-

duire les mesures expérimentales. Les pseudo-données GK sont limitées par

les hypothèses inhérentes au modèle GK.

10.2.2 . Analyse
Des techniques statistiques telles que la médiane de la déviation absolue

(MAD) sont discutées comme méthode d’estimation de l’incertitude, en par-

ticulier lorsque définir des valeurs aberrantes dans le jeu de données est

difficile. MAD fournit une estimation robuste de l’écart type sans avoir be-

soin de définir explicitement des valeurs aberrantes, ce qui le rend adapté

à l’analyse des jeux de données où la définition des valeurs aberrantes peut

être arbitraire. La comparaison entre l’écart type et MAD illustre la robustesse

de MAD dans l’estimation de la dispersion des jeux de données, en particulier

en présence de valeurs aberrantes. Comprenant maintenant à la fois l’origine

des répliques GPD (fonctions candidates) et un estimateur statistique impor-

tant à utiliser plus tard dans le chapitre correspondant, il est nécessaire de

jeter un coup d’œil au raisonnement pour lequel et la méthode par laque-

lle des données de réseau fictives ont été générées pour l’étude d’impact à

venir de son effet discriminant par rapport aux répliques ANN GPD. Ces deux

points sont également délimités.

10.2.3 . Données de Réseau Fictives
Le choix d’utiliser des données de réseau fictives pour cette étude d’impact

est informé par deux points clés. La première de ces raisons est un manque

d’accès aux données de réseau. La seconde, qui est un avantage plutôt qu’un

inconvénient de l’utilisation de données fictives, est la capacité à contrôler

systématiquement l’accord des données fictives avec l’ensemble des répliques

GPD considérées. Ce contrôle systématique a été réalisé via l’utilisation de

paramètres contrôlant la précision et la corrélation des données de réseau

fictives. Basé sur des études réelles de réseau telles que celle citée, on en

conclut que les extractions actuelles de GPD sur réseau à la pointe de la tech-
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nologie ne sont pas également facilitées dans toutes les plages cinématiques.

Les données GPD de réseau sont généralement présentées dans l’espace-

temps Ioffe, car les calculs se déroulent sur un réseau dans l’espace des co-

ordonnées, plutôt que dans l’espace des impulsions. Cependant, il convient

de noter que les données de réseau après lesquelles les données de réseau

fictives générées dans cette étude ont été modélisées ne sont pas appar-

iées au cône de lumière, mais existent le long de certaines directions Euclidi-

ennes. Par conséquent, une étude appropriée comparant les répliques aux

données de réseau fictives n’aurait pas eu lieu sur le cône de lumière, mais

hors du cône de lumière. Par conséquent, tous les calculs comparant et com-

binant les répliques ANN GPD aux données de réseau fictives sont effectués

dans l’espace-temps Ioffe. Comme la GPD singulet ajustée ANN, H , du nu-

cléon est celle traitée ici, sa parité impaire dans la fraction d’impulsion lon-

gitudinal x permet de limiter les études correspondantes à l’espace-temps

Ioffe à la partie imaginaire de H . Cette méthode génère des données de

réseau fictives qui sont en général compatibles avec la valeur centrale de la

bande de répliques dans la précision générée par la fonction g. Cependant,

jusqu’à présent, la génération de données traite tous les points de données

de réseau fictives comme non corrélés. Pour en tenir compte dans notre

étude d’impact, des données de réseau fictives sont générées dans trois ré-

gions distinctes de l’espace-temps Ioffe, où la corrélation intracollaboration

est fixée à 0 ≤ c < 1, et la corrélation intercollaboration est fixée à zéro.

La fig. 10.1 illustre un jeu de données de réseau fictives superposé aux ré-

pliques générées par notremodèle GPD. Avec uneméthode pour générer des

données de réseau fictives contrôlées systématiquement en termes de pré-

cision et d’adhérence à l’ensemble des répliques GPD, et la corrélation entre

toutes ces données générées en main, il est maintenant possible d’influencer

l’incertitude associée de la bande de répliques en utilisant ces données de

réseau fictives pour évaluer la capacité discriminante potentielle des don-

nées de réseau. Dans l’étude discutée ici, une procédure de repondération

bayésien utilisant les données de réseau fictives comme a priori a été choisie,

visant à enquêter sur l’incertitude résultante de l’ensemble des répliques GPD

sans ajustements coûteux. Jusqu’à présent, la discussion a largement ignoré

la déformation de la GPD, se concentrant sur l’analyse en x et ν. Dans les

sections finales, les discussions sur la déformation joueront un rôle impor-

tant, nécessitant un aperçu de la procédure de repondération bayésien util-

isée. La procédure précise délimite l’attribution de poids à chaque réplique

en fonction de leur accord avec les données de réseau fictives, conduisant

à une médiane repondérée et à un écart type de l’ensemble des répliques.

Ces quantités fournissent une mesure de la réduction de l’incertitude sur la

bande de répliques.
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Figure 10.1: Il est montré l’ensemble des répliques des GPD couvrant les

temps d’Ioffe de ν = 0 à ν = 6 à ξ = 0.1 (indiqués en vert), avec leur mé-
diane (en bleu) et la bande à 1σ (en rouge), correspondant à b = 1.1 (en haut)
et b = 2 (en bas). De plus, l’ensemble de données de réseau fictif généré en
conséquence avec c = 0 (à gauche) et c = 0.5 (à droite) est représenté en
orange.

Données Résultats

ξUtilisé Précision Corrélation ξAffiché τ rν rlnx
0.1 Basse Basse 0.1 / 0.5 0.47 0.25 / 0.92 0.82 / 1.24

0.1 Basse Haute 0.1 / 0.5 0.83 0.85 / 0.93 1.02 / 1.15

0.1 Haute Basse 0.1 / 0.5 0.30 0.16 / 0.90 0.78 / 1.08

0.1 Haute Haute 0.1 / 0.5 0.46 0.23 / 0.91 0.82 / 1.23

0.5 Basse Basse 0.5 0.36 0.44 0.67

0.5 Basse Haute 0.5 0.52 0.58 0.64

0.5 Haute Basse 0.5 0.11 0.25 0.54

0.5 Haute Haute 0.5 0.37 0.51 0.77

0.1 0.2 0.3 Basse Basse 0.5 0.30 0.62 0.95

0.1 0.2 0.3 Basse Haute 0.5 0.77 0.82 1.00

0.1 0.2 0.3 Haute Basse 0.5 0.10 0.34 0.54

0.1 0.2 0.3 Haute Haute 0.5 0.30 0.61 0.73

0.1 0.2 0.3 0.4 0.5 Basse Basse 0.5 0.16 0.19 0.66

0.1 0.2 0.3 0.4 0.5 Basse Haute 0.5 0.57 0.65 0.75

0.1 0.2 0.3 0.4 0.5 Haute Basse 0.5 0.03 0.13 0.45

0.1 0.2 0.3 0.4 0.5 Haute Haute 0.5 0.18 0.25 0.77

Table 10.1: Résultats en fonction des paramètres de repondération.

Basse Corrélation: c = 0, Haute Corrélation: c = 0.5, Basse Précision:
b = 1.1, Haute Précision: b = 2. rlnx: Maintien moyen de l’incertitude
en x, rν : Maintien moyen de l’incertitude en ν, τ : Fraction effective des
répliques retenues après repondération.
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Figure 10.2: La fraction effective des répliques retenues après repondération

τ (illustrée par la courbe verte), préservation de l’incertitude en temps Ioffe
(montrée par la courbe bleue), et en espace d’impulsion (représentée par la

courbe rouge) pour diverses combinaisons de bruit élevé et faible (désigné

comme b = 1.1 et 2 respectivement) et de corrélation faible et élevée (in-
diquée comme c = 0 et 0.5 respectivement).

Nous comparons les maintiens de l’incertitude résultant de différentes

quantités de données de réseau fictives à des niveaux d’obliquité bas àmoyens

(ξ ∈ 0.1, ξ ∈ 0.1, 0.2, 0.3, ξ ∈ 0.1, 0.2, 0.3, 0.4, 0.5) avec ceux observés dans la

section précédente à des niveaux de déformation purement moyens. Les

principales conclusions incluent:

• Le repondération avec de grandes incertitudes et une faible précision
(b = 1.1) et des données corrélées (c = 0.5) réduit significativement

l’incertitude en temps Ioffe à ξ = 0.5.

• L’ajout de données à ξ = 0.1 améliore le maintien de l’incertitude à

ξ = 0.5, mais l’inclusion supplémentaire de données à ξ ∈ 0.1, 0.2, 0.3

et ξ ∈ 0.1, 0.2, 0.3, 0.4, 0.5 resserre le maintien de l’incertitude à ξ = 0.5.

Cependant, le repondération direct à ξ = 0.5 avec b = 2 et c = 0.5

donne de meilleurs résultats.

De plus, nous présentons une Table (10.1) illustrant l’impact de différents

niveaux de bruit et de corrélation sur les processus de maintien. En outre,
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nous utilisons la Fig. 10.2 pour comparer les effets du repondération à di-

verses valeurs de ξ en présentant la fraction effective des répliques retenues

(τ ) et lemaintien de l’incertitude à la fois en temps Ioffe et en espace d’impulsion.

En examinant la Fig. 10.2, nous observons qu’à des niveaux de déformation

moyens, la fraction effective des répliques retenues après repondération (τ )

est à peu près égale dans les scénarios de faible corrélation et de faible pré-

cision ainsi que de haute corrélation et de haute précision. Cette relation

compensatoire entre précision et corrélation pourrait guider les praticiens

du réseau dans l’allocation efficace des ressources informatiques.

Il est important de noter qu’en utilisant une approche bayésienne pour fu-

sionner les connaissances expérimentales et celles du réseau sur les GPD,

prouvant efficace lorsque les données du réseau s’alignent bien avec le mod-

èle a priori, a permis de réduire d’environ 40% l’incertitude à des niveaux

de déformation moyens. Néanmoins, notre étude souligne la nécessité de

traiter les corrélations au sein des données de réseau pour une extraction

conjointe, car les données réelles du réseau présentent souvent des degrés

élevés de corrélation et des effets systématiques qui nécessitent une gestion

soigneuse pour éviter les biais dans l’évaluation de l’incertitude.

10.3 . Techniques du Continuum pour la Modélisation des GPD
L’analyse poursuivie ici des distributions de partons généralisées des nu-

cléons implique le développement des éléments de matrice en utilisant des

fonctions d’onde sur le cône de lumière (LFWFs). Cette approche éclaire la

connexion entre les états nucléoniques et les amplitudes définies sur le cône

de lumière, offrant des aperçus sur les contributions définies du moment an-

gulaire orbital (OAM) des quarks aux GPD et objets connexes. En examinant le

développement de Fock des états nucléoniques dans lesquels les LFWFs ap-

paraissent comme des fonctions de coefficient dépendantes des impulsions

et des nombres quantiques, on peut tronquer demanière cohérente de telles

développements de Fock pour des calculs pratiques, au prix de limiter la ciné-

matique du calcul à |x| > |ξ|. Cela permet à la représentation des GPD d’être
exprimée en termes de recouvrements de LFWFs, en incluant uniquement les

contributions des quarks de valence.

L’élément de matrice utilisé pour caractériser les états de Fock à trois quarks

contribuant à un état nucléon |P ;h〉 (avec h = +1
2 ) implique un opérateur qui

crée un état à trois quarks neutre en couleur. Dans l’espace des impulsions,

nous représentons cet élément de matrice en termes de diverses structures

tensoriales que nous projetons ensuite sur des états de projection de hélic-

ité des quarks définis, correspondant à des valeurs définies de qOAM. Les

composantes de cette base tensorielle, dotées de fonctions de coefficient

correspondantes appelées fonctions auxiliaires dont certaines combinaisons
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linéaires donnent les fonctions d’onde sur le cône de lumière, fournissent

alors un moyen d’extraire ces LFWFs d’un modèle donné pour cet élément

de matrice via des traces de Dirac sélectives. En réduisant la base tensorielle

employée en un ensemble plus petit de tenseurs en appliquant la symétrie

des quarks u et la symétrie isospin, les LFWFs peuvent être identifiées comme

cela a été fait dans la littérature [90].

10.4 . Représentation par recouvrements des GPD
Pour caractériser les contributions des états à trois quarks aux Distribu-

tions de Partons Généralisées (GPD) et objets connexes, nous pouvons tirer

parti de la représentation par recouvrements des GPD [34]. Cette approche

clarifie quelles paires d’états de Fock à trois quarks contribuent aux GPD

en utilisant leurs recouvrements. Avant de commencer cette section, nous

définissons les coordonnées de cône de lumière:

v = (v+ ≡ v0 + v3

√
2

, ~v⊥ ≡ (v1, v2), v− ≡ v0 − v3

√
2

). (10.1)

10.4.1 . Formule de recouvrement
Les impulsions initiaux et finaux de l’état du quark actif reflètent le trans-

fert d’impulsion dû à l’interaction avec le photon. Pour voir quelles combi-

naisons d’états de Fock entrants et sortants contribuent, examinons les nom-

bres quantiques impliqués. Les nombres quantiques collectifs Ql pour le l-
ième quark sont définis comme suit :

• Impulsion : κl = (xl,~kl⊥),

• Hélicité : λl,
• Couleur : cl,
• Saveur : fl,

La formule de recouvrement pour l’amplitude dépendante de l’hélicitéHf̂h′h(x̄, ξ, t)

est donnée par :

Hf̂h′h(x, ξ, t) =
1

2
√

1− ξ2

∑
ĉ

∫
dz−

2π
eixP̄

+z−〈P ′, h′|q̄ĉ
f̂
(−z

2
)γ+qĉ

f̂
(
z

2
)|P, h〉

(10.2)

≡ Of̂
[
ϕŜA(Q′);h′ , ϕQ;h

]
(x, ξ, t), (10.3)

où f̂ est la saveur du quark actif, ĉ est un indice de couleur, P (′) et h(′) sont les
impulsions et les hélicités des nucléons entrants (sortants), z = (z+ = 0, ~z⊥ =
~0⊥, z−) est un vecteur spatial dans la direction moins, P̄+

est l’impulsion plus
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moyen du nucléon, q̄ĉ
f̂
(− z

2)γ+qĉ
f̂
( z2) est un champ de quark bilocal bilinéaire,

et ŜA est la A-ième permutation du groupe de permutations S3 sur lesquelles

nous faisons la somme.

Ici, Of̂ [ϕ′, ϕ] représente la fonction de recouvrement entre les LFWFs des

états initiaux et finaux.

10.4.2 . Formulemaîtresse du recouvrement: GPDs et Sous-Résultats
Les GPDsH f̂

etE f̂ sont exprimés en termes des amplitudes dépendantes

de l’hélicité :

H f̂ = Hf̂1
2
, 1
2

+
ξ22MN |~∆⊥|

(∆1 + i∆2)
√

1− ξ2
√

4ξ2m2

ξ2−1
− t
Hf̂− 1

2
, 1
2

(10.4)

E f̂ =
2MN |~∆⊥|

√
1− ξ2

(∆1 + i∆2)
√

4ξ2M2
N

ξ2−1
− t
Hf̂− 1

2
, 1
2

, (10.5)

Nous pouvons représenter les amplitudes dépendantes de l’hélicité en ter-

mes de recouvrements de LFWF, où nos LFWFs Ψh,λΣ
sont étiquetées par

l’hélicité correspondante du proton h et la projection totale dumoment angu-

laire des quarks λΣ telle que qOAM=h − λΣ. En termes de nos LFWFs définis

par le moment angulaire orbital (qOAM), nous avons :

Hf̂1
2
, 1
2

=
(
Of̂ (Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
) +Of̂ (Ψ 1

2
,− 1

2
,Ψ 1

2
,− 1

2
) (10.6)

+Of̂ (Ψ 1
2
, 3
2
,Ψ 1

2
, 3
2
) +Of̂ (Ψ 1

2
,− 3

2
,Ψ 1

2
,− 3

2
)
)

Hf̂− 1
2
, 1
2

=
(
Of̂ (Ψ− 1

2
,− 3

2
,Ψ 1

2
, 3
2
) +Of̂ (Ψ− 1

2
, 3
2
,Ψ 1

2
,− 3

2
)
)
. (10.7)

Tandis que l’amplitude conservant l’hélicité reçoit uniquement des contribu-

tions diagonales en qOAM, l’amplitude de changement d’hélicité reçoit unique-

ment des contributions hors-diagonales. Cela ne viole pas nos attentes, car

cela signifie que le GPD de changement d’hélicité E, qui reçoit des contri-

butions uniquement de l’amplitude de changement d’hélicité H− 1
2
, 1
2
, reçoit

uniquement des contributions hors-diagonales en qOAM. De plus, la PDF, qui

est liée à la probabilité de trouver un parton (quark ici) d’une saveur parti-

culière portant une fraction particulière de l’impulsion longitudinale du nu-

cléon, est donnée dans la limite avant de l’expression pour le GPDH comme

f f̂ ,P(xBJ) = H f̂ ,P|t=ξ=0 = (10.8)(
Of̂ ,P(Ψ 1

2
, 1
2
,Ψ 1

2
, 1
2
) +Of̂ ,P(Ψ 1

2
,− 1

2
,Ψ 1

2
,− 1

2
)

+Of̂ ,P(Ψ 1
2
, 3
2
,Ψ 1

2
, 3
2
) +Of̂ ,P(Ψ 1

2
,− 3

2
,Ψ 1

2
,− 3

2
)
)
|t=ξ=0,

qui, bien qu’il reçoive uniquement des contributions diagonales en qOAM,

reçoit intéressamment des contributions non nulles en qOAM.
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Maintenant que nous avons spécifié la représentation par recouvrement au

cas des trois quarks et aux objets de notre intérêt, et que nous savons com-

ment extraire les LFWFs d’un élément de matrice général à trois quarks à par-

tir de la littérature, nous nous tournons vers la modélisation d’un tel élément

de matrice afin de réaliser ces extractions.

10.5 . Le Modèle Diquark
Ce travail se concentre sur la modélisation des propriétés des nucléons

en utilisant une approche quark-diquark, en traitant le diquark comme un

système composite à deux corps plutôt que comme une entité ponctuelle, ce

qui permet l’inclusion de corrélations internes en onde p du diquark souvent

négligées dans des modèles plus simples [103]. L’analyse ici utilise le formal-

isme de Bethe-Salpeter et les équations de Faddeev [96] pour caractériser

les états nucléoniques et étend les résultats de l’espace euclidien au cône de

lumière à travers les moments de Mellin. Cette méthode implique la con-

struction des Fonctions d’Onde sur le cône de lumière (LFWFs) en abordant

les complexités de la traduction des modèles de l’espace euclidien (modèle

d’amplitudes de Faddeev) au cône de lumière (comme LFWFs).

10.5.1 . Reconstruction de Mellin
Pour transformer les amplitudes de Faddeev calculées dans l’espace eu-

clidien en Fonctions d’Onde sur le cône de lumière (LFWFs) définies sur le

cône de lumière, nous devons gérer la transition des arguments de temps du

cône de lumière à zéro. Cela implique d’intégrer sur des paramètres spéci-

fiques pour traiter les fractions d’impulsion et les projections. Dans l’espace

Minkowskien, la LFWF est donnée par :

Ψ(x1,~k1⊥;x2,~k2⊥) = N

∫
dk−1;Mdk−2;Mχ(k1;M , k2;M ), (10.9)

où N est une constante de normalisation. Étant donné que les calculs sont

dans l’espace euclidien, nous utilisons la transformation de Mellin pour éviter

les intégrations complexes en contour. La impulsion de Mellin d’une fonction

f(x) d’ordrem est: ∫
dxxmf(x), (10.10)

avec des bornes 0 ≤ x ≤ 1. Deux fonctions ayant des moments de Mellin

identiques sont équivalentes [113]:∫
dxxmf(x) =

∫
dxxmg(x), ∀m ∈ N (10.11)

⇒ f(x) = g(x). (10.12)
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La fraction de l’impulsion longitudinale xi en variables euclidiennes est:

xmii ≡ (kE;i · nE)mi

(PE · nE)mi
, (10.13)

où n2
E = 0 assure la projection sur le composant + du cône lumineux. En

utilisant les moments de Mellin, nous reconstruisons la dépendance x1,2 des

LFWFs avec:∫ 1

0
dx1

∫ 1−x1

0
dx2x

m1
1 xm2

2 Ψ(x1,~k1⊥;x2,~k2⊥)

≡ Normalisation

∫
dk3

1;Edk
4
1;Edk

3
2;Edk

4
2;E

(kE;1 · nE)m1

(PE · nE)m1

(kE;2 · nE)m2

(PE · nE)m2

TrDirac

{
ΓProj.χ(k1;E , k2;E)

}
, (10.14)

où ΓProj. est une structure de Dirac utilisée pour extraire les contributions.

Cette méthode est discutée dans [112].

10.5.2 . Identification des Variables de Mellin
Pour calculer les contributions fondamentales aux six LFWFs, un modèle

de corrélation quark-diquark euclidien du nucléon est utilisé. Les structures

tensoriales sont introduites, contractées, et les moments de Mellin sont cal-

culés pour extraire les contributions aux LFWFs. Définir le propagateur de

quark comme:

S(p) = [−iγ · p+Mq]DMq(p
2), (10.15)

DM (s) =
1

s+M2
, (10.16)

et la représentation de Nakanishi de la contribution tensorielle la plus simple

au vertex diquark en utilisant la base l et q :

η0Γ0
µC
† = iγ5

∫ 1

−1
dzρν(z)DΛq(qz), (10.17)

avec qz = q+ z
2

(
2
3P − `

)
et ρν(z) une fonction de poids de Nakanishi donnée

comme un polynôme. Le propagateur diquark en termes de l’impulsion du

diquark K et une représentation de Nakanishi de la contribution tensorielle

la plus simple à la corrélation quark-diquark sont donnés respectivement par

:

∆0+(K) =
1

K2 + M̃2
, (10.18)

s1 = iη

∫ 1

−1
dz ρ̃(z)

[
1

(`2z + Λ2
N )

]3

. (10.19)
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Ici, P est défini comme (0, 0, 0, iMN ) et les impulsions des quarks sont :

ki ≡
P

3
+ `, (10.20)

kj ≡
P

3
− `

2
+ q, (10.21)

kk ≡ P

3
− `

2
− q. (10.22)

où q est la différence de l’impulsion interne du diquark et l est une autre

variable façonnée pour être réelle. L’amplitude projetée de Faddeev lorsque

le quark 1 n’est pas inclus dans le diquark (témoin) est:

χ↑,↓,↑α3;σ = S(k2)α2α′2
[Γ0(q,K)]α′2α′3S(k3)α3α′3

∆0S
T (k1)α′1α1

s1α′1,σ
.(10.23)

Ce qui peut ensuite être projeté sur les projections d’hélicité du quark con-

tribuant à la fonction auxiliaire ψ1,−1
, la fonction auxiliaire la plus simple avec

qOAM= 0:

χh1,h2,h3
α1α2α3;σ = (/nL

↑
α′3α3

Sα3λ(k3)Γ0T
λλ′S

T
λ′α2

(k2) (10.24)

×(L↓/nT (C†)TL↑)α2α1Sα1α′1
(k1)s1α′1σ

∆(k2 + k3). (10.25)

En projetant sur γν pour l’opérateur de twist principal:

1

4
γνTr[γ

ν/nL↑S(k3)Γ0TST (k2)(L↓/nT (C†)TL↑S(k1)S]∆(k2 + k3)

=
1

2
γνn

ν
Tr[S(k3)Γ0TST (k2)L↓C†/nL↑]σS(k1)s1(`, PE)Tr[γν/nL↑∆(k2 + k3)].

L’approche essentielle pour l’extraction est de calculer les moments de Mellin

du modèle de corrélation quark-diquark et de les utiliser pour extraire di-

rectement les LFWFs. Cela évite les complications des intégrations en contour

particulièrement difficiles et utilise les intégrales définissant les moments

pour obtenir les LFWFs.

Pour combiner les dénominateurs de toutes les structures de notre modèle,

nous utilisons la paramétrisation de Feynman, introduisant un grand nom-

bre de variables sur lesquelles intégrer. Nous pouvons alors identifier les
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moments de Mellin de la fonction auxiliaire ψ1,−1
comme

∫ 1

0
dx1

∫ 1−x1

0
dx2x

m1
1 xm2

2 ψ1,−1(x1,~k1⊥;x2,~k2⊥)

=

∫ 1

0
dᾱ

∫ 1−ᾱ

0
dβ′

∫ β′

0
dv′
∫ 1−ᾱ

β′
du′
∫ ᾱ

0
da34 (10.26)∫ 1

ᾱ
dā1

∫ a34

0
da3

ᾱm1β′m2
g(ᾱ, β′, u′, v′, a34, ā1, a3,~k1⊥,~k2⊥)

h(ᾱ, β′, u′, v′, a34, ā1, a3,~k1⊥,~k2⊥)

→ ψ1,−1(x1,~k1⊥;x2,~k2⊥)

=

∫ x2

0
dv′
∫ 1−x1

x2

du′
∫ x1

0
da34

∫ 1

x1

dā1

∫ a34

0
da3

g(x1, x2, u
′, v′, a34, ā1, a3,~k1⊥,~k2⊥)

h(x1, x2, u′, v′, a34, ā1, a3,~k1⊥,~k2⊥)
(10.27)

Bien que nous devons effectuer une intégrale 5D sur les paramètres de Feyn-

man pour calculer ψ1,−1
à un point donné, nous avons maintenant une ex-

pression que nous pouvons utiliser. Dans la section suivante, nous montrons

un exemple de tracé pour une impulsion transverse nul des quarks.

10.6 . Résultats

Ici, nous montrons un graphique de contour de la dépendance de x1,2,3

de la fonction auxiliaire ψ1,−1
. Il y a une symétrie notable entre les fractions

d’impulsion x2,3. Bien qu’il y ait une certaine instabilité numérique claire,

la fraction d’impulsion longitudinalee x1, correspondante au quark témoin

(celui qui ne participe pas au diquark), porte généralement une portion préféren-

tiellement élevée d’impulsion longitudinalee.
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Figure 10.3: Un graphique de la fonction ψ1,−1
pour |~k1⊥| = |~k2⊥| = 0

est montré. Ce graphique est un graphique de contour, donné sur un do-

maine triangulaire en raison de la contrainte de conservation de l’impulsion

1 =
∑3

i=1 xi. La normalisation n’a pas été définie en raison de contraintes
physiques, et est cohérente parmi tous les graphiques de LFWF donnés dans

ce document. La normalisation est calculée en déterminant la plus grande

valeur de ψ1,−1
parmi toutes les valeurs calculées, et en mettant à l’échelle

tous les graphiques de manière à ce que cette valeur maximale devienne 6,
afin de s’aligner avec les échelles de couleurs de ces graphiques. Nous rap-

pelons au lecteur que les impulsions transverses sont donnés en unités de la

masse du nucléonMN .

10.6.1 . La PDF

Pour calculer les contributions des diverses Fonctions d’Onde sur le cône

de lumière (LFWFs) aux GPDs et leurs limites, nous devons d’abord calculer
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leurs recouvrements. En commençant par la fonction ψ1,−1
:

ψ1,−1 = Ñ(ν, σ)

∫
[df ]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2M

−2(σ+2+ν)
N

×
[ `2⊥
M2
N

+ (1− ā1)(
M2

M2
N

− 1

9
) + (ā1 − a34)(

Λ2
N

M2
N

− λ) + a3(
M̃2

M2
N

− 4

9
)

+(a34 − a3)(
M2

e�
+ (qe�⊥ )2

M2
N

− 4

9
) + (x2 −

1

3
)2
]−(σ+2+ν)

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2)) + ū′(v′(1− x2)− (x1)2)]−ν−1

(ū′ − v′)2ν−1, (10.28)

Ici, Ñ(ν, σ) est un facteur de normalisation. Pour calculer la contribution de

ce recouvrement de fonction avec elle-même au GPDH lorsque le quark 1 est

actif, nous commençons par le terme dépendant de l’impulsion transverse,

en utilisant une nouvelle paramétrisation de Feynman :[
(1 +

a34 − a3

(x2 − 1)2
x2

1)k2
1⊥ + (a34 − a3)k2

2⊥ (10.29)

+2
a34 − a3

−1 + x2
x1
~k1⊥ · ~k1⊥ + M̂2

]−(σ+2+ν)

in

[
(1

+
a34 − a3

(x2 − 1)2
x2

1)k2
1⊥ + (a34 − a3)k2

2⊥ + 2
a34 − a3

−1 + x2
x1
~k1⊥ · ~k1⊥

+M̂2
]−(σ+2+ν)

out

=

∫ 1

0
dh
[
A1k̄

2
1⊥ +A2k̄

2
2⊥ +A3∆2

⊥ +A4k̄1⊥ · k̄2⊥

+A5k̄1⊥ ·∆⊥ +A6k̄2⊥ ·∆⊥ +A7]−2(σ+2+ν),

où M̂ inclut des termes non transversaux-impulsion. En décalant les mo-

ments transverses :

k̃1⊥ ≡ k̄1⊥ +
A4

2A1
k̄2⊥ +

A5

2A1
∆⊥ (10.30)

k̃2⊥ ≡ k̄2⊥ + Ã6∆⊥,

nous redéfinissons pour la commodité:

Ã2 ≡ A2 −
A2

4

4A1
(10.31)

Ã6 ≡ A6 −
A4A5

2A1

Ã3 ≡ A3 −
Ã2

6

2Ã2

.

L’expression se simplifie en:∫ 1

0
dh
[
A1k̃

2
1⊥ + Ã2k̃

2
2⊥ + Ã3∆2

⊥ +A7

]−2(σ+2+ν)
. (10.32)

168



L’intégration sur les deux k̃1,2 donne :

[
Ñ(ν, σ)

∫
[dfin]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2

(10.33)

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2))

+ū′(v′(1− x2)− (x1)2)]−ν−1(ū′ − v′)2ν−1
]
in[

Ñ(ν, σ)

∫
[dfin]ρ̃ρν(ā1 − a34)σ−2(a34 − a3)ν(1− x2)ν+2

×[x1(v′(x1 − 2(1− x2)) + x1(1− x2))

+ū′(v′(1− x2)− (x1)2)]−ν−1(ū′ − v′)2ν−1
]
out

×π
2

2

∫ 1

0
dh
[
Ã3∆2

⊥ +A7

]−2(σ+1+ν)[
A1Ã3(σ + ν + 1)(3 + 2σ + 2ν)

]−1
.

Afin de calculer la GPD (ou PDF) à un point donné, nous devons donc calculer

une intégrale numérique de 13 dimensions, car nous devons intégrer sur les

11 paramètres de Feynman ainsi que la fraction de l’impulsion longitudinalee

inactive x2 et l’angle de l’impulsion transverse θ12. Cette grande intégration

dimensionnelle implique un certain bruit, surtout si nous souhaitons calculer

ces intégrales de manière rapide. Nous avons choisi d’utiliser l’intégration de

Monte-Carlo adaptative, et non Gauss-Kronrod, qui est plus précise mais plus

lente [118, 117]. Nous montrons donc les contributions de la fonction auxili-

aire ψ1,−1
à la PDF. Bien que bruité, il y a un signal non nul clairement visible.

De plus, la grande taille de x1 reflète la tendance mentionnée précédemment

pour que l’impulsion longitudinale soit détenu par le quark témoin, u1. En

outre, comme mentionné précédemment, il y a une symétrie approximative

u2-d3, car ce sont les participants au diquark.
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Figure 10.4: Les résultats pour la limite en avant des recouvrements de Ψ1,−

(PDFs) sont montrés. La courbe rouge correspond à celle du quark témoin

u1, la bleue au quark participant u2, la brune au quark participant d(3), et
la violette à la contribution totale du quark u. Ce résultat a été calculé en
utilisant l’intégration de Monte-Carlo adaptative avec 1001 points le long de

l’axe x, et est extrêmement bruité. Néanmoins, il y a un signal clairement
visible qui n’est pas compatible avec zéro.

10.7 . Conclusion et Perspectives
Les GPDs sont essentielles pour faire des prévisions expérimentales dans

des processus tels que la DVCS et la DVMP, en raison de leur nature uni-

verselle assurée par les preuves de factorisation. Cependant, extraire les

GPDs des données expérimentales est complexe en raison des convolutions

avec des noyaux calculables. Les contraintes pratiques sur les GPDs devraient

incorporer des entrées provenant des calculs sur réseauQCD et d’autres tech-

niques pour la comparaison avec les expériences. Le repondération bayési-

enne des candidats GPD ANN en utilisant les données sur réseau peut réduire

considérablement l’incertitude, à condition que la corrélation des données

soit connue. Les données sur réseau complémentaires peuvent résoudre

les limitations du noyau perturbatif dans les données expérimentales, of-

frant des perspectives sur des régions autrement inaccessibles. Les GPDs

polarisées et non polarisées de la région DGLAP peuvent être représentées

à travers des LFWFs de qOAM défini, contribuant au GPD H même dans la

limite en avant, reliant les GPDs aux contributions de qOAM via les règles de

somme de Ji. Un modèle simple pour de telles LFWFs démontre le calcul à

partir de structures tensorielles. Pour aligner ces modèles avec les données

expérimentales, il est nécessaire d’étendre les GPDs DGLAP à la région ERBL

et de les faire évoluer vers les échelles expérimentales. Des efforts supplé-

mentaires dans la modélisation, y compris la systématisation des structures

170



tensorielles et l’intégration des méthodes du plan complexe avec une masse

variable, sont cruciaux pour une compréhension plus intime des contribu-

tions qOAM définies au nucléon.
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