
HAL Id: tel-04714052
https://theses.hal.science/tel-04714052v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generative models for ECG data : theory and
application.

Gabriel Victorino Cardoso

To cite this version:
Gabriel Victorino Cardoso. Generative models for ECG data : theory and application.. Statistics
[math.ST]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX022�. �tel-04714052�

https://theses.hal.science/tel-04714052v1
https://hal.archives-ouvertes.fr

000

N
N

T
:2

02
4I

P
PA

X
02

2

Modèles génératifs pour le traitement
des données du type

électrocardiogramme : théorie et
application.

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Ecole Polytechnique

École doctorale n◦574 École Doctorale de Mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques appliquées

Thèse présentée et soutenue à Palaiseau, le 29/04/2024, par

GABRIEL VICTORINO CARDOSO

Composition du Jury :

Philippe Moireau
Directeur de recherche, INRIA Saclay et Ecole polytechnique Président

Florence Forbes
Directrice de recherche, INRIA Grenoble Rhone-Alpes Rapporteuse

Thomas Schön
Professeur, Uppsala University Rapporteur

Marcelo Pereyra
Professeur, Heriot-Watt University et Maxwell Insitute for
Mathematical Sciences Examinateur

Eric Moulines
Professeur, Ecole polytechnique Directeur de thèse

Rémi Dubois
Professeur, Université de Bordeaux et Institut Liryc Co-directeur de thèse

Geneviève Robin
Chercheuse, Owkin Invitée

Jean-Michel Haı̈ssaguerre
Professeur, Centre Hospitalier Universitaire(CHU) de Bordeaux. Invité

Remerciements

Je veux d’abord remercier mes directeurs de thèse Eric Moulines et Rémi Dubois pour ces trois années de
collaboration. Vous avez tous les deux contribué humainement et scientifiquement à ma thèse et a mon
développement personnel pendant ces trois derniers années et je suis reconnaissant d’avoir eu la chance
de travailler avec vous. Eric est pour moi l’équivalent de la fusion nucléaire car il "dégage une quantité
d’énergie colossale par unité de masse, provenant de l’attraction entre les nucléons due à l’interaction
forte". C’est impressionnant de le voir évoluer entre tous ces projets et la façon dont il arrive toujours
à proposer des nouvelles pistes pour des projets et une fois ces projets lancés, de trouver les bonnes
questions. En ce qui concerne des questions importantes de science, j’ai rarement vu quelqu’un d’aussi
passionné par un projet que Rémi. Rémi possède non seulement une connaissance très profonde et vaste
sur tout ce qui concerne la cardiologie, mais il a surtout l’envie d’apporter des solutions pertinentes
à des problèmes concrets auxquels font face les cardiologues. Il sait très bien flairer les "bullshits" et
discerner les pistes pertinentes. Il m’a apporté, même si je n’ai pas pu passer autant de temps à Bordeaux
que j’aurais voulu pendant ma thèse, cette idée d’accorder plus d’importance au problème qu’on veut
résoudre qu’au nombre de publications qui pourront en découler.

Je ne peux pas conclure la partie sur mes directeurs de thèse sans parler de Geneviève Robin et Michel
Haïssaguerre. Geneviève a été vraiment quelqu’un de très important pour le début de ma thèse et qui
m’a quelque part appris comment je devais la naviguer. J’ai de très bons souvenirs de ces 8 premiers
mois de thèse, où j’ai interagi principalement avec Geneviève, et de ce séjour au CIRM. C’était toujours
un plaisir d’aller discuter avec elle sur des questions scientifiques et autres, mon seul regret étant que
nous n’ayons pas pu continuer cette collaboration plus longtemps car je suis sûr que j’aurais beaucoup
appris sur le plan scientifique et humain. Michel Haïssaguerre est un nom que je connaissais déjà depuis
mon expérience en tant qu’ingénieur dans le milieu de la cardiologie. C’est tout simplement une "star",
dont les contributions scientifiques nous laissent tout simplement émerveillés. La façon passionnée avec
laquelle Michel porte le projet HELP est très inspirante. Humainement, sa gentillesse et sa bienveillance
ne sont que comparables à sa carrière en tant que médecin. Quand je discutais avec Michel, parfois
j’étais embarrassé à chaque fois qu’il portait un regard admiratif sur le genre de connaissance que nous
les ingénieurs /matheux pouvons avoir, lui qui a eu un impact fondamental sur la vie de milliards de
personnes dans la planète.

Je souhaite remercier Florence Forbes et Thomas Schön d’avoir accepté de rapporter ma thèse, l’attention
que vous avez porté a mes travaux est un honneur pour moi. Thank you, Pr. Schön, for accepting to
report my thesis. Je remercie également Marcelo Pereyra et Philippe Moireau d’avoir accepté de faire
partie du jury.

Je remercie aussi tous mes co-auteurs pour tous les très bons moments de partage scientifique passés
ensemble : Inass Sekkat, Gabriel Stoltz, Tony Lelièvre, Achille Thin, Jimmy Olsson, Andony Arrieula,
Mark Potse, Josselin Duchateau, Lisa Bedin, Julia Linhart, Alexandre Gramfort et Pedro L.C.Rodriguez.
Non, je n’ai pas oublié le duo Janati-Le Corff ! Je commence par Sylvain. Je le remercie d’abord pour la
générosité avec laquelle il m’a accueilli au LPSM. Sylvain est arrivé à un moment clé de ma thèse et m’a
permis de mettre beaucoup de choses en perspective. Que ça soit sur les maths, le Machine Learning ou

3

la recherche en générale. Sylvain peut souvent dire qu’il est lent et qu’il ne comprend pas tout et je n’ai
jamais su si c’était par modestie ou si vraiment il ne se rend pas compte de qui il est. C’est quelqu’un
d’extrêmement brillant, généreux et avec une connaissance aussi vaste sur des sujets mathématiques
différents, digne de son directeur de thèse.

Bon, si vous êtes ici c’est peut-être car vous me connaissez donc vous savez sûrement à quel point Dr.
Janati est important pour moi. Pour ceux qui ne me connaissent pas, je vous explique. Je ne supporte
pas Daft Punk. Je ne supporte pas une salle sans fenêtre avec des lumières blanches. Pourtant, un de
mes meilleurs souvenirs de thèse a été d’être avec Yazid en train de bosser dans cette affreuse salle sans
fenêtre à Jussieu. Je me souviens qu’on avait nos capuches tellement on avait mal à la tête d’avoir passé
10 heures dans cette salle avec ce monsieur qui nous racontait pour la 100000e fois dans la journée qu’il
allait dans des "Discothèques" et qu’il s’appelait Giorgio. Pourtant c’est là que j’ai peut-être le plus
appris. Scientifiquement, Yazid m’a rappelé à quel point c’est important d’avoir une compréhension
profonde sur les problèmes qu’on essaie d’aborder. Lui et son plus grand allié, le mélange gaussien,
sont toujours là pour nous éclairer sur des sujets que vous pensez connaître. Je le remercie énormément
d’avoir voulu travailler avec moi et je peux garantir que sans lui cette thèse n’aurait pas lieu. J’espère
pouvoir continuer à suivre, en tant que collaborateur ou juste admirateur, ses aventures scientifiques et
personnelles. Et non, il y a toujours le "frown" dans notre papier, mais c’est bien de penser qu’on va
réussir à l’enlever un jour. Et oui, c’était sympa Cambridge, voilà c’est dit. J’en profite aussi pour
remercier Soukaina, dont la bonne humeur a toujours été au rendez-vous et nous a souvent aidé à rigoler
des situations pas toujours très marrantes. Et j’ai entendu dire que vous embauchez souvent des super
musiciens pour vos soirées, continuez comme ça.

Bien sûr, ces trois années auraient été beaucoup moins bien sans les co-doctorants. Je remercie tous
les doctorants du CMAP/Eric Moulines et affiliés : Louis (la personne avec qui j’ai le plus mangé des
noix de ma vie), Tom (on joue au foot ensemble), Achille, Maxence, Mehdi, Pablo, Pierre, Valentin,
Vincent, Lisa, Mareike. Je remercie les doctorants/ingénieurs du Liryc a Bordeaux: Mariette, Georges
et Nicolas. Je remercie aussi tous ceux de mon laboratoire d’adoption pendant quelques mois, le LPSM
: Iqraa, Ariane, Antonio, Mathis, Camilla, Miguel, Grâce, Lucas, Ludovic, Pierre et Alexis. Je remercie
aussi tous les chercheurs que j’ai eu la chance de croiser, dans des laboratoires ou dans des séminaires
et workshops et qui m’ont beaucoup inspiré : Pierre Gloaguen, Marie Perrot, Antoine Godichon, Alain
Durmus, Rémi Bardenet, Gabriel Lang, Arnaud Guyader, Stéphane Robin, Marie-Pierre Etienne, Sophie
Donnet, Randal Douc.

Je tiens à remercier tout d’abord la musique, et bien sûr tous mes professeurs et amis musiciens, sans
vous cela n’aurait pas été possible ni envisageable. D’abord Eric Lohrer avec qui j’ai l’opportunité
d’avoir cours tous les jeudis. À chaque fois que je prends la guitare, je me dis d’essayer de faire comme
Eric. Ce n’est toujours pas encore ça, mais bon, je sais où est le nord ! C’est un musicien incroyable et
le maître du bon goût. En plus d’être quelqu’un de très sensible et qui m’a beaucoup aidé pendant des
moments durs avec seulement quelques mots parfois. Je suis désolé si je n’ai pas été toujours un très
bon élève, c’est qu’il y avait un autre Eric tu sais... En tout cas, c’est toujours un plaisir de jouer avec toi
et je sais que tu sais, mais dès qu’il y a un concert à Paris j’y serai. Puis à mes professeurs d’ensemble
William Carrossella, Guillaume Naud. Je voudrais remercier tous mes amis musiciens que j’admire et
avec qui j’ai pu partager la scène : David, Charlie, Melissa, Thomas, Raphaël, Matéo, Germain, Victor,
Hippolyte, Inès, Arturo, Nicolas et Axel.

Puis à mes amis qui ont assuré le "fluctuat nec mergitur" à divers moments: Antoine, Kahina, Thomas,
Margot, Arturo, Daniel, Lucas, Gabriel (Rovina), César, Salvador, Péqui, Eduardo, Thomas Boudou,
Dinara, Quentin, Philippe, Michel, Helenka. Antoine, Kahina, Thomas et Margot ont été mes premiers
contacts avec les natifs. Je dis toujours que j’ai de la chance d’etre tombé sur eux, car je dois avouer
qu’au début je ne comprenais pas vraiment ce qu’ils racontaient ! Mais je n’aurais pas pu mieux choisir.
Arturo qui est aussi mon partenaire de musique, un vrai grand frère. Daniel, Lucas, Rovina, César,

4

Salvador, Péqui et Eduardo la troupe brésilienne avec qui on a découvert Paris et l’Europe. A Thomas,
Dinara, Quentin et Philippe pour tous ces midis au Terminus ! Michel et Helenka pour être toujours
des sources de franchement n’importe quoi inestimables. J’aimerais aussi remercier Ula et Sarah qui
viennent d’arriver sur le bateau mais qui ont déjà aidé à boucher les trous sur la coque.

À minha família que, mesmo querendo estar mais perto, teve que acompanhar essa aventura de longe.
Obrigado pelo apoio e pelo amor incondicional mesmo à distância.

Puis puisqu’on parle de bateau, Mme la capitaine Anna la prof, merci d’avoir embarqué et de me montrer
que tout est encore possible.

5

Contents

1 Introduction 1
1.1 Notations: . 1
1.2 Résumé en Français : . 3

1.2.1 Introduction du problème général . 3
1.2.2 Problème inverse . 4
1.2.3 Estimateurs autonormalisées . 5
1.2.4 Modèles génératifs . 7
1.2.5 Application à des données du type ECG . 10

1.3 General introduction: . 13
1.3.1 The guiding problem: Assessing risk of sudden cardiac death using non-invasive

data . 13
1.3.2 Bayesian linear inverse problems . 13

1.4 Self Normalized estimators . 14
1.4.1 Self-Normalized Importance Sampling . 14

1.4.1.1 Iterated sampling importance resampling algorithm i-SIR 15
1.4.2 Sequential Monte Carlo . 16

1.4.2.1 Particle Filtering . 17
1.4.2.2 Particle Smoothing . 17

1.5 Generative models . 20
1.5.1 Normalizing Flows . 21
1.5.2 Generative Adversarial Networks (GAN) . 22
1.5.3 Noise Conditional Score Networks (NCSN) inference by annealed Langevin

dynamics . 22
1.5.4 Denoising Diffusion generative models (DDGM) 24

1.6 Contributions . 28

Bibliography 31

2 BR-SNIS: Bias Reduced Self-Normalized Importance Sampling 43
2.1 Introduction . 43
2.2 Main results . 45

2.2.1 Statements . 45
2.2.2 Elements of proofs . 47
2.2.3 Related works . 49

2.3 Experimental results . 50
2.4 Conclusion . 53

3 PPG: Particle-based, Rapid Incremental Smoother Meets Particle Gibbs 55

7

3.1 Introduction . 55
3.2 Particle models . 57

3.2.1 Many-body Feynman–Kac models . 57
3.2.2 Backward interpretation of Feynman–Kac path flows 58
3.2.3 Conditional dual processes and particle Gibbs 59
3.2.4 The PARIS algorithm . 60

3.3 The PPG sampler . 62
3.4 Main results . 64

3.4.1 Theoretical results . 64
3.4.2 The roll-out PPG estimator . 67

3.5 Numerical results . 68
3.6 Proofs . 69

3.6.1 Proof of 9 . 69
3.6.2 Proof of 10 . 70
3.6.3 Proof of 13 . 72

4 Parameter learning with PPG 77
4.1 Parameter learning with PPG . 77

4.1.1 Non-asymptotic bound . 79
4.1.2 Application to Theorem 25 . 81

4.1.2.1 Verification of the assumptions of Theorem 27 81
4.1.2.2 Proof of Theorem 25 . 85

4.2 Numerics . 85
4.3 Conclusion . 87

5 MCG-DIFF: Monte Carlo guided Diffusion for Bayesian linear inverse problems 89
5.1 Introduction . 89
5.2 The MCGdiff algorithm . 92

5.2.1 Extension to general linear inverse problems 96
5.3 Numerics . 97

6 ECG-DIFF: Bayesian ECG Reconstruction using MCG-DIFF 99
6.1 Introduction . 99
6.2 Related Work . 100
6.3 Background . 100

6.3.1 Denoising Diffusion Generative Models (DDM): 100
6.3.2 Monte Carlo Guided Diffusion . 101

6.4 Methods . 102
6.4.1 ECG Linear Inverse Problem . 103
6.4.2 Estimation of Measurement Noise . 103

6.5 Experiments . 103
6.5.1 Dataset and Preprocessing . 104
6.5.2 Denoising Network for ECGs . 104
6.5.3 Evaluation of ECG Generation . 105
6.5.4 ECG Denoising . 106
6.5.5 Missing Leads Reconstruction . 107
6.5.6 Cardiac Anomaly Detection . 108
6.5.7 Application: Prediction of Corrected QT . 109

6.6 Conclusion . 111
6.7 Impact Statements . 111

8

Appendices 113

A Appendix of Chapter 2 115
A.1 Proofs . 115

A.1.1 i-SIR Algorithm . 115
A.1.2 Proof of Theorem 2 . 115
A.1.3 Proof of Theorem 3 . 116
A.1.4 Proof of Theorem 6 . 116
A.1.5 Proof of Theorem 7 . 116
A.1.6 Proof of Theorem 4 . 117
A.1.7 Proof of Theorem 5 . 118
A.1.8 High-probability inequality for SNIS . 121

A.2 Moments and high-probability bounds for ratio statistics 122
A.3 Experiments . 124

A.3.1 Gaussian Mixture . 124
A.3.2 Bayesian Logistic regression . 128
A.3.3 Importance Weighted Auto-Encoders . 128
A.3.4 Resources . 130

B Appendix of Chapter 3 133
B.1 Additional numerical results . 133

B.1.1 LGSSM . 133
B.1.2 Stochastic volatility . 133

B.1.2.1 Comparison with the Rhee–Glynn-type estimator of Jacob et al. (2020a)134
B.2 Algorithms . 138
B.3 Additional proofs . 140

B.3.1 Proof of 11 . 140
B.3.2 Proof of 15 . 141
B.3.3 Proof of 16 . 144
B.3.4 Proof of 17 . 145
B.3.5 Proof of 19 . 146

C Appendix of Chapter 4 149
C.1 Conditions on the model to verify A3 . 149
C.2 Lipschitz properties . 151

C.2.1 Lipschitz continuity of Pθ, . 151
C.2.2 Lipschitz properties of Markov Kernels . 158

C.3 Additional numerical results . 159

D Appendix of Chapter 5 161
D.1 SMCdiff extension . 161
D.2 Proofs . 162

D.2.1 Proof of Proposition 33 . 162
D.2.2 Proof of Proposition 34 and Lemma 69 . 168

D.3 Algorithmic details and numerics . 171
D.3.0.1 GMM . 171
D.3.0.2 FMM . 176
D.3.0.3 Image datasets . 180

E Appendix of Chapter 6 185

9

E.1 Additional Theoretical Results on DDM . 185
E.2 Preprocessing Implementation Details . 186
E.3 Architecture Details . 187
E.4 Deeper or Unconditioned Denoisers . 187
E.5 SMC Algorithm . 188
E.6 Heuristic for the Potential . 188
E.7 Proposal Potential and Weight . 191
E.8 Number of particles . 191
E.9 Baselines . 192
E.10 Additional Results . 192

10

Chapter 1

Introduction

This introduction describes the general context of the thesis and surveys the main results present in
this thesis. We start by describing the problem of evaluating the risk of cardiac sudden death using
non-invasive data which is the guiding problem behind all the theoretical contributions provided in this
thesis and more directly addressed in Chapter 6. We then introduce the theoretical objects present in
this thesis, namely importance sampling, Sequential Monte Carlo (SMC) methods, denoising diffusion
generative models (DDGM) and inverse problems.

1.1 Notations:

Let R+:= [0,∞), R∗+:=(0,∞), N:={0, 1, 2, . . .}, and N∗:={1, 2, 3, . . .} denote the sets of nonnegative
and positive real numbers and the same for integers, respectively. We denote by IN the N ×N identity
matrix. For any quantities {aℓ}tℓ=m, we denote vectors as am:t:=(am, . . . , at), and for any (m, t) ∈ N2

such that m ≤ t, we let Jm, tK:={m,m+ 1, . . . , t}. For a given measurable space (X,X), where X is
a countably generated σ-field, we denote by F(X) the set of bounded X/B(R)-measurable functions on
X. For any h ∈ F(X), we let ∥h∥∞:= supx∈X |h(x)| and osc(h):= sup(x,x′)∈X2 |h(x)− h(x′)| denote
the supremum and oscillator norms, respectively, of h. Let M(X) be the set of σ-finite measures on
(X,X), and M1(X) ⊂ M(X) be the probability measures.

Let (Y,Y) be another measurable space. A possibly unnormalized transition kernelK onX×Y induces
two integral operators, one acting on measurable functions, and the other on measures; specifically, for
h ∈ F(X ⊗ Y) and ν ∈ M1(X), define the measurable function

Kh : X ∋ x 7→
∫
h(x, y)K(x,dy)

and the measure
νK : Y ∋ A 7→

∫
K(x,A) ν(dx),

whenever these quantities are well defined. Now, let (Z,Z) be a third measurable space andL be another
possibly unnormalized transition kernel on Y × Z; we then define, with K as above, two different
products of K and L, namely,

KL : X×Z ∋ (x,A) 7→
∫
L(y,A)K(x,dy)

and
K � L : X× (Y � Z) ∋ (x,A) 7→

∫∫
1A(y, z)K(x,dy)L(y,dz),

1

whenever these are well defined. This also defines the � product of a kernelK onX×Y and a measure
ν on X , as well as of a kernel L onY ×X and a measure µ on Y , as the measures

ν �K : X � Y ∋ A 7→
∫∫

1A(x, y)K(x, dy) ν(dx),

L� µ : X � Y ∋ A 7→
∫∫

1A(x, y)L(y,dx)µ(dy).

2

1.2 Résumé en Français :

Les sections qui suivent présentent une introduction de haut niveau aux objets mathématiques qui font
partie des contributions apportées dans cette thèse. Nous présentons aussi brièvement les contributions
apportées et faisons référence aux chapitres (en anglais) où elles sont présentés en détail.

1.2.1 Introduction du problème général

Environ 10% des décès chez les adultes en Europe et aux États-Unis sont dus à une mort subite
d’origine cardiaque (MSOC), souvent incorrectement désignée comme un “arrêt cardiaque". La MSOC
survient généralement à la suite d’arythmies ventriculaires extrêmement rapides, c’est-à-dire une fib-
rillation ventriculaire ou une tachycardie ventriculaire (FV/TV). Ces arythmies ventriculaires rapides
sont souvent associées à des maladies cardiaques structurelles telles que les cardiomyopathies ou des
zones d’hétérogénéité électrique cardiaque localisées Haïssaguerre et al. (2018). La détection et la
quantification de ces rythmes cardiaques anormaux à l’aide de techniques non invasives telles que
l’électrocardiogramme (ECG) constituent l’un des plus grands défis en cardiologie. Des traitements
efficaces sont disponibles pour protéger les individus à risque, donc une évaluation précise est cru-
ciale.

À ce jour, la cardiologie s’est appuyée sur les mesures de la fraction d’éjection du ventricule gauche
(LVEF en anglais) pour évaluer le risque de MSOC. Bien que la LVEF soit utile, elle a une utilité limitée
chez les patients plus jeunes sans cardiomyopathies. En effet, la LVEF est une mesure corrélée à la
capacité de contraction de l’ensemble du ventricule gauche, donc moins sensible aux hétérogénéités
cardiaques électriques non structurelles/localisées.

Étant donné que la MSOC nécessite une réponse exceptionnellement rapide pour prévenir les décès, il est
extrêmement difficile de collecter des données non invasives directement auprès de cette population. Une
approche alternative consiste à utiliser la distribution de signaux sains, car les bases de données contenant
de telles données sont plus facilement disponibles Kang and Wen (2022); Wen and Kang (2021). Cette
approche peut impliquer la détection d’anomalies ou de valeurs aberrantes dans les données et peut
s’appuyer sur un modèle génératif capable d’approximer selon une certaine métrique statistique précis la
distribution des signaux de patients sains. C’est la voie que nous avons choisie d’aborder le sujet dans
cette thèse de doctorat.

Au cours de la dernière décennie, plusieurs techniques ont été développées pour concevoir et entraîner
des modèles génératifs capables de générer des motifs hautement réalistes à partir des données originales,
même pour des types de données complexes de grande dimension tels que les images et l’audio Kingma
et al. (2019); Kobyzev et al. (2020); Gui et al. (2021). Un modèle génératif vise à construire une
distribution p qui approche une distribution d’intérêt qdata en ne s’appuyant que sur des échantillons
i.i.d. de qdata. Il existe plusieurs façons de détecter des anomalies à l’aide d’un modèle génératif. Nous
nous concentrons sur la tâche de détection d’incompatibilités dans les données.

Les sujets à risque de MSOC avec des mesures de LVEF normales auront probablement des anomalies
localisées dans l’activité électrique du cœur. Étant localisées, nous nous attendons à ce que ces anomalies
se manifestent plus nettement dans les dérivations ECG qui sont physiquement plus proches de la source
de l’anomalie dans le cœur. Par conséquent, on peut utiliser un modèle génératif pour reconstruire
un sous-ensemble de dérivations connaissant le sous-ensemble complémentaire de dérivations. Nous
pouvons voir ce problème comme un problème d’“inpainting”, mais pour des données de type ECG. Ce
type de problème peut être formulé comme la résolution d’un problème inverse en utilisant la distribution
issue du modèle génératif comme distribution a priori.

La question guide de cette thèse est la suivante :

3

Est-il possible de créer un modèle génératif capable de détecter des anomalies dans les données
ECG qui ne s’appuie que sur un ensemble de données ECG saines et qui est fondé théoriquement ?

1.2.2 Problème inverse

Le terme problème inverse est utilisé lorsque l’on souhaite inférer à partir d’un vecteur d’observations
indirectes y ∈ Rdy le vecteur sous-jacent d’inconnues x ∈ Rdx . Nous supposons une connaissance d’un
modèle (direct) reliant y et x défini par la fonction

f : (x, ε) ∈ Rdx × Rdε → f(x, ε) ∈ Rdy ,

où ε est un vecteur de bruit inconnu, représentant l’aléatoire du modèle et/ou l’erreur de la mesure. L’un
des modèles directs les plus courants est le modèle linéaire lorsque f(x, ε) est de la forme

f(x, ε) = Ax+ σε ,

avec A ∈ Rdy×dx l’opérateur direct linéaire. Ce modèle général est souvent utilisé dans le domaine de
l’imagerie computationnelle, y compris diverses applications d’imagerie tomographique telles que les
types courants d’imagerie par résonance magnétique Vlaardingerbroek and Boer (2013), la tomographie
assistée par ordinateur aux rayons X Elbakri and Fessler (2002), l’imagerie radar Cheney and Borden
(2009), et des tâches de restauration d’image de base telles que la super-résolution et le remplissage
d’image González et al. (2009).

L’approche classique pour résoudre les problèmes inverses linéaires s’appuie sur des connaissances a
priori sur x, telles que sa régularité, sa parcimonie dans un dictionnaire ou ses propriétés géométriques.
Ces approches tentent d’estimer un x̂ en minimisant un problème inverse régularisé,

x̂ ∈ argminx |y −Ax|2 + Reg(x) ,

où Reg est un terme de régularisation qui équilibre la fidélité aux données et le bruit tout en permettant
des calculs efficaces. Cependant, une difficulté courante dans le problème inverse régularisé est la
sélection d’un régularisateur approprié, qui a une influence décisive sur la qualité de la reconstruction.
Bien que les problèmes inverses régularisés continuent de dominer le domaine, de nombreuses autres
formulations statistiques ont été proposées ; voir Besag et al. (1991); Idier (2013); Marnissi et al. (2017)
et les références qui y sont citées - voir également Stuart (2010) pour une perspective mathématique. Un
avantage principal des approches statistiques est qu’elles permettent une quantification de l’incertitude
dans la solution reconstruite ; voir Dashti and Stuart (2017).

La formulation de Bayes du problème inverse régularisé est basée sur la considération de l’état X et
du bruit ε comme des variables aléatoires définies sur un espace d’états (X,X). Plus précisément, la
formulation de Bayes consiste à considérer

Y = f(X, ε) ,

oùX ∼ ρ et ε ∼ pε. ρ est appelée la distribution à priori et pε la distribution du bruit. La densité de la
distribution conditionnelle de Y étant donnéX est appelée la fonction de vraisemblance et notée gy0(x).
En utilisant le théorème de Bayes, nous obtenons la distribution proxy non normalisée de la distribution
à posteriori

γ(x):=gy0(x)ρ(x) .

La distribution d’intérêt, la distribution à posteriori elle-même, est définie comme

π(dx):=γ(dx)/γ(X) .

4

En général, on s’intéresse à interroger la distribution a posteriori π avec une fonction mesurable h : X→
Rm, avec m ∈ N∗ par

πh:=
∫
h(x)π(dx) .

C’est le cas si l’on souhaite calculer les moments de π (h(x) = xk) ou la probabilité de X étant dans un
certain ensemble A ∈ X (h(x) = 1A(x)). Mais en général, π n’est pas disponible sous forme fermée et
plusieurs estimateurs ont été proposés pour estimer πh en ne s’appuyant que sur γ.

Nous procédons maintenant à une brève introduction a certains éléments qui vont être utilisés dans les
autres chapitres de cette thèse. Une introduction détaillée est donnée dans la section en anglais de ce
chapitre.

1.2.3 Estimateurs autonormalisées

L’échantillonnage préférentiel (IS en anglais) est un algorithme qui produit une estimation de l’intégrale∫
h(x)π(dx) en utilisant une distribution auxiliaire λ facile d’échantillonner. Cet algorithme est utile

lorsque l’on ne connaît qu’une version non normalisée de π ou lorsque h prend des valeurs non nulles
sur les queues de π.

Soit dπ/dλ la dérivée de Radom-Nikodym de π par rapport à λ. Pour tout h intégrable par rapport à π,
πh =

∫
h(x)dπ

dλ (x)λ(dx). En général, nous n’avons pas accès à la dérivée de Radom-Nikodym, mais à
une fonction proxy w:=dγ/dλ = γ(X)dπ/dλ. Par conséquent, nous pouvons écrire

πh =
∫
h(x)dγ

dλ(x)λ(dx)
/∫

1X(x)dγ
dλ(x)λ(dx) .

L’estimateur d’échantillonnage préférentiel autonormalisé (SNIS) consiste à calculer une approximation
de Monte Carlo des deux intégrales avec le même ensemble d’échantillons, c’est-à-dire

ΠNh(X1:N):=
N∑
i=1

w(Xi)h(Xi)
/ N∑

j=1
w(Xj) =

N∑
i=1

ωiNh(Xi) ,

avec N ∈ N∗, ωiN = w(Xi)
/∑N

j=1w(Xj) et X1:N = (X1, · · · , XN) échantillons i.i.d provenant de
λ.

Bien que chaque estimation de Monte Carlo soit une estimation sans biais de chaque intégrale, l’estimateur
SNIS est biaisé, c’est-à-direE [ΠNh] ̸= πh. Sous réserve queλ(w2) <∞, le biais et l’erreur quadratique
moyenne (MSE) de l’estimateur SNIS sur les fonctions de test bornées ff satisfaisant ∥f∥∞ ≤ 1 sont
donnés respectivement (voir (Agapiou et al., 2017, Théorème 2.1)) par

|E[ΠNf(X1:N)]− πf | ≤ (12/N)κ[π, λ], E[{ΠNf(X1:N)− πf}2] ≤ (4/N)κ[π, λ] ,

où κ[π, λ] = λ(w2)/λ2(w).
Cette borne montre que le biais / MSE des estimations diminue en augmentant NN ou en réduisantκ[π, λ].
En effet, la conception de propositions plus adaptées est un domaine de recherche actif, avec plusieurs
axes différents étant poursuivis tels que les algorithmes d’échantillonnage d’importance adaptatifs (voir
Elvira and Martino (2021) et les références à l’intérieur) et les “Normalizing flows” (voir Papamakarios
et al. (2021) et les références à l’intérieur) pour n’en citer que quelques-uns. Pour un λ donné, des
estimateurs sans biais construits à partir des estimateurs SNIS ont été proposés par Middleton et al.
(2019). L’un des problèmes avec de tels estimateurs est que le nombre d’échantillons de λ utilisés pour
produire chaque estimation est aléatoire.

5

L’algorithme iterated sampling importance resampling (ISIR) est une méthode liée à l’algorithme SNIS
qui permet de construire une chaîne de Markov qui converge vers la distribution cible π. Cette méthode
peut être vue comme une version itérative de l’algorithme sampling importance resampling (SISR)
proposé par Rubin (1987b).

Lorsque l’on utilise l’algorithme ISIR pour construire la chaîne de Markov, il est tentant de réutiliser tous
les candidats des étapes intermédiaires pour construire un estimateur similaire à SNIS, étant donné que
les poids normalisés sont disponibles. Ce type d’estimateur, souvent appelé ISIR recyclé, a été suggéré
par Tjelmeland (2004b) et apparaît également dans Schwedes and Calderhead (2021) et Naesseth et al.
(2020).

Une des questions auxquelles nous nous sommes intéressés lors de cette thèse est la suivante :

Quel est le biais des estimations de l’algorithme ISIR recyclé ? Quelle est la meilleure allocation
de ressources ? Faut-il privilégier des chaînes plus longues avec des bassins de candidats plus

petits a chaque itération d’ISIR ou l’inverse ?
Nous proposons dans le chapitre 2 une analyse théorique et numérique de l’estimateur suggéré par
Tjelmeland (2004a). Nous proposons en suite un nouvel estimateur semblable au ISIR recyclé qui
permet à la fois la diminution du biais par rapport à un estimateur SNIS tout en conservant la même ordre
de grandeur de l’erreur quadratique. Ce chapitre correspond à l’article Cardoso et al. (2022c), accepté
et publié à la conférence “Advances in Neural Information Processing Systems” 2022.

Cette question peut aussi être étendu aux problèmes de filtrage et lissage dans les modèles de Markov
cachés (HMM). Les HMM sont des modèles statistiques couramment utilisés pour les données séquen-
tielles.

Les HMM impliquent un processus d’état non observable, noté {Xt}t∈N, et des données observées,
représentées par {Yt}t∈N. Ces processus évoluent dans deux espaces mesurables distincts : (X,X)
pour le processus d’état et (Y,Y) pour les observations. Les HMM sont définis par les deux propriétés
suivantes :

• Le processus d’état, {Xt}t∈N, est une chaîne de Markov, caractérisée par des noyaux de transition
(Mt+1)t∈N et une distribution initiale, η0.

• Étant donné {Xt}t∈N, les observations {Yt}t∈N sont indépendantes, et nous notons la distribution
de Yt étant donné Xt comme Gt(Xt, .) et sa densité par rapport à la mesure de Lebesgue comme
gt(xt, .).

Les HMM sont utilisés dans plusieurs domaines différents, tels que le climat Robertson et al. (2004),
l’écologie Michelot et al. (2016) et la biologie Jarner et al. (2001); Shihab et al. (2012). Il y a deux
principales distributions d’intérêt :

• la distribution de filtrage, c’est-à-dire la loi de Xt étant donné Y0:t,

• la distribution de lissage, c’est-à-dire la loi de X0:t étant donné Y0:t.

Comme la distribution de filtrage est la marginale de la distribution de lissage à l’instant t, le problème
d’estimation de chaque distribution à partir d’une séquence de données Y0:t est étroitement lié. Dans
plusieurs cas, comme l’apprentissage de paramètres dans le cas de l’algorithme EM par exemple,
on peut s’intéresser à l’intégrale d’une fonction X -mesurable h sur la distribution de lissage. Par
exemple, l’énergie totale EX0:t|Y0:t

[∑t
i=0X

2
i

]
, ou la corrélation croisée moyenne des états, à savoir

EX0:t|Y0:t

[∑t
i=1XiX

T
i+1

]
.

Sauf dans des cas simples, les lois de filtrage et de lissage ne sont pas disponible de façon analytique. Ces
distributions peuvent être estimées à l’aide de méthodes d’échantillonnage préférentiel ou des méthodes
dites de Monte Carlo séquentiel (SMC).

6

À mesure que la longueur de la séquence augmente, la dimension de l’espace d’état résultant aug-
mente également, ce qui rend finalement l’application de l’échantillonnage d’importance inapplicable.
L’approche proposée dans Gordon et al. (1993), que nous présentons, offre une solution en faisant
évoluer le “pool” d’échantillons de manière séquentielle. Plus précisément, cela implique de répliquer
les échantillons qui possèdent des poids d’importance importants tout en éliminant ceux dont les poids
sont négligeables.

De la même manière que nous pouvons voir le SMC comme une généralisation de l’idée d’échantillonnage
préférentiel aux données séquentielles, les méthodes nommées filtre particulaire de Gibbs Andrieu et al.
(2010a) peut être vu comme une extension de ISIR aux cas séquentiel. De la même manière, nous
pouvons voir une analogie entre les estimateurs du type SNIS et des algorithmes de intégration sur les
lois de lissage tel que l’algorithme dit PaRIS Olsson and Westerborn (2017)

Cela pose la question suivante :

Est-il possible de généraliser l’idée de recyclage des échantillons d’ISIR au recyclage des
échantillons dans un algorithme telle que l’algorithme PaRIS?

Cette question est la question sous-jacente aux chapter 3. Dans le chapitre 4 nous faisons une analyse
théorique et numérique de l’algorithme de descente de gradient lorsque les gradients sont estimées en
utilisant l’estimateur "recyclé" proposé dans le chapitre 3. Ces deux chapitres correspondent aux articles
Cardoso et al. (2022b) et Cardoso et al. (2023a) qui sont, respectivement, acceptés pour publication dans
le journal Statistica Sinica et acceptés et publiés à la conférence “International Conference in Machine
learning” 2023.

1.2.4 Modèles génératifs

La tâche de modélisation générative consiste à trouver, pour une distribution d’intérêt qdata définie sur
Rd, une fonction paramétrique

fθ : Rds → Rd

capable de transformer une distribution de bruit λ définie sur Rds en une distribution qui se rapproche
de qdata. Dans la plupart des applications, λ = N (0, I). Plus précisément, la tâche de modélisation
générative consiste à trouver θ tel que

qdata ≈ pθ ,

où ≈ signifie que les deux distributions sont proches en termes de mesure de dissimilarité statistique,
telle que la distance de Wasserstein ou la divergence de Kullback-Leibler (KL).

Dans ce contexte, nous supposons avoir un ensemble de données d’échantillons i.i.d. de qdata qui peut
être utilisé pour apprendre le paramètre θ. Cependant, certains modèles génératifs ne nécessitent qu’un
accès à une approximation de la densité de qdata au lieu d’un ensemble de données. Le modèle génératif
idéal permettrait un échantillonnage rapide de divers échantillons de haute qualité et une évaluation
tractable de la fonction de densité sous-jacente.

Au cours des dernières années, plusieurs familles de modèles génératifs basés sur des réseaux de neurones
profonds (DGM) ont été introduites. Chaque famille a ses inconvénients. Nous présentons maintenant
une introduction de haut niveau aux modèles génératifs de diffusion de débruitage (DDGM), qui seront
présentés dans plusieurs chapitres de cette thèse.

Avant d’aborder les modèles génératifs de diffusion dans leur forme moderne tels que présentés par Song
et al. (2021c), il est crucial de comprendre les “Noise Conditional Score Networks” (NCSN) introduits
par Song and Ermon (2019). Les NCSN représentent la première approche à surpasser les GANs
(Generative adversarial networks Goodfellow et al. (2014)) dans les tâches de génération d’images sans
utiliser d’entraînement adversarial.

7

Les NCSN s’appuient sur l’algorithme de Langevin non ajusté (ULA) Roberts and Tweedie (1996) et
l’appariement du score Hyvärinen (2005), défini comme la dérive de la log densité d’une distribution
par rapport à une certaine mesure de référence, normalement la mesure de Lebesgue. L’ULA génère
des échantillons approximatifs d’une distribution d’intérêt qdata, en utilisant le gradient de la densité
(ou score), défini comme∇ log qdata. L’ULA construit une chaîne de Markov Xtt∈N avec des étapes de
mise à jour utilisant le score et un terme de bruit ϵt. Notamment, la chaine est défini à partir d’unX0 par
l’équation

Xt:=Xt−1 + γ∇ log qdata(Xt−1) + (2γ)1/2ϵt ,

où γ est un réel positif. Comme montré dans Durmus and Moulines (2017); Durmus et al. (2019), ULA
produit des échantillons que sont arbitrairement proches (en KL) de la distribution cible qdata si γ est
suffisamment petit et que la chaine de Markov a une longueur approprié.

L’appariement de score, comme défini par Hyvärinen (2005), consiste à approximer le score∇ log qdata
à partir d’échantillons i.i.d. de qdata, sans estimer directement la densité. L’approximation est faite à
partir d’un réseau de neurones sθ. Ce réseau de neurones est utilisé pour minimiser une fonction de perte
associée au score. L’approche propose par Hyvärinen (2005) introduit la fonction de perte

EX∼qdata

[
tr(∇sθ(X)) + (1/2)∥sθ(X)∥2

]
.

Cette approche est connue pour être notamment difficile du point de vue numériquement, car elle fait
intervenir la trace do score.

Song and Ermon (2019) propose de créer une séquence de distributions {qt}t∈J0,nK en transformant la
distribution des données par un noyau gaussien de variance croissante. Notamment, en introduisant les
noyaux

qt|0(xt|x0) = N (xt;x0, υ
2
t Id) ,

où {υ2
t }t∈J0,nK est une suite positive croissante, nous définissons

qt(xt):=
∫

qdata(dx0)qt|0(xt|x0) .

Cela a deux intérêts. Le premier étant que le score de chaque distribution intermédiaire qt est alors appris
via le Denoising Score Matching (DSM) Vincent (2011), qui engendre une fonction de perte équivalente
mais plus abordable que celui de Hyvärinen (2005). En particulier, Song and Ermon (2019) propose
d’utiliser le même réseau pour tous les niveaux de bruit υt en utilisant le niveau de bruit lui-même comme
une entrée du réseau. Le deuxième est qu’en augmentant le niveau de bruit les distributions deviennent
de plus en plus simples, donc plus facilement abordables à partir des méthodes du type ULA initialisé
sur des distributions raisonnables.

En Song and Ermon (2019), l’ULA est utilisé pour générer des échantillons de façon séquentielle de
chacune des lois qt. Cela est fait en initialisant ULA pour qn avec des échantillons deN (0, υn I) et pour
chaque niveau de bruit t ∈ J0, n− 1K, initialisant l’algorithme ULA visant qt avec le dernier échantillon
obtenu pour qt+1.

Comme mentionné ci-dessus, les algorithmes de diffusion génératifs basés sur cette approche ont dé-
montré des performances de pointe dans la génération d’images, notamment en battant les GANs sur des
tâches comme la génération d’images CIFAR-10 Song and Ermon (2019). Cependant, leur inconvénient
réside dans le temps d’inférence, nécessitant de nombreux pas d’ULA pour obtenir des échantillons de
haute qualité.

Les modèles génératifs de diffusion par débruitage (DDGM) Song et al. (2021c) visent à enlever les étapes
d’ULA et d’échantillonner de façon approximée directement qt à partir d’un échantillon (approximé aussi)
de qt+1. Cela passe par une réformulation des lois intérmediaires {qt}t∈J0,nK en utilisant des chaînes

8

de Markov ou des équations différentielles stochastiques/ordinaires. Une des formulations possibles,
que nous appelons DDIM Song et al. (2021a), consiste à obtenir les lois {qt}t∈J1,nK comme des lois
marginales d’une loi étendue q0:n. Il s’avère que pour t ∈ J0, n− 1K et que

X0:n ∼ q0:n ,

la loi de Xt|Xt+1, X0 est connue analytiquement. Nous appelons cette loi un "pont d’inférence". En
se basant sur la remarque que l’apprentissage du score dans le cas de bruitage gaussien est équivalent
a l’apprentissage d’un “débruiteur” optimale faite en Vincent (2011), Song et al. (2021a) propose une
méthode de transition progressive entre les distributions en utilisant des "ponts d’inférence". Cela est
obtenu en remplaçant X0 par le débruitage de Xt+1 dans la loi de Xt|Xt+1, X0. Nous obtenons ainsi
un noyau Gaussien pt|t+1 et la chaine de Markov renversé (“backwards”) dont la loi est notée p0:n. La
formulation mathématique de ce qui a été décrit ci-dessus est faite en dans la section 1.5. Il est possible
de montrer que la chaine de Markov ainsi obtenue correspond a l’optimum d’un problème d’inférence
variationnelle sur une famille paramétrique des chaines de Markov dont les noyaux de transition sont des
noyaux Gaussiens de variance prédéterminée et dont la moyenne est le paramétrique.

Cette méthode améliore l’efficacité des échantillons générés par rapport aux approches utilisant ULA, tout
en maintenant la qualité des échantillons obtenus. Les modèles DDGM, en particulier les formulations
DDIM, ont été validés empiriquement pour produire des échantillons d’une qualité remarquable dans la
génération d’images.

L’utilisation des DDGM comme prior ouvre un champ de recherche riche, notamment pour résoudre
des problèmes inverses bayésiens. Une des propriétés utiles des DDGMs dans ce cas est le fait que
la génération dans les DDGM consiste de plusieurs étapes de simulation d’une chaine de Markov avec
des noyaux Gaussiens. Il est donc possible d’intervenir à plusieurs étapes de la génération. Divers
travaux de recherche ont proposé des méthodes pour échantillonner la distribution postérieure π lorsque
la distribution a priori λ est un DDGM (comme décrit dans Song et al. (2021a); Kawar et al. (2022);
Lugmayr et al. (2022); Chung et al. (2023)). La distribution postérieure est définie comme

py0(x0) ∝ gy0(x0)p0(x0) ,

où gy0 représente la fonction de vraisemblance du problème inverse associé.

La distribution postérieure étendue est définie comme suit :

py0(dx0:n) ∝ gy0(x0)λn(dxn)
n∏
t=1

pt−1|t(dxt−1|xt) .

Les marginales de py0 au temps t sont définies comme suit :

pyt (A):=
∫
1A(xt)py0(dx0:n) =

∫
1A(xt)gy0(x0)p0|t(dx0|xt)pt(dxt) =

∫
1A(xt)gyt (xt)pt(dxt) ,

où
gyt (xt):=

∫
gy0(x0)p0|t(dx0|xt) .

Le score de la postérieure peut être écrit comme suit : ∇ log pyt (xt) = ∇ log gyt (xt)+∇ log pt|t+1(xt|xt+1).
Notons qu’une estimation du score de la distribution postérieur permettrait la simulation du DDGM
équivalent a un DDGM pour la distribution posterieur.

Les méthodes actuelles pour échantillonner py0 tentent soit d’approximer py0 en créant une version
alternative plus facile à échantillonner (comme dans Song et al. (2021a); Kawar et al. (2022); Lugmayr
et al. (2022)), soit d’approximer ∇ log gyt (xt) (comme dans Chung et al. (2023)). Toutes ces méthodes

9

Y MCGdiff MCGdiff MCGdiff MCGdiff Y

Inp
σ = 0
Celeb

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

SR
σ = 0.05
Bedroom

Col
σ = 0
Flowers

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

G2Deb
σ = 0.1
Church

Figure 1.1: Illustration des échantillons obtenus avec MCGdiff pour des problèmes inverses variés. Le
texte sur les côtés indique respectivement le type de problème inverse l’écart type du bruit et le dataset
sur lequel le modèle génératif a été entrainé. Pour plus de détails, voir la section 5.3.

introduisent des erreurs d’approximation irréductibles, ce qui peut conduire à des échantillons qui, bien
qu’attrayants dans certaines tâches, peuvent présenter des comportements inattendus dans d’autres. Cette
absence de garanties théoriques pose problème, en particulier dans des applications sensibles comme le
traitement des données médicales.

Cela introduit la question suivante :

Peut-on dériver un algorithme d’échantillonnage pour la postérieure d’un problème inverse
bayésien utilisant un DDGM comme a priori, qui soit théoriquement fondé sous des hypothèses

réalistes ?
Nous proposons dans le chapitre 5 un algorithme du type SMC pour échantillonner la distribution
postérieur des problèmes inverses linéaires dont la prior vient d’un DDGM, que nous nommons MCGdiff.
Nous montrons en figure 1.1 quelques exemples des échantillons produits par MCGdiff sur des données
du type image pour plusieurs problèmes inverses, notamment le coloriage (Col), la super-résolution (SR),
le “inpainting” (Inp) et le “Gaussian debluring”. Nous fournissons des garanties théoriques qui montrent
que notre algorithme est asymptotiquement exacte. Nous montrons aussi, que sur des problèmes où
la distribution a posteriori est connue, l’algorithme proposé obtient des meilleures performances sur
diverses métriques liées aux distances en distribution que l’état de l’art dans le domaine. Ce chapitre
correspond à l’article Cardoso et al. (2023b), accepté pour présentation orale et publié à la conférence
“International Conference in Representation Learning” 2024.

1.2.5 Application à des données du type ECG

Finalement, nous adressons la question posée au début de cette section, notamment, peut-on utiliser un
modèle génératif pour détecter des signaux anormaux dans des données du type ECG. Dans le chapitre
6, nous montrons comment, en combinant MCGdiff du chapitre 5 avec un DDGM appris sur des données
ECG, nous sommes en mesure de résoudre plusieurs tâches de reconstruction ECG différentes mieux
que les méthodes actuelles sans aucun réglage fin nécessaire.

Nous montrons en particulier que cet outil peut être précieux pour résoudre la détection d’anomalies
sur l’ECG et montrons qu’il distingue efficacement entre la population normale et celles qui ont subi un
infarctus du myocarde. Nous adaptons également MCGdiff pour gérer le bruit de mesure inconnu en
couplant MCGdiff avec un algorithme d’ascension de score.

Les résultats obtenus sont présentés dans les figures 1.3 et 1.2. Dans la figure 1.2, nous montrons en
rouge les “vrais” signaux ECG d’un patient donné et en bleu les signaux obtenus avec MCGdiff. Pour
obtenir ces signaux, nous considérons le problème inverse qui consiste à observer les trois premières

10

Figure 1.2: Illustration de l’utilisation de MCGdiff pour la détection d’anomalies. “Ctrl” correspond
à des patients dit “contrôle” (sans anomalie connue) et “MI” à des patients ayant subi un infarctus du
myocarde.

pistes de l’ECG de chaque patient. Ces pistes sont choisies, car elles représentent les pistes les plus
éloignés physiquement du cœur, et donc moins susceptibles aux anomalies. Plus de détails sont donnés
dans le chapitre 6. On peut voir que pour les patients du groupe de contrôle (sans anomalie connue),
les signaux bleus et les signaux rouge coïncident alors que pour les patients ayant eu un infarctus du
myocarde (MI), nous pouvons voir des différences significatives et localisées sur certaines pistes.

Pour quantifier à quel point cette différence est significative, pour chaque patient du groupe contrôle et du
groupe MI nous avons calculé la distance de Mahanalobis entre une approximation gaussienne obtenue
à partir des échantillons de la distribution à postériori obtenu avec MCGdiff et les vrais signaux des
patients. Puis nous avons utilisé cette valeur comme score d’anomalie. Dans la figure 1.3 nous voyons la
courbe ROC obtenu en faisant du seuillage sur le score d’anomalie ainsi obtenu. Nous pouvons voir que
pour les deux sexes, la méthode proposée est capable de faire la distinction entre le groupe de contrôle
et le groupe MI.

11

Figure 1.3: Gauche. Distribution du score d’anomalie obtenu avec MCGdiff pour le groupe dit contrôle
(rouge) et “MI” (infarctus du myocarde, bleu). Droite. Courbe ROC pour la classification entre contrôle
et “MI” obtenue avec le score d’anomalie.

12

1.3 General introduction:

1.3.1 The guiding problem: Assessing risk of sudden cardiac death using non-invasive
data

Approximately 10% of adult deaths in Europe and the United States are due to sudden cardiac death
(SCD), often incorrectly referred to as “cardiac arrest". SCD typically occurs due to extremely rapid
ventricular arrhythmias, i.e., ventricular fibrillation or ventricular tachycardia (VF/VT). These rapid
ventricular arrhythmias are often associated with structural heart disease such as cardiomyopathies or
areas of cardiac electrical heterogeneity Haïssaguerre et al. (2018). Detecting and quantifying these
abnormal heart rhythms with noninvasive techniques such as the electrocardiogram (ECG) is one of the
greatest challenges in cardiology. Effective treatments are available to protect at-risk individuals, so
accurate assessment is critical. To date, cardiology has relied on left ventricular ejection fraction (LVEF)
measurements to assess SCD risk. LVEF, although valuable, has limited utility in younger patients
without cardiomyopathies. Indeed, LVEF is a measure correlated to the capacity of contraction of the
whole left ventricle, thus less sensitive to non-structural / localized cardiac electrical heterogeneity.

Because SCD requires an exceptionally rapid response to prevent deaths, it is extremely difficult to
collect noninvasive data directly from this population. An alternative approach is to use the distribution
of healthy signals, because databases containing such data are more readily available Kang and Wen
(2022); Wen and Kang (2021). This approach may involve detecting outliers or anomalies in the data
and can rely on a generative model capable of accurately approximating the distribution of signals of
healthy patients. This is the path that we chose to approach the subject in this Ph.D. thesis.

Over the past decade, several techniques have been developed to design and train generative models
capable of generating highly realistic patterns from the original data, even for complex high-dimensional
data types such as images and audio Kingma et al. (2019); Kobyzev et al. (2020); Gui et al. (2021).
A generative model aims to build a distribution p that approximates a distribution of interest qdata
relying only on i.i.d samples from qdata. There are several ways anomalies detection can be done using
a generative model. We focus on the task of detecting incompatibilities in the data. Subjects at risk
of SCD with normal LVEF measurements will probably have localized abnormalities in the electrical
activity of the heart. Being localized, we expect those abnormalities to manifest more prominently in
ECG leads that are physically closer to the source of the abnormality in the heart. Therefore, one might
use a generative model to reconstruct a subset of leads knowing the complementary subset of leads. We
can see this problem as an “inpainting" problem, but for ECG type of data. This kind of problem can be
formulated as solving an inverse problem using the distribution issued from the generative model as the
prior distribution.

(Q1) Can we create a generative model that is able to identify anomalies in ECG data that relies only
on a healthy ECG dataset and that is theoretically grounded?

1.3.2 Bayesian linear inverse problems

The term inverse problem is used whenever one wants to infer from a vector of indirect observations
y ∈ Rdy the underlying vector of unknowns x ∈ Rdx . We assume a knowledge of a (forward) model
linking y and x defined by the function

f : (x, ε) ∈ Rdx × Rdε → f(x, ε) ∈ Rdy ,

where ε is an unknown noise vector, representing model and/or measurement randomness. One of
the most common forward models is the linear model when f(x, ε) is of the form Ax + σε, with
A ∈ Rdy×dx the linear forward operator. This general model is used throughout computational imag-
ing, including various tomographic imaging applications such as common types of magnetic resonance

13

imaging Vlaardingerbroek and Boer (2013), X-ray computed tomography Elbakri and Fessler (2002),
radar imaging Cheney and Borden (2009), and basic image restoration tasks such as deblurring, super-
resolution, and image inpainting González et al. (2009).

The classical approach to solving linear inverse problems relies on prior knowledge about x, such as
its smoothness, sparseness in a dictionary, or its geometric properties. These approaches attempt to
estimate a x̂ by minimizing a regularized inverse problem, x̂ ∈ argminx{∥y−Ax∥2 + Reg(x)}, where
Reg is a regularization term that balances data fidelity and noise while enabling efficient computations.
However, a common difficulty in the regularized inverse problem is the selection of an appropriate
regularizer, which has a decisive influence on the quality of the reconstruction. Whereas regularized
inverse problems continue to dominate the field, many alternative statistical formulations have been
proposed; see Besag et al. (1991); Idier (2013); Marnissi et al. (2017) and the references therein - see also
Stuart (2010) for a mathematical perspective. A main advantage of statistical approaches is that they
allow for uncertainty quantification in the reconstructed solution; see Dashti and Stuart (2017).

The Bayes’ formulation of the regularized inverse problem is based on considering the state X and
the noise ε as random variables defined over some state space (X,X). More precisely, the Bayes’
formulation consists in considering

Y = f(X, ε) ,

where X ∼ ρ and ε ∼ pε. ρ is called the prior distribution and pε the noise distribution. The density
of the conditional distribution of Y given X is called the likelihood function and denoted as gy0(x). We
chose to represent it as a function over x since it is the variable that we are interested in. Using Bayes’
theorem, we obtain the unnormalized proxy of the posterior distribution

γ(x):=gy0(x)ρ(x) . (1.1)

The distribution of interest, the posterior distribution itself, is defined as π(dx):=γ(dx)/γ(X).
In general, one is interested in querying the posterior distribution π with some measurable function
h : X→ Rm, with m ∈ N∗ through

πh:=
∫
h(x)π(dx) .

This is the case if one wants to compute the moments of π (h(x) = xk) or the probability of X being
in a certain set A ∈ X (h(x) = 1A(x)). But in general, π is not available in closed form, and several
estimators have been proposed to estimate πh relying only on γ.

The rest of this chapter is divided as follows. In Section 1.4, we describe two methods that produce so-
called “self-normalized” estimations of πh from γ, namely Importance Sampling and its generalisation
to sequential data, Particle Smoothing. In Section 1.5, we present generative models and namely the
family of generative models called Denoising diffusion generative models (DDGM). We then highlight
the capabilities of such model to serve as an informative prior to be used in inverse problems and the
problem of sampling from π when ρ is the distribution defined by a DDGM. We conclude this chapter
wtih section 1.6 where we introduce the contributions present in this thesis and the organization of the
next chapters.

1.4 Self Normalized estimators

1.4.1 Self-Normalized Importance Sampling

Importance Sampling (IS) is an algorithm that produces an estimate of
∫
h(x)π(dx) through an auxiliary

distribution λ from which sampling is easy and that dominates π, i.e., such that for all measurable A,
π(A) > 0 implies λ(A) > 0. This is notably useful when knowing only an un-normalized proxy γ of π

14

but is also useful when h is a function that takes non-zeros values on the tails of π. In this case, vanilla
Monte Carlo estimators generally yield high variance estimators.

Let dπ/dλ denote the Radom-Nikodym derivative of π with respect to λ. For any π-integrable h,
πh =

∫
h(x)dπ

dλ (x)λ(dx). In general, we do not have access to the Radom-Nikodym derivative, but to a
proxy w:=dγ/dλ = γ(X)dπ/dλ. Therefore, we can write

πh =
∫
h(x)dγ

dλ(x)λ(dx)
/∫

1X(x)dγ
dλ(x)λ(dx) .

The Self Normalized importance sampling (SNIS) estimate consists in computing a Monte Carlo ap-
proximation of both integrals with the same set of samples, i.e.,

ΠNh(X1:N):=
N∑
i=1

w(Xi)h(Xi)
/ N∑

j=1
w(Xj) =

N∑
i=1

ωiNh(Xi) ,

with N ∈ N∗, ωiN = w(Xi)
/∑N

j=1w(Xj) and X1:N = (X1, · · · , XN) i.i.d samples from λ.

Even though each Monte Carlo estimate is an unbiased estimate of each integral, the SNIS estimator is
biased, i.e, E [ΠNh] ̸= πh. Provided that λ(w2) < ∞, the bias and mean-squared error (MSE) of the
SNIS estimator over bounded test functions f satisfying ∥f∥∞ ≤ 1 are given respectively (see (Agapiou
et al., 2017, Theorem 2.1)) by

|E[ΠNf(X1:N)]− πf | ≤ (12/N)κ[π, λ], E[{ΠNf(X1:N)− πf}2] ≤ (4/N)κ[π, λ] , (1.2)

where κ[π, λ] = λ(w2)/λ2(w).
This bound shows that the bias / MSE of the estimates go down by either increasing N or by reducing
κ[π, λ]. Indeed, the design of better suited proposals is an active research field, with several different
axes being pursued such as Adaptative importance sampling algorithms (see Elvira and Martino (2021)
and references within) and Normalizing Flows (see Papamakarios et al. (2021) and references within) to
name a few. For a given λ, zero-bias estimators build upon the SNIS estimators have been proposed by
Middleton et al. (2019). One of the problems with such estimators is that the number of samples of λ
used to produce each estimate is random.

1.4.1.1 Iterated sampling importance resampling algorithm i-SIR

Another way of designing an estimator of πh is through Markov Chain Monte Carlo (MCMC) methods.
A MCMC method relies on building an ergodic Markov Chain {Xk}k∈N with invariant distribution π,
i.e a chain that gets arbitrarily close to π as k increases. By discarding a burn-in period k0, one can use
the samples {Xk}k>k0 to produce a Monte Carlo estimate of πh, with bias decreasing with k0. If the
resulting Markov chain is geometrically ergodic, then the bias of the estimates decrease as κk0 where
κ ∈ (0, 1).
There are several ways of building Markov chains that target π given the proxy γ, such as the Metropolis-
Hastings algorithm Metropolis et al. (1953). A method that is closely related to SNIS is the iterated
sampling importance resampling (i-SIR), proposed in Tjelmeland (2004a); see (Andrieu et al., 2010a;
Lee et al., 2010; Lee, 2011; Andrieu et al., 2018). The i-SIR can be seen as an iterative application of
the sampling importance resampling (SISR) algorithm proposed by Rubin (1987b); the k-th iteration
is defined as follows. Given a state Yk ∈ X, (i) set X1

k+1 = Yk and draw X2:N
k+1 independently of

the proposal distribution λ; (ii) compute, for i ∈ {1, . . . , N}, the normalized importance weights
ωiN,k+1 = w(Xi

k+1)/
∑N
ℓ=1w(Xℓ

k+1); (iii) select Yk+1 from the set X1:N
k+1 by choosing Xi

k+1 with
probability ωiN,k+1. We refer to Yk+1 andX1:N

k+1 as state and the candidate pool, respectively. Following

15

(Tjelmeland, 2004a), i-SIR may be viewed (up to an irrelevant permutation of the samples) as a two-stage
Gibbs sampler targeting an extended probability distribution φN on an enlarged state space including
the state as well as the candidate pool. As this extended distribution admits π as a marginal with
respect to the state, one can expect the marginal distribution of the generated states {Yk}k∈N, forming
themselves a Markov chain, to approach the target π of interest as k tends to infinity. Furthermore, if
∥w∥∞/λ(w) <∞, the state and candidate-pool Markov chains (Yk)k∈N and (X1:N

k)k∈N can be shown to
be uniformly geometrically ergodic, suggesting that the resulting state chain can be used to form MCMC
estimates.

But when using i-SIR as the underlying mechanism to build the Markov chain, one is tempted to recycle
all the candidate pool X1:N

k to build a SNIS like estimator, since the normalized weights are available.
This type of estimator, often called recycled i-SIR was suggested by Tjelmeland (2004b) and also appears
in Schwedes and Calderhead (2021) and Naesseth et al. (2020).

(Q2) What is the bias of the recycled i-SIR estimates? What is the best allocation of ressources? Making
longer chains with smaller candidate pools or the opposite?

1.4.2 Sequential Monte Carlo

Sequential importance sampling serves as a method tailored to address a particular set of challenges
known as (non-linear) filtering, which involves sequential data. As the length of the sequence increases,
the dimension of the resulting state space also increases, which eventually renders the application of
importance sampling unfeasible. The approach proposed in Gordon et al. (1993), which we present,
offers a remedy by evolving the sample pool sequentially. Specifically, this involves replicating samples
that possess substantial importance weights while eliminating those with negligible weights. Before we
delve into the details, we describe the most common statistical model used for sequential data.

Example 1 (Hidden Markov Models). Hidden Markov Models (HMMs) involve an unobservable state
process denoted by {Xt}t∈N and observed data represented by {Yt}t∈N. These processes evolve within
two distinct measurable spaces: (X,X) for the state process and (Y,Y) for observations. HMM are
defined by the following two properties:

• The state process, {Xt}t∈N, is a Markov chain, characterized by transition kernels (Mt+1)t∈N and
an initial distribution, η0.

• Given {Xt}t∈N, the observations {Yt}t∈N are independent, and we denote the distribution of Yt
given Xt as Gt(Xt, .) and its density with respect to the Lebesgue measure as gt(xt, .).

HMM are used in several different domains, such as climate Robertson et al. (2004), ecology Michelot
et al. (2016) and biology Jarner et al. (2001); Shihab et al. (2012). There are two main distributions of
interest:

• the filtering distribution, i.e. the law of Xt given Y0:t,

• the smoothing distribution, i.e. the law of X0:t given Y0:t.

As the filtering distribution is the tmarginal of the smoothing distribution, the problem of estimating each
distribution from a sequence of data Y0:t is closely related. In several cases, such as parameter learning
in the case of the EM algorithm for example, one might be interested in the integral of someX -measurable
function h over the smoothing distribution. For example the overall energy EX0:t|Y0:t

[∑t
i=0X

2
i

]
, or the

averaged cross-correlation of the states, namely EX0:t|Y0:t

[∑t
i=1XiX

T
i+1

]
.

We now proceed to define Feynman–Kac path measures that provide a general framework for treating
a sequence of distributions such as those defined by the states of an HMM. For a sequence {Mt}t∈N
of Markov kernels Mt : X × X → [0, 1], an initial distribution η0 ∈ M1(X), and a sequence {gt}t∈N

16

of bounded measurable potential functions gt : X → R+, a sequence {π0:t}t∈N of Feynman–Kac path
measures is defined by

π0:t : X⊗t ∋ A 7→ γ0:t(A)
γ0:t(Xt) , t ∈ N, (1.3)

where

γ0:t : X⊗t ∋ A 7→
∫
1A(x0:t)π0(dx0)

t−1∏
m=0

Qm(xm,dxm+1), (1.4)

with
Qm : X×X ∋ (x,A) 7→ gm(x)Mm(x,A) (1.5)

being unnormalized kernels. By convention, π0:0:=η0. Note that each π0:t is a probability measure,
whereas γ0:t is not normalized. For every t ∈ N∗, we also define the marginal distribution πt : X ∋
A 7→ π0:t(X⊗t−1 ×A).

1.4.2.1 Particle Filtering

In most cases {πm}m∈N is intractable, but can be approximated by ΠN (ξm):=N−1∑
i=1 δξi

m
where for

m ∈ N, ξm = (ξ1
m, . . . , ξ

N
m), is a set of N ∈ N∗ particles and each particle ξim is an X-valued random

variable. Such particle approximation is based on the recursion

πm+1 = πmQm
πmgm

=
∫
πm(dx)Qm(x, ·)∫
gm(x)πm(dx) . (1.6)

By the recursion above, it is possible to obtain a new particle approximation of πm+1 from ξm by drawing
new particles ξm+1 = (ξ1

m+1, . . . , ξ
N
m+1) conditionally independently given ξm according to

ξim+1 ∼
N∑
ℓ=1

gm(ξℓm)∑N
ℓ′=1 gm(ξℓ′m)

Mm(ξℓm, ·), i ∈ J1, NK.

Drawing ξim+1 can be done by first selecting an ancestor according to the weights gm(ξℓm)
/∑N

ℓ′=1 gm(ξℓ′m)
and then updating the selected ancestor through Mm(ξℓm, ·). This procedure is called the bootstrap
particle filter with multinomial resampling and it yields consistent approximations of πm, in the sense
that ΠN (ξm)h = N−1∑N

i=1 h(ξim) serves as a proxy for πmh for any πm-integrable test function h.
(Under general conditions, N−1∑N

i=1 h(ξim) converges in probability to πm as N →∞; see Del Moral
(2004); Chopin and Papaspiliopoulos (2020), and the references therein.) We restrain our presentation to
this resampling scheme, see Douc et al. (2005) for a comparison between different resampling schemes
for the filtering problem.

Note that the particle filter builds an approximation of πm+1 using an approximation of πm, which could
lead to an accumulation of errors with m. A fundamental property of the particle filter is the stability
w.r.t. the sequence length m. It can be shown, under general conditions, that the particle filter estimates
converge to πm uniformly w.r.t m, see Del Moral and Guionnet (2001); van Handel (2008); Whiteley
(2013); Douc et al. (2014).

1.4.2.2 Particle Smoothing

We now focus on the problem of approximating the smoothing distribution π0:m. It is possible to extend
the procedure of the bootstrap particle filter to generate an approximation ΠN (ξ0:m) = N−1∑N

i=1 δξi
0:m

where for m ∈ N, ξ0:m = (ξ1
0:m, . . . , ξ

N
0:m), is a set of N ∈ N∗ paths and each path ξi0:m is an Xm+1-

valued random variable. It is easy to see that (1.6) can be extended to π0:m therefore allowing the creation
a new set of paths ξ0:m+1 that approximate π0:m+1 by first selecting a path from ξ0:m according to the

17

weights gm(ξℓm)
/∑N

ℓ′=1 gm(ξℓ′m) and then updating the path by concatenating a sample from Mm(ξℓm, ·)
to ξℓ0:m a new path to form ξ0:m+1.

The major drawback with the procedure above, known in the literature as the poor man’s smoother, is
that selecting a path from the previous paths leads to a collapse of the origins of the paths. Namely, since
for m > s the poor man’s smoother keeps selecting a path that involves the particles ξs, the number of
different elements at the sequence position s in ξ0:m only decreases. It can actually be shown that the
paths are expected to collapse after mN = O(logN), see Koskela et al. (2018). This renders the poor
man’s smoother unpractical when dealing with long sequences (large m).

Overcoming the path degeneracy: Backward decomposition based smoothers. To overcome the
collapse of the poor man’s smoother, current smoothing algorithms such as the Forward Filtering
Backward Simulation (FFBSi) Godsill et al. (2004) and particle-based, rapid incremental smoother
(PaRIS) Olsson and Westerborn (2017) rely on the backward decomposition of π0:m. Let qm denote the
density of Qm with respect to a given dominating measure λ. We define the backward kernel

←−
Qm,λ

as
←−
Qm,λ : X×X ∋ (xm+1, A) 7→

∫
1A(xm)qm(xm, xm+1)λ(dxm)∫

qm(x′m, xm+1)λ(dx′m) . (1.7)

and

Bm : X×X⊗m−1 ∋ (xm, A) 7→
∫
· · ·
∫
1A(x0:m−1)

m−1∏
s=0

←−
Qs,πs(xs+1, dxs), (1.8)

Using {
←−
Qs,λ}s∈J0,mK we obtain the backward decomposition Del Moral et al. (2010); Del Moral et al.

(2016)

π0:m(dx0:m) = πm(dxm)
m−1∏
s=0

←−
Qs,πs(xs+1,dxs) . (1.9)

Namely one can obtain a path ξ0:m ∼ π0:m by starting from the filtering distribution ξm ∼ πm and
drawing backward ξs|ξs+1 ∼

←−
Qs,λ(ξs+1, ·) for s ∈ J0,m− 1K.

Using the backward decomposition, one can re-utilise the set of particle locations {ξs}s∈J0,mK produced
by the particle filter in a subsequent (backward) sweep to sample N paths {ξi0:m}Ni=1 . More precisely,
given the forward particles {ξs}ms=0, each path ξ̃i0:m is generated by first drawing ξ̃im ∼ ΠN (ξm) and
then drawing, recursively,

ξ̃is ∼
←−
Qs,ΠN (ξs)(ξ̃is+1, ·) =

N∑
j=1

qs(ξjs , ξ̃is+1)∑N
ℓ=1 qs(ξℓs, ξ̃is+1)

δ
ξj

s
; (1.10)

that is, given ξ̃is+1, ξ̃is is picked at random among ξs based on weights proportional to {qs(ξjs , ξ̃is+1)}Nj=1.
This procedure constitutes the FFBSi smoother, with distribution πFFBSi0:m , which is no longer supported on
the ancestor paths drawn during the particle filtering algorithm and avoids the trajectory degeneracy issue
from the poor man’s smoother. In this formulation, each backward-sampling operation (3.9) requires the
computation of the normalising constant

∑N
ℓ=1 qm(ξℓm, ξ̃im+1), leading to an overall quadratic complexity

of the algorithm. This can be eased by using an effective accept–reject technique, as proposed in Douc
et al. (2011). One major drawback of the FFBSi is that the algorithm is essentially offline. In principle, if
we want to compute an estimate of π0:mh for some test function hwe need to drawN paths backward and
then compute for each path h(ξ0:m) to form the FFBSi estimate πFFBSi0:m h = N−1∑N

i=1 h(ξi0:m).
In the case of additive functionals hm(x0:m) =

∑m
i=1 h̃i−1(xi−1, xi), it is actually possible to render

FFBSi online by establishing a recursion over the smoothing estimates πFFBSi0:m h themselves (Del Moral
et al. (2010)). Additive test functions are ubiquitous in smoothing in HMM, they appear notably during

18

the E-step of the EM algorithm (Cappé et al. (2005a)), and will also play an important role in Chapter 4.
More specifically, using the forward decomposition hm+1(x0:m+1) = hm(x0:m) + h̃m(xm, xm+1) and
the backward kernel Bm+1 defined in (1.8), we may write, for xm+1 ∈ X,

Bm+1hm+1(xm+1) =
∫ ←−
Qm,πm(xm+1,dxm)

∫ (
hm(x0:m) + h̃m(xm, xm+1)

)
Bm(xm,dx0:m−1)

=←−Qm,πm(Bmhm + h̃m)(xm+1), (1.11)

which, by (1.9), implies that

π0:m+1hm+1 = πm+1
←−
Qm,πm(Bmhm + h̃m). (1.12)

The recursion above makes use of the filtering distributions {πm}m∈N. Because they are generally
intractable, we plug particle approximations ΠN (ξm+1) and

←−
Qm,ΠN (ξm) of πm+1 and

←−
Qm,πm , respec-

tively, into recursion (1.12). More precisely, we proceed recursively, and assume that at time m, we
have a sample {(ξim, βim)}Ni=1 of particles with associated statistics, where each statistic βim serves as
an approximation of Bmhm(ξim). Then, evolving the particle cloud according to the particle filtering
algorithm and updating the statistics using (1.11), with

←−
Qm,πm replaced by

←−
Qm,ΠN (ξm), yields the

particle-wise recursion

βim+1 =
N∑
ℓ=1

qm(ξℓm, ξim+1)∑N
ℓ′=1 qm(ξℓ′m, ξim+1)

(
βℓm + h̃m(ξℓm, ξim+1)

)
, i ∈ J1, NK, (1.13)

and, finally, the estimator N−1∑N
i=1 β

i
m of π0:mhm, where we set βm:=(β1

m, . . . , β
N
m), for i ∈ J1, NK.

The procedure is initialized by simply letting βi0 = 0, for all i ∈ J1, NK. This algorithm is a special
case of the forward-filtering backward-smoothing (FFBSm) algorithm (see Andrieu and Doucet (2003);
Godsill et al. (2004); Douc et al. (2011); Särkkä (2013)) for additive functionals. It allows for online
processing of the sequence {π0:mhm}m∈N, but also has the appealing property that only the current
particles ξm and statistics βm need to be stored in memory. However, because each update requires
a summation of N terms, the scheme has an overall quadratic complexity in the number of particles,
leading to a computational bottleneck in applications to complex models that require large particle sample
sizes N .

To avoid the computational burden of this forward-only implementation of FFBSm, the PARIS algorithm
Olsson and Westerborn (2017) updates the statistics βm by replacing each sum (1.13) with the Monte
Carlo estimate

βim+1 = 1
M

M∑
j=1

(
β̃i,jt + h̃t(ξ̃i,jt , ξit+1)

)
, i ∈ J1, NK, (1.14)

where

{(ξ̃i,jm , β̃i,jm)}Mj=1 ∼
(

N∑
ℓ=1

qm(ξℓm, ξim+1)∑N
ℓ′=1 qm(ξℓ′m, ξim+1)

δ(ξℓ
m,β

ℓ
m)

)�M

, i ∈ J1, NK.

Moreover, when the Markov transition densities of the model can be uniformly bounded, that is, there
exists, for every m ∈ N, an upper bound σ̄m > 0 such that for all (xm, xm+1) ∈ X2, mt(xt, xt+1) ≤ σ̄t
(a weak assumption satisfied for most models of interest), then we can generate a sample (ξ̃i,jm , βi,jm) by
drawing, with replacement and until acceptance, candidates (ξ̃i,∗m , β̃i,∗m) from {(ξim, βim)}Ni=1 based on the
normalized particle weights {gm(ξℓm)

/∑N
ℓ′=1 gm(ξℓ′m)}Nℓ=1 (obtained as a by-product in the generation of

ξm+1), and accepting the same with probability mm(ξ̃i,∗m , ξit+1)/σ̄m. Because this sampling procedure
bypasses the calculation of the normalizing constant

∑N
ℓ′=1 qm(ξℓ′m, ξim+1) of the targeted categorical

distribution, it yields an overallO(MN) complexity of the algorithm; see Douc et al. (2011) for details.

19

IncreasingM improves the accuracy of the algorithm at the cost of additional computational complexity.
As shown in Olsson and Westerborn (2017), there is a qualitative difference between the cases M = 1
and M ≥ 2, and the latter is required to keep the PARIS numerically stable. More precisely, in the latter
case, it can be shown that the PARIS estimator N−1∑N

i=1 β
i
m satisfies, as N tends to infinity while M

is held fixed, a central limit theorem (CLT) at the rate
√
N , with a t-normalized asymptotic variance of

order O(1 − 1/(M − 1)). As it is clear from this bound, using a large M only wastes computational
work, and setting M to two or three typically works well in practice.

Particle Gibbs. As for the importance sampling case, it is possible to define an ergodic sampler relying
on the set of particle locations ξ0:m that targets π0:m. This procedure is known by the names Particle
Gibbs (PG) or conditional particle filter (CPF) and is the sequential version of the iSIR algorithm
Section 1.4.1.1. The general idea is to, at each step k, select a trajectory (ζ0, . . . , ζt) from the set of
particle locations ξ0:m produced through an initial particle filtering algorithm and then insert (frozen)
this path in the next particle filter iteration (i.e, ζi ∈ ξi for all i ∈ J0,mK). Formally, at iteration k with
frozen path ζ0:m[k]:=(ζ0[k], . . . , ζt[k]) we build a set of particle locations by defining, for s ∈ J0,mK,
ξs = (ζs[k], ξ1, · · · , ξN−1) where (ξ1, · · · , ξN−1) are drawn according to the particle filter update step
on ξs−1. From this new set of particle locations ξ0:m and using the backward decomposition (1.9), we
can draw a new path ζ0:m[k + 1]. The procedure just described is called Particle Gibbs with backward
sampling (PGBS) (Andrieu et al. (2010b)) and defines a Markov chain that converges geometrically fast
to π0:m under standard strong mixing assumptions. We note though that there are other available options
for defining a Particle Gibbs algorithm, such as the Particle Gibbs with Ancestor sampling (Lindsten
et al. (2014b)), which for the bootstrap filter can be shown to be statistically equivalent to PGBS, see Lee
et al. (2020).

(Q3) Can we generalize the results from Q 2? As the PGBS suffers from the same drawback as the iSIR
procedure, computational waste, is it possible to recycle the particle clouds generated at each step
of the PGBS while still achiving bias reduction?

1.5 Generative models

The task of generative modelling is to find for a given distribution of interest qdata defined over Rd, a
parametric function fθ : Rds → Rd that is able to push a noise distribution λ defined over Rds into a
distribution that is “close" to qdata. In most applications, λ = N (0, I). More precisely, if we define for
every Borelian setA ⊂ Rds , the distribution pθ(A):=

∫
1A(fθ(ϵ))λ(dϵ), the task of generative modelling

is finding θ such that

qdata ≈ pθ (1.15)

where ≈ means that the two distributions are close in terms of some statistical measure of dissimilarity,
such as the Wasserstein distance or the Kullback-Leibler divergence. Here we focus on the case where
we suppose that we have a dataset D of i.i.d samples from qdata that can be used to learn the parameter
θ. We note, however, that some generative models require only access to a proxy of the density of
qdata instead of a dataset D. The ideal generative model would enable rapid sampling of diverse high
quality samples and also tractable evaluation of the underlying density function. In recent years, several
families of generative models have been introduced that rely on deep neural networks to construct fθ.
These generative models are called Deep generative models (DGM). Each family has its drawbacks.
We present now a brief high-level introduction to the most well known families of DDGM and their
known drawbacks, before focusing on a more detailed introduction to the so called Denoising Diffusion
generative models (DDGM), which will appear in several chapters of this thesis.

20

1.5.1 Normalizing Flows

Normalizing flows are somehow the straighforward generative models. They rely on the fact that when
we push forward a known distribution λ through a diffeomorphism T : Rds → Rds , then the resulting
distribution has a density with respect to the Lebesgue measure that is given by

pT (x) = λ(T−1(x))|JT−1(x)| , (1.16)

where JT is the Jacobian matrix of T . Therefore, if JT is known, it is therefore easy to both sample pT
and to evaluate its density. Normalizing flows consist in stacking such diffeomorphisms n ∈ N times
to form fθ = T1,θ1 ◦ · · · ◦ Tn,θn , where for each i ∈ J1, nK , Ti,θi

: Rds → Rds is a diffeomorphism
with easy to calculate inverse Jacobians JT−1

i,θi

. The density of pθ with respect to the Lebesgue measure
is

pθ(x) = λ(f−1
θ (x))|J−1

fθ
(x)| , (1.17)

where |J−1
fθ

(x)| =
∏n
i=1 |JT−1

i,θ
((Tn,θ−1 ◦ · · · ◦ Ti+1,θ

−1)(x))|.

This fact makes also the training of normalizing flows particularly simple. Indeed, we can write

KL(qdata ∥ pθ) = −
∫

log pθ(x)qdata(dx) + C , (1.18)

which leads to the following optimization objective

θ = argmin−Eqdata [log pθ(x)] . (1.19)

It is then possible to use first-order gradient optimization objectives by calculating a Monte Carlo estimate
of the gradient of the objective defined above using samples from qdata.

As previously said, the two main advantages of Normalizing Flows is that it is both easy to sample from
and also easy to evaluate its log density. One of the main issues is that since fθ is itself a diffeomorphism,
the resulting distribution is defined over fθ(Rds) which inherits from all the topological properties of
Rds , namely, being a connected ds manifold. Therefore, if qdata represents a distribution with several
non-connected modes, the resulting distribution pθ would inevitably draw a linking path between the
modes figure 1.4. Another problem is that, if we suppose that the distribution qdata is defined over a
manifold of dimension d < ds, then by the same reason we know that pθ would not be able to accurately
fit such distribution.

Figure 1.4: Example of Normalizing flow learned distribution for the Banana shaped dataset, taken from
Figure 8 of Grenioux et al. (2023) .

21

1.5.2 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (Goodfellow et al. (2014)) alleviate the diffeomorphism constraint by
allowing ds ̸= d and a much more flexible network architecture. This renders the evaluation of the
density and log density of the ensuing distribution intricate. For ds < d, the density w.r.t the Lebesgue
measure is not defined.

To circumvent this issue, in Goodfellow et al. (2014) the generative models are trained through an
adversarial training procedure, which involves the introduction of a second deep neural network Dϕ :
Rds → {0, 1}, the discriminator network. The discriminator is trained to differentiate between samples
from pθ and qdata. At the same time, the generative model is trained to reduce the performance of the
discriminator network. More precisely, GANs are trained according to the following objective

(θ, ϕ):= argminθ argmaxϕ V (θ, ϕ):=Eqdata [logDϕ] + Epθ
[log(1−Dϕ)] . (1.20)

At first, it might seem challenging to compute gradients of V (θ, ϕ) with respect to θ, but note that
Epθ

[log(1−Dϕ)] = Eϵ∼λ [log(1−Dϕ(fθ(ϵ)))]. While GANs excel in quality of the generated samples
and runtime speed and are the golden standard in generative model for most tasks, they suffer from some
well known drawbacks, such as mode collapse and unstable training. Several strategies have been
proposed (see Jabbar et al. (2021) and references therein) to mitigate both issues, but they are still a
challenge to practitioners today.

1.5.3 Noise Conditional Score Networks (NCSN) inference by annealed Langevin dy-
namics

Before introducing the first version of DDGM in its modern form, introduced by Song et al. (2021c),
we start by first describing the algorithm for Noise Conditional Score Networks (NCSN) inference by
annealed Langevin dynamics, introduced in Song and Ermon (2019). NCSN lay the foundation of what
would then become DDGM and is the first model without adversarial training to beat GANs in image
generation tasks Song and Ermon (2019).

Before diving into the generative model defined in Song and Ermon (2019), we briefly introduce
Unadjusted Langevin Algorithm (ULA) (Roberts and Tweedie, 1996) and Score matching Hyvärinen
(2005). ULA consists of an algorithm that provides approximate samples of a distribution of interest qdata
which admits a density with respect to the Lebesgue measure by exploiting the score of the distribution.
The score is defined as the gradient of the density, i.e. ∇ log qdata. ULA defines a Markov chain {Xt}t∈N
by first sampling X0 according to some initial distribution µ0 and then defining for t ∈ N∗

Xt:=Xt−1 + γ∇ log qdata(Xt−1) + (2γ)1/2ϵt , (1.21)

where ϵt ∼ N (0, Id) and γ is a positive constant called the step size. As shown in Durmus and Moulines
(2017); Durmus et al. (2019), ULA provides samples that are arbitrarily close (in KL) to the qdata if one
chooses γ small enough and runs the chain long enough. Notably, the amount of iterations of {Xt}t∈N
needed to obtain a given precision depends on how “far" µ0 and qdata are.

Score matching Hyvärinen (2005) learns the score∇ log qdata by using i.i.d samples of qdata and without
training a model to estimate the density of qdata first. To do so, it relies on a neural network sθ that is
trained to minimize

θ ∈ Rdθ → EX∼qdata

[
tr(∇sθ(X)) + (1/2)∥sθ(X)∥2

]
, (1.22)

which is shown in Hyvärinen (2005) to be equivalent to minimizing the Score matching loss

θ ∈ Rdθ → EX∼qdata

[
∥sθ(X)−∇ log qdata(X)∥2

]
. (1.23)

22

There are two main drawbacks when learning the score via (1.22). The first being the cost of computing
the terms of (1.22) at each iteration of the training procedure. Furthermore, Song and Ermon (2019)
shows evidence that score matching with (1.22) fails to provide reliable estimates of the score in zones
of low density, which might lead to the generation of spurious samples that do not reflect the underlying
data density. We refer to (Song and Ermon, 2019, Section 3) for a detailed discussion.

To account for both problems, Song and Ermon (2019) proposes to first build a sequence of eas-
ier to sample laws {qt}t∈J0,nK, from which the respective scores sθ,t can be learned through De-
noising score matching (DSN) and then sample from them using ULA sequentially. The sequence
of laws is defined by convoluting the data distribution with a Gaussian kernel with increasing vari-
ance, namely qt|0(xt|x0) = N (xt;x0, υ

2
t Id), where {υ2

t }t∈J0,nK is an increasing positive sequence, i.e.
qt(xt):=

∫
qdata(dx0)qt|0(xt|x0). We denote the joint law qt,0(dxt,dx0):=qt|0(dxt|x0)qdata(dx0). The

score of qt can be calculated through Fisher’s identity

∇ log qt(xt) = EX0∼qdata

[
∇ log qt|0(X0|xt)

qt|0(xt|X0)
qt(xt)

]
. (1.24)

One can learn the score of qt via a Neural network sθ,t by minimising

EXt∼qt

[
∥sθ,t(Xt)−∇ log qt(Xt)∥2

]
,

which can be written

EXt∼qt

∥∥∥∥∥sθ(Xt)− EX0∼qdata

[
∇ log qt|0(xt|X0)

qt|0(Xt|X0)
qt(Xt)

]∥∥∥∥∥
2

= EXt∼qt

[
EX0∼qdata

[(
qt|0(Xt|X0)

qt(Xt)

)(
∥sθ(Xt)∥2 − 2sθ(Xt)T∇ log qt|0(Xt|X0)

)]]
+ C

= E(Xt,X0)∼qt,0

[
∥sθ(Xt)∥2 − 2sθ(Xt)T∇ log qt|0(Xt|X0)

]
+ C

= E(Xt,X0)∼qt,0

[
∥sθ(Xt)−∇ log qt|0(Xt|X0)∥2

]
+ C̃ ,

whereC and C̃ are constants that do not depend on θ. This procedure is called Denoising score matching
(DSN) and has been introduced in Vincent (2011). Therefore, by noting that ∇ log qt|0(xt|x0) =
−υ−2

t (xt − x0) the score matching problem can be written as

θ∗ = argminθ Lt(θ) = E(Xt,X0)∼qt,0

[
∥sθ(Xt) + υ−2

t (Xt −X0)∥2
]
, (1.25)

which corresponds to (Song and Ermon, 2019, equation 5). Instead of using one neural network for each
t, NCSN consists in using a single network to learn all the scores by accepting as an input the level of
noise, thus, the objective becomes

L1:n(θ, ϱ1:n) =
n∑
t=1

ϱ2
tLt(θ) =

n∑
t=1

ϱ2
tE(Xt,X0)∼qt,0

[
∥sθ(Xt, υt) + υ−2

t (Xt −X0)∥2
]
, (1.26)

where {ϱt}t∈J1,nK ∈ R are a sequence of weights. In Song and Ermon (2019), they chose ϱt = υt.

The sequence {υ2
t }t∈J0,nK is designed to increase progressively from a small υ2

1 to attain a relatively
large υ2

t . The reason is that υ2
1 small would ensure the samples to be close to samples from qdata.

Large υ2
n would increase the density in parts of the space of low density for qdata, potentially linking

between two zones of high density for qdata that previously were separated by low density regions and
rendering exploration during ULA more efficient. Furthermore, the number of iterations needed for

23

ULA to provide samples that are close to the target distribution depends on the distance between qt and
qt+1, which serves as the starting distribution for ULA targeting qt. Therefore, one would ideally have
υ2
t+1 − υ2

t small to require less ULA iterations.

The full annealed Langevin algorithm using the scores {sθ(·, υt)}t∈J1,nK is given in Algorithm 1, and
takes as input a starting sample X0

n, the number of Langevin steps k, a multiplicative constant for the
stepsize r. At time of its publication Song and Ermon (2019) achieved state of the art sample quality
on unconditional CIFAR 10 generation, beating several different generative models, such as GANs and
Normalizing flows. However, one of the drawbacks of such generative model is that the inference time is
quite long. Indeed, for the algorithm to produce high quality samples, several Langevin steps k (k = 100)
are needed with a small r (r ≈ 10−5) and n = 10, leading to 1000 Neural network evaluations (NNE)
versus 1 NNE for GAN models.

Algorithm 1 NCSN algorithm
Data: X0

n, k, r, θ
Result: X0

0
1 for t← n to 1 do
2 for ℓ← 1 to k do
3 set γ = rυ2

t /υ
2
n.

draw ϵt,ℓ ∼ N (0, Id).
set Xℓ

t = Xℓ−1
t + (γ/2)sθ(Xℓ−1

t , υt) + γ1/2ϵt,ℓ

4 set X0
t−1 = Xℓ

t .

1.5.4 Denoising Diffusion generative models (DDGM)

Denoising diffusion generative models (DDGM) target the same sequence of laws {qt}t∈J1,nK, but instead
of relying on ULA to produce samples from qt it builds a way of sampling of qt directly from qt+1.
There are several formulations and variations of DDGM, relying on stochastic differential equations Song
et al. (2021c), ordinary differential equations Karras et al. (2022) or Markov chains Song et al. (2021a).
We follow the presentation of Song et al. (2021a) that yields the so called DDIM (denoising diffusion
implicit model) sampler.

The building block for DDIM are the inference bridges {qηt−1
t−1|t,0(xt−1|x0, xt)}nt=2, depending on a

sequence {ηt}t∈J1,n−1K of hyperparameters, defined as

q
ηt−1
t−1|t,0(xt−1|xt, x0):=N

(
xt−1;µk−1(x0, xt), η2

t−1 Id
)

(1.27)

µt−1(x0, xt):=x0 + (υ2
t−1/υ

2
t − η2

t−1/υ
2
t)1/2(xt − x0) . (1.28)

The definitions above may at first seem artificial, but they are motivated by the following lemma.

Lemma 1 (Adapted from (Song et al., 2021a, Lemma 1, Appendix B)). Let t ∈ J2, n − 1K and
η2 ∈ (0, υ2

t−1). Then,

qηt−1|0(xt−1|x0):=
∫
qt|0(dxt|x0)qηt−1|t,0(xt−1|xt, x0) = qt−1|0(xt−1|x0) . (1.29)

Define, for a given η = {ηt}t∈J0,nK satisfying ηt ∈ (0, υt) for t ∈ J1, nK and inference process

qη1:n|0(dx1:n|x0) = qn|0(dxn|x0)
n∏
t=2

q
ηt−1
t−1|t,0(dxt−1|xtx0) (1.30)

qη0:n(dx0:n) = qη1:n|0(dx1:n|x0)qdata(dx0) . (1.31)

24

Lemma 1 implies that qη0:n admits qt as t marginals. Furthermore, Lemma 1 allows us to define

qηt−1
t−1|t : Rd × B(Rd) ∋ (xt, A)→

∫
1A(xt−1)qηt−1

t−1|t,0(dxt−1|xt, x0)q0|t(dx0|xt) , (1.32)

which satisfies
qt−1(dxt−1) =

∫
qηt−1
t−1|t(dxt−1|xt)qt(dxt) . (1.33)

Even though (1.33) provides a way of passing from qt to qt−1, it involves an intractable kernel qηt−1
t−1|t.

By noting that EX0∼qη
0|t(·|xt)

[
∇ log qt|0(xt|X0)

]
= −(Ex0∼qη

0|t(·|xt) [X0] − xt)/υ2
t , one can obtain an

estimate of EX0∼qη
0|t(·|xt) [X0] by

µt,θ(xt):=xt + υ2
t sθ(xt, υt) . (1.34)

We use µt,θ() as a replacement of the integral in (1.33) to define, for a given ηt−1

p
θ,ηt−1
t−1|t (dxt−1|xt) = q

ηt−1
t−1|t,0(dxt−1|xt, µθ,t(xt)) . (1.35)

We finally define the backward distribution

pθ,η0:n(dx1:n):=λn(dxn)
n∏
t=1

p
θ,ηt−1
t−1|t (dxt−1|xt) . (1.36)

where pθ,η0
0|1 (·|x1) = N (µ1,θ(x1), η2

0 I) and λn = N (0, υ2
n I).

While we have motivated the backward distribution by replacing qθ,ηt−1|t by pθ,ηt−1|t, it can also be viewed
as minimizing the Kullback-Leibler (KL) between the inference process (1.31) and the variational family
defined by (1.36), which we denote FDDIM(η).
Defining qt,0(d(xt, x0)):=qdata(dx0)qt|0(dxt|x0), we can write

KL(qη0:n ∥ pθ0:n) =
∫

log
(qdata(x0)qn|0(xn|x0)

∏n
t=2 q

η
t−1|t,0(xt−1|xt, x0)

λn(xn)
∏n
t=1 p

θ
t−1|t(xt−1|xt)

)
qη0:n(dx0:n)

=
∫

log
(

qdata(x0)
pθ0|1(x0|x1)

)
q0,1(dx0:1) +

∫
log

(
qn|0(xn|x0)
λn(xn)

)
qn,0(dxn, dx0)

+
n∑
t=2

∫
log

(
qηt−1|t,0(xt−1|x0, xt)
pθt−1|t(xt−1|xt)

)
qηt−1|t,0(dxt−1|xt, x0)qt,0(dxt, dx0)

= −
∫

log pθ0|1(x0|x1)q1,0(dx0:1) + υ−2
n Eqdata

[
∥X0∥2

]
+
∫

log qdata(x0)qdata(dx0)

+
n∑
t=2

E(Xt,X0)∼qt,0

[
KL(qηt−1|t,0(·|Xt, X0) ∥ pθt−1|t(·|Xt))

]

= 1
2

n−1∑
t=0

ϱ̃2
tE(Xt,X0)∼qt,0

[
∥µt,θ(Xt)−X0∥2

]
+ υ−2

n Eqdata

[
∥X0∥2

]
+
∫

log qdata(x0)qdata(dx0) + d log η0 + d

2 log(2π) ,

with ϱ̃t−1:=
[
υt − (υ2

t−1 − η2
t−1)1/2

]
(ηt−1υt)−1 for t ∈ J2, nK and ϱ0 = η−1

0 . Note that since
∥µt,θ(xt)− x0∥2 = υ2

t ∥sθ(xt, υt)−∇ log qt|0(xt|x0)∥2, using (1.26) we can write

KL(qη0:n ∥ pθ0:n) = EX1∼q1

[
KL(qdata ∥ pθ0|1(·|X1))

]
+ L1:n(θ, ϱ1:n) + KL(qn ∥ λn) , (1.37)

25

with ϱt−1 = ϱ̃t−1υt = η−1
t−1

[
υt − (υ2

t−1 − η2
t−1)1/2

]
for t ∈ J2, nK and ϱ0 = η−1

0 υ1. This links
the minimization of KL(qη0:n ∥ pθ0:n) and the score matching objective defined in eq. (1.26) with this
particular choice of ϱ1:n. Note that to further minimize the KL(qη0:n ∥ pθ0:n), we must choose υn ≫
Eqdata

[
∥X0∥2

]1/2. Note as well that one expects that by choosing υ1 small, the loss term defined by
EX1∼q1

[
KL(qdata ∥ pθ0|1(·|X0))

]
should be easier to learn, as q1 ≈ qdata.

As shown in Song et al. (2021c) and Song et al. (2021a), the corresponding generative model is capable
of generating high-quality samples. Note as well that the same minimum is shared over FDDIM(sη) for
every s ∈ (0, 1), showing that once a model is trained with a fixed η, it is possible to reduce the variance
of the backward kernels to sη while still being sure of attaining the minimizer over FDDIM(sη). In Song
et al. (2021a), they show that this provides a tradeoff between sample quality and inference time. Namely
by reducing η and skipping some of the backward kernels, one is able to obtain higher perceptual scores
for image generation than one would by only skipping some of the backward kernels. This leads to
reducing considerably the number of NNE to 10 with only a slight degradation of sample quality.

Convolutional Neural Networks and Denoising

The success of DDGM for image generation tasks relies in parts on the fact that Convolutional Neural
networks, and especially the UNet Ronneberger et al. (2015) architecture, are extremely good in denoising
tasks. In particular, in DDGM each backward kernel pt−1|t relies on the denoising of the state at iteration
t to render qηt−1

t−1|t,0 Markovian. This section is heavily inspired by the work of Ulyanov et al. (2018),
where they show that the structure of the UNet itself is a good prior for some inverse problems, such as
denoising, super resolution and inpainting. We provide some numerical insights into why it is a good
idea to train a neural network µθ(·) to minimize (1.37). Let x0 be a natural image, xs a realisation of
Xs = x0 +(1/4)ε1 and xt a realisation ofXt = xs+(1/4)ε2 where ε1, ε2 are i.i.dN (0, Id). In Ulyanov
et al. (2018), they propose to use a UNet network µθ(·) to denoise xt by solving argminθ ∥µθ(z)−xt∥2 ,
where z is a fixed white noise seed. Indeed, Ulyanov et al. (2018) show that by early stopping on this
objective it is possible to generate realistic denoized images of xt.

With this in mind, in this section we adapt this method to answer the following question What is easier
for a UNet to predict, xs from xt or x0 from xt?

To answer this question, let again µθ(·) be a UNet. Consider the following losses:

Lt|s(θ):=∥µθ(xt)− xs∥2 and Lt|0(θ):=∥µθ(xt)− x0∥2 .

In Figure 1.5 we train two networks with the same initialization to minimize Lt|s(θ) (indicated by the
circles) and Lt|0(θ) (indicated by stars) and track the values of each loss through the optimization. We
see that in the beginning of the optimization, the output from the network is actually closer to x0 than
to xs, even when trained over Lt|s(θ) which is coherent with Ulyanov et al. (2018). This shows that the
task of predicting x0 from xt is actually simpler than predicting xs from xt.

26

x0 xs xt

M
SE

Figure 1.5: In the top row, we show the images used in the experiment (x0, xs, xt) and in bottom row
we show the evolution of Lt|s(θ) and Lt|0(θ) where the circle curves are obtained by minimizing Lt|s(θ)
and the star curve by minimizing Lt|0(θ).

Another interesting consideration is that the last term in the optimization objective of a DDGM(1.25)
is closely connected to the denoising objective defined above. Indeed, Xn is close to N (0, υ2

n I) and
therefore the term EX0∼qdata,ϵ∼N (0,I)

[
∥µn,θ(X0 + υnϵ)−X0∥2

]
, is effectively trying to predict the

image X0 from υnϵ. We show in Figure 1.6 examples of µn,θ(·) applied to Gaussian noise with υn
standard deviation.

Figure 1.6: Example of the denoising from Gaussian noise using a DDGM. We use here the google/ddpm-
ema-celebahq-256 from the HuggingFaces diffusers library.

DDGM as a prior for inverse problems

An interesting property of DDGM that distiguishes it from other generative models such as GANs is
the iterative nature of the process of generating a sample. While the denoiser network is a complicated
object, conditionally on xt, pt−1|t is a well known distribution. This makes conditioning of such models
easier, since it is possible to act over each pt−1|t separately in order to obtain a conditional sample through
p0|1. We drop the dependence on θ from the notation, since in this section we consider that we are given

27

a pre-trained DDGM.

This possibility opens a considerably rich field of research, particularly when using DDGM as priors for
solving Bayesian inverse problems defined in Section 1.3.2. Several research works propose methods for
sampling from the posterior distribution π when the prior distribution λ is a DDGM, such as Song et al.
(2021a); Kawar et al. (2022); Lugmayr et al. (2022); Chung et al. (2023). The posterior distribution, as
in (1.1), is py0(x0) ∝ gy0(x0)p0(x0),where gy0 is the likelihood function of the associated inverse problem.
The posterior extended distribution is defined as

py0:n(dx0:n) ∝ gy0(x0)λn(dxn)
n∏
t=1

pt−1|t(dxt−1|xt) . (1.38)

The t marginals of py0:n are

pyt (A):=
∫
1A(xt)py0:n(dx0:n) =

∫
1A(xt)gy0(x0)p0|t(dx0|xt)pt(dxt) =

∫
1A(xt)gyt (xt)pt(dxt) ,

(1.39)
where gyt (xt):=

∫
gy0(x0)p0|t(dx0|xt). The score of the posterior can be written as ∇ log pyt (xt) =

∇ log gyt (xt) + ∇ log pt|t+1(xt|xt+1). The current available methods to sample from py0 either try to
approximate py0:n by creating an alternative easier to sample version of py0:n, such as Song et al. (2021a);
Kawar et al. (2022); Lugmayr et al. (2022) or try to approximate∇ log gyt (xt) such as Chung et al. (2023).
All of those algorithms introduce irreducible approximation errors, leading to samplers that even though
generate samples that are qualitatively appealing in some tasks, might have unexpected behaviours in
other tasks. This lack of theoretical guarantees is specifically a problem when considering sensitive
applications of such algorithms, as for example would be the case in applications to medical data.

(Q4) Is it possible to derive an algorithm for sampling from the posterior of a Bayesian inverse problem
when using a DDGM as a prior that is theoretically grounded under realistic assumptions?

1.6 Contributions

The content of the present thesis is motivated by the research questions Q 1, 3 and 4 studied in the
following papers which constitute the five remaining chapters of this document.

1. BR-SNIS: bias reduced self-normalized importance sampling (Cardoso et al., 2022c)
Gabriel V Cardoso, Sergey Samsonov, Achille Thin, Eric Moulines, Jimmy Olsson.
Advances in Neural Information Processing Systems 35 (NeurIPS) 2022.

2. Particle-based, rapid incremental smoother meets particle Gibbs (Cardoso et al., 2022a)
Gabriel V. Cardoso, Jimmy Olsson, Eric Moulines
Statistica Sinica.

3. State and parameter learning with the PaRIS particle Gibbs (Cardoso et al., 2023a).
Gabriel V. Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines, Jimmy Olsson.
International Conference in Machine Learning 40 (ICML) (2023).

4. Monte Carlo guided Diffusion for Bayesian linear inverse problems (Cardoso et al., 2023b).
Gabriel V. Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines.
Accepter for oral presentation ICLR 2024.

5. ECG Inpainting with denoising diffusion prior (Bedin et al., 2023).
Lisa Bedin, Gabriel V. Cardoso, Remi Dubois, Eric Moulines
Deep Generative Models for Health Workshop NeurIPS 2023.

28

6. Bayesian ECG reconstruction using denoising diffusion generative models (Cardoso et al., 2023c)
Gabriel V. Cardoso, Lisa Bedin, Josselin Duchateau, Rémi Dubois, Eric Moulines.
Under review.

While not present in this thesis, I have also co-authored the following conference papers:

• A Patient-Specific Single Equivalent Dipole Model. (Cardoso et al., 2022b)
Gabriel V. Cardoso, Geneviève Robin, Andony Arrieula, Mark Potse, Michel Haïssaguerre, Eric
Moulines, Rémi Dubois.
2022 Computing in Cardiology (CinC). Vol. 498. IEEE, 2022.

• Generative methods for sampling transition paths in molecular dynamics. (Lelièvre et al., 2023)
Tony Lelièvre, Geneviève Robin, Innas Sekkat, Gabriel Stoltz, Gabriel V. Cardoso.
ESAIM: Proceedings and Surveys 73 (2023): 238-256.

Below, we provide a summary of the contributions made in each chapter. Please note that we introduce
notations in each chapter, although there may be some overlap. These notations are always defined at the
beginning of each chapter.

Chapter 2 / Q 2 - Bias Reduced Self Normalizing importance sampling

In this chapter, we analyse the so-called recycled i-SIR estimator described in Section 1.4.1.1 and show
that under the same hypothesis that ensures geometric ergodicity of the chain of states {Yk}k∈N, the
SNIS estimations associated with the candidate pool chain {X1:N

k }k∈N have exponentially fast decaying
bias. We derive MSE and concentration bounds for this estimator.

We propose a rollout estimator, that we furnish with bias, MSE and concentration bounds. Those bounds
suggest a bias-variance trade off with respect to the number of burn-in steps k0. We then propose a
bootstrap procedure that allows to recover the variance loss with respect to the equivalent SNIS algorithm
(SNIS with the same number of samples used in the whole procedure).

We show empirically in different datasets and applications the effect of bias-reduction without signif-
icantly increasing the variance of the proposed estimator. Furthermore, we show that in settings of
limited budget, the proposed estimator yields estimations with smaller empirical bias then the zero-bias
estimators proposed by Middleton et al. (2019).

Chapter 3 / Q 3 -PPG: Particle-based, Rapid Incremental Smoother Meets Particle Gibbs.

In this chapter, we extend the results concerning iSIR and importance sampling obtained in Chapter 2
to the case of the Particle Gibbs with backward sampling by merging the Particle Gibbs with Backward
sampling algorithm with the PARIS algorithm. The proposed algorithm can be seen as a small modifi-
cation over the PARIS algorithm and is able to generate a conditioning path ζ0:m[k] (as in PGBS) and a
sequence of βm that approaches π0:mh0:m for additive functionals h0:m.

We show that the sequence of paths ζ0:m[k] still have the same theoretical guarantees as the PGBS while
achieving an exponential reduction of the bias of the estimator N−1∑N

i=1 β
i
m. We provide the resulting

algorithm with an upper bound on the bias that decreases inversely proportional to the number N of
particles and exponentially fast with the particle Gibbs iteration index k (under the assumption that the
particle Gibbs sampler is uniformly ergodic). This is achieved while keeping the MSE comparable to
that of the PARIS smoother. We provide numerical illustrations of our bounds in a Linear Gaussian state
space model and in the non-linear stochastic volatility model.

29

Chapter 4 / Q 3 - Parameter learning with PPG.

Once we obtained the PPG algorithm in Chapter 3, we employ it in the context of score ascent, where we
adapt the strategy of Karimi et al. (2019) to provide a non-asymptotic bound for the expectation of the
squared gradient in terms of bias and MSE of the PPG. This bound establishes a O(log(n)/

√
n) conver-

gence rate of the learning procedure which is explicit in the bias and MSE of the PPG estimator.

We show that the issuing optimization scheme is competitive in several numerical examples and performs
better than approaches purely based on Particle Gibbs such as Lindholm and Lindsten (2018) in a same
budget setting.

Chapter 5 / Q 4 - Monte Carlo guided Diffusion for Bayesian linear inverse problems.

In this chapter we consider the problem of sampling from the posterior of a DDGM model. We focus on
the linear Gaussian inverse problem. Current methods Song et al. (2021a); Kawar et al. (2022); Lugmayr
et al. (2022); Chung et al. (2023) aiming to sample from π, introduce an irreducible bias rendering
them unreliable for critical applications. We propose a sequential Monte Carlo sampler that returns a
consistent particle approximation of π, ensuring that asymptotically we sample from the target posterior.
For this purpose we introduce a sequence of guiding potentials {gys}ns=1 to the posterior distribution
(1.38) that guide each marginal pt to form ptgyt while still admitting py0 as the 0-th marginal.

We construct the sequence of potentials first in the “noiseless” setting, i.e. σ = 0. We show that the
general case (σ > 0) can be seen as a noiseless inverse problem on the extended states with prior pθ0:n.
The derived SMC sampler targets the posterior and is provided with a non-asymptotic bound on the KL
divergence between the target posterior and the expected particle approximation.

We show several examples (in high-dimension) for which the target posterior distribution is known
evidence of our theoretical results, i.e. that the empirical distribution of samples from our algorithms
converge to the target posterior distributions. By doing so, we also show that current "posterior sampling
algorithms" do not sample from the target posterior, by generating a significant number of samples
outside the support of the target posterior.

Chapter 6 / Q 1 - Bayesian ECG Reconstruction using MCG-DIFF.

In this chapter, we show how, by combining MCGdiff from Chapter 5 with a learned DDGM on ECG
data, we are able to solve several different ECG reconstruction tasks better than the current methods
without any fine-tuning required.

We show in particular that this tool can be valuable for solving anomaly detection on the ECG and
show that it effectively distinguishes between the normal population and those that suffered a Miocardial
Infarction. We also adapt MCGdiff to handle unknown measurement noise by coupling MCGdiff with a
score ascent algorithm.

30

Bibliography

Adib, E., Afghah, F., and Prevost, J. J. (2022). Arrhythmia classification using cgan-augmented ecg
signals*. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages
1865–1872.

Adib, E., Fernandez, A. S., Afghah, F., and Prevost, J. J. (2023). Synthetic ecg signal generation using
probabilistic diffusion models. IEEE Access, 11:75818–75828.

Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D., and Stuart, A. M. (2017). Importance sampling:
Intrinsic dimension and computational cost. Statistical Science, 32(3):405–431.

Alcaraz, J. M. L. and Strodthoff, N. (2023). Diffusion-based conditional ecg generation with structured
state space models. Computers in Biology and Medicine, 163:107115.

Aldous, D., Lovász, L., and Winkler, P. (1997). Mixing times for uniformly ergodic markov chains.
Stochastic Processes and their Applications, 71(2):165–185.

Anderson, G. D. and Qiu, S.-L. (1997). A monotonicity property of the gamma function. Proc. Amer.
Math. Soc., 125(11):3355–3362.

Andrieu, C. (2016). On random-and systematic-scan samplers. Biometrika, 103(3):719–726.

Andrieu, C. and Doucet, A. (2002). Particle filtering for partially observed Gaussian state space models.
J. Roy. Statist. Soc. B, 64(4):827–836.

Andrieu, C. and Doucet, A. (2003). Online Expectation–Maximization type algorithms for parameter
estimation in general state space models. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
volume 6, pages 69–72.

Andrieu, C., Doucet, A., and Holenstein, R. (2010a). Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B, 72(3):269–342.

Andrieu, C., Doucet, A., and Holenstein, R. (2010b). Particle Markov chain Monte Carlo methods (with
discussion). J. Roy. Statist. Soc. B, 72:269–342.

Andrieu, C., Lee, A., and Vihola, M. (2018). Uniform ergodicity of the iterated conditional SMC and
geometric ergodicity of particle Gibbs samplers. Bernoulli, 24(2):842–872.

Arjomand Bigdeli, S., Zwicker, M., Favaro, P., and Jin, M. (2017). Deep mean-shift priors for image
restoration. Advances in Neural Information Processing Systems, 30.

Ball, R. L., Feiveson, A. H., Schlegel, T. T., Stare, V., and Dabney, A. R. (2014). Predicting “heart age”
using electrocardiography. Journal of personalized medicine, 4(1):65–78.

Bazett, H. (1997). An analysis of the time-relations of electrocardiograms. Annals of noninvasive
electrocardiology, 2(2):177–194.

31

Bedin, L., Cardoso, G., Dubois, R., and Moulines, E. (2023). ECG inpainting with denoising diffusion
prior. In Deep Generative Models for Health Workshop NeurIPS 2023.

Benton, J., Shi, Y., De Bortoli, V., Deligiannidis, G., and Doucet, A. (2022). From denoising diffusions
to denoising markov models. arXiv preprint arXiv:2211.03595.

Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial
statistics. Annals of the institute of statistical mathematics, 43:1–20.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877.

Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. (2015). Sliced and Radon Wasserstein Barycenters of
Measures. Journal of Mathematical Imaging and Vision, 1(51):22–45.

Brammer, J. C. (2020). biopeaks: a graphical user interface for feature extraction from heart- and
breathing biosignals. Journal of Open Source Software, 5(54):2621.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519.

Cappé, O. (2001). Recursive computation of smoothed functionals of hidden Markovian processes using
a particle approximation. Monte Carlo Methods Appl., 7(1–2):81–92.

Cappé, O. (2011). Online EM algorithm for hidden Markov models. J. Comput. Graph. Statist.,
20(3):728–749.

Cappé, O., Godsill, S. J., and Moulines, E. (2007). An overview of existing methods and recent advances
in sequential Monte Carlo. IEEE Proceedings, 95(5):899–924.

Cappé, O., Moulines, E., and Rydén, T. (2005a). Inference in Hidden Markov Models. Springer.

Cappé, O., Moulines, E., and Ryden, T. (2005b). Inference in Hidden Markov Models (Springer Series
in Statistics). Springer-Verlag, Berlin, Heidelberg.

Cardoso, G., El Idrissi, Y. J., Le Corff, S., Moulines, É., and Olsson, J. (2023a). State and parameter
learning with paris particle gibbs. In International Conference on Machine Learning, pages 3625–
3675. PMLR.

Cardoso, G., Idrissi, Y. J. E., Corff, S. L., and Moulines, E. (2023b). Monte carlo guided diffusion for
bayesian linear inverse problems.

Cardoso, G., Moulines, E., and Olsson, J. (2022a). Particle-based, rapid incremental smoother meets
particle gibbs. arXiv preprint arXiv:2209.10351.

Cardoso, G., Robin, G., Arrieula, A., Potse, M., Haïssaguerre, M., Moulines, E., and Dubois, R. (2022b).
A patient-specific single equivalent dipole model. In 2022 Computing in Cardiology (CinC), volume
498, pages 1–4. IEEE.

Cardoso, G., Samsonov, S., Thin, A., Moulines, E., and Olsson, J. (2022c). Br-snis: Bias reduced self-
normalized importance sampling. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A., editors, Advances in Neural Information Processing Systems, volume 35, pages 716–729.
Curran Associates, Inc.

Cardoso, G. V., Bedin, L., Duchateau, J., Dubois, R., and Moulines, E. (2023c). Bayesian ecg recon-
struction using denoising diffusion generative models. arXiv preprint arXiv:2401.05388.

32

Chen, J., Lian, D., Jin, B., Huang, X., Zheng, K., and Chen, E. (2022). Fast variational autoencoder with
inverted multi-index for collaborative filtering. In Proceedings of the ACM Web Conference 2022,
pages 1944–1954.

Cheney, M. and Borden, B. (2009). Fundamentals of radar imaging. SIAM.

Chiang, H.-T., Hsieh, Y.-Y., Fu, S.-W., Hung, K.-H., Tsao, Y., and Chien, S.-Y. (2019). Noise reduction
in ecg signals using fully convolutional denoising autoencoders. IEEE Access, 7:60806–60813.

Chopin, N. and Papaspiliopoulos, O. (2020). An Introduction to Sequential Monte Carlo, volume 4.
Springer.

Chopin, N. and Singh, S. S. (2015). On particle Gibbs sampling. Bernoulli, 21(3):1855–1883.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2023). Diffusion posterior sam-
pling for general noisy inverse problems. In The Eleventh International Conference on Learning
Representations.

Ciosek, K., Fortuin, V., Tomioka, R., Hofmann, K., and Turner, R. E. (2020). Conservative uncertainty
estimation by fitting prior networks. In International Conference on Learning Representations.

Dai, C., Heng, J., Jacob, P. E., and Whiteley, N. (2022). An invitation to sequential monte carlo samplers.
Journal of the American Statistical Association, 117(539):1587–1600.

Dashti, M. and Stuart, A. M. (2017). The bayesian approach to inverse problems. In Handbook of
uncertainty quantification, pages 311–428. Springer.

Del Moral, P. (2004). Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with
Applications. Springer.

Del Moral, P. (2013). Mean Field Simulation for Monte Carlo Integration. CRC Press.

Del Moral, P., Doucet, A., and Singh, S. S. (2010). A backward interpretation of Feynman–Kac formulae.
ESAIM: Mathematical Modelling and Numerical Analysis, 44:947–975.

Del Moral, P. and Guionnet, A. (2001). On the stability of interacting processes with applications to
filtering and genetic algorithms. Annales de l’Institut Henri Poincaré, 37:155–194.

Del Moral, P. and Jasra, A. (2018). A sharp first order analysis of Feynman–Kac particle models, part
II: Particle Gibbs samplers. Stoch. Proc. Appl., 128(1):354–371.

Del Moral, P., Kohn, R., and Patras, F. (2016). On particle Gibbs samplers. Ann. Inst. H. Poincaré
Probab. Statist., 52(4):1687–1733.

Dhariwal, P. and Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using real NVP. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings.

Douc, R., Cappé, O., and Moulines, E. (2005). Comparison of resampling schemes for particle filtering.
In 4th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia.
arXiv: cs.CE/0507025.

Douc, R., Garivier, A., Moulines, E., and Olsson, J. (2011). Sequential Monte Carlo smoothing for
general state space hidden Markov models. Ann. Appl. Probab., 21(6):1201–2145.

33

Douc, R. and Moulines, E. (2008). Limit theorems for weighted samples with applications to sequential
Monte Carlo methods. Ann. Statist., 36(5):2344–2376.

Douc, R., Moulines, E., Priouret, P., and Soulier, P. (2018). Markov chains. Springer Series in Operations
Research and Financial Engineering. Springer, Cham.

Douc, R., Moulines, E., and Stoffer, D. (2014). Nonlinear time series: Theory, methods and applications
with R examples. CRC press.

Doucet, A., De Freitas, N., Gordon, N. J., et al. (2001). Sequential Monte Carlo methods in practice,
volume 1. Springer.

Durmus, A., Majewski, S., and Miasojedow, B. (2019). Analysis of langevin monte carlo via convex
optimization. Journal of Machine Learning Research, 20(73):1–46.

Durmus, A. and Moulines, E. (2017). Nonasymptotic convergence analysis for the unadjusted Langevin
algorithm. The Annals of Applied Probability, 27(3):1551–1587.

Elbakri, I. A. and Fessler, J. A. (2002). Statistical image reconstruction for polyenergetic x-ray computed
tomography. IEEE transactions on medical imaging, 21(2):89–99.

Elvira, V. and Martino, L. (2021). Advances in importance sampling. arXiv preprint arXiv:2102.05407.

Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., and Freeman, W. T. (2006). Removing camera
shake from a single photograph. In Acm Siggraph 2006 Papers, pages 787–794.

Figueiredo, M. A., Bioucas-Dias, J. M., and Nowak, R. D. (2007). Majorization–minimization algorithms
for wavelet-based image restoration. IEEE Transactions on Image processing, 16(12):2980–2991.

Fort, G., Moulines, E., and Priouret, P. (2011). Convergence of adaptive and interacting markov chain
monte carlo algorithms. The Annals of Statistics, 39(6).

Fridericia, L. (1921). Die systolendauer im elektrokardiogramm bei normalen menschen und bei
herzkranken. Acta Medica Scandinavica, 54(1):17–50.

Genevay, A., Cuturi, M., Peyré, G., and Bach, F. (2016). Stochastic optimization for large-scale optimal
transport. Advances in neural information processing systems, 29.

Gloaguen, P., Le Corff, S., and Olsson, J. (2022). A pseudo-marginal sequential Monte Carlo online
smoothing algorithm. Bernoulli, 28(4):2606–2633.

Glynn, P. W. and Rhee, C.-H. (2014). Exact estimation for markov chain equilibrium expectations.
Journal of Applied Probability, 51(A):377–389.

Godsill, S. J., Doucet, A., and West, M. (2004). Monte Carlo smoothing for non-linear time series. J.
Am. Statist. Assoc., 50:438–449.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C.,
Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000
(June 13)). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new re-
search resource for complex physiologic signals. Circulation, 101(23):e215–e220. Circula-
tion Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218; doi:
10.1161/01.CIR.101.23.e215.

González, R. C., Woods, R. E., and Masters, B. R. (2009). Digital image processing, third edition.
Journal of Biomedical Optics, 14:029901.

34

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative adversarial nets. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’14, page 2672–2680, Cambridge, MA,
USA. MIT Press.

Gordon, N., Salmond, D., and Smith, A. F. (1993). Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proc. F, Radar Signal Process., 140:107–113.

Grenioux, L., Oliviero Durmus, A., Moulines, E., and Gabrié, M. (2023). On sampling with approximate
transport maps. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 11698–11733. PMLR.

Gui, J., Sun, Z., Wen, Y., Tao, D., and Ye, J. (2021). A review on generative adversarial networks:
Algorithms, theory, and applications. IEEE transactions on knowledge and data engineering.

Haïssaguerre, M., Hocini, M., Cheniti, G., Duchateau, J., Sacher, F., Puyo, S., Cochet, H., Takigawa, M.,
Denis, A., Martin, R., et al. (2018). Localized structural alterations underlying a subset of unexplained
sudden cardiac death. Circulation: Arrhythmia and Electrophysiology, 11(7):e006120.

Hesterberg, T. (1995). Weighted average importance sampling and defensive mixture distributions.
Technometrics, 37(2):185–194.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851.

Hoffman, M. and Gelman, A. (2011). The no-u-turn sampler: Adaptively setting path lengths in
hamiltonian monte carlo. Journal of Machine Learning Research, 15.

Hoffman, M. D., Gelman, A., et al. (2014). The no-U-turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623.

Hsu, D., Kontorovich, A., Levin, D. A., Peres, Y., Szepesvári, C., and Wolfer, G. (2019). Mixing time
estimation in reversible markov chains from a single sample path. The Annals of Applied Probability,
29(4):2439–2480.

Huggins, J. H. and Roy, D. M. (2019). Sequential Monte Carlo as approximate sampling: bounds,
adaptive resampling via∞-ESS, and an application to particle Gibbs. Bernoulli, 25(1):584 – 622.

Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. J. Finance,
42:281–300.

Hyvärinen, A. (2005). Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(24):695–709.

Ibanez, B., James, S., Agewall, S., Antunes, M. J., Bucciarelli-Ducci, C., Bueno, H., Caforio, A. L. P.,
Crea, F., Goudevenos, J. A., Halvorsen, S., Hindricks, G., Kastrati, A., Lenzen, M. J., Prescott, E.,
Roffi, M., Valgimigli, M., Varenhorst, C., Vranckx, P., Widimský, P., and Group, E. S. D. (2017).
2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with
ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients
presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart
Journal, 39(2):119–177.

Idier, J. (2013). Bayesian approach to inverse problems. John Wiley & Sons.

Ivanov, O., Figurnov, M., and Vetrov, D. (2018). Variational autoencoder with arbitrary conditioning.
arXiv preprint arXiv:1806.02382.

35

Jabbar, A., Li, X., and Omar, B. (2021). A survey on generative adversarial networks: Variants,
applications, and training. ACM Computing Surveys (CSUR), 54(8):1–49.

Jacob, P. E., Lindsten, F., and Schön, T. B. (2020a). Smoothing with couplings of conditional particle
filters. J. Am. Statist. Assoc., 115(530):721–729.

Jacob, P. E., O’Leary, J., and Atchadé, Y. F. (2020b). Unbiased markov chain monte carlo methods with
couplings. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(3):543–600.

Jameson, J. L., Fauci, A. S., Kasper, D. L., Hauser, S. L., Longo, D. L., and Loscalzo, J. (2018).
McGraw-Hill Education, New York, NY.

Jarner, H., larsen, T. S., Krogh, A., Saxild, H. H., Brunak, S., and Knudsen, S. (2001). Sigma A
recognition sites in the Bacilius subtilis genome. Microbiology, 147:2417–2424.

Kahn, H. and Marshall, A. W. (1953). Methods of reducing sample size in monte carlo computations.
Journal of the Operations Research Society of America, 1(5):263–278.

Kaipio, J. P., Kolehmainen, V., Somersalo, E., and Vauhkonen, M. (2000). Statistical inversion and
monte carlo sampling methods in electrical impedance tomography. Inverse problems, 16(5):1487.

Kaltenbach, S., Perdikaris, P., and Koutsourelakis, P.-S. (2023). Semi-supervised invertible neural
operators for bayesian inverse problems. Computational Mechanics, pages 1–20.

Kang, J. and Wen, H. (2022). A Study on Several Critical Problems on Arrhythmia Detection using
Varying-Dimensional Electrocardiography. Physiological Measurement, 43(6):064007.

Karbalayghareh, A., Qian, X., and Dougherty, E. R. (2018). Optimal bayesian transfer learning. IEEE
Transactions on Signal Processing, 66(14):3724–3739.

Karimi, B., Miasojedow, B., Moulines, E., and Wai, H.-T. (2019). Non-asymptotic analysis of biased
stochastic approximation scheme. In Beygelzimer, A. and Hsu, D., editors, Proceedings of the Thirty-
Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research,
pages 1944–1974. PMLR.

Karras, T., Aittala, M., Aila, T., and Laine, S. (2022). Elucidating the design space of diffusion-based
generative models. In Proc. NeurIPS.

Kawar, B., Elad, M., Ermon, S., and Song, J. (2022). Denoising diffusion restoration models.

Kawar, B., Vaksman, G., and Elad, M. (2021). Snips: Solving noisy inverse problems stochastically.
Advances in Neural Information Processing Systems, 34:21757–21769.

Kingma, D. P. and Ba, J. (2015a). Adam: A method for stochastic optimization. In ICLR 2015.

Kingma, D. P. and Ba, J. (2015b). Adam: A method for stochastic optimization. In Bengio, Y. and LeCun,
Y., editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings.

Kingma, D. P. and Welling, M. (2014). Stochastic gradient vb and the variational auto-encoder. In
Second International Conference on Learning Representations, ICLR, volume 19, page 121.

Kingma, D. P., Welling, M., et al. (2019). An introduction to variational autoencoders. Foundations and
Trends® in Machine Learning, 12(4):307–392.

Kobyzev, I., Prince, S., and Brubaker, M. (2020). Normalizing flows: An introduction and review of
current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11):3964–3979.

36

Koskela, J., Jenkins, P. A., Johansen, A. M., and Spanò, D. (2018). Asymptotic genealogies of interacting
particle systems with an application to sequential monte carlo. arXiv: Statistics Theory.

Kroese, D. P. and Rubinstein, R. Y. (2012). Monte carlo methods. Wiley Interdisciplinary Reviews:
Computational Statistics, 4(1):48–58.

Kuzborskĳ, I., Vernade, C., Gyorgy, A., and Szepesvári, C. (2021). Confident off-policy evaluation and
selection through self-normalized importance weighting. In International Conference on Artificial
Intelligence and Statistics, pages 640–648. PMLR.

Lamberti, R., Petetin, Y., Septier, F., and Desbouvries, F. (2018). A double proposal normalized
importance sampling estimator. In 2018 IEEE Statistical Signal Processing Workshop (SSP), pages
238–242. IEEE.

Lawson, J., Tucker, G., Dai, B., and Ranganath, R. (2019). Energy-inspired models: Learning with
sampler-induced distributions. Advances in Neural Information Processing Systems, 32.

Lee, A. (2011). On auxiliary variables and many-core architectures in computational statistics. PhD
thesis, University of Oxford.

Lee, A., Singh, S. S., and Vihola, M. (2020). Coupled conditional backward sampling particle filter.
Ann. Statist., 48(5):3066–3089.

Lee, A., Yau, C., Giles, M. B., Doucet, A., and Holmes, C. C. (2010). On the utility of graphics cards to
perform massively parallel simulation of advanced Monte Carlo methods. Journal of computational
and graphical statistics, 19(4):769–789.

Lelièvre, T., Robin, G., Sekkat, I., Stoltz, G., and Cardoso, G. V. (2023). Generative methods for
sampling transition paths in molecular dynamics. ESAIM: Proceedings and Surveys, 73:238–256.

Li, H., Ditzler, G., Roveda, J., and Li, A. (2023). Descod-ecg: Deep score-based diffusion model for ecg
baseline wander and noise removal. IEEE Journal of Biomedical and Health Informatics, pages 1–11.

Lindholm, A. and Lindsten, F. (2018). Learning dynamical systems with particle stochastic approximation
em.

Lindsten, F., Douc, R., and Moulines, E. (2015). Uniform ergodicity of the particle gibbs sampler.
Scandinavian Journal of Statistics, 42(3):775–797.

Lindsten, F., Jordan, M. I., and Schön, T. B. (2014a). Particle Gibbs with ancestor sampling. J. Mach.
Learn. Res., 15(1):2145–2184.

Lindsten, F., Jordan, M. I., and Schön, T. B. (2014b). Particle gibbs with ancestor sampling.

Liu, J., Wong, W., and Kong, A. (1994). Covariance structure of the Gibbs sampler with applications to
the comparisons of estimators and augmentation schemes. Biometrika, 81(1):27–40.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., and Van Gool, L. (2022). Repaint:
Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11461–11471.

Macfarlane, P. W., Van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., and Camm, J. (2010).
Comprehensive electrocardiology. Springer Science & Business Media.

Maddouri, O., Qian, X., Alexander, F. J., Dougherty, E. R., and Yoon, B.-J. (2022). Robust importance
sampling for error estimation in the context of optimal bayesian transfer learning. Patterns, page
100428.

37

Malik, M., Hnatkova, K., Kowalski, D., Keirns, J. J., and van Gelderen, E. M. (2013). Qt/rr curvatures
in healthy subjects: sex differences and covariates. American Journal of Physiology-Heart and
Circulatory Physiology, 305(12):H1798–H1806.

Marnissi, Y., Zheng, Y., Chouzenoux, E., and Pesquet, J.-C. (2017). A variational bayesian approach for
image restoration—application to image deblurring with poisson–gaussian noise. IEEE Transactions
on Computational Imaging, 3(4):722–737.

Metelli, A. M., Papini, M., Faccio, F., and Restelli, M. (2018). Policy optimization via importance
sampling. Advances in Neural Information Processing Systems, 31.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equations of
state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092.

Michelot, T., Langrock, R., and Patterson, T. A. (2016). movehmm: an r package for the statistical
modelling of animal movement data using hidden markov models. Methods in Ecology and Evolution,
7.

Middleton, L., Deligiannidis, G., Doucet, A., and Jacob, P. E. (2019). Unbiased smoothing using
particle independent metropolis-hastings. In Chaudhuri, K. and Sugiyama, M., editors, Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pages 2378–2387. PMLR.

Naesseth, C., Lindsten, F., and Blei, D. (2020). Markovian score climbing: Variational inference with kl
(p|| q). Advances in Neural Information Processing Systems, 33:15499–15510.

Naesseth, C. A., Lindsten, F., Schön, T. B., et al. (2019). Elements of sequential monte carlo. Foundations
and Trends® in Machine Learning, 12(3):307–392.

Neal, R. M. et al. (2011). Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2.

Niknejad, M., Bioucas-Dias, J., and Figueiredo, M. A. (2019). External patch-based image restoration
using importance sampling. IEEE Transactions on Image Processing, 28(9):4460–4470.

Olsson, J. and Westerborn, J. (2017). Efficient particle-based online smoothing in general hidden Markov
models: The PaRIS algorithm. Bernoulli, 23(3):1951–1996.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research,
22(57):1–64.

Paulin, D. (2015). Concentration inequalities for markov chains by marton couplings and spectral
methods. Electronic Journal of Probability, 20:1–32.

Peng, J., Liu, D., Xu, S., and Li, H. (2021). Generating diverse structure for image inpainting with
hierarchical vq-vae. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10775–10784.

Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Am. Statist.
Assoc., 94(446):590–599.

Poyiadjis, G., Doucet, A., and Singh, S. S. (2005). Particle methods for optimal filter derivative:
application to parameter estimation. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., pages
v/925–v/928.

38

Poyiadjis, G., Doucet, A., and Singh, S. S. (2011). Particle approximations of the score and observed
information matrix in state space models with application to parameter estimation. Biometrika,
98(1):65–80.

Reed, G. W., Rossi, J. E., and Cannon, C. P. (2017). Acute myocardial infarction. The Lancet,
389(10065):197–210.

Reyna, M. A., Sadr, N., Alday, E. A. P., Gu, A., Shah, A. J., Robichaux, C., Rad, A. B., Elola, A., Seyedi,
S., Ansari, S., Ghanbari, H., Li, Q., Sharma, A., and Clifford, G. D. (2021). Will two do? varying
dimensions in electrocardiography: The physionet/computing in cardiology challenge 2021. In 2021
Computing in Cardiology (CinC), volume 48, pages 1–4.

Reyna, M. A., Sadr, N., Alday, E. A. P., Gu, A. P., Shah, A. J., Robichaux, C., Rad, A. B., Andoni, Elola,
Seyedi, S., Ansari, S., Ghanbari, H., Qiao, Li, Sharma, A., and Clifford, G. D. (2022). Issues in the
automated classification of multilead ecgs using heterogeneous labels and populations. Physiological
Measurement, 43.

Ribeiro, A. H., Ribeiro, M. H., Paixão, G. M., Oliveira, D. M., Gomes, P. R., Canazart, J. A., Ferreira,
M. P., Andersson, C. R., Macfarlane, P. W., Meira Jr, W., et al. (2020). Automatic diagnosis of the
12-lead ecg using a deep neural network. Nature communications, 11(1):1760.

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer, New York, 2nd edition.

Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their
discrete approximations. Bernoulli, 2(4):341–363.

Robertson, A. W., Kirshner, S., and Smyth, P. (2004). Downscaling of daily rainfall occurrence over
northeast brazil using a hidden markov model. Journal of Climate, 17:4407–4424.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015:
18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages
234–241. Springer.

Rubin, D. B. (1987a). The calculation of posterior distributions by data augmentation: Comment:
A noniterative sampling/importance resampling alternative to the data augmentation algorithm for
creating a few imputations when fractions of missing information are modest: The sir algorithm.
Journal of the American Statistical Association, 82(398):543–546.

Rubin, D. B. (1987b). Comment: A noniterative Sampling/Importance Resampling alternative to the
data augmentation algorithm for creating a few imputations when fractions of missing information are
modest: The SIR algorithm. Journal of the American Statistical Association, 82(398):542–543.

Sagie, A., Larson, M. G., Goldberg, R. J., Bengtson, J. R., and Levy, D. (1992). An improved method
for adjusting the qt interval for heart rate (the framingham heart study). The American journal of
cardiology, 70(7):797–801.

Sahlström, T. and Tarvainen, T. (2023). Utilizing variational autoencoders in the bayesian inverse problem
of photoacoustic tomography. SIAM Journal on Imaging Sciences, 16(1):89–110.

Salakhutdinov, R. and Murray, I. (2008). On the quantitative analysis of deep belief networks. In
Proceedings of the 25th international conference on Machine learning, pages 872–879.

Salama, G. and Bett, G. C. (2014). Sex differences in the mechanisms underlying long qt syndrome.
American Journal of Physiology-Heart and Circulatory Physiology, 307(5):H640–H648.

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press.

39

Schwedes, T. and Calderhead, B. (2021). Rao-blackwellised parallel mcmc. In Banerjee, A. and
Fukumizu, K., editors, Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 3448–3456. PMLR.

Shan, L., Li, Y., Jiang, H., Zhou, P., Niu, J., Liu, R., Wei, Y., Peng, J., Yu, H., Sha, X., and Chang, S.
(2022). Abnormal ecg detection based on an adversarial autoencoder. Frontiers in Physiology, 13.

Shihab, H. A., Gough, J., Cooper, D. N., Stenson, P. D., Barker, G., Edwards, K. J., Day, I. N. M., and
Gaunt, T. R. (2012). Predicting the functional, molecular, and phenotypic consequences of amino acid
substitutions using hidden markov models. Human Mutation, 34:57 – 65.

Shin, H. and Choi, M. (2023). Physics-informed variational inference for uncertainty quantification of
stochastic differential equations. Journal of Computational Physics, page 112183.

Singh, P. and Pradhan, G. (2020). A new ecg denoising framework using generative adversarial network.
IEEE/ACM transactions on computational biology and bioinformatics, 18(2):759–764.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pages
2256–2265. PMLR.

Song, J., Meng, C., and Ermon, S. (2021a). Denoising diffusion implicit models. In International
Conference on Learning Representations.

Song, Y., Durkan, C., Murray, I., and Ermon, S. (2021b). Maximum likelihood training of score-based
diffusion models. Advances in Neural Information Processing Systems, 34:1415–1428.

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32.

Song, Y., Shen, L., Xing, L., and Ermon, S. (2022). Solving inverse problems in medical imaging with
score-based generative models. In International Conference on Learning Representations.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021c). Score-
based generative modeling through stochastic differential equations. In International Conference on
Learning Representations.

Stuart, A. M. (2010). Inverse problems: a bayesian perspective. Acta numerica, 19:451–559.

Su, J., Xu, B., and Yin, H. (2022). A survey of deep learning approaches to image restoration. Neuro-
computing, 487:46–65.

Swaminathan, A. and Joachims, T. (2015). The self-normalized estimator for counterfactual learning.
advances in neural information processing systems, 28.

Tadić, V. B. and Doucet, A. (2017). Asymptotic bias of stochastic gradient search. The Annals of Applied
Probability, 27(6):3255 – 3304.

Thin, A., Janati El Idrissi, Y., Le Corff, S., Ollion, C., Moulines, E., Doucet, A., Durmus, A., and Robert,
C. X. (2021). Neo: Non equilibrium sampling on the orbits of a deterministic transform. Advances in
Neural Information Processing Systems, 34:17060–17071.

Tjelmeland, H. (2004a). Using all Metropolis–Hastings proposals to estimate mean values. Technical
report.

Tjelmeland, H. (2004b). Using all metropolis-hastings proposals to estimate mean values.

40

Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broderick, T., Barzilay, R., and Jaakkola, T. S. (2023).
Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem. In The
Eleventh International Conference on Learning Representations.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2018). Deep image prior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

van Handel, R. (2008). Uniform time average consistency of monte carlo particle filters. Stochastic
Processes and their Applications, 119:3835–3861.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin,
I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press.

Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674.

Vlaardingerbroek, M. T. and Boer, J. A. (2013). Magnetic resonance imaging: theory and practice.
Springer Science & Business Media.

Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press.

Wan, Z., Zhang, J., Chen, D., and Liao, J. (2021). High-fidelity pluralistic image completion with
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4692–4701.

Wei, X., van Gorp, H., Gonzalez-Carabarin, L., Freedman, D., Eldar, Y. C., and van Sloun, R. J. (2022).
Deep unfolding with normalizing flow priors for inverse problems. IEEE Transactions on Signal
Processing, 70:2962–2971.

Wen, H. and Kang, J. (2021). Hybrid Arrhythmia Detection on Varying-Dimensional Electrocardiogra-
phy: Combining Deep Neural Networks and Clinical Rules. In 2021 Computing in Cardiology (CinC).
IEEE.

Whiteley, N. (2010). Discussion on particle Markov chain Monte Carlo methods. J. Roy. Statist. Soc. B,
72(3):306–307.

Whiteley, N. (2013). Stability properties of some particle filters. The Annals of Applied Probability,
pages 2500–2537.

Wu, L., Trippe, B. L., Naesseth, C. A., Blei, D. M., and Cunningham, J. P. (2023). Practical and
asymptotically exact conditional sampling in diffusion models.

Xiang, H., Zou, Q., Nawaz, M. A., Huang, X., Zhang, F., and Yu, H. (2023). Deep learning for image
inpainting: A survey. Pattern Recognition, 134:109046.

Yeh, R. A., Lim, T. Y., Chen, C., Schwing, A. G., Hasegawa-Johnson, M., and Do, M. N. (2018). Image
restoration with deep generative models. In 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6772–6776. IEEE.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2018). Generative image inpainting
with contextual attention. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5505–5514.

41

Zeng, Y., Fu, J., Chao, H., and Guo, B. (2022). Aggregated contextual transformations for high-resolution
image inpainting. IEEE Transactions on Visualization and Computer Graphics.

Zhang, G., Ji, J., Zhang, Y., Yu, M., Jaakkola, T., and Chang, S. (2023). Towards coherent image
inpainting using denoising diffusion implicit models. arXiv preprint arXiv:2304.03322.

Zhao, Y., Nassar, J., Jordan, I., Bugallo, M., and Park, I. M. (2021). Streaming variational monte carlo.

Zheng, C., Cham, T.-J., and Cai, J. (2019). Pluralistic image completion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1438–1447.

Zhihang, X., Yingzhi, X., and Qifeng, L. (2023). A domain-decomposed vae method for bayesian inverse
problems. arXiv preprint arXiv:2301.05708.

42

Chapter 2

BR-SNIS: Bias Reduced Self-Normalized
Importance Sampling

2.1 Introduction
Background and previous work: Importance sampling Kahn and Marshall (1953); Agapiou et al.
(2017) (IS) is a classical Monte Carlo technique for estimating expectations under some given probability
distribution (the target) on the basis of a sample of draws from a different distribution (the proposal). In the
modern era of artificial intelligence and statistical machine learning, characterized by large computational
resources and Bayesian inference, IS technologies are enjoying a revival; see, e.g., Niknejad et al.
(2019); Kuzborskĳ et al. (2021) and Elvira and Martino (2021) for a recent survey. The method is not
only relevant to situations where sampling from the target is intractable; it can also be used to achieve
variance reduction Lamberti et al. (2018). When the proposal is dominating the target—in the sense
that the support of the latter is contained in the support of the former—unbiased estimation can be
achieved by assigning each draw an importance weight given by the likelihood ratio between the target
and the proposal. In the very common case where the target is known only up to a normalizing constant,
consistent estimation can still be achieved by simply normalizing each importance weight by the total
weight of the sample; however, since such self-normalized importance sampling (SNIS) involves ratios
of random variables, the procedure can only be implemented at the cost of bias, which can be significant
in some applications.

More precisely, let (X,X) be some state space and π(dx) ∝ w(x)λ(dx) a given target probability
distribution, where w and λ are a positive weight function and a proposal probability distribution on
(X,X), respectively, such that the normalizing constant λ(w) =

∫
w(x)λ(dx) (this will be our generic

notation for Lebesgue integrals) of π is finite. The SNIS estimator is given by

ΠMf(X1:M) =
∑M
i=1 ω

i
Mf(Xi), ωiM = w(Xi)/

∑M
ℓ=1w(Xℓ) (2.1)

where X1:M = (X1, . . . , XM) are independent draws from λ, and can be used to approximate π(f) =∫
f(x)π(dx) for any test function f such that π(|f |) <∞. The estimator (2.1) can be calculated without

knowledge of the normalizing constant λ(w), which is intractable in general.

The SNIS estimator is known to be biased; provided that λ(w2) < ∞, the bias and mean-squared
error (MSE) of the SNIS estimator (2.1) over bounded test functions f satisfying ∥f∥∞ ≤ 1 are given
respectively (see (Agapiou et al., 2017, Theorem 2.1)) by

|E[ΠMf(X1:M)]− π(f)| ≤ (12/M)κ[π, λ], E[{ΠMf(X1:M)− π(f)}2] ≤ (4/M)κ[π, λ], (2.2)

where κ[π, λ] = λ(w2)/λ2(w). Although IS is primarily intended to approximate integrals in the form

43

π(f), it can also be used to generate unweighted samples being approximately distributed according to
π. In this paper, we consider iterated sampling importance resampling (i-SIR), proposed in Tjelmeland
(2004a); see (Andrieu et al., 2010a; Lee et al., 2010; Lee, 2011; Andrieu et al., 2018). The i-SIR can
be seen as an iterative application of the sampling importance resampling (SISR) algorithm proposed
by Rubin (1987b); the k-th iteration is defined as follows. Given a state Yk ∈ X, (i) set X1

k+1 = Yk
and draw X2:N

k+1 independently from the proposal distribution λ; (ii) compute, for i ∈ {1, . . . , N}, the
normalized importance weights ωiN,k+1 = w(Xi

k+1)/
∑N
ℓ=1w(Xℓ

k+1); (iii) select Yk+1 from the set
X1:N
k+1 by choosingXi

k+1 with probability ωiN,k+1. In the following, Yk+1 andX1:N
k+1 will be referred to as

the state and the candidate pool, respectively. Following (Tjelmeland, 2004a) (see Section 2.2.1), i-SIR
may be viewed (up to an irrelevant permutation of the samples) as a two-stage Gibbs sampler targeting
an extended probability distribution φN on an enlarged state space including the state as well as the
candidate pool. As this extended distribution allows π as a marginal with respect to the state, one can
expect the marginal distribution of the generated states (Yk)k∈N, forming themselves a Markov chain, to
approach the target π of interest as k tends to infinity.

This paper: In i-SIR, the only function of the candidate pool is to guide the states selected at stage
(iii) towards the target. Thus, since all rejected candidates are discarded, the approach results generally
in a large waste of computational work. Thus, in the present paper we propose to recycle all the
generated samples by incorporating all the proposed candidatesX1:N

k into the estimator rather than only
the selected candidate Yk. We proceed in three steps. First, we show that under the stationary distribution
φN of the process (Yk, X1:N

k)k∈N generated by i-SIR, the expectation of ΠNf(X1:N
k) (given by (2.1))

equals π(f) for every valid test function f (see Theorem 3). Second, we establish that since i-SIR is
nothing but a systematic-scan Gibbs sampler, the two processes (X1:N

k)k∈N and (Yk)k∈N are interleaving
(see Theorem 6); thus, if (Yk)k∈N is uniformly geometrically ergodic, so is (X1:N

k)k∈N with the same
mixing rate κN . Third, as the main result of the present paper, we establish a novel O(κkN/N) bound
on the bias of the estimator ΠNf(X1:N

k) (see Theorem 4), where the exponentially diminishing factor
κkN indicates a drastic bias reduction vis-à-vis the standard IS estimator (2.1) based on i.i.d. samples.
As a consequence, approximating π(f) by the average of (ΠNf(X1:N

k))kℓ=k0+1, where the “burn-in”
period k0 should be chosen proportionally to the mixing time of the process, yields an estimator whose
bias can be furnished with a bound which is, roughly, proportional to κk0

N and inversely proportional to
the total number M = kN of samples generated in the algorithm (see Theorem 5). To complete the
theoretical analysis of these estimators, we also equip the same with variance bounds. The procedure
of recycling, as described above, all the samples generated in the i-SIR and to incorporate, at negligible
computational cost, the same into the final estimator, will from now on be referred as BR-SNIS. Finally,
we test numerically the proposed estimators and illustrate how a significant bias reduction relatively to
the standard i-SIR can be obtained at basically no cost.

To sum up, our contribution is twofold, since we

– propose a new algorithm, BR-SNIS, which makes better use of the available computational resources
by recycling the candidate pool generated at each iteration of i-SIR.

– furnish the proposed algorithm with rigorous theoretical results, including novel bias, variance, and
high-probability bounds which support our claim that sample recycling may lead to drastic bias
reduction without impairing the variance.

44

2.2 Main results

2.2.1 Statements

The i-SIR algorithm can be interpreted as a systematic-scan two-stage Gibbs sampler, alternately sampling
from the full conditions of an extended target φN on the product space of states and candidate pools.
Once the extended target φN is properly defined, these full conditionals can be retrieved from a dual
representation of φN presented in Theorem 2. In order to define φN , we introduce the Markov kernel
(see Section A.1.1 for comments)

ΛN (y,dx1:N) = N−1∑N
i=1 δy(dxi)

∏
j ̸=i λ(dxj) (2.3)

on X × X�N , which describes probabilistically the sampling operation (i) in i-SIR. Using the kernel
ΛN we may now define properly the extended target φN as the probability law

φN (d(y, x1:N)) = π(dy)ΛN (y,dx1:N) = N−1∑N
i=1 π(dy)δy(dxi)

∏
j ̸=i λ(dxj) (2.4)

on (XN+1,X�(N+1)). Note that since for every A ∈ X , φN (1A×XN) = π(A), the target π coincides
with the marginal of φN with respect to the state. Moreover, it is easily seen that ΛN provides the
conditional distribution, under φN , of the candidate pool given the state. Defining the kernels

ΓN (x1:N , dy) = N−1∑N
i=1w(xi)δxi(dy), ΠN (x1:N , dy) = ΓN (x1:N , dy)/ΓN1X(x1:N) (2.5)

onX×X�N , the marginal distribution πN of φN with respect to x1:N is given by

πN (dx1:N) = λ(w)−1ΓN1X(x1:N)
∏N
j=1 λ(dxj). (2.6)

It is interesting to note that the marginal πN has a probability density function, proportional to
ΓN1X(x1:N) =

∑N
i=1w(xi)/N , with respect to the product measure λ�N . Using (2.6), we imme-

diately obtain the following result.

Theorem 2 (duality of extended target). For every N ∈ N∗,

φN (d(y, x1:N)) = π(dy)ΛN (y,dx1:N) = πN (dx1:N)ΠN (x1:N ,dy). (2.7)

Note that the second identity of the dual representation (2.7) provides also the conditional distribution,
under φN , of the state given the candidates. Consequently, i-SIR is a systematic scan two-stage Gibbs
sampler which generates a Markov chain (Xk, Yk)k∈N with time-homogeneous Markov kernel

PN ((yk, x1:N
k),d(yk+1, x

1:N
k+1)) = ΛN (yk, dx1:N

k+1)ΠN (x1:N
k+1, dyk+1) (2.8)

on XN+1 × X�(N+1). Note that the law PN (yk, x1:N
k , ·) does not depend on x1:N

k , which means that
only the state Yk needs to be stored from one iteration to the other. Thus, (Yk)k∈N is a Markov chain
with Markov transition kernel

PN (yk,dyk+1) =
∫

ΛN (yk,dx1:N
k+1)ΠN (x1:N

k+1,dyk+1) = ΛNΠN (yk, dyk+1) (2.9)

(where integration is w.r.t. x1:N
k+1) on X × X . The kernel (2.9) was analyzed in Andrieu et al. (2018).

Given some probability distribution ξ on (XN+1,X�(N+1)), we denote by Pξ the law of the canonical
Markov chain (Xk, Yk)k∈N with kernel PN and initial distribution ξ. Our first results establishes the
unbiasedness of the estimator ΠNf(X1:N) under φN .

Theorem 3. For every N ∈ N∗ and π-integrable function f ,∫
ΠNf(x1:N)πN (dx1:N) = π(f).

45

The proof of Theorem 3 is postponed to Section A.1.3. Next, we present theoretical bounds on the
discrepancy, in terms of bias, MSE and covariance, between ΠNf(X1:N

k) and π(f), for bounded target
functions f , when the i-SIR chain is initialized according to an arbitrary distribution ξ. We will work
under the following assumption.

A1. It holds that ω = ∥w∥∞/λ(w) <∞.

Under A1, the state and candidate-pool Markov chains (Yk)k∈N and (X1:N)k∈N can be shown to be
uniformly geometrically ergodic with mixing rate and mixing-time upper bound

κN = (2ω − 1)/(2ω +N − 2), τmix,N = ⌈− ln 4/ ln κN⌉, (2.10)

respectively; see Theorem 7 below for details. Here the mixing time τmix,N grows logarithmically with
the sample size N . The exact value of τmix,N is likely to be grossly pessimistic, but we conjecture
that the logarithmic dependence in the minibatch size holds true. In addition, under A1 we define the
constants

ςbias = 4(κ[π, λ] + 1 + ω)
ςmse
i = 4(κ[π, λ]1{0,1}(i) + (1 + ω)21{1,2}(i)), ςcov

i = ςbias(ςmse
i)1/2, i ∈ {0, 1, 2}.

(2.11)

With these definitions, the following holds true.

Theorem 4. Assume A1. Then for every initial distribution ξ on (XN+1,X�(N+1)), bounded measurable
function f on (X,X) such that ∥f∥∞ ≤ 1, N ≥ 2, and (k, ℓ) ∈ (N∗)2,

(i)
∣∣∣Eξ[ΠNf(X1:N

k)]− π(f)
∣∣∣ ≤ ςbias(N − 1)−1κk−1

N ,
(ii) Eξ[{ΠNf(X1:N

k)− π(f)}2] ≤
∑2
i=0 ς

mse
i (N − 1)−1−i/2,

(iii)
∣∣∣Eξ[{ΠNf(X1:N

k)− π(f)}{ΠNf(X1:N
k+ℓ)− π(f)}]

∣∣∣ ≤ κℓ−1
N

∑2
i=0 ς

cov
i (N − 1)−(3−i/2)/2,

where constants are given in (2.10) and (2.11).

It is worth noting that the bias decreases inversely with the number of candidates and exponentially
with the number of iterations (the mixing time of the chain also depends on N). The MSE is also
inversely proportional to the number of candidates N . In the light of the previous results, it is natural
to consider an estimator formed by an average across the IS estimators (ΠNf(X1:N

k))k∈N associated
with the candidate pools generated at the different i-SIR iterations. To mitigate the bias, we remove a
“burn-in” period whose length k0 should be chosen proportional to the mixing time τmix,N of the Markov
chain (Yk)k∈N (which turns out to coincide with that or the chain (X1:N

k)k∈N; see Section 2.2.2). This
yields the estimator

Π(k0,k),N (f) = (k − k0)−1∑k
ℓ=k0+1 ΠNf(X1:N

ℓ) (2.12)

of π(f). The total number of samples (generated by the proposal λ) underlying this estimator is
M = (N − 1)k. Importantly, all the importance weights included in the estimators are obtained as a
by-product of the i-SIR schedule; thus, it is, for a given budget of simulations (i.e., under the constraint
that (k − k0)N is constant), possible to compute Π(k0,k),N (f) for different values of k0, k and N with a
negligible computational cost. We denote by υ = (k− k0)/k the ratio of the number of candidate pools
used in the estimator to the total number of sampled such pools. Note that this type of estimator was
already suggested by Tjelmeland (2004b) and also appears in Schwedes and Calderhead (2021).

Our final main result provides bounds on the bias and the MSE of the estimator (2.12) as well as
a high-probability bound for the same. Define ζbias = 4τmix,N ς

bias/3, ζmse
i = ςmse

(i+1)∧21{0,2}(i) +
(8/3)τmix,N ς

cov
i , i ∈ {0, 1, 2}, ζmse = ζmse

0 + ζmse
1 (N − 1)−1/4 + ζmse

2 (N − 1)−1, and MSEis
M =

(4/M)κ[π, λ], see (2.2).

Theorem 5. Assume A1. Then the following holds true for every initial distributionξ on (XN+1,X�(N+1)),
bounded measurable function f on (X,X) such that ∥f∥∞ ≤ 1, and N ≥ 2.

46

(i)
∣∣∣Eξ[Π(k0,k),N (f)]− π(f)

∣∣∣ ≤ ζbias(υM)−14−k0/τmix,N

(ii) Eξ[{Π(k0,k),N (f)− π(f)}2] ≤ MSEis
υM + ζmse(υM)−1(N − 1)−1/2

(iii) For every δ ∈ (0, 1), |Π(k0,k),N (f) − π(f)| ≤ ςhpd(υM)−1/2(log(4/δ))1/2 with probability at
least 1− δ, where ςhpd = 664ω.

Bootstrap: As established in Theorem 5, the bias of the BR-SNIS estimator decreases exponentially
with the burn-in period k0, leading to potentially significant bias reduction with respect to SNIS. Still,
using a large k0 is done at a price of increased overall MSE (mainly through the term MSEis

υM in
Theorem 5(ii), which is directly related to k0 via υ). A natural way to reduce the variance is to use
bootstrap. More precisely, we first apply a random permutation to the samples and re-compute BR-SNIS
on the basis of the bootstrapped samples. After this, we produce a final estimator by averaging over
the bootstrapped BR-SNIS replicates. In most applications, the major computational bottleneck consists
of sampling from λ and evaluating w and f at the samples; thus, the additional operations that this
bootstrap approach entails are computationally cheap. Therefore, in our experiments, we use bootstrap
in combination with the choice k0 = k − 1 (in order to minimize the bound in Theorem 5(i)).

2.2.2 Elements of proofs

Ergodic properties of i-SIR: The systematic scan two-stage Gibbs sampler is a well-studied MCMC
algorithmic structure, and we summarize its most important properties in Theorem 6 below; see Liu
et al. (1994); Andrieu (2016) and (Robert and Casella, 2004, Chapter 9) as well as the references therein.
In particular, as shown in Liu et al. (1994), the state and candidate-pool Markov chains (Yk)k∈N and
(X1:N

k)k∈N satisfy a duality property referred to as interleaving (Theorem 6(iii)).

Theorem 6. Assume that for every x ∈ X, w(x) > 0, λ(w) <∞ and that there exists a set C ∈ X such
that λ(C) > 0 and supx∈C w(x)/λ(w) <∞. Then,

(i) the Markov kernel PN is Harris recurrent and ergodic with unique invariant distribution φN .
(ii) the Markov kernel PN is π-reversible, Harris recurrent and ergodic.
(iii) the two Markov chains (Yk)k∈N and (X1:N

k)k∈N are conjugate of each other with the interleaving
property, i.e., for every initial distribution ξ and k ∈ N, under Pξ,
(a) X1:N

k and X1:N
k+1 are conditionally independent given Yk,

(b) Yk and Yk+1 are conditionally independent given X1:N
k+1;

(c) moreover, under PφN
, (Yk, X1:N

k−1) and (Yk, X1:N
k) are identically distributed.

The ergodic behavior of the i-SIR algorithm has been studied in many works; see Lee (2011); Lind-
sten et al. (2015); Andrieu et al. (2018) in particular. The analysis is particularly simple under the
assumption that the importance weight function w is bounded, as imposed by A1. Recall that the
total variation-distance between two probability measures ξ and ξ′ on (X,X) is given by dTV(ξ, ξ′) =
supg:osc(g)≤1{ξ(g)− ξ′(g)}, where osc(g) = sup(x,x′)∈X2 |g(x)− g(x′)| denotes the oscillator norm of
a measurable function g. The following result establishes the uniform geometric ergodicity of the state
chain (Yk)k∈N.

Theorem 7. Assume A1. Then for every N ≥ 2, y ∈ X and k ∈ N, dTV(PkN (y, ·), π) ≤ κkN , where κN
is given in (2.10).

The proof is given in Lindsten et al. (2015); Andrieu et al. (2018), but we provide it in Section A.1.5
for completeness. For uniformly ergodic Markov chains, it is often more appropriate to work with the
mixing time

min{k ∈ N : supy∈X dTV(PkN (y, ·), π) ≤ 1/4} ≤ τmix,N (2.13)

(where τmix,N is given in (2.10)), i.e., the number of time steps required for the distribution of the chain
to be within a certain total variation distance from its stationary distribution Aldous et al. (1997); Hsu

47

et al. (2019). An interesting consequence of the interleaving property is that if the Markov chain (Yk)k∈N
is (geometrically) ergodic, then the Markov chain (X1:N

k)k∈N is (geometrically) ergodic as well with the
same mixing time; see (Robert and Casella, 2004, Corollary 9.14)).

Bias of the BR-SNIS estimator: As the BR-SNIS estimator ΠNf(X1:N
k) (where ΠN is defined in

(2.5)) is made up by a ratio of the two unnormalized estimators ΓNf(X1:N
k) and ΓN1X(X1:N

k), a key
ingredient in the proof of Theorem 4 is to bound the bias and the pth order moments of statistics defined
as ratios of sums of random variables that are not necessarily independent. The basic idea is to reduce
the study of these relations to the analysis of the moments of the numerator and the denominator of these
statistics and to exploit their concentration around the respective (conditional and unconditional) means.
The main results that we will use in the rest of the paper are summarized in Section A.2.

Lemma 8. For every initial distribution ξ on (XN+1,X�(N+1)), k ∈ N∗, and bounded measurable
function f : X→ R, it holds that

(i) for every y ∈ X, ΛNΓNf(y) = (1− 1/N)λ(wf) + (1/N)w(y)f(y),
(ii) Eξ

[
ΓNf(X1:N

k)
∣∣∣Yk−1

]
= ΛNΓNf(Yk−1), Pξ-a.s.,

(iii) Eξ
[
{ΓNf(X1:N

k)−ΛNΓNf(Yk−1)}2
∣∣∣Yk−1

]
= (N − 1)/N2λ({wf − λ(wf)}2),Pξ-a.s.

We now have all the elements that allow us to determine the first important result of this work, namely
the bias and the MSE of the estimator ΠNf(X1:N

k) of π(f).

Proof of Theorem 4. We establish the bias bound in (i) and postpone the proof of the bounds on the MSE
and the covariance in (ii) and (iii) to the supplement. Define the measure ξ(A) = ξ(A ×X), A ∈ X ,
and the kernel PN = ΛNΠN on X × X . Consequently, PNf(Yk−1) = Eξ[ΠNf(X1:N

k) | Yk−1] and
ΛNΓNf(Yk−1) = Eξ[ΓNf(X1:N

k) | Yk−1], Pξ-a.s. Since (Yk)k∈N is, under Pξ, a Markov chain with
initial distribution ξ and Markov kernel PN (see (2.9)), it holds that

Eξ[ΠNf(X1:N
k)] = Eξ[PNf(Yk−1)] = Eξ[Eξ [PNf(Yk−1) |Y0]] = ξPk−1

N PNf.

Consequently, the proof is concluded by establishing that for every k ∈ N∗,∣∣∣ξPk−1
N PNf − π(f)

∣∣∣ ≤ ςbiasκk−1
N (N − 1)−1. (2.14)

On the other hand, since by Theorem 3, π(PNf) = π(f), we may use Theorem 7 to obtain the bound

|ξPk−1
N PNf − π(f)| = |ξPk−1

N PNf − π(PNf)| ≤ κk−1
N osc(PNf).

Finally, we establish (2.14) by bounding osc(PNf). Note that

osc(PNf) ≤ 2 ∥PNf −ΛNΓNf/(ΛNΓN1X)∥∞ + 2 ∥ ΛNΓNf/(ΛNΓN1X)− π(f)∥∞ , (2.15)

where, for every y ∈ X, using Theorem 38,

|PNf(y)−ΛNΓNf(y)/ΛNΓN1X(y)|

≤ 1
2{ΛNΓN1X(y)}−2{ΛN [{ΓNf −ΛNΓNf(y)}2](y) + 3ΛN [{ΓN1X −ΛNΓN1X(y)}2](y)}.

(2.16)

Now, since ΛNΓN1X(y) ≥ (1− 1/N)λ(w), we get, using Lemma 8,∥∥∥∥PNf − ΛNΓNf
ΛNΓN1X

∥∥∥∥
∞
≤ (2(N − 1))−1{λ(w)}−2{λ({wf − λ(wf)}2) + 3λ({w − λ(w)}2)}

(2.17)
≤ 2(N − 1)−1λ(w2)/(λ(w))2. (2.18)

48

On the other hand, using the elementary inequality a/b − c/d = a(d − b)/bd + (a − c)/d, we get, as
π(f) = λ(wf)/λ(w),

ΛN ΓNf(y)
ΛN ΓN1X(y) − π(f) = (1/N) ΛN ΓNf(y)

ΛN ΓN1X(y){1− w(y)/λ(w)}+ (1/N){w(y)f(y)− λ(wf)}/λ(w). (2.19)

Finally, the bound (2.14) is established by noting that

∥ΛNΓNf/(ΛNΓN1X)− π(f)∥∞ ≤ 2N−1{1 + w(y)/λ(w)} ≤ 2N−1(1 + ω). (2.20)

2.2.3 Related works

The first use of the IS method, then as a variance reduction technique, dates back to the ’50s; see
Hesterberg (1995); Kroese and Rubinstein (2012) and the references therein. Today, the renewed
interest in IS parallels the flurry of activity in the probabilistic ML community and its ever-increasing
computational demands; thus, it is impossible to fully present the literature. We therefore limit ourselves
to describing results that have inspired our work, and refer the readers to the recent reviews Agapiou
et al. (2017); Elvira and Martino (2021) for additional references.

There is clearly a plethora of modern ML applications where the standard SNIS estimator may be
substantially improved using the BR-SNIS method. To mention just a selection of examples, SNIS plays a
key role for a robust off-policy selection strategy BY Kuzborskĳ et al. (2021) (extending Swaminathan and
Joachims (2015); Metelli et al. (2018)), Bayesian problems (see, e.g., (Agapiou et al., 2017, Section 3)),
Bayesian transfer learning Karbalayghareh et al. (2018); Maddouri et al. (2022), variational autoencoders
Chen et al. (2022), inference of energy-based models Lawson et al. (2019), patch-based image restoration
Niknejad et al. (2019) and many more. In stochastic-approximation procedures, where a statistical
estimator or algorithm is employed repeatedly to produce mean-field estimates, controlling its bias
becomes critical Tadić and Doucet (2017); Karimi et al. (2019). Thus, it is natural to aim at minimizing
the bias for a given computational budget, provided that the variance does not explode. For this reason,
bias reduction (or unbiasedness) in stochastic simulation has been the subject of extensive research during
the last decades; see Glynn and Rhee (2014); Jacob et al. (2020b). The present paper contributes to this
line of research.

Despite long-standing interest in SNIS, there are only few theoretical results. For example, (Agapiou
et al., 2017, Theorem 2.1) provides bounds on the bias and variance of SNIS, results that we extend to
BR-SNIS in Theorem 4. Moreover, (Metelli et al., 2018, Proposition D.3) provides a suboptimal variance
bound based on a bound for the second-order moment. This result can be compared to the sophisticated
sub-Gaussian concentration bound for BR-SNIS obtained in Theorem 5 (a result that can be obtained
for SNIS using the same proof mechanism; see Section A.1.8). Finally, Kuzborskĳ et al. (2021) obtains
a semi-empirical sub-Gaussian concentration inequality using the Efron-Stein estimate of variance and
the Harris inequality.

As an MCMC sampling method, the i-SIR algorithm that has been applied successfully in many situations.
It was recently used—under the alternative name conditional importance sampling—in Naesseth et al.
(2020) for Markovian score climbing. In the same work, it is mentioned that it is possible to “Rao-
Blackwellize” the gradient of the score using the proposed candidates, which is in line with the recycling
argument underpinning the estimator suggested by us, but without theoretical justifications. In its most
basic form, the i-SIR algorithm appeared in the pioneering work of Tjelmeland (2004a). The same
idea played a key role in the development of the particle Gibbs sampler Andrieu et al. (2010a, 2018);
Naesseth et al. (2019), which extends i-SIR principles to sequential Monte Carlo methods. An approach
very similar to BR-SNIS can be taken also in this context; however, casting BR-SNIS into the framework
of particle Gibbs methods is a non-trivial problem which is the subject of ongoing work.

49

2.3 Experimental results
In this section we compare numerically the performances of BR-SNIS and SNIS in three different settings:
mixture of Gaussians, Bayesian logistic regression and variational autoencoders (VAE). We leave to the
supplementary material (Section A.3.1) the detailed numerical verification of the bounds established in
Section 2.2.

Mixture of Gaussian distributions: We start with an example where the target distribution π is a
mixture of two Gaussian distributions of dimension d = 7, as shown in Figure 2.2a. The proposal
distribution is a Student distribution with ν = 3 degrees of freedom. The test function is f = 1A − 1B ,
where A and B are a d-dimensional rectangle intersecting each of the modes of π (see Section A.3.1 for
precise definitions). We verify the positive effect of bootstrap in Figures 2.1a and 2.1b by computing
the bias and the MSE over 1000 chains for N = 129 for several k. The purple, green, and red curves
correspond to a number of bootstrap rounds of 1, 21, and 201, respectively. We illustrate the decay of
the mean Sliced Wasserstein distance (according to Bonneel et al. (2015)) with k for different values of
N (N = 8 purple, N = 32 green, N = 64 orange, and N = 128 red) in Figure 2.1c. The decay of
the Wassertein distance is directly linked to the mixing time of the i-SIR kernel (see (2.10)), and hence
allows us to represent the effective mixing time of the chain. Moreover, we represent the theoretical
slopes as dashed lines. This illustrates that the effective value of τmix,N is smaller than its theoretical
bound. The bias and MSE for SNIS with M = 25600 are shown in black dashed lines.

We compare the bias (Figure 2.2b) and MSE (Figure 2.2c) of BR-SNIS and SNIS for a fixed budget with a
total number ofM = 16384 samples. We run the experiments 106 times; we compute the bias and MSE
over batches of 104 replications using the true value of π(f) computed above (the boxplots in Figure 2.2
are therefore obtained over 100 replications). For the algorithm BR-SNIS, we used N ∈ {129, 513},
k0 = kmax − 1 and kmax = M/(N − 1) bootstrap rounds. As can be seen from Figure 2.2b, BR-SNIS

0 25 50 75 100 125 150
K

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

(a) MSE

0 25 50 75 100 125 150
K

10 3

10 2

10 1

(b) Bias in log scale

0 10 20 30 40 50
k

10 1

100

(c) Sliced Wasserstein

Figure 2.1

significantly reduces bias (by a factor of almost 10) w.r.t. standard SNIS for both configurations, while
MSE increases only slightly (at around 20%), as can be seen in Figure 2.2c. The code used for this
experiment is available at 1. We also show in Section A.3.1 that k0 = ⌊0.625kmax⌋ can lead to about 3
times less bias w.r.t. standard SNIS while only augmenting the MSE of 10%. We have also compared in
BR-SNIS to zero bias estimators based on SNIS such as Middleton et al. (2019), the results are in shown
in Section A.3.1.

Bayesian Logistic regression: We consider posterior inference in a Bayesian logistic regression model.
Let Dtrain = (xi, yi)Ti=1 be a dataset, where each xi ∈ Rd is a vector of covariates and yi ∈ {−1, 1} is a

1https://github.com/gabrielvc/br_snis

50

https://github.com/gabrielvc/br_snis

6 4 2 0 2 4 6

6

4

2

0

2

4

6

(a) 2d projection

129 257 513 SNIS
0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

(b) Bias

129 257 513 SNIS
0.000

0.005

0.010

0.015

0.020

(c) MSE

Figure 2.2: Comparison between SNIS and BR-SNIS for the same budget. In each boxplot the dotted line
represents the mean value of the samples.

binary response. Let p(yi | xi; θ) = {1 + exp(−yi x⊤i θ)}−1 be the probability of the ith observation at
θ ∈ Θ ⊆ Rd and π0(dθ) be a prior distribution for θ. The Bayesian posterior is given

π(dθ) = Z−1π0(dθ) exp(LT (θ)), LT (θ) =
∑T
i=1 ln p(yi | xi; θ), Z =

∫
exp(LT (θ))π0(dθ).

For numerical illustration, we use the heart failure clinical records (d = 13, T = 299), breast cancer
detection (d = 30, T = 569), and Covertype (d = 55, T = 4 · 104) datasets from the UCI machine
learning repository. For Covertype, we use Cover type 1 (Spruce/Fir) and Cover type 2 (Lodgepole Pine)
classes to define a binary classification problem. As a prior, we use a Gaussian distribution N(0, τ−2I)
with τ2 = 5 · 10−2. The importance distribution λ is Gaussian with mean and diagonal covariance
learned by variational inference; see Section A.3.2 for details. The boxplots for bias in Figure 2.3
were constructed in the same way as those in Figure 2.2. We compare two test functions, f(θ) = θ,

. CoverType Breast Heart
SNIS, M = 32 0.0028 +/- 0.0012 0.00011 +/- 6.04e-5 0.00023 +/- 7.24e-5

BR-SNIS, M= 32 0.0014 +/- 0.0003 7.9e-5 +/- 5.5e-5 0.00012 +/- 6.7e-5
SNIS, M = 512 0.0026 +/- 0.0017 4.3e-5 +/- 3.3e-5 7.8e-5 +/- 6.8e-5

BR-SNIS, M= 512 0.0013 +/- 0.0003 3.5e-5 +/- 2.2e-5 4.9e-5 +/- 5.2e-5

Table 2.1: Comparison of the TV distance between the posteriors (Lower is better).

corresponding to evaluation of the posterior mean, and f(θ) = p(y | x, θ), where (x, y) ∈ Dtest. This
last function allows us to compute a TV distance for the predictive distribution. Indeed, in a classification
context, one can compute the TV distance between any two predictive distributions p and p̂ as

dTV(p̂, p) = T−1∑T
i=1

1
2
∑1
j=0 |p̂(y = j | xi,Dtrain)− p(y = j | xi,Dtrain)|, (2.21)

where we compare the predictive distribution p(y | x,Dtrain) =
∫
p(y | x, θ)π(θ)dθ and p̂ is the

estimation of this quantity, provided in the experiments by SNIS or BR-SNIS. From Figure 2.3 we can
see that for each dataset we have a constant decrease in bias, while the variance increases only slightly.
We plot the bias in other components of θ and provide further numerical details in Section A.3.2.

Generative Model: We now extend our methodology to the more complex deep latent generative
models (DLGM). A DLGM defines a family of probability densities pθ(x) over an observation space
x ∈ RP by introducing a latent variable z ∈ Rd, defining the joint density function pθ(x, z) (with respect

51

32 64 128 256 512
0.0005

0.0000

0.0005

0.0010

0.0015

(a) Heart 8

256 512 1024 2048 4096

0.010

0.008

0.006

0.004

0.002

0.000

(b) Breast 11

256 512 1024 2048 4096 8192

0.010

0.005

0.000

0.005

0.010

0.015

0.020

(c) Covertype 6

Figure 2.3: Visualization of the distribution for each datasets. Each boxplot is grouped by budget, the
left one represent SNIS and the right represent BR-SNIS.

to Lebesgue measure) and aiming to find a parameter θ maximizing the marginal log-likelihood of the
model pθ(x) =

∫
pθ(x, z)dz. Under simple technical assumptions, by Fisher’s identity,

∇θ log pθ(x) =
∫
∇θ log pθ(x, z)pθ(z | x)dz, (2.22)

In most cases, the conditional density pθ(z | x) = pθ(x, z)/pθ(x) is intractable and can only be sampled.
The variational autoencoder Kingma and Welling (2014) is based on the introduction of an additional
parameter ϕ and a family of variational distributions qϕ(z | x). The joint parameters {θ, ϕ} are then
inferred by maximizing the evidence lower bound (ELBO) defined by

L(θ, ϕ) = log pθ(x)− KL
(
qϕ(· | x) ∥ pθ(· | x)

)
≤ log pθ(x).

This basic setup has been further developed and improved in many directions. Here we consider the
importance weighted autoencoder (IWAE) Burda et al. (2015), which relies on SNIS to design a tighter
ELBO on the log-likelihood. The objective of the IWAE is given by

LM (θ, ϕ) =
∫

log
(
M−1∑M

i=1wθ,ϕ,x(zi)
)∏M

ℓ=1 qϕ(zℓ | x)dzi, (2.23)

where wθ,ϕ,x(z) = pθ(x, z)/qϕ(z | x) denote the importance weights. However, writing, following
(Burda et al., 2015, Eq. (13)),

∇θLM (θ, ϕ) =
∫ ∑M

i=1 ω
(i)
θ,ϕ,x∇θ logwθ,ϕ,x(zi)

∏N
ℓ=1 qϕ(zℓ | x)dzℓ,

where ω(i)
θ,ϕ,x = wθ,ϕ,x(zi)/

∑M
j=1wθ,ϕ,x(zj) are normalized importance weights, yields an expression of

the gradient that corresponds exactly to the biased SNIS approximation of (2.22). Thus, the optimization
problem will suffer from bias. We hence propose to use BR-SNIS for learning IWAE. The proposed
algorithm proceeds in two steps, which are repeated during the optimization (details are given in
Section A.3.3)

• First, update the parameterϕ as in the IWAE algorithm (using the reparameterization trick and following
the methodology of Burda et al. (2015)) according to ϕ(t+1) = ϕ(t) − η∇ϕLM (θ(t), ϕ(t)).

• Second, update the parameter θ by estimating (2.22) using BR-SNIS for π(z) = pθ(x, z), f(z) =
∇θ log pθ(x, z) and λ(z) = qϕ(z | x).

We refer to this model as BR-IWAE. As an illustration, we train the model using the binarized MNIST
dataset Salakhutdinov and Murray (2008), where x ∈ {0, 1}784 are binarized digits images in dimension
784. For both for the encoder qϕ and the decoder pθ, we use a convolutional neural network (more details
are given in Section A.3.3). For comparison, we estimate the log-likelihood using the VAE, IWAE and
BR-IWAE approaches, and the result is reported in Table 2.2. All models are run for 100 epochs, using
the Adam optimizer Kingma and Ba (2015a) and a learning rate of 10−4. The complete experimental
details are given in Section A.3.3.

52

Latent dimension (d) VAE IWAE BR-IWAE (k = 8)
10 −87.40± 0.14 −86.44± 0.10 −86.29 ± 0.09
20 −83.55± 0.10 −81.81± 0.06 −81.66 ± 0.12
40 −82.90± 0.07 −81.05± 0.09 −81.01 ± 0.05

Table 2.2: Comparison of the mean log likelihood over the MNIST validation set (Higher is better).

2.4 Conclusion
In this paper, we have introduced a novel method, BR-SNIS, which improves over SNIS when it comes
to producing close to unbiased estimates of expectations taken w.r.t. to distributions known only up to
a normalizing constant, a ubiquitous problem in machine learning and statistics. The high performance
of BR-SNIS is supported theoretically by non-asymptotic bias, variance and high-probability bounds.
We illustrate our method on various examples, which show the practical advantages of BR-SNIS over
SNIS. Finally, BR-SNIS is naturally adapted to other IS based methods, for example Thin et al. (2021),
which use a Hamiltonian (gradient-based) transform Neal et al. (2011) as part of the IS proposal. The
extension of BR-SNIS to Thin et al. (2021) would produce an Hamiltonian based sampler able to recycle
all samples, contrarily to other classical Hamiltonian-based methods Neal et al. (2011); Hoffman et al.
(2014). BR-SNIS can also be extended to Particle Markov chain Monte Carlo methods such as Particle
Gibbs with Ancestor sampling Lindsten et al. (2014b).

53

Chapter 3

PPG: Particle-based, Rapid Incremental
Smoother Meets Particle Gibbs

3.1 Introduction
Feynman–Kac formulae play a key role in many models used in statistics, physics, and many other fields;
see Del Moral (2004); Del Moral (2013); Chopin and Papaspiliopoulos (2020), and the references therein.
Let {(Xt,Xt)}t∈N be a sequence of measurable spaces and define, for every t ∈ N, X0:t :=

∏t
m=0 Xm

and X0:t :=
⊗t

m=0Xm. For a sequence {Mt}t∈N of Markov kernels Mt : Xt × Xt+1 → [0, 1], an
initial distribution η0 ∈ M1(X0), and a sequence {gt}t∈N of bounded measurable potential functions
gt : Xt → R+, a sequence {η0:t}t∈N of Feynman–Kac path measures is defined by

η0:t : X0:t ∋ A 7→
γ0:t(A)
γ0:t(X0:t)

, t ∈ N, (3.1)

where

γ0:t : X0:t ∋ A 7→
∫
1A(x0:t) η0(dx0)

t−1∏
m=0

Qm(xm, dxm+1), (3.2)

with
Qm : Xm ×Xm+1 ∋ (x,A) 7→ gm(x)Mm(x,A) (3.3)

being unnormalized kernels. By convention, η0:0 := η0. Note that each η0:t is a probability measure,
whereas γ0:t is not normalized. For every t ∈ N∗, we also define the marginal distribution ηt : Xt ∋
A 7→ η0:t(X0:t−1 × A). In the context of nonlinear filtering in general state-space hidden Markov
models(HMMs), η0:t and ηt are, the joint smoothing and filter distribution, respectively, at time t; see
Del Moral (2004); Cappé et al. (2005a); Chopin and Papaspiliopoulos (2020).

For most problems of practical interest, the Feynman–Kac path or marginal measures are intractable, and
so is any expectation associated with the same. As a result, considerable research has been devoted to
developing Monte Carlo, or particle, approximations of such measures. A particle filter approximates
the marginal distribution flow {ηt}t∈N by a sequence of occupation measures, associated with a swarm
of particles {ξit}Ni=1, N ∈ N, where each particle ξit is a random draw in Xt. Particle filters revolve
around two operations: a selection step, which duplicates or sorts out particles with large or small
importance weights, respectively, and a mutation step, which randomly evolves the selected particles in
the state space. An alternating and iterative application of selection and mutation results in a swarm ofN
particles that are both serially and spatially dependent. Feynman–Kac path models can also be interpreted
as laws associated with a certain type of Markovian backward dynamics; this interpretation is useful, for

55

example, for the smoothing problem in nonlinear filtering Douc et al. (2011); Del Moral et al. (2010).
Several convergence results have been established for particle filters, as the number N of particles tends
to infinity; see for example, Del Moral (2004); Douc and Moulines (2008); Del Moral (2013); Chopin and
Papaspiliopoulos (2020). In addition, a number of nonasymptotic results have been obtained for these
methods, including bounds on their bias and Lp error, as well as exponential concentration inequalities
and propagation of chaos estimates. Extensions to the backward interpretation can also be found in Douc
et al. (2011); Del Moral et al. (2010).

In this work, we focus on the problem of recursively computing smoothed expectations

η0:tht =
∫
ht(x0:t) η0:t(dx0:t), t ∈ N,

where we introduce the vector notation x0:t = (x0, . . . , xt) ∈ X0:t := X0 × · · · × Xt for additive
functionals ht of the form

ht(x0:t) :=
t−1∑
m=0

h̃m(xm:m+1), x0:t ∈ X0:t. (3.4)

In nonlinear filtering problems, such expectations appear in the context of maximum-likelihood parameter
estimation, for instance, when computing the score function (the gradient of the log-likelihood function) or
the expectation–maximization (EM) surrogate; see Cappé (2001); Andrieu and Doucet (2003); Poyiadjis
et al. (2005); Cappé (2011); Poyiadjis et al. (2011). In Olsson and Westerborn (2017), the authors propose
an efficient particle-based rapid incremental smoother (PARIS), with linear computational complexity
in the number of particles under weak assumptions and limited memory requirements, that samples
on-the-fly from the backward dynamics induced by the particle filter. An interesting feature is that it
requires two or more backward draws per particle to cope with the degeneracy of the sampled trajectories
and remain numerically stable in the long run, with an asymptotic variance that grows only linearly with
time.

In this paper, we propose a method to reduce the bias of the PARIS estimator of η0:tht. The idea is to
mix the PARIS with a version of the particle Gibbs algorithm with backward sampling Andrieu et al.
(2010b); Lindsten et al. (2014a); Chopin and Singh (2015); Del Moral et al. (2016); Del Moral and Jasra
(2018) by introducing a conditional PARIS algorithm. This leads to the Parisian particle Gibbs (PPG)
algorithm, from which we derive an upper bound on the bias that decreases inversely proportionally to
the number of particles and exponentially fast with the iteration index (under assumptions guaranteeing
that the particle Gibbs sampler is uniformly ergodic).

The remainder of the paper is structured as follows. In 3.2 we discuss the Feynman–Kac model, along
with its backward interpretation, and introduce the particle Gibbs sampler. Our presentation is inspired
by Del Moral et al. (2016), but differs in that it avoids the use of quotient spaces of Del Moral et al.
(2016) and the extension of the distribution to the particle ancestral indices of Andrieu et al. (2010b).
In 3.3, we introduce the PARIS algorithm and its conditional version, and show how it can be coupled
with the particle Gibbs method with backward sampling, yielding the PPG algorithm. In 3.4, we present
the central result of this study, namely, an upper bound on the bias of the PPG estimator as a function
of the number of particles and the iteration index of the Gibbs algorithm. In addition, we provide an
upper bound on the mean-squared error (MSE). In 3.5, we provide numerical experiment to illustrate our
results. In 3.6, we present the most important and original proofs. Finally, the supplementary material
contain pseudocode and additional technical proofs, respectively.

Notation. LetR+ := [0,∞),R∗+ := (0,∞),N := {0, 1, 2, . . .}, andN∗ := {1, 2, 3, . . .} denote the sets
of nonnegative and positive real numbers and the same for integers, respectively. We denote by IN theN×
N identity matrix. For any quantities {aℓ}tℓ=m, we denote vectors as am:t := (am, . . . , at), and for any

56

(m, t) ∈ N2 such thatm ≤ t, we let Jm, tK := {m,m+ 1, . . . , t}. For a given measurable space (X,X),
where X is a countably generated σ-field, we denote by F(X) the set of bounded X/B(R)-measurable
functions on X. For any h ∈ F(X), we let ∥h∥∞ := supx∈X |h(x)| and osc(h) := sup(x,x′)∈X2 |h(x)−
h(x′)| denote the supremum and oscillator norms, respectively, of h. Let M(X) be the set of σ-finite
measures on (X,X), and M1(X) ⊂ M(X) be the probability measures.

Let (Y,Y) be another measurable space. A possibly unnormalized transition kernelK on X×Y induces
two integral operators, one acting on measurable functions, and the other on measures; specifically, for
h ∈ F(X ⊗ Y) and ν ∈ M1(X), define the measurable function

Kh : X ∋ x 7→
∫
h(x, y)K(x,dy)

and the measure
νK : Y ∋ A 7→

∫
K(x,A) ν(dx),

whenever these quantities are well defined. Now, let (Z,Z) be a third measurable space and L be another
possibly unnormalized transition kernel on Y × Z; we then define, with K as above, two different
products of K and L, namely,

KL : X ×Z ∋ (x,A) 7→
∫
L(y,A)K(x,dy)

and
K � L : X × (Y � Z) ∋ (x,A) 7→

∫∫
1A(y, z)K(x,dy)L(y,dz),

whenever these are well defined. This also defines the � product of a kernel K on X ×Y and a measure
ν on X, as well as of a kernel L on Y ×X and a measure µ on Y, as the measures

ν �K : X � Y ∋ A 7→
∫∫

1A(x, y)K(x, dy) ν(dx),

L� µ : X � Y ∋ A 7→
∫∫

1A(x, y)L(y,dx)µ(dy).

3.2 Particle models
In the next sections, we discuss many-body Feynman–Kac models, backward interpretations, conditional
dual processes, and the PARIS algorithm. Our presentation follows that of Del Moral et al. (2016)
closely, but with a different definition of the many-body extensions. We restate (in 10) a duality formula
of Del Moral et al. (2016) relating these concepts. This formula provides a foundation for the particle
Gibbs sampler described in 3.2.3 and subsequent developments.

3.2.1 Many-body Feynman–Kac models

In the following, we assume that all random variables are defined on a common probability space
(Ω,F ,P). The distribution flow {ηm}m∈N is intractable, in general, but can be approximated by using
random samples ξm = (ξ1

m, . . . , ξ
N
t), for m ∈ N, of particles, where N ∈ N∗ is a fixed Monte Carlo

sample size and each particle ξim is an Xm-valued random variable. Such a particle approximation is
based on the recursion ηm+1 = Φm(ηm), for m ∈ N, where Φm denotes the mapping

Φm : M1(Xm) ∋ η 7→ ηQm
ηgm

, (3.5)

taking on values in M1(Xm+1). In order to describe recursively the evolution of the particle population,
let m ∈ N and assume that the particles ξm form a consistent approximation of ηm, in the sense that

57

µ(ξm)h, where µ(ξm) := N−1∑N
i=1 δξi

m
(with δx denoting the Dirac measure located at x) is the

occupation measure formed by ξm, serves as a proxy for ηmh for any ηm-integrable test function h.
(Under general conditions, µ(ξm)h converges in probability to ηm as N → ∞; see Del Moral (2004);
Chopin and Papaspiliopoulos (2020), and the references therein.) Then, in order to generate an updated
particle sample approximating ηm+1, new particles ξm+1 = (ξ1

m+1, . . . , ξ
N
m+1) are drawn conditionally

independently given ξm according to

ξim+1 ∼ Φm(µ(ξm)) =
N∑
ℓ=1

gm(ξℓm)∑N
ℓ′=1 gm(ξℓ′m)

Mm(ξℓm, ·), i ∈ J1, NK.

Because this process of particle updating involves sampling from the mixture distribution Φm(µ(ξm)),
it can be decomposed into two substeps: selection and mutation. The selection step randomly chooses
the ℓth mixture stratum with probability gm(ξℓm)/

∑N
ℓ′=1 gm(ξℓ′m), and the mutation draws a new particle

ξim+1 from the selected stratum Mm(ξℓm, ·). In Del Moral et al. (2016), the term many-body Feynman–
Kac models is related to the law of process {ξm}m∈N. For all m ∈ N, let Xm := XNm and Xm := X�N

m ;
then, {ξm}m∈N is an inhomogeneous Markov chain on {Xm}m∈N, with transition kernels

Mm : Xm ×Xm+1 ∋ (xm, A) 7→ Φm(µ(xm))�N (A)

and initial distribution η0 = η�N
0 . Now, denote X0:t :=

∏t
m=0 Xm and X 0:t :=

⊗t
m=0 Xm. (Here, and

in the following, we use a bold symbol to stress that a quantity is related to the many-body process.) The
many-body Feynman–Kac path model refers to the flows {γm}m∈N and {ηm}m∈N of the unnormalized
and normalized probability distributions, respectively, on {X 0:m}m∈N generated by (3.1) and (3.2) for
the Markov kernels {Mm}m∈N, the initial distribution η0, the potential functions

gm : Xm ∋ xm 7→ µ(xm)gm = 1
N

N∑
i=1

gm(xim), m ∈ N,

and the corresponding unnormalized transition kernels

Qm : Xm ×Xm+1 ∋ (xm, A) 7→ gm(xm)Mm(xm, A), m ∈ N.

Finally, note that in the previous construction, the Markov property of the many-body Feynman–Kac
model relies on the fact that each potential gm is a function of a single state xm only, as is the case in
the standard Feynman–Kac model framework Del Moral (2004), and that the evolution of the particles
follows the model dynamics given in (3.5) (so-called bootstrap particle filtering). In order to extend this
to more general models (such as models where the potentials are allowed to depend on two consecutive
states Lee et al. (2020) or, even more generally, where no structure at all is assumed for the unnormalized
kernels (3.3) Gloaguen et al. (2022)) and particle dynamics (such as the auxiliary particle filtering
framework introduced in Pitt and Shephard (1999)), we need to form a Markovian many-body process
with tractable dynamics by furnishing each particle with an importance weight and an index that records
the particle’s ancestor in the previous generation. However, to avoid this technicality and to allow for
a more clear-cut presentation of the methods and theoretical analysis in the coming sections, we stay
within the framework of the standard Feynman–Kac models and bootstrap-type particle filters, even
though extensions to more general settings may be possible.

3.2.2 Backward interpretation of Feynman–Kac path flows

Suppose that each kernel Qt, for t ∈ N, defined in (3.3), has a transition density qt with respect to
some dominating measure λt+1 ∈ M(Xt+1). Then, for t ∈ N and η ∈ M1(Xt), we define the backward
kernel

←−
Q t,η : Xt+1 ×Xt ∋ (xt+1, A) 7→

∫
1A(xt)qt(xt, xt+1) η(dxt)∫

qt(x′t, xt+1) η(dx′t)
. (3.6)

58

Now, for t ∈ N∗, denoting

Bt : Xt ×X0:t−1 ∋ (xt, A) 7→
∫
· · ·
∫
1A(x0:t−1)

t−1∏
m=0

←−
Qm,ηm(xm+1, dxm), (3.7)

we may state the following—now classical—backward decomposition of the Feynman–Kac path mea-
sures, a result that plays a pivotal role in the following.

Proposition 9. For every t ∈ N∗, it holds that γ0:t = γt �Bt and η0:t = ηt �Bt.

Although the decomposition in 9 is well known (see, e.g., Del Moral et al. (2010); Del Moral et al.
(2016)), we provide a proof in 3.6.1 for completeness. Using backward decomposition, we can obtain a
particle approximation of a given Feynman–Kac path measure η0:t by first sampling, in an initial forward
pass, particle clouds {ξm}tm=0 from η0 �M0 � · · · �M t−1. Then, in a subsequent backward pass,
we sample N conditionally independent paths {ξ̃i0:t}Ni=1 from Bt(ξ0, . . . , ξt, ·), where

Bt : X0:t ×X0:t ∋ (x0:t, A) 7→
∫
· · ·
∫
1A(x0:t)

(
t−1∏
m=0

←−
Qm,µ(xm)(xm+1,dxm)

)
µ(xt)(dxt) (3.8)

is a Markov kernel describing the time-reversed dynamics induced by the particle approximations
generated in the forward pass. (Here, and in the following, we use blackboard notation to denote
kernels related to many-body path spaces.) Finally, µ({ξ̃i0:t}Ni=1)h is returned as an estimator of η0:th
for any η0:t-integrable test function h. This algorithm is referred to as the forward-filtering backward-
simulation (FFBSi) algorithm in the literature, and was introduced in Godsill et al. (2004); see also
Cappé et al. (2007); Douc et al. (2011). More precisely, given the forward particles {ξm}tm=0, each path
ξ̃i0:t is generated by first drawing ξ̃it uniformly from among the particles ξt in the previous generation,
and then drawing, recursively,

ξ̃im ∼
←−
Qm,µ(ξm)(ξ̃im+1, ·) =

N∑
j=1

qm(ξjm, ξ̃im+1)∑N
ℓ=1 qm(ξℓm, ξ̃im+1)

δ
ξj

m
; (3.9)

that is, given ξ̃im+1, ξ̃im is picked at random from among ξm based on weights proportional to
{qm(ξjm, ξ̃im+1)}Nj=1. Note that in this basic formulation of the FFBSi algorithm, each backward-
sampling operation (3.9) requires the computation of the normalising constant

∑N
ℓ=1 qm(ξℓm, ξ̃im+1),

which implies an overall quadratic complexity of the algorithm. Still, this heavy computational burden
can be eased by using an effective accept–reject technique, as discussed in 3.2.4.

3.2.3 Conditional dual processes and particle Gibbs

The dual process associated with a given Feynman–Kac model (3.1–3.2) and a given trajectory {zt}t∈N,
where zt ∈ Xt for every t ∈ N, is defined as the canonical Markov chain with kernels

M t⟨zt+1⟩ : Xt ×X t+1 ∋

(xt, A) 7→ 1
N

N−1∑
i=0

(
Φt(µ(xt))�i � δzt+1 � Φt(µ(xt))�(N−i−1)

)
(A), (3.10)

for t ∈ N, and initial distribution

η0⟨z0⟩ := 1
N

N−1∑
i=0

(
η�i

0 � δz0 � η
�(N−i−1)
0

)
. (3.11)

59

As is clear from (3.10–3.11), given {zt}t∈N, a realization {ξt}t∈N of the dual process is generated as
follows. At time zero, the process is initialized by inserting z0 at a randomly selected position in the
vector ξ0, while drawing independently the remaining elements in the same vector from η0. After this,
the process proceeds in a Markovian manner by, given ξt, inserting zt+1 at a randomly selected position
in ξt+1, while drawing independently the remaining elements from Φt(µ(ξt)).
In order to describe compactly the law of the conditional dual process, we define the Markov kernel

Ct : X0:t ×X 0:t ∋ (z0:t, A) 7→ η0⟨z0⟩�M0⟨z1⟩� · · ·�M t−1⟨zt⟩(A).
The following result elegantly combines the underlying model (3.1–3.2), the many-body Feynman–Kac
model, the backward decomposition, and the conditional dual process.

Theorem 10 (Del Moral et al. (2016)). For all t ∈ N, it holds that

Bt � γ0:t = γ0:t � Ct. (3.12)

In Del Moral et al. (2016), each state ξt of the many-body process maps an outcome ω of the sample
space Ω onto an unordered set of N elements in Xt. However, we have chosen to let each ξt take values
in the standard product space XNt , for two reasons. First, the construction of Del Moral et al. (2016)
requires sophisticated measure-theoretic arguments to endow such unordered sets with suitable σ-fields
and appropriate measures. Second, we see no need to ignore the index order of the particles, as long as
the Markovian dynamics (3.10–3.11) of the conditional dual process are symmetrized over the particle
cloud. Therefore, in 3.6.2, we include our own proof of duality (3.12) for completeness. Note that the
measure (3.12) on X0:t � X 0:t is unnormalized, but because the kernels Bt and Ct are both Markov,
normalizing the identity with γ0:t(X0:t) = γ0:t(X0:t) immediately yields

Bt � η0:t = η0:t � Ct. (3.13)

Because the two sides of (3.13) provide the full conditionals, it is natural to take a data-augmentation
approach, and sample the target (3.13) using a two-stage deterministic-scan Gibbs sampler Andrieu et al.
(2010b); Chopin and Singh (2015). Specifically, assume we generate a state (ξ0:t[ℓ], ζ0:t[ℓ]) comprising
a dual process with an associated path on the basis of ℓ ∈ N iterations of the sampler. Then, we generate
the next state (ξ0:t[ℓ+ 1], ζ0:t[ℓ+ 1]) in a Markovian fashion by first sampling ξ0:t[ℓ+ 1] ∼ Ct(ζ0:t[ℓ], ·),
and then sampling ζ0:t[ℓ + 1] ∼ Bt(ξ0:t[ℓ + 1], ·). After arbitrary initialization (and the discard of
possible burn-in), this procedure produces a Markov trajectory {(ξ0:t[ℓ], ζ0:t[ℓ])}ℓ∈N, and under weak
additional technical conditions, this Markov chain admits (3.13) as its unique invariant distribution. In
such a case, the Markov chain is ergodic (Douc et al., 2018, Chapter 5), and the marginal distribution of
the conditioning path ζ0:t[ℓ] converges to the target distribution η0:t. Therefore, for every h ∈ F(X0:t),
it holds that limL→∞ L

−1∑L
ℓ=1 h(ζ0:t[ℓ]) = η0:th, P-a.s.. This algorithm is given in the discussion in

Whiteley (2010) of the original particle Gibbs paper Andrieu et al. (2010b); however, the justification of
Whiteley (2010), involving an extension of the law targeted by the particle Gibbs sampler to the ancestral
indices of particles, differs somewhat from the one presented here.

3.2.4 The PARIS algorithm

In the following, we assume that we are given a sequence {ht}t∈N of additive state functionals of type
(3.4). Interestingly, as noted in Cappé (2011); Del Moral et al. (2010), the backward decomposition
allows, when applied to additive state functionals, a forward recursion for the expectations {η0:tht}t∈N.
More specifically, using the forward decomposition ht+1(x0:t+1) = ht(x0:t) + h̃t(xt, xt+1) and the
backward kernel Bt+1 defined in (3.7), we may write, for xt+1 ∈ Xt+1,

Bt+1ht+1(xt+1) =
∫ ←−
Q t,ηt(xt+1,dxt)

∫ (
ht(x0:t) + h̃t(xt, xt+1)

)
Bt(xt,dx0:t−1)

=←−Q t,ηt(Btht + h̃t)(xt+1), (3.14)

60

which, by 9, implies that
η0:t+1ht+1 = ηt+1

←−
Q t,ηt(Btht + h̃t). (3.15)

The marginal flow {ηt}t∈N can be expressed recursively using the mappings {Φt}t∈N. Thus, (3.15)
provides, in principle, a basis for an online computation of {η0:tht}t∈N. Because the marginals are
generally intractable, following Del Moral et al. (2010), we plug particle approximations µ(ξt+1) and
←−
Q t,µ(ξt) (see (3.9)) of ηt+1 and

←−
Q t,µ(ηt), respectively, into the recursion (3.15). More precisely, we

proceed recursively, and assume that at time t, we have a sample {(ξit, βit)}Ni=1 of particles with associated
statistics, where each statistic βit serves as an approximation of Btht(ξit). Then evolving the particle
cloud according to ξt+1 ∼ M t(ξt, ·) and updating the statistics using (3.14), with

←−
Q t,ηt replaced by

←−
Q t,µ(ξt), yields the particle-wise recursion

βit+1 =
N∑
ℓ=1

qt(ξℓt , ξit+1)∑N
ℓ′=1 qt(ξℓ

′
t , ξ

i
t+1)

(
βℓt + h̃t(ξℓt , ξit+1)

)
, i ∈ J1, NK, (3.16)

and, finally, the estimator

µ(βt)(id) = 1
N

N∑
i=1

βit (3.17)

of η0:tht, where we set βt := (β1
t , . . . , β

N
t), for i ∈ J1, NK, and id is the identity mapping. The

procedure is initialized by simply letting βi0 = 0, for all i ∈ J1, NK. Note that (3.17) provides a particle
interpretation of the backward decomposition in 9. This algorithm is a special case of the forward-
filtering backward-smoothing (FFBSm) algorithm (see Andrieu and Doucet (2003); Godsill et al. (2004);
Douc et al. (2011); Särkkä (2013)) for additive functionals satisfying (3.4). It allows for online processing
of the sequence {η0:tht}t∈N, but also has the appealing property that only the current particles ξt and
statistics βt need to be stored in memory. However, because each update (3.16) requires a summation
of N terms, the scheme has an overall quadratic complexity in the number of particles, leading to
a computational bottleneck in applications to complex models that require large particle sample sizes
N .

To avoid the computational burden of this forward-only implementation of FFBSm, the PARIS algorithm
Olsson and Westerborn (2017) updates the statistics βt by replacing each sum (3.16) with the Monte
Carlo estimate

βit+1 = 1
M

M∑
j=1

(
β̃i,jt + h̃t(ξ̃i,jt , ξit+1)

)
, i ∈ J1, NK, (3.18)

where {(ξ̃i,jt , β̃
i,j
t)}Mj=1 are drawn randomly from among {(ξit, βit)}Ni=1 with replacement, by assigning

(ξ̃i,jt , β̃
i,j
t) the value of (ξℓt , βℓt) with probability qt(ξℓt , ξit+1)/

∑N
ℓ′=1 qt(ξℓ

′
t , ξ

i
t+1), and the Monte Carlo

sample size M ∈ N∗ is much smaller than N (say, less than five). Formally,

{(ξ̃i,jt , β̃
i,j
t)}Mj=1 ∼

(
N∑
ℓ=1

qt(ξℓt , ξit+1)∑N
ℓ′=1 qt(ξℓ

′
t , ξ

i
t+1)

δ(ξℓ
t ,β

ℓ
t)

)�M

, i ∈ J1, NK.

The resulting procedure, summarized in 7, allows for online processing with constant memory require-
ments, because it only needs to store the current particle cloud and the estimated auxiliary statistics at
each iteration. Moreover, when the Markov transition densities of the model can be uniformly bounded,
that is, there exists, for every t ∈ N, an upper bound σ̄t > 0 such that for all (xt, xt+1) ∈ Xt × Xt+1,
mt(xt, xt+1) ≤ σ̄t (a weak assumption satisfied for most models of interest), then we can generate
a sample (ξ̃i,jt , β

i,j
t) by drawing, with replacement and until acceptance, candidates (ξ̃i,∗t , β̃i,∗t) from

{(ξit, βit)}Ni=1 based on the normalized particle weights {gt(ξℓt)/
∑
ℓ′ gt(ξℓ

′
t)}Nℓ=1 (obtained as a by-

product in the generation of ξt+1), and accepting the same with probability mt(ξ̃i,∗t , ξit+1)/σ̄t. Because

61

this sampling procedure bypasses the calculation of the normalizing constant
∑N
ℓ′=1 qt(ξℓ

′
t , ξ

i
t+1) of the

targeted categorical distribution, it yields an overall O(MN) complexity of the algorithm; see Douc
et al. (2011) for details.

Increasing M improves the accuracy of the algorithm at the cost of additional computational complex-
ity.

As shown in Olsson and Westerborn (2017), there is a qualitative difference between the cases M = 1
and M ≥ 2, and the latter is required to keep the PARIS numerically stable. More precisely, in the latter
case, it can be shown that the PARIS estimator µ(βt) satisfies, as N tends to infinity while M is held
fixed, a central limit theorem (CLT) at the rate

√
N , with an t-normalized asymptotic variance of order

O(1− 1/(M − 1)). As is clear from this bound, using a large M only wastes computational work, and
setting M to two or three typically works well in practice.

3.3 The PPG sampler

We now introduce the PPG algorithm. For all t ∈ N∗, let Yt := X0:t × R and Yt := X0:t � B(R).
Moreover, let Y0 := X0 × {0} and Y0 := X0 � {{0}, ∅}. An element of Yt is always denoted by
yt = (x0:t|t, bt). The PPG sampler includes, as a key ingredient, a conditional PARIS step, that recursively
updates a set of Yt-valued random variables υit := (ξi0:t|t, β

i
t), for i ∈ J1, NK. Let (υt)t∈N denote the

corresponding many-body process, with each υt := ((ξ1
0:t|t, β

1
t), . . . , (ξN0:t|t, β

N
t)) taking on values in the

space Yt := YNt , which we furnish with a σ-field Y t := Y�N
t . The space Y0 and the corresponding

σ-field Y0 are defined accordingly. For every t ∈ N, we write ξ0:t|t = (ξ1
0:t|t, . . . , ξ

N
0:t|t) for the collection

of paths in υt, and ξt|t = (ξ1
t , . . . , ξ

N
t) for the collection of end points of the same.

In the following, we let t ∈ N be a fixed time horizon, and describe in detail how the PPG approximates
η0:tht iteratively. In short, at each iteration ℓ, and given an input conditional path ζ0:t[ℓ], the PPG produces
a many-body system υt[ℓ+ 1] by using a series of conditional PARIS operations. Then, an updated path
ζ0:t[ℓ+1], which serves as input at the next iteration, is generated by picking one of the paths ξ0:t|t[ℓ+1]
in υt[ℓ+ 1] at random. At each iteration, the produced statistics βt (in υt) provide an approximation of
η0:tht, according to (3.17).

More precisely, given a path ζ0:t[ℓ], the conditional PARIS operations are executed as follows. In the
initial step, ξ0|0[ℓ+ 1] are drawn from η0⟨ζ0[ℓ]⟩ defined in (3.11), and υi0[ℓ+ 1]← (ξi0|0[ℓ+ 1], 0), for
all i ∈ J1, NK; then, recursively, for m ∈ J0, tK, assuming access to υm[ℓ+ 1], we

(1) generate an updated particle cloud ξm+1[ℓ+ 1] ∼Mm⟨ζm+1[ℓ]⟩(ξm|m[ℓ+ 1], ·),
(2) pick at random, for each i ∈ J1, NK, an ancestor path with associated statistics (ξ̃i,10:m[ℓ+1], β̃i,1m [ℓ+

1]) from among υm[ℓ+ 1] by drawing

(ξ̃i,10:m[ℓ+ 1], β̃i,1m [ℓ+ 1]) ∼
N∑
s=1

qm(ξsm|m[ℓ+ 1], ξim+1[ℓ+ 1])∑N
s′=1 qm(ξs′

m|m[ℓ+ 1], ξim+1[ℓ+ 1])
δυs

m[ℓ+1],

(3) pick at random, for each i ∈ J1, NK, with replacement, M − 1 ancestor particles and associated
statistics {(ξ̃i,jm [ℓ+ 1], β̃i,jm [ℓ+ 1])}Mj=2 at random from {(ξsm|m[ℓ+ 1], βsm[ℓ+ 1])}Ns=1 according
to

{(ξ̃i,jm [ℓ+ 1], β̃i,jm [ℓ+ 1])}Mj=2

∼

 N∑
s=1

qm(ξsm|m[ℓ+ 1], ξim+1[ℓ+ 1])∑N
s′=1 qm(ξs′

m|m[ℓ+ 1], ξim+1[ℓ+ 1])
δ(ξs

m|m[ℓ+1],βs
m[ℓ+1])

�(M−1)

,

62

(4) set, for all i ∈ J1, NK, ξi0:m+1|m+1[ℓ + 1] ← (ξ̃i,10:m[ℓ + 1], ξim+1[ℓ + 1]) and υim+1[ℓ + 1] ←
(ξi0:m+1|m+1[ℓ+ 1], βim+1[ℓ+ 1]), where

βim+1[ℓ+ 1]←M−1
M∑
j=1

(
β̃i,jm [ℓ+ 1] + h̃m(ξ̃i,jm [ℓ+ 1], ξim+1[ℓ+ 1])

)
.

This conditional PARIS procedure is summarized in pseudocode in 8 in B.2.

In addition to recursively propagating the statistics {βm[ℓ + 1]}tm=0 to form the final estimator, this
scheme also recursively propagates the trajectories {ξ0:m|m[ℓ+ 1]}tm=0 used as a pool of candidates for
the updated conditional path ζ0:t[ℓ + 1]. Once we have the set υt[ℓ + 1] of trajectories and associated
statistics formed using t recursive conditional PARIS updates, we draw an updated path ζ0:t[ℓ+ 1] from
µ(ξ0:t|t[ℓ+ 1]) (i.e., uniformly among the elements of ξ0:t|t[ℓ+ 1]). As a result, the updated conditional
path ζ0:t[ℓ + 1] and the statistics βt[ℓ + 1] are statistically intertwined conditionally on the conditional
dual particle process underpinning the algorithm. The main reason for this is to avoid computational
waste. By letting the updated conditional path ζ0:t[ℓ + 1] be formed by reusing the backward samples
from those generated to form the statistics βt[ℓ + 1] included in the estimator, our procedure optimizes
available computational resources. The full PPG is summarized in pseudocode in 9 in B.2.

The following Markov kernels play an instrumental role in the following. For a given path {zm}m∈N, the
conditional PARIS update in 8 defines an inhomogeneous Markov chain on the spaces {(Ym,Ym)}m∈N
with kernels

Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm⟨zm+1⟩(xm|m,dxm+1)Sm(ym,xm+1, A), m ∈ N,

where

Sm : Ym × Xm+1 ×Ym+1 ∋ (ym,xm+1, A) (3.19)

7→
∫
· · ·
∫
1A

{((x̃i,10:m, x
i
m+1), 1

M

M∑
j=1

(
b̃i,jm + h̃m(x̃i,jm , xim+1)

))}N
i=1

×

N∏
i=1

 N∑
ℓ=1

qm(xℓm|m, x
i
m+1)∑N

ℓ′=1 qm(xℓ′m|m, x
i
m+1)

δyℓ
m

(d(x̃i,10:m, b̃
i,1
m))

×

 N∑
ℓ=1

qm(xℓm|m, x
i
m+1)∑N

ℓ′=1 qm(xℓ′m|m, x
i
m+1)

δ(xℓ
m|m,b

ℓ
m)

�(M−1)

(d(x̃i,2m , b̃i,2m , . . . , x̃i,Mm , b̃i,Mm))

 .

In addition, we introduce the joint law

St : X0:t ×Y t ∋ (x0:t, A)

7→
∫
· · ·
∫
1A(yt)S0(Jx0,x1,dy1)

t−1∏
m=1

Sm(ym,xm+1, dym+1), (3.20)

where we define J := IN �(0, 1)⊺.

The kernel St can be viewed as a superincumbent sampling kernel that describes the distribution of
the output υt generated by a sequence of PARIS iterations when the many-body process {ξm}tm=0
associated with the underlying particle filter is given. This allows us to describe the PPG alternatively
as follows: given ζ0:t[ℓ], draw ξ0:t[ℓ + 1] ∼ Ct(ζ0:t[ℓ], ·); then, draw υt[ℓ + 1] ∼ St(ξ0:t[ℓ + 1], ·) and
pick a trajectory ζ0:t[ℓ+ 1] from ξ0:t|t[ℓ+ 1] at random. The following proposition, establishes that the
conditional distribution of ζ0:t[ℓ+ 1] given ξ0:t[ℓ+ 1] coincides, as expected, with the particle-induced
backward dynamics Bt.

63

Proposition 11. For all t ∈ N∗, N ∈ N∗, x0:t ∈ X0:t, and h ∈ F(X0:t),∫
St(x0:t,dyt)µ(x0:t|t)h = Bth(x0:t).

Finally, we define the Markov kernel induced by the PPG, as well as the extended probability distribution
targeted by the same. For this purpose, we introduce the extended measurable space (Et,Et), with

Et := Yt × X0:t, Et := Y t � X0:t.

The PPG described in 9 defines a Markov chain on (Et,Et) with the Markov transition kernel

Kt : Et × Et ∋ (yt, z0:t, A)

7→
∫∫∫

1A(ỹt, z̃0:t)Ct(z0:t,dx̃0:t) St(x̃0:t,dỹt)µ(x̃0:t|t)(dz̃0:t). (3.21)

Note that the values of Kt defined above do not depend on yt, but only on (z0:t, A). For any given initial
distribution ξ ∈ M1(X0:t), let Pξ be the distribution of the canonical Markov chain induced by the kernel
Kt and the initial distribution ξ. In the special case where ξ = δz0:t , for some given path z0:t ∈ X0:t, we
use the short-hand notation Pδz0:t

= Pz0:t . In addition, denote by

Kt : X0:t ×X0:t ∋ (z0:t, A)

7→
∫∫∫

1A(z̃0:t)Ct(z0:t, dx̃0:t) St(x̃0:t, dỹt)µ(x̃0:t|t)(dz̃0:t) (3.22)

the path-marginalized version of Kt. By 11, it holds that Kt = CtBt, which shows that Kt coincides
with the Markov transition kernel of the backward-sampling-based particle Gibbs sampler discussed in
3.2.3.

Finally, in order to prepare for the statement of our theoretical results on the PPG, we need to introduce
the following Feynman–Kac path model with a frozen path. More precisely, for a given path z0:t ∈ X0:t,
define, for every m ∈ J0, t− 1K, the unnormalized kernel

Qm⟨zm+1⟩ : Xm ×Xm+1 ∋ (xm, A) 7→
(

1− 1
N

)
Qm(xm, A) + 1

N
gm(xm) δzm+1(A)

and the initial distribution η0⟨z0⟩ : X0 ∋ A 7→ (1 − 1/N)η0(A) + δz0(A)/N . Given these quantities,
define, for m ∈ J0, tK, γm⟨z0:m⟩ := η0⟨z0⟩Q0⟨z1⟩ · · ·Qm−1⟨zm⟩ , and its normalized counterpart
ηm⟨z0:m⟩ := γm⟨z0:m⟩/γm⟨z0:m⟩1X0:m . Finally, we introduce, for m ∈ J0, tK, the kernels

Bm⟨z0:m−1⟩ : Xm ×X0:m−1 ∋ (xm, A) 7→
∫
· · ·
∫
1A(x0:t−1)

t−1∏
m=0

←−
Qm,ηm⟨z0:m⟩(xm+1, dxm)

and the path model η0:m⟨z0:m⟩ := Bm⟨z0:m−1⟩� ηm⟨z0:m⟩.

3.4 Main results

3.4.1 Theoretical results

In this section, we establish our main result, namely, the exponentially contracting bias bound stated in 12.
This result is proved under the following strong mixing assumptions, which are standard in the literature
(see Del Moral (2004); Douc and Moulines (2008); Del Moral (2013); Del Moral et al. (2016)):

64

A2 (strong mixing). For every t ∈ N, there exist
¯
τt, τ̄t, ¯

σt, and σ̄t in R∗+ such that

(i)
¯
τt ≤ gt(xt) ≤ τ̄t for every xt ∈ Xt,

(ii)
¯
σt ≤ mt(xt, xt+1) ≤ σ̄t for every (xt, xt+1) ∈ Xt:t+1.

Under 2, define, for every t ∈ N,
ρt := max

m∈J0,tK

τ̄mσ̄m

¯
τm¯
σm

(3.23)

and, for every t ∈ N and N ∈ N∗ such that N > Nt := (1 + 5ρ2
t t/2) ∨ 2t(1 + 2ρ2

t),

κN,t := 1− 1− (1 + 5tρ2
t /2)/N

1 + 4t(1 + 2ρ2
t)/N

. (3.24)

Note that κN,t ∈ (0, 1), for all N and t, as above.

Theorem 12. Assume 2. Then, for every t ∈ N, there exist cbias
t , cmse

t , and ccov
t in R∗+ such that for every

M ∈ N∗, ξ ∈ M1(X0:t), ℓ ∈ N∗, s ∈ N∗, and N ∈ N∗ such that N > Nt,

|Eξ [µ(βt[ℓ])(id)]− η0:tht| ≤ cbias
t

(
t−1∑
m=0
∥h̃m∥∞

)
N−1κℓN,t, (3.25)

Eξ

[
(µ(βt[ℓ])(id)− η0:tht)2

]
≤ cmse

t

(
t−1∑
m=0
∥h̃m∥∞

)2

N−1, (3.26)

|Eξ [(µ(βt[ℓ])(id)− η0:tht) (µ(βt[ℓ+ s])(id) − η0:tht)]|

≤ ccov
t

(
t−1∑
m=0
∥h̃m∥∞

)2

N−3/2κsN,t. (3.27)

The constants cbias
t , cmse

t , and ccov
t are given explicitly in the proof. Because we focus on the dependence

on N and the index ℓ, we make no attempt to optimize the dependence of these constants on t in
our proofs; nevertheless, we believe that it is possible to prove, under the stated assumptions, that this
dependence is linear. The proof of the bound in 12 is based on four key ingredients. The first is the
following unbiasedness property of the PARIS under the many-body Feynman–Kac path model.

Theorem 13. For every t ∈ N, N ∈ N∗, and ℓ ∈ N∗,

Eη0:t [µ(βt[ℓ])(id)] =
∫
η0:tCtSt(dbt)µ(bt)(id) =

∫
η0:tSt(dbt)µ(bt)(id) = η0:tht.

The proof of 13 is found in 3.6.3. The second is the uniform geometric ergodicity of the particle Gibbs
with backward sampling established in Del Moral and Jasra (2018).

Theorem 14. Assume 2. Then, for every t ∈ N, (µ, ν) ∈ M1(X0:t)2, ℓ ∈ N∗, and N ∈ N∗ such that
N > Nt, ∥µKℓ

t − νKℓ
t ∥TV ≤ κN,ttN ℓ, where κN,t is defined in (3.24).

As a third ingredient, we require the following uniform exponential concentration inequality of the condi-
tional PARISwith respect to the frozen-path Feynman–Kac model defined in the previous section.

Theorem 15. For every t ∈ N, there exist ct > 0 and dt > 0 such that for every M ∈ N∗, z0:t ∈ X0:t,
N ∈ N∗, and ε > 0,∫

CtSt(z0:t,dbt)1 {|µ(bt)(id)− η0:t⟨z0:t⟩ht| ≥ ε} ≤ ct exp
(
− dtNε2

2(
∑t−1
m=0 ∥h̃m∥∞)2

)
.

The proof of 15 is found in B.3.2, and is based on arguments similar to those used in the proofs of
(Olsson and Westerborn, 2017, Theorem 1) and (Douc et al., 2011, Theorem 5) in the framework of the
conditional dual process. 15 implies, in turn, the following conditional variance bound.

65

Proposition 16. For every t ∈ N, M ∈ N∗, z0:t ∈ X0:t, and N ∈ N∗,

∫
CtSt(z0:t,dbt) |µ(bt)(id)− η0:t⟨z0:t⟩ht|2 ≤

ct
dt

(
t−1∑
m=0
∥h̃m∥∞

)2

N−1.

Using 16, we deduce, in turn, the following bias bound, the proof is postponed to B.3.4.

Proposition 17. For every t ∈ N, there exists c̄bias
t > 0 such that for every M ∈ N∗, z0:t ∈ X0:t, and

N ∈ N∗, ∣∣∣∣∫ CtSt(z0:t, dbt)µ(bt)(id)− η0:t⟨z0:t⟩ht
∣∣∣∣ ≤ c̄bias

t

(
t−1∑
m=0
∥h̃m∥∞

)
N−1.

A fourth and last ingredient in the proof of 12 is the following bound on the discrepancy between the
additive expectations under the original and frozen-path Feynman–Kac models. This bound is established
using novel results in Gloaguen et al. (2022). More precisely, because for every m ∈ N, (x, z) ∈ X2

m,
N ∈ N∗, and h ∈ F(Xm+1), using 2,

|Qm⟨z⟩h(x)−Qmh(x)| ≤ 1
N
∥gm∥∞∥h∥∞ ≤

1
N
τ̄m∥h∥∞,

applying (Gloaguen et al., 2022, Theorem 4.3) yields the following.

Proposition 18. Assume 2. Then, there exists c > 0 such that for every t ∈ N, N ∈ N, and z0:t ∈ X0:t,

|η0:t⟨z0:t⟩ht − η0:tht| ≤ cN−1
t−1∑
m=0
∥h̃m∥∞.

In addition, we assume supt∈N ∥h̃t∥∞ <∞ yields an O(n/N) bound in 18.

Finally, by combining these ingredients, we are now ready to present a proof of 12.

Proof of 12. Write, using the tower property,

Eξ [µ(βt [ℓ])(id)] = Eξ

[
Eζ0:t[ℓ] [µ(βt [0])(id)]

]
=
∫

ξKℓ
tCtSt(dbt)µ(bt)(id).

Thus, by the unbiasedness property in 13,

|Eξ [µ(βt [ℓ])(id)]− η0:tht|

=
∣∣∣∣∫ ξKℓ

tCtSt(dbt)µ(bt)(id)−
∫
η0:tCtSt(dbt)µ(bt)(id)

∣∣∣∣
≤
∥∥ξKℓ

t − η0:t
∥∥

TV osc
(∫

CtSt(·,dbt)µ(bt)(id)
)
,

where, by 14, ∥ξKℓ
t − η0:t∥TV ≤ κℓN,t. Moreover, to derive an upper bound on the oscillation, we

consider the decomposition

osc
(∫

CtSt(·, dbt)µ(bt)(id)
)

≤ 2
(∥∥∥∥∫ CtSt(·,dbt)µ(bt)(id)− η0:t⟨·⟩ht

∥∥∥∥
∞

+ ∥η0:t⟨·⟩ht − η0:tht∥∞
)
,

66

where the two terms on the right-hand side can be bounded using 18 and 17, respectively. This completes
the proof of (3.25). We now consider the proof of (3.26). Writing

Eξ

[
(µ(βt[ℓ])(id)− η0:tht)2

]
=
∫

ξKℓ
t (dz0:t)CtSt(z0:t, dbt) (µ(bt)(id)− η0:tht)2 ,

we establish (3.26) using 16 and 18. Finally, WE consider (3.27). Using the Markov property, we obtain

Eξ [(µ(βt[ℓ])(id)− η0:tht) (µ(βt[ℓ+ s])(id) − η0:tht)]

= Eξ

[
(µ(βt[ℓ])(id)− η0:tht)

(
Eζ0:t[ℓ][µ(βt[s])(id)] − η0:tht

)]
,

from which we may deduce (3.27) using (3.25) and (3.26).

3.4.2 The roll-out PPG estimator

In light of the previous results, it is natural to consider an estimator formed by an average across successive
conditional PPG estimators {µ(βt[ℓ])}ℓ∈N. To mitigate the bias, we remove a “burn-in” period, with
length k0 chosen proportionally to the mixing time of the particle Gibbs chain {ζ0:t[ℓ]}ℓ∈N∗ . This yields
the estimator

Π(k0,k),N (ht) = (k − k0)−1
k∑

ℓ=k0+1
µ(βt[ℓ])(id). (3.28)

The total number of particles underlying this estimator is C = (N − 1)k. We denote by υ = (k− k0)/k
the ratio of the number of particles used in the estimator to the total number of sampled particles.

As a final main result, we provide bounds on the bias and the MSE of the estimator (3.28). The proof is
postponed to B.3.5.

Theorem 19. Assume 2. Then, for every t ∈ N, M ∈ N∗, ξ ∈ M1(X0:t), ℓ ∈ N∗, s ∈ N∗, and N ∈ N∗
such that N > Nt,

∣∣∣Eξ[Π(k0,k),N (ht)]− η0:tht
∣∣∣ ≤ cbias

t

(
t−1∑
m=0
∥h̃m∥∞

)
κk0
N,t

N(k − k0)(1− κN,t)
, (3.29)

Eξ

[(
Π(k0,k),N (ht)− η0:tht

)2
]

≤
(
t−1∑
m=0
∥h̃m∥∞

)2
cmse
t + 2ccov

t N−1/2(1− κN,t)−1

N(k − k0) (3.30)

Setting the burn-in k0 in the roll-out estimator is nontrivial. However, because the estimator converges
for any choice of k0, including the trivial choice k0 = 1, we can view this algorithmic parameter as an
opportunity for the user to optimize the implementation of the algorithm. For given (N, k), the choice of
k0 involves a classical trade-off between bias and variance; indeed, for fixed (N, k), the bias upper bound
(3.29) decreases with k0 proportionally to κk0

N,t/(k−k0) whereas the MSE upper bound (3.30) increases
with k0 proportionally to 1/(k − k0). These bounds suggest that we should take k0 = ⌈k(1 − ℓ−1)⌉
if we are willing to bound the MSE increase of the roll-out estimator by a factor ℓ with respect to the
PARIS. However, the bias reduction is not easily quantified, because it depends mainly on the mixing
rate κN,t of the PPG chain, and we only have access to upper bounds on this rate that are, in general, too
conservative.

67

3.5 Numerical results
In this section, we evaluate numerically the proposed PPG sampler in the context of general state-space
HMMs. Given measurable spaces (X,X) and (Z,Z), an HMM is a bivariate (possibly inhomogeneous)
Markov chain {(Xm, Zm)}m∈N taking values in the product space (X×Z,X�Z). In such a model, the
process {Xt}t∈N, referred to as the state sequence, is assumed to be itself a (possibly inhomogeneous)
Markov chain, specified by some initial distribution χ and some sequence {Mt}t∈N of Markov kernels.
The state sequence is latent and only partially observed through the observation process {Zm}m∈N.
Conditionally on the state sequence, the observations are assumed to be independent; furthermore, the
conditional marginal distribution of each Zm is assumed to depend only on the corresponding state
Xm and to have a density gm(Xm, ·) with respect to some dominating measure. HMMs are used in
numerous scientific and engineering disciplines; see Andrieu and Doucet (2002); Cappé et al. (2005a);
Chopin and Papaspiliopoulos (2020). Inference in HMMs typically involves computing conditional
distributions of unobserved states, given observations. Of particular interest are the sequence of filter
distributions, where the filter at time m ∈ N, denoted as ηm, is defined as the conditional distribution
of Xm, given Z0:m := (Z0, . . . , Zm), and the joint-smoothing distributions, where the joint-smoothing
distribution at time m, denoted as η0:m, is defined as the joint conditional distribution of the states
X0:m = (X0, . . . , Xm), given the observations Z0:m. Consequently, ηm is the marginal of η0:m with
respect to the last state Xm. Given a sequence {zm}m∈N of fixed observations, {η0:m}m∈N forms a
Feynman–Kac model (see 3.1), with Markov kernels {Mm}m∈N and potential functions gm := g(·, zm),
for m ∈ N, on X.

We now evaluate the proposed algorithm numerically for two HMMs: (i) a linear Gaussian state-space
model (for which the filter and the joint-smoothing distribution flows are available in a closed form), and
(ii) the stochastic volatility model proposed in Hull and White (1987). The PPG algorithm used in this
section is given in 9 (in B.2).

Linear Gaussian state-space model (LGSSM). We first consider an LGSSM

Xm+1 = AXm +Qϵm+1, Zm = BXm +Rζm, m ∈ N, (3.31)

where {ϵm}m∈N∗ and {ζm}m∈N are sequences of independent standard normally distributed random
variables. The matrices A, Q, B, and R are assumed to be known 5× 5 matrices (see section B.1.1 for
the precise values). In this framework, we aim to compute the expectation of the one-lag state covariance
ht(x0:t) :=

∑t−1
m=0 xmx

⊺
m+1 under the joint-smoothing distribution η0:t for observations generated by

simulation under the given parameters with t = 103. In the LGSSM case, the disturbance smoother (see
(Cappé et al., 2005a, Algorithm 5.2.15)) provides the exact values of η0:tht, which allows us to assess
numerically the bias of the PARIS and PPG estimators.

In this setting, we calculate the bias for batch sizesN ∈ {10, 25, 50, 100, 500} and an increasing number
k of iterations by averaging the PPG estimator over 104 independent runs. 3.1a shows the bias of the PPG
estimates of the first diagonal entry of the one-lag covariance. For each batch size N , we estimate and
display the regression function k 7→ eak+b to illustrate the exponential decrease of the PPG bias, which
is consistent with 12.

3.2a displays, for a given budget C = 5 × 103, the bias of the estimates of η0:tht using the PARIS
and the PPG for different batch sizes N and different numbers k = C/N of iterations and burn-in
periods k0 = ⌊k/2⌋. The red line corresponds to zero (no bias), and the empirical means are given by
black-dashed lines. An extended comparison comprising different choices of k0 and different budgets
C is provided in B.1. In order to estimate the bias for each algorithmic configuration, we average
103 independent replications of the corresponding estimator. Moreover, to assess the precision of the
resulting bias estimator, we repeat this procedure 102 times, and present the bias estimates in a box plot.

68

0 20 40 60 80 100
10 3

10 2

10 1

100

N=50
N=100
N=250
N=500

(a) LGSMM

0 10 20 30 40 50 6010 2

10 1

100

101

N=10
N=50
N=100
N=250
N=500

(b) StoVol

Figure 3.1: Output of the PPG roll-out estimator for the LGSSM (left panel) and the StoVol model (right
panel). The curves describe the evolution of the bias with increasing k for different batch sizes N .

This enables us to form an idea of whether the PPG provides a statistically significant improvement in
terms of bias. In this example, whatever the choice of the batch size is, the PPG bias is significantly
reduced compared with the bias of the PARIS estimator. We further observe that a larger k leads to
smaller bias.

Stochastic volatility (StoVol). As a second example, consider the stochastic volatility model

Xm+1 = ϕXm + σϵϵm+1, Zm = β exp(Xm/2)ζm, m ∈ N, (3.32)

where {ϵm}m∈N∗ and {ζm}m∈N are as in the previous example, and the model parameters ϕ, β, and σϵ
are set to 0.975, 0.63, and 0.16, respectively. The reference value is calculated by running the PARIS
with 5× 104 particles. In this setting, we repeated the experiments of the previous example for the same
additive functional and number t = 103 of observations, produced by simulation under the parameters
above. The computational budget was set to C = 103. As in the LGSSM example, the bias decay with
respect to the iteration index k is displayed in 3.1b, and the comparison with the PARIS is shown in 3.2b.
The comments from the previous example apply to this StoVol model context as well. More in-depth
numerical assessments of the proposed PPG estimator are found in B.1.2. In particular, in B.1.2.1, we
compare our estimator with the Rhee–Glynn-type estimator with ancestor sampling proposed by Jacob
et al. (2020a), showing that the variance of the latter is significantly larger than that of the PPG for a given
computational effort.

3.6 Proofs

3.6.1 Proof of 9

Using the identity

η0Q0 · · ·Qt−11Xt =
t−1∏
m=0

ηmQm1Xm+1

69

PaRIS
 N=5000

N=50 N=100 N=250 N=500

0.1

0.0

0.1

0.2

0.3

(a) LGSSM

PaRIS
 N=1000

N=10 N=50 N=100 N=250 N=500
6

4

2

0

2

4

(b) StoVol

Figure 3.2: PARIS and PPG bias dispersions for the LGSSM and StoVol model as a function of the
mini-batch sizeN for fixed computational budgets C = Nk of 5×103 (LGSSM) and 103 (StoVol model)
and with k0 = ⌊2−1k⌋ burn-in steps.

and that each kernel Qm has a transition density, write, for h ∈ F(X0:t),

η0:th =
∫
· · ·
∫
h(x0:t) η0(dx0)

t−1∏
m=0

(
ηm[qm(·, xm+1)]λm+1(dxm+1)

ηmQm1Xm+1

)(
qm(xm, xm+1)
ηm[qm(·, xm+1)]

)

=
∫
· · ·
∫
h(x0:t) ηt(dxt)

t−1∏
m=0

ηm(dxm) qm(xm, xm+1)
ηm[qm(·, xm+1)] (3.33)

=
(←−
Q0,η0 � · · ·�

←−
Q t−1,ηt−1 � ηt

)
h,

which establishes the proof.

3.6.2 Proof of 10

Lemma 20. For all t ∈ N, xt ∈ Xt, and h ∈ F(X t+1 � Xt+1),

∫∫
h(xt+1, zt+1)Qt(xt,dxt+1)µ(xt+1)(dzt+1)

=
∫∫

h(xt+1, zt+1)µ(xt)Qt(dzt+1)M t⟨zt+1⟩(xt,dxt+1). (3.34)

In addition, for all h ∈ F(X 0 � X0),
∫∫

h(x0, z0)η0(dx0)µ(x0)(dz0) =
∫∫

h(x0, z0)η0⟨z0⟩(dx0) η0(dz0). (3.35)

Proof. Because µ(xt)Qt(dzt+1) = gt(xt) Φt(µ(xt))(dzt+1), we may rewrite the right-hand side of

70

(3.34) as ∫∫
h(xt+1, zt+1)µ(xt)Qt(dzt+1)M t⟨zt+1⟩(xt,dxt+1)

= gt(xt)
1
N

N−1∑
i=0

∫∫
h(xt+1, zt+1) Φt(µ(xt))(dzt+1)

×
(
Φt(µ(xt))�i � δzt+1 � Φt(µ(xt))�(N−i−1)

)
(dxt+1)

= gt(xt)
1
N

N∑
i=1

∫
· · ·
∫
h((x1

t+1, . . . , x
i−1
t+1, zt+1, x

i+1
t+1, . . . , x

N
t+1), zt+1)

× Φt(µ(xt))(dzt+1)
∏
ℓ ̸=i

Φt(µ(xt))(dxℓt+1)

= gt(xt)
1
N

N∑
i=1

∫
h(xt+1, x

i
t+1)M t(xt, dxt+1).

On the other hand, note that the left-hand side of (3.34) can be expressed as

∫∫
h(xt+1, zt+1)Qt(xt,dxt+1)µ(xt+1)(dzt+1)

= gt(xt)
1
N

N∑
i=1

∫
h(xt+1, x

i
t+1)M t(xt,dxt+1), (3.36)

which establishes the identity. The identity (3.35) is established along similar lines.

We establish 10 by induction. Thus, assume that the claim holds for t, and show that for all h ∈
F(X 0:t+1 � X0:t+1),

∫∫
h(x0:t+1, z0:t+1)γ0:t+1(dx0:t+1)Bt+1(x0:t+1,dz0:t+1)

=
∫∫

h(x0:t+1, z0:t+1) γ0:t+1(dz0:t+1)Ct+1(z0:t+1, dx0:t+1). (3.37)

To prove this, we process, using definition (3.8), the left-hand side of (3.37) according to∫∫
h(x0:t+1, z0:t+1)γ0:t+1(dx0:t+1)Bt+1(x0:t+1,dz0:t+1)

=
∫∫

γ0:t(dx0:t)Bt(x0:t,dz0:t)

×
∫∫

h̄(x0:t+1, z0:t+1)Qt(xt,dxt+1)µ(xt+1)(dzt+1),

(3.38)

where we define the function

h̄(x0:t+1, z0:t+1) := qt(zt, zt+1)h(x0:t+1, z0:t+1)
µ(xt)[qt(·, zt+1)] .

Now, applying 20 to the inner integral and using

µ(xt)Qt(dzt+1) = µ(xt)[qt(·, zt+1)]λt+1(dzt+1)

71

yields, for every x0:t and z0:t,∫∫
h̄(x0:t+1, z0:t+1)Qt(xt,dxt+1)µ(xt+1)(dzt+1)

=
∫∫

h̄(x0:t+1, z0:t+1)µ(xt)Qt(dzt+1)M t⟨zt+1⟩(xt,dxt+1)

=
∫∫

h(x0:t+1, z0:t+1)Qt(zt, dzt+1)M t⟨zt+1⟩(xt,dxt+1).

Inserting the previous identity into (3.38) and using the induction hypothesis yields∫∫
h(x0:t+1, z0:t+1)γ0:t+1(dx0:t+1)Bt+1(x0:t+1,dz0:t+1)

=
∫∫

γ0:t(dz0:t)Ct(z0:t, dx0:t)

×
∫∫

h(x0:t+1, z0:t+1)Qt(zt, dzt+1)M t⟨zt+1⟩(xt, dxt+1)

=
∫∫

h(x0:t+1, z0:t+1) γ0:t+1(dz0:t+1)Ct+1(z0:t+1,dx0:t+1),

which establishes (3.37).

3.6.3 Proof of 13

First, define, for m ∈ N,

Pm : Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm(xm|m,dxm+1)Sm(ym,xm+1, A). (3.39)

For any given initial distributionψ0 ∈ M1(Y0), let PPψ0
be the distribution of the canonical Markov chain

induced by the Markov kernels {Pm}m∈N and the initial distributionψ0. With a slight abuse of notation
we write, for η0 ∈ M1(X 0), PPη0

instead of PPψ0[η0], where we define the extension ψ0[η0](A) =∫
1A(Jx0)η0(dx0), for A ∈ Y0. We preface the proof of 13 with some technical lemmas and a

proposition.

Lemma 21. For all t ∈ N and (ft+1, f̃t+1) ∈ F(Xt+1)2,

γt+1(ft+1Bt+1ht+1 + f̃t+1) = γt{Qtft+1Btht +Qt(h̃tft+1 + f̃t+1)}.

Proof. Pick arbitrary φ ∈ F(Xt:t+1) and, from definition (3.7) and thatQt has a transition density, write∫∫
φ(xt:t+1) γt(dxt)Qt(xt,dxt+1)

=
∫∫

φ(xt:t+1)γt[qt(·, xt+1)]λt+1(dxt+1) γt(dxt)qt(xt, xt+1)
γt[qt(·, xt+1)]

=
∫∫

φ(xt:t+1) γt+1(dxt+1)←−Q t,ηt(xt+1,dxt). (3.40)

Now, by (3.14), it holds that

Bt+1ht+1(xt+1) =
∫ ←−
Q t,ηt(xt+1, dxt)

(
h̃t(xt:t+1) +

∫
ht(x0:t)Bt(xt,dx0:t−1)

)
;

therefore, by applying (3.40) with

φ(xt:t+1) := ft+1(xt+1)
(
h̃t(xt:t+1) +

∫
ht(x0:t)Bt(xt, dx0:t−1)

)
,

72

we obtain that

γt+1(ft+1Bt+1ht+1) =
∫∫

φ(xt:t+1) γt+1(dxt+1)←−Q t,ηt(xt+1, dxt)

=
∫∫

φ(xt:t+1) γt(dxt)Qt(xt,dxt+1)

= γt(Qtft+1Btht +Qth̃tft+1).

Now, the proof is concluded by noting that because γt+1 = γtQt, γt+1f̃t+1 = γtQtf̃t+1.

Lemma 22. For every t ∈ N∗, ht ∈ F(Yt), and η0 ∈ M1(X 0), it holds that

EPη0
[ht(υt) | ξ0|0, . . . , ξt|t] = Stht(ξ0|0, . . . , ξt|t), PPη0

-a.s.

Proof. Pick arbitrary vt ∈ F(X0:t). We show that

EPη0
[vt(ξ0|0, . . . , ξt|t)ht(υt)] = EPη0

[vt(ξ0|0, . . . , ξt|t)Stht(ξ0|0, . . . , ξt|t)], (3.41)

from which the claim follows. Using definition (3.39), the left-hand side of the previous identity may be
rewritten as ∫

· · ·
∫
ψ0[η0](dy0)

t−1∏
m=0

Pm(ym,dym+1)ht(yt)vt(x0|0, . . . ,xt|t)

=
∫
· · ·
∫
η0(dx0|0)

t−1∏
m=0

Mm(xm|m,dxm+1)S0(Jx0|0,x1,dy1)

×
t−1∏
m=0

Sm(ym,xm+1,dym+1)ht(yt)vt(x0|0, . . . ,xt|t)

=
∫
· · ·
∫
η0(dx0)

t−1∏
m=0

Mm(xm, dxm+1)S0(Jx0,x1,dy1)

×
t−1∏
m=0

Sm(ym,xm+1,dym+1)ht(yt)vt(x0, . . . ,xt).

Thus, we conclude the proof by using the definition (3.20) of St, together with Fubini’s theorem.

Lemma 23. For every t ∈ N∗ and ht ∈ F(Yt), it holds that

Eη0

[(
t−1∏
m=0

gm(ξm|m)
)
ht(υt)

]
=
∫
γ0:tSt(dyt)ht(yt).

Proof. The claim of the lemma is a direct implication of 22; indeed, by applying the tower property and
the latter, we obtain

EPη0

[(
t−1∏
m=0

gm(ξm|m)
)
ht(υt)

]

= EPη0

[(
t−1∏
m=0

gm(ξm|m)
)
Stht(ξ0|0, . . . , ξt|t)

]

=
∫
· · ·
∫
η0(dx0)

t−1∏
m=0

gm(xm)Mm(xm, dxm+1) Stht(x0:t)

=
∫
γ0:tSt(dyt)ht(yt).

73

Proposition 24. For all t ∈ N∗, (N,M) ∈ (N∗)2, and (ft, f̃t) ∈ F(Xt)2,

∫
γ0:tSt(dyt)

(
1
N

N∑
i=1
{bitft(xit|t) + f̃t(xit|t)}

)
= γt(ftBtht + f̃t).

Proof. Applying 23 yields

∫
γ0:tSt(dyt)

(
1
N

N∑
i=1
{bitft(xit|t) + f̃t(xit|t)}

)

= EPη0

[(
t−1∏
m=0

gm(ξm|m)
)

1
N

N∑
i=1
{βitft(ξit|t) + f̃t(ξit|t)}

]
. (3.42)

In the following, we repeatedly use the following filtrations. Let F̃t := σ({υm}tm=0) be the σ-field
generated by the output of the PARIS (7) during the first t iterations. In addition, letFt := F̃t−1∨σ(ξt|t).
We proceed by induction. Thus, assume that the statement of the proposition holds for a given t ∈ N∗,
and consider, for arbitrarily chosen (ft+1, f̃t+1) ∈ F(Xt+1)2,

EPη0

[(
t∏

m=0
gm(ξm|m)

)
1
N

N∑
i=1
{βit+1ft+1(ξit+1|t+1) + f̃t+1(ξit+1|t+1)} | F̃t

]

=
(

t∏
m=0

gm(ξm|m)
)
EPη0

[β1
t+1ft+1(ξ1

t+1|t+1) + f̃t+1(ξ1
t+1|t+1) | F̃t] ,

where we use that the variables {βit+1ft+1(ξit+1|t+1)+ f̃t+1(ξit+1|t+1)}Ni=1 are conditionally independent
and identically distributed (i.i.d.) given F̃t. Note that, by symmetry,

EPη0

[
β1
t+1 | Ft+1

]
=
∫
St(υt, ξt+1|t+1, dyt+1) b1

t+1

=
∫
· · ·
∫ M∏

j=1

N∑
ℓ=1

qt(ξℓt|t, ξ
1
t+1|t+1)∑N

ℓ′=1 qt(ξℓ
′
t|t, ξ

1
t+1|t+1)

δ(ξℓ
t|t,β

ℓ
t)(dx̃

1,j
t ,db̃1,j

t)

× 1
M

M∑
j=1

(
b̃1,j
t + h̃t(x̃1,j

t , ξ1
t+1|t+1)

)

=
N∑
ℓ=1

qt(ξℓt|t, ξ
1
t+1|t+1)∑N

ℓ′=1 qt(ξℓ
′
t|t, ξ

1
t+1|t+1)

(
βℓt + h̃t(ξℓt|t, ξ

1
t+1|t+1)

)
. (3.43)

Thus, using the tower property,

EPη0

[
β1
t+1ft+1(ξ1

t+1|t+1) | F̃t
]

=
∫

Φt(µ(ξt|t))(dxt+1) ft+1(xt+1)
N∑
ℓ=1

qt(ξℓt|t, xt+1)∑N
ℓ′=1 qt(ξℓ

′
t|t, xt+1)

(
βℓt + h̃t(ξℓt|t, xt+1)

)
,

74

and, consequently, using definition (3.5),(
t∏

m=0
gm(ξm|m)

)
EPη0

[
β1
t+1ft+1(ξ1

t+1|t+1) | F̃t
]

=
(
t−1∏
m=0

gm(ξm|m)
)∫ 1

N

N∑
i=1

qt(ξit|t, xt+1)

× ft+1(xt+1)
N∑
ℓ=1

qt(ξℓt|t, xt+1)∑N
ℓ′=1 qt(ξℓ

′
t|t, xt+1)

(
βℓt + h̃t(ξℓt|t, xt+1)

)
λt+1(dxt+1)

=
(
t−1∏
m=0

gm(ξm|m)
)

1
N

N∑
ℓ=1

(
βℓtQtft+1(ξℓt|t) +Qt(h̃tft+1)(ξℓt|t)

)
.

Thus, applying the induction hypothesis,

EPη0

[(
t∏

m=0
gm(ξm|m)

)
1
N

N∑
i=1

βit+1ft+1(ξit+1|t+1)
]

= EPη0

[(
t−1∏
m=0

gm(ξm|m)
)

1
N

N∑
ℓ=1

(
βℓtQtft+1(ξℓt|t) +Qt(h̃tft+1)(ξℓt|t)

)]
= γt

(
Qtft+1Btht +Qt(h̃tft+1)

)
. (3.44)

In the same manner, it can be shown that

EPη0

[(
t∏

m=0
gm(ξm|m)

)
1
N

N∑
i=1

f̃t+1(ξit+1|t+1)
]

= γtQtf̃t+1. (3.45)

Now, by (3.44–3.45) and 21,

EPη0

[(
t∏

m=0
gm(ξm|m)

)
1
N

N∑
i=1
{βit+1ft+1(ξit+1|t+1) + f̃t+1(ξit+1|t+1)}

]
= γt

(
Qtft+1Btht +Qt(h̃tft+1 +Qtf̃t+1)

)
= γt+1(ft+1Bt+1ht+1 + f̃t+1),

which shows that the claim of the proposition holds at time t+ 1.

It remains to check the base case t = 0, which holds trivially, because β0 = 0 and B0h0 = 0 by
convention, and the initial particles ξ0|0 are drawn from η0. This completes the proof.

Proof of 13. The identity
∫
η0:t(dx0:t) St(x0:t,dbt)µ(bt)(id) = η0:tht follows immediately by letting

ft ≡ 1 and f̃t ≡ 0 in 24, and using that γ0:t(X0:t) = γ0:t(X0:t). Moreover, applying 10 yields∫
η0:tCtSt(dbt)µ(bt)(id) =

∫∫
η0:t(dz0:t)Ct(z0:t, dx0:t)

∫
St(x0:t,dbt)µ(bt)(id)

=
∫∫

η0:t(dx0:t)Bt(x0:t, dz0:t)
∫

St(x0:t,dbt)µ(bt)(id)

=
∫
η0:tSt(dbt)µ(bt)(id).

Finally, the first identity holds because Kt leaves η0:t invariant.

75

Chapter 4

Parameter learning with PPG

4.1 Parameter learning with PPG
We now turn to parameter learning using PPG and gradient-based methods. We set the focus on learning
the parameter θ of a function V (θ) whose gradient is the smoothed expectation of an additive functional
s0:t,θ in the form (3.4). Note that θ can include parameters of {Mn}n∈N and {gn}n∈N, thus we add a θ
subscript to all the quantities related to the associated Feynman-Kac path measures defined in chapter 3.
Algorithm 3 defines a stochastic approximation (SA) scheme where the noise forms a parameter dependent
Markov chain with associated invariant measure πθ . We follow the approach of Karimi et al. (2019) to
establish a non-asymptotic bound over the mean field h(θ) := πθs0:t,θ . Such a setting encompasses for
instance the following estimation procedures.

(1) Score ascent. In the case of fully dominated HMMs, we are often interested in optimizing the
log-likelihood of the observations given by V (θ) = log

∫
γ0:t,θ(dx0:t). By applying Fisher’s identity,

we may express its gradient as a smoothed expectation of an additive functional according to

∇θV (θ) =
∫
∇θ log γ0:t(x0:t) η0:t,θ(dx0:t),

=
∫ t−1∑

ℓ=0
sℓ,θ(xℓ, xℓ+1) η0:t,θ(dx0:t),

where sℓ,θ : Xℓ:ℓ+1 ∋ (x, x′) 7→ ∇θ log{gℓ,θ(x)mℓ,θ(x, x′)} and s0:t,θ :=
∑t−1
ℓ=0 sℓ,θ .

(2) Backward KL surrogates. Inspired by Naesseth et al. (2020), we may consider the problem of
learning a surrogate model for η0:t,θ in the form qϕ(x0:t) = qϕ(x0)

∏t−1
ℓ=0 qϕ(xℓ+1, xℓ) by minimizing

V (ϕ) = KL(η0:t,θ , qϕ).

Algorithm 2 Gradient estimation with roll-out PPG (Ĝd)
Input: θ, ζ0:t[0], s0:t,θ , number k of PPG iterations, burn-in k0.
Result: β1:N

t [k0 : k], ζ0:t[k]
5 for ℓ← 0 to k − 1 do
6 (β̃1:N

t [ℓ+ 1], ζ0:t[ℓ+ 1])← PPG(θ; ζ0:t[ℓ], s0:t,θ)
7 if ℓ ≥ k0 − 1 then
8 set β1:N

t [ℓ+ 1] = β̃1:N
t [ℓ+ 1]

Note that Algorithm 2 is simply algorithm 9 wih s0:t,θ as the additive functional. For convenience, we
recall the definition of the PPG kernel introduced in chapter 3. For (k0, k) ∈ (N∗)2 such that k0 < k, we

77

Algorithm 3 Score ascent with PPG.
Input: θ0, ζ0:t[0], number k of PPG iterations, burn-in k0, number of SA iterations n, learning-rate

sequence {γℓ}ℓ∈N.
Result: θn

9 for i← 0 to n− 1 do
10 β1:N

t [k0 : k], ζ0:t[i+ 1]← Ĝd(θi, ζ0:t[i], s0:t,θi
, k, k0)

11 set Π(k0,k),N (s0:t,θi
) = 1

N(k−k0)
∑k−1
ℓ=k0

∑N
j=1 β

j
t [ℓ]

12 set θi+1 ← θi + γi+1Π(k0,k),N (s0:t,θi
)

define

Pθ,t : Ek−k0
t × E�(k−k0)

t ∋ (yt[k0 : k], z0:t[k0 : k], A) 7→ Kk0
θ,t � K�(k−k0)

θ,t (z0:t[k], A), (4.1)

where Kθ,t is the PPG kernel defined in (3.21). We write Pθ,t instead of Pθ to explicit the dependence
of the kernel on the fixed number of observations t. Note that Pθ,t depends only on the last frozen path,
namely z0:t[k]. Note also that, since Kθ,t depends only on the paths, there is no dependence between
yt,ℓ[k0 : k] and yt,ℓ+1[k0 : k]. Evaluating the function

b1:N
t [k0 : k] 7→ [N(k − k0)]−1

k∑
ℓ=k0+1

N∑
j=1

bjt [ℓ]

at a realisation of this kernel gives the roll-out estimator whose properties are analysed in Theo-
rem 19.

The following assumptions, are vital when analysing the convergence of Algorithm 3.

A3. (i) The function θ 7→ V (θ) is LV -smooth.
(ii) The function θ 7→ η0:t,θ is Lη-Lipschitz in total variation distance.
(iii) For each path ζ0:t ∈ X0:t, the function θ 7→ Kθ,t(ζ0:t,dζ̃0:t) is LP1 -Lipschitz in total variation

distance, where Kθ,t is the path-marginalized Markov transition kernel associated with the PPG
algorithm when the model is parameterized by θ, see (3.22).

(iv) For each path ζ0:t ∈ X0:t, the function

θ 7→ Pθ,tΠk0−1,k,N (s0:t,θ)(ζ0:t) (4.2)

is LP2 -Lipschitz in total variation distance.

In the case of score ascent we check, in Section C.1, that these assumptions hold if the strong mixing
assumption A 2 is satisfied uniformly in θ, and with additional assumptions on the model. We are now
ready to state a bound on the mean field h(θ) for Algorithm 3.

Theorem 25. Assume A 2 uniformly in θ and A3 and suppose that the stepsizes {γℓ+1}ℓ∈J0,nK satisfy
γℓ+1 ≤ γℓ, γℓ < aγℓ+1, γℓ − γℓ+1 < a′γ2

ℓ and γ1 ≤ 0.5(LV + Ch) for some a > 0, a′ > 0 and all
n ∈ N. Then,

E
[
∥h(θϖ)∥2

]
≤ 2

V0,n + C0,n + C0,γ
∑n
k=0 γ

2
k+1∑n

k=0 γk+1
, (4.3)

78

where V0,n = E [V (θ)− V (θn)] and

C0,n := γ1h(θ0)C0 + σbias(γ1 − γn+1 + 1)δ−1
k,N,t , (4.4)

C0,γ := σ2
mseL

V + σmseC1 + σbiasL
V δ−1

k,N,t (4.5)

+ σmseσbias

(
LV + C2

1− κN,t

)
δ−1
k,N,t ,

Ch := (LV + a′ + 1)σbiasδ
−1
k,N,t (4.6)

+
(
C1 + σbiasC2

(1− κN,t)δk,N,t

)[
a+ 1

2 + aσmse

]
,

C1 = LP2

[
1 + κkN,tδ

−1
k,N,t

]
+ LV (4.7)

C2 = LP1 δ
−1
k,N,t + LηκkN,t . (4.8)

where C0 is independent of σbias, σmse, N and where δk,N,t = 1− κkN,t.
Theorem 25 establishes not only the convergence of Algorithm 3, but also illustrates the impact of the
bias and the variance of the PPG on the convergence rate.

Remark 26. Under additional assumptions on the model (cf Section C.1), if we consider γ1 ≤
0.5(LV + Ch), γℓ = γ1ℓ

−1/2 for all ℓ ∈ J1, nK, then
∑n
k=0 γ

2
k+1/

∑n
k=0 γk+1 ∼ logn/

√
n, show-

ing that E
[
∥h(θϖ)∥2

]
is O(logn/

√
n), where the leading constant depends on σbias and σmse.

Remark 26 establishes the rate of convergence of Algorithm 3. In principle we could try to optimize the
parameters k, k0 and N of the algorithm using these bounds, but one of the main challenges with this
approach is the determination of the mixing rate, which is crudely upper bounded by κN,t. Still, our
bound provides interesting information of the role of both bias and MSE.

We now proceed to present the proof of Theorem 25. Section 4.1.1 establishes, following closely Karimi
et al. (2019), a non-asymptotic bound for stochastic approximation schemes under general assumptions.
Section 4.1.2 shows how assumptions A 3 and A 2 imply the assumptions provided in Section 4.1.1
and therefore allow to establish Theorem 25. Finally, in the appendix, Section C.1 provides sufficient
assumptions on the model ensuring that A3 holds.

4.1.1 Non-asymptotic bound

We follow closely Karimi et al. (2019). Consider the recursion

θn+1 = θn − γn+1Hθn(Xn+1), n ∈ N,

where θn ∈ Θ ⊂ Rd for some d ∈ N∗ and {Xn}n∈N is a state-dependent Markov chain on some
measurable space (X,X) in the sense that Xn+1 ∼ Pθn(Xn, ·) with Pθ being some Markov kernel on
(X,X). Let h(θ) =

∫
Hθ(x)πθ(dx), where πθ is the invariant measure ofPθ and en+1 := Hθn(Xn+1)−

h(θn). As all norms are equivalent in finite dimensional vector spaces, we use ∥ · ∥ to denote a generic
norm. We denote by {Fn}n∈N the natural filtration of the Markov chain {Xn}n∈N.

A4. There exists a Borel measurable function V : Θ→ R such that for every θ ∈ Θ, ∇V (θ) = h(θ).
A5. There exists LV ∈ R≥0 such that for every (θ, θ′) ∈ Θ2,

∥∇V (θ)−∇V (θ′)∥ ≤ LV ∥θ − θ′∥.

A6. There exists a Borel measurable function Ĥ : Θ× X → Θ such that for every θ ∈ Θ and x ∈ X,

Ĥθ(x)− PθĤθ(x) = Hθ(x)− h(θ) .

79

A7. There exists LPĤ ∈ R≥0 such that for every (θ0, θ1) ∈ Θ2,

sup
x∈X
∥Pθ0Ĥθ0(x)− Pθ0Ĥθ1(x)∥ ≤ LPĤ∥θ0 − θ1∥ .

A8. There exists LPĤ
0 ∈ R≥0 such that

sup
θ∈Θ
∥PθĤθ∥ ≤ LPĤ

0 .

A9. There exists σmse ∈ R≥0 such that for every x ∈ X and θ ∈ Θ,∫
∥Hθ(x′)− h(θ)∥2 Pθ(x,dx′) ≤ σ2

mse .

A10. There exists LĤ ∈ R≥0 such that for every x ∈ X,

sup
θ∈Θ

∫
∥Ĥθ∥Pθ(x, dx′) ≤ LĤ .

Theorem 27. Assume that A 4–A 10 hold. In addition, assume that there exist a > 0 and a′ > 0 such
that for all n ∈ N,

γn+1 ≤ γn ≤ aγn+1 , γn − γn+1 ≤ a′γ2
n , γ1 ≤ (LV + Ch)−1/2 .

Moreover, for any n ∈ N∗, let ϖ be a J0, nK-valued random variable, independent of {Fℓ}ℓ≥0 and such
that P(ϖ = k) = γk+1/

∑n
ℓ=0 γℓ+1 for k ∈ J0, nK. Then,

E
[
∥h(θϖ)∥2

]
≤ 2

V0,n + C0,n + (σ2
mseL

V + Cγ)
∑n
k=0 γ

2
k+1∑n

k=0 γk+1
,

where V0,n := E [V (θ)− V (θn)] and

C0,n := γ1h(θ0)LĤ + LPĤ
0 (γ1 − γn+1 + 1) , (4.9)

Cγ := σmseL
PĤ + (1 + σmse)LV LPĤ

0 , (4.10)

Ch := LPĤ ((a+ 1)/2 + aσmse) + (LV + a′ + 1)LPĤ
0 . (4.11)

Proof. We follow closely the proof of (Karimi et al., 2019, Theorem 2) and adapt it to our setting. First,
note that by A 4, assumptions A1 and A2 of (Karimi et al., 2019, Theorem 2) hold with c0 = d0 = 0 and
c1 = d1 = 1. In addition, the claim in (Karimi et al., 2019, Lemma 1) holds true since by A5, A3 holds.
Moreover, (Karimi et al., 2019, Equation 17) can also be established under A 9, as we may rewrite it as

n∑
ℓ=0

γ2
ℓ+1E

[
∥eℓ+1∥2

]
=

n∑
ℓ=0

γ2
ℓ+1E

[
E
[
∥eℓ+1∥2 | Fℓ

]]
≤ σ2

mse

n∑
ℓ=0

γ2
ℓ+1 .

Following the proof of (Karimi et al., 2019, Lemma 2), consider the decomposition

E
[
−

n∑
ℓ=0

γℓ+1 ⟨∇V (θℓ), eℓ+1⟩
]

= E [A1 +A2 +A3 +A4 +A5] ,

80

where

A1 := −
n∑
ℓ=1

γℓ+1
〈
∇V (θℓ), Ĥθℓ

(Xℓ+1)− Pθℓ
Ĥθℓ

(Xℓ)
〉
,

A2 := −
n∑
ℓ=1

γℓ+1
〈
∇V (θℓ),Pθℓ

Ĥθℓ
(Xℓ)− Pθℓ−1Ĥθℓ−1(Xℓ)

〉
,

A3 := −
n∑
ℓ=1

γℓ+1
〈
∇V (θℓ)−∇V (θℓ−1),Pθℓ−1Ĥθℓ−1(Xℓ)

〉
,

A4 := −
n∑
ℓ=1

(γℓ+1 − γℓ)
〈
∇V (θℓ−1),Pθℓ−1Ĥθℓ−1(Xℓ)

〉
,

A5 := −γ1
〈
∇V (θ0), Ĥθ0(X1)

〉
+ γn+1

〈
∇V (θn),PθnĤθn(Xn+1)

〉
.

As Ĥθℓ
(Xℓ+1)− Pθℓ

Ĥθℓ
(Xℓ) is a martingale difference, it holds that E [A1] = 0. The upper bounds on

the expectations of A2, A3 and A4 are obtained similarly as in Karimi et al. (2019). Using A 7,

A2 ≤ LPĤ
(
σmse

n∑
k=1

γ2
k + 1

2 (1 + 2aσmse + a)
n∑
k=0

γ2
k+1∥h(θk)∥2

)
.

By A 5 and 8,

A3 ≤ LV LPĤ
0

(
(1 + σmse)

n∑
k=1

γ2
k +

n∑
k=1

γ2
k∥h(θk)∥2)

)
.

On the other hand,

A4 ≤ LPĤ
0

(
γ1 − γn+1 + a′

n∑
k=1

γ2
k∥h(θk−1)∥2

)
.

We now focus on A5. As in the proof of (Karimi et al., 2019, Lemma 2), the expectation of the first
term can be straightforwardly bounded by γ1∥h(θ0)∥LĤ using the Cauchy–Schwarz inequality and A 10.
The second term can, using A 8 and γn+1∥h(θn)∥ ≤ 1 + γ2

n+1∥h(θn)∥2, be bounded in the same way
according to

γn+1
〈
∇V (θn),PθnĤθn(Xn+1)

〉
≤ LPĤ

0 γn+1∥h(θn)∥ ≤ LPĤ
0

(
1 + γ2

n+1∥h(θn)∥2
)

≤ LPĤ
0

(
1 +

n∑
ℓ=0

γ2
ℓ+1∥h(θℓ)∥2

)
.

The rest of the proof follows that of (Karimi et al., 2019, Theorem 2).

4.1.2 Application to Theorem 25

The goal of this section is to establish that the assumptions of Theorem 25 ensure all the assumptions in
section 4.1.1, which in turn allows Theorem 27 to be applied.

4.1.2.1 Verification of the assumptions of Theorem 27

The score ascent algorithm (Algorithm 3) can be formulated as follows.

1. Sample (z0:t,ℓ[k0 : k],yt,ℓ[k0 : k]) ∼ Pθℓ,t

(
(z0:t,ℓ−1[k0 : k],yt,ℓ−1[k0 : k]), ·

)
.

81

2. Update the parameter according to ηℓ+1 = ηℓ + γℓ+1H(z0:t,ℓ[k0 : k],yt,ℓ[k0 : k]), where

H(z0:t,ℓ[k0 : k],yt,ℓ[k0 : k]) = 1
k − k0 + 1

k∑
i=k0

µ(βt,ℓ[i])(id) = Π(k0−1,k),N (ht),

where Π(k0−1,k),N (ht) is defined in (3.28). We denote by πθ,t the invariant distribution of Pθ,t, which,
by Theorem 13, is given by πθ,t = (η0:t � CtSt)�(k−k0).

We also require the strong mixing assumption to hold uniformly in θ.

A11 (Strong mixing uniformly in θ). For every s ∈ N there exist
¯
τs, τ̄s, ¯

σs, and σ̄s in R∗+ such that for
all θ ∈ Θ,

(i)
¯
τs ≤ gs,θ(xs) ≤ τ̄s for every xs ∈ Xs,

(ii)
¯
σs ≤ ms,θ(xs, xs+1) ≤ σ̄s for every (xs, xs+1) ∈ Xs:s+1.

Note that the assumption above implies that κN,t is also uniform in θ.

Proof that A 4 holds.
Proposition 28. For all θ ∈ Θ, h(θ) = ∇V (θ), where V (θ) = log γ0:t,θ(X0:t) is the log-likelihood
function.

Proof. By Theorem 13,

h(θ) =
∫
H(ỹt[k0 : k], x̃0:t[k0 : k])πθ,t(d(ỹt[k0 : k], x̃0:t[k0 : k]))

= 1
k − k0 + 1

k∑
i=k0

∫
[η0:t,θ � Ct,θSt,θ] (d(ỹt[i], x̃0:t[i]))µ(β̃t,ℓ[i])(id)

= η0:t,θ (s0:t,θ) = ∇V (θ).

Proof that A 5 holds. A 5 is trivially implied by A 3(i).

Proof that A 6 and 8 hold. Let Ĥθ be given by

Ĥθ : Ek−k0
t ∋ (yt[k0 : k], z0:t[k0 : k]) 7→

∞∑
r=0
{Prθ,tH(yt[k0 : k], z0:t[k0 : k])− h(θ)}. (4.12)

Then the following holds true.

Lemma 29. Assume A 11. Then for all θ ∈ Θ and t ∈ N∗,

∥Pθ,tĤθ∥∞ ≤ σbias(1− κkN,t)−1 .

Proof. By Theorem 19, we have for any r > 0∣∣Prθ,tH(yt[k0 : k], z0:t[k0 : k])− h(θ)
∣∣ ≤ σbiasκ

(r−1)k
N,t

and thus

∥Pθ,tĤθ∥∞ ≤
∞∑
r=1

∥∥∥Prθ,tH − h(θ)
∥∥∥
∞
≤ σbias

∞∑
r=0

κrkN,t ≤ σbias(1− κkN,t)−1 ,

where κN,t ∈ (0, 1).

Lemma 29 proves A 6 and 8 with LPĤ
0 := σbias(1− κkN,t)−1.

82

Proof that A 7 holds.
Theorem 30. Assume A 11 and A 3. Then for every t ∈ N, θ ∈ Θ andN ∈ N∗ such thatN > 1+5ρ2

t t/2,∥∥∥Pθ1,tĤθ1 − Pθ2,tĤθ2

∥∥∥
∞
≤ LPĤ∥θ1 − θ2∥ ,

where

LPĤ := ∥LP2 ∥∞
[
1 + κkN,t(1− κkN,t)

]
+ LV +

σbias(1− κN,t)−1(1− κkN,t)−1
[
∥LP1 ∥∞(1− κkN,t)−1 + LηκkN,t

]
. (4.13)

Proof. We establish the claim by adapting the proof of (Karimi et al., 2019, Lemma 7). First, recall that
the kernel Kθ,t defined in (3.22) is the path marginalized version of Kθ,t given in (3.21). Note that for
every x ∈ Ek−k0

t ,

Pθ1,tĤθ1(x) =
∞∑
n=0

δxPθ1,t

{
Pnθ1,tH − h(θ1)

}
=
∞∑
n=0

δxK
kn
θ1,t {Pθ1,tH − η0:t,θ1Pθ1,tH} ,

where we have used (i) the fact that the backward statistics output by Pθ,t are independent of the input
backward statistics and (ii) the penultimate line in the computation of h(θ) above. We follow the proof
of (Fort et al., 2011, Lemma 4.2) and consider the following decomposition: for n ∈ N∗,

δxK
kn
θ1,t (Pθ1,tH − η0:t,θ1Pθ1,tH)− δxKkn

θ2,t (Pθ2,tH − η0:t,θ2Pθ2,tH) (4.14)

=
n−1∑
j=0

(
δxK

kj
θ1,t
− η0:t,θ1

) (
Kkj
θ1,t
−Kkj

θ2,t

) (
K
k(n−j−1)
θ2,t

Pθ1,tH − η0:t,θ2Pθ1,tH
)

−
(
δxK

kn
θ2,tPθ2,tH − η0:t,θ2Pθ2,tH

)
+
(
δxK

kn
θ2,tPθ1,tH − η0:t,θ2Pθ1,tH

)
− η0:t,θ1

(
Kkn
θ2,tPθ1,tH − η0:t,θ2Pθ1,tH

)
.

Applying Theorem 14 with µ = δx and ν = η0:t,θ and using the fact that η0:t,θK
ℓ
θ,t = η0:t,θ for all ℓ ∈ N,

we obtain that for all ℓ ∈ N and all θ ∈ Θ,
∥∥∥δxKℓ

θ,t − η0:t,θ
∥∥∥

TV
≤ κℓN,t. Note that by A 3(iii), Kθ,t is

Lipschitz; therefore, for all r ∈ N∗, by Lemma 62, Kr
θ,t is Lipschitz with constant ∥LP1 ∥∞(1− κN,t)−1.

Combining all this together, we obtain∣∣∣(δxKkj
θ1,t
− η0:t,θ1

) (
Kkj
θ1,t
−Kkj

θ2,t

) (
K
k(n−j−1)
θ2,t

Pθ1,tH − η0:t,θ2Pθ1,tH
)∣∣∣

=
∣∣∣(δxKkj

θ1,t
− η0:t,θ1

) (
Kkj
θ1,t
−Kkj

θ2,t

){
K
k(n−j−1)
θ2,t

[Pθ1,tH − h(θ1)]− η0:t,θ2 [Pθ1,tH − h(θ1)]
}∣∣∣

≤ ∥LP1 ∥∞(1− κN,t)−1κkjN,tκ
k(n−j−1)
N,t ∥Pθ1,tH − h(θ1)∥∞∥θ1 − θ2∥

≤ σbias∥LP1 ∥∞(1− κN,t)−1κ
k(n−1)
N,t ∥θ1 − θ2∥ ,

where the last inequality is due to Theorem 19. Therefore, the first term of the right side of (4.14) is upper
bounded by σbias∥LP1 ∥∞(1− κN,t)−1nκ

k(n−1)
N,t ∥θ1 − θ2∥. The second term of (4.14) can be written

−
(
δxK

kn
θ2,tPθ2,tH − η0:t,θ2Pθ2,tH

)
+
(
δxK

kn
θ2,tPθ1,tH − η0:t,θ2Pθ1,tH

)
=
(
δxK

kn
θ2,t − η0:t,θ2

)
(Pθ1,tH − Pθ2,tH) ,

83

and using again the ergodicity ofKθ,t and the fact that θ 7→ Pθ,tH is uniformly Lipschitz by A 3(iv), we
may conclude that it is upper bounded by ∥LP2 ∥∞κknN,t∥θ1−θ2∥. Finally, for the last term, using the facts
that Kk

θ,t is η0:t,θ-invariant and geometrically ergodic and that θ 7→ η0:t,θ is Lipschitz by A 3(iv) yields∣∣∣η0:t,θ1

(
Kkn
θ2,tPθ1,tH − η0:t,θ2Pθ1,tH

)∣∣∣
=
∣∣∣(η0:t,θ1 − η0:t,θ2)

{
Kkn
θ2,t [Pθ1,tH − h(θ1)]− η0:t,θ2 [Pθ1,tH − h(θ1)]

}∣∣∣
≤ LηκknN,t∥Pθ1,tH − h(θ1)∥∞∥θ1 − θ2∥
≤ Lησbias(1− κN,t)−1κknN,t∥θ1 − θ2∥ .

Therefore, we have that

δxK
kn
θ1,t (Pθ1,tH − η0:t,θ1Pθ1,tH)− δxKkn

θ2,t (Pθ2,tH − η0:t,θ2Pθ2,tH)

≤
{
σbias∥LP1 ∥∞(1− κN,t)−1nκ

k(n−1)
N,t +

[
∥LP2 ∥∞ + Lησbias(1− κN,t)−1

]
κknN,t

}
∥θ1 − θ2∥ .

Therefore, we obtain∣∣∣Pθ1,tĤθ1(x)− Pθ2,tĤθ2(x)
∣∣∣

≤ |δxPθ1,tH − δxPθ2,tH|+ |η0:t,θ1Pθ1,tH − η0:t,θ2Pθ2,tH|

+
∣∣∣∣∣
∞∑
n=1

δxK
kn
θ1,t (Pθ1,tH − η0:t,θ1Pθ1,tH)− δxKkn

θ2,t (Pθ2,tH − η0:t,θ2Pθ2,tH)
∣∣∣∣∣

≤ |δxPθ1,tH − δxPθ2,tH|+ |η0:t,θ1Pθ1,tH − η0:t,θ2Pθ2,tH|

+
{
σbias∥LP1 ∥∞(1− κN,t)−1(1− κkN,t)−2

+
[
∥LP2 ∥∞ + Lησbias(1− κN,t)−1

]
κkN,t(1− κkN,t)−1

}
∥θ1 − θ2∥ .

To conclude, note that by A 3(iv), ∥δxPθ1,tH − δxPθ2,tH∥ ≤ ∥LP2 ∥∞∥θ1 − θ2∥. Furthermore, note that
by Theorem 13 we obtain that for all θ ∈ Θ, η0:t,θPθ,tH = η0:t,θs0:t,θ = ∇V (θ). Therefore, by A 3(i)
we obtain that ∥η0:t,θ1Pθ1,tH − η0:t,θ2Pθ2,tH∥ ≤ LV ∥θ1 − θ2∥, concluding the proof.

Proof that A 9 holds. A9 is simply a bound on the MSE of the roll-out PPG estimator, given by
Theorem 19.

Proof that A 10 holds.
Proposition 31. For all θ ∈ Θ and all ℓ ∈ J1, t− 1K

E
[
∥Ĥθ∥ | Fℓ

]
≤ 2∥s0:t,θ∥∞ + σbias(1− κkN,t)−1 .

Proof. Note that for all x ∈ Ek−k0
t and all θ ∈ Θ,

Ĥθ(x) = H(x)− h(θ) + Pθ,tĤθ(x) . (4.15)

Lemma 29 shows that ∥Pθ,tĤθ∥∞ ≤ σbias(1− κkN,t)−1. Note that h(θ) ≤ ∥s0:t,θ∥∞ We write

E [∥H∥ | Fℓ] ≤
1

(k − k0 + 1)N

k∑
i=k0

N∑
j=1

E
[
∥βjt,ℓ[i]∥ | Fℓ

]
.

By Proposition 61, E
[
∥βjt,ℓ[i]∥ | Fℓ

]
≤ ∥s0:t,θ∥∞, concluding the proof.

A10 follows directly by Proposition 31 and by considering supθ∈Θ ∥s0:t,θ∥∞.

84

4.1.2.2 Proof of Theorem 25

We have shown in Section 4.1.2.1 that under A3 and 11, it is possible to apply Theorem 27. To conclude
the proof of Theorem 25 we just have to rearrange the constants. We start by rewriting the constant in
Theorem 30

LPĤ = C1 + σbias(1− κN,t)−1(1− κkN,t)−1C2,

with

C1 =
∥∥∥LP2 ∥∥∥∞ [1 + κkN,t(1− κkN,t)−1

]
+ LV

C2 =
∥∥∥LP1 ∥∥∥∞ (1− κkN,t)−1 + LηκkN,t .

By (4.10) and Lemma 29,

Cγ = σmseL
PĤ + (1 + σmse)LV LPĤ

0

= σmse
[
C1 + σbias(1− κN,t)−1(1− κkN,t)−1C2

]
+ (1 + σmse)LV σbias(1− κkN,t)−1

= σmseC1 + σmseσbias(1− κkN,t)−1
[
LV + (1− κN,t)−1C2

]
+ σbiasL

V (1− κkN,t)−1 .

Therefore,

C0,γ := σ2
mseL

V + Cγ

= σ2
mseL

V + σmseC1 + σmseσbias(1− κkN,t)−1
[
LV + (1− κN,t)−1C2

]
+ σbiasL

V (1− κkN,t)−1 .

In the same way, we can rewrite (4.11) as

Ch = LPĤ [(a+ 1)/2 + aσmse] + (LV + a′ + 1)LPĤ
0

=
[
C1 + σbias(1− κN,t)−1(1− κkN,t)−1C2

]
[(a+ 1)/2 + aσmse] + (LV + a′ + 1)σbias(1− κkN,t)−1 .

The constant C0 from Theorem 25 is LĤ = 2 supθ∈Θ ∥s0:t,θ∥∞ + σbias(1 − κkN,t)−1 which completes
the proof.

4.2 Numerics
In this section, we focus on the numerical analysis of the efficiency of using PPG for learning in the
framework developed in Section 4.1. We will restrict ourselves to the case of parameter learning via
score ascent. The code used in this section is available 1. Throughout this section, we set M = 2 for the
PPG algorithm. In this setting, the competing method that corresponds most closely to the one presented
here consists of using, as presented in Algorithm 4, a standard particle Gibbs sampler Πθ instead of
the PPG. One of the most common such samplers is the particle Gibbs with ancestor sampling (PGAS)
presented in Lindsten et al. (2014a). In Lindholm and Lindsten (2018), the PGAS is used for parameter
learning in HMMs via the Expectation Maximization (EM) algorithm.

LGSSM. We consider the LGSSM with state and observation spaces being R5. We assume that the
parameters R and Q are known and consider the inference of θ = (A,B) on the basis of a simulated
sequence of n = 999 observations. In this setting, the M-step of the EM algorithm can be solved
exactly with the disturbance smoother (Cappé et al., 2005a, Chapter 11). The parameter obtained by this
procedure (denoted θmle) is the reference value for any likelihood maximization algorithm. Table 4.1

1https://anonymous.4open.science/r/ppg/

85

https://anonymous.4open.science/r/ppg/

Algorithm 4 Score ascent with particle Gibbs kernel.
Data: ζ0:t[0], θ0, number k of paths per trajectory, burn-in k0, number n of SA iterations, learning-rate

sequence {γℓ}ℓ∈N, Πθ(ζ0:t,dζ̃0:t) a Markov kernel targeting η0:t.
Result: θn

13 for i← 0 to n− 1 do
14 for j ← 0 to k − 1 do
15 sample ζ̃0:t[j + 1] ∼ Πθ(ζ̃0:t[j], ·)
16 set θi+1 ← θi + γi+1

k−k0

∑k
ℓ=k0+1 s0:t,θi

(ζ̃0:t[ℓ])
17 set ζ0:t[i+ 1] = ζ̃0:t[k]

Algorithm N k0 k Dmle δt(s)
PGAS 64 24 48 0.72 ± 0.04 5.66
PGAS 128 12 24 0.59 ± 0.04 2.84
PGAS 256 6 12 0.59 ± 0.05 1.42
PPG 64 16 32 0.37 ± 0.03 4.56
PPG 128 8 16 0.36 ± 0.04 2.37
PPG 256 4 8 0.35 ± 0.04 1.57

Table 4.1: Distance to θMLE (Dmle) for each configuration in the LGSSM case. δt(s) represents the
average running time for each configuration.

shows the L2 distance between the singular values of θmle and those of the parameters obtained by
Algorithm 3 and Algorithm 4. The CLT confidence intervals were obtained on the basis of 25 replicates.
The configurations of the PPG estimators respect a given particle budget kN = C = 1024. For a fair
comparison, for each configuration of the PPG estimator, we run an equivalent w.r.t. clock time PGAS
estimator. The time needed for one gradient step for each estimator averaged over 100 replicates is
reported in Table 4.1. The choice of keeping k0 = k/2 is a heuristic rule to achieve a good bias–variance
trade-off, but other combinations of k0 and k may lead to better performance for different problems. We
analyse the impact of the different settings for the LGSMM in Section C.3.All settings are the same for
both algorithms and are described in Section C.3. The PPG achieves consistently a smaller distance to
θmle. Figure 4.1 displays, for each estimator and configuration, the evolution of the distance to the MLE
estimator as a function of the iteration index.

100 101 102 103 104
i

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

D
M

LE PGAS(N=64, k=48)
PGAS(N=128, k=24)
PGAS(N=256, k=12)
PPG(N=64, k=32)
PPG(N=128, k=16)
PPG(N=256, k=8)

Figure 4.1: Distance to the MLE estimator as a function of the iteration step for the PGAS and PPG
configurations from table 4.1. The solid lines and the shaded region represent the mean and CLT
confidence intervals obtained with 25 replications.

CRNN. We consider now the problem of inference in a non-linear HMM and in particular the chaotic
recurrent neural network introduced by Zhao et al. (2021). We use the same setting as in the original

86

Algorithm N k0 k NLL δt(s)
PGAS 32 32 64 31887 ± 128 3.90
PGAS 64 16 32 31269 ± 254 1.99
PGAS 128 8 16 30994 ± 288 1.16
PPG 32 16 32 22292 ± 48 2.79
PPG 64 8 16 22315 ± 25 1.39
PPG 128 4 8 22353 ± 39 0.92

Table 4.2: Per configuration negative loglikelihood for the CRNN model.

paper. The state and observation equations are

Xm+1 = Xm + τ−1∆ (−Xm + γW tanh(Xm)) + ϵm+1,

Ym = BXm + ζm, m ∈ N,

where {ϵm}m∈N∗ is a sequence of 20-dimensional independent multivariate Gaussian random variables
with zero mean and covariance 0.01I and {ζm}m∈N is a sequence of independent random variables
where each component is distributed independently according to a Student’s t-distribution with scale 0.1
and 2 degrees of freedom. We consider θ = (W,B).
In this case, the natural metric used to evaluate the different estimators is the negative log likelihood
(NLL). We use the unbiased estimator of the likelihood given by the mean of the log weights produced
by a particle filter (Douc et al., 2014, Section 12.1) using N = 104 particles. Table 4.2 shows the
results obtained for 25 different replications for several different configurations of PPG while keeping
total budget of particles fixed. As for the LGSSM, for each configuration of the PPG we run the
time-equivalent PGAS estimator. Further numerical details and the system configuration used in the
experiments are given in Section C.3. We observe that PPG achieves the a considerably lower NLL than
PGAS in all configurations.

4.3 Conclusion
We propose a way of using PPG in a learning framework and derive a non-asymptotic bound over the
gradient of the updates when doing score ascent with the PPG with explicit dependence on the bias and
MSE of the estimator. We provide numerical simulations to support our claims, and we show that our
algorithm outperforms the current competitors in the two different examples analysed.

87

Chapter 5

MCG-DIFF: Monte Carlo guided
Diffusion for Bayesian linear inverse
problems

5.1 Introduction

This paper is concerned with linear inverse problems y = Ax + σyε, where y ∈ Rd
y is a vector of

indirect observations, x ∈ Rdx is the vector of unknowns, A ∈ Rdy×dx is the linear forward operator
and ε ∈ Rdy is an unknown noise vector. This general model is used throughout computational imaging,
including various tomographic imaging applications such as common types of magnetic resonance
imaging Vlaardingerbroek and Boer (2013), X-ray computed tomography Elbakri and Fessler (2002),
radar imaging Cheney and Borden (2009), and basic image restoration tasks such as deblurring, super-
resolution, and image inpainting González et al. (2009). The classical approach to solving linear inverse
problems relies on prior knowledge about x, such as its smoothness, sparseness in a dictionary, or its
geometric properties. These approaches attempt to estimate a x̂ by minimizing a regularized inverse
problem, x̂ = argminx{∥y − Ax∥2 + Reg(x)}, where Reg is a regularization term that balances data
fidelity and noise while enabling efficient computations. However, a common difficulty in the regularized
inverse problem is the selection of an appropriate regularizer, which has a decisive influence on the quality
of the reconstruction.

Whereas regularized inverse problems continue to dominate the field, many alternative statistical formu-
lations have been proposed; see Besag et al. (1991); Idier (2013); Marnissi et al. (2017) and the references
therein - see Stuart (2010) for a mathematical perspective. A main advantage of statistical approaches
is that they allow for uncertainty quantification in the reconstructed solution; see Dashti and Stuart
(2017). The Bayes’ formulation of the regularized inverse problem is based on considering the indirect
measurement Y , the state X and the noise ε as random variables, and to specify p(y|x) the likelihood
(the conditional distribution of Y at X) and the prior p(x) (the distribution of the state). One can use
Bayes’ theorem to obtain the posterior distribution p(x|y) ∝ p(y|x)p(x), where "∝" means that the
two sides are equal to each other up to a multiplicative constant that does not depend on x. Moreover,
the use of an appropriate method for Bayesian inference allows the quantification of the uncertainty in
the reconstructed solution x. A variety of priors are available, including but not limited to Laplace
Figueiredo et al. (2007), total variation (TV) Kaipio et al. (2000) and mixture-of-Gaussians Fergus et al.
(2006). In the last decade, a variety of techniques have been proposed to design and train generative
models capable of producing perceptually realistic samples from the original data, even in challenging
high-dimensional data such as images or audio Kingma et al. (2019); Kobyzev et al. (2020); Gui et al.

89

(2021). Denoising diffusion models have been shown to be particularly effective generative models in
this context Sohl-Dickstein et al. (2015); Song et al. (2021c,a,b); Benton et al. (2022). These models
convert noise into the original data domain through a series of denoising steps. A popular approach is to
use a generic diffusion model that has been pre-trained, eliminating the need for re-training and making
the process more efficient and versatile Trippe et al. (2023); Zhang et al. (2023). Although this was
not the main motivation for developing these models, they can of course be used as prior distributions
in Bayesian inverse problems. This simple observation has led to a new, fast-growing line of research
on how linear inverse problems can benefit from the flexibility and expressive power of the recently
introduced deep generative models; see Arjomand Bigdeli et al. (2017); Wei et al. (2022); Su et al.
(2022); Kaltenbach et al. (2023); Shin and Choi (2023); Zhihang et al. (2023); Sahlström and Tarvainen
(2023).

Contributions

• We propose MCGdiff, a novel algorithm for sampling from the Bayesian posterior of Gaussian linear
inverse problems with denoising diffusion model priors. MCGdiff specifically exploits the structure of
both the linear inverse problem and the denoising diffusion generative model to design an efficient SMC
sampler.
• We establish under sensible assumptions that the empirical distribution of the samples produced by
MCGdiff converges to the target posterior when the number of particles goes to infinity. To the best
of our knowledge, MCGdiff is the first provably consistent algorithm for conditional sampling from the
denoising diffusion posteriors.
• To evaluate the performance of MCGdiff, we perform numerical simulations on several examples for
which the target posterior distribution is known. Simulation results support our theoretical results, i.e.
the empirical distribution of samples from MCGdiff converges to the target posterior distribution. This
is not the case for the competing methods (using the same denoising diffusion generative priors) which
are shown, when run with random initialization of the denoising diffusion, to generate a significant
number of samples outside the support of the target posterior. We also illustrate samples from MCGdiff
in imaging inverse problems.

Background and notations. This section provides a concise overview of the diffusion model frame-
work and notations used in this paper. We cover the elements that are important for understanding our
approach, and we recommend that readers refer to the original papers for complete details and derivations
Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021c,a). A denoising diffusion model is a
generative model consisting of a forward and a backward process. The forward process involves sam-
pling X0 ∼ qdata from the data distribution, which is then converted to a sequence X1:n of recursively
corrupted versions of X0. The backward process involves sampling Xn according to an easy-to-sample
reference distribution on Rdx and generating X0 ∈ Rdx by a sequence of denoising steps. Following
Sohl-Dickstein et al. (2015); Song et al. (2021a), the forward process can be chosen as a Markov chain
with joint distribution

q0:n(x0:n) = qdata(x0)
∏n
t=1 qt(xt|xt−1), qt(xt|xt−1) = N (xt; (1− βt)1/2xt−1, βt Idx) , (5.1)

where Idx is the identity matrix of size dx, {βt}t∈N ⊂ (0, 1) is a non-increasing sequence andN (x;µ,Σ)
is the p.d.f. of the Gaussian distribution with mean µ and covariance matrix Σ (assumed to be non-
singular) evaluated at x. For all t > 0, set ᾱt =

∏t
ℓ=1(1− βℓ) with the convention α0 = 1. We have for

all 0 ≤ s < t ≤ n,

qt|s(xt|xs) :=
∫ ∏t

ℓ=s+1 qℓ(xℓ|xℓ−1)dxs+1:t−1 = N (xt; (ᾱt/ᾱs)1/2xs, (1− ᾱt/ᾱs) Idx) . (5.2)

For the standard choices of ᾱt, the sequence of distributions (qt)t∈N converges weakly to the standard
normal distribution as t→∞, which we chose as the reference distribution. For the reverse process, Song

90

et al. (2021a,b) introduce an inference distribution qσ1:n|0(x1:n|x0), depending on a sequence {σt}t∈N of
hyperparameters satisfying σ2

t ∈ [0, 1− ᾱt−1] for all t ∈ N∗, and defined as

qσ1:n|0(x1:n|x0) = qσn|0(xn|x0)
∏2
t=n q

σ
t−1|t,0(xt−1|xt, x0) ,

where
qσn|0(xn|x0) = N

(
xn; ᾱ1/2

n x0, (1− ᾱn) Idx

)
and

qσt−1|t,0(xt−1|xt, x0) = N
(
xt−1;µt(x0, xt), σ2

t Idx

)
,

with µt(x0, xt) = ᾱ
1/2
t−1x0 + (1 − ᾱt−1 − σ2

t)1/2(xt − ᾱ1/2
t x0)

/
(1 − ᾱt)1/2 . For t ∈ [1 : n − 1], we

define by backward induction the sequence qσt|0(xt|x0) =
∫
qσt|t+1,0(xt|xt+1, x0)qσt+1|0(xt+1|x0)dxt+1.

It is shown in (Song et al., 2021a, Lemma 1) that for all t ∈ [1 : n], the distributions of the forward
and inference process conditioned on the initial state coincide, i.e. that qσt|0(xt|x0) = qt|0(xt|x0). The
backward process is derived from the inference distribution by replacing, for each t ∈ [2 : n], x0 in the
definition qσt−1|t,0(xt−1|xt, x0) with a prediction where χθ0|t(xt) := ᾱ

−1/2
t

(
xt − (1− ᾱt)1/2eθ(xt, t)

)
where eθ(x, t) is typically a neural network parameterized by θ. More formally, the backward distribution
is defined as pθ0:n(x0:n) = pn(xn)

∏n−1
t=0 p

θ
t (xt|xt+1) , where pn(xn) = N (xn; 0dx , Idx) and for all

t ∈ [1 : n− 1],

pθt (xt|xt+1) := qσt|t+1,0(xt|xt+1,χ
θ
0|t+1(xt+1)) = N (xt,mθ

t+1(xt+1), σ2
t+1Idx) , (5.3)

where mt+1(xt+1) := µ(χθ0|t+1(xt+1), xt+1) and 0dx is the null vector of size dx. At step 0, we set
p0(x0|x1) := N (x0;χθ0|1(x1), σ2

1Idx). The parameter θ is obtained (Song et al., 2021a, Theorem 1) by
solving the following optimization problem:

θ∗ ∈ argminθ
∑n
t=1(2dxσ2

tαt)−1 ∫ ∥ϵ− eθ(√αtx0 +
√

1− αtϵ, t)∥22N (ϵ; 0dx , Idx)qdata(dx0)dϵ .
(5.4)

Thus, eθ∗(Xt, t) might be seen as the predictor of the noise added to X0 to obtain Xt (in the forward
pass) and justifies the ”prediction” terminology. The time 0 marginal pθ∗

0 (x0) =
∫

pθ∗
0:n(x0:n)dx1:n

which we will refer to as the prior is used as an approximation of qdata and the time s marginal
is pθ∗

s (xs) =
∫

pθ∗
0:n(x0:n)dx1:s−1dxs+1:n. In the rest of the paper, we drop the dependence on the

parameter θ∗. We define for all v ∈ Rℓ, w ∈ Rk, the concatenation operator v⌢w = [vT , wT]T ∈ Rℓ+k.
For i ∈ [1 : ℓ], we let v[i] the i-th coordinate of v.

Related works. The subject of Bayesian problems is very vast, and it is impossible to discuss here all
the results obtained in this very rich literature. One of such domains is image restoration problems, such
as deblurring, denoising inpainting, which are challenging problems in computer vision that involves
restoring a partially observed degraded image. Deep learning techniques are widely used for this task
Arjomand Bigdeli et al. (2017); Yeh et al. (2018); Xiang et al. (2023); Wei et al. (2022) with many of
them relying on auto-encoders, VAEs Ivanov et al. (2018); Peng et al. (2021); Zheng et al. (2019), GANs
Yeh et al. (2018); Zeng et al. (2022), or autoregressive transformers Yu et al. (2018); Wan et al. (2021).
In what follows, we focus on methods based on denoising diffusion that has recently emerged as a way to
produce high-quality realistic samples from the original data distribution on par with the best GANs in
terms of image and audio generation, without the intricacies of adversarial training; see Sohl-Dickstein
et al. (2015); Song et al. (2021c, 2022). Diffusion-based approaches do not require specific training
for degradation types, making them much more versatile and computationally efficient. In Song et al.
(2022), noisy linear inverse problems are proposed to be solved by diffusing the degraded observation
forward, leading to intermediate observations {ys}ns=0, and then running a modified backward process

91

that promotes consistency with ys at each step s. The Denoising-Diffusion-Restoration model (DDRM)
Kawar et al. (2022) also modifies the backward process so that the unobserved part of the state follows
the backward process while the observed part is obtained as a noisy weighted sum between the noisy
observation and the prediction of the state. As observed by Lugmayr et al. (2022), DDRM is very efficient,
but the simple blending used occasionally causes inconsistency in the restoration process. DPS Chung
et al. (2023) considers a backward process targeting the posterior. DPS approximates the score of the
posterior using the Tweedie formula, which incorporates the learned score of the prior. The approximation
error is quantified and shown to decrease when the noise level is large, i.e., when the posterior is close
to the prior distribution. As shown in Section 5.3 with a very simple example, neither DDRM nor DPS
can be used to sample the target posterior and therefore do not solve the Bayesian recovery problem
(even if we run DDRM and DPS several time with independent initializations). Indeed, we show that DDRM
and DPS produce samples under the "prior" distribution (which is generally captured very well by the
denoising diffusion model), but which are not consistent with the observations (many samples land in
areas with very low likelihood). In Trippe et al. (2023), the authors introduce SMCdiff, a Sequential
Monte Carlo-based denoising diffusion model that aims at solving specifically the inpainting problem.
SMCdiff produces a particle approximation of the conditional distribution of the non observed part
of the state conditionally on a forward-diffused trajectory of the observation. The resulting particle
approximation is shown to converge to the true posterior of the SGM under the assumption that the
joint laws of the forward and backward processes coincide, which fails to be true in realistic setting.
In comparison with SMCdiff, MCGdiff is a versatile approach that solves any Bayesian linear inverse
problem while being consistent under mild assumptions. In parallel to our work, Wu et al. (2023) also
developed a similar SMC based methodology but with a different proposal kernel.

5.2 The MCGdiff algorithm
In this section, we present our methodology for the inpainting problem (5.5), both with noise and without
noise. The more general case is treated in Section 5.2.1. Let dy ∈ [1 : dx−1]. In what follows we denote
the dy top coordinates of a vector x ∈ Rdx by x and the remaining coordinates by x, so that x = x⌢x.
The inpainting problem is defined as

Y = X + σyε , ε ∼ N (0, Idy) , σ ≥ 0 , (5.5)

whereX are the first dy coordinates of a random variableX ∼ p0. The goal is then to recover the law of
the complete state X given a realisation y of the incomplete observation Y and the model (5.5).

Noiseless case. We begin by the case σy = 0. As the first dy coordinates are observed exactly, we aim
at infering the remaining coordinates of X ,which correspond to X . As such, given an observation y, we
aim at sampling from the posterior ϕy0(x0) ∝ p0(y⌢x0) with integral form

ϕy0(x0) ∝
∫

pn(xn)
{∏n−1

s=1 ps(xs|xs+1)
}
p0(y⌢x0|x1)dx1:n . (5.6)

To solve this problem, we propose to use SMC algorithms Doucet et al. (2001); Cappé et al. (2005b);
Chopin and Papaspiliopoulos (2020), where a set of N random samples, referred to as particles, is iter-
atively updated to approximate the posterior distribution. The updates involve, at iteration s, selecting
promising particles from the pool of particles ξ1:N

s+1 = (ξ1
s+1, . . . , ξ

N
s+1) based on a weight function ω̃s,

and then apply a Markov transition pys to obtain the samples ξ1:N
s . The transition pys(xs|xs+1) is designed

to follow the backward process while guiding the dy top coordinates of the pool of particles ξ1:N
s towards

the measurement y. Note that under the backward dynamics (5.3), Xt and Xt are independent condi-
tionally on Xt+1 with transition kernels respectively pt(xt|xt+1) := N (xt; mt+1(xt+1), σ2

t+1Idy) and
p
t
(xt|xt+1) := N (xt; mt+1(xt+1), σ2

t+1Idx−dy) where mt+1(xt+1) ∈ Rdy and mt+1(xt+1) ∈ Rdx−dy

92

are such that mt+1(xt+1) = mt+1(xt+1)⌢mt+1(xt+1) and the above kernels satisfy pt(xt|xt+1) =
pt(xt|xt+1)p

t
(xt|xt+1). We consider the following proposal kernels for t ∈ [1 : n− 1],

pyt (xt|xt+1) ∝ pt(xt|xt+1)qt|0(xt|y) , where qt|0(xt|y) := N (xt; ᾱ1/2
t y, (1− ᾱt)Idy) . (5.7)

For the final step, we define py0(x0|x1) = p0(x0|x1). Using standard Gaussian conjugation formulas, we
obtain

pyt (xt|xt+1) = p
t
(xt|xt+1) · N

(
xt; Ktα1/2

t y + (1− Kt)mt+1(xt+1), (1− ᾱt)Kt · Idy

)
,

where Kt := σ2
t+1
/
(σ2
t+1 + 1 − αt). For this procedure to target the posterior ϕy0, the weight

function ω̃s is chosen as follows; we set ω̃n−1(xn) :=
∫
pn−1(xn−1|xn)qn−1|0(xn−1|y)dxn−1 =

N
(
α

1/2
n−1y; mn(xn), σ2

n + 1− αn−1
)

and for t ∈ [1 : n− 2],

ω̃t(xt+1) :=
∫
pt(xt|xt+1)qt|0(xt|y)dxt

qt+1|0(xt+1|y) =
N
(
α

1/2
t y; mt+1(xs+1), (σ2

t+1 + 1− αt)Idy

)
N
(
α

1/2
t+1y;xt+1, (1− αt+1)Idy

) . (5.8)

For the final step, we set ω̃0(x1) := p0(y|x1)
/
q1|0(x1|y). The overall SMC algorithm targeting ϕy0

using the instrumental kernel (5.7) and weight function (5.8) is summarized in Algorithm 1. We now

Algorithm 1: MCGdiff (σ = 0)
Input: Number of particles N
Output: ξ1:N

0

1 ξ1:N
n

i.i.d.∼ N (0dx , Idx);
// Operations involving index i are repeated for each i ∈ [1 : N]

2 for s← n− 1 : 0 do
3 if s = n− 1 then
4 ω̃n−1(ξi

n) = N
(
ᾱ

1/2
n y; mn(ξi

n), 2− ᾱn

)
;

5 else
6 ω̃s(ξi

s+1) = N
(
ᾱ

1/2
s y; ms+1(ξi

s+1), σ2
s+1 + 1− ᾱs

)/
N
(
ᾱ

1/2
s+1y; ξi

s+1, 1− ᾱs+1

)
;

7 Ii
s+1 ∼ Cat

(
{ω̃s(ξj

s+1)/
∑N

k=1 ω̃s(ξk
s+1)}N

j=1
)
, zi

s ∼ N (0dy
, Idy

), zi
s ∼ N (0dx−dy

, Idx−dy
);

8 ξi
s = Ksᾱ

1/2
s y + (1− Ks)ms+1(ξIi

s+1
s+1) + (1− αs)1/2K1/2

s zi
s, ξi

s = ms+1(ξIi
s+1

s+1) + σs+1z
i
s;

9 Set ξi
s = ξi

s
⌢
ξi

s;

provide a justification to Algorithm 1. Let {gys}ns=1 be a sequence of positive functions with gyn ≡ 1.
Consider the sequence of distributions {ϕys}

n
s=1 defined as follows; ϕyn(xn) ∝ gyn(xn)pn(xn) and for

t ∈ [1 : n− 1]
ϕyt (xt) ∝

∫
gyt+1(xt+1)−1gyt (xt)pt(xt|xt+1)ϕyt+1(dxt+1) . (5.9)

By construction, the time t marginal (5.9) is ϕyt (xt) ∝ pt(xt)gyt (xt) for all t ∈ [1 : n]. Then, using ϕy1
and (5.6), we have that

ϕy0(x0) ∝
∫
gy1(x1)−1p0(y|x1)p0(x0|x1)ϕy1(dx1) . (5.10)

The recursion (5.9) suggests a way of obtaining a particle approximation of ϕy0; by sequentially ap-
proximating each ϕyt we can effectively derive a particle approximation of the posterior.To construct
the intermediate particle approximations we use the framework of auxiliary particle filters (APF) (Pitt
and Shephard, 1999). We focus on the case gyt (xt) = qt|0(xt|y) which corresponds to Algorithm 1.

93

t = 450 t = 100 t = 80 t = 70 t = 50 t = 20 t = 15 t = 5

Figure 5.1: Display of samples from ϕyt (xt) ∝ pt(xt)qt|0(xt|y) for the GM prior. Samples from ϕyt
(yellow), those from the prior (purple) and those from the posterior ϕy0 (light blue) with n = 500.

The initial particle approximation ϕyn is obtained by drawing N i.i.d. samples ξ1:N
n from pn and setting

ϕNn = N−1∑N
i=1 δξi

n
where δξ is the Dirac mass at ξ. Assume that the empirical approximation of ϕyt+1

is ϕNt+1 = N−1∑N
i=1 δξi

t+1
, where ξ1:N

t+1 are N random variables. Substituting ϕNt+1 into the recursion
(5.9) and introducing the instrumental kernel (5.7), we obtain the mixture

ϕ̂Nt (xt) =
∑N
i=1 ω̃t(ξit+1)pyt (xt|ξit+1)

/∑N
j=1 ω̃t(ξ

j
t+1) . (5.11)

Then, a particle approximation of (5.11) is obtained by sampling N conditionally i.i.d. ancestor indices
I1:N
t+1

i.i.d.∼ Cat({ω̃t(ξit+1)/
∑N
j=1 ω̃t(ξ

j
t+1)}Ni=1), and then propagating each ancestor particle ξ

Ii
t+1
t+1 accord-

ing to the instrumental kernel (5.7). The final particle approximation is given by ϕN0 = N−1∑N
i=1 δξi

0
,

where ξi0 ∼ p0(·|ξIi
11), Ii1 ∼ Cat({ω̃0(ξk1)

/∑N
j=1 ω̃0(ξj1)}Nk=1). The sequence of distributions {pt}nt=0

approximating the marginals of the forward process initialized at p0 defines a path that bridges between
pn and the prior p0 such that the discrepancy between pt and pt+1 is small. SMC samplers based on this
path are robust to multi-modality and offer an interesting alternative to the geometric and tempering paths
traditionally used in the SMC literature, see Dai et al. (2022). Our proposals ϕyt (xt) ∝ pt(xt)qt|0(xt|y)
inherit the behavior of {pt}t∈N and bridge the initial distribution ϕyn and posterior ϕy0. Indeed, as y is a
noiseless observation of X0 ∼ p0, we may consider ᾱ1/2

t y + (1− ᾱt)1/2εt, with εt ∼ N (0dy , Idy), as a
noisy observation ofXt ∼ pt and thus,ϕyt is the associated posterior. We illustrate this intuition by consid-
ering the following Gaussian mixture (GM) example. We assume that p0(x0) =

∑M
i=1wi ·N (x0;µi, Idx)

where M > 1 and {wi}Mi=1 are drawn uniformly on the simplex. The marginals of the forward process
are available in closed form and are given by pt(xt) =

∑M
i=1wi · N (xt; ᾱ1/2

t µi, Idx), which shows that
the discrepancy between pt and pt+1 is small as long as ᾱ1/2

t − ᾱ
1/2
t+1 is close to 0. The posteriors

{ϕyt }t∈[0:n] are also available in closed form and displayed in Figure 5.1, which illustrates that our choice
of potentials ensures that the discrepancy between consecutive posteriors is small. The idea of using
the forward diffused observation to guide the observed part of the state, as we do here through qt(xt|y),
has been exploited in prior works but in a different way. For instance, in Song et al. (2021c, 2022) the
observed part of the state is directly replaced by the forward noisy observation and, as it has been noted
Trippe et al. (2023), this introduces an irreducible bias. Instead, MCGdiff weights the backward process
by the density of the forward one conditioned on y, resulting in a natural and consistent algorithm.

We now establish the convergence of MCGdiff with a general sequence of potentials {gys}ns=1. We
consider the following assumption on the sequence of potentials {gyt }nt=1.

(A1) sup
x∈Rdx

p0(y|x)/gy1(x) <∞ and sup
x∈Rdx

∫
gyt (xt)pt(xt|x)dxt

/
gyt+1(x) <∞ for all t ∈ [1 : n− 1].

The following exponential deviation inequality is standard and is a direct application of (Douc et al.,
2014, Theorem 10.17). In particular, it implies aO(1/

√
N) bound on the mean squared error ∥ϕN0 (h)−

ϕy0(h)∥2.

Proposition 32. Assume (A1). There exist constants c1,n, c2,n ∈ (0,∞) such that, for all N ∈ N, ε > 0
and bounded function h : Rdx 7→ R, P

[∣∣ϕN0 (h)− ϕy0(h)
∣∣ ≥ ε] ≤ c1,n exp(−c2,nNε

2/|h|2∞) where
|h|∞ := supx∈Rdx |h(x)|.

94

We also furnish our estimator with an explicit non-asymptotic bound on its bias. Define ΦN
0 = E

[
ϕN0]

where ϕN0 = N−1∑N
i=1 δξi

0
is the particle approximation produced by Algorithm 1 and the expectation is

with respect to the law of (ξ1:N
0:n , I

1:N
1:n). Define for all t ∈ [1 : n],ϕ⋆t (xt) ∝ pt(xt)

∫
δy(dx0)p0|t(x0|xt)dx0 ,

where p0|t(x0|xt) :=
∫ {∏t−1

s=0 ps(xs|xs+1)
}

dx1:t−1.

Proposition 33. It holds that

KL(ϕy0 ∥ ΦN
0) ≤ Cy0:n(N − 1)−1 + Dy

0:nN
−2 , (5.12)

where Dy
0:n > 0, Cy0:n :=

∑n
t=1

∫ Zt/Z0
gy

t (zt)

{∫
δy(dx0)p0|t(x0|zt)dx0

}
ϕ⋆t (dzt) andZt :=

∫
gyt (xt)pt(dxt)

for all t ∈ [1 : n] and Z0 :=
∫
δy(dx0)p0(x0)dx0. If furthermore (A1) holds then both Cy0:n and Dy

0:n
are finite.

The proof of Proposition 33 is postponed to Section D.2.1. (A1) is an assumption on the equivalent of the
weights {ω̃t}nt=0 with a general sequence of potentials {gyt }nt=1 and is not restrictive as it can be satisfied
by setting for example gys (xs) = qs|0(xs|y)+δ where δ > 0. The resulting algorithm is then only a slight
modification of the one described above, see Section D.2.1 for more details. It is also worth noting that
Proposition 33 combined with Pinsker’s inequality implies that the bias of MCGdiff goes to 0 with the
number of particle samples N for fixed n. We have chosen to present a bound in Kullback–Leibler (KL)
divergence, inspired by Andrieu et al. (2018); Huggins and Roy (2019), as it allows an explicit dependence
on the modeling choice {gys}ns=1, see Lemma 67. Finally, unlike the theoretical guarantees established
for SMCdiff in Trippe et al. (2023), proving the asymptotic exactness of our methodology w.r.t. to the
generative model posterior does not require having ps+1(xs+1)ps(xs|xs+1) = ps(xs)qs+1(xs+1|xs) for
all s ∈ [0 : n− 1], which does not hold in practice.

Noisy case. We consider the case σy > 0. The posterior density is given by ϕy0(x0) ∝ gy0(x0)p0(x0),
where gy0(x0) := N (y;x0, σ

2
yIdy). In what follows, assume that there exists τ ∈ [1 : n] such that

σ2 = (1− ᾱτ)
/
ᾱτ . We denote ỹτ = ᾱ

1/2
τ y. We can then write that

gy0(x0) = ᾱ1/2
τ · N (ỹτ ; ᾱ1/2

τ x0, (1− ᾱτ) · Idy) = ᾱ1/2
τ · qτ |0(ỹτ |x0) , (5.13)

which hints that the likelihood function gy0 is closely related to the forward process (5.1). We may then
write the posterior ϕy0(x0) as ϕy0(x0) ∝ qτ |0(ỹτ |x0)p0(x0) ∝

∫
δỹτ (dxτ)qτ |0(xτ |x0)p0(x0)dxτ . Next,

assume that the forward process (5.1) is the reverse of the backward one (5.3), i.e. that

pt(xt)qt+1(xt+1|xt) = pt+1(xt+1)pt(xt|xt+1) , ∀t ∈ [0 : n− 1] . (5.14)

This is similar to the assumption made in SMCdiff Trippe et al. (2023). Then, it is easily seen that it
implies p0(x0)qτ |0(xτ |x0) = pτ (xτ)p0|τ (x0|xτ) and thus

ϕy0(x0) =
∫
p0|τ (x0|xτ)δỹτ (dxτ)pτ (xτ)dxτ

/∫
δỹτ (dzτ)pτ (zτ)dzτ =

∫
p0|τ (x0|ỹτ⌢xτ)ϕỹτ

τ (dxτ) ,
(5.15)

where ϕỹτ
τ (xτ) ∝ pτ (ỹτ⌢xτ). (5.15) highlights that solving the inverse problem (5.5) with σy > 0 is

equivalent to solving an inverse problem on the intermediate state Xτ ∼ pτ with noiseless observation
ỹτ of the dy top coordinates and then propagating the resulting posterior back to time 0 with the backward
kernel p0|τ . The assumption (5.14) does not always holds in realistic settings.Therefore, while (5.15) also
holds only approximately in practice, we can still use it as inspiration for designing potentials when the
assumption is not valid. Consider then {gyt }nt=τ and sequence of probability measures {ϕyt }nt=τ defined for
all t ∈ [τ : n] as ϕyt (xt) ∝ g

y
t (xt)pt(xt), where gyt (xt) := N (xt; ᾱ1/2

t y, (1− (1−κ)ᾱt/ᾱτ)Idy), κ ≥ 0.
In the case of κ = 0, we have gyt (xt) = qt|τ (xt|ỹτ) for t ∈ [τ + 1 : n] and ϕyτ = ϕỹτ

τ . The recursion (5.9)

95

holds for t ∈ [τ : n] and assuming κ > 0, we find thatϕy0(x0) ∝ gy0(x0)
∫
gyτ (xτ)−1p0|τ (x0|xτ)ϕyτ (dxτ) ,

which resembles the recursion (5.15). In practice we take κ to be small in order to mimick the Dirac
delta mass at xτ in (5.15). Having a particle approximation ϕNτ = N−1∑N

i=1 δξi
τ

of ϕyτ by adapting
Algorithm 1, we estimate ϕy0 with ϕN0 =

∑N
i=1 ω

i
0δξi

0
where ξi0 ∼ p0|τ (·|ξ

i
τ) and ωi0 ∝ g

y
0(ξi0)/gyτ (ξIi

τ
τ).

In the next section we extend this methodology to general linear Gaussian observation models. Finally,
(5.15) allows us to extend SMCdiff to handle noisy inverse problems in a principled manner which is
detailed in Section D.1.

5.2.1 Extension to general linear inverse problems

Consider Y = AX + σyε where A ∈ Rdy×dx , ε ∼ N (0dy , Idy) and σy ≥ 0 and the singular value
decomposition (SVD) A = USVT , where V ∈ Rdx×dy , U ∈ Rdy×dy are two orthonormal matrices, and
S ∈ Rdy×dy is diagonal. For simplicity, it is assumed that the singular values satisfy s1 > · · · > sdy > 0.
Set b = dx − dy. Let V ∈ Rdx×b be an orthonormal matrix of which the columns complete those of V
into an orthonormal basis of Rdx , i.e. VTV = Ib and VTV = 0b,dy . We define V = [V,V] ∈ Rdx×dx .
In what follows, for a given x ∈ Rdx we write x ∈ Rdy for its top dy coordinates and x ∈ Rb for
the remaining coordinates. Setting X := VTX and Y := S−1UTY and multiplying the measurement
equation by S−1UT yields

Y = X + σyS−1ε̃ , ε̃ ∼ N (0, Idy) .

In this section, we focus on solving this linear inverse problem in the orthonormal basis defined by
V using the methodology developed in the previous sections. This prompts us to define the diffusion
based generative model in this basis. As V is an orthonormal matrix, the law of X0 = VTX0 is
p0(x0) := p0(Vx0). By definition of p0 and the fact that ∥Vx∥2 = ∥x∥2 for all x ∈ Rdx we have
that

p0(x0) =
∫
p0(Vx0|x1)

{∏n−1
s=1 ps(dxs|xs+1)

}
pn(dxn) =

∫
λ0(x0|x1)

{∏n−1
s=1 λs(dxs|xs+1)

}
pn(dxn)

where for all s ∈ [1 : n], λs−1(xs−1|xs) := N (xs−1;ms(xs), σ2
s Idx), where ms(xs) := VTms(Vxs).

The transition kernels {λs}n−1
s=0 thus define a diffusion based model in the basis V. In what follows we

write ms(xs) for the first dy coordinates of ms(xs) and ms(xs) the last b coordinates. We denote by ps
the time s marginal of the backward process.

Noiseless. In this case the target posterior is ϕy
0 (x0) ∝ p0(y⌢x0). The extension of algorithm 1 is

straight forward; it is enough to replace y with y (=S−1UT y) and the backward kernels {pt}
n−1
t=0 with

{λt}
n−1
t=0 .

Noisy. The posterior density is then ϕy
0 (x0) ∝ gy

0 (x0)p0(x0), where

gy
0 (x0) =

∏dy
i=1N (y[i]; x0[i], (σy/si)2) .

As in Line 9, assume that there exists {τi}
dy
i=1 ⊂ [1 : n] such that ᾱτiσ

2
y = (1− ᾱτi)s2

i and define for all
i ∈ [1 : dy], ỹi := ᾱ

1/2
τi y[i]. Then we can write the potential gy

0 in a similar fashion to (5.13) as the product
of forward processes from time 0 to each time step τi, i.e. gy

0 (x0) =
∏dy
i=1 ᾱ

1/2
τi N (ỹi; ᾱ1/2

τi x0[i], (1 −
ᾱτi)). Writing the potential this way allows us to generalize (5.15) as follows. Denote for ℓ ∈ [1 : dx],
x\ℓ ∈ Rdx−1 the vector x with its ℓ-th coordinate removed. Define

ϕỹ
τ1:n(dxτ1:n) ∝

{∏dy−1
i=1 λτi|τi+1

(xτi |xτi+1)δỹi(dxτi [i])dx\iτi

}
pτdy (xτdy)δỹdy (dxτdy [dy])dx\dy

τdy
,

which corresponds to the posterior of a noiseless inverse problem on the joint states Xτ1:n ∼ pτ1:n with
noiseless observations ỹτi of Xτi [i] for all i ∈ [1 : dy].

96

x
2

MCGdiff DDRM DPS RNVP

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

MCGdiff DDRM DPS RNVP

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

P
C

A
2

x1 PCA1

Figure 5.2: The first and last four columns correspond respectively to GM with (dx, dy) = (800, 1)
and FM with (dx, dy) = (10, 1). The blue and red dots represent respectively samples from the exact
posterior and those generated by each of the algorithms used (names on top).

d dy MCGdiff DDRM DPS RNVP

80 1 1.39 ± 0.45 5.64 ± 1.10 4.98 ± 1.14 6.86 ± 0.88
80 2 0.67 ± 0.24 7.07 ± 1.35 5.10 ± 1.23 7.79 ± 1.50
80 4 0.28 ± 0.14 7.81 ± 1.48 4.28 ± 1.26 7.95 ± 1.61
800 1 2.40 ± 1.00 7.44 ± 1.15 6.49 ± 1.16 7.74 ± 1.34
800 2 1.31 ± 0.60 8.95 ± 1.12 6.88 ± 1.01 8.75 ± 1.02
800 4 0.47 ± 0.19 8.39 ± 1.48 5.51 ± 1.18 7.81 ± 1.63

d dy MCGdiff DDRM DPS RNVP

6 1 1.95 ± 0.43 4.20 ± 0.78 5.43 ± 1.05 6.16 ± 0.65
6 3 0.73 ± 0.33 2.20 ± 0.67 3.47 ± 0.78 4.70 ± 0.90
6 5 0.41 ± 0.12 0.91 ± 0.43 2.07 ± 0.63 3.52 ± 0.93
10 1 2.45 ± 0.42 3.82 ± 0.64 4.30 ± 0.91 6.04 ± 0.38
10 3 1.07 ± 0.26 4.94 ± 0.87 5.38 ± 0.84 5.91 ± 0.64
10 5 0.71 ± 0.12 2.32 ± 0.74 3.74 ± 0.77 5.11 ± 0.69

Table 5.1: Sliced Wasserstein for the GM (left) and FM (right) case.

Proposition 34. Assume that ps+1(xs+1)λs(xs|xs+1) = ps(xs)qs+1(xs+1|xs) for all s ∈ [0 : n− 1].
Then it holds that ϕy

0 (x0) ∝
∫
λ0|τ1

(x0|xτ1)ϕỹ
τ1:n(dxτ1:n).

The proof of Proposition 34 is given in Section D.2.2. We have shown that sampling from ϕy
0 is

equivalent to sampling from ϕỹ
τ1:n then propagating the final state Xτ1 to time 0 according to λ0|τ1

.
Therefore, as in (5.13), we define {gyt }nt=τ and {ϕy

t }nt=τ for all t ∈ [τ1 : n] by ϕy
t (xt) ∝ gy

t (xt)pt(xt)
and gy

t (xt) :=
∏τ(t)
i=1 N (xt; ỹi, 1− (1− κ)ᾱt/ᾱτi), κ > 0. We obtain a particle approximation of

ϕy
τ1 using a particle filter with proposal kernel and weight function λy

t (xt|xt+1) ∝ gy
t (xt)pt(xt|xt+1),

ω̃t(xt+1) =
∫
gy
t (xt)pt(dxt|xt+1)

/
gy
t+1(xt+1), which are both available in closed form.

5.3 Numerics

The focus of this work is on providing an algorithm that consistently approximates the posterior dis-
tribution of a linear inverse problem with Gaussian noise. A prerequisite for quantitative evaluation in
ill-posed inverse problems in a Bayesian setting is to have access to samples of the posterior distribution.
This generally requires having at least an unnormalized proxy of the posterior density, so that one can
run MCMC samplers such as the No U-turn sampler (NUTS) Hoffman and Gelman (2011). Therefore,
this section focus on mixture models of two types of basis distribution, the Gaussian and the Funnel
distributions. We then present a brief illustration of MCGdiff on image data. However, in this setting,
the actual posterior distribution is unknown and the main goal is to explore the potentially multimodal
posterior distribution, which makes a comparison with a "real image" meaningless. Therefore, metrics
such as Fréchet Inception Distance (FID) and LPIPS score, which require comparison to a ground truth,
are not useful for evaluating Bayesian reconstruction methods in such settings.1

Mixture Models: We refer to the Funnel mixture prior as FM prior (see section D.3 for the definition).
For GM prior, we consider a mixture of 25 components with pre-established means and variances.
For FM prior, we consider a mixture of 20 components consisting of rotated and translated funnel
distributions. For a given pair (dx, dy), we sample a prior distribution by randomly sampling the weights
of the mixture and for the FM case the translation and rotation of each component. We then randomly

1The code for the experiments is available at https://github.com/gabrielvc/mcg_diff.

97

https://github.com/gabrielvc/mcg_diff

Y MCGdiff MCGdiff MCGdiff MCGdiff Y

Inp
σy = 0

Celeb

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

SR
σy = 0.05

Bedroom

Col
σy = 0
Flowers

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

G2Deb
σy = 0.1

Church

Figure 5.3: Illustration of the samples of MCGdiff for different datasets and different inverse problems.

sample measurement models (y,A, σy) ∈ Rdy ×Rdy×dx × [0, 1]. For each pair of prior distribution and
measurement model, we generate 104 samples from MCGdiff, DPS, DDRM, RNVP, and from the posterior
either analytically (GM) or using NUTS (FM). We calculate for each algorithm the sliced Wasserstein
(SW) distance between the resulting samples and the posterior samples. Table 5.1 shows the CLT 95%
confidence intervals obtained over 20 seeds. Figure 5.2 illustrate the samples for the different algorithms
for a given seed. We see that MCGdiff outperforms all the other algorithms in each setting tested. The
complete details of the numerical experiments performed in this section is available in section D.3 as
well as an additional visualisations.

Image datasets: Figure 5.3 shows samples of MCGdiff in different datasets (Celeb, Churches, Bedroom
and Flowers) for different inverse problems, namely Inpaiting (Inp), super resolution (SR), Gaussian 2D
deblur (G2Deb) and Colorization (Col). Visual comparison with competing algorithms and different
datasets are shown in section D.3 as well as numerical details concerning figure 5.3.

98

Chapter 6

ECG-DIFF: Bayesian ECG
Reconstruction using MCG-DIFF

6.1 Introduction

Electrocardiograms (ECGs) are essential tools for diagnosing various cardiac conditions. They record the
heart’s electrical activity using several electrodes placed on the chest, and highlight the different phases
of the cardiac cycle, including the R peak, the QT segment and the ST segment. Myocardial infarction
(MI), also known as heart attack, is an example of a critical diagnosis identified from ECG Jameson et al.
(2018). An MI occurs when part of the heart muscle is deprived of oxygen, causing permanent damage.
Accurate and rapid diagnosis of infarction is crucial, as treatment varies according to ECG morphology
and must be carried out as quickly as possible Reed et al. (2017). For example, an infarct with ST-
segment elevation may require invasive interventions such as percutaneous coronary intervention, which
is not the case for intractus without ST-segment elevation Ibanez et al. (2017). However, the study of
ECG morphology is complex and requires special expertise and attention. In particular, the morphology
of each phase of the cardiac cycle, in each lead, as well as their coherence between leads, are crucial
for assessing the electrical functioning of the heart. In addition, ECGs can be affected by noise and
imperfect electrode placement, which affect recording quality. Therefore, methods that can accurately
and impartially highlight morphological abnormalities, while denoising and reconstructing altered or
missing signals, could be very useful for ECG analysis. In this article, we present a flexible method
for addressing multiple challenges in ECG analysis: noise reduction, missing data reconstruction, and
anomaly detection. To this end, we formulate these problems as inverse linear problems, meaning
data reconstruction problems from incomplete and/or noisy observations. Our method relies on a
trained model capable of generating ECGs, which is used as prior information to solve these inverse
linear problems. This model is trained only once and is used for all tasks without requiring tuning
for each of these tasks. Generative diffusion models have proven to be well-suited as priors in solving
inverse problems Song et al. (2021a); Chung et al. (2023); Song et al. (2022); Kawar et al. (2022,
2021); Cardoso et al. (2023b); Wu et al. (2023). We adapt Cardoso et al. (2023b) for cases with unknown
measurement noise levels, proposing a noise calibration strategy coupled with inverse problem resolution
to simultaneously infer ECG noise levels and reconstruct missing data or detect anomalies. Finally, we
demonstrate the effectiveness of our approach by comparing it to baseline methods and showcasing an
innovative application: generating expected ECGs when a patient’s heart rate increases. This application
offers a promising alternative to the exercise stress test. Our contributions are the following.

• We introduce a flexible method that addresses multiple challenges in ECG analysis, including
generating synthetic signals, noise reduction, missing data reconstruction, and anomaly detection

99

without having to re-train a model for each task.

• We adapt recent techniques for solving inverse problems with diffusion priors by including an
estimation of unknown measurement noise levels.

• Our methods surpasses recent and classic existing approaches on multiple evaluation metrics
specifically designed for ECGs, and offers novel applications.

6.2 Related Work

The use of generative models (Kingma et al., 2019; Kobyzev et al., 2020; Gui et al., 2021) as informative
priors in solving Bayesian inverse problems has attracted significant interest Arjomand Bigdeli et al.
(2017); Wei et al. (2022); Su et al. (2022); Kaltenbach et al. (2023); Shin and Choi (2023); Zhihang
et al. (2023); Sahlström and Tarvainen (2023). In particular, DDMs have been demonstrated as a
particularly suitable choice of prior for solving inverse problems Song et al. (2021a); Chung et al. (2023);
Song et al. (2022); Kawar et al. (2022, 2021). DDMs are generative models that transform a simple
reference distribution into the training data distribution through a denoising process called diffusion.
These models are capable of generating high-quality realistic samples on par with the best Generative
Adversarial Networks (GANs) Goodfellow et al. (2014) in terms of image and audio generation, without
the intricacies of adversarial training (Sohl-Dickstein et al., 2015; Song et al., 2021c,a,b; Benton et al.,
2022). In this article, we follow the approach proposed in Cardoso et al. (2023b); Wu et al. (2023),
for sampling solutions to an inverse problem using a Sequential Monte Carlo (SMC) algorithm that
guides the denoising process of a pretrained diffusion model. This method is accompanied by a series
of theoretical guarantees in realistic scenarios. Generative modeling, denoising methods, and automatic
anomaly detection algorithms are commonly used for ECG analysis. In particular, DDMs have been
demonstrated to be capable of generating realistic ECGs: Adib et al. (2023) focuses on generating a
single healthy beat for a single ECG lead, Alcaraz and Strodthoff (2023) generates a 10-second period
conditioned on various complementary ECG information. Additionally, numerous methods address the
denoising problem in ECGs Singh and Pradhan (2020); Li et al. (2023); Chiang et al. (2019). Classical
approaches like Dower matrices Macfarlane et al. (2010) are used to reconstruct missing leads in ECGs.
(Wen and Kang, 2021; Kang and Wen, 2022) rely on neural networks to detect anomalies, and Shan et al.
(2022) use adversarial autoencoders for unsupervised anomaly detection. However, to our knowledge,
there is no method that addresses all these problems with a single pretrained model.

6.3 Background

For all the ECG reconstruction tasks presented in our work, we used the same pre-trained DDM (sec-
tion 6.3.1) as a prior for sampling solutions of these tasks with Monte Carlo guided diffusion (sec-
tion 6.3.2).

6.3.1 Denoising Diffusion Generative Models (DDM):

We focus on the variance-exploding (VE) framework Song et al. (2021c), which transforms a reference
distribution of the form λ = N (0, υ2

max I), with υ2
max ≫ 0, into the data distribution. The training

procedure involves denoising data that has been corrupted through a forward process as follow. The
initial data state x0 is sampled from qdata; independent noise with increasing variance is incrementally
added to generate subsequent states xk = xk−1 + ρkεk, where k ∈ N∗, ρk > 0, and εk ∼ N (0, I). The
joint p.d.f. of the Markov chain is

q0:K(x0:K) = qdata(x0)
∏K
k=1 qk(xk|xk−1) , (6.1)

100

where qk(·|xk−1) = N (xk−1, ρ
2
k I) and K ∈ N∗. Hence, the conditional law at step k given xs with

k > s ≥ 0 is
qk|s(·|xs) = N (xs, (υ2

k − υ2
s) I) , (6.2)

with υ2
k =

∑k
j=1 ρ

2
j (and υ2

0 = 0). It is easy to see that for K ∈ N∗ such that υ2
K = υ2

max and
υ2
K ≫ ∥x0∥2∞, then qK|0(·|x0) is close to the reference distribution λ = N (0, υ2

max I).
To infer real data from corrupted data, we introduce the inference distribution qη, depending on hyper-
parameter η = {ηk}k∈N verifying for all k ∈ N, η2

k ≤ υ2
k. The p.d.f. of x1:K given the initial state x0 is

qη1:K|0(x1:K |x0) := qηK|0(xK |x0)
∏2
k=K q

η
k−1|k,0(xk−1|xk, x0) where

qηK|0(·|x0) := N (x0, υ
2
maxI) ≈ λ,

qηk−1|k,0(·|xk, x0) := N
(
µk−1(xk, x0), η2

k−1 Id
)
,

µk−1(xk, x0) := x0 +
√
υ2
k−1/υ

2
k − η2

k−1/υ
2
k(xk − x0),

for k ∈ [1 : K]; the backward induction is formulated as

qηk−1|0(·|x0) :=
∫
qηk−1|k,0(·|x, x0)qηk|0(x|x0)dx .

In Lemma 70 we demonstrate that for k ∈ [0 : K], qηk|0(·|x0) = qk|0(·|x0). Since the states x0 are not yet
accessible as they are the ones we aim to model, all occurrences of x0 are replaced by a denoised version
of xk, obtained with the subsequent network. Each corrupted state xk is denoised, using the model Dθ0|k
with parameters θ trained to minimize

K∑
k=1

γ2
kEX0∼qdata

ϵ∼N (0,I)

[
∥Dθ0|k(X0 + υkϵ, υk)−X0∥2

]
, (6.3)

where {γk}k∈[1:K] is a sequence of weighted coefficients.

After training, to generate x0 ∼ qdata we start by sampling xK ∼ λ and for k = K to k = 2 we sample
xk−1 given xk with

pk−1|k(·|xk) := qηk−1|k,0(·|xk,Dθ0|k(xk, υk)) . (6.4)

Finally, x0 ∼ p0(·|x1) := N (Dθ0|1(x1, υ1), η2
0 I). The p.d.f. of the sampled backward chainx0:K is

p0:K(x0:K) := λ(xK)
∏1
k=K pk−1|k(xk−1|xk) .

This is equivalent to minimizing the Kullback-Leibler divergence between qdata(x0)qη1:K|0(x1:K |x0) and
the joint backward p0:K(x0:K), for a specific choice of {γk}k∈[1:K]; see Lemma 71. For k ∈ [0 : K− 1],
the marginal law of xk is expressed with

pk(xk) :=
∫
λ(xK)

k+1∏
s=K

ps−1|s(xs−1|xs)dxk+1:K . (6.5)

6.3.2 Monte Carlo Guided Diffusion

In Bayesian inverse problem, we aim to sample

ϕ0(x0) := g0(x0)p0(x0)/Z (6.6)

where g0 is the likelihood function (typically depending on an observation) and Z :=
∫
g0(x)p0(x)dx

is the normalizing constant. The distribution ϕ0 is often intractable, except for simple choices of g0 and

101

p0. A simple idea for sampling the posterior ϕ0 is to use sampling importance resampling (SIR) Rubin
(1987a), where p0 is used as the instrumental distribution. However, this method may be inefficient
since it neglects the potential g0. It is imperative to construct an instrumental distribution that takes into
account the likelihood function. For a given sequence, x0:K , we define a distribution over the path space,
using (6.5) and (6.6)

ϕ0:K(x0:K) := g0(x0)
Z

K∏
k=1

pk−1|k(xk−1|xk)λ(xK). (6.7)

We introduce a sequence of potentials {gk}k∈[1:K] with gK ≡ 1, which aim is to lead the backward
diffusion to regions of high values of g0 is large. The path space distributions may be equivalently
rewritten as

ϕ0:K(x0:K) ∝ λ(xK)
∏K
k=1

gk−1(xk−1)p
k−1|k(xk−1|xk)

gk(xk)

∝ λ(xK)
∏K
k=1 ωk(xk)pk−1|k(xk−1|xk) ,

where, for k ∈ [1 : K], are defined

pk−1|k(·|xk) := gk−1(·)pk−1|k(·|xk)/Zk(xk) ,

Zk(xk) :=
∫
gk−1(x′)pk−1|k(x

′|xk)dx′,

ωk(xk) := Zk(xk)/gk(xk) . (6.8)

We implicitly assume that these formulas have a closed form. By construction, for each k ∈ [1 : K] the
marginal distribution of ϕ0:K verifies

ϕk−1(xk−1) ∝ gk−1(xk−1)pk−1(xk−1)
∝
∫
ωk(x)pk−1|k(xk−1|x)ϕk(x)dx . (6.9)

Each ϕk−1 thus has the same structure as ϕ0: a product of a potential function and the marginal law at
time k − 1 of the backward diffusion. The original problem is replaced by a series of easier to solve
problems.

It remains to approximate this sequence of distributions. For this purpose, we use Sequential Monte
Carlo (SMC) Doucet et al. (2001); Chopin and Papaspiliopoulos (2020) to recursively build an empirical
approximation from k = K to k = 0. Suppose that we have at iteration k a particle approximation
ϕMk = M−1∑M

j=1 δξj
k

of ϕk through a set of M ∈ N>0 particles ξ1:M
k Chopin and Papaspiliopoulos

(2020), initialized with ξ1:M
K ∼ λ×M . Plugging this approximation into eq. (6.9) gives

ϕk−1 ∝
∑M
j=1 ωk(ξ

j
k)pk−1|k(·|ξ

j
k) . (6.10)

Hence, to obtain ξ1:M
k−1 , we first sampleM ancestors according to I1:M

k−1 ∼ Cat
(
{ωk(ξ

j
k)/

∑M
i=1 ωk(ξik)}Mj=1

)×M ,
then we sample new particles ξ1:M

k−1 ∼ {pk−1|k(·|ξ
Ij

k−1
k)}Mj=1, leading to ϕMk−1 = M−1∑M

j=1 δξj
k−1

. Cf.
algorithm 12 in section E.5.

6.4 Methods
Many fundamental problems in ECG analysis, such as noise suppression, reconstruction of missing leads,
T-wave prediction, and anomaly detection, can be formulated as ill-posed linear inverse problems. For
the sake of simplicity, we focus in this section on the problem of recovering/denoising the ECG signal in
the presence of noise and/or missing samples. We discuss how section 6.3.2 can be employed to sample
ECGs from partial observations using a pre-trained DDM as a prior. We also introduce the inference
procedure for estimating the unknown level of noise in the observation.

102

6.4.1 ECG Linear Inverse Problem

ECGs areL×T matrices whereL is the number of leads, andT is the number of samples. We assume that
we have trained a DDM on ECG data and have access to the backward process: to generate a new ECG
x0 ∈ RL×T , we first sample xK from λ, then for k from K to 1, we sample xk−1 ∼ pk−1|k(xk−1|xk)
((6.4)), as illustrated in figure 6.1.

We assume that we partially measure a new ECG through a subset of indices I = {(ℓ, t) ∈ [1 : L]× [1 :
T]}. For any (ℓ, t) ∈ I, the observation is written as

Y[ℓ, t] = X0[ℓ, t] + σℓϵℓ,t , (6.11)

where ϵℓ,t ∼ N (0, 1), and σ = σ1:L are the measurement noise variances; we first assume that the
variances are known; we describe below a method to estimate these parameters. Given an observation
y ∼ Y , we aim to sample x0 from the posterior X0|y, σ, with a p.d.f.

ϕy0(x0) := gy0(x0)p0(x0)/Z (6.12)

where p0(x0) is the prior distribution defined in (6.5), Z =
∫
gy0(x)p0(x)dx is the normalizing constant,

and gy0(x0) is the likelihood of the observation, given by

gy0(x0) :=
∏

(ℓ,t)∈I N (x0[ℓ, t]; y[ℓ, t], σ2
ℓ) .

We use the methods described in section 6.3.2 and adapt the choice of potentials {gyk}k∈[0:K] derived in
Cardoso et al. (2023b) for the VE framework

gyk(x) =
∏

(ℓ,t)∈Vk

N (x[ℓ, t]; y[ℓ, t], υ2
k − (1−ε)σ2

ℓ), (6.13)

where Vk = {(ℓ, t) ∈ I|υ2
k ≥ σ2

ℓ } and ε is a positive hyper-parameter (see section E.6 for a heuristic
introducing this choice of potential). By convention, if Vk = ∅, we set gyk(x) ≡ 1. For this potential,
pyk−1|k and ωyk admit closed forms given in section E.7.

6.4.2 Estimation of Measurement Noise

We now discuss the estimation of the noise variance. We propose to use the MLE of σ, σ∗ =
argmaxσ∈RSy l(σ) where l(σ) := logZ ,σ = log

∫
gy,σ0 (x)p0(x)dx. Note that we have explicitly spec-

ified the dependence of the potential gy,σ0 (x) on the noise variance. The gradient of l is approximated
using ξ1:M

0 obtained with algorithm 12

∇σl(σ) =
∫
∇σgy,σ0 (x)p0(x)/Z ,σdx

=
∫
∇σ log gy,σ0 (x)ϕy,σ0 (x)dx

≈M−1∑M
j=1∇σ log gy,σ0 (ξj0) .

We obtain the estimator σ through gradient ascent Cappé et al. (2005b)[Section 11] and enhance its
robustness by running Nc parallel instances of algorithm 12 and averaging the resulting estimators, as
outlined in algorithm 5.

6.5 Experiments
Our code to reproduce all experiment is available.1

1Anonymous code available at https://anonymous.4open.science/r/ecg_inpainting-7457

103

https://anonymous.4open.science/r/ecg_inpainting-7457

Figure 6.1: Example of healthy heartbeat generated with a denoising diffusion generative model, across multiple
diffusion steps.

Algorithm 5 NC-MCGdiff
Input: number of steps NMLE, initialization σ0, number of parallel chains Nc

Parameters for SMC: observation y, number of diffusion steps K, number of particles M
for i = 0 to NMLE − 1 do

Sample ξ1:NcM
0,i by running Nc parallel SMC with σi, y,K,M

Update σi+1 := σi + γ
(i+1)0.6 ∇̂σl(σi)[ξ1:NcM

0,i]
end for
Output: σNMLE

6.5.1 Dataset and Preprocessing

We utilize the PhysioNet Challenge dataset Goldberger et al. (e 13); Reyna et al. (2021, 2022), comprising
43,101 12-lead ECGs. Our preprocessing involves four steps, as described in section E.2: normalization
of the sampling frequency to 250 Hz (resulting in time points separated by 4 ms), detection of R peaks
to identify heartbeats, segmentation of the heartbeats within the window [R−192 ms,R +512 ms], and
amplitude normalization. This process generates 214,460 single-beat ECGs, each with a time length of
704 ms and leads (aVL, aVR, aVF, V1–V6), represented as an L×T matrix, where L = 9 and T = 176
(since 704 ms/4 ms= 176), from a pool of 28,167 individuals with healthy profiles and 468 patients
diagnosed with myocardial infarction (MI). Due to significant variability between patients compared to
variability between heartbeats, we randomly select a single beat per patient from either the training,
cross-validation (CV), test, or MI datasets for model evaluation. All analyses are conducted on single
beats with normalized amplitudes, but our entire approach is also applicable to signals with multiple
beats with non-normalized amplitudes.

6.5.2 Denoising Network for ECGs

Our ECG denoising model is based on two key insights: first, generative models perform better when
additional information such as labels is incorporated during generation. Therefore, in addition to the
ECG and noise level, we input time T and categorical patient data P into the network. The second
insight is that the noise level varies with the diffusion step k, and we use the following reparameterization

104

(Karras et al., 2022)

Dθ0|k(x, υk, T ,P) = cskip(υk)x+ cout(υk) Fθ(x, υk, T ,P) .

where x is a 9 × 176 matrix, cskip(υk) = (υ2
k + σ2

data)−1σ2
data, cout(υk) = υkσdata(υ2

k + σ2
data)−1/2,

and σdata is the empirical standard deviation of qdata. For small υk, cskip(υk) ≈ 1 and cout(υk) ≈ 0,
thus Dθ0|k(x, υk, T ,P) ≈ x, which is expected since x is already a good reconstruction of the original
data. On the contrary, when υk is large, then cskip(υk) ≈ 0 and cout ≈ 1, thus Dθ0|k(x, υk, T ,P) relies
heavily on the network Fθ to provide a good reconstruction.

The initial layers of Fθ aggregate the corrupted state x, the standard deviation of the exploration
noise υk, the temporal information T , and the categorical patient information P into a single matrix
ex + eυk

+ eT + eP . We now discuss how each component is encoded. First, to mitigate the impact of
magnitude variability across different diffusion steps, x is rescaled by the normalization factor cin(υk) =
(υ2
k + σ2

data)−1/2. Subsequently, cin(υk)x is fed into a 1D convolutional layer with a 1-size kernel and c
channels, resulting in a c× 176 matrix ex. To incorporate the information of the noise and the time, we
use positional encoding Vaswani et al. (2017) defined for s, t ∈ [1 : c]× [1 : T] as

Enc(t)[s] =
{

sin(1000−(r/96)t) if ℓ = 2r ,
cos(1000−(r/96)t) if ℓ = 2r + 1 .

The noise operator is defined for s ∈ [1 : c] as eυk
[s] = Enc(log(υk)

4)[s], and the time operator is
defined for s, t ∈ [1 : c] × [1 : T] as eυk

[s] = Enc(t)[s]. Various factors, including age (A), sex
(S), and the preceding R-R interval (RR), which is linked to the inverse of the heart-rate, affect the
morphology Malik et al. (2013); Salama and Bett (2014); Ball et al. (2014). We normalize A and RR
as Ã = (A − 50)/50 and R̃R = (RR−400)/400. A one-hot encoding is applied to S to generate
S̃ ∈ {0, 1}2. The concatenated vector S̃, Ã, R̃R is fed into a two-layer dense network, yielding a c × 1
vector eP .

After aggregating ECG, distortion, temporality, and patient information, Fθ adopts a U-Net architec-
ture Ronneberger et al. (2015); Ho et al. (2020); Dhariwal and Nichol (2021). Each output from the
U-Net blocks undergoes a multi-head attention layer Vaswani et al. (2017), with the number of heads
equal to the original dimension divided by 64. The entire network Dθ0|k is trained to minimize eq. (6.3)
through stochastic gradient descent on the healthy training set, and the best model is selected using the
cross-validation set. For further details, refer to section E.3.

6.5.3 Evaluation of ECG Generation

We first evaluate the quality of the generated ECGs with the DDM trained as described in the previous
section. To do so, we generate the same number of ECGs as in the test set (2864) using the same 2864
features P = (A,S,RR). We propose two metrics to assess the quality of the synthetically generated
ECGs. These are: (1) a distance between the real and the generated ECG distribution, and (2) an
out-of-distribution (OOD) score quantifying how likely a given ECG is outside the training healthy
distribution. The Earth Mover’s Distance (EMD) Genevay et al. (2016) measures the dissimilarity
between the predicted and target distributions by calculating the minimal transport cost. The EMD is
calculated from the generated set to both the test set and the training set. To obtain comparable orders of
magnitude, the training set is divided into batches of the same size (2864). The transport cost is defined
as the L2-distance over concatenated ECGs with A,S,RR features to penalize the transport of an ECG
to ECGs with different A, S, and RR features. With this metric, we compare the DDM with the WGAN
model proposed in Adib et al. (2022). To ensure both models are comparable, we use the same training
set for both models: heartbeats conditioned with P = (A,S,RR). As the WGAN model was originally

105

Figure 6.2: EMD between generated ECG distribution and real ECG distribution. EMD vs. test (resp. train) in
dotted (resp. plain) line. EMD for DDM with different number of difffusion steps, in orange. DDM for WGAN
model in blue. EMD between test and train distributions in red. Error bars correspond to different training batches
of size 2864.

introduced for categorical conditioning, we adapted it to include scalar conditioning (RR) using two
fully connected layers as detailed in section E.9. We also use the EMD to assess the influence of the
number of diffusion stepsK. Figure 6.2 shows the EMD with respect to the test and training sets for both
the WGAN and DDM, with K varying in the interval [2, 150]. The EMD values show that few diffusion
steps are sufficient to generate an accurate predictive distribution, and the DDM outperforms the WGAN
in reproducing the real data distribution. The analysis in Section E.4 shows that using a more complex
architecture does not improve the results, and conditioning on A,S,RR leads to a smaller EMD.

To quantify how unlikely each generated ECG is with respect to the training distribution, we used
the OOD-score proposed by Ciosek et al. (2020). Their method involves using a randomly initialized
network, which remains unchanged throughout the process, to produce a “random prior” by associating
each training data point (images in the original paper, real or generated ECGs in our case) with a random
pattern. Subsequently, a second network is trained to learn this random prior distribution, meaning that
the output of the network for a training data point should be close (in terms of L2 distance) to the random
pattern from the first network. After training the second network, the OOD-score for an input data point
is the distance between the outputs of the two networks. The authors demonstrate the relevance of their
score for out-of-distribution data detection by training on four classes of the CIFAR dataset and verifying
that, at test time, the score effectively distinguishes test data with the same classes as the training data
from those with different classes. In our case, we adopt the same residual network architectures proposed
in Ciosek et al. (2020), but replace the 2D convolutions with 1D convolutions, as unidimensional residual
networks are known for their efficiency in ECG classification Ribeiro et al. (2020). We use 10 bootstraps
and train the corresponding networks for 100 epochs with the Adam optimizer (learning rate=0.001) on
healthy patients from the training set. The OOD-score boxplots and the resulting classification ROC
curve in figure 6.3 show that the OOD-scores of the generated ECGs are close to those of the test ECGs,
and that the scores for MI ECGs are significantly higher than those for the test and generated ECG.

6.5.4 ECG Denoising

We now consider the application of NC-MCGdiff to solve various problems. In all our experiments,
we do not perform additional fine-tuning; all our results are obtained solely by sampling the pre-trained

106

Figure 6.3: Out-of-distribution evaluation. Left. Box-plot of OOD-score for train, test, generated (Gen) and MI
heart beats. Right. ROC curves for classification between train/test/gen and MI based on OOD-score.

DDM model as follow: for a given observation y we perform algorithm 5 withNMLE = 10 (stops before
when convergence is reached), σ0 = 1, Nc = 100, K = 50, M = 50 (see section E.8) to estimate
σ∗. Then we generate 100 ECGs from X0|y, σ∗ (conditioning on P = A,S,RR is implicit) by running
Nc = 100 parallel SMC (algorithm 12 in section E.5) with σ∗, y, K = 50, M = 50 as input. We first
investigate the denoising of noisy ECG observations (I = [1 : L]× [1 : T]). In this experiment, all test
samples are corrupted with per-lead Gaussian noise with standard deviation sampled from an exponential
law σℓ ∼ exp(0.2). The randomness of σ mimics real-world scenarios where some electrodes may be
more corrupted than others. For each corrupted test ECG y, σ∗ is estimated using algorithm 5, and
Nc = 100 denoised samples are drawn from X0|y, σ∗. We compare NC-MCGdiff with a Denoising
Autoencoder (DAE) introduced for ECGs by Chiang et al. (2019), whose architecture we adapt to single
heartbeats as described in section E.9. We trained the DAE to denoise ECGs corrupted with per-lead
Gaussian noise with standard deviation sampled from an exponential law σℓ ∼ exp(0.2), using the Adam
optimizer. Figure 6.4 shows two examples of corrupted heartbeats denoised with NC-MCGdiff and the
DAE. To assess the reconstruction quality, we measure the R2-score between real and denoised ECGs.
NC-MCGdiff outperforms the DAE with an R2-score of 0.928 ± 0.002, whereas the DAE achieves a
score of 0.855 ± 0.003. We also verify the accuracy of the estimated parameter σ∗ by computing the
absolute total deviation between the real σ = σ1:Sy and the derived σ∗, resulting in 0.03± 0.001.

6.5.5 Missing Leads Reconstruction

We evaluate NC-MCGdiff for reconstructing a missing lead ℓ while observing the other leads (I = [1 :
ℓ−1]∪[ℓ+1 : L]×[1 : T]). In this experiment, for each test ECG, a precordial lead ℓ ∈ [4 : L] is randomly
removed; the reconstruction of missing leads aVL, aVR, or aVF is considered impractical because the
absence of these leads implies the absence of a limb electrode, which prevents the measurement of any
leads. Then, for each partial ECG y, complete beats are generated using NC-MCGdiff and with Dower
matrices Macfarlane et al. (2010)[Chapter 11], which is a classical method notably used for missing lead
reconstruction. Figure 6.5 shows three examples of reconstructed beats with both methods. To assess the
quality of the reconstruction, we compute the R2-score between the reconstructed and the ground-truth
missing leads. The results in table E.2 show that our approach outperforms reconstruction with Dower
matrices for all missing leads; the overallR2-score is 0.987± 0.003 for NC-MCGdiff and 0.804± 0.023
for Dower matrices. This experiment opens up numerous possibilities for applications, such as managing
errors in electrode placement and predicting complete ECGs from partial ECGs measured by devices
such as the Apple Watch.

107

Figure 6.4: Denoising of two corrupted signals with Gaussian noise using NC-MCGdiff and Denoising Auto-
Encoder (DAE).

Table 6.1: Comparative evaluation of NC-MCGdiff against existing approaches for ECG generation (Gen.),
denoising (Denois.), missing lead reconstruction (Recon.), anomaly detection (Anom.), with EMD for generated
vs. test distribution, R2 score between denoised (resp. reconstructed) and real ECG (resp. missing lead), AUC
for anomaly score.

task Gen. Denois. Recon. Anom.
Metric EMD R2 R2 AUC

NC-MCGdiff 21.26 0.928 0.987 0.83
WGAN 24.16 - - -
DAE - 0.855 - 0.72

Dower - - 0.804 -
AAE - 0.685 - 0.81
OOD - - - 0.75

6.5.6 Cardiac Anomaly Detection

In this section, we evaluate NC-MCGdiff for detecting cardiac abnormalities by addressing an inverse
problem as follows. Given an ECG x that may exhibit morphological anomalies, we sample a new ECG
x̂ from the posterior X0|y, σ∗, where y represents a partial observation of x with I = [4 : L]× [1 : T].
We condition on the augmented leads aVL, aVR, aVF since they are further from the heart and less likely
to be affected by localized anomalies than the precordial leads V1-V6. The 1−R2-score between x̂ and
x provides an anomaly score, and anomalies in the real ECG x can be highlighted by superimposing x̂
on x. We applied our methodology to detect MI, as illustrated in figure 6.6. To evaluate the accuracy
of our anomaly score, we compute the Area Under the Curve (AUC) for classifying control versus
myocardial infarction (MI) based on the anomaly score as shown in figure 6.7. Our method performs
better than a recent anomaly detection approach based on Adversarial AutoEncoder (AAE) Shan et al.
(2022), achieving AUC values of 0.84 and 0.82 for females and males, respectively, compared to 0.78
and 0.81.

108

Figure 6.5: Reconstruction of 3 partially observed ECG using NC-MCGdiff and Dower matrices.

Figure 6.6: Illustration of ECG anomaly detection using NC-MCGdiff in MI patients compared to control patients.

6.5.7 Application: Prediction of Corrected QT
In the previous sections, we have demonstrated that for several classical ECG applications, NC-MCGdiff
outperforms methods specifically designed for individual problems. To address these challenges, we
pre-train a diffusion model once on a dataset of healthy ECGs and utilize it as a prior for all experiments.
Table 6.1 provides a comparative summary with all the baselines mentioned in our experiments, also
detailed in section E.9.

In this section, we introduce a new application that, to our knowledge, has not been numerically tackled
before. The relationship between QT and heart rate (linked to the inverse of the RR) is well-documented
in the medical literature and has been expressed in several formulas Bazett (1997); Fridericia (1921);
Sagie et al. (1992). These formulas introduce coefficients called “corrected QT” denoted as QTc

0 and
QTc

1, which depend on the patient and are determined from ECGs measured during an exercise stress
test. Using NC-MCGdiff we propose a numerical approach to avoid the need for an exercise stress test.
Each test ECG is truncated to focus only on the QRS complex, i.e., we set I = [1 : L]× [1 : 70]. Then,
for RR values ranging from 0.6 s to 1.2 s, or equivalently for heart rates ranging from 43 to 100 beats

109

Figure 6.7: Left. Distribution of NC-MCGdiff anomaly score for control (red) and MI (blue) ECGs. Right. ROC
curve for classification between control and MI based on the anomaly score.

Figure 6.8: Example of T-wave prediction (blue) conditioned on Q-wave (red) for different value of RR.

per minute, we sample x from the conditional distribution X0|y, σ∗,RR as illustrated in figure 6.8. We
regress the intercept QTc

0 and slope QTc
1 of the Fridericia formula Fridericia (1921), which states that

QT = QTc
0 + QTc

1
3√RR, from the generated curves. As shown in figure 6.9, we observe a consistent

trend between the observed and regressed curves for five patients. Additionally, table E.3 indicates a
high R2-score of 0.98 between observed and expected QT curves.

This experiment illustrates the importance, when generating synthetic ECGs for a given patient, of
conditioning on specific observations unique to that patient, such as their QRS complex and RR intervals,
to capture their individual physiological differences compared to other patients. While the relationship
between QT and RR has been observed in clinical settings, our model reproduces it without explicitly
enforcing it during training or sampling. Furthermore, this experiment suggests that our model reliably
predicts the T wave (ventricular repolarization) given the QRS (ventricular depolarization), opening up
new applications such as the diagnosis of long QT syndrome or other diseases that specifically alter
repolarization without altering the QRS.

110

Figure 6.9: QT as a function of RR for 5 patients. QT measured in 100 generated samples (resp. regressed with
Fridericia formula) displayed in dots with 95%-CLT bars (resp. curve).

6.6 Conclusion
In this paper, we described a flexible method that addresses various challenges in ECG analysis, including
noise reduction, missing data reconstruction, and anomaly detection, all formulated as inverse linear
problems. Our method leverages a DDM, pre-trained once to generate ECGs, as a prior for sampling
solutions to inverse problems with SMC. We extended existing methods for solving inverse problems
with a DDM prior, for cases with unknown measurement noise levels. The effectiveness of our approach
is demonstrated against baselines through several evaluation metrics specifically designed for ECGs.
Additionally, we introduced an innovative application of our method: generating expected ECGs when
heart rate increases, offering an alternative to the exercise stress test. This contribution extends the utility
of our approach beyond conventional ECG analysis tasks.

Besides, our approach opens up new applications such as completing ECGs measured by devices like the
Apple Watch and diagnosing long QT syndrome or other diseases that specifically alter repolarization.
In this paper, the DDM was trained only on healthy ECGs. Furthermore, this DDM could be replaced
by a model trained on a dataset containing ECGs presenting pathologies, conditioned on the specific
pathologies. A concrete application example would be training the model with ECGs from patients
with left bundle branch block condition to detect ischemia in these patients for whom the criteria of ST
segment elevation or depression are not valid.

6.7 Impact Statements
This paper presents work whose goal is to advance the field of Machine Learning. There are many poten-
tial societal consequences of our work, none which we feel must be specifically highlighted here.

111

Appendices

113

Appendix A

Appendix of Chapter 2

A.1 Proofs

A.1.1 i-SIR Algorithm

We analyze a slightly modified version of the i-SIR algorithm, with an extra randomization of the state
position. The k-th iteration is defined as follows. Given a state Yk ∈ X,

(i) draw Ik+1 ∈ {1, . . . , N} uniformly at random and set XIk+1
k+1 = Yk;

(ii) draw X
1:N\{Ik+1}
k+1 independently from the proposal distribution λ;

(iii) compute, for i ∈ {1, . . . , N}, the normalized importance weights

ωiN,k+1 = w(Xi
k+1)/

N∑
ℓ=1

w(Xℓ
k+1);

(iv) select Yk+1 from the set X1:N
k+1 by choosing Xi

k+1 with probability ωiN,k+1.

Thus, compared to the simplified i-SIR algorithm given in the introduction, the state is inserted uniformly
at random into the list of candidates instead of being inserted at the first position. Of course, this change
has no impact as long as we are interested in integrating functions that are permutation invariant with
respect to candidates, which is the case throughout our work. Still, this randomization makes the analysis
much more transparent.

A.1.2 Proof of Theorem 2

We write

φN (d(y, x1:N)) = 1
N

N∑
i=1

π(dy)δy(dxi)
∏
j ̸=i

λ(dxj) (A.1)

= 1
Nλ(w)

N∑
i=1

w(xi)λ(dxi)δxi(dy)
∏
j ̸=i

λ(dxj) (A.2)

= 1
λ(w)

N∏
j=1

λ(dxj)ΓN1X(x1:N)
N∑
i=1

w(xi)∑N
ℓ=1w(xℓ)

δxi(dy), (A.3)

where we recognize, and after having recalled definitions (2.5) and (2.6) of πN and ΠN , respectively,
the right-hand side as πN (dx1:N)ΠN (x1:N ,dy). This completes the proof.

115

A.1.3 Proof of Theorem 3

Using (2.6) we get∫
πN (dx1:N)ΠNf(x1:N) =

∫ 1
Nλ(w)

N∑
ℓ=1

w(xℓ)ΠNf(x1:N)
N∏
j=1

λ(dxj) (A.4)

= 1
Nλ(w)

∫ N∑
i=1

w(xi)f(xi)
N∏
j=1

λ(dxj) = π(f), (A.5)

and the proof is complete.

A.1.4 Proof of Theorem 6

Proof. We first check that φN is an invariant distribution for PN . For every A ∈ X�(N+1), using that
π is the marginal of φN with respect to the state and applying Theorem 2 yields∫

φN (d(y, x1:N))PN (y, x1:N , A) =
∫
π(dy)

∫∫
ΛN (y,dx̄1:N)ΠN (x̄1:N ,dȳ)1A(ȳ, x̄1:N) (A.6)

=
∫∫∫

πN (dx̄1:N)ΠN (x̄1:N , dy)ΠN (x̄1:N , dȳ)1A(ȳ, x̄1:N)

(A.7)
= φN (A), (A.8)

which establishes invariance. We now show that PN is reversible with respect to π. For this purpose, let
g and h be two nonnegative measurable functions and write, using Theorem 2 twice,∫∫

π(dy)PN (y,dȳ)g(y)h(ȳ) =
∫
π(dy)ΛN (y,dx1:N)ΠN (x1:N ,dȳ)g(y)h(ȳ) (A.9)

=
∫
πN (dx1:N)ΠN (x1:N ,dy)ΠN (x1:N ,dȳ)g(y)h(ȳ) (A.10)

=
∫
π(dȳ)ΛN (ȳ,dx1:N)ΠN (x1:N ,dy)g(y)h(ȳ) (A.11)

=
∫∫

π(dȳ)PN (ȳ,dy)g(y)h(ȳ). (A.12)

A.1.5 Proof of Theorem 7

For completeness, we repeat the arguments in Lindsten et al. (2015); Andrieu et al. (2018). Under A1,
we have, for (x,A) ∈ X×X ,

PN (x,A) =
∫

δx(dx1)
N∑
i=1

w(xi)∑N
j=1w(xj)

1A(xi)
N∏
j=2

λ(dxj)

=
∫

w(x)
w(x) +

∑N
j=2w(xj)

1A(x)
N∏
j=2

λ(dxj) +
∫ N∑

i=2

w(xi)
w(x) +

∑N
j=2w(xj)

1A(xi)
N∏
j=2

λ(dxj)

≥
N∑
i=2

∫
w(xi)

w(x) + w(xi) +
∑N
j=2,j ̸=iw(xj)

1A(xi)
N∏
j=2

λ(dxj)

≥
N∑
i=2

∫
π(dxi)1A(xi)

∫
λ(w)

w(x) + w(xi) +
∑N
j=2,j ̸=iw(xj)

N∏
j=2,j ̸=i

λ(dxj).

116

Finally, since the function f : z 7→ (z+a)−1 is convex onR+ anda > 0, we get for i ∈ {2, . . . , N},∫
λ(w)

w(x) + w(xi) +
∑N
j=2,j ̸=iw(xj)

N∏
j=2,j ̸=i

λ(dxj) (A.13)

≥ λ(w)∫
w(x) + w(xi) +

∑N
j=2,j ̸=iw(xj)

∏N
j=2,j ̸=i λ(dxj)

(A.14)

≥ 1
w(x)/λ(w) + w(xi)/λ(w) +N − 2 ≥

1
2ω +N − 2 . (A.15)

We finally obtain the inequality

PN (x,A) ≥ π(A)× N − 1
2ω +N − 2 = ϵNπ(A). (A.16)

This means that the whole space X is (1, ϵNπ)-small (see (Douc et al., 2018, Definition 9.3.5)). Since
PN (x, ·) and π are probability measures, (A.16) implies

∥PN (x, ·)− π∥TV = sup
A∈X
|PN (x,A)− π(A)| ≤ 1− ϵN = κN . (A.17)

Now the statement follows from (Douc et al., 2018, Theorem 18.2.4) applied with m = 1.

A.1.6 Proof of Theorem 4

Proof of (ii). Using the identity (a + b)2 ≤ (1 + ϵ2)a2 + (1 + ϵ−2)b2 we obtain the decomposition
{ΠNf(X1:N

k)− π(f)}2 ≤ (1 + (N − 1)−1/2)I(1) + (1 + (N − 1)1/2)I(2), with

I(1) = {ΠNf(X1:N
k)− aN (Yk−1)/bN (Yk−1)}2, (A.18)

I(2) = {aN (Yk−1)/bN (Yk−1)− π(f)}2, (A.19)

where aN (Yk−1) = ΛNΓNf(Yk−1) and bN (Yk−1) = ΛNΓN1X(Yk−1).
Using the identity a/b− c/d = (1/d)[(a/b)(d− b)− (c− a)], we obtain

ΠNf(X1:N
k)− aN (Yk−1)/bN (Yk−1)

= bN (Yk−1)−1
[
ΠNf(X1:N

k)(bN (Yk−1)− ΓN1X(X1:N
k))− (aN (Yk−1)− ΓNf(X1:N

k))
]
. (A.20)

Therefore, using the trivial bound (a+ b)2 ≤ 2(a2 + b2), we get

I(1) ≤ 2
bN (Yk−1)2 [ΠNf(X1:N

k)2{ΓN1X(X1:N
k)− bN (Yk−1)}2 + {ΓNf(X1:N

k)− aN (Yk−1)}2].
(A.21)

Since ΠNf(X1:N
k)2 ≤ 1, Pξ-a.s., and bN (y) ≥ (N − 1)/Nλ(w), it holds, Pξ-a.s.,

I(1) ≤ 2N2

(N − 1)2λ(w)2

[
{ΓN1X(X1:N

k)− bN (Yk−1)}2 + {ΓNf(X1:N
k)− aN (Yk−1)}2

]
. (A.22)

Therefore, using Lemma 8,

Eξ[{ΠNf(X1:N
k)− aN (Yk−1)/bN (Yk−1)}2] (A.23)

= Eξ
[
Eξ
[
{ΠNf(X1:N

k)− aN (Yk−1)/bN (Yk−1)}2
∣∣∣Yk−1

]]
(A.24)

≤ 2N2

(N − 1)2λ(w)2

[
(N − 1)/N2λ({w − λ(w)}2) + (N − 1)/N2λ({wf − λ(wf)}2)

]
(A.25)

≤ 4(N − 1)−1κ[π, λ]. (A.26)

We turn to I(2) and note that (2.20) implies that I(2) ≤ 4N−2(1 + ω)2, which completes the proof.

117

Proof of (iii). Note that

I(3) = Eξ
[
{ΠNf(X1:N

k)− π(f)}{ΠNf(X1:N
k+ℓ)− π(f)}

]
(A.27)

= Eξ[{ΠNf(X1:N
k)− π(f)}Eξ

[
ΠNf(X1:N

k+ℓ)− π(f)
∣∣∣Yk+ℓ−1

]
]. (A.28)

As Eξ
[
ΠNf(X1:N

k+ℓ)
∣∣∣Yk+ℓ−1

]
= ΦN (Yk+ℓ−1) Pξ-a.s., it holds that

I(3) = Eξ[{ΠNf(X1:N
k)− π(f)}{ΦN (Yk+ℓ−1)− π(f)}] (A.29)

= Eξ[{ΠNf(X1:N
k)− π(f)}{Eξ [ΦN (Yk+ℓ−1) |Yk]− π(f)}]. (A.30)

By the Markov property,

Eξ [ΦN (Yk+ℓ−1) |Yk] = Pℓ−1
N ΦN (Yk) = δYk

Pℓ−1
N ΦN , Pξ-a.s., (A.31)

which, combined with (2.14), implies that

∥Pℓ−1
N ΦN − π(f)∥∞ ≤ ςbias(N − 1)−1κℓ−1

N . (A.32)

Combining the results above, we finally establish that

|I(3)| ≤ ςbias(N − 1)−1κℓ−1
N Eξ[{ΠNf(X1:N

k)− π(f)}2]1/2 (A.33)

≤ ςbias(N − 1)−1κℓ−1
N

(2∑
i=0

ςmse
i (N − 1)−1−i/2

)1/2

. (A.34)

A.1.7 Proof of Theorem 5

We first consider the bias term, which can be bounded according to

∣∣∣Eξ[Π(K0,K),N (f)]− π(f)
∣∣∣ ≤ (K −K0)−1

K∑
ℓ=K0+1

∣∣∣Eξ[ΠNf(X1:N
ℓ)]− π(f)

∣∣∣ (A.35)

≤ (K −K0)−1(N − 1)−1ςbias
K∑

ℓ=K0+1
κℓ−1
N . (A.36)

Thus, the claimed bias bound can be established by noting that

K∑
ℓ=K0+1

κℓ−1
N ≤ κK0

N

1− κN
≤ 4τmix,N (1/4)K0/τmix,N

3 . (A.37)

We now turn to the MSE, and make the decomposition

Eξ[{Π(K0,K),N (f)− π(f)}2] ≤ (K −K0)−2

 K∑
ℓ=K0+1

Eξ[ΠNf(X1:N
ℓ)]− π(f)

2

(A.38)

+2
K∑

ℓ=K0+1

K∑
j=ℓ+1

Eξ[{ΠNf(X1:N
ℓ)− π(f)}{ΠNf(X1:N

j)− π(f)}]. (A.39)

118

Using the MSE bound in Theorem 38, we obtain that

K∑
ℓ=K0+1

Eξ[{ΠNf(X1:N
ℓ)− π(f)}2] ≤ (K −K0)(N − 1)−1

2∑
i=0

ςmse
i (N − 1)−i/2. (A.40)

In addition, the covariance bound of Theorem 38 yields

K∑
ℓ=K0+1

K∑
j=ℓ+1

Eξ[{ΠNf(X1:N
ℓ)− π(f)}{ΠNf(X1:N

j)− π(f)}]

≤
2∑
i=0

ςcov
i (N − 1)−(3−i/2)/2

 K∑
ℓ=K0+1

K∑
j=ℓ+1

κ
(j−ℓ)−1
N

 . (A.41)

As
∑K
ℓ=K0+1

∑K
j=ℓ+1 κ

(j−ℓ)−1
N ≤ (K −K0)(4/3)τmix,N , we may write

Eξ[(Π(K0,K),N (f)− π(f))2] ≤ ((K −K0)(N − 1))−1
(2∑
i=0

ςmse
i (N − 1)−i/2

)
(A.42)

+(8/3)(K −K0)−1(N − 1)−3/2
(2∑
i=0

ςcov
i (N − 1)−i/4

)
, (A.43)

and the MSE bound may now be established by noting that (K −K0)(N − 1) = υM .

Establishing the high-probability bound requires more complex derivations. More precisely, we will
apply the decomposition

Π(K0,K),N (f)− π(f) = (K −K0)−1
K∑

k=K0+1
ΠNf(X1:N

k)− ΦN (Yk−1)

+ (K −K0)−1
K−1∑

k=K0+1
ΦN (Yk−1)− π(ΦN), (A.44)

where we used that π(f) = π(ΦN). Therefore, for every t ≥ 0 it holds that

Pξ(|Π(K0,K),N (f)− π(f)| ≥ t) ≤ Pξ

(K −K0)−1

∣∣∣∣∣∣
K∑

k=K0+1
ΠNf(X1:N

k)− ΦN (Yk−1)

∣∣∣∣∣∣ ≥ t/2

+ Pξ

(K −K0)−1

∣∣∣∣∣∣
K−1∑

k=K0+1
ΦN (Yk−1)− π(ΦN)

∣∣∣∣∣∣ ≥ t/2
 . (A.45)

We will show that for all t > 0, and for some absolute constants ζ(1) and ζ(2),

I(1) = Pξ

(K −K0)−1

∣∣∣∣∣∣
K∑

k=K0+1
ΠNf(X1:N

k)− ΦN (Yk−1)

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp(−t2υM/(4ζ(1))),

(A.46)

I(2) = Pξ

(K −K0)−1

∣∣∣∣∣∣
K−1∑

k=K0+1
ΦN (Yk−1)− π(ΦN)

∣∣∣∣∣∣ ≥ t
 (A.47)

≤ 2 exp(−t2ζ(2)(K −K0)(N − 1)2/τmix,N).
(A.48)

119

We first consider I(1) and note that

I(1) = Eξ

Pξ
(K −K0)−1

∣∣∣∣∣∣
K∑

k=K0+1
ΠNf(X1:N

k)− ΦN (Yk−1)

∣∣∣∣∣∣ ≥ t | YK0:K−1

 . (A.49)

By Theorem 6, the random elements (X1:N
k)Kk=K0+1 are independent conditionally to (Yk)K−1

k=K0
. Thus,

using the generalized Hoeffding inequality (see (Vershynin, 2018, Theorem 2.6.2) or (Wainwright, 2019,
Proposition 2.1)) we get, with ∆N,k = ΠNf(X1:N

k)− ΦN (Yk−1), that, Pξ-a.s.,

Pξ

(K −K0)−1

∣∣∣∣∣∣
K∑

k=K0+1
∆N,k

∣∣∣∣∣∣ ≥ t | YK0:K−1

 ≤ 2 exp
(
− t2(K −K0)2

4
∑K
k=K0+1 ∥∆N,k∥2ψ2,Yk

)
, (A.50)

where ψ2 : x 7→ exp(x2)− 1 and

∥∆N,k∥ψ2,Yk−1 = inf {λ > 0 : Eξ [ψ2(|∆N,k|/λ) |Yk−1] ≤ 1} .

In order to bound ∥∆N,k∥ψ2,Yk−1 we use the decomposition ∆N,k = ∆(1)
N,k + ∆(2)

N,k, where

∆(1)
N,k = ΓNf(X1:N

k)
ΓN1X(X1:N

k)
− aN (Yk−1)
bN (Yk−1) , (A.51)

∆(2)
N,k = aN (Yk−1)

bN (Yk−1) − ΦN (Yk−1), (A.52)

combined with Lemma 36 with ϕ = χ = ψ2 and (Vershynin, 2018, Proposition 2.6.1). By (2.18) and by
(Vershynin, 2018, Equation 2.17) it holds that, Pξ-a.s.,

∥∆(2)
N,k∥ψ2,Yk−1 ≤ 2(log 2)−1/2(N − 1)−1κ[λ, π]. (A.53)

Using Lemma 36 with ϕ = χ = ψ2 and the fact that bN (y) ≥ (1− 1/N)λ(w) we obtain, Pξ-a.s.,

∥∆(1)
N,k∥ψ2,Yk−1

≤ 2
(1− 1/N)λ(w)

(
∥ΓNf(X1:N

k)− aN (Yk−1)∥ψ2,Yk−1 + 2∥ΓN1X(X1:N
k)− bN (Yk−1)∥ψ2,Yk−1

)
.

(A.54)

Furthermore, using (Vershynin, 2018, Proposition 2.6.1, Eq 2.17) we get, Pξ-a.s.,

∥ΓNf(X1:N
k−1)− aN (Yk−1)∥2ψ2,Yk−1 (A.55)

≤ (64e/ log 2)N−1
∥∥∥w(X1

k)f(X1
k)− Eξ

[
w(X1

k)f(X1
k)
∣∣∣Yk−1

]∥∥∥2

ψ2,Yk−1
, (A.56)

≤ (256e/(log 2)2)N−1∥w∥2∞. (A.57)

The same bound applies to ∥ΓN1X(X1:N
k)− bN (Yk−1)∥2ψ2,Yk−1

, and we may write

∥∆(1)
N,k∥ψ2,Yk−1 ≤ 96e1/2(log 2)−1(N − 1)−1/2ω. (A.58)

We can now finalize the bound on I(1) by writing

∥∆N,k∥2ψ2,Yk−1 ≤ 2(∥∆(1)
N,k∥

2
ψ2,Yk−1 + ∥∆(2)

N,k∥
2
ψ2,Yk−1) (A.59)

≤ (N − 1)−1(ζ(1,1)ω2 + ζ(1,2)κ[λ, π]2(N − 1)−1), (A.60)

120

where ζ(1,1) = 18432e(log 2)−2 and ζ(1,2) = 8(log 2)−1 are universal constants, which implies
that

∥∆N,k∥2ψ2,Yk−1 ≤ ζ
(1)(N − 1)−1, (A.61)

with ζ(1) = 1.1 · 105ω2. This finally yields that I(1) ≤ 2 exp(−t2υM/4ζ(1)).
We treat I(2) using Lemma 39 with gi = ΦN (YK0+i−1) − π(ΦN). As ∥gi∥∞ ≤ osc(ΦN) ≤ (N −
1)−1ςbias, we obtain

I(2) ≤ 2 exp
(
−t2ζ(2)(K −K0)(N − 1)2/τmix,N

)
, (A.62)

where ζ(2) = 2/(3ςbias)2. Finally, we obtain

Pξ(|Π(K0,K),N (f)− π(f)| ≥ t)

≤ 2 exp
(
−t2υM/4ζ(1)

) [
1 + exp

(
−t2υM{ζ(2)(N − 1)/τmix,N − (4ζI)−1}

)]
. (A.63)

We conclude by noting that for every δ ∈ (0, 1) and N − 1 ≥ τmix,N (4ζ(1)ζ(2))−1 it holds that

Pξ(|Π(K0,K),N (f)− π(f)| ≥ t) ≤ 4 exp
(
−t2υM/4ζ(1)

)
≤ δ (A.64)

for all t ≥ 2ζ1/2
I (υM)−1/2 log(4/δ)1/2. Letting ςhpd = 2ζ1/2

I concludes the proof.

A.1.8 High-probability inequality for SNIS

Theorem 35. Assume that ω = ∥w∥∞/λ(w) <∞. For all bounded measurable functions f on (X,X)
such that ∥f∥∞ ≤ 1, it holds that for every M ∈ N∗ and δ ∈ (0, 1),

|π̂M (f)− π(f)| ≤ 12ω(M log 2)−1/2 log(2/δ)1/2 (A.65)

with probability larger than 1− δ.

Proof. Let αM = M−1∑M
i=1w(Xi)f(Xi), βM = M−1∑M

i=1w(Xi), a = E[αM] = λ(wf), and
b = E[βM] = λ(w). Note that π̂M (f) = αM/βM and π(f) = a/b. Using Lemma 36 with ϕ and χ
equal to the mapping x 7→ exp(x2)− 1 we obtain that

∥π̂M (f)− π(f)∥ψ2 ≤ 2λ(w)−1 (∥αM − a∥ψ2 + 2∥βM − b∥ψ2) . (A.66)

Moreover, using (Vershynin, 2018, Eq 2.17) yields, Pξ-a.s.,

∥αM − a∥2ψ2 ≤M
−1∥w(Xi)f(Xi)− λ(wf)∥2ψ2 ≤ 4(M log 2)−1∥w∥2∞. (A.67)

In the same way, ∥βM − b∥2ψ2
≤ 4(M log 2)−1∥w∥2∞. Therefore, we may conclude that

∥π̂M (f)− π(f)∥2ψ2 ≤ (12ω)2(M log 2)−1. (A.68)

Combining the previous bound with (Vershynin, 2018, Proposition 2.5.2) provides

P(|π̂M (f)− π(f)| ≥ t) ≤ 2 exp(−t2ζsnisM), (A.69)

where ζsnis = (12ω)−2 log 2. The high-probability inequality of the theorem follows directly.

121

A.2 Moments and high-probability bounds for ratio statistics

Let (Ui, Vi)i∈{1,...,n} be (possibly dependent) random variables defined on some probability space
(Ω,F ,P). Assume that Ui ≥ 0 P-a.s. Moreover, let αn = n−1∑n

i=1 UiVi, βn = n−1∑n
i=1 Ui,

and ρn = αn/βn as well as a = E[αn], b = E[βn], and r = a/b.

A continuous, even, convex function ϕ : R+ → [0,+∞] is a Young function if ϕ is monotonically
increasing for x > 0, ϕ(0) = 0, limx→∞ ϕ(x)/x =∞, and limx→0+ ϕ(x)/x = 0. We denote by ϕ∗ the
Fenchel-Legendre conjugate of ϕ. Let X be a random variable and ϕ a Young function. Then the Orlicz
norm of X is

∥X∥ϕ = inf {λ > 0 : E [ϕ (|X|/λ)] ≤ 1} , (A.70)

with the convention that inf ∅ = ∞. The Orlicz space Lϕ(Ω) of random variables is the family of
equivalence classes of random variables X such that ∥X∥ϕ < ∞. Here Lϕ(Ω) is a Banach space. If
ϕp(x) = |x|p for p ≥ 1, then Lϕ(Ω) = Lp(Ω) and we denote ∥ · ∥p = ∥ · ∥ϕp . If X ∈ Lϕ(Ω), then, for
every x > 0,

P(|X| ≥ x) ≤ 1/ϕ(x/∥X∥ϕ) and ∥1{|X|≥x}∥ϕ = 1/ϕ−1(1/P(|X| ≥ x)).

Lemma 36. Let ϕ and χ be Young functions. If maxi ∥Vi∥∞ ≤ c|r|, then

∥ρn − r∥ϕ/|r| ≤ 2∥αn − a∥ϕ/b+ 2∥βn − b∥ϕ/b+ c/{(ϕ−1 ◦ χ)(b/2∥(βn − b)−∥χ)} . (A.71)

Proof. We decompose the computation in two parts: first, when βn > b/2, we have

|ρn − r| =
∣∣∣∣αn − aβn

+ a

(1
βn
− 1
b

)∣∣∣∣ ≤ |αn − a|b/2 + |a||βn − b|(b/2)b = 2|αn − a|
b

+ 2|r||βn − b|
b

.

Then, when βn ≤ b/2,

|ρn − r| ≤ |ρn|+ |r| ≤ |ρn|+
2|r||βn − b|

b
≤ max

i
|Vi|+

2|r||βn − b|
b

, (A.72)

where the second inequality follows from |βn − b| ≥ b/2. Combining the two previous inequalities
yields

|ρn − r| ≤
2|αn − a|

b
+ 2|r||βn − b|

b
+ max

i
|Vi|1{βn≤b/2}. (A.73)

Recall that if |X| ≤ |Y | P-a.s., then ∥X∥ϕ ≤ ∥Y ∥ϕ; hence, we may proceed like

∥ρn − r∥ϕ ≤
∥∥∥∥2|αn − a|

b
+ 2r|βn − b|

b
+ max

i
|Vi|1{βn≤b/2}

∥∥∥∥
ϕ

(A.74)

≤ 2∥αn − a∥ϕ
b

+ 2|r|∥βn − b∥ϕ
b

+ c|r|∥1{βn≤b/2}∥ϕ (A.75)

= 2∥αn − a∥ϕ
b

+ 2|r|∥βn − b∥ϕ
b

+ c|r|/ϕ−1 (1/P(βn ≤ b/2)) . (A.76)

Finally, we obtain the desired result by noting that for any Young function χ, P(βn ≤ b/2) = P(|(βn −
b)−| ≥ b/2) ≤ 1/χ(b/2∥(βn − b)−∥χ).

Theorem 37. Let p ≥ 1. If maxi ∥Vi∥∞ ≤ c|r|, then

∥ρn − r∥p
|r|

≤ 2∥αn − a∥p
b

+ 2(1 + c)∥βn − b∥p
b

. (A.77)

122

Proof. Apply Lemma 36 with χ(x) = ϕ(x) = xp.

Theorem 38. If |αn/βn| ≤ 1 P-a.s., then

|E[ρn]− r| ≤ (2b2)−1{3E[(βn − b)2] + E[(αn − a)2]}. (A.78)

Proof. Using the identity

αn

βn
− a

b
= αn

βn

(b− βn)2

b2 + (αn − a)(b− βn)
b2 + a(b− βn)

b2 + αn − a
b

, (A.79)

yields

E[ρn]− r = E
[
αn

βn

(b− βn)2

b2

]
+ E[(αn − a)(b− βn)]

b2 ,

which completes the proof.

We conclude with a lemma that gives the concentration of a uniformly ergodic Markov chain. We think
that this Lemma is of independent interest, and we give it under general conditions.

Lemma 39. Let (Z,Z) be a state-space and Q a Markov kernel on (Z,Z) which is uniformly ergodic
with mixing time tmix and stationary distribution π. Let (gi)ni=1 be a family of Rd-valued measurable
functions on Z such that ∥g∥∞ = maxi∈{1,...,n} ∥gi∥∞ <∞ and π(gi) = 0 for all i ∈ {1, . . . , n}. Then
for every initial probability ξ on (Z,Z), n ∈ N, and t ≥ 0,

Pξ

(∥∥∥∥∥
n∑
i=1

gi(Zi)
∥∥∥∥∥ ≥ t

)
≤ 2 exp

(
−2t2

u2
n

)
, (A.80)

where un = 3∥g∥∞
√
ntmix.

Proof. The function φ(x1:N
1 , . . . , x1:N

n) = ∥
∑n
i=1 gi(x1:N

i)∥ on Zn satisfies the bounded differences
property. Applying (Paulin, 2015, Corollary 2.10), we get, for t ≥ Eξ[∥

∑n
i=1 gi(Zi)∥],

Pξ

(∥∥∥∥∥
n∑
i=1

gi(Zi)
∥∥∥∥∥ ≥ t

)
≤ exp

{
−2(t− Eξ[∥

∑n
i=1 gi(Zi)∥])2

9n∥g∥2∞tmix

}
. (A.81)

It remains to bound Eξ [∥
∑n
i=1 gi(Zi)∥] from above. For this purpose, note that

Eξ

∥∥∥∥∥
n∑
i=1

gi(Zi)
∥∥∥∥∥

2
 =

n∑
i=1

Eξ
[
∥gi(Zi)∥2

]
+ 2

n−1∑
k=1

n−k∑
ℓ=1

Eξ[gk(Zk)⊺gk+ℓ(Zk+ℓ)], (A.82)

where, using that π(gk+ℓ) = 0,

∣∣Eξ[gk(Zk)⊺gk+ℓ(Zk+ℓ)]
∣∣ =

∣∣∣∣∫ gk(z)⊺
(
Qℓ gk+ℓ(z)− π(gk+ℓ)

)
ξQk(dz)

∣∣∣∣ ≤ ∥g∥2∞(1/4)⌈ℓ/tmix⌉,

(A.83)

which implies that

n−1∑
k=1

n−k∑
ℓ=1
|Eξ[gk(Zk)⊺gk+ℓ(Zk+ℓ)]| ≤

n−1∑
k=1
∥g∥2∞(1/4)⌈ℓ/tmix⌉ ≤ (4/3)∥g∥2∞tmixn. (A.84)

123

Combining the bounds above, we obtain the upper bound

Eξ

[∥∥∥∥∥
n∑
i=1

gi(Zi)
∥∥∥∥∥
]
≤

Eξ
∥∥∥∥∥

n∑
i=1

gi(Zi)
∥∥∥∥∥

2
1/2

≤ 2
√
n∥g∥∞

√
tmix

not.= vn. (A.85)

By plugging this result into (A.80), we obtain that

Pξ

(∥∥∥∥∥
n∑
i=1

gi(Zi)
∥∥∥∥∥ ≥ t

)
≤

1, t < vn,

exp
(
−2(t−vn)2

9v2
n

)
, t ≥ vn.

(A.86)

Now, since the right-hand side of (A.86) is, for every t ≥ 0, upper bounded by 2 exp(−2t2/(9v2
n)), the

statement of the lemma follows.

A.3 Experiments

A.3.1 Gaussian Mixture

Bias MSE trade-off: We display in Figures A.1a and A.1b the bias and the MSE of the BR-SNIS
estimators for the same configuration as in Figure 2.2 but with k0 = ⌊0.625kmax⌋. We observe 3 times
less bias than the SNIS estimators but only with a 10% increase of the MSE for the N = 129 setting.
This can be also seen in Figure A.1c, where we show the ratio between BR-SNIS and SNIS for bias and
MSE with N = 129.

129 513 SNIS

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

(a) Bias

129 513 SNIS
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

(b) MSE

0 25 50 75 100 125

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 ratio Bias
ratio MSE

(c) Ratios as k0

Figure A.1: Comparison between SNIS and BR-SNIS for the same budget. In each boxplot the dotted
line represents the mean value of the samples. In Figure A.1c we display the ratio between BR-SNIS and
SNIS for bias and MSE with N = 129.

Parameters Gaussian mixture: The π in Section 2.3 is a Mixture of two Gaussians in dimension 7
with mean vectors µ1 = (1, . . . , 1)⊺ and µ2 = (−2, 0, . . . , 0)⊺ and covariance matrices Σ1 = d−1I and
Σ2 = d−1I, where p = 1/3 and I is the identity matrix In this setting, the quantities κ[π, λ] and ω can
be estimated by Monte Carlo and Gradient ascent respectively. Their values are approximately 7 · 102

and 1 · 104, respectively.

The sets A and B used to define the function f are the following:

A := [−2, 6]× [−1, 1]6, B := [0.75, 1.25]× [1, 2]× [−0.1, 0.1]5. (A.87)

124

We used this example to illustrate numerically the bounds in Theorems 4 and 5, where each expectation
was calculated by Monte Carlo using 2 · 104 samples. We displayed in each figure the equivalent
SNIS estimation in a green dashed line. For all the bias related bounds(Theorem 4(i) in Figure A.2a,
Theorem 5(i) in Figure A.2c), we fixed a total budget of M = 6 · 103. For Figure A.2a we added a fit of
the type y = exp(ak + b) to illustrate the exponential decay w.r.t. k.

We then increased the budget to M = 8 · 104 for the MSE and covariance bounds, in order to fully
observe the stabilisation of the MSE in Figure A.2b for all the minibatch sizes N . For the true value of
π(f) needed for calculating the MSE, we use an estimation obtained by Monte Carlo (sampling directly
from π) with 4 · 107 samples. In Figure A.2d we added dashed lines with the theoretical value of the
MSEis

υM with the same color as υ.

100 101 102
K

0.00

0.05

0.10

0.15

0.20

0.25 SNIS
N = 8
N = 32
N = 128
N = 512
N = 2048

(a) Bias

100 101 102 103 104
K

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

SNIS
N = 8
N = 32
N = 128
N = 512
N = 2048

(b) MSE

101 102
K0

0.00

0.01

0.02

0.03

0.04

SNIS
 = 0.2
 = 0.4
 = 0.6
 = 0.8

(c) Rolling bias

101 102 103
M

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
SNIS
 = 0.2
 = 0.4
 = 0.6
 = 0.8

(d) Rolling MSE

Figure A.2: Visualization of the theoretical bounds from Theorems 4 and 5.

Comparison with zero bias SNIS methods: There exists estimators based on SNIS that have no bias,
such as the estimator proposed in Middleton et al. (2019) and refered to as Unbiased-PIMH . One of the
main differences between such estimator and BR-SNIS is that BR-SNIS works under a pre-established
budget of samples, whereas in Unbiased-PIMH the number of samples used to produce an estimate varies
due to the accept-reject procedure. Even though the two estimators have different goals, it can be of
interest to compare both of them in the case where there is a restriction in the total number of samples
available.

We proceed to a fixed-budget (M) comparison between BR-SNIS and the "Rao Blackwellized" version of
the algorithm proposed at Middleton et al. (2019) in the Gaussian Mixture example. In order to do so, it’s
necessary to impose the fixed-budget constraint to the Unbiased-PIMH estimator. A single iteration of the
estimator from Unbiased-PIMH with batch-size N needs rN samples where r ∈ N is a random number
satisfying r ≥ 2. Therefore, there are two ways of applying the constraint to Unbiased-PIMH :

• Soft: For a given N , generate estimations using Unbiased-PIMH until the number of samples is
larger than M and keep the last estimation. Therefore, all the estimators from Unbiased-PIMH
will have used at leastM samples. All the estimations generated are averaged to generate a single
estimate.

• Hard: For a given N , generate estimations using Unbiased-PIMH until the number of total
samples used is larger than M and discard the last estimation. Therefore, all the estimators from
Unbiased-PIMH will have used at most M samples. If no estimations were produced under
the budget cap (first iteration used more than M samples), then we consider it a miss. All
the estimations generated are averaged to create a single estimate.

The code used to run the experiments is available at 1. For both cases, the following values ofM are used

1https://github.com/gabrielvc/br_snis/blob/master/notebooks/Comparison_Unbiased-PIMH.ipynb

125

https://github.com/gabrielvc/br_snis/blob/master/notebooks/Comparison_Unbiased-PIMH.ipynb

N k algorithm Bias std average M
65536 SNIS -0.0029 0.0605 65536.0

65 1024 BR-SNIS -0.0010 0.0658 65536.0
129 512 BR-SNIS -0.0006 0.0689 65536.0
257 256 BR-SNIS 0.0003 0.0678 65536.0
513 128 BR-SNIS 0.0019 0.0670 65536.0

16384 Unbiased-PIMH 0.0065 0.1005 71904.0
8192 Unbiased-PIMH 0.0058 0.1066 71040.0
4096 Unbiased-PIMH 0.0082 0.1139 69316.0
2048 Unbiased-PIMH 0.0053 0.1174 67764.0

Table A.1: M = 216 in the Soft framework.

in the comparison: 216, 212, 29. For each estimator, a total of 1024 Monte Carlo replications are used to
estimate the mean and the standard deviation of the estimator. Note that in the Hard framework, it can
happen that less than 1024 replications are used for the Unbiased-PIMH estimator. The number of
failed estimations is reported in the tables for the framework Hard for each configuration.

For each configuration of the BR-SNIS estimator (defined byN , kmax), we have used 90% burn-in period
(k0 = ⌊0.9kmax⌋) and kmax rounds of bootstrap (kmax permutations of the input samples).

The following values were calculated:

• Bias: The mean of the estimations minus ref over 1024 replications

• Std: The standard deviation of the estimations over 1024 replications.

• Fails: The number of replications that failed to produce a single estimation for a given budget M .
This is only applicable for the Unbiased-PIMH estimator and in the Hard framework.

• average M: The average (over the 1024 replications) total cost of the estimator. For BR-SNIS and
SNIS this is always M . For Unbiased-PIMH in the Soft framework it is larger than M . In the
Hard framework it is smaller than M .

Algorithm 6 Unbiased-PIMH
Data: N ≥ 0

10 e1, lwav1 ← SNIS(N) ; /* SNIS also returning the average log weights */
11 e2, lwav2 ← SNIS(N) if lwav1 < lwav2 then
12 swap(e1, lwav1; e2, lwav2)
13 u = log rand() if u < lwav1 and u < lwav2 then
14 τ = 1
15 t← 1 τ =∞ while τ =∞ do
16 e1 = e1 + (e1− e2) ep, lwavp = SNIS(N) t = t+ 1 u = log rand(); if u < lwavp− lwav1 then
17 e1, lwav1 = ep, lwavp
18 if u < lwavp− lwav1 then
19 e2, lwav1 = ep, lwavp
20 if u < lwav1 and u < lwav2 then
21 τ = t

We have compared both estimators in two different frameworks (Hard and Soft) with three different
budgetsM = 216 (tables A.1 and A.4),M = 212 (tables A.2 and A.5) andM = 29 (tables A.3 and A.6).

126

N k algorithm Bias std average M
4096 SNIS -0.0365 0.1946 4096.0
65 64 BR-SNIS -0.0314 0.2211 4096.0
129 32 BR-SNIS -0.0358 0.2214 4096.0
257 16 BR-SNIS -0.0281 0.2282 4096.0
513 8 BR-SNIS -0.0296 0.2351 4096.0
1024 Unbiased-PIMH 0.0587 0.6073 5388.0
512 Unbiased-PIMH 0.0678 0.8086 5027.5
256 Unbiased-PIMH 0.1258 1.1492 4730.0
128 Unbiased-PIMH 0.2364 1.9521 4629.6

Table A.2: M = 212 in the Soft framework.

N k algorithm Bias std average M
512 SNIS -0.1458 0.2420 512.0
65 8 BR-SNIS -0.1537 0.2468 512.0
129 4 BR-SNIS -0.1543 0.2444 512.0
257 2 BR-SNIS -0.1426 0.2600 512.0
128 Unbiased-PIMH -0.0048 1.3924 841.5
64 Unbiased-PIMH 0.1997 2.5677 796.4
32 Unbiased-PIMH 0.2365 4.1642 708.1
16 Unbiased-PIMH 0.3670 5.1533 685.3

Table A.3: M = 29 in the Soft framework.

N k algorithm Bias std average M Fails
65536 SNIS -0.0029 0.0605 65536.0

65 1024 BR-SNIS -0.0006 0.0650 65536.0
129 512 BR-SNIS -0.0023 0.0645 65536.0
257 256 BR-SNIS -0.0024 0.0657 65536.0
513 128 BR-SNIS 0.0000 0.0693 65536.0

16384 Unbiased-PIMH -0.0028 0.0885 57520.0 7
8192 Unbiased-PIMH -0.0008 0.1029 59264.0 0
4096 Unbiased-PIMH -0.0014 0.1026 61956.0 0
2048 Unbiased-PIMH 0.0008 0.1106 63244.0 0

Table A.4: M = 216 in the Hard framework.

N k algorithm Bias std average M Fails
4096 SNIS -0.0365 0.1946 4096.0
65 64 BR-SNIS -0.0252 0.2270 4096.0
129 32 BR-SNIS -0.0296 0.2221 4096.0
257 16 BR-SNIS -0.0338 0.2218 4096.0
513 8 BR-SNIS -0.0486 0.2243 4096.0
1024 Unbiased-PIMH -0.0901 0.2353 2922.0 103
512 Unbiased-PIMH -0.0833 0.3368 3343.0 24
256 Unbiased-PIMH -0.0547 0.4815 3554.8 9
128 Unbiased-PIMH -0.0634 0.4433 3683.1 4

Table A.5: M = 212 in the Hard framework.

127

N k algorithm Bias std average M Fails
512 SNIS -0.1458 0.2420 512.0
65 8 BR-SNIS -0.1376 0.2636 512.0
129 4 BR-SNIS -0.1456 0.2565 512.0
257 2 BR-SNIS -0.1358 0.2585 512.0
128 Unbiased-PIMH -0.1962 0.2200 306.9 210
64 Unbiased-PIMH -0.1947 0.3200 367.8 73
32 Unbiased-PIMH -0.1999 0.4001 398.0 36
16 Unbiased-PIMH -0.2057 0.7366 423.2 16

Table A.6: M = 29 in the Hard framework.

We observed that in general the BR-SNIS estimator has smaller standard deviation, with the difference
of standard deviation being important for the smaller budgets (3 times less for M = 212 and 10 times
less for M = 29 in the Soft framework).

For the Hard framework, we can see that the empirical bias of BR-SNIS is always at most equal to the
empirical bias of Unbiased-PIMH . For the Soft framework, we observed that for M = 216 that both
methods have similar performance, with BR-SNIS having negligible bias in this setting. ForM = 212 and
M = 29, BR-SNIS has in general a smaller empirical biais and the standard deviation of Unbiased-PIMH
is considerably higher.

A.3.2 Bayesian Logistic regression

The importance distribution used in the Bayesian logistic regression example is given by the mean-field
variational distribution Blei et al. (2017). More precisely, given the target π given in Section 2.3, the
proposal λ is a Gaussian distribution with mean µ and diagonal covariance diag(σ), where µ, σ are
learnt by maximization of the Evidence Lower Bound (ELBO):

L(µ, σ) =
∫

log(π(θ)/λ(θ))λ(θ)dθ. (A.88)

In both Figures A.3 and 2.3, the optimal k for a given budget M was chosen by grid search over all the
factors of M . The final settings are shown in Table A.7.

A.3.3 Importance Weighted Auto-Encoders

We trained each network for a total of 100 epochs, using 512 batch samples for the gradient calculations,
with learning rate equals 10−4. For IWAE and BR-IWAE , 64 samples were used for estimating the
gradient. For BR-IWAE, we used k = 8. The architecture used is described in table A.8 where by conv
layer we mean a convolutional layer followed by batch norm and the ReLU activation function. The train
ELBO for each latent dimension is shown in Figure A.4. For the log likelihood comparison in Table 2.2,
we use SNIS with the variational posterior as importance distribution and a total of 2 · 103 samples for a
subset of 3232 samples from the validation set. Therefore, the estimation of the log likelihood is:

L̂ = T−1
T∑
j=1

M∑
i=1

ωθ,ϕ,xj
log pθ(xj | zji) (A.89)

with ωθ,ϕ,x(z) = pθ(x)/qϕ(z | x) where zji is sampled from qϕ(· | xj).

128

Dataset component M kmax N
breast 8 256 4 65
breast 8 512 8 65
breast 8 1024 16 65
breast 8 2048 16 129
breast 8 4096 64 65
breast 11 256 4 65
breast 11 512 8 65
breast 11 1024 16 65
breast 11 2048 32 65
breast 11 4096 64 65
breast 14 256 4 65
breast 14 512 8 65
breast 14 1024 16 65
breast 14 2048 32 65
breast 14 4096 64 65
heart 5 32 4 9
heart 5 64 8 9
heart 5 128 8 17
heart 5 256 32 9
heart 5 512 4 129
heart 8 32 4 9
heart 8 64 8 9
heart 8 128 8 17
heart 8 256 16 17
heart 8 512 32 17
heart 12 32 4 9
heart 12 64 8 9
heart 12 128 16 9
heart 12 256 4 65
heart 12 512 32 17

covertype 6 512 4 129
covertype 6 1024 8 129
covertype 6 2048 16 129
covertype 6 4096 2 2049
covertype 6 8192 4 2049
covertype 17 512 2 257
covertype 17 1024 2 513
covertype 17 2048 2 1025
covertype 17 4096 2 2049
covertype 17 8192 4 2049
covertype 23 512 2 257
covertype 23 1024 2 513
covertype 23 2048 4 513
covertype 23 4096 16 257
covertype 23 8192 32 257

Table A.7: Optimal configurations for Figures A.3 and 2.3

129

32 64 128 256 512
0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

(a) Heart 5

32 64 128 256 512

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

(b) Heart 12

256 512 1024 2048 4096

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

(c) Breast 8

256 512 1024 2048 4096
0.010

0.008

0.006

0.004

0.002

0.000

(d) Breast 14

256 512 1024 2048 4096 8192

0.04

0.02

0.00

0.02

0.04

(e) Covertype 17

256 512 1024 2048 4096 8192

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

(f) Covertype 23

Figure A.3: Visualisation of the distribution of the bias for the Heart Failure and Breast cancer dataset
for other components of θ

A.3.4 Resources

All the simulations were done using a server with the following configuration:

• GPUs: two Tesla V100-PCIE (32Gb RAM)

• CPU: 71 Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz

• RAM: 377Gb

locally hosted. We estimate the total number of computing hours for the results presented in this paper
to be inferior to 200 hours of GPU usage (All the calculations were done in the GPU).

130

Name kernel size stride padding out channels
Encoder conv 1 3 1 1 8
Encoder conv 2 3 1 1 16
Encoder conv 3 3 1 1 32

Encoder MaxPool2d 1 2 2 0
Encoder conv 4 3 1 1 64
Encoder conv 5 3 1 1 32

Encoder MaxPool2d 2 2 2 0
Encoder Linear + ReLU 2048

Encoder Linear 2 ∗ d

Decoder Linear 32 ∗ 7 ∗ 7
Decoder conv transpose 1 2 1 0 64
Decoder conv transpose 2 2 1 1 128
Decoder conv transpose 3 3 2 1 (output padding = 1) 64
Decoder conv transpose 4 3 2 1 (output padding = 1) 32
Decoder conv transpose 5 2 1 0 16

Decoder final convolutional layer 2 1 0 1
Sigmoid activation

Table A.8: Convolutional neural network architecture.

60 80 100
66

68

70

72
vae
IWAE M=64
BR-IWAE N=8, k = 8

(a) Dimension 10

60 80 100

60

62

64

vae
IWAE M=64
BR-IWAE N=8, k = 8

(b) Dimension 20

60 80 100
58

60

62

64

vae
IWAE M=64
BR-IWAE N=8, k = 8

(c) Dimension 40

Figure A.4: Per epoch training loss (ELBO) for the last 40 epochs. Confidence intervals are calculated
as 1.96σ/

√
n over 10 (n = 10) different seeds.

131

Appendix B

Appendix of Chapter 3

B.1 Additional numerical results

B.1.1 LGSSM

B.1 and B.2 display the matrices A, B, RR⊺, and SS⊺ used for all experiments in the LGSSM model
context. In B.1a,B.2a,B.3a we display boxplots of bias estimates, where each estimate is obtained by
averaging 104 independent runs of the corresponding algorithm and each box is based on 103 replications
of this bias estimator. The PARIS is compared to the PPG for different algorithmic configurations
(N, k, k0) and for different computational budgets C = kN of sizes 103 (B.1), 2.5 × 103 (B.2), and
5 × 103 (B.3). Each experiment is carried through for each of the different designs k0 = ⌊2−1k⌋,
k0 = ⌊(3/4)C/N⌋, and k0 = k − 1 of the burn-in.

/ 1 2 3 4 5
1 -0.4193 0.00182 0.00183 0.00184 0.00185
2 0.2145 0.63952 0.63953 0.63954 0.63955
3 0.3449 0.60202 0.60203 0.60204 0.60205
4 0.2572 -0.26932 -0.26933 -0.26934 -0.26935
5 0.7505 -0.36332 -0.36333 -0.36334 -0.36335

/ 1 2 3 4 5
1 -0.2078 0.27752 0.27753 0.27754 0.27755
2 0.0984 0.45172 0.45173 0.45174 0.45175
3 0.7050 -0.04502 -0.04503 -0.04504 -0.04505
4 0.1684 -0.15152 -0.15153 -0.15154 -0.15155
5 -0.0320 0.50612 0.50613 0.50614 0.50615

Table B.1: The A (left) and B (right) matrices in the LGSSM.

/ 1 2 3 4 5
1 0.0026 -0.00062 -0.00063 -0.00064 -0.00065
2 -0.0004 0.00122 0.00123 0.00124 0.00125
3 -0.0001 -0.00062 -0.00063 -0.00064 -0.00065
4 0.0007 0.00012 0.00013 0.00014 0.00015
5 -0.0006 0.00282 0.00283 0.00284 0.00285

/ 1 2 3 4 5
1 0.0157 -0.00072 -0.00073 -0.00074 -0.00075
2 0.0014 0.00072 0.00073 0.00074 0.00075
3 -0.0027 0.00592 0.00593 0.00594 0.00595
4 0.0064 -0.01052 -0.01053 -0.01054 -0.01055
5 -0.0007 0.02072 0.02073 0.02074 0.02075

Table B.2: The covariance matrices RR⊺ (left) and SS⊺ (right) for the state and measurement noises,
respectively, in the LGSSM.

B.1.2 Stochastic volatility

In this section we repeat the same experiments in B.1.1 in the context of the StoVol model described
in 3.5. B.4–B.6 display boxplots of bias estimates for the PARIS and the PPG for different algorithmic
configurations (N, k, k0) and different computational budgetsC = kN of sizes 102 (B.4), 5×102 (B.5),
and 103 (B.6). The bias of each algorithm is estimated by averaging 103 independent runs of the same,
and each box is based on 103 independent replications of this bias estimator. Again, in each plot, the
PARIS and PPG share the same computational budget (regardless configuration of the PPG).

Choice of (N, k, k0). Designing the configuration (N, k, k0) is challenging, since the upper bound
κN,t on the mixing rate is known to be conservative. As clear from B.4–B.6, the best configuration also

133

PaRIS
 N=1000

N=50 N=100 N=250 N=500
0.0

0.2

0.4

0.6

0.8

(a) k0 = ⌊2−1C/N⌋

PaRIS
 N=1000

N=50 N=100 N=250 N=500
0.0

0.2

0.4

0.6

0.8

(b) k0 = ⌊(3/4)C/N⌋

PaRIS
 N=1000

N=50 N=100 N=250 N=500
0.0

0.2

0.4

0.6

0.8

(c) k0 = k − 1

Figure B.1: PARIS and PPG outputs for the LGSSM with C = 103 and different designs of the burn-in
k0.

PaRIS
 N=2500

N=50 N=100 N=250 N=500
0.0

0.1

0.2

0.3

0.4

0.5

(a) k0 = ⌊2−1C/N⌋

PaRIS
 N=2500

N=50 N=100 N=250 N=500
0.0

0.1

0.2

0.3

0.4

0.5

(b) k0 = ⌊(3/4)C/N⌋

PaRIS
 N=2500

N=50 N=100 N=250 N=500
0.0

0.1

0.2

0.3

0.4

0.5

(c) k0 = k − 1

Figure B.2: PARIS and PPG outputs for the LGSSM with C = 2.5 × 103 and different designs of the
burn-in k0.

depends on C; indeed, we see that for a smaller budget it is better to let the particle sample size N be
large. Nevertheless, for more generous budgets it seems to be better to use a large number k of iterations
at the expense of N .

Concerning the burn-in parameter k0, the choice depends mainly on the bias–variance trade-off. In
applications where minimising the bias is important one would choose k0 = k − 1, which gives the
smallest possible bias. Otherwise, a trade-off that provides an improvement in bias at the cost of an
increase in MSE over the PARIS by only a factor of 2 is to choose k0 = ⌊k/2⌋; recall the discussion in
3.4.2.

B.1.2.1 Comparison with the Rhee–Glynn-type estimator of Jacob et al. (2020a)

We now compare the proposed PPG estimator with the unbiased Rhee–Glynn-type smoothing estimator
Hk0:k,N defined in (Jacob et al., 2020a, Eq. 2), where the parameter k0 is the burn-in phase length, k
the minimum number of Gibbs iterations, andN the number of particles used in the coupled conditional
particle filter. This estimator is based on the coupled conditional particle filter with ancestor sampling
proposed in Jacob et al. (2020a); see 10 for details. Since the number of particles used in the algorithm
is itself a random variable, we first perform 3× 103 independent runs of the same and report the average

134

PaRIS
 N=5000

N=50 N=100 N=250 N=500

0.1

0.0

0.1

0.2

0.3

(a) k0 = ⌊2−1C/N⌋

PaRIS
 N=5000

N=50 N=100 N=250 N=500

0.1

0.0

0.1

0.2

0.3

(b) k0 = ⌊(3/4)C/N⌋

PaRIS
 N=5000

N=50 N=100 N=250 N=500

0.1

0.0

0.1

0.2

0.3

(c) k0 = k − 1

Figure B.3: PARIS and PPG outputs for the LGSSM withC = 5×103 and different designs of the burn-in
k0.

PaRIS
 N=100

N=10 N=50

30

25

20

15

10

5

0

(a) k0 = ⌊2−1C/N⌋

PaRIS
 N=100

N=10 N=50

30

25

20

15

10

5

0

(b) k0 = ⌊(3/4)C/N⌋

PaRIS
 N=100

N=10 N=50

30

25

20

15

10

5

0

(c) k0 = k − 1

Figure B.4: PARIS and PPG outputs for the stovol model with C = 102 and different designs on the
burn-in k0.

meeting time (i.e., number of iterations of 10 until the conditional paths ζ0:t and ζ ′0:t become identical) for
three different choices of the hyperparameters in B.3. We deduce from B.3 that the average total number

N k0 k Meeting time
100 5 10 30.4
250 2 4 12.6
500 1 2 7.1

Table B.3: Coupled conditional particle filter meeting times for three different configurations with
Nk = 103.

of particles generated is about 3 × 103. Therefore, we compare the Rhee–Glynn estimator induced by
the coupled conditional particle filter with the PPG estimator with (N, k0, k) = (10, 150, 300). B.7
shows histograms of estimates produced using the Rhee–Glynn-type procedure, for the three different
configurations, along with histograms of the estimates produced by the PPG. Each histogram is based on
3× 103 independent replications. We find that the variance and empirical bias of the Rhee–Glynn-type
estimator is about 10 and 20 times larger, respectively, than for the PPG for the same computational
effort.

Another way of obtaining Rhee–Glynn-type smoothing estimator would be to consider the coupling of the
conditional backward sampling particle filter, as proposed in Lee et al. (2020). In the case of the bootstrap

135

PaRIS
 N=500

N=10 N=50 N=100 N=250

12.5

10.0

7.5

5.0

2.5

0.0

2.5

(a) k0 = ⌊2−1C/N⌋

PaRIS
 N=500

N=10 N=50 N=100 N=250

12.5

10.0

7.5

5.0

2.5

0.0

2.5

(b) k0 = ⌊(3/4)C/N⌋

PaRIS
 N=500

N=10 N=50 N=100 N=250

12.5

10.0

7.5

5.0

2.5

0.0

2.5

(c) k0 = k − 1

Figure B.5: PARIS and PPG outputs for the stovol model with C = 5× 102 and different designs of the
burn-in k0.

PaRIS
 N=1000

N=10 N=50 N=100 N=250 N=500
6

4

2

0

2

4

(a) k0 = ⌊2−1C/N⌋

PaRIS
 N=1000

N=10 N=50 N=100 N=250 N=500
6

4

2

0

2

4

(b) k0 = ⌊(3/4)C/N⌋

PaRIS
 N=1000

N=10 N=50 N=100 N=250 N=500
6

4

2

0

2

4

(c) k0 = k − 1

Figure B.6: PARIS and PPG outputs for the stovol model with C = 103 and different designs of the
burn-in k0.

particle filter, the conditional particle filter with backward sampling is probabilistically equivalent to the
conditional particle filter with ancestor sampling. Furthermore, (Lee et al., 2020, Section 7) also show
that for t = 103, both the conditional particle filter with backward sampling and the conditional particle
filter with ancestor sampling have similar performance. Thus, we expect the results in this section to
translate to the estimators proposed in Lee et al. (2020).

136

400 200 0 200 4000

50

100

150

200

250

300

350
Rhee-Glynn (AS):
 (61.4 ± 7.6)
PPG:
 (0.2 ± 0.5)

(a) (N, k) = (100, 10)

400 200 0 200 4000

50

100

150

200
Rhee-Glynn (AS):
 (24.0 ± 4.6)
PPG:
 (0.2 ± 0.5)

(b) (N, k) = (250, 4)

400 200 0 200 4000

25

50

75

100

125

150

175 Rhee-Glynn (AS):
 (14.7 ± 4.4)
PPG:
 (0.2 ± 0.5)

(c) (N, k) = (500, 2)

Figure B.7: Histograms of estimates produced using the Rhee–Glynn-type smoothing estimator of Jacob
et al. (2020a) for three different configurations and the PPG estimator with (N, k0, k) = (10, 150, 300).
Each box is based on 3000 independent replications. The plot also provides the corresponding 95%
coverage asymptotic confidence intervals.

137

B.2 Algorithms
The following section provides pseudocode for the algorithms discussed in 3.3, namely: the original
PARIS algorithm (7) proposed in Olsson and Westerborn (2017), the conditional PARIS update (8),
and the PPG (9). In addition, we provide a pseudocode for the coupled conditional conditional particle
filter with ancestor sampling (10), being the key ingredient of the unbiased Rhee–Glynn-type estimator
proposed in Jacob et al. (2020a) against which the PPG is benchmarked in B.1.2.1. Note that the
conditional PARIS update described in 8 differs somewhat from that described in 3.3 in the way the
underlying conditional dual process {ξm}m∈N is propagated; more precisely, in 8, each conditional
dual process update ξm+1 ∼Mm⟨ζm+1⟩(ξm, ·), where the value of ζm+1 is inserted into a randomly
chosen position in ξm+1 (whereas the remaining elements of ξm+1 are sampled independently from
Φm(µ(ξm))) is replaced by deterministic assignment of ζm+1 to ξNm+1. Of course, this change has no
impact as long as we are interested in integrating functions that are permutation invariant with respect to
the produced many-body systems, which is the case throughout our work. Still, as this derandomization
technique simplifies somewhat the implementation of the PPG, we have chosen to include it in our
pseudocode.

Algorithm 7 One update of the PARIS.
Data: {(ξit, βit)}Ni=1
Result: {(ξit+1, β

i
t+1)}Ni=1

22 for i← 1 to N do
23 draw Iit+1 ∼ cat({gt(ξℓt)}Nℓ=1) draw ξit+1 ∼Mt(ξ

Ii
t+1
t , ·) for j ← 1 to M do

24 draw J
(i,j)
t+1 ∼ cat({qt(ξℓt , ξit+1)}Nℓ=1)

25 set βit+1 ← 1
M

∑M
j=1

(
β
J

(i,j)
t+1
t + h̃t(ξ

J
(i,j)
t+1
t , ξit+1)

)

Algorithm 8 One conditional PARIS update, expressed in a short form as “υt+1 ←
CondPaRIS(υt, ζt+1)”.
Data: υt, ζt+1
Result: υt+1

26 for i← 1 to N − 1 do
27 draw Iim+1 ∼ cat({gm(ξℓm|m)}Nℓ=1) draw ξim+1|m+1 ∼Mm(ξI

i
m+1
m|m , ·)

28 set ξNm+1|m+1 ← ζm+1 for i← 1 to N do
29 for j ← 1 to M do
30 draw J

(i,j)
m+1 ∼ cat({qm(ξℓm|m, ξ

i
m+1|m+1)}Nℓ=1)

31 set βim+1 ← 1
M

∑M
j=1

(
β
J

(i,j)
m+1
m + h̃m(ξJ

(i,j)
m+1
m|m , ξim+1|m+1)

)
set ξi0:m+1|m+1 ← (ξJ

(i,1)
m+1

0:m|m, ξ
i
m+1|m+1)

32 set υt+1 ← ((ξ1
0:t+1|t+1, β

1
t+1), . . . , (ξN0:t+1|t+1, β

N
t+1))

Coupling algorithms. 10 provides a more detailed description of (the predictive variant of) the coupled
conditional particle filter proposed in (Jacob et al., 2020a, Algorithm 1), and we focus here on the version
of this algorithm where the iteratively produced particle paths underlying the resulting estimator are
generated by means of ancestor sampling Lindsten et al. (2014a). If {ωℓ}Nℓ=1 and {ω′ℓ}Nℓ=1 are possibly
unnormalized event probabilities, we denote by M({ωℓ}Nℓ=1, {ω′ℓ}Nℓ=1) the maximal coupling between the
distributions cat({ωℓ}Nℓ=1) and cat({ω′ℓ}Nℓ=1). In our implementations, we used the maximum coupling

138

Algorithm 9 One iteration of the Parisian particle Gibbs (PPG)
Data: ζ0:t
Result: υt, ζ ′0:t

33 draw (ξ1
0|0, . . . , ξ

N−1
0|0) ∼ η�(N−1)

0 set ξN0|0 ← ζ0 set β0 ← (0, . . . , 0) for m← 0 to t− 1 do
34 run ((ξ1

m+1|m+1, β
1
m+1), . . . , (ξNm+1|m+1, β

N
m+1))← CondPaRIS((ξ1

m|m, β
1
m), . . . , (ξNm|m, β

N
m), ζm+1)

35 set υt ← ((ξ1
t|t, β

1
t), . . . , (ξNt|t, β

N
t)) draw J ∼ cat({1}Nℓ=1) set ζ ′0:t ← ξJ0:t|t

given in (Jacob et al., 2020b, Algorithm 2). In order to couple two conditional particle filters, we assume,
following (Jacob et al., 2020a, Algorithm 1), that for every m ∈ N we are able to simulate a random
variable εm, defined on some measurable space (Sm,Sm) and distributed according µm ∈ M1(Sm),
such that there exists some measurable function ϕ on (Xm×Sm,Xm�Sm) such that for every xm ∈ Xm,
µm ◦ ϕ−1

m (xm, ·) (the pushforward of µm through ϕm(xm, ·)) equals Mm(xm, ·).

Algorithm 10 Coupled conditional particle filters Jacob et al. (2020a).
Data: ζ0:t, ζ̃0:t
Result: ζ ′0:t, ζ̃ ′0:t

36 set (ξ1
0 , . . . , ξ

N−1
0) ∼ η

�(N−1)
0 set (ξ̃1

0 , . . . , ξ̃
N−1
0) ← (ξ1

0 , . . . , ξ
N−1
0) set (ξN0 , ξ̃N0) ← (ζ0, ζ̃0) for

m← 0 to t− 1 do
37 for i← 1 to N − 1 do
38 draw (Iim+1, Ĩ

i
m+1) ∼ M({gm(ξℓm)}Nℓ=1, {gm(ξ̃ℓm)}Nℓ=1)

39 draw (INm+1, Ĩ
N
m+1) ∼ M({qm(ξℓm, ζm+1)}Nℓ=1, {qm(ξ̃ℓm, ζ̃m+1)}Nℓ=1) for i← 1 to N do

40 draw εm ∼ µm set (ξim+1, ξ̃
i
m+1)← (ϕm(ξI

i
m+1
m , εm), ϕm(ξ̃Ĩ

i
m+1
m , εm))

41 draw Jt ∼ cat({1}Nℓ=1) set J̃t ← Jt set (ζt, ζ̃t)← (ξJt
t , ξ̃

J̃t
t) for m← t− 1 to 0 do

42 set (Jm, J̃m)← (IJm+1
m+1 , Ĩ

J̃m+1
m+1) set (ζm, ζ̃m)← (ξJm

m , ξ̃J̃m
m)

139

B.3 Additional proofs

B.3.1 Proof of 11

First, note that, by definitions (3.19) and (3.20),

Ht(x0:t) :=
∫

St(x0:t, dyt)µ(x0:t|t)h

=
∫
· · ·
∫ 1

N

N∑
jt=1

h(xjt0:t−1|t, x
jt
t)

×

t−1∏
m=0

N∏
im+1=1

∫ N∑
jm=1

qm(xjmm , x
im+1
m+1)∑N

j′
m=1 qm(xj

′
m
m , x

im+1
m+1)

δ
xjm

0:m|m
(dxim+1

0:m|m+1),

where xi0:−1|0 = ∅ for all i ∈ J1, NK by convention. We will show that for every k ∈ J0, tK, Hk,t ≡ Ht,
where

Hk,t(x0:t) := 1
N

N∑
jt=1
· · ·

N∑
jk=1

t−1∏
ℓ=k

qℓ(xjℓℓ , x
jℓ+1
ℓ+1)∑N

j′
ℓ
=1 qℓ(x

j′
ℓ
ℓ , x

jℓ+1
ℓ+1)

ak,t(x0, . . . ,xk−1, x
jk
k , . . . , x

jt
t)

with

ak,t(x0, . . . ,xk−1, x
jk
k , . . . , x

jt
t)

=
∫ k−1∏

m=0

N∏
im+1=1

N∑
jm=1

qm(xjmm , x
im+1
m+1)∑N

j′
m=1 qm(xj

′
m
m , x

im+1
m+1)

δ
xjm

0:m|m
(dxim+1

0:m|m+1)h(xjk0:k−1|k, x
jk
k , . . . , x

jt
t).

Since, by convention,
∏t−1
ℓ=t . . . = 1, Ht,t(x0:t) = N−1∑N

jt=1 at,t(x0, . . . ,xt−1, x
jt
t), and we note that

Ht ≡ Ht,t. We now show that Hk,t ≡ Hk−1,t for every k ∈ J1, tK; for this purpose, note that

ak,t(x0, . . . ,xk−1, x
jk
k , . . . , x

jt
t)

=
∫ k−2∏

m=0

N∏
im+1=1

N∑
jm=1

qm(xjmm , x
im+1
m+1)∑N

j′
m=1 qm(xj

′
m
m , x

im+1
m+1)

δ
xjm

0:m|m
(dxim+1

0:m|m+1)

×
∫ N∏

ik=1

N∑
jk−1=1

qk−1(xjk−1
k−1 , x

ik
k)∑N

j′
k−1=1 qk−1(x

j′
k−1
k−1 , x

ik
k)
δ
x

jk−1
0:k−1|k−1

(dxik0:k−1|k)h(xjk0:k−1|k, x
jk
k , . . . , x

jt
t),

and since xjk−1
0:k−1|k−1 = (xjk−1

0:k−2|k−1, x
jk−1
k−1), it holds that

∫ N∏
ik=1

N∑
jk−1=1

qk−1(xjk−1
k−1 , x

ik
k)∑N

j′
k−1=1 qk−1(x

j′
k−1
k−1 , x

ik
k)
δ
x

jk−1
0:k−1|k−1

(dxik0:k−1|k)h(xjk0:k−1|k, x
jk
k , . . . , x

jt
t)

=
N∑

jk−1=1

qk−1(xjk−1
k−1 , x

jk
k)∑N

j′
k−1=1 qk−1(x

j′
k−1
k−1 , x

jk
k)
h(xjk−1

0:k−2|k−1, x
jk−1
k−1 , x

jk
k , . . . , x

jt
t).

140

Therefore, we obtain

ak,t(x0, . . . ,xk−1, x
jk
k , . . . , x

jt
t)

=
∫ k−2∏

m=0

N∏
im+1=1

N∑
jm=1

qm(xjmm , x
im+1
m+1)∑N

j′
m=1 qm(xj

′
m
m , x

im+1
m+1)

δ
xjm

0:m|m
(dxim+1

0:m|m+1)

×
N∑

jk−1=1

qk−1(xjk−1
k−1 , x

jk
k)∑N

j′
k−1=1 qk−1(x

j′
k−1
k−1 , x

jk
k)
h(xjk−1

0:k−2|k−1, x
jk−1
k−1 , x

jk
k , . . . , x

jt
t).

Now, changing the order of summation with respect to jk−1 and integration on the right hand side of the
previous display yields

ak,t(x0, . . . ,xk−1, x
jk
k , . . . , x

jt
t)

=
N∑

jk−1=1

qk−1(xjk−1
k−1 , x

jk
k)∑N

j′
k−1=1 qk−1(x

j′
k−1
k−1 , x

jk
k)
ak−1,t(x0, . . . ,xk−2, x

jk−1
k−1 , . . . , x

jt
t).

Thus,

Hk,t(x0:t)

= 1
N

N∑
jt=1
· · ·

N∑
jk=1

t−1∏
ℓ=k

qℓ(xjℓℓ , x
jℓ+1
ℓ+1)∑N

j′
ℓ
=1 qℓ(x

j′
ℓ
ℓ , x

jℓ+1
ℓ+1)

×
N∑

jk−1=1

qk−1(xjk−1
k−1 , x

jk
k)∑N

j′
k−1=1 qk−1(x

j′
k−1
k−1 , x

jk
k)
ak−1,t(x0, . . . ,xk−2, x

jk−1
k−1 , . . . , x

jt
t)

= 1
N

N∑
jt=1
· · ·

N∑
jk−1=1

t−1∏
ℓ=k−1

qℓ(xjℓℓ , x
jℓ+1
ℓ+1)∑N

j′
ℓ
=1 qℓ(x

j′
ℓ
ℓ , x

jℓ+1
ℓ+1)

ak−1,t(x0, . . . ,xk−2, x
jk−1
k−1 , . . . , x

jt
t)

= Hk−1,t(x0:t),

which establishes the recursion. Therefore, Ht ≡ H0,t and we may now conclude the proof by noting
that Bth ≡ H0,t.

B.3.2 Proof of 15

In order to establish 15 we will prove the following more general result, of which 15 is a direct
consequence.

Proposition 40. For every t ∈ N andM ∈ N∗ there exist ct > 0 and dt > 0 such that for everyN ∈ N∗,
z0:t ∈ X0:t, (ft, f̃t) ∈ F(Xt)2, and ε > 0,∫

CtSt(z0:t,dbt)

× 1
{∣∣∣∣∣ 1
N

N∑
i=1
{bitft(xit|t) + f̃t(xit|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)

∣∣∣∣∣ ≥ ε
}

≤ ct exp
(
−dtNε2

2κ2
t

)
,

where

κt := ∥ft∥∞
t−1∑
m=0
∥h̃m∥∞ + ∥f̃t∥∞. (B.1)

141

To prove 40 we need the following technical lemma.

Lemma 41. For every t ∈ N, (ft+1, f̃t+1) ∈ F(Xt+1)2, z0:t+1 ∈ X0:t+1, and N ∈ N∗,

γt+1⟨z0:t+1⟩(ft+1Bt+1⟨z0:t⟩ht+1 + f̃t+1)

=
(

1− 1
N

)
γt⟨z0:t⟩{Qtft+1Bt⟨z0:t−1⟩ht +Qt(h̃tft+1 + f̃t+1)}

+ 1
N
γt⟨z0:t⟩gt

(
ft+1(zt+1)Bt+1⟨z0:t⟩ht+1(zt+1) + f̃t+1(zt+1)

)
.

Proof. Since 21 holds also for the Feynman–Kac model with a frozen path, we obtain

γt+1⟨z0:t+1⟩(ft+1Bt+1⟨z0:t⟩ht+1 + f̃t+1)
= γt⟨z0:t⟩{Qt⟨zt+1⟩ft+1Bt⟨z0:t⟩ht +Qt⟨zt+1⟩(h̃tft+1 + f̃t+1)}.

Thus, the proof is concluded by noting that for every xt ∈ Xt and h ∈ F(Xt:t+1),

Qt⟨zt+1⟩h(xt) =
(

1− 1
N

)
Qth(xt) + 1

N
g(xt)h(xt, zt+1).

Finally, before proceeding to the proof of 40, we introduce the law of the PARIS evolving conditionally
on a frozen path z = {zm}m∈N. Define, for m ∈ N and zm+1 ∈ Xm+1,

Pm⟨zm+1⟩ : Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm⟨zm+1⟩(xm|m, dxm+1)Sm(ym,xm+1, A).

For any given initial distribution ψ0 ∈ M1(Y0), let PP ,zψ0
be the distribution of the canonical Markov

chain induced by the Markov kernels {Pm⟨zm+1⟩}m∈N and the initial distribution ψ0. By abuse of
notation we write PP ,zη0 instead of PP ,zψ0[η0⟨z0⟩], where the extension ψ0[η0] is defined in 3.6.3.

Proof of 40. We proceed by forward induction over t. Let the σ-fields F̃t and Ft be defined as in the
proof of 13, but for the conditional PARIS dual process. Then, under the law PP ,zη0 , reusing (3.43),

EP ,zη0

[
β1
t ft(ξ1

t) + f̃t(ξ1
t) | F̃t−1

]
= EP ,zη0

[
EP ,zη0

[
β1
t | Ft

]
ft(ξ1

t) + f̃t(ξ1
t) | F̃t−1

]
= EP ,zη0

[
ft(ξ1

t)
N∑
ℓ=1

qt−1(ξℓt−1, ξ
1
t)∑N

ℓ′=1 qt−1(ξℓ′t−1, ξ
1
t)

(
βℓt−1 + h̃t−1(ξℓt−1, ξ

1
t)
)

+ f̃t(ξ1
t) | F̃t−1

]
.

Using (3.10), we get

EP ,zη0

[
β1
t ft(ξ1

t) + f̃t(ξ1
t) | F̃t−1

]
=
(

1− 1
N

) ∑N
ℓ=1{βℓt−1Qt−1ft(ξℓt−1) +Qt−1(h̃t−1ft + f̃t)(ξℓt−1)}∑N

ℓ′=1 gt−1(ξℓ′t−1)

+ 1
N

(
ft(zt)

N∑
ℓ=1

qt−1(ξℓt−1, zt)∑N
ℓ′=1 qt−1(ξℓ′t−1, zt)

(
βℓt−1 + h̃t(ξℓt−1, zt)

)
+ f̃t(zt)

)
. (B.2)

In order to apply the induction hypothesis to each term on the right-hand side of the previous identity,
note that

Bt⟨z0:t−1⟩ht(zt) = ηt−1⟨z0:t−1⟩[qt−1(·, zt){Bt−1⟨z0:t−2⟩ht−1(·) + h̃t−1(·, zt)}]
ηt−1⟨z0:t−1⟩[qt−1(·, zt)]

.

142

Therefore, using 41 and noting that γt⟨z0:t⟩1Xt/γt−1⟨z0:t⟩1Xt−1 = ηt−1⟨z0:t−1⟩gt−1 yields

ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t) = 1
N

(
ft(zt)Bt⟨z0:t−1⟩ht(zt) + f̃t(zt)

)
+
(

1− 1
N

)
ηt−1⟨z0:t−1⟩{Qt−1ftBt−1⟨z0:t−2⟩ht +Qt−1(h̃t−1ft + f̃t)}

ηt−1⟨z0:t−1⟩gt−1
. (B.3)

By combining (B.2) with (B.3), we decompose the error according to

1
N

N∑
i=1
{βitft(ξit|t) + f̃t(ξit|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)

= 1
N

N∑
i=1
{βitft(ξit|t) + f̃t(ξit|t)} − EP ,zη0

[
β1
t ft(ξ1

t) + f̃t(ξ1
t) | F̃t−1

]
+ EP ,zη0

[
β1
t ft(ξ1

t) + f̃t(ξ1
t) | F̃t−1

]
− ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)

= I(1)
N +

(
1− 1

N

)
I(2)
N + 1

N
I(3)
N , (B.4)

where

I(1)
N := 1

N

N∑
i=1
{βitft(ξit) + f̃t(ξit)} − EP ,zη0

[
β1
t ft(ξ1

t) + f̃t(ξ1
t) | F̃t−1

]
,

I(2)
N :=

∑N
ℓ=1{βℓt−1Qt−1ft(ξℓt−1) +Qt−1(h̃t−1ft + f̃t)(ξℓt−1)}∑N

ℓ′=1 gt−1(ξℓ′t−1)

− ηt−1⟨z0:t−1⟩{Qt−1ftBt⟨z0:t−1⟩ht +Qt−1(h̃t−1ft + f̃t)}
ηt−1⟨z0:t−1⟩gt−1

, (B.5)

and

I(3)
N := ft(zt)

N∑
ℓ=1

qt−1(ξℓt−1, zt)∑N
ℓ′=1 qt−1(ξℓ′t−1, zt)

(
βℓt−1 + h̃t−1(ξℓt−1, zt)

)
− ft(zt)

ηt−1⟨z0:t−1⟩[qt−1(·, zt){Bt−1⟨z0:t−2⟩ht−1(·) + h̃t−1(·, zt)}]
ηt−1⟨z0:t−1⟩[qt−1(·, zt)]

. (B.6)

The proof is now completed by treating the terms I(1)
N , I(2)

N , and I(3)
N separately, using Hoeffding’s

inequality and its generalisation in (Douc et al., 2011, Lemma 4). Choose ε > 0; then, by Hoeffding’s
inequality,

PP ,zη0

(
| I(1)
N | ≥ ε

)
≤ 2 exp

(
−1

2
ε2

κ2
t

N

)
. (B.7)

To treat I(2)
N , we apply the induction hypothesis to the numerator and denominator, each normalized by

1/N , yielding, since ∥Qt−1h∥∞ ≤ τ̄t−1∥h∥∞ for all h ∈ F(Xt−1 � Xt),

PP ,zη0

(∣∣∣∣∣ 1
N

N∑
ℓ=1
{βℓt−1Qt−1ft(ξℓt−1) +Qt−1(h̃t−1ft + f̃t)(ξℓt−1)}

−ηt−1⟨z0:t−1⟩{Qt−1ftBt⟨z0:t−1⟩ht +Qt−1(h̃t−1ft + f̃t)}
∣∣∣∣∣ ≥ ε

)

≤ ct−1 exp
(
−dt−1

ε2

τ̄2
t−1κ

2
t

N

)

143

and

PP ,zη0

(∣∣∣∣∣ 1
N

N∑
ℓ=1

gt−1(ξℓt−1)− ηt−1⟨z0:t−1⟩gt−1

∣∣∣∣∣ ≥ ε
)
≤ ct−1 exp

(
−dt−1

ε2

τ̄2
t−1

N

)
.

Combining the previous two bounds with the generalised Hoeffding inequality in (Douc et al., 2011,
Lemma 4) yields, using also the bounds

∑N
ℓ=1{βℓt−1Qt−1ft(ξℓt−1) +Qt−1(h̃t−1ft + f̃t)(ξℓt−1)}∑N

ℓ′=1 gt−1(ξℓ′t−1)
≤ κt

and ηt−1⟨z0:t−1⟩gt−1 ≥ ¯
τt−1, the inequality

PP ,zη0

(
| I(2)
N | ≥ ε

)
≤ ct−1 exp

(
−dt−1 ¯

τ2
t−1ε

2

τ̄2
t−1κ

2
t

N

)
. (B.8)

The last term I(3)
N is treated along similar lines; indeed, by the induction hypothesis, since ∥qt−1∥∞ ≤

τ̄t−1σ̄t−1,

PP ,zη0

(∣∣∣∣∣ 1
N

N∑
ℓ=1

qt−1(ξℓt−1, zt)
(
βℓt−1 + h̃t−1(ξℓt−1, zt)

)

− ηt−1⟨z0:t−1⟩[qt−1(·, zt){Bt−1⟨z0:t−1⟩ht−1(·) + h̃t−1(·, zt)}]
∣∣∣∣∣ ≥ ε

)

≤ ct−1 exp

−dt−1

(
ε

τ̄t−1σ̄t−1
∑t−1
m=0 ∥h̃m∥∞

)2

N

and

PP ,zη0

(∣∣∣∣∣ 1
N

N∑
ℓ=1

qt−1(ξℓt−1, zt)− ηt−1⟨z0:t−1⟩[qt−1(·, zt)]
∣∣∣∣∣ ≥ ε

)

≤ ct−1 exp
(
−dt−1

(
ε

τ̄t−1σ̄t−1

)2
N

)
.

Thus, since
N∑
ℓ=1

qt−1(ξℓt−1, zt)∑N
ℓ′=1 qt−1(ξℓ′t−1, zt)

(
βℓt−1 + h̃t−1(ξℓt−1, zt)

)
≤

t−1∑
m=0
∥h̃m∥∞

and ηt−1⟨z0:t−1⟩[qt−1(·, zt)] ≥ ¯
τt−1, the generalised Hoeffding inequality provides

PP ,zη0

(
| I(3)
N | ≥ ε

)
≤ ct−1 exp

−dt−1

(
¯
τt−1ε

2τ̄t−1σ̄t−1∥ft∥∞
∑t−1
m=0 ∥h̃m∥∞

)2

N

 . (B.9)

Finally, combining the bounds (B.7–B.9) completes the proof.

B.3.3 Proof of 16

The statement of 16 is implied by the following more general result, which we will prove below.

144

Proposition 42. For every t ∈ N, M ∈ N∗, N ∈ N∗, z0:t ∈ X0:t, (ft, f̃t) ∈ F(Xt)2, and p ≥ 2, it holds
that

∫
CtSt(z0:t,dbt)

∣∣∣∣∣ 1
N

N∑
i=1
{bitft(xit|t) + f̃t(xit|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)

∣∣∣∣∣
p

≤ ct(p/dt)p/2N−p/2κpt ,

where ct > 0, dt > 0 and κt are defined in 40 and (B.1), respectively.

Before proving 42, we establish the following result.

Lemma 43. Let X be an Rd-valued random variable, defined on some probability space (Ω,F ,P),
satisfying P(|X| ≥ t) ≤ c exp(−t2/(2σ2)) for every t ≥ 0 and some c > 0 and σ > 0. Then for every
p ≥ 2 it holds that E[|X|p] ≤ cpp/2σp.

Proof. Using Fubini’s theorem and the change of variable formula,

E [|X|p] =
∫ ∞

0
ptp−1P(|X| ≥ t) dt = cp2p/2−1σpΓ(p/2),

where Γ is the Gamma function. It remains to apply the bound Γ(p/2) ≤ (p/2)p/2−1 (see Anderson and
Qiu (1997)), which holds for p ≥ 2 by [2, Theorem 1.5].

Proof of 42. By combining 40 and 43 we obtain

N

∫
CtSt(z0:t, dbt)

∣∣∣∣ 1
N

∑N

i=1
{bitft(xit|t) + f̃t(xit|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)

∣∣∣∣2
≤ ct(p/dt)p/2N−p/2

(
∥ft∥∞

t−1∑
m=0
∥h̃m∥∞ + ∥f̃t∥∞

)p
,

which was to be established.

B.3.4 Proof of 17

Like previously, we establish 17 via a more general result, namely the following.

Proposition 44. For every t ∈ N, the exists c̄bias
t <∞ such that for everyM ∈ N∗,N ∈ N∗, z0:t ∈ X0:t,

and (ft, f̃t) ∈ F(Xt)2,

∣∣∣∣∣
∫

CtSt(z0:t,dbt)
1
N

N∑
i=1
{bitft(xit|t) + f̃t(xit|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)

∣∣∣∣∣
≤ c̄bias

t κtN
−1,

where κt is defined in (B.1).

We preface the proof of 44 by a technical lemma providing a bound on the bias of ratios of random
variables.

Lemma 45. Let α and β be (possibly dependent) random variables defined on some probability space
(Ω,F ,P) and such that E[α2] <∞ and E[β2] <∞. Moreover, assume that there exist c > 0 and d > 0
such that |α/β| ≤ c, P-a.s., |a/b| ≤ c, E[(α− a)2] ≤ c2d2, and E[(β− b)2] ≤ d2. Then

|E[α/β]− a/b| ≤ 2c(d/b)2 + c|E[β− b]|/|b|+ |E[α− a]|/|b|. (B.10)

145

Proof. Using the identity

E[α/β]− a/b = E[(α/β)(b− β)2]/b2 + E[(α− a)(b− β)]/b2 + aE[b− β]/b2 + E[α− a]/b,

the claim is established by applying the Cauchy–Schwarz inequality and the assumptions of the lemma
according to

|E[α/β]− a/b|
≤ cE[(β− b)2]/b2 + {E[(α− a)2]E[(β− b)2]}1/2/b2 + |a||E[β− b]|/b2 + |E[α− a]|/b2

≤ 2c(d/b)2 + c|E[β− b]|/|b|+ |E[α− a]|/|b|.

Proof of 17. We proceed by induction and assume that the claim holds true for t− 1. Reusing the error
decomposition (B.4), it is enough to bound the expectations of the terms I(2)

N and I(3)
N given in (B.5) and

(B.6), respectively (since EP ,zη0 [I(1)
N] = 0). This will be done using the induction hypothesis, 45, and 42.

More precisely, to bound the expectation of I(2)
N , we use 45 with α← αt, β← βt, a← at, and b← bt,

where

αt := 1
N

N∑
ℓ=1
{βℓt−1Qt−1ft(ξℓt−1) +Qt−1(h̃t−1ft + f̃t)(ξℓt−1)}, βt := 1

N

N∑
ℓ=1

gt−1(ξℓt−1),

at := ηt−1⟨z0:t−1⟩{Qt−1ftBt⟨z0:t−1⟩ht +Qt−1(h̃t−1ft + f̃t)}, bt := ηt−1⟨z0:t−1⟩gt−1.

For this purpose, note that |αt/βt| ≤ κt and |at/bt| ≤ κt, where κt is defined in (B.1). On the other
hand, using 42 (applied with p = 2), we obtain

EP ,zη0
[(αt − at)2] ≤ d2

tκ
2
t and EP ,zη0

[(βt − bt)2] ≤ d2
t ,

where d2
t := ctτ̄2

t−1/(dtN). Using the induction assumption, we get

|EP ,zη0
[αt]− at| ≤ c̄bias

t−1N
−1τ̄t−1κt and |EP ,zη0

[βt]− bt| ≤ c̄bias
t−1N

−1τ̄t−1.

Hence, the conditions of 45 are satisfied and we deduce that

|EP ,zη0
[I(2)
N]| = |EP ,zη0

[αt/βt]− at/bt| ≤ 2κt
ct

dtN
τ̄2
t−1

¯
τ2
t−1

+ 2c̄bias
t−1κt

τ̄t−1

¯
τt−1N

.

The bound on |EP ,zη0 [I(2)
N]| is obtained along the same lines.

B.3.5 Proof of 19

We first consider the bias, which can be bounded according to

∣∣∣Eξ[Π(k0,k),N (f)]− η0:tht
∣∣∣ ≤ (k − k0)−1

k∑
ℓ=k0+1

|Eξµ(βt[ℓ])(id)− η0:tht|

≤ (k − k0)−1N−1cbias
t

(
t−1∑
m=0
∥h̃m∥∞

)
k∑

ℓ=k0+1
κℓN,t,

from which the bound (3.29) follows immediately.

146

We turn to the MSE. Using the decomposition

Eξ[(Π(k0,k),N (f)− η0:tht)2] ≤ (k − k0)−2

k∑

ℓ=k0+1
Eξ[(µ(βt[ℓ])(id)− η0:tht)2]

+ 2
k∑

ℓ=k0+1

k∑
j=ℓ+1

Eξ[(µ(βt[ℓ])(id)− η0:tht)(µ(βt[j])(id)− η0:tht)]

 ,
the MSE bound in 12 implies that

k∑
ℓ=k0+1

Eξ[(µ(βt[ℓ])(id)− η0:tht)2] ≤ cmse
t

(
t−1∑
m=0
∥h̃m∥∞

)2

N−1(k − k0).

Moreover, using the covariance bound in 12, we deduce that

k∑
ℓ=k0+1

k∑
j=ℓ+1

Eξ[(µ(βt[ℓ])(id)− η0:tht)(µ(βt[j])(id)− η0:tht)]

≤ ccov
t

(
t−1∑
m=0
∥h̃m∥∞

)2

N−3/2

 k∑
ℓ=k0+1

k∑
j=ℓ+1

κ
(j−ℓ)
N,t

 .
Thus, the proof is concluded by noting that

∑k
ℓ=k0+1

∑k
j=ℓ+1 κ

(j−ℓ)
N,t ≤ (k − k0)/(1− κN,t).

147

Appendix C

Appendix of Chapter 4

C.1 Conditions on the model to verify A3
In our specific application to score ascent, we work with the following assumptions.

A12 (Lipschitz). (i) For all t ∈ N, there exists Lst ∈ M(Xt:t+1) such that for all (xt, xt+1) ∈ Xt:t+1,
the function θ 7→ st,θ(xt, xt+1) isLst (xt, xt+1)-Lipschitz and Xt:t+1 ∋ (xt, xt+1) 7→ st,θ(xt, xt+1)
is bounded by ∥st(θ)∥∞ for all θ ∈ Θ. Furthermore, ∥Lsk∥∞ <∞.

(ii) For all t ∈ N, there exists Lqt ∈ Xt:t+1 such that ∥Lqt∥∞ <∞ and that for all (xt, xt+1) ∈ Xt:t+1,
θ 7→ qt,θ(xt, xt+1) is Lqt (xt, xt+1)-Lipschitz.

Lemma 46 (A5(i) holds). Assume A 11 and A 3. There exists a constant LV such that the Lyapunov
function V satisfies, for all (θ1, θ2) ∈ Θ2,

∥∇V (θ1)−∇V (θ2)∥ ≤ LV ∥θ1 − θ2∥.

Proof. For all θ1, θ2,

∥∇V (θ1)−∇V (θ2)∥ = ∥η0:t,θ1(s0:t,θ1)− η0:t,θ2(s0:t,θ2)∥
≤ ∥η0:t,θ1(s0:t,θ1)− η0:t,θ1(s0:t,θ2)∥+ ∥η0:t,θ1(s0:t,θ2)− η0:t,θ2(s0:t,θ2)∥ .

By (2) and by (Gloaguen et al., 2022, Theorem 4.10) there exists a constant c such that

∥η0:t,θ1(s0:t,θ2)− η0:t,θ2(s0:t,θ2)∥ ≤ ct∥θ1 − θ2∥ supθ supk ∥sk(θ)∥∞ ,

Using A 2 and A 3[i], we can write:

∥η0:t,θ1(s0:t,θ1)− η0:t,θ1(s0:t,θ2)∥ ≤
t−1∑
u=0

η0:t,θ1 [∥su,θ1(xu:u+1)− su,θ2(xu:u+1)∥],

≤
t−1∑
u=0

η0:t,θ1 [Lsu(xu:u+1)] ∥θ1 − θ2∥,

≤ σ+
σ−

supu∈J0,t−1K [Lsu] ∥θ1 − θ2∥t.

Theorem 47 (Lipschitz continuity of Particle Gibbs with Backward Sampling). Assume A 12. For every
t ∈ N, θ ∈ Θ and N ∈ N∗

sup
x0:t∈X0:t

∥Kθ1,t(x0:t, .)−Kθ2,t(x0:t, .)∥TV ≤ L
K
t,N∥θ1 − θ2∥ ,

149

where

LKt,N :=
t−1∑
ℓ=0

τ̄−1
ℓ

[
σ̄−1
ℓ + (N − 1)

]
∥Lqℓ∥∞ . (C.1)

Proof. We know that Kθ,t = Cm,θBt,θ . Therefore, by Lemmas 57, 59 and 63, we have that Kθ,t is
Lipschitz with constant equals LC

t + supθ Ct,θLB
t .

Corollary 48 (A3(iii) holds.). Assume A 12. For every t ∈ N, θ ∈ Θ, r ∈ N∗ and N ∈ N∗ such that
N > 1 + 5ρ2

t t/2

sup
x0:t∈X0:t

∥∥∥Kr
θ1,t(x0:t, .)−Kr

θ2,t(x0:t, .)
∥∥∥

TV
≤ LPt,N∥θ1 − θ2∥

where
LPt,N := (1− κt,N)−1∥LKt,N∥∞ (C.2)

where LKt,N is defined in (C.1).

Proof. Under 11, the Particle Gibbs with backward sampling is geometrically ergodic with contraction
rate κt,N and thus LKt,N is bounded and the result follows from Lemma 62

Corollary 49 (A3(i)). Assume A 11 and A 12. For all t ∈ N∗, (θ0, θ1) ∈ Θ2,

∥η0:t,θ0 − η0:t,θ1∥TV ≤ L
η∥θ0 − θ1∥,

where
Lη := LPt,N∗ , (C.3)

and LPt,N is defined in (C.2) and N∗ = ⌈1 + 5ρ2
t /2⌉.

Proof. Consider the following decomposition, valid for all k ∈ N∗ and N ≥ 1 + 5ρ2
t /2, and all

x0:t ∈ X0:t,

∥η0:t,θ1 − η0:t,θ2∥TV

≤
∥∥∥η0:t,θ1 −Kk

θ1,t(x0:t, ·)
∥∥∥

TV
+
∥∥∥η0:t,θ2 −Kk

θ2,t(x0:t, ·)
∥∥∥

TV
+
∥∥∥Kk

θ1,t(x0:t, ·)−Kk
θ2,t(x0:t, ·)

∥∥∥
TV

≤
∥∥∥η0:t,θ1 −Kk

θ1,t(x0:t, ·)
∥∥∥

TV
+
∥∥∥η0:t,θ2 −Kk

θ2,t(x0:t, ·)
∥∥∥

TV
+ LPt,N∥θ1 − θ2∥ ,

where we applied Corollary 48. Since the Lipschitz constant of Kθ,t is independent of k, and Kθ,t is
geometrically ergodic for all θ, we obtain by taking the limit when k goes to infinity with N fixed,

∥η0:t,θ1 − η0:t,θ2∥TV ≤
∥LKt,N∥∞
1− κt,N

∥θ1 − θ2 ∥ ,

for all N ≥ 1 + 5ρ2
t /2, where the dependence in N is hidden in LPt,N . The result follows by choosing

N = ⌈1 + 5ρ2
t /2⌉.

Remark 50. As noted by Lindholm and Lindsten (2018), the Lipschitz constant appearing in Corollary 48
possesses an unexpected dependence on N − 1. One would expect it not to be true, in that we know that
Kθ,t converges geometrically fast and uniformly to η0:t and this is faster as N gets bigger. Therefore,
for large N the Lipschitz constant is expected to converge to that of η0:t whose Lipschitz constant is
independent of N .

150

Proposition 51 (Lipschitz continuity of θ 7→ Kθ,tµ(βt)(id)). Assume A 12. For every t ∈ N, θ ∈ Θ
and N ∈ N∗,

∥Kθ1,tµ(βt)(id)−Kθ2,tµ(βt)(id)∥∞ ≤ L
K
t ∥θ1 − θ2∥ ,

where

LK
t := (N − 1)

t−1∑
ℓ=0

τ̄ℓ∥Lqℓ∥∞ +
m∑
j=1
∥L
←−
Q
j ∥∞

[
m−1∑
ℓ=0

s∞ℓ

]
+

m∑
j=1
∥Lsj∥∞ . (C.4)

Proof. Consider e = (x0:t,y0:t) ∈ Et and fθ(e) :=
∫
Sm,θ(x0:t,dỹt)µ(bt)(id). Then Kθ,tµ(bt)(id) =

Cm,θfθ(x0:t) is a composition of a Markov kernel and a Lipschitz function, therefore Lipschitz.

Corollary 52 (A3(iv) holds.). Assume A 12. For every t ∈ N, θ ∈ Θ and N ∈ N∗

sup
x0:t∈X0:t

∥Pθ1,tH − Pθ2,tH∥ ≤ LP2 ∥θ1 − θ2∥ ,

where
LP2 = LPt,N + LK

t , (C.5)

with LP and LK
t are defined in (C.4) and (C.2).

Proof. Let f̃ : Ek−k0 ∋ (x0:t[k0 : k],x0:t|t[k0 : k], bt[k0 : k]) 7→ (k − k0)−1∑k
ℓ=k0+1 µ(bt[ℓ])(id). As

Kθ,t depends only on the path, with a slight abuse of notation, we can define fθ(x0:t) := K�k−k0
θ,t (f̃)(x0:t).

By proposition 51, we have that fθ is Lipschitz withLf = LK
t . Note that Pθ,tH(x0:t,yt) = Kk0

θ,tfθ(x0:t),
therefore, by lemma 63 Lipschitz with constant LP + LK

t .

C.2 Lipschitz properties

C.2.1 Lipschitz continuity of Pθ,
In this section we prove the following items:

• Cm,θ(z0:m, ·) is Lipschitz, see Section C.2.1

• Bm,θ(x0:m, ·) is Lipschitz, see Line 45

•
∫
Sm,θ(x0:m,dbm)µ(bm)(Id) is Lipschitz, see Line 45

The following technical lemma will be useful.

Lemma 53. Let α ∈]0, 1], x ∈ R≥0 and ℓ ∈ N. Then for all λi ∈ R≥0, i ∈ J0, ℓK, such that
α ≥

∏ℓ
i=0(1− λix) it holds that α ≥ 1− x

∑ℓ
i=0 λi.

Proof. Consider first the case where xλi ≤ 1 for all i ∈ J0, ℓK. We prove the result by induction. The
case ℓ = 0 is straightforward. Assume now that the result holds for some r ∈ J0, ℓ− 1K. Then,

r+1∏
i=0

(1− λix) = (1− λr+1x)
r∏
i=0

(1− λix) ≥ (1− λr+1x)(1− x
r∑
i=0

λi)

= 1− x
r+1∑
i=0

λi + x2
r∑
i=0

λiλr+1 ≥ 1− x
r+1∑
i=0

λi .

Consider now the case where there is a index j ∈ J0, ℓK such that xλj ≥ 1. Then α ≥ 0 ≥ 1 −
(
∑ℓ
i=0 λi)x.

151

We begin with some important definitions. Let P and Q be probability distributions on some common
measurable space (X,X), and assume that these distributions admit densities p and q w.r.t some common
reference measure λ. LetM [P,Q] denote a maximal coupling between P and Q. As in (Lindholm and
Lindsten, 2018, Theorem 2), it is possible to explicitly construct one such maximal coupling by

M [P,Q] (d(x, y)) := min{p(x), g(x)}λ(dx)δx(dy)+[
P (dx)−min{p(x), g(x)}λ(dx)

][
Q(dy)−min{p(y), g(y)}λ(dy)

]
1− λ

(
min{p, q}

) . (C.6)

From this definition it follows that for continuous and discrete dominating measures λ,∫
1{x=y}M [P,Q] d(x, y) =

∫
min{p(x), g(x)}λ(dx) .

Moreover, for two Markov transition kernels K1 and K2 on (X,X), which are assumed to admit
transition densities with respect to some common dominating measure, we let, for (x1, x2) ∈ X2,
M [K1,K2] ((x1, x2), ·) denote the maximal coupling between the measures K1(x1, ·) and K2(x2, ·).
Defined in this way,M [K1,K2] defines a Markov transition kernel on the product space (X2,X�2)
The following Lemma will be crucial in what follows.

Lemma 54. (i) Let (µ1, µ2) be two probability measures admitting a density with respect to a common
dominating measure and let (K1,K2) two Markov transition kernels also admitting transition
densities with respect to some dominating measure. Then the probability measure

M [µ1, µ2]M [K1,K2] (d(x1, x2)) =
∫
M [µ1, µ2] (d(z1, z2))M [K1,K2] ((z1, z2),d(x1, x2)),

is a coupling of (µ1K1, µ2K2), and it holds that∫
1x1=x2M [µ1K1, µ2K2] (d(x1, x2))

≥
∫ ∫

1z1=z21x1=x2M [µ1, µ2] (d(z1, z2))M [K1,K2] ((z1, z2),d(x1, x2)).

(ii) Let (µ1, · · · , µn) and (ν1, · · · , νn) be probability measures such that for all i ∈ J1, nK, µi and νi
admit densities with respect to the same dominating measure. Then

⊗n
i=1M [µi, νi] is a coupling

of
⊗n

i=1 µi and
⊗n

i=1 νi, and thus∫ n∏
i=1
1xi=yiM

[
n⊗
i=1

µi,
n⊗
i=1

νi

]
(d(x1, . . . , xn, y1, . . . , yn))

≥
∫ n∏

i=1
1xi=yi

n⊗
i=1
M [µi, νi] (d(x1, . . . , xn, y1, . . . , yn)).

Proof. It is enough to show that M [µ1, µ2]M [K1,K2] admits µ1K1 and µ2K2 as marginal distribu-
tions. This follows immediately from the fact that M [µ1, µ1] andM [K1,K2] admit the right marginal
distributions; indeed,

M [µ1, µ2]M [K1,K2] (X ×A)

=
∫
M [µ1, µ2] (dz1, d2)M [K1,K2] (z1, z2, d(x1, x2))1X×A(x1, x2)1X2(z1, z2)

=
∫
M [µ1, µ2] (dz1, d2)K2(z2, A)

=
∫
µ2(dz2)K2(z2, A)

= µ2K2(A).

152

The derivation for the first marginal distribution follows similarly. For the second point,M [µ1, µ2]M [K1,K2]
is a coupling of (µ1K1, µ2K2) andM [µ1K1, µ2K2] is the maximal coupling, we have that∫

1x1=x2M [µ1K1, µ2K2] (d(x1, x2))

≥
∫∫

1x1=x2M [µ1, µ2] (d(z1, z2))M [K1,K2] (z1, z2; d(x1, x2))

≥
∫∫

1x1=x21z1=z2M [µ1, µ2] (d(z1, z2))M [K1,K2] (z1, z2; d(x1, x2)).

The proof of the second item follows similarly.

θ 7→ Cm,θ is Lipschitz. We proceed by a coupling method that is inspired by (Lindholm and Lindsten,
2018, Theorem 2). The coupling we consider is that where the selection and mutation steps of the particle
filter are respectively coupled maximally.

Algorithm 11 Coupling Cm,θ
Data: θ1, θ2, ζ0:m
Result: x0:m,1, x0:m,1

43 draw x0,1,x0,2 ∼M [η0⟨ζ0⟩,η0⟨ζ0⟩]
44 for s← 1 to t do
45 draw (xs,1,xs,2) ∼M [M s−1,θ1⟨ζs⟩(xs−1,1, ·),M s−1,θ2⟨ζs⟩(xs−1,2, ·)]

First, let us prove that the one step selection–mutation kernel is Lipschitz.

Lemma 55. For all t ∈ N, xt−1 ∈ Xt−1 and (θ1, θ2) ∈ Θ2,

∫
1{x1=x2}M [Φt−1,θ1(µ(xt−1)),Φt−1,θ2(µ(xt−1))] (d(x1, x2)) ≥ 1−

∑N
i=1 λt

(
Lqt−1(xit−1, ·)

)
Nτ̄n

∥θ1−θ2∥.
(C.7)

Proof. By A2(i) and A3(iii),∫
1{x1=x2}M [Φt−1,θ1(µ(xt−1)),Φt−1,θ2(µ(xt−1))] (d(x1, x2))

=
∫

min
(

N∑
i=1

qt−1,θ1(xit−1, x)∑N
j=1 gt−1,θ1(xjt−1)

,
N∑
i=1

qt−1,θ2(xit−1, x)∑N
j=1 gt−1,θ2(xjt−1)

)
λt(dx)

≥
N∑
j=1

∫
min

(
qt−1,θ1(xit−1, x)∑N
j=1 gt−1,θ1(xjt−1)

,
qt−1,θ2(xit−1, x)∑N
j=1 gt−1,θ2(xjt−1)

)
λt(dx)

≥ 1∑N
j=1 max

(
gt−1,θ1(xjt−1), gt−1,θ2(xjt−1)

) N∑
j=1

∫
min

(
qt−1,θ1(xjt−1, x), qt−1,θ2(xjt−1, x)

)
λt(dx)

≥
∑N
j=1 max

(
gt−1,θ1(xjt−1), gt−1,θ2(xjt−1)

)
−
∑N
i=1 λt

(
Lqt−1(xit−1, ·)

)
∥θ1 − θ2∥∑N

j=1 max
(
gt−1,θ1(xjt−1), gt−1,θ2(xjt−1)

)
≥ 1−

∑N
i=1 λt

(
Lqt−1(xit−1, ·)

)
Nτ̄n

∥θ1 − θ2∥,

153

where we have used that∫
max(qt−1,θ1(xit−1, x), qt−1,θ2(xit−1, x))λt(dx) ≥ max

(∫
qt−1,θ1(xit−1, x)λt(dx),

∫
qt−1,θ2(xit−1, x)λt(dx)

)
≥ max(gt−1,θ1(xit−1), gt−1,θ2(xit−1)).

Lemma 56. For all t ∈ N, xt−1 ∈ Xt−1, z ∈ Xt and (θ1, θ2) ∈ Θ2,

∥M t−1,θ1⟨z⟩(xt−1, ·)−M t−1,θ2⟨z⟩(xt−1, ·)∥TV ≤ L
M
t−1(xt−1)∥θ1 − θ2∥

where LMt−1(xt−1) = (1−N−1)τ̄−1
t−1

∑N
i=1 λt

(
Lqt−1(xit−1, ·)

)
.

Proof. Let us denote by UJ1, nK the uniform distribution on J1, nK. By definition of the kernelM t−1,θ⟨z⟩,
we have that

M t−1,θ⟨z⟩(xt−1,dxt) =
∫

UJ1, nK(dj)
{
Φt−1(µ(xt−1))�j � δz � Φt−1(µ(xt−1))�(N−j−1)}(dxt)

and thus, applying the two items of Lemma 54 combined with the fact that M [µ, µ]
(
d(x1, x2)

)
=

µ(dx1)δx1(dx2) for any probability measure µ, we get that∫
1{xt,1=xt,2}M [M t−1,θ1⟨z⟩(xt−1, ·),M t−1,θ2⟨z⟩(xt−1, ·)] d(xt,1,xt,2)

≥
∫
1xt,1=xt,2,i1=i2M [UJ1, nK,UJ1, nK]

(
d(i1, i2)

)
×M [Φt−1,θ1(µ(xt−1)),Φt−1,θ2(µ(xt−1))]⊗i1 ⊗M [δz, δz]
⊗M [Φt−1,θ1(µ(xt−1)),Φt−1,θ2(µ(xt−1))]⊗N−i1−1 d(xt,1,xt,2)

= 1
N

N∑
i=1

∫ n∏
k=1,k ̸=i

1xi
t,1=xi

t,2
M [Φt−1,θ1(µ(xt−1)),Φt−1,θ2(µ(xt−1))]

(
d(xit,1, xit,2)

)

≥
(

1−
∑N
i=1 λt

(
Lqt−1(xit−1, ·)

)
Nτ̄t−1

∥θ1 − θ2∥
)N−1

≥ 1− N − 1
τ̄t−1N

N∑
i=1

λt
(
Lqt−1(xit−1, ·)

)
∥θ1 − θ2∥ .

where we have applied Lemma 55 in the penultimate line and Lemma 53 in the last one.

Lemma 57. For every t ∈ N∗, there exists LC
t ∈ M(X0:t) such that

∥Ct,θ1(z0:t)− Ct,θ2(z0:t)∥TV ≤ L
C
t (z0:t)∥θ1 − θ2∥ , (C.8)

where LC
t (z0:t) = supθ Ct,θ

[∑t−1
i=0 L

M
i

]
(z0:t). Under A 12(i), we obtain that ∥LC

t ∥∞ ≤ (N −
1)
∑t−1
ℓ=0 τ̄ℓ∥L

q
ℓ∥∞.

Proof. This is a direct application of lemma 65.

154

θ 7→ Bt,θ(x0:t, ·) is Lipschitz We start by recalling the definition of Bm

Bt,θ : X0:t ×X0:t ∋ (x0:t, A) 7→
∫
· · ·
∫
1A(x0:t)

(
t−1∏
s=0

←−
Qs,µ(xs)(xs+1, dxs)

)
µ(xt)(dxt) . (C.9)

Lemma 58. For all s ∈ J0, tK, xt+1 ∈ Xt+1, xt ∈ Xt and (θ1, θ2) ∈ Θ2

∥∥∥←−Qs,µ(xs),θ1(xs+1, ·)−
←−
Qs,µ(xs),θ2(xs+1, ·)

∥∥∥
TV
≤ L

←−
Q
s (xs+1,xs)∥θ1 − θ2∥ . (C.10)

withL
←−
Q
s (xs+1,xs) = (Nτ̄tσ̄s)−1∑N

i=1 L
q
s(xis, xs+1). Under A 12(i), we have ∥L

←−
Q
m∥∞ = (τ̄mσ̄m)−1∥Lqm∥∞.

Proof. Note that
←−
Q t,µ(xt)(xt+1, ·) =

∑N
ℓ=1

qt(xℓ
t ,xt+1)∑N

ℓ′=1 qt(xℓ′
t ,xt+1)

δxℓ
t
. Therefore, similarly to the proof of

Lemma 55,∫
1{xt,1=xt,2}M

[←−
Q t,µ(xt),θ1(xt+1, ·),

←−
Q t,µ(xt),θ2(xt+1, ·)

]
d(xt,1, xt,2)

≥
∑N
ℓ=1 max(qt,θ1(xℓt, xt+1), qt,θ2(xℓt, xt+1))− Lqt (xℓt, xt+1)∥θ1 − θ2∥∑N

ℓ=1 max(qt,θ1(xℓt, xt+1), qt,θ2(xℓt, xt+1))

≥ 1−
∑N
ℓ=1 L

q
t (xℓt, xt+1)
Nτ̄tσ̄t

∥θ1 − θ2∥ .

Lemma 59. For all t ∈ N, x0:t ∈ X0:t and (θ1, θ2) ∈ Θ2

∥Bt,θ1(x0:t, ·)− Bt,θ2(x0:t, ·)∥TV ≤ L
B
t (x0:t)∥θ1 − θ2∥ (C.11)

whereLB
t (x0:t) = supθ Bt

[∑t−1
i=0 L

←−
Q
i

]
(x0:t). Under A 12(i), we have that∥LB

t ∥∞ =
∑t−1
i=0(τ̄iσ̄i)−1∥Lqi ∥∞.

Proof. Apply lemma 63 and lemma 58.

θ 7→
∫
St,θ(x0:t, dbt)µ(bt)(id) is Lipschitz Define the backward ancestors kernel

Bθ,t : Xt+1 × Xt × σ(J1, NK) 7→
∫
1A(j̃)

(
N∑
ℓ=1

qt(xℓt, xt+1)∑N
ℓ′=1 qt(xℓ

′
t , xt+1)

δℓ(dj̃)
)
.

Lemma 60. (Bθ,t is Lipschitz) For every m ∈ J0, tK, there exists LBKm ∈ M(Xm:m+1) such that

∥Bθ1,m(xm+1,xm)− Bθ2,m(xm+1,xm)∥TV ≤ L
←−
Q
m (xm+1,xm)∥θ1 − θ2∥ , (C.12)

where L
←−
Q
s is defined in Lemma 58

Proof. Bθ,s is the index version of the kernel (C.9) and thus it is Lipschitz with the same constant.

Proposition 61. For every m ∈ J0, tK, we have that

∣∣ ∫ CmSm,θ(z0:m, dbm)µ(bm)(Id)
∣∣ ≤ m−1∑

ℓ=0
s∞ℓ (C.13)

155

and∣∣∣∣∫ Sm,θ1(x0:m,dbm)µ(bm)(Id)−
∫

Sm,θ2(x0:m,dbm)µ(bm)(Id)
∣∣∣∣ ≤ LSµ

m (x0:m)∥θ1 − θ2∥ . (C.14)

where LSµ
m (x0:m) = N−1∑N

i=1 L
B
m(xkm,x0:m) and LBm is defined recursively as

LBm+1(xkm+1,x0:m) = L
←−
Q
m (xkm+1,xm)

m∑
ℓ=0

s∞ℓ +
∫
Bθ,m(xkm+1,xm,dJ)

{
Lsm(xJ

m, x
k
m+1) + LBm(xJ

m,x0:m−1)
}
.

(C.15)
In particular, under A12, we have that LBm ≤

∑m
j=1 ∥L

←−
Q
j ∥∞

[∑m−1
ℓ=0 s∞ℓ

]
+
∑m
j=1 ∥Lsj∥∞.

Proof. Consider the following kernels,

S̃m,θ(x0:m+1,d(Ji,j0 , . . . , Ji,jm)N,Mi=1,j=1) :=
m∏
ℓ=0

N∏
k=1

S̃ℓ,θ(xkℓ+1,xℓ, d
(
Jk,jℓ

)M
j=1) , (C.16)

S̃ℓ,θ(xkℓ+1,xℓ, d(Jk,jℓ)Mj=1) :=
M∏
j=1
Bθ,ℓ(xkℓ+1,xℓ,dJk,jℓ) . (C.17)

Define for all k ∈ [1 : N], m ∈ N>0,

Bm+1,k : θ 7→
∫

S̃m,θ(x0:m+1,d
(
Ji,j0 , . . . , Ji,jm

)N,M
i=1,j=1)bkm+1

(
x0:m+1,

(
Ji,j0 , . . . , Ji,jm

)N,M
i=1,j=1

)
,

where bkm+1
(
x0:m+1,

(
Ji,j0 , . . . , Ji,jm

)N,M
i=1,j=1

)
is defined recursively as

bkm+1
(
x0:m+1,

(
Ji,j0 , . . . , Ji,jm

)N,M
i=1,j=1

)
= M−1

M∑
ℓ=1

bJk,ℓ
m
m

(
x0:m,

(
Ji,j0 , . . . , Ji,jm−1

)N,M
i=1,j=1

)
+sm,θ(xJk,ℓ

m
m , xkm+1).

For notational convenience, we henceforth drop the arguments and simply write bkm+1.

We herebelow show that Bm+1,k is Lipschitz with constant LBm(xkm+1,xm) and bounded by
∑m−1
ℓ=0 s∞ℓ .

For m > 2 and k ∈ [1 : N],

Bm+1,k(θ) =
∫

S̃m,θ(x0:m+1,d(Ji,j0 , . . . , Ji,jm)N,Mi=1,j=1)bkm+1

=
∫
· · ·
∫

S̃m−1,θ(x0:m, d(Ji,j0 , . . . , Ji,jm−1)N,Mi=1,j=1)S̃m,θ(xkm+1,xm, d(Jk,jm)Mj=1)

×
{
M−1

M∑
ℓ=1

bJk,ℓ
m
m + sm,θ(xJk,ℓ

m
m , xkm+1)

}

=
∫
· · ·
∫
S̃m,θ(xkm+1,xm,d{Jk,jm }Mj=1)

[
M−1

M∑
ℓ=1

{
sm,θ(xJk,ℓ

m
m , xkm+1)

+
∫

S̃m−1,θ(x0:m,d(Ji,j0 , . . . , Ji,jm−1)N,Mi=1,j=1)bJk,ℓ
m
m

}]

=
∫
· · ·
∫
S̃m,θ(xkm+1,xm,d(Jk,jm)Mj=1)

[
M−1

M∑
ℓ=1

{
sm,θ(xJk,ℓ

m
m , xkm+1) +B

m,Jk,ℓ
m

(θ)
}]

=
∫
Bθ,m(xkm+1,xm,dJ)

{
sm,θ(xJ

m, x
k
m+1) +Bm,J(θ)

}

156

Applying the induction hypothesis conditionally on Jk,ℓm ,B
m,Jk,ℓ

m
is Lipschitz with constantLBm(xJk,ℓ

m
m ,x0:m−1)

and thus the Lipschitz constant of Bm+1,k is

LBm+1(xkm+1,x0:m) = L
←−
Q
m (xkm+1,xm)

m∑
ℓ=0

s∞ℓ +
∫
Bθ,m(xkm+1,xm,dJ)

{
Lsm(xJ

m, x
k
m+1) + LBm(xJ

m,x0:m−1)
}
.

(C.18)
where we have used the fact thatBθ,m and sm,θ are also Lipschitz. Again by inductionBm+1,k is bounded
uniformly by

∑m
ℓ=0 s

∞
ℓ . The induction is concluded by noting that for the base case m = 0, βkm = 0 for

all k ∈ N and thus the result holds.

It now remains to check that for all θ ∈ Θ, m ∈ J0, tK and k ∈ [1 : N],

Bm,k(θ) =
∫

Sm(x0:m, dbm)bkm .

Again, we proceed by induction.∫
Sm(x0:m,dbm)bkm

=
∫
· · ·
∫

Sm−1(x0:m−1,dbm−1)Sm(bm−1,xm−1:m, dbm)bkm

=
∫
· · ·
∫

Sm−1(x0:m−1,dbm−1)

×
M∏
j=1

 N∑
p=1

qm−1(xpm−1, x
k
m)∑N

ℓ=1 qm−1(xℓm−1, x
k
m)
δxp

m−1,b
p
m−1

(
d(x̃k,jm−1, b̃

k,j
m−1)

)
×
[
M−1

M∑
n=1

{
b̃k,nm−1 + sm,θ(x̃k,nm−1, x

k
m)
}]

=
∫
· · ·
∫

Sm−1(x0:m−1,dbm−1)

×
M∏
j=1

 N∑
p=1

qm−1(xpm−1, x
k
m)∑N

ℓ=1 qm−1(xℓm−1, x
k
m)
δp(dJk,jm−1)

[M−1
M∑
n=1

{
b

Jk,n
m−1
m−1 + sm,θ(x

Jk,n
m−1
m−1 , x

k
m)
}]

=
∫
· · ·
∫
S̃m,θ(xkm−1,xℓ−1, d(Jk,jℓ−1)Mj=1)

×
[
M−1

M∑
ℓ=1

{
sm,θ(x

Jk,ℓ
m−1
m−1 , x

k
m) + Sm−1(x0:m−1,dbm−1)bJk,ℓ

m−1
m−1

}]

=
∫
· · ·
∫
S̃m,θ(xkm−1,xℓ−1, d(Jk,jℓ−1)Mj=1)

×
[
M−1

M∑
ℓ=1

{
sm,θ(x

Jk,ℓ
m−1
m−1 , x

k
m) +

∫
Sm−1(x0:m−1,dbm−1)bJk,ℓ

m−1
m−1

}]

=
∫
· · ·
∫
S̃m,θ(xkm−1,xℓ−1,d(Jk,jℓ−1)Mj=1)

[
M−1

M∑
ℓ=1

{
sm,θ(x

Jk,ℓ
m−1
m−1 , x

k
m) +B

m−1,Jk,ℓ
m−1

(θ)
}]

= Bm,k(θ)

The proof is finalized by noting that∫
Sm(x0:m,dbm)µ(bm)(Id) = N−1

N∑
k=1

Bm,k(θ)

and thus it is Lipschitz with constant LSµ
m (x0:m) = N−1∑N

i=1 L
B
m(xkm,xm−1).

157

C.2.2 Lipschitz properties of Markov Kernels

Lemma 62 (Composition of ergodic Lipschitz kernels is lipschitz). Let Pθ be a Markov kernel over
X ×Y that is uniformly π-geometrically ergodic for any θ with contraction constant ρ independent of θ
and such that there exists Lp > 0 such that for every x ∈ X

∥Pθ0(x, ·)− Pθ1(x, ·)∥TV ≤ LP ∥θ0 − θ1∥.

Then, for all k > 0 ∥∥∥P kθ0(x, ·)− P kθ1(x, ·)
∥∥∥

TV
≤ LP

1− ρ∥θ0 − θ1∥.

Proof. We use the following decomposition borrowed from Fort et al. (2011). For any k ≥ 1,

P kθ0f − P
k
θ1f =

k−1∑
j=0

P jθ0
(Pθ0 − Pθ1)

(
P k−j−1
θ1

f − πf
)
.

Then, for any f s.t. ∥f∥∞ ≤ 1 and x ∈ X,

|P kθ0f(x)− P kθ1f(x)| ≤
k−1∑
j=0

∣∣∣∣∣
∫
P jθ0

(x,dy) sup
z∈X
|P k−j−1
θ1

f(z)− πf |
∣∣∣∣∣LP ∥θ0 − θ1∥

≤ LP
(k−1∑
j=0

ρk−j−1
)
∥θ0 − θ1∥

≤ LP
1− ρ∥θ0 − θ1∥.

Lemma 63 (Composition of Lipschitz kernels is lipschitz). LetPθ , Qθ be two kernels defined overX×Y
and Y ×Z such that for ever x ∈ X , y ∈ Y there are Lp ∈ M(X), Lq ∈ M(Y) that satisfy

∥Pθ0(x, ·)− Pθ1(x, ·)∥TV ≤ Lp(x)∥θ0 − θ1∥

and
∥Qθ0(y, ·)−Qθ1(y, ·)∥TV ≤ Lq(y)∥θ0 − θ1∥ .

Then
∥Pθ0Qθ0(x, ·)− Pθ1Qθ1(x, ·)∥TV ≤ Lpq(x)∥θ0 − θ1∥ ,

where Lpq(x) = (supθ PθLq(x) + Lp(x) supy supθ Qθ(y, Z)).

Proof. Let f ∈ M such that ∥f∥∞ ≤ 1.

∥Pθ1Qθ1f − Pθ2Qθ2f∥ ≤ ∥Pθ1 [Qθ1f −Qθ2f] ∥+ ∥(Pθ1 − Pθ2)Qθ2f∥
≤ (Pθ1Lq(x) + Lp(x)∥Qθ2f∥∞)∥θ1 − θ2∥ .

Corollary 64. Let Pθ , Qθ be two Markov kernels defined over X × Y and Y × Z such that for ever
x ∈ X , y ∈ Y there are Lp ∈ M(X), Lq ∈ M(Y) that satisfy

∥Pθ0(x, ·)− Pθ1(x, ·)∥TV ≤ Lp(x)∥θ0 − θ1∥

158

Algorithm N k0 k Dmle
PPG 64 0 8 0.205 ± 0.013
PPG 64 1 8 0.213 ± 0.016
PPG 64 2 8 0.201 ± 0.010
PPG 64 3 8 0.201 ± 0.010
PPG 64 4 8 0.207 ± 0.012
PPG 64 5 8 0.212 ± 0.015
PPG 64 6 8 0.210 ± 0.017
PPG 64 7 8 0.211 ± 0.018

Table C.1: Distance to θMLE for each configuration in the LGSSM case.

and
∥Qθ0(y, ·)−Qθ1(y, ·)∥TV ≤ Lq(y)∥θ0 − θ1∥ .

Then
∥Pθ0Qθ0(x, ·)− Pθ1Qθ1(x, ·)∥TV ≤ Lpq(x)∥θ0 − θ1∥ ,

where Lpq(x) = (supθ PθLq(x) + Lp(x)).
Lemma 65 (Product of Lipschitz kernels is lipschitz). Let Pθ , Qθ be two Markov kernels that are
uniformly Lipschitz with constantsLP , LQ. Then Pθ�Qθ is uniformly Lipschitz with constantLP +LQ.

Proof. Let hθ : y 7→
∫
Qθ(y,dz)f(y, z). Then (Pθi

⊗ Qθi
)(f) = Pθi

(hθi
) and the proof is similar to

that of the previous Lemma since hθ is Lipschitz with constant LQ and ∥hθ∥∞ ≤ 1.

C.3 Additional numerical results
For both experiments, all the parameters were initialized by sampling from a centered multivariate
gaussian distribution with covariance matrix of 0.01I . We have used the ADAM optimizer Kingma and
Ba (2015a) with a learning rate decay of 1/

√
ℓ where ℓ is the iteration index, with a starting learning rate

of 0.2. We rescale the gradients by T .

LGSSM For LGSSM we evaluated for fixed number of particles (N = 64) and number of gibbs itera-
tions (k = 8) the influence of the burn-in phase (k0) over the final distance obtained to the MLE estimator.
Table C.1 indicates that configurations with smaller k0 perform better. A possible interpretation of this
phenomenon is that, since between two gradient ascent iterates the conditioning path is being passed on,
this conditioning path from a moment on makes the estimates less biased, so the importance of having
k0 high to have less bias vanishes, but the effect of augmenting the variance with k0 is still shown, since
the fact of having a conditioning particle from the right marginal does not affect the variance of the
estimator, only it’s bias.

159

Appendix D

Appendix of Chapter 5

D.1 SMCdiff extension
The identity (5.15) allows us to extend SMCdiff Trippe et al. (2023) to handle noisy inverse problems
as we now show. We have that

ϕỹτ
τ (xτ) =

∫
pτ (ỹτ⌢xτ |xτ+1)

{∏n−1
s=τ+1 ps(dxs|xs+1)

}
pn(dxn)∫

pτ (ỹτ⌢zτ)dzτ
=
∫
bỹτ
τ :n(xτ :n|xτ+1:n)f ỹτ

τ+1:n(dxτ+1:n)dxτ+1:n ,

where

bτ :n(xτ :n|xτ+1:n) =
pτ (ỹτ⌢xτ |xτ+1)

{∏n−1
s=τ+1 ps(xs|xs+1)ps(xs|xs+1)

}
p
n
(xn)

Lỹτ
τ :n(xτ+1:n)

,

f ỹτ
τ+1:n(xτ+1:n) = Lỹτ

τ :n(xτ+1:n)∫
pτ (ỹτ⌢zτ)dzτ

,

and

Lỹτ
τ :n(xτ+1:n) =

∫
pτ (ỹτ⌢zτ |xτ+1

⌢zτ+1)
{

n−1∏
s=τ+1

p
s
(dzs|xs+1

⌢zs+1)ps(xs|xs+1
⌢zs+1)

}
p
n
(dzn) .

Next, (5.14) implies that∫
ps+1(xs+1

⌢zs+1)p
s
(dzs|xs+1

⌢zs+1)ps(xs|xs+1
⌢zs+1)dzs:s+1 =∫

ps(xs⌢zs)qs+1(xs+1|xs)qs+1(zs+1|zs)dzs:s+1 ,

and applied repeatedly, we find that

Lỹτ (xτ+1:n) =
∫

pτ (ỹτ⌢xτ)dxτ ·
∫
δỹτ (dxτ)

n∏
s=τ+1

qs(xs|xs−1) .

and thus, f ỹτ
τ :n(xτ+1:n) =

∫
δỹτ (dxτ)

∏n
s=τ+1 qs(xs|xs−1). In order to approximate ϕỹτ

τ we first diffuse
the noised observation up to timen, resulting inxτ+1:n, and then estimate bỹτ

τ+1:n(·|xτ+1:n) using a particle
filter with p

s
(xs|xs+1) as transition kernel at step s ∈ [τ + 1 : n] and gs : zs 7→ ps−1(xs−1|xs⌢zs) as

potential, similarly to SMCdiff.

161

D.2 Proofs

D.2.1 Proof of Proposition 33

Preliminary definitions.

We preface the proof with notations and definitions of a few quantities that will be used throughout.

For a probability measureµ and f a bounded measurable function, we writeµ(f) :=
∫
f(x)µ(dx) the ex-

pectation of f under µ and ifK(dx|z) is a transition kernel we writeK(f)(z) :=
∫
f(x)K(dx|z).

Define the smoothing distribution

ϕy0:n(dx0:n) ∝ δy(dx0)p0:n(x0:n)dx0dx1:n , (D.1)

which admits the posterior ϕy0 as time 0 marginal. Its particle estimate known as the poor man smoother
is given by

ϕN0:n(dx0:n) = N−1 ∑
k0:n∈[1:N]n+1

δ
y⌢ξ

k0
0

(dx0)
n∏
s=1
1
{
ks = Iks−1

s

}
δ
ξks

s
(dxs) . (D.2)

We also let ΦN
0:n be the probability measure defined for any B ∈ B(Rdx)⊗n+1 by

ΦN
0:n(B) = E

[
ϕN0:n(B)

]
,

where the expectation is with respect to the probability measure

PN0:n
(
d(x1:N

0:n , a
1:N
1:n)

)
=

N∏
i=1

pyn(dxin)
n∏
ℓ=2

N∏
j=1

N∑
k=1

ωkℓ−1δk(da
j
ℓ)p

y
ℓ−1(dxjℓ−1|x

aj
ℓ
ℓ)

×

N∏
j=1

N∑
k=1

ωk0δk(da
j
1)py0(dxj0|x

aj
1

1)δy(dxj0) , (D.3)

where ωit := ω̃t(ξit+1)/
∑N
j=1 ω̃t(ξ

j
t+1) and which corresponds to the joint law of all the random variables

generated by Algorithm 1. It then follows by definition that for any C ∈ B(Rdx),∫
ΦN

0:n(dz0:n)1C(z0) = E
[∫

ϕN0:n(dz0:n)1C(z0)
]

= E
[
ϕN0 (C)

]
= ΦN

0 (C) .

Define also the law of the conditional particle cloud

PN(d(x1:N
0:n , a

1:N
1:n)

∣∣z0:n
)

= δzn(dxNn)
N−1∏
i=1

pyn(dxin)

×
n∏
ℓ=2

δzℓ−1(dxNℓ−1)δN (daNℓ−1)
N−1∏
j=1

N∑
k=1

ωkℓ−1δk(da
j
ℓ)p

y
ℓ−1(dxjℓ−1|x

aj
ℓ
ℓ)

× δz0(dxN0)δN (daN1)
N−1∏
j=1

N∑
k=1

ωk0δk(da
j
1)py0(dxj0|x

aj
1

1)δy(dxj0) .

(D.4)

In what follows Ez0:n refers to expectation with respect to PN (·|z0:n). Finally, for s ∈ [0 : n − 1] we
let ΩN

s denote the sum of the filtering weights at step s, i.e. ΩN
s =

∑N
i=1 ω̃s(ξis+1). We also write

Z0 =
∫

p0(x0)δy(dx0)dx0 and for all ℓ ∈ [1 : n], Zℓ =
∫
qℓ|0(xℓ|y)pℓ(dxℓ).

The proof of Proposition 33 relies on two Lemmata stated below and proved in Section D.2.1; in
Lemma 66 we provide an expression for the Radon-Nikodym derivative dϕy0:n/dΦy

0:n and in Lemma 67
we explicit its leading term.

162

Lemma 66. ϕy0:n and ΦN
0:n are equivalent and we have that

ΦN
0:n(dz0:n) = Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
ϕy0:n(dz0:n) . (D.5)

Lemma 67. It holds that

Zn
Z0

Ez0:n

[
n−1∏
s=0

N−1ΩN
s

]
=
(
N − 1
N

)n
+ (N − 1)n−1

Nn

n∑
s=1

Zs/Z0
qs|0(zs|y)

∫
p0|s(x0|zs)δy(dx0)dx0 + Dy

0:n
N2 . (D.6)

where Dy
0:n is a positive constant.

Before proceeding with the proof of Proposition 33, let us note that having z 7→ ω̃ℓ(z) bounded on Rdx

for all ℓ ∈ [0 : n − 1] is sufficient to guarantee that Cy0:n and Dy
0:n are finite since in this case it follows

immediately that Ez0:n

[∏n−1
s=0 N

−1ΩN
s

]
is bounded and so is the right hand side of (D.6). This can be

achieved with a slight modification of (5.9) and (5.10). Indeed, consider instead the following recursion
for s ∈ [0 : n] where δ > 0,

ϕyn(xn) ∝
(
qn|0(xn|y) + δ

)
pn(xn) ,

ϕys(xs) ∝
∫
ϕys+1(xs+1)ps(dxs|xs+1) qs(xs|y) + δ

qs+1(xs+1|y) + δ
dxs+1 .

Then we have that
ϕy0(x0) ∝

∫
ϕy1(x1)p0(x0|x1) p0(y|x1)

q1|0(x1|y) + δ
dx1 .

We can then use Algorithm 1 to produce a particle approximation of ϕy0 using the following transition
and weight function,

py,δs (xs|xs+1) = γs(y|xs+1)
γs(y|xs+1) + δ

pys(xs|xs+1) + δ

γs(y|xs+1) + δ
ps(xs|xs+1) ,

ω̃s(xs+1) =
(
γs(y|xs+1) + δ

)/(
qs+1|0(xs+1|y) + δ

)
,

where γs(y|xs+1) =
∫
qs|0(xs|y)ps(xs|xs+1)dxs is available in closed form and pys is defined in (5.7).

ω̃s is thus clearly bounded for all s ∈ [0 : n − 1] and it is still possible to sample from py,δs since it is
simply a mixture between the transition (5.7) and the “prior” transition.

Proof of Proposition 33. Consider the forward Markov kernel

−→B1:n(z0,dz1:n) = p1:n(dz1:n)p0(z0|z1)∫
p1:n(dz̃1:n)p0(z̃0|z̃1) , (D.7)

which satisfies
ϕy0:n(dz0:n) = ϕy0(dz0)−→B1:n(z0, dz1:n) .

By Lemma 66 we have for any C ∈ B(Rdx) that

ΦN
0 (C) =

∫
ΦN

0:n(dz0:n)1C(z0)

=
∫
1C(z0)Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
ϕy0:n(dz0:n)

=
∫
1C(z0)

∫ −→B1:n(z0,dz1:n)Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
ϕy0(dz0) ,

163

which shows that the Radon-Nikodym derivative dΦN
0 /dϕ

y
0 is,

dΦN
0

dϕy0
(z0) =

∫ −→B1:n(z0,dz1:n)Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
.

Applying Jensen’s inequality twice yields

dΦN
0

dϕy0
(z0) ≥ NnZ0/Zn∫ −→B1:n(z0, dz1:n)Ez0:n

[∏n−1
s=0 ΩN

s

] ,
and it then follows that

KL(ϕy0 ∥ ΦN
0) ≤

∫
log

(
Zn
Z0

∫ −→B1:n(z0, dz1:n)Ez0:n

[
n−1∏
s=0

N−1ΩN
s

])
ϕy0(dz0) .

Finally, using Lemma 67 and the fact that log(1 + x) < x for x > 0 we get

KL(ϕy0 ∥ ΦN
0) ≤ Cy0:n

N − 1 + Dy
0:n
N2

where

Cy0:n :=
n∑
s=1

∫ Zs/Z0
qs|0(zs|y)

(
p0|s(x0|zs)δy(dx0)dx0

)
ϕys(dzs) ,

and ϕys(zs) ∝ ps(zs)
∫
p0|s(z0|zs)δy(dz0)dz0.

Proof of Lemma 66 and Lemma 67

Proof of Lemma 66. We have that

ΦN
0:n(dz0:n)

= N−1
∫
PN0:n(dx1:N

0:n , da1:N
1:n)

∑
k0:n∈[1:N]n+1

δ
y⌢x

k0
0

(dz0)
n∏
s=1
1
{
ks = aks−1

s

}
δ
xks

s
(dzs)

= N−1
∫ ∑

k0:n

∑
a1:N

1:n

δ
y⌢x

k0
0

(dz0)
n∏
s=1
1
{
ks = aks−1

s

}
δ
xks

s
(dzs)

×
N∏
j=1

pyn(dxjn)
{

n∏
ℓ=2

N∏
i=1

ω
ai

ℓ
ℓ−1p

y
ℓ−1(dxiℓ−1|x

ai
ℓ
ℓ)
}

N∏
r=1

ω
ar

1
0 py

ℓ−1(dxr0|x
ar

1
1)δy(xr0)

= N−1
∫ ∑

k0:n

∑
a1:N

1:n

pyn(dxkn
n)δ

xkn
n

(dzn)
∏
j ̸=kn

pyn(dxjn)
n∏
ℓ=2

{ ∏
i ̸=kℓ−1

ω
ai

ℓ
ℓ−1p

y
ℓ−1(dxiℓ−1|x

ai
ℓ
ℓ)

× 1
{
a
kℓ−1
ℓ = kℓ}

ω̃ℓ−1(xa
kℓ−1
ℓ
ℓ)

ΩN
ℓ−1

pyℓ−1(dxkℓ−1
ℓ |xa

kℓ−1
ℓ
ℓ)δ

x
kℓ−1
ℓ−1

(dzℓ−1)
}

×
{ ∏
r ̸=k0

ω
ar

1
0 py0(dxr0|x

ar
1

1)δy(dxr0)
}
1
{
ak0

1 = k1
} ω̃0(xa

k0
1

1)
ΩN

0
py0(dxk0

0 |x
a

k0
1

0)δ
y⌢x

k0
0

(dz0) .

Then, using that for all s ∈ [2 : n]

ω̃s−1(xks
s)pys−1(dxks−1

s−1 |x
ks
s) =

qs−1|0(xks−1
s−1 |y)

qs|0(xks
s |y)

ps(dx
ks−1
s−1 |x

ks
s) ,

164

we recursively get that

pyn(dxkn
n)δ

xkn
n

(dzn)
n∏
s=2
1
{
aks−1
s = ks}

ω̃s−1(xa
ks−1
s
s)

ΩN
s−1

pys−1(dxks−1
s−1 |x

a
ks−1
s
s)δ

x
ks−1
s−1

(dzs−1)

× 1
{
ak0

1 = k1
} ω̃0(xa

k0
1

1)
ΩN

0
py0(dxk0

0 |x
a

k0
1

1)δ
y⌢x

k0
0

(dz0)

=
qn|0(zn|y)pn(dzn)

Zn
δzn(dxkn

n)
n∏
s=2
1
{
aks−1
s = ks}

qs−1|0(zs−1|y)
ΩN
s−1qs|0(zs|y)

ps−1(dzs−1|zs)δzs−1(dxks−1
s−1)

× 1
{
ak0

1 = k1
} p0(y|z1)

ΩN
0 q1|0(z1|y)

p0(dz0|z1)δy(dz0)δz0(dxk0
0)

= Z0
Zn

ϕy0:n(dz0:n)δzn(dxkn
n)

n∏
s=1
1
{
aks−1
s = ks}

1
ΩN
s−1

δzs−1(dxks−1
s−1) .

Thus, we obtain

ΦN
0:n(dz0:n) = N−1

∫ ∑
k0:n

∑
a1:N

1:n

ϕy0:n(dz0:n) Z0/Zn∏n−1
s=0 ΩN

s

δzn(dxkn
n)

∏
j ̸=kn

pyn(dxjn)

×
n∏
ℓ=2
1
{
a
kℓ−1
ℓ = kℓ

}
δzℓ−1(dxkℓ−1

ℓ−1)
∏

i ̸=kℓ−1

ω
ai

ℓ
ℓ−1p

y
ℓ−1(dxiℓ−1|x

ai
ℓ
ℓ)

× 1
{
ak0

1 = k1
}
δz0(dxk0

0)
∏
i ̸=k0

ω
ai

1
0 p0(xi0|x

ai
1

1)δy(dxi0)

= N−1 ∑
k0:n

ϕy0:n(dz0:n)Ek0:n
z0:n

[
Z0/Zn∏n−1
s=0 ΩN

s

]
,

where for all k0:n ∈ [1 : N]n+1 Ek0:n
z0:n denotes the expectation under the Markov kernel

PN
k0:n

(
d(x1:N

0:n , a
1:N
1:n)

∣∣z0:n
)

= δzn(dxkn
n)

∏
i ̸=kn

pyn(dxin)

×
n∏
ℓ=2

δzℓ−1(dxkℓ−1
ℓ−1)δkℓ

(dakℓ−1
ℓ)

∏
j ̸=kℓ−1

N∑
k=1

ωkℓ−1δk(da
j
ℓ)p

y
ℓ−1(dxjℓ−1|x

aj
ℓ
ℓ)

× δz0(dxk0
0)δk1(dak0

1)
∏
j ̸=k0

N∑
k=1

ωk0δk(da
j
1)py0(dxj0|x

aj
1

1)δy(dx0) .

Note however that for all (k0:n, ℓ0:n) ∈ ([1 : N]n+1)2,

Ek0:n
z0:n

[
1∏n−1

s=0 ΩN
s

]
= Eℓ0:n

z0:n

[
1∏n−1

s=0 ΩN
s

]

and thus it follows that

ΦN
0:n(dz0:n) = Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
ϕy0:n(dz0:n) . (D.8)

Denote by {Fs}ns=0 the filtration generated by a conditional particle cloud sampled from the kernel PN

(D.4), i.e. for all ℓ ∈ [0 : n− 1]
Fs = σ

(
ξ1:N
s:n , I

1:N
s+1:n

)
.

165

and Fn = σ
(
ξ1:N
n

)
. Define for all bounded f and ℓ ∈ [0 : n− 1]

γNℓ:n(f) =

n−1∏
s=ℓ+1

N−1ΩN
s

N−1
N∑
k=1

ω̃ℓ(ξkℓ+1)f(ξkℓ+1) , (D.9)

with the convention γNℓ:n(f) = 1 if ℓ ≥ n. Define also the transition Kernel

Qyℓ−1|ℓ+1 : Rdx × B(Rdx) ∋ (xℓ+1, A) 7→
∫
1A(xℓ)ω̃ℓ−1(xℓ)pyℓ (dxℓ|xℓ+1) . (D.10)

Using eqs. (5.7) and (5.8), it is easily seen that for all ℓ ∈ [0 : n− 1],

ω̃ℓ(xℓ+1)Qyℓ−1|ℓ+1(f)(xℓ+1) = 1
qℓ+1|0(xℓ+1|y)

∫
qℓ|0(xs|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ|xℓ+1) . (D.11)

Define 1 : x ∈ Rdx 7→ 1. We may thus write thatγNℓ:n(f) = N−1γNℓ+1:n(1)
∑N
k=1 ω̃ℓ(ξkℓ+1)f(ξkℓ+1).

Lemma 68. For all ℓ ∈ [0 : n− 1] it holds that

Ez0:n

[
γNℓ−1:n(f)

]
= N − 1

N
Ez0:n

[
γNℓ:n

(
Qyℓ−1|ℓ+1(f)

)]
+ 1
N

Ez0:n

[
γNℓ:n(1)

]
ω̃ℓ−1(zℓ)f(zℓ) .

Proof. By the tower property and the fact that γNℓ:n(f) is Fℓ+1-measurable, we have that

Ez0:n

[
γNℓ−1:n(f)

]
= Ez0:n

[
N−1γNℓ+1:n(1)ΩN

ℓ Ez0:n

[
N−1

N∑
k=1

ω̃ℓ−1(ξkℓ)f(ξkℓ)
∣∣∣∣Fℓ+1

]]
.

Note that for all ℓ ∈ [0 : n− 1], (ξ1
ℓ , . . . , ξ

N−1
ℓ) are identically distributed conditionally on Fℓ+1 and

Ez0:n

[
ω̃ℓ−1(ξjℓ)f(ξjℓ)

∣∣∣∣Fℓ+1

]
= 1

ΩN
ℓ

N∑
k=1

ω̃ℓ(ξkℓ+1)
∫
ω̃ℓ−1(xℓ)f(xℓ)pyℓ (dxℓ|ξ

k
ℓ+1) ,

leading to

Ez0:n

[
N−1

N∑
k=1

ω̃ℓ−1(ξkℓ)f(ξkℓ)
∣∣∣∣Fℓ+1

]

= N − 1
NΩN

ℓ

N∑
k=1

ω̃ℓ(ξkℓ+1)
∫
ω̃ℓ−1(xℓ)f(xℓ)pyℓ (dxℓ|ξ

k
ℓ+1) + 1

N
ω̃ℓ−1(zℓ)f(zℓ) ,

and the desired recursion follows.

Proof of Lemma 67. We proceed by induction and show for all ℓ ∈ [0 : n− 2]

Ez0:n

[
γNℓ:n(f)]

=
(
N − 1
N

)n−ℓ ∫ pℓ+1(dxℓ+1)qℓ+1|0(xℓ+1|y)ω̃ℓ(xℓ+1)f(xℓ+1)
Zn

+ (N − 1)n−ℓ−1

Nn−ℓ

[
(Zℓ+1/Zn)f(zℓ+1)ω̃ℓ(zℓ+1)

+
n∑

s=ℓ+2

Zs/Zn
qs|0(zs|y)

∫
ω̃ℓ(xℓ+1)qℓ+1|0(xℓ+1|y)f(xℓ+1)pℓ+1|s(dxℓ+1|zs)

]
+ Dy

ℓ:n
N2 .

(D.12)

166

where f is a bounded function and Dy
ℓ:n is a a positive constant. The desired result in Lemma 67 then

follows by taking ℓ = 0 and f = 1.

Assume that (D.12) holds at step ℓ. To show that it holds at step ℓ−1 we use Lemma 68 and we compute
Ez0:n

[
γNℓ:n

(
Qyℓ−1|ℓ+1(f)

)]
and Ez0:n

[
γNℓ:n(1)

]
ω̃ℓ−1(zℓ)f(zℓ).

Using the following identities which follow from (D.11)

∫
qℓ+1|0(xℓ+1|y)ω̃ℓ(xℓ+1)Qyℓ−1|ℓ+1(f)(xℓ+1)pℓ+1(dxℓ+1)

=
∫
qℓ|0(xℓ|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ) ,

and

∫
ω̃ℓ(xℓ+1)qℓ+1|0(xℓ+1|y)Qyℓ−1|ℓ+1(f)(xℓ+1)pℓ+1|s(dxℓ+1|xs)

=
∫
ω̃ℓ−1(xℓ)qℓ|0(xℓ|y)f(xℓ)pℓ|s(dxℓ|xs) ,

we get by (D.12) that

N − 1
N

Ez0:n

[
γNℓ:n

(
Qyℓ−1|ℓ+1(f)

)]
=
(
N − 1
N

)n−ℓ+1 ∫ qℓ|0(xℓ|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ)
Zn

+ (N − 1)n−ℓ

Nn−ℓ+1

[Zℓ+1/Zn
qℓ+1|0(zℓ+1|y)

∫
qℓ|0(xℓ|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ|zℓ+1)

+
n∑

s=ℓ+2

Zs/Zn
qs|0(zs|y)

∫
ω̃ℓ−1(xℓ)qℓ|0(xℓ|y)f(xℓ)pℓ|s(dxℓ|zs)

]
+ Dy

ℓ:n
N2

=
(
N − 1
N

)n−ℓ+1 ∫ qℓ|0(xℓ|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ)
Zn

+ (N − 1)n−ℓ

Nn−ℓ+1

n∑
s=ℓ+1

Zs/Zn
qs|0(zs|y)

∫
ω̃ℓ−1(xℓ)qℓ|0(xs|y)f(xℓ)pℓ|s(dxℓ|zs) + Dy

ℓ:n
N2 .

(D.13)

The induction step is finished by using again (D.12) and noting that

1
N

Ez0:n

[
γNℓ:n(1)

]
ω̃ℓ−1(zℓ)f(zℓ) = (N − 1)n−ℓ

Nn−ℓ+1
(
Zℓ/Zn

)
ω̃ℓ−1(zℓ)f(zℓ) + D̃y

ℓ:n
N2 .

and then setting Dy
ℓ−1:n = Dy

ℓ:n + D̃y
ℓ:n.

It remains to compute the initial value at ℓ = n− 2. Note that

Ez0:n

[
γNn−1:n(f)

]
= N − 1

N

∫
pyn(dxn)ω̃n−1(xn)f(xn) + 1

N
ω̃n−1(zn)f(zn) (D.14)

167

and thus by Lemma 68 and similarly to the previous computations

Ez0:n

[
γNn−2:n(f)

]
=
(
N − 1
N

)2 ∫
pyn(dxn)ω̃n−1(xn)Qyn−2|n(f)(xn) + N − 1

N2

[
ω̃n−1(zn)Qyn−2|n(f)(zn)

+ ω̃n−2(zn−1)f(zn−1)
∫
pyn(dxn)ω̃n−1|n(xn)

]
+

Dy
n−2fa:n
N2

=
(
N − 1
N

)2 ∫ qn−1|0(xn−1|y)ω̃n−2(xn−1)pn−1(dxn−1)
Zn

+ N − 1
N2

[(
Zn−1/Zn

)
ω̃n−2(zn−1)f(zn−1)

+ 1
qn|0(xn|y)

∫
qn−1|0(xn−1|y)ω̃n−2(xn−1)f(xn−1)pn−1(dxn−1|zn)

]
+

Dy
n−2:n
N2 .

D.2.2 Proof of Proposition 34 and Lemma 69

In this section and only in this section we make the following assumption

(A2) For all s ∈ [0 : n− 1], ps(xs)qs+1(xs+1|xs) = ps+1(xs+1)λs(xs|xs+1) .
We also consider σδ = 0. In what follows we let τdy+1 = n and we write τ1:dy = {τ1, . . . , τdy} and
τ1:dy = [1 : n] \ τ1:t. Define the measure

Γy
0:n(dx0:n) = pn(dxn)

∏
s∈τ1:dy

λs(dxs|xs+1)
dy∏
i=1

λτi
(xτi |xτi+1)dx\iτi

δy[i](dxτi [i]) . (D.15)

Under (A2) it has the following alternative forward expression,

Γy
0:n(dx0:n) = p0(dx0)

∏
s∈τ1:dy

qs+1(dxs+1|xs)
dy∏
i=1

qτi(xτi |xτi−1)dx\iτi
δy[i](dxτi [i]) . (D.16)

Since the forward kernels decompose over the dimensions of the states, i.e.

qs+1(xs+1|xs) =
dx∏
ℓ=1

qℓs+1(xs+1[ℓ]|xs[ℓ])

where qℓs+1(xs+1[ℓ]|xs[ℓ]) = N (xs+1[ℓ]; (αs+1/αs)1/2xs[ℓ], 1− (αs+1/αs)), we can write

Γy
0:n(x0:n) = p0(x0)

dx∏
ℓ=1

Γy
1:n|0,ℓ

(
x1[ℓ], . . . ,xn[ℓ]

∣∣x0[ℓ]
)
, (D.17)

where for ℓ ∈ [1 : dy]

Γy
1:n|0,ℓ

(
x1[ℓ], . . . ,xn[ℓ]|x0[ℓ]

)
= qℓτℓ

(y[ℓ]|xτℓ−1[ℓ])
∏
s ̸=τℓ

qℓs(dxs[ℓ]|xs−1[ℓ]) , (D.18)

and for ℓ ∈ [dy + 1 : dx],

Γy
1:n|0,ℓ(x1[ℓ], . . . ,xn[ℓ]|x0[ℓ]) =

n−1∏
s=0

qℓs+1(xs+1[ℓ]|xs[ℓ]) . (D.19)

With these quantities in hand we can now prove Proposition 34.

168

Proof of Proposition 34. Note that for ℓ ∈ [1 : dy],

N (y[ℓ];ατℓ
x0[ℓ], 1− ατℓ

) = qℓτℓ|0(y[ℓ]|x0[ℓ]) =
∫
qℓτℓ

(y[ℓ]|xτℓ−1[ℓ])
∏
s ̸=τℓ

qℓs(dxs[ℓ]|xs−1[ℓ])

=
∫

Γy
1:n|0,ℓ

(
d(x1[ℓ], . . . ,xn[ℓ])|x0[ℓ]

)
and thus

p0(x0)gy0(x0) ∝ p0(x0)
dy∏
ℓ=1
N (y[ℓ];ατℓ

x0[ℓ], 1− ατℓ
)

= p0(x0)
dy∏
ℓ=1

∫
Γy

1:n|0,ℓ
(
d(x1[ℓ], . . . ,xn[ℓ])|x0[ℓ]

)
= p0(x0)

dx∏
ℓ=1

∫
Γy

1:n|0,ℓ
(
d(x1[ℓ], . . . ,xn[ℓ])|x0[ℓ]

)
.

By (D.16) it follows that

ϕy
0 (x0) = 1∫

Γy
0:n(x̃0:n)dx̃0:n

∫
Γy

0:n(x0:n)dx1:n ,

and hence by (D.16) and (D.15) we get

ϕy
0 (x0) ∝

∫
pτdy (xτdy)δy[dy](dxτdy [dy])dx\dy

τdy

dy−1∏
i=1

λτi|τi+1
(xτi |xτi+1)δy[i](dxτi [i])dx\iτi

λ0|τ1
(x0|xτ1) .

This completes the proof.

Let γy
0,s denote the joint time 0 and s marginal of the measure (D.15), i.e.

γy
0,s(x0,xs) =

∫
Γy

0:n(x0:n)dx1:s−1dxs+1:n (D.20)

We now prove the following result.

Lemma 69. Assume (A2) and let τ0 := 0, τdy+1 := n. For all k ∈ [1 : dy],
(i) If s ∈ [τk + 1 : τk+1],

γy
0,s(x0,xs) =∫

γy
0,s+1(x0,xs+1)qσ

s|s+1,0(xs|xs+1, x0)gy
s (xs)

dy∏
ℓ=k+1

qσ,ℓs|s+1,0(xs[ℓ]|xs+1[ℓ],x0[ℓ])dxs+1 .

(ii) If s = τk,

γy
0,s(x0,xs) =

∫
γy

0,s+1(x0,xs+1)qσ
s|s+1,0(xs|xs+1, x0)

×
k−1∏
i=1

gy
s,i(xs[i])

dy∏
ℓ=k+1

qσ,ℓs|s+1,0(xs[ℓ]|xs+1[ℓ],x0[ℓ])dxs+1 .

169

Proof of Lemma 69. Let k ∈ [1 : dy] and assume that s ∈ [τk + 1 : τk+1 − 2]. By (A2), (D.16), (D.18)
and (D.19) we have that

γy
0,s(x0,xs) = p0(x0)q

s|0(xs|x0)
k∏
i=1

qiτi|0(y[i]|x0[i])qis|τi
(xs[i]|y[i])

×
dy∏

ℓ=k+1
qℓs|0(xs[ℓ]|x0[ℓ])qℓτℓ|s(y[ℓ]|xs[ℓ]) ,

and thus, using the following identity valid for ℓ ∈ [k + 1 : dy]

qℓs|0(xs[ℓ]|x0[ℓ])qℓτℓ|s(y[ℓ]|xs[ℓ])

= qℓs|0(xs[ℓ]|x0[ℓ])
∫
qℓτℓ|s+1(y[ℓ]|xs+1[ℓ])qℓs+1(xs+1[ℓ]|xs[ℓ])dxs+1[ℓ]

=
∫
qσ,ℓs|s+1,0(xs[ℓ]|xs+1[ℓ],x0[ℓ])qℓτℓ|s+1(y[ℓ]|xs+1[ℓ])qℓs+1|0(xs+1[ℓ]|x0[ℓ])dxs+1[ℓ] ,

and that q
s|0(xs|x0)q

s+1(xs+1|xs) = qσ
s|s+1,0(xs|xs+1, x0)q

s+1|0(xs+1|x0) we get that

γy
0,s(x0,xs)

=
∫

p0(x0)q
s|0(xs|x0)q

s+1(dxs+1|xs)

×
k∏
i=1

qiτi|0(y[i]|x0[i])qis|τi
(xs[i]|y[i])qis+1|τi

(dxs+1[i]|y[i])

×
dy∏

ℓ=k+1
qσ,ℓs|s+1,0(xs[ℓ]|xs+1[ℓ],x0[ℓ])qℓτℓ|s+1(y[ℓ]|xs+1[ℓ])qℓs+1|0(xs+1[ℓ]|x0[ℓ])dxs+1[ℓ]

=
∫
γy

0,s+1(x0,xs+1)qσ
s|s+1,0(xs|xs+1, x0)gy

s (xs)
dy∏

ℓ=k+1
qσ,ℓs|s+1,0(xs[ℓ]|xs+1[ℓ],x0[ℓ])dxs+1 .

If s = τk+1 then

γy
0,s(x0,xs) = p0(x0)q

s|0(xs|x0)
k∏
i=1

qiτi|0(y[i]|x0[i])qis|τi
(xs[i]|y[i])

× qk+1
τk+1|0(y[k + 1]|x0[k + 1])

dy∏
ℓ=k+2

qℓs|0(xs[ℓ]|x0[ℓ])qℓτℓ|s(y[ℓ]|xs[ℓ]) ,
(D.21)

and similarly to the previous case we get

γ0,s(x0,xs)

=
∫
γy

0,s+1(x0,xs+1)qσ
s|s+1,0(xs|xs+1, x0)gy

s (xs)
dy∏

ℓ=k+2
qσ,ℓs|s+1,0(xs[ℓ]|xs+1[ℓ],x0[ℓ])dxs+1 .

Finally, if s = τk+1 − 1, then

γy
0,s(x0,xs) = p0(x0)q

s|0(xs|x0)
k∏
i=1

qiτi|0(y[i]|x0[i])qis|τi
(xs[i]|y[i])

× qk+1
s|0 (xs[k + 1]|x0[k + 1])qk+1

τk+1|s(y[k + 1]|xs[k + 1])
dy∏

ℓ=k+2
qℓs|0(xs[ℓ]|x0[ℓ])qℓτℓ|s(y[ℓ]|xs[ℓ]) ,

170

and using

qk+1
s|0 (xs[k + 1]|x0[k + 1])qk+1

τk+1|s(y[k + 1]|xs[k + 1])

= qσ,k+1
s|τk+1,0(xs[k + 1]|xτk+1 [k + 1],x0[k + 1])qk+1

τk+1|0(y[k + 1]|x0[k + 1])

we find that

γ0,s(x0,xs)

=
∫
γy

0,τk+1
(x0,xτk+1)qσ

s|τk+1,0
(xs|xτk+1 , x0)gy

s (xs)
dy∏

ℓ=k+1
qσ,ℓs|s+1,0(xs[ℓ]|xτk+1 [ℓ],x0[ℓ])dxτk+1 .

D.3 Algorithmic details and numerics

D.3.0.1 GMM

For a given dimension dx, we consider qdata a mixture of 25 Gaussian random variables. The Gaussian
random variables have mean µi,j := (8i, 8j, · · · , 8i, 8j) ∈ Rdx for (i, j) ∈ {−2,−1, 0, 1, 2}2 and
unit variance. The mixture (unnormalized) weights ωi,j are independently drawn according to a χ2

distribution. The κ paramater of MCGdiff is κ2 = 10−4. We use 20 steps of DDIM for the numerical
examples and for all algorithms.

Score: Note that qs(xs) =
∫
qs|0(xs|x0)qdata(x0)dx0. As qdata is a mixture of Gaussians, qs(xs)

is also a mixture of Gaussians with means α1/2
s µi,j and unitary variances. Therefore, using automatic

differentiation libraries, we can calculate ∇ log qs(xs). Setting e(xs, s) = −(1 − αs)1/2∇ log qs(xs)
leads to the optimum of (5.4).

Forward process scaling: We chose the sequence of {βs}1000
s=1 as a linearly decreasing sequence

between β1 = 0.2 and β1000 = 10−4.

Measurement model: For a pair of dimensions (dx, dy) the measurement model (y,A, σy) is drawn
as follows:

• A: We first draw Ã ∼ N (0dy×dx , Idy×dx) and compute the SVD decomposition of Ã = USVT .
Then, we sample for (i, j) ∈ {−2,−1, 0, 1, 2}2, si,j according to a uniform in [0, 1]. Finally, we
set A = U Diag({si,j}(i,j)∈{−2,−1,0,1,2}2)VT .

• σy: We draw σy uniformly in the interval [0,max(s1, · · · , sdy)].
• y: We then draw x∗ ∼ qdata and set y := Ax∗ + σyϵ where ϵ ∼ N (0dy , Idy).

Posterior: Once we have drawn both qdata and (y,A, σy), the posterior can be exactly calculated using
Bayes formula and gives a mixture of Gaussians with mixture components ci,j and associated weights
ω̃i,j

ci,j := N (Σ
(
AT y/σ2

y + µi,j
)
,Σ) ,

ω̃i := ωiN (y; Aµi,j , σ2 Idx +AAT) ,

where Σ :=
(
Idx +σ−2

y ATA
)−1

.

171

Variational Inference: The RNVP entries in the numerical examination are obtained by Variational
Inference using the RNVP architecture for the normalizing flow from Dinh et al. (2017). Given a
normalizing flow fϕ with ϕ ∈ Rj , j ∈ N∗, the training procedure consists of optimizing the ELBO, i.e.,
solving the optimization problem

ϕ∗ = argmax
ϕ∈Rj

Nnf∑
k=1

log |Jfϕ(ϵi)|+ log π∗(fϕ(ϵi)) , (D.22)

whereNnf ∈ N∗ is the minibatch-size, Jfϕ the Jacobian of fϕ w.r.t ϕ, and ϵ1:Nnf
∼ N (0, I)⊗Nnf . All the

experiments were performed using a 10 layers RNVP. Equation (D.22) is solved using Adam algorithm
Kingma and Ba (2015a) with a learning rate of 10−3 and 200 iterations with Nnf = 10. The losses
for each pair (dx, dy) is shown in figure D.1, where one can see that the majority of the losses have
converged.

Choosing DDIM timesteps for a given measurement model: Given a number of DDIM samples R, we
choose the timesteps 1 = t1 < · · · < tR = 1000 ∈ [1 : 1000] as to try to satisfy the two following
constraints:

• For all i ∈ [1 : dy] there exists a tj such that σyα
1/2
tj ≈ (1− αtj)1/2si,

• For all i ∈ [1 : R− 1], α1/2
ti − α

1/2
ti+1 ≈ δ for some δ > 0.

The first constraint comes naturally from the definition of τi. Since the potentials have mean α1/2
ti y,

the second condition constrains the intermediate laws remain “close”. An algorithm that approximately
satisfies both constraints is given below.

Algorithm 2: Timesteps choice

Input: Number of DDIM steps R, σy, {si}
dy
i=1, {αi}1000

i=1
Output: {tj}Rj=1

1 Set Sτ = {}.
2 for j ← [1 : dy] do
3 Set τ̃j = argminℓ∈[1:1000] |σyα

1/2
ℓ − (1− αℓ)1/2)sj |.

4 Add τ̃j to Sτ if τ̃j /∈ Sτ .

5 Set nm = R−#Sτ − 1 and δ = (α1/2
1 − α1/2

1000)/nm.
6 Set t1 = 1, e = 1 and ie = 1. for ℓ← [2 : 1000] do
7 if α1/2

e − α1/2
ℓ > δ or ℓ ∈ Sτ then

8 Set e = ℓ, ie = ie + 1 and τie = ℓ.
9 Set τR = 1000.

Additional numerics: We now proceed to illustrate in Figures D.2 to D.4 the first 2 components for one
of the measurement models for all the different combinations of (dx, dy) combinations used in table 5.1.
We also show in figure D.5 the evolution of each observed coordinate in the noise case with dy = 4.

We can see that it follows closely the forward path of the diffused observations indicated by the blue
line.

172

dx = 1 dx = 2 dx = 4

K
L

0 50 100 150 200

101

102

103

104

0 50 100 150 200

101

102

103

104

0 50 100 150 200

101

102

103

104

d
y

=
8

K
L

0 50 100 150 200

102

103

104

0 50 100 150 200

102

103

104

0 50 100 150 200

102

103

104

d
y

=
80

K
L

0 50 100 150 200

103

104

0 50 100 150 200

103

104

0 50 100 150 200

103

104

d
y

=
800

Iteration

Figure D.1: Evolution of KL with the number of iterations for all pairs of (dx, dy) tested in the GMM
case.

173

MCGdiff DDRM DPS RNVP

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x1

Figure D.2: First two dimensions for the GMM case with dx = 8. The rows represent dy = 1, 2, 4
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of
each column).

MCGdiff DDRM DPS RNVP

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x1

Figure D.3: First two dimensions for the GMM case with dx = 80. The rows represent dy = 1, 2, 4
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of
each column).

174

MCGdiff DDRM DPS RNVP

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x
2

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

20 10 0 10 20

20

10

0

10

20

x1

Figure D.4: First two dimensions for the GMM case with dx = 800. The rows represent dy = 1, 2, 4
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of
each column).

xs[1]

100 101 102 10320

10

0

10

20

100 101 102 10320

10

0

10

20

xs[2]

xs[3]

100 101 102 10320

10

0

10

20

100 101 102 10320

10

0

10

20

xs[4]

s s

Figure D.5: Illustration of the particle cloud of the 4 first observed coordinate in the case (dy, dx) =
(4, 800) with 100 DDIM steps. The red points represent the particle cloud, while the purple points at the
origin represent the posterior distribution. The blue curve corresponds to the curve s → α

1/2
s y[ℓ] and

the blue dot on the curve to α1/2
τℓ y[ℓ].

175

d dy MCGdiff DDRM DPS RNVP

8 1 1.43 ± 0.55 5.88 ± 1.16 4.86 ± 1.01 9.43 ± 0.99
8 2 0.49 ± 0.24 5.20 ± 1.32 5.79 ± 1.96 8.93 ± 1.29
8 4 0.38 ± 0.25 2.51 ± 1.29 3.48 ± 1.52 6.71 ± 1.54
80 1 1.39 ± 0.45 5.64 ± 1.10 4.98 ± 1.14 6.86 ± 0.88
80 2 0.67 ± 0.24 7.07 ± 1.35 5.10 ± 1.23 7.79 ± 1.50
80 4 0.28 ± 0.14 7.81 ± 1.48 4.28 ± 1.26 7.95 ± 1.61
800 1 2.40 ± 1.00 7.44 ± 1.15 6.49 ± 1.16 7.74 ± 1.34
800 2 1.31 ± 0.60 8.95 ± 1.12 6.88 ± 1.01 8.75 ± 1.02
800 4 0.47 ± 0.19 8.39 ± 1.48 5.51 ± 1.18 7.81 ± 1.63

Table D.1: Extended GMM sliced wasserstein table.

d SW
2 0.79 ± 0.15
6 0.87 ± 0.07
10 0.96 ± 0.06

Table D.2: Sliced Wasserstein between learned diffusion and target prior.

Table D.1 is an extended version of table 5.1.

D.3.0.2 FMM

A funnel distribution is defined by the following density

N (x1; 0, 1)
d∏
i=1
N (xi; 0, exp(x1/2)) .

To generate a Funnel mixture model of 20 components in dimension d, we start by firstly sampling
(µi, Ri)20

i=1 uniformly in ([−20, 20]d × SO(Rd))×20. The mixture will consist of 20 Funnel random
variables translated by µi and rotated by Ri, with unnormalized weights ωi,j that are independently
drawn uniformly in [0, 1].

Score The denoising diffusion network e(θ) in dimension d is defined as a 5 layers Resnet network
where each Resnet block consists of the chaining of three blocks where each block has the following
layers:

• Linear (512, 1024),

• 1d Batch Norm,

• ReLU activation.

The Resnet is preceeded by an input embedding from dimension d to 512 and in the end an output
embedding layer projects the output of the resnet from 512 to d. The time t is embedded using positional
embedding into dimension 512 and is added to the input at each Resnet block. The network is trained
using the same loss as in Ho et al. (2020) for 104 iterations using a batch size of 512 samples. A learning
rate of 10−3 is used for the Adam optimizer Kingma and Ba (2015b). Figure D.6 illustrate the outcome of
the learned diffusion generative model and the target prior. In table D.2 we show the CLT 95% intervals
for the SW between the learned diffusion generative model and the target prior.

176

dy = 2 dy = 6 dy = 10
x

2

20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20

20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20

20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20

x1

Figure D.6: Purple points are samples from the prior and yellow samples from the diffusion with 25
DDIM steps.

Forward process scaling We chose the sequence of {βs}1000
s=1 as a linearly decreasing sequence between

β1 = 0.2 and β1000 = 10−4.

Measurement model The measurement model was generated in the same way as for the GMM
case.

Posterior The posterior samples were generated by running the No U-turn sampler (Hoffman and
Gelman (2011)) with a chain of length 104 and taking the last sample of the chain. This was done in
parallel to generate 104 samples. The mass matrix and learning rate were set by first running Stan’s
warmup and taking the last values of the warmup phase.

Variational inference: Variational inference in FMM shares the same details as the GMM case. The
analogous of figure D.1 is displayed at figure D.7.

Additional plots: We now proceed to illustrate in Figures D.8 to D.10 the first 2 components for one
of the measurement models for all the different combinations of (dx, dy) combinations used in table 5.1.

177

dx = 1 dx = 3 dx = 5
K

L

0 50 100 150 200

101

102

103

104

0 50 100 150 200

101

102

103

104

0 50 100 150 200

101

102

103

104

d
y

=
6

K
L

0 50 100 150 200

101

102

103

104

0 50 100 150 200

102

103

104

0 50 100 150 200

102

103

104

d
y

=
10

Iteration

Figure D.7: Evolution of KL with the number of iterations for all pairs of (dx, dy) tested in the FMM
case.

MCGdiff DDRM DPS RNVP

PC
A

2

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4

6

8

PC
A

2

15 10 5 0 5 10 15

15

10

5

0

5

10

15

15 10 5 0 5 10 15

15

10

5

0

5

10

15

15 10 5 0 5 10 15

15

10

5

0

5

10

15

15 10 5 0 5 10 15

15

10

5

0

5

10

15

PC
A

2

30 20 10 0 10 20 30
30

20

10

0

10

20

30

30 20 10 0 10 20 30
30

20

10

0

10

20

30

30 20 10 0 10 20 30
30

20

10

0

10

20

30

30 20 10 0 10 20 30
30

20

10

0

10

20

30

PCA1

Figure D.8: First two dimensions for the FMM case with dx = 10. The rows represent dy = 1, 3, 5
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of
each column).

178

MCGdiff DDRM DPS RNVP

PC
A

2

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

PC
A

2

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

PC
A

2

7.5 5.0 2.5 0.0 2.5 5.0 7.5

7.5

5.0

2.5

0.0

2.5

5.0

7.5

7.5 5.0 2.5 0.0 2.5 5.0 7.5

7.5

5.0

2.5

0.0

2.5

5.0

7.5

7.5 5.0 2.5 0.0 2.5 5.0 7.5

7.5

5.0

2.5

0.0

2.5

5.0

7.5

7.5 5.0 2.5 0.0 2.5 5.0 7.5

7.5

5.0

2.5

0.0

2.5

5.0

7.5

PCA1

Figure D.9: First two dimensions for the FMM case with dx = 6. The rows represent dy = 1, 3, 5
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of
each column).

MCGdiff DDRM DPS RNVP

PC
A

2

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

PCA1

Figure D.10: First two dimensions for the FMM case with dx = 2 and dy = 1. The blue dots represent
samples from the exact posterior, while the red dots correspond to samples generated by each of the
algorithms used (the names of the algorithms are given at the top of each column).

179

D.3.0.3 Image datasets

We now present samples from MCGdiff in different image dataset and different kinds of inverse prob-
lems.

Super Resolution We start by super resolution. We set σy = 0.05 for all the datasets and ζcoeff = 0.1
for DPS . We use 100 steps of DDIM with η = 1. The results are shown in Figure D.11. We use a
downsampling ratio of 4 for the CIFAR-10 dataset, 8 for both Flowers and Cats datasets and 16 for the
others. The dimension of the datasets are recalled in table D.3. We display in figure D.11 samples from
MCGdiff, DPSand DDRMover several different image datasets (table D.3). For each algorithm, we generate
1000 samples and we show the pair of samples that are the furthest apart in L2 norm from each other in
the pool of samples. For MCGdiff we ran several parallel particle filters with N = 64 to generate 1000
samples.

CIFAR-10 Flowers Cats Bedroom Church CelebaHQ
(W,H,C) (32, 32, 3) (64, 64, 3) (128, 128, 3) (256, 256, 3) (256, 256, 3) (256, 256, 3)

Table D.3: The datasets used for the inverse problems over image datasets.

Gaussian 2D debluring We consider a Gaussian 2D square kernel with sizes (w/6, h/6) and standard
deviation w/30 where (w, h) are the width and height of the image. We set σy = 0.1 for all the datasets
and ζcoeff = 0.1 for DPS . We use 100 steps of DDIM with η = 1. We display in figure D.12 samples
from MCGdiff, DPSand DDRMover several different image datasets (table D.3). For each algorithm, we
generate 1000 samples and we show the pair of samples that are the furthest appart in L2 norm from
each other in the pool of samples. For MCGdiff we ran several parallel particle filters with N = 64 to
generate 1000 samples.

Inpainting on CelebA We consider the inpainting problem on the CelebA dataset with several different
masks in figure D.13. We show in figure D.14 the evolution of the particle cloud with s.

1000 900 800 700 600 500

400 300 200 100 50 4

Figure D.14: Evolution of the particle cloud for one of the masks. The numbers on top and bottom
indicate the step s of the approximation.

180

CIFAR-10 Flowers Cats Bedroom Church CelebaHQ

sample

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

observation

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

DPS

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

DPS

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

DDRM

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

DDRM

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

MCGdiff

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

MCGdiff

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

Figure D.11: Ratio 4 for CIFAR, 8 for flowers and Cats and 16 for CELEB

181

CIFAR 10 Flowers Cats Bedroom Church CelebaHQ

sample

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

observation

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

DPS

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

DPS

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

DDRM

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

DDRM

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

MCGdiff

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

MCGdiff

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

Figure D.12

182

Original MCGdiff MCGdiff MCGdiff MCGdiff DPS DDRM SMCdiff

Figure D.13: Inpainting with different masks on the CelebA test set.

183

Appendix E

Appendix of Chapter 6

E.1 Additional Theoretical Results on DDM
In this section we prove two important aspects mentioned in section 6.3. Namely, that the inference
process matches the marginals of the forward process (qηk|0(xk|x0) = qk|0(xk|x0)) and that for a certain
choice of weighting coefficients, (6.3) consists of minimizing a certain KL, where for two densities f, g
we define

KL(f ∥ g) =
∫

log
(
f(x)
g(x)

)
f(x)dx . (E.1)

This follows closely Song et al. (2021a), adapting it to our notation and to the variance exploding
framework.

Lemma 70. Let {ηk}k∈N satisfy η2
k ∈ [0, υ2

k] for all k ∈ [1 : K]. Then

qηk|0(xk|x0) = qk|0(xk|x0) .

Proof. We proceed by induction. By definition, equality holds for k = K. Assume that for k + 1 the
equality holds. Then, note that

qηk|0(xk|x0) =
∫
qηk|k+1,0(xk|xk+1, x0)qηk+1|0(xk+1|x0)dxk+1

=
∫
N
(
xk;µk(x0, xk+1), η2

k Id
)
N
(
xk+1;x0, υ

2
k+1 I

)
dxk+1 ,

with µk(x0, xk+1) = x0 + (υ2
k/υ

2
k+1 − η2

k/υ
2
k+1)1/2(xk+1 − x0) . By standard Gaussian conjugation

formulas, we have that qηk|0(xk|x0) = N
(
xk;x0, υ

2
k

)
, completing the proof.

Note that taking η2
k = υ2

k

υ2
k+1

ρ2
k+1 yields qηk|k+1,0 = qk|k+1,0 where

qk|k+1,0(xk|x0, xk+1) :=
qk+1|k(xk+1|xk)qk|0(xk|x0)

qk+1|0(xk+1|x0) = N (xk;x0 + υ2
k

υ2
k+1

(xk+1−x0), υ2
k

υ2
k+1

ρ2
k+1 I) .

(E.2)
This shows that the inference process can be seen as a generalization of the forward noising process.

Lemma 71. Let µ(x0:K) = qdata(x0)qη1:K|0(x1:K |x0). Then,

KL(µ ∥ p0:K
θ) = C +

K∑
k=1

γ2
kEX0∼qdata,ϵ∼N (0,I)

[
∥Dθ0|k(X0 + υkϵ, υk)−X0∥2

]
, (E.3)

185

where C is a constant independent of θ and

γ2
k = η−2

k−1

[
1− (υ2

k−1/υ
2
k − η2

k−1/υ
2
k)1/2

]2
for k > 1 ,

γ2
1 = η−2

0 .

Proof. In this proof, we treat every constant not depending on θ as C. Note that the actual value of C
can change from a line to the other. We start by rewriting

KL(µ ∥ pθ0:K) =
∫

log
(qdata(x0)qη1:K|0(x1:K |x0)

p0:K(x0:K)

)
qdata(x0)qη1:K|0(x1:K |x0)dx0:K

=
K−1∑
k=1

∫
log

(
qηk|k+1,0(xk|x0, xk+1)
pθk|k+1(xk|xk+1)

)
qηk|k+1,0(xk|x0, xk+1)qηk+1|0(xk+1|x0)qdata(x0)dx0,k,k+1

+
∫

log
(qdata(x0)qη1|0(x1|x0)

pθ0|1(x0|x1)

)
qdata(x0)qη1|0(x1|x0)dx0:1 + C

=
K−1∑
k=1

∫
KL(qηk|k+1,0(·|x0, xk+1) ∥ pθk|k+1(·|xk+1))qk+1|0(x0)xk+1qdata(x0)dx0,k+1

−
∫

log pθ0|1(x0|x1)qdata(x0)qη1|0(x1|x0)dx0:1 + C ,

where C is a constant that does not depend on θ. We know that

KL(N (µ1, σ
2
1 I) ∥ N (µ2, σ

2
2 I)) = 2−1

[
2d log(σ2/σ1)− d+ d(σ1/σ2)2 + ∥µ2 − µ1∥2/σ2

2

]
,

thus

KL(qηk|k+1,0(·|x0, xk+1) ∥ pθk|k+1(·|xk+1)) = η−2
k

[
1− (υ2

k/υ
2
k+1 − η2

k/υ
2
k+1)1/2

]2
∥Dθ0|k+1(xk+1)− x0∥2 .

Note also that
log pθ0|1(x0|x1) = −η−2

0 ∥D
θ
0|1(x1)− x0∥2 + C .

The proof is finished by lemma 70.

E.2 Preprocessing Implementation Details

Our preprocessing follows four stages.

• Align the recording-frequency of all ECGs to 250 Hz by performing down or up sampling. Thus,
two consecutive points in the ECG are separated by 4ms.

• Extract R peaks from the ECG. The first principal component is extracted channel-wise from the
entire ECG. Subsequently, this extracted component is processed through a Savitzky-Golay filter,
characterized by an order of 3 and a window length of 15. The extraction of R-peaks is then carried
out based on the methodology proposed in Brammer (2020).

• Select the window [R−192 ms, R + 512 ms] containing the QRS. This window corresponds to
176 time-points as (192 + 512)/4 = 176.

• Normalize each ECG lead by dividing it by the maximum absolute value attained during the QRS.

186

Table E.1: Distribution of patients, gender and number of recorded beats among train, test and MI sets.

Train CV Test MI
All (patients) 22580 2723 2864 468

Male (patients) 11722 1399 1497 343
Female (patients) 10858 1324 1367 125

All (beats) 214460 25694 27221 44911
Mean (beats) 9.5 +/- 0.1 9.4 +/- 0.2 9.5 +/- 0.2 96 +/- 5

C
ou

nt

0 25 50 750

500

1000

1500

2000

2500

Ages (train)
0 25 50 750

100

200

300

Ages (test)
40 60 800

20

40

60

80

Ages (MI)

Figure E.1: Female (pink), male (blue) ages histograms in training (left), test (middle), MI (right) sets.

E.3 Architecture Details

We implement a very close architecture to Karras et al. (2022) and available at https://github.com/
NVlabs/edm as well as training procedure. The main difference is that we replaced the 2D convolutional
layers by 1D ones in every UNet. The final network use the following parameters:

• First embedding dimension: c = 192,

• Number of Unet blocks per resolution: 2,

• Number of resolutions: 1,

• Dropout probability 0.10,

• Attention resolution: [88, 44, 22].

For the training, the following configuration was used:

• learning rate: 10−4,

• Number of epochs: 104,

• Batch Size: 1024,

• Exponential moving average coefficient: 0.9999.

For the (forward diffusion) we used the following parameters:

• σmin = 2× 10−4,

• σmax = 80,

• σdata = 0.5,

• Importance law of σ for training: LogN (−1.2, 1.22 I).

E.4 Deeper or Unconditioned Denoisers

In this section we test two alternative architectures: a DDM unconditioned on the patient information P
(1) and a deeper DDM (2).

To obtain comparable EMD for both conditioned and unconditioned ECGs with P , unconditioned
generated ECGs are concatenated with A,S,RR features randomly selected from the test set. We find

187

https://github.com/NVlabs/edm
https://github.com/NVlabs/edm

that conditioning over A,S,RR leads to smaller EMD.

The U-Net blocks can be stacked and a common usage in the literature is to combine several U-Net on
different resolution levels, that are obtained by downsampling the data before feeding it to each block
U-Net. We have experimented with using 2 resolution levels for the U-Net but found no signicant gains
w.r.t. using only one level.

Figure E.2: EMD of generated ECGs vs. test (dotted) and train (plain), w.r.t diffusion steps. Small conditioned
(resp. uncond.) network in orange and (resp. gray). Deeper conditioned network in pink. EMD of test (resp.
noisy-test) vs. train in red (resp. blue). Error bars correspond to different training batches of size 2864.

E.5 SMC Algorithm
In this section we first provide the SMC algorithm 12.

Algorithm 12 SMC
Input: observation y, number of diffusion steps K, number of particles M
Operations involving index i are repeated for i ∈ [1 : M]
Initialization: ξi

K ∼ λ
for k = K − 1 to 0 do
Ii

k ∼ Cat
(
{ωk(ξj

k+1)/
∑M

i=1 ωk(ξi
k+1)}M

j=1
)

ξi
k ∼ p

y
k(·|ξIi

k
k+1)

end for
Output: ξ1:M

0

E.6 Heuristic for the Potential

Preliminary definitions.

We preface this section with some measure theory notations and definitions of a few quantities that will
be used throughout.

For d ∈ N, we denote B(Rd) the Borel set in Rd. For a probability measure µ ∈ Rd and f : Rd → R
a bounded measurable function, we write µ(f) :=

∫
f(x)µ(dx) the expectation of f under µ and if

K(dx|z) is a transition kernel we write K(f)(z) :=
∫
f(x)K(dx|z). For a ∈ Rd, we define the Dirac

distribution δa as the distribution such that for allB ∈ B(Rd), δa(B) = 1 if a ∈ B else δa(B) = 0.

Heuristic

In this section we give an heuristic for deriving the potential (6.13) for the VE framework. We assume
that we measure partially a new ECG through a subset of indices I = {(ℓ, t) ∈ [1 : L] × [1 : T]} ≠

188

[1 : L] × [1 : T]. For any (ℓ, t) ∈ I, the observation follows y ∼ X0[ℓ, t] + σϵℓ,t where σ is the
known measurement noise, supposed uniform for the sake of simplicity. We aim at sampling x0 from the
posterior X0|y, σ, with p.d.f.

ϕy0(x0) := gy0(x0)p0(x0)/Z

where

gy0(x0) :=
∏

(l,t)∈I N (x0[ℓ, t]; y[ℓ, t], σ2),
p0(x0) :=

∫
λ(xK)

∏1
j=K pj−1|j(xj−1|xj)dx1:K ,

Z :=
∫
gy0(x)p0(x)dx.

We suppose that there exists a diffusion step τ ∈ [0 : K] such that υ2
τ = σ2, i.e., such that the level of

measurement noise equals the level of diffusion noise. This assumption is realistic for a large number of
diffusion steps K. We can then rewrite the posterior p.d.f. as follow

ϕy0(x0) =
∏

(l,t)∈I N (x0[ℓ, t]; y[ℓ, t], υ2
τ)p0(x0)/Z

=
∏

(l,t)∈I qτ |0(y[ℓ, t]|x0[ℓ, t])p0(x0)/Z . (E.4)

We make the idealistic assumption that for all x0:K , q0:K(x0:K) = p0:K(x0:K), which implies that
qk = pk and that

qk|0(xk|x0)p0(x0) = qk|0(xk|x0)q0(x0)
= p0|k(x0|xk)pk(xk) . (E.5)

However, we cannot directly replace the element-wise forward process in E.4 using this assumption as
only the indices of I are taken into account. Hence, we introduce the following integral form of the
likelihood

gy0(x0) =
∏

(l,t)∈I qτ |0(y[ℓ, t]|x0[ℓ, t])
=
∏

(l,t)∈I
∫
qτ |0(xτ [ℓ, t]|x0[ℓ, t])δy[ℓ,t](dxτ [ℓ, t])

=
∫
qτ |0(xτ |x0)ψ(dxτ) , (E.6)

where
ψ(dxτ) :=

∏
(l,t)∈I δy[ℓ,t](dxτ [ℓ, t])

∏
(l,t)/∈I dxτ [ℓ, t] ,

which also means that ψ is a measure that has a singleton in every observed coordinate and the Lebesgue
measure on the non observed coordinates. By plugging E.6 into E.4 and replacing the backward with
the forward process we obtain

ϕy0(x0) =
∫
qτ |0(xτ |x0)p0(x0)ψ(dxτ)/Z

=
∫
p0|τ (x0|xτ)pτ (xτ)ψ(dxτ)/Z .

This shows that sampling from ϕy0 can be obtained by sampling first from

ϕτ := pτ (xτ)ψ(dxτ)/Z (E.7)

and then propagating the samples via p0|τ (x0|xτ), i.e., we define ϕk(xk) ∝ gk(xk)pk−1(xk−1) with
gk(xk) := 1 for k < τ .

Now we derive a sequence {ϕk}k>τ to sample recursively from E.7. We introduce the extended
distribution

ϕτ :K(dxτ :K) := pτ :K(xτ :K)ψ(dxτ)dxτ+1:K/Z , .

189

where pτ :K(xτ :K) := λ(xK)
∏τ+1
k=K pk−1|k(xk−1|xk) . We can write the marginal distribution of ϕτ :K

for k > τ , using the definition (6.5)

ϕk(xk) =
∫
pτ |k(xτ |xk)pτ (xτ)ψ(dxτ)/Z .

Then using the assumption in E.5

ϕk(xk) =
∫
qk|τ (xk|xτ)pk(xk)ψ(dxk)/Z

=
∏

(l,t)∈I qk|τ (xk[ℓ, t]|y[ℓ, t])pk(xk)/Z
=
∏

(l,t)∈I N (x[ℓ, t]; y[ℓ, t], υ2
k − σ2)pk(xk)/Z ,

where we recognize a product between the marginal law at time k and a potential function of the
form

gk(x) :=
∏

(l,t)∈I N (x[ℓ, t]; y[ℓ, t], υ2
k − σ2) .

Note that ϕτ introduced in E.7 does not admit a density with respect to pτ , because of the singleton
measures on the observed coordinates. To mimic the effect of the singleton while still admitting a density
with respect to pτ , we use the following approximation

ϕτ (xτ) ≈
∏

(l,t)∈I N (xs[ℓ, t]; y[ℓ, t], ε2)pτ (xτ)/Z ,

for a small ε.

Figure E.3 provides a visual representation of the sampling of ECGs x0 from the posteriorX0|y, σ = 0.1,
with I = [1 : 3] × [1 : T] using the sequence of instrumental laws {ϕk}k∈[0:K]. At the beginning of
the generation (first column), the generated samples (in blue) are scattered and the standard deviation of
the guiding function is high. As generation progresses (from left to right), the standard deviation of the
guiding function decreases until it approaches 0. From then on (last two columns), k < τ and samples
are generated by the backward process solely.

Figure E.3: Conditional generation example. Observation: (aVL, aVR, aVF) with σ = 0.1. Red solid/dashed
lines: observed/real signal. Shaded zone: observed signal plus 3× std of the guiding function 6.13, std values on
top. Blue: posterior samples.

190

E.7 Proposal Potential and Weight
Using conjugate formulas we compute the proposal kernel and the weights defined in (6.8) used in SMC
algorithm

pyk(xk|xk+1) =
∏
ℓ∈Vk

Ty∏
k=1
N (xk[ℓ, t];µk,y(xk+1)[ℓ, t],

η2
kσ

2
k,y

η2
k + σ2

k,y

)
∏
ℓ/∈Vk

∏
t/∈[1:Ty]

N (xk[ℓ, t];µk(xk+1)[ℓ, t], η2
k) ,

and

ωyk(xk+1) =
∏
ℓ∈Vk

Ty∏
t=1
N
(
µk[ℓ, t]; y[ℓ, t], η2

k+1 + σ2
k,y

)/ ∏
ℓ∈Vk+1

Ty∏
t=1
N (xk+1[ℓ, t]; y[ℓ, t], σ2

k+1,y) ,

where

σ2
k,y := υ2

k − (1− δ)σ2
ℓ

µk := µk
(
xk+1,D0|k+1(xk+1)

)
µk,y(xk+1)[ℓ, t] := (η2

ky[ℓ, t] + σ2
k,yµk[ℓ, t])/(η2

k + σ2
k,y) .

E.8 Number of particles
As the number of particles, denoted as M , increases, we observe a corresponding decrease in the
discrepancy between the target posterior distribution and the distribution of particles generated by
algorithm 12. A critical question arises: what is the optimal value for M that strikes a balance between
accuracy and computational efficiency? To approach this question, we first selected a patient from the
test dataset and used algorithm 12 to generate 103 samples with a high particle count of M = 104. We
consider these samples as our reference representing the target posterior distribution.

We then generated 103 samples with algorithm 12 for different values of M and calculated the Earth
Mover’s Distance (EMD) relative to the reference samples. This process helps us to evaluate the conver-
gence of the distribution generated by the algorithm to the posterior asM varies. Figure E.4 illustrates the
relationship betweenM and the EMD. From this analysis,M = 50 provides an effective equilibrium that
provides a reasonable approximation to the posterior distribution while ensuring manageable inference
times.

EM
D

101 102 103

2.30

2.35

2.40

2.45

2.50

2.55

M

Figure E.4: EMD distance between 1000 samples from algorithm 12 withM particles and 1000 samples
of algorithm 12 with 105 particles, that is considered the standard samples.

191

E.9 Baselines
In this section, we provide implementation details for testing the WGAN, DAE, AAE, and OOD baselines
in the same setup as our approach.

In the paper Adib et al. (2022), the WGAN is conditioned on 15 categorical heart disease labels. These
labels are embedded into a vector of size 100 and concatenated with the latent variable before being
inputted into the generator. They are also embedded into a vector of length T (where T is the temporal
length of the signal) and then concatenated with the cardiac signal (fake or real) before being inputted
into the critic. Embedding maps variables with a finite number of possible values (i.e., categorical
variables) into a vectorized representation. However, since in our DDM we condition on scalar variables
such as the RR interval, in order to compare the results obtained with our DDM and the WGAN, we
instead use a multi-layer perceptron (MLP) with the following architecture: a linear layer from 4 to 864,
a 1D normalization layer, LeakyReLU, and a linear layer from 864 to 64. This MLP maps the 4-size
feature vector (Ã, S̃, R̃R) to a 64-vector, which is then used in the same way as the embedding was in
the original paper.

In the paper Chiang et al. (2019), a DAE is used to denoise ECGs containing multiple heartbeats. Their
proposed architecture consists of 6 convolutional layers with a kernel size of 16 and 6 deconvolutional
layers with a kernel size of 16. Since in our experiments the input signals are single heartbeats, we use
a kernel size of 4 instead of 16 to be able to apply the DAE to shorter signals. We pretrain the DAE to
denoise corrupted signals with Gaussian noise with a standard deviation sampled from an exponential
distribution with a rate parameter of 0.2, by minimizing the mean squared error between the real and
denoised heartbeats, using the Adam optimizer for 50 epochs. We use this model for two experiments:
ECG denoising and anomaly detection. For the latter, we use the mean squared error (MSE) between the
input and decoded heartbeat as the anomaly score.

For the AAE, we employ the same architecture and training as Shan et al. (2022). We use this model for
two tasks: ECG denoising and anomaly detection (which is the task solved by this model in Shan et al.
(2022)). For the first task, we denoise corrupted ECG signals simply by encoding and decoding them
with the AE module.

Finally, we also use the out-of-distribution score proposed by Ciosek et al. (2020) for anomaly detection
(in addition of using it for generative evaluation in section 6.5.3). The anomaly score is the MSE between
the output of the random fixed network and the trained network.

E.10 Additional Results
In this section we provide supplementary results for the experiments on ECG missing lead reconstruction
and the prediction of corrected QT: we provide R2-score between predicted and real lead ℓ, with 95%-
CLT intervals over the test-set for missing lead reconstruction using NC-MCGdiff and Dower matrices in
table E.2; we provide the R2-score between QT measured vs. regressed (intercept: QTc

0, slope: QTc
1)

as a function of RR, in generated samples, with 95%-CLT intervals over the test-set, for several corrected
QT formulas in table E.3.

192

Figure E.5: Real and generated ECG heart beat with DDM and WGAN.

193

Table E.2: R2-score between predicted and real lead ℓ, with 95%-CLT intervals over the test-set.

Lead (ℓ) NC-MCGdiff Dower

V1 0.98 ± 0.01 0.70 ± 0.05
V2 0.99 ± 0.00 0.78 ± 0.05
V3 0.99 ± 0.00 0.75 ± 0.06
V4 0.99 ± 0.00 0.87 ± 0.03
V5 0.98 ± 0.02 0.86 ± 0.08
V6 0.99 ± 0.01 0.85 ± 0.03

Table E.3: R2-score between QT measured vs. regressed (intercept: QTc
0, slope: QTc

1) as a function of RR, in
generated samples, with 95%-CLT intervals over the test-set.

Method R2-score Expression

Framingham 0.88 ± 0.03 QT = QTc
0 +0.154(1− RR)

Bazett 0.47 ± 0.04 QT = QTc
1
√

RR
Baz. (offset) 0.98 ± 0.00 QT = QTc

0 + QTc
1
√

RR
Fridericia 0.94 ± 0.02 QT = QTc

1
3√RR

Frid. (offset) 0.98 ± 0.00 QT = QTc
0 + QTc

1
3√RR

194

Titre : Modèles génératifs pour le traitement des données du type électrocardiogramme: théorie et application.

Mots clés : Apprentissage par machine,Modèles génératifs,Cardiologie,Apprentissage pro-
fond,Apprentissage auto supervisé.

Résumé : Cette thèse apporte des contributions
au vaste domaine des modèles génératifs, avec un
intérêt particulier pour l’application de tels modèles
aux données d’électrocardiogramme (ECG) dans le
cadre de l’inférence et de la quantification de l’incer-
titude. Dans une première partie, nous développons
deux méthodes novatrices pour réduire le biais dans
les méthodes d’échantillonnage d’importance et de
Monte Carlo séquentiel (SMC), qui sont deux ou-
tils importants de l’inférence bayésienne. Les al-
gorithmes résultants peuvent être considérés tous
deux comme des ”enveloppes” autour d’algorithmes
existants actuels, offrant une réduction de biais
sans grande augmentation du temps de calcul.
Nous présentons également de nouvelles bornes
de convergence non asymptotiques pour l’utilisa-

tion de ces algorithmes dans l’apprentissage de
paramètres dans les modèles de Markov cachés
(HMM). Dans une deuxième partie, nous nous
concentrons sur l’utilisation du SMC pour résoudre
des problèmes inverses linéaires bayésiens, avec
des modèles génératifs servant de priors informa-
tifs. Cette approche est particulièrement intéressante
pour améliorer la résolution des problèmes inverses
rencontrés dans divers domaines scientifiques. En-
fin, nous appliquons cette méthodologie à plusieurs
problèmes inverses basés sur l’ECG, notamment la
complétion de pistes manquantes et la détection
hors distribution. Les résultats de ces applications
démontrent l’efficacité et la polyvalence des modèles
génératifs proposés pour relever des défis concrets
dans le contexte de l’analyse des données ECG.

Title : Generative models for ECG data: theory and application.

Keywords : Machine Learning,Generative model,cardiology,Deep Learning,Self-supervised learning.

Abstract : This thesis contributes to the vast domain
of Generative models, with a particular interest in ap-
plying such models to electrocardiogram (ECG) data
for inference and uncertainty quantification. In a first
part, we develop two novel methods for reducing bias
in Importance Sampling and Sequential Monte Carlo
(SMC) methods, which are two important tools of
Bayesian inference. The issuing algorithms can both
be viewed as a wrapper around current existing al-

gorithms providing effortless bias reduction. We also
provide new non-assymptotic convergence bounds for
using such algorithms for parameter learning in Hid-
den Markov Models (HMM). In a second part, we fo-
cus on using SMC for solving Bayesian linear inverse
problems with generative models serving as informa-
tive priors. Finally, we apply this method on several
ECG based inverse problems, namely missing lead
completion and out-of-distribution detection.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Notations:
	Résumé en Français :
	Introduction du problème général
	Problème inverse
	Estimateurs autonormalisées
	Modèles génératifs
	Application à des données du type ECG

	General introduction:
	The guiding problem: Assessing risk of sudden cardiac death using non-invasive data
	Bayesian linear inverse problems

	Self Normalized estimators
	Self-Normalized Importance Sampling
	Iterated sampling importance resampling algorithm i-SIR

	Sequential Monte Carlo
	Particle Filtering
	Particle Smoothing

	Generative models
	Normalizing Flows
	Generative Adversarial Networks (GAN)
	Noise Conditional Score Networks (NCSN) inference by annealed Langevin dynamics
	Denoising Diffusion generative models (DDGM)

	Contributions

	Bibliography
	BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
	Introduction
	Main results
	Statements
	Elements of proofs
	Related works

	Experimental results
	Conclusion

	PPG: Particle-based, Rapid Incremental Smoother Meets Particle Gibbs
	Introduction
	Particle models
	Many-body Feynman–Kac models
	Backward interpretation of Feynman–Kac path flows
	Conditional dual processes and particle Gibbs
	The PARIS algorithm

	The PPG sampler
	Main results
	Theoretical results
	The roll-out PPG estimator

	Numerical results
	Proofs
	Proof of 9
	Proof of 10
	Proof of 13

	Parameter learning with PPG
	Parameter learning with PPG
	Non-asymptotic bound
	Application to theo:ppglearningboundgrad
	Verification of the assumptions of thm:ppglearning:nonass
	Proof of theo:ppglearningboundgrad

	Numerics
	Conclusion

	MCG-DIFF: Monte Carlo guided Diffusion for Bayesian linear inverse problems
	Introduction
	The MCGdiff algorithm
	Extension to general linear inverse problems

	Numerics

	ECG-DIFF: Bayesian ECG Reconstruction using MCG-DIFF
	Introduction
	Related Work
	Background
	Denoising Diffusion Generative Models (DDM):
	Monte Carlo Guided Diffusion

	Methods
	ECG Linear Inverse Problem
	Estimation of Measurement Noise

	Experiments
	Dataset and Preprocessing
	Denoising Network for ECGs
	Evaluation of ECG Generation
	ECG Denoising
	Missing Leads Reconstruction
	Cardiac Anomaly Detection
	Application: Prediction of Corrected QT

	Conclusion
	Impact Statements

	Appendices
	Appendix of chapter:brsnis
	Proofs
	i-SIR Algorithm
	Proof of thm:brsnis:Gibbs:duality
	Proof of thm:brsnis:unbiasedness
	Proof of theo:brsnis:main-properties-deterministic-scan
	Proof of theo:brsnis:isiruniformergodicity
	Proof of theo:brsnis:bias-i-SIR-recycling
	Proof of theo:brsnis:bias-mse-rolling
	High-probability inequality for SNIS

	Moments and high-probability bounds for ratio statistics
	Experiments
	Gaussian Mixture
	Bayesian Logistic regression
	Importance Weighted Auto-Encoders
	Resources

	Appendix of chapter:ppg
	Additional numerical results
	LGSSM
	Stochastic volatility
	Comparison with the Rhee–Glynn-type estimator of jacob:2020

	Algorithms
	Additional proofs
	Proof of 11
	Proof of 15
	Proof of 16
	Proof of 17
	Proof of 19

	Appendix of chapter:ppglearning
	Conditions on the model to verify assumption:ppglearning:lyapunovsmoothness
	Lipschitz properties
	Lipschitz continuity of P,
	Lipschitz properties of Markov Kernels

	Additional numerical results

	Appendix of chapter:mcgdiff
	SMCdiff extension
	Proofs
	Proof of lem:mcgdiff:kldiv:filtering
	Proof of prop:noisytonoiseless and lem:mcgdiff:decompositionnoisyposterior

	Algorithmic details and numerics
	GMM
	FMM
	Image datasets

	Appendix of chapter:ecgreconstruction
	Additional Theoretical Results on DDM
	Preprocessing Implementation Details
	Architecture Details
	Deeper or Unconditioned Denoisers
	SMC Algorithm
	Heuristic for the Potential
	Proposal Potential and Weight
	Number of particles
	Baselines
	Additional Results

