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Thèse présentée et soutenue à Palaiseau, le 21 juin 2024, par

MR. FELIPE LISBOA MALAQUIAS

Composition du Jury :

Sylvie Putot

Professeure, Laboratoire d’informatique de l’École polytechnique
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Mihail Asavoae

Chercheur, CEA List Invité
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ABSTRACT

Recently proposed real-time memory controllers tackle the performance-predictability

trade-off by trying to offer the best of both worlds. The common underlying idea is to

optimise bandwidth and average-case latency while still being able to precisely characterise

the system’s performance and derive worst-case latency upper bounds for memory requests.

However, as a consequence, designs have become complex and often present mathematical

developments that are lengthy, hard to read and review, incomplete, and rely on unclear

assumptions. Given that such components are often designed as part micro-architectures

that are used in safety-critical real-time systems, a high degree of conődence that systems

behave correctly is required in order to meet certiőcation goals.

To address that problem, we propose a new framework written in the Coq theorem prover

named CoqDRAM, in which we model DRAM devices and controllers and their expected

behaviour as a formal speciőcation. The framework is intended to aid the design of correct-

by-construction, trustworthy DRAM scheduling algorithms. The CoqDRAM speciőcation

captures correctness criteria according to the JEDEC standards and states other high-level

properties, such as fairness and sequential consistency.

Following such approach, paper-and-pencil mathematical developments are replaced by

machine-checked proofs, which increase conődence that designs are indeed correct. Beyond

that, the approach reduces the burden of peer-reviewing: instead of thoroughly checking

complex paper-and-pencil mathematical analyses, reviewers are left with the task of verifying

that proofs compile and that correctness criteria have been correctly stated. This is an

important result, since recent őndings in literature report that most errors on modern safety-

critical real-time systems come from poorly-written formal speciőcations/requirements rather
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than faulty implementations. Furthermore, using Coq allows designers to leverage powerful

abstractions to design correct algorithms that are generic, scalable, and re-usable. The fact

that proofs are direct linked to the algorithms’ implementation also bridges the semantic

gaps found in works that perform only a paper-and-pencil mathematical analysis.

In this dissertation, we present two iterations of CoqDRAM: a őrst, more rudimentary

version, formalises the set of correctness criteria and proposes a skeleton for writing schedul-

ing algorithms. Then, a second version includes the modelling of refresh commands and

introduces the necessary machinery to make standard compliance proofs re-usable for future

algorithm implementations, thus enhancing the framework aspect of CoqDRAM.

We showcase CoqDRAM’s usability by modelling and proving two proof of concept

scheduling algorithms: one based on the First-in First-Out (FIFO) arbitration policy and

the other on Time-Division Multiplexing (TDM). For these two implementations, proof obli-

gations are met and certiőed by Coq’s kernel. Moreover, using CoqDRAM, we propose a new

DRAM scheduling algorithm called TDMShelve, which extends and improves previous work

on work-conserving dynamic TDM arbitration. More speciőcally, TDMShelve exploits infor-

mation about the internal state of the memory at request scheduling level, thus providing a

good balance between predictability and average-case latency for mixed-criticality real-time

systems. The fact that an algorithm as complex as TDMShelve can be designed and proved

in CoqDRAM shows that the approach can be realistically used to design complex DRAM

scheduling algorithms in a trustworthy manner.

We connect the algorithms written in CoqDRAM to an external simulation environment.

The fact that the experiment runs without triggering any errors related to timing or protocol

correctness further validates the CoqDRAM model and helps to build conődence that the

correctness criteria have been correctly stated.
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Résumé

Les contrôleurs mémoire temps réel récemment proposés s’attaquent au compromis fonda-

mental entre performance et prédictibilité, en cherchant à offrir le meilleur des deux aspects.

L’idée sous-jacente commune consiste à optimiser à la fois la bande passante et la latence

moyenne, tout en garantissant une caractérisation précise des performances du système. Ce

faisant, il est possible de dériver des bornes supérieures pour la latence maximale des re-

quêtes mémoire. Cependant, cette approche a entraîné des conceptions complexes, souvent

accompagnées de développements mathématiques longs, difficiles à lire et à évaluer dans leur

intégralité, et parfois incomplets ou fondés sur des hypothèses peu claires. Compte tenu

du fait que ces composants sont fréquemment intégrés dans des micro-architectures de sys-

tèmes critiques pour la sécurité en temps réel, il est indispensable d’avoir un haut niveau

de conőance dans le comportement correct de ces systèmes pour satisfaire aux exigences de

certiőcation.

Pour remédier à ces problèmes, nous introduisons un nouveau cadre formel baptisé Coq-

DRAM, développé au sein du prouveur de théorèmes Coq. Dans ce cadre, nous modélisons

les dispositifs DRAM ainsi que les contrôleurs, et nous exprimons leur comportement at-

tendu sous forme de spéciőcations formelles. L’objectif de ce cadre est d’assister dans la

conception d’algorithmes d’ordonnancement DRAM corrects par construction et de garan-

tir leur őabilité. La spéciőcation CoqDRAM capture les critères de correction en accord

avec les normes JEDEC et formalise également d’autres propriétés de haut niveau telles que

l’équité et la cohérence séquentielle. En suivant cette approche, les développements mathé-

matiques manuscrits sont remplacés par des preuves vériőées par machine, augmentant ainsi

la conőance dans le fait que la conception est effectivement correcte. Par ailleurs, cette dé-

marche allège le fardeau de la vériőcation par les pairs : au lieu d’examiner minutieusement

des analyses mathématiques complexes sur papier, les évaluateurs n’ont plus qu’à vériőer

la compilation des preuves et la correcte spéciőcation des critères de correction. Cela con-

stitue un résultat crucial, car des études récentes ont révélé que la plupart des erreurs dans

les systèmes temps réel critiques pour la sécurité modernes proviennent de spéciőcations ou

formulations formelles mal rédigées, plutôt que d’implémentations incorrectes.
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En outre, l’utilisation de Coq permet aux concepteurs de tirer parti d’abstractions puis-

santes pour concevoir des algorithmes corrects, génériques, évolutifs et réutilisables. De

plus, le lien direct entre les preuves et l’implémentation des algorithmes comble les écarts

sémantiques observés dans les travaux basés uniquement sur des analyses mathématiques

sur papier.

Dans cette thèse, nous présentons deux itérations du cadre CoqDRAM : la première

version, plus rudimentaire, formalise un ensemble de critères de correction et propose une

structure pour la rédaction d’algorithmes d’ordonnancement. La deuxième version, plus

avancée, modélise les commandes de rafraîchissement et introduit des mécanismes destinés

à rendre les preuves de conformité standard réutilisables pour des implémentations futures

d’algorithmes, renforçant ainsi l’aspect cadre de CoqDRAM.

Nous démontrons l’utilité de CoqDRAM en modélisant et en prouvant deux algorithmes

d’ordonnancement de preuve de concept : l’un basé sur la politique d’arbitrage First-in

First-Out (FIFO), et l’autre sur le multiplexage temporel (TDM). Pour ces deux implé-

mentations, les obligations de preuve sont remplies et certiőées par le noyau de Coq. De

plus, grâce à CoqDRAM, nous proposons un nouvel algorithme d’ordonnancement DRAM,

appelé TDMShelve, qui améliore et étend les travaux existants sur l’arbitrage TDM dy-

namique à conservation de travail. TDMShelve exploite les informations relatives à l’état

interne de la mémoire lors de l’ordonnancement des requêtes, offrant un bon compromis

entre prédictibilité et latence moyenne pour les systèmes temps réel à criticité mixte. Le

fait qu’un algorithme aussi complexe que TDMShelve ait pu être conçu et prouvé dans Coq-

DRAM montre que cette approche peut être utilisée de manière réaliste pour concevoir des

algorithmes d’ordonnancement DRAM complexes de façon őable et rigoureuse.

Enőn, nous avons relié les algorithmes écrits dans CoqDRAM à un environnement de

simulation externe. Le fait que les simulations se déroulent sans déclencher d’erreurs liées

au timing ou à la correction des protocoles valide davantage notre modèle CoqDRAM et

renforce la conőance dans la formulation correcte des critères de correction.
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Chapter 1

Introduction

Real-time systems are computing systems that are sensitive to time, i.e., not only computa-

tions need to produce the correct results (a property also known as functional correctness),

but also need to happen at the right time (i.e., timing correctness).

As an example, consider an airplane performing an automatic landing, a common proce-

dure for airplanes to land in low-visibility conditions, i.e., when pilots cannot rely on their

eyes to perform a manual landing (i.e., a visual landing), usually due to the presence of

intense fog over the runway. Such a procedure relies on a system called Instrument Landing

System (ILS), which includes several radio transmitters placed near the runway, as shown

in Figure 1.1. In that situation, the computers in the airplane have to process the radio

signals transmitted by the ground equipment and calculate which actions the plane must

take in order to follow the right directions, which could include both lateral and vertical

corrections. Moreover, not only the computers have to be able to calculate the adequate

direction inputs, but they have to do that precisely at the right instant. If the computer

takes too long, for instance, than the airplane will already be far from the position where it

was when the data was initially received, and the correction will happen too late. Potential

Figure 1.1: Instrument Landing System (ILS) for automatic landing [1].
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consequences of this include the plane missing the descent line - also called glide path ś and

having to perform another landing attempt (which is expensive manoeuvre for airlines and

may delay arrival, thus disturbing passengers). In the worst-case scenario, the plane could

not be able to recover and be forced to perform a dangerous landing or even hit the ground

or an object when ŕying too low.

In such systems, in order to ensure timing correctness, computations ś often referred to

as workloads or tasks ś have associated deadlines, which indicate the latest acceptable time

that the workload should őnish executing. Furthermore, a safety-critical (or just critical)

real-time system is a system in which a wrong computation or the non-respect of a deadline

could result in potentially catastrophic outcomes, such as loss of life or severe environmental

damage (e.g., airplanes, railway signalling systems, automotive cruise control, pacemakers).

Safety-critical systems are thus subject to strict safety certiőcation procedures, which aim at

providing functional and timing correctness guarantees. Software embedded into airplanes,

for example, have to comply with the DO-178C standard [2], which establishes multiple

pre-requisites to determine if the code can be deemed safe before it is deployed.

Computing systems such as the ones found in cars and airplanes (and in modern real-

time systems, more generally) are evolving in a way such that increasingly more functions

are delegated to computers instead of humans. Speciőcally, the recent advances in machine

learning and computer vision (among other technologies) allow tasks such as driving and

landing an airplane to be performed fully automatically. In more detail, functionalities can

be classiőed according to different criticality levels in such systems: in a modern car, for

instance, sub-systems such as entertainment, power management, and navigation are con-

sidered to be of low-criticality, while functionalities such as steering-assistance [3]; Collision

avoidance systems (CAS) [4]; Advanced emergency breaking system (AEBS) [5]; and Adap-

tive cruise control (ACC) [6] are considered to be of high-criticality. Figure 1.2 depicts

a number of computer systems present in an average modern vehicle. Computing system

that include tasks with different criticality levels are also referred to as mixed-criticality (or

multi-criticality) systems [7].

In airplanes, critical functions include sensing and processing data such as airspeed,

altitude, and temperature; calculating the necessary corrections to follow a given route; and

applying such corrections to the engines and control surfaces (i.e., the rudder, the elevators,

and the ailerons). Non-critical functions include some secondary cockpit displays, lighting,

and passenger infotainment systems.

Furthermore, in the past, each major functionality was deployed on a dedicated com-

puting node, each with its own memory system, conforming to a federated approach, or

federated architecture. Such strategy provided strong isolation guarantees to a given system,

2



Figure 1.2: Computer-performed functions in an average modern car [8].

i.e., tasks could interfere very little with each other’s data (thus ensuring spatial isolation)

or execution time (temporal isolation). This strategy, however, has inherent limitations, due

to the unreasonable increase in the number of wires, connectors, energy consumption, and

overall cost. These factors are sometimes put together and summarised by the term Size,

Weight, Power and Cost, or simply SWaP-C [9]ś[11]. In the automotive domain, for exam-

ple, modern cars have more than 20 million lines of code deployed on around 100 Electronic

Computing Units (ECUs), and the total value of electronic components ranges from 40% for

traditional vehicles up to 75% for electric vehicles [9], [12].

The most often adopted solution to the SWaP-C problem is to use multi-core devices,

which can act as power-full centralised computing units capable of simultaneously hosting

tasks of different criticality levels.1 Besides that, multi-core processors offer very good per-

formance by performing different computations simultaneously. Given the intense computa-

tional load brought by the recent technology trends in modern real-time systems, multi-core

systems are vital to achieve good performance while maintaining a reasonable SWaP-C.

Furthermore, although multi-core devices proposes a solution to the performance and

scalability problems [14], it comes with an inconvenience: contention to shared resources,

i.e., elements that can be accessed by all cores. Examples of such elements are: parts of

the memory hierarchy (e.g. Last-Level-Cache, interconnects, buses, and the main memory),2

1In the aviation industry, however, although existent, the use of multi-core is not yet widespread. Since the
certification procedure is stricter than that of the automotive industry, the adoption of multi-core processors
has advanced at a much slower pace [13].

2From a bottom-up perspective of the system architecture, the utilisation that individual tasks make of

3



and peripherals, such as user input devices (e.g., steering wheels, control sticks, and touch-

sensitive screens), sensors, actuators, and displays. In other words, tasks may interfere with

each other and thus break the isolation principle.

Therefore, a multi-core device ś when used in the context of real-time systems ś should

still provide the necessary means to achieve predictable timing behaviour. Predictability,

in the context of real-time systems, means łto be able to satisfy the timing requirements

of critical tasks with 100% guarantee over the life of the system, be able to assess overall

system performance over various time frames, and be able to assess individual task and task

group performance at different times and as a function of the current system statež [15]. Or,

more informally, it means that, at design time (of the respective computing platforms), all

possible scenarios are accounted for, including the worst-case. Since all processing delays

are accounted for beforehand, a predictable system enjoys the guarantee that the time it

takes to process/complete tasks will never exceed its calculated bounds. Moreover, besides

worst-case metrics, it is also important to be able to study and characterise the system’s

performance over time and identify different classes of latency.

Regarding predictability in multi-core devices, a typical solution to the previously men-

tioned spatial isolation problem is to organise the cache system (the őrst layer of the memory

hierarchy) into levels and assign individual lower-level caches for each core. Therefore, cores

only have to access the shared upper levels when they cannot őnd the address they are look-

ing for in their own individual lower level, which makes it less likely that contention occurs.

Besides cache organisation, memories (from shared caches to the main memory) can also be

partitioned, in a way such that different cores can only access a sub-region of the respective

resource ś thus (nearly) eliminating interference due to contention.

Regarding time, a scheduler is responsible for granting individual cores periods of ex-

clusive access to the shared resources. The instructions ś or series of steps ś performed by

a scheduler can be referred to as a scheduling algorithm. In order to guarantee predictable

timing behaviour in a real-time system, conservative scheduling algorithms are often needed,

which sacriőce average-case performance and bandwidth [16]ś[19] (i.e., how much data the

algorithm can transfer back and forth each second), for properties such as fairness (i.e.,

the guarantee that every core eventually gets a chance to access the resource) and non-

starvation (the guarantee that every request that has entered the system will eventually be

serviced). This dissertation, speciőcally, discusses the scheduling of memory accesses to the

main memory.

Predictability is often (indirectly) quantiőed in literature through a metric called Worst-

Case Latency (WCL). Or, more precisely, predictability refers to the underlying complexity

many of those shared resources at the processor level is too low to justify a dedicated use of them [14].
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behind the WCL formula and the proof that the formula is indeed correct. For a scheduling

algorithm used to grant access to the main memory, for instance, the WCL is a theoretical

upper bound on the time that a memory request waits to be serviced, i.e., to get its data

retrieved from the memory (if it is a read request), or to write its data to the memory (if

it is a write request). That metric is calculated by considering the most pessimistic out-

come in every scenario (e.g., assuming that memory requests always result in cache misses).

Algorithms that perform aggressive optimisations in order to get good average-case metrics

typically carry two consequences: 1) The WCL expression may be difficult to analyse, i.e.,

the algorithm takes so many decisions that it becomes difficult to derive a correct expression

for the WCL (thus making it unbounded); and 2) The WCL could be too pessimistic, which

might be a problem for systems that require rapid processing (as it is the case of airplanes

and cars). Literature typically refers to this compromise as the łperformance-predictability

trade-off ž [16]ś[19]. In other words, the more complex and performance-oriented a scheduling

algorithm is, the more burdensome it is to derive a correct and tight WCL.3

Speciőcally, this dissertation focuses on scheduling algorithms used to control access

to the main memory, typically a Dynamic Random-Access Memory (DRAM) device, and

the shared system bus. The hardware components executing such algorithms are memory

controllers and bus arbiters, respectively. Recently proposed DRAM controllers have been

tackling the performance-predictability trade-off by trying to offer the best of both worlds:

algorithms that offer good average-case performance while at the same time offering (rea-

sonably) tight and well deőned worst-case latency bounds [17]ś[37].

Culminating to the main topic of this dissertation, one very important aftereffect fol-

lowing this recent trend in real-time memory controllers is the increase in complexity of

the underlying WCL analysis. Lengthy paper-and-pencil mathematical developments are

hard to read and review, may rely on unclear assumptions and omit important parts of the

proof for the sake of conciseness and simplicity. Moreover, the discussion of WCL in recent

works proposing real-time memory controllers occupy 30% to 50% of the total space of each

article [38]. Although the content and decision procedures of proofs might be of interest

for őelds such as mathematics or physics, we advocate for the point of view that hardware

design should present them merely as artefacts. Therefore, the space that these proofs take

in the papers could be better used ś to include details about implementations, experiments,

3If the reader is unfamiliar with these terms, the following analogy might be helpful: Imagine that someone
is folding clothes to put into a drawer. If that person is prioritising speed, most pieces are successfully folded
quite rapidly, but the technique could get sloppy, and in the worst-case, the person would need to repeat the
move a couple of times to get the folding right, which would take a significant amount of time. Now imagine
that, instead, the person folds each piece slowly, but carefully, to the point that it is impossible to get it
wrong. On the average case, folding might be slower than in the previous case, but since the technique is
precise, a costly mistake never happens, i.e., the worst-case latency of the folding process is smaller.
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results, and other engineering aspects, for the sake of reproducibility.

1.1 What Is This Dissertation Exactly About ?

This dissertation investigates and proposes solutions to two problems:

1. How to improve an speciőc existing State-of-the-Art memory request scheduling algo-

rithm [39], [40], designed for real-time mixed-criticality systems?

2. How to address the development of memory controllers’ scheduling algorithms in a

trustworthy manner?

While the thesis proposal emphasised the őrst point, it did not take long for the second

problem to become apparent and thus become our main focus. In more detail, our interest

for trustworthiness and veriőcation problems arose from the observation that mathematical

developments in the őeld were burdensome, sometimes incomplete, and most importantly,

lacked readability. To address these issues, we propose a framework to guide the design

of formally proven DRAM controllers. To achieve that, we rely on a formal verification

tool ś Coq.4 More speciőcally, Coq is a theorem prover ś a formal system comprised of a

programming language and features to interactively prove logical properties about programs.

We use Coq to formalise the meaning of correctness for memory controllers, which con-

cretely, means that we write an interface for memory controllers that speciőes correctness

criteria, which in Coq are called proof obligations. In other words, any memory controller

implementation developed within the framework must present mathematical proofs ś which

are also developed and checked in Coq ś that these correctness criteria are met. Moreover,

in the framework, we model different sorts of logical propositions about memory controllers:

correctness accordingly to the Joint Electron Device Engineering Council (JEDEC) stan-

dards [41], [42], which deőnes the correct behaviour of a memory device; and other sorts

of properties relevant for real-time systems or concurrent systems, e.g., non-starvation (or,

differently put, that the WCL is a closed expression), fairness, and sequential consistency.

According to that approach, memory controllers developed within the framework no

longer have to explicitly present dense mathematical developments in order to support their

predictability claims. Instead, proofs about the WCL (or other properties) can be presented

as Coq artefacts and checked by its kernel.5 Hence, two direct consequences follow: 1) The

peer-review process becomes more trustworthy, in the sense that reviewers no longer have

4https://coq.inria.fr/
5The Coq kernel is highly trustworthy, a point that will be revisited in Chapter 2.
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to perform a thorough (and highly error-prone) check of paper-and-pencil mathematical

developments; and 2) The work of checking a proof is replaced by the work of checking if

the property has been correctly stated.

Finally, coming back to the őrst point of interest of this dissertation, we use our novel

framework, which will be from now on referred to as CoqDRAM, to propose a new DRAM

scheduling algorithm ś which we call TDMShelve. The algorithm builds on previous results

by Hebacche et al. [39], [40]. Hebbache’s algorithm őnds itself in the class of algorithms that

try to offer a good compromise between performance and predictability for multi-criticality

systems: while high-criticality tasks are guaranteed to őnish execution before a determined

upper bound, low-criticality tasks are executed in the time that the memory őnds itself idle.

In summary, we improve that algorithm, which previously considered the main memory

device as a black box, to take the internal state of the DRAM device into consideration when

taking scheduling decisions. Thus, we ensure better performance for non-critical workloads

while simultaneously guaranteeing the same upper bounds for the execution time of critical

workloads.

1.2 Contributions

Below, we list the scientiőc outcomes of this PhD thesis:

• CoqDRAM [43], a novel framework to design and explore DRAM scheduling algo-

rithms. The framework contains a generic and reusable model of DRAM devices in

the form of a formal speciőcation that can be reőned through actual implementations.

The speciőcation carries correctness criteria (as proof obligations in Coq) of different

sorts: timing and functional correctness according to the JEDEC standards [42], and

higher-level properties, such as fairness and sequential consistency;

• Two Proof-of-Concept (PoC) DRAM scheduling algorithms implemented in CoqDRAM:

one based on the First-In First-Out (FIFO) arbitration policy and the other on Time

division multiplexing (TDM). For both, proof obligations are met and certiőed by Coq’s

kernel;

• TDMShelve ś a novel DRAM scheduling algorithm developed with CoqDRAM. TDMShelve

builds on previous work by Hebbache et al. [39], [40];

• A methodology to validate CoqDRAM implementations. We use the code generated

by Coq’s extraction mechanism as a plug-in replacement in an existing cycle accurate

DRAM simulator ś MCsim, developed by Mirosanlou et al. [44].
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1.3 Organisation

The remainder of this dissertation is organised as follows:

Chapter 2 introduces ubiquitous technical concepts. It is divided into 3 sections: Sec-

tion 2.1 introduces key concepts about real-time systems, including deőnitions, notions about

multi-core systems, and contention to shared resources; Section 2.2 takes a deeper look into

an speciőc element of the memory hierarchy ś DRAM devices, which is the main focus of this

dissertation; and Section 2.3 introduces the fundamentals of formal veriőcation and Coq.

Next, Chapter 3 presents and discusses related work and motivates our approaches by

discussing the problems found in the development of State-of-the-Art real-time memory

controllers.

The presentation of our novel technical contributions begins in Chapter 4, with a high-

level overview of our framework’s architecture and rationale. Next, Chapters 5 and 6 detail

how the framework is designed and used, respectively. Chapter 6, more speciőcally, details

the two PoC implementations and brieŕy discusses proof strategies. Furthermore, Chapter 7

describes a validation experiment in which we run proved Coq-generated code in an external

simulation environment in order to further build conődence that the speciőcation is correct.

Chapter 8 presents the features most recently added to CoqDRAM, which aim to improve

the re-usability aspect of the framework. Chapter 9 follows by presenting our novel algorithm,

TDMShelve, which leverages these new features.

Chapter 10 concludes this dissertation by presenting łbig picturež point-of-view of the

research, reŕects on what has been accomplished, and concludes by suggesting promising

future work directions.

Appendix A details a research effort in which we explored an equivalence łlinkž between

CoqDRAM algorithms and their łhardware versionsž written in Cava ś a Coq DSL for

hardware design.
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Chapter 2

Background

2.1 Real-Time Systems

Several deőnitions for the term łReal-time Systemž (RTS) exist. Stankovic [45] deőnes it

as follows: łReal-time systems are defined as those systems in which the correctness of the

system depends not only on the logical result of computation, but also on the time at which the

results are produced.ž Arguably, the most important requirement for system of such type is

the respect of strict deadlines ś deőned informally as the latest date (time) that a processing

unit should receive an answer from the computing system (i.e. have its calculations őnished,

and/or its requests serviced).

Real-time systems might be further classiőed by the severity of a deadline miss: while

hard real-time systems consider a deadline miss as a total failure; soft real-time systems

consider that the usefulness of a result degrades after its deadline, thereby degrading the

system’s quality of service (QoS) [46] (but not characterising a total failure).

More speciőcally, in this work, we are interested in the challenge of meeting such real-

time requirements with multi-core processors. As brieŕy mentioned in Chapter 1, multi-

core architectures rose to prominence due to their signiőcant beneőts w.r.t performance,

lower clock rates, and energy efficiency; compared to single-core processors [47]. A basic

requirement for using multi-core architectures for real-time applications, however, is that the

timing behaviour of the processor should be predictable, i.e., it must be possible to determine

an upper bound of the maximal execution time of a task, or Worst-Case Execution Time

(WCET), which is guaranteed to hold. The main obstacle to achieve predictable behaviour

in a multi-core architecture is contention due to shared resources ś of which the memory

hierarchy of a processor is a key part.
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2.1.1 The Memory Hierarchy & Contention

To go deeper into how the memory system works, we start with registers. Registers are used

to hold values during the execution of all sorts of instructions inside a processor. Registers

provide the fastest access to data in the memory hierarchy (typically just 1 clock cycle, in

the case of a pipelined processor). Each core possesses an individual set of registers, which

are thus not subject to contention by other cores.

Next, since there are only about a few dozens to a couple of hundred1 32-bit or 64-bit

registers in a core, whenever a core has to manipulate larger chunks of data or instructions,

it reads and writes from memories called caches. Modern caches are organised in levels:

each processor typically has two exclusive L1 caches, which are not shared with other cores.

While one of the two L1 caches is exclusively used to store instructions, the other is used

exclusively to store data (in some special cases there might be a single L1 cache used for

both data and instructions). L1 caches are small and typically range between 16KB to 64KB

and provides the fastest access of all caches. The following level, L2, is larger (in size) than

L1, ranging from 256KB to 2MB, and it may or may not be shared between cores. Today’s

processors often have an L3 level and rarely an L4 level [49]. The highest cache level in a

processor is called the Last Level Cache (LLC), and is typically shared among all processors.

If some data or instruction is not found in the L1 cache, then cores look for it in the L2

cache, and so forth.

Both registers and caches are built with static random-access memory (SRAM) technol-

ogy, a type of volatile memory, i.e., it holds its data as long as it is powered on. Thanks to

how SRAMs are built, accesses to registers and caches are fast: register access takes only one

clock cycle on pipe-lined processors, and access to data present in the caches takes from two

to ten clock cycles (depending on the level). Speed, naturally, comes with a price: SRAMs

are signiőcantly more expensive than other technologies used in lower levels of the hierarchy.

Whenever a processor tries to access a given memory address, either the address it wants

to read from or write to is already in the cache, or not (since the cache is limited in size, it

will not always be possible to store every data or instruction needed by the program). If the

address is in the cache, it is said that the access was a cache hit ; if not, then it is a cache

miss. In the case of a cache miss (i.e., the address to be read from or written to was not

present in any of the levels, from L1 to LLC), the data must be retrieved from (or written

to) the main memory. Figure 2.1 [50] illustrates how the memory hierarchy is organised.

In the őgure, note the terms łprimaryž and łsecondary storagež. Primary storage consists

1The actual number of registers on a core varies greatly. While simple processors such as the ARM
Cortex-M3 [48] – often found in micro-controllers – only has 17 registers 32-bit registers, a modern x86_64
processor have around a hundred.
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Figure 2.1: The Memory Hierarchy [50].

of the upper layers of the memory hierarchy, closer to the processor. Elements of primary

storage are (almost exclusively) made of volatile memory, used by the processor to handle

data during the execution of programs.

The main memory ś the last layer of primary storage in a computer ś is built with

Dynamic Random Access Memory (DRAM) technology, which is also a type of volatile

memory that is slower and cheaper than SRAM. Typically, DRAM memories are some

orders of magnitude larger than SRAMs, with its capacity ranging from 8GB to 64GB (for

the DDR4 generation). Section 2.2 is dedicated to DRAMs, further detailing their internal

structure and functioning.

Finally, below the main memory, we őnd secondary storage units (or external memory),

which are non-volatile memories, i.e., data that does not get erased when the device is

powered down (which is why it is also called permanent storage). Following the trend

seen before, because it is cheap, modern computers typically have two orders of magnitude

more secondary storage than all of the primary storage. However, it is signiőcantly slower:

while the access time per byte for primary storage is measured in nanoseconds, accesses to

the secondary storage are measured in milliseconds. Note however, that real-time systems

may not include permanent storage at all. In fact, following the recent technological trend,

real-time embedded computers prefer to store elements in cloud-based services rather than

carrying additional hardware for local storage.

The main obstacle to achieve predictable timing behaviour in a multi-core architecture

is contention to shared resources. Examples of shared resources on commercial multi-core

processors are: the shared levels of the memory hierarchy (e.g., system bus, memory bus
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and controller, main memories, caches), Direct Memory Access (DMA) controllers, Graph-

ics Processing Units (GPUs), interrupt controllers, support on-chip logic (e.g., coherency

mechanism, Transaction Look-aside Buffers), I/O devices, et. cetera [51].2 Different appli-

cations running simultaneously on different cores may łcompetež for exclusive access to such

shared resources, conforming inter-task interference, which have to be carefully examined

for a multi-core architecture to be considered real-time compatible.

Shared resource Mechanism

System bus
Contention by multiple cores
Contention by other device - IO, DMA, etc.
Contention by coherency mechanism traffic

Bridges Contention by other connected buses
Memory bus and controller Concurrent access

Memory (DRAM)
Interleaved access by multiple causes address set-up delay
Delay by memory refresh

Shared cache

Cache line eviction
Contention due to concurrent access
Coherency: Read delayed due to invalidated entry
Coherency: Delay due to contention by coherency
mechanism read request by lower level cache
Coherency: Contention by coherency mechanism on this level

Local cache
Coherency: Read delayed due to invalidated entry
Coherency: Contention by coherency mechanism read

TLBs Coherency overhead

Addressable devices

Overhead of locking mechanism accessing the memory
I/O Device state altered by other thread/application
Interrupt routing overhead
Contention on the addressable device - e.g. DMA,
interrupt controller, etc.
Synchronous access of other bus by the addressable device (e.g. DMA)

Pipeline stages Contention by parallel hyperthreads
Logical units Contention by parallel applications

Other platform-speciőc effects, e.g. BIOS Handlers, Automated task
migration, Cache stashing, etc.

Table 2.1: List (non-exhaustive) of possible sources of interference due to contention in a
multi-core systems [51]. Highlighted cells represent contention phenomena relevant to this

dissertation.

Table 2.1, reproduced from a survey by Kotaba et al. [51], provides a comprehensive

overview of undesired shared-resource contention phenomena affecting temporal predictabil-

ity in multi-core processors. In this dissertation, we focus on the problem of contention on

2Even in single-core processors, accesses to shared resources by parallel tasks can cause interference, since
the ordering of accesses can vary significantly. With speculative hardware micro-architecture mechanisms
like caches, out-of-order execution, or branch prediction, predictability degrades [47].
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the main memory ś DRAM devices ś but also the system bus, memory bus, and memory

controller; all highlighted in green in Table 2.1.

2.2 DRAM

DRAM devices are multi-dimensional structures, where each element capable of storing a

bit is a called a cell. A single DRAM cell is depicted in Figure 2.2: it is made of a CMOS

transistor and a capacitor (T and C in the őgure, respectively).

(a) Write “1” operation: word line is powered
up, allowing current to flow through the

transistor. If Vbitline > VCinitial
, the capacitor

will charge.

(b) After writing, the cell will retain the written
bit, but not indefinitely, since the capacitor

slowly loses charge due to the leakage current in
the transistor.

(c) Reading operation: word line is powered
up, allowing current to flow from the charged
capacitor to the bit line. After reading, the
capacitor is fully discharged and now stores
bit "0", meaning that the read operation on

DRAM cells is a destructive process.

Figure 2.2: Reading and writing in DRAM cells.
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The basic operation of a DRAM cell can be described as follows: to write a "1" bit into

the cell (a situation shown in Figure 2.2a), one must provide power to word line, which con-

sequently closes the transistors and allows current to ŕow from the bit line to the capacitor,

or vice-versa. If Vbitline > VCinitial
(which will always be true during a write operation, for

reasons discussed further), current ŕows from the bit line to the capacitor, charging it to a

value close to Vbitline, thus representing binary "1".

Next, if the word line is powered down, current stops ŕowing through the transistor

and the capacitor remains charged (with a binary "1", in the case from Figure 2.2b). It is

important to note, however, that the capacitor does not remain charged indeőnitely, since it

slowly loses charge due to leakage currents through the transistor.

Finally, if a read operation is to be performed on the cell, word line needs to be powered

up again, which allows current to freely ŕow through the transistor, as shown in Figure 2.2c.

If VC > Vbitline, then current ŕows from the capacitor to the bit line, thus representing a

binary "1" being read. Note that during the read process, the capacitor discharges, which

means that reading from cells is a destructive process (i.e., at the end of the transaction, the

charge over the capacitor, VCfinal
, is zero).

Figure 2.3: Reading DRAM cells. Powered-up line/Charged capacitor/Voltage values.

Furthermore, as it can be seen in Figure 2.3, multiple cells are organised in rows and
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columns, and read or write requests operate on entire rows at once. In order to read a

line, all bit-lines are precharged at half of the supply voltage of the DRAM (1.5V in the

example in the őgure). Then, the word-line of the requested row is connected to the supply

voltage (3V in the example), which make the transistors’ gate close, allowing current to

ŕow. Consequently, all cells whose capacitors are charged (representing bit ł1ž) will transfer

charge to the bit-line, and all cells with empty capacitors (representing bit ł0ž), will receive

charge from the bit-line. The (small) voltage ŕuctuations in the bit-line are then detected by

differential ampliőers, or sense amplifiers ś which have the circuitry to store the information

if the cell contains a ł1ž or a ł0ž. Again, note that the read operation is destructive, i.e.,

the data stored in the sense ampliőer needs to be written back into the cells before another

row is read. The write operation is very similar: the word-line (row) is activated, but the

charge to the bit-lines comes from a memory request ś which will then be stored in the cell

capacitors.

Figure 2.4: DRAM chip structure.

We call a two-dimensional grid of memory cells a bank. A single DRAM device has

multiple banks (8 in DDR3 and 4 to 16 in DDR4).3 The full structure of a DRAM chip,

abstracting from individual cells, can be seen in Figure 2.4. In the őgure, notice the Row-

buffer, a per-bank cache-like mechanism: it stores the last accessed row of the bank, which

can then be accessed with smaller latency (i.e., memory requests that target the same row

in the DRAM will enjoy faster access). Hence, a memory request can either be a row-hit or

3DDR4 banks are further grouped into bank-groups, which makes DDR4 devices’ logical structure four-
dimensional. More on that later.
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row-miss, much like a cache, with variable latencies. Furthermore, each bank includes row

and column decoders, which take a physical address coming from the memory controller and

decodes it into row and column.

Moreover, the top-most level in the logical structure of the DRAM is a rank. Each

rank has its own command, address and data buses pins. Independently from its logical

structure, ranks are also divided in chips (the rectangular structures that can be typically

seen in commercial DRAM modules) ś which are 8-bit wide. Each rank has 8 chips, which

makes the ranks’ data-bus 64-bit wide ś the size of a single transaction.4

Figure 2.5: The connection between cores and the memory.

The memory is effectively controlled through commands sent by the memory controller,

as shown in Figure 2.5. More generally, Figure 2.5 shows how the memory controller connects

processors to the memory device. Processors issue their requests to a common bus, usually

controlled by an arbiter implementing some kind of handshake protocol, such as the AMBA-

AXI5 or AMBA3-AHB protocols.6 Then, if accepted by the protocol, the bus arbiter redirects

requests to their target destination ś the DRAM device, in this case. The DRAM controller

(which has its role explained in more detail in the following section), connects to the memory

device via three buses: 1) the address bus, which contains encoded information specifying

which bank-group, bank, row, and column are to be accessed; 2) the command bus, which

contains information about which operation is to be performed on the device; and 3) the bi-

4Bear in mind that chips are not relevant for addressing though, i.e., a single DRAM address is simply
divided between chips and all chips are accessed simultaneously to compose the 64-bit data.

5https://developer.arm.com/documentation/ihi0022/latest/
6https://developer.arm.com/documentation/ihi0033/latest/
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directional data bus, which transports data back and forth. Moreover, the DRAM controller

can also communicate with the bus protocol through additional signals. For example, if the

memory controller decides to stall the arrival of requests (because its request queue might

get full, for example), then it might use a łstallž signal to communicate the stall condition

to the bus arbiter.

The functionality of DRAM devices is described in the JEDEC standards [42]. Speciő-

cally, the state of a DRAM device is speciőed in a per-bank manner: each bank is a state-

machine, with transitions being triggered by DRAM commands sent by the memory con-

troller. Figure 2.6 ś a close reproduction of the state-machine speciőed in the JEDEC DDR4

standard [42] ś shows a simpliőed bank state machine.7

Figure 2.6: DRAM State Diagram.

As it can be seen, there are two łresting statesž in the state diagram, in the sense that

7For simplicity, Figure 2.6 does not include details about the initialisation procedure and the following
mechanisms: calibration, write levelling, self refresh, Per DRAM Addressability (PDA) mode, Power Down

mode, and configuration of registers. Consult the JEDEC DDR4 standards for detail about these proce-
dures [42]. In our work, we only consider the DRAM in a normal operating state, i.e., after initialisation,
calibration, and mode configuration. Since we are mainly interested in timing properties, we consider that
the critical operations, which may affect predictability and performance when actually running software,
take place on the running state of the device.
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the memory can stay in such states as long as it remains łundisturbedž: IDLE and ACTIVE.

A bank is said to be IDLE when there is no row loaded into the row buffer, and it is said to

be ACTIVE when there is a row in the row buffer. As one can see in the őgure, there are a

handful of different commands types:

• ACT commands, also called Row Address Strobe (RAS), are used to load a row into the

row-buffer;

• READ (shortened as CRD) and WRITE (shortened as CWR), also called Column Address

Strobe (CAS) commands, read or write to a column address from an active row (the row

already loaded into the row-buffer), respectively. Note that CRD and CWR commands can

happen either from a BANK ACTIVE state or directly after another CWR or CWR command

(which is useful for read- or write-burst operations);

• Since loading a row into the row-buffer is a destructive process, the PRE command

writes back the content of the row-buffer into the cell matrix. A PRE is necessary

whenever a row-miss happens, i.e., when the controller tries to access a different row

than the one already loaded into the row-buffer of a given bank;

• PREA commands ś in a per-bank sense ś are equivalent to PRE commands, but they

precharges all banks at once;

• WRITEA (shortened as CWRA) and READA (shortened as CRDA) commands behave as stan-

dard CWR and CRD commands, but also automatically trigger a precharge procedure

(the łAž at the end stands for Auto-Precharge);

• REF commands are periodically needed to recharge cell capacitors in a given row of the

bank. This is due to leakage currents in both the capacitor and transistor in the cell.

The memory itself keeps a counter of which row has to be recharged, and the controller

only has to issue the REF command at the right instant.

Furthermore, for the memory to function correctly, the JEDEC standard establishes

several constraints on how far apart in time different commands must be (i.e., lower bounds

on the time elapsed between commands), which are summarised in Table 2.2, for two speciőc

devices ś a DDR3 and a DDR4 device. These constraints come from physical characteristics

of transistors and capacitors inside cells and the data bus. Note that while some constraints

apply only for commands sent to the same bank (intra-bank), some apply for all commands,

regardless of bank, and a couple apply just to commands sent to different banks (inter-

bank). In addition, for DDR4 devices, some constraints can have two values, with identiőers
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Symbol Description
DDR3-1600K

(in data bus clock cycles)
DDR4-2400U

(in data bus clock cycles)
Exclusively intra-bank

tRCD ACT to CWR/CRD 11 18
tRP PRE to ACT 11 18
tRC ACT to ACT 39 57
tRAS ACT to PRE 28 (min), 9× TREFI (max) 39 (min), 9× TREFI (max)
tWL CWR to data bus transfer 8 12
tRL CRD to data bus transfer 11 18
tRTP CRD to PRE 6 9
tWR WR data to PRE 12 15

Intra and inter-bank
tRD−to−WR CRD to CWR 9 12
tWTR End of WR transaction to CRD 6 s=3, l=9
tWR−to−RD CWR to CRD 18 s=19,l=25
tBURST Data bus transfer 4 4
tCCD CWR-to-CWR or CRD-to-CRD 4 s=4, l=6

Exclusively inter-bank
tRRD ACT to ACT 5 s=7, l=8
tFAW Four ACT window 24 30

Table 2.2: JEDEC timing constraints for a DDR3 and a DDR4 device. In the device name,
the number represents the device’s speed in MHz and the letter is the speed grade.

s (short) and l (long). The former applies to commands aiming at banks of different bank

groups, the latter to banks in the same group. Note also that the constraint tRAS is the only

one to impose both upper and lower bounds.

Data Bus Block

Command Bus ACT ACT WR RD PRE PRE ACT WR

Data Bus DATA DATA

Bank i ACT WR PRE ACT WR

Bank j ACT RD PRER1

R2

R3

tBURST tWR

tRCD tWL tWTR tRP

tRRD tWR−to−RD = tWL + tBURST + tWTR tRL

tRAS

tRC

tRTP

tRD−to−WR

tCCD

Figure 2.7: Example of timing constraints for a DDR3-800E device.

Commands and data: Bank i, Bank j

Constraints: Exclusively intra-bank, Inter- and intra-bank, Exclusively inter-bank

Figure 2.7 illustrates a valid sequence of commands sent to a DDR3-800E device (in the

sense that it operates according to the state machine described in Figure 2.6 and all timing

constraints in Table 2.2 are respected). To interpret the őgure, consider two arbitrary banks

i and j to be idle at the initial time instant (left-most clock cycle in the őgure). Moreover,

consider that the system is serving three distinct requests (more on how exactly the controller

services memory requests later): R1 is a write to bank i, R2 a read to bank j, and R3 again
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writes in bank i. The controller issues commands for all requests concurrently (in the sense

the processing of requests is interleaved), always respecting the timing constraints between

commands. All requests in the example are row-misses, since they are serviced with the

sequence PRE-ACT-CAS, altough the PRE command for requests R1 and R2 are not shown in

the őgure. Note that R3 targets a different row than R1 in Bank i, since it needs to issue

a PRE request. Bear in mind that in Figure 2.7, the arbitration, though valid, does not

correspond to any speciőc algorithm, as it simply illustrates a situation where all constraints

are respected. In the őgure, the depicted constraints assume values greater or equal to these

minimum values.

2.2.1 Memory Controllers

Memory controllers are hardware components connecting processing units (e.g. CPUs,

GPUs, DMA-mapped devices, etc.) ś also called requestors throughout this dissertation

ś to the DRAM. The controller receives memory requests from different sources as inputs,

and generates memory commands to service these requests. More generally, a memory con-

troller is usually responsible for the following tasks: 1) Address Mapping ś it maps physical

addresses received from processors to actual elements of the DRAM device, i.e., bank-group,

bank, row, and column; 2) Row-Buffer Policy ś it decides on how the banks’ row-buffer

will be managed; 3) Request Scheduling ś it implements a scheduling algorithm to decide in

which order incoming requests will be serviced; 4) Command Generation ś it generates the

commands to correctly service incoming requests; 5) Command Scheduling ś generated com-

mands can be further subjected to a scheduling algorithm, typically aiming at minimising

the average waiting time due to timing constraints; 6) Refresh Management ś it guarantees

that cells are periodically refreshed; and 7) It guarantees that the memory does not reach a

faulty state (which may occur if invalid commands are issued) and that timing constraints

are respected.

Figure 2.8 [28] shows an example of a memory controller ś a design proposed by Ecco et

al. [28]: note how incoming request, issued by processors, go through bank address mapping,

per-bank request queues, request scheduling, command generation (Bank Schedulers in the

őgure), and command scheduling (Channel Scheduler in the őgure). The controller in Fig-

ure 2.8 implements a speciőc algorithm [28], but its inclusion here is rather focused at giving

the reader a structural view of what components usually constitute a memory controller.

Outside of scheduling policies, the two most relevant features of the controller are ar-

guably Address Mapping and the Row-Buffer Policy. We discuss these two features in

greater depth. There are 3 strategies for the mapping: interleaved, shared, and private.
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Figure 2.8: A memory controller proposed by Ecco et al [28].

In interleaved bank mapping [52], each request accesses all banks on a single transaction. In

both shared [24], [26] and private [18], each request accesses a single bank on a transaction.

The difference is that in the latter strategy, requestors are assigned exclusive access to one

bank [28].

Regarding row-buffers, there are two main management strategies: the őrst is the closed-

row policy [20], [21], [52], [53]. Under closed-row, the memory controller appends all CAS

commands with the Auto-Precharge ŕag (CRDA and CWRA), which closes the utilised row

right after the CAS is executed. This simpliőes the timing analysis, because every request is

served with a simple ACT-CRDA, ACT-CWRA, ACT-CAS-PRE, or PRE-ACT-CAS command sequence.

However, this strategy is not optimised for bandwidth, since a request targeting an already

open row would need only a CAS, thus reducing the total latency needed for it to be serviced.

Conversely, the open-row policy [18], [24], [26] leaves the row buffer open for as long as

possible. The row buffer is only precharged if a REF must be issued, or if a row miss

happens. This requires the memory controller to keep track of the row currently open for

each bank. Incoming requests are then translated to either a CAS command (if the required

row is already in the row buffer) or to a PRE-ACT-CAS command sequence (if the required row

is not in the row buffer) [28], for example.
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2.3 Formal Verification

As mentioned in Section 1.1, the main problem we investigate and attempt to solve in this

dissertation is how to effectively design trustworthy real-time memory controllers? Since

critical (or mixed-criticality) real-time systems require a high level of assurance, we propose

to tackle the development of such components with the aid of formal methods.

Formal methods, or formal verification, are a set of techniques used to perform mathemat-

ical/logical reasoning about programs or systems. In order to perform such reasoning, pro-

grams must be represented as well-known mathematical objects, such as transition systems

or expressions in a programming language with formal semantics, which can, for instance,

be an implementation of some (evolved) variant of Alonzo Church’s λ-calculus [54] or Floyd-

Hoare’s logic [55]. In general, these two examples might be presented, more generically, as

two approaches to formal veriőcation: Model Checking and Deductive Verification. Keep in

mind, though, that although model checking and deductive veriőcation are two important

branches of formal methods, there are other approaches as well, such as symbolic execution,

abstract interpretation, and type systems. Here, we constrain the discussion to model check-

ing and deductive veriőcation due to their relevance and adoption in the problems discussed

in this dissertation.

Model Checking consists, őrst, in representing programs, systems, or hardware designs as

transition systems. There are several options regarding which exact mathematical model to

use, which are all different ŕavours of transition systems, but have different deőnitions and

applications, e.g., Büchi automata, Petri Nets [56], Finite State Machines (FSMs), Timed

Automata [57], Kripke Structures [58]. Next, the user speciőes properties to be checked

using a formal specification language (or a logic) ś which the program shall respect. Again,

there are different options for specifying properties about transition systems, such as Linear

Temporal Logic (LTL) [59] (which is very useful to state timing properties, such as fairness,

discussed in Section 1); Computational Tree Logic (CTL) [60]; TCTL [61] ś an extension to

the syntax of CTL to include quantitative temporal operators; and Property Specification

Language (PSL) [62].

The advantage of model-checking based veriőcation is that tools typically work in a

łpush-buttonž manner, i.e., fully automatically. In other words, given a model and a set of

properties described in a certain logic, the veriőcation tools will either: 1) successfully verify

that the property holds; 2) inform the user that the property does not hold, providing a

counter-example; or 3) not converge to a solution (which can happen because the problem

to be solved is computationally too large, a problem known as the state-space explosion).

The fact that the veriőcation effort is fully automated made the model checking approach
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a popular choice for verifying systems in industrial settings ś it is highly used in hardware

design, for instance, where design mistakes discovered post silicon tape-out can be extremely

costly, and should thus be avoided at all costs.

In summary, besides the model and property speciőcation languages, a model checker

includes a verification procedure, i.e., an intelligent algorithm that performs an exhaustive

search of the model state that determines whether the speciőcation is satisőed or not [63].

Formally, the model checking problem can be stated as:

▷ Let M be a state-transition system and let f be a temporal logic formula. The model

checking problem is to őnd all the states s ∈ S such that M, s |= f .

The origins of model checking date back to the early 1980s, when Clarke and Emerson [64]

introduced CTL and a corresponding veriőcation algorithm.8 The algorithm’s core works by

computing for each stat s the set label(s) of sub-formulas of f that are true in s. When the

computation of such sets is őnished, we will have that M, s |= f iff f ∈ label(s).

Because the algorithm explicitly accesses all the states of the transition system, this ap-

proach is also known as explicit-state model checking [63]. Since the number of states of a

model can be enormous, this approach might not be practical for large systems. Research

in both academia and industry performed throughout the years that followed have come

up with several major advances regarding the state explosion problem. These techniques

include symbolic model checking with binary decision diagrams (BDDs); partial order reduc-

tion; counterexample-guided abstraction refinement (CEGAR); and bounded model checking

(which we refrain from discussing in detail, for brevity). These techniques allowed model

checking to be a practical technique widely deployed in both research and industry.

Some examples of model-checking based veriőcation tools are: the UPPAAL model

checker [66] ś in which models are modelled as timed automata (graphically) and in a C-

subset (textually), and properties are written in TCTL; NuSMV [67] ś in which models

are deőned in its own input language (based on writing transition relations of őnite Kripke

structures as expressions in propositional calculus) and properties are written in CTL, LTL,

and PSL; SPIN [68] ś in which models are written in a language called Promela and prop-

erties are written in LTL; and TLC [69], TLA+’s model checker ś in which models and

speciőcations are written in TLA+’s own language.

The second approach to formal methods discussed here is deductive veriőcation. Deduc-

tive veriőcation aims at formally verifying that all possible behaviours of a given program

satisfy formally deőned, possibly complex properties, where the veriőcation process is based

on some form of logical inference, i.e., łdeductionž [70]. Several frameworks within this

8Model checking is also attributed to Queille and Sifakis, who independently developed a similar logic
and verification procedure in 1982 [65].

23



paradigm exist: for instance, to verify imperative and object-oriented programs, formal sys-

tems derived from Floyd-Hoare [55] logic have been developed. For functional programs,

formal veriőcation systems are based on (highly evolved) variants of the typed λ-calculus.

In this dissertation, we focus on the latter.

Typed λ-calculi are closed related to logic and proof theory via the Curry-Howard Isomor-

phism [71], which establishes a direct relationship between computer programs and mathe-

matical proofs. This isomorphism, or correspondence, can be summarised by the following

statement: ła proof is a program, and the formula it proves is the type for the programž [72].

The correspondence has been the starting point of a large spectrum of formal systems, de-

signed to act both as proof systems and as typed functional programming language. Such

formal systems are also called proof assistants, or theorem provers.

The veriőcation workŕow with theorem provers typically goes as follows: 1) write a

program using a typed functional programming language; 2) write a set of logical statements

(or predicates) about the program; 3) write a proof script to show that the program obeys

the stated properties (in the same language or using a more convenient language which uses

tactics to manipulate proof states). Each predicate about the program is also called a proof

obligation, and the whole set of proof obligations is a part of the formal specification.

In modern proof assistants, the degree of automation w.r.t proving statements varies.

While some tools offer none at all, some other can automatically prove a statement by con-

necting to SMT solvers ś engines specialised in automatically solving problems stated as

logical formulae ś here, we enter the realm of Automated Theorem Provers (ATPs) [73].

This kind of automation, however, is limited to statements involving well known decidable

theories, such as linear integer arithmetic, and Boolean satisfiability. Complex non-decidable

statements (which is the case of most interesting veriőcation problems) will very rarely di-

rectly beneőt from that sort of automation without at least some degree of human interven-

tion.

While theorem provers do not offer the same level of automation as model checkers, they

have several advantages:

1. Programs and speciőcations are typically written in a full ŕedged functional program-

ming language. In its core, speciőcation languages for (some) proof assistants typically

rely on calculi capable of encoding higher-order logic (HOL) (e.g., the Calculus of In-

ductive Construction [74]), which makes them very expressive and useful for reasoning

about undecidable problems;

2. Since formal proofs are usually not computationally intensive, deductive veriőcation

typically scales better than model checking, i.e., using quantiőed statements, and other
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techniques such as structural induction, one can prove properties about arbitrarily

large/parametrized systems;

3. Certiőed (proved) programs can be extracted to another language, which can then be

used as trustworthy components in larger developments;

4. Some proof assistants, speciőcally the one we use in this work, comply with the de

Bruijn criterion [75] ś which is said to be satisőed when the generation of the proof

(i.e. the part of the software that helps us construct the proof) and the checking of

the proof (i.e. the part of the software that checks whether a proof is correct) are

independent. In other words, one needs to trust just a small proof-checking kernel (of

around 5000 lines of code ś for the Coq proof assistant) in order to trust mechanised

proofs, which makes them very reliable. This is not the case for many automatic SMT-

solvers, which have a łtrusted code-basež of around half a million lines of code (e.g.,

Z3 [76] and CVC4 [77]).

In this work, particularly, we use the Coq proof assistant, which is based on the Calculus

of Inductive Constructions [74]. Furthermore, a compelling set of arguments on why to

choose Coq over other proof assistants has been presented by Adam Chlipala in Certified

Programming with Dependent Types [78], which is summarised here (presenting only the

most relevant arguments and without getting in too much detail):

1. Coq is based on a Higher-Order Functional Programming Language ś which allows

users to work with functions over functions;

2. Coq has full support for Dependent Types ś which allows users to include references

to programs inside of types and pass proofs as arguments to programs. For instance,

the type of an array might include a program expression giving the size of the array,

making it possible to verify the absence of out-of-bounds accesses statically [78];

3. Coq satisőes the previously mentioned de Bruijn criterion ś which means that only a

small kernel has to be inherently trusted;

4. Coq provides convenient proof automation ś which simpliőes the łengineeringž chal-

lenges of writing large certiőed software developments.

Next, we include a brief introduction to Coq, which attempts to convey an intuitive

notion of how the development of certiőed programs works in practice. Bear in mind that

the following text is more closely related to the program verification approach to Coq rather

than a pure mathematical use of the tool.
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2.3.1 Coq

One of the key Coq features we rely upon in Coq is Type Classes. A type class in Coq is,

in some regards, similar to abstract classes or interfaces from object-oriented programming

languages. It allows to specify a set of members (i.e., attributes and methods) that are

grouped together. As a running example, we will model a container interface ś similar to the

Container9 and Collection10, in C++ and Java, respectively. Listing 2.1 shows the container

interface in Coq.

Listing 2.1: Interface speciőcation for a container/collection.

Class container_t {T C : Type} := mkContainer {

append : T → C → C; (* append element to container *)

contains : T → C → bool; (* is element in container? *)

size : C → nat; (* get number of element in container *)

app_inc : forall (x : T) (c : C), size (append x c) = (size c).+1

app_in : forall (x : T) (c : C), contains x (append x c)

}.

The class container_t takes two type parameters, where T speciőes the Type of the con-

tainer’s elements (e.g., natural numbers, booleans, real numbers, other data structures, et

cetera) and C the type of the data structure holding those elements (e.g., linked lists, hash

maps, et cetera). The identiőer mkContainer is the class constructor ś a function used to

build instances of the type class. The member append is a function, taking an element of type

T and a container of type C as parameters, while returning a new container. The member

contains is a function with an element and a container as parameter that returns a boolean

(bool), while size expects a container as input and returns a natural number (nat).

Intuitively, it is clear what these functions are supposed to do. Still, in Java or C++

the meaning of the function is usually explained explicitly in comments or an additional

document. Coq, however, allows to make the expected behaviour explicit ś as illustrated

by the members app_inc and app_in. These members are proof obligations (POs), i.e.,

properties that every instantiation of the container class has to respect.11 They indicate

that the size of a container should increment by one when an element is appended and that

a newly appended element always has to be present in the container. The usage of type

classes is similar to classes in conventional programming languages ś they can be used as

9https://en.cppreference.com/w/cpp/named_req/Container
10https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
11The POs in Listing 2.1 are not exhaustive though, i.e., the correctness of container_t could be stated

through many other properties. app_in and app_inc are just examples of such properties.
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parameters in functions and other type classes, where its members can be used.12

Listing 2.2: Inductive list deőnition.

Inductive list (T : Type) : Type :=

| nil : list T

| cons : T → list T → list T.

We may now begin to write concrete container implementations. To hold elements, we

will use Lisp-style, polymorphic, inductive single-linked lists, deőned in Listing 2.2. The

inductive list is parameterised over type T, i.e., it can hold elements of any arbitrary type T.

Note that list is deőned by a recursive inductive type. In Coq, an inductive type, brieŕy,

is a data type for which one or more constructors are deőned. list, for instance, has two

constructors: nil ś used to build an empty list; and cons ś used to build a new list from

a single element followed by another list. The constructors of an inductive type can be

seen as functions used to build new terms of the inductive type. Moreover, inductive types

can be recursive, meaning that the type deőnition uses the deőnition of the type itself and

parametric over other types (categorising polymorphic inductive types). The list example is

both recursive and polymorphic.

Listing 2.3: A őrst attempt at implement an append function.

Fixpoint my_append T (x : T) (l : list T) : list T :=

match l with

| nil ⇒ cons T x (nil T)

| cons hd tl ⇒ cons T hd (my_append T x tl)

end.

Next, an append function can be implemented as shown in Listing 2.3. The recursive

function my_append takes an element x of the type parameter T and appends it at the end of

a list l ś which holds elements of the same type T. The core concept used in the function

deőnition is pattern matching : since list is a (recursive) inductive type, we can use a match

to reason by cases. When the list is nil (empty), then the resulting list will simply be the

12Furthermore, sometimes, instead of type classes, we use Coq Records. Records are simple structures
with fields – similar to C structs and record types used in other programming languages. In fact, apart
from type classes with a single method – so called singleton classes –, each type class definition gives rise
to a corresponding record declaration and each instance is a regular definition, i.e., a type class is a special
type of record. In short, the two important differences between both are: 1) Records support field syntax,
i.e., accessing individual fields directly from an object of the record type; and 2) Type classes employ more
advanced inference mechanisms. Overall, as a general rule of thumb, thanks to its advanced inference
mechanisms, type classes are often used to model interfaces that can be used abstractly, while records are
used more as a structure in the typical sense. Concretely, Chapters 4 and 5 explain, in our work, when and
why records have been used instead of type classes.
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new element x followed by an empty list (nil T); when the list is already made of an element

hd and the list tl (i.e., a cons), then the resulting list will be the őrst element (hd) followed

by a recursive call to my_append. The function will make successive recursive calls until an

empty list is passed as argument to my_append.

Listing 2.3 is not very readable, however. It is obviously burdensome to work with lists

using nil and cons. We would rather prefer to have a more intuitive notation system that

allows us to handle lists more visually. In addition, it is inconvenient to have to specify

the type of the constructor’s arguments each time ś it would be better if Coq already knew

that, within a function, whenever we refer to nil and cons, the type of elements is implicit.

Solutions to these problems are shown in Listing 2.4, in which we use two Coq features that

will ease the manipulation of lists.

Listing 2.4: Changing arguments and deőning notation.

(* Makes T an implicit argument of nil and cons *)

Arguments nil {T%type} : rename.

Arguments cons {T%type} : rename.

Infix "::" := cons. (* "cons a b" can be written as "a ::b" *)

Notation "[::]" := nil. (* "[::]" can replace "nil" *)

Notation "[ ::x1 ]" := (x1 ::[::]) .

Notation "[ ::x & s ]" := (x ::s).

Notation "[ ::x1 , x2 , .. , xn & s ]" := (x1 ::x2 ::.. (xn ::s) ..) .

Notation "[ ::x1 ; x2 ; .. ; xn ]" := (x1 ::x2 ::.. [:: xn] ..) .

There are (mainly) two things happening in Listing 2.4. First, the Coq command

Arguments allows us to change some aspects of arguments of previous deőnitions. Here,

we say that T will now be an implicit argument of nil and cons, i.e., it should be inferred

automatically from the type of elements held by the list. Second, Infix and Notation allow

us to deőne symbols that can be used instead of nil and cons. The ł ::ž inőx, for instance,

will allow us to write a :: b instead of cons a b.

The append function can now be rewritten as shown in Listing 2.5. Note that Listing 2.5

also uses the Section mechanism. Brieŕy, Section is a shortcut for writing multiple deőni-

tions that share the same parameters. Since we will deőne many functions using the same

type parameter T, we deőne a new Section, in which T is a Variable. When referring to

terms that were deőned inside of a Section outside of that same Section, every Variable

becomes a parameter.

Next, we implement functions contains and size (Listing 2.6). There is a twist, however:

my_contains, the implementation of contains, needs to compare elements of the parametric
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Listing 2.5: Rewriting the append function.
Section Implementation.

Variable T : Type. (* define a type to be used as parameter in

the following definitions *)

Fixpoint my_append_ (x : T) (l : list T) : list T :=
match l with

| [ ::] ⇒ [:: x] (* produce a list of single element x *)

| hd :: tl ⇒ hd ::(my_append_ x tl) (* hd followed by recursive call to

my_append_ *)

end.

type T (previously deőned through the command Variable, in Listing 2.5), i.e., it needs to

decide if two elements of type T are equal.

Listing 2.6: Implementing contains and size.

Context {EqT : ·EqDec T eq eq_equivalence}.

Fixpoint my_contains (x : T) (l : list T) : bool :=

match l with

| [ ::] ⇒ false

| hd :: tl ⇒ if (hd = x) then true else my_contains x tl

end.

Fixpoint my_size (l : list T) : nat :=

match l with

| [ ::] ⇒ 0

| hd :: tl ⇒ (my_size tl) + 1

end.

The problem is that T might be a type with no decidable equality, i.e., no algorithm is

known to determine if two terms of such type are equal. We must, therefore, tell Coq that

such decidable equality does exist. To achieve that, we use the command Context to introduce

EqT, an instance of the EqDec class. In other words, we affirm that within the current Section,

the decidability of elements of type T is true, as an axiom. Having EqT in the context allows

us to use a comparison between elements of type T in an if clause, i.e., since there is an

algorithm to decide if elements of type T are equal, we can write decision procedures based on

such comparisons. Later, if one wants to execute such functions, the actual type T must be

instantiated, and of course, a concrete instance of the EqDec class must also be provided for

the chosen instance of type T. For Coq’s basic types, these instances already exist and Coq

29



Listing 2.7: Proving my_app_inc.
Lemma my_app_inc :

forall (x : A) (l : list A), my_size (my_append_ x l) = (my_size l).+1.
Proof.

intros x l.
induction l.
{ cbn; reflexivity. }
{ simpl. rewrite IHl; rewrite !addn1; reflexivity. }

Qed.

can őnd them automatically. The actual reasoning behind the deőnitions of my_contains

and my_size being quite straightforward, we let the task of analysing their implementation

to the reader.

Having implemented all of the three functions speciőed in Listing 2.1, the only thing left

to do is prove that app_inc and app_in are true for our implementations (see Listing 2.1).

Listing 2.7 shows the proof of Lemma my_app_inc, a statement of the same type as app_inc.

The code between the keywords Proof and Qed is a proof script, written in a tactic language

called Ltac, which is implemented in OCaml and can be used to prove statements interac-

tively. After Proof, Coq goes into proof mode, where Ltac tactics can be used to manipulate

the proof state.

The proof of my_app_inc, speciőcally, is by induction on the structure of l, the inductive

list. In more detail, őrst, we use the tactic intros to give names to the variables bounded by

the forall quantiőer ś thus getting rid of the forall and continuing the proof for arbitrary

x and l. Next, induction l will create two sub-cases ś one for the base case (when the

list is nil), and another for the recursive case (when the list was constructed using cons).

Figure 2.9 shows the state of the proof after using the induction tactic. To the left of the

őgure is the editor (in which it is possible to see that the őle has been compiled up until the

highlighted line); and to the right of the őgure is the proof state.

Figure 2.9: Proof state after performing induction.

On the right side of Figure 2.9, above the grey horizontal line, are all of the known facts,
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i..e, everything in the local context. After executing induction l, there are three things in the

context: the type parameter T; EqA ś the instance of the EqDec class ś which allows Coq to

know that equality between terms of type T is decidable; and x, an arbitrary bound variable

of type T (introduced by the intros tactic). Below the horizontal line, there are two goals

to be proved: for the base case of the induction, one can see that l has been replaced by the

empty list ([ ::]), and for the recursive case, by t :: l, where t is an element of type T and l

is of type list T. We solve one case at a time by isolating them with curly braces ł{}ž in

the proof script. For the base case, we use a smart reduction tactic, cbn, which can compute

both sides of the equality up to 1 = 1, which can be solved by reflexivity, a tactic capable

of őnishing goals that involve equalities where both sides are syntactically identical.

For the recursive case, we őrst use another reduction tactic simpl to simplify the goal.

In this case, just by applying arguments (i.e., Beta reduction) on the left-hand side (LHS)

of the equality, Coq knows that:

▷ my_append_ x (t ::l) = t :: my_append x l,

And hence, that

▷ my_size (t ::my_append x l) = my_size (my_append_ x l)+ 1.

The right-hand side (RHS) can be simpliőed likewise. The state of the proof after simpli-

fying the goal can be seen in Figure 2.10 (note the induction hypothesis above the horizontal

line on the right hand side of the őgure). After that, it suffices to use the induction hypothesis

and apply a known arithmetic lemma, add1n, to get to the end of the proof. add1n, in mode

detail, states that (x + 1) = x.+1; it comes from Coq’s mathcomp library and establishes an

equality between addition with an unit (x + 1) and the successor function (x.+1). The proof

of my_app_in is very similar, and is therefore, omitted for the sake of conciseness.

Figure 2.10: Proof state after simplifying the recursive case of the induction.

Finally, having implemented the functions speciőed by the container_t interface and

proved that the proof obligations hold for the implementations, we can call victory and

instantiate the whole class container_t. Here, the advantage of having written functions
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with parametrized types becomes evident: we can instantiate the class for any type we want,

under the condition that a decidable equality exists for that type!

Listing 2.8: Creating instances of container_t.

Section CreatingInstances.

Instance my_container_nat : container_t := mkContainer

nat (* C : nat, type of elements *)

(list nat) (* T : list, type of data structure holding nats *)

(my_append_ nat) (* first function *)

(my_contains nat) (* second function *)

(my_size nat) (* third function *)

(my_app_inc nat) (* first proof *)

(my_app_in nat). (* second proof *)

Instance my_container_bool : container_t := mkContainer

bool

(list bool)

(my_append_ bool)

(my_contains bool)

(my_size bool)

(my_app_inc bool)

(my_app_in bool).

Instance my_container_natlists : container_t := mkContainer

(Datatypes.list nat)

(list (Datatypes.list nat))

(my_append_ (Datatypes.list nat))

(my_contains (Datatypes.list nat))

(my_size (Datatypes.list nat))

(my_app_inc (Datatypes.list nat))

(my_app_in (Datatypes.list nat))

End CreatingInstances.

In Listing 2.8, we instantiate container_t for three basic Coq types: nat, bool, and

lists of natural numbers, which is actually a list type identical to the one we have deőned

in this text, with type parameter instantiated with nat (such a type had actually already

been deőned in Coq’s standard library; we refer to the standard library implementation
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of the list as Datatypes.list). In the latter case, the type of elements of our inductive

list is a Datatypes.list nat, which makes it a two dimensional structure. Note that, even

though types have changed, we pass the same functions and proofs as arguments to create

all instances. Moreover, for all of these types, Coq can automatically őnd an instance of the

EqDec class, which deőnes the decidability of equality between terms.
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Chapter 3

Related Work & Motivation

First, in Section 3.1, we discuss the advantages and drawbacks of other approaches that

aim at verifying the correct behaviour of DRAM systems ś and compare these approaches

with our own. In other words, we discuss how the problem has been solved by other formal-

verification-based methodologies. Next, in Section 3.2, we rather look at how our methodology

(or similar) has been used to deal with related problems. Finally, before diving into the

technical contributions of this dissertation, Section 3.3 analyses what we describe as a general

lack of formalism in recent literature, a point that highly motivates the work described in

this dissertation.

3.1 Verification of DRAM Systems

The idea of applying formal property checking to DRAM controllers was őrst proposed by

Datta and Shinghal, back in 2008 [79]. They wrote a set of SystemVerilog Assertions (SVA)

to formally verify that the Sun OpenSPARC DDR2 controller1 is compliant with the DDR2

JEDEC standard. The problem is that the SVA properties are (arguably) stated in a less

natural way, i.e., there is a larger semantic gap between the temporal logics of SVA and the

natural language (English) used in the standard, compared to what can be accomplished

with a language such as Coq. Moreover, model checking SVA properties suffers from the

well-known scalability problem ś if a memory controller design is large, the model checker

may fail to converge.

More recently, Jung et al. [80] addressed the problem of automatically verifying whether

DRAM controllers or simulators conform to any given JEDEC memory standard. The work

is motivated by the recent increase in the number of different main memory standards ś by

1https://www.oracle.com/servers/technologies/opensparc-overview.html
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automatically verifying that a controller implementation conforms to a given standard, one

avoids the work of tediously checking if output traces conform to the standard. To achieve

that, they developed a formal mathematical model based on Timed Petri Nets [81], [82],

which contains DRAM states, transitions and timings. Moreover, they present a DSL ś

DRAMml ś for describing the memory functionality and timing dependencies of a JEDEC

standard. From a description written in DRAMml, an executable Petri Net is generated

automatically (through a correct-by-construction process), which can be used to perform

fast simulation-based validation of memory controllers and DRAM simulation models.

In 2022, Jung et al.’s work was extended by Steiner et al. [83], who proposed the genera-

tion of SVA from DRAMml ś which can be used to perform the formal property checking of a

memory controller ś for instance (instead of the previously used simulation-based validation).

In addition, like Datte and Shingal, Jung’s and Steiner’s work do not cover the validation of

scheduling algorithms (in terms of high-level properties), it is rather an approach to verify

that a memory controller conforms to the JEDEC standards.

While Jung’s and Steiner’s approach presents an effective way to automatically verify

controllers’ conformance to the JEDEC standards, it is limited to that. In other words,

the DRAMml description cannot be used to express properties of different nature. In our

approach, thanks to the expressiveness of Coq, we can use our model to not only verify

conformance to the JEDEC standards, but also to derive worst-case latency bounds and

prove high-level properties ś such as non-starvation, sequential consistency, handling of data

dependencies, and execution of atomic operations. Furthermore, a promising way to leverage

results from Steiner’s and Jung’s work would be to automatically generate Coq POs from

DRAMml. This would make it possible to extend CoqDRAM to cover several different

JEDEC standards. This is further discussed in Chapter 10.

Furthermore, the core of Steiner’s idea [83], i.e., capturing design speciőcations from

JEDEC standards and automatically generating SVA, had been őrst introduced by Kayed

et al. [84]. Kayed et al. describe the properties from the JEDEC standards using Timing

Diagram Markup Language (TDML). Kayed’s methodology, however, requires modiőcations

to the RTL implementation to insert the generated SVA and was not complete w.r.t the

transitions and timing constraints deőned in the JEDEC standards.

Li et al. [85] model a DDR3 device and a memory controller using Timed Automata (TA)

in the UPPAAL model checker [66]. The DRAM model captures timing constraints and the

controller model captures the underlying scheduling and mapping algorithms. Moreover, the

UPPAAL models are used to derive the Worst-case response time (WCRT) and Worst-case

bandwidth (WCBW), which are thoroughly checked against the output of a cycle-accurate

simulation tool under the same inputs, thus building conődence that the TA models are
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correct. The UPPAAL analysis reduces the WCRT bound by up to 20% and improve the

WCBW by up to 25% compared to the (then) state-of-the-art [86].

While Li et al.’s work successfully analyses worst-case metrics with a high level of conő-

dence, it has drawbacks: 1) The formalisation in UPPAAL is speciőc to one controller [27],

and modelling another controller with the same approach would require substantial work;

2) Due to state space explosion, UPPAAL fails to analyse the WCRT and WCBW of an

arbitrary mix of transactions, and the authors were forced to limit requestors to issue at

most one outstanding transaction (thus excluding the possibility of out-of-order cores in the

system) in order to keep the state space manageable; 3) Although the authors do validate

their models by comparing traces and worst-case metrics with the ones outputted by a cy-

cle accurate simulator, the models lack readability. Hence, it remains (arguably) hard to

get convinced that the TA models reŕect the actual DRAM states speciőed in the JEDEC

standards. Our work addresses all of the drawbacks mentioned above.

In an entirely different approach, Hassan et al. [87], [88] propose an automated framework

for simulation-based validation of memory controllers, called MCXplore. Differently than

the previous two approaches, MCXplore uses model checking (NuSMV [67], speciőcally) to

generate test plans/suites for memory controllers. MCXplore’s main advantage is the fact

that it is agnostic to the actual design of the memory controller.

While Hassan’s approach is quite valuable for generating meaningful test-benches, the

approach still relies on the effectiveness of validation engineers at translating test plans

(written in natural language) to temporal logic formulas, which serve as input to NuSMV

for the generation of the test templates. Moreover, nothing guarantees that the models

used to generate the test templates are correct against some sort of speciőcation (such as

the JEDEC standards). Conversely, the logical properties that deőne correctness in our

framework are plain and simple, and easy to check against the JEDEC standards. If the

model of a memory controller designed using our framework is incorrect in any way, then

the correctness formulas will simply not hold; but the correctness of the formulas themselves

are easy to check. In other words, our approach deőnes the meaning of correctness more

straightforwardly.

Furthermore, Sahoo et al. [89] have performed interesting research in formalising DRAM

cache controllers (DCCs) (DRAM modules can be stacked, conforming die-stacking tech-

nology, to build high bandwidth and low-latency memory, which can be used as last level

cache in a system). DCCs, however, different than typical memory controllers used to han-

dle main-memory DRAM, carry additional complexity, since not only the controller has to

manage DRAM commands and related timings, but also manage the content of caches (the

metadata). Given such complexity, the authors use bounded and symbolic model checking
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to verify safety, liveness, and timing properties about DCCs, expressed in LTL.

The authors succeed in modelling properties of different nature with LTL and verify

that multiple instances of DCCs comply (or not) with the stated properties. However, the

approach suffers from a scalability issue (as it is typical of model-checking-based veriőcation

projects). Beyond 64 rows per DRAM bank, the authors report that the main-memory of

the machine used to run the veriőcation was saturated (with 32 GB RAM). Moreover, the

authors do not propose a method to generate executable code or synthesizable RTL from

their models ś which makes its practical usability limited.

It is important to state the limitations of our approach as well ś the most important

one being arguably the process of proving properties. Although we do make an effort in the

design of our framework to implement some proof automation, it is still burdensome at times

to prove even the most straightforward properties. Moreover, programming in Coq requires

patience, as it has quite a steep learning curve.

3.2 How theorem provers have been used to deal with

related problems

Here, we look at how recent research has treated the problem of applying deductive veriő-

cation to related problems.

Coq, and other similar theorem provers, such as Isabelle/HOL [90] and F* [91] have been

used successfully to model and prove the correctness of complex systems. PROSA [92], for

instance, proposes a framework to model real-time task scheduling (including task properties,

scheduling policies, etc.), which allows to prove scheduling policies correct under a given set

of conditions using Coq. Guo et al. [93] go even a step further by connecting PROSA’s formal

model to an actual real-time operating system RT-CertiKOS ś thus proving the scheduler

implementation correct.

In 2020, Bozhko et al. [94] built a Coq framework, leveraging previous results from

PROSA, to formally reason about Response Time Analysis (RTA), and more speciőcally,

the ubiquitous principle of busy-window. The authors motivate their work by identifying

a lack for commonality and formality in literature, claiming that łthe general idea [of the

busy-window principle] has become part of the real-time folklore, spread across many papers,

where it is frequently re-developed from scratch, using ad-hoc notation and problem-specific

definitions.ž Moreover, they advocate that łpapers introducing novel RTA should not start

from first principles, but rather build on a well understood and general foundation [...].ž This

reasoning is coherent with the arguments we present in this work, which aims at providing
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a formal foundation for memory controller design. In 2022, Maida et al. [95] extended the

results from Bozhko et al. [94] by connecting the foundational RTA analysis to a larger

formal system used to produce łstrong and independently checkable evidence of temporal

correctness.ž

Several research groups and companies are promoting the use of Coq for the development

of trustworthy hardware. Researchers at Google have developed a plug-in replacement of the

cryptographic core of the OpenTitan2 silicon root of trust. The hardware is implemented

in Cava (described in more detail in Appendix A). Kami, a similar system, was őrst de-

veloped by Choi et al. [96] and later adopted by SiFive [97]. It has its roots in Bluespec,3

which also serves as the target language derived from Kami. The veriőcation procedure in

Kami is based on proving that modules refine a given speciőcation based on trace inclusion,

i.e., the speciőcation deőnes traces of observable events which have to be respected by its

implementation ś an approach similar to the one we adopt in this dissertation.

Following the same rule-based design approach, two recently proposed DSLs Koîka [98]

and Hemiola [99] extend the foundations of the Kami project. The former does so by

introducing semantics that can be used to prove performance properties, e.g., that a pipelined

system indeed behaves like a pipelined system. The latter proposes a method to prove the

serializability property of cache-coherence protocols.

Furthermore, ReWire [100] is also a DSL implemented in Haskell, which has a back-end

compiling to VHDL. The provability aspect in ReWire is quite ŕexible: logical properties

exported from Haskell can be proved in any theorem prover supporting inőnite streams, such

as Isabelle, Coq, and Agda [101]. In addition, the łődelityž of ReWire models, differently

than the previously mentioned Coq DSLs, can also be automatically checked against an

existing Verilog design with Yosys [102] by model-checking. CλaSH [103] is yet another

functional hardware description language that borrows both its syntax and semantics from

Haskell. Although CλaSH is an interesting project that has been used to develop several

complex designs, it overlooks the veriőcation problem. In this work, we explored using Cava

to propose a link between CoqDRAM developments and their hardware counterparts. This

exploration is further discussed in Appendix A.

2https://opentitan.org/
3https://bluespec.com/
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3.3 How proofs are typically written, and why we should

do better

Latency-analysis (or timing analysis, more generally) has always been a key element of

any work introducing new real-time hardware components. This is because the latency

introduced by the hardware logic has to be upper-bounded for it to be accounted in a task’s

Worst-Case Execution Time (WCET). Two important components that introduce signiőcant

latency in a system are the memory and the memory controller. Historically, timing analyses

w.r.t these components, along with proofs of conformance to the JEDEC standards, have

been done on paper, which can be hard to deal with, in more than one aspect.

We analysed the most-often cited (at the time of writing) real-time memory controllers in

the literature regarding the length of latency analysis/proofs [17], [18], [20]ś[22], [24], [27]ś

[29], [31], [32], [34], [104]. In each work, latency analysis takes from 30% up to 50% of the

total space of the paper. Although the content and decision procedures of proofs might be

of interest for őelds such as mathematics or physics, we advocate for the point of view that

hardware design should present them merely as artefacts. Therefore, the space that these

proofs take in the papers could be better used ś to include details about implementations,

experiments, results, and other engineering aspects, for example. Approaching the problem

through computer-aided formal methods allows us to properly treat proofs as artefacts and

hide the underlying mathematical developments from the reader, i.e., the formalisation can

be presented with the appropriate level of detail.

Moreover, these analyses are often presented for the simplest of cases, leaving out essential

details. As an example, Mirosanlou et al. [104] only derives static Worst-Case Latency

(WCL) for read requests, brieŕy arguing that the analysis for write requests is very similar,

which is therefore omitted. Work by Ecco et al. [28] proceeds in the same way, omitting the

proof of a lemma based on the similarity argument.

In other work, the timing analysis is based on assumptions that reduce the set of valid

scenarios. For instance, work by Guo et al. [34] describes their timing analysis as being

only valid for a subset of DDR3 devices.4 Work by Wu et al. [24] assumes that the task

under analysis runs non-preemptively on its assigned core, arguing that the analysis could

be easily extended if the maximum number of preemptions is known (although the claim is

not supported and details are not given).

Furthermore, works may base themselves on different sets of assumptions. It is therefore

hard for users of the design, readers, and reviewers to keep track of the assumptions within

4Although a footnote states that the analysis is still applicable if the right parameters are selected, the
claim is not supported.
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the paper, often scattered throughout and/or presented as side notes. It is even harder to

compare the set of assumptions that validate different real-time memory controller designs.

This issue is identiőed and addressed in a survey by Guo et al. [16], in which the set of

assumptions for a dozen real-time memory controllers is made explicit. As an example, in

order to compare the WCL analysis performed by Ecco et al. [28], the authors of the survey

had to perform a new auxiliary analysis applying the common assumption on the arrival of

requests used in related work.

Although we do not deem wrong nor contest the authors’ choices in each mentioned work,

we do see the points made in the paragraphs above as possible sources of untrustworthiness.

These points are resumed below:

• Proofs are not machine-checked, i.e., checking that the analysis is correct still depends

on human labour by the authors themselves and through peer-review. The inherent

difficulty, length, and incompleteness of the presented proofs makes peer-reviewing

a challenging task requiring expert knowledge. Regular users and readers also have

the deal with these complex proofs ś which should rather be presented as artefacts.

Oppositely, Coq proofs, besides being inherently more trustworthy, are also reusable to

some extent, meaning that new controller developments should beneőt from a library

containing components and proofs.

• Works often base themselves on different sets of assumptions. Since these assumptions

are often not highlighted or made explicit, it is difficult to keep track of the assump-

tions within the work itself, and to compare assumptions between different approaches.

Conversely, Coq forces one to mall assumptions explicit, and even allows to őnd them

automatically.

• The fact that there is no formal link between system implementation and the mathe-

matical abstractions used to perform timing analysis may also introduce untrustwor-

thiness. In other words, there is no guarantee that the paper and pencil analysis of

a system, or the implementation of a system, correctly captures the real behaviour of

the system. Using Coq, proofs and programs/models are tightly coupled.
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Chapter 4

An Overview of the Framework

The objective of this chapter is to discuss the top-level functionality of the framework pro-

posed in this dissertation ś CoqDRAM ś and the rationale behind each of its constituting

parts. Then, in the following chapters, we dive into the Coq implementation, design deci-

sions, nuances, and detailed functionality of each part.

Figure 4.1 presents an architectural view of the framework. In the őgure, each coloured

rectangle is a łlogicalž element of the framework, being encoded in Coq as either a type

class, a record, or merely a set of deőnitions grouped together. Moreover, names in paren-

theses/typewriter indicate Coq classes/records modelling the respective concept. Note that

the only elements that are not type classes or records are Interface Sub-Layer and Bank

Machine, which are rather just a set of deőnitions (types and functions) grouped together

to form a logical component.

We start by discussing the speciőcation part of the framework, followed by the implemen-

tation part. Moreover, as a clariőcation about naming elements, since we already refer to

the class Implementation_t as being the łImplementation Interfacež, we refer to everything

related to writing implementations, which reőne the speciőcation (i.e., proved scheduling

algorithms), as the łimplementation world ž and everything in the formal speciőcation as the

łspecification world ž.

Furthermore, throughout the discussion in the present and following chapters, we use

the term implementation to describe an actual algorithm that has been implemented and

proved. In the őgure, these are represented as circles. More generally, we use the verb

łto implementž interchangeably with łto refinež and łto instantiatež to describe the Coq

mechanism of instantiating a type class and discharging its proof obligations. Sometimes,

we use the term łabstract instancež referring to an implicit argument introduced in a Section

(see Listing 2.6).
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Figure 4.1: CoqDRAM Architecture.
łBuilding Blocksž/Data structures,

Main Logical Elements, Implementation-related Elements
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4.1 Specification

Command. Command_t is a record representing the type of memory commands (sent to the

DRAM device). Each command (as it will be shown in detail later in the text) contains an

issue date and a kind (i.e., whether it is an ACT, CAS, et cetera). Moreover, some commands

may also carry information concerning the underlying request from which that command

originated.

Command Trace. The framework is centred around the Trace_t class, which represents

the arbitrarily large sequence of commands sent to the DRAM device. Trace_t captures cor-

rectness criteria coming from the JEDEC standards as proof obligations over such sequence

of commands. Intuitively, it can be said that the łobjectivež of the entire framework is to

build a correct trace of DRAM commands.

Arbiter.1 The Arbiter_t class is used to build correct traces, i.e., concretely produce traces.

Note that, in the őgure, the black arrows denotes only a module dependency, i.e., the module

containing the trace deőnition must be compiled before the module containing the arbiter

deőnition. That makes sense, since an arbiter only makes sense if the deőnition of a trace

already exists. The Arbiter_t class is centred around a function that takes a non-zero natural

number n as parameter and produces a trace of commands of length n.

It is at this point that higher-level properties can be stated as proof obligations. For

instance, we impose a proof obligation on Arbiter_t saying that every request that has

arrived in the system must be eventually serviced (completed). In the most up-to-date

version of the framework (in development at time of writing), however, we adopt a different

approach: more generally, we deőne different classes of arbiters, all of which produce a

trace of commands, but impose different proof obligations on the traces they produce. For

example ś while a strict real-time controller might require completion for every request,

a mixed-criticality controller might abandon already pending low-criticality requests on a

mode change, or only accept requests above a certain criticality depending on its current

mode. Moreover, for controllers used in multi-processor systems, one might want to write

a controller that implements sequential consistency (or other memory consistency models)

between memory accesses.

Writing the infrastructure allowing the user to implement these different classes of arbiters

stating different high-level proof-obligation is ongoing work (at time of writing). The frozen

version of the framework only includes one mandatory proof obligation about non-starvation,

1In this dissertation, we use the term arbiter, interchangeably with scheduler, to refer to the actual
scheduling algorithm inside of a memory controller.
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i.e., every implementation has to present evidence (a proof) that requests cannot starve. For

now, we have also modelled an additional arbiter class, the one of sequential consistent

arbiters, in which the completion proof obligation is complemented by a proof obligation

stating that arbiters implement sequential consistency. Finally, Arbiter_t also deőnes some

handy proof obligations aimed at facilitating later proofs.

The bottom-most blocks in Figure 4.1 are also labelled as building blocks ś these are type

classes used to represent real life entities/data-structures (such as commands, requests, and

addresses) and useful abstractions (such as the arrival model).

System. The System_configuration class is a building block that is part of both speciőcation

and implementation worlds. It deőnes the system parameters, such as number of the banks

and bank-groups in the memory device, timing constraints values, and axioms guaranteeing

that the system is feasible (e.g., that timing constraints are non-zero, that there is at least

one bank and one bank-group in the system, et cetera)

Requestor. The Requestor_configuration class only contains a type declaration ś the type

of requestors (processing units capable of issuing memory requests). The rationale is that

designers should be able to represent requestors according to their needs. For instance,

for some classes of systems, requestors might have different criticality levels, while for oth-

ers, that is not the case. Like System_configuration, Requestor_configuration is part of

both the speciőcation and implementation worlds. For the speciőcation world, although the

concept of a requestor needs to exist, the actual requestor type is not relevant. In prac-

tice, an abstract instance of Requestor_t (i.e., an implicit parameter inside a Section) is

introduced throughout the speciőcation. In the implementation world, however, concrete

implementations need to reőne the Requestor_t type class, since algorithms may rely on

concrete information about the nature of requestors (such as a numeric łIDž, criticality level,

et cetera).

Arrival Model. Arrival_function_t is a class that models the arrival of memory requests

in the system. It is a function that takes an arbitrary non-zero natural number n as argument

and returns the set of requests that have arrived at that instant. The class also imposes a few

proof obligations that are helpful on later proofs. The assumption in Arrival_function_t

is that arriving requests have already been accepted by some arbitrary bus/interconnect

protocol.

Address. Address_t is a record containing őelds of custom deőned types, such as the type

of banks, the type of bank-groups, and the type of rows. Bear in mind that we do not

model columns as part of the address, since the current framework (at time of writing) does

not model data content (i.e., transaction/requests payloads). Although the delays related

44



to data transfers over the data bus are well taken into account, the data payload (either

write or read data) is not relevant for timing purposes. Therefore, it suffices to analyse a

request’s row to determine if it is a row hit or miss, and thus, calculate which commands

are needed to service the request. Modelling data, however, is something that could be done

in the future, as it would allow the framework users to write memory controllers capable of

reasoning about data integrity and error correction codes, for example.

Request. Request_t is a record representing the type of memory requests. Each request

contains an address, a kind (read or write), and an arrival date.

4.2 Implementation

Implementation Interface. The class Implementation_t deőnes a standard way to write

new controllers. In other words, it deőnes a sort of łskeletonž to write algorithms in the

form of őnite state machines. It includes the type deőnitions of states, set of initial states,

the transition function, and a recursive function that calls the transition function to build

a sequence of states. Each state of the state machine contains a list of commands, and at

each new state, a new command is appended into the previous list of commands. This is

the same as Trace_t, but without the proof obligations. Each call to this recursive func-

tion represents a bus clock transition on the real arbiter implementation. Differently put,

Implementation_t can be seen as the real engine that creates the trace of commands, while

Arbiter_t is its interface (speciőcation) containing correctness criteria (POs). Chapter 6

presents and details FIFO and TDM, two PoC command scheduling algorithms written

using the Implementation_t interface.

Next, the framework user developing a new memory controller can choose between two

paths: either instantiate Implementation_t directly by deőning a concrete transition function,

set of initial states, and internal state structure; or use the Interface Sub-Layer abstraction

ś to be presented next.

Interface Sub-Layer. Because writing complex scheduling algorithms with such low-level

abstraction is hard (i.e., via the state machine interface speciőed by Implementation_t), we

provide a second way of implementing scheduling algorithms. Interface Sub-Layer deőnes a

łstandard implementationž for Implementation_t, i.e., it deőnes a standard transition func-

tion, a standard set of initial states, and a standard structure of internal states to mimic the

evolution of the memory device. This standard transition functions uses a bank machine to

keep track of the internal states of each DRAM bank, including row-buffer status, timing

constraints between commands, and refresh timing.
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This represents an important change of paradigm: instead of delegating to the user the

work of proving that timing constraints between commands are respected, Interface Sub-

Layer relies on the bank machine to only allow valid commands to be available for scheduling

in the őrst place. That way, proofs about timing constraints and functional correctness are

written only once, and new scheduling algorithms do not have to reason at the granularity

of timing constraints and protocol correctness. Moreover, the only proofs left to do for

new developments are related to high-level properties, such as non-starvation, deőned in

Arbiter_t.

Bank Machine. As mentioned above, Bank Machine is a set of deőnitions that are useful

for keeping track of (mimicking) the state of the memory device. It contains type deőnitions,

including the type of timers to account for timing constraints and refresh operations, and

other state variables to keep track of things such as the row-buffer status and the direction

of the data bus. In summary, the two goals of a bank machine are: 1) to provide a function

to test if a given command can be issued to its respective bank at a given time t; and 2)

to provide a function that receives a command to be issued to the device (relying on the

hypothesis that such command is valid) and updates the state of the system accordingly

(i.e., increments or resets counters, changes bus direction, changes the status of the bank,

changes the information of which row is loaded into the row-buffer, et cetera).

Scheduling Options. SchedulingOptions_t is a type class used to customise the behaviour

of the bank machine. It deőnes, for example, the row-buffer policy to be used (closed or

open-page policy), which itself deőnes which commands are generated for each request.

Scheduler. Finally, Scheduler_t is a type class used in combination with the bank machines

in the interface sub-layer. While the bank machine manages the DRAM’s internal state,

Scheduler_t actually allows the user to write command scheduling algorithms. Different than

algorithms written directly by instantiating Implementation_t, instantiating the Scheduler_t

class provides a higher-level of abstraction. To do so, the class speciőes a function that can

only choose from a list of ready (valid) commands ś according to the bank machine. In

Chapter 9 we present TDMShelve, a new DRAM scheduling algorithm which implements

the interface described by the Scheduler_t class.
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Chapter 5

A Deeper Look into the Framework

In this chapter, we discuss the implementation of the framework following a bottom-up

approach (contrarily to the top-bottom view from the previous chapter). The reader is

encouraged to have read the background section on Coq (c.f. Chapter 2).

System

System_configuration is intended to capture the parameters of the memory device. When

presenting System_configuration, we take a step back and use the opportunity to discuss the

scope of the framework, more broadly. We clarify exactly which parts of the standards we

are modelling and which are excluded. We also add a brief discussion about other JEDEC

standards. To begin, Listing 5.1 shows the deőnition of the System_configuration type class.

System_configuration starts by deőning the number of bank-groups (BANKGROUPS) and

banks (BANKS) in the system quite straightforwardly. Note the two proof obligations (POs)

stating that there must be at least one bank-group and at least one bank in the system (in

Lines 3 and 6, respectively). Moreover, this representation allows the framework to model

controllers for both DDR3 and DDR4 devices, as DDR3 devices can be seen as a special case

of DDR4 devices with a single bank-group, regarding most aspects.1

System_configuration also deőnes command-related timing constraints that can be found

in the JEDEC DDR3 [41] and DDR4 [42] standards. We require all these timing constraints

1More precisely, compared to DDR3, DDR4 offers higher module density and lower voltage requirements,
which allows smaller timing constraints. Furthermore, unlike previous generations of DDR memory, pre-fetch
has not been increased above the 8n used in DDR3; the basic burst size is eight 64-bit words, and higher
bandwidths are achieved by sending more read/write commands per second. To allow this, the standard
divides the DRAM banks into two or four selectable bank groups, where transfers to different bank groups
may be done more rapidly [42]. Although in the physical world these differences are non-trivial, in terms of
a software model, these differences can be seen as only distinct values of timing constraints, and a DDR3
device is therefore a special case of a DDR4 device with only one bank-group and different timing constraints.
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Listing 5.1: Deőnition of System_configuration (see Table 2.2).
1 Class System_configuration := {
2 BANKGROUPS : nat;
3 BANKGROUPS_pos : BANKGROUPS > 0;
4
5 BANKS : nat;
6 BANKS_pos : BANKS > 0;
7
8 T_BURST : nat; (* delay of a burst transfer RD/WR *)

9 T_WL : nat; (* delay between a WR and its bus transfer *)

10 T_RRD_s : nat; (* ACT to ACT delay inter-bank : different bank groups *)

11 T_RRD_l : nat; (* ACT to ACT delay inter-bank : same bank groups*)

12 T_FAW : nat; (* Four ACT window inter-bank *)

13 T_RC : nat; (* ACT to ACT delay intra-bank *)

14 T_RP : nat; (* PRE to ACT delay intra-bank *)

15 T_RCD : nat; (* ACT to CAS delay intra-bank *)

16 T_RAS : nat; (* ACT to PRE delay intra-bank *)

17 T_RTP : nat; (* RD to PRE delay intra-bank *)

18 T_WR : nat; (* WR end to PRE delay intra-bank *)

19 T_RTW : nat; (* RD to WR delay intra- + inter-bank *)

20 T_WTR_s : nat; (* WR to RD delay intra- + inter-bank : different bank groups *)

21 T_WTR_l : nat; (* WR to RD delay intra- + inter-bank : same bank groups *)

22 T_CCD_s : nat; (* RD/WR to RD/WR delay intra- + inter-bank : different BGs *)

23 T_CCD_l : nat; (* RD/WR to RD/WR delay intra- + inter-bank : same BGs *)

24
25 T_RRD_s_pos : T_RRD_s > 0;
26 T_RRD_l_pos : T_RRD_l > 0;
27 T_FAW_pos : T_FAW > 0;
28 (* ... more POs of the same kind ... *)

29
30 T_RRD_bgs : T_RRD_s < T_RRD_l;
31 T_WTR_bgs : T_WTR_s < T_WTR_l;
32 T_CCD_bgs : T_CCD_s < T_CCD_l;
33 }.
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to be positive. Moreover, timing constraints that depend on whether commands target the

same or different bank-groups have two versions: constraints ending with a ł_sž (for łsmall ž)

describe intervals between commands targeting different bank groups, and constraints ending

with a ł_lž (for ł longž) describe intervals between commands targeting the same bank group.

For coherence, we also require the ł_lž version of constraint to be strictly greater than their

_s versions (Lines 30 to 32).

Modelling refresh commands

Note that refresh commands are not part of the speciőcation (at this point). At őrst, as

it is typical in the literature, we considered refresh commands merely as additional time

interference and disregarded them in CoqDRAM. However, in a later stage, while deriving

hardware versions of our implementations (part of an exploration described in Appendix A),

we realised that refreshes were crucial for the correct functioning of real hardware compo-

nents, and thus they should be modelled in CoqDRAM. Moreover, refresh management is an

important algorithmic problem [105] for memory controllers, as the JEDEC standards allow

a certain degree of ŕexibility regarding when to issue refresh commands. This ŕexibility can

be used to optimise the average-case latency of memory requests, for example.

Hence, the most up-to-date version of the framework, described in Chapters 8 and 9,

contains a formalisation of refresh commands, including timing constraints, associated POs,

and a refresh management mechanism. The current chapter describes the framework without

accounting for refreshes. The following chapter, which describes the two őrst PoC scheduling

algorithms developed using the abstractions presented in this chapter, also does not mention

refresh commands. In Chapter 8, we show how refreshes are modelled in the most up-to-date

version of CoqDRAM. We also detail the refresh management mechanism part of the new

implementation interface ś Interface Sub-Layer.

Scope of the framework: exactly which features from the JEDEC

standards are modelled?

It is important to note that we do not model all timing constraints in the JEDEC stan-

dards. For instance, the DDR4 standards deőnes a series of clock timing parameters, such as

tCK(avg) (average clock period), tCH(avg) (average high pulse width), tJIT (duty) (duty cycle

jitter), et cetera. Although these timing constraints are relevant for the correct behaviour

of the memory, they are not usually compromised by algorithmic decisions taken at the

request/command scheduling level. In other words, the correctness of these constraints/-

parameters are in the realm of electronic design of the memory chip rather than that of
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scheduling (algorithmic) decisions taken by a memory controller.

Other timing constraints/parameters are not included. For instance, the DDR4 stan-

dards include a Mode Register Set (MRS) command, which allows users to conőgure the

DDR4 device by writing to seven registers, providing application ŕexibility (to dynami-

cally change the rate in which refresh commands are needed, or the size of data bursts,

for example). These MRS commands are also subject to timing constraints other then the

ones described in Table 2.2 (namely tMOD, tMRD, et cetera), which are also not included

in System_configuration. The reason for that is that the current version of the frame-

work only models controllers that do not change their conőgurations dynamically, i.e., we

assume that the controller is operating under a given conőguration and that it will never

change. Although such abstraction excludes an important feature, it still allows designers

to reason about the correctness of scheduling algorithms under a given conőguration. Fur-

thermore, most conőguration changes translate as different values of timing constraints. In

the approach proposed by our framework, algorithms are deőned and proved for any timing

constraint under a small set of axioms, which means that if an algorithm is proven correct

for a speciőc conőguration, it should still be correct if the conőguration changes, as long as

the small set of axioms still holds for the new set of timing constraints. Of course, that is

not to say that modelling conőguration change is not of interest, as the moment of change

could compromise correctness and send the memory into a faulty state. Modelling the MRS

command (responsible for entailing conőguration changes) can be seen as future work.

Moreover, still on the scope of timing constraints that appear in Listing 5.1, besides

clock and MRS timing, we do not model timing constraints related to DRAM data (e.g.

tDQSQ, tQH), data strobe (e.g. tQSH , tQSL), Maximum Power Saving Mode (MPSM) (e.g.

tMPED, ttCKMPE), calibration (e.g. tZQCS, tZQInit), reset/self-refresh (e.g. tXPR, tXS), power

down (e.g. tXP , tCKE, tPD), Per-DRAM Addressability (PDA) (e.g. tMRDPDA, tMODPDA),

On-die Termination (ODT) (e.g. tAONAS), write levelling (e.g. tWLS), Command Address

(CA) parity (e.g. PL), and Cyclic Redundancy Check Codes (CRC) error reporting (e.g.

tCRCALERT
). These timing constraints are related to DDR4 features that are not (yet) covered

by our framework.

More generally, the list below exposes all of the features in the JEDEC DDR4 stan-

dard that are not covered in our framework and explains why that is. Moreover, Table 5.1

highlights which commands (and related timings) ś of all commands deőned by the DDR4

standard ś are covered/modelled by CoqDRAM. In summary, we concentrate on features

that are most likely to impact the worst and average latency of memory requests when the

DRAM device is operating under normal – steady-state conditions (i.e., after the initialisation

procedure has been completed).
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Figure 5.1: CA Parity Operation [106].

• Data: we do not model the actual payload of memory transactions. Although it might

be interesting from some perspectives ś such as ensuring data integrity and correctness

of error correction codes ś the payload is not essential for the functionality of the device

and its correct timing behaviour. Therefore, it was not included in the current version

of the framework.

• CA Parity & CRC Error Detection: on DDR4, Command/Address (CA) Parity

is a mechanism for error detection on the command and address buses. Speciőcally,

CA parity takes the CA parity signal (PAR) input carrying the parity bit for the

generated address and command signals, and matches it to the internally (in the DRAM

device) generated parity from the captured address and command signals, as shown in

Figure 5.1. For error detection over the data bus, the devices dispose of a CRC Error

detection mechanism, which provides real-time error detection on the DDR4 data bus,

improving system reliability during write operations [106]. Both features are important

for safety-critical systems, which means that modelling them can be seen as a potential

improvement to the framework.

• On-the-fly burst length: we do not explicitly model the commands necessary to

implement łon-the-ŕyž burst lengths, i.e., controllers modelled in the framework can

only send CRD and CWR commands with őxed burst-length. The latest version of the

framework does not yet capture such functionality.

• PDA: Per-DRAM addressability allows different DRAMs in the same module to be

programmed (conőgured) differently. This feature is not modelled by the framework for

the same reasons as MRS commands are not modelled (we are interested in encoding

algorithms operating under a static conőguration).
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• Reset, initialisation procedure, ZQ Calibration & Read/Write Training: the

JEDEC standards establishes a 15-step łpower-up initialisation sequencež and a 3-step

łreset initialisation with stable power sequence.ž In the framework, we consider the

DRAM device to be already on steady-state, after initialisation. The reason for that is

the same as with clock timing ś the reset and initialisation procedures (and their related

timings) are not relevant for the correctness and high-level properties of scheduling

algorithms, which is what we are ultimately interested in. Moreover, ZQ Calibration

is related to tuning resistors at the data pins (DQ) to the exact value of 240Ω, since

the value of these might ŕuctuate due to voltage and temperature changes [107]. ZQ

calibration is part of the initialisation routine, and as explained previously, we are only

interested on the behaviour of the device after initialisation. After having performed

ZQ calibration, the initialisation procedure is complete and the DRAMs are in IDLE

state, but the memory is still not operational [107]. The controller still has to perform

a few more important steps before data can be reliably written-to or read-from the

DRAM. This important phase is called Read/Write Training (or Memory Training

or Initial Calibration). This stage is required to adjust the latency of data transfers

coming from different chips in the DIMM [107]. Again, not surprisingly, this is part of

the initialisation procedure and not covered by our framework.

• Self-refresh, MPSM & Power Down Mode: the self-refresh command can be

used to retain data in the DDR4 SDRAM, even if the rest of the system is powered

down [42]. Furthermore, MPSM provides the lowest power consuming, which is similar

to the self-refresh status with no internal refresh activity [42]. Again, as before, during

both the self-refresh operation and the MPSM mode, the device őnds itself in a power-

saving state rather than the steady-state that we are interested in. The Power Down

mode is not modelled for similar reasons.

• Other: other features that we do not cover on the framework are: On-Die Termination

(ODT) mode, DLL-off mode, input clock frequency change, control gear down mode,

programmable preamble and postamble. These features mostly involve conőguration

changes (which is out of the current scope of the framework, as explained previously).

While modelling some of these features can be seen as potential future work, some of

them are just not interesting in terms of veriőcation in a high level model like the one

we built with Coq, which is aimed at verifying the correctness of algorithmic scheduling

decisions.
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Function Command Supported by CoqDRAM
Mode Register Set MRS No

Refresh REF Yes
Self Refresh Entry SRE No
Self Refresh Exit SRX No

Precharge all Banks PREA Yes
Bank Activate ACT Yes

Write (Fixed BL8 or BC4) WR Yes
Write (BC4, on the ŕy) WRS4 No
Write (BL8, on the ŕy) WRS8 No

Write with Auto-Precharge
(Fixed BL8 or BC4)

WRA Yes

Write with Auto-Precharge
(BL8, on the ŕy)

WRAS4 No

Write with Auto-Precharge
(BL8, on the ŕy)

WRAS8 No

Read (Fixed BL8 or BC4) RD Yes
Read (BC4, on the ŕy) RDS4 No
Read (BL8, on the ŕy) RDS8 No

RDA with Auto-Precharge RDA Yes
Read with Auto-Precharge

(BL8, on the ŕy)
RDAS4 No

Read with Auto-Precharge
(BL8, on the ŕy)

RDAS8 No

No Operation NOP Yes
Device Deselected DES No
Power Down Entry PDE No
Power down Exit PDX No

ZQ Calibration Long ZQCL No
ZQ Calibration Short ZQCS No

Table 5.1: Extensive list DRAM commands from the DDR4 JEDEC standard [42]. The
commands modelled in CoqDRAM are highlighted in green.
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What about other memory standards?

This is a good point to discuss the relationship between CoqDRAM and other DRAM mem-

ory standards/technologies. Figure 5.2, reproduced from a recent research paper from Jung

et. al [80], shows the evolution of JEDEC standards over the last two decades.

As it can be seen, the bottom-most dots in the őgure are different generations of łgeneral

purposež memories ś DDRs. Of those, our framework covers the DDR3 and DDR4 standards.

The older generations, DDR and DDR2 are obsolete and therefore not covered.

In summary, DDR5, unlike DDR4, modules have two independent command/address

channels, and each control a 32-bit data bus, without Error Correction Code (ECC). The

reduced bus width is compensated by a doubled minimum burst length of 16, which preservers

the minimum access size of 64 bytes, which matches the cache line size uses by many modern

processors. In summary, DDR5 devices have better bandwidth/speed (up to 6400MHz as

opposed to DDR4’s max of 3200MHz), require less power (1.1V instead of 1.2V required

by DDR4), and have higher capacity (128GB per module against DDR4’s max of 32GB per

module) [108]. Two other important types of DDR memory are Low Power DDR (LPDDR)

and Graphic DDR (GDDR). LPDDRs are mainly used in mobile devices and tablets, and

differ signiőcantly from DDR is terms of performance, battery life, power consumption,

and data transfer rates; and GDDRs are used in graphic cards, game consoles, and high-

performance computing.

We did not thoroughly investigate to which extent CoqDRAM is effective for modelling

DDR5, LPDDR, GDDR, HBM, and other technologies/standards. At őrst sight, it seems like

most of the (new) features from DDR5 and LPDDR devices are translatable as new values

for the already modelled timing constraints ś captured by System_configuration. Not all

features might be covered so easily, however. An example is the introduction of variable

Figure 5.2: Releases of JEDEC standards [80].
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command lengths in LPDDR4 [109], which was an important change, since the command

length was always őxed to a single clock cycle in previous standards. This would require the

introduction of at least another timing constraint, tCK , the duration of a command, which

would be 1 for most devices, but could admit other values for LPDDR4 devices. Another

example are GDDRs, which have the ability to open two memory pages at once in a bank.

Such novelty drastically changes the algorithmic of memory controllers (in the sense that

a scheduling algorithm written for a DDR4 device would probably no longer work for such

device) ś thus requiring changes in CoqDRAM as well.

Bear in mind this is only a superőcial analysis. Overall, these standards are still unex-

plored territory considering the scope of this work, and analysing how much adapting our

framework would need to őt all of these standards can be seen as future work. Speciőcally,

in Chapter 10, we discuss one promising future work direction that suggests using results

from previous research by Jung et al. [80] to automatically generate Coq speciőcations from

a DSL tailored to model different JEDEC standards.

Requestor

Listing 5.2 shows the deőnition of the type class Requestor_configuration.

Listing 5.2: Deőnition of Requestor_configuration.

Class Requestor_configuration := {

Requestor_t : eqType;

}.

Quite straightforwardly, Requestor_configuration deőnes the type of requestors, i.e.,

processing units capable of issuing memory requests. Requestors are represented as a type

class with a single element, Requestor_t, of type eqType. eqType in Coq is the type of types

with a decidable equality, i.e., types for which there is a known deterministic algorithm to

determine whether two terms of such a type are equal or not. It is deőned in the ubiquitous

Mathematical Components2 (mathcomp) library of Coq ś an extensive library of formalised

mathematics. In the case of requestors, it is important that requestors are distinguishable,

i.e., one must be able to compare requestors and determine if they are equal, in an algorithmic

way (i.e., without depending on axioms).

One obvious choice for Requestor_t, is nat, representing a numeric ID, for instance.

There exists already a decision procedure (function/algorithm) in mathcomp (also in Coq’s

standard library), which determines whether two members of the type nat are equal, and

2https://math-comp.github.io/

55

https://math-comp.github.io/


produces a boolean true or false. Then, in order to show that nat (or any other type

with such an equality-deőning decision procedure) is indeed an eqType, one must prove the

following lemma, where e represents such decision procedure.

▷ Equality.axiom e ↔ e : rel T is a valid comparison decision procedure for type T, i.e.,

reflect (x = y)(e x y) for all x y : T.

Or, in natural language, relating x and y by the binary relation e łis the samež as the

rewritable equality x = y. The łis the samež part, however, is a bit more tricky than it

looks, as it relies on a concept called reflection ś relating propositions (Prop in Coq) and

booleans. While this discussion lies outside of the scope of this dissertation, it is important

to know that in Coq, logical properties about programs are of type Prop. Coq, however, is

a tool based on constructive mathematics instead of classical, which means that a term of

type Prop is not trivially True or False. Or, in other words, the law of excluded middle does

not apply:

▷ For every statement P, either P or not P holds.

Roughly speaking, contrarily to the classical point of view, in which statements are

assumed to be either true or false; the constructive point of view says that we are justiőed

in asserting that a statement is true only when we have veriőed that it is true, and we can

only correctly assert that it is false only when we have veriőed that it is false [110]. Back

to Requestor_t, reflect allows us to go from the procedural world of booleans back to the

constructive world of Coq logical propositions.

Address

Next, after having deőned the number of banks in the system (BANKS) and the number of

bank-groups (BANKGROUPS), we can deőne how a memory address is represented. We begin

with bank-groups, whose type deőnition is shown in Listing 5.3.

Start by noting how we use the Section mechanism to introduce SYS as an ubiquitous

implicit argument (which we sometimes refer to as an łabstract instancež). This tells Coq that

every following deőnition inside of the Section expects an instance of System_configuration

as an implicit argument and thus allows us to refer to members of that class, such as

BANKGROUPS and BANKS.

Next, Bankgroup_t is deőned as a sigma type. In Coq, sigma types are dependently

typed, which means that they carry łbuilt-inž logical properties. Bankgroup_t, speciőcally, is

the sub-set of natural numbers which satisőes the predicate forall x : nat, x < BANKGROUPS.

Importantly, this is already a way to ensure correctness, i.e., we ensure that bank-groups in
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Listing 5.3: Deőnition of Bankgroup_t.
1 Section Address.
2
3 Context {SYS : System_configuration}.
4
5 Definition Bankgroup_t := { bg : nat | bg < BANKGROUPS }.
6
7 Definition Bankgroup_to_nat (a : Bankgroup_t) : nat := proj1_sig a.
8
9 Program Definition Nat_to_bankgroup a : Bankgroup_t :=

10 match a < BANKGROUPS with

11 | true ⇒ (exist _ a _)
12 | false ⇒ (exist _ (BANKGROUPS − 1) _)
13 end.
14 Next Obligation.
15 rewrite subn1 ltn_predL lt0n; by specialize BANKGROUPS_pos.
16 Defined.

addresses cannot be higher than the available number of bank-groups in the system. This

comes with advantages and disadvantages: the advantage is that whenever we are dealing

with a bank-group in a proof, we have that property at disposal. The łdisadvantagež is that

whenever we need to łgeneratež a new bank-group from a natural number, we must provide

a proof that this new number is also bounded by BANKGROUPS.

The next two deőnitions, Bankgroup_to_nat and Nat_to_bankgroup are handy functions

used to convert between simple natural numbers and Bankgroup_t. The őrst part is quite

straightforward, as proj1_sig will return the numeric part of a sigma type, ignoring the

proof part. The inverse way (from a natural number to a sigma type) is more complicated.

We pattern-match over the boolean comparison a < BANKGROUPS to test if a is already smaller

than BANKGROUPS. If it is, then we are done, and we must use the constructor exist to build

the sigma type (at Line 11). The two underscores, in Lines 11 and 12, are holes, which can

be useful for two things: 1) It can occupy the place of an implicit argument, which Coq can

automatically deduce, or 2) It can be a missing proof. The second option is only possible

because we are using the Coq Program library, which allows this kind of construct.

Back to the case where a < BANKGROUPS = true, the second hole of exist is a missing

proof, but it is trivial, so Coq can automatically őll that hole. The second case (at Line 12),

where the natural number a that we’re trying to convert to a bank-group is superior to the

actual number of bank-groups in the system, requires a choice: we ignore a and instead

build a sigma type of numeric value BANKGROUPS − 1. Then, the second hole actually re-

quires a proof that BANKGROUPS − 1 < BANKGROUPS, which is presented in Line 15 through a
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Listing 5.4: Deőnition of Bank_t.
Definition Bank_t := { a : nat | a < BANKS }.

... (* conversion functions omitted *) ...
Definition Banks_t := seq.seq Bank_t.

Definition All_banks : Banks_t := map Nat_to_bank (iota 0 BANKS).

proof script using tactics (note that it requires using the axiom BANKGROUPS_pos, deőned in

System_configuration).

We deőne Bank_t similarly, as shown in Listing 5.4, with the conversion functions omitted.

We also include the deőnitions of Banks_t, which is a list of elements of type Bank_t, and

All_banks, which is the speciőc list of type Banks_t and length BANKS, i.e., a list of all banks

in the system. Row_t is deőned identically, and thus omitted here.

Finally, we can deőne the type of addresses as shown in Listing 5.5.

Listing 5.5: Deőnition of Address_t.

Record Address_t := mkAddress {

Bankgroup : Bankgroup_t;

Bank : Bank_t;

Row : Row_t;

}.

Since we must be able to distinguish between different elements of the types Bankgroup_t,

Bank_t, Row_t, and Address_t, we must also prove that they are instances of eqType, as it

has been done for Requestor_t. While for Requestor_t we discussed abstractly the already-

existing decision procedure to determine the equality of elements of nat, here, we must write

such decision procedures ourselves.

Listing 5.6: Showing that Address_t is also an eqType.

(* Procedure to determine the equality of two terms of type Address_t *)

Local Definition Address_eqdef (a b : Address_t) :=

(a.( Bankgroup) = b.(Bankgroup)) &&

(a.( Bank) = b.(Bank)) &&

(a.( Row) = b.(Row)).

Lemma Address_eqn : Equality.axiom Address_eqdef.

Proof. (* omitted proof *) Qed.
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Listing 5.6 shows the deőnition of Address_eqdef and the Lemma Address_eqn, which is

name given to Equality.axiom with the binary relation Address_eqdef. We omit the proof

here for brevity, as it does not reveal any interesting insights at this point. Note how

Address_eqdef just tests if all őelds of addresses a and b are equal (assuming that the

functions determining the decidable equalities of types Bankgroup_t, Bank_t and Row_t have

already been deőned at this point). Moreover, the ł&&ž symbol represents a boolean AND

operation.

Request

We start by deőning a datatype Request_kind_t representing the nature of a request (i.e.,

whether it is a read or write request). Again, for this inductive type, Equality.axiom must be

proved, but that part is omitted from Listing 5.7 for conciseness. From now on, the discussion

about types requiring a decision procedure for equality and the proof of Equality.axiom will

be skipped, since the same techniques previously discussed apply.

Listing 5.7: Deőnition of Request_kind_t.

Section Requests.

Context {SYS_CFG : System_configuration}.

Context {REQ_CFG : Requestor_configuration}.

Inductive Request_kind_t : Set := RD | WR.

Start by noticing the implicit arguments SYS_CFG and REQ_CFG introduced within the

Section. For requests, not only the parameters deőned within System_configuration need

to exist, but Requestor_t must also exist, which means that Requestor_configuration is an

implicit parameter of everything deőned inside of Section Requests.

Listing 5.8: Request_t and Requests_t

Record Request_t := mkReq {

Requestor : Requestor_t;

Date : nat;

Kind : Request_kind_t;

Address : Address_t;

}.

Definition Requests_t := seq.seq Request_t.

We deőne Request_t and Requests_t as shown in Listing 5.8. Request_t is a record with

four őelds: Requestor is of type Requestor_t and represents the processing unit that has
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issued the request; Date is of type nat and represents the arrival date the request (after

having been accepted by the bus arbiter); Kind is of type Request_kind_t and represents the

nature of requests (read or write); and őnally, Address is of type Address_t and represents

the address which the memory request reads from or writes to. Moreover, we also deőne a

type to represent an unbounded sequence of requests, Requests_t.

Commands

We start by deőning an inductive datatype Command_kind_t representing the different sorts

of DRAM command presented in Chapter 2 as shown in Listing 5.9.

Listing 5.9: Command_kind_t

Inductive Command_kind_t :=

| CRD : Request_t → Command_kind_t

| CRDA : Request_t → Command_kind_t

| CWR : Request_t → Command_kind_t

| CWRA : Request_t → Command_kind_t

| ACT : Request_t → Command_kind_t

| PRE : Request_t → Command_kind_t

| NOP : Command_kind_t.

As previously discussed, we only model commands relevant for servicing memory requests

(after the initialisation phase of the memory). Note that we also model the auto pre-charge

version of CAS commands (READA and WRITEA from Section 2.2). Moreover, except from NOP,

commands take a Request_t as an argument. The reason is that commands that do take a

request as argument can only be originated from an incoming memory request, and therefore,

we want to be able to track from which request a given DRAM command originated. The

NOP command is not linked to any request, since they do nothing. Finally, we can deőne

commands as a record, as shown in Listing 5.10.

Listing 5.10: Command_t

Record Command_t := mkCmd {

CDate : nat;

CKind : Command_kind_t;

}.

Straightforwardly, commands are deőned by their kind (CKind, of type Command_kind_t),

and their issue date (CDate, of type nat).

60



Furthermore, we deőne a series of helper functions to improve code readability. Here,

we show a few of these function deőnitions, which will appear throughout the remainder of

this dissertation. In Listing 5.11, we show the deőnitions of isCWR, isCAS, get_bank, and

Same_Bank. isCWR, as its name suggests, will pattern match on cmd, an argument of type

Command_t, and return a bool: if cmd is a CWR or a CWRA, then it returns true, otherwise it

returns false. We deőne other functions such as isCRD, isACT and isPRE likewise. At Line

7, isCAS evaluates to true if a command passed as argument is either a CRD, CRDA, CWR, or

CWRA.

Listing 5.11: Helper functions for commands.

1 Definition isCWR (cmd : Command_t) :=

2 match cmd.(CKind) with

3 | CWR _ | CWRA _ ⇒ true

4 | _ ⇒ false

5 end.

6

7 Definition isCAS (cmd : Command_t) := isCRD cmd || isCWR cmd.

8

9 (* Partial function to access the bank of the request that originated commands *)

10 Definition get_bank (cmd : Command_t) : option Bank_t :=

11 match cmd.(CKind) with

12 | ACT r | CRD r | CRDA r | CWR r | CWRA r | PRE r ⇒

13 Some r.(Address).(Bank)

14 | _ ⇒ None

15 end.

16

17 Definition Same_Bank a b := (get_bank a = get_bank b).

At Line 10, we deőne the partial function get_bank. Partial functions in Coq are (usually)

implemented with the type option, a basic datatype in Coq. get_bank, speciőcally, takes

a command as argument and possibly returns a Bank_t (i.e., it returns an option Bank_t).

In other words, if the given command does not have an associated request, then it returns

None, meaning that the function is undeőned for such value of cmd. In case the command

does have an associated request, we simply use the record őeld notation to access its bank.

Similar to get_bank, we also deőne other access functions, such as get_req, get_bankgroup,

and get_row. At Line 17, we also show how we use get_bank to deőne the function Same_Bank,

which returns a boolean true if two given commands a and b target the same bank.
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Command Trace

In the following discussion, rather than showing a large code snippet with the entire deőnition

of Trace_t, we will break down its deőnition into smaller code snippets ś thus keeping the

textual explanation close to the code snippets. But bear in mind that these are all part of

the same record deőnition ś Trace_t.

Listing 5.12: Deőnition of Trace_t.

1 Record Trace_t := mkTrace {

2 Commands : Commands_t;

3 Time : nat;

4

5 (* All commands must be uniq, i.e., no duplicate commands *)

6 Cmds_uniq : uniq Commands;

7 (* All commands have to occur before the current time instant *)

8 Cmds_time_ok : forall cmd, cmd \in Commands → cmd.(CDate) <= Time;

9

10 ... (* POs about timing and functional correctness -- discussed below *)

11 }

Start by noticing in Listing 5.12 that Trace_t is a record with only two non-propositional

(i.e., not of type Prop) members: Commands, of type Commands_t, and Time, of type nat.

Commands is a list modelling all commands that have been issued to the memory device up

until (and including) clock tick Time. Or, differently put, it is a list of Command_t of length

Time. Then, all of the following elements of the trace are proof obligations (POs), which

together constitute one of the main pieces of this framework. These POs establish correctness

according to the JEDEC standards, both in terms of functional and timing correctness. We

go through some of these POs in the following paragraphs (we do not discuss every single

PO in detail because, as it will soon become evident, many of these are stated in a very

similar form).

The őrst proof obligations, Cmds_uniq and Cmds_time_ok, are exceptionally not related to

the JEDEC standards ś they are instead used to ensure that the trace is coherent (i.e. feasible

in real life). Cmds_uniq uses the mathcomp function uniq, which states that all elements in

a sequence (list) are łpairwise differentž, i.e., there are no duplicate commands. This is an

important property, as having identical commands (with the same kind and issue date) in

the trace would be a clear violation (the command bus can only transfer one command at

a given clock tick). Next, Cmds_time_ok ensure that, for any given command in the trace,

the issue date of such command must be less or equal to Time, the trace length. Note that
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Cmds_time_ok use the operator \in, deőned in mathcomp to test list membership. Moreover,

if the trace is empty, than the \in clauses evaluate to false, which would result in POs

containing expressions of the form false → _, which are trivially true.

Proof obligations ensuring timing correctness in Trace_t

Listing 5.13: POs ensuring timing correctness in Trace_t.

1 (* ------------------- Intra-bank constraints -------------------------- *)

2 (* Ensure that the time between an ACT and a CAS commands respects T_RCD *)

3 Cmds_T_RCD_ok : forall a b, a \in Commands → b \in Commands →

4 isACT a → isCAS b → (Same_Bank a b) →

5 Before a b → Apart_at_least a b T_RCD;

6

7 (* Ensure that the time between a PRE and an ACT commands respects T_RP *)

8 Cmds_T_RP_ok : forall a b, a \in Commands → b \in Commands →

9 isPRE a → isACT b → (Same_Bank a b) →

10 Before a b → Apart_at_least a b T_RP;

11

12 (* Ensure that the time between two ACT commands respects T_RC *)

13 Cmds_T_RC_ok : forall a b, a \in Commands → b \in Commands →

14 isACT a → isACT b → (Same_Bank a b) →

15 Before a b → Apart_at_least a b T_RC;

16

17 (* Ensure that the time between an ACT and a PRE commands respects T_RAS *)

18 Cmds_T_RAS_ok : forall a b, a \in Commands → b \in Commands → isACT a →

19 isPRE b → (Same_Bank a b) → Before a b → Apart_at_least a b T_RAS;

20

21 (* Ensure that the time between a CRD and a PRE commands respects T_RTP *)

22 Cmds_T_RTP_ok : forall a b, a \in Commands → b \in Commands →

23 isCRD a → isPRE b → (Same_Bank a b) →

24 Before a b → Apart_at_least a b T_RTP;

As it can be seen in Listing 5.13, the proof obligation Cmds_T_RCD_ok is the őrst of a series

of POs dedicated to ensuring the correct timing behaviour of the DRAM device ś it ensures

that the tRCD constraint is always respected in the trace (the reader can review the deőnition

of tRCD in Table 2.2 and Figure 2.7). The PO can be read as: for any two commands a

and b, given that a is a member of Commands, b is also a member of Commands, a is an ACT

command, b is a CAS command, a and b target the same bank, and a has been issued before
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b, then it must follow that the issue date of b is greater then or equal to the issue date of a

plus tRCD.

Besides the helper functions isACT, isCAS, and Same_Bank, note that we also use Before

and Apart_at_least: Before a b returns true if a.( CDate)< b.(CDate) and Apart_at_least a

b x returns true if a.( CDate) + x ≤ b.( CDate). We use these functions throughout the other

proof obligations in the trace. Proof obligations Cmds_T_RP_ok, Cmds_T_RC_ok, Cmds_T_RAS_ok,

and Cmds_T_RTP are stated in a nearly identical format.

Proof obligation Cmds_T_WTP_ok, shown in Listing 5.14 is slightly different: it does not

explicitly model a constraint from the JEDEC standards (if one looks for it, the constraint

tWTP is not included in the standards. However, even if the name tWTP does not exist in the

standards, there exists a timing constraint between CWR commands and PRE commands to

the same bank. That timing constraint is the sum of tWL (latency between the CWR command

issue date and the start of the data bus transfer), tBURST (duration of the data bus transfer),

and tWR (łwrite recoveryž time ś a constraint between the end of a write transaction on the

data bus and pre-charging the respective bank). For a visual understanding, see Figure 2.7.

Interestingly, the JEDEC standards deőne explicitly a tRTP constraint, which constraints

the delay between CRD and PRE to the same bank.

Listing 5.14: POs ensuring timing correctness in Trace_t (continuation).

1 (* Ensure that the time between a CWR and a PRE commands

2 respects T_WR + T_WL + T_BURST *)

3 Cmds_T_WTP_ok : forall a b, a \in Commands → b \in Commands →

4 isCWR a → isPRE b → (Same_Bank a b) →

5 Before a b → Apart_at_least a b (T_WL + T_BURST + T_WR);

Two other interesting POs are Cmds_T_WtoR_SBG_ok and Cmds_T_WtoR_DBG_ok, shown in

Listing 5.15. Similar to tWTP and tRTP , the JEDEC standards deőne a constraint to account

for the minimum delay between a CRD followed by a CWR, namely, tRTW . However, the

minimum delay between a CWR followed by a CRD (to any bank) does not have an explicit name

and is given by tWL+tBURST+tWTR . Note that tWL and tBURST are the same parameters used

in Cmds_T_WTP_ok, but tWTR is yet another timing parameter deőned in System_configuration

representing the minimum delay between the end of a write transaction on the data bus and

a CRD. Usually, as it can be seen in Table 2.2, the sum tWL + tBURST + tWTR results in a value

greater than tRTW , which means that write-to-reads have higher latency than read-to-writes.

Moreover, the write-to-read PO comes in two ŕavours: one for commands targeting

the same bank-group (Cmds_T_WtoR_SBG_ok), and another for commands targeting different

bank-groups (Cmds_T_WtoR_DBG_ok). Note that the only difference between the two is the
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Listing 5.15: POs ensuring timing correctness in Trace_t (continuation).
1 (* ------------------ Intra and Inter-bank constraints ----------------------- *)

2 Cmds_T_WtoR_SBG_ok : forall a b, a \in Commands → b \in Commands →
3 isCWR a → isCRD b → Before a b → (Same_Bankgroup a b) →
4 Apart_at_least a b (T_WL + T_BURST + T_WTR_l);
5
6 Cmds_T_WtoR_DBG_ok : forall a b, a \in Commands → b \in Commands →
7 isCWR a → isCRD b → Before a b → not (Same_Bankgroup a b) →
8 Apart_at_least a b (T_WL + T_BURST + T_WTR_s);
9

10 Cmds_T_RtoW_ok : forall a b, a \in Commands → b \in Commands →
11 isCRD a → isCWR b → Before a b → Apart_at_least a b T_RTW;
12
13 Cmds_T_CCD_SBG_ok : forall a b, a \in Commands → b \in Commands →
14 (isCRD a ∧ isCRD b) ∨ (isCWR a ∧ isCWR b) → Before a b →
15 (Same_Bankgroup a b) → Apart_at_least a b T_CCD_l;
16
17 Cmds_T_CCD_DBG_ok : forall a b, a \in Commands → b \in Commands →
18 (isCRD a ∧ isCRD b) ∨ (isCWR a ∧ isCWR b)→ Before a b →
19 not (Same_Bankgroup a b) → Apart_at_least a b T_CCD_s;

use of tWTRl
and tWTRs

, where tWTRl
> tWTRs

. In summary, if the commands target the

same bank-group, then they must wait for longer than they would have to if they targeted

the same bank-group. Note that this model allows us to cover both DDR3 and DDR4

devices. For DDR3, speciőcally, since there is only a single bank-group, the hypothesis

not (Same_Bankgroup a b) is always false. A property containing a false hypothesis in Coq

is trivially true (by the ⊥ I inference rule of the natural deduction implemented in Coq).

Therefore, a controller written for a DDR3 device speciőcally would have to present a proof

only for Cmds_T_WtoR_SBG_ok, and tWTRl
would need only to be instantiated with the correct

value of tWTR deőned in the JEDED DDR3 standards [41]. The exact same discussion about

bank-groups applies for the tCCD constraint and the two versions of the PO modelling it.

Finally, POs Cmds_T_FAW_ok, Cmds_T_RRD_SBG_ok, and Cmds_T_RRD_DBG_ok, shown in List-

ing 5.16, cover the exclusively inter-bank set of timing constraints (see Table 2.2). In

Cmds_T_FAW_ok, Diff_bank [::a;b;c;d] returns true if commands a, b, c, and d all target different

banks. Furthermore, like for tCCD and tWTR, timing constraint tRRD also admits different

values depending on whether commands a and b target the same or different bank-groups,

respectively tRRDl
and tRRDs

.
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Listing 5.16: POs ensuring timing correctness in Trace_t (continuation).
1 (* ------------------ Exclusively inter-bank constraints ------------------- *)

2 Cmds_T_FAW_ok : forall a b c d, a \in Commands → b \in Commands →
3 c \in Commands → d \in Commands →
4 isACT a → isACT b → isACT c → isACT d → Diff_Bank [::a;b;c;d] →
5 Before a b → Before b c → Before c d → Apart_at_least a d T_FAW;
6
7 Cmds_T_RRD_SBG_ok : forall a b, a \in Commands → b \in Commands →
8 isACT a → isACT b → not (Same_Bank a b) →
9 (Same_Bankgroup a b) →

10 Before a b → Apart_at_least a b T_RRD_l;
11
12 Cmds_T_RRD_DBG_ok : forall a b, a \in Commands → b \in Commands →
13 isACT a → isACT b → not (Same_Bankgroup a b) →
14 Before a b → Apart_at_least a b T_RRD_s;

Proof obligations ensuring functional correctness in Trace_t

As shown in Listing 5.17, there are four POs dedicated to asserting functional correctness:

Cmds_ACT_ok, Cmds_row_ok, Cmds_initial. First, the PO Cmds_ACT_ok states that an ACT to

a given bank and row is always preceded by a matching PRE to the same bank, without any

ACT or CAS to the same bank in-between.

Cmds_ACT_ok is further depicted in Figure 5.3, where the PO is met by the conjunction of

scenarios S1 and S2. In the őgure (and in Figure 5.4), the notation CAS(bg,bk,r,cl) represents

a CAS to bank-group bg, bank bk, row r and column cl; PRE(bg,bk) represents a precharge to

bank-group bg, bank bk; and ACT(bg,bk,r) represents an activate to bank-group bg, bank bk,

and row r. The symbol ł_ž means that the corresponding őeld does not play a role in the

PO, e.g., a CAS(0,0,0,_) represents a CAS to bank group 0, bank 0, row 0, and any column.

Command Bus (S1) CAS(0,0,_,_) ACT(0,0,_)

Command Bus (S2) ACT(0,0,_) ACT(0,0,_)

PRE(0,0) has to exist within this interval

Figure 5.3: Illustration of the Cmds_ACT_ok PO.

Moreover, PO Cmds_row_ok ensures that there is always an ACT command to a given bank

and row between a PRE to that bank and a CAS to that bank and row. In natural language,

the PO is read as: for two given commands b and c, knowing that b and c are elements of
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Listing 5.17: POs ensuring functional correctness in Trace_t

1 Cmds_ACT_ok: forall a b, a \in Commands → b \in Commands →
2 isACT a ∨ isCAS a → isACT b → (Same_Bank a b) → Before a b →
3 exists c, (c \in Commands) && (isPRE c) && Same_Bank b c

4 && Same_Bank a c && (After c a) && (Before c b);
5
6 (* Every CAS command is preceded by a matching ACT

7 without another ACT or PRE in between *)

8 Cmds_row_ok : forall b c, b \in Commands → c \in Commands →
9 isCAS b → isPRE c → Same_Bank b c → Before c b →

10 exists a, (a \in Commands) && (isACT a) && (get_row a = get_row b)
11 && (After a c) && (Before a b);
12
13 (* Implies the initial state of the memory *)

14 Cmds_initial : forall b, b \in Commands → isCAS b →
15 exists a, (a \in Commands) && (isACT a) && (get_row a = get_row b) && (Before a b);

the list Commands, b is a CAS command, c is an ACT or a PRE, b and c target the same bank,

and c is issued before b, then command a must exist, where a is also in Commands, is an ACT

command to the same bank and row as b, and is issued before b and after c. This situation

is depicted in Figure 5.4.

Command Bus PRE(0,0) CAS(0,0,0,_)

ACT(0,0,0) has to exist within this interval

Figure 5.4: Illustration of the Cmds_row_ok PO.

Furthermore, we model the memory’s initial state through the Cmds_initial PO. It states

that any CAS should be preceded by an ACT command, which implies that a CAS cannot be

the őrst command sent to the device; only PRE and ACT commands are accepted. In other

words, this is an assumption that at initialisation, every bank is closed, i.e., no row is loaded

in any of the row-buffers, thus an ACT to a certain bank is needed before any CAS to that

bank can be issued.

Together, these POs guarantee that implemented controllers generate valid commands

and respect the protocol described in the DDR3 and DDR4 JEDEC standard. The conditions

established by the POs can also be visualised in Table 5.2. We use the notation→ to denote

an immediate sequence between commands, e.g, PRE(bg,bg) → CAS(bg,bk,r,c) represents a CAS

issued directly after a PRE. Each coloured cell in the table corresponds to a sequence and the
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fact if either it is allowed or not, e.g., the sequence PRE(bg,bk) → CAS(bg,bk,r0,_) is forbidden by

Cmds_row_ok. Moreover, it can be seen from the table that consecutive ACT commands to the

same bank, either to the same or different rows (ACT(bg,bk,r0) or ACT(bg,bk,r1)), are forbidden by

Cmds_ACT_ok. Additionally, ACT commands following a CAS command are also forbidden by

Cmds_ACT_ok. Finally, a CAS following an ACT to a different row (ACT(bg,bk,r1) → CAS(bg,bk,r0,_))

is forbidden as well. The latter condition is met by applying the three POs: Cmds_initial

states that an ACT to row r0 must exist before CAS(bg,bk,r0,c); then, Cmds_ACT_ok ensures that

a PRE(bg,bk) is between the two ACTs, and őnally, Cmds_row_ok ensures that ACT(bg,bk,r0) will be

between the PRE(bg,bk) and the CAS(bg,bk,r0,_).

1st
2nd

PREbg,bk ACTbg,bk,r0 ACTbg,bk,r1 CASbg,bk,r0,_

PREbg,bk OK OK OK
FORBIDDEN

(Covered by Cmds_row_ok)

ACTbg,bk,r0 OK
FORBIDDEN

(Covered by Cmds_ACT_ok)
FORBIDDEN

(Covered by Cmds_ACT_ok)
OK

ACTbg,bk,r1 OK
FORBIDDEN

(Covered by Cmds_ACT_ok)
FORBIDDEN

(Covered by Cmds_ACT_ok)

FORBIDDEN
(Covered by the combination of
Cmds_row_ok and Cmds_ACT_ok)

CASbg,bk,r0,_ OK
FORBIDDEN

(Covered by Cmds_ACT_ok)
FORBIDDEN

(Covered by Cmds_ACT_ok)
OK

Table 5.2: Protocol correctness for a given bank group and a given bank.

Arrival Model

Listing 5.18: Deőnition of Arrival_function_t.

1 Class Arrival_function_t := mkArrivalFunction

2 {

3 Arrival_at : nat → Requests_t;

4

5 Arrival_date : forall ta x, (x \in (Arrival_at ta)) → x.(Date) = ta;

6

7 Arrival_uniq : forall t, uniq (Arrival_at t);

8 }.

Before őnally discussing the Arbiter_t class, we must deőne the arrival model for memory

requests. Listing 5.18 shows the deőnition of the Arrival_function_t class. Most impor-

tantly, Arrival_function_t deőnes the function Arrival_at, which takes a parameter of type

nat and returns the set of requests that arrive into the system at that instant. The class
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members Arrival_date and Arrival_uniq are POs that guarantee that Arrival_function_t

is a realistic model: Arrival_date states that if a request x is in Arrival_at ta, then the

arrival date of x is ta. Next, Arrival_uniq states that, for a given instant t, arriving requests

are unique, i.e., no duplicate requests can arrive at a single instant t.

This is a rather relaxed model, in the sense that it allows an unbounded number of

requests to arrive at any instant. As we describe in Appendix A, when we attempt to prove

equivalence between a CoqDRAM controller and a hardware model, this arrival function needs

to be made more strict, since such abstraction is obviously not possible on real silicon.

Arbiter

Listing 5.19: Deőnition fo Arbiter_t.

1 Class Arbiter_t {AF : Arrival_function_t} := mkArbiter {

2 Arbitrate : nat → Trace_t;

3

4 (* Time has to match *)

5 Time_match : forall t, (Arbitrate t).(Time) = t

6

7 (* All requests must handled *)

8 Requests_handled : forall ta req, req \in (Arrival_at ta) →

9 exists tc, (CAS_of_req req tc) \in ((Arbitrate tc).(Commands));

10 }.

Finally, we can deőne the class Arbiter_t as shown in Listing 5.19. Quite straightfor-

wardly, the main element in Arbiter_t is the Arbitrate function, builds a Trace_t of length

given by a nat parameter. Or, in other words, an arbiter is an entity that issues commands

to the memory devices, i.e., creates a command trace. The fact that the trace should be of

length given by the őrst parameter of Arbitrate is expressed by the PO Time_match, which

states that, for an arbitrary t, the Time őeld of the trace obtained by Arbitrate t must be

equal to t. Recall that, from Cmds_time_ok (see Listing 5.12), every command in the trace

must have its date less or equal to Time.

Requests_handled is an important PO: it states that, for any given instant ta and for any

given request req, if req has arrived at ta, then there must exist an instant tc when a CAS

command belonging to req is present in the trace. Or, in other words, every request that has

arrived is eventually completed. This PO ensures non-starvation, or fairness. The current

version of the framework requires this to be true for all concrete arbiter instances, although
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it is future work to relax this PO, making it dependent on an user-deőned predicate.

Sequential Consistency

In fact, the idea of having different types of arbiters, with different properties, is a key

aspect of the framework. To showcase this, we model two ŕavours of Lamport’s deőnition

of Sequential Consistency (SC) [111] ś a guarantee on the possible order in which requests

are handled. According to Lamport, sequential consistency in a multiprocessor system is

achieved when two requirements are met:

• Requirement R1 : Each processor issues memory requests in the order speciőed by its

program.

• Requirement R2 : Memory requests from all processors issued to an individual memory

module are serviced from a single FIFO queue. Issuing a memory request consists of

entering the request into this queue.

Requirement R1, on the one hand, is an assumption on the behaviour of processors, and is

therefore not modelled from the memory controller’s point of view. This makes sense, consid-

ering that a memory consistency model can be seen as a contract between software/programs

and the hardware, and is conceptually implemented by both. Requirement R2, on the other

hand, should be implemented by the memory controller.

Moreover, Lamport deőnes a relaxed version of R2 that still guarantees SC: “We need

only require that all requests to the same memory cell be serviced in the order that they

appear in the queue." This relaxed version of R2 comes from the observation that actually

only memory accesses to the same address can introduce incoherence w.r.t the order

of execution between cores, and therefore, a FIFO order of execution should be guaranteed

only between accesses to the same addresses. We emphasise that Lamport’s deőnitions are

seen today as sufficient conditions, and a more formal deőnition of SC was introduced by

Sezgin [112].

In practical terms, we deőne two classes in our framework that model requirement R2 as

proof obligation R2 and its relaxed version as proof obligation R2_relaxed, respectively, as

shown in Listing 5.20. The code in the listing involves two universally quantiőed requests,

reqa and reqb, which have respectively arrived at ta and tb. We assume that reqa has an

earlier arrival order than reqb. Such arrival order is expressed by a disjunction: either ta is

strictly less then tb or they are equal but the position of reqa in the queue is strictly less

then reqb’s position. In R2_relax, note the pre-condition reqa.(Row) = reqb.(Row), modelling

Lamport’s condition of łtargeting the same memory address.ž
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Listing 5.20: Modeling Sequentially Consistent Arbiters.
Class SequentialConsistent_Arbiter {AF : Arrival_function_t} {AR : Arbiter_t} :=

mkSeqArbiter {

R2 : forall ta reqa tb reqb,
reqa \in (Arrival_at ta) → (* reqa arrives at ta *)

reqb \in (Arrival_at tb) → (* reqb arrives at tb *)

(* either reqa arrived before reqb OR

they arrived at the same instant, but there

is an arbitrary order between reqa and reqb,

and reqa is to be serviced before *)

(ta < tb) ∨ (ta = tb ∧ index reqa (Arrival_at ta) < index reqb (Arrival_at ta))
(* txa, the completion date of reqa must happen before txb,

the completion date of reqb *)

→ exists txa txb, (CAS_of_req reqa txa \in (Arbitrate txa).(Commands))
&& (CAS_of_req reqb txb \in (Arbitrate txb).(Commands)) && (txa < txb)

}.

Class W_SequentialConsistent_Arbiter {AF : Arrival_function_t} {AR : Arbiter_t} :=
mkWSeqARbiter {

R2_relaxed : forall ta reqa tb reqb,
reqa \in (Arrival_at ta) → (* reqa arrives at ta *)

reqb \in (Arrival_at tb) → (* reqb arrives at tb *)

(ta < tb) ∨
(ta = tb ∧ index reqa (Arrival_at ta) < index reqb (Arrival_at ta))
(* Here, an additional pre-condition: reqa and reqb target the same row *) →

reqa.(Row) = reqb.(Row) →
(* txa, the completion date of reqa must happen before txb,

the completion date of reqb *)

exists txa txb,
(CAS_of_req reqa txa \in (Arbitrate txa).(Commands)) &&
(CAS_of_req reqb txb \in (Arbitrate txb).(Commands)) && (txa < txb)

}.
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While a concrete implementation must implement the Arbiter_t speciőcation, it may also

(optionally) implement the SequentialConsistent_Arbiter and W_SequentialConsistent_Ar

−biter speciőcations. Again, the idea of having a framework with different arbiter speciő-

cations, with different properties, is a key aspect of the framework. In the future, we aim

to create a wider variety of possible speciőcations (including arbiters with relaxed fairness

POs for mixed-criticality systems, different shared memory models, security properties, et

cetera).

Implementation Interface

Last, we describe Implementation_t, which deőnes a transition system that serves as a skele-

ton for writing scheduling algorithms. As it can be seen in Listing 5.21, Implementation_t

is class deőning two functions: Init and Next. The former deőnes the initial state of the

transition system, and the latter is the transition function implementing the scheduling al-

gorithm. They both operate on a datatype State_t, which is an arbitrary Type, deőned in

the Arbiter_configuration class. The idea is that states of the transition system should be

customisable, due to the fact that different algorithms might need different state variables to

implement algorithms, such as different counters, queues, et cetera. In more detail, as their

types suggest, Init takes as argument the initial set of outstanding requests and produces

a state; and Next takes as arguments a set of arriving requests, a state, and produces a new

state and a Command_kind_t ś the command to be issued to the memory device.

Listing 5.21: Deőnition of Implementation_t.

1 Class Arbiter_configuration := {

2 State_t : Type;

3 }.

4

5 Class Implementation_t := mkImplementation {

6 Init : Requests_t → State_t;

7 Next : Requests_t → State_t → State_t ∗ Command_kind_t;

8 }.

Next, we deőne Arbiter_state_t ś a łsecond layerž on the top of State_t ś as shown

in Listing 5.22. The goal of Arbiter_state_t is to represent/hold intermediate states of

the trace. It includes the internal state of the algorithm, (Implementation_State), a list

of commands (Arbiter_Commands), and a time stamp (Arbiter_Time). The relation between

these two elements is described by the proof obligation Arbiter_Commands_date, which states
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Listing 5.22: Deőnition of Default_arbitrate.
1 Record Arbiter_state_t := mkArbiterState {
2 Arbiter_Commands : Commands_t;
3 Arbiter_Time : nat;
4 Implementation_State : State_t;
5
6 Arbiter_Commands_date : forall c,
7 c \in Arbiter_Commands → c.(CDate) <= Arbiter_Time

8 }.
9

10 (* Computes the t_th state *)

11 Fixpoint Default_arbitrate {AF : Arrival_function_t} {IM : Implementation_t}
12 (t : nat) : Arbiter_state_t :=
13 let R := Arrival_at t in

14 match t with

15 | 0 ⇒ mkArbiterState [::] t (Init R)
16 | S(t’) ⇒ let old_state := Default_arbitrate t’ in
17 let (new_state,new_cmd_kind) := Next R old_state.(Implementation_State) in
18 let new_cmd := mkCmd t new_cmd_kind in

19 let cmd_list := (new_cmd ::old_state.(Arbiter_Commands)) in
20 mkArbiterState cmd_list t new_state

21 end.

that Arbiter_Time is the upper bound for the issue date of every command member of

Arbiter_Commands. From now on, since there are two łstatež abstractions, we will refer to

State_t ś the abstraction used to hold algorithmic states manipulated by Init and Next ś

as internal states, and Arbiter_state_t will be merely referred to as states (or sometimes

arbiter states).

In order to build a command trace, we deőne the function Default_arbitrate. The

function takes a natural number t as parameter, which represents the trace length. At Line

13, R is set to be the set of arriving requests at t. Moreover, the function assumes the

existence of an arrival function (AF) and a scheduling algorithm (IM). The function works by

recursively building new states (of type Arbiter_state_t). As it will be seen later, the trace

of length t will then be constructed by a call to Default_arbirate t.

Inside the function, we pattern match on t. If t is zero, it means that we are building the

őrst state, which is accomplished by the term mkArbiterState [::] t (Init R) (Line 15). We

call mkArbiterState to build the initial state with an empty command list [ ::], time stamp 0

(t), and internal state given by the Init function, deőned in IM (of type Implementation_t).

We pass R ś the set of pending requests at initialisation ś as a parameter to Init.

If t is not zero (i.e., if it is a successor of some number t’), then we call Default_arbitrate
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Figure 5.5: State generation through Default_arbitrate.

on t’ to build the previous state (Line 16), which is given the name old_state. Then, we call

the transition function Next to build a new internal state, passing as arguments R (the set

of arriving requests at t), and the old state’s internal state. Then, a new command is built

with the command constructor mkCmd, with issue date t and kind given by the output of the

Next function. Finally, on Line 19, the new command is appended to the previous state’s

command list (new_cmd ::old_state.(Arbiter_Commands)) and the current state is built using

the constructor mkArbiterState, with arguments cmd_list (the command list appended with

the newly generated command), t (the current time stamp), and new_state (the current

scheduling internal state). Figure 5.5 depicts the behaviour of Default_arbitrate.

The goal of Implementation_Interface is to provide an interface for implementing ar-

biters. It allows us to reason about the behaviour of the DRAM model and implementation

over time, and thus build our proofs Ð while cleanly separating the formal speciőcation and

proofs from the implementation. The next chapter is aimed at showing how this interface

can be used to encode and prove real algorithms.
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Chapter 6

Writing and Proving Scheduling

Algorithms

In this chapter, we present one of two approaches for writing scheduling algorithms. It

consists in directly implementing the Implementation_t interface presented in the previous

chapter. Following that methodology, algorithms have to schedule memory requests, generate

commands, and issue commands to the device in a way such that timing constraints are

respected.

Conversely, the (newer) second approach, described in Chapters 8 and 9, consists in using

a set of functions to keep track of the state of the memory. Hence, scheduling algorithms

are written in a way that only valid commands are allowed to be sent in the first place. The

second approach has the beneőt of being implementation-agnostic, i.e., any algorithm written

on the top of such abstraction inherits the correctness proofs about timing constraints.

Following the őrst methodology, algorithms are written as instances of Implementation_t,

i.e., algorithms have to provide deőnitions for the functions Init and Next (c.f. Listing 5.21).

6.1 First-In-First-Out (FIFO)

The FIFO algorithms works as follows: when a request arrives in the system, it immediately

enters a (unbounded) waiting queue. If the scheduler is idle (i.e., no request is currently being

processed), the scheduler starts processing the request sitting at the head of the queue.

Processing a request means issuing a sequence PRE-ACT-CAS, conforming to a closed-page

policy (see Chapter 2). Once one request őnishes processing, the scheduler checks if there is

another request in the queue: if yes, then processing of the next request starts immediately,

if not, the scheduler goes back to idle and stays idle until another request arrives in the

system.
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To decide when to issue commands, the arbiter keeps a counter : when the processing

of a request starts, a PRE command is issued and the counter is set to 0. Then, when the

counter reaches the value tRP − 1, the scheduler issues an ACT. Next, when the counter

reaches the value tRP − 1 + tRCD, the scheduler issues the appropriate CAS command (a CRD

if the request is a read transaction or a CWR if the request is a write transaction). Finally,

another request cannot start being processed immediately after the CAS from the previous

request has been issued, since that could violate some timing constraints. The length of the

processing slot/window is deőned by the scheduler parameter WAIT, as shown in Figure 6.1.

Clock

Counter 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4

Command Bus PRE ACT CWR PRE ACT

tRP tRCD tWL + tBURST + tWR

WAIT

Figure 6.1: FIFO command scheduling during request processing.

For the scheduler to be correct, WAIT has to be chosen in a way such that a list of

axioms are respected. For existing DDR3 and DDR4 devices, the most constraining axiom

is tRP + tRCD + tWL + tBURST + tWR ≤ WAIT. That statement comes from the following

observation: in a FIFO scheduling scheme, in the worst-case, two requests being processed

one after the other could always target the same bank. For that reason, we must assume that

a PRE cannot occur in the clock cycle directly after the CAS (which would have been possible

if the requests targeted different banks ś see Table 2.2). Moreover, the latency between a

CWR command to a PRE is generally larger than the latency between a CRD and a PRE, hence

why the worst-case is calculated using the CWR command, as seen in Figure 6.1.

The full set of axioms constraining WAIT are deőned in the class FIFO_configuration,

shown in Listing 6.1. The condition described above is stated as WAIT_END_WRITE in the code.

Overall, because WAIT_END_WRITE is the most constraining inequality on all existing DDR3

and DDR4 devices, WAIT is typically chosen in a way such that WAIT_END_WRITE is minimally

respected, i.e. WAIT = tRP + tRCD + tWL + tBURST + tWR.

Moreover, these axioms łemergež from the proof obligation stated in Trace_t, i.e., they are

needed at some point during a proof and cannot be derived (in general) from other axioms.

Beyond that, FIFO_configuration is a complete list of all axioms needed for the proofs to go

through. This is much more compact way to formalise and group all assumptions that an
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algorithm relies upon, compared to the paper-and-pencil approach, where assumptions and

axioms are typically scattered throughout papers and sometimes stated only informally. Sec-

ond, FIFO_configuration works as a checker: Coq will only consider an instance of such class

to be valid when all proof obligations have been discharged (these simple proof obligations

are almost always discharged automatically when the inputed values are valid).

Listing 6.1: FIFO_configuration ś axioms about WAIT.

1 Definition ACT_date := T_RP.−1.

2 Definition CAS_date := ACT_date + T_RCD.

3

4 Class FIFO_configuration :={

5 WAIT : nat;

6 WAIT_pos : WAIT > 0;

7

8 (* Length of the minimum slot (write): T_RP + T_RCD + T_WL + T_BURST + T_WR *)

9 WAIT_END_WRITE : CAS_date + T_WR + T_WL + T_BURST < WAIT;

10

11 (* Length of the minimum slot (read): T_RP + T_RCD + T_RTP *)

12 WAIT_END_READ : CAS_date + T_RTP < WAIT;

13

14 (* Other axioms *)

15 RC_WAIT : T_RC < WAIT;

16 CCD_WAIT : T_CCD_l < WAIT;

17 RRD_WAIT : T_RRD_l < WAIT;

18 RTW_WAIT : T_RTW < WAIT;

19 RAS_WAIT : T_RP + T_RAS < WAIT;

20 WTP_WAIT : T_WR + T_WL + T_BURST < WAIT;

21 WTR_WAIT : T_WTR_l + T_WL + T_BURST < WAIT;

22 FAW_WAIT : T_FAW < WAIT + WAIT + WAIT;

23 }.

To implement the algorithm, as mentioned previously, the functions Init and Next, from

Implementation_t, must be implemented. However, a requestor type and an internal state

must be deőned beforehand. A requestor type is the implementation-dependent information

about the processing units issuing memory requests. For FIFO speciőcally, no information

about requestors is used, therefore, we instantiate the requestor type as unit_eqType, an

inductive Coq type with single inhabitant (tt) ś a way of stating that all elements of this

type are the same. The internal state must hold the necessary variables to implement the
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algorithm. In the case of FIFO, we need the notion of łidlež and łrunningž states, a counter,

a list of pending requests, and in the case the arbiter őnds itself in the running state, an

identiőer for the request currently under processing. The requestor type and the internal

state deőnitions are shown in Listing 6.2.

Listing 6.2: FIFO preliminearies ś deőning a requestor type and internal state.

1 Instance REQUESTOR_CFG : Requestor_configuration := {

2 Requestor_t := unit_eqType

3 }.

4

5 Definition Counter_t := ordinal WAIT.

6

7 Inductive FIFO_state_t :=

8 | IDLE : Counter_t → Requests_t → FIFO_state_t

9 | RUNNING : Counter_t → Requests_t → Request_t → FIFO_state_t.

10

11 Instance ARBITER_CFG : Arbiter_configuration :={

12 State_t := FIFO_state_t;

13 }.

We deőne the counter to be of type Counter_t, which is deőned at Line 5. ordinal is

yet another dependent type deőned in mathcomp (somehow similar to sigma types). The

construct ordinal n (or ’ I_n in Coq notation) represents the őnite sub set of integers i < n,

whose enumeration is {0, ..., n− 1}. As for sigma types, an ordinal carries a numeric value

and a proof that such value is smaller than its bound n. Here, since we want the counter to

wrap around the value WAIT− 1, deőning it as a ordinal WAIT ensures that the counter can

never assume a value greater than WAIT.

At Line 7, we deőne FIFO_state_t, the internal state manipulated by the scheduling

algorithm. The arbiter can őnd itself in two states: IDLE and RUNNING. An IDLE state is

łassociatedž to a counter and a list of pending requests. A RUNNING state, besides the counter

and the list of pending requests, is also associated with a Request_t, representing the request

under processing. Note that IDLE and RUNNING can also be seen as constructors, i.e., they can

be used as functions to build a new FIFO_state_t. In that case, the terms appearing after

ł : ž are the type of the arguments expected by the constructors. In addition, at Line 11, we

indicate to Coq that ARBITER_CFG is an instance of Arbiter_configuration (see Listing 5.21).

This ensures that we can pass terms of type FIFO_state_t where Coq expects a State_t (i.e.,

it creates a coercion between types).

Now, having deőned REQUESTOR_CFG and FIFO_state_t, the algorithm can be implemented
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by deőning the body of the functions Init and Next. The deőnition of Init_state is shown

in Listing 6.3. The function takes R, of type Requests_t as argument and returns a scheduler

state, of type FIFO_state_t. The function creates an IDLE state, with a counter initialised

to 0 (OCycle0) and a pending request queue made of the arriving requests at initialisation

(R).

Listing 6.3: FIFO initial state.

Definition OCycle0 := Ordinal WAIT_pos.

Definition Init_state R := IDLE OCycle0 R.

Listing 6.4: FIFO next state.

1 Definition Next_state R (AS : FIFO_state_t) : (FIFO_state_t ∗ Command_kind_t) :=

2 match AS with

3 | IDLE c P ⇒ (* current state is IDLE *)

4 let c’ := Next_cycle c in (* calculates next value of the counter *)

5 let P’ := Enqueue R P in (* enqueues arriving requests into pending queue *)

6 match P with

7 | [ ::] ⇒ (IDLE c’ P’,NOP) (* build new IDLE state *)

8 | r :: PP ⇒ (RUNNING OCycle0 (Enqueue R (Dequeue r P)) r, PRE r)

9 end

10 | RUNNING c P r ⇒

11 let P’ := Enqueue R P in

12 let c’ := Next_cycle c in

13 if c = OACT_date then (RUNNING c’ P’ r, ACT r) (* issue ACT *)

14 else if c = OCAS_date then (RUNNING c’ P’ r, (Kind_of_req r) r) (* issue CAS *)

15 else if c = WAIT.−1 then (* transition to next request or go back to IDLE *)

16 match P with

17 | [ ::] ⇒ (IDLE OCycle0 P’, NOP)

18 | r :: PP ⇒ (RUNNING OCycle0 (Enqueue R (Dequeue r P)) r, PRE r)

19 end

20 else (RUNNING c’ P’ r,NOP)

21 end.

In the listing, OCycle0 is deőned as Ordinal WAIT_pos: the element of ’ I_n with (nat)

value i, given a proof of i < n. In this case, WAIT_pos is a proof of 0 < WAIT, which means

that Ordinal WAIT_pos is a pair with nat value 0 and a proof that 0 < WAIT_pos (one of the

axioms in Listing 6.1).

The core of the algorithm is deőned by Next_state, shown in Listing 6.4. The function,
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as stated by its speciőcation Next, takes a list of arriving requests R, a state AS, and produces

a pair made of a new state and a command ś the latter being issued to the memory device.

The algorithm begins by testing if the current state AS is IDLE or RUNNING. If it is IDLE,

then we must look at the queue of pending requests, P. If the queue is empty (Line 7), then

we build a new state IDLE c’ P’ and issue a NOP command, with c’ standing for Next_cycle

c, and P’ standing for Enqueue R P. The deőnitions of Next_cycle and Enqueue are omitted

for conciseness, but their behaviour is simple: the former increments the counter (wrapping

around WAIT − 1) and the latter appends R (the arriving requests) to the tail of P (the

currently pending requests). If, however, P is not empty (i.e., it has a head r and a tail

PP), then the processing of its head, r, must begin (Line 8). The arbiter proceeds to build a

state RUNNING OCycle0 (Enqueue R (Dequeue r P))r and to issue a PRE r command. This means

that the algorithm goes into the RUNNING state, resets the counter to 0, removes r from the

pending request queue (Dequeue r P), and enqueues R in the resulting queue. In addition, r

is also set to be the request currently under processing. Note also that r is associated with

the PRE command.

If AS is RUNNING (Line 10), then the deőning factor for determining what happens next is

the value of the counter, c. If c is equal to OACT_date (which is equal to tRP −1, with a proof

that tRP −1 < WAIT), then the arbiter stays in the RUNNING state, with the new counter given

by Next_cycle c and the new pending queue given by Enqueue R P. The request currently

under processing remains being r, and the arbiter issues an ACT r. The case when the counter

is equal to OCAS_date is similar, except that we use Kind_of_req to test if r is either a read

or a write request and decide whether to issue a CRD or a CWR. If the counter is equal to

WAIT − 1, however, it means that the algorithm has reached the end of a processing window.

In this case, we must again look at the pending queue (Line 16): if the pending queue is

empty, then we go back to IDLE whilst issuing a NOP, and if it is not, we start processing

a new request, issuing its associated PRE command. In all other cases (Line 20), we stay in

the RUNNING state, increment the counter, enqueue arriving requests, and issue a NOP.

Listing 6.5: Instantiating Implementation_t using the FIFO functions.

Instance FIFO_implementation : Implementation_t :=

mkImplementation Init_state Next_state.

Finally, after having deőned both functions, an instance of Implementation_t can be

created as shown in Listing 6.5. Bear in mind that this version of FIFO does not include

refresh-related operations. As mentioned in the Chapter 5, refresh commands, the related

protocol, and timing constraints were included only in a later development stage, which

means that neither FIFO or TDM implement such functionality. We have implemented a
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version of FIFO that does issue REF commands, namely FIFOREF, but do not detail it here,

since it is still work-in-progress.

6.2 Time Division Multiplexing (TDM)

Clock

Counter 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2

Slot 0 1 0 1

Command Bus PRE ACT WR PRE ACT RD

TRP TRCD TWL + TBURST + TWTR

SL

SN × SL

Figure 6.2: TDM command scheduling (SN := 2).

The TDM algorithm works as follows: we suppose that there are SN requestors in the

system, and each requestor has its own (unbounded) waiting queue. The scheduler attributes

slots (i.e. processing windows) of length SL to each requestor in a pre-deőned order. Each

requestor gets a slot, independent if it has an outstanding request in the queue. Within a

slot, requests are always serviced with the same PRE-ACT-CAS sequence (according to a closed-

page policy). Figure 6.2 show an example of a TDM scheduling scheme, where SN := 2 and

SL := 8. In the scenario depicted in the őgure, two requests are serviced: őrst, a read request

belonging to requestor 0, and then a write request belonging to requestor 1. The scheduler

does not service any other request after that.

In order to optimise the SL parameter, we make an assumption on the address mapping:

we assume that requests belonging to different requestors will always target different banks

(i.e., a private bank mapping policy [18]). Therefore, since each slot is associated to a dif-

ferent requestor, it is possible to conclude that different slots target different banks. This is

formalised in Coq as shown in Listing 6.6. Note that őrst, as an axiom, we say that if there

are two commands targeting the same bank in the trace, then the respective TDM slots at

the time these commands were issued are the same. Note that we use the function TDM_slot

to access the value of a slot at a given instant. Then, using a property from Coq’s standard

library: forall A B : Prop, A ↔ B → not A ↔ not B, we can prove PrivateBankMapping. More-

over, as we show soon, we also impose the fact that there must be at least two alternating

TDM slots. From the latter assumption, it is possible to conclude that neighbouring slots

always target different banks.
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Listing 6.6: Formalising the private bank mapping assumption.

Axiom PrivateBankMapping_eq :

forall t a b,

a \in (Default_arbitrate t).(Arbiter_Commands) →

b \in (Default_arbitrate t).(Arbiter_Commands) →

Same_Bank a b ↔

nat_of_ord (TDM_slot (Default_arbitrate b.(CDate)).(Implementation_State)) =

nat_of_ord (TDM_slot (Default_arbitrate a.(CDate)).(Implementation_State)).

Lemma PrivateBankMapping :

forall t a b,

a \in (Default_arbitrate t).(Arbiter_Commands) →

b \in (Default_arbitrate t).(Arbiter_Commands) →

not Same_Bank a b ↔

nat_of_ord (TDM_slot (Default_arbitrate b.(CDate)).(Implementation_State)) !=

nat_of_ord (TDM_slot (Default_arbitrate a.(CDate)).(Implementation_State)).

Proof. (* ... omitted ... *) Qed.

Knowing that neighbouring slots will never have requests targeting the same bank allows

us to always issue a PRE on the cycle immediately following a CAS (CRD or CWR), since no timing

constraints apply between CAS and PRE commands to different banks. This assumption is

reasonable, since the minimum number of banks to satisfy such assumption is three, if the

number of requestors is odd (two, if the number of requests is even). Note, in addition, that

SL must still be chosen in such a way that the inter-bank constraints between CWR and CRD

commands are respected. Besides that, there are other constraints that must be respected

when choosing a value for SL. As for FIFO, Listing 6.7 contains the TDM parameters and

all necessary axioms/assumptions w.r.t the choice of SN and SL. We deőne ACT_date and

CAS_date as constants marking the time when ACT and CAS commands have to be issued

within a TDM slot.

Implementing the algorithm requires implementing the functions Init and Next, from

Implementation_t. Similar to FIFO, however, we must deőne a requestor type and an internal

state beforehand. We start by deőning a counter Slot_t to account for slots. This counter is

encoded to be of type ordinal SN ś which ensures that all counter values will be strictly less

than SN. The requestor type is instantiated with the same counter type, since requestors are

now identiőed by a numeric value (which is the same as their slot number). Furthermore,

we deőne another wrap-around counter, Counter_t, to account for cycles within a slot.

The internal state of a TDM is deőned as an inductive datatype TDM_state_t. Again,
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Listing 6.7: TDM conőguration and axioms.
Definition ACT_date := T_RP.+1.
Definition CAS_date := ACT_date + T_RCD.+1.

Class TDM_configuration := {
SN : nat;
SN_one : 1 < SN; (* At least two slots *)

SL : nat;
SL_pos : 0 < SL; (* SL must be non-zero *)

SL_ACT : ACT_date + 1 < SL; (* Window is large enough to issue an ACT *)

SL_CAS : CAS_date + 1 < SL; (* Window is large enough to issue a CAS *)

(* Axioms needed for proofs *)

WTR_SL : T_WL + T_BURST + T_WTR_l < SL;
T_RTP_SN_SL : T_RTP < SN ∗ SL − CAS_date;
T_WTP_SN_SL : (T_WR + T_WL + T_BURST) < SN ∗ SL − CAS_date;
T_RAS_SL : T_RP.+1 + T_RAS < SL;
T_RC_SL : T_RC < SL;
T_RRD_SL : T_RRD_l < SL;
T_RTW_SL : T_RTW < SL;
T_CCD_SL : T_CCD_l < SL;
T_FAW_3SL : T_FAW < SL + SL + SL;

}.

Listing 6.8: TDM preliminearies: deifning a requestor type and internal state.
1 Definition Slot_t := ordinal SN. (* Account for TDM slots *)

2
3 Instance REQUESTOR_CFG : Requestor_configuration := {
4 Requestor_t := Slot_t

5 }.
6
7 Definition Counter_t := ordinal SL. (* Account for cycles elapsed within a slot *)

8
9 Inductive TDM_state_t :=

10 | IDLE : Slot_t → Counter_t → Requests_t → TDM_state_t

11 | RUNNING : Slot_t → Counter_t → Requests_t → Request_t → TDM_state_t.
12
13 Instance ARBITER_CFG : Arbiter_configuration := {
14 State_t := TDM_state_t;
15 }.
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Listing 6.9: TDM initial and next state functions.
1 Definition Init_state R := IDLE OZSlot OZCycle R.
2
3 Definition Next_state R (AS : TDM_state_t) : (TDM_state_t ∗ Command_kind_t) :=
4 match AS with

5 | IDLE s c P ⇒ (* If scheduler is IDLE *)

6 let P’ := Enqueue R P in (* enqueue arriving requests into request queue *)

7 let s’ := Next_slot s c in (* calculate next slot value *)

8 let c’ := Next_cycle c in (* calculate next cycle value *)

9 if (c = OZCycle) then (* if at beginning of slot *)

10 match Pending_of s P with (* filter pending queue according to slot *)

11 | [ ::] ⇒ (IDLE s’ c’ P’, NOP)
12 | r::_ ⇒ (RUNNING s’ c’ (Enqueue R (Dequeue r P)) r, PRE r)
13 end

14 else (IDLE s’ c’ P’, NOP)
15 | RUNNING s c P r ⇒ (* If scheduler is RUNNING *)

16 let P’ := Enqueue R P in

17 let s’ := Next_slot s c in

18 let c’ := Next_cycle c in

19 if c = OACT_date then(RUNNING s’ c’ P’ r, ACT r) (* Issue ACT *)

20 else if c = OCAS_date then (RUNNING s’ c’ P’ r, (Kind_of_req r) r) (* Issue CAS *)

21 else if c = OLastCycle then (IDLE s’ c’ P’, NOP) (* Finish window *)

22 else (RUNNING s’ c’ P’ r, NOP) (* Otherwise just stay at runing *)

23 end.
24
25 Instance TDM_implementation := mkImplementation Init_state Next_state.

84



similar to FIFO, the algorithm includes an IDLE and a RUNNING state. Each state carries

łvariablesž (which are actually deőning distinct states): both IDLE and RUNNING states include

a counter of type Slot_t, a counter of type Counter_t, and a queue of pending requests, of

type Requests_t. The RUNNING state also includes an additional term of type Request_t,

used to store the request currently under processing. These deőnitions are all shown in

Listing 6.8. Finally, at Line 13, we indicate to Coq that ARBITER_CFG is an instance of

Arbiter_configuration (see Listing 5.21).

The algorithm is implemented as shown in Listing 6.9. We start by deőning the initial

state as being IDLE, with slot counter equal to 0 (OZSlot), cycle counter being equal to 0

(OZCycle), and pending queue made of the set of arriving requests at initialisation (R). The

Next_state function implements the speciőcation Next: it receives a set of arriving requests

R and a state AS, and produces a pair consisting of a new state and a command to be issued

to the device.

In Listing 6.9, Pending_of s P returns the sub-set of requests in P whose requestor is

equal to s. Next_slot s c increments s by one when c reaches its bound, but also wrapping

around SN − 1. Next_cycle increments c by one, wrapping around SL − 1. We leave the task

of analysing the rest of the algorithm to the reader.

Finally, at Line 25, we create an instance of Implementation_t by calling the constructor

mkImplementation (see Listing 5.21) with the functions Init_state and Next_state as argu-

ments. Again, as for FIFO, this version of TDM does not manage refresh commands nor

its related timing constraints. As mentioned earlier, refreshes were only added at a later

development state, and a TDM version that does manage refreshes (called TDMREF) has

been implemented, but it is still work-in-progress.

6.3 Proving Properties

So far, Sections 6.1 and 6.2 have detailed the process of writing algorithms using one of

the abstractions available in CoqDRAM. Now, these algorithms need to be łturned intož

arbiters conőrming to the formal speciőcation described in Chapter 5. In order to achieve

that, we need to show that these implementations produce valid traces over time by proving

the necessary proof obligations.

A single proof is presented in detail here: the proof of Request_handled for the TDM

scheduler. We do not discuss details about the many other proofs in the framework, such

as the proofs satisfying the properties stated in Trace_t. The reason for that is that most

proofs are repetitive and quite long, and showing more proof scripts does not add much

meaningful information. By showing the proof of Request_handled, we present to the reader
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Slot A B C A B C

Processing Request None r0b r0c r0a None r1c

Queue Size 0 1 2 1 2 3 2 1 0

Arrivals

r0a r0b r0c r1c

tar1c tcr1c txr1c
tkr1c

tc − ta idx · SL · SN CAS_date

Figure 6.3: Time stamps in proof of Request_handled.

a comprehensive-enough overview of what the proofs in the CoqDRAM framework look like.

Moreover, since the techniques employed for proving both FIFO and TDM are very similar,

and TDM is more complex (hence more interesting), we discuss the proof of Request_handled

only for TDM.

The proof of the theorem that satisőes the PO Requests_handled is organised in steps,

written in Coq as Lemmas. The idea at the core of the proof is to advance in time step-by-step,

starting from the instant ta when a request arrives in the system, through intermediate steps

up until the point where a matching CAS is issued ś which represents the completion date of

that request.

Figure 6.3 provides an illustration of these steps for request r1c under TDM scheduling.

In the depicted scenario, there are three requestors: A, B and C (SN := 3). The slot length

is some arbitrary SL. The three requestors issue four requests: r0a, r0b, r0c, and r1c, with

arrivals in that order. The notation rxp represents the x-th request from requestor p. The

time stamps that are meaningful for the proof (and shown in Figure 6.3) are őrst described

informally: tar1c is the arrival date of request r1c; tcr1c is the earliest date after the arrival

of r1c when the scheduler can take a scheduling decision concerning requests of requestor c;

txr1c
is the date when r1c gets to the head of its requestor’s pending queue and starts being

processed; and tkr1c is the completion date, i.e., the date when the CAS command belonging

to r1c is őnally issued. Furthermore, in the őgure, idx represents the position (index) of r1c
in its requestor’s pending queue. In this speciőc case, since requestor C had already issued

r0c before r1c, idx at tcr1c is equal to 1, since r0c already occupied position 0.

Concerning the actual proofs, i.e., the proof scripts for individual steps, we rely heavily

on induction over time or lists/queues; case analysis on the state variables described in

the previous section; and reduction (i.e., simpliőcation of terms). In the following text, we

describe most of the high-level proof strategy ś thus providing the reader a logical sequence of

steps, which can be largely reproduced for other algorithms. The actual content of the proof

scripts is often omitted, and in some cases, discussed only superőcially through comments

86



in the code snippets or in the text.

For some basic understanding, the most commonly used tactics in the proof scripts are:

intros, which introduces premises (i.e. antecedents) in logical implications to the local

context ; destruct, which performs case analysis on inductive types, creating a sub-goal for

each constructor; unfold, which unfolds constants, i.e., replace their deőnitions by their

bodies/values (a process also called δ-reduction); induction, which applies the induction

principle of an inductive type; rewrite, which substitutes one or many occurrences of a

term by an equivalent term;1 and simpl, a smart reduction tactic, which reduces a term to

łsomething still readablež, instead of fully normalising it.

Moreover, we rely heavily on some proof constructs from mathcomp’s SSReflect proof

language.2 While the differences between SSReflect tactics and tactics from vanilla Coq lie

out of the scope of this dissertation, it is worth mentioning that most proofs in the framework

mix both proof styles.

Definition 1 Let ra be an arbitrary request issued by requestor A at instant ta.

Step 1: Pending_on_arrival (Listing 6.10) We prove that ra is instantly inserted into the

request queue. Proven by case analysis on ta, case analysis on state variables, and δ-reduction

(i.e., function unfolding).

Definition 2 Let tc be the next instant after ta when the arbiter can again decide to service

a request from requestor A.

Step 2: Pending_requestor_slot_start We prove that, once ra is in the pending queue, it

stays there until at least tc. Proven by induction over time, case analysis on state variables.

Definition 3 Let P (t, R) be a function that returns an ordered sub-set of the pending

queue at time stamp t consisting only of elements issued by a given requestor R. Such

function is an abstraction of Pending_of, from Listing 6.9. Let idx be the position of ra in

P (tc, A). Let tx be equal to tc + idx · SN · SL.

Step 3: Request_index_zero (Listing 6.11) We prove that if ra is in the pending queue

at tc, then it will get to the head of P (tx, A) at tx, i.e., exactly idx · SN · SL cycles after

tc. Proven by induction on idx. In Listing 6.11, the function Requestor_slot_start ta ra

calculates tc from a given arrival date ta and request ra; and Pending_of returns a sub-set

1Given that such equivalence is stated through a rewritable Leibiniz or setoid equality.
2https://coq.inria.fr/doc/V8.19.0/refman/proof-engine/ssreflect-proof-language.html
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Listing 6.10: Step 1 ś Pending_on_arrival.
(* Returns the waiting queue/list of outstanding requests for a given state AS *)

Definition TDM_pending (AS : State_t) :=
match AS with

| IDLE _ _ P ⇒ P

| RUNNING _ _ P _ ⇒ P

end.

Lemma Pending_on_arrival : forall (ta : nat) (ra : Request_t),
ra \in Arrival_at ta →
ra \in TDM_pending ((Default_arbitrate ta).(Implementation_State)).

Proof.
intros HA. (* HA : ra \in Arrival_at ta *)

destruct ta. (* Case analysis on ta *)

(* Case 1 -- Solved by the definition of TDM_pending:

TDM_pending (Default_arbitrate 0).(Implementation_State) reduces to

TDM_pending (IDLE OZSlot OZCycle (Arrival_at 0)), which reduces to

(Arrival_at 0), by the definition ot TDM_pending. The resulting goal,

(Arrival_at 0), is exactly the same as hypothesis HA. To perform all

such steps, it suffices to unfold the definition of TDM_pending. *)

− by unfold TDM_pending.

(* Case 2 -- Case analysis on state variables and delta-reduction *)

(* Unfold function definitions and reduces *)

− unfold TDM_pending; simpl; unfold Next_state

(* Analyse every case in Next_state *)

destruct (Default_arbitrate ta).(Implementation_State),
(c = OZCycle), (c = OACT_date), (c = OCAS_date), (c = OLastCycle);
try (destruct (Pending_of s P));
(* Reduces what can be reduced (applies to all sub-goals) *)

simpl in ∗;
(* Conclusions follows by the definition of Enqueue, two existing Lemmas

(mem_cat and orbT), and the hypothesis HA *)

by unfold Enqueue; rewrite mem_cat HA orbT.
Qed.
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Listing 6.11: Step 3 ś Request_index_zero.
Lemma Request_index_zero (ta : nat) (ra : Request_t)

(* Instant tc *)

let tc := Requestor_slot_start ta ra.(Requestor) in
(* The state of the scheduler at tc *)

let S := (Default_arbitrate tc).(Implementation_State) in
(* The position of ra in its requestor’s pending queue at tc *)

let idx := index ra (Pending_of ra.(Requestor) (TDM_pending S)) in
(* Antecedent of implication : if ra is pending at tc *)

ra \in (TDM_pending S) →
(* The state of the scheduler at tc + idx * SN * SL *)

let S’ := (Default_arbitrate (tc + idx ∗ SN ∗ SL)).(Implementation_State) in
(* Consequent of the implication : ra must still be pending at tx *)

ra \in (TDM_pending S’) ∧
(* AND ra must arrive in the head of its requestor’s pending queue at tx *)

index ra (Pending_of ra.(Requestor) (TDM_pending S’)) = 0.
Proof. (* proof omitted *) Qed.

of requests in the request queue belonging to a given requestor. In this case, Pending_of

ra.(Requestor)(TDM_pending S) returns the list of outstanding requests at S (the state at tc)

that were issued by the requestor of ra. This is implemented using the filter function from

mathcomp ssreflect.seq library, and it serves as a way to mimic the hardware behaviour of

having one queue per requestor. Although the proof script is omitted, the full Lemma is

provided in Listing 6.11 and is thoroughly commented for easiness of understanding.

Step 4: Request_processing_starts We use Steps 1, 2, and 3 to prove that if ra arrived

at ta, then it will get to the head of P (tx, A) at tx. This follows directly from Steps 1, 2, and

3.

Step 5.1: Request_slot_start_aligned (Listing 6.12) We prove that the internal counter

(Counter_t in Listing 6.8 and c in Listing 6.9) is equal to 0 at the beginning of every slot.

This follows from Lemmas concerning modulo arithmetic in Coq’s standard library.

Step 5.2: Request_starts We prove that, for any given t, if ra is the head of P (t, A) and

TDM_counter equals 0 (Step 5.1), then the request starts to be processed the very next cycle.

Proven by case analysis on state variables.

Step 6: Request_running_in_slot We prove that, for any given t, if a request is being

serviced at t and TDM_counter is equal to 1 at t, then for all d such that d < SL − 1, the
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Listing 6.12: Step 5.1 ś Request_slot_start_aligned.
(* Returns the internal counter for a given state AS *)

Definition TDM_counter (AS : State_t) :=
match AS with

| IDLE _ c _ ⇒ c

| RUNNING _ c _ _ ⇒ c

end.

Lemma Requestor_slot_start_aligned (ta : nat) (s : Slot_t)
(* S is the state at a given start of slot *)

let S := (Default_arbitrate (Requestor_slot_start ta s)).(Implementation_State) in
(* The counter at S must always be equal to OZCycle *)

TDM_counter S = OZCycle.
Proof. (* proof omitted *) Qed.

Listing 6.13: Step 7 ś Request_processing.
Lemma Request_processing ta ra:

let tc := Requestor_slot_Start ta ra.(Requestor) in
let S := (Default_arbitrate tc).(Implementation_State) in
let P := Pending_of ra.(Requestor) S in

let idx := index ra P in

let tx := tc + idx ∗ SN ∗ SL in

ra \in (Arrival_at ta) → forall d, d < SL.−1 →
(* The arbiter state at tx + d *)

let S’:=(Default_arbitrate (tx + d)).(Implementation_State) in
(* The conclusion: counter at tx + d and processed request *)

(TDM_counter S’ = d + 1) && (TDM_request S’ = ra)
Proof. ... (* Applies lemmas described in Steps 4,5.1,5.2 and 6 *) Qed.

request will remain being served until at least t+ d. Proven by induction over d.

Step 7: Request_processing (Listing 6.13) We use Steps 4, 5.1, 5.2, and 6 to prove, for

all d smaller than SL − 1, that ra will be the request currently being processed (represented

by TDM_request) at tx + d and that the counter at tx + d will be equal to d+ 1. This follows

from the previous steps.

Definition 4 Let tk be tx + CAS_date, where CAS_date is the CAS command offset within

a TDM slot (cf. Figure 6.3).

Step 8.1: Request_CAS (Listing 6.14) We use Step 7 with d equal to CAS_date to prove

that ra will have its CAS issued at tx + CAS_date. It follows directly from Step 7 and δ-
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Listing 6.14: Step 8.1 ś Request_CAS.
Lemma Request_CAS ta ra:

let tc := Requestor_slot_Start ta ra.(Requestor) in
let S := (Default_arbitrate tc).(Implementation_State) in
let idx := index ra (Pending_of ra.(Requestor) S) in
let tk := tc + idx ∗ SN ∗ SL + CAS_date in

ra \in (Arrival_at ta) →
(CAS_of_req ra tk) \in (Default_arbitrate tk).(Arbiter_Commands)

Proof.
(* HA : ra \in Arrival_at ta *)

intros HA.
(* Use Step 7 : any request is processed until the CAS date is reached *)

apply Request_processing with (d := CAS_date) in HA as HR.
... (* rest of the proof is omitted *)

Qed.

reduction.

Step 8.2: Requests_handled (Listing 6.15) Finally, we prove the theorem that satisfies

the Request_handled PO, which follows from Step 8.1.

Listing 6.15: Step 8.2 ś Proof of őnal Theorem.

Theorem Request_handled (ta : nat) (ra : Request_t)

ra \in (Arrival_at ta) → exists tc,

(CAS_of_req ra tc) \in (Default_arbitrate tc).(Arbiter_Commands)

Proof.

intros HA.

(* Use Step 8.1: get the CAS command *)

apply Request_CAS in HA as H.

(* Finish the proof: the tc we are looking for is the one coming from the

conclusion of Request_CAS *)

set tc := _.+1 in H; exists (tc); exact H.

Qed.

We would like to emphasise that, as it can be seen in Listing 6.14, tk is the typical

closed-form expression one would expect for TDM:

tk = tc + idx · SL · SN + CAS_date (6.1)

Equation 6.1 is made of three parts:

91



1. tc, which is bounded by ta + SL− 1;

2. idx·SN ·SL, which for given values of SN and SL, is bounded by the maximum number

of pending requests allowed by a requestor; and

3. CAS_date, which is constant.

A timing analysis tool may now derive correct latency bounds for our TDM implementa-

tion by evaluating this formula. For this it would need to supply the correct TDM conőgu-

ration (SL and SN) and establish bounds on idx through an additional model of the requestor

(i.e., by modelling the arrival function). Even more, analyses that are themselves formalised

in Coq could simply reuse our proofs in order certify memory latency bounds.

6.4 Putting It All Together

Finally, in Listing 6.16, we show the code that instantiates the trace through the constructor

mkTrace, deőnes the proven scheduling function, TDM_arbiter, and őnally instantiates the

arbiter through mkArbiter. Note how we pass the timing and protocol correctness proofs as

arguments to mkTrace and a proof of Requests_handled as an argument to mkArbiter. Note

also the call to mkTrace does not include any refresh-related proof obligations. As previously

mentioned, the reason for that is that refresh commands and related timing constraints

were added only at a later development stage. Other algorithms that use the bank machine

abstraction do comply with the later-added REF-related POs, as described in Chapter 8.

Finally, note how the command trace itself is obtained from the last state produced by the

Default_arbitrate function.

Be mindful that algorithms developed and proved according to the presented methodol-

ogy are valid for any DRAM device, as a long as a small set of assumptions hold (which should

be trivial for any existing DDR3 and DDR4 device, given that these axioms only model the

validity and coherence of timing constraints and the number of banks and bank-groups). As

discussed in the previous chapter, all needed parameters and assumptions that algorithms

rely upon are conveniently grouped in System_configuration and FIFO_configuration (or

TDM_configuration). This is very advantageous, since formally verifying algorithms using

model checking, for instance, would require concrete values for timing constraints and algo-

rithm parameters.3 In summary, CoqDRAM algorithms are proved correct against any set

of timing constraints and parameters, as long as a compact set of assumptions hold.

3Although parameterised model checking does exist [113], it is still not very mature.
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Listing 6.16: Generating proved traces and arbiters.

(* Creates a proved trace from the implementation *)

Program Definition TDM_arbitrate (t : nat) := mkTrace

(* ------ The trace of commands ------ *)

(Default_arbitrate t).(Arbiter_Commands)

(Default_arbitrate t).(Arbiter_Time)

(* ------ Proofs of feasibility ------ *)

(Default_arbitrate_cmds_uniq t)

(Default_arbitrate_cmds_date t)

(* ------ Timing correctness ------ *)

(Cmds_T_RCD_ok t)

(Cmds_T_RP_ok t)

(Cmds_T_RC_ok t)

(Cmds_T_RAS_ok t)

(Cmds_T_RTP_ok t)

(Cmds_T_WTP_ok t)

(Cmds_T_RtoW_ok t)

(Cmds_T_WtoR_SBG_ok t)

(Cmds_T_WtoR_DBG_ok t)

(Cmds_T_CCD_SBG_ok t)

(Cmds_T_CCD_DBG_ok t)

(Cmds_T_FAW_ok t)

(Cmds_T_RRD_SBG_ok t)

(Cmds_T_RRD_DBG_ok t)

(* ------ Protocol correctness ------ *)

(Cmds_ACT_ok t)

(Cmds_row_ok t)

(Cmds_initial t)

Defined.

(* Instantiate the TDM arbiter *)

Instance TDM_arbiter := mkArbiter AF TDM_arbitrate Requests_handled.

6.4.1 Code Size & Compilation Times

We can also analyse the size and the compilation time of the entire speciőcation, implemen-

tation interface, concrete implementations, and proofs. As it can be seen in Table 6.1, the

implementations themselves are small compared to the speciőcation and the proofs. The
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proofs are in the order of 10 to 25 times longer than the implementations.4 As proofs are

checked by Coq’s kernel, compiling the őles containing the proofs also takes more time than

őles containing simply code.

Results were obtained on a system with the following conőguration: CPU ś Intel(R)

Core(TM)i5-10210U CPU 1.60GHz; Memory ś 8GiB; Operating System ś Ubuntu 20.04.3

LTS; Coq Version ś 8.17.1. Compilation times were obtained using the time program from

command line.

Lines of code Compilation time (s)
Speciőcation 750 5.24
Implementation Interface 899 10.91
FIFO implementation 133 1.1
FIFO proofs 2217 27.12
TDM implementation 228 0.97
TDM proofs 2431 54.46

Table 6.1: Size of the code and compilation time.

4As stated by Boldo et al. [114], Coq proofs are usually as long as paper and pencil proofs, which means
that automatising the proof process with Coq is comparable to manual proofs (concerning length).
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Chapter 7

A Validation Experiment

CoqDRAM is a high-level framework, conceived to explore and design DRAM scheduling

algorithms. Even if algorithms designed in CoqDRAM enjoy the trustworthiness coming

from machine-checked proofs, the correctness criteria stated in the speciőcation are still

written by a human, and are thus subject to errors. In other words, even if implementations

are proved against a formal speciőcation, nothing guarantees that the speciőcation itself

really models and captures the correct behaviour of DRAM devices.

Bear in mind that although this is true, we still claim that manually checking that a set

of correctness criteria have been correctly stated/encoded is much less burdensome than a

thorough check of hand-written proofs.

However, bugs in the speciőcation may still occur. To address that issue and gain confi-

dence that the CoqDRAM formal speciőcation is correct, we perform a validation experiment.

The experiment consists in generating code from a Coq implementation and executing it on

a third party DRAM simulation framework/environment.

As a pre-requisite, the łhostž environment on which our trusted controllers run must have

a way to detect faulty behaviours, such as exceptions, for a software-based simulation, or

immediate SystemVerilog Assertions (SVA), for a hardware-based simulation. Moreover, we

try to insert our trusted component in a way that modiőes the host environment as little as

possible ś with the aim of showing that the methodology is modular and compatible with

other DRAM simulation environments.

In addition, the reader should keep in mind that the objective of these experiments is

not to evaluate simulation performance nor bandwidth and throughput of our implemen-

tations. As it will be presented in the following, the simulation methodologies rely on

far-from-optimal techniques w.r.t performance. Furthermore, the algorithms we test, FIFO

and TDM, are fairly basic and do not compete with state-of-the-art DRAM controllers w.r.t

bandwidth. The objective is rather to make a proof-of-concept, i.e., show some evidence
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Figure 7.1: MCsim architecture [44].

that the controllers developed in CoqDRAM and are functional and run without triggering

any errors.

In the experiment described in this chapter we use MCsim [44], a cycle-accurate object-

oriented simulation framework for DRAM controllers. MCsim is written in C++ and can

be built on any platform supporting C++11. The fact that MCsim’s design focuses on

modularity and extensibility makes it a great choice to host our algorithms. The original

MCsim architecture is shown in Figure 7.1 [44].

MCsim’s łfront-end ž (i.e., łSystem Simulatorž in Figure 7.1) can run as a trace-based

simulator. It also provides a way to connect to CPU simulators, such as gem5 [115] and

MacSim [116] (although we did not explore that feature). As for the łback-end ž, i.e., the

connection to DRAM device models, MCsim employs a generalised interface ś so that the

framework is not tied to any speciőc DRAM device model. MCsim can also connect to

Ramulator [117] ś an example of a validated and open-source device simulator which supports

a wide variety of DRAM standards.

Moreover, as it can be seen in Figure 7.1, MCsim proposes a general structure for

DRAM controllers, made of four parts: address mapping, request scheduling, command

generation, and command scheduling. Along with the fact that the queuing mechanism is

highly conőgurable, such structure allowed the authors of MCsim to model 14 highly-cited

DRAM scheduling algorithms of different sorts [44] (i.e., algorithms focusing on predictabil-

ity, performance-intensive algorithms, and łmiddle-groundž algorithms).

In order to integrate CoqDRAM algorithms, three parts of MCsim are replaced by gen-

erated code derived from CoqDRAM algorithms: request scheduling, command generation,

and command scheduling. This comes from the fact that CoqDRAM algorithms perform ex-

actly these three tasks. Everything else in MCsim is kept, including its front- and back-ends,

its address mapping mechanism, exception/error tracking features, et cetera.
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From an engineering perspective, integrating Coq generated code to such a system is

not trivial. As it is based on a functional paradigm, Coq programs can be extracted to

OCaml, Haskell, and Scheme. Since Haskell relies on a relatively well-document library for

cooperating with C programs, we opt to extract CoqDRAM algorithms to Haskell. The

Haskell library is called łForeign Function Interfacež (FFI1) and allows Haskell programs to

call foreign functions and foreign functions to call Haskell code. In our case, we go in the

latter direction, as we want MCsim to call Haskell code generated from Coq.

In the following, we őrst discuss the engineering aspects of making Coq-generated Haskell

code cooperate with MCsim’s code. Second, we discuss what are the exact changes made in

MCsim and where the Haskell calls are made. Finally, we discuss the experimental results.

Representing data

Figure 7.2: Data exchange between MCsim and Haskell algorithms.

Although foreign function calls only happen in one direction, we do need to exchange data

in both directions: memory requests from MCsim need to be processed by our algorithm,

which will output a command ś which will then be interpreted by MCsim and sent to the

device model. Figure 7.2 depicts how data structures are translated between MCsim and

Haskell.

MCsim deőnes a class called Request, which models memory requests. Ideally, we would

want to translate such class deőnition directly to Haskell. However, since Haskell’s FFI does

not support some of the C++ class syntax, we deőne an intermediate C struct in a separate

header őle, which mirrors MCsims’ Request. We call this struct ForeignRequest_t. Similarly,

1https://wiki.haskell.org/Foreign_Function_Interface
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MCsim models DRAM commands in the class BusPacket ś and we likewise deőne the C struct

ForeignCommand_t.

The function mcsimreq2coqreq translates the original C++ Request class to the C structure

passed to Haskell. Commands need a translation in the opposite sense: since commands com-

ing from Haskell must be handled in C++, we deőne the function coqcmd2mcsimcmd to translate

a ForeignCommand to a BusPacket. Since the procedure for both requests and commands are

quite similar, we concentrate most of the following discussion on Request.

To translate the C struct ForeignRequest_t to a Haskell data structure, we use hsc2hs

ś a program that can be used to automate some parts of the process of writing Haskell

bindings for C code. In more detail, quoting the package’s page,2 łit [hsc2hs] reads an

almost-Haskell őle with embedded constructs and outputs a real Haskell őle with these

constructs processed, based on information taken from some C headers. The extra headers

provide Haskell counterparts of C types, values of C constraints, including sizes of C types,

and access to őeld of C structsž. This can be visualised in Figure 7.2: hsc2hs processes a

őle ForeignRequest.hsc, which includes the C header ForeignRequest_t.h to produce a pure

Haskell őle ś ForeignRequest.hs.

In more detail, in Haskell, a garbage collector typically manages the memory. When using

the FFI, however, we sometimes need to do some manual memory management to comply

with the data representation of the foreign codes. Such process of manually managing the

memory is called marshalling in the FFI documentation.

In order to correctly manipulate the C struct in Haskell, we use a type called Ptr, declared

in the FFI. A value of type Ptr represents a pointer to an object, or an array of objects,

which may be marshalled to or from Haskell values of the type pointed by Ptr. In our case,

Ptr is used to deőne a type which represents a pointer to the ForeignRequest_t structure:

▷ type PtrRequest = Ptr ForeignRequest_t.

A pointer to the ForeignCommand_t structure can be deőned likewise:

▷ type PtrCommand = Ptr ForeignCommand_t.

Furthermore, the .hsc őle contains functions to help users handle this marshalling of data

and őnd the correct őeld offsets in a struct referenced by a pointer. In other words, the .hsc

makes it łeasyž for users to specify how őelds of a structure can be accessed in Haskell.

Coming back to the CoqDRAM implementation interface, deőned by Implementation_t

(c.f. Listing 5.21). Since the Next function interface also expects an arbiter state in order to

generate the next state, it is also necessary to model CoqDRAM arbiter states in MCsim.

However, differently than requests and commands, states are not manipulated by MCsim

2https://hackage.haskell.org/package/hsc2hs
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itself (i.e., there is no corresponding struct that represents a CoqDRAM state). Therefore,

a state can be modelled as an opaque pointer, since no information is needed on how to

access information. On the Haskell side, we also require arbiter states to be protected from

Haskell’s garbage collection, and for that, we use the FFI type StablePtr:

▷ type ArbiterPtr = StablePtr Arbiter.Arbiter_state_t.

Note that marshalling is not necessary for ArbiterPtr, since a corresponding struct does

not exist in the C++ side. The command issued to the memory device is always taken as the

last command in the Arbiter_Commands list ś part of the state produced by the Next function.

For conciseness, we do not discuss marshalling in further detail.

Calling the Coq-generated transition function from C++

The underlying idea of integrating CoqDRAM to MCsim is fairly simple: since MCsim is

cycle-accurate, it suffices to call CoqDRAM’s Init_state at initialisation and Next_state at

each subsequent cycle. Unfortunately, it is not possible to simply make a call to the Coq-

generated Next_state function from C++. The Haskell code relies on algebraic data-types,

i.e., self-deőned types ś coming from Coq inductive type deőnitions. This representation is

not directly compatible with C types, which occupy a precise size in memory.

Hence, it is necessary to manually write wrapper functions in Haskell that take arguments

compatible with C types (e.g. integers and pointers), translate them to the Coq-generated

types, call the Coq-generated algorithm and translates the result of the algorithm to a C

type again (a pointer). For each implementation, these wrapper functions need to be written

only once.

Moreover, we add the "coq_" preőx to every Coq-generated Haskell deőnition, to avoid

confusion with the actual Coq deőnitions. We also use qualiőed names to improve code

readability. For each implementation, these wrappers and conversion functions are grouped

in a őle called łApp<X>.hsž, where X stands for the implementation name. For TDM, for

instance, the wrapper őle is called AppTDM.hs, and the TDM Next_state function can be

referenced as TDM.coq_Next_state.

A Haskell-wrapper around TDM.coq_Next_state has its type signature shown below:

tdm_next_state_wrapper :: CInt -> ForeignRequest.PtrRequest -> ArbiterPtr

-> IO ArbiterPtr

The function tdm_next_state_wrapper takes three arguments: a C integer (of type CInt), a

pointer to a ForeignRequest_t structure, and a pointer to a Arbiter.Arbiter_state_t. Note that

PtrRequest is actually a list of requests ś representing the list of arriving requests expected
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by the Next_state function (see Listing 5.21). The őrst argument, of type CInt, is thus used

to precise the amount of memory read, starting from the pointer location. This means that

the C++ code must make the Haskell call passing not only a pointer to ForeignRequest_t

as an argument, but also the number of ForeignRequest_t objects to be read. The function

also expects the current arbiter state (of type ArbiterPtr) as an argument and returns the

next arbiter state wrapped around the Haskell IO monad3). The monad is responsible for

indicating to the compiler that the function is impure, i.e., side effects can take place during

the computation, which is the case when dealing with pointers.

The implementation of tdm_next_state_wrapper is omitted for conciseness, since it requires

knownledge of the Haskell and FFI syntax ś which is out of scope here. But brieŕy, the

function works by analysing the őrst argument: if it is not zero, it turns the second argument

(of type PtrRequest) into a proper Haskell list, in which elements are of type ForeignRequest_t.

Then, it converts this Haskell list to a Coq list of requests, which is őnally fed to the Coq-

generated function, TDM.coq_Next_state. If the value of the őrst argument is 0, then the same

procedure applies, only using an empty Haskell list instead ś which is translated to an empty

Coq list (cf. nil from Section 2.3.1).

Furthermore, as the current design communicates arbiter states to MCsim, a second

function, getcommand, is necessary to retrieve the last command from the trace contained

inside the opaque ArbiterPtr. Its type signature is shown below:

getcommand :: ArbiterPtr -> IO (ForeignCommand.PtrCommand)

Modifying MCsim

Our modiőcations to MCsim take place exclusively in the MemoryController class, which plays

a central role in MCsim’s design. For details on MCsim’s design and its class diagram, see

Figure 3 from the paper introducing MCsim [44].

MemoryController is responsible for orchestrating all other tasks that take place during a

trace execution: from conőguring the operating modes, address mapping, executing schedul-

ing algorithms, to reporting results and tracking statistics. Speciőcally, the class provides

the method update, which calls the request scheduler, the command generator, and the com-

mand scheduler, in that order. Since we want to replace these three tasks with generated

code, our modiőcations take place in the method update.

As a disclaimer, this is undoubtedly not a great way of inserting a new scheduler in MC-

sim, which provides a cleaner modular interface to do that. In more detail, since CoqDRAM

algorithms perform request scheduling, command generation, and command scheduling in a

3https://www.haskell.org/tutorial/io.html
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combined fashion that cannot be split automatically, it is not possible to reuse the interface

classes intended for these purpose in MCSim.

As it can be seen in Listing 7.1, we insert four new attributes in the declaration of the

MemoryController class:

Listing 7.1: Modiőcations in the MemoryController class.

class MemoryController {

public:

// ...

private:

// ...

vector <ForeignRequest_t *> coq_requestQueue;

vector <ForeignRequest_t *> coq_pending;

void * coq_state = nullptr;

ForeignCommand_t * coq_cmd;

// ...

}

• coq_requestQueue holds arriving requests on a single cycle ś it is clared every cycle after

executing the scheduling function and replenished again in the beginning of the next

cycle with requests arriving that cycle;

• coq_pending holds the requests that have been sent to the Coq scheduling function.

When the scheduler issues a CWR or CRD command for a request in that list, the request

is considered completed and is thus removed from the pending queue;

• coq_state holds the current Coq arbiter state passed to the scheduling function;

• coq_cmd is used to store the command emitted by the CoqDRAM algorithm, resulting

from a call to the getcommand function.

Finally, Listing 7.2 shows how the calls to the Coq-generated Haskell functions in the

MCsim code are made. From Lines 2 to 6, we create an array of ForeignRequest_t from

coq_requestQueue. At Line 8, we check the current clock cycle: if it is 0, then a call to

tdm_init_state_wrapper is made, with arguments num_req and reqlist, where num_req is the

number of requests to be read from reqlist. In every other cycle, tdm_next_state_wrapper is

called instead, where coq_state is the current arbiter state. Note that coq_state is overwritten

by the function call. At Line 13, we use the getcomand function to retrieve the last issued

command from coq_state and őnally, at Line 15, the function coqcmd2mcsimcmd is used to

101



Listing 7.2: Call to the Coq-generated Haskell scheduling function.

1 void MemoryController :: update () {

2 unsigned int num_req = coq_requestQueue.size();

3 ForeignRequest_t * reqlist = (ForeignRequest_t *) malloc(num_req *

sizeof(ForeignRequest_t));

4
5 for (size_t i = 0; i < num_req; i++)

6 reqlist[i] = *( coq_requestQueue[i]);

7
8 if(clockCycle == 0)

9 coq_state = tdm_init_state_wrapper(num_req ,reqlist);

10 else

11 coq_state = tdm_next_state_wrapper(num_req ,reqlist ,coq_state);

12
13 coq_cmd = (ForeignCommand_t *) getcommand(coq_state);

14 // Creating a BusPacket

15 outgoingCmd = coqcmd2mcsimcmd(coq_cmd);

16 // ... continues with unmodified MCsim code

17 }

convert a ForeignCommand_t to a BusPacket, which is processed according to the normal MCsim

ŕow from there on.

Experiment Results

In order to validate our framework, we run the two traces that come with MCsim: one

made of requests accessing sequential addresses and the other made of random ones. Every

requestor executes the same trace ś but are nevertheless mapped to different banks.

As a őrst observed result, the simulations follow through for both, the TDM and the

FIFO arbiters. This validates our speciőcation, since MCsim’s simulation stalls if timing

constraints are not respected or incoming requests are not served at some point. The fact

that we get MCsim to run with our algorithm without triggering any errors builds conődence

that the CoqDRAM speciőcation is correct. It is worth stating that we also modiőed our

algorithms to be łwrongž to conőrm that they can trigger errors if timing constraints or the

protocol are not respect.

Table 7.1 compares the simulation output with other known DRAM controllers (AMC [20],

ROC [118], and FR-FCFS [119]) ś our results are highlighted in green. Note that, for the

described setup, our arbiters provide a bandwidth that is comparable to that of the other real-

time controller, AMC. As expected, the bandwidth is smaller than that of high-performance

controllers (ROC and FRFCFS). Moreover, as one would expect, it can be seen that the

high-performance controllers exhibit ŕuctuations on the maximum observed latency depend-
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FIFO TDM AMC ROC FRFCFS
Sequential Trace

Bandwidth (MB/s) 433.89 799.97 609.536 5296.08 5931.93
Requests Completed
(per requestor, on average)

4237 7812 5952 51720 57929

Maximum Observed Latency
(cycles)

236 136 168 41 23

Random Trace
Bandwidth (MB/s) 433.89 799.97 609.536 4995.1 4995.1
Requests Completed
(per requestor)

4237 7812 5952 48780 48780

Maximum Observed Latency
(cycles)

236 136 168 25 25

Average Simulation Time (s)
11.13 21.18 0.41 0.85 0.96

Table 7.1: Simulation results for sequential and random traces.
MCsim setup: 4 Requestors, 1 Channel, 1 Rank, DDR3 2133N 2Gb_x8 device, Private

Banks, In-order cores, 1000000 cycles.

ing on the trace format (41 to 25 and 23 to 25, respectively), while the real-time controllers

offer constant latency, no matter the format of the input trace. Moreover, the maximum

observed latency values are consistent with the ones presented in related work (c.f Figure

14 on [28]). On the downside, since our integration with MCsim relies on a complex and

sub-optimal Haskell-C++ interaction, the simulation is considerably slower.

The FIFO WAIT parameter and the TDM SL and SN parameters used to obtain the results

from Table 7.1 were calculated by solving the linear problem stipulated by the axioms in

Listing 6.1 and 6.7. In other words, we choose the smallest WAIT and SL such that all

axiomatic constraints are respected. Furthermore, the values in Table 7.1 are obtained with

the same computer setup as the one described in Table 6.1, and the average simulation time

is calculated taken the average of 100 executions.

Note that only two things impact the simulation time: 1) The size of the input trace,

i.e., how many requests arrive in the system. 2) The timing parameters of the device to

be simulated. As faster devices (in terms of frequency) have larger timing constraints (in

terms of clock cycles), more calls to MCsim’s simulation function are needed, thus resulting

in longer simulations.
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Chapter 8

Improving Re-usability – A New

Iteration of CoqDRAM

This chapter is aimed at presenting the features most recently added to CoqDRAM. The

őrst version of CoqDRAM expected users to write algorithms based on the Implementation_t

interface, described in Chapter 5. Although that was already a good start towards estab-

lishing a foundation for formalising DRAM scheduling algorithms, it did not emphasise the

"framework" aspect, i.e., parts were not really re-usable.

In other words, it was expected that each new algorithm written by users managed

all operations, from address mapping, refresh management, row-buffer policy management,

command generation, request scheduling, and command scheduling. Then, for each new

algorithm, the user was expected to prove every proof obligation described in Chapter 5.

Clearly, the usability of such model is very limited. With that in mind, we improved the

framework, focusing on the re-usability aspect.

In more detail, we propose a new iteration of CoqDRAM. The new approach consists in

using Bank Machines to track the state of the DRAM device in order to know which com-

mands are allowed to be sent beforehand. This includes keeping track of timing constraints,

bus direction (read or write), and status of the row-buffer in each bank. This makes it pos-

sible to write schedulers as algorithms that manipulate a list of ready commands, which, as

a consequence, makes it impossible to violate timing or functional correctness criteria. This

design paradigm brings two additional advantages: 1) the proofs in Trace_t, which describe

timing and functional correctness, do not have to be written again for each new implemen-

tation, and 2) algorithms optimising performance become easier to write, since algorithms

can easily opt for a őrst-ready type of procedures, something that would have been hard to

do without tracking the state of the DRAM device.

Furthermore, in this new iteration of CoqDRAM, we include refresh commands. As
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brieŕy mentioned in Chapter 5, while exploring a different research path (described in Ap-

pendix A), we realised that refresh management was a crucial part of real hardware memory

controller designs. Moreover, refresh management is an important algorithmic problem [105]

for memory controllers, as the JEDEC standards allow a certain degree of ŕexibility regarding

when to issue refresh commands. This ŕexibility can be used to optimise the average-case

latency of memory requests, for example.

Finally, be mindful that this new version of the framework is compatible with the őrst,

which means that it is built on top of what had been already done. This means that the

algorithms described in Chapter 6 are still correct under the new framework ś except for

refresh compliance.

8.1 Modelling Refresh

According to the JEDEC standards, all banks must be idle for at least tRP cycles before

a refresh command is issued to the device. Typically, the memory controller achieves this

by issuing a PREA command tRP cycles before the REF is due, which pre-charges all banks

simultaneously. The őrst step is thus to include these two commands in Command_kind_t, as

shown in Listing 8.1.

Listing 8.1: Modelling the PREA and REF commands.

Inductive Command_kind_t :=

| CRD : Request_t → Command_kind_t

| CRDA : Request_t → Command_kind_t

| CWR : Request_t → Command_kind_t

| CWRA : Request_t → Command_kind_t

| ACT : Request_t → Command_kind_t

| PRE : Request_t → Command_kind_t

| PREA : Command_kind_t (* new *)

| REF : Command_kind_t (* new *)

| NOP : Command_kind_t.

Next, we insert two timing constraints in System_configuration: tREFI and tRFC , as

shown in Listing 8.2. Naturally, we also state two proof obligations restricting these con-

straints to be positive numbers.

The meaning of the constraint tRFC is quite straightforward: it is the minimum time

between a REF command and the next valid command issue to the device. In other words, the

controller must wait at least tRFC cycles after a REF before issuing another valid command.
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Listing 8.2: Introducing two timing constraints related to refresh commands.
Class System_configuration := {

...
(* Refresh related constraints *)

T_RFC : nat;
T_RFC_pos : T_RFC > 0;
T_REFI : nat;
T_REFI_pos : T_REFI > 0;

}.

Moreover, in general, according to the standard, ła REF command needs to be issued

to the DDR4 device regularly every tREFI interval." To, allow for improved efficiency in

scheduling, some ŕexibility is allowed, which means that refresh commands can be postponed

and issued in advance. However, the DDR4 JEDEC standards includes only a short section

explaining exactly how this ŕexibility works and what are the timing constraints between

different refresh commands. In addition, the text presenting is not perfectly clear. The

timing diagrams are confusing as well and do not help much in resolving the ambiguities

from the text.

In detail, the standard states that ła maximum of 8 refresh commandsž can be postponed,

meaning that at not point in time more than a total of 8 refresh commands are

allowed to be postponed. Therefore, the upper-bound on the time elapsed between two

consecutive refresh commands is 9× tREFI , which happens after having postponed 8 refresh

commands in a row. In addition, a maximum of 8 refresh commands can be issued in

advance (i.e., łpulled-inž). The advancing of refresh commands is further constrained by the

statement that łat any given time, a maximum of 16 refresh commands can be issued within

2× tREFIž.

From this description, taken directly from the DDR4 JEDEC standard, we can derive

three rules that dictate the timing of refresh commands:

1. The maximum spacing between two consecutive refresh commands is 9× tREFI .

2. The amount of refresh commands issued during a time window of length 2 × tREFI

cannot be superior to 16, i.e.,

∀t ∈ N, card {cmd ∈ Commands | isREF cmd ∧ (t ≤ cmd.(CDate) ≤ t+ 2× tREFI))}

≤ 16.

3. At any point in time, the amount of refresh commands issued during a time window

of length ∀x ∈ N, x× tREFI cannot be inferior to (x+ 1)− 8.
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These three conditions, plus the tRFC constraint, can be formalised in Coq as shown in

Listing 8.3.

Listing 8.3: POs ensuring timing correctness (speciőc to refresh) in Trace_t.

1 (* ------------------ Refresh-related constraints -------------------------- *)

2 Cmds_T_RFC_ok : forall a b, a \in Commands → b \in Commands → isREF a → not isNOP b →

Before a b → Apart_at_least a b T_RFC;

3

4 Cmds_T_REFI_max_dist_ok : forall a, a \in Commands → isREF a →

5 exists b, b \in Commands ∧ isREF b ∧ b.(CDate) <= a.(CDate) + 9 ∗ T_REFI;

6

7 Cmds_T_REFI_density1_ok : forall t,

8 size ([seq cmd ← Commands |

9 isREF cmd && (t <= cmd.(CDate)) && (cmd.(CDate) <= t + 2 ∗ T_REFI)]) <= 16;

10

11 Cmds_T_REFI_density2_ok : forall x, (x+1) − 8 <

12 size ([seq cmd ← Commands | isREF cmd && (cmd.(CDate) <= x ∗ T_REFI)]);

Since tRFC is a lower-bound, the Cmds_T_RFC_ok PO is state very similarly to the other

timing POs from Trace_t from Chapter 5. Moreover, Cmds_T_REFI_max_dist_ok states that

any REF in the trace must be followed by another refresh issued not more than 9×tREFI cycles

later. The following 2 proof obligations user the filter and size functions from mathcomp.

seq.1 The notation [ seq x ← s | C] means that the sequence s is őltered in a way that only

elements respecting the boolean predicate C are kept. The boolean predicate C is stated as

an anonymous function of x ś a name given to an arbitrary element of s. To the best of

our knowledge, these POs constitute the őrst deduction-based formalisation/mechanisation

of DRAM refresh timing constraints.

Listing 8.4: PO ensuring functional correctness (speciőc to refresh) in Trace_t.

1 (* Banks must be idle for at least T_RP cycles before a REF is issued *)

2 Cmds_REF_ok : forall ref, ref \in Commands → isREF ref →

3 (exists prea, (prea \in Commands) &&

4 (isPREA prea) && (Before prea ref) && (prea.(CDate) + T_RP <= ref.(CDate))) ∨

5 (forall bank, bank \in All_banks → exists pre, (pre \in Commands) &&

6 (Before pre ref) && (pre.(CDate) + T_RP <= ref.(CDate))) }.

Finally, it is also necessary to include the protocol constraint about refresh commands.

Simply put, all banks must be idle for at least tRP cycles before a REF is issued. We formalise

1https://math-comp.github.io/htmldoc/mathcomp.ssreflect.seq.html
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this through an extra PO in Trace_t, as shown in Listing 8.4. In natural language, we say

that for any arbitrary refresh command (ref) in the trace, there must exist a PREA command

issued at least tRP cycles before, or, for every bank, there must exist a corresponding PRE

command issued at least tRP cycles before the REF command.

8.2 The Interface Sub-Layer & the Bank Machines

In this section, we describe the framework features that allow users to write scheduling algo-

rithms that re-use proofs about timing and protocol correctness. In other words, algorithms

written using the functions described in the following do not have to manage timing or proto-

col constraints nor refresh operations. In Chapter 9, we describe a new scheduling algorithm

developed using the proposed approach.

We begin by writing a set of deőnitions, which together form the Interface Sub-Layer ś

an implementation of Implementation_t (recall the framework architecture from Chapter 4).

Like FIFO and TDM, described in Chapter 6, the sub-layer must deőne the functions Init

and Next. Therefore, as it has been done for FIFO and TDM, we must also deőne the

schedulers internal state beforehand (i.e. we must instantiate Arbiter_configuration by

deőning/instantiating State_t). Listing 8.5 shows the deőnition of ARBITER_CFG, an instance

of Arbiter_configuration in which State_t is deőned as option ImplSubLayerState_t. The

reason why we use option is explained later in the text.

In addition, Listing 8.5 shows the deőnition of ImplSubLayerState_t and Scheduler−

InternalState. Together, these deőnitions form a 3-layer state structure, in which the

upper-most layer, ARBITER_CFG, is the one manipulated by Default_arbitrate. The second

layer, deőned by ImplSubLayerState_t, plays the same role as FIFO’s FIFO_state_t and

TDM’s TDM_state_t ś it deőnes the scheduler’s internal state. Here, however, the internal

state is yet another intermediate state abstraction containing three members:

1. SystemState, of type SystemState_t (whose deőnition is shown later), represents the

state of the memory device. It contains the status of each bank, the bus direction, and

counters used to keep track of timing constraints.

2. CMap, of type ReqCmdMap_t represents the łcommand mapž, a data structure holding the

commands needed to service the requests present in the system. Since command also

hold information about their originating requests, CMap can also be seen as a list of

pending requests/commands.

3. SchState, of type SchState_t ś which is an arbitrary Type. SchState is the third layer
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Listing 8.5: Sub-Layer State & State Hierarchy.
(* Layer 3: specific to scheduling algorithms *)

Class SchedulerInternalState := mkSIS {
SchState_t : Type

}.

(* Layer 2: the internal state - common for all scheduling algorithms *)

Record ImplSubLayerState_t := mkImplSubLayerState {
(* The state of the DRAM *)

SystemState : SystemState_t;
(* The data structure holding requests *)

CMap : ReqCmdMap_t;
(* The scheduler algorithm internal structure *)

SchState : SchState_t;
}.

(* Layer 1 : the states used to build the trace *)

Instance ARBITER_CFG : Arbiter_configuration := {
State_t := option ImplSubLayerState_t;

}.

and is used to hold internal information for scheduling algorithms, such as additional

counters and queues, and whatever may be needed to implement a given algorithm.

Figure 8.1 provides a visual scheme for understanding the hierarchy of states using this

new interface. The őgure shows the őrst two states created following a call to Default

arbitrate n, where n > 1. Note how the functions Init_SL_state and Next_SL_state (whose

deőnition is yet to be discussed) implement Init and Next, respectively. The next state

function, Next_SL_state, produces a new command each cycle and a new internal state (as it

was with FIFO and TDM). Remember that, in the őgure, the internal state is said to be of

type State_t, but that type is instantiated to be option ImplSubLayerState_t by ARBITER_CFG

(in Listing 8.5).

Furthermore, the reason why State_t is instantiated using an option type is that, as we

will see later in the text, the functions in the bank machines are written in a functional ML-

programming style: we write partial functions that may fail if hypotheses do not hold (i.e.,

if something goes wrong). For example, if we try to update the state of the system with a

command that is invalid (in the sense that it violates a timing constraint, for instance), then

an update function may produce an invalid state. We prefer this kind of design pattern rather

than using hypotheses inside of programs to invalidate forbidden behaviour. Although the

technical details about such decision lies outside of the scope of this dissertation, it is simpler
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to manipulate programs without proofs, both in terms of proofs and performing computation

(which is useful for testing). The design choice is thus to keep a clean separation between

programs and proofs.

Before explaining the behaviour of Init_SL_state and Next_SL_state in detail, we must

őrst introduce Scheduler_t ś the interface for specifying new scheduling algorithms according

to this new approach. Be mindful that Scheduler_t is ultimately what is exposed to the

framework user. The deőnition of Scheduler_t can be seen in Listing 8.6. The Schedule

function takes three arguments: 1) the list of ready commands (of type ReqCmdMap_t), 2)

the state of the DRAM device (of type SystemState_t), and 3) the scheduler’s internal

state (of type SchState_t). It produces a new command to be issued to the DRAM device

(of type Command_kind_t). Scheduled_Empty and Schedule_In are proof obligations which

together guarantee that the scheduled command comes from the list of ready commands,

or is a NOP, if the list is empty or the algorithm decides to issue a NOP (this could happen,

since an algorithm might choose to not issue a ready-command instantaneously). Moreover,

InitSchState represents the initial SchState_t; and UpdateSchState creates a new state (of

type SchState_t), taking as arguments the list of all pending commands (and not just ready

Figure 8.1: State hierarchy using the Interface Sub-Layer.
Legend: Layer 1 ś states manipulated by Default_arbitrate and used to build the

command trace. Layer 2 ś states manipulated by the interface sub-layer, agnostic to the
implemented algorithm. Layer 3 ś states manipulated by the scheduling algorithm.

110



Listing 8.6: Deőnition of Scheduler_t.
Class Scheduler_t := mkScheduler {

(* Scheduling function *)

Schedule : ReqCmdMap_t → SystemState_t → SchState_t → Command_kind_t;

(* If there is no commands in the system (which can only happen if there is no

request in the system), produce a NOP *)

Schedule_Empty : forall m SYS_ST SCH_ST, m = [] → Schedule m SYS_ST SCH_ST = NOP;

(* Scheduled command must come from the list of commands *)

Schedule_In : forall m SYS_ST SCH_ST, let sch_cmd := Schedule m SYS_ST SCH_ST in

(sch_cmd = NOP) ∨ (sch_cmd \in m);

InitSchState : SchState_t;

UpdateSchState : Command_kind_t → ReqCmdMap_t → SystemState_t → SchState_t →
SchState_t;

}.

commands), the state of the DRAM device, and the scheduler’s current internal state. The

fact that UpdateSchState takes as argument the list of all pending commands is important,

since it needs to have visibility over all requests in the system, and not just those that ready

commands associated with them.

Having introduced the necessary abstractions, we can discuss Next_SL_state, presented in

Algorithm 1 as a generic procedure. The core idea is to łmapž arriving and outstanding (i.e.,

requests already in the system) to the next DRAM command needed to service such request

at each clock cycle, given a certain page policy (Lines 7 and 8). Commands related to refresh

management might also be included in the map when they are due (Line 9). The precise

refresh management mechanism is explained in more detail later in the text. Moreover,

this łmapž is actually implemented as a list ś also called command map throughout this

text.2 Then, commands that do not satisfy all timing constraints are őltered-out of the list

(Line 11), being replaced by NOP commands, and the resulting list is handed to the scheduler

(Line 12).

Next, the scheduler, following its own policy, chooses a command from the list of ready/-

2The ideal data structure to hold such command mapping would be a hash map, in which keys are requests
and elements are commands. The implementation of hash maps in Coq’s standard library, however, is depen-
dently typed and overall hard to work with. For that reason, we work with lists instead. Since commands (of
type Command_kind_t) “carry” their originating request with them, we can still access information about
requests over a list of commands.
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Algorithm 1 Next_SL_state.
Inputs: R : Requests_t, ST : option ImplSubLayerState_t

Outputs: ST_new : option ImplSubLayerState_t, cmd : Command_kind_t

1: if ST is valid then
2:

3: SS ← ST.(SystemState) ▷ Access the őelds of ImplSubLayerState_t
4: SCH ← ST.(SchState)

5: cmd_map ← ST.(CMap)

6:

7: cmd_map ← map_running(cmd_map) ▷ Map existing requests to commands
8: cmd_map ← map_arriving(cmd_map) ▷ Map arriving requests to commands
9: cmd_map ← map_REF(cmd_map) ▷ Refresh management

10:

11: ready_cmds ← filter_non_ready(cmd_map) ▷ Filter out non-ready commands
12: sch_cmd ← Schedule(ready_cmds,SS,SCH) ▷ Choose a command to be issued
13:

14: if isCAS sch_cmd then
15: cmd_map ← remove(sch_cmd,cmd_map) ▷ Request is done, remove from list

16:

17: SS_new ← SystemUpdate(sch_cmd,SS) ▷ Update the state of the DRAM
18:

19: if SS_new is valid then
20: SCH_new ← UpdateSchState(sch_cmd,cmd_map,SS,SCH)

21: ST_new ← (Some SS_new,cmd_map,SCH_new) ▷ Create a new ImplSubLayerState_t

22: else(None,NOP)

23: else(None,NOP)
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valid commands. If the chosen command is a CAS, then it means that its associated re-

quest has completed, and the entry is removed from the list (Line 15). Finally, the system

is updated. Updating the system means, őrst, updating the status of the DRAM device

(SystemState_t) considering the effects of the command that has been chosen to be issued

(Line 17), and second, updating the internal state of the scheduler (Line 19). The new state,

of type ImplSubLayerState_t, is a 3-tuple (Line 20) made of the new DRAM state (SS_new),

the updated command map (cmd_map), and the updated scheduler state, SCH_new.

Moreover, note that the algorithm tests if ST is valid (Line 1). If that is not the case,

it produces another invalid state and issue a NOP (Line 22). It also tests if the new DRAM

state generated after updating is valid (Line 18). If that is not the case, again, it generates

an invalid state and issue a NOP (Line 21). This means that the algorithm can never recover

from an invalid state. This makes sense, since we design a system that can never reach an

invalid state. In fact, most proofs using this machinery rely on the fact that an invalid state

cannot be reached (more on that soon).

As an example, Figure 8.2 depicts a scenario consisting of two subsequent executions of

Next_SL_State. The system depicted in the őgure includes requests targeting three banks:

BI , BII , and BIII . Consider, in the őrst execution (at cycle n), that the last command

issued to the DRAM device (at cycle n− 1) was a PRE to bank BII . Consider also that two

requests are currently in the system: R1(WRM) ś a write request targeting bank BI , and

R2(RDH) ś a read request targeting bank BII . R1 is a row-buffer miss, meaning that, when

it arrived, the row loaded in BI ’s row-buffer was not R1’s target row. R2 is a row-buffer hit.

At instant n, an additional request arrives, R3(RDH), a read request targeting bank BI . At

the time it arrives, R3 is a row-buffer hit, meaning that BI contais RI ’s targeted row loaded

in its row-buffer.

Note, in the őgure, that ST.(CMap) initially contains two commands: since R1 was a row-

buffer miss when it arrived, assuming that no other request interfered with its bank, ST.(CMap)

maps R1 to a PRE, i.e., PRE is the next command needed to service R1. Similarly, since R2

was a row-buffer hit when it arrived, and again, assuming that no other request interfered

with its bank in the meanwhile, ST.(CMap) maps a R2 to a CRD, i.e., CRD is the next command

needed to service R2.

The őrst function used in the algorithm is map_running, which calls the command gen-

eration function on the elements of ST.(CMap). Here, we assume an open-page command

generation policy. Since BII has just been precharged at n− 1, R2’s CRD is no longer valid,

which means that R2’s must now issue an ACT. In other words, it can be said that another

request (not present in the őgure) interfered with R2, making it regress. Next, map_arriving

creates a new entry for R3 ś a CRD, since R3’s row is open at n. At this point, map_REF does
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Figure 8.2: Example of execution of Next_SL_state. Arbitrary/unknown scheduling
algorithm, open-page policy. RR is the list of pending requests and AR is the list of arriving

requests at a given instant.
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not insert any refresh-related commands. Afterwards, filter_non_ready creates a copy of

the map, replacing R2’s ACT by a NOP ś the reason being that since a PRE to BII has just

been issued at n− 1, an ACT to BII has to wait at least tRC cycles.

The scheduler must then choose a command in the list [ PRE R1; CRD R3]. Here, the sched-

uler employs its scheduling policy, which is unknown in this example. Consider that the

scheduler chooses to issue R3’s CRD (certain scheduling policies indeed work by prioritising

CAS commands over any other type of command). Since the scheduled command is a CAS,

it is immediately removed from the list, and the system is updated considering the effect of

that command on the DRAM device.

At cycle n + 1, the same two requests R1 and R2 are still pending, and yet another

request R4 arrives ś a write-hit request to BIII . The algorithm goes through the same series

of steps described above: őrst, map_running does not change ST.(CMap), since neither R1’s nor

R2’s bank state has been affected by the last issued command, R3’s CRD. Next, map_arriving

creates a new entry for R4, a CWR ś since R4 is a row-buffer hit.

This time, however, map_REF inserts a PREA in the map. Here, it is important to emphasise

that the algorithm cannot violate the refresh timing constraints, i.e., PREA and REF commands

are only inserted in the map when they can be immediately scheduled, and other commands

take the urgency of refresh operations into consideration. In other words, if scheduling a

given command would violate the timing constraints of a PREA or a REF, then such a command

is also considered not ready. Note that, in the example from Figure 8.2, according to this

rule, R3’s CRD would theoretically not have been allowed in the őrst place, since a PREA was

due at n + 1. For the sake of simplicity in this example, we ignore the timing constraint

between a CRD and a PREA and consider that both commands are valid.

Finally, filter_non_ready invalidates all commands except the PREA: R1’s PRE is not

ready, since a CRD to the same bank has been issued at n; R′

2s ACT is not ready, since a PRE

to BII was issued at n− 1 and tRC has not yet elapsed; and R4’s CWR is also not ready; since

thre must be at least tRTW cycles between any CRD and CWR, and a CRD has been issued at n.

The scheduler only has one option then: PREA, which is scheduled and used to update the

system.

While exploring the deőnition of every function used in Algorithm 1 would take a huge

amount of space, it is worth looking at the deőnition of filter_non_ready, the function which

determines if commands are ready to be issued or not. Listing 8.7 shows the deőnition of

filter_non_ready. Straightforwardly, we test the predicate łiscmdOKž in each element of

a given list of commands, cmdmap. If iscmdOK is true, the command is mapped to itself,

otherwise, it is replaced by a NOP.

Now, to understand what happens inside of iscmdOK, we must őrst look at the deőnition
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Listing 8.7: Filtering non-ready commands.
Definition filter_non_ready (cmdmap : ReqCmdMap_t) (SS : SystemState_t) :=

seq.map (fun cmd ⇒ if (iscmdOK cmd SS) then cmd else NOP) cmdmap.

of the type SystemState_t, shown in Listing 8.8. SystemState_t, used to keep track of the

state of the memory device, is a record with three őelds:

Listing 8.8: SystemState_t, used to keep track of the state of the memory device.

Inductive BankState_t :=

| IDLE : LocalCounters → BankState_t

| ACTIVE : Row_t → LocalCounters → BankState_t.

Definition BankStates_t : Set := {l : seq.seq BankState_t | seq.size l = BANKS }.

Record SystemState_t := mkSystemState {

Banks : BankStates_t;

SysCounters : GlobalCounters;

Busdir : Busdir_t

}.

1. Banks, of type BankStates_t, is a list containing the state of all banks in the system.

The list is modelled as a sigma type, meaning that it must necessarily have the length

BANKS (the parameter deőned in System_configuration). The type of elements in the

list is BankState_t ś a type modelling the state of a single bank. It is deőned as an

inductive datatype with two constructors, IDLE and ACTIVE, according to Figure 2.6.

Moreover, both constructors also carry a set of counters to keep track of intra-bank

timing constraints, LocalCounters. In more detail, LocalCounters is a record containing

six counters, which are all of type nat. These counters work according to the same

principle ś they get reset to 0 when their related command is issued to their respective

bank, and in all other cases, they are incremented by one:

• cACTsb accounts for ACT commands issued to a given bank;

• cPRE accounts for PRE commands issued to a given bank;

• cRDsb accounts for CRD commands issued to a given bank;

• cRDA accounts for CRDA commands issued to a given bank;

• cWRsb accounts for CWR commands issued to a given bank;
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• cWRA accounts for CWRA commands issued to a given bank.

Finally, if the bank is ACTIVE, there is also an associated Row_t, which is the row

currently loaded in the row-buffer.

2. SysCounters, of type GlobalCounters, is a record containing counters used to keep track

of inter-bank timing constraints. Although the precise őelds of the record are not

shown here, their working principle is very similar to LocalCounters, except that there

is only one instance of SysCounters in the entire system.

3. Busdir, of type Busdir_t, is used to keep track of the direction of the data bus (read

or write). Busdir_t is an inductive type with two constructors, and its deőnition is

omitted for brevity.

We can now analyse the (incomplete) deőnition of iscmdOK, shown in Listing 8.9. The

function takes a command (cmd) and a system state (SS) as arguments, and produces a bool

as result. The goal of the function is to determine if, given the state of the memory, SS, cmd

can be immediately issued, i.e., cmd is valid.

Lets focus on read commands for now, other commands are handled in a similar way and

brieŕy discussed later. Start by noting how, at Line 3, CRD and CRDA are always associated

with a request, req. Then, from Lines 4 to 7, we give names to req’s bank and bank-group:

bk and bg, respectively. The state of bk is labelled BS. Then, at Line 10, a pattern matching

is performed on BS. BS being IDLE consists of a violation, since CAS commands are not allowed

on an IDLE bank (Line 8). More precisely, an ACT is required to load a row in the row-buffer

before a CRD or a CRDA can be issued.

If BS is ACTIVE (Line 9), we must verify whether all protocol and timing constraints are

satisőed. First we test to see if req is a row-buffer hit or miss. In the latter case, another

violation occurs, since we must read from the correct row (Line 10 and 35). If it is a hit,

we can proceed with the checks, which will depend on the direction of the data bus. If

the direction of the bus is read (indicated by BRD), then, the following constraints must be

satisőed:

• At least tCCDl
cycles must have elapsed since the last CRD command to the same

bankgroup, to either the same of different banks, was issued (Lines 15 and 16);

• At least tCCDs
cycles must have elapsed since the last CRD command to a different

bankgroup was issued (Line 17);

• At least tRCD cycles must have elapsed since the last ACT command to bk was issued

(Line 18);
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Listing 8.9: Deőnition of iscmdOK.
1 Definition iscmdOK (cmd : Command_kind_t) (SS : SystemState_t) : bool :=
2 match cmd with

3 | CRD req | CRDA req ⇒
4 let bk := (Bank_to_nat req.(Address).(Bank)) in (* req’s bank *)

5 let bg := Bankgroup_to_nat req.(Address).(Bankgroup) in (* req’s BG *)

6 let BS := seq.nth def_BKS (proj1_sig SS.(Banks)) bk in (* the state of req’s

bank *)

7 match BS with

8 | IDLE _ ⇒ false (* Violation: CRD not ok on an IDLE bank *)

9 | ACTIVE row lc ⇒
10 if (req.(Address).(Row) = row) then ( (* row hit *)

11 match SS.(Busdir) with
12 | BRD ⇒
13 let lastRD_sbg := seq.nth 0 (proj1_sig SS.(SysCounters).(cRDbgs)) bg in

14 let lastRD := SS.(SysCounters).(cRDdb) in
15 (T_CCD_l <= lc.(cRDsb)) && (* RD-to-RD same bank and bankgroup *)

16 (T_CCD_l <= lastRD_sbg) && (* RD-to-RD dif. bks (but same BGs) *)

17 (T_CCD_s <= lastRD) && (* RD-to_RD different BG *)

18 (T_RCD <= lc.(cACTsb)) && (* ACT to RD *)

19 (* Can’t issue a CRD if there’s an incoming REFRESH cycle. *)

20 (SS.(SysCounters).(cREF) <= T_REFI − T_RP − T_RTP) &&
21 (* Can’t issue a CRD after a REF for T_RFC cycles *)

22 (T_RFC <= SS.(SysCounters).(cREF))
23 | BWR ⇒
24 let lastRD_sbg := seq.nth 0 (proj1_sig SS.(SysCounters).(cRDbgs)) bg in

25 let lastRD := SS.(SysCounters).(cRDdb) in
26 (T_WL + T_BURST + T_WTR_l <= lc.(cWRsb)) && (* RD-to-WR same bank (

also same BG) *)

27 (T_WL + T_BURST + T_WTR_l <= lastRD_sbg) && (* RD-to-WR different

banks (but same BG) *)

28 (T_WL + T_BURST + T_WTR_s <= lastRD) && (* RD-to-WR different

bankgroups *)

29 (T_RCD <= lc.(cACTsb)) && (* ACT to WR *)

30 (* Can’t issue a CWR if there’s an incoming REFRESH cycle. *)

31 (SS.(SysCounters).(cREF) <= T_REFI − T_RP − T_RTP) &&
32 (* Can’t issue a CWR after a REF for T_RFC cycles *)

33 (T_RFC <= SS.(SysCounters).(cREF))
34 end)
35 else false (* CRD not ok when the active row is not the request’s row *)

36 end

37 | CWR req | CWRA req ⇒ (* continues ... *)
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• The issue date of the next REF command must be at least tREFI − tRP − tRTP cycles

away (Line 20);

• At least tRFC cycles must have elapsed since the last REF command was issued (Line 22).

Anecdotally, the code from Lines 13 and 14 (as well as 24 and 25) are responsible for

assigning names to counters, using functions to access global/system counters in SS. More-

over, if the direction of the bus is BWR (meaning that the last successful transaction was a

write), a different set of constraints apply, which are not shown here.

Note how, for all timing constraints, we use counters that are local to banks and counters

that are relevant for all banks. Looking back at Algorithm 1, these counters are incremented

whenever the system is updated after issuing a new command. This process takes place in

the function SystemUpdate ś whose type signature is shown in Listing 8.10. SystemUpdate

expects two arguments: 1) cmd, of type Command_kind_t, represents the command issued to

the memory device; and 2) SS, of type option SystemState_t, represents the current state of

the system. The function produces another option SystemState_t as output.

As discussed previously, the fact that we use an option type means that the current

system state can be valid or not. If it is not valid (i.e., when SS is equal to None, one of

the constructors of option), then SystemUpdate produces another invalid state. If SS is valid,

then the SystemUpdate may or may not produce a valid state, depending on cmd and SS.

Listing 8.10: Type of SystemUpdate, a function to update the state of the DRAM device

based on the effects of issuing a given command.

Definition SystemUpdate

(* The issued command chosen by the scheduler function *)

(cmd : Command_kind_t)

(* The current system state *)

(SS : option SystemState_t) : option SystemState_t.

For conciseness, the implementation of SystemUpdate is not discussed, but in summary, it

updates everything in a given SystemState_t when a command is issued. If a CRD is issued,

for instance, then two counters are reset to zero: cRDsb, which keeps track of CRD commands

to a given bank, and cRDbgs, which keeps track of CRD commands to a given bank-group. In

addition, the bus direction might also be updated: if it was a BWR, then it changes to a BRD

and remains unchanged otherwise.

As another example, if cmd is CRD r in a call to SystemUpdate, where r is the request

associated with the CRD, then we look at the status of r’s bank: if r’s bank is IDLE, that

is a violation, since a CRD cannot be issued to a bank without any active row. As a result,
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SystemUpdate produces a None, signalling that a violation has occurred. Again, this style

of programming allows faulty behaviours by construction, as opposed to programming with

dependent types. On a later stage, we prove that a faulty behaviour cannot occur and the

system never falls into a faulty state ś from which it could never recover.

8.2.1 Unified Proofs for Timing Constraints

One of the advantages of the bank machine approach is that proofs about timing constraints,

such as tRCD, are done just once and are agnostic to the actual scheduling algorithm. In

the following, as an example, the proof strategy for the Cmds_T_RCD_ok PO is discussed.

The discussion involves a more łhigh-levelž proof strategy rather than a low-level proof

script analysis, although the main insights of proof scripts are sometimes indicated. For

convenience, the top-level theorem is reproduced below.

Theorem Cmds_T_RCD_ok t a b:

a \in (Default_arbitrate t).(Arbiter_Commands) →

b \in (Default_arbitrate t).(Arbiter_Commands) →

isACT a → isCAS b → (get_bank a = get_bank b) → Before a b →

a.( CDate) + T_RCD <= b.(CDate).

The proof is carried out in 4 steps. At a high-level, these steps are described below:

1. Given that commands a and b are in the trace, iscmdOK must have been true the cycle

before these commands were issued, i.e., at a.( CDate)− 1 and b.( CDate)− 1;

2. Knowing that iscmdOK is true at a.( CDate)− 1 and that a is issued at a.( CDate), we

can derive the information that the intra-bank ACT counter, cACTsb, is reset to 0 the

following cycle by SystemUpdate;

3. Similarly, knowing that iscmdOK is true at b.( CDate)− 1 and that commnad b is issued

at b.( CDate), we can derive the information that the intra-bank ACT counter, cACTsb, is

at least grater then (or equal to) tRCD at b.( CDate)− 1, from the deőnition of iscmdOK;

4. Finally, knowing that a and b target the same bank, that a happens before b in the

trace, that the counter cACTsb was 0 at a.( CDate) (Step 2), and that it was greater

than or equal to tRCD at b.( CDate) (Step 3), we use an auxiliary lemma stating that

counters increases monotonically (unless a reset happens) to conclude that a.( CDate)

+tRCD ≤ b.( CDate).
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These steps are presented in greater detail below:

Step 1. If a non-NOP command, cmd, exists in the trace at an arbitrary instant t, then

iscmdOK is true at instant cmd.(CDate)− 1. Intuitively, this makes sense, since according to

Algorithm 1, a non-NOP command can only be issued when iscmdOK is satisőed for such

command in the previous cycle. The proof of Lemma 1 is further organised into multiple

sub-steps ś each stated in Coq as a Lemma.

Lemma 1.1 (valid_state_when_cmd_in_trace cmd). First, we prove that, if cmd is in the

trace at t, the arbiter state at cmd.(CDate) must be valid. The proof follows from the fact

that an invalid state would have generated a NOP command, and since we know that cmd

is not a NOP, the state of the arbiter when the command was issued could only have been

valid. This is described in Coq as the Lemma valid_state_when_cmd_in_trace, shown in the

snippet below. The proof proceeds by induction on cmd.(CDate). In the induction step, a

case analysis on the arbiter state is required, along with smart reduction tactics. Note that

the validity of states is tested with the Coq function isSome, which, for a given term of an

option type, returns true if the term was built by the constructor Some, and false if it was

built by None.

Lemma valid_state_when_cmd_in_trace cmd t :

cmd \in (Default_arbitrate t).(Arbiter_Commands) → not (isNOP cmd) →

isSome (Default_arbitrate cmd.(CDate)).(Implementation_State).

The proof of valid_state_when_cmd_in_trace depends on an auxiliary Lemma called

SystemUpdate_valid, which states that the SystemUpdate function must produce a valid state

when fed with a valid state and with a command coming from the őltered list filtered_map.

Recall from Listing 8.7 the deőnition of filter_non_ready: either commands in the resulting

list respect the iscmdOK predicate or are replaced by NOP commands. In the latter case, NOPs

are trivially validated by iscmdOK, which means that SystemUpdate cannot produce an invalid

state.

Lemma SystemUpdate_valid n IS map Sys_S Sch_S :

(Default_arbitrate n).(Implementation_State) = Some IS →

let filtered_map := filter_non_ready map Sys_S in

isSome (SystemUpdate (SCH.(Schedule) filtered_map Sys_S Sch_S) (Some Sys_S)).

Lemma 1.2 (previous_state_is_valid). If the state at instant n + 1 is valid, then the

state at instant n must have been valid. This follows from the fact that the system can never

recover from an invalid state; therefore, a valid state can only be preceded by another valid

state. This is stated in Coq as Lemma previous_state_is_valid.
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Lemma previous_state_is_valid n IS:

(Default_arbitrate n.+1).(Implementation_State) = Some IS →

exists IS’, (Default_arbitrate n).(Implementation_State) = Some IS’.

Lemma 1.3 (iscmdOK_true_between_valid_states). If both the state at instant n + 1 and

n are valid, then the command issued by the scheduling function at instant n + 1 satisőes

the predicate iscmdOK at n. The Coq formalisation in shown in the snippet below. In the

code, the state at instant n + 1 is given the name IS_cur, and the state at instant n is given

the name IS_prev ś for łcurrentž and łpreviousž, respectively. Note that cmd is the command

coming from SCH.(Schedule) ś the arbitrary scheduling function, where SCH is an abstract

instance of the Scheduler class (see Listing 8.6).

Lemma iscmdOK_true_between_valid_states n IS_prev IS_cur map cmd:

(Default_arbitrate n).(Implementation_State) = Some IS_prev →

(Default_arbitrate n.+1).(Implementation_State) = Some IS_cur →

(* The system state at n *)

let SS := IS_prev.(SystemState) in

(* The internal scheduler state at n *)

let SCH_ST := IS_prev.(SchState) in

(* The command issued at t + 1 by the arbitrary scheduling function *)

cmd = (mkCmd n.+1 (SCH.(Schedule) (replace_nonrdy_cmds map SS) SS SCH_ST)) →

iscmdOK cmd.(CKind) IS_prev.(SystemState).

Step 1 follows from Lemmas 1.1, 1.2, 1.3. Together, theses lemmas allow us to go from

the top level hypothesis:

▷ H : forall t, a in (Default_arbitrate t).(Arbiter_Commands),

to the following conclusion:

▷ iscmdOK a.(CKind) IS_prev,

where IS_prev is the state of the arbiter at a.( CDate)− 1.

Step 1 can thus be applied in commands a and b from Cmds_T_RCD_ok, knowing that both

a and b are respectively ACT and CAS commands.

Step 2 (cACTsb_reset). If iscmdOK (ACT r) SS holds, where r is an arbitrary request and SS

is an arbitrary system state (of type SytemState_t), then updating SS with ACT r results in

another system state on which the intra-bank ACT counter value is 0.

To better understand this step, bear in mind that by łACT counterž, we mean the intra-

bank counter which is reset whenever an ACT command is issued in a bank. In all other cycles
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Lemma cACTsb_reset : forall (r : Request_t) (SS : SystemState_t),
iscmdOK (ACT r) SS →
(* SS’ is the state produced by SystemUpdate *)

let SS’ := SystemUpdate (ACT r) (Some SS) in
(* get_cACTsb_ retrieves the counter cACTsb of a given bank from SS’ *)

get_cACTsb_ SS’ r.(Address).(Bank) = Some 0.

that an ACT is not issued, it is incremented. This counter is named cACTsb in the code and

is part of the LocalCounters record, which can be seen in Listing 8.8 as part of BankState_t.

The Coq formalisation of Step 2 can be seen in the code snippet above.

Note that syntactically, SS’ ś the state produced by SystemUpdate ś is of type option

SystemState_t. But logically, SS’ cannot be invalid, since that would contradict the hypoth-

esis iscmdOK. Moreover, get_cACT_sb is a function that retrieves the cACTsb counter from

an arbitrary system state for a given bank. This function is written in the partial-function

programming style, meaning that it expects an option SystemState_t as parameter. In the

case it receives an invalid state, it returns None.

Step 2 allows us to go from the conclusion of Step 1, iscmdOK a.(CKind), to the conclusion

that the value of cACTsb, for the bank associated with a’s request, is zero at instant a.( CDate).

Step 3 (cACTsb_gt_TRCD). If iscmdOK cmd SS holds, where cmd is any CAS command (i.e., a

CRD, CRDA, CWR, or CWRA) associated with a request r and SS is an arbitrary system state;

then the intra-bank ACT counter for r’s bank must be greater than or equal to tRCD at state

SS. The Coq formalisation of Step 3 can be seen below.

1 Lemma cACTsb_gt_TRCD : forall (t : nat) (IS : ImplSubLayerState_t) cmd,

2 (Default_arbitrate t).(Implementation_State) = Some IS →

3 isCAS cmd → let r := get_req cmd in

4 match r with

5 | None ⇒ False

6 | Some r ⇒ (* r is the request associated with cmd *)

7 (* The iscmdOK hypothesis *)

8 iscmdOK cmd.(CKind) (IS.(SystemState)) →

9 (* Accessing the state of r’s bank *)

10 let bk := Bank_to_nat r.(Address).(Bank) in

11 let BS := seq.nth def_BKS (proj1_sig IS.(SystemState).(Banks)) bk in

12 (match BS with

13 | IDLE _ ⇒ False (* contradicts iscmdOK *)

14 | ACTIVE _ lc ⇒ is_true (T_RCD <= lc.(cACTsb))

15 end) end.
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Unfortunately, different than cACTsb_reset, the formalisation of Step 3 requires some

other syntactic constructs used to access record őelds and deal with partial functions that

make the statement less readable. Nonetheless, it should be clear that T_RCD <= lc.(cACTsb)

is the conclusion (Line 14), where lc is the set of local counters for r’s bank, r being the

request associated to cmd.

The fact that cACTsb is greater than tRCD comes from the deőnition of iscmdOK: a CAS is

only allowed to be issued whenever at least tRCD cycles have elapsed since the last ACT to

the same bank has been issued. The reader is encouraged to visit Listing 8.9 again, where

this condition is stated at Line 18.

Similar to Step 2, Step 3 allows us to go from the conclusion of Step 1, iscmdOK b.(CKind),

to the conclusion that value of cACTsb, for the bank associated with b’s request, is greater

than or equal to tRCD at instant b.( CDate)− 1.

Step 4 (counter_monotonic). If, for a given bank bk, cACTsb is equal to an arbitrary x at an

instant t, then forall t’ such that t’ > t and cACTsb is greater than or equal to some x + d,

then t’ is greater than or equal to t + d. The Coq formalisation of Step 4 is shown below.

Lemma counter_monotonic (bk : Bank_t) (t t’ : nat) (x d : Counter_t) IS IS’ :

t < t’ → d > 0 →

(Default_arbitrate t).(Implementation_State) = Some IS →

(Default_arbitrate t’).(Implementation_State) = Some IS’ →

let SS := IS.(SystemState) in (* The system state at t *)

let SS’ := IS’.( SystemState) in (* The system state at t’ *)

(* First condition on the counter - satisfied by Step 2 *)

(match get_cACTsb_ (Some SS) bk with

| None ⇒ False

| Some z ⇒ z = x

end) →

(* Second condition on the counter - satisfied by Step 3 *)

(match get_cACTsb_ (Some SS’) bk with

| None ⇒ False

| Some y ⇒ is_true (y >= (x + d))

end) → t’ >= t + d. (* Conclusion *)

In natural language, Step 4 says that, if the counter at t was incremented by at least

an arbitrary non-zero value d, then at least d clock cycles must have elapsed since t. This

is because, excluding the reset condition of the counter, its value increases monotonically,

which allows us to conclude that a counter increment implies an equal time increment.

Step 4 allows us to connect the results from Steps 2 and 3, which contain information
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about the value of cACTsb, to the issue date of commands a and b. Applying (through the

Coq tactic apply) Step 4 on Cmds_T_RCD_ok solves the goal, where t’ is b.( CDate) and t is

a.( CDate). The two conditions on the values of the counter are satisőed by Steps 2 and 3,

which means that counter_monotic is used with x = 0 and d = T_RCD. Note also that bk is

the bank from the requests associated to a and b ś which, from the hypothesis SameBank a b

in Cmds_T_RCD_ok, happens to be the same.

Finally, using counter_monotonic with t := a.(CDate), t’ := b.(CDate)− 1, d := T_RCD,

and x := 0, we can prove that a.( CDate) + tRCD ≤ b.( CDate).

8.3 Re-implementing FIFO

Using the features described in the previous section, it is easy to re-implement a FIFO

algorithm similar to the one described in Chapter 6. The őrst step, as before, is to deőne an

implementation-speciőc requestor model. Recall that requestor information is not relevant

for a FIFO arbitration scheme, which means that we can deőne the requestor model as

unit_eqType again.

Next, we must use the interface Scheduler_t (described in Listing 8.6) to implement the

algorithm. Before implementing the function Schedule, the arbiter’s internal state must be

deőned. In this case, differently than the FIFO implementation described in Chapter 6, no

internal state is required, since there is no need to keep a counter to account for the passing

of time and manage timing constraints. Hence, we deőne the algorithm’s state type as shown

below.

Definition FIFO_internal_state := unit.
⋆[ global] Instance SCH_ST : SchedulerInternalState := mkSIS FIFO_internal_state.

Note that this version of FIFO also does not require a parameter to model processing

windows (such as WAIT, from the previous FIFO implementation). This comes from the fact

that timing constraints cannot be violated, hence, it suffices to pick commands from the list

of ready commands whenever they appear.

Finally, the Schedule function can be implemented as shown in Listing 8.11. Straight-

forwardly, we use the ohead function to select the őrst command from the list of pending

commands/requests. Since the Next_SL_state algorithm always inserts arriving requests in

order and never changes the order of requests in the data structure, the head of the list (map)

always contains the oldest command/request. If the list is empty, the ohead function returns

a None, which in this case, results in FIFO_schedule issuing a NOP command.

Bear in mind that this FIFO implementation also issue REF commands, since it relies on
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Listing 8.11: Re-implementing FIFO using the bank machines.
Definition FIFO_schedule (map : ReqCmdMap_t) (SS : SystemState_t)

(FIFO_st : FIFO_internal_state) : Command_kind_t :=
let cmd := seq.ohead map in

match cmd with

| Some cmd ⇒ cmd

| None ⇒ NOP

end.

the bank machine described in the previous section. More speciőcally, it issues a REF com-

mand at every tREFI cycles, each preceded by a PREA command issued tRP cycles before. As

explained previously, other types of commands take the urgency of the refresh management

operation into consideration, i.e., commands are considered not ready whenever a PREA or a

REF is due. This also means that the (current) refresh management strategy implemented in

the bank machine does not exploit the ŕexibility that comes from postponing and advancing

the issuing of refresh commands. Future developments could further improve the bank ma-

chine by implementing other refresh management strategies, which ideally should be deőned

as parameters, as it is currently done for the row-buffer policy.

Furthermore, although we did not yet prove the refresh-related POs, intuitively, it is clear

that issuing a REF command every tREFI cycles clearly complies with the stated POs. Note,

however, that the correctness of the refresh strategy is independent from the scheduling

algorithm, i.e., once its correctness is proven, every algorithm written on top of Scheduler_t

can beneőt from refresh management and its underlying correctness.

More generally, this implementation of FIFO is not yet fully proved. The tRCD proof,

described in Section 8.2.1 is inherited by the implementation, but other timing constraints

are yet to be proved. Proving the remaining timing constraints, along with the high-level

properties stated in Arbiter_t is left as future work, as discussed in Chapter 10.

Of course, not all scheduling algorithms can be that easily implemented with the new

interface. In the following chapter, we describe TDMShelve, a complex new algorithm built

using the features described in this chapter.
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Chapter 9

TDMShelve – A New DRAM Scheduling

Algorithm

Chapter 6 introduced FIFO and TDM, two Proof-of-Concept DRAM scheduling algorithms.

While these two served as valid őrst use-cases for CoqDRAM, they are too simple. In this

chapter, we introduce TDMShelve, a new DRAM scheduling algorithm.

To better understand the motivation behind the design of TDMShelve, we look back at

the two research problems stated in Section 1.1:

1. How to address the limitations of a specific existing state-of-the-art memory request

scheduling algorithm for real-time mixed-criticality systems?

2. How to address the development of real-time memory controller scheduling algorithms

in a trustworthy manner?

While the CoqDRAM framework itself provides an answer to the second question, a

natural follow-up presents itself as łcan the CoqDRAM approach be used to design complex

and competitive DRAM scheduling algorithms (w.r.t. other State-of-the-Art algorithms)? ž

Moreover, as stated in the őrst point, we wish to improve Hebbache’s algorithm [39], [40].

The TDMShelve algorithm attempts to answer/resolve both of these questions.

At time of writing, the algorithm has been successfully implemented and has gone through

some sanity checks. Since the algorithm is implemented using the bank machine abstraction

from Section 8, it inherits the proofs about timing constraints from the Interface Sub-Layer.

Unfortunately, due to limited time, we did not yet prove the algorithm’s high-level properties

nor carry out an in-depth performance evaluation ś these are some obvious starting points

for future work (which are discussed in further detail in Chapter 10).

In the following, we brieŕy present Hebbache et al.’s algorithm before presenting TDMShelve

and its CoqDRAM implementation.
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Figure 9.1: Regular TDM arbitration of three tasks A, B, and C, including periods of
memory activity (green) and idling (red).

9.1 Work-Conserving Dynamic TDM

Hebbache et al.’s algorithm explores memory request arbitration on a multi-core architecture

consisting of m cores with private caches and a single shared memory, i.e., cache misses

result in memory requests to transfer cache blocks. In summary, the algorithm proposes

an improved arbiter of memory requests that preserves the temporal isolation provided by

TDM, but improves the bandwidth through better memory usage. To do so, the algorithm

loosens the concept of strict slot ownership. In other words, requests can be serviced in

arbitrary slots, and slot boundaries are merely used to keep track of deadlines. Each request

is associated with a deadline that corresponds to the completion date of the request if it

had executed under TDM arbitration. The algorithm is then able to relax the scheduling of

memory requests, while ensuring that all deadlines are respected.

To start with a more detailed explanation, őrst consider a TDM arbitration scheme,

which works only by considering slot boundaries ś from now on called strict TDM. Such

arbitration is depicted in Figure 9.1 (reproduced from Hebbache et al.’s paper [40]). Each

task is assigned a dedicated TDM slot (vertical columns, labelled A through C) that alternate

over time. As it can be seen, memory requests are only processed in their respective TDM

slots ś which results in the memory being idle (i.e., unused) for long periods.

Next, we present two variants of the algorithm proposed by Hebbache et al. To begin, the

authors reőne their task model by deőning two criticality classes: critical and non-critical

tasks. Citing the authors: łwe simply assume that critical tasks are associated with a strict

deadline that has to be met under all circumstances. The underlying computer platform

and memory arbitration scheme thus have to provide a means to bound the WCET of these
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tasks. Non-critical tasks, on the other hand, may miss their deadlines. In contrast to typical

mixed-criticality systems, we do not demand strict worst-case execution time bounds for

them in this work. The underlying hardware can thus execute these tasks in a best-effort

manner.ž

The core idea of a őrst algorithm variant is to allow łnon-critical tasks to share TDM

slots, or, in the worst-case, simply recycle unused TDM slots leftover by the critical tasksž

(i.e., the slots shown in red in Figure 9.1). Moreover, still according to the authors, łthe

strict separation of critical tasks would allow to easily establish worst-case execution time

bounds, while non-critical tasks would improve the memory utilisation.ž

The őrst version of the algorithm implementing such ideas is dubbed TDMds (dynamic

TDM with slack counters). According to the authors, for critical tasks, deadlines are derived

for each request, which simply corresponds to the end of the task’s next TDM slot after the

request’s issue date. The TDMds arbiter is then free to scheduler memory requests dynami-

cally, as long as the request deadlines of critical tasks are respected [40]. Furthermore, a slack

counter is associated with each critical task. This counter indicates how many cycles before

a given request of a task completed before its deadline. When a new request is issued by a

task that previously accumulated some slack, the request’s issue date occurs earlier than

expected under a strict TDM scheme. Consequently, also the corresponding deadline

appears earlier than under strict TDM. The authors then proceed to compute a so-called

delayed issue date, which simply consists of adding the previously accumulated slack back

to the issue date of a new request. The delayed issue date may then potentially push the

deadline farther into the future. During the execution of a task, the deadlines computed

under TDMds considering the accumulated slack, exactly correspond to the deadlines/com-

pletion dates under strict TDM. Note, however, that the slack accumulated by a task is not

preserved for subsequent jobs of a task, i.e., slack counters have to be reset to zero at task

start.

Figure 9.2 shows an execution of the task set from Figure 9.1 under TDMds, considering

tasks A and B as critical tasks and task c as non-critical. The deadline may well lie far after

the request’s actual completion date, and thus generate slack for the task issuing the request

(e.g, requests A0, A2, and B0). The value of the slack counter is displayed as a superscript

for each request. For instance, request A1 has accumulated 8 cycles of slack (superscript 8∆

in Figure 9.2). At the beginning of each TDM slot, the arbiter chooses one of the issued

requests, independently from the actual owner of the slot. This is, for instance, the case for

non-critical request c0, which is granted access to the memory despite the fact that critical

request B1 has been issued. The slack accumulated by task B is here spent in favour of the

non-critical task. In comparison to regular TDM (Figure 9.1), TDMds is more efficient in this
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Figure 9.2: Improved arbitration using TDMds of two critical (A and B) and a non-critical
task (c).

example. The last request A2 completes 3 TDM slots earlier. Note, that the slack counters

are all reset to zero for subsequent requests of the critical tasks A and B.

TDMds, however, still limits arbitration to be aligned with TDM slot boundaries, which

results in the memory being idle in situations where there is at least one already-pending

request. The authors call these periods of idling issue delays. For instance, TDMds generates

an issue delay of 6 cycles for request c0. This delay could have been avoided if requests were

handled independently from TDM slots. For instance, task A, the owner of TDM slot 5,

has accumulated some slack (8∆), which ensures that the deadline of any request issued by

task A after request c0 will be at the end of slot 7 or later. It thus would be safe for request

c0 to immediately access the memory during the unused TDM slot 4. Moreover, the authors

introduce yet another concept ś release delays. Release delays denote the number of clock

cycles during which at least one request is issued to the memory arbiter after the completion

of the memory request of a used TDM slot. Here, for brevity, we only (brieŕy) describe

the authors’ solution to issue delays, an algorithm dubbed TDMes (łesž standing for łearly

startž).

The core idea behind TDMes is to use, at any time, slack counters to take a peek into

the near future and take arbitration decisions based on that information. In other words,

at any time, the scheduler can use slack to analyse whether the next TDM slot can be used

by another task without compromising the deadline of any potential memory request of the

slot’s owner. If the scheduler can conclude that indeed the next slot’s owner will not have

a request with a deadline marked by the end of the slot, then it is safe to schedule another

memory request at any instant, thus decoupling arbitration from TDM slot boundaries.
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Figure 9.3: Reduced issue delays thanks to the TDMes arbiter, which operates
independently from the actual TDM slot length.

Figure 9.3 illustrates the resulting arbitration under TDMes for the task set from before

(A, B, and c). Note that, at cycle 26, request c0 can start early, since at the time it arrives,

A has enough slack for the scheduler to concluded that a possible incoming request from A

would have its deadline pushed to the end of slot 7. Thus, it is safe to start processing c0 at

cycle 26. Here, we do not detail the precise rule that allows an early start to be triggered.

Interested readers should refer to Hebbache et al. [40].

Moreover, although the rules for computing the deadlines and slack in TDMShelve are very

similar to the ones proposed by Hebbache et al., the implementation adopted in TDMShelve

differs greatly. For that reason, we only discuss these deadline and slack computation rules

further in the text, when explaining the TDMShelve algorithm.

Limitations

Although the algorithm proposed by Hebbache et al. (in its different ŕavours) does succeed

in providing good average-case performance1 for low-criticality tasks while still guaranteeing

strict TDM bounds for high-criticality tasks, there is still room for improvement. More

generally, it can be said that both TDMes and TDMds do not exploit the slack information

at other levels of the memory hierarchy ś such as the DRAM. In more detail, the memory

model considered by the authors is over-simpliőed, i.e., the servicing of memory requests

is considered to be a contiguous time window, without any details about the underlying

1In simulation, considering a simple memory model.
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memory technology and speciőc timings within such processing window. This is a somewhat

incomplete interface, since considering the internal structure and features of the DRAM, for

example, would allow better scheduling decisions.

As an example, take request A0 from Figure 9.3: at the time it arrives in the system,

task B, the owner of the subsequent slot has no slack, which means that it is impossible to

conclude at that instant that slot 2 will go unused by B, thus resulting in slot 1 going fully

unused (i.e., there is an incurred issue delay).

If, however, the arbiter disposed of information about the processing latency of A0 and its

potential impact on the latency of requests coming from B, then a more informed schedul-

ing/arbitration decision could be made. More concretely, if, for example, the scheduler

knew beforehand that requests coming from tasks A and B were always mapped to different

DRAM banks (by imposing that bank mapping condition), then A0 could start being pro-

cessed at the time it arrives without compromising the guarantee that a potential request

arrival from task B will miss its deadline. This comes from the fact that the timing con-

straints between DRAM commands targeting different banks are generally much shorter

than those of commands targeting the same bank. Such idea is the core of TDMShelve, as

explained in the following section. As a result, even more idle time can be allocated for the

processing of memory requests coming from low-criticality tasks.

More generally, the objectives of TDMShelve are: 1) to extend Hebbache et al.’s idea

by considering a realistic memory model ś namely DDR, where requests are potentially

processed through multiple commands that may be interleaved, and 2) to exploit the char-

acteristic of DDR to improve scheduling decisions.

9.2 TDMShelve

First, we present the core ideas behind TDMShelve, with the goal of giving the reader an

intuitive understanding of its basic functionality. Next, we present the algorithm more

formally while going through an example. Last, we discuss its CoqDRAM implementation

ś which makes use of the interfaces described in Chapter 8.

There are two core ideas behind TDMShelve. The őrst one is to leverage information about

address mapping and timing constraints between DRAM commands at request scheduling

time. In more detail, since Hebbache et al.’s algorithm considered arbitration over the

common bus rather than the DRAM, it did not exploit information about how memory

requests are mapped to the memory (i.e., in terms of bank-groups, banks, rows, and columns)

and how this mapping can inŕuence the latency between DRAM commands.2 Therefore, by

2As a reminder, the latency between some DRAM commands depends on whether they target the same
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considering the address mapping and the variable command latency, safe assumptions can

be made about the timing interference that a memory request can have over other requests.

The second idea is to shelve (i.e., in the sense of łinterruptingž or łpreemptingž3) out-

standing memory requests. This comes from the fact that memory requests are łtranslatedž

to a series of DRAM commands; thus, by keeping track of the state of the DRAM device,

it is possible to łrememberž the next command needed to service a given memory request

at any given time. Knowing which command is required by any request at any given time

allows scheduling techniques that are based on łpickingž DRAM commands from a sort of

łshelfž (hence the algorithm’s name).

For instance, imagine that there are two pending requests sitting at the łshelfž (i.e.,

pending/outstanding requests) ś RA and RB. We may, at őrst, pick RA from the shelf and

schedule the next command it requires. Next, we may decide to put RA back in the shelf

(assuming that it is not yet completed), pick RB from the shelf, and schedule a command

from RB, which might be needed in order to make sure that its deadline is respected. In other

words, it is possible to interleave the processing of different memory requests. TDMShelve

makes use of this interleaving technique to shelve a request if scheduling another (critical)

request is necessary for it to meet its deadline. As discussed later in the text, this ensures

that critical requests always meet their deadlines (coming from strict TDM) and enhances

overall performance, i.e., the memory stays less time idle (compared to Hebbache et al.’s

algorithm), which, in consequence, frees more bandwidth for requests coming from non-

critical requestors/tasks.

More formally, we start by presenting the algorithm’s parameters and assumptions and

then go through the scheduling rules while examining an example.

9.2.1 Preliminaries

The algorithm has three quantitative parameters. The őrst two come from strict TDM: SL

is the TDM slot length, and SN is the number of slots in a TDM period. SN × SL is

the number of clock cycles in a TDM period. The third parameter is the total number of

requestors in the system, Treq.

Moreover, the algorithm works with both open-page and closed-page row-buffer policies.

The row-buffer policy to use, along with the bank mapping scheme are also parameters to

the algorithm (more on that later).

Requestors (and consequently memory requests) can have two criticality levels: critical

or different banks/bank-groups.
3The shelving mechanism employed in TDMShelve is not quite a preemption, as discussed further in the

text.
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requestors are always identiőed by uppercase letters and non-critical requestors by lowercase.

The n-th request from a critical requestor A is thus written as An. The n-th request from

a non-critical requestor c is written cn. From this point onwards, a critical requestor will

be shortened as łCRž and a non-critical requestor as łNCRž. Requests issued by CRs and

NCRs are referred to as łcritical requestsž and łnon-critical requestsž, respectively.

Furthermore, there are as many TDM slots as there are critical requestors in the system,

and each slot is associated to a CR. In fact, the concept of slot ownership is rather loose.

A slot being associated to a requestor does not grant the requestor exclusive access to the

memory, as in TDMes. Instead, as we will see, slot bounds are used to keep track of deadlines

and slack ś which are important information used by the scheduling algorithm.

Assumption 1: There are at least two CRs in the system. This also means that

there are at least two slots (SN > 1).

Assumption 2: Critical requests that are mapped to adjacent TDM slots never

target the same bank. In other words, CRs are mapped to sets of banks according to

a private bank mapping scheme [18]. No assumptions are made on the mapping scheme

for non-critical requests (i.e., NCRs can target any bank ś as in a shared bank mapping

scheme [24], [26]).

Note that Assumption 2 implies that there must be at least two disjoint sets of banks, if

the number of CRs is even, or three, if the number of CRs is odd. This is reasonable, since

DDR3 DRAM devices have 8 banks, and DDR4 DRAM devices have from 4 to 16 banks.

9.2.2 Determining the Slot Length (SL)

Moreover, and most importantly, Assumption 2 allows us to signiőcantly reduce the slot

length SL ś in comparison to a SL that would have been necessary if no assumption was

made. Bear in mind that a shorter slot length means a tighter WCL for memory requests

issued by CRs [40]. To better understand why this is, consider the scenario depicted in

Figure 9.4.4

The őgure involves two critical requestors: A and B. This means that there are two

alternating TDM slots (SN = 2). βA and βB are disjoint set of banks attributed to A and

B, respectively (βA ∩ βB = ⊘).5

4For simplicity, Figure 9.4 does not mention the requests that lead to the depicted commands. The
scheduling algorithm is also irrelevant. The purpose of the figure is solely to show how the slot length is
calculated.

5Note also that although the figure shows different command buses for βA and βB , there is in reality just
a single command bus, given by the overlap of both buses appearing in the figure.
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Slot Number 1 2 3

Slot “Owner” A B A

Commands (βB) PRE ACT CRD CRD

Commands (βA) ACT CWR PRE

tRP tRCD

tWR−to−RD

tRAS

tWL + tBURST + tWR + 1

SL

SL× SN

Figure 9.4: TDMShelve ś choosing an appropriate slot length (SL).

In summary, each slot is made long enough to accommodate a PRE-ACT-CAS (PAC)

sequence, regardless of what happens in the neighbouring slots. This comes from

the observation that, in the worst-case, in order to meet its deadline (as we will see next,

in more detail), a critical request needs to őt entirely in a slot. Or, more precisely, the

commands needed to service a critical request need to őt entirely in a slot. Since TDMShelve

does not exclude bank interference (recall from Assumption 2 that requests issued by NCRs

may still interfere with CR’s banks), we must assume that any critical request may be a

row-buffer miss ś which means that a slot must be at least big enough to issue a valid

PAC sequence (i.e., all timing constraints must be respected between the commands of the

sequence).

Moreover, because we know that neighbouring slots target different banks, no intra-bank

timing constraints apply between commands associated with requests that target differ-

ent banks. As an example, note that in Figure 9.4, A’s őrst slot (Slot 1) ends with a
CWR command. Since B targets a different set of banks, no timing constraint exists between

A’s CWR and B’s PRE . If the possibility that requests of A and B targeted the same bank

existed, then, in the worst-case, additional intra-bank constraints would apply ś which would

result in a larger SL.

In addition, inter-bank timing constraints between neighbouring slots still apply and

must thus be considered in order to choose a correct SL. Notably, in Figure 9.4, even if

tRCD cycles have elapsed since B’s ACT is issued (meaning that the ACT-to-CAS constraint has

already been satisőed), B’s CRD command is not yet ready, since the inter-bank tWR−to−RD

constraint has not yet been satisőed.

Finally, intra-bank constraints between the two neighbouring slots of B must also be
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considered ś since these could be mapped to the same bank. In Figure 9.4, for instance, the

slot must be large enough to łseparatež A’s ACT and CWR (in Slot 1) from a PRE happening

at the beginning of A’s subsequent slot (Slot 3).

Be mindful that Figure 9.4 does not depict all timing constraints involved in choosing

an optimal SL. In fact, the optimal value of SL is the solution to a linear problem involving

exactly 10 inequalities (which are shown in Section 9.2.5). For a DDR3-800E device, for

example, solving the problem yields an SL value of 27.6 Without the bank mapping as-

sumption, the value of SL would be 45 (the duration of the PAC sequence, tRP + tRCD + 1,

plus the CWR to PRE constraint: tWL + tBURST + tWR).

9.2.3 The Algorithm

The scheduling rules from TDMShelve are based on deadlines and slack counters, similar to

TDMds and TDMes.

The core idea of the algorithm is to pick one requestor among requestors that have pend-

ing requests to hold an exclusive grant. While a requestor holds the grant, only (ready) com-

mands originating from requests issued by that requestor can be scheduled. If the requestor

holding the grant does not have any ready commands, then it holds the grant nevertheless

until the grant is given to some other requestor.

TDMShelve is based on the assumption that it picks from a list of ready commands (as a

reminder, commands are said to be ready only when all timing constraints are satisőed). In

the CoqDRAM TDMShelve implementation ś this is managed by the bank machines described

in Chapter 8. Therefore, the scheduling rule for commands is straightforward:

Command scheduling: The scheduled command (i.e., the command sent to the DRAM

device) is the őrst ready command belonging to the requestor holding the grant. If the

requestor holding the grant has no ready commands, or if no requestor holds the grant, than

a NOP is issued instead.

The real innovations brought by TDMShelve come in the request scheduling part ś or, in

other words ś deciding who gets the grant. There are only a few rules to decide who gets the

grant. These rules are part of an update function that gets executed every clock cycle.

Rl1 Rule 1 (Shelving) – Request scheduling at the beginning of a new slot: At

the beginning of an arbitrary slot S ś owned by a requestor A ś if another arbitrary requestor

B already holds the grant, then we test if A has a pending request. If it does, we call such

6For such device, the most constraining inequality is tRAS − 1 ≤ SL, which yields SL = 27.
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request An. Then, we test if An’s deadline is due at the end of S. If it is, this means that

the processing of B’s request must halt and the processing of An must immediately start for

it to meet its deadline.

Rl2 Rule 2 (No Grant) – Request scheduling at the beginning of a new slot: If,

at the beginning of an arbitrary slot S, the conditions for Rule 1 do not apply, and there

are no pending requests or the command issued in the last cycle was a CAS (meaning that a

request has just completed) ś then no requestor gets the grant.

Rl3 Rule 3 (Pick) Request scheduling at the beginning of a new slot: If, at the

beginning of an arbitrary slot S, the conditions for Rule 1 and Rule 2 do not apply ś

then we choose a new grant holder based on TDMShelve’s scheduling function, which we call

BankFiltering (described further down).

Rl4 Rule 4 (Middle) – Request scheduling at an arbitrary (non-zero) cycle of

a slot: If no requestor holds the grant at an arbitrary (non-zero) cycle/position of an

arbitrary slot S, then a new grant holder is picked by BankFiltering. Otherwise, the grant

holder keeps the grant, unless the command issued on the last cycle was a CAS ś meaning

that the request completed. In the latter case, no requestor gets the grant.

In order to understand how BankFiltering works precisely, it is necessary to detail how

deadlines and slack are computed. These computations are similar to what has been proposed

by Hebbache et al. [40], with only small modiőcations/adaptations.

Deadlines: Each requestor is associated to a decrementing counter to account for dead-

lines. We call such counter Dn ś where n is an arbitrary requestor. The deadlines of CRs

are initialised with a value equal to the number of cycles until the end of its respective TDM

slot in the őrst TDM period. The deadlines of NCRs are initialised as 0. Then, each cycle,

an update function is called to calculate a new deadline value for each requestor. For each

CR, the deadline counter replenishment is triggered by three disjunctive conditions: 1)

when the counter reaches 0; 2) when a request originating from the respective CR has just

completed the previous cycle (which is indicated by the last issued command being a CAS

belonging to the respective CR); or 3) when there is enough slack to conclude that the owner

of the next slot will not have an associated deadline at its boundary. Replenishing a counter

means adding a full TDM period to the counter, i.e., the current counter is incremented by

another full TDM period. In all other cases, the deadline is decremented by one. For NCRs,

whenever a request arrives, deadlines are set to the end of the next slot, independently of its
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owner. The deadline counter is then decremented by one until it reaches 0. Once it reaches

0, it stays at 0 until another request from the respective NCR arrives.

Slack: Each critical requestor is associated to a counter to account for slack. We call such

counter ∆n ś where n is an arbitrary critical requestor. At initialisation, all slack counters

are set to 0. Then, at each clock cycle, an update function is called to calculate the new

value of the counter for each CR. The updating rule is stated as follows: ∀r ∈ CR, if a

request belonging to r has completed on the previous cycle, then the slack counter will be

set to be the current deadline counter minus one, i.e., slack is the łremaining deadlinež upon

completion.

BankFiltering: The goal of BankFiltering is to filter/pre-select which requestors can be

considered for scheduling at any given clock cycle. Whenever TDMShelve decides to pick a

new grant holder (by rules Rl3 and Rl4 ), it calls BankFiltering to decide which requestors

can be considered for scheduling. More precisely, BankFiltering őlters out requestors that

might interfere with the set of banks attributed to the next slot owner whenever a deadline

miss is at risk. Then, after őltering out ineligible requestors, BankFiltering calls another

algorithm P to őnally decide who gets the grant. The actual choice of P is not relevant

w.r.t the guarantee that deadlines are met, since this is assured by BankFiltering and the

shelving rule of TDMShelve ( Rl1 ). An actual implementation of P is nevertheless discussed

further in the text.

BankFiltering works precisely as follows: if the algorithm is called at an arbitrary cycle

C of a given slot S ś then it analyses the following slot, S+1. Assume that S+1 is associated

with an arbitrary requestor A. The analyses consists in testing if A has any pending request,

which results in a total of four cases:

1. BF1 If A has no pending request, then BankFiltering checks A’s slack counter, ∆A:

if, at C, there is enough slack to conclude that no request to A will miss its deadline,

i.e.,

SL− C ≤ ∆A,

then BankFiltering does not őlter out any requestors, i.e., all requestors are con-

sidered for scheduling by P. This comes from the fact that in this case, any request

from A that arrives after C will have its deadline postponed by a whole TDM period

(SN × SL). Therefore, since A has no immediate upcoming deadline, any request can

be issued, including requests that target A’s bank.

138



2. BF2 If, however, there is no pending request but the slack condition is false, then, at C,

it is not possible to conclude that S+1 can be utilised without risking a deadline miss,

which means that BankFiltering must keep only requests that do not target A’s bank

and requests belonging to A itself as inputs for P. Recall from the SL calculation that

slots are designed in a way such that a PAC sequence can be issued regardless of what

happens in the previous slot, as long as the previous slot does not contain commands

to the same bank. Therefore, any request targeting a bank different than A’s bank

will not compromise A’s deadline guarantee if an A request arrives between C and the

start of S + 1.

3. BF3 If A does have an arbitrary pending request An at C, then, rather than looking

at A’s slack, BankFiltering looks at An’s deadline, DA: if DA is due at the end of

S + 1, i.e.,

DA ≤ 2 · SL− C,

then only A’s requests or requests not targeting A’s bank can be considered to hold

the grant. This is because giving the grant to a requestor targeting A’s bank could

compromise the guarantee that An meets its deadline.

4. BF4 If A has an arbitrary pending request An at C, but An’s deadline is not due at

the end of S+1, then BankFiltering does not őlter out any requestor, since no choice

can compromise the guarantee that DA will eventually be met.

Now, we discuss a concrete implementation for P based on the Earliest Deadline First

(EDF) policy adapted to mixed-criticality systems ś which we name mcEDF.

mcEDF: The goal of mcEDF is to pick a new grant holder among an already-őltered list

of requestors ś passed as argument. The underlying algorithm loops over such a list of

requestors, as shown in Algorithm 2.

As it can be seen, Algorithm 2 picks the requestor with the earliest deadline among the

pre-selected requestor list. There are some special cases, however: if i (the iteration variable)

is a requestor with an upcoming deadline (Line 6), then i is chosen. Moreover, on a deadline

tie, i.e., when min_deadline and cur_deadline are the same (Line 8), the critical requestor

i gets picked, since a tie can only happen between a CR and an NCR. If i is an NCR,

then mcEDF can only pick i if the following condition is satisőed: the deadline associated to

i (cur_deadline) must be strictly less then the saved deadline (min_deadline) AND the
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Algorithm 2 mcEDF

Inputs: Requestors, State
Outputs: NewGrantHolder
1: s ← None

2: for i in Requestors do
3: min_deadline ← getDeadline State s

4: cur_deadline ← getDeadline State i

5: if isCriticalRequestor i then ▷ i is a critical requestor (CR)
6: if cur_deadline ≤ SL then s ← i

7: else
8: if cur_deadline ≤ min_deadline then s ← i

9: else ▷ i is a non-critical requestor (NCR)
10: if (cur_deadline < min_deadline)
11: AND (NOT ((isCriticalRequestor s) AND (min_deadline ≤ SL))) then s ← i

return s

saved requestor must not be a critical requestor with an upcoming deadline (Lines 10 and 11).

Furthermore, since Gallina (Coq’s programming language) is a pure functional programming

language, the CoqDRAM implementation of TDMShelve uses a fold rather than a for loop

to implement mcEDF, but the logic is the same as described in Algorithm 2.

9.2.4 TDMShelve Execution Example

As an example of a TDMShelve execution, consider Figure 9.5. The scenario depicted in the

őgure involves two CRs, A and B, and two NCRs, c and d ś which imply SN = 2 and

Treq = 4.

The execution from the example is based on the open-page command generation policy,

i.e., after accessing a column address from an open row (via a CAS command), no automatic

precharge is triggered. Keep in mind that the algorithm would still work and the TDM

guarantees would still hold if we had opted for a closed-page policy.

Moreover, the requestors are mapped to banks in the following way: A is mapped to

bank βA, B is mapped to bank βB, c is mapped to banks βA and βC , and d is mapped to

bank βB. Note that, according to such mapping conőguration, c can interfere with A and d

can interfere with B. Furthermore, for simplicity, we only consider a single bank-group in

the system, which is the default for DDR3 devices and a pessimistic assumption for DDR4

devices.

The example from Figure 9.5 comes from a real execution of TDMShelve on a CoqDRAM

model of a DDR3-800E device. Using a real device model allows us to check the algorithm’s

functionality using real timing constraints. For such device, as mentioned previously, the
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optimal value of SL (considering Assumption 2) is 27. We refrain from showing absolute

dates in Figure 9.5, and instead only refer to speciőc instants ś as indicated by the circles

( n ) on the bottom part of the őgure. The circles are coloured according to scheduling the

rule used at that instant (i.e., Rl1 , Rl2 , Rl3 , or Rl4 ). Moreover, whenever BankFiltering

is called to pick a new grant recipient (which can happen from either rules Rl3 and Rl4 ),

we indicate which sub-case of BankFiltering is triggered (i.e., BF1 , BF2 , BF3 , or BF4 ). In

the őgure, the latter is indicated by a rectangle below the circle indicating the instant/rule.

Keep in mind that the execution trace shown in the őgure is only an illustration of the

real execution trace, where the distance between commands in the commands bus have been

exaggerated. Still, even with this exaggeration, the relative distance between commands and

their placement within slots is coherent with the real trace.

Next, we go from time stamp to time stamp analysing which rules are used for scheduling

the requests that arrive in the system. At initialisation, no requestor holds the grant ś which

is indicated by None. Moreover, consider that βA is idle at initialisation, but not βB and βC

(i.e., these banks already have a row loaded in their row-buffers). We consider that a request

to be finished whenever a CAS command associated to that request is issued.

1 A1 arrives, a RD request to βA. Since we are somewhere in the middle of Slot

1, Rl4 applies and BankFiltering is called to pick a new grant holder. At this point,

BankFiltering looks at the next slot, which is łownedž by B: since B has no pending

request and no slack (case 2 – BF2 ), it is not possible to conclude that B will not have

a request whose deadline is the end of Slot 2. Therefore, BankFiltering only considers

requests to a different bank than B’s (besides requests from B itself ś of which there are

none at 1 ). Since requests from A always target a different bank than requests from B

(from Assumption 2), A gets the grant and an ACT command is immediately issued, assumint

that βA was initially idle. Due to Rl4 , A holds the grant for the remainder of Slot 1, but

no other command is issued ś since timing constraints are not yet satisőed.

2 At the beginning of Slot 2, all pre-conditions for Rl1 apply: A holds the grant but B

now has an outstanding request with an upcoming deadline ś B1, a WR request to βB. Hence,

TDMShelve proceeds to take the grant from A and gives it to B, shelving A1 in the process.

In addition, consider that B1 is a row-miss. Since βB was not idle at initialisation and B1

is a row-miss, a PAC sequence must be issued. Some time later, when the CWR command is

issued, the request is considered completed, and, due to Rl4 , the grant goes back to None

for a single cycle (although this idle phase/transition to None is not visible in the őgure).

3 When B1 őnishes, Rl4 applies again and TDMShelve picks a new grant holder by

calling BankFiltering. Since the algorithm őnds itself somewhere in Slot 2, it looks at Slot
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3, which is łownedž by A: A, in this case, has a pending request with an upcoming deadline,

A1 (case 3 – BF3 ). Because of that, only requests targeting a different bank than A’s

are considered, which excludes c1 ś a WR request to bank βA ś from consideration. Since A1

is the only option left, A gets picked. Note that, if c1 targeted a different bank than A’s,

BankFiltering would not have őltered it out, but mcEDF still would have picked A, since

on a deadline draw between a CR and a NCR, the CR is prioritised.

4 At the beginning of Slot 3, all conditions for Rl1 are met, but since A is already

the grant holder, A1 does not get łshelvedž and its processing continues. Strictly speaking,

Rl1 applies, A1 gets shelved but picked up again. Note that, since no other requests closed

A1’s row, it must only schedule a CRD , which is ready only some time after B1’s CWR was

issued. When A1 is completed, note that A accumulate some slack ś which is indicated by

∆A.

5 When A1 őnishes, a new grant holder is picked by BankFiltering according to Rl4 .

Here, the function looks at Slot 4, which belongs to B: since B has an outstanding request

with an upcoming deadline (case 3 – BF3 ), requests to the same bank as B’s would be

őltered out, if there were any. In this case, both pending requests (B2 and c1) are eligible

to receive the grant. Then, mcEDF picks c over B to hold the grant, because its deadline

happens earlier. c now holds the grant and a PRE is issued sometime after A1’s CRD , since

c1 targets a different row than the one loaded by A1.7

6 At the beginning of Slot 4, according to Rl1 , c1 gets shelved and B gets picked

to be the grant holder instead. Note that this results in c1 missing its deadline, which is

allowed for NCRs. B2 is a row-hit to βB, which means that only a CRD command is needed

to complete the request. Note that, after őnishing, B accumulates some signiőcant amount

of slack śwhich is indicated by ∆B.

7 When B2 őnishes, according to Rl4 , BankFiltering is called to pick new grant

holder. The function analyses Slot 5, which belongs to A: at this point, A does not have a

pending request and there is not enough slack to conclude that Slot 5 will go unused (case

2 – BF2 ). Therefore, BankFiltering őlters out c1, since łexecutingž it could compromise

the guarantee that an A request meets its deadline (because c1 targets A’s bank). Since no

other requests are pending, no requestor gets the grant.

8 At this point, ∆A is enough to conclude that no request from A will have its deadline

7The requests that arrive in the system in Figure 9.5 obey the following rule of thumb: consecutive
requests by the same requestor target the same row, which means that the second request would be a row-
hit if no bank interference happened in the meanwhile. However, requests from a different requestor to the
same bank always target a different row – as a way to generate bank interference between NCRs and CRs.
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marked by the end of Slot 5 (case 1 – BF1 ). As a consequence, due to Rl4 , BankFiltering

considers all requestors, c gets picked by mcEDF to be the grant holder, and the processing of

c1 continues. Note also that A2 arrives some time after 8 , but that does not trigger any

grant changes, since the grant can only be transferred at slot boundaries or when a request

completes.

9 Since A2’s deadline lies only at the end of Slot 7, no shelving occurs. Instead, accord-

ing to Rl3 , the algorithm calls BankFiltering to pick a new grant holder. BankFiltering

looks at Slot 6, which belongs to B: here, B has no pending request, but not enough slack to

conclude that a potential request from B will have its deadline postponed (case 2 – BF2 ).

Hence, only requests to different banks than B’s can be considered ś which rules out d1. c1

gets picked by mcEDF over A2, since its deadline happens earlier than A2’s. After issuing c1’s
CWR , c1 completes.

10 A new grant holder must be picked following the completion of c1. By Rl4 ,

BankFiltering looks at Slot 6 and sees that now there is enough slack to conclude that any

potential request from B will have its deadline pushed further into the future (to the end of

Slot 8, speciőcally). This allows d1, a write request to βB to be considered for scheduling.

Next, mcEDF picks d over A, since the former’s deadline occurs earlier. Note that, since d1 is

a row-miss, a PAC sequence is necessary.

11 According to Rl3 , no shelving occurs, since B3’s deadline is only at the end of Slot

8. BankFiltering gets executed again and őlters out requests that target A’s bank (since it

has an upcoming deadline) (case 3 – BF3 ). In this case, there aren’t any, which means that

all four pending requests (A2, B3, c2, and d1) are considered. Note that, different than c1,

which targeted βA, c2 targets another bank ś βC . d gets picked by mcEDF, since its deadline

is the earliest.

12 Following the completion of d1, as at 10 , Rl4 is applied, none of pending requests

gets őltered out by BankFiltering (case 3 – BF3 ) and mcEDF picks c, since its deadline

is the earliest. Note that a PAC sequence is needed to service c2, since βC bank was not

initially idle.

13 Since c2 őnishes at the end of Slot 6, the algorithm őnds itself in the beginning of

Slot 7 with no active grant holder (although this is not visible in the őgure), which means

that Rl3 applies and a new grant holder must be picked at by BankFiltering and mcEDF.

Since B, the owner of Slot 8, has a pending request, B3, with an upcoming deadline (case

3 – BF3 ), only requests to a different bank than B’s (or belonging to B) can be considered

(which is the case for both A2 and B3). Because its deadline occurs earlier, mcEDF chooses

A, which őnishes after a PAC sequence and accumulates some small amount of slack.
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14 Rl4 is applied, BankFiltering looks at B and makes d ineligible, since d2 targets

B’s bank. Therefore, the only available option for mcEDF is B, which gets picked next. Note

that, since d accessed B’s bank since B’s last access, B3 is now a row-miss and thus requires

a PAC sequence. After őnishing, B accumulates some slack.

Since similar rules apply for the remainder of the trace execution, we refrain from detailing

the remaining steps.

Be mindful that the description above does not detail the behaviour of the algorithm

during refresh phases. In summary, during refresh phases, the algorithm halts, meaning that

all counters are frozen, including cycle, slot, and deadline counters. After the refresh phase

is done, the algorithm resumes its processing normally, picking up from the state where it

left.

9.2.5 Implementation

The CoqDRAM implementation of TDMShelve is complex, and it is not the goal here

to explain how the implementation works in depth. Instead, the key points and insights

are discussed, with the objective of giving the reader an intuitive understanding of how the

algorithm uses the new interfaces oferred by in CoqDRAM.

The implementation begins by specifying the algorithm’s parameters and assumptions,

as shown in Listing 9.1. It is at this point that the assumptions/axioms about the minimum

SL discussed in Section 9.2.2 are speciőed. The command Context introduces an łabstract

instancež of TDMShelve_configuration, i.e., inside of Section, all deőnitions that follow expect

an instance of TDMShelve_configuration as an implicit parameter.

Next, a requestor model must be speciőed (recall from Chapter 5 that requestor models

are implementation-dependent). In the case of TDMShelve, requestors must have a numeric

ID, a criticality, and, in addition, critical requestors must have an associated slot. The

requestor model is shown in Listing 9.2. The numeric ID is modelled as sigma-type, i.e., a

bounded nat (discussed in Chapter 5). Then, requestors are set to be a Record with four

őelds:

1. ReqSlot of type option Slot_t may bound a requestor to a TDM slot. We use option

to model the criticality of requestors: if ReqSlot is built with Some, then the requestor

is critical; otherwise, it is non-critical;

2. ID, of type RequestorID_t represents the requestor’s numeric ID;

3. CR_Slot is a PO stating the fact that the ID of CRs is equal to their respective slot

number;
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Listing 9.1: TDMShelve parameters and assumptions.
Section TDMShelve.

Class TDMShelve_configuration := mkTDMCFG {
SN : nat;
SN_gt_1 : SN > 1;

SL : nat;
SL_pos : SL > 0;

(* The total number of requestors, including critical and non-critical *)

Treq : nat;
Treq_gt_SN : SN <= Treq;

(* ----------- Necessary for TDM guarantees ------------ *)

(* SL is big enough to accomodate a PAC sequence *)

SL_enough : T_RP + T_RCD + 1 <= SL;

(* Inter bank constraints *)

SL_WR_to_RD : T_WL + T_BURST + T_WTR_l <= SL;
SL_RD_to_WR : T_RTW <= SL;
SL_CAS_to_CAS : T_CCD_l <= SL;
SL_ACT_to_ACT_SB : T_RRD_l <= SL;

(* Intra-bank constraints *)

SL_ACT_to_PRE : T_RAS − 1 <= SL;
SL_ACT_to_ACT_DB : T_RC − T_RP − 1 <= SL;
SL_RD_to_PRE : T_RTP − 1 <= SL;
SL_WR_to_PRE : T_WL + T_BURST + T_WR − 1 <= SL;

}.

Context {TDMShelve_CFG : TDMShelve_configuration}.
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Listing 9.2: TDMShelve requestor model.
Definition RequestorID_t := {id : nat | id < Treq}.

Record TDMShelve_requestor := mkRequestor {
(* CRs have an associated slot, NCRs requestors do not *)

ReqSlot : option Slot_t;

(* ID is useful to differentiate between NC requestors. For CR, it could have

been only slots *)

ID : RequestorID_t;

(* PO: Requestor ID matches the slot number for CRs *)

CR_Slot : forall slt, ReqSlot = Some slt → ‘ ID = nat_of_ord slt;

(* PO: NCRs do not have associated slots *)

NCR_Slot : forall slt, ReqSlot = None → ‘ ID >= SN

}.

4. NCR_Slot is another PO stating the fact that the numeric ID of NCRs must be greater

than or equal than SN .

In the example from Section 9.2.4, the numeric IDs of A, B, c, and d are 0, 1, 2, and 3,

respectively (and SN = 4). A and B are further mapped to slots 0 and 1, respectively.

Moreover, and very importantly, the implementation is based on the Scheduler_t in-

terface, described in Listings 8.5 and 8.6. This means that the proofs about timing and

protocol correctness completed via the methodology (partially) described in Chapter 8 are

all automatically inherited. Or, in other words, the implementation is guaranteed to respect

every functional and timing correctness PO from Trace_t that has been proved.

After having deőned parameters and a requestor model, the next step towards writing

an implementation of the Schedule function is to deőne a concrete internal state, i.e., to

instantiate the class SchedulerInternalState by deőning the type SchState_t, which will be

used to store algorithmic łstate variablesž. The internal state of TDMShelve is deőned as

shown in Listing 9.3. It is a record with the following őelds:

1. Slot, type Slot_t (deőned in Listing 6.8, from Section 6.2), is a TDM-like counter that

wraps around SN − 1, used to account for slots.

2. Counter is a wrap-around counter (wrapping around SL − 1), used to keep track of

cycles elapsed within a slot;
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Listing 9.3: TDMShelve internal state.
Inductive Grant_t :=

| NoGrant : Grant_t
| SomeGrant : RequestorID_t → Grant_t

| RefreshGrant : Grant_t.

Record TDMShelve_internal_state := mkTDMShelve_internal_state {
(* Typical TDM slot and cycle counters *)

Slot : Slot_t;
Counter : TDMShelve_counter_t;
(* Who has the grant to issue commands *)

Grant : Grant_t;
(* Both critical and non-critical have associated deadlines *)

Deadlines : { deadline_cnts : seq.seq nat | seq.size deadline_cnts = Treq};
(* A list used to track the arrival of requests *)

Arrivals : { nc_arrivals : seq.seq bool | seq.size nc_arrivals = Treq};
(* Slack associated with critical requestors *)

Slack : { slack_cnts : seq.seq nat | seq.size slack_cnts = SN };
}.

3. Grant is the grant used to control the łrightž to issue commands, as in the previous

section. It is of type Grant_t, a custom inductive type that models three situations:

no requestor holding the grant (NoGrant), a requestor holding the grant (SomeGrant),

and a special type of grant reserved for refresh phases (RefreshGrant);

4. Deadlines is a set of counters used to keep track of deadlines. Note that Deadlines is

also a sigma-type enforcing that there must be exactly Treq deadlines;

5. Arrivals is a set of boolean flags indicating, for each requestor, if there is a pending

request. Like Deadlines, it is also a sigma-type enforcing the size of the set/sequence;

6. Slack is a set of counters used to keep track of slack for each critical requestor. Again,

like Deadlines and Arrivals, Slack is a sigma-type enforcing the fact that there are

exactly SN slack counters.

Implementing the command scheduling function is straightforward ś we must simply őlter

the list of ready commands to consider only commands originating from the grant holder, as

shown in Listing 9.4. If the grant is speciőcally

Note that TDMShelve_schedule performs a single pattern matching over TDM_st.(Grant),

i.e., the value of the grant during the current state, TDM_st. If no requestors holds the grant,

the scheduler issues a NOP. Otherwise, the function Pick_cmd_from_requestorID is called,
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Listing 9.4: Picking a new command from the grant holder.
(* Pick the first command of map coming from a given requestor ID *)

Definition Pick_cmd_from_requestorID

(map : ReqCmdMap_t)
(req_id : RequestorID_t) : Command_kind_t :=
let f := filter (fun cmd ⇒

match cmd with

| CRD r | CRDA r | CWR r | CWRA r | ACT r | PRE r ⇒ r.(Requestor).(ID) = req_id

| _ ⇒ false

end) map in seq.head NOP f.

(* Command scheduling function : an implementation of the Schedule interface

from Listing 6.17 *)

Definition TDMShelve_schedule

(map : ReqCmdMap_t)
(SS : SystemState_t)
(TDM_st : TDMShelve_internal_state) : Command_kind_t :=
match TDM_st.(Grant) with
| NoGrant ⇒ NOP

| SomeGrant requestor_id ⇒ Pick_cmd_from_requestorID map requestor_id

| RefreshGrant ⇒ Pick_refresh_cmd map

end.

which őlters the list of ready commands to include only commands from a given requestor

ID. The implementation of Pick_cmd_from_requestorID is also shown in Listing 9.4: it uses

the filter function from mathcomp. The filter function expects an anonymous predi-

cate as őrst argument: in the case of Pick_cmd_from_requestorID, we only keep commands

whose associated request comes from the requestor whose ID is req_id. When the grant is

RefreshGrant, a similar function, Pick_refresh_cmd, is used to pick the PREA or REF com-

mand from the pending command list. Moreover, since the command scheduling function is

reduced to a simple őlter over the list of ready commands, it is not hard to prove the POs

Schedule_Empty and Schedule_Cons from Listing 8.6. The proofs of these POs are omitted

here for brevity.

The core of TDMShelve takes place during the process of updating the internal state,

and more speciőcally, updating Grant. More generally, at each clock cycle, a new instance of

TDMShelve_internal_state must be produced. The Scheduler type class speciőes an interface

for the state update function (recall Listing 8.6). We reproduce its type signature here for

practicality:

UpdateSchState :

Command_kind_t (* command sent to the memory *) →
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ReqCmdMap_t (* unfiltered list of pending commands *) →

SystemState_t (* DRAM device state *) →

SchState_t (* current state *) →

SchState_t (* future state *)

As it can be seen, the update function expects four arguments: 1) the command sent to

the memory device at the subsequent clock edge (i.e., the output of the Schedule function);

2) the unfiltered list of commands waiting to be issued; 3) the system state (i.e., the state

of the memory device); and 4) the current state ś which is about to be updated.

It is important that the list of commands waiting to be issued includes all commands,

and not just the ones that are ready. This is because the Next_SL_state function replaces

non-ready commands by NOP commands ś which makes requests belonging to non-ready

commands invisible to the state update function (see Algorithm 1). In summary, the state

update function must be capable of łseeingž all requests in the system, including the ones

belonging to non-ready commands.

To create a new instance of TDMShelve_internal_state, each őeld must be updated ac-

cording to a speciőc function. Slot and Counter are updated straightforwardly ś as they

are similar to the counters used in strict TDM. As a reminder, Counter gets incremented

by 1 at each clock cycle and wraps around SL − 1. Slot gets incremented by 1 whenever

Counter reaches its maximum value, itself wrapping around SN−1. Deadlines and Slack are

updated according to the same rules proposed by Hebbache et al. [40].8 This rules have been

brieŕy discussed in Section 9.2.3. For brevity, we choose not to show the implementation of

these functions/rules/ Moreover, Arrivals is updated in the following manner: whenever a

command in the list of all pending commands is observed for the őrst time, its corresponding

requestor’s ŕag in Arrivals is set to true, and is only reset to false when the algorithm

schedules a CAS belonging to such requestor. Furthermore, when the algorithm őnds itself

in the refresh phase, the state is no longer updated, except for the grant itself. The grant

goes into refresh łmodež whenever a PREA command is seen on the bus and leaves it whenever

a REF is seen on the bus.

Finally, the Grant update function is where the core of TDMShelve actually happens. List-

ing 9.5 shows the implementation of UpdateGrant. From Lines 6 to 9, we łaccessž individual

elements of the current state. At Line 8, speciőcally, we use the function getSlackFromSlot

to access the slack counter relative to the current TDM slot (keep in mind that each slot is

associated to a requestor, therefore, it is also associated to a slot counter and a deadline).

Next, at Line 10, we test if the algorithm has been called at the beginning of a TDM

8Naturally, the CoqDRAM implementations of such algorithms/rules are different than the hardware
design proposed by the authors.
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Listing 9.5: Implementation of UpdateGrant ś a function implementing TDMShelve’s core.
1 Definition UpdateGrant

2 (u_map : ReqCmdMap_t) (* The unfiltered list of pending commands *)

3 (sch_cmd : Command_kind_t) (* The command chosen by TDMShelve_schedule *)

4 (TDM_st : TDMShelve_internal_state) (* The current internal state *)

5 : option RequestorID_t (* The result -- the grant holder *) :=
6 let slt := TDM_st.(Slot) in (* The current slot *)

7 let grant := TDM_st.(Grant) in (* The current grant holder *)

8 let cur_slack := getSlackFromSlot TDM_st slt in (* The slack associated to slt *)

9 let cnt := TDM_st.(Counter) in (* Current cycle *)

10 if (cnt = OZCycle) then ( (* Beginning of slot *)

11 match grant with

12 | NoGrant ⇒ (* No requestor currently holds the grant *)

13 if (u_map = [::]) (* No pending requests *)

14 then NoGrant (* No one gets the grant → Rule 2 *)

15 else (* Call BankFiltering to pick new grant holder → Rule 3 *)

16 (BankFiltering u_map TDM_st)
17 | SomeGrant requestor_id ⇒ (* Some requestor currently holds the grant *)

18 (* checks if current slot has a pending request *)

19 match checkIfPendingFromSlot u_map slt with

20 | false ⇒ (* current slot has no pending request *)

21 (* if a request is just completing, the grant gets reset → Rule 2 *)

22 if (isCAS_cmdkind sch_cmd) then NoGrant

23 else (* call BankFiltering to choose grant holder → Rule 3 *)

24 (BankFiltering u_map TDM_st)
25 | true ⇒ (* current slot has a pending request *)

26 let preq := Slot_to_RequestorID slt in

27 (* the deadline of the pending request *)

28 let preq_deadl := getDeadlineFromID TDM_st (‘ preq) in
29 if (preq_deadl <= SL) (* deadline is upcoming *)

30 then (SomeGrant preq) (* have to shelve ! → Rule 1 *)

31 else (if (isCAS_cmdkind sch_cmd) then NoGrant (* Rule 2 *)

32 else (BankFiltering u_map TDM_st) (* Rule 3 *))
33 end

34 | RefreshGrant ⇒ RefreshGrant (* cannot happen *)

35 end

36 ) else ( (* Middle of the slot → Rule 4 *)

37 match grant with

38 | NoGrant ⇒ (* no requetor holds the grant *)

39 if (u_map = [::]) then NoGrant

40 else (BankFiltering u_map TDM_st) (* pick new grant holder *)

41 | SomeGrant requestor_id ⇒ (* some requestor already holds the grant *)

42 if (isCAS_cmdkind sch_cmd) then NoGrant

43 (* keep processing commands from current grant holder *)

44 else (SomeGrant requestor_id)
45 | RefreshGrant ⇒ RefreshGrant (* cannot happen *)

46 end).
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slot (i.e., cnt = OZCycle). There are many nested sub-cases, and each sub-case őts into Rl1 ,

Rl2 , or Rl3 ś from Section 9.2.3. At Line 11, the algorithm tests if some requestor holds

the grant. If not, then it proceeds to test if there is at least one pending request. To test

such condition, we must check if u_map is empty. Remember that u_map is the unfiltered

version of the command map ś containing every pending command (and consequently every

pending request). If there are no pending requests, no requestor will hold the grant (Line

14, Rl2 ). If there is at least one pending request, then UpdateGrant calls BankFiltering to

choose a new grant holder according to the rules discussing in Section 9.2.3 (Line 16).

If at the beginning of slt (the current TDM slot) a requestor (requestor_id) already

holds the grant (Line 17), then the algorithm proceeds by checking if the current slot has an

outstanding request (Line 19). To do so, it calls checkIfPendingFromSlot, a function that uses

the find function from mathcomp to check if there is at least one command in the unőltered

pending command list whose associated request comes from the requestor associated to slt.

In other words, the function checks if there is a pending request associated with the current

TDM slot. If there is not (Line 20), then two cases are possible: if the scheduled command

(sch_cmd) ś chosen by the command scheduling function on that same clock cycle ś is a

CAS, this means that the processing of the current request has completed and the grant

gets reset to NoGrant (Line 22). If, however, that is not the case, then the algorithm calls

BankFiltering to pick a grant holder (Line 24). Note that it would make sense to simply

continue to process the pending request from requestor_id, since it already holds the grant.

The problem is that, since the algorithm őnds itself at a new slot, the BankFiltering test

must happen again, since blindly continuing to process requestor_id may compromise the

TDM bounds for the next slot owner.

Consider now the case where the owner of slt does have a pending request (Line 25).

In that scenario, we check if the deadline of such request is upcoming, i.e., is due to the

end of slt. If that is indeed the case (Line 29), then requestor_id must be shelved and the

algorithm starts processing preq ś the priority requestor, for it to meet its deadline (Line

30, Rl1 ). If the deadline of preq is not due at the end of slt, then the previous rules apply:

if the processing of requestor_id has just őnished, the grant gets reset (Line 31), otherwise,

BankFiltering is called to pick a grant holder (Line 32).

Finally, at Line 37, the algorithm őnds itself not at the beginning of a TDM slot. In

that case, no shelving happens, i.e., the algorithm simply looks at the grant holder. If no

one holds the grant and there is no pending request, then no requestor gets the grant (Line

39). If there is at least one pending request, then BankFiltering chooses a new grant holder

according to its rules. If some requestor (requestor_id) does hold the grant, the algorithm

resets it if the request currently under processing has őnished (Line 42). Otherwise, the
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processing of requestor_id simply continues (Line 44). For conciseness, we choose not to

show the implementations of BankFiltering, mcEDF, and other auxiliary functions.

To conclude, TDMShelve shows that CoqDRAM can be successfully used to model com-

plex scheduling algorithms. At time of writing, the implementation described above has

been subjected to some basic sanity tests, which guaranteed basic functionality. However,

since the second iteration of the framework is still work-in-progress, many properties are

yet to be proved. As mentioned in Chapter 8, regarding timing proofs, only tRCD has been

proved. Protocol correctness proofs are also left undone, for now. The high-level properties,

such as fairness are also unproven. Beyond that, it is an important objective to formalise

(and prove) a theorem stating that the WCL latency of critical requests is bounded by the

deadlines of strict TDM. Furthermore, the impact of refreshes on scheduling has yet to be

taken into account in the algorithm’s design.
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Chapter 10

Discussion & Conclusion

In this chapter, we reŕect on what has been accomplished, highlight the strengths and

limitations of our approach, and conclude by analysing promising future work directions.

10.1 Discussion

CoqDRAM is a framework that can be realistically used to design trustworthy state-of-the-

art memory controller scheduling algorithms. Although the high entry bar still represents

a signiőcant barrier for adoption, given the steep learning curve of Coq, we őrmly believe

that adopting the techniques proposed in this dissertation have the potential to increase the

overall trust in memory controller designs.

The latter conclusion comes from several observations. First, developing algorithms in

such a manner requires one to formally state every single assumption and hypothesis that

a given design relies upon. In other words, while proving properties about algorithms in

Coq, no hand-waving or oversimpliőcation is allowed, which is often the case in paper-and-

pencil proofs. Moreover, even when one cannot actually őnish a proof, the mere exercise of

attempting a proof can be seen as a sort of bug hunting. In some cases, parts of the proof can

be axiomatic, and the process of writing such axioms already constitutes a kind of formal

reasoning, forcing the developer to think thoroughly about his or hers design.

In addition, dependent types and type checking also enforce a great amount of correctness.

In my personal experience, I found that often times, after successfully passing type checking,

the design was indeed correct, or very close to be correct ś which made proving an easier task.

Furthermore, in CoqDRAM, we sometimes exploit dependent types, which further imposes

correctness at type checking time. Although dependent types are doubled edged swords ś in

the sense that they effectively enforce correctness but are complex to work with ś they do

prevent an awful lot of problems that could be present otherwise. Typical implementation
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bugs, such as out-of-bound array accesses or overŕows can be ruled out. Invalid algorithmic

behaviour can also be ruled out, but again, this is treacherous terrain ś as proofs about

programs including complex dependent types require more sophisticated techniques.

Another argument that greatly supports our trustworthiness claims is that the semantic

gaps between standards, formal speciőcation, and implementations are smaller than the

ones found on standard paper-and-pencil approaches. Lets consider őrst the link between

standards and a formal speciőcation: while related work has tackled such problems using

other techniques (see Chapter 3), the expressiveness of Coq’s logic allows us to reproduce

statements from the JEDEC standards written in natural language (English) in a very natural

form, which is arguably easier to check then properties written in temporal logic, timed

automata, or other.

Second, and most importantly, consider the link between formal speciőcation and imple-

mentation. In the typical paper-and-pencil approach, the only thing that łlinksž an actual

algorithm implementation to paper-and-pencil mathematical developments is simulation:

usually, the algorithm is simulated a sufficient number of times, and observations from such

experiments are expected to match the theoretical/mathematical model. While this is not

invaluable, testing has its inherent limitations ś nothing guarantees that corner cases that

could invalidate the theoretical model have been exercised by the test-benches. Using the

Coq approach, this is not a problem, since the algorithm implementation is directly linked

to the theoretical model by the proof itself, i.e., there is no gap between implementation and

formal speciőcation.

Furthermore, we claim that adopting the CoqDRAM approach greatly increases readabil-

ity, easiness of reviewing, and reproducibility. As discussed in Chapter 3, paper-and-pencil

mathematical developments found in literature are hard to read and review. It certainly

makes more sense to present proofs of correctness as machine-checkable artefacts, which

moves the burden of checking a proof from humans to the machine. Reviewers (and readers,

more generally) are thus left with a higher-level task: checking that properties have been

correctly stated. This correlates with an important point recently raised by Leveson and

Thomas [120]: most bugs found in modern safety-critical software or hardware come from

poorly written speciőcations rather than faulty implementations. The greater reproducibility

argument comes from the observation that spending less space on proofs in a paper leaves

more space to discuss high-level explanations, engineering aspects, and experiment’s results

and methodologies.

Yet another advantage of CoqDRAM is that proved code can be extracted to other

languages (e.g., Haskell and OCaml), which can further be used in external environments.

As we have discuss in Chapter 7 (and also in Appendix A), we use this mechanism to validate
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the CoqDRAM algorithms in both software and hardware simulation. While the software

simulation experiment uses Haskell code generated from Coq, the hardware experiment relies

on a translation script from Cava, which translates Cava/Coq-generated Haskell code to

SystemVerilog (for more information regarding the latter, refer to Appendix A). Many formal

method approaches still ignore this link between formal model and code that can be deployed

in the real world.

As a őnal argument, Coq allows us to use powerful abstractions to prove properties about

systems with virtually no size constraints. As discussed in Chapter 2, while the scalability of

model checking techniques keeps getting better, the approach is still limited. In CoqDRAM,

not only things such as timing constraints and number of banks can be parameterised, but

also functions and types, such as an abstract arrival model and a representation of requestors.

These powerful abstractions allow designers to design systems that are generic, scalable, and

highly re-usable.

Limitations

It is also important to state the limitations of our approach. As mentioned previously, Coq

is a large system with a great amount of features and non-trivial concepts. Its learning curve

can be quite steep, which disencourages potential users. The good news on that regard is that

this problem has been properly identiőed and partially addressed during the last few years.

Currently, great resources allowing a gentler introduction are available, including Pierce’s

Software Foundations [121], Chlipala’s CPDT [78] and Formal Reasoning About Programs

(FRAP) [122].

It is also worth mentioning that proving properties can also be a time-consuming task,

even when they initially appear to be straightforward. In CoqDRAM, we make an effort to

provide some custom tactics for helping users to automatically solve some goals, but this

is yet far from great. However, as mentioned previously, incomplete/axiomatic proofs may

also carry value ś if they are done in a modular/traceable way.

Furthermore, CoqDRAM only covers the DDR3 and DDR4 JEDEC standards. Although

we do include a brief discussion about other memory standards in Chapter 5, the extent to

which the framework could be easily adapted to model other standards is unexplored terri-

tory. This is an important problem, since many modern computing systems use other mem-

ories rather than general purpose DDRs. This includes High-Bandwidth Memory (HBM),

LPDDR, GDDR, among a few others.
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Closing the loop with the initial PhD project idea

Having designed TDMShelve as a new, state-of-the-art DRAM scheduling algorithm in

CoqDRAM is satisfying ś since we were able to close a loop w.r.t the initial research project

(stated in the funding proposal) and address the research questions stated in Chapter 1.

More concretely, the proposal mentioned two main research questions/focus points, which

come as limitations of Hebbache et al.’s original algorithm [39], [40]: 1) Address the infor-

mation leakage that comes as a consequence of breaking the strict time isolation between

requestors; and 2) Develop techniques that allow exploiting the slack information across the

memory hierarchy and further improve the approach’s efficiency.

While we did not have the time to cover the security aspects nor other parts of the

memory hierarchy, it is safe to say that the design of TDMShelve successfully exploits the slack

information at the DRAM command scheduling level. Beyond the proposal, our (initially

unplanned) focus on formal veriőcation allowed us to establish a solid foundation to develop

algorithms that are safe and reliable.

Moreover, our most recent improvements emphasise the framework aspect, which means

that new developments relying on the machinery described in Section 8 can inherit several

proofs about standard compliance, for example.

10.2 Future Work

The work presented in this dissertation holds potential for exploration in numerous promising

directions. Some of these directions are short-term goals ś which are, essentially, objectives

that could not be fully achieved due to time constraints. Other directions are more of a

łlong-shotž, i.e., pointers towards promising new explorations building on this work.

Short-term

The most interesting pointer towards short-term future work is arguably to work on the

implementation and proof of state-of-the-art real-time memory controllers. No-

tably, TDMShelve, presented in Chapter 9, is implemented but remains (mostly) unproved. A

straightforward direction would thus be to prove high-level properties: most importantly, to

formalise the already existing proof [40] that TDM bounds are guaranteed for critical

tasks. Proving other high-level properties such as non-starvation and sequential-consistency

for TDMShelve can also be seen as future work.

Moreover, it would be interesting to implement and prove other real-time memory con-

trollers from the literature. Some good options to start with, presented from least to most

157



recent, would be: Analysable Memory Controller (AMC) [20]; Private Bank Open Row

Policy (ORP) [24]; Dynamic Command Scheduling MC (RTMem) [27]; Rank Switching

Open Row MC (ROC) [26]; Dual-Criticality MC (DCmc) [18]; Read/Write Bundling MC

(ReOrder) [33]; Mixed Critical MC (MCMC) [25]; Programmable MC (PMC) [35]; DRAM-

bulism [17]; and DuoMC [104]. Modelling these controllers in CoqDRAM would allow us to

evaluate the effectiveness of the framework to formalise and prove more complex algorithms

and their underlying mathematical developments.

Before tackling the modelling and proving of algorithms such as the ones mentioned

above, it would be highly convenient to invest some time in the automation part of the

framework, i.e., developing custom tactics or other sources of automation that would expedite

and facilitate the proving part.

Furthermore, a couple of other short-term objectives are listed below. These correspond

to tasks that could not be őnished mainly due to time constraints and change of focus in the

research.

• So far, only the TRCD proof has been completed for the bank machine approach, de-

scribed in Chapter 8. Proving every other timing constraint stated in Trace_t is left as

future work. Fortunately, if someone sets to prove such properties, a lot can be taken

from the already completed proof ś since these proofs are rather repetitive. The ones

that can be more burdensome are refresh related proofs, since none of these have been

completed yet.

• As presented in Chapter 5, the most up-to-date version of the framework only in-

cludes one mandatory proof obligation for all arbiters: that requests must eventually

be serviced. Moreover, we model two other arbiter interfaces corresponding to the

two ŕavours of sequential consistency proposed by Lamport [111]. It is considered

future work to deőne other classes of arbiters. An example would be an interface

for mixed-criticality arbiters deőning different requirements (proof obligations) for re-

quests, depending on the criticality of their requestors. The latter would be the exact

interface required by TDMShelve, for example.

Long-term

A őrst interesting long-term direction would be to keep building on the framework to model

other important aspects of memory controllers. For instance, one could model features

like handling of data dependencies between memory requests and implementation of atomic

operations. Other things that could be modelled are parity bits over the command and

address buses and error correction codes (ECCs) over the data bus. These latter features are
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important parts of the JEDEC standards and are relevant for guaranteeing data integrity. It

would thus be great if CoqDRAM could guarantee that the implementation of such features

is correct against their speciőcation in the JEDEC standards.

Another interesting pointer would be to mimic the CoqDRAM approach to model other

parts of the memory hierarchy. The methodology described in this dissertation could be

taken as a blueprint to model cache coherency protocols [99], protocols for shared buses and

interconnects, and the logic of Memory Management Units (MMUs) likewise.

As mentioned previously, the thesis proposal also emphasised the security aspect. Given

the increasing need for security in modern safety-critical real-time systems, CoqDRAM could

be extended to model security properties at different levels. On one hand, one could model

high-level properties, such as the absence of side-channel information leakage in scheduling

algorithms. On the other hand, one could also use the framework to ensure that counter-

measures are effectively implemented (i.e., are functionally correct). As one example of the

latter case, CoqDRAM could enforce a defence mechanism against Rowhammer [123] ś in

which memory accesses are monitored and unusual patterns are detected and forbidden.

Moreover, another promising direction is to connect the algorithms written in CoqDRAM

to equivalent hardware counterparts. In Appendix A, we describe an exploration in that

direction. However, the methodology adopted in such exploration did not yield satisfactory

results, mainly due to technical limitations of Cava ś the Coq Domain Specific Language

(DSL) used to model the hardware. The problems we encountered with Cava can possibly

be solved by choosing another existing Coq DSL to model hardware, such as Kami [96] or

Kôika [98]. Therefore, as future work, it would be interesting to see if an equivalence could

be established between a CoqDRAM algorithm and a hardware controller written in these

languages ś in a way that is practical.

Furthermore, it would be interesting to explore the idea of going in the opposite direction,

i.e., from a given memory controller written in an HDL (e.g. SystemVerilog) to Coq. More

speciőcally, it would be interesting to see if both existing and new DRAM controllers written

in Verilog (or other HDLs) could łstraightforwardlyž conform to the CoqDRAM speciőca-

tion. This direction has been explored by Bidmeshki & Makris in the VeriCoq project [124]

ś a Verilog to Coq converter. However, the VeriCoq conversion is not itself formally veriőed,

which means that one cannot ensure that the Verilog module and the Coq representation are

indeed equivalent. Morever, VeriCoq only supports a limited subset of Verilog, e.g., "gener-

ate" blocks and functions/tasks are not supported, which are employed a lot in practice [125].

The idea is nevertheless promising, since recent advances have been proposed by Choi [125] ś

who introduces formal denotational semantics of synthesizable Verilog in Coq. Yet another

idea would be to use automated equivalence checking (with model-checking) to compare an
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HDL version of a memory controller against a Coq version, in a way similar to what has

been proposed by Harrison et al [100], [101]. Harrison’s work, however, checks HDL designs

against designs written in the ReWire DSL ś embedded in Haskell. In order to implement

a similar approach, we would require CoqDRAM designs to be somehow translated to a

sub-set of Haskell that can be used in a model checker.

Finally, we could leverage DRAMml ś a DSL used to model bank state transitions and

timing constraints from different JEDEC standards ś proposed by Jung, Steiner et al [80],

[83] (see Chapter 3). In that work, DRAMml has been used to generate an executable

SystemC model, which is used to perform simulation-based validation of an RTL memory

controller [126] and a few DRAM simulators. As the authors mention, DRAMml models

could also be converted to other languages. By converting DRAMml into Coq proof obliga-

tions, for example, one could automatically generate a CoqDRAM-like speciőcation for many

different memory standards ś not just DDR3 and DDR4. Fortunately, the JEDEC standards

from Figure 5.2 have already been described in DRAMml. Other (newer) standards would

have to be described manually. This is arguably of the most interesting future-work direc-

tions ś leveraging the results of two parallel research projects.
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Appendix A

What About the Hardware? – An

Exploration

While CoqDRAM is useful for modelling, exploring, and proving the correctness of DRAM

scheduling algorithms, it remains a high-level, abstraction-rich model. Memory controllers,

in reality, are hardware components, typically designed using lower-level Register Transfer

Level (RTL) description languages. Therefore, for algorithms developed in CoqDRAM to

be relevant in real life applications, it is necessary to somehow connect them to equivalent

hardware models that can be synthesizable in an FPGA or an ASIC.

In this chapter, we present an exploration, i.e., a research effort that attempted solving

the problem described above. While many options were possible, the approach described in

this chapter consists in writing circuits that implement the scheduling algorithms in a DSL

embedded in Coq, prove equivalence against the CoqDRAM model, and then łcompilež the

algorithm written in the DSL to SystemVerilog. The DSL we use is called Cava. More

speciőcally, we develop a design pattern and a library in Cava ś which we call CavaDRAM.

Other approaches on how to connect hardware designs to higher-level models were discussed

in Chapter 3.

Throughout this exploration, we were able to implement a couple of memory controllers,

translate them to SystemVerilog, and validate their behaviour through assertion-based func-

tional simulation on a third-party simulation environment. Then, we stated a theorem that

establishes behavioural equivalence between these controllers and their counterpart Coq-

DRAM algorithms. Although the idea of linking CoqDRAM algorithms to an equivalent

model that can be translated to RTL and synthesised into a netlist is an interesting and

relevant problem, at some point, we decided to cease pursuing this research effort, due to

several technical limitations of Cava. The exact limitations of Cava are discussed in de-

tail in Section A.6. In summary, even if these experiments led to some achievements and
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many lessons learned, I would not recommend using Cava for the kind of design/proof we

attempted. As previously discussed in Chapter 10, using another Coq DSL for hardware

design could possibly yield more satisfactory outcomes.

This appendix starts by presenting a comprehensive overview of Cava ś since no paper,

or even manual exists that describes Cava in detail. Then, we explain our methodology,

present the outcomes from the exploration, and őnishes by exposing what did not work and

what were the lessons taken from the experiment.

A.1 Domain Specific Languages (DSLs)

In contrast with general-purpose languages, such as C, Python, Java, and Gallina (Coq’s

programming language), a Domain Specific Languages (DSL) is a computer language spe-

cialised to a particular application domain. While the line dividing the deőnition of a DSL

and a general-purpose language is not always sharp, DSLs are usually smaller and have a

reduced syntax that is just sufficient and expressive enough for the target application.

One interesting research direction that saw light in the late 2010’s was to embed DSLs

for hardware design in Coq. Coq, in this case, serves as the host language. One of the main

advantages of using a system such as Coq to host a DSL is how convenient it is to deőne

precise syntax (i.e., how terms of the language can be put together to form valid expressions)

and semantics (i.e., what is the precise meaning of each element of the language). Speciőcally,

semantics deőned in a formal deduction system like Coq can be used to do proofs and to

reason about correctness; and well-formed expressions (i.e., expressions that are syntactically

correct) can be enforced by type-checking.

Actually, these concepts can be used in a broader context: we can talk about syntax

and formal semantics of any source language S described in a host language T. Since we

are interested in formal reasoning and proofs, we restrict the discussion to the case where

T is a theorem prover (such as Coq, Lean, F*, or Isabelle). S can be a DSL, as mentioned

previously, but also a full-ŕedged general-purpose programming languages, such as C [127];

or even other logic/calculi, such as a simply typed lambda calculus, separation logic [128],

Lean [129]1, and HOL Light [130].

Before presenting some examples, it is important to discuss how the source language S

can be described in the host-language ś since there can be signiőcant differences on how to

reason about the source language based on the choices made. If terms of S are translated

directly to the terms of T, then we say that the embedding of S in T is shallow. This is

useful when one wants to simply use S and compute with it. Moreover, such technique only

1https://coq.discourse.group/t/alpha-announcement-coq-is-a-lean-typechecker/581
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requires programmers to łtranslatež types and operations of S into types and operations of

T, without explicitly specifying the syntactic rules for constructing terms of S.

Alternatively, one can represent the source language S as an Abstract Syntax Tree (AST).

In Coq, for instance, these ASTs can be built using inductive data-types to represent terms of

the source language according to its syntactic structure. We say that S is deeply embedded

in T. A deep embedding allows S to be studied as a formal system and the users of such an

embedding to do proofs about S itself, and not just use S. For example, if S is a programming

language and T is a full-ŕedged proof assistant, we can deőne in T types that represent the

syntax, the typing rules, and the operational semantics of S [131].

In summary, on the one hand, a deep embedding consists in representing expressions in

a language as a data-structure, which can then be interpreted in different ways. A shallow

embedding, on the other hand, represents a language directly as terms in the host language,

bypassing the data-structure.

The CompCert compiler [127], for example, is a veriőed C compiler (and perhaps the

most well known large-scale Coq development), in the sense that machine code generated by

CompCert is guaranteed to preserve the semantics of the compiled C code. It is evident that

such semantic preservation property depends on well-deőned semantics for the C language.

Therefore, in order to deőne such semantics, CompCert includes a deep embedding of

the (almost complete) C language (ISO C 2011) [132]. The formalised semantics of C

in CompCert can even be re-used by other tools, such as CertiCoq [133] ś a veriőed compiler

from Gallina to C light (a subset of the C language containing only pure functions, i.e., with

no side-effects). Even Coq itself has been deeply embedded in Coq ś an achievement part of

a larger project called MetaCoq [134] in which researchers focus on formalising Coq’s theory.

Other research projects have focused on the formal semantics of machine-code, or Instruc-

tion Set Architectures (ISAs). Sail [135], for instance, has been used to model the semantics of

ARMv8, MIPS, CHERI, IBM-Power, and RISC-V. Sail ISA deőnitions are ASTs (i.e., deep

embeddings), which can be translated to the language accepted by theorem provers and

transformed into textual documentation, among other options. Researchers at MIT have

also (manually) formalised the RISC-V semantics in Coq [136] ś claiming that machine-

generated theorem prover deőnitions (such as the ones generated by Sail, for example) are

hard for humans to work with. Moreover, recent research at Microsoft developed a deep

embedding of the Intel x64 instructions in F* [91] ś whose formal semantics is used to prove

the functional correctness of low-level implementations of cryptographic algorithms [137].

Some examples of shallow embeddings include Low* [138] ś a sequential, well-behaved

subset of C in F*; the project łCoq is a Lean Typecheckerž2 ś which includes a direct

2https://coq.discourse.group/t/alpha-announcement-coq-is-a-lean-typechecker/581

163

https://coq.discourse.group/t/alpha-announcement-coq-is-a-lean-typechecker/581


translation of some Lean types to Coq types; and an encoding of HOL Light in Coq [130].

Coming back to the topic of DSLs and hardware design, recent research focused on de-

veloping embedded languages, which allow designers to write circuits with formal semantics.

Circuits written in such a fashion can be proven correct: one could, for instance, prove

that circuits behave as known mathematical functions or even prove that they implement

instructions from an ISA with formalised semantics. In fact, one could go as far as writing

a full-ŕedged processor implementation and proving its correctness against the underlying

ISA ś if the semantics for the latter have been formalised as well.

A.1.1 Cava

More speciőcally, in this work, we explore the use of Cava [139],3 a DSL developed by

Google Research back in 2020. Cava’s design was greatly inspired by Lava [140]. Moreover,

Cava was developed as part of the Silver Oak project, which focuses on the veriőcation of

high assurance components of the OpenTitan4 silicon root of trust, i.e., a set of inherently

trusted functions within a platform. Cava follows an approach inspired by the vision set out

by Adam Chlipala in Certiőed Programming with Dependent Types [78]. Following that

same approach, other Coq DSLs for designing circuits have been proposed in parallel or

preceding research projects, such as Kami [96] and Kôika [98]. In summary, development

with all these DSLs follows the same kind of procedure [96]:

1. Implement (write) the circuit in the DSL;

2. In a rich higher-order logic, state the most natural correctness theorem for the circuit;

3. Prove the theorem using scripts of tactics;

4. Use extraction to translate the program to a Register Transfer Level (RTL) language

like SystemVerilog or VHDL automatically, and from here use standard development

tools to synthesise and deploy it in an FPGA, for example.

In this work, we choose Cava over Kami [96] and Kôika [98] ś the choice being motivated

by the following arguments: 1) Cava circuit simulations generate a list of values, where each

element represents the value of a wire at a given clock cycle ś this emulates time, a key

element relevant for this work; 2) Cava is relatively simpler and faster to get acquainted to;

and 3) Cava designs resemble classic RTL design style in some sense, whereas other DSLs

take an approach closer to the rule-based design of Bluespec SystemVerilog [141]. Section 3.2

3https://github.com/project-oak/silveroak
4https://opentitan.org/
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discusses other hardware designs DSLs in more detail. Next, we present a brief introduction

to some of the key concepts in Cava.

A. Multiple interpretations

Cava is a DSL embedded into Coq combining both shallow and deep embedding techniques.

Cava works in a way such that circuit deőnitions are overloaded, i.e., circuits can be inter-

preted in different ways. More formally, we say that different semantics can be given to a

single circuit deőnition. Actually, this is not something exclusive to Cava, the idea of having

multiple interpretations is a natural follow-up to the concept of a deeply-embedded DSL [142].

The deep embedding aspect of Cava is (mainly) what allows circuits to accept different

semantics and thus be interpreted both in the world of Coq, where proofs and testing can

take place; and in the world of netlists. A netlist, simply put, is a gate-level description of

an RTL design. It is a sort of graph connecting different blocks (i.e., elements of logic ś

ranging from simple gates to predeőned FPGA blocks) through wires. A netlist is the result

of synthesising an RTL description.

Figure A.1: The Cava design ś circuits can have multiple interpretations.
Legend: Actions, Artefacts.

Figure A.1 presents a visual scheme for better understanding the concept of multiple

interpretations in Cava. A single circuit deőnition, when given semantics, can be transformed

into Coq terms or into yet another data-structure ś an AST representing a netlist.

The proof semantics (also called łcombinational semanticsž or łsimulation semanticsž in

Cava) transforms native Cava types into Coq terms of type bool and Vector. These terms
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can later be used in proofs or to perform testing/simulation within Coq. In the former

case, one might, for instance, want to prove that the bit-vectors produced by circuits are

equivalent to the arithmetic operations over binary natural numbers ś described in Coq’s

BinNat and NArith libraries.

Regarding the ŕow from Cava to SystemVerilog, depicted in the bottom part of the őg-

ure, after translating the Cava circuit to a netlist AST, the Coq code is extracted to Haskell,

and an additional algorithm can őnally parse the AST and generate the corresponding Sys-

temVerilog description. Both ŕows are better detailed at the end of this section.

B. Writing circuits in Cava

Concretely speaking, writing circuits in Cava evolves around three main components: 1) a

shallow embedding allowing users to write combinational5 circuits; 2) an inductive datatype

implementing sequential circuits; and 3) a collection of higher-order and (sometimes) depen-

dently typed constructs, which together allow users to make full use of Coq and functional

programming to design complex circuits.

In the following, we start by discussing Cava’s primitive types and then brieŕy go through

the three main parts listed above. The code snippets shown in the following are part of Cava

and can be found in the SilverOak repository [139]. Moreover, terms highlighted in orange

are native Cava functions or types (or native Cava deőnitions, in general).

B.0. Signals. Cava relies on a deep embedding in the sense of interpreting signals. Con-

cretely, an inductive type SignalType models the values that can łŕow through wiresž in a

Cava circuit, shown in Listing A.1. Terms of type SignalType can be used to design circuits,

regardless of semantics.

Listing A.1: Deőnition of SignalType.

Inductive SignalType :=

| Void : SignalType (* An empty type *)

| Bit : SignalType (* A single wire *)

| Vec : SignalType → nat → SignalType (* Vectors, possibly nested *)

| ExternalType : string → SignalType. (* An uninterpreted type *)

When writing concrete circuits, an assumption is made that there exists some interpre-

tation of SignalType available ś which can be abstract at the time circuits are deőned. Or,

in other words, there must be some function that translates Cava types into Coq types (i.e.,

a function of type SignalType → Type). At the time that circuits are written, such function

5We use the terms combinational and combinatorial circuits interchangeably to denote circuits that do
not have state.
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is merely an implicit argument, often called signal, and a concrete implementation to such

function is only needed for proofs/simulation or code generation.

B.1. Combinational Circuits. The operations that can be used over signals/wires are

deőned in a way that resembles a shallow embedding. This means that these operations are

not deőned in an inductive type, but rather listed as member functions of a type class, and

different semantics must eventually implement each function accordingly (recall the container

interface presented in Section 2.3.1). Table A.1 lists some of the constructs provided by Cava

to write combinational circuits.6

Cava function Description

constant A wire that is constantly evaluated to the same value
constantV A wire of arbitrary width constantly evaluated to the same bit-vector

inv Boolean NOT
and2 Boolean AND
nand2 Boolean NAND
or2 Boolean OR
nor2 Boolean NOR
xor2 Boolean XOR
xnor2 Boolean XNOR

buf_gate Corresponds to the SystemVerilog primitive gate łbufž
lut1 1-input LUT
lut2 2-input LUT
xorcy Xilinx fast-carry UNISIM
muxcy Xilinx fast-carry UNISIM

indexAt Dynamic indexing for bit-vectors

Table A.1: Some of the functions available to write combinational circuits.

As it can be seen, operators include constant values (1-bit or bit-vectors of arbitrary

width), primitive logic gates, look-up tables (LUTs) (i.e., blocks that implement the logic

of a certain boolean function, passed as argument), special operators from Xilinx’ UNISIM

library, and an indexing function ś which takes two bit-vectors as arguments, the őrst one

being used to index the second one. The existence of some of these operators is justiőed by

the desire of having the ŕexibility to design circuits that can be synthesised using speciőc

SystemVerilog constructs: xorcy, for example, is the same as xor2 when applying proof

semantics, but different when considering netlist semantics.

As an example of combinational circuit, consider a ripple carry adder, a circuit that

performs the arithmetic sum of two positive binary numbers of arbitrary length. We can

6For brevity, Table A.1 does not list all available operators.
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Inputs Outputs
A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table A.2: Half adder truth table.

Listing A.2: Half adder circuit in Cava.
Definition halfAdder ’(x,y : signal Bit) : cava (signal Bit ∗ signal Bit) :=

sum ← xor2 (x, y) ;; (* calculates the Sum bit *)

carry ← and2 (x, y) ;; (* calculates the Carry bit *)

ret (sum, carry). (* circuits returns a pair *)

begin by őrst deőning a half adder, which has its truth table shown in Table A.2. It should

be clear that łCarryž works like an łoverŕowž bit: if both A and B are 1, for instance, then

the result, in decimal, would be 2, but since Sum is only 1-bit wide, 2 cannot be represent.

Hence, the carry bit signals that an overŕow has occurred. Note that Sum is simply a logical

XOR between A and B, and Carry is simply a logical AND between A and B.

In Cava, a half adder circuit can be written as shown in Listing A.2. In the listing, signal

is the łabstractž function that translates Cava types into Coq types (one can see it as a sort

of łplaceholderž for semantics later-to-be-deőned). Moreover, cava is a monad ś a concept

whose explanation lies outside of the scope of this dissertation. Interested readers can refer

to Lava [140].

Note that the circuit manipulates the type Bit, which is a native Cava type (deőned

in SignalType) and uses xor2 and and2, from Table A.1. Moreover, the syntax a ← b can

be seen as assignments, i.e., we łstorež the value of xor2(x,y) in a variable called sum (the

equivalent of deőning a wire in SystemVerilog); and the same goes for carry. The circuit

returns the pair (sum,carry).

Next, two half adders can be used to design a full adder, which has its truth table shown

in Table A.3. The full adder sums three input bits instead of two and then stores the result

in a two-bit output: a sum and a carry-out, just like the half adder. A full adder can be

built with two half adders, as shown in Figure A.2. In Cava, the full adder can be deőned

as shown in Listing A.3. As it can be seen, two half adders are instantiated, i.e., the circuit

is copied twice and the inputs are connect to wires a/ b and and abl/cin, respectively. The

notation (a,b) ← f (x,y);; means, informally, that the result of f is łsavedž into variables a

and b, which can be used in the following code.
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Inputs Outputs
A B Cin Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table A.3: Full adder truth
table.

Figure A.2: A full adder built with two half
adders.

Listing A.3: Full adder circuit in Cava.
Definition fullAdder ’(cin, (a, b)) : cava (signal Bit ∗ signal Bit) :=

’( abl, abh) ← halfAdder (a, b) ;;
’( s, abch) ← halfAdder (abl, cin) ;;
cout ← or2 (abh, abch) ;;
ret (s, cout).

B.2. Functional programming. The fact that Cava is implemented in Coq allows users to

enjoy all of the functional programming features of Gallina. The Cava library, for example,

deőnes a series of higher-order combinators that are useful for writing complex circuits in

a generic way, such as binary trees, chains, et cetera. One such combinator is col, which

replicates the logic of a single circuit an arbitrary N number of times, as shown in Figure A.3

(for simplicity, the őgure shows the case where N = 3).

Figure A.3: The col combinator with N = 3. The circuit f is repeated 3 times in a
chain-like fashion. Legend: Inputs, Outputs.

In the őgure, A, B, and C are arbitrary signal types. A single circuit f is replicated in a
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Listing A.4: Deőnition of the high-order circuit combinator col.
Fixpoint col {A B C} (f : A ∗ B → cava (C ∗ A)) (a_i : A) (b_i : list B) : cava (list C ∗ A) :=

match b_i with

| [ ::] ⇒ ret ([::], a)
| b0 :: b ⇒

’( c0, a) ← f (a_i, b0) ;; (* Apply the circuit to a and b *)

’( c, a) ← col f a b ;; (* Recursive call *)

ret (c0 :: c, a) (* Append the result c0 to the list of results *)

end.

way such that the output from a őrst instance of f is fed as input to a second instance of

f, and so forth. Each instance of f takes an element of the input list b_i as argument and

produces an element of the output list c_o. Terms of type A are propagated through different

instances of f, starting by the input a_i being fed to the őrst instance of f and ending at

the last instance of f generating the top-level output ś a_o.

Listing A.4 shows how the col combinator is deőned in Cava, where N is given by the

length of the list b_i. The deőnition of col pattern matches over b_i. When b_i is b0 ::

b (recall the deőnition of list from Section 2.3.1), f is applied to the pair (a_i,b0) and

the result is łwrittenž into a new pair (c0,a). Next, a recursive call to col is made, with

arguments a and b, where b is the tail of the original list b_i. Each call to col őnishes by

appending the output c0 to a list of all outputs that where recursively generated (c) and

returning the pair ((c0 :: c), a).

Figure A.4: Combining three fullAdders to make a 3-bit ripple carry adder.
Legend: Inputs, Outputs.

Cava already includes a handful of useful combinators, such as col, but this style of
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programming and combining circuits can be largely put into use to deőne other complex

circuits very concisely.

Further elaborating on the adder example, the col combinator can now be used to com-

bine full adders in a chain and make a ripple-carry adder ś as shown in Figure A.4. Again,

for simplicity, the őgure only shows the speciőc case where N = 3.

In the őgure, x and y are 3-bit inputs, where x0 and y0 are the Least-Signiőcant Bits

(LSB), respectively. Note that, from the deőnition of fullAdder (Listing A.3), each instance

of the circuit expects a pair (cin,(a,b)) as input. Hence, in Figure A.4, the őrst full adder

is fed with the top-level input cin and the pair (x0,y0). The cin input of the subsequent

circuit is the cout from the őrst one, and the input pair (a,b) is now (x1,y1). That pattern is

repeated N times. The top-level outputs are: an N-bit output carrying the arithmetic sum

of x and y; and a 1-bit carry, representing whether an overŕow occurred. Listing A.5 shows

the deőnition of addC ś an implementation of the circuit described in Figure A.4.7

Listing A.5: Deőnition of addC.

Definition addC {N : nat}

(* Three inputs *) (inputs :

(* x from Figure 2.15 *) signal (Vec Bit N) ∗

(* y from Figure 2.15 *) signal (Vec Bit N) ∗

(* cin from Figure 2.15 *) signal Bit) :

(* Two outputs *)

(* sum from Figure 2.15 *) cava (signal (Vec Bit N) ∗

(* carry from Figure 2.15 *) signal Bit) :=

let ’(x, y, cin) := inputs in

x ← unpackV x ;; (* Transforms into Coq vector *)

y ← unpackV y ;; (* Transforms into Coq vector *)

col fullAdder cin (vcombine x y).

Note that, in the Listing, the circuit deőnition uses the function unpackV which converts

Cava vectors (Vec) to Coq vectors (Vector). This is a necessary step to use the function

vcombine, from the Coq Vector library. vcombine takes two vectors of equal length and

merges them into a single one where each element is the pairwise combination of elements

of the previous two.

Furthermore, a simpliőed interface for the generic adder can also be deőned as shown

in Listing A.6. addN, different than addC, forces cin to be zero and does not indicate an

7Note that the definition of addC uses vectors, while the definition of col uses lists. In fact, there is an
extra circuit wrapper defined on the top of col which converts vector inputs to lists and list outputs back
to vectors. We do not include such wrapper here for brevity.
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Listing A.6: Deőnition of addN.
Definition addN {N : nat}

(* Input *) (xy: signal (Vec Bit N) ∗ signal (Vec Bit N)) :
(* Output *) cava (signal (Vec Bit N)) :=
’( sum, _) ← addC (xy, zero) ;; (* Ignores the carry out output *)

ret sum.

overŕow, i.e., it has no łcarry outž bit. In other words, addN implements a sum in the őnite

őeld GF (2N), i.e., it wraps around 2N−1 when an overŕow occurs.

B.3. Sequential circuits. Cava deőnes another layer called Circuit to represent sequential

circuits. In fact, this upper layer is more generic than that ś it is intended to describe all

circuits, including purely combinatorial circuits. The deőnition of Circuit follows a deep-

embedding pattern, with different circuits being deőned as constructors of an inductive type.

Figure A.5 depicts the different Circuit constructors ś which can be used to build complex

combinatorial and sequential circuits. In the őgure, the notation Circuit A B means ła circuit

that takes as input a term of type A and produces as output a term of type Bž. In addition,

types always start with capital letters.

As it can be seen in the őgure, Comb is a wrapper around a combinatorial circuit f, written

with the constructs described in the previous section. Compose is a circuit constructor that

takes two other circuits as arguments and composes them, as in function composition. First

and Second apply a circuit passed as argument to only the őrst or second element of a pair

of signals, respectively. DelayInitCE represents the basic memory element ś a register of

arbitrary width holding a signal type with an enable signal.

Last, LoopInitCE is an interesting case. The idea behind it is to use a register (łDelayž, in

the őgure) to store the loop state, and to use another Circuit passed as argument, i.e., the

loop body, to łexecutež some combinatorial or sequential logic that is a function of the input

and the loop state. The loop body produces an output and a new state, which is stored in

register łDelayž on the next clocking event. Moreover, the signal carrying the loop state is not

visible from the top-level circuit point-of-view. This constructor constitutes the basic block

to design stateful circuits. Note that the loop body can be any other circuit, including other

circuits built with LoopInitCE. Nested loops represent circuits that use multiple registers to

hold their state.

Furthermore, Cava includes another constructor Loop, derived from LoopInitCE. In Loop,

the enable signal is set as true by default and the initial value of the loop state is set to

be the default value of the type S. Other than Loop, Cava also provides a LoopInit, where

enable is also set to true by default, but the user can specify an initial value for the register.
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Figure A.5: Circuit constructors.
Legend: Combinational Logic, Registers,

Inputs, Outputs.
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Listing A.7: Deőning a circuit that performs the rolling sum of an input stream.
Definition sum {N : nat} : Circuit (signal (Vec Bit N)) (signal (Vec Bit N)) :=

Loop

(Comb (* The combinational circuit that makes up the loop body *)

(fun ’(input, state) ⇒
(* Use addN to sum the current input with the sum (circuit state) *)

sum ← addN (input, state) ;;
(* return output and new state (the same in our case) *)

ret (sum, sum))).

To extend the adder example, we can now use Loop to deőne a circuit that performs the

łrolling sumž of an input stream: at each clock cycle, the value at the input port is added

to the value of a register storing the accumulated sum. This can be deőned as shown in

Listing A.7, where N is the width of the bit-vectors taken as input.

Note that Loop takes another circuit (the loop body) as argument: here, a purely combi-

national circuit deőned with the constructor Comb. Recall from Figure A.5 that the body of

a Loop constructor expects a pair (I ∗ S). In this case, I is the type signal (Vec Bit N) and

S is the type (Vec Bit N). The circuit calculates the sum of input and state using addN. The

result, sum, is outputted by the circuit and stored into the feedback register.

C. Semantics

In the following, we brieŕy discuss both semantics presented in Figure A.1. These are dense

topics and we opt for presenting only a brief intuitive understanding of how these semantics

work and how they can be used. The part on proof semantics brieŕy discusses a proof about

the correctness of addN, a purely combinational circuit. However, we do not discuss here, for

instance, any proofs regarding sequential circuits, which often include invariants and more

sophisticated proof strategies.

C.1. Proof/simulation semantics.

The őrst step of deőning proof semantics is to translate Cava types (SignalType) to Coq

types (Type). Listing A.8 shows the deőnition of combType, one possible interpretation for

the signal function ś discussed in parts A and B.

Speciőcally, combType translates Cava types into the Coq types bool and Vector. In Coq,

vectors are a sort of polymorphic dependently-typed length-constrained list: łpolymorphicž

means that they are parameterised over the type of elements they hold, łdependently-typed ž

means that the deőnition of vectors contain built-in proofs; and ł length-constrained ž means

that the number of elements in the vector is enforced by type checking. In addition, vectors
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Listing A.8: Deőnition of combType, an interpretation of Cava types to Coq types.
Fixpoint combType (t: SignalType) : Type :=
match t with

| Void ⇒ unit

| Bit ⇒ bool

| Vec vt sz ⇒ Vector.t (combType vt) sz
| ExternalType _ ⇒ unit (* No semantics for combinational interpretation. *)

end.

which have elements of type bool can also be referred to by an alias ś Bvector, which count

on a large set of already proven properties, part of Coq’s standard library.

Next, using the interpretation of Cava types provided by combType, implementations

must be provided for all of the combinational operators (some of which were presented

in Table A.1). For example, basic gates (and2, xor2, et cetera) are instantiated with the

corresponding Coq functions over the type bool and something such as dynamically indexing

a vector (indexAt) is instantiated as the function nth_default ś an indexing function from

the Vector library.

Furthermore, since combinational circuits often implement arithmetic operations, it is

only natural that correctness proofs should compare circuits to operations on numbers ś

which already count on a large collection of proved facts. Speciőcally, bit vectors are very

similar in structure to a Coq type called N, a representation of natural binary numbers deőned

in the library BinNat and developed in the libraries NArith and Ndigits.

Consider the unsigned 4-bit binary literal "1101" (decimal 13), for example. A bit-vector

representation of this value (using bool and Vector) would look like the following (using

vector notations ś which are very similar to the List notation):

▷ [ true;false;true;true]%vector.

Note that the LSB appears to the left of the vector, in a way such that the head of the

vector always contains the LSB.

Coq deőnes N very similarly. The deőnition of N depends on positive ś a recursive

inductive type used to model positive natural numbers. Starting from digit 1, represented

by the constructor xH, one can add a new LSB via the constructors xO (digit 0) or xI (digit

1). In Coq, this means that x0 and x1 are constructors that always expect another term of

type positive as argument, while xH does not, thus representing the end of a series of digits.

According to that representation, the same literal "1101" would be given by the term:

▷ xI (x0 (xI xH)).

The deőnition of N simply extends positive by adding 0 (N0).
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Listing A.9: Correctness property for addN.
Lemma addN_correct n (a b : Bvector n) : (* a and b are bitvectors of length n *)

let sum := N.add (Bv2N a) (Bv2N b) in (* add function from the N library *)

addN (n:=n) (a,b) = N2Bv_sized n sum.
Proof. (* omitted *) Qed.

To conclude the adder example, we may now use that relation between Bvector and N to

prove that addN performs the addition over binary natural numbers (N.add). The correctness

Lemma can be stated as shown in Listing A.9. For the sake of conciseness, we refrain from

discussing the proof of addN_correct. In the listing, note the use of the functions Bv2N, which

converts Bvectors to N, and N2BV_sized ś its dual.

While combinational circuits can be checked against mathematical functions, reasoning

about sequential circuits requires the notion of passage of time. Therefore, the proof seman-

tics for sequential circuits evolve around the step function ś an evaluation of the Circuit

datatype. The goal of step is to łrunž the circuit for one clock cycle. It takes two inputs:

a value representing the circuit’s state and a value representing its inputs (which can be an

arbitrary N-tuple). It produces two outputs: a new state and the circuit’s output value.

To reference circuit states, Cava also deőnes a function circuit_state which, for a given

Circuit, returns the type of its state. For example, when the circuit passed to circuit_state

is composite (built with Compose), it returns a 2-tuple. Each element of the 2-tuple contains

the state of the corresponding sub-circuit ś obtained through recursive calls to circuit_state.

If Circuit is purely combinational (built with Comb), then it has no state, and circuit_state

returns unit (an inductive type with sole inhabitant). The type signature of the step function

is shown below:

▷ Fixpoint step i o (c : Circuit i o)(s : circuit_state c)(in : i) : circuit_state c ∗ o.

The step function takes a Circuit c as argument, a state of c, an input of c (of type i);

and produces a pair made of a new state of c, and an output of c (of type o). For brevity,

we do not discuss the actual implementation of step. The step function can be called an

arbitrary number of times. This is exactly what is done by the simulate function ś which

simulates the circuit behaviour through an arbitrary number of clock edge transitions.

C.2. Netlist semantics. The semantics for creating a netlist AST is more complex than

the proof/simulation semantics. It starts by deőning an inductive type Signal ś which aims

at representing the various types of signals that can ŕow through a netlist.

Different than combType, which is a simple łmappingž from Cava types to Coq types,

Signal is a kind of łwrapperž around Cava types. Signal is also syntactically richer then

SignalType. In SignalType, every value that łŕowsž through the circuit is of type Bit (there
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can also be bit-vectors and be multi-dimensional bit-vectors, but values are always of type

Bit). In Signal, however, a Bit can be wrapped around Signal in different forms, such

as: Gnd, representing a constant logic low ; Vcc, representing a constant logic high; Wire,

representing a numbered wire, or NamedWire, representing a named wire. This makes sense,

since when deőning a circuit, Cava users should not reason about wires, and only about

bits and operations over bits. A netlist, however, requires reasoning about how circuits are

wired, how wires are numbered and labelled, among other things.

A netlist is concretely represented by a list in which elements are of yet another inductive

type: NInstance (the actual name in Cava is Instance, but we call it NInstance here, to avoid

confusion with the Coq command Instance, which instantiates a type class). The deőnition

of NInstance is partially shown in Listing A.10.

Listing A.10: NInstance ś nodes and edges of the netlist AST.

Inductive NInstance : Type :=

| Not: Signal Bit → Signal Bit → NInstance

| And: Signal Bit → Signal Bit → Signal Bit → NInstance

| (* ... *) .

Notation Netlist := (list NInstance).

NInstance represents the type of nodes of the AST. And, for example, can be thought of

as a type of node with three directed edges: the őrst two edges lead to the node and thus

can connect with other nodes which produce a Signal Bit, and the last edge goes from the

And node to another node that expects a Signal Bit as input.

Moreover, a set of functions unfolds/explores a circuit deőnition, starting from the top-

level deőnition, adding instances and connecting them through wires (AST edges). The

implementation of the actual functions that parse the circuit and build the őnal AST are

quite complex and rely on multiple concepts that lie outside of the scope of this dissertation.

Compiling a circuit deőnition into an AST is made quite simple for the Cava end-user.

Besides the circuit itself, one needs only to write its interface (specifying inputs and outputs)

and call the function makeCircuitNetlist to build the netlist AST. Finally, the őle that

contains the call to makeCircutiNetlist has to be extracted to Haskell. Then, the AST can

őnally be translated from Haskell to SystemVerilog by an additional script.
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A.2 Overview

The connection we propose between CoqDRAM and CavaDRAM results in a design workŕow

ś presented below as a series of steps:

1. Describe a DRAM scheduling algorithm in CoqDRAM and prove its correctness against

the JEDEC standards and other high-level properties of interest (a process described

in Chapter 6);

2. Describe the controller circuit in Cava;

3. Prove equivalence between the two representations;

4. Extract a SystemVerilog circuit from the Cava controller (automatically), which can

then be used as a plug-in replacement in existing hardware designs.

On the one hand, CoqDRAM ś written in plain Coq ś has been conceived to design,

explore, model, and őnally prove the correctness of DRAM arbitration algorithms, abstract-

ing from actual hardware implementations. It has little to no size constraints, a fact that

allows users to use powerful abstractions to prove strong properties. On the other hand,

CavaDRAM derives real memory controller hardware implementations. This means that

hardware limitations become relevant, e.g., CoqDRAM uses queues that can grow to arbi-

trary sizes to store incoming requests, which is evidently not possible in a hardware model.

Therefore, a logical equivalence proof will require the queue to be limited in size. This dual-

ity is formalised through a series of assumptions ś which are presented further ś that allow

us to limit the scope of CoqDRAM algorithms.

Figure A.6 illustrates the coupling between CoqDRAM and CavaDRAM. For each schedul-

ing algorithm implemented in CoqDRAM, we introduce a provably equivalent controller in

CavaDRAM (the formal deőnition of equivalence is deőned later). The RTL code produced

from a controller implementation (using Cava’s code extraction) can then be used in existing

RTL designs. In our case, as a validation experiment, we use it as a plug-in replacement in

an existing DDR4 controller implementation [126], as explained in further detail in Chap-

ter 7. From a framework point of view, the additional workload introduced by the back-end

coupling consists solely of writing the equivalent controllers in Cava and the equivalence

proof with the representation in CoqDRAM.

1Figure A.6 omits several components and does not represent a complete architecture, as its goals are to

ease comprehension and provide an overview of the system.
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Figure A.6: System architecture.1

CoqDRAM classes, Introduced workload, DDR4 hardware simulation setup.

Hardware controller implementations impose some constraints that are not captured by

CoqDRAM. The setup we use for simulation and synthesis, for instance, is equipped with an

AXI bus interface, which expects an interface to communicate with the memory controller.

From this point onwards, we focus on AXI-style buses. Other buses (and underlying pro-

tocols) require other types of interfaces. As a consequence, CavaDRAM controllers have to

implement an interface containing the following input and output signals: a) the arrival of a

new request is signalled by a 1-bit pending_i input signal; b) a single request_i is provided

as a bit vector input; and c) the circuit has to produce a 1-bit ack_o signal as output. The

pending_i/ack_o signals allow to perform a handshake (used in many bus implementations

besides AXI).

Listing A.11: Controller interface.

Class ControllerInterface := mkCavaController {

Controller : Circuit

(combType Bit ∗ combType (Vec Bit REQUEST_WIDTH))

(combType Bit ∗ combType (Vec Bit DRAM_CMD_WIDTH) ∗ combType (Vec Bit REQUEST_WIDTH));

}.

Hence, it is necessary to deőne a generic interface for memory controllers in Cava ś upon

which axioms realising the signals described above can be written. The interface for memory

controllers is shown in Listing A.11. Controllers take two inputs: a 1-bit signal representing
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pending_i, and a REQUEST_WIDTH-bit signal representing the incoming request. Moreover,

controllers produces three outputs: a 1-bit signal representing ack_o, a DRAM_CMD_WIDTH-bit

signal representing the command issued to the memory device, and a REQUEST_WIDTH-bit signal

representing the request associated to the issued command ś which contains the physical

address sent to the memory device over the address bus. REQUEST_WIDTH and DRAM_CMD_WIDTH

are parameters to the interface.

Note that, in Listing A.11, we use combType instead of signal to łtranslatež Cava types

into Coq types. This important difference reŕects the fact that such interface is only used

for proofs and tests in the Coq łworld ž (Section A.1). An actual circuit deőnition ś shown

later in the text ś needs to be deőned using the more generic signal, which allows the circuit

to be interpreted according to different semantics.

Listing A.12: Assumption reŕecting hardware-level implementation constraints.

Class HW_Arrival_function_t {AF : Arrival_function_t} {Cntrl : ControllerInterface}

:= mkHWArrivalFunction {

HW_single : forall t, size (Arrival_at t) <= 1;

(* Signals *)

pending_i : nat → combType Bit; (* pending input for controller circuit *)

request_i : nat → combType (Vec Bit REQUEST_WIDTH); (* request as input *)

ack_o : nat → combType Bit; (* full signal sent back to bus protocol *)

(* Connecting the signals to the circuit *)

HW_output : forall t c,

let inputs := (pending_i t, request_i t) in

let ’(_,(( full,_),_)) := step Controller c inputs in full = ack_o (S t);

(* If there is an arrival, it means that pending_i has been asserted and the

memory controller is ready to accept a new incoming request *)

HW_arrived : forall t, size (Arrival_at t) = 1 ↔

(ack_o t = one) ∧ (pending_i t = one);

(* If there is an arrival, then the arriving request is equivalent on both

sides *)

HW_request : forall t, size (Arrival_at t) = 1 →

EqReq t (ohead (Arrival_at t)) (request_i t);

}.

Back to the link between CavaDRAM and CoqDRAM models. ControllerInterface is
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a less generic interface than the arrival function deőned in CoqDRAM, since it relies on

these extra signals that communicate with the bus arbiter. An equivalence proof thus can

only succeed by introducing two additional assumptions that constrain the arrival model

of CoqDRAM. Recall that, in CoqDRAM, Arrival_function_t allows an arbitrary number

of requests to arrive łin parallelž at any instant. In order to introduce such assumption-

s/hypotheses, we deőne a class HW_Arrival_function_t, as shown in Listing A.12. Again,

bear in mind that this is an interface speciőc for AXI-style busses, and other bus protocols

might require a different interface. The class depends on an existing Arrival_function_t

from CoqDRAM, and on an existing Cava memory controller ś both passed as implicit

arguments.

Assumption 1. The arrival function needs to be constrained to a single incoming request

per cycle. In Coq, we model this constraint with a PO that limits the number of requests

in the incoming arrival list; the PO is denoted by HW_single in Listing A.12. For one,

this models the limitation of the AXI bus mentioned in the interface above. In addition,

this reŕects a fundamental limitation on memories, which are typically used to implement

queues in hardware: the implementation cost of memories increases drastically with the

number of read/write ports. In our case (Distributed/BRAM of FPGAs), is limited to a

single read/write port each. Bear in mind that the proofs in CoqDRAM are valid for all

possible arrival functions without any limitations, including HW_Arrival_function.

Assumption 2. Note that Assumption 1 does not constrain the number of outstanding

requests from the requestors, it is just a constraint on the bus interfacing with requestors and

memories of queues. The interface described before also comprises a handshake protocol,

which allows a controller to accept (or not) newly in-coming requests. CoqDRAM only

considers requests that are accepted by the controller, i.e., from the moment that the request

is processed by the controller. Moreover, the interface to the bus arbiter ś which implements

the handshake protocol ś consists of three signals: pending_i, request_i, and ack_o. All

three signals represent instant values, i.e., booleans on a given time instant nat, passed as

parameter. Finally, the assumption is realised through three proof obligations:

1. HW_output effectively links the signals to the circuit interface through the step function

(described in more detail further in the text). In natural language, the proof obligation

states that a controller that is fed with the pair pending_i t,request_i t shall produce

a tuple in which one of its elements is ack_o (S t), i.e., the ack_o signal in the following

cycle.

2. HW_arrived states that a request could only have arrived (indicated by the condition

size (Arrival_at)= 1) iff ack_o at t is asserted to logical one, meaning that the memory
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controller is ready to accept a new incoming request at at t, and if pending_i at t is

also asserted to logical one, meaning that the handshake protocol is validating its

transaction.

3. HW_request establishes a link between requests from both sides. In natural language,

it states that if a request has arrived, then such request must be equal to the signal

speciőed by request_i. The łequivalencež relation is established by the function EqReq,

omitted from the text for conciseness. In summary, the function compares őelds of the

Request_t record to individual components of the request_i vector (remember that

combType (Vec Bit REQUEST_WIDTH) is translated to Vector.t bool REQUEST_WIDTH).

A.3 From CoqDRAM to CavaDRAM Implementations

As a Proof-of-Concept, we implement a scheduling algorithm in Cava based on the First-

In-First-Out (FIFO) scheduler, as originally proposed in CoqDRAM. However, a hardware

implementation must also manage refresh operations. Actually, this was one important mo-

tivating factor to later consider modelling refresh commands in CoqDRAM (c.f. Chapter 8).

In this chapter, we describe a Cava circuit that mimics the behaviour of a modiőed version

of FIFO, namely FIFOREF.

The FIFOREF algorithm is a modiőed version of the FIFO algorithm presented in Chap-

ter 6 that issues refresh commands. Similarly, we also propose a modiőed version of TDM

that issues refresh commands, namely TDMREF. These implementations are work-in-progress,

i.e., not all proof obligations have been discharged at time of writing, due to a change of

research focus. Here, for brevity, we only include a brief description about the differences

between FIFOREF and FIFO ś given that the same techniques apply for TDMREF.

The FIFOREF modiőcations w.r.t FIFO can be summarised brieŕy as follows: the algo-

rithm keeps a counter to track the date when a REF command is due. When that condition

triggers, the scheduler stops the normal processing of requests and performs a refresh cycle,

thus delaying any outstanding request that might be in the queue. Note that this preserves

the correctness of the initial FIFO implementation, since the distance between other kinds

of commands (PRE, ACT, and CAS) may only increase.

Listing A.13: Deőnition of FIFO_state_t.

Inductive FIFOREF_state_t :=

| IDLE : Counter_t → Counter_ref_t → Requests_t → FIFOREF_state_t

| RUNNING : Counter_t → Counter_ref_t → Requests_t → Request_t → FIFOREF_state_t

| REFRESHING : Counter_ref_t → Requests_t → FIFOREF_state_t.
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Listing A.14: Circuit deőnition (CavaFIFOREF).
1 Definition CavaFIFOREF : Circuit
2 (* Inputs : pending_i and request_i *)

3 (signal Bit ∗ signal (Vec Bit REQUEST_WIDTH))
4 (* Outputs *)

5 (signal Bit ∗ signal (Vec Bit DRAM_CMD_WIDTH) ∗ signal (Vec Bit REQUEST_WIDTH)) :=
6 (* Initial value of state *)

7 let s_init : combType (state) := STATE_IDLE_VEC in

8 (* Initial value of cnt *)

9 let cnt_init : combType (counter) := CNT_NIL_VEC in

10 (* Initial value of cref *)

11 let cref_init : combType (counter_ref) := CNT_REF_NIL_VEC in

12 LoopInit s_init ( (* pending_i, request_i, state *)

13 LoopInit cnt_init ( (* pending_i, request_i, state, cnt *)

14 LoopInit cref_init ( (* pending_i, request_i, state, cnt, cref *)

15 Second (ReadLogic) >==>Comb (...) >==>

16 Second (Queue) >==>Comb (...) >==>

17 Second (NextCR) >==>Comb (...) >==>

18 Second (CmdGen) >==>Comb (...) >==>

19 Second (Update_) >==>

20 Comb (fun ’(full,cmd,cr,(ns,nc,ncref)) ⇒ ret (full,cmd,cr,ns,nc,ncref))))).

Although it is out of scope to present the complete implementation of FIFOREF, we must

discuss the deőnition of its internal state type, shown in Listing A.13. Note that the deőnition

of FIFOREF_state_t is very similar to the FIFO state deőnition from Listing 6.2, with the

addition of an extra state, REFRESHING and an additional counter, Counter_ref_t.

The core of the equivalence between the CoqDRAM and CavaDRAM algorithms lies in

representing states in a comparable way. In other words, in order to prove that algorithms

behave in a similar way (which is formally deőned later in the text), we must őrst deőne

what does it mean for states to be similar. It is thus necessary to analyse FIFOREF_state_t

ś the deőnition of a state in the FIFOREF implementation, shown in Listing A.13.

On the Cava side, we must write a circuit that manipulates the same łstate variablesž,

updating them according to a certain combinatorial logic at each cycle. As introduced in

Chapter A.1, sequential circuits in Cava can be built with the constructor LoopInit, which

expects an initial value and another circuit as arguments. Listing A.14 shows the top-level

deőnition of the CavaFIFOREF circuit. In addition, Figure A.7 shows a high-level schematic

of the resulting circuit.

The inputs to the circuit are deőned at Line 3. Note that, contrarily to the more speciőc

circuit interface in Listing A.11, the circuit deőnition uses the more generic signal, which

means that the same circuit could be interpreted in different ways. Moreover, note that the
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Figure A.7: CavaFIFOREF ś top-level circuit schematic.

circuit expects the same two inputs and produces the same three outputs as speciőed by

ControllerInterface considering the simulation semantics.

Next, note the three imbricated LoopInit constructors in Listing A.14. These constructors

introduce three registers, indicated in Figure A.7 by state, cnt, and cref. These three

registers deőne the state of the circuit, and a parallel with FIFOREF_state_t can be made:

state is a 2-bit register used to identify if the controller is IDLE, RUNNING, or REFRESHING;

cnt is of width CNT_WIDTH, and represents a counter equivalent to Counter_t, and cref is of

width CNT_REF_WIDTH, and is yet another counter equivalent to Counter_ref_t.

Furthermore, the list of outstanding requests in FIFOREF_state_t (of type Requests_t) is

represented by another stateful circuit deőned separately, Queue ś hence why its registers are

not shown in Figure A.7. In addition, when the controller őnds itself in the RUNNING state,

the łvariablež used to store the request currently under processing (of type Request_t) is also

represented through a register in Figure A.7, labelled req. req, different than state, cnt, and

cref, does not apper on the top level Circuit deőnition; it is rather a register belonging to

the (stateful) NextCR circuit, and it is thus invisible from the point-of-view of CavaFIFOREF.

Lines 7 to 11 attribute initial values to registers state, cnt and cref. For example, the type

of s_init, the initial value of state, is combType (state), which translates to a Coq vector2

in which elements are of type bool. The initial value, STATE_IDLE_VEC, is simply the 2-bit

binary literal ł00ž, an encoding for IDLE.

The CavaFIFOREF circuit starts manipulating a tuple made of the two inputs ś request_i

and pending_i, coming from ControllerInterface. After the őrst LoopInit, the circuit

2https://coq.inria.fr/doc/V8.17.1/stdlib/Coq.Vectors.VectorDef.html
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manipulates the 3-tuple made of the inputs plus state. After the third LoopInit, the circuit

manipulates the 5-tuple: ⟨pending_i, request_i, state, cnt, cref⟩.

The body of the circuit (Lines 15 to 19) applies some sequential or combinatorial logic

to the inputs (pending_i and request_i) and the register values (state, cnt, cref). In the

following, we discuss the basic functionality of individual sub-circuits from Figure A.7, with

varying levels of detail.

Figure A.8: Queue ś circuit schematic.
Logic: Combinational Logic; Registers.

Signals: Register signals; Inputs; Outputs; Internal signals.

Queue. Queue consist of a multiple-port memory and combinational logic around it ś which

together implement a typical FIFO queue. In this case, since no simultaneous reads occur,

only one read-port is used. While the Cava code with the deőnition of Queue is omitted for

conciseness, its schematics can be seen in Figure A.8. Note that the circuit manipulates

three inputs and: push_i, request_i, and pop_i; and two (internal) registers: wr_ptr and

rd_ptr. The circuit is centred around an implementation of a multi-port memory.

In Figure A.8, the signals wr_ptr and rd_ptr are the write and read address fed to the

memory, respectively. The incoming request, request_i, is the write data fed into the write
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data port, WR_DATA. Moreover, the memory expects a łwrite enablež signal (WR_EN) ś which

comes from a combinatorial circuit. In summary, we write to the memory whenever push_i

is asserted AND the queue is not full OR the queue is full, but a read will happen, that

same cycle (the łWrite Enable Logicž from Figure A.8). The task of analysing the rest of

the logic in Figure A.8 is left to the reader.

The memory implementation in Cava is a central part of CavaDRAM. While its interface is

simple, the same cannot be said about its implementation and proofs ś which heavily rely

on programming and proving with dependent types.

Read Logic. Straightforwardly, the circuit ReadLogic implements a logic to drive the pop_i

signal to Queue. ReadLogic asserts pop_i whenever state is IDLE and a refresh operation is

not about to start. The pop_i signal is then used in combination with the empty signal to

drive rd_en, which is ultimately used to update the read pointer ś rd_ptr.

NextCR. The goal of NextCR is to determine the value of the register req from Figure A.7,

which holds the łrequest currently under processingž (RQUP). Analysing the algorithm in

Listing 6.4, if state is IDLE and the queue is non-empty, the RQUP is the request read from

the head of the request queue (i.e., data_o, from Queue). In all other cases, either the RQUP

retains its value or is non-existent. Speciőcally, if state (AS in Listing 6.4) is RUNNING and

the counter (c in Listing 6.4) is strictly less then WAIT, then the RQUP’s value is kept. In

all other cases, there is no associated RQUP, which is encoded in Cava as a vector of length

REQUEST_WIDTH őlled with 0s.

CmdGen. The purely combinational circuit CmdGen is responsible for issuing a new com-

mand to the memory device at each clock cycle. As it can be seen in Figure A.7, the circuit

has őve inputs: the register values state, cnt, cref, as well as the empty_o output signal

from the request queue and the request currently under processing (req) coming from NextCR

. Figure A.9 shows a schematic of CmdGen and Listing A.15 shows the corresponding Cava

code. In the code, multiple auxiliary circuits are used, such as Sidle, Srun, Sref, CeqCAS,

CeqACT, et cetera. These circuits are deőned in a previous code location and perform simple

functions, such as testing if the value of a bit vector is equal to or less equal than a literal.

Moreover, in the circuit, we use the Cava primitives and2 and mux2, which ś when given the

right semantics for simulation ś are already proved correct against Coq’s andb (the boolean

AND operation) and the if construct, respectively.

The behaviour of the circuit is simple: a PRE, for instance, is issued whenever the empty_o

signal is false (which means that Queue is not empty), cref ≤ PREA_date, and the state of the
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Figure A.9: CmdGen ś circuit schematic.
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Listing A.15: Deőnition of CmdGen.
Definition CmdGen : Circuit

(* Inputs and Output *)

(state_t ∗ empty_t ∗ counter_t ∗ counter_ref_t ∗ request_t) (command_t)
:= Comb (fun ’(state,empty_o,cnt,cref,req) ⇒
(* Intermediate signals about state *)

s_idle ← Sidle state ;;
s_run ← Srun state ;;
s_ref ← Sref state ;;
(* Intermediate signals about cnt *)

c_cas ← CeqCAS cnt ;;
c_act ← CeqACT cnt ;;
(* Intermediate signals about cref *)

c_prea ← CrefPREA_eq cref ;;
c_prea’ ← CrefPREA_lt cref ;;
c_ref ← CrefREF cref ;;
(* Intermediate signals about empty_o *)

ne ← inv empty_o ;;
(* ----------------- MUXES ----------------- *)

(* REF mux *)

ref_mux_sel ← and2 (s_ref,c_ref) ;;
ref_mux_out ← mux2 ref_mux_sel (NOP,REF) ;;
(* PREA mux *)

prea_mux_sel ← and2 (s_idle,c_prea) ;;
prea_mux_out ← mux2 prea_mux_sel (ref_mux_out,PREA);;
(* CAS mux *)

rd_wr_mux_sel ← RequestType (req) ;;
rd_wr_mux_out ← mux2 rd_wr_mux_sel (RD,WR) ;;
cas_mux_sel ← and2 (s_run,c_cas) ;;
cas_mux_out ← mux2 cas_mux_sel (prea_mux_out,rd_wr_mux_out) ;;
(* ACT mux *)

act_mux_sel ← and2 (s_run,c_act) ;;
act_mux_out ← mux2 act_mux_sel (cas_mux_out,ACT) ;;
(* PRE mux *)

t0 ← and2 (ne,c_prea’) ;;
pre_mux_sel ← and2 (s_idle,t0) ;;
mux2 pre_mux_sel (act_mux_out,PRE)).
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scheduler is IDLE. Compare this with the issuing of a PRE command in the FIFO algorithm

from Listing 6.4 (bear in mind though that that algorithm did not include the condition on

the refresh counter).

Update. Finally, Update applies the necessary logic to update each register, as seen in

Figure A.7. In a way, it can be said that Update implements the transition function, since

it updates the circuit state. For conciseness, the code of Update and its resulting circuit are

not shown.

A.4 Defining an Equivalence Relation Between Models

Up until this point, the word equivalence has been used to describe memory controllers that

behave similarly w.r.t their underlying scheduling algorithms. Here, we deőne equivalence

formally, which is de facto a bisimilarity relation. Bisimilarity was introduced (formulated

by Park [143], reőning ideas from Milner [144]) as the notion of behavioural equality for

processes [145].

In the following discussion, we consider the scheduling algorithms in both CoqDRAM

and CavaDRAM as Labelled Transition Systems (LTS), deőned below.

Definition A.4.1 (Labelled Transition System [146]). A Labelled Transition System (LTL)

is a triple ⟨Pr,Act,→⟩ where Pr is a non-empty set called the domain of the LTS, Act is

the set of labels and →⊆ ℘(Cons× Act× Pr) is the transition relation.

Which definition of equivalence to use?

Before diving into the deőnition of bisimulation, it is necessary to analyse more broadly

the notion of łequality of behavioursž. As Sangiorgi [146] states: łIntuitively, two processes

should be equivalent if they cannot be distinguished by interacting with themž.

A őrst idea would be to borrow the concept of isomorphism from graph theory, but it is

too strong as a behavioural equivalence for LTS [146], since we are not interested on a strict

structural equivalence between LTS’ but rather on the information that transitions convey.

Next, from automata theory, equality means that two automata accept the same language,

i.e., the same set of strings, a property also called trace equivalence. However, whenever

a LTS is non-deterministic, trace-equivalence is not a good option to state equivalent be-

haviour [146]. Since we do not want to exclude non-deterministic scheduling algorithms

from our framework (although an algorithm of such nature would be unlikely to be modelled
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in Coq), we opt for a broader concept, bisimilarity. In fact, for deterministic LTS’, trace

equivalence and bisimilarity are equivalent. The deőnition of bisimilarity is presented below:

Definition A.4.2 (Bisimulation and Bisimilarity [146]). A binary relation R on the states

of the LTS is a bisimulation if whenever P RQ:

1. for all P ′, with P
µ
→ P ′, there is Q′ such that Q→ Q′ and P ′ RQ′;

2. the converse, on the transitions emanating from Q: for all Q′, with Q → Q′, there is

P ′ such that P → P ′ and P ′ RQ′;

Bisimilarity, written ∼, is the union of all bisimulations; thus P ∼ Q holds if there is a

bisimulation R with P RQ.

Remark [146]. Note that although bisimulation and bisimilarity are deőned on a single

LTS, it is also a valid deőnition for distinct LTS with the same alphabet of actions; as the

union of two LTSs is again an LTS.

The deőnition of bisimilarity immediately suggests a proof technique: to demonstrate

that P1 and P2 are bisimilar, őnd a bisimulation relation containing the pair ⟨P1, P2⟩.

In the case of CoqDRAM and CavaDRAM, we have to őnd a bisimulation relation R. As

a proof strategy, we start by placing an arbitrary pair of states ⟨SCoqDRAM , SCavaDRAM⟩ in

the relation. Then, instead of trying to add other pairs arbitrarily (as a typical bisimulation

proof often proceeds), we rather suggest an R and prove that it is a bisimulation. If our

suggested R is a bisimulation, then we know that SCoqDRAM ∼ SCavaDRAM holds. Therefore,

R is deőned as the binary predicate StateEq, which links CoqDRAM states to CavaDRAM

states ś as shown in Listing A.16.

The binary relation StateEq takes two arguments: the state coming from the CoqDRAM

side, of type FIFOREF_state_t; and the state coming from the Cava side, of type State_t.

Moreover, as it can be seen at Line 1, the type of states of CavaFIFOREF, State_t, is deőned

through the Cava function circuit_state (see Section A.1).

From Lines 5 to 13, we use multiple functions to łaccessž different registers from the top-

level circuit, CavaFIFOREF. cava_state, for instance, deőned at Line 4, access the register

state (depicted in Figure A.7); and cava_RQ accesses the request queue.

Next, at Line 14, a pattern matching on CoqDRAM_state deőnes the relation differently for

each constructor of FIFOREF_state_t. For example, consider the case when CoqDRAM_state is

IDLE, with variables named cnt, cref, and Queue. For the relation to hold it must be true that

the Cava state (cava_state) is equal to the literal STATE_IDLE_VEC (a literal containing the

encoding for IDLE); that the Cava counter (cava_cnt) is equal to the value of cnt converted

to a bitvector, et cetera. In summary, it is required that every register in the circuit holds a
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Listing A.16: Deőnition of State_Eq.
1 Definition State_t := circuit_state CavaFIFOREF.
2
3 Definition StateEq (CoqDRAM_state : FIFOREF_state_t) (CavaDRAM_state : State_t) :=
4 (* Acessing registers *)

5 let cava_state := get_st CavaDRAM_state in

6 let cava_cnt := get_cnt CavaDRAM_state in

7 let cava_cref := get_cref CavaDRAM_state in

8 let cava_req := get_cr CavaDRAM_state in

9 let cava_RQ := get_reqqueue CavaDRAM_state in (* The request queue *)

10 (* The write and read addresses from the request queue *)

11 let cava_wra := fst (get_addr_RequestQueue RQ) in
12 let cava_rda := snd (get_addr_RequestQueue RQ) in
13 match CoqDRAM_state with

14 | IDLE cnt cref Queue ⇒
15 (cava_state =? STATE_IDLE_VEC) &&
16 (cava_cnt =? cnt2Bv cnt) &&
17 (cava_cref =? cref2Bv cref) &&
18 (EqMem Queue cava_rda cava_RQ) &&
19 (EqQueue Queue cava_wrda cava_rda)
20 | RUNNING c cref Queue r ⇒ (* ... Similar reasoning ... *)

21 | REFRESHING cref Queue ⇒ (* ... Similar reasoning ... *)

22 end.
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Listing A.17: Deőnition of EqQueue.
Fixpoint EqQueue (P : Requests_t) (wra rda : Bvector ADDR_WIDTH) :=

match P with

| [ ::] ⇒ (wra =? rda)
| x :: x0 ⇒ let S_rda := (N2Bv_sized ADDR_WIDTH (Bv2N rda + 1)) in

negb (wra =? rda) && (EqQueue x0 wra)
end.

value equivalent to the values in the inductive state coming from the CoqDRAM side. The

clauses for the RUNNING and REFRESHING cases are omitted for conciseness ś since the same

logic applies, with only minor differences.

Note, specially, the use of the functions EqMem and EqQueue. The former tests if the

entire content of the memory inside of Cava_RQ is mapped to an equivalent element in the

Coq list Queue, and vice-versa. The latter, EqQueue, tests if the logic driving the write and

read pointers from the Cava request queue is correct. The deőnition of EqQueue is shown in

Listing A.17.

In summary, if P ś the request queue coming from the CoqDRAM side ś is empty, then

the write and read pointers in the Cava FIFO must be equal. Otherwise, the pointers must

be different and the function is called recursively for the remainder of the queue, meaning

that there are as many elements in P as the absolute difference between wra and rda. The

deőnition of EqMem is more complex and thus omitted for the sake of conciseness.

Finally, the bisimulation theorem is stated as shown in Listing A.18. Start by noticing

the two states cava_state and coqdram_state bound by the forall quantiőer in Lines 3 and

5, respectively. In addition, since t, the current time stamp, is also bound by a forall

quantiőer (Line 3), the inputs to the circuit CavaFIFOREF, pending_i and request_t, are

also universally quantiőed by t in Lines 8 and 10, respectively.

Moreover, the theorem relies on one hypothesis: StateEq coqdram_state cava_state. Such

hypothesis represents the antecedent in Deőnition A.4.2, i.e., the łif whenever P RQž part,

with P being coqdram_state, R being StateEq, and Q being cava_state. The theorem’s

conclusion introduces four new names with a let binder: f_nextstate and f_cmd_o are, re-

spectively, the derivative state of coqdram_state and the issued command, both resulting

from a call to Next_state; and the names c_next_state and c_cmd_o are given to the deriva-

tive state of cava_state and the issue command, respectively ś both resulting from a call

to step CavaFIFOREF. We use Cava’s step function to simulate the circuit for a single clock

transaction.

Furthermore, note that from the axiom HW_arrived, since there is a single arriving request,
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Listing A.18: The Bisimulation Theorem.
1 Theorem FIFOREF_bisim :
2 (* The state coming from the CavaFIFOREF circuit *)

3 forall (cava_state : State_t),
4 (* The t-th state coming from CoqDRAM *)

5 forall (t : nat), let coqdram_state :=
6 (Default_arbitrate t).(Implementation_State) in
7 (* The incoming request coming from the CavaDRAM side *)

8 let c_req := request_i t in

9 (* The push_i signal coming from the bus protocol interface *)

10 let c_pend := pending_i t in

11 (* ------------------- Hypotheses ------------------- *)

12 (* Hypothesis : coqdram_state and cava_state are equivalent, i.e *)

13 StateEq coqdram_state cava_state →
14 (* ------------------- Conclusion ------------------- *)

15 (* f_nextstate is the state obtained by using CoqDRAM’s Next_state and f_cmd_o

is the command issued at t *)

16 let ‘(f_nextstate,f_cmd_o) := Next_state (Arrival_at t) coqdram_state in

17 (* c_nextstate is the state obtained by applying a 1-cycle simulation step on

the CavaFIFOREF circuit and c_cmd_o is the issued command *)

18 let ‘(c_nextstate,c_cmd_o) := step CavaFIFOREF cava_state (c_pend,c_req) in
19 (* Conclusion : derivative states and issued commands are equal *)

20 (StateEq f_nextstate c_nextstate) && (EqCmd f_cmd_o c_cmd_o).
21 Proof. (* ... omitted ... *) Qed.

i.e., size (HArrival_at)= 1, pending_i is necessarily true, and from axiom HW_request, EqReq

(Arrival_at t) c_req is also true.

The theorem does not include an explicit existential quantiőer, as Deőnition A.4.2 sug-

gests. In fact, we prove a more general statement: since cava_state is universally quantiőed

(at Line 3), the proof analyses every possible transition from cava_state and proves that

there is a corresponding transition from the CoqDRAM side. In addition, besides proving

bisimilarity, we also prove that the two LTS’ produce equal commands in their outputs. The

latter is stated via the EqCmd predicate, not shown here for conciseness.

A.5 Hardware Simulation & Synthesis

To gain conődence on the CavaDRAM model, we also perform an experiment on a hardware

setup. In fact, being able to validate the functionality of the generated RTL code also builds

conődence on CoqDRAM, since CavaDRAM and CoqDRAM are logically linked by the

behavioural equivalence proof.
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As a host environment, we pick a DDR4 controller implementation [126] for transpecision

computing [147], which will be referred to as DDR4cntrl for brevity. In short, the transpeci-

sion computing paradigm łoffers a dynamic precision reduction to the intermediate stages

of a micro-architecture in order to achieve higher energy efficiently, without inheriting any

errors in the őnal outputž [126]. To accommodate the needs of such systems, the design

of DDR4cntrl brings together some sophisticated techniques, such as őne granular refresh

control [148] and exploitation of application knowledge [149].

Although DDR4cntrl offers an interesting set of features, we only use its simulation struc-

ture (i.e. front-end plus physical layer, or PHY), in a similar way to the MCsim experiment

(c.f. Chapter 7). In other words, we do not use (most of) DDR4cntrl ’s logic and command

scheduling innovations.

Figure A.10 illustrates the DDR4cntrl architecture, with our modiőcations highlighted.

In summary, we replace a module called rank machine by the CavaDRAM controller (like a

łdrop-inž replacement). Originally, the rank machine was responsible for scheduling requests,

generating and issuing DRAM commands, as well as managing REF commands; the exact

same tasks performed by the CavaDRAM controller.

Every other functionality is kept unchanged: the AXI logic and its interface to the

controller, the logic to control the read and write data buffers, the PHY, and the memory

model. The PHY, a Xilinx IP in this case, generates the signal timing and sequencing

required to interface to the memory device, e.g. phase alignment between DQ and DQs

signals, logic for initialising the DRAM after power-up, and conversion of slow clock to fast

clock.4

4Inasmuch as the PHY runs at the system clock frequency (1/4 of the DRAM clock frequency), it expects
four command/address per system clock and issues them serially on consecutive DRAM clock cycles on the
DRAM bus. This means that the PHY interface provides four command slots: 0,1,2, and 3, which it accepts
each system clock. To cope with the different clock domains, we insert CavaDRAM commands always in
the first slot. The proofs in CoqDRAM do not lose validity, as lower-bounds still hold. The only proofs that

Figure A.10: An illustration of DDR4cntrl [126] with our modiőcations highlighted.
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Simulation

We run the test-bench that comes with DDR4cntrl. Moreover, the test-bench (and the

design) is őlled with SystemVerilog Assertions (SVA), which will trigger if timing constraints

are not respected, invalid commands are issued, transactions do not complete, or if data

integrity is not guaranteed. The latter assertion, regarding data integrity, is a good end-to-

end check: by checking if data written into the memory can be later accessed by a read to

the same address, one can be highly conődent that the design works correctly.

The setup was tested using two algorithms: CavaFIFOREF and CavaTDMREF, the latter

being a Cava version of the TDMREF algorithm, which was brieŕy mentioned in Chapter 8.

The parameters for both algorithms (WAIT for FIFO, and SN and SL for TDM) were obtained in

a similar way to what has been described in the MCsim experiment description, in Chapter 7.

As an important result, the CavaDRAM controllers run without triggering any assertions.

Anecdotally, as it has been done for MCsim, we changed the CavaDRAM logic to make sure

that it can trigger assertions. Figure A.11 shows an example of the modiőed controller

(running CavaTDMREF scheduling) succeeding a data integrity assertion.

Figure A.11: Data integrity assertions pass (CavaTDMREF simulation run).

Furthermore, Figure A.12 shows the CavaTDMREF input and output waves (the circuit is

called SM in the simulation) resulting from one of the simulation runs. Note the port cmd_o

issuing three commands to an associated request, CR. Moreover, in the őgure, the TDM slot

length (SL) is highlighted, as well as the PRE, ACT, and CAS commands being issued to the

memory (1F is the encoding for the NOP commands, which do nothing to the memory).

One can also see that the signals in SM correspond to the interface discussed in Section A.2.

We reiterate that achieving good performance metrics is not the goal of this work, but

rather present the methodology and provide a few proof of concepts. With that being said;

although RTL code generation from Cava performs as well as standard (modular) SystemVer-

ilog designs, both simulation time and controller bandwidth worsen, for two reasons:

1. The Cava controller was not designed to exploit the 1:4 ratio between controller and

memory clocks proposed by Sudarshen et al [126], which also implies lower bandwidth.

need adapting are REF related proofs, as they are upper bounds on the spacing between REF commands. We
write modified version of such constraints considering the different clock domains.

195



Figure A.12: CavaTDMREF simulation ś commands being issued to the memory.

As a workaround, we place Cava generated commands in the őrst of four slots and

leave the other slots blank. Note that this does not affect timing correctness, since

every lower bound gets multiplied by four in the memory clock domain. Furthermore,

Figure A.13 shows how three of the four available slots are not used, and the outputs

generated by SM are inserted into slot number 0.

2. Both the TDM and FIFO algorithms employ basic scheduling algorithms and do not

offer good bandwidth compared to more complex memory controllers.

Figure A.13: Clock ratio slots usage.

Synthesis

A comparison of synthesis utilisation metrics between the original DDR4cntrl and the mod-

iőed CavaDRAM version can be seen in Table A.4. The target FPGA is a Xilinx Virtex

UltraScale 095FFVB2104-2 board, with a request queue in CavaDRAM that can store up to

256 requests.

Unsurprisingly, the CavaDRAM version uses fewer LUTs, since the FIFO scheduling logic

is simpler than what had been originally proposed in DDR4cntrl. The total number of Flip-

Flops (FFs) in the design augments, since the Vivado synthesizer chooses to represent Cava

queues with FFs rather than native FPGA FIFOs (accessible through the bram_fifo_52x4
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LUTs Flip-Flops bram_őfo_52x4

DDR4cntrl
rank_machine 8195 4644 16
Full Design 9263 6129 16

CavaDRAM
CavaDRAM 5312 8605 0

Full Design 6344 9832 0

Table A.4: Key metrics from the synthesis report showing the resource utilisation on a
Xilinx Virtex UltraScale 095FFVB2104-2.

macro). Note also that DDR4cntrl took 88,46% and 75,77% of the total amount of LUTs

and FFs in the design, respectively. For CavaDRAM, these percentages are 83,73% and

87,52%, respectively. These results show that the generated code introduces only a negligible

imbalance w.r.t resource utilisation, compared to the replaced module.

A.6 Lessons Learned

Although the problem and methodology of establishing equivalence between CoqDRAM

algorithms and models that can be translated to an RTL description is still relevant, the

implementation we envisioned did not end up to be suitable for practical use ś due to

technical limitations of Cava. In summary, there are three main reasons that motivate our

decision to abandon the exploration on CavaDRAM:

1. The most signiőcant barrier is arguably the fact that proofs are carried out in an

extremely slow pace. Proofs about large circuits (i.e., circuits built with composite

and/or nested sub-circuits) involve terms that are lengthy and complex. Due to some

poor design decisions in Cava (which have been acknowledge by researchers at Google5),

simplifying and rewriting large circuits takes a long time (sometimes more than 15

minutes for a single step) ś which makes proofs advance in an almost unbearable slow

pace. As a side-effect it is virtually impossible to use tools for proof automation with

Cava, which often try to apply different tactics in a trial and error fashion.

2. Another factor is that Cava lacks infrastructure/libraries with already-proved proper-

ties. This means that we had to manually deőne several basic circuits, of which the

most important is the memory used to implement the request queue. At the time, we

wrote an implementation that uses intricate dependent types, which makes the cor-

rectness proofs about it very hard (a factor that has been underestimated at the time).

In addition, this correlates with choices made in the design of Cava itself. Notably, one

5Ben Blaxil, private communication, 2023.
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of the main problems is using Vectors (from Coq’s standard library) to represent bit

vectors, which are inherently dependently typed and known to be hard to work with.

Worse yet, the memory is implemented using registers on the Cava side, since there

is no other primitive to describe storage. The synthesis tool is not able to recognise

that this is in fact a memory ś leading to costly and inefficient hardware. There is no

primitive in Cava that allows to efficiently work with memories, neither on the proof,

nor on the synthesis side.

3. The fact that the development of Cava has stopped since late 2022 also makes it a

poor choice for carrying out this type of research. This means that there is no support

for lacking features, no hope to get any of the aforementioned problems őxed, and no

updates to make the DSL conform to more recent Coq versions.

One possible direction would be to change some things in Cava itself, such as replacing

Vectors with length-constrained lists (using sigma types, for instance) and changing how

states on sequential composite circuits are represented. On a side note, the SilverOak project

had started developing second version of Cava by late 2021, which aimed at addressing some

of the limitations of the őrst version of Cava, but unfortunately, the project has been stopped

at a very early stage as well. For all these reasons I would not recommend to use Cava to

derive HW for CoqDRAM algorithms. As outlined in Chapter 10, this remains an open

problem and other options (Kami/Koika) should be explored to accomplish this instead.

Although this is a somewhat unsatisfying result, many lessons were taken from the expe-

rience. For instance, the difficulty of handling proofs about deőnitions containing dependent

types inŕuenced the design of Interface Sub-Layer, described in Chapter 8, and TDMShelve,

described in Chapter 9. Choosing to keep a clean separation between programs and proofs

allowed us to successfully implement the Interface Sub-Layer, which led to a clean, modular,

implementation of TDMShelve. Moreover, deriving real hardware implementations also led

to the realisation that managing refresh commands was required, which greatly inŕuenced

the design of the second iteration of CoqDRAM.

Finally, in Chapter 10, we proposed some possible future work directions that aim at

solving the problem that CavaDRAM attempted to solve.
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Titre : CoqDRAM – Une Fondation pour la Conception de Contrôleurs de Mémoire Formellement Prouvés
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Résumé : Les contrôleurs mémoire temps-réel

récemment proposés abordent le compromis entre

performance et prédictibilité en cherchant à of-

frir le meilleur des deux mondes. Cependant,

en conséquence, les conceptions deviennent com-

plexes et présentent souvent des développements

mathématiques qui sont longs, difficiles à lire et à exa-

miner, incomplets, et reposent sur des hypothèses

peu claires. Étant donné que de tels composants

sont souvent conçus comme faisant partie de micro-

architectures utilisées dans des systèmes temps-

réel critiques, un degré élevé de confiance dans le

comportement correct du système est nécessaire

pour atteindre les objectifs de certification. Pour

résoudre ce problème, nous proposons un nou-

veau framework, intitulé CoqDRAM, écrit dans l’as-

sistant de preuves formelles Coq, dans lequel nous

modélisons les dispositifs DRAM et les contrôleurs et

leur comportement attendu en tant que spécification

formelle. Le framework est destiné à aider à la

conception d’algorithmes d’ordonnancement DRAM

corrects par construction et dignes de confiance. La

spécification CoqDRAM capture les critères de cor-

rection selon les normes JEDEC et énonce d’autres

propriétés de haut niveau, telles que l’équité (fair-

ness) et la cohérence séquentielle (sequential consis-

tency ). Suivant cette approche, les développements

mathématiques sur papier-et-crayon sont remplacés

par des preuves vérifiées par machine, ce qui ac-

croı̂t la confiance que la conception est effective-

ment correcte. Nous présentons l’utilisabilité de Coq-

DRAM en modélisant et en prouvant deux algorithmes

d’ordonnancement de principe: l’un basé sur la po-

litique d’arbitrage First-In First-Out (FIFO) et l’autre

sur la multiplexage par répartition dans le temps

(TDM). De plus, en utilisant CoqDRAM, nous propo-

sons un nouvel algorithme d’ordonnancement DRAM

appelé TDMShelf, qui étend et améliore les tra-

vaux précédents sur l’arbitrage work-conserving dy-

namique TDM. Plus précisément, TDMShelf exploite

des informations sur l’état interne de la mémoire au

niveau de l‘ordonnancement des requêtes mémoire,

fournissant ainsi un bon équilibre entre prédictibilité

et latence moyenne pour les systèmes temps réel à

criticité mixte.

Title : CoqDRAM – A Foundation for Designing Formally Proven Memory Controllers

Keywords : Formal Methods, Memory Controller, DRAM, Real-Time Systems, Scheduling

Abstract : Recently proposed real-time memory

controllers tackle the performance-predictability trade-

off by trying to offer the best of both worlds. Howe-

ver, as a consequence, designs have become com-

plex and often present mathematical developments

that are lengthy, hard to read and review, incom-

plete, and rely on unclear assumptions. Given that

such components are often designed as part micro-

architectures that are used in safety-critical real-time

systems, a high degree of confidence that systems

behave correctly is required in order to meet certi-

fication goals. To address that problem, we propose

a new framework written in the Coq theorem pro-

ver named CoqDRAM, in which we model DRAM de-

vices and controllers and their expected behaviour as

a formal specification. The framework is intended to

aid the design of correct-by-construction, trustworthy

DRAM scheduling algorithms. The CoqDRAM speci-

fication captures correctness criteria according to the

JEDEC standards and states other high-level proper-

ties, such as fairness and sequential consistency. Fol-

lowing such approach, paper-and-pencil mathemati-

cal developments are replaced by machine-checked

proofs, which increase confidence that the design is

indeed correct.We showcase CoqDRAM’s usability by

modelling and proving two proof of concept sche-

duling algorithms: one based on the First-in First-

Out (FIFO) arbitration policy and the other on Time-

Division Multiplexing (TDM). Moreover, using Coq-

DRAM, we propose a new DRAM scheduling algo-

rithm called TDMShelve, which extends and improves

previous work on work-conserving dynamic TDM ar-

bitration. More specifically, TDMShelve exploits infor-

mation about the internal state of the memory at re-

quest scheduling level, thus providing a good balance

between predictability and average-case latency for

mixed-criticality real-time systems. Finally, we connect

the algorithms written in CoqDRAM to software and

hardware simulation environments. These environ-

ments are used to perform simulation runs that further

validate the correctness of the CoqDRAM model.
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