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Introduction en francais

Contexte

Commencons par les singularités de Klein. Cette famille de singularités deux dimen-
sionnelles est construite a partir d"un sous-groupe fini I' de SL,(C). Les sous-groupes
finis de SL,(C) sont classifiés, & I'aide des multigraphes de McKay, par les diagrammes
de Dynkin affine de type ADE. Pour un tel choix de sous-groupe I, en laissant ce
groupe agir naturellement sur C2, on peut considérer la variété affine C2/T. Le seul
point singulier de cette variété normale est 0. Par résolution des singularités d"une var-
iété algébrique X, on entend la donnée d"une variété lisse Y ainsi qu'une application
birationnelle propre de Y vers X. La variété C2/T étant deux dimensionnelle, il existe
une résolution Sr telle que toute résolution de C?/T se factorise par Sr. Une telle ré-
solution est unique a isomorphisme pres et est appelée résolution minimale de C?/T.
De plus, Sr peut étre construite explicitement par des éclatements successifs du point
singulier. Cette famille de singularités est un exemple de singularités symplectiques.
Ces singularités ont été définies et étudiées en premier par Arnaud Beauville [Beau,
Définition 1.1]. Une maniére de généraliser les singularités de Klein a des singularités
symplectiques de plus grande dimension est de considérer le produit en couronne de
I avec le groupe symétrique. Si n est un entier plus grand que 1, notons alors I’ le
groupe [ x &, ot G, est le groupe symétrique des n premiers entiers. Si on laisse
agir T naturellement sur C2, I’on obtient une action de I'" sur (C2)" et si l’on fait agir
S, sur (C2)" par permutation des n copies de (C2), I'on obtient alors une action de
I, sur (C2)". Cette action nous permet de construire une singularité symplectique de
dimension 27 que 1’on notera Y := (C?)"/T,,. Une résolution (Y, p) de singularités
de X est dite projective si p est un morphisme projectif. Une résolution projective et
symplectique bien connue ([Kuz, Théoreme 4.9]) de J; est le schéma de Hilbert de n
points dans Sr que I'on notera Hilb, (St) et qui, ensemblistement, peut étre apprécié
comme l'ensemble des idéaux I de C[Sr] tels que le C-espace vectoriel C[Sr]/I est de
dimension n. Considérons le cas le plus simple i.e. lorsque I' = 1 est le groupe triv-
ial. Dans ce cas J' = (C?)"/6, et la résolution projective, symplectique Hilb,(Sr)
devient H,, := Hilb, (C?) avec le morphisme de Hilbert-Chow, cf. section 7.1 pour une
définition précise de ce morphisme. L'action naturelle de I' sur C? induit une action
algébrique de I sur H,. En 2018, Gwyn Bellamy et Alastair Craw [BC20, Corollaire
1.3] ont classifié toutes les résolutions projectives et symplectiques de Jr.
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4 Introduction en francgais

Etude des composantes irréductibles de 7{! et résolutions pro-
jectives et symplectiques de )/

Le premier volet de cette thése est dédié a 1’'étude des composantes irréductibles du
lieu des T-points fixes du schéma de Hilbert ponctuel de C? et du lien avec les réso-
lutions projectives, symplectiques de ). Débutons par les composantes irréductibles
de HL. Pour rentrer un peu dans les détails, nous avons besoin d’introduire les var-
iétés de carquois de Nakajima. Cette classe de variétés algébriques symplectiques a été
définie ([Nak94, Section 2]) et étudiée par Hiraku Nakajima. Elles ont été initialement
construites pour 1’élaboration de solutions de certaines équations de Yang-Mills sur des
espaces ALE. Aujourd’hui, les variétés de carquois ont trouvé des applications dans de
nombreuses branches grace a leurs bonnes propriétés et le fait qu’elles paramétrent cer-
taines représentations d’algebres préprojectives construites a partir de carquois. Parmi
ces bonnes propriétés, on peut noter que si I'on choisit de bons parametres de sta-
bilité, alors la variété de carquois est une résolution projective, symplectique de la
méme variété de carquois sans condition de stabilité. Le carquois de Jordan est le car-
quois avec un sommet et une fleche. C’est un fait bien connu [Nak99, Théoréme 1.9]
que la variété de carquois associée au carquois de Jordan, avec le parameétre de stabil-
ité non nul et avec le parametre de dimension égal a n est isomorphe au schéma de
Hilbert de n points dans C2. De plus, la variété de carquois associée au carquois de
Jordan avec le parametre de stabilité égal a zéro et le parametre de déformation non
nul est I'espace de Calogero-Moser, qui est lisse [Wil, Section 1]. Fixons une orienta-
tion () du multigraphe non-orienté de McKay associé a I'. Ce multigraphe munit de
cette orientation est un carquois appelé carquois de McKay et noté Qr. lain Gordon
[Gor08, Lemme 7.8] a identifié les composantes irréductibles du lieu des I'-points fixes
du schéma de Hilbert ponctuel a I'aide de variétés de carquois de Qr lorsque I’ est de
type A. De plus, Alexander Kirillov Jr. étudie le lieu des I'-points fixes du schéma
de Hilbert ponctuel en utilisant des variétés de carquois et démontre avec peu de dé-
tails et par des arguments non-constructivistes [Kir, Théoréme 12.13], qu’il existe un
isomorphisme entre ces composantes irréductibles et certaines variétés de carquois.
Enfin, Cédric Bonnafé et Ruslan Maksimau [BM21, Théoreme 2.11] ont décrit les com-
posantes irréductibles du lieu des I'-points fixes d’espaces lisses de Calogero-Moser
généralisés en se servant de variétés de carquois associées a Qr lorsque I est de type
A. Notons Mg , () la variété de carquois du carquois de Jordan, ot1 6 est le parametre
de stabilité, A est le parametre de déformation et n est le parametre de dimension. En
se basant sur ces travaux, I'étude des composantes irréductibles du lieu des I'-points
fixes de Mg , () avec (6,A) # (0,0) a été menée dans le Chapitre 2. De maniére plus
précise, le théoreme suivant a été démontré dans cette these.

Théoréeme I. Soit (6,A) € Q x C tel que (6,A) # (0,0). Pour chaque entier n et chaque
sous-groupe fini I' de SL»(C), la variété Mg , (n)r se décompose en composantes irréductibles

de la maniére suivante :
. r T
M 0\ (7’1) = H Md
deA?,B,A

ot M}, est isomorphe a /\/lg AsT
carquois de Qr). Lors de la construction d'une preuve du Théoreme I, le besoin d"un
meilleur cadre technique pour travailler avec des variétés de McKay c’est fait sentir,

particulierement lorsque I' est de type D ou E. L’élaboration de ce cadre technique

(M), une variété de carquois de McKay (i.e. variété de
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est inspirée de travaux de George Lusztig [L92, Section 2], de Michela Varagnolo et
Eric Vasserot [VV99, Section 2], ainsi que de Weigiang Wang [Wang, Théoreme 5.1]. Si
l'on note par Rep(Qyy) la catégorie des représentations du carquois de McKay dou-
blé et encadré Qs et par McK(I') une catégorie définie par des I-modules, alors pour
chaque orientation () du carquois de McKay Qr, on peut construire deux foncteurs Fp
et G entre ces deux catégories. On a alors montré, dans le Chapitre 1, que ces fonc-
teurs définissent une équivalence de catégories. De plus, dans le méme chapitre, on
a montré que la variété de carquois de McKay notée Mg/ \(d, df) et I'analogue naturel

de la variété de carquois noté ./\/lg/ (M, Mf) venant de la catégorie McK (') sont iso-
morphes. Le troisieme chapitre de cette these est consacré a la décomposition du lieu
des I'-points fixes du schéma de Hilbert ponctuel et a une description combinatoire
de I’ensemble Af 4 ) indexant les composantes irréductibles, apparu dans le Théoreme
I. En utilisant la correspondance de McKay, on peut associer a I' une algebre de Lie
affine. Fixons une base de racines simples de cette algebre de Lie affine donnée par la
chambre fondamentale de Cartan. Notons Q(Tr) le réseau de racines de cette algeébre
de Lie affine. La taille d'un élément a« € Q(Tr) est la moyenne des coefficients de
dans la base de racine simple pondérée par les dimensions des représentations irré-
ductibles de I' (cf. Définition 0.1). En généralisant [BM21, Lemme 2.6] au type D et E,
on peut définir le poids d’un élément de Q(Tr) (cf. Definition 3.8). On a alors montré
le théoreme qui suit dans le Chapitre 3.

Théoréme I1. Pour chaque entier n et pour chaque sous-groupe fini I de SL,(C), I'ensemble
indexant les composantes irréductibles de H1, et I'ensemble indexant les composantes irré-
ductibles du lieu des I'-points fixes du n-ieme espace de Calogero-Moser sont les mémes et
sont égaux a l'ensemble des combinaisons linéaires positives de racines simples de taille n et de
poids positif que I'on note par Af.

Enfin, dans le Chapitre 4, nous avons décrit toutes les résolutions projectives, symplec-
tiques de )y comme composantes irréductibles du lieu des I'-points fixes du schéma
ponctuel de Hilbert. Plus précisément, si d’'un coté, on note ZC} I’ensemble des com-
posantes irréductibles de H} et IC! := Ukez-, ZCY et d’un autre c6té, on note &1,
I'ensemble des classes d’isomorphismes de résolutions projectives, symplectiques de
ykf et R = Upe Z-0 g&{, alors on a démontré le théoreme suivant :

Théoreme II1. 1] existe une application surjective de TC' vers AT,

Combinatoire en type D

Le second volet de cette these est consacré a 1’élaboration d'un modele combinatoire
de A} lorsque I est de type D. Lorsque I est de type A, un modele en termes de
partitions a déja été obtenu [Gor08, Lemme 7.8]. Le méme résultat peut étre obtenu
en combinant le Théoreme II et [BM21, Lemma 4.9] dans le cas spécial ou m = I.
SiT est de type D, alors I' n’est plus un sous-groupe de C*, ot C* est identifié ici
avec le tore maximal diagonal de SL,(C). Afin de construire un modele combinatoire
basé sur des partitions d’entiers, on a besoin de se restreindre au sous-ensemble des
composantes irréductibles qui contiennent un C*-point fixe. Si A = (Aq, ..., A;) est une
partition, on note par Y(A) := {(i,j) € Z%,|i < A1,j < r} son diagramme de Young et
|A| :=YI_; Ajsataille. De plus, si (4,b) € Y(A) et] est un entier positif, alors on définit
le I-contenu de (a, b) comme le reste de la division Euclidienne de a - b par I. Le I-résidu
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de A, noté par r}, est I'élément de Z' tel que pour chaque i € [0, - 1], 7, (i) est égal au
nombre de boites de ))(A) avec un I-contenu égal & i. Le crochet d’une boite (i, ) de
Y(A)est Hjjy(A) :={(a,b) € Y(A)[(a=iethb>j)ou(a>ieth=j)}etlalongueur
de H; j)(A) est le cardinal de H; ;(A). Sil € Z>1, notons y; le groupe cyclique d’ordre
| de SL»(C) engendré par la matrice diagonale diag(;, {; ) notée w; ot {; est la I-ieme

racine primitive de l'unité e’T". Prenons s € SL,(C) telle que ses coefficients soient
entiers et telle que ces coefficients diagonaux soient nuls. Considérons maintenant le
cas ot I' est égal a BD,, le groupe binaire diédral d’ordre 4] (de type D) engendré par
wy et s. Dans ce cas, les points fixes de H,, sous le sous-groupe de SL,(C) engendré par
I' et C* sont indexés par des partitions qui sont égales a leurs conjuguées et que 1'on
appellera partitions symétriques. Dans le Chapitre 5, la notion de [-résidu est étendue
a la notion de [-résidu de type D. Pour A une partition dun entier n, notons par I
I'idéal de C|x, y] généré par x'y/ pour chaque paire (i, j) € Z2, quin’est pas dans Y(A).
L’idéal I, est un élément de H,. La propriété du [-résidu que I'on a généralisée est :
pour chaque partition A, le [-résidu est le vecteur des multiplicités du caractere de y; de
la représentation C|[x, y]/I). De maniere plus précise, le caractere de la représentation
Clx,y]/I) de y; est égal a 25;(1) rh (i)} ott 7 est le caractere de y; qui envoie wj sur {;.
En utilisant la notion de [-résidu de type D, on a réussi a montrer le théoréme suivant.

Théoréme IV. Pour chaque (I,n) € ZZZO, sil = 73\1521, alors I'ensemble des composantes

irréductibles de HY contenant un C*-point fixe est en bijection avec I'ensemble des partitions
symétriques A ne contenant aucun crochet de longueur 21 et telle que |A| = n [21] et |A| < n.

Dans le cas ot I' est un sous-groupe binaire tétraédral de SL(C), on a montré dans
la section 5.3 de cette thése que le sous-groupe de SL;(C) engendré par I' et C* est
SL,(C). Ce résultat réduit alors 1’étude des composantes irréductibles de #, contenant
un C*-point fixe, a ’étude des points fixes de SL,(C) dans le schéma de Hilbert de n
points dans C2. Ces points fixes sont indexés par les partitions en escalier, de la forme
(m,m-1,m-2,..,1) pour m € Z>1. Enfin, si I est un sous-groupe binaire octaédral ou
un sous-groupe binaire icosaédral de SL,(C), alors on obtient la méme conclusion que
dans le cas du sous-groupe binaire tétraédral, car ces deux sous-groupes contiennent
un groupe binaire tétraédral.

Fibré tautologique et Fibrés de Procesi

Le troisieme volet de cette these s’emploie a 'étude de la restriction a H}, de deux fi-
brés vectoriels sur H,. Le premier fibré vectoriel est le fibré tautologique. C’est un
tibré vectoriel de rang n sur ‘H, noté 7T,, cf. Proposition 6.1 pour une définition précise.
Hiraku Nakajima a aussi défini [Nak00, section 2.9] des fibrés vectoriels tautologiques
sur les variétés de carquois. On peut alors se demander s’il est possible de décomposer
la restriction de 7, & une composante irréductible de H}, en termes de fibrés vectoriels
de la variété de carquois associée a la composante irréductible. C’est le résultat prin-
cipal du Chapitre 6 de cette these. Le second fibré vectoriel est le fibré de Procesi cf.
section 7.1 pour une définition précise. L'existence de ce fibré vectoriel a été démontrée
par Marc Haiman [HO1, Théoréme 5.2.1] et il a été utilisé pour prouver la conjecture
n! sur la positivité des coefficients généralisés de Kostka-Macdonald qui sont les coef-
ticients des fonctions symétriques de Haiman-Macdonald dans la base des fonctions
de Schur. En laissant le groupe &, agir trivialement sur #,, le fibré de Procesi noté
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" est par construction un fibré vectoriel (&, x GL(C))-équivariant sur H,. Pour
chaque idéal I € H,, la fibre de 2" en I, notée 9?"’}, est isomorphe a la représenta-
tion réguliére en tant que &,-module. Cela implique que %" est un fibré de rang n!.
Dans le Chapitre 7, les fibres du fibré de Procesi sont étudiées, en tant que (&, x I')-
modules, au-dessus de chaque composante irréductible de . Soit 6" la racine ayant
comme coefficients, dans la base de racine simple, les dimensions des représentations
irréductibles de I'. Pour chaque d € A}, notons r4 le poids le d qui est un entier positif.
Soit dy 1'élément de Q(Tr) égal a d — r46". Par construction, dg a pour poids 0. Notons
gr la taille de dj et I, 'unique idéal de la composante irréductible de ng associée a dy.
Soit (p1, ..., pr,) € (C*)™ tel que les T-orbites des p; soient libres et distinctes. Notons
p=(0,Tpy,..Tpr,) € (C?)" et S, le stabilisateur de p dans &, x I'. La premidre partie
du Chapitre 7 est dédiée a la preuve du théoreme suivant qui est un travail commun
avec Gwyn Bellamy.

Théoreme V. Soit n un entier positif, I' un sous-groupe fini de SL,(C) et d € A}. Pour
chaque idéal I de la composante irréductible HY, indexée par d, il existe un isomorphisme en
tant que (S, x I')-module :

P~ Ind(;]” Xr(@ﬁ;o)
Un résultat analogue a été obtenu par Gwyn Bellamy dans le cadre des espaces de
Calogero-Moser généralisés. En effet, Pavel Etingof et Victor Ginzburg ont construit,
sur les espaces de Calogero-Moser généralisés, un faisceau cohérent qui est similaire
au fibré de Procesi. En utilisant les travaux de Roman Bezrukavnikov et de Pavel
Etingof [BE09], Gwyn Bellamy [Bell09, Theorem 3.5] a montré que 1'étude du fais-
ceau cohérent d’Etingof-Ginzburg sur les espaces généralisés de Calogero-Moser d'un
groupe de réflexions complexe W se réduit a I’étude du faisceau cohérent d’Etingof-
Ginzburg sur 'espace généralisé de Calogero-Moser d"un sous-groupe parabolique de
W. Dans la deuxieme partie du Chapitre 7, nous nous restreignons au cas ou I' =
pour [ > 1. Dans ce cas, nous avons aussi démontré en utilisant uniquement des argu-
ments de théorie des représentations deux cas particuliers du Théoreme V. Ces deux
preuves illustrent d’autres approches que 1'on peut avoir vis-a-vis du Théoreme V. En
particulier si A = (n) etsi! = n, alors le Théoreme V implique un résultat d"Hideaki
Morita et de Tatsuhiro Nakajima concernant 1’algébre des coinvariants de &, [MN,
Theorem 8]. Sil'on considere le cas ou I' = 35\1521 avec | > 1, des formules de réduc-
tions ont également été obtenus a partir du cas cyclique. On notera aussi que le fibré
de Procesi a été généralisé par Ivan Losev [Los14]. Il a montré qu’il existe des fibrés
de Procesi en couronnes au-dessus des résolutions projectives, symplectiques de J/'
[Los14]. Ces fibrés ont été utilisés pour étendre le théoreme n! aux polyndémes de Mac-
donald en couronnes dont I’existence a été conjecturée par Haiman [HO1, section 7.2]
et prouvée par Roman Bezrukavnikov et Michael Finkelberg [BF12, Corollaire 1.2]. On
peut se demander si des théorémes analogues au Théoreme V peuvent étre démontrés
dans ce cadre généralisé.

Travaux en cours

Si l'on revient au cas ou I' est égal a yj, le Théoreme V ramene 1'étude de la struc-
ture de (&, x y;)-module des fibres du fibré de Procesi, a I’étude des fibres au-dessus
des idéaux monomiaux associés a des partitions qui ne contiennent pas de crochet
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de longueur I et que 1’'on appelle des [-coceurs. Dans le Chapitre 8, une premiere ap-
proche de l'étude de ces fibres est proposée en conjecturant une connexion avec les
représentations de Fock de 'algebre de Lie affine de type A;. En effet, il semble que
la décomposition de la représentation réguliere obtenu via la décomposition selon les
caracteres irréductibles de y; de Q’GA oul A est un [-cceur, peut étre raffinée en laissant

agir les générateurs de Chevalley f; de 'algebre de Lie affine de type A; sur 1'élément
|@) de la représentation de Fock (cf. Conjecture 8.5 pour une formulation plus précise).
Un exemple est également donné apres la Conjecture 8.5. En annexe, la lectrice ou le
lecteur pourra trouver un code SDJE.  qui permet de calculer pour une valeur de |
et de n la décomposition de la fibre de *" au-dessus d'un [-coeur (s’il en existe) et de
la décomposition "en paquets" de l'action des f; sur |@). Enfin, en annexe, on pourra
également trouver des tables qui donnent les décompositions, en tant que (&, x y;)-
modules, des fibres du fibré de Procesi au-dessus d’idéaux monomiaux associés a des
[-coeurs .

Index des notations

Afin de faciliter la lecture de cette these, un index rassemblant toutes les notations est
disponible a la fin de ce document, juste avant la Bibliographie.
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Context

Let us start with the Kleinian singularities. This family of two-dimensional singulari-
ties is constructed out of a finite subgroup I of SL,(C). Finite subgroups of SL,(C) are
classified, thanks to McKay multigraphs, by the affine Dynkin diagrams of type ADE.
For such a choice of T, let it act naturally on C? and consider the affine variety C?/T.
In this normal variety, the only singular point is 0. A resolution of singularities of a
variety X is the data of a smooth variety Y and a proper birational map Y — X. Being
two dimensional the variety C2/T has a resolution Sr such that any other resolution
of C2/T factors through Sr. Such a resolution is unique up to isomorphism and is re-
ferred to as the minimal resolution of C2/T. Moreover, St can be explicitly constructed
as successive blow-ups of the singular point. This family of singularities is an example
of symplectic singularities. These singularities have been defined and studied first by
Arnaud Beauville [Beau, Definition 1.1]. A way to generalize the Kleinian singulari-
ties to higher dimensional symplectic singularities is to consider the wreath product
of I' with the symmetric group. More precisely, if 7 is an integer greater or equal to 1,
then I';,, which denotes the group I'" x &, acts on (Cz)ﬂ where &, is the symmetric
group on 7 letters. Indeed I'" acts on (C?)" using the natural action of I' on C? and
&, acts by permuting the 1 copies of C2. One can now consider the 21 dimensional
symplectic singularity V¥ := (C?)"/T,. A resolution (Y, ) of singularities in X is said
to be projective if p is a projective morphism. A well-known ([Kuz, Theorem 4.9]) pro-
jective symplectic resolution of ) is the Hilbert scheme of n points in St denoted by
Hilb, (St) which, set-theoretically, is the set of all ideals I of C[Sr| such that the di-
mension of the C-vector space C[Sr]|/I is equal to n. Take the simplest case i.e. when
I' = 1is the trivial group. In this case )} = (C?)"/&, and the projective, symplectic
resolution Hilb,, (Sr) becomes H,, := Hilb, (C?) with the Hilbert-Chow morphism, cf.
section 7.1 for a precise definition of this morphism. The natural action of I' on C?
induces an algebraic action on the Hilbert scheme of points of C2. In 2018, Gwyn Bel-
lamy and Alastair Craw [BC20, Corollary 1.3] have classified all projective, symplectic
resolutions of V.

Irreducible components of 7! and projective, symplectic res-
olutions of )}

The first facet of this thesis is dedicated to the study of H, and to the study of all pro-
jective, symplectic resolutions of yf as irreducible components of I'-fixed point loci of
the Hilbert schemes of points in C*. Let us begin with the irreducible components of

7—[5. To dive a bit more into details, one needs to introduce Nakajima'’s quiver varieties.

9
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This class of symplectic varieties has initially been defined ([Nak94, Section 2]) and
studied by Hiraku Nakajima. They were originally constructed to study solutions of
some Yang-Mills equations on ALE spaces. Today, quiver varieties have infused many
different branches thanks to their good properties and the fact that they parametrize
some representations of preprojective algebras based on quivers. Among other prop-
erties, if one chooses good stability parameters, then a quiver variety is a projective,
symplectic resolution of singularities of the same quiver variety without the stability
condition. The Jordan quiver is the quiver with one vertex and one arrow. It is well
known [Nak99, Theorem 1.9] that the quiver variety of the Jordan quiver with nonzero
stability parameter and dimension parameter equal to 7 is isomorphic to the Hilbert
scheme of 1 points in C2. Moreover, it turns out that if one takes the stability parameter
to be zero and takes the deformation parameter to be nonzero, then the quiver variety,
which is the Calogero-Moser space, is smooth [Wil, Section 1]. Fix an orientation () of
the undirected McKay multigraph of I'. This oriented multigraph is then a quiver. It is
called the McKay quiver and is denoted by Qr. Iain Gordon [Gor08, Lemma 7.8] has
identified the irreducible components of the I'-fixed point locus of the Hilbert scheme
of point using quiver varieties of Qr when I' is of type A. Moreover, Alexander Kirillov
Jr. has studied the I'-fixed point locus of the punctual Hilbert scheme using quiver
varieties. He showed, in a concise proof and based on nonconstructive arguments
[Kir, Theorem 12.13], that there exists an isomorphism between the irreducible compo-
nents of H}, and certain quiver varieties. Finally, Cédric Bonnafé and Ruslan Maksimau
[BM21, Theorem 2.11] have described the irreducible components of I'-fixed point loci
of smooth generalized Calogero-Moser spaces using quiver varieties of Qr also when
I' is of type A. Based on this work, the irreducible components of I'-fixed point loci
of the Jordan quiver variety denoted by Mg , (1) for (6,A) # (0,0) where 6 is the sta-
bility parameter and A the deformation parameter have been described in this thesis
using quiver varieties of the McKay quiver of I'. From now on, let us refer to quiver
varieties of Qr as McKay quiver varieties. More precisely the following theorem has
been proven in Chapter 2.

Theorem 1. Let (6,A) € Q x C such that (6,A) # (0,0). For each integer n and each finite
subgroup I of SL»(C), the variety Mg , (n)" decomposes into irreducible components

Maa(m)' = 1] Mj
dEAT g\
where MY is isomorphic to /\/lg, 257 (M7) a McKay quiver variety. In the process of
proving Theorem I, the need for a technically better setting to work with McKay quiver
varieties has been felt, especially when I' is of type D and E. The development of this
technical setting is inspired by the work of George Lusztig [L92, Section 2], of Michela
Varagnolo and Eric Vasserot [VV99, Section 2], as well as the one of Weigiang Wang
[Wang, Theorem 5.1]. To be more precise, if one denotes by Rep(Qys) the category
of representations of the double framed McKay quiver Qrs and by McK(T') a cate-
gory defined with I''modules, then for every orientation () of Qr two functors Fp and
G between these categories have been constructed in Chapter 1. The fact that these
two functors define an equivalence of categories has been proven. Furthermore, in the
same chapter, it has been proven that McKay quiver varieties denoted by Mg, 2 (d, df)

and the analog of quiver varieties, denoted by Mg, (M, M/), coming naturally out
of the category McK(T') are isomorphic as algebraic varieties. The third chapter of
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this thesis is dedicated to the decomposition of the I'-fixed point locus of the Hilbert
scheme of points on C? into irreducible components and to the description of a combi-
natorial model of the indexing set Af 4 |, appearing in Theorem I. Thanks to McKay’s
correspondence, one can associate to I" an affine Lie algebra. Fix a base of simple roots
of this affine Lie algebra, associated with the fundamental Cartan chamber. Denote
by Q(Tr) the root lattice of this affine Lie algebra. The size of an element a € Q(Tr)
is the average of the coefficients of « in a chosen set of simple roots weighted by the
dimensions of the irreducible representations of I' (cf. Definition 0.1). Generalizing
[BM21, Lemma 2.6] to type D and E, another statistic on Q(Tr) can be defined called
the weight (cf. Definition 3.8). The following theorem is proven in Chapter 3.

Theorem II. For each integer n and each finite subgroup I' of SLp(C), the indexing set of the
irreducible components of HY, and of the irreducible components of the T-fixed point locus of the
Calogero-Moser n space are the same and are equal to the set of all positive linear combinations
of simple roots of size n and positive weight. Denote by A} this set.

Finally, in Chapter 4 one can find the description of all projective, symplectic resolu-
tions of V[ in terms of irreducible components of the I'-fixed point locus of the punc-
tual Hilbert scheme of C2. More precisely, if on one side, one denotes by ZC; the set of
all irreducible components of 7—[,{ and ZC" = Ukez-, IC,E and on the other side, one
denotes by %], the set of all isomorphism classes ofiprojective symplectic resolutions
of y,{ and BT := e ~ %I{, then the theorem underneath has been demonstrated.

Theorem II1. There exists a surjective map denoted by BC from TC* to R".

Combinatorics in type D

The second facet of this thesis is devoted to the conception of a combinatorial model of
AP whenT is of type D. When I is of type A this has already been done [Gor08, Lemma
7.8]. The same result can be obtained by combining Theorem Il and [BM21, Lemma 4.9]
in the special case m = [. If I is of type D or E, then I' is no more a subgroup of C*,
where C* is here identified with the maximal diagonal torus of SL,(C). To construct
a combinatorial model based on partitions of integers, one needs to restrict A} to the
subset of irreducible components that contain a C*-fixed point. For A = (A,..,A,) a
partition, denote by V(1) := {(i,j) € Z2,|i < A1,j < r} its associated Young diagram
and by |A| := YI_; A; its length. Moreover, if (a,b) € Y(A) and [ is a nonnegative
integer, then the remainder of a - b divided by [ is called the I-content of the box (a, b).
The I-residue of A, denoted by rlN is the element of Z!, such that for all i € [0,1-1],
rh (i) is equal to the number of boxes of the Young diagram of A with I-content equal to
i. Let Hj;y(A) :={(a,b) € Y(A)|(a =iand b > j) or (a > iand b = j)} be the hook of
abox (i, /) of Y(A) and the cardinal of H; ;) (1) be the length of H(; ;y(A). If | € Z>1, let
y; denote the cyclic group with [ elements in SL,(C) generated by the diagonal matrix
diag (g, ¢, 1) denoted by w; where {; denotes the primitive I root of unity e’1". Take
s € SL,(C) with integer coefficients and diagonal coefficients equal to 0. Consider
the case where I’ is ﬁzz, the binary dihedral group of order 4/ (of type D) generated
by wy; and s. In that case, the fixed points of H, under the subgroup of SL,(C) gen-
erated by I' and C* are indexed by partitions that are equal to their conjugate, called
symmetric partitions. In Chapter 5, the notion of /-residue has been extended to the
notion of [-residue of type D. For A a partition of an integer 1, denote by I the ideal of
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C[x, y] generated by x'y/ for all pairs (i,j) € Z2,, that are not in Y (A). The ideal I, is
an element of #,. The property of the I-residue to be generalized is that for A a parti-
tion, the [-residue is the multiplicity vector of the character of y; of the representation
C|x,y|/I,. More precisely, the character of the representation C[x, y|/I) of y; is equal
to Zf;é rl)\(i)rf where T; is the character of y; that maps w; to {;. Using this notion of
[-residue of type D, the following theorem has been proven.

Theorem IV. For each (I,n) € ZZZO, if T = BDyy, then the set of irreducible components of

HY, that contain a C*-fixed point is in bijection with the set of symmetric partitions A such that
A does not contain any hook of length 21 and such that |A| = n [21] and |A| < n.

If T is a binary tetrahedral subgroup of SL,(C), then it is proven in section 5.3 of this
thesis that the subgroup of SL,(C) generated by I and C* is SL,(C). This result reduces
the study of the irreducible components of H, containing a C*-fixed point to the study
of SL,(C)-fixed point in the Hilbert scheme of n points in C2. These fixed points are
known to be indexed by staircase partitions, partitions of the form (m,m-1,m-2,...,1)
for m € Z>1. If T is a binary octahedral or a binary icosahedral subgroup of SL,(C),
then the same conclusion as for the binary tetrahedral case can be drawn since these
groups contain a binary tetrahedral group.

Tautological vector bundle and Procesi vector bundles

The third facet of this thesis is dedicated to the study of the restriction to H}, of two
vector bundles on H;,. The first vector bundle is the tautological vector bundle. It is a
rank n vector bundle over H, denoted by 7, cf. Proposition 6.1 for a precise definition.
Hiraku Nakajima has also defined [Nak00, Section 2.9] tautological vector bundles on
quiver varieties. One can wonder if it is possible to decompose the restriction of 7,
over a given irreducible component of H},, which is also a connected component since
H} is a smooth variety in virtue of I’ being a finite group, in terms of tautological
vector bundles of the quiver variety associated with the irreducible component. This
is the main result of the concise Chapter 6 of this thesis. The second vector bundle is
the Procesi vector bundle cf. section 7.1 for a precise definition. The existence of this
vector bundle has been proven by Marc Haiman [H01, Theorem 5.2.1] and has been
used to prove the n! conjecture on the positivity of the generalized Kostka-Macdonald
coefficients which are the coefficients of Haiman-Macdonald symmetric functions in
the base of Schur functions. Let the group &, act trivially on the Hilbert scheme of n
points in C2. The Procesi bundle denoted by %" is by construction an (&, x GL,(C))-
equivariant vector bundle over H,. For each element I € H,, the fiber of %" at I,
denoted by 9“”1 is isomorphic, as an &,-module, to the regular representation which
implies that the Procesi bundle is of rank n!. In Chapter 7 of this thesis, the fibers of the
Procesi bundle, as (&, x I')-modules, are studied over each connected component of
HL. Let 6" be the root with coefficients in the base of simple roots given by the McKay
correspondence equal to the dimension of the irreducible representations. Now, for
d € Af, let r; denote the weight of d, which is a nonnegative integer. Let dg be the
element of Q(Tr) equal to d — 1oL, By construction, dy has weight 0. Denote by gr the
size of dy and by I, the unique ideal of the connected component of ”ng attached to d.

Take (p1, ..., pr,) € (C2)"* such that the T-orbits of the p; are disctincts and free. Denote
by p = (0,T.p1,..., T.pr,) € (C?)" and by S,, the stabilizer of p in &, x I. The first part
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of Chapter 7 is dedicated to the proof of the following theorem which is a joint work
with Gwyn Bellamy.

Theorem V. Let n be a nonnegative integer, I' be a finite subgroup of SLo(C) and d € Ajf.
For each ideal I in the connected component of HY indexed by d, there exists an isomorphism
as S, x I'-modules
&, xT
i Indg) “(PE)

g,

A similar result has been obtained by Gwyn Bellamy in the context of generalized
Calogero-Moser spaces. Pavel Etingof and Victor Ginzburg have constructed, on gen-
eralized Calogero-Moser spaces, a coherent sheaf that is alike the Procesi bundle. Us-
ing the work of Roman Bezrukavnikov and Pavel Etingof [BE09], Gwyn Bellamy [Bell09,
Theorem 3.5] has proven that the study of Etingof-Ginzburg’s coherent sheaf on the
generalized Calogero-Moser space of a complex reflection group W reduces to the
study of Etingof-Ginzburg’s sheaf on the generalized Calogero-Moser space of a parabolic
subgroup of W. In the second part of Chapter 7, I' is taken to be equal to y; for [ > 1. In
that case, Theorem V is proven in two edge cases. The proofs use only representation
theory and show the diversity of techniques that one can use regarding the proof of
this theorem. Note that, if A = (n) and ! = n, then Theorem V implies the result of
Hideaki Morita and Tatsuhiro Nakajima on the coinvariant algebra of &, [MN, Theo-
rem 8]. When I is equal to ﬁzl with [ > 1, reduction formulas have also been derived
from the cyclic case. Note that the Procesi bundle has been generalized by Ivan Lo-
sev [Los14]. He has proven that wreath Procesi bundles exist over resolutions of Jf'
[Los14]. This was then of great use to extend the n! theorem to the wreath Macdon-
ald polynomials whose existence was conjectured by Haiman [HO1, Section 7.2] and
proved by Roman Bezrukavnikov and Michael Finkelberg [BF12, Corollary 1.2]. One
can then wonder if analogous theorems to Theorem V can be proven in these general-
ized settings.

Work in progress

When T is equal to y;, Theorem V reduces the study of the (&, x y)-structure of the
tibers of the Procesi bundle to the study of the fibers on monomial ideals associated
with partitions that do not contain hooks of length I. Such partitions are called /-cores.
In Chapter 8, a first approach to study these fibers suggests that there might be con-
nections with the Fock representation of the affine algebra of type A;. It seems that
the decomposition of the regular representation obtained via the decomposition along
irreducible characters of y; of @"}A where A is an [-core, can be refined from the action
of Chevalley’s generators f; of the affine Lie algebra of type A; on the element |@) of
the Fock representation (cf. Conjecture 8.5 for a precise formulation). An example is
given after Conjecture 8.5. In the appendix, the reader will find a SDJE. code that
computes for a given value of | and n the decomposition of the fiber of " above the
monomial ideal associated with an [-core (if it exists) and the decomposition "in pack-
ets" of the action of the f; on |@). Finally, in the appendix, tables are given that give
decompositions of the Procesi bundle on monomial ideals associated with [-cores, as
(&, X yu;)-modules.
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Index of notation

In order to facilitate the reading of this thesis, an index bringing together all the nota-
tion is available at the end of this document, just before the Bibliography.
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Notation

Here is a good place to introduce common notation on Kac-Moody Lie algebras. The
type Y denotes indifferently finite or affine complex Kac-Moody Lie algebra types.
Take a finite or affine Kac-Moody Lie algebra g of type Y and a Cartan subalgebra b. If
g is affine of type T, then it contains (g° h°) a finite simple complex Lie algebra of finite
type T and a Cartan subalgebra. Denote by Dyn(Y) the Dynkin diagram associated
with the type Y, by ®*(Y) C ®(Y) C h* the positive roots and root system associated
with the data (g, h) and by ®"(Y) C b the coroot system. If g is of finite type, let A(T)
be the set of simple roots associated with the fundamental Cartan chamber and A" (T)
the set of simple coroots. If g is of affine type T let ap and a be respectively the root and
coroot defined in [Kac, §6.4]. Then A(T) := {ao} ITA(T) and AY(T) := {ay } IIAY(T).
Moreover let d be the element of  defined in [Kac, §6.2]. Note that AV (T) U {d} is a
basis of h. Consider the generalized Cartan matrix denoted by A(Y) associated with
the data (A(Y),AY(Y)). Note that ‘A(Y) is the generalized Cartan matrix associated
with the data (AY(Y),A(Y)). Denote by Q(Y) and QV(Y) respectively the root and
coroot lattice of type Y. Let W(Y) be the Weyl group associated with the root system
of type Y. In the affine case, one root and one coroot will have a special role. Let
us denote by 8(T) := Lyep(r)dat € ®(T) the affine root such that A(T)é(T) = 0

and such that the integral coefﬁClents (0n) ge A(T) € Z>o are the smallest possible. In
the same way, one can define 6" (T) := ¥, av(T) v’ € ®V(T) the affine coroot
such that ‘A(T)6"(T) = 0 and the integral coefficients (5,,),vcav (1) € Z>o are the

smallest possible. Let the natural pairing between h* and § be denoted by (, ). Finally,
the fundamental weights and coweights will be needed. For each &« € A(T), consider
Ay € b* such that:

1 if (a,aV) =2

d (A, d)=0
0 else and {Aq, d)

Va¥ € AV(T), (Mg, 0"y = {

Similarly one can define the fundamental coweights. For each «¥ € AY(T), consider
A, € b such that:

1 if (a,aV) =2

d (Ay, AV) =0
0 else and {Aay Agv)

Vo € A(T), (0, Aly) = {

Let us denote by P(Y) and PY(Y) respectively the weight and coweight lattice of type
Y respectively generated by the fundamental weights and fundamental coweights.

Definition 0.1. If & € Q(T), then the size of a is defined as |a|+ := (a, Laveay(T )5 ALV)
and if ¥ € QY(T), define & |7 := (Lyen(r) Sulha, ).

The group W(T) is the affine Weyl group of the finite type T. One has the following
isomorphism ([BLie02, Chap. VI, §2, Prop. 1])

W(T) x Q(T) = W(T)

For a € Q(T), one will denote by t, € W(T) the corresponding element.
All algebraic varieties will be over C and by algebraic variety one means a reduced
scheme such that the structure morphism is separated and of finite type. If S is an
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algebraic variety and s € S, denote by xs(s) the residue field of the local ring Og ;.
A reductive algebraic group is a connected linear algebraic group on C with trivial

unipotent radical. From now on and in the rest of this thesis, fix an integer n > 1 and
a finite subgroup I' of SL,(C).



CHAPTER 1

QUIVER VARIETIES OVER MCKAY
QUIVERS

This chapter is here to set up the quiver theoretical background needed in Chapter 2.
It is inspired by the work of George Lusztig [L92, Section 2], of Michela Varagnolo and
Eric Vasserot [VV99, Section 2], as well as the one of Weigiang Wang [Wang, Theorem
5.1]. It is decomposed into four parts. Firstly, we recall the construction of the represen-
tation space of a double framed quiver and of its natural symplectic structure. Then, if
one starts with the double framed McKay quiver of a finite subgroup I' of SL,(C), one
can construct the representation space of this quiver in terms of I'-modules. This is the
new setting to work with McKay quiver varieties. This setting will be used to prove
the main theorem in Chapter 2. In the third part, we show that over the double framed
McKay quiver the two representation spaces are isomorphic and that moreover, the
symplectic forms coincide as well as the momentum maps. In the third section of this
chapter we will, for McKay quivers, define an analog of Nakajima’s quiver varieties
that does not involve the choice of an orientation of the underlying quiver and thus
will provide a more intrinsic point of view. We will show that this variety is isomor-
phic to Nakajima’s quiver variety. Finally, we will give a couple of results that are
necessary for the following chapters.

1.1 Representations of double framed quivers

Let us begin this section with general notation for quivers. Take an undirected multi-
graph G := (Ig, Eg) where I; is the set of vertices and Eg the multiset of undirected
edges and choose an orientation () : Eg — Ig X Ig for G.

The framed undirected multigraph associated with G denoted by G/ is the multigraph
with one extra vertex for each vertex in Ig so that Iy = Ig ][I is the set of vertices
and the multiset of edges is defined as Es := Eg[[{{i,ji}|i € Ig} where j; denotes
the new vertex associated with i € I5. Let us denote by Qg (Q)) the quiver associated
with the undirected multigraph G and the orientation (). Let E8+ be the multiset of
arrows of Qg(Q)) oriented with ). The source and target maps of Q¢ ((2) are given
by O and will be respectively denoted by 1’ and h” for h € E2". Let us impose the
convention that the orientation for the framing arrows is the "outgoing" orientation.
This implies that choosing an orientation of a framed quiver Qf : Eqr — Igr X Igf
is the same data as choosing an orientation () of the associated unframed undirected
multigraph. Consider the following orientation

17
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oD . Ec — IgxlIg
OF S )

then Qg(Q°P) is called the opposite quiver of Qg () i.e. the quiver which has the
same underlying undirected multigraph G but reversed orientation. The multiset of
arrows of QEP(Q) will be denoted by Egﬁ Finally denote by Qg the double quiver
associated with G which has the same set of vertices as G and the multiset of arrows
E; = E8+ 11 Eg_ so that Qg does not depend on the choice of Q). Let & be the involu-
tion of Eg sending an edge h € Eg to its reversed edge. Let us denote by A the free
abelian group associated with the set Ig. Let Ag C Ag be the free monoid associated
with Ig. The set A% will be referred to as the set of dimension parameters. A dimen-
sion parameter d will often be defined by giving nonnegative integers (d,),cj, which
gives d := Y ,c1. dyv € AL. Let us moreover consider the set of stability parameters
denoted by Og := Homz(Ag, Q) and the set of deformation parameters denoted by
Ac := Homz(Ag,C). If 8 € Q, let us denote by 6 the stability parameter defined
as 0(v) := @ forallv € Is. If A € C, the same notation will be used for the con-
stant deformation parameter equal to A. Denote ©f := {6 € O¢|Vv € I5,6(v) > 0},
Oi" = {0 € Og|Vv € I, 0(v) > 0} and A := {A € Ag|Vv € IG,A(v) € Qxo},
AET = {A € Ag|Wv € I, A(v) € Qso}. Let us denote Rep(Q;) the category of rep-
resentations of the quiver Qs in which objects are tuples (V, V/, (x3,),, cEo’ (0}, v?)ier.)
where

* V = ®j¢y, Vi is an Ig-graded complex vector space.

e V=i I Vlf is an Ig-graded complex vector space.

Vh € Eg,xy, : Vjy — Vju is a linear map.

Vi € Ig, v} Vif — Vj is a linear map.

Vi e IG,U% Vi — Vif is a linear map.

Note that v} and v? correspond to the representation of the framing. A morphism
between (V, v/, x, ot v?) and (V, Vi, % ot 7?) is given by the following data. For all
i € Ig we need to provide a morphism ¢; : V; — V; and a morphism ¢; : Vif — \7if
such that for all i € Eg and i € I the following diagrams commute

Vh’ L} Vh’

xhl lfh

Vh” _— Vh//
h/l

=~

47 .

.z<~—

~

~

~
4
N

~

P —
=

~0
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Definition 1.1. Given two Ig-graded complex vector spaces V, V/ define the represen-
tation space of Qs with fixed I5-graded complex vector spaces V, V/ as

RS ;== @ Hom(Vy, Vi) & @ Hom(V/, Vi) © @ Hom(V;, V/)

heEg iclg icly

VVf

Remark 1.2. Take a vertex iy € I; and define V/0 such that Vi € I, Vif - C‘Szz‘o. In the
following, let us shorten Rg yhio tojust RG Note that in that case v' is just a linear
map from C to Vj, i.e. can be identified w1th an element of V. We will refer to Rgl

the representatlon space of the double, framed at iy, quiver QG( ).

The construction of a symplectic structure on R s Will depend on the choice of an

orientation (). Recall that we have chosen ari)nentauon Q) of G. The sign function
associated with ) will be denoted by e : Eg — {—1,1} . This map is such that
Vh € E2T,eq(h) :=1and Vh € E2™,eq(h) := —1. Define the symplectic form

G
RS, xRS, = C

€a .
“e ((x, 01 vz) (%, o, 7)) Lnerg €a(m)Tr(x, %) + Licl, Tr(v}o? — 0l0?)

This structure comes from the natural isomorphism with the cotangent bundle of the
representation space of the framed quiver. Consider the group G(V) := [T;c;. GL(V;)

and its action on R‘G/ s given by

g.(x, vl,vz) :

= (gx (gl )ZEIGI (U gz )ZEIG)
for g € G(V), (x,0!,0?) € RG s and where Vh € Eg, (§X)p := §wxngy -
Remark 1.3. The symplectic form w? is G(V)-invariant.

For 6 € O¢ such that Im(0) C Z, define the character of G(V) associated with 6 € O
as

GV) — C*

(gi)ielc = HieIG det(gi)e(l) .

Remark 1.4. Note that the main difference between the framed and unframed setting
is that here we let G(V) act and not G(V) x G(V/).

X6 -

Consider now the momentum map attached to that action [Kir, Definition 9.43]
o, RSy o Dics, End (V)
¢ (x Ul v?) Zhe%,h”:i ea(h)xpx;, + Z]GIG vl ]2

For A € Ag, let us still denote by A := Y ;c; A(i)idy, € @jcy, End(V)).

1.2 Representation space of double framed McKay quivers

Take k € Z>( and recall that we have fixed I' a finite subgroup of SL(C). By a I'-
module, we mean a C[I']-module of finite dimension. This subsection is devoted to
exposing the representation space of the double framed McKay quiver of I in terms
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of I-modules. Denote by Repr; := Homgp (T, GL¢(C)) and by Charr the set of all
characters of elements in Repr ;. Consider Repy := Uy>o Repr; and Charr the set of
all characters of representations in Repy. For x € Charr, let us denote k, := x(id) and
choose py € Repr . such that the character of p, denoted by Tr(p,) is x. Note that p,

is determined, up to conjugation by an element of GL (C). Denote the representation
space of p, by X, which is endowed with the I'-action given by p,. Let Irrr be the
set of all characters of irreducible representations of I'. It is finite since I is finite.
Denote by xo € Irrp the trivial character. The group I being a subgroup of SL,(C),
it has a natural representation of dimension 2 called the standard representation and
denoted by pgq. In the following, the character of the standard representation, which
is irreducible whenever I' is not a cyclic group, and its associated representation space
will be respectively denoted by x4 and Xgq4. If A and B are two I'modules, then
A —1 B denotes a I'-equivariant morphism and Homr (A, B) will denote the set of all
I'-equivariant morphisms.

Consider McK(T) the category in which objects are tuples of the form (M, Mf, A, Z)
where

e MisaTl-module

e M/ is aI'-module

A Xgqg®OM —-r M
b ZliMf—>rM
© Zp: M —r Mf

Morphisms of this category, between (M, Mf,A,Z1,7,) and (M, M/,A,Z1,7,), are
pairs (®,¥) where ® : M —r M and ¥ : Mf — M/ are such that the following
diagrams commute

Xg®M —2 s M

id®d>l l(b

Xstg @ M — M
Z Zy
M—= M —2 M
q’l qu lq»
2 1

The universal property of the tensor product gives
Hom (Xgq ® M, M) ~ Hom(Xgq, End(M))
Moreover, if we let T act on End(M) by conjugacy, then we have
Homp (Xsq ® M, M) ~ Homr (Xgq, End(M))

For A € Homr(Xgq ® M, M) and x € Xy, let us denote A, the obtained endomor-
phism of M. Concretely, for all m € M, Ay(m) is equal to A(x @ m).
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Definition 1.5. Take two T-modules M, M/ and define the following complex vector
space attached to M, M/

Rl‘

Lo = Homr(Xgq ® M, M) & Homp(M/, M) & Homr (M, M/)

Definition 1.6. Let Autr(M) be the algebraic group of linear automorphisms of M
commuting with the I'-action.

We can now consider an action of Autr(M) on RRA wf 8iven by

g.(A,Zl,Zg) = (g.A,ng,Zzg_l)
for ¢ € Autr(M), (A, Z1,7Z,) € RFM,Mf and where

V(x,m) € Xgq X M, g.A(x @m) := gA(x @ ¢ 'm)
Let us denote by (e1, e2) the canonical basis of Xggq.
Remark 1.7. One can check that A, A,, — A, A, € Endr(M), using the following fact
Vg € GLZ(C)/Ag-€1Ag-€2 - Ag~32Ag-€1 = det(g)(A€1A€2 - Aeerl)

In the special case where MS = Xy for some x € Ir, let us denote RY

M BY Rl and
RL = RY, .
7, O

. . . . r
Define an Autr(M)-invariant symplectic form on R MM
r r
R X Ryows — C

(A Z1,7), (A 21,75)) = Tt (Aehey — Deyhe,) + Tt (2125 — Z425)

Remark 1.8. Note that wr is independent of the choice of basis of X4 as long as one
picks a basis (e, ) such that det(e, f) = 1.

The momentum map attached to wr and the action of Autr(M) on R]rw V2
R?A,Mf — Endr(M)

MM Z,25) v Beybey — Beye, + 2125

Remark 1.9. Note that the symplectic form and the momentum map only depend on
the finite group TI'.

Definition 1.10. Define the McKay undirected multigraph Gr associated with I" the
following way. The set of vertices, denoted Ir, is Irrr and there is an edge between
a pair of irreducible characters (x, x’) if and only if (xxsalx’) 7# 0 with multiplicity

(Xxstalx')-

Remark 1.11. Note that Gr is indeed undirected because I' is a subgroup of SL,(C). By
choosing an orientation of the McKay multigraph of I', we define the McKay quiver
denoted by Qr. The choice of orientation will not be relevant to this section.

For the sake of clarity, we will shorten the notation and when no confusion is possible,
write I' instead of Gr. For example, we will shorten Ag. to Ar. Let us finish this
subsection by presenting a way to formulate the McKay Correspondence. This will be
useful in Chapter 5.
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Proposition 1.12 (McKay Correspondence, [McKay]). For each finite subgroup T of SL,(C),
if Vi denotes the vector space Ar ® C, then I defines an affine root system in Vi of type Tr
where Tr is the type of the Dynkin diagram Gr.

Remark 1.13. To be a bit more precise and use the language developed by Kac in [Kac,
Chapter 1]. Let I:I1Y := It, which is then a base of V. We can now construct a realization
of the generalized Cartan matrix of type Tr out of Vi and ITy. Consider the following
linear map defined on the base It

(P' Vr — ka
Cx o= (e 200 9) — (XXstal$))

Note that the element ¢(x) € V;' is defined on the base It of Vr. By construction, we
have that ¢(x)(¢) is exactly the corresponding coefficient of the generalized Cartan

matrix of type Tr. Let us denote this coefficient by a, ;. Take ty to be a one-dimensional
complex vector space. Consider tr := ty ® Vr. For each x € Ir, &, € { define

V(to, (C¢)¢) € ty X C‘Ir‘,ﬁéx(to + Z Clpl/J) =ty + Z Cyplyp,x
IPEIF 1/J€IT

The set Iy := {&y|x € Ir} is linearly independant. The triple (tr, Iy, I:I}/ ) is a realiza-
tion of the generalized Cartan matrix of type Tr. Consider (hr, I, TT) := (¢, Ty, ITr)
where

s . T bF:tF*

to= (¢ p(h))

For x € Ir, let us denote &y := x** € I1r. The type Tr being simply laced, (hr, I, ITY)
is also a realization of the generalized Cartan matrix of type Tr and we will referred to
it as the realization given by the McKay correspondence.

1.3 Equivalence of categories between Rep(Q,s) and McK(T')

In this section, we will establish an equivalence between the two previously defined
categories. To be more precise, let us show that Rep(Qys) and McK(T') are equivalent
and that this equivalence is compatible with the momentum maps. To do so, we have
to make choices. Thanks to the fact that I' is a finite subgroup of SL,(C), we know that
forall h € Er, T}: := Homr (Xgq ® Xpr, Xy ) is of dimension either 0,1 or 2 (it is only
of dimension 2 for I' = pjy, the cyclic group with two elements). For each edge I &
Er, choose a nonzero element y) € Homr(Xsq ® Xpy, Xpr). The irreducibility of X
implies that 1) is surjective. Since representations of finite groups are semisimple, we
can consider a I'-equivariant section of yg denoted by gg € Homp (X}, Xgq ® Xj). For
12, we can construct everything explicitly. Take the following labeling of the double,
framed at xo McKay quiver of y»
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0. @)

such that fi; = hy and h3 = hy. Let x7 denote the nontrivial irreducible character of Uz
and let X; := X,,. With this notation, X q = X; © X;. Take these maps

0. (X1eX)®Xe - Xp 0 X1 2 (X9 X)) ©Xo
Yy - (a,b)®1 = a Ym* 1 (1,0)®1
0. (X1e X)X = Xp 0 X1 = (X9 X)) ©Xo
' (@bl o~ b 1 = (01 @1
0. (XieX)eX: = Xo v Xo = (X1 X)) ©X;
Yhs * (a,b)®c > ac Ys* 1 (1,0)®1
0. (XieX)eX: = Xo L0 Xo = (X1 X)) ©X;
iy * (a,b)®c — b L/ R 0,1)®1

Lemma 1.14. For each x € Ir, Yjc =y 7 oyp) = idx, ex,

Proof. For I' = 5 it is an easy computation. Now take I' # . It is then clear that
LheEr =y y) € Homr(Xgq @ Xy, ek -y Xyn) is surjective. By construction of the
McKay graph, we have

dim(Xstd & X)() - Z dim(Xh//)
heEr

In particular, this implies that ) 7,/ y) is an isomorphism. It is then enough to
prove that
0 -0 0 0
(X w)o( X Wwovw)= X W
I€Er ' =x heEr =y heEr =
For each pair of edge (I, 1) € Er’such that ! = I, using Schur’s Lemma, we have that

0,0 _ idxh,, ifl=nh
JoYn= 0 otherwise

]

Consider a special dimension parameter ' € Ar defined as 5{6 := dim(X,) for all
X € Ir. With the preceding choice of orientation and maps for iy, everything that will
follow will also work.
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Define two functors Fp : Rep(Qrs) — McK(T) and Gy : McK(I') — Rep(Qry).
First, let

£, Rep(Q_rf) — McK(T)

v,V x0h0?) ~ (My, Myg, AY, 78, Z5)
where

© My; = @yep, Vi © Xy

* A% is defined as the following composition

Ax
Xstd @ (Dyer Vi ® Xy) —— Byer Vy ® Xy

Z}ZEE y2®xh

@Xelr Xstd ® VX ® X)(

© Z7 = (Lyer, % ® %idxx)  @yerr Vi ® Xy = Byer Vi @ Xy
© 7= (Tyer, 02 ®idx,) : Ber Vi @ Xy = Bper, Vi © Xy
Moreover Fo sends a morphism (¢y, §) to ($,¥) where
* = Dyep ¢y ®idx,
e V=D, cr ¥y ®idx,
Now, let

G - McK(T) — Rep(Qry)
yr (M/ Mf/ A/ Zl/ ZZ) ~ (VM/ VMf/ xA/ vzlleZ)
where

e V= @XGIF Homp(XX, M)

Vs = D yer, Homp (X, MS).

For all i € Er, define x4 such that the following diagram commutes

A
Xy

Homyr (X;,, M)

> Homr(Xh//, M)

7®idXstdl TAO_

Homr (Xgtg ® Xpy, Xgtqg ® M) —y0> Homr (X, Xgtg ® M)
ot

Vx € It

(02.). Homr (X, M) — Homr(Xy, M)
Zy)x f — 5)221 of

VXEI]‘



1.3. Equivalence of categories between Rep(Qr/) and McK(T) 25

. Homr(Xy, M) — Homr(X,, M)
(UZz)x : f — 7 of

Moreover Gy sends a morphism (@, ¥) to (¢, ¥x) ye, where
* Pyi=DPo—
* Py=Fo-—
Theorem 1.15. F,o and Gy defines an equivalence of categories.
Proof. Define two natural transformations of functors
® ¢ FyOGyO — IndK(F) ° 77 . IdReP(Qirf) — GgOFyO
Start with €. Let us fix (M, M/, A, 74, Z5) € McK(T'), and consider
* €y : Dyer Homp (X, M) @ X, = M/

o en: Fo(Gp(A)) = epo Fo(Gyp(A)) o (idx,, @ €py')

y~0

ez, : Fp(Gp(Z1) = emo Fp(Gp(Z1)) o€, f

€7, FyO(GgO(ZZ) = €pf O Fyo(Gyo(Zz)) o €X41

We need to show that ex (F,0(Gyp(A))) = A which can be reformulated as the following

equality ey 0 Fo(Gyo(A)) = Ao (idx,, ®€em).
Letus fix x € Ir and (g, f,z) € Xqq X Homp(X,, M) x X, then

em(Fp(Gp(A)(a@ f@z) =Af( ), Tnlyn(a®2))))

heEr i =x

Thanks to Lemma 1.14, we have that A(f(¥,cz vy In(yn(a ®2)))) = A(f(a @ z))

which is equal to (Ao (idx,, ® em)) (a2 ® f @ z).
Furthermore, we have by construction that

EM O FyO(GyO(Zl)) =Zio€yy

€4f © Fyo(Gyo(Zz)) =Zy0€pm
Now let us give (V, v/, x, ol v?) € Rep(Q_rf). Define 7

o iv : V =5 @yer, Homr (Xy, Deey, Ve @ Xg) as the composition of the following
natural isomorphisms

U
@XGIF VX =V —V> @XGIF Homr(XX, @‘:611" Vé’ X XC)

Cxelp idvx®idxxl /

EB()(,(Z)GI% V(: ® Homr(Xx, Xér)
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o i1ys: VI =5 @, ;. Homr (Xy, @eer, ng ® X¢) defined in the same way as 7y
o;yx:xr—wyvoxo;ﬁ;l
o7, :0! anovlon‘;}
® 11,2 1 02 > ffyr 0 v oyt
Let us show that Gy (Fye(x)) oy =y ox. If x € Irand v € Vy, thenyjy (v) = v ®idx, .
If we take 1 € Ey such that i’ = x, then we have
G (Fy () (v (v)) = [(yn @ x1) ® (0 @idx, ®idx,,) o Fa] € Homr (X, € Ve ® X¢)
Gelr
Using that §j, is a section of y;, we have (y, ® x,) ® (v ®idx, ®idx ) o Jn = nv(x(v)).
Furthermore, we have by construction that
v o vt = (Gyp(Fp(v'))) o 11y
and that
My 0 0* = (Gp(Fp(v?))) o v
]

Remark 1.16. If M, M/ are two I'-modules, then it is clear that the functor Gy~o induces

a morphism RY MM Rr Moreover, if V and V/ are two Ir-graded com-

Gyo(M),Gyo (MS)’

plex vector spaces, it is clear that F 0 induces a morphism R vvf T R F(V)Eo (V)"

We can now wonder what happens to the symplectic structures.

Proposition 1.17. For every orientation Q) of Gr , there exists a family () negr € (C7) [Erl

such that V ((x,01,v%), (%,0',9%)) € (er/vf)

wi® ((x,0',0%), (%,9',9%)) = wr(Fa(x,0,0?), Ea(%,6,07))

where Vh € Er,yh = Jh yh,yh = Ji)_lﬁ

Proof. Expliciting the right-hand side of the first equality gives

Y NPT (g @ [0 0 1 @ [ypla — x5 ® [YD]2 0 %, @ [yplh) + Te( Y vy 0%
heEr XEIr

— Y 24T ([0 [0 — [yl lyd) Tr(x %) + Te( Y 0l o — ko)
hGEr X€Ir
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where we denote [y)]; € Hom(Xj/, X)») the morphism [9],, which comes from the
canonical identification of T} with Homr (X4, Hom(Xjs, X;v)) and taking the mor-
phism corresponding to e, € Xyq4. Take h € Er. The term Tr([y%]l[yg]z - [y%]z[yg]l) is
nonzero thanks to the nondegenerescence of w' and Theorem 1.15. Moreover

Tr ([ygh [vle — [y 1a[vih ) +Tr ([vRh [vdlz — [vflalydla) =0

thanks to the well-known fact that Tr(AB) = Tr(BA). Now, we can choose {5! and
J]? in such a way that J,?J%Tr( [y%]l 9] — [y%]z[yg]l) = €q(h). Note that the previous

equation gives that the pair ({3}, \I,g)) is unique up to a non-zero scalar. To prove the
second statement, we use Theorem 1.15 to obtain that

emoFyo (Gyo(8)) o (idx,, @yt ) = A
emo Fa (GgQ(Zl)) oe];;c =7
eyr 0 Fyo (GyQ(ZZ)> el = 7

Use what has been proven to get
i (Gyo(B,21,22), Gy (B, 21, 22) ) = wr (Fo (Gyo (8,21,22))  Fyo (G (B, 21,22) ) )

Using the invariance of the trace by conjugacy we get the desired equality. O

Fix an orientation Q of the McKay multigraph Gr. We now have a family y** which
will be used later on. The functors F o and Gy o intertwine the actions of Autr (M) on

RZF\/I v and of G(V) on R .. Consider the morphism

v,vf
(fx)xerr = (Lyer 0x @ Xy = Lyer fx(vy) @ xx)

where V is an Ir-graded complex vector space. Using Schur’s Lemma it is clear that
pv is an isomorphism and by construction it restricts to py : G(V) = Autr (Pyg (V))
which is an isomorphism of algebraic groups.

If M is a T-module, consider pys : Endr(M) = Dyery End(Homr (X,, M)) the conju-
gation by the isomorphism 6;41 (the isotypical decomposition of M). The morphism
P M restricts to an isomorphism of algebraic groups ppr : Autr(M) = G (Ggg (M)>

Proposition 1.18. Let V and V/ be two Ir-graded complex vector spaces. If one lets the alge-

braic group G(V') act on R%Q(V)/Fya(vf) though py, then the map R, |, — erny(V),FyQ(Vf)
is G(V)-equivariant.

f - - r
Let M and M/ be two T-modules. If one lets the algebraic group Autr (M) acton R Gy (M), Gy (M)

though pa, then the map RRI mf Rg 5

M) G (i) 15 Autr (M)-equivariant.

Proof. The result follows directly from the definitions of the actions on R; s and
Rg/l yr and from the definition of the functors F o and Gyo. O

We can also link the two momentum maps.
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Proposition 1.19. For any two Ir-graded complex vector spaces V and VI, the following
diagram commutes

F o

y R T
Ry vs " REaE a0

ﬂ?ﬂl lﬂf

@,cr; End(Vy) ~ » Endr (PyQ(V))

1 .
Yyelp —®gldxx

For any two T-modules M and M/, the following diagram commutes

Gya

.
R R0 (M),6,0 (M)
Vrl lV;Q
Endr(M) < — @XEIF End <GgQ(M)X>

1. -1
EMO (erlr *®5Tldxx> o€
X

Proof. Take (x,v!,0%) € RL .. We want to show that

A%

1
ZI: ugo (x, o', 0? X®5rldxx Ur (Fyo(x,vl,vz))
XEIr

Expanding the right-hand side, we get

1
Y, N @ yliox @ [yl — 3 © [yl ox @ [l + ) 0p0r ®© (grldXx

heEr XGIF
= ¥ 404000 (Bl — bRlyfh) + L ohok e o srids,
heEr XEIr

Using the fact that wl is nondegenerate, there exists J2 € C* for each h € Er, such that
Wililvplz — [W3lalyiln = Jhidx,
By construction of the constants {f?, we have the following relation for all # € Ep
ea(h) = 414704050,

Summing it all up, the right-hand side gives

1
Y ea(h)xyx; @ 57 1dXh,, + ) ni®

_ 51. —id Xy
heEr n x€Elr

Which is exactly what we wanted to show. For the other square, recall that
emoFa (Gpa(a)) o (idx,, ® ey ) = A
emoFya (Ggg(zl)) o€l =2
€pr © Fyo (G}]Q(Zz)> oey =27
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Using what we just proved we have

Y ur” <G90(A, Z1,Zz)X> ® 5lfidxx —Hr <Py“ (G?Q(A' Zl'ZZ)))
X€EIT X

Since ur <Pyo (GgQ(A/ 74, Zz))) = 6;41]/tp(A, Z1,7Z3)en, we have shown that the sec-
ond square also commutes. O]

Remark 1.20. One might wonder why the map @, ;. End(Vy) — Endr (FyQ(V)) is
not fy. This comes from the fact that the identifications between @,c;. End(Vy)* and

@i End(Vy) and between Endr <FyQ(V)>* and Endr(F,o(V)) is not commuting

with this map. Indeed, we need to define an isomorphism @, ;. End(Vy) — Endr (Fyo (V))
that makes the following diagram commute

Endr(F,0(V)) —— Endr(F,a(V))*

| !

D er, End(Vy) erTﬁ D er, End(Vy)*

1.4 Nakajima’s quiver varieties

In this section, we will recall the general construction of Nakajima’s quiver variety
and use the setting of I'-modules to introduce an analog. First, we introduce notation.
Take G an undirected multigraph and d € A. Denote for all v € I, Vi := C%. Let
G(d) := G(V*) and for an I5-graded complex vector space V denote by dim(V) the
dimension parameter ), ;. dim(Vy)v € AE. Let us now recall the notion of semista-
bility.

Definition 1.21. The following definition comes from the general Geometric Invariant
Theory developed by David Mumford [FKM, Definition 1.7].

Let H be a reductive algebraic group over C, let x : H — C* be a rational character and
let X be a complex affine algebraic H-variety, then we define an action of H on X x C
by the formula h.(x,z) := (h.x, x(h) ~'.2).

Now x € X is x-semistable when Vz € C*, H.(x,z) N (X x {0}) = @.

Denote by XX™%° the set of all x-semistable points of X.

Define also the set of semi-invariants

CIX|* = {f € C[X]|V(h,x) € Hx X, f(hx) = x(h)f(x)}
and denote X //, H := Proj (@nzo C[X]Xn).

For all 6 € ©g, there exists N € Z>1, such that In(N6) C Z. If G(d) acts on an affine
complex algebraic variety X, we will denote by X%~ the yyg-semistable points of X
and by X /¢ G(d) the GIT quotient X //,,, G(d). Note that [Kir, Corollary 9.15] assures
that the notion of 8-semistability, does not depend on the choice of N.
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Definition 1.22. Define Nakajima’s quiver variety of O attached to an orientation ()
of G, to a dimension parameter (d,df) € AJGFf, to a stability parameter § € ©®¢ and to a
deformation parameter A € Ag as follows

MG, (d,d7) = (1) (M) S0 Gld) = () ' (M)° /) G(d)

Remark 1.23. We will often need to work with (yg’)_l(/\)o_ss C Ridf 1= R‘C/;d,vdf

which will be denoted by /\;lg’ ,(d,d7). In the special case where d/0 := dim(V/0) for
some vertex iy € Ir, we will denote MgA(d, dfi0) by Mg;,A(d, i)-

Let us define an analog of Nakajima’s quiver variety. If M is a I'module and 6 € Or,
consider xg o py the rational character of Autr(M). If X is an Autr(M)-variety, we will
also shorten XX6°Pm=ss to X9-55 If A € Ar, recall that we still denote by A the induced

element of @, <. End <ng (M) X). Depending on the context, let us also denote by A

the element of Endr (M) defined as e o (erlr Ax)ide () ® %idxx) o€y
y X X

Definition 1.24. Define Nakajima’s quiver variety of Qr attached to -modules M, M/,
to a stability parameter 6 € Or and to a deformation parameter A € Ar as follows

M, (M M) = i (1) o Aute (M) ~ i (1)° J Autr (M)

Let us also denote ' (1)075 C ng wr oY /\;lg,A(M, M/). Denote by MI(;’A(M,X) the

variety My , (M, Xy) for some x € Ir and My , (M) := Mg, (M, xo)-

Remark 1.25. It is clear that if M and M are two I'-modules and are isomorphic as I'-
modules, then for every T-module M/, stability parameter § € @r and deformation
parameter A € Ar, we have /\/lg,/\ (M, Mf) ~ MI(;,A (M, Mf).

To be able to compare the two preceding quiver varieties, we need to show that F, o is
compatible with semistability. Let us introduce a handy characterization of this notion.

Definition 1.26. Let H be an algebraic group over C, x : H — C* a rational character
of Hand y : C* — H a one-parameter subgroup. Since the morphism y oy : C* — C*
is of algebraic groups, there exists then k € Z such that Vt € C*, x(u(t)) = t*. Define
the pairing (), u) to be equal to k.

Proposition 1.27. Let us consider the same context as in Definition 1.21. A point x € X is -
semistable if and only if for all algebraic group morphism y : C* — H, such that lim;_,o p(t).x
exists, we have (x, u) > 0.

Proof. The proof can be found here [FKM, Theorem 2.1]. O

We can use Proposition 1.27 to show that the functors F o and Gyo are compatible with
semistability.

Lemma 1.28. Take V, V/ two Ir-graded complex vector spaces and M, M/ two T-modules.
The element (x,v',v%) € Rlx;,vf is xp-semistable if and only if Fya(x,v',v%) is xg o py'-
semistable. Moreover (A, Z1,7Z;) € Rgd wif 18 Xo © pm-semistable if and only if Go (A, Z1,2)
is xg-semistable.
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Proof. Take y : C* — Autr (FyQ(V>> such that lim o pt(t).F0 2

)
Proposition 1.18, we have forall t € C*, p(t).Fa(x, ol,0?) = ( Yu(t)).(x, 0,0 ))

Using the continuity of 771 o Ggo we have that lim;_,g Pyt y(t)).(x, v!,v?) exists. Since

a(x,0!,0?) exists. Using

(x,0',v?) is xg-semistable by hypothesis, (xq, p,' o #) = (xo 0 py,', 1) > 0. Conversely
we can use the equivariance and continuity of F o to conclude. The same arguments

apply if we start with (A, Zy,Z,) € RIZ;/I wr and replaces F o with Gyo and nlo Gjo
with e o Fo. O

We can now compare the defined varieties using F o

Theorem 1.29. For every orientation Q) of Gr and parameters (d, daf,e, A) € A;f X Or X Ar,

F,o induces an isomorphism T : Mg/A (d, df) = Mll;,)\ (Pyo (Vd) ,Fa (Vdf> )

Proof. Consider the morphism 7 : R?/,Vf — R

En(V)Fo (vf) induced by Fyn. This map

is linear and computing dimensions gives that dim (R‘r/ Vf) = dim (R£ A (V) Ea(V f)) .
Let us show that % is injective. Take (x,v!,v?) € Ker(%). By construction, We have that
= 0 and v> = 0. Moreover, A* =0 1mphes that Vx € I, Lpeprpm—y Yt @x, = 0.

Take X € Ir and h € Er such that i = x, then y]? # 0, and in particular x;, = 0. The
morphism 7 is then an isomorphism. Thanks to Proposition 1.19 and Lemma 1.28, we

have T : ygn‘l()t)"*ss =2 1 (A)975° which is the restriction of the isomorphism % to
me, - (A)9755 . Finally, Proposition 1.18 shows that ¥ induces the desired isomorphism.
]

When not specified, the deformation parameter is taken to be 0 € Ar and if the stability
parameter is not specified it is also taken to be 0 € Or.

1.5 Important results for McKay quiver varieties

In this section, we recall important results obtained for Nakajima’s quiver varieties
that will be used in the following chapters. The next Proposition is a reformulation of
[Nak94, Theorem 2.8] and of [C-B01, Section 1].

Proposition 1.30. Let Q) be an orientation of Gr and (d,df) € A + be dimension parameters.
If (6,A) € Q x A\ {0,0}, then the variety Mg , (d,df) is smooth and irreducible.

Proof. If A # 0, [Gin09, Theorem 5.2.2] gives that ./\/lg, \(d, daf ) is smooth and connected.

Moreover, if 8 #= 0, we have that /\/lg(d, daf ) is smooth and connected so irreducible
thanks to [Kir, Example 10.36] and [Kir, Theorem 10.35, 10.37]. O

One can easily compute the dimension of quiver varieties over the McKay quiver of I'
when the dimension parameter has a particularly nice form.

Proposition 1.31. If 6 € O} and if r is a positive integer, then the symplectic variety
M (roh) is smooth and has dimension 2r.

Proof. Let us apply [Kir, Theorem 10.35]. We have by definition that A(T)é(Tr) = 0
so that the dimension of M (ré") is 21’(5)20 =2r. O
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Semistability becomes a simpler condition for 6 € ;.

Lemma 1.32. Tuke 0 in ©f .
(x,0',0%) € Rr qf 15 0- semzstable if and only if for all x € Ir and for all S, C V2, if

<Vh € E_I’, xh(Sh/) C SynandVyx € Ir,Im( X) C SX)’ then @XGIF X = Ve,
Moreover (A, Z1,7) € Rzrv[ wf 18 -semistable if and only if for all I'-submodules M’ of M, if
A(Xgq @ M) C M and Im(Z,) C M/, then M' = M.

Proof. Let us proceed by contraposition. If we have that for all x € Ir, S, C V)? such

that it is stable by x, that Im(v}) C Sy and that @, Sy S V¥ Let us construct

yu: C* — GL(d) such that lim;_,0 A(t).(x, v!,v?) exists and such that (g, ) < 0.
For each ¢ € I, consider Sé a supplementary subspace of Sg in Vg . Define for each

¢ € Ir and each Vt € C*

d 0
(1 OSg ‘ = 1ids§i> € GL(V§)

Now, we use the fact that VC € Ir, S¢ is stable under x and Im(v i,) C Sg, to have the
existence of lim;_,q 1¢(t).(x, v, v?). Moreover there exists x € Ir such that dlm(SL) >1
so we have that (xg, u) <0 Wthh contradicts Proposition 1.27 .

Conversely, take a one-parameter subgroup u such that lim; o u(t).(x, v!,v?) exists.
For all x € Ir, consider the eigenspace decomposition of y acting on V)‘g = Diez V("l)C K

meaning that Vt € C*,y(t)|v&,k) = tkidv&,k)' For all k € Z denote by Vd = eBxelr V)‘(ik

so that V4 = @y Vd Moreover, for j € Z, denote by Vg = B> Dyer V, Then

we have V>] @XEIr (0>i)" -
Let us prove that for all k € Z, V¥, is stable by x. Take h € Er, then x;, : V{i — V/, can

be decomposed into the direct sum @, 5)cz2 xif’s) where x](f’s) : V(d n V(h// )- From

there, for t € C*, u(t).xp = Ly 5)cz2 ts_rx}(lr’s). The limit of p(t).x;, when t tends to 0,

exists if and only if xilr's) = 0 for all pairs (7,s) such that s < r. This gives that Vgr is

stable by xp forall h € E_r The same argument shows that the existence of the limit
u(t) -0y Limplies that Im (v ) c Ve ¥>o forall )( € Ir. To resume, for each x € Ir we have
an x-stable subspace V4 >0 C Vd and Im(0}) € VY ¥ ~0- Then by hypothesis, v, =vi.

The conclusion follows (xo, 1) 2 0.
For the second statement, take (A, Z1,7Z;) € RIII/I f which is #-semistable. Take M’

a I'-submodule of M stable by A and containing im(Zl). Thanks to Lemma 1.28, we
know that G;n (A, Zy,Z,) is 0-semistable. For each x € Ir, consider S, = Homr (X,, M)

which is a subspace of Homr(X,, M). Since A(Xgq ® M') C M’, we have by con-
struction of Gy that Vh € Er, (GyQ(A)h) (Sjy) C Spr. In addition, we also have
that Vx € Ir,Im(Gyn(Z1)y) C Sy, since Im(Z;) C M'. Let us use the first equiva-

lence of this Lemma to deduce that Vx € Ir, S, = Homr(X,, M), which implies that
M’ = M. Conversely, using Lemma 1.28 it is enough to show that Gyo(D, Z1,Z,) is

6-semistable. Denote x* := Gyo (A). Suppose that we have for each x € Ir a subspace
Sy of Homr (X,, M) such that Vi € Er, x2(Sy) C Sprand Vy € Ir, Im(Gya(Z1)y) C Sy
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Consider now M" = ep(@yer. Sy ® Xy ) which is a I-submodule of M. This submod-

ule is stable by A. Take x € Ir, and k € Er such that i/ = x. By construction of xA, we
have

Vf € Sy, xi (f) = Ao (idx,, ® f) o 75
Now

Y. xp(Hoyy =) Ao(idx,®f)od) oy,
heEr, W =x heEr

=Ao (idxstd ®f) © Z ggyg
heEr i =x
=Ao (idXstd ®f)

The last equality follows from Lemma 1.14.
Then using the hypothesis on x*, we have for all (¢, f,z) € Xqq X Sy X Xy

Atef@) =), w(Htez)eM

heEr,h' =x

Finally, using the fact that Vx € Ir,Im(Gya(Z1)y) € Sy it is clear that Im(Z;) C M".

By hypothesis, we have M’ = M and in particular that Vx € Ir,S, = Homr(X,, M)
which shows that Gy (A, Zy, Z5) is 6-semistable. O

Let us finish this section by recalling an important isomorphism between quiver va-
rieties over McKay quivers. The explicit realization described in Remark 1.13, gives
geometric insights on the set of dimension parameters Ar, the set of stability param-
eters Or and the set of deformation parameters Ar. In fact, (Ar)** = Q(Tr). From
now on, we will identify 6 and 6(Tr) and let us also denote for d € Ar |d|r := |-

Concerning @r, we need to introduce P§(Tr) := {h € br|Vx € Ir, (ay, h) € Q}. Letus
shorten 6V (Tr) to 6. We can then identify Ar with h}:/Cé' and Or with P (Tr)/QdY
in the following way

o PS(TQ/Q(SFV — Or
' AY = (X = (ay, AY))
. by /CoT — Ar

A e (e (A Ry))

Since (ay, 6y = 0 = (67, &,) for all x € I, the morphisms x and x" are well defined
and it is easy to check that these are isomorphisms of Z-modules.

Definition 1.33. Let us define a W(Tr)-action on Ar, ©r and Ar. Denote by s, € W(Tr)
for x € Ir the generators of this affine Weyl group. Taked € Ar, 0 € Orand A € Ar

(Zheﬁr,h/zx dyr) — dy if x =¢ # Xo
(sx-d)e = (Chegrw—y @) —dy+1 ifx =C=xo
de else

0(x)+6(&) if3InecEr,h =xh"=¢
(sx-0)(¢) = 4 —0(x) ifx=2¢
6(&) else



34 Chapter 1. Quiver varieties over McKay quivers

AMx)+A(E) ifFheEr, W =xh =¢
(5x-A)(8) = § —Ax) ifx=¢
A(E) else

Remark 1.34. The group W(Tr) acts by reflections on PQ\Q/(TF) and on hj. Moreover

(5}/ and 67 are stabilized by W(Tr). The actions defined on ®r and on Ar turn the
isomorphisms x* and x into W(Tr)-equivariant isomorphisms. Moreover, the action
on Ar corresponds to the one defined in [Nak03, Definition 2.3] in the special case of
double, one vertex framed quivers and it is linked to the natural action by reflections
on hr (denoted *) in the following way. Thanks to the remark at the end of [Nak03,
Definition 2.3], we have

V(w,a) € W(Tr) x Q(Tr), w * (Ag — &) = Ag — w.a (1.1)
where A denotes A, .

One important isomorphism between Nakajima quiver varieties for dimension, sta-
bility and deformation parameters that are linked by the actions of W(Tr) defined in
Definition 1.33 was discovered by George Lusztig [L00, Corollary 3.6], Hiraku Naka-
jima [Nak03, Theorem 8.1] and Andrea Maffei [Maff, Proposition 40].

Proposition 1.35. Let (d,0,A) € Al" x ©f* x Ar, and w € W(Tr), such that w.d € A{.
We then have an isomorphism

Maffy g, o Mo (d) = M,

w.0,w.A

(w.d)
of algebraic varieties.

As for quiver varieties, when A = 0, let us shorten Maffgle, Lw tO Maffgle,w. Finally, Ivan
Losev [L12, Lemma 6.4.2] has proved the following result.

Proposition 1.36. Let (d,60) € Af x Of ", and w € W(Tr), such that w.d = d. There is an
isomorphism
Mait - M5(d) = ML ()

of algebraic varieties over M (d).



CHAPTER 2

DECOMPOSITION OF I'-FIXED POINT
LOCI

The Jordan quiver is the quiver with one vertex and one arrow. The name of this
quiver comes from the fact that, over an algebraically closed field, the classification of
the representations of this quiver is given by the Jordan normal form of a matrix. We
will define an action of the group I' on this quiver variety and describe the irreducible
components of the I'-fixed point locus of the Jordan quiver variety for nonzero stability
or nonzero deformation parameter. The irreducible components will be identified with
McKay quiver varieties. After introducing the Jordan quiver variety in the first section,
the second section is dedicated to the construction of a morphism from the I'-fixed
point locus of the Jordan quiver variety to the representation space R}, for a I-module
M built out of the I'-fixed point. In the third section, we will build a morphism from
a McKay quiver variety to the I'-fixed point locus of the Jordan quiver variety. Finally,
the last section binds these constructions together to prove the main theorem of this
chapter. The setting developed in Chapter 1, will be of great use in this chapter.

2.1 McKay and Jordan quiver

From now on, we will be mainly interested in two types of double framed quivers.
The first quiver is Qry, the double framed McKay quiver attached to the fixed finite
subgroup I of SL,(C). To be more specific, the double quiver of Qr framed at the
vertex xo will be the main player. The second quiver is the Jordan quiver that will be
denoted Q,

Let us denote G, the underlying undirected graph. Consider Q,; the double framed
quiver of G,

35
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Recall that we have fixed an integer n > 1. Let us denote Mg ) (n) := /\/lg/}\(n, 1) and
A5 (1) := Mg5 (n, 1) for (6,A) € Q x C.
Lemma 2.1. The group GL(C") acts freely on M$(n) and on M3 (n).

Proof. Using the result [Kir, Example 10.36], we have
Mi(n) = {(« B,0',0) € Ms(C)? x (€")?[[, ] = 0,Cla, plo" = C"}

If ¢ € GL(C") such that gag™ = &, gg™ " = B and gv' = v!, then g is the identity
morphism on C[a, o' which shows that ¢ = id. The action on M3 (n) is then free.
The GL(C")-action on M3 (n) is also free thanks to [Wil, Corollary 1.5]. O

Remark 2.2. If 6 is nonzero, we have My (n) ~ M3 (n), thanks to [Kir, Lemma 10.29 &
Theorem 11.5]. In addition, if A is nonzero by rescaling we also have

M3 (n) = Mi(n)

Furthermore, thanks to Lemma 2.1 and the definition of semistability (Definition 1.21),
it is clear that for each 6 € Q*, M1(n) = My 1(n). We know [Kir, Theorem 11.5] that
00(1) = (C2)"/&,,. In the end, for each (§,1) € Q x C we have

Ms(n)  ifA#£0
sa(m) = Mj(n)  ifA=0andf #0
(€)"/&, if(6,A) = (0,0)

Fix a couple (§,A) € Q x C\ {(0,0)}. As a result of Remark 2.2 and [Kir, Lemma
10.29], if 6 # 0 we do not lose generality by assuming that 6 > 0.

Definition 2.3. Let us define a GL,(C)-action on M§ , (n). For ¢ = (ccz Z) € GLy(C)

and (a, B,0',0%) € Mg, (n)
g.(a, B, ol 02) = (aa +bB, ca + dp, ol vz)
Remark 2.4. It is easy to check that this action commutes with the G(n) = GL(C")

action. The GL;(C)-action then descends to Mg , (n).

2.2 Deconstruction

In this section, let us start with (&, 8, v!,v?) € M;/A(n)r. Let Ay gbee; @ a+ e, ® B an

element of Xsq ® End(C") and denote by A, g the image of A, g though this chain of
canonical isomorphisms

Xgq ® End(C") = Hom(C, Xgq) ® Hom(C",C") = Hom(C", Xgq ® C")

When the couple (&, B) is defined by the context, we just write A instead of A, g. For
each y € T, there exists a g, € GL(C") such that

v.(a, B, vl,vz) =gy.(a, B, vl,vz) (2.1)
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Note that thanks to Lemma 2.1 the element g, is unique. Consider now the following
group morphism

r — GL(C")
g -1
Y= 8y

This morphism equips C" with a structure of I'module. Denote this I'-module by M?.
We can reformulate (2.1) as follows

VyeT,v.(a,pB, 01,02) = a('y*l).(zx, B, vl,vz)
Lemma 2.5. The morphism A is I'-equivariant.

Proof. Take x € M“ and 7y = <Z Z) € T, using equation (2.1), we have the following

equalities

which then gives

{61 ®a(gy ' (x)) = e1® gy " (an(x) + bB(x))
er @ B(gy " (x)) = e2® g (ca(x) + dp(x))

Summing these two equations provides exactly that A is I'-equivariant. O
Consider the morphism
Xstd ® Xstd —T XX()

det : <r1> - (51> e risy — ras)
r2 52

We now have everything, let us define A4 : Xyq ® M? — M as the composition of
the two following maps

Xgq ® M? 1994 X4 ® Xgq @ M7 2 e

Lemma 2.6. The morphism A? is T-equivariant.

Proof. This follows from the equivariance of A and of det. O

Finally, v! defines an element Z? of Homr(X,,, M7) since Vy € I,0! = o(y71)ol.

In the same way, v*> defines an element Z¢ of Homr(M, X,,). Bringing everything
together gives the following Proposition.

Proposition 2.7. For each («, B,v1,02) € M;A(n)r, (A4, 79, 72) is an element of R .
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2.3 Reconstruction

Let us turn it the other way around. Take a I''module M of dimension n. Consider the
morphism

XXO —T Xstcl ® Xstd

ted : 1 = e®e—e®e

Take (A, Z1,Z;) € RY, and let Ap be the composition

M ted®Id Xopq @ Xopq © M Id®A Xopq @ M.

Lemma 2.8. The morphism Ay is I'-equivariant.

Proof. Since ted and A are I'-equivariant, A, also is I'-equivariant. O

Define (axp, Ba) € End(M)? such that for all m € M
Ap(m) = er @an(m) +ea @ pa(m)
Let us denote Rj, := R%’,XO. We can now consider the following linear map

R VI RS,
M: (A/Zl/ZZ) = (“A/ﬁA/ZLZZ)

Lemma 2.9. The map 1} is Autr (M)-equivariant.

Proof. Take g € Autr(M) and (A, Z1,Zy) € RY,. By definition of the action of Autr(M)
on RY,, we have that (g.A),, = §Ae,¢ ! and (g.A)e, = gA,,g~ 1. Since ap = —A,, and
Ba = A, it is clear that, by definition of the GL(M)-action on R},, the map TEA is
Autr(M)-equivariant. O
Proposition 2.10. The map T, induces a map 1y, \p = My | 0 (M) — Mg, ().

Proof. First let us explain why 7, (M} (M) C M3 (n).

Take (A, Z1,Z,) € RY,. By construction ay and B, are respectively the morphisms
—A,, and A,,. We then have

AABA — Bata + 21722 = —De) Ay + Ae) Aoy, + 72175

This computation shows thatif (A, Z1, Z;) € /\;lgusr(M),then (ap, Ba, Z1,Z2) € /\;l;(n)

Let (A,Z1,Z;) be an element of My, +(M). If A # 0 then Remark 2.2 gives di-
rectly that 4 ,(A, Z1, Z5) is 6-semistable. Take (A,Z1,Z;) € ML(M). If 6 = 0 there
is nothing to show. If 6 # 0, we assume that 6 > 0. The Lemma 1.32 implies that
Z1 # 0 and using [Kir, Lemma 11.6] we have that ay and S5 commute. To show that
(«n, Ba,Z1,2Z) is O-semistable, using [Kir, Example 10.36], it is enough to show that
M = Clap, Ba]Im(Z,). Let S = Cla, B]Im(Z;), the construction of ap and B and the
fact that Im(Z;) is a I'-submodule of M, makes it clear that S is a I'-submodule of M.
Moreover, if x = x1e1 + x2e2 € Xgq and s € S, then A(x ® s) = x1Ba(s) — x2ap(s) € S.
So, using Lemma 1.32, we have that S = M. The morphism 7}, is Autr(M)-equivariant

(Lemma 2.9) . It then induces tg, AM Mg st (M) = MG, (n). There remains to show



2.4. Synthesis 39

. r ) a b
that tg’A’M(MI(;,Mr(M)) C Me,/\(”) . Indeed, if (A, Z1,72;) € RRA, v = (c d) erl

and m € M, then Lemma 2.8 implies that

7-(e1 @ ap(m) + e, ® Pa(m)) = e1 @ ap(y.m) + e2 @ Ba(7y.m)
From there, we have

{waam) +bBa(m)) = an(r.m) {m(m> +bBa(m) = 7 s (y.m)
v-(cap(m) + dpa(m)) = Ba(y.m cap(m) +dpa(m) =y~".pa(y.m)

~—~—

2.4 Synthesis

Let us now connect the last two sections. Let L} , be the following algebraic variety

{(zx, B,vt, 0%, o) € /\;l(',,)\(n) x Repr, | Vy €T, 7.(a, B, ol,0%) = o(y7H).(a, B, 01,02)}
and define
* Pon: Lg//\ — /\;l(;’A(n)
* poa Ly, — Mg ,(n) =rmopga
® qoa: Ll(;,)\ — Repr,

Let the group GL,(C) act by conjugacy on Repy , and diagonally on Lg, ,- The maps
Pox and gg 5 are GL,,(C)-equivariant maps. Moreover, note that pg 1 (Ll(;, A = Mg A(n)r.

Lemma 2.11. If (a, B,',0%,0) and (a, B, v, v%,¢") are both in Lg,Af then o = o’

Proof. From the assumption, we have Vy € T o(7).(a, B,0!,v%) = o/(7).(a, B, 0!, 0?).
We can then use Lemma 2.1 and Remark 2.2 to deduce that o = ¢”. O

If o € Repy , recall that we denote by M? := C" the I''module induced by ¢.

Definition 2.12. Let 0 € Repy , be such that 0y 1(0) # @ and define

o q;’}\(a) — R
0N (a,B,01,0%,0) — (AA%!%,Z%,ZEJ)

where (A%, Z39,73) is as in Proposition 2.7.

Proposition 2.13. If o € Repy. , such that qq , () # @, then &} , <q;i(a)) = ML (M),

0,167
Proof. Take (a,B,v!,v?,0) € g5 (0), by construction Al = B and A2 = —x. We then
have
AANE — AQAL + Z978 = —Ba + ap + 0"
This proves that if («, §,0',0%,0) € g, (0) then &y , (4, B,0',0%,0) € ML (M7). If

0 = 0 it is clear that kg,A,U(oc, B,vt,v?,0) € MSMF(M”). If now 6 # 0, thanks to
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Remark 2.2, we do not lose generality by assuming that A = 0. Moreover, recall that
in the case 6 # 0, we can reduce to the case where 6 > 0 so that Lemma 1.32 can be
used to show that (A%, Z%, Z9) is 6-semistable. Take M’ a I-submodule of M? such that
A (Xgq ® M") € M and Im(ZY) C M. Let us show that M” C M'. Since the element
(a, B, 0!, 0?) is in M§(n), we have that [a, f] = 0 and C[a, BJo! = M. Take m € M?,

we then have a polynomial P € C|x,y] such that P(«, §)v' = m. Since « = —AZ, and
B = AL, m =P(—AZ, Alt)v. By hypothesis v! € M’ and using the stability of M’ by A

we can conclude that m € M.

To finish, let us prove the other inclusion i.e. if (A, Z1,2Z) € ./\;lg A (SF(M‘T) we need to

show that (—A.,, Ae,, 21, 25,0) € Lg/ - Take v € T, then a quick computation gives

,)/‘(_AL’Q/ Aellzll ZZ) — (_A')/*lqlAr)/ Zl/ ZZ)
= (=0(7) B0 (7), 0 (7)Ao, (), 0 (7)1 21, Zoo (7))

7181,

The last equality comes from the I'-equivariance of A, Z; and Z,. O

Consider now «} , , : g1 (0) — /\/lg 257 (M7) which is onto thanks to Proposition 2.13.

Proposition 2.14. For each o € Repr , such that qg_’}‘((f) # @, the following diagram com-

mutes
-1 Kg,A,a T o
qB,A(U) ’ M@/A(sr(M )
lpe,A
(.9,)\ (n)

Proof. Take (a, B,0',v?,0) € g, ;(0). By construction one has

T T 1.2 1.2
T\, M7 <K6,/\,(7(‘X' g, o ,a)) = (&, p,0°,0%)
which shows that the diagram commutes. O

For ¢ € Repr , and for x € Ir, let df := dim (Homr(X,, M”)). Denote the character
map by
Repr, — Ar

charr : g0

Let fl? := charr(Repy ) which is just a combinatorial way to encode Charr, the set of
all characters associated to n-dimensional representations of I'. Moreover for d € A%,

denote by C; := charp 1(d) the set of all n-dimensional representations that have char-
acter ), c . dyx- Note that if we take o € Cy, then C; is just the GL, (C)-conjugacy class
of 0. With that notation, we have

Repr,n = I_[ Cd
de Al

Remark 2.15. The set At is equal to {d € A{||d|r = n}.
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Denote by A7, = {d € Alt|g, 3 (Ca) # @}. Ford € Af ), recall that we can asso-
ciate an Ir-graded vector space V¥ := Dyerr C’. Denote by M“ := Dyer V)‘g ® Xy the
I'-module associated to d.

Definition 2.16. Take d € Af g ;. Let us define the variety ML= poar (qg, }\(Cd)>.

Remark 2.17. Note that /\/lg = Ppo. (q;j(a)) for any o € C; since g, and gy, are
GL,(C)-equivariant.

Theorem 2.18. Let (6,A) € Q x C\ {(0,0)}. For each integer n and each finite subgroup T
of SL,(C), we have the following decomposition into irreducible components

M(;,/\(”)r: H Mg

n
deAw, A

Proof. Take d € A, and let us first show that M} is an irreducible and closed set

of Mg A(n)r. Take o € C;. Proposition 1.30 gives that ./\/lg/ 45t (M) is irreducible and
since MY = 1\ 110 (Mg N 5F(M‘7)), we have that M is irreducible. To show that M},

is a closed set of Mg , (n)r, note that L}, , is connected and that fig ) is injective thanks
to Lemma 2.11. The image of pg ) being My A(n)r, this implies that

oA <L1(;,/\> = ( 5,A(”)r)

The group GL,(C) acts freely on M , (1) (Lemma 2.1), which gives that 77 is a smooth
morphism. The group I being a finite group, we know that Mg A(n)r is smooth and

in particular 77! ( 9 A(n)r> is smooth. Thus, the morphism fig) becomes an iso-
morphism of algebraic varieties between L} , and 717! < 0 A(n)r>. Let us denote by

Pyl ( eA(n)r) — L , its inverse. Consider now

= | r
Tor = qoACPgp T ( o (1) ) — Repy .

Since g ) is GL,(C)-equivariant, we have 7, : My A(n)r — Repr , / GLx(C).
Here is the big picture

qe,A

Ll(;,A » Repp,, —— Repy, / GL,(C)

> /
WHPBM T

It is then clear that
T (Ca) = poa (794(Ca)) = M
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which proves that MY is a closed set. Indeed C; is closed because all representations
of I are semisimple since I' is a finite group.

Finally, we have to show that Mg A(n)r = Udear,, MY which comes for free

M(;,A(n)r: U Te/\ (Ca) = U Mg

deAm N deA?/ef N

Proposition 2.19. For each d € A}, , and for each o € Cy
r r T
lG,A,M(T : MB,/\(SF(MU) — Md

is an isomorphism of algebraic varieties.

Proof. The morphism 11(;, M 1s injective. Using Proposition 2.13 and 2.14, we have

Md = [B/\M‘T(MBMT( ))

Moreover, the variety Mg is smooth. Indeed, thanks to Theorem 2.18, we have that
./\/lg is an irreducible component of the smooth variety Mg , (n )r Furthermore, since

(1 ) has a finite number of irreducible components, thls implies that MY is open.

Finally, using Theorem 1.29 and Proposition 1.30, we have that MY (M) is con-

0,A6T (
nected. Summing it all up, we can now conclude that i} , , - is an isomorphism of
algebraic varieties. L



CHAPTER 3

IRREDUCIBLE COMPONENTS OF
HL AnD %L

In the previous chapter, we have studied the I'-fixed point locus of the Jordan quiver
variety Mg , (1) when (6,1) # (0,0). In this chapter we will first use Theorem 2.18
to retrieve the irreducible components of the Hilbert scheme of n points in C? and of
the n'" Calogero-Moser space. In a second part, a combinatorial description of the
indexing set Ap 4, will be given. To do so, we will work with the McKay realization

(Remark 1.13) and a new statistic on the root lattice Q(Tr) will be introduced.

3.1 Hilbert scheme of 1 points in C?

On the one side, denote the Hilbert scheme of 7 points on C2 by H,, which is
{I C Cl[x,y]|I is anideal and dim(C|x,y|/I) = n}

John Fogarty showed [Fo68, Proposition 2.2 & Theorem 2.9] that H, is a smooth con-
nected 2n dimensional algebraic variety. The algebraic group GL,(C) acts naturally
on C?, thus on the coordinate ring C[x,y]. This action induces a GL,(C)-action on
H,. Our fixed group T being a finite subgroup of SL,(C), H}, the locus of T-fixed
elements of H,, is also a smooth algebraic variety. For I € H, the n-dimensional
vector space C[x,y|/I is a representation of I'. For x € Charr,, let us denote by

HyX = {I € HL|Tr(C[x,y]/I) = x}. On the level of sets, we have the following
decomposition

Ho= ] M.~
x€Charr
In what follows, we will show that this decomposition lifts to the category of algebraic

varieties and that every nonempty H)/X is an irreducible component of H}. Let us
construct a morphism between H,, and Mj(n). Given an ideal I € H, consider the
following two linear maps

o« 1. Cloyl/T = Clxyl/l o« ol Clyl/I = Clyyl/I
* P — xP L P — yP

Denote v! = 1 € Clx,y]/I and define

H, — M3 (n)

I~ (mimf,0!0)

H:

43
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Proposition 3.1. The morphism H is a GL,(C)-equivariant isomorphism.

Proof. The fact that H is an isomorphism is proven in [Kir, Theorem 11.5]. Let ¢ = (i Z)
be an element of GL,(C) and I € H,. Then

C[x,y]/[ — Clx,y]/g.1

Vi p P

is an isomorphism. It is clear that v—1(v8!) = v!. A simple computation gives

- 1
v loms ov:ami—i—bm;
1o m8l oy = onl I
v omy ov = cmy +dm,

which shows that H(g.I) = g.H(I).
U

Remark 3.2. If d € A}, note that M is equal to H(H)%) where & := Yxelp dyx is an
element of Charr ,. We also have |d|r = kg, = n.

Corollary 3.3. For each integer n and each finite subgroup I of SL,(C), we can decompose the
T-fixed point locus of the Hilbert scheme of n points in C? into irreducible components

r _ I,g
Ho= 11 Hu*
deA} 4

Proof. Applying H! to Theorem 2.18 and using Proposition 3.1, we get this decompo-
sition into irreducible components. O

3.2 Calogero-Moser space

On the other side, i.e. when (6,1) = (0, 1), let us introduce the Calogero-Moser space.
Denote the nh Calogero-Moser space by %, which can be defined as

{(X,Y) € M,,(C)?|XY — YX + I, is a rank 1 matrix} / GL,(C)

where GL,(C) acts by base change on X and Y. George Wilson showed that %, is a
smooth, connected affine algebraic variety of dimension 2n [Wil, Section 1]. To describe
the GL,(C) action on %, in a natural way, we need a slightly different model. Let
Vy := C" be the reflection representation of S, S := {s € &,|dim(Im(s —idy,)) = 1}
the set of reflections in &,,. Let us denote by T(V,, @ V;’) the tensor algebra of V,, & V.
For each reflection s € S, let us choose two nonzero elements a) € Im(s -idy,) and
as € Im(s -idy:). Let Z, be the center of the algebra (T(V,, & V;i) X &,) /I, where I,
is the ideal generated by

{lx, N (x,x) € (V)Y U{ly, ¥ 1l(wy') € VY U{lx yl+ Y as(y)x(a))s|(x,y) € Vi x Vi }
seS

Thanks to [EG, Theorem 1.23], we have an isomorphism EG : Spec(Z,) = %,. Let

the group GL,(C) act naturally on C2. Note that V, ~g, V, which implies that

C[V, ® V] x &, ~C[C*® V,] x &,. This gives a natural GL,(C)-action on Z, and
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on %, using EG. The isomorphism [EG, (11.12)] applied to our special case gives that
. Mi(n) — %,
(B v,w) — (ap)

Lemma.

is an isomorphism. By construction, we have the following

Lemma 3.4. The isomorphism C is an isomorphism of GL, (C)-varieties.
For d € A", let us denote by %14 := C(MD).

Corollary 3.5. For each integer n and each finite subgroup T of SL,(C), we can decompose the
T-fixed point locus of the n'™" Calogero-Moser space into irreducible components

r_ rd
Zn= 11 %a
deA}

Proof. Apply C to Theorem 2.18 and use Lemma 3.4 to obtain this decomposition. [J

3.3 Onthe parametrization sets A} , |

Fix (6,A) # (0,0) and let us now give a combinatorial model of the indexing set Af g ;.
Denote by G;° the McKay graph without the vertex xo and all arrows going in or out
of this vertex. The lattice Ay 0 .= AGFO is then identified with the root lattice Q(Tr)
where Tr is the type of the Dynkin diagram G 0. Recall that for a € Q(Tr) we have
denoted by t, € W(Tr) the image of a by the isomorphism W(Tr) x Q(Tr) = W(Tr).
In the following, we will denote the fact that there exists k € Z, such thata — b = kc
for (a,b,¢) € (h%)°, by a = b[c] .

Lemma 3.6. Forall (a,d) € Q(Tr) x Q(Tr), we have t,.d = d — a [6"].
Proof. Thanks to relation (1.1) and [Kac, Formula 6.5.2], we have
trd=ANg—tox (ANg—d)=d—a+ (d,o¢)[6"]
Since d € Q(Tr), (d,5y) = 0 by definition of &Y. O

Lemma 3.7. For each d € Q(Tr), there exists a unique integer r such that d and ré' are in
the same W (Tr)-orbit for the . action from Definition 1.33.

Proof. Take d € Q(Tr), then a := d — do6" € Q(Tr) and thanks to Lemma 3.6, t,.d
is an element of the desired form. Now suppose that there are two integers r; and
7o such that r16% and 6! are in the same W (Tr)-orbit. Since 0T is in the kernel of
the generalized Cartan matrix of type Tr, 8! is fixed under the action of W(Tr). This
observation reduces the W (Tr)-orbit of 718" to the Q(Tr)-orbit. There must then exist
a € Q(Tr) such that t,.r;67 = rd'. Using Lemma 3.6, t,.r16" = r16" —a [6'], we can
conclude that a = 0 and that r; = r». H

Definition 3.8. For d € Q(Tr) let the weight of d be the unique integer r such that rs"
and d are in the same W (Tr)-orbit. It will be denoted by wt(d).

The following proposition establishes a bridge between quiver varieties and combina-
torics.
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Proposition 3.9. Let (6,A) € ©f " x A{™. Foreachd € Ar
ML) £ D <= wt(d) >0 «— M (d) #0

Proof. Using [Nak98, Theorem 10.2] (or [Kir, Theorem 13.19]), the variety /\/lg(d) is
nonempty if and only if Ag — d is a weight of the basic representation L(Ag) of the
Kac-Moody Lie algebra of type Tr. Moreover, using [Cart05, Theorem 20.23] we have
that the set of weight of L(Ay) is the following

{Botr = Gln) = 08Ty € QT ke Zoo)

Lemma 3.7, tells us that there is w € W(Tt) such that d = w.(ré") with r = wt(d).
Since o' is fixed by the action of W(Tr), there is a € Q(Tr) such that d = t,.(ré").
Thanks to [Kac, Formula 6.5.2] and the definitions of 6" and A, we have that

tox (rot) =ré" —a+ %(a,a)dr

Using relation (1.1), we can conclude that d is a weight of L(Ay) if and only if r > 0.

In addition, we know that both M}, (d) and M (d) are hyper-Kahler reductions [King,
Corollary 6.2] and [Nak94, Theorem 3.1]. Using the rotation map defined in [Gor08,
Section 3.7], we have that these varieties are diffeomorphic. By the first equivalence,
we have that M (d) is nonempty if and only if wt(d) > 0. O

Theorem 3.10. For each integer n and each finite subgroup T of SL,(C), the set indexing the
irreducible components of HY, and of XL are equal

A?,l = A?,l = {d € Aierh" = n,Wt(d) > 0}

Proof. Take d € A% C Ar and let us reformulate combinatorially the definiton of AZ.
Thanks to the proof of Theorem 2.18, d is in Af  , if and only if ML is nonempty. Since

MY = 15 ) po (ME’MF(M”)) for any o € Cy, it is nonempty if and only if M;Mr(d)

is nonempty. Applying Proposition 3.9 first for € = 1 and then for A = or, gives the
result. O

From now on let us denote Af | = A}, by A}. To finish, let us give a simple expression
of the dimension of the irreducible components M} for each d € Al

Proposition 3.11. For each d € A}, the variety MY, has dimension 2wt(d).

Proof. Take d € A!. There exists wy; € W(Tr) and ry € Zx such that wy.d = 76"
If r; = 0, it is clear that the dimension of /\/lg is 0. Now if r; > 0, Proposition 2.19
gives that MY is isomorphic to M} (M) for o € C4. Moreover, Theorem 1.29 gives
that M (M?) is isomorphic to M} (d) := ML (d, xo). We can now use Proposition 1.35
and Proposition 1.31, to conclude that the dimension is 2. O



CHAPTER 4

SYMPLECTIC RESOLUTIONS OF C%" /T,
AND 710(H})

Recall from introduction that with I' and 7 we have build a group I', = &, x I and a
symplectic singularity V! = C**/T,. Gwyn Bellamy and Alastair Craw have classified
all projective, symplectic resolutions of )} in terms of quiver varieties [BC20, Corollary
1.3]. Moreover we have shown, in Chapter 3, that for each integer k > 1, the irreducible
components of ] can be described in terms of quiver varieties. A natural question
then arises. Given X — VI a projective, symplectic resolution, is it possible to find an
integer px and an irreducible component of ng that is isomorphic to X?

To answer this question, this chapter is decomposed into two sections. In the first
section, we recall the description of all projective, symplectic resolutions of c? /T,
done by Gwyn Bellamy and Alastair Craw. In the second section, we will explain how
to describe these resolutions as irreducible components of the I'-fixed point locus of
the Hilbert scheme of points in C2.

4.1 Chamber decompositioninside Ot

In this section, we will make use of the R-vector space @R := Homz(Ar,R). Let us
first recall the notation used in [BC20]. Let F be the following simplicial cone in @K

{p € OF[0(s") > 0,x € Ir \ {xo},0(x) = 0}
For d € Ar, let us denote d* := {# € @R|9(d) = 0}. Consider the following set of
walls in @R
Wy = {05} U {(mo" +a)t|w € O(Tr), —n < m < n}
Definition 4.1. A connected component ¢ of (OX) \ U.. W, ¢t will be called a GIT
chamber of Or. Let us denote by @ ® the union of all GIT chambers of ®R.

Remark 4.2. Let F™8 := @ ° N F and note that by construction of F, F*# is a union of
GIT chambers.
We can now reformulate the main result [BC20, Corollary 6.4] as follows.

Theorem 4.3 ([BC20]). For each projective, symplectic resolution X — YL there exists a
unique GIT chamber € in F such that X is isomorphic to the quiver variety M&(nd") for any
0 € CNOr.

47
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Let us now come back to what has been done in Chapter 3 and to the realization de-
scribed at Remark 1.13. This is inspired by [Kac, Section 6.6]. Let us fix a real form
bR of br that contains {A) } U {&|x € Ir} and such that Vx € Ir,a,(hF) C R. De-
note by V the quotient space hX/Ré. By definition of &Y, (6!, 4)) is equal to 0. We
can then consider E := {h € V|(6',h) =1}. Let E® := {h € V|{(6',h) = 0}. Then
(E, E%) is an affine space in V. It is clear that E0 = Vect({&,|x € Ir}) but the family
{&y|x € Ir} is no longer linearly independant since }_, <, 571;&)( = 0. By definition, we
have Ay := Ay, € E. Denote T € Q(Tr) and ¥ € QV(TF) respectively the highest
root and coroot of the finite type Tr. Let QV(Tr)r := QV(Tr) ® R and consider the
following linear map

E0 — Q\/(TF)IR
: & if
A L {rxxv if X # X0
-7’ ifx =Xxo
This linear map is well-defined since 6 = &,, + 7" and it then induces an affine

map Aff : (E,E°) — (QY(Tr)r, Q¥ (Tr)R) such that Aff(Ay) = 0. The linear map Aff’
is surjective and by dimension is then an isomorphism. This implies that Aff is an
isomorphism. Recall that in Chapter 3, the natural W(Tr)-action by reflections on hr
has been denoted *. Since Vx € Ir, sy * &Y = &Y, let us equip V with this W(Tr)-action.

Lemma 4.4. The set E is W(Tr)-stable.

Proof. Let us take v € E. It is then enough to show that Vx € Ir, (6',s, * v) = 1. By
definition of 6': Vx € Ir, (6T, &y) = 0. We then have that s, *v € E. O

Proposition 4.5. The induced action of W(Tr) on QY (Tr)R via Aff is the usual action of the
affine Weyl group defined in [BLie02, Chap. VI, §2, no. 1].

Proof. It is enough to check that s,, acts on QY (Tr)R as t;vsr. Indeed, the element s,
acts naturally as an element of the finite Weyl group W(Tr), for each x € Ir \ {xo0}-
Take x € Ir, we have
Aff(so * (Ag +iy)) =AF(Ag + &y — By — (g, Bx) Ly, )
=y + T + (@, By )T’

The last equality comes from the fact that a,, = 6" — 7. O

For each v € ®(Tr) and each k € Z, L, := {x € QV(TF)1R|(0¢, = k} defines an
hyperplane in Q¥ (Tr)g. Let us denote by Wig := {Aff 1 (Lyi)|(a, k) € ®(Tr) x Z}.
Y ok

X (x = (X))

R =
»\/

We get an affine hyperplane arrangement in E. Denote by «,

UK

Note that E C k' (OR) = V.
Proposition 4.6. For each hyperplane v € Wy, "' (v2) N E € Wi

Proof. The set Kﬂv{l((STL) is equal to EY, which implies that Kﬂvzfl((SFL) NE = @. If
a € O(Tr) and m € [1 —n,n —1], then

i (moT + ) 1Y) NE = {v € E[{a,0) = —m} = Aff (Lo —m) € Wagt
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Remark 4.7. This Proposition implies that for each GIT chamber ¢ C Oy, k™' (€) N E
is a union of alcoves.

Let us now restrict our attention to the cone F.

Proposition 4.8. (i) If C; := {v € QY(Tr)r|Vx € Ir\ {Xo}, {(ay,v) > 0} denotes the
fundamental Weyl chamber in QV (Tr)R, then Aff(K]l\éfl(F )NE) =Cy.

(ii) If € C F™8 is a GIT chamber such that x, ' (€) N E is bounded then x, " (€) N E is an
alcove in E.

Proof. The first statement follows directly from the definition of Cr and F. Let us now
prove the second statement. Take € such a chamber. Use Proposition 4.6 to prove that

Ky, ' (€) N E is a union of alcoves. The definition of W, and the fact that x, ' (€) N E
is bounded imply that Kﬂv{l (€) N E is equal to exactly one alcove of E. O

4.2 Resolutions asirreducible components
Recall that in [BC20, Example 2.1], authors have introduced the following GIT chamber

¢, = {0 € OF|Vx € Ir, 0(x) > 0}

Remark 4.9. Itis clear that €, C F. Note moreover that K]l\{_l (€1) N E is bounded and
is the fundamental alcove 2 := {h € E|Vx € It \ {x0}, (&, 1) > 0and (7, h) < 1}.

Lemma 4.10. The vector 1 = x" (L,er. AY) € Orisin €.
Proof. By definition Vx € Ir,1(x) =1 > 0. O

The following proposition gives an isomorphism between quiver varieties for stability
parameters in the GIT chamber €.

Proposition 4.11. For each (6,d) € €4 x Af, MY(d) ~ M (d).

Proof. Using Lemma 4.10, we know that 1 € €. Use now [DH98, Theorem 3.3.2] to
obtain the result. O

Remark 4.12. Note that }, ;. AY is not in general in E. From now on, let us fix

6y € €. N Or such that Kv_l(eo) is in an alcove 2y C E. Thanks to Proposition 4.11,
we have My (d) ~ My (d) for each d € A},

For a given integer k, let us denote the set of all isomorphism classes of projective
symplectic resolutions of Y} by %! and by ZC} the set of all irreducible components
of Hi. Moreover, let #' := Uren %) and ZC" := Uren ZCk. Take now an integer k
and I € ZC;. Using Corollary 3.3, we know that there is an element d € AX such that
I = H,E’gd and using Theorem 3.10, we have a unique element r; € Z > and an element
wy of W(Tr) such that wy.d = ry6'. The image by «p; of the alcove wy * 2 is then
contained in a GIT chamber ¢;. Thus /\/lfuﬂl_60 (r467) is a projective symplectic resolution
of y}; (Theorem 4.3). Thanks to the two isomorphisms Maffg,llwd and Maffg,ao,wd and
Remark 4.12, we have that Mid.eo(MF) ~ /\/lgjd.l(rdér). The following map is then
well defined
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s zct — RT
: T,
I(d) == Hyt = ML, 4 (radh)
Remark 4.13. Note that BC does not depend on the choice of w,. Indeed, if w/, € W(Tr)
such that w’.d = r;6, then there exists wy € W(Tr) such that )} = wow,. Using

Proposition 1.36, we have Maff} walawp - ngd 1 (ra8h) = ML, (ra0") over Y} .
4 hatd . d'

Theorem 4.14. The map BC is surjective.

Proof. Take a GIT chamber € € F™8. Using Remark 4.7, we can choose an alcove ¢ C
E such that «} (¢) C €. For each 6 € «} (%¢) N Or, the variety M§(nd") is then a pro-
jective, symplectic resolution of VL. Thanks to Theorem 4.3, it is enough to show that
there exists an irreducible component Z¢ ,, € ZC" such that BC(Zgy) = Mg(nér) for
an element 6 € xy} (2A¢) N Or. The action of W(Tr) on alcoves in E is transitive [BLie02,
Chap. V, §3, no. 2, Th 1]. There exists then we € W(Tr) such that we * Kv_l(()o) € Ag.
The map " being W (Tr)-equivariant (Remark 1.34), we.0p € K (2e) N Or. Using the

T _1, we have

lsomorphlsm Maffnfsr,we-eozwc

M, 9,(10") 2 Mg (wg.(n6")) = M (wg.(nd"))

(U@.Bo

The second isomorphism comes from Proposition 4.11. Let p, ., denote the integer
|wg .(n7)|r and take Z¢ , := H™! (11 o e (MT(M7))) C le;n,wc which is an irreducible
component for any o € ngl.(msf)' O

Let us finally see on an example that BC is not injective. Take 7 to be equal to 2 and
I' to be 3, the cyclic group of order 3. This group is generated by w3 the diagonal
matrix diag({3,{; ') € SLa(C) where {3 is the primitive root of unity e’ In that case,
there will be 5 GIT chambers in F. For each i € [0,2], denote by s; the generator s_; of
W(TM) where T is the character of y3 that maps w3 to (3. Consider now w; = sps25152

and wy = wysg two elements of W(Tr). We have that wy.0y and w,.0) are in the same
GIT chamber

¢ :={0cOX0(") >0,V(ka)ecl—nn—1] x T (Tr),0(x +mds") > 0}

Moreover since w;l.(25r) # wy 1.(267), this shows that I(wfl.(25r)) # I(w, '.(207))
but these two irreducible components have the same images under BC.
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COMBINATORICS IN TYPE D

Let us now describe in a bit more detail the combinatorics of the parametrization set
of mo(HE). Forl > 1, let yl denote the cychc subgroup of SL,(C) generated by the
diagonal matrix diag(;, §,° ) where {; = e *F. When T is equal to y; a combinatorial
model using partitions has already been Constructed by Iain Gordon [Gor08, Lemma
7.8] and by Cédric Bonnafé and Ruslan Maksimau [BM21, Lemma 4.9]. In this chapter,
the type D and then the type E case will be studied. Type D corresponds to the class of
SL,(C) finite subgroups called the binary dihedral subgroups. Fix | > 2 and consider

BDzl =< wy, s > with

0 in
® Wy = (%l §£1> where (5 = el

-

The group /E}By is of order 4l. Let 1y; be the character of yy; that maps wy; to {p;. For

i € Z, consider x; = Indﬁg 2 TZI Note that yx; is irreducible if and only if i is not

congruent to 0 or / modulo 2I. If [ is even, the character table of BD, is

cardinality 1 1 2 ! l
10 -1 0 p
classes (O 1) (0 _1) wy(0<p<I)| s | swy
Xo+ 1 1 1 1 1
Xo- 1 1 1 B
Xr+ 1 1 (-1)? 1] 1
Xi- 1 1 (-1)7 1] -1
X k kpm
0 < ¥ ) 2 (-1)k2 2cos () 0| 0

If [ is odd, the character table of /55\1521 is

51
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cardinality 1 1 2 l l
10| /1 0 )
classes (0 1) <O _1> wy(0<p<I)| s |swy
Xo- 1 1 1 1 1
Xo- 1 1 1 1| -1
Xi+ 1 -1 (-1)P Ca | ~C4
Xi- 1 -1 (-1) ~Ca| G4
X k k
0< e . 2 (-1)k2 2cos(-FF) 0| 0

The McKay graph of /B\D/zl is a Dynkin diagram of affine type D;»

ot I+
1 2 3 z;1<:
0~ -

The irreducible characters are labeled by their index in the McKay graph. A partition
Aof nisatuple (A; > Ay > ... > A, > 0) such that [A| := Y] ; A; = n. Denote
by Py the set of all partitions of n and by P the set of all partitions of integers. For
A= (A1,..,Ar) € P, denote by Y(A) := {(i,j) € Z2,]i < A1,j < r} its associated
Young diagram. The conjugate partition of a partition A of n, denoted by A*, is the
partition associated with the reflection of }(A) along the diagonal (which is again a
Young diagram of a partition of n). For example, consider A = (2,2,1). Its associated
Young diagram is as follows

In that case A* = (3,2). A partition A will be called symmetric if it is equal to its
conjugate. Let us denote by P? the set of all symmetric partitions and by P;, := P*NP,,.
A hook of a partition A in position (7,j) € Y(A) denoted by H; ;y(A) is

{(a,b) e Y(A)|a=iand b >jora >iandb = j}

Define the length of a hook H; ;)(A) as its cardinal and denote it by h;;(A). A box
c = (i,j) € Y(A) isin the border of Y (A) if eitheri = 0 or j = 0.

Definition 5.1. For a given integer r > 1, a partition A is said to be an r-core if J(A)
does not contain any hook of length r. Let us denote by €, the set of all r-cores and by
¢ =& NP

BD 1 ifi=0%,0,1", 1
Note also that in this context 5)]?,1)2’ = ‘ )
' 2 otherwise

Recall finally the result of Theorem 3.10. For each finite subgroup I' of SL,(C) we have
indexed the irreducible components of Y, with the following set

t:={d € Al'||d|r = nand wt(d) > 0}
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We want to give a combinatorial description of A” . Let T be the maximal diagonal

torus of GL,(C) and T; := T, NSL,(C) be the one of SL,(C). In this chapter, we
will give a combinatorial description using partitions of the irreducible components of

HBD” To do so, restrict A”D to the irreducible components of H,, B2l that contain a
T;-fixed point. Let us show that this set is exactly the following subset of .A”

Dy

,T
ATt = {d € Al [0 <dy, —dy <landdy, =dy,_}

The goal here is to find a combinatorial model of A"~ gl The central object of study
21

will be the affine root lattice of type D;,, (which is the same object as the~coroot lattice
of type Dj, since it is a simply laced type) that we have denoted by Q(D;,) C h%ﬁ )
21

Denote by 7 := ay _ +ay,, +ay,_ + Y 2ay,, the highest root of the finite root system
of type Dj».

Definition 5.2. Define a bijection from the set Igp,, to itself

I — Izn
0o- : BDa BDy

X = Xo—-X
Define an automorphism of Dyn(D;,)

s, — lgp,

o s
“X X, Oop— (X)

This automorphism swaps the first two vertices (the one with the label 0 and 0~) and
the last two (with the label I and [ ™) and fixes all the others.

We can apply Stembridge’s construction [Stem] to the root system of type D;,, and
to the automorphism ¢. Denote the simple roots (B;)ico ) and (B} )ic[o, the simple

coroots associated with the root system ® (DY, ,). By construction

142
. 50:@¢X0++o¢)€0_ . %ZM
. Vie[[l,l—l]],,[%i:(xxi . Vie[[l,l—l]],ﬁivzﬁcxi

a +i
Vo TN+ T
. ﬁl — T A .

* Br=y, +ay._ 2

If A = (a;j) is a generalized Cartan matrix, recall that in the associated Dynkin dia-
gram, if two vertices (i, j) are connected by more than one edge, then these edges are
equipped with an arrow pointing toward i if |a;;| > 1. With those conventions, the root
system ®(DY, ,) has the following Dynkin diagram

I+2
O.i.l—'Q_ - - - {—_olzol

Proposition 5.3. CID(D;TH) is a crystallographic root system of type C;.
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Definition 5.4. Let Q(D7,,)[07] := Q(Dy,,) IT(Q(DY,,) + ax,. ) C Q(Dy4,). Written
more explicitly

Q( ~;7+2)[0+] ={ eIE Axtx € Q(Dl+2)‘0 < Ayt — s < land Ayt = Ay
x BF\DZI

}

1

Definition 5.5. Define the following map

T Q(Dﬁz)[oﬂ — QV(D;T+2) = QV(CZ)

io®ifi + Q. = (280 + )y + Lt aip) +2mBy
with g € {0,1}.
In type C;, we have 6(C)) := Bo + Y124 28; + B € Q(C)) and 6V (&) := YI_, BY € QV(C)).
Definition 5.6. For each x € Igp,/ leto.sy := s, (y)and extend this action to W (Dj42).
Let W(D; 1) := {w € W(Dj4,)|0.w = w} be a subgroup of W(Dy,,).

Remark 5.7. The set {so := sy, Sy, /51 := Sxy,-+-,S1-1 1= Sy;.1, 81 := Sy, Sy, | is a set of
generators of W(Dltz)”. Applying [Stem, Claim 3] to our situation, gives a group iso-
morphism from W (DY, ,) to W(D; ). Let us, from now on, identify these two groups
and refer to them as W(C;). This group acts naturally by reflection on Q(f)ﬁz) [07] and
QY(C)). Denote this action by .

Definition 5.8. Define a W(C;)-action on Q(DY, ,)[0"] the following way
Vi e [0,1],Va € Q(D],)[07],s;a :=s;xa + (5?047(0+

and a W(C;)-action on Q¥ (DY,

) similarly
Vi e [0,1],VB" € Q¥ (C)),si.p" :=si* B + &) By
A simple computation shows the equivariance of 7 with respect to the former actions.
Proposition 5.9. The map T is W(C;)-equivariant.
Remark 5.10. Note also that 7 preserves sizes

Va € Q(DY)[07], lalp, , = [T (@)l

— ~ ~ ~ ——W(C
Lemma 5.11. If 8" € 0% ¢ QV(C)), and k € Z, then (B¥ + k5" (C))) € koV(Cp) "

Proof. It is enough to check this on the set of generators {s;|i € [0,I]}. Fori € [1,1], the
action is the action by reflection. It is then linear and s; stabilizes k6" (C;). Fori = 0,
we can combine this fact

V(BY,B2) € Q“(Ci),s0.(Bi + B3) = s0-B{ + 5082 — Bo
with the fact that 9.6 (C;) = 6Y(C)) + By to conclude that

s0-(B" +k6"(C)) = s0.B” +kd"(Cy)
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5.1 gﬁzl-Residue

The T;-fixed points in H, are the ideals I) generated by {x'y/|(i,j) € IN?\ Y(A)} for
A a partition of n. These ideals are called monomial ideals. Among these ideals, the
ideals fixed by s € BD,; are exactly the monomial ideals parametrized by symmetric
partitions of n. In this subsection, our goal is to generalize the residue "of type A"
i.e. the usual residue of partitions to a residue of type D. The property that we want
to generalize is that in type A the residue of a partition A is exactly the multiplicity
vector of the character of the representation C|[x, y|/I, for the isotypic decomposition.
We then want to construct a map Resp between P$ and Q(D;,,). To do so let us first
introduce for k € [0, /] the functions dy : P}, — Z>.

Let YA, :=A{(i,j) € Y(A)|i-j =k 2]} for k € [0,2] - 1].

Definition 5.12. For k € [1,1] define di(A) := #(Y(A)x U Y(A)y—k). When k = 0,
consider dg(A) :=#{(i,j) € Y(A)|i = j} and do(A) := #V(A)g — do(A).

Denote

* dp(A) = N5+ do(h) — |15

do(A do(A
o dj(A) = B4 D).
We are now able to define the residue in type D.

Definition 5.13. Let the residue of type D be this map

Py — Q(Dy42)

Resp : 1-1 di(A) di(A
A= df)()\)“xw +dgy (A )"‘xof Yi—i : z "%JF l(z)(“)m +0‘x17)

Remark 5.14. Using the fact that the partition is symmetric, it is easy to see that the
image of Resp is indeed in the Z-span of the {ay|x € I3y } Note moreover, that

VA € Py, [Resp(A)lp, , = A =n

Example 5.15. Take I = 2 and consider A = (4,4, 3,2) which is symmetric and has the
following Young diagram

1|2

210"

107112
0f|1|2

then Resp(A) = (2,1,3,2,2).

Proposition 5.16. Forany A € P;, Resp(A) is the dimension vector of the BDyy-representation
C [x, y] /I)\

Proof. Consider (xi_yf)(l-’j)ey( A) a base of the representation C[x, y]/I). Since A is sym-
{(i,j) € Y(A)]i > j} and to the diagonal
(A) and consider V(; ; = Vect(x'y/, x/y’) a

metric, restrict the attention to )~ (A) :

{(i,j) € Y(A)|i = j}. Take first (i,j) € Y~
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subspace of C[x, y]/I). Let k be an element of [1,] - 1]. Foreach (i,j) € Y~ (A) such that
i-j = k[2I], we have Vi j) ~ED,, Xy, (recall that X,, is the irreducible representation of

35\1521 associated with the irreducible character xj). Moreover when i - j = 21 - k[2I], we
have V|, ; Xy, If k = I, then for each pair (i,j) € Y~ (A) such thati-j = [[2]],
~5by Xx+ ® Xy, - In the same way if (i,j) € y’(/)t\)/such thati = j[2],
Viij) ~ED,, Xyor @ Xy, - It remains to understand the action of BDy; on the diagonal.

k

~BDy
we have V(;

For eachi € Z >, wy.x'yl = xiyi and s.x'y’ = (-1)! x'y. These two computations show
that if i = 0[2], then V; := V(; ~pD, Xy and thatif i = 1[2], then V; ~Bby XK -
To sum it all up, the vector of multiplicities of the isotypic components of C[x,y|/I)
correspond to Resp(A). O

By construction Resp factors though Q(DY,,)[07]. For (a,b) € Z?, let rem(a, b) denote
the remainder of the Euclidian division of a by b. Thanks to the work of Christopher
R.H. Hanusa and Brant C. Jones [HJ12, Theoreom 5.8] we can endow &3, with a W(Cl )-
action. Let us quickly recall how this action is constructed.

Definition 5.17. For a symmetric 2/-core A define the C-residue of a box positioned at
line i and column j in the Young diagram of A as

rem(j - 1,21) if0 <rem(j-i,2l) <l
2l —rem(j-i,21) ifl <rem(j-1i,2l) <2l

Example 5.18. Take I = 2 and the same symmetric 4-core (4,4,3,2). The Young dia-
gram filled with the C-residue of each box gives

2
211

1
2
1
0

Y =1
(@)

Remark 5.19. Note that for each symmetric 2/-core A, the C-residue of each box of A is
always an integer between 0 and .

Definition 5.20. The action of W(C;) on €5, is defined on generators. Take s; € W(C))
and A € &5;. Note that there are only three disjoint cases. Either we can add boxes
with C-residue i, or we can remove such boxes or there are no such boxes. Define s;.A
as the partition obtained from A in either adding all boxes of J(A) with C-residue i so
that s;.A remains a partition or removing all boxes of J(A) with C-residue i so that s;.A
remains a partition.

Definition 5.21. The C-region of index k € Z of a symmetric 2/-core is the following
subset of )(A)

R = {(i,j) € YN)|(i - j) € {2kl, .., 2(k+ 1) - 1}}

More generally, we can define a shifted C-region. Let (ki) € Z? and define the h-
shifted C-region of index k

Rin = {(i,1) € YN)|(i-]) € {2kl +h,..,2(k+ 1) -1+ h}}
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Proposition 5.22. Resp : &5, — Q(D;’+2)[O+] is W(C))-equivariant.

Proof. Take A € C5; and denote Resp(A) = Vel d;c\ocx. Take i € [2,] -2] and let us
21

show that the number of addable boxes with C-residue i (counted negatively if they
are removable boxes) is exactly d?m LT d;éi_ L Zd%.
To prove this, we can proceed region by region. Using the fact that A is a symmetric

partition, we can restrict the study to half of the Young diagram. Fix an integer k €
Z>y. For each j € [0,], denote by d]Rk the number of boxes in Ry with C-residue
i. Recall that {(0,0) € Y(A)|b € Z>0} U{(a,0) € Y(A)|a € Z>¢} is the border of the
Young diagram )(A). There are three different cases. The first case is when there is
just one addable box in Ry which is in the border of (/\) This means that either
dlgkl = lek +1 gnd dlﬁkl = diy or d;gkl = df +1and d%kl = diy . We then get that
d%’kl + d;gkl —2dy = 1. The next case is when there is exactly one addable box in the
region Ry and it is nqt in thg border.. This implies that d;gkl = d%“kl +1and d%“kl = dézk.
Suming it up gives d%kl + d;gkl —2dy = 1. The last case is when there are 2 addable

boxes in Ry. One box must be in the border and we must be out of the border of J(A).
We then have that d;gkl + d%kl — 2dy, = 2. Coming back to the definition of Resp(A),

and suming, for each j € [0,[], all d]Rk on all regions Ry for k > 0 up gives the result.
The previous disjunction of cases will be referred to as the three-cases argument.
There remains to prove the equivariance for i € {0,1,/-1,1}. Apply first the three-
cases argument for i € {1,/ -1}. We then have that the number of addable boxes
with C-residue 1 and [ - 1 is respectively d + d%z - 207;‘(1 and d}' + d;éz—z - Zd%_ , Where
di =dj +di_anddy =dy +dy . The three-cases argument can also be applied
when i = [ and gives that the number of addable boxes with C-residue [ is d;}lf L 2d}.
Since the image of Resp is in Q(Df, ,)[0"], we have that dféﬁ = d%zf = @.

It remains to consider the cases i = 0. Take k > 0 and instead of working in the region
Ry, apply the same arguments as in the three-cases argument in the region R _; for a
positive integer k. For the region containing the diagonal (i.e. k = 0), we can apply the

three-cases argument, but since s9.0 = (1) I 1, there are d%zo P Zd%o , +1addable

boxes. Suming it all up gives that there are d;\c L 2d} + 1 addable boxes with C-residue

0. Finally we need to split d} back into d;‘co . and d)Acof' To do that, consider the parity of

dé. Indeed if dé is even then d?( =d? andifd}isodd, thend} =d? +1. O]
o+ Xo 0 Xo+ Xo

Proposition 5.23. T o Resp : €5, — oM QY (G)) is a bijection.

Proof. By definition, we have T (Resp(®@)) = 0 and the stabilizer of @ € €, in W((;)
denoted by Stabyye)(?) is equal to W(C;) which is equal to Stabw(cl)(O). More-

over, using Proposition 5.9 and Proposition 5.22, we know that 7 o Resp is W(C))-
equivariant. To conclude, it is enough to show that the W(C;)-action defined on &,
(Definition 5.20) is transitive. This has been proven in [H]12, Proposition 6.2]. O

Proposition 5.24. The following chain of maps
. gs ToResp v = n V(@ V(&
@ : € —F QV(G) T QV(C)/zs5V(C))

is a bijection.
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Proof. Consider the bijection oV o, QV(C;) which is the composition of these two
bijections

0" = w(e)/w(c) = QY(C

07 = W(G)/W(G) = Q7(G)
The second bijection boils down to the choice of a representative with coordinate 0

along B . Moreover, consider the bijection
QY(C)/zs¥(C) = QY(C)
p = B =B (G
We then have the following commutative diagram

SW(E) n » QV(C)) /28 (C))

\ /
QY(Cr)

From there, we can use Proposition 5.23 to prove that ¢ is a bijection. O

5.2 Combinatorial description in type D

We now have everything to give a combinatorial description of the set .A%%r

ags nTy __ ~o +
that, thanks to Proposition 5.16, Aﬁﬁzz = A%Bzz N Q(D; +2) [0F].
Consider the following map

1. Note

21

Theorem 5.25. The map € defines a bijection between A%%r

such that |A| = n [21] and |A| < n.

' and the 21-symmetric cores A,
21

Proof. First let us show thatifd € A%'gl then |e(d)| = n [2]]. Denote A := €(d), then
21

I e Z,T(d) = T(Resp(A)) + k6" (C))

. . T

In particular |7 (d)|¢, = |7 (Resp(A))|e, + 2kI. Now since d € A%f);, d|p, , = nand
using Remark 5.10 we have that n = |A| 4 2kl. Moreover, let us show thatif d € A%’\gl ,
21

then |e(d)| < n. Thanks to Lemma 5.11 and to the fact that 7 (Resp(A)) € 6W(C’),
-

we have that 7 (d) € k§V(C))
= W(Di12) ——=W({) . <o\t

d € K6(D; ) . Infactd € K'6(Dy,5) since d € Q(Df,,)[0"]. The map T

w(C

) ) and so k = 2K/,

sends 8(Dj5) to 26Y(C;), which then gives that 7 (d) € 2k'5V(C
thanks to Lemma 3.7. Since n = |A| + 2kl, we have thatk > 0 <= |A| < n. The map
€: A%gl — {A € &||A| = n [21],|A| < n} has now been proven to be well defined. By
21
construction, € is the converse map of Resp and establishes a bijection between .A%’g !
21

and {) € €A = n [21],[A] < n}. &

l). Since wt(d) > 0, there exists k' € Z>( such that
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Remark 5.26. Take d € A%%rl and A € P; such that I € HBP2ba 1 et 72, denote the

21
2l-core of A. We have, as a by-product of the proof of Theorem 5.25, that % which
is the number of 2/-hooks that we need to remove from A to obtain its 2/-core is equal
to 2wt(d).

Example 5.27. The set .A%%Fl is a proper subset of A% . If [ = 2, we can find for each

21 21

r € Z~ an irreducible component of 7—[832:*4 of dimension 2r that is parametrized by

8r-+4 8r+4,T _ 7 : BD
an element of A AZs 7 Letw = sy, sy 5y, € W(Tp,) and consider w.ré®4.

BD; ‘" BDj -
We have that (w.rd?P4), = (w.rsPPs)
2+

in .A%%LMH thanks to Proposition 5.16.
4

. TL which implies that this element is not

5.3 Absence of combinatoricsin type E

The binary tetrahedral group Ay is a finite group of order 24 and has the following
presentation

<a,b,c|a2:b3:c3:abc>
Let us denote by z := abc which is a central element of Ay. Note that z has order 2.
Take Gy a finite group of SL,(C) isomorphic to A4. The character table of Gy is

cardinality 1 1 6 |44 4 4
classes ((1) (1)) z|la|b|c| b | c?
X0 1 1 1 11 1 1
Y 1 116|835
P 1 118161465
o 3 [3[1]0[0] 00
Yo 2 20 1 [1]-1]-1
PXstd 2 2108|851 -85] -0
P Xstd 2 210 [551%]-4] -3

The group G4 has the following McKay graph of affine type Eg

The goal is here to study the combinatorics of the irreducible components of HS*. Let
us show that the irreducible components that contain a monomial ideal are fixed under
SL;(C). Let Xgq denote the standard representation of SL,(C) with its canonical basis
(e1,e2) and denote by By, respectively B, the stabilizer of e; respectively e; in Xgq. The
subgroups By and B; are the two Borel subgroups of SL,(C) containing T;.

Lemma 5.28. The finite group Gy is not conjugate to any subgroup of the normalizer of Ty in
SLy(C) denoted by Ng,(cy(T1). Furthermore, the group Gy is neither a subgroup of By nor
of By, the two Borel subgroups of SL,(C) which contain the maximal torus Tj.
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Proof. The representation Xgq ® X4 is isomorphic to the direct sum of the trivial rep-
resentation (generated by e; ® ef + e2 ® e3) and of the adjoint representation of SL;(C).
On the one hand, note that for the character xqq of A4, we have that (2, x?) = 2
which implies that the restriction of the adjoint representation to Gy is irreducible. On
the other hand, the restriction of the adjoint representation to Ngp,(c)(T1) is not irre-
ducible since the one-dimensional subspace of X q ® X, generated by e; ® e] —e2 ® €3
is Ngp,(c)(T1)-stable. Moreover, the one-dimensional subspace of Xsq ® X4 gener-
ated by e1 ® e; is By-stable and the one-dimensional subspace of X q ® X, ; generated
by e> ® e} is By-stable. O

Proposition 5.29. The subgroup G of SL,(C) generated by Ty and Gy is equal to SLy(C).

Proof. Thanks to Lemma 5.28, there exists x € G4 such that Ty # xT;x~ L. We then have
that the two subgroups T; and xTx~! are both irreducible and connected subgroups
of SL,(C). Let us denote by H the subgroup of SL,(C) generated by these two one-
dimensional tori. Thanks to [Hump, section 7.5], we know that H is a closed connected
subgroup of SL,(C). Since H is not equal to SL,(C), and is of dimension at least two,
H is of dimension 2. Using [Bor12, Corollary 11.6] we know that H is solvable. The
algebraic group H is then a Borel subgroup of SL,(C) containing T; and contained in
G. Moreover, thanks to the Bruhat decomposition [Bor12, Theorem 14.12], we know
that SL,(C) = BysB1 ][ By = BysBy ][ By. Combining the Bruhat decomposition with
Lemma 5.28, this gives that s € G. Thanks to [Bor12, Proposition 11.19], we know that
all Borel subgroups containing T are conjugated by the Weyl group of T; denoted by
W (T1) which is by construction, the group generated by 5 € W(T1). This implies that
all Borel subgroups containing T; are in G. Finally, using [Bor12, Proposition 13.7], we
have that G = SL,(C).

[l

Definition 5.30. A partition A is called a staircase partition if there exists a certain
integer m such that A = (m,m —1,...,1) - w

Proposition 5.31. The only SL,(C) fixed points of H,, are the monomial ideals associated with
staircase partitions of size n.

Proof. We already know that T;-fixed points are exactly monomial ideals. Moreover,
thanks to [KT, Lemma 12], we have that the fixed points under the subgroup B, of
GL;,(C) consisting of all upper triangular matrices are parametrized by staircase par-
titions. Since B, = T,B;, we get that B;-fixed points of H, are also parametrized by
staircase partitions and the result follows. O

Finally, the binary octahedral group (type E7) and the binary icosahedral group (type
Eg) both contain a subgroup isomorphic to A4 which then implies that the combina-
torics of fixed points which are also C*-fixed is the same as the one of SL,(C).
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TAUTOLOGICAL VECTOR BUNDLE

After studying the irreducible components of H} which also are the connected com-
ponents since HJ, is a smooth variety and after building a combinatorial model using
partitions for the indexing set of these components, we are now interested in the study
of the restriction to HJ, of two vector bundles over H,,. Let S be an algebraic variety. A
geometric vector bundle over S of rank 7 is the data of

* an algebraic variety X
* amorphismm7: X — S
* acovering (U;);c; of open affine sets of S

e foreach i € I, an isomorphism ; from 77~ !(U;) to the affine n-space on Uj;

such that for all (i,j) € I* and for all V = Spec(A) C U; N Uj, the automorphism
Pjo 1,01-_1 is given by a linear automorphism of A[xy, ..., x,]. A morphism ¢ : X1 — X,
is an isomorphism between two geometric vector bundles (Xy, 7y, {U}!}, {¢!}) and
(Xp, 12, {U2?}, {¢?}) of rank n if (Xq, 71y, {U}'} ]_[{LI].Z}, {y!} H{IIJ]Z o¢}) is a geometric
vector bundle on S and if ¢ is an isomorphism over S. We have a one-to-one cor-
respondence between isomorphism classes of locally free sheaves of rank n on S and
isomorphism classes of geometric vector bundles of rank n over S [Hart, Exercice 5.18].
Note that if F is a locally free sheaf of rank 1 on S, then the stalk of F at a points € S
is linked to the fiber of the associated geometric vector bundle V(F). Indeed, we have
an isomorphism of xs(s)-vector spaces

V(F)s = Fs ®oq, ks(8)

In this concise chapter, we will decompose the tautological vector bundle of H,
over a connected component of ), in terms of tautological vector bundles on Naka-
jima’s quiver varieties.

6.1 Tautological vector bundle

Let us start by constructing the tautological vector bundle over the Hilbert scheme of
n points in C2. The variety H, is isomorphic as a GL,(C)-algebraic variety to M3 (n),
the Nakajima quiver variety of the double framed Jordan quiver with stability param-
eter 1 and dimension parameter n (Proposition 3.1). Let V,, := C" be the standard
representation of G(n) = GL,(C) and consider the trivial vector bundle of rank 7 on

Mi(n)

61
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7T M3 (n) x Vy — M3 (n)

Denote this trivial vector bundle by 7:71 Moreover, let the group G(n) act diagonally
on Mj(n) x V;, and consider T, := (M3(n) x V;,) J/ G(n). Recall that we have defined
an isomorphism H : H,, — M3 (n) in Chapter 3.

Proposition 6.1. The algebraic variety T, is a vector bundle of rank n on M3 (n) and H*T,
is called the tautological bundle of H.,.

Proof. Using [FKM, Theorem 1.10], we get that the map M3 (n) — M3 (n) is by con-
struction affine. Recall that G(n) acts freely on Mj (1) (Lemma 2.1). We can now apply
[Pot81, Proposition 4] to finish the proof. ]

Note that this vector bundle can also be constructed thanks to the universal family
lying over the punctual Hilbert scheme in C2.

Let us now construct tautological vector bundles on quiver varieties associated with
quivers without loops. Take an undirected multigraph G = (Ig, Eg) without loops, a
vertex v € Ig and d € A} a dimension vector such that M% (d,v), the quiver variety as-
sociated with the double quiver of a quiver on G framed at v with dimension parameter
d and stability parameter 1, is nonempty. Recall that the group G(d) := [Ti¢;, GL4,(C)
acts by base change on the space of representations of the double and v-framed quiver
associated with G. Fix a vertex i € Ig. Let us construct the tautological vector bundle
at vertex i on M% (d,v). To do so, let us first recall some general results on contracted
products. Let G be a reductive algebraic group over C.

Definition 6.2. Let B be an algebraic variety and let 7 : E — B be a fiber bundle.
For (E, 7t) to be a G-principal bundle, the variety E needs to be equipped with a right
G-action such that

¢ the fibers are preserved i.e. 7 is G-invariant.

* there exists a G-equivariant trivializing cover of B i.e. there exists a cover of B,
(U;)jej by open sets, and for all j € ], there exists G-equivariant isomorphisms

. 77 1(U;) — U; x G such that the following diagram commutes
P j j g diag

it Uj)LLIij

_1(
ﬁl P1
u

Note that G acts on U; x G via ¥(u,&,h) € Uj x G?, (u,8).h = (u,gh).

Remark 6.3. Let 7 : E — B be a G-principal bundle. Then a G-equivariant trivializing
cover of B assures that the G-action on the fibers is free and transitive.

Definition 6.4. Let 7 : E — B be a G-principal bundle and V be a rational represen-
tation of G. Let E x V be the G-space with the action given by g.(e,v) := (e.g !, g.0)
for all (g,e,v) € G x E x V. We can then define the contracted product of E and V,
ExCV:=(ExV)/G.
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Proposition 6.5. If T : E — B is a G-principal bundle and V is a rational representation of
G, then E xC V is a vector bundle over B with fiber V.

Proof. We have an open cover of B := [Jjc; U; such that there exists G-equivariant
isomorphisms ¢; : 71 (U;) — U; x G for all j € ]. Consider the following diagram

E————B~E/G

Using the universal property of the quotient, we have 77 : E x® V — B. Let us denote
by [e,v] € E x© V the orbit of (¢,v) € E x V. For each b € B, 7~ !(b) has a natural
structure of vector space. Itis given by Ale, v] + [e, V'] := [e, Av + '], for each A € C and
for each ([e, v], [e,V']) € (n’l(b))z. Let us show that forall j € J, 7w~ 1(U;) ~ Uj x V.
Consider the following morphisms
UuxVv — o (U
(OF -1
b)) = g (b,1),7]

AN U)xV — UyxGxV — UxV
Y (e,v) = (¢(e),v)
(b,g0) = (bgo)

¥, is G-invariant and induces a morphism ¥; : 7~!(U;) — U; x V. By construction,

we have that ®; and Y; are mutually inverse isomorphisms. Finally, for each j € | and
2 T ()

each b € Uj, the morphism v ¢f1(b,1),0]

structure on 7~ 1(b), a linear isomorphism. O

is, by definition of the vector space

Let us come back to the quiver variety setting. Since the stability parameter 1 is posi-
tive, thanks to [Nak00, Proposition 2.3.2] (which can be reformulated as [Kir, Theorem
10.34]), we have that Mlg(d, v) — Mij (d,v) is a G(d)-principal bundle, .

Definition 6.6. Consider the rational representation V¥ := C% of G(d) which acts by
GL,,(C). Proposition 6.5 gives that T;(i) := M5 (d,v) x5 V is a vector bundle of
rank d; on MY (d,v). Tt is called the tautological vector bundle over MY (d, v) associ-
ated with the vertex i. Let us also denote by 7;(i) := M (d,v) x V.

Let us decompose H*7T, over an irreducible component of H}, using the tautological
vector bundles of quiver varieties. Fix an irreducible component of H,. This is the
same data as a dimension parameter d € A} (Corollary 3.3). Let the group G(d) act on

T T
Vs = Dery Vf@(s" by GL(V)? ) on each summand V)‘é@(s’“. Since |d|r = n, we have an
isomorphism
g VIO =5V,
Endow V, with a G(d)-module structure such that ¢; is a G(d)-equivariant isomor-
phism. Take ¢ € C;. Denote by 7,F := ﬁwimf' Moreover, using the isomorphism T

built in Theorem 1.29 denote by T} := (T o4 ,/,)*T, which is a vector bundle over
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ML (d). We need also to consider the situation before taking quotients. Denote there-
fore 7% := (to ZIF\/F )*T.F. Since the McKay unoriented multigraph Gr has no loops, for
all irreducible character x € I, we can consider the tautological vector bundle 7;(x)
over M} (d). Define

~ r ~

'[)7_ . @Xellr Z?l(%)@éx — L - 7;1171

(xlv , 0 /ZX)XGIF = (xlv , 0 /(Pd(ZXGIr ZX))

Theorem 6.7. The map Dy induces a map D : @ cp. Ta( X)@‘S?l; — T,# which is an isomor-
phism of vector bundles over MY (d).

Proof. The map Dt is G(d)-equivariant since ¢  is. It then induces a morphism of
vector bundles D7 : @D, ¢y, 7}(}()@‘572 — T4, Moreover, using the fact that ¢, is an

isomorphism it is clear that D7 is fiberwise a linear isomorphism. This implies that D7

is also fiberwise a linear isomorphism and then is an isomorphism of vector bundles
over M1 (d). O



CHAPTER 7

PROCESI VECTOR BUNDLE

The Procesi bundle is another important vector bundle on the Hilbert scheme of n
points in C2. It has played a key role in the proof of the n! theorem [H01, Theorem
5.2.1]. The Procesi bundle induces an equivalence between the bounded derived cate-
gory of Tp-equivariant coherent sheaves on 4, and the bounded derived category of
(6, x Ty)-equivariant coherent sheaves on (C2)" [H01, Corollary 5.3.3]. This equiva-
lence of bounded derived categories has been generalized by Roman Bezrukavnikov
and Dmitry Kaledin [BK04, Theorem 1.1] to projective symplectic resolutions of V..
In this chapter, let us first present the construction of the Procesi vector bundle. In
the second section, a reduction theorem of the fibers of the Procesi bundle over a con-
nected component of H), as a (&, x I')-module is proven. This is a joint work with
Gwyn Bellamy. The initial inspiration for this theorem is [BLM06, Theorem 4.6] and
the intriguing fact that when I is the cyclic group with [ elements, the dimensions of
the isotypical components of the fiber of the Procesi bundle as a y;-module are con-
stant over the monomial ideal I if A is not an [-core. In the third section, a corollary
of the reduction theorem when I is y; is shown. Furthermore, in the fourth section,
proofs of edge cases of the reduction theorem are given when I’ is the cyclic group.
These proofs don’t involve the same arguments used in section 2 and are interesting
because they present the variety of approaches that we could use to understand the
(&, x u;)-module structure of the fibers of the Procesi bundle over HJ,. Finally, the last
section presents also reduction formulas when I is the binary dihedral group.

7.1 Procesivector bundle

The Procesi vector bundle is a GLy(C)-equivariant vector bundle on H,,. To construct
the Procesi bundle, we need first to introduce the isospectral Hilbert scheme. Let k be
an integer greater or equal to 1, and let &, the symmetric group on k letters, act on
(Cz)k by permuting the different copies of C2. The isospectral Hilbert scheme, denoted
by A}, is the fiber product of H; with (C2)¥ over (C?)*/&; endowed with the reduced
induced scheme structure

kK f k
(Cz)k/Gk (Cz) —k> (CZ)

a
Pkl lnk
Hie ——5— (€)'/&y

HkX

65
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The morphism oy is the Hilbert-Chow morphism. It is defined as follows

He — (Cz)k/Gk
I = Yyevaydim((Clx,y]/1)p)p

where the sum is formal. The morphism 7 is the quotient map. The scheme X} is
an algebraic variety. Marc Haiman [HO03, Theorem 5.2.1] has proven that py is a flat
morphism. This implies that the sheaf 2% := o, O x, is locally free and thus defines a
vector bundle on H;. This vector bundle is the k"-Procesi bundle. Note that by con-
struction the fibers of ¥ are, as G;-modules, isomorphic to the regular representation
of &y and in particular are of dimension k!. Let the group GL,(C) act naturally on

C2. Recall that this gives a GL,(C)-action on the Hilbert scheme H; and on (Cz)k. We
then obtain a GL,(C)-action on &} which turns ¥ into a GL,(C)-equivariant vector
bundle. Moreover by letting & act trivially on Hj, we have that all morphisms py, 0%,
7y and f are (S x GL,(C))-equivariant. Finally, note that for each connected com-
ponent of H}, the restriction of 9% defines a vector bundle. The fibers of this vector
bundle are then (& x I')-modules.

Let us finish this section by introducing common notation on representations of finite
groups. Let G be a finite group. Denote by R(G) the Grothendieck ring of the category
of finite-dimensional CG-modules and R&"'(G) the Grothendieck ring of the category
of graded finite-dimensional CG-modules. For V a given CG-module (graded CG-
module), let [V]g ([V]®), or just [V] ([V]8") when there is no possible confusion on G
denote the element in R(G) (R8"(G) ) associated with V.

O :

7.2 Reduction theorem

Letus fixd € A% To improve readability, denote by r; := wt(d). Considerdy = d — r40".
L,

Denote by gr := |dy|r. By construction wt(dy) = 0. The connected component nggdo

is of dimension 0 thanks to Proposition 3.11. Let us denote by I, the unique ideal of

Clx,y| thatis in Hgfﬂo C ng. Denote by U/ the following open subset of (C2)"

{(p1y - pry) € (CN{(O,001) |V, j) € [L 14 i # j = TpiNTp; = O}

Let Dy, = {Iz, N ﬂ]r.dzl I(Tp;) € C[x,y]|(p1,..pr,) € U}. For a commutative ring
R, if M is a R-module, denote by Anng(M) := {r € R|Vm € M,r.m = 0} and by
Suppg(M) = {p € Spec(R)|M, # 0}.

Lemma 7.1. The image of I, under g, is the point 0 € (C2)%" /&,
Proof. Consider the diagonal C*-action on C2
Y(t, (x,y)) € C* x C% t.(x,y) := (tx, ty)

This action induces a C*-action on Hg. which commutes with the I'-action. The Hilbert-
Chow morphism 0. becomes C*-equivariant. The fact that C* is connected and that
the irreducible component ngédo equals {I;,} implies that I;  is a C*-fixed point. This

ideal must then be mapped by 0y, to a C*-fixed point of (Cc2)8/ &g which gives the
result. O
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Lemma 7.2. The set Dy, is a dense open subset of Hy,

Proof. Take I = I, N ﬂ]r.dzl I(Tpj) € Dy,. Lemma 7.1 implies that V(I;,) = 0. We then
have that Vj € [1,74], V(I;,) NTp; = @, which gives an isomorphism of I'-modules
rq

Clx,y]/1~C[x,y]/1s, ® EPClx,y]/1(Tp;)
j=1

This isomorphism shows that I is of codimension gr + r4|I'| = n and that the character
of the T-module C[x, y] /I is ;. We then have that D, C H!%4 Consider now the open
subset of (C2)"alT|

(TP Tpry) € | (p, ., pyy) € U

It is connected since U/ is connected. This implies that Dy, is a connected open subset
of 1%, Moreover D;, has dimension 2r; which implies that D, = Hi, O

Fix (1, .., pr,) € Uf. Denote by J theideal V2, I(Tp;) and by Iy := Iy, N ] € Hy/*". Let

q:= (Tp1,...Tpr,) € (Cz)rdlf\ and p := (0,9) which is in 77, (0, (I;)) € (C?)". Denote
by S, the stabilizer of p in &, x I'. To improve readability, denote

o x0:= (I, 0) € X,
e x1:=(],9) € X,r|
o xP = (I,p) € Xy

o x(04) .— ((Ido,o)/ (]rq)) S Xgr X Xmlfl

Fix moreover I; € U? C H, and I, € u® c Hg, two affine open subsets. Since S,
is a finite group and I, is fixed by S,, we can suppose that U? is Sp-stable. Denote by
A4 = Oy (U?) and by A% := O, (U%). Moreover p, and pg, are finite morphisms
and in particular, these two morphisms are affine. Denote by B := O, (o, }(U?)) and
by B4 := Ox,, (pgrl(udo)).

Remark 7.3. By construction, | is an element of Hfdlf\'

Lemma 7.4. Let G be a finite group acting on an affine variety V over C. Let M be a fi-
nite dimensional C[V] % G-module such that Suppc(y(M) is a single G-orbit. Let q €
SuppCm(M) and denote by G4 the stabilizer of q in G. We then have an isomorphism of
(C[V] x G)-modules
-~ C[V]xG
M ~ IndC[V]qu(Mq)

Proof. The module M being of finite dimension, we can apply [Eis95, Theorem 2.13] to
obtain g : M = ®p65uppc[v] (M) Mp an isomorphism of C[V]-modules. For each g € G,

since Suppey; (M) = G.g, consider the following isomorphism of C[V]-modules

An/{q - Mg g

m .

gm
s g.s
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We then have

3€G/G,

Extend ¢ to an isomorphism of (C[V] x G)-modules. Finally, define
_ (C[V] % G) Dcvixg, Mg — Dgec/c, Mzqg

feg® - fogtt = B
The morphism ¥ is a well-defined isomorphism of (C[V] x G)-modules, which gives
the result by combining 1 and ¢. O

Lemma 7.5. Let R and S be two local noetherian C-algebras. If f : R — S is an unramified
morphism of local rings and M is an S-module that is R-semisimple, then M is S-semisimple.

Proof. Let x : R — C be the algebra morphism defined by the maximal ideal mp of R.
The module M being R-semisimple, M = {m € M|Vr € R,r.m = x(r)m}. The action
of S on M factors though S/mgS. Thanks to [Stacks, Tag 02GF], we have that S/mgS
is equal to the residue field of S, since the morphism f is unramified. The ring S/mgr$

is thus a semisimple ring which implies that M is S-semisimple. O
Denote by (([ZZ)r”llrIO = {(x1, 0 X, ) € (Cz)fdll"l |x; # xj}, the complement to the big
diagonal. We then have
X° N | (CZ)rdlﬂo ~ (CZ)rdW‘O
il = Frain ( R
d
Pfdml lﬂfdr
o _ r|° ~ r|°
Hrd\ﬂ = O'rd\ll"I ((Cz)rd‘ | ) P (Cz)rd| | /Sryir

g
rq|T]

The Hilbert-Chow morphism ¢, 1| is a resolution of singularities which implies that
on the smooth locus the morphism (T;;m is an isomorphism. This gives that fri,|1"\ is
also an isomorphism. Consider now

(o L (A

i -
' x —  (0,x)

The morphism / is finite since it is the composition of the closed immersion M - ()"
with the finite morphism (C2)" — (C2)"/&,. In particular, /1 is closed. We can then

consider h : ((Ez)rd|r| — Im(h).

Lemma 7.6. The morphism h is étale when restricted to ((Cz)r""rlo .

Proof. The fact that the morphism / is finite implies that / is finite. It is then enough
to prove that /1 is smooth. Denote by Z; := {(k1,k) € (Z20)*|0 < ki +k < n}. For
(kl,kz) € Z,—,l’_, let

n
Freoks (X1, X, Y, 0 Yo) 1= Y XY € C[(C2)"]S
i=1


https://stacks.math.columbia.edu/tag/02GF
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n
k
Po, = Y, ZOT2 € C(C) "% Zgrs1, o Zny Tops1, - Tl
i:gr-‘rl
Thanks to [Weyl, Chapter II, section 3], the set { fx, r,|(k1,k2) € Z, '} is a set of gener-
ators of C[(C?)"]S". Moreover, the set {Py, x,|(k1,k2) € Z;} is a set of generators of

C[(€2)*")nin . By definition

This gives that C[Im(h)] = C[Zg; 11, ..., Zn, Tgp 11, - T,] %" and in particular that
m() = (€2)""/&, 1 c (€)"/e,

This gives that the morphism / is the quotient morphism (Cz)mlf\ — (Cz)r‘iIFI /6, 1|
and that the restriction of & to (0:2)”"rl is smooth. Indeed, £ is finite and the &, -

action on (C2)" "1™ is free, which implies that (Cz)rd\Fl /&, r| is smooth.
[

The isospectral Hilbert scheme X, is a variety over H, x (C?)". This implies that the
n!-dimensional fiber of the vector bundle @"}d = P Qo xy, (I7) is a C[(C2)"]-

module. It is moreover an &, X I''module. This endows ?}’"}d

(C[(C?)"] % (&, x T'))-module. Let us now construct ® : O, ,» — (@ﬁd
morphism of rings. This can be done locally around I;. Let m, € Spec(A?) be the
maximal ideal of A? corresponding to I; and m,» € Spec(B?) be the maximal ideal

of BY corresponding to x”. Now the stalk P~ B ® 44 A’,ild. Moreover, the fiber of

with a structure of

) asurjective
p

the associated vector bundle is isomorphic to Q’Gd ~ Pl pa 1 Al L /my, A, L which is
d

then isomorphic to BY/m ,B?. The localization of (% ) at the maximal ideal associ-

L
ated with p in C[(C?)"] is isomorphic to B*/m;,B? @ BY, ~ B%, /m;,B%,. We finally
have Oy, x» ~ B%, which makes the construction of the desired morphism very natu-
ral. Indeed, it is the quotient map B;‘gp —» Bg,, /mp, chl,,.

Furthermore, let us denote by V the following open set of (C?)"

{(51, s Sgr, Tt1, ., Ttyy) € (C2)'|V(i,j,v) € [Lgr] x [1,7a] X T,5; # 7.t;}

Applying [HO01, Lemma 3.3.1], we have

5. U X fur) (V) > f(V)
o (Lw), (W) — (INT,(u,u'))

which is an isomorphism over (C?)". Denote by a : f; (V) =5 (fy x Srar)"HV)
the inverse morphism of B. By construction, p € V. The isomorphism a induces an
isomorphism of local rings
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Denote ig;. : Xg. — Xg. x &), r| the morphism that, set theoretically, maps (I,u) € X,
o ((Lu),(],9)) € Xgr X X, |- The morphism ¢ is a closed immersion. On the level of

f o .
stalks, we have i, : O X % X, x00) (@) Xy 00 Let us denote by K the kernel of this
map.

Proposition 7.7. There exists a morphism 8 : Oy 0 — (9"’}01) such that the following
' p
diagram commutes

K

l

~ P
(@) — O — (P]]
Ko} Xy x 00 An 2 ( |Id)

xP P
i
‘xol 5]
Oxgr,xo

Proof. 1t is enough to show that ? (ai,,([()) = 0. Since the point g is a collection of 7

free and distinct I'-orbits, g € (C2)rd|r‘o. We then have the following isomorphism of
local rings

1 ﬁ . ° ~
(ld)(gr X fm\ﬂ)x(o,q) : O;(grx(cz)fd\r\ ,(xo,q) — OXnger‘r‘,xm'q)

Note that (id Xy X fr ,r|) is @ morphism over (C%)". To keep the notation concise, we

will denote the preceding isomorphism by fﬁ(o, ,- This new piece of information gives
K =~ » K
2 N Ji N o
" O, o — 7 Oxw )
fY(O,q) o d D‘xp P

% (Cz)rd\r\o,(xolq)

¥ ‘io
OXgr/xO
If we denote for all i € [1,71], X; and Y; the coordinate functions on (C2)", then
K= <Xgr+1 - Xgr+1(‘7)ngr+1 - Ygr+1(Q)r~-r Xn — Xn(q), Yu — Yu(q))
Let us denote X; — X;(g) by X; and Y; — Y;(q) by Y;. Now the kernel K is equal to
(i Kers ), £y (Tgea)s o £y (K), £y (T)
Proving that ® (ocfc,, (K)) = 0 amounts to showing that for all i € [gr + 1, 1]
P (e, (f (X)) = Xilg)
P, (fF 1 (Y2))) = Yilq)

Let us focus on the previous picture. Zooming in the left part gives
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) «—— C[(C?

X x (€2)all1” (x0,4)

|

O, v 4 C[(C?)"],

ﬁ £ P
Tpxp a}j Ty
n
Oy,.1, «———— C[(CH)"]"

The upper square commutes because the isomorphism is coming from an isomorphism
over (C2)". Now zooming on the right gives

O, — Ox, — \Id)p

The fact that the preceding diagram commutes is clear once we come back to the de-
scription in terms of affine open subsets

Ii
d d d
—» B p/mld xP

mId \ B /
my, /M1 A
The ring Oy, 1, then acts on (Q’ﬁ ) viary, (1) ~ A‘,f”d /mIdAdmId' In particular (@ﬁd)p

is a semisimple C[(Cz)n]S” -module since the action of the ring C[(Cz)n]g” is defined
using U?d . Thanks to Lemma 7.6, we know that the restriction of / to (Cz)rdmo is étale
which in particular implies that this morphism is unramified. Now Lemma 7.5 with
R =C[(C*)"],and S = C[(CZ)rdlr‘o]q implies that (@"}d)p isa C[(CZ)rdmo]q-semisimple
module. Finally, since (Q’Gd)p is a finite dimensional C[(C?)"]-module supported at p,

using [BComAl 11, §4, no. 4, Corollary 1], we have that for all i € [1, 7] the endomor-
phisms of (% i ) given by the action of (X; — X;(p)) and of (Y; — Y;(p)) are nilpotent.

In particular, we have for all i € [1,n] that the endomorphisms of (%

i ) given by the

action of (f£(X;) — X;(p)) and of (fi(Y;) — Y;(p)) are nilpotent. Combming semisim-
plicity with nilpotency gives the result. O

Remark 7.8. Note that B is automatically surjective.
Lemma 7.9. The morphism 8 : O Ky 20 (@l’}d) is Sp-equivariant.
’ p
Proof. By definition of p we know that S, the stabilizer of p in &, X T, is a subgroup

of &g X &, r| X I. Let A : T — Sp, be the morphism of groups such that the following
diagram commutes
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Sgr

/T\

(Ggr X Grd|r| X F)

\T/

where x is the trivial group. Note that this diagram implies that A(T') is a subgroup of
(&,,r| X T'). We then have a group isomorphism

Ggr xI' = Sp
Fro(oy) = oA
(x1,7) 0 (x1,x2,7)
For each (0, 7) € &g x I' and for each ((I,u), (J,u")) € Xgp X &, r|, define

(o, 7)-((Lu), (I', u")) := ((v.Loyu), (v.I', A(y)u'))

This endows the variety Xg. x X, | with an (&g x I')-action. The morphism g is

naturally Sy-equivariant since | € Hr and g is A(T')-invariant. By construction, we

alT|
have that the open set V of (C2)" is Sp-stable. By definition of A, B is Sy-equivariant
which implies that zxip is Sp-equivariant. Finally, the fact that U“ has been taken S,-
stable and the fact that I; is (&, x I')-fixed, implies that ? is S p-equivariant. In the end,
wehave that B: Oy .0 — (?}’"}d)p is Sy-equivariant. O

Denote by m;, € Spec(A%) the maximal ideal corresponding to I .
y mi, P p & 0

Lemma 7.10. If (9‘” )p Ssr is a 1-dimensional vector space, then the ideal my, @ Xy 0 is
contained in Ann@Xgr,x0 (2 "}d)p).

Proof. To show that m; 4o @ X0 C Ann@)(gr,x0 ((Ql’}d)p), it is enough to show that the

ﬁd)p is supported at ;. De-

note by e € (@"}d)p the identity element of this ring. By hypothesis, we have that

(?}b"} )p Ser is equal to C.e. Moreover, (9"’} )p S8r is an A%-submodule of (@ﬁ

the group &, acts trivially on A%. We then have that Ann 4, (% | Id)p) = Ann 4, (C.e).

ideal Ann ,q4, ((@Gd)p) is maximal since the A%-module (%
)p since

Finally, this gives that Ann ,4, ((@l';d)p) is maximal since the annihilator of a simple
module is always maximal. O

Theorem 7.11. Foreach I € ’Hﬁ'@d

[?l]e,xr = [IndG" “ (g’ﬁr )@, xr

Proof. The variety Hy o being an irreducible component of H}, on which &, x T acts
trivially, it is enough to prove this equality for I = I;. The support of 9’“ asa Oy, -

module is {(Iz,x) € X,|m,(x) = 0u(ly)} = o, (Id)} Using [BComAl, II, §4, no. 4,
Proposition 19], we have Suppq(cz)n] (@ﬁd) = fu(p~Y(I;)). The support of 9’“ as a
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C[(C?)"]-module is in particular an &,-orbit which is I-stable, thus an (&,, x T')-orbit.
Thanks to Lemma 7.4, we have

[P )euxr = [Ind?,,”xr((%’}d)p)]enxr (7.1)

It remains to show that [(Q’Gd) s, = [@ﬁ; Js,- Combining Proposition 7.7 and Lemma
p 0

79, wehave B : O Xy P (?}’"}d)p an Spy-equivariant surjective morphism such that

this diagram commutes

~ ¢ n

o)) — Oy ——2 (P[1)
o

xP

i
‘xol B

O
Xgp,x0

Xgr Xer‘r‘,X p

Equality (7.1) gives that Indggr ((@ﬁd

Sy In particular we have that ( ﬁd)pegf is 1-dimensionnal. Now thanks to Lemma

7.10, we have my, Oy 0 C Amn@XWO ((QZ’Gd)p). Consider the morphism 8 such that

) ) is isomorphic to the regular representation of
p

the following diagram commutes

8
OXgr,xO » ( ﬁd)p

|

OXgr,xO /Ann@Xgrlx0 ((Q’Gd)p)
| Id) p) directly gives that B is an isomorphism of Sp-

modules. Moreover, the ring O Y /mi, (@) PYRSURL isomorphic to (@‘glg ) - IfweletS,
’ ’ 00

The definition of Annp, (o1
8r-*

act on C[(C?)®"] using ¥, we can use [Eis95, Theorem 2.13] to obtain an isomorphism

of (C[(C?)®'] x S,)-modules between @ﬁg and (@ﬁ; ), since the C[(C?)®']-module
0 0°0

Q’ﬁ;o is supported at 0. In particular, we have that O Xy 20 /mj 4 O Kgp 0 is of dimen-
sion gr!. Moreover, thanks to equality (7.1) we have that the dimension of (QZ’"}d)p is

)p) and that (2!

IId)P and

also gr!. Now, the fact that mj, Oy_ 0 C Annp, ((@ﬁd
g 8r*

@ Xy 0 /mi, @ X 10 have the same dimension, implies that

M, O“Ygrrxo - Amoxgr 0 ((gilrfld )v)

Intheend, we have that Oy 0/my, Oy, ,0and (@ﬁd

which concludes the proof. O

)p areisomorphic as S,-modules,

7.3 Type A study

In this section, let us explore what Theorem 7.11 gives when I' is of type A. Fix an

integer | > 1. Recall that {; denotes the primitive I root of unity e’"", and that
w; € SL»(C) is the diagonal matrix diag(CZ,gfl). The cyclic subgroup of order / in
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SL,(C) is y; =<w;>. Assume, in this section, that I' = ;. For a partition A € P,
denote by ;(A) the I-core associated with A. Denote by g;(A) := |vy;(A)| and by
ri(A) = M the number of hooks of length I that we need to remove from A to
obtain g;(A). In addition, let n(A) denote the following quantity Zl):“l (i-1)A;. Recall
that 1. (1) denotes the length of the hook H.(A), for ¢ € Y(A). Denote by 1; the charac-

ter of y; such that 7;(w;) = ;. Denote by w; ,(A) € &, the product of the 7;(A) cycles
of length /

(gl()\) + 1, ey gl(/\) + l)(n —1 + 1, ...,1’1)
and by C;,(A) the cyclic subgroup of &, generated by w;,(A). Consider also the
subgroup of &, ng;l := Bg, x C;,(A). Denote by 6; the character of C; ,(A) such that
6;(w; ,(A)) = ;. If A is clear from context, we will shorten ;(A), gi(A), r1(A), wy ,(A)

and C;,(A) to v, g, 11, w;, and C; .. Let us also use the following notation. For V a
given (&g, x C;,)-module let

1-1

Ve, xc,, = Z(:) [le &Qf]eg,xcm
j=

where V].l is an &g -module for each j € [0,/ - 1] and X denotes the external tensor

product. Moreover, if A is a partition of n, let us shorten 9’@, the fiber of the nth-
Procesi bundle at the monomial ideal Iy to 2. To state the main result of this section,

we need two lemmas.

Lemma 7.12. Let C; and Cy be two groups isomorphic to y;. Take cq € Cy and c; € Cy
generators of C1 and Cy. If we denote respectively by 11, T» and T3 the characters of respectively
Cy, Cyand ((c1,¢2)) < C1 x Cj that respectively map c1, ¢ and (c1, ¢2) to {j, then

R
Vje[o,I- 1]],Ind§:(1€?%>(ré) = ;:)T{ 'K
1=

Proof. Take (p,q) € [0,1 - 1]2. On the one hand, Frobenius reciprocity theorem gives

p q C1xCy
(1] X1, Ind i (

{(c1,c2)) 3)) = (Res( 2 (¢} K1), 7))

((c1,02))

L A
—<T3 ,1'3)
5]
= 0piq
On the other hand
I-1 Py 4 i i [-1 p
Y (R, 1 RKp) = 2(5]._1.5,3
i=0 i=0
_ 5P
o 5]'—61

]

Lemma 7.13. Let A be the cyclic subgroup of &,,; X y; generated by the element (wy ,, wy). If
0; denotes the character of A such that 8;((w ,, w)) = ; then

Gy ~ 171 Gy P .
vj e [0,1-1],Ind," " (6]) = Y Ind " (6] ) R 7]
i=0 "
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&, : .
Proof. We have Ind IIXW(GJ) =Ind, ’lxgl (In dCl”Xm(G])). Using Lemma 7.12

Id rllXVl<I dclanl 9] ZI dCIrllX]’ll 9]_i|XTli)
=0

Crn Xt Xm
11 1 ;
—Zlnd "o R
i=0

We can now state the main result of this section.

Corollary 7.14. For each partition A of n, we have the following decomposition of P}

[P & xpy = ZIndG 2 @;6;) X6 ])@Tz}enxm

Proof. With the notation established at the beginning of this section, the group S, in-
troduced in section 7.2 is equal to &g x A. Thanks to Theorem 7.11, it is enough to
show that

I-1
Guxu g S 8 7
[Ind NP Sux = ZInd Z(;) @'nl) X6, >@Tl}6nxﬂl
j
We have

Gn Sn = ¢/
[Indg Xy’(@gl 6n><yz ZI dG nyAl 9}%)]-&9{)]6”#1

Moreover

—
—_

Indg Vs (ndg " (%) 1 8)))

Suxp 8\l s A
ZI dGH XAI( @')/ll)]lxel) GgIXGrllxyl

~.
I
o

~
—_

Suxu g\l Sy 1}t Af
Inngl Xérll XU ((9},)/; )] IX IndA : (91 ))

NT-
= o

1-1

Sy xXu g1\l S, j—i i
Innglxérllxy, ((9)711)]' Xlndcl,i, (6, ) X7)

N
Il
o

j=0

The last equality comes from Lemma 7.13. By gathering, we have

I-11-1 I-11-1
L L IndSr 1 (PR 1057 0]7) Be) = T T Ind Sy, (25))0] ) 1)
i=0j= i=0j

Finally, since every representation of G, is isomorphic, as &,-module, to its dual, for
each (i,j) € [0,1 - 1]?, we have

[Ind®™

wel ((g)%l); = 9{_1)] = [Ind

R
wi (@586 )]s,
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Remark 7.15. If one takes A = 7}, then r; = 0 and ng = ;. In that case, Corollary
7.14 is trivially true but isn’t furnishing any 1nterest1ng information. Note also that
Corollary 7.14 implies [BLMO06, Theorem 4.6] when the complex reflection group is
taken to be &, and I' is taken to be C; ,,.

The goal of what follows, is to prove Corollary 7.14 in two special cases without using
Theorem 7.11. To prove Corollary 7.14 in these two edge cases, let us use the represen-
tation theory of the symmetric group and symmetric functions. We will in particular
use [BLM06, Theorem 4.6]. The irreducible representations of &, are parametrized by
partitions of n. Denote respectively by V) and x, the representation space and the
character of the irreducible representation of &,, associated with A I n.

Definition 7.16. Let R be any finitely generated Z-algebra. For a given integer k, define
the ring of symmetric polynomials over R as A% := R(zy, ..., z;]%*. It is clear that using
the degree, Ak is a graded ring. Let us denote A% = @, Alfi ;- We have moreover

a ring morphism 7k A"Jr1 — Ak by mapping Xi+1 to 0. For each integer d, the

morphism 7t¥ restricts to a morphism nd AkJr1 — Ak r4 of R-modules. We can now
define the graded R-algebra of symmetric funct1ons

Ar:=@D 1@/\]1({,;1
d>0
In the following, let us shorten Az to A. Let us recall the notation concerning sym-
metric functions. For p € P a given partition, denote by p, and s, respectively the
power symmetric function and the Schur function associated with y. Define now the
plethystic substitution. We know that A ®z Q is generated as a free Q-algebra by the
family {pilk € Z>o}.

Definition 7.17. Take K a, finitely generated, field extension of Q. Take {s1,...,sm} a
set of generators of Ki.e. K = Q(sy,...,5y). For A € Ax := A®z K, and k € Z>
define py [A} to be the symmetric function A in the indeterminates s'lc, . sﬁi, z]{, Z’é, e

We can now extend the plethystic substitution to the following endomorphism
Ax — Ag
fo= flal
Remark 7.18. We will often do plethystic substitutions using Z := p; = ) > 2 € A.
Note that for all k > 1, px[Z] = px and so for all f € Ak, f[Z] = f.

A] :

If A is a partition of 1, recall that I, € H, is the monomial ideal associated with A. The
fiber 2} is a bigraded &,-module. Haiman introduced the transformed Macdonald
symmetric functions Hy (z; q, t) [HO3, Definition 3.5.2]. For ([V], [W]) € R(S,) x R(Sy,)

define the induced product [V].[W] := [In deliké (V®W)]. This product endows
R(6) := Br>0 R(Sk) and R&(6) := Py RE" (Gk) with a structure of graded rings.

Let us denote by Fr : R(&) =+ A the Frobenius characteristic map which is an iso-
morphism of graded rings. If A := @, ;)cz2 Ar;s is a bigraded &,-module, denote by

Fr(A) the following element }_(, ) cz2 Fr(Ars)q't" € Alg*?t, t+1].
Remark 7.19. Graded &,-modules will be considered bigraded with trivial t-graduation.
Definition 7.20. Take (F,G) € A2 and note [V] = Fr !(F), [W] = Fr !(G). Define the

Kronecker product as
F®G:=Fr([V]® [W])



7.3. Type A study 77

The n! theorem ([HO03, Theorem 4.1.5]) can be reformulated the following way:.
Proposition 7.21. For each partition A of n, we have Fr([2}]) = H)(z; q,t).

Definition 7.22. Let V be a finite-dimensional complex vector space and G < GL(V) be
a complex reflection group. The group G acts then also on S(V') the symmetric algebra
of V which is naturally graded S(V) = @, S'(V). Let M be the graded maximal ideal

of S(V)C. Define S(V)(C) .= §(V)/9MS(V) the coinvariant algebra of G which is then
also graded. Note that as a G-module it is isomorphic to the regular representation of
G by Chevalley-Shephard-Todd’s theorem.

If V= @;cy V:is a graded vector space, then let dim® (V) := ¥;. dim(V;)q' € Z[q*!]
be the graded dimension of V. In this section, let us denote by V,, = C" the reflection
representation of G,,.

Definition 7.23. For A a partition of 1, denoted by A I~ n, define
Fr(g) 1= dim®" ((S(V) (™) @ V) &)
the fake degree associated with the irreducible representation V) of G,,.

- A iy (14"
Lemma 7.24. If A - n, then the fake degree Fy (q) is equal to g"( )Hcey(/\)l (e

Proof. To prove this equality we can use [St, Proposition 4.11] and [FS, Corollary 7.21.5].
L]

Let us first study [}'] as a (&, x Tq)-module. Using [HO03, Proposition 3.5.10], we

e Hy(zq,97") = Meeyn U _thm)s [ < ] (%)

Lemma 7.25. We have the following equality in Agq,)

Z Fr(S(Vyy)©®n) @ V)
SA [1 _ } = n 1— i
q e (1—1')

Proof. Let us start rewriting the plethysm

ZFr (V) @ Vi])q'
= ZFr ®Fr([VA])

= ZFr g @ Fr([V)])

— s [ﬁ} @ Fr([V3])

The first and the last equalities come from [H03, Proposition 3.3.1]. Proposition 7.21
for A = (n) gives

Hy(z; q,t) = I:In(z; qu_l) = Fr([S(Vn)CO(G")])
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Moreover using the equation (%), we have
- 1 n , 7
Hy(z;9,977) = 1—[ (1=4q")sn [m]
i=1

Summing it up, we get

Z
1—9¢q

_ Er([S(Vy)een))
} B e (1— q')

_ Er([S(V)©® @ V)
B im1 (1= q')

sl ® Fr([V3)

Proposition 7.26. Take A € P,,. The following two elements of R(S,)8" are equal

FA[@X]gn = [S(Vn)CO(G”) ® VA} gGrn

If, by abuse of notation, we denote by T the irreducible character x ) X 7, we then have the
following equality in the Z-algebra R(S,) KR (p;)

BA(0) [P} = [S(Va)* S @Vi]g

Proof. Let us use Lemma 7.25 with (x) to obtain

n(A) . 7
q -1
H)(z;q, =
Hcey(/\) (1 — qth()‘)‘) /\(Z 4.9 ) SA[l _ q}
 Fr([S(Vy) @) @ V)
imp (1= ﬁli)

Finally, by combining Lemma 7.24 and Proposition 7.21 we have

Fy Fr([2}]8) = Fr([S(Va) 'S © V,]#")

Taking the inverse Frobenius characteristic map gives the result.
For the second equality, since graded modules are C*-modules, we can take the pull-
back by 7; : yj — C* of the first equality. O

Let us focus now on the structure of ?}" as a (&, x y;)-module.

7.3.1 When 7, is very small

Denote by P; | the set of all partitions of n with I-core either empty or equal to (1) - 1.
Let us show that Corollary 7.14 holds for all A € Py ,.

Lemma 7.27. For each divisor j of I, the j-core of A is equal to the j-core of the I-core of A.

Proof. We can use the link between partitions and abacuses [Ol, Proposition 3.2]. Con-
sider the j-abacus of A. Thanks to [Ol, Proposition 1.8] we know that to obtain the
j-core of A, we need to move, in each runner, all the beads as high as possible. Notice
now that with the j-abacus we can also obtain the /-core. Let I = kj. Again using the
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result of [Ol, Proposition 1.8], let us describe a procedure to obtain the /-core out of the
j-abacus of A. If i € [0, - 1], then the level of a position in the j-abacus aj + i is defined
to be the integer a and the length of a movement of a bead from a position a;j +i to a
position ayj 4 i is defined to be a; — a2. Now the I-core of A is obtained by moving all
beads, in each runner, as high as possible only with movements of length k. We then
have that the j-core of A is equal to the j-core of the /-core of A. O

Lemma 7.28. Foreach A € Py, and each k € [0, - 1], FA(ZF) # 0.

Proof. Take j a divisor of I and denote by ®; the jth cyclotomic polynomial. It is then
enough to show that ve, (Fy) = 0 where ve, : Q(q) — Z is the ®j-valuation. With
Lemma 7.24, we have

Ucp(FA)—#{ZE[[lTZ]HZ—O |} —#{c e Y(N)||h(1)| = 0[j]}

Now, [O], Proposition 3.6] gives the result for j = [. If j is a divisor of /, we can again
apply of [O], Proposition 3.6] to the j-core of A which is just the j-core of v; via Lemma
7.27. O

Proposition 7.29. If A € Py, then [ResC (V)] = [FA(6;71)].

(gl_ ,...,gl, 1’2€l_ ,...,2,...,7‘l€;_1,...,7‘l) eVy if Y = %)

0,¢5% ., 0,120 2, nd L L) €V iy = (1)

is then clear that the stabilizer of v;, in &, is the trivial group. Moreover v, is an
eigenvector of w;, with eigenvalue {;. We can now apply [Spr, Proposition 4.5] to
obtain the result. O

Proof. Consider v;,, := It

We are now able to prove Corollary 7.14 for all A € P} ;.
Proposition 7.30. For each partition A € P},

-1 . .
[@X]anﬂl - |: Z Il’ldg’; (9;) > le] G Xy
i=0

Proof. Let us start with [MN, Theorem 8] which can be reformulated in the following
way

-1 , ,
[S(VH)CO(GH)]GnXW = [g)(nn)]gnx}ll = [Zlndg:n (9;) X Tﬂ Sy Xy
i=0

Using the second equality of Proposition 7.26 for A = (1) and Proposition 7.29 we
obtain

I-1
Sn (piT. (p— '
A (1) (2] e, xu = [21ndcll’1 (0iEA (6, 1)) K 7] Suxiy
Let us decompose F) (6) = Z] 0 a]6] with a; € Z> and rearrange the two sums

IndG” (a8, )R]

-1
FA(TZ)[@)’?]GnXW :[Z Sn Xy
0

1-1
) 0
i=0j=0
L1l it
IZOJZOInd n 91) & a] :|61’l><]”ll
1 . .
=F\(1)[ Y Indg" (6]) K]
i=0 '

We can conclude thanks to Lemma 7.28. O

Suxyy
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7.3.2 When 7, issmall and [ is prime

Denote by %,/ the set of all partitions u of n such that g;(4) < I. Let us show that
Corollary 7.14 also holds for all partitions of %,~! with I a prime number.

Proposition 7.31. For each partition A of n, and each integer | > 1, we have the following
equality of (S, X py)-modules

1-1

EUAR ):Indwg, Y (S(Vg) )R, ) K]
j=0

Proof. Let us denote y; = (y;1,...,71¢) b g This result is a special case of [BLMO06,
Theorem 4.6]. Take

0=(1,.,1,2,.,2, cccrty e, t, E+ 1), b1, (E 7)Y (EH 7)) €V

where 1 is repeated ;1 times, 2 is repeated <, times and so on until ¢. The stabilizer
of v in G, is exactly &g, and w; ,0 = {;v. O

For A F n, let us denote a;lj()\) = (Resfv"gl (Va), Vu i 9{) where - g;(A),j € [0,1-1].
” In

Proposition 7.32. For all partitions A of n

ZZ”W FP‘ )T lﬁj

pFg1 j=0
Proof. Let us start this proof with
I-1
Er() = Y (Vi Va ® (S(Va)®(®)) )7
i=0

Using Proposition 7.31, we have

-1 1-1 o SN o i\
oo Vi @ Ind, ((S(vg,)co #)). &6 ])>r;

117-11-1

Z}O
-y

2l (A IndG”gl (Vi@ (S(vg) )y me; 7))o
i=0j=0k=0 putg;
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We can now use Frobenius reciprocity theorem

-1 1-1 1-1
! i—j+ky\ i
Fy(n) = Z Z alyk &Qlf(vu (S(Vg:)co(6g1)>]~)&9; "N
i=0j=0k=0 putg;
-1 1-1
i i+k S I\
- Z > @A l " Vg Vu ® (S(Vg )= gl))j>Tzl
i=0j=0k=0 utg
I-1 1-1
N
= Bk (A Vg, Vie @ (S (Vi)' )]
j=0k=0pig
-1 I-1
I & k
- a, (1) Y (Vig)y Vu® (S(ng)co( gl))]>Tz]Tz
pukg k=0 j=0
S
- a, k(M ()T
g k=0

]

From now on and in the rest of this subsection, let us suppose that the fixed integer [ is
prime.

Lemma 7.33. For each A € Pyl and each k € [0,1- 1], FA(F) # 0.

Proof. Since [ is prime it is enough to show that ve,(Fy) = 0. By using the fact that
g < I, we can now use the same argument as in Lemma 7.28. [

Lemma 7.34. Take A a partition of n. We then have that for all y € Py, \ {7y}
¥j € [0,1-1],a,,;(A) = ay5(2)
Proof. Murnaghan—-Nakayama recursive formula gives the following result
JaeZVie[l,1-1],Vx € 6gl,)(;\(xw§/n) = ax.,(x)

In terms of multiplicities, this result can be rephrased as

Y € Py \{m}, Z“w )g} =0

Indeed,

[-1 | -1 1— it
”w'( gz| Z Z Z XA xwln)XV( x)6, 7 (wy)

j=0 j=0i=0 x€Sg,

1 I-1 1-11-1 i
ng (X Y ta(0)xu(2)8](wy,) + Yo xa(xew) ) (x)8 T (wy)
| | J=0xe6g j=0i=1xe6y,

1 -1 . [-11-1 i
- <ReSG 7 29 Wi,n) |ng Z Z Z X () X ()8 (wi,)
j= j=0i= 1x€6g1
1 < X’YVX# l g z;+]
:(Res(‘5 729 Wy ;) 229
j=0 j=0i=
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The first term is equal to 0 since 6;(w; ,) = {; and since u # -y;, we have (x,,, xu) = 0.

Thus Z | (a! a, ](/\) — aillo(/\))d = 0 which then gives the result since / is prime. O

For a given finite group G, let Reg(G) denote the regular representation of G. We are
now able to prove Corollary 7.14 in this case.

Proposition 7.35. For each A € P!, Corollary 7.14 holds.

Proof. We want to show the following equality of (&, x p;)-modules
1-11-1 o i .
1] = Z Z [Ind (%, (@5)ime ) =]

Using Proposition 7.31, the right-hand side of the second equality of Proposition 7.26
can be rewritten as

-1 1-1 1-1

; kZ%) Z(;) ,Z(t]a;l,k( Inds\,’éz (VV ® (S(ng)co(egl)); X 9;7”]() 5 7] (7.2)
g1 k=0j=0i=

Let us fix # € Py, \ {71} and consider the associated term in (7.2). Using Lemma 7.34,
this term is equal to

I-1

%uo(d) L [nd (Ve ® ($(Vig)©(%)}) B Reg(C) ) B Reg(ju)]
j= In

Denote forallv - g, F, (1) = Zf(‘zlo fuxTF. Applying the second equality of Proposition
7.26 for u, gives us

-1 1-1
ML L fus ndi, ()] Reg(Cy) ) B Res(j)]

By construction of the Procesi bundle Vv F g, Z}-’:lo (P8 )5] = [Reg(&g,)] and by defi-
nition of the fake degree Y"'_}) f, x = dim(V;). Summing everything up leads to

-1 1-1
MY nyk nd i, ( 7)) BReg(Cy,0)) MReg (ju)] = al,p(A) dim (V;,)Reg(, x ju)

The last equality is then true for the fiber of the Procesi bundle over I, for any partition
u of g;. In particular, it holds for I,,. We get that the term

N
>_\

SRCE o
a,, . (A)[Ind 7%

i—jtk ;
i (Vi ® (V) e /) m
j=0k=0

I
=}

i

is equal to

-1 1-1
ML L furlindly (28] @ Reg(Cr) ) BReg(1)]
k=0 j=0 n
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which can be rewritten as

I-11-1 1-1 - l o - .
e MindSy, (2572 (6] TEo; )ef) )
i=0 j=0 k=0
Finally, for y = ;
1-11-1 1-1 | o (& i '
o () ind, (Vi  (S(V) (%)) w36y ma o
i=0 j=0 k=0
is equal to
-1 1-1 1-1 | o o - ‘
22 ) a,(A)[Ind rfsl <(g)’§zl) R (6, Fy (6] )91)> X 7]
i=0j=0k=0
By putting the pieces back together, and using Proposition 7.32, we get
-1 1-1 - -1 I-1
[ In dfv’éz <(@§z’)§@ (6, Fr (6, ))) K] = F\(1) ZZ[Ind% ( (@8 =6 ]>&r;]
1=0j=0 i=0;=0
Which ends the proof using Lemma 7.33. n

7.4 Type D study

In this last section, let us consider the case when I' is of type D. Let us fix an integer
[ > 1. Recall that in Chapter 5, we have parametrized the irreducible components of

H2P? that contain a T;-fixed point. The fixed points of H,, under < Ty, BD,; > are the
monomial ideals parametrized by symmetric partitions of n. When A is a symmetric

partition of n, the fiber of the Procesi bundle over I, is then an (&, x B\Ijz,)—module.
Consider the following decomposition

2
[gjg]enxﬁﬁﬂ Y. [Dix(A) &X]enxﬁﬁﬂ

€=
X<18D,,

The goal here will be to describe the &,,-modules D%{X(A) for each x € 13521' To do so,
we will use the Corollary 7.14.

Lemma 7.36. If A is a symmetric partition of n, then the number rpo;(A) := Wgz—zl’(A) is a

multiple of 2.

Proof. To prove this we can use [Ol, Lemma 2.2] and the link between abacuses and -
sets to see that the 2/-abacus of A* is equal to the horizontal reflection of the 2I-abacus
of A. When A is symmetric, we have that, rp 5; which is the number of 2/-hooks that
needs to be removed to go from A to gy;, is a multiple of 2. O

Lemma 7.37. The restrictions of the irreducible characters of Eﬁzz to uy; are
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o Vi [1,1-1],Res;.” (xi) = T + 7'
From there we can deduce the following information on the D%{X(/\) modules.

Proposition 7.38. For each symmetric partition A of n, we have the following equalities in
R(6n)

(D) [Diy,. (M) + Dby (W] = [(21)3]
(ii) [Di, (M) + DL (M) = [(@))7]

(i) [DF, (M)] =Dy, (A)]

(iv) Vi € [1,1-1],[DZ (A)] = [(@])?] = [(21)3_)]

Proof. Equality (i) and (7i) comes directly from Lemma 7.37. Concerning equality (ii),
note that BDZI N BD41 and that wy; acts nontrivially on I5 EDy" It swaps x;+ and x;- and

fixes all other irreducible characters of BDy;. Since [2]!] is a bigraded &,-module, one
automatically has the following equality

w4l-[@}\1]6n><§541 = [@%]ang\ﬁu

Now, applying the restriction from &, x /B\Ijg to G, x /37521, gives

D7y, (W] = D7y, (M)

Combining [H03, Proposition 3.5.11] with Lemma 7.37 gives

2[D5, (W] = [@0F + (@3] = 2[(2])7]
O

Since n — gy is a multiple of 4/ thanks to Lemma 7.36, we can choose sy; € &g, such
that < wgfln, Sp; >~ BDy.

Example 7.39. When | = 2, A is a symmetric partition of 8, rp 4(A) = 2 then gy = @
In that case wzz = (1234)(5678) € Gg and we can take sy; = (1836)(2745) € Gg.

Proposition 7.40. For each symmetric partition A of n and for eachi € [1,1-1]

21-1
21 — e7;’1 21 21
[D”,Xi]Gn - E) [Ind6g21X<w§ZZIleZI>((@721) XX ])]
Moreover
1 21-1
2l _ 82121 S
[anl+]6" 2 ;0 Gg21><<w21nsz>((@721 )] &Xl—])]Gn

~.
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Proof. Fixi € [1,1 - 1]. Thanks to Proposition 7.38 and Corollary 7.14, we have

21-1 o
! (G 1 _
[D%'Xi]G” - [Ind ngzl ((@52211)]2 X 6121 ])]Gn

j=0
21-1 . N

— Sgyy X Wy, 521> g1\ 2] i

B Z ngzx<wzt 521> (Inszgzzzll 21” ((@72211)1' D90, ))]Gn
j=0 n’ n
21-1

821\21 -
Z 6821 X <w21 w2 ((@72211 )j B Xi—]')]Gn

The same computation gives us the second formula for [D? _]s. . Thanks to Proposi-
n,X; n

tion 7.38 it is equal to %[(g’f)lzl]fﬁ

ne

]

Remark 7.41. Note that Proposition 7.40 can be rewritten in terms of the G, -modules

D2 cl. thanks to Proposition 7.38. There remains to understand how [(22}
gu.X1/XE15D,, p A

splits in two.

3






CHAPTER 8

WORK IN PROGRESS

In Chapter 7, we have proven Theorem 7.11. If T is the cyclic group with I elements,
this theorem reduces the study of the (&, x y;)-module structure of the fiber of the
Procesi bundle at a monomial ideal I, to the one of the fiber of the Procesi bundle over
the monomial ideal I, (1) where 7;(A) is the I-core of A, i.e. the partition obtained from
A by removing all hooks of length I. The next question is then to study the (&, X y;)-
module %} when A I 1 is an [-core. In this last chapter, we would like to present a
conjecture that establishes a link with the Fock representation of the affine Lie algebra
of type A;. Let us fix [,n € Z% ; and take I' = y;. Recall that

]/ll—>C

T -
w; =

To improve readability, let us shorten IT;,,, the set of simple positive roots of the Kac-
Moody Lie algebra of type Aj, to IT;. Let us moreover, for each i € [0,1-1], shorten
o € IT; to &;. Denote by sl; the Kac-Moody Lie algebra of type A;. Thanks to [Kac,

Theorem 7.4], we have a set of Chevalley generators of sl;, that we will denote by
{eq, fala € T1;}. The set {eq, fa, «¥|a € I1;} U {d} generates the Lie algebra sl;. For a
partition A and an integer i € [0,] - 1], denote by T(A, i) the set of partitions y obtained
from A by adding a box with residue i and by R(A, i) set of partitions y obtained from
A by removing a box with residue i. Let N(A, i) := |T(A,i)| — |R(A,i)| and Np(A) be
the number of boxes of A with residue 0. Denote by T} := [0, - 1]".

Definition 8.1. For each k € Z, let F* be a C-vector space with basis {|A)|A € P}

Let F be the C-vector space @ F*.
kEZZO

Remark 8.2. Note that we can easily switch from partitions to infinite wedges [Lec,
Section 2.2.1].

Definition 8.3. Define an sl;-action on F. For each i € [0,1 - 1]
* eylA) = Yuerri) 1)
* fuilA) == Luerriy 1)
* af[A) = N(A,D)|A)
* djA) = No(A)|A)

[Lec, Theorem 1] gives the following proposition.
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Proposition 8.4. The vector space F is an sl;-module.
Let us now state the conjecture. Consider the map
o T — F
(i e in) = fiyofi,|D)

Consider also the following injective map

Since Im(f") C Im(g'), define
T = Ko(&y)
x o= (g

Conjecture 8.5. For each partition A of n that is an I-core, there exists P, : T} — [0,1-1]
such that

(2

-1
[Z ( Z QD(C)) &Ti]anyl = [g)/{l]gnxﬂl
=0 ceyy (i)

Remark 8.6. Denote by triv, the trivial character of the trivial group &.

Since [Ycexr ¢(c)]s, = [Indgg(triv)]gn, it is clear that [Yccqn ¢(c)]s, = [Q”GA]@”. But
it is not clear, why we could be able to find a way to split T}’ into [ parts such that the
equality holds as (&, x p;)-modules.

Example 8.7. Let us give an example when [ equals 3.

%)

T+ Hj—l—ﬁ

1 1
O+ H @j 2 H HHJFE 2@3 Hm

If we take A = H] (which is not a 3-core), then
[g)ﬁ)\]GsXHs = [(Vljjj + V@) X1+ VB] X7+ VHj X T2]G3><y3

This decomposition makes it impossible to find a ¢, satisfying Conjecture 8.5.
Consider now the case when y = 1. We now have
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(21 )0 = (Ve + Vin + 2‘@3) X 70+

(VH:D + V@]) X 1+
(2VH:D + VH} + VE) X 72]63><y3

Finally for y/ = @], we have

[Q)I%y,]@xﬂs = (Vi + VE + ZV@H) X 70+
(ZVH:D + VB} + VE) X1+
(VH:D + V@j) X TZ]GSXVS

In the annexes, there is a SDJE. code to test Conjecture 8.5 for a given values of / and
n. Moreover, we have also added tables containing decompositions of fibers of Procesi
bundles at some cores.






Annexes

8.1 Sage code for Conjecture 8.5

The following code tests Conjecture 8.5 for n € [3,5] and ! € [3,14]. These are arbitrary
values and one can change these by changing the variables nmin, nmax, Imin and Imax.

### This code tests Conjecture 7.5 for a given 1l and m range
## 1. General algorithms to test matchings

# Removes the subdictionary sd from the dictionary d
def remove_sub(sd,d):
res = {}
dkeys = d.keys()
for k in dkeys:
if not(k in sd):
res[k] = d[k]
elif sd[k] < d[k]:
res[k] = d[k]-sd[k]
return res

# Merges two dictionaries dl and d2
def merge_dict(d1l,d2):
d3 = {**xd1l, **xd2}
for key in d3.keysQ):
if (key in d1) and (key in d2):
d3[key] = dil[key]l+d2[key]
return d3

# Tests if sd 1s a subdictionary of d
def test_sub(sd,d):
return all(key in d and sdlkey] <= dlkey] for key in sd)

# Removes empty entries from the list of dictionaries
def clean_dic(T):

res = []
for d in T:
if d = {}:

res.append(d)
return res
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# Tests 1f T2 is a sublist of dictionaries of T1
def remove_nochoice(T1,T2):
1T2 = len(T2)
for i in range(1T2):
temp = []
for j in range(len(T1)):
if test_sub(T2[i],T1[j1):
temp.append(j)
if temp == []:
return False
if len(temp) ==
newdic = remove_sub(T2[i],T1[temp[0]])
if not(newdic == {}):
T1[temp[0]] = newdic

else:
T1.pop(temp[0])
T2[i] = {3

return True

# Using backtracking, tries to find a way to
# match T2 as a sublist of dictionaries of T1
def find_a_sol(T1,T2):
def backtrack(T1,T2,matchings,pos):
if pos == len(T2):
return True
for i in range(len(T1)):
if test_sub(T2[pos],T1[i]):
matchings[pos] = i
T1[i] = remove_sub(T2[pos],T1[i])
if backtrack(T1,T2,matchings,pos+1):
return True
matchings[pos] = -1
T1[i] = merge_dict(T1[i],T2[pos])
return False
matchings = [-1]*1en(T2)
return backtrack(T1,T2,matchings,0)
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# Using backtracking, find all ways to match
# T2 as a sublist of dictionnaries of T1
def find_all_sol(T1,T2):
def backtrack_all(T1,T2,matchings,pos):
if pos == len(T2):
yield [x for x in matchings]
return
for i in range(len(T1)):
if test_sub(T2[pos],T1[i]):
matchings[pos] = i
T1[i] = remove_sub(T2[pos],T1[i])
yield from backtrack_all(T1,T2,matchings,pos+1)
matchings[pos] = -1
T1[i] = merge_dict(T1[i],T2[pos])
matchings = [-1]*1en(T2)
res = []
for sol in backtrack_all(T1,T2,matchings,0):
res.append(sol)
return res

# Wrapper around find_all_sol
def is_sub(T1,T2):
if not(remove_nochoice(T1,T2)):
return False
T2 = clean_dic(T2)
list_all = find_all_sol(T1,T2)
return len(list_all)>0

HARBRRRRHRAAARRRRRRRRAAAAARRRRRRRAARAARARRRRRRRAAARRARRRRR AR AAH
# Now 2t 1s time to add the progs to obtain the decompositions
# that ome wants to compare.

HARRBRRRRRAAAARRRRBRRRAARRARRRRRRRRAAARARRRRRRRAAAARRRRBRRRAAAAH

## 2. Decomposition from the Fock space

class Node(object):
def __init__(self, data):
self.data = data
self.children = []
self.parent = []
def add_parent(self, obj):
self.parent.append(obj)

def add_child(self, obj):
self.children.append(obj)
obj.add_parent (self)
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# Tests 1f node 1s a leaf
def is_a_leaf(tree):
return tree.children == []

# Returns the leaves of a Tree
def leaves(tree):
res = []
def rec(res,tree):
for ¢ in tree.children:
if is_a_leaf(c):
res.append(c.data)
else:
rec(res,c)
rec(res,tree)
return res

# Returns the path to root of a Tree from a node
def path_to_root(node):
res=[node.datal
def rec(res,node):
if node.parent!=[]:
res.append (node.parent [0] .data)
rec(res,node.parent [0])
rec(res,node)
return res[::-1]

# Returns the leaves and paths to root of a Tree
def leaves_with_path(tree):
res = []
def rec(res,tree):
for ¢ in tree.children:
if is_a_leaf(c):
res.append (path_to_root(c))
else:
rec(res,c)
rec(res,tree)
return res

# Adds v to dictionary d with key k
def add_to_dic(d,v,k):
if k in d:
dlk] = d[k] + v
else:
dlk] = v
return d
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# Constructs decomposition Tree of Fock space
# Returns the leaves of the Iree, but can also
# return the leaves with paths to root of each leaf
def dec_fock(l,n):
rootl = {}
rootl[Partition([])] = 1
root = Node(rootl)
def children(node,l,n):
if n > O:
for i in range(1):
templ = {}
for (1b,mult) in node.data.items():
addable_cells_res_i = 1lb.addable_cells_residue(i,1)
for (r,c) in addable_cells_res_i:
templ = add_to_dic(templ,mult,lb.add_cell(xr))
if templ !'= {}:
temp = Node(templ)
temp.add_parent (node)
node.add_child(temp)
children(temp,l,n-1)
children(root,1l,n)
return leaves(root)
#return leaves_with_path(root)

HARRRRRRHHAAAARRRRRRRHRAAAARRRRRRRAAAAARRRRRHRAAAARARRRRR AR AAA
## 3. Decomposition from the Procesi bundle

Pol.<q,t>=QQ['q,t']

Sym = SymmetricFunctions(Pol)
p = SymmetricFunctions(QQ).p(Q)
s = Sym.schur()

# Returns the characteristic function of the fiber of the
# Procesi bundle at the ideal indexed by the partition mu
def sym_fibre_proc(n,mu):

Ht = Sym.macdonald() .Ht()

return Ht(mu)

# Returns the Hilbert serie of the characteristic function
def dim_fibre_proc(n,mu):

Ht_mu = sym_fibre_proc(n,mu)

return s(Ht_mu).scalar(p([1]*n))

# Decomposition of the fibre along the multiplicative
# group and also along the symmetric group
def dim_fibre_proc_sn(n,mu,lb):

Ht_mu = sym_fibre_proc(n,mu)

return s(Ht_mu).scalar(s(1lb))
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# Returns the list of dimension of
# each part along the cyclic group
# for a fized irrep of the symmetric
# group
def dim_fibre_proc_list_sn(n,mu,l,1lb):
P = dim_fibre_proc_sn(n,mu,1lb)
d = P.degree()
res = [0]*1
for k in range(d+1):
for r in range(d+1):
res[(k-r)%1] += P.coefficient({q:k,t:r})
return res

# Returns the dimensions of each irrep
# of the symmetric group on n letters
def dim_irrep_sn(n,lb):

return s(1b).scalar(p([1]*n))

# Returns the decomposition along the
# cyclic times symmetric group action
def list_dim_fibre_decomp_sn(lb,1l,n):
res = []
for mu in Partitions(n):
dim_irrep = int(dim_irrep_sn(n,mu))
dim_fibre_temp = dim_fibre_proc_list_sn(n,1lb,1l,mu)
ltemp = [elem for elem in dim_fibre_temp]
if ltemp != [0]*1:
res.append([mu,ltemp])
return res

# Removes useless data
def restruct_dim_fibre(lb,1,n):
1d = list_dim_fibre_decomp_sn(lb,1,n)
res = [{} for _ in range(1)]
for item in 1d:
for i in range(1):
if item[1][i] != O and item[0] in res[i]:
res[i] [item[0]] += item[1] [i]
elif item[1][i] !'= O:
res[i] [item[0]] = item[1] [i]
return res
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## 4. Tests

def list_cores(l,n):
res = []
lcores=Cores(l,size=n).1list()
for c in lcores:
if not(c in res) and not(c.to_partition().conjugate() in res):
res.append(c.to_partition())
return res

nmin = 3
nmax = 5
Imin = 3
Imax = 14

def test_conj(lmin,lmax,nmin,nmax):
res = True
n = nmin
while res and n <= nmax:
1 = Imin
while res and 1 <= lmax:
print("This is (1,n): " + str((1,n)))
for ¢ in list_cores(l,n):
print(c)
dfock = dec_fock(1l,n)
res = res and is_sub(restruct_dim_fibre(c,1,n),dfock)
1 +=1
n += 1
return res

print(test_conj(lmin,lmax,nmin,nmax))

8.2 Decomposition tables of fibers of 92" at cores

This section is dedicated to exposing decomposition tables of 2}" as (&, x p;)-module
for different values of n and I such that there exists at least one partition A of n that is
an [-core. The first line is the I-core. The second line of the tables gives the dimension
vector. For each i € [0,] - 1], the entry 7 of this vector, is the dimension of the &,-
module (%)L, Recall that one has denoted by (%)} the &,-modules such that

1-1

[9)/1\1]614 XU = [2 (9))7\’1)5 & Tli]an,ul
i=0

Finally, the entry i of a vector on a line which starts with partition y, at colunm with
[-core A is equal to

dim (:[_101'1'16,1 X (Vy X Tlil g)/l\’l))
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Index of Notation

A(Y) oo 15
Fooo i 47
Feeee e 77
GI et 21
Ly ceeeeeeeeee e 39
P(Y) i 15
PY(Y) i 15
QUY) e 15
QV(Y) e 15
T 22
W(Y) o 15
W 74
Autr(M) ..o 21
BDgj i 51
o e 49
Tt e 44
Crn(A) e 74
A(T) i 15
A0 45
AV(T) oo 15
AL 18
Dyn(Y) ..oooviiiiiiiiii 15
G(d) oo 29
o e 43

R 44
Ay 15
AQ e 34
AG . 18
AL 18
Ab 18
AR o 76
Ag e 15
DY) 15
DT (Y) o 15
P 66
My, (MM 30
Reprp.covvviiiiiiii, 20

G
L S P e 19
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L 21
y 53
Ta() o 63
O et 18
O 18
Of i 18
Y e 15
1 T T 15
Dy e et e e 22
X e 74
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. S 19
S(T) o 15
S, 23
SV(T) o 15
KG(S) e e e 16
PP 15

g e 41

e 46
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MY, 41
P 52
P e 52
RAG) oo 66
Tt e e 62
Y 48
) 47
VA o 52
U 47
S 52
3 76
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Resp .o 55
WEA) oo 45
B 19
S I 21
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Résumé de thése vulgarisé

SiT est un sous-groupe fini de SL,(C), un des points de départ de ce travail de these est
I'étude géométrique et combinatoire de 1’action de I' sur le schéma ponctuel de Hilbert.
Ce travail passe par la description des composantes irréductibles du lieu des I'-points
fixes en termes de variétés de carquois. Il a mené a la construction d'un modele de
I'ensemble d’indexation des composantes irréductibles pour I de type D en termes de
partitions d’entiers symétriques ainsi qu’a l’exhibition d'un lien avec les résolutions
projectives et symplectiques de singularités en couronnes. Dans une autre direction,
la structure de représentation du groupe symétrique et de I' des fibres de la restriction
du fibré de Procesi aux composantes irréductibles du lieu des I'-points fixes du schéma
ponctuel de Hilbert a été exploré et a aboutit a un théoreme de réduction. En type A, il
fait intervenir la combinatoire des cceurs et il généralise des résultats sur 1’algébre des
coinvariants du groupe symétrique.

Lay summary of the thesis

If T’ denotes a finite subgroup of SL,(C), one starting point of this thesis is the geo-
metrical and combinatorial study of the action I' on the punctual Hilbert scheme. This
work uses quiver varieties to describe the irreducible components of the I'-fixed points
locus. This led to the construction of a model of the indexing set of the irreducible com-
ponents when I' is of type D in terms of symmetric partitions of integers as well as the
exhibition of a link with projectives and symplectic resolutions of wreath singularities.
In another direction, the structure of representation of the symmetric group and of I of
the fibers of the restriction of the Procesi bundle to the irreducibles components of the
I'-fixed point locus of the punctual Hilbert scheme has been explored and resulted in a
reduction theorem. In type A, it involves the combinatorics of cores and it generalizes
results of the coinvariant algebra of the symmetric group.
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