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Chapter 1

Introduction

This introduction describes the general context of the thesis and surveys the main results present in
this thesis. We start by describing the problem of evaluating the risk of cardiac sudden death using
non-invasive data which is the guiding problem behind all the theoretical contributions provided in this
thesis and more directly addressed in Chapter 6. We then introduce the theoretical objects present in
this thesis, namely importance sampling, Sequential Monte Carlo (SMC) methods, denoising diffusion
generative models (DDGM) and inverse problems.

1.1 Notations:

Let R :=[0,00), R} :=(0,00), N:={0,1,2,...}, and N*:={1,2, 3, ...} denote the sets of nonnegative
and positive real numbers and the same for integers, respectively. We denote by Iy the N x N identity
matrix. For any quantities {a,},_, , we denote vectors as a,.;:=(a, . - . , a;), and for any (m,t) € N?
such that m < t, we let [m, t]:={m,m + 1,...,t}. For a given measurable space (X, X'), where X is
a countably generated o-field, we denote by F(X') the set of bounded X' /B(R)-measurable functions on
X. Forany h € F(X), we let [|h|oo:=sup,ex |h(z)| and osc(h):= sup, ,)ex2 [h(x) — h(z')| denote
the supremum and oscillator norms, respectively, of h. Let M(X') be the set of o-finite measures on
(X, X), and M{(X) C M(X) be the probability measures.

Let (Y, )) be another measurable space. A possibly unnormalized transition kernel K on X x ) induces
two integral operators, one acting on measurable functions, and the other on measures; specifically, for
heF(X®Y)and v € M;(X), define the measurable function

Kh:XaxH/h(:c,y)K(x,dy)

and the measure
vK:Y>A— /K(:U,A)V(dx),

whenever these quantities are well defined. Now, let (7Z, Z) be a third measurable space and L be another
possibly unnormalized transition kernel on Y x Z; we then define, with K as above, two different
products of K and L, namely,

KL:XxZ5 (,4) /L(y,A) K(z, dy)

and
KQL:Xx(V®2)5 (z A) »—>//]lA(y,z)K(a:,dy)L(y,dz),
1



whenever these are well defined. This also defines the ® product of a kernel K on X x ) and a measure
von X, as well as of akernel L on Y x X and a measure 1 on ), as the measures

V®K:X®y9AH//HA(w,y)K(w,dy)V(dw%

L®/L:X®y9A»—>//HA(33>Q>L(%d$)/ﬁ(dy)-



1.2 Résumé en Francais :

Les sections qui suivent présentent une introduction de haut niveau aux objets mathématiques qui font
partie des contributions apportées dans cette theése. Nous présentons aussi brievement les contributions
apportées et faisons référence aux chapitres (en anglais) ot elles sont présentés en détail.

1.2.1 Introduction du probléme général

N

Environ 10% des décés chez les adultes en Europe et aux Etats-Unis sont dus 4 une mort subite
d’origine cardiaque (MSOC), souvent incorrectement désignée comme un “arrét cardiaque”. La MSOC
survient généralement a la suite d’arythmies ventriculaires extrémement rapides, c’est-a-dire une fib-
rillation ventriculaire ou une tachycardie ventriculaire (FV/TV). Ces arythmies ventriculaires rapides
sont souvent associées a des maladies cardiaques structurelles telles que les cardiomyopathies ou des
zones d’hétérogénéité électrique cardiaque localisées Haissaguerre et al. (2018). La détection et la
quantification de ces rythmes cardiaques anormaux a 1’aide de techniques non invasives telles que
I’électrocardiogramme (ECG) constituent I'un des plus grands défis en cardiologie. Des traitements
efficaces sont disponibles pour protéger les individus a risque, donc une évaluation précise est cru-
ciale.

A ce jour, la cardiologie s’est appuyée sur les mesures de la fraction d’éjection du ventricule gauche
(LVEF en anglais) pour évaluer le risque de MSOC. Bien que la LVEF soit utile, elle a une utilité limitée
chez les patients plus jeunes sans cardiomyopathies. En effet, la LVEF est une mesure corrélée a la
capacité de contraction de I’ensemble du ventricule gauche, donc moins sensible aux hétérogénéités
cardiaques électriques non structurelles/localisées.

Etant donné que la MSOC nécessite une réponse exceptionnellement rapide pour prévenir les déces, il est
extrémement difficile de collecter des données non invasives directement aupres de cette population. Une
approche alternative consiste a utiliser la distribution de signaux sains, car les bases de données contenant
de telles données sont plus facilement disponibles Kang and Wen (2022); Wen and Kang (2021). Cette
approche peut impliquer la détection d’anomalies ou de valeurs aberrantes dans les données et peut
s’appuyer sur un modele génératif capable d’approximer selon une certaine métrique statistique précis la
distribution des signaux de patients sains. C’est la voie que nous avons choisie d’aborder le sujet dans
cette theése de doctorat.

Au cours de la derniere décennie, plusieurs techniques ont été développées pour concevoir et entrainer
des modeles génératifs capables de générer des motifs hautement réalistes a partir des données originales,
méme pour des types de données complexes de grande dimension tels que les images et 1’audio Kingma
et al. (2019); Kobyzev et al. (2020); Gui et al. (2021). Un modele génératif vise a construire une
distribution p qui approche une distribution d’intérét qqa.t, en ne s’appuyant que sur des échantillons
i.i.d. de qqata- 1l existe plusieurs facons de détecter des anomalies a I’aide d’un modele génératif. Nous
nous concentrons sur la tiche de détection d’incompatibilités dans les données.

Les sujets a risque de MSOC avec des mesures de LVEF normales auront probablement des anomalies
localisées dans I’activité électrique du cceur. Etant localisées, nous nous attendons i ce que ces anomalies
se manifestent plus nettement dans les dérivations ECG qui sont physiquement plus proches de la source
de I’anomalie dans le cceur. Par conséquent, on peut utiliser un modele génératif pour reconstruire
un sous-ensemble de dérivations connaissant le sous-ensemble complémentaire de dérivations. Nous
pouvons voir ce probléme comme un probleme d’“inpainting”, mais pour des données de type ECG. Ce
type de probleme peut étre formulé comme la résolution d’un probléme inverse en utilisant la distribution
issue du modele génératif comme distribution a priori.

La question guide de cette thése est la suivante :



Est-il possible de créer un modele génératif capable de détecter des anomalies dans les données
ECG qui ne s’appuie que sur un ensemble de données ECG saines et qui est fondé théoriquement ?

1.2.2 Probléme inverse

Le terme probleme inverse est utilisé lorsque 1’on souhaite inférer a partir d’un vecteur d’observations
indirectes y € R le vecteur sous-jacent d’inconnues = € R, Nous supposons une connaissance d’un
modele (direct) reliant y et x défini par la fonction

f:(x,e) e RY x R — f(z,¢) e R,

ol € est un vecteur de bruit inconnu, représentant I’aléatoire du modele et/ou I’erreur de la mesure. L'un
des modeles directs les plus courants est le modele linéaire lorsque f(x, ) est de la forme

f(z,e) = Az + oe,

avec A € R9v*ds Popérateur direct linéaire. Ce modéle général est souvent utilisé dans le domaine de
I’imagerie computationnelle, y compris diverses applications d’imagerie tomographique telles que les
types courants d’imagerie par résonance magnétique Vlaardingerbroek and Boer (2013), la tomographie
assistée par ordinateur aux rayons X Elbakri and Fessler (2002), I'imagerie radar Cheney and Borden
(2009), et des taches de restauration d’image de base telles que la super-résolution et le remplissage
d’image Gonzélez et al. (2009).

L’approche classique pour résoudre les problémes inverses linéaires s’appuie sur des connaissances a
priori sur x, telles que sa régularité, sa parcimonie dans un dictionnaire ou ses propriétés géométriques.
Ces approches tentent d’estimer un Z en minimisant un probleéme inverse régularis€,

& € argmin, |y — Az|* + Reg(z),

ou Reg est un terme de régularisation qui équilibre la fidélit€ aux données et le bruit tout en permettant
des calculs efficaces. Cependant, une difficulté courante dans le probléme inverse régularisé est la
sélection d’un régularisateur approprié, qui a une influence décisive sur la qualité de la reconstruction.
Bien que les problémes inverses régularisés continuent de dominer le domaine, de nombreuses autres
formulations statistiques ont été proposées ; voir Besag et al. (1991); Idier (2013); Marnissi et al. (2017)
et les références qui y sont citées - voir également Stuart (2010) pour une perspective mathématique. Un
avantage principal des approches statistiques est qu’elles permettent une quantification de I’incertitude
dans la solution reconstruite ; voir Dashti and Stuart (2017).

La formulation de Bayes du probléme inverse régularisé est basée sur la considération de 1’état X et
du bruit £ comme des variables aléatoires définies sur un espace d’états (X, X'). Plus précisément, la
formulation de Bayes consiste a considérer

Y:f(X75)>

ou X ~ pete ~ p.. pestappelée la distribution a priori et p. la distribution du bruit. La densité de la
distribution conditionnelle de Y étant donné X est appelée la fonction de vraisemblance et notée g (z).
En utilisant le théoréme de Bayes, nous obtenons la distribution proxy non normalisée de la distribution
a posteriori

v(z):=gg(z)p(z) -
La distribution d’intérét, la distribution a posteriori elle-méme, est définie comme

r(de):=(de) /(X))
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En général, on s’intéresse a interroger la distribution a posteriori 7 avec une fonction mesurable h : X —
R™, avec m € N* par

wh::/h(x)w(dm).

C’est le cas si 1’on souhaite calculer les moments de 7 (h(z) = 2*) ou la probabilité de X étant dans un
certain ensemble A € X (h(x) = 1 4(x)). Mais en général, 7 n’est pas disponible sous forme fermée et
plusieurs estimateurs ont été€ proposés pour estimer 7h en ne s’appuyant que sur 7.

Nous procédons maintenant & une bréve introduction a certains éléments qui vont étre utilisés dans les
autres chapitres de cette thése. Une introduction détaillée est donnée dans la section en anglais de ce
chapitre.

1.2.3 Estimateurs autonormalisées

L’échantillonnage préférentiel (IS en anglais) est un algorithme qui produit une estimation de 1’intégrale
J h(z)m(dz) en utilisant une distribution auxiliaire A facile d’échantillonner. Cet algorithme est utile
lorsque I’on ne connait qu’une version non normalisée de 7 ou lorsque h prend des valeurs non nulles
sur les queues de 7.

Soit d7r/d\ la dérivée de Radom-Nikodym de 7 par rapport 2 X. Pour tout h intégrable par rapport a T,
wh= [ h(x)%(:p)A(dx). En général, nous n’avons pas acces a la dérivée de Radom-Nikodym, mais a
une fonction proxy w:=d~y/dA = v(X)dn/dA. Par conséquent, nous pouvons écrire

Th = / h(;p)%(m(dx) / / ]lx(x)%(x))\(dm).

L’estimateur d’échantillonnage préférentiel autonormalisé (SNIS) consiste a calculer une approximation
de Monte Carlo des deux intégrales avec le méme ensemble d’échantillons, ¢’est-a-dire

N

. . N . N . .
My h(XEN)= 3 w(X)h(XY) / S w(X7) = 3 wih(XY),
j=1 i=1

i=1

avec N € N*, wiy = w(X")/ Y50, w(X9) et X1V = (X',... | XN) échantillons i.i.d provenant de
A

Bien que chaque estimation de Monte Carlo soit une estimation sans biais de chaque intégrale, I’estimateur
SNIS est biaisé, ¢’est-a-dire E [IIyh] # mh. Sousréserve que A(w?) < oo, le biais et1’erreur quadratique
moyenne (MSE) de I’estimateur SNIS sur les fonctions de test bornées ff satisfaisant || f||c < 1 sont
donnés respectivement (voir (Agapiou et al., 2017, Théoréme 2.1)) par

B[y f(X"N)] = mf| < (12/N)k[r, A, E{Iyf(X"N) = 7f}?] < (4/N)x[x, A],

ot k[m, A] = M(w?) /A2 (w).

Cette borne montre que le biais / MSE des estimations diminue en augmentant NN ou en réduisant x[m, A|.
En effet, la conception de propositions plus adaptées est un domaine de recherche actif, avec plusieurs
axes différents étant poursuivis tels que les algorithmes d’échantillonnage d’importance adaptatifs (voir
Elvira and Martino (2021) et les références a I'intérieur) et les “Normalizing flows” (voir Papamakarios
et al. (2021) et les références a I’intérieur) pour n’en citer que quelques-uns. Pour un A\ donné, des
estimateurs sans biais construits a partir des estimateurs SNIS ont été proposés par Middleton et al.
(2019). L'un des problémes avec de tels estimateurs est que le nombre d’échantillons de A utilisés pour
produire chaque estimation est aléatoire.



L’algorithme iterated sampling importance resampling (ISIR) est une méthode liée a I’algorithme SNIS
qui permet de construire une chaine de Markov qui converge vers la distribution cible 7. Cette méthode
peut étre vue comme une version itérative de 1’algorithme sampling importance resampling (SISR)
proposé par Rubin (1987b).

Lorsque I’on utilise I’algorithme ISIR pour construire la chaine de Markov, il est tentant de réutiliser tous
les candidats des étapes intermédiaires pour construire un estimateur similaire a SNIS, étant donné que
les poids normalisés sont disponibles. Ce type d’estimateur, souvent appelé ISIR recyclé, a été suggéré
par Tjelmeland (2004b) et apparait également dans Schwedes and Calderhead (2021) et Naesseth et al.
(2020).

Une des questions auxquelles nous nous sommes intéressés lors de cette these est la suivante :

Quel est le biais des estimations de I’algorithme ISIR recyclé ? Quelle est la meilleure allocation
de ressources ? Faut-il privilégier des chaines plus longues avec des bassins de candidats plus
petits a chaque itération d’ISIR ou I’inverse ?

Nous proposons dans le chapitre 2 une analyse théorique et numérique de 1’estimateur suggéré par
Tjelmeland (2004a). Nous proposons en suite un nouvel estimateur semblable au ISIR recyclé qui
permet a la fois la diminution du biais par rapport a un estimateur SNIS tout en conservant la méme ordre
de grandeur de I’erreur quadratique. Ce chapitre correspond a I’article Cardoso et al. (2022c), accepté
et publié a la conférence “Advances in Neural Information Processing Systems” 2022.

Cette question peut aussi étre étendu aux problemes de filtrage et lissage dans les modeles de Markov
cachés (HMM). Les HMM sont des modeles statistiques couramment utilisés pour les données séquen-
tielles.

Les HMM impliquent un processus d’état non observable, noté { X };cn, et des données observées,
représentées par {Y; }1en. Ces processus évoluent dans deux espaces mesurables distincts : (X, X))
pour le processus d’état et (Y, ))) pour les observations. Les HMM sont définis par les deux propriétés
suivantes :

* Le processus d’état, { X; }+cn, est une chaine de Markov, caractérisée par des noyaux de transition
(My41)¢en et une distribution initiale, 7.

» Etant donné { X, };cn, les observations {Y; };cn sont indépendantes, et nous notons la distribution
de Y; étant donné X; comme Gy(Xy,.) et sa densité par rapport a la mesure de Lebesgue comme
gi(@t, ).

Les HMM sont utilisés dans plusieurs domaines différents, tels que le climat Robertson et al. (2004),

I’écologie Michelot et al. (2016) et la biologie Jarner et al. (2001); Shihab et al. (2012). 1l y a deux
principales distributions d’intérét :

* la distribution de filtrage, c’est-a-dire la loi de X; étant donné Yy,
* la distribution de lissage, c’est-a-dire la loi de Xj.; étant donné Yj.;.

Comme la distribution de filtrage est la marginale de la distribution de lissage a I’instant ¢, le probléme
d’estimation de chaque distribution a partir d’une séquence de données Yj.; est étroitement li€. Dans
plusieurs cas, comme 1’apprentissage de parametres dans le cas de 1’algorithme EM par exemple,
on peut s’intéresser a I’intégrale d’une fonction X'-mesurable h sur la distribution de lissage. Par

exemple, I’énergie totale Ex (v, {25:0 Xﬂ, ou la corrélation croisée moyenne des €états, a savoir
t T
EXO:t|YO:t [Zizl XZXi+1:| .

Sauf dans des cas simples, les lois de filtrage et de lissage ne sont pas disponible de facon analytique. Ces
distributions peuvent étre estimées a I’aide de méthodes d’échantillonnage préférentiel ou des méthodes
dites de Monte Carlo séquentiel (SMC).



A mesure que la longueur de la séquence augmente, la dimension de I’espace d’état résultant aug-
mente également, ce qui rend finalement 1’application de 1’échantillonnage d’importance inapplicable.
L’approche proposée dans Gordon et al. (1993), que nous présentons, offre une solution en faisant
évoluer le “pool” d’échantillons de maniere séquentielle. Plus précisément, cela implique de répliquer
les échantillons qui possédent des poids d’importance importants tout en éliminant ceux dont les poids
sont négligeables.

De la méme maniére que nous pouvons voir le SMC comme une généralisation de I’idée d’échantillonnage
préférentiel aux données séquentielles, les méthodes nommées filtre particulaire de Gibbs Andrieu et al.
(2010a) peut étre vu comme une extension de ISIR aux cas séquentiel. De la méme maniere, nous
pouvons voir une analogie entre les estimateurs du type SNIS et des algorithmes de intégration sur les
lois de lissage tel que I’algorithme dit PaRIS Olsson and Westerborn (2017)

Cela pose la question suivante :

Est-il possible de généraliser I’idée de recyclage des échantillons d’ISIR au recyclage des
échantillons dans un algorithme telle que I’algorithme PaRIS?

Cette question est la question sous-jacente aux chapter 3. Dans le chapitre 4 nous faisons une analyse
théorique et numérique de I’algorithme de descente de gradient lorsque les gradients sont estimées en
utilisant I’estimateur "recyclé" proposé dans le chapitre 3. Ces deux chapitres correspondent aux articles
Cardoso et al. (2022b) et Cardoso et al. (2023a) qui sont, respectivement, acceptés pour publication dans
le journal Statistica Sinica et acceptés et publiés a la conférence “International Conference in Machine
learning” 2023.

1.2.4 Modéeles génératifs

La tache de modélisation générative consiste a trouver, pour une distribution d’intérét qqa¢, définie sur
R?, une fonction paramétrique
fo: R% 5 RY

capable de transformer une distribution de bruit A définie sur R% en une distribution qui se rapproche
de qqata. Dans la plupart des applications, A = N(0,I). Plus précisément, la tiche de modélisation
générative consiste a trouver 6 tel que

Jdata =~ D6 ,

ol ~ signifie que les deux distributions sont proches en termes de mesure de dissimilarité statistique,
telle que la distance de Wasserstein ou la divergence de Kullback-Leibler (KL).

Dans ce contexte, nous supposons avoir un ensemble de données d’échantillons i.i.d. de ggata qui peut
étre utilisé pour apprendre le paramétre . Cependant, certains modeles génératifs ne nécessitent qu’'un
acces a une approximation de la densité de qqat, au lieu d’un ensemble de données. Le modele génératif
idéal permettrait un échantillonnage rapide de divers échantillons de haute qualité et une évaluation
tractable de la fonction de densité sous-jacente.

Au cours des derniéres années, plusieurs familles de modeles génératifs basés sur des réseaux de neurones
profonds (DGM) ont été introduites. Chaque famille a ses inconvénients. Nous présentons maintenant
une introduction de haut niveau aux modeles génératifs de diffusion de débruitage (DDGM), qui seront
présentés dans plusieurs chapitres de cette these.

Avant d’aborder les modeles génératifs de diffusion dans leur forme moderne tels que présentés par Song
et al. (2021c), il est crucial de comprendre les “Noise Conditional Score Networks” (NCSN) introduits
par Song and Ermon (2019). Les NCSN représentent la premiere approche a surpasser les GANs
(Generative adversarial networks Goodfellow et al. (2014)) dans les taches de génération d’images sans

utiliser d’entrainement adversarial.



Les NCSN s’appuient sur I’algorithme de Langevin non ajusté (ULA) Roberts and Tweedie (1996) et
I’appariement du score Hyvirinen (2005), défini comme la dérive de la log densité d’une distribution
par rapport a une certaine mesure de référence, normalement la mesure de Lebesgue. L'ULA génére
des échantillons approximatifs d’une distribution d’intérét qqata, en utilisant le gradient de la densité
(ou score), défini comme V 10g qqata. L'ULA construit une chaine de Markov X avec des étapes de
mise a jour utilisant le score et un terme de bruit ;. Notamment, la chaine est défini a partir d’un X par
I’équation
Xp=X;-1 + 7V 10g qdata(Xi—1) + (27)" e,

ou ~ est un réel positif. Comme montré dans Durmus and Moulines (2017); Durmus et al. (2019), ULA
produit des échantillons que sont arbitrairement proches (en KL) de la distribution cible qqata S1 7y €st
suffisamment petit et que la chaine de Markov a une longueur approprié.

L’ appariement de score, comme défini par Hyvérinen (2005), consiste a approximer le score V log qqata
a partir d’échantillons i.i.d. de qqata, sans estimer directement la densité. L’ approximation est faite a
partir d’un réseau de neurones sy. Ce réseau de neurones est utilisé pour minimiser une fonction de perte
associée au score. L’approche propose par Hyvérinen (2005) introduit la fonction de perte

ExXrqguen |t1(VS0(X)) + (1/2)]150(X)||?] -

Cette approche est connue pour étre notamment difficile du point de vue numériquement, car elle fait
intervenir la trace do score.

Song and Ermon (2019) propose de créer une séquence de distributions {qz }4c[o, €n transformant la
distribution des données par un noyau gaussien de variance croissante. Notamment, en introduisant les
noyaux

Qt|0($t\l’0) = N (24; wo, Ut2 La),

ou {Ug}te[[o,n}] est une suite positive croissante, nous définissons
()= [ Qauia dro)o(aelw0).

Cela a deux intéréts. Le premier étant que le score de chaque distribution intermédiaire g, est alors appris
via le Denoising Score Matching (DSM) Vincent (2011), qui engendre une fonction de perte équivalente
mais plus abordable que celui de Hyvirinen (2005). En particulier, Song and Ermon (2019) propose
d’utiliser le méme réseau pour tous les niveaux de bruit v; en utilisant le niveau de bruit lui-méme comme
une entrée du réseau. Le deuxiéme est qu’en augmentant le niveau de bruit les distributions deviennent
de plus en plus simples, donc plus facilement abordables a partir des méthodes du type ULA initialisé
sur des distributions raisonnables.

En Song and Ermon (2019), 'ULA est utilisé pour générer des échantillons de facon séquentielle de
chacune des lois q;. Cela est fait en initialisant ULA pour q,, avec des échantillons de (0, v;, I) et pour
chaque niveau de bruit ¢ € [0, n — 1], initialisant I’algorithme ULA visant q; avec le dernier échantillon
obtenu pour q¢y1.

Comme mentionné ci-dessus, les algorithmes de diffusion génératifs basés sur cette approche ont dé-
montré des performances de pointe dans la génération d’images, notamment en battant les GANs sur des
taches comme la génération d’images CIFAR-10 Song and Ermon (2019). Cependant, leur inconvénient
réside dans le temps d’inférence, nécessitant de nombreux pas d’ULA pour obtenir des échantillons de
haute qualité.

Les modeles génératifs de diffusion par débruitage (DDGM) Song et al. (2021c) visent a enlever les étapes
d’ULA etd’échantillonner de facon approximée directement q; a partir d’un échantillon (approximé aussi)
de q;11. Cela passe par une réformulation des lois intérmediaires {qy};c[o ) €n utilisant des chaines
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de Markov ou des équations différentielles stochastiques/ordinaires. Une des formulations possibles,
que nous appelons DDIM Song et al. (2021a), consiste a obtenir les lois {Qt}te[[l,n]] comme des lois
marginales d’une loi étendue qq.,,. Il s’avere que pour t € [0,n — 1] et que

XO:n ~ qo:n »

la loi de X|X;41, X0 est connue analytiquement. Nous appelons cette loi un "pont d’inférence". En
se basant sur la remarque que I’apprentissage du score dans le cas de bruitage gaussien est équivalent
a 'apprentissage d’un “débruiteur” optimale faite en Vincent (2011), Song et al. (2021a) propose une
méthode de transition progressive entre les distributions en utilisant des "ponts d’inférence”. Cela est
obtenu en remplagant X par le débruitage de X1 dans la loi de X;| X1, Xo. Nous obtenons ainsi
un noyau Gaussien Pyt et la chaine de Markov renversé (“backwards™) dont la loi est notée pg.,,. La
formulation mathématique de ce qui a été décrit ci-dessus est faite en dans la section 1.5. Il est possible
de montrer que la chaine de Markov ainsi obtenue correspond a I’optimum d’un probleéme d’inférence
variationnelle sur une famille paramétrique des chaines de Markov dont les noyaux de transition sont des
noyaux Gaussiens de variance prédéterminée et dont la moyenne est le paramétrique.

Cette méthode améliore I’ efficacité des échantillons générés par rapport aux approches utilisant ULA, tout
en maintenant la qualité des échantillons obtenus. Les modeles DDGM, en particulier les formulations
DDIM, ont été validés empiriquement pour produire des échantillons d’une qualité remarquable dans la
génération d’images.

L'utilisation des DDGM comme prior ouvre un champ de recherche riche, notamment pour résoudre
des problemes inverses bayésiens. Une des propriétés utiles des DDGMs dans ce cas est le fait que
la génération dans les DDGM consiste de plusieurs étapes de simulation d’une chaine de Markov avec
des noyaux Gaussiens. Il est donc possible d’intervenir a plusieurs étapes de la génération. Divers
travaux de recherche ont proposé des méthodes pour échantillonner la distribution postérieure 7 lorsque
la distribution a priori A est un DDGM (comme décrit dans Song et al. (2021a); Kawar et al. (2022);
Lugmayr et al. (2022); Chung et al. (2023)). La distribution postérieure est définie comme

Y

Po (o) o g (z0)Po(z0) ,

ot g§ représente la fonction de vraisemblance du probleéme inverse associé.

La distribution postérieure étendue est définie comme suit :

ph (dzo:n) o< gf (20) An(dwn) [T pyyjs(dwe—12e) -
t=1

Les marginales de p, au temps ¢ sont définies comme suit :

pL(A)i= [ Lalar)pb(dron) = [ Laler)gh(molpy (daolai)pu(dar) = [ La(engd )pi(dar).

N

ou
g )= [ gh(wo)py(dzoler).

Le score de la postérieure peut étre écrit comme suit: V log pY (z;) = Vlog gf (z:)+V log Py (x¢|Tig1)-
Notons qu’une estimation du score de la distribution postérieur permettrait la simulation du DDGM
équivalent a un DDGM pour la distribution posterieur.

Les méthodes actuelles pour échantillonner p§ tentent soit d’approximer p§ en créant une version
alternative plus facile a échantillonner (comme dans Song et al. (2021a); Kawar et al. (2022); Lugmayr
et al. (2022)), soit d’approximer V log gf (z¢) (comme dans Chung et al. (2023)). Toutes ces méthodes
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Figure 1.1: Illustration des échantillons obtenus avec MCGdiff pour des problémes inverses variés. Le
texte sur les cotés indique respectivement le type de probléme inverse I’écart type du bruit et le dataset
sur lequel le modéle génératif a été entrainé. Pour plus de détails, voir la section 5.3.

introduisent des erreurs d’approximation irréductibles, ce qui peut conduire a des échantillons qui, bien
qu’attrayants dans certaines tiches, peuvent présenter des comportements inattendus dans d’autres. Cette
absence de garanties théoriques pose probléme, en particulier dans des applications sensibles comme le
traitement des données médicales.

Cela introduit la question suivante :

Peut-on dériver un algorithme d’échantillonnage pour la postérieure d’un probleme inverse
bayésien utilisant un DDGM comme a priori, qui soit théoriquement fondé sous des hypotheses
réalistes ?

Nous proposons dans le chapitre 5 un algorithme du type SMC pour échantillonner la distribution
postérieur des problémes inverses linéaires dont la prior vient d’un DDGM, que nous nommons MCGdiff.
Nous montrons en figure 1.1 quelques exemples des échantillons produits par MCGdiff sur des données
du type image pour plusieurs problemes inverses, notamment le coloriage (Col), la super-résolution (SR),
le “inpainting” (Inp) et le “Gaussian debluring”. Nous fournissons des garanties théoriques qui montrent
que notre algorithme est asymptotiquement exacte. Nous montrons aussi, que sur des problemes ou
la distribution a posteriori est connue, I’algorithme proposé obtient des meilleures performances sur
diverses métriques liées aux distances en distribution que 1’état de 1’art dans le domaine. Ce chapitre
correspond a I’article Cardoso et al. (2023b), accepté pour présentation orale et publié a la conférence
“International Conference in Representation Learning” 2024.

1.2.5 Application a des données du type ECG

Finalement, nous adressons la question posée au début de cette section, notamment, peut-on utiliser un
modele génératif pour détecter des signaux anormaux dans des données du type ECG. Dans le chapitre
6, nous montrons comment, en combinant MCGdiff du chapitre 5 avec un DDGM appris sur des données
ECG, nous sommes en mesure de résoudre plusieurs taches de reconstruction ECG différentes mieux
que les méthodes actuelles sans aucun réglage fin nécessaire.

Nous montrons en particulier que cet outil peut étre précieux pour résoudre la détection d’anomalies
sur I’ECG et montrons qu’il distingue efficacement entre la population normale et celles qui ont subi un
infarctus du myocarde. Nous adaptons également MCGdiff pour gérer le bruit de mesure inconnu en
couplant MCGdiff avec un algorithme d’ascension de score.

Les résultats obtenus sont présentés dans les figures 1.3 et 1.2. Dans la figure 1.2, nous montrons en
rouge les “vrais” signaux ECG d’un patient donné et en bleu les signaux obtenus avec MCGdiff. Pour
obtenir ces signaux, nous considérons le probléme inverse qui consiste a observer les trois premicres
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Figure 1.2: Illustration de !'utilisation de MCGdiff pour la détection d’anomalies. “Ctrl” correspond
a des patients dit “controle” (sans anomalie connue) et “MI” a des patients ayant subi un infarctus du
myocarde.

pistes de ’ECG de chaque patient. Ces pistes sont choisies, car elles représentent les pistes les plus
éloignés physiquement du cceur, et donc moins susceptibles aux anomalies. Plus de détails sont donnés
dans le chapitre 6. On peut voir que pour les patients du groupe de controle (sans anomalie connue),
les signaux bleus et les signaux rouge coincident alors que pour les patients ayant eu un infarctus du
myocarde (MI), nous pouvons voir des différences significatives et localisées sur certaines pistes.

Pour quantifier a quel point cette différence est significative, pour chaque patient du groupe contrdle et du
groupe MI nous avons calculé la distance de Mahanalobis entre une approximation gaussienne obtenue
a partir des échantillons de la distribution a postériori obtenu avec MCGdiff et les vrais signaux des
patients. Puis nous avons utilisé cette valeur comme score d’anomalie. Dans la figure 1.3 nous voyons la
courbe ROC obtenu en faisant du seuillage sur le score d’anomalie ainsi obtenu. Nous pouvons voir que
pour les deux sexes, la méthode proposée est capable de faire la distinction entre le groupe de controle
et le groupe MI.
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Figure 1.3: Gauche. Distribution du score d’anomalie obtenu avec MCGdi ££ pour le groupe dit contrdle
(rouge) et “MI” (infarctus du myocarde, bleu). Droite. Courbe ROC pour la classification entre contrdle

et “MI” obtenue avec le score d’anomalie.
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1.3 General introduction:

1.3.1 The guiding problem: Assessing risk of sudden cardiac death using non-invasive
data

Approximately 10% of adult deaths in Europe and the United States are due to sudden cardiac death
(SCD), often incorrectly referred to as “cardiac arrest". SCD typically occurs due to extremely rapid
ventricular arrhythmias, i.e., ventricular fibrillation or ventricular tachycardia (VF/VT). These rapid
ventricular arrhythmias are often associated with structural heart disease such as cardiomyopathies or
areas of cardiac electrical heterogeneity Haissaguerre et al. (2018). Detecting and quantifying these
abnormal heart rhythms with noninvasive techniques such as the electrocardiogram (ECG) is one of the
greatest challenges in cardiology. Effective treatments are available to protect at-risk individuals, so
accurate assessment is critical. To date, cardiology has relied on left ventricular ejection fraction (LVEF)
measurements to assess SCD risk. LVEF, although valuable, has limited utility in younger patients
without cardiomyopathies. Indeed, LVEF is a measure correlated to the capacity of contraction of the
whole left ventricle, thus less sensitive to non-structural / localized cardiac electrical heterogeneity.

Because SCD requires an exceptionally rapid response to prevent deaths, it is extremely difficult to
collect noninvasive data directly from this population. An alternative approach is to use the distribution
of healthy signals, because databases containing such data are more readily available Kang and Wen
(2022); Wen and Kang (2021). This approach may involve detecting outliers or anomalies in the data
and can rely on a generative model capable of accurately approximating the distribution of signals of
healthy patients. This is the path that we chose to approach the subject in this Ph.D. thesis.

Over the past decade, several techniques have been developed to design and train generative models
capable of generating highly realistic patterns from the original data, even for complex high-dimensional
data types such as images and audio Kingma et al. (2019); Kobyzev et al. (2020); Gui et al. (2021).
A generative model aims to build a distribution p that approximates a distribution of interest qqata
relying only on i.i.d samples from qqata. There are several ways anomalies detection can be done using
a generative model. We focus on the task of detecting incompatibilities in the data. Subjects at risk
of SCD with normal LVEF measurements will probably have localized abnormalities in the electrical
activity of the heart. Being localized, we expect those abnormalities to manifest more prominently in
ECG leads that are physically closer to the source of the abnormality in the heart. Therefore, one might
use a generative model to reconstruct a subset of leads knowing the complementary subset of leads. We
can see this problem as an “inpainting" problem, but for ECG type of data. This kind of problem can be
formulated as solving an inverse problem using the distribution issued from the generative model as the
prior distribution.

(Q1) Can we create a generative model that is able to identify anomalies in ECG data that relies only
on a healthy ECG dataset and that is theoretically grounded?

1.3.2 Bayesian linear inverse problems

The term inverse problem is used whenever one wants to infer from a vector of indirect observations
y € R9 the underlying vector of unknowns = € RY. We assume a knowledge of a (forward) model
linking y and x defined by the function

f:(x,e) e RY x RE — f(x,¢) e RY,

where ¢ is an unknown noise vector, representing model and/or measurement randomness. One of
the most common forward models is the linear model when f(x,¢) is of the form Ax + oe, with
A € R9>dz the linear forward operator. This general model is used throughout computational imag-
ing, including various tomographic imaging applications such as common types of magnetic resonance
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imaging Vlaardingerbroek and Boer (2013), X-ray computed tomography Elbakri and Fessler (2002),
radar imaging Cheney and Borden (2009), and basic image restoration tasks such as deblurring, super-
resolution, and image inpainting Gonzdlez et al. (2009).

The classical approach to solving linear inverse problems relies on prior knowledge about z, such as
its smoothness, sparseness in a dictionary, or its geometric properties. These approaches attempt to
estimate a 7 by minimizing a regularized inverse problem, & € argmin, {||y — Az|> + Reg(z)}, where
Reg is a regularization term that balances data fidelity and noise while enabling efficient computations.
However, a common difficulty in the regularized inverse problem is the selection of an appropriate
regularizer, which has a decisive influence on the quality of the reconstruction. Whereas regularized
inverse problems continue to dominate the field, many alternative statistical formulations have been
proposed; see Besag et al. (1991); Idier (2013); Marnissi et al. (2017) and the references therein - see also
Stuart (2010) for a mathematical perspective. A main advantage of statistical approaches is that they
allow for uncertainty quantification in the reconstructed solution; see Dashti and Stuart (2017).

The Bayes’ formulation of the regularized inverse problem is based on considering the state X and
the noise ¢ as random variables defined over some state space (X, X’). More precisely, the Bayes’
formulation consists in considering

Y=Ff (X € ) ’

where X ~ pand € ~ p.. p is called the prior distribution and p. the noise distribution. The density
of the conditional distribution of Y given X is called the likelihood function and denoted as gf (z). We
chose to represent it as a function over x since it is the variable that we are interested in. Using Bayes’
theorem, we obtain the unnormalized proxy of the posterior distribution

v(@):=g5(z)p() . (LD
The distribution of interest, the posterior distribution itself, is defined as 7 (dx):=v(dz)/v(X).

In general, one is interested in querying the posterior distribution 7 with some measurable function
h: X — R™, with m € N* through

ﬂ'h::/h(x)ﬂ'(dz).

This is the case if one wants to compute the moments of 7 (h(x) = 2*) or the probability of X being
in a certain set A € X (h(x) = L14(x)). Butin general, 7 is not available in closed form, and several
estimators have been proposed to estimate wh relying only on ~.

The rest of this chapter is divided as follows. In Section 1.4, we describe two methods that produce so-
called “self-normalized” estimations of wh from -, namely Importance Sampling and its generalisation
to sequential data, Particle Smoothing. In Section 1.5, we present generative models and namely the
family of generative models called Denoising diffusion generative models (DDGM). We then highlight
the capabilities of such model to serve as an informative prior to be used in inverse problems and the
problem of sampling from 7 when p is the distribution defined by a DDGM. We conclude this chapter
wtih section 1.6 where we introduce the contributions present in this thesis and the organization of the
next chapters.

1.4 Self Normalized estimators

1.4.1 Self-Normalized Importance Sampling

Importance Sampling (IS) is an algorithm that produces an estimate of | h(z)m(dx) through an auxiliary
distribution A from which sampling is easy and that dominates 7, i.e., such that for all measurable A,
m(A) > 0 implies A(A) > 0. This is notably useful when knowing only an un-normalized proxy 7 of 7
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but is also useful when h is a function that takes non-zeros values on the tails of 7. In this case, vanilla
Monte Carlo estimators generally yield high variance estimators.

Let d7/dX denote the Radom-Nikodym derivative of 7 with respect to A\. For any 7-integrable h,
wh = [ h(x) %\r (x)A(dz). In general, we do not have access to the Radom-Nikodym derivative, but to a
proxy w:=dvy/d\ = y(X)dnr/d\. Therefore, we can write

ﬂ'h:/h(x)j A(dx) //]lx )A(dz) .

The Self Normalized importance sampling (SNIS) estimate consists in computing a Monte Carlo ap-
proximation of both integrals with the same set of samples, i.e.,

N N
Txh(X"N) Zw Xi)/zw(xj) = 3 Wiy (XY,
i=1 =1 i=1

with N € N*, wh, = w(X? /Zle(X]) and XUV = (X1, XN)ii.d samples from \.

Even though each Monte Carlo estimate is an unbiased estimate of each integral, the SNIS estimator is
biased, i.e, E [[Iyh] # mh. Provided that A\(w?) < oo, the bias and mean-squared error (MSE) of the
SNIS estimator over bounded test functions f satisfying || f||oo < 1 are given respectively (see (Agapiou
etal., 2017, Theorem 2.1)) by

By f(X"Y)] = 7f] < (12/N)s[r, N, E{Iyf(XTN) —7f}?] < 4/N)k[r, A, (1.2)

where s[m, \] = M(w?)/A\?(w).

This bound shows that the bias / MSE of the estimates go down by either increasing /N or by reducing
k[m, A]. Indeed, the design of better suited proposals is an active research field, with several different
axes being pursued such as Adaptative importance sampling algorithms (see Elvira and Martino (2021)
and references within) and Normalizing Flows (see Papamakarios et al. (2021) and references within) to
name a few. For a given A, zero-bias estimators build upon the SNIS estimators have been proposed by
Middleton et al. (2019). One of the problems with such estimators is that the number of samples of A
used to produce each estimate is random.

1.4.1.1 Iterated sampling importance resampling algorithm i-SIR

Another way of designing an estimator of 7/ is through Markov Chain Monte Carlo (MCMC) methods.

A MCMC method relies on building an ergodic Markov Chain { X} } xcn with invariant distribution 7,

i.e a chain that gets arbitrarily close to 7 as k increases. By discarding a burn-in period kg, one can use

the samples { X} }r>x, to produce a Monte Carlo estimate of wh, with bias decreasing with k:o If the

resultmg Markov chain is geometrically ergodic, then the bias of the estimates decrease as ~*0 where
€ (0,1).

There are several ways of building Markov chains that target 7 given the proxy <, such as the Metropolis-
Hastings algorithm Metropolis et al. (1953). A method that is closely related to SNIS is the iterated
sampling importance resampling (i-SIR), proposed in Tjelmeland (2004a); see (Andrieu et al., 2010a;
Lee et al., 2010; Lee, 2011; Andrieu et al., 2018). The i-SIR can be seen as an iterative application of
the sampling importance resampling (SISR) algorithm proposed by Rubin (1987b) the k-th iteration
is defined as follows. Given a state Y}, € X, (i) set X} ki1 = Yi and draw Xz i +1 independently of
the proposal distribution A; (ii) compute, for ¢ € {1,..., N}, the normalized importance weights
w}mk“ = w(X,iH)/ZéV:l w(Xf); (iii) select Yit1 from the set X\ by choosing X}, with
probability wf\h kr1- Werefer to Yy and Xl » +1 as state and the candidate pool, respectively. Following
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(Tjelmeland, 2004a), i-SIR may be viewed (up to an irrelevant permutation of the samples) as a two-stage
Gibbs sampler targeting an extended probability distribution ¢ on an enlarged state space including
the state as well as the candidate pool. As this extended distribution admits 7 as a marginal with
respect to the state, one can expect the marginal distribution of the generated states { Y}, }ren, forming
themselves a Markov chain, to approach the target 7w of interest as k tends to infinity. Furthermore, if
|w|| s /A(w) < oo, the state and candidate-pool Markov chains (Y} )ren and (X V) e can be shown to
be uniformly geometrically ergodic, suggesting that the resulting state chain can be used to form MCMC
estimates.

But when using i-SIR as the underlying mechanism to build the Markov chain, one is tempted to recycle
all the candidate pool X é:N to build a SNIS like estimator, since the normalized weights are available.
This type of estimator, often called recycled i-SIR was suggested by Tjelmeland (2004b) and also appears
in Schwedes and Calderhead (2021) and Naesseth et al. (2020).

(Q2) Whatis the bias of the recycled i-SIR estimates? What is the best allocation of ressources? Making
longer chains with smaller candidate pools or the opposite?

1.4.2 Sequential Monte Carlo

Sequential importance sampling serves as a method tailored to address a particular set of challenges
known as (non-linear) filtering, which involves sequential data. As the length of the sequence increases,
the dimension of the resulting state space also increases, which eventually renders the application of
importance sampling unfeasible. The approach proposed in Gordon et al. (1993), which we present,
offers a remedy by evolving the sample pool sequentially. Specifically, this involves replicating samples
that possess substantial importance weights while eliminating those with negligible weights. Before we
delve into the details, we describe the most common statistical model used for sequential data.

Example 1 (Hidden Markov Models). Hidden Markov Models (HMMs) involve an unobservable state
process denoted by { X; }1cn and observed data represented by {Y: }ien. These processes evolve within
two distinct measurable spaces: (X, X) for the state process and (Y,)Y) for observations. HMM are
defined by the following two properties:

* The state process, { Xy }en, is a Markov chain, characterized by transition kernels (M 1)ien and
an initial distribution, 1.

* Given { X, }ien, the observations {Y,}tcn are independent, and we denote the distribution of Y;
given X, as G¢(Xy,.) and its density with respect to the Lebesgue measure as g;(xy, .).

HMM are used in several different domains, such as climate Robertson et al. (2004), ecology Michelot
et al. (2016) and biology Jarner et al. (2001); Shihab et al. (2012). There are two main distributions of
interest:

* the filtering distribution, i.e. the law of X; given Y.,
* the smoothing distribution, i.e. the law of Xo.; given Y.

As the filtering distribution is the t marginal of the smoothing distribution, the problem of estimating each
distribution from a sequence of data Y., is closely related. In several cases, such as parameter learning
in the case of the EM algorithm for example, one might be interested in the integral of some X -measurable

Junction h over the smoothing distribution. For example the overall energy Ex . v, ., [Zfzo Xﬂ , or the
averaged cross-correlation of the states, namely Ex |y, ., P XiXﬁl].

We now proceed to define Feynman—Kac path measures that provide a general framework for treating
a sequence of distributions such as those defined by the states of an HMM. For a sequence {M;}cn
of Markov kernels M; : X x X — [0, 1], an initial distribution 9 € M;(X’), and a sequence {g; }teN
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of bounded measurable potential functions g; : X — R, a sequence {mo.; }+cn of Feynman—Kac path
measures is defined by

. p®t Y0:t(A)
Tt XD A Ok teN, (1.3)
where
t—1
Yot : X® S A / 1 4(xo) mo(dxo) H Qum(Tm, dxms1), (1.4)
m=0
with
Qm : XXX 3 (2,4) = gm(x)Mp(x, A) (1.5)

being unnormalized kernels. By convention, mg.q:=79. Note that each mp.; is a probability measure,

whereas vo.; is not normalized. For every ¢ € N*, we also define the marginal distribution 7; : X >
A Wo;t(X@)t_l X A)

1.4.2.1 Particle Filtering

In most cases {7, }men is intractable, but can be approximated by Iy (&, ):=N"1>,_; 0¢i Where for

meN,E, = (&, ...,&N), isaset of N € N* particles and each particle ! is an X-valued random
variable. Such particle approximation is based on the recursion

77QO _ fﬂ'm(dx)Qm(l'a )
Tmdm fgm(l‘)ﬂ'm(d$) '

(1.6)

Tm+1 =

By the recursion above, it is possible to obtain a new particle approximation of m,, 11 from &,,, by drawing
new particles &, | = (&4 1, .., &N +1) conditionally independently given §,,, according to

N

grfn-s—l NZMMm(@{m)? i€ [1,N].
=1 dor=1 gm(gfn)

Drawing &/ ; can be done by first selecting an ancestor according to the weights gy, (€5,)/ S gm(E8)
and then updating the selected ancestor through M,,(¢%,,-). This procedure is called the bootstrap
particle filter with multinomial resampling and it yields consistent approximations of 7, in the sense
that T (£,,)h = N~V "N h(€!) serves as a proxy for m,,h for any 7,,-integrable test function h.
(Under general conditions, N ! Zﬁil h(&,) converges in probability to 7, as N — oo; see Del Moral
(2004); Chopin and Papaspiliopoulos (2020), and the references therein.) We restrain our presentation to
this resampling scheme, see Douc et al. (2005) for a comparison between different resampling schemes

for the filtering problem.

Note that the particle filter builds an approximation of 7,1 using an approximation of ,,, which could
lead to an accumulation of errors with m. A fundamental property of the particle filter is the stability
w.r.t. the sequence length m. It can be shown, under general conditions, that the particle filter estimates
converge to 7, uniformly w.r.t m, see Del Moral and Guionnet (2001); van Handel (2008); Whiteley
(2013); Douc et al. (2014).

1.4.2.2 Particle Smoothing

We now focus on the problem of approximating the smoothing distribution 7g.,,. It is possible to extend
the procedure of the bootstrap particle filter to generate an approximation Iy (&.,,,) = N ! Z£i1 ) ¢
where for m € N, &g, = (& -+ - &), is a set of N € N* paths and each path &, is an X +1-
valued random variable. It is easy to see that (1.6) can be extended to 7., therefore allowing the creation
a new set of paths &, that approximate mo.,,,41 by first selecting a path from &, according to the
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weights g, (€5,) /520 _1 gm(€5,) and then updating the path by concatenating a sample from M, (&%, )
to &f.,,, anew path to form &.,,, 1.

The major drawback with the procedure above, known in the literature as the poor man’s smoother, is
that selecting a path from the previous paths leads to a collapse of the origins of the paths. Namely, since
for m > s the poor man’s smoother keeps selecting a path that involves the particles £, the number of
different elements at the sequence position s in §.,, only decreases. It can actually be shown that the
paths are expected to collapse after my = O(log N), see Koskela et al. (2018). This renders the poor
man’s smoother unpractical when dealing with long sequences (large m).

Overcoming the path degeneracy: Backward decomposition based smoothers. To overcome the
collapse of the poor man’s smoother, current smoothing algorithms such as the Forward Filtering
Backward Simulation (FFBSi) Godsill et al. (2004) and particle-based, rapid incremental smoother
(PaRIS) Olsson and Westerborn (2017) rely on the backward decomposition of 7g.,,,. Let g,,, denote the
density of @, with respect to a given dominating measure \. We define the backward kernel (), x
as

0 f]lA(xm)Qm($m,$m+1))\(dxm)
ma XX XS (@me1, 4 1.7
Qmx: XX X3 (Tmg1,A) — T am (@ 1) Mz ) 1.7
and
m—lF
Bt X x X815 (2, A) /.../]lA(-’L'O:m—l) H Qs (Tst1,dxs), (1.8)
s=0

Using {63,A}se[07m] we obtain the backward decomposition Del Moral et al. (2010); Del Moral et al.
(2016)

m—1

%
7"'Ozm(d-%'O:m) = ﬂ'm(dxm) H QS,TK’S (xs-‘,-la dxs) . (1.9
s=0
Namely one can obtain a path §.,,, ~ 7., by starting from the filtering distribution &,, ~ m,, and
drawing backward &,|£, | ~ Qs (&1,-) fors € [0,m — 1].

Using the backward decomposition, one can re-utilise the set of particle locations {&}s¢[o,m] Produced
by the particle filter in a subsequent (backward) sweep to sample N paths {g(i):m}i]\il . More precisely,
given the forward particles {€,}™,, each path &, is generated by first drawing & ~ IIy(£,,) and
then drawing, recursively,

N o~

~. $— ~ QS(gg,gg—&—l)

&~ Qsmye,)(Er1) = i 0l
N(€)\5s+1 Jz::l Sy as(€6,8L) &

(1.10)

thatis, given £, |, £ is picked at random among &, based on weights proportional to {qs(¢J, &%, 1)}
This procedure constitutes the FFBSi smoother, with distribution WSE%Si, which is no longer supported on
the ancestor paths drawn during the particle filtering algorithm and avoids the trajectory degeneracy issue
from the poor man’s smoother. In this formulation, each backward-sampling operation (3.9) requires the
computation of the normalising constant Zé\[:l am (&L, g}n +1)- leading to an overall quadratic complexity
of the algorithm. This can be eased by using an effective accept-reject technique, as proposed in Douc
etal. (2011). One major drawback of the FFBSi is that the algorithm is essentially offline. In principle, if
we want to compute an estimate of 7., h for some test function h we need to draw N paths backward and

then compute for each path h(¢,.,,) to form the FFBSi estimate 757251 h = N=1 SN h(gd. ).

0:m
In the case of additive functionals A, (To.m) = D it ﬁi,l(azi,l, x;), it is actually possible to render
FFBSi online by establishing a recursion over the smoothing estimates 75 251k themselves (Del Moral

et al. (2010)). Additive test functions are ubiquitous in smoothing in HMM, they appear notably during
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the E-step of the EM algorithm (Cappé et al. (2005a)), and will also play an important role in Chapter 4.
More specifically, using the forward decomposition A, +1(Z0:m+1) = Am(To:m) + A (Tm, Tmy1) and
the backward kernel B, defined in (1.8), we may write, for ,,,+1 € X,

< ~
Bm+1hm+l(xm+l) - / Qmﬂrm (xm+17 d$m)/ (hm<x0:m) + hm(xma xm—l—l)) Bm(xwu de:m—l)
V. -
= Qm,ﬂ'm (Bmhm + hm)(wm—i—l); (111)

which, by (1.9), implies that

— -
7T0:m+1hm+1 = Tm+1 Qm,ﬂm (Bmhm + hm) (1.12)

The recursion above makes use of the filtering distributions {7, },;nen. Because they are generally
intractable, we plug particle approximations Iy (&,,11) and @, 11y (¢, ) Of Tm+1 and @y r,,, , TESpec-
tively, into recursion (1.12). More precisely, we proceed recursively, and assume that at time m, we
have a sample {(&%, 32 )}, of particles with associated statistics, where each statistic 3%, serves as
an approximation of B,,h,,(£%)). Then, evolving the particle cloud according to the particle filtering
algorithm and updating the statistics using (1.11), with &, replaced by Q. 11y (¢, ). yields the
particle-wise recursion

N

i Qm(ffmffnﬂ) 1 7 L i :
m m + hm m>Sm 9 ]-,N ) 113
B o Zl ZZ’ 1 Qm(§m7 m+1) (IB (5 5 +1)> 'e [[ ]] ( )

and, finally, the estimator N ' S>N | 82 of 7g.mhan, where we set B,,,:=(5L., ..., 8N), fori € [1, N].
The procedure is initialized by simply letting 34 = 0, for all i € [1, N]. This algorithm is a special
case of the forward-filtering backward-smoothing (FFBSm) algorithm (see Andrieu and Doucet (2003);
Godsill et al. (2004); Douc et al. (2011); Sarkka (2013)) for additive functionals. It allows for online
processing of the sequence {7(.m/im }men, but also has the appealing property that only the current
particles §,,, and statistics 3,,, need to be stored in memory. However, because each update requires
a summation of N terms, the scheme has an overall quadratic complexity in the number of particles,
leading to a computational bottleneck in applications to complex models that require large particle sample
sizes N.

To avoid the computational burden of this forward-only implementation of FFBSm, the PARIS algorithm
Olsson and Westerborn (2017) updates the statistics 3,,, by replacing each sum (1.13) with the Monte

Carlo estimate
M

. 1 i .
Brng1 = i Z (5{] + hy( t’],ft+1)> , 1€ [1,N], (1.14)
j=1

where
N

G .
{7 )ity ~ (Z ST e )5%%)) o e [LN]:

!
/=1 ZZ’:l Qm( m> Sm-+1

Moreover, when the Markov transition densities of the model can be uniformly bounded, that is, there
exists, for every m € N, an upper bound 7,,, > 0 such that for all (z,,, Z11) € X2 mt(xt, xiy1) < Ot
(a weak assumption satisfied for most models of interest), then we can generate a sample (52’1 BLI) by
drawing, with replacement and until acceptance, candidates (£%*, 3%*) from {(£%,, B,) }1., based on the
normalized particle weights {g,,(€5,) /01 gm(£5) 1| (obtained as a by-product in the generation of
&€,,+1)» and accepting the same with probability 1, ( ik ¢ +1)/0m. Because this sampling procedure
bypasses the calculation of the normalizing constant Zé\le qm(ff,;, g 41) of the targeted categorical
distribution, it yields an overall O(M N') complexity of the algorithm; see Douc et al. (2011) for details.
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Increasing M improves the accuracy of the algorithm at the cost of additional computational complexity.
As shown in Olsson and Westerborn (2017), there is a qualitative difference between the cases M = 1
and M > 2, and the latter is required to keep the PARIS numerically stable. More precisely, in the latter
case, it can be shown that the PARTS estimator N~ 3" | 57 satisfies, as N tends to infinity while M
is held fixed, a central limit theorem (CLT) at the rate VN , with a t-normalized asymptotic variance of
order O(1 — 1/(M — 1)). As it is clear from this bound, using a large M only wastes computational
work, and setting M to two or three typically works well in practice.

Particle Gibbs. As for the importance sampling case, it is possible to define an ergodic sampler relying
on the set of particle locations &.,,, that targets mg.,,. This procedure is known by the names Particle
Gibbs (PG) or conditional particle filter (CPF) and is the sequential version of the iSIR algorithm
Section 1.4.1.1. The general idea is to, at each step k, select a trajectory ((p, ..., () from the set of
particle locations &.,, produced through an initial particle filtering algorithm and then insert (frozen)
this path in the next particle filter iteration (i.e, (; € &; for all ¢ € [0, m]). Formally, at iteration & with
frozen path (., [k]:=(Colk], - - -, ([k]) we build a set of particle locations by defining, for s € [0, m],
&, = (Glk], &+ € v—_q) Where (&, -+ ,&y_) are drawn according to the particle filter update step
on &, ;. From this new set of particle locations &.,,, and using the backward decomposition (1.9), we
can draw a new path (o, [k + 1]. The procedure just described is called Particle Gibbs with backward
sampling (PGBS) (Andrieu et al. (2010b)) and defines a Markov chain that converges geometrically fast
to mg., under standard strong mixing assumptions. We note though that there are other available options
for defining a Particle Gibbs algorithm, such as the Particle Gibbs with Ancestor sampling (Lindsten
et al. (2014b)), which for the bootstrap filter can be shown to be statistically equivalent to PGBS, see Lee
et al. (2020).

(Q3) Can we generalize the results from Q 2? As the PGBS suffers from the same drawback as the iSIR
procedure, computational waste, is it possible to recycle the particle clouds generated at each step
of the PGBS while still achiving bias reduction?

1.5 Generative models

The task of generative modelling is to find for a given distribution of interest qqat, defined over RY, a
parametric function fy : R% — R¢ that is able to push a noise distribution A defined over R% into a
distribution that is “close" to qqata- In most applications, A = N'(0,1). More precisely, if we define for
every Borelian set A C R%, the distribution pg(A):= [ 1.4(fs(€))A(de), the task of generative modelling
is finding 6 such that

Qdata ~ Do (1.15)

where ~ means that the two distributions are close in terms of some statistical measure of dissimilarity,
such as the Wasserstein distance or the Kullback-Leibler divergence. Here we focus on the case where
we suppose that we have a dataset D of i.i.d samples from qqg.t, that can be used to learn the parameter
0. We note, however, that some generative models require only access to a proxy of the density of
Jdata instead of a dataset D. The ideal generative model would enable rapid sampling of diverse high
quality samples and also tractable evaluation of the underlying density function. In recent years, several
families of generative models have been introduced that rely on deep neural networks to construct fy.
These generative models are called Deep generative models (DGM). Each family has its drawbacks.
We present now a brief high-level introduction to the most well known families of DDGM and their
known drawbacks, before focusing on a more detailed introduction to the so called Denoising Diffusion
generative models (DDGM), which will appear in several chapters of this thesis.
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1.5.1 Normalizing Flows

Normalizing flows are somehow the straighforward generative models. They rely on the fact that when
we push forward a known distribution A through a diffeomorphism 7" : R% — R%/ then the resulting
distribution has a density with respect to the Lebesgue measure that is given by

pr(z) = NT7 (@) |Jp-1 ()], (1.16)

where Jr is the Jacobian matrix of T". Therefore, if Jr is known, it is therefore easy to both sample pr
and to evaluate its density. Normalizing flows consist in stacking such diffeomorphisms n € N times
to form fp = T1 9, 0 --- 0Ty, , where for each i € [1,n] , T;y, : R% — R% is a diffeomorphism

with easy to calculate inverse Jacobians J,-1. The density of py with respect to the Lebesgue measure
i,0;

is
po(x) = A(fy H(@)| 7, ()], (1.17)
where |J7,! ()] = [Ty |7 (Tog ™ 0+ 0 T g™ )(@))]

This fact makes also the training of normalizing flows particularly simple. Indeed, we can write

KL (qdata || 6) = — / log po (¢)data () + C, (1.18)

which leads to the following optimization objective
0 = argmin —Eq_,,. [logpg(x)] . (1.19)

It is then possible to use first-order gradient optimization objectives by calculating a Monte Carlo estimate
of the gradient of the objective defined above using samples from qgata.

As previously said, the two main advantages of Normalizing Flows is that it is both easy to sample from
and also easy to evaluate its log density. One of the main issues is that since fy is itself a diffeomorphism,
the resulting distribution is defined over fp(R%) which inherits from all the topological properties of
]R‘Si, namely, being a connected ds; manifold. Therefore, if qqa¢a represents a distribution with several
non-connected modes, the resulting distribution py would inevitably draw a linking path between the
modes figure 1.4. Another problem is that, if we suppose that the distribution qqgat, is defined over a
manifold of dimension d < dj, then by the same reason we know that pg would not be able to accurately
fit such distribution.

Figure 1.4: Example of Normalizing flow learned distribution for the Banana shaped dataset, taken from
Figure 8 of Grenioux et al. (2023) .
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1.5.2 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (Goodfellow et al. (2014)) alleviate the diffeomorphism constraint by
allowing ds # d and a much more flexible network architecture. This renders the evaluation of the
density and log density of the ensuing distribution intricate. For ds; < d, the density w.r.t the Lebesgue
measure is not defined.

To circumvent this issue, in Goodfellow et al. (2014) the generative models are trained through an
adversarial training procedure, which involves the introduction of a second deep neural network Dy, :
R — {0, 1}, the discriminator network. The discriminator is trained to differentiate between samples
from py and qqgata. At the same time, the generative model is trained to reduce the performance of the
discriminator network. More precisely, GANs are trained according to the following objective

(0, ¢):= argming argmax, V (0, ¢):=Eq,,,, [log Dg] + Ey, [log(1 — Dy)] . (1.20)

At first, it might seem challenging to compute gradients of V' (6, ¢) with respect to 6, but note that
Ep, [log(1 — Dg)] = Ecux [log(1 — Dg(fo(€)))]. While GANs excel in quality of the generated samples
and runtime speed and are the golden standard in generative model for most tasks, they suffer from some
well known drawbacks, such as mode collapse and unstable training. Several strategies have been
proposed (see Jabbar et al. (2021) and references therein) to mitigate both issues, but they are still a
challenge to practitioners today.

1.5.3 Noise Conditional Score Networks (NCSN) inference by annealed Langevin dy-
namics

Before introducing the first version of DDGM in its modern form, introduced by Song et al. (2021c),
we start by first describing the algorithm for Noise Conditional Score Networks (NCSN) inference by
annealed Langevin dynamics, introduced in Song and Ermon (2019). NCSN lay the foundation of what
would then become DDGM and is the first model without adversarial training to beat GANs in image
generation tasks Song and Ermon (2019).

Before diving into the generative model defined in Song and Ermon (2019), we briefly introduce
Unadjusted Langevin Algorithm (ULA) (Roberts and Tweedie, 1996) and Score matching Hyvirinen
(2005). ULA consists of an algorithm that provides approximate samples of a distribution of interest qqata
which admits a density with respect to the Lebesgue measure by exploiting the score of the distribution.
The score is defined as the gradient of the density, i.e. V 1og qqata. ULA defines a Markov chain { X} } ey
by first sampling X according to some initial distribution zg and then defining for ¢ € N*

Xp:=X; 1 + 7V 108 Qaata(Xi—1) + (29)Y %€, (1.21)

where e, ~ N(0,1;) and v is a positive constant called the step size. As shown in Durmus and Moulines
(2017); Durmus et al. (2019), ULA provides samples that are arbitrarily close (in KL) to the qqa¢, if one
chooses ~ small enough and runs the chain long enough. Notably, the amount of iterations of { X} }ien
needed to obtain a given precision depends on how “far" 19 and qqat, are.

Score matching Hyvirinen (2005) learns the score V log qqata by using i.i.d samples of qqat, and without
training a model to estimate the density of qqat, first. To do so, it relies on a neural network sy that is
trained to minimize

0 € RY - Exoqy, [1(Vso(X)) + (1/2)llso(X)[?] | (1.22)
which is shown in Hyvérinen (2005) to be equivalent to minimizing the Score matching loss

0 € RY — Exrqy,, |[I50(X) = Vogaua(X)[?] (1.23)
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There are two main drawbacks when learning the score via (1.22). The first being the cost of computing
the terms of (1.22) at each iteration of the training procedure. Furthermore, Song and Ermon (2019)
shows evidence that score matching with (1.22) fails to provide reliable estimates of the score in zones
of low density, which might lead to the generation of spurious samples that do not reflect the underlying
data density. We refer to (Song and Ermon, 2019, Section 3) for a detailed discussion.

To account for both problems, Song and Ermon (2019) proposes to first build a sequence of eas-
ier to sample laws {q;}¢c[o,n], from which the respective scores sp; can be learned through De-
noising score matching (DSN) and then sample from them using ULA sequentially. The sequence
of laws is defined by convoluting the data distribution with a Gaussian kernel with increasing vari-
ance, namely q;o(z¢|z0) = N (24; o, v} 14), where {v7 }1c[0,,,] is an increasing positive sequence, i.e.
qt(7¢):= [ ddata(dz0)geo(T¢|z0). We denote the joint law g o (dxs, dzo):=qyo(dz¢|T0)qdata (dzo). The
score of g; can be calculated through Fisher’s identity

(1.24)

qtjo (x| Xo)
VIOg qt(xt) = EXOquata [V logqt‘O(Xo‘mt)tloit .

qe(z¢)

One can learn the score of q; via a Neural network sy ; by minimising

Ex,~q [Hse,t(Xt) - VlOgCIt(Xt)HQ} ;

which can be written

EXtht

1[0 Xt|X0
s6(Xt) — Exonqaaa [V log g0 (z¢| Xo) tl H| }

Grjo(Xe| Xo)
= EXt"‘Qt [EXDquata [(tl()t) (HSQ(Xt)||2 — QSg(Xt)TVIOg Qt|0(Xt|X0)) +C

qe(Xe
= E(Xt,XO)NQt,O |:||59(Xt)||2 — 259(Xt)TV IOg Qt\O(Xt’XO)} + C
= E(x, Xo)~au0 | |50(X0) = Vog gyo(X:|Xo) 2] + €

where C and C are constants that do not depend on #. This procedure is called Denoising score matching
(DSN) and has been introduced in Vincent (2011). Therefore, by noting that V log qt|0(xt\x0) =
—vy Q(mt — () the score matching problem can be written as

0" = argming ﬁt(a) = IE(Xt,Xo)qus,o {HSO(Xt) + Ut_z(Xt - XO)”Q} ’ (1.25)

which corresponds to (Song and Ermon, 2019, equation 5). Instead of using one neural network for each
t, NCSN consists in using a single network to learn all the scores by accepting as an input the level of
noise, thus, the objective becomes

n n
L1n(0, 010) = D 0FL(0) = Y 0B (x, Xo)mar |50 (Xesve) + v 2 (Xe = Xo)[?] , (1.26)
t=1 t=1

where {0t }1e[1,n) € R are a sequence of weights. In Song and Ermon (2019), they chose ¢; = v;.

The sequence {v? }efo,n] is designed to increase progressively from a small v? to attain a relatively
large v?. The reason is that U% small would ensure the samples to be close to samples from qgata.
Large v2 would increase the density in parts of the space of low density for qqata, potentially linking
between two zones of high density for qqat, that previously were separated by low density regions and

rendering exploration during ULA more efficient. Furthermore, the number of iterations needed for
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ULA to provide samples that are close to the target distribution depends on the distance between g; and
g¢+1, Which serves as the starting distribution for ULA targeting q;. Therefore, one would ideally have
v? W v? small to require less ULA iterations.

The full annealed Langevin algorithm using the scores {sg(:, vt) }+e[1,n] is given in Algorithm 1, and
takes as input a starting sample X7, the number of Langevin steps k, a multiplicative constant for the
stepsize 7. At time of its publication Song and Ermon (2019) achieved state of the art sample quality
on unconditional CIFAR 10 generation, beating several different generative models, such as GANs and
Normalizing flows. However, one of the drawbacks of such generative model is that the inference time is
quite long. Indeed, for the algorithm to produce high quality samples, several Langevin steps k (k = 100)
are needed with a small r (r &~ 107°) and n = 10, leading to 1000 Neural network evaluations (NNE)
versus 1 NNE for GAN models.

Algorithm 1 NCSN algorithm
Data: X°, k,r, 0
Result: X
fort < ntoldo
for { + 1to k do
set y = rv? /v2.
draw €; o ~ N(0,15).
set X{ = X; 71+ (7/2)s0(X; 1 vr) + 7 %0
set XY | = X!

1.5.4 Denoising Diffusion generative models (DDGM)

Denoising diffusion generative models (DDGM) target the same sequence of laws {qt}te[[l,n]] , but instead
of relying on ULA to produce samples from q; it builds a way of sampling of q; directly from q¢y1.
There are several formulations and variations of DDGM, relying on stochastic differential equations Song
et al. (2021c), ordinary differential equations Karras et al. (2022) or Markov chains Song et al. (2021a).
We follow the presentation of Song et al. (2021a) that yields the so called DDIM (denoising diffusion
implicit model) sampler.

The building block for DDIM are the inference bridges {q?’fll't o(t—1|mo, z¢) }i_o, depending on a

sequence {7 };c[1,,—1] Of hyperparameters, defined as

0o @elwn, 20)=N (w15 i (w0, 20), 1 1) (1.27)

pe-1(z0, @e):i=x0 + (vF_1/v} — ni-1/v})"* (@ — x0). (1.28)
The definitions above may at first seem artificial, but they are motivated by the following lemma.

Lemma 1 (Adapted from (Song et al., 2021a, Lemma 1, Appendix B)). Let t € [2,n — 1] and
n? € (0,v2 ;). Then,

Q?_1|0($t71|$0)::/Qt\o(d$t|$0)Q?_1‘t’0(xt71‘xbfUO) = qi—1j0(Tt-1|w0) - (1.29)

Define, for a given 1 = {m; }4c[o,n] satisfying i, € (0,v) for ¢ € [1,n] and inference process

n

q’fm‘o(dxm\xo) = qujo(dan|zo) [ | Q?t__ﬁt’g(d%t—1|$two) (1.30)
t=2
QS;n(d$0:n) = q717:n|0(d$1:n|x0)qdata(dx0) . (131)
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Lemma 1 implies that ¢{.,, admits q; as ¢ marginals. Furthermore, Lemma 1 allows us to define

q?t 11|t RY x B(RY) 3 (24, A) — /IlA(a:t_l)q?t__ll‘t’O(dxt_l]wt,wo)q0|t(da?0]a:t), (1.32)
which satisfies
qr—1(dze—1) /qt 1 (dze—t]ze)ar(dzy) - (1.33)
Even though (1.33) provides a way of passing from q; to q;—1, it involves an intractable kernel q?t__f't.
By noting that Ex, v W Clzo) {V log qt‘o(xt|X0)} = —(]EmOng‘t(,‘xt) [Xo] — x¢)/v?, one can obtain an
estimate of EXON‘IW( m) [Xo] by
peo(xe):=ay + visg(xe,vr) - (1.34)
We use 111 9() as a replacement of the integral in (1.33) to define, for a given 7,
pt’nﬁtl (dzi—q|xt) = q?t_*lllt’o(dxt_ﬂxt, po.i(xt)) . (1.35)
We finally define the backward distribution
Py n(dxl . n(dzy) H P, ’nﬁtl (dzy—1|zy) - (1.36)

where pgi?°(~\x1) = N(p1,0(x1), 3 T) and Ay, = N(0, 07 1).

While we have motivated the backward distribution by replacing qf’_"l‘ . by pf’_”u ;» 1t can also be viewed
as minimizing the Kullback-Leibler (KL) between the inference process (1.31) and the variational family
defined by (1.36), which we denote Fpprv (7).

Defining q;,0(d(7+, 70)):=ddata(dT0) g jo(dT¢|70), We can write

( " || 0 /1 qdata(fEO)Qn\O(xn‘xO) H?:Z qz_1|t70<xt—1|xt7 ‘TO) n (d )
q p = og qp. Z0:
O 11 O An(n) [TH2y p?_1|t(xt—1|xt) o "

a a n xn Y
= /10 < Gdata (T0) >QO,1(dl’0:1) +/10g <q|0(|0)> n,0(dzy, dzo)
pﬂ\l x0|l‘1) )‘n(xn)

qt 1|t,0 fL‘t 1‘1’0,l’t)
+Z/l < ‘ qg_1|t70(d$t—l‘$t7Jfo)qt,o(dxtyde)

pt 1t wt 1|$t>

—/10gpo|1($0|$1)Q1,0(dl‘o:1) + U *Eqq [||X0|| /10gCIdata(:Eo)Qdata(dxo)

+ 3 ExXoyeano KLy, (1X0 Xo) [ Dyj,(1X0))]
t=2

12 PE(X0 Xo)~ar0 [Hﬂt 0(Xt) — X0||2} + U “Eqgura {||X0||2}

\]

d
+ [ 108 aata (w0)aaata(do) + dlog o + 5 log(2).

with g;_1:= {Ut —(vE, —nt 1)1/2} (n—1ve) "' for t € [2,n] and g9 = my'. Note that since
| at.0(zt) — 20]|? = v¥|sa(xt, v¢) — Vlog qt|0(:z:t\x0)||2, using (1.26) we can write

KL(qg:n H pg:n) = EXlNQl [KL(qdata || p8|1(|X1))} + El:n(ea Ql:n) + KL(qn || )\n)a (1-37)

25



with g1 = gr1ve = 1,4 [vt — (v, —77?_1)1/2} for t € [2,n] and g9 = 7y 'vy. This links
the minimization of KL(gg.,, || p%.,) and the score matching objective defined in eq. (1.26) with this
particular choice of g1.,. Note that to further minimize the KL(q(,, || pd.,), we must choose v,, >

Equ.ra [1X01%] /2 Note as well that one expects that by choosing vy small, the loss term defined by
Ex,~q {KL(qdaw I pg‘l(-]Xo))} should be easier to learn, as q1 ~ qqdata-

As shown in Song et al. (2021c) and Song et al. (2021a), the corresponding generative model is capable
of generating high-quality samples. Note as well that the same minimum is shared over Fppmny(sn) for
every s € (0, 1), showing that once a model is trained with a fixed 7, it is possible to reduce the variance
of the backward kernels to sn while still being sure of attaining the minimizer over Fppmv(sn). In Song
et al. (2021a), they show that this provides a tradeoff between sample quality and inference time. Namely
by reducing 1 and skipping some of the backward kernels, one is able to obtain higher perceptual scores
for image generation than one would by only skipping some of the backward kernels. This leads to
reducing considerably the number of NNE to 10 with only a slight degradation of sample quality.

Convolutional Neural Networks and Denoising

The success of DDGM for image generation tasks relies in parts on the fact that Convolutional Neural
networks, and especially the UNet Ronneberger et al. (2015) architecture, are extremely good in denoising
tasks. In particular, in DDGM each backward kernel p 1)t relies on the denoising of the state at iteration

t to render q?t__11|t70 Markovian. This section is heavily inspired by the work of Ulyanov et al. (2018),
where they show that the structure of the UNet itself is a good prior for some inverse problems, such as
denoising, super resolution and inpainting. We provide some numerical insights into why it is a good
idea to train a neural network iy(-) to minimize (1.37). Let xo be a natural image, z; a realisation of
Xs = zo+(1/4)e1 and x4 arealisation of X; = x5+ (1/4)es where €1, 5 are i.i.d N (0, I;). In Ulyanov
et al. (2018), they propose to use a UNet network 1(-) to denoise z; by solving argmin || pg(2) — z¢/|?
where z is a fixed white noise seed. Indeed, Ulyanov et al. (2018) show that by early stopping on this
objective it is possible to generate realistic denoized images of .

With this in mind, in this section we adapt this method to answer the following question What is easier
for a UNet to predict, x5 from x; or x¢ from z;?

To answer this question, let again 15 (-) be a UNet. Consider the following losses:

and

In Figure 1.5 we train two networks with the same initialization to minimize (indicated by the
circles) and (indicated by stars) and track the values of each loss through the optimization. We
see that in the beginning of the optimization, the output from the network is actually closer to x( than
to x5, even when trained over which is coherent with Ulyanov et al. (2018). This shows that the
task of predicting x( from z; is actually simpler than predicting x5 from ;.
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Figure 1.5: In the top row, we show the images used in the experiment (xg, x5, x+) and in bottom row
we show the evolution of |, 1s(0) and where the circle curves are obtained by minimizing /.. .()
and the star curve by minimizing

Another interesting consideration is that the last term in the optimization objective of a DDGM(1.25)
is closely connected to the denoising objective defined above. Indeed, X, is close to A/(0,v2 1) and
therefore the term By q... cunro,1) [1n,6(Xo + vne) — Xol|?] , is effectively trying to predict the
image X from v,e. We show in Figure 1.6 examples of s, ¢(-) applied to Gaussian noise with vy,
standard deviation.

Figure 1.6: Example of the denoising from Gaussian noise using a DDGM. We use here the google/ddpm-
ema-celebahq-256 from the HuggingFaces diffusers library.

DDGM as a prior for inverse problems

An interesting property of DDGM that distiguishes it from other generative models such as GANSs is
the iterative nature of the process of generating a sample. While the denoiser network is a complicated
object, conditionally on x4, Py is a well known distribution. This makes conditioning of such models
easier, since it is possible to act over each Pr_qpe separately in order to obtain a conditional sample through
Poj1- We drop the dependence on ¢ from the notation, since in this section we consider that we are given
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a pre-trained DDGM.

This possibility opens a considerably rich field of research, particularly when using DDGM as priors for
solving Bayesian inverse problems defined in Section 1.3.2. Several research works propose methods for
sampling from the posterior distribution 7 when the prior distribution A is a DDGM, such as Song et al.
(2021a); Kawar et al. (2022); Lugmayr et al. (2022); Chung et al. (2023). The posterior distribution, as
in (1.1),is pg (z0) o g (xo)po(zo),where g§ is the likelihood function of the associated inverse problem.
The posterior extended distribution is defined as

Pl (dzo:n) o< g8 (w0)An(dwn) [ ] pr—yje(dae—ila) - (1.38)
t=1

The ¢ marginals of pj,, are

P (A)i= [ La(er)pha(doon) = [ Lalwi)gh@o)po(doolar)pu(dae) = [ Lalwi)g @i)pu(dae).
(1.39)
where g/ (2):= [ gg (z0)po|;(dzo|z:). The score of the posterior can be written as Vlog pf(z;) =
Vlog ¢! (x;) + Vlog Pyt L1(w¢|xey1). The current available methods to sample from py either try to
approximate pj.,, by creating an alternative easier to sample version of pj.,,, such as Song et al. (2021a);
Kawar et al. (2022); Lugmayr et al. (2022) or try to approximate V log g/ () such as Chung et al. (2023).
All of those algorithms introduce irreducible approximation errors, leading to samplers that even though
generate samples that are qualitatively appealing in some tasks, might have unexpected behaviours in
other tasks. This lack of theoretical guarantees is specifically a problem when considering sensitive
applications of such algorithms, as for example would be the case in applications to medical data.

(Q4) Is it possible to derive an algorithm for sampling from the posterior of a Bayesian inverse problem
when using a DDGM as a prior that is theoretically grounded under realistic assumptions?

1.6 Contributions

The content of the present thesis is motivated by the research questions Q 1, 3 and 4 studied in the
following papers which constitute the five remaining chapters of this document.

1. BR-SNIS: bias reduced self-normalized importance sampling (Cardoso et al., 2022¢)
Gabriel V Cardoso, Sergey Samsonov, Achille Thin, Eric Moulines, Jimmy Olsson.
Advances in Neural Information Processing Systems 35 (NeurlPS) 2022.

2. Particle-based, rapid incremental smoother meets particle Gibbs (Cardoso et al., 2022a)
Gabriel V. Cardoso, Jimmy Olsson, Eric Moulines
Statistica Sinica.

3. State and parameter learning with the PaRIS particle Gibbs (Cardoso et al., 2023a).
Gabriel V. Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines, Jimmy Olsson.
International Conference in Machine Learning 40 (ICML) (2023).

4. Monte Carlo guided Diffusion for Bayesian linear inverse problems (Cardoso et al., 2023b).
Gabriel V. Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines.
Accepter for oral presentation ICLR 2024.

5. ECG Inpainting with denoising diffusion prior (Bedin et al., 2023).
Lisa Bedin, Gabriel V. Cardoso, Remi Dubois, Eric Moulines
Deep Generative Models for Health Workshop NeurlPS 2023.
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6. Bayesian ECG reconstruction using denoising diffusion generative models (Cardoso et al., 2023c)
Gabriel V. Cardoso, Lisa Bedin, Josselin Duchateau, Rémi Dubois, Eric Moulines.
Under review.

While not present in this thesis, I have also co-authored the following conference papers:

* A Patient-Specific Single Equivalent Dipole Model. (Cardoso et al., 2022b)
Gabriel V. Cardoso, Genevieve Robin, Andony Arrieula, Mark Potse, Michel Haissaguerre, Eric
Moulines, Rémi Dubois.
2022 Computing in Cardiology (CinC). Vol. 498. IEEE, 2022.

* Generative methods for sampling transition paths in molecular dynamics. (Lelievre et al., 2023)
Tony Lelie¢vre, Genevieve Robin, Innas Sekkat, Gabriel Stoltz, Gabriel V. Cardoso.
ESAIM: Proceedings and Surveys 73 (2023): 238-256.

Below, we provide a summary of the contributions made in each chapter. Please note that we introduce
notations in each chapter, although there may be some overlap. These notations are always defined at the
beginning of each chapter.

Chapter 2/ Q 2 - Bias Reduced Self Normalizing importance sampling

In this chapter, we analyse the so-called recycled i-SIR estimator described in Section 1.4.1.1 and show
that under the same hypothesis that ensures geometric ergodicity of the chain of states {Y%}ren, the
SNIS estimations associated with the candidate pool chain {X ,i:N }ren have exponentially fast decaying
bias. We derive MSE and concentration bounds for this estimator.

We propose a rollout estimator, that we furnish with bias, MSE and concentration bounds. Those bounds
suggest a bias-variance trade off with respect to the number of burn-in steps kg. We then propose a
bootstrap procedure that allows to recover the variance loss with respect to the equivalent SNIS algorithm
(SNIS with the same number of samples used in the whole procedure).

We show empirically in different datasets and applications the effect of bias-reduction without signif-
icantly increasing the variance of the proposed estimator. Furthermore, we show that in settings of
limited budget, the proposed estimator yields estimations with smaller empirical bias then the zero-bias
estimators proposed by Middleton et al. (2019).

Chapter 3/ Q 3 -PPG: Particle-based, Rapid Incremental Smoother Meets Particle Gibbs.

In this chapter, we extend the results concerning iSIR and importance sampling obtained in Chapter 2
to the case of the Particle Gibbs with backward sampling by merging the Particle Gibbs with Backward
sampling algorithm with the PARIS algorithm. The proposed algorithm can be seen as a small modifi-
cation over the PARIS algorithm and is able to generate a conditioning path (.., [k] (as in PGBS) and a
sequence of 3,,, that approaches 7., ho., for additive functionals hg.y,.

We show that the sequence of paths (p.,,, [%] still have the same theoretical guarantees as the PGBS while
achieving an exponential reduction of the bias of the estimator N ! Zf\il B%.. We provide the resulting
algorithm with an upper bound on the bias that decreases inversely proportional to the number N of
particles and exponentially fast with the particle Gibbs iteration index k (under the assumption that the
particle Gibbs sampler is uniformly ergodic). This is achieved while keeping the MSE comparable to
that of the PARIS smoother. We provide numerical illustrations of our bounds in a Linear Gaussian state
space model and in the non-linear stochastic volatility model.
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Chapter 4/ Q 3 - Parameter learning with PPG.

Once we obtained the PPG algorithm in Chapter 3, we employ it in the context of score ascent, where we
adapt the strategy of Karimi et al. (2019) to provide a non-asymptotic bound for the expectation of the
squared gradient in terms of bias and MSE of the PPG. This bound establishes a O(log(n)//n) conver-
gence rate of the learning procedure which is explicit in the bias and MSE of the PPG estimator.

We show that the issuing optimization scheme is competitive in several numerical examples and performs
better than approaches purely based on Particle Gibbs such as Lindholm and Lindsten (2018) in a same
budget setting.

Chapter 5/ Q 4 - Monte Carlo guided Diffusion for Bayesian linear inverse problems.

In this chapter we consider the problem of sampling from the posterior of a DDGM model. We focus on
the linear Gaussian inverse problem. Current methods Song et al. (2021a); Kawar et al. (2022); Lugmayr
et al. (2022); Chung et al. (2023) aiming to sample from m, introduce an irreducible bias rendering
them unreliable for critical applications. We propose a sequential Monte Carlo sampler that returns a
consistent particle approximation of 7, ensuring that asymptotically we sample from the target posterior.
For this purpose we introduce a sequence of guiding potentials {g¥}”_, to the posterior distribution
(1.38) that guide each marginal p; to form ptgi/ while still admitting pg as the 0-th marginal.

We construct the sequence of potentials first in the “noiseless” setting, i.e. 0 = 0. We show that the
general case (¢ > 0) can be seen as a noiseless inverse problem on the extended states with prior pj.,..
The derived SMC sampler targets the posterior and is provided with a non-asymptotic bound on the KL
divergence between the target posterior and the expected particle approximation.

We show several examples (in high-dimension) for which the target posterior distribution is known
evidence of our theoretical results, i.e. that the empirical distribution of samples from our algorithms
converge to the target posterior distributions. By doing so, we also show that current "posterior sampling
algorithms" do not sample from the target posterior, by generating a significant number of samples
outside the support of the target posterior.

Chapter 6/ Q 1 - Bayesian ECG Reconstruction using MCG-DIFF.

In this chapter, we show how, by combining MCGdiff from Chapter 5 with a learned DDGM on ECG
data, we are able to solve several different ECG reconstruction tasks better than the current methods
without any fine-tuning required.

We show in particular that this tool can be valuable for solving anomaly detection on the ECG and
show that it effectively distinguishes between the normal population and those that suffered a Miocardial
Infarction. We also adapt MCGdiff to handle unknown measurement noise by coupling MCGdiff with a
score ascent algorithm.
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Chapter 2

BR-SNIS: Bias Reduced Self-Normalized
Importance Sampling

2.1 Introduction

Background and previous work: Importance sampling Kahn and Marshall (1953); Agapiou et al.
(2017) (IS) is a classical Monte Carlo technique for estimating expectations under some given probability
distribution (the target) on the basis of a sample of draws from a different distribution (the proposal). Inthe
modern era of artificial intelligence and statistical machine learning, characterized by large computational
resources and Bayesian inference, IS technologies are enjoying a revival; see, e.g., Niknejad et al.
(2019); Kuzborskij et al. (2021) and Elvira and Martino (2021) for a recent survey. The method is not
only relevant to situations where sampling from the target is intractable; it can also be used to achieve
variance reduction Lamberti et al. (2018). When the proposal is dominating the target—in the sense
that the support of the latter is contained in the support of the former—unbiased estimation can be
achieved by assigning each draw an importance weight given by the likelihood ratio between the target
and the proposal. In the very common case where the target is known only up to a normalizing constant,
consistent estimation can still be achieved by simply normalizing each importance weight by the total
weight of the sample; however, since such self-normalized importance sampling (SNIS) involves ratios
of random variables, the procedure can only be implemented at the cost of bias, which can be significant
in some applications.

More precisely, let (X, X') be some state space and 7(dz) o< w(z)A(dx) a given target probability
distribution, where w and A are a positive weight function and a proposal probability distribution on
(X, X), respectively, such that the normalizing constant A(w) = [ w(z)A(dx) (this will be our generic
notation for Lebesgue integrals) of 7 is finite. The SNIS estimator is given by

My f(XM) = T wi f(XT), wiy = w(X)/ e w(XF) 2D

where XM = (X1 ... XM) are independent draws from ), and can be used to approximate 7(f) =
J f(z)m(dx) for any test function f such that w(|f|) < co. The estimator (2.1) can be calculated without
knowledge of the normalizing constant \(w), which is intractable in general.

The SNIS estimator is known to be biased; provided that A(w?) < oo, the bias and mean-squared
error (MSE) of the SNIS estimator (2.1) over bounded test functions f satisfying || f||cc < 1 are given
respectively (see (Agapiou et al., 2017, Theorem 2.1)) by

B[ f (X)) = w()] < (12/M)s[m, Al, - E[{TLy f(XTM) — w(f)}?] < (4/M)s[m, A], (2.2)

where k[m, \] = A(w?)/A\%(w). Although IS is primarily intended to approximate integrals in the form
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m(f), it can also be used to generate unweighted samples being approximately distributed according to
«. In this paper, we consider iterated sampling importance resampling (i-SIR), proposed in Tjelmeland
(20044a); see (Andrieu et al., 2010a; Lee et al., 2010; Lee, 2011; Andrieu et al., 2018). The i-SIR can
be seen as an iterative application of the sampling importance resampling (SISR) algorithm proposed
by Rubin (1987b); the k-th iteration is defined as follows. Given a state Y € X, (i) set X ,% =Y
and draw X %ﬁ independently from the proposal distribution A; (ii) compute, for i € {1,..., N}, the
normalized importance weights why ., = w(X}, )/ Y00, w(X[,); (i) select Yy4; from the set
k+1

the state and the candidate pool, respectively. Following (Tjelmeland, 2004a) (see Section 2.2.1), i-SIR
may be viewed (up to an irrelevant permutation of the samples) as a two-stage Gibbs sampler targeting
an extended probability distribution ¢ on an enlarged state space including the state as well as the
candidate pool. As this extended distribution allows 7 as a marginal with respect to the state, one can
expect the marginal distribution of the generated states (Y )xecn, forming themselves a Markov chain, to
approach the target 7 of interest as k tends to infinity.

X} by choosing X}, | with probability wiy ;. ;. In the following, Y341 and X}y will be referred to as

This paper: In i-SIR, the only function of the candidate pool is to guide the states selected at stage
(iii) towards the target. Thus, since all rejected candidates are discarded, the approach results generally
in a large waste of computational work. Thus, in the present paper we propose to recycle all the
generated samples by incorporating all the proposed candidates X ,};:N into the estimator rather than only
the selected candidate Y. We proceed in three steps. First, we show that under the stationary distribution
¢ of the process (Yi, X} )ren generated by i-SIR, the expectation of ITy f(X V) (given by (2.1))
equals 7(f) for every valid test function f (see Theorem 3). Second, we establish that since i-SIR is
nothing but a systematic-scan Gibbs sampler, the two processes (X V) cn and (Y ) ey are interleaving
(see Theorem 6); thus, if (Y)ren is uniformly geometrically ergodic, so is (X ,%:N )ken With the same
mixing rate x. Third, as the main result of the present paper, we establish a novel O(r@ﬂ“\, /N) bound
on the bias of the estimator ITy f(X}V) (see Theorem 4), where the exponentially diminishing factor
’ﬁﬁv indicates a drastic bias reduction vis-a-vis the standard IS estimator (2.1) based on i.i.d. samples.
As a consequence, approximating () by the average of (Il f(X} ))’Z:k0 41> where the “burn-in”
period kg should be chosen proportionally to the mixing time of the process, yields an estimator whose
bias can be furnished with a bound which is, roughly, proportional to /-a’f\? and inversely proportional to
the total number M = kN of samples generated in the algorithm (see Theorem 5). To complete the
theoretical analysis of these estimators, we also equip the same with variance bounds. The procedure
of recycling, as described above, all the samples generated in the i-SIR and to incorporate, at negligible
computational cost, the same into the final estimator, will from now on be referred as BR-SNIS. Finally,
we test numerically the proposed estimators and illustrate how a significant bias reduction relatively to
the standard i-SIR can be obtained at basically no cost.

To sum up, our contribution is twofold, since we

— propose a new algorithm, BR-SNIS, which makes better use of the available computational resources
by recycling the candidate pool generated at each iteration of i-SIR.

— furnish the proposed algorithm with rigorous theoretical results, including novel bias, variance, and
high-probability bounds which support our claim that sample recycling may lead to drastic bias
reduction without impairing the variance.
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2.2 Main results

2.2.1 Statements

The i-SIR algorithm can be interpreted as a systematic-scan two-stage Gibbs sampler, alternately sampling
from the full conditions of an extended target ¢, on the product space of states and candidate pools.
Once the extended target ¢ is properly defined, these full conditionals can be retrieved from a dual
representation of ¢ presented in Theorem 2. In order to define ¢, we introduce the Markov kernel
(see Section A.1.1 for comments)

An(y,dzt™N) = N=1 YN, 6, (da) [T AM(da?) (2.3)

on X x X®N which describes probabilistically the sampling operation (i) in i-SIR. Using the kernel
A N we may now define properly the extended target ¢, as the probability law

en(d(y, l“lzN)) = n(dy)An(y, dflzN) =N! Zi]\il W(dy)‘sy(dxi) Hj;éi A(diﬂj) 24

on (XN+1 x®W+1))  Note that since for every A € X, (1 45~ ) = 7(A), the target 7 coincides
with the marginal of ¢,y with respect to the state. Moreover, it is easily seen that Ay provides the
conditional distribution, under ¢, of the candidate pool given the state. Defining the kernels

Ly (zbV,dy) = N1 Zﬁl w(z®)6,i(dy), My (z'N,dy) = Ty (2N, dy)/Tnlx(ztY)  (2.5)
on X x X®N | the marginal distribution 7r v of o 5y with respect to 2V is given by
7y (datN) = A(w) ' TyIx (z¥Y) [T, A(da?). (2.6)

It is interesting to note that the marginal 7 has a probability density function, proportional to
Iylx(zBY) = SN w(a?)/N, with respect to the product measure A®Y. Using (2.6), we imme-
diately obtain the following result.

Theorem 2 (duality of extended target). For every N € N¥,

en(d(y, =) = m(dy)An(y, da' ™) = 7n (dz ")y (21, dy). 27

Note that the second identity of the dual representation (2.7) provides also the conditional distribution,
under ¢, of the state given the candidates. Consequently, i-SIR is a systematic scan two-stage Gibbs
sampler which generates a Markov chain (X}, Y )ren with time-homogeneous Markov kernel

P (e ok™), dWrr1, o11)) = An (Y, dag ) (247, dygst) (2.8)

on XNVH! x x®W+1) Note that the law Py (yx, 21, -) does not depend on x}, which means that
only the state Y}, needs to be stored from one iteration to the other. Thus, (Y%)ren is @ Markov chain
with Markov transition kernel

Py (ks dyes1) = [ AN (g, dep D)IN (2N, dyes1) = ANTIN (Yk, dyes1) (2.9)

(where integration is w.r.t. m,lc_f_vl) on X x X. The kernel (2.9) was analyzed in Andrieu et al. (2018).
Given some probability distribution & on (XNF1 X®(NV+1) we denote by P¢ the law of the canonical
Markov chain (X, Y )ren with kernel P and initial distribution €. Our first results establishes the
unbiasedness of the estimator ITy f (X V) under ¢ .

Theorem 3. For every N € N* and w-integrable function f,
SN f ("N y (dztN) = 7 (f).
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The proof of Theorem 3 is postponed to Section A.1.3. Next, we present theoretical bounds on the
discrepancy, in terms of bias, MSE and covariance, between Il f(X ") and 7(f), for bounded target
functions f, when the i-SIR chain is initialized according to an arbitrary distribution §. We will work
under the following assumption.

Al. It holds that w = ||w]|eo /A (w) < 0.

Under A1, the state and candidate-pool Markov chains (Y)ren and (X%V)ren can be shown to be
uniformly geometrically ergodic with mixing rate and mixing-time upper bound

EN=2w—-1)/Q2w+ N —-2), Tuxn=[—In4/Inky], (2.10)

respectively; see Theorem 7 below for details. Here the mixing time 7, v grows logarithmically with
the sample size N. The exact value of 7, y is likely to be grossly pessimistic, but we conjecture
that the logarithmic dependence in the minibatch size holds true. In addition, under A1 we define the
constants

Pias — 4(k[m, N\ + 1 + w)
S = A(r[m AL 1y () + (1 4+ w)* L9y (), o7 = " () /2, i€ {0,1,2}.
With these definitions, the following holds true.

Theorem 4. Assume Al. Then for every initial distribution € on (XNt X®WN+1) bounded measurable
function f on (X, X) such that || f|lco <1, N > 2, and (k,t) € (N*)?,

(i) [Be[Ty FOXEN)] = ()] < P (V= 1)~ 1w,
(ii) Be[{Ty f(XEN) = m(£)}?] < S me(N — 1)1/
(i) [Be[{Tly f(XEN) = m(F)HIW FOXEY) = m( )] < 6T S8 o/ (V — 1)~ 6G-4/272,

where constants are given in (2.10) and (2.11).

2.11)

It is worth noting that the bias decreases inversely with the number of candidates and exponentially
with the number of iterations (the mixing time of the chain also depends on N). The MSE is also
inversely proportional to the number of candidates N. In the light of the previous results, it is natural
to consider an estimator formed by an average across the IS estimators (ITy f(X}))ren associated
with the candidate pools generated at the different i-SIR iterations. To mitigate the bias, we remove a
“burn-in” period whose length kg should be chosen proportional to the mixing time 7, v of the Markov
chain (Y%)gen (Which turns out to coincide with that or the chain (X é:N )ken; see Section 2.2.2). This
yields the estimator

M iy (F) = (b — ko)™ o)1 IN F(XEY) (2.12)

of m(f). The total number of samples (generated by the proposal \) underlying this estimator is
M = (N — 1)k. Importantly, all the importance weights included in the estimators are obtained as a
by-product of the i-SIR schedule; thus, it is, for a given budget of simulations (i.e., under the constraint
that (k — ko) N is constant), possible to compute I1 (4 1y n(f) for different values of ko, k and N with a
negligible computational cost. We denote by v = (k — kg)/k the ratio of the number of candidate pools
used in the estimator to the total number of sampled such pools. Note that this type of estimator was
already suggested by Tjelmeland (2004b) and also appears in Schwedes and Calderhead (2021).

Our final main result provides bounds on the bias and the MSE of the estimator (2.12) as well as
a high-probability bound for the same. Define (%% = AT i, nebias /3, ame = ggfﬁl) /\2]1{072}(1') +
1

(8/3)Tmie N, @ € {0,1,2), €™ = 5% + ¢Pe(N —1)7Y* 4 (N —1)7", and MSE}; =
(4/M)k[m, A], see (2.2).

Theorem 5. Assume Al. Then the following holds true for every initial distribution & on (XN+1, x®N+1))
bounded measurable function f on (X, X') such that || f||cc < 1, and N > 2.

46



(l) ‘Eﬁ H (ko k ),N ‘ Clus UM) 14*kO/Tmix,N
(i) Ee[{TL (ko 1) N (f > < )}2] < MSESy, + ¢me(uM) Y (N —1)7/?
(iii) For every § € (0,1), [Ty 1) n(f) — 7(f)] < Pl (uM)~1/2(log(4/5))"/? with probability at
least 1 — 8, where <" = 664w.

<
]

Bootstrap: As established in Theorem 35, the bias of the BR-SNIS estimator decreases exponentially
with the burn-in period kg, leading to potentially significant bias reduction with respect to SNIS. Still,
using a large kg is done at a price of increased overall MSE (mainly through the term MSE”M in
Theorem 5(ii), which is directly related to kg via v). A natural way to reduce the variance is to use
bootstrap. More precisely, we first apply a random permutation to the samples and re-compute BR-SNIS
on the basis of the bootstrapped samples. After this, we produce a final estimator by averaging over
the bootstrapped BR-SNIS replicates. In most applications, the major computational bottleneck consists
of sampling from A and evaluating w and f at the samples; thus, the additional operations that this
bootstrap approach entails are computationally cheap. Therefore, in our experiments, we use bootstrap
in combination with the choice kg = k£ — 1 (in order to minimize the bound in Theorem 5(1)).

2.2.2 Elements of proofs

Ergodic properties of i-SIR: The systematic scan two-stage Gibbs sampler is a well-studied MCMC
algorithmic structure, and we summarize its most important properties in Theorem 6 below; see Liu
etal. (1994); Andrieu (2016) and (Robert and Casella, 2004, Chapter 9) as well as the references therein.
In particular, as shown in Liu et al. (1994), the state and candidate-pool Markov chains (Y})xen and
(X)) ken satisfy a duality property referred to as interleaving (Theorem 6(iii)).

Theorem 6. Assume that for every x € X, w(x) > 0, AN(w) < oo and that there exists a set C € X such
that \(C') > 0 and sup o w(z)/A(w) < co. Then,

(i) the Markov kernel Py is Harris recurrent and ergodic with unique invariant distribution ¢ .
(ii) the Markov kernel Py is w-reversible, Harris recurrent and ergodic.
(iii) the two Markov chains (Yy)ren and (X,%:N)keN are conjugate of each other with the interleaving
property, L.e., for every initial distribution § and k € N, under P,
(a) X ,%: and X}\} 3 +1 are conditionally independent given Y,
(b) Yy and Yy, are conditionally independent given X éﬁ
(c) moreover, under Py, , (Yy,, X)) and (Yi, X}V) are identically distributed.

The ergodic behavior of the i-SIR algorithm has been studied in many works; see Lee (2011); Lind-
sten et al. (2015); Andrieu et al. (2018) in particular. The analysis is particularly simple under the
assumption that the importance weight function w is bounded, as imposed by A 1. Recall that the
total variation-distance between two probability measures £ and ¢’ on (X, X) is given by dp(§, &) =
SUDg.0sc(g)<116(9) — €'(9)}, where osc(g) = sup(, . exz [g(7) — g(z')| denotes the oscillator norm of
a measurable function g. The following result establishes the uniform geometric ergodicity of the state
chain (Yy)ken-

Theorem 7. Assume Al. Then for every N > 2,y € X and k € N, dTV(P’fV(y, ),m) < /@']fv, where kN
is given in (2.10).

The proof is given in Lindsten et al. (2015); Andrieu et al. (2018), but we provide it in Section A.1.5
for completeness. For uniformly ergodic Markov chains, it is often more appropriate to work with the
mixing time

min{k € N : sup,ex dry(Pk(y, ), 7) < 1/4} < Tuie v (2.13)
(where 7, v is given in (2.10)), i.e., the number of time steps required for the distribution of the chain
to be within a certain total variation distance from its stationary distribution Aldous et al. (1997); Hsu
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etal. (2019). An interesting consequence of the interleaving property is that if the Markov chain (Y )xen
is (geometrically) ergodic, then the Markov chain (X é’N )ken is (geometrically) ergodic as well with the
same mixing time; see (Robert and Casella, 2004, Corollary 9.14)).

Bias of the BR-SNIS estimator: As the BR-SNIS estimator Iy f(X ézN ) (where Il is defined in
(2.5)) is made up by a ratio of the two unnormalized estimators I'y f(X}V) and Ty Ixc (X)), a key
ingredient in the proof of Theorem 4 is to bound the bias and the p™ order moments of statistics defined
as ratios of sums of random variables that are not necessarily independent. The basic idea is to reduce
the study of these relations to the analysis of the moments of the numerator and the denominator of these
statistics and to exploit their concentration around the respective (conditional and unconditional) means.
The main results that we will use in the rest of the paper are summarized in Section A.2.

Lemma 8. For every initial distribution &€ on (XN+1, x®W H)), k € N* and bounded measurable
function f : X — R, it holds that

(i) for everyy € X, ANTn f(y) = (1 = 1/N)Xwf) + (1/N)w(y) f(y).
(ii) Be |[Pn f(XEN) [ Yia | = AT F(Yia), Pe-as,

(iii) B [{Tnf(XEN) = ANDn F(Vi1)}? | Yia | = (N = 1)/N2A({wf = AMwf)}?), Pe-as.

We now have all the elements that allow us to determine the first important result of this work, namely
the bias and the MSE of the estimator ITy f(X}V) of 7 (f).

Proof of Theorem 4. We establish the bias bound in (i) and postpone the proof of the bounds on the MSE
and the covariance in (ii) and (iii) to the supplement. Define the measure {(A) = £(A x X), A € X,
and the kernel Py = AnIIy on X x X. Consequently, Py f(Yi—1) = Ee[lly f(XEY) | Yi_1] and
ANTNf(Yio1) = Eg[FNf(X,i:N) | Yi—1], Pe-a.s. Since (Yj)ren is, under P¢, a Markov chain with
initial distribution ¢ and Markov kernel Py (see (2.9)), it holds that

E¢[IIn f(X™N)] = E¢[Pn f(Yio1)] = Ee[Ee [Pn f(Yio1) | Yo] = €PR P f.
Consequently, the proof is concluded by establishing that for every k£ € N*,
PR TP S = m(f)] < Pkt (v = 1) (2.14)
On the other hand, since by Theorem 3, 7(Px f) = 7(f), we may use Theorem 7 to obtain the bound
[€PR PN — m(f)] = [EPN PN — m(PxS)| < Ky osc(Py f).

Finally, we establish (2.14) by bounding osc(P y f). Note that

osc(Pnf) < 2|Pnf — ANINf/(ANTNIx) [l + 2| ANTN f/(ANDNIx) = 7(f)llo . (2.15)
where, for every y € X, using Theorem 38,

IPnf(y) — ANDN f(y)/ANT NIx ()]

< %{ANFN]IX(y)}_Z{AN[{FNf — ANTNF ()} )(y) + 3AN[{TNTx — ANTNTx(y)}](9)}-
(2.16)

Now, since ANI'n1x(y) > (1 — 1/N)A(w), we get, using Lemma 8,

ot = o< 29— 1) ) P~ AwHP) + 3w - M)
NI NIX
(2.17)
<2(N = 1)~ A (w?)/(A(w))?. (2.18)
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On the other hand, using the elementary inequality a/b — ¢/d = a(d — b)/bd + (a — ¢)/d, we get, as
m(f) = Awf)/Mw),

ANTN f(y) _ ANINf(Y) w w w \w w
ATy~ ) = (UN) AR —w(y)/Aw) -+ (/M) () () = Mw )}/ Aw). @219
Finally, the bound (2.14) is established by noting that
IANT N f/(ANTNDx) = 7(f)]loo < 2N7H1 +w(y)/A(w)} < 2N 71 +w). (2.20)

O]

2.2.3 Related works

The first use of the IS method, then as a variance reduction technique, dates back to the ’50s; see
Hesterberg (1995); Kroese and Rubinstein (2012) and the references therein. Today, the renewed
interest in IS parallels the flurry of activity in the probabilistic ML community and its ever-increasing
computational demands; thus, it is impossible to fully present the literature. We therefore limit ourselves
to describing results that have inspired our work, and refer the readers to the recent reviews Agapiou
et al. (2017); Elvira and Martino (2021) for additional references.

There is clearly a plethora of modern ML applications where the standard SNIS estimator may be
substantially improved using the BR-SNIS method. To mention just a selection of examples, SNIS plays a
key role for a robust oftf-policy selection strategy BY Kuzborskij et al. (2021) (extending Swaminathan and
Joachims (2015); Metelli et al. (2018)), Bayesian problems (see, e.g., (Agapiou et al., 2017, Section 3)),
Bayesian transfer learning Karbalayghareh et al. (2018); Maddouri et al. (2022), variational autoencoders
Chen et al. (2022), inference of energy-based models Lawson et al. (2019), patch-based image restoration
Niknejad et al. (2019) and many more. In stochastic-approximation procedures, where a statistical
estimator or algorithm is employed repeatedly to produce mean-field estimates, controlling its bias
becomes critical Tadi¢ and Doucet (2017); Karimi et al. (2019). Thus, it is natural to aim at minimizing
the bias for a given computational budget, provided that the variance does not explode. For this reason,
bias reduction (or unbiasedness) in stochastic simulation has been the subject of extensive research during
the last decades; see Glynn and Rhee (2014); Jacob et al. (2020b). The present paper contributes to this
line of research.

Despite long-standing interest in SNIS, there are only few theoretical results. For example, (Agapiou
et al., 2017, Theorem 2.1) provides bounds on the bias and variance of SNIS, results that we extend to
BR-SNIS in Theorem 4. Moreover, (Metelli et al., 2018, Proposition D.3) provides a suboptimal variance
bound based on a bound for the second-order moment. This result can be compared to the sophisticated
sub-Gaussian concentration bound for BR-SNIS obtained in Theorem 5 (a result that can be obtained
for SNIS using the same proof mechanism; see Section A.1.8). Finally, Kuzborskij et al. (2021) obtains
a semi-empirical sub-Gaussian concentration inequality using the Efron-Stein estimate of variance and
the Harris inequality.

As an MCMC sampling method, the i-SIR algorithm that has been applied successfully in many situations.
It was recently used—under the alternative name conditional importance sampling—in Naesseth et al.
(2020) for Markovian score climbing. In the same work, it is mentioned that it is possible to “Rao-
Blackwellize” the gradient of the score using the proposed candidates, which is in line with the recycling
argument underpinning the estimator suggested by us, but without theoretical justifications. In its most
basic form, the i-SIR algorithm appeared in the pioneering work of Tjelmeland (2004a). The same
idea played a key role in the development of the particle Gibbs sampler Andrieu et al. (2010a, 2018);
Naesseth et al. (2019), which extends i-SIR principles to sequential Monte Carlo methods. An approach
very similar to BR-SNIS can be taken also in this context; however, casting BR-SNIS into the framework
of particle Gibbs methods is a non-trivial problem which is the subject of ongoing work.
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2.3 Experimental results

In this section we compare numerically the performances of BR-SNIS and SNIS in three different settings:
mixture of Gaussians, Bayesian logistic regression and variational autoencoders (VAE). We leave to the
supplementary material (Section A.3.1) the detailed numerical verification of the bounds established in
Section 2.2.

Mixture of Gaussian distributions: We start with an example where the target distribution 7 is a
mixture of two Gaussian distributions of dimension d = 7, as shown in Figure 2.2a. The proposal
distribution is a Student distribution with ¥ = 3 degrees of freedom. The test functionis f =14 — 15,
where A and B are a d-dimensional rectangle intersecting each of the modes of 7 (see Section A.3.1 for
precise definitions). We verify the positive effect of bootstrap in Figures 2.1a and 2.1b by computing
the bias and the MSE over 1000 chains for N = 129 for several k. The purple, green, and red curves
correspond to a number of bootstrap rounds of 1,21, and 201, respectively. We illustrate the decay of
the mean Sliced Wasserstein distance (according to Bonneel et al. (2015)) with & for different values of
N (N = 8 purple, N = 32 green, N = 64 orange, and N = 128 red) in Figure 2.1c. The decay of
the Wassertein distance is directly linked to the mixing time of the i-SIR kernel (see (2.10)), and hence
allows us to represent the effective mixing time of the chain. Moreover, we represent the theoretical
slopes as dashed lines. This illustrates that the effective value of 7, is smaller than its theoretical
bound. The bias and MSE for SNIS with M = 25600 are shown in black dashed lines.

We compare the bias (Figure 2.2b) and MSE (Figure 2.2¢) of BR-SNIS and SNIS for a fixed budget with a
total number of M = 16384 samples. We run the experiments 10° times; we compute the bias and MSE
over batches of 10* replications using the true value of 7(f) computed above (the boxplots in Figure 2.2
are therefore obtained over 100 replications). For the algorithm BR-SNIS, we used N € {129,513},
ko = kmax — 1 and kyqy = M /(N — 1) bootstrap rounds. As can be seen from Figure 2.2b, BR-SNIS

0.175

0.150
0.125
0.100
0.075
0.050

0.025 K

0.000

0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 10 20 30 40 50
K K k

(a) MSE (b) Bias in log scale (c) Sliced Wasserstein

Figure 2.1

significantly reduces bias (by a factor of almost 10) w.r.t. standard SNIS for both configurations, while
MSE increases only slightly (at around 20%), as can be seen in Figure 2.2c. The code used for this
experiment is available at !'. We also show in Section A.3.1 that kg = |0.625k;,, | can lead to about 3
times less bias w.r.t. standard SNIS while only augmenting the MSE of 10%. We have also compared in
BR-SNIS to zero bias estimators based on SNIS such as Middleton et al. (2019), the results are in shown
in Section A.3.1.

Bayesian Logistic regression: We consider posterior inference in a Bayesian logistic regression model.
Let Dyyain = (Xi,¥i)1_; be a dataset, where each x; € R¢ is a vector of covariates and y; € {—1,1}isa

https://github.com/gabrielvc/br_snis
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Figure 2.2: Comparison between SNIS and BR-SNIS for the same budget. In each boxplot the dotted line
represents the mean value of the samples.

binary response. Let p(y; | x;;0) = {1+ exp(—y; x; 6)} ! be the probability of the ith observation at
6 € © C R? and 7(df) be a prior distribution for §. The Bayesian posterior is given
m(df) = 27 mo(d0) exp(Lr(9)),  Lr(0) = i np(yi | xi;0), Z = [exp(Lr(0))mo(d6).

For numerical illustration, we use the heart failure clinical records (d = 13, T = 299), breast cancer
detection (d = 30, T' = 569), and Covertype (d = 55, T = 4 - 10%) datasets from the UCI machine
learning repository. For Covertype, we use Cover type 1 (Spruce/Fir) and Cover type 2 (Lodgepole Pine)
classes to define a binary classification problem. As a prior, we use a Gaussian distribution N (0, 7721)
with 72 = 5. 1072, The importance distribution ) is Gaussian with mean and diagonal covariance
learned by variational inference; see Section A.3.2 for details. The boxplots for bias in Figure 2.3
were constructed in the same way as those in Figure 2.2. We compare two test functions, f(6) = 0,

. CoverType Breast Heart
SNIS, M =32 0.0028 +/- 0.0012 | 0.00011 +/- 6.04e-5 | 0.00023 +/- 7.24e-5
BR-SNIS, M=32 | 0.0014 +/- 0.0003 | 7.9e-5 +/- 5.5¢-5 0.00012 +/- 6.7e-5
SNIS,M =512 | 0.0026 +/- 0.0017 | 4.3e-5 +/- 3.3e-5 7.8e-5 +/- 6.8e-5

0.0013 +/- 0.0003

3.5e-5 +/- 2.2e-5

4.9e-5 +/- 5.2e-5

BR-SNIS, M= 512

Table 2.1: Comparison of the TV distance between the posteriors (Lower is better).

corresponding to evaluation of the posterior mean, and f(0) = p(y | x,6), where (x,y) € Dyos. This
last function allows us to compute a TV distance for the predictive distribution. Indeed, in a classification
context, one can compute the TV distance between any two predictive distributions p and p as

dpy(P,p) =T~ 01 5350 1P = 7 | Xis Dirain) — P(Y = § | Xis Dirain)|, (2.21)
where we compare the predictive distribution p(y | @, Dyain) = [ p(y | x,0)7(0)d0 and p is the
estimation of this quantity, provided in the experiments by SNIS or BR-SNIS. From Figure 2.3 we can

see that for each dataset we have a constant decrease in bias, while the variance increases only slightly.
We plot the bias in other components of # and provide further numerical details in Section A.3.2.

Generative Model: We now extend our methodology to the more complex deep latent generative
models (DLGM). A DLGM defines a family of probability densities pg(z) over an observation space
x € R by introducing a latent variable z € R?, defining the joint density function py(x, ) (with respect
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Figure 2.3: Visualization of the distribution for each datasets. Each boxplot is grouped by budget, the
left one represent SNIS and the right represent BR-SNIS.

to Lebesgue measure) and aiming to find a parameter § maximizing the marginal log-likelihood of the
model pg(z) = [ pg(x, z)dz. Under simple technical assumptions, by Fisher’s identity,

Vologpg(x) = [ Vglogpo(z, 2)pe(z | x)dz, (2.22)

In most cases, the conditional density py(z | ) = pg(z, z)/pe(x) is intractable and can only be sampled.
The variational autoencoder Kingma and Welling (2014) is based on the introduction of an additional
parameter ¢ and a family of variational distributions g4(z | «). The joint parameters {6, ¢} are then
inferred by maximizing the evidence lower bound (ELBO) defined by

L(0,¢) = logpe(z) — KL(gs( | z) [ po(- | 2)) < logpp(z).

This basic setup has been further developed and improved in many directions. Here we consider the
importance weighted autoencoder (IWAE) Burda et al. (2015), which relies on SNIS to design a tighter
ELBO on the log-likelihood. The objective of the IWAE is given by

La(0,¢) = [log (M_l i w9,¢,x(zi)) 1221 ao(2e | 2)dz;, (2.23)

where wg ¢ »(2) = po(x,2)/qs(2 | ) denote the importance weights. However, writing, following
(Burda et al., 2015, Eq. (13)),

VoL (0,0) = [ M wp)  Vologwege(z) TR ao(2 | 2)dz,
where wé% . = Wo.2(2)/ Zj]‘il w4, (7;) are normalized importance weights, yields an expression of
the gradient that corresponds exactly to the biased SNIS approximation of (2.22). Thus, the optimization
problem will suffer from bias. We hence propose to use BR-SNIS for learning IWAE. The proposed
algorithm proceeds in two steps, which are repeated during the optimization (details are given in
Section A.3.3)

* First, update the parameter ¢ as in the IWAE algorithm (using the reparameterization trick and following
the methodology of Burda et al. (2015)) according to ¢"+1) = ¢ — V4L (6®), ¢®).

* Second, update the parameter by estimating (2.22) using BR-SNIS for 7(z) = py(z, 2), f(z) =
Vo logpg(x, z) and A(z) = qg(2 | 2).

We refer to this model as BR-IWAE. As an illustration, we train the model using the binarized MNIST

dataset Salakhutdinov and Murray (2008), where = € {0, 1}7®4 are binarized digits images in dimension

784. For both for the encoder g4 and the decoder pg, we use a convolutional neural network (more details

are given in Section A.3.3). For comparison, we estimate the log-likelihood using the VAE, IWAE and

BR-IWAE approaches, and the result is reported in Table 2.2. All models are run for 100 epochs, using

the Adam optimizer Kingma and Ba (2015a) and a learning rate of 10~*. The complete experimental

details are given in Section A.3.3.
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Latent dimension (d) VAE IWAE BR-IWAE (k = 8)
10 —87.40+0.14 | —86.44+0.10 | —86.29 £+ 0.09
20 —83.55+0.10 | —81.81 +0.06 | —81.66 £+ 0.12
40 —82.90 +£0.07 | —81.05+0.09 | —81.01 £ 0.05

Table 2.2: Comparison of the mean log likelihood over the MNIST validation set (Higher is better).

2.4 Conclusion

In this paper, we have introduced a novel method, BR-SNIS, which improves over SNIS when it comes
to producing close to unbiased estimates of expectations taken w.r.t. to distributions known only up to
a normalizing constant, a ubiquitous problem in machine learning and statistics. The high performance
of BR-SNIS is supported theoretically by non-asymptotic bias, variance and high-probability bounds.
We illustrate our method on various examples, which show the practical advantages of BR-SNIS over
SNIS. Finally, BR-SNIS is naturally adapted to other IS based methods, for example Thin et al. (2021),
which use a Hamiltonian (gradient-based) transform Neal et al. (2011) as part of the IS proposal. The
extension of BR-SNIS to Thin et al. (2021) would produce an Hamiltonian based sampler able to recycle
all samples, contrarily to other classical Hamiltonian-based methods Neal et al. (2011); Hoffman et al.
(2014). BR-SNIS can also be extended to Particle Markov chain Monte Carlo methods such as Particle
Gibbs with Ancestor sampling Lindsten et al. (2014b).
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Chapter 3

PPG: Particle-based, Rapid Incremental
Smoother Meets Particle Gibbs

3.1 Introduction

Feynman—Kac formulae play a key role in many models used in statistics, physics, and many other fields;
see Del Moral (2004); Del Moral (2013); Chopin and Papaspiliopoulos (2020), and the references therein.
Let {(X¢, X7) }ten be a sequence of measurable spaces and define, for every ¢ € N, X4 := Hﬁn:O X
and Xp.; = ®fn:0 Xm. For a sequence {M;}en of Markov kernels M, : X; x Xj41 — [0,1], an
initial distribution 179 € M1 (X)), and a sequence {g; };cn of bounded measurable potential functions
gt : Xy — Ry, asequence {no.; }+en of Feynman—Kac path measures is defined by

+(A
ﬂo;tiXO:tBAHL(), teN, (3.1)
Vﬂ:t(XO:t)
where
t—1
Yot Xot D A = / La(zox) no(dzo) ] Qum(zm, dzmy1), (3.2)
m=0
with
Qm : X X Xpy1 D (x, A) = g () M (x, A) (3.3)

being unnormalized kernels. By convention, 79.9 := 79. Note that each 7. is a probability measure,
whereas p.; is not normalized. For every ¢ € N*, we also define the marginal distribution 7; : X} >
A +— no4(Xo:t—1 x A). In the context of nonlinear filtering in general state-space hidden Markov
models(HMMs), ng.; and 1, are, the joint smoothing and filter distribution, respectively, at time ¢; see
Del Moral (2004); Cappé et al. (2005a); Chopin and Papaspiliopoulos (2020).

For most problems of practical interest, the Feynman—Kac path or marginal measures are intractable, and
so is any expectation associated with the same. As a result, considerable research has been devoted to
developing Monte Carlo, or particle, approximations of such measures. A particle filter approximates
the marginal distribution flow {n; },.x by a sequence of occupation measures, associated with a swarm
of particles {£}}N ,, N € N, where each particle & is a random draw in X;. Particle filters revolve
around two operations: a selection step, which duplicates or sorts out particles with large or small
importance weights, respectively, and a mutation step, which randomly evolves the selected particles in
the state space. An alternating and iterative application of selection and mutation results in a swarm of N
particles that are both serially and spatially dependent. Feynman—Kac path models can also be interpreted
as laws associated with a certain type of Markovian backward dynamics; this interpretation is useful, for
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example, for the smoothing problem in nonlinear filtering Douc et al. (2011); Del Moral et al. (2010).
Several convergence results have been established for particle filters, as the number N of particles tends
to infinity; see for example, Del Moral (2004); Douc and Moulines (2008); Del Moral (2013); Chopin and
Papaspiliopoulos (2020). In addition, a number of nonasymptotic results have been obtained for these
methods, including bounds on their bias and L,, error, as well as exponential concentration inequalities
and propagation of chaos estimates. Extensions to the backward interpretation can also be found in Douc
et al. (2011); Del Moral et al. (2010).

In this work, we focus on the problem of recursively computing smoothed expectations

No:the = /ht(wozt)nozt(d%:t), teN,

where we introduce the vector notation zg.; = (zg,...,xt) € Xoy = Xo X -+ x X; for additive
functionals h; of the form

t—1
(o) = D hn(Tmims1),  Tox € Xout- (3.4)
m=0

In nonlinear filtering problems, such expectations appear in the context of maximum-likelihood parameter
estimation, for instance, when computing the score function (the gradient of the log-likelihood function) or
the expectation—maximization (EM) surrogate; see Cappé (2001); Andrieu and Doucet (2003); Poyiadjis
etal. (2005); Cappé (2011); Poyiadjis et al. (2011). In Olsson and Westerborn (2017), the authors propose
an efficient particle-based rapid incremental smoother (PARIS), with linear computational complexity
in the number of particles under weak assumptions and limited memory requirements, that samples
on-the-fly from the backward dynamics induced by the particle filter. An interesting feature is that it
requires two or more backward draws per particle to cope with the degeneracy of the sampled trajectories
and remain numerically stable in the long run, with an asymptotic variance that grows only linearly with
time.

In this paper, we propose a method to reduce the bias of the PARIS estimator of 7g..h;. The idea is to
mix the PARIS with a version of the particle Gibbs algorithm with backward sampling Andrieu et al.
(2010b); Lindsten et al. (2014a); Chopin and Singh (2015); Del Moral et al. (2016); Del Moral and Jasra
(2018) by introducing a conditional PARIS algorithm. This leads to the Parisian particle Gibbs (PPG)
algorithm, from which we derive an upper bound on the bias that decreases inversely proportionally to
the number of particles and exponentially fast with the iteration index (under assumptions guaranteeing
that the particle Gibbs sampler is uniformly ergodic).

The remainder of the paper is structured as follows. In 3.2 we discuss the Feynman—Kac model, along
with its backward interpretation, and introduce the particle Gibbs sampler. Our presentation is inspired
by Del Moral et al. (2016), but differs in that it avoids the use of quotient spaces of Del Moral et al.
(2016) and the extension of the distribution to the particle ancestral indices of Andrieu et al. (2010b).
In 3.3, we introduce the PARIS algorithm and its conditional version, and show how it can be coupled
with the particle Gibbs method with backward sampling, yielding the PPG algorithm. In 3.4, we present
the central result of this study, namely, an upper bound on the bias of the PPG estimator as a function
of the number of particles and the iteration index of the Gibbs algorithm. In addition, we provide an
upper bound on the mean-squared error (MSE). In 3.5, we provide numerical experiment to illustrate our
results. In 3.6, we present the most important and original proofs. Finally, the supplementary material
contain pseudocode and additional technical proofs, respectively.

Notation. LetR :=[0,00),R% = (0,00),N:={0,1,2,...},andN* := {1, 2,3, ...} denote the sets
of nonnegative and positive real numbers and the same for integers, respectively. We denote by Iy the NV x
N identity matrix. For any quantities {ag}zzm, we denote vectors as Gt == (am, - - -, at), and for any
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(m,t) € N2 such that m < ¢, we let [m,t] := {m,m+1,...,t}. For a given measurable space (X, X),
where X is a countably generated o-field, we denote by F(X) the set of bounded X'/B(R)-measurable
functions on X. For any h € F(X), we let [|h]|oc = sup,ex |h(z)| and osc(h) = sup(; zex2 |h(x) —
h(z')| denote the supremum and oscillator norms, respectively, of h. Let M(X) be the set of o-finite
measures on (X, X), and M; (X) C M(X) be the probability measures.

Let (Y, )) be another measurable space. A possibly unnormalized transition kernel K on X x ) induces
two integral operators, one acting on measurable functions, and the other on measures; specifically, for
h € F(X®Y) and v € M;(X), define the measurable function

Kh:XBx%/h(w,y)K(a:,dy)

and the measure
vK: Y23 A~ /K(x,A)y(dx),

whenever these quantities are well defined. Now, let (Z, Z) be a third measurable space and L be another
possibly unnormalized transition kernel on Y x Z; we then define, with K as above, two different
products of K and L, namely,

KL:XxZ5 (2, A) /L(y,A)K(x,dy)

and
K®L:Xx(V®Z) 3 (z,4) — // 14(y, 2) K (z,dy) L(y, dz),

whenever these are well defined. This also defines the ® product of a kernel K on X x ) and a measure
v on X, as well as of a kernel L on Y x X and a measure © on )/, as the measures

V®K:X®y9AH//RA(m,y)K(%dy)V(dJU)»

LOpu:X®Y>3Ar //HA(x,y)L(y,dw)u(dy)-

3.2 Particle models

In the next sections, we discuss many-body Feynman—Kac models, backward interpretations, conditional
dual processes, and the PARIS algorithm. Our presentation follows that of Del Moral et al. (2016)
closely, but with a different definition of the many-body extensions. We restate (in 10) a duality formula
of Del Moral et al. (2016) relating these concepts. This formula provides a foundation for the particle
Gibbs sampler described in 3.2.3 and subsequent developments.

3.2.1 Many-body Feynman—Kac models

In the following, we assume that all random variables are defined on a common probability space
(Q, F,P). The distribution flow {7, }mcn is intractable, in general, but can be approximated by using
random samples £, = (£L,...,&Y), for m € N, of particles, where N € N* is a fixed Monte Carlo
sample size and each particle &, is an X,,-valued random variable. Such a particle approximation is
based on the recursion 7, +1 = @y, (7 ), for m € N, where ®,,, denotes the mapping

D, My(X) D > ——, 3.5)
Ngm

taking on values in My (X,;,41). In order to describe recursively the evolution of the particle population,
let m € N and assume that the particles §,,, form a consistent approximation of 7,,, in the sense that
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w(€,,)h, where pu(€,) = N1V, d¢i (with 6, denoting the Dirac measure located at z) is the
occupation measure formed by &,,,, serves as a proxy for n,,h for any n,,-integrable test function h.
(Under general conditions, ((€,,,)h converges in probability to 7, as N — oo; see Del Moral (2004);
Chopin and Papaspiliopoulos (2020), and the references therein.) Then, in order to generate an updated
particle sample approximating 7,41, new particles §,,, ,; = (3% TP &N 1) are drawn conditionally
independently given &,,, according to

N

; 4
€y~ (€)= 3 i m)

<N e
—1 ZE’:I gm( g@)

Because this process of particle updating involves sampling from the mixture distribution ®,,(u(&,,)),
it can be decomposed into two substeps: selection and mutation. The selection step randomly chooses
the /th mixture stratum with probability g, (£4,)/ SD— gm (€%, and the mutation draws a new particle
& 1 from the selected stratum Mm(ffn, -). In Del Moral et al. (2016), the term many-body Feynman—
Kac models is related to the law of process {&,, }men. Forall m € N, let X,,, = XY and &, == XV,
then, {&,, }men is an inhomogeneous Markov chain on {X,, },,en, with transition kernels

Mm(&é@ﬂ% (S [[LNH'

My, Xy X Xt D (@ A) 5 O (1@ )) Y (A)

and initial distribution 15 = ngw . Now, denote Xg.; := an:o X, and X := ®fn:0 X .. (Here, and
in the following, we use a bold symbol to stress that a quantity is related to the many-body process.) The
many-body Feynman—Kac path model refers to the flows {~,,, } men and {n,,, }men of the unnormalized
and normalized probability distributions, respectively, on {X ., }men generated by (3.1) and (3.2) for
the Markov kernels { M, },en, the initial distribution 7, the potential functions

1 :
G i X D Ty = (X)) G = N ng(mjn), m € N,
i=1

and the corresponding unnormalized transition kernels
Q.. Xy X Xpt1 3 (@, A) = g, (@) M (1, A), m e N.

Finally, note that in the previous construction, the Markov property of the many-body Feynman—Kac
model relies on the fact that each potential g,, is a function of a single state x,,, only, as is the case in
the standard Feynman—Kac model framework Del Moral (2004), and that the evolution of the particles
follows the model dynamics given in (3.5) (so-called bootstrap particle filtering). In order to extend this
to more general models (such as models where the potentials are allowed to depend on two consecutive
states Lee et al. (2020) or, even more generally, where no structure at all is assumed for the unnormalized
kernels (3.3) Gloaguen et al. (2022)) and particle dynamics (such as the auxiliary particle filtering
framework introduced in Pitt and Shephard (1999)), we need to form a Markovian many-body process
with tractable dynamics by furnishing each particle with an importance weight and an index that records
the particle’s ancestor in the previous generation. However, to avoid this technicality and to allow for
a more clear-cut presentation of the methods and theoretical analysis in the coming sections, we stay
within the framework of the standard Feynman—Kac models and bootstrap-type particle filters, even
though extensions to more general settings may be possible.

3.2.2 Backward interpretation of Feynman—Kac path flows

Suppose that each kernel Qy, for t € N, defined in (3.3), has a transition density ¢; with respect to
some dominating measure A\;y1 € M(X;y1). Then, fort € N and n € M;(X}), we define the backward
kernel

J La(ze)qe(we, we41) n(day)

%
: X X X, 2 (x aA —
Qi Xeg1 t 3 (Te41,A) [ @ (2}, 211) n(da})

(3.6)

58



Now, for t € N*, denoting

t—1
e
By X x oo 3 (@A) o [ [ La@oe) [] Qs @nindon), G
m=0

we may state the following—now classical—backward decomposition of the Feynman—Kac path mea-
sures, a result that plays a pivotal role in the following.

Proposition 9. For every t € N*, it holds that o+ = v+ ® By and no.t = n: @ By.

Although the decomposition in 9 is well known (see, e.g., Del Moral et al. (2010); Del Moral et al.
(2016)), we provide a proof in 3.6.1 for completeness. Using backward decomposition, we can obtain a
particle approximation of a given Feynman—Kac path measure 7g.; by first sampling, in an initial forward
pass, particle clouds {&,,}!, _, from 1y ® My ® -+ ® M,_;. Then, in a subsequent backward pass,
we sample N conditionally independent paths {ég):t}ZN:l from By (&, . .., &, ), where

=1,
B; : Xo:t X Xo:t 2 (To:t, A) /"‘/HA(JUO:t) (H Qm,u(mm)(ﬂﬂerlvdffm)) p(@e)(dze)  (3.8)
m=0

is a Markov kernel describing the time-reversed dynamics induced by the particle approximations
generated in the forward pass. (Here, and in the following, we use blackboard notation to denote
kernels related to many-body path spaces.) Finally, u({£).,}2,)h is returned as an estimator of 7.;h
for any 7)..-integrable test function h. This algorithm is referred to as the forward-filtering backward-
simulation (FFBS1i) algorithm in the literature, and was introduced in Godsill et al. (2004); see also
Cappé et al. (2007); Douc et al. (2011). More precisely, given the forward particles {€,,},—0, each path
50 .+ 1s generated by first drawing ft uniformly from among the particles &, in the previous generation,
and then drawing, recursively,

N o

i — % Qm(é-mv gffn—l—l)

gm ~ Qm, m+1> ") = 0 A (39)
) Emr1s ) ;Ze L am(€L m+1> &

that is, given gfn 11 ézn is picked at random from among &,, based on weights proportional to
{qm(&],, €, +1)}§-V:1. Note that in this basic formulation of the FFBSi algorithm, each backward-
sampling operation (3.9) requires the computation of the normalising constant Zévzl qm (&L, {;n 1)
which implies an overall quadratic complexity of the algorithm. Still, this heavy computational burden

can be eased by using an effective accept—reject technique, as discussed in 3.2.4.

3.2.3 Conditional dual processes and particle Gibbs

The dual process associated with a given Feynman—Kac model (3.1-3.2) and a given trajectory {z; }en,
where z; € X; for every ¢t € N, is defined as the canonical Markov chain with kernels

M(zi41) - Xy X X1 2

1 N1 ‘ o
(0, 4) = = 3 (Bulu(20)® @ 6., @ By () °N ) (4), 3.10)
=0
for t € N, and initial distribution
1= ®(N—i—1)
==Y (o5, oY), (3.11)
i=0
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As is clear from (3.10-3.11), given {z; };cn, a realization {&, };en of the dual process is generated as
follows. At time zero, the process is initialized by inserting z at a randomly selected position in the
vector &, while drawing independently the remaining elements in the same vector from 7)9. After this,
the process proceeds in a Markovian manner by, given &, inserting 2,41 at a randomly selected position
in £, 1, while drawing independently the remaining elements from ®;(1(&;)).

In order to describe compactly the law of the conditional dual process, we define the Markov kernel
Ct : Xot X Xo:t 3 (20:4, A) > Mo(20) @ Mo(21) ® -+ @ M—1(2t)(A).

The following result elegantly combines the underlying model (3.1-3.2), the many-body Feynman—Kac
model, the backward decomposition, and the conditional dual process.

Theorem 10 (Del Moral et al. (2016)). For all t € N, it holds that
B: ® Yot = 70:t ® Cy. (3.12)

In Del Moral et al. (2016), each state &, of the many-body process maps an outcome w of the sample
space 2 onto an unordered set of N elements in X;. However, we have chosen to let each &, take values
in the standard product space X,{V , for two reasons. First, the construction of Del Moral et al. (2016)
requires sophisticated measure-theoretic arguments to endow such unordered sets with suitable o-fields
and appropriate measures. Second, we see no need to ignore the index order of the particles, as long as
the Markovian dynamics (3.10-3.11) of the conditional dual process are symmetrized over the particle
cloud. Therefore, in 3.6.2, we include our own proof of duality (3.12) for completeness. Note that the
measure (3.12) on Xp.; ® X+ is unnormalized, but because the kernels B; and C; are both Markov,
normalizing the identity with vo.;(Xo:t) = v¢.;(Xo:¢) immediately yields

B: ® 1o, = not @ Ct. (3.13)

Because the two sides of (3.13) provide the full conditionals, it is natural to take a data-augmentation
approach, and sample the target (3.13) using a two-stage deterministic-scan Gibbs sampler Andrieu et al.
(2010b); Chopin and Singh (2015). Specifically, assume we generate a state (&€.,[¢], Co:t[¢]) comprising
a dual process with an associated path on the basis of ¢ € N iterations of the sampler. Then, we generate
the next state (&4 [¢ + 1], Co.£[¢ + 1]) in a Markovian fashion by first sampling &.,[¢ + 1] ~ C¢(Co:t[4], -),
and then sampling (o¢[¢ + 1] ~ By(&y4[¢ + 1],-). After arbitrary initialization (and the discard of
possible burn-in), this procedure produces a Markov trajectory {(&€..[¢], Co:t[¢]) }¢en, and under weak
additional technical conditions, this Markov chain admits (3.13) as its unique invariant distribution. In
such a case, the Markov chain is ergodic (Douc et al., 2018, Chapter 5), and the marginal distribution of
the conditioning path (p.¢[¢] converges to the target distribution 7).;. Therefore, for every h € F(Xp.t),
it holds that limy,_ o L™} Z£:1 h(Co:t[f]) = mo.th, P-a.s.. This algorithm is given in the discussion in
Whiteley (2010) of the original particle Gibbs paper Andrieu et al. (2010b); however, the justification of
Whiteley (2010), involving an extension of the law targeted by the particle Gibbs sampler to the ancestral
indices of particles, differs somewhat from the one presented here.

3.2.4 The PARIS algorithm

In the following, we assume that we are given a sequence {h; }+cn of additive state functionals of type
(3.4). Interestingly, as noted in Cappé (2011); Del Moral et al. (2010), the backward decomposition
allows, when applied to additive state functionals, a forward recursion for the expectations {7o.;h; }ten.
More specifically, using the forward decomposition h¢ i1 (xot+1) = he(o:) + Bt($t,$t+1) and the
backward kernel By defined in (3.7), we may write, for ;11 € X;11,

% ~
Bitihipi(xp41) = / Q¢ (Teg1, day) / (ht(l“o:t) + ht(xtaxt+1)> By(xt,dzo:¢—1)

= <C_2t,m(Btht + ) (w441, (3.14)
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which, by 9, implies that -

No:t+1Rt+1 = M1 Qe (Behe + hy). (3.15)
The marginal flow {7 }+en can be expressed recursively using the mappings {®;}ien. Thus, (3.15)
provides, in principle, a basis for an online computation of {ny.1/; }:cn. Because the marginals are
generally intractable, following Del Moral et al. (2010), we plug particle approximations (&, ) and
Qt (g, (see (3.9)) of nyy1 and Qt ,u(ne)» Tespectively, into the recursion (3.15). More precisely, we

proceed recursively, and assume that at time ¢, we have a sample { (&7, 3i)} ¥, of particles with associated
statistics, where each statistic 3 serves as an approximation of B;h.(§;). Then evolving the particle

cloud according to &, 1 ~ M (§;,-) and updating the statistics using (3.14), with Q¢ replaced by
Qt u(,)» yields the particle-wise recursion

N { i
i Qt(étaftﬂ) 0| F (el i :
= E — +h , , 1, N|, 3.16
Btﬂ —1 Zé\/]ﬂ Qt(ff ,f§+1) <Bt t(gt €t+1)) ‘e [[ ]] ( :

and, finally, the estimator

(B, (id) Z By (3.17)

of 7o.ths, where we set 8, = (B},...,B), for i € [1, N], and id is the identity mapping. The
procedure is initialized by simply letting 35 = 0, for all i € [1, N]. Note that (3.17) provides a particle
interpretation of the backward decomposition in 9. This algorithm is a special case of the forward-
filtering backward-smoothing (FFBSm) algorithm (see Andrieu and Doucet (2003); Godsill et al. (2004);
Douc et al. (2011); Séarkké (2013)) for additive functionals satisfying (3.4). It allows for online processing
of the sequence {no.¢h: }1en, but also has the appealing property that only the current particles &, and
statistics B, need to be stored in memory. However, because each update (3.16) requires a summation
of N terms, the scheme has an overall quadratic complexity in the number of particles, leading to
a computational bottleneck in applications to complex models that require large particle sample sizes
N.

To avoid the computational burden of this forward-only implementation of FFBSm, the PARIS algorithm
Olsson and Westerborn (2017) updates the statistics 3, by replacing each sum (3.16) with the Monte

Carlo estimate
M

Bia= 12> (B + (€7 €0)) i€ I N, (.18)

j=1
where {(£7, 517 ) 1, are drawn randomly from among { (&}, 3¢)}X, with replacement, by assigning

(€7, B the Value of (&f, Bf) with probability ¢;(£f, & 1)/ Sb—1 qi(&f ;€L 1), and the Monte Carlo
sample size M € N* is much smaller than IV (say, less than five). Formally,

(&7, AL ~ (i wlibin) g >®M i€ [LN]
Lore S (&) (&6 7 7
The resulting procedure, summarized in 7, allows for online processing with constant memory require-
ments, because it only needs to store the current particle cloud and the estimated auxiliary statistics at
each iteration. Moreover, when the Markov transition densities of the model can be uniformly bounded,
that is, there exists, for every ¢ € N, an upper bound &; > 0 such that for all (x¢, x411) € X¢ X Xpy1,
me(ze, xt+1) < 0 (a weak assumption satisfied for most models of interest), then we can generate
a sample (5 7 307) by drawing, with replacement and until acceptance, candidates (0, BI*) from
{(€,81)}N, based on the normalized particle weights {g;(&)/ Sy g:(€f )}, (obtained as a by-
product in the generation of &, , ;), and accepting the same with probability mt(gé * & 11)/0¢. Because
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this sampling procedure bypasses the calculation of the normalizing constant Zé\f:l qt(ﬁf', & 41) of the
targeted categorical distribution, it yields an overall O(M N) complexity of the algorithm; see Douc
et al. (2011) for details.

Increasing M improves the accuracy of the algorithm at the cost of additional computational complex-
ity.

As shown in Olsson and Westerborn (2017), there is a qualitative difference between the cases M = 1
and M > 2, and the latter is required to keep the PARIS numerically stable. More precisely, in the latter
case, it can be shown that the PARIS estimator p(f3,) satisfies, as N tends to infinity while M is held
fixed, a central limit theorem (CLT) at the rate v/N, with an t-normalized asymptotic variance of order
O(1 —1/(M —1)). Asis clear from this bound, using a large M only wastes computational work, and
setting M to two or three typically works well in practice.

3.3 The PPG sampler

We now introduce the PPG algorithm. For all t € N*, let Y; = Xo4 X R and )} := Ap, ® B(R).
Moreover, let Yo := Xo x {0} and )y = Xp ® {{0},0}. An element of Y, is always denoted by
Yt = (Z0:¢|¢, bt). The PPG sampler includes, as a key ingredient, a conditional PARIS step, that recursively
updates a set of Y-valued random variables v = (&g, 5), for @ € [1, N]. Let (v¢)ten denote the

corresponding many-body process, with each v; = ((fé:ﬂt, B, .., (fé\;[ﬂtv BV)) taking on values in the
space Y; := YN, which we furnish with a o-field ; == Y®. The space Y and the corresponding
o-field Y are defined accordingly. Forevery ¢ € N, we write £y, = (5(1””, cen §éYt|t) for the collection
of paths in v, and £, = (&},..., &) for the collection of end points of the same.

In the following, we let t € N be a fixed time horizon, and describe in detail how the PPG approximates
no-¢hy iteratively. In short, at each iteration ¢, and given an input conditional path (. [¢], the PPG produces
a many-body system v [¢ + 1] by using a series of conditional PARIS operations. Then, an updated path
Co:t[¢ + 1], which serves as input at the next iteration, is generated by picking one of the paths & 0:t|t [{+1]
in v¢[¢ + 1] at random. At each iteration, the produced statistics 3; (in v;) provide an approximation of
no:the, according to (3.17).

More precisely, given a path (y.;[¢], the conditional PARIS operations are executed as follows. In the
initial step, &opo[¢ + 1] are drawn from 1 (Co[¢]) defined in (3.11), and vh[€ + 1] + (&0[¢ + 1], 0), for
all i € [1, N; then, recursively, for m € [0, ], assuming access to v, [¢ + 1], we

(1) generate an updated particle cloud §,,, 1 [£ + 1] ~ My (Gnt1[€]) (&€ + 11,0,

(2) pick at random, for each i € [1, N], an ancestor path with associated statistics (£ [(+1], Bu1 [0+
1]) from among v, [¢ + 1] by drawing

~ _ N qm(Eyll + 10,6 [0+ 1)
Bl 41), R+ 1)) ~ d mfm A

v, 0411
1) [e+1]

(3) pick at randgm, for eacp i € [1, NJ, with replacement, M — 1 ancestor particles and associated
statistics { (&7 [¢ + 1], B/ [€ + 1]) } 3L, at random from {( [0+ 1], 82,[¢ + 1))}, according
to

s
m|m

(&7 10 +1], 310+ 1)},

Z s + i ®(M-1)
- s’ i &fn m 41 76’rsn 4+1 Y
s=1 Zé\’[_l qm( m\m[e + 1], m 1[£ + 1]) ( \ (411,85, [6+1])
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@) set, forall i € [L N &, 1ma [0+ 1 (Gl + 1 €pa [0+ 1]) and g, [0+ 1)
(§E:m+1|m+1[€ + ”7 7177,+1[€ + 1}), where

M
Bhale+ 1] MUY (B 10+ 1]+ hon (G + 1], €l [0+ 1)) -
i=1

This conditional PARIS procedure is summarized in pseudocode in 8 in B.2.

In addition to recursively propagating the statistics {/3,,,[¢ + 1]}!,_ to form the final estimator, this
scheme also recursively propagates the trajectories {£.,,|, [¢ + 1] }m:0 used as a pool of candidates for
the updated conditional path (p..[¢ + 1]. Once we have the set v.[¢ + 1] of trajectories and associated
statistics formed using ¢ recursive conditional PARIS updates, we draw an updated path (o.¢[¢ + 1] from
11(&o.1j¢[€ + 1]) (i.e., uniformly among the elements of €., [¢ + 1]). As aresult, the updated conditional
path (p.¢[¢ + 1] and the statistics 3,[¢ + 1] are statistically intertwined conditionally on the conditional
dual particle process underpinning the algorithm. The main reason for this is to avoid computational
waste. By letting the updated conditional path y..[¢ + 1] be formed by reusing the backward samples
from those generated to form the statistics 3,[¢ + 1] included in the estimator, our procedure optimizes
available computational resources. The full PPG is summarized in pseudocode in 9 in B.2.

The following Markov kernels play an instrumental role in the following. For a given path {z,, } men, the
conditional PARIS update in 8 defines an inhomogeneous Markov chain on the spaces {(Y,, Yim) }men
with kernels

Ym X ym—l—l > (ym7A) = / Mm<zm+1>(xm|m7dwm+l) Sm(ymawm-f—l?A)? m e N7

where

Sm : Ym X Xm+1 X ym+1 =) (ymamerl)A) (319)

M
>—>/ /IIA ( (6 T 1)1 ]\14]2:1(5%—#}3 (@] xm“)))}EVJ

(‘rfnm7x£n+1)
. Z non s, (A5, B1)
=1

Zﬁl 1 qm( m|m7 xin-l—l

)

N gm(xt i ) ®(M—1)

m m\m? m—+1 P ot

X E ; . Ozt bt (A(@h2,bhe o b))
( =1 Zf/:l Qm( fn‘m,x +l) (lm‘my m))

In addition, we introduce the joint law

St : Xo:t X Yt 3 (zo:t, A)
-1
> /m/h(yt) So(Jzo, 21, dy1) ] Sm(Yms Bmt1,dYg1), (3.20)
m=1

where we define J := Iy ®(0, 1)T.

The kernel S; can be viewed as a superincumbent sampling kernel that describes the distribution of
the output v; generated by a sequence of PARIS iterations when the many-body process {&,,}!,_
associated with the underlying particle filter is given. This allows us to describe the PPG alternatively
as follows: given (p.¢[¢], draw &.,[¢ + 1] ~ C¢(Co:¢[4], -); then, draw v [¢ + 1] ~ S¢(&(..[¢ + 1],-) and
pick a trajectory (o[£ + 1] from &, [ + 1] at random. The following proposition, establishes that the
conditional distribution of (y.¢[¢ + 1] given &.,[¢ + 1] coincides, as expected, with the particle-induced
backward dynamics B;.
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Proposition 11. Forallt € N*, N € N*, xo4 € Xo.t, and h € F(Xp.),
/St(fﬂo:t, dy,) p(@o.e)h = Bih(xo:t).

Finally, we define the Markov kernel induced by the PPG, as well as the extended probability distribution
targeted by the same. For this purpose, we introduce the extended measurable space (E;, £;), with

E: =Y x Xoit, &t =Y ® Xt
The PPG described in 9 defines a Markov chain on (E;, £;) with the Markov transition kernel

Kt : Et X gt > (’yt,ZO:t,A)
> /// 1A (Fy Zo:t) C(20:¢, dZo:t) Se(To:t, dYy) 1(Zoupe) (dZ0:e).  (3.21)

Note that the values of K; defined above do not depend on y,, but only on (2¢.t, A). For any given initial
distribution & € My (Xp.), let P € be the distribution of the canonical Markov chain induced by the kernel
K; and the initial distribution . In the special case where & = 4, for some given path zp.; € Xo.t, we
use the short-hand notation P begy = P,,.,- In addition, denote by

Kt : XO:t X XO:t = (ZO:t7A)
- / / / 14 (o) Ci(Z0u, d0t) Se(@0, 47,) p(Foape) (A04)  (3.:22)

the path-marginalized version of K;. By 11, it holds that K; = C;B;, which shows that K; coincides
with the Markov transition kernel of the backward-sampling-based particle Gibbs sampler discussed in
3.2.3.

Finally, in order to prepare for the statement of our theoretical results on the PPG, we need to introduce
the following Feynman—Kac path model with a frozen path. More precisely, for a given path zg.; € Xo.,
define, for every m € [0,¢ — 1], the unnormalized kernel

Qm{zm+1) : X X g1 3 (T, A) = (1 - ]i,) Qm(Tm, A) + %gm(xm) 6zm+1 (A)

and the initial distribution n9(z0) : Xy 2 A — (1 — 1/N)no(A) + 0.,(A)/N. Given these quantities,
define, for m € [0,t], vm(zom) = mo(20)Qo(z1) - - Qm—1{2m) , and its normalized counterpart
N (20:m) = Ym{20:m) /Ym20:m) 1x,.,,- Finally, we introduce, for m € [0, ¢], the kernels

t—1
%
Bm<2’0:m_1> : Xm X Xom—1 D (l‘m,A) — / : '/]lA(-TO:t—l) H Qm,nm<20;,,L)(xm+lad$m)

m=0

and the path model 19.,, (20:m) = Bm{20:m—1) ® Mm {(20:m)-

3.4 Main results

3.4.1 Theoretical results

In this section, we establish our main result, namely, the exponentially contracting bias bound stated in 12.
This result is proved under the following strong mixing assumptions, which are standard in the literature
(see Del Moral (2004); Douc and Moulines (2008); Del Moral (2013); Del Moral et al. (2016)):
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A2 (strong mixing). For everyt € N, there exist 1y, Ty, 04, and 64 in RY, such that

(i) 7 < gi(we) < Tt for every xp € Xy,
(ii) or < my(xy, x141) < 7 for every (xt, xe41) € Xptt1.

Under 2, define, for every ¢ € N,

pr = max TmOm (3.23)
me[0,t] TmTm
and, for every t € Nand N € N* such that N > N; == (1 + 5p?t/2) V 2t(1 + 2p?),
1—(1+5tp7/2)/N
g = 1 - 2 LB/ (3.24)

1+4t(1+2p3)/N
Note that k¢ € (0, 1), for all N and ¢, as above.

Theorem 12. Assume 2. Then, for everyt € N, there exist /', ¢/*¢, and c§® in R% such that for every
M e N*, & € M(Xy4), £ € N*, s € N*, and N € N* such thatN > Ny,

t—1
[Ee [1(B,[6]) (id)] — noehe| < (Z ||Em||oo> N7'wh (3.25)
m=0
t=1 2
e [(4(810)) — moahn)?] < (z Hhm\oo> N1, (5.26)
m=0

e [(1£(B,1€]) (id) — mo:ehe) (u(By[€ + s])(id) — 770 :the )|
< 5 (Z ||hm||oo> N732k3, (3.27)

The constants ¢/, ¢, and c{?" are given explicitly in the proof. Because we focus on the dependence

on N and the index ¢, we make no attempt to optimize the dependence of these constants on ¢ in
our proofs; nevertheless, we believe that it is possible to prove, under the stated assumptions, that this
dependence is linear. The proof of the bound in 12 is based on four key ingredients. The first is the
following unbiasedness property of the PARIS under the many-body Feynman—Kac path model.

Theorem 13. Foreveryt € N, N € N*, and { € N*,
B (1B GD] = [ 10aCiS1(dbr) b)) = [ mo.Su(dbe) (b)) = o

The proof of 13 is found in 3.6.3. The second is the uniform geometric ergodicity of the particle Gibbs
with backward sampling established in Del Moral and Jasra (2018).

Theorem 14. Assume 2. Then, for everyt € N, (u,v) € I\/I1(X0:t)2, { € N* and N € N* such that
N > N, ,qu — quHTV < HNﬂgth, where Kk is defined in (3.24).

As a third ingredient, we require the following uniform exponential concentration inequality of the condi-
tional PARIS with respect to the frozen-path Feynman—Kac model defined in the previous section.

Theorem 15. For everyt € N, there exist c; > 0 and dy > 0 such that for every M € N*, 2o, € Xo.t,
N e N*, and e > 0,

/ oSt (20, dbe) 1 {|a(be) (id) — o {z0:0) e > €} < o exp <_ d,Ne” ) .
- S o 2020 1| s0)?

The proof of 15 is found in B.3.2, and is based on arguments similar to those used in the proofs of
(Olsson and Westerborn, 2017, Theorem 1) and (Douc et al., 2011, Theorem 5) in the framework of the
conditional dual process. 15 implies, in turn, the following conditional variance bound.
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Proposition 16. For everyt € N, M € N*, z9.; € Xg., and N € N*,
¢ [ 2
/CtSt<ZO:t7dbt> (b)) (id) — 104 (20:e)he| < d <Z HhmHoo> NTL
m=0

Using 16, we deduce, in turn, the following bias bound, the proof is postponed to B.3.4.

Proposition 17. For every t € N, there exists c?i > 0 such that for every M € N*, 2o,y € Xo.4, and
N € N¥,

‘/CtSt(ZO:ta dby) pu(by) (id) — 10:¢{20:t) bt

t—1
<g@ (Z HhmHoo> N1
m=0

A fourth and last ingredient in the proof of 12 is the following bound on the discrepancy between the
additive expectations under the original and frozen-path Feynman—Kac models. This bound is established
using novel results in Gloaguen et al. (2022). More precisely, because for every m € N, (z,2) € X2,,
N € N*,and h € F(X,;,41), using 2,

1 1
|Qm(2)h(z) — Qmh(z)| < NHQMHOOHhHOO < N%mHhHOOa

applying (Gloaguen et al., 2022, Theorem 4.3) yields the following.
Proposition 18. Assume 2. Then, there exists ¢ > 0 such that for everyt € N, N € N, and zyp.; € Xo.4,

i—1
|N0:¢(20:t) he — Mo:the| < cN? Z | || o -

m=0

In addition, we assume sup,cy |7 |00 < 00 yields an O(n/N) bound in 18.

Finally, by combining these ingredients, we are now ready to present a proof of 12.

Proof of 12. Write, using the tower property,

B (B, [0)()] = Bt [Eqy,pn 1008, [0) ()] = [ ER/CS:(dbe) (o) i)
Thus, by the unbiasedness property in 13,

e [1(B; [€])(d)] — noztTue]
= ‘/EKf(CtSt(dbt)N(bt)(id) - /UO:tCtSt(dbt)M(bt)(id)‘

< et = gy ose [ €510 db) (i),

where, by 14, ||£Kf — No:tl|Tv < ﬂ?Vt. Moreover, to derive an upper bound on the oscillation, we
consider the decomposition

osc ( / Sy (- dby) u(bt)(id))

<2 (H/(CtSt('vdbt) f(be)(id) — no:t () he

T oY — no:thtuoo) ,

o0
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where the two terms on the right-hand side can be bounded using 18 and 17, respectively. This completes
the proof of (3.25). We now consider the proof of (3.26). Writing

Eg [(u(ﬂt[ﬁ])(i ) — no:ehe)? /U{t d20:t) CeSe(z0:¢, dby) (u(be) (id) — m0.2he)?

we establish (3.26) using 16 and 18. Finally, WE consider (3.27). Using the Markov property, we obtain

Ee [(14(8,[6) () — noshe) (u(B4[€ + 1) (i) — moch)]
= Ex [(1(B1161) (1d) = noche) (Egy g [(BlsD (D] = moshe) |

from which we may deduce (3.27) using (3.25) and (3.26). O

3.4.2 The roll-out PPG estimator

In light of the previous results, it is natural to consider an estimator formed by an average across successive
conditional PPG estimators {x(8,[¢]) }sen. To mitigate the bias, we remove a “burn-in” period, with
length ko chosen proportionally to the mixing time of the particle Gibbs chain {{o.¢[¢]} sen~+. This yields
the estimator

gy oy, (Pe) = (k — ko)~ Z 1(B:14] (3.28)
{=ko+1

The total number of particles underlying this estimator is C' = (N — 1)k. We denote by v = (k — ko) /k
the ratio of the number of particles used in the estimator to the total number of sampled particles.

As a final main result, we provide bounds on the bias and the MSE of the estimator (3.28). The proof is
postponed to B.3.5.

Theorem 19. Assume 2. Then, for everyt € N, M € N*, £ € M(Xp.), £ € N*, s € N, and N € N*
such that N > Ny,

t—1 Ko
ias 7 N,
Eel Mg .5 (he)] = o] < (ZHhmHm> N ko)(i_m), (3.29)
m=0 )

Eg {(H(ko) (ht) — 770:tht)2]

i—1 2 mse cov \T—1/2 -1
. e + 2¢OV N 1—k
< <§ ; HhmHOO> L L (1= k) (3.30)
m=0

N(k — ko)

Setting the burn-in kg in the roll-out estimator is nontrivial. However, because the estimator converges
for any choice of kg, including the trivial choice kg = 1, we can view this algorithmic parameter as an
opportunity for the user to optimize the implementation of the algorithm. For given (N, k), the choice of
ko involves a classical trade-off between bias and variance; indeed, for fixed (N, k), the bias upper bound
(3.29) decreases with kg proportionally to /@If\%t (k — ko) whereas the MSE upper bound (3.30) increases
with kg proportionally to 1/(k — kg). These bounds suggest that we should take ko = [k(1 — ¢£~1)]
if we are willing to bound the MSE increase of the roll-out estimator by a factor £ with respect to the
PARIS. However, the bias reduction is not easily quantified, because it depends mainly on the mixing
rate v, of the PPG chain, and we only have access to upper bounds on this rate that are, in general, too
conservative.
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3.5 Numerical results

In this section, we evaluate numerically the proposed PPG sampler in the context of general state-space
HMMs. Given measurable spaces (X, X) and (Z, Z), an HMM is a bivariate (possibly inhomogeneous)
Markov chain {(X,,, Z,) } men taking values in the product space (X x Z, X ® Z). In such a model, the
process { X} }ien, referred to as the state sequence, is assumed to be itself a (possibly inhomogeneous)
Markov chain, specified by some initial distribution y and some sequence { M };cn of Markov kernels.
The state sequence is latent and only partially observed through the observation process {Z, }men.
Conditionally on the state sequence, the observations are assumed to be independent; furthermore, the
conditional marginal distribution of each Z,, is assumed to depend only on the corresponding state
X, and to have a density g, (X, ) with respect to some dominating measure. HMMs are used in
numerous scientific and engineering disciplines; see Andrieu and Doucet (2002); Cappé et al. (2005a);
Chopin and Papaspiliopoulos (2020). Inference in HMMs typically involves computing conditional
distributions of unobserved states, given observations. Of particular interest are the sequence of filter
distributions, where the filter at time m € N, denoted as 7,,, is defined as the conditional distribution
of X, given Zy.,, == (Zo, ..., Zm), and the joint-smoothing distributions, where the joint-smoothing
distribution at time m, denoted as 7g.,,,, is defined as the joint conditional distribution of the states
Xo:m = (Xo,...,Xm), given the observations Z.,,,. Consequently, 7,, is the marginal of 7., with
respect to the last state X,,. Given a sequence {z, }men of fixed observations, {79.m }men forms a
Feynman—Kac model (see 3.1), with Markov kernels { M, } ,,en and potential functions gy, = g(+, zm ),
form € N, on X.

We now evaluate the proposed algorithm numerically for two HMMs: (i) a linear Gaussian state-space
model (for which the filter and the joint-smoothing distribution flows are available in a closed form), and
(ii) the stochastic volatility model proposed in Hull and White (1987). The PPG algorithm used in this
section is given in 9 (in B.2).

Linear Gaussian state-space model (LGSSM). We first consider an LGSSM
Xma1=AXm + Qemy1, Zm = BXy + RGn, meN, (3.31)

where {€m, }men+ and {(n bmen are sequences of independent standard normally distributed random
variables. The matrices A, (), B, and R are assumed to be known 5 x 5 matrices (see section B.1.1 for
the precise values). In this framework, we aim to compute the expectation of the one-lag state covariance
hi(xo.t) = Zf;:lo o 1 under the joint-smoothing distribution 7).; for observations generated by
simulation under the given parameters with ¢ = 103. In the LGSSM case, the disturbance smoother (see
(Cappé et al., 2005a, Algorithm 5.2.15)) provides the exact values of 7)p.;h;, which allows us to assess

numerically the bias of the PARIS and PPG estimators.

In this setting, we calculate the bias for batch sizes N € {10, 25, 50, 100, 500} and an increasing number
k of iterations by averaging the PPG estimator over 10* independent runs. 3.1a shows the bias of the PPG
estimates of the first diagonal entry of the one-lag covariance. For each batch size N, we estimate and
display the regression function k — e®*1? to illustrate the exponential decrease of the PPG bias, which
is consistent with 12.

3.2a displays, for a given budget C' = 5 x 103, the bias of the estimates of 7.;h; using the PARIS
and the PPG for different batch sizes N and different numbers £ = C/N of iterations and burn-in
periods kg = | k/2]. The red line corresponds to zero (no bias), and the empirical means are given by
black-dashed lines. An extended comparison comprising different choices of kg and different budgets
C is provided in B.1. In order to estimate the bias for each algorithmic configuration, we average
103 independent replications of the corresponding estimator. Moreover, to assess the precision of the
resulting bias estimator, we repeat this procedure 10? times, and present the bias estimates in a box plot.
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Figure 3.1: Output of the PPG roll-out estimator for the LGSSM (left panel) and the StoVol model (right
panel). The curves describe the evolution of the bias with increasing k for different batch sizes N.

This enables us to form an idea of whether the PPG provides a statistically significant improvement in
terms of bias. In this example, whatever the choice of the batch size is, the PPG bias is significantly
reduced compared with the bias of the PARIS estimator. We further observe that a larger &k leads to
smaller bias.

Stochastic volatility (StoVol). As a second example, consider the stochastic volatility model
Xm+1 = X + 0c€mr1, Zm = /BeXp(Xm/2)Cmv m € N, (3.32)

where {€, }men+ and {(, }men are as in the previous example, and the model parameters ¢, 3, and o
are set to 0.975, 0.63, and 0.16, respectively. The reference value is calculated by running the PARIS
with 5 x 10 particles. In this setting, we repeated the experiments of the previous example for the same
additive functional and number ¢ = 103 of observations, produced by simulation under the parameters
above. The computational budget was set to C' = 103. As in the LGSSM example, the bias decay with
respect to the iteration index k is displayed in 3.1b, and the comparison with the PARIS is shown in 3.2b.
The comments from the previous example apply to this StoVol model context as well. More in-depth
numerical assessments of the proposed PPG estimator are found in B.1.2. In particular, in B.1.2.1, we
compare our estimator with the Rhee—Glynn-type estimator with ancestor sampling proposed by Jacob
et al. (2020a), showing that the variance of the latter is significantly larger than that of the PPG for a given
computational effort.

3.6 Proofs

3.6.1 Proofof9

Using the identity
t—1

10Qo -+ Qi—11x, = [ 1mQ@mix,...
m=0
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Figure 3.2: PARIS and PPG bias dispersions for the LGSSM and StoVol model as a function of the
mini-batch size N for fixed computational budgets C = Nk of 5 x 103 (LGSSM) and 103 (StoVol model)
and with kg = |27k | burn-in steps.

and that each kernel @,,, has a transition density, write, for h € F(Xy.;),

t—1
No:th = /"'/h(x():t) no(da) H (nm[Qm(-,l‘m—i—l)] )\m+1(d$m+1)> ( G (T, Trmt1) )

m=0 anm ]]‘Xerl Tim [Qm(‘a xm-i—l)}

m=0 M (G (5 Tm1)]

Ll m d m m my m
_ .../h(xo:t)nt(d:ct) 11~ (d2m) g (@m, T +1) (3.33)
= (2_20,7]0 Q- <ét—l,m,1 ® ?7t) h’v

which establishes the proof.

3.6.2 Proof of 10
Lemma 20. Forallt € N, &, € Xy, and h € F(X 41 ® Xit1),

[[ b, z0) Qulae, dwrs) i) (dzes)
= // (g1, 2e41) po(2) Qe (dzeg1) My(zeq1) (2, dcyt1).  (3.34)
In addition, for all h € F(Xo ® Ap),
[ o, 20 mo(do) wlao)(dz0) = [[ hiwo. 20) motzo)(dzo) mldzo) (335)

Proof. Because u(xy) Qi(dzi+1) = g4(xy) ®r(u(xy))(dze41), we may rewrite the right-hand side of
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(3.34) as

J[ M@z @) @uldzn) Mitern) (@, o)

N-1
% Z //h i1, 2e41) Pe(p(ar))(dzesr)

1=

= g,(xt)
x (@(u(wm@ ® 0z s ® y(pa(0)) V7Y (dyy)
1 N A A
= gt(a’t)ﬁ Z/ T /h((xtlJrl? AR :CL_F%, Zt-‘rl?x;i%? T 71’?«11)7 Zt-l—l)
=1

x Dy (pu(@))(dzis1) [ Be(palae)) (daty)
(4i

1 Y :
= gi(xe) Z/h(ﬂﬁtﬂvﬂiﬂ) M (x, dxi11).
i=1
On the other hand, note that the left-hand side of (3.34) can be expressed as

/ (e, 2e01) Qe deest) (o) (dzes)

1 :
—gi@0)yy - [ @i, ahn) Miai,der), (.36
=1

which establishes the identity. The identity (3.35) is established along similar lines. O

We establish 10 by induction. Thus, assume that the claim holds for ¢, and show that for all h €
F(X0:t41 @ Xo:t+1)s

/ h(xo:¢415 20:+1) Yo:t41(d%0:041) Bep1 (202041, d20:441)

:// h(o:t+1, 20:441) Yo:t+1(d20:44+1) Cog1 (20441, dXo:e41).  (3.37)

To prove this, we process, using definition (3.8), the left-hand side of (3.37) according to

/ h(xo:¢415 20:641) Yot41(d%0:041) Bep1 (€0:041, d20:441)
= //’Yo:t(dmo:t)Bt(ﬂ?o:t,dzo:t) (3.38)
X / h(@o:41, 20:041) Qi (e, dxyy1) p(@eg1)(dzesn),

where we define the function

qt(2t, ze41)h(X0:t 41, 20:41)
() [qe (-, 2e41)]

h(Z0:441, 20:t41) =

Now, applying 20 to the inner integral and using

(@) Qe(d2es1) = p(e)[qe (e, 2e41)] A1 (dzes1)
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yields, for every o+ and zg.,

// A @041, 20:41) Qe (T4, A1) p(@ps1) (dzes1)
= // h(Zo:t41, 20:t+1) 11(20) Qe (dz 1) My {ze11) (@t dry1)
= // h(@0:t41, 20:¢+1) Qe (2t dzpp1) My (zp41) (e, dxpp1).

Inserting the previous identity into (3.38) and using the induction hypothesis yields

// M(®0:t-+1, 20:4+1) Yo:041(AB0:t+1) Begr (To:e+1, d20:t41)
= // Y0:¢(d20:¢) Ct(20:¢, do:t)
X // h(o:t+1, 20:4+1) Q1 (21, dzt41) M (2e41) (T, dTry1)
= // h(x0:t+1, 20:t+1) Y0:t+1(d20:041) Coa1(20:441, dT0:141),
which establishes (3.37).

3.6.3 Proof of 13

First, define, form € N,
Po: Yo X Yonir 3 (y,, A) / Mo (Z s A1) S (Y Tmi1, A). (3.39)

For any given initial distribution ¢ € M1(Yy), let ]Pf;o be the distribution of the canonical Markov chain
induced by the Markov kernels { P,, },,,cn and the initial distribution v),. With a slight abuse of notation
we write, for n, € My (X)), Pﬁo instead of Pio[no]’ where we define the extension [ny](4) =
J 1a(Jxo) no(day), for A € Yo. We preface the proof of 13 with some technical lemmas and a
proposition.

Lemma 21. Forallt € N and (fi11, fir1) € F(X1)?
Yer1(fer1Brarhesr + frr) = v{Qefer1Bihy + Qu(ha fran + fran)}-
Proof. Pick arbitrary ¢ € F(X}.+1) and, from definition (3.7) and that (); has a transition density, write

// O(zpp41) e (dey) Qi (g, dapy)

B // P(@r+1) %6 (s 2er1)] A (daerr) %(jj;ft,(i:ﬁ)tr)

= // QO(JJt:t+1)’Yt+1(d$t+1) Et,m ($t+1,d$t)- (3.40)

Now, by (3.14), it holds that

F ~
Biiihipi(xeg1) = / Q¢ (Teg1,day) (ht($t:t+1) + /ht(fEO:t)Bt(l'tad$O:tl)> ;

therefore, by applying (3.40) with

©(Te441) = frr1(@41) (Et(xt:t—o—l) +/ht($0:t) Bt(wt,dxo:t—l)) ;
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we obtain that

—
Yir1(frr1Birrhisr) = // O(@e1) Ve+1(dres1) Qo (Tev1, day)

= // o(wra+1) v (dre) Qe(zt, dpsn)

= Y(Qtfes1 Behe + Qihe fiin)-
Now, the proof is concluded by noting that because Y11 = v Q> Viw1.fr41 = 1 Q¢ fit1- O
Lemma 22. Foreveryt € N*, hy € F()}), and ng € M1(X), it holds that

Ei) [he(ve) | €ojos - - - » et = Sthe(&ojos - - -+ &epe) s IP’,I;O-a.s.
Proof. Pick arbitrary vy € F(Xp.;). We show that

Eﬁo [0t (&oj0s - - - » epp) e (V)] = Eﬁo [0t (&ojos - - - » &1j)Sthe(Eopos - - - » Epe)]s (3.41)

from which the claim follows. Using definition (3.39), the left-hand side of the previous identity may be
rewritten as
t—1

[+ [wolmol(@yo) TT Por(wn: dgnen) halyvelwops - a0)
m=0
t—1
= [+ [ mode) [T Mun(@mpn: dzns) So(Tzop, 1. dyy)
m=0
t—1

X H Sm(ym, Lm+1, dym-i—l) ht(yt)vt(x(]\O? R m1f|t)

t
m=

m=0
—1
= [+ [ mofdao) T] M@, dennss) So(Izo. 1. dyy)
0
t—1

X H Sm(ym7 Lm+1, dym+1) h’t(yt)vt(m(]v s 7xt)'

m=0

Thus, we conclude the proof by using the definition (3.20) of S;, together with Fubini’s theorem. O

Lemma 23. For everyt € N* and hy € F()%), it holds that

t—1
Enp, [(H gm(£m|m)> ht(’Ut)] = /’Yo:tSt(d’yt) he(y,)-
m=0

Proof. The claim of the lemma is a direct implication of 22; indeed, by applying the tower property and
the latter, we obtain

t—1
v
t—1
= Eq, K 11 9m(€mm>> Stht(&op05 - - - étlt)]
m=0

t—1
_ /.../no(dmo) H G (@) My (T, A1) Sphy(@0:4)
m=0

:/70:t8t(dyt) ht(yt)
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Proposition 24. Forall t € N*, (N, M) € (N*)2, and (fy, f;) € F(X,)2,

N
/’Yo:tSt(dyt) (;, > {bifelaty) + ft(xit)}> = % (fiBihe + fi)-
=1

Proof. Applying 23 yields

N
/’YO:tSt(dyt) (; Z{bift@i\t) + ft(xat)})
i=1

t—1 N
=E,, K r_[ogm(sm|m>> % ;{ﬁz‘ft(&at) + fi€)}| - (342)

In the following, we repeatedly use the following filtrations. Let F; == o({v,},_o) be the o-field
generated by the output of the PARIS (7) during the first ¢ iterations. In addition, let F; := F;_1 V a(ﬁt‘t).

We proceed by induction. Thus, assume that the statement of the proposition holds for a given ¢ € N,
and consider, for arbitrarily chosen (fi11, fi+1) € F(Xpt1)?,

t 1 N . _ . _
E, l( Hogm(€m|m)> N ;{5§+1ft+1(§§+1|t+1) + fea1(§apr) | Fo

t
= < H gm(émm)) Eﬁo [6751+1ft+1(£tl+1\t+1) + f‘t+1(§t1+1|t+1) ’ ﬁt] s
m=0

where we use that the variables {3}, | fi+1(&] tpe) Tt fr1 (€ 1)t +1)}i]\i1 are conditionally independent
and identically distributed (i.i.d.) given F;. Note that, by symmetry,

Eﬁo [5t1+1 |]:t+1 = /St(vt,€t+1|t+1vdyt+1)bt1+1

= / / (HZ UL ST )5(ffuvﬁ£)(dxt ,dbt”))

j=1¢ 12@/ 14t §t|t7§t+1|t+1

1 & 5
X i Z (b,}“ + ht(éftl’J’ftlJrqu))

7=1
4 1
qt(&ijes Eryajern)
—1 EE’ 1Qt(£t|t’§t+1\t+1)

(B + Rel€ies €14 - (3.43)
Thus, using the tower property,

EP [5tl+lft+1(£t1+1\t+1) | ﬁt}

al t ft,xt
= /(I)t(/i(ftu))(dxtﬂ) ft+1($t+1) Z q (g | +1)

; By + he(&y, we41))
= Qt(£f|taxt+l) ( ' i )
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and, consequently, using definition (3.5),
t ~
(H gm<smm>> Bl (Bl fet(€apn) | Fi]
m=0

t—1 1 N '
= (ngogm(ﬁmm)> /N;%(fﬂuﬂftﬂ)

Qt(ff\t; xt—f—l)

N
Zg/:1 Qt(ff‘/t» Ti+1

N
X frri(zes) Y

=

) (@f + ﬁt(ffu,fﬂtﬂ)) At1(dge)
1

-1 | N i
- ( 11 gm(ﬁmm)> N > (ﬁf@tftﬂ(ffu) + Qt(htft—i—l)(gf‘t)) :

m=0 =1

Thus, applying the induction hypothesis,

t N
E,I;O [( H gm(&mm)) ]1725§+1ft+1(€§+1t+1)]

N
= Effo l( H 9 (Emjm) ) kS Z (Bthft—i-l(gf\t) + Qt(ﬁtft+1)(§f|t))1

=1
=" (QtftHBtht + Qi(ht fir1) ) (3.44)

In the same manner, it can be shown that

t N
E, K II gm(émm)> % >, ﬁﬂ(&;mﬂ)] = Q1 frr1. (3.45)
m=0 =1

Now, by (3.44-3.45) and 21,

t 1 M . _ A
E, l( 1:[0 gm(€m|m)> ~ ;{5§+1ft+1(§§+1|t+1) + fer1(Eqaprn)}

=Y (Qtft+1Btht + Qi frin + Qtftﬂ))
= Y1 (fes1 Beathes1 + fri1),

which shows that the claim of the proposition holds at time ¢ + 1.

It remains to check the base case ¢ = 0, which holds trivially, because B, = 0 and Byhy = 0 by
convention, and the initial particles £,y are drawn from 7). This completes the proof. O

Proof of 13. The identity [ 1o.¢(dzo:¢) St(zo:t, dby) pu(be)(id) = no.ths follows immediately by letting
ft = 1and f; = 01in 24, and using that 7.4 (Xo:t) = 70:t(Xo:t). Moreover, applying 10 yields

/UO:tCtSt(dbt)M(bt)(id) - // no;t(dzO:t)(Ct(ZO:t,diL'O:t)/St(a’O:tvdbt)“(bt)(id)
- //UO:t(dwozt)Bt(w():ud?«“o:t)/St(mothdbt) p(br)(id)
= /"70:t8t(dbt) N(bt)(id>'

Finally, the first identity holds because K leaves 1y.; invariant. O
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Chapter 4

Parameter learning with PPG

4.1 Parameter learning with PPG

We now turn to parameter learning using PPG and gradient-based methods. We set the focus on learning
the parameter 6 of a function V' (#) whose gradient is the smoothed expectation of an additive functional
50:¢,9 in the form (3.4). Note that § can include parameters of { My, }nen and {gn }nen, thus we add a ¢
subscript to all the quantities related to the associated Feynman-Kac path measures defined in chapter 3.
Algorithm 3 defines a stochastic approximation (SA) scheme where the noise forms a parameter dependent
Markov chain with associated invariant measure 9. We follow the approach of Karimi et al. (2019) to
establish a non-asymptotic bound over the mean field h(0) := mysp.+ 9. Such a setting encompasses for
instance the following estimation procedures.

(1) Score ascent. In the case of fully dominated HMMs, we are often interested in optimizing the
log-likelihood of the observations given by V() = log [ vo.,¢(dzo:¢). By applying Fisher’s identity,
we may express its gradient as a smoothed expectation of an additive functional according to

VoV (0) = /Ve log Y0:¢(w0:¢) M0:t,0 (dT0:t),
t—1

= /255,9(3767372—1—1)UO:t,G(d$O:t)>
=0

where sy g : Xpo11 3 (z,2") — Volog{gre(x)meg(z,2’)} and g9 = ZZ;%) 50,0-

(2) Backward KL surrogates.  Inspired by Naesseth et al. (2020), we may consider the problem of
learning a surrogate model for 779.¢ ¢ in the form g, (z0:t) = q4(z0) [1525 g6 (Te11, T¢) by minimizing
V(¢) = KL(10:t,6, 49)-

Algorithm 2 Gradient estimation with roll-out PPG (éa)
Input: 6, (o:[0], so.¢ 9, number k of PPG iterations, burn-in k.
Result: Btl:N[k‘o : k‘], CO:t[k’}
for/ <+ Otok —1do
(~7€1:N[£ + 1]7 CO:t[E + 1]) — PPG(Ha CO:t[E]a 50:t,9)
if £ > kg — 1 then
| set BEN[E+1] = BENTE+1]

Note that Algorithm 2 is simply algorithm 9 wih sg.; ¢ as the additive functional. For convenience, we
recall the definition of the PPG kernel introduced in chapter 3. For (ko, k) € (N*)? such that kg < k, we
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Algorithm 3 Score ascent with PPG.
Input: 6y, (o.[0], number k of PPG iterations, burn-in ko, number of SA iterations n, learning-rate

sequence {¢}ren.
Result: 6,

fori < Oton —1do .
tlZN[kO : k]v COZt[Z. + 1] — Gd(ela CO:t[i]a 30:15,91‘7 k; kO)
set I ), N (S0:4,6,) = m Z’Z;éo N B
set 011 < 0 + Yir1 1L (1o 1), N (S0:1,6,)
define

Po,e : EF 7R 5 £507M) 5 (g, ko = k], z0ulko : K], A) = KB, @ KEV T (2o K], 4), (4.1

where Ky ; is the PPG kernel defined in (3.21). We write Py ; instead of Py to explicit the dependence
of the kernel on the fixed number of observations ¢. Note that Py ; depends only on the last frozen path,
namely zo.[k]. Note also that, since Ky ; depends only on the paths, there is no dependence between
Yy olko : k] and y; o4 [ko : k]. Evaluating the function

k N

biN ko - k] = [N(k— ko) " Y. S 0][4]

{=ko+1 jZl

at a realisation of this kernel gives the roll-out estimator whose properties are analysed in Theo-
rem 19.

The following assumptions, are vital when analysing the convergence of Algorithm 3.

A3. (i) The function 6 — V(0) is LY -smooth.

(ii) The function 0 — 1. ¢ is L"-Lipschitz in total variation distance.

(iii) For each path (ot € Xou, the function 0 — Kg(Co:t, dCoy) is LY -Lipschitz in total variation
distance, where Ky is the path-marginalized Markov transition kernel associated with the PPG
algorithm when the model is parameterized by 0, see (3.22).

(iv) For each path Cy.s € Xo.t, the function

0 — Po 1Lk, —1.1,n (S0:,0) (Co:t) 4.2)

is LY -Lipschitz in total variation distance.

In the case of score ascent we check, in Section C.1, that these assumptions hold if the strong mixing
assumption A 2 is satisfied uniformly in ¢, and with additional assumptions on the model. We are now
ready to state a bound on the mean field A () for Algorithm 3.

Theorem 25. Assume A 2 uniformly in 0 and A3 and suppose that the stepsizes {7@+1}g€ﬂ0’nﬂ satisfy

Yer1 < e Ye < aYes1, Yo — Yer1 < a2 and y1 < 0.5(LY + Cy,) for some a > 0, a’ > 0 and all
n € N. Then,

> k=0 Vk+1

E [||h(0=)]?] <2 , 43)
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where Vo, = E [V(0) — V(0,)] and

Con = 711(00)Co + Opias(v1 = Yn1 + 1)ép n (4.4)
CO,’Y = 0.’2nseLV + OmseC1 + Uhia.YLv(S/C_,}V,t 4.5)
C. _
+ OmseObias (LV + 12> 5k }Vt )
— I%N7t b b
Ch = (LY +a’ + 1)0biasly, iy, 4.6)
ObiasC2 a+1 :|
C
* ( L (1— ﬁN,t)5k,N,t> [ g T 00me|

Cy =LY [1 + /{?V7t6,;]1\,’t} +rV (4.7)
Co = L6y v, + L6, - (4.8)

k

where Cy is independent of Opias, Omse, N and where 0, Ny = 1 — RN -
Theorem 25 establishes not only the convergence of Algorithm 3, but also illustrates the impact of the

bias and the variance of the PPG on the convergence rate.

Remark 26. Under additional assumptions on the model (cf Section C.1), if we consider v1 <

0.5(LY + Cp), v = vl Y? for all £ € [1,n], then Y7, Voi1/ ko Vkt1 ~ logn/\/n, show-
ing that E [||h(0)||?] is O(log n/\/n), where the leading constant depends on Opias and opse.

Remark 26 establishes the rate of convergence of Algorithm 3. In principle we could try to optimize the
parameters k, kg and [N of the algorithm using these bounds, but one of the main challenges with this
approach is the determination of the mixing rate, which is crudely upper bounded by sy ;. Still, our
bound provides interesting information of the role of both bias and MSE.

We now proceed to present the proof of Theorem 25. Section 4.1.1 establishes, following closely Karimi
et al. (2019), a non-asymptotic bound for stochastic approximation schemes under general assumptions.
Section 4.1.2 shows how assumptions A 3 and A 2 imply the assumptions provided in Section 4.1.1
and therefore allow to establish Theorem 25. Finally, in the appendix, Section C.1 provides sufficient
assumptions on the model ensuring that A3 holds.

4.1.1 Non-asymptotic bound
We follow closely Karimi et al. (2019). Consider the recursion

0n+1 = 9n - 7n+1H9n (Xn—l-l)a nc N7

where 0, € © C R? for some d € N* and {X,,} ey is a state-dependent Markov chain on some
measurable space (X, X') in the sense that X, 11 ~ Py _(X,,-) with Py being some Markov kernel on
(X, X). Leth(0) = [ Hy(x) mg(dx), where 7y is the invariant measure of Pg and e, 11 :== Hp, (Xp+1)—
h(6,,). As all norms are equivalent in finite dimensional vector spaces, we use || - || to denote a generic
norm. We denote by {F,, },en the natural filtration of the Markov chain { X, } nen.

Ad. There exists a Borel measurable function V : © — R such that for every 6 € ©, VV (6) = h(0).
AS. There exists LV € Rx such that for every (0,0') € 62,

IVV(©) = vV (@) < LV[l6 - ¢'].

AG6. There exists a Borel measurable function H :© x X — O such that forevery € © and x € X,

Hy(x) — PgHy(x) = Ho(x) — h(0) .
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A7. There exists LFH ¢ R such that for every (6, 01) € ©2,

sup [ Po, Hay () — Poy H, ()| < LFH |6 — 64]] -
TE

A8. There exists Lt € R such that

sup [Py Hy || < LE .
0O

A9. There exists omse € R>q such that for every x € X and 6 € ©,

/ 1 H (') = h(0)|2 Py(x, da’) < 02

mse *

A10. There exists L € R>q such that for every x € X,

sup/ | Hy || Py (z, dz’) < LF .
0O
Theorem 27. Assume that A 4-A 10 hold. In addition, assume that there exist a > 0 and a’ > 0 such

that for alln € N,

Yot1 Yo < @Yol s Yo — i1 <dyi, m < (LV 4+ CR)7Y2.

Moreover, for any n € N*, let w be a [0, n]-valued random variable, independent of {F;}¢>o and such
that P(w = k) = Y1/ Y p—0 Ye+1 for k € [0,n]. Then,

Vo + Con + (02, LV + Cy) > k=0 7]3+1

E |[|h(0)”] <2

ZZ:O Vk+1 ’
where Vy , = E [V (0) — V(0,)] and
Con = 71h(00) L™ + L™ (71 = Yns1 + 1), 4.9)
Cy = Omse L + (1 4 o) LY LEH (4.10)
Cp = LT ((a +1)/2 + aomse) + (LY +a' + 1)LEH | @.11)

Proof. We follow closely the proof of (Karimi et al., 2019, Theorem 2) and adapt it to our setting. First,
note that by A 4, assumptions A1 and A2 of (Karimi et al., 2019, Theorem 2) hold with ¢y = dy = 0 and
c1 = dy = 1. In addition, the claim in (Karimi et al., 2019, Lemma 1) holds true since by A5, A3 holds.
Moreover, (Karimi et al., 2019, Equation 17) can also be established under A 9, as we may rewrite it as

n n n
> 2 [lecta?] = D 2E [E [llecst | | Fo] | < omee D720 -
(=0 (=0 =0
Following the proof of (Karimi et al., 2019, Lemma 2), consider the decomposition
n
E l— > yes1 (VV(00), 6z+1>1 =E[A; + Ax + A3 + Ay + As],
(=0
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where

Ay = _Z"Y€+1< 9@ H@g(XE—l—l) Pgéﬁgl(Xg)>,
45 =—Zm1< (6¢). Po, g, (X¢) — Po,_, Hy, ,(X0)),

Ay = Zm (VV(0r) = YV (0r1), Po, Ho, ,(X0)),

n

Ay = —Z Yer1 — <VV(9£ 1), Po,_, Hy,_ 1(Xe)>
As = —-m <VV(90)7 Heo(X1)> + Tnt1 <VV(9n)7]P9nﬁ0n (Xn+1)> :

As ﬁgz (Xe+1) — Py, H 0,(X/) is a martingale difference, it holds that E [A4;] = 0. The upper bounds on
the expectations of Ao, A3 and A4 are obtained similarly as in Karimi et al. (2019). Using A 7,

~ n 1 n
Ay < Lr (Jmse Z ’7]% + 5 (1 + 2a0mse + CL) Z ’Yi%+1||h(9k)||2> :
k=1 =

By A 5and8,
~ n n
AS < LVLEH ( 1 +Umse Z Z%Hh Hk’ || >
On the other hand,
R n
Ay < LEH (71 — Vo1 +d Z 713”h(9k—1)ﬂ2> ‘

k=1
We now focus on As. As in the proof of (Karimi et al., 2019, Lemma 2), the expectation of the first

term can be straightforwardly bounded by 1 || () || L" using the Cauchy—Schwarz inequality and A 10.
The second term can, using A 8 and 7, 1|2 (6,,)| < 1+ 2, 1]|h(6,)]|, be bounded in the same way
according to

st (VV (0), Po, Ho, (Xns1) ) < LET v [B(0)] < L§H (1 +22,1]12(00) )

<Ly (1 - Zw?ﬂm(ee)u?) :

=0

The rest of the proof follows that of (Karimi et al., 2019, Theorem 2). U

4.1.2 Application to Theorem 25

The goal of this section is to establish that the assumptions of Theorem 25 ensure all the assumptions in
section 4.1.1, which in turn allows Theorem 27 to be applied.

4.1.2.1 Verification of the assumptions of Theorem 27

The score ascent algorithm (Algorithm 3) can be formulated as follows.

1. Sample (Z():t,g[kig : k],ymdk‘o . k?]) ~ P@g,t((zO:t,ﬁ—l[l’CO : k]’yt,éfl[ko : ki]), )
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2. Update the parameter according to mg1 = 1¢ + Yer1H (20.0,¢[ko : k], Yz o[ko : K]), where

k
H(zo.0[ko : k], Yp o[ko : Kk]) = ] k,OJr Z (Beli] = I (g1 1,3 (Pt),
o

where Iz 1 1), ~(h¢) is defined in (3.28). We denote by g ¢ the invariant distribution of PP ;, which,
by Theorem 13, is given by g ; = (10.x ® C;S;)®Fko),
We also require the strong mixing assumption to hold uniformly in 6.

A11 (Strong mixing uniformly in ). For every s € N there exist T,, Ts, 05, and o in R’ such that for
alld € 6,

(i) Ts < gso(xs) < Ts for every zs € X,
(ii) o5 < ms,@(x57$s+1) < 5sf0r every ($57x8+1) S Xs:s-‘rl-

Note that the assumption above implies that x ; is also uniform in 6.

Proof that A 4 holds.

Proposition 28. For all 0 € ©, h(0) = VV(0), where V(0) = log~o.t,0(Xo:t) is the log-likelihood
function.

Proof. By Theorem 13,
/H yt k() .T();t[ko : k]) ﬂg’t(d(@t[k}o : k],.f():t[ko : k]))
=y Z / 010 ® CroSeol (Gl Foali)u(By i) i)

= No:t,0 (S0:t,0) = VV(H).

Proof that A 5 holds. A 5 is trivially implied by A 3(i).
Proof that A 6 and 8 hold. Let H, o be given by
Hy : EF=F0 5 (y,[ko « K], 204 [ko : K]) — Z{IP’ (yy[ko : k], zo:e[ko : k]) — h(6)}. (4.12)

Then the following holds true.

Lemma 29. Assume A 11. Then for all § € © and t € N*,
IPo,iHolloo < opias(1 — ki)™

Proof. By Theorem 19, we have for any » > 0

PG H (yy ko : k], 20ulko < K]) — h(0)] < Opiastiy, "
and thus
[o¢]
HPQ tH9||oo H h(e)Hoo < Obias Z /’i}“\lfit < O'bias(l - K?V,t)_l ,
r=0
where k¢ € (0,1). O

Lemma 29 proves A 6 and 8 with Lgﬁ = Opigs(1 — m%7t)_1.



Proof that A 7 holds.
Theorem 30. Assume A 11 andA 3. Thenforeveryt € N, 0 € © and N € N* suchthat N > 1+5p?t /2,

H]Pel,tﬁlel - P@Q,tﬁeg 0o S L]PH”QI - 02” )

where

IPH _ HLgHOO {1 + K?V’t(l — Hlf\]7t)} +I.V+

Opias(1 = ) " (1= i) T I oo (0 = BR) ! 4 L7 413)

Proof. We establish the claim by adapting the proof of (Karimi et al., 2019, Lemma 7). First, recall that
the kernel Ky ; defined in (3.22) is the path marginalized version of Ky ; given in (3.21). Note that for
every r € Ef*ko,

Py, + Hy, (x 25 Py, {P§, H — h(0r)} = Z 5. K" {Poy o H — 10.00, P, 1 HY
n=0 n=0

where we have used (i) the fact that the backward statistics output by Py ; are independent of the input
backward statistics and (ii) the penultimate line in the computation of h(¢) above. We follow the proof
of (Fort et al., 2011, Lemma 4.2) and consider the following decomposition: for n € N*,

5. K5, (Po, o H — no-t 0 Po, H) — 6. K5, (Poy 1 H — 10:4,0,Pg, ¢ H ) (4.14)

Z ( 01 t 770175791) (Kﬁft ngj, ) (ng(g_j_l)Pal,tH - nO:t,92P91,tH)
7=0

— (0 KE Py o H — 10, 0,Po, 1 H ) + (8 K57 Poy o H — 1, 0,Po, 1 H )
— To:t ,01 (K92 t]P)el tH To:t 92P01 tH> .

Applying Theorem 14 with ;1 = d, and v = 194 ¢ and using the fact that n0:t79K5,t = no.,p forall £ € N,

we obtain that for all £ € N and all § € ©, — 1046 |, < iy Note that by A 3(iii), Ko, is
-1

Lipschitz; therefore, for all r € N*, by Lemma 62, Kj , is Lipschitz with constant | LE |loo (1 = k)
Combining all this together, we obtain

‘(6 K01 t 770:15791) (Kglj,t - Kgg,t) (Kg;(j;_j_l)ﬂbel +H — Uo:t,egpal,tH)‘

= | (0oK57, —mover ) (K2, — Kole) { Ko ™" oy oH — h(01)] = s [Poy o — h(OD)]}|
k k(n— 1
<L lloo(1 = )" RN s 1Py, o H — 1(61) oo 161 — 62|

E( 1)
< UbiaSHLJiDHOO(l - ”Nt) 1"'QNTtL ”91 —0a| ,

where the last inequality is due to Theorem 19. Therefore, the first term of the right side of (4.14) is upper

bounded by opias|| LY || oo (1 — ﬁN,t)_lnnlfv(jZ*l) |01 — 02||. The second term of (4.14) can be written

- (%Ké“;ftIP’QQ,tH - Uo:t,ez]P’GQ,tH) + (6xKth]P)91,tH - 770:t,92P91,tH)
= (6IK§£15 - 770:t,62) (Pel,tH - P927tH) s
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and using again the ergodicity of Ky ; and the fact that § — Pg ; H is uniformly Lipschitz by A 3(iv), we
may conclude that it is upper bounded by || LY HOO'%;C\?,t |01 — O2]|. Finally, for the last term, using the facts

that K g,t is 7o.¢ p-invariant and geometrically ergodic and that ¢ > 7y.; ¢ is Lipschitz by A 3(iv) yields
‘770:7&,91 (Ké“;ftIP’el +H — nO:t,szgl,tH> ’
= | (o0, = M0:.0) { K62 [P, ¢ H = (61)] — 10et 0, [Py o« H — B(01)]
< L6 |Poy o H — h(61)oc]|61 — 2]
< L"0pigs(1 — KNgt) ™~ 1/{%@”91 — O .
Therefore, we have that

53:K(§17ft (Pel,tH - 770:t,61P01,tH) - 6xKé€;t (Peg,tH - ﬁo:t762P92,tH)
< {oviasl LY lloo (1 = ine) "y o+ [I18 oo + L70pias(1 = i) ™| w7} 101 = 0] -
Therefore, we obtain
(%) — Pg, o Hy, ()|
< |62y ¢ H — 62y t H | + [10:,0, Poy ¢ H — 10:,0, P00 H|

oo
+ Z 527Kg1n,t (]P)Ql,tH - 770:t,91P91,tH) - 61K§£t (POQ,tH - no:t,szazﬂfH)‘

n=1

S ‘5I]P)91,tH - 5$P92,tH| + |770:t,91]P)91,tH - nO:t,QQ]P)@Q,tH‘

+ {abmsuquooa ) (1 = )2

T [HL;HOO + L"0pias(1 = “N,t)_l} K (L— KK ,) ™ }H@l — 6| .

To conclude, note that by A 3(iv), ||6,Pg, +H — 6:Pa, ¢ H | < ||LE||00||61 — 02]|. Furthermore, note that
by Theorem 13 we obtain that for all § € ©, 1o 9Py 1 H = 10:t,050:t,0 = VV (#). Therefore, by A 3(i)
we obtain that ||1o.. g, P, +H — 10:t,0,P0, ¢ H|| < — 02|, concluding the proof. O

Proof that A 9 holds. A9 is simply a bound on the MSE of the roll-out PPG estimator, given by
Theorem 19.

Proof that A 10 holds.
Proposition 31. Forall§ € © and all { € [1,t — 1]

E [[1Hs]l | 7| < 2lls0:0]l00 + ovias(1 = ) " -
Proof. Note that for all z € EF ™" and all 0 € ©,
Hy(z) = H(z) — h(0) + Py Hy(x) . (4.15)

Lemma 29 shows that |]]P’g7tﬁ9|]oo < Opigs(1 — mﬂ“\,t)_l. Note that h(0) < ||50:¢,0]|cc We write

k
E[|H|| ] < (kk—ﬂ pIPD S E (164,601 | 7]

By Proposition 61, E {H,Bt]e[z] | | ]:4 < ||50:¢,0/| 00> concluding the proof. O
A10 follows directly by Proposition 31 and by considering supgcg [/50:4,6 || oo-
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4.1.2.2 Proof of Theorem 25

We have shown in Section 4.1.2.1 that under A3 and 11, it is possible to apply Theorem 27. To conclude
the proof of Theorem 25 we just have to rearrange the constants. We start by rewriting the constant in
Theorem 30 R

L = O + opias(1 — sy ) 1 (1 — ﬁ]fv,t)_IC’Q,

with
Cr= |5 1+ mhea(1 = Wk )Y + LY
Co = || LF|| (1= W)™+ L7k,

By (4.10) and Lemma 29,

Cy = Omse LF 4+ (1 + 0ppse) LV LEH
_ {C’ _ B —1/1 _ k \—1 V_ k-1
= Omse |C1 + Ubtas(l ﬂN,t) (1 5N7t) Co| + (1 + Umse)L Ubtas(l /iN,t)
= Umsecl + O'mxeo'bias(l - K?V’t)_l {LV + (1 - K'N,t)_ICQ} + UbiasLV(l - K?V,t)_l .
Therefore,

Con = o2 LV + Cy

mse

= O-r2nseLV + Umsecl + O'mseo'bias(l - K?V’t)_l {LV + (1 - ’fN,t)_ICQ] + Jbiava(l - H§V7t)_1 .
In the same way, we can rewrite (4.11) as

Ch =L [(a+1)/2+ aomse] + (LY +d’ +1)LEH

= {Ol + Opias(1 — Ky ) H(1 — /<;’f\77t)_102} (a4 1)/2 + aomse] + (LY +a’ + 1)0pias(1 — ’%?V,t)_l )
The constant Cy from Theorem 25 is LY = 2supycgq l150:¢.0l00 + Tbias(1 — m’f\ﬂt)*l which completes
the proof.

4.2 Numerics

In this section, we focus on the numerical analysis of the efficiency of using PPG for learning in the
framework developed in Section 4.1. We will restrict ourselves to the case of parameter learning via
score ascent. The code used in this section is available '. Throughout this section, we set M = 2 for the
PPG algorithm. In this setting, the competing method that corresponds most closely to the one presented
here consists of using, as presented in Algorithm 4, a standard particle Gibbs sampler Iy instead of
the PPG. One of the most common such samplers is the particle Gibbs with ancestor sampling (PGAS)
presented in Lindsten et al. (2014a). In Lindholm and Lindsten (2018), the PGAS is used for parameter
learning in HMMs via the Expectation Maximization (EM) algorithm.

LGSSM. We consider the LGSSM with state and observation spaces being R®. We assume that the
parameters R and () are known and consider the inference of 6 = (A, B) on the basis of a simulated
sequence of n = 999 observations. In this setting, the M-step of the EM algorithm can be solved
exactly with the disturbance smoother (Cappé et al., 2005a, Chapter 11). The parameter obtained by this
procedure (denoted 6,,.) is the reference value for any likelihood maximization algorithm. Table 4.1

Lhttps://anonymous.4open.science/r/ppg/
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Algorithm 4 Score ascent with particle Gibbs kernel.

Data: (p..[0], 6p, number k of paths per trajectory, burn-in ko, number n of SA iterations, learning-rate
sequence {~¢}sen, o (Couts d§0:t) a Markov kernel targeting 7.+

Result: 6,
fori < Oton —1do

for j < Otok —1do

L Sample CO:t[j + 1] ~ HQ(CO:t[jL )
set fi1 < 0i + 755 St kgt 50,0, (Co:t[£])
set CO:t[i + 1] = CO:t[k]

Algorithm | N | ko | k Die Ot(s)
PGAS 64 | 24|48 | 0.72£0.04 | 5.66
PGAS 128 | 12 | 24 | 0.59+0.04 | 2.84
PGAS 256 | 6 | 12 | 0.59+0.05 | 1.42

PPG 64 | 16 | 32| 0.37+0.03 | 4.56
PPG 128 | 8 | 16 | 0.36 £0.04 | 2.37
PPG 256 | 4 | 8 | 0.35+£0.04 | 1.57

Table 4.1: Distance to Oyt (Dmie) for each configuration in the LGSSM case. dt(s) represents the
average running time for each configuration.

shows the Lo distance between the singular values of 6,,, and those of the parameters obtained by
Algorithm 3 and Algorithm 4. The CLT confidence intervals were obtained on the basis of 25 replicates.
The configurations of the PPG estimators respect a given particle budget KN = C = 1024. For a fair
comparison, for each configuration of the PPG estimator, we run an equivalent w.r.t. clock time PGAS
estimator. The time needed for one gradient step for each estimator averaged over 100 replicates is
reported in Table 4.1. The choice of keeping ko = k/2 is a heuristic rule to achieve a good bias—variance
trade-off, but other combinations of ky and k£ may lead to better performance for different problems. We
analyse the impact of the different settings for the LGSMM in Section C.3.All settings are the same for
both algorithms and are described in Section C.3. The PPG achieves consistently a smaller distance to
Omie. Figure 4.1 displays, for each estimator and configuration, the evolution of the distance to the MLE
estimator as a function of the iteration index.

2 x10°

100

—— PGAS(N=64, k=48)
PGAS(N=128, k=24)

Dwmie

6x107t PGAS(N=256, k=12)
PPG(N=64, k=32)
4x107t PPG(N=128, k=16)
3x10-1| — PPG(N=256, k=8)
100 10! 102 103 104

Figure 4.1: Distance to the MLE estimator as a function of the iteration step for the PGAS and PPG
configurations from table 4.1. The solid lines and the shaded region represent the mean and CLT
confidence intervals obtained with 25 replications.

CRNN. We consider now the problem of inference in a non-linear HMM and in particular the chaotic
recurrent neural network introduced by Zhao et al. (2021). We use the same setting as in the original
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Algorithm | N | ko | & NLL Ot(s)
PGAS 32 [ 32|64 | 31887 £128 | 3.90
PGAS 64 | 16 | 32 | 31269 £ 254 | 1.99
PGAS 128 | 8 | 16 | 30994 +288 | 1.16

PPG 32 | 16 | 32 | 22292+48 | 2.79
PPG 64 | 8 | 16 | 2231525 | 1.39
PPG 128 | 4 | 8 | 22353+39 | 0.92

Table 4.2: Per configuration negative loglikelihood for the CRNN model.

paper. The state and observation equations are

X1 = X + 7 1A (=X + W tanh(X,,)) + €mi1,

where {€,, }men+ is a sequence of 20-dimensional independent multivariate Gaussian random variables
with zero mean and covariance 0.01I and {(», }men is a sequence of independent random variables
where each component is distributed independently according to a Student’s t-distribution with scale 0.1
and 2 degrees of freedom. We consider 6 = (W, B).

In this case, the natural metric used to evaluate the different estimators is the negative log likelihood
(NLL). We use the unbiased estimator of the likelihood given by the mean of the log weights produced
by a particle filter (Douc et al., 2014, Section 12.1) using N = 10* particles. Table 4.2 shows the
results obtained for 25 different replications for several different configurations of PPG while keeping
total budget of particles fixed. As for the LGSSM, for each configuration of the PPG we run the
time-equivalent PGAS estimator. Further numerical details and the system configuration used in the
experiments are given in Section C.3. We observe that PPG achieves the a considerably lower NLL than
PGAS in all configurations.

4.3 Conclusion

We propose a way of using PPG in a learning framework and derive a non-asymptotic bound over the
gradient of the updates when doing score ascent with the PPG with explicit dependence on the bias and
MSE of the estimator. We provide numerical simulations to support our claims, and we show that our
algorithm outperforms the current competitors in the two different examples analysed.
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Chapter 5

MCG-DIFF: Monte Carlo guided
Diffusion for Bayesian linear inverse
problems

5.1 Introduction

This paper is concerned with linear inverse problems y = Ax + oye, where y € Rg is a vector of
indirect observations, z € R9 is the vector of unknowns, A € R9*9= is the linear forward operator
and ¢ € R9 is an unknown noise vector. This general model is used throughout computational imaging,
including various tomographic imaging applications such as common types of magnetic resonance
imaging Vlaardingerbroek and Boer (2013), X-ray computed tomography Elbakri and Fessler (2002),
radar imaging Cheney and Borden (2009), and basic image restoration tasks such as deblurring, super-
resolution, and image inpainting Gonzélez et al. (2009). The classical approach to solving linear inverse
problems relies on prior knowledge about x, such as its smoothness, sparseness in a dictionary, or its
geometric properties. These approaches attempt to estimate a Z by minimizing a regularized inverse
problem, & = argmin,{||y — Az||> + Reg(z)}, where Reg is a regularization term that balances data
fidelity and noise while enabling efficient computations. However, a common difficulty in the regularized
inverse problem is the selection of an appropriate regularizer, which has a decisive influence on the quality
of the reconstruction.

Whereas regularized inverse problems continue to dominate the field, many alternative statistical formu-
lations have been proposed; see Besag et al. (1991); Idier (2013); Marnissi et al. (2017) and the references
therein - see Stuart (2010) for a mathematical perspective. A main advantage of statistical approaches
is that they allow for uncertainty quantification in the reconstructed solution; see Dashti and Stuart
(2017). The Bayes’ formulation of the regularized inverse problem is based on considering the indirect
measurement Y, the state X and the noise € as random variables, and to specify p(y|z) the likelihood
(the conditional distribution of Y at X') and the prior p(x) (the distribution of the state). One can use
Bayes’ theorem to obtain the posterior distribution p(x|y) o p(y|z)p(z), where "" means that the
two sides are equal to each other up to a multiplicative constant that does not depend on x. Moreover,
the use of an appropriate method for Bayesian inference allows the quantification of the uncertainty in
the reconstructed solution x. A variety of priors are available, including but not limited to Laplace
Figueiredo et al. (2007), total variation (TV) Kaipio et al. (2000) and mixture-of-Gaussians Fergus et al.
(2006). In the last decade, a variety of techniques have been proposed to design and train generative
models capable of producing perceptually realistic samples from the original data, even in challenging
high-dimensional data such as images or audio Kingma et al. (2019); Kobyzev et al. (2020); Gui et al.
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(2021). Denoising diffusion models have been shown to be particularly effective generative models in
this context Sohl-Dickstein et al. (2015); Song et al. (2021c,a,b); Benton et al. (2022). These models
convert noise into the original data domain through a series of denoising steps. A popular approach is to
use a generic diffusion model that has been pre-trained, eliminating the need for re-training and making
the process more efficient and versatile Trippe et al. (2023); Zhang et al. (2023). Although this was
not the main motivation for developing these models, they can of course be used as prior distributions
in Bayesian inverse problems. This simple observation has led to a new, fast-growing line of research
on how linear inverse problems can benefit from the flexibility and expressive power of the recently
introduced deep generative models; see Arjomand Bigdeli et al. (2017); Wei et al. (2022); Su et al.
(2022); Kaltenbach et al. (2023); Shin and Choi (2023); Zhihang et al. (2023); Sahlstrém and Tarvainen
(2023).

Contributions

* We propose MCGdiff, a novel algorithm for sampling from the Bayesian posterior of Gaussian linear
inverse problems with denoising diffusion model priors. MCGdiff specifically exploits the structure of
both the linear inverse problem and the denoising diffusion generative model to design an efficient SMC
sampler.

* We establish under sensible assumptions that the empirical distribution of the samples produced by
MCGdiff converges to the target posterior when the number of particles goes to infinity. To the best
of our knowledge, MCGdiff is the first provably consistent algorithm for conditional sampling from the
denoising diffusion posteriors.

* To evaluate the performance of MCGdiff, we perform numerical simulations on several examples for
which the target posterior distribution is known. Simulation results support our theoretical results, i.e.
the empirical distribution of samples from MCGdiff converges to the target posterior distribution. This
is not the case for the competing methods (using the same denoising diffusion generative priors) which
are shown, when run with random initialization of the denoising diffusion, to generate a significant
number of samples outside the support of the target posterior. We also illustrate samples from MCGdiff
in imaging inverse problems.

Background and notations. This section provides a concise overview of the diffusion model frame-
work and notations used in this paper. We cover the elements that are important for understanding our
approach, and we recommend that readers refer to the original papers for complete details and derivations
Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021c,a). A denoising diffusion model is a
generative model consisting of a forward and a backward process. The forward process involves sam-
pling Xy ~ qqata from the data distribution, which is then converted to a sequence X ., of recursively
corrupted versions of Xy. The backward process involves sampling X,, according to an easy-to-sample
reference distribution on R and generating X, € RY by a sequence of denoising steps. Following
Sohl-Dickstein et al. (2015); Song et al. (2021a), the forward process can be chosen as a Markov chain
with joint distribution

Qon (20:m) = Qdata (To) [T1y @e(zelwe—1),  qr(@e|zi1) = N(we; (1= B) Y221, B 1g,),  (5.1)

where Iy, is the identity matrix of size d,;, {8; }+en C (0, 1) is a non-increasing sequence and N (x; 1, X2)
is the p.d.f. of the Gaussian distribution with mean p and covariance matrix 3 (assumed to be non-
singular) evaluated at x. For all t > 0, set &y = [[_, (1 — () with the convention oy = 1. We have for
al0<s<t<n,

Qt\s(xt’xs) = f Hz:erl qg(xdxffl)dxs—l—l:t—l = N(fEt; (C_Vt/o_és)l/2x57 (1 - ét/o_és) Idz) . (52)

For the standard choices of &, the sequence of distributions (q¢):en converges weakly to the standard
normal distribution as t — oo, which we chose as the reference distribution. For the reverse process, Song
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et al. (2021a,b) introduce an inference distribution q‘{:nm(xlm]azo), depending on a sequence {0 }4cy of
hyperparameters satisfying o2 € [0,1 — a;_1] for all t € N*, and defined as

q‘in|0($1;n‘$o) = qg|0(xn’x0) H?:n qg_1|t70(xt—1‘xt7 o) ,

where
aZ0(nlz0) = N (203 6200, (1 - ) Ta, )

and
Q?—l‘ty()(it—lyxtvx()) - N (ﬁt—léﬂt(JUvat)aU? Idx) )

with g, (20, 1) = @220 + (1 — Gy — 02)Y2 (e — a)*20) /(1 — ) V/2 . Fort € [1 1 n — 1], we

define by backward induction the sequence qta‘o(mt]xg) =/ qg’|t+170(mt|xt+1, xo)qgﬂ‘o(xtﬂlxg)d:ctﬂ.
It is shown in (Song et al., 2021a, Lemma 1) that for all ¢ € [1 : n], the distributions of the forward
and inference process conditioned on the initial state coincide, i.e. that qao(xt\xo) = qo(¢|20). The
backward process is derived from the inference distribution by replacing, for each ¢ € [2 : n], z¢ in the
definition q?—ut,o(xt—l’xt? xo) with a prediction where Xg|t(96t) = 07;1/2 (act — (1 — ay) /2 (ay, t))
where e’ (z, t) is typically a neural network parameterized by . More formally, the backward distribution
is defined as p.,,(z0m) = Py (xn) [1720 pY(2e|zi11), Where p,(zn) = N(2n;04,,14,) and for all
te[l:n—1],

JACTETRY R Afer1,0(@e|Te1, X8|t+1($t+1)) = N(xt, mf+1($t+1)7 o7i11d,) (5.3)

where my 1 (z441) = u(x8|t+1(xt+1), x¢+1) and Og, is the null vector of size d,. At step 0, we set

po(zolz1) := N (x0; Xgu(l”l)a 021y4,). The parameter 6 is obtained (Song et al., 2021a, Theorem 1) by
solving the following optimization problem:

0. € argming 371 (2dy07a) 7t [ ||e — €’ (\Jarzo + /T — are, 1) ||3N (€ 0d, , Ld, )ddata (dzo)de .

(5.4)
Thus, e’ (Xt,t) might be seen as the predictor of the noise added to X to obtain X; (in the forward
pass) and justifies the “prediction” terminology. The time 0 marginal pg*(xg) =/ pgfn(azOm)dxlm
which we will refer to as the prior is used as an approximation of ggat, and the time s marginal
is p?*(zs) = [ pgj‘n(:pO;n)dxl:s_ld:zsﬂ;n. In the rest of the paper, we drop the dependence on the
parameter 6,. We define for all v € R, w € RF, the concatenation operator v-w = [vT, w?]T € RF,
For i € [1 : /], we let v[i] the i-th coordinate of v.

Related works. The subject of Bayesian problems is very vast, and it is impossible to discuss here all
the results obtained in this very rich literature. One of such domains is image restoration problems, such
as deblurring, denoising inpainting, which are challenging problems in computer vision that involves
restoring a partially observed degraded image. Deep learning techniques are widely used for this task
Arjomand Bigdeli et al. (2017); Yeh et al. (2018); Xiang et al. (2023); Wei et al. (2022) with many of
them relying on auto-encoders, VAEs Ivanov et al. (2018); Peng et al. (2021); Zheng et al. (2019), GANs
Yeh et al. (2018); Zeng et al. (2022), or autoregressive transformers Yu et al. (2018); Wan et al. (2021).
In what follows, we focus on methods based on denoising diffusion that has recently emerged as a way to
produce high-quality realistic samples from the original data distribution on par with the best GANs in
terms of image and audio generation, without the intricacies of adversarial training; see Sohl-Dickstein
et al. (2015); Song et al. (2021c, 2022). Diffusion-based approaches do not require specific training
for degradation types, making them much more versatile and computationally efficient. In Song et al.
(2022), noisy linear inverse problems are proposed to be solved by diffusing the degraded observation
forward, leading to intermediate observations {ys}7_, and then running a modified backward process
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that promotes consistency with ys at each step s. The Denoising-Diffusion-Restoration model (DDRM)
Kawar et al. (2022) also modifies the backward process so that the unobserved part of the state follows
the backward process while the observed part is obtained as a noisy weighted sum between the noisy
observation and the prediction of the state. As observed by Lugmayr et al. (2022), DDRM is very efficient,
but the simple blending used occasionally causes inconsistency in the restoration process. DPS Chung
et al. (2023) considers a backward process targeting the posterior. DPS approximates the score of the
posterior using the Tweedie formula, which incorporates the learned score of the prior. The approximation
error is quantified and shown to decrease when the noise level is large, i.e., when the posterior is close
to the prior distribution. As shown in Section 5.3 with a very simple example, neither DDRM nor DPS
can be used to sample the target posterior and therefore do not solve the Bayesian recovery problem
(even if we run DDRM and DPS several time with independent initializations). Indeed, we show that DDRM
and DPS produce samples under the "prior" distribution (which is generally captured very well by the
denoising diffusion model), but which are not consistent with the observations (many samples land in
areas with very low likelihood). In Trippe et al. (2023), the authors introduce SMCdiff, a Sequential
Monte Carlo-based denoising diffusion model that aims at solving specifically the inpainting problem.
SMCdiff produces a particle approximation of the conditional distribution of the non observed part
of the state conditionally on a forward-diffused trajectory of the observation. The resulting particle
approximation is shown to converge to the true posterior of the SGM under the assumption that the
joint laws of the forward and backward processes coincide, which fails to be true in realistic setting.
In comparison with SMCdiff, MCGdiff is a versatile approach that solves any Bayesian linear inverse
problem while being consistent under mild assumptions. In parallel to our work, Wu et al. (2023) also
developed a similar SMC based methodology but with a different proposal kernel.

5.2 The MCGdiff algorithm

In this section, we present our methodology for the inpainting problem (5.5), both with noise and without
noise. The more general case is treated in Section 5.2.1. Letd,, € [1 : d, — 1]. In what follows we denote
the d,, top coordinates of a vector x € RY= by Z and the remaining coordinates by z, so that x = 7~ z.
The inpainting problem is defined as

Y=X+o, e~N(0]y,), o0>0, (5.5)

where X are the first d,, coordinates of a random variable X ~ po. The goal is then to recover the law of
the complete state X given a realisation y of the incomplete observation Y and the model (5.5).

Noiseless case. We begin by the case o, = 0. As the first d,, coordinates are observed exactly, we aim
at infering the remaining coordinates of X ,which correspond to X. As such, given an observation y, we
aim at sampling from the posterior ¢ (xq) o po(y~ () with integral form

04(20) o [ Pu(n) {25 palaslzssn) | polyzolz1)derin (5.6)

To solve this problem, we propose to use SMC algorithms Doucet et al. (2001); Cappé et al. (2005b);
Chopin and Papaspiliopoulos (2020), where a set of N random samples, referred to as particles, is iter-
atively updated to approximate the posterior distribution. The updates involve, at iteration s, selecting
promising particles from the pool of particles & Slﬁ = (&, ... ,§£YH) based on a weight function w,,
and then apply a Markov transition p¥ to obtain the samples 1. The transition p¥(x4|zs. 1) is designed
to follow the backward process while guiding the d,, top coordinates of the pool of particles & LN towards
the measurement y. Note that under the backward dynamics (5.3), X; and X, are independent condi-
tionally on X1 with transition kernels respectively P, (T¢|z¢+1) := N (Zy; Meg1 (2441), 07, 114,) and
(@il wes1) = N (g mp g (@41), 07114, —d,) Where M1 (2441) € RY and my_ 1 (z441) € R~ %
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are such that myq(z¢4+1) = Myg1(2e41) My yq1(2441) and the above kernels satisfy p,(x¢|zi41) =
P(Tt|ve41)p, (x¢|xe41). We consider the following proposal kernels for ¢ € [1:n — 1],

_ _ _ __ . -1/2 _
pY (e|ze1) o< py(ae]zi1)@yo(Tely) ,  where Gy o(Tily) == N(@say, (1 —a)ly,). (5.7

For the final step, we define pf (zglx1) = P, (zg|x1). Using standard Gaussian conjugation formulas, we
obtain

pi (ze|zi1) = Ijt@f,’xtﬂ) N (Tt; KtOétl/Qy + (1 = Ke)Me1 (z41), (1 — ae)Ke - Idy) )

where K; = o2 1/ (at2+1 + 1 — «a¢). For this procedure to target the posterior ¢j, the weight
function @, is chosen as follows; we set @,,_1(zn) = [ p,_1(Tn-1|Tn)Tp_10(@Tn-1ly)dzHn—1 =

N (s (), 02 +1— vy ) and for £ € [1:n 2],

1/2
ez )T @ ly)de, N (at/ Yi M (2541), (0741 +1 - Oét)Idy)

W (xpq1) := — — =
Get110(Te+1]y) N (a;_{?ly?fz%la (1- Oét+1)1dy)

(5.8)

For the final step, we set Wy(21) := Py(y|T1)/T1jo(T1ly). The overall SMC algorithm targeting ¢
using the instrumental kernel (5.7) and weight function (5.8) is summarized in Algorithm 1. We now

Algorithm 1: MCGdiff (o = 0)

Input: Number of particles N

Output: &V

N R N (04,10, ):

// Operations involving index i are repeated for each i € [1:N]
for s < n—1:0do

if s = n — 1 then

| @1 (€)= N (@ g in(€L), 2 — an);
else

~ i ~1/2 i 2 = ~1/2 & = .

L Ws(fs+1) =N (045 Y; ms+1(§s+1)’ Os1+1-— as) /N (as+1y;€s+l7 1- Oés+1>,

i ~ j N~ : =i i .
Iy~ Cat({ws( i+1)/ D k=1 Ws(§§+1) ;_\/:1)’ Zg ™ N(Odyaldy), Zg ™ N(Odm—dedw—dy),
=i ~1/2 = i 1/2—4 i i.
gs :KS%/ y+ (1 - Ks)ms-‘rl(gififll) + (1 - as)l/QKS/ Z;? §s = ms+1 (ggflfrll) + Os4+1Z¢5
Set ¢l =& ¢is

provide a justification to Algorithm 1. Let {g¥}7_; be a sequence of positive functions with g¥ =
Consider the sequence of distributions {¢¥}"_, defined as follows; ¢¥(z,,) o g¥%(xy)pn(2z,) and for
tel:n—1]

¢ (1) o< [ gf1(@ern) " g} (@)py (el $yy (daegn) - (5.9

By construction, the time ¢ marginal (5.9) is ¢7 (z;) o< pt(z¢)gf (z¢) for all ¢ € [1 : n]. Then, using ¢}
and (5.6), we have that

oh(ao) o< [ (@) Po(ul)p, ol ot (de) . (5.10)

The recursion (5.9) suggests a way of obtaining a particle approximation of ¢f; by sequentially ap-
proximating each ¢} we can effectively derive a particle approximation of the posterior.To construct
the intermediate particle approximations we use the framework of auxiliary particle filters (APF) (Pitt
and Shephard, 1999). We focus on the case g/ (1) = Gy o(T¢|y) which corresponds to Algorithm 1.
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Figure 5.1: Display of samples from ¢7(x;) o Pt(24)q40(Tt|y) for the GM prior. Samples from oY
(vellow), those from the prior (purple) and those from the posterior ¢ (light blue) with n = 500.

The initial particle approximation ¢¥ is obtained by drawing N i.i.d. samples £}V from p,, and setting
oN = N~! EN 1 (551 where d¢ is the Dirac mass at £. Assume that the empirical approximation of ¢,

is ¢ Y1 =N Z -1 651 , where étlﬁlf are N random variables. Substituting gi)ﬁl into the recursion
(5.9) and introducing the 1nstrumental kernel (5.7), we obtain the mixture

Cgév(fUt) = Zij\il a}t(ngl)p%(xtKngl)/ Zévzl @t(fgﬂ) . (5.11)

Then, a particle approximation of (5.11) is obtained by sampling N conditionally i.i.d. ancestor indices

1N11d

I Cat({@(&41)/ Z - Wt(§t+1) N ), and then propagating each ancestor particle ftt“

accord-
ing to the instrumental kernel (5.7). The final particle approximation is given by d)o = Z -1 651 ,
where &) ~ p(-[£{1), Tf ~ Cat({@(&F )/ 30 Go(€D)}N_)). The sequence of dlstrlbutlons {pt}t_0
approximating the marginals of the forward process initialized at py defines a path that bridges between
pr and the prior pg such that the discrepancy between p; and p;4; is small. SMC samplers based on this
path are robust to multi-modality and offer an interesting alternative to the geometric and tempering paths
traditionally used in the SMC literature, see Dai et al. (2022). Our proposals ¢f (x¢) o< pt ()0 (Tt |y)
inherit the behavior of {p; }+cn and bridge the initial distribution ¢¥ and posterior ¢§. Indeed, as y is a
noiseless observation of Xy ~ pp, we may consider ozt/ y+ (1 —a;)'?e;, withe, ~ N (04,,14,),as a
noisy observation of X; ~ p; and thus, ¢ is the associated posterior. We illustrate this intuition by consid-
ering the following Gaussian mixture (GM) example. We assume that po(z¢) = Zf\il w; N (xo; iy Lg,)
where M > 1 and {wi}i‘il are drawn uniformly on the simplex. The marginals of the forward process
are available in closed form and are given by p;(z;) = S22, w; - N (x4 at/ ti, 14, ), which shows that
the discrepancy between p; and py4; is small as long as o’zi/ 2 04;421 is close to 0. The posteriors
{7} e [0:n] are also available in closed form and displayed in Figure 5.1, which illustrates that our choice
of potentials ensures that the discrepancy between consecutive posteriors is small. The idea of using
the forward diffused observation to guide the observed part of the state, as we do here through @, (Z|y),
has been exploited in prior works but in a different way. For instance, in Song et al. (2021c, 2022) the
observed part of the state is directly replaced by the forward noisy observation and, as it has been noted
Trippe et al. (2023), this introduces an irreducible bias. Instead, MCGdiff weights the backward process
by the density of the forward one conditioned on ¥, resulting in a natural and consistent algorithm.

We now establish the convergence of MCGdiff with a general sequence of potentials {g¥%}7_,. We
consider the following assumption on the sequence of potentials {gf }7 ;.

(A1) sup Po(y|z)/g}(x) < oo and sup /gf(xt)pt(aﬂm)dmt/gfﬂ(:U) <ooforallt €[l:n—1].
z€Rde z€Rde

The following exponential deviation inequality is standard and is a direct application of (Douc et al.,
2014, Theorem 10.17). In particular, it implies a O(1/+v/N) bound on the mean squared error ||} (h) —

P (h)|l2-

Proposition 32. Assume (Al). There exist constants c1 r,, c2, € (0,00) such that, forall N € N, e > 0
and bounded function h : R% s R, P “qﬁév(h) — ¢y (h)| > E] < c1pexp(—canNe?/|h|%,) where
[hloo := sup,eges [h(z)].

94



We also furnish our estimator with an explicit non-asymptotic bound on its bias. Define @év =E [qb(])v ]
where ¢ = N1 Zfil 556 is the particle approximation produced by Algorithm 1 and the expectation is

with respect to the law of (£1:Y, I1:N). Define forallt € [1 : n), ¢F (x;) o ps(a) f%(dfo)polt(a:o\xt)dgo,
where p0|t(x0\:ct) = [ {HZ;IO ps(ws|ws+1)} dri4-1.
Proposition 33. It holds that

KL(gf || §) < C.,(N —1)"" +Df,, N2, (5.12)

where DY, > 0, C4,, = iy [ 2428 { [ 6,(dT0)py, (w0l 2e)dzo | &7 (dz) and Z; := [ g (w,)pe(d)
forallt € [1:n]and Zy := [ 6,(dTo)po(xo)dzy. If furthermore (Al) holds then both C§.,, and DY,

are finite.

The proof of Proposition 33 is postponed to Section D.2.1. (A1) is an assumption on the equivalent of the
weights {@, }-, with a general sequence of potentials {g{ }7-; and is not restrictive as it can be satisfied
by setting for example g¥(zs) = 7)o (Ts|y) +J where § > 0. The resulting algorithm is then only a slight
modification of the one described above, see Section D.2.1 for more details. It is also worth noting that
Proposition 33 combined with Pinsker’s inequality implies that the bias of MCGdiff goes to 0 with the
number of particle samples N for fixed n. We have chosen to present a bound in Kullback—Leibler (KL)
divergence, inspired by Andrieu et al. (2018); Huggins and Roy (2019), as it allows an explicit dependence
on the modeling choice {g¥}7_,, see Lemma 67. Finally, unlike the theoretical guarantees established
for SMCdiff in Trippe et al. (2023), proving the asymptotic exactness of our methodology w.r.t. to the
generative model posterior does not require having ps41(Zs+1)Ps(s|Tst1) = ps(s)qs+1(Ts41|zs) for
all s € [0 : n — 1], which does not hold in practice.

Noisy case. We consider the case o, > 0. The posterior density is given by ¢f(zo) o g§(To)po(xo),
where g§(z¢) == N (y;fo,agldy ). In what follows, assume that there exists 7 € [1 : n] such that

1/

0? = (1— a,)/a,. We denote j, = ar ®y. We can then write that

9 (@) = a¥? N (ir; 03 *wo, (1 — &r) - 1a,) = &t oo (- [70) | (5.13)

which hints that the likelihood function g§ is closely related to the forward process (5.1). We may then

write the posterior ¢ () as ¢4 (wo) o Gy o(F-[To)po(wo) o [ 5, (dT7)grio(2+|z0)po(w0)da,. Next,
assume that the forward process (5.1) is the reverse of the backward one (5.3), i.e. that

Pe(Tt)Ge1(xeg1|xt) = prar (Teg1)pp (x| Teg1), VEE[0:n—1]. (5.14)

This is similar to the assumption made in SMCdiff Trippe et al. (2023). Then, it is easily seen that it
implies po(w0)qr(o(7-|70) = pT(xT)me(a:o\xT) and thus

H(w0) = [ poj (ol ), (0 )pr (o) / [ 6, (0200p 20z = [ e (ool 2 )0 (dz).

(5.15)
where ¢¥7 (z,) o pr(§r"z,). (5.15) highlights that solving the inverse problem (5.5) with o, > 0 is
equivalent to solving an inverse problem on the intermediate state X, ~ p, with noiseless observation
- of the d,, top coordinates and then propagating the resulting posterior back to time 0 with the backward
kernel Pojr- The assumption (5.14) does not always holds in realistic settings.Therefore, while (5.15) also
holds only approximately in practice, we can still use it as inspiration for designing potentials when the
assumption is not valid. Consider then { g }7-_ and sequence of probability measures {¢7 }__ defined for
allt € [1: nas oY (z1) o< g¥ (z1)pe (1), where gY () = N (zy; a0 %y, (1— (1 — K)ag/ar)ly, ), k> 0.
In the case of & = 0, we have g/ (1) = Gy (T¢|gr) fort € [741:n] and ¢¥ = ®Y7. The recursion (5.9)
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holds for ¢ € [ : n] and assuming x > 0, we find that ¢ (zo) o g (xo) fgﬁ(xT)flpO‘T(x0|:cT)¢¥(da:T) :
which resembles the recursion (5.15). In practice we take x to be small in order to mimick the Dirac
delta mass at Z, in (5.15). Having a particle approximation ¢ = N~! Zf\il dgi of ¢¥ by adapting
Algorithm 1, we estimate ¢f with ¢} = SN, wf)égé where &) ~ poh(-\gi) and wj o gg(gé)/gﬁ(ﬁi).
In the next section we extend this methodology to general linear Gaussian observation models. Finally,
(5.15) allows us to extend SMCdiff to handle noisy inverse problems in a principled manner which is
detailed in Section D.1.

5.2.1 Extension to general linear inverse problems

Consider Y = AX + o,c where A € Rdv>dz o ~ N (0g,,14,) and o, > 0 and the singular value
decomposition (SVD) A = USV7, where V € R%xdy U € R9*dy are two orthonormal matrices, and
S € R >y is diagonal. For simplicity, it is assumed that the singular values satisfy s; > --- > Sd, > 0.
Setb = d, — dy. Let V € R9*P be an orthonormal matrix of which the columns complete those of V
into an orthonormal basis of R4, j.e. VIV =1, and VIV = Op,q,. We define V = [V, V] € Rdexdz,
In what follows, for a given x € R we write X € R% for its top dy coordinates and x € R for
the remaining coordinates. Setting X := V' X and Y := S™'U”Y and multiplying the measurement
equation by ST1U7 yields
Y=X+0,5"8, ~N(01]g,).

In this section, we focus on solving this linear inverse problem in the orthonormal basis defined by
V using the methodology developed in the previous sections. This prompts us to define the diffusion
based generative model in this basis. As V is an orthonormal matrix, the law of Xy = V7 Xj is
po(x0) := po(Vxo). By definition of po and the fact that ||[Vx|s = ||x||2 for all x € RY% we have
that

Po(x0) = J po(Vxolz1) {TT22] py(dzslzsin) } pa(dzn) = S Ag(xofxr) { T Ay (d¢s[x11) | ()

where for all s € [1:n], A\,_;(xs_1|xs) := N(xs_1;ms(xs), 0214, ), where my(x,) := VImg(Vxy).
The transition kernels {)\s}?:_(]l thus define a diffusion based model in the basis V. In what follows we
write T, (x,) for the first dy, coordinates of m,(x,) and m,(x,) the last b coordinates. We denote by p;
the time s marginal of the backward process.

Noiseless. In this case the target posterior is ¢f (xo) & po(y~xg). The extension of algorithm 1 is
straight forward; it is enough to replace y with y (=S~'U”'y)) and the backward kernels {pt}?:_o1 with

-1
{Mhiso-
Noisy. The posterior density is then ¢ (x0) x g3 (Xo)Po(x0), where

9 (Xo) = T2, N (y [il; Xoli], (0 /5:)?) -

As in Line 9, assume that there exists {7;}%¥, C [1 : n] such that &,,02 = (1 — &, )s2 and define for all

y
ie[l:dy],y; = o_z;/ ’y [¢]. Then we can write the potential g3 in a similar fashion to (5.13) as the product
of forward processes from time 0 to each time step 7, i.e. g3 (xg) = fil &é/ N (¥4 d%./ ’X0 [i], (1 —

a;)). Writing the potential this way allows us to generalize (5.15) as follows. Denote for £ € [1 : d],
x\¢ € RI=~1 the vector x with its /-th coordinate removed. Define

- dv—1 . i
() o TR A (6 ey )0, (A, [1]) Ay (ry )i (dry [dy])d)

Ti‘Ti-p—l

which corresponds to the posterior of a noiseless inverse problem on the joint states X, ., ~ pr,.n, With
noiseless observations y,, of X, [i] foralli € [1 : dy].
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Figure 5.2: The first and last four columns correspond respectively to GM with (d,,dy) = (800, 1)
and FM with (d;,dy) = (10, 1). The blue and red dots represent respectively samples from the exact

1

PCA,

posterior and those generated by each of the algorithms used (names on top).

d dy | MCGdiff DDRM DPS RNVP d | dy MCGdiff DDRM DPS RNVP

80 | 1 | 139045 | 564+1.10 | 498+1.14 | 6.86 £ 0.88 6 | 1 |195£043 | 420+£0.78 | 543 +1.05 | 6.16 £0.65
80 | 2 | 0.67x0.24 | 7.07+1.35 | 5.10+1.23 | 7.79 £ 1.50 6| 3 073033 |220+0.67 | 3.47+0.78 | 4.70 £0.90
80 | 4 | 0.28+0.14 | 7.81 £1.48 | 428 +£1.26 | 795+ 1.61 6|5 041012 | 091+043 | 2.07+0.63 | 3.52+0.93
800 | 1 |240£1.00 | 7.44+1.15 | 649+1.16 | 7.74+134 || 10 | 1 | 2.45+0.42 | 3.82+0.64 | 430+0.91 | 6.04 £0.38
800 | 2 | 1.31£0.60 | 895+1.12 | 6.88+1.01 | 875+1.02 || 10 | 3 | 1.07£0.26 | 494 +0.87 | 538 £0.84 | 591 £0.64
800 | 4 | 047£0.19 | 839+148 | 551 +1.18 | 781 +1.63 || 10 | 5 | 0.71£0.12 | 2.32+0.74 | 3.74 +0.77 | 5.11 £0.69

Table 5.1: Sliced Wasserstein for the GM (left) and FM (right) case.

Proposition 34. Assume that psi1(Xs+1)\s(Xs|Xs+1) = Ps(Xs)qst1(Xst1|Xs) for all s € [0:n —1].
Then it holds that Y (x¢) o< [ Aojm (x0[%7, )¢, o (d%r i)

The proof of Proposition 34 is given in Section D.2.2. We have shown that sampling from ¢} is
equivalent to sampling from qﬁi’m then propagating the final state X, to time 0 according to )‘Oln‘
Therefore, as in (5.13), we define {g/ }}_, and {¢} }}_, for all ¢ € [11 : n] by ¢ (x¢) x g7 (x¢)pe(xt)
and g7 (x;) == H;Sl) N (x¢;5i,1 — (1 — K)a¢/ay,), k> 0. We obtain a particle approximation of
¢Y, using a particle filter with proposal kernel and weight function A} (x;|x;41) o< g7 (%¢)py(X¢|X¢41),
@ (x¢41) = [ 97 (x0)p;(dx¢|X¢4+1) /9741 (X¢41), which are both available in closed form.

5.3 Numerics

The focus of this work is on providing an algorithm that consistently approximates the posterior dis-
tribution of a linear inverse problem with Gaussian noise. A prerequisite for quantitative evaluation in
ill-posed inverse problems in a Bayesian setting is to have access to samples of the posterior distribution.
This generally requires having at least an unnormalized proxy of the posterior density, so that one can
run MCMC samplers such as the No U-turn sampler (NUTS) Hoffman and Gelman (2011). Therefore,
this section focus on mixture models of two types of basis distribution, the Gaussian and the Funnel
distributions. We then present a brief illustration of MCGdiff on image data. However, in this setting,
the actual posterior distribution is unknown and the main goal is to explore the potentially multimodal
posterior distribution, which makes a comparison with a "real image" meaningless. Therefore, metrics
such as Fréchet Inception Distance (FID) and LPIPS score, which require comparison to a ground truth,
are not useful for evaluating Bayesian reconstruction methods in such settings.!

Mixture Models: We refer to the Funnel mixture prior as FM prior (see section D.3 for the definition).
For GM prior, we consider a mixture of 25 components with pre-established means and variances.
For FM prior, we consider a mixture of 20 components consisting of rotated and translated funnel
distributions. For a given pair (d,, dy ), we sample a prior distribution by randomly sampling the weights
of the mixture and for the FM case the translation and rotation of each component. We then randomly

I'The code for the experiments is available at https://github.com/gabrielvc/mcg_diff.
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Figure 5.3: Illustration of the samples of MCGdi £t for different datasets and different inverse problems.

sample measurement models (y, A, 0,) € R% x R *d= x [0, 1]. For each pair of prior distribution and
measurement model, we generate 10% samples from MCGdiff, DPS, DDRM, RNVP, and from the posterior
either analytically (GM) or using NUTS (FM). We calculate for each algorithm the sliced Wasserstein
(SW) distance between the resulting samples and the posterior samples. Table 5.1 shows the CLT 95%
confidence intervals obtained over 20 seeds. Figure 5.2 illustrate the samples for the different algorithms
for a given seed. We see that MCGdiff outperforms all the other algorithms in each setting tested. The
complete details of the numerical experiments performed in this section is available in section D.3 as
well as an additional visualisations.

Image datasets: Figure 5.3 shows samples of MCGd1i £ in different datasets (Celeb, Churches, Bedroom
and Flowers) for different inverse problems, namely Inpaiting (Inp), super resolution (SR), Gaussian 2D
deblur (G2Deb) and Colorization (Col). Visual comparison with competing algorithms and different
datasets are shown in section D.3 as well as numerical details concerning figure 5.3.
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Chapter 6

ECG-DIFF: Bayesian ECG
Reconstruction using MCG-DIFF

6.1 Introduction

Electrocardiograms (ECGs) are essential tools for diagnosing various cardiac conditions. They record the
heart’s electrical activity using several electrodes placed on the chest, and highlight the different phases
of the cardiac cycle, including the R peak, the QT segment and the ST segment. Myocardial infarction
(M), also known as heart attack, is an example of a critical diagnosis identified from ECG Jameson et al.
(2018). An MI occurs when part of the heart muscle is deprived of oxygen, causing permanent damage.
Accurate and rapid diagnosis of infarction is crucial, as treatment varies according to ECG morphology
and must be carried out as quickly as possible Reed et al. (2017). For example, an infarct with ST-
segment elevation may require invasive interventions such as percutaneous coronary intervention, which
is not the case for intractus without ST-segment elevation Ibanez et al. (2017). However, the study of
ECG morphology is complex and requires special expertise and attention. In particular, the morphology
of each phase of the cardiac cycle, in each lead, as well as their coherence between leads, are crucial
for assessing the electrical functioning of the heart. In addition, ECGs can be affected by noise and
imperfect electrode placement, which affect recording quality. Therefore, methods that can accurately
and impartially highlight morphological abnormalities, while denoising and reconstructing altered or
missing signals, could be very useful for ECG analysis. In this article, we present a flexible method
for addressing multiple challenges in ECG analysis: noise reduction, missing data reconstruction, and
anomaly detection. To this end, we formulate these problems as inverse linear problems, meaning
data reconstruction problems from incomplete and/or noisy observations. Our method relies on a
trained model capable of generating ECGs, which is used as prior information to solve these inverse
linear problems. This model is trained only once and is used for all tasks without requiring tuning
for each of these tasks. Generative diffusion models have proven to be well-suited as priors in solving
inverse problems Song et al. (2021a); Chung et al. (2023); Song et al. (2022); Kawar et al. (2022,
2021); Cardoso et al. (2023b); Wu et al. (2023). We adapt Cardoso et al. (2023b) for cases with unknown
measurement noise levels, proposing a noise calibration strategy coupled with inverse problem resolution
to simultaneously infer ECG noise levels and reconstruct missing data or detect anomalies. Finally, we
demonstrate the effectiveness of our approach by comparing it to baseline methods and showcasing an
innovative application: generating expected ECGs when a patient’s heart rate increases. This application
offers a promising alternative to the exercise stress test. Our contributions are the following.

* We introduce a flexible method that addresses multiple challenges in ECG analysis, including
generating synthetic signals, noise reduction, missing data reconstruction, and anomaly detection
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without having to re-train a model for each task.

* We adapt recent techniques for solving inverse problems with diffusion priors by including an
estimation of unknown measurement noise levels.

* Our methods surpasses recent and classic existing approaches on multiple evaluation metrics
specifically designed for ECGs, and offers novel applications.

6.2 Related Work

The use of generative models (Kingma et al., 2019; Kobyzev et al., 2020; Gui et al., 2021) as informative
priors in solving Bayesian inverse problems has attracted significant interest Arjomand Bigdeli et al.
(2017); Wei et al. (2022); Su et al. (2022); Kaltenbach et al. (2023); Shin and Choi (2023); Zhihang
et al. (2023); Sahlstrom and Tarvainen (2023). In particular, DDMs have been demonstrated as a
particularly suitable choice of prior for solving inverse problems Song et al. (2021a); Chung et al. (2023);
Song et al. (2022); Kawar et al. (2022, 2021). DDMs are generative models that transform a simple
reference distribution into the training data distribution through a denoising process called diffusion.
These models are capable of generating high-quality realistic samples on par with the best Generative
Adversarial Networks (GANs) Goodfellow et al. (2014) in terms of image and audio generation, without
the intricacies of adversarial training (Sohl-Dickstein et al., 2015; Song et al., 2021c¢,a,b; Benton et al.,
2022). In this article, we follow the approach proposed in Cardoso et al. (2023b); Wu et al. (2023),
for sampling solutions to an inverse problem using a Sequential Monte Carlo (SMC) algorithm that
guides the denoising process of a pretrained diffusion model. This method is accompanied by a series
of theoretical guarantees in realistic scenarios. Generative modeling, denoising methods, and automatic
anomaly detection algorithms are commonly used for ECG analysis. In particular, DDMs have been
demonstrated to be capable of generating realistic ECGs: Adib et al. (2023) focuses on generating a
single healthy beat for a single ECG lead, Alcaraz and Strodthoff (2023) generates a 10-second period
conditioned on various complementary ECG information. Additionally, numerous methods address the
denoising problem in ECGs Singh and Pradhan (2020); Li et al. (2023); Chiang et al. (2019). Classical
approaches like Dower matrices Macfarlane et al. (2010) are used to reconstruct missing leads in ECGs.
(Wen and Kang, 2021; Kang and Wen, 2022) rely on neural networks to detect anomalies, and Shan et al.
(2022) use adversarial autoencoders for unsupervised anomaly detection. However, to our knowledge,
there is no method that addresses all these problems with a single pretrained model.

6.3 Background

For all the ECG reconstruction tasks presented in our work, we used the same pre-trained DDM (sec-
tion 6.3.1) as a prior for sampling solutions of these tasks with Monte Carlo guided diffusion (sec-
tion 6.3.2).

6.3.1 Denoising Diffusion Generative Models (DDM):

We focus on the variance-exploding (VE) framework Song et al. (2021c), which transforms a reference
distribution of the form A = N(0,v2,. 1), with v2__ >> 0, into the data distribution. The training
procedure involves denoising data that has been corrupted through a forward process as follow. The
initial data state xq is sampled from qqa.t,; independent noise with increasing variance is incrementally
added to generate subsequent states T = xp_1 + prek, Where k € N*, pi. > 0, and e, ~ N(0,1I). The

joint p.d.f. of the Markov chain is
q0:x (T0:K) = Qdata(T0) [Ther ar(Trlr-1) (6.1)
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where qi(-|rg_1) = N(zk_1, pz I) and K € N*. Hence, the conditional law at step k given z; with
k>s>0is
Aijs(-|2s) = N(@s, (v = v))T), (6.2)

with o7 = Y5, p? (and v} = 0). It is easy to see that for K € N* such that v} = v2,, and
v > ||wol|2,. then qxo(+|xo) is close to the reference distribution A = NV(0, v2,, I).

To infer real data from corrupted data, we introduce the inference distribution q", depending on hyper-
parameter ) = {1 }ren verifying for all k& € N, 5 < v?. The p.d.f. of z1.x given the initial state z is

0] 0 (@1x120) = a2 x| 20) TTimic @y g 0 (-1, 0) Where
Q?(|0(|330) = N(x07U1211aXI) ~ )‘7

qZ—1|k,o(‘\$kan0) =N (:“fk—l(xkva)anlg—lId) )

-1 (Tx; 20) 1= 2o + U7y /Ui — n}_y [V} (x) — o),
for k € [1 : KJ; the backward induction is formulated as
qz_l\o("xo) = fqz_1|k,0("$>$0)QZ|0(x|x0)d$'

In Lemma 70 we demonstrate that for k € [0 : K], qZ‘O(- |20) = qgjo(-|Z0). Since the states ¢ are not yet
accessible as they are the ones we aim to model, all occurrences of xg are replaced by a denoised version
of xj, obtained with the subsequent network. Each corrupted state . is denoised, using the model Dgl i
with parameters 6 trained to minimize

K
5 VB Xongques [P0 (X0 + vke, vk) = Xol?] | (63)
k=1 e~N(0,1)

where {7} ke[1:x] 1s a sequence of weighted coefficients.

After training, to generate Tg ~ qqdata We start by sampling xx ~ A and for k = K to k = 2 we sample
Tp—1 given xy with
9
Pre1jC17k) = @150 (2w, Dojpo (@, vi) - (6.4)

Finally, zo ~ py(:|z1) :== N(Dgu(xl, v1),m2 I). The p.d.f. of the sampled backward chain . ¢ is
po:k (zo.x) = M) [Thek P (Th—1]k) -

This is equivalent to minimizing the Kullback-Leibler divergence between qqata (l’o)q?: K0 (1.5 |x0) and
the joint backward pg. i (2. ), for a specific choice of {Vk:}ke[lzK}; see Lemma 71. Fork € [0 : K —1],
the marginal law of xj, is expressed with

ket
pr(7r) == [ Mzk) _HKps_l‘s(l’s—l\l’s)dﬂka:K- (6.5)

6.3.2 Monte Carlo Guided Diffusion

In Bayesian inverse problem, we aim to sample

Po(z0) = go(z0)po(z0)/Z (6.6)

where g, is the likelihood function (typically depending on an observation) and Z := [ g,(z)po(z)dz
is the normalizing constant. The distribution ¢, is often intractable, except for simple choices of g, and
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po- A simple idea for sampling the posterior ¢, is to use sampling importance resampling (SIR) Rubin
(1987a), where pg is used as the instrumental distribution. However, this method may be inefficient
since it neglects the potential g,. It is imperative to construct an instrumental distribution that takes into
account the likelihood function. For a given sequence, xg.x, we define a distribution over the path space,
using (6.5) and (6.6)

K
Goxc (@) = DG T oy pelon-alor) A ©6.7)

We introduce a sequence of potentials {g; }re(1:x] With gz = 1, which aim is to lead the backward
diffusion to regions of high values of g, is large. The path space distributions may be equivalently
rewritten as

91 (@e—1)Py_y 5 (Te—1|2k)

Gosrc (o) < Mwx) TTies RED)
o« Mzk) Hk:l Wk(ffk)pk_uk(ffk—l\ffk) )

where, for k € [1 : K|, are defined

pk_l‘k("xk) = gkil(')pk_”k("xk)/zk(xk) )
Zy(xx) = [ " (@ )py_ i (@) da,
wi(xr) = Zr(zr) /95 (2k) - (6.8)

We implicitly assume that these formulas have a closed form. By construction, for each k € [1 : K| the
marginal distribution of ¢ - verifies

b1 (@p—1) X g1 (Th—1)Pr—1(Tk-1)
x fwk(x)pk_l‘k(xk,l|x)¢k(ac)dw. (6.9)

Each ¢, thus has the same structure as ¢,: a product of a potential function and the marginal law at
time k — 1 of the backward diffusion. The original problem is replaced by a series of easier to solve
problems.

It remains to approximate this sequence of distributions. For this purpose, we use Sequential Monte
Carlo (SMC) Doucet et al. (2001); Chopin and Papaspiliopoulos (2020) to recursively build an empirical
approximation from k£ = K to k = 0. Suppose that we have at iteration k a particle approximation
qﬁk Z 1 553 of ¢, through a set of M € Ny particles § ‘M Chopin and Papaspiliopoulos

(2020), initialized with €M ~ \*M_ Plugging this approximation into eq. (6.9) gives

1 o< Sy w(§py 1160 - (6.10)

’

Hence, to obtain £}, we first sample M ancestors according to [} ~ Cat({wk(gé)/ >M, wk(flic) ]Ail) M

then we sample new particles &Y ~ {pkfl‘k(‘\félifl) M1 leading to ¢ | = M i . Cf.

algorithm 12 in section E.5.

6.4 Methods

Many fundamental problems in ECG analysis, such as noise suppression, reconstruction of missing leads,
T-wave prediction, and anomaly detection, can be formulated as ill-posed linear inverse problems. For
the sake of simplicity, we focus in this section on the problem of recovering/denoising the ECG signal in
the presence of noise and/or missing samples. We discuss how section 6.3.2 can be employed to sample
ECGs from partial observations using a pre-trained DDM as a prior. We also introduce the inference
procedure for estimating the unknown level of noise in the observation.
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6.4.1 ECG Linear Inverse Problem

ECGs are L x T matrices where L is the number of leads, and 7" is the number of samples. We assume that
we have trained a DDM on ECG data and have access to the backward process: to generate a new ECG
zo € REXT | we first sample 2 from A, then for k& from K to 1, we sample xj,_; ~ pk_l‘k(xk,ﬂxk)
((6.4)), as illustrated in figure 6.1.

We assume that we partially measure a new ECG through a subset of indices Z = {(¢,t) € [1 : L] x [1:
T)}. For any (¢,t) € Z, the observation is written as

Y{f, t] = Xo[f, t] + overe (6.11)

where €;; ~ N(0,1), and 0 = 07.7, are the measurement noise variances; we first assume that the
variances are known; we describe below a method to estimate these parameters. Given an observation
y ~ Y, we aim to sample x from the posterior Xy, o, with a p.d.f.

¢ (0) = gg(x0)po(w0)/Z (6.12)

where po(z0) is the prior distribution defined in (6.5), Z = [ g§(z)po(x)dz is the normalizing constant,
and g (z0) is the likelihood of the observation, given by

96 (o) := ez N (wolt, ;y[L, 1], 07) -

We use the methods described in section 6.3.2 and adapt the choice of potentials {g} } kejo:x) derived in
Cardoso et al. (2023b) for the VE framework

gi(x) =TI N[l tyll,t],0} — (1—€)o7), (6.13)
,6)EVy

where Vi, = {({,t) € Z|v} > 07} and ¢ is a positive hyper-parameter (see section E.6 for a heuristic
introducing this choice of potential). By convention, if Vj; = ), we set g; (z) = 1. For this potential,
p%_” . and w? admit closed forms given in section E.7.

6.4.2 Estimation of Measurement Noise

We now discuss the estimation of the noise variance. We propose to use the MLE of o, o* =
argmax_ps, (o) where I(0) := log 27 = log [ g3"" (x)po(x)dx. Note that we have explicitly spec-
ified the dependence of the potential ¢’ (z) on the noise variance. The gradient of [ is approximated
using §é:M obtained with algorithm 12

Vol(o) = [ Vogd? (2)po(2)/ 27 dx
= [Volog gy (x)¢p” (x)da
~ MY Vo log gf 7 (€)).

We obtain the estimator o through gradient ascent Cappé et al. (2005b)[Section 11] and enhance its
robustness by running NV, parallel instances of algorithm 12 and averaging the resulting estimators, as
outlined in algorithm 5.

6.5 Experiments

Our code to reproduce all experiment is available.!

1 Anonymous code available at https://anonymous.4open.science/r/ecg_inpainting-7457
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Backward denoising process

Figure 6.1: Example of healthy heartbeat generated with a denoising diffusion generative model, across multiple
diffusion steps.

Algorithm 5 NC-MCGdiff

Input: number of steps Ny g, initialization ¢, number of parallel chains N,
Parameters for SMC: observation y, number of diffusion steps K, number of particles M
fori = 0to Nyg — 1do

Sample £'™ by running N, parallel SMC with o, y, K, M

Update o'*! := % + WVW)[ éjZNcM]
end for
Output: gNMLE

0

6.5.1 Dataset and Preprocessing

We utilize the PhysioNet Challenge dataset Goldberger et al. (e 13); Reyna et al. (2021, 2022), comprising
43,101 12-lead ECGs. Our preprocessing involves four steps, as described in section E.2: normalization
of the sampling frequency to 250 Hz (resulting in time points separated by 4 ms), detection of R peaks
to identify heartbeats, segmentation of the heartbeats within the window [R —192 ms, R +512 ms], and
amplitude normalization. This process generates 214,460 single-beat ECGs, each with a time length of
704 ms and leads (aVL, aVR, aVF, V1-V6), represented as an L x T matrix, where L = 9and T = 176
(since 704 ms/4 ms= 176), from a pool of 28,167 individuals with healthy profiles and 468 patients
diagnosed with myocardial infarction (MI). Due to significant variability between patients compared to
variability between heartbeats, we randomly select a single beat per patient from either the training,
cross-validation (CV), test, or MI datasets for model evaluation. All analyses are conducted on single
beats with normalized amplitudes, but our entire approach is also applicable to signals with multiple
beats with non-normalized amplitudes.

6.5.2 Denoising Network for ECGs

Our ECG denoising model is based on two key insights: first, generative models perform better when
additional information such as labels is incorporated during generation. Therefore, in addition to the
ECG and noise level, we input time 7 and categorical patient data P into the network. The second
insight is that the noise level varies with the diffusion step k&, and we use the following reparameterization
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(Karras et al., 2022)
DY (2, vk, T, P) = Cakip (Uk)T + Cout (vk) Fo(a, v, T, P) .

1 -1/2
2

where z is a 9 X 176 matrix, csip(Vk) = (V2 + 0310)  1030tas Cout (Vk) = UkOdata(VF + 03,1,
and 0 qata is the empirical standard deviation of qqata. For small vy, cgip(vr) ~ 1 and cout(vg) = 0,
thus Dg‘ w2, v, T, P) = x, which is expected since x is already a good reconstruction of the original

data. On the contrary, when vy, is large, then cgkip(vg) = 0 and coyy ~ 1, thus Dg‘k(x, vk, T, P) relies
heavily on the network Fy to provide a good reconstruction.

The initial layers of Fy aggregate the corrupted state xz, the standard deviation of the exploration
noise vy, the temporal information 7, and the categorical patient information P into a single matrix
e; + ey, +er +ep. We now discuss how each component is encoded. First, to mitigate the impact of
magnitude variability across different diffusion steps, x is rescaled by the normalization factor ci, (vg) =
(v? +02,.,)"'/2. Subsequently, ciy (vx)z is fed into a 1D convolutional layer with a 1-size kernel and ¢
channels, resulting in a ¢ X 176 matrix e,. To incorporate the information of the noise and the time, we
use positional encoding Vaswani et al. (2017) defined for s,t € [1: ¢| x [1 : T as

sin(1000~(/90)¢) if ¢ = 2r,

Enc(t =
nc(t) s] {008(1000(7“/96)t) if /=2r+1.

The noise operator is defined for s € [1 : ¢] as e,,[s] = Enc(%)[s], and the time operator is
defined for s,t € [1 : ¢] x [1 : T] as e,,[s| = Enc(t)[s]. Various factors, including age (A), sex

(S), and the preceding R-R interval (RR), which is linked to the inverse of the heart-rate, affect the
morPhology Malik et al. (201~3); Salama and Bett (2014); Ball et al. (2014). We normalize A and RR
as A = (A —50)/50 and RR = (RR —400)/400. A one-hot encoding is applied to S to generate

S e {0,1}2. The concatenated vector S, A, RR is fed into a two-layer dense network, yielding a ¢ x 1
vector ep.

After aggregating ECG, distortion, temporality, and patient information, Fy adopts a U-Net architec-
ture Ronneberger et al. (2015); Ho et al. (2020); Dhariwal and Nichol (2021). Each output from the
U-Net blocks undergoes a multi-head attention layer Vaswani et al. (2017), with the number of heads
equal to the original dimension divided by 64. The entire network Dg It is trained to minimize eq. (6.3)
through stochastic gradient descent on the healthy training set, and the best model is selected using the
cross-validation set. For further details, refer to section E.3.

6.5.3 Evaluation of ECG Generation

We first evaluate the quality of the generated ECGs with the DDM trained as described in the previous
section. To do so, we generate the same number of ECGs as in the test set (2864) using the same 2864
features P = (A, S,RR). We propose two metrics to assess the quality of the synthetically generated
ECGs. These are: (1) a distance between the real and the generated ECG distribution, and (2) an
out-of-distribution (OOD) score quantifying how likely a given ECG is outside the training healthy
distribution. The Earth Mover’s Distance (EMD) Genevay et al. (2016) measures the dissimilarity
between the predicted and target distributions by calculating the minimal transport cost. The EMD is
calculated from the generated set to both the test set and the training set. To obtain comparable orders of
magnitude, the training set is divided into batches of the same size (2864). The transport cost is defined
as the L2-distance over concatenated ECGs with A, S, RR features to penalize the transport of an ECG
to ECGs with different A, S, and RR features. With this metric, we compare the DDM with the WGAN
model proposed in Adib et al. (2022). To ensure both models are comparable, we use the same training
set for both models: heartbeats conditioned with P = (A, S, RR). As the WGAN model was originally
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Figure 6.2: EMD between generated ECG distribution and real ECG distribution. EMD vs. test (resp. train) in
dotted (resp. plain) line. EMD for DDM with different number of difffusion steps, in orange. DDM for WGAN
model in blue. EMD between test and train distributions in red. Error bars correspond to different training batches
of size 2864.

introduced for categorical conditioning, we adapted it to include scalar conditioning (RR) using two
fully connected layers as detailed in section E.9. We also use the EMD to assess the influence of the
number of diffusion steps K. Figure 6.2 shows the EMD with respect to the test and training sets for both
the WGAN and DDM, with K varying in the interval [2, 150]. The EMD values show that few diffusion
steps are sufficient to generate an accurate predictive distribution, and the DDM outperforms the WGAN
in reproducing the real data distribution. The analysis in Section E.4 shows that using a more complex
architecture does not improve the results, and conditioning on A, S, RR leads to a smaller EMD.

To quantify how unlikely each generated ECG is with respect to the training distribution, we used
the OOD-score proposed by Ciosek et al. (2020). Their method involves using a randomly initialized
network, which remains unchanged throughout the process, to produce a “random prior” by associating
each training data point (images in the original paper, real or generated ECGs in our case) with a random
pattern. Subsequently, a second network is trained to learn this random prior distribution, meaning that
the output of the network for a training data point should be close (in terms of L2 distance) to the random
pattern from the first network. After training the second network, the OOD-score for an input data point
is the distance between the outputs of the two networks. The authors demonstrate the relevance of their
score for out-of-distribution data detection by training on four classes of the CIFAR dataset and verifying
that, at test time, the score effectively distinguishes test data with the same classes as the training data
from those with different classes. In our case, we adopt the same residual network architectures proposed
in Ciosek et al. (2020), but replace the 2D convolutions with 1D convolutions, as unidimensional residual
networks are known for their efficiency in ECG classification Ribeiro et al. (2020). We use 10 bootstraps
and train the corresponding networks for 100 epochs with the Adam optimizer (learning rate=0.001) on
healthy patients from the training set. The OOD-score boxplots and the resulting classification ROC
curve in figure 6.3 show that the OOD-scores of the generated ECGs are close to those of the test ECGs,
and that the scores for MI ECGs are significantly higher than those for the test and generated ECG.

6.5.4 ECG Denoising

We now consider the application of NC-MCGdiff to solve various problems. In all our experiments,
we do not perform additional fine-tuning; all our results are obtained solely by sampling the pre-trained
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Figure 6.3: Out-of-distribution evaluation. Left. Box-plot of OOD-score for train, test, generated (Gen) and MI
heart beats. Right. ROC curves for classification between train/test/gen and MI based on OOD-score.

DDM model as follow: for a given observation y we perform algorithm 5 with Ny r = 10 (stops before
when convergence is reached), og = 1, N, = 100, K = 50, M = 50 (see section E.8) to estimate
o*. Then we generate 100 ECGs from Xy, o™ (conditioning on P = A, S, RR is implicit) by running
N, = 100 parallel SMC (algorithm 12 in section E.5) with ¢*, y, K = 50, M = 50 as input. We first
investigate the denoising of noisy ECG observations (Z = [1 : L] x [1 : T']). In this experiment, all test
samples are corrupted with per-lead Gaussian noise with standard deviation sampled from an exponential
law oy ~ exp(0.2). The randomness of o mimics real-world scenarios where some electrodes may be
more corrupted than others. For each corrupted test ECG y, o* is estimated using algorithm 5, and
N, = 100 denoised samples are drawn from Xg|y,c*. We compare NC-MCGdiff with a Denoising
Autoencoder (DAE) introduced for ECGs by Chiang et al. (2019), whose architecture we adapt to single
heartbeats as described in section E.9. We trained the DAE to denoise ECGs corrupted with per-lead
Gaussian noise with standard deviation sampled from an exponential law oy ~ exp(0.2), using the Adam
optimizer. Figure 6.4 shows two examples of corrupted heartbeats denoised with NC-MCGdiff and the
DAE. To assess the reconstruction quality, we measure the R2-score between real and denoised ECGs.
NC-MCGdi ff outperforms the DAE with an R?-score of 0.928 + 0.002, whereas the DAE achieves a
score of 0.855 £ 0.003. We also verify the accuracy of the estimated parameter ¢* by computing the
absolute total deviation between the real o = o1, and the derived o, resulting in 0.03 +0.001.

6.5.5 Missing Leads Reconstruction

We evaluate NC-MCGdiff for reconstructing a missing lead ¢ while observing the other leads (Z = [1 :
—1]U[¢+1 : L] x[1 : T). Inthis experiment, for each test ECG, a precordial lead ¢ € [4 : L]is randomly
removed; the reconstruction of missing leads aVL, aVR, or aVF is considered impractical because the
absence of these leads implies the absence of a limb electrode, which prevents the measurement of any
leads. Then, for each partial ECG y, complete beats are generated using NC-MCGdiff and with Dower
matrices Macfarlane et al. (2010)[Chapter 11], which is a classical method notably used for missing lead
reconstruction. Figure 6.5 shows three examples of reconstructed beats with both methods. To assess the
quality of the reconstruction, we compute the R2-score between the reconstructed and the ground-truth
missing leads. The results in table E.2 show that our approach outperforms reconstruction with Dower
matrices for all missing leads; the overall R?-score is 0.987 -+ 0.003 for NC-MCGdi ff and 0.804 + 0.023
for Dower matrices. This experiment opens up numerous possibilities for applications, such as managing
errors in electrode placement and predicting complete ECGs from partial ECGs measured by devices
such as the Apple Watch.
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Figure 6.4: Denoising of two corrupted signals with Gaussian noise using NC-MCGdiff and Denoising Auto-
Encoder (DAE).

Table 6.1: Comparative evaluation of NC-MCGdiff against existing approaches for ECG generation (Gen.),
denoising (Denois.), missing lead reconstruction (Recon.), anomaly detection (Anom.), with EMD for generated
vs. test distribution, R? score between denoised (resp. reconstructed) and real ECG (resp. missing lead), AUC
for anomaly score.

TASK Gen. Denois. Recon. Anom.
Metric EMD R? R? AUC

NC-MCGdiff 21.26 0.928 0.987 0.83
WGAN 24.16 - - -
DAE - 0.855 - 0.72

Dower - - 0.804 -
AAE - 0.685 - 0.81
OOD - - - 0.75

6.5.6 Cardiac Anomaly Detection

In this section, we evaluate NC-MCGdiff for detecting cardiac abnormalities by addressing an inverse
problem as follows. Given an ECG x that may exhibit morphological anomalies, we sample a new ECG
Z from the posterior X|y, o*, where y represents a partial observation of z withZ = [4 : L] x [1 : T.
We condition on the augmented leads aVL, aVR, aVF since they are further from the heart and less likely
to be affected by localized anomalies than the precordial leads V1-V6. The 1 — R2-score between & and
x provides an anomaly score, and anomalies in the real ECG x can be highlighted by superimposing Z
on x. We applied our methodology to detect MI, as illustrated in figure 6.6. To evaluate the accuracy
of our anomaly score, we compute the Area Under the Curve (AUC) for classifying control versus
myocardial infarction (MI) based on the anomaly score as shown in figure 6.7. Our method performs
better than a recent anomaly detection approach based on Adversarial AutoEncoder (AAE) Shan et al.
(2022), achieving AUC values of 0.84 and 0.82 for females and males, respectively, compared to 0.78
and 0.81.
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Figure 6.6: Illustration of ECG anomaly detection using NC-MCGd1 f£in MI patients compared to control patients.

6.5.7 Application: Prediction of Corrected QT

In the previous sections, we have demonstrated that for several classical ECG applications, NC-MCGdiff
outperforms methods specifically designed for individual problems. To address these challenges, we
pre-train a diffusion model once on a dataset of healthy ECGs and utilize it as a prior for all experiments.
Table 6.1 provides a comparative summary with all the baselines mentioned in our experiments, also
detailed in section E.9.

In this section, we introduce a new application that, to our knowledge, has not been numerically tackled
before. The relationship between QT and heart rate (linked to the inverse of the RR)) is well-documented
in the medical literature and has been expressed in several formulas Bazett (1997); Fridericia (1921);
Sagie et al. (1992). These formulas introduce coefficients called “corrected QT denoted as QT{ and
QTY, which depend on the patient and are determined from ECGs measured during an exercise stress
test. Using NC-MCGdiff we propose a numerical approach to avoid the need for an exercise stress test.
Each test ECG is truncated to focus only on the QRS complex, i.e., we set Z = [1 : L] x [1 : 70]. Then,
for RR values ranging from 0.6 s to 1.2 s, or equivalently for heart rates ranging from 43 to 100 beats
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curve for classification between control and MI based on the anomaly score.
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Figure 6.8: Example of T-wave prediction (blue) conditioned on Q-wave (red) for different value of RR.

per minute, we sample x from the conditional distribution Xy|y, c*, RR as illustrated in figure 6.8. We
regress the intercept QT( and slope QT of the Fridericia formula Fridericia (1921), which states that
QT = QTG+ QTY VRR, from the generated curves. As shown in figure 6.9, we observe a consistent
trend between the observed and regressed curves for five patients. Additionally, table E.3 indicates a
high R2-score of 0.98 between observed and expected QT curves.

This experiment illustrates the importance, when generating synthetic ECGs for a given patient, of
conditioning on specific observations unique to that patient, such as their QRS complex and RR intervals,
to capture their individual physiological differences compared to other patients. While the relationship
between QT and RR has been observed in clinical settings, our model reproduces it without explicitly
enforcing it during training or sampling. Furthermore, this experiment suggests that our model reliably
predicts the T wave (ventricular repolarization) given the QRS (ventricular depolarization), opening up
new applications such as the diagnosis of long QT syndrome or other diseases that specifically alter
repolarization without altering the QRS.
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6.6 Conclusion

In this paper, we described a flexible method that addresses various challenges in ECG analysis, including
noise reduction, missing data reconstruction, and anomaly detection, all formulated as inverse linear
problems. Our method leverages a DDM, pre-trained once to generate ECGs, as a prior for sampling
solutions to inverse problems with SMC. We extended existing methods for solving inverse problems
with a DDM prior, for cases with unknown measurement noise levels. The effectiveness of our approach
is demonstrated against baselines through several evaluation metrics specifically designed for ECGs.
Additionally, we introduced an innovative application of our method: generating expected ECGs when
heart rate increases, offering an alternative to the exercise stress test. This contribution extends the utility
of our approach beyond conventional ECG analysis tasks.

Besides, our approach opens up new applications such as completing ECGs measured by devices like the
Apple Watch and diagnosing long QT syndrome or other diseases that specifically alter repolarization.
In this paper, the DDM was trained only on healthy ECGs. Furthermore, this DDM could be replaced
by a model trained on a dataset containing ECGs presenting pathologies, conditioned on the specific
pathologies. A concrete application example would be training the model with ECGs from patients
with left bundle branch block condition to detect ischemia in these patients for whom the criteria of ST
segment elevation or depression are not valid.

6.7 Impact Statements

This paper presents work whose goal is to advance the field of Machine Learning. There are many poten-
tial societal consequences of our work, none which we feel must be specifically highlighted here.

111






Appendices

113






Appendix A

Appendix of Chapter 2

A.1 Proofs

A.1.1 i-SIR Algorithm

We analyze a slightly modified version of the i-SIR algorithm, with an extra randomization of the state
position. The k-th iteration is defined as follows. Given a state Y3 € X,

(i) draw I11 € {1,..., N} uniformly at random and set X k’ff =Y

(ii) draw X, +1\{ ’““} 1ndependently from the proposal distribution A;
(iii) compute, fori € {1,..., N}, the normalized importance weights

N
va,k+1 = w(XIZcH)/Zw(XﬁH);
=1

(iv) select Y41 from the set X} A N by choosing X? k41 With probability wh N k1

Thus, compared to the simplified i-SIR algorithm given in the introduction, the state is inserted uniformly
at random into the list of candidates instead of being inserted at the first position. Of course, this change
has no impact as long as we are interested in integrating functions that are permutation invariant with
respect to candidates, which is the case throughout our work. Still, this randomization makes the analysis
much more transparent.

A.1.2 Proof of Theorem 2

We write
1 X ‘ ,
ex(d(y,z1v)) = 5 3 m(dy)dy(da’) [T Mda?) (A1)
i=1 i
1 N , . ,
— ) i ) j
= Na(w) ;w(fv JA(de )5x1(dy)]l_[#k(dw ) (A2)
= ﬂ A(dz)T v Lx (z') i in)é i (dy) (A.3)
Alw) 725 SYE wh)

where we recognize, and after having recalled definitions (2.5) and (2.6) of 7 and Il, respectively,
the right-hand side as 7y (dz'*™)IIy (2!, dy). This completes the proof.
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A.1.3 Proof of Theorem 3

Using (2.6) we get
N N
[ mnat iy ) = [ NAl(w) 2w/ (@) [ ) (A4)
1 N . N
~ NA(w) /; (Ucl)f(ml)j]:[lk(dx]) =(f), (A.5)

and the proof is complete.

A.1.4 Proof of Theorem 6

Proof. We first check that ¢ is an invariant distribution for P . For every A € X ®(N+1) ysing that
m is the marginal of ¢ with respect to the state and applying Theorem 2 yields

/ on(d(y, 2N Py (y, 21N, A) = / (dy) // An(y, d2" MLy (2, dg) 145, 2Y)  (A6)

_///WN (dz1. )Ty (&Y, dy) Ty (25, dg) L a(y, 257)
(A7)

— on(A), (A8)

which establishes invariance. We now show that P is reversible with respect to 7. For this purpose, let
g and h be two nonnegative measurable functions and write, using Theorem 2 twice,

| wdn)Prty.dngh(@) = [ wldy)An(y. de )y (", dg)g(y)h(s) (A9)
= [ m(@ )y g Y dg)h(@) (A10)

— [ #(@p)Ax (5 4 )y (Y dy)g () ) (A1)

— [[ 7@nPx (@ dpgw)h ). (A12)

]

A.1.5 Proof of Theorem 7

For completeness, we repeat the arguments in Lindsten et al. (2015); Andrieu et al. (2018). Under A1,
we have, for (z,A) € X x X,

_w(@) N
N(z, A) /5 (dz') H A(da)

] 1 ’LU(LL’]

_/ +ZJ 2“’(33] H Ade) +/ +Z] o w(wd) A(xi)HA(dej)

. Z/ w(z') NG lng(dxj)

+wxl +Z] 2]#1 (xj)

n(da z! A(w) N I
> ;/ (dz")La( )/w(w) + w(x?) +Z§V:2,j¢i’w(xj) jgﬁ/\(d ).
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Finally, since the function f: z — (z-+a)!isconvexonR, anda > 0, we getfori € {2,..., N},

/ Aw) ) -
: ~ , A(dz?) (A.13)

w(w) + w(xz) + Ej:2,j;éi w(x]) j=2,j#%

> O — | (A.14)

Jw(@) +w(@?) + 3500 iz w(@?) [Tj20 j2 A(d2?)
1 1

= W@ /AN w) fw@) N+ N -2~ 2w N—2 A.15)

We finally obtain the inequality
N -1

This means that the whole space X is (1, ex7)-small (see (Douc et al., 2018, Definition 9.3.5)). Since
Pn(x,-) and 7 are probability measures, (A.16) implies

IPn(z,-) — m||Tv = iug IPn(xz,A) —7m(A)| <1—eny = kn. (A.17)
€

Now the statement follows from (Douc et al., 2018, Theorem 18.2.4) applied with m = 1.

A.1.6 Proof of Theorem 4

Proof of (ii). Using the identity (a + b)? < (1 + €2)a® + (1 + € 2)b? we obtain the decomposition
(M FOGEN) — ()} < (Lt (N — D210 4 (14 (N — 1)V2)IO), with

10 = Iy F(XGN) — an (V1) /by (Y1)}, (A.18)
1) = {an (V1) /bn (Vi) — 7(£)}, (A.19)
where an (Yi—1) = ANTNf(Yi—1) and by (Yi—1) = ANT NIx(Yi—1).
Using the identity a/b — ¢/d = (1/d)[(a/b)(d — b) — (¢ — a)], we obtain
Iy f(X3Y) = an (Yi-1)/on (Yi-1)
= by (Vi) ™! [T FOGEY) (b (Y1) = Dl (XEN)) = (an (Veor) = T FXGEY)] - (A20)

Therefore, using the trivial bound (a + b)? < 2(a? + b?), we get

< %[HNJC(X;:NV{FN]IX(X%:N) —on (Ve ) P+ {Tn f(XEN) —an (Vo)) Y]
wi¥i1) (A.21)

Since Iy f(X}V)? < 1, Pe-as., and by (y) > (N — 1)/NX(w), it holds, P¢-a.s.,

< (N_le [{anx(X;:N) —bn (Vi) P2+ {TnFXEN) — aN(kal)}ﬂ . (A22)

Therefore, using Lemma 8§,

M

&

E¢[{TIn f(XEY) — an(Yio1)/bn (Yio1)}] (A23)
= E¢ [EE [{HNf(Xé:N) — an(Yi—1) /b (Ye-1)}? ‘ Yk—l” (A.24)
2
< e [V~ DA = Aw))) + (= /KA s = Aw )]
(A25)
< 4(N = 1) k[, N (A.26)

We turn to I(?) and note that (2.20) implies that () < 4N—2 (1 4 w)?, which completes the proof. [
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Proof of (iii). Note that

16) = B¢ [{TIn f(XEN) = n () HIy F(XEY) = 7()}]
= Ee[{TIn f(X3™) — m(f)}Ee [HNf(inre) —7(f) ‘ Yk—i—ﬂ—l}]'
As Eg [Ty f(XEY) | Yireo1] = @ (Yire 1) Pe-as., it holds that
19 = Be[{Ty (X)) = 7 (HHEN Vire-1) = 7()}]
= Ee[{Ty f (X ™) = 7(FHEe [P (Vire1) [Yi] = 7(f)}]
By the Markov property,
Ee [On(Yise1)| Vi) = P N (YVe) = 0y, P& ' ®n, Pe-as.,
which, combined with (2.14), implies that
IPY ' @n =7 (f)lloo < (N = 1)~ TR

Combining the results above, we finally establish that

O] < PN = 1) 7w B [{TIn f(XEY) — 7 (£))7)2

9 1/2
< gbi“S(N - 1)71%}?\[—1 (Z glmse(N - 1)1i/2> )
1=0

A.1.7 Proof of Theorem 5
We first consider the bias term, which can be bounded according to

K

e [T, 10 0 ()] = 7| < (K = Ko)™ " [Belln f(XFN)] — m(f)
{=Ko+1

K
< (K _ Ko)_l(N _ 1)—1gbias Z ﬁg\[il
(=Ko+1

Thus, the claimed bias bound can be established by noting that

Z KJK 1 < /{,KO < 47—mix,N(1/4)K0/Tmix,N
(= Ko+1 ]- — KN 3

We now turn to the MSE, and make the decomposition
K

£=K0+].

2
Ee[{IL (o, 1), n (f) = 7(f)}*] < (K — Ko) ™ ( Y Ee[lin (X)) - 7r(f))

K K
+2 )0 D0 E[{Tnf(X™) = n()HIN F(XGH) = 7()}].

(=Ko+1j=(+1
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Using the MSE bound in Theorem 38, we obtain that

2

K
ST B[N FXFN) = m()}] < (K — Ko)(N — 1)1 > ame(V —1)72, (A.40)

(=Ky+1 i=0

In addition, the covariance bound of Theorem 38 yields

K K
>0 Be{Inf(XIY) = n(HHINF(XN) = w(£)}]

1=Ko+1 j=0+1

< chnv 3—i/2)/2 ( Z Z H 1) . (A41)

I=Ko+1 j=0+1

¢ )
As Zé Kol K e+ /15\3, )= < (K — K0)(4/3)Tmix, N, Wwe may write

)~ 2) (A.42)
)

2
Ee (o, 100,85 () = 7(f))?] < (K — Ko)(N — 1))~ (Z G (N —1
=0
N — 3 S —i/4> , (A.43)
0

H(8/3)(K — Ko) (I — 1)%/2 ( (N 1

and the MSE bound may now be established by noting that (K — Ky)(N — 1) = vM.

Establishing the high-probability bound requires more complex derivations. More precisely, we will
apply the decomposition

Wi, 10N (f) = 7(f) = (K — Ko)~ Z Oy f(XEY) = @y (Yie1)
k=Kop+1
K-1

+(K=Ko)™" > on(Yio1) —m(Pn), (Add)

k=Kop+1
> t/2)

> t/2) . (A45)

where we used that 7w(f) = m(® ). Therefore, for every ¢ > 0 it holds that

Z Iy f(XEY) — o (Yi1)
k= Ko+1

K-1

> dn(Yie1) — 7(Dn)
k=Ko+1

Pe (|, 50,5 (f) = ()] > ) < Pg ((K Ko)~

+ P ((K — Ko)™!

We will show that for all ¢ > 0, and for some absolute constants ¢(}) and ¢(?),

10 =P, ((K — Ko) ! f Iy f(XpY) = n(Yio1)| > t) < 2exp(—t*vM/(4¢M)),

k=Kop+1
(A.46)
K-1
12 =P [ (K= Ko)™t| S n(Viy) — n(@n)| >t (A47)
k=Ko+1

< 2exp(—t2¢? (K — Ko)(N — 1)?/ Tonix, N )
(A.48)
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We first consider I(!) and note that

K
> Iy f(XEN) — @8 (Yi1)
k::K()-i-l

10 = (A.49)

P& ((K — K())fl

>t YKO:Kl)

By Theorem 6, the random elements (X }V)K_ Ko+1 are independent conditionally to (Yk)fz_éo. Thus,
using the generalized Hoeffding inequality (see (Vershynin, 2018, Theorem 2.6.2) or (Wainwright, 2019,
Proposition 2.1)) we get, with Ay, = HNf(X,i:N) — &N (Yy—1), that, Pe-as.,

L & 2(K — Kj)?
Pe | (K — Ko) > Ang| >t Yigx—1 | < 2exp ST N , (A.50)
k=Ko+1 Zk:KO-;-l | N,/’CH1/;2,§/,c

where 15 : 2 +— exp(z?) — 1 and

IAN Kl vioy = Inf {A >0 Eg [Y2(|ANnkl/A) | Ye-1] < 1}

In order to bound || Ay || ,,v, , We use the decomposition Ay i, = Ag\lf)k + AE\Q,),C, where

Iy f(XENY  an(Yeo1)
AY — NPk , A5l
N,k FN]IX(X;%:N) bN(Yk—l) ( )
Vi 1)
A2 :M_Q) Y1), A52
N,k bN(Yk—l) N( k 1) ( )

combined with Lemma 36 with ¢ = x = w2 and (Vershynin, 2018, Proposition 2.6.1). By (2.18) and by
(Vershynin, 2018, Equation 2.17) it holds that, P¢-a.s.,

AR N vi s < 2(l0g2) 2(N — 1) k[A, 7). (A53)

Using Lemma 36 with ¢ = x = %5 and the fact that by (y) > (1 — 1/N)A(w) we obtain, P¢-a.s.,

1
[INCATP.
2

< A= 1/N)a@) (HFNf(XI%:N) — an (Y1) s vy + 2D Ix (X ™) — bN(kal)sz,Yk,l) :

(A.54)
Furthermore, using (Vershynin, 2018, Proposition 2.6.1, Eq 2.17) we get, P¢-a.s.,
TN (X)) = an (Ye-) v, (A.55)
< (610/1og )N (X (X~ Be [wxD ) V][] as6)
< (256¢/(log 2)%)N || w2, (A.57)
The same bound applies to || Ty Lx (X}) — bN(Yk_l)H’(zﬁg,Yk_l’ and we may write
A llpa,ve, < 96612 (log2)"H (N — 1)~ 2w, (A.58)
We can now finalize the bound on I(!) by writing
18Ny s < 20088y, + 18RRIy ) (A.59)
< (N =17 4+ (B, a2 (N = 1)), (A.60)
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where ¢((b1) = 18432¢(log2)~2 and ¢(M? = 8(log2)~' are universal constants, which implies
that
AN,y < ¢V —1)7, (A.61)

with (1) = 1.1 - 10°w?. This finally yields that I(V) < 2 exp(—t2vM/4¢M).

We treat 1(2) using Lemma 39 with g; = & (Y, ri1) — 7(Pn). As [|gillee < 0sc(@y) < (N —

1)~1cbs | we obtain

12 < 2exp (¢ (K — Ko)(N = 1)*/Timie ) (A.62)
where ¢(?) = 2/(3¢%)2. Finally, we obtain
Pe (T gy, 5),5 (f) — 7(f)] > 1)
< 2exp (oM /AW [1+ exp (~PoM{CO(N = 1) /7y — (4C)7})] . (A63)
We conclude by noting that for every § € (0,1) and N — 1 > 7,5 5 (4¢1 ¢2)) =1 it holds that
Pe(|Uxcy 1005 (f) = 7(f)] = 1) < dexp (—2oM/acM) <5 (A.64)

forall t > 2(11/2(UM)_1/2 log(4/6)'/2. Letting ¢4 = 2(}/2 concludes the proof.

A.1.8 High-probability inequality for SNIS

Theorem 35. Assume that w = ||w||co/A(w) < co. For all bounded measurable functions f on (X, X)
such that || f||co < 1, it holds that for every M € N* and 6 € (0, 1),

[®ar(f) = w(f)] < 120(M log2) "/ 1og(2/)"/? (A.65)
with probability larger than 1 — 4.

Proof. Let oy = MM w(X) (XY, By = MM w(XY), a = Eloys] = Mwf), and
b = E[Bnm] = Mw). Note that Tas(f) = oear/Bar and 7(f) = a/b. Using Lemma 36 with ¢ and x
equal to the mapping = — exp(z?) — 1 we obtain that

7as (f) = 7 ()l < 2Mw) ™ (loar = allyy + 2[Bar — bllg,) - (A.66)
Moreover, using (Vershynin, 2018, Eq 2.17) yields, P¢-a.s.,
los —all?, < M~ w(XH)F(XF) = Mwf)II%, < 4(M log2) ™ [w]|%. (A67)

In the same way,

Bar — b7, < 4(Mlog2)~!||w|Z,. Therefore, we may conclude that
173 (f) = m ()17, < (12w)*(M log2) ™. (A.68)
Combining the previous bound with (Vershynin, 2018, Proposition 2.5.2) provides
P(|7a(f) = w(f)] > 1) < 2exp(—t*¢"" M), (A.69)
where (% = (12w)~2 log 2. The high-probability inequality of the theorem follows directly. O
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A.2 Moments and high-probability bounds for ratio statistics

Let (Ui, Vi)ieqi,...ny be (possibly dependent) random variables defined on some probability space
(9, F,P). Assume that U; > 0 P-as. Moreover, let o, = n =137, U;V;, B, = n= 130, U,
and p,, = &,,/By as well as a = E[a,], b = E[B,,], and r = a/b.

A continuous, even, convex function ¢ : Rt — [0, +00] is a Young function if ¢ is monotonically
increasing for z > 0, ¢(0) = 0, lim, oo ¢(z)/z = 00, and lim,_,o+ ¢(x)/xz = 0. We denote by ¢* the
Fenchel-Legendre conjugate of ¢. Let X be a random variable and ¢ a Young function. Then the Orlicz
norm of X is

IXls = inf {A > 0: E[¢ (| X|/\)] < 1}, (A.70)

with the convention that inf ) = co. The Orlicz space L4(f2) of random variables is the family of
equivalence classes of random variables X such that || X ||, < co. Here L4(f2) is a Banach space. If
¢p(x) = |z|P for p > 1, then L4 (2) = LP(€2) and we denote || - ||, = || - [|¢,. If X € L4(£2), then, for
every z > 0,

P(X| > 2) < 1/6(/|X]ls) and [[Lqxsallo = 1/~ (L/P(X] > 2)).

Lemma 36. Let ¢ and x be Young functions. If max; ||V;||co < c|r|, then

lon = rllo/I7] < 2lletn = all/b+ 2[1Bn = bllo/b+c/{(@7" o X)(b/21(Bn = b)-[lx)} - (ATD)

Proof. We decompose the computation in two parts: first, when (3,, > b/2, we have

0 — @ L1 loon —a| | al|Bn = b _ 2[on —al | 2|r[|Bn —b|
— )< — '
Bn ¢ (Bn b)‘ - b2 * (b/2)b b b

Then, when 3,, < b/2,

mn—m:\

2|r(|Bn — b

2|r||Bn — bl
b b

lon = 7[ < on| +[r] < lonl + < max [V;] + (A72)

where the second inequality follows from |3, — b| > b/2. Combining the two previous inequalities

yields

2|on —af | 2r||Bn — O]
b + b

Recall that if | X| < |Y| P-a.s., then || X || < ||Y]|; hence, we may proceed like

|pn - 7“‘ < + m?x ‘Vim{ﬁngbﬂ}' (A.73)

2|, —a 2r|B, — b
lon = vl < | 2= 2B P Vi, (A7
2o, — a 2|r|||pn — b
< H ; H¢+ | |H ; ||¢+C‘T|||ﬂ{ﬁn§b/2}”¢ (A.75)
2o, — a 2|r|||B, — b _
_ 2ow —allo | 2ArllBe=blle gt 1/p(pa <b/2)). (AT6)

b b

Finally, we obtain the desired result by noting that for any Young function x, P(B,, < b/2) = P(|(B, —
b)-| = 0/2) < 1/x(b/2[|(Bn — b)—Ilx)- O

Theorem 37. Let p > 1. If max; ||Vi||oo < c|r|, then

[on —7lp < 2o —allp | 20+ )lIBn —bllp

i 5 b (A.77)
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Proof. Apply Lemma 36 with x(z) = ¢(z) = aP. O
Theorem 38. If|x,/Br| < 1 P-a.s., then
[Elon] — 7| < (26%) " {3E[(Bn — b)°] + E[(otn — a)*]}. (A.78)

Proof. Using the identity

o a0 (b—Bn)?  (n—a)b—PBn)  alb—Pn) o —a
E - g == E b2 + b2 + b2 + b 5 (A79)
yields
_ & (b — Bn) [(O(ﬂ - a)(b — Bn)]
Elpn] —r=E [Bn 2 + b2 )
which completes the proof. O

We conclude with a lemma that gives the concentration of a uniformly ergodic Markov chain. We think
that this Lemma is of independent interest, and we give it under general conditions.

Lemma 39. Let (7, Z) be a state-space and Q a Markov kernel on (7, Z) which is uniformly ergodic
with mixing time t,,;, and stationary distribution 7. Let (g;)}_, be a family of R%-valued measurable
functions on 7 such that ||g||c = max;c(1, . n} [|9illco < 00 and w(g;) = 0 foralli € {1,...,n}. Then
for every initial probability £ on (Z, Z), n € N, and t > 0,

- 2t
Pe < > 9i(Zi)| = t> < 2exp (—u2> , (A.80)
i=1 n
where w, = 3|9l cov/Tlmix-
Proof. The function p(z3V ... 2l ) = | ", gi(@}N)| on Z™ satisfies the bounded differences
property. Applying (Pauhn 2015 Corollary 2.10), we get, for t > E¢[|| Y1 g:(Zi)]]],
< 2(t —E " ai(Z)ID?
Pe (D 9i(Zi)|| 2] <exp{— (= Ecll Zg—l giZOID" || (A.81)
i=1 In| gl 3 tmix

It remains to bound E¢ [||>°7 1 g:(Z;)||] from above. For this purpose, note that

2 n—1n—=k

ZEé [ng Dl } +2) > Eelgr(Zi) gt Zire)), (A.82)

k=1 /=1

where, using that 7(gx4¢) = 0,

|Eel9x(Z1) T grre(Zrse)]| = ‘/gk(z)T <Q£9k+e(2) - W(9k+4)) €QM(dz)| < ||gllZ, (1/4)T/ tmix]

(A.83)
which implies that
—1n— n—1
Z Z [Eelgr(Z) ghre(Ziso)]l < D glze(1/4)/mixl < (4/3) g3t mian. (A.84)
k=1 ¢=1 k=1
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Combining the bounds above, we obtain the upper bound

o] x|

> 9i(Z) > 9i(Z)
i=1 i=1

2

1/2
) < 2\/ﬁ|’g”oo V Umix = Un - (A.85)

By plugging this result into (A.80), we obtain that

- 1, t < wp,
IPe < Zgi(zi) > 75) < 2(t—vp)? (A.86)
=1 exp (_W) , > vp.

Now, since the right-hand side of (A.86) is, for every ¢ > 0, upper bounded by 2 exp(—2t2/(9v2)), the
statement of the lemma follows. O

A.3 Experiments

A.3.1 Gaussian Mixture

Bias MSE trade-off: We display in Figures A.la and A.1b the bias and the MSE of the BR-SNIS
estimators for the same configuration as in Figure 2.2 but with kg = [0.625k;,,|. We observe 3 times
less bias than the SNIS estimators but only with a 10% increase of the MSE for the N = 129 setting.
This can be also seen in Figure A.1c, where we show the ratio between BR-SNIS and SNIS for bias and
MSE with N = 129.

0.0175 .
0.0000 1.6 rat!o Bias
_— ratio MSE

0.0150 1.4

0.0025

0.0050 0.0125 1.2

1| ]
0.0075 0.0100 10

0.8

0.0100 0.0075

0.6
0.0125 K 0.0050

0.0150 0.4
0.0175 0.2
0.0000

129 513 SNIS 129 513 SNIS 0 25 50 75 100 125

(a) Bias (b) MSE (c) Ratios as kg

Figure A.1: Comparison between SNIS and BR-SNIS for the same budget. In each boxplot the dotted
line represents the mean value of the samples. In Figure A.Ic we display the ratio between BR-SNIS and
SNIS for bias and MSE with N = 129.

Parameters Gaussian mixture: The 7 in Section 2.3 is a Mixture of two Gaussians in dimension 7
with mean vectors gt; = (1,...,1)T and s = (—2,0,...,0)T and covariance matrices 1 = d~'I and
35 = d~'I, where p = 1/3 and I is the identity matrix In this setting, the quantities [7, A\] and w can
be estimated by Monte Carlo and Gradient ascent respectively. Their values are approximately 7 - 102
and 1 - 10%, respectively.

The sets A and B used to define the function f are the following:
A:=[-2,6] x [-1,1]°, B :=1[0.75,1.25] x [1,2] x [-0.1,0.1]5. (A.87)
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We used this example to illustrate numerically the bounds in Theorems 4 and 5, where each expectation
was calculated by Monte Carlo using 2 - 10* samples. We displayed in each figure the equivalent
SNIS estimation in a green dashed line. For all the bias related bounds(Theorem 4(i) in Figure A.2a,
Theorem 5(i) in Figure A.2c), we fixed a total budget of M/ = 6 - 103. For Figure A.2a we added a fit of
the type y = exp(ak + b) to illustrate the exponential decay w.r.t. k.

We then increased the budget to M = 8 - 10* for the MSE and covariance bounds, in order to fully
observe the stabilisation of the MSE in Figure A.2b for all the minibatch sizes /N. For the true value of
7(f) needed for calculating the MSE, we use an estimation obtained by Monte Carlo (sampling directly
from 7r) with 4 - 107 samples. In Figure A.2d we added dashed lines with the theoretical value of the
MSE®,, with the same color as v.

0.200 0.040

025{ ® SNIS ,..* SNIS
N=8 =02
R 0175 -~ 0.04 0.035 ° . oA
N=128 - 06
0.20 ® N =512 0.150 0.030 f v=108
@ N=2048
- 0.03-
0125 SNIS 0.025 b4
0.15 =
o ® N=38 ° °
[ ] 0.100 N =32 0.020
° N =128 0.02 o )
N =512
0.10 .~ 0.075 ® D ® N=2048 0.015
() ) @
0.050 0.01 SNIS o.010
0.05 ° 02
° ® 0.025 v=04 0.005
0.6
0.00 0.000 0.00 v=08 0.000
50 ot 07 169 ToT o7 5% To: o7 102 0T 16 16°
I3 K Ko M
(a) Bias (b) MSE (c) Rolling bias (d) Rolling MSE

Figure A.2: Visualization of the theoretical bounds from Theorems 4 and 5.

Comparison with zero bias SNIS methods: There exists estimators based on SNIS that have no bias,
such as the estimator proposed in Middleton et al. (2019) and refered to as Unbiased-PIMH . One of the
main differences between such estimator and BR-SNIS is that BR-SNIS works under a pre-established
budget of samples, whereas in Unbiased-PIMH the number of samples used to produce an estimate varies
due to the accept-reject procedure. Even though the two estimators have different goals, it can be of
interest to compare both of them in the case where there is a restriction in the total number of samples
available.

We proceed to a fixed-budget (M) comparison between BR-SNIS and the "Rao Blackwellized" version of
the algorithm proposed at Middleton et al. (2019) in the Gaussian Mixture example. In order to do so, it’s
necessary to impose the fixed-budget constraint to the Unbiased-PIMH estimator. A single iteration of the
estimator from Unbiased-PIMH with batch-size N needs /N samples where r € N is a random number
satisfying r > 2. Therefore, there are two ways of applying the constraint to Unbiased-PIMH :

* Soft: For a given N, generate estimations using Unbiased-PIMH until the number of samples is
larger than M and keep the last estimation. Therefore, all the estimators from Unbiased-PIMH
will have used at least M samples. All the estimations generated are averaged to generate a single
estimate.

* Hard: For a given IV, generate estimations using Unbiased-PIMH until the number of total
samples used is larger than M and discard the last estimation. Therefore, all the estimators from
Unbiased-PIMH will have used at most M/ samples. If no estimations were produced under
the budget cap (first iteration used more than )/ samples), then we consider it a miss. All
the estimations generated are averaged to create a single estimate.

The code used to run the experiments is available at !. For both cases, the following values of M are used

Thttps://github.com/gabrielvc/br_snis/blob/master/notebooks/Comparison_Unbiased-PIMH.ipynb
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10
11
12

13
14

15
16
17

18
19

20
21

N k algorithm Bias std average M
65536 SNIS -0.0029 | 0.0605 | 65536.0
65 1024 BR-SNIS -0.0010 | 0.0658 | 65536.0
129 512 BR-SNIS -0.0006 | 0.0689 | 65536.0
257 256 BR-SNIS 0.0003 | 0.0678 | 65536.0
513 128 BR-SNIS 0.0019 | 0.0670 | 65536.0
16384 Unbiased-PIMH | 0.0065 | 0.1005 | 71904.0
8192 Unbiased-PIMH | 0.0058 | 0.1066 | 71040.0
4096 Unbiased-PIMH | 0.0082 | 0.1139 | 69316.0
2048 Unbiased-PIMH | 0.0053 | 0.1174 | 67764.0

Table A.1: M = 26 in the Soft framewortk.

in the comparison: 216,212 29  For each estimator, a total of 1024 Monte Carlo replications are used to
estimate the mean and the standard deviation of the estimator. Note that in the Hard framework, it can
happen that less than 1024 replications are used for the Unbiased-PIMH estimator. The number of
failed estimations is reported in the tables for the framework Hard for each configuration.

For each configuration of the BR-SNIS estimator (defined by N, kj,,.x), we have used 90% burn-in period
(ko = 0.9k 4y |) and kg, rounds of bootstrap (k.. permutations of the input samples).

The following values were calculated:
* Bias: The mean of the estimations minus ref over 1024 replications
» Std: The standard deviation of the estimations over 1024 replications.

* Fails: The number of replications that failed to produce a single estimation for a given budget M.
This is only applicable for the Unbiased-PIMH estimator and in the Hard framework.

» average M: The average (over the 1024 replications) total cost of the estimator. For BR-SNIS and
SNIS this is always M. For Unbiased-PIMH in the Soft framework it is larger than M. In the
Hard framework it is smaller than M.

Algorithm 6 Unbiased-PIMH
Data: N >0
e1,lwavy < SNIS(N) ; /* SNIS also returning the average log weights */
e, lwavy <— SNIS(N) if lwav; < lwav, then
L swap(eq, lwavy; e, lwavs)

u =logrand() if u < lwavy and u < lwavy then
L T=1

t< 1 7=o00 while T = oo do

e1 =e1+(e1 —e2) ep,lwav, =SNIS(N) t =t+1 u=logrand(); if u < lwav, —lwav; then
L e1,lwavy = e, lwav,

if u < lwav, — lwav, then
L e2,lwavy = e, lwav,

if © < lwavy and u < lwavy then

i LT:t

We have compared both estimators in two different frameworks (Hard and Soft) with three different
budgets M = 216 (tables A.1 and A.4), M = 2'2 (tables A.2 and A.5) and M = 2° (tables A.3 and A.6).
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N k algorithm Bias std average M
4096 SNIS -0.0365 | 0.1946 4096.0
65 | 64 BR-SNIS -0.0314 | 0.2211 4096.0
129 | 32 BR-SNIS -0.0358 | 0.2214 4096.0
257 | 16 BR-SNIS -0.0281 | 0.2282 4096.0
513 | 8 BR-SNIS -0.0296 | 0.2351 4096.0
1024 Unbiased-PIMH | 0.0587 | 0.6073 5388.0
512 Unbiased-PIMH | 0.0678 | 0.8086 5027.5
256 Unbiased-PIMH | 0.1258 | 1.1492 4730.0
128 Unbiased-PIMH | 0.2364 | 1.9521 4629.6
Table A.2: M = 2'? in the Soft framewortk.
N |k algorithm Bias std average M
512 SNIS -0.1458 | 0.2420 512.0
65 | 8 BR-SNIS -0.1537 | 0.2468 512.0
129 | 4 BR-SNIS -0.1543 | 0.2444 512.0
257 | 2 BR-SNIS -0.1426 | 0.2600 512.0
128 Unbiased-PIMH | -0.0048 | 1.3924 841.5
64 Unbiased-PIMH | 0.1997 | 2.5677 796.4
32 Unbiased-PIMH | 0.2365 | 4.1642 708.1
16 Unbiased-PIMH | 0.3670 | 5.1533 685.3
Table A.3: M = 27 in the Soft framework.
N k algorithm Bias std average M | Fails
65536 SNIS -0.0029 | 0.0605 | 65536.0
65 1024 BR-SNIS -0.0006 | 0.0650 | 65536.0
129 512 BR-SNIS -0.0023 | 0.0645 | 65536.0
257 256 BR-SNIS -0.0024 | 0.0657 | 65536.0
513 128 BR-SNIS 0.0000 | 0.0693 | 65536.0
16384 Unbiased-PIMH | -0.0028 | 0.0885 | 57520.0 7
8192 Unbiased-PIMH | -0.0008 | 0.1029 | 59264.0 0
4096 Unbiased-PIMH | -0.0014 | 0.1026 | 61956.0 0
2048 Unbiased-PIMH | 0.0008 | 0.1106 | 63244.0 0
Table A.4: M = 2' in the Hard framework.
N k algorithm Bias std average M | Fails
4096 SNIS -0.0365 | 0.1946 4096.0
65 | 64 BR-SNIS -0.0252 | 0.2270 4096.0
129 | 32 BR-SNIS -0.0296 | 0.2221 4096.0
257 | 16 BR-SNIS -0.0338 | 0.2218 4096.0
513 | 8 BR-SNIS -0.0486 | 0.2243 4096.0
1024 Unbiased-PIMH | -0.0901 | 0.2353 2922.0 103
512 Unbiased-PIMH | -0.0833 | 0.3368 3343.0 24
256 Unbiased-PIMH | -0.0547 | 0.4815 3554.8 9
128 Unbiased-PIMH | -0.0634 | 0.4433 3683.1 4

Table A.5: M = 2'? in the Hard framework.
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N |k algorithm Bias std average M | Fails
512 SNIS -0.1458 | 0.2420 512.0

65 |8 BR-SNIS -0.1376 | 0.2636 512.0

129 | 4 BR-SNIS -0.1456 | 0.2565 512.0
257 | 2 BR-SNIS -0.1358 | 0.2585 512.0

128 Unbiased-PIMH | -0.1962 | 0.2200 306.9 210
64 Unbiased-PIMH | -0.1947 | 0.3200 367.8 73
32 Unbiased-PIMH | -0.1999 | 0.4001 398.0 36
16 Unbiased-PIMH | -0.2057 | 0.7366 423.2 16

Table A.6: M = 2° in the Hard framework.

We observed that in general the BR-SNIS estimator has smaller standard deviation, with the difference
of standard deviation being important for the smaller budgets (3 times less for M = 2'2 and 10 times
less for M = 27 in the Soft framework).

For the Hard framework, we can see that the empirical bias of BR-SNIS is always at most equal to the
empirical bias of Unbiased-PIMH . For the Soft framework, we observed that for M = 216 that both
methods have similar performance, with BR-SNIS having negligible bias in this setting. For M = 22 and
M = 27 BR-SNIS has in general a smaller empirical biais and the standard deviation of Unbiased-PIMH
is considerably higher.

A.3.2 Bayesian Logistic regression

The importance distribution used in the Bayesian logistic regression example is given by the mean-field
variational distribution Blei et al. (2017). More precisely, given the target m given in Section 2.3, the
proposal \ is a Gaussian distribution with mean p and diagonal covariance diag(o), where p, o are
learnt by maximization of the Evidence Lower Bound (ELBO):

o) = / log(7(8) /\(6))\(6)d6. (A.88)

In both Figures A.3 and 2.3, the optimal & for a given budget M was chosen by grid search over all the
factors of M. The final settings are shown in Table A.7.

A.3.3 Importance Weighted Auto-Encoders

We trained each network for a total of 100 epochs, using 512 batch samples for the gradient calculations,
with learning rate equals 10~*. For IWAE and BR-IWAE , 64 samples were used for estimating the
gradient. For BR-IWAE, we used k = 8. The architecture used is described in table A.8 where by conv
layer we mean a convolutional layer followed by batch norm and the ReLLU activation function. The train
ELBO for each latent dimension is shown in Figure A.4. For the log likelihood comparison in Table 2.2,
we use SNIS with the variational posterior as importance distribution and a total of 2 - 103 samples for a
subset of 3232 samples from the validation set. Therefore, the estimation of the log likelihood is:

T M
= ZZ Wo,p,a, log po(j | 21) (A.89)

with wy ¢ 2(2) = pa(x)/qe(2 | ) where zf is sampled from gg(- | x;).
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Dataset | component | M | kyu N
breast 8 256 4 65
breast 8 512 8 65
breast 8 1024 | 16 65
breast 8 2048 | 16 129
breast 8 4096 | 64 65
breast 11 256 4 65
breast 11 512 8 65
breast 11 1024 | 16 65
breast 11 2048 | 32 65
breast 11 4096 | 64 65
breast 14 256 4 65
breast 14 512 8 65
breast 14 1024 | 16 65
breast 14 2048 | 32 65
breast 14 4096 | 64 65
heart 5 32 4 9
heart 5 64 8 9
heart 5 128 8 17
heart 5 256 32 9
heart 5 512 4 129
heart 8 32 4 9
heart 8 64 8 9
heart 8 128 8 17
heart 8 256 16 17
heart 8 512 32 17
heart 12 32 4 9
heart 12 64 8 9
heart 12 128 16 9
heart 12 256 4 65
heart 12 512 32 17

covertype 6 512 4 129

covertype 6 1024 8 129

covertype 6 2048 | 16 129

covertype 6 4096 2 2049

covertype 6 8192 4 2049

covertype 17 512 2 257

covertype 17 1024 2 513

covertype 17 2048 2 1025

covertype 17 4096 2 2049

covertype 17 8192 | 4 2049

covertype 23 512 2 257

covertype 23 1024 | 2 513

covertype 23 2048 4 513

covertype 23 4096 | 16 | 257

covertype 23 8192 | 32 | 257

Table A.7: Optimal configurations for Figures A.3 and 2.3
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Figure A.3: Visualisation of the distribution of the bias for the Heart Failure and Breast cancer dataset

for other components of 0

A.3.4 Resources

All the simulations were done using a server with the following configuration:

¢ GPUs: two Tesla V100-PCIE (32Gb RAM)
* CPU: 71 Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
* RAM: 377Gb

locally hosted. We estimate the total number of computing hours for the results presented in this paper
to be inferior to 200 hours of GPU usage (All the calculations were done in the GPU).
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Name kernel size | stride padding out channels
Encoder conv 1 3 1 1 8
Encoder conv 2 3 1 1 16
Encoder conv 3 3 1 1 32
Encoder MaxPool2d 1 2 2 0
Encoder conv 4 3 1 1 64
Encoder conv 5 3 1 1 32
Encoder MaxPool2d 2 2 2 0
Encoder Linear + ReLU 2048
Encoder Linear 2xd
Decoder Linear 32%xTxT

Decoder conv transpose 1 2 1 0 64

Decoder conv transpose 2 2 1 1 128
Decoder conv transpose 3 3 2 1 (output padding = 1) 64
Decoder conv transpose 4 3 2 1 (output padding = 1) 32
Decoder conv transpose 5 2 1 0 16
Decoder final convolutional layer 2 1 0 1

Sigmoid activation
Table A.8: Convolutional neural network architecture.
| o o e M ) M
IWAE M=64 64
70 o BR-IWAE“’\*I:m —— vae ) 62 —— vae g
62 IWAE M=64 IWAE M=64

—+— BR-IWAE N=8, k = 8 601 —+— BR-IWAE N=8, k=38

68
60
58
66
60 80 10C 60 80 10C 60 80 10C
(a) Dimension 10 (b) Dimension 20 (c) Dimension 40

Figure A.4: Per epoch training loss (ELBO) for the last 40 epochs. Confidence intervals are calculated
as 1.960 /+/n over 10 (n = 10) different seeds.
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Appendix B

Appendix of Chapter 3

B.1 Additional numerical results

B.1.1 LGSSM

B.1 and B.2 display the matrices A, B, RRT, and S\ST used for all experiments in the LGSSM model
context. In B.1a,B.2a,B.3a we display boxplots of bias estimates, where each estimate is obtained by
averaging 10* independent runs of the corresponding algorithm and each box is based on 103 replications
of this bias estimator. The PARIS is compared to the PPG for different algorithmic configurations
(N, k, ko) and for different computational budgets C = kN of sizes 10% (B.1), 2.5 x 103 (B.2), and
5 x 103 (B.3). Each experiment is carried through for each of the different designs kg = [27'k],
ko = [(3/4)C/N|, and ko = k — 1 of the burn-in.

1 2 3 4 5
-0.4193 | 0.00182 | 0.00183 | 0.00184 | 0.00185
0.2145 | 0.63952 | 0.63953 | 0.63954 | 0.63955
0.3449 | 0.60202 | 0.60203 | 0.60204 | 0.60205
0.2572 | -0.26932 | -0.26933 | -0.26934 | -0.26935
0.7505 | -0.36332 | -0.36333 | -0.36334 | -0.36335

1 2 3 4 5
-0.2078 | 0.27752 | 0.27753 | 0.27754 | 0.27755
0.0984 | 0.45172 | 0.45173 | 045174 | 0.45175
0.7050 | -0.04502 | -0.04503 | -0.04504 | -0.04505
0.1684 | -0.15152 | -0.15153 | -0.15154 | -0.15155
-0.0320 | 0.50612 | 0.50613 | 0.50614 | 0.50615

[

DR W =~

Table B.1: The A (left) and B (right) matrices in the LGSSM.

1 2 3 4 5
0.0026 | -0.00062 | -0.00063 | -0.00064 | -0.00065
-0.0004 | 0.00122 | 0.00123 | 0.00124 | 0.00125
-0.0001 | -0.00062 | -0.00063 | -0.00064 | -0.00065
0.0007 | 0.00012 | 0.00013 | 0.00014 | 0.00015
-0.0006 | 0.00282 | 0.00283 | 0.00284 | 0.00285

1 2 3 4 5
0.0157 | -0.00072 | -0.00073 | -0.00074 | -0.00075
0.0014 | 0.00072 | 0.00073 | 0.00074 | 0.00075
-0.0027 | 0.00592 | 0.00593 | 0.00594 | 0.00595
0.0064 | -0.01052 | -0.01053 | -0.01054 | -0.01055
-0.0007 | 0.02072 | 0.02073 | 0.02074 | 0.02075

Do W =~
N

Table B.2: The covariance matrices RRT (left) and SST (right) for the state and measurement noises,
respectively, in the LGSSM.

B.1.2 Stochastic volatility

In this section we repeat the same experiments in B.1.1 in the context of the StoVol model described
in 3.5. B.4-B.6 display boxplots of bias estimates for the PARIS and the PPG for different algorithmic
configurations (N, k, ko) and different computational budgets C' = kN of sizes 102 (B.4), 5 x 102 (B.5),
and 103 (B.6). The bias of each algorithm is estimated by averaging 10% independent runs of the same,
and each box is based on 10 independent replications of this bias estimator. Again, in each plot, the
PARIS and PPG share the same computational budget (regardless configuration of the PPG).

Choice of (N, k, k). Designing the configuration (IV, k, ko) is challenging, since the upper bound
kn,+ on the mixing rate is known to be conservative. As clear from B.4-B.6, the best configuration also
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Figure B.1: PARIS and PPG outputs for the LGSSM with C = 103 and different designs of the burn-in

ko.
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Figure B.2: PARIS and PPG outputs for the LGSSM with C = 2.5 x 10° and different designs of the
burn-in k.

depends on C; indeed, we see that for a smaller budget it is better to let the particle sample size N be
large. Nevertheless, for more generous budgets it seems to be better to use a large number k of iterations
at the expense of V.

Concerning the burn-in parameter ko, the choice depends mainly on the bias—variance trade-off. In
applications where minimising the bias is important one would choose kg = k — 1, which gives the
smallest possible bias. Otherwise, a trade-off that provides an improvement in bias at the cost of an
increase in MSE over the PARIS by only a factor of 2 is to choose ko = | k/2]; recall the discussion in
34.2.

B.1.2.1 Comparison with the Rhee-Glynn-type estimator of Jacob et al. (2020a)

We now compare the proposed PPG estimator with the unbiased Rhee—Glynn-type smoothing estimator
Hy,.r, v defined in (Jacob et al., 2020a, Eq. 2), where the parameter kq is the burn-in phase length, &
the minimum number of Gibbs iterations, and /N the number of particles used in the coupled conditional
particle filter. This estimator is based on the coupled conditional particle filter with ancestor sampling
proposed in Jacob et al. (2020a); see 10 for details. Since the number of particles used in the algorithm
is itself a random variable, we first perform 3 x 102 independent runs of the same and report the average
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Figure B.3: PARIS and PPG outputs for the LGSSM with C' = 5 x 103 and different designs of the burn-in
ko.
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Figure B.4: PARIS and PPG outputs for the stovol model with C = 102 and different designs on the
burn-in k.

meeting time (i.e., number of iterations of 10 until the conditional paths (y.; and ¢{., become identical) for
three different choices of the hyperparameters in B.3. We deduce from B.3 that the average total number

N Meeting time

ko | &
00 | 5 10 304
250 | 2 4 12,6
500 | 1 2 7.1

Table B.3: Coupled conditional particle filter meeting times for three different configurations with
Nk =103

of particles generated is about 3 x 103. Therefore, we compare the Rhee—Glynn estimator induced by
the coupled conditional particle filter with the PPG estimator with (N, ko, k) = (10,150,300). B.7
shows histograms of estimates produced using the Rhee—Glynn-type procedure, for the three different
configurations, along with histograms of the estimates produced by the PPG. Each histogram is based on
3 x 10? independent replications. We find that the variance and empirical bias of the Rhee—Glynn-type
estimator is about 10 and 20 times larger, respectively, than for the PPG for the same computational
effort.

Another way of obtaining Rhee—Glynn-type smoothing estimator would be to consider the coupling of the
conditional backward sampling particle filter, as proposed in Lee et al. (2020). In the case of the bootstrap

135



2.5

2.5

—-10.0

-12.5

"

PaRIS
N=500

(a) ko = |271C/N|

N=10 N=50

N=100 N=250

-75

—-10.0

-12.5

0.0

-2.5

-7.5

100

-125
PaRIS T N=10  N=50 N=100 N=250 PaRIS T N=10  N=50 N=100 N=250
(b) ko = [(3/4)C/N| () ko=Fk—1

Figure B.5: PARIS and PPG outputs for the stovol model with C = 5 x 10? and different designs of the

burn-in k.

— I
— I -
-

-l

PaRIS N=10 N=50 N=100 N=250 N=500

N=1000

(a) ko = [27*C/N |

Figure B.6: PARIS and PPG outputs for the stovol model with C' =

burn-in k.

oL

[
L T

PaRIS N=10 N=50 N=100 N=250 N=500
N=1000

(b) ko = [(3/4)C/N|

PaRIS N=10 N=50 N=100 N=250 N=500

N=1000

(C)k():k‘—l

103 and different designs of the

particle filter, the conditional particle filter with backward sampling is probabilistically equivalent to the
conditional particle filter with ancestor sampling. Furthermore, (Lee et al., 2020, Section 7) also show
that for ¢ = 103, both the conditional particle filter with backward sampling and the conditional particle
filter with ancestor sampling have similar performance. Thus, we expect the results in this section to
translate to the estimators proposed in Lee et al. (2020).
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Figure B.7: Histograms of estimates produced using the Rhee—Glynn-type smoothing estimator of Jacob
et al. (2020a) for three different configurations and the PPG estimator with (N, ko, k) = (10, 150, 300).
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coverage asymptotic confidence intervals.
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B.2 Algorithms

The following section provides pseudocode for the algorithms discussed in 3.3, namely: the original
PARIS algorithm (7) proposed in Olsson and Westerborn (2017), the conditional PARIS update (8),
and the PPG (9). In addition, we provide a pseudocode for the coupled conditional conditional particle
filter with ancestor sampling (10), being the key ingredient of the unbiased Rhee—Glynn-type estimator
proposed in Jacob et al. (2020a) against which the PPG is benchmarked in B.1.2.1. Note that the
conditional PARIS update described in 8 differs somewhat from that described in 3.3 in the way the
underlying conditional dual process {£,,}men is propagated; more precisely, in 8, each conditional
dual process update §,,,, 1 ~ M, (Cm+1) (&, <), Where the value of (,,41 is inserted into a randomly
chosen position in §,, ,; (whereas the remaining elements of &, are sampled independently from
®,,(11(&,,))) is replaced by deterministic assignment of (41 to &Y ;. Of course, this change has no
impact as long as we are interested in integrating functions that are permutation invariant with respect to
the produced many-body systems, which is the case throughout our work. Still, as this derandomization
technique simplifies somewhat the implementation of the PPG, we have chosen to include it in our
pseudocode.

Algorithm 7 One update of the PARIS.

Data: {(&, 51},
Result: {(&,,,8i1)}H%,
for i +— 1to N do

draw I} 4 ~ ;at({gt(gf)}le) draw &, | ~ Mt(ftltl“, -) for j < 1to M do
draw J{17) ~ cat({a(&f. &) }%0)

L (I
set B{11 < 37 2j=1 | B +he(& &)

Algorithm 8 One conditional PARIS update, expressed in a short form as “viyp <
CondPaRIS(vy, (141)7.

Data: Uy, Ct+1

Result: v;

fori < 1to N —1do

. ; L,
| draw I~ cat({gm(ffam)}évzl) draw & 100 ~ M m|;;17 )

set §%+1|m+1  Cny1 fori < 1to N do
for j < 1to M do
(4.5) ¢ ) N
t draw J,, ' ~ cat({qm(§m|m, §;n+1|m+1)}£:1)
(i:9) (i9) (i,1)
; 1 M Jm+1 7 ']m+1 ; ] Jm+1 i
set By,41 ¢ 77 2j=1 ( m " han (&l 717’L+1m+1)> St &by 11 < Eommim St 1lma1)
» 1 1 N N
Set Vg1 < ((£O:t+1|t+1’ ﬁtﬂ)’ Tt (§O:t+1|t+1’ 5t+1))

Coupling algorithms. 10 provides a more detailed description of (the predictive variant of) the coupled
conditional particle filter proposed in (Jacob et al., 2020a, Algorithm 1), and we focus here on the version
of this algorithm where the iteratively produced particle paths underlying the resulting estimator are
generated by means of ancestor sampling Lindsten et al. (2014a). If {w,})¥; and {w}}}Y, are possibly
unnormalized event probabilities, we denote by M({w}2¥_,, {w)})¥ ) the maximal coupling between the
distributions cat({w}7"_;) and cat({w)}2_,). In our implementations, we used the maximum coupling
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Algorithm 9 One iteration of the Parisian particle Gibbs (PPG)

Data: (j.;
Result: vy, ¢,
draw (§é|0,...,§éT(;1) ~ n?(Nfl) setfé\‘fo — (o set By« (0,...,0) form <+ Otot—1do
L run ((f}n+1\m+1v /Branrl)v ce (§7JX+1‘m+17 /8%4*1)) «— CondPaRIS((fil'm, 671n)7 cee (f%ma B%)? Cm+1)
set Ut < ((étl‘t, Btl)a st (gma BEN)) draw J ~ Cat({l}é\le) set Cé:t < g(()]:t\t

given in (Jacob et al., 2020b, Algorithm 2). In order to couple two conditional particle filters, we assume,
following (Jacob et al., 2020a, Algorithm 1), that for every m € N we are able to simulate a random
variable &,,, defined on some measurable space (S;,,Sy,) and distributed according ., € M1(Sp,),
such that there exists some measurable function ¢ on (X,;, X Sy, X, ® S, ) such that for every z,,, € X,
i © 7 (T, +) (the pushforward of g, through ¢y, (2, -)) equals My, (2, ).

Algorithm 10 Coupled conditional particle filters Jacob et al. (2020a).

Data: Co:¢, 50:}
Result: g(/):t’ g():t
_ N-1 . N_ _ = -
set (&8, &) ~ g™ set (&, &Y (€. €T set (€. €)) + (o, o) for
m+<+ 0tot —1do
fori< 1to N —1do

| draw (Lyqs D) ~ M({gm (€0 10500 {9m (600 1050)
draw (IT]r\L[+17 jr]r\{—i-l) ~ M({qm(ffm Cm-i—l)}évzp {%n(éfna ém—i—l)}g?l) fori < 1to N do

. ~. I’L ~IL
draw ey, ~ fiy, set <§;n+17€;n+1) — (Pm(&m™t em), dm(En™™ em))

draw J; ~ cat({1}3,) set jtf— Jp set (G, G) « (€, ~tjt) form <+ t—1to0do

st (Joms ) < (L7t TImY) set (G o) < (€07, E0m)
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B.3 Additional proofs

B.3.1 Proofof11l
First, note that, by definitions (3.19) and (3.20),

Hy(xo4) : /St (x0:¢, dy;) p $0t|t)h

AR :
= [ (5 X et
t—1

I

= () for all 7 € [1, N] by convention. We will show that for every k € [0,t], Hy; = Hy,

m+1

N

G (2, ) im
H Z = 0 im (de:nJlr\lm—ﬁ-l)’
+

=1 Jm*l Z] =1 qm(xm ,x:;;:fi) IO:mlm

i
where 0. 1[0
where

Je o Je+1
CIL?(%‘Z xe 1) '
- SN 7 Jg - Jet1 (T, - -+ Th—1, T3 - - xit)

with

ag(xo, ..., mk_l,:xi’“,.. :cgt)
74m+1
(wdm ) , ,
+1 ) j j j
_/H H Z - im+1)6é”fn‘m(dl‘OT%Ilm—i-l)h(xO]:Ck—l\k’xkkﬂ" ,t').

m= 07,m+1—1 ]m 1 E] =1 %n(wm 7$m+1

Since, by convention, Hz;}/ =1, Hy (o) = N1 Zé\tf:l ait(xo, ..., Ti—1, x{t), and we note that
Hy = Hy . We now show that Hy, ;, = Hy,_1, for every k € [1,t]; for this purpose, note that

Jk Jt
am(aso,...,a:k_l,xk e :L“t )
(xdm xlmjrrll)
m

OIS st ()

m=04tm41=1jm=1 Z] =1 Qm(xma m-+1

Jk—1
ar—1 (2] @)t ~ . ,
/H Z 7]/ 1 g 5Ijk—1 (d$6kk_1‘k)h($ékk_1‘k7x?€k’ xit)
1=1jr— 1712 / =1 qr— 1(‘/L‘k 173;]5‘) 0:k—1|k—1

= (/%! '), it holds that

Ik
and since ;! k-1 = o2k 1’9% 1

N N Jk—1 ik
Q-1 (T 1 xp") ; j j
: 0 ik (dngk—uk)h(xé’fk—ukvxik»-' ng)

/H Tr-1 %) Zok—1)k—1

tp=1j_1=1 Zj =19k~ 1($k 17, %g

N Jk—1 ,.Jk
qk— 1(93k l’xk) h( Jr—1 x]k 1 x]t)
Lo:k—2)k—1> Th—1> Ko T

/
Jrk—1=1 Zj =1 qk— l(l'k 117$ik)
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Therefore, we obtain

ak,t(mo,...,wk_l,xﬁ,.. x{t)
7/7n+1
m ij-l—l) im41
0oy G ()
m=01tmr1=1jm=1 Zg =1 qm(-%'m ’merl)
N Jk—1
X X
X k= 1( kol /kl) h( {)kklz‘k 1a$?ck llﬁl'k ’ xgt)
Jrk—1=1 Zj =1 qk— 1($k 1 :xik)

Now, changing the order of summation with respect to jr—; and integration on the right hand side of the
previous display yields

aki(wo,...,azk_l,xik,.. xgt)
N Jk—1
Q-1 (23, xk ") o
Z 1,Jk - ak—1,4(To, .. Tp—2, T3 $§t)
Jrk—1=1 Ej’, —1 9k— 1(531€ 1 ,$i;k)
Thus,
Hk,t(iBOt)
1 iv: iv: ﬁ m@e,xﬁﬁl)
Niz =i EY0 qe(x)t, )
N Jk—1 _Jk
qe—1(23, 1, 23)) -
x > k= 17j,k ap—14(0, . Ty 2w
Jk-1=1 Z (e, 2
t—1 Je+1
qo(@)t, 2y e
Z Z e’]£+1“+1 ap14(T0s - T, 2l
]t 1 jr—1=1l=k— 1Zj 1—1 QZ(eT/ﬂJg_H)
= Hj_14(%0:t),

which establishes the recursion. Therefore, H; = Hp; and we may now conclude the proof by noting
that Bth = HO,t-

B.3.2 Proof of 15
In order to establish 15 we will prove the following more general result, of which 15 is a direct
consequence.

Proposition 40. For everyt € Nand M € N* there exist ¢; > 0 and d; > 0 such that for every N € N¥,
20:4 € Xo:» (fi, fr) € F(X)% and e > 0,

[ €810, dby)
N

x 1 {‘;f > Abifil@yy,) + Felay)y — melzo:0) (fi Be(zo:—1) he + fi)

i=1

8}
dtNE:Q
S CtexXp | — 2K2 )
t

t—1
Ke = || ftlloo Z [hmlloo + Il filloo- (B.1)

m=0

where
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To prove 40 we need the following technical lemma.

Lemma 41. Foreveryt € N, (fi11, ft+1) € F(Xiy1)? 20:441 € Xo:441, and N € N¥,

Yer1(20:44+1) (fer1 Bes1 (Zo ) hes1 + firn)
= <1 - ]17> Ve (20:6){ Qe fr1Bi(20:0—1) b + Qt(ﬁtft-i-l + ft+1)}

+ %%(ZO:&% (ft+1(Zt+1)Bt+1<ZO:t>ht+1(Zt+1) + ft+1(zt+1)> .

Proof. Since 21 holds also for the Feynman—Kac model with a frozen path, we obtain

Yer1{20:41) (frr1 Brs1 (20:t) 1 + fen)
= (200 ){Qu{z1+1) frs1 Bilzoa) e + Qi (ze1) (hufrgr + fiar)}-
Thus, the proof is concluded by noting that for every x; € X; and h € F(Xp.141),
1 1
Qi(zt41)h(xr) = (1 - N) Quh(ze) + Sr9(x)h(@t, 2e11)-

O]

Finally, before proceeding to the proof of 40, we introduce the law of the PARIS evolving conditionally
on a frozen path z = {z,,, }men. Define, for m € Nand 2,41 € Xpn+1,

Przmi1) : Ym X Ymi1 D (Y, A) — / M (Zm+1) (T jms Am+1) S (Y Tmt1, A).

For any given initial distribution ¥, € M1(Y), let Pi(’)z be the distribution of the canonical Markov
chain induced by the Markov kernels { P, (zm+1) }men and the initial distribution 1p,. By abuse of

. . P’z . P7z . . .
notation we write P~ instead of I’ R where the extension 4[] is defined in 3.6.3.

Proof of 40. We proceed by forward induction over ¢. Let the o-fields ; and F; be defined as in the

proof of 13, but for the conditional PARIS dual process. Then, under the law IP{O’Z, reusing (3.43),

Ep® | BL1UE) + fuléh) | Fica
—EP* [ED7 [ 81| R fue) + fileh) | Pt

N L 1
— EP,z 1 qt—1 (é-t—lv gt )
7 lft(gt)z; Zé\le qt—1( f/—bgtl) (

By + (€ €)) + Sl |f11] |
Using (3.10), we get

Ep* [BLA(E)) + Fileh) | Fii]
_ <1 - 1) S B Qe (€ 1) + Qe (hea fe + fi)(€0-1)}
N Zé\[zl gt—l(gle)

1 ol q-1(60_ 1, 2) ~ =
+ 5 (ft(zt) Z:Zl SN qt_t1 (lgff_h ) (/3571 + he(&F_ 1, Zt)) + ft(zt)> . (B.2)

In order to apply the induction hypothesis to each term on the right-hand side of the previous identity,
note that

e (o) g1 (o 20 {Be1 {0 —2) b1 () + B (-, 20)}]
Byi(20:4—1)hi(2t) = Me—1{20:4—1) [@r—1(-, 2¢)] .
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Therefore, using 41 and noting that v (z0.¢) 1x, /ve—1(20:t) Ix,_, = Mt—1(20:—1)g¢—1 yields

e (20:4) (fe Be(z0:—1)he + fi) = % (ft(zt)Bt<ZO:tfl>ht(Zt) + ft(zt))

. (1 _ 1> -1 (20— 1){ Qi1 fiBe—1(z0:0—2) hu + Q-1 (a1 fi + ft)} (B.3)
N Nt—1(20:t-1)gt—1
By combining (B.2) with (B.3), we decompose the error according to
N
% > ABLf (&) + Fr(&0)} — melz0.4) (fi Belzo:-1) bt + f2)
i=1
1 N o _ -
= 5 DABAE) + T} —ER | BLAED + File) | Fia
i=1
+ERF [BLAED) + Tu&)) | Fia] = mlzoa) (fiBelz0a-1)he + fo)
— 1y + <1 = le) 1 +% 1), (B.4)
where
A . ~ -
IV =~ S_{BLIE) + Rl — By (81161 + Fileh) | Fia ],
1@ . SN B Qi1 fr(€E ) + Qia(her fir + ) (€1}
" Y1 gi-1(€04)
1 (200-1){Qe1 i Bi(zo—1)he + Qua(he1 fi + f1)} (B.5)
77t—1<2'0:t—1>9t—1 ’ '
and
N 0
3) . q—1(&—15 2t) Y, 7 Y
REPN S vz GRS RED)
_ ft(zt)nt71<ZO:t71>[Qt71(',Zt){Bt71<ZO:t72>htfl(‘) + ;Ltfl('yzt)}]. (B.6)

M—1 <20:t—1> [Qt—l(', Zt)]

The proof is now completed by treating the terms IS\}), 15\2,), and Ig\?;) separately, using Hoeffding’s
inequality and its generalisation in (Douc et al., 2011, Lemma 4). Choose € > 0; then, by Hoeftfding’s
inequality,
1 1 62
Pﬁo’z (! Igv) | > 6) < 2exp <_2|<t2N> : (B.7)
To treat 15\2,), we apply the induction hypothesis to the numerator and denominator, each normalized by
1/N, yielding, since ||Q;—1h|cc < Te—1]|h||oo forall h € F(X,—1 ® A}),

N
]P’,I;O’Z (’;f Z{ﬁf,th_lft(&f,l) + Qur(hrfo + f)(&-1)}
=1

- 1{204-1){Qu—1fi Be(20:—1)Ps + Qo1 (he—1 fr + f1)}

)

62
< Ci—1€exp —dt—lﬁN

T 1K

143



and

th (&) — me—1(20:4-1)g1—1

(=1

2
]Pf;o’z ( ) < ci1 exp <—dt_12N> .
Ti—1

Combining the previous two bounds with the generalised Hoeffding inequality in (Douc et al., 2011,
Lemma 4) yields, using also the bounds

S B Qe fol&f 1) + Qea(hur fr + o) (& b

< Kt
Zf’ 1 9t— 1(£t 1)
and 1¢—1(20:t—1)gt—1 > T¢—1, the inequality
P 2) T2 162
Pno’z (’IN | > 5) S -1 exp ( di1 =3 1Kt2N> . (B.8)

The last term 153) is treated along similar lines; indeed, by the induction hypothesis, since [|q;—1]|c0 <

Tt—10t-1,

PPZ(’Z% V€1 m) (B + i (€0, 2))

— M1 (20:—1)[@r—1 (-, 26){ Be—1(20:4—1 ) he—1 () + he—1 (-, 20) }]

25)
2
<ci_ijexp | —di_ 1( ° ) N
< G
Tt—10¢— 1Zm lom”oo

> 6)
€ 2
<cior1exp | —di1 (7_101> N |.
t t

N ¢
Qt—l(ft_l, Zt)
2 ol R RR ORI oo
=1 25:1 Qtfl(ﬁf_h 2t) ( ) Z

and

]P’P z <| Z Qt—l(ff—h 2) — m—1{20:t—1)[qe-1(-, 2¢)]
=1

Thus, since

and 7¢—1(20:t—1)[qt—1(+, 2¢)] > T1—1, the generalised Hoeffding inequality provides

2
e
PP |I | >e) <crrexp | —dip—1 | —— Tl — N |. (B.9)
o ( ) QTt—IUt—IHftHOOanzlo [ loo

Finally, combining the bounds (B.7-B.9) completes the proof. U

B.3.3 Proofof 16

The statement of 16 is implied by the following more general result, which we will prove below.
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Proposition 42. Foreveryt € N, M € N*, N € N*, 25,4 € Xo.t, (ft, ft) € F(X))?% and p > 2, it holds
that

p

/ CiSi(20:¢, dby)

N

%Z{bift(l"i\t) + fi(wy)} — mie(20:0) (fe Be(z04—1)he + fi)
i=1

< ci(p/de)" PN,

where ¢y > 0, dy > 0 and «; are defined in 40 and (B.1), respectively.
Before proving 42, we establish the following result.

Lemma 43. Let X be an R%-valued random variable, defined on some probability space (0, F,P),
satisfying P(|X| > t) < cexp(—t?/(202)) for every t > 0 and some ¢ > 0 and o > 0. Then for every
p > 2 it holds that E[| X |P] < epP/?oP.

Proof. Using Fubini’s theorem and the change of variable formula,
o0
EIXP) = [~ pr PX] 2 0)de = 2210 (p)2),
0

where I is the Gamma function. It remains to apply the bound I'(p/2) < (p/2)P/>~! (see Anderson and
Qiu (1997)), which holds for p > 2 by [2, Theorem 1.5]. O

Proof of 42. By combining 40 and 43 we obtain

2

N /(CtSt(Zo:m db) % Zi]il{bift(iﬂﬁ\t) + fel@y)} — melz0:) (feBe(z20:-1) he + o)

t—1 P
< Ct(p/dt)p/QNip/2 (HftHoo Z ||hmHoo + ||ftHOO> ’

m=0

which was to be established. O

B.3.4 Proof of 17

Like previously, we establish 17 via a more general result, namely the following.
Propositi~0n 44, Foreveryt € N, the exists E?ias < 0o such that for every M € N*, N € N*, 2.+ € Xo.4,
and (ft; ft) S F(Xt)2,
1 N ) o _
‘/ CiSi (204, dbe) Y {0ifelhy,) + Flay)} = medz0.) (fiBilzoa-1)he + fi)
i=1
S E?ias KtNil,

where Ky is defined in (B.1).

We preface the proof of 44 by a technical lemma providing a bound on the bias of ratios of random
variables.

Lemma 45. Let « and 3 be (possibly dependent) random variables defined on some probability space
(9, F,P) and such that E[«?] < oo and E[B?] < co. Moreover, assume that there exist ¢ > 0 and d > 0
such that |«/B| < ¢, P-a.s., |a/b] < ¢, E[(ox — a)?] < c?d? and E[(B — b)?] < d?. Then

|E[o/B] — a/b] < 2¢(d/b)* + ¢[E[B — b]|/[b + [E[ec — a]|/b]. (B.10)
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Proof. Using the identity
Elo/B] — a/b=E[(at/B)(b~ B)?)/6* + E[(ec — a)(b — B)]/b* + aE[b — B]/b* + E[ec — al /b,

the claim is established by applying the Cauchy—Schwarz inequality and the assumptions of the lemma
according to

[E[o/B] - a/b
< CE[(B — )?]/8 + {E[(« — a)2JE[(B — b)*]}"/2/8 + |al [EIB — 8]|/b* + |E[ox — a]| /62
< 2¢(d/b)* + ¢[E[B — b]|/Jb] + [E[ex - a] /|t

O]

Proof of 17. We proceed by induction and assume that the claim holds true for ¢ — 1. Reusing the error
decomposition (B.4), it is enough to bound the expectations of the terms IE\Q,) and Ig{;)
P.z(1)

o vl =

given in (B.5) and

(B.6), respectively (since [y = 0). This will be done using the induction hypothesis, 45, and 42.

More precisely, to bound the expectation of IS\?), we use 45 with o < o, B < By, a < ag, and b < by,

where

N N
= % Y AB Qi fil&) + Qualhirfi+ (&)}, Be= %th—l(é’f—ﬂ?
/=1 /=1

at = M—1(20:t—1){Qe—1ft Be(z0:t—1)he + Qt—l(ilt—lft + ﬁt)}7 by == ne—1(20:4—1)Gt—1-

For this purpose, note that |o;/B:| < k¢ and |a;/bs| < Ky, where k; is defined in (B.1). On the other
hand, using 42 (applied with p = 2), we obtain

Ep (o — ar)’] < dixi and  Ef*[(Br — b)?] < df,
where d? == c¢;77 1 /(d:N). Using the induction assumption, we get
BpZo] —ar] SN 7k and B[R] — b < 4GNTIR

Hence, the conditions of 45 are satisfied and we deduce that

—2

“E%Z[Ig\zf)” = |E [(Xt/f.))t] - at/bt\ < 2Kt dtN + 2c bzaiv K¢ ti:;\[
The bound on |EP Z[I(2)]| is obtained along the same lines. O
B.3.5 Proof of 19
We first consider the bias, which can be bounded according to
k
B[ s ()] — k| < (k= ko)™ S [Bepu(B,14)(id) — noeh]
l=ko+1
o=l k
< (k= ko) INT I (Z HhmHoo) > K
m=0 l=ko+1

from which the bound (3.29) follows immediately.
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We turn to the MSE. Using the decomposition

Ee (Mg oy, n (f) = no:ehe)?] < (k — ko)~ Z Ee[(1(B,[4])(id) — no:the)?]

{=ko+1
+2 Z Z Ee [(1(B,[€]) (id) — m0:the) (4(By[1) (id) — no:ehe)] ¢,

l=ko+1 j=¢+1
the MSE bound in 12 implies that
=1 2
S Eel(u(B)(id) — no:tht>213c?“(z|rhm||oo) N7k — ko).
l=ko+1 m=0

Moreover, using the covariance bound in 12, we deduce that
k

k
Y > Eel(u(Bi)(d) — mosehe) (B3] (id) — 1osehe)]

l=ko+1j=0+1

=1 2 k k -
w(z ||hm\oo> N3/2( >3 s ’)-
m=0

(=ko+1 j=b+1

Thus, the proof is concluded by noting that >5_ kot 1 Z] o4l ng\,t@ < (k—ko)/(1 —KnNny).
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Appendix C

Appendix of Chapter 4

C.1 Conditions on the model to verify A3

In our specific application to score ascent, we work with the following assumptions.

A12 (Lipschitz). (i) Forallt € N, there exists L] € M(X.1+1) such that for all (x4, x141) € Xet+1,
the function 0 «— s g(x¢, £441) is L (x4, 2441 )-Lipschitzand Xy.i+1 2 (¢, Te41) — Se.0(Te, Teg1)
is bounded by ||s¢(8)||sc for all 0 € ©. Furthermore, ||Lj ||oo < oc0.

(ii) Forallt € N, there exists L} € X.x+1 such that || LY|| s < oo and that for all (x4, ¢11) € Xeps1,
0 — q1.0(xe, ves1) is L (x4, 2441)-Lipschitz.

Lemma 46 (A5(i) holds). Assume A 11 and A 3. There exists a constant LV such that the Lyapunov
function V satisfies, for all (61, 02) € ©2,

IVV(61) = VV(6a) || < LV][61 — 62]].
Proof. For all 0, 65,
IVV (1) = VV(02)I = [[70:t,0, (S0:,0,) — 70:,05 (S0:1,0,)
< 170:1,6, (S0:.61) — 102,61 (50:,00) | + [70:1,61 (S0:1,65) — M0:1,0 (S0:2,0,) || -
By (2) and by (Gloaguen et al., 2022, Theorem 4.10) there exists a constant ¢ such that
170:t,60, (S0:4,02) — 10:4,05 (50:,0,) || < ctl[61 — B2| supg supy, [[s%(0)[ o

Using A 2 and A 3[i], we can write:

t—1

HT/O:t,Gl (SO:t,Gl) — N0:t,01 (SO:t,Gg) H < Z T0:t,61 [||8u,91 (xu:u—l—l) — Su,0y (-’ru:u—o—l)m’
u=0

t—1
< S N0y (L5 (Tasar1)] 101 — 02]),
u=0

o+
< - subuefop [La] 101 — 62t

O]

Theorem 47 (Lipschitz continuity of Particle Gibbs with Backward Sampling). Assume A 12. For every
teN 0ecOand N € N

Sup ||K917t(x0:t7 ) - K927t(x0:t7 ')HTV < L{,(NHQI - 92” )
xO:tGXO:t
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where
t—1
L =7 o, + (N = D] |1 - (C.)
=0
Proof. We know that Kg; = C,, 9B; 9. Therefore, by Lemmas 57, 59 and 63, we have that Ky ; is

Lipschitz with constant equals LY + supy Cy g LY. O

Corollary 48 (A3(iii) holds.). Assume A 12. Foreveryt € N, 0 € O, r € N* and N € N* such that
N > 1+ 5pit/2

sup
Zo:t ex():t

‘Kgl,t('ro:t’ ) — Ko, (o, ')HTV < Lix |61 — 62|

where
L = (1= ren) Ly loo (C2)

where LfN is defined in (C.1).

Proof. Under 11, the Particle Gibbs with backward sampling is geometrically ergodic with contraction
rate ¢, v and thus LfN is bounded and the result follows from Lemma 62 ]

Corollary 49 (A3(i)). Assume A 11 and A 12. For all t € N*, (6, 6,) € 02,

1m0:t,00 — M0:t,01 |y < L"[|60 — 01,

where
L":=L{ ., (C.3)

and LEN is defined in (C.2) and N* = [1 + 5p?/2].

Proof. Consider the following decomposition, valid for all k¥ € N* and N > 1 + 5p?/2, and all
Zo:t € Xo:ts

1m0:¢,6, — M0:t,6 || 7
<|

k k k k
N0:t,60; — tht(xo;t, ’)HTV + HnO:tﬂg - K@g,t(xO:tv ')HTV + HK91,t($0:ta ) - Keg,t(l”o:t, ')HTV

< H770:t,91 — K, (2o, ')HTV + H"?o:tﬁg — K, (2o, ')HTV + L yl01 = 6],

where we applied Corollary 48. Since the Lipschitz constant of Ky ; is independent of %, and Ky ; is
geometrically ergodic for all , we obtain by taking the limit when k& goes to infinity with N fixed,

HLffNHoo‘

].*I{tN

)

1m0:¢,6, — M0:t,05 |y < |01 — 62| ,

for all N > 1+ 5p? /2, where the dependence in N is hidden in Lf - The result follows by choosing
N = [1+5p7/2]. O

Remark 50. As noted by Lindholm and Lindsten (2018), the Lipschitz constant appearing in Corollary 48
possesses an unexpected dependence on N — 1. One would expect it not to be true, in that we know that
Ko, converges geometrically fast and uniformly to no.; and this is faster as N gets bigger. Therefore,
for large N the Lipschitz constant is expected to converge to that of ng.; whose Lipschitz constant is
independent of N.
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Proposition 51 (Lipschitz continuity of 6 — Ky ;u(8,)(id)). Assume A 12. For everyt € N, € ©

and N € N¥,
1Kg, £01(8) (1d) — Koy 10(B,) (i) | o, < Li'l|61 — b2l ,
where
t—1 m m—1 m
L= (V=) ml e+ 3127 LZ o7+ N5l (C4)
=0 j= =0 j=

Proof. Consider e = (zo:t,Yo.1) € E¢ and fy(e) := [ Sm (0, dY,)pu(be)(id). Then Ko pu(by)(id) =
Cofo (x0:¢) is a composition of a Markov kernel and a Lipschitz function, therefore Lipschitz. O]

Corollary 52 (A3(iv) holds.). Assume A 12. Foreveryt € N, 0 € © and N € N*

sup |[Po,  H — Po,  H|| < Ly[|61 — 2,

Z0:t exO:t

where
LY =L{y+Lf, (C.5)

with LY and LS are defined in (C.4) and (C.2).

Proof. Let f : E* %0 3 (g, [ko : k], @o.ppelko : K], be[ko : k]) = (k — ko)~ Z?:k:oJrl p(be[4])(id). As
Ky, depends only on the path, with a slight abuse of notation, we can define fy(x¢.) = K?f RO (F) (wo:).-
By proposition 51, we have that f5 is Lipschitz with L/ = L. Note that Py ; H (z0.¢,y,) = K got fo(xot),
therefore, by lemma 63 Lipschitz with constant L + L. O

C.2 Lipschitz properties

C.2.1 Lipschitz continuity of Py

In this section we prove the following items:
* Cyn0(20:m, -) is Lipschitz, see Section C.2.1
* B, 0(o.m, -) is Lipschitz, see Line 45
* [ Sm.0(T0o:m, dby, ) (b ) (Id) is Lipschitz, see Line 45
The following technical lemma will be useful.
Lemma 53. Let o €]0,1], x € R>g and ¢ € N. Then for all \; € R>q, i € [0,£], such that
a > Hfzo(l — \ix) itholds that o« > 1 — x Zf:o ;.

Proof. Consider first the case where z\; < 1 for all i € [0, ¢]. We prove the result by induction. The
case ¢ = 0 is straightforward. Assume now that the result holds for some r € [0, ¢ — 1]. Then,

r+1 r r
H(l — )\ZZL‘) = (1 — )\7«+1x) H(l — )\zx) Z (1 — )\erx)(l — xZ)\z)
=0 =0 =0

r+1 T r+1
= 1_552)‘14':”22)‘1')‘”1 > 1—$Z)\i .
=0 =0 =0

Consider now the case where there is a index j € [0,¢] such that zA; > 1. Thena > 0 > 1 —
(Zf:o ). O
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We begin with some important definitions. Let P and () be probability distributions on some common
measurable space (X, X), and assume that these distributions admit densities p and ¢ w.r.t some common
reference measure \. Let M [P, )] denote a maximal coupling between P and (). As in (Lindholm and
Lindsten, 2018, Theorem 2), it is possible to explicitly construct one such maximal coupling by

M[P,Q] (d(x,y)) = min{p(z), g(x) }A(dz)d (dy)+
[P(dx) — min{p(x), g(x)}A(dx)] [Q(dy) — min{p(y), g(y) } A (dy)]
1= A(min{p, ¢}) ’
From this definition it follows that for continuous and discrete dominating measures A,

[ ey MIP.Qld(y) = [ min{p(e),g(@)}A(da).

Moreover, for two Markov transition kernels K; and Ko on (X, X), which are assumed to admit
transition densities with respect to some common dominating measure, we let, for (z1,z2) € X2,
M [K1, K2] ((z1,2), ) denote the maximal coupling between the measures K;(x1,-) and Ka(z2,-).
Defined in this way, M [K1, K3] defines a Markov transition kernel on the product space (X2, X ®2)

(C.6)

The following Lemma will be crucial in what follows.

Lemma 54. (i) Let (1, pi2) be two probability measures admitting a density with respect to a common
dominating measure and let (K1, K2) two Markov transition kernels also admitting transition
densities with respect to some dominating measure. Then the probability measure

M [p1, po] MKy, K] (d(21, 22)) = /M [, p2] (d(21, 22)) M [K7, K] ((21, 22), d(21, 22)),
is a coupling of (u1 K1, peK2), and it holds that
/ﬂxlzsz [ K1, o K] (d(21, 32))

Z//]lzlzzﬂxl:mm[m,m] (d(21, 22)) M [K71, Ko ((21, 22), d(1, 22)).

(ii) Let (p1,- - ,pn) and (v1,-- - ,vy) be probability measures such that for all i € [1,n], u; and v;
admit densities with respect to the same dominating measure. Then @, M [u;, v;] is a coupling
of 1 i and Q;*_q v;, and thus

/H ]]-xizyiM l@ M, ®VZ] (d(fEl, e Iy Y1, .- 7yn))
i=1 i=1 i=1

n n
Z/H]]-xlzy.L@M[,uz:Vz] (d(xl)”'axnvylu"'7yn))‘
i=1 i=1

Proof. Tt is enough to show that M [y, po] M [K1, K2 admits pq K and pe Ko as marginal distribu-
tions. This follows immediately from the fact that M [u1, p1] and M [K, K] admit the right marginal
distributions; indeed,

M [p1, p2] M [K71, Ko (X x A)
_ /M 1, 2] (dz1, do) MKy, K] (21, 22, d(21, 7)) Tx x4 (21, 22) Iz (21, 22)
_ /M (i1, 2] (dz1, do) Ka (22, A)
_ / p12(d22) Ko (22, A)

= ,U,QKQ(A)
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43
44
45

The derivation for the first marginal distribution follows similarly. For the second point, M [p1, o] M [K7, K]
is a coupling of (u1 K1, oK) and M [pg K7, pa K] is the maximal coupling, we have that

/ﬂx1=I2M[M1KlaM2K2] (d(ﬂ?l,l’g))
> / / Loy M [p11, p12] (d(21, 22)) M K1, Ko] (21, 295 d(21, 72)

> // Loy =ay Loy =2 M [1, 2] (d(21, 22)) M [K1, Ka] (21, 22; d(21, 22)).

The proof of the second item follows similarly. 0

0 — C,, ¢ is Lipschitz. We proceed by a coupling method that is inspired by (Lindholm and Lindsten,
2018, Theorem 2). The coupling we consider is that where the selection and mutation steps of the particle
filter are respectively coupled maximally.

Algorithm 11 Coupling C,,, 9
Data: 61, 05, (o.m
Result: xq..,, 1, To:m.1
draw g1, o2 ~ M [16(C0), 10(C0)]
for s +— 1totdo
L draw (51, Ts2) ~ M [Ms_19,((s)(@s—1.1,), M s_1,0,(Cs)(Ts—1,2,")]

First, let us prove that the one step selection—mutation kernel is Lipschitz.

Lemma 55. Forallt € N, x;_1 € X;_1 and (01,62) € ©2,

1>‘t( t— 1($t 17‘))
N7,

(|01 —02].
C.7)

/]l{m:zz}M [(I)t—1791 (M(mtfl))v (I)t—lﬁz (:u(mtfl))] (d($1>$2)) >1-

Proof. By A2(i) and A3(iii),
/ ]l{aq:zz}M [(I)t—lﬂl (,U(mtfl)% (I)t—lﬁz (M(mtfl))] (d($1, $2))

:/min <§: %f[ 191(1'11,; »LL ) i\[: qi— 192(3% bj) >)\t(dl‘)

i= 12] 19t— 101(37t 1) i= 123 19t-1,6,(T7_1)
Y G0, (T_1,%)  q10,(2y, @)
22/min< N e - ))\t(dm)
Zj:lgtfl,%(ngl) Zj=1gt—1 0,(T7_1)
1

Z/mm Qt 101(% 1 T)s Qi 192(£Ct LT )) At(dx)

)
) = N (L (2i1,) 101 — 6o
i 1) Gt 192(95t 1))

- N J
> j=1 max (gt—1,91(xt s Gi-1,0, (],
N J
>_j=1 max (gt—l 01(T{_1), 9t—1,05 xt 1
N
S max (91 1.0,

Zz 1/\t( t— 1(% 1»'))
0, -6
N7 101 — 02|,

>1-
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where we have used that

/max G, (T 1, @), 1.0y (21, ) Ne(dz) > max (/qt Loy (2 @)\ (dz) /qt N )de))

> max(gtfl,ﬁ(xtfl) gt— 102(% 1))-

Lemma 56. Forallt €N, ;1 € X;_1, z € Xy and (01, 02) € ©2,
1M 1.0, (2) (@11, ) — My_1,9, (2} (@1, ) |l py < Ly (a-1) 161 — 62|
where Li\fl(mtfl) =(1-N" )Tt 1 Zz 1 )‘t( t— 1(% 15 ))

Proof. Letus denote by U[1, n] the uniform distribution on [1, n]. By definition of the kernel M;_; 4(z),
we have that

M1 0(2) (w1, day) = /U[[L (i) {1 (1)) ® 8. ® Bpy (u(@i—1)) N7V} (day)

and thus, applying the two items of Lemma 54 combined with the fact that M [u, p] (d(z1, 22)) =
p(dz1)dy, (dzo) for any probability measure p, we get that

/ ]‘{wt’l:wt’Q}M [Mtfl,el <Z> (a:t—lv ')7 Mtfl,eg <Z>(.’L‘t_1, )] d(xt,la wt,Q)

> / ]lmt,1:wt,2,i1:i2M [U[[lv n]]: U[[L n]]] (d(ih 22))
x M [(I)tfl,el (H(th—l)), (I)tflﬁz (:u(wt—l))]@il @M [527 52]
® M (D410, (Ju(@e-1)), Pr1,0, (10(xe—1))] N T d (@1, 20 2)

N n
= o [T Mg M@0, (), B, (e 1))] (1, 21))

i=1 k=1,k#1
N-1
ZiNl Ae(Liy(2)-1,7))

> 11— 01— 06
> ( N7 161 — 62|

N-1J 4
21— ——= > M(L{ g (211,) 101 — G| -

M=V 5

where we have applied Lemma 55 in the penultimate line and Lemma 53 in the last one. O

Lemma 57. For everyt € N¥, there exists LY € M(Xo.t) such that
||(Ct,91 (ZO:t) - (Ctﬂg (ZO:t)HTV < L;C(ZO:t)H‘gl - 92” 5 (Cg)

where LY (z04) = supy Cto {Zg;é Lf‘q (20:). Under A 12(i), we obtain that ||LY|s < (N —
1) 300 7ell L | -

Proof. This is a direct application of lemma 65. g
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0 — By g(xo., -) is Lipschitz We start by recalling the definition of B,

%
Bto : Xo:t X Xowt D (xot, A) = / /]lA (z0:t) (H Qs,u(ws)(‘rs-f—l?dxs)) () (dzt) . (C.9)

s=0

Lemma 58. Forall s € [0,t], z441 € X¢v1, T € Xy and (01,02) € ©2

o - 5
H Qs,u(ws)ﬂl (xs—i-la ) - Qs,u(ws),QQ (xs-‘rla ')HTV < LsQ (J’.S-‘rlv :Us)”91 - 92“ . (C.10)

. N . T1 — r o118
with L2 (2511, xs) = (NT0s) "L 3050, LY(2%, 2511). UnderA 12(i), we have | LS ||oo = (Tm&m) I LY, || co-

e
Proof. Note that Q) (Tt11,7) = POy > ae(w,7111) 6:]6?. Therefore, similarly to the proof of
2

_y @ ( xtl,$t+1)
Lemma 55,

— -
/]]-{ztylzmtg}M [Qt w(ze),01 (ﬂft—i-l, ')7 Qt,,u, (x¢),02 (.Tt+1, )} d(xtJ?xt,Z)

Zz 1 max(qeg, (€f, Tr41), Groy (2, 2i11)) — L (2, 241) 161 — 02
Ze 1maX(Qt 91($fa$t+1) Qt,92($fa$t+1))
Zévzl Lt (ffta Tyy1)

>1— 0, — 6| .
> N7, 161 — 02|
O
Lemma 59. Forallt € N, xo.; € Xo.; and (61, 0) € ©2
B, (Zo:ts ) — Bros (Towts ) lpy < Lt (o) |61 — O (C.11)

<_
where L} (xo.;) = supy By [ = LlQ} (z0.1). UnderA 12(i), we have that | L || o = 2023 (7:5:) ™| LY o
Proof. Apply lemma 63 and lemma 58. O

0 — [ Sto(x0:¢, dby)pu(by)(id) is Lipschitz Define the backward ancestors kernel

Byt : X X NS g (2], Te11) ~
b Koot x Xe x o ([N = [ 140) (3 5y )

o Cv=1 e we)
Lemma 60. (B ; is Lipschitz) For every m € [0, ], there exists LBX € M(Xy,.m11) such that

&
HBma(xm—&-la :Em) - ng,m(xm—i-l, xm)HTV S Lr% ({Bm-ﬁ-l? wm)Hel - 92” 3 (C12)
<—
where LY is defined in Lemma 58
Proof. By s is the index version of the kernel (C.9) and thus it is Lipschitz with the same constant.  []

Proposition 61. For every m € [0, t], we have that
m—1
| / ConSump (20 dby) (b)) (1) < 3 50 (C.13)
=0
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and
| [ Snon(@oams dbu)iatbn) (1) — [ Smm(azo:m,dbmm(bm)ad)] < L3 (@om) |61 — 62 . (C.19)

where L3 (x0.,) = N~V SN | LB (2 20.m) and LB is defined recursively as

— m
B k k k J k By/,..J
L8 1 (her @om) = L8 (1, @m) Y57+ [ Bon @1, @, d9) { L (s wh) + LB (s 0mo1)}
£=0

(C.15)
In particular, under A12, we have that LE < >y ||LQ Il oo {ZZ” o s}?o} + 2201 165 ]l oo-
Proof. Consider the following kernels,
s i j N,M UARELEN ki M
Sm,@(w():m—i-la d(Jz)Ja SRR J%)z 1,j= 1) = H H Sfﬂ(xlg—&-lv Lo, d(Jeﬂ)j:l) s (C.16)
(=0 k=1
5379($lz€+17$£»d(‘157j)g 1) =[] Boe(alir, me, dIy) - (C.17)
j=1
Define for all k € [1: N], m € N5,
N,M N.M
Bm+1k HH/SmG 2B0m+1,d(=]0 ) Jl’ﬂ)z 1,j= 1)blfn+1($0m+1’(‘]0 yce JZJ)Z 1,j= 1) ’
k i,j i\ N, M . .
where b, (Tom41, (Jg7s - - I3 ), 2y ;) is defined recursively as
bfn+1(m05m+17(Jz)’]?""‘]%g)l 1,j= 1 lzbJ mOma J "'7‘]:;1]—1)1 1,j= 1)+Sm9( gn ) 1131+1)

For notational convenience, we henceforth drop the arguments and simply write bm P

We herebelow show that B,, 1 % is Lipschitz with constant LZ (z% |, ,,) and bounded by 3>/ s°.
Form >2and k € [1: N],

Bm+1,k(9) = /gmﬁ(xO:m+1vd(Jf)’jv . JZ’])fviwj l)bm—i-l
S i, 7,7 N,M P ,
= / : '/Sm—l,G(:BO:mpd(Joja s 7Jrr3—1)i:1 j:l)Sm,G(xl:n+17mm’d(ka)J 1)
-1 Ik ek
X Zb +5m 9( Ty m+1)
(=1
= k kM -1 - Bk
= /.../Smﬁ(;pmﬂ,mm,d{JﬁJ}j1)[M Z{Sm,a(:vmm ANy
+/§m71,0(w0:m7d(*]8j7-"7'];5 1)2 1,7= 1)bJ }]
~ . k.l
://Smﬂ(l‘fjﬂ_’_l,mm,d(:}fﬁ])]f [ IZ{SWG gn, ) m+1)+B Jk’z(e)}‘|

= /BH,m(xSH-la L, dJ) {Smﬂ (w;]na xl:n-',-l) + Bm,J (0)}

156



Applying the induction hypothesis conditionally on J¥:¢, B

and thus the Lipschitz constant of B, 1 j is

gk« is Lipschitz with constant LB (x ;]nm , TO:m—1)

&
L§z+1(x7]§z+17$0:m) :Lfg( fn—&-l?wm 234 +/89m m+1,xm,dJ){L5( Los m+1)+L (z mvam 1)} .

£=0
(C.18)
where we have used the fact that By ,, and s,,, ¢ are also Lipschitz. Again by induction B, j is bounded
uniformly by >~y s7°. The induction is concluded by noting that for the base case m = 0, B =0 for
all £ € N and thus the result holds.

It now remains to check that forall # € ©, m € [0,t] and k € [1 : N],

Byu(6) = / S (@0, Ay )V,

Again, we proceed by induction.
/ Sm($0;m, dbm)bfn

— /...\/Smil(wozm,l,dbmfl)Sm(bmfl;mmfl:mvdbm)bfn

= /---/Sm_l(m[):m—ladbm_l)

H (Z dm— 1( Tim—1,T lfn) 5 (d(~k’j i )))
it ¢ ) Uy S m—10 Om—1

P 12@ 1 9m— 1( Lp— lvxfn

bknl + Sm.0 (% mnl’xfn)}]

1(o:m—1,dbm—1)

-/ /m
ﬁ(Z i) )5p(dJ’f,’L{1)) [le:{b I+ oz i’m}]
=1 \p= n=1

AL

= ZZ 1 9m— 1( Ly 17‘,1:];:)’L

m 1) LY— 17d(‘]g7_j1)j]\i1)
k@
[ 1Z{Sm9 k)+Sm l(m(]:m—ladbm—l)b o 1}‘|
—/ /Sm9 Lyp—1y Lo~ 1,d(Jg 1)3 1)
ké
[ IZ{SmH +/Sm 1(T0:m—1,dbp,— 1)bm 1}]

= B, 1(0)

The proof is finalized by noting that

N
[ Sn(@0ms b )(b) 1) = N7 3 B (0)
k=1
and thus it is Lipschitz with constant L3 (xg.,,,) = N~ SN | LB (2 @, 1). O
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C.2.2 Lipschitz properties of Markov Kernels

Lemma 62 (Composition of ergodic Lipschitz kernels is lipschitz). Let Py be a Markov kernel over
X x Y that is uniformly w-geometrically ergodic for any 0 with contraction constant p independent of 0
and such that there exists L, > 0 such that for every x € X

||P90($, ) - P91($a ')HT‘\/‘ < LPH00 - 91”
Then, for all k > 0
L

[Pk = )|, < 7225 10 = 6l

Proof. We use the following decomposition borrowed from Fort et al. (2011). For any £ > 1,
k=1 i

J=0

Then, for any f s.t. || f]jcoc < 1and x € X,

k—1
|Phi f(x) = Py f(@)] <D
7=0

| Piy(w.du)sup Py (2) = | Ll — 6]
zE
k—1

< LP(Z Pk_j_1> |60 — 64|

=0
Lp

< ——||6o — 61|
1_p||o il
O

Lemma 63 (Composition of Lipschitz kernels is lipschitz). Let Py, Qg be two kernels defined over X x Y
andY x Z such that for ever x € X, y € Y there are L, € M(X), L, € M(Y') that satisfy

1Py (,-) = Poy (2, )l oy < Lp(2)|[60 — 61

and
1Q0, (¥, ) — Qo, (¥, v < Lq(y)[|60 — 61]] -

Then
HPGOQQO(’I"? ) - P91Q91 (5137 ')”TV < qu(l’)HQo - 91” s

where Lp,(x) = (supy Py Ly(x) + Lp(x) sup, supg Qg(y, Z)).

Proof. Let f € M such that || f||oc < 1.

| P, Qoy [ — Po,Qoy | < || Poy [Qoy f — Qoy 1| + 1| (Pay, — Pay)Qa, fl
< (P, Lg(w) + Ly(z) | Qo floo) 161 — 2] -

O]

Corollary 64. Let Py, Qg be two Markov kernels defined over X x Y and Y x Z such that for ever
x € X,y €Y thereare L, € M(X), L, € M(Y') that satisfy

HPGO(:L" ) - P91 (QZ, ')HTV < Lp(x)HGO - 91”
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Algorithm | N | kg | k Dye
PPG 64| 0 | 8] 0.205+0.013
PPG 64| 1 | 8|0213£0.016
PPG 64 | 2 | 8| 0.201+0.010
PPG 64 | 3 | 8| 0.201£0.010
PPG 64 | 4 | 8| 0207x0.012
PPG 64| 5 | 8] 0.212+£0.015
PPG 64| 6 | 8| 0.210%0.017
PPG 64| 7 | 8| 0211%£0.018

Table C.1: Distance to O\ for each configuration in the LGSSM case.

and
1Qo, (¥, ) = Qo, (y; v < Lq(y)[|00 — 61]] -

Then
| Poo Qo (2, ) — Po, Qo, ()| oy < Lpg()]|00 — 01]] ,

where Lyg(x) = (supg PypLgy(z) + Lp(x)).

Lemma 65 (Product of Lipschitz kernels is lipschitz). Let Py, Qg be two Markov kernels that are
uniformly Lipschitz with constants Lp, Lg. Then Py ® Qg is uniformly Lipschitz with constant Lp + L.

Proof. Let hg : y — [ Qg(y,dz)f(y,z). Then (Py, @ Qp,)(f) = Py, (hp,) and the proof is similar to
that of the previous Lemma since hy is Lipschitz with constant L and ||hgl|c < 1. O

C.3 Additional numerical results

For both experiments, all the parameters were initialized by sampling from a centered multivariate
gaussian distribution with covariance matrix of 0.01/. We have used the ADAM optimizer Kingma and
Ba (2015a) with a learning rate decay of 1/ /€ where ( is the iteration index, with a starting learning rate
of 0.2. We rescale the gradients by 7.

LGSSM For LGSSM we evaluated for fixed number of particles (N = 64) and number of gibbs itera-
tions (k = 8) the influence of the burn-in phase (kg) over the final distance obtained to the MLE estimator.
Table C.1 indicates that configurations with smaller kg perform better. A possible interpretation of this
phenomenon is that, since between two gradient ascent iterates the conditioning path is being passed on,
this conditioning path from a moment on makes the estimates less biased, so the importance of having
ko high to have less bias vanishes, but the effect of augmenting the variance with ky is still shown, since
the fact of having a conditioning particle from the right marginal does not affect the variance of the
estimator, only it’s bias.
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Appendix D

Appendix of Chapter 5

D.1 SMCdiff extension

The identity (5.15) allows us to extend SMCdiff Trippe et al. (2023) to handle noisy inverse problems
as we now show. We have that

@) {0 pa(daaann) | pa(dan)
f Pr (gT’\éT)dgT

- / b?-‘:rn(iﬂn‘jTJrlin)fgji—lln(df7+1:n)d£7+1:n ’

oV (z,)

where
_ PGz |wr ) { TS0 1 2y (@ )P (@sls) | B, (20)
br:n(lq—;n|x7'+1:n) = T = y
LT:TL(‘TT—FLTL)
g — LgT (fT—i—l'n)

fyT i\ Lr+ln) = T'n~ S )

T+1.n( + n) fPT(yrﬁéf)déT
and

n—1
Lng(TT-HIn) = /pT(gT,\§T|TT+1A§T+1) { H ps(dzs’x8+1ﬁzs+1)ps(x8‘x8+1,\zs+1)}pn(dzn> :
s=17+1

Next, (5.14) implies that

/ Ps+1 (T8+1A§s+1)ys(d§s |TS+1A§s+1)ps (TS ‘f5+1ﬁés+1)d§s:s+l =

/ Ps (ESA§S>65+1 (TS-FI ’TS)QS_H (§s+1 ‘gs)dés:erl )

and applied repeatedly, we find that

LY (Zrt1:n) = / pr(Jr "z, )dz, - / g, (dz;) H Gs(Ts|Ts—1) -

and thus, f77,(Tr41.0) = [ 65, (A7) [15—r11 T5(Ts|Ts—1). In order to approximate ¢ we first diffuse
the noised observation up to time n, resulting in ¥ 4 1., and then estimate bgiﬂm (+|T741.n) using a particle
filter with p_(2,|2s+1) as transition kernel at step s € [7 + 1 : n]and g, : 2z, = Dy (Ts—1|T5s ™ 2,) as
potential, similarly to SMCdiff.
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D.2 Proofs

D.2.1 Proof of Proposition 33
Preliminary definitions.

We preface the proof with notations and definitions of a few quantities that will be used throughout.

For a probability measure y and f a bounded measurable function, we write p(f) := [ f(z)u(dz) the ex-
pectation of f under p and if K (dz|z) is a transition kernel we write K (f)(z) := [ f(z) K (dx|z).

Define the smoothing distribution

(bg;n(de:n) X 6y(dfo>pO:n(wO:n)dEOd‘rl:n s (D.1)

which admits the posterior ¢ as time 0 marginal. Its particle estimate known as the poor man smoother
is given by

n
Oy (dzom) = N1 N 0, gho (dao) [] 1{ks = 158—1}5553 (dzs) . (D.2)
kO:ne[llN}n-‘—l - s=1
We also let @}, be the probability measure defined for any B € B (Rd=)®n+1 by
(I)(]:n(B) =E [QZ)On(B)} ’
where the expectation is with respect to the probability measure
n

N N
Pévn(d(x0n> :n Hpn d.%' H {HZ Wy— 15k da( p@ l(dxﬁ 1|x€ )}

/=2 =1
N N )
X H Z 5k da1 p0 dx0|x1 ) ,(dZ), (D.3)
j: :

where w} = @,(&},1)/ Zj-v:l @, (& +1) and which corresponds to the joint law of all the random variables
generated by Algorithm 1. It then follows by definition that for any C' € B(R%),

[ @ eon)iczo) =B | [ 6 (o) ic()| = B0 (C)] = 2 (C).

Define also the law of the conditional particle cloud

PN (d(z§h, al)|z20m) = 05, (dal) H P (dzt)
n N—-1 N j
X Hézz (dap’ 1)on(dap’ ) H Z wy_10k( daz Pr- 1(d$e 1’3% ) (D.4)
€:2 j: :
N-1 N ‘
5Z0(dx0 )N ( dal H Z ]00 dx0|x1 ) by (dz)) .

In what follows ., refers to expectation with respect to P (-|zq.,,). Finally, for s € [0 : n — 1] we
let QY denote the sum of the filtering weights at step s, i.e. QY = SN, & (& 4+1)- We also write

2o = [ po(w0)dy(dTo)dzy and for all £ € [1: n], Zy = [ Gyo(Tely)pe(day).

The proof of Proposition 33 relies on two Lemmata stated below and proved in Section D.2.1; in
Lemma 66 we provide an expression for the Radon-Nikodym derivative d¢f.,,/d®{.,, and in Lemma 67
we explicit its leading term.
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Lemma 66. ¢, and ®}, are equivalent and we have that

N"Zy/Z,

(b(])\ifn(dZO:n) = Ezﬂzn [ HTL 1 QN

] B8, (dzo:m,) - (D.5)

Lemma 67. It holds that

Z, oy N—1\"

s=0
(N1 & 2,/2, / - DY,
+ E e s (x0|2s) 0y (dT)dz, . (D.6)
NT L (Esly) S (ol )3y (d70) N?

where D, is a positive constant.

Before proceeding with the proof of Proposition 33, let us note that having z + &,(2) bounded on RY=
for all £ € [0 : n — 1] is sufficient to guarantee that C{.,, and DJ.,, are finite since in this case it follows
immediately that E, {H?:_& NIQN } is bounded and so is the right hand side of (D.6). This can be

achieved with a slight modification of (5.9) and (5.10). Indeed, consider instead the following recursion
for s € [0 : n] where 6 > 0,

op(@n) o (qn\o(fn’y +0)pn(2n)

Tg +9
¢Y(xs) o /¢s+1 Ts11)ps(dws|zs11) (ARG

qs+1(xs+1|y) +0

dzsyr -

Then we have that

Po(ylz1)
) > [ ke aabe) e

We can then use Algorithm 1 to produce a particle approximation of ¢ using the following transition
and weight function,

Vs(Ylrst) J
— S Yz | s g) + ——————
Vs (YlTst1) +6 (@slesr1) Ys(Y|Ts1) + 6

Wy(s+1) = (Vs (YlTs41) +9) /([ @si1/0(@s+1ly) +9)

where 75 (y[@s+1) = [ 5)0(Ts|y)ps(2s|2s+1)dzs is available in closed form and p is defined in (5.7).

pg’§($5’$5+1) = ps($8|$8+1) )

W, is thus clearly bounded for all s € [0 : n — 1] and it is still possible to sample from pg"s since it is
simply a mixture between the transition (5.7) and the “prior” transition.

Proof of Proposition 33. Consider the forward Markov kernel

S Pun(dspy(ol) .
1.n(207 Zl.n) fpl;n(dzl:n)po(zdgl)’ ( )

which satisfies
Do (dz0:m) = ng(dZO)ﬁl:n(ZOa dz1:m) -
By Lemma 66 we have for any C' € B(R9*) that

®}(C) = /(I)é\:[n(dZO:n)]]-C(ZO)

— /Ilc(zo)IEzOm J;flnz?/QZN] ?9.,,(d20:n)

= /]]-C(ZO)/gl:n(’anle:n)EZ()m [Jl\gzz?gi] gf)g(dzo),
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which shows that the Radon-Nikodym derivative d®} /d¢} is,

d<1>N
Aoy

Applying Jensen’s inequality twice yields

N"Zy/Z, ]

ZO /Bln ZOadzln) 20:n [Hn 1QN

d<I>N . N"Zy/Z,
fﬁlzn(zmdzlzn) Zon {Hn 1QN}

I

and it then follows that
KL(¢% || (I)[J)V) < /10g< /Bln Z07dzln 20:n lH N— IQN‘|> ¢0(dZO) .
s=0

Finally, using Lemma 67 and the fact that log(1 + z) < x for z > 0 we get

A« L
KL(gh | 8f) < o + =Gz

where

Zs /| Z
Cho = 3 [ 220 (ool o) 2(d).
QS|0 Zs|y

and ¢Y(zs) o< ps(2s) fp0|s(20‘38) dy(dzg)dZo.
Proof of Lemma 66 and Lemma 67
Proof of Lemma 66. We have that

(I)g)\'/n (dz0:n)

_ N~ /POn daf dall) Y6 wo(dao) TT Lk = akt)0 . (d)

ko. ne[1-N]n+1 =0 s=1

/ZZ(Sy 2 o (dzo) H]l{k *as 1}(5k5 (dzs)

kOna

N n N .
H (da7,) {H [T wit pt, (daf_y |t }Hw81p3_1<dxa|xil>ay<m6>

(=2i=1 r=1
B D 3D SITICEOLINCENS | FECEAR Rl | QR C
ko:n a}ﬁ] ]fkn =2 i#k@_l
@) :
w, (x -
x 1{a}"" = kg}%p%ﬁl(dx?*wx )5 ke (dzo_ 1)}
-1 Te-1
ko
al ryoal Wyl ko
X { 1T wo'pl(daplzy')s, (dzp) }]l{a,1 =k }()Q]b)po dafo |z )5yﬂx50 (d2o) -
r#£ko -

Then, using that for all s € [2 : n]

qs— 1|0( s—1 "ly)

ks—l k
p (dl’ 1 ‘ZL‘ 5)7
qs|0( s ‘y) ° °

@y (ko )Pl (g o) =
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we recursively get that

n kg
PR} 1 (dza) [T 2ale = k)= Py (el ) o (d2e)
s=2 s—1 Ts—

’fo

k @o (2] a0
x 1{ako = ;) 201 7 0 1 dﬂso()’xl )6y“x150(d20)

ko
By (2%")
QN

Zn n dzn s— S—
qu( [y)pn( )5zn da kn Hﬂ{ ko1 ~ ks }q 1|0( 1ly)
Zn =2 1‘15\0(«35’9)

ylz1) - k
x 1{a}® = ki } ————"—Dpo(dzg|21)dy(dZ0)d, (dxy’
{ }QO Q1|0(2’1\Z/)p0( 70| 1) y( 0) 0( 0 )

_1(dzs—1]2s)02, 1(dxs 1)

1 .
¢0 n(d20:n)02, ( dxkn H ]l{aks ' = ks}QT(stﬂ(dCU]:ill)-
s=1 s—1

Thus, we obtain
Zo/ 2, ~
0, () = N7 [ 575 oz o, () T whtaed

kO n ai:g J;’ékn

- ko_ k
X H:[l{az _ké}éze  ( dx A 1 H We 1p@ 1(dx€ 1|$z )

1757% 1
x 1{a}" = k1}oz (dag) [T wo'py(zblzt)s, ()
i#ko
_ Z0/ 2
- NS ooy | 2
kO:n 1_‘[8:0 S

where for all ko., € [1: N]"*! Eon denotes the expectation under the Markov kernel

Pff\gm (d(x(l)fy, LN w)|20m) = 02, ( dxk" H pY (da! )
i#ky

n

N .
k . . a]
X H 522 1(dxé 1 )6ke(da . 1 H ZWﬁﬁk(daﬂ)ﬁfl(df'«“ifﬂx/)
=2 j;ékg_l =1

N ) ] aj
x 8y (b}, (dat) TT 3 whn(dad o (da )5, (o)
ko k=1

Note however that for all (ko.p,, fo.n) € ([1 : N]"T1)2,

) _
EFon - — Ezoﬂ" [ ]
B B ) KX A R ) K S Ol
and thus it follows that

N"Zy/Z
<I>0 n(dZO:n) EZO n n,?/ ;] ¢g;n(d20:n) : (D.8)

HS:O Qs
UJ

Denote by {F;}"_, the filtration generated by a conditional particle cloud sampled from the kernel PV
(D.4),i.e. forall £ € [0:n — 1]
Fo=o(&in 1) -
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and F,, = o (£LV). Define for all bounded f and £ € [0 : n — 1]
n—1 N
Yeu(£) = TI N705 e N78 5o @(&a) (&) (D.9)
s=0+1 k=1

with the convention 72 (f) = 1if £ > n. Define also the transition Kernel

Qs+ B X BEY) 3 (w1, 4) = [ La@0@y@ptdofoen). (D.10)

Using egs. (5.7) and (5.8), it is easily seen that for all £ € [0 : n — 1],

Bp(Te41) Q)11 () (@e41) = ! )/qéo(ffs\y)@z_1(»’Uz)f(xe)pz(dIAle)- (D.11)

To100(Tes1]y

Define 1 : z € R% — 1. Wemay thus write thatv/¥, (f) = N1y (1) S0l @,(&8,) F (€5
Lemma 68. Forall { € [0 : n — 1] it holds that

B 0 10(D] = S B [0 (@1 ()] + 5B [ (1)] Bt ()7 20).

Proof. By the tower property and the fact that ’yéyn( f) is Fy41-measurable, we have that

Note that for all £ € [0 : n — 1], (&, ...,£) ') are identically distributed conditionally on F7, ; and

N
Eom V0100 (F)] = Ezp [vaﬁmumf E.. [Nl > @1 (E5) (&)
k=1

1 ~ y k
]:z+1} = Qé\/kzwe(fﬂl)/Wz—1($€)f($é)29@(dl’dﬁzﬂ)v
—1

E.p, [ (€D11(€)

leading to

N
Eo.. [N‘l > @ 1 (E)F(E)

k=1

f£+1]

N -1 a ~ k ~ Y k 1
Noy sz(§e+1)/szl(W)f(W)Pe(dxe\&ﬂ) + Nweq(%)f(ze)a
=1

and the desired recursion follows. O

Proof of Lemma 67. We proceed by induction and show for all £ € [0 : n — 2]

EZO:n h/lgvn(f)]
B <N — 1>n_z S Per1(dxey1)Tpp 110 (o1 [9) D (wer1) f(we41)
= ~ -

N_ ) % D.12)
+ (]\/'n)—é (Ze41/Z0) f(2011)@0¢(2041) (

= ZS/Zn /~ _ o Dg
+ ——— [ WplTy4+1)q Toa1 ) f(2es1)Ppoy s (ATop|26) | + —=L2

et qs|o(Zs\y) o(Tes1) e+1|0( +11y) f(@es1) 041 (dzpsq|zs) N
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where f is a bounded function and DY, is a a positive constant. The desired result in Lemma 67 then
follows by taking ¢ = 0 and f = 1.

Assume that (D.12) holds at step £. To show that it holds at step £ — 1 we use Lemma 68 and we compute
Eegn [185 (@101 ()] and Eay,, |75, (1)] @y (20) £ (20).
Using the following identities which follow from (D.11)

/?@H\o(feﬂ|y)@z($£+1)Qz,1\g+1(f)($£+1)Pé+1(d$£+1)

- /%o(@ly)@e_l(:Ee)f(fﬂz)Pe(dw),

and

/a’z(£e+1)@z+1|o(@+1\y)QZZ_WH(f)($e+1)174+1|5(d9€£+1fﬂfs)

— [ S s(aago(@dy) S @opy.(daday).

we get by (D.12) that

%E'ZO:" [’Yé?[n (Q3—1|€+1(f)):|
(N - 1>"_Z+1 S Qoo (@ely)@p_y (we) f () pe(de)

N Zn

(N-D)"*'1 Zi4/2, /, S
= - Qo0 (Te|y)wp_y () f(20)pe(de|2e
N |20 e ly) 00(Tely)we—y (ze) f (xe)pe(de|ze11)
n
Zs/ 2y /~ o DY, (D.13)
— | We—1(@0)Qo(Tely) f(ze)pys(dze|2s) | + =75
e qs\o(zs|y) i 1( ) £|O( ‘ ) ( ) é\s( ‘ S) N2
B (N - 1)”‘”1 S Qoo (@Tely)wp_1 (o) f(ze)pe(dae)
N Z,
(N — 1)n—€ - Zs/Zn /~ _ _ Dg,
+ — [ Qo1 (20)To(Tsly) [ (20)pg s (dzelzs) + =55 -
Nt 2 TGy ) P 0T @S @iy, (dedz) + 3
The induction step is finished by using again (D.12) and noting that
1 N ] ~ (N — 1) . DY,
N Ezoin [ (1)] @1 (z0) £ (20) = it (Be/ Zn)e (20 f (z0) + 55
and then setting DY_,, = DY, + DY, .
It remains to compute the initial value at { = n — 2. Note that
N -1 _ 1 _
Ez.n {%]zv—l:n(f)} =N /P%(diﬂn)wn—l(ﬂﬁn)f(xn) + an—1(2n)f(2n) (D.14)
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and thus by Lemma 68 and similarly to the previous computations

Ezo;n [’77]1\[—271(]0)}

_ 2 -
— (F57) [ )@ QY (D) + i (B2 )@Yy ()

DZYIL 2famn

B aen1)Fn) [ PG| + =5
(RO USRI USRI

N Z,
N-1 .
N2 [(Z"—l/zn)wn—2(zn—1)f(zn_1)
b o ) sl ()| + D2
gnm(fn‘y) qn—1|0 Tp—1|Y)Wyp_o(Tn—1 Tn—1)Pp—1\ATn—1|%n N2

D.2.2 Proof of Proposition 34 and Lemma 69
In this section and only in this section we make the following assumption

(A2) Forall s € [0:n — 1], ps(s)qst+1(s+1]Ts) = Psti1(s1) A (Ts]Tsy1) -

We also consider o5 = 0. In what follows we let 74,1 = n and we write 71.4, = {11,..., Tdy} and
Tidy = [1 : n] \ 714 Define the measure

dy
Y, (dx0m) = paldxn) [ As(dxslxsrt) [T Ar (5m [xrig1)dx ) (dxr, [d]) - (D.15)
SeTldy =1

Under (A2) it has the following alternative forward expression,

dy
an(dxo n) = pO dXO H gs+1 dXs+1|Xs H qh XT»L|X7"L—1)dX7\— 6y[z] (dXTZ[ ]) . (D.16)

SE€ET1:dy, =1

Since the forward kernels decompose over the dimensions of the states, i.e.

Got1 (xog1[xs) = T s (%o []]x:[0)
/=1

where q£+1(x3+1[£] 1xs[€]) = N (xs41[¢]; (as+1/as)1/2xs [€],1 — (as41/s)), we can write

dz

. (%0:n) = Po(x0) eH T j0.c(x1ld - - %a[f[x0[]) (D.17)
where for £ € [1 : dy] )
Y o (all], o xa[]x0[8]) = g, (v €] 7,1 [0)) ];[ g5 (dxs [0 xs-1[0]) , (D.18)
and for £ € [dy + 1 : d,], |
Ty 0 (xll, - xa[€|x0[4] :i_[:qs+1 (xs+1[][xs[€]) - (D.19)

With these quantities in hand we can now prove Proposition 34.
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Proof of Proposition 34. Note that for £ € [1 : dy],
N(y0; arxoll], 1 = az,) = g5, 10y [{]x0[£]) = /(er(ywxrﬁl[f]) [T as(dx[axs—1[6)

SFETy
- / Ty, 0 (A0l xa[€]) xo[€])

and thus

dy

po(x0)gf (x0) o po(x0) [[ N (¥1€]: arxoll], 1 — ar)
=1

dy
= polxo) [[ [ T,0,(AGc1 18 . %0 [6) x0[6)
(=1

dy
— po(x0) [[ / I, 0o (00, . xal ) x0[4]) -
/=1

By (D.16) it follows that

1
fFO n(XO n)dX0:n

and hence by (D.16) and (D.15) we get

dp (x0) =

/POn XOn)dX1n7

dy—1

(Z%(XO) X /pTdy (XTdy )5y[dy] (dXTdy [dY])dX7\-j: { H )\TilTi+1 (Xn' ’Xn‘+1 )5y [4] (dxﬂ' [Z])dx>—:} )‘0|7—1 (XO‘X’H) .
i=1

This completes the proof. 0

Let ’y& . denote the joint time 0 and s marginal of the measure (D.15), i.e.

W.5(X0, Xs) = /F(})’:n(XO:n)dxl:sfldXerl:n (D.20)

We now prove the following result.
Lemma 69. Assume (A2) and let 7o := 0, 74,41 := n. Forall k € [1 : dy],
(i) If s € [T + 1 : Tp11),

s (%0, Xs) =

dy
/’Yo s+1 (X0, Xs41)47, 1y o(Zs|Zs1, 0) 93 (T5) H 00 1,00%s A1 (6], X0 ] A1 -
(=k+1

(ii) If s = 7y,
fY(}],,s(x()vXS) = /7({8+1(X07X5+1)g:|5+1 0(£s|£s+17£0)
X H gS’L fI,'S H qs‘s-‘,—l O ’X5+1[€] [e])dxs'f'l .
l=k+1
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Proof of Lemma 69. Let k € [1 : dy] and assume that s € [7;, + 1 : 7,41 — 2]. By (A2), (D.16), (D.18)
and (D.19) we have that

k

.+ (%0, %5) = Po(x0)4, o (2 ]20) [T 7,10 (¥ [i] 10D sy, (xslally [2])
i=1
dy

< T aqo(xsllixolt))ar, (v [A1xs[4)

l=k+1

and thus, using the following identity valid for £ € [k + 1 : dy/]
G0 (s[4 Ix0[€]) s, s (v [ 15 16)
= (%[0 ol / e 1 112 (1 A, () 11
_/ s|s+10 [€)[xs+1[€], x [ﬂ])qfﬂsﬂ(Y[ﬁ]\Xs+1[ﬂ)qﬁHm(st[é]\x()[é])dxsﬂ[ﬁ},
and that ¢ (£,]20)q , | (Zet1]2s) = 67 1) o (@slZot1, 20)d, 10 (Zs41]2o) We get that
’Yo,s(XO, Xs)

— [ polxo)aplzlao)a, , (dresaz,)

xHqT\o il1%0[i1) ¢ 7, (Xs[d1 [y [i1) g1 17, (Ax 511 iy [i])

.
X H q§|f+1,0 (XS [6] |X5+1 [6] » X0 [6])%{”5-{—1 (yw] ’Xs+1 [E])Q£+1‘0(X5+1 [E] ’XO [a )dxs+1 [E]
{=k+1

dy
/70 o1 (00, %1 1)0 oy o(@alzerrs 20)gY (@) T a5 o(cs Ao [, %0 dxsr -
l=k+1

If s = 741 then

70,5 (%0, Xs) = Po(x0)qo(25|zo) HQT o [illxo[i) g, (xs[i] v [i])
(D.21)

x @i (v [k + 1lxolk + 1]) el;[ﬂqso xs[0)|x0[6))dt, 1 (y [€)%1))

and similarly to the previous case we get

Y0,s(X0, Xs)

dy
/70 w1 (206010000 o(@alza s 20)gd (@) [T agtys o (cslAlxssa [0, xo[])dxssr
t=k+2

Finally, if s = 741 — 1, then

k
Y05 (X0, Xs) = Po(x0)q,q (s zo) [[ q;\o(}’[iﬂxo[i])qzm (xsi][y[il)
i—1

g ool + 1 xolk + )5 (v [k + Ulxalk + 1 ) TT do oDt (v el
Z k+2
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and using

a0 (xslk 4 Ufxolk + 1)gstt (v [k + 1]xs[k + 1))

Tk+1|8

O (slk A+ 1%, [k + 1], x0[k + 1))gE T (v + 1] [xolk + 1)

= qS‘T]C+1,0 Tk_H\O
we find that
70,8(X07 Xs)
= /ry()]’,Tk+1(X07 XTk+1)QZ|Tk+1, ( s|x7’k+1’ gs xS H q5|5+1 0 ]|X7k+1 [‘6]7 XO[ZDdXTk+1 .

l=k+1

D.3 Algorithmic details and numerics

D.3.0.1 GMM

For a given dimension d,,, we consider qqat, @ mixture of 25 Gaussian random variables. The Gaussian
random variables have mean p, ; := (8i,8j,---,8i,8j) € RY for (i,5) € {—2,—1,0,1,2}? and
unit variance. The mixture (unnormalized) weights w; ; are independently drawn according to a X2
distribution. The x paramater of MCGdiff is k2 = 10~*. We use 20 steps of DDIM for the numerical
examples and for all algorithms.

Score: Note that qs(zs) = fq8|0(xs|x0)qdata(x0)dxo. AS qgata 1S @ mixture of Gaussians, qs(zs)

is also a mixture of Gaussians with means ai/ 2 pi.; and unitary variances. Therefore, using automatic
differentiation libraries, we can calculate Vlog qs(xs). Setting e(xs,5) = —(1 — as)/?V logqs(zs)
leads to the optimum of (5.4).

Forward process scaling: We chose the sequence of {3,}2%
between 31 = 0.2 and 1900 = 1072

as a linearly decreasing sequence

Measurement model: For a pair of dimensions (d,,dy) the measurement model (y, A, o) is drawn
as follows:

o A: We first draw A ~ N(Odyxdx»ldyxdw) and compute the SVD decomposition of A =UsvVT.
Then, we sample for (i,5) € {—2,—1,0,1,2}?, s; ; according to a uniform in [0, 1]. Finally, we
set A = UDiag({si;} i j)e{-2-101232) V'

* 0, We draw o, uniformly in the interval [0, max(si,--- , sq,)].

* y: We then draw o, ~ Qqata and set y := Az, + oye where € ~ J\/(Ody, Idy).
Posterior: Once we have drawn both qqat, and (y, A, o), the posterior can be exactly calculated using
Bayes formula and gives a mixture of Gaussians with mixture components c; ; and associated weights

Wi,

¢y =N(Z <ATy/05 + ,u,i,j) ),
@i = wiN (y; Ap, j, o’ lq, +AAT) )

where ¥ := (IdgC +0y_2ATA> -
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Variational Inference: The RNVP entries in the numerical examination are obtained by Variational
Inference using the RNVP architecture for the normalizing flow from Dinh et al. (2017). Given a
normalizing flow fy with ¢ € R/, j € N,, the training procedure consists of optimizing the ELBO, i.e.,
solving the optimization problem

Ny
¢s = argmax Z log |Jfs(€;)| + log mi(fe(€i)) (D.22)
PRI =1

where N,y € N, is the minibatch-size, Jf, the Jacobian of f;, w.r.t ¢, and e1., , ~ N(0,T)®Nns, All the
experiments were performed using a 10 layers RNVP. Equation (D.22) is solved using Adam algorithm
Kingma and Ba (2015a) with a learning rate of 10~ and 200 iterations with N,y = 10. The losses
for each pair (d,,dy) is shown in figure D.1, where one can see that the majority of the losses have
converged.

Choosing DDIM timesteps for a given measurement model: Given a number of DDIM samples R, we
choose the timesteps 1 = t; < --- < tg = 1000 € [1 : 1000] as to try to satisfy the two following
constraints:

 Foralli € [1: dy] there exists a t; such that Uyoztlj/z ~ (11— oztj)l/?si,
e Forallie[1: R — 1],0121,/2 —a;/fl ~ ¢ for some § > 0.

/

The first constraint comes naturally from the definition of 7;. Since the potentials have mean a; 2y,
the second condition constrains the intermediate laws remain “close”. An algorithm that approximately
satisfies both constraints is given below.

Algorithm 2: Timesteps choice

Input: Number of DDINM steps R, oy, {Si}?il, {a; }1o%0
Output: {tj}f:1

Set S; = {}.

for j < [1:dy] do

- . 1/2
Set 7 = argminyc(y.1900) |‘7ya/ -(1- aﬂ)l/Q)Sj’-
Add 7j to Sr if7~'j ¢ Sr.

1/2 1/2

Setngy, = R—#S; —1land 6 = (a;"" — aj400)/Mom-
Sett; =1,e=1and i, = 1. for £ < [2: 1000] do
ifaé/2 —oz;/Q > or £ € S; then
‘ Sete =/{,i. =i+ land 1;, = /.
Set 7r = 1000.

Additional numerics: We now proceed to illustrate in Figures D.2 to D.4 the first 2 components for one
of the measurement models for all the different combinations of (d, dy) combinations used in table 5.1.

We also show in figure D.5 the evolution of each observed coordinate in the noise case with dy, = 4.
We can see that it follows closely the forward path of the diffused observations indicated by the blue
line.
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Figure D.1: Evolution of KL with the number of iterations for all pairs of (d;, dy) tested in the GMM
case.
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Figure D.2: First two dimensions for the GMM case with d, = 8. The rows represent dy = 1,2,4
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to

samples generated by each of the algorithms used (the names of the algorithms are given at the top of
each column).
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Figure D.3: First two dimensions for the GMM case with d, = 80. The rows represent dy, = 1,2,4
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of
each column).
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Figure D.4: First two dimensions for the GMM case with d, = 800. The rows represent dy = 1,2,4
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of

each column).
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Figure D.5: Illustration of the particle cloud of the 4 first observed coordinate in the case (dy,d;) =
(4,800) with 100 DDIM steps. The red points represent the particle cloud, while the purple points at the

origin represent the posterior distribution. The blue curve corresponds to the curve s — ai/ 2y[ﬂ] and

the blue dot on the curve to aie/ %y [€].
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d d, MCGdiff DDRM DPS RNVP

8 1 | 143+£0.55 | 588+1.16 | 486+1.01 | 9.43+0.99
8 2 1049024 | 520+1.32 | 579+1.96 | 893 +1.29
8 4 1038x0.25|251+£1.29|348+£1.52|6.71+1.54
80 | 1 [ 139045 | 5.64+1.10 | 498+1.14 | 6.86 +0.88
80 | 2 [ 0.67+0.24 | 7.07+135 | 510+1.23 | 7.79+£1.50
80 | 4 | 0.28+0.14 | 7.81 £1.48 | 428+1.26 | 7.95+1.61
800 | 1 |240+1.00 | 744£1.15 | 649+1.16 | 7.74+1.34
800 | 2 | 1.31£0.60 | 895+1.12 | 6.88+1.01 | 8.75+1.02
800 | 4 | 047+0.19 | 839148 | 551+£1.18 | 7.81 £1.63

Table D.1: Extended GMM sliced wasserstein table.

d SW

2 10.79+0.15
6 | 0.87+0.07
10 | 0.96 +0.06

Table D.2: Sliced Wasserstein between learned diffusion and target prior.

Table D.1 is an extended version of table 5.1.

D.3.0.2 FMM

A funnel distribution is defined by the following density

d
N(21;0,1) [T NV (230, exp(a1/2)) -

i=1

To generate a Funnel mixture model of 20 components in dimension d, we start by firstly sampling
(i, Ri)?%, uniformly in ([—20,20]¢ x SO(R?))*2°. The mixture will consist of 20 Funnel random
variables translated by p; and rotated by R;, with unnormalized weights w; ; that are independently
drawn uniformly in [0, 1].

Score The denoising diffusion network e(#) in dimension d is defined as a 5 layers Resnet network
where each Resnet block consists of the chaining of three blocks where each block has the following
layers:

e Linear (512, 1024),
¢ 1d Batch Norm,
e ReLU activation.

The Resnet is preceeded by an input embedding from dimension d to 512 and in the end an output
embedding layer projects the output of the resnet from 512 to d. The time ¢ is embedded using positional
embedding into dimension 512 and is added to the input at each Resnet block. The network is trained
using the same loss as in Ho et al. (2020) for 10* iterations using a batch size of 512 samples. A learning
rate of 1073 is used for the Adam optimizer Kingma and Ba (2015b). Figure D.6 illustrate the outcome of
the learned diffusion generative model and the target prior. In table D.2 we show the CLT 95% intervals
for the SW between the learned diffusion generative model and the target prior.
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T

Figure D.6: Purple points are samples from the prior and yellow samples from the diffusion with 25
DDIM steps.

1000

Forward process scaling We chose the sequence of { 5 } s}

(1 = 0.2 and B199p = 1074,

as a linearly decreasing sequence between

Measurement model The measurement model was generated in the same way as for the GMM
case.

Posterior The posterior samples were generated by running the No U-turn sampler (Hoffman and
Gelman (2011)) with a chain of length 10* and taking the last sample of the chain. This was done in
parallel to generate 10* samples. The mass matrix and learning rate were set by first running Stan’s
warmup and taking the last values of the warmup phase.

Variational inference: Variational inference in FMM shares the same details as the GMM case. The
analogous of figure D.1 is displayed at figure D.7.

Additional plots: We now proceed to illustrate in Figures D.8 to D.10 the first 2 components for one
of the measurement models for all the different combinations of (d, dy) combinations used in table 5.1.
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Figure D.7: Evolution of KL with the number of iterations for all pairs of (d.,dy) tested in the FMM
case.

RNVP

PCA»

PCA»

PCA,

PCA;

Figure D.8: First two dimensions for the FMM case with d, = 10. The rows represent dy, = 1,3,5
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of
each column).
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MCGdiff DDRM DPS RNVP

PCA»

PCA,

PCA»

L)

PCA;

Figure D.9: First two dimensions for the FMM case with d, = 6. The rows represent dy = 1,3,5
respectively. The blue dots represent samples from the exact posterior, while the red dots correspond to
samples generated by each of the algorithms used (the names of the algorithms are given at the top of

each column).

MCGdiff DDRM DPS RNVP

swwe Wiy o Wt

PCA,

PCA;

Figure D.10: First two dimensions for the FMM case with d, = 2 and dy = 1. The blue dots represent
samples from the exact posterior, while the red dots correspond to samples generated by each of the
algorithms used (the names of the algorithms are given at the top of each column).
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D.3.0.3 Image datasets

We now present samples from MCGdiff in different image dataset and different kinds of inverse prob-
lems.

Super Resolution We start by super resolution. We set o, = 0.05 for all the datasets and (coefr = 0.1
for DPS . We use 100 steps of DDIM with » = 1. The results are shown in Figure D.11. We use a
downsampling ratio of 4 for the CIFAR-10 dataset, 8 for both Flowers and Cats datasets and 16 for the
others. The dimension of the datasets are recalled in table D.3. We display in figure D.11 samples from
MCGdiff, DPSand DDRMover several different image datasets (table D.3). For each algorithm, we generate
1000 samples and we show the pair of samples that are the furthest apart in L? norm from each other in
the pool of samples. For MCGdiff we ran several parallel particle filters with N = 64 to generate 1000
samples.

CIFAR-10 | Flowers Cats Bedroom Church CelebaHQ
(W,H,C) | (32,32,3) | (64,64,3) | (128,128,3) | (256,256,3) | (256,256,3) | (256,256, 3)

Table D.3: The datasets used for the inverse problems over image datasets.

Gaussian 2D debluring We consider a Gaussian 2D square kernel with sizes (w/6, h/6) and standard
deviation w/30 where (w, h) are the width and height of the image. We set o, = 0.1 for all the datasets
and (eoef = 0.1 for DPS . We use 100 steps of DDIM with n = 1. We display in figure D.12 samples
from MCGdiff, DPSand DDRMover several different image datasets (table D.3). For each algorithm, we
generate 1000 samples and we show the pair of samples that are the furthest appart in L? norm from
each other in the pool of samples. For MCGdiff we ran several parallel particle filters with N = 64 to
generate 1000 samples.

Inpainting on CelebA We consider the inpainting problem on the CelebA dataset with several different
masks in figure D.13. We show in figure D.14 the evolution of the particle cloud with s.

1000 900 800 700 600 500

400 300 200 100 50 4

Figure D.14: Evolution of the particle cloud for one of the masks. The numbers on top and bottom
indicate the step s of the approximation.
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Figure D.11: Ratio 4 for CIFAR, 8 for flowers and Cats and 16 for CELEB
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Original MCGdif MCGdiff MCGdiff MCGdiff DPS DDRM SMCdiff

Figure D.13: Inpainting with different masks on the CelebA ftest set.
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Appendix E

Appendix of Chapter 6

E.1 Additional Theoretical Results on DDM

In this section we prove two important aspects mentioned in section 6.3. Namely, that the inference
process matches the marginals of the forward process (qzm(ack |z0) = axjo(®k|Z0)) and that for a certain
choice of weighting coefficients, (6.3) consists of minimizing a certain KL, where for two densities f, g
we define

KL(T 1) = [ 1og (gg;’fi) f(z)d. E.D)

This follows closely Song et al. (2021a), adapting it to our notation and to the variance exploding
framework.

Lemma 70. Let {ny }ren satisfy ni € [0,v7] forall k € [1 : K|. Then

qz\o(fﬁk\xo) = qk|o($k|l’o) .

Proof. We proceed by induction. By definition, equality holds for ¥ = K. Assume that for k£ + 1 the
equality holds. Then, note that

ajjo(zxlz0) = /QZ|k+1’0(xk|$k+1axO)QZ+1‘0($k+1’$O>dxk+1

= /N(l‘k;ﬂk(l"mivk—i-l)anz Id)N($k+1S$O>UI%+1 I) dogy,

with gy, (20, Tp41) = zo + (VE/VE, 4 — n,%/v,%ﬂ)lﬂ(fckﬂ — x9) . By standard Gaussian conjugation
formulas, we have that qzw(xk\xo) = N (zx; z0, v}), completing the proof. O

2
. V1. .
Note that taking 77 = ﬁpiﬂ yields ¢, | o = dxjr+1,0 Where

Qe 1k (Tt 12 ) Grjo (k| 20) vy vy
Akfk+1,0(Tk|T0, Thy1) = | | = N (@5 10 + —5"— (Tha1 — T0), 5 piir 1) -
Qe110(Thr1lT0) Vk+1 Vk+1
(E.2)
This shows that the inference process can be seen as a generalization of the forward noising process.
Lemma 71. Let p(xo.x) = Cldata(ﬂfo)q;’;K‘o(ZUl:K|ZE0)- Then,
K
KL | 9§5) = O 3 BB g eaon (1D Ko+ viev) ~ Xol?] . 3
k=1
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where C'is a constant independent of 0 and
B 2
B =0 1= WF o} —fo o)) V?] for k> 1,
V="

Proof. In this proof, we treat every constant not depending on 6 as C. Note that the actual value of C'
can change from a line to the other. We start by rewriting

qdata(xO)(fl?:K O(xl:K|l‘0)
KL(,U H pg:K) = /log < pO'K(xIO'K) qdata(x())qrf:Kw(xl:K‘xO)de:K

- n

. 1 qk‘k+170(xk|x07$k+l) n n d

= Z og 7 D jgor1,0(Tk |0, Trt1) @110 (Th41]0)Qdata (20) A0,k ket 1
pk|k+1(xk‘xk+1) ’

(data SUo)ql 0(I1|9€0)
+ /1Og | Adata(70)qy)o(21|z0)dz0:1 + C
po‘l(xO’fBl

= /KL @ips1,00170, Trt1) | Pt 1 ClTk41)) Qs 110 (£0) T4 1Qdata (20) Ao k11
k=1

— [ 08 by 0le1)aauia (w0)a g 1 70)dao + C.
where C is a constant that does not depend on 6. We know that

KL (1, 03 1) [| N (2, 03 T)) = 27" [2dlog (02 /1) — d + d(01/02)? + |l — |23

thus

2
0 — 6
KL(qY 1.0 (L7, h0) | P Clen)) = mc2 [ = (R /by — /o) 2] DG (whn) — ol

Note also that
log pgjy (wolw1) = —ng 21Dy (1) — ol* + C-

The proof is finished by lemma 70. O

E.2 Preprocessing Implementation Details

Our preprocessing follows four stages.

* Align the recording-frequency of all ECGs to 250 Hz by performing down or up sampling. Thus,
two consecutive points in the ECG are separated by 4ms.

» Extract R peaks from the ECG. The first principal component is extracted channel-wise from the
entire ECG. Subsequently, this extracted component is processed through a Savitzky-Golay filter,
characterized by an order of 3 and a window length of 15. The extraction of R-peaks is then carried
out based on the methodology proposed in Brammer (2020).

* Select the window [R —192ms, R + 512 ms| containing the QRS. This window corresponds to
176 time-points as (192 + 512)/4 = 176.

* Normalize each ECG lead by dividing it by the maximum absolute value attained during the QRS.
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Table E.1: Distribution of patients, gender and number of recorded beats among train, test and MI sets.

Train CvV Test MI
All (patients) 22580 2723 2864 468
Male (patients) 11722 1399 1497 343
Female (patients) 10858 1324 1367 125
All (beats) 214460 25694 27221 44911
Mean (beats) 95+/-0.1 | 944/-02 | 954/-02 | 96 +/- 5

2000 300

200

Count

100

0 25 50 75 0% s 75 o 40 60 80

Ages (train) Ages (test) Ages (MI)

Figure E.1: Female (pink), male (blue) ages histograms in training (left), test (middle), MI (right) sets.

E.3 Architecture Details

We implement a very close architecture to Karras et al. (2022) and available at https://github.com/
NVlabs/edm as well as training procedure. The main difference is that we replaced the 2D convolutional
layers by 1D ones in every UNet. The final network use the following parameters:

* First embedding dimension: ¢ = 192,

* Number of Unet blocks per resolution: 2,

e Number of resolutions: 1,

* Dropout probability 0.10,

* Attention resolution: [88, 44, 22].
For the training, the following configuration was used:

* learning rate: 1074,

» Number of epochs: 104,

e Batch Size: 1024,

» Exponential moving average coefficient: 0.9999.
For the (forward diffusion) we used the following parameters:

* Omin =2 % 1074,

* Omax = 80,

* Odata = 0.5,

« Importance law of ¢ for training: Log N'(—1.2,1.221).

E.4 Deeper or Unconditioned Denoisers

In this section we test two alternative architectures: a DDM unconditioned on the patient information P
(1) and a deeper DDM (2).

To obtain comparable EMD for both conditioned and unconditioned ECGs with P, unconditioned
generated ECGs are concatenated with A, S, RR features randomly selected from the test set. We find
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that conditioning over A, S, RR leads to smaller EMD.

The U-Net blocks can be stacked and a common usage in the literature is to combine several U-Net on
different resolution levels, that are obtained by downsampling the data before feeding it to each block
U-Net. We have experimented with using 2 resolution levels for the U-Net but found no signicant gains
w.r.t. using only one level.

— EMD vs. Train
-—— EMD vs. Test

EMD

______ peeeeeoeoeooopo——... unconditional DDM

deeper cond. DDM
20 cond. DDM

40 70 100 150
Number of diffusion steps K

Figure E.2: EMD of generated ECGs vs. test (dotted) and train (plain), w.r.t diffusion steps. Small conditioned
(resp. uncond.) network in orange and (resp. gray). Deeper conditioned network in pink. EMD of test (resp.
noisy-test) vs. train in red (resp. blue). Error bars correspond to different training batches of size 2864.

E.5 SMC Algorithm

In this section we first provide the SMC algorithm 12.

Algorithm 12 SMC

Input: observation y, number of diffusion steps K, number of particles M
Operations involving index i are repeated for i € [1 : M|
Initialization: &§ ~ A
for k = K —1to0Odo
I ~ Cat({(’:}k(gljﬁ-l)/ 2?11 wi (k) H21)
& ~ phC1efi)
end for
Output: M

E.6 Heuristic for the Potential

Preliminary definitions.
We preface this section with some measure theory notations and definitions of a few quantities that will
be used throughout.

For d € N, we denote B(Rd) the Borel set in R%. For a probability measure € R? and f : R — R
a bounded measurable function, we write u(f) := [ f(z)u(dx) the expectation of f under p and if
K (dz|z) is a transition kernel we write K (f)(2) := [ f(x)K(dz|z). For a € RY, we define the Dirac
distribution &, as the distribution such that for all B € B(R?), 6,(B) = 1lifa € Belse ,(B) = 0.

Heuristic

In this section we give an heuristic for deriving the potential (6.13) for the VE framework. We assume
that we measure partially a new ECG through a subset of indices Z = {(¢,t) € [1 : L] x [1 : T]} #
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[1: L] x[1:T]. Forany ({,t) € Z, the observation follows y ~ Xo[l,t] + oe;; where o is the
known measurement noise, supposed uniform for the sake of simplicity. We aim at sampling ¢ from the
posterior Xo|y, o, with p.d.f.

@4 (w0) := g§ (zo)po(z0)/ 2

where

96(x0) = [Tuner N (wolt, t]; y[4, 1], 02),
po(z0) = [ Mzw) [Tj—p p;_q);(@j-1]z)dzrxe,
Z = [ g§(z)po(x)dx.

We suppose that there exists a diffusion step 7 € [0 : K] such that v2 = o2, i.e., such that the level of
measurement noise equals the level of diffusion noise. This assumption is realistic for a large number of
diffusion steps K. We can then rewrite the posterior p.d.f. as follow

(ﬁg(l’o) = H(l,t)eIN(:EU[Ev t]; y[& t]7v72-)p0(m0)/z
= ez oyl tl|zo[l, t))po(x0)/ Z - (E.4)

We make the idealistic assumption that for all zo.x, qo.x(To.x) = Po.x(Zo.x), Which implies that
qr = px and that

qrjo(zk|z0)Po(T0) = qrjo(zk|T0)q0(20)
= poji (ol k) Pk (@) - (E.5)
However, we cannot directly replace the element-wise forward process in E.4 using this assumption as

only the indices of Z are taken into account. Hence, we introduce the following integral form of the
likelihood

96(x0) = [Tupyez drlole, t]lzoll, t])
= ez J arp(-[L, tlwoll, t])dy 0, (dz- €, 2])
= [ @rjo(zr|z0)P(dzs), (E.6)
where
Y(dzr) = Tupez Oyt (dzr[4,2]) [T 0 ¢z o6, 2],

which also means that 1 is a measure that has a singleton in every observed coordinate and the Lebesgue
measure on the non observed coordinates. By plugging E.6 into E.4 and replacing the backward with
the forward process we obtain

¢g(l‘0) = fQT|O(337'|x0)p0($0)¢(d$7')/z
= fp0|-,-(x0|$7)p7($7)1/}(d$7)/z .

This shows that sampling from ¢ can be obtained by sampling first from

(Z)T = pT(xT)w(de)/Z (E.7)
and then propagating the samples via polT($0|.7}T), i.e., we define ¢, (x) o< g, (xk)pr—1(zK—1) With
gp(xg) == 1fork < 7.

Now we derive a sequence {¢; }r~, to sample recursively from E.7. We introduce the extended
distribution
¢T:K(deZK) = P-r:K($T:K)7,Z)(d$7-)d$r+1:K/Z 5.
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where pr.rc(2r.10) == Mar) [Th5 5 pk_1|k(:ck_1|:ck) . We can write the marginal distribution of ¢_.
for k > 7, using the definition (6.5)

Ouwn) = [ prplarlan)pr (e, (dar) /2.
Then using the assumption in E.5

o) = [ qupr(wrlzr)pr(er)y(dog) /2
= ez a- (@il |yl e (k) /2
= H(l,t)eIN(‘T[E? t]; y[ea t]’ UI% - 02)pk(xk)/za

where we recognize a product between the marginal law at time k£ and a potential function of the
form

g1(x) = aper N (@6t y[l, 1], 0f — a?).

Note that ¢_ introduced in E.7 does not admit a density with respect to p,, because of the singleton
measures on the observed coordinates. To mimic the effect of the singleton while still admitting a density
with respect to p,, we use the following approximation

(rb‘r(xT) ~ H(l,t)eIN($$[€’t]§ y[ﬁ,t],az)pT(mT)/Z,

for a small €.

Figure E.3 provides a visual representation of the sampling of ECGs x( from the posterior Xy|y, o = 0.1,
with Z = [1 : 3] x [1 : T using the sequence of instrumental laws {¢; }rc(0:x]- At the beginning of
the generation (first column), the generated samples (in blue) are scattered and the standard deviation of
the guiding function is high. As generation progresses (from left to right), the standard deviation of the
guiding function decreases until it approaches 0. From then on (last two columns), k¥ < 7 and samples
are generated by the backward process solely.

SMC sampling
0.06 0.03 0.01 N/A

i

o

]

Figure E.3: Conditional generation example. Observation: (aVL, aVR, aVF) with o = 0.1. Red solid/dashed
lines: observed/real signal. Shaded zone: observed signal plus 3 x std of the guiding function 6.13, std values on
top. Blue: posterior samples.
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E.7 Proposal Potential and Weight

Using conjugate formulas we compute the proposal kernel and the weights defined in (6.8) used in SMC
algorithm

Ty 2 2
nio
pirlor) = [T TN @il t]s g (@) 8], 2y TT T N (wle,t]; pneznr) (68, 772)
eV, k=1 U

Y 0EVy t2[1:Ty)
and

Ty Ty
W/Z(»”Ukﬂ) = H HN (Nk[ga t];y[& t],7713+1 + Ul%,y)/ H HN(xk—&-l[E?t];y[g’t]7o-lz+17y)v

where

0']%7?; =0 — (1 -98)o?
fir; = e (Tr415 Doy g (Th41))

,uk;y(xk—i—l) [67 t] = (nl%y[gﬂ t] + U}?:,ylu‘k[gﬂ t])/(nl% + O-I?:,y) .
E.8 Number of particles

As the number of particles, denoted as M, increases, we observe a corresponding decrease in the
discrepancy between the target posterior distribution and the distribution of particles generated by
algorithm 12. A critical question arises: what is the optimal value for M that strikes a balance between
accuracy and computational efficiency? To approach this question, we first selected a patient from the
test dataset and used algorithm 12 to generate 10% samples with a high particle count of M = 10*. We
consider these samples as our reference representing the target posterior distribution.

We then generated 103 samples with algorithm 12 for different values of M and calculated the Earth
Mover’s Distance (EMD) relative to the reference samples. This process helps us to evaluate the conver-
gence of the distribution generated by the algorithm to the posterior as M varies. Figure E.4 illustrates the
relationship between M and the EMD. From this analysis, M = 50 provides an effective equilibrium that

provides a reasonable approximation to the posterior distribution while ensuring manageable inference
times.

2.551

2.501

2.45 \

2.40 \

EMD

v/
2.351 ¥ \

2.301 N

Figure E.4: EMD distance between 1000 samples from algorithm 12 with M particles and 1000 samples
of algorithm 12 with 10° particles, that is considered the standard samples.
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E.9 Baselines

In this section, we provide implementation details for testing the WGAN, DAE, AAE, and OOD baselines
in the same setup as our approach.

In the paper Adib et al. (2022), the WGAN is conditioned on 15 categorical heart disease labels. These
labels are embedded into a vector of size 100 and concatenated with the latent variable before being
inputted into the generator. They are also embedded into a vector of length T (where T is the temporal
length of the signal) and then concatenated with the cardiac signal (fake or real) before being inputted
into the critic. Embedding maps variables with a finite number of possible values (i.e., categorical
variables) into a vectorized representation. However, since in our DDM we condition on scalar variables
such as the RR interval, in order to compare the results obtained with our DDM and the WGAN, we
instead use a multi-layer perceptron (MLP) with the following architecture: a linear layer from 4 to 864,
a 1D normalization layer, LeakyReLU, and a linear layer from 864 to 64. This MLP maps the 4-size
feature vector (/1, S, RNR) to a 64-vector, which is then used in the same way as the embedding was in
the original paper.

In the paper Chiang et al. (2019), a DAE is used to denoise ECGs containing multiple heartbeats. Their
proposed architecture consists of 6 convolutional layers with a kernel size of 16 and 6 deconvolutional
layers with a kernel size of 16. Since in our experiments the input signals are single heartbeats, we use
a kernel size of 4 instead of 16 to be able to apply the DAE to shorter signals. We pretrain the DAE to
denoise corrupted signals with Gaussian noise with a standard deviation sampled from an exponential
distribution with a rate parameter of 0.2, by minimizing the mean squared error between the real and
denoised heartbeats, using the Adam optimizer for 50 epochs. We use this model for two experiments:
ECG denoising and anomaly detection. For the latter, we use the mean squared error (MSE) between the
input and decoded heartbeat as the anomaly score.

For the AAE, we employ the same architecture and training as Shan et al. (2022). We use this model for
two tasks: ECG denoising and anomaly detection (which is the task solved by this model in Shan et al.
(2022)). For the first task, we denoise corrupted ECG signals simply by encoding and decoding them
with the AE module.

Finally, we also use the out-of-distribution score proposed by Ciosek et al. (2020) for anomaly detection
(in addition of using it for generative evaluation in section 6.5.3). The anomaly score is the MSE between
the output of the random fixed network and the trained network.

E.10 Additional Results

In this section we provide supplementary results for the experiments on ECG missing lead reconstruction
and the prediction of corrected QT: we provide R2-score between predicted and real lead ¢, with 95%-
CLT intervals over the test-set for missing lead reconstruction using NC-MCGdi ff and Dower matrices in
table E.2; we provide the R?-score between QT measured vs. regressed (intercept: QTS, slope: QT)
as a function of RR, in generated samples, with 95%-CLT intervals over the test-set, for several corrected
QT formulas in table E.3.
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Figure E.5: Real and generated ECG heart beat with DDM and WGAN.
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Table E.2: R2-score between predicted and real lead £, with 95%-CLT intervals over the test-set.

Leap (/) NC-MCGdiff Dower
Vi 0.98+£0.01 0.70+0.05
V2 0.99+£0.00 0.78+0.05
V3 0.99+£0.00 0.75£0.06
V4 0.99 £0.00 0.87+£0.03
V5 098 £0.02 0.86+0.08
V6 0.99+0.01 0.85+0.03

Table E.3: R?-score between QT measured vs. regressed (intercept: QT§, slope: QT$) as a function of RR, in
generated samples, with 95%-CLT intervals over the test-set.

METHOD R2-scorE EXPRESSION

Framingham  0.88 £0.03 QT = QT§+0.154(1 — RR)
Bazett 0.47+0.04 QT = QT$VRR

Baz. (offset) 0.98+0.00 QT = QTS+ QT$VRR
Fridericia 0.94+0.02 QT =QT$+vRR

Frid. (offset) 0.98+0.00 QT = QTS+ QT$ vVRR
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Titre : Modéles génératifs pour le traitement des données du type électrocardiogramme: théorie et application.
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par

Résumé : Cette thése apporte des contributions
au vaste domaine des modeles génératifs, avec un
intérét particulier pour I'application de tels modeles
aux données d’électrocardiogramme (ECG) dans le
cadre de l'inférence et de la quantification de I'incer-
titude. Dans une premiére partie, nous développons
deux méthodes novatrices pour réduire le biais dans
les méthodes d’échantillonnage d’importance et de
Monte Carlo séquentiel (SMC), qui sont deux ou-
tils importants de linférence bayésienne. Les al-
gorithmes résultants peuvent étre considérés tous
deux comme des “enveloppes” autour d’algorithmes
existants actuels, offrant une réduction de biais
sans grande augmentation du temps de calcul.
Nous présentons également de nouvelles bornes
de convergence non asymptotiques pour [utilisa-

machine,Modéles

génératifs,Cardiologie,Apprentissage  pro-

tion de ces algorithmes dans lapprentissage de
paramétres dans les modeles de Markov cachés
(HMM). Dans une deuxieme partie, nous nous
concentrons sur l'utilisation du SMC pour résoudre
des problemes inverses linéaires bayésiens, avec
des modéles génératifs servant de priors informa-
tifs. Cette approche est particulierement intéressante
pour améliorer la résolution des problemes inverses
rencontrés dans divers domaines scientifiques. En-
fin, nous appliquons cette méthodologie a plusieurs
problemes inverses basés sur TECG, notamment la
complétion de pistes manquantes et la détection
hors distribution. Les résultats de ces applications
démontrent I'efficacité et la polyvalence des modeles
génératifs proposés pour relever des défis concrets
dans le contexte de I'analyse des données ECG.

Title : Generative models for ECG data: theory and application.

Keywords : Machine Learning,Generative model,cardiology,Deep Learning,Self-supervised learning.

Abstract : This thesis contributes to the vast domain
of Generative models, with a particular interest in ap-
plying such models to electrocardiogram (ECG) data
for inference and uncertainty quantification. In a first
part, we develop two novel methods for reducing bias
in Importance Sampling and Sequential Monte Carlo
(SMC) methods, which are two important tools of
Bayesian inference. The issuing algorithms can both
be viewed as a wrapper around current existing al-

gorithms providing effortless bias reduction. We also
provide new non-assymptotic convergence bounds for
using such algorithms for parameter learning in Hid-
den Markov Models (HMM). In a second part, we fo-
cus on using SMC for solving Bayesian linear inverse
problems with generative models serving as informa-
tive priors. Finally, we apply this method on several
ECG based inverse problems, namely missing lead
completion and out-of-distribution detection.
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