
HAL Id: tel-04715058
https://theses.hal.science/tel-04715058v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward higher-order and many-symbol infinite time
Turing machines

Johan Girardot

To cite this version:
Johan Girardot. Toward higher-order and many-symbol infinite time Turing machines. Mathematical
Software [cs.MS]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX028�. �tel-
04715058�

https://theses.hal.science/tel-04715058v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
4I

P
PA

X
02

8

Toward higher-order and many-symbol
infinite time Turing machines

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 4 juillet 2024, par

JOHAN GIRARDOT

Composition du Jury :

Julien Cervelle
Professeur, Université Paris-Est Créteil (LACL) Président

Bruno Durand
Professeur, Université Montpellier (LIRMM) Rapporteur

Joel David Hamkins
Professeur, University of Notre-Dame (Department of Philosophy) Rapporteur

Mirna Džamonja
Chargée de recherche, CNRS (IRIF) Examinateur

Olivier Bournez
Professeur, École polytechnique (LIX) Directeur de thèse

Olivier Finkel
Chargé de recherche, CNRS (IMJ-PRG) Directeur de thèse

Remerciements

Je remercie chaleureusement mes directeurs de thèse, Olivier Bournez et Olivier Finkel,
pour leurs conseils avisés, leurs relectures exigeantes ainsi que pour leur bienveillance.

Je remercie également mes rapporteurs, Bruno Durand et Joel D. Hamkins, pour leur
lecture minutieuse de mon travail et leurs retours éclairés et encourageants ; ainsi que
Julien Cervelle et Mirna Džamonja d’avoir accepté de faire partie de mon jury qui, dans
son ensemble, me fait profiter de son expertise.

Je tiens aussi à remercier mes référents, Arnaud Durand et Ludovic Patey pour leur
disponibilité et leur écoute.

Toujours dans le domaine des mathématiques, je suis reconnaissant à l’ensemble des
utilisateurs et utilisatrices de mathoverflow, et en particulier celles et ceux actives et actifs
sur lo.logic, pour leurs explications patientes et leurs réponses détaillées à mes questions
parfois naïves.

De l’autre côté du monde, dans le domaine de la philosophie, ce sont mes professeurs
de la Sorbonne et la Sorbonne elle-même que je remercie, pour m’avoir abrité si souvent
dans cet endroit où tout est calme.

Et finalement, entre toutes ces choses, je remercie ma famille et mes amis pour leur
présence, autant que pour leur patience.

2

Contents

1 Introduction 5

1.1 Heidegger and phenomenology . 5
1.2 Plato and lógos . 10
1.3 Computabiliy and mathematics . 18

2 Summary and outline of the thesis 23

2.1 Context of ordinal computability . 23
2.2 Summary of the main results . 24
2.3 Plan of the thesis . 27

3 Computability and set-theoretic preliminaries 28

3.1 Computability theory and Turing machines 28
3.1.1 Primitive recursion theory . 29
3.1.2 Turing machines . 30
3.1.3 Recursive functions and Turing machines 33

3.2 Turing degrees and the constructible universe 36
3.2.1 Ordinals . 41
3.2.2 Gödel’s constructible universe, gaps and master-codes 48

3.3 Analytical hierarchy and admissible sets 62
3.3.1 Arithmetical and analytical hierarchies 62
3.3.2 Admissible sets and α-recursion . 68

4 Infinite time Turing machines 75

4.1 Hamkins and Lewis’ infinite time Turing machine 76
4.1.1 Power and limit of ITTMs . 79
4.1.2 Writing, eventually writing and accidentally writing 82
4.1.3 Clockable ordinals . 87
4.1.4 Writable and clockable ordinals . 90

4.2 Rule-wise and machine-wise generalizations 93
4.2.1 Machine-wise generalizations . 94
4.2.2 Rule-wise generalization: Friedman and Welch’s hypermachine . . . 99

3

5 Toward higher-order machines: simulational Γ-machines 104
5.1 Results and organization of the chapter . 105
5.2 Eventually clocking and accidentally clocking 106
5.3 General definitions and conditions on operators 112

5.3.1 General definitions on ordinal words 113
5.3.2 General definitions on machines . 113
5.3.3 Conditions on operators . 116

5.4 Toward higher-order and many-symbol ITTMs 127
5.5 A counter-example without the looping condition 148

6 Toward higher-order machines: a Σ3 ∧Π3 three-symbol simulational op-
erator 160
6.1 Preliminary results on simulational Γ-machines 161
6.2 The Σ3 ∧ Π3 machine . 166

6.2.1 The Σ3 ∧ Π3 operator Γ3 . 167
6.2.2 Elementary results on the Γ3 machine. 172
6.2.3 K-writing and some results . 175
6.2.4 A K-writing sufficient condition . 181
6.2.5 Main results . 197

7 Look-back and outlooks 203
7.1 Back to simulational Γ-operators . 203
7.2 Toward Σn machines . 205

A Résumé en français 212

4

Chapter 1

Introduction

‘Θεαίτητος κάθηται.’ μῶν μὴ μακρὸς ὁ λόγος; οὔκ, ἀλλὰ

μέτριος.

STRANGER: “Theaetetus sits.” Is it a long discourse?
THEAETETUS: No, it is of reasonable length.

– Plato, Sophist

What started as an introduction to computability and mathematics ended up as an intro-
duction to phenomenology and Heidegger’s thought. Hopefully, it ends how it should have
started. In Chapter 2, starting at page 23, can be found a scientific contextualization, a
summary of the results as well as an outline of the document.

1.1 Heidegger and phenomenology

The mathematical, that is everything that pertains in one way or another to mathematics,
is a world in itself. It is a world like many with long and tidy alleys, with backwoods,
with exotic leaves and mysterious roots. Still, it is a peculiar world. It is a peculiar word
inasmuch as it does not appear to us as a world when we enter it but rather when we leave
it. We enter it in many ways in our daily lives: when cooking for three instead of four,
when trying to get somewhere on time, when doing our everyday work as researchers, etc.
And through such mundane pathways, we hardly imagine reaching anything more than a
region of our own world. Still, when we leave it after spending there a long enough time–a
long day is well enough–, and when we come back to the colorfulness of everything, to
the sound of the wind, to the scent of the evening and the gentle freshness of the air,
we come to realize that we have been surveying a whole another world: namely, a world
where those things are not. And after spending a long day in this vast building where
windows can only be slightly opened, we are well justified in asking: what was this world
where those things, if not all the things, are not?

As we are here interested in what we called “the mathematical”, this question will be
our first step toward it. But if this world is the world where the things are not, what is

5

left in it? Obviously, there is more than nothing: in there may be left everything that is
not a thing. But then, another question arises: what is a thing? This is a second step,
now in the wrong direction, but giving the first question the room it needs to unfold.

So, what is a thing? This question, in one way or another, can be found almost
anywhere in the history of philosophy: in Plato’s analogy of the divided line, in Abû
Hâshim’s theory of modes, in Descartes’ sheet of wax example, etc. And for our purpose,
we could trust the philosophers. That is, we could open a well-chosen book at the right
page and find, or produce for our usage, a definition of the thing: a thing is that which
is material, or a thing is the support for the sensations, or a thing is that which realizes
in its unity a given set of properties, or a thing is anything that can be the subject of a
proposition, etc. But this handful of definitions should already make us wary: either most
of them are false, or we find ourselves in a blurry relativism that may be as complex as the
question to clarify: we could assume that the acceptation of the thing is both historical
and cultural and then start our way toward a classification of the different meanings of
it. Then, once done mapping this history of the concept of thing, we should be able to
localize ourselves with our current preoccupation in it. And with this finding ourselves
and some luck, be able to eventually produce the definition of the thing that meets our
needs. But well before achieving only half of this weary task, resting a bit and looking,
through the window that only slightly opens, at the sky and the clouds slowly passing,
we would realize that here too, in this new endeavor, the things have left.

In turn, we will as well leave this world where the things are not: if, in order to take
a step back from it, we are questioning toward the thing, we should be in one way or
another going toward the thing and leaving it. Where, if not in the proximity of the
things, should we be able to answer our question? Such a step back is already progress.
Namely, we unveiled a new question: how do we reach the things in their proximity?
And with it, in our going sideway from the history of philosophy, we realize that we still
walk a well-trodden path: that of phenomenology. Founded by Husserl and re-interpreted
by Heidegger, its mot d’ordre was: “to the things themselves”1. So, how, to the things
themselves?

Naively but decidedly, toward the things, we consider a thing. A glass, a glass from
which we can drink, made of glass, solid but frail at the same time. It stands in front of us,
on the wooden table, and we see it. Why do we see it? For this question, science has an
established and well-tried answer: photons, which form light, upon reaching the surface
of the glass, are reflected with various levels of energy through a game of excitation-
emission. Then, reaching our retina, those photons will activate different photoreceptor
cells, themselves sending nervous impulses to the brain. With those, the brain is able to
construct an image of the glass and we “see” the glass. But does this explanation bring
us closer to the glass? Not really: in it, the glass is barely a glass anymore. It is a cluster
of atoms with various levels of energy and intriguing micro-reflection properties. Hardly

1Zu den Sachen selbst, Husserl, Logische Untersuchungen, band II.

6

something a well-mannered individual would want to drink with. Moreover, against this
explanation, when someone points toward the table and asks for what we see, our first
answer invariably is: “we see a glass”. We do not see a glimmering of lights that we then
manage to crystallize as a glass; what appears to us is a glass. Only after its apparition
can we see what it is made of, the details of its production and the intricate patterns that
the sunrays describe on it. The glass is, first and foremost, given to us and the previous
scientific explanation is itself grounded on this very donation. And this donation of the
glass is also a donation from the glass: it is the glass showing itself to us. And this is the
phenomenon: “the showing-itself-in-itself”1. From the greek φαινόμενον, the middle voice
(that is at the same time passive and active voice) of φαίνω: to put under the light (φῶς),
to make visible. The phenomenon is that which itself brings itself to light, what comes
by itself into the open. And with it, with this donation, we are already, before anything,
in the proximity of the thing.

So the guiding question once again changes its shape: rather than finding a way into
the proximity of the thing, we want to find a way not to leave it. The phenomenon is the
thing which itself shows itself as itself. But as we saw, it can easily and inadvertently be
concealed: as much as we can’t see a glass through a book, the thing in its giving-itself
was hidden behind the opaque explanation of science. So, this explanation out of the way,
should we then simply look at the glass and try to describe it? But why should we look
when already the thing is showing itself? Do we only see when we look? Isn’t, on the
contrary, the effort of describing it, that is of seizing it in the language, another veiling of
the thing? This time not a veiling from too great of a distance, making us lose sight of
the thing, but a veiling from the abolishing of the distance and with it, of the proximity.
Distance is naturally the condition of proximity: we feel the proximity from the person
we love but not from our feet. The nose pressed on the surface of the thing, looking for
more than what it gives by itself in its own coming-to-the-world, what appears is not the
thing anymore: it lost its thingness. When we scrutinize the glass, it is not what we can
drink with anymore, when we scrutinize the walking stick, it is but a strange piece of
wood: its usefulness fades away. And this usefulness is part of the Being2 of those things
as things: it comes before the thing itself and the thing itself, in its production–that is in
its material apparition–, is grounded in this usefulness.

Then, how should we live with the things and their proximity that surround us if, at
the same time, we dispel it wherever we look? Do we have any access toward the thing
that is not an intrusion, or should we simply renounce? We look at Heidegger’s essay Der
Ursprung des Kunstwerkes (The Origin of the Work of Art). In this work, he is looking

1das Sich-an-ihm-selbst-zeigende, Heidegger, Sein und Zeit, p. 28.
2English is an unfortunate language when it comes to philosophy: the infinitive form of a verb can’t

be used as a substantive. So “Being” translates “das Sein” or “l’être”. But then, its gerund, “das Seiende”,
“l’étant”, precisely what should be distinguished from the infinitive form, reads: “being”. Hence it is
commonplace to write a capitalized “Being” to translate “das Sein” and “being” (often used in its plural
form, which helps a bit) to translate “das Seiende”.

7

into the relationship between the work of art, as a thing, and the things themselves. He
takes as an example the leather shoes of a peasant, as often painted by Van Gogh: “The
peasant woman simply wears the shoes. If only this simply wearing was that simple.”1:
when wearing those shoes, she relies on them with so an unquestioned trust, and yet she
never thinks about them, she never looks at them, and yet at anytime she knows where
they are. They blend in the world of the peasant, and yet they are a support point in
this very world. In their reliability, the shoes are part of the world of the peasant, and
their proximity is preserved in this world. The thingness of the shoes unfolds in the shoes
themselves, and for a moment, they hold the answer to our question. But then again, it
means that the answer withdraws further in this holding of the shoe. Still, something new
appears: the usefulness of the thing, which helped us toward the thing, is itself grounded
on its reliability. And this reliability, thought before and without the usefulness, that is
thought as a point of support on the world, before and without what it may support,
more generally lifts this thinking up to the things that are not deemed “useful”.

But from all of this, the painting by Van Gogh of a pair of shoes stays at first glance
quite remote: the shoes are extracted from their world and they stand by themselves on
a wooden floor. There, their usefulness hardly stands out. They are exposed and their
reliability is forgotten. And yet, when we put ourselves in the presence of the painting:

The obscure openings of the beaten inner of the shoes are fraught with the
hardship of the toilsome footsteps. In the crudely solid heaviness of the shoes
accumulates the tenacity of the slow trudge through the far-stretched and ever-
identical furrows of the field, over which a crude wind lingers. On the leather
lies the dampness and the richness of the soil. Under the soles and through the
descending evening stretches out the loneliness of the field paths. In the shoes
resonates the silent call of the earth, its still offering of the ripening grain and
its unexplained self-refusal in the desert fallow of the wintry field. Through
this equipment passes the mute worries regarding the certainty of bread, the
wordless joy of again overcoming the need, the tremor in the imminence of
the birth and the shiver in the surrounding threat of death. This equipment
belongs to the earth, and it is sheltered in the world of the peasant woman.
From this sheltered belonging the equipment itself arises to its resting-in-
itself.2

1Die Bäuerin dagegen trägt einfach die Schuhe. Wenn dieses einfache Tragen so einfach wäre. Hei-
degger, Der Ursprung des Kunstwerkes, GA 5, p. 19.

2Aus der dunklen Öffnung des ausgetretenen Inwendigen des Schuhzeuges starrt die Mühsal der Ar-
beitsschritte. In der derbgediegenen Schwere des Schuhzeuges ist aufgestaut die Zähigkeit des langsamen
Ganges durch die weithin gestreckten und immer gleichen Furchen des Ackers, über dem ein rauher Wind
steht. Auf dem Leder liegt das Feuchte und Satte des Bodens. Unter den Sohlen schiebt sich hin die
Einsamkeit des Feldweges durch den sinkenden Abend. In dem Schuhzeug schwingt der verschwiegene
Zuruf der Erde, ihr stilles Verschenken des reifenden Korns und ihr unerklärtes Sichversagen in der
öden Brache des winterlichen Feldes. Durch dieses Zeug zieht das klaglose Bangen um die Sicherheit des
Brotes, die wortlose Freude des Wiederüberstehens der Not, das Beben in der Ankunft der Geburt und

8

In the presence of the painting of Van Gogh, with its blurry contours, its chiaroscuros, its
simple and crude strikes and its modest approach of the thing, we see how it preserves the
thingness of the peasant shoes. “The being-equipment of equipment was only discovered
by bringing ourselves before the Van Gogh painting. It is this that spoke. In proximity to
the work we were suddenly somewhere other than we are usually accustomed to be. The
artwork let us know what the shoes, in truth, are.”1

So despite those difficulties in experiencing our relation with the thing, its being-a-
thing has to do with the truth of the work of art. Consequently, we do have a privileged
relationship with it. After all, it is indeed in our world that the thing becomes the thing
that it is: the pair of shoes realizes itself in the world of the peasant woman. The work of
art finds its place in the sheltering of the proximity of the pair of shoes. The earth, the
sky and the rainclouds themselves are in this world in the proximity of the shoes and the
growing wheat. The coming into the open of the shoes opens the very domain in which
the things come. And at the same time, this open is enabled by our living in our world.
So the initial question resonates even more deeply in this privileged relationship with the
things: what is a thing if the thing by itself comes into the open but an open that it opens
and of which we are the condition? What is a thing if the thing preserves its thingness
in its self-refusal of the meaning that we project on it? And what hides behind those
questions is that of Being: “The artwork opens up, in its own way, the Being of beings.
This opening up, i.e., unconcealing, i.e., the truth of beings, happens in the work.”2

In all of this, what matters for us is that, through all those difficulties, we realize that
the principle of phenomenology, “to the things themselves” is in reality more a grounding
question than a working principle. And reaching this question in its very difficulty; that
is, for a moment, renouncing the idea of finding an answer and letting the question unfold
and come to us in what makes it questioning, this was the task of phenomenology as
set by Heidegger. Only then do we reach a solid ground on which the question can be
answered. But as this ground was reached by renouncing the answer, the answer can only
come back in another form.

The answer to the question “What is a thing?” has a distinctive character. It
is not a proposition but a transformed fundamental stance or–better yet and
more cautiously–the initial transformation of the stance we have heretofore
taken toward things, a transformation of our questioning and evaluating, of

das Zittern in der Umdrohung des Todes. Zur Erde gehört dieses Zeug und in der Welt der Bäuerin ist
es behütet. Aus diesem behüteten Zugehören ersteht das Zeug selbst zu seinem Insichruhen. Ibid.

1Das Zeugsein des Zeuges wurde gefunden [...] nur dadurch, daß wir uns vor das Gemälde van
Goghs brachten. Dieses hat gesprochen. In der Nähe des Werkes sind wir jäh anderswo gewesen, als wir
gewöhnlich zu sein pflegen. Das Kunstwerk gab zu wissen, was das Schuhzeug in Wahr-heit ist. Ibid.,
p. 21, trans. Young & Haynes.

2Das Kunstwerk eröffnet auf seine Weise das Sein des Seienden. Im Werk geschieht diese Eröffnung,
d. h. das Entbergen, d. h. die Wahrheit des Seienden. Ibid., p. 25, trans. Young & Haynes.

9

seeing and deciding, in short, of our Da-sein in the midst of beings.1

This excerpt provides an overview of Heidegger’s phenomenology and, more generally,
of its view on the task of thinking: it is a preparation, seen as the deconstruction of a
tradition that veils the questions, and the very beginning of a transformation, founded on
this new cleared ground. But then, what is this transformation? We caught a glimpse: it
is a disponibility and a restraint, a being open for the coming-into-the open of beings.

There is still much to think about in this asymmetrical reciprocal relation that we
entertain with the things–even if much of it has already been thought through in Heideg-
ger’s writings. Indeed, this relation is nothing less than that which is encompassed in the
esoteric-looking term of Da-sein. Often mistranslated,2 it should be translated as “being-
the-there”. “The-there” is nothing like a spatial determination but rather the condition of
it: this “there” is nothing else than what we called the open. It is this open which, at the
same time, is broken through by the things and of which we phenomenologically assume
the role. Da-sein expresses our perpetual privilege and responsibility toward beings and
the perpetual opening-the-open and inward-looking of the things in their Being: “The
human being is not the lord of beings. The human being is the shepherd of Being.”3

Through this short walk in the shade of the question “what is a thing?”, following the
cautious steps of Heidegger, we managed to let this question develop itself sufficiently and
we are able to return to our initial concern: what was this world, where the things are
not? But we have also seen another thing: in the hottest summer ever recorded and in an
ever-growing and unrestrained control and exploitation of the world, the need for a new
fundamental stance toward the world and the things in it is more urgent than ever. And
the key to an environmentalist thought may be found in that of Heidegger: a thought
that rebalances the relationship between individuals and that which populates the world
and makes it world, and a thought that understands that proximity can only be where
distance is respected, whether it is metaphysical or physical.

1.2 Plato and lógos

Let us take a look back at the path we took. It involved avoiding many other paths: right
from the start, we became wary of the definition, we then steered away from the scien-

1Die Antwort auf die Frage »Was ist ein Ding?« hat einen anderen Charakter. Es ist kein Satz,
sondern eine gewandelte Grundstellung oder - noch besser und vorsichtiger - der beginnende Wandel der
bisherigen Stellung zu den Dingen, ein Wandel des Fragens und Schätzens, des Sehens und Entscheidens,
kurz : des Da-seins inmitten des Seienden., Heidegger, Die Frage nach dem Ding, GA 41, p. 49, trans.
Reid & Crowe modified.

2“ ‘Da-sein’ is a key word of my work, and it is the victim of serious misinterpretations. ‘Da-sein’ does
not really mean for me ‘here I am !’ but, if i may express myself in a likely impossible French: being-
the-there (être-le-là) and the-there (le-là) is precisely Aléthéia, disclosure — opening.” Heidegger,
Questions III et IV, letter to Jean Beauffret of the 23 novembre 1945, p. 130, trans. from French.

3Der Mensch ist nicht der Herr des Seienden. Der Mensch ist der Hirt des Seins. Heidegger, Brief
über den »Humanismus«, GA 9, p. 342.

10

tific explanation and restrained ourselves from the temptation of a pictorial description.
Finally, we had to abandon altogether the idea of reaching the thing in its Being by some
kind of proposition. In retrospect, it is easy to see that what we have been avoiding is
the language itself, in its most practical form. Indeed: the thing are not found in the
language, if only for the very reason that the language points towards the things–and
consequently outwards. So after the thing, slowly closing on the mathematical, we will
now struggle with the language. Is the mathematical to be equated with the language?
This would seem a bit unreasonable. However, the mathematical surely has a place of its
own in the language.

For a better understanding of this, we now turn to the work of Plato. This immedi-
ately prompts a question: while the work of Heidegger is more or less contemporary, why
should we resort to two-millennia-old dialogues? Putting aside the possibility of its study
being a mere exercise in erudition, there must be something to be found in the thought
of Plato. But in this case, after more than thousands of years of study of Plato and as
much of a progress in every possible field, this something that may be found in it must
have been adequately understood–that is extracted–, furthered, and laid out again in a
clearer and sharper way. The assumption that there is something in Plato that we are
about to grasp and which has not yet been understood or that no one yet managed to
think forward would be for the least bold. As much as the assertion that philosophy has
only gone downhill since its antique beginnings would be poor. On the contrary, there is
undeniable progress even in such a field where the need for a clean slate can be so often
and so strongly felt. But, precisely, what is progress? Progress is answering questions.
When we do answer a question, we write down its answer, not to forget it, and we get
on our way towards the next question. But this question, that which we just answered,
is often simply left behind and forgotten: every going forward comes with a price, and
progress is the disappearance of the questions. Only a few famous questions go through
the ages–but how largely hollowed out!–and if not for history of philosophy, we would
have wholly forgotten the questions that the words existentia1, voluntas2 and producere3

1Root of the word existence, the Latin word existentia is built as a substantivation of the verbe
exsistere (ex-sistere): to make something stand, to place something (sistere) out of something (ex-).
Marius Victorinus coined the term in the IVth century in the theological context of the trinity: the father
and the son are one, but at the same time the father is not the son and the son is not the father. How
can those two affirmations be conciliated? The answer of Marius Victorinus is the following. The son
is ex-istantia of the father: he is the manifestation of the father out of the father; that is, he is the
generation by the father in which the father ex-ist. As the apparition of the father, the son and the
father are one; but the son is not the father and the father is not the son. See V. Carraud, l’invention de
l’existence, Quaestio, 2003, pp. 3-26.

2Voluntas gives in French volonté (willingness) and was introduced by the theologian Augustine in
his De libero arbitrio. Augustine, throughout his difficult life, was frequently drawn to the following
question: what is the origin of sin in a world created by god, which itself is good? For him, if there is sin,
as it can’t originate from god, it must come from man. And here comes into play the voluntas, for which
there was no Greek equivalent: for the human being to act wrongly, he must be given the possibility of
doing either the right or the wrong thing; in other word he must be given free will, and with it the muscle
of well-doing: the voluntas.

3Producere naturally gives “to produce”. Pro-ducere means to lead, to bring, to draw (ducere) in front

11

answer.

The question that will interest us, or rather that will give us the necessary inertia, is
the following: how can we know something that we did not know? That is, how can we,
while leaning over our desk and thinking about a problem, without any outside influences
suddenly know something that, the instant before, we did not know? This question is easy
enough to ask, but as we have seen, asking is rarely enough and may even conceal the fact
that we are not yet in the presence of what makes the question questioning. Moreover,
as we have seen in the previous examples, answers are etched in the language, and so the
language itself can get in our way towards the question. This is why we will need to delve,
as much as this short introduction allows us, in the dialogues of Plato. Doing so, we will
also avoid translating some words who, precisely in their ambiguity, hold the questions
we are looking for. Such a word and the most important one will be lógos . Its translation
ranges over: “words”, “discourse”, “relation”, “reason”, etc. and its pivotal role in Plato’s
thought will shed light on its meaning.

For this question, how do we know?, a famous example is taken by Plato in Meno.
It is that of Socrates discussing with a slave of Meno the possibility of constructing a
square that is twice the area of a given square. Socrates wants to show that the slave
does not learn but recollects (anámnēsis) from its soul, which is immortal, the knowledge
about this geometrical construction. We put aside the question of the soul to focus on
the process of recollection. What interests us primarily is the first essential step in the
recollection: knowing that we don’t know when we didn’t know yet that we don’t know.
This is the first difficulty that Socrates is faced with: the young slave thinks he knows
how to construct such a doubled-area square, hence hiding the fact that he doesn’t know.
Through a series of questions, he leads him to realize his error. Then he says to Meno:

Do you think he’d have tried to enquire or learn about this matter when he
thought he knew it (even though he didn’t), until he’d become bogged down
and stuck (ἀπορίαν), and had come to appreciate his ignorance and to long for
knowledge?1

Obviously, Meno agrees and so do we. Now, we draw our attention to this term, aporía.
From the greek á-poros, it means impasse, somewhere where we are stuck with no way
(poros) forward. But what exactly is this impasse? That is, what kind of way forward
suddenly disappeared for the young slave?

We find again this aporía in Philebus. There, Socrates discusses with Protarchus about
“the identification of one and many” happening in the discourse. It happens when we say

(pro). It remarkably is built exactly like the German hervor-bringen (to produce) and it holds in itself
an answer to the question of the coming into the open that takes place when the craftswoman produces
an object: the object must be, in one way or another, say in the mind of the craftswoman, before the
object can ex-ist. So the pro-duction answers this issue of antecedence by transforming the creation in a
bringing forth of the object out of the mind of the craftswoman.

1Plato, Meno, 84c, trans. R. Waterfield.

12

that this person is tall but also beautiful and intelligent: how are three predicates, that
is a multiplicity of predicates, crammed together in one person? Should we say that one
and many can be identified? This naturally leads again to many aporias:

In my view the identification of one and many by statements (λόγων) crops
up all over the place in everything that is ever said, and it’s not a new phe-
nomenon. Indeed, it seems to me, this is an indestructible and unchanging
feature of our statements (λόγων), which is not only not new but will always
be with us. When a young man first savors it, he is delighted, as if he had
found some treasure of wisdom. His delight goes to his head and he loves to
worry every statement (λόγον), sometimes rolling it one way and kneading it
into a single ball, then unrolling it again and tearing it apart. The result is
confusion (ἀπορίαν), first of all for himself, but also for anyone who happens
to be by, whatever his age. He has no mercy on his father nor mother, nor on
any of his audience.1

What appears clearly, is that this aporia is reached by the young man both in the lógos
and with the lógos . The lógos is like a playground with its own set of rules in which the
young man can play, guided by those rules, and without having to think by himself.

We experience those rules guiding us in our everyday use of the lógos thought as
discourse: how often are we caught talking without thinking, letting the power of habit
speak for us. But this habit is itself rooted in the rules of this playground that is the
language. for example, if someone says: “I see the Jabberwock and a Cheshire cat”,
without even pondering about the meaning of those words we can affirm that: “he sees
the Jabberwock” and “he sees a Cheshire cat”. This is an easy example of the “unrolling and
tearing apart” described in the previous excerpt which, through no coincidence, reminds
us of the logical rules of deductive systems. And in return, this example gives a good idea
of what may be the “rolling and kneading into a single ball”. It is also that which takes
place in the identification of the one and the many: this game of moving forward without
thinking forward which, as everybody knows, can quickly lead to a bogging down: the
aporia.

The lógos is “a thinking machine whose gears are already set up”2. It has its own
power of development, but this development is not arbitrary: it follows an internal logic,
the rules of this playground, that brings to the surface what is still enclosed in it. Plato
attests such a coherent development of the lógos in the Sophist :

The statement (λόγος) itself will reveal (δηλώσειε) [its contradiction] if we put
it to the test (βασανιστεις).3

1Plato, Philebus, 15d, trans. J. C. B. Gosling.
2Maldinay, Cours de philosophie générale, 1964/65.
3Plato, Sophist, 237b.

13

The central word here is dēlόō, to make visible: what the lógos shows when its gears are
put into work, when it is given the impetus it needs to show itself by itself, is simply what
was already in it but concealed. What is concealed in it may be contradictory, as in the
previous example – or not:

[The lógos “the human being understands”] reveals (δηλοῖ) something about
the things that are.1

So, the aporia is the revelation of a contradiction regarding the things: the way forward
that disappears in the aporia is exactly the one leading to the revelation of the aporia.
But if we are strict with our reading, with the idea of the lógos revealing something about
the things, this something must be in a way closer to the things than it is to the lógos ;
otherwise, if the lógos reveals another lógos , how do we progress toward the things? But
then, if the logos can reveal a contradiction about the things, on the side of things, what
would be a contradiction? Things, say my chair and the roof tiles of my neighbor, can
hardly contradict each other. We will be brought back to this question.

In any case, the lógos has two fundamental aspects: first, it has its own unfolding
power that the individual can simply “engage forward” and, second, this unfolding is a
revealing of what was concealed–and at the same time hold and sheltered–in it. We see
how the many meanings of lógos all come into play at once: the lógos as a discourse
shelters and brings into the open the lógos as meaning. But this bringing into the open
is only done under the pressure of the individual that operates the gears, that puts the
lógos to the test, and so, in turn, we see the lógos as reason appearing. In other words
and through a deeper and more careful examination, we would be able to see that the
questions that the term lógos encloses are becoming so pressing in Plato’s dialogues that,
with those, we are on the threshold of the burst of the very concept of lógos into its many
translations that we know today.

But keeping intact a while longer its integrity and with this two aspects in mind,
we circle back to our question. The aporia, reached through the putting in action of the
lógos according to its own rules, makes someone realize that she does not know something.
This is a central prerequisite for the recollection. After it, the recollection, that is the
remembering of what is in her soul but forgotten, can take place. Again, this happens
with the lógos . How does it play out? We had a glimpse in Meno between Socrates and
the young slave, it plays out through a game of questioning and answering:

When people are questioned, if you put the questions well, they answer cor-
rectly of themselves about everything; and yet if they had not within them
some knowledge and right reason (ὀρθὸς λόγος), they could not do this.2

1Ibid., 262d.
2Plato, Phaedo, 73a, trans. Fowler.

14

And this, the game of “questioning and answering”1, corresponds precisely to the funda-
mental notion of dialectic. But at the same time, it is nothing less than the putting to test
or the putting under the touchstone (basanos) of the lógos for it to reveal the knowledge
it encloses.

So the impetus given by this question, “how do we know?”, helped us put into light
how the lógos and the dialectic, that is the questioning and answering, work hand in hand.
In turn, this will give us the hook we need on the particular kind of lógos that interests
us: the mathematical one. To do this, we now need more content on the dialectic. Plato’s
Republic discusses this subject at length. Again, we want to know what triggers it:

Some things are apt to summon thought, while others are not, defining as apt
to summon it those that strike the sense at the time as their opposites, while
all those that do not, are not apt to arouse intellection (νοήσεως).2

And intellection (nóēsis) is “that which argument (λόγος) itself grasps with the power of
dialectic”3. So that which provokes the senses and provides contradictory impressions also
gives the needed jolt for the individual to rebel against this conflict of the senses and to
try to solve this aporia through the dialectic. As an example, Plato comes back to what
we encountered in Philebus, the conflict of the one and the many.

The sight, with respect to the one, possesses this characteristic to a very high
degree. For we see the same thing at the same time as both one and as an
unlimited multitude.4

But this time, the example of the one and the many is clearly shifted in the realm of the
senses. This begs the question that we already crossed paths with when surveying the
possibility of things contradicting each other: how do we see something as one and many?
How do we even see something as one, or as many? A few lines before, Socrates illustrated
this conflictual sighting with our fingers: our hand in front of us, we see the three most
central fingers. One of them is smaller than the bigger one and bigger than the smaller
one. So this finger is seen, against one of its neighbor, as big and, against the other, as
small. In the sighting of the one finger collide many–here two but moreover contradictory–
visual impressions. And so comes into play the intellection, “[which was] compelled to see
big and little, too, not mixed up together but distinguished, doing the opposite of what
sight did”5. This example is as simple to describe as it is thorny to unfold: the lógos
oddly straddles the line between the sighting and the intellection. As seen, through the
dialectic, it plays an important part in the process of intellection. But in this example, it

1Plato, Republic, 487b.
2Ibid., 524d, trans. A. Bloom.
3Ibid., 511b, trans. A. Bloom.
4Ibid., 525a, trans. A. Bloom.
5Ibid., 524c, trans. A. Bloom.

15

also does in the sighting1, as, for the finger to be seen big or small it must already be put
in relation, by the sighting, with those ideas from “big” and “small”. A “pure” sighting
as science likes to describe would simply gather bare information unrelated to any lógos .
But such a role for the lógos in the sighting is in line with what we described: the sighting
is infused with lógos and in return the revealing of the lógos , that is, at the same time,
the revealing through the lógos in its mechanical aspect and the revealing out of the lógos
in its veiling and sheltering aspect; this revealing brings into the open ce sur quoi il porte,
that which it covers about the things. We see through the lógos which constantly reveals
the things to us. And this is why we can have contradictory sightings, as this revealing,
which we previously referred to as the second aspect of the lógos , goes hand in hand with
its first aspect: a self-going-forward in the language that reveals itself, this going-forward,
when it stumbles on–or rather in–the aporia. But in this case, in the sighting, compared
to the young boy playing in language, the lógos makes its way through the language à
pas de loup, very quietly putting this march into silent words until it provokes the jolt of
the aporia that makes us utter a mute gasp of surprise. After this, the lógos can progress
in the open through the dialectic and toward the intellection, nóēsis.

As an aside, this intricate state of affair–whose complexity can only be measured in
facing the difficulty it represents–, that is this going through from the lógos , through the
frontier between sensation and intellection, is precisely what the concept of diánoia can
be interpreted to capture2. Often over-translated by “thought” or “ability to think”–by
lack of better translation in modern languages–, diá-noia can be seen in Plato as the
going through (diá) of a way more fundamental “thought”, namely that which is conveyed
by the lógos , itself in one a more fundamental aspect than that of discourse or of reason:
precisely that which we caught a glimpse of in its relation with the perception. But
again, this is a questioning that goes through all of Plato’s work, and that can too easily
be veiled by the answers etched in our language. In Theatetus, Theaetetus asks precisely
this question to Socrates, “What do you call thinking (διανοεῖσθαι)?”. We give the answer
of Socrates as translated by C. Rowe:

A talk (λόγον) that the soul conducts (διεξέρχεται) with itself about whatever
it is investigating (σκοπῇ).3

Against a more literal translation:

A lógos that the soul itself conducts through itself about whatever it has in
his sight.

1Which is actually remarkably reminiscing of the previous phenomenological description: for the
glass to be seen in the way we described, the idea of “glass”, or rather something akin to it but more
fundamental, must come into play in the sighting. This is actually the pivot around which all of Sein und
Zeit is structured, providing an access–albeit elusive–to Being through the phenomenological sighting of
beings.

2See Heidegger, Vom Wesen der Wahrheit, GA 34.
3Plato, Theaetetus, 189e, trans. C. Rowe.

16

And the end of the quote for the reader to make her or his own mind, remembering the
peculiar and pre-conceptual role that the lógos has in the sighting:

That’s what I’m claiming, at any rate, as someone ignorant about the subject.
The image I have of the soul as it is in thought (διανοουμένη) is exactly of it as
in conversation (διαλέγεσθαι) with itself, asking itself and answering questions
and saying yes to this and no to that. When it fixes on something, whether
having arrived at it quite slowly or in a quick leap, and it is now saying
the same thing consistently, without wavering, that is what we set down as
something it believes. So I for my part call forming and having a belief talking
(λέγειν), and belief a talk (λόγον) that has been conducted, not with someone
else, or out loud, but in silence with oneself.1

We put a halt to this dwelling and come back to our concern: the mathematical. What
is his place in this landscape that the lógos describes? At first sight, in Plato, mathe-
matical arts is that which “leads toward truth.”2 They do so, as seen, by stimulating the
individual through proto-contradictions, which lead to nóēsis. The kind of mathematical
art that Plato has in mind is that which draws attention to issues like the one about the
one and the many which we already encountered a few times. But this would be, at best,
distantly related to modern mathematics. The modern approach of mathematics is in-
deed grounded on an unquestioned trust in its language. For example, we do not question
further the unity encompassed by the number 1, neither do we question ourselves about
the unity of the number 3, itself made from a multiplicity of the unity of the number 1.
And Plato was well aware of something akin to this modern approach which he criticizes
in the geometricians:

They speak as though they were practitioners and were making all their propo-
sition (λόγους) for the sake of their practice, speaking of ‘squaring’, ‘applying’,
‘adding’ and everything of the sort whereas the whole study is surely pursued
for the sake of knowing (μάθημα).3

This approach that Plato laments–Plato which wasn’t a mathematician for the standards
of his time–clearly has a deep relation with a specific part of the language. More precisely,
this practice grounds itself in the language it uses. And Plato blames it as, according
to him, it does not yield intellection. With this, we are finally able to close the loop.
Intellection is insistently prompted by the lógos reaching, in one way or another, an aporia.
This aporia is the revelation of a contradictory state of affairs, toward which precisely the
lógos points. Why does this not happen in the case of mathematics as practised by the
geometricians? Simply because their lógos points toward the language itself: the lógos

1Ibid., trans. C. Rowe.
2Plato, Republic, 525b, trans. A. Bloom.
3Ibid., 527a.

17

of the geometrician reveals precisely what it is built on, it does not point towards and
outwards but inwards itself. The two aspects of their lógos are merged together, and its
revealing through unfolding keeps on revealing the lógos itself. They are glued together
and unfold in a new dimension as does the Klein bottle.

And this appears clearly from the point of view of modern mathematics: “aporia”
is a word that the mathematicians never use, they do not say that the mathematical
machinery brought them to an impasse but rather they say: “I made a mistake”, that
is they say that they derailed this machinery and themselves caused the contradiction.
They do not look forward at the lack of paths but backward for their own exiting of
the mathematical rails. There is an implicit–because ubiquitous–trust in the language
over which the mathematical propositions are built. This trust was the support for the
ever-growing care in the usage of the mathematical language that developed itself over
the centuries: it gave rise to the mathematical language on which modern mathematics
are built. Why did it work so well? What was this trust itself resting on? This may
be the question that underlies all philosophy of mathematics, if not all philosophy of
knowledge–and that we may never properly reach.

And what is this language exactly? By mathematical language we do not mean the
structured collection of words that are used by the mathematician at some point in time,
which would itself correspond to the Greek glōssa rather than to the Greek lógos . It
is on the contrary the very possibility of this mundane acceptation of the mathematical
language, that is the logic of this language. And as such a possibility, it already encloses
the mathematical concepts, proofs and propositions that are yet to come. This is why
we can understand a new proof involving new objects simply by reading through: we
already knew it, only still in a concealed way. The reading through and the grasping was
a revealing of what was already known. This language, as the possibility of an enclosing
enabled by the human being, is precisely what is revealed by the mathematical practice:
it is the forgetful lógos forgetting about the things, constantly revealing itself through
itself because turned inwards on itself and, for this reason, as simple and poor as it is rich
and mysterious.

1.3 Computabiliy and mathematics

Eventually, toward computability theory, let us take a practical example of this mathe-
matical language. What does the lógos , “the big tree in my backyard”, has in common
with the big tree in my backyard? Nothing: this sentence, “the big tree in my backyard”,
hardly has a trunk or any variety of leaves. On the other hand, what does “seventeen” has
to do with seventeen? Everything: mathematics consists in grasping–that is revealing–in
the language what is already in the language.

But don’t we trivialize the mathematical practice here? Only on the surface: here,
“grasping” means bringing down to human understanding. Consider for example the

18

question of whether there are infinitely many prime numbers. We can imagine a proof
that shows this is true by writing down infinitely many of them. That would surely be
satisfactory enough for some kind of infinite being. From our point of view, however, we
want this infinite stream of information to be gathered, in one way or another, into some
finite object. And this is exactly what the usual proof by contradiction does: the other
way around, it provides an effective method to produce an infinite list of prime numbers,
one at a time. We could say that the list is compressed in the finite description of the
algorithm that the proof yields.

Hence, we see two things: mathematics is the privilege of finiteness, and the grasping in
the mathematical practice–in the sense of seizing rather than understanding–is inherently
a compressing. Again, the other way around: the unfolding of the mathematical language
can be seen, in a very pragmatic way, as the uncompressing of the information it encloses.
The finite proof of the infinity of prime numbers can be made to talk further and further
about greater and greater prime numbers. And those two things go hand in hand, as this
compressing is motivated by the humanly finiteness as much as the unfolding makes only
sense while there remains something to unfold.

From there, can we study this compressing and uncompressing of the mathematics?
That is, can we study this game of inward pointing and of unfolding on which the math-
ematical practice is grounded? The mathematical practice aside–as mentioned this one is
far out of our reach–, this is the object of proof theory. A formal proof, after all, is the
unfolding, according to some rules, of a given statement. In logic, a theory T generated
by a set of axiom S is the “maximum unfolding” of S according to some deductive system.
Quite often, S is finite while T is infinite. But this way of seeing things is still infused
with mathematical practice. That is, it observes the unfolding capacity of mathematics
through the eyes of a mathematician. As a sensible approach as it sounds, we may want
to start with a more agnostic approach. After all, any other field of mathematics or com-
puter science would be reluctant–and rightly so–to start their study, say of spaces or of
graphs, from the very singular position of the mathematician.

And so, the mathematician and its practice out of the way, and as long as we manage
to keep them at bay, what remains is the study of the relation between the finite and
the greater finite–or even more, between the finite and the infinite. And, from a certain
angle, this is nothing else than computability. As it was apparent in the example of the
prime numbers, an algorithm is the key element for the compression of an infinite amount
of data. It is the finite object which speaks of this infinite object, and as such the finite
object that names it, the first ply of the mathematical unfolding. If we are interested
in the details of this unfolding, we turn ourselves to complexity theory. If we are only
interested in the possibility of this unfolding–or rather, dually, in the possibility of the
folding of this infinite object–, we turn ourselves to computability.

However, before anything, computability is born from an impossibility. This was the
condition for the possibility of compressing to be interesting in itself. This impossibility

19

has many forms. Among others, it can be encompassed by the halting problem. If we let
(pi) be an enumeration of all programs then the real

x =
∑

i | pi halts

2−i

is a first example of a real which is not compressible. That is, we can’t design a (finite)
algorithm which on input i gives us the ith bit of x. On the contrary, as we saw, the real

y =
∑

p prime

2−p

is compressible in the previous sense. And so two groups emerge, the group of those
infinite objects which are compressible, or equivalently computable, and the group of
those which aren’t. And with those, the field of computabilty. Now, if we are satisfied
with the existence (or rather non-vacuousness) of this second group, we may go back to
the study of the first. That is, we now want to know which are those objects that are
compressible. To this aim, it is simpler, as often, to start with the end, that is with the
compressed form: the algorithm. To do so however, we need to define the space of the
algorithms we consider. One way to do it is using the abstract model of Turing machines.
A Turing machine is a simple machine-like object that carries out a computation (we
will come back in the Chapter 3 to the difficult but rich question of the meaning of “a
computation”) with some input. It may not halt but if it halts, it does so in finitely many
steps, in which case it produces a finite output. And as soon as we have those machine-
like objects, we have partial functions from N to N. Each Turing machine corresponds to
one of those functions and the machine m corresponds to the function that maps i to the
output of m computing with input i. If we look in particular at the machines inducing
total functions from N to {0, 1}, it is easy to see that those describe reals in their binary
expansion, and those reals are exactly the compressible reals. Alternatively, especially
when we start from the machines rather than from the reals, those are called computable
reals. This is a prime example of a relation between the finite and the infinite which
formalized by computability: computability is the deploying of finitness and those kind
of relations, in the usual ubiquitous and veiled fashion, underlie most of our relation to
mathematics.

But are we done after putting those under light? That is, did we make a serious
attempt at seizing and abstracting the folding and unfolding power of the mathematical
language? For the moment, only halfheartedly, if only for the inescapable reason that
describing the limit of such a setup at the same time escapes this setup and is itself
done in the mathematical language. The real which we introduced, this x that encodes
the halting problem, is, once we fix an enumeration of our Turing machines, clearly and
unambiguously defined for the mathematician. And so, to some extent, the impossibility

20

in linking back this real x to finitness–and so in naming it–, forms itself a name for it. And
this limit of the formal language, drawn at the frontier with the mathematical language,
can in turn be formalized. That is, the mathematical language can be unfolded further
and crystallized in the usual way. And with this, this setup, which at the time consists of
usual Turing machines, can be enhanced to allow descriptions like that of x. To do this,
we simply add to the machines an oracle, which can be queried to know whether some
pi halts. This is the beginnings of the theory of Turing jumps and Turing degrees which,
jumping from an impossibility to another, can be extended through the many plies and
creases of the mathematical language.

But again, this hierarchy of degrees hits a wall. This wall is linked to the limit
in the ability of this setup a particular king of objects which are ordinals. And, as
previously, it is through a more liberal use of those objects that this limitation can be
overcome, by simply admitting that ordinals are “there”, which then allows us to consider
computation through the ordinals. But why exactly is it a “more liberal” use? This may
sound especially out of place in the context of formalization. But formalization, in the
sense of the crystallizing of what unfolds, is precisely an extracting and putting away–away
from the mathematician–of what unfolds in the mathematical language. And this putting
away is in no way a throwing away: in the formalization, we neatly organize and store
parts of this deep and obscure relation that we entertain with mathematics and which
is embodied by the–necessarily human–mathematical language. And this putting away
naturally creates a distance between the mathematician and its object. This distance frees
the mind and the day-to-day mathematical work relies on it. Given an equation, that is
given a well-formalized arithmetical equality, the mathematician learned to manipulate
it, to unroll it, to cut it half and so on, like the young man in Philebus does with the
lógos : the mathematician tries to multiply by the conjugate, to do a change of variable, a
derivation etc. and so many other operation which are, in her phenomenological relation
with the equation, not grounded in the mathematical language but now in the formal
language. Up until a point, a point at which the mathematical language is queried again,
the mathematician is only concerned with symbols almost empty of meaning. When we
cross out a common denominator in the two sides of the equation, we hardly see it, we
just observe that the similar symbols appear on either sides. When we want to integrate
a function that looks familiar, we start by trying a few usual integration tricks with,
initially, as much distance to the symbols under the integral sign we have to the jigsaw
piece that we haphazardly try to fit here or there.

Hence, those liberal usages of mathematical objects, ranging from the symbolical ma-
nipulation of equations to the mindless use of ordinals, are structured by the rigor of the
formalization and permitted by the distance it creates. This mindless practice, meaning
this doing of mathematics without thinking about mathematics, is nothing to be wary of
and even a condition of the progress of mathematics: as a reflection of the mathemati-
cal language, and so projected, at a distance, in front of her, the formal language is the

21

laboratory of the mathematician. And so, with ordinals now neatly aligned one after the
other in the ambient mathematical world, patiently waiting for us to get closer, we will
see in this thesis how we can freely use them to conduct infinite computations, and how
we can further unfold a fold of the mathematical language.

But most importantly, at least for this introduction, we saw how a game of back
and forth takes place, from the mathematical language, unfolding in the formal hands
of the mathematician, and back again in the mathematical language, to the next ply at
which this unfolding temporarily halts. And so we see how the formal mathematics are
surrounded on either side by the mathematical language, itself a part–maybe the most
important one–of the mathematical practice that we previously tried to keep at bay. The
other way around, we see again how, that which the formal language eventually uncovers
comes from the mathematical language–or even, if we dare, is the mathematical language
itself. And if we don’t forget what we mean by “mathematical language”, the possibility
and the grounding of mathematics, we see that we are simply running in instructive circles.
But we should also not forget how this mathematical language is itself a privilege of our
human finitness, and how this game of back and forth was elucidated years ago.

We have found a strange footprint on the shores of the unknown. We have
devised profound theories, one after another, to account for its origins. At last,
we have succeeded in reconstructing the creature that made the footprint. And
lo! It is our own.1

With all of this in mind, we see how the mathematical progress–this unfolding which
we now have been describing for long enough–is a walking toward the unknown, in our own
footsteps. And the deeper we glance into this unknown, the more oblivious we become to
those footsteps. And it is when he is unaware of those, that the mathematician confuses
what he discovers with the world around him. What he discovers, and keeps discovering,
is his own self and his own language. What he confuses this mathematical language with,
is the world. And so, in turn, a better consciousness of this language and of its place in
the mathematical practice is his access to the world.

For this reason, as much as the mathematician should not forget that a number is
something we count with, a definition something we rally around and a proof something
we agree upon, they should also not forget to look up, before the clouds in the sky have
fully gone.

1A.S. Eddington, Space, Time and Gravitation.

22

Chapter 2

Summary and outline of the thesis

In this chapter, we give an overview of the mathematical context and of the main contri-
butions of the thesis, followed by a chapter-by-chapter outline.

2.1 Context of ordinal computability

The field of ordinal computabiliy deals with higher-order computation models, where
higher-order refers to, in contrast, classical finite computability. Overcoming the natural
limits of finitness always involves in one way or another ordinals. Those can be used
as a way to organize greater “quantity” of information as with iterated Turing jumps.
They can also be used as a way to generate greater computational space, as is done with
α-recursion in the constructible hierarchy.

Alternatively, ordinals can simply be seen as a part of ambient mathematics, and so,
any kind of operation (well defined for limit ordinals) can be iterated through the ordinals.
From there, an idea is to have a machine, say a Turing machine or a register machine,
compute through the ordinals. Here, the convenient part is that, taking a finite model of
computation already solves the question of defining the transition function at successor
stages: if the status of the machine is well defined at some ordinal stage α, its status at
stage α+ 1 is defined as in the finite case. What solely remains is to find a way to define
the status–or more canonically the snapshot of the machine at limit stages. One way to
do this was introduced in [HL00] by Hamkins and Lewis for the Turing machine: at a
limit stage, the value of a cell is the limit superior of its previous values.

More precisely, they introduced the model of infinite time Turing machine (ITTM). An
ITTM has the same structure as a three tapes Turing machine. It computes through the
ordinals and at any successor stage, the next snapshot of the machine is a function of its
machine code and of the actual snapshot, as done in the classical setting. At limit stage,
tape heads are back on the first cells of the tapes, the machine state is some distinguished
limit state and the value of any cell is set to the limit superior of its previous values. This
model, as we will see in Chapter 4, has many great properties and deep links with set
theory. From a philosophical point of view, it has the interest of pushing further–which

23

means opening further–the mathematical language in its mysterious putting-in-relation
of finitness and infinitness. But this was already discussed in the introduction. From a
mathematical point of view, the properties of ITTMs combined with their links with set
theory makes for a great investigation and proving tool. As an example of how those
properties can be harvested, Durand and Lafitte devised in [DL19] an algorithmic proof
of Sacks Theorem using ITTMs. Further, generalizations of this model already proved
to be helpful set theoretical tools as well, as illustrated by the proof of Sacks-Simpson
Theorem of Koepke and Seyffert done in [Koe05] and using infinite Turing machines with
tapes of ordinal length α.

Indeed, with this idea of limits superior (or, symmetrically, limits inferior), it is possible
to define further models of infinite machines. As another example, Koepke defined in
[KS06] ordinal register machines: each register contains an ordinal and at any limit stage,
the value of any register is set to the limit inferior of its previous values while the active
line in the limit inferior of previous active lines. Koepke also generalized the Turing
machine further by allowing it to work with a tape of length On in [Koe09]. In this case,
at a limit stage, the position of the lecture head is set to the limit inferior of it previous
positions. Also, in [Wel00a] and in a fruitful effort toward higher-order machines, Welch
came up with a generalisation of ITTMs involving a different limit rule: at a limit stage,
the value of a cell is set to the limit inferior, not of all its previous values but of a precise
subset of its previous value, and this subset is determined by a “rule tape”. A bit more
remote, also using limits inferior, Fischbach and Seyfferth designed in [FS13] a model of
ordinal lambda calculus.

2.2 Summary of the main results

We see in this brief overview how a good amount of generalizations of usual finite models
of computation rely on this idea of defining at a limit stage the state of the system using
either limits inferior or limits superior. In this context, the object of this thesis is to study
the model of infinite time Turing machines (ITTMs) developed by Hamkins and Lewis’
and to envisage an alternative to the limit superior for limit ordinal stages. That is too
change the limit rule according to which the value of a cells at limit stages is determined.

A notable aspect of their model of ITTM is that it is almost as simple as the usual
finite model of Turing machines, and for this reason it is a very convenient laboratory for
putting to the test new limit rules. Moreover, while the choices for the heads and the
states at limit stages may appear somewhat canonical, the principal justification for the
rule of the lim sup is actually a corroboration: with this rule, Hamkins and Lewis showed
how this produces a robust, powerful and structured (we will see in what follows what is
meant here by structured) model of infinite time computation. From there, the focus was
on the possibility of devising limit rules that yield more powerful but equally structured
models of generalized infinite Turing machines.

24

The approach to this question is somewhat tangent: it starts with the study of the
universal ITTM. It happens to be quite straightforward to define a universal ITTM which
simulates in parallel all ITTMs. The importance of this machine for the study of ITTMs
appears clearly in [Wel00b] where Welch answered positively the open problem left by
Hamkins and Lewis, namely whether λ = γ? That is whether the supremum of the
ordinal for which a code is writable by an ITTM is equal to that of ordinal stages at
which an ITTM halts. This is what we meant by “structured”. In this work, we start
by introducing a slightly more general structural equality that links Σ, defined in [HL00]
as the supremum of the ordinal for which a code appears at any stage in some ITTM
(accidentally writable ordinals) to T (capital τ) which we define as the supremum of
stages at which something is written on one tape for the first time (accidentally clockable
ordinals). We show with a proof similar to that of Welch, again heavily grounded on the
existence of the universal machine, that for the ITTMs the equality Σ = T holds and that
it implies the equality λ = γ.

Now, back to the universal machine. Its definition is only fortuitously straightforward:
thanks to the limit rule of the ITTMs, that is thanks to the lim sup rule, we can simply
take the code of a finite universal machine and it almost immediately yields a universal
Turing machine. In other words, this construction rests on quite strong but implicit
properties of the lim sup rule. And those properties more generally allow for a machine
to simulate another at the “speed” it wants. Take the following example: machine A is
simulating machine B for α steps and decides to check whether the output of machine B
after those α steps satisfies some property P . It takes β steps to do so and it may happen
that P was not satisfied. So machine A goes on with the simulation of B to look at its
output at a later stage. Now, what can we say about the history of B as simulated by A?
After the α first simulation stages, there are β steps during which the history of B is not
modified; hence making this history quite different, because somehow stretched, from the
true history of B. This is not an issue for the simulation but only because the lim sup

rule does not yield different values when the history is stretched in such a fashion. This
is one of the important properties of the lim sup rule.

Going further, in the Chapter 5, we exhibit a set of four properties satisfied by the
lim sup rule that are implicitly used in the constructions of ITTM that simulate other
machines. As the limit rule for a machine can be seen to rests on a function that maps
histories of computations to cell values, following the definition of Welch in [Wel00a],
we call the functions underlying those rules limit rule operators and focus our study on
them. We use the letter Γ to refer to operators and write Γ-ITTM for the more general
models of infinite Turing machines produced by those operators and Γ-machines for the
machines generated by a given operator Γ. This set of four properties, which we call
cell-by-cell, asymptotical, stable and contraction-proof, allows us to define the concept of
simulational operators : those are operators that yield models of Γ-ITTMs in which we can
explicitly design machines using the simulation of other machines in their computation.

25

In particular, for Γ a simulational operator, there exists a Γ-universal machine. To this
we add a safeguard property called looping stability which rules out some pathological
operators. The first result, very easy but to some extent striking, is the following.

Result 1 (Theorem 5.4.1). The lim sup and lim inf operators are the only 2-symbol sim-
ulational operators satisfying the condition of looping stability.

This compels us to consider more generally n-symbol operators and with it n-symbols
Γ-ITTMs. The second result, more difficult, is the following, defining for an operator Γ

the constants ΣΓ and TΓ as was done for ITTMs.

Result 2 (Theorem 5.4.14). For a n-symbol simulational operator Γ that satisfies the
looping stability condition and that can be defined by a formula of set-theory, we have that
ΣΓ = TΓ.

And once again, the equality λΓ = γΓ is a corollary of it. The third result of this chapter
is the fact, showed through a counter-example, that the condition of looping stability is
necessary for this equality to be established, i.e. this result is tight with respect to this
condition. That is:

Result 3 (Theorem 5.5.1). There exists a 3-symbol simulational operator Γ that does not
satisfy the looping stability condition and for which ΣΓ ̸= TΓ.

Further again, in the Chapter 6: if we consider operator that can be defined by a
formula of set-theory, those operator are naturally hierarchized by their level in the Lévy
hierarchy. With this point of view, the lim sup operator is a Σ2 operator. This operator
is arguably as powerful as a Σ2 simulational operator can get having in mind this result
from Hamkins and Lewis:

Lζ ≺Σ2 LΣ

Hence we design a Σ3 ∧Π3 3-symbol simulational operator Γ3. That is an operator which
is defined in set theory by a formula φ∧ψ where φ is a Σ3 and ψ a Π3. For this operator,
we shorten ΣΓ3 , ζΓ3 and the other constants by Σ3, ζ3, etc. This operator also satisfies the
condition of looping stability, hence with the result of the previous chapter, the equality
Σ3 = T3 holds. Then we show how its definition induces a new way of writing reals with
those machine, called K-writing, such that K3, the supremum of the K-writable ordinals
is strictly between ζ3 and Σ3. Eventually, we show that with this K3 the analogous of the
previous result holds.

Result 4 (Theorem 6.2.49). For the simulational operator Γ3, we have:

Lζ3 ≺Σ2 LK3 ≺Σ3≺ LΣ3

This shows that this model of Γ3-machines provides a satisfying simulational general-
ization of the lim sup machines with respect to power and structure.

26

2.3 Plan of the thesis

Chapter 1 and Chapter 2 are respectively introductory and summary chapters. Chapter 3
and Chapter 4 provide the mathematical context of this work while Chapter 5 and Chap-
ter 6 present the two main contributions of the thesis. For the reader already familiar
with the subject, Chapter 5 and Chapter 6 are written in a self-contained way.

More precisely, Chapter 3 starts with preliminaries in both computability and set
theory. It starts with the most basic idea of computation, namely primitive recursion
theory, and works its way toward degree theory and higher recursion theory. It ends with
the introduction of hyperarithmetical hierarchy and admissible sets.

Chapter 4 introduces the starting point of this work, namely infinite time Turing
machines. It presents the main results that have been established as well as the inter-
est of those machines. It also gives a brief overview of generalizations of this model of
computation in literature.

Chapter 5 presents the first main result established during this thesis. It starts by
reintroducing some key concepts so that that the reader familiar with computability and
set theory can skip previous chapters. It tgen shows how we can devise a wide class of
model of infinite Turing machines that generalizes the ITTM and for which some of the
most interesting results obtained with ITTMs still hold. More precisely, we show how
the equality λ = γ (as well as the stronger and new equality Σ = T) can be established
for models of infinite machines ruled by other rules than the usual lim sup rule. In this
chapter and the next one, results that are not attributed are new results.

Chapter 6 contains the second main result. It builds on the results of the previous
chapter and it introduces a model of infinite Turing machine with a Σ3∧Π3 rule that again
generalizes the model of ITTM and for which we prove strong links with the constructible
universe, as was done for the ITTM. Namely, we show that for this model of infinite Turing
machine, we can define K3 a new constant relative to a new way of writing ordinals and
such that, with ζ3 and Σ3 as usually defined:

Lζ3 ≺Σ2 Lκ3 ≺Σ3≺ LΣ3

This corroborates the interest of this model of infinite machine as a generalization of the
ITTM.

In Chapter 7, we briefly go through the new results of this work. To this extent, we
build some momentum by also going first through the intuitions and bare ideas that lead
to those results. This may a good place to start for the reader wanting more insight than
hard proofs. Still carried by this momentum, we also discuss the outlooks of this work as
we recall some questions left open in it.

27

Chapter 3

Computability and set-theoretic
preliminaries

The aim of this chapter is to introduce the field of classical computability from the crossed
perspectives of Turing machines and recursive functions. To do so, it stages the devel-
opment of computability from the question “what does computable mean ?” For this
reason, it starts with well-known objects, like primitive recursive functions, and it shows
how those objects help crystallize and confront different intuitions about computation–
and with it, how progress in mathematics is often made along a back-and-forth between
formalism and intuition. In the same way, it mostly aims at giving intuitions about the
usual objects and the proofs rather than formally exposing those.

It then continues to introduce the question of higher recursion theory and with it some
of the relevant objects for next chapters. Those objects are mostly set theoretical. They
include ordinals, Gödel’s constructible universe, set hierarchies and admissible sets.

Definitions and results which are not affiliated are considered to be folklore. All the
results on computability, arithmetic and hyperarithmetic can be found in [Rog87]. Those
in admissibility theory and α-recursion can respectively be found in [Bar75] and [Sac90].

3.1 Computability theory and Turing machines

Computability theory stems from the following question: “what does it mean for a func-
tion (on the natural numbers) to be computable1?” Such a question acts as the frontier
between, on one side, what could be called the outermost region of the proto-mathematical
thinking and on the other side, the origin of the formal mathematical development. In-
deed, while this question is inquiring toward the meaning of “computable” with respect to
functions, it can only do so and make sense with an already implicit understanding of the
term “computable”. And this is not contradictory: here “computable” and “computable”
are two different words as they are part of two different languages, or regions of thinking.

1Or “effectively calculable” as was used by Church.

28

As such, this question is a fundamental meeting point and a zone of dialogue for those
two languages1.

From there, answering this question is akin to reenacting the dialogue between those
two languages, that is to let one, in which we have a pre-concept of the notion of com-
putability, speak through the other. What does the natural or proto-mathematical lan-
guage says? It says, among other things2, first, that the simplest functions we know are
naturally computable and that any function simply made of two computable functions
should be computable as well. And second, it says that if there is a deterministic and
automatic procedure that computes the function, then it clearly is computable. Let us
see how this first affirmation translates.

3.1.1 Primitive recursion theory

What are simple functions over integers? The simplest one may be the constant function,
and even more the constant function that maps every natural number to 0. Then, comes
the identity function. As we may want to consider n-ary functions, this yield different
identity functions, also called projections, each one returning the kth parameters for some
k. And the successor function, that maps x to x + 1 is as well simple enough to be
considered computable. So begins the definition of recursive functions.

Definition 3.1.1 (Primitive functions). A primitive function is one of the following func-
tions from Nn to N for some n > 0:

• Cn
k (x1, . . . , xn) = k, the constant function with n argument that always return k.

• Pk(x1, . . . , xn) = xk, the identity function with n argument that always return its
kth argument for 1 ⩽ k ⩽ n.

• S(x) = x+ 1, the successor function.

From there, how does these function interact with each other? The composition of two
computable functions is expected to be computable. From there, it it possible to define
the function Sk(x) such that Sk(x) = x+ k:

Sk = S ◦ S ◦ . . . ◦ S︸ ︷︷ ︸
k times

Now, how is defined a similar function w.r.t. multiplication? That is a function such that
Sk(x) = x · k. Observe that in the natural definition of multiplication, as an iterated
addition, there is a fundamental leap. When we say that x · k is the result of the function
Sk iterated x times on 0, there is an ontological shift or even an ascension: x is not

1The “dialogue” is not the lógos that takes place between two parties. From the greek διάλογος, it is
literally the lógos that goes through (dia-) and as such separates.

2Another thing it says is that: “if we can write down a function in some natural way, then it must be
computable.” This may be seen as the “going through” that led to the development of lambda calculus.

29

anymore a simple natural numbers that functions can act upon, it is lifted into the realm
of functions and may mingle with them; which is clearly needed to speak of the xth

iteration of Sk. This ontological shift is encompassed by a recursion scheme that can be
seen, on the functions side, as mapping x and Sk to Sx

k = Sk ◦ Sk ◦ . . . ◦ Sk, where Sk is
iterated x times. That is, formally:

Definition 3.1.2 (Primitive operators). The primitive operators acting on functions over
the natural numbers are the following operators:

• The composition operator ◦. Given a n-ary function f and n m-ary functions
g1, . . . , gn, f ◦ (g1, . . . , gm) is a m-ary function defined as:

f ◦ (g1, . . . , gn)(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

• The primitive recursion operator. Given g a n-ary function and h a n + 2-ary
function, we define f = ρ(g, h), the recursion operator applied to g and h as the
n+ 1-ary function defined as:

f(0, x1, . . . , xn) = g(x1, . . . , xn)

f(S(y), x1, . . . , xn) = h(y, f(y, x1, . . . , xn), x1, . . . , xn)

With those two operators, we can define the class of primitive recursive functions.

Definition 3.1.3 (Primitive recursive functions). The class of primitive recursive func-
tions is the smallest class of total functions over the natural numbers containing the
primitive functions and close under the primitive operators.

Now, as this mathematical definition stems from the natural language, it should be
sound with respect to it. That is, the previous computable function are indeed computable
w.r.t. the natural pre-concept of computability. But is it complete? That is, does any
function that we deem computable is indeed computable in this formal sense? Let us keep
this question on hold and see how it compares with the other aspect of computability,
namely the operational or automatic aspect of computability, which encompasses the
deterministic, finite and effective aspect of computability.

3.1.2 Turing machines

If we want to exploit this operational aspect of computability, which could to some extent
be simply called its algorithmic aspect, there needs to be a solid ground on which to
develop this point of view. But what exactly needs to be grounded? And where should
this ground originates from?

30

As we have already seen, what needs to be grounded is the development of the mathe-
matical notion of computabilty and its ground is the pre-conceptual notion of computabil-
ity. But here, more precisely, we are inquiring into one fundamental aspect of computabil-
ity, namely what we called the operational aspect. Hence, the mathematical development
of this aspect must be grounded on the pre-mathematical intuition that links those two
terms, operationnal and computability. And the link between those can be embodied by
the idea of the machine: the machine is the very thing that acts in a deterministic and
automatic kind of way. And understood in this way, the idea of machine is naturally part
of the pre-mathematical world. From this, we can piece everything together: this natural
idea of machine will be grounding its mathematical definition and it will carry over in the
mathematical realm the relation between the notions of operational and computable.

We can imagine many different mathematical definitions of models of machines. There
is however a trade-off when it comes to the complexity of the model: a simple model is
more easily deemed close to our intuitive idea of a machine and, from the mathematical
point of view, it is easy to prove general results on it. On the other hand, a more complex
model makes for simpler description of its machines (or rather of the code of its machines).
Given this observation, the beginnings of computability naturally calls for simple machine
models that may be enhanced latter.

Alan Turing introduced his model of Turing machine (initially “a-machine”, for au-
tomatic machine) in [Tur+36]. Using it, he was able to give a negative answer1 to the
Entscheidungsproblem: “Is there an algorithmic procedure with which we can decide,
given any logical statement, whether this statement is true ?” As such, answering this
question shows how this formal definition of machine helps link the operational aspect
of the question (can we provide an algorithm for this task?) and its computable aspect
(is the underlying function a computable function?). The proof of Turing involves show-
ing that there exists a universal Turing machine, that is a machine that can simulate
other machines. We will come back to this point as it is of cardinal importance for the
development of infinite time Turing machines.

In it most simple form, a Turing machine is constituted of a tape divided into cell
which span infinitely to the right. Each cell contains a symbol and there is a head moving
on the tape that can read the symbol of the cell over which it currently is. There is
moreover a register that stores a state of the machine, itself belonging to a finite set of
state. At each step, reading the symbol under the head and the state in the register
and according to a given set of transitions rules, the cell under the head is written over
(possibly writing the same symbol that was just read), the head either moves to the left or

1Once again, this question holds a peculiar position between the natural and the mathematical lan-
guage. As such, it cannot be answered from the sole mathematical point of view as it involves terms
from the natural language. There needs to link back the mathematical development from the intuitive
concepts it stems from. And this does the Church-Turing thesis suggesting that such defined computable
functions actually are what the intuitive idea of “computability” encompasses. With this (hypo)thesis, it
is possible to close the loop from a region to another and to answer the question.

31

to the right and the register state is updated (again possibly to the same state). Formally:

Definition 3.1.4 (Turing machine). A Turing machine is a 6-uple ⟨Σ, b, Q, q0, δ, F ⟩ such
that:

• Σ is the finite alphabet of the machine

• b ∈ Σ is a blank symbol

• Q is the finite set of states

• q0 is the initial state

• F ∈ Q is a set of final states

• δ : Σ×Q→ (Σ \ {b})×Q× {L,R} is the transition function.

Given a machine, we may want to describe the value of all of its variable aspects, that
is of its tape content, its state and its head position. Such a description can be seen as
(and will be called) the snapshot of a machine, capturing at some point the complete
status of the machine.

Definition 3.1.5 (Snapshot of a machine). The snapshot of a Turing machine M =

⟨Σ, Q, q0, δ, F ⟩ is a 3-uple ⟨x, q, k⟩ where x describes the content of the tape, q the state
of the machine and k the integer position of the head. A snapshot is final if q ∈ F .

Then, observe that the transition function is naturally lifted to a function on snapshots.

Definition 3.1.6 (Successor snapshot). Given a Turing machine M = ⟨Σ, Q, q0, δ, F ⟩
and a snapshot of the machine s = ⟨x, q, k⟩ such that q ̸∈ F , the successor snapshot s′ is
the only snapshot produced by applying to it the transition function on the cell k which
contains the symbol x[k]. That is, writing δ(x[k], q) = (a, q′, D)

s = ⟨x′, q′, k + d⟩ with



x′[k′] = x[k′] for k′ ̸= k

x′[k] = a

d = 1 if D = R

d = −1 if D = L and k > 0

d = 0 if D = L and k = 0

Definition 3.1.7 (Run of a Turing machine). Given a Turing machineM = ⟨Σ, Q, q0, δ, F ⟩,
the run of this Turing machine with input x is a possibly infinite sequence (si) of snap-
shots such that, writing x⌢b for x padded with infinitely many blank symbols to the right
if x is finite and x itself otherwise:

• s0 = ⟨x⌢b, q0, 0⟩

32

• For all i, if si+1 exists, then it is the successor snapshot of si. It does not exist if
and only if si is a final snapshot.

We say that a machine halts when run with input x if its sequence of snapshots is finite.
In this case, writing sn = ⟨y⌢b, q, k⟩ for the last snapshot of the sequence, we say that
the machine computed for n steps and that its output is y.

Remark 3.1.8. Observe that with this definition, the content of the tape x may either
be of the form w ∈ Σ∗ and then followed by infinitely many blanks (that is b’s), or of
the form w ∈ Σω, that is with w being an infinite word built from the alphabet Σ. Until
Section 3.2, we only work with natural numbers as input, hence that are encoded as finite
words w ∈ Σ∗. In Section 3.2 we will see the interest of considering reals (that is infinite
words) as input.

Definition 3.1.9 (Turing computable function). A partial function f : Nk 7→ N is Turing
computable it there is a machine m such that: for x1, . . . , xn, f(x1, . . . , xn) is defined and
f(x1, . . . , xn) = y if and only if the computation of m with input ⟨x1, . . . , xn⟩ halts and
outputs y.

3.1.3 Recursive functions and Turing machines

Now, given this definition, we would like to say that the computable functions are exactly
the functions that are Turing computable, that is computable by a Turing machine. Then
we may wonder whether this new conceptualization of computation matches with the
one defined in Section 3.1.1. And an important discrepancy appears: it is easy to see
that primitive recursive function all are total whereas many Turing machines yield partial
function. Indeed, if on some input x the Turing machine does not halt, the function it
describes is a partial function and is undefined on x. From there stems two questions,
each on one side on the frontier: Should a computable function be total? And do all total
Turing computable functions are primitive recursive functions?

While tedious to show, it is plausible and even true that Turing machines can compute
primitive recursive function. On the other hand, it appears harder at first sight, and
rightly, to simulate a (necessarily total) Turing machine with the primitive recursive
functions and operator. Indeed, what would be a direct way to do this? It would be to
encode (finite) computations of Turing machine using natural numbers and, for a given
Turing machine, to devise a primitive recursive function that given some input, produces
the code for the computation of the machine with this input.

More formally, it would rest on the following observation: for m a Turing machine that
halts on all input, writing m(x) for the input of m when computing from x, m(x) = y if
and only if there exists a computation C of m that starts with the snapshot ⟨x⌢b, q0, 0⟩
and that halts with the snapshot ⟨y⌢b, qf , k⟩ where qf ∈ F and for any k. Hence, if the
unique computation C of m on input x can be (uniformly in x) produced by a primitive

33

recursive function with x as argument, the output y being itself (naturally) encoded in
C, the function induced by the machine is easily seen to be primitive recursive.

And it is possible to devise a primitive recursive function that, given some argument
C, is equal to 1 if and only if C is the code for a computation of m. However, the
problematic part is the finding or the producing of such a C. We indeed see how the
previous observation introduces a quantification on all finite computation (“if and only if
there exists a computation...”) This equates for a primitive recursive function to be able
to search through the natural numbers for some C satisfying some primitive recursive
property. On the other hand, looking at the definition of primitive recursive function,
there is not clear way, and actually none, for those to look for a natural number that may
be arbitrarily big.

And this resonates with our first question: if we deem such quantification, akin to
a search through the natural numbers, computable, then we should allow for partial
computable functions. Indeed, it is natural to imagine that the number the functions
searches for may not exist and so that it will search for infinitely long and consequently
it will never output anything. This brief informal walk on the frontier shows how the
mathematical fleshing out of those intuitive notions echoes back and helps probe those
ideas that were not yet in words. We summarize this in a more formal way.

Proposition 3.1.10. There is a total Turing computable function that is not a primitive
recursive function.

Sketch of proof. Observe first that the description of a primitive recursive function is finite
and hence that the primitive functions may be effectively enumerated. Let (fi) be such an
enumeration. We can choose fi so that the function i 7→ fi is computable with a Turing
machine. In particular, by an usual diagonal argument, the following function is Turing
computable and total (as the primitive recursive functions are total), but not primitive
recursive:

D : i 7→ fi(i) + 1

To bridge this gap between Turing computatble functions and recursive functions,
we need to add another operator that will let the recursive function search through the
natural numbers.

Definition 3.1.11 (Minimization operator). The minimization operator µ is defined as
follow: given a n+ 1-ary total function f , the n-ary partial function µ(f) is defined as:

µ(f)(x1, . . . , xn) = the least z such that f(z, x1, . . . , xn) = 0 if it exists

34

When no such z exists, µ(f)(x1, . . . , xn) is undefined.

Definition 3.1.12 (Recursive function). The class of recursive functions is the smallest
class of partial functions containing the primitive functions and closed under the primitive
operators as well as the minimization operator.

Proposition 3.1.13. The recursive functions are exactly the Turing computable functions
on the natural numbers.

Sketch of proof. As mentioned, the primitive functions are clearly Turing computable and
the primitive operators correspond to constructions on the Turing machines that mimic
those operators for Turing computable function. Further, given a total Turing computable
function, as we can simulate it, we can design a machine that compute the minimization
operator applied to this function. This is enough to show, in a brief way, that recursive
functions are also Turing computable.

Conversely, the idea is to show we can define a recursive function T such that:

T (C,m, x) = 0 ⇐⇒ C describes a halting run of m with x as input

Thanks to the minimization operator, this yields a function µ(T) that maps m and x to
a least run of m with x as input. As this run is unique, it is then possible, given the
function µ(T), to define a function that extracts the output from a run and returns it;
that is that returns y, the output of the computation of m on input x.

This converging of the formalization of different proto-mathematical views1 of the
idea of computability is a strong corroboration of the (necessarily extra-mathematical)
Church-Turing thesis, that states the such defined computable functions are exactly the
intuitively computable functions.

Now, with the computable functions well delimited, we can prove results on this class
of function. First, there are countably many such functions and so they their collection
can be written (φi)i∈N. And from there, we can state the s-m-n theorem as well as Kleene’s
fixed point theorem which we will need later.

Definition 3.1.14. For two recursive functions f and g, we write f = g when those are
defined for the same natural numbers and when they moreover match on this subset.

Definition 3.1.15. For a recursive function f and i such that f = φi, we say that i is
an index of f .

Theorem 3.1.16 (S-m-n theorem). For any integers n and m, natural numbers x1, . . . , xn
and for φi a recursive function of arity m+n, there exists a recursive function φj of arity

1As mentioned, there is another way to look at this idea, namely lambda calculus, and this formal-
ization also yields the same class of computable functions.

35

m such that the functionsy1, . . . , ym 7→ φi(x1, . . . , xn, y1, . . . , ym)

y1, . . . , ym 7→ φj(y1, . . . , ym)

are equal in the sense of the previous definition. Moreover, the function Sm
n which maps

any x1, . . . , xn and i to some j satisfying previous conditions is itself recursive.

Idea of the proof. This theorem of Kleene says that, taking the point of view of Turing
machines, it is possible to “hardcode” some parameters in a machine and, moreover, that
a Turing machine, given those parameters and the code for another Turing machine can
itself do it. From there the proof is technical but straightforward and can be found in
[Dav58].

Theorem 3.1.17 (Kleene’s fixed point Theorem). Let f(x, y) be a recursive function with
two arguments, then there exists some recursive function φi of index i such that for all y
for which f(i, y) is defined

φi(y) = f(i, y)

Idea of the proof. The proof relies on the s-m-n theorem which allows to define a recursive
function that map an index to the index of another well-thought function. With this
function and diagonalization, that is applying a function to its own index, it is possible
to show that for any total recursive function F there is a fixed-point i in the sense that

φi = φF (i)

Then, the theorem is proved by applying this result to the function F which maps i to
the index of the function y 7→ f(i, y) (this F is clearly total and it is recursive by the
s-m-n theorem). A detailed proof can be found in [Rog87].

3.2 Turing degrees and the constructible universe

Now, we could question further: what is a non-computable function? We wrote (φi) for a
natural enumeration of the recursive, that is computable, functions. Given a computable
function φi and in virtue of the equivalence with Turing computable functions, we write
φi(x) ↓ when the computation of φ on x halts, φi(x) ↓ y when we want to add that it
outputs y and φi(x) ↑ when it does not halt. It is well known that the halting problem is
undecidable; that is the halting function

Halt : i 7→

1 if φi(0) ↓

0 if φi(0) ↑

36

is not computable.
This first dent in the horizon of computability actually draws attention to an ex-

tremely fine and potent hierarchy. Indeed, we could say that the halting function is
“computationally harder” than the computable functions, for the simple reason that the
first is actually not computable while the others are computable. Then, is this function
the simplest among the computationally harder functions? And are there even functions
computationally harder that the halting problem? But then, what would be harder than
impossible? To answer those questions, the idea is simply to allow this impossible, to
jump in a new world where that halting function becomes computable and to see whether
some functions still are non-computable. We fix a computable bijection ⟨·, ·⟩ between N2

and N. Then, observe that any function f on the natural numbers can be coded by an
element x of {0, 1}N (which we more conveniently write ω2): for all i and j, we ask that

f(i) = j ←→ x[⟨i, j⟩] = 1

where x[k] denotes the kth bit of x. A x ∈ ω2 will be called a real and the set of reals will
be naturally identified with P(ω). We write h for the real encoding the function Halt.
Consider a Turing machine that computes with h given as infinite input: this machine
can very easily answer the halting problem, that is it can compute Halt. Hence, in a
self-explanatory way, we could say that Halt is h-computable. But then we can define a
new halting function that now deals with h-computable function. And we can show that
it is in turn not h-computable; which then shows how the “computational difficulty” levels
may stack up one on the other. More formally, we will define oracle computations and a
jump operator.

Definition 3.2.1 (Oracle computation). An oracle machine with real x as an oracle is
a Turing machine with one additional tape (with its own lecture head as other tapes) on
which x is written. We write φx

i for the function induced by the ith Turing machine with
x as an oracle.

Definition 3.2.2 (Computable real). A real x is computable from a real y, or y-computable,
if there is a Turing machine i computing with y as an oracle and such that for all n ∈ ωφ

y
i (n) ↓ 1←→ n ∈ x

φy
i (n) ↓ 0←→ n ̸∈ x

Definition 3.2.3 (Recursively enumerable real). A real x is recursively enumerable from
a real y, or y-r.e., if there is a Turing machine i computing with y as an oracle such that
for all n ∈ ω

φy
i (n) ↓ ←→ n ∈ x

37

That is, x = dom(φy
i).

Proposition 3.2.4. Equivalently, a y-r.e. real is the image of a y-recursive function.

Proof. This is straightforwardly proved with dovetailing: by simulating in parallel more
and more copies of a Turing machine with different natural numbers as input, it is possible
to enumerate those inputs on which it halts. We should however point out that this works
because a Turing machine can enumerate N.

Definition 3.2.5 (Turing jump). Let x be a real. The Turing jump of x, written x′, is
the real defined as follow:

x′ = {i | φx
i (0) ↓}

Further, we inductively define for any natural number n:x(0) = x

x(n+1) = (x(n))′

With the previous definition of the real h, it is clear that, writing 0 for the real coding
the empty set, h is 0′-computable. But 0′ is h-computable as well. Hence 0′ encodes the
halting problem. Further, the halting problem for the h-computable functions is encoded
by the real h′ = 0′′. They are indeed equal being the jumps of two “as powerful” reals. This
way of identifying reciprocally computable reals leads to a natural quotient definition.

Definition 3.2.6 (Turing reducibility and Turing equivalence). We say that the real x
is Turing reducible to the real y, which we write x ⩽T y when x is y-computable. When
both x ⩽T y and y ⩽T x we say that x and y are Turing equivalent, which we write
x ≡T y. Eventually x <T means x ⩽T y ∧ x ̸≡T y.

Proposition 3.2.7. For a real x, x <T x
′.

Proof. With the same proof as for the halting problem, we can show that x′ is not com-
putable from x. Then, to compute x from x′, observe that given some i ∈ ω, the code for
a machine with x as oracle that halts if and only i ∈ x is computable from 0. Hence, with
x′ as oracle, it is enough to look up in x′ whether this machines halts to know whether
i ∈ x.

The Turing equivalence is easily an equivalence relation. We define the Turing degrees
as classes of equivalence of this relation.

Definition 3.2.8 (Turing degrees). The Turing degrees are the element of ω2/≡T . That
is the equivalent classes induced by the Turing equivalence. We use bold Latin letters to
denote Turing degrees: a, b, c. . . , and 0 for [0].

38

Definition 3.2.9 (Recursively enumerable Turing degrees). A recursively enumerable
Turing degree is the degree of a r.e. real.

Proposition 3.2.10. Let x and y be two reals such that x ≡T y. Then, x′ ≡T y
′.

Proof. We show that y′ is computable from x′. To do this, we need to design a machine
with x′ as oracle such that given some machine index it decides whether φy

i ↓. By hypoth-
esis, we know that y is x-computable. Hence, there is a computable code i′ for a machine
with oracle x such that:

φy
i ↓ ←→ φx

i′ ↓

Hence computing this code i′ and using the oracle x′, a machine can check whether φx
i′ ↓

and with it decide whether φy
i ↓.

The previous proposition allows us to lift the jump operation to Turing degrees and
to write for example 0′ = [0′]. With this, we can reformulate with reals (or degrees) the
previous questions regarding computationally hard function: is 0′ = [0′] a smallest degree
above 0? Is 0′ a greater degree? As seen, the answer to the second question is negative
as 0′ <T 0′′. As for the first question, it was known as the Post problem and answered
independently and negatively by Friedberg and Muchnik. It won’t be used further in the
thesis but we nonetheless provide a proof as it can be done in a relatively self-sufficient
way. The idea is to build iteratively two r.e. and incomparable reals, keeping track, seen
as requirements, of the machines that we can ensure won’t compute one real with the
other. It is a bit contrived as along the construction, those requirement may be injured,
in which case they may need to be satisfied later.

Theorem 3.2.11 (Friedberg–Muchnik theorem). There exist two incomparable r.e. de-
grees a and b.

Idea of the proof. We want to construct two r.e. reals x and y such that x ̸⩽T y and
y ̸⩽T x. That is, we want that for all index j, there is n and m such that:φx

j (n) ↓ 1 ↚→ n ∈ y

φy
j (m) ↓ 1 ↚→ m ∈ x

(3.1)

which mean that machine j with oracle x does not computes y and that with oracle y it
does not compute x.

The proof can get quite technical while the underlying idea is simple enough. Starting
with x0 = y0 = 0, x and y are built iteratively. That is, the algorithm will be adding
natural numbers, one after the other, to x and y in order to satisfy the equation (3.1) for
all index i. As the algorithm will only be adding elements to x and y, those will clearly
be r.e.

39

Now, when should the algorithm add elements to x and y? At some stage i of the
algorithm, we write xi and yi for the reals that have been obtained up to this point. Then,
taking the point of view of Turing machines, suppose that machine j with oracle xi and
some input n halts and outputs anything other from 1. Then if n ̸∈ yi, we can simply
define set

xi+1 = xi

yi+1 = yi ∪ {n}

which ensures that xi+1 and yi+1 satisfy the first of equation of (3.1) with respect to index
j.

However, and the difficulty lies here, we are working now with yi+1 instead of yi. And
nothing tells us, for any index k and m, whether the computations φyi+1

k (m) and φyi
k (m)

have anything to do with one another. That is, it is possible that for some index k,
equation (3.1) holds for (xi, yi) but not anymore for (xi+1, yi+1).

To get around this difficulty, we observe that if the computation φyi
k (m) halts in less

than n steps, where n was the natural number added to yi to form yi+1, then so does
φ
yi+1

j (m). From there, the idea is to rely on this observation. That is, the algorithm will
search for great enough such n’s, that is for inputs n greater than the halting time of
lower indexes (or of the same index for the other orcacle) and for which the machine i
with xi (or yi) as oracle halts on anything else than 1. Once such a n is found, adding it
to yi (or xi) does not injure the requirement (i.e. equation (3.1)) for lower indexes (or for
the same index with the other oracle).

Obviously, for a given i, our algorithm can’t be blindly looking for an input such
that machine i halts (with xi or yi as oracle) as this would amount to solving the halting
problem. So as always, the idea is to proceed by dovetailing: simulating i steps of the first
i machines, i+1 steps of the first i+1 machines (with great enough inputs, as described
in the previous paragraph) and so on. It is important to observe that this way of doing
things will involve restarting the algorithm at some point: when, at stage i, equation (3.1)
is not yet ensured for some machine j < i and if this machine is just seen to be halting
with oracle xi and some input n (great enough) and output different from 1, we want to
add n to y. However adding this n to y may change the computation of machines k > j

(but, as seen, not of previous halting computations). And so, the algorithm simply goes
back to stage j + 1 with xj+1 = xi

yj+1 = yi ∪ {n}

and continues. It is clear that stage 0 can only be restarted twice (once for x0 and once
for y0) and that any stage may only be rerun because either it is restarted or a lower stage

40

is restarted–and so it may be rerun only a finite amount of times. This ensures that, as
required, the algorithm enumerates x and y.

Corollary 3.2.12. There exists some degree a such that 0 <T a <T 0′

Proof. As the previously defined x and y are r.e., they are 0′-computable. If 0′ was
computable from one of them, they would be comparable. And as none is the computable
from the other, a fortiori none is computable from 0.

This argument can be generalized to show that there is another r.e. degree between
any two comparable r.e. degree. And on the other side of 0, the degrees 0(n) for n > 0

produce a non-collapsing hierarchy. Then, what is next? The next thing is the closest
thing 1 beyond the previous ones. In our case, it would be the lowest degree a such that for
all n, 0(n) <T a. In other words, we would like to extend this hierarchy through its least
upper bound which would yield a unequivocal definition of a. And from there, continue
with a′, a′′ and take again the l.u.b. at each limit stage of the iteration. But this is built
on the assumption that there is a l.u.b. for those sets of degrees. And this happens to be
false! This is the exact pair theorem of Spector (see [Rog87]) that states that given an
ascending sequence of degree a0 < a1 < . . ., there are actually two incomparable degrees
b1 and b2 bounding it and such that for all degree c, c < b1 ∧ c < b2 =⇒ ∃n c < an.
And so the pair {b1,b2} is at the same time a dent in what could have been the linearity
of the order (however we already knew that there existed incomparable degrees), but also
a dent in what could have been its lattice-like structure, as this pair {b1,b2} can’t have
a g.l.b. Moreover, for our purpose, the sequence (an) can’t have a l.u.b. either, since it
would be less than both b1 and b2 and as a consequence not an upper bound. Hence this
issue steers the approach to extend this sequence toward a more constructive one. It is
indeed fairly easy to construct a real that encodes all the 0(n), consider for example:

0(ω) =
{
⟨i, j⟩|i ∈ 0(j)

}
And we can see that for any n, 0(n) <T 0(ω) as given 0(ω) as oracle a machine can compute
0(n). But observe that it can do so, only because this encoding is “computationally man-
ageable”. Had we used a voluntarily pathological encoding to define 0(ω), a machine might
not have been able to retrieve 0(n). On the other hand, it is possible to define computable
encodings that allow to store even “more” information and to grow this hierarchy further.
To do this in a formal setting, we need to define computable ordinals.

3.2.1 Ordinals

Definition 3.2.13 (Well-order). A well-order on a set E is a total order that does not
admit infinite strictly decreasing sequences.

1This appears more clearly in the French “prochain” and even more in the German “nächster”, trans-
lation of “next” which is also simply the superlative of “nah”, the translation of “close”.

41

Equivalently, well orders may be defined as total orders on some set E for which every
non-empty subset of E admits a smallest element. The first definition may be seen as a
top-down definition: it says that starting from any element in the well order we can only
go down for finitely many steps. The second definition is rather a bottom-up definition:
start with E itself, as its well-ordered, there is a smallest element e0. Continue with
E − {e0}: if it is not empty, it has in turn a smallest element e1 with e0 ≺ e1. Then,
while E is not exhausted, there is a least e2 such that e0 ≺ e1 ≺ e2 and so on. Then,
this reasoning produces an infinite increasing sequence (ei)i∈ω and as E−{ei | i ∈ ω} has
a least element if E was not exhausted, this sequence has a l.u.b. that we can write eω
and that can be used to continue further this well-ordered chipping away of E until E
has been exhausted. We see how this definition allows us to count through E along its
well-order. This “counting through” is the basis of transfinite induction and will be used
frequently by the algorithm of infinite Turing machines.

Example 3.2.14.

• The usual order on the natural numbers is a well-order.

• The usual orders on Z or R are not well-order as there are subsets (actually Z or R
themselves) which do not admit a smallest element.

• However, Z is well-ordered by the order ≺ defined as

0 ≺ 1 ≺ 2 ≺ . . . ≺ −1 ≺ −2 ≺ . . .

The previous example shows that a given set can have both well-orders and orders
which are not well-order. We see how, when studying ordered sets, we may to some
extent be more interested in the order than in the underlying set.

Consider now the following two well-orders:0 ≺ 1 ≺ 2 ≺ . . . ≺ −1 ≺ −2 ≺ . . .

0 ≺ 2 ≺ 4 ≺ . . . ≺ 1 ≺ 3 ≺ . . .

The first one is an order on Z while the other is on N. It is clear that those are isomorphic
and we may want to identify such ordered sets to further reduce the importance of the
underlying sets.

Definition 3.2.15. Two ordered sets (E,≺) and (F,◁) are isomorphic when there is a
bijective function f : E → F such that for any x, y ∈ E

x ≺ y ←→ f(x)◁ f(y)

Further, we also observe that any well-ordered set can be truncated after some element
and that the resulting set is still well-ordered. This defines initial segments and will let us

42

conveniently compare well-order up to isomorphism. The following definition and result
will let us define the class of ordinals.

Definition 3.2.16 (Initial segment). Let (E,≺) be a well-ordered set and a ∈ E. With
E<a = {x ∈ E | x ≺ a}, the well-ordered set (E<a,≺|E<a) is called the initial segment of
E below a.

Proposition 3.2.17. Let (E,≺) and (F,◁) be two isomorphic ordered sets and f a
bijection between those. For any a ∈ E and with the notation of previous definition, the
ordered sets (E<a,≺|E<a) and (F<f(a),◁ |F<f(a)

) are isomorphic.

Proof. Simply consider f restricted to E<a.

Definition 3.2.18 (Ordinals). An ordinal is an isomorphism class of well-ordered sets.
Given a well-ordered set (E,≺), the ordinal corresponding to [(E,≺)] is called the order
type of the set. We write On for the class of all ordinals.

Definition 3.2.19 (Order on ordinals). The class On is itself ordered by the following
order. For α and β ordinals, we write α < β when an ordered set of order type α is
isomorphic to an initial segment of an ordered set of order type β. This yield a well-
defined partial order in virtue of Proposition 3.2.17.

Further, we can show that this order is actually a well-order on On.

Proposition 3.2.20. The class On is well-ordered.

Proof. We need to show that the order defined in Definition 3.2.19 is total and does not
admit infinite strictly decreasing sequence.

For the first requirement, consider two ordinals [(E,≺)] and [(F,◁)]. We build an
isomorphism g between initial segments of E and F by counting through them in parallel.
With e0 and f0 the smallest element, resp. of E and F we set g(e0) = g(f0). Then, we
do the same with e1 and f1 the smallest elements of E − {e0} and F − {f0} until one of
them is empty. When this occurs, we either have an isomorphism between [(E,≺)] and
[(F,◁)] (if both were empty at the same point), or we have an isomorphism between one
of the ordered set and an initial segment of the other.

Suppose now there is an infinite strictly decreasing sequence of ordinals:

[(E0,≺0)] > [(E1,≺1)] > [(E2,≺2)] > . . .

Then, for any i > 0, Ei is isomorphic to an initial segment of E0. For i > 0, we write xi
the element of E0 such that Ei is isomorphic to the initial segment of E0 below xi. By
proposition 3.2.17, for i < j, we have xj ≺0 xi and this yield an infinite strictly decreasing
sequence (xi)i>0 in E0 which contradicts the fact that it was well-ordered.

43

The set of every ordinals smaller than a given ordinal α is itself well-ordered by inclu-
sion and its order type is α itself. Canonical representatives of those equivalence classes
can be choose according to the Von Neumann definition of ordinals. They are inductively
defined in [Neu23] as follows: “each ordinal is the set of all ordinals preceding it”. From
there, ∅ is the least ordinal (there is a least ordinal as On is well-ordered). {∅} is the
next one, then comes {{∅} , ∅} and so on. They are consequently ordered by inclusion
and this yields a natural way to define natural number in set-theory: the natural number
i is represented by the ith (starting at 0) set defined in this way and i is a set of cardinal
i and i + 1 = i ∪ {i}. And so “i < j” is expressed by i ∈ j. Following this logic, we
see ω as the unions of every natural numbers, hence bigger than all of them and himself
a well-order. And more generally we often identify an ordinal (in the sense of Definition
3.2.18) with its representative constructed in the definition of Von Neumann.

Definition 3.2.21 (Successor ordinal). The successor of an ordinal α is the smallest
ordinal greater than α, denoted α+1. That is, with the Von Neumann ordinals, α+1 =

{α} ∪ α.

Definition 3.2.22 (Limit ordinal). An ordinal is a limit ordinal if it is neither zero nor
the successor of another ordinal.

Now, if we want to see ordinals as a generalization of natural numbers, we would like
to be able to do basic arithmetic on those. How to define the sum of two ordinals? To
do this, on way is to stick with the definition: given two well-order set (E,≺) and (F,◁),
their sum is a well-order that first counts through E and after it exhausted it, that counts
through the other. That is, writing G = E ⊔ F their disjoint union and defining <G as:

a <G b←→ (a ∈ E ∧ b ∈ E ∧ a ≺ E)

∨ (a ∈ F ∧ b ∈ F ∧ a◁ E)

∨ (a ∈ E ∧ b ∈ F)

then (G,<G) can be seen as the sum of those well-orders and the sum of the order types
of E and F is defined as the order type of G. This definition has the interest of being
rather “manual” and so of showing what happens with the underlying sets. It is however
rather impractical if we hope to develop a symbol-orientated arithmetic.

On the other hand, with the definition of Von Neuman, the successor operator is
naturally defined: seeing both α as the ordinal and the set of its predecessors, α + 1 is
the order type of the well-ordered set α ∪ {α}. It leads to an inductive definition of the
sum: α+(β+1) = (α+β)+1; that is, pushing further the set and ordinal identification,
α+ (β + 1) = (α+ β) ∪ {α + β}. More generally, this yield the following definition, that
match the previous suggested definition.

Definition 3.2.23 (Ordinal arithmetic). For two ordinals α and β their sum α + β is

44

inductively defined as:

α + (β + 1) = (α + β) + 1

α + β =
⋃
δ<β

(α + δ) when β is a limit ordinal.

and their product, α · β is defined as:

α · (β + 1) = α · β + α

α · β =
⋃
δ<β

(α · δ) when β is a limit ordinal.

The operator + and · are associative but not commutative.

Definition 3.2.24 (Additively closed ordinals). An ordinal α is additively closed if for
all β, β′ < α we have β + β′ < α.

Definition 3.2.25 (Multiplicatively closed ordinals). An ordinal α is multiplicatively
closed if for all β, β′ < α we have β · β′ < α.

Definition 3.2.26 (Countable ordinals and ω1). A countable ordinal is the order type of
a countable well-ordered set. We write ω1 the first uncountable ordinal.

Let α = [(E,≺)] be a countable ordinal. Then, E ≃ N with some bijection f which
induces an order ≺′ on N with n ≺′ m←→ f−1(n) ≺ f−1(m) and such that α = [(N,≺′)].
Hence, a countable ordinal can be described by the sole data of a relation (describing a
well order) ≺′⊂ N×N. As such a relation can be encoded in N, this yields a natural way
for the encoding of ordinals with reals.

Definition 3.2.27 (Encoding of an ordinal). We say that a real x is a code for a countable
ordinal α if the relation ≺⊂ N× N restricted to the subset of the natural numbers that
are related to at least one other natural number and defined as

i ≺ j ←→ ⟨i, j⟩ ∈ x

is a well-order of order type α.

Definition 3.2.28 (Recursive ordinals and ωCK
1). A recursive ordinal is a countable or-

dinal which admits a code x which is computable (in the sense of Definition 3.2.2.) The
first non recursive ordinal is written ωCK

1 .

Proposition 3.2.29. The recursive ordinals form an initial segment of On. That is, if
α < β and β is recursive, then so is α.

Proof. Let α < β and x a computable code for β. Then x describes a well order ≺ on the
natural numbers. For i in the domain of ≺, we write Ni = {j ∈ N | j ≺ i}. Then Ni is

45

naturally ordered by (the restriction) of ≺ and we can write βi = [(Ni,≺|Ni
)]. As there is a

proper injective homomorphism from (Ni,≺|Ni
) to (dom(≺),≺), we have βi < β. Further,

the map i 7→ βi induces an isomorphism between (dom(≺),≺) and (β,∈). Hence there is
some i such that βi = α and this yields the following straightforward way to compute a
real coding α: writing mβ for the machine computing x, given j and k, it first simulates
mβ to decide whether both j ≺ i and k ≺ i. If it is not the case, it outputs 0; else it uses
mβ again to decide if j ≺ k and outputs the value returned by mβ.

We see how the concept of recursive ordinals will help us iterate the Turing jumps
through the transfinite. We can now define the real 0(α) for a computable α.

Definition 3.2.30 (Transfinite Turing jump). The transfinite Turing jumps of a real x
are inductively defined through the recursive ordinals as follows:

x(0) = x

x(α+1) =
(
x(α)

)′
And when α is a computable limit ordinal, writing y for a code for α, ≺y for the well-order
described by y and (αj)j∈dom(≺y) the enumeration of α induced by this well-order:

x(α) =
{
⟨i, j⟩ | i ∈ x(αj)

}
As is, this definition is still very precarious since the definition of x(α) heavily depends

on the choice of the code for α. We now aim to show that the hierarchy of degree induced
by this construction does not depend on those codes and is indeed a hierarchy (that is
non-collapsing and monotonous). Just before this, let us point out that for a limit α and
as was explained earlier for the case α = ω, x(α) is not the lower upper bound of (x(β))β<α,
which sequence by the exact pair Theorem does not admit any lower upper bound.

Proposition 3.2.31. Let two recursive ordinals β < α. If x(β) and x(α) are defined with
the same sequence of code until stage β, then x(β) <T x

(α).

Proof. We do this by transfinite induction on α. We have seen that x(β) <T x
(β+1). For a

limit ordinal α, we show that we can compute x(β) using x(α). Indeed, let y be the code
for a well order ≺y of order-type α used to define x(α). As seen in the proof of Proposition
3.2.29, there is some j such that β = αj, with αj defined as in Definition 3.2.30. Moreover,
under our hypothesis regarding the ordinal code, the βth real appearing in the construction
of x(α) is x(β) itself. Hence given some i to decide whether i ∈ x(β) = x(αj), it is enough
to decide whether ⟨i, j⟩ ∈ x(α), which is straightforward with x(α) as oracle.

Proposition 3.2.32. The degrees induced by this definition do not depend on the choice
for the codes of the ordinals.

46

Sketch of the proof. The proof is based on Kleene fixed-point theorem. Let Y and Z,
two sets of codes for the ordinals β ⩽ α. We write x(α)Y and x

(α)
Z for the αth jump built

respectively using codes from Y and Z. We show by induction that x(α)Y ≡T x
(α)
Z : when

α is not limit, the construction does not rely on codes and the equivalence is obtained by
induction hypothesis. Now suppose that α is limit and that for all β < α, x(β)Y ≡T x

(β)
Z .

We show that x(α)Y ⩽T x
(α)
Z and the other inequality is symmetric. Given some ⟨i, j⟩, we

want to decide with x
(α)
Z as oracle whether ⟨i, j⟩ ∈ x(α)Y . That is, whether i ∈ x(α

Y
j)

Y . We
write αY

j as the enumeration of the ordinals below α depends on Y . Then, there is some

k such that αY
j = αZ

k . And by induction hypothesis, x
(αY

j)

Y ≡T x
(αZ

k)

Z . As by the previous

proposition x
(αZ

k)

Z <T x
(α)
Z , given k and with x

(α)
Z as oracle, we can compute x(α

Z
k)

Z . From

this, given k and the index of a function reducing x(α
Z
k)

Z to x
(αY

j)

Y we can decide whether

i ∈ x(α
Y
j)

Y , which is our objective.
We see that the difficulty is two-fold:

• Given j, we want to find k such that αY
j = αZ

k

• Given j and k, we want to find the index of a function operating the reduction
between x

(αY
j)

Y and x(α
Z
k)

Z

We show how to deal with the first problem. Consider the following inductive function
(that for the moment may not be computable) f(j, k) defined such that:

• If αY
j = 0 and αZ

k = 0, then f(j, k) = 1.

• Else, if there is j′ and k′ such that αY
j′ +1 = αY

j and αZ
k′ +1 = αZ

k , f(j, k) = f(j′, k′).

• Else, if there is (αY
ji
)i and (αZ

ki
)i two computable sequences unbounded resp. in αY

j

and αZ
k and such that for all i, f(αY

ji
, αZ

ki
) = 1, then f(j, k) = 1.

• Else, f(j, k) = 0.

Then, by induction, for j and k, f(j, k) = 1 ⇐⇒ αY
j = αZ

k . We want to show that such
a function f is actually computable with x

(α)
Z as oracle. First we define h(e, j, k) with

the same definition as f with the only difference that we replace all calls of the function
f by calls of φe. Then we explain why h is computable with x

(α)
Z as oracle: as α is a

limit ordinal, for any n, 0(n) <T x
(α)
Z and we can decide the nth halting problem with it.

This let us decide whether αY
j = 0 simply by asking whether the machine that looks for

a predecessor of j in the computable code y ∈ Y of α halts. Similarly, we can decide
whether αY

j is a successor ordinal. And for the third bullet point, with 0′′ as oracle, we
can enumerate the machines and test for each of them whether they generate the wanted
sequence.

Now, and that is the brilliant use by Kleene of his second recursion theorem, we can
find e such that: φe(j, k) = h(e, j, k) and now, when h applies φe in its definition, it
actually applies itself and provide the required (transfinite! but grounded) induction.

47

As for the second problem, finding the machine that reduces x
(αY

j)

Y ⩽T x
(αZ

k)

Z , observe
that this induction is constructive: at a given stage, given a function gj that gives the
index of the machines operating the reductions for previous stages, we can compute the
index of the machine that operates the reduction at this stage. Hence, with the same
technique, this yields a grounded inductive and computable function (with oracle) that
yields the index of the machine operating the reduction.

Finally, this let us unequivocally define the degrees x(α) = [x(α)] for any real and for all
recursive ordinals α. How far does the hierarchy of the 0(α) now extends? By definition the
recursive ordinals are countable, but as stated in the next proposition, those are bounded
in ω1 and the hierarchy is again put to an halt.

Proposition 3.2.33. There are countable ordinals that are non-recursive i.e. ωCK
1 < ω1.

Proof. There are countably many Turing machines, hence countably many recursive or-
dinals, therefore their union is countable.

3.2.2 Gödel’s constructible universe, gaps and master-codes

We see where the previously defined hierarchy hits a wall: its in the effective naming of
the ordinals which were used to define new reals of higher degrees. Once stage ωCK

1 is
reached, ordinal can’t be effectively named (with the machines that compute them) and
this method can’t produce higher order reals. Still, as ωCK

1 is countable and as recursive
ordinals admit only countably many codes, only countably many reals may be produced
in the hierarchy starting from 0. And we would like to believe that since there are
uncountably many other reals, one of them is able to extend this hierarchy. However,
there now needs a way to define those reals other than by relying on codes for ordinals.
Obviously, all reals can be defined as subsets of ω. Still, this is not very helpful as this
defines all the real at once rather than gradually and hence does not discriminate one or
another. To do this, to define reals in a finer and more gradual way, we need to step in
set theory.

Set theory is the study of sets. As a first approximation, sets are collection of other
sets, or of other objects. We can start by ruling out the existence of other objects and set
are informally understood as collection of sets. This induces a relation ∈ on sets such that
a ∈ b if the set a is part of the set b, seen as a collection of set. Moreover those collections
are well-founded, that is for a given set, again seen as collection of sets, there is a minimal
element with respect to ∈. Now, there needs to be some constraint on which collections
of sets define a set as otherwise this construction is met with inconsistencies like the well-
known Russel paradox. The axioms of ZFC may be seen, still in a first approximation,
as instructions for the construction of new sets with previous sets. This is akin to the
back-and-forth that takes place between our intuition and formalism in the definition of
recursive functions. In our pre-conception of the idea of set, the empty collection has

48

everything it takes to be a set. Hence, ∅ is a set in the formal sense. Then, given a and b,
two sets in the formal, we would like to say that the collection {a, b} is a set: this yields
another way to formally construct sets. And so on, until we feel that we have exhausted
intuitively valid ways to build sets upon sets. This gives the following list of axiom, or,
with this approximation which we will see can be misleading, of set construction schemes.

Definition 3.2.34 (ZFC). In what follows, free variable are implicitly universally quan-
tified. x = ∅ is a shortening for ∀z (z ̸∈ x) and ∅ ∈ x is a shortening for ∃z (z ∈ x∧z = ∅).
Similarly, ∀x ∈ a ϕ means ∀x(x ∈ a =⇒ ϕ) and a ⊂ b mean ∀x ∈ a (x ∈ b). Eventually,
a function f is described by its graph seen as a set.

Extensionality : ∀x (x ∈ a↔ x ∈ b)→ a = b

Pair : ∃a ∀z (z ∈ a ⇐⇒ z = x ∨ z = y)

Union : ∃B ∀a∀x[(x ∈ a ∧ a ∈ A)⇒ x ∈ B].

Powerset : ∃y ∀z(z ⊆ x⇒ z ∈ y)

Schema of Separation : ∃y ∀x[x ∈ y ⇔ x ∈ z ∧ φ(x,w1, w2, . . . , wn)]

Schema of Replacement : ∀x ∈ A ∃!y φ(x, y, w1, . . . , wn)⇒ ∃B ∀x ∈ A ∃y ∈ B φ(x, y, w1, . . . , wn)

Foundation : ∀x (x ̸= ∅ ⇒ ∃y ∈ x (y ∩ x = ∅))

Infinity : ∃x (∅ ∈ x ∧ ∀y ∈ x (y ∪ {y} ∈ x)

Choice : ∀y ∈ x (y ̸= ∅) =⇒ ∃f ∀y ∈ x(f(y) ∈ y)

As said, we might want to see those axioms as set-construction schemes. That is, a
set would be inductively defined as a collection of set that can be defined using those
axiom, keeping in mind that ∅ and ω can respectively be built ex nihilo from the schema
of Separation and the axiom of Infinity. While this would be rather innocuous and well-
defined for the first steps (that is the finite steps hence using natural numbers, supposing
that those are clear enough for us) of this construction, it quickly gets challenging. Indeed,
we want this inductive definition to go further than stage ω, as otherwise we can see that
most of ordinals would not be deemed as sets. But then, we would need ordinals (that
may not be shown to be set yet!) to continue this inductive construction. And those
ordinals would indeed not be set yet (with respect to the stage of the constructions they
correspond to) and so we would define sets using collections that may not be sets–but that
will become sets once the induction carried on until this stage. That is, more precisely:
if the definition is carried on up to some ordinal α (as a collection), then α is an ordinal
(as a set now). Which makes sense, as carrying this construction up to stage α implicitly
assumes that α is a set. Then it seems like the construction loses its purpose as it does
not tell us anymore what is a set; we are rather on our own assuming what is a set.

But, looking back, we observe the mathematical practice is itself grounded on this
assumption, that we know what a set is. This come from the inherently human aspect of

49

mathematics that we tried to point out and describe in the introduction. An object is a
set when it has been deemed as such in the mathematical practice, whether of the math-
ematical community or of the individual. So, rather than trying to conduct a bottom-up
construction which hopelessly tries to circumvent the self-grounded aspect of mathematics
(which, at times, feels like a lack of ground), we are rather drawn to a top-down approach.
That is, we accept and build on this implicit assumption which grounds mathematics and
we write V for the collection of sets–now working under the hypothesis that the previous
axioms are true in this collection and so, in particular, that V is closed under those axioms
seen as set-construction schemes. Now that we fixed V , at the same time nothing changed
and it feels like we have a steadier ground. It is like a leap in what appears groundless–
and which leap magically reaches a ground1. And where are we after this leap? Exactly
where we already were, on the self-grounding of mathematics, only now more attentive
to this surrounding and at the same time more modest in our approach as this newfound
ground still eludes us. This leap is remarkably similar to the leap described by Heidegger
as required to re-enter the reciprocal relation with Being:

How can such an entry come about? By our moving away from the attitude
of representational thinking. This move is a leap in the sense of a spring. The
spring leaps away, away from the habitual idea of man as the rational animal
who in modern times has become a subject for his objects. [. . .] What a curious
leap, presumably yielding us the insight that we do not reside sufficiently as
yet where in reality we already are. Where are we? In what constellation of
Being and man?2

But, one thing after the other, we will leave the question of Being there.

From now on, now that we fixed the collection V , we call an object x a set if and only
if x ∈ V . Similarly, we call natural numbers the finite Von Neumann ordinals of V . A
collection of elements of V which is not a set is called a proper class. For example, V
itself is a proper class. And we will see how, despite having to renounce rebuilding and
formalizing set theory from nothing, we can do so inside V which acts as a ground and
a frame. As a ground, we will be able to formally define the concept of model and as a
frame it will allow to us to define the hierarchies of the Vα’s and the Lα’s. From there,

1Some authors write V = {x | x = x} which may, for some readers, comfortingly hide this leap under
the blurriness of the distinction between the formalism of mathematical practice and formal mathematics,
themselves contained in the mathematical practice. As a result, this may also tone down the grasp that
this leap forcingly provides regarding this distinction. There would be much to say between the relation
between mathematical formalism and “representational thinking”, as used in the next quote of Heidegger.

2Wie aber kommt es zu einer solchen Einkehr? Dadurch, daß wir uns von der Haltung des vorstellen-
den Denkens absetzen. Dieses Sichabsetzen ist ein Satz im Sinne eines Sprunges. Er springt ab, nämlich
weg aus der geläufigen Vorstellung vom Menschen als dem animal rationale, das in der Neuzeit zum
Subjekt für seine Objekte geworden ist. [. . .] Seltsamer Sprung, der uns vermutlich den Einblick erbringt,
daß wir uns noch nicht genügend dort aufhalten, wo wir eigent-lich schon sind. Wo sind wir? In welcher
Konstellation von Sein und Mensch?, Heidegger, Identität und Differenz, trans. Stambaugh.

50

we could also look, in V , at different models of ZFC, study its non-standard models and
so on. In some way, V acts as a formal mirror of the humanly mathematical practice and
so, as a frontier between the two, between the formal mathematics and the mathematical
practice–which we have seen to be in perpetual talks.

So we from here onward, we consider ZFC to be our meta-theory and V to be our
meta-mathematical world.

Definition 3.2.35. A set x is transitive if:

∀y ∈ x ∀z ∈ y (z ∈ x)

Definition 3.2.36. Ordinals in V correspond to transitives sets well-ordered by ∈.

Hence, as seen before, ∅ is the ∈-least ordinal. Then comes {∅}, {{∅} , ∅}, etc.

Proposition 3.2.37. For α an ordinal, α+ 1 = α ∪ {α} is the least ordinal greater than
α.

Proof. We need first to show that α ∪ {α} is a transitive set well-ordered by ∈. By the
axiom of Extensionality, {α} = {α, α} and the latter is a set by the axiom of Pair applied
to α and α. Then, by the axiom of Pair again, {α, {α}} is a set and by the axiom of Union,
so is α∪ {α}. It also inherits the transitivity and well-orderdness of α. As α ∈ α+1 and
as there is no β such that α ∈ β ∈ α + 1, α + 1 is the successor of α.

The following property links this definition back to the definition of ordinals as equiv-
alence classes of well-ordered sets, as was introduced in Definition 3.2.18.

Proposition 3.2.38. In V , for a well-ordered set (E,≺), there is a unique ordinal α such
that (α,∈) ≃ (E,≺).

Proof. We proceed by induction. The empty well-order is an ordinal. Then, we consider
(E,≺). For x ∈ E, we write Ex = {y ∈ E | y ≺ x}. By induction for all x ∈ E, there is a
unique αx such that (αx,∈) ≃ (Ex,≺). This induces a function f (seen as a predicate) that
maps any x ∈ E to αx. Now, consider the collection of ordinals f(E). By Replacement
and Separation, it is a set. Moreover can show that it is a transitive set of ordinals,
and as such, that it is an ordinal. And by construction, as wanted, (f(E),∈) ≃ (E,≺).
Further, for any α such that (α,∈) ≃ (E,≺), we have (α,∈) ≃ (f(E),∈) and by induction
α = f(E).

Proposition 3.2.39. The collection of all ordinals, On, is not a set.

Proof. Suppose than On is a set. Then, as it is transitive and well-ordered by ∈, it is an
ordinal and so On ∈ On which contradicts Foundation.

51

In what follows, when we speak of ordinals, it is always ordinals that are sets. Now,
let us come back to the definition of reals as subset of ω. We remarked that this was to
powerful to induce some kind structure among the reals. However, it does induce some
structure among sets.

Definition 3.2.40. The Von Neumann hierarchy of sets is defined inductively as follow:

V0 = ∅

Vα+1 = P(Vα)

Vα =
⋃
β<α

Vβ for α limit

Proposition 3.2.41. For α ∈ On, Vα is a set.

Proof. As the construction uses the axiom of Powerset and is done along ordinals that
are set, we can show by induction using Separation and Replacement that each Vα is a
set.

Proposition 3.2.42. V =
⋃

α∈On Vα where V is as previously fixed.

Proof. As for any ordinal α, Vα is a set we have
⋃

α∈On Vα ⊂ V . In the other direction,
suppose that

⋃
α∈On Vα ⊊ V . Then, by Foundation, there is a minimal element (w.r.t. ∈)

x ∈ V −
⋃

α∈On Vα. Hence, by ∈-minimality, for all y ∈ x, there is a least αy such that
y ∈ Vαy . By Replacement and Separation, there is some α =

⋃
y∈x αy such that x ⊂ Vα

and so x ∈ Vα+1 which contradict the characterization of x.

In this construction, all finite ordinals n are in Vω and ω ⊂ Vω. Consequently, ω ∈ Vω+1

and P(ω) ⊂ Vω+1. But further, Vω is actually the set of hereditarily finite sets (i.e. set
whose transitive closure is finite). This means that all reals that are not finite subset of
ω appear at once in this hierarchy between stage ω and ω + 1. As said, this hierarchy of
set pays its potency by the fact that its very coarse. Still, when it comes to sets, they
are slowly built along the ordinals. This hints toward a similar hierarchy of sets in which
the powerset is replaced by a finer operation. To do this, we introduce basic definitions
of logic and model theory. See [Hod93] for a complete presentation.

Definition 3.2.43 (Signature). A first-order signature σ = (F ,R, a) is the data of a set
of function F and a set of relation R as well as a function a : F ∪R → N that maps any
symbol to its arity.

Definition 3.2.44 (Signature of set theory). The signature of set theory is (∅, {∈} , a)
with a(∈) = 2. (Note that the equality symbol is often considered a logical symbol and
hence omitted from the signature.)

52

Definition 3.2.45 (Language of a signature). The language L of a signature σ, is the
set of well formed sentences built over σ.

Definition 3.2.46 (Formula of set theory). A formula of set theory is a well formed
sentence built over the signature of set theory.

Definition 3.2.47 (Theory). Given a signature σ, a theory T over σ is a set of sentences
built over σ. For a sentence φ in the same language, we write T ⊢ φ when φ can be
proved with the sentences of T as axioms.

Definition 3.2.48 (Structure). Given a signature σ, a σ-structure M = (D, I) is a set
constituted of the data of a domain D as well as an interpretation I that assigns a function
to each element of σ. That is, each f ∈ F are mapped to some f I : Da(f) → D while
each r ∈ R are mapped to some rI : Da(r) → B. This induces a map over L that maps
any well formed and closed sentence φ to its interpretation φM ∈ B = {⊤,⊥}, where ⊤
denotes the truth value and ⊥ the false value.

Definition 3.2.49 (Model). For a signature σ and T a theory over σ, a σ-structure M
is a model for T , written M |= T , if for all φ ∈ T , φM = ⊤. Further, we write M |= φ

when M is a model for {φ}.

Now, we remember that we fixed ZFC as our meta-theory. To take advantage of those
definitions, we need to formalize those inside ZFC.

To do so, we will first need to formalize integers. This can be done by introducing con-
stants into our meta-language. We write those constants ⌜0⌝, ⌜1⌝, etc. and we introduce
axioms1 for those constants :

∀x¬(x ∈ ⌜0⌝)

∀x (x ∈ ⌜1⌝ ⇐⇒ x = ⌜0⌝)

. . .

And using those integers, we can then encode finistic objects like formulas. So for a
formula φ, we can write ⌜φ⌝ for it associated constant in our enhanced language of set
theory.

With this, formalizing basic model theory in ZFC means that we want it to be possible,
in ZFC, to recognize and manipulate the objects we defined. That is, for example (and for
simplicity restricting ourselves to the language of set theory), there should be a formula
Ψ with one free variables such that for an integer n in our meta-mathematical world,

ZFC ⊢ Ψ(⌜n⌝)←→ n encodes a well formed formula in the language of set theory

1Observe that adding those constants and axioms of definitions does not change the proving power
of ZFC. First, any formula using those constants can be rewritten in the original language of ZFC and,
second, nothing new can be proved in those extensions. See for example [Kun80, I, §13].

53

Further, the concept of satisfaction should be formalized as well, in the sense that there
should be a a formula Ψ with three free variables such that for a formula φ with n free
variables

ZFC ⊢ ∀M ∀x1, . . . , xn
[
φM(x1, . . . , xn) ⇐⇒ Ψ(M, ⌜φ⌝, ⟨x1, . . . , xn⟩)

]
And as we would except, such meta-formulas can actually be constructed and more

generally all those definitions of model theory can be formalized in ZFC. This is further
discussed in [Kun80].

Hence, this mean that we can do model theory inside any model of ZFC. In other words,
in some model W of ZFC (which can be built inside V), we can define the concepts of
formula, sentence, models etc. And the finistics objects like formulas will be represented
by the integers ofW . So this gets particularly interesting whenW is a non-standard model
of ZFC, that is when its least ordinal ωW is different from that of our meta-mathematical
world, i.e. different from ωV . In this case, there may also be non-standard formulas,
that is non-standard integers which, in W , are deemed to be formulas according to the
meta-formula Ψ we introduced.

Now, for our purpose, we can formalize the concept of “definability” inside ZFC.

Definition 3.2.50 (Definability). Given a formula φ in our meta-theory with n free
variables and a set A, we say that φ defines the following subset of An,

{(x1, . . . , xn) ∈ An | (A,∈) |= φ(x1, . . . , xn)}

and this subset is said to be definable over A. We write Def(A) the set of definable subsets
over A.

Proposition 3.2.51. The previous definition can be formalized inside ZFC.

Sketch of proof. We previously outlined the formalization of satisfaction. Hence we can
use Ψ to formalize in ZFC the fact that some B ⊂ An is definable by a formula.

Then, since the syntax of first-order logic is formalized as well in ZFC, we can define
by collection Def(A) as the set of definable sets over A, i.e. of sets B for which there
exists a formula (in the object theory) which defines B over A.

Eventually, this brief outline of formalization of definability allows us to define Gödel’s
constructible universe in our meta-theory.

Definition 3.2.52 (Gödel’s constructible universe). We define inductively Gödel’s con-

54

structible universe L, as follow

L0 = ∅

Lα+1 = Def(Lα)

Lα =
⋃
β<α

Lβ for limit ordinals.

L =
⋃

α∈On

Lα

As previously ω appears in this hierarchy at stage Lω+1. It is indeed definable by a
first-order formula over Lω that is true for the y’s that are hereditarily transitive sets (i.e.
transitive and whose element are hereditarily transitive sets). Indeed, considering

Tran(y) = ∀a ∈ y ∀b ∈ a b ∈ y

we have

ω = {y ∈ Lω | Lω |= Tran(y) ∧ ∀a ∈ y Tran(a)}

We now prove some simple results on L.

Proposition 3.2.53. For any ordinal α, Lα ⊂ Lα+1 and Lα ∈ Lα+1.

Proof. For the first one, consider ψx(y) := y = x for all x ∈ Lα and for the second one,
consider ψ(y) := y = y.

Proposition 3.2.54. For any ordinal α, Lα is a set. However, L is a proper class.

Proof. This comes from the fact that the operator Def can be defined inside ZFC as
outlined above. L is a proper class as it contains On.

Proposition 3.2.55. For any α, α ∈ Lα+1. That is, the Von Neumann representative of
the ordinal α is in Lα+1.

Proof. We prove this by induction: 0 ∈ L1 and for any α > 0, by induction hypothesis α ⊂
Lα and as previously α is definable over Lα with ψ(y) := Tran(y) ∧ ∀a ∈ y Tran(a).

Proposition 3.2.56. For α countable, Lα is countable.

Proof. By transfinite induction, at any stage where α is countable, there are only count-
ably many formulas with parameters in Lα, hence only countably many sets defined over
Lα.

Hence with this hierarchy, it gets more interesting than with V as reals appear “slowly”,
at most countably many at a time through the countable levels of the transfinite construc-
tion of L. This yield a way to compare the complexity of reals: a real can be consid-
ered “more complex” than another when it appears later in the constructible hierarchy.
Through a simple improvement of this idea, we show how this yields a well-order on L.

55

Proposition 3.2.57. L can be well-ordered.

Proof. We define <L inductively as follows. First we fix (φi) an enumeration of the first-
order formulas. Then, for x ∈ Lβ+1 − Lβ and y ∈ Lα+1 − Lα with β < α, we set x <L y.
For x ̸= y appearing at the same stage α+1: they are defined over Lα respectively using
some least formulas (w.r.t. the previously fixed enumeration) φi and φj. If i < j, we set
x <L y, and if j < i, we set y <L x. Eventually, if i = j, that is, if x and y are both
defined using the same least formula, we write a1, . . . , an the <L-lexicographical least
sequence of element of Lα used to defined x with φi and b1, . . . , bn the sequence used to
define y. Observe that by induction the element of Lα are well-ordered by <L. As x ̸= y,
both sequences are distinct. Hence either the first is <L-lexicographical smaller than the
second and x <L y, either it is greater and y <L x.

Remark 3.2.58. One may wonder: does V = L? both V and L are proper classes and (as
classes) are models of ZFC. Those being so big, it seems natural that ZFC can’t grasp them
or prove statement about them. Hence, this equality, called the axiom of constructibility,
is independent of ZFC and can only be answered either in a more powerful theory, either
from a philosophical point of view. While it may be quite convincing (why would we
postulate the existence of set that can’t be constructed?), it should not be forgotten that
the power of definition of the operator Def does not encompass that of the mathematical
consensus, which itself underlies all of mathematical practice.

Indeed it is actually possible to come up with philosophical intuitions regarding set the-
ory and V , which, once formalized, are shown to be incompatible with the axiom of con-
structibility. Those intuitions are related to large cardinals. Among those is the existence
of 0#, which is a real describing the set of true sentences in L with ordered indiscernibles
as parameters (see [Jec03, §18.] for the formal definition of 0# and its link with axioms
of large cardinals).

And the idea of 0# with its related assumptions, while outside of the scope of the
operator Def, are easy enough to convey in the day-to-day mathematical language; which
mean that it has already been given flesh to in the mathematical practice. In the end,
this may tip the philosophical scale against the axiom of constructibility. This is one
of the moments where the philosophical thinking is caught up and further guided by the
mathematical formalism.

As V may be (tremendously) greater than L, this imposes some caution when stating
formal statements involving objects which, to us, may look like unambiguous constants.

Definition 3.2.59. We write ωL
1 for the least uncountable ordinal in L. That is, ωL

1 is
the least ordinal in L such that, with φ(I,X, Y) the predicate true when I is an injection
from X into Y :

L |= ∀I ¬φ(I, ωL
1 , ω)

56

If V ̸= L, then there are set in V that are not in L. In particular, there may be some
set I ∈ V −L that describes an injection from ωL

1 in ω. In other words, V would see that
ωL
1 is countable using injection I while L wouldn’t, as it can’t grasp the fact, in the guise

of I, that it is countable. That is, as I (as well as any other suitable injection) is not an
element of L, from its point of view, ωL

1 is uncountable. But ωL
1 would then be countable

in V and so strictly smaller than ω1.

3.2.2.1 Gaps on the constructible universe

We have seen how reals appear somewhat slowly in the constructible universe. Another
peculiar fact is that at some level, and even for long sequences of level (any countable
length actually), no new reals appear. This is called a gap.

Definition 3.2.60 (Gap in the constructible universe, [LP71]). Ordinal α corresponds to
a gap in the constructible universe if

(Lα+1 − Lα) ∩ P(ω) = ∅

That is if no real appears between stages Lα+1 and Lα.

To explain the existence of those gaps, we need a bit more set-theoretic definitions
and results.

Definition 3.2.61 (Substructure). For a signature σ and two structures M = (D, I) and
N = (E, J), we say that N is a substructure of M , written N ⊆M when E ⊆ D and for
all f ∈ F and r ∈ R, fJ and rJ are respectively the restriction of f I and rI to E.

Now, what does this definition yields in the case of models of set theory? In such a
structure M = (D, I) of set theory, for a ∈ D, we can look at elements b ∈ D such that
b ∈I a. This induces a set aI =

{
b ∈ D|b ∈I a

}
. In a satisfying definition of set theory,

we except a to be equal to aI , that is a to be equal to the set made of the elements
of a in M . However, consider now N = (E, J) ⊆ M . This similarly induces a set
aJ =

{
b ∈ E | b ∈J a

}
. But now, it is wholly possible that some b ∈I a be simply absent

of E. In which case, aI would be different from aJ , and one of them would be different
from a. To palliate this issue, we need to introduce a stronger definition.

Definition 3.2.62 (End extension). For two structure M = (D, I) and N = (E, J)

in the language of set theory, we say that M is an end extension of N (or N an initial
substructure of M), written N ⊆end M when N ⊆M and for all a, with previous notation,
aI = aJ

Definition 3.2.63 (Elementary extension). For two σ-structures M = (D, I) and N =

(E, J) such that N ⊆ M , we say that M is an elementary extension of N , written

57

N ≺M when, for all φ(x1, . . . , xn) in the language of σ with free variables x1, . . . , xn and
for a1, . . . , an ∈ E:

N |= φ(a1, . . . , an)←→M |= φ(a1, . . . , an)

For two structures M and N of set theory, when M is both an end extension and an
elementary extension of N , we speak of elementary end extension (e.e.e.). We may want
to restrict the definition of elementary extension to some class of formulas to obtain a
weaker definition. To do this, we introduce the Lévy hierarchy.

Definition 3.2.64. In the signature of set-theory a formula φ(x1, . . . , xn) is ∆0 (and Σ0

and Π0) if all its quantifiers are bounded (that is of the form ∃x ∈ y or ∀x ∈ y). A formula
φ(x1, . . . , xn) is Σn+1 if it is of the form

∃y1, . . . ,∃ym ψ(x1, . . . , xn, y1, . . . , ym)

where ψ(x1, . . . , xn, y1, . . . , ym) is a Πn formula. Πn+1 formulas are defined in the same
way from Σn formulas.

Definition 3.2.65 (Absolute and persistent formulas). Let φ be a formula in the language
of set theory. We say that φ is persistent when for all structures of set theory such that
N ⊆end M and with a1, . . . , an ∈ A, we have

N |= φ(a1, . . . , an) =⇒ M |= φ(a1, . . . , an)

And we say that φ is absolute when, with the same notations,

N |= φ(a1, . . . , an) ⇐⇒ M |= φ(a1, . . . , an)

Proposition 3.2.66. Σ1 formulas are persistent and ∆0 formulas are absolute.

Sketch of proof. This is done by induction on the formula with the end extension hypoth-
esis providing the base case for the atomic formulas x ∈ a.

Definition 3.2.67 (Σn-elementary extension). For two σ-structures M = (D, I) and
N = (E, J) such that N ⊆ M , we say that M is an Σn-elementary extension of N ,
written N ≺Σn M when, for all Σn formulas φ(x1, . . . , xn) in the language of σ with free
variables x1, . . . , xn and for a1, . . . , an ∈ E:

N |= φ(a1, . . . , an)←→M |= φ(a1, . . . , an)

Lemma 3.2.68 (Condensation Lemma). Let α be a limit ordinal and M a transitive
structure such that M ≺Σ1 Lα for some α. Then M = Lβ for some β ⩽ α.

58

Proof. First M is well-founded as Lα is (by Σ1-elementarity a decreasing sequence in M

would be decreasing as well in Lα). Hence, we can write β for the well-founded transitive
part of M , that is M ∩On. As α is a limit ordinal, for all ordinal γ ∈M , Lα |= ∃γ′ γ′ > γ.
By Σ1-elementarity, all those sentences are true in M . Hence, β is a limit ordinal as well.
Furthermore, again as α is limit:for all a ∈M Lα |= ∃γ a ∈ Lγ

for all γ ∈M Lα |= ∃aLγ = a

And those sentences are also true in M . The first sentence implies that M ⊆
⋃

δ<β Lδ.
And the other sentence implies that

⋃
δ<β Lδ ⊆ M . As β is limit,

⋃
δ<β = Lβ, which

shows as wanted that M = Lβ.

Remark 3.2.69. If M is not transitive, it can still be shown that (M,∈) is isomorphic
to some (Lβ,∈) using the Mostowski collapse lemma. See [Dev84, p. 80] for a proof.

Proposition 3.2.70 (Tarski-Vaught criterion). Let M and N be two structures of some
signature σ. Then N ≺M is equivalent to the following fact: for all formulas φ(x, y1, . . . , yn)
and for all a1, . . . , an ∈ N , M |= ∃xφ(x, a1, . . . , an) if and only if there exists a0 ∈ N

such that M |= φ(a0, a1, . . . , an).

Proof. Suppose that the stated fact holds, we show by induction on φ that N ≺ M . If
φ is Σ0, then it is absolute by Proposition 3.2.66 and it follows from it that φ(a1, . . . , an)
being satisfied in N is equivalent to it being satisfied in M . If φ is Σn with n > 0,
then φ(a1, . . . , an) = ∃xψ(x, a1, . . . , an) for some Πn−1 formula ψ. Suppose that M |=
φ(a1, . . . , an). Then by our hypothesis, this is equivalent to having a0 ∈ M such that
M |= ψ(a0, a1, . . . , an). Further, by induction hypothesis, this is also equivalent to having
a0 such that N |= ψ(a0, a1, . . . , an). Which is in turn the same as saying that N |=
φ(a1, . . . , an). Now, if φ is Πn, ¬φ is Σn and saying that

M |= ¬φ(a1, . . . , an)←→ N |= ¬φ(a1, . . . , an)

is equivalent to say that

M |= φ(a1, . . . , an)←→ N |= φ(a1, . . . , an)

Conversely, if N ≺ M , we show in a similar fashion, by induction on φ, that the fact
in the statement of the proposition holds.

This criterion gives a good idea of what may be missing in some N ⊆M to be an initial
substructure of M : for each φ and a1, . . . , an ∈ N such that M |= ∃xφ(x, a1, . . . , an), for
N |= ∃xφ(x, a1, . . . , an) to be true, there may be missing in N some a0 ∈M as described
in the previous theorem. So we could simply add those a0’s to N , for every formula and

59

tuple of parameters. But then, with those new elements in N there will be new tuples
a1, . . . , an in N and those may again require the existence in N of others elements, and
so on. This gives the basis for the proof of the (downward) Löwenheim-Skolem theorem.

Theorem 3.2.71 (Downward Löwenheim-Skolem theorem). Given σ a signature and M
an infinite σ-structure, for all infinite cardinal number κ such that |σ| ⩽ κ and κ < |M |,
there is a σ-structure N such that |N | = κ and such that N is an elementary substructure
M .

Proof. Let M be an infinite σ-structure. We define N inductively. We start with an
arbitrary N0 ⊆ M and we will refine this choice latter. At each stage i, we consider all
formulas φ(x, y1, . . . , yn) and sets a1, . . . , an ∈ Ni such that:

M |= ∃xφ(x, a1, . . . , an)

This induces a map A : φ, a1, . . . , an 7→ a0 such that M |= φ(a0, a1, . . . , an). Observe that
the existence of this map relies on the axiom of choice. We define Ni+1 ⊇ Ni as follows:

Ni+1 = {A(φ, a1, . . . , an) | φ has n+ 1 free variables and a1, . . . , an ∈ Ni}

Eventually, we consider N =
⋃
Ni and by construction, N respect the Tarski-Vaught

criterion w.r.t. M . Hence N ≺ M . Now, what can we say about |N |? Through the
induction, at each stage, |Ni + 1| depends both on the cardinal of Ni, in which the aj
are quantified, and on that of σ, according to which are built the well formed formulas.
Hence, |Ni + 1| ⩽ |Ni| · max(ℵ0, |σ|). Under the hypothesis that |σ| ⩽ κ < |M |, taking
N0 of infinite cardinality κ yields by a direct induction |Ni| = κ for all i and eventually
|N | = κ, as wanted.

We can now prove the following result from Putnam (see [LP71]).

Proposition 3.2.72 ([LP71]). There are unboundedly big ordinals α in ωL
1 such that α

is a gap ordinal.

Proof. Consider stage ωL
1 of the constructible hierarchy. We can show that LωL

1
|= ZF−,

that is LωL
1

is a model for ZF minus the axiom of Powerset. By the Löwenheim-Skolem
Theorem 3.2.71 there is a countable structure of set theory N such that N ≺ LωL

1
.

Moreover, as seen in the proof, for any countable N0 ⊂ LωL
1
, we can suppose that N0 ⊂

N . So for any α0 ∈ ωL
1 , we can suppose that α0 ∈ N . By the condensation lemma,

(N,∈) = (Lα,∈) for some countable α > α0. Hence, Lα |= ZF− and α can be chosen
unboundedly big in ωL

1 . Now, suppose that a new real x was defined over Lα by some
formula φ with parameters in Lα:

x = {j ∈ ω | Lα |= φ(j, a1, . . . , an)}

60

Then, the formula φ yields a function fφ over Lα that maps i ∈ ω to the least j > i such
that φ(j, a1, . . . , an) (there is always one as otherwise x is finite and so is already in Lα).
By the axiom of Comprehension, as ω ∈ Lα, so is fφ(ω). But fφ(ω) is simply x, which is
a contradiction.

Those gaps are strongly linked with master codes as introduced by Jensen in [Jen72]
(in a slightly finer way).

Definition 3.2.73 (Master code, [Jen72]). A real x is a master code for some ordinal α
if:

Lα+1 ∩ P(ω) = {y ∈ P(ω) | y ⩽T x}

Clearly, two master codes for a same ordinal are Turing equivalent and for α < β,
any master code of α is computable from any master code of β. So to each ordinal α
admitting a master code, we can associate the Turing degree of its master code. Now
the question is: are there enough such α’s to speak of a hierarchy? And does it yield a
satisfying structure for a hierarchy? The following theorem from Jensen answers the first
question.

Theorem 3.2.74 ([Jen72]). If α is not a gap ordinal, it admits a master code.

Sketch of proof. As α is not a gap ordinal, there is some real x ∈ Lα+1−Lα. By definition
of Lα+1, x is defined as the set of elements of Lα satisfying some formula ψ with parameters
p1, . . . , pn in Lα. Suppose w.l.o.g. that this formula is Σn for n > 1. We look at M ∈ Lα

defined as the structure of all elements in Lα definable with Σn functions and from some
fixed parameters p1, . . . , pn. M is called the Σn Skolem hull of p1, . . . , pn. Then with the
Tarski-Vaught criterion (Proposition 3.2.70), it can be shown that M ≺Σn Lα: if there is
a Σn predicate ∃aφ(a) true in Lα then some a witness of φ(a) in Lα is Σn-definable in Lα,
and so it is in M . By the condensation lemma, M = Lβ for some β ⩽ α. Now observe
that x is definable over Lβ as it is over Lα and those agree on Σn formulas. Hence, β = α

as x appeared at stage α + 1. In the end, Lα has been defined using some parameters
and a set of Σn functions. We write Eα for the real describing this set of Σn functions.
Observe that Eα is a code for Lα seen as an isomorphic subset of ω. Now, the definition
of Eα heavily depends on the enumeration of the Σn functions; we need a well-behaved
enumeration for Eα to be useful. Jensen showed that there exists a uniform Σn Skolem
function for which it can be shown that Eα is definable over Lα and that Eα is a master
code for α.

Now, in L, at the same time, the set of (constructible) reals is uncountable and only
countably many reals appear at any stage (in the previous proof we actually showed how to
build an injection from Lα+1 into ω if at least one real appeared). This implies that there
are ωL

1 stages of the constructible universe where new reals appear and, with previous

61

theorem, ωL
1 stages admitting master codes. This justifies the following definition from

Hodes in [Hod80].

Definition 3.2.75 (Transfinite Turing jump via master code, [Jen72]). Given some or-
dinal α < ωL

1 , 0(α), the αth transfinite Turing jump via master code from 0, is the degree
of the master codes of the αth ordinal admitting a master code.

And we can further show that this notion coincides with the previously defined trans-
finite Turing jump for ordinals below ωCK

1 , hence extending the previous hierarchy.
As for the second question: does this produces a non-collapsing and monotonous

hierarchy, the answer is two-fold. First, as mentioned, as a master code for α is in Lα+1

but not the converse, this ensures that 0(α) <T 0(α+1). However, if we generalizes this
construction for any a (which can be done in a straightforward manner, defining Lα+1[a]

as the definable set on Lα[a] using a as a parameter), Hodes shows in [Hod80, Theorem
8] that there exists some degree a and ordinals α < β such that:

0α = aβ

which is a strikingly unsatisfying result for this generalization of the hierarchy. Moreover,
another discrepancy highlighted by Hodes is the fact that, contrary to what happened
below ωCK

1 , there is now no canonical jump operation on the reals (x 7→ x′) that correspond
to the jump operation between degrees as induced by Definition 3.2.75.

3.3 Analytical hierarchy and admissible sets

Now, let us go back to the fundamental idea of computation as encompassed by Tur-
ing machines. As mentioned in Definition 3.1.7, a (successful) computation of a Turing
machine is by definition finite and as seen in Proposition 3.1.13, this finiteness yields
the following logical way of apprehending Turing computations: there is an arithmetical
formula T such that for a machine m, input i and output j,

m(i) = j ←→ ∃C T (C,m, i, j)

where the variable C ranges over the natural number as they can be seen as encoding finite
computations. And here, switching back to arithmetic after a long walk in set theory, we
see how in order not to get tangled between one and another we need to tread formally.

3.3.1 Arithmetical and analytical hierarchies

Definition 3.3.1 (Signature of first-order arithmetic). The signature of first-order arith-
metic is ({+,×, 0, 1} , {<}) where +, × and < are of arity 2 while the symbols 0 and 1

are constants.

62

Definition 3.3.2 (Arithmetical hierarchy). In the signature of first-order arithmetic a
formula φ(x1, . . . , xn) is ∆0

0 (and Σ0
0 and Π0

0) if all its quantifiers are bounded (that is of
the form ∃n < m or ∀n < m). A formula φ(x1, . . . , xn) is Σ0

n+1 if it is of the form:

∃y1, . . . ,∃ym ψ(x1, . . . , xn, y1, . . . , ym)

where ψ(x1, . . . , xn, y1, . . . , ym) is a Π0
n formula. And Π0

n+1 formulas are defined in the
same way from Σ0

n formulas.

Definition 3.3.3 (Σn
0 real). A real x ⊂ ω is Σ0

n if it is defined by a Σ0
n formula of

arithmetic. That is if there exists a Σ0
n formula φ(x) such that for all i ∈ ω:

i ∈ x←→ N |= φ(i)

We can already establish deep connections between the arithmetical hierarchy and the
previous study of Turing degrees: a real is recursively enumerable if and only if it is Σ0

1.
And the Turing jump on one side can be shown to correspond to an added quantifier
alternation on the other side. And with this idea, the following theorem can be proved.

Theorem 3.3.4 (Post’s theorem). A real is Σ0
n+1 if and only if it is recursively enumerable

with 0(n) as oracle.

Sketch of the proof. A complete proof can be found in [Rog87, p. 314].
We show this by induction. For n = 0, we need to show that x is Σ0

1 if and only if it is
r.e. If x is r.e. by some machine m, as seen, there is a ∆0

0 formula such that

m(i) = j ←→ N |= ∃C T (C,m, i, j)

which shows that x is Σ0
1. Conversely, given a Σ0

1 formula φ(x1) = ∃nψ(x1, n), a machine
can semi-decide whether i ∈ x by looking for a n such that ψ(i, n).

For n > 0: suppose that x is r.e. with 0(n) as oracle. That is, there is some machine
index m such that:

i ∈ x ⇐⇒ φ0(n)

m (i) ↓

The real 0(n) is r.e. with 0(n−1) as oracle so by induction, it is defined by a Σ0
n formula ζn.

As previously, the affirmation “φ0(n)

m (i) ↓” can be transformed into an arithmetic formula
that quantifies over the computations seen as natural numbers. Moreover, to ensure that
said computation was run with 0(n) as oracle, the formula also ensures that for those
computations, all cells of offset k of the input and on which a part of the oracle is written
(with k less than the computation length as only those may have been reached) read 1 if
and only N |= ζn(k). Hence, this yields as required a Σ0

n+1 formula describing x.

63

Conversely, if x is Σ0
n+1, it is defined by φ(x1) = ∃nψ(x1, n). By induction, for any i,

a machine can semi-decide N |= ψ(i, n) with 0(n−1) as oracle; so it can decide it with 0(n)

as oracle. Hence, it can semi-decide N |= φ(i) with 0(n) as oracle, as wanted.

To go further, we consider second-order arithmetic.

Definition 3.3.5 (Second-order arithmetic). The signature of second-order arithmetic is
that of first-order arithmetic to which we add the relation symbol ∈.

Definition 3.3.6 (Sentences of second-order arithmetic). A sentence of second-order
arithmetic is composed of both first order (∃x1, ∀y1) and second order quantifiers (∃X1,
∀Y1). It is well-formed under the usual constraints to which we add that the symbol ∈ be
only used between a first-order variable and a second-order variable.

Definition 3.3.7 (Interpretation of second-order arithmetic). The intended interpreta-
tion of the first-order objects is as natural numbers while that of the second-order object
is as set of natural numbers. We write N |= φ when a second-order arithmetic sentence φ
is satisfied in the intended interpretation.

Definition 3.3.8 (Analytical hierarchy). In the signature of second-order arithmetic a
formula φ(x1, . . . , xn) is ∆1

0 (and Σ1
0 and Π1

0) when it has no second order quantifier. A
formula φ(x1, . . . , xn) is Σ1

n+1 if, once curated from its first-order quantifiers, it is of the
form

∃Y1, . . . ,∃Ym ψ(x1, . . . , xn, Y1, . . . , Ym)

where ψ(x1, . . . , xn, Y1, . . . , Ym) is a Π1
n formula. Π1

n+1 formulas are defined in the same
way from Σ1

n formulas.

Definition 3.3.9. A set of natural numbers x ⊂ ω is Σ1
n if it is definable by a Σ1

n formula
of arithmetic. That is if there exists a Σ1

n formula φ(x1) such that for all i ∈ ω:

i ∈ x←→ N |= φ(i)

A set of real A ⊂ P(ω) is Σ1
n if it is definable by a Σ1

n formula of arithmetic. That is
if there exists a Σ1

n formula φ(X1) such that for all x ∈ P(ω):

x ∈ A←→ N |= φ(x)

In the analytical hierarchy, the first level is of particular interest and has deep connec-
tions with what we have seen on Turing degrees. We call hyperarithmetical the ∆1

1 sets
and we show how with those sets we can generalize Post’s theorem. This is mostly due
to Kleene’s work.

64

Definition 3.3.10. We write T 1(x1, x2, x3, x4) for the ∆1
0 formula such that:

T 1(m,x, k, i)←→ φx
m(i) ↓ in less than k steps.

which can be defined with the same idea as for T .

Theorem 3.3.11 (Kleene normal-form theorem). Let φ be a Σ1
n formula. Then there is

some machine m such that for all reals x1, . . . , xm:

N |= φ(x1, . . . , xm) ⇐⇒ ∃X1∀X2 . . . QXn ∃k T 1(m, ⟨x1, . . . , xm, X1, . . . , Xn⟩, k, i)

where Q ∈ {∃,∀} depending on the parity of n.

Proof. This is shown by induction. See again [Rog87, §16] for a complete presentation.

Observe that in the previous normal form, it is somehow redundant to give the com-
plete real ⟨x1, . . . , xm, X1, . . . , Xn⟩ as parameter to T 1 as, looking for an halting compu-
tation with less than k steps, it only needs the k first bits of ⟨x1, . . . , xm, X1, . . . , Xn⟩. So,
for a real x we write x̄k for the truncation of x up to its k first bits. And with it we can
define the formula T̄ 1 that avoid this redundancy.

Definition 3.3.12. We write T̄ 1(x1, x2, x3, x4) for the ∆1
0 formula such that:

T̄ 1(m, t, k, i)←→ ∃x x̄k = t ∧ φx
m(i) ↓ in less than k steps.

Theorem 3.3.13 (Kleene alternative normal-form theorem). For all reals x1, . . . , xm:

N |= ∃X1∀X2 . . . QXn ∃k T 1(m, ⟨x1, . . . , xm, X1, . . . , Xn⟩, k, i)

⇐⇒

N |= ∃X1∀X2 . . . QXn ∃k T̄ 1(m, ⟨x1, . . . , xm, X1, . . . , Xn⟩k, k, i)

Proof. Follows from previous explanations.

Proposition 3.3.14. The set of reals describing a well-order, WO, is a Π1
1 set of reals.

Proof. We want a formula that given x as parameters decides whether x encodes well-
order. So let R be the relation described by some real x in the usual ⟨i, j⟩ ∈ x-fashion.
First, to check whether R is a total order on some subset of ω it is enough for the formula
to check if for all natural numbers i, j and k, the conditions for being a total order, seen
as a ∆1

0 predicates of i, j,k and x are satisfied. Hence, as i, j and k are quantified with
a first order “∀”, this also yields a ∆1

0 predicate LO(x) which is true when x describes a
total order. Then, a total order R is a well-order if and only if every non-empty subset
admits a minimal element. So:

x ∈WO ⇐⇒ LO(x) ∧ ∀y ̸= ∅ ∃i ∈ y ∀j ∈ y (⟨j, i⟩ ̸∈ x)

65

which is a Π1
1 predicate.

Proposition 3.3.15. The set of reals describing a well-order, WO, is Π1
1-complete. That

is for all Π1
1 set A, there is a recursive function e such that for all real x:

x ∈ A←→ {i ∈ ω | φx
e(i) = 1} ∈WO

Proof. Let A be a Π1
1 set. That is, there is a predicate ψ(x) = ∀y ψ0(x, y) where y is

quantified over the reals and ψ0 is Σ0
n for some n and such that:

x ∈ A←→ ψ(x)

By the alternative normal-form theorem, there is some machine m such that:

x ∈ A←→ ∀y ∃k T̄ 1(m, ⟨x, y⟩k, k, 0)

Then, we consider the set B of elements of the form ⟨x, y⟩k for some y and k and such
that ¬T̄ 1(m, ⟨x, y⟩k, k, i). B can be totally ordered by the Kleene-Brouwer ordering. This
order is usually defined on finite sequences but it is easily adaptable to elements of B seen
as finite sets of natural numbers. For two sets a and b we write a∆b for their symmetrical
difference. And for a, b ∈ B, we write a <KB b when either a ⊂ b or a∆b ̸= ∅ and the
least element of a∆b is in b.

Now, x ̸∈ A if and only if there is some y such that ∀k¬T̄ 1(m, ⟨x, y⟩k, k, 0). That is, if
for some y the sequence (⟨x, y⟩k)k is in B. Which implies that there is a strictly increasing
sequence: ⟨x, y⟩0 <KB ⟨x, y⟩1 <KB ⟨x, y⟩2 . . . Hence that B is not well-ordered w.r.t. the
inversed relation <−1

KB.

Conversely, we show that if B is not well-ordered by <−1
KB, then x ̸∈ A. Let a1 <KB

a2 <KB a3 . . . be a decreasing sequence (w.r.t. <−1
KB) in B. Then, for any j, we look at

the sets aji = {n < j | n ∈ ai}. Looking at the definition of <KB it is clear that for any j,
the sequence (aji)i converges and that for j < j′, the stabilization value of (aji)i is a subset
of that of (aj

′

i)i. Hence, the limit of those stabilization values as j grows to ω yield some
real y such that the sequence ⟨x, y⟩0 <KB ⟨x, y⟩1 <KB ⟨x, y⟩2 . . . is in B. This implies
that ∀k¬T̄ 1(m, ⟨x, y⟩k, k, 0), that is that x ̸∈ A.

Eventually, the real describing the relation <−1
KB over B is uniformly computable from

x. Indeed, given two natural numbers a and b, a machine using x can decide whether
both are in B and then whether a <KB b.

From this, we can define the hyperarithmetical hierarchy.

Theorem 3.3.16. A real x is ∆1
1 if and only if x is recursive with 0(α) as oracle for some

recursive ordinal α.

66

Sketch of proof. Suppose that x is recursive with 0(α) as oracle for α recursive. By defi-
nition of x, there is some machine index e such that for all i ∈ ω:

i ∈ x←→ φ0(α)

e (i) ↓ 1←→ ∃k T 1
o (e, 0

(α), k, i, 1)

where T 1
o is a slight modification of T 1 that checks whether the output is equal to the

last parameter (here 1). Then, to obtain an hyperarithmetical formula to express “i ∈ x”,
what is left is to find a way to define 0(α)k. If α = α′ + 1, then:

e ∈ 0(α) ←→ φ0(α
′)

e ↓

If α is limit, e ∈ 0(α) then:

e ∈ 0(α) ←→ e = ⟨f, g⟩ ∧ f ∈ 0(αg)

where αg < α is the ordinal of index g in the encoding of α. We see how e ∈ 0(α) is
naturally defined by induction on α, which induction can be encoded by a real using the
code for α, itself recursive. This yields a Σ1

1 definition of x. And as there can only be one
real encoding this induction, this also yields a Π1

1 definition and so x is ∆1
1-definable.

Conversely, suppose that x is ∆1
1. Then, it can defined by some Π1

1 formula φ. By
Proposition 3.3.15, seeing natural numbers as finite reals, there is a machine e such that:

i ∈ x←→
{
j ∈ ω | φi

e(j)
}
∈WO

Hence, this induces a function on x, i 7→ αi such that for all i, αi ∈ ωCK
1 (as i is finite).

We consider α =
⋃

i αi. By Σ1
1 bounding (see [Rog87, p. 400]), we can show that α ∈ ωCK

1 .
Hence, i ∈ x if and only if φi

e describes a well-order of order-type less than α. And for
a machine, deciding whether φi

e describes a well-order is recursive using 0′ and deciding
whether this well-order is of order type less than α is recursive using the machine that
describes α and 0(α), hence showing that x is 0(α)-recursive.

We see how this approach is firmly anchored in the natural numbers: quantifiers are
ranging either over ω or P(ω) and even when we consider reals, they are only considered
one finite prefix at a time, as is embodied by Theorem 3.3.13. This comes with many
advantages: anything finite is easily encoded with natural numbers and the set of the
natural numbers come with very strong structural properties that are naturally unnoticed
in their everyday usage.

But rather than piling up the quantifiers, a way to generalize this idea of computation
might be to altogether start with more general sets than that of natural numbers. A
questions arises: what would the computation of a Turing machine encoded by an infinite
set, for example an infinite ordinal, look like? We will postpone this question until next
chapter that precisely develops this idea. For the time, we forget about machines. What

67

is left is the logic aspect of the computation and this approach lead to the study of
admissible sets and with it to the development of α-recursion.

3.3.2 Admissible sets and α-recursion

The idea developped by Sacks and others (see [Sac90]) is the following: by analogy with
the usual computation over ω, some set A will play the role of ω. Hence a set B is said
A-finite when B ∈ A. And B is A-recursively enumerable when B ⊂ A and B is definable
by a Σ1 predicate over A. From there, B is A-recursive when both B and A−B are A-r.e.,
that is if and only if B is ∆1-definable over A. Still, if we hope to generalize some of the
results of the finite recursion theory, we need to impose some structure on A. First come
natural expectations for the set A: before anything, it should be well-founded. Then it
should be closed by taking pairs; this allows for example to define recursive functions as
functions whose graph (so made of pairs) is recursive. Among other things, we can also
ask that if B is A-finite, then so should be the union of the subsets of B. And further,
in a less straightforward but still fundamental way, we except the following statement to
hold: if f is a A-r.e. function and there is some A-finite a such that a ⊂ dom(f), then
f(a) should be A-finite as well.

Those expectations can be met when A is a transitive model for Kripke-Platek set
theory, KP. Kripke and Platek sought (independently) a formalization of what should we
require from a set that we want to see as a domain of computation. It happened that the
axioms needed to describe such sets where weaker than those of the classical set theory,
ZF, and it gave rise to KP which is an interesting and more parsimonious set theory. KP
also plays a role outside of computation theory. Set theorists lead fine enquiries about the
nature of its models that are plentiful and come in many shapes and sizes. In contrast
classical set theory is in this aspect (that is of having interesting models) deemed “in
some ways too strong” (see [Bar75] for an extensive study of KP and admissible sets).
As an illustration, we have seen how the axiom of Powerset can itself be in some ways to
powerful and a consequence of it is that any model of ZF is inhumanly big.

Definition 3.3.17 (Kripke-Platek set theory). KP is defined by the following axioms on
the language of set theory, where the free variables are implicitly universally quantified

68

and with the usual notations.

Extensionality : ∀x (x ∈ a↔ x ∈ b) =⇒ a = b

Foundation (or induction) : ∃xφ(x) =⇒ ∃x (φ(x) ∧ ∀y ∈ x¬φ(y))

Pair : ∃a(x ∈ a ∧ y ∈ a)

Union : ∃b∀y ∈ a ∀x ∈ y (x ∈ b)

∆0-separation : ∃b∀x (x ∈ b =⇒ x ∈ a ∧ φ(x)) for all ∆0 formulas.

∆0-collection : ∀x ∈ a∃y φ(x, y) =⇒ ∃b ∀x ∈ a∃y ∈ b φ(x, y) for all ∆0 formulas.

When a transitive set A is a model of KP, we say that A is an admissible set.

Let us first show some basic results on KP .

Definition 3.3.18. For a formula φ and a set a, we write φ(a) for the formula φ in which
every unbounded quantifier is bounded by a.

Definition 3.3.19 (Σ formula). A Σ formula is a formula without negation and in which
all universal quantifiers are bounded. A Π formula is the negation of a Σ formula. A ∆

formula is a formula equivalent in KP to both a Σ formula and a Π formula.

Observe that whether Σ formulas are equivalent to Σ1 formulas is not immediately
clear. Take for example anything of the form: ∃a ∀b ∈ a ∃c ψ(a, b, c). It is Σ but may not
be equivalent in KP to any Σ1 formula. The following proposition bridges this gap.

Lemma 3.3.20. For a set A, a Σ formula ψ and two sets a, b ∈ A, the two following
sentences are true in A: ψ(a) ∧ a ⊆ b =⇒ ψ(b)

ψ(a) =⇒ ψ

Proof. This is done by induction and it rests on the fact that the boolean operator induced
by the bounded existential quantifier is monotonous in the bound.

Proposition 3.3.21 (Σ-reflection). Let φ be a Σ formula. We can show in KP that φ is
equivalent to a Σ1 formula with a single unbounded existential quantifier. That is, more
precisely:

KP ⊢ φ ⇐⇒ ∃aφ(a)

Proof. We show this by induction on φ. If φ is ∆0, then φ(a) = φ and it is directly
equivalent to ∃aφ(a).

69

If φ = ψ1 ∧ ψ2, then by induction:

KP ⊢ ψ1 ⇐⇒ ∃a1 ψ(a1)
1

KP ⊢ ψ2 ⇐⇒ ∃a2 ψ(a2)
2

Hence, supposing that KP ⊢ ψ1 ∧ ψ2, we can say in KP that there are a1 and a2 such
that respectively ψ(a1)

1 and ψ
(a2)
2 . Now consider a = a1 ∪ a2 which exists by virtue of the

pairing and union axioms. By the previous lemma, in any model of KP we have both ψ(a)
1

and ψ
(a)
2 . Hence KP ⊢ ∃aψ(a)

1 ∧ ψ
(a)
2 . Conversely, if KP ⊢ ∃aψ(a)

1 ∧ ψ
(a)
2 then with the

other half of the lemma, we have that KP ⊢ ψ1 ∧ ψ2. And the case where φ = ψ1 ∨ ψ2 is
similar.

If φ = ∀b ∈ aψ(b), then by induction for all b ∈ a:

KP ⊢ ψ(b) ⇐⇒ ∃c ψ(b)(c)

Supposing that, KP ⊢ ∀b ∈ aψ(b), this induces a mapping of all b ∈ a to some cb such
that ψ(b)(cb) is true in KP. By ∆0-collection, there is some d that collects those cb and
with the same reasoning as previously, ∀b ∈ aψ(b)(d). Hence KP ⊢ ∃dφ(d). And the other
direction again holds in virtue of the second part of the lemma.

If φ = ∃aψ(a), then by induction:

KP ⊢ ψ(a) ⇐⇒ ∃b ψ(a)(b)

Now, suppose that KP ⊢ ∃aψ(a). Then, in KP there is a and b such that ψ(a)(b). Take
c = b ∪ {a} and we have KP ⊢ ∃c∃a ∈ c ψ(a)(c). The converse case is again direct.

Proposition 3.3.22 (Σ-collection). Σ-collection is a theorem of KP . That is: for a set
a and a Σ formula φ(x, y) such that ∀x ∈ a∃y φ(x, y), there exists b such that∀x ∈ a∃y ∈ b φ(x, y)∀x ∈ b∃y ∈ aφ(x, y)

Proof. Let φ(x, y) a Σ formula such that, working in KP: ∀x ∈ a∃y φ(x, y). Then, by
Σ reflection, there exists c such that ∀x ∈ a ∃y ∈ c φ(c)(x, y). By ∆0 separation, we can
consider b =

{
y ∈ c | ∃x ∈ aφ(c)(x, y)

}
. Then by Lemma 3.3.20, we have both

∀x ∈ a∃y ∈ b φ(x, y)

70

and

∀x ∈ b ∃y ∈ aφ(x, y)

Proposition 3.3.23 (∆ separation). ∆ separation is a theorem of KP . That is, for a ∆

formula φ(x) and a set a, there exists b = {x ∈ a | φ(x)}.

Proof. As φ(x) is ∆, we can suppose w.l.o.g. that it is written as a Σ formula and that it
is equivalent to some Π formula ψ(x). Then, the sentence ∀x ∈ a (φ(x) ∨ ¬ψ(x)) is true
in KP and it is Σ. By Σ-reflection, there is some c such that ∀x ∈ a (φ(c)(x) ∨ ¬ψ(c)(x).
Then, by ∆0-separation, we can consider b = {x ∈ a | φc(x)}. By Lemma 3.3.20, this
is a subset of {x ∈ a | φ(x)}. Now, b̄ = a − b = {x ∈ a | ¬ψc(x)} is again definable by
∆0-separation and by Lemma 3.3.20, it is a subset of {x ∈ a | ¬ψ(x)}. Hence, b is the
desired set.

Now, we can show how the fact that some domain of computation A is admissible helps
us to establish the results we expect to hold in a satisfying domain of computation. In
what follows we let A be an admissible set. We give again some of the previous definitions.

Definition 3.3.24. B ⊂ A is definable by a Σ1 predicate over A if there is some Σ1

formula φ such that

x ∈ B ⇐⇒ A |= φ(x)

Definition 3.3.25 ([Sac90]). B is A-finite when B ∈ A. B is A-r.e. when B ⊂ A and B
is definable by a Σ1 predicate over A. B is A-recursive when A ⊂ B and B is definable
by a ∆1 predicate over A.

Proposition 3.3.26 ([Sac90]). Let f be a A-r.e. function such that for some A-finite a
we have a ⊂ dom(f). Then f(a) is A-finite.

Proof. We need to show that f(a) = {f(b) | b ∈ a} is in A. Let φf be the Σ predicate
defining f . That is,

f(x) = y ⇐⇒ φf (x, y)

Then, a ⊂ dom(f) translates into: ∀b ∈ a∃y φf (b, y) is true in A. By Σ collection, there
is some set c ∈ A that collects those f(b) and only those. Hence c = f(a) is in A.

This shows how taking an admissible set as an higher domain of computation satisfies
such basic expectations as the image of a “finite” (that is A-finite) set being “finite” (again
A-finite). From there we can develop the theory of α-recursion in the domain A and prove

71

some results like the following, further showing the analogy between finite and A-finite
sets or r.e. functions and A-r.e. functions.

Proposition 3.3.27 (Σ1-recursion, [Bar75]). Let h(x, y, z) and g(x) two A-r.e. functions
and consider the function f defined as:f(0, y) = g(y)

f(α, y) = h (α, y, (f(β, y))β∈α)

Then f is A-r.e. as well.

Proof. We need to show that the function f is Σ1 definable over A. That is, we need to
produce a Σ1 predicate φf such that:

f(α, y) = x ⇐⇒ φf (α, y, x)

In order to “unroll” the inductive definition of f , we need to consider a wider setting in
which all steps of the inductive definition are given. That is we consider:

ψ(α, y, x, f) := f is a function ∧ dom(f) = α + 1

∧ f(0) = g(y) ∧ ∀β ∈]0, α] f(β) = h(β, y, f |β)

∧ f(α) = x

where f |β = {⟨δ, x⟩ ∈ f | δ < β}. Now as g and h are Σ1-definable as A-r.e. functions, ψ
is a Σ1 predicate. What is left to prove is that:

f(α, y) = x ⇐⇒ ∃f ψ(α, y, x, f)

To do this, we prove that:

∀α, y ∃!f, ∃xψ(α, y, x, f)

First, the unicity of x will come from that of f and from the fact that f must be a function
to satisfy ψ. Then, for the unicity of f : suppose that for some α and y, there are f ̸= f ′

and x ̸= x′ such that both ψ(α, y, x, f) and ψ(α, y, x′, f ′). Then f(0) = g(y) = f ′(0) and
by transfinite induction f = f ′.

Now, for the existence of f . We proceed by induction. For α = 0, f = ⟨0, g(y)⟩ is a
set of A by the axiom of Pair. Then, for α > 0, by induction hypothesis:

∀β < α, y ∃!fβ ∃xψ(α, y, x, fβ)

By Σ-collection, the set F = {fβ | β < α} is in A and fα = {fβ[β] | fβ ∈ F} as well.

72

Proposition 3.3.28 ([Sac90]). Suppose that A = Lα for some ordinal α. Then, the A-
finite elements are enumerable along α with an A-recursive function. That is, there is a
bijective A-recursive function f from α onto Lα. It is the analogy of the fact that we can
enumerate the finite sets along ω.

Sketch of proof. We consider the well-order of L defined in 3.2.57. Lα is also well-order
by the restriction of <L and we can define by Σ1 recursion a bijective Σ1 function f such
that for β ⩽ α

f(β) = x ⇐⇒ x is the βth element in Lα w.r.t. <L

Now we want to show that all x in Lα is the image of some β. It isn’t the case if and only if
there is some x ∈ Lα such that f(α) = x. In this case, we consider X = {y ∈ Lα |⩽L x}.
It is in Lα+1 as it is definable with x as parameter over Lα. And by Σ1 collection,
{β | ∃y ∈ X f(β) = y} is also in Lα+1. But this set is simply α+1, which is a contradiction.
Hence f(α) = Lα and f is a bijective A-r.e. function from α onto Lα. As such, it is also
A-recursive.

Now a question may be, how and where do we find interesting admissible sets? As
seen in the previous result, when the admissible domain of computation is of the form
Lα, we can harvest the structure of Lα to obtain finer results. In this direction, the
following results and also Proposition 3.3.34 show the interest of again considering the
Gödel hierarchy in the study of admissible sets.

Proposition 3.3.29. Let α be a limit ordinal. Then Lα is admissible if and only if Lα

satisfies ∆0-collection.

Proof. We just need to show that Lα satisfies all other axioms of KP. As Lα is a set,
Extensionality and Foundation hold. Then we show that Pair holds: let x and y in Lα.
As α is limit, there is some β < α such that x, y ∈ Lβ. Then, {x, y} is definable over Lβ by
the formula φ(z) := z = x∨z = y with x and y as parameters. Hence {x, y} ∈ Lβ+1 ⊂ Lα.
Union is shown in the same way. Eventually, for ∆0-separation, let a some set in Lα and
φ a ∆0 formula. As previously, there is some β < α such that a ∈ Lβ. Now, consider the
formula φ(z) := z ∈ a ∧ φ(x). It defines the wanted set over Lβ.

Definition 3.3.30 (Admissible ordinal). An ordinal α is admissible if Lα is admissible.

Definition 3.3.31 (Cardinal). An ordinal α is a cardinal if for all β < α there is no
surjection from β onto α. For α an ordinal, we write α+ the next cardinal, that is the
least cardinal strictly greater that α. The cardinality of set is the least cardinal in bijection
with this set.

Definition 3.3.32 (Cofinality). The cofinality of an ordinal α, cf(α), is the the least
order-type ν of a sequence (αι)ι<ν unbounded in α. A limit ordinal α is said to be regular
if cf(α) = α.

73

Proposition 3.3.33. For κ an infinite cardinal, κ+ is regular.

Proof. Suppose the contrary. Then, there is some sequence (αι)ι<ν unbounded in κ+ with
ν < κ+. Then, ν has cardinality κ and for any ν ′ < ν, αι has cardinality κ as well. Hence,
the sum of the αι which is equal to κ+ has cardinality κ which is a contradiction.

Proposition 3.3.34. Admissible ordinals are unbounded in ω1 and in On.

Proof. We show first that ω1 is admissible. To do this, it is enough to show that Lω1

satisfies ∆0-collection. Let a ∈ Lω1 such that ∀x ∈ a ∃yφ(x, y) for some ∆0 formula φ. By
definition of Lω1+1, it must contain a <L-least b such that ∀x ∈ a ∃y ∈ bφ(x, y). We want
to show that b is in Lω1 . First as a is countable, so is b. Further, observe that ω1 = ω+.
Hence, ω1 is regular. Now, as b ⊂ Lω1 , for all x ∈ b, there is some αx < ω1 such that
x ∈ Lαx . This induces a countable sequence of ordinals below ω1. By regularity of ω1

this sequence is bounded and both a ∈ Lβ and b ⊂ Lβ for some β < ω1. Hence, as b is
definable with a as parameters, b ∈ Lβ+1.

Then, by the Löwenheim-Skolem Theorem 3.2.71, for any α < ω1 we can find some
M ⊃ Lα such that M ≺ Lω1 . By the condensation lemma M = L′

α for some α′ > α and
it is easy to see that admissibility is reflected down to M by elementarity; hence that α′

is admissible. This shows that admissible ordinals are unbounded in ω1.
To see that they are also unbounded in On, observe that with the same reasoning as

in ω1, for any cardinal κ, κ+ is admissible.

Hence, the admissible sets of the form Lα come in any size. And the fact that they
all have a very structured shape, as level of Gödel’s universe, make them particularly
convenient domains for α-recursion. From there, many techniques and results can be
generalized to α-recursion on admissible Lα’s. For example the priority argument, as
used for the proof of the Friedberg-Muchnik theorem, can be generalized to an infinite
priority argument to study the α-degrees. The main drawback of this generalization of
recursion theory is that it altogether leaves behind the idea of computation as encompassed
by Turing machines. However, as shown by Koepke in [Koe05], it is possible to devise a
model of Turing machines, with a tape made of α cells and that computes for at most α
steps, that provides the missing machine-like part of α-recursion. And this kind of model
of α-Turing machines is based, to some extent, on the more fundamental infinite time
Turing machine developed by Hamkins and Lewis in [HL00], which is the main object of
study of this thesis.

74

Chapter 4

Infinite time Turing machines

In this chapter we present the theory of infinite time Turing machines (ITTMs) as intro-
duced by Hamkins and Lewis in [HL00]. We then give an overview of the state-of-the-art
generalizations of this model of infinite machines. Those generalizations, with the one we
introduce in Chapters 5 and 6, constitute a step toward higher-order infinite time Turing
machines.

In Chapter 3, we introduced three fundamental objects: the finite Turing machine
(which can be used to ground the theory of recursion and the theory of Turing degrees),
arithmetical logic and set theory. In particular, in Theorem 3.3.4 and Theorem 3.3.16, we
have seen the deep links between the ωCK

1 first Turing degrees and the of arithmetical and
hyperarithmetcial sets. In the presentation of admissible sets and α-recursion, we strayed
away from the peaceful realm of natural numbers to study admissible set, which are from
a computability point of view a generalizations of the set of natural numbers. Proposition
3.3.28 and Proposition 3.3.34 shown the interest of considering the constructible hierarchy
and with it, On. With this, we saw how the hierarchy of Turing degrees may be continued
after ωCK

1 . And to complete the picture, with the correspondence between finite Turing
machine and arithmetical logic in mind, one may feel like that there misses a fourth
fundamental concept, namely a computational model that somehow deals with admissible
set or with ordinals.

And the model of infinite time Turing machines is a relatively simple model of com-
putation that can compute through the ordinals and that can be seen to bridge this gap.
Such machines may either halt at some ordinal stage or “compute endlessly as the ordi-
nals fall one after another through the transfinite hourglass”, as put in [HL00]. This way,
they have a privileged relation with set theory and in particular with the constructible
universe. After the introduction of this model, we will start in this chapter with its study
from the point of view of the analytical hierarchy, as done in [HL00]. While this already
gives a good idea of the power of those machines, we will see how their power sits astride
strictly between two levels of this hierarchy and how the constructible hierarchy provides

75

a more adequate point of view.

4.1 Hamkins and Lewis’ infinite time Turing machine

The ITTM (infinite time turing machine) is a model of computation that computes
through the hierarchy of the ordinals. It is built upon the classical finite Turing ma-
chine. Imagine a finite Turing machine m that somehow managed to compute up to some
limit ordinal stage α. As it computed up to this stage, it is in some state q, has some real
x (an element of {0, 1}N, which we more conveniently write ω2, as in the previous chapter)
written on its tape and its head is on some cell i. Following [HL00], we call the tuple of
those data the snapshot of the machine at this computation stage. Given this snapshot,
the computation step from stage α to α + 1 is simply determined by the program or the
code of m. And so is the computation up to stage α + k for any finite k.

We see that the question left out in this description is: how does the machine “somehow
computes” up to a limit stage? And it is crucial to observe that this question is the most
important one, if not the only one, that needs to be answered to have an effective infinite
model of computation. The following definition is Hamkins and Lewis’ proposition of an
answer. This defines the model of ITTMs.

Definition 4.1.1 ([HL00]). An infinite time Turing machine (ITTM) m is a machine
which has the same structure as a three tapes finite Turing machine with a distinguished
state qlimit and with an input, an output and a working tape such that:

• At any stage α + 1, the snapshot of the machine M is determined by the snapshot
of M at stage α and by the program of the machine m, as for classical finite TMs.

• At any limit stage α, the head of M is on the first cell, its state is set to the
distinguished state qlimit and for all cell i, writing Ci the function that maps an
ordinal stage to the value of the cell i at this stage:

Ci(α) = 0←→ ∃β < α ∀δ ∈ [β, α[Ci(δ) = 0 (4.1)

That is the value of the cell i at limit stage α is set to 0 if and only if there is some
stage β < α at which the value of cell i stabilized on 0 up to stage α.

Observe that with this definition, an ITTM is simply given by the code of a finite
Turing machine. Hence, most of the finite definitions generalize in a natural way. Observe
moreover that for this reason, the sole data of a limit rule (as we may have imagined
different limit rules) is enough to define a model of infinite machines. We will come back
to this possibility of having different limit rules later on. The fact that the structure of an
ITTM is the same as that of a classical finite Turing machine explains why the concept
of snapshot and successor snapshot of an ITTM (Definitions 4.1.2 and 4.1.3) are defined
as in the classical Turing machine setting (Definitions 3.1.5 and 3.1.6).

76

Definition 4.1.2 (Snapshot of an ITTM, [HL00]). Given an ITTMM = ⟨Σ, Q, q0, δ, F ⟩,
a snapshot of M at some computation stage is a 3-uple ⟨x, q, k⟩ where x describes the
content of the tape, q the state of the machine and k the integer position of the head. A
snapshot is final if q ∈ F .

Definition 4.1.3 (Successor snapshot, [HL00]). Given an ITTM M = ⟨Σ, Q, q0, δ, F ⟩
and a snapshot of the machine s = ⟨x, q, k⟩ such that q ̸∈ F , the successor snapshot s′

is the only snapshot produced by applying the transition function on the cell k which
contain the symbol x[k]. That is, writing δ(x[k], q) = (a, q′, D)

s = ⟨x′, q′, k + d⟩ with



x′[k′] = x[k′] for k′ ̸= k

x′[k] = a

d = 1 if D = R

d = −1 if D = L and k > 0

d = 0 if D = L and k = 0

Definition 4.1.4 (Limit snapshot, [HL00]). Given an ITTMM = ⟨Σ, Q, q0, δ, F ⟩ and an
ordinal stage α, the limit snapshot of the machine at stage α is sα = ⟨xα, qlimit, 0⟩ where
xα is defined as follow:

xα[i] = 0←→ ∃β < α∀δ ∈ [β, α[xδ[i] = 0

Definition 4.1.5 (Run of an ITTM, [HL00]). Given a Turing machineM = ⟨Σ, Q, q0, δ, F ⟩,
the run of this Turing machine with input x is an ordinal-indexed sequence (sι)ι (possibly
of length On) of snapshot such that, writing x⌢b for x padded with infinitely many b to
the right if x is finite, else for x itself:

• s0 = ⟨x⌢b, q0, 0⟩

• For all ι, if sι+1 exists, then it is the successor snapshot of si. It does not exist if
and only if si is a final snapshot.

• For all limit ι, sι is the limit snapshot produced by the sequence of snapshots (sι′)ι′<ι.

We say that a machine halts when run with input x if its sequence of snapshots has length
ν + 1 for some ν ∈ On (there must be a final snapshot which is also the last one, so the
length must be a successor ordinal.) In this case, writing sν = ⟨y⌢b, q, k⟩ the last snapshot
of the sequence, we say that the machine computed for ν steps and that its output is y.
A partial run of a machine is any initial segment of its run sequence.

One almost obvious but very important fact is that it is possible to “run” a machine
inside Lα for some limit ordinal α. This means that Lα is an adequate domain of definition
for the α first steps of an ITTM. More formally:

77

Proposition 4.1.6 ([HL00]). There exists a Σ2 formula φsup(x1, x2, x3) such that, for a
limit ordinal α, a machine m, a cell i and an input y,

Ci(α) = 1←→ Lα[y] |= φsup(i,m, y)

Proof. While Equation 4.1 provides a natural way of defining Ci(α), its inductive nature
hinders it direct translation as a formula of set theory.

To translate it into a formula of set theory, we need first to provide the formula for a
function that given some δ, defines in Lα the history (seen as a set) of the machine up
to stage δ (stage δ included), if it exists. Given this formula, we can show by induction
on α that this history indeed exists in Lα for all δ < α. We show more thoroughly in
the proof of Proposition 5.3.37 in Chapter 5 that such a formula exists and that it is Σ1.
Writing it η(m, y, δ), it corresponds to the whole history of the computation of machine
m with input y up to stage δ, η(m, y, δ)[i] corresponds to the history of the cell i and
η(m, y, δ)[i][δ] to Ci(δ). With it we can define φsup:

φsup(i,m, y) := ∃α ∀δ ∀hδ (α < β ∧ hδi = η(m, y, δ)[i] =⇒ hδi [δ] = 0)

And it is clear that this formula is Σ2 and satisfies the relation stated in the proposition.

We will see in Proposition 4.1.9, which deals with the asymptotic behavior of the
machines, how the previous proposition can be useful. Indeed, machines that do not halt
may have different asymptotic behaviors. The most general one, and unavoidable for
machines that do not halt (this is Proposition 4.1.9), is the fact that they will be looping
at some point.

Definition 4.1.7 (Looping, [HL00]). For an ITTM m, we say that m is looping when
the machine never halts and some interval of computation [α, β[repeats itself through the
whole computation after stage α. That is, writing β = α+ δ, for any stage ν ⩾ α, writing
ν = α + δ · µ + ν ′ with µ maximal (and so ν ′ < δ), the snapshot of m at stage ν is the
same as that of m at stage α+ ν ′. In this case we say that m started looping at stage β.

This definition, as is, is quite unpractical as it involves inspecting the run of the ITTM
through all of On. The following result fortunately allows us to only look at some intervals
of computation.

Proposition 4.1.8 ([HL00]). An ITTM is seen to be looping when there are two limit
stages α and β sharing the same snapshot such that between those two stages, cells that
are set to 0 in the two limit stages stay so between those. That is, such that

∀i ∀δ ∈ [α, β](Ci(α) = 0 =⇒ Ci(δ) = 0)

78

Proof. Suppose there are α and β as described. As the snapshot at stage α and stage
β are the same, starting from stage β, the computation behaves as it did from stage α.
Writing β = α+ δ, this will yield again the same snapshot at stage α+ δ · 2 and again at
any stage α+ δ · n. Now, what happens at stage α+ δ ·ω? At this stage, the history gets
slightly more complicated. Still, if Ci(α) = 0, then for all α′ ∈ [α, α + δ · ω[, Ci(α

′) = 0

and by the limit rule, Ci(α + δ · ω) = 0. Conversely, if Ci(α) = 1, there are cofinally 1’s
in the cell i up to stage α + δ · ω, at least at stages α + δ · n for n ∈ ω. Hence, in this
case, Ci(α+ δ ·ω) = 1. As α+ δ ·ω is also a limit stage, it shares the same snapshot with
stages α and β. This provides the ingredients for an inductive proof through On: for a
limit µ such that α and α + δ · µ share the same snapshot, the segment will repeat until
stage α+ δ · µω and with the same reasonning on cells set to 0, it will produce again the
same snapshot. This describes the entire machine behavior through On and shows that
is it looping.

4.1.1 Power and limit of ITTMs

As the structure of an ITTM is exactly that of a classical Turing machine, many usual
results are directly inherited from it. Among those are for example the s-m-n theorem or
Kleene’s recursion theorem or the fact that the (infinite) halting problem is (infinite time)
undecidable. And these three results are proved with the same proof as in the classical
setting. The fact that the halting problem is undecidable, combined with the following
proposition, already gives an upper bound for the power of ITTMs.

Proposition 4.1.9 ([HL00]). An ITTM either halts or starts looping stage before stage
ω1.

Proof. Let m be an ITTM that does not halt before stage ω1. We show that it starts
looping before stage ω1. By the Löwenheim-Skolem Theorem 3.2.71, we can find two
countable stages α and β such that Lα ≺ Lβ. By proposition 4.1.6, this means that run-
ning m in Lα and Lβ produces the same limit snapshot as for all i, Lα |= φsup(i,m, y)←→
Lβ |= φ(i,m, y). That is, stages α and β have the same snapshot. Now, let some cell i
such that Ci(α) = 0. As the snapshot are the same, we also have Ci(β) = 0. We want to
show that between stages α and β the cell i is always set to 0. Suppose it false. Then,
for any α′ < α, the formula

∃δ > α′Ci(δ) = 1

with α′ as parameter holds in Lβ. As α′ ∈ Lα, this also holds in Lα by elementarity.
This show that 1’s in the cell i are cofinal up to stage α, which contradict the fact that
Ci(α) = 0.

This implies that to look whether a machine halted, it is enough to look at countable
ordinal stages. So a machine halts if and only if there exists a real encoding a well-ordered

79

sequence of snapshot itself describing a countable run of the machine. Equivalently, a
machine halts if and only every real encoding a partial run of a machine does not show
the machine to be looping. Hence, this yield Proposition 4.1.10.

Proposition 4.1.10 ([HL00]). There is a ∆1
2 set which is not decidable with ITTMs.

Proof. Simply consider the real h = {m | the ITTM m halts on the empty input} de-
scribing the halting problem. As explained in the previous paragraph:
m ∈ h←→ ∃x (x describes a well-ordered sequence of snapshots forming a run of m)

m ∈ h←→ ∀x (x describes a well-ordered sequence of snapshots forming a partial run of m

=⇒ m is not seen to be looping in the partial run x)

As WO is a Π1
1 predicate and checking whether a well-ordered sequence of snapshot is a

run or, given a run, whether a machine is seen to be looping are ∆1
0 predicate, h is ∆1

2.

On the other side, that is looking for an arithmetical lower-bound on the power of
ITTMs, we can first establish the following result.

Proposition 4.1.11 ([HL00]). The Σ0
n sets of natural numbers are infinite time decidable,

that is decidable by an ITTM.

Proof. Let A be a Σ0
n defined by some formula φ(x1, x2) with a parameter p ∈ ω. That

is i ∈ A iff φ(i, p). If n = 0, then φ(i, p) is ∆0
0 and the machine can directly evaluate φ.

Else, n > 0 and φ(i, p) = ∃jψ(i, j, p). By induction on the number of quantifiers in the
formula, a machine can iterate through all j ∈ ω and decide whether ψ(i, j, p1, . . . , pn) in
order to decide whether i ∈ a.

The simplicity of this result may give us an inkling of how much more than classical
Turing machines can ITTMs achieve. To go further, Hamkins uses the following result in
tandem with the well-known fact that WO is Π1

1-complete, shown in Proposition 3.3.15.

Proposition 4.1.12 ([HL00]). WO is infinite time decidable.

Proof. We describe an ITTM that, given as input some real x, decides whether x encodes
a well-order.

First, the machine needs to decide whether x is a total order. As seen in the proof
of Proposition 3.3.14, deciding this is ∆1

0. With the same reasoning as in the proof of
Proposition 4.1.11, for a ∆1

0 formula φ and a real x, a machine with x as input can
inductively decide whether φ(x).

Then, what is left for the machine is to decide whether the total order described by x
is a well-order. We write <x this total order and domx for its domain. To check whether
it is a well order it is enough to check whether domx can be “counted through”. That is

80

if domx has a least element, i0, and if domx−{i0} has a least element, i1, . . . and then
whether domX −{i0, i1, i2 . . .} has a least element and so on until domX is exhausted.

So we now show that an ITTM can decide, given a total order x, whether domx has
a least element: it goes through the i’s in domx (that is such that ⟨i, j⟩ ∈ x or ⟨j, i⟩ ∈ x
for some j). Each time it encouters such a i, it first flashes (i.e. turns on and off) some
distinguished cell c0, acting as a flag. Then, for this i, it turns on some flag c1 and checks
whether there is j such that j <x i: that is, it again enumerates through the natural
numbers and for each j checks whether ⟨j, i⟩ ∈ x. If it finds one, i is not the least element
and it turns off c1 and goes on with the first enumeration, along the i’s. If it does not
find one: first, how does the machine realizes it? If it does not find one, it computed for
ω steps looking for one. So, it reached the next limit step and c1 is still on but c0 is off,
which is enough to distinguish this particular stage. In this case, the machine knows that
this i is the least element in <x and so that domx has a least element. As for the last
case, what happens when domx has no least element? Again the enumeration on the i’s
will exhaust ω and the machine will have computed for ω steps (as for each i it finds a
j <x i in finitely many steps). However, at this limit stage, both c0 and c1 are turned on,
which again let the machine distinguish this last case in which it answers negatively.

Now, an ITTM can decide WO as follows: if <x is the empty total order, then x ∈WO.
Else, the machine looks whether domx has a least element, deletes it (in ω steps) and goes
on until domx is either empty (in which case it answers positively) or does not have a least
element (in which case it answers negatively). Observe that this needs a third flag c2,
flashed each time a least element is removed, to further distinguish limit stages happening
when the machine deleted some limit ordinal amount of least elements in x. When c2 is
activated, the machine knows that c0 and c1 being actived are “false flag” and it simply
continues its counting through of x.

Corollary 4.1.13. Π1
1 sets (and consequently Σ1

1 sets) are infinite time decidable.

Proof. Let A be a Π1
1 set of reals and e the index of the recursive function of Proposition

3.3.15. Then given some real x, a machine can compute the real {i ∈ ω | φx
e(i) = 1} and

decides whether it encodes a well-order to decides the membership of x in A.

However, this lower-bound is not tight. One way to see this is the following: in the next
section, we will consider ordinals α such that an ITTM can output a real describing well-
order of order type α. In particular, we will be able to show that the least α which is limit
of admissible ordinals is writable. This α is also the least ordinal such that Lα∩P(ω) is a
model of Π1

1-comprehension (see [Sim09, Theorem VII.1.8 on p. 246 and theorem VII.5.17
on p. 292 and notes to §VII.5 on p. 293], as referenced in [Mad17]). As such, we can show
that Lα ∩P(ω) is not Π1

1 decidable: suppose it were, then using the Π1
1 predicate normal

form, there is some m such that x ∈ Lα ∩ P(ω) if and only if ∀y ∃k T (m, ⟨x, y⟩k, k, 0).
Then, we can consider the real d constructed bit after bit as follows: suppose that d̄k,

81

the truncation of d to its k first bit was defined then: d[k + 1] = 1 if there exists a real
starting with those k + 1 first bits for which φx

m ↑, and otherwise d[k + 1] = 0. Writing
d = ⟨d′, d′′⟩, this produces a Σ1

1-definable real d′ such that:∀k ¬T (m, ⟨d′, d′′⟩k, k, 0) (by construction)

d′ ∈ Lα ∩ P(ω) (by Π1
1-comprehension)

However, since α is writable, a machine can decide Lα∩P(ω) in the following fashion:
given some x, it writes a code for α, then uses it to produce a code for Lα and then simply
checks whether x, seen as a real, is in Lα.

This shows that the power of the ITTMs lies somewhere strictly between Π1
1 and ∆1

2.
Moreover, the previous argument hints at the interest of now taking a set-theoretic point
of view to better understand the power of those machines.

4.1.2 Writing, eventually writing and accidentally writing

Previous section was focused on deciding sets from an arithmetical perspective. This is
the direct generalization of what was doable with classical Turing machine and classical
Turing machines computing with oracle. However, a new aspect appears with ITTMs,
namely the possibility to write, i.e. to output, reals. Indeed, as a machine may go on for
way more than ω steps before halting, it has more than enough time to write a proper
real on its output. We define three ways for a real to be writable.

Definition 4.1.14 (Writable reals, [HL00]). A real x is writable if there is an ITTM
which, when computing from the empty input, halts with x written on its output.

Definition 4.1.15 (Converging, [HL00]). For m an ITTM computing on some input y
we say that m converges or converges definitively when it never halts and when after some
stage its output tape is never modified again. We say that m converges up to some limit
ordinal α when it does not halt before stage α and after some stage β < α its output tape
is never modified before stage α.

Definition 4.1.16 (Eventually writable reals, [HL00]). A real x is eventually writable
(e.w.) if there is an ITTM which converges when computing with the empty input and
which has x written on its output when the content of its output tape stabilized.

Definition 4.1.17 (Accidentally writable reals, [HL00]). A real x is accidentally writable
(a.w.) if there is a machine computing with the empty input that has written x at some
stage on any of its tapes.

Further, as we can encode ordinal with reals, in the sense of Definition 3.2.27, an
ordinal can also be said to be writable, e.w. or a.w.

82

Definition 4.1.18 (Writable ordinals, [HL00]). An ordinal α is writable (resp. eventually
writable and accidentally writable) if some real x that encodes α is writable (resp. e.w.
and a.w.). We write λ, ζ and Σ respectively for the supremum of the writable, e.w. and
a.w. ordinals.

We give the table of Figure 4.1 to help the reader. The notion of “clockable” ordinal
will be introduced in Definition 4.1.24.

simply eventually accidentally
writable λ ζ Σ
clockable γ

Figure 4.1: Greek letters associated to each definition.

It is clear that a writable, e.w. or a.w. ordinal is countable and so that that λ, ζ
and Σ are well-defined ordinals and at most equal to ω1. Further, λ and ζ are countable
ordinals: there are countably many machines, a machine may write or e.w. at most one
ordinal and the ordinal it writes is countable as its encoded in ω; hence the supremum
of those ordinals is countable. For Σ, a single computation may a.w. more than one
ordinal. But by Proposition 4.1.9 it writes at most countably many ordinals and the
same argument holds.

Manipulating those three different concepts, we will soon need to consider more and
more involved computations of ITTMs simulating other ITTMs. The question of the
simulation will be discussed thoroughly in the next chapter. Still, to begin in this direction,
observe that it is rather straightforward for an ITTM to simulate another: as we know
that classical finite Turing machines can simulate another finite TMs, the only tricky part
may be limit stages. But if one cell of the simulated machine is simulated by one cell of the
simulating machine, the lim sup rule applied in the simulating machine directly simulates
itself. That is, it behaves as it would have done in the simulated machine. Lastly, at
limit stages, cells of the simulating machine used to keep track of the simulation (as in
the classical model) may often be set to wrong or incoherent values. However, as the
simulated machines knows that is reached a limit stage (remember that at limit stages,
the machine is in a distinguished state qlimit), it can simply tidy up those cells (which
may take up to ω steps) and then go on with the simulation.

We will see how those simulation can be used in the next proposition. While it could
be shown without simulations (by simply modifying the machines that we will consider),
this offers a more level and coherent presentation of the question of writable ordinals w.r.t.
that of simulation.

Proposition 4.1.19 ([HL00]). The writable ordinal form an initial segment of On. And
so do the e.w. and the a.w. ordinals.

Proof.

83

– For the first case, we need to show that if α is writable, any β < α is writable as
well. Let m be the machine writing a real x describing a well-order <x of order-type
α. As already seen, β < α implies that there is some i ∈ domx such that the set
domi

x = {j ∈ domx | j <x i} ordered by (the restriction of) <x has order-type β.
We consider the following machine m′: it simulates m and when m halts it copies
the order-type on the output of m, truncated below i, to its own output. As i is an
natural number it can be hardcoded in m′. Once the truncated order-type has been
copied, m′ halts and it has written a code for β.

– If α is e.w. and β < α, we proceed similarly: we write m for the machine that e.w.
α and i for the order of β in the code of α and we consider the following machine: it
simulates m and each time the output of m is modified and a well-order appears in it
(this can be checked by Proposition 4.1.12) with i in its domain, the machine copies
this well-order, truncated below i on its output tape, possibly erasing a previous
written well-order. Once m stabilized in its simulation inside m′, it has written on
its output tape a well-order for α and m′ writes its truncation on its own output tape
and does not modify it further as the simulated output tape of m is not modified
further. Hence m′ eventually writes β.

– The a.w. case is similar to the e.w. case: the simulating machine simply copies and
truncates any well-order that may appear in the simulation of m.

Further, the following inequality shows that those constants are actually meaningful
for the study of ITTMs. Now, to prove it, we need a slightly more involved way of
simulating other machines. We consider the universal machine U that simulates in parallel
every other machines. We will come back to the existence of such a machine in the next
chapter, but once we are convinced that it is possible to simulate a single machine, this is
only a small step further. Indeed, the universal machine works as follows: it separates its
working tape into ω virtual tapes (taking for example cells (3i)i for the first, cells (5i)i for
the second and so on) and on each virtual tape it simulates one ITTM. By dovetailing,
that is simulating k steps of the k first machines, k+1 steps of the k+1 first machine etc.
it simulates ω steps of all ω machines in ω steps, which is a rather satisfying “parallel”
computation. And further again, as U is an ITTM, its most frequent use will be being
simulated it in another computation.

Proposition 4.1.20 ([HL00]). λ < ζ < Σ

Proof.

λ < ζ : As already seen, there is some ordinal stage at which every machine either halted
or is looping. Hence, at this stage every writable ordinal as been written. Now

84

consider the following computation: a machine simulates U and at every stages of
U it looks at all machines that halted and whose output is an ordinal and writes
on its output the sum (ordered by the indices of the machines) of those ordinals.
When all machines halted, this sum is at least as great as λ and moreover it never
changes as no other machine will halt. Hence an ordinal at least greater than λ is
e.w. Invoking Proposition 4.1.19 if the ordinal e.w. by the previous computation is
strictly greater than λ, this shows that λ itself is e.w.

ζ < Σ : With the same reasonning, at some point all converging machine converged and
after this point all e.w. ordinal appear in the tape of some converging machine. So,
simulating U and writing the sum of any ordinal appearing on the output of any
machine is enough to a.w. at some point an ordinal greater than ζ.

Those constants help hierarchizing the different ordinals that may appear in ITTMs
with respect to how good a grasp those machines have on them. We will shows later that
this classification naturally extend to sets. Let us first remind how sets are handled in
this setting.

Definition 4.1.21 (Encoding of sets, [HL00]). We say that a real x encodes as set a
when x describes a transitive relation E on ω such that (ω,E) ≃ (TC({a} ,∈), where TC

denotes the transitive closure. As with ordinals, a set a is writable (resp. e.w. and a.w.)
by an ITTM when a code for a is writable (resp. e.w. and a.w.) by an ITTM.

This definition and Proposition 4.1.22 allow us to manipulate set in a convenient way
as in the proof of Proposition 4.1.23. This latter proposition also gives an idea of the kind
of high closure properties that those constant have.

Proposition 4.1.22 ([HL00]). Any set a ∈ Lλ is writable. Similarly, any set Lζ is e.w.
and any set in LΣ is a.w.

Proof. We show this for the first case. Both other cases are obtained by adapting the
technique of the first case, as in previous proofs.

Let a ∈ Lλ. First, λ is a limit ordinal (as if some ordinal α is writable, so is α+ k for
any integer k.) Hence, there is some α < λ such that a ∈ Lα. As the writable ordinals
form an initial segment, α is writable. So we can design a machine that writes α and then
that uses it to split its working tape into α virtual tapes. Then we explain how it can use
those α virtual tapes to inductively build Lα: at any stage, suppose that it stored Lβ for
β < α on the βth virtual tape. Using the code for Lβ, it can compute the truth value in
Lβ of any set-theoretic formula in the language of Lβ. Hence, it can compute a code for
all the element of Lβ+1. Using β + 1 (a code for β + 1 can be extracted from the code
of α), it then organizes those codes into a code for Lβ + 1, as per the encoding described

85

in Definition 4.1.21. At some limit stage δ, it uses a code for δ and the codes previously
written for all the Lβ’s for β < δ to write a code for Lδ. At the αth step of this inductive
process, the machine produced a code for Lα. As a ∈ Lα, the code for a correspond to
the truncation of the code of Lα below some i: the code of Lα can be seen as a partial
order on ω describing a tree, so below each i in this order spans another tree describing
a set. Thus, with this i hardcoded in the machine, a is writable as well.

Proposition 4.1.23 ([HL00]). The ordinal λ is admissible and a limit of admissible
ordinals.

Proof. As already seen, to show that λ is admissible, it is enough to show that Lλ |= ∆0-
collection. So suppose that there is some set a ∈ Lλ such that ∀x ∈ a∃y φ(x, y) and that
those y’s can’t be collected inside Lλ. This implies that the ranks (i.e. least β such that
y ∈ Lβ) of the y’s are unbounded in Lλ. This induces a sequence of ordinals unbounded
in Lλ that we will us to reach a contradiction.

First, as a ∈ Lλ, by the previous result, a code for a is writable. Then we consider the
following computation: it writes a on some part of its working tape and then it simulates
U on another part. As all machines are simulated in U , all a.w. ordinal appear at some
point in the simulation of U . Hence, it can be used to enumerate the a.w. ordinals. So,
using U , the machine we are describing looks for an ordinal β such that for each x in
a, there is y ∈ Lβ such that φ(x, y). Such an ordinal exists as λ itself satisfies those
requirements. And as said, λ is supposed to be the least such. Hence, at some point, this
machines finds such a suitable ordinal β ⩾ λ and writes it on it output and then halts,
which is a contradiction. This shows that λ is admissible.

Further, observe that given some limit ordinal α, deciding whether α is admissible
is doable with an ITTM: it computes a code for Lα and enumerate all formulas with
parameters in Lα to see whether the axiom of Collection holds for each formula. That
is whether the code for a set that each formula produces by collection corresponds (by
relation isomorphism) to the code of a set in Lα. Once it checked whether it holds for
all formulas, it can decide whether α is admissible. Hence, a machine can look for the
first admissible ordinal ωCK

1 and write it. So ωCK
1 < λ. But it can also look for the second

one, ωCK
2 , the third one, ωCK

3 etc. and all of those are writable, and so strictly less than λ.
Further again, for a writable β, it can write it down and look for ωCK

β , the βth admissible
ordinal (or limit of the β first), and write it. Hence for all β < λ, ωCK

β < λ. In particular,
ωCK
λ = λ and λ is an admissible ordinal limit of admissibles.

Naturally, Proposition 4.1.22 begs the question of whether the converse holds. That
is, for the first case, is a writable set or a writable real in Lλ? Observe that if we manage
to show that any writable real x is written before stage Lλ then, as those machine can be
run in Lλ this x would be definable at some constructible stage below λ and so it would
be in Lλ. So the question reduces to: are writable reals writable before stage Lλ? And it

86

is clear that this question may be (and actually is) closely linked with another question:
do all machine that halt, halt before stage λ? In case some machine halts after stage λ,
it very well may also write after this stage a real that isn’t written earlier by any other
halting machines. This drives us toward the question of clockable ordinals.

4.1.3 Clockable ordinals

Definition 4.1.24 (Clockable ordinals, [HL00]). An ordinal α is clockable if there is an
ITTM computing with the empty input that halts at stage α. That is it computes for
α steps and then, on its next transition, the machine reaches one of its halting states,
qhalt ∈ F . We write γ for the supremum of the clockable ordinals.

A first observation is the following: the clockable ordinal do not form an initial segment
of On. Indeed, there are gaps: that is, there are ordinals (and even segment of ordinals)
below γ that are not clockable.

Proposition 4.1.25 ([HL00]). For k, k′ ∈ ω, the ordinal ω · k + k′ is clockable.

Proof. If k = 0, a machine that computes for k′ + 1 steps clocks k′. If k > 0, observe
that a machine can detect limit stages by waiting for the stage qlimit. Hence, it can count
for k limit stages by turning on cell k − 2 after the first limit stage, cell k − 3 after the
second, . . . and cell 0 after the k− 1th stage. Doing this, stage ω · k is the first limit stage
at which cell 0 is turned on. Then, counting k′ + 1 steps before halting allows it to clock
stage ω · k + k′.

Proposition 4.1.26 ([HL00]). If α and β are clockable, then so is α + β.

Proof. Let mα and mβ be the machine clocking resp. α and β. Suppose first that β ⩾ ω2.
In this case we can consider the machine built from mα and mβ that behaves as mα until
stage α, and then, instead of halting, that erases its tapes in ω stages and after that
behaves as mβ; hence clocking α + ω + β = α + β for β ⩾ ω2. If β < ω2, it is enough
either to count for a finite amount of steps or to erase only the first k cells for some finite
k and to apply the technique of the previous proposition.

Proposition 4.1.27 ([HL00]). Every recursive ordinal is clockable.

Proof. Let α be a recursive ordinal. If α < ω2, we can invoke Proposition 4.1.25.
If α is a multiple of ω2, as α is a recursive ordinal, using the finite classical TM that

decides a well-order of order type α, an ITTM can write a code for α in ω steps. Then,
it can count through this code as in the proof of Proposition 4.1.12. However, it always
takes ω · 2 steps to look for the least element of the well-order and then to erase it from
the domain of the well-order. And when the domain of the well-order is empty, it takes
another ω steps in order to check that it is empty. We can remove those last ω steps with
this trick from [HL00]: the machine keeps track of the least bit (w.r.t. the natural order

87

on ω) activated in the encoding of the well-order and each time this least bit is turned
off, it flashes a flag on the first cell of its working tape. This flag is activated at a limit iff
it was flashed ω times iff the well-order is the empty order. Hence, this allows us to clock
ω · 2 · α which is equal to α under the hypothesis that α was a multiple of ω2.

Eventually, if α > ω2 and α is not a multiple of ω2, then α = β + β′ with β multiple
of ω2 and β′ < ω2 and α is clockable by Proposition 4.1.26.

Proposition 4.1.28 ([HL00]). The ordinal ωCK
1 is not clockable.

Proof. As ωCK
1 is an admissible ordinal, LωCK

1
satisfies Σ1-collection. We shows that this

makes it impossible for ωCK
1 to be clockable.

Suppose that some machine clocks ωCK
1 . By definition, it means that at stage ωCK

1 ,
given its state (which is qlimit) and the content of the first cell of each of the three tapes
(that is those under the heads at a limit stage), it decides to halt. This means that ωCK

1

is the first limit stage at which those three first cells have this content. First there must
be a 1 among those cells as otherwise, the three 0’s stabilized before stage ωCK

1 and so
appear at some limit stage between this stabilization stage and ωCK

1 . So, at least one cell
reads 1. Further, with the same reasoning one of those stage reading 1 did not stabilize
on 1 before stage ωCK

1 but rather was cofinally alternating between 0 and 1 before stage
ωCK
1 . So, we write β < ωCK

1 for the stage at which all cells that stabilize among those three
cells do stabilize. And we write β1 > β the stage at which each of the cell that does not
stabilize among those three cells (so among those reading 1) are turned to 1 at least once
after stage β. Then β2 > β1 is defined in the same way w.r.t. β1. Let βω =

⋃
βi. βω is

a limit stage less or equal to ωCK
1 and by construction its first three cells have the same

value as that of stage ωCK
1 . So βω = ωCK

1 .
But the application i 7→ βi is easily seen to be Σ1 and its range is ωCK

1 itself, which
contradicts Σ1-collection.

Proposition 4.1.29 ([HL00]). However, the ordinal ωCK
1 + ω is clockable.

Proof. One way to show this is simply to look for the first non-clockable limit ordinal as
done in [DL19]. Indeed, we saw with the two previous propositions that ωCK

1 was the first
non-clockable ordinal. Hence, an ITTM which simulates the universal machine can use
this description of stage ωCK

1 in order to look for it.
More precisely, we consider the following machine M: it simulates the universal ma-

chine U and at any limit stage α of U , it checks whether at least one simulated ITTM
stops at this stage α. That is, whether one of those ITTM reaches a final state qf on its
transition from stage α to α + 1. If one is found, it is found in finitely many steps and
M goes on with the simulation of U just after it is found–which ensures that U is never
more that finitely many stages late. If at some limit stage α of U , no halting machine is
found, M halts. And this happens when α = ωCK

1 . But then, M still needs ω steps to
observe that none does stop–and so it halts at stage ωCK

1 + ω.

88

Observe moreover that, by keeping track of the order of the halting time of the machine,
as done in [DL19], M could also have written down a code for the ordinal ωCK

1 at stage
ωCK
1 before halting at stage ωCK

1 + ω.

Hence, a first gap on the clockable ordinals starts at stage ωCK
1 and can be shown (see

[HL00, Lemma 3.3]) to be actually of length ω, that is no ordinal between ωCK
1 included

and ωCK
1 + ω not included is clockable. See [HL00, pp. 579–582] for more results on the

gaps.
Still, beyond this difference, that is beyond the fact there are gaps in the clockable

ordinals and not in the writable ordinals, those objects and the constants λ and γ are
closely linked.

Proposition 4.1.30 ([HL00]). The set of the writable ordinals and that of the clockable
ordinals have the same order-type.

Proof. The writable ordinals form an initial segment. So the length of this segment
corresponds to the supremum of the writable ordinals, λ. So we need to show that the
clockable ordinals form a set of order type λ as well. We write OTclock for the order-type
of the clockable ordinals.

We show first that λ ⩽ OTclock. Suppose that there were only α < λ clockable ordinals.
In this case, we could consider the following machine: it writes α on some part of its tape
(as α < λ, it is writable) and then it simulates the universal machine U . At each stage
of U at which a machine halts, it decrements α. When α is down to 0, it halts. But α
down to 0 means that the machine computed through all clockable ordinal stages. So it
is a contradiction for this machine to halt after this point.

Now, suppose that λ < OTclock. This means that there is some clockable ordinal α
such that β ordinals are clockable below α with λ < β < OTclock. We write mα for the
machine that clocks α. We consider the following machine that uses the halting time of
the machines to write a well-order of order-type α. It computes as follows: it begins with
the empty well-order and simulates U . Each time a machine i halts (if there are more
than one, it only considers the least indexed one), it add them to the well-order: that
is, it writes j ≺ i for all machine j that already halted. Under our assumptions, when
mα halts, the order type written by this computation is β. Hence, if we ask the machine
we described to halt when mα does in the simulation of U , it writes β > λ which is a
contradiction.

Encouraged by such a result, we may be optimistic and think that λ = γ. That is,
that the supremum of the clockable ordinals and that of the writable ordinals match. This
was proved left open in [HL00] and proved in [Wel00b].

Theorem 4.1.31 ([Wel00b]). λ = γ.

89

Proof. We give a proof for a slightly more general result in Proposition 5.2.1 at the
beginning of next chapter. The proof is based on the same technique as used in [Wel00b].

We will see in the next section the usefulness for the study of ITTMs of linking
those two objects (writable and clockable) of quite different nature. This also motivates
Theorem 5.4.14 which generalizes this equality to a wide range of machines and which
will be the subject of a good part of the next chapter.

4.1.4 Writable and clockable ordinals

Let us come back to the question that followed Proposition 4.1.22. Is it equivalent for a
set to be writable (in the sense of Definition 4.1.21) and to be in Lλ ? We can now answer
this question using Theorem 4.1.31.

Proposition 4.1.32 ([Wel00b]). A set a is writable (resp. e.w. and a.w.) by an ITTM
if and only if a ∈ Lλ (resp. a ∈ Lζ and a ∈ LΣ.)

Proof. As seen in Proposition 4.1.22, a being in Lλ means that a is writable.
Conversely, if a is writable, it is written before stage γ as no machine halts after stage

γ. But as γ = λ it means that a code for a is written at some stage α < λ. Writing xa
for this code, it means that xa is definable over Lα and that xa ∈ Lα+1 ⊂ Lλ. Moreover,
this code describes a relation E on ω such that (ω,E) ≃ (TC({a} ,∈). We write f for
the associated isomorphism. Now, by Proposition 4.1.23, λ is admissible. So the fact
that xa ∈ Lλ and that Lλ is admissible allows us to define f by Σ1 recursion with xa as
parameter. And by definition of f , there is some i ∈ domxa such that f(i) = a. And by
an induction relying on Σ1-collection, f(i) ∈ Lλ, as wanted.

The two other cases are similar.

From there, we can prove one of the main theorem involving those constants. It shows
how deeply connected ITTMs are with the constructible universe and set theory.

Theorem 4.1.33 (λ-ζ-Σ Theorem, [Wel00a]). Lλ ≺Σ1 Lζ ≺Σ2 LΣ. That is, Lζ is a Σ1-
e.e.e. of Lλ and LΣ is a Σ2-e.e.e. of Lζ. Moreover, (λ, ζ,Σ) is the lexicographical least
triplet yielding this chain of e.e.e.

Proof.

Lλ ≺Σ1 Lζ : Let φ(y) = ∃xψ(x, y) with y ∈ Lλ and ψ ∆0. Suppose that Lζ |= φ(y). We design
the following infinite machineM. First it writes y on some part of its working tape
(which it can do by Proposition 4.1.32, as y ∈ Lλ.) Then using U it enumerates
through the a.w. ordinals and for each α it encounters, it computes a code for Lα

and checks whether there is some x ∈ Lα satisfying ψ(x, y); this is doable as ψ is
∆0 and y is written on some part of the working tape. If it doesn’t find it,M goes

90

on with the iteration of the a.w. ordinals in U . However, at some point α ⩾ ζ and
under the assumptions that Lζ |= φ(y), there is some x ∈ Lα such that ψ(x, y).
When it is found by M, the latter writes it on its output tapes and halts. Hence,
such a x is writable. By Proposition 4.1.32, this time invoked in the other direction,
this x (as a set) is in Lλ and Lλ |= ∃xψ(x, y), as wanted.

Conversely, if Lλ |= φ(y) then so does Lζ by persistency of Σ1 formulas.

Lζ ≺Σ2 LΣ : Let φ(z) = ∃x ∀y ψ(x, y, z) be a Σ2 formula with the constant z in Lζ such that
LΣ |= φ(z). We consider the following machine M. It simulates the machine mz

that e.w. z and each time the output of this machines changes, it starts with this
output and from the beginning the subcomputations S that we describe at the
next paragraph (hence potentially halting and erasing the previous instance of this
subcomputation that was run). We point out that at some point in the simulation of
mz, z is e.w. and not modifier thereafter. Hence, at some point this subcomputation
is run with the correct z and not interrupted before it decides to halt, if it does. So
w.l.o.g. we can describe this subcomputation with the correct z.

This subcomputation S does the following: As previously, it simulates U in order
to look for candidates x such that LΣ |= ∀y ψ(x, y, z). Observe however that LΣ |=
∀y ψ(x, y, z) is only semi-decidable. Indeed, S can launch another fresh simulation
of U in order to iterate through the y’s in LΣ and for each of them check whether
ψ(x, y, z). If it fails for one y, the machine can decide that LΣ ̸|= ∀y ψ(x, y, z). In
this case, this means that this particular x wasn’t the right candidate and S goes on
with its enumeration of the x ∈ LΣ. However, if it is true that LΣ |= ∀y ψ(x, y, z),
the enumeration on the y never finds a y for which ψ(x, y, z) fails. But it also never
knows when it went saw all possible a.w. y’s. Hence whenM find the right x (and
there is one under the assumption that LΣ |= φ(z)), the subcomputation S never
halts. So, having the main machine M copy the candidate x used by S before it
begins makes it e.w. a x such that LΣ |= ∀y ψ(x, y, z). In virtue of Proposition
4.1.32, this set x is in Lζ and Lζ |= ∃x∀y ψ(x, y, z).

Conversely, if Lζ |= φ(z), then there exists x ∈ Lζ such that ∀y ∈ Lζ ψ(x, y, z). So
if there were some y ∈ LΣ − Lζ such that ¬ψ(x, y, z), a machine we would be able
to e.w. it with the same technique, which would contradict the fact that its not part
of Lζ . Hence LΣ |= ∀y ψ(x, y, z).

As for the second assertion regarding the triplet (λ, ζ,Σ), it is more conveniently proved
using Proposition 5.2.1 which generalizes Theorem 4.1.31. This is done in Proposition
5.2.2

This theorem remarkably describes the power and the limit of ITTMs. It can also
naturally act as a criterion to evaluate attempts at generalizing ITTMs. Given a general-
ization of ITTMs, we can ask ourselves: does a variation of this theorem exists? And does

91

this variations shows that this generalization provides a more powerful or more interesting
model? Reaching a variation of this theorem for a new model of infinite machine will be
the main aim of Chapter 6.

4.1.4.1 The theory machine

Friedman and Welch introduced the idea of a "theory machine" in [FW07]. It is an ITTM
which successively writes down the Σ2 theories of the levels Jα of the Jensen hierarchy
(which is very close to the L hiearchy) for α below Σ0; Σ0 being the least ordinal such
that LΣ0 is the Σ2-elementary extension of some previous level, which we in turn write ζ0.
At this point we do know that Σ0 and ζ0 actually are Σ and ζ, but it is worth noting that
the results regarding the theory machine can be established prior to high-level results like
the λ− ζ − Σ Theorem. More precisely, they show the following.

Proposition 4.1.34 ([FW07]). There exists an ITTM which, when computing with the
empty inputs, does not halt and such that, for any α < Σ0, the Σ2 theory of (Jα,∈) is
written on its output tape at stage ω2(α+ 1). At stage Σ0 + ω2, the theory on the output
of the machine is the Σ2 theory of Jζ0 and the machine starts looping.

To define such a machine, the harder part to overcome is, as often with ITTMs, the
limit part. If we want the machine to conduct such a sharp and structured computation,
it clearly should not, while computing up to some limit stage, lose too much information
about what it has previously done. But if, when computing up to some limit stage λ, it
has successively written all the Σ2 theories of the (Jα,∈) for α < λ on some tape, the
content of this tape at limit stage λ, that is the content produced by the limit rule, more
than likely won’t be the theory of (Jλ,∈). This comes from the simple fact that a Σ2

sentence may be cofinally true in the models (Jα,∈) for α < λ, while not true in (Jλ,∈).
The way to overcome this issue is the following. Friedman and Welch write Tα the

theory of Σ2 sentences defined as

Tα = {φ | ∃β < α ∀δ < α (β < δ =⇒ Jδ |= φ}

which is the theory of Σ2 sentences true in Jδ for big enough δ < α.
From there, two key observations are as follows. First at a limit stage λ, the limit of

the codes of the Σ2 theory of the Jα’s (note that Friedman and Welch chose to work with
the lim inf limit rule) below λ actually produce a code for Tλ. This is not a coincidence
since we clearly recognize the definition of the lim inf rule in the definition of Tα. Second,
in more set-theoretic involved way, for any ordinal α, the Σ2 theory of Jα is r.e. in Tα.
Hence, at a limit stage and in less than ω steps, the theory of Jα can actually be retrieved
with what was produced by the limit rule, and the computation can go on. This outlines
how the complexity of limit stages can be overcome.. We will deal again with the idea of

92

the theory machine in the more advanced setting of hypermachines, also introduced by
Friedman and Welch, which we briefly present in Section 4.2.2.

The existence of such a machine immediately tells us a few things which we had to
prove “by hand”. Among those are the fact that machines can start looping as late as Σ0

(which, by Theorem 4.1.33, we know to be equal to Σ), or that any real in LΣ0 is a.w.
But more than this broad pictures on the behavior of ITTMs, its sharpness allows us

to get much finer details, notably regarding the time at which writable reals can actually
be written. This result from Welch is a prime example.

Proposition 4.1.35 ([Wel09]). If α > ω is clockable, then it is writable in at most α
steps.

The machine theory is here a more than valuable tool, since trying to come up with
results akin to this "quick writing" and without the machine theory can be especially
difficult. When trying to show similar results from scratch, it promptly appears that the
behavior of machines like the universal machine (e.g. the time at which it produces given
ordinals) is, before obtaining said results, far too erratic or at least unknown. And this
results then allows for a fine study of gaps.

Proposition 4.1.36 ([Wel09]). If α starts a gap in the clockable ordinals, then α is
admissible.

Proposition 4.1.37 ([BDL23]). If α ends a gap, then it is writable in a write-only way
(i.e. the cells of the output tape are not written on more than once) in α steps.

Hence, it is clear that, after defining higher-order model of ITTMs as in Chapter 6,
trying to generalize the idea of the theory machine to those new models ought to be a
fruitful endeavor. This has unfortunately not been attempted in this thesis by lack of
time. And that said, we see in the context of the hypermachines, presented in Section
4.2.2, how things get rather complicated when dealing with Σ3 formulas or higher. One
of the reasons is that we now can’t rely on very convenient results, like the existence of a
uniform Σ1 Skolem function for the levels of the Gödel’s hierarchy.

4.2 Rule-wise and machine-wise generalizations

Here, we introduce a brief panorama of the state-of-the-art of models of infinite machines
– from other kind of infinite machines to generalizations and restrictions of the ITTM
model of Hamkins and Lewis.

First, we can distinguish two types of nature of generalizations of ITTMs. Observe
indeed that in the description of the ITTM, two fundamental aspects can be distinguished :
its structural or machinal aspect (in particular it has the same structure as a classical finite
TM) and its computational or rule aspect (in this case, the lim sup rule). The structural

93

aspect of a machine defines its components and is analogous to a spatial description
while its computational aspect defines the behavior of those components throughout the
computation and is analogous to a temporal description.

Hence, this points toward two directions for generalizations of ITTMs: those can either
be machine-wise, that is structural, or rule-wise, that is, in the above sense, computa-
tional. In this work, we are mostly interested with rule-wise generalizations as, given their
role in the temporal aspect of the computation, they entertain a closer relationship with
ordinals and the constructible hierarchies in set theory.

We start by giving a quick overview of some other infinite machines which are based
on the same idea of a lim sup rule as well of machine-wise generalizations and restrictions
which have been studied. A complete presentation of those can be found in [Car19].
After this, we present the rule-wise generalization introduced by Friedman and Welch in
[FW11].

4.2.1 Machine-wise generalizations

We follow the presentation order suggested by Carl in [Car19], from the less powerful
model to the more powerful one.

4.2.1.1 Infinite time register machines (ITRMs and α-ITRMs)

Definition 4.2.1 ([Koe09]). For an limit ordinal α, an α-ITRM has the structure of a
classical finite register machine (see [Car19, p. 19] for a description) and is defined by the
following limit rule, writing lα the active program line at limit stage α and rαi the content
of the ith register at limit stage.

• lα = lim inf
β<α

(lβ)

• rαi =

lim inf
β<α

(rβi) if lim inf
β<α

(rβi) < α

0 else

Moreover, ω-ITRMs are simply called ITRM.

In this definition we see how the main difference between α-iTRMs and ITTMs comes
from the structure of the machines rather the from the rule. Obviously, a different struc-
ture forces a different description of the limit rule, but the underlying idea is here still
that of a lim inf.

Now, one main aspect of the model of α-ITRM is the fact that its has finitely many
registers and whose value are bounded; namely by α. Obviously, the choice of α has
direct consequences on the power of an α-ITRM: it can for example easily count for α
steps using only one register. So we now consider ITRMs (that is ω-ITRMs) that can be

94

compared with ITTMs and on an equal footing with them. The first remarkable result is
the following:

Proposition 4.2.2 ([KM08]). There is no universal ITRM. That is, there is no ITRM
that simulate in parallel all ITRMs.

Sketch of the proof. This comes from the fact that the halting problem for n-registers
ITRM is decidable by an ITRM. The idea behind this fact is that with finitely many
registers the configurations of the machine can be encoded as integers. Hence, it is possible
to consider a machine with more register that n register that simulate machines with n

integers while keeping track of its successive configurations, and doing so until it sees it
halt or it detects a looping pattern in the succession of its configurations (as with ITTMs,
an ITRM loops if and only if at some point it exhibits a looping pattern.)

Still, as for ITTMs a lower bound for their arithmetical power can be established.

Proposition 4.2.3 ([KM08]). WO is ITRM-decidable.

Sketch of the proof. The idea is the same as for the ITTM case: the machine ensures that
the real given in input describes a partial order and then it inductively decides whether
its a well-order by deciding first whether its empty or whether there is a least element and
then whether the partial order obtained by removing this least element is a well-order.

Hence, from an arithmetical point of view, we may be tempted to see ITRMs and
ITTMs as equally powerful. However, from a set-theoretic point of view, the former
model is remarkably less powerful.

Proposition 4.2.4 ([Koe09]). The halting time of ITRMs are bounded by ωCK
ω .

Sketch of the proof. This is shown by studying the looping condition of ITRM and show-
ing that such a looping pattern must appear before stage ωCK

ω .

On the other hand, it is relatively easy to see that ωCK
ω is strictly smaller than γ: this

comes from the fact that λ = γ and that by Proposition 4.1.23, λ is an admissible ordinal
limit of admissible ordinals (and even limit of limit of limit. . .) Still, akin the the equality
λ = γ, the following results shows that ITRM are well-behaved when it comes to what
corresponds to their writing and clocking abilities.

Proposition 4.2.5 ([Koe09]). A real x is ITRM-computable if and only if x ∈ LωCK
ω

.

Sketch of proof. The left-to-right direction come from the previous proposition. The other
direction is proved by showing how the set of ITRMs computing well-orders recursive in
ωCK
i is ITRM-decidable and how this implies that a code for ωCK

i+1 is ITRM-computable and
then, in turn, how it implies that the set of ITRMs which compute well-orders recursive
in ωCK

i+1 is ITRM-decidable and so on for i ∈ ω.

95

As said, such relations may act as a criterion to judge of the practicality(in its usage
in set theory) of an infinite machine. Alternatively, it can be seen as a criterion of
how natural or well-behaved it is (the former if we believe in some sort of mathematical
natural arrangement). Consequently the following result, regarding α-ITRMs and not
as satisfying as the previous one, may be the sign that something deeper is yet to be
understood with this idea of α-powered computation models.

Theorem 4.2.6 ([Car19]). Under technical conditions on α described in [Car19, p. 115],
we have the following: if β has an α-ITRM computable code and x ∈ P(α)∩Lβ then x is
α-ITRM computable.

4.2.1.2 α-Turing machines (α-ITTMs)

Even if both were introduced at the same time, the model of α-ITRM can be seen as
generalization of that of ITRM. Similarly, we can define α-ITTMs.

Definition 4.2.7 ([KS09]). α-ITTMs are defined as ITTMs with the onmy difference
that their tapes are of length α. That is, each tape with its content induces a function
C : α→ 2 that maps some ordinal ι ∈ α to the content of the ιth cell of the tape. Hence,
the heads also move on those tapes of length α and at limit stage ν, writing hν for the
position of some head at this limit stage, we have:

hν =

lim inf
ν′<ν

hν
′ if lim inf

ν′<ν
hν

′
< 0

else 0

Moreover, the following convention is added: if one of the heads moves to the left while
on a cell whose index is a limit ordinal, it goes to cell 0.

First, α-ITTMs are an extension of α-IRMs in the sense that the former can simulate
the latter (see [Car19, Lemma 3.5.38]). Second, while this definition is very close to
that of ITTMs, a difficulty arises. Namely, the fact that the tape has length α makes it
difficult for the head of some tape to “know where it is”. Indeed, if at some point of the
computation of an α-ITTM, the head of the working tape is on the cell β, the machine
has no practical mean to apprehend this fact or to behave w.r.t. this ordinal β. Or, from
another point of view, the tape may be too big for the machine to purposely move to
some βth cells – whereas in the ITTM model it can easily and purposely move to some ith

cell .
For a concrete example, suppose that α is multiplicatively closed and that a well-order

on α of order-type ν is written on the working tape. As in the proof of 4.1.19, we would
like to say that for any ν ′ < ν we can “cut” this order type below some β ∈ α in order to
obtain a well-order of order type ν ′. In order to do this, the machine needs to identify all
β′ ∈ α such that β ≺ν β

′ and remove them from the well-order. That is it need to look at

96

cells of offset ⟨β, β′⟩ (where ⟨·, ·⟩ is some pairing function from α× α→ α) that reads 1.
But as said, it may not be able to do so without being given, in one way or another, this
β. And for such an ubiquitous proposition like Proposition 4.1.19 to be missing would
make a big gap in the theory of α-ITTMs. So, we need to allow finitely many parameters
pi ∈ α to be used in the computation of α-ITTMs. With those (and only with those, see
[CRS20]) we can prove the following two fundamental results.

Proposition 4.2.8 ([Car19]). Let α < β. Then β-ITTMs can simulate α-ITTMs.

Sketch of proof. We write α = α′ + k where α′ is limit. Suppose first that k ̸= 1. Given
α as parameter in a β-ITTM computation, it is easy to write a 1 in the cell α. Then,
observe that any α-ITTM can be modified to never use cells that are multiple of k (i.e.
cells of offset ν + k · i for any limit ν and finite i > 0.) Hence, from any α-ITTM, this let
us design a β-ITTM that can detect that it reached cell α (and does not go past it) as it
is the only cell of offset multiple of k whose value is 1.

If k = 1, we write a 1 in cell α+1 = α′ +2 and then we avoid using cells whose offset
is even and simply tell the machine to look, after each step, one cell to the right to see
whether it actually reached cell α.

Proposition 4.2.9 ([Car19]). Let α be multiplicatively closed. Then α-writable ordinals
form an initial segment of On.

Sketch of proof. An ordinal ν is α-writable if an α-ITTM writes the code for a well-order
on α of order type ν. Hence, any ν ′ < ν is the order type of this well-order truncated below
some β ∈ α. With the right β given as parameter, it is easy to truncate the well-order
below this β

This new feature however, the fact that we authorize parameters in order to prove
such basic and excepted results, can be philosophically motivated. It echoes with the idea
of α-recursion in which any x ∈ Lα is deemed Lα-finite: adding finitely many parameters
in α to an α-machine is the natural extension of being able to hardcode finitely many
natural numbers, that is ordinals in ω, in the code of an ITTM. And further, α-machines
can only be run in a natural way in some set in which α is included, typically Lβ for
α ⩽ β. From this point of view, admitting parameters in α for an α machine run in such
a Lβ is as natural as allowing parameters in α or Lα for a formula which is to be evaluated
in Lβ.

And despite this difficulty and with this feature–and on the contrary to what happened
in the case of ITRMs–there exists (for α multiplicatively closed) a universal α-ITTM.

Proposition 4.2.10 ([Car19]). For α a multiplicatively closed ordinal, there exists a
universal α-ITTM that simulates simultaneously every computation of the form m(ν) for
m an α-ITTM and ν ∈ α a parameter.

97

Sketch of proof. The idea is the same as that used for the universal ITTM. It is slightly
more involved as with all parameters it simulates way more machines; but also, it now
has way more room to do so. See [Car19, Theorem 3.5.15] for a thorough description.

With such a universal machine, it is relatively easy to reproduce some of the proofs
done in the ITTM setting. This yield the following result which shows that the naturally
extended constants, λ(α), ζ(α) and Σ(α) stay relevant in the context of α-ITTM.

Proposition 4.2.11 ([Car19]). λ(α) < ζ(α) < Σ(α).

Proof. Same proof as for Proposition 4.1.20.

Then again, we can prove that the there is a deep connection between the concept of
clockable and that of writable ordinal, even for α-ITTM.

Theorem 4.2.12 ([Car19]). λ(α) = γ(α).

Proof. This can be established with the same technique as done by Welch in [Wel00b].
This technique is demonstrated in the proof of Proposition 5.2.1 which generalizes this
type of result.

Corollary 4.2.13 ([Car19]). A code for a set x ⊂ α is α-writable (resp. α-e.w. and
α-a.w.) if and only x ∈ Lλ(α) (resp. x ∈ Lζ(α) and x ∈ LΣ(α)).

Proof. This can be established as a corollary of the previous theorem as in the proof of
Proposition 4.1.32. Alternatively, this can be proved directly; in which case the previous
theorem becomes the corollary. With what we have seen in the previous chapter and with
the proximity between ITTMs and α-ITTMs, it is relatively clear that those two results
are equivalent. See [Car19, Section 4.6.3] for such a presentation.

And as stated above, at the end of Section 3.3.2, α-ITTMs are the, to this point
missing, computational counterpart of α-recursion. By considering α-machines whose
computation time is bounded by α, Koepke established the following theorem.

Theorem 4.2.14 ([Koe05]). Let α be closed under ordinal exponentiation. Then x ⊂ α

is α-recursive if and only if x is α-ITTM computable in less than α steps.

Sketch of the proof. As already seen, x ⊂ α is α-recursive if and only if it is ∆1(Lα) (i.e.
∆1-definable over Lα with parameters in Lα).

Then, one direction of the equivalence expresses the fact that if an α-ITTM computes
some x ⊂ α, then this x is ∆1(Lα). And indeed, it is Σ1(Lα) as x is computed by some
machine if and only if there exists a halting computation of this machine on less than
α steps such that x is on the output when the machine halts. Also, it is Π1(Lα) as x
is computed by this machine if and only any computation of this machine (observe that
with fixed inputs, a machine only gives rise to one computation) halts and outputs x.

98

As for the other direction, the idea is the following: a Σ1 predicate is true in Lα if and
only it is true in some Lβ for β < α. So an α-ITTM can go through all β < α, compute a
code for Lβ and test whether the predicate is true in Lβ. This let α-ITTM semi-decide Σ1

predicates in Lα. So if a predicate is ∆1, it is decidable by an α-ITTM, and consequently
any α-recursive x is computable.

4.2.1.3 Ordinal register machine and ordinal Turing machine (ORM and OTM)

Further again, Koepke defined ordinal register machines (ORM) and ordinal Turing ma-
chine (OTM). Those are obtained by simply providing registers of size On for the ORMs
and tapes of length On for the OTMs.

For the ORMs, if we apply the same reasonning as previously, we may want to allow
parameters. But then, it means parameters in On; which may in turn seem a bit excessive.
In this setting, as could be expected, every constructible set of ordinal X is decidable with
some α ∈ On as parameter (see [KS06]). Without parameters, it can decide any set of
ordinal X such that X ∈ Lσ where σ is the least stable ordinal (i.e. least ordinal such
that Lσ ≺ L). This come from the fact that cofinally many ordinals below σ are the least
ordinal satisfying some Σ1 property (see [SS12]). Hence those ordinal can be recognized
without being given as parameters. Interestingly, it can be shown that there is exists a
universal ORM (see [KS08]).

For OTMs, as previously, they are more powerful as they can simulate ORMs (see
[Car19, Lemma 3.5.45]). From this, we obtain the analog results for OTMs: a set X ⊂ On

is OTM-writable (with parameters) if and only it is constructible ([KS09]) and it is OTM
writable without parameters if and only if it is in Lσ ([SS12]).

Hence, α-ITTM and OTM give a computational and practical tool for the study of
admissible sets and the constructibe universe. As an example, we can cite the proof of
the Sacks-Simpson theorem (for an admissible ordinal α, there exists two α-r.e. sets that
are incomparable w.r.t. weakly α-recursivity) using α-ITTMs presented in [Koe05].

4.2.2 Rule-wise generalization: Friedman and Welch’s hypermachine

In [FW11], Friedman and Welch introduced a rule-wise generalization of the classical
ITTM. The idea is the following: at limit stages, the value of a cell is still determined
by a lim sup or a lim inf of the previous values of the cell (in particular, they chose the
lim inf here), with the difference that the lim inf is computed only from a specific subset,
depending of the history of the machine, of the previous values of this cell.

Definition 4.2.15 ([FW11]). A hypermachine has the structure of a 4-tape Turing ma-
chine. We call those tapes input tape, working tape, output tape and rule tape. It
computes like an ITTM with only a difference as to how the limit value of the cells are
computed.

99

At any limit stage α, the rule tape determines (in a way that we will describe just
after) a cofinal subset E1

α ⊆ α and, writing Ci(β) for the value of the cell i at some stage
β, Ci(α) is defined as follow.

Ci(α) = 1←→ ∃β < α ∀δ ∈ [β, α[(δ ∈ E1
α =⇒ Ci(δ) = 1)

That is, in the computation of the machine up to some stage α, there is some stage β
such that at every ulterior stage δ ∈ E1

α, Ci(δ) = 1. In a way, we could say that the cell i
stabilized before stage α w.r.t. the subset E1

α.

It is clear that those machines are rule-wise generalizations of the ITTMs: the fact
that a tape is added is more for convenience and clarity of the exposition, as it would
be doable to merge the working tape with the rule tape. However, Friedman and Welch
show that this model is strictly more powerful than that of ITTM. This shows that the
change of the limit rule couldn’t be simulated by classical ITTM and so that the essential
aspect of this generalization is the change of the rule itself.

We now describe how E1
α is defined. The stages chosen for the lim inf, that is the

stages in E1
α, are called by the authors “1-correct in α”. So the limit operator can be

written like this, for a limit α:

Ci(α) = 1←→ ∃β < α ∀δ ∈ [β, α[(δ is 1-correct in α =⇒ Ci(δ) = 1)

To define the 1-correct ordinals in α, they first define the 1-stable ordinals in α. In
what follows, we write 1n for the word of length n made only of the letter 1 and 1x for
the (possibly ordinal-indexed) word made of the word 1 concatenated to the left of the
word x.

An ordinal β ∈ α is 1-stable in α when it is a multiple of ωω and when the following
holds: if any pattern of the form 0n1x, for x ∈ ω2 and n ∈ ω, appeared as the content
of the rule tape before stage α and if 1x appeared as the content of the rule tape before
stage β, then the pattern 0n1x also appeared before β. That is:

∀x ∈ ω2∀n∀δ < α ∀δ′ < β (C(δ) = 0n1x ∧ C(δ′) = 1x =⇒ ∃δ′′ < β C(δ′′) = 0n1x)

The authors write S1
α ⊆ α for the 1-stable ordinals below α. From there, they define

E1
α, the 1-correct ordinals below α, as follows.E1

α = {α′ < α | S1
α ∩ α′ = S1

α′} if α is a limit of multiple of ωω

E1
α = α else

So, an ordinal α′ is 1-correct in α if it is correct (w.r.t. α) about the ordinals β < α′ it
thinks are 1-stable.

This definition is tailored to allow the construction of a theory machine. That is a

100

machine that will iteratively write on its output a coden as well as the Σ3-theory, of the
successive levels of the Jensen’s hierarchy Jα. For our purpose, it is enough to know that
if α = ωα then Jα = Lα. As defined in [FW11], we write (ζ(3),Σ(3)) for the least couple
such that ζ(3) < Σ(3) and

Lζ(3) ≺Σ3 LΣ(3)

Theorem 4.2.16 ([FW11]). There exists a theory hypermachine that iteratively writes
codes for the Jα as well as, in parallel, the complete theories of the Jα for all α below
Σ(3). Moreover, at stage Σ(3) it reproduces stage ζ(3) and starts looping.

Sketch of proof. As done in [FW11], we write G (for “good”) for the set of ordinals that
are multiple of ωω and G∗ for ordinals that are limit of ordinals in G.

Then, observe first that if the rule tape is not used, that is if nothing is written in the
rule tape, then for any α, the 1-stable in α are simply the elements of α ∩ G. So in this
case, for any α′ < α, we have:

S1
α ∩ α′ = α ∩G ∩ α′ = α′ ∩G = S1

α′

This means that if the rule tape is not used, the hypermachine behaves like a classical
lim inf ITTM. In other words, ITTMs can be seen as particular hypermachines.

This allows for the following observations, writing T n
α for the Σn-theory of Jα, T ω

α for
its complete theory and l(α) for a code of Jα.

• Given l(α) and T ω
α an ITTM (and so a hypermachine) can compute l(α+1), a code

for Jα+1, by computing from the input the next stage of the Jensen hierarchy.

• Given l(α + 1), a machine can compute T ω
α+1 by evaluating every possible sentence

in Jα+1, using l(α + 1).

With this, we see how successor stages of the theory machine can be relatively easily dealt
with.

It gets tricky at limit stages as nothing tells us that what the limit rule will produce
with previously written codes and theories won’t simply be gibberish. To deal with limit
cases, we can define Σn stable ordinals:

Definition 4.2.17. For a limit ordinal λ, an ordinal α is Σn-stable in λ when:

α < λ ∧ Jα ≺Σn Jλ

We write Ŝn
λ for the Σn-stable ordinals in λ.

Then, Friedmann and Welch distinguish two limit cases in the computation of the
theory machine, writing λ̄ = sup(Ŝ1

λ).

101

λ̄ < λ : Then, considering the β̄’s as β grows below λ, those β̄’s eventually reach λ̄ (using
persistency of Σ1 formulas) and the sequence does not grow further. That is, λ̄ is
e.w. below λ. Also, observe that, by persistency of Σ1 formulas, T 1

λ (λ̄) (the theory
of Jλ with λ̄ as parameter) is the union of the T 1

β (λ̄) for λ̄ < β < λ. Hence, T 1
λ (λ̄)

can be produced by the usual lim sup rule from the previous T 1
β (λ̄).

Then, by a set-theoretic argument, it is possible to show that for each n there is
a uniform and parameter-free Σn Skolem function. In particular and in our case,
using T 1

λ (λ̄), this allows to compute the Σ1-Skolem hull of
{
λ̄
}

inside Jλ. This is a
Σ1-elementary submodel of Jλ (this can be seen using the Tarski-Vaught criterion)
in which λ̄ belongs. By the definition of λ̄, this is Jλ itself. Hence, this yield a
uniform (in λ and λ̄) map from λ̄ onto Jλ which let the machine compute a code
for Jλ using that for λ̄.

λ̄ = λ : Observe that this implies λ ∈ G∗ and that this limit stage is ruled by the lim inf on
E1

λ. We define:

Ê1
λ =

{
α < λ | Ŝ1

α = Ŝ1
λ ∩ α

}
The similarity in the notations is naturally intentional as with the right usage of
the rule tape, we can show that for λ ∈ G∗, Ê1

λ ∩ G = E1
λ ∩ G. Briefly the idea

of how to use the rule tape is the following: it can be used to write information
about reals. At some stage β, writing 1x on the rule tape means that the real
x ∈ Jβ has been considered. Then, writing 0n1x means that Jβ |= φ1

n(x) for (φ1
n)n

an enumeration of the Σ1 formulas with one parameter. Hence, by construction,
1-stability in λ translates into a statement about the Σ1-theory of Jβ with reals as
parameters. More precisely, looking at the rule, we see that it requires Jβ to have
the same Σ1-theory as Jλ with reals as parameters. At the levels we are working at,
everything is seen to be countable and this is equivalent to a statement about the
Σ1-theories without any parameter and this is enough to show that β ∈ S1

λ if and
only if Jβ ≺Σ1 Jλ if and only if β ∈ Ŝ1

λ.

This in mind, there is in the machine a flag F that keeps track of when the value of
β̄ changes, for β’s below λ. Using it, it can detect that λ̄ = λ. Then, at those stages,
using the equality Ê1

λ ∩G = E1
λ ∩G and the information carried by this particular

lim inf, Friedman and Welch show that for λ < Σ(3) the machine can compute T 3
λ .

They show that for a Σ3 formula ϕ, Jλ |= φ is equivalent to say that all Jγ in Ê1
λ

satisfy some Σ1 formula; which is exactly the information carried on by the lim inf

on E1
λ = Ê1

λ of the T 1
γ (that is for γ ∈ Ê1

λ).

Hence, T 3 is produced at those limit stages λ < Σ(3) for which λ̄ = λ and with the
same Skolem hull argument, this enables the machine to compute a code for Jα and
to continue further with the computation.

102

The existence and the behavior of this theory machine shows that all sets in LΣ(3)

are a.w. by a hypermachine. To see this, for any x in LΣ(3), we can simply consider the
theory machine slightly modified so that it outputs, each time it writes the code of a
new Jα, the truncation of the code of Jα below some i. With a well chosen i, for the
right Jβ, it will produce a code for x. Further, while the authors do not give a clear
looping condition, it seems plausible that, more generally, all hypermachine start looping
at stage Σ(3), repeating the stage ζ(3). This would conversely show that all a.w. sets
are in LΣ(3) and similarly that being hypermachine-e.w. and being in Lζ(3) is equivalent
for a set. This naturally justifies the use of the constants ζ(3) and Σ(3), which were
originally simply defined as the least couple for which Lζ(3) ≺Σ3 LΣ(3) holds. This proves
indeed the following theorem for the hypermachines, which was naturally the aim of this
generalization:

Theorem 4.2.18. Σ(3) is the supremum of the hypermachine-a.w. ordinals and ζ(3) is
the supremum of the hypermachine-e.w. ordinals and Lζ(3) ≺Σ3 LΣ(3).

Observe however that to reach the diverse assertions of the previous paragraph, we did
not use the universal machine. And this is for a good reason: it is not clear whether there
exists a universal hypermachine. We will come back better equipped for this question in
Remark 5.3.34 but for the moment it is enough to observe that it would be difficult to
simulate a rule tape in a straightforward way: as the limit rule looks at the whole rule tape,
it does not seem possible to split it into two to “share” between the simulating machine
and the simulated machine. And the absence of a universal machine may both hinder
their study, as most of high-level proof techniques for ITTMs use universal machines, as
well as their practicality. For this last point, we should add that, for the same reasons, the
possibility of simulating a single other hypermachine in an hypermachine is not granted
as well.

103

Chapter 5

Toward higher-order machines:
simulational Γ-machines

Wo aber Gefahr ist, wächst das Rettende auch.
But where the danger is, also grows what saves.

– Hölderlin, Patmos

In this chapter we present the more general theory of simulational Γ-machines. Γ-machines
provide a wide generalization of the previous model of ITTM: namely a model that ac-
counts for infinite Turing machines whose limit behavior is ruled by any rule. In turn,
simulational Γ-machines form a restriction of this generalization to model of machines in
which a universal machine can be defined in a straightforward way. More precisely, sim-
ulational Γ-machines are defined as Γ-machines whose limit rule satisfy a set of 4 simple
constraints–which we show is enough for a model of Γ-machine to admit a universal ma-
chine. To this set of constraint we add a safeguard constraint and a definability constraint
which ensures tight links with the constructible universe. The three main results of this
chapter are the following. First, Theorem 5.4.1 surprisingly shows there are only two
2-symbol limit rules, namely the lim sup and the lim inf rule, that satisfy the 4 simula-
tional constraints as well as the safeguard one. This shows how, more generally, n-symbol
machines must be considered. Second, the most central result, for models of Γ-machine
satisfying the 6 constraints we mentioned, Theorem 5.4.14 establishes the equality be-
tween ΣΓ, the supremum of the ordinals that are accidentally writable with a given model
of Γ-machine, and TΓ the supremum of the ordinals that are accidentally clockable with
the same model. This result is the generalization to a wide class of models of machine
of Proposition 5.2.1. Thirdly, Theorem 5.5.1 shows through a counter-example that the
safeguard condition cannot be omitted in previous theorem. Moreover, we discuss of the
hypermachines developed by Friedman and Welch in the light of those results in Remark
5.3.34.

104

5.1 Results and organization of the chapter

As mentionned, ITTMs simply are finite Turing machines to which we add a limit rule
that ensures that the machine snapshots are unambiguously defined at limit stages. Hence
an ITTM has the same structure as a classical finite Turing machine and what actually
does the (transfinite) work is the limit rule. In other word, with this point of view, the
structure of the classical finite Turing machine only misses a limit rule to become a model
of infinite machine. Once we realize this, the model of ITTM introduced in [HL00] can
immediately be seen as a “plug and play” structure in which it is enough to plug a limit
rule in in order to obtain a model of infinite computation ready for use or study. This is
the basis of what was refereed to as “rule-wise generalization” in Section 4.2.

Now it is clear that not any limit rule will give rise to as a well-behaved and interesting
model as that of ITTMs. And we will see how those feats of the ITTM are rooted in the
existence of a universal machine. So, working our way toward the possibility of devising
interesting rule-wise generalizations, our first leading question will be: how and why does
the universal ITTM work?

To answer this question, we first look at the universal ITTM and the way it is com-
monly used in order to exhibit sufficient conditions for a universal machine to exist in
the model produced by a given rule. This is done in Section 5.2. We begin by proving a
slightly new structural equality (which generalizes the equality λ = γ proved in [Wel00b])
for the usual ITTMs. This proof shows how the universal machine is canonically used
in this kind of state-of-the-art proofs developped by Welch in [Wel00b]. Then we try to
understand what is implicitly needed in this proof regarding the universal machine and
more generally regarding the possibility of simulating other machines. At the end of this
discussion, we exhibit five critical characteristics satisfied by the usual lim sup limit rule.
The first four of those form a sufficient condition for a given limit rule to yield a model
of ITTM in which a universal machine exists.

In Section 5.3, we provide general definitions for the chapter as well as a formal
definition of what a rule is. It can indeed be seen an operator that maps ordinal words
representing the history to symbols in the alphabet of the machine. With this formal
definition we can formalize the five conditions of the previous section.

In Section 5.4, we start by showing in Theorem 5.4.1 that the lim sup and the lim inf

operator are, surprisingly, the only two-symbol limit operators satisfying this set of five
conditions. This steers the search for higher order machine toward a yet unexplored di-
rection: n-symbol infinite Turing machine. We then show in the main theorem, Theorem
5.4.14, that for any n-symbol Turing machine that satisfies those five condition and de-
finable by a set-theoretic formula we can establish many of the results established for the
classical ITTMs. The most important one, whose proof takes a large part of the section,
is a strong constant equality relating the clockable ordinals and the writable ordinals (In
the case of Γ-machines, those constants are introduced in Section 5.2). A corollary of this

105

equality is that for those models, the generalization to Γ-machines of the equation λ = γ

also holds.
In Section 5.5 we eventually show in Theorem 5.5.1 that the fifth condition, acting

as a safeguard and not needed for an operator to generate a model of machine with a
universal machine, is however needed for the main theorem. This shows that this result
is sharp with respect to this fifth hypothesis.

5.2 Eventually clocking and accidentally clocking

As already seen, a real can be writable if there is a machine that halts (by reaching its
distinguished state qhalt) and such that when it halts x is written on its output tape. It
can also be eventually writable (e.w. in what follows) if there is a machine that never stops
and that, at some point, has x written on its output tape and never modifies it afterward.
It can be accidentally writable (a.w. in what follows) if there is a machine in which x is
written on any of its tapes and at any stage, even if it is modified or erased just after. It
is easy to see that writable implies e.w. implies a.w.

From there, we explained how an ordinal can also be writable (resp. e.w. and a.w.)
when a code for it is writable (resp. e.w. and a.w.) This induces three constants: Σ, the
supremum of the a.w. ordinals, ζ, the supremum of the e.w. ordinals and λ, the supremum
of the writable ordinals.

On the other hand, when it comes to clockable ordinals, only one constant was defined:
γ, the supremum of the clockable ordinals. But we can actually also devise three ways for
an ordinal to be clockable. To this extent, we introduce the two following definitons: α
is eventually clockable when the output of some converging machine m stabilizes at stage
α. And α is accidentally clockable when there is a computation in which at stage α some
real x appears for the first time in the computation. Then we can write η the supremum
of the eventually clockable ordinals and T (capital τ) the supremum of the accidentally
clockable ordinals. And with the latter, we can show the following result, generalizing
Theorem 4.1.31 (that is yet to be proved in this document).

Proposition 5.2.1 ([Wel00b]). Σ = T. That is the supremum of the accidentally writable
ordinal is equal to that of the accidentally clockable ordinals.

This proposition, while stated here in a new way, is very close to [Wel00b, Corollary 3.5]
which states that the collection of sets encoded by accidentally writable reals is actually
LΣ. In this article from Welch, it was a corollary of the fact that λ = γ and this fact is
itself a corollary of Theorem 5.2.1 here, as we’ll see in a more general setting in Corollary
5.4.31. Another corollary is the fact that, with previous notations, ζ = η. So this chain
of consequences can be seen to justify this new phrasing. Moreover, it should be noted
that the proof of this slightly more general result uses the same technique as that of the
main proposition of [Wel00b]. Finally, we take for granted in this proof that there exists a

106

universal ITTM U and that we can design in a natural way machines that simulate other
machines. This is actually true but we will come back to this.

Proof. First, suppose that Σ > T. This implies that T is a.w. by some machine mT. So
we consider the following machineM. It will use the code of T that appears at some point
in mT to write something for the first time after stage T, hence reaching a contradiction.
To do this, first, it keeps the first cell of its working tape always set to 0 and the first cell
of its output tape always set to 1. So when using its working tape, it uses cells i > 0.
Then, it simulates mT on some part of its working tape (again, without using cell i = 0)
and each time an ordinal α is written in the simulation of mT, it counts for at least α
steps. Remember that by Proposition 4.1.12 it can recognize reals describing well-orders.
This is done by trying to count through it, so it takes at least α steps to recognize that a
real encodes a well-order of order type α. Then, it copies α on its output tape, without
using the first cell that it keeps to 1. Now, when T appears for the first time at stage
αT: as T appears for the first time in mT and T is the supremum of the a.c., that is of
the stages of first appearance in a given machine, we have αT < T. Then, M counts for
at least T steps and after those writes T on its output tape. This is the first time that
T appears on this tape. Also, the whole content of this tape, with the first cell set to 1

cannot have appeared earlier in the working tape whose first cell is left on 0. Hence the
real it writes was not written before and it writes it for the first time at least at stage
αT + T ⩾ T. And αT + T is consequently a.c. which is a contradiction. So Σ ⩽ T.

For the other direction, to show that Σ ⩾ T, we will show that in any computation
that does not halt, for any cell on any tape, the values of this cell at stages ζ and Σ

match and moreover that a cell set to 0 at stage ζ stays forever so. This will prove that
nothing new is ever written after stage Σ, as the machine will be repeating indefinitely
the segment of computation [ζ,Σ[and so that Σ ⩾ T. Let m be a machine and i ∈ ω be
some cell on one of its tape.

• Suppose Ci(Σ) = 0. Then, by the limsup rule, the cell must have converged to 0 at
some least ordinal stage α < Σ. That is Ci(α) = 0 and stays so up to Σ. We show
that α < ζ (this is actually Main Proposition of [Wel00b]). We design a machineM
that does the following: it launches a copy U1 of the universal machine and for each
ordinal β appearing in U1, that is accidentally written in a machine simulated by U1,
M writes this ordinal on its output tape and simulates m up to this ordinal β. If
Cm

i (β) = 0, it launches a new copy U2 of the universal machine and each time some
ordinal β′ > β is appears in U2, it simulates a fresh copy of m up to stage β′ and
looks whether the cell i was set back to 1 between β and β′. If it did,M goes back
to its simulation of the universal machine U1 and looks for the next such ordinal β,
that is such that Cm

i (β) = 0. When β > α, the machine never find 1’s anymore in
the history of cell i after this β, as all β′ > β generated are strictly between α and
Σ. Hence, β is written on the output andM looks indefinitely for β′ > β at which

107

a 1 appear on cell i. And soM actually eventually writes some β > α. As such, β
is eventually writable and we have α < β < ζ < Σ and Ci(ζ) = 0 as well.

• Suppose now that Ci(ζ) = 0. Then, the value of the cell converged at some α < ζ

and there exists a machine mα that e.w. α. We consider the following computation
from a machine that we call W : It simulates mα on some part of its working tape,
which will eventually write α. Each time an ordinal β is written on the simulated
output tape of mα, it does the following: while β does not change (that is the
simulation of mα is intertwined by dovetailing with the rest of the computation) it
simulates U and, each time U (accidentally) writes an ordinal β′ > β, W starts by
simulating m up to β and then up to β′. If it finds a 1 in the cell i between stages
β and β′, it writes β′ on the output tape and stops this part of the computation.
Note that as the simulation of mα is still going on, it might start again from the
beginning later, if its output value changes. However, at some point α is written
in mα and does not change anymore. At this point, if W finds a 1 between stages
β = α and some β′ > α, this 1 must appear after ζ (as the value of the cell converges
to 0 at stage α and up to stage ζ) and then β′, which it has consequently eventually
written is greater that ζ, which is a contradiction. Hence, the value of Ci never
changes after stage ζ and Ci(Σ) = 0 and this conclude the proof.

Let us now show how Theorem 4.1.31, stating that λ = γ and first proved in [Wel00b], is
a corollary of this proposition.

Proof of Theorem 4.1.31. First λ ⩽ γ as otherwise γ would be writable and, writing γ, it
would be easy to clock an ordinal greater than it.

Then, if a machine halts, it must do so before stage Σ in virtue of Proposition 5.2.1.
But then, it is easy to simulate this machine along the a.w. ordinals, using U to look for
and write the a.w. ordinal stage at which this machine halts; which proves that every
halting stage is also writable.

Similarly, the second part of Theorem 4.1.33 is now more easily shown with this
equality.

Proposition 5.2.2. (λ, ζ,Σ) is the lexicographical least triplet yielding the chain of ele-
mentary end-extension

Lλ ≺Σ1 Lζ ≺Σ2 LΣ

Proof. Let (α, β, δ) <lex (λ, ζ,Σ) such that Lα ≺Σ1 Lβ ≺Σ2 Lδ. To start, we can show
that this implies that any machine is seen to be looping between stages β and δ: first,
by Σ2-elementarity, the snapshot of any machine match at stages β and δ. Second, if

108

Ci(β) = 0, there exists β′ < β at which the value of cell i stabilized on 0 and, again by
elementarity, this also holds in Lδ and so Ci(δ) = 0. But by definition of T, the machines
cannot all start looping before some stage strictly less T. And as Σ = T, we also have
that δ = Σ.

Then, if β < ζ, this means that β is e.w. Using it, a machine can do the following: e.w.
β, simulate U until stage β, save its snapshot at stage β and continue with the simulation
of U until this snapshot appears again. When it does, it means that U was simulated up
to stage T. Using the same idea as for the proof of Proposition 5.2.1, it can arrange to
write for the first time a real as this stage T, which would be a contradiction.

Eventually, if α < λ: α is writable and as Lα ≺Σ1 Lδ = LT the models Lα and
LT agree on which machines halt. But any halting machine does so before stage T and
consequently before stage α. In this case, the halting problem would be decidable, which
is a contradiction.

The proof of Proposition 5.2.1 is somewhat of a classical proof in the theory of ITTMs,
at least in its usage of simulations, and in particular in that of the simulation of the
universal machine U . Hence, the question that we postponed: how does the universal
ITTM works? Does it actually exist and how can we describe it?

To answer this, observe that u, the classical three-tapes finite universal machine, gives
almost immediately raise to an infinite time universal machine that simulates a single other
ITTM. Indeed in the finite setting, u is such that given the code of some finite machine
m, it simulates n steps of m in less than Cn2 steps for some constant C, supposing that
u works in a straightforward fashion. How does it work? Without going into the finicky
details, every cell i of m is simulated by some cell I of u. That is, for any finite stage k,
the value of I in u at stage Ck2 is the value of i in m at stage k, and the next value to be
written in I is that of the cell i at stage k + 1. Outside of those cells I, the other cells of
u are used to keep track of the simulation, in particular of the position of the head and
of the state of the simulated machine m.

Now consider the ITTM U0 whose code is the same as u. Remember indeed that the
structure of an ITTM is exactly that of a three-tapes classical Turing machine. We can
also see m as an ITTM, which we denote by M . What happens when U0 computes from
the code of M (viz., that of m)? By construction, for any finite stage k, the snapshot of
U0[⟨M⟩] at stage k will be the same as that of u[⟨M⟩]. Moreover, this also holds for the
computations of M and m. Hence, for the first ω steps, the computation U0[⟨M⟩] is the
same as u[⟨m⟩]. In other words, the ITTM U0 with the code of M as input simulates the
ITTM M through all the finite stages. But what happens a stage ω? That is, what is
the snapshot of U0[⟨M⟩] at stage ω? Take some cell i of M . It is simulated by some cell
I of U0. Hence, suppose i in M stabilizes on 0 before stage ω. That is, with the lim sup

rule, CM
i (ω) = 0. Then, so does I in U0[⟨M⟩] and CU0

I (ω) = 0 and same goes for the

109

cells i′ such that CM
i′ (ω) = 1. Hence, the simulation of the limit rule for the simulated

cell i comes directly from the limit rule itself in the simulating cell I. This mean that at
stage ω in the computation U0[⟨M⟩], the content of the cells I describes exactly that of
the cells i in M at stage ω. From there, to simulate the ITTM M further through the
ordinals, only a few things are missing at limit stages: (1) the auxiliary cells used for the
simulation will likely all be set to 1 and those need to be tidied up, (2) the simulated head
of M should be back on the first simulated cell and (3) the simulated state of M should
be qlimit. But as at any limit stage U0 reaches the distinguished state qlimit, it’s easy from
there to modify the machine U0 for it to tidy up its auxiliary cells and to set the correct
head position and state for the simulated machine. This takes a finite amount of steps
and after those the simulation goes on. This description yields a universal infinite time
machine U ′

0 that simulates a single ITTM. From it we can simply enough describe the
universal machine U that simulates all ITTMs at once. U works with its working tape as
if it were ω different tapes in which it simulates in parallel all computations U ′

0[m] for all
machines m ∈ ω. For U to split its working tape, this can be done as follows: first, all
even cells (that is cells on the workings tape whose index i is even) are kept aside and will
constitute a virtual working tape of their own that the machine uses to keep track of its
simulations of all the U0[m]’s. The idea being that its easy for it to “stay” on this virtual
tape while it reads it as it just needs to shift its head twice to the left or to the right of the
real tape in order to shift it on this virtual tape. And using this virtual tape it may easily
split the odd cells into ω tapes, e.g. the virtual tapes of some machine m are constituted
of the cells (f(m, i))i for any computable function (in the finite sense) f that partitions
the odd integers into ω unbounded sets. Then, when U begins, it initializes all its virtual
tapes m with as would U ′

0[m] initializes its working tape, this take ω steps. Then begins
the simulation itself. By dovetailing, that is simulating the machines m in cascade, k
steps of the first k machines, k + 1 steps of the first k + 1 machines, etc. it simulates ω
steps of all of those machines in ω steps of itself; and this concludes the description of U .

Now, why does the universal machine works? That is, what is implicitly used in this
explanation? First, as a cell i of some machine m (we now drop the capital m and only
consider ITTMs) will likely be simulated by a cell I ̸= i, it uses the fact that every cell
are governed by the same limit rule. Also, it uses the fact that the limit value of the cell
I only depends of the history of this cell. Indeed, for a limit ordinal α, in order to say
that Cm

i (α) = CU
I (α), where Cm

i (α) denotes the value of cell i in m at stage α, we use
the fact that hi and hI , the history of respectively the cell i in m and the cell I in U are
somewhat the same and that the limit rule only looks at the histories hi in m and hI in U .
When a rule only looks at the history of a given cell to define the limit value of this cell,
we will say that the rule is cell-by-cell. But what was meant by “somewhat the same”?
Are the histories hi and hI not actually equal? Suppose that m is a very simple machine
that continuously blinks its cell i. First the head of m needs i steps to reach i. As the
cell i is initially set to 0, its history begins with 0i, that is the word of length i. At stage

110

i+ 1, the cell i in m is set to 1. Its history is now 0i1. And then back to 0, then again to
1 and so on. Hence, at any limit stage α, its history reads 0i(10)α. Now what does the
history of cell I in U read? We can merge in U the ω steps of initialization with the actual
simulation, but in any case, the machine will begin the actual simulation of m after some
k strictly greater than i. Hence, hI begins with 0k. At stage k + 1, U writes a 1 in cell I
and the history of Hi reads 0k1. But, and this is one of the most important point, after
having simulated this step from k to k + 1 in m, U will then be simulating some steps
in the machine m + 1 and so on. And it won’t be coming back to m before some finite
amount of steps k2. In the meantime, during those k2 steps, the cell I stays set to 1. So,
after those k2 steps, Hi reads 0k1k2 . And as the computation goes on, Hi will look like:
0k1k20k3 . . . 1kα0kα+1 . . . where each kν are finite and greater than 0. So, to some extent,
hi and Hi are not quite alike. Still we could say that hi is the contraction of Hi, that is
the word obtained by contracting any 1k or 0k

′ respectively to 1 and 0. And U operates
as it should because, as we could say it, the lim sup rule is contraction-proof. The limit
value of a cell does not change if we contract its history. And here, we could say that the
dilatation from hi to Hi is only finite as all kν are finite, but in practice, when we use U
or when we simulate any other machine, it very common to keep it “on hold” for extensive
periods of computation, as in the first part of the proof of proposition 5.2.1. In this case
the dilatation factors of the history, that is the factors kν , may be infinite ordinals and a
priori unboundedly big.

Other than that, keeping a simulated machine “on hold” for some infinite ordinal
amount of steps α, implicitly makes use of the fact that the cells that aren’t written on
(i.e. whose content is not modified) won’t change their content at limit stages. We can
say the the lim sup rule is stable as the content of a cells which stabilized up to at limit
stage does not change at the limit stage.

Eventually, there is a last feature of the Hamkins and Lewis ITTMs that is used
implicitly. Take the computation of some machine m up to some limit stage α. Then
consider a fresh computation of m in which the initial snapshot (that is the content of
the tapes, the state and the head position) is set to match that of m after α steps. In
this second computation, stage 0 corresponds to stage α in the first computation. Still
in both cases it leads to the same subsequent computation. Hence, for any stage β we’d
like that for all i, writing sα the snapshot of m at stage α and Cm,s

i for the function that
maps an ordinal to the content of cell i at this ordinal stage in the computation of m that
starts with s as its snapshot:

Cm
i (α + β) = Cm,sα

i (β)

This clearly holds in the classical model of ITTM for finite α and β. For α and β limits,
it means that even if the history hi of length α + β is truncated to the final segment h′i
of length β, it still yields the same limit value w.r.t. the lim sup rule. This mean more

111

generally that for any histories h and h′ such that h′ is a final segment (or suffix) of h,
then h and h′ yields the same limit value. We can say that the lim sup is asymptotical,
as the limit value that an history yields does not change when we take a final segment of
this history.

This quick glance into the characteristics of the lim sup or lim inf rules that are implic-
itly used in the universal machine leads us to distinguish four characteristics (formalized
below): those limit rules are cell-by-cell, contraction-proof, asymptotic and stable. And, as
we will see, those conditions are sufficient for the universal machine to be easily described
and, may even be necessary conditions for it to exists in a satisfying form. To those, we
can add the looping stability which somehow equates to the fact that a machine can be
seen to be looping without looking at its entire computation through On. For example,
in the lim sup ITTM, a machine is seen to be looping if there are two stages sharing the
same snapshot such that cells that are set to 0 at both of those stages are also set to 0

for the whole segment of computation that spans between those two stages. Without it,
we could easily conceive a pathological machine that repeats for some gigantic ordinal
amount of time after which, thanks to its rule, that escapes the repeating pattern.

As stated, the remarkable result, which we show at the beginning of Section 5.4 is
that the lim sup and lim inf rules are the only 2-symbol rules that satisfy this set of five
characteristics. In other words, they are the only 2-symbol rules that allow for natural
simulations and that have a natural universal machine, as well as satisfying the condition
of looping stability. Further, again as mentioned, the main theorem of this chapter shows
the following strong result: for a n-symbol rule definable by a set-theoretic formula and
that satisfies those five conditions, the supremum of the a.w. ordinals matches with that
of the a.c. ordinals, that is Σ = T for this particular rule. In the last section, we provide
a counter-example to show that this theorem is tight. Namely, we show that there exists
a limit rule that satisfies all those conditions but that of looping stability and such that
for the machines produced by this rule, the equality Σ = T does not hold.

5.3 General definitions and conditions on operators

In order to formaly study limit rules, we need first to define what a limit rule is. In
[Wel00a], Welch introduces the concept of operator. A n-symbol limit rule can be seen as
an operator Γ : <On(ωn)→ ωn, that is a function that given any computation history seen
as an ordinal-indexed limit sequence of n-symbol reals (corresponding to tape contents)
yields a n-symbol real that will represent the tape content at the next limit stage. As
noted, the data of an operator Γ is enough to produce a model of infinite time Turing
machine whose limit stage behavior is ruled by this operator. Such machines will be called
n-symbol Γ-machines. We start by introducing some general concepts.

112

5.3.1 General definitions on ordinal words

Definition 5.3.1 (Ordinal word). An ordinal word w of length λ on some alphabet A

is a function from λ to A that maps every ordinal ι < λ, seen as a position or index in
the word, to a letter in A. We write w[ι] for the letter at position ι in w and w[ι, κ[

the subword of w staring at position ι < κ up to position κ non included. We write |w|
for the length of the word w and when |w| is finite, this coincides with the definition of
words in the ordinary theory of formal languages. When |w| is a limit ordinal, we say
that w is a limit word. Eventually, we write αA for the set of ordinals words of length α

on the alphabet A and we write <OnA for the class of ordinal words of any length on the
alphabet A. That is:

<OnA =
⋃

α∈On

αA

Example 5.3.2. Consider an infinite Turing machine m with two symbols, 0 and 1, that
computes with any limit rule and whose computation reaches some stage α. For any cell
i, this induces a function Ci that maps β ⩽ α to the value of the cell i at stage β. This
also induces an ordinal word hi of length α + 1 on the alphabet 2 = {0, 1} such that for
any β ⩽ α, hi[β] = Ci(β). Also, the content of the three tapes at any stage β can be
described, as an ordinal word wβ ∈ ω2, that is a word of length ω on the alphabet 2. This
can simply be done using an usual encoding to describe the three tapes of length ω in a
single word of length ω. Combining both those points of view, this computation induces
an ordinal word W ∈ α+1(ω2), that is a word of length α+1 on the alphabet ω2 such that
for any stage β ⩽ α, W [β] = wβ.

Definition 5.3.3 (Stutter-free). Let h be an ordinal word on some alphabet A. We say
that h is stutter-free when for all α + 1 index of h, h[α] ̸= h[α + 1]; that is the αth letter
of h is different from the α + 1th.

Definition 5.3.4 (Suffixes and prefixes). Given u and v two ordinal words, we say that
u is a prefix or an initial segment of v, written u ⊑ v when |u| ⩽ |v| and for all ι < |u|,
u[ι] = v[ι]. We say that u is a suffix or a final segment of v, written v ⊒ u when
|u| ⩽ |v| and there exists α such that α + |u| = |v| and for all ι ∈ [α, |v|[, that is for all
ι = α + ι′ < |v|, we have u[ι′] = v[ι].

Definition 5.3.5 (Operations on words). Given two words u and v and α an ordinal, we
write uv for the concatenation of u and v of ordinal length |u|+ |v| and uα the word made
from u concatenated α times to itself, of length |u| · α.

5.3.2 General definitions on machines

Definition 5.3.6 ([Wel00a]). For a natural number n, a n-symbol limit rule operator Γ is
a (class) function Γ : <On(ωn)→ ωn that maps ordinal words on the alphabet ωn, seen as

113

computation histories of n-symbol machines, to element of ωn, seen as tape contents. A
Γ-machine is an infinite Turing machine whose limit rule is that induced by the operator
Γ.

We now introduce basic definitions regarding Γ-machines. Naturally, as Γ-machines
and Hamkins’ ITTM have the same structure, most of those definitions are identical to
the definition given in the specific context of Hamkins’ ITTM.

Definition 5.3.7. We write Γsup and Γinf the operators associated respectively to the
lim sup and the lim inf rule.

Definition 5.3.8 (Looping, [HL00]). For Γ a limit operator and m a Γ-machine, we
say that m is looping when the machine never halts and some interval of computation
[α, α + β[repeats itself through the whole computation of m after stage α. That is for
any stage ν ⩾ α, writing ν = α+ β · δ + ν ′ with δ maximal, the snapshot of m at stage ν
is the same as that of m at stage α + ν ′.

Definition 5.3.9 (Writable reals, [HL00]). For Γ a limit operator, a real x is Γ-writable if
there is a Γ-machine which, when computing from the empty input, halts with x written
on its output.

Definition 5.3.10 (Converging, [HL00]). For Γ a limit operator and m a machine com-
puting on some input y we say that m converges or converges definitively when it never
halts and when after some stage its output tape is never modified again. We say that
m converges up to some ordinal α when it does not halt before stage α and after some
stage β < α its output tape is never modified before stage α. Observe that the definition
of converging involves only the output tape: often, converging machines will continue to
modify their working tape through the whole computation.

Definition 5.3.11 (Eventually writable reals, [HL00]). For Γ a limit operator, a real x is
Γ-eventually writable if there is a Γ-machine which converges when computing from the
empty input and has x written on its output tape when the content of its output tape
stabilized.

Definition 5.3.12 (Accidentally writable reals, [HL00]). For Γ a limit operator, a real x
is Γ-accidentally writable if there is a Γ-machine which, when computing from the empty
input, at some stage has x written on any of its tapes

As with ITTMs, we want to encode ordinals using reals. We give again the encoding
which we use.

Definition 5.3.13. We say that a real x encodes some ordinal α when the real encodes
a relation ≺ on ω of order type α in the the following fashion.

i ≺ j ←→ x[⟨i, j⟩] = 1

114

Definition 5.3.14 (Writable ordinals, [HL00]). For Γ a limit operator, an ordinal α is Γ-
writable (resp. Γ-eventually writable and Γ-accidentally writable) if some x that encodes
α is Γ-writable (resp. Γ-e.w. and Γ-a.w.) We write λΓ, ζΓ and ΣΓ respectively for the
supremum of the Γ-writable, Γ-e.w. and Γ-a.w. ordinals.

Definition 5.3.15 (Clockable ordinals, [HL00]). An ordinal α is Γ-clockable if there is a
Γ machine computing from the empty input that halts a stage α. That is, it computes
for α steps and then, on its next transition, it reaches the state qhalt. We write γΓ for the
supremum of the Γ-clockable ordinals.

With those definitions, what Hamkins and Lewis asked in [HL00] is whether λΓsup =

γΓsup . As noted, Welch answered this question positively in [Wel00b]. More generally, we
may wonder under which conditions on Γ does the equality λΓ = γΓ holds. As done in the
discussion of Section 5.2, we can get a better insight on the question by introducing the
following extensions of the concept of clockable, akin to that of the concept of writable.

Definition 5.3.16 (Eventually clockable ordinals). An ordinal α is Γ-eventually clockable
if there is a Γ-machine which, computing from the empty intput, never halts and whose
output tape stabilizes at stage α; that is, it changes its content upon reaching this stage
and it never subsequently changes it. We write ηΓ for the supremum of the Γ-eventually
clockable ordinals.

Definition 5.3.17 (Accidentally clockable ordinals). An ordinal α is Γ-accidentally clock-
able if there is an Γ-machine which, when computing from the empty input, writes at stage
α on one of its tapes a real that wasn’t written at any previous stage of this computa-
tion on any tape. We write TΓ, capital τ , for the supremum of Γ-accidentaly clockable
ordinals.

In Figure 5.1, we update the table of Figure 4.1 with η and T.

simply eventually accidentally
writable λ ζ Σ
clockable γ η T

Figure 5.1: Greek letters associated to each definition.

Now, as before, given some limit operator Γ, the question becomes: does ΣΓ = TΓ?
This is answered positively in Theorem 5.4.14 for a wide range of operators. And we show
in Corollary 5.4.30 and Corollary 5.4.31 that ΣΓ = TΓ implies both the equalities ζΓ = ηΓ

and λΓ = γΓ.

115

5.3.3 Conditions on operators

5.3.3.1 Simulational operators

Definition 5.3.18 (History of computation). Given a n-symbol operator Γ and a Γ-
machine m that does not halt before stage α, the history H of the computation of m up to
α is an element of α(ωn), that is, it is an ordinal word of length α on the alphabet made
from n-symbol reals, and such that for all β < α, H[β] = Cm(β), meaning that the βth

letter of H is the content of the tapes of m at stage β (representing the three tapes with
a single real). For a given cell i, the cell history hi of the computation of m up to α is an
element of αn such that for all β < α, hi[β] = Cm

i (β). Further, hi = H|i, the restriction
of H to the cell i. When α is a limit ordinal, we say that H (resp. hi) is a limit history
(resp. a limit cell history).

Definition 5.3.19 (Suitable operator, [Wel00a]). An operator Γ is a suitable n-symbol
operator if there is a set-theoretic first-order formula φ(x1, x2, x3, x4) such that for any
machine m, input y, cell i, symbol k and stage ν, writing Hν the history of m up to stage
ν and Lν the νth level of the constructible hierarchy, we have

Γ(Hν)[i] = k ⇐⇒ Lν [y] |= φ(i,m, y, k)

When φ is a Σn formula, it is a Σn operator and it produces Σn machines.

Remark 5.3.20. We may want to restrict the symbols produced at limit stages to 0 and
1, that is Γ would be an operator which acts from <On(ωn) to ω2. In this case, it is enough
to provide a first-order formula φ(x1, x2, x3) such that, with the same notations,

Γ(Hν)[i] = 0 ⇐⇒ Lν [y] |= φ(i,m, y)

From there, we can formalize the different conditions exhibited and informally defined
in the previous section.

Definition 5.3.21 (Stable). An operator Γ is stable when for any real x and limit ordinal
α, with xα denoting the word made from the real x, seen as a letter, repeated α times,
we have

Γ(xα) = x

Definition 5.3.22 (Cell-by-cell). An operator Γ is cell-by-cell when there exists γ :
<Onn→ n such that, given any limit history H and for all cell i, we have

γ(H|i) = Γ(H)|i

where |i denotes the restriction of the tape history H, possibly made of a single tape

116

content, to a single cell; hence yielding a single cell history, that is an element of <Onn.
We say that γ is the cell restriction of Γ.

Definition 5.3.23 (Asymptotic). A limit rule operator Γ is asymptotic when for any limit
history H of length α and any non-empty final segment H ′ (with previously introduced
notation, H ⊒ H ′), we have Γ(H) = Γ(H ′)

Example 5.3.24. Let us see how a Γ-machine m behaves when Γ is asymptotic. For the
sake of simplicity, we suppose that m only has a working tape. We write H(α) for the
history word of length α of the working tape up to some stage α. Again to make thing
simpler, suppose that at stage 0 some real x is on the working tape and the machine is in
the state qlim. Suppose further that there is a limit stage α > 0 such that Γ(H(α)) = x.
Then, we look at the computation of m after this stage α and we show how this gives rise
to a repetition in the computation; but a repetition that may not be a loop.

By definition of the model of ITTMs, at any stage β+ k for a finite k, the snapshot of
m depends only of its code and of its snapshot at stage β. In this case, as only the working
tape is used, in the computation of m stages 0 and α share the same snapshot. This mean
that, for any finite k, the snapshots at stage k and α+k match. That is, H(α+ω) ⊒ H(ω).
Then, what happens at limit stage α+ω? By asymptoticity, Γ(H(α+ω)) = Γ(H(ω)). And
so, snapshots at stages ω and α + ω also match. Further, inductively, we can show that
Γ(H(α · 2)) = Γ(H(α)) = x. And further that Γ(H(α · k)) = Γ(H(α)) = x for any finite
k. Is then m actually looping? Consider stage α · ω. This stage is the first stage after
α whose ordinal number is additively closed. Consequently, by additive closeness, any
non-empty final segment of H(α · ω) has itself H(α · ω) as final segment. Hence applying
asymptoticity in this case only yields that Γ(H(α · ω)) = Γ(H(α · ω)) and without more
assumptions, the limit rule may very well make m exit the repeating pattern at stage
α · ω.

For the next condition, we need a prior definition. What we are aiming to define is
the contraction of a word w, that is the stutter-free word which is made by squeezing
any repeated a symbol in w into a single symbol, and that until no more repetition can
be found. For example, the contraction of the word aabcω would be abc. We define by
transfinite induction the operator ctr, which maps a word to its contraction.

Definition 5.3.25 (Contraction). We define ctr for non-limit ordinal words as follows.
Let w be a word on some alphabet A and a ∈ A. ε denotes the empty word.

ctr(ε) = ε

ctr(wa) =


ctr(w) if w is not limit and ends with a a

ctr(w) if w is limit and has a final segment constituted only of a’s

ctr(w)a else

117

For words whose ordinal length is limit, ctr is defined as a limit of prefixes. Let w be such
a word over A.

ctr(w) = lim
u⊑w

ctr(u)

That is, the contraction of w is defined as the limit of the contraction of its prefixes. For
this definition to be licit, we need to show that this limit is well-defined. This is the object
of the next proposition.

Proposition 5.3.26. The previous limit is well-defined and with it the definition of ctr
is licit.

Proof. We show by induction on the length of v that ctr is well-defined and that if u ⊑ v

then ctr(u) ⊑ ctr(v).
First, ctr(ε) is well-defined and the second condition is immediate.
Then let u be an ordinal word and a a letter. Looking at the definition of ctr it is

clear that if ctr(u) is well-defined, then so is ctr(ua) and further that ctr(u) ⊑ ctr(ua).
For two words u and v such that u ⊏ v, if v is not a limit word, it can be written as v′a.
Hence, in this case, by induction and by the previous observation, ctr is well-defined for
all of those and ctr(u) ⊑ ctr(v′) ⊑ ctr(v).

In the other case, if v is a limit word, then for any prefixes v′ and v′′ of v and such
that v′ ⊑ v′′, by induction, their contraction is well-defined and ctr(v′) ⊑ ctr(v′′). Hence,
ctr(v) is also well-defined, as a growing limit of prefixes. And by construction, for any
v′ ⊑ v, ctr(v′) ⊑ ctr(v), as required.

Definition 5.3.27. We say that two words u and v are equal after contraction, written
u ≃ctr v, whenever ctr(u) = ctr(v)

Below are a few examples of contraction of words and words equal up to contraction.
This wholly coincides with the intuitive idea of contracting every sequence of a symbol
which repeats itself into a single symbol.

Example 5.3.28.

– aaabcccc ≃ctr abbbc.

– The contraction of the limit word bω, that is of the limit word in which the letter b
is repeated ω times, is the single-letter word b, made from the letter b.

– For α, β > 0 and any δ, (bβaα)δ ≃ctr (ba)
δ.

Definition 5.3.29 (Contraction-proof). A operator Γ is contraction-proof when for any
limit histories H and H ′ such that H ≃ctr H

′, we have Γ(H) = Γ(H ′).

118

Remark 5.3.30. As the contraction of a limit word may be a non limit word (take for
example b, the contraction of bω), general operators should not only be defined on limit
words. However, any non limit word w finishing with some letter a is equal up to contrac-
tion to waω. So, when considering contraction-proof operators, as we will do, it is enough
for those to be defined only on limit words.

Remark 5.3.31. Observe that for a cell-by-cell operator, those three characteristics,
namely being stable, asymptotic or contraction-proof, are naturally refined to cell-wise
properties. For example, if we take the case of the property of a cell-by-cell operator Γ

being contraction-proof and write γ its associated cell restriction. Take h and h′ two limit
cell histories such that h ≃ctr h

′. Then we can consider H and H ′ such that for all i,
H|i = h and H ′|i = h′. By the properties of being cell-by-cell and contraction-proof, we
have:

γ(h) = γ(H|i) = Γ(H)|i = Γ(H ′)|i = γ(H ′|i) = γ(h′)

which is simply the fact that γ is contraction-proof as well, in a cell-by-cell fashion. Con-
versely, if γ satisfy this cell-by-cell contraction-proof property, it is clearly carried over to
Γ.

Definition 5.3.32 (Simulational operator). We say that a limit rule operator Γ is a
simulational limit rule operator when it is stable, cell-by-cell, asymptotic and contraction
proof.

Proposition 5.3.33. Let Γ be a simulational limit rule operator. Then there exists a
universal machine UΓ and more generally, a Γ-machine can be designed to compute using
the simulation of any other Γ-machine.

Proof. We use the same reasoning as in the description of the lim sup universal machine.
It is easy, in virtue of the fact that Γ is cell-by-cell and given the code of the finite universal
machine u, to describe a universal Γ-machine U0 that simulates a single other Γ-machine.
From there the description of UΓ from U0 is as previously: we can arrange to virtually
split the working tape into ω virtual workings tapes in each of which, for m ∈ ω, we run
U0 that simulates m. We can also run those machines in cascade (that is n steps of the
nth first machine, n+ 1 steps of the (n+ 1)th first machine and so on) so that in ω steps,
we run ω steps of each of those machines, and more generally at any α limit the machine
simulated α steps of each simulated machine. And this produces the desired computation,
that is at limit stages, the tapes of the simulated machine have the same content as the
machines would have because Γ is contraction-proof.

Now for the second part. What is a natural way for a machine to use the simulation of
another? As briefly sketched, it should first be able to run the simulation of any machine
from any snapshot and for as long it wants. And second, it should be able to put this

119

simulation on hold also for as long as it wants. As Γ is cell-by-cell, asymptotical and
contraction-proof, a machine can run simulations of other machine from any snapshot.
As it is stable and contraction-proof, it can put the simulation on hold for as long as it
wants.

Remark 5.3.34. Let us now look at the hypermachines developped by Welch and Friedman
in [FW11]. We give a brief overview of the definition of those machines in order to put
them under the scrutiniy of those new notions. A more thorough description of those
machines was done in Section 4.2.2.

The structure of the hypermachine is akin to that of a 2-symbol ITTMs with the dif-
ference that it has a new tape called a rule tape. At a limit stage α, the value of the cells
is computed by a discretionary lim inf operator, that is a lim inf operator that considers
only a precise subset of the previous stages over which it takes the lim inf. Those stages
chosen for the lim inf are called by the authors 1-correct in α. Hence, the limit operator
can be written like this, for a limit α:

Ci(α) = 1←→ ∃β < α ∀δ ∈ [β, α[(δ is 1-correct in α =⇒ Ci(δ) = 1)

To define the 1-correct ordinals in α, the authors first define the 1-stable ordinals in α.
With the previous notations, 1n stands for the words of length n made only of the letter
1 and 1x stands for the (possibly infinite) word made of the word 1 concatenated to the
left of the word x. Then, some ordinal β ∈ α is 1-stable in α when it is a multiple of ωω

and when the following holds: if any pattern of the form 0n1x for x ∈ ω2 appeared as the
content of the rule tape before stage α and if 1x appeared as the content of the rule tape
before stage β, then the pattern 0n1x also appeared before β. That is:

∀x ∈ ω2∀n∀δ < α ∀δ′ < β (C(δ) = 0n1x ∧ C(δ′) = 1x =⇒ ∃δ′′ < β C(δ′′) = 0n1x)

The authors write S1
α ⊆ α for the 1-stable ordinals below α. From there, they define

E1
α the 1-correct ordinals below α as follows:E1

α = {α′ < α | S1
α ∩ α′ = S1

α′} if α is a limit of multiple of ωω

E1
α = α else

Now, as this operator needs to look at the whole rule tape, it is not cell-by-cell. How-
ever, it is easily seen to be stable. Then, if it was asymptotic, at some limit stage α · 2
such that α · 2 is a limit of multiple of ωω, the 1-correct ordinals would not depend on the
first half of the history. However, for all 1-stable β ∈ [α, α · 2[, if there is x such that
0n1x appears for the first time at some stage α′ ∈]β, α′ · 2[, then modifying the first half
of the history so that 1x appears before stage α′ < α would change the status of β w.r.t.
1-stability. Hence, we could design a carefully tailored history for which the 1-stability of

120

cofinally many β’s depend on the first half of the history. And so, for each β there would
be some α′ between β and α for which we have β ∈ S1

α′ − S1
α. That is, the status of α′

w.r.t. 1-correctness in α would be modified when we modify the first half of the history
of the rule tape. Eventually, considering a cell outside of the rule tape which is set to
1 only at those stages α′ (which are cofinals) would be enough to contradict asymptotic-
ity. Finally, as there exists ordinals limit of multiple of ωω that are not additively closed
(e.g. ωω(ω2 + ω)), a contraction or a dilatation of the historic may change the length of
the historic and so the way 1-correct ordinals in α are determined, and with it the whole
behavior of the limit rule at limit stage α.

This shows that is not possible to define a universal machine for the hypermachines
with the technique used in the previous proposition. It may still exist but the presence of
the rule tape makes a constructive approach seem difficult.

The following proposition can be seen as a closure property. It is of the utmost
importance and is ubitquitous in what follows, often under the guise of the formulation
given in Remark 5.3.36.

Proposition 5.3.35. Let Γ be a simulational limit rule operator. If a real x is Γ-e.w.
and y is x-Γ-writable, then y is Γ-e.w.

Proof. For this proposition, we show how we can apply a dovetailing technique that will
be used extensively in what follows. The real x being e.w. means that there is a machine
mx which, when computing from the empty input, does not halt and at some point has
written x on its output and does not modify it anymore. The real y being x-Γ-writable
means that there is a machine my which, when computing with x as input, halts and
has y written on its output when it does. From there, it would seem natural to consider
the following computation that e.w. y: some machine simulates mx and when x appeared
in mx, it computes y from it using my, which allows it to e.w. y from the empty input.
However the difficulty lies in the fact that this machine can’t decide when x actually
appeared. To circumvent this difficult, we can use the a dovetailing technique.

Consider the following machine: it simulates mx. This is possible given that Γ is a
simulational operator. At each simulation stage of mx, it does the following: if the output
of mx was modified, writing x̃ for its new output, it initializes a fresh simulation of my[x̃]

(eventually discarding a previous simulation of it), that is of my on the input x̃. while
the output of mx is not modified, the machine run in parallel the simulation mx and the
simulation my[x̃]. If the output of mx is modified, we go back to the beginning of the
description with the new output of mx. Observe that the simulation my[x̃

′] may also halt
at some point, in which case the parallel simulation continues with the convention that
running a step of my simply does nothing. Moreover, at each step of the simulation of
my, the main machine copies the output of my to its own output.

Now, what happens in this computation? Until mx reaches x, the output of mx

regularly changes and so simulation of my is restarted again and again, even if it halted,

121

each time discarding what was done and starting from a new input. When x appears not
to be modified again, observe that this is the last time the simulation of my is restarted.
It now computes from input x and by our assumptions, the output of my eventually reads
y and my halts. However mx does not halt–as it never does– and also never changes. As
the output of my was copied on the of the main machine, y has been written on the main
machine output not to be changed again; and so was e.w.

Remark 5.3.36. Proposition 5.3.35 justifies the following formulation widely used in the
following proofs:

To show that y is e.w., we consider the following machine: first it simulates
mx to e.w. x on some part of its working tape. Then using x it conducts the
following computation to write y on its output...

What is hidden behind this slightly abusive de-interlacing or sequencing of the different
writing operations is the more complex but sound dovetailing technique presented in the
previous proof.

Proposition 5.3.37. Let Γsup be the operator of the limsup rule. Γsup is a suitable and
simulational limit rule Σ2-operator.

Proof. Γsup is a suitable Σ2-operator: We first define by recursion a Σ1 function η uni-
formly in α such that in Lα for a machine m, an input y and an ordinal ν < α,
η(m, y, ν) = ⟨hνi ⟩i∈ω where hνi is the history of cell i up to stage ν. Observe first that as Lα

may not be admissible, we can’t use Σ-recursion as was developed in [Bar75]. However,
with what follows we can show by induction that ⟨hνi ⟩ is definable over Lν , and so in Lν+1

and with it in Lα. This patches the use of ∆0-collection (see [Bar75, p. 27]). Indeed,
observe that for a successor ordinal ν, writing ν = α + k where α is a maximal limit
ordinal (possibly 0) and k an finite ordinal, η(m, y, ν) is easily definable from η(m, y, α):
using the definition of the lim sup rule and the history η(m, y, α), it is possible to define
the snapshot of m at stage α over Lα. And then, from this snapshot and η(m, y, α), the
code of m is enough to define the whole history η(m, y, ν) over Lν . For a limit ordinal ν,
η(m, y, ν) is simply the limit of the η(m, y, ν ′) for ν ′ < ν.

With this, we can define φsup. As the history up to stage ν is too big to be in Lν , we
can’t use our function η this way. So this is not as straightforward as we might want but
it is still relatively easy as we can use η with any ν ′ < ν. This yields the following Σ2

definition (as the Σ1 function η is applied in the left-hand part of the implication):

φsup(i,m, y) := ∃α ∀β ∀hβi (α < β ∧ hβi = η(m, y, β)[i] =⇒ hβi [β] = 0)

And with this definition, we have, as wanted, for m a Γsup-machine and Hν the history of
m up to some stage ν:

Γsup(Hν)[i] = 0←→ Lν [y] |= φsup(i,m, y)

122

And Γsup is a simulational operator: it is stable, asymptotical and cell-by-cell by
definition. Then let h and h′ be two cell histories and write γsup the restriction of Γsup on
a single cell. Suppose that h ≃ctr h

′. Then γsup(h) = 0 means that a final segment of h is
of the form 0α. As h ≃ctr h

′, same goes for h′ and γsup(h
′) = 0. By symmetry, the other

direction also holds and this proves that Γsup is contraction-proof as well.

5.3.3.2 Looping stability

The possibility for an infinite machine to exit a repeating pattern, as presented in Example
5.3.24, is in a way what enables those machines to compute for so long and to give rise
to intricate computations. At the same time it may lead to pathological patterns from
the point of view of those being computation models. As presented in Remark 5.3.39,
this could result in a Γ-machine which repeats for a very long time (very long when
compared to the time it took to enter this repeating pattern) and then which suddenly
exits this pattern. To avoid those cases, we introduce in Definition 5.3.38 the notion of
looping stability. It is a simple assumption that let us develop a rather general and sound
subclass of the simulational operators for which we can prove strong results like that of
Theorem 5.4.14.

Definition 5.3.38 (Looping stability). A limit rule operator Γ satisfies the looping sta-
bility condition when for any limit history H and limit ordinals α and α′, writing Hα for
the word in which H is repeated α times, we have:

Γ(Hα) = Γ(Hα′
)

Equivalently, in a formulation that will be used more often, for any limit history H and
limit ordinal α:

Γ(Hα) = Γ(Hω)

Remark 5.3.39. As seen in Example 5.3.24, the asymptoticity of an operator implies the
looping stability for some α’s, e.g. for α = β+ω, by asymptoticity Γ(Hα) = Γ(Hβ ·Hω) =

Γ(Hω). However, it gets trickier when α is additively closed: any final segment of Hα has
the same length as Hα itself and is of the form Hf ·Hα where Hf is some final segment
of H. In this case, asymptoticity only yields: Γ(Hα) = Γ(Hf ·Hα) = Γ(Hα).

Now why do we need looping stability in the general case? Without it, it seems impos-
sible to establish a general looping condition as was established in the Σ2 case and as we’ll
do in Proposition 5.3.40, for the operators satisfying the condition of looping stability. By
“looping condition”, we mean a criterion that let us decide, by looking at at some point the
history of a machine (so looking at a given and fixed past of the computation), whether the
machine is at this point seen to be looping (and so producing a statement about the future
of the computation). In other word, it is a criterion that allows us to decide whether a

123

machine is looping without having to look at its whole computation through On. To give
an idea of what would be possible without this hypothesis and the difficulty it poses, imag-
ine γ a cell-by-cell operator acting as the lim sup operator with the only difference being
that for some gigantic additively closed τ , γ((01)τ) = 0. This operator would be stable
and asymptotic. We could also arrange for it to be contraction proof. And with τ > Σsup,
it would be repeating from stage Tsup = Σsup onward and up to stage τ where it would
magically exit this loop.

In particular, refining this idea, Theorem 5.5.1 shows that the main theorem of this
section, that is that under some conditions on Γ, ΣΓ = TΓ, does not hold without the
hypothesis of looping stability.

As suggested, the first benefit of the condition of looping stability is that it gives a
general looping condition for the operators of the class.

Proposition 5.3.40. Let Γ be an operator which is looping stable and asymptotic. Then
the following looping condition holds: a Γ-machine is looping if and only if there are two
ordinals α, β such that stages α, α + β and α + β · ω share the same snapshot.

Proof. In the first direction, suppose thatm is looping. Then, after some point, some word
H repeats through the whole rest of the computation. This means that after repeating ω
time, that is after Hω appearing in the history, H itself comes next. Taking α the stage
at which H begins to repeat and β the length of H yield the wanted ordinal stages.

In the other direction, let H be the history segment that spans between stages α
and α + β. As those stages share the same snapshot, by asymptoticity the computation
behaves similarly starting from α or α+β. So H is found again between α+β and α+β ·2
and so on until stage α+β ·ω. By our assumption, this stage also has the same snapshot
as do stages α and α+β. So, again by a asymptoticity, the computation behaves similarly
starting from this stage. Moreover, writing x the real appearing at those stage, it means
that Γ(Hω) = x. Hence, by looping stability, for any limit ordinal δ, Γ(Hδ) = x and, by
induction, any stage α+β · δ has the same snapshot and the machine is looping, endlessly
repeating the segment H.

The following corollary will offer a bit more flexibility when using Proposition 5.3.40.

Corollary 5.3.41. Let Γ be an operator which is looping stable and asymptotic. Then
the following looping condition holds: a Γ-machine is looping if and only if there are two
ordinals α, β such that α and α+ β share the same snapshot and such that the snapshot
α + β · ω also appears between stages α and α + β.

Proof. Let α′ be the least stage between stages α and α+β at which the snapshot of stage
α + β · ω also appears. As α and α + β share the same snapshot, by asymptoticity, the
computation segment [α, α+β[is the same as the computation segment [α+β, α+β · 2[.
In particular, the snapshot of stage α+ β · ω also appears at some stage α′ + β′ between

124

stages α+ β and stages α+ β · 2 and such that α′ + β′ · ω = α+ β · ω. And so, α′ and β′

satisfy the looping condition of Proposition 5.3.40.

Further, Proposition 5.3.40 justifies the following definition.

Definition 5.3.42. Let Γ be an asymptotic operator that satisfies the looping stability
and m a Γ-machine. We say that m is seen to be looping at some stage δ if there are two
ordinal α and β such that stages α, α+β and α+β ·ω share the same snapshot and such
that α + β · ω = δ.

Proposition 5.3.43. Let Γ be an operator that satisfy the looping stability as well as
being asymptotic and m be a Γ-machine that does not halt. Then at any stage α, if the
machine is not seen to be looping before stage α · ωω, there is a snapshot that did not
appear strictly before stage α that appears strictly before stage α · ωω.

Proof. Let m be some machine and α an ordinal such that the machine is not seen to be
looping before stage α · ωω. We look at its computation starting from stage α onwards.
We consider the snapshot s0 that appears in m at stage α. Either this snapshot appears
for the first time, and we’re done. Either this snapshot appears at some earlier stage
α0 < α. This means that the snapshot s0 (at stage α0) leads to another occurrence of
the snapshot s0 (at stage α). By asymptoticity of Γ, the snapshot s0 (at stage α) must
also lead to an ulterior occurrence of s0 and so on, for at least ω repetitions. After those
ω repetitions, we write s1 the snapshot of m. Observe first that s1 ̸= s0 as otherwise
m would be seen to be looping by Proposition 5.3.40. And even stronger: by Corollary
5.3.41, s1 does not appear in the whole segment that spans between the two occurrences
of s0 and that repeats itself. Hence, again, if s1 does not appear for the first time, there
is some least stage α1 < α0 at which the snapshot s1 occurs.

s1

α1

s0

α0

s0

α

s0 s0 . . . s1

Figure 5.2: The snapshot s0 repeats ω times and if the snapshot s1 does not appear for
the first time after this repetition it must have appeared before stage α0.

With the same reasoning, as long as the repetition of the segments between the oc-
currences of si does not yield a new snapshot, it yields a snapshot si+1 that appeared
earlier, at some least ordinal stage αi+1 < αi (as, by hypothesis, the machine isn’t seen
to be looping yet). This yields a decreasing sequence of ordinals (αi). Consequently, by
well-orderdness, there must be some snapshot sk that appears for the first time at some
stage αk for a finite k.

And how late can this snapshot occur? At worse, the first repeating segment between
the occurrences of s0 has length α. Then the second repeating segment, between the

125

occurrences of s1 would have length α · ω. And, more generally, the repeating segment
between the occurrences of si would have length α · ωi. This yields the bound∑

i<ω

α · ωi+1 = α · ωω

for the appearance of a new snapshot.

Proposition 5.3.44. Let Γ be a suitable operator that satisfy the looping stability as well
as being asymptotic. Then there is some countable stage α such that any Γ-machine either
stopped or is seen to be looping before stage α.

Proof. Consider ordinal ω2. By the downward Löwenheim-skolem theorem, we can find
limit ordinals α1 < α2 < α3 of cardinality ℵ1 and such that the Lαi

are elementary
substructures of Lω2 . Moreover we can arrange for α3 to be strictly greater than α2 · ω.
Further, by a result of Devlin [Dev84, II. 5.5], we can show in L that no new reals appear
in the constructible universe after construction stage ω1. Hence, we have:

Lω2 |= ∃α1 < α2 < α3 Lα1 ≺ Lα2 ≺ Lα3

∧ Lim(α1) ∧ Lim(α2) ∧ Lim(α3)

∧ α2 · ω < α3

∧ no new real appear after construction stage α1

Again by the downward Löwenheim-Skolem theorem there exists some countable or-
dinal β such that Lβ ≺ Lω2 . This yields three limit countable ordinals β1 < β2 < β3 that
satisfy the previous formula in Lβ. We show that any Γ-machine m is seen to be looping
before stage β3.

Let m be a Γ-machine computing from the empty input. First, as Γ is a suitable
operator there is some predicate φ(i,m, 0, k) that defines in Lα, for any limit α, the value
of any cell i of m at limit stage α (the 0 in φ stands for the empty input). As Lβ1 ≺ Lβ2

(and as those are limit stages), whether in Lβ1 or Lβ2 , the computation of the limit rule
for some cell i using φ yields the same value. Hence, the snapshots of m at stages β1
and β2 match. For convenience, we let β0 < β2 be the least ordinal stage that share the
same snapshot as β2 and we write x2 the real appearing at those two stages. As seen in
Example 5.3.24, by asymptoticity of Γ this gives rise to a repeating pattern where the
segment between stages β0 and β2 repeats at least ω stages. Let β′

2 be the limit stage
directly after those ω repetitions of the segment of computation [β0, β2[and x′ be the real
appearing at this stage. As β′

2 ⩽ β2 · ω, we also have that β′
2 < β3. This state of affairs is

represented in Figure 5.3.
By Corollary 5.3.41, m is seen to be looping if x′ appears at a limit stage in the

segment of computation [β1, β2[(as it would then produce the same snapshot as the one
appearing at stage β′

2.) As x′ appears as a snapshot in m at stage β′
2, it can be defined

126

x2

β0

x2

β2

x2 . . . x′

β′
2 β3

Figure 5.3: The segment that spans between β0 and β2 repeats ω times and produces x′.

in Lβ′
2
. Hence x′ ∈ Lβ′

2+1. As β′
2 < β3, x′ is also in Lβ3 . So, with x2 being the snapshot

that appeared at stage β2 and with Cm(α) the function that maps some ordinal stage α
to the real that describes the snapshot at stage α in the computation of m:

Lβ3 |= ∃β2 < β′
2 Lim(β2) ∧ Lim(β′

2) ∧ Cm(β2) = x2 ∧ Cm(β′
2) = x′

Now, and that is the corner stone of this proof, Lβ3 sees that no new reals appeared
in the constructible universe after stage β1. This means that x′ (as well as x2) are in Lβ1

and in Lβ2 and that, by elementarity, we can reflect the previous sentence down to Lβ2 .
This means that, as depicted in Figure 5.4, in the computation of m up to stage α2, the
real x′ appeared at some limit stage δ′2 such that there is an earlier limit stage δ2 < δ′2 at
which the real x2 appeared. By definition of β0, it must be less than δ2 and x′ appeared
at a limit stage in the segment of computation [β0, β2[. Hence, by Corollary 5.3.41, m is
seen to be looping before stage β3.

x2

β0

x′

δ′2

x2

β2

x2 . . . x′

β′
2 β3

Figure 5.4: By elementarity, there is δ′2 < β2 such that Cm(δ′2) = x′

5.4 Toward higher-order and many-symbol ITTMs

Theorem 5.4.1. Γsup and Γinf are the only simulational operators with two symbols that
satisfy the looping stability condition.

Proof. First, as seen, Γsup is a suitable and simulational operator. With the same rea-
soning, so is its symmetric, Γinf . Then, let Γ be a two-symbol suitable and simulational
operator. As Γ is cell-by-cell we can write γ the cell restriction of Γ. We now want to
show that γ is either γsup or γinf . So let h ∈ <On2 a limit cell history on two symbols. We
distinguish two cases

– If there is s = 0 or s = 1 and some α such that the word sα is a final segment of h
then by asymptoticy γ(h) = γ(sα) and by stability γ(h) = s.

127

– Otherwise, this means that both 0 and 1 are cofinal in the word h. We show that
all such h are mapped to the same symbol. Take h1 and h2 two such history who
have cofinally 0’s and 1’s. From h1 and h2 we can construct by transfinite induction
h′1 and h′2 such that h′1 and h′2 are stutter-free and h′1 ≃ctr h1 and h′2 ≃ctr h2. As
γ is contraction-proof, γ(h′1) = γ(h1) and γ(h′2) = γ(h2). As h′1 and h′2 are stutter-
free, they are simply the regular alternation of 0 and 1 : 010101 . . . or 101010 . . .

Hence, there are two ordinals α and β such that h′1 = (01)α (or h′1 = (10)α) and
h′2 = (01)β (or h′2 = (10)β). In any case, by asymptoticity and looping stability
(which can be applied cell-by-cell as Γ is cell-by-cell; see Remark 5.3.31.), γ(h′1) =
γ((01)ω) = γ(h′2). and from there γ(h1) = γ(h2). Hence those histories form a single
equivalence class w.r.t. γ: either they are all mapped to 1 and γ = γsup. Either they
are all mapped to 0 and γ = γinf .

First, observe that this result is really proper to 2-symbol Γ-machines. With 3 symbols
or more, there are many intricate ordinal words that can’t be simplified by contraction.
Hence this theorem shows how, on the contrary to what we are used to in computability,
working with only two symbols is actually here a real constraint. This shows the necessity
to consider n-symbol machines. This will let us consider more complex rules that will still
satisfy basic operator constraints, like being simulational. Still, we will want to build on
the previous result established for the 2-symbol operators lim sup and lim inf. To this
extent, we will be interested in operators enhancing other operators.

Definition 5.4.2. Let Γn a n-symbol operator and Γk a k-symbol operator with k < n.
We say that Γn enhances Γk when for any H ∈ <On(ωk) :

Γk(H) = Γn(H)

Remark 5.4.3. Enhancement is a powerful feature as it allows an operator to behave
like an operator it enhances by simply sticking to a subset of symbols. In the case of
enhancement of the operators Γsup or Γinf is it moreover almost ubiquitous in the setting
of well behaved operators. Indeed, take Γ a n-symbol simulational and looping stable
operator with n > 2. We further suppose that a limit stages Γ does not produce symbols
that were not cofinal in the cell history. That is, writing γ for the associated cell operator,
γ(h) = k implies that k is cofinal in h. Hence, if, say, only 0 and 1 are cofinal in h,
γ(h) is either 0 or 1. This behavior, which could be called strong stability (observe that it
implies stability), is not a consequence of the operator being simulational or looping stable
but it is natural enough to be worth considering. What is convenient with this additional
hypothesis of strong stability is that the restriction of Γ to a subset of symbols is safely
defined–as once the domain is restricted to words on this subset of symbols, the image is
restricted automatically restricted to this same subset.

128

So we can consider the restriction of Γ to 0 and 1. Now it is clear that the operator that
we thus obtain is still simulational and looping stable. But it is also a 2-symbol operator!
So, by Theorem 5.4.1, it is either Γsup and Γinf . Which mean, the other way around, that
such an operator Γ must enhance one of the classical 2-symbol operators. In particular,
for this operator, a Γ-machine can simulate any classical lim sup ITTM.

Still, as much as such an enhancement is convenient we may not want to impose
this hypothesis of strong stability to our operators. One principal reason being that even
without this hypothesis, a simulational and looping stable operator can still act almost as
if it was classical ITTMs in a fairly straightforward and faithful way. We will call this
behavior emulation.

Definition 5.4.4. Let Γn and Γk be respectively a n-symbol operator and a k-symbol
operator with k < n. We say that Γn emulates Γk when for each Γk-machine mk there
exists a Γn-machine mn such that:

• at any limit stage the snapshots of mk and mn match.

• all snapshots of mk appearing between two limit stages also appear between the
same two limit stages and in the same order in mn but they may be separated by a
finite amount of other snapshots.

• all snapshot of mn that are not from mk have a symbol s ̸∈ k written in one of their
cell.

With this definition, it is clear that any emulation of a machine will produce a very
similar computation. In particular, with the notations of Definition 5.4.4, mk writes (or
e.w.) x if and only if mn does. While mn may a.w. more reals, this will be enough for
our purpose as we will mostly want to harvest the deciding and writing power of lim sup

machines (deciding when a real is a code for an ordinal, writing a code for Lα given a
code for α, . . .) Proposition 5.4.6 motivates this definition and Proposition 5.4.5 links it
with previous definition of enhancement.

Proposition 5.4.5. If Γn enhances Γk then it also emulates it.

Proof. With the notations of Definition 5.4.4, it is enough for mn to take mk seen as a
Γn-machine.

Proposition 5.4.6. Let Γ be a n-symbol simulational and looping stable operator. Then
Γ emulates the operator Γsup.

Proof. What may be the main difficulty in emulating a classical 2 symbols ITTM with
a simulational and looping stable operator Γ? As suggested in the previous remark, it is
the fact that Γ may not be “strongly stable” and so that Γ applied to an history like (01)ω

may produce, say, 2. But is it really an issue? For a Γ-machine that wants to behave like

129

a classical ITTM, it could just replace the 2’s at a limit stage by 1’s–as they come from
the history (01)ω–and continue forward with the simulation. It would work for the first
few limit steps but it gets tricky at the ωth limit step. Indeed, at limit stage ω2, the end
segment of the history of a blinking cell would read

(2(10)ω)ω

And this may very well yield yet another symbol in a Γ-machine, as neither asymptoticity
nor looping stability can be applied in this case.

To circumvent this issue, we use a simple enough trick. Consider the word w =

012 . . . n − 1 made from all letters in n. Let k ∈ n such that Γ(wω) = k. Now, writing
wk = k(k + 1) . . . (n− 1)01 . . . (k − 1), the shift of w by k letters to the left, wω

k is a final
segment of wω. So, by asymptoticicty, Γ(wω

k) = Γ(wω) = k. And w.l.o.g., as those are
just symbols, we can suppose that k = 1.

So given m a classical ITTM, we describe the emulating machine mΓ of Definition
5.4.4. It behaves like m with the only difference that when it writes a 0 over a 1, it write,
one after the other in the same cell, 2, 3, . . . , n− 2, n− 1 and finally 0. In other words,
the Γ-machine writes a 0 over a 1 by writing w1, one letter after the other, in the cell.
This way, the history (10)ω in the classical ITTM we want to simulate corresponds to
the history (w1)

ω in the Γ-machine. And as wanted, the operator Γ maps this history
to 1. So at after the limit, it reads (w1)

ω1 which corresponds to (10)ω1. Then (10)ω10

corresponds to (w1)
ωw1. And further, (10)ω2 corresponds to (w1)

ω2 to which we can now
apply looping stability: it yields again 1 and, by induction, the simulation carries on in a
faithful way and respecting the conditions of Definition 5.4.4.

We will see that a large part of the results for the lim sup machines involving either
only writable or only clockable ordinals are true and proved with the exact same proof
for n-symbol machines able to emulate the classical 2-symbol machine. The following few
results illustrate this.

The first two results also ensure that the writing and clocking constants are well-
behaved and meaningful, as they are in the ITTM setting. Note that when possible we
include the hypothesis that Γ emulates Γsup (or indifferently Γinf) rather the stronger
hypothesis of looping stability.

Proposition 5.4.7. Let Γ be a simulational n-symbol operator that emulates the operator
Γsup. Then the constants related to the three different kinds of Γ-writable ordinals are
distinct. That is: λΓ < ζΓ < ΣΓ

Proof. As Γ emulates the lim sup operator, this proof works like that of Proposition 4.1.20.
This comes from the fact that, for this proof, the specificity of a Γ-machine when compared
to a lim sup-machine is hidden in UΓ, which is used instead of Ulim sup. λΓ < ζΓ : At some
point, all machines that write an ordinal have written their ordinal. So we consider the

130

following machine: it simulates UΓ (which exists as Γ is simulational) and at each step it
writes the sum of all ordinals that have been written by any of the machines that halted.
This can be done by emulation of a Γsup-machine. When all writable ordinals have be
written, i.e. when their respective machine stopped, the machine we are describing has
eventually written their sum (ordered by the code of the machine) which is by definition
greater or equal to λΓ.

ζΓ < ΣΓ : With the same reasoning, at some point all e.w. ordinal appeared in UΓ.
Computing the sum of all ordinals appearing in UΓ at the same time (we can’t distinguish
between those which are e.w. and a.w.) will at some point a.w. an ordinal greater or equal
to ζΓ.

Proposition 5.4.8. Let Γ be a simulational n-symbol operator that emulates the operator
Γsup. Then the supremum of any kind of writable is smaller than its respective kind of
clockable. That is, λΓ ⩽ γΓ, ζΓ ⩽ ηΓ, ΣΓ ⩽ TΓ.

Proof. Again, the technique in this proof is akin to that used in the proof of Proposition
4.1.30. Suppose that λΓ > γΓ, that is that γΓ is writable and consider the following
machine toward a contradiction: it writes a code for γΓ, then it emulates the Γsup-machine
that counts through an ordinal with this code to count for γΓ steps after which is stops.
The emulations takes at least γΓ steps. So this machine effectively clocks some ordinal
greater or equal to γΓ, which is a contradiction.

Suppose that ζΓ > ηΓ, that is that ηΓ is e.w. and consider the following machine toward
a contradiction: it simulates the machine that e.w. a code for ηΓ and, again using the
emulation of a lim sup machine, each time a code for an ordinal is written on its output, it
counts through this ordinal and then copies the output of this machine to its own output.
When the simulated machine stabilizes on a code for ηΓ, the main machine copies it on
its output after at least ηΓ steps, hence eventually clocks an ordinal greater or equal to
ηΓ, which is again a contradiction.

As for the last inequality, it is proved exactly as in the first part of the proof of
Proposition 5.2.1, replacing Σ and T respectively by ΣΓ and TΓ. Moreover, albeit slightly
trickier, it is the same technique as used with the two previous inequalities.

Proposition 5.4.9. Let Γ be a simulational n-symbol operator that emulates the operator
Γsup. Then λΓ, ζΓ and ΣΓ are multiplicatively closed.

Proof. We show this for ΣΓ. Let α and β two a.w. ordinals. We want to show that
α · β is a.w. as well. Observe first that the product of two ordinals is computable with
a Γ-machine. This comes from the fact that Γ emulates the lim sup operator: there is
a lim sup machine that computes this function, and this machine can be emulated by a
Γ-machine. Now suppose w.l.o.g. that (a code for) α appears earlier than (a code for) β on
one of the tapes of the machines simulated in UΓ (and UΓ exists as Γ is simulational.) We
consider the following computation: the machine simulate U1

Γ, a copy of UΓ, and at each

131

step of U1
Γ, writing s1 for its snapshot, it launches U2

Γ a fresh copy of U2
Γ and it simulates

this copy until it reaches the snapshot s1. Meanwhile, it computes the product of any two
ordinals appearing in s1 and in U2

Γ. When U1
Γ computed far enough so that β appears in

s1, α appeared earlier and it will appear again in the computation of U2
Γ until it reaches

snapshot s1; hence the ordinal α · β will be a.w. by this machine before U2
Γ reaches the

snapshot s1.
For λΓ and ζΓ, it relies in the same way on the fact that the product of two ordinals

is computable, and it is easier as α and β can be multiplied once e.w. (resp. written.)

Remark 5.4.10. While, as illustrated above, many results on ITTMs are readily general-
ized to Γ-machines (provided basics hypothesis on Γ, e.g. being simulational), there is one
interesting result which does not easily lend itself to generalization. As kindly pointed out
by Bruno Durand, this is the case of the Speed-up Lemma of [HL00]. This lemma reads:
“if α + k is clockable for k ∈ ω, then so is α” and its proof is a clever argument which
relies on combinatorial aspects of the lim sup rule. It is clear that this argument can’t be
ported as is to Γ-machines and unclear whether it can be proved differently for those.

Thankfully, the consequences of this fact are limited. One reason is that when it comes
to the behavior of infinite machines from a macro perspective (as mostly done her where
the ordinals we consider are limit ordinals closed under many different kind of operations),
this lemma is not needed. It is however useful when conducting a finer analysis of gaps
and particularly of their beginning and ends. While I reckon most of the analysis regarding
the beginning of gaps (see e.g. [BDL23] and [Wel09]) and their links to admissible ordinals
may be extended to Γ-machines, the absence of the Speed-up Lemma makes it less clear
when it comes to the end of gaps. In particular, this leads to the following question: does
there exist a simulational operator Γ for which a gap ends at a non-limit ordinal stage?

To specify the relationship between writable reals and the level of the constructible
hierarchy, we can encode sets with reals. This is done in a similar fashion as with ordinals.
Observe however that, without consequences, it does not yield the exact same encoding
for ordinals seen as well-orders and ordinals seen as sets.

Definition 5.4.11 (Encoding of sets). We say that a real x encodes as set a when x

describes a transitive relation E on ω such that (ω,E) ≃ (TC({a}),∈). As with ordinals,
a set a is writable (resp. e.w. and a.w.) by a Γ-machine when a code for a is Γ-writable
(resp. e.w. and a.w.) by a Γ-machine.

Proposition 5.4.12. Let Γ be a simulational n-symbol operator that emulates the operator
Γsup. If a set a is in LλΓ

(resp. in LζΓ and in LΣΓ
) then it is writable (resp. e.w. and

a.w.) by a Γ-machine.

Proof. This proposition is the generalization of one implication of Proposition 4.1.32. The
following remark has to do with the other implication. If a ∈ LΣΓ

, there is an a.w. ordinal

132

α such that a ∈ Lα. Hence, a code for a is computable from a code for Lα. Now consider
the following computation that will a.w. a under the assumption that a is in LΣΓ

: as Γ is
simulational, the machine can enumerate all ordinals below ΣΓ. For each of those ordinals
ν, as Γ emulates the lim sup operator, the machine can write a code for Lν on its working
tape and try to extract the subcode that would be a code for a. Before α appears, what
it thus produces is likely gibberish. When α appears, a code for a is accidentally written.
This works similarly if a is in LζΓ or LλΓ

: the machine simply e.w. or writes the right Lα

and computes a code for a from it.

Remark 5.4.13. We may be tempted, under the hypothesis that Γ emulates the operator
Γsup, to try and immediatly establish the converse implication of Proposition 5.4.12 (which
will be a corollary of Theorem 5.4.14). That is to show, for the first case, that if x is a.w.
then x ∈ LΣΓ

. It would simply build on the work which was already done for the operator
Γsup. Suppose that x is a.w. by Γ, then as Γ emulates Γsup a Γ-machine could use this x
to a.w. greater and greater ordinals in Σx

Γsup
(which is ΣΓsup relativised to computations

with x as input). And as we might think that x ∈ LΣx
Γsup

(after all, x is x-writable), this
would mean, a fortiori, that x ∈ LΣΓ

. But it happens that x ∈ LΣx
Γsup

simply does not hold
in the general case (the fact that x is x-writable simply says that x ∈ LΣx

Γsup
[x]). Welch

first considered in [Wel00a] the (analogous) set

F0 =
{
x ∈ ω2 | x ∈ Lλx

Γsup

}
which he explains is akin to the set

Q =
{
x ∈ ω2 | x ∈ LωCK,x

1

}
Both of those sets are thin (i.e. they do not admit non-empty and non-unit closed subsets)
which implies that uncountably many reals x’s are not in F0 or Q. A proof of which we give
the idea can be found in [Kec75]. Consider F0 and suppose that it is not thin. That is, it
contains a perfect subset P (i.e. closed subset with not isolated points). P is continuously
isomorphic to ω2, so for our purpose we can assume that P = ω2. We then consider the
application f : x 7→ λx. It induces a pre-well-ordering ⪯ on ω2:

x ⪯ y ⇐⇒ λx ⩽ λy

This pre-well-order has order type ω1 (the λx are unbounded in ω1) and is Σ1
1 (under our

the assumption that P ⊂ F0 and modulo the isomorphism, which implies that x ∈ λx, we
have that λx ⩽ λy is equivalent to x being y-computable.) Hence, this yields a Lebesgue
measurable (as a subset of ω2 × ω2) pre-well-order of the reals which can be shown with
Fubini’s theorem to yield a contradiction.

133

We now state the main theorem of this chapter.

Theorem 5.4.14. Let Γ be a n-symbol suitable, looping stable and simulational operator.
Then ΣΓ = TΓ.

We will prove this result step by step. For all that follows in this subsection, we let Γ
be a n-symbol suitable, looping stable and simulational operator. By Theorem 5.4.6, we
can suppose w.l.o.g. that it emulates the 2-symbol operator Γsup.

Proposition 5.4.15. The supremum of the e.c. ordinals is strictly less than that of the
a.c. ordinals. That is, ηΓ < TΓ.

Proof. We show that in UΓ a new real appears at stage ηΓ, that is that UΓ a.c. stage ηΓ.
For this, observe that once a machine converges, that is once its output stabilizes

definitely, it computes through a set of snapshot that never occurred in the computation
of this machine before it converged. Indeed, suppose it did earlier, then by asymptoticity
the machine would already have converged at this earlier stage. Hence this defines two
disjoint sets of snapshot: those before the machine converged and those after, that we can
call the converging snapshots. Moreover, as a machine e.c. the stage at which it converges,
ηΓ is the first stage at which all converging machines actually converged. Hence it is the
first stage at which all the snapshots of those machine belong to their respective set of
converging snapshots. This naturally stays true in their simulation done by the universal
machine. Hence the real on the working tape of the universal machine at stage ηΓ appeared
for the first time.

Proposition 5.4.16. If the supremum of the e.c. is smaller or equal to that of the a.w.,
then the supremum of the a.w. and that of the a.c. match. That is, if ηΓ ⩽ ΣΓ then
ΣΓ = TΓ.

Proof. We suppose that ηΓ ⩽ ΣΓ. We show that, in this case, in any Γ-machine m,
nothing new appears after stage ΣΓ. This will show that ΣΓ ⩾ TΓ and, by Proposition
5.4.8, that ΣΓ = TΓ.

Suppose that there is some Γ-machine m, a real xm and a least ordinal stage αm ⩾ ΣΓ

such that xm appears for the first time on a tape of m at stage αm. We consider the
following computation: it simulates m and at each step of m, writing x the real written
on the relevant tape, it simulates a fresh instance of UΓ. For each ordinal α a.w. by UΓ,
its simulate a fresh copy of m for α steps and looks whether x appears in m during those
α steps. If x appeared for the first time in m before stage ΣΓ, this subcomputation will
eventullay find an ordinal below ΣΓ great enough so that x is found in the simulation of
m. Actually, xm is the first real a.w. by m that can’t be found by this subcomputation.
Effectively, the computation we designed e.w. xm and e.c. some ordinal greater or equal
to αm. By our assumptions, αm is itself greater than ΣΓ and so greater than ηΓ. Hence
the machine e.c. an ordinal greater than ηΓ which is a contradiction.

134

Now, in virtue of Proposition 5.4.16, to prove Theorem 5.4.14, it suffices to prove that
the case ζΓ < ΣΓ < ηΓ < TΓ leads to a contradiction. This case is represented in Figure
5.5. In the rest of the proof, spanning almost until the end of the section, we suppose
toward a contradiction that the constants of Γ give rise to this situation.

ζΓ ΣΓ ηΓ TΓ

Figure 5.5: Situation of the main constants of the operator Γ if ΣΓ < ηΓ.

Proposition 5.4.17. In the computation of UΓ, there are ΣΓ distinct snapshots appearing
before stage ΣΓ.

Proof. As ΣΓ ⩽ TΓ by Proposition 5.4.8, UΓ is not seen to be looping before stage ΣΓ.
Then for any α < ΣΓ, a code for α · ωω is writable from a code for α. Hence α · ωω < ΣΓ

and by Proposition 5.3.43 for any α < ΣΓ there is a new snapshot (that is distinct from
all previous snapshots) that appears after stage α and before stage α · ωω. As ΣΓ is
multiplicatively closed, we can repeat this reasoning with α · ωω and so on; which yields
ΣΓ distinct snapshots.

Proposition 5.4.18. Let xα be a code for some ordinal α < ΣΓ. Then the αth distinct
snapshot appearing in the computation of UΓ is xα-Γ-writable.

Proof. We show that there is a machine that, given (the code of) some ordinal α as input,
can write the αth distinct snapshot appearing in UΓ if it exists and that never halt if it
does not. More precisely it will use α to write down the α + 1 first distinct snapshots
of UΓ. The machine works as follows: using α given as input to arrange the information
(that is it splits the working tape or some part of it into α virtual tape, each of those being
able to store a real describing a snapshot), it will inductively look for the β first distinct
snapshots for all β < α. For β = 0, the first distinct snapshot of UΓ is its initial snapshot.
Then, for any β < α such that the machine saved the β first distinct snapshots, that is
such that every δ < β correspond to a distinct saved snapshot, the machine simulates UΓ
and, at each stage of this simulation, checks whether this snapshot is one of the snapshots
saved as the δth distinct snapshot for some δ < β. If the machine finds one that isn’t
part of those and consequently is a new snapshot, it saves it as the βth distinct snapshot.
If the machine eventually finds α distinct snapshots, then the next distinct snapshot it
finds (if it finds it) with the same procedure is the αth snapshot it was looking for and it
can stop. If at any point the machine does not find the wanted next distinct snapshots,
it never halts.

Proposition 5.4.19. In the computation of UΓ, there are at least ΣΓ+1 distinct snapshots
and the Σth

Γ distinct snapshot (that is the last of the ΣΓ + 1 first snapshots) is e.w.

135

Proof. As, by Proposition 5.4.16, the working hypothesis ΣΓ < ηΓ implies that ΣΓ < TΓ,
there is some machine computation in which a real appears for the first time after stage
ΣΓ. As this machine is simulated by the universal machine UΓ, there is a least stage
α ⩾ ΣΓ such that a snapshot s appears for the first time at this stage on the working
tape of UΓ. By Proposition 5.4.17 this snapshot is the Σth

Γ distinct snapshot (that is the
last of the ΣΓ + 1 first snapshots) appearing in the computation of UΓ.

We show that this snapshot s is e.w. Consider this machine: it simulates UΓ in a
simulation that we call U1

Γ. For each snapshot s1 of U1
Γ, it first copies it on its output and

launches a new simulation U2
Γ to enumerate the ordinals α ∈ ΣΓ. More precisely, using

U2
Γ, the main machine looks for an ordinal α such that s1 is the αth distinct snapshot of
UΓ. This can be done using the machine described in the proof of Proposition 5.4.18. If
such a α is found, the computation goes on with the simulation of U1

Γ. Now, when s1, the
snapshot of U1

Γ, is the βth distinct snapshot of U1
Γ for β ∈ ΣΓ, the simulation U2

Γ obviously
yields at some point the correct α, that is such that α = β. On the other hand, when
β ⩾ ΣΓ the simulation of U2

Γ never finds an α big enough and the machine never halts.
This happens for the first time with the Σth

Γ snapshot of U1
Γ and this snapshot is actually

e.w., as wanted.

Proposition 5.4.20. For the operator Γ, there exists some stage A < ηΓ such that for
each a.w. ordinals, there is a machine in which this ordinal appears before stage A.

Proof. We use the previously proven fact that there is some e.w. snapshot that appears
after ΣΓ distinct snapshots appeared in UΓ to study the time of first appearance of ordinals
in any computation. Let sα be this e.w. snapshot, as defined in the proof of Proposition
5.4.19, and α ⩾ ΣΓ that stage at which it appears.

We show using this snapshot sα that there exists some stage A < ηΓ such that all a.w.
ordinals appear in UΓ before this stage A. While this is slightly different than the state-
ment of the proposition, remember that at any limit stage ν, inside of the computation of
the universal machine UΓ, all machine also reached stage ν of their simulation. In other
words, in its simulations of other machines, the universal machine is never delayed by
more than ω steps. Hence, as ηΓ is additively closed, it is equivalent to prove this result
for UΓ or, as initially stated, for all machines individually.

So we consider the following computation of a machine that we call M. It simulates
U1
Γ a copy of UΓ, and at each step of U1

Γ, writing s for its snapshot,M writes s on its own
output tape and launches U2

Γ, a fresh copy of UΓ, in order to enumerate the ordinals below
ΣΓ. For each ordinal β appearing in this fresh copy of UΓ, the main machine launches U3

Γ,
a third fresh copy of UΓ and checks whether the snapshot s of the simulation of U1

Γ appears
in the β first steps of U3

Γ. If it does, the simulation of U1
Γ carries on and this procedure

is repeated with the next snapshots appearing in U1
Γ. If it does not, the simulation of

U2
Γ continues with its enumeration of a.w. ordinals. Hence, when the simulation of U1

Γ

reaches stage α, the snapshot sα is written on the output tape of the main machine. As

136

this snapshot does not appear before stage ΣΓ, it will never be found by the simulation
of U3

Γ that is only conducted through a.w. stages and M effectively e.w. sα. Now the
interesting part is: which ordinal is then e.c. by this computation?

Let A ⩽ TΓ be the least ordinal stage such that for each a.w. ordinal, there is a
machine in which it appears before stage A. We claim that if A > ηΓ, that is if there
is some a.w. ordinal σ that does not appear before stage ηΓ in any machine, then the
previous computation e.c. some ordinal greater than ηΓ. First, if such an ordinal σ exists,
all ordinals greater than σ also appears after stage ηΓ. Then, as σ is a.w., σ < ΣΓ and
by Proposition 5.4.17 there is some snapshot t that appears for the first time in UΓ after
stage σ. Consequently, when t appears in the first simulation of UΓ inM, U2

Γ, the second
simulation of UΓ, won’t stop until it finds some ordinal greater than σ. And to do this
it will compute for at least ηΓ steps. Consequently, in such a case, when M converges,
it has computed for more than ηΓ steps and it e.c. an ordinal greater than ηΓ; which is a
contradiction. Hence A ⩽ ηΓ. What is left to show is that A can’t be equal to ηΓ.

Suppose now that A = ηΓ: by minimality of A, for any α < ηΓ, there is some a.w.
ordinal σ that does not appear in UΓ before stage α. Moreover, by the definition of ηΓ,
for any α < ηΓ, there are machines that converge after stage α. In particular there is
some stage αζ < ηΓ such that ζΓ appears for the first time at stage αζ and some machine
m that converges at stage αm > αζ + ω, as depicted in figure 5.6. With it, we design the
following computation N : using a first simulation of UΓ, that we call U1

Γ, N enumerate
the a.w. ordinals and for every ordinal α it finds, it does the following: it simulates in
parallel a copy of m and U2

Γ, a new copy of UΓ, until ordinal α or greater appears in U2
Γ.

As α appeared in the simulation U1
Γ, it must appear at some point in U2

Γ. When α has
been found in U2

Γ, it is written on the output of N and then the simulation of m is carried
on until there is a proof that m had not yet converged. That is until the output of m is
modified for the first time after α has been found. When and if this happens, the main
computation carries on with simulation of U1

Γ and starts this procedure again with the
next α′ it produces.

Now, as m is a converging machine, it is definitely converging (that is converging
through all of On) after some α has been found when, before reaching the point at which
this α was found, the parallel computation of m and U2

Γ was carried for at least αm steps.
For this parallel simulation of U2

Γ and m to be carried for at least αm steps, it must have
been looking for an ordinal greater than ζΓ; as ζΓ appeared before, at stage αζ . Observe
also that ζΓ appears at stage αζ implies that any ordinal β < ζΓ appears before stage
αζ + ω. Moreover, by the assumption that A = ηΓ, ordinals great enough (that is greater
than ζΓ and further, great enough to appear for the first time after stage αm) are indeed
found after stage αm. Consequently, at this point, m is definitely converging and so is N .
And this is only possible because such an ordinal greater than ζΓ has been encountered in
U1
Γ, that U2

Γ then found at some computation stage greater than αm. So N has eventually
written this ordinal greater than ζΓ, which is a contradiction.

137

ΣΓ
αζ

⟨ζΓ⟩

αm

m . . .

ηΓ TΓ

Figure 5.6: Case where ηΓ = A. A code for ζ appears at stage αζ and m converges at an
ulterior stage αm.

Now, by Proposition 5.4.20, we obtain the state of affairs described in figure 5.7 for
the Γ-machines.

ζΓ ΣΓ A ηΓ TΓ

Figure 5.7: Situation of the main constants of the operator Γ. In this case, all a.w. ordinal
appeared in some machine before stage A.

Proposition 5.4.21. In the situation described in Figure 5.7 there is an e.w. snapshot
sΣ and a machine mΣ such that given as input sΣ, any set theoretic formula φ and any
parameter p ∈ LΣΓ

, this machine decides whether LΣΓ
|= φ(p).

Proof. Let m be a machine that converges after all a.w. ordinal appeared in UΓ. Such a
machine exists as, by Proposition 5.4.20, A < ηΓ.

First we show that we can e.w. the snapshot at which m converges (while the output of
m stabilizes at some point, its whole snapshot may not stabilize.) Consider the following
computation: it simulatesm and at each stage where the output appears to have stabilized
(that is the output did not change for at least one step), the main machine saves the
snapshot of m. When m starts to converge definitely, its output is never modified anymore
and consequently neither does its saved snapshot. We call sΣ this particular snapshot.
What is now interesting is that when this snapshot appears in m, itself simulated in UΓ, all
ordinals appeared in UΓ. Indeed, it does not appear earlier as otherwise, by asymptoticity
of Γ, the machine would also be converging earlier.

Now we describe the machine mΣ that decides whether LΣ |= φ(p) with φ, p and sΣ

given as input. As sΣ is given as input, by looking at the simulation of m inside UΓ, mΣ

knows when m reaches snapshot sΣ and so, it knows when all ordinal below ΣΓ appeared.
Moreover, as the operator Γ emulates the usual Σ2-rule, given a code for any ordinal α, a
code for Lα is computable from it. With this in mind, mΣ can use UΓ to enumerate LΣΓ

and it will know when all elements of LΣΓ
appeared in the iteration. Using this, it works

inductively as follows: If φ(p) is ∆0, it is absolute and the machine can directly evaluate
it. Then, when φ(p) = ∃xψ(x, p) is a Σn formula: it starts by simulating UΓ and it looks
at the ordinals that appear in it until the simulation of m inside UΓ reaches snapshot sΣ.

138

When this occurs, all ordinals below ΣΓ appeared and the machine effectively enumerated
all a.w. ordinals. Meanwhile, before sΣ appears in m, for all ordinal α < ΣΓ appearing in
UΓ, it enumerates Lα. For each x coding an element of Lα it inductively (on ψ) decides
whether LΣΓ

|= ψ(x, p). If it does, that is if LΣΓ
|= ψ(x, p), then LΣΓ

|= φ(p) and mΣ

halts and outputs true. If it doesn’t, the iteration of LΣ goes on. If at the end of the
iteration, no x such that Lσ |= ψ(x, p) has been found, then it outputs false. And the case
where φ is Πn is dealt with by considering ¬φ. Observe also, as the induction is finite,
that there is no difficulties organizing the information from the different recursive calls.

Proposition 5.4.22. LΣΓ
is an end-elementary extension (e.e.e) of LζΓ. That is, LζΓ ≺

LΣΓ
.

Proof. We show this by induction. By absoluteness LζΓ ≺Σ0 LΣΓ
. Then let φ be a

Σn formula such that for some p ∈ LζΓ , LΣΓ
|= φ(p). We show that LζΓ |= φ(p). By

Proposition 5.4.12, p is e.w. Writing φ(p) = ∃xψ(x, p), by Proposition 5.4.21, given p,
some x and sΣ, mΣ can decide whether LΣΓ

|= ψ(x, p). As p and sΣ are e.w., x̃, the first
x appearing in UΓ such that LΣΓ

|= ψ(x, p) is e.w. as well. So we consider ψ(x̃, p), true in
LΣΓ

. As both x̃ and p are e.w., they are in LζΓ and we can apply the induction hypothesis:
LζΓ |= ψ(x̃, p). And so, LζΓ |= φ(p).

Conversely, if LΣΓ
̸|= φ(p), then LΣΓ

|= ∀x¬ψ(x, p). Hence for all x̃ ∈ LζΓ , LΣΓ
|=

¬ψ(x̃, p) with ¬ψ(x̃, p) Σn−1. So by the previous implication, LζΓ |= ¬ψ(x̃, p). That is,
LζΓ |= ∀x¬ψ(x, p), i.e. LζΓ ̸|= φ(p).

Corollary 5.4.23. Given as input sΣ, any set theoretic formula φ and any parameter
p ∈ LζΓ, the machine mΣ decides whether LζΓ |= φ(p).

Proof. By elementarity it is enough to decide whether LΣΓ
|= φ(p).

In this proof toward a contradiction we now have obtained fairly strong results. The
fact that LζΓ ≺ LΣΓ

is clearly way too powerful to be established for any Σn operator Γ

and the fact that we can decide whether LΣΓ
|= φ(p) seems a direct contradiction of the

intuition that LΣΓ
is a bound on what the Γ-machines may apprehend. Still, reaching a

conclusion from there is still somewhat involved. To harvest the previous result, Corollary
5.4.23, we show how we can use a system of notations to virtually work with LζΓ·2 in LζΓ .

Definition 5.4.24 (Notation). We define a system of notation in LζΓ . We write ⊤ for
some distinguished tautological sentence. A set a is a notation if and only if:

• Either a = ⟨⊤, x, 0, β⟩ for x ∈ Lβ and β ∈ ζΓ.

• Or a = ⟨φ, b1, . . . , bn, α, β⟩ where φ is a set-theoretic formula (encoded by a set)
without the symbol of equality, α > 0 and β are ordinals in ζΓ and the ordered
pair (α, β) is called the rank of a, written rk(a), and b1, . . . , bn are notations of rank
strictly less (w.r.t. lexicographical order) than (α, β).

139

We now use those notations to encode sets in Lζ2Γ
, the level (ζΓ)2 of the constructible

universe.

Definition 5.4.25 (Notation of a set). For x ∈ Lζ2Γ
, the least notation of the set x, x, is

a notation inductively defined as follows.

• If x ∈ Lβ for some least β ∈ ζΓ:

x := ⟨⊤, x, 0, β⟩

• If x ∈ LζΓ·α+β+1−LζΓ·α+β, with α > 0, then x was defined over LζΓ·α+β by some least
formula φ (w.r.t. some fixed order on formulas) and least parameters p1, . . . , pn ∈
LζΓ·α+β (w.r.t. <L). And by extensionality we can w.l.o.g. suppose that the symbol
of equality is not used in φ. So we define:

x := ⟨φ, p1, . . . , pn, α, β⟩

Definition 5.4.26 (Set of a notation). For a notation a ∈ LζΓ , the set of the notation a,
â, is inductively defined as follows:

• If a = ⟨⊤, x, 0, β⟩:

â := x

• If a = ⟨φ, b1, . . . , bn, α, β⟩ with α > 0:

â :=
{
y ∈ Lζ·α+β | Lζ·α+β |= φ(y, b̂1, . . . , b̂n)

}
We draw the attention of the reader to some clear but important features of this

system of notations.

Proposition 5.4.27.

– The operator x 7→ x defined on Lζ2Γ
is injective, x̂ = x and the operator a 7→ â is

surjective onto Lζ2Γ
. That is, every set in Lζ2Γ

has a notation.

– A notation only uses finitely many notations in its definition.

– For a notation a of rank (α, β), â ∈ LζΓ·α+β+1.

– For x ∈ LζΓ·α+β+1 with α, β < ζΓ, x has a notation of rank less than (α, β).

Proof.

– By definition, it is clear that x 7→ x is injective and that x̂ = x. Hence a 7→ â is
surjective onto Lζ2Γ

.

140

– Observe that the inductive definition of a notation induces a tree in which each
node is a notation. In this tree, every node has finitely many children and by
well-orderdness every path is finite. Hence the tree itself is finite.

– By induction: notations of rank (0, β) clearly yield elements of LζΓ . For a notation
a = ⟨φ, b1, . . . , bn, α, β⟩ with α > 0, by induction b1, . . . , bn are notations for some
sets p1, . . . , pn (i.e. b̂i = pi) of rank strictly less than (α, β) and so they are in Lζ·α+β.
Hence, as a set defined over Lζ·α+β, â is in Lζ·α+β+1.

– Simply consider x, the least notation of x.

Proposition 5.4.28. There exists a Γ-machine such that: given as input sΣ, a formula
φ, two ordinals α, β ∈ ζΓ with α > 0 and notations p1, . . . , pn of rank strictly less than
(α, β), it decides whether

Lζ·α+β |= φ(p̂1, . . . , p̂n)

Proof. We show this by induction on (α, β). We provide a description of a machine M
that uses the inductive definition of the notations to inductively decide whether Lζ·α+β |=
φ(p̂1, . . . , p̂n). Through this description we will actually describe two recursive subroutines
relying on each other. Namely:

• A subroutine that given φ, two ordinals α, β ∈ ζΓ with α > 0 and notations
p1, . . . , pn, decides whether Lζ·α+β |= φ(p̂1, . . . , p̂n).

• A subroutine that given notations a and b, decides whether â ∈ b̂.

The main difficulty will be the fact that we can’t decide whether some set a is a
notation. Deciding whether a is of the form ⟨φ, b1, . . . , bn, α, β⟩ for some sets b1, . . . , bn is
fairly straightforward if we forget the condition on α and β being in LζΓ . However deciding
this, that is whether α, β ∈ ζΓ, is clearly not doable with what we have established so
far. And even if α and β are known to be in ζΓ, taking a set that looks like a notation
of lower rank, that is of rank (α′, β′) <lex (α, β), clearly does not guarantee with the
lexicographical order that β′ is in ζΓ.

Still, despite this difficulty, let us first suppose that there is some machine m⟨⟩ that,
given the code of some set a ∈ LΣΓ

, decides whether a is a notation. We now describe
M using m⟨⟩. It works as a triple imbricated induction on (α, β) for the outermost one,
the rank of φ for the next one and the rank of its parameters for the innermost one. We
begin with the induction on (α, β).

• Base case is (α, β) = (1, 0). In this case, by hypothesis, the rank of any pi is (0, βi) with
βi ∈ ζΓ. Hence, for any of those, pi = ⟨⊤, xi, 0, βi⟩ with p̂i = xi and M can extract

141

a code for xi given a code for pi. And by Corollary 5.4.23, using sΣ which is given as
input, it can decide whether Lζ |= φ(x1, . . . , xn).

• Then, when (α, β) >lex (1, 0), we proceed by induction on φ.

▷ Suppose that φ is ∆0. Then there is not quantifiers and any atomic formula is of
the form p̂i ∈ p̂j. We show by induction on rk(pi) thatM can decide such atomic
formulas using the notations pi and pj.

∗ Suppose first that we can write pi = ⟨⊤, xi, 0, βi⟩. This mean that xi ∈ LζΓ .
Then, either pj = ⟨⊤, xj, 0, βj⟩ and M can extract codes for xi and xj and
use them to decide whether p̂i ∈ p̂j, as it simply means xi ∈ xj. Either
pj = ⟨ψ, c1, . . . , cm, αj, βj⟩ and p̂i ∈ p̂j if and only if:

LζΓ·αj+βj
|= ψ(xi, ĉ1, . . . , ĉm)

As (αj, βj) <lex (α, β), taking pi for a notation of xi, M can inductively (by
to the induction hypothesis on (α, β)) decide this.

∗ Now, if pi = ⟨ψi, b1, . . . , bm, αi, βi⟩ and pj = ⟨ψj, c1, . . . , ck, αj, βj⟩. By defini-
tion, p̂i ∈ p̂j if and only if p̂i is in Lζ·αj+βj

and satisfies ψj, the formula that
defines p̂j over Lζ · αj + βj. That is, if and only if:p̂i ∈ Lζ·αj+βj

Lζ·αj+βj
|= ψj(p̂i, ĉ1, . . . , ĉk)

First p̂i ∈ Lζ·αj+βj
if and only if there exists a notation qi such that rk(qi) <lex

(αj, βj) and with q̂i = p̂i. We can w.l.o.g. suppose that rk(pi) ⩾lex (αj, βj)

as otherwise pi satisfies the requirement. And under this assumption, given
some notation qi such that rk(qi) <lex (αj, βj), q̂i = p̂i if and only if for all
notation ri such that rk(ri) < rk(pi) we have

r̂i ∈ q̂i ⇐⇒ r̂i ∈ p̂i (5.1)

Hence using mΣ (to enumerate codes for sets in LΣ) and m⟨⟩ (to decide
which reals encode a notation), M can enumerate the notations qi such that
rk(qi) <lex (αj, βj) and for each of those qi enumerate all the ri such that
rk(ri) <lex rk(pi) and for each of those ri inductively decide (as rk(ri) <lex

rk(pi)) whether the equivalence (5.1) holds; which in turn enablesM to decide
whether q̂i = p̂i for all the qi it encounters; which finally lets it decide whether
p̂i ∈ Lζ·αj+βj

.
As for the second part, deciding whether Lζ·αj+βj

|= ψj(p̂i, ĉ1, . . . , ĉk) can

142

inductively be done since (αj, βj) <lex (α, β).

∗ Last case, if pi = ⟨ψ, b1, . . . , bm, αi, βi⟩ and pj = ⟨⊤, y, 0, βj⟩, then p̂i ∈ p̂j if
and only if there is a notation qi = ⟨⊤, x, 0, β′

i⟩ with q̂i = p̂i and x ∈ y. And
this is decidable with the same reasoning as in the previous case, still under
the assumption that notations are decidable using m⟨⟩.

Hence, asM can decide all the atomic formulas in the ∆0 formula φ, it can decide
φ.

▷ Now, suppose that φ is Σn. We write φ = ∃xψ(x, p̂1, . . . , p̂n). By the results
of Proposition 5.4.27, x ∈ Lζ·α+β if and only if x has a notation of rank strictly
less than (α, β). So, M does the following: it uses again the fact that given
the snapshot sΣ and the machine m⟨⟩ it can enumerate LΣ (and know when it
has exhausted it). M enumerates LΣΓ

and for each notation a ∈ LΣ such that
rk(a) < (α, β) it tests whether LζΓ·α+β |= ψ(â, p̂1, . . . , p̂n), which it can do by the
inductive hypothesis of the induction on the rank of φ. And Lζ·α+β |= φ(p̂1, . . . , p̂n)

if and only this is true for some notation a with rk(a) < (α, β).

▷ When φ is Πn, we write φ = ∀xψ. As in the previous case, M enumerates the
notation a in LΣΓ

and inductively decides whether LζΓ·α+β |= ψ(â, p̂1, . . . , p̂n). If
it fails for some a,M outputs false. If not (and, using sΣ,M knows when it went
through all notations in LΣΓ

), it outputs true. This conclude the description of
M under the assumption that m⟨⟩ was given.

Now, we need to provide a description of m⟨⟩. As we cannot decide whether some set is
a notation because it involves decidng whether an ordinal is less than ζΓ, we introduce the
slightly more general concept of quasi-notation. Quasi-notations are defined inductively,
as notations, with the only difference that for the case a = ⟨φ, b1, . . . , bn, α, β⟩ or for the
base case a = ⟨⊤, x, 0, β′⟩ we only require α, β and β′ to be in ΣΓ (instead of ζΓ). The
main interest of quasi-notations is that it will be fairly easy to decide whether a set is
a quasi-notation: in our case, the conditions, as stated in the proposition, regarding the
inputs that are given to M implies that they are all e.w. Consequently, every set that
appears in a computation using them is at least a.w. In particular any ordinal appearing
is in ΣΓ. In such a context, deciding whether a set is a quasi-notation is easy enough
given the inductive definition of quasi-notations. So, we can consider the machine mq

⟨⟩

that, given some set a ∈ LΣΓ
, decides whether a is a quasi-notation. And with it, we can

finish the description of M: it simply uses mq
⟨⟩ as if it was the fictitious m⟨⟩. Obviously,

for the moment, we don’t have any guarantees regarding the behavior of M computing
with mq

⟨⟩ instead of m⟨⟩. We will work our way toward this.
First, another important fact regarding quasi-notations is the following: if a is a quasi-

notation and a is e.w., then a is a notation. To see this, it is enough to observe that,
by finite induction, all ordinals appearing in the inductive definition of a will be e.w. as

143

well and so in ζΓ. From there the idea is the following: if we manage to prove that the
quasi-notations used in the computation of M (which uses mq

⟨⟩) are e.w., then it means
that they are actually notations! And so, despiteM working with mq

⟨⟩ which only decides
quasi-notation, it would actually behave as if it was working with m⟨⟩, which decides
notations.

So we consider the computation ofM using mq
⟨⟩, with input sΣ, a formula φ, two ordi-

nals α, β ∈ ζΓ with α > 0 and notations p1, . . . , pn of rank strictly less than (α, β), as stated
above. As noted, all those inputs are e.w. Further, by well-orderdness of the lexicograph-
ical order on ΣΓ × ΣΓ, the machine also terminates when working with quasi-notation.
So, suppose thatM answers positively, that is it thinks that Lζ·α+β |= φ(p̂1, . . . , p̂n) (but
this may not be what it actually computed, working with quasi-notations). Suppose also
that φ is Σn: φ(p̂1, . . . , p̂n) = ∃xψ(x, p̂1, . . . , p̂n). As M answered positively, this means
that it found a quasi-notation ax of rank strictly less than (α, β) for which it thinks that
“LζΓ·α+β |= φ(âx, . . . , p̂n)”. As noted earlier, working with the lexicographical order, the
rank of ax being strictly less than (α, β) does not imply that it is in ζΓ × ζΓ. But the
inputs are all e.w. Consequently so is ax, as it would be easy to ask M to write this ax
on its output. This, combined with the previous fact, shows that ax is actually a notation
of rank strictly less than (α, β), that is âx ∈ Lζ·α+β andM was correct in taking âx as a
potential witness for φ. This gives the main ingredient to show by induction, again on φ,
thatM, despite working with quasi-notations, yields the desired result.

• If φ is ∆0: the only quasi-notations involved are the notations p1, . . . , pn. However
when deciding whether p̂i ∈ p̂j, the machine will use quasi-notations and may be
wrong. That is, it may wrongfully think that p̂i ∈ p̂j because it used a quasi-
notation qi that isn’t a notation. But if it is the case, as the inputs involved are
e.w. we can e.w. the first quasi-notation qi that M uses to decide that p̂i ∈ p̂j,
thinking for example that “ q̂i = p̂i”. But this implies that qi is a notation. And so
that M was correct in picking this qi. Then if it thinks that q̂i = p̂i working with
quasi-notations, this is a fortiori true with notations.

And so, inductively, we could reproduce the induction scheme used to define the
machine to show that M is correct for each of this decisions, because (a) when
something holds for all quasi-notations, it a fortiori does for all notations and (b)
when something does not hold for a quasi-notation, we can arrange so that M
e.w. the first quasi-notation appearing in its computation for which the statement
does not hold, hence showing that it is actually a notation (the important point in
this previous assertion being that, by well-orderdness, at any step of the induction
scheme there are only finitely many sets involved–namely the parameters that get
created and carried along the inductive way–and that, by induction, all of them are
e.w.)

This shows thatM is correct in every of its subchoices done to decide whether the

144

formula φ is true and consequently that it is correct when deciding whether φ is
true.

• If φ is Σn: we write φ(p̂1, . . . , p̂n) = ∃xψ(x, p̂1, . . . , p̂n). Suppose that M answers
positively. That is it found a quasi-notation ax such that it answers positively
with ψ, ax and p1, . . . , pn as inputs. As seen, this implies that ax is e.w., so that
it is actually a notation and that âx ∈ LζΓ·α+β. By induction, this means that
LζΓ·α+β |= ψ(âx, p̂1, . . . , p̂n) and so that LζΓ·α+β |= φ(p̂1, . . . , p̂n). If it answered
negatively, this is done as in the next case, replacing “positively” by “negatively”.

• If φ is Πn, writing φ = ∀xψ, the machine answering positively means that for all
quasi-notation ax of rank strictly less than (α, β), it answered positively with inputs
ψ, ax and p̂1, . . . , p̂n. In particular, this means that it answers positively with those
inputs for all notation ax of rank strictly less than (α, β) (as notations are also
quasi-notations). By induction, it means that for all notation ax of rank strictly less
than (α, β), LζΓ·α+β |= ψ(âx, p̂1, . . . , p̂n). And by Proposition 5.4.27, this implies
that LζΓ·α+β |= ∀xψ(x, p̂1, . . . , p̂n). Again, the negative case is done like the Σn

positive case, replacing “positively” by “negatively”.

Proposition 5.4.29. The ordinal ζΓ is a gap of reals in the constructible universe of
length ζ2Γ. That is:

(Lζ2Γ
− LζΓ) ∩ P(ω) = ∅

Proof. Suppose that some new real x is defined at some stage γ ∈ [ζΓ, ζ
2
Γ[. That is there

is a formula φ and parameters p1, . . . , pn ∈ Lγ such that:

x = {n ∈ ω | Lγ |= φ(n, p1, . . . , pn)}

and x ̸∈ Lγ. As γ < ζ2Γ it can be written ζΓ · α + β with both α and β in LζΓ . By
Proposition 5.4.27, all pi have a notation in LζΓ , that is an e.w. notation. Further, for
any n ∈ ω, a code for n is easily computable. So we can consider the following machine:
it starts by e.w. φ, α, β, p1 . . . , pn and sΣ on some part of its working tape. Once they
are written (that is with the usual dovetailling technique of Proposition 5.3.35), for each
n ∈ ω, it computes n and uses the parameters it eventually wrote to simulate the machine
M described in Proposition 5.4.28. With it, it decides (and save the result on another
part of its working tape) whether LζΓ·α+β |= φ(n, p1, . . . , pn) for all n ∈ ω. Once done for
all n, it can e.w. x on its output, contradicting the fact that x was a new real appearing
at stage γ + 1 > ζΓ.

We can now finish the proof of the main theorem.

145

Proof of Theorem 5.4.14. We use the fact that ζΓ starts a big gap in the constructible
universe to show that it is seen to be looping at stage ζΓ ·ω. It relies on Corollary 5.3.41,
in the same way as the proof of Proposition 5.3.44 does.

We show first that given some a.w. ordinal α, it is possible for a machine to eventually
decide (that is to e.w. 1 if it is true and 0 otherwise) whether Lα ≺ LΣΓ

. In Proposition
5.4.21 we showed that there is a real sΣ and a machine mΣ such that, given sΣ and
some φ and p as input, mΣ decides whether LΣΓ

|= φ(p). Hence, consider the following
machineN : it e.w. sΣ, the snapshot of Proposition 5.4.21, and for all φ(p) with p ∈ Lα and
such that Lα |= φ(p), it uses this snapshot (that is with the usual dovetailing construction
presented in proof of Proposition 5.3.35), to eventually decide (once sΣ has been e.w., mΣ,
as simulated in the computation we are describing, always halt!) whether LΣΓ

|= φ(p).
Once N iterated through all formulas φ and parameters p ∈ Lα, it eventually decides
whether Lα ≺ LΣΓ

.

Now, using N , it is possible to e.w., if there is one, the first ordinal α such that
Lα ≺ LΣΓ

. Indeed, as once sΣ has been eventually written, the simulation of mΣ inside
some machine with sΣ as input always halts, we can desing a machine that looks for α
such that Lα ≺ LΣΓ

and with the usual dovetailling technique, that restart each time the
machine that e.w. sΣ changes its output. And there is one such α by Proposition 5.4.22.
So there is α < ζΓ such that Lα is an end-elementary substructure of LΣΓ

, as otherwise
this computation would e.w. ζΓ itself. On the other side of ζΓ, if there was a bound on
those α’s, this bound would be e.w. and greater than ζΓ. Hence such α’s are cofinal in
ΣΓ. This yields, among many others, two ordinals α and α′ such that:α < ζΓ < α′

Lα ≺ LζΓ ≺ Lα′

As the operator Γ is suitable, it is defined by some formula φΓ at the different levels
of the constructible universe. So, in particular, this chain of e.e.e. means, looking at the
computation of UΓ, that stages α, α′ and ζΓ all share the same snapshot. Hence, for any
ν, ν ′ in {α, α′, ζΓ} with ν < ν ′ and by asymptoticity, the machine will repeat itself ω times
between stages ν ′ and ν ′ ·ω. However, it does not yet implies that the machine is looping.
More precisely, it does not escape this repetition of the segment [ν, ν ′[and is actually
looping if and only if, by Corollary 5.3.41, the snapshot occurring after this repetition is
the same as a snapshot occuring between ν and ν ′. So we will show that the snapshot
appearing at stage ζΓ · ω in the computation of UΓ, that is after some final segment
of the computation below ζΓ is repeated ω times, was actually part of said segment of
computation.

To do this, we consider first sζΓ the snapshot of the computation of UΓ at stage ζΓ.
As Lα ≺ LζΓ , this snapshot also occurs at stage α and sζΓ is definable (as a real) over
Lα. Hence, sζΓ ∈ LζΓ . We let α0 ⩽ α be the least stage at which this snapshot occurs.

146

Then, we let sζΓ·ω be the snapshot (again seen as a real) of UΓ occurring at stage ζΓ · ω.
At this stage, by asymptoticity, the segment of computation between stages α0 and ζΓ

has been repeated ω times. Moreover, sζΓ·ω is definable over LζΓ·ω and so it is in LζΓ·ω+1.
But the gap of reals starting at ζΓ and of length ζ2Γ spans over ζΓ · ω + 1. So sζΓ·ω is also
in LζΓ . Now we consider the following sentence, writing S(ν) for the snapshot of UΓ at
some stage ν:

∃ν, ν ′ (ν < ν ′ ∧ S(ν) = sζΓ ∧ S(ν ′) = sζΓ·ω)

It is naturally true in Lα′ as it witnesses stages α0 and ζΓ · ω (As ζΓ, the ordinal α′ is
multiplicatively closed). Moreover, this sentence is actually expressible in the language of
LζΓ as both sζΓ and sζΓ·ω are in LζΓ . As such, by elementarity, it can be reflected down to
LζΓ . This implies that there is some stage ν ′ < ζΓ such that its snapshot is sζΓ·ω and such
that it appears after an occurrence of the snapshot sζΓ . As α0 is the least stage whose
snapshot is sζΓ , α0 < ν ′. As wanted, the repeating segment [α0, ζΓ[in the computation of
UΓ yields at stage ζΓ · ω a snapshot that is part of it, namely that appeared at stage ν ′.
Hence UΓ is seen to be looping at stage ζΓ · ω < ΣΓ < TΓ, which is a contradiction.

The two other structural equalities are now corollaries of the main theorem.

Corollary 5.4.30. Let Γ be a n-symbol suitable, looping stable and simulational operator.
Then ζΓ = ηΓ.

Proof. By Proposition 5.4.6, Γ emulates, w.l.o.g., the operator Γsup. So we can apply
Proposition 5.4.8 which yields ζΓ ⩽ ηΓ. Now, suppose that ζΓ < ηΓ. This means that
there is some machinem and ordinal α such thatm converges at stage α with ζΓ < α < ηΓ.
As ΣΓ = TΓ by Theorem 5.4.14, α < ΣΓ. Then we can consider the following machine:
using UΓ, it enumerates ordinals below ΣΓ. For each ordinal ν produced by UΓ, the main
machine copies it to its output and then simulates ν steps of a fresh simulation of m and,
after those ν steps, goes on with the simulation of m until its output changes. If it does,
the computation goes on with the simulation of UΓ and the enumeration of a.w. ordinals.
If it doesn’t, it actually e.w. the ordinal ν. And the output of the simulation of m does
not change if and only if ν ⩾ α. Hence this computation e.w. the first ordinal greater
than α to appear, which contradicts the fact that ζΓ < α.

Corollary 5.4.31. Let Γ be a n-symbol suitable and simulational operator that satisfies
the looping stability condition. Then λΓ = γΓ.

Proof. Again by Proposition 5.4.6 and Proposition 5.4.8, λΓ ⩽ γΓ. Then, if a machine
halts after stage λΓ, it must still do so before stage ΣΓ in virtue of Theorem 5.4.14. But
then, it is easy to simulate this machine along the a.w. ordinals to look for and write the
a.w. ordinal stage at which this machine halts, which proves that every halting stage is
actually also writable.

147

Corollary 5.4.32. Let Γ be a simulational n-symbol operator that satisfies the looping
stability condition. A set a is in LλΓ

(resp. in LζΓ and in LΣΓ
) if and only if it is writable

(resp. e.w. and a.w.) by a Γ-machine.

Proof. The first implication is simply Proposition 5.4.12. We show the converse implica-
tion for a.w. reals, the two other cases are similar.

Suppose that the set a is a.w. That is a code for a, which we write â, appears in the
computation of some Γ-machine. As, by Theorem 5.4.14, ΣΓ = TΓ, this codes appears in
this computation before stage ΣΓ and so is itself (as a real) in LΣΓ

.
Then, as with the operator Γsup, ζΓ is an admissible ordinal and so ΣΓ is a limit of

admissible ordinals–as otherwise the last admissible ordinal below ΣΓ would be e.w. So
there is α admissible and smaller than ΣΓ such that â ∈ Lα. As a code for a, â describes a
transitive relation E on ω such that (ω,E) ≃ (TC({a}),∈). The isomorphism described
by it yields an application f on ω inductively defined as:

f(i) = b←→ ∀c ∈ b ∃jEi (f(j) = c) ∧ ∀jEi∃c ∈ b (f(j) = c)

As Lα is admissible, this function is definable in it by Σ-recursion and for some ia, f(ia) =
a. Also, for some E-least i0, i0, f(i0) = ∅ ∈ Lα. Hence, by external induction resting on
the use of Σ-collection, for all i, f(i) ∈ Lα. In particular, a ∈ Lα ⊂ LΣΓ

, as wanted.

Remark 5.4.33. A question remains: for an operator Γ that satisfies the condition of
Theorem 5.4.14 is a Γ-machine that does not halt seen to be looping at stage ΣΓ? For
such a machine, as ΣΓ = TΓ, the snapshot s appearing at stage ΣΓ must have appeared
at an earlier stage. And the machine will be repeating up to stage ΣΓ · ω some segment
[α,ΣΓ[of its computation. However, it is not clear whether the snapshot appearing at stage
ΣΓ ·ω will be s again. It may be some snapshot t occurring in the segment of computation
[α,ΣΓ[, as in Figure 5.8. In this case the machine is seen to be looping at stage ΣΓ · ω
by Corollary 5.3.41. But it may also be some u that does not appear in this segment.
In which case, by asymptoticty, the segment of computation spanning between this y and
stage ΣΓ · ω will repeat itself up to stage ΣΓ · ω2. And then another snapshot appears.
Either in the segment that repeated itself, either occuring before the first apparition of y.
And we see how this leads us to repeat the reasoning of the proof of Proposition 5.3.43:
as no new snapshot appear after stage ΣΓ, for such an operator Γ, any Γ-machine is seen
to be looping before stage ΣΓ · ωω. Still, it may be possible to show with Theorem 5.4.14
that, in fact, they are seen to be looping as soon as they reach stage ΣΓ.

5.5 A counter-example without the looping condition

By Theorem 5.4.14, for an operator satisfying the looping condition (as well as being
suitable and stimulational and enhancing the lim sup machine), we have ΣΓ = TΓ. In

148

u

α

s

t

H

ΣΓ

s
. . .

ΣΓ · ω

t or u ?

Figure 5.8: When Γ is such that ΣΓ = TΓ, when does a Γ-machine loops?

this section, to show that the looping condition is a necessary condition, we construct
a suitable and simulational operator that does not satisfy the looping condition and for
which ΣΓ < TΓ. The definition of this operator, the tick operator, is done in Definition
5.5.12 and is fairly straightforward. However, to prove that it indeed forms a counter-
example, one convincing way to do it is to introduce another operator, the jump operator
whose behavior is easier to study and to show that both those operators behave in a
similar way.

The intuition behind this counter-example, mentioned in Remark 5.3.39, is fairly sim-
ple as well: the machines ruled by the tick operator will be repeating fpr most of their
computation and they will only exit those repetitions every tick, that is every τ steps for
a very big τ . After they exit their repetition, they compute a bit and “quickly” start to
repeat again until the next tick. Hence with a well chosen τ , we will be able to obtain
great length of computation, that is greater than τ , with only few different reals written
in the computations, and so with small a.w. ordinals, that is smaller than τ .

Theorem 5.5.1. There exists a suitable and simulational operator Γ that enhances the
operator Γsup and such that ΣΓ < TΓ.

Before defining the jump operator that will help us prove this result for the tick
operator we need some preliminary results.

Definition 5.5.2. For n ∈ ω, the n-symbol lim sup operator is the cell-by-cell operator
Γn
sup defined by the single cell operator γnsup itself defined as follows. For h ∈ <Onn,

γnsup(h) = k when k ∈ n is the greatest integer cofinal in h

with the convention that if h is not a limit word, its last letter is considered cofinal in it.

Proposition 5.5.3 (Looping condition for Γn
sup-machine). A Γn

sup-machine is looping if
and only if there are two limit stages µ < ν sharing the same snapshot and such that for
all cell i, writing sν the snapshot at stage ν and sν [i] the value of cell i in sν:

max
ν′∈[µ,ν[

(Ci(ν
′)) = sν [i]

Proof. The condition maxν′∈[µ,ν[(Ci(ν
′)) = sν [i] simply comes from the fact that once the

segment of computation [µ, ν[is repeating, the lim sup of the value of some cell i after it

149

repeated some limit ordinal amount of time is equal to the maximum value of the cell i in
this segment of computation [µ, ν[. This ensures that the snapshot sν also appears after
the segment [µ, ν[has been repeated a limit ordinal amount of time.

Proposition 5.5.4. For n ∈ ω, the n-symbol lim sup operator Γn
sup is a suitable and

simulational operator.

Proof. This is the same proof as done for the usual 2-symbol lim sup operator.

Proposition 5.5.5. For n > 1, the n-symbol lim sup operator Γn
sup is as powerful as the

usual lim sup operator Γsup. That is ΣΓn
sup

= ΣΓsup and TΓn
sup

= TΓsup

Proof. For n > 1, Γn
sup enhances Γsup, so we naturally have that ΣΓn

sup
⩾ ΣΓsup and

TΓn
sup

⩾ TΓsup . In the other direction, we show that a Γsup-machine can simulate a Γn
sup-

machine.
For finite machines, a n-symbol machine can be easily simulated by a 2-symbol machine

by representing a cell of the n-symbole machine by n− 1 cells of the 2-symbol machines.
We choose the following encoding: the n-symbol cell that reads k ∈ n is represented by
n− 1 2-symbol cells that read, once aggregated, 1k0n−k−1. Observe that at a limit stage,
those are equivalent:

– The n-symbol operator yields k for cell i.

– k is the greatest cofinal value of i in the n-symbol cell up to this limit stage.

– 1k0n−k−1 is the aggregated value of the n − 1 2-symbol cell simulating i with the
longest 1-prefix and which is cofinal in this limit stage.

– the lim sup operator yields 1k0n−k−1 for the cells simulating i.

Hence, at any limit stage, the n-symbol lim sup operator is correctly simulated by the usual
2-symbol lim sup operator and with it the simulation is faithfully carried out through all
the ordinals.

Definition 5.5.6. For Γ an asymptotic operator and H a limit segment of history, we say
that H is a looping pattern w.r.t. Γ or a Γ-looping pattern when a machine with a history
of the form H0H

ω is looping and, more precisely, looping over the segment of history H.

In the previous definition, we ask Γ to be asymptotic in order to ensure that different
initial segments H0 won’t lead to different behaviors after H repeated ω times. So it is
equivalent to ask that one machine with this history loops or to ask that any machine
with this history loops.

Example 5.5.7. Take Γn
sup, the n-symbol lim sup operator. Then, with Proposition 5.5.3

in mind, H is a looping pattern w.r.t. Γn
sup if and only if for all cell i:

H[0][i] = max
ν<|H|

(H[ν][i])

150

Hence, if for some Γn
sup-machine the history reads at some point H0H

ω, we know that the
machine is looping and that the segment of history H will repeat indefinitely.

Definition 5.5.8 (the 3-symbol jump machine). The 3-symbol jump operator Γjump is
a 3-symbol lim sup operator with the only difference that its behavior changes after the
machine has been repeating itself for some limit ordinal amount of times (or when such
repeating stages are cofinal). It is called a "jump" operator as this change of behavior
can be seen as a Turing jump escaping the loop.

It can be defined using the lim sup operators Γ102 and Γ210. Those are defined using
cell-by-cell lim sup operators γ102 and γ210. Both are usual 3-symbol lim sup operators
working on the alphabet 3 with the only difference being the order of priority of the
letters in 3. That is for a limit cell history h ∈ <On3,

γ102(h) =


1 if 1’s are cofinal in h

0 if γ102(h) ̸= 1 and 0’s are cofinal in h

2 if γ102(h) ̸= 1 and γ102(h) ̸= 0

and

γ210(h) =


2 if 2’s are cofinal in h

1 if γ210(h) ̸= 2 and 1’s are cofinal in h

0 if γ210(h) ̸= 2 and γ210(h) ̸= 1

From there, Γjump is defined as follow. For a limit history H ∈ <On(ω3):

Γjump(H) =



Γ210(H) if H = H0 · (H1)
ω for a Γ102-looping pattern H1

Γ210(H) if H is a limit of terms of the form H0 · (H1)
ω

with the H1’s being Γ102-looping patterns

Γ102(H) else

That is, most of the time, a Γjump-machine behaves like a n-symbol lim sup machine
with the order 1 ≻ 0 ≻ 2 on its alphabet. However, when it entered a loop, that is when
some looping pattern H1 repeated ω time, it behaves like a lim sup machine with the order
2 ≻ 1 ≻ 0 on its alphabet. For consistency it also does so at stages that are limit of stages
ruled by the operator Γ210 or equivalently limit of repetition of repeating patterns. Those
stages corresponds to stages whose historic H below them admits a sequence of prefixes
(H i

0 · (H i
1)

ω)i∈ω where the H i
1 are Γ102-looping patterns and such that H = limiH

i
0 · (H i

1)
ω.

And after those stages ruled by Γ210, the machine may exit the loop and behave again
like a Γ102-machine until it starts to repeat again.

Proposition 5.5.9. The jump operator Γjump is a ∆4-suitable operator. It is moreover
stable, asymptotical and contraction-proof but not cell-by-cell.

151

We give this proof of this first fact for the sake of completeness, but it is actually
enough to be convinced that Γ is a Σn-suitable operator for any n.

Proof. As it is built from two lim sup operators, the jump operator is easily seen to be
stable and contraction-proof. It is also asymptotical as when the history H can be written
H = H0(H1)

ω (with H0 possibly empty), any final segment of H can be written in the
same way (possibly with a different H0). Same goes when H is a limit of such terms. And
it is not cell-by-cell as for a given cell i, the operator needs to consider the whole machine
history H rather than only the cell history hi.

As for it being ∆4-suitable, the definition provides the skeleton that we can use to
define a formula φjump such that for a machine m that computes with input y and up to
limit stage ν, with Hν being the history of the machine up to stage ν:

Γjump(Hν)[i] = k ←→ Lν [y] |= φjump(i,m, y, k)

More precisely, we proceed by recursion as in the proof of Proposition 5.3.37. We
define by recursion a Σ1 function η such that for a machine m, an input y and an ordinal
ν, η(m, y, ν) = Hν , the history of m seen as an ordered sequence of snapshots of length
ν. For a limit ordinal ν, η(m, y, ν) is simply the limit of the η(m, y, ν ′) for ν ′ < ν. For a
successor ordinal ν, η(m, y, ν+1) is easily definable from η(m, y, ν) as the transition from
a given snapshot to its successor snapshot is only determined by the code of the machine.
And finally, for a limit ordinal ν, to define η(m, y, ν + 1), we need to define the snapshot
sν of m that appears at limit stage ν with the help of the history below this limit stage,
that is of η(m, y, ν). We claim that sν is Σ1-definable from ν and η(m, y, ν), that is from
the history of m below ν. Indeed, first it is easy to check whether there exists H0 and H1

such that Hν = H0(H1)
ω. For the second case, Hν being a limit of initial segments of the

form H0(H1)
ω simply means that for all β < ν, there is β′ ∈ [β, ν[, H0 and H1 such that

the initial segment of Hν of length β′ is equal to H0(H1)
ω. Eventually, checking whether

some H1 is a Γ102-looping pattern is straightforward and done in Example 5.5.7. This
makes it possible to check whether one of the two first cases of the definition of Γjump

applies, in which case sν is computed using the formula induced by the operator Γ102 as
in the proof of Proposition 5.3.37; else sν is computed using the formula induced by the
operator Γ210.

Eventually, in Lν [y], we can define the formula φjump. First we write π(H) for the
∆0 predicate that is true when H is a Γ102-looping pattern. Then, we let ψ(i,m, y) be
the formula defined with η and π and such that Lν [y] |= ψ(i,m, y) if and only if Hν ,
the history of m below stage ν, can be written Hν = H0 · (H1)

ω with H1 a Γ102-looping
pattern. This is true if and only if there is H0 and H1 such that for all ν ′ < ν, the initial
segment Hν′ of Hν is an initial segment of H0 · (H1)

ω. So ψ is a Σ3 formula.
Then, as in the proof of Proposition 5.3.37, the lim sup predicate yields Σ2 formulas

φ102 and φ210 using the history function η. From those, we can define φjump.

152

φjump(i,m, y, k) =ψ(i,m, y) ∧ φ210(i,m, y, k)

∨ [∀β∃α > β Lα |= ψ(i,m, y) ∧ φ210(i,m, y, k)]

∨ [¬ψ(i,m, y) ∧ ¬(∀β∃α > β Lα |= ψ(i,m, y)) ∧ φ102(i,m, y, k)]

As the formula ψ is Σ3, φjump is ∆4 and the jump operator is a ∆4-suitable operator.

Proposition 5.5.10. A Γjump-machine is looping if and only if there are two limit stages
µ < ν, both ruled by the operator Γ210, that is both following the repetition of a Γ102-looping
pattern or a limit of thereof, sharing the same snapshot and such that writing sν for the
snapshot at stage ν and writing max210 for the max operator with the order 2 ≻ 1 ≻ 0,
we have:

210
max

ν′∈[µ,ν[
(Ci(ν

′)) = sν [i] (5.2)

In this case, the machine is seen to be looping at stage ν.

Proof. Suppose that a Γjump-machine is looping and let H be the shortest repeating
pattern and α be the stage at which it starts looping. Let H0 be the history up to stage
α. Then the history reads: H0HHH In particular, when H has repeated ω times,
it reads H0H

ω. As it is looping, Γjump(H0H
ω) = H[0]. Let µ be the stage below which

the history H0H
ω spans. We show that stage µ is ruled by the operator Γ210, that is that

Hω is a Γ102-looping pattern or limit of such looping patterns. Suppose that Hω isn’t.
Then it is easy to see that for any limit α, Hα is neither a Γ102-looping pattern nor a
limit of looping patterns. Bu then it means that after this point, Γjump always acts as the
operator Γ102. But then Hω satisfies Proposition 5.5.3 and Hω is a Γ102-looping pattern,
which contradict our first assumption. Hence, and by definition of the jump operator,
Γjump(H0H

ω) = Γ210(H0H
ω), i.e. the stage µ below which the historyH0H

ω spans is ruled
by the Γ210-operator. Then, let ν be the stage corresponding to the history H0H

ωHω. So
the segment of history delimited by µ and ν is Hω itself. With the same reasoning, stage
ν is also ruled by the Γ210-operator and Γjump(H0H

ωHω) = H[0] = Γjump(H0H
ω), which

means that the snapshot at stage µ and ν match. Eventually, the fact that the machine is
repeating implies that Γjump((H

ω)ω) = H[0]. But also Γjump((H
ω)ω) = Γ210((H

ω)ω) and
this ensures that condition (5.2) on the repeating segment (here Hω), is satisfied as well.

Conversely, suppose that are given µ and ν satisfying the hypothesis. Let H0 be the
segment of history that spans between stages 0 and µ and H the segment that spans
between stages µ and ν. As the snapshots at stages µ and ν match and Γjump is asymp-
totical, the history reads H again after H0H appeared. And this goes on for at least ω
repetitions of H. As ν is ruled by the operator Γ210, so are every stages below which H0H

k

spans for a natural number k. Hence, as a limit of stage limit of stages ruled by Γ210, the

153

stage below which spans H0H
ω is also ruled by Γ210. Hence Γjump(H0H

ω) = Γ210(H0H
ω).

And Γ210(H0H
ω) = Γ210(H0H) by hypothesis (5.2). And Γ210(H0H) = Γ210(H0) = H[0]

by the fact that µ and ν share the same snapshot and are both ruled by Γ210. Hence the
stage corresponding to H0H

ω also shares the same snapshot and is ruled by Γ210. Further,
carrying this reasoning on by transfinite induction, shows that the machine is looping.

Proposition 5.5.11. Let m be a Γjump-machine that does not halt and let (α, β, δ) the
lexicographicaly least triple of additively closed ordinals such that α < β < δ and

Lα ≺Σ4 Lβ ≺Σ4 Lδ

Then m is seen to be looping at the latest at stage δ · ω.

Proof. By the e.e.e. hypothesis, the snapshots at stage α, β and δ match. Hence, by
asymptoticty, the segment of history [α, β[repeats ω times up to stage β ·ω. If at stage β
the operator Γjump acts as Γ210 then it does so at any stage β ·k and also at stage β ·ω, as
a limit of stages ruled by Γ210. Else, suppose that at stage β the operator Γjump acts as
Γ102. In this case, we can show that Hβ, the segment of history that spans between stages
α and β is a Γ102-looping pattern, which contradict this supposition. This comes from the
fact that by elementarity, for any cell i, any symbol appearing in i between stages α and
β also appears in i cofinally in stage α, and so that the value of cell i at stages α and β is
at least greater (w.r.t. ⪯210) that the maximum of the values appearing in cell i between
those stages. In definitive, β · ω must be ruled by the operator Γ210

We write sβ·ω for the snapshot that appears at this stage. It may be different from
sβ. However, sδ = sβ and, again by asymptoticity, the segment of history [β, δ[starts
repeating from stage δ and at least up to stage δ ·ω. This is depicted in Figure 5.9. With
the same justification, stage δ · ω is ruled by the operator Γ210.

We claim that stages β ·ω and δ ·ω satisfy the looping condition of Proposition 5.5.10.
First, as shown, at both those stages, operator Γjump acts like Γ210. Then, writing Hδ

for the history that spans between stages β and δ, observe that Hβ ⊏ Hδ. Hence, the
repetition of Hδ encloses that of Hβ. This implies that for any cell i:

Γ(Hω
β)[i] ⪯210 Γ(H

ω
δ)[i]

The inequality may be strict for some cell i if and only if a symbol greater (w.r.t. ⪯210)
than Γ(Hβ · ω)[i] appears between stages β · ω and δ in the cell i. We show that this is
not possible. To do this, we show that:

210
max
ν∈[α,β[

(Ci(ν)) ⪰210
210
max

ν∈[β·ω,δ[
(Ci(ν))

Suppose that this is not the case. This means that there is some symbol s ∈ 3 appearing

154

in cell i between stages β · ω and δ and greater than any symbol appearing in i between
stages α and β. The second half of the affirmation translates to:

Lβ |= ∀ν > αCi(ν) ≺210 s

But reflecting this affirmation up to Lδ contradicts the fact that s appeared between
stages β · ω and δ. This shows that stages β · ω and δ · ω share the same snapshot and
moreover that the condition (5.2) of Proposition 5.5.10 holds, which ends the proof.

α

Hβ

β β · 2
. . .

β · ω

Hδ

δ

. . .

δ · ω

Figure 5.9: Computation of a Γjump-machine between stages α and δ · ω.

We now define the τ -ticking operator which will be, in definitive, the operator that
interests us to prove Theorem 5.5.1. However, the operator Γjump will help us define the
right τ -tick operator (which depends of an ordinal τ) as well as help us study its behavior.

Definition 5.5.12 (the 3-symbol tick machine). For τ a limit ordinal, the τ -ticking
operator Γτ is a 3-symbol lim sup operator with the only particularity that its behavior
is altered at limit stages that are multiple of τ . It is called a "ticking" operator as this
change of behavior can be seen as a regular tick. Γτ -machines will naturally be able to
harvest this tick and, at least, to know when their current stage is a multiple of τ .

Γτ can be defined as a cell-by-cell operator γτ defined using γ102 and γ210; themselves
defined as in Definition 5.5.8. For a limit history h ∈ <On3:

γτ (h) =

γ210(h) if |h| = τ · α for some ordinal α

γ102(h) else

That is before stage τ and more generally at any stage that is not a multiple of τ , a
Γτ -machine behaves like a Γ3

sup machine with the order 1 ≻ 0 ≻ 2 on its alphabet. And
at stages τ · α, a Γτ -machine behaves like a Γ3

sup machine with the order 2 ≻ 1 ≻ 0 on its
alphabet.

Definition 5.5.13 (uniformly characterizable ordinals). An ordinal α is uniformly char-
acterizable with respect to the constructible hierarchy if there is a sentence ψα such that

155

for all real y: Lα[y] |= ψα

∀β < αLβ[y] ̸|= ψa

It is Σn-uniformly characterizable when ψα is Σn.

Proposition 5.5.14. There exists an additively closed Π2-uniformly characterizable or-
dinal χ strictly greater than Σjump and Tjump, which are respectively the supremum of
the ordinals a.w. by a Γjump-machine and the supremum of the ordinals a.c. by a Γjump-
machine.

Proof. As Γjump is not cell-by-cell, it is not simulational and we can’t apply Proposition
5.4.8. However, we know that every a.w. real is a.w. before stage Tjump and that Tjump < δ

with δ defined in Proposition 5.5.11. So, for any Γjump-a.w. ordinal α, a code for α is in
Lδ and α is in Lδ+ where δ+ is the least admissible ordinal greater than δ. Hence, we also
know that Σjump ⩽ δ+.

Now let χ be the least ordinal that witnesses the existence of α, β, δ and δ+ such that
the following is true in Lχ: 

Lα ≺Σ4 Lβ ≺Σ4 Lδ

δ+ ⩾ δ

Lδ+ |= KP

∀µ, ν ∃ξ (ξ = α + β)

This description yields a uniform (as it only quantifies over ordinals or set of the form
Lα) characterization of χ strictly greater than Σjump and Tjump. (And note that because
of Foundation, KP is not finitely axiomatizable but this is not an issue when dealing with
structures that already satisfy Foundation.)

Proposition 5.5.15. Given a Σn-uniformly characterizable ordinal α, there exists a Σm

sentence Mα with m = max(n, 3) and such that for all ordinal ν:

∃µ > 0 (ν = α · µ)←→ Lν [y] |=Mα

Proof. Let ψα as defined in Definition 5.5.13 and consider the following formula.

Mα = (ψα ∧ ∀β Lβ ̸|= ψα) ∨ ∃α0 [Lα0 |= ψα ∧ ∀β < α0 Lβ ̸|= ψα

∧∀µ (∃γ (γ = α0 · µ) =⇒ ∀δ < α0 ∃γ (γ = α0 · µ+ δ))]

Then Lν |= Mα if and only if: either ν = α, in which case Lν |= ψα and ν is the least
such, either ν > α and for all α ·µ < ν, we also have α ·µ+ δ < ν for any δ < α. Which is

156

equivalent to saying that ν is a multiple of α. Having in mind that, given β, the predicate
Lβ |= ψα is Σ1, it is clear that Mα is Σm with m = max(n, 3).

Proposition 5.5.16. For τ an additively closed and Σ3-characterizable limit ordinal, the
τ -tick operator Γτ

tick is a ∆4-suitable and simulational operator. If τ is greater than Σsup

this operator does not satisfy the looping stability condition.

Proof. As it is built from two lim sup operators, the τ -tick operator is easily seen to be
stable, cell-by-cell and contraction-proof for any limit ordinal τ . It is only asymptotical
when τ is additively closed as otherwise, taking a final segment of an history could displace
the position of the next tick, that is of the next stage multiple of τ .

Then, observe that it is easy for a machine to detect the "ticking" stages (i.e. stages
multiple of τ): it can simply have a cell whose value regularly alternates between 1 and 2

and it will read 2 at a limit stage if and only if this stage is a ticking stage. From there, if
τ > Σsup, we can design a machine that waits for stage τ to exit a repetition that repeated
for more than ω times, which falsifies the looping stability condition.

As for it being ∆4-suitable, the definition again provides the skeleton that we can use
to define a formula φtick such that for some machine m that compute up from input y
and up to limit stage ν, with Hν being the history of the machine up to stage ν:

Γtick(Hν)[i] = 0←→ Lν [y] |= φtick(i,m, y)

We define η(m, y, ν) as usual. The only part that changes is to define η(m, y, ν + 1)

when ν is limit. To define sν , it’s necessary to decide whether ν is a multiple of τ . As τ
is uniformly characterizable, by Proposition 5.5.15, there is some formula Mτ such that ν
being a multiple of τ is equivalent to Lν [y] |= Mτ . Hence, if Lν |= Mτ , then sν , the last
snapshot of η(m, y, ν+1), is defined using the formula induced by the operator γ102. Else
sν is defined using the other formula induced by γ210.

From there, we can define the formula φtick. As in the proof of Proposition 5.3.37, the
lim sup predicate yields the Σ2 formulas φ102 and φ210. In turn, this yields:

φtick(i,m, y) := Mτ ∧ φ102(i,m, y)

∨¬Mτ ∧ φ210(i,m, y)

By proposition 5.5.15, Mτ is Σ3 and so φtick is ∆4.

Proof of Theorem 5.5.1. We claim that for a great enough τ , any τ -tick machine will
behave like the jump machine having the same code with the only difference that it will
be considerably “slower” as it will often be repeating for considerable amount of time
(namely τ steps) before exiting the repetition and acting again like it jump counterpart.
Hence, it will still produce the same a.w. ordinals. More precisely, for τ = χ, the
admissible characterizable ordinal defined in Proposition 5.5.14 such that both τ > Σjump

157

and τ > Tjump, we will show that we have Tτ > τ and Σjump = Στ . This implies that:

Στ = Σjump < τ < Tτ

which proves the theorem. We now need to show that both Σjump = Στ and Tτ > τ

hold. Observe that the second equality is immediate as τ is clearly clockable by a τ -tick
machine. For the first one, we make the following claim.

Claim 5.5.16.1. Let m be a machine code, mjump the Γjump-machine with the code m
and ruled by the jump operator and mτ the Γτ -machine with the code m and ruled by the
the τ -tick operator. We write (αν) for the limit stages of mjump that are ruled by Γ210

(that is stages where some looping pattern H1 has been repeating for ω limit times, or
limit of those) and (βν) the limit stages of mτ that also are ruled by Γ210 (that is stages
multiple of τ). Then, we claim that:

• For any ordinal ν, the snapshots at stage αν in mjump and βν in mτ match.

• For any ordinal ν, we can write H0 ·Hω
1 for the history of mjump up to stage αν+1

and the history of mτ up to stage βν+1 reads H0 ·Hτ
1 .

Proof. We show this by induction. Consider stages α0 and β0. By definition, before those
stages, respectively in machinesmjump andmτ , the limit operators behaved simply as Γ102.
Hence, both those machines started repeating at the latest from stage Σsup onward. That
is, the history of mjump below α0 reads H0H

ω
1 where H1 is some history of the machine

below Σsup and at most the history between stages ζsup and Σsup while the history of mτ

below β0 reads (by closedness of τ and as τ > Σsup) H0H
τ
1 . Hence, as stages α0 and β0

are both ruled by the operator Γ210 and as this operator is asymptotic and satisfies the
looping stability, both stages share the same snapshot.

Then, we consider successor stages αν+1 and βν+1 for some successor ordinal ν + 1.
By induction hypothesis, αν and βν share the same snapshot. By asymptoticity, the
computation of both machines match while they are both ruled by the operator Γ102, that
is, respectively, until stages αν+1 and βν+1. And, for the first time after stage αν , the
machine mjump produces an history of the form H0H

ω
1 for H1 a looping pattern at stage

αν+1. Hence the history below stage αν+1 can be written H0H
ω
1 . As τ > Tjump, τ is also

greater than the length of the history H0 ·Hω
1 and the machine mτ is repeating H1 up to

stage βν+1, the history before this stage reads H0 · Hτ
1 . Again, by the lim sup definition

of operator Γ210, this implies that mjump and mτ share the same snapshot at respectively
stages αν+1 and βν+1.

Eventually, for some limit ν: Consider the sequence (αν′)ν′<ν and the ordinal
⋃

ν′<ν αν′ .
First, as the jump operator also acts like the Γ210 operator at stages that are limit of

158

repeating histories (i.e. limit of histories of the form H0 ·Hα
1), we have:

αν =
⋃
ν′<ν

αν′

On the other hand, this naturally holds for βν , as a limit of multiple of τ :

βν =
⋃
ν′<ν

βν′

Moreover, by induction hypothesis, we can control the history before stages αν and βν .
Namely, the history before stage βν is the same as that before αν with the only difference
that between some stages βν′ and βν′+1, it reads Hν′

0 · (Hν′
1)τ instead of Hν′

0 · (Hν′
1)ω for

some specific Hν′
0 and Hν′

1 . Hence, by the definition of the lim sup rule, stages αν and βν
share the same snapshot and this proves the claim.

Finally, from thisprevious claim, it is clear that the machines mjump and mτ sharing
the same machine code accidentally write the same ordinals. And with it, more generally,
that as wanted Σjump = Στ ; which ends the proof.

159

Chapter 6

Toward higher-order machines: a
Σ3 ∧ Π3 three-symbol simulational
operator

In this chapter we design a 3-symbol Σ3 ∧ Π3-suitable, simulational and looping stable
operator. We will write Γ3 for this operator and, for convenience, λ3, ζ3, . . . for its
associated constants. With what we have done so far, namely with Theorem 5.4.14, the
equality Σ3 = T3 will then be immediate. Similarly, the operator Γ3 enhances the operator
Γsup and so it is at least as powerful as this operator. But we will see how it is actually
strictly more powerful.

So going further than the equality Σ3 = T3, one of the main aim of this chapter,
after the definition of Γ3, is to prove for it a generalization of the λ-ζ-Σ theorem (i.e.
Theorem 4.1.33). This, as much as is possible, corroborates the choice of this operator
for the definition of a higher-order model of infinite Turing machines. This new theorem,
Theorem 6.2.49 reads:

Lλ3 ≺Σ1 Lζ3 ≺Σ2 LK3 ≺Σ3 LΣ3

And so, we will see how a new constant, K3, related to a new way of writing ordinals,
appears in the study of the operator Γ3. This way of writing, called K-writing, is strictly
stronger, as in more demanding, than accidentally writing and strictly weaker than even-
tually writing. An immediate corollary of this theorem is the fact that Σsup < Σ3, and
another, almost immediate, is the fact that ζsup < ζ3.

Moreover, studying this new constant K3 and the new notion of K-writing we exhibit,
as in the previous chapter, some fundamental but implicit properties of the writing no-
tions, like the notion of eventually writing, which are used extensively in the study of
ITTMs. For example, only one real can be e.w. by a machine at a time. But this fact
is obvious and for this reason it was never explicitely used or raised to the status of a
property. However, when working with K-writing–designed such that this fact is also

160

true–its importance appears more clearly and with the fact that its easily not true for
other writing notions (take accidentally writing for example.)

Finally, for set-theorical reasons, the proof of Theorem 6.2.49 will be a bit more in-
volved than that of the classical λ-ζ-Σ theorem. This comes from the fact that, when
speaking of eventually writing, a Σ2 formula is a Π1 formula in disguise: if we want to
eventually decide whether ∃x, ∀yψ(x, y) is true, it is enough to eventually decide for the
first witness x̃ whether ∀yψ(x̃, y), and, as Π1 formulas are true in substructure, this can
be easily eventually decided.

6.1 Preliminary results on simulational Γ-machines

The results in this section aim at better understanding the behavior of simulational Γ-
machines under the light of Theorem 5.4.14, as well as giving us some tools that will be
needed for the present chapter.

Definition 6.1.1 (Γ-Computable function). Let Γ an operator, two sets E and F that
can be encoded in ω2 with an usual encoding and f : E → F a total function. We say that
f is a Γ-computable function if there exists a Γ-machine mf such that : for any b = f(a)

and for any reals x encoding a, the computation of mf on input x terminates and outputs
some real y such that y is a code for b. For any real z that does not encode any element
of E, nothing is imposed for the behavior of mf on input z.

Definition 6.1.2 (Computable predicate). Let Γ be an operator and P be a unary pred-
icate on some set E. We say that P is a Γ-computable predicate if its indicator function
χP : E → 2 is a Γ-computable function.

Definition 6.1.3 (Semicomputable predicate). Let Γ be an operator and P a unary predi-
cate on some set E such that E can be encoded in ω2. We say that P is a Γ-semicomputable
predicate (resp. Γ-co-semicomputable predicate) if there exists a Γ-machine mP such that:
for any a and for any real x encoding a, mP terminates on input x if and only if P (a)
(resp. ¬P (a)). For any real y that does not encode any element of E, nothing is imposed
for the behavior of mP on input y.

Example 6.1.4.

• Let f : ω2→ ω2 be a function on the reals. Then, if there is a Γ-machine m such that
on any input x, m terminates and writes f(x) as its output, f is a Γ-computable
function.

• Let f : ω1 → ω1, α 7→ α · 2. Then f is Γsup-computable function with the usual
encoding being: x encodes α when it describes some well-order ≺ on ω (i.e. n ≺
m ←→ x[⟨n,m⟩] = 1) of order-type α. Indeed, consider the machine m such that
given a code x of α, it split ω in two disjoints sets A = (ai) and B = (bi) which it

161

saves on its working tape. Then it writes the following well-order ≺2 on its output
tape: for all ai and aj such that i ≺ j, it writes ai ≺2 aj. This effectively copies ≺
on the output tape using A as the underlying ordered set. Then, for all bi and bj

such that i ≺ j, the machine writes bi ≺2 bj. This copies ≺ a second time using the
other part of ω. Then, for all ai and bj, the machines writes ai ≺2 bj which yields,
as required, a code for a well-order of order type α · 2.

Lemma 6.1.5. Let Γ be a simulational n-symbol operator and P a Γ-co-semicomputable
predicate on the n-symbol reals (i.e. on ωn). Then, for any machine m, the first real x to
appear on one of the tapes of m and such that P (x) is Γ-e.w.

Proof. Let m and x be as defined and suppose w.l.o.g. that x appeared on the output tape
of m. We consider the following computation of a machine M that will e.w. x. Machine
M simulates m and for all real x′ that appears on the output tape of m, it writes x′ on
its main output and it launches a simulation of mP [x

′] where mP is the machine that
co-semidecides P , i.e. that terminates on input x if and only if ¬P (x). If ¬P (x′), then
mP [x

′] terminates and the simulation of m goes on. Else, if P (x′), x′ = x as x is the first
to appear on the output tape of m and mP [x] never terminates. So as wantedM has e.w.
x.

Proposition 6.1.6. Let Γ be a simulational n-symbol operator that emulates the operator
Γsup. For any Γ-computable predicate P on ΣΓ such that P (ζΓ), the set {α ∈ ζΓ | P (α)}
has order-type ζΓ and the set {α ∈ ΣΓ | P (α)} has order-type ΣΓ.

Proof. We define the application B : β 7→ OT({α ∈ β | P (α)}), where OT denotes the
order-type of a set of ordinals. Observer first that :

– B is monotonically increasing.

– for any β, B(β) ⩽ β.

– Given some ordinal β, B(β) is Γ-computable as P is.

Then we consider B(ΣΓ). Suppose toward a contradiction that B(ΣΓ) < ΣΓ. We
design a machine M that does the following: using UΓ, it iterates through the ordinals
below ΣΓ. That is it simulates UΓ on some part of its working tape and it checks at each
stage whether some ordinal is written on any tape of the machine simulated inside of UΓ.
It decide whether a real encodes an ordinal as Γ emulates the operator Γsup. And for each
such ordinal σ produced by UΓ,M checks whether σ < B(ΣΓ) in the following fashion. It
launches a fresh simulation of UΓ and looks with it for an ordinal σ′ such that σ < B(σ′).
If it finds such an ordinal σ′, as σ′ is a.w., we have σ′ < ΣΓ and so B(σ′) ⩽ B(ΣΓ) which
yields σ < B(σ′) ⩽ B(ΣΓ). Also, by definition of ΣΓ, the a.w. ordinals are unbounded in
ΣΓ. Hence if and only if σ < B(ΣΓ) do we eventually find an a.w. σ′ that satisfies the
inequality. Consequently, when σ ⩾ B(ΣΓ), the machine never finds the σ′ it is looking

162

for and it eventually writes σ. Hence, under the hypothesis that B(ΣΓ) < ΣΓ, B(ΣΓ) itself
is eventually writable and B(ΣΓ) < ζΓ.

Now, we consider B(ζΓ). By monotonicity, we have B(ζΓ) ⩽ B(ΣΓ) and from there
B(ζΓ) < ζΓ. So B(ζΓ) is e.w. We show that B(ζΓ) < ζΓ is a contradiction. We do the
following computation. Some machine N e.w. B(ζΓ) and looks in parallel for σ′ such that
B(σ′) = B(ζΓ) to e.w. it. Either σ′ = ζΓ and we reached a contradiction as ζΓ is not e.w.
Either σ′ < ζΓ and the next ordinal after σ′ satisfying P is ζΓ; as it would otherwise yield
B(σ′) < B(ζΓ). And so, we claim that ζΓ is e.w. from σ′. Indeed consider the computation
that given σ′ looks for, using UΓ, the least σ′′ > σ′ such that P (σ′′). Then, as σ′ is e.w.,
so would be ζΓ and we reached again the same contradiction. Hence, B(ΣΓ) = ΣΓ and
B(ζΓ) = ζΓ.

For the next proposition, we need some (slight) latitude in the way we encode ordinals.
Ordinals are encoded using well-orders, themselves encoded bit by bit on a real. But
whether i ≺ j is denoted by a bit set to 1 or to 0 is simply a convention. The following
definition is simply a variation of Definition 3.2.27 with respect to this convention.

Definition 6.1.7. We say that a real x negatively encodes or encodes with a bitwise
negative encoding some ordinal α when x encodes a relation ≺α of order type α in the
following fashion:

i ≺α j ←→ x[⟨i, j⟩] = 0

That is, the negative encoding of x is simply the usual encoding of x in which we invert
0’s and 1’s.

A negative encoding is simply the bitwise negation of a positive encoding. For this
reason, transforming one into the other is easily done in ω steps. However, when trying to
establish precise results regarding times of computation or stages of apparition, those ω
steps may make it undoable with one encoding while it is doable with the other. For this
reason, Proposition 6.1.8 is stated with the negative encoding as and likely does not hold
with the positive encoding. It should be clear however, that is the hypothesis was that Γ
enhances Γinf rather than Γsup then the situation would be would be reversed with respect
to the negative and the positive encoding. This is briefly discussed in Remark 6.1.9.

Proposition 6.1.8. Let Γ be a n-symbol suitable, looping stable and simulational operator
that also enhances the operator Γsup. Then, there exists a Γ-machine mζ in which a
negative encoding of ζΓ appears for the first time at stage ζΓ.

Proof. We describe Γ-machine mζ that will write a well-order ≺ of order type ζ at stage
ζ.

The machine mζ works with a simulation of UΓ to keep track of the machines that
appear to converge, that is machines whose output has not been modified for more than

163

one computation step. Then, the idea is that if m and m′ appeared to have converged
respectively at stages α and α′ with α < α′, the mζ will have saved the fact that m
appeared to have converged before m′ and it will write m ≺ m′ in its well-order, and that
will let it keep track of the order type of the machines that appear to converge.

More precisely, mζ begins with the empty well-order, which is, with the bitwise nega-
tive encoding, the real 1ω. Then, for any α, between stage α and α+ 1 in the simulation
of UΓ, it looks at the machines whose output did not change. Let Mα be the set of those
machines. Then it goes through all m ∈ Mα ordered by the natural order on integers. If
m is already in the order-type, it skips it. If m wasn’t in the order-type yet, it writes a 0

in ⟨m,m⟩ and in all cells ⟨m′,m⟩ for all machines m′ that are already in our order-type.
In particular, this means that if m and m′ in Mα weren’t already in the order type, we
will have m ≺ m′ if and only if m < m′ (where < denotes the natural order on integers).
Moreover, for all machines m ̸∈Mα, mζ removes it from the order-type, simply by writing
a 1 in ⟨m,m⟩ and all cells ⟨m′,m⟩ and ⟨m,m′⟩ for any m′.

We claim that at stage ζΓ, this effectively writes an encoding for ζΓ. First, under the
assumption on Γ, Corollary 5.4.30 holds and ζΓ = ηΓ. Hence, a Γ-machine that converges
can’t stabilize after stage ηΓ. Moreover, a machine that converges up to stage ζΓ can’t
see its output modified after as by ΣΓ = TΓ, this stage greater that ζΓ would be a.w. and
then also e.w. So a Γ-machine converges if and only if it converges up to stage ζΓ. So,
as Γ enhances Γsup, at stage ζΓ, the cell ⟨m,m′⟩ is set to 0 if and only if from some stage
α < ζΓ and up to ζΓ, C⟨m,m′⟩ = 0. Which means that m and m′ were converging up to ζΓ,
that is they converge definitely and the output of m converged before that of m′. Hence,
at stage ζΓ, the machine mζ has written a well-order ≺θ which is the well order of the
machine that converge definitely, ordered by the ordinal stage of convergence.

Now, we need to show that the order type of this well-order is actually, ζΓ, the order
type of the Γ-e.w. ordinals. Observe first that, writing θ for the order type of ≺, θ is
written in ζΓ steps in each of which at most ω elements are added to the well-order. This
shows that θ ⩽ ω · ζΓ. By closure of ζΓ, ω · ζΓ = ζΓ and θ ⩽ ζΓ. Then we need to
show that θ ⩾ ζΓ. Suppose that θ < ζΓ. This means that θ is e.w. So, we consider
the following computation: a machine e.w. θ and, in parallel with the usual intertwining
technique, it looks for some stage α ∈ ΣΓ (using UΓ) such that at simulation stage α of
m≺, the order written in m≺ is equal to θ and moreover such that the θ machines that
constitutes this well-order are not modified before ΣΓ (this is semi-decidable using UΓ that
produce ordinals unbounded in ΣΓ). By construction, the first α it finds that satisfies
those requirements is e.w.

We claim that ζΓ is the least ordinal α that satisfies those conditions and so that is it
would be e.w. under the assumptoin that θ < ζΓ. Indeed, first, it is clear that ζΓ satisfies
those conditions. Then, for any stage α < ζΓ at which θ is written, there are converging
machine that will converge strictly between stages α and ζΓ. So, some of the machines
that form the order-type at stage θ are not definitely converging, as otherwise it would

164

produce an order type strictly greater than θ at stage ζΓ. Hence, any such α < ζΓ does
not satisfies the conditions of the previously described machine and ζΓ is e.w.; which is a
contradiction. So as wanted, θ = ζΓ and ζΓ appears with the negative encoding at stage
ζΓ inM≺.

Remark 6.1.9. In the previous proposition, it appears that the operator Γsup is more
naturally used with negative encoding while, symmetrically, the operator Γinf “corresponds”
to the usual positive encoding. This comes from the fact that with the operator Γsup,
convergence is symbolized by 0; that is that the constraint for some tape to have converged
below limit stage α is the same, mutatis mutandis, as the constraint for a 0 to appear at
stage α. This explains why in the previous proof we used 0’s to denote pieces of information
regarding the convergence of the machines, and so why we used the negative encoding.

As, by convention, in this thesis we chose to use the Γsup operator as the classical
ITTM operator, we stick with this choice. Nonetheless, as the positive encoding is more
natural (the empty order is represented by 0ω, pieces of information regarding the order
are represented by 1’s etc.), this provides a good argument for preferring the operator Γinf

over the operator Γsup.

Proposition 6.1.10. Let Γ be a n-symbol suitable, looping stable and simulational oper-
ator that enhances Γsup. Then the set

{α ∈ ΣΓ | α is multiplicatively closed and some negative encoding of it appears

in mζ for the first time at time α}

has order-type ΣΓ. This induces a Γ-computable application ·∗ : Σ3 → Σ3 such that β∗ is
the βth ordinal α in this set. Hence β∗ is an multiplicatively closed ordinal that appears
with the negative encoding at time β∗ in some Γ-machine.

Proof. The ordinal ζΓ is multiplicatively closed (it is easy to e.w. the product of two e.w.
ordinals) and appears with the negative encoding at time ζΓ in mζ by Proposition 6.1.8.
This is then an application of Proposition 6.1.6, we simply need to show that the predicate
in this definition by comprehension is a Γ-computable predicate. This will also show that
the application ·∗ is Γ-computable.

And this predicate is indeed Γ-computable as, first, given α ∈ ΣΓ a machine can easily
check whether it is multiplicatively closed by looking for some δ ⩽ α such that α = ωωδ .
Then, for the second half of the condition, a machine can simulate mζ for α steps and
check, at each stage β < α, that a negative encoding of α does not appear on the output
tape of mζ while also that one does appear on it at stage α.

Definition 6.1.11 (Star-ordinal). We call an ordinal part of the set described in Propo-
sition 6.1.10 a star-ordinal. That is, α is a star-ordinal when there is β such that α = β∗.

165

Proposition 6.1.12. Whether an ordinal α is a star-ordinal can be Γ-decided in α2 + α

steps.

Proof. We describe a machine that decides whether some ordinal α given as input is a
star-ordinal. To do this, it must check whether

1. α is multiplicatively closed

2. α appears at stage α in mζ and for the first time.

To check the first item, a machine can count δ2 steps for all δ < α while counting through
α in parallel. Ordinal α is not multplicatively closed if and only if the machine counted
through all of α strictly before having counted δ2 steps for all δ < α. After those α steps,
it needs ω steps to check that α was indeed counted through. Hence, the first item can
be decided in α + ω stages.

For the second item, as mentioned in the proof of proposition 6.1.10, it is enough to
simulate mζ for α steps and to check that a negative encoding for α only appears in it
at stage α. Observe first that if α is a star-ordinal, then any ordinal appearing earlier is
strictly smaller, as otherwise with the usual truncation technique, α would be a.w. before
stage α. Similarly, for reals that do not encode a well-order but who do encode a relation
such that it has a well-order as an initial segment, with the same reasoning the order
type of those initial segments is strictly less than α. This is important as, when deciding
whether one of those reals encodes an ordinal, the usual algorithm will count through this
well-ordered part before it concludes that it does not encode an ordinal.

So, if α is a star-ordinal, the machine checks that a negative encoding for α only
appears in mζ at stage α by simulating it for α stages. It takes at most α steps for each
stage below α to check that any code appearing is strictly smaller than α (observe that
checking whether a real encodes an ordinal and whether this ordinal is strictly smaller
than α can be done in parallel). Then, once stage α has been reached, the machine needs
α more steps do observe that a code for α appeared in mζ . Hence this makes α2+α steps.

If α is multiplicatively closed but not a star-ordinal, either α appears too early and
the machine finds it before α2 steps, or it does not appears at stage α and the machine
observes this by stage α2 + α, as required.

6.2 The Σ3 ∧ Π3 machine

We provide a description of a Σ3 ∧Π3 suitable, simulationnal and looping stable operator
that enhances the lim sup operator that we call Γ3. For this operator, the main aim is to
prove Theorem 6.2.49 which is the generalization of the λ-ζ-Σ theorem (Theorem 4.1.33)
established for the lim sup machines in [Wel00a, Theorem 2.1]. This new theorem reads

Lλ3 ≺Σ1 Lζ3 ≺Σ2 LK3 ≺Σ3 LΣ3

166

and so, we will see how a new constant, K3, itself linked to a new way of writing ordinals,
makes its apparition when studying the operator Γ3.

6.2.1 The Σ3 ∧ Π3 operator Γ3

In the previous chapter, we have seen that for an operator to be suitable, it must, between
other conditions, be contraction-proof. This means that for a given cell history the limit
rule must yield the same value for this cell history and for the contraction of this cell
history. Hence, to describe a contraction-proof operator, it is easier to describe it on
histories that are already “fully contracted”. We call those stutter-free, as introduced in
Definition 5.3.3, and we introduce a few definitions for stutter-free histories that will be
used to describe the Σ3 ∧ Π3 operator Γ3.

Definition 6.2.1 (Stutter-free contraction). As defined in the previous chapter in Defini-
tion 5.3.25, we write ctr for the application that maps an ordinal word h on some alphabet
A to its contraction, the word obtained by reducing every stutter of h to a single letter
until it is stutter-free.

Also, we have seen in Theorem 5.4.1, that there are only two looping stable and
simulationnal 2-symbol operator, namely Γsup and Γinf . So Γ3 is a 3-symbol operator and,
from now on, the cell histories we consider are ordinal words on the alphabet 3 = {0, 1, 2}
while the machine histories are ordinals words on the alphabet ω3.

Definition 6.2.2 (Segments). Given a stutter-free cell history h and an ordinal σ, a 1-
segment of length σ is the data of some ordinal index ν such that h[ν] = 1 and such that
for all ι ∈ [ν, ν + σ[, h[ι] ∈ {1, 2}. That is, the history subword delimited by [ν, ν + σ[is
either 1 or are an alternation of 1 and 2’s, beginning with a 1. We define 0-segments in
the same way, replacing the 1’s by 0’s.

Example 6.2.3.

– the word 0202 is a 0-segment of length 4.

– the word 202 is not a 0-segment but it ends with a 0-segment of length 2.

– the word 010101 . . . is made from consecutive 0-segments and 1-segments of length
1.

– the word (12)ω+3 is a 1-segment of length ω + 6.

Definition 6.2.4 (1-populated). Let h be a stutter-free cell history and β0 a fixed ordinal.
We say that h is 1-populated with respect to β0 if after any position ν in h, we find some
position ν ′ that starts a 1-segment [ν ′, ν ′′[of length |[ν ′, ν ′′[| = α′ > β0 after less than
α′ + β0 letters. In other words, we ask for α′ to be such that |[ν, ν ′[| ⩽ α′ + β0, where
|[ν, ν ′[| is the ordinal length of the segment delimited by the positions ν and ν ′. This is

167

depicted in Figure 6.1. Formally, with quantifiers bounded so that the variables defines
valid segments, denoting the ordinal length of segments with |·|,

h is 1-populated ⇐⇒ ∀ν ∃ν ′ ⩾ ν, ν ′′ ⩾ ν ′ (the segment [ν ′, ν ′′[of h is a 1-segment

strictly longer than β0

∧ |[ν, ν ′[| ⩽ |[ν ′, ν ′′[|+ β0)

with, in the above definition α′ being now |[ν ′, ν ′′[| and with the convention that for any
ν, [ν, ν[is the empty segment, hence of length 0 and neither a 0-segment nor a 1-segment.
We define 0-populated words accordingly.

ν ν ′ ν ′′
α

1-segment

α′ β0

|[ν, ν ′[| ⩽ |[ν ′, ν ′′[|+ β0

Figure 6.1: a 1-populated segment w.r.t. β0.

Example 6.2.5.

– The stutter-free words 0 and 1 are respectively 0 and 1-populated w.r.t. β0 = 0.
The only index is ν = 0 and taking ν ′ = ν and ν ′′ = ν + 1 satisfies the predicate.

– The word w = (01)ω is both 1-populated and 0-populated w.r.t. 0. Indeed, for
any ν which is index of w, either w[ν] = 1 or w[ν] = 0. In the first case, take
ν ′ = ν and ν ′′ = ν + 1 and w[ν ′, ν ′′] is the single-letter word 1 which is a 1-segment
of size 1. Moreover |[ν, ν ′[| = 0 ⩽ 1 = |[ν ′, ν ′′[| + 0. In the second case, take
ν ′ = ν + 1 and ν ′′ = ν + 2. This describes a 1-segment of size 1 and we have
|[ν, ν ′[| = 1 ⩽ 1 = |[ν ′, ν ′′[|+ 0

– The word w = (012)ω is 1-populated w.r.t. 0 but not 0-populated w.r.t. any β0. For
the first affirmation: observe that this word is made from 0-segments of length 1

and 1-segments of length 2. And so for any ν index of w: if w[ν] = 0, a 1-segments
of length 2 starts at stage ν ′ = ν + 1 and it suits the definition. If w[ν] = 1, ν ′ = ν

itself starts a 1-segment of length 2 and it also suits the definition. If w[ν] = 2 then
ν ′ = ν+2 starts a 1-segments of length 2 and it yields |[ν, ν ′[| = 2 ⩽ 2 = |[ν ′, ν ′′[|+0

As for the second affirmation, namely that this word is not 0-populated w.r.t. any
β0, observe first that as the 0-segment are all of length 1, the condition that says
that the length of the 0-segment described by ν ′ and ν ′′ must be strictly greater then
β0 makes it impossible for the word to be 0-populated w.r.t. any β0 > 0. As for

168

β0 = 0, take ν such that w[ν] = 1. Then, the first 0-segment starts at least at stage
ν + 2. Hence for any ν ′, ν ′′ describing a 0-segment |[ν, ν ′[| ⩾ 2 and |[ν ′, ν ′′[| = 1, as
there only are 0-segments of length 1. As β0 = 0, the condition on the length of the
segments [ν, ν ′[and [ν ′, ν ′′[is never true for this ν and any ν ′ and ν ′′ describing a
0-segment and the 0-population predicate does not hold.

– For any limit ordinals β0 < α such that α is additively closed, the word (12)α+β0(02)α

is 0-populated w.r.t. β0. Indeed, it is composed of a 1-segment of length 2·(α+β0) =
α + β0 and a 0-segment of length 2 · α = α. Now, take any ν index in w. If ν is in
the 1-segment, that is ν < α + β0, then taking ν ′ = α + β0 and ν ′′ = α + β0 + α =
α · 2, [ν ′, ν ′′[describes a 0-segment of length α > β0 which gives :

|[ν, ν ′[| ⩽ α + β0 = |[ν ′, ν ′′[|+ β0

If ν ⩾ α+ β0, as in the first example, the 0-segment of length 1 that starts at stage
ν or ν + 1 satisfy conditions.

Remark 6.2.6. This slightly contrived definition can be seen to capture, at first glance,
one thing. If we think of segment of history in informal terms of “density” of respectively
1’s and 0’s (that is ignoring the 2’s which mostly help working around the contraction-
proof condition), a 1-segment has the highest density of 1’s and the lowest density of 0’s.
Similarly for some limit ordinal α, the segment of history (10)α has balanced proportions.
On the other end the segment (1(02)ω)α does not and has “way more” 0’s than 1’s. But
still, 1’s are cofinals in both those histories and so both would yield a 1 in a machine
ruled by the lim sup operator. On the contrary, observe that the first history, that is
(10)α, is 1-populated w.r.t. 0 while (1(02)ω)α is not 1-populated w.r.t. any ordinal. And
so, in other terms, the definition of 1-populated is fine enough–finer than the concept of
cofinality alone–to capture this variation of “density” from a perfect equilibrium to a rather
“unbalanced” history. In this sense, the rule we design is finer than the usual lim sup rule.

Definition 6.2.7. The definition 6.2.4 yields a formula ϕ1(h, β0, ν0) such that for a history
h, some β0 constant and ν0 smaller than the length of h, the stutter-free contraction of the
final segment of h starting from ν0, hc>ν0

, is 1-populated w.r.t. β0 if and only if ϕ1(h, β0, ν0)

is true in L. The formula ϕ0(h, β0, ν0) is defined accordingly.

Now for the definition of the operator Γ3. It is defined as the conjunction of a Σ3

formula and a Π3 formula, hence making it, as will be shown, a Σ3∧Π3-suitable operator.

Definition 6.2.8 (The operator Γ3). The operator Γ3 is the unique 3-symbol operator
defined such that for a Γ3-machine m computing from the real y as input and at limit
stage λ, the cell i is set to 0 if and only if both those conditions are satisfied:

1. After some stage ν0 and for some ordinal β0, hc>ν0
, the stutter-free contraction of

the final segment of the history after stage ν0, is 0-populated w.r.t. β0

169

2. For any ν0, hc>ν0
, the stutter-free contraction of the final segment of the history after

stage ν0, is not 1-populated w.r.t. any β0.

That is formally, with h being the history up to stage λ and with the formulas of Definition
6.2.7:

Ci(λ) = 0 ⇐⇒ ∃ν0 < λ∃β0 ϕ0(h, β0, ν0) ∧ ∀ν0 < λ∀β0 ¬ϕ1(h, β0, ν0)

Else, if the 1’s are cofinal in the history of the cell i, it is set to 1. Otherwise, it means
that the history converges on the symbol 2 and the cell i is set to 2.

Proposition 6.2.9. The operator Γ3 is a Σ3 ∧Π3-suitable operator in the sense of Defi-
nition 5.3.19. That is, there is a formula φ = ψ1 ∧ ψ2 where ψ1 is Σ3 and ψ2 is Π3 such
that for any machine m, cell i and real y as input, Cm,y

i (λ) = 0 ⇐⇒ Lλ[y] |= φ(i,m, y).

Proof. First we define ϕ1
c(h

c, β0, ν0) such that for a stutter-free contracted history hc, some
constant β0 and ν0 (smaller than the length of hc), the final segment of hc starting from
ν0 is 1-populated w.r.t. β0 when ϕ1(hc, β0, ν0). For this, observe that when ν ′ and ν ′′ are
given, deciding whether hc[ν ′, ν ′′[(the factor of hc delimited by the segment [ν ′, ν ′′[) is a
1-segment is Σ0. That is there exists a Σ0 predicate S1 such that S1(hc, ν ′, ν ′′) when ν ′

and ν ′′ form a 1-segment in hc. Indeed, per our definition

The segment [ν ′, ν ′′[is a 1-segment←→ hc[ν ′] = 1 ∧ ∀ι ∈ [ν ′, ν ′′[(hc[ι] = 1 ∨ hc[ι] = 2)

This allows us to define ϕ1
c as follows, and again ϕ0

c is defined in an analogous way.

ϕ1
c(h

c, β0, ν0) := ∀ν < |hc| (ν > ν0 =⇒ ∃α < |hc|,∃α′ < |hc|,∃ν ′ < |hc|,∃ν ′′ < |hc|

ν ′ ⩾ ν ∧ ν ′′ ⩾ ν ′ ∧ ν + α = ν ′

∧ ν ′ + α′ = ν ′′ ∧ S1(h, ν ′, ν ′′)

∧ α′ > β0 ∧ α′ + β0 ⩾ α

Second, with the technique used in 5.3.37, we can design by recursion a Σ1 function η
such that η(m, y, ν) = ⟨hi,cν ⟩i∈ω, the collection of the descriptions of the contracted history
for all cell i in the machine m computing from y and up to stage ν. This means that
hi,cν is the contraction of the word hiν which is in turn a word of length ν with a symbol
for every position ι < ν. So the νth letter of hi is not in hiν and, consequently, neither
in hi,cν . Now, if ν is a limit ordinal then hi,cν is easily defined as the limit of the hi,cν′ for
ν ′ < ν. Else, suppose that ν = ν ′ + 1 is a successor ordinal. We show that we can define
hi,cν fromhi,cν′ . To do this, we show first how we can define hi[ν ′], the (ν)th letter in the
history of i from hi,cν′ . For this, we distinguish two cases.

• If ν ′ is a limit ordinal, hi[ν ′] is set according to the limit rule. For this we use the
previously defined ϕ0

c and ϕ1
c applied to the history hi,cν′ that we obtain by induction.

170

That is, hi[ν ′] is set to 0 if and only if ∃ν0 < ν ′, β0 < ν ′ϕ0
c(h

i,c
ν′ , β0, ν0)∧∀ν0 < ν ′, β0 <

ν ′¬ϕ1
c(h

i,c
ν′ , β0, ν0). As the quantifiers are bounded by ν ′ the definition of hi[ν ′] from

ν ′ and hi,cν′ is Σ0.

• Else, if ν ′ is not a limit ordinal, this means that ν = ν0 + k with k ∈ ω and k > 1.
Then, the state of the machine at stage ν0 is given by η(m, y, ν0 + 1) which was
defined by induction. Eventually, with the code fo the machine, its snapshot at
stage ν is Σ0-definable from it.

Now we consider hi,cν′ . If hi,cν′ is a limit word, as it is stutter-free, its final segment is the
repetition of at least two symbols and hi,cν = hi,cν′ ·hi[ν ′]. Else, we let sν′ be the last symbol
of hi,cν′ . If hi[ν ′] ̸= sν′ then hi,cν = hi,cν′ · hi[ν ′]. Otherwise, if the symbols are the same,
hi,cν = hi,cν′ . This shows how the Σ1 function η is recursively defined. And with it, we also
define η(i,m, y, ν0, ν) as be the contraction of the history of the cell i between stages ν0
and ν. It can easily enough be defined from hi,cν0 and hi,cν and we write it hi,c[ν0,ν[.

Eventually, using η, we can define ϕ̃1. The idea is that, while we can’t define the
history up to stage λ in Lλ, we are able to define it up to any ι < λ using η. And this
is enough, as we only need to look at initials segment of the history that spans up to
λ. So once ν is quantified in Lλ, we look for a segment of the history h[ν,ι[in which,
when contracted, we find the desired ν ′ and ν ′′. As the position ν in h corresponds to
position 0 in h[ν, ι[, it also corresponds to position 0 in hc[ν, ι[which makes things easier.
In particular, the α of the definition of 1-population, that is the length of the segment
from ν up to ν ′ is now simply ν ′ itself.

ϕ̃1(i,m, y, β0, ν0) := ∀ν > ν0 ∃ι > ν ∃hi,c[ν,ι[∃α∃α
′ ∃ν ′ ⩾ ν ∃ν ′′ ⩾ ν ′

(hi,c[ν,ι[= η(i,m, y, ν, ι)

∧ ν ′ < |hi,c[ν,ι[| ∧ ν
′′ < |hi,c[ν,ι[|

∧ 0 + α = ν ′ ∧ ν ′ + α′ = ν ′′ ∧ S1(hi,c[ν,ι[, ν
′, ν ′′)

∧ α′ > β0 ∧ α′ + β0 ⩾ α)

The counterpart ϕ̃0(i,m, y, β0, ν0) is defined in the same way from there we obtain, even-
tually:

φ(i,m, y) := ∃ν0, β0 ϕ̃0(i,m, y, β0, ν0) ∧ ∀ν0, β0¬ϕ̃1(i,m, y, β0, ν0)

such that, as wanted,

Cm,y
i (λ) = 0 ⇐⇒ Lλ[y] |= φ(i,m, y)

Remark 6.2.10. Proposition 6.2.9 allows us to speak of 0 or 1-populated cell histories

171

even when those are not stutter-free and without the risk of altering the predicate complex-
ity. However, when speaking of the length of the histories or of some segment of history,
we still need to specify whether we speak of the raw cell history itself or of the contracted
cell history, as the contraction may drastically change the length of the word.

Now, as in the Σ2 case, this defines the machine behavior at limit stages (with its
head back on the first cell and set to a distinguished qlim state) and this completes the
definition of Σ3 ∧ Π3 machines.

Remark 6.2.11. Here we have a rule that is slightly more complex than Σ3, it can be seen
as a difference of Σ3 formulas (i.e. a conjunction of a Σ3 formula with the negation of
another Σ3 formula). This won’t be an issue as this complexity still falls under the main
theorem that we will prove, namely that a new Σ3-end extension appears. Indeed, for two
structures M and N , it is clear that N ≺Σ3 M implies that for any Σ3 ∧Π3 formula φ(p)
with p ∈ N , N |= φ(p)←→M |= φ(p).

6.2.2 Elementary results on the Γ3 machine.

Proposition 6.2.12. The operator Γ3 is a simulationnal operator.

Proof. We need to show that it is cell-by-cell, stable, asymptotic and contraction-proof.
By construction, it is cell-by-cell and contraction-proof (as it directly works with

stutter-free contracted histories). It is also clearly stable.
As for the asymptoticity of our rule, observe first that the 0 and 1-populated properties

are asymptotic. This comes from the fact that, in the formula of Definition 6.2.4, once
the ordinal position ν is quantified, we can only look at greater ordinal positions for
ordinals ν ′ and ν ′′. Hence, when we remove an initial segment of some h that is 1 or
0-populated, if we remove some positions ν ′ and ν ′′ witnesses of some ν, we also remove
ν itself and the predicate stays true. So, if for some ν0, ϕ0(m, i, y, β0, ν0) holds then for
any ν ′0 > ν0, ϕ0(m, i, y, β0, ν

′
0) also holds by asymptoticty of ϕ0. And the asymptoticity

of ∀ν0, β0¬ϕ1(m, i, y, β0, ν0) is established with the same reasoning. And those together
yield the asymptoticity of the operator Γ3.

Proposition 6.2.13. The operator Γ3 enhances the operator Γsup.

Proof. We show that without 2’s written in the history of a computation, the operator Γ3

yields the same limit values as the classical lim sup operator. Let h be some cell history
in which the letter 2 never appears. Then, h is either (in its stutter-free form), 0, 1, (01)α

or (10)α for some limit α. The word 0 is 0-populated w.r.t. 0 and not 1-populated for any
β0 (remember that in Definition 6.2.4, the segment [ν ′, ν ′′] must be strictly longer than
β0.) So, as wanted, for the contracted history equal to 0, the rule yields 0 at stage α. As
for the word 1, it is 1-populated w.r.t. 0 and this is enough for the rule to yield a 1 at
stage α. Then, as seen in Example 6.2.5, h = (01)α is 1-populated w.r.t. 0. Indeed, take

172

any ν below α. If h[ν] = 1, then ν ′ = ν and ν ′′ = ν ′+1 are witness of ϕ1. Else if h[ν] = 0,
then h[ν + 1] = 1 and in particular, ν + 1 starts a 1-segment of length 1, which is greater
than β0 = 0. Taking ν ′ = ν + 1 and ν ′′ = ν + 2 (which is always possible as α is a limit
ordinal), we have

|[ν, ν ′[| = 1 ⩽ 1 + 0 = |[ν ′, ν ′′[|+ β0

Same goes for (10)α which is also 1-populated w.r.t. 0 as α is limit. Eventually, as wanted,
both (01)α and (10)α yields, w.r.t. Γ3 (or more precisely w.r.t. γ3, the cell history version
of Γ3), 1 at limit stage α.

Now that Γ3-machines are defined, so are Γ3-writable, eventually writable and acci-
dentally writable reals. For example, a real is Γ3-accidentally writable if it appears at
some stage in the computation of some Γ3-machine from the empty input. Then as the Γ3

operator is a simulationnal operator, there exists a Γ3 universal machine that we write U3.
And as with the Γsup-machines, all Γ3-machines will start looping before some countable
stage. To show this, by Proposition 5.3.44, it is enough to show that Γ3 is looping-stable.

Lemma 6.2.14. Let α > 0 and β0 be ordinals and h be a stutter-free cell history of length
λ such that λ is additively closed and β0 < λ. We write hα for the ordinal word of length
λ · α in which h is repeated α times. Then h is 0-populated (resp. 1-populated) w.r.t. β0
if and only if hα is 0-populated (resp. 1-populated) w.r.t. β0.

Proof. We show it in the 0-populated case. In the first direction, assume h is 0-populated
w.r.t. to β0. Then any index ν in hα can be written ν = λ · β + µ, with λ the length of h
and µ < λ. Then, for all such µ, as it is an index in h, there exists an index µ′ > µ of h
starting a 0-segment big enough in h. So λ · β + µ′ will be in turn a witness for ν in hα

in the definition of 0-populated w.r.t. to β0.
In the other direction, let ν be an index of h. Then ν < λ where λ is the length of

h. We consider the same index in hα. As hα is by hypothesis 0-populated there are some
least ν ′ and ν ′′ that satisfy the 0-populated predicate for this ν in hα. If ν ′ < λ then
|[ν, ν ′[| < λ as well. Hence, as β0 is also less than λ, the least ν ′′ does not need to be
greater than λ. And so it is also an index in h and ν ′ and ν ′′ satisfy the 0-populated
predicate for this ν in h.

Now, suppose ν ′ > λ as in the example of Figure 6.2. Then, |[ν, ν ′[| > |[ν, λ[| and
as λ is additively closed, ν + |[ν, λ[| = λ implies |[ν, λ[| = λ. Hence, |[ν, ν ′[| > λ. By
definition of ν ′ and ν ′′ in the 0-population predicate: λ < |[ν, ν ′[| ⩽ |[ν ′, ν ′′[|+ β0. Hence,
by closedness again, λ < |[ν ′, ν ′′[|, as β0 < λ. This means that the 0-segment [ν ′, ν ′′[

stretches at least over two different h’s (while not necessarily covering both) of hα. In
particular, some part of the 0-segment [ν ′, ν ′′[spans through the end of some subword of
h; that is h finishes with a 0-segment or, in other word, some final segment of h is also
a 0-segment. As a final segment of a word of additively closed length, this final segment

173

has the same length as the word and from there we see that h is 0-populated w.r.t. 0 and,
a fortiori, w.r.t. β0.

. . .
h

ν

h

ν ′

> λ

h

λ

h

λ

h

λ

Figure 6.2:

Proposition 6.2.15. The operator Γ3 satisfies the condition of looping stability.

Proof. Let h be a limit cell history and α be a limit ordinal. We want to show that
Γ(hω) = Γ(hα). First, if 0 does not appear in h the equality clearly holds. The same goes
if 1 does not appear in h

Hence, we can suppose that both 0 and 1 appear in h. Then, as α is a limit ordinal,
α = ω · β for some β and hα = (hω)β. Further, ctr(hα) = ctr(hω)β as both 0’s and 1’s are
cofinal in hω. Also, as both 0 and 1 appear in h, the length of ctr(hω) is a right multiple
of ω and, as such, it is additively closed. We can apply the previous lemma which yield
Γ(ctr(hω)) = Γ(ctr(hω)β). And the right-hand term can be rewritten Γ(ctr(hα)) which
yields the wanted equality as Γ is contraction-proof.

Corollary 6.2.16. There is some countable ordinal stage such that any Γ3-machine either
halts before this stage or is seen to be looping by this stage.

Proof. Consequence of previous proposition with Proposition 5.3.44. This second propo-
sition also gives a meaning for a Γ3-machine to be “seen to be looping”.

Proposition 6.2.17. Σ3, the supremum of the Γ3-a.w. is equal to T3, the supremum of
the Γ3-a.c.

Proof. As Γ3 is a suitable, looping stable and simulationnal operator, this is a direct
application of Theorem 5.4.14.

Further, as in the lim sup case, we can establish a more precise looping condition, here
using Lemma 6.2.14.

Proposition 6.2.18 (Looping condition). A Γ3-machine is looping if and only if there
are two limit stages ν < ν ′ sharing the same snapshot, such that for all i, the length of the
contraction of the segment of cell history of i between stages ν and ν ′ is additively closed
and moreover for all i with Ci(ν

′) = 0, ν is a witness of the existential half of φ(m, i, y)
in Lν′, i.e. of ∃ν0∃β0ϕ0(h, β0, ν0). That is such that Lν′ |= ∃β0ϕ0(h, β0, ν).

174

Remark 6.2.19. This looping condition, apart from the technicality of the additive close-
ness, is analogous to the Σ2 looping condition. As introduced in [HL00], the Σ2 looping
condition was the existence of two stages ν and ν ′ sharing the same snapshot and such
that for all i, Ci(ν

′) = 0 implies that all β between ν and ν ′, Ci(β) = 0. But this last
condition means that for all i, Ci(ν

′) = 0 implies that ν is witness in Lν′, of the following
formula

φΣ2(m, i, y) := ∃ν ∀β > ν Ci(β) = 0

and φΣ2(m, i, y) describes exactly the Σ2 rule.

Proof of proposition 6.2.18. Let ν and ν ′ be as described. As the rule is asymptotical, the
machine will behave in the same way starting from ν or ν ′ and repeat the segment [ν, ν ′].
It may only escape this loop if at some limit stage, after this segment has been repeated a
certain limit ordinal amout of time, the limit rule yields another snapshot. However, we
can us Lemma 6.2.14 to show that the segment [ν, ν ′]ω yields the same snapshot. Indeed,
for i such that Ci(ν

′) = 0, the condition on the witness says that [ν, ν ′] is 0-populated
w.r.t. some β0 and never 1-populated. Using the lemma, the segment [ν, ν ′]ω is also 0-
populated and never 1-populated and Ci(N) = 0 with N being the right extremity of
the segment [ν, ν ′]ω. We show in the same way that for cells i such that Ci′(ν) = 1 we
have Ci′(N) = 1. And by looping stability, the segment [ν,N] will itself yield the same
snapshot after being repeated ω times and so on. This shows that the loop is never exited.

Conversely, if the machine is looping, we have some segment [ν, ν ′] over which the
machine repeats itself. However, for some i, writing hc the contracted cell history of
the cell i between stages ν, ν ′, the length of hc may not be additively closed. Observe
however that 1 is additively closed and that if |hc| > 2, then repeating the segment [ν, ν ′]
some α times, for α limit, will multiply the quantity |hc| by α. This ensures that we can
always find some stage N > ν ′ sharing the same snapshot as ν and such that for all i, the
contracted cell history has the desired length.

6.2.3 K-writing and some results

As said, we are able to write, eventually write and accidentally write reals with Γ3-
machines. We write λ3, ζ3 and Σ3 the associated constants. Further, we will define a new
way of writing that will be akin to the operator Γ3 and will be strictly less demanding
than eventually writing and strictly more than accidentally writing.

Definition 6.2.20 (Segments of reals). Given some real x and an ordinal σ, we say that
an x-segment of length σ appears in the computation of some machine m at stage ν when,
writing H the output history of m, for all stage ι ∈ [ν, ν + σ[, ι is an index in H and
H[ι] = x.

175

Definition 6.2.21 (Co-segments of reals). Given some real x and an ordinal σ, we say
that an x-co-segment of length σ appears in the computation of some machine m at stage
ν when, writing H the output history of m, for all stage ι ∈ [ν, ν + σ[, ι is a position in
H and H[ι] ̸= x.

It is clear that the definition of x-segments and x-co-segments are a transposition of 1-
segments and 0-segments in the context of reals where x plays the role of 1 and any y ̸= x

plays the role of 0. And so are the following definitions of x-populated and x-co-populated
segments.

Definition 6.2.22 (x-populated). Given some computation, we say that the output his-
tory of the machine is x-populated after ν0 and up to some limit ordinal λ and w.r.t. β0
if, cofinally after ν0, we find some x-segment of length α > β0 after less than α+β0 steps.
That is, with quantifiers bounded by λ,

∀ν > ν0 ∃ν ′ > ν, ν ′′ > ν (the segment [ν ′, ν ′′[of h is a x-segment stricly longer than β0

and |[ν, ν ′[| ⩽ |[ν ′, ν ′′[|+ β0)

This yields a Π2 predicate ϕ(m, y, x, β0, ν0) such that for a Γ3-machine m, that computes
from input y, and some β0 constant, the output history is x-populated w.r.t β0 from ν0

and up to limit stage λ when Lλ[y] |= ϕ(m, y, x, β0, ν0).

Definition 6.2.23 (x-co-populated). Given some computation, we say that the output
history of the machine is x-co-populated after ν0 and up to some limit ordinal λ and w.r.t.
β0 if, cofinally after ν0, we find some x-co-segment of length α > β0 after less than α+ β0

steps. That is, with quantifiers bounded by λ,

∀ν > ν0 ∃ν ′ > ν, ν ′′ > ν ′ (the segment [ν ′, ν ′′[of h is a x-co-segment

and |[ν, ν ′[| ⩽ |[ν ′, ν ′′[|+ β0)

Again, this yields a Π2 predicate ϕco(m, y, x, β0, ν) such that for a Γ3-machine m, that
computes from input y, and some β0 constant, the output history is co-x-populated w.r.t.
β0 from ν and up to limit stage λ when Lλ[y] |= ϕco(m, y, x, β0, ν).

Definition 6.2.24 (K-writing). We say that x is K-written (“kappa-written”) by m from
input y when there is ν0 and β0 such that after stage ν0, the output history of m is
x-populated w.r.t. β0 while not being x-co-populated after any other ν0 and β0. That is:

L[y] |= ∃ν0,∃β0 ϕ(m, y, x, β0, ν0) ∧ ∀ν0, β0 ¬ϕco(m, y, x, β0, ν0)

We may also say that x is K-written up to some limit stage λ and from input y when
Lλ[y] models the previous predicate.

176

This way of writing satisfies two important properties of monotonicity and mutual
exclusivity. To define these properties, observe that the definition of a new way of writing
reals can be seen as a function that maps histories of reals (possibily of length On) to
booleans.

Definition 6.2.25 (Writing predicate). A writing predicate on n-symbol machine is a
class function w : ωn× <On(ωn) ∪ On(ωn) → 2. We say that a real x was written w.r.t. w
in some history H ∈ <On(ωn) ∪ On(ωn) when w(x,H) = 1.

As such, a writing predicate is a class function as we need to consider histories of
length On. The following definition will make things a bit more handy.

Definition 6.2.26 (Suitable writing predicate). For an operator Γ, a writing predicate
w is suitable w.r.t. Γ when there is a formula φw(x1, x2, x3) such that:

• For every Γ machine m that halts on input y, writing Hy the whole history of m
with input y and λ the length of Hy, we have:

w(x,Hy) = 1 ⇐⇒ Lλ[y] |= φw(m,x, y)

• For every Γ machine m that does not halt on input y, writing Hy the whole history
of m on input y, we have:

w(x,Hy) = 1 ⇐⇒ L[y] |= φw(m,x, y)

Example 6.2.27. Let Γ be a n-symbol suitable operator. That is Γ is defined by some
formula φΓ(x1, x2, x3, x4). Then, it is easy to show that the e.w. writing predicate is
suitable w.r.t. any such Γ. Indeed, using φΓ we can define two functions, C(i,m, y, α)
equal to the value of cell i in m at stage α with input y and Q(m, y, α) equal to the state
of m at stage α with input y. From there it is enough to consider the following formula,
writing i ∈ Out for cells i forming the output tape of a machine.

φe.w.(m,x, y) := ∀αQ(m, y, α) is not the final state

∧ ∃α ∀β > α ∀i ∈ Out (C(i,m, y, α) = C(i,m, y, β))

This shows that the e.w. writing predicate is suitable w.r.t. any suitable operator. And
from this, it is clear that the e.w. predicate is as much the transposition of the operator
Γsup as the K-writing predicate is that of the operator Γ3.

Proposition 6.2.28. κ, the writing predicate associated to K-writing, is a suitable writing
predicate w.r.t. any suitable operator.

Proof. As in the previous example, for any suitable operator Γ, the formula of Definition
6.2.24 yields a formula to define κ w.r.t. Γ.

177

Definition 6.2.29 (Looping stability). We say that a writing predicate w is looping stable
when for any real x, history H and α a limit ordinal, the following holds:

w(x,Hω) = w(x,Hα) = w(x,HOn)

This property is very useful as it allows us speak of reals that are written w.r.t. some
writing predicate w in machines that do not halt (but that do loop), without having to
consider the whole output history of length On. This will naturally come into play with
looping stable and simulational operators.

Further, we can define the two following properties that we will need for the study of
the K writing predicate.

Definition 6.2.30 (Monotonicity). We say that a writing predicate w is monotonic when
for all x, H and H ′ such that|H| = |H ′|

∀ι < |H| (H[ι] = x =⇒ H ′[ι] = x)

we have

w(x,H) = 1 =⇒ w(x,H ′) = 1

That is if, index-by-index, there is in H ′ more x’s than in H, then x being w-written
in H implies that it is also w-written in H ′.

Definition 6.2.31 (Exclusivity). We say that a writing predicate w is exclusive when:

∀x [w(x,H) = 1 =⇒ ∀y ̸= x (w(y,H) = 0)]

Proposition 6.2.32. κ, the writing predicate associated to K-writing is looping stable,
monotonic and exclusive.

Proof. Since all definitions involved are analogous to their counter-part defined for limit
operators, the fact that it is looping stable is established as in Proposition 6.2.15, observing
that the case HOn does not change the proof. Monotonicity is clear and exclusivity was
the aim of this construction and comes from the fact that for any x ̸= y, ν0 and β0,
¬ϕco(x, β0, ν0) =⇒ ¬ϕ(y, β0, ν0).

Definition 6.2.33. We write K3 for the supremum of the K-writable ordinals with a
Γ3-machine.

The following proposition shows the interest of considering the K-writable ordinals.
Namely it shows that there are a.w. reals that are not K-writable and so that being
K-writable is strictly more demanding.

178

Proposition 6.2.34. K3, the supremum of the K-writable ordinals, is Γ3-accidentally
writable. That is, K3 < Σ3.

Proof. Consider U3, the Γ3 universal machine. By Corollary 6.2.16, there is a limit count-
able stage β such that any non-halting machine is seen to be looping at this stage. That
is, in the computation of any Γ-machine m, H, a final segment of the segment of history
that spans below stage β is indefinitely repeated after stage β. In particular, as the K-
writing predicate is looping stable, any Γ-machine whose computation K-writes some real
x (so “up to On”) also K-writes x up to stage β · ω (we can w.l.o.g. suppose that β is
additively closed). We will show that at this stage β · ω all K-writable reals appeared in
some machine. From there, it will be easy to show that their sum is a.w.

We consider the following computation of a machine M. On one virtual tape, M
simulates U3. For each machine mk in the simulation of U3,M allocates one virtual tape,
tk, on its working tape. Each time mk is simulated one step further (that is the simulation
of one step of mk which itself takes many steps of the simulation of U3),M first copies the
content of the output of mk in tk and then fill tk with 2′s. The 2’s are there to transform
the segments of reals in the output history of any machine mk into cell histories with
1-segments and 0-segments (possibly of size only 2).

We write Hk(α) the history of the output of machine mk up to stage α and Hk for the
whole history and we claim that if mk K-writes some xk, then at stage β · ω, xk will be
written in tk.

First, as stated, if mk K-writes some xk, it will K-writes xk up to stage β · ω. Hence,
in β · ω, there is some ν0 and β0 such that, after ν0, Hk(β · ω) is xk-populated w.r.t. β0.
So, for any cell i such that xk[i] = 1, where xk[i] is the ith bit of xk, hk,i, the history
of this cell in machine mk up to stage β · ω will be 1-populated w.r.t. this same ν0 and
β0 and will yield a 1 at stage β · ω. This comes from the symmetry of the definition of
x-population and 1-population. Similarly, for any cell i′ set to 0 in xk, its history hk,i′ will
also be 0-populated after some point. Still in this case, this is not enough, as we need to
ensure that for any ν0, β0, the history of the cell i′, hk,i′ , is not 1-populated.

However, if at some point i′ is set to 1 this means that at this point, tk, the whole
tape, has not xk written on it, as xk[i′] = 0; hence any 1-segment in hk,i′ corresponds to
a xk-co-segment in Hk. So if hk,i′ was 1-populated w.r.t. some constants, Hk would be
xk-co-populated w.r.t. the same constants. Observe here that what comes fundamentally
into play is the exclusivity of the K-writing: if more than one real was K-written by mk,
at a limit stage, we would most likely at best be able to write a bitwise sum of those. So,
this ensure that i′ is set to 0 at stage β ·ω and that xk is, as claimed, written in tk at this
stage.

Finally, we proved that at some limit stage, all K-writable reals are written on some
tapes of the machineM we designed. Now we can consider a machine that simulatesM
and, at each limit stage, that writes on its output the sum of all ordinal appearing in

179

it. This machine will at some point write the sum of all K-writable ordinals (and maybe
other ordinals), which shows as wanted that K3 is accidentally writable.

Proposition 6.2.35. The set of the K-writable ordinals, that is of ordinals α for which
there is a Γ3-machine that K-writes a code for a well-order of length α, is an initial
segment of O.

Proof. Let α < β and mβ a machine that K-writes xβ, a code for the well-order ≺β of
order type β. There is some integer i such that ≺β|i, the well-order restricted to elements
≺β-smaller than i, has order-type α. Hence, as usual, the idea is simply to truncate below
i every well-order that may appear in mβ. However, observe that checking whether some
real on the output encodes a well-order may take a long time; in particular, when it is
indeed a well-order, it takes as much steps as its order type. And this may be an issue
as, while the machine checks whether some real describes a well-order in α steps, in the
meantime, whichever real x is written on the output produces a x-segment of length α.
And regularly producing such parasitic segments in the output history may really well
skew what the machine actually K-writes.

Still, this issue can be easily bypassed: there is not need to check whether what is
written in the simulation mβ actually is an ordinal. As we only care for its behavior to
be correct when xβ appear, the machine can simply always work as if it was an ordinal.
And truncating a well-order can be done in ω steps by working on increasingly long initial
segment of the tape on which it is written. But this almost-issue shows how we the
relatively fine aspect of K-writing (when compared to e.w.) forces us to be on our guards
when devising such computations.

So, with this in mind, we consider the following machine mα: it simulates mβ and at
each step simulated in mβ (this takes finitely many steps in the main machine), it does
the following: it does as if the real that is written on the output of mβ was a well-order,
truncates it and copies it on its own output. This can be done in ω steps. Then, it waits
for ω2 steps. After those, it goes on with the simulation of mβ.

We claim that this machine K-writes α. First, writing xα for the real obtained when
truncating xβ below i, any xβ-segment of length ν in the history of mβ is transformed into
an xα-segment of length ω2 · ν. Similarly, any xβ-co-segment of length ν is transformed,
at most (xα may be produced from some x′ ̸= xβ), into a xα-co-segment of length ω2 · ν.
Then, the computation also produces new segments when it takes ω steps to truncate a
real and those segments do not correspond to any segment in mβ. This is why we make
those ω2 breaks: to ensure that the new segments (of length ω2 · ν) are still big when
compared to those parasitic segments of length ω. So with β0 and ν0 such that the history
of mβ after stage ν0 was xβ-populated w.r.t. β0, the history of mα after stage ω2 · ν0 will
be xα-populated w.r.t. ω2 · β0. Conversely, if the history of mα is xα-co-populated after
some ν0 and w.r.t. some β0 then, as the xα-segment are all of length multiple of ω2 on
the left, we can w.l.o.g. suppose that β0 = ω2 · β′

0. And so, the history of mβ would be at

180

some point xβ-co-populated w.r.t β′
0, which would contradict the fact that xβ is K-written

by mβ. Hence, as wanted, xα (and so the ordinal α) is K-written by mα.

To gap this difficulty, namely the fact that we need to keep precisely track of the
length of every subcomputation when describing a machine that K-writes some real, we
provide in the next section a versatile lemma to design such computations.

6.2.4 A K-writing sufficient condition

We provide a sufficient condition for some reals to be K-written. This sufficient condition
will constitute the following lemma which will be extensively used to establish the most
interesting results on the operator Γ3. The idea behind this lemma is akin to that of
the proof of Proposition 6.2.35: when designing a computation that K-writes some real
x, to avoid the x-co-segments that appear during ancillary subcomputations (previously
called “parasitic segments”) to change what the computation really K-writes, it is enough
to make so that the x-segments are “big” when compared to those x-co-segments. And
to do so, the idea is simply to arrange so that the x-segments the machine produces are
bigger and bigger. The main lemma is initially formulated so that x̃ is K-writable up to
stage ΣΓ, but we show in Proposition 6.2.42 that the machine we design also K-writes x̃
in On.

Remember that, in Proposition 6.1.10, we showed that there exists a computable
application ·∗ : Σ3 → Σ3 such that β∗ is the βth ordinal such that β∗ is multiplicatively
closed and it appears negatively encoded at time β∗ on the tape of mζ .

Lemma 6.2.36 (Main lemma). A real x̃ is K-writable up to stage ΣΓ if there exists two
Γ3-computable function S : ω2× Σ(3)→ Σ(3) and X : Σ(3) → ω2, that will respectively
be a length-of-segments function and an injective enumeration function, and such that,
writing Sx : α 7→ S(x, α),

1. For all x and all α, S(x, α) ⩽ α and for cofinally many α’s in Σ(3), Sx̃(α) = α

2. Sx̃ is monotonic (and non-decreasing per previous condition).

3. For some least ν̃ < Σ3, x̃ = X(ν̃) and there is some ordinal B < Σ3 such that for
all x = X(ν) with ν < ν̃, Sx is bounded by B.

4. For any ordinal α ∈ Σ3 there is Bα < αω such that for any real x = X(ν) with
ν < α, the computations of S(x, α) and of X(α) take less than Bα steps.

Sketch of the proof. We will construct a machine that uses the computable functions S
and X in order to K-write x̃. S will be a length-of-segments function: given some real
x such that the machine wants to write a x-segment at some stage α, it will compute
S(x, α) and this will be, in most case, the length of the x-segment to be written. As for
X, it will be used as an enumerating function: it will be used to go through the reals x

181

for which we want to write x-segments. It naturally induces an order on reals in Im(X)

and we write x <X x′ when x = X(ν) and x′ = X(ν ′) for ν and ν ′ minimal and with
ν < ν ′. And the machine will order the reals for which it writes segments according to
this partial order <X .

From there, the machine works schematically as follows: using the universal Γ3-
machine it will loop through the ordinals below Σ3. For cofinally many (well chosen)
ordinals α, it will write segments for the α first reals produced by X. The length of those
segments will be determined by the function S. The aim will be to write soon enough and
big enough x̃-segments in order to produce an history which is x̃-populated w.r.t. some
β0, as depicted in Figure 6.3. Also, as depicted in Figure 6.4, those big enough x̃-segments
will be used to ensure that the x̃-co-segments do not appear early enough for the history
to be x̃-co-populated w.r.t. any constants. More precisely:

– Condition 1 allows us to ensure that there are cofinally “long enough” x̃-segment
which will be the basis of our x̃-populated segments.

– Condition 2 (with previous condition) will ensure that the length of the x̃-segment
will be unbounded in ΣΓ and always great enough. This will prevent any other x
coming after x̃ (w.r.t. to the partial order induced by X) to generate cofinally in
ΣΓ x̃-co-populated segments. This is because, with those growing x̃-segments, the
β0 in the definition of x̃-co-populated would need to be greater and greater.

– Condition 3 will ensure that the segments written before x̃ (before w.r.t. to the
partial order induced by X) will be bounded in length. This will be the β0 of Figure
6.3.

– And Condition 4 will ensure that the machine is not caught up too long in a sub-
computation that would produce parasitic segments in the history as in the proof
of Proposition 6.2.35.

So, we will obtain, for some α’s, cofinally in Σ3, the computation history described in
figure 6.3, for some fixed β0 < Σ3, equal to the sum of the bounds of the Sx for all x’s
appearing before x̃; the reason for which we need those to be universally bounded in Σ3.
This will ensure that, after some point, the initial segments of the history are cofinally
x̃-populated w.r.t. this β0. This gives the positive (or existential) half of the conjunction
of the K-writing predicate (that is: ∃ν0, β0ϕ(x̃, β0, ν0)). Moreover, for any x X-greater
than x̃ and such that Sx(α) = α cofinally in α (as we will see in application of the lemma
that we can’t rule this cases out), we will rather obtain, for α’s cofinal in Σ3, the situation
of Figure 6.4. In this situation, the history will only be a x̃-co-segment w.r.t. at least,
β0 + S(x̃, α). Hence, as S(x̃, α) is unbounded in Σ3, when α goes up to Σ3, there won’t
be a universal βco

0 w.r.t. which the initial segments of the history are x̃-co-populated.
This will be the basis to ensure that the negative (or universal) half of the conjunction
(∀ν0, β0¬ϕco(x̃, β0, ν0)) of the K-writing predicate is satisfied.

182

everything before α appears

α β0

x̃

α = S(x̃, α)

Figure 6.3: An initial segment which is x̃-populated w.r.t. β0.

everything before α appears

α β0

x̃

S(x̃, α)

x

α = S(x, α)

Figure 6.4: An initial segment which is x̃-co-populated w.r.t. β0 + S(x̃, α) but not w.r.t.
any β strictly smaller.

This subsection and the following results will be dedicated to proving this main lemma. As
a reminder of what was done, we give the following special cases of previous propositions.

Proposition 6.2.37. For any Γ3-computable predicate P on the ordinals such that P (ζ(3)),
the set {α ∈ ζ(3) | P (α)} has order-type ζ(3) and the set {α ∈ Σ(3) | P (α)} has order-type
Σ(3).

Proof. Special case of Proposition 6.1.6.

Proposition 6.2.38. There exists a Γ3-machine mζ that writes a negative encoding for
ζ3 for the first time at stage ζ3.

Proof. Special case of Proposition 6.1.8.

And as done in Proposition 6.1.10 those two special cases yield the existence of Σ3 star-
ordinals below Σ3 (in the sense of Definition 6.1.11, a star-ordinal α is multiplicatively
closed and appears for the first time in mζ at stage α.) With this existence comes a
computable application ·∗ that maps β to the βth star-ordinal. What is very convenient
is that star-ordinal are well-behaved. They are multiplicatively closed and they appear
in an orderly fashion: by definition, for β < β′, β∗ appears for the first time before (β′)∗

does.

Lemma 6.2.39. There does not exist b0 < Σ3 such that the length of the history intervals
in which any ordinal found on the output of any Γ3-machine is strictly smaller than b0

are unbounded in Σ3. That is, the other way around, for any b0, there exists some ordinal
B0 < ΣΓ such that for all ν, there exists α ∈ [ν, ν +B0[and some machine m such that
m(α), the output of m at stage α, is an ordinal and m(α) ⩾ b0.

Proof. Suppose there exists such a b0 for which the length of the b0-bounded-segments
(that is the segments or the intervals of computation during which all ordinal accidentally

183

written are strictly smaller than b0) is unbounded in Σ3. The idea is, toward a contradic-
tion, to design a computation that runs through greater and greater initial segments of On
in order to have ordinals greater than b0 appearing regularly enough in the computation.

As b0 < Σ3, b0 is accidentally writable. So it appears for the first time at some stage
α0 in U3. By Proposition 6.2.17, α0 < Σ3. Let α > α0 be the least multiplicatively closed
ordinal strictly greater than both α0 and ωω. By our hypothesis, there is some earliest
b0-bounded-segment [ν, ν ′[of length greater than α. We consider the α first stages of this
segment. First, for any stage ι ∈ [ν, ν + α[, the snapshot of U3 at stage ι appears in the
computation of U3 for the first time in this segment. Indeed, suppose it appeared earlier
at some stage ι′ < ν ⩽ ι. Then, the computation at stage ι acts like that at stage ι′, by
asymptoticity of the operator Γ3. As [ν, ν ′[is the first b0-bounded-segments longer than α,
there would appear some ordinal greater than b0 before stage ν +α < ν ′; a contradiction.

Now, we consider the following computation. We design a machineM that simulates
in parallel two copies of U3, which we write U1

3 and U2
3 . U1

3 never halts whereas U2
3 will be

regularly halted and restarted. At any stage, if U2
3 is not running,M saves the snapshot

of U1
3 , starts U2

3 and runs it in parallel of U1
3 until the snapshot of U2

3 matches the one of
U1
3 it saved. When this happens it reinitializes U2

3 to be started again on the next step.
While this goes on, at any step, M writes on its output, one by one, all reals appearing
in the outputs of all machines simulated by U1

3 and U2
3 .

We claim that between stages ν and ν+α, some ordinal greater than b0 appears in one
of the simulations of U3 and so, just after, on the output of the machine we are designing.

However, this parallel computation and this copying of reals from one virtual tape to
the output tape ofM will slow the machine down, as with every simulation. But we have
seen that it is possible to simulate ω steps of ω machines in ω steps of the simulating
machine and so that at limit stages of the computation, the simulated machines are “on
time”. But to this, we need to add ω2 steps needed to copy, at each of those stages, the
ω · 2 reals appearing in U1

3 and U2
3 . So, with the same reasoning, in M, at any ordinal

stage ι multiple of ωω, the virtual stage of the simulated machines in the simulations of
U1
3 and U2

3 will coincide with ι.
Now for the claim, keeping this fact in mind. We distinguish two cases: in the compu-

tation interval [ν, ν + α[ofM, either U2
3 was looking for a single snapshot without finding

it for all this time; either it found it. In the first case, this snapshot s of U1
3 that can’t

be found by U2
3 was saved byM at some earlier stage, that is at some stage νs < ν of its

computation. Also, still in this case, U2
3 computes for more than α steps (asM computes

through stages [ν, ν + α[and α > ωω is multiplicatively closed) but less than νs steps (as
at most, at stage νs of U2

3 , s appears in it). So, the segment of computation of U2
3 we

are considering is longer than α and entirely before stage ν. As the segment [ν, ν + α[

was the first b0-bounded-segments longer than α appearing in the universal machine, the
b0-bounded-segments in the computation of U2

3 are strictly bounded by α. Consequently,
some real coding an ordinal greater than b0 appeared in U2

3 through the computation

184

interval [ν, ν + α] of M; as a result it appears also in the output of M in this interval,
which is a contradiction.

Either, second case, U2
3 finds the snapshot s in its parallel computation whileM is in

the interval [ν, ν + α[. Then,M saves a new snapshot s′ appearing at stage νs′ ∈ [ν, ν + α[.
By the same argument of multiplicative closeness making up for the possible lateness of
the simulated machines, this s′ also appears in U1

3 between stages ν and ν+α. Moreover,
as explained in the second paragraph of the proof, this snapshot can’t appear before stage
ν. Hence, looking for this new snapshot, U2

3 will compute for at least ν steps. While going
through those ν steps, b0 will appear in it as it appears at stage α0 < α ⩽ ν + α and
so strictly before stage ν, as it does not appear in the interval [ν, ν + α[. But then as α
is multiplicatively closed, b0 appears in the computation of M in the interval [ν, ν + α[,
which is again a contradiction.

The next lemma will help the machine of the main lemma write the segments of history it
needs to write in an organized way so that, for two reals y and y′ different from x̃ and for
which Sy and S ′

y are unbounded, the written y-segments and y′-segments (which are x̃-
co-segments) won’t concatenate to form even longer and harder to control x̃-co-segments.

Lemma 6.2.40. We recall that an ordinal word of size λ on the alphabet A can be seen
as a function λ→ A. We show that for any countable ordinal α we can build a word Wα

on α seen as an alphabet such that, for all β < β′ ⩽ β′′ in α and between all occurrences
of β′ and β′′ in Wα, there is always an occurrence of β. That is, for ι′ < ι′′, if Wα[ι

′] = β′

and Wα[ι
′′] = β′′, then there exists ι ∈ [ι′, ι′′] such that Wα[ι] = β.

Proof. We consider the function f , from α to words on α, recursively defined as:

f(0) = ε

f(β + 1) = f(β) · β · f(β)

f(β) = lim
β′<β

f(β′) when Lim(β)

This means that the word f(β + 1) is the word that starts with the word f(β) as prefix,
then has β as next letter and then finishes with f(β). For this definition to be licit, we
need to show that limβ′<β f(β

′) is well-defined. To this effect, we show, by induction,
that for any β′ < β, f(β′) ⊏ f(β), that is that f(β′) is a prefix of f(β). For β′ (if
any) such that β′ + 1 = β, this is immediate. Then for any β′ < β, if β is not a limit
ordinal, by induction hypothesis, f(β′) ⊏ f(β − 1) ⊏ f(β). If β is a limit ordinal, then,
by induction hypothesis, the f(β′) for β′ < β are well-defined and for β′′ < β′ < β we
have f(β′′) ⊏ f(β′). Hence, f(β) is well-defined and, by construction, for any β′ < β,
f(β′) ⊏ f(β).

Finally, we verify that Wα = f(α) is the word on the alphabet α we wanted to build.
Let β < β′ ⩽ β′′ in α. Any occurrence of β′ is surrounded on either side by the word

185

f(β′) on the alphabet β′. That is, all letters in f(β′), seen as ordinals, are smaller than
β′. Moreover, all ordinals smaller than β′, seen as letters, appears at least once in f(β′).
Hence β < β′ must appear between any two occurrences of β′ and β′′.

Example 6.2.41. With f as previously defined : f(4) = W4 yields, with concatenation
being alternatively implicit or denoted with a dot, for better readability,

010 · 2 · 010 · 3 · 010 · 2 · 010

From those results, we can now describe the machine of the main lemma and show that
it K-writes x̃.

Proof of main lemma. Given x̃, S and X as defined in the description of the lemma,
we build a machine m that K-writes x̃.

Observe first that given any encoding for an ordinal α, a machine can compute and
store an encoding for the word Wα = f(α), as defined in Lemma 6.2.40. Indeed, using
the code for α, any β < α can be encoded by an integer and then Wα, which is an ordinal
word on the alphabet α, can be encoded as an ordinal word on the alphabet ω. This
word has length at most 2α (2α − 1 when α is finite), which is α itself when α is limit
and is in general less than α · ω. Hence, it can be encoded using a code for α · ω, one of
those being easily computable from the code of α. Also, all in all and being generous, the
computation of Wα takes less than α · ω2 steps.

Recall also that in Proposition 6.1.10 we designed an application β 7→ β∗ that maps β
to the βth multiplicatively closed ordinal α such that α appears mζ (in bitwise negative
encoding) at stage α. As seen in the proof of Proposition 6.1.12, given some a.w. α, a
machine can check in α2 + α steps whether α = β∗ for some β.

Then, the machine works as follows. It begins with the simulation of U3. This way it
loops through, in an unknown order, all the ordinals below Σ3. In this simulation, it looks
for the appearance of star ordinals α = β∗. And it uses those ordinals and the regularity
of their first appearance (β∗ appears for the first time in mζ at time β∗) to structure the
history of the output tape of the machine. It will moreover use paddings to control this
structure even more precisely. Paddings can be seen as words on reals (e.g. given three
reals x, y and z, the three letter words xyz could be a padding), that the machine will
write, letters by letters (that is reals by reals), on its output tape in order to add them
to the output history. However by padding its output history with poorly chosen reals,
the machine will produce new segments of reals in its history which may change what the
computation K-writes. Indeed, padding the output history with, say, the word yα creates
a y-segment of length α and consequently an y-populated interval of length at least α. For
this reason, we use the word Wα to construct our padding. We write Xα = X(Wα) where
X is applied letter by letter; that is, for an index ι, Xα[ι] = X(Wα[ι]). By construction of
Wα, the length of the x̃-co-segments in any Xα’s are bounded by 2ν̃ where ν̃ is the least

186

index of x̃ in X. Observe that x̃ may not be a part of Xα but in this case, this mean that
α < ν̃ and so the claim still hold. And this is enough to control the segments of reals,
and more particularly the x̃-co-segments, appearing in this padding.

Further, it is clear that this padding may easily be truncated or concatenated to create
greater paddings. We will use this in the first part of the algorithm. While doing some
subcomputation, the algorithm will write in parallel a padding using some Xα. That is,
one after the other, it will do one step of the subcomputation and then write one real of
Xα on its output. However, letter by letter, it may go through all of Xα. In this case, it
simply goes back to the beginning and continues from there, effectively “looping” over Xα

to write the padding. Those parallel computation and padding writing are denoted by the
command do in parallel...while... where the first instruction contains a padding
writing which is done, in parallel, for as long as the second set of instruction takes.

Now, we will need to pay attention at which x̃-co-segments may be created in the
output while doing so. If α > ν̃, then only the x̃-co-segments of the extremities of the Xα

may concatenate to form, at most, twice as long x̃-co-segments; and so this case won’t
be an issue. As for the other case, we will ensure that paddings Xα for α < ν̃ won’t be
written too many times in a row.

Moreover, this pattern will also be used for the writing of the different x-segments.
That is, to write those, for each letters x of Xα, in the same order and with the same
repetitions, the machine will write a x-segment, taking once more advantage of the fact
that we can control the size of the x̃-co-segments it thus creates.

From there, we describe the machine in its entirety in Algorithm 1.

Claim 6.2.41.1. We claim that

1. For any β below Σ3, β∗ appears at least once in the loop of line 1

2. Computation from lines 2 to 9 takes at most than αω+1 + αω steps and strictly less
than αω when α is a star-ordinal.

3. For α not a star-ordinal, the parallel computation of line 10 to 20 takes α2 + α

steps. And so it writes a padding of length α2 + α steps using Wα.

4. For a star-ordinal α = β∗, the parallel computation of line 10 to 20 takes αω steps.
And so it writes a padding of length αω steps using Xα.

5. The computation of line 21 to 29 takes at most αω + α steps.

6. When some star-ordinal α = β∗ comes for the first time in the computation at line
1: after completing the parallel computation of line 20, the whole history before it
has length αω.

7. The length of the x̃-co-segment appearing between lines 2 and 20 is bounded in Σ3.

187

1 foreach α appearing on the output of mζ do
2 foreach α′ ⩽ α do
3 do in parallel
4 write a padding on the output looping over Xα′

5 while
6 compute and store X(α′) on some part of the working tape
7 compute and store Xα′+1

8 end
9 end

10 do in parallel
11 write a padding on the output looping over Xα

12 while
13 if α is a star-ordinal then
14 find β such that β∗ = α
15 compute and store S(x, β) for all x appearing in Xα

16 wait for αω steps.
17 else
18 continue // ignore this α and continue with the loop of

line 1
19 end
20 end
21 forall x in the word Xα do // that is, while reading Xα letter by

letter
22 if (S(x, β) < β) then
23 write on the output a x-segment of length S(x, β)
24 else // (S(x, β) = β)
25 write on the output a x-segment of length αω

26 write on the output the end of Xα // that is writing, letter by
letter, the final segment of Xα that wasn’t read
through in the loop of line 21

27 break // exit the current loop of line 21
28 end
29 end
30 end

Algorithm 1: Main loop of the machine.

188

Proof of claim.

1. This comes from the fact that the set {β∗ < Σ3} has order-type Σ3 and that for
β < β′ we have β∗ < β′∗; hence for all β < Σ3, β∗ < Σ3 and β∗ is accidentally
writable.

2. Using α to store the information and by Condition 4, for α′ ⩽ α, the computation
of X[α′] takes strictly less than (α′)ω steps. Then, using X[α′] and Xα′ , the com-
putation of Xα′+1 also takes less than (α′)ω steps. And when α′ is limit, Xα′ is the
limit of the (Xα′′)α′′<α′ and so a code for it is computed in α′ steps. The sum of the
(α′)ω (or α′ for α′ limit) for α′ < α is less or equal to αω+1. Hence, this same sum
for α′ ⩽ α yields at most αω+1 + αω steps.

When α is a star-ordinal, for all α′ < α, (α′)ω ⩽ α and so their sum is strictly less
than αω. As for the last iteration of the loop, that is when α′ = α, it takes by
Condition 4 strictly less than αω steps. So the whole loop also takes strictly less
than αω steps.

3. By Proposition 6.1.12, it takes α2 + α steps to detect that α is not a star-ordinal.

4. We give line by line the time complexity of the different operations in the second
half of the parallel computation. The first half, writing the padding, simply goes on
until the second half is done.

line 13: it takes α2 + α steps to detect that α is a star-ordinal.

line 14: Then, to compute β such that β∗ = α, the machine makes the list of the
first star-ordinals (using α to arrange the information) until it reaches stage
α. This takes less than ν2 + ν steps for each ordinal ν below α and so in
the end, by multiplicative closedness of α, exactly α steps.

line 15: By construction of Xα, to compute S(x, β) for all x appearing in Xα, it
needs to compute S for less than α different x’s of X-index strictly less than
α. By Condition 4 in the main lemma, each of those computation takes less
than Bα < αω steps. As αω is multiplicatively closed, this makes for strictly
less than αω steps.

Hence, after those three instructions, the parallel computation went for strictly less
than αω steps. It then waits for αω steps in line 16 which brings the total to αω .

5. As after everything has been computed before line 20, there is no unbounded over-
head (the usual small and fixed overhead is negligible when compared to αω) for any
of the operations after this line. Hence, either for all x in Xα, S(x, β) < β and the
whole loop takes less than α2 steps (β ⩽ α and as α is multiplicatively closed, the
length of Xα is α itself.) Either, for some x, S(x, β) = β and the machine outputs
a segment of length αω before outputing the end of Xα. This takes αω + α steps.

189

6. With Item 2 and Item 4 of the claim in mind, it is enough to show that when such
a star-ordinal α appears at line 1, the whole history before it has length strictly
less than αω. To see this, observe that under the assumption that the star-ordinal
α appears for the first time, it does so at stage α in mζ . And so the loop of line 1
has been done at most α times. Moreover any ordinal appearing before this stage
in mζ must be strictly less than α otherwise, with the usual truncation technique, α
would appear before stage α. And so, for each δ < α, by Items 2, 4 and 5, it takes
at most (δω+1 + δω) + δω + δω + δ steps. And so, as α is multiplicatively closed, for
any such δ, δω ⩽ α and it takes in the end strictly less than αω steps, as required.

7. The first x̃-co-segments that may appear will be during the execution of lines 2 to 9.
This is why we use paddings which will, in parallel from execution of lines 5 to 29,
write different words, one after the other, on the output. Once α′ is greater than ν̃
(the least ν s.t. X(ν) = x̃), every padding X ′

α will contain x̃. And by construction
of X ′

α the x̃-co-segments in Xα′ are bounded by ν̃. And those Xα′ are written in
parallel of the computation of X[α′]. That is as the machine does one step of the
computation of X[α′] and then writes one new letter of Xα′ (a letter of Xα′ is a word
in ω3) on the output, and so on. Doing so, it will regularly write x̃ in the output
which will ensure that the x̃-co-segments stay small. It may also write X ′

α many
time in a row to write a padding of greater length. In this case, the length of the x̃-
co-segment between two Xα’s will reach ν̃ · 2 which is still a bounded quantity. And
so, once α′ is greater than ν̃, the length of the x̃-co-segment is controlled. Before
this, that is before reaching α′ = ν̃, it takes, by Condition 4, as much as ν̃ω · ν̃. But,
again, this is a fixed quantity less than Σ3.

Then, Xα will be used as a padding for the computation from lines 10 to 20. That
is, in parallel of lines 12 to 20, the machine writes one by one the letters of Xα,
eventually looping through it if it reaches its end. With the same reasoning, the
length of the x̃-co-segments is easily seen to be bounded.

■

Proof of the Σ3 part of the K-writing condition We now prove that the output his-
tory of the computation below stage ΣΓ respects the first half of the K-writing condition:
∃ν0,∃β0 ϕ(x̃, β0, ν0).

We show how, as wanted, we obtain the situation depicted in Figure 6.5, for cofinally
many α’s in Σ3. Indeed, by Condition 1 of the lemma, there exists cofinally many β’s
such that Sx̃(β) = β. We look at what happens for such a β. By Item 6 of Claim 6.2.41.1,
after α = β∗ appeared for the first time at line 1, at line 20 of the algorithm the history
has length αω. This is depicted in the first horizontal bracket of the figure.

Then, the machine will write x-segments for all x <X x̃, and more than one for each
x, by construction of Xα. For all those x it writes a x-segment of length S(x, β). That

190

is, it writes x on the output and then waits for S(x, β) steps. By Condition 3, there is
B that universally bounds the Sx for x <X x̃. Hence, for β big enough, for all x <X x̃,
we have : S(x, β) ⩽ B < β. Observe that as Xα was previously written on some part of
the working tape, going through Xα is done with a bounded overhead: we can arrange so
that the machine finds the next x and writes it on the output tape in ω · 2 steps. Further,
S(x, β) has also been computed beforehand and counting through it does not incur more
than a small and fixed overhead.

Hence, the time it takes to write those x-segments for x <X x̃ may be slightly more
than B · 2ν̃ where ν̃ is the least X-index of x̃. The important point being that, as B

and the various overheads are constant, this produces a bounded (universally bounded
in Σ3 for any β such that Sx̃(β) = β) x̃-co-segments and we write β0 for the associated
least upper bound. Moreover, as we are interested in the asymptotical behavior (again
in Σ3) of our machine, we can suppose w.l.o.g. that β0 < α. This bounded sequence
made of x-segments for x <X x̃ and various bounded overheads is depicted in the second
horizontal bracket.

Eventually, after going through all the x <X x̃ in Xα, the machine reaches x̃. As
Sx̃(β) = β, the condition of line 22 is false and it writes on its output a x̃-segment of
length αω. And, as appears clearly in Figure 6.5, this produces an initial segment of the
output history of length αω · 2 which is x̃-populated w.r.t. β0. And by Condition 1, those
x̃-populated initial segments appear cofinally in ΣΓ for bigger and bigger α’s but with the
same β0, which is enough to satisfy the positive half of the K-writing condition in ΣΓ.

after the padding from Xα

αω

x <X x̃

β0

x̃

αω

Figure 6.5: An initial segment of the output history which is x̃-populated w.r.t β0.

Proof of the Π3 part of the K-writing condition Now we prove that the out-
put history of the computation respects the second half of the K-writing condition:
∀ν0, β0 ¬ϕco(x̃, β0, ν0). The situation, still in Figure 6.5, will give us the witnesses for
the negation of ϕco(x, β0, ν0). Indeed, for any x′ >X x̃, there isn’t any condition on Sx′

apart from the fact that Sx′(β) ⩽ β and for some x′ there may also be cofinally many
β’s in ΣΓ that are fixed point for Sx′ . Consequently, this may give rise to unboundedly
long x′-segment which also are x̃-co-segment; that is segments of the history of the out-
put tape in which x̃ does not appear. Still, we will show that despite those unbounded
x′-segments, the history can’t be cofinally x̃-co-populated. Let ν0 and βco

0 be two ordinals
below ΣΓ. We show that there exists ν > ν0 after which we can’t find ν ′ and ν ′′ describing
a x̃-co-segment that satisfies the x̃-co-population property w.r.t. βco

0 .
Indeed, take some star-ordinal α = β∗ > ν0 for which arises the situation of Figure

6.5. As seen, such situations occur cofinally in Σ3. Then set ν = αω + β0. That is ν is

191

the index of the beginning of the x̃-segment of length αω, depicted by the third horizontal
bracket. Consequently, any ν ′ > ν starting a x̃-co-segment is greater than ν + αω; in
other words for such a ν ′, |[ν, ν ′[| ⩾ αω. And to satisfy the co-population property, [ν ′, ν ′′[
must in turn be a x̃-co-segment whose length, to which we add the fixed βco

0 , is greater
than αω. As βco

0 is fixed, we can w.l.o.g. suppose that it is smaller than αω. As αω is
multiplicatively closed, |[ν ′, ν ′′[|+ βco

0 ⩾ αω is equivalent to |[ν ′, ν ′′[| ⩾ αω. And we claim
that such a x̃-co-segment, that is of length greater than αω, can’t appear before reaching
some α′ = (β′)∗ > α in the loop of line 1. Indeed, x̃-co-segment may appear from three
different ways:

• They may come from intervals in the computation of U3 in which all α′ that appear
are such that α′ is smaller than ν̃. However, by Lemma 6.2.39, the length of the
intervals during which all ordinals appearing in U3 are bounded by ν̃ is bounded
in Σ3. Hence, for α big enough, we won’t have αω iterations of the loop of line 1
without x̃ appearing in some padding Xα′ .

• Then they may occur when the machine computes from lines 2 to 20. But by Item
7, the x̃-co-segment those lines generates are bounded in length and so, w.l.o.g.,
smaller than α.

• Finally, it may come from the x′-segments that the machine writes for x′ ̸= x̃ in the
loop of line 21. However, this loop is only executed for star-ordinals. And before
reaching a greater star-ordinal (that is before reaching (β+1)∗, as, by construction,
the times of first apparition of the star-ordinals are ordered), all star-ordinal α′

appearing are strictly smaller than (β + 1)∗, and so smaller than α = β∗. Hence for
those, it writes x′-segments strictly smaller than αω. And even if α appears again
in the loop of line 1, the machine breaks out of the loop of line 21 once it reaches x̃.
That is, for this α, it only loops–besides x̃–through the x <X x̃ and by Condition
3, for all those x’s, Sx is universally bounded in Σ3, hence w.l.o.g. strictly bounded
by αω.

So for the specific ν we fixed (but which may have been chosen arbitrarily big in
ΣΓ), we may find witnesses ν ′ and ν ′′ for the x̃-co-population only after some star-ordinal
α′ = (β′)∗ > α is reached in the computation. This would give rise to the output history
schematized in Figure 6.6. When α′ is reached for the first time at line 1: by multiplicative
closedness of α′, the tape history has length α′. As ν < α′, for any ν ′ greater than α′, the
history segment [ν, ν ′] has length at least α′. And so, we are now looking for x̃-co-segments
of length α′. By Item 7, no such co-segments appears before line 20. But because the
padding of length (α′)ω, the co-segment now needs to be of length (α′)ω By Condition 3,
no such co-segment may appear when writing x-segments in the loop of line 21 for x ⩽ x̃.
It may appear, only after a x̃-segment of length S(x̃, β′) has been written, if there is some
x′ >X x̃ such that S(x′, β′) = β′. This would indeed give rise to a x̃-co-segment slightly

192

longer than α′ω. But how much longer? Not so much as, after writing this x′-segment
of length (α′ + 1)∗, the machine writes the end of the word Xα, letter by letter on the
output. Hence x̃ appears before ν̃ letters in this padding and cuts the x̃-co-segment. So
the x̃-co-segment has at most length (α′)ω + ω · ν̃, as it takes ω steps to write each letter
of Xα on the output tape.

Hence, supposing w.l.o.g. (by monotonicity and unboundedness of Sx̃) ω · ν̃ negligible
with respect to S(x̃, β′), the initial segment this describes will be x̃-co-populated segment
w.r.t., at best, S(x̃, β′). And by the convenient behavior of the star-ordinals (they appears
for the first time in an orderly manner), this situation of Figure 6.5 occurs for cofinally
many α’s in Σ3. And so, by Condition 2, we can choose ν such that for all star-ordinal
α′ = (β′)∗ appearing after this ν, S(x̃, β′) > βco

0 ; that is some ν after which the history
is never x̃-co-populated w.r.t. βco

0 . Developing the definition of ϕco(x̃, βco
0 , ν0), this yields:

for any ν0 and βco
0 , there is some stage ν at which the situation of Figure 6.5 occurs and

so for any x̃-co-segment occuring after it, the history from ν0 will be x̃-co-populated w.r.t.
at best S(x̃, β′) > βco

0 ; hence ¬ϕco(x̃, βco
0 , ν0). And this concludes the proof of the lemma.

(α′)ω β0

x̃

S(x̃, β′)

... x′

(α′)ω

Figure 6.6: An initial segment of the output which is not x̃-co-populated w.r.t to less than
S(x̃, β′).

Proposition 6.2.42. The machine described in the previous lemma not only K-writes x̃
up to stage ΣΓ but it K-writes x̃ in L.

Proof. As was observed in Remark 5.4.33, it is not clear whether, for an operator Γ

such that ΣΓ = TΓ, any Γ-machine is seen to be looping at or before stage ΣΓ. Still,
by Proposition 5.5.10, any Γ-machine is seen to be looping before stage ΣΓ · ωω and its
history after stage ΣΓ will be rather structured.

To see this, we take the case where the Γ3-machine from the main lemma it is seen to
be looping at stage Σ3 · ω2. This happens if there a segment H, spanning between two
occurrences of some x at stages α and Σ3, which produces a y at stage Σ3 · ω and which
y then induces a repeating segments (as ΣΓ = TΓ, this y must also have appeared before
stage Σ3) which yields another y at stage Σ3 · ω2. This is represented in Figure 6.7.

In this case, the looping segment is HyH
ω. And the length of Hy is bounded in ΣΓ.

Hence, it is clear that the whole history of the machine is x̃-populated: take ν ∈ Σ3 · ω
greater than β, the ordinal stage at which Hy starts. Either ν, as a computation stage, is
in some H. Then, as seen in the proof of the main lemma, there is some ν ′ and ν ′′ that
satisfy the definition of x̃-population w.r.t. this ν and the fixed β0 of the proof. Or ν is
in some Hy. Then, comes in the following H a x̃-segment of length (β∗)ω at the latest at

193

β

y
Hy

α

x
H H

Σ3

x
. . .

Σ3 · ω

y

Σ3 · ω2

y
. . .

Σ3 · ω2

y

Figure 6.7: A Γ3-machine seen to be looping at stage Σ3 · ω2.

stage ν+ |Hy|+(β∗)ω+β0 and such that w.l.o.g. (β∗)ω is strictly greater than |Hy|. So, by
multiplicative closedness, there is a x̃-segment of length (β∗)ω appearing after (β∗)ω + β0

steps after ν. And so it satisfies the x̃-population formula for this ν w.r.t. β0.
As for the fact that the whole history of the machine isn’t x̃-co-populated, it is enough

to consider, as in the proof of the main lemma a stage ν in some H in which a x̃-segment
of length (β∗)ω appeared. Indeed, the best candidate for ν ′ and ν ′′ in the definition of x̃-
co-population are in the same H as otherwise they would need to describe a x̃-co-segment
of length at least ΣΓ. So, again, it works as in the proof of the main lemma.

Further, the same reasoning applies when the machine is not seen to be looping at
stage ΣΓ ·ω2 but at some stage ΣΓ ·ωk for k ∈ ω. And so, the whole history of the machine
satisfies the predicate of K-writing for x̃, which simply mean that the machine K-writes
x̃ in L.

Lemma 6.2.43 (Auxiliary lemma). Let x̃ be a real that satisfies the conditions of the
main lemma and ỹ that is x̃-e.w., i.e. that is e.w. by a Γ3-machine with x̃ as output.
Then y is K-writable as well.

Proof. Let S and X be the computable predicates associated with x in the statement of
the main lemma. We show that using them we can define S ′ and X ′ two computable
predicates that also satisfy the conditions of the main lemma for the real ⟨x̃, ỹ⟩.

We write mỹ the machine that e.w. writes ỹ from x̃. Also, for any real x′ and ordinal
α, we write my[x

′](α) for the output at stage α of the computation of mỹ with input x′.
As mỹ e.w. ỹ from x̃, there is some ordinal stage A such that for all α > A, my[x̃](α) = ỹ.
Finally, we can suppose that our pairing function ⟨·, ·⟩ is injective and so that any real z
can be written ⟨x, y⟩. Typically, it can be done by taking x as the even bits of z and y as
the odd ones. With this, S ′ and X ′ are defined as follow.

X ′ : α 7→ ⟨X(α),my[X(α)](α)⟩

S ′ : ⟨x, y⟩, α 7→ min(S(x, α), length of the greatest y-segment before α in the computation of mỹ[x])

Let us show that it satisfies the condition of the lemma.

1. It is clear that for all ⟨x, y⟩ and α, S ′(⟨x, y⟩, α) ⩽ α. Moreover, for α greater than

194

Aω (which is additively closed) and such that S(x̃, α) = α, we have S ′(⟨x̃, ỹ⟩, α) = α.

2. Monotonicity of S ′
⟨x̃,ỹ⟩ is clear too from that of the two functions whose minimum is

computed.

3. As for the universal bound on the S ′
⟨x,y⟩ for ⟨x, y⟩ <X′ ⟨x̃, ỹ⟩: the inequality ⟨x, y⟩ <X′

⟨x̃, ỹ⟩ implies x <X x̃, so the S ′
⟨x,y⟩ are bounded by the universal bound on the Sx

for x <X x̃.

4. By hypothesis on X, computing X(α) takes less than Bα < αω steps. Then, from
X(α), computing my[X(α)](α) takes another α steps, and so it still yields a bound
strictly below αω. Same goes for S ′.

This shows that ⟨x̃, ỹ⟩ is K-writable. And by monotonicity of the K-writing predicate
(see Definition 6.2.30), the machine that writes y instead of ⟨x, y⟩ in the paddings and in
the segments K-writes ỹ.

From there, we can improve the main lemma. More precisely, we show how we can
remove a constraint that can often be bothersome.

Lemma 6.2.44 (Improved main lemma). The Main Lemma 6.2.36 still holds if we don’t
ask for the functions (Sx)x<X x̃ to be universally bounded in Σ3 but simply one by one
bounded and if we also ask the bounds Bα to be montonous. That is, it still holds if we
replace Condition 3 by the following weaker Condition 3a and if we strengthen Condition
4 into the following Condition 4a.

3a. For some least ν̃ < Σ3, x̃ = X(ν̃) and for all x = X(ν) with ν < ν̃, Sx is bounded
in Σ3.

4a. For any ordinal α ∈ Σ3 there is Bα < αω such that for any real x = X(ν) with
ν < α, the computations of S(x, α) and of X(α) take less than Bα steps. Moreover,
we ask that if α′ < α then Bα′ ⩽ Bα.

Proof. We show that with such hypothesis, that is with Conditions 1, 2, 3a and 4a, we
can still apply the main lemma, albeit with different functions and a different real. Then
we show how, with this new real that is K-written and with Auxiliary Lemma 6.2.43, we
can K-write x̃.

So, let x̃, X and S satisfying Conditions 1, 2, 3a and 4a. If those objects also satisfy
Condition 3, as Condition 4a implies Condition 4, we can simply apply the main lemma.
Else, it means that the functions (Sx)x<X x̃ are not universally bounded. In particular,
this means that there is a X-least x1 <X x̃ for which Sx1 is not strictly bounded by
ν̃ = rkX(x̃), the X-rank of x̃. So we let α′ be the least ordinal such that S(x1, α′) > ν̃.

195

Then we consider the following segment function S(1): given x and α, S(1) first com-
putes S(x, α) and then it looks for all x′ of X-rank less than S(x, α) and returns the
maximum of the S(x′, α). That is,

S(1)(x, α) := max
rkX(x′)<S(x,α)

(S(x′, α))

Now if the functions (S
(1)
x)x<Xx1 are universally bounded and we can apply the main

lemma with x1 instead of x̃. Indeed, observe first that

• For α big enough, S(x̃, α) = α implies S(1)(x1, α) = α.

• The monotonicity of S(1) comes from that of S.

• For x <X x1, Sx is strictly bounded by ν̃ and so S(1)
x is bounded in Σ3 as well. We

also supposed that they were universally bounded.

• For the time complexity: as S(x, α) ⩽ α, the maximum of Sα is computed in the
worst case on all reals x′ with rkX(x

′) < α. And for those, the computation of
X(α′) = x′ (for the enumeration of the x′) and of S(x′, α) takes strictly less than
B′

α + Bα steps, which is also less than Bα · 2 by Condition 4a. And so this makes
in the end for a total of strictly less than Bα · 2 · α steps. Observe that with those
bounds, S(1) satisfies Condition 4a as well.

Or, second possibility, the functions (S(1)
x)x<Xx1 are not universally bounded and there

is a least x2 <X x1 for which the bound of S(1)
x2 is greater than ν1, the X-rank of x1, i.e.

the least ordinal such that x1 = X(ν1). In this case, we consider the function S(2) that
works w.r.t. S(1) like S(1) does w.r.t. S. Given x and α, S(2) computes S(1)(x, α) and it
returns the maximum image by S(1),α of elements of X-rank less than S(1)(x, α). That is,

S(2)(x, α) := max
rkX(x′)<S(1)(x,α)

(S(1)(x′, α))

And we can apply the same reasoning to S(2). Either we can conclude, or the construction
goes on. This creates a X-decreasing sequence of reals (xi), a decreasing sequence of
ordinals (νi), as well as a sequence of functions (S(i))i such that for all i > 0 (with x0 = x̃,
ν0 = ν̃ and S(0) = S):

• The function S(i) satisfies Conditions 1, 2, 3a and 4a of the main lemma (with a
computation time of (Bα · α)n < αω for S(i),α).

• The function S(i−1)
xi is bounded in Σ3 but not strictly bounded by νi−1.

• The ordinal νi is the X-rank of xi

196

As <X is a well-order, this decreasing sequence is finite and there is some finite n such
that xn and Sn satisfy, paired with X, all four conditions of the main lemma; that is
Conditions 1, 2 and 4 (more precisely, the stronger condition 4a) as well as the fact that
the functions S(n)

x for x <X xn are universally bounded, which is Condition 3. Hence, in
virtue of the main lemma this xn is K-writable.

Now we need to show that from there, namely from the machine from the main lemma
that K-writes xn, we can in turn K-write x̃. To do this, we show that for any i such that
0 < i ⩽ n, xi−1 is xi-eventually writable. To see this, remember that the function S

(i−1)
xi

is bounded in Σ3 but not strictly bounded by νi−1. So, given xi and some ordinal α, a
machine can compute S(i−1)

xi (α). In particular, it can e.w. the bound of S(i−1)
xi (with the

usual techniques, as it is Σ2 definable without parameters other than xi.) And so, as
νi−1 is less than the bound of S(i−1)

xi (α), it is in turn e.w. from xi and then so is xi−1, as
wanted.

And so, having those machines working together with the usual dovetailing technique
(there are finitely many such machines), x̃ is e.w. from xn. Eventually, in virtue of
Auxiliary Lemma 6.2.43 (observe that xn is K-written by applying the main lemma), x̃ is
K-writable.

6.2.5 Main results

We now prove the main results regarding K3 and K-writing.

Theorem 6.2.45. Σ3 is admissible.

Proof. We show that the axiom of Σ0-collection holds in LΣ3 . Let φ(x, y, z) be a Σ0

predicate with three free variables and A, p ∈ LΣ3 such that LΣ3 |= ∀a ∈ A ∃b φ(a, b, p).
Suppose moreover that the collection axiom does not hold. Then we can rewrite those
assumptions in LΣ3 as follows:

LΣ3 |= ∃A, p (∀a ∈ A ∃b φ(a, b, p)

∧ ∀B ∃a ∈ A ∀b ∈ B¬φ(a, b, p))
(6.1)

This statement is ∆3, which gives an idea why this proof scheme would not work in the Σ2

case where we have at most a Σ2 elementary end-extension. We show using the Improved
Main Lemma 6.2.36 that some witness (A, p) is K-writable. From there, it will be easy
using the auxiliary Lemma 6.2.43 to K-write enough b’s, and so to have enough b ∈ LK3 ,
to reach a contradiction.

To apply the improved lemma we need two functions, S and X that satisfy Conditions
1,2, 3a and 4a. For <X we choose the usual well-order on L. That is for any α < Σ3,
X(α) is the αth element of LΣ3 w.r.t. to this well-order. In particular, if x ∈ Lα+1 − Lα

and y ∈ Lβ+1 − Lβ with α < β, then x <X y.

197

For S, it is rather straightforward: let x = ⟨A, p⟩ encode some ordered pair (A, p). For
each such x and α ∈ Σ3, we write

Aα
x = {a ∈ A | ∃b ∈ Lα φ(a, b, p)}

Then we define Bα
x to be the X-least B ⊆ Lα such that

∀a ∈ Aα
x ∃b ∈ B φ(a, b, p)

From there we define S as follows: for any x and α, if x is a valid encoding, S(x, α) = β

where β is the L-rank of Bα
x , that is the least ordinal such that Bα

x ⊆ Lβ. Else, for invalid
encodings, S(x, α) = 0. Then we write x̃ the X-least x encoding some (A, p) such that
Sx is unbounded. There must be at least such a x as any witness of (6.1) will give rise to
such an unbounded function. Conversely, x̃ is almost a witness of (6.1). That is, writing
x̃ = ⟨Ã, p̃⟩, we have :

LΣ3 |= ∀B ∃a ∈ Ã∀b ∈ B¬φ(a, b, p̃)) (6.2)

It does not exactly mean that (Ã, p) is a witness of (6.1) but rather that there is Ã′ ⊂ Ã

such that (Ã′, p̃) is a witness. But in our case this will be enough to reach a contradiction.
Also, we write α̃ the least α such that x̃ ∈ Lα̃.

We claim that this definition of S and X checks the four condition of the improved
main lemma.

1. At any stage α, Bα
x is the X-least subset of Lα collecting the image of Aα

x by φ. By
definition of Aα

x , Bα
x ⊆ Lα and so S(x, α) ⩽ α. Then, as α increases, Bα

x grows only
when Aα

x does. And Aα
x will grow when there is some a′ ∈ A for which there is some

least b′ ∈ LΣ3 such that φ(a′, b′, p) and which b′ appears latter in the constructible
universe, that is b′ ∈ Lα′ − Lα for some least α′ > α. Then for such a least α′,
Aα′

x = Aα
x ∪ {a′} and Bα′

x = Bα
x ∪ {b′}. Consequently, α′ is the least ordinal such

that Bα′
x ⊆ Lα′ and S(x, α′) = α′. For x̃, by (6.2), this happens cofinally often in

Σ3 so we have cofinally many α’s such that Sx̃(α) = α.

2. As α increases, Aα
x grows. That is, for α ⩾ α′, Aα

x ⊆ Aα′
x . Hence, Bα

x ⊆ Bα′
x and

Sx(α) ⩽ Sx(α
′), which shows in particular that Sx̃ is monotonic.

3a. By definition of x̃, for any x <X x̃, Sx is bounded. They may not be universally
bounded which is why we use the improved main lemma.

4a. Given α, to compute X(α), it is enough to compute Lα+1. Applying the recursive
construction of Lα+1 using the operator Def can be a bit time consuming but this
can be done using Gödel’s functions (see [Bar75, II.5]). And so, at each stage β < α

of the construction, Lβ × Lβ can be enumerated in β + ω stages and for all x, y in

198

Lβ×Lβ, Fi(x, y) can be computed in β2 stages. All in all it takes less than α4 steps
to compute X(α).

To compute S(x, α) for x = X(ν) = ⟨A, p⟩ with ν < α, it is enough to compute
Lα and to build Aα

x and Bα
x from it. The assumption on the X-rank of x ensures

that A can be enumerated in less than α steps. Then, once Lα was computed, the
definition of Aα

x and Bα
x can simply be applied to compute those. The computation

of Aα
x takes α2 steps and that of Bα

x may take up to α3 steps. Again, this is yield a
universal bound strictly less than αω steps.

Eventually, it is clear that those bounds are monotonic in α.

So, by the improved main lemma, x̃ = ⟨Ã, p̃⟩ is K-writable. In particular, any a ∈ Ã is
x̃-e.w., and for such a a, some b ∈ LΣ3 (typically the first to appear in U3) is itself a-e.w.
And so, in in virtue of the Auxiliary Lemma 6.2.43 (it is clear that we can apply it “over”
the improved main lemma as this one is, in essence, just the main lemma and the auxiliary
lemma in a trench coat), this b is K-writable. Further, the least β such that b ∈ Lβ is less
than Σ3 (as Σ3 = T3) and so it is b-e.w. Hence applying again the auxiliary lemma (it
can also be applied “over” itself), β is K-writable and so b ∈ LK3 . Consequently:

∀a ∈ Ã ∃b ∈ LK3 φ(a, b, p̃)

which contradicts the fact that (Ã, p̃) was a witness of (6.2). And so Σ0-collection holds
in LΣ3 .

The following proposition is a transitivity proposition. It is easy to prove that if x is
e.w. and if y is x-e.w., then y is e.w. as well. And since this is easy to prove, this property
is often used without being explicitly named. In particular, it plays a hidden but pivotal
in the original proof of the λ-ζ-Σ Theorem 4.1.33. And here too, we will need transitivity
of K-writing to establish the ζ-K-Σ Theorem 6.2.49.

Proposition 6.2.46 (Transitivity of K-writing). Let x be K-writable and y be x-K-
writable, that is K-writable with input x. Then y is K-writable as well.

Proof. We write mx for the machine that K-writes x and my for the machine that K-writes
y with input x

We show, using the improved main lemma, that some z̃ encoding x and y is K-writable.
We fix X to describe the order <L on LΣ3 . We write z̃ = ⟨x̃, ỹ, νx0 , βx

0 , ν
y
0 , β

y
0 ⟩, the X-least

tuple such that the history of mx, from νx0 onward, is x̃-populated w.r.t. βx
0 and also

such that the history of the computation my[x̃], from νy0 onward, is ỹ-populated w.r.t.
βy
0 . As the whole history of mx is not x-co-populated we have x̃ = x and, with the same

argument, ỹ = y. We show that we can apply the improved main lemma with z̃ and so
that it is K-writable.

199

To do this, we define the following computable segment function S. Given α and
z′ = ⟨x′, y′, νx′

0 , β
x′
0 , ν

y′

0 , β
y′

0 ⟩, S looks for the greatest, if it exists, δx′ ⩽ α such that
δx′ > νx

′
0 and such that x′ has been K-written in mx w.r.t. βx′

0 , from νx
′

0 and up to δx′ . If
such a δx′ does not exists, δx′ is set to 0. It then looks for the greatest δy′ ⩽ α such that
δy′ > νy

′

0 and for which y′ has been K-written in my[x
′] from nuy

′

0 , up to δy′ and w.r.t. βy′

0 .
If such a δy′ does, it is also set to 0. Then, S outputs min(δx′ , δy′).

We claim that X and S satisfy the conditions of the main lemma.

1. We need to show that there are cofinally many α’s such that Sz̃(α) = α. We
consider the functions δx(α) and δy(α) that map any α to the δx and δy that are
computed in S from z̃ and this α. It is easy to see that there are cofinally many
α’s such that δx(α) = α: by definition of x-population, for any ν > νx0 , there are
ν ′ > ν and ν ′′ > ν ′ describing a big enough x-segment. Then looking at all ν below
some N and taking α to be the l.u.b. of the least witnesses ν ′′ associated to each
of those ν yields a fixed point for δx, and this fixed point α is strictly less than
Σ3 by admissibility of Σ3. Same goes for y, there are cofinally many α’s such that
δy(α) = α. Now, since S outputs the minimum of δx(α) and δy(α) the question
is to know whether there are cofinally many α’s that satisfy both equalities. Let
α such that δx(α) = α and suppose that δy(α) < α. Then there is α′ > α such
that βy(α′) = α′. Either δx(α′) = α′ and we’re done, either there is some α′′ > α′

such that δx(α′′) = α′′. If we don’t find a shared fixed point, this yields an infinite
sequence (αn)n of alternating fixed points. We write A =

⋃
ω αn. Observe first that

A < Σ3 as the function n 7→ αn is Σ1-definable from x and y which are in Σ3.
Second, as A is a limit of initial segments in the history of mx that are x-populated,
A itself is x-populated (w.r.t βx

0 , encoded in z̃). As for it not being x-co-populated,
it is enough to suppose w.l.o.g. that A is bigger than the witness ν > νx0 in the
negation of the x-co-populated formula w.r.t. βx

0 . Hence, x is K-written up to this
A and δx(A) = A. Same goes for the computation my[x] and this method yields
cofinally many A’s such that Sz̃(A) = A.

2. As for monotony, this is direct: for any α < α′, we have δx(α) ⩽ δx(α
′). Same goes

for δy and consequently Sz̃(α) ⩽ Sz̃(α
′).

3a. We need to show that for all z <X z̃, the function Sz is bounded in Σ3. By
definition of z̃, for z = ⟨x′, y′, νx′

0 , β
x′
0 , ν

y′

0 , β
y′

0 ⟩ <X z̃, either the history of mx is not
x′-populated from νx

′
0 and w.r.t. βx′

0 , either that of my[x
′] is not y′-populated from

νy
′

0 and w.r.t. βy′

0 , or both. In any case, for this z′, the βx′ or the βy′ in the definition
of S are bounded and consequently so is Sz′ .

4a. As seen in the proof of Theorem 6.2.45, computing Lα+1 in order to compute Xα

takes strictly less than αω steps and this yield a monotonic bound in α. As for Sα,
for any z, it is enough to simulate mx and my for α steps, saving their history of

200

computation using α and then to use it to compute δx and δy. In this end this takes
less than α2 steps.

Hence z̃ is K-writable and, as required, so is ỹ as it is z̃-writable.

Proposition 6.2.47. A set a is K-writable if and only if a ∈ LK3.

Proof. Let a be K-writable. It is then also accidentally writable. As Σ3 = T3, it appears
before stage Σ3 in U3. Hence, there is some α < Σ3 such that a ∈ Lα. This α is a-K-
writable (and even a-e.w.) and so, in virtue of transitivity of K-writing, α is K-writable
and a ∈ LK3 .

Conversely, if a ∈ LK3 , by the same transitivity reasonning, a is K-writable.

Proposition 6.2.48. Lλ3 ≺Σ1 Lζ3 ≺Σ2 LΣ3

Proof. This is done like in the Γsup setting. Suppose that LΣ3 |= ∃x∀yψ(x, y, p). Then,
the first x witness of this which appears in U3 is e.w. And so this formula is also true in
Lζ3 . Conversely, if Lζ3 |= ∃x ∀yψ(x, y, p), we write x̃ ∈ Lζ3 a witness of it. Suppose that
this formula is not true in LΣ3 . Then, there is a least ỹ ∈ LΣ3 −Lζ3 for which ¬ψ(x̃, ỹ, p).
But then, this ỹ is x̃-writable and consequently e.w., which is a contradiction. The Σ1

end-extension is shown in a similar fashion.

Theorem 6.2.49 (ζ-K-Σ Theorem). Lζ3 ≺Σ2 LK3 ≺Σ3 LΣ3

Proof. The first elementary end-extension will be a consequence of the previous proposi-
tion and of the Σ3 elementary end-extension.

For the Σ3 end-extension, let p ∈ LK3 and φ(p) = ∃x ∀y ∃z ψ(x, y, z, p) such that
LΣ3 |= φ(p). We show that some witness x is p-K-writable which then implies that this
x is K-writable by the transitivity relation established in Proposition 6.2.46. Let X be
the iteration of L along its usual well-order. Let x̃ be the X-smaller witness of φ in LΣ3 .
We show that we can apply the improved main lemma with p given as parameter to the
segment function and so that x̃ is p-K-writable.

We consider the following computable function S: given p, x and α, it looks for the
greatest βy ⩽ α such that:

∀y ∈ Lβy∃z ∈ Lαψ(x, y, z, p)

and then, for the least βz and such that :

∀y ∈ Lβy∃z ∈ Lβzψ(x, y, z, p)

and S(x, α) equal to max(βy, βz).
We claim that x̃, S and X satisfy the conditions of the improved main lemma.

201

1. First, it is clear that S(x, α) ⩽ α. Then, take some α < Σ3 such that Sx̃(α) < α.
This mean, with βy as defined in Sx̃(α), that βy < α. We consider the least α′ such
that

∀y ∈ Lβy+1∃z ∈ Lα′ ψ(x̃, y, z, p)

It exists as x̃ is witness of φ and by admissibility of Σ3, α′ < Σ3. Moreover, α′ > α as
βy is strictly less than α and was the greatest such that ∀y ∈ Lβy∃z ∈ Lαψ(x, y, z, p).
And by definition of α′, βz = α′ where βz is defined as in the description of S(x̃, α′).
And so S(x̃, α′) = α′.

2. Monotonicity of Sx̃ is clear.

3a. Let x <X x̃. Then x is not a witness of φ, that is there is some y such that for all
z ∈ LΣ3 , ¬ψ(x, y, z, p). Hence βy is bounded and then so is βz by admissibility of
LΣ3 .

4a. The bound on the computation time and their monotonicity is clear as well.

We now have x̃ ∈ LK3 such that ∀y ∈ LK3 ∃z ∈ LΣ3 φ(x̃, y, z). Then for any y ∈ LK3 ,
there is some z such that φ(x̃, y, z, p) which is ⟨x, y, p⟩-writable, namely the first z such
that φ(x̃, y, z, p) to appear in the enumeration of U3. Then, z is a fortiori ⟨x, y, p⟩-K-
writable. So by Proposition 6.2.46, z is K-writable which proves that LK3 |= φ.

Conversely, if LK3 |= φ(p): writing x̃ for the witness of φ in LK3 , if there is some y ∈
LΣ3 such that for all z ∈ LΣ3 , ¬ψ(x̃, y, z, p), then y is x̃-e.w. and so, by Proposition 6.2.46,
it is K-writable which is a contradiction with the fact that LK3 |= ∀y∃zψ(x̃, y, z, p).

We finished the chapter with this corollary, itself finishing the picture of the Γ3-ITTMs.

Corollary 6.2.50. LΣ3 is not a Σ3-end extension of Lζ3, and so ζ3 < K3.

Proof. The statement “m is converging” is a Σ2 statement: there is some ordinal stage α
such that for all β > α, the input of m is the same at stage β and α. And so, as ζ3 < Σ3,

LΣ3 |= ∃B∀m “m is converging before stage B”

and this Σ3 formula clearly does not hold in Lζ3 . As we already knew that ζ3 ⩽ K3

(eventually writing is a particular form of K-writing), the inequality is now strict.

202

Chapter 7

Look-back and outlooks

The first part of my work done during this thesis, presented in Chapter 5, aimed at provid-
ing a first ground on which to develop a generalized theory of infinite Turing machines.
At the cost of some restrictions–which in essence are specifications–regarding what an
infinite Turing machine, and in particular its limit rule, can look like, we managed to
re-establish a good part of what was done for the classical lim sup ITTM. The main result
of this chapter was Theorem 5.4.14 that gives sufficient conditions for an operator Γ to
satisfy the equality ΣΓ = TΓ. The second important result was Theorem 5.5.1 which
shows how the one condition of the previous theorem which we may think is disposable
is actually necessary.

Then, in the second part of this work, in Chapter 6, we managed, using the theorical
results of the previous chapter, to re-establish most of what was done for the lim sup

ITTM for a concrete but more powerful model of infinite machines. This model is more
powerful as it defined using a Σ3 formula and as it makes full use of this “Σ3 potential”.
This assertion, namely, that it makes full use of its Σ3 definition, is supported by the
last important result of the chapter, the ζ-K-Σ Theorem 6.2.49, which exhibits a Σ3

elementary end-extension between LK3 and LΣ3 .

7.1 Back to simulational Γ-operators

The easiest but most important part was the definition of simulational operators. For
those operators, we can define a universal machine as is ubiquitously used with classical
ITTMs. An interesting aspect of this definition of simulational operators is that if someone
tries to come up with a new limit rule (without making a firm attempt at breaking things),
the odds are that the operator associated to this rule will be, at least, stable, cell-by-
cell and asymptotic. If it is not contraction-proof, it can be easily transformed into a
contraction-proof operator by adding a new symbol to its alphabet which will act as a
separator. That is, we add a fresh symbol b to the alphabet of the operator and we slightly
change its definition so that is behaves with a stutter-free word of the form s1bs2bs3b . . .

as it would have done with the non-necessarily stutter-free word s1s2s3 This is one

203

of main ideas behind the definition of the 3-symbol operator Γ3. Only the condition of
looping stability may, from one attempt to design a new rule to another, not be satisfied.

And so, in the end, this makes for quite a natural and wide space of simulational
operators. This naturally calls for a study of this space of operators. This can be done in
terms of power of computation: for an operator Γ, how big is ΣΓ? How often is an ordinal
α equal to some ΣΓ? How are the ΣΓ distributed in ω1? And to be more precise, we can
also reformulate Post’s problem: can we find a degree ΣΓ between 0 and Σ2 = ΣΓsup? Or
between any two ΣΓ and ΣΓ′? etc.

It can also be done in terms of logical complexity: what are the Σn-suitable and
simulational operators? Can we even design a Σn-suitable and simulational operator for
any natural number n? Do they always lead to more powerful machines? Under which
conditions does it yield a higher-order elementary end-extension?

Then, we can wonder how those operators relate to the more general concept of arith-
metic operators (i.e. arithmetic functions on P(ω)) along with usual constraints (induc-
tive, quasi-inductive, etc.) as used in [Wel05]. In the same way, the idea of studying the
evolution of some subset of ω (here, represented by the tape) is also one of the fundamental
motivation of cellular automatons. From this point of view, it would likely be fruitful to
compare the constraint on simulational operator to those established for different models
of cellular automatons (see for example [CL17] which develops shift-invariant filters on ω
to define global cellular automatons).

Finally, it can be done in terms of classification of ordinally index words. Again, this
was the intuition behind the Γ3 operator, as mentionned in Remark 6.2.6. The idea is to
see a limit rule as a infinite word classifier. It classifies the words (say, on 2 symbols) based
on their density of respectively 0’s and 1’s. A limit rule yields, at a limit stage, 1 if it
decides that the word formed by the history of the cell has “more” 1’s than 0’s. Obviously
this notion of density is highly vague–but that is what makes it interesting. Given a limit
ordinal α and a word w ∈ α2, does it have asymptotically “more” 1’s than 0’s? If after
some stage β < α, only 0’s appear, surely this word is more densely packed with 0’s. Else,
we can decide that it is a bit too unclear and that in this case, by convention, the density
of 1 is higher. And this way of seeing things simply yields the usual lim sup limit rule.

But we may be left a bit disappointed with the choice of this convention. For example,
it implies that a word w′ in which segments of 1’s are cofinals but bounded in length while
the 0-segment are unboundedly long (naturally, here we mean unbounded in the length of
the word), is more densely populated with 1’s than with 0’s. So we can change the rule to
better reflect this: we now classify a bit more precisely by specifying that with bounded
1-segments and unbounded 0-segments, a word is now 0-dense. With this new operator,
the word Πk∈ω10

k would then yield a 0 instead of a 1. Observe that now, this operator
that looks whether 1-segments are bounded and whether 0-segments are unbounded is a
∆3-suitable operator (more precisely Σ2 ∧ Π2 but not less!). But still, according to this
new operator, for any k, the word (10k)ω would be–against our intuition–more inhabited

204

with 1’s than with 0’s.

And this idea, to some extent, points toward a shift, away from operators and rules
and closer to the space of ordinal words. Can we define a partitioning of this space that
matches our intuition? That is, what are the functions φ which induce a tri-partioning
X1 ⊔X0 ⊔X? of this space such that for all word w, writing w its bitwise negation,

w ∈ X1 ←→ φ(w) ∧ ¬φ(w)

w ∈ X0 ←→ φ(w) ∧ ¬φ(w)

w ∈ X? ←→ [φ(w) ∧ φ(w)] ∨ [¬φ(w) ∧ ¬φ(w)]

and this with the “smallest” X? possible? Surely topology has some ideas about this one.
And as we are interested in asymptotic behavior, such functions φ would already yield
stable, cell-by-cell and asymptotical operators. Also, as already seen, it is easy to add a
symbol in order to transform it in a contraction-proof operator, and already the operator
would be simulational. Finally, as we are interested in the density of 1’s, we could wager
(to some extent, as it is asymptotic density) that from the point of view of such a φ, w
and wω have similar density. And so that φ(w) =⇒ φ(wω), which would mean that the
operator induced by φ is moreover looping stable. With this, we see how the constraints
on the operators devised in the Chapter 5 come even more naturally in this reformulation.

We finish this section with an open question, asked and left open in Remark 5.4.33.
For a simulational and looping stable operator Γ, we showed that ΣΓ = TΓ. Then we are
tempted to say that any Γ-machine is seen to be looping at the latest at stage ΣΓ. Still,
if we apply the usual techniques, relying on asymptoticity and looping stability, as well
as the fact that no new reals appear after stage TΓ, we only seem to be able to say that
it is seen to be looping before stage ΣΓ · ω. Now, it is a bit infuriating, after all the work
done to establish the equality ΣΓ = TΓ, to obtain such a lukewarm result. If we believe
in mathematical orderliness, we may think that we can bring this bound back to ΣΓ–but
there still misses a proof.

7.2 Toward Σn machines

In the second part of this work, we introduced the Σ3 operator Γ3. It can be seen, under
many criteria, as an adequate generalization of the usual Σ2 operator. Among those
criteria being the fact that most of the results on the usual ITTMs have been ported to
Γ3-machines.

We take a look back to see what are the main traits of the operator Γ3 and how those
were crucial to establish the main results. We will see that many of those traits are shared
with the operator Γsup. Only, they appear more clearly and so does their importance, in
the more complex setting of 3-symbol Σ3-operators.

205

Starting with the end, as often, the aim was to design an operator that yields a Σ3-
elementary end-extension. Having the proof of the λ-ζ-Σ Theorem in mind, we look in
the eyes at a Σ3 formula:

φ = ∃x ∀y ∃z ψ(x, y, z)

On the contrary to the what was happening in the Σ2 case, we can’t eventually de-
cide whether some x is a witness of φ and so we can’t e.w. some least witness of φ.
This comes from the fact that for a well-behaved operator Γ, we can’t decide whether
LΣΓ
|= ∃zψ(x, y, z). So for any well-behaved operator Γ we can’t hope to establish this

Σ3 extension between LζΓ and LΣΓ
. Hence there needs to be some constant between ζΓ

and ΣΓ bridging this gap. But, in turn, this means that there needs to be a new way of
writing reals. What may it be like?

To answer this question, observe however that a machine can decide, given some
α ∈ ΣΓ, whether Lα |= ∃zψ(x, y, z). And for such an α it can look for the least y
(supposing there is any) for which Lα ̸|= ∃zψ(x, y, z). If x is a witness of φ, as α gets
bigger, the rank of this least y will get bigger as well (supposing that it always exists).
And so, for this x it yields a sequence of ordinals (the ranks of those least y’s) unbounded
in Σ3. With this, it is very convenient to design a way of writing thought around x-
segments: we are be easily able to have some machine write unboundedly big x-segments
for the witnesses x but not for other reals that are not witness of φ. We will come back
to this.

In parallel we are faced with another difficulty. Suppose we have introduced a new way
of writing real which then produces some constant µ, the supremum of the “µ-writable”
ordinals. The difficulty is now to show that µ < ΣΓ. If we design a too lenient way of
writing, it may happen that any a.w. real is also µ-writable. Indeed, if we stick with
our first approximation: “x is µ-written in the computation of m if the x-segments of its
history are unboundedly long (in ΣΓ)”, it is easy enough to devise a computation that
µ-writes all a.w. ordinals. This hints at the too obvious fact that, on the contrary, it isn’t
possible for a computation to e.w. more than one real. Again putting a pin on this issue,
we look at the proof of the fact that ζ < Σ for the classical ITTMs.

The idea of this proof for the classical ITTMs is simple enough: to prove ζ < Σ, it
suffices to exhibit an a.w. but not e.w. ordinal. By definition, ζ is not e.w., so it would
be enough to a.w. it. Moreover, at some point all e.w. reals have been eventually written
in some machine and so, simulating the universal machine, at some point, we can write
their sum. Now, what is hidden between the very convenient fact that once a real is e.w.
it stays on the output tape, is the fact that when some real is e.w. below a limit stage α,
in virtue of the perfect symmetry between the lim sup rule and the notion of eventually
writing, it appears at this stage α. All e.w. ordinals are e.w. below ζ and so they all
appear at stage ζ, at which stage their sum can be computed. So, if we take this path,

206

we need our new writing notion to also be the symmetry of the rule associated with Γ.
Moreover, this proof works because only one real can be e.w. at a time. In our case,
what would appear at stage µ for a machine which µ-writes many real at once? This is
why we need the notion of “exclusivity” that was introduced in Definition 6.2.31, in the
context of formalization of what a “writing predicate” is. Looking back at Proposition
6.2.34 which states that K3 < Σ3, and now used to those kind of reasoning, it is an
immediate consequence of the fact that κ, the writing predicate associated to K-writing,
is an exclusive writing predicate and of its symmetry with the Σ3 ∧ Π3 rule.

This solves the issue that was previously pinpointed and what is left is now the effective
design of the writing predicate µ. But if we want µ and Γ to be the symmetry of one
another, this design inherits from the constraint on Γ (simulational, looping stable etc.).
To those, we also add the monotonicity (see Definition 6.2.30): if m µ-writes x and we
replace some y in its history by x, we surely want the history to still be an history in which
x is µ-written. With all of this, I believe there is a good chance at managing to design a
simpler Σ3 operator for which we can establish the same kind of end-extension, but in a
more straight-forward way. Similarly, this gives most of the tools to design higher-order
Σn operators.

As a last word, let us see how the idea of using x-segment to K-write a witness of a
Σ3 formula may be generalized to higher order. We consider the following Σ4 formula.

φ = ∃x∀y∃z∀t ψ(x, y, z, t)

Here, we could do the same thing: for each x and α we look at the least y such that
∃z ∈ Lα∀t ∈ Lαψ(x, y, z, y) does not hold. Clearly, when x is witness, the rank of those y
will be unbounded in ΣΓ. However, there may also be some x’s which are not witnesses
and for which the rank of the y also are unbounded. Indeed, for such a x which is not
witness of φ, there may be some y such that¬∃z ∀t ψ(x, y, z, t)∀α ∃z ∀t ∈ Lα ψ(x, y, z, t)

But now, this mean that for this x which is not witness and this y, the rank of the z
witness of ∃z ∈ Lα∀t ∈ Lα ψ(x, y, z, y) are themselves unbounded in ΣΓ.

To parry this, we could imagine the notion of quasi-segments : a x-quasi-segment in
a word w is the data of two ordinals α and β such that between those two stages the
x-co-segments are “small”. In other words, a x-quasi-segment is a x-segment in which
we allow for some holes, as long as they stay “small”, or maybe bounded. With such
a notion, for this x which is not witness, when the machine looks for a z such that
∃z ∈ Lα∀t ∈ Lα ψ(x, y, z, y), it will make holes in the x-segment of length rk(z). And
so, as there isn’t a fixed z such that ∀t ψ(x, y, z, t), those holes will get bigger and bigger

207

and, asymptotically, this won’t form unboundedly long x-quasi-segments in the history
of the machine. And this definition naturally generalizes: a x-quasi-quasi-segment in
a word w is the data of two ordinals α and β such that between those two stages the
x-co-quasi-segments are “small” and so on. . .

208

Bibliography

[Bar75] Jon Barwise. Admissible sets and structures. Vol. 7. Perspectives in Logic.
Springer-Verlag, 1975.

[BDL23] Kenza Benjelloun, Bruno Durand, and Grégory Lafitte. “Writability power of
ITTMs: ordinals and constructible sets”. Preprint. 2023.

[Car19] Merlin Carl. Ordinal Computability: An Introduction to Infinitary Machines.
Berlin, Boston: De Gruyter, 2019.

[CL17] Julien Cervelle and Grégory Lafitte. “On shift-invariant maximal filters and
hormonal cellular automata”. In: 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). 2017, pp. 1–10.

[CRS20] Merlin Carl, Benjamin Rin, and Philipp Schlicht. “Reachability for infinite time
Turing machines with long tapes”. In: Logical Methods in Computer Science
16 (2020).

[Dav58] Martin Davis. Computability & Unsolvability. New York: Dover Publications,
1958.

[Dev84] Keith J. Devlin. Constructibility. Vol. 6. Perspectives in Logic. Springer-Verlag,
1984.

[DL19] Bruno Durand and Grégory Lafitte. “An algorithmic approach to characteriza-
tions of admissibles”. In: Computing with Foresight and Industry. Ed. by Florin
Manea et al. Cham: Springer International Publishing, 2019, pp. 181–192.

[FS13] Tim Fischbach and Benjamin Seyfferth. “On λ-Definable Functions on Ordi-
nals”. In: The Nature of Computation. Logic, Algorithms, Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 135–146.

[FW07] Sy-David Friedman and Philip D. Welch. “Two observations regarding infinite
time Turing machines”. In: Bonn International Workshop on Ordinal Com-
putability. 2007, p. 44.

[FW11] Sy-David Friedman and Philip D. Welch. “Hypermachines”. In: The Journal
of Symbolic Logic 76.2 (2011), pp. 620–636.

[HL00] Joel David Hamkins and Andy Lewis. “Infinite time Turing machines”. In: The
Journal of Symbolic Logic 65.2 (2000), pp. 567–604.

209

[Hod80] Harold T Hodes. “Jumping through the transfinite: the master code hierarchy
of Turing degrees1”. In: The Journal of Symbolic Logic 45.2 (1980), pp. 204–
220.

[Hod93] Wilfrid Hodges. Model theory. Encyclopedia of Mathematics and its Applica-
tions. Cambridge university press, 1993.

[Jec03] Thomas Jech. Set theory: The third millennium edition, revised and expanded.
Springer Monographs in Mathematics. Springer, 2003.

[Jen72] R Björn Jensen. “The fine structure of the constructible hierarchy”. In: Annals
of mathematical logic 4.3 (1972), pp. 229–308.

[Kec75] Alexander S. Kechris. “The Theory of Countable Analytical Sets”. In: Trans-
actions of the American Mathematical Society 202 (1975), pp. 259–297. issn:
00029947.

[KM08] Peter Koepke and Russell Miller. “An enhanced theory of infinite time reg-
ister machines”. In: Conference on Computability in Europe. Springer. 2008,
pp. 306–315.

[Koe05] Peter Koepke. “Turing computations on ordinals”. In: Bulletin of Symbolic
Logic 11.3 (2005), pp. 377–397.

[Koe09] Peter Koepke. “Ordinal computability”. In: Mathematical Theory and Compu-
tational Practice. Springer. 2009, pp. 280–289.

[KS06] Peter Koepke and Ryan Siders. “Computing the recursive truth predicate on
ordinal register machines”. In: Logical Approaches to Computational Barriers,
Computer Science Report Series 7 (2006), pp. 160–169.

[KS08] Peter Koepke and Ryan Siders. “Minimality considerations for ordinal comput-
ers modeling constructibility”. In: Theoretical computer science 394.3 (2008),
pp. 197–207.

[KS09] Peter Koepke and Benjamin Seyfferth. “Ordinal machines and admissible re-
cursion theory”. In: Annals of Pure and Applied Logic 160.3 (2009), pp. 310–
318.

[Kun80] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs. North-
Holland, 1980.

[LP71] Stephen Leeds and Hilary Putnam. “An intrinsic characterization of the hierar-
chy of constructible sets of integers”. In: Studies in Logic and the Foundations
of Mathematics. Vol. 61. Elsevier, 1971, pp. 311–350.

[Mad17] David A Madore. “A Zoo of Ordinals”. In: Unpublished manuscript (2017).

[Neu23] John von Neumann. “Zur Einführung der transfiniten Zahlen”. In: Acta Sci-
entiarum Mathematicarum (Szeged) 1.4 (1923), pp. 199–208.

210

[Rog87] Hartley Rogers Jr. Theory of recursive functions and effective computability.
MIT press, 1987.

[Sac90] Gerald E Sacks. Higher recursion theory. Vol. 2. Perspectives in Logic. Springer-
Verlag, 1990.

[Sim09] Stephen George Simpson. Subsystems of second order arithmetic. Vol. 1. Per-
spectives in Logic. Cambridge University Press, 2009.

[SS12] Philipp Schlicht and Benjamin Seyfferth. “Tree representations via ordinal
machines”. In: Computability 1.1 (2012), pp. 45–57.

[Tur+36] Alan Mathison Turing et al. “On computable numbers, with an application to
the Entscheidungsproblem”. In: J. of Math 58.345-363 (1936), p. 5.

[Wel00a] Philip D. Welch. “Eventually infinite time Turing machine degrees: Infinite
time decidable reals”. In: The Journal of Symbolic Logic 65.3 (2000), pp. 1193–
1203.

[Wel00b] Philip D. Welch. “The length of infinite time Turing machine computations”.
In: Bulletin of the London Mathematical Society 32.2 (2000), pp. 129–136.

[Wel05] Philip D. Welch. “The transfinite action of 1 tape Turing machines”. In: Con-
ference on Computability in Europe. Springer. 2005, pp. 532–539.

[Wel09] Philip D. Welch. “Characteristics of discrete transfinite time Turing machine
models: Halting times, stabilization times, and Normal Form theorems”. In:
Theoretical Computer Science 410.4 (2009), pp. 426–442.

211

Appendix A

Résumé en français

Ce travail de thèse porte sur les machines de Turing infinies (ITTM) telles que développées
par Hamkins et Lewis au début des années 2000. Ces machines permettent d’effectuer
des calculs en temps ordinaux. Ainsi, une machine pourra calculer pendant ω2+5 étapes
avant de s’arrêter. Pour autant, ces machines ont des limites, par exemple dans le nombre
ordinal d’étapes de calcul qu’elles peuvent effectuer avant de s’arrêter. Ainsi, ce travail
s’intéresse en particulier aux questions de généralisation de ce modèle de calcul ordinal.
Un aspect notable de ces machines infinies est que, comparée au modèle classique de
Turing, celles-ci sont presque aussi simples. Une machine de Turing infinie a la même
structure qu’une machine de Turing classique à trois rubans. Elle fait des calculs en
temps ordinaux et, comme dans le modèle classique, à n’importe quelle étape l’instantané
de la machine (c’est-à-dire le contenu de ses rubans, son état ainsi que la position de sa
tête de lecture) permet de calculer l’instantané à l’étape suivante. Le seule différence est
aux étapes ordinales limites. En effet, les ordinaux limites sont par définition les ordinaux
qui ne sont successeurs de personne. Il faut donc une règle spéciale pour le passage à ces
ordinaux limite. La règle est suffisamment simple pour être décrite en deux lignes : à une
étape ordinale limite, la tête de lecture est remise au début, la machine est dans un certain
état spécial et la valeur de chaque cellule est la limite supérieure de l’historique de ses
valeurs précédentes. Si le choix pour la tête de lecture et pour l’état limite peuvent sembler
logique, le choix de la valeur limite pour les cellules peut apparaître arbitraire. Pourquoi
pas une limite inférieure ? Ou encore quelque chose de plus compliqué ? Finalement,
la justification de cette règle limite est une corroboration : avec cette règle, Hamkins et
Lewis ont montré que le modèle de machines qu’ils ont développé est robuste, puissant et
se comporte bien.

L’objectif est donc de proposer des règles limites différentes de la règle limsup, et qui
produiraient des généralisations plus puissantes de cette machine infinie.

Le point de départ de ce travail est le concept de machine universelle. En effet, la
plupart des preuves portant sur les ITTMs utilisent une « machine universelle », c’est-à-
dire une machine qui simule en parallèle toutes les autres ITTMs. Une une telle machine

212

est en fait simple à définir, mais cette simplicité est fortuite : il pourrait y avoir de
nombreuses difficultés qui sont évitées grâce à plusieurs propriétés implicites des ITTMs.
Nous avons ainsi mis en lumière un ensemble de quatre de ces propriétés satisfaites par
la règle de limsup. Celles-ci permettent ensuite de définir un concept plus général de
machine simulationnelle. Ce sont des modèles de machines pour lesquelles la règle limite
satisfait ces propriétés. Et pour tous les modèles de machine simulationnelle possible, en
utilisant ces quatre propriétés, on prouve qu’il existe une machine universelle. Ensuite,
en utilisant ce résultat d’existence, le premier résultat de ce travail est un théorème qui
établit, pour n’importe quel modèle de machine simulationnelle qui satisfait à deux autres
contraintes, une égalité entre d’une part le supremum des temps de calcul de ces machines
et d’autre part le supremum des ordinaux que ces machines peuvent écrire.

Le second résultat de ce travail se base sur ce premier résultat. Un corollaire immédiat
de la première partie est le suivant : il n’existe que deux modèles de machine simulation-
nelle (et non pathologiques), à savoir les ITTMs avec la règle limsup et leur symétrique
avec la règle liminf. Ainsi, pour produire des machines infinies d’ordre supérieur, il faut
construire des machines à n symboles. C’est le second résultat : nous avons construit
un modèle de machine simulationnelle à 3 symboles, strictement plus puissant que celui
des ITTMs et pour lequel nous parvenons à établir les principaux résultats mettant en
relation les ITTMs avec la théorie des ensembles.

213

Titre : Vers des machines de Turing en temps infini d’ordre supérieur et à plusieurs symboles

Mots clés : Calculabilité, théorie des ensembles, machine de Turing, ordinaux

Résumé : Ce travail traite des machines de Turing infinies
(ITTM) telles que développées par Hamkins et Lewis au
début des années 2000. Plus particulièrement, il s’intéresse
à leur généralisation. Un aspect notable de ces machines infi-
nies est que, en comparaison du modèle classique de Turing,
celles-ci sont presque aussi simples. Une ITTM a la même
structure qu’une machine de Turing à trois rubans. Elle fait
des calculs en temps ordinaux et à n’importe quelle étape,
l’instantané de la machine permet de calculer, comme dans
le modèle classique, l’instantané à l’étape suivante. Le seule
différence est aux étapes limites : la tête de lecture est re-
mise au début, la machine est dans un certain état spécial et
la valeur de chaque cellule est la limite supérieure de l’histo-
rique de ses valeurs précédentes. Si le choix pour la tête de
lecture et pour l’état limite sont d’une façon logique, le choix
de la valeur limite pour les cellules peut apparaı̂tre arbitraire.
Pourquoi pas une liminf ? Ou encore quelque chose de plus
compliqué ? Finalement, la justification de cette règle limite
est une corroboration : avec cette règle, Hamkins et Lewis
ont montré que le modèle de machines qu’ils ont développé
est robuste, puissant et se comporte bien.
L’objectif est de proposer des règles limites différentes de
la règle limsup produisant donc des généralisations de ce
modèle de machines. La plupart de preuves portant sur les
ITTMs utilise une ≪ machine universelle ≫, c’est-à-dire une

machine qui simule en parallèle toutes les autres ITTMs.
Une une telle machine est en fait simple à définir ; mais
cette simplicité est fortuite : il pourrait y avoir de nombreuses
difficultés qui sont évitées grâce à plusieurs propriétés im-
plicites des ITTMs. Nous avons ainsi mis en lumière un
ensemble de quatre propriétés, satisfaites par la règle de
limsup. Elles nous permettent de définir un concept plus
général de machine simulationnelle : des modèles de ma-
chines dont la règle limite satisfait ces propriétés et pour les-
quelles on prouve qu’il existe une machine universelle. Le
premier résultat de ce travail est un théorème qui établit, pour
ces modèles de machines auxquelles deux contraintes sont
rajoutées, une égalité entre les temps de calcul et les ordi-
naux qui peuvent être écrits.
Le second résultat principal se base sur ce premier résultat.
Un corollaire immédiat de la première partie est le suivant :
il n’existe que deux modèles de machine simulationnelle (et
non pathologiques), à savoir les ITTM avec la règle limsup et
leur symétrique avec la règle liminf. Ainsi, pour produire des
machines infinies d’ordre supérieur, il faut construire des ma-
chines à n symboles. C’est le second résultat : nous avons
construit un modèle de machine simulationnelle à 3 sym-
boles, strictement plus puissant que celui des ITTMs et pour
lequel nous parvenons à établir les principaux résultats met-
tant en relation les ITTMs avec la théorie des ensembles.

Title : Toward higher-order and many-symbol infinite time Turing machines

Keywords : Computability, set theory, Turing machine, ordinals

Abstract : This thesis studies infinite time Turing machines
(ITTM) as developed by Hamkins and Lewis at the beginning
of the years 2000. In particular, it aims at providing new ge-
neralizations of this model of infinite computation, or the tools
and the results to develop those. A notable aspect of this mo-
del of infinite computation is that it is simple enough when
compared to the usual finite model of Turing machines: an
ITTM has the same structure as a three tapes Turing ma-
chine, it computes through the ordinals and at any successor
stage, the next snapshot of the machine is a function of its
machine code and the actual snapshot, as done in the classi-
cal setting. The only difference being that, at limit, tape heads
are back on their first cells, the state is set to some distingui-
shed limit state and the value of any cell is set to the limit su-
perior of its previous values. While the choices for the heads
and the states at limit stages may appear somewhat canoni-
cal, the principal justification for the rule of the limsup is ac-
tually a corroboration: with this rule, Hamkins and Lewis sho-
wed how this produces a robust, powerful and well-behaved
model of infinite computation. So this work was focused on
devising limit rules that would yield more powerful but equally
well-behaved models of generalized infinite Turing machines.
Most of the proofs done on ITTMs use a universal ma-

chine: an ITTM which simulates in parallel all other ITTMs.
It happens to be straightforward to define such an univer-
sal ITTM. But its definition is only fortuitously straightforward.
This construction rests on strong but implicit properties of the
limsup rule. Hence, we exhibit a set of four properties sa-
tisfied by the limsup rule that allow us to define the more
general concept of simulational machine: a model of infinite
machines whose machines compute with a limit rule that sa-
tisfy this set of four properties, for which we prove that there
exists a universal machine. The first main result is that the
machines in this class of infinite machines satisfy (with two
other constraints) an important equality satisfied by the usual
ITTM, relating the time of computations and the ordinals that
are writable.
The second main result builds on the previous result. An im-
mediate corollary is the following: there exists only two 2-
symbol simulational and ”well-behaved” model of ITTM; na-
mely the limsup ITTM and the liminf ITTM. So, to produce
higher-order machines, we need to consider n-symbols ma-
chine. And this is the second result: we construct a 3-symbol
ITTM, strictly more powerful that the previous one and for
which we establish the same set-theoretic results that were
established for it.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Heidegger and phenomenology
	Plato and lógos
	Computabiliy and mathematics

	Summary and outline of the thesis
	Context of ordinal computability
	Summary of the main results
	Plan of the thesis

	Computability and set-theoretic preliminaries
	Computability theory and Turing machines
	Primitive recursion theory
	Turing machines
	Recursive functions and Turing machines

	Turing degrees and the constructible universe
	Ordinals
	Gödel's constructible universe, gaps and master-codes

	Analytical hierarchy and admissible sets
	Arithmetical and analytical hierarchies
	Admissible sets and -recursion

	Infinite time Turing machines
	Hamkins and Lewis' infinite time Turing machine
	Power and limit of ITTMs
	Writing, eventually writing and accidentally writing
	Clockable ordinals
	Writable and clockable ordinals

	Rule-wise and machine-wise generalizations
	Machine-wise generalizations
	Rule-wise generalization: Friedman and Welch's hypermachine

	Toward higher-order machines: simulational -machines
	Results and organization of the chapter
	Eventually clocking and accidentally clocking
	General definitions and conditions on operators
	General definitions on ordinal words
	General definitions on machines
	Conditions on operators

	Toward higher-order and many-symbol ITTMs
	A counter-example without the looping condition

	Toward higher-order machines: a 3 3 three-symbol simulational operator
	Preliminary results on simulational -machines
	The 33 machine
	The 33 operator 3
	Elementary results on the 3 machine.
	K-writing and some results
	A K-writing sufficient condition
	Main results

	Look-back and outlooks
	Back to simulational -operators
	Toward n machines

	Résumé en français

