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Abstract

Algebraic reasoning is ubiquitous in mathematics and computer science, and it
has been generalized to many different settings. In 2016, Mardare, Panangaden,
and Plotkin introduced quantitative algebras, that is, metric spaces equipped with
operations that are nonexpansive relative to the metric. They proved counterparts
to important results in universal algebra, and in particular they provided a sound
and complete deduction system generalizing Birkhoff’s equational logic by replacing
equality with equality up to ε. This allowed them to give algebraic axiomatizations
for several important metrics like the Hausdorff and Kantorovich distances.

In this thesis, we make two modifications to Mardare et al.’s framework. First,
we replace metrics with a more general notion that captures pseudometrics, partial
orders, probabilistic metrics, and more. Second, we do not require the operations
in a quantitative algebra to be nonexpansive. We provide a sound and complete
deduction system, we construct free quantitative algebras, and we demonstrate the
value of our generalization by proving that any monad on generalized metric spaces
that lifts a monad on sets can be presented with a quantitative algebraic theory.
We apply this last result to obtain an axiomatization for the Łukaszyk–Karmowski
distance.



Résumé

On retrouve le raisonnement algébrique partout en mathématique et en informatique,
et il a déjà été généralisé à pleins de contextes différents. En 2016, Mardare, Panan-
gaden et Plotkin ont introduit les algèbres quantitatives, c’est-à-dire, des espaces
métriques équippés d’opérations 1-lipschitzienne relativement à la métrique. Ils ont
prouvées des homologues à des résultats importants en algèbre universelle, et en
particulier ils ont donné un système de deduction correct et complet qui génralise
la logique équationelle de Birkhoff en remplçant l’égalité par l’égalité à ε près. Ça
leur a permis de donné une axiomatisation algébrique pour quelques métriques
importantes comme la distance de Hausdorff et celle de Kantorovich.

Dans cette thèse, on modifie deux aspects du cadre de Mardare et al. Première-
ment, on remplace les métriques par une notion plus générale qui englobe les
pseudométriques, les ordres partiels, les métriques probabilistes, entre autres. Deux-
ièmement, on n’exige pas que les operations de nos algèbres quantitatives soient
lipshitzienne. On donne un système de deduction correct et complet, on construit
les algèbres quantitatives libres, et on démontre la valeur de notre généralisation
en prouvant que toute monade sur les espaces métriques généralisés qui est le
relèvement d’une monade finitaire sur les ensembles peut être présentées par une
théorique algébrique quantitative. On applique ce dernier résultat pour obtenir une
axiomatization de la distance de Łukaszyk–Karmowski.
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Preface

Tamacun

Rodrigo y Gabriela

In place of the traditional citations as epigraphs at
the start of every chapter, I put (links to) music I
enjoyed listening to while writing this manuscript.

This document was not optimized for printing. The two main reasons are:

1. I use a slightly customized version of the tufte-book document class [KWG15].
This puts the main body of text closer to the left margin and all footnotes0 in the 0 Like this one.

right margin. This allows me to use a lot of footnotes throughout the text. I use
them as if they were big parentheses, to add details, to digress, to add references,
or to display diagrams. Printing with these margins can be complicated, and the
text in the margins is a bit smaller.

2. I use the knowldege package [Col24]. This allows me to easily add hyperlinks
towards the definition of a symbol or a term every time I use that symbol or
term. In particular, if you want to start reading at say Chapter 3, you do not
have to go over the notation introduced earlier, you can simply click on a symbol
or word you don’t recognize to see how it was defined. What is more, in the
appendix1, I put a draft of a book on category theory that I am writing, so there 1 Available at https://ralphs16.github.io/src/

Manuscript.pdf.is no background section on categories, but every time I use a notion from that
book (e.g. HomC(A, B), functor, natural transformation), the knowldege link will
go there.2 Combined with the links to results, equations, and references (like 2 Test the links right now! Some PDF viewers are bet-

ter than others to navigate a document with lots of
links. Most have a navigation history so you can fol-
low a sequence of links and get back to your original
position by e.g. pressing Alt+P or the back button on
a mouse. Some viewers also display a preview of the
target of a hyperlink when you hover it, so there is
no need to click.

Theorem 3.80, (3.13), and [MPP16]) there are more than twenty thousand links in
this document!

With that said, if you would rather read on paper, I do not think there will be major
difficulties since there is adequate numbering throughout the main text. However, I
suggest you do not print the appendix (which is longer than the main text) because
the links to the appendix are rarely numbered, and I did not make an index.

Notations and Conventions

Here are several standard and non-standard notations and conventions that I use
throughout the text.

• Starting now, we will use the pronoun “we” when referring to us, author and
readers. Occasionally, “I” will be used to refer to me (Ralph), and “we” will be
used to refer to me and my supervisors Matteo and Valeria.

https://www.youtube.com/watch?v=vyOSXRCJlIg
https://ctan.org/pkg/tufte-latex
https://ralphs16.github.io/src/Manuscript.pdf
https://ralphs16.github.io/src/Manuscript.pdf
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• We use the following abbreviations:3
3 Paired with a knowldege link going to this list.

– I.H. indicates a step of a proof that relies on the induction hypothesis (which is
often left implicit).

– resp. stands for “respectively”.

– L.H.S. stands for “left-hand side” (of an equation usually).

– R.H.S. stands for “right-hand side”.

• When defining a function f : A/∼ → B, whose domain is a quotient, by giving a
value for f (a) for each a ∈ A, we say it is well-defined if f (a) = f (a′) whenever
a ∼ a′.

• We sometimes have to deal with proper classes (see, e.g., [AHS06, §2.2]), i.e.
collections of things that cannot be sets. We use classes to mean a collection that
is either a set or a proper class.4 4 Really the only reason we need classes is for the

collection of all sets, so nothing very fancy.
• We use the term classical to refer to universal algebra (the subject of Chapter 1),

usually in opposition to universal quantitative algebra (the subject of Chapter 3).

• The two principal references [MPP16, FMS21] are given special colors to help to
recognize them when reading.
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Most programmers write code compositionally.5 They write small lines of code that 5 Some don’t (e.g. code golfers).

combine to make small functions that combine to make small files that combine to
make a complete software. When studying the semantics of programs, we sometimes
like to model these combination steps with algebraic operations.

This idea seems to originate in [SS71] and [GTWW77], and it continues to rever-
berate in current research, e.g. [TP97, HHL22, GMS+23]. It is referred to as algebraic
semantics. We give only an informal account here to motivate the mathematics
behind it.

If P, Q and Q′ are programs, we can use P; Q to represent the program that runs
P then Q, and ifte(P, Q, Q′) to represent the program that runs P, then runs Q if the
Boolean value of the output of P was True or Q′ if it was False. We view the set of
programs as an algebra where instead of the well-known operations like addition
and multiplication, many new operations are allowed to combine programs. The
set of available operations varies with the kind of programs that are studied, it is
called the signature, and we say that operations in the signature are interpreted in
the algebra of programs.

Furthermore, the set of behaviors of programs6 is also seen as an algebra for the 6 The word behavior can be understood in many ways
that depend on what properties of the programs one
is interested in.

same signature. Then, semantics is represented by a function from programs to
behaviors which preserves the operations, namely, the combination of behaviors is
the behavior of the combination. It is a homomorphism of algebras.

Oftentimes, one realizes that two different programs have the same behavior,
for example P; (Q; R) and (P; Q); R or P; Q and ifte(P, Q, Q), so they should be
considered equal (or equivalent). The bread and butter of algebraic semanticists
is to find a (sound and complete) collection of simple equations (axioms) that
make it possible to reason compositionally about program equivalence.7 Sometimes 7 For instance, with the equations above, we can infer

that ifte(P, Q; (R; S), (Q; R); S) and P; (Q; (R; S)) are
equivalent.

these axiomatizations help in designing (semi)-automatic procedures to answer the
question “is P equal to Q?”.

A famous example is combinatory logic, originating in [Cur29], which gives a
computational model as powerful as the pure λ-calculus using four operations to
combine programs and three equations between small programs.8 In this thesis, we 8 see, e.g. [Mim20, §3.6.3].

detail two other well-known examples that model nondeterministic and probabilistic
choices in Examples 1.78 and 1.79 respectively.

https://www.youtube.com/watch?v=tlYmnu3csx4
https://en.wikipedia.org/wiki/Code_golf
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Much of the work on algebraic semantics relies on the theoretical foundations of
universal algebra, an old subject popularized by Birkhoff in [Bir33, Bir35]. Three of
his major results are:

1. a logical system, called equational logic (Figure 1.3), that allows one to syntacti-
cally derive which equations are entailed by a set of axioms,

2. the construction of free algebras (Definition 1.34 and Proposition 1.49), and

3. the HSP (or variety) theorem [Wec92, §3.2, Theorem 21] which characterizes
classes of algebras that can be defined with equations.

There is also tight connection between universal algebra and monads on Set (Def-
inition 1.62) that can be exploited to study semantics with algebraic and categorical
reasoning. For instance, nondeterminism can be modelled with the theory of semilat-
tices and the powerset monad (Example 1.78), and probability can be modelled with
the theory of convex algebras and the distribution monad (Example 1.79). These two
examples and similar ones show up very often in the study of program semantics.9 9 See, e.g. [PP01a, PP01b, PP02, BP15, BSS21, BSV22].

Since computers interact with humans (or the other way around), it makes sense
to take into account the quirks of a human mind when studying the behavior of
programs. For example, many standard data compression algorithms (in particular
for image, audio, and video) are efficient at the cost of losing some small amount
of information.10 In that situation (and others like it), program equivalence is too 10 Usually, users will not notice nor mind because of

the inherent information degradation in the human
perception process [SB06].

coarse of a relation, so researchers have to build more sensitive models to handle
and compare approximations of programs.

This makes the case for developing quantitative algebraic semantics. We view
the set of programs as an algebra (we can still combine them) with a notion of
distance (we can now compare them more finely than with equality). Intuitively, the
distance between P and Q shall reflect the disparity in their behaviors, hence, the
behaviors must come with a notion of distance too. For example, if P is a lossless
compression algorithm, and Q is a lossy one, the distance between P and Q may be
the fraction of the inputs (picked in a real-world dataset) wherein the outputs of P
and Q noticeably differ.11 11 For metrics actually used in practice, see [LJ11].

We most commonly think of a distance as a number, but our formalization of
distances (Definitions 2.11 and 2.32) will accommodate a large array of things to call
distances, see Examples 2.13, 2.14, and 2.16.

If the field of algebraic semantics founds itself on universal algebra, there needs to
be a quantitative version of this theoretical basis to support research in quantitative
algebraic semantics.

The concept of extending algebraic reasoning to diverse settings is by no means
novel, as evidenced by the following (inevitably) non-exhaustive list of references:
[Ben68, Dub70, Gra75, BD80, Die80, Bur81, Bur82, BB92, KP93, Wea93, GP98, Pow99,
Rob02, BV05, HP06, NP09, LP09, VK11, FH11, LR11, BBvT12, AMMU15, LW16,
GP18, MU19, BG19, FMS21, Ros21, LP23, RT23, Ros24]. While these approaches
excel in their generality and abstraction, it is at the cost of usability, even for
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someone who is already familiar with universal algebra. More concrete solutions
exist. We mention two that seem to be of particular interest to computer scientists.

If we equip the algebra of programs with a partial order, the question “is P equal to
Q?” becomes “is P less than Q?”.12 There is already a lot of work in universal algebra 12 The meaning of P ≤ Q depends on what kind of

programs and properties are studied.on partial orders [Blo76, ANR85, KV17, AFMS21, FMS21, ADV22, Sch22a, Sch22b].
If we equip the algebra of programs with a metric space, the question “is P

equal to Q?” becomes “are P and Q closer than ε from each other?”, where ε is a
real number. There is already a lot of work in universal algebra on metric spaces
[Wea95, MPP16, Hin16, MPP17, BMPP18, MPP18, MV20, BMPP21, MPP21, Ros21,
MSV21, Adá22, MSV22, MSV23, ADV23b, Ros24, ?].
In this thesis, we make another attempt to generalize algebraic reasoning without
straying too far from the classical setting. Our main inspirations are [MPP16], the
seminal paper on quantitative algebras, and [FMS21], a vast generalization.13 13 I gave their references special colors to help recog-

nize them when reading.In [MPP16], the authors study algebras equipped with a metric such that the
interpretation of operations in the signature are nonexpansive. More precisely,
they are metric spaces (A, d) with, for each n-ary operation op in the signature, an
interpretation JopK : An → A satisfying

∀a, b ∈ An, d(JopK(a1, . . . , an), JopK(b1, . . . , bn)) ≤ max
1≤i≤n

d(ai, bi). (0.1)

This is a very natural condition because it is equivalent to saying that JopK is a mor-
phism from (A, d)n to (A, d) in the category Met of metric spaces and nonexpansive
maps, where (A, d)n denotes the n-wise categorical product.14 14 I would say this is the expected definition of “alge-

bra over a metric space”, especially to those familiar
with functorial semantics [Law63], or subsequent
work in categorical algebra and categorical logic.

In [FMS21], the authors view Met as an instance of a category Str(ℋ ) of rela-
tional structures, see [FMS21, Example 3.5.(3)]. Without going into details, we can
mention that the category Poset of partially ordered sets and monotone maps is
another instance. Therefore, their work is general enough to cover both algebras
equipped with a metric and algebras equipped with a partial order. Accordingly, a
generalization of (0.1) is imposed on the interpretation of operations, namely, JopK is
a morphism from An to A, where A ∈ Str(ℋ ).15 15 It is actually more complicated than that, because

in [FMS21], operations come with an arity ar(op) that
is not just a natural number but a whole relational
structure itself (with some size conditions). This
allows them to handle some partial operations, e.g.
x + y can be undefined.

In both papers, there is a sound and complete logical system that generalizes
Birkhoff’s equational logic, [MPP16] replaces equations with quantitative inferences
and [FMS21] replaces equations with Σ-relations (where Σ is the signature). An
explicit construction of free algebras equipped with a metric (resp. a relational
structure) is given in [MPP16, Theorem 5.3] (resp. [FMS21, Theorem 4.18]). Later
papers provided generalizations of the HSP theorem [MPP17, MU19, JMU24], and
the connection with monads has been investigated in [FMS21, Adá22, ADV23b].

In [MPP16, §8–10], the authors use their logic to axiomatize well-known con-
structions on metrics. They show that the total variation distance (Example 3.92),
the Kantorovich distance (Example 3.5), and the Hausdorff distance (Example 2.17)
can all be defined as free algebras for some carefully chosen set of axioms. Ford
et al. do the same for the metric completion in [FMS21, Example 4.8]. Many other
so-called presentation results are found in, e.g. [MV20, BMPP21, MSV21, MSV22, ?],
sometimes with applications to semantics.
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While trying to axiomatize other interesting distances, we had to question some
assumptions of [MPP16]. We learned about the ŁK distance (3.3) on probability
distributions in [CKPR21], where they use it as an easier-to-compute alternative to
the Kantorovich distance. We intended to simply adapt that axiomatization, but we
quickly faced two obstacles.

First, the ŁK distance is not a metric, it is a diffuse metric [CKPR21, §4.2].16 In 16 That is a relaxation of the usual axioms for metrics
(see Definition 0.1). Diffuse metrics are also called
dislocated metrics in [HS00].

particular, the distance between a distribution and itself can be non-zero. Second,
combining probability distributions like it is done for the Kantorovich distance (with
convex combinations) is not nonexpansive in the sense of (0.1) with d being the ŁK
distance.

The generality of [FMS21] is enough to overcome the first problem since the
category of diffuse metrics is an instance of Str(ℋ ). However, we already said that
they also work with (an analog to) the requirement of (0.1), so the second problem
remains. In the present work, we introduce a framework that deals with both 1)
distances that are not metrics and 2) operations that do not satisfy (0.1).17 Rejecting 17 The first time we did this was in [MSV22], and

with [MSV23] and this thesis, we aim to simplify and
broaden our initial proposal.

that assumption was previously done in [Wea93, Wea95, Hin16, Hin17, BBLM18a,
AFMS21] in various different contexts.

We define generalized metrics to be distance functions valued inside an arbitrary
complete lattice L (d : A× A → L) satisfying an arbitrary set of axioms expressed
with quantitative equations (a variant of the quantitative inferences in [MPP16]).18 18 In particular, taking L = [0, ∞] with the axioms of

Definition 0.1 translated into quantitative equations
yields metrics (see Example 2.34).

Then, our quantitative algebras (Definition 3.1) are simply algebras equipped with a
generalized metric. Importantly, no further restriction is imposed on the operations
in the algebra, and this allows us to axiomatize the ŁK distance in Example 3.102.

With this setting, we recover some of the classical results in universal algebra, and
more. The major contributions, Items i., ii., and iv., already appear in [MSV23] with
a different presentation and a fixed L = [0, 1].

i. We define quantitative equational logic (Figure 3.1), a logical system that is sound
(Theorem 3.69) and complete (Theorem 3.76) relative to our quantitative algebras.
It mirrors equational logic more closely than Mardare et al.’s logic19 without 19 See the discussion in §0.3 and Example 3.70.

renouncing their fundamental idea to merely change equality with equality up to
ε.

ii. We construct the free quantitative algebras (Theorem 3.57) relative to any class of
quantitative equations.20 This induces a monad on the category GMet of gener- 20 We give a semantical and a syntactical construction

(Definitions 3.45 and 3.73 respectively), and they are
equivalent thanks to soundness and completeness of
our logic.

alized metric space, and the quantitative algebras modelling the chosen class of
quantitative equations coincide with the algebras for that monad (Theorem 3.80).

iii. We provide a simple axiomatization of the set of probability distributions with
the ŁK distance as a free quantitative algebra in Example 3.102.

iv. In achieving Item iii., we prove a more general result (Theorem 3.98) which
states that any monad lifting to GMet (Definition 3.87) of a monad on Set
with an algebraic presentation also has a quantitative algebraic presentation
(Definition 3.82), i.e. it can be axiomatized with quantitative equations.21 In 21 This is related to [ADV22, §5], where strongly fini-

tary monads on the category of posets are shown to
be monad liftings of finitary monads on Set.
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particular, it yields a presentation for a monad on Met that is not captured by the
framework of [MPP16] nor that of [FMS21] (Remark 3.101).

Apart from those technical contributions, our approach describes quantitative
algebraic reasoning as a cleaner generalization of algebraic reasoning.22 This guided 22 This is supported by Item iv. and Examples 3.70

and 3.71.the outline of this manuscript which is divided in three chapters, one on classical
algebraic reasoning, one on our tailored generalization of metric spaces, and one on
combining these two chapters, lifting algebraic reasoning to generalized metric
spaces. Let us now give more detailed introductions for each of these chapters.23 23 You could skip these now and come back to each

of the following sections when starting to read the
corresponding chapter.

0.1 Universal Algebra and Monads

With a bit of experience adding natural numbers together, you quickly notice that
addition respects some rules. If you add n and m, you get the same thing as if you
add m and n, no matter what numbers n and m are. If you add n and 0, you obtain
n. If you add n and m, then add k, you get the same thing as if you add n to the sum
of m and k. We represent these rules with equations:

n + m = m + n n + 0 = n (n + m) + k = n + (m + k). (0.2)

These equations also hold when n, m, and k belong to the integers or the real
numbers. We can also replace addition with multiplication and 0 with 1.

Since these rules apply in different contexts, mathematicians came up with an
abstract definition of a commutative monoid: a set M with a function + : M×M→
M (written infix) and an element 0 ∈ M, such that for all n, m, k ∈ M, the equations
above are true. The study of these abstract structures (and other variants like groups
and rings) is extremely fruitful,24 so much so that you probably learned about them 24 I cannot do better than a euphemism here. Even

narrowing to theoretical computer science, algebraic
reasoning has many applications — there are two
noteworthy international conferences with “algebra”
and “computer science” in their names, CALCO
[GS21] and RAMiCS [FGSW21]. Our story focuses
on algebraic semantics only.

in a first-year undergraduate mathematics course with “algebra” in its title.
With a bit of experience studying monoids, groups, and rings, you quickly notice

the similarities in their definitions, and in the reasoning in proofs about them. The
purpose of universal algebra is to formalize what they have in common, in order
to investigate them all at once. We study an arbitrary algebraic theory instead of
doing group theory, ring theory, etc.

An algebraic theory is a syntactic gadget that specifies one kind of algebraic
structure with a signature Σ containing operation symbols, and a collection of
equations E asserting that some sequences of symbols can be replaced by others. For
instance, the theory of commutative monoids contains the symbol +, the symbol 0,
and the equations in (0.2).

The models of a theory derived from (Σ, E) are called (Σ, E)-algebras. They are
sets in which you can combine elements as dictated by the operations in Σ in a way
that respects the rules expressed by the equations in E. For instance, the models of
the theory of commutative monoids are commutative monoids.25 25 Groups and rings are other similar examples of

algebras, but fields are not because the property of
all non-zero elements being units cannot be asserted
with equations.

The flexibility of universal algebra was recognized as a powerful tool early on in
the history of formal semantics of programming languages (at the least in [SS71]).
We already saw that sequential composition ; and conditional branching ifte could
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be modelled as algebraic operations. Let us mention two additional well-known
examples which were the main source of examples for quantitative algebras.26 26 See [BSV22] for a more detailed account in the

classical setting, and [MSV21] for the quantitative
setting.

To represent programs that use nondeterminism, we use a binary operation ⊕. If
P and Q are programs, then P⊕Q nondeterministically chooses to run P or Q. The
equations that govern the behavior of ⊕ are

P⊕ P = P, P⊕Q = Q⊕ P, and P⊕ (Q⊕ R) = (P⊕Q)⊕ R.

Briefly, they state that a nondeterministic choice is not affected by the order or
multiplicity of the possibile outcomes.27 27 See Example 1.78.

To represent programs that make decisions according to some probability distri-
butions, we use a family of binary operations +p indexed by real numbers 0 < p < 1.
If P and Q are programs, then P +p Q is the program that runs P with probability
p and Q with probability 1− p. For example, if P and Q return HEADS and TAILS

respectively, then P +0.5 Q is a fair coin. The equations look a lot like those for ⊕,
for example P +p P = P for any p.28 28 See Example 1.79.

To fully grasp the last sentence of the paragraph on nondeterminism, it is crucial
to note that the three equations we gave entail many more equations (for example
(Q⊕ P)⊕ (P⊕ Q) = P⊕ Q). We can appreciate this from two equivalent angles.
Semantically, an equation ϕ is entailed by a set of equations E if all the models of
(Σ, E) satisfy ϕ. Syntactically, ϕ is entailed by E if it can be derived in equational
logic (see Figure 1.3).29 29 The first account of this logic, and the equivalence

between these two points of view are due to Birkhoff
[Bir35], and we prove it in Theorems 1.55 and 1.60.

Yet another take on algebraic theories comes from category theory. Birkhoff
[Bir35] had already realized that one can always freely generate (Σ, E)-algebras, and
Lawvere [Law63] and Linton [Lin66] recognized this induces a monad TΣ,E on the
category of sets. They also showed there is a (partial) converse: any finitary monad
on Set is presented by an algebraic theory.30 30 i.e. any finitary monad is isomorphic to TΣ,E for

some Σ and E.Moggi first conveyed the applicability of monads (an abstract notion from category
theory) in computer science in [Mog89, Mog91]. They became a valuable tool in
semantics, and a monad paired with an algebraic presentation allows to combine
categorical and equational reasoning. It can be very effective (even outside semantics)
as shown in, e.g. [PP01a, PP01b, PP02, BP15, BHKR15, DPS18, PRSW20, BSS21,
BSV22, ZM22, RZHE24].

In Chapter 1, we tell the story many times retold of universal algebra. We
adopt a somewhat peculiar presentation of the material in order to replicate it more
accurately in Chapter 3. We also give some examples of algebras, algebraic theories
and algebraic presentations.

0.2 Generalized Metric Spaces

In many applications, deciding whether programs are equivalent or not is overly
simplistic. We gave the example of compression algorithms, but let us give three
more.

Artificial Intelligence. A lot of models in AI, especially in machine learning, rely
on probabilistic reasoning to make decisions.31 For example, when a classifier is 31 See, e.g. [CKPR21] which motivated Exam-

ple 3.102.

https://en.wikipedia.org/wiki/Fair_coin
https://en.wikipedia.org/wiki/Statistical_classification
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fed an image, before deciding what the image depicts, it produces a probability
distribution over things that could possibly be in that image. It goes like this:

dogpic.jpg
classify−−−−→ 89% dog + 6% lion + 2% cat + · · · max−−→ dog.

Consider two different classfiers that consistently give the same (possibly correct)
answer on the testing dataset. One might consider them to be equal, but a closer
examination could reveal that one classifier is more confident than the other. In other
words, the distributions produced by one classifier may be more concentrated than
those produced by the other.32 Therefore, it makes sense to compare classifiers (more 32 In particular, the distributions produced by the

perfect classifier (one that knows the correct labels)
are always fully concentrated at a single point.

generally, AI models) by devising a notion of distance on the probability distributions
they produce. We will give two examples of distances between distributions within
our framework in Examples 3.85 and 3.102.

Quantitative Information Flow. When designing software that handles data
containing private information, one often wants a balance between the privacy of
the users and the utility provided. It makes sense to share the average grade for a
class of 100 students, but not for a class of 5 students. With the methods developed
in quantitative information flow [QIF20] (especially differential privacy [Dwo06]),
we can compare the levels of confidentiality of different programs, before deciding
what is the safest (most private) one to roll out.33 33 For now, this is only a potential application, we do

not have concrete results in this direction.Code Optimization. Consider the two pieces of pseudocode in Figure 1.

return Bernoulli(0.5)

do

x = Bernoulli(0.3)

y = Bernoulli(0.3)

while (x == y)

return x

Figure 1: Simulating a fair coin flip with a biased
coin (with a weak guarantee of termination) using
an idea of [vN51].

For all intents and purposes, they are equivalent.34 However, there is only a weak 34 If you throw a (possibly biased) coin twice and you
get two different outcomes, the probability that the
first outcome was HEADS is equal to the probability
that it was TAILS, hence it is 0.5 (assuming throws
are independent).

guarantee that the second program terminates (it does with probability 1). Still, if you
are unable to run Bernoulli(0.5) for some reason, you would be perfectly happy to
use the second program. If you want to have a strong guarantee of termination, you
could interrupt the loop after, say, 1000 iterations and then return an arbitrary value
(see Figure 2). Unfortunately, this breaks the equivalence with Bernoulli(0.5), but

i = 0

do

i = i + 1

x = Bernoulli(0.3)

y = Bernoulli(0.3)

while (x == y) AND i < 1000

return x

Figure 2: Simulating a fair coin flip with a biased
coin (with a strong guarantee of termination).

it is still appropriate to say that the two programs are close to each other (even if they
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are not equivalent), and that they would be even closer if we increase the maximum
number of iterations. When some features are not available, or more realistically
when their implementation is not efficient, it can be convenient to write code that
approximates the specification but runs (faster).

A widespread alternative to equality that is inherently more fine-grained is metrics.
The first definition of metric space (under the name “(E) classes”) is credited to
Fréchet’s thesis [Fré06]. We give the definition that is now standard.35 35 Up to small variations. It is essentially equivalent

to Fréchet’s definition, but uses different notation
and terminology.Definition 0.1 (Metric space). A metric space is a pair (A, d) comprising a set A and

a function d : A× A→ [0, ∞) called the metric satisfying for all a, b, c ∈ A:

1. separation: d(a, b) = 0⇔ a = b,

2. symmetry: d(a, b) = d(b, a), and

3. triangle inequality: d(a, c) ≤ d(a, b) + d(b, c).

For more than a 100 years now, metrics have been a good abstract formalization
of what we intuitively understand to be distances. In particular, d(a, b) is often
called the distance between a and b. Therefore, instead of reasoning about program
equivalence, we reason about program distances.36 36 In semantics, people also use the term behavioral

distance/metric.The study of distances between programs (especially those with probabilistic
aspects) began in the previous century (see [vB01] for a (relatively old) survey).
While there is no international conference on the subject,37 it is still a very active 37 Work on this definitely fits in QAPL, but the last

meeting was in 2019 [AW20].area of research (see, e.g. [CDL15, CDL17, BBLM18a, BMPP18, BBLM18b, BBKK18,
MSV21, Pis21]).

In this literature, there is a recurring idea that positive real numbers are not
always the best space to value distances in. Oftentimes, the value ∞ is allowed,
where d(a, b) = ∞ means a and b are as far apart as they can be. Sometimes,
distances are bounded above by 1, so [0, 1] replaces [0, ∞). In more exotic cases,
it makes sense for d(a, b) to not even be a number, it can be a set [ABH+

12], a
probability distribution [HR13], an element of a continuous semiring [LMMP13], or
just a boolean value.

It is also common to remove or modify some axioms of Definition 0.1 to work
with, e.g. pseudometric spaces [BBKK18] or ultrametric spaces [Esc99, Pis21].

It would be ideal if we could devise a definition that encapsulates all existing
formal notions of distance. That is obviously not possible. Moreover, even the term
“generalized metric space” is employed across various research communities with
different meanings (see, e.g. [BvBR98, Bra00, LY16, Pis21]).

In [MPP16], the authors propose theoretical foundations for quantitative algebraic
semantics. Their work allows to reason equationally about metrics. One of our
contributions in [MSV22] was to show that you can handpick any subset of the
axioms of metric spaces and carry out all the proofs of the original paper [MPP16]
without much trouble.38 I believe this was known to the authors of [MPP16], 38 Although there is a subtlety about the equality

predicate that we explain in §0.3.especially in light of the results of [FMS21] which morally do the same thing except
for an even more general class of structures.
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In this thesis, we propose yet another definition of generalized metric spaces that
is as general as possible without requiring any additional technical machinery. In
fact, if you read the present work being comfortable with the frameworks presented
in [MPP16] or [MSV22], I believe you will not feel far from home.

We first define L-spaces (Definition 2.11) which are sets equipped with a distance
function into a complete lattice L (A, d : A× A → L). The structure of a complete
lattice allows comparing distances (say one is smaller or bigger than another), and
to define a distance as an infimum of a set of bounds in L. That is enough to do
quantitative algebraic reasoning in the sense of [MPP16].39 39 We say more on this in Remark 2.22.

Then, we describe a language to specify axioms one can put on L-spaces. We
call such axioms quantitative equations (Definition 2.23). They are a restriction of
quantitative equations that we define in Chapter 3, so we will motivate them in §0.3.
Examples include separation, symmetry and triangle inequality from Definition 0.1,
but also reflexivity, transitivity, and antisymmetry of a binary relation, the strong
triangle inequality of ultrametric spaces, and many more. A generalized metric
space is then an L-space that satisfies a fixed set of quantitative equations.

In Chapter 2, we give lots of examples including posets, preorders, metrics,
pseudometrics, ultrametrics, etc. We also study some properties of the categories
of generalized metric spaces40 in preparation for Chapter 3 which essentially just 40 We get one category GMet for each complete lat-

tice L and each collection of quantitative equations
we decide to impose.

combines the first and second chapter to do universal algebra on generalized metric
spaces.

0.3 Universal Quantitative Algebra

The term quantitative is used in this thesis to refer to a notion of distance that quantifies
how far apart two things are.41 Universal quantitative algebra is then a framework 41 In contrast with the work on Girard’s quantitative

semantics [Gir88, BE99] or Kesner and Ventura’s quan-
titative types [KV14] which aim to quantify the re-
source usage of a program.

where one can reason about both equality and distances between algebraic terms
(built out of variables and operations in a signature). The first paper on the subject
is [MPP16]. Its theoretical contributions are three-fold.42 42 The authors also admirably sell their results with

several examples combining algebraic and metric rea-
soning to axiomatize well-known metrics, the Haus-
dorff distance which we treat more generally in Ex-
ample 3.83, the Kantorovich distance (Example 3.5),
and the total variation distance (Example 3.92).

The authors work in the category Met of extended metric spaces (distances valued
in [0, ∞]) and nonexpansive maps — a function is nonexpansive if it never increases
the distance of its inputs (2.3). First, they define a quantitative algebra to be a
metric space (A, d) equipped with operations that are interpreted as nonexpansive
functions (A, d)n → (A, d), where (A, d)n denotes the n-wise categorical product
of (A, d) with itself. Second, they develop an analog to Birkhoff’s equational logic
to reason about properties of quantitative algebras, and they show it is sound and
complete. Third, they show that free quantitative algebras always exist.

Let us briefly explain the logic presented in [MPP16]. At its core, there is the
neat observation that the data of a metric d : A× A → [0, ∞] can be equivalently
given as a family of binary relations {Rd

ε ⊆ X× X} indexed by ε ∈ [0, ∞] with some
additional properties.43 This point of view is not completely new, it can be glimpsed 43 We prove a more general version in Proposi-

tion 2.21.in [Wea95], [DLPS07, §1.2], [Ngu10, After Proposition 1], and [Con17]. However, in
their quantitative equational logic, the authors of [MPP16] propose to take more
seriously the point of view that the relation Rd

ε means “equality up to ε”, and thus
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that we can reason about it kind of how we do for equality. In particular, they use
the symbol =ε.

Their logic closely resembles implicational logic (see, e.g. IL1–8 in [Wec92, p. 223–
224]) where the equality predicate is replaced by a family of predicates =ε where ε is
a positive real number.44 The meaning of s =ε t is that for all possible assignments 44 It is harmless to restrict to rational numbers if one

cares about the size of the formal system.of variables, the interpretations of s and t are at distance at most ε. It is clearly
reminiscent of the meaning of s = t in universal algebra (that for all possible
assignments of variables, the interpretations of s and t are equal). The shape of a
generic judgment, called quantitative inference, is {si =εi ti} ⊢ s =ε t. It asserts that
whenever the distance between the interpretations of si and ti are below εi for each
i ∈ I, the distance between the interpretations of s and t is below ε.

Here are a few inference rules in that logic.

Refl⊢ t =0 t Maxs =ε t ⊢ s =ε+ε′ t
∀ϕ ∈ Γ′, Γ ⊢ ϕ Γ′ ⊢ ψ

CutΓ ⊢ ψ

Nexp{si =ε ti | 1 ≤ i ≤ n} ⊢ op(s1, . . . , sn) =ε op(t1, . . . , tn)

The first states that the distance between the interpretation of t and itself is always
below 0 (hence equal to 0), this mirrors one side of the separation axiom of metric
spaces. The second rule, quantified over all positive reals ε, ε′, states that if ε is an
upper bound for the distance between (the interpretations of) s and t, then you can
add any positive quantity, and it will remain an upper bound. The third is a cut
rule that you always find in similar deductive systems,45 and it simply reflects the 45 c.f. IL7 in [Wec92, p. 224] and cut in [CM22b, Defi-

nition 4.1.1].semantics of ⊢ being an implication.
The last one states that whenever the distance between si and ti is bounded above

by ε for each i ∈ I, so is the distance between op(s1, . . . , sn) and op(t1, . . . , tn). After
unrolling some definitions, one verifies this is equivalent to the interpretation of op
being nonexpansive with respect to the product metric (0.1).46 46 We mentioned this property of interpretations is

very natural, but so is the Nexp rule: it says that
the relation =ε is preserved by the operations (like a
congruence, except is not necessarily an equivalence
relation).

The quantitative equational logic that we present in Figure 3.1 is adapted from
the one in [MPP16] in three key ways.

1. In order to deal with quantitative algebras on generalized metric spaces, the
predicates =ε are now indexed with quantities ε ∈ L, and the rules like Refl

above are removed.47 Without Refl, there is no predicate =ε that corresponds to 47 We also remove rules that ensure the other side of
separation, symmetry and triangle inequality.equality. Thus, we have to reintroduce the predicate =, and add rules ensuring

that it behaves like equality (it is a congruence).

2. We remove Nexp. As we foreshadowed, this rule and the requirement of (0.1)
are not necessary to develop the theory of quantitative algebras. We first showed
this in [MSV22], where we replaced these with a technical notion we called
lifted signatures [MSV22, Definition 3.6] and a corresponding inference rule. In
[MSV23] and here, we do not replace them with anything as it makes the base
logic simpler. It is always possible to recover the nonexpansive property (or its
variants from [MSV22]) by adding more axioms (see (3.9)).

3. In an effort to make a better parallel with equational logic, we slightly reduce the
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expressiveness of the logic. The authors of [MPP16] already identified a special
class of judgments whose terms in the premises are all variables, that is, their
generic shape is {xi =εi yi} ⊢ s =ε t. They call these basic quantitative inferences,48 48 They require the set of premises to be finite, but

that is not important for us.and they crucially rely on them to define free algebras49 [MPP16, Theorem 5.1],
49 Consequently, their examples of axiomatizations
only use basic quantitative inferences.and to prove variants of the HSP theorem [MPP17, Theorem 3.11].

The premises of a basic quantitative inference (predicates to the left of the turnstile
⊢) can equivalently be described with an L-space on the variables used.50 Thus, 50 See the discussion on syntactic sugar before Re-

mark 2.28. This idea also appears in, e.g. [AFMS21,
FMS21, Adá22, ADV23b].

our generic judgments are now written like (X, d) ⊢ s =ε t or (X, d) ⊢ s = t, where
(X, d) is an L-space, where d is the largest distance that models the premises of the
corresponding basic quantitative inference. We call these judgments quantitative
equations as we believe they are the proper counterpart to equations in universal
algebra.

Recall that quantitative equations also generalize the axioms of generalized metric
spaces from §0.2. More accurately, the quantitative equations of Chapter 2 are
instances of the quantitative equations of Chapter 3 when the signature is empty.
That is morally the reason why we define generalized metric spaces with them.51 51 We took a less elegant but more pragmatic ap-

proach in [MSV23, §8].

The first and third item can both be found, under guise of further abstraction, in
[FMS21]. They deal with relational structures which are more general, but harder
to link back to the equational reasoning we are used to in universal algebra. Our
main advantage is that, while we can handle various notions of distances that are
not metrics (e.g. ultrametrics and partial orders), our logic is not more complicated
than [MPP16]’s. In fact, in a sense it is simpler because it only deals with basic
quantitative inferences, yet it is still sound and complete.52 52 We say more on this in Remark 3.68.

To be impactful, one could say our logic is to [MPP16]’s logic as equational logic
is to implicational logic. Indeed, what is a basic implication in implicational logic?
It is a judgment of shape {xi = yi} ⊢ s = t, where the terms in the premises are
variables only. But this means the premises are trivial because if two variables are
equal, you can use a single variable instead. Thus a basic implication is just an
equation, and similarly, a basic quantitative inference is just a quantitative equation.

The second item seems to be novel. Although people had removed the non-
expansive requirement in [Wea93, Wea95, Hin16, Hin17, AFMS21],53 nobody had 53 Unfortunately, we were not aware of these papers

when we published [MSV22], and we did not cite
them.

done it in the logical apparatus. We were inspired by the ad-hoc approach of
[BBLM18a, BBLM18b].

Dismissing Nexp is necessary to prove Theorem 3.98, the main theorem in §3.5.
The motivating applications of [MPP16] are presentation results for monads on Met.
Briefly, they show how the distances induced by their logic (with different sets of
axioms) coincide with popular distances used in semantics. Similar results were
obtained in, e.g. [MSV21, BMPP18, BMPP21, MSV22], and they all have in common
that they reuse a known algebraic presentation for a monad on Set. We show in
Theorem 3.98 that this is always possible when the monad on Met is a monad lifting
of the monad on Set (Definition 3.87).

When working with nonexpansive operations, or equivalently with the Nexp

rule, the induced monads are automatically enriched.54 We exhibit a monad lifting 54 This is proved in the metric context in [ADV23a,
after Corollary 4.19], in the ordered context in
[AFMS21, Proposition 4.6], and in the context of re-
lational structures in [FMS21, Corollary 4.14].
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that is not enriched in Example 3.88, and it is presented by a quantitative algebraic
theory thanks to Theorem 3.98. This shows that our approach is more general (in
one aspect) than [MPP16] and [FMS21].

A final benefit we can highlight is the way our simplifications make the story
of universal quantitative algebra so similar to the story of universal algebra. In
Chapter 3, the outline and many proofs from Chapter 1 are reprised to work
with quantitative algebras. We also give some examples of quantitative algebras,
quantitative algebraic theories, and quantitative algebraic presentations.
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For a comprehensive introduction to the concepts and themes explored in this
chapter, please refer to §0.1. Here, we only give a brief overview.

In this chapter, we cover the content on universal algebra and monads that we
will need in the rest of the thesis. This material has appeared many times in the
literature,55 but for completeness (and, to be honest, for my own satisfaction) we take 55 [Wec92] and [Bau19] are two of my favorite refer-

ences on universal algebra, and both [Rie17, Chapter
5] and [BW05, Chapter 3] are great references for
monads (the latter calls them triples).

our time with it, although we assume the reader is comfortable with basic category
theory (the material in the appendix). In Chapter 3, we will follow the outline of
the current chapter to generalize the definitions and results to sets equipped with
a notion of distance. Thus, many choices in our notations and presentation are
motivated by the needs of Chapter 3.56 56 I hope this will not make this chapter too terse, but

the payback of simply copy-pasting proofs to obtain
the generalized results is worth it.

Outline: In §1.1 and §1.2, we define algebras, terms, and equations over a
signature of finitary operation symbols. In §1.3, we explain how to construct the
free algebras for a given signature and class of equations. In §1.4, we give the rules
for equational logic to derive equations from other equations, and we show it is
sound and complete. In §1.5, we define monads and algebraic presentations for
monads. We give examples all throughout, some small ones to build intuition and
some bigger ones that will be important later.

1.1 Algebras

We said in §0.1 that groups and rings are both examples of algebras we want to
understand. Groups and rings allow different kinds of combinations of elements,
you can do x · (y + z) in a ring but not in a group. To specify which combinations
are allowed, we use a signature, and essentially all of this chapter will be parametric
over a signature denoted Σ.

Definition 1.1 (Signature). A signature is a set Σ whose elements, called operation
symbols, each come with an arity n ∈ N. We write op : n ∈ Σ for a symbol op
with arity n in Σ. With some abuse of notation, we also denote by Σ the functor
Σ : Set→ Set with the following action:57 57 The set Σ(A) can be identified with the set contain-

ing op(a1, . . . , an) for all op : n ∈ Σ and a1, . . . , an ∈
A. Then, the function Σ( f ) sends op(a1, . . . , an) to
op( f (a1), . . . , f (an)).

Σ(A) := ⨿
op:n∈Σ

An on sets and Σ( f ) := ⨿
op:n∈Σ

f n on functions.

https://youtube.com/playlist?list=OLAK5uy_n93-f6dE8eLC8LuZfpAoXgY8N3cTRIeJo&si=0GyWN6z9Z09dEnv_
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An algebra for a signature Σ is a structure where each operation symbol in Σ is
associated to a concrete way to combine elements.

Definition 1.2 (Σ-algebra). A Σ-algebra (or just algebra) is a set A equipped with
functions JopKA : An → A for every op : n ∈ Σ called the interpretation of the
symbol. We call A the carrier or underlying set, and when referring to an algebra,
we will switch between using a single symbol A58 or the pair (A, J−KA), where 58 We will try to match the symbol for the algebra

and the one for the underlying set only modifying
the former with mathbb.

J−KA : Σ(A) → A is the function sending op(a1, . . . , an) to JopKA(a1, . . . , an) (it
compactly describes the interpretations of all symbols).

A homomorphism from A to B is a function h : A→ B between the underlying
sets of A and B that preserves the interpretation of all operation symbols in Σ,
namely, for all op : n ∈ Σ and a1, . . . , an ∈ A,59 59 Equivalently, h makes the following square com-

mute:

Σ(A) Σ(B)

A B

Σ( f )

J−KA

f

J−KB
(1.1)

This amounts to an equivalent and more concise
definition of Alg(Σ): it is the category of algebras
for the signature functor Σ : Set → Set [Awo10,
Definition 10.8].

h(JopKA(a1, . . . , an)) = JopKB(h(a1), . . . , h(an)). (1.2)

The identity maps idA : A → A and the composition of two homomorphisms are
always homomorphisms, therefore we have a category whose objects are Σ-algebras
and morphisms are Σ-algebra homomorphisms. We denote it by Alg(Σ).

This category is concrete over Set with the forgetful functor U : Alg(Σ) → Set
which sends an algebra A to its carrier and a homomorphism to the underlying
function between carriers.

Remark 1.3. In the sequel, we will rarely distinguish between the homomorphism
h : A→ B and the underlying function h : A→ B. Although, we may write Uh for
the latter, when disambiguation is necessary.

Example 1.4. 1. Let Σ = {p : 0} be the signature containing a single operation
symbol p with arity 0. A Σ-algebra is a set A equipped with an interpretation
of p as a function JpKA : A0 → A. Since A0 is the singleton 1, JpKA is just a
choice of element in A,60 so the objects of Alg(Σ) are pointed sets (sets with 60 Hence, we often call 0-ary symbols constants.

a distinguished element). Moreover, instantiating (1.2) for the symbol p, we
find that a homomorphism from A to B is a function h : A → B sending the
distinguished point of A to the distinguished point of B. We conclude that Alg(Σ)
is the category Set∗ of pointed sets and functions preserving the points.

2. Let Σ = {f : 1} be the signature containing a single unary operation symbol
f. A Σ-algebra is a set A equipped with an interpretation of f as a function
JfKA : A→ A.

For example, we have the Σ-algebra whose carrier is the set of integers Z and
where f is interpreted as “adding 1”, i.e. JfKZ(k) = k + 1. We also have the
integers modulo 2, denoted by Z2, where JfKZ2(k) = k + 1(mod 2).

The fact that a function h : A→ B satisfies (1.2) for the symbol f is equivalent to
the following commutative square.

A B

A B

JfKA

h

JfKB

h
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We conclude that Alg(Σ) is the category whose objects are endofunctions and
whose morphisms are commutative squares as above.61 There is a homomorphism 61 For more categorical thinkers, we can also identify

Alg(Σ) with the functor category [BN, Set] from the
delooping of the (additive) monoid N to the category
of sets. Briefly, it is because a functor BN→ Set is
completely determined by where it sends 1 ∈N.

is_odd from Z to Z2 that sends k to k(mod 2), that is, to 0 when it is even and to
1 when it is odd.

3. Let Σ = {· : 2} be the signature containing a single binary operation symbol. A
Σ-algebra is a set A equipped with an interpretation J·KA : A× A → A. Such
a structure is often called a magma, and it is part of many more well-known
algebraic structures like groups, rings, monoids, etc. While every group has an
underlying Σ-algebra62 and every group homomorphism is a homomorphism 62 In fact, every group has an underlying algebra for

the signature {· : 2, e : 0, (−)−1 : 1}.of Σ-algebras, not every Σ-algebra underlies a group since J·KA is not required
to be associative for example. In other words, the category of groups Grp is a
subcategory of Alg(Σ).

We now turn to subalgebras and products of algebras.

Definition 1.5 (Subalgebra). Given A ∈ Alg(Σ), a subalgebra of A is a subset
B ⊆ A that is closed under the operations in Σ, namely, for any op : n ∈ Σ and
b1, . . . , bn ∈ B, JopKA(b1, . . . , bn) ∈ B. It quickly follows that J−KB : Σ(B)→ B can be
defined as a (co)restriction of J−KA, making B = (B, J−KB) into a Σ-algebra and the
inclusion B ↪→ A into a homomorphism.

Remark 1.6. The inclusion of a subalgebra is always an injective homomorphism, and
reasoning up to isomorphisms we can always view an injective homomorphism as
an inclusion of a subalgebra. This relies on the fact that isomorphisms in Alg(Σ) are
precisely the bijective homomorphisms.63 63 Quick Proof. If h : A → B is a homomorphism

and h−1 : B → A is its inverse, we show that it is
a homomorphism as well using h ◦ h−1 = idB, then
(1.2), and finally h−1 ◦ h = idA:

h−1(JopKB(b1, . . . , bn))

= h−1(JopKB(h ◦ h−1(b1), . . . , h ◦ h−1(bn)))

= h−1 ◦ h(JopKB(h−1(b1), . . . , h−1(bn)))

= JopKB(h−1(b1), . . . , h−1(bn)).

Example 1.7. 1. All the standard notions of submonoids, subgroups, subrings, etc.
are examples of subalgebras.

2. With the signature Σ = {p : 0}, the subalgebras of a Σ-algebra/pointed set A

are all its subsets that contain the distinguished point, and the latter is the
distinguished point inside the subalgebra.

3. For any homomorphism h : A→ B, the image h(A) = {h(a) | a ∈ A} is closed
under the operations by definition, thus it is a subalgebra of B.

Products of algebras are defined using the usual categorical definition. Namely,
they are the products in the category Alg(Σ), we show those always exist by giving
their construction.

Lemma 1.8. Let {Ai = (Ai, J−Ki) | i ∈ I} be a family of Σ-algebras indexed by I. We
define the algebra A = (A, J−KA) with A = ∏i∈I Ai being the cartesian product, and
J−KA being defined coordinatewise: for all a1, . . . , an ∈ A and op : n ∈ Σ,

JopKA(a1, . . . , an) = ⟨JopKi(πi(a1), . . . , πi(an))⟩i∈I . (1.3)

Then A is the product ∏i∈I Ai, with πi : A → Ai being the projection of the cartesian
product.

https://en.wikipedia.org/wiki/Magma_(algebra)


24 lifting algebraic reasoning to generalized metric spaces

Proof. First, we need to show that every πi is a homomorphism, but this is exactly
the meaning of (1.3). Next, let fi : X → Ai be a family of homomorphisms. The
pairing ⟨ fi⟩i∈I : X → A is defined by ⟨ fi⟩i∈I(x) = ⟨ fi(x)⟩i∈I ∈ A. It is the only
function satisfying πi ◦ ⟨ fi⟩i∈I = fi inside Set, so it is the only candidate for a
homomorphism X→ A in Alg(Σ) that satisfies πi ◦ ⟨ fi⟩i∈I = fi.64 64 Uniqueness holds because U : Alg(Σ) → Set is

faithful.Let us show this pairing is a homomorphism with the following derivation:

⟨ fi⟩i∈I(JopKX(x1, . . . , xn)) = ⟨ fi(JopKX(x1, . . . , xn))⟩i∈I

= ⟨JopKi( fi(x1), . . . , fi(xn))⟩i∈I

= ⟨JopKi(πi ◦ ⟨ fi⟩i∈I(x1), . . . , πi ◦ ⟨ fi⟩i∈I(xn))⟩i∈I

= JopKA(⟨ fi(x1)⟩i∈I(a1), . . . , ⟨ fi(xn)⟩i∈I(a1)).

Example 1.9. Arguably the most famous example of a product of algebras is the
cartesian plane R2. Equipped with + and 0, the real numbers form an abelian group,
and the product of (R,+, 0) with itself is R2 where (0, 0) is the zero element and
(x, y) + (x′, y′) = (x + x′, y + y′).

1.2 Terms and Equations

While a group is a Σ-algebra for a naturally chosen signature {· : 2, e : 0, (−)−1 : 1},
we saw that Grp is merely a subcategory of Alg(Σ) because groups are special kinds
of Σ-algebras. They satisfy some properties like associativity of the binary operation
which are not true in all Σ-algebras. In this section, we study the kind of properties
that can be stated as equations.

If we want to say that a binary operation · is interpreted as a commutative
operation, we could write

∀a, b ∈ A, J·KA(a, b) = J·KA(b, a).

To say that · is associative, we write

∀a, b, c ∈ A, J·KA(J·KA(a, b), c) = J·KA(a, J·KA(b, c)),

and as you can see, it gets hard to read very quickly. We make our life easier by
defining the interpretation of Σ-terms which are syntactic gadgets built by iterating
the symbols in Σ.

Definition 1.10 (Term). Let Σ be a signature and A be a set.65 We denote with TΣ A
65 In the sequel, unless otherwise stated, Σ will be an
arbitrary signature.the set of Σ-terms built syntactically from A and the operation symbols in Σ, i.e. the

set inductively defined by

a ∈ A
a ∈ TΣ A

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

op(t1, . . . , tn) ∈ TΣ A
. (1.4)

We identify elements a ∈ A with the corresponding terms a ∈ TΣ A, and we also
identify (as outlined in Footnote 57) elements of Σ(A) with terms in TΣ A containing
exactly one occurrence of an operation symbol.66 66 Note that any constant p : 0 ∈ Σ belongs to all TΣ A

by the second rule defining TΣ A.
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The assignment A 7→ TΣ A can be turned into a functor TΣ : Set → Set by
inductively defining, for any function f : A → B, the function TΣ f : TΣ A → TΣB as
follows:67 67 In words, TΣ f replaces a with f (a) and does noth-

ing to operation symbols nor the structure of the
term. In particular, TΣ f acts as identity on constants.a ∈ A

TΣ f (a) = f (a)
and

op : n ∈ Σ t1, . . . , tn ∈ TΣ A
TΣ f (op(t1, . . . , tn)) = op(TΣ f (t1), . . . , TΣ f (tn))

. (1.5)

Lemma 1.11. The action of TΣ is functorial, namely, for any A
f−→ B

g−→ C, TΣidA = idTΣ A

and TΣ(g ◦ f ) = TΣg ◦ TΣ f .

Proof. We proceed by induction for both equations.68 For any a ∈ A, we have 68 Many proofs in this chapter are by induction until
some point where we will have enough results to
efficiently use commutative diagrams.

TΣidA(a) = idA(a) = a and

TΣ(g ◦ f )(a) = (g ◦ f )(a) = TΣg(TΣ f (a)).

For any t = op(t1, . . . , tn), we have

TΣidA(op(t1, . . . , tn))
(1.5)
= op(TΣidA(t1), . . . , TΣidA(tn))

I.H.
= op(t1, . . . , tn),

and

TΣ(g ◦ f )(t) = TΣ(g ◦ f )(op(t1, . . . , tn))

= op(TΣ(g ◦ f )(t1), . . . , TΣ(g ◦ f )(tn)) by (1.5)

= op(TΣg(TΣ f (t1)), . . . , TΣg(TΣ f (tn))) I.H.

= TΣg(op(TΣ f (t1), . . . , TΣ f (tn))) by (1.5)

= TΣgTΣ f (op(t1, . . . , tn)). by (1.5)

Example 1.12. 1. With Σ = {p : 0}, a Σ-term over A is either an element of A or the
constant p. For a function f : A → B, the function TΣ f sends a to f (a) and p to
itself. The functor TΣ is then naturally isomorphic to the maybe functor sending
A to A + 1.

2. With Σ = {f : 1}, a Σ-term over A is either an element of A or a term f(f(· · · f(a)))
for some a and a finite number of iterations of f. For a function f : A → B, the
function TΣ f replaces a with f (a) and does not change the number of iterations of
f. The functor TΣ is then naturally isomorphic to the functor sending A to N× A.

3. With Σ = {· : 2}, a Σ-term is either an element of A or any expression formed by
multiplying elements of A together like a · b, a · (b · c), ((a · a) · c) · (b · c) and so on
when a, b, c ∈ A.69 69 We write · infix as is very common. The paren-

theses are formal symbols to help delimit which · is
taken first. They are necessary because the interpre-
tation of · is not necessarily associative so a · (b · c)
and (a · b) · c can be interpreted differently in some
Σ-algebras.

As we said above, any element in A is a term in TΣ A. We will denote this
embedding with ηΣ

A : A→ TΣ A, in particular, we will write ηΣ
A(a) to emphasize that

we are dealing with the term a and not the element of A. For instance, the base case
of the definition of TΣ f in (1.5) becomes

a ∈ A
TΣ f (ηΣ

A(a)) = ηΣ
B( f (a))

.
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This is exactly what it means for the family of maps ηΣ
A : A→ TΣ A to be natural in

A,70 in other words that ηΣ : idSet ⇒ TΣ is a natural transformation. We can mention 70 As a commutative square:

A B

TΣ A TΣ B

ηΣ
B

f

ηΣ
A

TΣ f

(1.6)

now that it will be part of some additional structure on the functor TΣ (a monad).
The other part of that structure is a natural transformation µΣ : TΣTΣ ⇒ TΣ that is
more easily described using trees.

For an arbitrary signature Σ, we can think of TΣ A as the set of rooted trees whose
leaves are labelled with elements of A and whose nodes with n children are labelled
with n-ary operation symbols in Σ. This makes the action of a function TΣ f fairly
straightforward: it applies f to the labels of all the leaves as depicted in Figure 1.1.

t =

·

b ·

a c

TΣ f (t) =

·

f b ·

f a f c

Figure 1.1: Applying TΣ f to b · (a · c) yields f (b) ·
( f (a) · f (c)).

This point of view is particularly helpful when describing the flattening of terms:
there is a natural way to see a Σ-term over Σ-terms over A as a Σ-term over A. This
is carried out by the map µΣ

A : TΣTΣ A→ TΣ A which takes a tree T whose leaves are
labelled with trees T1, . . . , Tn to the tree T where instead of the leaf labelled Ti, there
is the root of Ti with all its children and their children and so on (we “glue” the
tree Ti at the leaf labelled Ti). Figure 1.2 shows an example for Σ = {· : 2}. More
formally, µΣ

A is defined inductively by:

µΣ
A(η

Σ
TΣ A(t)) = t and µΣ

A(op(t1, . . . , tn)) = op(µΣ
A(t1), . . . , µΣ

A(tn)). (1.7)

T =
·

T1 T2

T1 =
·

a b
T2 = a µΣ

A(T) =

·

· a

a b

Figure 1.2: Flattening of a term.

The use of the word “natural” above is not benign, µΣ is actually a natural
transformation.

Lemma 1.13. The family of maps µΣ
A : TΣTΣ A→ TΣ A is natural in A.

Proof. We need to prove that for any function f : A→ B, TΣ f ◦ µΣ
A = µΣ

B ◦ TΣTΣ f .71 It 71 As a commutative square:

TΣTΣ A TΣTΣ B

TΣ A TΣ B

µΣ
A

TΣTΣ f

µΣ
B

TΣ f

(1.8)

makes sense intuitively: we should get the same result when we apply f to all the
leaves before or after flattening. Formally, we use induction.
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For the base case (i.e. terms in the image of ηΣ
TΣ A), we have

µΣ
B(TΣTΣ f (ηΣ

TΣ A(t))) = µΣ
B(η

Σ
TΣB(TΣ f (t))) by (1.6)

= TΣ f (t) by (1.7)

= TΣ f (µΣ
A(η

Σ
TΣ A(t))). by (1.7)

For the inductive step, we have

µΣ
B(TΣTΣ f (op(t1, . . . , tn))) = µΣ

B(op(TΣTΣ f (t1), . . . , TΣTΣ f (tn))) by (1.5)

= op(µΣ
B(TΣTΣ f (t1)), . . . , µΣ

B(TΣTΣ f (tn))) by (1.7)

= op(TΣ f (µΣ
A(t1)), . . . , TΣ f (µΣ

A(tn))) I.H.

= TΣ f (op(µΣ
A(t1), . . . , µΣ

A(tn))) by (1.5)

= TΣ f (µΣ
A(op(t1, . . . , tn))). by (1.7)

By definition, we have that µΣ · ηΣTΣ is the identity transformation 1TΣ : TΣ ⇒ TΣ.72 72 We write · to denote the vertical composition of
natural transformations and juxtaposition (e.g. Fϕ
or ϕF to denote the action of functors on natural
transformations), namely, the component of µΣ · ηΣTΣ

at A is µΣ
A ◦ ηΣ

TΣ A which is idTΣ A by (1.7).

In words, we say that seeing a term trivially as a term over terms then flattening
it yields back the original term. Another similar property is that if we see all the
variables in a term trivially as terms and flatten the resulting term over terms, the
result is the original term. Formally:

Lemma 1.14. For any set A, µΣ
A ◦ TΣηΣ

A = idTΣ A, hence µΣ · TΣηΣ = 1TΣ .

Proof. We proceed by induction. For the base case, we have

µΣ
A(TΣηΣ

A(η
Σ
A(a)))

(1.6)
= µΣ

A(η
Σ
TΣ A(η

Σ
A(a)))

(1.7)
= ηΣ

A(a).

For the inductive step, if t = op(t1, . . . , tn), we have

µΣ
A(TΣηΣ

A(t)) = µΣ
A(TΣηΣ

A(op(t1, . . . , tn)))

= µΣ
A(op(TΣηΣ

A(t1), . . . , TΣηΣ
A(tn))) by (1.5)

= op(µΣ
A(TΣηΣ

A(t1)), . . . , µΣ
A(TΣηΣ

A(tn))) by (1.7)

= op(t1, . . . , tn) = t I.H.

Trees also make the depth of a term a visual concept. A term t ∈ TΣ A is said to
be of depth d ∈ N if the tree representing it has depth d.73 We give an inductive 73 i.e. the longest path from the root to a leaf has d

edges. In Figure 1.2, the depth of T and T1 is 1, the
depth of T2 is 0 and the depth of µΣ

AT is 2.
definition:

depth(a) = 0 and depth(op(t1, . . . , tn)) = 1 + max{depth(t1), . . . , depth(tn)}.

A term of depth 0 is a term in the image of ηΣ
A. A term of depth 1 is an element of

Σ(A) seen as a term (recall Footnote 57). 73 For categorical thinkers, TΣ A is essentially defined
to be the initial algebra for the endofunctor Σ + A :
Set → Set sending X to Σ(X) + A. Any Σ-algebra
(A, J−KA) defines another algebra for that functor
[J−KA, idA] : Σ(A) + A → A. Then, the extension
of J−KA to terms is the unique algebra morphism
drawn below.

Σ(TΣ A) + A Σ(A) + A

TΣ A A

[J−KA ,idA ]

The vertical arrow on the left is basically (1.4).

In any Σ-algebra A, the interpretations of operation symbols give us an element
of A for each element of Σ(A). Therefore, we get a value in A for all terms in TΣ A of
depth 0 or 1 (the value associated to ηΣ

A(a) is a). Using the inductive definition of
TΣ A, we can extend these interpretations to all terms: abusing notation, we define
the function J−KA : TΣ A→ A by73

a ∈ A
JaKA = a

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

Jop(t1, . . . , tn)KA = JopKA(Jt1KA, . . . , JtnKA)
. (1.9)
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This allows to further extend the interpretation J−KA to all terms TΣX over some
set of variables X, provided we have an assignment of variables ι : X → A, by
precomposing with TΣι. We denote this interpretation with J−Kι

A:

J−Kι
A = TΣX

TΣ ι−→ TΣ A
J−KA−−−→ A. (1.10)

Example 1.15. In the signature Σ = {f : 1} and over the variables X = {x}, we have
(amongst others) the terms t = ffx and s = fffx. If we compute the interpretation of
t and s in Z and Z2,74 we obtain for any assignment ι : X → Z (resp. ι : X → Z2): 74 Recall their Σ-algebra structures from Example 1.4.

JtKι
Z = ι(x) + 2 JsKι

Z = ι(x) + 3 JtKι
Z2

= ι(x) JsKι
Z2

= ι(x) + 1(mod 2).

By definition, a homomorphism preserves the interpretation of operation symbols.
We can prove by induction that it also preserves the interpretation of arbitrary terms.
Namely, if h : A→ B is a homomorphism, then the following square commutes.75 75 Quick proof. If t = a ∈ A, then both paths send it to

h(a). If t = op(t1, . . . , tn), then

h(JtKA) = h(JopKA(Jt1KA, . . . , JtnKA))

= JopKB(h(Jt1KA), . . . , h(JtnKA))

= JopKB(JTΣh(t1)KB, . . . , JTΣh(tn)KB)

= Jop(TΣh(t1), . . . , TΣh(tn))KB

= JTΣh(t)KB.

TΣ A TΣB

A B

TΣh

J−KA

h

J−KB
(1.11)

The converse is (almost trivially) true, if (1.11) commutes, then we can quickly see
(1.1) commutes by embedding Σ(A) into TΣ A and Σ(B) into TΣB. It follows readily
that for all homomorphisms h : A→ B and all assignments ι : X → A,

h ◦ J−Kι
A = J−Kh◦ι

B . (1.12)

Coming back to associativity, instead of writing J·KA(a, J·KA(b, c)), we can now
write Ja · (b · c)KA, and it looks cleaner. Moreover, instead of considering a different
term for each choice of a, b, c ∈ A, we can consider the term x · (y · z) over a set of
variables {x, y, z} and quantify over all the possible assignments {x, y, z} → A. We
obtain the following definition.

Definition 1.16 (Equation). An equation over a signature Σ is a triple comprising a
set X of variables called the context, and a pair of terms s, t ∈ TΣX. We write these
as X ⊢ s = t.

A Σ-algebra A satisfies an equation X ⊢ s = t if for any assignment of variables
ι : X → A, JsKι

A = JtKι
A. We use ϕ and ψ to refer to equations, and we write A ⊨ ϕ

when A satisfies ϕ. We also write A ⊨ι ϕ when the equality JsKι
A = JtKι

A holds for a
particular assignment ι : X → A and not necessarily for all assignments.

Remark 1.17. Our notation for equations is not standard because many authors do
not bother writing the context of an equation and suppose it contains exactly the
variables used in s and t. That is theoretically sound for universal algebra, but it
will not remain so when we generalize to universal quantitative algebras. Thus, we
make the context explicit in our equations as is done in [Wec92] or [Bau19] with the
notations ∀X.s = t and X | s = t respectively.76 We use the turnstile ⊢ to match the 76 Only finite contexts are used in [Wec92] and

[Bau19]. We say a bit more on this in Remark 1.61convention in the literature on quantitative algebras (e.g. [MPP16] and [FMS21]).
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Example 1.18 (Associativity). With the signature Σ = {· : 2} and the context X =

{x, y, z}, the equation ϕ = X ⊢ x · (y · z) = (x · y) · z77 asserts that the interpretation 77 Alternatively, we may write ϕ omitting brackets:

x, y, z ⊢ x · (y · z) = (x · y) · z.of · is associative. To prove that, suppose A ⊨ ϕ, we need to show that for any
a, b, c ∈ A,

J·KA(a, J·KA(b, c)) = J·KA(J·KA(a, b), c). (1.13)

Let s = x · (y · z) and t = (x · y) · z. Observe that the L.H.S. is the interpretation of s
under the assignment ι : X → A sending x to a, y to b and z to c, that is, we have
J·KA(a, J·KA(b, c)) = JsKι

A. Under the same assignment, the interpretation of t is the
R.H.S. Since A ⊨ι X ⊢ s = t, JsKι

A = JtKι
A, and we conclude (1.13) holds.78 78 It is also clear from this argument that any Σ-

algebra A where J·KA is associative satisfies ϕ.
Example 1.19. Here are some other simple examples of equations.

• x, y ⊢ x · y = y · x states that the interpretation binary operation · is commutative.

• x, y, z, w ⊢ x · y = y · x also states that (the interpretation of )· is commutative, but
it has some extra unused variables in the context.79 79 This is allowed, but it is always possible to remove

unused variables in the context (see Remark 1.61).
• x ⊢ x · x = x states that the binary operation · is idempotent.

• x ⊢ fx = ffx states that the unary operation f is idempotent.

• x ⊢ p = x states that the constant p is equal to all elements in the algebra (this
means the algebra is a singleton).

• x, y ⊢ x = y states that all elements in the algebra are equal (this means the algebra
is either empty or a singleton).

Using the fact that interpretations are preserved by homomorphisms (1.12), we
can describe how satisfaction is also preserved. Very naively, one would want to say
that if h : A→ B is a homomorphism and A ⊨ ϕ, then B ⊨ ϕ. That is not true.80 It 80 For any Σ which does not contain constants, there

is an initial Σ-algebra I whose carrier is the empty
set ∅ (the interpretation of operations is completely
determined because Σ(∅) = ∅ and there is only one
function ∅n → ∅). The unique function ∅ → B
is always a homomorphism I → B because (1.1)
trivially commutes. While I satisfies all equations
(vacuously), it is clearly possible that B does not.

is morally because there can be many more assignments into B than there are into
A. Nevertheless, the naive statement is true on a per-assignment basis.

Lemma 1.20. Let ϕ be an equation with context X. If h : A→ B is a homomorphism and
A ⊨ι ϕ for an assignment ι : X → A, then B ⊨h◦ι ϕ.

Proof. Let ϕ be the equation X ⊢ s = t, we have

A ⊨ι ϕ⇐⇒ JsKι
A = JtKι

A definition of ⊨

=⇒ h(JsKι
A) = h(JtKι

A)

⇐⇒ JsKh◦ι
B = JtKh◦ι

B by (1.12)

⇐⇒ B ⊨h◦ι ϕ. definition of ⊨

However, if h is surjective, then any assignment ι : X → B, can be factored
through an assignment of h−1 ◦ ι : X → A, where h−1 is the right inverse of h, i.e.
h ◦ h−1 = idB. It follows that the naive result holds when h is surjective.

Lemma 1.21. Let ϕ be an equation with context X. If h : A → B is a surjective
homomorphism and A ⊨ ϕ, then B ⊨ ϕ.
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Proof. For any assignment ι : X → B, we know that A ⊨h−1◦ι ϕ by hypothesis.
Then, by Lemma 1.20, we get B ⊨h◦h−1◦ι ϕ, which in turn means B ⊨ι ϕ because
h ◦ h−1 = idB.

Moreover, inspecting the proof of Lemma 1.20, we note that the only implication
that is not an equivalence in the derivation becomes an equivalence when h is
injective. We conclude that for any ι : X → A, if B satisfies ϕ under h ◦ ι, then A

satisfies it under ι. Thus,

Lemma 1.22. Let ϕ be an equation with context X. If h : A → B is an injective
homomorphism and B ⊨ ϕ, then A ⊨ ϕ.81 81 In particular, all the equations satisfied by an alge-

bra are satisfied by all its subalgebras.
The last three results stem from the nice interaction between interpretations and

homomorphism (1.12). The flattening also interacts well with interpretations in the
following sense.

Lemma 1.23. For any Σ-algebra A, the following square commutes.82 82 In words, given a term in TΣTΣ A, you obtain the
same result if you interpret its flattening in A, or if
you interpret the term obtained by first interpreting
all the “inner” terms.

This also generalizes to terms in TΣTΣX. Indeed,
given an assignment, ι : X → A, we can either flatten
a term and interpret it under ι, or we can interpret
all the inner terms under ι, then interpret the result,
as shown in (1.15).

TΣTΣ A TΣ A

TΣ A A

µΣ
A

TΣJ−KA

J−KA

J−KA

(1.14)

TΣTΣX TΣTΣ A TΣ A

TΣX TΣ A A

µΣ
A

TΣJ−KA

J−KA

J−KA

µΣ
X

TΣ ι

TΣTΣ ι

J−Kι
A

TΣJ−Kι
A

(1.10)

(1.10)

(1.14)(1.8) (1.15)

Proof. We proceed by induction. For the base case, we have

JµΣ
A(η

Σ
A(t))KA

(1.7)
= JtKA

(1.9)
= JηΣ

A(JtKA)KA
(1.6)
= JTΣJ−KA(η

Σ
A(t))K.

For the inductive step, if t = op(t1, . . . , tn), then

JµΣ
A(t)KA = Jop(µΣ

A(t1), . . . , µΣ
A(tn))KA by (1.7)

= JopKA (JµΣ
A(t1)KA, . . . , JµΣ

A(tn)KA) by (1.9)

= JopKA (JTΣJ−KA(t1)KA, . . . , JTΣJ−KA(tn)KA) I.H.

= Jop(TΣJ−KA(t1), . . . , TΣJ−KA(tn))KA by (1.9)

= JTΣJ−KA(op(t1, . . . , tn))KA by (1.5)

= JTΣJ−KA(t)KA.

Remark 1.24. To see Lemma 1.23 in another way, notice that (1.14) looks a lot like
(1.11), but the map on the left is not the interpretation on an algebra. Except it is!
Indeed, we can give a trivial (or syntactic) interpretation of op : n ∈ Σ on the set TΣ A
by letting JopKTΣ A(t1, . . . , tn) = op(t1, . . . , tn). Then, we can verify by induction83 83 Or we can compare (1.7) and (1.9) to see they be-

come the same inductive definition in this instance.that J−KTΣ A : TΣTΣ A→ TΣ A is equal to µΣ
A. We conclude that Lemma 1.23 says that

for any algebra, J−KA is a homomorphism from (TΣ A, J−KTΣ A) to A.

In light of this remark, we mention two very similar results: given a set A, µΣ
A is a

homomorphism between TΣTΣ A and TΣ A, and given a function f : A→ B, TΣ f is a
homomorphism between TΣ A and TΣB.
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Lemma 1.25. For any function f : A→ B, the following squares commute.84 84 Proof. We have already shown both these squares
commute. Indeed, (1.16) is an instance of (1.14)
where we identify µΣ

A with the interpretation J−KTΣ A
as explained in Remark 1.24, and (1.17) is the natu-
rality square (1.8).

TΣTΣTΣ A TΣTΣ A

TΣTΣ A TΣ

µΣ
TΣ A

TΣµΣ
A

µΣ
A

µΣ
A

(1.16)
TΣTΣ A TΣTΣB

TΣ TΣB

µΣ
A µΣ

B

TΣ f

TΣTΣB

(1.17)

Another consequence of (1.16) is that if you have a term in T n
Σ A for any n ∈N,

there are (n− 1)! ways to flatten it85 by successively applying an instance of T i
Σ µΣ

T j
Σ A

85 There is 1 way to flatten a term in T 2
Σ A to one in

TΣ A, and there are n− 1 ways to flatten from T n
Σ A

to T (n−1)
Σ A. By induction, we find (n− 1)! possible

combinations of flattening T n
Σ A→ TΣ A.

with different i and j (i.e. flattening at different levels inside the term), but all these
ways lead to the same end result in TΣ A. It is like when you have an expression built
out of additions with possibly lots of nested bracketing, you can compute the sums
in any order you want, and it will give the same result. That property of addition is
a consequence of associativity, hence one also says µΣ is associative.

Going back to Grp as a subcategory of Alg(Σ) with Σ = {· : 2, e : 0, (−)−1 : 1}, we
can precisely identify it as the full subcategory containing only algebras that satisfy
the following equations:

x, y, z ⊢ x · (y · z) = (x · y) · z
x ⊢ x · e = x x ⊢ x · x−1 = e

x ⊢ e · x = x x ⊢ x−1 · x = e

(1.18)

We can tell a similar story with Ring, Mon, Ab, and so on. These special subcate-
gories are called varieties.

Definition 1.26 (Variety). Given a class E of equations, we say A satisfies E and
write A ⊨ E if A ⊨ ϕ for all ϕ ∈ E.86 A (Σ, E)-algebra is a Σ-algebra that satisfies E. 86 Similarly for satisfaction under a particular assign-

ment ι:
A ⊨ι E⇐⇒ ∀ϕ ∈ E, A ⊨ι ϕ.

We define Alg(Σ, E), the category of (Σ, E)-algebras, to be the full subcategory of
Alg(Σ) containing only those algebras that satisfy E. A variety is a category equal
to Alg(Σ, E) for some class of equations E.

There is an evident forgetful functor U : Alg(Σ, E)→ Set which is the composi-
tion of the inclusion functor Alg(Σ, E)→ Alg(Σ) and U : Alg(Σ)→ Set.87 87 We will denote all the forgetful functors with the

symbol U unless we need to emphasize the distinc-
tion. However, thanks to the knowldege package, you
can click on (or hover) that symbol to check exactly
which forgetful functor it is referring to.

It is never the case in practice that E is a proper class, it is usually a finite or
countable set, even recursively enumerable. Still, nothing breaks when E is a class,
and we will need this generality in one our main contributions (Theorem 3.98).

Example 1.27. 1. With Σ = {p : 0}, there are morally only four different equations:88 88 Let us not formally argue about that here, but your
intuition on equality and the fact that terms in TΣX
are either x ∈ X or p should be enough to convince
you.

⊢ p = p, x ⊢ x = x, x ⊢ p = x, and x, y ⊢ x = y,

where we write nothing before the turnstile (⊢) instead of the empty set ∅.

Any algebra A satisfies the first two equations because JpKι
A = JpKι

A, where
ι : ∅ → A is the only possible assignment, and JxKι

A = ι(x) = JxKι
A for all

ι : {x} → A. If A satisfies the third, it means that A is empty or a singleton
because for any a, b ∈ A, the assignments ιa = x 7→ a and ιb = x 7→ b give us89 89 We find a = b for any a, b ∈ A and A contains at

least one element, the interpretation of the constant
p, so A is a singleton.a = ιa(x) = JxKιa

A = JpKιa
A = JpKιb

A = JxKιb
A = ιb(x) = b.
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If A satisfies the fourth equation, it is also empty or a singleton because for any
a, b ∈ A, the assignment ι sending x to a and y to b gives us

a = ι(x) = JxKι
A = JyKι

A = ι(y) = b.

Therefore,90 there are only two varieties in that signature, either Alg(Σ, E) is all 90 Modulo the argument about these being all the
possible equations over Σ.of Alg(Σ), or it contains only the empty set and the singletons.

2. With Σ = {+ : 2, e : 0}, there are many more possible equations, but the following
three are well-known:

x, y, z ⊢ x + (y + z) = (x + y) + z, x, y ⊢ x + y = y + x, and x ⊢ x + e = x.
(1.19)

We already saw in Example 1.18 that the first asserts associativity of the inter-
pretation of +. With a similar argument, one shows that the second asserts J+K
is commutative, and the third asserts JeK is a neutral element (on the right) for
J+K.91 Moreover, note that a homomorphism of Σ-algebras from A to B is any 91 i.e. if A satisfies x ⊢ x + e = x, then for all a ∈ A,

Ja + eKA = a.

By commutativity, we also get Je+ aKA = a.

function h : A→ B that satisfies

∀a, a′ ∈ A, h(J+KA(a, a′)) = J+KB(h(a), h(a′)) and h(JeKA) = JeKB.

Namely, a homomorphism preserves the addition and its neutral element. Thus,
letting E be the set containing the equations in (1.19), we find that Alg(Σ, E) is
the category CMon of commutative monoids and monoid homomorphisms.

3. We can add a unary operation symbol − to get Σ = {+ : 2, e : 0,− : 1}, and add the
equation x ⊢ x + (−x) = e to those in (1.19),92 and we can show that Alg(Σ, E) is 92 While the signature has changed between the two

examples, the equations of (1.19) can be understood
over both signatures because they concern terms con-
structed using the symbols common to both signa-
tures.

the category Ab of abelian groups and group homomorphisms. Note that E is
not the set of equations we used to define Grp with an additional commutativity
equation because when the binary operation is commutative, some equations are
redundant. We infer that it is possible for (Σ, E) and (Σ′, E′) to define the same
variety (or isomorphic varieties), even if Σ = Σ′ and E ̸= E′.

One fundamental result in universal algebra characterizes varieties as the subcate-
gories of Alg(Σ) that are closed under some simple constructions. It follows from
Lemma 1.21 that all varieties is closed under homomorphic images, meaning that
if h : A → B is a homomorphism in Alg(Σ) and A ∈ Alg(Σ, E), then the image
h(A) is also in Alg(Σ, E).93 It follows from Lemma 1.22 that all varieties are closed 93 Because h can be seen as a surjective homomor-

phism A→ h(A), so A ⊨ E implies h(A) ⊨ E.under subalgebras, meaning that all subalgebras of A ∈ Alg(Σ, E) also belongs to
Alg(Σ, E).94 Finally, varieties are also closed under products. 94 Because the inclusion of a subalgebra B in A is an

injective homomorphism, so A ⊨ E implies B ⊨ E.
Lemma 1.28. Let ϕ be an equation with context X, {Ai = (Ai, J−Ki) | i ∈ I} be a family
of algebras indexed by I, and A = ∏i∈I Ai be their product as described in Lemma 1.8. For
any assignment ι : X → A,

A ⊨ι ϕ⇔ ∀i ∈ I, Ai ⊨
πi◦ι ϕ. (1.20)

Consequently, if every Ai satisfies ϕ, then so does A.95 95 This readily follows from (1.20) because for any
assignment ι : X → A, every πi ◦ ι is an assignment
X → Ai . Then, by hypothesis Ai ⊨

πi◦ι ϕ holds for
every i ∈ I, and we conclude that A satisfies ϕ by
(3.11).
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Proof. Because each πi is a homomorphism, we can use Lemma 1.20 for the forward
direction (⇒). For the converse (⇐), if ϕ is X ⊢ s = t, then πi(JsKι

A) = πi(JtKι
A) holds

by satisfaction under each πi ◦ ι and by (1.12). This means that the interpretations
under ι of s and t agree on all coordinates, hence they must coincide, i.e. A ⊨ι ϕ.

Birkhoff’s variety or HSP theorem states that these closure properties characterize
the varieties in Alg(Σ).96 96 It is stated with some different notations and ter-

minology in [Bir35, Theorem 10].
Theorem 1.29 (Birkhoff). A subcategory of Alg(Σ) is a variety if and only if it is closed
under homomorphic images, subalgebras, and products.

We proved the forward direction, and we refer the reader to [Wec92, §3.2.3,
Theorem 21] for the converse. We can also mention that Birkhoff’s variety theorem
has been generalized many times in very abstract settings, see e.g. [Bar92, Bar94,
Bar02, MU19, JMU24], [Man76, §3.3], and [AHS06, Corollary 16.17].

A single variety can be defined with different classes of equations, but among
different classes of equations over the same signature that define the same variety,
there is a largest one.

Definition 1.30 (Algebraic theory). Given a class E of equations over Σ, the algebraic
theory generated by E, denoted by Th(E), is the class of equations (over Σ) that are
satisfied in all (Σ, E)-algebras:97 97 Note that, even if E is a set, there is no guarantee

that Th(E) is a set (in fact it never is) because the
collection of all equations is a proper class (because
the contexts can be any set).

Th(E) = {X ⊢ s = t | ∀A ∈ Alg(Σ, E), A ⊨ X ⊢ s = t} .

Formulated differently, Th(E) contains the equations that are semantically entailed
by E, namely ϕ ∈ Th(E) if and only if

∀A ∈ Alg(Σ), A ⊨ E =⇒ A ⊨ ϕ. (1.21)

Of course, Th(E) contains all of E,98 but also many more equations like x ⊢ x = x 98 Because a (Σ, E)-algebra satisfies E by definition.

which is satisfied by any algebra. We will see in §1.4 how to find which equations
are entailed by others.

It is easy to see that 1) Alg(Σ, E) = Alg(Σ, E′) implies Th(E) = Th(E′), 2)
E ⊆ Th(E), and 3) Alg(Σ,Th(E)) = Alg(Σ, E). It follows that Th(E) is the maximal
class of equations defining the variety Alg(Σ, E).

Example 1.31. If E contains the equations in (1.19), then Th(E) will contain all the
equations that every commutative monoid satisfies. Here is a non-exhaustive list:

• x ⊢ e+ x = x says that JeK is a neutral element on the left for J+K which is true
because, by equations in (1.19), JeK is neutral on the right and J+K is commutative.

• z, w ⊢ z + w = w + z also states commutativity of J+K but with different variable
names.

• x, y, z, w ⊢(x + w) + (x + z) + (x + y) = ((x + x) + x) + (y + (z + (e + w))) is
just a random equation that can be shown using the properties of commutative
monoids.99 99 We will see in §1.4 how to systematically generate

all the equations in Th(E).
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1.3 Free Algebras

Very briefly, the free (Σ, E)-algebra on X is the least constrained Σ-algebra which
“contains” X and satisfies E. It necessarily satisfies all the equations in Th(E) as well,
but it does not satisfy any other equation X ⊢ s = t that is not also satisfied by all
(Σ, E)-algebras. We will prove it always exist and we start with an example.

Example 1.32 (Words). Let ΣMon = {· : 2, e : 0}, X = {a, b, · · · , z} be the set of
(lowercase) letters in the Latin alphabet, and X∗ be the set of finite words using
only these letters.100 There is a natural ΣMon-algebra structure on X∗ where · is 100 We are talking about words in a mathematical

sense, so X∗ contains weird stuff like aczlp and the
empty word ε.

interpreted as concatenation, i.e. J·KX∗(u, v) = uv, and e as the empty word ε. This
algebra satisfies the equations defining a monoid given in (1.22).101

101 It does not satisfy x, y ⊢ x · y = y · x asserting
commutativity because ab and ba are two different
words.EMon = {x, y, z ⊢ x · (y · z) = (x · y) · z, x ⊢ x · e = x, x ⊢ e · x = x} . (1.22)

In fact, X∗ is the free monoid over X. This means that for any other (ΣMon, EMon)-
algebra A and any function f : X → A, there exists a unique homomorphism
f ∗ : X∗ → A such that f ∗(x) = f (x) for all x ∈ X ⊆ X∗.102 This can be summarized 102 f ∗ sends x1 · · · xn to J f (x1) · ( f (x2) · · · f (xn))KA.

in the following diagram, where X∗ denotes both the set of words and the monoid.

X X∗ X∗

A A

f ∗
f

f ∗

in Set in Alg(ΣMon ,EMon)

U (1.23)

A consequence of (1.23) which makes the idea of freeness more concrete is that X∗

satisfies an equation X ⊢ s = t if and only if all (ΣMon, EMon)-algebras satisfy it.103 103 The forward direction uses Lemma 1.20 with ι
being the inclusion X ↪→ X∗ and h being f ∗. The
converse direction is trivial since we know X∗ be-
longs to Alg(ΣMon, EMon).

In other words, X∗ only satisfies the equations it needs to satisfy.
The free (ΣMon, EMon)-algebra over any set is always104 the set of finite words over

104 We have to say “up to isomorphism” here if we
want to be fully rigorous. Let us avoid this bulkiness
here and later in most places where it can be inferred.

that set with · and e interpreted as concatenation and the empty word respectively.
At a first look, X∗ does not seem correlated to the operation symbols in ΣMon and

the equations in EMon, so it may seem hopeless to generalize this construction of
free algebra for an arbitrary Σ and E. It is possible however to describe the algebra
X∗ starting from ΣMon and EMon.

Recall that TΣMon X is the set of all terms constructed with the symbols in ΣMon

and the elements of X.105 Since we want the interpretation of e to be a neutral 105 For instance, it contains e, e · e, a · a, a · (r · (e · u)),
and so on.element for the interpretation of ·, we could identify many terms together like e

and e · e, in fact whenever a term has an occurrence of e, we can remove it with no
effect on its interpretation in a (ΣMon, EMon)-algebra. Similarly, since we want · to
be interpreted as an associative operation, we could identify r · (s · m) and (r · s) · m,
and more generally, we can rearrange the parentheses in a term with no effect on its
interpretation in a (ΣMon, EMon)-algebra.

Squinting a bit, you can convince yourself that a ΣMon-term over X considered
modulo occurrences of e and parentheses is the same thing as a finite word in
X∗.106 Under this correspondence, we find that the interpretation of · on X∗ (which 106 For instance, both r · (s · m) and (r · s) · m become

the word rsm and e, e · e and e · (e · e) all become the
empty word.

was concatenation) can be realized syntactically by the symbol ·. For example, the
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concatenation of the words corresponding to r · r and u · p is the word corresponding
to (r · r) · (u · p). The interpretation of e in X∗ is the empty word which corresponds
to e. We conclude that the algebra X∗ could have been described entirely using the
syntax of ΣMon and equations in EMon.

We promptly generalize this to other signatures and sets of equations. Fix a
signature Σ and a class E of equations over Σ. For any set X, we can define a binary
relation ≡E on Σ-terms107 that contains the pair (s, t) whenever the interpretation of 107 We omit the set X from the notation as it would

be more bulky than illuminating.s and t coincide in any (Σ, E)-algebra. Formally, we have for any s, t ∈ TΣX,

s ≡E t⇐⇒ X ⊢ s = t ∈ Th(E). (1.24)

We now show ≡E is a congruence relation on TΣX.108 108 A congruence on a Σ-algebra A is an equivalence
relation ∼ ⊆ A× A on the carrier satisfying for all
op : n ∈ Σ and a1, . . . , an, b1, . . . , bn ∈ A:

(∀i, ai ∼ bi) =⇒ JopKA(a1, . . . , an) ∼ JopKA(b1, . . . , bn).

Lemma 1.33. For any set X, the relation ≡E is reflexive, symmetric, transitive, and satisfies
for any op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,

(∀1 ≤ i ≤ n, si ≡E ti) =⇒ op(s1, . . . , sn) ≡E op(t1, . . . , tn). (1.25)

Proof. Briefly, reflexivity, symmetry, and transitivity all follow from the fact that
equality satisfies these properties, and (1.25) follows from the fact that operation
symbols are interpreted as deterministic functions (a unique output for each input),
so they preserve equality. We detail this below.

(Reflexivity) For any t ∈ TΣX, and any Σ-algebra A, A ⊨ X ⊢ t = t because it holds
that JtKι

A = JtKι
A for all ι : X → A.

(Symmetry) For any s, t ∈ TΣX and A ∈ Alg(Σ), if A ⊨ X ⊢ s = t, then A ⊨ X ⊢ t =
s. Indeed, if JsKι

A = JtKι
A holds for all ι, then JtKι

A = JsKι
A holds too. Symmetry follows

because if all (Σ, E)-algebras satisfy X ⊢ s = t, then they also satisfy X ⊢ t = s.
(Transitivity) For any s, t, u ∈ TΣX, if all (Σ, E)-algebras satisfy X ⊢ s = t and

X ⊢ t = u, then they also satisfy X ⊢ s = u.109 Transitivity follows. 109 Just like for symmetry, it is because for any A ∈
Alg(Σ) and ι : X → A, JsKι

A = JtKι
A with JtKι

A =
JuKι

A imply JsKι
A = JuKι

A.
(1.25) For any op : n ∈ Σ, s1, . . . , sn, t1, . . . , tn ∈ TΣX, and A ∈ Alg(Σ), if A satisfies

X ⊢ si = ti for all i, then for any assignment ι : X → A, we have JsiKι
A = JtiKι

A for all
i. Hence,

Jop(s1, . . . , sn)Kι
A = JopKA(Js1Kι

A, . . . , JsnKι
A) by (1.9)

= JopKA(Jt1Kι
A, . . . , JtnKι

A) ∀i, JsiKι
A = JtiKι

A

= Jop(s1, . . . , sn)Kι
A by (1.9),

which means A ⊨ X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn). This was true for all Σ-algebras,
so we can use the same arguments as above to conclude (1.25).

This lemma shows ≡E is in particular an equivalence relation, so we can define
terms modulo E. Given Σ, E, and X, let TΣ,EX = TΣX/≡E denote the set of Σ-terms
modulo E. We will write [−]E : TΣX → TΣ,EX for the canonical quotient map, so [t]E
is the equivalence class of t in TΣ,EX.

This yields a functor TΣ,E : Set → Set which sends a function f : X → Y to the
unique function TΣ,E f making (1.26) commute, i.e. satisfying TΣ,E f ([t]E) = [TΣ f (t)]E.
By definition, [−]E is also a natural transformation from TΣ to TΣ,E.

TΣX TΣ,EX

TΣY TΣ,EY

TΣ f

[−]E

TΣ,E f

[−]E

(1.26)
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Definition 1.34 (Term algebra, semantically). The term algebra for (Σ, E) on X is
the Σ-algebra whose carrier is TΣ,EX and whose interpretation of op : n ∈ Σ is110 110 This is well-defined (i.e. invariant under change

of representative) by (1.25).

JopKTX([t1]E, . . . , [tn]E) = [op(t1, . . . , tn)]E. (1.27)

We denote this algebra by TΣ,EX or simply TX.

A main motivation behind this definition is that it makes [−]E : TΣX → TΣ,EX a
homomorphism,111 namely, (1.28) commutes. 111 Indeed, (1.27) looks exactly like (1.2) with h =

[−]E, A = TΣX and B = TX.

TΣTΣX TΣTΣ,EX

TΣX TΣ,EX

µΣ
X

TΣ [−]E

J−KTX

[−]E

(1.28)

Remark 1.35. We can understand Definition 1.34 a bit more abstractly. If A is a Σ-
algebra and ∼ ⊆ A× A is a congruence, then the quotient A/∼ inherits a Σ-algebra
structure defined as in (1.27) ([a] denotes the equivalence class of a in A/∼):

JopKA/∼([a1], . . . , [an]) = [JopKA(a1, . . . , an)].

Then, TΣ,EX is the quotient of the algebra TΣX defined in Remark 1.24 by the
congruence ≡E. From this point of view, one can give an equivalent definition of ≡E

as the smallest congruence on TΣX such that the quotient satisfies E.112 112 Namely, if TΣX/∼ satisfies E, then ≡E ⊆ ∼.

It is very easy to compute in the term algebra because all operations are realized
syntactically, that is, only by manipulating symbols. Let us first look at the interpre-
tation of Σ-terms in TX, i.e. the function J−KTX : TΣTΣ,EX → TΣ,EX. It was defined
inductively to yield113 113 where t ∈ TΣX, op : n ∈ Σ, and t1, . . . , tn ∈

TΣTΣ,EX.

JηΣ
TΣ,EX([t]E)KTX = [t]E and Jop(t1, . . . , tn)KTX = JopKTX(Jt1KTX , . . . , JtnKTX). (1.29)

Remark 1.36. In particular, when E is empty, the set TΣ,∅X is TΣX quotiented by
≡∅, and one can show that ≡∅ is equal to equality (=), i.e. Th(∅) only contains
equation of the form X ⊢ t = t.114 Therefore, TΣ,∅X = TΣX. Moreover, since [−]∅ is 114 Any other equation X ⊢ s = t, where s and t are

not the same term, is not satisfied by the Σ-algebra
TΣX because the assignment ηΣ

X : X → TΣX yields

JsK
ηΣ

X
TΣ X = s ̸= t = JtK

ηΣ
X
TΣ X .

the identity map, we find that (1.27) becomes the definition of the interpretations
given in Remark 1.24, so TΣ,∅X is the algebra on TΣX we had defined. Also, we find
the interpretation of terms J−KTΣ,∅X is the flattening.115

115 By Remark 1.24, or by comparing (1.29) when
E = ∅ and the definition of µΣ

X (1.7).
Example 1.37. Let Σ = ΣMon and E = EMon be the signature and equations defining
monoids as explained in Example 1.32. We saw informally that TΣ,EX is in corre-
spondence with the set X∗ of finite words over X, and we already have a monoid
structure on X∗.116 Thus, we may wonder whether the term algebra TX describes 116 The interpretation of · and e is concatenation and

the empty word.the same monoid. Let us compute the interpretation of u · (v · w) where u = uu,
v = vv and w = www are words in X∗ ∼= TΣ,EX. First we use the inductive definition:

Ju · (v · w)KTX = J·KTX(JuKTX , Jv · wKTX) = J·KTX(JuKTX , J·KTX(JvKTX , JwKTX)).



universal algebra 37

Next, we choose a representative for u, v, w ∈ TΣ,EX and apply the base step of the
inductive definition:

Ju · (v · w)KTX = J·KTX([u · u]E, J·KTX([v · v]E, [w · (w · w)]E)).

Finally, we can apply (1.27) a couple of times to find

Ju · (v · w)KTX = J·KTX([u ·u]E, [(v ·v) · (w · (w ·w))]E) = [(u ·u) · ((v ·v) · (w · (w ·w)))]E,

which means that the word corresponding to Ju · (v · w)KTX is uuvvwww, i.e. the
concatenation of u, v and w.

In general (for other signatures), what happens when applying J−KTX to some
big term in TΣTΣ,EX can be decomposed in three steps.

1. Apply the inductive definition until you have an expression built out of many
JopKTX and JcKTX where op ∈ Σ and c is an equivalence class of Σ-terms.

2. Choose a representative for each such classes (i.e. c = [t]E).

3. Use (1.27) repeatedly until the result is just an equivalence class in TΣ,EX.

Working with terms in TΣTΣ,EX as trees whose leaves are labelled in TΣ,EX, J−KTX

replaces each leaf by the tree corresponding to a representative for the equivalence
class of the leaf’s label, and then returns the equivalence class of the resulting tree.
In this sense, J−KTX looks a lot like the flattening µΣ

X except it deals with equivalence
classes of terms. This motivates the definition of µΣ,E

X to be the unique function
making (1.30) commute.117 117 This guarantees µΣ,E

X satisfies the following equa-
tions that looks like the inductive definition of µΣ

X in
(1.7): for any t ∈ TΣX, µΣ,E

X ([[t]E]E) = [t]E, and for
any op : n ∈ Σ and t1, . . . , tn ∈ TΣX,

µΣ,E
X ([op([t1]E, . . . , [tn]E)]E) = [op(t1, . . . , tn)]E.

Thanks to Remark 1.36, we can immediately see
that µΣ,∅

X = µΣ
X because [−]∅ is the identity and

J−KTΣ,∅ X = µΣ
X .

TΣTΣ,EX TΣ,EX

TΣ,ETΣ,EX

J−KTX

[−]E µΣ,E
X

(1.30)

The first thing we showed when defining µΣ
X was that it yielded a natural transfor-

mation µΣ : TΣTΣ ⇒ TΣ. We can also do this for µΣ,E.

Proposition 1.38. The family of maps µΣ,E
X : TΣ,ETΣ,EX → TΣ,EX is natural in X.

Proof. We need to prove that for any function f : X → Y, the square below commutes.

TΣ,ETΣ,EX TΣ,ETΣ,EY

TΣ,EX TΣ,EY

µΣ,E
X µΣ,E

Y

TΣ,ETΣ,E f

TΣ,E f

(1.31)

We can pave the following diagram.118 118 By paving a diagram, we mean to build a large
diagram out of smaller ones, showing all the smaller
ones commute, and then concluding the bigger must
commute. We often refer parts of the diagram with
letters written inside them, and explain how each of
them commutes one at a time.
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TΣTΣ,EX TΣ,ETΣ,EX TΣ,ETΣ,EY

TΣTΣ,EY

TΣ,ETΣ,EX TΣ,EX TΣ,EY

µΣ,E
Y

TΣ,ETΣ,E f

TΣ,E f

[−]E

J−KTX

µΣ,E
X

[−]E

TΣTΣ,E f
[−]E

J−KTY

(a)

(b) (c)
(d)

All of (a), (b) and (d) commute by definition. In more details, (a) is an instance of
(1.26) with X replaced by TΣ,EX, Y by TΣ,EY and f by TΣ,E f , and both (b) and (d) are
instances of (1.30). To show (c) commutes, we draw another diagram that looks like
a cube with (c) as the front face.

TΣTΣX TΣTΣY

TΣTΣ,EX TΣTΣ,EY

TΣX TΣY

TΣ,EX TΣ,EY
TΣ,E f

J−KTX

TΣTΣ,E f

J−KTY

TΣ [−]E

TΣTΣ f

TΣ [−]E

[−]E

TΣ f

[−]E

µΣ
X

µΣ
Y

We can show all the other faces commute, and then use the fact that TΣ[−]E is
surjective (i.e. epic) to conclude that the front face must also commute.119 The first 119 In more details, the left and right faces commute

by (1.28), the bottom and top faces commute by (1.26),
and the back face commutes by (1.8).

The function TΣ[−]E is surjective (i.e. epic) because
[−]E is (it is a canonical quotient map) and functors
on Set preserve epimorphisms (if we assume the
axiom of choice). Thus, it suffices to show that TΣ[−]E
pre-composed with the bottom path or the top path
of the front face gives the same result.

Now it is just a matter of going around the cube
using the commutativity of the other faces. Here is
the complete derivation (we write which face was
used as justifications for each step).

TΣ,E f ◦ J−KTX ◦ TΣ[−]E
= TΣ,E f ◦ [−]E ◦ µΣ

X left

= [−]E ◦ TΣ f ◦ µΣ
X bottom

= [−]E ◦ µΣ
Y ◦ TΣTΣ f back

= J−KTY ◦ TΣ[−]E ◦ TΣTΣ f right

= J−KTY ◦ TΣTΣ,E f ◦ TΣ[−]E top

diagram we paved implies (1.31) commutes because [−]E is epic.

The front face of the cube is interesting on its own, it says that for any function
f : X → Y, TΣ,E f is a homomorphism from TΣ,EX to TΣ,EY. We redraw it below for
future reference.

TΣTΣ,EX TΣTΣ,EY

TΣ,EX TΣ,EY
TΣ,E f

J−KTX

TΣTΣ,E f

J−KTY (1.32)

Stating it like this may remind you of Lemma 1.23 and Remark 1.24. We will need a
variant of Lemma 1.23 for TΣ,E, but there is a slight obstacle due to types. Indeed,
given a Σ-algebra A we would like to prove a square like in (1.33) commutes.

TΣTΣ,E A TΣ A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA (1.33)

However, the arrows on top and bottom do not really exist, the interpretation
J−KA takes terms over A as input, not equivalence classes of terms. The quick fix is
to assume that A satisfies the equations in E. This means that J−KA is well-defined
on equivalence class of terms because if [s]E = [t]E, then A ⊢ s = t ∈ Th(E), so A
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satisfies that equation, and taking the assignment idA : A→ A, we obtain

JsKA = JsKidA
A = JtKidA

A = JtKA.

When A is a (Σ, E)-algebra, we abusively write J−KA for the interpretation of terms
and equivalence classes of terms as in (1.34).

TΣ A A

TΣ,E A

J−KA

[−]E J−KA
(1.34)

Lemma 1.39. For any (Σ, E)-algebra A, the square (1.33) commutes.

Proof. Consider the following diagram that we can view as a triangular prism whose
front face is (1.33). Both triangles commute by (1.34), the square face at the back
and on the left commutes by (1.28), and the square face at the back and on the right
commutes by (1.14). With the same trick as in the proof of Proposition 1.38 using the
surjectivity of TΣ[−]E, we conclude that the front face commutes.120 120 Here is the complete derivation.

J−KA ◦ J−KTA ◦ TΣ[−]E
= J−KA ◦ [−]E ◦ µΣ

A left

= J−KA ◦ µΣ
A bottom

= J−KA ◦ TΣJ−KA right

= J−KA ◦ TΣJ−KA ◦ TΣ[−]E top

Then, since TΣ[−]E is epic, we conclude that J−KA ◦
J−KTA = J−KA ◦ TΣJ−KA.

TΣTΣ A

TΣTΣ,E A TΣ A

TΣ A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA
[−]E J−KA

TΣ [−]E TΣJ−KA

µΣ
A

An important consequence of Lemma 1.23 was (1.16) saying that flattening is a
homomorphism from TΣ,∅TΣ,∅ A to TΣ,∅ A. This is also true when E is not empty, i.e.
µΣ,E

A is a homomorphism from TTA to TA.

Lemma 1.40. For any set A, the following square commutes.

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

(1.35)

Proof. We prove it exactly like Lemma 1.39 with the following diagram.121 121 The top and bottom faces commute by definition
of µΣ,E

A (1.30), the back-left face by (1.28), and the
back-right face by (1.14).

Then, TΣ[−]E is epic, so the following derivation
suffices.

µΣ,E
A ◦ J−KTTA ◦ TΣ[−]E
= µΣ,E

A ◦ [−]E ◦ µΣ
TΣ,E A left

= J−KTA ◦ µΣ
TΣ,E A bottom

= J−KTA ◦ TΣJ−KTA right

= J−KTA ◦ TΣµΣ,E
A ◦ TΣ[−]E top

TΣTΣTΣ,E A

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣTΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

[−]E J−KTA

µΣ
TΣ,E A

TΣJ−KTATΣ [−]E
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In a moment, we will show that TΣ,EX is not only a Σ-algebra, but also a (Σ, E)-
algebra. This requires us to talk about satisfaction of equations, hence about the
interpretation of terms in some TΣY under an assignment σ : Y → TΣ,EX.122 By the 122 We used ι before for assignments, but when con-

sidering assignments into (equivalence classes of)
terms, we prefer using σ because we will adopt a
different attitude with them (see Definition 1.44).

definition J−Kσ
TX = J−KTX ◦ TΣσ, and our informal description of J−KTX, we can

infer that JtKσ
TX is the equivalence class of the term t where all occurrences of the

variable y have been substituted by a representative of σ(y).
In particular, this means that under the assignment σ : X → TΣ,EX that sends a

variable x to its equivalence class [x]E, the interpretation of a term t ∈ TΣX is [t]E.123 123 The representative chosen for σ(x) is x so the term
t is not modified.We prove this formally below.

Lemma 1.41. Let σ = X
ηΣ

X−→ TΣX
[−]E−−→ TΣ,EX be an assignment. Then, J−Kσ

TX = [−]E.

Proof. We proceed by induction. For the base case, we have

JηΣ
X(x)Kσ

TX = JTΣσ(ηΣ
X(x))KTX by (1.10)

= JTΣ[−]E(TΣηΣ
X(η

Σ
X(x)))KTX Lemma 1.11

= JTΣ[−]E(η
Σ
TΣX(η

Σ
X(x)))KTX by (1.6)

= JηΣ
TΣ,EX([η

Σ
X(x)]E)KTX by (1.6)

= [ηΣ
X(x)]E by (1.29)

For the inductive step, if t = op(t1, . . . , tn), we have

JtKσ
TX = JTΣσ(t)KTX by (1.10)

= JTΣσ(op(t1, . . . , tn))KTX

= Jop(TΣσ(t1), . . . , TΣσ(tn))KTX by (1.5)

= JopKTX (JTΣσ(t1)KTX , · · · , JTΣσ(tn)KTX) by (1.29)

= JopKTX ([t1]E, · · · , [tn]E) I.H.

= [op(t1, . . . , tn)]E. by (1.27)

We will denote that special assignment ηΣ,E
X = [−]E ◦ ηΣ

X : X → TΣ,EX.124 A quick
124 Note that ηΣ,E becomes a natural transformation
idSet → TΣ,E because it is the vertical composition
[−]E · ηΣ.

corollary of the previous lemma is that for any equation ϕ with context X, ϕ belongs
to Th(E) if and only if the algebra TΣ,EX satisfies it under the assignment ηΣ,E

X . This
comes back to Example 1.32 where we said that freeness of X∗ means it satisfies all
and only the equations in Th(EMon). Instead here, we do not know yet that TX is
free (we have not even proved it satisfies E yet), but we can already show it satisfies
only the necessary equations, and freeness will follow.

Lemma 1.42. Let s, t ∈ TΣX, X ⊢ s = t ∈ Th(E) if and only if TΣ,EX ⊨ηΣ,E
X X ⊢ s = t.125 125 Proof. By Lemma 1.41, we have

JsK
ηΣ,E

X
TX = [s]E and JtK

ηΣ,E
X

TX = [t]E,

then by definition of ≡E, X ⊢ s = t ∈ Th(E) if and
only if [s]E = [t]E.

The interaction between µΣ and ηΣ is mimicked by µΣ,E and ηΣ,E.
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Lemma 1.43. The following diagram commutes.

TΣ,EX TΣ,ETΣ,EX TΣ,EX

TΣ,EX

ηΣ,E
TΣ,EX

µΣ,E
X

TΣ,EηΣ,E
X

idTΣ,EXidTΣ,EX

Proof. For the triangle on the left, we pave the following diagram.

Showing (1.36) commutes:

(a) Definition of ηΣ,E
X .

(b) Definition of J−KTX (1.29).

(c) Definition of µΣ,E
X (1.30).

TΣ,EX TΣTΣ,EX TΣ,ETΣ,EX

TΣ,EX
J−KTX

[−]E

µΣ,E
X

ηΣ
TΣ,EX

ηΣ,E
TΣ,EX

idTΣ,EX

(a)

(b)
(c) (1.36)

For the triangle on the right, we show that [−]E = µΣ,E
X ◦ TΣ,EηΣ,E

X ◦ [−]E by paving
(1.37), and we can conclude since [−]E is epic that idTΣ,EX = µΣ,E

X ◦ TΣ,EηΣ,E
X .

Showing (1.37) commutes:

(a) Definition of ηΣ,E
X and functoriality of TΣ,E.

(b) Naturality of [−]E (1.26).

(c) Naturality of [−]E again.

(d) Definition of µΣ
X (1.7).

(e) By (1.28).

(f) By (1.30).

TΣX TΣ,EX TΣ,ETΣX TΣ,ETΣ,EX

TΣTΣX TΣTΣ,EX

TΣX TΣ,EX

TΣ,E [−]E

µΣ,E
X

TΣ,EηΣ
X

TΣ,EηΣ,E
X

[−]E

TΣηΣ
X

[−]E

TΣ [−]E

[−]E

J−KTX
µΣ

X

[−]E

idTΣX (d)

(b)

(a)

(c)

(e)

(f)
(1.37)

We single out another special case of interpretation in a term algebra when E is
empty (recall from Remark 1.36 that TΣ,∅X is the algebra on TΣX whose interpretation
of op applies op syntactically).

Definition 1.44 (Substitution). Given a signature Σ, an empty set of equations, and
an assignment σ : Y → TΣX,126 we call J−Kσ

TX the substitution map, and we denote 126 We can identify TΣX with TΣ,∅X because ≡∅ is the
equality relation.it by σ∗ : TΣY → TΣX. We saw in Remark 1.36 that J−KTX = µΣ

X , thus substitution is

σ∗ = TΣY
TΣσ−−→ TΣTΣX

µΣ
X−→ TΣX. (1.38)

In words, σ∗ replaces the occurrences of a variable y by σ(y).127 127 You may be more familiar with the notation
t[σ(y)/y] (e.g. from substitution in the λ-calculus).
An inductive definition can also be given: for any
y ∈ Y, σ∗(ηΣ

Y(y)) = σ(y), and

σ∗(op(t1, . . . , tn)) = op(σ∗(t1), . . . , σ∗(tn)).
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That simple description makes substitution a little special, and the following
result has even deeper implications. It morally says that substitution preserves the
satisfaction of equations.128

128 We will give more intuition on Lemma 1.45 when
we define equational logic.Lemma 1.45. Let Y ⊢ s = t be an equation, σ : Y → TΣX an assignment, and A a

Σ-algebra. If A satisfies Y ⊢ s = t, then it also satisfies X ⊢ σ∗(s) = σ∗(t).

Proof. Let ι : X → A be an assignment, we need to show Jσ∗(s)Kι
A = Jσ∗(t)Kι

A.
Define the assignment ισ : Y → A that sends y ∈ Y to Jσ(y)Kι

A, we claim that
J−Kισ

A = Jσ∗(−)Kι
A. The lemma then follows because by hypothesis, JsKισ

A = JtKισ
A . The

following derivation proves our claim.

J−Kισ
A = J−KA ◦ TΣ(ισ) by (1.10)

= J−KA ◦ TΣ(Jσ(−)Kι
A) definition of ισ

= J−KA ◦ TΣ (J−KA ◦ TΣι ◦ σ) by (1.10)

= J−KA ◦ TΣJ−KA ◦ TΣTΣι ◦ TΣσ Lemma 1.11

= J−KA ◦ µΣ
A ◦ TΣTΣι ◦ TΣσ by (1.14)

= J−KA ◦ TΣι ◦ µΣ
Y ◦ TΣσ by (1.8)

= J−KA ◦ TΣι ◦ σ∗ by (1.38)

= Jσ∗(−)Kι
A. by (1.10)

We are finally ready to show that TΣ,E A is a (Σ, E)-algebra.129 129 All the work we have been doing finally pays off.

Proposition 1.46. For any set A, the term algebra TΣ,E A satisfies all the equations in E.

Proof. Let X ⊢ s = t belong to E and ι : X → TΣ,E A be an assignment. We need to
show that JsKι

TA = JtKι
TA. We factor ι into130 130 This factoring is correct because

ι = idTΣ,E A ◦ ι

= µΣ,E
A ◦ ηΣ,E

TΣ,E A ◦ ι Lemma 1.43

= µΣ,E
A ◦ TΣ,E ι ◦ ηΣ,E

X . naturality of ηΣ,E

ι = X
ηΣ,E

X−−→ TΣ,EX
TΣ,E ι
−−→ TΣ,ETΣ,E A

µΣ,E
A−−→ TΣ,E A.

Now, Lemma 1.42 says that the equation is satisfied in TX under the assignment

ηΣ,E
X , i.e. that JsKηΣ,E

X
TX = JtKηΣ,E

X
TX . We also know by Lemma 1.20 that homomorphisms

preserve satisfaction, so we can apply it twice using the facts that TΣ,Eι and µΣ,E
A are

homomorphisms (by (1.32) and (1.35) respectively) to conclude that

JsKι
TA = JsKµΣ,E

A ◦TΣ,E ι◦ηΣ,E
X

TA = JtKµΣ,E
A ◦TΣ,E ι◦ηΣ,E

X
TA = JtKι

TA.

We now know that TΣ,EX belongs to Alg(Σ, E). In order to tie up the parallel with
Example 1.32, we will show that TΣ,EX is the free (Σ, E)-algebra over X.

Definition 1.47 (Free object). Let C and D be categories, U : D → C be a functor
between them, and X ∈ C0. A free object on X (relative to U) is an object Y ∈ D0

along with a morphism i ∈ HomC(X, UY) such that for any object A ∈ D0 and
morphism f ∈ HomC(X, UA), there exists a unique morphism f ∗ ∈ HomD(Y, A)

such that U f ∗ ◦ i = f . This is summarized in the following diagram.131 131 This is almost a copy of (1.23).
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X UY Y

UA A

i

U f ∗
f

f ∗

in C in D

U (1.39)

Proposition 1.48. Free objects are unique up to isomorphism, namely, if Y and Y′ are free
objects on X, then Y ∼= Y′.132 132 Very abstractly: a free object on X is the same thing

as an initial object in the comma category ∆(X) ↓ U,
and initial objects are unique up to isomorphism.Proposition 1.49. For any set X, the term algebra TΣ,EX is the free (Σ, E)-algebra on X.

Proof. Let A be another (Σ, E)-algebra and f : X → A a function. We claim that
f ∗ = J−KA ◦ TΣ,E f is the unique homomorphism making the following commute.

X TΣ,EX TX

A A

ηΣ,E
X

f ∗
f

f ∗

in Set in Alg(Σ,E)

U

First, f ∗ is a homomorphism because it is the composite of two homomorphisms
TΣ,E f (by (1.32)) and J−KA (by Lemma 1.39 since A satisfies E). Next, the triangle
commutes by the following derivation.

J−KA ◦ TΣ,E f ◦ ηΣ,E
X = J−KA ◦ ηΣ,E

A ◦ f naturality of ηΣ,E

= J−KA ◦ [−]E ◦ ηΣ
A ◦ f definition of ηΣ,E

= J−KA ◦ ηΣ
A ◦ f by (1.34)

= f definition of J−KA (1.9)

Finally, uniqueness follows from the inductive definition of TX and the homomor-
phism property. Briefly, if we know the action of a homomorphism on equivalence
classes of terms of depth 0, we can infer all of its action because all other classes of
terms can be obtained by applying operation symbols.133 133 Formally, let f , g : TX → A be two homomor-

phisms such that for any x ∈ X, f [x]E = g[x]E, then,
we can show that f = g. For any t ∈ TΣX, we showed

in Lemma 1.41 that [t]E = JtK
ηΣ,E

X
TX . Then using (1.12),

we have

f [t]E = JtK
f ◦ηΣ,E

X
A = JtK

g◦ηΣ,E
X

A = g[t]E,

where the second inequality follows by hypothesis
that f and g agree on equivalence classes of terms of
depth 0.

Once we have free objects, we have an adjunction, and once we have an adjunction,
we have a monad, the most wonderful mathematical object in the world (objectively).
Unfortunately, our universal algebra spiel is not finished yet, we will get back to
monads shortly.

Abstract Equations

Before moving to equational logic, we quickly go over an equivalent and more
categorical definition of equations that will help us argue for our generalization in
Chapter 3.134 134 Similar definitions (when instantiated to Σ-

algebras)appear in [MU19, Definition 3.3], [AHS06,
16.16(1)], and [JMU24, Definition 4.2].Definition 1.50. An abstract equation135 in Alg(Σ) is a surjective homomorphism
135 We use the terminology from [JMU24].e : TΣX ↠ Y, with the algebra structure on TΣX given in Remark 1.24. We say that
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an algebra A satisfies e if for any assignment ι : X → A, the function J−Kι
A factors

through e in Alg(Σ):

J−Kι
A = TΣX

e
↠ Y

h−→ A.

We say that A satisfies a class of abstract equations if it satisfies all of its elements.

An abstract equation cannot be directly translated to an equation, but it can be
translated to a set of equations. Briefly, given e : TΣX ↠ Y, X can be seen as the
context, and the factorization J−Kι

A = h ◦ e means that the interpretation of two
terms s and t must coincide whenever e(s) = e(t). Therefore, an algebra satisfying e
will satisfy all the equations X ⊢ s = t with s, t ∈ TΣX and e(s) = e(t).

Conversely, any equation ϕ can be translated to an abstract equation by noting
that the canonical quotient [−]{ϕ} : TΣX → TΣ,{ϕ}X is a surjective homomorphism,
and [s]{ϕ} = [t]{ϕ} is true precisely when all (Σ, {ϕ})-algebras satisfy X ⊢ s = t.

We give more details in the two following proofs.

Proposition 1.51. If E is a class of abstract equations, then there is a class E◦ of equations
such that A satisfies E if and only if it satisfies E◦.

Proof. Given a class E of abstract equations, we define E◦ to contain the equation
X ⊢ s = t for every e : TΣX ↠ Y in E such that e(s) = e(t). An algebra satisfies E if
and only if it satisfies E◦.

(⇒) If A satisfies E and X ⊢ s = t ∈ E◦ comes from e : TΣX ↠ Y in E, then for any
assignment ι : X → A, the factorization J−Kι

A = h ◦ e implies JsKι
A = JtKι

A because
e(s) = e(t). Thus, A satisfies X ⊢ s = t. This works for every equation in E◦, hence
A satisfies E◦.

(⇐) If A satisfies E◦ and e : TΣX ↠ Y is in E. Then, for any assignment ι : X → A,
since e is surjective, we can define a function h : Y → A by h(y) = JtyKι

A with
ty ∈ e−1(y). Surjectvity of e means h is defined on all of Y, and the choice of ty

does not matter because for any other t′y ∈ e−1(y), we have e(ty) = y = e(t′y), so
A satisfies X ⊢ ty = t′y which in turn means JtyKι

A = Jt′yKι
A. By definition, we have

J−Kι
A = h ◦ e, but it remains to check that h is a homomorphism. For any op : n ∈ Σ

and y1, . . . , yn ∈ Y, pick ti ∈ e−1(yi) for each i, then we have

h(JopKY(y1, . . . , yn)) = h(JopKY(e(t1), . . . , e(tn))) definition of ti

= h ◦ e(op(t1, . . . , tn)) e is a homomorphism

= Jop(t1, . . . , tn)Kι
A definition of h

= JopKA(Jt1Kι
A, . . . , JtnKι

A) by (1.15)

= JopKA(h ◦ e(t1), . . . , h ◦ e(tn)) definition of h

= JopKA(h(y1), . . . , h(yn)). definition of ti

Proposition 1.52. If E is a class of equations, then there is a class E• of abstract equations
such that A satisfies E if and only if it satisfies E•.

Proof. Given an equation ϕ = X ⊢ s = t, we let ϕ• be the surjective homomorphism
[−]{ϕ} : TΣX ↠ TΣ,{ϕ}X. An algebra satisfies ϕ if and only if it satisfies ϕ•.
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(⇒) If A ⊨ ϕ, then for any assignment ι : X → A, we have the following unique
factorization because TΣ,{ϕ} is the free (Σ, {ϕ})-algebra, and A ∈ Alg(Σ, {ϕ}):

X TΣ,{ϕ}X

A

η
Σ,{ϕ}
X

ι h

We can further decompose with another factorization because TΣX is the free Σ-
algebra and A ∈ Alg(Σ).136 136 (a) commutes by definition of η

Σ,{ϕ}
X and the def-

inition ϕ• = [−]{ϕ}. (b) commutes by definition of
J−Kι

A. (c) commutes because J−Kι
A is the unique ho-

momorphism such that J−Kι
A ◦ ηΣ

X = ι, but h ◦ ϕ• is
also such a homomorphism by the previous factor-
ization.X TΣX TΣ,{ϕ}X

A

ηΣ
X

η
Σ,{ϕ}
X

ι

ϕ•

J−Kι
A

h

(a)

(b)
(c)

Hence, J−Kι
A factors through ϕ•.

(⇐) If A satisfies ϕ•, then for any ι : X → A, the factorization J−Kι
A = h ◦ [−]{ϕ}

means that JsKι
A and JtKι

A coincide because [s]{ϕ} = [t]{ϕ}.
137 Thus, A ⊨ ϕ. 137 This is because ϕ = X ⊢ s = t belongs to Th({ϕ}).

Now, given a class E of equations, it is clear that A satisfies E if and only if it
satisfies E• = {ϕ• | ϕ ∈ E}.

We conclude that equations and abstract equations are equivalent in terms of
expressiveness. We will see in Propositions 3.62 and 3.63 how this generalizes to
quantitative equations.

1.4 Equational Logic

We were happy that interpretations in the term algebra are computed syntactically,
but there is a big caveat. Everything is done modulo ≡E which was defined in (1.24)
to basically contain all the equations in Th(E), that is, all the equations semantically
entailed by E. Thanks to Lemma 1.42, if we want to know whether X ⊢ s = t is in
Th(E), it is enough to check if the free (Σ, E)-algebra TX satisfies it, but that is a
circular argument since the carrier TΣ,EX is defined via ≡E.

Equational logic is a deductive system which produces an alternative definition of
the free algebra, relying only on syntax. In short, the rules of equational logic allow
to syntactically derive all of Th(E) starting from E.

In Lemma 1.33, we proved that ≡E is a congruence (i.e. reflexive, symmetric,
transitive, and invariant under operations), and in Lemma 1.45 we showed ≡E is also
preserved by substitutions. This can help us syntactically derive Th(E) because, for
instance, if we know X ⊢ s = t ∈ E, we can conclude X ⊢ t = s ∈ Th(E) by symmetry.
If we know x, y ⊢ f(x) = f(y) ∈ E, then we can conclude X ⊢ f(s) = f(t) ∈ Th(E) for
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ReflX ⊢ t = t
X ⊢ s = t SymmX ⊢ t = s

X ⊢ s = t X ⊢ t = u TransX ⊢ s = u

op : n ∈ Σ ∀1 ≤ i ≤ n, X ⊢ si = ti Cong

X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

σ : Y → TΣX Y ⊢ s = t
Sub

X ⊢ σ∗(s) = σ∗(t)

Figure 1.3: Rules of equational logic over the signa-
ture Σ, where X and Y can be any set, and s, t, u,
si and ti can be any term in TΣX (or TΣY for Sub).
As indicated in the premises of the rules Cong and
Sub, they can be instantiated for any n-ary operation
symbol, and for any function σ respectively.

any terms s, t ∈ TΣX by substituting x with s and y with t. This can be summarized
with the inference rules of equational logic in Figure 1.3.

The first four rules are fairly simple, and they essentially say that equality modulo
E is a congruence relation. The Sub rule looks a bit more complicated, it is named
after the function σ∗ used in the conclusion which we called substitution. Intuitively,
it reflects the fact that variables in the context Y are universally quantified. If you
know Y ⊢ s = t holds, then you can replace each variable y ∈ Y by σ(y) (which
may even be a complex term using new variables in X), and you can prove that
X ⊢ σ∗(s) = σ∗(t) holds. We did this in Lemma 1.45, and the argument to extract
from there is that the interpretation of σ∗(t) under some assignment ι : X → A
is equal to the interpretation of t under the assignment ισ sending y ∈ Y to the
interpretation of σ(y) under ι. Since satisfaction of Y ⊢ s = t means satisfaction
under any assignment (this is where universal quantification comes in), we conclude
that X ⊢ σ∗(s) = σ∗(t) must be satisfied.

If you have written sequences of computations to solve a mathematical problem,
you are already familiar with the essence of doing proofs in equational logic. The
rigorous details of such proofs can be formalized with the following definition.

Definition 1.53 (Derivation). A derivation138 of X ⊢ s = t in equational logic with
138 Many other definitions of derivations exist, and
our treatment of them will not be 100% rigorous.axioms E (a class of equations) is a finite rooted tree such that:

• all nodes are labelled by equations,

• the root is labelled by X ⊢ s = t,

• if an internal node (not a leaf) is labelled by ϕ and its children are labelled by
ϕ1, . . . , ϕn, then there is a rule in Figure 1.3 which concludes ϕ from ϕ1, . . . , ϕn,
and

• all the leaves are either in E or instances of Refl, i.e. an equation Y ⊢ u = u for
some set Y and u ∈ TΣY.

Example 1.54. We write a derivation with the same notation used to specify the
inference rules in Figure 1.3. Consider the signature Σ = {+ : 2, e : 0} with E contain-
ing the equations defining commutative monoids in (1.19). Here is a derivation of
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x, y, z ⊢ x + (y + z) = z + (x + y) in equational logic with axioms E.

∈ E
x, y, z ⊢ x + (y + z) = (x + y) + z

σ =
x 7→ x + y
y 7→ z

∈ Ex, y ⊢ x + y = y + x

Sub

x, y, z ⊢(x + y) + z = z + (x + y)
Trans

x, y, z ⊢ x + (y + z) = z + (x + y)

Given any class of equations E, we denote by Th′(E) the class of equations that
can be proven from E in equational logic, i.e. ϕ ∈ Th′(E) if and only if there is a
derivation of ϕ in equational logic with axioms E.

Our goal now is to prove that Th′(E) = Th(E). We say that equational logic
is sound and complete for (Σ, E)-algebras. Less concisely, soundness means that
whenever equational logic proves an equation ϕ with axioms E, ϕ is satisfied by all
(Σ, E)-algebras, and completeness says that whenever an equation ϕ is satisfied by
all (Σ, E)-algebras, there is a derivation of ϕ in equational logic with axioms E.

Soundness is a straightforward consequence of earlier results.139 139 In the story we are telling, the rules of equational
logic were designed to be sound because we knew
some properties of ≡E already. In general, we may
use intuitions when defining rules of a logic, and
later prove soundness to confirm them, or realize
that soundness does not hold and infirm them.

Theorem 1.55 (Soundness). If ϕ ∈ Th′(E), then ϕ ∈ Th(E).

Proof. In the proof of Lemma 1.33, we proved that each of Refl, Symm, Trans,
and Cong are sound rules for a fixed arbitrary algebra. Namely, if A ∈ Alg(Σ)
satisfies the equations on top, then it satisfies the one on the bottom. Lemma 1.45

states the same soundness property for Sub. This implies a weaker property: if
all (Σ, E)-algebras satisfy the equations on top, then they satisfy the one on the
bottom.140 140 This is a standard theorem of first order logic:

(∀A.(PA⇒ QA))⇒ (∀A.PA⇒ ∀A.QA)Now, if ϕ ∈ Th′(E) was proven using equational logic and the axioms in E, then
since all A ∈ Alg(Σ, E) satisfy all the axioms, by repeatedly applying the weaker
property above for each rule in the derivation, we find that all A ∈ Alg(Σ, E) satisfy
ϕ, i.e. ϕ ∈ Th(E).

Completeness is the harder direction, and there are many ways to prove it.141 We 141 The original proof of Birkhoff [Bir35, Theorem 10]
relies on constructing free algebras. Several later
proofs (e.g. [Wec92, Theorem 29]) rely on a theory of
congruences.

will define an algebra exactly like TX but using the equality relation induced by
Th′(E) instead of ≡E which was induced by Th(E). We then show that algebra is a
(Σ, E)-algebra, and by construction, it will imply Th(E) ⊆ Th′(E).

Fix a signature Σ and a class E of equations over Σ. For any set X, we can define
a binary relation ≡′E on Σ-terms142 that contains the pair (s, t) whenever X ⊢ s = t 142 Again, we omit the set X from the notation.

can be proven in equational logic. Formally, we have for any s, t ∈ TΣX (c.f. (1.24)),

s ≡′E t⇐⇒ X ⊢ s = t ∈ Th′(E). (1.40)

We can show ≡′E is a congruence relation.

Lemma 1.56. For any set X, the relation ≡′E is reflexive, symmetric, transitive, and for any
op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,143 143 i.e. ≡′Ê is a congruence on the Σ-algebra TΣX

defined in Remark 1.24.

(∀1 ≤ i ≤ n, si ≡′E ti) =⇒ op(s1, . . . , sn) ≡′E op(t1, . . . , tn). (1.41)

Proof. This is immediate from the presence of Refl, Symm, Trans, and Cong in
the rules of equational logic.
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We write *−+E : TΣX → TΣX/≡′E for the canonical quotient map, so *t+E is the
equivalence class of t modulo the congruence ≡′E induced by equational logic.

Definition 1.57 (Term algebra, syntactically). The new term algebra for (Σ, E) on X
is the Σ-algebra whose carrier is TΣX/≡′E and whose interpretation of op : n ∈ Σ is
defined by144 144 This is well-defined (i.e. invariant under change

of representative) by (1.41).JopKT′X(*t1+E, . . . , *tn+E) = *op(t1, . . . , tn)+E. (1.42)

We denote this algebra by T′Σ,EX or simply T′X.

With soundness (Theorem 1.55) of equational logic, completeness would mean
this alternative definition of the term algebra coincides with TX. First, we have to
show that T′X belongs to Alg(Σ, E) like we did for TX in Proposition 1.46, and we
prove a technical lemma before that.

Lemma 1.58. Let ι : Y → TΣX/≡′E be an assignment. For any function σ : Y → TΣX
satisfying *σ(y)+E = ι(y) for all y ∈ Y, we have J−Kι

T′X = *σ∗(−)+E.145 145 This result looks like a stronger version of
Lemma 1.41 for T′X. Morally, they are both say-
ing that interpretation of terms in TX or T′X is just
a syntactical matter.

Proof. We proceed by induction. For the base case, we have by definition of the
interpretation of terms (1.9), definition of σ, and definition of σ∗ (1.38),

JηΣ
Y(y)K

ι
T′X

(1.9)
= ι(y) = *σ(y)+E

(1.38)
= *σ∗(ηΣ

Y(y))+E.

For the inductive step, we have

Jop(t1, . . . , tn)Kι
T′X = JopKT′X(Jt1Kι

T′X , . . . , JtnKι
T′X) by (1.9)

= JopKT′X(*σ∗(t1)+E, . . . , *σ∗(tn)+E) I.H.

= *op(σ∗(t1), . . . , σ∗(tn))+E by (1.42)

= *σ∗(op(t1, . . . , tn))+E. definition of σ∗

Proposition 1.59. For any set X, T′X satisfies all the equations in E.

Proof. Let Y ⊢ s = t belong to E and ι : Y → TΣX/≡′E be an assignment. By the
axiom of choice,146 there is a function σ : Y → TΣX satisfying *σ(y)+E = ι(y) for 146 Choice implies the quotient map *−+E has a right

inverse r : TΣX/≡′E → TΣX, and we can then set
σ = r ◦ ι.

all y ∈ Y. Thanks to Lemma 1.58, it is enough to show *σ∗(s)+E = *σ∗(t)+E.147

147 By Lemma 1.58, it implies

JsKι
T′X = *σ∗(s)+E = *σ∗(t)+E = JtKι

T′X ,

and since ι was an arbitrary assignment, we conclude
that T′X ⊨ Y ⊢ s = t.

Equivalently, by definition of *−+E and Th′(E), we can just exhibit a derivation of
X ⊢ σ∗(s) = σ∗(t) in equational logic with axioms E. This is rather simple because
that equation can be proven with the Sub rule instantiated with σ : Y → TΣX and
the equation Y ⊢ s = t which is an axiom.

Completeness of equational logic readily follows.

Theorem 1.60 (Completeness). If ϕ ∈ Th(E), then ϕ ∈ Th′(E).

Proof. Write ϕ = X ⊢ s = t ∈ Th(E). By Proposition 1.59 and definition of Th(E), we
know that T′X ⊨ ϕ. In particular, T′X satisfies ϕ under the assignment

ι = X
ηΣ

X−→ TΣX
*−+E−−−→ TΣX/≡′E,
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namely, JsKι
T′X = JtKι

T′X. Moreover with σ = ηΣ
X, we can show σ satisfies the

hypothesis of Lemma 1.58 and σ∗ = idTΣX ,148 thus we conclude 148 We defined ι precisely to have *σ(x)+E = ι(x). To
show σ∗ = ηΣ

X
∗ is the identity, use (1.38) and the fact

that µΣ · TΣηΣ = 1TΣ (Lemma 1.14).*s+E = JsKι
T′X = JtKι

T′X = *t+E.

This implies s ≡′E t which in turn means X ⊢ s = t belongs to Th′(E).

Note that because TX and T′X were defined in the same way in terms of Th(E)
and Th′(E) respectively, and since we have proven the latter to be equal, we obtain
that TX and T′X are the same algebra.149 149 It is good to keep in mind these two equivalent

definitions of the free (Σ, E)-algebra on X. It means
you can prove s equals t in TX by exhibiting a deriva-
tion of X ⊢ s = t in equational logic, or you can prove
s ̸= t by exhibiting an algebra that satisfies E but not
X ⊢ s = t.

Remark 1.61. We have used the axiom of choice in proving completeness of equational
logic, but that is only an artifact of our presentation that deals with arbitrary contexts.
Since terms are finite and operation symbols have finite arities, we can make do with
only finite contexts (which removes the need for choice). Formally, one can prove by
induction on the derivation that a proof of X ⊢ s = t can be transformed into a proof
of FV{s, t} ⊢ s = t which uses only equations with finite contexts.150 You can also 150 We denoted by FV{s, t} the set of free variables

used in s and t. This can be defined inductively as
follows:

FV{ηΣ
X(x)} = {x}

FV{op(t1, . . . , tn)} = FV{t1} ∪ · · · ∪ FV{tn}
FV{t1, . . . , tn} = FV{t1} ∪ · · · ∪ FV{tn}.

Note that FV{−} applied to a finite set of terms is
always finite.

verify semantically that A satisfies X ⊢ s = t if and only if it satisfies FV{s, t} ⊢ s = t
essentially because the extra variables have no effect on the quantification of the free
variables in s and t nor on the interpretation.

We mention now two related results for the sake of comparison when we introduce
quantitative equational logic. First, for any set X and variable y, the following
inference rules are derivable in equational logic.

X ⊢ s = t Add

X ∪ {y} ⊢ s = t
X ⊢ s = t y /∈ FV{s, t}

Del

X \ {y} ⊢ s = t

In words, Add says that you can always add a variable to the context, and Del

says you can remove a variable from the context when it is not used in the terms of
the equations. Both these rules are instances of Sub. For the first, take σ to be the
inclusion of X in X ∪ {y} (it may be the identity if y ∈ X). For the second, let σ send
y to whatever element of X \ {y} and all the other elements of X to themselves151, 151 When X is empty, the equations on the top and

bottom of Del coincide, so the rule is derivable.then since y is not in the free variables of s and t, σ∗(s) = s and σ∗(t) = t.
Second, we allowed the collection of equations E generating an algebraic theory

Th(E) to be a proper class, and that is really not common. Oftentimes, a countable set
of variables {x1, x2, . . . } is assumed, and equations are defined only with a context
contained in that set. With this assumption, the collection of all equations is a set,
and so are E and Th(E). This has no effect on expressiveness since for any equation
X ⊢ s = t, there is an equivalent equation X′ ⊢ s′ = t′ with X′ ⊆ {x1, x2, . . . }.152 152 We already know X ⊢ s = t is equivalent to

FV{s, t} ⊢ s = t, and since the context of the latter is
finite, we have a bijection σ : FV{s, t} ∼= {x1, . . . , xn}.
Then the Sub rule instantiated with σ and σ−1 proves
the desired equivalence.

1.5 Monads

Our presentation of universal algebra used the language of category theory, e.g.
functors, naturality, commutative diagrams, etc. Both these fields of mathematics
were born within a decade of each other153 with a similar goal: abstracting the way 153 [Bir33, Bir35] and [EM45] were the seminal papers

for universal algebra and category theory respec-
tively. Birkhoff and MacLane even wrote an under-
graduate textbook together [MB99].

mathematicians use mathematical objects in order to apply one general argument
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to many specific cases.154 One could argue (looking at today’s practicing mathe-
154 This is very close to a goal of mathematics as a
whole: abstracting the way nature works in order to
apply one general argument to many specific cases,
c.f. Cheng calling category theory the “mathematics
of mathematics” [Che16].

maticians) that category theory was more successful. This is why a portion of this
manuscript is spent on monads, a more categorical formulation of the content in
universal algebra which became popular in computer science after Moggi’s work
[Mog89, Mog91] using monads to abstract computational effects.

There is another categorical approach to universal algebra introduced by Lawvere
[Law63] and first popularized in the computer science community by Hyland,
Plotkin, and Power [PP01a, PP01b, HPP06, HP07]. We will stick to monads because
most of the literature on quantitative algebras does, and because I am not sure yet
how the generalizations we contributed port to Lawvere’s approach.155 155 In the paper introducing quantitative algebra

[MPP16], the authors already mentioned enriched
Lawvere theories [Pow99]. The works of Hyland
and Power [HP06], Nishizawa and Power [NP09],
Lucyshyn-Wright and Parker [LW16, LP23], and
Rosický [Ros24] are also relevant.

Definition 1.62 (Monad). A monad on a category C is a triple (M, η, µ) made up
of an endofunctor M : C → C and two natural transformations η : idC ⇒ M and
µ : M2 ⇒ M, called the unit and multiplication respectively, that make (1.43) and
(1.44) commute in [C, C] (the category of endofunctors on C).156 156 I also recommend Marsden’s series of blog posts

on monads for a relatively light and comprehen-
sive survey: https://stringdiagram.com/2022/05/
17/hello-monads/.

M M2 M

M

Mη

µ
1M

ηM

1M

(1.43)
M3 M2

M2 Mµ

Mµ

µM

µ (1.44)

We often refer to the monad (M, η, µ) simply with M.

In this chapter we will mostly talk about monads on Set, but it is good to keep
some arguments general for later. Here are some very important examples (for
computer scientists and especially for this manuscript).

Example 1.63 (Maybe). Suppose C has (binary) coproducts and a terminal object 1,
then (−+ 1) : C→ C is a monad. It is called the maybe monad (the name “option
monad” is also common).157 We write inlX+Y (resp. inrX+Y) for the coprojection of X 157 It is also called the lift monad in [Jac16, Example

5.1.3.2].(resp. Y) into X + Y.158 First, note that for a morphism f : X → Y,
158 These notations are common in the community of
programming language research, they stand for injec-
tion left (resp. right). We may omit the superscript.f + 1 = [inlY+1 ◦ f , inrY+1] : X + 1→ Y + 1.

The components of the unit are given by the coprojections, i.e. ηX = inlX+1 : X →
X + 1, and the components of the multiplication are

µX = [inlX+1, inrX+1, inrX+1] : X + 1 + 1→ X + 1.

Checking that (1.43) and (1.44) commute is an exercise in reasoning with coproducts.
It is more interesting to give the intuition in Set where + is the disjoint union and 1
is the singleton {∗}:159 159 This intuition should carry over well to many cat-

egories where the coproduct and terminal objects
have similar behaviors.• X + 1 is the set X with an additional (fresh) element ∗,

• the function f + 1 acts like f on X and sends the new element ∗ ∈ X to the new
element ∗ ∈ Y,

• the unit ηX : X → X + 1 is the injection (sending x ∈ X to itself),

https://stringdiagram.com/2022/05/17/hello-monads/
https://stringdiagram.com/2022/05/17/hello-monads/
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• the multiplication µX acts like the identity on X and sends the two new elements
of X + 1 + 1 to the single new element X + 1,

• one can check (1.43) and (1.44) commute by hand because (briefly) x ∈ X is always
sent to x ∈ X and ∗ is always sent to ∗.

The fresh element ∗ is often seen as a terminating state, so the maybe monad models
the most basic computational effect: termination. Even when no other observation
can be made on states of a program, one can distinguish between states by looking
at their execution traces which may or may not contain ∗.160 160 This was already known to Moggi who used dif-

ferent terminology in [Mog91, Example 1.1].
Example 1.64 (Powerset). The covariant non-empty finite powerset functor Pne :
Set→ Set sends a set X to the set of non-empty finite subsets of X which we denote
by PneX. It acts on functions just like the usual powerset functor, i.e. given a function
f : X → Y, Pne f is the direct image function, it sends S ⊆ X to f (S) = { f (x) | x ∈ S}.
It is clear that f (S) is non-empty and finite when S is non-empty and finite.

One can show Pne is a monad with the following unit and multiplication:161 161 Note that {x} is non-empty and finite, and so is
∪s∈Fs whenever F and all s ∈ F are non-empty and
finite. Thus, we can define Pne as a submonad of the
full powerset monad in, e.g. [Jac16, Example 5.1.3.1].

ηX : X → Pne(X) = x 7→ {x} and µX : Pne(Pne(X))→ Pne(X) = F 7→
⋃
s∈F

s.

Again as early as in Moggi’s papers, the powerset monad was used to model
nondeterministic computations (see also [VW06, KS18, BSV19, GPA21]). A set
S ∈ PneX is seen as all the possible states at a point in the execution. We assume
that S is finite for convenience, and that it is non-empty because an empty set of
possible states would mean termination which can already be modelled with the
maybe monad.162 162 Also, the maybe monad can be combined with any

other monad, see e.g. [MSV21, Corollary 5].
Example 1.65 (Distributions). The functor D : Set→ Set sends a set X to the set of
finitely supported distributions on X:163 163 We will simply call them distributions.

D(X) := {φ : X → [0, 1] | ∑
x∈X

φ(x) = 1 and φ(x) ̸= 0 for finitely many x’s}.

We call φ(x) the weight of φ at x and let supp(φ) denote the support of φ, that is,
supp(φ) contains all the elements x ∈ X such that φ(x) ̸= 0.164 On morphisms, D 164 We often write φ(S) for the total weight of φ on

all of S ⊆ X.sends a function f : X → Y to the function between sets of distributions defined by

D f : DX → DY = φ 7→

y 7→ ∑
x∈X, f (x)=y

φ(x)

 . (1.45)

In words, the weight of D f (φ) at y is equal to the total weight of φ on the preimage
of y under f .165 165 The distribution D f (φ) is sometimes called the

pushforward of φ.One can show that D is a monad with unit ηX = x 7→ δx, where δx is the Dirac
distribution at x (the weight of δx is 1 at x and 0 everywhere else), and multiplication

µX = Φ 7→

x 7→ ∑
φ∈supp(Φ)

Φ(φ)φ(x)

 . (1.46)
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In words, the weight µX(Φ) at x is the average of φ(x) weighted by Φ(φ) for all
distributions in the support of Φ.166 166 It was Giry [Gir82] who first studied probabilities

through the categorical lens with a monad with inspi-
ration from Lawvere [Law62], D is a discrete version
of Giry’s original construction. (See [Jac16, Example
5.1.3.4].)

Moggi only hinted at the distribution monad being a good model for computations
that rely on random/probabilistic choices. For fleshed out research based on D and
variants, see, e.g. [Gra88, JP89, RP02, VW06, Sta17, SW18, BSV19].

Monads have been a popular categorical approach to universal algebra167 thanks 167 See [HP07] for a thorough survey on categorical
approaches to universal algebra.to a result of Linton [Lin66, Proposition 1] stating that any algebraic theory gives rise

to a monad. Given a signature Σ and a class E of equations, we already implicitly
described the monad Linton constructed, it is the triple (TΣ,E, ηΣ,E, µΣ,E).

Proposition 1.66. The functor TΣ,E : Set → Set defines a monad on Set with unit ηΣ,E

and multiplication µΣ,E. We call it the term monad for (Σ, E).

Proof. We have done most of the work already.168 We showed that ηΣ,E and µΣ,E are 168 In fact, we have done it twice because we showed
that TΣ,E A is the free (Σ, E)-algebra on A for every set
A, and that automatically yields (through abstract
categorical arguments) a monad sending A to the
carrier of TΣ,E A, i.e. TΣ,E A.

natural transformations of the right type in Footnote 124 and Proposition 1.38 respec-
tively, and we showed the appropriate instance of (1.43) commutes in Lemma 1.43.
It remains to prove (1.44) commutes which, instantiated here, means proving the
following diagram commutes for every set A.

TΣ,ETΣ,ETΣ,E A TΣ,ETΣ,E A

TΣ,ETΣ,E A TΣ,E A

µΣ,E
A

µΣ,E
A

µΣ,E
TΣ,E A

TΣ,EµΣ,E
A

It follows from the following paved diagram.169 169 We know that (a), (b) and (c) commute by (1.30),
(1.26), and (1.30) respectively. This means that (d)
pre-composed by the epimorphism [−]E yields the
outer square. Moreover, we know the outer square
commutes by (1.35), therefore, (d) must also com-
mute.

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣ,ETΣ,ETΣ,E A TΣ,ETΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

[−]E

µΣ,E
TΣ,E A

TΣ,EµΣ,E
A

[−]E

µΣ,E
A

(a)

(b)

(d)

(c)

Note that when E is empty, we get a monad (TΣ, ηΣ, µΣ).170 170 Here is an alternative proof that TΣ is a monad.
We showed ηΣ and µΣ are natural in (1.6) and (1.8)
respectively. The right triangle of (1.43) commutes
by definition of µΣ (1.7), the left triangle commutes
by Lemma 1.14, and the square (1.44) commutes by
(1.16).

Linton also showed that from a monad M, you can build a theory whose corre-
sponding term monad is isomorphic to M [Lin69, Lemma 10.1]. This however relied
on a more general notion of theory. We will not go over the details here, rather
we will introduce the necessary concepts to talk about our main examples on Set:
(−+ 1), Pne, and D. First, we introduce algebras for a monad.

Definition 1.67 (M–algebra). Let (M, η, µ) be a monad on C, an M-algebra is a pair
(A, α) comprising an object A ∈ C0 and a morphism α : MA → A such that (1.47)
and (1.48) commute.
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A MA

A
idA

ηA

α (1.47)
MMA MA

MA A

Mα

µA

α

α

(1.48)

We call A the carrier and we may write only α to refer to an M-algebra.

Definition 1.68 (Homomorphism). Let (M, η, µ) be a monad and (A, α) and (B, β)

be two M-algebras. An M-algebra homomorphism or simply M-homomorphism
from α to β is a morphism h : A→ B in C making (1.49) commute.

MA MB

A B

α

Mh

β

h

(1.49)

The composition of two M-homomorphisms is an M-homomorphism and idA is
an M-homomorphism from (A, α) to itself, thus we get a category of M-algebras
and M-homomorphisms called the Eilenberg–Moore category of M, and denoted
by EM(M).171 Since EM(M) was built from objects and morphisms in C, there is 171 Named after the authors of the article introducing

that category [EM65].an obvious forgetful functor UM : EM(M)→ C sending an M-algebra (A, α) to its
carrier A, and an M-homomorphism to its underlying morphism.

Example 1.69. We will see some more concrete examples in a bit, but we can mention
now that the similarities between the squares in the definitions of a monad (1.44), of
an algebra (1.48), and of a homomorphism (1.49) have profound consequences. First,
for any A, the pair (MA, µA) is an M-algebra because (1.50) and (1.51) commute by
the properties of a monad.172 172 (1.50) is the component at A of the right triangle

in (1.43), and (1.51) is the component at A of (1.44).
MA MMA

MA

ηMA

µA
idMA

(1.50)
MMMA MMA

MMA MA

µAMµA

µA

µMA

(1.51)

Furthermore, for any M-algebra α : MA→ A, (1.48) (reflected through the diagonal)
precisely says that α is a M-homomorphism from (MA, µA) to (A, α). After a bit
more work,173 we can conclude that (MA, µA) is the free M-algebra (relative to 173 Given an M-algebra (A′, α′) and a function f :

A → A′, we can show α′ ◦ M f is the unique M-
homomorphism such that α′ ◦M f ◦ ηA = f .

UM : EM(M)→ Set).

The terminology suggests that (Σ, E)-algebras and TΣ,E-algebras are the same
thing.174 Let us check this, obtaining a large family of examples at the same time. 174 Also, Example 1.69 starts to confirm this, if we

compare it with Remark 1.24, and Lemma 1.25.
Proposition 1.70. There is an isomorphism Alg(Σ, E) ∼= EM(TΣ,E).

Proof. Given a (Σ, E)-algebra A, we already explained in (1.34) how to obtain a
function J−KA : TΣ,E A → A which sends [t]E to the interpretation of the term t
under the trivial assignment idA : A → A.175 Let us verify that J−KA is a TΣ,E- 175 That is well-defined because A satisfies all the

equations in Th(E).algebra. We need to show the following instances of (1.47) and (1.48) commutes.

A TΣ,E A

A

ηΣ,E
A

J−KAidA

TΣ,ETΣ,E A TΣ,E A

TΣ,E A A

J−KA

J−KA

TΣ,EJ−KA

µΣ,E
A
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The triangle commutes by definitions,176 and the square commutes by the following 176 We have JηΣ,E
A (a)KA = J[a]EKA = JaKA = a.

diagram.

TΣTΣ,E A TΣ A

TΣ,ETΣ,E A TΣ,E A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA

[−]E

J−KA

[−]E

TΣ,EJ−KA

µΣ,E
A

(b)

(a)

(c)

(d)

Since the outer rectangle commutes by Lemma 1.39, (a) commutes by naturality of
[−]E (1.26), (b) commutes by definition of µΣ,E

A (1.30), and (d) commutes by (1.34), we
can conclude that (c) commutes because [−]E is epic.

We also already explained in Footnote 75 that any homomorphism h : A → B

makes the outer rectangle below commute.

TΣ A TΣB

TΣ,E A TΣ,E A

A B
J−KA

h

J−KA

TΣ,Eh

[−]E

J−KA J−KB

[−]E

TΣh

(a)

(b) (d)

(c)

Since (a), (b), and (d) commute by naturality of [−]E, (1.34), and (1.34) respectively,
we conclude that (c) commutes again because [−]E is epic. This means h is a
TΣ,E-homomorphism.

We obtain a functor177 P : Alg(Σ, E) → EM(TΣ,E) sending A = (A, J−KA) to 177 Checking functoriality is trivial because P acts like
the identity on morphisms.(A, αA) where αA = J−KA : TΣ,E A → A (we give it a different name to make the

sequel easier to follow).
In the other direction, given an algebra α : TΣ,E A→ A, we define an algebra Aα

with the interpretation of op : n ∈ Σ given by178 178 For readability, we write α[−] instead of α([−]).

JopKα(a1, . . . , an) = α[op(a1, . . . , an)]E, (1.52)

and we can prove by induction that JtKα = α[t]E for any Σ-term t over A (note
that we use the TΣ,E-algebra properties of α).179 Now, if h : (A, α) → (B, β) is a 179 For the base case, we have

JaKα
(1.9)
= a

(1.47)
= α[ηΣ

A(a)]E = α[a]E.

For the inductive step, let t = op(t1, . . . , tn) ∈ TΣ A:

JtKα = Jop(t1, . . . , tn)Kα

= JopKα(Jt1Kα, . . . , JtnKα) (1.9)

= JopKα(α[t1]E, . . . , α[tn]E) I.H.

= α[op(α[t1]E, . . . , α[tn]E)]E (1.52)

= α[TΣα(op([t1]E, . . . , [tn]E))]E (1.5)

= α(TΣ,Eα[op([t1]E, . . . , [tn]E)]E) (1.26)

= α(µΣ,E
A [op([t1]E, . . . , [tn]E)]E) (1.47)

= α[op(t1, . . . , tn)]E (1.30)

= α[t]E.

TΣ,E-homomorphism, then h is a homomorphism from Aα to Bβ because for any
op : n ∈ Σ and a1, . . . , an ∈ A, we have

h(JopKα(a1, . . . , an)) = h(α[op(a1, . . . , an)]E) by (1.52)

= β(TΣ,Eh[op(a1, . . . , an)]E) by (1.49)

= β[TΣh(op(a1, . . . , an))]E by (1.26)

= β[op(h(a1), . . . , h(an))]E by (1.5)

= JopKβ(h(a1), . . . , h(an)). by (1.52)
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We obtain a functor P−1 : EM(TΣ,E)→ Alg(Σ, E) sending (A, α) to Aα.
Finally, we need to check that P and P−1 are inverses to each other, i.e. that

αAα = α and AαA
= A. For the former, αAα is defined to be the interpretation J−Kα

extended to terms modulo E, which we showed in Footnote 179 acts just like α. For
the latter, we need to show that J−KαA

and J−KA coincide. Using Footnote 179 for
the first equation and the definition of αA for the second, we have

JtKαA
= αA[t]E = JtKA.

Therefore, P and P−1 are inverses, thus Alg(Σ, E) and EM(TΣ,E) are isomorphic.180 180 Observe that the functors P and P−1 commute
with the forgetful functors because they do not
change the carriers of the algebras.

Remark 1.71. This result (along with the construction of free (Σ, E)-algebras in
Proposition 1.49) means that U : Alg(Σ, E)→ Set is a (strictly) monadic functor. I
decided not to define or discuss monadic functors in this document in order to have
fewer prerequisites,181and because I like to exhibit the explicit isomorphism between 181 I became comfortable with monadicity theorems

relatively late into my PhD, so I think avoiding them
keeps things more accessible.

categories of algebras. MacLane proves Proposition 1.70 using a monadicity theorem
in [Mac71, §VI.8, Theorem 1].

What about algebras for other monads? Are they algebras for some signature Σ
and equations E?

Example 1.72 (Maybe). In Set, a (−+ 1)-algebra is a function α : A + 1→ A making
the following diagrams commute.

A A + 1

A

α
idA

ηA A + 1 + 1 A + 1

A + 1 Aα

α+1

µA

α

Reminding ourselves that ηA is the inclusion in the left component, the triangle
commuting enforces α to act like the identity function on all of A. We can also write
α = [idA, α(∗)].182 The square commuting adds no constraint. Thus, an algebra for 182 We identify the element α(∗) ∈ A with the func-

tion α(∗) : 1→ A picking out that element.the maybe monad on Set is just a set with a distinguished point. Let h : A → B
be a function, commutativity of (1.53) is equivalent to h(α(∗)) = β(∗). Hence, a
(−+ 1)-homomorphism is a function that preserves the distinguished point.

A + 1 B + 1

A B

[idA ,α(∗)] [idB ,β(∗)]

h

h+1

(1.53)

Seeing the distinguished point of a (− + 1)-algebra as the interpretation of a
constant, we recognize that the category EM(−+ 1) is isomorphic to the category
Alg(Σ) where Σ = {p : 0} contains a single constant.183 183 Notice, again, that this isomorphism would com-

mute with the forgetful functors to Set because the
carriers are unchanged.Another option to recognize EM(−+ 1) as a category of algebras is via monad

isomorphisms.

Definition 1.73 (Monad morphism). Let (M, ηM, µM) and (N, ηN , µN) be two mon-
ads on C. A monad morphism from M to N is a natural transformation ρ : M⇒ N
making (1.54) and (1.55) commute.184 184 Recall that ρ ⋄ ρ denotes the horizontal composi-

tion of ρ with itself, i.e.

ρ ⋄ ρ = ρN ·Mρ = Nρ · ρM.
idC

M Nρ

ηM ηN (1.54)
MM NN

M Nρ

µM µN

ρ⋄ρ

(1.55)
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As expected ρ is called a monad isomorphism when there is a monad morphism
ρ−1 : N ⇒ M satisfying ρ · ρ−1 = 1N and ρ−1 · ρ = 1M. In fact, it is enough
that all the components of ρ are isomorphisms in C to guarantee ρ is a monad
isomorphism.185 185 One checks that natural isomorphisms are pre-

cisely the natural transformations whose components
are all isomorphisms, and that the inverse of a monad
morphism is a monad morphism.

Example 1.74. For the signature Σ = {p : 0}, the term monad TΣ is isomorphic to
− + 1. Indeed, recall that a Σ-term over A is either an element of A or p, this
yields a bijection ρA : TΣ A → A + 1 that sends any element of A to itself and p to
∗ ∈ 1. To verify that ρ is a monad morphism, we check these diagrams commute.186 186 All of them commute essentially because ρA and

both multiplications act like the identity on A.

TΣ A A + 1

TΣB B + 1

ρA

f+1TΣ f

ρB

(1.56)

A

TΣ A A + 1ρA

ηA
ηΣ

A

(1.57)

TΣTΣ A A + 1 + 1

TΣ A A + 1ρA

µAµΣ
A

ρTΣ A◦(ρA+1)

(1.58)

We obtain a monad isomorphism between the maybe monad and the term monad
for the signature Σ = {p : 0}. We can recover the isomorphism between the categories
of algebras from Example 1.72 with the following result.

Proposition 1.75. If ρ : M ⇒ N is a monad morphism, then there is a functor −ρ :
EM(N)→ EM(M). If ρ is a monad isomorphism, then −ρ is also an isomorphism.

Proof. Given an N-algebra α : NA → A, we show that α ◦ ρA : MA → A is an
M-algebra by paving the following diagrams.

Showing (1.59) commutes:

(a) By (1.54).

(b) By (1.47) for α : NA→ A.

(c) By (1.55), noting that (ρ ⋄ ρ)A = ρNA ◦MρA.

(d) Naturality of ρ.

(e) By (1.48) for α : NA→ A.

A MA MMA MA

NA MNA NNA NA

A MA NA A

ηM
A

idA

ρA

α

ηN
A MρA

Mα

ρA α

ρA

α

µM
A

ρNA µN
A

Nα

(a)

(b)

(c)

(d) (e)

(1.59)

Moreover, if h : A → B is an N-homomorphism from α to β, then it is also a
M-homomorphism from α ◦ ρA to β ◦ ρB by the paving below.187 187 The top square commutes by naturality of ρ and

the bottom square commutes because h is an N-
homomorphism (1.49).

MA MB

NA NB

A B

ρA

α

h

β
Nh

Mh

ρB

We obtain a functor −ρ : EM(N)→ EM(M) taking an algebra (A, α) to (A, α ◦ ρA)

and a homomorphism h : (A, α)→ (B, β) to h : (A, α ◦ ρA)→ (B, β ◦ ρB).
Furthermore, it is easy to see that −ρ = idEM(M) when ρ = 1M is the identity

monad morphism, and that for any other monad morphism ρ′ : N ⇒ L, −(ρ′ · ρ) =
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(−ρ) ◦ (−ρ′).188 Thus, when ρ is a monad isomorphism with inverse ρ−1, −ρ−1 is 188 In other words, the assignments M 7→ EM(M)
and ρ 7→ −ρ becomes a functor from the category of
monads on C and monad morphisms to the category
of categories (ignoring size issues).

the inverse of −ρ, so −ρ is an isomorphism.

With the monad isomorphism TΣ
∼= − + 1 of Example 1.74, we obtain an iso-

morphism EM(− + 1) ∼= EM(TΣ), and composing it with the isomorphism of
Proposition 1.70 EM(TΣ) ∼= Alg(Σ) (instantiating E = ∅), we get back the result
from Example 1.72 that algebras for the maybe monad are the same thing as algebras
for the signature with a single constant.

In general, we now know that TΣ,E
∼= M implies EM(M) ∼= Alg(Σ, E), but con-

structing a monad isomorphism (and showing it is one) is not always the easiest
thing to do.189 There is a converse implication, but it requires a restriction to isomor- 189 For instance, the isomorphism of categories of

algebras in Example 1.72 is definitely clearer than
the isomorphism of monads in Example 1.74.

phisms of categories that commute with the forgetful functors to Set. Anyways, that
is a mild condition we foreshadowed.

Proposition 1.76. If P : EM(N)→ EM(M) is a functor such that UM ◦ P = UN , then
there is a monad morphism ρ : M→ N. If P is an isomorphism, then so is ρ.

Proof. Quick corollary of [BW05, Chapter 3, Theorem 6.3].

This motivates the following definition which states that a monad M is presented
by (Σ, E) when it is isomorphic to the term monad TΣ,E or, thanks to Proposition 1.76

and Proposition 1.70, when M-algebras on A and (Σ, E)-algebras on A are identified.

Definition 1.77 (Set presentation). Let M be a monad on Set, an algebraic presenta-
tion of M is signature Σ and a class of equations E along with a monad isomorphism
ρ : TΣ,E

∼= M. We also say M is presented by (Σ, E).

We chose to state the definition with the monad isomorphism it makes some
arguments in §3.5 quicker. Showing that a monad is presented by (Σ, E) can be done
in many ways that are equivalent to building a monad isomorphism.190 190 We already gave one with Proposition 1.76, and

you can also read some great discussions in Remark
3.6 and §4.2 in [BSV22].

We have proven in Example 1.74 that Σ = {p : 0} and E = ∅ is an algebraic
presentation for the maybe monad on Set. Here is a couple of additional examples.

Example 1.78 (Powerset). The powerset monad Pne is presented by the theory of
semilattices (ΣS, ES),191 where ΣS = {⊕ : 2} and ES contains the following equations 191 Usually, when we say “theory of X”, we mean

that Xs are the algebras for that theory. For instance,
semilattices are the (ΣS, ES)-algebras. After some
unrolling, we get the more common definition of a
semilattice, that is, a set with a binary operation that
is idempotent, commutative, and associative.

stating that ⊕ is idempotent, commutative and associative respectively.

x ⊢ x = x⊕ x x, y ⊢ x⊕ y = y⊕ x x, y, z ⊢ x⊕ (y⊕ z) = (x⊕ y)⊕ z

This means there is a monad isomorphism TΣS ,ES
∼= Pne.

Another thing we obtain from this isomorphism is that for any set X, interpreting
⊕ as union on PneX (i.e. (S, T) 7→ S ∪ T) yields the free semilattice on X.192 192 It is relatively easy to show that union is idempo-

tent, commutative, and associative, freeness is more
difficult but follows from the algebraic presentation,
and the fact that (PneX, µX) is the free Pne-algebra
(recall Example 1.69).

Example 1.79 (Distributions). The distribution monad D is presented by the theory
of convex algebras (ΣCA, ECA) where ΣCA = {+p : 2 | p ∈ (0, 1)} and ECA contains
the following equations for all p, q ∈ (0, 1).

x ⊢ x = x +p x x, y ⊢ x +p y = y +1−p x
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x, y, z ⊢(x +p y) +q z = x +pq +(y + p(1−q)
1−pq

z)

The free convex algebra on X can now be seen as DX with +p interpreted as the
usual convex combination, that is,193 193 For later, we will write p for 1− p.

Jφ +p ψKDX = pφ + (1− p)ψ = (x 7→ pφ(x) + (1− p)ψ(x)) . (1.60)

Remark 1.80. Not all monads on Set have an algebraic presentation.194 The monads 194 For example, the full powerset monad does not,
although it still has an algebraic flavor as its algebras
are in correspondence with complete sup-lattices, see
e.g. [Bor94, Proposition 4.6.5].

that can be presented by a signature with finitary operation symbols are aptly called
finitary monads. They can be characterized as the monads whose underlying functor
preserve limits of a certain shape and size, see e.g. [Bor94, Proposition 4.6.2].

In Chapter 3, we will need to relate monads on different categories, we give some
background on that here.

Definition 1.81 (Lax monad morphism). Let (T, ηT , µT) be a monad on D, and
(M, ηM, µM) be a monad on C. A lax monad morphism from T to M is a pair (F, λ)

comprising a functor F : C→ D, and a natural transformation λ : TF ⇒ FM making
(1.61) and (1.62) commute.195 195 Note the similarities with Definition 1.73, lax

monad morphisms generalize monad morphisms
to monads on different base categories. The termi-
nology comes from e.g. [LS12, Rie13], but the name
monad functor was originally used in [Str72] and the
direction of morphisms is sometimes reversed.

F

TF FM
λ

ηT F
FηM

(1.61)
TTF TFM FMM

TF FM
λ

µT F

Tλ λM

FµM (1.62)

Proposition 1.82. If (F, λ) : T → M is a lax monad morphism, then there is a functor
F−◦λ : EM(M)→ EM(T) sending an M-algebra α : MA→ A to Fα ◦ λA : TFA→ A,
and an M-homomorphism h : A→ B to Fh : FA→ FB.196 196 By definition, the functor F− ◦λ lifts F along the

forgetful functors, namely, it makes (1.63) commute.

EM(M) EM(T)

C D

UM UT

F

F−◦λ

(1.63)

Proof. We need to show that Fα ◦ λ is a T-algebra whenever α is an M-algebra. We
pave the following diagrams showing (1.47) and (1.48) commute respectively.

Showing (1.64) commutes:

(a) By (1.61).

(b) Apply F to (1.47).

(c) By (1.62).

(d) Naturality of λ.

(e) Apply F to (1.48).

FA TFA TTFA TFA

FMA TFMA FMMA FMA

FA TFA FMA FA

λA

Fα

λA Fα

µT
FA

TλA

TFα FMα

FµM
AλMA

ηT
FA

λA

Fα

idFA

FηM
A

(c)

(d) (e)

(a)

(b) (1.64)

Next, we need to show that when h : A → B is an M-homomorphism from α to
β, then Fh is a T-homomorphism from Fα ◦ λA to Fα ◦ λB. We pave the following
diagram where (a) commutes by naturality of λ and (b) by applying F to (1.49).

TFA TFB

FMA FMB

FA FB

λA

Fα

λB

Fβ

Fh

TFh

FMh

(a)

(b)



universal algebra 59

There are two special cases of lax monad morphisms. When T and M are on the
same category C and F = idC, a lax monad morphism is just a monad morphism
from T to M,197 and then the proof above reduces to the proof of Proposition 1.75. 197 Sometimes, authors introduce lax monad mor-

phisms with the name monad morphism, and take
our notion of monad morphism as a particular in-
stance. Some authors also use the name monad map
for either notion.

When λA is an identity morphism for every A, i.e. TF = FM, we say that M is a
monad lifting of T along F. That notion is central to §3.5, where we redefine it in a
more specific setting.

Our goal for the next two chapters is to make all the results here more general
by considering carriers to be generalized metric spaces, i.e. sets with a notion of
distance. In Chapter 2 we define what we mean by distance, and in Chapter 3, we
define quantitative algebras, quantitative equational logic, and quantitative algebraic
presentations analogously to the definitions above.
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For a comprehensive introduction to the concepts and themes explored in this
chapter, please refer to §0.2. Here, we only give a brief overview.

In this chapter, we give our definition of generalized metric spaces which is
different from the many definitions already in the literature.198 Once again, we take 198 See e.g. [BvBR98, Bra00, Pis21].

our time with this material in preparation for the next chapter, introducing many
examples and disseminating some insights along the way. While the content of
Chapter 1 can safely be skipped before reading the current chapter, our main point
here is the definition of quantitative equation (Definition 2.23) as an answer to the
question “How do we impose constraints on distances with the familiar syntax of
equations?”, thus it makes sense to be comfortable with equational reasoning before
reading what follows.

Outline: In §2.1, we define complete lattices and relations valued in a complete
lattice, we also give an equivalent definition that justifies the syntax of quantitative
equations. In §2.2, we define quantitative equations and the categories of generalized
metric spaces which are parametrized by collections of quantitative equations. In
§2.3, we study the properties that all categories of generalized metric spaces have.

2.1 L-Spaces

Chapter 1 is titled Universal Algebra and Chapter 3 is titled Universal Quantitative
Algebra. In order to go from the former to the latter, we will explain what we mean
by quantitative. In the original paper on quantitative algebras [MPP16], and in many
other works on quantitative program semantics,199 the quantities considered are, 199 e.g. [Kwi07, vBW01, KyKK+

21, ZK22].

more often than not, positive real numbers. In [MSV22, MSV23], we worked with
quantities inside [0, 1]. In this document, we will abstract away from real numbers,
thinking of quantities as things you can compare and say whether one is bigger
or smaller than another. You can do that with positive real numbers thanks to the
usual ordering ≤, but it has a crucial property that we exploit, it is complete in
the (informal) sense that you can always find the smallest quantity of a set of real
numbers. Formally it is a complete lattice.200 200 Small caveat: we need to add ∞ or work with an

upper bound (see Examples 2.2 and 2.3).

Definition 2.1 (Complete lattice). A complete lattice is a partially ordered set201 (or
201 i.e. L is a set and ≤ ⊆ L× L is a binary relation
on L that is reflexive, transitive and antisymmetric.

https://www.youtube.com/watch?v=nKU7iz9RYV0
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poset) (L,≤) where all subsets S ⊆ L have an infimum and supremum denoted by
inf S and sup S respectively. In particular, L has a bottom element ⊥ = inf L = sup ∅
and a top element ⊤ = sup L = inf ∅ that satisfy ⊥ ≤ ε ≤ ⊤ for all ε ∈ L. We use L

to refer to the lattice and its underlying set, and we call its elements quantities.202
202 The name quantity is not standard, we use this
terminology only in the context of our work.Let us describe two central (for this thesis) examples of complete lattices.

Example 2.2 (Unit interval). The unit interval [0, 1] is the set of real numbers between
0 and 1. It is a poset with the usual order ≤ (“less than or equal”) on numbers. It is
usually an axiom in the definition of R that all non-empty bounded subsets of real
numbers have an infimum and a supremum. Since all subsets of [0, 1] are bounded
(by 0 and 1), we conclude that ([0, 1],≤) is a complete lattice with ⊥ = 0 and ⊤ = 1.

Later in this section, we will see elements of [0, 1] as distances between points
of some space. It would make sense, then, to extend the interval to contain values
bigger than 1. Still because a complete lattice must have a top element there must be
a number above all others. We could either stop at some arbitrary 0 ≤ B ∈ R and
consider [0, B], or we can consider ∞ to be a number as done below.203 203 If one needs negative distances, it is also possible

to work with any interval [A, B] with A ≤ B ∈ R, or
even [−∞, ∞]. We will stick to [0, 1] and [0, ∞].Example 2.3 (Extended interval). Similarly to the unit interval, the extended interval

is the set [0, ∞] of positive real numbers extended with ∞, and it is a poset after
asserting ε ≤ ∞ for all ε ∈ [0, ∞]. It is also a complete lattice because non-empty
bounded subsets of [0, ∞) still have an infimum and supremum, and if a subset is
not bounded above or contains ∞, then its supremum is ∞. We find that 0 is bottom
and ∞ is top.

It is the prevailing custom to consider distances valued in the extended interval.204 204 In fact, [0, ∞] with the reverse order and additional
structure is also famous under the name Lawvere
quantale because of Lawvere’s seminal paper [Law02].
In that work, he used the quantale structure on [0, ∞]
to give a categorical definition very close to that of a
metric.

In our papers [MSV21, MSV22, MSV23], we worked with the unit interval, but in
theory, there is no difference since [0, 1] and [0, ∞] are isomorphic as complete
lattices.205 In practice, one can use additional structure and properties that are not

205 Take the mapping x 7→ 1
1−x − 1 from [0, 1] to [0, ∞]

with 1
0 − 1 = ∞. It is bijective, monotone and pre-

serves infimums.

preserved by this isomorphism (like adding quantities).

Remark 2.4. The first two examples are both quantales [HST14, §II.1.10], informally,
complete lattices where quantities can be added together in a way that preserves
the order and the “smallest” quantities. It is also quite common in the literature on
quantitative programming semantics to generalize from real numbers to elements of
a quantale.206 Since none of the results we establish require dealing with addition, 206 e.g. [DGY19, GP21, GD23, FSW+

23].

we will work at the level of generality of complete lattices (no difficulty arises from
this abstraction), even though many of the following examples are quantales.

There are many other interesting complete lattices, although (unfortunately) they
are less often viewed as possible places to value distances.

Example 2.5 (Booleans). The Boolean lattice B is the complete lattice containing
only two elements, bottom and top. Its name comes from the interpretation of ⊥ as
a false value and ⊤ as a true value which makes the infimum act like an AND and
the supremum like an OR.

Example 2.6 (Extended natural numbers). The set N∞ of natural numbers extended
with ∞ is a sublattice of [0, ∞].207 Indeed, it is a poset with the usual order and 207 As expected, a (complete) sublattice of (L,≤) is a

set S ⊆ L closed under taking infimums and supre-
mums. Note that the top and bottom of S need not
coincide with those of L. For instance [0, 1] is a sub-
lattice of [0, ∞], but ⊤ = 1 in the former and ⊤ = ∞
in the latter.

https://en.wikipedia.org/wiki/Quantale
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the infimum and supremum of a subset of natural numbers is either itself a natural
number or ∞ (when the subset is empty or unbounded respectively).

Example 2.7 (Powerset lattice). For any set X, we denote the powerset of X by P(X).
The inclusion relation ⊆ between subsets of X makes P(X) a poset. The infimum
of a family of subsets Si ⊆ X is the intersection ∩i∈ISi, and its supremum is the
union ∪i∈ISi. Hence, P(X) is a complete lattice. The bottom element is ∅ and the
top element is X.

It is well-known that subsets of X correspond to functions X → {⊥,⊤}.208 208 A subset S ⊆ X is sent to the characteristic func-
tion χS, and a function f : X → B is sent to f−1(⊤).
We say that {⊥,⊤} is the subobject classifier of Set.

Endowing the two-element set with the complete lattice structure of B is what yields
the complete lattice structure on P(X). The following example generalizes this
construction.

Example 2.8 (Function space). Given a complete lattice (L,≤), for any set X, we
denote the set of functions from X to L by LX. The pointwise order on functions
defined by

f ≤∗ g⇐⇒ ∀x ∈ X, f (x) ≤ g(x)

is a partial order on LX . The infimums and supremums of families of functions are
also computed pointwise. Namely, given { fi : X → L}i∈I , for all x ∈ X: Taking L = B, we find that P(X) and BX are isomor-

phic as complete lattices under the usual correspon-
dence. Namely, pointwise infimums and supremums
become intersections and unions respectively. For
example, if χS, χT : X → B are the characteristic
functions of S, T ⊆ X, then

inf {χS, χT} (x) = ⊤ ⇔ χS(x) = χT(x) = ⊤
⇔ x ∈ S and x ∈ T

⇔ x ∈ S ∩ T.

(inf
i∈I

fi)(x) = inf
i∈I

fi(x) and (sup
i∈I

fi)(x) = sup
i∈I

fi(x).

This makes LX a complete lattice. The bottom element is the function that is constant
at ⊥, and the top element is the function that is constant at ⊤.

As a special case of function spaces, it is easy to show that when X is a set with
two elements, LX is isomorphic (as complete lattices) to the product L× L.

Example 2.9 (Product). Let (L,≤L) and (K,≤K) be two complete lattices. Their
product is the poset (L× K,≤L×K) on the cartesian product of L and K with the
order defined by

(ε, δ) ≤L×K (ε′, δ′)⇐⇒ ε ≤L ε′ and δ ≤K δ′. (2.1)

It is a complete lattice where the infimums and supremums are computed coordi-
natewise, namely, for any S ⊆ L×K,209 209 Where πL and πK are the projections from L×K

to L and K respectively.

inf S = (inf{πL(c) | c ∈ S}, inf{πK(c) | c ∈ S}) and

sup S = (sup{πL(c) | c ∈ S}, sup{πK(c) | c ∈ S}).

The bottom (resp. top) element of L× K is the pairing of the bottom (resp. top)
elements of L and K. i.e. ⊥L×K = (⊥L,⊥K) and ⊤L×K = (⊤L,⊤K).

The following example is also based on functions, and it appears in several works
on generalized notions of distances, e.g. [Fla97, HR13].



generalized metric spaces 63

Example 2.10 (CDF). A cumulative distribution function210 (or CDF for short) is
210 Although cumulative subdistribution function
might be preferred.a function f : [0, ∞] → [0, 1] that is monotone (i.e. ε ≤ δ =⇒ f (ε) ≤ f (δ)) and

satisfies
f (δ) = sup{ f (ε) | ε < δ}. (2.2)

Intuitively, (2.2) says that f cannot abruptly change value at some x ∈ [0, ∞], but it
can do that “after” some x.211 For instance, out of the two functions below, only f>1

211 This property is often called right-continuity.

is a CDF.

f≥1 = x 7→

0 x < 1

1 x ≥ 1
f>1 = x 7→

0 x ≤ 1

1 x > 1

We denote by CDF([0, ∞]) the subset of [0, 1][0,∞] containing all CDFs, it inherits a
poset structure (pointwise ordering), and we can show it is a complete lattice.212 212 Note however that CDF([0, ∞]) is not a sublattice

of [0, 1][0,∞] because the infimums are not always
taken pointwise. For instance, given 0 < n ∈ N,
define fn by (see them on Desmos)

fn(x) =


0 x ≤ 1− 1

n
nx 1− 1

n < x < 1
1 1 ≤ x

.

The pointwise infimum of { fn}n∈N clearly sends ev-
erything below 1 to 0 and everything above and
including 1 to 1, so it does not satisfy f (1) =
supε<1 f (ε). We can find the infimum with the gen-
eral formula that defines infimums in terms of supre-
mums:

inf
n>0

fn = sup{ f ∈ CDF([0, ∞]) | ∀n > 0, f ≤∗ fn}.

We find that infn>0 fn = f>1.

Let { fi : [0, ∞] → [0, 1]}i∈I be a family of CDFs. We will show the pointwise
supremum supi∈I fi is a CDF, and that is enough since having all supremums implies
having all infimums [DP02, Theorem 2.31].

• If ε ≤ δ, since all fis are monotone, we have fi(ε) ≤ fi(δ) for all i ∈ I which
implies

(sup
i∈I

fi)(ε) = sup
i∈I

fi(ε) ≤ sup
i∈I

fi(δ) = (sup
i∈I

fi)(δ).

• For any δ ∈ [0, ∞], we have

(sup
i∈I

fi)(δ) = sup
i∈I

fi(δ) = sup
i∈I

sup
ε<δ

fi(ε) = sup
ε<δ

sup
i∈I

fi(ε) = sup
ε<δ

(sup
i∈I

fi)(ε).

Nothing prevents us from defining CDFs on other domains, and we will write
CDF(L) for the complete lattice of functions L→ [0, 1] that are monotone and satisfy
(2.2). This is a concrete instance of a more general fact that the set of Scott-continuous
functions with the pointwise order has all supremums computed pointwise (see, e.g.
[GHK+

03, Lemma II-2.5]).

Definition 2.11 (L-space). Given a complete lattice L and a set A, an L-relation on A
is a function d : A× A→ L. We call the pair (A, d) an L-space, and A its carrier or
underlying set. We will also use a single bold-face symbol A to refer to an L-space
with underlying set A and L-relation dA.213 213 We will often switch between referring to spaces

with A or (A, dA), and we will try to match the
symbol for the space and the one for its underlying
set only modifying the former with mathbf.

A nonexpansive map from A to B is a function f : A→ B between the underlying
sets of A and B that satisfies

∀x, x′ ∈ A, dB( f (x), f (x′)) ≤ dA(x, x′). (2.3)

The identity maps idA : A→ A and the composition of two nonexpansive maps are
always nonexpansive214, therefore we have a category whose objects are L-spaces 214 Fix three L-spaces A, B and C with two nonexpan-

sive maps f : A → B and g : B → C, we have by
nonexpansiveness of g then f :

dC(g f (a), g f (a′)) ≤ dB( f (a), f (a′))

≤ dA(a, a′).

and morphisms are nonexpansive maps. We denote it by LSpa.
This category is concrete over Set with the forgetful functor U : LSpa → Set

which sends an L-space A to its carrier and a morphism to the underlying function
between carriers.

https://www.desmos.com/calculator/fqcudbkqge
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Remark 2.12. In the sequel, we will not distinguish between the morphism f : A→ B
and the underlying function f : A → B. Although we may write U f for the latter
when disambiguation is necessary.

Instantiating L for different complete lattices, we can get a feel for what the
categories LSpa look like. We also give concrete examples of L-spaces.

Example 2.13 (Binary relations). When L = B, a function d : A× A→ B is the same
thing as a subset of A× A, which is the same thing as a binary relation on A.215 215 Hence, the terminology L-relation also appearing

in e.g. [HST14, GD23].Then, a B-space is a set equipped with a binary relation and we choose to have, as
a convention, d(a, a′) = ⊥ when a and a′ are related and d(a, a′) = ⊤ when they
are not.216 A nonexpansive map from A to B is a function f : A→ B such that for 216 This convention might look backwards, but it

makes sense with the morphisms.any a, a′ ∈ A, f (a) and f (a′) are related when a and a′ are. When a and a′ are not
related, f (a) and f (a′) might still be related.217 The category BSpa is well-known 217 Note that this interpretation of nonexpansiveness

depends on our just chosen convention. Swapping
the meaning of d(a, a′) = ⊤ and d(a, a′) = ⊥ is
the same thing as taking the opposite order on B
(i.e. ⊤ ≤ ⊥), namely, morphisms become functions
f : A→ B such that for any a, a′ ∈ A, f (a) and f (a′)
are not related when neither are a and a′.

under different names, EndoRel in [Vig23], Rel in [AHS06] (although that name is
more commonly used for the category where relations are morphisms) and 2Rel in
my book. Here are a couple of fun examples of B-spaces:

1. Chess. Let P be the set of positions on a chessboard (a2, d6, f3, etc.) and dB :
P× P → B send a pair (p, q) to ⊥ if and only if q is accessible from p in one
bishop’s move. The pair (P, dB) is an object of BSpa. Let dQ be the B-relation
sending (p, q) to ⊥ if and only if q is accessible from p in one queen’s move.
The pair (P, dQ) is another object of BSpa. The identity function idP : P → P is
nonexpansive from (P, dB) to (P, dQ) because whenever a bishop can go from p
to q, a queen can too. However, it is not nonexpansive from (P, dQ) to (P, dB)

because e.g. a queen can go from a1 to a2 but a bishop cannot.218 One can check 218 In other words, the set of valid moves for a bishop
is included in the set of valid moves for a queen, but
not vice versa.

that any rotation of the chessboard is nonexpansive from (P, dB) to itself and
from (P, dQ) to itself. And since nonexpansive maps compose, any rotation is also
nonexpansive from (P, dB) to (P, dQ).

2. Siblings. Let H be the set of all humans (me, Paul Erdős, my brother Paul, etc.)
and dS : H × H → B send (h, k) to ⊥ if and only if h and k are full siblings.219 219 Full siblings share the same biological parents.

The pair (H, dS) is an object of BSpa. Let d= be the B-relation sending (h, k)
to ⊥ if and only if h and k are the same person. The pair (H, d=) is another
object of BSpa. The function f : H → H sending h to their biological mother is
nonexpansive from (H, dS) to (H, d=) because whenever h and k are full siblings,
they have the same biological mother.

Example 2.14 (Distances). The main examples of L-spaces in this thesis are [0, 1]-
spaces or [0, ∞]-spaces. These are sets A equipped with a function d : A× A→ [0, 1]
or d : A × A → [0, ∞], and we can usually understand d(a, a′) as the distance
between two points a, a′ ∈ A. With this interpretation, a function is nonexpansive
when applying it never increases the distances between points.220 Let us give several 220 This is a justification for the term nonexpansive.

In the setting of distances being real-valued, another
popular term is 1-Lipschitz.

examples of [0, 1]- and [0, ∞]-spaces:

1. Euclidean. Probably the most famous distance in mathematics is the Euclidean
distance on real numbers d : R×R → [0, ∞] = (x, y) 7→ |x − y|. The distance

https://en.wikipedia.org/wiki/Chessboard
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between any two points is unbounded, but it is never ∞. The pair (R, d) is an
object of [0, ∞]Spa. It is also very common to study subsets of R, like Q or
[0, 1], with the Euclidean distance appropriately restricted. We say that (Q, d)
and ([0, 1], d) are subspaces of (R, d). In general, a subspace of an L-space A is a
subset B ⊆ A equipped with the L-relation dA restricted to B, i.e. dB = B× B ↪→
A× A

dA−→ L.
Multiplication by r ∈ R is a nonexpansive function r · − : (R, d) → (R, d) if
and only if r is between −1 and 1. Intuitively, a function f : (R, d) → (R, d) is
nonexpansive when its derivative at any point is between −1 and 1.221 221 The derivatives might not exist, so this is just an

informal explanation.

2. Collaboration. Let H be the set of humans again. A collaboration chain between
two humans h and k is a sequence of scientific papers P1, . . . , Pn such that h is a
coauthor of P1, k is a coauthor of Pn, and Pi and Pi+1 always have at least one
common coauthor. The collaboration distance d between two humans h and k is
the length of a shortest collaboration chain.222 For instance d(me, Paul Erdős) = 4 222 As conventions, the length of a chain is the number

of papers, not humans. Also, d(h, k) = ∞ when no
such chain exists between h and k, except when h = k,
then d(h, h) = 0 (or we could say it is the length of
the empty chain from h to h).

as computed by csauthors.net on February 20th 2024:

me D. Petrişan M. Gehrke M. Erné P. Erdős
[PS21] [GPR16] [EGP07] [EE86]

The pair (H, d) is a [0, ∞]-space, but it could also be seen as a N∞-space (because
the length of a chain is always an integer).

3. Hamming. Let W be the set of words of the English language. If two words u and
v have the same number of letters, the Hamming distance d(u, v) between u and
v is the number of positions in u and v where the letters do not match.223 When 223 For instance d(carrot, carpet) = 2 because these

words differ only in two positions, the second and
third to last (r ̸= p and o ̸= e).

u and v are of different lengths, we let d(u, v) = ∞, and we obtain a [0, ∞]-space
(W, d). (It is also a N∞-space.)

As Example 2.14 comes with many important intuitions, we will often call an
L-relation d : X × X → L a distance function and d(x, y) the distance from x to y,
even when L is neither [0, 1] nor [0, ∞].

Remark 2.15. The asymmetry in the terminology “distance from x to y” is justified
because, in general, nothing guarantees d(x, y) = d(y, x). Since language is processed
in a sequential order, we cannot even get rid of this asymmetry, but I feel like
“distance between x and y” would be more appropriate if we required d(x, y) = d(y, x).

Example 2.16. We give more examples of L-spaces to showcase the potential of our
abstract framework.

1. Diversion.224 Let J be the set of products available to consumers inside a vending 224 This example takes inspiration from the diversion
matrices in [CMS23], where the authors consider the
automobile market in the U.S.A. instead of a vending
machine.

machine (including a “no purchase” option), the second-choice diversion d(p, q)
from product p to product q is the fraction of consumers that switch from buying
p to buying q when p is removed (or out of stock) from the machine. That fraction
is always contained between 0 and 1, so we have a function d : J × J → [0, 1]
which makes (J, d) an object of [0, 1]Spa.225 225 Even though d is valued in [0, 1], calling it a dis-

tance function does not fit our intuition because
when d(p, q) is big, it means the products p and
q are probably very similar.

https://www.csauthors.net/distance/ralph-sarkis/paul-erdos
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2. Rank. Let P be the set of web pages available on the internet. In [BP98], the
authors introduce an algorithm to measure the importance of a page p ∈ P giving
it a rank R(p) ∈ [0, 1]. This data can be compiled into a function dR : P× P→ B

which sends (p, q) to ⊥ if and only if R(p) ≤ R(q), so dR compares the ranks of
web pages. This yields a B-space (P, dR).226 226 The set P equipped with the function R : P →

[0, 1] is not a [0, 1]-space, but it is a fuzzy set in the
sense of Castelnovo and Miculan [CM22a]. Their
work shows how to reason with algebraic structures
on fuzzy sets instead of L-spaces like we do here.

The rank of a page varies over time (it is computed from the links between all
web pages which change quite frequently), so if we let T be the set of instants of
time, we can define d′R(p, q) to be the function of type T → B which sends t to
the Boolean value of R(p) ≤ R(q) computed at time t. This makes (P, d′R) into a
BT-space.

In order to create a search engine, we also need to consider the input of the user
looking for some web page.227 If U is the set of possible user inputs, we can 227 The rank of a Wikipedia page about ramen will be

lower when the user inputs “Genre Humaine” than
when they input “Ramen_Lord”.

define d′′R(p, q) to depend on U and T, so that (P, d′′R) is a BU×T-space.

3. Collaboration (bis). In Example 2.14, we defined the collaboration distance
d : H × H →N∞ that measures how far two people are from collaborating on a
scientific paper. We can define a finer measure by taking into account the total
number of people involved in the collaboration. It allows us to say you are closer
to Erdös if you wrote a paper with him and no one else than if you wrote a
paper with him and two additional coauthors. The distance d′ is now valued in
N∞ ×N∞,228 the first coordinate of d′(h, k) is d(h, k) the length of the shortest 228 There may be cases where d′(h, k) = (4, 7) (a long

chain with few authors) and d′(h, k′) = (2, 16) (a
short chain with many authors). Then, with the prod-
uct of complete lattices defined in Example 2.9, we
could not compare the two distances. This is unfortu-
nate in this application, so we may want to consider
a different kind of product of complete lattices. The
lexicographical order on N∞ ×N∞ is

(ε, δ) ≤lex (ε′, δ′)⇔ ε ≤ ε′ or (ε = ε′ and δ ≤ δ′).

In words, you use the order on the first coordinates,
and only when they are equal, you use the order on
the second coordinates.

If L and K are complete lattices, (L×K,≤lex) is a
complete lattice where the infimum is not computed
pointwise, but rather

inf S = (inf πLS, sup{ε | ∀s ∈ S, (inf πLS, ε) ≤ s}).

collaboration chain between h and k, and the second coordinate of d′(h, k) is the
smallest total number of authors in a collaboration chain of length d(h, k). For
instance, according to csauthors.net on February 20th 2024, there are only two
chains of length four between me and Erdös, both involving (the same) seven
people, hence d′(me, Paul Erdös) = (4, 7).

4. Bisimulation for CTS. A conditional transition system (CTS) [ABH+
12, Example

2.5] is a labelled transition system with a semantics different from the usual one.
Instead of following transitions when the label matches an input, some label is
chosen before the execution, and only those transitions which have the chosen
label remain possible. Formulated differently, it is a family of transition systems
on the same set of states indexed by a set of labels. If X is the set of states, and L
is the set of labels, we can define a P(L)-relation d : X× X → P(L) by229

229 More details in [ABH+
12, §Definitions C.1 and

C.2].d(x, y) = {ℓ ∈ L | x and y are not bisimilar when ℓ is chosen}.

Here is one last example further making the case for working over an abstract
complete lattice. We also revisit it in Examples 3.4 and 3.83.

Example 2.17 (Hausdorff distance). Given an L-relation d on a set X, we define the
L-relation d↑ on non-empty finite subsets of X:

∀S, T ∈ PneX, d↑(S, T) = sup

{
sup
x∈S

inf
y∈T

d(x, y), sup
y∈T

inf
x∈S

d(x, y)

}
.

https://en.wikipedia.org/wiki/Ramen
https://www.youtube.com/watch?v=Y2hWi0fo97M
https://www.reddit.com/user/Ramen_Lord/
https://www.csauthors.net/distance/ralph-sarkis/paul-erdos
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This distance is a variation of a metric defined by Hausdorff in [Hau14].230 It 230 Hausdorff considered positive real valued dis-
tances and compact subsets.measures how far apart two subsets are in three steps. First, we postulate that a

point x ∈ S and T are as far apart as x and the closest point y ∈ T. Then, the distance
from S to T is as big as the distance between the point x ∈ S furthest from T. Finally,
to obtain a symmetric distance, we take the maximum of the distance from S to T
and from T to S. As we expect from any interesting optimization problem, there is a
dual formulation given by the L-relation d↓.231 231 The notation was inspired by [BBKK18]. We write

π1(C) for {x ∈ X | ∃(x, y) ∈ C} and similarly for π2.
(We should really write Pneπ1(C) and Pneπ2(C).)

∀S, T ∈ PneX, d↓(S, T) = inf

{
sup

(x,y)∈C
d(x, y) | C ⊆ X× X, π1(C) = S, π2(C) = T

}

To compare two sets with the second method, you first need a binary relation
C on X that covers all and only the points of S and T in the first and second
coordinates respectively. Borrowing the terminology from probability theory, we
call C a coupling of S and T, it is a subset of X × X whose marginals are S and T.
According to a coupling C, the distance between S and T is the biggest distance
between a pair in C. Amongst all couplings of S and T, we take the one achieving
the smallest distance to define d↓(S, T).

The first punchline of this example is that the two L-relations d↑ and d↓ coincide.

Lemma 2.18. For any S, T ∈ PneX, d↑(S, T) = d↓(S, T).232 232 Hardly adapted from [Mé11, Proposition 2.1].

Proof. (≤) For any coupling C ⊆ X× X, for each x ∈ S, there is at least one yx ∈ T
such that (x, yx) ∈ C (because π1(C) = S) so

sup
x∈S

inf
y∈T

d(x, y) ≤ sup
x∈S

d(x, yx) ≤ sup
(x,y)∈C

d(x, y).

After a symmetric argument, we find that d↑(S, T) ≤ sup(x,y)∈C d(x, y) for all cou-
plings, the first inequality follows.

(≥) For any x ∈ S, let yx ∈ T be a point in T that attains the infimum of d(x, y),233 233 It exists because T is non-empty and finite.

and note that our definition ensures d(x, yx) ≤ d↑(S, T). Symmetrically define xy

for any y ∈ T and let C = {(x, yx) | x ∈ S} ∪ {(xy, y) | y ∈ T}. It is clear that C is a
coupling of S and T, and by our choices of yx and xy, we ensured that

sup
(x,y)∈C

d(x, y) ≤ d↑(S, T),

therefore we found a coupling witnessing that d↓(S, T) ≤ d↑(S, T) as desired.

The second punchline of this example comes from instantiating it with the com-
plete lattice B. Recall that a B-relation d on X corresponds to a binary relation
Rd ⊆ X × X where x and y are related if and only if d(x, y) = ⊥. This seem-
ingly backwards convention makes it so that nonexpansive functions are those that
preserve the relation. Let us be careful about it while describing Rd↑ and Rd↓ .

Given S, T ∈ PneX and x ∈ S, notice that infy∈T d(x, y) = ⊥ if and only if d(x, y) =
⊥ for at least one y, or equivalently, if x is related by Rd to at least one y ∈ T. This

means the infimum behaves like an existential quantifier. Dually, the supremum acts
like a universal quantifier yielding234 234 Symmetrically,

sup
y∈T

inf
x∈S

d(x, y) = ⊥ ⇔ ∀y ∈ T, ∃x ∈ S, (x, y) ∈ Rd.



68 lifting algebraic reasoning to generalized metric spaces

sup
x∈S

inf
y∈T

d(x, y) = ⊥ ⇐⇒ ∀x ∈ S, ∃y ∈ T, (x, y) ∈ Rd.

Combining with its symmetric counterpart, and noting that a binary universal
quantification is just an AND, we find that (S, T) belongs to Rd↑ if and only if

∀x ∈ S, ∃y ∈ T, (x, y) ∈ Rd and ∀y ∈ T, ∃x ∈ S, (x, y) ∈ Rd. (2.4)

We call Rd↑ the Egli–Milner extension of Rd as in, e.g. [WS20, GPA21].
Given a coupling C of S and T, sup(x,y)∈C d(x, y) can only equal ⊥ when all pairs

(x, y) ∈ C are related by Rd. Then, if a coupling C ⊆ Rd exists, the infimum of d↓

will be ⊥. Therefore, S and T are related by Rd↓ if and only if

∃C ⊆ Rd, π1(C) = S and π2(C) = T. (2.5)

The relation Rd↓ is sometimes called the Barr lifting of Rd [Bar06].
Our proof above yields the equivalence between (2.4) and (2.5).235 235 That equivalence is folklore and has probably been

given as exercise to many students in a class on
bisimulation or coalgebras.While the categories BSpa, [0, 1]Spa and [0, ∞]Spa are interesting on their own,

they contain subcategories which are more widely studied. For instance, the category
Poset of posets and monotone maps is a full subcategory of BSpa where we only
keep B-spaces (X, d) where the binary relation corresponding to d is reflexive,
transitive and antisymmetric. Similarly, a [0, ∞]-space (X, d) where the distance
function satisfies the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) and reflexivity
d(x, x) ≤ 0 is known as a Lawvere metric space [Law02].

The next section lays out the language we will use to state conditions as those
above on L-spaces. The syntax is heavily inspired by the syntax of equations in
universal algebra, the binary predicate = for equality is joined by a family of binary
predicates =ε indexed by the quantities in L. That idea comes from the original
work of Mardare, Panangaden, and Plotkin on quantitative algebras [MPP16], and it
implicitly relies on the following equivalent definition of L-spaces (the equivalent
definition is not due to Mardare et al., see the discussion in §0.3).

Definition 2.19 (L-structure). Given a complete lattice L, an L-structure236 is a set X
236 We borrow the name “structure” from model the-
orists. The more general notion of relational struc-
ture is used in [FMS21, Par22, Par23]. Also, our
L-structures are both more and less general than the
LS-structures of [Con17].

equipped with a family of binary relations Rε ⊆ X× X indexed by ε ∈ L satisfying

• monotonicity in the sense that if ε ≤ ε′, then Rε ⊆ Rε′ , and

• continuity in the sense that for any I-indexed family of elements εi ∈ L,237 237 By monotonicity, Rδ ⊆ Rεi so the inclusion Rδ ⊆
∩i∈I Rεi always holds. Also, continuity implies mono-
tonicity because ε ≤ ε′ implies

Rε ∩ Rε′ = Rinf{ε,ε′} = Rε,

which means Rε ⊆ Rε′ . Still, we keep monotonicity
explicit for better exposition.

⋂
i∈I

Rεi = Rδ, where δ = inf
i∈I

εi.

Intuitively (x, y) ∈ Rε should be interpreted as bounding the distance from x to y
above by ε. Then, monotonicity means the points that are at a distance below ε are
also at a distance below ε′ when ε ≤ ε′. Continuity means the points that are at a
distance below a bunch of bounds εi are also at a distance below the infimum of
those bounds infi∈I εi.

The names for these conditions come from yet another equivalent definition.238 238 This time more directly equivalent.
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Organizing the data of an L-structure into a function R : L→ P(X× X) sending ε to
Rε, we can recover monotonicity and continuity by seeing P(X× X) as a complete
lattice like in Example 2.7. Indeed, monotonicity is equivalent to R being a monotone
function between the posets (L,≤) and (P(X× X),⊆), and continuity is equivalent
to R preserving infimums. Seeing L and P(X × X) as posetal categories, we can
simply say that R is a continuous functor.239 239 Limits in a posetal category are always computed

by taking the infimum of all the points in the dia-
gram, so preserving limits and preserving infimums
is the same thing.

A morphism between two L-structures (X, {Rε}) and (Y, {Sε}) is a function
f : X → Y satisfying

∀ε ∈ L, ∀x, x′ ∈ X, (x, x′) ∈ Rε =⇒ ( f (x), f (x′)) ∈ Sε. (2.6)

This should feel similar to nonexpansive maps.240 Let us call LStr the category of 240 In words, (2.6) reads as: if x and x′ are at a distance
below ε’ then so are f (x) and f (x′).L-structures.

We give one trivial example, before proving that L-structures are just L-spaces.

Example 2.20. A consequence of continuity (take I = ∅) is that R⊤ is the full binary
relation X× X. Therefore, taking L = 1 to be a singleton where ⊥ = ⊤, a 1-structure
is only a set (there is no choice for R), and a morphism is only a function (the
implication in (2.6) is always true because Sε = Y × Y). In other words, 1Str is
isomorphic to Set. Instantiating the next result (Proposition 2.21) means that 1Spa is
also isomorphic to Set, this is clear because there is only one function d : X× X → 1

for any set X. This example is relatively important because it means the theory we
develop later over an arbitrary category of L-spaces specializes to the case of Set.241 241 See Example 3.70.

Proposition 2.21. For any complete lattice L, the categories LSpa and LStr are isomor-
phic.242 242 This result is a stripped down version of [MPP17,

Theorem 4.3]. A more general version also appears
in [FMS21, Example 3.5.(4)]. Another similar result
is shown in [Par22, Appendix]. The core idea, (2.7)
and (2.8), also appears in [Con17, Theorem A] and
[LR17, Example 4.5.(3)].

Proof. Given an L-relation (X, d), we define the binary relations Rd
ε ⊆ X× X by

(x, x′) ∈ Rd
ε ⇐⇒ d(x, x′) ≤ ε. (2.7)

This family satisfies monotonicity because for any ε ≤ ε′ we have

(x, x′) ∈ Rd
ε

(2.7)⇐⇒ d(x, x′) ≤ ε =⇒ d(x, x′) ≤ ε′
(2.7)⇐⇒ (x, x′) ∈ Rd

ε′ .

It also satisfies continuity because if (x, x′) ∈ Rεi for all i ∈ I, then d(x, x′) ≤ εi

for all i ∈ I. By definition of infimum, we must have d(x, x′) ≤ infi∈I εi, hence
(x, x′) ∈ Rinfi∈I εi

. We conclude the forward inclusion (⊆) of continuity holds, the
converse (⊇) follows from monotonicity. Taking L = B, Proposition 2.21 gives back our in-

terpretation of BSpa as the category 2Rel from Ex-
ample 2.13. Indeed, a B-structure is just a set X
equipped with a binary relation R⊥ ⊆ X × X (be-
cause R⊤ is required to equal X×X), and morphisms
of B-structures are functions that preserve that bi-
nary relation. This also justifies our weird choice of
d(x, y) = ⊥ meaning x and y are related.

Any nonexpansive map f : (X, d)→ (Y, ∆) in LSpa is also a morphism between
the L-structures (X, {Rd

ε }) and (Y, {R∆
ε }) because for all ε ∈ L and x, x′ ∈ X,

(x, x′) ∈ Rd
ε

(2.7)⇐⇒ d(x, x′) ≤ ε
(2.3)
=⇒ ∆( f (x), f (x′)) ≤ ε

(2.7)⇐⇒ ( f (x), f (x′)) ∈ R∆
ε .

It follows that the assignment (X, d) 7→ (X, {Rd
ε }) is a functor F : LSpa → LStr

acting trivially on morphisms.
Given an L-structure (X, {Rε}), we define the function dR : X× X → L by

dR(x, x′) = inf
{

ε ∈ L | (x, x′) ∈ Rε

}
.
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Note that monotonicity and continuity of the family {Rε} imply243 243 The converse implication (⇐) is by definition of
infimum. For (⇒), continuity says that

RdR(x,x′) =
⋂

ε∈L,(x,x′)∈Rε

Rε,

so RdR(x,x′) contains (x, x′), then by monotonicity,
dR(x, x′) ≤ ε implies Rε also contains (x, x′).

dR(x, x′) ≤ ε⇐⇒ (x, x′) ∈ Rε. (2.8)

This allows us to prove that a morphism f : (X, {Rε})→ (Y, {Sε}) is nonexpansive
from (X, dR) to (Y, dS) because for all ε ∈ L and x, x′ ∈ X, we have

dR(x, x′) ≤ ε
(2.8)⇐⇒ (x, x′) ∈ Rε

(2.6)
=⇒ ( f (x), f (x′)) ∈ Sε

(2.8)⇐⇒ dS( f (x), f (x′)) ≤ ε,

hence putting ε = dR(x, x′), we obtain dS( f (x), f (x′)) ≤ dR(x, x′). It follows that the
assignment (X, {Rε}) 7→ (X, dR) is a functor G : LStr → LSpa acting trivially on
morphisms.

Observe that (2.7) and (2.8) together say that RdR
ε = Rε and dRd = d, so F and G

are inverses to each other on objects. Since both functors do nothing to morphisms,
we conclude that F and G are inverses to each other, and that LSpa ∼= LStr.

This result is central in our treatment of L-spaces because it allows us to specify
an L-relation through the (binary) truth value of a family of predicates =ε. In other
words, we can reason equationally about L-spaces.

Remark 2.22. The upshot of Proposition 2.21 is that the structure of a complete lattice
is enough to do quantitative algebraic reasoning.244 Still, in practice, L often has 244 This point will be strengthened when we develop

the theory of quantitative algebras over an arbitrary
complete lattice in Chapter 3.

more structure. If you need to state the triangle inequality (2.12), then you need a
way of adding distances/quantities. A frequent choice made by researchers is to let L
be a quantale see e.g. [CH06, Pis21]. Often, this is for the theoretical convenience of
seeing a metric space as an enriched category as suggested in [Law02].245 In closely 245 The book [HST14] explores the theoretical founda-

tions of this approach.related work [CM22a], Castelnovo and Miculan require L to be a frame (a special
kind of quantale).

2.2 Equational Constraints

It is often the case that one wants to impose conditions on the L-spaces they consider.
For instance, recall that when L is [0, 1] or [0, ∞], L-spaces are sets with a notion of
distance between points. Starting from our intuition on the distance between points of
the space we live in, people have come up with several abstract conditions to enforce
on distance functions. For example, we can restate (with a slight modification246) 246 The separation axiom is now divided in two, (2.10)

and (2.11).the axioms defining metric spaces (Definition 0.1).
First, symmetry says that the distance from x to y is the same as the distance from

y to x:
∀x, y ∈ X, d(x, y) = d(y, x). (2.9)

Reflexivity, also called indiscernibility of identicals, says that the distance between x
and itself is 0 (i.e. the smallest distance possible):

∀x ∈ X, d(x, x) = 0. (2.10)

Identity of indiscernibles, also called Leibniz’s law, says that if two points x and y
are at distance 0, then x and y must be the same:

∀x, y ∈ X, d(x, y) = 0 =⇒ x = y. (2.11)
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Finally, the triangle inequality says that the distance from x to z is always smaller
than the sum of the distances from x to y and from y to z:

∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). (2.12)

There are also very famous axioms on B-spaces (X, d) that arise from viewing the
binary relation corresponding to d as some kind of order on elements of X. They are
abstraction of properties of the “smaller or equal” order ≤ on, say, real numbers.

First, reflexivity says that any element x is related to itself, i.e. x ≤ x. Translating
back to the B-relation, this is equivalent to:

∀x ∈ X, d(x, x) = ⊥. (2.13)

Antisymmetry says that if both (x, y) and (y, x) are in the order relation, then they
must be equal:247 247 i.e. if x ≤ y and y ≤ x, then x = y.

∀x, y ∈ X, d(x, y) = ⊥ = d(y, x) =⇒ x = y. (2.14)

Finally, transitivity says that if (x, y) and (y, z) belong to the order relation, then so
does (x, z):248 248 i.e. if x ≤ y and y ≤ z, then x ≤ z.

∀x, y, z ∈ X, d(x, y) = ⊥ = d(y, z) =⇒ d(x, z) = ⊥. (2.15)

We can immediately notice that all the axioms (2.9)–(2.15) start with a universal
quantification of variables. Another thing to note is that we never actually needed to
talk about equality between distances. For instance, the equation d(x, y) = d(y, x)
in the axiom of symmetry (2.9) can be replaced by two inequalities d(x, y) ≤ d(y, x)
and d(y, x) ≤ d(x, y), and moreover since x and y are universally quantified, only
one of these inequalities is necessary:

∀x, y ∈ X, d(x, y) ≤ d(y, x). (2.16)

If we rely on the equivalence between L-spaces and L-structures (Proposition 2.21),
we can transform (2.16) into a family of implications indexed by all ε ∈ L:249 249 Recall that (x, y) ∈ Rd

ε is the same thing as
d(x, y) ≤ ε. Hence, (2.16) and (2.17) are equivalent
because requiring d(x, y) to be smaller than d(y, x)
is equivalent to requiring all upper bounds of d(y, x)
(in particular d(y, x) itself) to also be upper bounds
of d(x, y).

∀x, y ∈ X, (y, x) ∈ Rd
ε =⇒ (x, y) ∈ Rd

ε . (2.17)

Starting from the triangle inequality (2.12) and applying the same transformations
that got us from (2.9) to (2.17), we obtain a family of implications indexed by two
quantities ε, δ ∈ L:250 250 You can try proving how (2.12) and (2.18) are

equivalent if the process of going from the former to
the latter was not clear to you.∀x, y, z ∈ X, (x, y) ∈ Rd

ε and (y, z) ∈ Rd
δ =⇒ (x, z) ∈ Rd

ε+δ. (2.18)

The last conceptual step is to make the L.H.S. of the implication part of the
universal quantification. That is, instead of saying “for all x and y, if P then Q”, we
say “for all x and y such that P, Q”. We do this by introducing a syntax very similar
to the equations of universal algebra. We fix a complete lattice (L,≤), but you can
keep in mind the examples L = [0, 1] and L = [0, ∞].
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Definition 2.23 (Quantitative equation).251 A quantitative equation (over L) is a tuple 251 The name quantitative equation will be reclaimed
in Definition 3.8 for a more general notion. See also
Remark 3.9.

comprising an L-space X called the context, two elements x, y ∈ X, and optionally a
quantity ε ∈ L. We write these as X ⊢ x = y when no ε is given or X ⊢ x =ε y when it
is given.

An L-space A satisfies a quantitative equation

• X ⊢ x = y if for any nonexpansive assignment ι̂ : X→ A, ι̂(x) = ι̂(y).

• X ⊢ x =ε y if for any nonexpansive assignment ι̂ : X→ A, dA(ι̂(x), ι̂(y)) ≤ ε.

We use ϕ and ψ to refer to a quantitative equation, and we sometimes call them
simply equations. We write A ⊨ ϕ when A satisfies ϕ,252 and we also write A ⊨ι̂ ϕ

252 Of course, satisfaction generalizes straightfor-
wardly to sets of quantitative equations, i.e. if Ê
is a class of quantitative equations, A ⊨ Ê means
A ⊨ ϕ for all ϕ ∈ Ê.

when the equality ι̂(x) = ι̂(y) or the bound dA(ι̂(x), ι̂(y)) ≤ ε holds for a particular
assignment ι̂ : X→ A (and not necessarily for all assignments).

Remark 2.24. The authors of [MPP16] introduced the symbol =ε to represent “equality
up to ε”, and it is at the basis of their theory of algebras over metric spaces. Just
like = is understood as equality in any set, we understand =ε as the relation Rε

in any L-structure. Therefore, under the assignment ι̂ inside A, x =ε y becomes
ι̂(x) RdA

ε ι̂(y), which in turn means dA(ι̂(x), ι̂(y)) ≤ ε. Unlike =, =ε is not a
symmetric notation, but that is convenient for us as arbitrary L-spaces are not
required to satisfy dA(x, y) = dA(y, x).

Let us illustrate the definition of quantitative equations with an example.

Example 2.25 (Symmetry). We want to translate (2.17) into a quantitative equation.
A first approximation would be replacing the relation Rd

ε with our new syntax =ε to
obtain something like

x, y ⊢ y =ε x =⇒ x =ε y.

We are not allowed to use implications like this, so we have to implement the last
step mentioned above by putting the premise y =ε x into the context. This means we
need to quantify over variables x and y with a bound ε on the distance from y to x.

Note that when defining satisfaction of a quantitative equation, the quantification
happens at the level of assignments ι̂ : X→ A. Hence, we have to find a context X
such that nonexpansive assignments X→ A correspond to choices of two elements
in A with the same bound ε on their distance.

Let the context X be the L-space with two elements x and y such that dX(y, x) = ε

and all other distances are ⊤. A nonexpansive assignment ι̂ : X→ A is just a choice
of two elements ι̂(x), ι̂(y) ∈ A satisfying dA(ι̂(y), ι̂(x)) ≤ ε.253 For all of these, we 253 Indeed, since ⊤ is the top element of L, the other

values of dX being ⊤ means that they impose no
further condition on dA.

have to impose the condition dA(ι̂(x), ι̂(y)) ≤ ε. Therefore, our quantitative equation
is

X ⊢ x =ε y. (2.19)

For a fixed quantity ε ∈ L, an L-space A satisfies (2.19) if and only if it satisfies (2.17).
Hence,254 if A satisfies that quantitative equation for all ε ∈ L, then it satisfies (2.9), 254 Recall our argument in Footnote 249.

i.e. the distance dA is symmetric.
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In practice, defining the context like this is more cumbersome than need be, so
we will define some syntactic sugar to remedy this. Before that, we take the time to
do another example.

Example 2.26 (Triangle inequality). With L = [0, 1] or L = [0, ∞], let the context X be
the L-space with three elements x, y and z such that dX(x, y) = ε and dX(y, z) = δ,
and all other distances are ⊤.255 A nonexpansive assignment ι̂ : X → A is just a 255 Here is a depiction of X, where the label on an

arrow is the distance from the source to the target of
that arrow:

x z

y

ε

⊤

⊤ ⊤

⊤

δ

⊤

⊤

choice of three elements a = ι̂(x), b = ι̂(y), c = ι̂(z) ∈ A such that dA(a, b) ≤ ε and
dA(b, c) ≤ δ. Hence, if A satisfies

X ⊢ x =ε+δ z, (2.20)

it means that for any such assignment, dA(a, c) ≤ ε + δ also holds. We conclude
that A satisfies (2.18). If A satisfies X ⊢ x =ε+δ z for all ε, δ ∈ L, then A satisfies the
triangle inequality (2.12).

Remark 2.27. There is a small caveat above. If we are in L = [0, 1] and ε = 1 and
δ = 1, then ε + δ = 2 /∈ [0, 1], so the predicate x =ε+δ z is not allowed. There are two
easy fixes that we never explicit. You can either define a truncated addition so that
ε + δ = 1 whenever their sum is really above 1,256 or you can quantify over ε and 256 This operation is well-known in fuzzy logic, under

different names like bounded sum, strong disjunction,
or t-conorm, see, e.g. [CHN11, Chapter 1, §2.2.2].

δ such that ε + δ ≤ 1. Indeed, every [0, 1]-space satisfies X ⊢ x =1 z because 1 is a
global upper bound for the distance between points, thus when ε + δ > 1, there is
no difference between having that equation or not as an axiom.

Notice that in the contexts of Examples 2.25 and 2.26, we only needed to set one
or two distances and all the others where the maximum they could be ⊤. In our
syntactic sugar for quantitative equations, we will only write the distances that are
important (using the syntax =ε), and we understand the underspecified distances to
be as high as they can be. For instance, (2.19) will be written257 257 We can understand this syntax as putting back the

information in the context into an implication. For
instance, you can read (2.21) as “if the distance from
y to x is bounded above by ε, then so is the distance
from x to y”. You can read (2.22) as “if the distance
from x to y is bounded above by ε and the distance
from y to z is bounded above by δ, then the distance
from x to z is bounded above by ε + δ”.

y =ε x ⊢ x =ε y, (2.21)

and (2.20) will be written

x =ε y, y =δ z ⊢ x =ε+δ z. (2.22)

In this syntax, we call premises everything on the left of the turnstile ⊢ and conclu-
sion what is on the right.

More generally, when we write {xi =εi yi}i∈I ⊢ x =ε y (resp. {xi =εi yi}i∈I ⊢ x =

y), it corresponds to the quantitative equation X ⊢ x =ε y (resp. X ⊢ x = y), where
the context X contains the variables in258 258 Note that the xis, yis, x and y need not be distinct.

In fact, x and y almost always appear in the xis and
yis.X = {x, y} ∪ {xi | i ∈ I} ∪ {yi | i ∈ I},

and the L-relation is defined for u, v ∈ X by259 259 In words, the distance from u to v is the smallest
value ε such that u =ε v was a premise. If no such
premise occurs, the distance from u to v is ⊤. It
is rare that u and v appear several times together
(because u =ε v and u =δ v can be replaced with
u =inf{ε,δ} v), but our definition allows it.

dX(u, v) = inf{ε | u =ε v ∈ {xi =εi yi}i∈I}.
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Remark 2.28. The judgments (or quantitative inferences) in the logic of [MPP16]
with an empty signature coincide with our syntactic sugar. We showed those are a
formally equivalent to quantitative equations in [MSV23, Lemma 8.4], but there is a
special case we want to discuss.

In [MPP16, Definition 2.1], their axiom (Arch) is equivalent, in the presence of
their axiom (Max), to260 260 See [MSV23, Remark 4.3].

{x =εi y | i ∈ I} ⊢ x =infi∈I εi
y.

Now, if we apply our translation to obtain a quantitative equation as in Defini-
tion 2.23, we get X ⊢ x =ε y, where dX(x, y) = ε = infi∈I εi and all other distances are
⊤. This quantitative equation is obviously always satisfied,261 so it makes sense to 261 For any nonexpansive assignment ι̂ : X → A,

dA(ι̂(x), ι̂(y)) ≤ dX(x, y) = ε.have it as an axiom, but it seems we are loosing a bit of information. That is, the
original axiom looks like it ensures the continuity property of Definition 2.19. In
fact, that axiom has several names in different papers, one of which is Cont. In the
version of quantitative equational logic we propose in this thesis (Figure 3.1), there
is an inference rule Cont (rather than an axiom) that ensures continuity.

Here are some more translations of famous properties into quantitative equations
written with the syntactic sugar:

• reflexivity (of a metric) (2.10) becomes x ⊢ x =0 x,262 262 As further sugar, we also write x instead of x =⊤ x
to the left of the turnstile ⊢ to say that the variable x is
in the context without imposing any constraint. For
instance, the context of x, y ⊢ x = y has two variables
x and y and all distances are ⊤. Thus, if A satisfies
x, y ⊢ x = y, then A is either empty or a singleton.

• Leibniz’s law (2.11) becomes x =0 y ⊢ x = y,

• reflexivity (of an order) (2.13) becomes x ⊢ x =⊥ x,

• antisymmetry (2.14) becomes x =⊥ y, y =⊥ x ⊢ x = y, and

• transitivity (2.15) becomes x =⊥ y, y =⊥ z ⊢ x =⊥ z.

Remark 2.29. The translations of (2.10) and (2.13) look very close. In fact, noting
that 0 is the bottom element of [0, 1] and [0, ∞], the quantitative equation x ⊢ x =⊥ x
can state the reflexivity of a distance in [0, 1] or [0, ∞] or the reflexivity of a binary
relation.

Similarly, in the translation of the triangle inequality (2.22), if we let ε and δ range
over B and interpret + as an OR, we get three vacuous quantitative equations,263 and 263 When either ε or δ equals ⊤, ε + δ = ⊤, but when

the conclusion of a quantitative equation is x =⊤ z,
it is always satisfied.

the translation of (2.15) above. So transitivity and triangle inequality are the same
under this abstract point of view.264

264 These observations were probably folkloric since
at least the original publication of [Law02] in 1973.Let us emphasize one thing about contexts of quantitative equations: they only

give constraints that are upper bounds for distances.265 In particular, it can be very 265 Well, if you consider the opposite order on L, they
now give lower bounds. What is important is that
they only speak about one of them.

hard to operate on the quantities in L non-monotonically. For instance, we will see
(after Definition 2.40) that we cannot read x =ε1 y, y =ε2 z, y =ε3 y ⊢ x =ε1+ε2−ε3 z as
saying that d(x, z) ≤ d(x, y) + d(y, z)− d(y, y),266 and one quick explanation is that 266 Assume L = [0, ∞] and d(y, y) may be non-zero.

subtraction is not a monotone operation on [0, ∞]× [0, ∞]. Another consequence
is that an equation ϕ will always entail ψ when the latter has a stricter context (i.e.
when the upper-bounds in the premises are smaller).267 We prove a more general 267 For example, if A satisfies x =1/2 y ⊢ x = y, then

it satisfies x =1/3 y ⊢ x = y. This says that if all
distances between distinct points are above 1/2, then
they are also above 1/3.

version of this below.
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Lemma 2.30. Let f : X → Y be a nonexpansive map. If A satisfies X ⊢ x = y (resp.
X ⊢ x =ε y), then A satisfies Y ⊢ f (x) = f (y) (resp. Y ⊢ f (x) =ε f (y)).268 268 In particular, when written with syntactic sugar,

you can reduce the quantities in the premises of

{x =εi y | i ∈ I} ⊢ x =infi∈I εi y

to obtain

{x =ε′i
y | i ∈ I} ⊢ x =infi∈I εi y,

with ε′i ≤ ε. If X and X′ respectively denote the
context described by these sets of premises, then
they have the same carrier, and the identity function
will be nonexpansive from X to X′. Therefore, if A
satisfies the first quantitative equation, it satisfies the
second.

Proof. Any nonexpansive assignment ι̂ : Y→ A yields a nonexpansive assignment
ι̂ ◦ f : X→ A. By hypothesis, we have

A ⊨ι̂◦ f X ⊢ x = y (resp. A ⊨ι̂◦ f X ⊢ x =ε y),

which means ι̂( f (x)) = ι̂( f (y)) (resp. dA(ι̂( f (x)), ι̂( f (y))) ≤ ε). Thus, we conclude

A ⊨ι̂ Y ⊢ f (x) = f (y) (resp. A ⊨ι̂ Y ⊢ f (x) =ε f (y)).

Let us continue this list of examples for a while, just in case it helps a reader that
is looking to translate an axiom into a quantitative equation. We will also give some
results later which could imply that a reader’s axiom cannot be translated in this
language.

Example 2.31. For any complete lattice L.

1. The strong triangle inequality states that d(x, z) ≤ max{d(x, y), d(y, z)},269 it is 269 This property is used in defining ultrametrics
[Rut96].equivalent to the satisfaction of the following family of quantitative equations

∀ε, δ ∈ L, x =ε y, y =δ z ⊢ x =sup{ε,δ} z. (2.23)

2. We can impose that all distances are below a global upper bound ε ∈ L (i.e.
d(x, y) ≤ ε) with the quantitative equation270 270 For instance [0, 1]-spaces are [0, ∞]-spaces that sat-

isfy x, y ⊢ x =1 y.

x, y ⊢ x =ε y. (2.24)

3. We can almost impose a global lower bound ε ∈ L on distances. What we can do
instead is impose a strict lower bound on distances that are not self-distances (i.e.
∀x ̸= y, d(x, y) > ε). To achieve this with an equation, we ensure the equivalent
property that whenever d(x, y) is smaller than ε, then x = y:271 271 We can also do a non-strict lower bound (i.e. ∀x ̸=

y, d(x, y) ≥ ε) by considering the family of equations
x =δ y ⊢ x = y for all δ < ε.x =ε y ⊢ x = y. (2.25)

Let L = [0, 1] or L = [0, ∞].

1. Given a positive number b > 0, the b-triangle inequality states that d(x, z) ≤
b(d(x, y) + d(y, z)),272 it is equivalent to the satisfaction of 272 This property is used in defining b-metrics [KP22,

Definition 1.1].

∀ε, δ ∈ L, x =ε y, y =δ z ⊢ x =b(ε+δ) z. (2.26)

2. The rectangle inequality states that d(x, w) ≤ d(x, y) + d(y, z) + d(z, w),273 it is 273 This property is used in defining g.m.s. in [Bra00,
Definition 1.1].equivalent to the satisfaction of

∀ε1, ε2 ∈ L, x =ε1 y, y =ε2 z, z =ε3 w ⊢ x =ε1+ε2+ε3 w. (2.27)

Let L = B.
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1. A binary relation R on X× X is said to be functional if there are no two distinct
y, y′ ∈ X such that (x, y) ∈ R and (x, y′) ∈ R for a single x ∈ X. This is equivalent
to satisfying

x =⊥ y, x =⊥ y′ ⊢ y = y′. (2.28)

2. We say R ⊆ X × X is injective if there are no two distinct x, x′ ∈ X such that
(x, y) ∈ R and (x′, y) ∈ R for a single y ∈ X.274 This is equivalent to satisfying 274 Equivalently, the opposite (or converse) of R is

functional. You may want to formulate totality or
surjectivity of a binary relation with quantitative
equations, but you will find that difficult. We show
in Example 2.47 that it is not possible.

x =⊥ y, x′ =⊥ y ⊢ x = x′. (2.29)

3. We say R ⊆ X × X is circular if whenever (x, y) and (y, z) belong to R, then so
does (z, x) (compare with transitivity (2.15)). This is equivalent to satisfying

x =⊥ y, y =⊥ z ⊢ z =⊥ x. (2.30)

We now turn to the study of subcategories of LSpa that are defined via quan-
titative equations. Given a class Ê of quantitative equations, we can define a full
subcategory of LSpa that contains only those L-spaces that satisfy Ê, this is the
category GMet(L, Ê) whose objects we call generalized metric spaces or spaces for
short. We also write GMet(Ê) or GMet when the complete lattices L or the class Ê
are fixed or irrelevant. There is an evident forgetful functor U : GMet→ Set which
is the composition of the inclusion functor GMet→ LSpa and U : LSpa→ Set.275 275 Recall that while we use the same symbol for both

forgetful functors, you can disambiguate them with
the knowldege hyperlinks.

The terminology generalized metric space appears quite a lot in the literature
with different meanings (e.g. [BvBR98, Bra00, Pis21]), so I expect many will navigate
to this definition before reading what is above. Catering to these readers, let us
redefine what we mean by generalized metric space.

Definition 2.32 (Generalized metric space). A generalized metric space or space is
a set X along with a function d : X× X → L into a complete lattice L such that (X, d)
satisfies some constraints expressed by a fixed collection of quantitative equations.

When L = [0, ∞], examples include metrics [Fré06], ultrametrics [Rut96], pseudo-
metrics, quasimetrics [Wil31a], semimetrics [Wil31b], b-metrics [KP22], the general-
ized metric spaces of [Bra00], dislocated metrics [HS00] also called diffuse metrics in
[CKPR21], the generalized metric spaces of [BvBR98] which are the metric spaces of
[Law02], etc.

When L = B (the Boolean lattice), examples include posets, preorders, equivalence
relations, partial (or restricted) equivalence relations [Sco76], graphs, etc.

The most notable examples of generalized metric spaces are posets and metric
spaces, they form the categories Poset and Met.

Example 2.33 (Poset). The category of partially ordered sets and monotone maps is
the full subcategory of BSpa with all B-spaces satisfying reflexivity, antisymmetry,
and transitivity stated as quantitative equations:276 276 Examples of posets include any set of numbers

(e.g. N, Q, R) equipped with the usual (non-strict)
order ≤, and PneX with the inclusion order.ÊPoset = {x ⊢ x =⊥ x, x =⊥ y, y =⊥ x ⊢ x = y, x =⊥ y, y =⊥ z ⊢ x =⊥ z} .
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In practice, it would be useful to replace the symbol for =⊥ with ≤ so the axioms
become the more familiar

ÊPoset = {x ⊢ x ≤ x, x ≤ y, y ≤ x ⊢ x = y, x ≤ y, y ≤ z ⊢ x ≤ z} .

Example 2.34 (Met). The category of metric spaces and nonexpansive maps is the
full subcategory of [0, 1]Spa (taking [0, ∞] works just as well) with all [0, 1]-spaces
satisfying symmetry, reflexivity, identity of indiscernibles and triangle inequality
stated as quantitative equations:277 ÊMet contains all the following 277 Examples of metric spaces include [0, 1] with the

Euclidean distance from Example 2.14, the Kan-
torovich distance from Example 3.5, and the total
variation distance from Example 3.92.

∀ε ∈ [0, 1], y =ε x ⊢ x =ε y

⊢ x =0 x

x =0 y ⊢ x = y

∀ε, δ ∈ [0, 1], x =ε y, y =δ z ⊢ x =ε+δ z.

2.3 The Categories GMet

In this section, we prove some basic results about the categories of generalized metric
spaces. We fix a complete lattice L and a class of quantitative equations Ê throughout,
and denote by GMet the category of L-spaces that satisfy Ê. The goal here is mainly
to become familiar with L-spaces and quantitative equations, so not everything will
be useful later. This also means we will avoid using abstract results (that we prove
later) which can (sometimes drastically) simplify some proofs.278 278 For instance, we will see that U : GMet→ Set is

a right adjoint, so it has many nice properties which
we could use in this section.

We also take some time to identify a few (well-known) conditions on L-spaces
that cannot be expressed via quantitative equations. These proofs are always in the
same vein, we know GMet has some property, we show the class of L-spaces with a
condition does not have that property, hence that condition is not expressible as a
class of quantitative equations.

Products

The category GMet has all products. We prove this in three steps. First, we find
the terminal object, second we show LSpa has all products, and third we show the
products of L-spaces which all satisfy some quantitative equation also satisfies that
quantitative equation.

Proposition 2.35. The category GMet has a terminal object.

Proof. The terminal object 1 in LSpa is relatively easy to find,279 it is a singleton 279 Again, many abstract results could help guide our
search, but it is enough to have a bit of intuition
about L-spaces.

{∗} with the L-relation d1 sending (∗, ∗) to ⊥. Indeed, for any L-space X, we have a
function ! : X → ∗ that sends any x to ∗, and because d1(∗, ∗) = ⊥ ≤ dX(x, x′) for
any x, x′ ∈ X, ! is nonexpansive. We obtain a morphism ! : X → 1, and since any
other morphism X→ 1 must have the same underlying function,280 ! is the unique 280 Because {∗} is terminal in Set.

morphism of this type.
Since GMet is a full subcategory of LSpa, it is enough to show 1 is in GMet to

conclude it is the terminal object in this subcategory. We can do this by showing 1
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satisfies absolutely all quantitative equations, and in particular those of Ê.281 Let 281 Which defined GMet at the start of this section.

X be any L-space, x, y ∈ X, and ε ∈ L. As we have seen above, there is only one
assignment ι̂ : X→ 1, and it sends x and y to ∗. This means

ι̂(x) = ∗ = ι̂(y) and d1(ι̂(x), ι̂(y)) = d1(∗, ∗) = ⊥ ≤ ε.

Therefore, 1 satisfies both X ⊢ x = y and X ⊢ x =ε y. We conclude 1 ∈ GMet.

Proposition 2.36. The category LSpa has all products.

Proof. Let {Ai = (Ai, di) | i ∈ I} be a family of L-spaces indexed by I. We define the
L-space A = (A, d) with carrier A = ∏i∈I Ai (the cartesian product of the carriers)
and L-relation d : A× A→ L defined by the following supremum:282 282 For a ∈ A, let ai be the ith coordinate of a.

∀a, b ∈ A, d(a, b) = sup
i∈I

di(ai, bi). (2.31)

For each i ∈ I, we have the evident projection πi : A→ Ai sending a ∈ A to ai ∈ Ai,
and it is nonexpansive because, by definition, for any a, b ∈ A,

di(ai, bi) ≤ sup
i∈I

di(ai, bi) = d(a, b).

We will show that A with these projections is the product ∏i∈I Ai.
Let X be some L-space and fi : X→ Ai be a family of nonexpansive maps. By the

universal property of the product in Set, there is a unique function ⟨ fi⟩ : X → A
satisfying πi ◦ ⟨ fi⟩ = fi for all i ∈ I. It remains to show ⟨ fi⟩ is nonexpansive from X
to A. For any x, x′ ∈ X, we have283 283 The equation holds because the ith coordinate of

⟨ fi⟩(x) is fi(x) by definition of ⟨ fi⟩, and the inequal-
ity holds because for all i ∈ I, di( fi(x), fi(x′)) ≤
dX(x, x′) by nonexpansiveness of fi .

d(⟨ fi⟩(x), ⟨ fi⟩(x′)) = sup
i∈I

di( fi(x), fi(x′)) ≤ dX(x, x′).

Note that a particular case of this construction for I being empty is the terminal
object 1 from Proposition 2.35. Indeed, the empty cartesian product is the singleton,
and the empty supremum is the bottom element ⊥.

In order to show that satisfaction of a quantitative equation is preserved by the
product of L-spaces, we first prove a simple lemma.284 284 It may remind you of Lemma 1.20 which states the

same result for homomorphism and non-quantitative
equations.Lemma 2.37. Let ϕ be a quantitative equation with context X. If f : A → B is a

nonexpansive map and A ⊨ι̂ ϕ for a nonexpansive assignment ι̂ : X→ A, then B ⊨ f ◦ι̂ ϕ.

Proof. There are two very similar cases. If ϕ is of the form X ⊢ x = y, we have285 285 The equivalences hold by definition of ⊨.

A ⊨ι̂ ϕ⇐⇒ ι̂(x) = ι̂(y) =⇒ f ι̂(x) = f ι̂(y)⇐⇒ B ⊨ f ◦ι̂ ϕ.

If ϕ is of the form X ⊢ x =ε y, we have286 286 The equivalences hold by definition of ⊨, and the
implication holds by nonexpansiveness of f .

A ⊨ι̂ ϕ⇐⇒ dA(ι̂(x), ι̂(y)) ≤ ε =⇒ dB( f ι̂(x), f ι̂(y)) ≤ ε⇐⇒ B ⊨ f ◦ι̂ ϕ.

Proposition 2.38. If all L-spaces Ai satisfy a quantitative equation ϕ, then ∏i∈I Ai ⊨ ϕ.
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Proof. Let A = ∏i∈I Ai and X be the context of ϕ. It is enough to show that for any
assignment ι̂ : X→ A, the following equivalence holds:287 287 When I is empty, the L.H.S. of (2.32) is vacuously

true, and the R.H.S. is true since A is the terminal
L-space which we showed satisfies all quantitative
equations in Proposition 2.35.

(
∀i ∈ I, Ai ⊨

πi◦ι̂ ϕ
)
⇐⇒ A ⊨ι̂ ϕ. (2.32)

The proposition follows because if Ai ⊨ ϕ for all i ∈ I, then the L.H.S. holds for any
ι̂, hence the R.H.S. does too, and we conclude A ⊨ ϕ. Let us prove (2.32).

(⇒) Consider the case ϕ = X ⊢ x = y. The satisfaction Ai ⊨
πi◦ι̂ ϕ means πi ι̂(x) =

πi ι̂(y). If it is true for all i ∈ I, then we must have ι̂(x) = ι̂(y) by universality of
the product, thus we get A ⊨ι̂ ϕ. In case ϕ = X ⊢ x =ε y, the satisfaction Ai ⊨

πi◦ι̂ ϕ

means dAi (πi ι̂(x), πi ι̂(y)) ≤ ε. If it is true for all i ∈ I, we get A ⊨ ϕ because

dA(ι̂(x), ι̂(y)) = sup
i∈I

dAi (πi ι̂(x), πi ι̂(y)) ≤ ε.

(⇐) Apply Lemma 2.37 for all πi.

Corollary 2.39. The category GMet has all products, and they are computed like in
LSpa.288 288 We showed that products in LSpa of objects in

GMet also belong to GMet, it follows that this is
also their products in GMet because the latter is a
full subcategory of LSpa.

Unfortunately, this means that the notion of metric space originally defined in
[Fré06], and incidentally what the majority of mathematicians calls a metric space,
is not an instance of generalized metric space as we defined them. Since they only
allow finite distances, some infinite products do not exist.289 In general, if one wants 289 For instance let An be the metric space with two

points {a, b} at distance n > 0 ∈N from each other.
Then A = ∏n>0∈N An exists in [0, ∞]Spa as we have
just proven, but

dA(a∗, b∗) = sup
n>0∈N

dAn (a, b) = sup
n>0∈N

n = ∞,

which means A is not a metric space in the sense of
Definition 0.1.

to bound the distance above by some quantity B ∈ L, this can be done with the
equation x, y ⊢ x =B y, but the value B is still allowed as a distance. For instance
[0, 1]Spa is the full subcategory of [0, ∞]Spa defined by the equation x, y ⊢ x =1 y.

Arguably, this is only a superficially negative result since it is already common
in parts of the literature (e.g. [BvBR98, Law02, HST14]) to allow infinite distances
because the resulting category of metric spaces has better properties (like having
infinite products and coproducts).

Let us give two other conditions on [0, ∞]-spaces, arising in the definition of partial
metrics [Mat94, Definition 3.1], which are not preserved under (finite) products.

Definition 2.40. A [0, ∞]-space (A, d) is called a partial metric space if it satisfies
the following conditions :290 290 There is some ambiguity in what + and − means

when dealing with ∞ (the original paper [Mat94]
supposes distances are finite), but it is irrelevant for
us.

∀a, b ∈ A, a = b⇐⇒ d(a, a) = d(a, b) = d(b, b) (2.33)

∀a, b ∈ A, d(a, a) ≤ d(a, b) (2.34)

∀a, b ∈ A, d(a, b) = d(b, a) (2.35)

∀a, b, c ∈ A, d(a, c) ≤ d(a, b) + d(b, c)− d(b, b) (2.36)

These conditions look similar to what we were able to translate into equations
before, but the first and last are problematic.291 291 We can translate (2.34) into x =ε y ⊢ x =ε x, and

(2.35) is just symmetry which we can translate into
y =ε x ⊢ x =ε y.

For (2.33), note that the forward implication is trivial, but for the converse, we
would need to compare three distances at once inside the context, which seems
impossible because the context only individually bounds distances by above. For
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(2.36), the problem comes from the minus operation on distances which will not
interact well with upper bounds. Indeed, if we naively tried something like

x =ε1 y, y =ε2 z, y =ε3 y ⊢ x =ε1+ε2−ε3 z,

we could always take ε3 huge (even ∞) and make the distance between x and z as
close to 0 as we would like (provided we can take ε1 and ε2 finite).

These are just informal arguments, but thanks to Corollary 2.39, we can prove for-
mally that these conditions are not expressible as (classes of) quantitative equations.
Let A and B be the [0, ∞]-spaces pictured below (the distances are symmetric).292 292 The numbers on the lines indicate the distance

between the ends of the line, e.g. dA(a1, a1) = 0,
dA(a1, a3) = 1, and dB(b2, b3) = 10.

A =

a1

a2

a3

10

0

1

10

10

0

B = b1 b2 b3
10

0

15

10

5 0

We can verify (by exhaustive checks) that A and B are partial metric spaces. If
we take their product inside [0, ∞]Spa, we find the following [0, ∞]-space (some
distances are omitted) which does not satisfy (2.33) nor (2.36).293 293 For (2.33), the three points in the middle row

{a2b1, a2b2, a2b3} are all at distance 10 from each
other and from themselves while not being equal.
For (2.36), we have (on the diagonal)

dA(a1b1, a3b3) = 15, and

dA(a1b1, a2b2) + dA(a2b2, a3b3)− dA(a2b2, a2b2) = 10,

but 15 > 10.

A× B =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

10

0

10

15

10

10

5

10

0

10

10

10

10
10

10

10

10
10

10

0

10

5

10

0

We infer that there is no class Ê of quantitative equations such that GMet([0, ∞], Ê)
is the full subcategory of [0, ∞]Spa containing all the partial metric spaces.294 294 It is still possible that the category of partial met-

rics and nonexpansive maps is identified with some
GMet(L, Ê) for some cleverly picked L and Ê. That
would mean (infinite) products of partial metrics
exist but they are not computed with supremums.

Coproducts

The case of coproducts in GMet is more delicate. While LSpa has coproducts, they
do not always satisfy the equations satisfied by each of their components.

Proposition 2.41. The category GMet has an initial object.

Proof. The initial object ∅ in LSpa is the empty set with the only possible L-relation
∅ × ∅ → L (the empty function). The empty function f : ∅ → X is always
nonexpansive from ∅ to X because (2.3) is vacuously satisfied.
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Just as for the terminal object, since GMet is a full subcategory of LSpa, it suffices
to show ∅ is in GMet to conclude it is initial in this subcategory. We do this by
showing ∅ satisfies absolutely all quantitative equations, and in particular those of
Ê. This is easily done because when X is not empty,295 there are no assignments 295 The context of a quantitative equation cannot be

empty because the variables, say x and y, must be-
long to the context.

X→ ∅, so ∅ vacuously satisfies X ⊢ x = y and X ⊢ x =ε y.

Proposition 2.42. The category LSpa has all coproducts.

Proof. We just showed the empty coproduct (i.e. the initial object) exists. Let
{Ai = (Ai, di) | i ∈ I} be a family of L-spaces indexed by a non-empty set I. We
define the L-space A = (A, d) with carrier A = ⨿i∈I Ai (the disjoint union of the
carriers) and L-relation d : A× A→ L defined by:296 296 In words, A is the L-space with a copy of each Ai

where the L-relation sends two points in different
copies to ⊤ (intuitively, the copies are completely
unrelated inside A).∀a, b ∈ A, d(a, b) =

di(a, b) ∃i ∈ I, a, b ∈ Ai

⊤ otherwise
.

For each i ∈ I, we have the evident coprojection κi : Ai → A sending a ∈ Ai

to its copy in A, and it is nonexpansive because, by definition, for any a, b ∈ Ai,
d(a, b) = di(a, b).297 We show A with these coprojections is the coproduct ⨿i∈I Ai. 297 Hence κi is even an isometric embedding.

Let X be some L-space and fi : Ai → X be a family of nonexpansive maps. By the
universal property of the coproduct in Set, there is a unique function [ fi] : A→ X
satisfying [ fi] ◦ κi = fi for all i ∈ I. It remains to show [ fi] is nonexpansive from A
to X. For any a, b ∈ A, suppose a belongs to Ai and b to Aj for some i, j ∈ I, then we
have298 298 The first equation holds by definition of [ fi ] (it ap-

plies fi to elements in the copy of Ai). The inequality
holds by nonexpansiveness of fi which is equal to f j
when i = j. The second equation is the definition of
d.

dX([ fi](a), [ fi](b)) = dX( fi(a), f j(b)) ≤

di(a, b) i = j

⊤ otherwise
= d(a, b).

Because the distance between elements in different copies does not depend on the
original spaces, it is easy to construct a quantitative equation that is not preserved
by coproducts of L-spaces. For instance, even if all Ai satisfy x, y ⊢ x =ε y for some
fixed ε ̸= ⊤ ∈ L,299 the coproduct ⨿i∈I Ai in LSpa does not satisfy it because some 299 i.e. there is an upper bound smaller than ⊤ on all

distances in all Ai .distances are ⊤ > ε.
Still, GMet always has coproducts as we will show in Corollary 3.60, but they are

not computed like in LSpa, and they are not that easy to define.300 300 In many cases like Met and Poset, they are com-
puted like in LSpa.

Isometries

Since the forgetful functor U : LSpa → Set preserves isomorphisms, we know
that the underlying function of an isomorphism in LSpa is a bijection between the
carriers. What is more, we show in Proposition 2.44 it must preserve distances on
the nose, it is called an isometry.

Definition 2.43 (Isometry). A nonexpansive map f : X→ Y is an isometry if301
301 The inequality in (2.3) is replaced by an equation.
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∀x, x′ ∈ X, dY( f (x), f (x′)) = dX(x, x′). (2.37)

If furthermore f is injective, we call it an isometric embedding.302 If f : X→ Y is
302 This name is relatively rare because when dealing
with metric spaces, the separation axiom implies
that an isometry is automatically injective. This is
also true for partial orders, where the name order
embedding is common [DP02, Definition 1.34.(ii)].

an isometric embedding, we can identify X with the subspace of Y containing all
the elements in the image of f . Conversely, the inclusion of a subspace of Y in Y is
always an isometric embedding.

Proposition 2.44. In GMet, isomorphisms are precisely the bijective isometries.

Proof. We show a morphism f : X→ Y has an inverse f−1 : Y→ X if and only if it
is a bijective isometry.

(⇒) Since the underlying functions of f and f−1 are inverses, they must be
bijections. Moreover, using (2.3) twice, we find that for any x, x′ ∈ X,303 303 This is a general argument showing that any non-

expansive function with a right inverse is an isome-
try, it is also an isometric embedding because a right
inverse in Set implies injectivity.

dX(x, x′) = dX( f−1 f (x), f−1 f (x′)) ≤ dY( f (x), f (x′)) ≤ dX(x, x′),

thus dX(x, x′) = dY( f (x), f (x′)), so f is an isometry.
(⇐) Since f is bijective, it has an inverse f−1 : Y → X in Set, but we have to show

f−1 is nonexpansive from Y to X. For any y, y′ ∈ Y, by surjectivity of f , there are
x, x′ ∈ X such that y = f (x) and y′ = f (x′), then we have

dX( f−1(y), f−1(y′)) = dX( f−1 f (x), f−1 f (x′))

= dX(x, x′)
(2.37)
= dY( f (x), f (x′)) = dY(y, y′).

Hence f−1 is nonexpansive, it is even an isometry.

In particular, this means, as is expected, that isomorphisms preserve the satisfac-
tion of quantitative equations. We can show a stronger statement: any isometric
embedding reflects the satisfaction of quantitative equations.304 304 This is stronger because we have just shown the

inverse of an isomorphisms is an isometric embed-
ding.Lemma 2.45. Let f : Y → Z be an isometric embedding between L-spaces and ϕ a

quantitative equation, then
Z ⊨ ϕ =⇒ Y ⊨ ϕ. (2.38)

Proof. Let X be the context of ϕ. Any nonexpansive assignment ι̂ : X → Y yields
an assignment f ◦ ι̂ : X → Z. By hypothesis, we know that Z satisfies ϕ for this
particular assignment, namely,

Z ⊨ f ◦ι̂ ϕ. (2.39)

We can use this and the fact that f is an isometric embedding to show Y ⊨ι̂ ϕ. There
are two very similar cases.

If ϕ = X ⊢ x = y, then we have ι̂(x) = ι̂(y) because we know f ι̂(x) = f ι̂(x) by
(2.39) and f is injective.

If ϕ = X ⊢ x =ε y, then we have dY(ι̂(x), ι̂(y)) = dZ( f ι̂(x), f ι̂(y)) ≤ ε, where the
equation holds because f is an isometry and the inequality holds by (2.39).

Corollary 2.46. Let f : Y→ Z be an isometric embedding between L-spaces. If Z belongs
to GMet, then so does Y. In particular, all the subspaces of a generalized metric space are
also generalized metric spaces.305 305 Both parts are immediate. The first follows from

applying (2.38) to all ϕ in Ê, the class of quantita-
tive equations defining GMet. The second follows
from the inclusion of a subspace being an isometric
embedding.
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Example 2.47. Corollary 2.46 can be useful to identify some properties of L-spaces
that cannot be modelled with quantitative equations. Here are a few of examples.

1. A binary relation R ⊆ X× X is called total if for every x ∈ X, there exists y ∈ X
such that (x, y) ∈ R. Let TotRel be the full subcategory of BSpa containing
only total relations. Is TotRel equal to GMet(B, Ê) for some Ê? The existential
quantification in the definition of total seems hard to simulate with a quantitative
equation, but this is not a guarantee that maybe several equations cannot interact
in such a counter-intuitive way.

In order to prove that no class Ê defines total relations (i.e. X ⊨ Ê if and only if
the relation corresponding to dX is total), we can exhibit an example of a B-space
that is total with a subspace that is not total. It follows that TotRel is not closed
under taking subspaces, so it is not a category of generalized metric spaces by
Corollary 2.46.306 306 Actually, we have only proven that TotRel cannot

be defined as a subcategory of BSpa with quantita-
tive equations. There may still be some convoluted
way that TotRel ∼= GMet(L, Ê).

Let N be the B-space with carrier N and B-relation dN(n, m) = ⊥ ⇔ m = n + 1
(the corresponding relation is the graph of the successor function). This space
satisfies totality, but the subspace obtained by removing 1 is not total because
dN(0, n) = ⊥ only when n = 1.

This same example works to show that surjectivity307 cannot be defined via 307 This condition is symmetric to totality: R ⊆ X×X
is surjective if for every y ∈ X, there exists x ∈ X
such that (x, y) ∈ R.

quantitative equations.

2. A very famous condition to impose on metric spaces is completeness (we do not
need to define it here). Just as famous is the fact that R with the Euclidean metric
from Example 2.14 is complete but the subspace Q is not. Thus, completeness
cannot be defined via quantitative equations.308 308 Still with the caveat that the full subcategory of

complete metric spaces might still be isomorphic to
some GMet(L, Ê).With this characterization of isomorphisms, we can also show the forgetful functor

U : GMet → Set is an isofibration which concretely means that if you have a
bijection f : X → Y and a generalized metric dY on Y, then you can construct a
generalized metric dX on X such that f : X→ Y is an isomorphism. Indeed, if you
let dX(x, x′) = dY( f (x), f (x′)), then f is automatically a bijective isometry.309 309 Clearly, it is the unique distance on X that works,

and we know that X belongs to GMet thanks to
Corollary 2.46.Definition 2.48 (Isofibration). A functor P : C→ D is called an isofibration310 if for
310 This term seems to have been coined by Lack and
Paoli in [Lac07, §3.1] or [LP08, §6].

any isomorphism f : X → PY in D, there is an isomorphism g : X′ → Y such that
Pg = f , in particular PX′ = X.

Proposition 2.49. The forgetful functor U : GMet→ Set is an isofibration.

We wonder now how to complete the conceptual diagram below.

isomorphism in GMet←→ bijective isometries

??? in GMet←→ isometric embeddings

Since isometric embeddings correspond to subspaces, one might think that they are
the monomorphisms in GMet. Unfortunately, they are way more restrained. Any
nonexpansive map that is injective is already a monomorphism. To prove this, we
rely on the existence of a space F1 that informally can pick elements.
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Proposition 2.50. There is a generalized metric space F1 on the set {∗} such that for any
other space X, any function f : {∗} → X is a nonexpansive map F1→ X.311 311 In category theory speak, F1 is a representing ob-

ject of the forgetful functor U : GMet→ Set.
Proof. In LSpa, F1 is easy to find, its L-relation is defined by dF1(∗, ∗) = ⊤. Indeed,
any function f : {∗} → X is nonexpansive because ⊤ is the maximum value dX can
assign, so

dX( f (∗), f (∗)) ≤ ⊤ = dF1(∗, ∗).

Unfortunately, this L-space does not satisfy some quantitative equations (e.g. reflex-
ivity x ⊢ x =⊥ x), so we cannot guarantee it belongs to GMet.

Recall that 1 is a generalized metric space on the same set {∗}, but with d1(∗, ∗) =
⊥. However, in many cases, 1 is not the right candidate either because if every

function f : {∗} → X is nonexpansive from 1 to X, it means dX(x, x) = ⊥ for all
x ∈ X, which is not always the case.312 312 It is equivalent to satisfying reflexivity.

We have two L-spaces at the extremes of a range of L-spaces {({∗}, dε)}ε∈L, where
the L-relation dε sends (∗, ∗) to ε. At one extreme, we are guaranteed to be in GMet,
but we are too restricted, and at the other extreme we might not belong to GMet.
Getting inspiration from the intermediate value theorem, we can attempt to find a
middle ground, namely, a value ε ∈ L such that setting dF1(∗, ∗) = ε yields a space
that lives in GMet but is not too restricted.

One natural thing to do is to take the biggest quantity ε such that dε is a generalized
metric. In other words, we take the least restricted space that is in GMet. Formally,

dF1(∗, ∗) = sup
{

ε ∈ L | ({∗}, dε) ⊨ Ê
}

.

It remains to check that any function f : {∗} → X is nonexpansive from F1 to
X ∈ GMet. Consider the image of f seen as a subspace of X. By Corollary 2.46, it
belongs to GMet and hence satisfies Ê. Moreover, it is clearly isomorphic to the
L-space ({∗}, dε) with ε = dX( f (∗), f (∗)), which means that L-space satisfies Ê as
well (by Corollary 2.46 again). We conclude that dX( f (∗), f (∗)) ≤ dF1(∗, ∗).313 313 As a bonus, one could check that for any ε ∈ L

that is smaller than dF1(∗, ∗), ({∗}, dε) also belongs
to GMet (using Lemma 2.37).Proposition 2.51. In GMet, monomorphisms are precisely the injective nonexpansive

maps.

Proof. We show a morphism f : X→ Y is monic if and only if it is injective.
(⇒) Let x, x′ ∈ X be such that f (x) = f (x′), and identify these elements with

functions x, x′ : {∗} → X sending ∗ to x and x′ respectively. By Proposition 2.50,
we get two nonexpansive maps x, x′ : F1 → X. Post-composing by f , we find that
f ◦ x = f ◦ x′ because they both send ∗ to f (x) = f (x′). By monicity of f , we find
that x = x′ (as morphisms and hence as elements of X). We conclude f is injective.

(⇐) Suppose that f ◦ g = f ◦ h for some nonexpansive maps g, h : Z → X.
Applying the forgetful functor U : GMet → Set, we find that f ◦ g = f ◦ h also as
functions. Since U f is monic (i.e. injective), Ug and Uh must be equal, and since U
is faithful, we obtain g = h.

It remains to give a categorical characterization of isometric embeddings. This
will rely on a well-known314 abstract notion that we define here for completeness. 314 While it is well-known, especially to those familiar

with fibered category theory, it does not usually fit
in a basic category theory course.

https://en.wikipedia.org/wiki/Intermediate_value_theorem
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Definition 2.52 (Cartesian morphism). Let F : C→ D be a functor, and f : A→ B
be a morphism in C. We say f is a cartesian morphism (relative to F) if for every
morphism g : X → B and factorization Fg = F f ◦ u, there exists a unique morphism
û : X → A with Fû = u satisfying x = f ◦ û. This can be summarized (without the
quantifiers) in the diagram below.

X FX

A B FA FB

u

F f

Fg
û

f

g F

Example 2.53 (in GMet). Let us unroll this in the important case for us, when F
is the forgetful functor U : GMet → Set. A nonexpansive map f : A → B is a
cartesian morphism if for any nonexpansive map g : X→ B, all functions u : X → A
satisfying g = f ◦ u are nonexpansive maps u : X→ A.315 315 We do not bother to write û as it is automatically

unique with underlying function u because U is faith-
ful.

We can turn this around into an equivalent definition. The morphism f : A→ B
is cartesian if for all functions u : X → A, f ◦ u being nonexpansive from X to B
implies u is nonexpansive from X to A.316 In [AHS06, Definition 8.6], f is also called 316 If f ◦ u is nonexpansive from X to B, then it is

equal to g for some g : X→ B which yields u : X→
A being nonexpansive.

an initial morphism.

Proposition 2.54. A morphism f : A→ B in GMet is an isometric embedding if and only
if it is monic and cartesian.

Proof. By Proposition 2.51, being an isometric embedding is equivalent to being a
monomorphism (i.e. being injective) and being an isometry. Therefore, it is enough
to show that when f is injective, isometry⇐⇒ cartesian.

(⇒) Suppose f is an isometry, and let u : X → A be a function such that f ◦ u
is nonexpansive from X→ B, we need to show u is nonexpansive from X→ A.317 317 We use the second definition of cartesian from

Example 2.53.This is true because for all x, x′ ∈ X,

dA(u(x), u(x′)) = dB( f u(x), f u(x′)) ≤ dX(x, x′),

where the equation follows from f being an isometry, and the inequality from
nonexpansiveness of f ◦ u.

(⇐) Suppose f is cartesian. For any a, a′ ∈ A, we know that dB( f (a), f (a′)) ≤
dA(a, a′), but we still need to show the converse inequality. Let X be the subspace of
B containing only the image of a and a′ (its carrier is { f (a), f (a′)}), and u : X → A
be the function sending f (a) to a and f (a′) to a′.318 Notice that f ◦ u is the inclusion 318 We use the injectivity of f here.

of X in B which is nonexpansive. Because f is cartesian, u must then be nonexpansive
from X to A which implies

dA(a, a′) = dA(u( f (a)), u( f (a′))) ≤ dX( f (a), f (a′)) = dB( f (a), f (a′)).

We conclude that f is an isometry.

Corollary 2.55. If the composition A
f−→ B

g−→ C is an isometric embedding, then f is an
isometric embedding.319 319 With the characterization of Proposition 2.54, this

abstractly follows from [AHS06, Proposition 8.9]. We
give the concrete proof anyways.
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Proof. It is a standard result that if g ◦ f is monic then so is f . Even more standard
for injectivity. Now, if g ◦ f is an isometry, we have for any a, a′ ∈ A,320 320 The equation holds by hypothesis that g ◦ f is an

isometry and the two inequalities hold by nonexpan-
siveness of g and f .dA(a, a′) = dC(g f (a), g f (a′)) ≤ dB( f (a), f (a′)) ≤ dA(a, a′),

and we conclude that dA(a, a′) = dB( f (a), f (a′)), hence f is an isometry.

The question of concretely characterizing epimorphisms is harder to settle. We
can do it for LSpa, but not for an arbitrary GMet.

Proposition 2.56. In LSpa, a morphism f : X→ A is epic if and only if it is surjective.

Proof. (⇒) Given any a ∈ A, we define the L-space Aa to be A with an additional
copy of a with all the same distances. Namely, the carrier is A + {∗a}, for any a′ ∈ A,
dAa(∗a, a′) = dA(a, a′) and dAa(a′, ∗a) = dA(a′, a), and all the other distances are as
in A.321 321 This construction is already impossible to do in

an arbitrary GMet. For instance, if A satisfies x =0
y ⊢ x = y, then Aa does not because dAa (a, ∗a) = 0.

If f : X → A is not surjective, then pick a ∈ A that is not in the image of f , and
define two functions ga, g∗ : A → A + {∗a} that act as identity on all A except a
where ga(a) = a and g∗(a) = ∗a. By construction, both ga and g∗ are nonexpansive
from A to Aa and ga ◦ f = g∗ ◦ f . Since ga ̸= g∗, f cannot be epic, and we have
proven the contrapositive of the forward implication.

(⇐) Suppose that g, g′ : A → B are morphisms in LSpa such that g ◦ f = g′ ◦ f .
Apply the forgetful functor to get Ug ◦U f = Ug′ ◦U f , and since U is epic in Set,
we know Ug = Ug′. Since U is faithful, we conclude that g = g′.322 322 This direction works in an arbitrary GMet, that is,

surjections are epic in any GMet.
The standard example to show that Proposition 2.56 does not generalize to an

arbitrary GMet is the inclusion of Q into R with the Euclidean metric inside Met.
It is not surjective, but it is epic because any nonexpansive function from R is
determined by its image on the rationals.323 323 For any r ∈ R, you can always find qn ∈ Q such

that d(qn, r) ≤ 1
n , hence dA( f (qn), f (r)) ≤ 1

n for any
nonexpansive f : (R, d) → A. We infer that f (r) is
determined by the values of all f (qn).

In Lemma 1.21, we saw that surjective homomorphisms preserve the satisfaction
of classical equations. The “quantitative” version of this result is not that surjetive
nonexpansive maps preserve satisfaction of quantitative equations (see Remark 2.58).
The result in the classical case was proven using the fact that for a homomorphism
h : A → B, A ⊨ι ϕ =⇒ B ⊨h◦ι ϕ, and we proved a version of this for L-spaces in
Lemma 2.37. However, the proof of Lemma 1.21 also used the fact that a surjective
function always has a right inverse. This is not true in L-spaces, but we can still prove
a weaker result (restricting to surjective nonexpansive maps with a right inverse).

Lemma 2.57. Let f : A→ B be a split epimorphism between L-spaces and ϕ a quantitative
equation, then

A ⊨ ϕ =⇒ B ⊨ ϕ. (2.40)

Proof. Let g : B→ A be the right inverse of f (i.e. f ◦ g = idB) and X be the context
of ϕ.324 Any nonexpansive assignment ι̂ : X→ B yields an assignment g ◦ ι̂ : X→ A. 324 Note that we already argued in Footnote 303 that

the right inverse implies g is an isometric embedding.
Then we could conclude by Corollary 2.46. The proof
given here is essentially the same.

By hypothesis, we know that A satisfies ϕ for this particular assignment, namely,

A ⊨g◦ι̂ ϕ. (2.41)

Now, we can apply Lemma 2.37 with f : A → B to obtain B ⊨ f ◦g◦ι̂ ϕ, and since
f ◦ g = idB, we conclude B ⊨ι̂ ϕ.
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Remark 2.58. It is not true in general that the image f (A) of a nonexpansive function
f : A → B (seen as a subspace of B) satisfies the same equations as A. For
instance,325 let A contain two points {a, b} all at distance 1 ∈ [0, ∞] from each 325 Here is a graphical depiction:

a a

b b

1

1

0.5

1

1 1

1

other (even from themselves). The [0, ∞]-relation is symmetric so it satisfies for all
ε ∈ [0, 1]. y =ε x ⊢ x =ε y. If we define B with the same points and distances except
dB(a, b) = 0.5, then the identity function is nonexpansive from A to B, but its image
is B in which the distance is not symmetric.

Lemma 2.57 is basically a dual of Lemma 2.45 because isometric embeddings
are split monomorphisms, so we do not get additional examples of properties that
cannot be expressed with quantitative equations.326 Combined with Proposition 2.38, 326 In theory, duality may help in some settings, but I

find isometric embeddings are easier to grasp.we showed that the categories GMet are closed under subspaces and products.
We will have a converse as in Birkhoff’s variety theorem (Theorem 1.29), but we
postpone it to Theorem 3.65.

Theorem 2.59. The subcategory GMet ⊆ LSpa is closed under subspaces and products.

Discrete Spaces

The forgetful functor U : GMet→ Set has a left adjoint. Its concrete description is
too involved, so we will prove this later in Corollary 3.58, but for the special case of
LSpa, we can prove it now.

Proposition 2.60. The forgetful functor U : LSpa→ Set has a left adjoint.

Proof. For any set X, we define the discrete space X⊤ to be the set X equipped with
the L-relation d⊤ : X× X → L sending any pair to ⊤.327 327 When we talk about the discrete generalized met-

ric space on X, we mean the space FX where F :
Set → GMet is the left adjoint of U : GMet → Set
we will describe in Corollary 3.58.

For any L-space A and function f : X → A, the function f is nonexpansive from
X⊤ to A, thus X⊤ is the free object on X (relative to U).

We conclude there is a functor F : Set→ LSpa sending X to X⊤ that is left adjoint
to U : LSpa→ Set.328 328 This follows from an abstract categorical argu-

ment, see e.g. [Awo10, Proposition 9.4].
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For a comprehensive introduction to the concepts and themes explored in this
chapter, please refer to §0.3. Here, we only give a brief overview.

It is time to combine what we learned about universal algebra in Chapter 1 and
about generalized metric spaces in Chapter 2 to develop universal quantitative
algebra. We follow an outline similar to that of Chapter 1 for definitions, results,
and proofs, and we give some examples (reusing those of the previous chapters)
throughout this chapter.

Outline: In §3.1 and §1.3, we define quantitative algebras and quantitative equa-
tions over a signature, and we explain how to construct the free quantitative algebras.
In §3.3, we give the rules for quantitative equational logic to derive quantitative
equations from other quantitative equations, and we show it is sound and complete.
In §3.4, we define presentations for monads on generalized metric spaces, and we
give some examples. In §3.5, we show that any monad lifting of a Set monad with
an algebraic presentation to GMet can also be presented.

In the sequel and unless otherwise stated, Σ is an arbitrary signature, L is an
arbitrary complete lattice, and GMet is an arbitrary category of generalized metric
spaces. We will write ÊGMet for a class of quantitative equations over L (Defini-
tion 2.23) such that GMet = GMet(L, ÊGMet).

3.1 Quantitative Algebras

Definition 3.1 (Quantitative algebra). A quantitative Σ-algebra (or just quantitative
algebra)329 is a set A equipped with a Σ-algebra structure (A, J−KA) ∈ Alg(Σ) and 329 We may also simply write algebra.

a generalized metric space structure (A, dA) ∈ GMet. We will switch between using
the single symbol Â or the triple (A, J−KA, dA) when referring to a quantitative
algebra, we will also write A for the underlying Σ-algebra, A for the underlying
space, and A for the underlying set.

A homomorphism from Â to B̂ is a function h : A→ B between the underlying
sets of Â and B̂ that is both a homomorphism h : A → B and a nonexpansive
function h : A → B. We sometimes emphasize and call h a nonexpansive ho-
momorphism.330 The identity maps idA : A → A and the composition of two 330 We will not distinguish between a nonexpansive

homomorphism h : Â→ B̂ and its underlying homo-
morphism or nonexpansive function or function. We
may write Uh with U being the appropriate forgetful
functor when necessary.

homomorphisms are always homomorphisms, therefore we have a category whose

https://www.youtube.com/watch?v=uv9HisWwa_w
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objects are quantitative algebras and morphisms are nonexpansive homomorphisms.
We denote it by QAlg(Σ).

This category is concrete over Set, Alg(Σ), GMet with forgetful functors:

• U : QAlg(Σ)→ Set sends a quantitative algebra Â to its underlying set A and a
nonexpansive homomorphism to the underlying function between carriers.

• U : QAlg(Σ)→ Alg(Σ) sends Â to its underlying algebra A and a nonexpansive
homomorphism to the underlying homomorphism.

• U : QAlg(Σ) → GMet sends Â to its underlying space A and a nonexpansive
homomorphism to the underlying nonexpansive function.

One can quickly check that the following diagram commutes, and that it yields an
alternative definition of QAlg(Σ) as a pullback of categories.331 We can also mention 331 We do not spend time making this precise, but it

post-rigorously makes the case for universal quan-
titative algebra as a straightforward combination of
universal algebra and generalized metric spaces.

there is another forgetful functor U : QAlg(Σ) → LSpa obtained by composing
U : QAlg(Σ)→ GMet with the inclusion GMet→ LSpa.

QAlg(Σ) GMet

Alg(Σ) Set

U

U

U

U

⌟

U

Example 3.2. Since a quantitative algebra is just an algebra and a generalized metric
space on the same set, we can find simple examples by combining pieces we have
already seen.

1. In Example 1.4, we saw that an algebra for the signature Σ = {p : 0} is just a pair
(X, x) comprising a set X with a distinguished point x ∈ X. In Example 2.14,
we discussed the N∞-space (H, d) where H is the set of humans and d is the
collaboration distance. We can therefore consider the quantitative Σ-algebras
(H, Paul Erdös, d), which is the set of all humans with Paulo Erdös as a distin-
guished point and the collaboration distance.332 332 Note that GMet is instantiated as N∞Spa, i.e.

L = N∞ and ÊGMet = ∅.
2. In Example 1.4, we saw the {f : 1}-algebra Z where f is interpreted as adding 1.

On top of that, we consider the B-relation corresponding to the partial order ≤
on Z: d≤ : Z×Z → B that sends (n, m) to ⊥ if and only if n ≤ m. We get a
quantitative algebra (Z,−+ 1, d≤).333 333 This time, GMet is instantiated as Poset with

L = B and ÊGMet = ÊPoset as defined after Defi-
nition 2.32.3. In Example 2.14, we saw that R equipped with the Euclidean distance d is a metric

space, i.e. an object of GMet = Met. The addition of real numbers is the most
natural interpretation of Σ = {+ : 2}, thus we get a quantitative algebra (R,+, d).

Remark 3.3. Already here, we covered three examples that are not possible with
the original (and predominant in the literature) definition of quantitative algebras
[MPP16, Definition 3.1]. The first two are not possible because the base category is
not Met. The third is not possible even if it deals with metric spaces.

https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/
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Indeed, as already noted in [Adá22, Remark 3.1.(2)], the addition of real numbers
is not a nonexpansive function (R, d) × (R, d) → (R, d), where × denotes the
categorical product because,334 recalling Corollary 2.39, we have 334 In [MPP16], the interpretation of an n-ary opera-

tion symbol is required to be a nonexpansive map
from the n-wise product of the carrier to the carrier.(d× d)((1, 1), (2, 2)) = sup{d(1, 2), d(1, 2)} = 1 < 2 = d(2, 4) = d(1 + 1, 2 + 2).

Here are two more compelling examples from the original paper [MPP16].

Example 3.4 (Hausdorff). In Example 2.17, we defined the Hausdorff distance d↑ on
PneX that depends on an L-relation d : X× X → L. In Example 1.78, we described a
ΣS-algebra structure on PneX (interpreting ⊕ as union). Combining these, we get a
quantitative ΣS-algebra (PneX,∪, d↑) for any L-space (X, d).

If we know that (X, d) satisfies some quantitative equations in ÊGMet, we can
sometimes prove that (PneX, d↑) does too. For instance, picking L = [0, 1] or L =

[0, ∞], GMet = Met, and ÊGMet = ÊMet, one can show that if (X, d) belongs to
Met, then so does (PneX, d↑), and we still get a quantitative ΣS-algebra (PneX,∪, d↑),
now over Met.335 335 This is the quantitative algebra denoted by Π[M]

in [MPP16, Theorem 9.2].
Example 3.5 (Kantorovich). Given a L-relation d : X × X → [0, 1], we define the
Kantorovich distance dK on DX as follows:336 for all φ, ψ ∈ DX, 336 This lifting of a distance on X to a distance on DX

is well-known in optimal transport theory [Vil09].
You can find a well-written concise description of dK
in [BBKK18, §2.1] in the case L = [0, ∞] where it is
denoted d↓D . They also give a dual description as we
did for the Hausdorff distance in Example 2.17, but
the strong duality result (d↓D = d↑D) does not hold
in general.

dK(φ, ψ) = inf

 ∑
(x,x′)

τ(x, x′)d(x, x′) | τ ∈ D(X× X),Dπ1(τ) = φ,Dπ2(τ) = ψ

 .

The distributions τ above range over couplings of φ and ψ, i.e. distributions over
X× X whose marginals are φ and ψ. Thus, what dK does, in words, is computing
the average distance according to all couplings, and then taking the smallest one.

In Example 1.79, we gave a ΣCA-algebra structure on DX (interpreting +p as con-
vex combination). Combining the algebra and the [0, 1]-space, we get a quantitative
ΣCA-algebra (DX, J−KDX , dK). Once again, we can prove that if (X, d) is a metric
space, then so is (DX, dK), and we obtain a quantitative algebra (DX, J−KDX , dK)

over Met.337 337 This is the quantitative algebra denoted by Π[M]
in [MPP16, Theorem 10.4].

Unlike the first examples, the interpretations in (PneX,∪, d↑) and (DX, J−KDX , dK)

are nonexpansive with respect to the product distance. Concretely,

∀S, S′, T, T′ ∈ PneX, d↑(S ∪ S′, T ∪ T′) ≤ max
{

d↑(S, T), d↑(S′, T′)
}

(3.1)

∀φ, φ′, ψ, ψ′ ∈ DX, dK(pφ + pφ′, pψ + pψ′) ≤ max
{

dK(φ, ψ), dK(φ′, ψ′)
}

. (3.2)

The initial motivation to remove this requirement and arrive at Definition 3.1338
338 Which imposes no further relation between the
Σ-algebra and the L-space other than being on the
same set.

came from a variant of the Kantorovich distance called the Łukaszyk–Karmowski
(ŁK for short) distance [Łuk04, Eq. (21)] which sends φ, ψ ∈ DX to

dŁK(φ, ψ) = ∑
(x,x′)

φ(x)ψ(x′)d(x, x′). (3.3)

In words, instead of looking at all the couplings to find the best one, we only look
at the independent coupling τ(x, x′) = φ(x)ψ(x′).339 In particular, it coincides with 339 The ŁK distance is easier to compute than the

Kantorovich distance since there is no optimization.
It is the reason why it was considered in [CKPR21]
for an application to reinforcement learning.
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the Kantorovich distance on Dirac distributions since the independent coupling of
δx and δy is the only coupling, we obtain

dK(δx, δy) = dŁK(δx, δy) = d(x, y).

We can show that convex combination is not nonexpansive with respect to the
product of the ŁK distance, namely, there exists a [0, 1]-space (X, d), distributions
φ, φ′, ψ, ψ′ ∈ DX, and p ∈ (0, 1) such that

dŁK(pφ + pφ′, pψ + pψ′) > sup
{

dŁK(φ, ψ), dŁK(φ′, ψ′)
}

.

Take X = {x, y} with d(x, y) = d(y, x) = 1 and the self-distances being 0,340 then for 340 We gave another example in [MSV22, Lemma 5.3].

any p ∈ (0, 1),

dŁK(pδx + pδy, pδx + pδy) = p2d(x, x) + ppd(x, y) + ppd(y, x) + p2d(y, y)

= 2pp

> 0

= sup {0, 0}
= sup

{
dŁK(δx, δx), dŁK(δy, δy)

}
.

Therefore, (DX, J−KDX , dŁK) is always a quantitative algebra in the sense of
Definition 3.1, but not always in the sense of [MPP16, Definition 3.1].341 341 In fact, even if d is a metric, dŁK is not a metric

(by the example above, self-distances are not always
0, so it does not satisfy x ⊢ x =0 x). That is another
reason why [MPP16] does not apply.

We now turn to subalgebras and products.

Definition 3.6 (Subalgebra). Given Â ∈ QAlg(Σ), a subalgebra of Â is a quan-
titative algebra B̂ such that B is a subalgebra of A, and B is a subspace of A.
Explicitly, it is a subset B ⊆ A that is closed under the operations in Σ, namely,
for any op : n ∈ Σ and b1, . . . , bn ∈ B, JopKA(b1, . . . , bn) ∈ B, and it is equipped with
an L-relation dB satisfying dB(b, b′) = dA(b, b′) for all b, b′ ∈ B ⊆ A. It quickly
follows that J−KB : Σ(B) → B can be defined as a (co)restriction of J−KA, making
B̂ = (B, J−KB, dB) into a quantitative Σ-algebra and the inclusion B ↪→ A into a
nonexpansive homomorphism.342 342 Combining our intuitions from Remark 1.6 and

Definition 2.43, we find that inclusions of subalge-
bras are, up to isomorphisms, precisely the isometric
injective homomorphisms.

Since both forgetful functors from Alg(Σ) and GMet to Set preserve products,
we can easily infer that the categorical product of quantitative algebras is the product
of the underlying algebras and spaces.

Lemma 3.7. Let
{

Âi = (Ai, J−Ki, di) | i ∈ I
}

be a family of quantitative algebras indexed
by I. We define the quantitative algebra Â = (A, J−KA, d) with

A = (A, J−KA) = ∏
i∈I

Ai and A = (A, d) = ∏
i∈I

Ai.

Then Â is the product ∏i∈I Âi with πi : Â → Âi being the projection of the cartesian
product.343 343 This follows more abstractly from [For22, Propo-

sition 3.2.1(2)] when we see QAlg(Σ) as the pull-
back of Alg(Σ) and GMet (with two forgetful func-
tors to Set that preserve products), and we use that
U : GMet→ Set is an isofibration (Proposition 2.49).
From [For22, Proposition 3.2.1(1)], it also follows that
U : QAlg(Σ)→ Alg(Σ) is an isofibration.

Proof. First, we recall from (the proofs of) Lemma 1.8 and Corollary 2.39 that the
underlying set of the products of algebras and of spaces is the cartesian product of the
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underlying sets, hence A = ∏i∈I Ai is the carrier of both A and A, so Â belongs to
QAlg(Σ). Moreover, we also showed that each πi is both a homomorphism A→ Ai

and a nonexpansive map A→ Ai, thus they are all morphisms in QAlg(Σ).
If fi : X̂ → Âi is a family of nonexpansive homomorphisms, we saw in the

proofs of Lemma 1.8 and Proposition 2.36 that the pairing of functions ⟨ fi⟩i∈I is a
homomorphism X→ A in Alg(Σ) and a nonexpansive map X→ A in GMet, and
it satisfies πi ◦ ⟨ fi⟩i∈I = fi. It is unique because the forgetful functors are faithful.
We conclude that Â is the product of the Âis.

Quantitative Equations

Now, in order to get back the expressiveness of the original framework, we need
a way to impose this property of nonexpansiveness with respect to the product
distance, and we also need a way to impose other properties like the fact that ⊕
should be interpreted as a commutative operation. We achieve both things at once
with the following definition.

Definition 3.8 (Quantitative Equation). A quantitative equation (over Σ and L) is
a tuple comprising an L-space X called the context,344 two terms s, t ∈ TΣX, and 344 Note that even with algebras in GMet, the con-

text is in LSpa. This differs slightly from [AFMS21,
FMS21].

optionally a quantity ε ∈ L. We write these as X ⊢ s = t when no ε is given or
X ⊢ s =ε t when it is given.

A quantitative algebra Â satisfies a quantitative equation345
345 Formally, we would need to write J−KU ι̂

A instead
of J−Kι̂

A because U ι̂ : X → A is the assignment we
use to interpret the terms.• X ⊢ s = t if for any nonexpansive assignment ι̂ : X→ A, JsKι̂

A = JtKι̂
A.

• X ⊢ s =ε t if for any nonexpansive assignment ι̂ : X→ A, dA(JsKι̂
A, JtKι̂

A) ≤ ε.

We use ϕ and ψ to refer to a quantitative equation, and we sometimes simply call
them equations. We write Â ⊨ ϕ when Â satisfies ϕ,346 and we also write Â ⊨ι̂ ϕ

346 As usual, satisfaction generalizes to classes of
quantitative equations, i.e. if Ê is a classes of quanti-
tative equations, Â ⊨ Ê means Â ⊨ ϕ for all ϕ ∈ Ê.

when the equality JsKι̂
A = JtKι̂

A or the bound dA(JsKι̂
A, JtKι̂

A) ≤ ε holds for a particular
assignment ι̂ : X→ A (and not necessarily for all assignments).

Our overloading of the terminology quantitative equation (recall Definition 2.23) is
practically harmless because a quantitative equation from Chapter 2 X ⊢ x = y (or
X ⊢ x =ε y) can be seen as the new kind of quantitative equation by viewing x and y
as terms via the embedding ηΣ

X . Formally, since JηΣ
X(x)Kι̂

A = ι̂(x) for any x ∈ X and
ι̂ : X→ A,347 347 Later on, we will seldom distinguish between x

and ηΣ
X(x) and write the former for simplicity.

A ⊨ X ⊢ x = y ⇐⇒ Â ⊨ X ⊢ ηΣ
X(x) = ηΣ

X(y)
A ⊨ X ⊢ x =ε y ⇐⇒ Â ⊨ X ⊢ ηΣ

X(x) =ε ηΣ
X(y).

(3.4)

In particular, since we assumed the underlying space of any Â ∈ QAlg(Σ) to be
a generalized metric space, we can say that Â ⊨ ϕ for any ϕ ∈ ÊGMet.348 Another 348 We implicitly see the equations in ÊGMet as the

new kind of equations from Definition 3.8.consequence is that over the empty signature Σ = ∅, the quantitative equations from
Definition 2.23 and Definition 3.8 are the same.

Furthermore, the new quantitative equations also generalize the equations of
universal algebra (Definition 1.16). Indeed, given an equation X ⊢ s = t, we construct
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the quantitative equation X⊤ ⊢ s = t where the new context is the discrete space on
the old context. We show that

A ⊨ X ⊢ s = t⇐⇒ Â ⊨ X⊤ ⊢ s = t. (3.5)

By Proposition 2.60, any assignment ι : X → A is nonexpansive from X⊤ to A. Any
nonexpansive assignment ι̂ : X⊤ → A also yields an assignment X → A by applying
the forgetful functor U since the carrier of X⊤ is X. Therefore, the interpretations
of s and t coincide under all assignments if and only if they coincide under all
nonexpansive assignments.

Remark 3.9. The name quantitative equation is already used in, e.g. [MPP16, MPP17,
Adá22, ADV23b] for a fairly restricted subsets of what we call quantitative equation.
They use it to refer to our quantitative equations with a quantity and a discrete
context, and they call our unrestricted quantitative equations basic quantitative in-
ferences. We believe the judgments of Definition 3.8 are a better generalization of
equations in equational logic to the quantitative setting, hence we propose to call
those quantitative equations rather than following the custom in the quantitative
algebra literature.

It is hard to argue objectively for this choice since equations are so prevalent in
mathematics, and hence the question of what a quantitative equation should be has
many good answers. We can mention three arguments in favor of our terminology:

• The quantitative equations of this chapter are a straightforward combination of
the classical equations (Definition 1.16) and the quantitative equations for L-spaces
(Definition 2.23) as witnessed by (3.4) and (3.5). This might seem circular because
we already called the judgments for L-spaces quantitative equations, but if you
restrict these quantitative equations to those with a discrete context as in [MPP16],
you get essentially four possibilities:349 349 Written in syntactic sugar.

x ⊢ x = x x ⊢ x =ε x x, y ⊢ x = y x, y ⊢ x =ε y.

With only these options, you can only define L-spaces with global upper bound
on distances or on self-distances, or with at most one point.

• In §3.3, we will introduce quantitative equational logic which greatly resembles
equational logic, I hope Examples 3.70 and 3.71 will convince you of that. Now,
restricting to only discrete contexts does not break this connection,350 but it 350 For example, the authors of [BV05] develop a fuzzy

equational logic that is extremely similar to equational
logic, and allows reasoning about fuzzy relations
(basically distances but with a different attitude).
Their judgments (implicitly) have discrete contexts
only.

is compelling that we can have an extremely similar logic even with stronger
judgments.

• There is a straightforward generalization of abstract equations (Definition 1.50)
that corresponds to quantitative equations as we define them (see Propositions 3.62

and 3.63 that mirror Propositions 1.51 and 1.52).

Let us get to more interesting examples of quantitative equations now.351 351 More examples are in the papers we cited in the
introduction when we talked about universal algebra
on partial orders and on metric spaces. In particular,
there is a long list in [AFMS21, Example 3.19], where
GMet is instantiated as Poset.

Example 3.10 (Quasi-commutativity). Let + : 2 ∈ Σ be a binary operation symbol. As
shown above, to ensure + is interpreted as a commutative operation in a quantitative
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algebra, we can use the quantitative equation X⊤ ⊢ x + y = y + x where X = {x, y}.
In fact, using the same syntactic sugar as we did in Chapter 2 to avoid explicitly
describing all the context, we can write x, y ⊢ x + y = y + x352 which looks exactly 352 Whenever we will write x1, . . . , xn ⊢ s = t, we will

mean X⊤ ⊢ s = t where X = {x1, . . . , xn}, and simi-
larly for =ε.

like the classical equation for commutativity.
Since the context can be any L-space, we can now add some nuance to the

commutativity property. For instance, we can guarantee that + is commutative
only between elements that are close to each other with x =ε y ⊢ x + y = y + x
where ε ∈ L is fixed.353 Unrolling the syntactic sugar, the context is the L-space X 353 This example comes from [ADV23a, Example 8.3].

containing two points x and y with dX(x, y) = ε and all other distances being ⊤.
Therefore, a nonexpansive assignment ι̂ : X→ A is a choice of two elements ι̂(x) and
ι̂(y) with dA(ι̂(x), ι̂(y)) ≤ ε, and no other constraint. We conclude that Â satisfies
x =ε y ⊢ x + y = y + x if and only if J+KA(a, b) = J+KA(b, a) whenever dA(a, b) ≤ ε.

Another possible variant on commutativity is x =⊥ x, y =⊥ y ⊢ x + y = y + x.
This means + is guaranteed to be commutative only on elements which have a
self-distance of ⊥. For instance, in distributions with the ŁK distance, dŁK(φ, φ) = 0
only when the elements in the support of φ are all at distance 0 from each other. In
particular, when d is a metric, dŁK(φ, φ) = 0 if and only if φ is a Dirac distribution. So
that quantitative equation would ensure commutativity only on Dirac distributions.

Remark 3.11. Note that our syntactic sugar now allows terms that are not variables in
the conclusion, but it does not allow them in the premises. This is in contrast with
the quantitative inferences of [MPP16] as they allow arbitrary terms in the premises.
Thus, when the signature is not empty, our quantitative equations cannot correspond
to their quantitative inferences. The authors had realized the restriction to variables
was valuable, and sometimes necessary.354 They call the restricted judgments basic 354 Barr made a similar observation in [Bar92].

quantitative inferences (they also require a finite set of premises). Following [MSV23,
Lemma 8.4 and §9.1], one could prove that our quantitative equations are equivalent
to quantitative inferences whose premises only contain variables.355 355 See also [ADV23a, Remark 8.20 and Construction

8.21].
Example 3.12 (Nonexpansiveness).356 We can translate (3.1) and (3.2) into the follow- 356 A similar example is detailed, in the context of

ordered algebras, in [AFMS21, Examples 3.19.(2) and
3.19.(3)]. They call algebras coherent when all opera-
tions are nonexpansive in this sense.

ing (family of) quantitative equations.

∀ε, ε′ ∈ L, x =ε y, x′ =ε′ y′ ⊢ x⊕ x′ =max{ε,ε′} y⊕ y′ (3.6)

∀ε, ε′ ∈ L, x =ε y, x′ =ε′ y′ ⊢ x +p x′ =max{ε,ε′} y +p y′ (3.7)

The quantitative algebra from Example 3.4 satisfies (3.6), and the one from Exam-
ple 3.5 satisfies (3.7), but its variant with the ŁK distance does not satisfy (3.7).

In general, if we want an n-ary operation symbol op ∈ Σ to be interpreted as a
nonexpansive map An → A, we can impose the equations357 357 This is an axiom in the logic of [MPP16]. It is not

in our formulation of quantitative equational logic.
Thus, the algebras of Mardare et al. are all coherent
in the terminology of [AFMS21, Definition 3.2].

∀{εi}i∈I ⊆ L, {xi =εi yi | 1 ≤ i ≤ n} ⊢ op(x1, . . . , xn) =maxi εi op(y1, . . . , yn). (3.8)

Example 3.13 (L-nonexpansiveness). In most papers on quantitative algebras this
property is called “nonexpansiveness of the operations”. In [MSV22], we remarked
this can be ambiguous because one could consider a different distance on n-tuples
of inputs rather than the product distance. We then presented quantitative algebras
for lifted signature which can deal with more general operations.
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In a lifted signature, each operation symbol op : n ∈ Σ comes with an assignment
(A, d) 7→ (An, Lop(d)) (on generalized metric spaces) which specifies the distance
Lop(d) on n-tuples that needs to be considered. We say that the interpretation JopKA is
Lop-nonexpansive when it is a nonexpansive map JopKA : (An, Lop(d))→ (A, d).358 358 See [MSV22, Definitions 3.4 and 3.6].

We can also express Lop-nonexpansiveness with a family of quantitative equations
like we did in Example 3.12:359 359 This is the L-NE rule of [MSV22, Definition 3.11],

but it has been written more cleanly with quantitative
equations with contexts.∀X ∈ GMet, ∀x, y ∈ Xn, X ⊢ op(x1, . . . , xn) =Lop(dX)(x,y) op(y1, . . . , yn). (3.9)

If an algebra Â satisfies these equations, then in particular, for all a, b ∈ An, it satisfies
A ⊢ op(a1, . . . , an) =Lop(dA)(a,b) op(b1, . . . , bn) under the assignment idA : A → A.
This means

dA(JopKA(a1, . . . , an), JopKA(b1, . . . , bn)) ≤ Lop(dA)(a, b),

so we conclude that JopKA : (An, Lop(dA))→ A is nonexpansive.
Now, we still have to show that Lop-nonexpansiveness is the only consequence

of (3.9). This requires an assumption on Lop that morally says the distance between
two tuples x and y in (Xn, Lop(dX)) depends only on the distances between the
coordinates x1, . . . , xn and y1, . . . , yn in X.360 We refer to [MSV22] for more details, 360 This is the case for nonexpansiveness with respect

to the product distance. In fact, the only distances
that matter there are the pairwise dX(xi , yi) for all i.
For Lop-nonexpansiveness, the other distances like
dX(x1, x1) or dX(y3, x1) may be important, but never
dX(x, z) for some fresh z.

in particular Definitions 3.1 and 3.2 give the condition on Lop. Briefly, we need Lop

to be a functor that preserves isometric embeddings.
As a particular case, one can take Lop(d) to be the product distance and recover

the original nonexpansiveness of Example 3.12. Another interesting instance is taking
Lop(d) to be the discrete distance (in case GMet = LSpa, ∀x, y ∈ Xn, Lop(d)(x, y) =
⊤), then (3.9) becomes trivial as we will see in Lemma 3.34. Intuitively, it is because

any function from the discrete space on An to A is nonexpansive.

Example 3.14 (Convexity). The quantitative algebra (DX, J−KDX , dK) satisfies an-
other family of quantitative equations that is stronger than (3.7):361 361 Instead of taking the maximum between ε and ε′,

we take their convex combination, and since the for-
mer is always larger than the latter, (3.10) is stronger
than (3.7).

∀ε, ε′ ∈ L, x =ε y, x′ =ε′ y′ ⊢ x +p x′ =pε+pε′ y +p y′. (3.10)

This property of J+pKDX is called convexity in e.g. [MV20, Definition 30].

As a sanity check for our definitions, we can verify that homomorphisms preserve
the satisfaction of quantitative equations.362 362 Just like we did in Lemma 1.20 for Set and

Lemma 2.37 for LSpa. In fact, the proofs are very
similar.Lemma 3.15. Let ϕ be an equation with context X. If h : Â→ B̂ is a homomorphism and

Â ⊨ι̂ ϕ for an assignment ι̂ : X→ A, then B̂ ⊨h◦ι̂ ϕ.

Proof. We have two very similar cases. Let ϕ be the equation X ⊢ s = t, we have

Â ⊨ι̂ ϕ⇐⇒ JsKι̂
A = JtKι̂

A definition of ⊨

=⇒ h(JsKι̂
A) = h(JtKι̂

A)

=⇒ JsKh◦ι̂
B = JtKh◦ι̂

B by (1.12)

⇐⇒ B̂ ⊨h◦ι̂ ϕ. definition of ⊨
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Let ϕ be the equation X ⊢ s =ε t, we have

Â ⊨ι̂ ϕ⇐⇒ dA(JsKι̂
A, JtKι̂

A) ≤ ε definition of ⊨

=⇒ dA(h(JsKι̂
A), h(JtKι̂

A)) ≤ ε

=⇒ dA(JsKh◦ι̂
B , JtKh◦ι̂

B ) ≤ ε by (1.12)

⇐⇒ B̂ ⊨h◦ι̂ ϕ. definition of ⊨

Definition 3.16 (Quantitative variety). Given a class Ê of quantitative equations, a
(Σ, Ê)-algebra is a quantitative Σ-algebra that satisfies Ê. We define QAlg(Σ, Ê),
the category of (Σ, Ê)-algebras, to be the full subcategory of QAlg(Σ) containing
only those algebras that satisfy Ê. A quantitative variety is a category equal to
QAlg(Σ, Ê) for some class of quantitative equations Ê.

There are many forgetful functors obtained by composing the forgetful functors
from QAlg(Σ) with the inclusion functor QAlg(Σ, Ê)→ QAlg(Σ):

• U : QAlg(Σ, Ê)→ Set = QAlg(Σ, Ê)→ QAlg(Σ) U−→ Set

• U : QAlg(Σ, Ê)→ Alg(Σ) = QAlg(Σ, Ê)→ QAlg(Σ) U−→ Alg(Σ)

• U : QAlg(Σ, Ê)→ GMet = QAlg(Σ, Ê)→ QAlg(Σ) U−→ GMet

• U : QAlg(Σ, Ê)→ LSpa = QAlg(Σ, Ê)→ QAlg(Σ) U−→ LSpa

Remark 3.17. Compared to the usage of the term variety in the literature (e.g. [MPP17,
Adá22, ADV23b]), our quantitative varieties are more general, even when GMet =
Met. First, we do not constrain our operations to be interpreted as nonexpansive

maps from the product as the other authors do. Second, we do not restrict the size
of the context of the equations in Ê as is done in loc. cit.363 363 Their restrictions are subtler than just putting an

upper bound on the cardinality of the underlying set
of the context.Example 3.18. 1. With Σ = {p : 0}, we now have a lot more quantitative varieties

than we had varieties in Example 1.27. Even restricting to a discrete context, we
have the following quantitative equations where ε ranges over L:364 364 The first row comes from the classical case, and

the second row replaces equality with equality up
to ε (=ε). The only difference being that p =ε x and
x =ε p are not equivalent, so we need two distinct
equations.

⊢ p = p x ⊢ x = x x ⊢ p = x x, y ⊢ x = y

⊢ p =ε p x ⊢ x =ε x x ⊢ p =ε x x ⊢ x =ε p x, y ⊢ x =ε y

The meaning of the first row does not change from Example 1.27, and the meaning
of the second row can be inferred by replacing equality between terms with
distance between terms. For example, ⊢ p =ε p says that the self-distance of the
interpretation of the constant p is at most ε. Classifying the quantitative varieties
for this signature would require a lot more work than for the classical varieties.365 365 Although I think it is feasible, tedious but feasible.

2. When Σ = ∅, we mentioned that the quantitative equations are those of Chapter 2,
so QAlg(∅, Ê) is the subcategory of L-spaces that satisfy Ê. In particular, the
category GMet is a quantitative variety as it equals QAlg(∅, ÊGMet).

3. If Ê contains the equations in ECA and the equations in (3.10), then QAlg(ΣCA, Ê)
is the category of convex algebras equipped with a convex metric [MV20, Defini-
tion 30] and nonexpansive homomorphisms.
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We will not prove a generalization of Birkhoff’s variety theorem (Theorem 1.29)
for quantitative varieties, but we can prove one direction of it.366 We first have a 366 We give a proof sketch of the converse for an

empty signature in Theorem 3.65.result combining Lemmas 1.21 and 2.57.

Lemma 3.19. Let ϕ be a quantitative equation and h : Â→ B̂ be a homomorphism such
that Uh : A→ B is a split epimorphism, then Â ⊨ ϕ implies B̂ ⊨ ϕ.367 367 c.f. [MSV23, Lemma 6.2].

Proof. Let h−1 : B → A be the right inverse of Uh. It is not necessarily a homo-
morphism,368 but it is a nonexpansive map. Therefore, with X being the context 368 c.f. Footnote 324 which applies only when Σ = ∅.

of ϕ, any assignment ι̂ : X → B can be composed with h−1 to get a nonexpansive
assignment h−1 ◦ ι̂ : X → A. By hypothesis, Â ⊨h−1◦ι̂ ϕ which implies B̂ ⊨h◦h−1◦ι̂ ϕ

by Lemma 3.15. By construction, h ◦ h−1 = idB, so we conclude that B satisfies ϕ.

Next, we prove a result combining Lemmas 1.22 and 2.45.

Lemma 3.20. Let ϕ be a quantitative equation and h : Â→ B̂ be a homomorphism such
that Uh : A→ B is an isometric embedding, then B̂ ⊨ ϕ implies Â ⊨ ϕ.369 369 Up to isomorphism, Â is a subalgebra of B̂.

Proof. With X being the context of ϕ, any assignment ι̂ : X → A can be composed
with h to get a nonexpansive assignment h ◦ ι̂ : X→ B. By hypothesis, B̂ ⊨h◦ι̂ ϕ, and
we resolve the two similar cases using the fact that J−Kh◦ι̂

B = h(J−Kι̂
A) (1.12).

If ϕ = X ⊢ s = t, then we have h(JsKι̂
A) = h(JtKι̂

A) by satisfaction in B̂ and (1.12).
Since h is injective, we conclude that JsKι̂

A = JtKι̂
A.

If ϕ = X ⊢ s =ε t, then we have dB(h(JsKι̂
A), h(JtKι̂

A)) ≤ ε by satisfaction in B̂ and
(1.12). Since h is an isometry, we conclude that dA(JsKι̂

A, JtKι̂
A) ≤ ε.

This works for all assignments, so we get Â ⊨ ϕ.

Finally, we prove that products of quantitative algebras inside a quantitative
variety are also computed by taking the product of underlying algebras and spaces
(combining Lemma 1.8 and Proposition 2.38).370 370 i.e. quantitative varieties are closed under prod-

ucts.
Lemma 3.21. Let ϕ be a quantitative equation with context X,

{
Âi = (Ai, J−Ki, di) | i ∈ I

}
be a family of quantitative algebras indexed by I, and Â = ∏i∈I Âi be their product as
described in Lemma 3.7. For any assignment ι̂ : X→ A,

Â ⊨ι̂ ϕ⇔ ∀i ∈ I, Âi ⊨
πi◦ι̂ ϕ. (3.11)

Consequently, if every Âi satisfies ϕ, then so does Â.371 371 This readily follows from (3.11) because for any
nonexpansive assignment ι̂ : X → A, every πi ◦ ι̂
is a nonexpansive assignment X → Ai . Then, by
hypothesis Âi ⊨

πi◦ι̂ ϕ holds for every i ∈ I, and we
conclude that Â satisfies ϕ by (3.11).

Proof. Because each πi is a homomorphism, we can use Lemma 3.15 for the forward
direction (⇒). For the converse (⇐), let us prove two similar cases.

If ϕ = X ⊢ s = t, then we have πi(JsKι̂
A) = πi(JtKι̂

A) by satisfaction under each
πi ◦ ι̂ and by (1.12). This means that the interpretations under ι̂ of s and t agree on
all coordinates, hence they must coincide, i.e. Â ⊨ι̂ ϕ.

If ϕ = X ⊢ s =ε t, then we have di(πi(JsKι̂
A), πi(JtKι̂

A)) ≤ ε by satisfaction under
each πi ◦ ι̂ and by (1.12). By definition of dA as a supremum of the dis, this means
dA(JsKι̂

A, JtKι̂
A) ≤ ε, i.e. Â ⊨ι̂ ϕ.

Combining these last three results yields one direction for a possible characteriza-
tion of quantitative varieties. We introduce some terminology first.
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Definition 3.22 (Reflexive homomorphism). A homomorphism h : Â→ B̂ is called
reflexive if its underlying nonexpansive map h : A → B is a split epimorphism.
Equivalently, for any subspace B′ ⊆ B, there is a subspace A′ ⊆ A such that
h(A′) = B′ and the (co)restriction h : A′ → B′ is an isomorphism.372 In particular, h 372 In [MPP17], the authors introduced c-reflexive ho-

momorphisms parametrized by a cardinal c. The
definition changes by restricting the quantification of
subspaces B′ to those with cardinality smaller than c.
One easily checks that reflexive homomorphisms are
precisely the homomorphisms that are c-reflexive for
every c.

is surjective (take B′ = B), and we call B̂ a reflexive homomorphic image of Â.

When the signature is empty, reflexive homomorphisms are just split epimor-
phisms, so as we argued in Footnote 303, a reflexive homomorphic image is always
a subalgebra. This is not true in general because while h has a right inverse in
GMet, nothing guarantees it belongs to QAlg(Σ), i.e. that it is a homomorphism.
Still, the following theorem generalizing one direction of Birkhoff’s variety theorem
(Theorem 1.29) also generalizes Theorem 2.59.

Theorem 3.23. For any class of quantitative equations Ê, the category QAlg(Σ, Ê) is closed
under reflexive homomorphic images, subalgebras, and products.373 373 This quickly follows from Lemmas 3.19–3.21.

Remark 3.24. There are already variety theorems for quantitative varieties in the
original setting of Mardare et al. [MPP17, Theorem 3.11], and with arbitrary (not
nonexpansive) operations [JMU24, Theorem 4.16], but they both put some size
conditions on the context of quantitative equations. With this limitation, they
can characterize some collections of quantitative varieties as the subcategories of
QAlg(Σ) that are closed under c-reflexive homomorphic images, subalgebras, and
products. This suggests that the converse of Theorem 3.23 should hold, but some
work is still required.

Definition 3.25 (Quantitative algebraic theory). Given a class Ê of quantitative
equations over Σ and L, the quantitative algebraic theory generated by Ê, denoted
by QTh(Ê), is the class of quantitative equations that are satisfied in all (Σ, Ê)-
algebras:374 374 Again QTh(Ê) is never a set (recall Defini-

tion 1.30).QTh(Ê) =
{

ϕ | ∀Â ∈ QAlg(Σ, Ê), Â ⊨ ϕ
}

.

Equivalently, QTh(Ê) contains the equations that are semantically entailed by Ê,375 375 As in the classical case, QTh(Ê) contains all of
Ê but also many more equations like x ⊢ x = x or
x =ε y ⊢ x =ε y. Furthermore, QTh(Ê) contains
all the quantitative equations in ÊGMet because the
underlying spaces of algebras in QAlg(Σ, Ê) belong
to GMet.

namely ϕ ∈ QTh(Ê) if and only if

∀Â ∈ QAlg(Σ), Â ⊨ Ê =⇒ Â ⊨ ϕ. (3.12)

We will see in §3.3 how to find which quantitative equations are entailed by others.
We call a class of quantitative equations a quantitative algebraic theory if it is

generated by some class Ê.

We will see twice376 that the algebraic reasoning we are used to from Chap- 376 In Examples 3.70 and 3.71.

ter 1 is embedded in quantitative algebraic reasoning. In particular, Example 1.31

which showed some equations which belong to the algebraic theory of commutative
monoids can be read unchanged to find quantitative equations that belong to the
quantitative algebraic theory of commutative monoids. Let us give another example
that deals with quantities.

Example 3.26. We mentioned in Example 3.14 that the equations for convexity
(3.10) are stronger than the equations for nonexpansiveness with respect to the
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product distance (3.7). Formally what this means is that if Ê contains (3.10), then the
interpretation of +p in a (ΣCA, Ê)-algebra Â will be a nonexpansive map A×A→ A,
hence Â will satisfy (3.7). Concisely, the equations of (3.7) belong to QTh(Ê).

3.2 Free Quantitative Algebras

We turn to the construction of free algebras, and we start with a simple example.

Example 3.27 (Free metric). We already have some intuitions about terms and
equations from Example 1.32, thus we consider an empty signature in order to focus
on the new contexts and quantities. For Ê, let us take the set of equations defining a
metric space (with L = [0, 1]),377 so that QAlg(∅, Ê) = Met. 377 As a reminder, Ê contains

∀ε ∈ [0, 1], y =ε x ⊢ x =ε y

⊢ x =0 x

x =0 y ⊢ x = y

∀ε, δ ∈ [0, 1], x =ε y, y =δ z ⊢ x =ε+δ z.

Now we wonder, given an L-space X, what is the free metric space on it? Rehashing
Definition 1.47, we want to find a metric space FX and a nonexpansive map η : X→
FX such that any nonexpansive map from X to a metric space A factors through η

uniquely. Of course, if X is already a metric space, then taking FX = X and η = idX

works. Otherwise, we can look at what prevents dX from being a metric.
For instance, if X does not satisfy ⊢ x =0 x, it means there is some x ∈ X such

that dX(x, x) > 0. Inside FX, we know that the distance between η(x) and η(x) must
be 0. Note that if A is a metric space and f : X→ A is nonexpansive, we know that
dA( f (x), f (x)) = 0 too, so sending η(x) to f (x) will not be a problem.

For a second example, suppose dX is not symmetric, without loss of gener-
ality dX(x, y) < dX(y, x) for some x, y ∈ X. We know that dFX(η(x), η(y)) =

dFX(η(y), η(x)), but what value should it be? To ensure that η is nonexpansive,
this value must be at most dX(x, y), but why not smaller? If this lack of symmetry
is the only thing preventing dX from being a metric (i.e. defining d′ everywhere
like dX except d′(x, y) = d′(y, x) yields a metric), we cannot make dFX(x, y) smaller,
because the identity function idX would be a nonexpansive map X → (X, d′) that
does not factor through η (since d′(x, y) > dFX(η(x), η(y))). In fact, you can check
that FX = (X, d′) with η = idX is the free metric space on X because our definition
of d′ fixed the only problem with dX.

In general, for any x, y ∈ X, we want dFX(η(x), η(y)) to be as large as possible
while guaranteeing that dFX is a metric and η is nonexpansive, but it is not always
that simple. The complexity comes from the possible interactions between different
equations in Ê. Say you have dX(x, z) > dX(x, y) + dX(y, z) so the triangle inequality
does not hold, hence you try to fix this by lowering dFX(ηx, ηz) down exactly to
dFX(ηx, ηy) + dFX(ηy, ηz).378 Then, to ensure symmetry, you need to lower dFX(z, x) 378 Let us not write η each time for better readability,

this is a bit informal as we will see that η is not
necessarily injective.

down to that same value, but after that you may need to lower dFX(x, y) so that it
is not bigger than the new value of dFX(y, z) + dFX(z, x). In the end, you can end
up back with dFX(x, z) > dFX(x, y) + dFX(y, z), so you have to do another round of
fixes.

Intuitively, FX is the space you obtain by iterating this process (possibly for
infinitely many steps) and looking at the limit. We will give a rigorous description
in the case of a more general signature,379 but we want to point out now that this 379 This is the construction of free quantitative alge-

bras that starts in the next paragraph.
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process does not deal only with distances, it can also force some equations. For
example, if dX(x, y) = 0 with x ̸= y at the start, you will end up with η(x) = η(y)
inside FX.

Fix a class Ê of quantitative equations over Σ and L. For any generalized metric
space X, we can define a binary relation ≡Ê and an L-relation dÊ on Σ-terms as
follows:380 for any s, t ∈ TΣX, 380 The notation for ≡Ê and dÊ should really depend

on the space X, but we prefer to omit this for better
readability.s ≡Ê t⇐⇒ X ⊢ s = t ∈ QTh(Ê) and dÊ(s, t) = inf{ε | X ⊢ s =ε t ∈ QTh(Ê)}. (3.13)

The definition of ≡Ê is completely analogous to what we did in the classical case
(1.24). The definition of dÊ is new but it also looks like how we defined an L-relation
from an L-structure in Proposition 2.21. In fact, we can also prove a counterpart to
(2.8), giving us an equivalent definition of dÊ: for any s, t ∈ TΣX and ε ∈ L,381 381 In words, dÊ assigns a distance below ε to s and

t if and only if their interpretations in each (Σ, Ê)-
algebras are always at a distance below ε.dÊ(s, t) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê). (3.14)

Proof of (3.14). (⇐) holds directly by definition of infimum. For (⇒), we need to show
that any (Σ, Ê)-algebra satisfies X ⊢ s =ε t. Let Â ∈ QAlg(Σ, Ê) and ι̂ : X→ A be a
nonexpansive assignment. We know that for every δ such that X ⊢ s =δ t ∈ QTh(Ê),
dA(JsKι̂

A, JtKι̂
A) ≤ δ, thus

dA(JsKι̂
A, JtKι̂

A) ≤ inf{δ | X ⊢ s =δ t ∈ QTh(Ê)} = dÊ(s, t) ≤ ε.

We conclude that Â ⊨ι̂ X ⊢ s =ε t, and we are done since Â and ι̂ were arbitrary.

When we were not dealing with distances, we only had to prove that the relation
≡E defined between terms was a congruence (Lemma 1.33), and then we were able
to construct the term algebra by quotienting the set of terms and interpreting the
operation symbols syntactically. Here we have to prove a bit more, namely that dÊ is
invariant under ≡Ê so the L-relation restricts to the quotient, and that the resulting
L-space is a generalized metric space.

Let us decompose this in several small lemmas. We also collect here some more
lemmas that look similar, many of which will be part of the proof of soundness when
we introduce quantitative equational logic.382 Let X ∈ LSpa and Â ∈ QAlg(Σ) be 382 We were less explicit back then, but that is what

happened with Lemma 1.33 and soundness of equa-
tional logic.

universally quantified in all these lemmas.
First, Lemmas 3.28–3.31 say that ≡Ê is an equivalence relation and a congru-

ence.383 383 The proofs are exactly the same as for Lemma 1.33

because ≡Ê does not involve distances.
Lemma 3.28. For any t ∈ TΣX, Â satisfies X ⊢ t = t.

Proof. Obviously, JtKι̂
A = JtKι̂

A holds for all ι̂ : X→ A.

Lemma 3.29. For any s, t ∈ TΣX, if Â satisfies X ⊢ s = t, then Â satisfies X ⊢ t = s.

Proof. If JsKι̂
A = JtKι̂

A holds for all ι̂, then JtKι̂
A = JsKι̂

A holds too.

Lemma 3.30. For any s, t, u ∈ TΣX, if Â satisfies X ⊢ s = t and X ⊢ t = u, then Â satisfies
X ⊢ s = u.
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Proof. If JsKι̂
A = JtKι̂

A and JtKι̂
A = JuKι̂

A holds for all ι̂, then JsKι̂
A = JuKι̂

A holds too.

Lemma 3.31. For any op : n ∈ Σ, s1, . . . , sn, t1, . . . , tn ∈ TΣX, if Â satisfies X ⊢ si = ti for
all 1 ≤ i ≤ n, then Â satisfies X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn).

Proof. For any assignment ι̂ : X→ A, we have JsiKι̂
A = JtiKι̂

A for all i. Hence,

Jop(s1, . . . , sn)Kι̂
A = JopKA(Js1Kι̂

A, . . . , JsnKι̂
A) by (1.9)

= JopKA(Jt1Kι̂
A, . . . , JtnKι̂

A) ∀i, JsiKι̂
A = JtiKι̂

A

= Jop(s1, . . . , sn)Kι̂
A. by (1.9)

Lemmas 3.32 and 3.33 mean that dÊ is well-defined on equivalence classes of ≡Ê,
namely, dÊ(s, t) = dÊ(s

′, t′) whenever s ≡Ê s′ and t ≡Ê t′.384 384 By Lemmas 3.29 and 3.32, if t ≡Ê t′, then

X ⊢ s =ε t⇐⇒ X ⊢ s =ε t.

By Lemmas 3.29 and 3.33, if s ≡Ê s′, then

X ⊢ s =ε t′ ⇐⇒ X ⊢ s′ =ε t′.

Combining these with (3.14), we get

dÊ(s, t) ≤ ε⇐⇒ dÊ(s
′, t′) ≤ ε,

for all ε ∈ L, and we conclude dÊ(s, t) = dÊ(s
′, t′).

Lemma 3.32. For any s, t, t′ ∈ TΣX and ε ∈ L, if Â satisfies X ⊢ s =ε t and X ⊢ t = t′,
then Â satisfies X ⊢ s =ε t′.

Proof. For any ι̂ : X→ A, we have dA(JsKι̂
A, JtKι̂

A) ≤ ε and JtKι̂
A = Jt′Kι̂

A, thus

dA(JsKι̂
A, Jt′Kι̂

A) = dA(JsKι̂
A, JtKι̂

A) ≤ ε.

Lemma 3.33. For any s, s′, t ∈ TΣX and ε ∈ L, if Â satisfies X ⊢ s =ε t and X ⊢ s = s′,
then Â satisfies X ⊢ s′ =ε t.

Proof. Symmetric argument to the previous proof.

Lemmas 3.34–3.37 will correspond to other rules in quantitative equational logic,
and they will be explained in more details in §3.3.

Lemma 3.34. For any s, t ∈ TΣX, Â satisfies X ⊢ s =⊤ t.

Proof. By definition of ⊤ (the supremum of all L), for any ι̂, dA(JsKι̂
A, JtKι̂

A) ≤ ⊤.

Lemma 3.35. For any x, x′ ∈ X, if dX(x, x′) = ε, then Â satisfies X ⊢ x =ε x′.

Proof. For any nonexpansive ι̂ : X→ A, we have385 385 The equation holds by definition of J−Kι̂
A on vari-

ables, and the inequality holds by definition of non-
expansiveness.dA(JxKι̂

A, Jx′Kι̂
A) = dA(ι̂(x), ι̂(x′)) ≤ dX(x, x′) = ε.

Lemma 3.36. For any s, t ∈ TΣX and ε, ε′ ∈ L, if Â satisfies X ⊢ s =ε t and ε ≤ ε′, then Â

satisfies X ⊢ s =ε′ t.386 386 In words, if the interpretations of s and t are at
distance at most ε, then they are also at distance at
most ε′ when ε ≤ ε′.Proof. For any ι̂ : X→ A, we have dA(JsKι̂

A, JtKι̂
A) ≤ ε ≤ ε′.

Lemma 3.37. For any s, t ∈ TΣX and {εi}i∈I ⊆ L, if Â satisfies X ⊢ s =εi t for all i ∈ I,
then Â satisfies X ⊢ s =ε t with ε = infi∈I εi.

Proof. For any ι̂ and for all i ∈ I, we have dA(JsKι̂
A, JtKι̂

A) ≤ εi by hypothesis. By
definition of infimum, this means dA(JsKι̂

A, JtKι̂
A) ≤ infi∈I εi = ε.

This shall take care of all except two rules in quantitative equational logic which
we will get to in no time. The following result is a generalization of Lemma 2.30, and
it morally says that TΣ f is well-defined and nonexpansive when f is nonexpansive.
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Lemma 3.38. Let f : X → Y be a nonexpansive map. If A satisfies X ⊢ s = t (resp.
X ⊢ s =ε t), then A satisfies Y ⊢ TΣ f (s) = TΣ f (t) (resp. Y ⊢ TΣ f (s) =ε TΣ f (t)).387 387 Note that when s and t are variables, we get back

Lemma 2.30.
Proof. Any nonexpansive assignment ι̂ : Y→ A, yields a nonexpansive assignment
ι̂ ◦ f : X→ A. Moreover, by functoriality of TΣ, we have

J−Kι̂◦ f
A

(1.10)
= J−KA ◦ TΣ(ι̂ ◦ f ) = J−KA ◦ TΣ ι̂ ◦ TΣ f = JTΣ f (−)Kι̂

A.

By hypothesis, we have

A ⊨ι̂◦ f X ⊢ s = t (resp. A ⊨ι̂◦ f X ⊢ s =ε t),

which means

JTΣ f (s)Kι̂
A = JsKι̂◦ f

A = JtKι̂◦ f
A = JTΣ f (t)Kι̂

A

resp. dA(JTΣ f (s)Kι̂
A, JTΣ f (t)Kι̂

A) = dA(JsKι̂◦ f
A , JtKι̂◦ f

A ) ≤ ε.

Thus, we conclude

A ⊨ι̂ Y ⊢ TΣ f (s) = TΣ f (t) (resp. A ⊨ι̂ Y ⊢ TΣ f (s) =ε TΣ f (t)).

Let us end our list of small results with Lemmas 3.39–3.41 which are for later.

Lemma 3.39. For any s, t ∈ TΣX if Â satisfies X⊤ ⊢ s = t, then Â satisfies X ⊢ s = t, and
for any ε ∈ L, if Â satisfies X⊤ ⊢ s =ε t, then Â satisfies X ⊢ s =ε t.388 388 In words, if Â satisfies an equation where the

context is the discrete space on X, then Â satisfies
that same equation with the context replaced by any
other L-space on X. This is also a special case of
Lemma 3.38 where f : X⊤ → X is the identity map.

Proof. For any nonexpansive assignment ι̂ : X → A, you can pre-compose it with
idX : X⊤ → X (which is nonexpansive) without changing the interpretation of terms:
JsKι̂

A = JsKι̂◦idX
A . By hypothesis, we know that Â satisfies s = t (resp. s =ε t) under

the nonexpansive assignment ι̂ ◦ idX : X⊤ → A, and we conclude Â also satisfies
s = t (resp. s =ε t) under the assignment ι̂.

Lemma 3.40. For any s, t ∈ TΣX, if A satisfies X ⊢ s = t, then Â satisfies X ⊢ s = t.389 389 In words, if the underlying classical algebra sat-
isfies an equation, then so does the quantitative al-
gebra where the context can be endowed with any
L-relation.

Proof. Any nonexpansive assignment ι̂ : X → A is in particular an assignment
ι̂ : X → A, thus JsKι̂

A = JtKι̂
A hold by hypothesis that A satisfies X ⊢ s = t.

Lemma 3.41. For any s, t ∈ TΣX, if Â satisfies X⊤ ⊢ s = t, then A satisfies X ⊢ s = t.390 390 Combining Lemmas 3.40 and 3.41, we find

A ⊨ X ⊢ s = t⇐⇒ Â ⊨ X⊤ ⊢ s = t. (3.15)

This will be useful when comparing equational logic
and quantitative equational logic in Example 3.71.

Proof. This follows by definition of the discrete space X⊤. Indeed, any assignment
ι : X → A is the underlying function of a nonexpansive assignment ι̂ : X→ A, and
since Â satisfies s = t under ι̂ by hypothesis, A satisfies s = t under ι.

We can now get back to the equality ≡Ê and distance dÊ between terms, and
define the underlying space of the quantitative term algebra.

Since ≡Ê is an equivalence relation for any X, we can consider the set TΣX/≡Ê of
terms modulo Ê.391 We denote with [−]Ê : TΣX → TΣX/≡Ê the canonical quotient 391 Keep in mind that for different L-relations on X,

we may get different equivalence relations on TΣX,
but we do not make this explicit in the notation ≡Ê.

map, and by Lemmas 3.32 and 3.33, we can define an L-relation on terms modulo
Ê by factoring dÊ through [−]Ê. We obtain the L-relation dÊ as the unique function
making the triangle below commute.392 392 We used the same symbol, because the first dÊ was

only used to define this new dÊ.
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TΣX× TΣX L

TΣX/≡Ê × TΣX/≡Ê

[−]Ê×[−]Ê dÊ

dÊ

(3.16)

We write T̂Σ,ÊX for the resulting L-space (TΣX/≡Ê, dÊ). We still have an alternative
definition analog to (3.14) for the new L-relation dE.393 393 In particular, the quotient map is nonexpansive:

[−]Ê : (TΣX, dÊ)→ T̂Σ,ÊX.
dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê). (3.17)

This will be the carrier of the term algebra on X, so we need to prove that T̂Σ,ÊX be-
longs to GMet. We rely on the following generalization of Lemma 1.45. It essentially
states that satisfaction of quantitative equations is preserved by substitutions that
are nonexpansive. This result will also take care of the last two rules of quantitative
equational logic.

Lemma 3.42. Let Y be an L-space and σ : Y → TΣX be an assignment such that394 394 By combining (3.18) with (3.14) we find that σ is
a nonexpansive map Y → (TΣX, dÊ), and any such
nonexpansive map satisfies (3.18). We explicitly write
(3.18) to better emulate the corresponding rules in
quantitative equational logic.

∀y, y′ ∈ Y, X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê), (3.18)

and Â a (Σ, Ê)-algebra. If Â satisfies Y ⊢ s = t (resp. Y ⊢ s =ε t), then it also satisfies
X ⊢ σ∗(s) = σ∗(t) (resp. X ⊢ σ∗(s) =ε σ∗(t)).

Proof. Let ι̂ : X → A be a nonexpansive assignment, we need to show Jσ∗(s)Kι̂
A =

Jσ∗(t)Kι̂
A (resp. dA(Jσ∗(s)Kι̂

A, Jσ∗(t)Kι̂
A) ≤ ε). Just like in Lemma 1.45, we define the

assignment ι̂σ : Y → A that sends y ∈ Y to Jσ(y)Kι̂
A, and we had already proven

J−Kι̂σ
A = Jσ∗(−)Kι̂

A. Now, it is enough to show ι̂σ is nonexpansive Y→ A395 and the 395 Something we did not have to do in the classical
case.lemma will follow because by hypothesis, JsKι̂σ

A = JtKι̂σ
A (reps. dA(JsKι̂σ

A , JtKι̂σ
A) ≤ ε).

For any y, y′ ∈ Y, we have

dA(ι̂σ(y), ι̂σ(y′)) = dA(Jσ(y)Kι̂
A, Jσ(y′)Kι̂

A) ≤ dY(y, y′),

where the equation holds by definition of ι̂σ, and the inequality holds because Â

belongs to QAlg(Σ, Ê) and hence satisfies X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê) (in
particular under the nonexpansive assignment ι̂). Hence ι̂σ is nonexpansive.

Lemma 3.43. For any L-space X and any quantitative equation ϕ ∈ ÊGMet, T̂Σ,ÊX ⊨ ϕ.

Proof. We mentioned in Footnote 375 that ϕ ∈ QTh(Ê) because the carriers of
(Σ, Ê)-algebras are generalized metric spaces, so any (Σ, Ê)-algebra Â satisfies it.

Let ι̂ : Y→ T̂Σ,ÊX be a nonexpansive assignment. By the axiom of choice,396 there 396 Choice implies the quotient map [−]Ê has a right
inverse r : TΣX/≡Ê → TΣX, and we set σ = r ◦ ι̂.is a function σ : Y → TΣX satisfying [σ(y)]Ê = ι̂(y) for all y ∈ Y. This assignment

satisfies (3.18) because for all y, y′ ∈ Y, (3.17) yields

dÊ([σ(y)]Ê, [σ(y′)]Ê) ≤ dY(y, y′)
(3.17)⇐⇒ X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê),

and the L.H.S. holds because ι̂ is nonexpansive.
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Therefore, if ϕ has the shape Y ⊢ y = y′ (resp. Y ⊢ y =ε y′), by Lemma 3.42, all
(Σ, Ê)-algebras satisfy X ⊢ σ(y) = σ(y′) (resp. X ⊢ σ(y) =ε σ(y′)). By definition of
≡Ê (resp. by definition of dÊ (3.17)), we have

ι̂(y) = [σ(y)]Ê = [σ(y′)]Ê = ι̂(y′) (resp. dÊ(ι̂(y), ι̂(y′)) = dÊ([σ(y)]Ê, [σ(y′)]Ê) ≤ ε ),

which means T̂Σ,ÊX satisfies ϕ under ι̂. Since ι̂ and ϕ were arbitrary, we conclude
T̂Σ,ÊX satisfies all of ÊGMet, i.e. it is a generalized metric space.

As for Set, we obtain a functor T̂Σ,Ê : GMet → GMet397 by setting T̂Σ,Ê f equal 397 In fact, we defined a functor LSpa→ GMet, but
we are interested in its restriction to GMet.to the unique function making (3.19) commute. Concretely, we have T̂Σ,E f ([t]Ê) =

[TΣ f (t)]Ê which is well-defined by one part of Lemma 3.38.

TΣX TΣX/≡Ê

TΣY TΣY/≡Ê

TΣ f

[−]Ê

T̂Σ,Ê f

[−]Ê

(3.19)

Although we do have to check that T̂Σ,Ê f is nonexpansive whenever f is, and we use
the other part of Lemma 3.38.

Lemma 3.44. If f : X→ Y is nonexpansive, then so is T̂Σ,Ê f : T̂Σ,ÊX→ T̂Σ,ÊY.

Proof. For any s, t ∈ TΣX, we have

dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê) by (3.17)

=⇒ X ⊢ TΣ f (s) =ε TΣ f (t) ∈ QTh(Ê) Lemma 3.38

⇐⇒ dÊ([TΣ f (s)]Ê, [TΣ f (t)]Ê) ≤ ε by (3.17)

⇐⇒ dÊ(T̂Σ,Ê f [s]Ê, T̂Σ,Ê f [t]Ê) ≤ ε. by (3.19)

Therefore, dÊ(T̂Σ,Ê f [s]Ê, T̂Σ,Ê f [t]Ê) ≤ dÊ([s]Ê, [t]Ê).

We may now define the interpretation of operation symbols syntactically to obtain
the quantitative term algebra.

Definition 3.45 (Quantitative term algebra, semantically). The quantitative term
algebra for (Σ, Ê) on X is the quantitative Σ-algebra whose underlying space is T̂Σ,ÊX
and whose interpretation of op : n ∈ Σ is defined by398 398 This is well-defined by Lemma 3.31.

JopK
T̂X([t1]Ê, . . . , [tn]Ê) = [op(t1, . . . , tn)]Ê. (3.20)

We denote this algebra by T̂Σ,ÊX or simply T̂X.

This should feel very familiar to what we did in Definition 1.34.399 In particular, 399 In fact, we can make the connection more pre-
cise, TX is constructed by quotienting TΣX by the
congruence ≡E, and (the underlying algebra of) T̂X
by quotienting TΣX by the congruence ≡Ê (see Re-
mark 1.35).

we still have that [−]Ê is a homomorphism from TΣX to the underlying algebra of
T̂X. Indeed, we can put h = [−]Ê in (1.2) to get (3.20), or show that (3.21) commutes
(recall Footnote 75).

TΣTΣX TΣT̂Σ,ÊX

TΣX T̂Σ,ÊX

µΣ
X

TΣ [−]Ê

J−K
T̂X

[−]Ê

(3.21)
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While (3.21) is a diagram in Set, we write T̂Σ,ÊX instead of the underlying set TΣX/≡Ê
for better readability. We will keep this habit.

Your intuition for J−K
T̂X (the interpretation of arbitrary terms) should be exactly

the same as the one for J−KTX in classical universal algebra: it takes a term in TΣT̂Σ,ÊX,
replaces the leaves with a representative term, and gives back the equivalence class
of the resulting term. We can also use it to define an analog to flattening.400 For any 400 Just as we did in (1.30).

space X, let µ̂Σ,Ê
X be the unique function making (3.22) commute.

TΣT̂Σ,ÊX T̂Σ,ÊX

T̂Σ,ÊT̂Σ,ÊX

J−K
T̂X

[−]Ê µ̂Σ,Ê
X

(3.22)

Let us show that µ̂Σ,Ê
X is nonexpansive and natural.

Lemma 3.46. For any space X, µ̂Σ,Ê
X is a nonexpansive map T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX.

Proof. Let [s]Ê, [t]Ê ∈ T̂Σ,ÊT̂Σ,ÊX be such that dÊ([s]Ê, [t]Ê) ≤ ε. By (3.17), this means

T̂Σ,ÊX ⊢ s =ε t ∈ QTh(Ê), (3.23)

namely, the distance between interpretations of s and t is bounded above by ε in all
(Σ, Ê)-algebras. We need to show dÊ(µ̂

Σ,Ê
X ([s]Ê), µ̂Σ,Ê

X ([t]Ê)) ≤ ε, or using (3.22),

dÊ(JsK
T̂X, JtK

T̂X) ≤ ε. (3.24)

We want to use (3.17) again to reduce that inequality to a bound on distances between
interpretations, but that requires choosing representatives for JsK

T̂X, JtK
T̂X ∈ T̂Σ,ÊX.

Instead of choosing them naively, let s′, t′ ∈ TΣTΣX be such that TΣ[−]Ê(s′) = s
and TΣ[−]Ê(t′) = t. In words, s′ and t′ are the same as s and t where equivalence
classes at the leaves are replaced representative terms.401 Commutativity of (3.21) 401 Since s and t have finitely many leaves, we are

only doing finitely many choices of representatives.implies [µΣ
X(s
′)]Ê = JsK

T̂X and similarly for t. We can now use (3.17) to infer that
proving (3.24) is equivalent to proving

X ⊢ µΣ
X(s
′) =ε µΣ

X(t
′) ∈ QTh(Ê). (3.25)

This means we need to show that, for all Â ∈ QAlg(Σ, Ê) and ι̂ : X → A,
dA(JµΣ

X(s
′)Kι̂

A, JµΣ
X(t
′)Kι̂

A) ≤ ε.
We already know by (3.23) that for all σ̂ : T̂Σ,ÊX → A, dA(JsKσ̂

A, JtKσ̂
A) ≤ ε, so it

suffices to find, for each ι̂ : X→ A, a nonexpansive assignment σ̂ι̂ : T̂Σ,ÊX→ A such
that

JµΣ
X(s
′)Kι̂

A = JsKσ̂ι̂
A and JµΣ

X(t
′)Kι̂

A = JtKσ̂ι̂
A. (3.26)

We define σ̂ι̂ : T̂Σ,ÊX→ A to be the unique function making (3.27) commute.402 402 It exists because Â satisfies all the equations in
QTh(Ê) so if s ≡Ê t then

JTΣ ι̂(s)KA
(1.10)
= JsKι̂

A = JtKι̂
A

(1.10)
= JTΣ ι̂(t)KA.TΣX TΣ A

T̂Σ,ÊX A

TΣ ι̂

J−KA[−]Ê

σ̂ι̂

(3.27)
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First, σ̂ι̂ is a nonexpansive map T̂Σ,ÊX→ A because for any [u]Ê, [v]Ê ∈ T̂Σ,ÊX,

dA(σ̂ι̂[u]Ê, σ̂ι̂[v]Ê)
(3.27)
= dA(JTΣ ι̂(u)KA, JTΣ ι̂(v)KA)

(1.10)
= dA(JuKι̂

A, JvKι̂
A) ≤ dÊ([u]Ê, [v]Ê),

where the inequality holds by definition of dÊ and because Â satisfies all the equa-
tions in QTh(Ê).

Second, we can prove that

J−Kι̂
A ◦ µΣ

X = J−Kσ̂ι̂
A ◦ TΣ[−]Ê, (3.28)

which implies (3.26) holds (by applying both sides of (3.28) to s′ and t′). We pave the
following diagram. Showing (3.29) commutes:

(a) Apply TΣ to (3.27).

(b) By (1.15).

(c) By (1.10).
TΣTΣX TΣT̂Σ,ÊX

TΣX TΣ A

TΣX A

µΣ
X

J−Kι̂
A

TΣ [−]Ê

J−Kσ̂ι̂
A

J−KA

TΣ σ̂ι̂TΣTΣ ι̂

TΣJ−KA

(a)

(b)

(c)
(3.29)

Lemma 3.47. The family of maps µ̂Σ,Ê
X : T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX is natural in X.403 403 We will (for posterity) reproduce the proof we did

for Proposition 1.38, but it is important to note that
nothing changes except the notation which now has
lots of little hats.

Proof. We need to prove that for any function f : X→ Y, the square below commutes.

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊY

T̂Σ,ÊX T̂Σ,ÊY

µ̂Σ,Ê
X µ̂Σ,Ê

Y

T̂Σ,Ê T̂Σ,Ê f

T̂Σ,Ê f

(3.30)

We can pave the following diagram.

TΣT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊY

TΣT̂Σ,ÊY

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX T̂Σ,ÊY

µ̂Σ,Ê
Y

T̂Σ,Ê T̂Σ,Ê f

T̂Σ,Ê f

[−]Ê

J−K
T̂X

µ̂Σ,Ê
X

[−]Ê

TΣ T̂Σ,Ê f
[−]Ê

J−K
T̂Y

(a)

(b) (c)
(d)

All of (a), (b) and (d) commute by definition. In more details, (a) is an instance of
(3.19) with X replaced by T̂Σ,ÊX, Y by T̂Σ,ÊY and f by T̂Σ,Ê f , and both (b) and (d) are
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instances of (3.22). To show (c) commutes, we draw another diagram that looks like
a cube and where (c) is the front face. We can show all the other faces commute, and
then use the fact that TΣ[−]Ê is surjective (i.e. epic) to conclude that the front face
must also commute.404 404 In more details, the left and right faces commute

by (3.21), the bottom and top faces commute by (3.19),
and the back face commutes by (1.8).

The function TΣ[−]Ê is surjective (i.e. epic) because
[−]Ê is (it is a canonical quotient map) and functors
on Set preserve epimorphisms (if we assume the
axiom of choice). Thus, it suffices to show that TΣ[−]Ê
pre-composed with the bottom path or the top path
of the front face gives the same result.

Now it is just a matter of going around the cube
using the commutativity of the other faces. Here is
the complete derivation (we write which face was
used as justifications for each step).

T̂Σ,Ê f ◦ J−K
T̂X ◦ TΣ[−]Ê

= T̂Σ,Ê f ◦ [−]Ê ◦ µΣ
X left

= [−]Ê ◦ TΣ f ◦ µΣ
X bottom

= [−]Ê ◦ µΣ
Y ◦ TΣTΣ f back

= J−K
T̂Y ◦ TΣ[−]Ê ◦ TΣTΣ f right

= J−K
T̂Y ◦ TΣT̂Σ,Ê f ◦ TΣ[−]Ê top

TΣTΣX TΣTΣY

TΣT̂Σ,ÊX TΣT̂Σ,ÊY

TΣX TΣY

T̂Σ,ÊX T̂Σ,ÊY
T̂Σ,Ê f

J−K
T̂X

TΣ T̂Σ,Ê f

J−K
T̂Y

TΣ [−]Ê

TΣTΣ f

TΣ [−]Ê

[−]Ê

TΣ f

[−]Ê

µΣ
X

µΣ
Y

(3.31)

The first diagram we paved implies (1.31) commutes because [−]Ê is surjective.

From the front face of the cube above, we find that for any f : X → Y, T̂Σ,Ê f
is a homomorphism between the underlying algebras of T̂X and T̂Y. We already
showed T̂Σ,Ê f is nonexpansive in Lemma 3.44, thus it is a homomorphism between
the quantitative algebras T̂X and T̂Y.

Lemma 3.48. For any nonexpansive map f : X → Y, T̂Σ,Ê f is a nonexpansive homomor-
phism T̂X→ T̂Y.

We now prove generalizations of results from Chapter 1 in order to show that T̂X
is not just a quantitative Σ-algebra but a (Σ, Ê)-algebra.

We can prove, analogously to Lemma 1.39, that for any Â ∈ QAlg(Σ, Ê), J−KA is
a homomorphism between T̂A and Â.

Lemma 3.49. For any (Σ, Ê)-algebra Â, the square (3.32) commutes, and J−KA is a
nonexpansive map T̂Σ,ÊA→ A.405 405 We use the same convention as in (1.34) and write

J−KA for both maps TΣ A→ A and T̂Σ,ÊA→ A. Recall
the latter is well-defined because whenever [s]Ê =
[t]Ê, Â must satisfy A ⊢ s = t, and in particular under
the assignment idA : A→ A, this yields JsKA = JtKA.

TΣT̂Σ,ÊA TΣ A

T̂Σ,ÊA A

J−K
T̂A

TΣJ−KA

J−KA

J−KA
(3.32)

Proof. For the commutative square, we can reuse the proof of Lemma 1.39.
Consider the following diagram that we can view as a triangular prism whose

front face is (3.32). Both triangles commute by Footnote 405, the square face at the
back and on the left commutes by (3.21), and the square face at the back and on the
right commutes by (1.14). With the same trick as in the proof of Lemma 3.47 using
the surjectivity of TΣ[−]Ê, we conclude that the front face commutes.406 406 Here is the complete derivation.

J−KA ◦ J−K
T̂A ◦ TΣ[−]Ê

= J−KA ◦ [−]Ê ◦ µΣ
A left

= J−KA ◦ µΣ
A bottom

= J−KA ◦ TΣJ−KA right

= J−KA ◦ TΣJ−KA ◦ TΣ[−]Ê top

Then, since TΣ[−]Ê is epic, we conclude that J−KA ◦
J−K

T̂A = J−KA ◦ TΣJ−KA.
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TΣTΣ A

TΣTΣ,Ê A TΣ A

TΣ A

TΣ,Ê A A

J−K
T̂A

TΣJ−KA

J−KA

J−KA
[−]Ê J−KA

TΣ [−]Ê TΣJ−KA

µΣ
A

For nonexpansiveness, if dÊ([s]Ê, [t]Ê) ≤ ε, then by (3.17), A ⊢ s =ε t belongs to
QTh(Ê) which means Â must satisfy that equation, and in particular under the
assignment idA : A→ A, this yields dA(JsKA, JtKA) ≤ ε.

We can prove, analogously to Lemma 1.40, that for any X, µ̂Σ,Ê
X is a homomorphism

from T̂T̂X to T̂X.

Lemma 3.50. For any generalized metric space X, the following square commutes, and µ̂Σ,Ê
X

is a nonexpansive map T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX.

TΣT̂Σ,ÊT̂Σ,ÊX TΣT̂Σ,ÊX

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX

J−K
T̂X

µ̂Σ,Ê
X

J−K
T̂T̂X

TΣ µ̂Σ,Ê
X

(3.33)

Proof. We already showed nonexpansiveness in Lemma 3.46. For the commutative
square, we can reuse the argument of Lemma 1.40 and add the little hats.

We prove it exactly like Lemma 3.49 with the following diagram.407 407 The top and bottom faces commute by definition
of µ̂Σ,Ê

A (3.22), the back-left face by (3.21), and the
back-right face by (1.14).

Then, TΣ[−]Ê is epic, so the following derivation
suffices.

µ̂Σ,Ê
A ◦ J−K

T̂T̂A ◦ TΣ[−]Ê
= µ̂Σ,Ê

A ◦ [−]Ê ◦ µΣ
T̂Σ,ÊA

left

= J−K
T̂A ◦ µΣ

T̂Σ,ÊA
bottom

= J−K
T̂A ◦ TΣJ−K

T̂A right

= J−K
T̂A ◦ TΣµ̂Σ,Ê

A ◦ TΣ[−]Ê top

TΣTΣT̂Σ,ÊA

TΣT̂Σ,ÊT̂Σ,ÊA TΣT̂Σ,ÊA

TΣT̂Σ,ÊA

T̂Σ,ÊT̂Σ,ÊA T̂Σ,ÊA

J−K
T̂A

µ̂Σ,Ê
A

J−K
T̂T̂A

TΣµΣ,E
A

[−]Ê J−K
T̂A

µΣ
T̂Σ,ÊA

TΣJ−K
T̂ATΣ [−]Ê

Of course, paired with the flattening we also have a map η̂Σ,Ê
A which sends elements

a ∈ A to the equivalence class containing a seen as a trivial term, namely,

η̂Σ,Ê
A = A

ηΣ
A−→ TΣ A

[−]Ê−−→ T̂Σ,ÊA. (3.34)

We need to show η̂Σ,Ê
A is nonexpansive and natural in A.
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Lemma 3.51. For any space A, η̂Σ,Ê
A is a nonexpansive map A→ T̂Σ,ÊA.

Proof. This is a direct consequence of Lemma 3.35. For any a, a′ ∈ X and ε ∈ L,

dA(a, a′) ≤ ε =⇒ A ⊢ a =ε a′ ∈ QTh(Ê) by Lemma 3.35

⇐⇒ dÊ([a]Ê, [a′]Ê) ≤ ε. by (3.17)

Therefore, dÊ([a]Ê, [a′]Ê) ≤ dA(a, a′).

Lemma 3.52. For any nonexpansive map f : A→ B, the following square commutes.408 408 Naturality of ηΣ,E was easier in Set because it is
the vertical composition of two natural transforma-
tions, ηΣ and [−]E, which do not have counterparts
in GMet.A T̂Σ,ÊA

B T̂Σ,ÊB

f

η̂Σ,Ê
A

T̂Σ,Ê f

η̂Σ,Ê
B

(3.35)

Proof. We pave the following diagram (in Set, but that is enough since U : GMet→
Set is faithful).

Showing (3.36) commutes:

(a) Definition of η̂Σ,Ê (3.34).

(b) Naturality of ηΣ (1.6).

(c) Definition of T̂Σ,Ê f (3.19).

(d) Definition of η̂Σ,Ê (3.34).

A T̂Σ,ÊA

TΣ A

TΣB

B T̂Σ,ÊB

f

η̂Σ,Ê
A

T̂Σ,Ê f

η̂Σ,Ê
B

ηΣ
A

ηΣ
B

[−]Ê

TΣ f

[−]Ê

(a)

(b) (c)

(d)

(3.36)

We also have the following technical lemma and its corollary analogous to
Lemma 1.41 and Lemma 1.42.

Lemma 3.53. For any generalized metric space X, J−Kη̂Σ,Ê
X

T̂X
= [−]Ê.409 409 The proof is identical to that of Lemma 1.41.

Proof. We proceed by induction. For the base case, we have

JηΣ
X(x)Kη̂Σ,Ê

X
T̂X

= JTΣη̂Σ,Ê
X (ηΣ

X(x))K
T̂X by (1.10)

= JTΣ[−]Ê(TΣηΣ
X(η

Σ
X(x)))K

T̂X Lemma 1.11

= JTΣ[−]Ê(η
Σ
TΣX(η

Σ
X(x)))K

T̂X by (1.6)

= JηΣ
TΣ,ÊX([η

Σ
X(x)]Ê)KT̂X by (1.6)

= [ηΣ
X(x)]Ê by (1.29)

For the inductive step, if t = op(t1, . . . , tn), we have

JtKη̂Σ,Ê
X

T̂X
= JTΣη̂Σ,Ê

X (t)K
T̂X by (1.10)



110 lifting algebraic reasoning to generalized metric spaces

= JTΣη̂Σ,Ê
X (op(t1, . . . , tn))KT̂X

= Jop(TΣη̂Σ,Ê
X (t1), . . . , TΣη̂Σ,Ê

X (tn))KT̂X by (1.5)

= JopK
T̂X

(
JTΣη̂Σ,Ê

X (t1)KT̂X, · · · , JTΣη̂Σ,Ê
X (tn)KT̂X

)
by (1.29)

= JopK
T̂X

(
[t1]Ê, · · · , [tn]Ê

)
I.H.

= [op(t1, . . . , tn)]Ê. by (3.20)

We get that for any quantitative equation ϕ with context X, ϕ belongs to QTh(Ê)
if and only if the algebra T̂Σ,ÊX satisfies it under the assignment η̂Σ,Ê

X .

Lemma 3.54. Let ϕ be an equation with context X, ϕ ∈ QTh(Ê) if and only if T̂X ⊨η̂Σ,Ê
X

ϕ.410 410 Once again, we are only adapting the argument
from the proof of Lemma 1.42.

Proof. We have two cases to show.

• X ⊢ s = t ∈ QTh(Ê) if and only if T̂X ⊨η̂Σ,Ê
X X ⊢ s = t, and

• X ⊢ s =ε t ∈ QTh(Ê) if and only if T̂X ⊨η̂Σ,Ê
X X ⊢ s =ε t.

By Lemma 3.53,

JsKη̂Σ,Ê
X

T̂X
= [s]Ê and JtKη̂Σ,Ê

X
T̂X

= [t]Ê, (3.37)

then by using definitions, we have (as desired)

X ⊢ s = t ∈ QTh(Ê)
(3.13)⇐⇒ [s]Ê = [t]Ê

(3.37)⇐⇒ JsKη̂Σ,Ê
X

T̂X
= JtKη̂Σ,Ê

X
T̂X

X ⊢ s =ε t ∈ QTh(Ê)
(3.17)⇐⇒ dÊ([s]Ê, [t]Ê) ≤ ε

(3.37)⇐⇒ dÊ(JsKη̂Σ,Ê
X

T̂X
, JtKη̂Σ,Ê

X
T̂X

) ≤ ε.

The next result, analogous to Lemma 1.43, tells us that η̂Σ,Ê and µ̂Σ,Ê interact
together like the unit and multiplication of a monad.

Lemma 3.55. The following diagram commutes.411 411 We reuse the proof of Lemma 1.43, although when
using naturality of [−]Ê in Set, we replace it by (3.19)
which is not formally a naturality property (because
TΣ is not a functor on GMet).T̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX

T̂Σ,ÊX

η̂Σ,Ê
T̂Σ,ÊX

µ̂Σ,ÊX

T̂Σ,Ê η̂Σ,Ê
X

idT̂Σ,ÊXidT̂Σ,ÊX

Proof. For the triangle on the left, we pave the following diagram.

Showing (3.38) commutes:

(a) Definition of η̂Σ,Ê
X (3.34).

(b) Definition of J−KTX (1.29).

(c) Definition of µ̂Σ,Ê
X (3.22).

T̂Σ,ÊX TΣT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊX

T̂Σ,ÊX
J−KTX

[−]Ê

µ̂Σ,Ê
X

ηΣ
T̂Σ,ÊX

η̂Σ,Ê
T̂Σ,ÊX

idT̂Σ,ÊX

(a)

(b)
(c) (3.38)
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For the triangle on the right, we show that [−]Ê = µ̂Σ,Ê
X ◦ T̂Σ,Êη̂Σ,Ê

X ◦ [−]Ê by paving
(3.39), and we can conclude since [−]Ê is epic that idT̂Σ,ÊX = µ̂Σ,Ê

X ◦ T̂Σ,Êη̂Σ,Ê
X .

Showing (3.39) commutes:

(a) Definition of η̂Σ,Ê
X and functoriality of T̂Σ,Ê.

(b) “Naturality” of [−]Ê (3.19).

(c) By (3.19) again.

(d) Definition of µΣ
X (1.7).

(e) By (3.21).

(f) By (3.22).

TΣX T̂Σ,ÊX T̂Σ,ÊTΣX T̂Σ,ÊT̂Σ,ÊX

TΣTΣX TΣT̂Σ,ÊX

TΣX T̂Σ,ÊX

T̂Σ,Ê [−]Ê

µ̂Σ,Ê
X

T̂Σ,ÊηΣ
X

T̂Σ,Ê η̂Σ,Ê
X

[−]Ê

TΣηΣ
X

[−]Ê

TΣ [−]Ê

[−]Ê

J−KTX
µΣ

X

[−]Ê

idTΣX (d)

(b)

(a)

(c)

(e)

(f)
(3.39)

Finally, we can show that T̂Σ,ÊX is (Σ, Ê)-algebra (analogous to Proposition 1.46).

Proposition 3.56. For any space A, the term algebra T̂Σ,ÊA satisfies all the equations in Ê.

Proof. Let ϕ ∈ Ê be an equation with context X and ι̂ : X→ T̂Σ,ÊA be a nonexpansive
assignment. We factor ι̂ into412 412 This factoring is correct because

ι̂ = idT̂Σ,ÊA ◦ ι̂

= µ̂Σ,Ê
A ◦ η̂Σ,Ê

T̂Σ,ÊA
◦ ι̂ Lemma 3.55

= µ̂Σ,Ê
A ◦ T̂Σ,Ê ι̂ ◦ η̂Σ,Ê

X . naturality of η̂Σ,Ê

ι̂ = X
η̂Σ,Ê

X−−→ T̂Σ,ÊX
T̂Σ,Ê ι̂
−−→ T̂Σ,ÊT̂Σ,ÊA

µ̂Σ,Ê
A−−→ T̂Σ,ÊA.

Now, Lemma 3.54 says that ϕ is satisfied in T̂X under the assignment η̂Σ,Ê
X . We also

know by Lemma 3.15 that homomorphisms preserve satisfaction, so we can apply it
twice using the facts that T̂Σ,Ê ι̂ and µ̂Σ,Ê

A are homomorphisms (the former was shown
after Lemma 3.47 and the latter in Lemma 3.50) to conclude that T̂A satisfies ϕ under
µ̂Σ,Ê

A ◦ T̂Σ,Ê ι̂ ◦ η̂Σ,Ê
X = ι̂.

We end this section just like we ended §1.3 by showing that T̂X is the free
(Σ, Ê)-algebra.413 413 In both [MSV22] and [MSV23], we constructed the

free algebra using quantitative equational logic. This
is an alternative proof that does not rely on the logic.Theorem 3.57. For any space X, the term algebra T̂X is the free (Σ, Ê)-algebra on X.

Proof. Note that the morphism witnessing freeness of T̂X is η̂Σ,Ê
X : X→ T̂Σ,ÊX.414 414 As expected, the proof goes exactly like for Propo-

sition 1.49 except for dealing with nonexpansiveness
at the end.

Let Â be another (Σ, Ê)-algebra and f : X → A a nonexpansive function. We
claim that f ∗ = J−KA ◦ T̂Σ,Ê f is the unique homomorphism making the following
commute.

X T̂Σ,ÊX T̂X

A Â

η̂Σ,Ê
X

f ∗
f

f ∗

in GMet in QAlg(Σ,Ê)

U
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First, f ∗ is a homomorphism because it is the composite of two homomorphisms
T̂Σ,Ê f (by Lemma 3.48) and J−KA (by Lemma 3.49 since Â satisfies Ê). Next, the
triangle commutes by the following derivation.

J−KA ◦ T̂Σ,Ê f ◦ η̂Σ,Ê
X = J−KA ◦ η̂Σ,Ê

A ◦ f by (3.35)

= J−KA ◦ [−]Ê ◦ ηΣ
A ◦ f definition of η̂Σ,Ê

= J−KA ◦ ηΣ
A ◦ f Footnote 405

= f definition of J−KA (3.20)

Finally, uniqueness follows from the inductive definition of T̂X and the homomor-
phism property. Briefly, if we know the action of a homomorphism on equivalence
classes of terms of depth 0, we can infer all of its action because all other classes of
terms can be obtained by applying operation symbols.415 415 Formally, let f , g : T̂X → Â be two homomor-

phisms such that for any x ∈ X, f [x]Ê = g[x]Ê, then,
we can show that f = g. For any t ∈ TΣX, we showed

in Lemma 3.53 that [t]Ê = JtK
η̂Σ,Ê

X
T̂X

. Then using (1.12),
we have

f [t]Ê = JtK
f ◦η̂Σ,Ê

X
A = JtK

g◦η̂Σ,Ê
X

A = g[t]Ê,

where the second inequality follows by hypothesis
that f and g agree on equivalence classes of terms of
depth 0.

It remains to show that f ∗ : T̂Σ,ÊX → A is nonexpansive. This follows by the
following derivation, where we implicitly use nonexpansiveness of f in the second
step, where f is used as a nonexpansive assignment.

dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê) by (3.17)

=⇒ dA(JsK f
A, JtK f

A) ≤ ε Â ∈ QAlg(Σ, Ê)

⇐⇒ dA(JTΣ f (s)KA, JTΣ f (t)AK) by (1.10)

⇐⇒ dA(J[TΣ f (s)]ÊKA, J[TΣ f (t)]ÊKA) Footnote 405

⇐⇒ dA(JT̂Σ,Ê f [s]ÊKA, JT̂Σ,Ê f [t]ÊKA) by (3.19)

⇐⇒ dA( f ∗[s]Ê, f ∗[t]Ê) definition of f ∗

Since we have a free (Σ, Ê)-algebra T̂X for every generalized metric space X, we
get a left adjoint to U : QAlg(Σ, Ê) → GMet. This automatically yields a monad
structure on T̂Σ,Ê that we will study after developing quantitative equational logic.
Before that, we make use of a special case of the adjunction above.

Corollary 3.58. The forgetful functor U : GMet→ Set has a left adjoint.

Proof. The following adjoints compose to yield a left adjoint to U : GMet→ Set.416 416 The adjunction between LSpa and Set was de-
scribed in Proposition 2.60. The adjunction between
GMet and LSpa is the one we just obtained via
Theorem 3.57 that we instantiate with GMet =
QAlg(∅, ÊGMet) (recall Example 3.18).

GMet LSpa Set
U

U

⊣ ⊣

Example 3.59 (Discrete metric). To make this more concrete, one can wonder what
is the free metric space on a set X (with L = [0, 1]). According to the diagram
above, we first need to construct the discrete space X⊤ on X, then construct the free
metric space on X⊤. We know how to do the first step (Proposition 2.60), and the
second step is also fairly easy to do.417 The only thing that prevents X⊤ from being 417 Even though we said in Example 3.27 that the free

metric space on an arbitrary X is harder to describe.a metric is reflexivity, i.e. d⊤(x, x) = 1 ̸= 0. If we define dX just like d⊤ except with
dX(x, x) = 0, then it is a metric,418 and (X, dX) is the free metric space over X. 418 Identity of indiscernibles and symmetry hold be-

cause dX(x, y) = dX(y, x) = 1 when x ̸= y. The
triangle inequality holds because

dX(x, z) = 1 ≤ 1 + 1 = dX(x, y) + dX(y, z).

Corollary 3.58 applies to any category GMet, so we can always construct the
discrete generalized metric on a set.
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With the help of quantitative algebraic theories and free algebras, we can now
define coproducts inside GMet.

Corollary 3.60. The category GMet has coproducts.

Proof. We will only do the case of binary coproducts for exposition’s sake, but the
proof can be adapted to arbitrary families. For any generalized metric space A, the
quantitative algebraic theory of A is generated by the signature ΣA = {a : 0 | a ∈ A}
and the quantitative equations419 419 Note that a and a′ are seen as constants, not vari-

ables, so the context of these equations is the empty
L-space.

ÊA =
{
⊢ a =dA(a,a′) a′ | a, a′ ∈ A

}
.

A (ΣA, ÊA)-algebra B̂ is a generalized metric space B equipped with an interpre-
tation JaKB for every a ∈ A such that dB(JaKB, Ja′KB) ≤ dA(a, a′) for every a, a′ ∈ A.
Equivalently, all the interpretations can be seen as a single nonexpansive map
J−KB : A→ B. Therefore, QAlg(ΣA, ÊA) is the coslice category A/GMet.

Given another space A′, if we combine the theories of A and A′ with no additional
equations, we get the category QAlg(ΣA + ΣA′ , ÊA + ÊA′) of spaces B equipped
with two nonexpansive maps J−KB : A → B and J−K′B : A′ → B. This category
has an initial object, the free algebra on the initial generalized metric space from
Proposition 2.41. Moreover, this category can be equivalently described as the comma
category [A, A′] ↓ idGMet where [A, A′] : 1 + 1 → GMet is the constant functor
sending the two objects in the domain to A and A′ respectively.420 The initial object 420 The category 1 + 1 has two objects, their identity

morphisms, and that is it.of this category (we just showed it exists) is the coproduct A + A′ (by definition of
coproducts and comma categories).

Abstract Quantitative Equations

We finish this section like we finished §1.3: by giving an equivalent definition for
quantitative equations. Recall that an abstract equation is a surjective homomorphism
e : TΣX ↠ Y in Alg(Σ). To generalize, we clearly want to replace Alg(Σ) with
QAlg(Σ), but it is less clear how to replace TΣX and surjective homomorphisms.

Examining the proofs of Propositions 1.51 and 1.52, we can recognize two impor-
tant properties of TΣX:

• TΣX is the free algebra over X, and

• given an algebra A ∈ Alg(Σ) and an assignment ι : X → A, J−Kι
A : TΣX → A is

the unique homomorphism satisfying J−Kι
A ◦ ηΣ

X = ι.

Let T̂ΣX = T̂Σ,∅X denote the free quantitative Σ-algebra and its underlying space, its
elements are not necessarily terms over X because ≡∅ might be non-trivial even
when generated by no quantitative equations.421 To replace J−Kι

X , we want, for every 421 For an extreme example, if ÊGMet contains
x, y ⊢ x = y, then any generalized metric space must
be empty or a singleton, hence T̂ΣX contains one
equivalence class of terms (unless X is empty and Σ
has no constants, then T̂ΣX is empty).

quantitative algebra Â and nonexpansive assignment ι̂ : X→ A, a homomorphism
T̂ΣX→ Â in QAlg(Σ) that acts like ι̂ on (equivalence classes) of variables. It exists
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and is unique by the universal property of T̂ΣX, we denote it by ι̂♯:

X T̂ΣX T̂ΣX

A Â

η̂Σ,∅
X

ι̂
ι̂♯ ι̂♯

U (3.40)

Now, how should surjective homomorphisms in Alg(Σ) be generalized in QAlg(Σ)?
The instinctive answer for a category theorist would be homomorphisms in QAlg(Σ)
such that the underlying morphism in GMet is an epimorphism.422 However, we 422 Because surjective functions in Set are precisely

the epimorphisms.will see that the right choice is actually still surjective homomorphisms.

Definition 3.61. An abstract quantitative equation is a surjective nonexpansive
homomorphism e : T̂ΣX→ Ŷ in QAlg(Σ).423 We say that a quantitative algebra Â 423 We reiterate that the terminology comes from

[JMU24], the following arguments are inspired by
their proof of [JMU24, Theorem 4.16].

satisfies e if for any nonexpansive assignment ι̂ : X → A, the homomorphism ι̂♯

factors through e in QAlg(Σ):

ι̂♯ = T̂ΣX e−→ Ŷ
h−→ Â.

We say that Â satisfies a class of abstract quantitative equations if it satisfies all of
its elements.

We now show how abstract quantitative equations and quantitative equations
have the same expressive power. The intuition and proofs are very similar to the
classical case.

Proposition 3.62. If Ê is a class of abstract quantitative equations, then there is a class Ê◦

of quantitative equations such that Â satisfies Ê if and only if it satisfies Ê◦.

Proof. We construct Ê◦ similarly to the classical case, but we have to add the distance
information too:424 424 One small change is that abstract quantitative

equations are functions taking equivalence classes of
terms as inputs rather than just terms. Recall that
[t]∅ denotes the equivalence class of t in T̂ΣX, and we
write e[t]∅ instead of of the more clunky e([t]∅)

Ê◦ =
{

X ⊢ s = t | e : T̂ΣX→ Ŷ ∈ Ê, s, t ∈ TΣX, e[s]∅ = e[t]∅
}

∪
{

X ⊢ s =ε t | e : T̂ΣX→ Ŷ ∈ Ê, s, t ∈ TΣX, dY(e[s]∅, e[t]∅) ≤ ε
}

.

We will show that Â satisfies Ê if and only if it satisfies Ê◦.
(⇒) Suppose e : T̂ΣX→ Ŷ belongs to Ê and fix s, t ∈ TΣX. For any nonexpansive

assignment ι̂ : X→ A, the factorization ι̂♯ = h ◦ e implies that J−Kι̂
A factors through

e[−]∅. Indeed, let us look at (3.41).425 425 We are implicitly going back and forth between
the categories Set, GMet, Alg(Σ), and QAlg(Σ).

X TΣX T̂ΣX Ŷ

Â

ηΣ
X

η̂Σ,∅
X

ι̂

[−]∅

J−Kι̂
A

e

ι̂♯ h

(a)

(b)
(c) (d) (3.41)
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The triangles (a) and (b) commute by definition of η̂Σ,∅
X and J−Kι̂

A respectively. The
triangle combining (a), (b), and (c) commutes by definition of ι̂♯, and since ι̂♯ ◦ [−]∅
is a homomorphism in Alg(Σ),426 by the universal property of TΣX (uniqueness of 426 Since ι̂♯ is a homomorphism in QAlg(Σ), the un-

derlying function is a homomorphism in Alg(Σ),
and [−]∅ is a homomorphism by (3.21).

J−Kι̂
A), the triangle (c) commutes as well. The hypothesis that (d) commutes means

that J−Kι̂
A = h ◦ e[−]∅.

Therefore, if X ⊢ s = t belongs to Ê◦ because e[s]∅ = e[t]∅, then JsKι̂
A = JtKι̂

A must
hold for all ι̂,427 so Â ⊨ X ⊢ s = t. Similarly, if X ⊢ s =ε t belongs to Ê◦ because 427 Because

JsKι̂
A = h(e[s]∅) = h(e[t]∅) = JtKι̂

A.dY(e[s]∅, e[t]∅) ≤ ε, then dA(JsKι̂
A, JtKι̂

A) ≤ ε must hold for all ι̂,428 so Â ⊨ X ⊢ s =ε t.

428 Because h is nonexpansive so

dA(JsKι̂
A, JtKι̂

A) = dA(h(e[s]∅), h(e[t]∅))

≤ dY(e[s]∅, e[s]∅)

≤ ε.

This works for every e ∈ Ê, so we conclude that Â satisfies all the quantitative
equations in Ê◦.

(⇐) Let e : T̂ΣX → Ŷ belong to Ê. For any nonexpansive assignment ι̂ : X → A,
since e is surjective, we can define a function h : Y → A by h(y) = JtyKι̂

A with ty a
representative of an equivalence class in e−1(y). In other words, ty is an element in
the preimage of y under e[−]∅. Surjectivity of e means h is defined on all Y, and the
choice of ty does not matter because if t′y belongs to an equivalence class in e−1(y),
then e[ty]∅ = y = e[t′y]∅ implies JtyKι̂

A = Jt′yKι̂
A because Â ⊨ Ê◦.429 429 By definition, Ê◦ contains X ⊢ ty = t′y because

e[ty]∅ = e[t′y]∅.Our definition of h ensures ι̂♯ = h ◦ e since any element T in T̂ΣX is equal to [ty]∅
for some term ty in the equivalence class of e−1(y) for some y ∈ Y, which yields430 430 The equation marked (∗) holds by (c) commuting

in (3.41).

(h ◦ e)(T) = (h ◦ e)[ty]∅ = h(y) = JtyKι̂
A

(∗)
= ι̂♯[ty]∅ = ι̂♯(T).

It remains to show that h is a nonexpansive homomorphism.
For any y, y′ ∈ Y, pick ty and ty′ such that e[ty]∅ = y and e[ty′ ]∅ = y′. Since

dY(e[ty]∅, e[t′y]) ≤ dY(y, y′), the quantitative equation X ⊢ ty =dY(y,y′) ty′ belongs to
Ê◦, so Â satisfies it by hypothesis. Therefore,

dA(h(y), h(y′)) = dA(JtyKι̂
A, Jty′K

ι̂
A) ≤ dY(y, y′) ≤ ε.

We conclude that h is nonexpansive. The argument for h preserving operations
is copied from the proof of Proposition 1.51, replacing e with e[−]∅ which is a
homomorphism in Alg(Σ) by (3.21). For any op : n ∈ Σ and y1, . . . , yn ∈ Y, pick ti in
the preimage of yi under e[−]∅, then we have

h(JopKY(y1, . . . , yn)) = h(JopKY(e[t1]∅, . . . , e[tn]∅)) definition of ti

= h ◦ e[op(t1, . . . , tn)]∅ e[−]∅ is a homomorphism

= Jop(t1, . . . , tn)Kι
A definition of h

= JopKA(Jt1Kι
A, . . . , JtnKι

A) by (1.15)

= JopKA(h ◦ e[t1]∅, . . . , h ◦ e[tn]∅) definition of h

= JopKA(h(y1), . . . , h(yn)). definition of ti

Proposition 3.63. If Ê is a class of quantitative equations, then there is a class Ê• of abstract
quantitative equations such that Â satisfies Ê if and only if it satisfies Ê•.

Proof. Given a quantitative equation ϕ with context X, we let ϕ• be the homomor-
phism T̂ΣX→ T̂Σ,{ϕ}X that uniquely makes the following diagram commute:431 431 The existence and uniqueness of ϕ• are conse-

quences of T̂ΣX being the free object in QAlg(Σ) gen-
erated by X, and T̂Σ,{ϕ} being the underlying space of
T̂Σ,{ϕ}X ∈ QAlg(Σ).
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X T̂ΣX

T̂Σ,{ϕ}X

η̂Σ,∅
X

η̂
Σ,{ϕ}
X

ϕ•

We first need to argue that ϕ• is surjective. We show something stronger:

∀t ∈ TΣX, ϕ•[t]∅ = [t]{ϕ}. (3.42)

We proceed by induction. The base case follows from the triangle above. For the
inductive step, suppose t = op(t1, . . . , tn), using that ϕ• is a homomorphism and the
definition of [−]−, we have

ϕ•[t]∅ = ϕ•(JopKT̂Σ,X
([t1]∅, . . . , [tn]∅)) by (3.20)

= JopKT̂Σ,{ϕ}X
(ϕ•[t1]∅, . . . , ϕ•[tn]∅) ϕ• is a homomorphism

= JopKT̂Σ,{ϕ}X
([t1]{ϕ}, . . . , [tn]{ϕ}) I.H.

= [t]{ϕ}. by (3.20)

It follows that ϕ• is surjective.432 432 Any element of T̂Σ,{ϕ} is an equivalence class [t]{ϕ}
for some t ∈ TΣX, hence it is the image of [t]∅ under
ϕ•.

Now, we show that an algebra Â satisfies ϕ if and only if it satisfies ϕ•.
(⇒) If Â ⊨ ϕ, then for any assignment ι̂ : X→ A, we have the following unique

factorization because T̂Σ,{ϕ}X is the free (Σ, {ϕ})-algebra, and Â ∈ QAlg(Σ, {ϕ}):

X T̂Σ,{ϕ}X

Â

η̂
Σ,{ϕ}
X

ι̂
h (3.43)

We can further decompose (3.43) with another factorization.

X T̂ΣX T̂Σ,{ϕ}X

Â

η̂Σ,∅
X

η̂
Σ,{ϕ}
X

ι̂

ϕ•

ι̂♯
h

(a)

(b)
(c)

(3.44)

The triangles (a) and (b) commute by definition of ϕ• and ι̂♯ respectively. Also, ι̂♯ is
the unique homomorphism making (b) commute. Since the triangle combining (a),
(b), and (c) commutes by (3.43), the composite h ◦ ϕ• also makes (b) commute, so it
is equal to ι̂♯, i.e. (c) commutes. This gives the desired factorization ι̂♯ = h ◦ ϕ•, thus
Â satisfies ϕ•.

(⇐) Suppose Â satisfies ϕ•, we consider two cases separately. If ϕ = X ⊢ s = t,
then we have the following derivation for any ι̂ : X→ A:

X ⊢ s = t ∈ QTh({ϕ}) =⇒ [s]{ϕ} = [t]{ϕ} definition of [−]{ϕ}
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=⇒ ϕ•[s]∅ = ϕ•[t]∅ by (3.42)

=⇒ ι̂♯[s]∅ = ι̂♯[t]∅ by ι̂♯ = h ◦ ϕ•

=⇒ JsKι̂
A = JtKι̂

A. by (c) in (3.41)

Thus, Â ⊨ ϕ. If ϕ = X ⊢ s =ε t, we have almost the same derivation for all ι̂ : X→ A.

X ⊢ s =ε t ∈ QTh({ϕ}) =⇒ d{ϕ}([s]{ϕ}, [t]{ϕ}) ≤ ε by (3.14)

=⇒ d{ϕ}(ϕ
•[s]∅, ϕ•[t]∅) ≤ ε by (3.42)

=⇒ dA{ϕ}(h(ϕ•[s]∅), h(ϕ•[t]∅)) ≤ ε h is nonexpansive

=⇒ dA(ι̂
♯[s]∅, ι̂♯[t]∅) ≤ ε by ι̂♯ = h ◦ ϕ•

=⇒ dA(JsKι̂
A, JtKι̂

A). by (c) in (3.41)

Thus, Â ⊨ ϕ.
Now, given a class Ê of quantitative equations, Â satisfies Ê if and only if it

satisfies Ê• = {ϕ• | ϕ ∈ Ê}.

Let us give an example showcasing why surjective homomorphisms were the
right choice rather than homomorphisms with underlying epimorphism in GMet.

Example 3.64. Let GMet be the category Met of metric spaces and Σ be empty,
so QAlg(Σ) = Met. We consider the epimorphism e : T̂∅Q = Q → R that is
the injection of the rationals into the reals (with the Euclidean metric).433 It is an 433 Note that T̂∅ is the identity functor on Met.

epimorphism because nonexpansive maps out of R are determined by their value
on Q (see Footnote 323). The subcategory of quantitative algebras that satisfy e is
not closed under subalgebras (in this case, they are subspaces) because R satisfies e
but Q does not. Hence, this subcategory is not a quantitative variety.

To show Q does not satisfy e, take the identity assignment ι̂ : Q→ Q, and note
that ι̂♯ = ι̂ does not factor through e because any nonexpansive (hence continuous)
function R→ Q is constant.434 434 For an interval [a, b] ⊆ R, the extreme and inter-

mediate value theorems imply that the image of any
continuous function f : [a, b] → R is a closed inter-
val. Hence, if f is valued in the rationals, the image
of f can only be a single rational number, i.e. f is
constant.

To show R satisfies e, let ι̂ : Q → R be a nonexpansive assignment. We extend
ι̂ to h : R → R in the canonical way setting h(r) = limn ι̂(rn), where {rn}n∈N is a
sequence of rationals converging to r. Note that h extends ι̂ because if r ∈ Q, h(r) =
limn ι̂(r) = ι̂(r). The choice of sequence does not matter because ι̂ is nonexpansive
hence continuous. It also follows from nonexpansiveness of ι̂ : Q→ R and continuity
of the Euclidean distance that d(limn ι̂(rn), limn ι̂(r′n)) ≤ d(limnrn, limnr′n), hence the
extension h : R→ R is also nonexpansive. We obtain the factorization ι̂ = ι̂♯ = h ◦ e.

With the equivalence between quantitative equations and abstract quantitative
equations, we can use abstract results from the literature to prove the variety theorem
for GMet = LSpa and Σ = ∅.

Theorem 3.65. A subcategory K of LSpa is closed under subspaces (up to isomorphisms)
and products if and only if it is a quantitative variety QAlg(∅, Ê).

Proof sketch.435 We already showed the right-to-left direction in Theorem 2.59, noting 435 We give only a sketch because we use some results
that would require more background to fully detail
the proofs. Nevertheless, we provide all the necessary
steps.

that by definition, QAlg(∅, Ê) is a category GMet.
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For the converse, we first need to know that LSpa has a factorization system
(E ,M) [JMU24, §2] (also called factorization structure in [AHS06, Definition 14.1]).
This is shown in [JMU24, Lemma 3.16], where

E = {e : A→ B ∈ LSpa | e is surjective} and

M = {i : A→ B ∈ LSpa | i is an isometric embedding}.

Then, we use [AHS06, Theorem 16.8] to show that, since K is closed under subspaces
(up to isomorphisms)436 and products, it must be E -reflective [AHS06, Definition 436 This is the same as being closed under M-

subobjects.
16.1]. Next, by [AHS06, Theorem 16.14], K is E -implicational [AHS06, Definition
16.12].

Unrolling the definition of E -implicational and translating to our terminology, it
means there is a class of abstract quantitative equations Ê such that Â ∈ K if and
only if Â satisfies Ê. In this step, we use the fact that T̂∅ is the identity functor, it
means that

1. any surjective nonexpansive map437 is an abstract quantitative equation, and 437 i.e. any implication in E following [AHS06]

2. any nonexpansive assignment is also a homomorphism (for the empty signature),
hence satisfaction for abstract quantitative equations coincides with satisfaction of
implications as defined in [AHS06, Definition 16.12.(2)].

Finally, by Proposition 3.62, K is a quantitative variety QAlg(∅, Ê◦).

3.3 Quantitative Equational Logic

It is now time to introduce quantitative equational logic (QEL), which you can think
of as both a generalization and an extension of equational logic. It is a generalization
because it is parametrized by a complete lattice L, and when instantiating L =

1, we get back equational logic as we will explain in Example 3.70. It is an
extension because all the rules of equational logic are valid in QEL when replacing the
contexts with discrete spaces as we will explain in Example 3.71. Figure 3.1 displays
the inference rules of quantitative equational logic. The notion of derivation is
straightforwardly adapted from Definition 1.53, the crucial difference is that proof
trees can now be infinitely branching.438 438 This is necessary due to the rules Sub, SubQ, and

Cont, which can have infinitely many quantitative
equations as hypotheses.

Given a class of quantitative equations Ê, we denote by QTh′(Ê) the class of
quantitative equations that can be proven from Ê in quantitative equational logic,
in other words, ϕ ∈ QTh′(Ê) if and only if there is a derivation of ϕ in QEL with
axioms Ê.

Our goal now is to prove that QTh′(Ê) = QTh(Ê). We say that QEL is sound
and complete for (Σ, Ê)-algebras. Less concisely, soundness means that whenever
QEL proves an equation ϕ with axioms Ê, ϕ is satisfied by all (Σ, Ê)-algebras, and
completeness says that whenever an equation ϕ is satisfied by all (Σ, Ê)-algebras,
there is a derivation of ϕ in QEL with axioms Ê.

Just like for equational logic, all the rules in Figure 3.1 are sound for any fixed
quantitative algebra meaning that if Â satisfies the equations on top of a rule, it must
satisfy the conclusion of that rule. Let us explain the rules as we prove soundness.
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ReflX ⊢ t = t
X ⊢ s = t SymmX ⊢ t = s

X ⊢ s = t X ⊢ t = u TransX ⊢ s = u

op : n ∈ Σ ∀1 ≤ i ≤ n, X ⊢ si = ti Cong

X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

σ : Y → TΣX Y ⊢ s = t ∀y, y′ ∈ Y, X ⊢ σ(y) =dY(y,y′) σ(y′)
Sub

X ⊢ σ∗(s) = σ∗(t)

TopX ⊢ s =⊤ t
dX(x, x′) = ε

Vars

X ⊢ x =ε x′
X ⊢ s =ε t ε ≤ ε′

MonX ⊢ s =ε′ t

∀i, X ⊢ s =εi t ε = infi εi
ContX ⊢ s =ε t

ϕ ∈ ÊGMet
GMet

ϕ

X ⊢ s = t X ⊢ s =ε u
CompLX ⊢ t =ε u

X ⊢ s = t X ⊢ u =ε s
CompRX ⊢ u =ε t

σ : Y → TΣX Y ⊢ s =ε t ∀y, y′ ∈ Y, X ⊢ σ(y) =dY(y,y′) σ(y′)
SubQ

X ⊢ σ∗(s) =ε σ∗(t)

Figure 3.1: Rules of quantitative equational logic over
the signature Σ and the complete lattice L, where X
and Y can be any L-space, s, t, u, si and ti can be
any term in TΣX, and ε, ε′ and εi range over L. As
indicated in the premises of the rules Cong, Sub,
and SubQ, they can be instantiated for any n-ary
operation symbol and for any function σ respectively.

The first four rules say that equality is an equivalence relation that is preserved
by the operations, we showed they were sound in Lemmas 3.28–3.31. More formally,
we can define (for any X) a binary relation ≡′

Ê
on Σ-terms439 that contains the pair 439 Again, we omit the L-space X from the notation.

(s, t) whenever X ⊢ s = t can be proven in QEL (c.f. (3.13)): for any s, t ∈ TΣX,

s ≡′Ê t⇐⇒ X ⊢ s = t ∈ QTh′(Ê). (3.45)

Then, Refl, Symm, Trans, and Cong make ≡′
Ê

a congruence relation.

Lemma 3.66. For any L-space X, the relation ≡′
Ê

is reflexive, symmetric, transitive, and for
any op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,440 440 i.e. ≡′Ê is a congruence on the Σ-algebra TΣX

defined in Remark 1.24.
∀1 ≤ i ≤ n, si ≡′Ê ti =⇒ op(s1, . . . , sn) ≡′Ê op(t1, . . . , tn). (3.46)

We denote with *−+Ê the canonical quotient map TΣX → TΣX/≡′
Ê

.
Skipping Sub for now, the Top rule says that ⊤ is an upper bound for all distances

since it is the maximum element of L. We showed it is sound in Lemma 3.34.
The Vars rule is, in a sense, the quantitative version of Refl. It reflects the fact

that assignments of variables are nonexpansive with respect to the distance in the
context. Indeed, ι̂ : X→ A is nonexpansive precisely when, for all x, x′ ∈ X,

dA(ι̂(x), ι̂(x′)) = dA(JxKι̂
A, Jx′Kι̂

A) ≤ dX(x, x′).

How is this related to Refl? Letting t = x ∈ X, Refl says that for any assignment
ι̂ : X → A, ι̂(x) = ι̂(x). This seems trivial, but it hides a deeper fact that the
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assignment must be deterministic (a functional relation) as it cannot assign two
different values to the same input.441 So just like Refl imposes the constraint of 441 A similar thing happens for Cong which says

that the interpretations of operation are deterministic
(both in equational logic and QEL). In [MPP16], the
logic has a rule NExp which morally says that the
interpretations of operations are nonexpansive too,
i.e. NExp is to Cong what Vars is to Refl. We said
more on our choice to omit NExp in §0.3.

determinism on assignments, Vars imposes nonexpansiveness. We showed Vars is
sound in Lemma 3.35.

The rules Mon and Cont should remind you of the definition of L-structures
(Definition 2.19). Very briefly, they ensure that equipping the set of terms over X
with the relations RX

ε ⊆ TΣX× TΣX defined by

s RX
ε t⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê), (3.47)

yields an L-structure.442 We showed they are sound in Lemmas 3.36 and 3.37. Note 442 Monotonicity and continuity hold by Mon and
Cont respectively. This is where the rules’ names
come from. These rules were given several names in
the literature, like Max instead of Mon, and Arch

instead of Cont.

that Top is an instance of Cont with the empty index set (recall that ⊤ = inf ∅).
The soundness of GMet is a consequence of (3.4) and the definition of quantitative

algebra which requires the underlying space to satisfy all the equations in ÊGMet.
CompL and CompR guarantee that the L-structure we just defined factors through

the quotient TΣX/≡′
Ê

.443 We showed they are sound in Lemmas 3.32 and 3.33. In 443 i.e. the following relation is well-defined:

*s+Ê RX
ε *t+Ê ⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê), (3.48)the presence of a symmetry axiom, only one of them would be sufficient.

Finally, we get to the substitutions Sub and SubQ, they are the same except for
replacing = with =ε. Recall that the substitution rule in equational logic is

σ : Y → TΣX Y ⊢ s = t
X ⊢ σ∗(s) = σ∗(t)

,

which morally means that variables in the context Y are universally quantified.
In Sub and SubQ, there is an additional condition on σ which arises because the
variables in Y are not universally quantified: an assignment Y → A is considered in
the definition of satisfaction only if it is nonexpansive from Y to A.444 444 Put differently, the variables are universally quan-

tified subject to certain constraints on their distances
relative to the context Y.

We proved Sub and SubQ are sound in Lemma 3.42, and we can compare with
the proof of soundness of Sub in equational logic (Lemma 1.45) to find the same
key argument: the interpretation of σ∗(t) under some assignment ι̂ is equal to the
interpretation of t under the assignment ι̂σ sending y to the interpretation of σ(y)
under ι̂. Since satisfaction for quantitative algebras only deals with nonexpansive
assignments, we needed to check that ι̂σ is nonexpansive whenever ι̂ is, and this was
true thanks to the conditions on σ. Let us give an illustrative example of why the
extra conditions are necessary.

Example 3.67. We work over L = [0, 1], GMet = Met, Σ = ∅, and Ê = ∅. Let
Y = {y0, y1} with dY(y0, y1) = dY(y1, y0) = 1

2 and X = {x0, x1} with dX(x0, x1) =

dX(x1, x0) = 1.445 We consider the algebra Â whose underlying space is A = X 445 We can see both Y and X as subspace of [0, 1] with
the Euclidean metric, where e.g. y0 is embedded as
0 and y1 as 1

2 , and x0 is embedded as 0 and x1 as 1.
(since Σ is empty that is the only data required to define an algebra). It satisfies
the equation Y ⊢ y0 = y1 because any nonexpansive assignment of Y into A must
identify y0 and y1 (there are no distinct points with distance less than 1

2 ).
Take the substitution σ : Y → TΣX defined by y0 7→ x0 and y1 7→ x1, we can

check Â does not satisfy X ⊢ σ∗(y0) = σ∗(y1).446 This means that σ cannot satisfy 446 That equation is X ⊢ x0 = x1 and with the assign-
ment idX : X→ X = A, we have

Jx0K
idX
A = x0 ̸= x1 = Jx1K

idX
A .

the extra conditions in Sub. Indeed, Â does not satisfy X ⊢ σ(y0) = 1
2

σ(y1) (take the
assignment idX again).
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Remark 3.68. The substitution rule in the original paper [MPP16, (Subst) in Definition
2.1] is

{si =εi ti} ⊢ s =ε t
{σ∗(si) =εi σ∗(ti)} ⊢ σ∗(s) =ε σ∗(t)

.

This cannot easily be translated into our framework because it has to work with
quantitative inferences that are not basic (Remark 3.11). Indeed, even if the top
inference is basic (i.e. each si and ti are variables), the bottom one will not be basic
when σ sends these variables to complex terms. In this sense, we can say that our
quantitative equational logic is closed under basic quantitative inferences,447 while 447 Recall that basic quantitative inferences corre-

spond to quantitative equations.theirs is not.
This is an advantage of our presentation with respect to its comparison with

equational logic. Indeed, non-basic quantitative inferences are a better analog for
implications in implicational logic [Wec92, §3.3, Definition 1]. For example, you can
model cancellative monoids, with something like x + y =0 x + z ⊢ y =0 z, and they
are a canonical example of structures not captured by universal algebra.

By proving each rule is sound, we have shown that QEL is sound.

Theorem 3.69 (Soundness). If ϕ ∈ QTh′(Ê), then ϕ ∈ QTh(Ê).

Let us explain how to recover equational logic from quantitative equational logic
in two different ways.

Example 3.70 (Recovering equational logic I). In Example 2.20, we saw that 1Spa is
the category Set. Here we show that QEL over the complete lattice 1 with ÊGMet = ∅
is the same thing as equational logic. First, what is a quantitative equation ϕ over 1?
Since the context is a 1-space, it is just a set,448 and furthermore, since 1 contains a 448 In other words, X and X are the same thing.

single element (which we call ⊤ here, but it is equal to ⊥) ϕ is either

X ⊢ s = t or X ⊢ s =⊤ t.

Now, the second equation always belongs to QTh′(Ê) for any Ê by Top. Therefore,
the rules whose conclusions have an equation with a quantity (all but the first five)
can be replaced by Top. The remaining rules are exactly those of equational logic
except the substitution rule which has some additional constraints. The latter require
proving only equations with quantities which we can always do with Top.

Thus, we can infer that for any Ê, the equations without quantities in QTh′(Ê) are
exactly the equations in Th′(E), where E contains the quantitative equations without
quantities of Ê seen as equations.449 449 i.e. E = {X ⊢ s = t | X ⊢ s = t ∈ Ê}

If we had naively generalized the original logic of [MPP16] by replacing [0, ∞] with
an arbitrary complete lattice, this instantiation to 1 would not have been equivalent
to equational logic. Indeed, as we explained in §0.3, the judgments of [MPP16],
called quantitative inferences, are more general than quantitative equations, and
they can express properties which cannot be expressed with equations.450 450 The standard example of left-cancellability of a

binary operation would be expressed with the quan-
titative inference

x · y = x · z ⊢ y = z,

but it cannot be expressed with equations. Quantita-
tive inferences are better quantitative versions of the
implications in [Wec92, §3.3, Definition 1].

Example 3.71 (Recovering equational logic II). There is a less trivial way to see that
equational reasoning faithfully embeds into quantitative equational reasoning.
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We are back to the general case of L being an arbitrary complete lattice and ÊGMet

being possibly non-empty. Let E be a class of classical equations, and let Ê contain
every equation in E seen as a quantitative equation with its context being the discrete
space, i.e.

Ê = {X⊤ ⊢ s = t | X ⊢ s = t ∈ E}. (3.49)

Claim. If X ⊢ s = t ∈ Th′(E), then X⊤ ⊢ s = t ∈ QTh′(Ê).451 451 Depending on the equations inside ÊGMet, it is
possible that QTh′(Ê) contains more equations with-
out quantities than Th′(E). Nevertheless, we show
that everything you can prove in equational logic can
also be proven in QEL.

Proof 1. You can show by induction that a derivation of X ⊢ s = t in equational
logic with axioms E can be transformed into a derivation of X⊤ ⊢ s = t in QEL with
axioms Ê. The base cases are handled by the definition of Ê and the rule Refl in
QEL instantiated with the discrete spaces which perfectly emulates the rule Refl in
equational logic.

For the inductive step, the rules Symm, Trans, and Cong in equational logic all
have perfect counterparts in QEL. The substitution rule needs a bit more work. If
the last rule in the derivation in equational logic is

σ : Y → TΣX Y ⊢ s = t
Sub

X ⊢ σ∗(s) = σ∗(t)
,

then by induction hypothesis, there is a derivation of Y⊤ ⊢ s = t in QEL. We obtain
the following derivation noting that for all y, y′ ∈ Y, d⊤(y, y′) = ⊤.

σ : Y → TΣX
I.H.

Y⊤ ⊢ s = t
Top∀y, y′ ∈ Y, X⊤ ⊢ σ(y) =d⊤(y,y′) σ(y′)
Sub

X⊤ ⊢ σ∗(s) = σ∗(t)

Proof 2. The proof above reasoning on derivations is useful to get familiar with QEL,
but there is a faster semantic proof that relies on completeness. By soundness and
completeness,452 it is enough to prove that if X ⊢ s = t ∈ Th(E), then X⊤ ⊢ s = t ∈ 452 Of both equational logic (Theorems 1.55 and 1.60)

and QEL (Theorems 3.69 and 3.76).QTh(Ê). This follows from the equivalence (3.15) (which was easy to prove):

Â ⊨ Ê
(3.15)⇐⇒ A ⊨ E

(1.21)
=⇒ A ⊨ X ⊢ s = t

(3.15)⇐⇒ Â ⊨ X⊤ ⊢ s = t.

This second proof also points to a stronger version of the claim that we state as a
lemma for future use.

Lemma 3.72. Let E be a class of classical equations and Ê be defined as in (3.49). If
X ⊢ s = t ∈ Th′(E), then, for any L-space X with carrier X, X ⊢ s = t ∈ QTh′(Ê).453 453 Follow the second proof above but instead of the

second use of (3.15), use Lemma 3.40. (This requires
assuming QTh(Ê) = QTh′(Ê) which we prove soon.)Let us get back to our goal of showing QEL is complete. We follow the proof

sketch of completeness for equational logic.454 We define a quantitative algebra 454 Our proof of completeness for the logic in
[MSV22] seems more complex (in my opinion), but
it morally follows the same sketch. It is obfuscated
however by the fact that [MSV22] did not deal with
contexts, instead we were using what we now call
syntactic sugar to describe quantitative equations.

exactly like T̂X but using the equality relation and L-relation induced by QTh′(Ê)
instead of QTh(Ê), and then we show it satisfies Ê which, by construction, will
imply QTh(Ê) ⊆ QTh′(Ê).
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Definition 3.73 (Quantitative term algebra, syntactically). The new quantitative term
algebra for (Σ, Ê) on X is the quantitative Σ-algebra whose underlying space is
TΣX/≡′

Ê
equipped with the L-relation corresponding to the L-structure defined in

(3.48),455 and whose interpretation of op : n ∈ Σ is defined by456 455 Explicitly, it is the L-relation d′Ê that satisfies

d′Ê(*s+Ê, *t+Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê).
(3.50)

456 This is well-defined (i.e. invariant under change
of representative) by (3.46).

JopK
T̂′X(*t1+Ê, . . . , *tn+Ê) = *op(t1, . . . , tn)+Ê. (3.51)

We denote this algebra by T̂′Σ,ÊX or simply T̂′X.

We will prove this alternative definition of the term algebra coincides with T̂X.
First, we have to show that T̂′X belongs to QAlg(Σ, Ê) like we did for T̂X in
Proposition 3.56, and we state a technical lemma before that.

Lemma 3.74. Let ι : Y → TΣX/≡′E be any assignment. For any function σ : Y → TΣX
satisfying *σ(y)+Ê = ι(y) for all y ∈ Y, we have J−Kι

T̂′X
= *σ∗(−)+Ê.457 457 The proof goes exactly as in the classical case

(Lemma 1.58). We do not even need to ask ι to
be nonexpansive, but we will use the result with a
nonexpansive assignment.Proposition 3.75. For any space X, T̂′X satisfies all the equations in Ê.

Proof. Let Y ⊢ s = t (resp. Y ⊢ s =ε t) belong to Ê and ι̂ : Y → (TΣX/≡′
Ê

, d′
Ê
) be a

nonexpansive assignment. By the axiom of choice,458 there is a function σ : Y → TΣX 458 Choice implies the quotient map *−+Ê has a right
inverse r : TΣX/≡′Ê → TΣX, and we set σ = r ◦ ι̂.satisfying *σ(y)+Ê = ι̂(y) for all y ∈ Y. Thanks to Lemma 3.74, it is enough to show

*σ∗(s)+Ê = *σ∗(t)+Ê (resp. d′
Ê
(*σ∗(s)+Ê, *σ∗(t)+Ê) ≤ ε).459 459 By Lemma 3.74, it implies

JsKι̂
T̂′X = *σ∗(s)+Ê = *σ∗(t)+Ê = JtKι

T̂′X ,

resp. d′Ê(JsKι̂
T̂′X, JtKι̂

T̂′X) = d′Ê(*σ∗(s)+Ê, *σ∗(t)+Ê) ≤ ε

and since ι̂ was arbitrary, we conclude that T̂′X satis-
fies Y ⊢ s = t (resp. Y ⊢ s =ε t).

Equivalently, by definition of *−+Ê and QTh′(Ê), we can just exhibit a derivation
of X ⊢ σ∗(s) = σ∗(t) (resp. X ⊢ σ∗(s) =ε σ∗(t)) in QEL with axioms Ê. That equation
can be proven with the Sub (resp. SubQ) rule instantiated with σ : Y → TΣX and
the equation Y ⊢ s = t (resp. Y ⊢ s =ε) which is an axiom, but we need derivations
showing σ satisfies the side conditions of the substitution rules. This follows from
nonexpansiveness of ι̂ because for any y, y′ ∈ Y, we know that

dÊ(*σ(y)+Ê, *σ(y)+Ê) = dÊ(ι̂(y), ι̂(y′)) ≤ dY(y, y′),

which means by (3.50) that X ⊢ σ(y) =dY(y,y′) σ(y) belongs to QTh′(Ê).

Completeness of quantitative equational logic readily follows.

Theorem 3.76 (Completeness). If ϕ ∈ QTh(Ê), then ϕ ∈ QTh′(Ê).

Proof. Let ϕ ∈ QTh(Ê) and X be its context. By Proposition 3.75 and definition of
QTh(Ê), we know that T̂′X ⊨ ϕ. In particular, T̂′X satisfies ϕ under the assignment

ι̂ = X
ηΣ

X−→ TΣX
*−+Ê−−−→ TΣX/≡′Ê,

which is nonexpansive by Vars.460 460 Explicitly, Vars means X ⊢ x =dX(x,x′) x′ belongs
to QTh′(Ê), hence, (3.50) implies

d′Ê(*x+Ê, *x′+Ê) ≤ dX(x, x′).

Moreover with σ = ηΣ
X, we can show σ satisfies the hypothesis of Lemma 3.74

and σ∗ = idTΣX ,461 thus we conclude

461 We defined ι̂ precisely to have *ηΣ
X(x)+Ê = ι̂(x).

To show σ∗ = ηΣ
X
∗ is the identity, use (1.38) and the

fact that µΣ · ηΣTΣ = 1TΣ (it holds by definition (1.7)).

• if ϕ = X ⊢ s = t: *s+Ê = JsKι̂
T̂′X

= JtKι̂
T̂′X

= *t+Ê, and

• if ϕ = X ⊢ s =ε t: d′
Ê
(*s+Ê, *t+Ê) = d′

Ê
(JsKι̂

T̂′X
, JtKι̂

T̂′X
) ≤ ε.
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By definition of ≡′
Ê

(3.45) and d′
Ê

(3.50), this implies X ⊢ s = t (resp. X ⊢ s =ε t)
belongs to QTh′(Ê).

Note that because T̂X and T̂′X were defined in the same way in terms of QTh(Ê)
and QTh′(Ê) respectively, and since we have proven the latter to be equal, we obtain
that T̂X and T̂′X are the same quantitative algebra. In the sequel, we will work with
T̂X mostly, but we may use the facts that s ≡Ê t (resp. dÊ(s, t) ≤ ε) if and only if
there is a derivation of X ⊢ s = t (resp. X ⊢ s =ε t) in QEL.462 462 i.e. when proving that an equation holds in some

theory QTh(Ê), we can either use the rules of QEL or
the several lemmas from §3.2 which are the semantic
counterparts to the inference rules.

Remark 3.77. Mirroring Remark 1.61, we would like to say that the axiom of choice
was not necessary in the proofs above. Unfortunately, this situation is more delicate,
and I do not know for sure that we can avoid using choice (although I expect we
can).

At first, you might think that since terms are still finite, we can still restrict the
context to the free variables which is finite. Unfortunately, even if x ∈ FV{s, t}
and y /∈ FV{s, t}, it is possible that the distance between x and y in the context
is necessary to state the right property. Here is an example that we carry with
GMet = [0, 1]Spa, Σ = ∅, and Ê defining discrete metrics:463 463 When dA(a, b) is not 1, it must be that a = b

by the first set of equations, by the second set, it
must be that dA(a, b) = 0. Under such constraints A
must be the discrete metric on A that we described
in Example 3.59, so QAlg(∅, Ê) is the category of
discrete metrics.

Ê = {x =ε y ⊢ x = y | 1 ̸= ε ∈ L} ∪ {x = y ⊢ x =0 y}.

Let X = {x, z} and Y = {x, y, z} with the following distances (X is a subspace of Y):

x y z
1
2

0

1
2

0 0

The equation Y ⊢ x = z belongs to QTh(Ê). Indeed, if A ⊨ Ê, then dA(a, b) ≤ 1
2

implies a = b, so any nonexpansive assignment ι̂ : Y → A must identify x and y,
and y and z, hence ι̂(x) = ι̂(z). However, the equation X ⊢ x = z is not in QTh(Ê)
because you can have dA(ι̂(x), ι̂(z)) ≤ 1 without ι̂(x) = ι̂(z).

This shows that some variables in the context which are not used in the terms
of the equation (in this instance y) might still be important. One may still wonder
whether it is possible to restrict the contexts to be finite or countable.464 I do not 464 i.e. for any equation ϕ, is there a set of equations

Êϕ with finite (or countable) contexts such that

Â ⊨ ϕ⇐⇒ Â ⊨ Êϕ.

know if that is true, but I expect that countable contexts are enough and that finite
contexts are not.

In summary, while there can be an analog to the derivable Add rule in equational
logic,465 the obvious counterpart to the Del rule is not even sound. Recalling 465 When adding a variable y to a context X, you put

y at distance ⊤ from all other variables.that Add and Del were both derivable by using Sub in equational logic, this also
explains the need for additional premises in the Sub and SubQ rules of quantitative
equational logic (c.f. Example 3.67).

Let us highlight one last feature of quantitative equational logic: the rule GMet

defining what kind of generalized metric spaces are considered is independent of
all the other rules.466 As a consequence, and we give more details in [MSV23, §8], 466 Although it was less explicit because only Met

was considered, this was already a feature of the
logic in [MPP16].

you can choose to work over LSpa all the time and add the equations in ÊGMet as
axioms in Ê anytime you wish to restrict to algebras whose carriers are generalized
metric spaces. Written a bit ambiguously,467 467 What we really mean is that on the left, QAlg

and QTh are the operators we described with the
parameter GMet built in, and on the right, they are
the same operators instantiated with LSpa instead.



universal quantitative algebra 125

QAlg(Σ, Ê) = QAlg(Σ, Ê ∪ ÊGMet) and QTh(Ê) = QTh(Ê ∪ ÊGMet). (3.52)

3.4 Quantitative Algebraic Presentations

In order to obtain a more categorical understanding of quantitative algebras, a first
step is to show that the functor T̂Σ,Ê : GMet→ GMet we constructed is a monad.

Proposition 3.78. The functor T̂Σ,Ê : GMet → GMet defines a monad on GMet with
unit η̂Σ,Ê and multiplication µ̂Σ,Ê. We call it the term monad for (Σ, Ê).

Proof. A first proof uses a standard result of category theory. Since we showed that
T̂Σ,ÊA is the free (Σ, Ê)-algebra on A for every space A (Theorem 3.57), we obtain a
monad sending A to the underlying space of T̂Σ,ÊA, i.e. T̂Σ,ÊA.468 468 The unit is automatically η̂Σ,Ê, but some computa-

tions are needed to show the multiplication is µ̂Σ,Ê.One could also follow the proof we gave for Set and explicitly show that η̂Σ,Ê and
µ̂Σ,Ê obey the laws for the unit and multiplication (most of the work having been
done earlier in this chapter).

What is arguably more important is that quantitative (Σ, Ê)-algebras on a space
A correspond to T̂Σ,Ê-algebras on A.469 We construct an isomorphism between 469 i.e. U : QAlg(Σ, Ê)→ GMet is monadic.

QAlg(Σ, Ê) and EM(T̂Σ,Ê) using the isomorphism P : Alg(Σ) ∼= EM(TΣ) : P−1 that
we defined in Proposition 1.70,470 the forgetful functor U : QAlg(Σ, Ê) → Alg(Σ) 470 Take the statement of Proposition 1.70 with E = ∅.

that sends Â to the underlying algebra A, and the functor EM(T̂Σ,Ê)→ EM(TΣ) we
define below.

Lemma 3.79. For any T̂Σ,Ê-algebra (A, α), the map Uα ◦ [−]Ê : TΣ A→ A is a TΣ-algebra.
Furthermore, this defines a functor U[−]Ê : EM(T̂Σ,Ê)→ EM(TΣ).

Proof. Apply Proposition 1.82 after checking that (U, [−]Ê) is a lax monad morphism
from TΣ to T̂Σ,Ê.471 471 The appropriate diagrams (1.61) and (1.62) com-

mute by (3.34) and a combination of (3.21) and (3.22).

Theorem 3.80. There is an isomorphism QAlg(Σ, Ê) ∼= EM(T̂Σ,Ê).

Proof. In the diagram below, we already have the functors drawn with solid arrows,
and we want to construct P̂ and P̂−1 drawn with dashed arrows before proving they
are inverses to each other.

QAlg(Σ, Ê) EM(T̂Σ,Ê) QAlg(Σ, Ê) EM(T̂Σ,Ê)

Alg(Σ) EM(TΣ) GMet

U U[−]Ê
P

P−1

P̂

P̂−1

P̂

U
U
T̂Σ,Ê

P̂−1

A (meaningful) sidequest for us is to make the diagrams above commute, namely, the
underlying TΣ-algebra of P̂Â should be PA and the underlying space of P̂Â should
be the underlying space of Â, and similarly for P̂−1. It turns out this completely
determines our functors, up to some quick checks. We will move between spaces
and their underlying sets without indicating it by U : GMet→ Set.
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Given Â ∈ QAlg(Σ, Ê), we look at the underlying Σ-algebra A, apply P to it to
get αA : TΣ A → A which sends a term t to its interpretation JtKA, and we need to
check that it factors through [−]Ê and a nonexpansive map α̂Â as in (3.53).

TΣ A A

T̂Σ,ÊA
[−]Ê α̂

Â

αA

(3.53)

First, αA is well-defined on terms modulo Ê because if s ≡Ê t, then Â satisfies
A ⊢ s = t ∈ QTh(Ê), and this in turn means (taking the assignment idA : A→ A):

αA(s) = JsKA = JsKidA
A = JtKidA

A = JtKA = αA(t).

Next, the factor we obtain α̂Â : TΣ A/≡Ê → A is nonexpansive from T̂Σ,ÊA to A.
Indeed, if dÊ([s]Ê, [t]Ê) ≤ ε, then Â satisfies A ⊢ s =ε t ∈ QTh(Ê), and this means:

dA(α̂Â[s]Ê, α̂Â[t]Ê) = dA(αA(s), αA(t)) = dA(JsKA, JtKA) = dA(JsKidA
A , JtKidA

A ) ≤ ε.

Finally, if h : Â → B̂ is a homomorphism, then by definition it is nonexpansive
A→ B and it commutes with J−KA and J−KB. The latter means it commutes with
αA and αB, which in turn means it commutes with α̂Â and α̂B̂ because [−]Ê is epic
(see (3.54)). We obtain our functor P̂ : QAlg(Σ, Ê)→ EM(T̂Σ,Ê).

TΣ A TΣ B

A B

T̂Σ,ÊA T̂Σ,ÊB

[−]Ê
α̂

Â

αA

TΣh

[−]Ê α̂
B̂

αB

T̂Σ,Êh

h
(3.54)

The top face of the prism in (3.54) commutes because
h is a homomorphism, the back face commutes by
(3.19), and the side faces commute by (3.53). Thus,
the bottom face commutes because [−]Ê is epic.

Given a T̂Σ,Ê-algebra α̂ : T̂Σ,ÊA→ A, we look at the TΣ-algebra

U[−]Ê α̂ = Uα̂ ◦ [−]Ê : TΣ A→ A

obtained via Lemma 3.79, then we apply P−1 to get the Σ-algebra (A, J−K
U[−]Ê α̂

).

Since A = (A, dA) is a generalized metric space (because α̂ belongs to EM(T̂Σ,Ê)),
we obtain a quantitative algebra Âα̂ = (A, J−K

U[−]Ê α̂
, dA), and we need to check it

satisfies the equations in Ê.
Recall from the proof of Proposition 1.70 that interpreting terms in Âα̂ is the same

thing as applying U[−]Ê α̂ = Uα̂ ◦ [−]Ê. Therefore, given any L-space X, nonexpansive
assignment ι̂ : X→ A, and t ∈ TΣX, we have

JtKι̂

U[−]Ê

(1.10)
= JTΣ ι̂(t)K

U[−]Ê
= α̂[TΣ ι̂(t)]Ê.

Now, if X ⊢ s = t ∈ Ê, we also have A ⊢ TΣ ι̂(s) = TΣ ι̂(t) ∈ QTh(Ê) by Lemma 3.38,
which means

JsKι̂

U[−]Ê
= α̂[TΣ ι̂(s)]Ê = α̂[TΣ ι̂(t)]Ê = JtKι̂

U[−]Ê
.

Similarly for X ⊢ s =ε t ∈ Ê, Lemma 3.38 means A ⊢ TΣ ι̂(s) =ε TΣ ι̂(t) ∈ QTh(Ê), so472 472 The first inequality holds by nonexpansiveness of
α̂ and the second by definition of dÊ (3.17).

dA(JsKι̂

U[−]Ê
, JtKι̂

U[−]Ê
) = dA(α̂[TΣ ι̂(s)]Ê, α̂[TΣ ι̂(t)]Ê) ≤ dÊ([TΣ ι̂(s)]Ê, [TΣ ι̂(t)]Ê) ≤ ε.

Finally, if h : (A, α̂)→ (B, β̂) is T̂Σ,Ê-homomorphism, then by definition, it is nonex-
pansive A → B, and by Lemma 3.79 it commutes with U[−]Ê α̂ and U[−]Ê β̂ which
means it is a homomorphism of the underlying algebras of Âα̂ and B̂

β̂
. We conclude

it is also a homomorphism between the quantitative algebras Âα̂ and B̂
β̂
.473 We 473 Recall that homomorphisms between quantitative

algebras are just nonexpansive homomorphisms.
obtain our functor P̂−1 : EM(T̂Σ,Ê)→ QAlg(Σ, Ê).

The diagrams at the start of the proof commute by construction, and P and P−1

are inverses by Proposition 1.70. That is enough to conclude that P̂ and P̂−1 are
also inverses. Indeed, by commutativity of the triangle, P̂ and P̂−1 preserve the
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underlying spaces, and if we fix a space A, the forgetful functors U and U[−]Ê are
injective.474 Then, still with a fixed space A, by commutativity of the square, we 474 For U, it is clear because it only forgets the L-

relation. For U[−]Ê , it is also not too hard to see, and
it is because U : GMet→ Set is faithful and [−]Ê is
epic.

have

UP̂−1P̂Â = P−1U[−]Ê P̂Â = P−1PUÂ = UÂ, and

U[−]Ê P̂P̂−1α̂ = PUP̂−1α̂ = PP−1U[−]Ê α̂ = U[−]Ê α̂,

with which we can conclude by injectivity of U and U[−]Ê .

Remark 3.81. We followed the proof of [MSV22] which does not rely on monadicity
theorems (c.f. Remark 1.71).475 To show that U : QAlg(Σ, Ê) → GMet is (strictly) 475 For a proof that does, see [MSV23, Theorems 6.3

and 8.11] where we showed strict monadicity for
[0, 1]-spaces first, then for generalized metric spaces
using (3.52), and the cancellability of monadicity
[Bou92, Proposition 5].

monadic, it would be enough to check that the isomorphism we constructed above
is the comparison functor.

This motivates the following definition.

Definition 3.82 (GMet presentation). Let M be a monad on GMet, a quantitative
algebraic presentation of M is signature Σ and a class of quantitative equations Ê
along with a monad isomorphism ρ : T̂Σ,Ê

∼= M. We also say M is presented by (Σ, Ê).
By Proposition 1.76 and Theorem 3.80, this is equivalent to having an isomorphism
EM(T̂Σ,Ê) ∼= QAlg(Σ, Ê) that commutes with the forgetful functors.

Example 3.83 (Hausdorff). We saw in Example 1.78 that the monad Pne on Set is
presented by the theory of semilattices. In this example,476 we define the theory of 476 We adapted it from [MPP16, §9.1].

quantitative semilattices and show it presents a monad which sends (X, d) to PneX
equipped with the Hausdorff distance d↑.

A quantitative semilattice is a semilattice (i.e. a (ΣS, ES)-algebra) equipped with
an L-relation such that the interpretation of the semilattice operation is nonexpansive
with respect to the product distance. Equivalently, it is a quantitative ΣS-algebra
that satisfies ÊS which contains:477 477 The first three equations are those of ES seen with

the discrete context as in Example 3.71. The last
row is (3.6) which enforces the nonexpansiveness
property of J⊕K.

x ⊢ x = x⊕ x

x, y ⊢ x⊕ y = y⊕ x

x, y, z ⊢ x⊕ (y⊕ z) = (x⊕ y)⊕ z

∀ε, ε′ ∈ L, x =ε y, x′ =ε′ y′ ⊢ x⊕ x′ =max{ε,ε′} y⊕ y′

We can give an alternative description of the free quantitative semilattice.

Lemma 3.84. The free quantitative semilattice on (X, d) is P̂(X,d) = (PneX,∪, d↑).478 478 This corresponds to [MPP16, Theorem 9.3].

Proof. We know from Example 1.78 that (PneX,∪) is the free semilattice and hence
satisfies ES, thus by Lemma 3.40, P̂(X,d) satisfies the first three equations above. We
already mentioned that P̂(X,d) satisfies (3.6) because it satisfies (3.1).479 Thus, P̂(X,d)

479 We did not give a proof for (3.1).

is a quantitative semilattice.
Let Â be a quantitative semilattice and f : (X, d)→ A be a nonexpansive map. By

Lemma 3.41, A is a semilattice, hence the universal property of the free semilattice
gives a unique homomorphism of (ΣS, ES)-algebras f ∗ : (PneX,∪) → A such that
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f ∗({x}) = f (x) for all x ∈ X. It remains to show that f ∗ is a nonexpansive map
(PneX, d↑)→ A.480 480 Actually, you also have to prove that η : (X, d)→

(PneX, d↑) sending x to {x} is nonexpansive. This is
easy to check.

Let S, T ∈ PneX, C ∈ Pne(X × X) be a coupling for S and T, and suppose C is
ordered with C = {c1, . . . , cn}. In particular, we have S = π1(c1) ∪ · · · ∪ π1(cn) and
T = π2(c1) ∪ · · · ∪ π2(cn). Since f ∗ is a homomorphism of semilattices, this implies

f ∗(S) = f (π1(c1))J⊕KA · · · J⊕KA f (π1(cn)), and

f ∗(T) = f (π2(c1))J⊕KA · · · J⊕KA f (π2(cn)).

Now, we can use the fact that Â satisfies the equations in (3.6) n times in the first
step of the following derivation.

dA( f ∗(S), f ∗(T)) ≤ max
1≤i≤n

dA( f (π1(ci)), f (π2(ci))) by (3.6)

≤ max
1≤i≤n

d(π1(ci), π2(ci)) f nonexpansive

≤ d↓(S, T) definition of d↓

= d↑(S, T) Lemma 2.18

We conclude that f ∗ is a homomorphism between the quantitative algebras P̂(X,d)
and Â. The uniqueness follows from it being unique as a homomorphism of
semilattices and the faithfulness of U : QAlg(ΣS, ÊS)→ Alg(ΣS).

Since T̂(X, d) is also the free quantitative semilattice on (X, d) by Theorem 3.57 and
free objects are unique by Proposition 1.48, there is an isomorphism of quantitative
algebras ρ(X,d) : T̂(X, d) ∼= P̂(X,d). After some abstract categorical arguments we
do not reproduce, one finds that ρ is a monad isomorphism T̂ΣS ,ÊS

∼= P↑ne , where
P↑ne : GMet → GMet sends (X, d) to (PneX, d↑) and its unit and multiplication act
just like those of Pne.481 481 This monad is famous independently of quanti-

tative algebras, variations of it were studied in, e.g.
[ACT10, §4], [Tho12, §4], [BBKK18, Example 8.3],
and [DFM23, §6].

The second example of presentation is from [MPP16, §10.1].

Example 3.85 (Kantorovich). We saw in Example 1.79 that the monad D on Set
is presented by the theory of convex algebras. Let L = [0, ∞] and GMet = Met.
The theory of quantitative convex algebras is generated by ÊCA which contains the
equations of ECA seen as quantitative equations (as explained in Example 3.71) and
the quantitative equations for convexity (3.10).482 482 As a reminder, ÊCA contains

x ⊢ x = x +p x

x, y ⊢ x +p y = y +1−p x

x, y, z ⊢(x +p y) +q z = x +pq +(y + p(1−q)
1−pq

z)

x =ε y,x′ =ε′ y′ ⊢ x +p x′ =pε+pε′ y +p y′

Let (DX, J−KDX) be the free convex algebra, where +p is interpreted as convex
combination of distributions (1.60). Thanks to Lemma 3.40, we know that for any
metric d on X, we can equip DX with the Kantorovich distance dK and obtain a
quantitative algebra (DX, J−KDX , dK) that satisfies the equations of convex algebras
(seen with a discrete context). Moreover, with Example 3.14 we can infer that
(DX, J−KDX , dK) is a quantitative convex algebra (i.e. it also satisfies (3.10)). In
[MPP16, Theorem 10.5], the authors show that, along with the map ηDX : (X, d) →
(DX, dK) sending x to the Dirac distribution on x, it is the free quantitative convex
algebra on (X, d).
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We can conclude that (ΣCA, ÊCA) presents a monad DK : Met → Met which
sends (X, d) to (DX, dK) and whose unit and multiplication act just like those of the
Set monad D.483 483 This monad is famous independently of quanti-

tative algebras, variations of it were studied in, e.g.
[vB05, §5], [MMM12], [BBKK18, Example 8.4], and
[FP19].

Here is one last example.

Example 3.86 (Maybe). We saw in Example 1.74 that the maybe monad on Set is
presented by the theory of Σ = {p : 0} with no equations. Let us generalize this to the
maybe monad on GMet.484 We saw in Corollary 3.60 that QAlg(Σ, Ê1) ∼= 1/GMet, 484 It exists because GMet has a terminal object

(Proposition 2.35) and coproducts (Corollary 3.60).where Ê1 contains the single equation ⊢ p =ε p with ε being the self-distance of the
unique element in 1, are the same thing as objects in the coslice. This isomorphism
commutes with the forgetful functors to GMet,485 and we get that the monad T̂Σ,Ê1

485 The functor U : 1/GMet→ GMet sends the pair
(X, f : 1→ X) to X.obtained via the existence of free algebras is isomorphic to the monad −+ 1 which

is obtained via the existence of free objects in 1/GMet.486 486 You need to check that X + 1 is indeed the free
object on X in this coslice.

3.5 Lifting Presentations

Most examples of GMet presentations in the literature, e.g. [MPP16, MV20, MSV21,
MSV22], including Examples 3.83, 3.85, and 3.86, are built on top of a Set presenta-
tion. In summary, there is a monad M on Set with a known algebraic presentation
(Σ, E) (e.g. Pne and semilattices or D and convex algebras) and a lifting of every
space (X, d) to a space (MX, d̂). Then, a quantitative algebraic theory (Σ, Ê) over the
same signature is generated by counterparts to the equations in E as well as new
quantitative equations to model the liftings. Finally, it is shown how the theory ax-
iomatizes the lifting, namely, the GMet monad induced by the theory is isomorphic
to a monad whose action on objects is the assignment (X, d) 7→ (MX, d̂).

In this section, we prove Theorem 3.98 which makes this process more automatic
and gives necessary and sufficient conditions for when it can actually be done.
Throughout, we fix a monad (M, η, µ) on Set and an algebraic theory (Σ, E) present-
ing M via an isomorphism ρ : TΣ,E

∼= M. We first give multiple definitions to make
precise what we mean by lifting.

Definition 3.87 (Liftings). We have three different notions of lifting that we introduce
from weakest to strongest. The last one coincides with the liftings defined in [Bec69].

• A mere lifting of M to GMet is an assignment (X, dX) 7→ (MX, d̂X) defining a
generalized metric on MX for every generalized metric on X.487 487 The name lifting more commonly refers to what

we call functor lifting or monad lifting which require
more conditions than a mere lifting, hence the name
mere lifting.

• A functor lifting of M to GMet is a functor M̂ : GMet→ GMet that makes the
square below commute.

GMet GMet

Set Set

U

M

U

M̂

(3.55)

Note in particular that for every space X, the carrier of M̂X is MX, so we obtain a
mere lifting X 7→ M̂X. Furthermore, given a nonexpansive map f : X → Y, the
underlying function of M̂ f is M f , i.e. M f : M̂X→ M̂Y is nonexpansive.
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In fact, if we have a mere lifting (X, dX) 7→ (MX, d̂X) such that for every non-
expansive map f : X → Y, M f : (MX, d̂X) → (MY, d̂Y) is nonexpansive, we
automatically get a functor lifting M̂ whose action on objects is given by the
mere lifting.488 We conclude that functor liftings are just mere liftings with that 488 The action on morphisms is prescribed by (3.55),

namely, the underlying function of M̂ f is M f which
is nonexpansive by hypothesis, and since U is faith-
ful, that determines M̂ f .

additional condition.

• A monad lifting of M to GMet is a monad (M̂, η̂, µ̂) on GMet such that M̂ is
a functor lifting of M and furthermore Uη̂ = ηU and Uµ̂ = µU. These two
equations mean that the underlying functions of the unit and multiplication η̂X

and µ̂X are ηX and µX for any space X.489 In particular, the maps 489 In summary, the description of a monad M and
its monad lifting M̂ are exactly the same after forget-
ting about distances. In particular, the action of M̂
on morphisms does not depend on the distances at
the source or the target, and similarly, the unit and
multiplication maps do not depend on the distance
of the space.

ηX : X→ M̂X and µX : M̂M̂X→ M̂X

are nonexpansive for every X. In fact, since U is faithful, that completely deter-
mines η̂X and µ̂X, and we conclude as before that a monad lifting is just a mere
lifting with three additional conditions:

1. M f : (MX, d̂X)→ (MY, d̂Y) is nonexpansive if f : X→ Y is nonexpansive,

2. ηX : (X, dX)→ (MX, d̂X) is nonexpansive for every X, and

3. µX : (MMX, ̂̂dX)→ (MX, d̂X) is nonexpansive for every X.

In practice, when defining a monad lifting, we will define a mere lifting and check
Items 1–3. Let us give an example.

Example 3.88. Given an L-space (X, d), we define an L-relation d̂ on PneX as follows:
for any non-empty finite S, S′ ⊆ X,

d̂(S, S′) =


⊥ S = S′

d(x, y) S = {x} and S′ = {y}
⊤ otherwise

. (3.56)

Instantiating GMet with the category of L-spaces that satisfy reflexivity (x ⊢ x =⊥
x), (3.56) defines a mere lifting of Pne to GMet given by (X, d) 7→ (PneX, d̂).490 490 We need reflexivity to ensure the first and second

cases do not clash. You can also check that whenever
d is a metric space, d̂ is as well, so we get a mere
lifting of Pne to Met as well.

Viewing Pne as modelling nondeterminism, this lifting could model a system where
nondeterministic processes cannot be meaningfully compared (they are put at
maximum distance) unless the sets of possible outcomes are the same (distance is
minimal) or both processes are deterministic (distance is inherited from the distance
between the only possible outcomes).

We show this is a monad lifting of (Pne, η, µ),491 with Lemmas 3.89–3.91. 491 The unit and multiplication of Pne were defined in
Example 1.64.

Lemma 3.89. If f : (X, d)→ (Y, ∆) is nonexpansive, then so is the direct image function
Pne f : (PneX, d̂)→ (PneY, ∆̂).492 492 We write f (S) instead of Pne f (S) for better read-

ability.
Proof. Let S, S′ ∈ PneX. If S = S′, then f (S) = f (S′), so

∆̂( f (S), f (S′)) = ⊥ ≤ ⊥ = d̂(S, S′).

If S = {x} and S′ = {y}, then f (S) = { f (x)} and f (S′) = { f (y)}, so493 493 The inequality holds because f is nonexpansive.
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∆̂( f (S), f (S′)) = ∆( f (x), f (y)) ≤ d(x, y) = d̂(S, S′).

Otherwise, d̂(S, S′) = ⊤ and ∆̂( f (S), f (S′)) is always less or equal to ⊤.

Lemma 3.90. For any (X, d), the map ηX : (X, d)→ (PneX, d̂) is nonexpansive.

Proof. Recall that ηX(x) = {x}. For any x, y ∈ X, d̂({x}, {y}) = d(x, y), so ηX is
even an isometry.

Lemma 3.91. For any (X, d), the map µX : (PnePneX, ̂̂d)→ (PneX, d̂) is nonexpansive.

Proof. Recall that µX(F) = ∪F and let F, F′ ∈ PnePneX. The case F = F′ is dealt with
like in Lemma 3.89, it implies ∪F = ∪F′, hence the distances on both sides are ⊥. If
F = {S} and F′ = {S′}, ∪F = S and ∪F′ = S′, then

d̂(µX(F), µX(F′)) = d̂(S, S′) = ̂̂d({S}, {S′}).
Otherwise, ̂̂d(F, F′) = ⊤, so the inequality holds because d̂(µX(F), µX(F′)) is always
less or equal to ⊤.

Here is an example of a functor lifting that is not a monad lifting.

Example 3.92. The total variation distance is a metric defined on probability distri-
butions. For any X, we define tv : DX×DX → [0, 1] by, for any φ, ψ ∈ DX,494 494 Since φ and ψ have finite support, we can restrict

the quantification of the supremum to finite subsets
of X, or even to subsets of the union of the supports
of φ and ψ. Also, both φ(S) and ψ(S) are at most in
[0, 1], so tv(φ, ψ) also takes values in [0, 1].

tv(φ, ψ) = sup
S⊆X
|φ(S)− ψ(S)| .

Even though the assignment (X, d) 7→ (DX, tv) is a mere lifting of the monad D
to Met, namely, (DX, tv) is a metric whenever (X, d) is, it is not a monad lifting.
One can show that M f is nonexpansive whenever f is, so it is a functor lifting, and
even that the multiplication is always nonexpansive, but the unit is not because if
x ̸= y ∈ X are points at distance d(x, y) < 1, then tv(δx, δy) = 1 > d(x, y).

Many monads of interest on different GMet categories are monad liftings of Set
monads which have an algebraic presentation. We already mentioned the Hausdorff
and Kantorovich monad liftings in Examples 3.83 and 3.85, but there is also a
combination of the two: the Hausdorff–Kantorovich monad lifting of the convex
sets of distributions monad [MV20] to Met. In [MSV21], we further combined these
with the maybe monad on Met. Another example is the formal ball monad on
quasi-metric spaces [GL19] which is a monad lifting of a writer monad on Set. All
of these happen to have a quantitative algebraic presentation,495 and we will show 495 Goubault-Larrecq does not talk about quantitative

algebras in [GL19], but the quantitative writer monad
of [BMPP21, §4.3.2] has a presentation which can
easily be adapted to present the monad of [GL19].

that this is not a coincidence.
Given a monad lifting M̂, we know that it acts on sets just like M does, and that

can be described algebraically through the presentation ρ : TΣ,E
∼= M. This can help

to understand how M̂ acts on distances. For any space X, we see the distance d̂X on
MX as a distance d̂ on terms modulo E via the bijection ρX :496 496 Recall Proposition 2.49.

d̂([s]E, [t]E) = d̂X(ρX [s]E, ρX [t]E).
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Can we find some quantitative equations Ê that axiomatize d̂, i.e. such that dÊ and d̂
are isomorphic (uniformly for all X)?

First of all, for the distances to be isomorphic, they need to be on the same set,
namely, we need to have TΣX/≡E ∼= TΣX/≡Ê, or equivalently, s ≡E t⇐⇒ s ≡Ê t. At
once, this removes some options for which equations to add in Ê. For instance, we
cannot add X ⊢ s = t if X ⊢ s = t does not already belong to Th(E). Conversely, if
X ⊢ s = t ∈ Th(E), we need to ensure X ⊢ s = t belongs to QTh(Ê). We can do this
by adding X⊤ ⊢ s = t to Ê thanks to Example 3.71.

After that, we will have to add quantitative equations with quantities to axiomatize
d̂, but we have to be careful not to break the equivalence we just obtained between
≡E and ≡Ê. For instance, if GMet = Met, f : 1 ∈ Σ and E = ∅, then we cannot have
x = 1

2
y ⊢ fx =0 fy ∈ Ê, because using the equation x =0 y ⊢ x = y that defines Met,

we could conclude that x = 1
2

y ⊢ fx = fy belongs to QTh(Ê), which means fx ≡Ê fy

whenever dX(x, y) ≤ 1
2 while fx ̸≡E fy.

The relation between Ê and E seems to mimic our intuition about mere liftings.
We say that Ê extends E.

Definition 3.93 (Extension). Given a class E of equations over Σ and a class Ê of
quantitative equations over Σ, we say that Ê is an extension of E if for all X ∈ GMet
and s, t ∈ TΣX,

X ⊢ s = t ∈ Th(E)⇐⇒ X ⊢ s = t ∈ QTh(Ê). (3.57)

Remark 3.94. Let us make two delicate points on the quantification of X in (3.57).
First, it happens before the equivalence. This means that equalities497 that hold 497 This is not a formal term: by equalities that hold,

we mean which Σ-terms are in the same equivalence
class.

in TΣ,EX coincide with the equalities that hold in T̂Σ,ÊX for each X individually. In
particular, if X and X′ are spaces on the same set X, then the equalities that hold in
T̂Σ,ÊX and T̂Σ,ÊX′ coincide. This intuitively corresponds to the fact that the action of
T̂Σ,Ê does not depend on distances.

If instead of (3.57) we had the following equivalence with the quantification inside,

X ⊢ s = t ∈ Th(E)⇐⇒ ∀X ∈ GMet, X ⊢ s = t ∈ QTh(Ê),

then the equalities in TΣ,EX would be those that hold in all T̂Σ,ÊX (for all spaces X with
carrier X). In particular, T̂Σ,ÊX and T̂Σ,ÊX′ could have different equivalence classes.
That is not desirable when defining a mere lifting.

Second, even though the context of a quantitative equation can be any L-space,
X is only quantified over generalized metric spaces here. This implies that the
equivalence classes of T̂Σ,ÊX and T̂Σ,ÊX′ may be different if dX and d′X are two different
L-relations on X. This does not contradict our intuition about liftings because we
only care about the action of T̂Σ,Ê on L-spaces that belong to GMet.

For instance, let Σ = {f : 1}, E = ∅, Ê = ∅, and GMet be defined by the equation
x =⊥ y ⊢ x = x. If X = {x, y} and dX(x, y) = ⊥, then X ⊢ fx = fy belongs to QTh(Ê)
while fx ̸≡E fy.498 Still, it makes sense that Ê extend E since both have no equations. 498 Here is the derivation (the application of GMet

implicitly uses the fact that x =⊥ y ⊢ x = x is syntac-
tic sugar for X ⊢ x =⊥ y):

GMet

X ⊢ x = y
Cong

X ⊢ fx = fy

It turns out that extensions are stronger than mere liftings because we can show
the monad we constructed via terms modulo Ê is a monad lifting of TΣ,E.
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Proposition 3.95. If Ê is an extension of E, then T̂Σ,Ê is a monad lifting of TΣ,E.

Proof. We need to check the following three equations where U : GMet → Set is
the forgetful functor:

UT̂Σ,Ê = TΣ,EU Uη̂Σ,Ê = ηΣ,EU Uµ̂Σ,Ê = µΣ,EU.

First, we have to show that for any space X, UT̂Σ,ÊX = TΣ,EUX. By definitions, the
L.H.S. is TΣX/≡Ê and the R.H.S. is TΣX/≡E, so it boils down to showing that for
all s, t ∈ TΣX, s ≡Ê t⇐⇒ s ≡E t. This readily follows from the definitions of ≡Ê and
≡E, and from (3.57):499 499 Note again the importance of being able to do this

for each X individually.

s ≡Ê t
(3.13)⇐⇒ X ⊢ s = t ∈ QTh(Ê)

(3.57)⇐⇒ X ⊢ s = t ∈ Th(E)
(1.24)⇐⇒ s ≡E t.

Next, we have to show that UT̂Σ,Ê f = TΣ,E f for any f : X → Y. This is done rather
quickly by comparing their definitions, they make the same squares (1.26) and (3.19)
commute now that we know ≡Ê and ≡E coincide.

This takes care of the first equation, and the other two are done very similarly, we
compare the definitions of η̂Σ,Ê and ηΣ,E (resp. µ̂Σ,Ê and µΣ,E) and conclude they are
the same when ≡Ê and ≡E coincide.500 500 We defined η̂Σ,Ê in (3.34), ηΣ,E in Footnote 124, µ̂Σ,Ê

in (3.22), and µΣ,E in (1.35).
So if we are able to construct an extension Ê of E, we can obtain a monad lifting

of M by passing through the isomorphism ρ : TΣ,E
∼= M.

Corollary 3.96. If M is presented by (Σ, E), and Ê is an extension of E, then Ê presents a
monad lifting of M.

Proof. We first construct a monad lifting of (M, η, µ). For any space X, we have
an isomorphism ρ−1

X : MX → TΣ,EX, and a generalized metric dÊ on TΣ,E (since the
underlying set of T̂Σ,Ê is TΣ,E by Proposition 3.95). We can define a generalized metric
d̂X on MX as we have done for Proposition 2.49 to guarantee that ρ−1

X : (MX, d̂X)→
T̂Σ,ÊX is an isomorphism:501 501 In words, the distance between m and m′ in MX

is computed by viewing them as (equivalence classes
of) terms in TΣX, then using the distance between
them given by dÊ.

d̂X(m, m′) = dÊ(ρ
−1
X (m), ρ−1

X (m′)). (3.58)

This yields a mere lifting (X, dX) 7→ (MX, d̂X).
In order to show this is a monad lifting, we use the following diagrams (quantified

for all X ∈ GMet and nonexpansive f : X → Y) which commute because ρ is a
monad isomorphism with inverse ρ−1.502 502 The first holds by naturality, the second by (1.54),

and the third by (1.55). Moreover, all the functions in
these diagrams are nonexpansive (with the sources
and targets as drawn) by previous results:

• We just showed the components of ρ are isome-
tries.

• We showed TΣ,E f is the underlying function of
T̂Σ,E f because T̂Σ,E is a monad lifting of TΣ,E (Propo-
sition 3.95), so TΣE f is nonexpansive when f is
nonexpansive.

• By the previous two points, TΣ,Eρ−1
X is nonexpan-

sive.

• Again since T̂Σ,Ê is a monad lifting of TΣ,E, ηΣ,E
X

and µΣ,E
X are nonexpansive.

(MX, d̂X) T̂Σ,ÊX

(MY, d̂Y) T̂Σ,ÊY

M f

ρ−1
X

TΣ,E f

ρY

X T̂Σ,ÊX

(MX, d̂X)

ηΣ,E
X

ρXηX

(MMX, ̂̂dX) T̂Σ,Ê(X, d̂X) T̂Σ,ÊT̂Σ,ÊX

(MX, d̂X) T̂Σ,ÊX

µX

ρ−1
MX TΣ,Eρ−1

X

µΣ,E
X

ρX
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These show (detailed in the footnote) that M f , ηX and µX are compositions of
nonexpansive maps, and hence are nonexpansive. We obtain a monad lifting M̂ of
M to GMet which sends (X, dX) to (MX, d̂X).

It remains to show that M̂ is presented by (Σ, Ê). By construction, we have the
isomorphism ρ̂X : T̂Σ,ÊX → M̂X whose underlying function is ρX for every X. The
fact that ρ̂ is a monad morphism follows from the facts that ρ is a monad morphism,
and that U : GMet→ Set is faithful so it reflects commutativity of diagrams.503 503 Let us detail the argument for naturality, the others

would follow the same pattern. We need to show that
ρ̂Y ◦ M̂ f = M̂ f ◦ ρ̂X. Applying U, we get ρY ◦M f =
M f ◦ ρX which is true because ρ is natural, hence
U(ρ̂Y ◦ M̂ f ) = U(M̂ f ◦ ρ̂X). Since U is faithful, and
the desired equation holds.

Now, we would like to have a converse to Corollary 3.96. Namely, if (X, dX) 7→
(MX, d̂X) is given by a monad lifting M̂ of M to GMet, our goal is to construct
an extension Ê of E such that the monad lifting corresponding to Ê (given in
Corollary 3.96) is M̂. There is no obvious reason this is even possible, maybe M̂ is a
monad lifting that has no quantitative algebraic presentation.504 Our next theorem 504 Or maybe M̂ has a presentation that is not an

extension of E, but our informal discussion leading
to the definition of extensions indicates that is less
probable.

shows that such an Ê always exists. In fact, it is constructed very naively.
As discussed in Example 3.71, when Ê contains all the quantitative equations in

Ê1 = {X⊤ ⊢ s = t | X ⊢ s = t ∈ E} , (3.59)

then we have at least one direction of (3.57), namely, that X ⊢ s = t ∈ Th(E) implies
X ⊢ s = t ∈ QTh(Ê) for all X and s, t ∈ TΣX.505 Next, we include in Ê all the possible 505 We use Lemma 3.72.

equations X ⊢ s =ε t where ε is the distance between s and t when viewed inside M̂X
(via ρX),506 namely, Ê2 ⊆ Ê where 506 We are essentially doing the opposite of (3.58).

Ê2 =
{

X ⊢ s =ε t | X ∈ GMet, s, t ∈ TΣX, ε = d̂X(ρX [s]E, ρX [t]E)
}

. (3.60)

This is a very large bunch of equations (it is not even a set), but it leaves no stone
unturned, meaning that the distance computed by Ê will always be smaller than
the distance in M̂X. Indeed, for any m, m′ ∈ MX, letting s, t ∈ TΣX be such that
ρX [s]E = m and ρX [t]E = m′ (by surjectivity of ρX), we have507 507 The implication follows because by definition, Ê

will contain X ⊢ s =dX(m,m′) t, hence by the Mon

rule, we will have X ⊢ s =ε t ∈ QTh(Ê). The first
equivalence is (3.17), and the second holds because
ρ−1

X is the inverse of ρX .

d̂X(m, m′) ≤ ε =⇒ X ⊢ s =ε t ∈ QTh(Ê)

⇐⇒ dÊ([s]E, [t]E) ≤ ε

⇐⇒ dÊ(ρ
−1
X (m), ρ−1

X (m′)) ≤ ε.

In order to conclude that Ê = Ê1 ∪ Ê2 presents M̂, we need to show that Ê is an
extension of E, i.e. the other direction of (3.57), and that the monad lifting defined
in Corollary 3.96 coincides with M̂, i.e. the converse implication of the previous
derivation holds. We will prove these by constructing a (family of) special algebras
in QAlg(Σ, Ê).508 508 In turns out (after the rest of the proof) we are

constructing the free algebra over A, but we feel it is
not necessary to make that explicit.

For any generalized metric space A, we denote by MA the quantitative Σ-algebra
(MA, J−KµA , d̂A), where

• (MA, d̂A) is the space obtained by applying M̂ to A, and

• (MA, J−KµA) is the Σ-algebra obtained by applying the isomorphism Alg(Σ, E) ∼=
EM(M) (from the presentation) to the M-algebra (MA, µA) (from Example 1.69).

We can show that MA belongs to QAlg(Σ, Ê1 ∪ Ê2).



universal quantitative algebra 135

Lemma 3.97. For all ϕ ∈ Ê1 ∪ Ê2, MA ⊨ ϕ.

Proof. If ϕ = X⊤ ⊢ s = t ∈ Ê1, then by construction (MA, J−KµA) satisfies X ⊢ s =

t ∈ E. So MA satisfies ϕ by Lemma 3.40.
Suppose now that ϕ = X ⊢ s =ε t ∈ Ê2 with ε = d̂X(ρX [s]E, ρX [t]E). A bit of

unrolling509 shows that for an assignment ι : X → MA, the interpretation J−Kι
µA

is 509 Look at the definition of P−1 in Proposition 1.70,
in particular what we proved in Footnote 179, and
the definition of −ρ in (1.59).

the composite

TΣX
TΣ ι−→ TΣ MA

[−]E−−→ TΣ,E MA
ρMA−−→ MMA

µA−→ MA.

For later use, we apply the naturality of [−]E (1.26) and ρ to rewrite the composite as

J−Kι
µA

= TΣX
[−]E−−→ TΣ,EX

ρX−→ MX Mι−→ MMA
µA−→ MA. (3.61)

We conclude that MA ⊨ ϕ with the following derivation which holds for all nonex-
pansive ι̂ : X→ M̂A.510 510 Our hypothesis that M̂ is a monad lifting yields

nonexpansiveness of µA and Mι̂.

d̂A(JsKι̂
µA

, JtKι̂
µA

) = d̂A (µA(Mι̂(ρX [s]E)), µA(Mι̂(ρX [t]E))) by (3.61)

≤ ̂̂dA (Mι̂(ρX [s]E), Mι̂(ρX [t]E)) µA is nonexpansive

≤ d̂X (ρX [s]E, ρX [t]E) Mι̂ is nonexpansive

= ε

Theorem 3.98. Let M̂ be a monad lifting of M to GMet, and Ê = Ê1 ∪ Ê2. Then, Ê is an
extension of E and it presents M̂.

Proof. We already showed the forward implication of (3.57) when we defined Ê1

(3.59). For the converse, suppose that X ⊢ s = t ∈ QTh(Ê), we saw in Lemma 3.97 that
MX satisfies X ⊢ s = t. Taking the assignment ηX : X→ M̂X which is nonexpansive
because M̂ is a monad lifting, we have JsKηX

µX = JtKηX
µX . Using (3.61) and the monad

law µX ◦MηX = idMX (left triangle in (1.43)), we find

ρX [s]E = µX(MηX(ρX [s]E)) = JsKηX
µX = JtKηX

µX = µX(MηX(ρX [t]E)) = ρX [t]E.

Finally, since ρX is a bijection, we have [s]E = [t]E, i.e. X ⊢ s = t ∈ Th(E).
We already showed that d̂X(m, m′) ≥ dÊ(ρ

−1
X (m), ρ−1

X (m′)) when defining Ê2. For
the converse, let m = ρX [s]E and m′ = ρX [t]E for some s, t ∈ TΣX and suppose
that dÊ([s]E, [t]E) ≤ ε, or equivalently by (3.17), that X ⊢ s =ε t ∈ QTh(Ê). As
above, Lemma 3.97 says that MX satisfies that equation. Taking the assignment
ηX : X→ M̂X which is nonexpansive because M̂ is a monad lifting, we have511 511 The second inequality holds again by (3.61) and

(1.43).

d̂X(m, m′) = d̂X (ρX [s]E, ρX [t]E) = d̂X

(
JsKηX

µX , JtKηX
µX

)
≤ ε.

Comparing with (3.58), we conclude that M̂ is exactly the monad lifting from
Corollary 3.96. In particular, Ê presents M̂ via ρ̂ whose component at X is ρX .

Remark 3.99. A deeper result hides behind the last line. It follows from our construc-
tions that if you start from an extension Ê, build a monad lifting M̂ from Ê with
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Corollary 3.96, then build an extension Ê′ from M̂ with Theorem 3.98, you obtain
two equivalent classes of equations, i.e. QTh(Ê) = QTh(Ê′). Similarly, if you start
with a monad lifting M̂, then build an extension Ê, then build a monad lifting M̂′,
then M̂ = M̂′.512 512 We have equality on the nose because monad lift-

ings are defined with equality on the nose. One can
probably relax the definition of monad lifting to be
up to isomorphisms without breaking this correspon-
dence.

This does not yield a bijection but almost. If you restrict extensions of E to those
that are quantitative algebraic theories,513 then you get a bijection with monad

513 i.e. they are saturated, you cannot add more quan-
titative equations without changing the algebras

liftings of M.
I believe it is a simple exercise in categorical logic to transform this remark into

an (dual) equivalence of categories.514 A slightly more challenging task would be to 514 c.f. a similar result proven in [ADV22, Theorem
49] in the case of GMet = Poset.allow M and E to vary to get a (fibered) equivalence.

When constructing the extension Ê = Ê1 ∪ Ê2, Ê1 can be fairly small since it has
the size of E, but Ê2 as defined is always huge (not even a set). In theory, some
results in the literature could allow us to restrict the size of contexts to be of a
moderate size only with mild size conditions on L and ÊGMet.515 In practice, we can 515 I will not write the proofs because I am not

confident enough with the literature on accessible
and presentable categories, but I believe [FMS21,
Propositions 3.8 and 3.9] make it possible to adapt
the arguments of Remark 1.61 replacing ℵ0 with a
different cardinal (we implicitly used ℵ0 because
λ < ℵ0 ⇔ λ finite).

sometimes find some simple set of quantitative equations which will be equivalent
to Ê2 (when Ê1 is present), and we give a couple of examples below. They require
some clever arguments that depend on the application, but there may be room for
optimization in the definition of Ê2.

Example 3.100 (Trivial Lifting of Pne). Recall the monad lifting of Pne to GMet =

QAlg(∅, {x ⊢ x =⊥ x}) from Example 3.88. Let us denote it by P̂ , and its action on
objects by (X, d) 7→ (PneX, d̂X).516 We also denote with ρ the monad isomorphism 516 The distance d̂X was defined in (3.56).

witnessing that Pne is presented by the theory of semilattices (ΣS, ES) (recall Exam-
ple 1.78). By Theorem 3.98, there is a quantitative algebraic presentation for P̂ given
by517 517 We are concise in the quantifications for Ê2.

Ê1 = {X⊤ ⊢ s = t | X ⊢ s = t ∈ ES} and Ê2 =
{

X ⊢ s =ε t | ε = d̂X

(
ρX [s]ES

, ρX [t]ES

)}
.

We claim that the equations in Ê1 are enough, namely, QTh(Ê1 ∪ Ê2) = QTh(Ê1).
First, since Ê1 ⊆ Ê1 ∪ Ê2, we infer that QTh(Ê1) ⊆ QTh(Ê1 ∪ Ê2).518 518 There are two ways to understand this. Semanti-

cally, the equations that are satisfied by all algebras
in QAlg(Σ, Ê1) are also satisfied by all algebras in
QAlg(Σ, Ê1 ∪ Ê2) because the second category is con-
tained in the first. Syntactically, if you have more
axioms, you can prove more things.

Second, recall from Lemma 3.72 that with the equations in Ê1, we can already
prove all the equations in the theory of semilattices. This means that for any
X ⊢ s =ε t ∈ Ê2 with ε = d̂X

(
ρX [s]ES

, ρX [t]ES

)
, we have the three following cases.

• If [s]ES
= [t]ES

and ε = ⊥, i.e. s and t represent the same subset of X, then the
equation X ⊢ s = t is in Th(ES) which implies X ⊢ s = t is in QTh(Ê1). It follows
by the following derivation that X ⊢ s =0 t ∈ QTh(Ê1) as desired.519 519 Recall that the context of x ⊢ x =⊥ x, after un-

rolling the syntactic sugar, is the L-space with x at
distance ⊤ from itself, so we only need to prove σ(x)
is also at distance ⊤ from itself (we do it with Top).X ⊢ s = t

σ = x 7→ s GMetx ⊢ x =⊥ x TopX ⊢ s =⊤ s
SubQ

X ⊢ s =⊥ s
CompRX ⊢ s =⊥ t

• If [s]ES
= [x]ES

and [t]ES
= [y]ES

for some x, y ∈ X and ε = dX(x, y), then
the equations X ⊢ s = x and X ⊢ y = t are in Th(ES) which implies X ⊢ s = x
and X ⊢ y = t are in QTh(Ê1). Furthermore, Lemma 3.35 implies X ⊢ x =ε y ∈
QTh(Ê1), and finally by Lemmas 3.32 and 3.33, X ⊢ s =ε t also belongs to QTh(Ê1)

as desired.
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• Otherwise, ε = ⊤, so X ⊢ s =ε t belongs to QTh(Ê1) by Lemma 3.34.

We have shown that Ê2 ⊆ QTh(Ê1), and it follows that QTh(Ê1 ∪ Ê2) ⊆ QTh(Ê1).520 520 Again, there are two different ways to understand
this. Semantically, if all algebras in QAlg(Σ, Ê1) sat-
isfy Ê2, then QAlg(Σ, Ê1) and QAlg(Σ, Ê1 ∪ Ê2) are
the same categories. Syntactically, in any derivation
with axioms Ê1 ∪ Ê2, you can replace each axiom in
Ê2 by a derivation using only axioms in Ê1.

In conclusion, we found that P̂ is presented by the equations in Ê1 which we
rewrite below:

x ⊢ x = x⊕ x x, y ⊢ x⊕ y = y⊕ x x, y, z ⊢ x⊕ (y⊕ z) = (x⊕ y)⊕ z.

Remark 3.101. Compared to the presentation of P↑ne , we simply removed (3.6). These
quantitative equations are included in the theory by default in the framework of
[MPP16] because they only consider quantitative algebras with interpretations of op-
erations that are nonexpansive with respect to the product metric (see Example 3.12).
It is then natural to ask whether the monad lifting P̂ we defined can be presented
by a quantitative algebraic theory in the sense of [MPP16]. The answer is negative
because of a property that all monads presented by such theories share: they are
enriched over (Met,⊗, 1)521 521 See [ADV23a, after Corollary 4.19].

The monad P̂ is not enriched because it does not satisfy (see [ADV23b, Example
7.(1)])

∀ f , g : (X, d)→ (Y, ∆), sup
x∈X

∆( f (x), g(x)) ≥ sup
S∈PX

∆̂( f (S), g(S)).

Let f be the identity function on [0, 1
2 ] and g be the squaring function, then the left

hand side is at most 1
2 (∆ is bounded by 1

2 ), and the right hand side is 1 as witnessed
by S = {0, 1

2}: f (S) = S and g(S) = {0, 1
4}, so ∆̂( f (S), g(S)) = 1.

This enrichment property is also shared by the free algebra monads of [FMS21],
as they prove in Corollary 4.14, so in this direction, our framework is more general
than theirs.

In a sense, P̂ can be seen as a trivial monad lifting of Pne because we simply viewed
the equations presenting Pne as quantitative equations as we did in (3.49), and we
added nothing else. After this example, you may want to conjecture that whenever
Ê is constructed from E like that, then Ê presents a monad lifting of the TΣ,E, or
equivalently thanks to Corollary 3.96 and Theorem 3.98, Ê is an extension of E. That
is not true. We showed in [MSV21, Theorem 44] that Ê can sometimes prove more
equations than E. This implies UT̂Σ,ÊX ̸= TΣ,EX, so T̂Σ,Ê is not a monad lifting of TΣ,E.

We end this chapter with a final example, the one that motivated a lot of ideas in
this manuscript.

Example 3.102 (ŁK). The ŁK distance on probability distributions defined in (3.3)
defines a mere lifting (X, d) 7→ (DX, dŁK) of D to GMet = [0, 1]Spa.522 We show 522 Of course, you can take [0, ∞]Spa as well. You

can also show that this mere lifting preserves the sat-
isfaction of all the equations defining metric spaces
except reflexivity (x ⊢ x =0 x). Indeed, we have
dŁK(φ, φ) = 0 if and only if d(x, y) = 0 for all
x, y ∈ supp(φ) (if d is reflexive, this forces φ = δx).
This means you can take GMet to be the category of
diffuse metric spaces as we did in [MSV22, §5.3].

this is a monad lifting of (D, η, µ) (as defined in Example 1.65) with Lemmas 3.103–
3.105.

Lemma 3.103. If f : (X, d) → (Y, ∆) is nonexpansive, then so is D f : (DX, dŁK) →
(DY, ∆ŁK).

Proof. Let φ, ψ ∈ DX, we have

dŁK(D f (φ),D f (ψ))
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= ∑
(y,y′)
D f (φ)(y)D f (ψ)(y′)∆(y, y′)

= ∑
(y,y′)

 ∑
x∈ f−1(y)

φ(x)

 ∑
x′∈ f−1(y′)

ψ(x′)

 ∆(y, y′) definition of D f (1.45)

= ∑
(y,y′)

∑
x∈ f−1(y)

∑
x′∈ f−1(y′)

φ(x)ψ(x′)∆(y, y′)

= ∑
(x,x′)

φ(x)ψ(x′)∆( f (x), f (x′))

≤ ∑
(x,x′)

φ(x)ψ(x′)d( f (x), f (x′)) f is nonexpansive

= dŁK(φ, ψ). definition of dŁK

Lemma 3.104. For any (X, d), the map ηX : (X, d)→ (DX, dŁK) is nonexpansive.

Proof. For any a, a′ ∈ X, we have523 523 Notice that ηX is even an isometric embedding.

dŁK(δa, δa′)
(3.3)
= ∑

(x,x′)
δa(x)δa′(x′)d(x, x′) = δa(a)δa′(a′)d(a, a′) = d(a, a′).

Lemma 3.105. For any (X, d), the map µX : (DDX, dŁKŁK)→ (DX, dŁK) is nonexpan-
sive.

Proof. For any Φ, Ψ ∈ DDX, we have

dŁK(µXΦ, µXΨ)
(3.3)
= ∑

(x,x′)
µXΦ(x)µXΨ(x′)d(x, x′)

(1.46)
= ∑

(x,x′)

 ∑
φ∈supp(Φ)

Φ(φ)φ(x)

 ∑
ψ∈supp(Ψ)

Ψ(ψ)ψ(x′)

 d(x, x′)

= ∑
(x,x′)

∑
(φ,ψ)

Φ(φ)φ(x)Ψ(ψ)ψ(x′)d(x, x′)

= ∑
(φ,ψ)

Φ(φ)Ψ(ψ)

 ∑
(x,x′)

φ(x)ψ(x′)d(x, x′)


(3.3)
= ∑

φ,ψ
Φ(φ)Ψ(ψ)dŁK(φ, ψ)

(3.3)
= dŁKŁK(Φ, Ψ)

Let us denote this monad lifting by DŁK. In [MSV22, §5.3], we gave a relatively
simple quantitative algebraic presentation for DŁK, but Theorem 3.98 will help us
find a simpler one. Since, by Example 1.79, the theory of convex algebras generated
by (ΣCA, ECA) presents D (via a monad isomorphism that we write ρ), the theorem
gives us a theory presenting DŁK generated by Ê1 ∪ Ê2 where

Ê1 = {X⊤ ⊢ s = t | X ⊢ s = t ∈ ECA} and
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Ê2 =
{
(X, d)⊢ s =ε t | ε = dŁK

(
ρX [s]ECA

, ρX [t]ECA

)}
.

In order to simplify Ê2, we rely on two property that dŁK has (one symmetric to the
other) : for any φ, φ′, ψ ∈ DX and p ∈ [0, 1],

dŁK(pφ + pφ′, ψ) = pdŁK(φ, ψ) + pdŁK(φ′, ψ) and (3.62)

dŁK(φ, pφ + pφ′) = pdŁK(ψ, φ) + pdŁK(ψ, φ′). (3.63)

Intuitively, this means that we can compute the distance between s and t by decom-
posing the terms into their variables, computing simple distances, then combining
them to get back to s and t.524 Formally, we only need to keep the quantitative 524 This is very similar to what happens for the Kan-

torovich distance and (3.10).equations in Ê2 that belong to525

525 If you have symmetry (x =ε y ⊢ y =ε x) as an
axiom in GMet already, you can keep only one of
these sets.Ê′2 ={x =ε1 y, x =ε2 z ⊢ x =pε1+pε2 y +p z | ε1, ε2 ∈ [0, 1], p ∈ (0, 1)}

∪ {y =ε1 x, z =ε2 x ⊢ y +p z =pε1+pε2 x | ε1, ε2 ∈ [0, 1], p ∈ (0, 1)}.

We will prove that for any Â ∈ QAlg(ΣCA), Â ⊨ Ê1 ∪ Ê′2 implies Â ⊨ Ê1 ∪ Ê2.526 526 It follows that QTh(Ê1 ∪ Ê′2) = QTh(Ê1 ∪ Ê2) be-
cause we already have the ⊇ inclusion as explained
in Footnote 520.

Suppose Â ⊨ Ê1 ∪ Ê′2, we proceed by induction on the structure of s and t to show

that Â satisfies (X, d)⊢ s =ε t, where ε = dŁK

(
ρX [s]ECA

, ρX [t]ECA

)
.

If s and t are variables, then ρX [s]ECA
= δx and ρX [t]ECA

= δy for some x, y ∈ X,
thus ε = d(x, y) and (X, d)⊢ x =d(x,y) y is satisfied by Â (by 3.35).

Otherwise, without loss of generality,527 we write t = t1 +p t2, and let εi = 527 If s is a term of depth > 0 but t is a variable, you
decompose s instead, and then you have to use a
symmetric argument.dŁK

(
ρX [s]ECA

, ρX [ti]
)

. By the induction hypothesis, Â ⊨ (X, d)⊢ s =εi ti for i = 1, 2.
Then, we define a substitution map σ : {x, y, z} → TΣX with x 7→ s, y 7→ t1 and
z 7→ t2, and since Â satisfies x =ε1 y, x =ε2 z ⊢ x =pε1+pε2 y +p z ∈ Ê′2, we can apply
Lemma 3.42 to conclude Â satisfies (X, d)⊢ s =ε′ t with

ε′ = pdŁK

(
ρX [s]ECA

, ρX [t1]
)
+ pdŁK

(
ρX [s]ECA

, ρX [t2]
)

= dŁK

(
ρX [s]ECA

, pρX [t1] + pρX [t2]
)

by (3.62)

= dŁK

(
ρX [s]ECA

, ρX [t1 +p t2]
)

= dŁK

(
ρX [s]ECA

, ρX [t]ECA

)
= ε.

We conclude that Ê1 ∪ Ê′2 presents DŁK.



4 Conclusion

Edge of Existence

Yoko Shimomura

In [MPP16], the authors introduced a theoretical framework to reason algebraically
about distances inside a metric space. We have made adjustments to their proposal
with two main goals in mind:

1. replace metrics with a more general notion of distance, and

2. tighten the relationship with classical universal algebra.

The result is a theory of quantitative algebras which are algebras (A, J−KA) paired
with a distance function d : A × A → L valued in a complete lattice, and no
hardcoded constraint on the interaction between J−KA and d, in contrast with the
nonexpansiveness requirement (0.1) of [MPP16].528 528 It is still possible to enforce (0.1) and variants with

supplementary axioms (see (3.8) and (3.9)).We introduced a sound and complete deduction system (Figure 3.1) generalizing
Birkhoff’s equational logic. The judgments are quantitative equations, a closer analog
to classical equations than the judgments of [MPP16].

We gave a construction for free quantitative (Σ, Ê)-algebras (Theorem 3.57) relative
to any class Ê of quantitative equations, following that of free classical algebras
(Proposition 1.49) almost to the T. This yielded a monad T̂Σ,Ê on the category of
generalized metric spaces GMet.

We showed that algebras for the monad T̂Σ,Ê coincide with the (Σ, Ê)-algebras
(Theorem 3.80), justifying a search for quantitative algebraic presentations for mon-
ads on GMet, of which we gave several examples (Examples 3.83, 3.85, 3.86, 3.100,
and 3.102).

Finally, we gave a sufficient condition for a distance on Σ-terms to be axiomatized
with a quantitative algebraic theory (Theorem 3.98). More precisely, if M is a monad
on Set with an algebraic presentation (Σ, E), and M̂ is a monad lifting of M to
GMet, then we constructed a quantitative algebraic theory Ê that extends E and
gives a presentation for M̂.

4.1 Future Work

We mention some lines of questioning that need further investigation.

https://www.youtube.com/watch?v=yVl3QRNkb8A
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Examples

In the original paper on quantitative algebras [MPP16], the authors gave theories
axiomatizing the Hausdorff distance (Example 3.83) and the Kantorovich distance
(Example 1.79). I think these are amazing examples to showcase the potential of
quantitative algebraic reasoning, and I would like to find more. Several papers
like [BMPP18, MV20, BMPP21, MSV21, MSV22, ?] contain additional examples, and
most of them follow the leitmotif discussed in §3.5, namely, they are built on top of
a classical algebraic theory. I believe that Theorem 3.98 will accelerate the process of
developing similar examples, but some efforts are still needed.529 529 I planned to include a chapter in this thesis with

detailed examples and non-examples to help others
in this search, but I ran out of time.

Examples in [MV20, MSV21] are of particular interest to me because they deal
with combining quantitative algebraic theories and their corresponding monads. For
instance, the main ingredients in [MV20] are

• The algebraic theories ES and ECA presenting the monads Pne and D respectively.

• An equation ϕ such that ES ∪ ECA ∪ {ϕ} presents the monad C of convex sets of
distributions [MV20, Definition 5].530 530 The monad C combines Pne and D in a sense made

precise in [GP20].

• The extension of ES presenting the Hausdorff monad lifting P↑ne on Met.

• The extension of ECA presenting the Kantorovich monad lifting DK on Met.

Then, they show that the union of these extensions with ϕ seen as a quantitative
equation (recall Example 3.71) presents a monad lifting of C on Met. It would be
interesting to make this result more abstract and work with any theories, extensions,
and monads, but we found a counterexample that breaks the general pattern in
[MSV21, Theorem 44], so some work is required to identify abstractly why it breaks.

Quantitative Diagrammatic Reasoning

Diagrammatic reasoning is another generalization of algebraic reasoning that has
been popular in recent years. Using string diagrams in particular, people have
axiomatized languages for quantum processes [CK17], strochastic processes [Fri20],
machine learning models [CGG+

22], satisfaction of Boolean formulas [GPZ23], finite
state automata [PZ23], and more. There is a gap in the literature on the combination
of quantitative and diagrammatic reasoning. I am aware of only one paper [KTW17]
going in this direction.

HSP Theorems

We mentioned in the introduction that Birkhoff’s HSP theorem [Bir35] is a celebrated
result in universal algebra. In [MPP17], the authors proved a variant of this theorem
for the quantitative algebras in the original paper [MPP16]. The question of how to
adapt their methods to our new framework is still open.531 We can also mention 531 After some unsuccessful attempts during my PhD.

other variants of the HSP theorem in similar settings that are proven (with concrete
methods) in [Wea95, BV05, Hin16, Hin17, Ros24].
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In the process of abstracting universal algebra away from the category of sets,
several abstract HSP theorems were proven (see, e.g. [BH76, Man76, Bar94, Bar02,
ARV11, MU19]). In [MU19], Milius and Urbat prove one such result and apply it to
the quantitative algebras of [MPP16]. They obtain a generalization of Mardare et
al.’s result from [MPP17]. Rosický proves a similar result in [Ros24] using abstract
results from [Man76]. In [JMU24], the authors apply Milius and Urbat’s result to a
new class of algebras that are a mix between [FMS21]’s and [MSV22]’s, and it should
apply to the quantitative algebras presented in this thesis,532 but careful checks are 532 They consider arbitrary relational structures like

in [FMS21], but the arities are restricted to be natural
numbers only, so operations are not partial. They
do not require operations to be nonexpansive in the
sense of (0.1), but they achieve this with lifted signa-
tures like in [MSV22].

needed (see Footnote 372 and Remark 3.24).
There are other theoretical results that followed Mardare et al.’s introduction of

quantitative algebras which could be generalized to the present work. I am most
interested in their work on combining theories and monads [BMPP18, BMPP21], and
in the characterization of monads which can be presented by a quantitative algebraic
theory [AFMS21, FMS21, Adá22, ADV23b].

Partial Operations

In classical universal algebra, a signature Σ is a set of operation symbols each
equipped with an arity in N. Then, the interpretation of an n-ary operation is a
function JopKA : An → A, where An is the n-wise cartesian product. We can also
see An as an exponential, namely, the set of functions from {1, . . . , n} to A, and this
point of view is often used when generalizing algebraic reasoning.

For instance, in [FMS21], the arity of an operation is allowed to be an arbitrary
generalized metric space on [n] = {1, . . . , n}.533 Then, the interpretation of a 533 We are simplifying to keep things light and closer

to our work. They actually allow infinite arities and
arbitrary relational structures.

([n], d)-ary operation symbol is a nonexpansive map JopKA : A([n],d) → A. The
definition of A([n],d) is out of scope (it is not an exponential in the sense of cartesian
closed categories), but it is a generalized metric on the set of nonexpansive maps
([n], d)→ A. This has two notable consequences.

1. The carrier of A([n],d) does not necessarily contain all the functions from [n] to A,
so JopKA may not be applicable to all n-tuples of elements in A. Hence, we can
see it as a partial function An → A. Not all partial functions of this type arise as
nonexpansive maps from A([n],d) even if we let d vary. In particular, the partiality
of operations depends on the distance of the carrier A.534 534 e.g. if dA(a, a′) = ⊥ for all a, a′ ∈ A, then the

carrier of A([n],d) is always An.

2. When d is the discrete generalized metric on [n] (recall Example 3.59), the carrier
of A([n],d) is all of An, and the nonexpansiveness of JopKA translates to the original
requirement (0.1) of [MPP16].535 535 Briefly, it is because the distance between two

functions f , g : ([n], d)→ A is

d( f , g) = sup
i∈[n]

dA( f (i), g(i)),

which is the coordinatewise maximum distance when
viewing f and g as tuples.

It is not known how to keep the flexibility of Item 1 to deal with partial operations
without the constraint of Item 2. Namely, JopKA should be a function from the
carrier of A([n],d) to the carrier of A that is not necessarily nonexpansive. This would
combine the generality of both [FMS21]’s and our algebras.
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Functorial Semantics

Our restriction to discrete arities is also an obstacle in the search for a functorial
semantics of quantitative algebras. In his thesis [Law63], Lawvere gave a novel
account of universal algebra based on functors. Given a signature Σ and equations
E, a syntactic category SΣ,E is constructed such that functors M : SΣ,E → Set
that preserve products correspond to (Σ, E)-algebras, and natural transformations
between such functors correspond to homomorphisms. This led to the first proof
of the correspondence (equivalence of categories) between finitary monads and
varieties in [Lin66].

People also investigated what happens when Set is replaced with another category,
and what happens when using enriched categories. Plenty of so-called monad-theory
correspondences were worked out under this lens throughout many papers including
[Dub70, Gra75, BD80, Bur81, KP93, GP98, Pow99, Rob02, HP06, NP09, LP09, LR11,
LW16, GP18, BG19, LP23, Ros24].

Since GMet has finite products, the first naive attempt to define algebras over
generalized metric spaces could be to simply replace Set with GMet in Lawvere’s
account. The category of finite product-preserving functors SΣ,E → Met coincides
with the category of quantitative algebras defined in [MPP16]536 that satisfy the 536 i.e. operations are interpreted as nonexpansive

maps from the product of spaces:

JopKA : An → A.
equations in E translated to quantitative equations with the discrete context (see
Example 3.71). However, there is no obvious way to construct a syntactic category
starting from quantitative equations.

Since Met is symmetric monoidal closed [ADV23b, Example 3.(2)] and locally
ℵ1-presentable [LR17, Example 4.5.(3)], the theory of enriched Lawvere theories in
[Pow99] applies,537 and it allows handling quantitative equations. However, [Pow99] 537 One also needs that Met is locally ℵ1-presentable

as a symmetric monoidal closed category. It would
be interesting to determine when a category GMet
has these properties.

allows arities to be non-discrete spaces, so any quantitative algebraic theory (again
in the sense of [MPP16]) yields an enriched Lawvere theory, but not vice-versa.

In [HP06], the authors study discrete Lawvere theories, which are essentially
enriched Lawvere theories where arities are required to be discrete. Unfortunately,
this is too restricted. Namely, a discrete Lawvere theory can be translated into
a quantitative algebraic theory of [MPP16] (with nonexpansive operations), but
not vice-versa. In a nutshell, the problem is that while terms in TΣX are defined
independently of the distance on X (i.e. arities are discrete), the distance and even
the equality between terms (dÊ and ≡Ê) can vary when different distances on X
are considered. Recently, Rosický proposed a solution for this in [Ros24], but there
remains a small gap with Mardare et al.’s algebras because operations in [Ros24] can
have countably infinite (discrete) arities.

There remains the problem of allowing operations that are not necessarily non-
expansive as we do in Definition 3.1. In [AFMS21, §5], they say that models of
Nishizawa and Power’s Poset-Lawvere theories for Set [NP09] are algebras where
operations can be interpreted as arbitrary functions. Unfortunately, their arities are
not necessarily discrete so their monad-theory correspondence [AFMS21, Theorem
5.9] (proven concretely in [AFMS21, Corollary 4.5]) is not enough.538 538 Even before considering generalizing from Poset

to GMet which is difficult because of the question of
local presentability.
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Applications

Many ad-hoc methods for combining algebraic reasoning with various structures like
metrics or orders to reason about program semantics already exist in the literature.539 539 See e.g. [CPV16, BBKK18, BBLM18a, BBLM18b,

DLHLP22, Sch22a, Sch22b].Our abstract framework could allow viewing several of these examples under the
same lens, and facilitate the discovery of new similar methods.

With applications in mind, we can mention term rewriting systems [BKdV03]
which are a popular approach to compute in an actual computer with classical equa-
tions. Gavazzo and Di Florio gave a very elegant account of quantitative rewriting
systems in [GD23]. It seems our approaches are complementary because they re-
placed [0, ∞] with an arbitrary quantale (a kind of complete lattice), and they also
rework the nonexpansiveness assumption (0.1) in [GD23, §6].
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[PS21] Daniela Petrişan and Ralph Sarkis. Semialgebras and weak distributive laws. In Ana Sokolova, editor, Proceedings 37th
Conference on Mathematical Foundations of Programming Semantics, MFPS 2021, Hybrid: Salzburg, Austria and Online, 30th
August - 2nd September, 2021, volume 351 of EPTCS, pages 218–241, 2021.

[PZ23] Robin Piedeleu and Fabio Zanasi. A Finite Axiomatisation of Finite-State Automata Using String Diagrams. Logical Methods
in Computer Science, Volume 19, Issue 1, February 2023.

[QIF20] The Science of Quantitative Information Flow. Information Security and Cryptography. Springer Cham, 1 edition, 2020.

[Rie13] Emily Riehl. Monoidal algebraic model structures. Journal of Pure and Applied Algebra, 217(6):1069–1104, 2013.

[Rie17] Emily Riehl. Category Theory in Context. Dover Publications, 2017.

[Rob02] Edmund Robinson. Variations on algebra: Monadicity and generalisations of equational theories. Formal Aspects of
Computing, 13(3):308–326, 07 2002.
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