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1.1 Contact heterogeneities in epidemic models

The spread of an epidemic naturally is influenced by the way individuals encounter one
another, and as a consequence, mathematical models in epidemiology try to take into account
this organization of contacts. Depending on the disease under consideration, different aspects
of contact heterogeneities may be relevant, leading to more-or-less fine-grained descriptions of
connections between individuals. In this section, we will first give a brief, general description
of some classical epidemic models, such as the SIR model. Second, we will see how these
models incorporate information on contacts within the population and discuss the pros and
cons of each modeling choice.
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14 CHAPTER 1. INTRODUCTION

1.1.1 Some classical epidemic models

Many epidemic models rely on the concept that one may summarize the possible evolution
of any individual in the population using, basically, a flow chart. The general idea is that
each individual belongs to one, and only one, sanitary state among a given set of possible
such states. The individual will remain in that state for some (random) amount of time,
before switching to another state, according to predefined transition rules which may depend
on characteristics of the individual himself, or of other members of the population.

Maybe the most famous example is the S/IR model, introduced in the seminal paper
by Kermack and McKendrick, 1997. Here, each individual can either be susceptible (S), if
he has never encountered the disease and may be contaminated in the future; infected (1);
or recovered (R), in which case the individual is supposed to be immune against infection.
Transitions among those states occur as follows. A susceptible gets infected at an infectious
contact, i.e. an encounter with an infected individual. He subsequently stays infected for a
period of random length, which is usually supposed to be distributed according to a given
probability ~ on R, independently for each individual. Once this infectious period is over,
the individual recovers and remains in state R. Figure 1.1 synthesizes this model description.

— ¥ ) e

V' infecti \ )
‘ infectious contact ‘ | ‘ R
‘ S | I 'R
./

Figure 1.1: The SIR compartmental model.

In particular, this approach has the advantage of being very flexible. Indeed, one may
take into account a larger number of states. For instance, there may be an incubation period
during which an individual is already contaminated but not yet infectious, which can be rep-
resented by an additional exposed (E) state: this corresponds to the SEIR model. Similarly,
in order to model waining immunity after recovery, one may allow recovered individuals to
return to the susceptible state, amounting to the SIRS model, and so on. This procedure
can lead to quite sophisticated models, as illustrated for instance by models of the recent
COVID-19 epidemic (Romano et al., 2020; Roux et al., 2023). Also, it is possible to incorpo-
rate more details which further influence the evolution of the sanitary state of an individual.
For instance, one may want to consider age structured models, as an individual's age may
influence the risk of being infected or developing severe forms of a disease upon encountering
an infected (e.g. Davies et al., 2020 in the context of COVID-19). We refer to Chapter 2 of
Brauer et al., 2008 for a more extensive overview.

Among the many possible refinements, one possibility consists in focusing on how infec-
tious contacts occur, i.e. how often, and under which conditions, susceptible and infected
individuals encounter one another. Let us introduce some major modeling choices for this
step.

1.1.2 Modeling contacts among individuals

Incorporating information on how contacts are organized within a population is a challenging
task, as there are many aspects which interplay to yield contact patterns. For instance, the
frequency at which two individuals meet may depend simultaneously on:
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= where they live (spatial structure);
= which social groups they identify themselves to, such as age class or sexual orientation;
= the context in which they may get together: at home, at work, at the grocery store...;

= the time period considered: there may be fluctuations depending on the individuals'’
weekly schedule, changes of habits during holidays, and so.

As a consequence, a natural question arising is: how much of this information should one
keep when constructing an epidemic model? A major part of the answer is that it depends
on the issues the model tries to address. Thus, several ways of taking into account different
parts of the population’s contact structure have been developed. Here, we will present some
of the most common model choices, for each of which we will illustrate both their pertinence
and their limitations.

Uniform mixing

Let us start with the simplest form of contact structure within a population, namely the one
where no contact heterogeneities are considered: a population is said to be uniformly mixing
if each pair of individuals meet at the same frequency. For example, in the case of the SIR
model, this translates into each susceptible being contaminated at rate 51, where § is the
contact rate and I the current number of infected within the population.

Despite its apparent simplicity, uniform mixing actually is able to capture some main
features of real-life epidemics, especially if considering refinements of the S/IR model, for
example taking into account demographic effects or seasonal variability in infectivity (e.g.
Brauer et al., 2008, Chapter 1 and references therein). In addition, it has the advantage of
being well studied: many results have first been established in this setting, yielding a detailed
understanding of the epidemic. As a consequence, uniform mixing can serve as a toy case,
where many questions may be addressed more easily than when taking into account contact
heterogeneities. In particular, it serves as a good basis to explore the effect of factors which
are not related directly to contact structure, such as varying susceptibility (Hyman and Li,
2005), and whose impact one may want to study without addressing simultaneously contact
heterogeneities.

Nevertheless, it is clear that uniform mixing is an oversimplified representation of human
contacts, which is very far from real-life settings. On the one hand, for some diseases,
assuming uniform mixing may almost be absurd given the way contaminations occur. For
example, in the case of sexually transmitted diseases, whom makes contact with whom may
depend on the age and gender of the partners involved (Tomori et al., 2022). On the other
hand, even when the means of contamination by itself does not introduce specific contact
patterns (e.g. air-borne diseases), it is well known that some crucial epidemic aspects are not
well represented through uniform mixing. Consider for instance the herd immunity threshold,
which is defined as the proportion of the population which needs to be immune against the
disease in order to prevent an epidemic outbreak. Notably, estimating the herd immunity
threshold is of practical interest, as illustrated in the recent COVID-19 epidemic (Fontanet
and Cauchemez, 2020). However, considering uniform mixing yields an overestimation of
this threshold, compared to more realistic settings where contact heterogeneities are taken
into account. Intuitively, this is due to the fact that in the uniformly mixing population,
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all individuals exert the same infectious pressure once they are infected. However, when
the number of contacts is not identical for all individuals, those having the most social
interactions contribute the most to the epidemic spread. As a consequence, herd immunity
may be achieved at a lower threshold by preferentially targeting those individuals (Britton
et al., 2020). Taken together, these arguments illustrate the need to go beyond uniform
mixing.

Contact matrixes

In order to take into account contact heterogeneities, a first step is to consider refinements
of the uniformly mixing point of view. More precisely, it is possible to distinguish different
groups of individuals within the population (Figure 1.2). In that case, the frequency at which
two individuals encounter one another may depend on the groups to which they belong.
This leads to the definition of a contact matrix C, which is such that infected of type ¢
contaminate susceptibles of type j at rate 3C; ;. In words, the coefficient C; ; represents
the average rate at which individuals of type i meet individuals of type j, and 3 represents
the infectivity of the disease under consideration. Notice that C' is generally supposed to be
symmetric. Of course, other parameters such as the distribution of infectious periods may
also be group-specific.
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Figure 1.2: Schematic representation of an SIR compartmental model distinguishing two groups of
individuals.

This modeling choice has several advantages. First, it may serve as a proxy for more
complex contact heterogeneities, while being easily interpretable as the choice of groups
usually is informed from a phenomenological point of view. A classical example is to consider
age classes, as children may have frequent contacts among each other in schools compared to
contacts with elderly people, and so on (Ram and Schaposnik, 2021). Similarly, in the case
of sexually transmitted diseases such as gonorrhea (Lajmanovich and Yorke, 1976) or HIV
(Jacquez et al., 1988), one may want to distinguish how sexually active individuals are, or
their gender as the disease may evolve differently in males or females. Finally, these models
are also well suited to model transmission of diseases among different species. This is of
particular interest for zoonotic diseases, such as monkeypox (Peter et al., 2022) or bovine
tuberculosis (Brooks-Pollock and Wood, 2015).

Additionally, it is possible to estimate contact matrixes using large-scale surveys. This
allows to gain a deeper insight into how contacts occur within a given population, and the
obtained contact matrixes can be used to parametrize epidemic models. To our knowledge,
the first such survey occurred during the POLYMOD study in 2008 (Mossong et al., 2008),
which was motivated especially by airborne diseases such as influenza and SARS. In this
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Figure 1.3: Contact matrixes computed from the UK POLYMOD data, grouped by age class. All
contexts (A), workplace contacts only (B) or household contacts only (C).

study, over 7000 participants from 8 European countries kept track of their daily contacts,
including contact length, age and gender of the person they would interact with, et cetera.
Subsequently, age-structured contact matrixes for each of the participating countries can
be computed from this data. More recently, the COVID-19 epidemic has incited a similar
study, called CoMix (Wong et al., 2023), which has allowed to infer contact matrixes from
21 European countries as well as their evolution over time, covering several months up to
two years. Further, in both studies, contacts were characterized by social circumstances as
well, such as contacts within households, workplaces or schools (Fig. 1.3). The collected
data thus allow to have a rather detailed description of contact patterns in Europe.

Nevertheless, this representation of contacts still assumes a well-mixing population: if
the contact rates between two groups are non zero, then each individual of the first group
encounters any individual of the second group at the same frequency. Hence, contact ma-
trixes remain insufficient to capture some characteristics of human contacts, such as the
fact that people usually have a limited number of close contacts. In addition, it further
follows that this organization of contacts can directly be represented as a finite dimensional
compartmental model.

Notably, both uniform mixing and contact matrix models correspond to global mixing
models. These represent populations in which each individual has an infinite number of
possible contacts, leading each contact event to involve a different partner. Not only is this
assumption unrealistic, it also intuitively is expected to have significant impact on epidemic
spread: as each contact involves a different partner, infected individuals have a stronger
infection potential than if their number of partners is limited. Indeed, in the latter case,
infected individuals make repeated contacts with a given partner. Thus, once this partner is
infected, all subsequent contacts with him cannot lead to an infection event. This setting
corresponds to local mixing, and can be modeled through the use of contact networks.
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Network models

Arguably the most appropriate representation of contacts consists in a contact network. The
general idea is that such a network is composed of nodes, also referred to as vertices, which
represent individuals. Two given nodes are said to be neighbors if they are connected by an
edge, which means that the corresponding individuals may get in contact with one another.

Let us take the example of an SIR model to illustrate how an epidemic unfolds on the
network. As previously, each node is either in the susceptible, infected or recovered state.
During its infectious period, an infected can contaminate only its susceptible neighbors, i.e.
the epidemic spreads exclusively along the edges. Once the infectious period is over, the node
recovers and is henceforth immune to the disease. As a consequence, contact networks are
a powerful modeling tool, as they can be extremely precise by depicting all possible contacts
of each individual within the population.

Before going into more detail on network models in epidemiology, let us introduce some
general notions related to networks and refer to Newman, 2003 and Durrett, 2006 for a more
complete overview. First, throughout the thesis, the words network and graph will be used
interchangeably. As mentioned above, a graph corresponds to a couple {V, E} of vertices
V', which is a finite or countably infinite set, and edges E, where for any v,w € V, the edge
(v,w) belongs to E if and only if v and w are neighbors.

This set of information can equivalently be encoded using an adjacency matrix A which
is defined as follows. Suppose that V is finite, and consider a bijection between V and
[1,Card(V)]. With slight abuse of notations, we thus let V' = [1,Card(V)]. Then A is
a square matrix of dimension Card(V)2, such that Aij = Ly j)ery- This constructions
extends to the case where V' is in bijection with N in a straight-forward manner. Notice that
one distinguishes directed and undirected graphs. In the former case, the edges (7,j) and
(j,1) are considered separately: an edge may lead from i to j, without the possibility of going
directly from j to ¢, which implies that the contact matrix A is not necessarily symmetric.
For undirected graphs, however, A is symmetric as i is linked to j if and only if j is linked
to 4. Finally, a network may be weighted, in which case each edge (i, ) is characterized by
its weight W; ; € R, and one usually sets A; ; = W; ;.

There are several quantities which are of interest when trying to describe the network
structure. Consider a graph G. First, one may want to if all nodes have roughly the same
number of neighbors, or whether there is a lot of heterogeneity. The number of neighbors
of a node v is also called its degree d(v), and this information is captured by the degree
distribution ¢ defined as follows:

pe = Z dd(v)-
veV

In particular, if the variance of ug is low, all nodes have approximately the same number of
contacts. A particular example of this case are d-regular graphs, where each node has exactly
d neighbors, leading to ug = 1(gy. Conversely, if the variance of the degree distribution is
high, some nodes have significantly more contacts than others: in this case, there hence are
contact heterogeneities.

Another question would be whether two neighbors of a node are likely to be connected
between themselves, or in other words, if "the friend of my friend is likely to be my friend"?
This leads to the definition of two clustering coefficients. The first one corresponds to
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computing the proportion of triangles among connected triples, which are sets of vertices
(u,v,w) such that at least two out of the three edges (u,v), (u,w) and (v, w) exist (Barrat

and Weigt, 2000):
3 x (number of triangles)

(1.1)

Alternatively, it is possible to compute this coefficient locally, meaning that for each node v,
C4(v) corresponds to the ratio of the number of triangles including v divided by the number
of connected triples including v. The clustering coefficient C5 is obtained by taking the
average local clustering coefficient over all nodes (Watts and Strogatz, 1998):

1
Cy = Card(V);Cl(v)'

The difference between C; and (3 stems from the fact that C; takes the ratio of the
average number of triangles per node over the average number of triples per node, while Cs
consists in the average of the ratio for each node. As emphasized in Barrat and Weigt, 2000
and Newman, 2003, this leads to both clustering coefficients having a qualitatively similar
behavior, while quantitatively their values can differ.

Last but not least, one may also wonder how quickly one may reach a node w starting
from another node v, following the edges of the graph. First of all, that may not be possible
for all pairs of nodes. If such a path going from v to w does exist for all pairs (v, w) of
nodes, then the graph G is said to be connected. Otherwise, the set of nodes which can
be reached starting from a given node v is referred to as v's component, and the largest
component of a graph is sometimes called its "giant component”. Notice that for directed
graphs, one usually distinguishes an out-component (nodes which can be reached from v)
and an in-component (nodes from which v may be attained).

Hence, consider an undirected graph G = (V,E). Let v € V and consider a node
w belonging to its component, in which case we write v <> w. Then the shortest path
connecting v to w is called their geodesic path, and let /,,, be its length, i.e. the number
of edges involved in the path, or the sum of their weights for weighted networks. £,,, is also
referred to as the geodesic distance between nodes v and w. Notice that, by convention,
v <> v and £,, = 0. The average geodesic distance ¢ of the graph then is defined as:

2
(= ——— Ly
n(n+ 1) Z

(v,w):vew

C) = ——.
1™ humber of connected triples

Analogously, the diameter of the graph is defined as the maximum distance separating two
connected nodes:
diam(G) = max{{(, ) : v < w}.

Both the average geodesic distance and diameter thus quantify how quickly one may move
between two connected nodes of the graph.

A natural interrogation which arises is: what are the characteristics of real-life networks
involved in epidemic dynamics? Many real-life networks, including examples of social net-
works, are known to present some common properties (Newman, 2003). Indeed, they usually
are small world, meaning that their diameter is (very) small. Also, they are clustered, as one
would expect for small world networks. Finally, they often are scale-free, meaning that the
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degree distribution follows a power-law of parameter o € (2, 3): the probability py of having
k neighbors is equivalent to Ck~< for large values of k, C being a normalizing constant.
In this case, the degree distribution admits a finite average, whereas its second moment is
infinite, as the degree distribution is very heterogeneous: most nodes have few neighbors,
while few nodes have many neighbors.

In our case, it is of particular interest to have a look at empirical studies which have
tried to assess social contact networks which are relevant for disease spread. Several types
of data may be used. A first source of data stems from contact tracing, which can serve
as a means of epidemic control: individuals who are diagnosed with the disease are asked
to indicate their recent contacts, who in turn may be tested and report their contacts if
they are contaminated. While this data is a partial observation of the complete network
(only contacts involving at least one infected are reported), it still allows to have a look at
the contact graph underlying the spread of the epidemic at hand. Figure 1.4a corresponds
to a sexual contact network which has been obtained this way, in the context of a contact
tracing strategy adopted to face the HIV/AIDS epidemic on Cuba between 1986 and 2006
(Clémengon et al., 2015).

Another data source comes from experiments which explore face-to-face contacts, typ-
ically by using sensors which automatically register whom has a close contact with whom,
and how long each contact lasts. This is particularly suiting for airborne diseases, such as
influenza or COVID-19, which could be transmitted in these circumstances, even without
having a physical contact (touching, hugging...). Figures 1.4b and 1.4c are example of the
obtained networks in two different settings, namely at a museum (Isella et al., 2011) and
primary school (Stehlé et al., 2011), respectively.

Taken together, these networks illustrate the aforementioned properties of real-life net-
works. Indeed, in all cases, the degree distribution is heterogeneous, with a scale-free and
small world setting established for the sexual network in Figure 1.4a (Clémencon et al., 2015).
Similarly, all three of them present clustering, the most striking example being maybe Figure
1.4c: the authors note that within classes, there appears to almost be uniform mixing (Stehlé
et al., 2011). Of course, all of these properties may not always be satisfied: for instance,
the museum contact network of Figure 1.4b does not exhibit the small world behavior (Isella
et al., 2011).

Finally, let us emphasize here that real-life contact networks actually exhibit further
structure. On the one hand, they can be dynamic: this means that the edges are not
constant over time, but may be removed or added. This can be observed on several time
scales: for example, in the school setting of Stehlé et al., 2011, students interact differently
with one another during lessons (contacts mainly within each class) or during breaks (mixing
among classes). The network presented in Figure 1.4c actually corresponds to the cumulative
network, where all contacts are accumulated over a day, while a video of the dynamical
network is available on the SocioPatterns website. Another example of dynamics which arise
from an epidemic context is that individuals may modify their contacts depending on their
own health status (Van Kerckhove et al., 2013), or on their current risk perception. On the
other hand, networks can also be spatially organized. Again, several scales are concerned:
for instance, people may commute within their home town on a daily basis (Aguilar et al.,
2022), or travel over long distances, participating in the global spread of diseases (Riquelme
et al., 2021).

Overall, designing and carrying out studies which aim at measuring real-life contact
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networks is not an easy task, as emphasized in Eames et al., 2015. Difficulties range from
questions as to what defines a contact, over the difficulties arising from data collection
such as unreported links in surveys, to interrogations about the possibilities of deducing
conclusions about large contact networks from small-scale studies. As a consequence, the
authors conclude that mathematical models should be used to point out which information
about a contact network is the most important to assess, if one wants to predict the epidemic
spread on this graph. Interestingly, Kiss et al., 2024 go one step further and explore the
question whether it is possible to use epidemic data in order to infer information on the
underlying contact network.
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Figure 1.4: Examples of real-life networks which are of interest in an epidemic setting. (a) Largest
connected component of the Cuban sexual contact network, obtained from HIV contact-tracing data.
Nodes are colored by gender and/or sexual orientation, as indicated in the legend. This figure is
reproduced from Clémencon et al., 2015. Courtesy of the authors. (b) Aggregated face-to-face
contact network inferred from sensor data, during one day of the experiment Infectious Sociopatterns
of the Dublin Science gallery (lsella et al., 2011). Nodes are colored by the time at which individuals
entered the museum, in the order shown by the contour. The barplot on the contour further indicates
the number of contacts over each 2-minute interval. Finally, the diameter of the graph is emphasized
by the bold line. Available on SocioPatterns. (c) Aggregated network of face-to-face contacts in
a primary school, as measured by sensor data (Stehlé et al., 2011). Colors correspond to different
classes, as indicated on the figure. Available on SocioPatterns.
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Given the complexity of real-life networks and the challenges in measuring them, a lot of
attention has been drawn to studying epidemic spread on mathematical models of random
graphs (Danon et al., 2011; Kiss et al., 2017). In this paragraph, we will introduce some
of those models, as well as their properties in the light of what we know about empirical
contact networks. Notice that many more random network models have been developed,
which will not be covered below, and refer the interested reader to Newman, 2003; Durrett,
2006; Hofstad, 2016 for more detail.

Historically, the first random graph model which has been extensively studied has been
introduced in Solomonoff and Rapoport, 1951 and Erdds and Rényi, 1959. The general idea
goes as follows. A so-called Erd3s-Rényi graph G(n,p) is a graph with n vertices, where
each pair or vertices is connected by an edge with probability p. Hence, by construction, the
degree distribution at fixed population size n is given by a binomial law B(n — 1, p). For this
model, many explicit results have been established, especially in the large graph limit n — 0.
Indeed, considering a large population is of interest in many applications, including epidemics
as the populations in which diseases spread are often very large. For the Erdos-Rényi model,
a common setting is to study G(n,p/n) as n goes to infinity, which corresponds to keeping
the average node degree fixed. In this case, the degree distribution converges in probability
to a Poisson law of parameter p, and the associated graph is referred to as Poisson graph.
Further, the graphs become locally tree-like, which means that the neighborhood of a vertex
typically resembles a tree: there are no small circles, implying in particular that clustering is
low (Hofstad, 2024, Section 2.4.5). Other known results include the probability of the graph
being connected and the size distribution of its connected components. In particular, there
is a phase-transition depending on p where either there are relatively small components only,
or where there exists a giant connected component, meaning that a positive fraction of the
nodes is connected. We refer to Chapter IV.A of Newman, 2003, Chapter 2 of Durrett, 2006
and references therein for an extensive overview.
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Figure 1.5: Main steps for obtaining one realization of the configuration model with target degree
distribution p.

However, Erdés-Rényi graphs have the drawback of not being very flexible: for instance,
as mentioned above, the degree distribution is necessarily binomial or asymptotically Poisson,
which further does not correspond to a realistic setting. This raises interest in a more general
random graph model. Here, we will focus on the configuration model (CM), which was first
developed by Bollobas, 1980 with the aim of constructing random graphs with a given degree
for each node. A common choice of the degree sequence is to consider i.i.d realizations of a
target distribution p = (pg)k>1, in which case a realization G = (V, E) of the configuration
model is obtained as follows (Figure 1.5). For each node v € V, draw its degree d, from p
independently from all other nodes, and attach d, half-edges to node v. The edges of the
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graph are then obtained by successively choosing uniformly at random, with removal, pairs
of half-edges which are assembled to form an edge. This procedure stops as soon as either
there are no-more half-edges left, or if exactly one half-edge remains which is removed as no
edge can be formed. Notice that in principle, multi-edges and self-loops occur here. In the
large graph limit, however, they become negligible, with precise control on the number of
occurrences of those phenomena under mainly a second moment condition on p (Angel et al.,
2019). In particular, the obtained degree distribution converges to the target distribution
p. Notably, conditioned on being simple (no self-loops or multi-edges), each realization
G = (V, E) of the configuration model corresponds to a uniform choice among all possible
graphs having the same degree sequence (d, : v € V). Again, this model is very well studied,
and many of its properties have been investigated, including the size distributions of clusters,
the conditions under which a giant connected component exists, and the average path length
(Molloy and Reed, 1995; Molloy and Reed, 1998; Newman et al., 2001). An overview can
be found in Chapter 3 of Durrett, 2006 and Chapter 7 of Hofstad, 2016. As previously,
the configuration model generates asymptotically locally tree-like networks (Hofstad, 2024,
Section 4.2). While this may not be a realistic setting, the configuration model nonetheless
can to some extend produce valid approximations of social networks (Newman et al., 2002),
some of which arise in epidemiology (Dhanjal et al., 2011). Finally, we will see in upcoming
Section 1.2.2 that this property facilitates the mathematical analysis of epidemic dynamics
spreading on such a network.

As mentioned previously, none of the described random graph models exhibit clustering,
at least not in the large graph limit. However, for epidemic models, taking into account
clustering is actually important, for at least two reasons. First, clustering is known to affect
epidemic outcomes, such as the maximum number of infected over time (epidemic peak
size), the time at which this peak occurs, or the total number of infected (epidemic final
size) (House and Keeling, 2011; Volz et al., 2011). Second, in the case of human contact
networks, clustering emerges for example by people sharing a common household, where
contacts are likely to be close leading to possibly high contamination risks. As in this case
distinguishing within-household from other contacts is natural, this setting will be explored in
greater depth in Section 1.1.2 below. However, it already motivates our interest in clustered
network models. Here, we will present two such models, which actually rely on the presence of
highly connected subgraphs, and which have been used in epidemic models. For an extensive
review of random graph models with clustering, we refer to Section 9.4 of Hofstad, 2024 and
references therein.

Let us start by introducing random intersection graphs, which first originated in Karonski
et al.,, 1999. Consider a set V = {1,...n} of vertices, as well as a set M = {1,...,m,}
of so-called groups or cliques. Then each node v € V' belongs to a group k£ € M with fixed
probability p, > 0, independently for all groups and from other vertices. Subsequently, the
graph G(n, my,py) is obtained by joining two vertices by an edge if and only if they are
members of at least one common group. Again, this model is well studied. For instance, if
my, is of order n® for & > 0 and under adequate assumptions on the sequences (pp)n>1,
the large graph limit of the degree distribution has been established (Stark, 2004), which in
particular is Poisson if and only if a > 1, recalling Erd6s-Rényi graphs. Also, it seems worth
emphasizing that if & = 1, the model becomes locally tree-like at the level of cliques. This
means that if instead of focusing on individual vertices, one actually considers the network
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Figure 1.6: Construction of a random intersection graph G(n,m,p) with n = 9 vertices and m = 3
groups. First, each node is connected independently to each group with fixed probability p. The
graph G = (V, E) is obtained by adding an edge (u,v) to E if and only if vertices u and v share a
group. Colors indicate the different groups.

Gy formed by the groups & € M such that two groups are neighbors if and only if they
share a common vertex, then Gy is asymptotically locally tree-like: there are no short loops
at the level of clusters (Kurauskas, 2022). Notice that the authors use this result to derive
an explicit formula for the asymptotic clustering coefficient. In addition, many variations of
this model have been developed, for instance in order to obtain power-law distributed degree
distributions when n goes to infinity (Deijfen and Kets, 2009). Section 9.4 of Hofstad, 2024
yields a larger presentation of the results established for random intersection graphs.

Another way of ensuring the presence of highly connected sub-groups can be obtained by
modifications of the configuration model. One possibility of achieving this is the configuration
model with clustering, which will also be referred to as clique configuration model throughout
the thesis. Consider a set of n vertices. Let d be a probability distribution taking values
in (N U {0})2. Then independently for each node v, draw (d1(,2),d1(,3)) ~ d, and attach d{?
half-lines and dg,?’) corners to node v. Next, as for the configuration model, choose uniformly
at random with removal pairs of half-lines and connect them to form a line. Then, choose
uniformly at random with removal triples of corners, and connect the three corresponding
nodes by edges, forming a triangle. The procedure stops when at most one half-line and
at most two corners remain, which are dropped to end the graph construction. Figure 1.7
illustrates the construction of such a clique configuration model. Notice that this procedure
can be generalized to include totally connected subgraphs, or cliques, of any size k > 2. The
clique configuration model has first been proposed in Newman, 2009, where some properties
such as the size of the giant component are derived heuristically. Additionally, the obtained
graphs are again supposed to be locally tree-like at the level of cliques (Karrer and Newman,
2010b). However, to our knowledge, no rigorous mathematical analysis has been performed
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Figure 1.7: Main steps for obtaining one realization of the clique configuration model, where the
target distribution of lines and triangles per node is given by d.

so far in this setting.

The models introduced in this section (Figure 1.8) allow for a detailed description of the
contact networks underlying epidemic spread. It is worth emphasizing here that random graph
models can be designed in order to incorporate further aspects which are of interest in an
epidemic context, such as spatial structure (Barthélemy, 2011) or evolution of contacts over
time (dynamic networks) (Bansal et al., 2010). Another pertinent refinement is to distinguish
different types of contacts, occurring at different rates, allowing to take into account that
the rate at which contacts occur, or the associated risk of infection, may depend on the
social context (at home, with friends, at the grocery store...). This will be the focus of the
following subsection.

Multilayer contact models

In addition to the elements explored above, human contacts are structured by different social
contexts in which they can occur: a first glance at this is provided by Figure 1.3, as the
contact matrixes significantly differ according to the context under consideration. Further,
an empirical study on social contacts in Sweden has shown that several characteristics of
contacts, such as their duration, their frequency, the number of people involved, and the
probability of the contact being physical, strongly depends on the meeting place (Stréomgren
et al., 2017). More precisely, based on the data collected, the authors identify five main
clusters of meeting places defined by sharing similar traits: the family venue, and vehicle;
the fixed activity site (including workplaces and schools); the social network, represented by
friends and relatives; and the general population, or trading plaza (stores, public transports,
etc.).

From a modeling point of view, taking into account such different types of contacts
is especially motivated by non-pharmaceutical interventions such as teleworking or school
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Figure 1.8: Examples of realizations of all four major random network models introduced in Section
1.1.2. In all cases, there are 100 nodes and in the large graph limit, the average degree is close to 4.
(a) Erd8s-Rényi graph G(100,0.04). (b) Configuration model with degree distributionp = (pg, k > 0)
such that py is proportional to k= for k € [1,27], and equal to zero otherwise (truncated power-
law distribution). (c) Random intersection graph G (100, 60,0.0275). (d) Clique configuration model
with cliques of sizes [2,4]. The distribution of number of cliques of size j € [2,4] to which a node
belongs is given by p9), with p(?) ~ B(4,0.375), p® ~ B(3,1/6) and p'» ~ B(2,0.25).

closures. Indeed, they consist in specifically acting on some type of contacts, while leaving
others in place. Recent studies find that the way contacts are represented in epidemic models
changes the predicted outcomes of such control measures (Contreras et al., 2022; Di Lauro
et al., 2021), as will be discussed in detail below. As a consequence, it seems natural that
epidemic models seek to distinguish different social contexts.

This is allowed for by multilayer models, which distinguish different types of contact
within the population. The idea is to represent contacts by a multilayer network, where each
node belongs to all layers simultaneously. Each layer corresponds to the contacts established
within one sort of social context, and thus can be characterized by its network structure and
contact rate, for instance. Subsequently, the epidemic spreads on the aggregated contact
network, which corresponds to the addition of all three layers. The result of this aggregation
can be a regarded as a weighted graph, where an edge's weight represents the rate at which
a contact occurs along that edge, and with possible multi-edges as some individuals may
be neighbors in several layers (e.g. spouses who also work together). This procedure can
lead to elaborate contact networks, which mimic realistic settings, including among others
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Figure 1.9: Multilayer contact network of 10 nodes, obtained by the household-workplace model.
Nodes represent individuals, belonging to each layer simultaneously as indicated by their number.
Edges represent possible contacts within each layer. The layers and corresponding levels are indicated
on the side.

households, workplaces, schools and stores which are grouped into communities in order to
take into account the spatial organization of contacts (Backhausz et al., 2022).

A common procedure is to distinguish mainly two or three layers of contact, representing
contacts in the general population, and contacts within households and possibly schools or
workplaces. To our knowledge, this setting has first been explored by Ball et al., 1997. The
authors take into account two layers, the first being uniformly mixing, while the second is
characterized by individuals having a limited number of neighbors only. This coined the
term of two levels of mixing: one global level, where uniform mixing implies that contacts
are wide-spread in the population, and one local level, where contacts are limited by the
network structure. In particular, this implies that the associated models are multiscale, with
an infinite number of possible partners with whom contact is established at most once at the
global scale, as opposed to repeated contacts with a finite number of partners at the local
scale. This setting has been explored rather extensively, considering different variations for
the local level. In particular, a classical local layer is that of the households model, in which
the population is partitioned into households of possibly random size (Ball et al., 1997; House
and Keeling, 2008). The main idea behind household models is that contacts are uniformly
mixing at high rate within households, whereas contacts are significantly less frequent in the
general population. However, in this setting, the epidemic necessarily needs the global level
to sustain its spread, as households are otherwise disjoint from one another.

A natural extension is to consider a local level which itself consists in two layers, typically
representing households and workplaces. At first, these were assumed to be of fixed size (Ball
and Neal, 2002), before considering arbitrary structure size distributions (Pellis et al., 2009).
This model will be at the center of attention in Chapters 2 and 3, leading us to introduce
it in some detail. As for the household model, the global level corresponds to a uniformly
mixing general population of size K. The local level is split into one layer of households



28 CHAPTER 1. INTRODUCTION

and one layer of workplaces, which are constructed as follows. We will suppose that there
exists a maximal size for households and workplaces n,.x < 00, and consider two probability
distributions 7, 7 with support in [1,nmax]. Let k be the number of individuals who are
not yet assigned to a household, so initially k¥ = K. Pick a household size h ~ 7!, then
either h < k and a new household of size h is formed by choosing uniformly at random h
individuals who are not yet member of a household, or i > k in which case one last household
is assembled containing all k& remaining individuals. Subsequently, k£ becomes k — h and the
process stops when k = 0. The same procedure is repeated independently for workplaces,
using 7"V instead of 7. In particular, if K goes to infinity, 7/ and 7" correspond to the
household and workplace size distributions, respectively. The obtained multilayer contact
network is represented in Figure 1.9. Subsequently, the epidemic spreads at the global level
at rate Sg/K. Also, within households and within workplaces, uniform mixing is assumed,
and contacts occur at rates Ay and Ay, respectively. Once contaminated, individuals remain
infected for a random amount of time, which is sampled from the infectious period length
distribution v with support in (0, +00).

Many variations of the household or household-workplace model have been considered in
the literature. For instance, one may want to replace the global, uniformly mixing level by
another local level, where contacts in the general population are depicted by a configuration
model (Ma et al., 2013). It also is possible to consider dynamic networks, allowing for the
evolution of the graph over time (Barnard et al., 2018). Indeed, many variations could be
considered, as each layer of the graph can be modified to take into account one or another
refinement of the contact network.

Nevertheless, considering multilayer contact networks comes at the cost of additional
difficulties in understanding epidemic spread, especially when considering a rich local level
as in the case of the household-workplace model. Indeed, the model is multi-scale as both
a global and local level are considered, and contrary to the case of the household model,
the local level now may suffice to sustain the epidemic. As a consequence, unraveling how
the model parameters impact epidemic spread is not an easy task. A natural question is to
wonder whether it actually worth the effort to consider such models.

As we will see, a natural motivation arises when considering non-pharmaceutical interven-
tions (NPIs) such as teleworking or school closures. Indeed, both empirical and simulation
studies show that these are among the most effective NPls (Mendez-Brito et al., 2021; Back-
hausz et al., 2022; Simoy and Aparicio, 2021), motivating the desire to understand how these
measures act on the epidemic, through both mathematical analysis and simulation studies.

First, it is crucial to identify which level of detail of the contact network needs to be
taken into account when assessing such control measures. A recent study has compared
different ways of modeling teleworking and school closures, using either a household model
or a contact matrix which is split in home, school, workplace and other contacts (Di Lauro
et al., 2021). For both models, the authors find that uniformly scaling contacts on the
whole contact network yields different results than scaling separately household and general
contacts, or each component of the contact matrix, respectively. Hence, distinguishing
several types of contact in the population is important when studying such NPIs. Multilayer
models seem particularly suiting, as households or workplaces imply clustering, which we
already know to significantly impact epidemic dynamics when compared to uniform mixing
at large scales which underlies the contact matrix setting.
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A related question is to wonder up to which scale one should incorporate detailed infor-
mation on the contact network: for instance, is considering uniform mixing within households
and workplaces enough? This question has been explored by comparing the effectiveness of
different interventions when considering either uniform mixing, or empirical contact networks
derived from sensor data (Contreras et al., 2022), at the scale of large structures which in
most cases have several hundreds of members. The authors’ findings suggest that while
considering uniform mixing does not change qualitative results, it does have an impact on
quantitative aspects which are crucial when studying the cost effectiveness of control mea-
sures. On the other hand, in the school setting of Figure 1.4c, the authors mentioned that
there seems to be almost uniform mixing within each class (Stehlé et al., 2011). Another
study has explored the epidemic impact of different workplace cultures, i.e. of how individ-
uals interact at their workplace (Timpka et al., 2016). A significant influence on modeling
outcomes is established, raising the question of an effective workplace size depending on how
many coworkers typically interact, and how close these contacts are. Hence, it actually is a
difficult task to define the precise level at which the advantage of simplifying the model by
assuming uniform mixing at small local scales outweighs the implied loss of precision when
predicting epidemic outcomes.

Several questions may be addressed regarding NPlIs like teleworking or school closures.
So far, a commonly investigated subject is the comparison of different NPIs, among which
teleworking and/or school closures (Backhausz et al., 2022; Colosi et al., 2022; Favero et al.,
2022; Ferguson et al., 2006; Hilton et al., 2022; Simoy and Aparicio, 2021). For teleworking
or school closures alone, when to start and for how long to sustain the intervention has also
been studied (Bin Nafisah et al., 2018; Britton and Leskeld, 2023), while optimal intensity
has been of interest for lockdowns (Britton and Leskeld, 2023; Caulkins et al., 2021; Richard
et al., 2021). Notably, even though the modeling choice may impact the quantitative and
possibly qualitative outcomes as emphasized by Di Lauro et al., 2021, these issues can be
explored without the necessity to consider multilayer models. Indeed, while some of the
studies above make use of multilayer models (Backhausz et al., 2022; Ferguson et al., 2006;
Hilton et al., 2022; Simoy and Aparicio, 2021), another focuses on social structures alone,
without modeling precisely contacts in the general population (Colosi et al., 2022), and
some rely on contact matrixes (Richard et al., 2021) or assume uniform mixing (Britton and
Leskeld, 2023; Favero et al., 2022; Caulkins et al., 2021).

There are questions, however, which can hardly be considered without making use of
multilayer models. For instance, does the way teleworking rates are enforced matter? In
other words, how does changing the workplace distribution influence epidemic outcomes?
Some answers will be provided in Chapter 2.

Taken together, using multilayer contact networks to better understand how dispatching
individuals into small contact structures such as households and workplaces influences epi-
demic outcomes thus is a pertinent goal. Unfortunately, as mentioned above, analyzing these
models is challenging, both in terms of mathematical analysis and numerical exploration, as
simulation times grow with the population size. This leads to an interest in developing
reduced models.
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1.2 Reduced models in epidemiology

In epidemiology, many key results are derived using reduced models, in the sense of models
which yield good approximations of the epidemic dynamics at hand, but which are more prone
to mathematical analysis and/or numerical exploration than the original model. Indeed, this
already holds true for the classical SIR model: instead of studying the stochastic SIR model
in a finite population, resorting to branching approximations and the Kermack-McKendrick
equations arising in the large population limit is a fruitful approach. This will be illustrated
in upcoming Section 1.2.1.

Indeed, model reduction can have several benefits. By essence, it consists in trying to
keep as much information as necessary to capture the dynamics of interest, while removing
as much detail as possible. As a consequence, it can make emerge key parameters, such as
the reproduction number or epidemic growth rate. Further, the reduced models obtained
can serve as a basis to develop more involved models.

Thus, the heart of the present thesis will be to establish such reduced models in order
to study epidemic models of the household-workplace type. More precisely, we will focus on
large population approximations of the epidemic dynamics. This motivates a closer look at
the results previously obtained for epidemics spreading on related networks in Section 1.2.2.

1.2.1 A motivating example: the uniformly mixing SIR model

The uniformly mixing stochastic S/IR model can be defined as follows. Let A and 7y be the
contact rate and infection rate, respectively. Consider a population of N individuals, and at
time t > 0, let S(¢) and I(t) be the number of susceptible and infected individuals in the
population, from which it follows that the number of recovered is given by N — S(t) — I(¢).
Then the couple (S(t),I(t))t=0 defines a Markov process taking values in {(S,I) : 0 <
S,I < N,S+ I < N}, whose transitions are given by:

(S,I) > (S—1,I+1) atrate %SL
(S, 1) —> (S,I—1) at rate 1.

Despite its apparent simplicity, the analysis of this stochastic model is actually not immediate
and many key results are derived by the following scheme: the stochastic SIR model is shown
to be well approximated by another, handier model, which subsequently is used to answer
the question of interest.

A first example consists in studying the beginning of the epidemic: given the introduction
of one individual into a large susceptible population, is it possible that a significant proportion
of the population will be contaminated throughout the epidemic? The answer is provided
by the reproduction number, Ry = A\/7, which is such that a major outbreak may occur if
and only if Rg > 1. In order to establish this result, the epidemic dynamics are reduced
to a discrete-time branching process by neglecting the depletion in susceptible individuals:
infection events are regarded as births, removals as deaths, and the branching property
is ensured by assuming that S/N ~ 1. Similarly, the epidemic growth rate r = A — ~v
can be derived as the Malthusian parameter of a continuous-time branching process, which
approximates the epidemic dynamics.

In order to transfer these results from the branching process approximation to the stochas-
tic SIR model, it remains to give a rigorous meaning to the idea that the former is "well



1.2. REDUCED MODELS IN EPIDEMIOLOGY 31

approximating"” the latter. This is achieved by coupling arguments, which show that the
branching process can be constructed on the same probability space as to coincide with the
epidemic process of the stochastic SIR model, until the infected population becomes of order
K /(log K)* (Bansaye et al., 2023b). We refer for instance to Section 3.3 of Andersson and
Britton, 2000b for an introduction to coupling methods for epidemic models, and Barbour
and Reinert, 2013 for a detailed arguments. Notably, branching approximations actually also
serve to derive reproduction numbers and epidemic growth rates for more involved models,
including the SIR model on configuration graphs (Britton et al., 2007; Barbour and Reinert,
2013), random intersection graphs (Ball et al., 2014; Fransson, 2022) and models with two
levels of mixing (Britton and Pardoux, 2019a; Pellis et al., 2011).

Finally, let us mention here that it is possible to derive more information than the re-
production number and epidemic growth rate from branching approximations. For instance,
they may be used to capture the tree of infections at the beginning of the epidemic. As
demonstrated in Britton and Scalia Tomba, 2019, such models thus allow to point out and
rectify biases associated to statistical inference from contact tracing data.

A second, classical example of model reduction consists in studying the large population
limit of the epidemic dynamics. Indeed, suppose that (S(0),1(0))/N converges in probability
to constants (sp,ip). Then the renormalized process (S/N,I/N) converges in probability,
uniformly on finite time intervals, to the unique solution (s,7) of the Kermack-McKendrick
ODE system

s'(t) = —Asi, i'(t) = \si — i,
s(0) = sp, (0) = 1p.

This result actually follows from general convergence results for density-dependent Markov
jump processes. One may further establish Gaussian fluctuations of the stochastic process
around its deterministic limit, hence quantifying the asymptotic approximation error. We
refer to Section 5 of Andersson and Britton, 2000b for detail. In particular, this rigorously
exhibits the connection between the stochastic and deterministic SIR models, the latter of
which allows to derive important results such as the final epidemic size in the large population
limit (Brauer et al., 2008, Section 2.1.2). Similar results can be obtained in more general
settings, for instance in a non-Markovian model where infectious periods are not necessarily
exponentially distributed (Kurtz, 1981).

For network models, however, capturing the deterministic dynamics emerging in the large
population limit is not straightforward. Let us first mention that closed, dynamical systems
describing the exact evolution of the sanitary state of each individual node over time are
achievable for finite-size graphs, by focusing either on the network level (lumping of the
arising master equations) or node level (generalized closure) (Kiss et al., 2017, Sections 2.4
and 3). However, the obtained systems of equations become intractable as the number of
nodes grows large, due to the number of equations scaling at least linearly with the network
size. As a consequence, alternative approaches have been developed, which lead to closed,
finite dynamical systems which either exactly describe or yield useful approximations of the
large population dynamics. Here, we will start by introducing some intuition behind these
large population approximations, before giving an overview of their application to different
network models.
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1.2.2 Some heuristics for reduction of epidemics on networks

In order to describe epidemic dynamics on networks, several approaches have been developed.
Here, we will focus on three of the most common points of view: pairwise models, effective
degree models and edge based compartmental models. We will consider the case of an SIR
model with infection rate A and recovery rate . For a more extensive review, we refer
to Sections 4.1, 4.2, 5.6 and 6.5 of Kiss et al., 2017, which partly inspire the following
paragraphs.

Pairwise models

Instead of considering the epidemic state of each individual node, let us focus on the average
number of nodes [ X ] (or their proportion as N — c0) in a given epidemic state X € {5, I, R}.
Similarly, for X, Y, Z € {S, I, R}, [XY'] designates the average number of nodes u and v in
state X and Y respectively which are connected by an edge, [ XY Z] the average number of
triples of nodes w, v, w respectively in states X, Y, Z such that the edges (u,v) and (v, w)
exist, and so on.

In this case, one may notice that the number of susceptibles decreases each time an
infection occurs, which happens at rate A[ST] as the disease can only spread along the edges
of the graph. In turn, an S/ edge becomes of type SR if the infected recovers, at rate ~, or
of type Il if the susceptible is infected. Such an infection happens at rate A either along that
given edge, or along any other edge connecting the susceptible to another infected. Similarly,
if one of two susceptible neighbors u and v is infected by one of his infectious neighbors, a
new S/ pair is created. In this case, [S\S] decreases by two as both oriented edges (u,v) and
(v, u) originally were counted in [SS]. By continuing this reasoning for other combinations
of epidemic states, we obtain the following ODE system:

[S] = —A[ST],
"= A[SI] - [1],

]
]
[SS]" = —2A[SS1],
]
]

~
~

! = y[SI] + A([SSI] — [IS1] - [S1]),
! = —25[I1] + 2X([SI] + [IS1]), ...

—
~
~

This system is technically speaking exact, but unclosed: in order to describe the dynamics
of triples, one needs to consider quadruples, and so on. Pairwise models thus propose to
close the dynamical system by expressing the triples as functions of pairs, under simplifying
assumptions. Originally, the first pairwise model has been developed for n-regular graphs
containing N nodes, where each node has exactly n neighbors (Keeling et al., 1997). Here,
we will make the same assumption for ease of presentation. In this case, the following
approximation can be derived for the dynamics of triples:

n—1[XY][VZ]
n Y]

[XYZ] ~

Let us decompose this expression. Consider three nodes wu, v, w respectively in states
X,Y, Z, such that the edges (u,v) and (v, w) exist. If v is chosen uniformly among nodes
in state Y, the probability that v has a X-type neighbor is given by [XY]/(n[Y]) as n[Y]
edges start at nodes of type Y. Further, there are [Y] possible choices for v and n(n — 1)
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possible choices for neighbors v and w. If we ignore any correlation among the epidemic
states of u and w which is not due to their common neighbor v, we obtain that [XY Z] ~
[Yn(n — 1)[XY][Y Z]/(n[Y])?. Of course, there are cases when u and w are correlated
not only through v, for instance if the three nodes form a triangle. However, on unclustered
networks as in the large graph limit of the n-regular graph, this is rare, justifying the above
approximation.

We finally obtain the following pairwise model:

(5] = ~A[ST]

(1) = A[ST] — (1]

n —1[SS][SI]
n [S]

[SI] = —4[SI] + A <"; ! [5??9[]51] . ”; ! [‘?ﬁ - [SI]> .

[SS] = —2A

In the case where the graph is not regular, Eames and Keeling, 2002 have derived a
pairwise model which takes into account the nodes’ degree and has O(M?) equations, where
M is the number of possible degrees in the network. This will serve as a basis for comparison
with the upcoming effective degree and edge based models.

Effective degree models

Another family of reduced models focuses on the proportion S ; (resp. I ;) of nodes which
are susceptible (resp. infected) and have s susceptible and i infected neighbors. Notably,
the number of recovered neighbors does not need to be included in order to describe the
epidemic dynamics: this coins the term "effective degree”, which only takes into account a
node's edges leading to susceptible and infected individuals.

Let us consider for example the dynamics of S ;, which may be affected by several possible
events. First, a node of this kind can be contaminated by one of its infected neighbors: this
occurs at rate Az, and the node becomes of type I, ;. Second, one of its infected neighbors
may recover, yielding a node of type S5 ;_1 at rate vi. Third, a node of type S ;41 becomes
of type S, following the removal of one of its infected neighbors, at rate v(i + 1). Finally,
a susceptible neighbor may be infected by another node, in which case our node becomes
of type Ss_1,;+1. Similarly, a node of type Ss11,-1 may become of type S, ; upon infection
of a susceptible neighbor. Hence, as for the above pairwise model, we need to take into
account the neighbors of our initial node's neighbors, i.e. triples, whose dynamics depend
on quadruples and so forth: the dynamical system needs to be closed.

Here, we will focus on the approach of Lindquist et al., 2011, who consider unclustered,
simple graphs (i.e. no multiple edges or self loops). In addition, they suppose the maximal
degree M to be finite, and that there is no degree correlation among neighbors. Typically,
this corresponds to the large graph limit of configuration networks with i.i.d degrees sampled
from a bounded distribution.

In this setting, the closure proceeds as follows. Susceptible nodes see their neighborhood
change due to the infection of a susceptible neighbor, and such an infection occurs at
total rate fozl Dkt EMSk . Let p be the probability that a node whose neighborhood
has changed following the infection event is in state S;;. Then one may notice that p is
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proportional to s, hence p = sSS7i/ZK1 Dbio—n LSk Letting

S s o KM S
Sy St ESkt

a node in state S,; thus becomes S;_; ;41 at rate AgsSs;. Notice that we again assume
the absence of correlation among the health states of a given node’s neighbors, aside from
their connection to that node. This illustrates the importance of the assumptions made on
the graph.

Reasoning similarly for infected nodes I ;, and letting

Ag =

)

S St M2 Sk
Sommt Dt omn LSk 0

we finally obtain the effective degree model: for any non-negative integers s,7 such that
s+i< M,

1=

)

S;,i = _)\iSs,i + 7y ((Z + 1)5571‘4_1 — Z'Ssﬂ') + Ag ((S + 1)SS+1,¢_1 — SSS,Z‘)
I;,i = AZ'SS,Z‘ + ’Y(Z + 1) (Is,i+1 — Isﬂ‘) + Aj ((8 + 1)13_;,_171'_1 — SISJ') .

The proportions of susceptible and infected nodes are finally computed using S =
S S i Ssiand T = M S Igi. In particular, this dynamical system con-
tains M (M + 3) equations. If the degree distribution charges all elements in {1,..., M},
the pairwise and effective degree models thus have the same order of equations.

Edge-based compartmental models (EBCM)

Last but not least, let us explain how to derive an edge-based compartmental model (EBCM).
Again, we will consider the case of the large graph limit of a configuration model with i.i.d.
degrees, which we know to be an almost surely simple and locally tree-like graph. While
originally developed by Volz, 2008, we will here follow the lines of Miller, 2011. The author
proposed an alternative derivation of the EBCM, leading to a more concise formulation
consisting in only two differential equation, instead of four. Throughout the following, let
p = (pk,k = 0) be the degree distribution, and W its probability generating function: for
s e [0,1],
U(s) = 2 prst.
k=0

The starting point of the EBCM is the observation that a node w is susceptible at time ¢
if and only if it has not been contaminated by any of its neighbors. In addition, as the graph
is locally tree-like, there is no short path connecting to neighbors v and w of u other than
the one passing through u. Hence, if u is susceptible, the sanitary state of all its neighbors
can be considered to be independent from one another. Thus, if 6(¢) is the probability that
at time ¢, the disease has not been transmitted along a random edge, the proportion S(t) of
susceptible nodes at time ¢ is given by

Sty = Y pb(e)t = w(o(e)). (1.2)

k=0
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As further, by definition of the SIR model,

I'(t) = —§'(t) =71 (2), (13)

it is enough to derive the dynamics of # in order to capture the epidemic spread. Let ¢(¢)
be the probability that at time ¢, an edge connects a susceptible and an infected individual,
but that the disease has not been transmitted along this edge. Then by definition,

0/ (t) = —Ao(t). (1.4)

Let us thus focus on the dynamics of ¢. On the one hand, ¢ decreases either if the infection
is transmitted along such an edge, at rate A, or if the infected extremity recovers, at rate ~.
Conversely, ¢ increases whenever a susceptible neighbor v of a susceptible node u is infected
by one of its neighbors. If h(t) designates the probability that v is still susceptible at time
t, such an infection occurs at rate —h/(t). As we have followed an edge to reach v, by
definition of the configuration model, the probability that v is of degree k is proportional
to kpg. Further, v is susceptible if and only if it has not been contaminated by any of its
neighbors: if v is of degree k, this occurs with probability #*~1(¢) since we know for sure
that one of the neighbors, w, is susceptible. Thus

S b v

h(t)
From Equation (1.4), it follows that
9(t) = —H(1) — $(H)(A +7) = B() (x

Thus, using the fact that ¢(—o0) = 0 and #(—x0) = 1,

Finally,
v'(0(t))
v(1)

The EBCM is then given by differential Equations (1.3) and (1.5), complemented by Equa-
tion (1.2), making it remarkably parsimonious when compared to the pairwise and effective
degree models. In addition, while originally being derived heuristically, the EBCM has been
established to be exact in the large population limit of the stochastic S/R model on a con-
figuration graph. This has first been achieved under a finite fifth moment assumption on
the degree distribution (Decreusefond et al., 2012), which has subsequently been relaxed to
a finite second moment condition (Janson et al., 2014).

0/ (t) = AO(t) + A + (1 - 0(t). (1.5)

This ends our brief dive into some of the major families of large population approximations
for epidemics on networks. However, let us mention here that while the pairwise, effective
degree and edge-based compartmental model formalisms have been studied extensively and
extended to various settings, other approaches exist. For instance, methods from related
mathematical topics can be adapted to yield new reductions. Indeed, Karrer and Newman,
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2010a make use of the message passing algorithms developed originally for belief propagation
on graphical models. This yields exact results for non-Markovian SIR models on locally-tree
like networks, and bounds for the epidemic on general networks. In addition, reduced models
naturally are influenced by the characteristics of the contact network under consideration.
For example, if individuals are characterized by a trait which influences whom makes contact
with whom, the large population limit can make emerge epidemic processes spreading on
graphons (Delmas et al., 2023), allowing to retain that information.

This diversity motivates the following section, which aims at summarizing the main
results regarding large population approximations for epidemic dynamics on different kinds
of contact networks.

1.2.3 An overview of reduction results for epidemics on random graphs

We will now turn to the application of the methods mentioned above, among others, to
random contact networks of increasing complexity. We do not claim to give an exhaustive
overview, and instead have aimed at including main results, as well as some recent develop-
ments for clustered and multi-layer models. The present state of the art is summarized in
Figure 1.10.

Given that the epidemic spreads along edges of the graph connecting susceptible and
infected nodes, it is key to have a good understanding of their neighborhood, as emphasized
by the previously introduced reduction methods. As a consequence, locally tree-like graphs
appear to be a good starting-point, and many reduced models have been developed in this
setting.

In particular, the SIR model on a configuration graph has been the considered for the
introduction of edge-based compartmental models in Volz, 2008, which since have been
extended to include pertinent variations of the original model, such as non-Markovian set-
tings (Sherborne et al., 2018). Similarly, configuration models have served as a basis for
the development of effective degree models (Ball and Neal, 2008; Lindquist et al., 2011),
including recently dynamical configuration models (Ball et al., 2019). Further, the pairwise
model with closure at the level of triplets has been applied to Poisson graphs (Andersson and
Britton, 2000b, Section 7.3), which emerge as the large graph limit of G(n, p/n) Erdés-Rényi
graphs. In general, it is well known that ignoring clustering simplifies the equations arising
in pairwise models (Eames and Keeling, 2002). Also, locally tree-like graphs are particularly
well-suited for the use of message-passing equations, which are exact in this setting (Karrer
and Newman, 2010a).

Given this multitude of large graph approximations, the equivalence between various
reduced models has been studied under appropriate assumptions (House and Keeling, 2011;
Jacobsen et al., 2018; Kiss et al., 2023; Sherborne et al., 2018; Wilkinson and Sharkey, 2014;
Wilkinson et al., 2017). Let us also mention Section 7 of Kiss et al., 2017 for an overview
of equivalence results.

Finally, Aparicio and Pascual, 2006 alternatively propose to approximate SIRS dynamics
on the Poisson graph using a parsimonious, uniformly mixing model. Their result relies
on calibrating the model parameters using a reproduction number, and the addition of a
Y compartment containing infected but no longer infectious individuals. This addition is
motivated by the observation that on Poisson contact networks, infected individuals often
cause most their secondary infections on a shorter timespan than their actual infectious
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Figure 1.10: Deterministic reduced models proposed in the large graph approximation, for different
types of contact networks.
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period. They obtain satisfactory approximations of the epidemic dynamics in simulations.

However, despite locally tree-like network being a favorable setting, taking into account
clustering is a natural and crucial extension as real-life networks tend to be clustered which
impacts epidemic outcomes.

A first means of achieving this consists in capturing the network’s clustering via its
clustering coefficient only. This was originally proposed for the pairwise model (Keeling
et al., 1997), and has since been adapted to derive a clustered edge-based compartmental
model (House and Keeling, 2011). Otherwise, it is possible to focus on a specific type of
clustering. Indeed, recall that due to social structures such as households and workplaces,
real-life contact networks tend to contain strongly connected subgroups (cliques), such as
households or workplaces. This leads to focusing on (variants of) the clique configuration
model and overlapping groups model, which are designed to incorporate such patterns.

For example, Volz et al., 2011 adapt the EBCM formalism to clique configuration models
by considering the network at the level of cliques. Indeed, the graph then appears to be
locally tree-like again: the sanitary state of the cliques a susceptible individual belongs to
will thus be independent from one another in the large graph limit. In addition, by comparing
the epidemic outcomes of their EBCM with those from the EBCM proposed by House and
Keeling, 2011, the authors demonstrate that the clustering coefficient alone is insufficient
to capture the epidemic impact of cliques. This demonstrates the importance of explicitly
modeling the way clustering is achieved within the population.

Let us further mention related settings studied in St-Onge et al., 2023, where contact
rates are allowed to differ between cliques as random functions of their size, as well as Hébert-
Dufresne et al., 2010, where cliques are not necessarily fully connected. Before proceeding,
it is worth emphasizing that all these models taking into account cliques share a major
common point: they focus on the epidemic at the level of structures, as they keep track of
the proportions of cliques containing a certain number of susceptibles and infected. As a
consequence, they lead to high-dimensional reduced models for larger clique sizes. This will
also hold true for the forthcoming reduced models for multi-layer settings including cliques,
which are derived from EBCM and effective degree model formalisms.

Indeed, as already argued in Section 1.1.2, considering multi-layer networks is very perti-
nent for studying epidemic spread, leading to innovative approaches being developed in this
setting. For instance, the first effective degree model was actually established for the case of
a configuration model topped by a uniformly mixing layer (Ball and Neal, 2008), and recently
a dynamical survival analysis approach has been developed to study a dynamical multi-layer
configuration network (Jacobsen et al., 2018).

Most effort, however, has been spent on household-model like networks. In this case, the
contact network contains two layers, namely one layer where each individual belongs to one
fully connected clique, i.e. a household, and one layer which depicts contacts in the general
population. In the pioneering work of House and Keeling, 2008, the general population
was assumed to be uniformly mixing. In this case, the reduced model takes the form of a
dynamical system whose variables are the proportions of households in a given configuration
(number of susceptible, infected and recovered members). This ODE system appears to
be the large population limit of its stochastic counterpart, which similarly to the uniformly
mixing model can be formalized as a finite type density-dependent Markov jump process.
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Let us mention here that recently, more coarse-grained model reductions have been
proposed for this household model. They rely on simplifying assumptions such as within-
household spread being significantly stronger than mean-field spread (Huber et al., 2020)
or aggregating all secondary infections caused within a household following a mean-field
infection (Doenges et al., 2023). Further variations of the household model include depicting
the general population as a configuration network (EBCM: Di Lauro et al., 2021; effective
degree model: Ma et al., 2013), and allowing individuals to belong to several "households”
at once (Barnard et al., 2018, EBCM).

Nevertheless, if one is interested in distinguishing different types of cliques as for the
household-workplace model, the previously introduced results are not enough. Indeed, the
model now needs to take into account two separate layers of cliques. In this setting, prior to
the present thesis, the only reduced model consists in extending the aforementioned approach
of Aparicio and Pascual, 2006. This has been achieved by del Valle Rafo et al., 2021 for
an S/RS model spreading within households and workplaces, which is approximated using a
uniformly mixing model. In this case, parameters are calibrated using a numerically estimated
reproduction number and the network's clustering coefficient. Also, as previously, an addi-
tional Y compartment is introduced. Again, the obtained reduced model numerically yields
satisfying approximations of key epidemic outcomes of the household-workplace epidemic.

However, there are several drawbacks to this approach. Indeed, model calibration may
not be straightforward in a real-life setting, as both epidemic and network parameters need
to be inferred. In addition, there are no theoretical guarantees of the approximation error,
and the reduced model is not fine-grained enough to fit the epidemic dynamics over time.
These challenges will be addressed in this thesis, as will become apparent in the following
section.

1.3 Main contributions of the thesis

This section is dedicated to introducing and summarizing the results of Chapters 2 to 5.
Figure 1.11 yields an overview of the considered models and their connection, indicating the
focus of each chapter. Notably, Chapters 2 to 4 aim at proposing and analyzing reduced mod-
els which approximate the household-workplace model, introduced in Section 1.1.2. Here,
we recall its parameters, as they will be of use throughout the following sections:

» 7 and 7" designate the household and workplace size distributions. We assume the
maximal household and workplace size nyax to be finite.

= Ba, A and Ay are the contact rates for each graph layer: general population, house-
holds and workplaces.

= Infectious period lengths are distributed according to a probability measure v on R,
which is assumed to be absolutely continuous with respect to the Lebesgue measure. In
the Markovian case, v is an exponential distribution of parameter v which corresponds
to the recovery rate.

We can now turn to the main contributions of this thesis.
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Chapter 2

Numerical exploration
Chapter 3
Large population
convergence
Chapter 4

Model extension

Chapter 4
Sensitivity, robustness, comparison

Chapter 5

Spinal constructions

Figure 1.11: Summary of the different models considered throughout the thesis, as well as their
relationships and the chapters they relate to. Stochastic models are shown in yellow, deterministic
models in green.
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1.3.1 Chapter 2 - The epidemic footprint of contact structures

This chapter is based on the preprint "The epidemiological footprint of contact structures
in models with two levels of mixing"”, which is a joint work with Vincent Bansaye, Frangois
Deslandes and Elisabeta Vergu (Bansaye et al., 2023a).

Generally speaking, contact structures such as households, workplaces or schools are a
natural component of human contact networks, inducing these networks to be clustered.
Further, it is well known that clustering has a significant impact on epidemic outcomes
(House and Keeling, 2011), and that this effect depends on the way clustering is achieved
within the network (Volz et al., 2011). Similarly, when trying to analyse control measures
such as teleworking or school closures, Di Lauro et al., 2021 show that the way contacts are
represented in mathematical models modifies the predicted outcomes of such interventions.
In particular, teleworking acts by modifying the workplace size distribution. Taken together,
this raises the question: what is the impact on epidemic outcomes of the size distribution of
strongly connected subgroups, such as workplaces?

Given the impact of the contact modeling choice on epidemic and intervention out-
comes, we have addressed this question by studying the household-workplace model, since it
explicitly distinguishes contacts within households and workplaces. As will become apparent
throughout the chapter, the epidemic impact of such small contact structures is significant
yet subtle, with no straightforward analytical expression. Thus, we propose two indicators
for this epidemic impact which as we will see are related to other crucial issues: the design
of efficient teleworking strategies, and model reduction.

In order to achieve this, we have undergone a numerical exploration of the household-
workplace model. Using stochastic simulations, we explore several epidemic parameter sets,
which are inspired by COVID-19, influenza and varicella-like settings. These scenarios are
combined with a variety of workplace size distributions, among which a reference distribution
based on workplace sizes in lle-de-France (INSEE, 2018). On the contrary, the household size
distribution is kept fixed as it is generally not acted upon by control policies, and corresponds
to the one observed in France (INSEE, 2018).

We start by comparing two teleworking strategies. The first strategy consists in a naive
approach, where the number of workers allowed on site is proportional to the workplace size
(linear strategy), whereas it is proportional to the square root of the workplace size for the
second strategy (sublinear strategy). We observe that the sublinear strategy outperforms
the linear strategy: at fixed teleworking rate, the observed reduction in epidemic peak and
final size is stronger when the sublinear strategy is used instead of the linear one. Notice
that, if the teleworking rate is fixed, the average number of employees per workplace who
are not teleworking is fixed as well, as the number of workplaces is constant by essence.

Thus, we are interested in proposing an indicator for the epidemic impact of workplace
size distribution 7V, at fixed mean. Through simulations, we show that in this case, the
epidemic growth rate, peak size and final size are linearly correlated to the variance of v,
which thus corresponds to our first indicator. In particular, the sublinear strategy induces by
construction a stronger reduction in the variance of the number of employees on site than
the linear strategy. This illustrates the pertinence of such indicators, which can be put in
practice for the design of efficient control strategies.
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However, one drawback of such numerical explorations is that simulations of the stochas-
tic household-workplace model are time-consuming, especially when considering large popu-
lations. In addition, the household-workplace model can be difficult to calibrate in practice,
as it requests good knowledge of both network parameters and epidemic parameters. Next,
we thus aim at proposing a parsimonious reduced model which approximates the epidemic
dynamics of the household-workplace model. More precisely, we suggest to make use of a
deterministic, uniformly mixing SIR model, which depends on two parameters only: a recov-
ery rate v and a reduced contact rate 5. We assume the recovery rate v to be known, which
is generally the case through medical expertise, and it thus only remains to fix the contact
rate.

Two natural ways for doing so would be to choose 5 as to ensure that the reduced and
original models either share the same reproduction number, or the same epidemic growth
rate. On the one hand, contrary to the uniformly mixing case, there exist several reproduction
numbers for the household-workplace model (Ball et al., 2016). On the other hand, the
epidemic growth rate is well characterized for our model as the unique solution to an implicit
equation (Pellis et al., 2011), for which we derive partially more explicit formulas. As a
consequence, we choose to calibrate the reduced model using the epidemic growth rate 7,
leading to the following system of equations describing the dynamics of the proportion of
susceptibles s and infected i:

s'(t) = —(y+r)si, i'(t)=(y+r)si—~i.

In order to assess the performance of this reduced model, we have computed through
simulations the approximation error for the epidemic peak and final size, for a variety of
epidemic scenarios and workplace size distributions. In most cases, the error is less than 5%,
which is satisfactory. In addition, we notice that the model better approximates the peak
size than the final size, which is coherent as it has been calibrated on the initial exponential
growth phase. We further have assessed the robustness of this approach to different model
variations, namely considering either an SEIR model, Gamma-distributed infectious periods
(i.e. a non-Markovian model) or a sublinear infection rate within structures. In all cases, the
approximation performs reasonably well.

This model reduction has several strengths. It is elegantly parsimonious, and expected
to be relatively easy to calibrate from data, as it only relies on the recovery and epidemic
growth rates. In particular, this is advantageous compared to del Valle Rafo et al., 2021.
Further, these results establish that the epidemic growth rate is a good indicator for the
epidemic impact of the structure size distributions 77 and 7V

However, there also are some limitations. Indeed, as mentioned previously, the preci-
sion of the reduced model decreases over time, and there are neither theoretical guarantees
on the goodness of fit, nor analytical quantifications of the expected approximation error.
This motivates the development of another reduced model, which complements the present
approach. This is at the heart of the next chapter.

1.3.2 Chapter 3 - Large population limit for a multilayer SIR model including
households and workplaces

This chapter is based on the preprint "Large population limit for a multilayer SIR model
including households and workplaces” (Kubasch, 2023).
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We study the large population limit of the household-workplace model, allowing us to
derive a reduced model which yields the exact epidemic dynamics in infinitely large popula-
tions. We start by formalizing the epidemic in a population of finite size K as a measure-
valued Markov process, which corresponds to a favorable mathematical setting for studying
the large population limit through the associated martingale problem (e.g. Fournier and
Méléard, 2004). In our setting, this is actually not straightforward. Indeed, infected indi-
viduals correlate the epidemic state of the household and workplace they belong to. This is
illustrated by removal events, during which the infected needs to recover in both structures
simultaneously. As a consequence, the intuitive description of households and workplaces
by the number of susceptible, infected and recovered members is insufficient to correctly
represent the epidemic dynamics.

In order to tackle this difficulty, we propose to incorporate into the description of struc-
tures the remaining duration of the infectious period length of each individual who has been
in contact with the disease, similarly to branching approximations (Ball et al., 2014). In
particular, we thus recover dynamics which recall age-structured population models (Tran,
2006), further allowing us to take into account a wide class of infectious period length
distributions within a Markovian setting.

Notice that there actually are two sources of randomness: the first corresponds to the
realization of the contact network, and the second to the spread of the epidemic process.
Our random graph model, whose construction is detailed in Chapter 3, ensures that each
individual chooses a household and workplace independently from one another, and from
other individuals. In addition, the obtained sequence of contact networks for populations of
size K > 1 converges almost surely to an infinite version of the household-workplace network,
where the household and workplace size distributions are exactly given by 77 and 7" Here,
we consider a fixed realization (G*) x> of this sequence for which this convergence holds,
and we thus do not emphasize further the randomness of the contact network.

Given that realization of the contact network for population size K, we can now express
the epidemic process as an agent based model, whose agents are households and workplaces.
Each structure is characterized by its size n, the number of susceptible members s, and
a vector 7 € R™max keeping track of infected and recovered members. More precisely, for
k < n —s, T, is the remaining infectious period of the k-th member who contracted the
disease: if 7. > 0, the individual is still infectious for 7 time units, and recovered otherwise
since |7 | time units. For k > n — s, 7, = 0 by default.

Let us detail the evolution of the structure types over time. Upon an infection event, the
household state of the newly infected jumps from = = (n,s, 7) to

i(x,0) =(n,s — 1,7+ oe(n—s+1)),

for some o > 0, where (e(k), k € [1, nmax]]) is the canonical basis of R"™m#x. Indeed, there is
one less susceptible, and the newly infected is the (n—s+1)-th member of the households who
becomes infected. The corresponding component of 7 is thus initialized at ¢ sampled from
the distribution v. Simultaneously, the newly infected’s workplace state changes analogously,
using the same realization o of the infectious period length.

Such an infection event can be due to a contamination within a household (X = H) or
workplace (X = W) in state (n,s,7), at rate Axs > ._] 1, o} where we recall that Ay
and Ay are the one-to-one contact rates within households and workplaces, respectively.
The third source of infection corresponds to the general population, which is assumed to
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be uniformly mixing with one-to-all contact rate S5. At this level, infections occur at rate
BaSI/K, where S and I designate the number of susceptibles and infected in the population
which can be deduced from the household or workplace states.

Finally, within a structure of type (n,s,7), the remaining infectious period lengths of
infected and recovered individuals decrease over time, according to the simple differential
equation 7;, = —L{p<n—s)- This leads to a closed system of Markovian dynamics which we
describe below.

Let Ky and Ky designate the number of households and workplaces, and z3\ (t) =
(ni¥, s (t), 7iX(t)) for k € [1, Kx] the type of the k-th household (X = H) or workplace
(X = W) at time t. Our process of interest ¢ = (¢HIX ¢(WIK) then can be described as
follows, for X € {H,W} and t > 0:

X|K 13
t = —F (S X(t)'

In words, (1K and ¢WIK keep track of the distributions of household and workplace types
over time. A rigorous definition of the process (¥ can be provided, as it is characterized as
the unique solution to a system of stochastic differential equations driven by Poisson point
processes (see Proposition 3.2.1).

Designate by FE the structures' state space, i.e.

E = {(n,s,7) € [1,nmax] X [0, 2max] x R™™> : s <n; Vj >n—s,7; =0}.

Let M1 (E) be the space of probability measures on E. For f € C}(R; x E,R), t >0 and
x € E, let fi(x) = f(t,x) and

+00
fE (@) =, fili(2, ) = f(t,i(x, 0))v(do).
0
In order to study the large population convergence of ((¥) =1, we make use of a tightness-
identification-uniqueness argument. For this purpose, the focus lies on the average of func-

tions f € Cl} (R4 x E,R) with respect to C?IK, namely

Kx
GV gy = j Fr@ G ey = Y Fr(X (1)),
E k=1

Let us now introduce our convergence result. It requires some technical assumptions on
the sequence of initial conditions ((f)x=1, which however are not very restrictive. As a
consequence, they are not stated here and we refer to Assumption 3.3.1 for details.

Introduce the differential operator A defined by

Ve = (n,s,7)e E, Afi(x) =20 f(t,z)— nz_:samf(t,m).
k=1

Also, for any 2 = (n,s,7) € E, let n(x) = n, s(z) = s and i(z) = i(7) = D7 1(7, -0} be
the functions yielding the size, number of susceptible and number of infected members of a
structure in state x. Further, for X € {H, W}, X designates the opposite kind of structure,
ie. X = Hl x_wy+Wlix_p).

We are now ready to state our result.
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Theorem 1.3.1. Suppose that (Cg)K>l satisfies Assumption 3.3.1 and converges in law to

no € Mi(E)2. Then ((5) g1 converges in D (Ry, M1 (E))? ton = (n¥, W) defined as
the unique solution of the following system of Equations (1.6). For any f € CL(R; x E,R),
foranyT >0 and X € {H, W},

R fry = ik oy + f (¥ Afdt+ Ax f G si(fE — f)t

<77t’s>
0 <77t> s)

Additionally, it is possible to show that the marginals of X, conditioned on the structure’s
size n and number of susceptible members s, are absolutely continuous. Let px , ; designate
the associated densities, for X € {H, W}, n € [1,nmax] and s € [1,n]. Let

(1.6)

+Ax i, s(fF = foydt + B f <”“><t> (fF = fo)at.

(ni¥, si)y (i)
Ax(t) )\ <77t ’S> +BG<T]5I,H>'

Then the set of functions (px ) is a weak solution to the following differential equations:
for any e R"™* and t € (0, 7)),

athns t T 2 a‘rkans(t T) = _S(AXi(T) + AX(t))pX,n,S(th)
k=1

+ 1{s+1<n} (5 + ]—) ()\Xi(Tl,n—s—l) + AX (t)) pX,n,erl(tv Tl,n—s—l)gl/(Tn—s)a

where 71 ;,_s—1 = (71,...,Th—s—1) and with appropriate initial conditions. This relates the
measure-valued Equation (1.6) to a system of non-linear and nonlocal transport equations.

To summarize, Theorem 1.3.1 yields the exact epidemic dynamics in the large population
limit. The limiting object 7 is rich, as it conveys the epidemic state of households and
workplaces, with details on the remaining infectious periods of each individual who has been
in contact with the disease. As a consequence, 1 remains of infinite dimension: we would
thus like to achieve a stronger, finite dimensional model reduction, by considering a coarser
description of the population’s epidemic state.

Such a stronger reduced model can be obtained in the Markovian case, where v is
exponentially distributed of parameter 7. Let s(t) and i(¢) be the proportions of susceptible
and infectious individuals, respectively, in the population at time ¢ according to distribution
1. Further introduce the set

S={(n—14,1) :2<n<Npax,0 < i <n—1}.

For (S,I) € S and X € {H,W}, let né{l(t) be the proportion of households (X = H) or
workplaces (X = W) containing S susceptible and I infected individuals at time ¢, as given
by 7;¥. Let us further introduce the following applications:

7a(t) = Bgi(t), and 7x(t) = Z SIng(t) for X e {H,W}.

Zk>1 kﬂ-k (S,1)eS
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Suppose that, at time 0, the remaining infectious period of each infected individual is sup-
posed to be distributed according to v, independently from one another, and that a fraction
g of uniformly chosen individuals are infected amidst an otherwise susceptible population.
Then the following result holds.

Theorem 1.3.2. The functions (s, i, ”§1 : X € {H,W},(S,I) €S) are characterized as
being the unique solution of the following dynamical system: for any t > 0, X € {H,W}
and (S,I) €S,

%S(t) = —(r(t) + Tw (1) + T6(t)s(t)),
L) = L st —itt),
%ngfl(t) = - <)\XSI + TX(t)S(St) +76(1)S + 71) ns.(t) )

+~(I + 1)n§1+1(t)1{5+1<nmax}

+ (AX(S ST - 1)+ TX(t)‘S;(t)l

with appropriate initial conditions, detailed in Theorem 3.3.3.

Fra(t)(S + 1>) o1 sn,

Notice that dynamical system (1.7) describes a compartmental model, whose variables
include the proportions of households and workplaces having a given number of susceptible
and infected members. In particular, this implies that in the Markovian case, the correlation
of structure states due to common infected members does not need to be taken into account
to derive the correct epidemic dynamics. This allows to obtain a finite-dimensional reduced
model.

Nevertheless, the dynamical system'’s dimension is of order O(n2,, ). While this is advan-
tageous when compared to a household-workplace EBCM with O(n3,,.) equations (Section
3.3.2), it raises the question whether numerically solving the dynamical system is pertinent
compared to stochastic simulations. Numerical explorations suggest that for large parts of
the parameter space, solving dynamical system (1.7) is significantly faster than the simula-
tion of a single stochastic trajectory of the original epidemic process. This indicates that our
obtained reduced model can be a pertinent choice for simulation studies.

1.3.3 Chapter 4 - Sensitivity of the reduction accuracy to network and epi-
demic parameters

The aim of this chapter is to investigate and quantify the impact of both network and epi-
demic parameters on the accuracy of the two reduced models introduced in the previous
chapters. The motivations behind this study are twofold. First, it allows to identify the con-
ditions under which using either reduced model yields a good approximation of the epidemic.
Second, for each reduction, it points out parameters which strongly influence the approxi-
mation quality: the reduction would thus benefit from precise inference of these parameters,
highlighting where estimation effort needs to be invested.

Let us recall here that our two model reductions consist in complementary approaches.
On the one hand, the uniformly mixing reduced model from Chapter 2 is very parsimonious,
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robust to model variations, but there are no theoretical guarantees on its accuracy. On the
other hand, the large population limit of Chapter 3 is certain to be asymptotically exact,
but only under the assumption that the contact network is exactly given by the household-
workplace model. As a consequence, our sensitivity study explores two different angles,
depending on the strengths and weaknesses of each reduced model.

First, let us consider the uniformly mixing reduced model of Chapter 2. Given the
absence of theoretical guarantees on its accuracy, we previously have explored numerically the
parameter space to identify regions where the reduction is pertinent. Here, we complement
this approach with a global sensitivity analysis based on Sobol's variance decomposition.
This allows to quantify the parameters’ influence, and check if these results are consistent
with previous conclusions from Chapter 2.

For this purpose, we focus on the household-workplace model, whose parameters are the
structure size distributions (7,7, contact rates (8g, Am, Aw) and recovery rate v, as
explained in Section 1.1.2. Here, we explore the impact of the contact rates only, and keep
fixed all other parameters. We conceive an experimental design allowing to cover a pertinent
domain of the contact rate parameter space, based on the epidemic scenarios of Chapter 2.
We then numerically compute Sobol's main and total indices for our quantities of interest,
namely the differences of the peak or final size predicted by the uniformly mixing reduced
model of Chapter 2, and by the large population limit of Chapter 3.

The obtained results are qualitatively very different for peak and final size. For the peak
size, all three contact rates have equally significant impact on the prediction accuracy of
the uniformly mixing reduced model, with almost no interaction effects. For the final size,
however, the contact rate within the general population is responsible for a large majority of
the output variance, with some minor interaction effects. Notably, this seems coherent with
the results from Chapter 2, which indicated that the final size prediction performs better
when the proportion of infections in the general population is high.

Second, we focus on the reduced model derived in Chapter 3 as the large population limit
of the household-workplace model, thus yielding asymptotically exact dynamics. However,
this result relies on the choice of the contact network which contains two strong assumptions:
(1) the independence of structure choices of all individuals, and (2) uniform mixing within all
structures. Notably, both are simplifications of real-life settings: for example, couples may
share a workplace, and empirical studies are not consistent with workplaces being uniformly
mixing. But, if they are relaxed, does the large population limit of Chapter 3 still give a
good approximation of an epidemic spreading on that contact network?

In order to address this question, we propose a generalized household-workplace model
which in general does not comply to assumptions (1) and (2). As previously, the (asymptotic)
household and workplace size distributions are given by 71 and 7", respectively. Intuitively,
the first difference with the household-workplace model is that within each household, several
individuals choose their workplace together, each household member participating in that
choice with probability q. Additionally, for workplaces of size n, the within-workplace contact
network takes the form of an Erd6s-Rényi graph G(n,p(n)), where n — p(n) is a non-
increasing function, which attains its minimal value p at n = nuyax < 0. In particular, the
household-workplace model is recovered if p = 1 and ¢ = 0. Throughout the following, we
vary the within-workplace density p and structure overlap q.
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Regarding epidemic spread, we consider SIR dynamics, as in the previous chapters. The
parametrization remains the same, with contact rates g, Ay, Aw specific to each layer
and recovery rate v > 0. The only difference lies in the interpretation of the contact rate
Aw, which now represents the rate at which contacts occurs along each edge of the within-
workplace network. In particular, if the within-workplace contact network is a complete graph
and contains s susceptible and i infected members, this still yields infections at rate Ay s,
as expected.

We concentrate on the differences in the predictions of either peak or final size, be-
tween the generalized household-workplace model and the large population limit of Chapter
3. These differences are computed numerically, covering several epidemic parameter sets,
structure size distributions and values of (p,q). Our findings suggest that for a significant
part of the explored parameter space, the large population limit gives a satisfying predic-
tion (within an error margin of roughly 5%). Further, the within-workplace density p has
a stronger impact than structure overlap q. Hence, taking into account a more detailed
description of within-workplace contacts would be worth investigating.

These results are ongoing work. In particular, a wider sensitivity study is planned, which
allows to assess the robustness of our present conclusions. These perspectives are detailed
at the end of Chapter 4.

1.3.4 Chapter 5 - On spinal constructions for interacting populations

The previous chapters have allowed to propose reduced models which give access to macro-
scopic properties of the household-workplace model, such as the proportion of infected in the
population, or the proportion of households containing a given number of susceptible and
infected members. However, they are not designed for capturing microscopic aspects, such
as chains of infections, which yield a detailed understanding of how the epidemic spreads in
the network.

In order to track contamination chains, an analogy can be made between the tree of
infections and a genealogical tree: infection events correspond to births, and recovery events
to deaths. As a consequence, chains of infections then amount to ancestral lineages. While
the study of such lineages is classical for the branching approximation which holds at the
beginning of the epidemic, understanding them outside of the branching regime is an active
field of research (Bansaye, 2024; Calvez et al., 2022; Duchamps et al., 2023; Medous, 2023).

Throughout this chapter, we thus consider the general setting of stochastic, density-
dependent population processes, as our results are not restricted to epidemic models since
such dynamics arise in other domains, including ecology. Here, we make some simplifying as-
sumptions, notably that the individual’s type space is finite. Indeed, the household-workplace
model points out interesting difficulties, both technical and due to the representation of the
process allowing to make emerge the infection tree, which are motivating perspectives for
a future work. However, our results already open the door to pertinent applications in
epidemiology, including models with contact heterogeneity, as emphasized in the chapter’s
discussion.

More precisely, the aim of this work is to study ancestral lineages of an individual which
is sampled at some time ¢ > 0 in a population. For branching processes, such a typical
lineage reduces to a Markov process, thanks to the many-to-one formula (Harris et al., 2016;
Harris and Roberts, 2017), which is related to Feynman-Kac path equations (Del Moral,
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2004, Sections 1.3 and 1.4.4). This so-called spinal construction greatly simplifies the study
of typical lineages, both on the theoretical side as the reduced model is a Markov process,
and from the numerical point of view as simulations are less demanding in computation time.

Recently, Bansaye, 2024 has developed a spinal process for multi-type populations with
interaction, i.e. where reproduction rates depend on the population state. In this case,
the author focuses on the lineage of an individual sampled at time ¢ > 0 with probability
proportional to (x,z), where x is the individual's type, z the current population type
composition, and 1) a positive function on the appropriate space. A many-to-one formula
relating such a lineage to a -spinal process is established, both in finite populations and in
the large population limit.

Here, we address some of the drawbacks and open questions of this approach. Namely,
we first propose an alternative many-to-one formula, relating a 1)-sampled lineage to a time-
inhomogeneous Markov process. This allows for a lager class of sampling strategies 1, and
can be easier to interpret and potentially numerically advantageous compared to the -spine.
Second, we focus on quantifying the convergence of the v-spine to its large population limit.

In order to introduce our time-inhomogeneous spinal construction, let us give a brief
description of the population process. We consider a population whose size is bounded by
K < oo. Each individual is characterized by a type x € X, where X is a finite set. The
population is described by the vector z = (z;,x € X) belonging to the set Zx = {z €
(N U {0})C2rd(®) |z, < K}. Here, z, counts the number of individuals of type z. In a
population of composition z, each individual of type x dies and leaves offspring k € Zx at
rate 7 (x,z). This means that the population composition jumps from z to z + k — e(z),
where (e(z),z € X) is the canonical basis of Zx. The rate 7¢(z,z) is supposed to be zero
if the resulting population exceeds K individuals.

We let G(t) be the set of individuals alive at time ¢, write u > v if individual u is a
descendant of v and z,(s) for the type of the unique ancestor of u alive at time s < ¢. The
population process of interest is then given by X (¢) = ZueG(t) O(uwu(t)), and Z(t) designates
the associated population type composition, at time ¢ > 0. Finally, for (z,2) € Sk =
{(z,2) e X x Zk : 2z, > 1}, we consider X(x,z) to yield an appropriate initial condition for
X, such that the population is of composition z with one distinguished individual u, of type
x.

We are now ready to give an intuitive description of our spinal process, which is inspired
by Marguet, 2019 in continuation with which we refer to it as the ¢-auxiliary process. Let
t > 0 be the time at which sampling takes place. Similarly to Bansaye, 2024, our spinal
process needs to take into account both the spine's type Y®, and the composition of the
population ¢, due to the density-dependence of reproduction rates. Both reproduction
rates of the spine and outside of it need to be biased, and this bias relies on the application
my, defined as follows. For any (z,z) € Sk, for any s € [0, 1],

my(z,2z,t — s) = E[ Z P(ay(t), Z(t))| X (s) = %(:c,z)].

ueG(t), u>uy

This corresponds to the i-weighted average of the types of individuals alive at time ¢,
whose ancestor at time s was a given individual of type x in a population of composition z.
Throughout the following, we require m,, to be a positive function.
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Assume now that at time s € [0,¢], the population is of composition z and the spine
of type x. Then on the one hand, the spine reproduces, leaves descendance k € Zx and
switches to type y at rate

mw(yvz +k — e(fl)),t — 3)
m¢($,z7t - 3)

Tk(xv Z)ky

In other words, such a transition is more likely if it increases the 1)-average of the spine’s
descendance at time ¢. Similarly, an individual of type y € X other than the spine leaves
descendance k at rate
my(z,z+k —e(y),t—s)

my(z, 2,1 — s)

Tk(yv Z)

Again, this transition rate is positively biased if it yields a more favorable environment for
the spine, in the sense that the v-average of the spine's descendance at time ¢ is greater if
at time s, the population is of composition z + k — e(y) than if it is of composition z. The
spinal process (Y () (s), () (s))s<; is thus a time-inhomogeneous Markov process, which can
be rigorously defined as the unique solution to a system of SDEs (see Proposition 5.3.2).
The heart of the chapter is the following many-to-one formula. We let Ex(, ,) and E, ,)
designate respectively the expectation conditionally on the events {X(0) = X(z,z)} and

{(¥(0),¢"(0)) = (,2)}.

Theorem 1.3.3. For any t = 0 and any measurable function F : D([0,t],Skx) — R4, for
any (z,z) € Sk,

Ex(o)| ()Z blaa(), ZO)F(@als), Z())s<) | .
ueG(t), u>ug .

= mdl(x’ Z, t)E(x,z) [F((Y(t) (3)7 C(t) (3))S<t>]'

The proof relies on identifying both sides of Equation (1.8) through the infinitesimal gen-
erators of the associated time-inhomogeneous, conservative semi-groups. This corresponds
to exhibiting a time-inhomogeneous change in probability, inspired by Marguet, 2019, which
relates the v-typical lineage of the population process to the -auxiliary process.

Let us emphasize here that our assumption my > 0 is less restrictive than ¢ > 0.
Notably, it allows to sample directly within subpopulations, which can find pertinent appli-
cations. For example, the 1-auxiliary process may specifically capture contamination chains
leading to infections of vulnerable individuals, such as the elderly, at time t. We refer to
Chapter 5 for a more detailed discussion on strengths and weaknesses of the obtained spinal
process.

Second, we consider the w-spine introduced in Bansaye, 2024, and quantify its conver-
gence to its large population limit. We first set the context for this study. Let d = Card(X).
For a population of size at most K, we let ZX(¢) € [0, 1]¢ be its population state at time t,
defined as its type composition normalized by K. Further, for any k € (N u {0})?, the re-
production rate 7y : X x [0,1]¢ — R, depends on the reproducing individual's type and the
population state only, and the set {k : 7x # 0} is finite. Under mild conditions, the sequence
of processes (Z%) =1 then converges in probability, uniformly on finite time intervals, to a
deterministic function z : R, — [0, 1]? which is solution to a dynamical system.
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Consider an application v : X x [0,1]? — R, which is continuous on X x [0,1]¢ and
continuously differentiable on X x (0,1)¢. Let 1k be defined by i (x,2) = ¢ (z,z/K) for
(x,2z) € Sk. The Y i-spine can be described as follows. Assume that the population is in
state z € [0,1]%, and that the spine is of type 2 € X. Then the spine leaves descendance
k e (N U {0})¢ and becomes of type y at rate

Py z+ (k —e())/K)
P(z,2) '

Similarly, an individual of type y € X other than the spine leaves descendance k at rate

Yz, z + (k —e(y))/K)
P(z,2) '

The associated sequence of ¥ x-spinal processes (YK,CK)K%, whose components de-
scribe the spine’s type and population state, converges in law to (Y, z), where T is a
time-inhomogeneous Markov process. More precisely, at time s = 0, T jumps from z € X
to y € A at rate

Tk (z, 2)ky,

Tk(yv Z)

Py, 2(s))
b(x, 2(s))

Here, we do not go further into detail, and refer to Section 5.2.2 for assumptions and results
of Bansaye, 2024.

Notably, the fluctuations of ZK around its deterministic limit z are well understood,
classical regimes being gaussian fluctuations, moderate and large deviations (Ethier and
Kurtz, 1986, Chapter 11; Britton and Pardoux, 2019b; Pardoux, 2020). Technically, these
results do not transfer immediately to (X as it distinguishes one individual, the spine, from
the general dynamics. Intuitively, however, such control of fluctuations should hold, as the
impact of the spine becomes negligible in the large population limit. Here, we thus work
under Assumption 5.4.3 that there exist non-negative sequences (tx)x>1, (6x)rk>1 and
(ag)K>1 such that, for every K > 1,

D kymil(w, 2(s))

Kke(NU{0})d

s€[0,tk]

P ( sup || (s) — z(s)|1 = €K> < ag.

The general idea is to transfer this control of the convergence of ((¥)x=1 to z, to the
convergence of (Y®)g~1 to Y. This further requires some regularity of the reproduction
rates, which are assumed to be Lipschitz-continuous (Assumption 5.4.2). Finally, a coupling
argument leads to the following result:

Theorem 1.3.4. Under Assumptions 5.4.2 and 5.4.3, there exists C' > 0 such that for every
K=>1,
Pt <tg:YE@1) #T() < ag + Clex + K Hitk.

In particular, if the sequences (tx/K)g>1, (tkex)x>1 and (ax)x>1 tend to zero as K
goes to infinity, with (tx)x>1 converging to t,, € Ry U {0}, the coupling is asymptotically
exact on [0,tx]. In this regard, a particularly promising regime is that of moderate deviations
in presence of an asymptotically stable equilibrium, a setting which emerges for instance in
endemic models (Pardoux, 2020; Prodhomme, 2023). We refer to the discussion of Chapter
5 for detail.
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1.4 Contributions principales de la thése

Dans cette section, nous introduisons et résumons les résultats des Chapitres 2 3 5. La
Figure 1.11 donne une vue d’ensemble des modeéles considérés et des connexions entre-eux,
indiquant le centre d’attention de chaque chapitre. Notamment, les Chapitres 2 a 4 visent
a proposer et analyser des modeles réduits qui approchent le modele foyer-travail, introduit
en Section 1.1.2. Ici, nous rappelons la définition de ses paramétres, car ils seront utilisés
dans les sections suivantes :

» 7 et W désignent les distributions de tailles des foyers et lieux de travail. Nous
supposons que la taille maximale ny,ay des foyers et lieux de travail est finie.

» Ba, Ag et Ay sont les taux de contact au sein de chaque couche du graphe : en
population générale, dans les foyers et dans les lieux de travail.

= Les durées des périodes infectieuses sont distribuées selon une mesure de probabilité
v sur R, supposée absolument continue par rapport a la mesure de Lebesgue. Dans
le cas Markovien, v est exponentiellement distribuée de parametre v, qui correspond
alors au taux de guérison.

Nous pouvons maintenant nous intéresser aux contributions de cette these.

1.4.1 Chapitre 2 - L’empreinte épidémique des structures de contact

Ce chapitre est basé sur la prépublication " The epidemiological footprint of contact structures
in models with two levels of mixing”, réalisée en collaboration avec Vincent Bansaye, Francois
Deslandes et Elisabeta Vergu (Bansaye et al., 2023a).

Les structures de contact telles que les foyers, lieux de travail et écoles sont des com-
posantes naturelles des réseaux de contact humain, qui sont donc agglomérés. Or, il est bien
connu que le clustering a un impact significatif sur |'épidémie (House and Keeling, 2011), et
que cet effet dépend de la fagon dont le clustering est implémenté au sein du réseau (Volz
et al., 2011). De plus, si I'on cherche a analyser certaines mesures de contréle comme le
télétravail ou la fermeture des écoles, Di Lauro et al., 2021 ont montré que la facon dont
les contacts sont représentés par le modéle mathématique modifie les prédictions quant a
I'effet de ces interventions. Puisque le télétravail agit en modifiant la distribution des tailles
de lieux de travail, la question suivante se pose donc : quel est I'impact sur |'épidémie de la
distribution des tailles de sous-groupes fortement connectés, tels que les lieux de travail ?

Etant donné I'impact du choix de la modélisation des contacts sur |'épidémie et |'effet des
mesures de controle, cette question sera abordée en étudiant le modele foyer-travail, puisqu'’il
distingue explicitement les contacts au sein des foyers et lieux de travail. Comme illustré par la
suite, I'impact épidémique de telles petites structures de contact est significatif mais subtile,
n'admettant pas d’'expression analytique immédiate. Par conséquent, nous proposons deux
indicateurs pour cet impact épidémique qui s'avéreront liés a deux autres enjeux majeurs :
la conception de stratégies de télétravail efficaces, et la réduction du modéle.

Pour cela, nous avons étudié numériquement le modele foyer-travail. Nous explorons par
simulations stochastiques plusieurs jeux de paramétres épidémiques, inspirés de la COVID-19,
de la grippe et de la varicelle. Ces scénarios sont combinés avec une variété de distributions



1.4. CONTRIBUTIONS PRINCIPALES DE LA THESE 53

de tailles de lieux de travail, parmi lesquelles une distribution de référence basée sur les tailles
de lieux de travail en lle-de-France (INSEE, 2018). Au contraire, la distribution des tailles
de foyers est fixée, car elle n'est généralement pas modifiée par les mesures de contrdle, et
correspond a celle observée en France (INSEE, 2018).

Nous commencons par comparer deux stratégies de télétravail. La premiére consiste en
une approche naive, ou le nombre d'employés autorisés en présentiel est proportionnel a
la taille du lieu de travail (stratégie linéaire), tandis que ce nombre est proportionnel a la
racine carrée de la taille du lieu de travail pour la seconde stratégie (stratégie sous-linéaire).
Nous observons que la stratégie sous-linéaire est la plus performante des deux : a taux de
télétravail fixé, la réduction de la taille du pique et de la taille finale est plus forte si on utilise
la stratégie sous-linéaire au lieu de celle linéaire. Remarquons ici qu'a taux de télétravail fixé,
le nombre moyen d’employés en présentiel par lieu de travail est fixé également, puisque le
nombre de lieux de travail est constant par essence.

Ainsi, nous cherchons a proposer un indicateur de I'impact épidémique de la distribution
des tailles de lieux de travail 7", 3 moyenne fixée. Par simulation, nous montrons qu’en ce
cas, le taux de croissance épidémique, la taille du pique et la taille finale sont linéairement
corrélés a la variance de 7', qui correspond donc a notre premier indicateur. En particulier,
la stratégie de télétravail sous-linéaire induit par construction une réduction plus forte de
la variance du nombre d’'employés en présentiel que la stratégie linéaire. Cela illustre la
pertinence de tels indicateurs, qui peuvent étre mis en pratique pour concevoir des stratégies
de contréle efficaces.

Néanmoins, de telles explorations numériques présentent I'inconvénient que les simula-
tions du modeéle stochastique foyer-travail sont gourmandes en temps de calcul, en particulier
pour de grandes populations. De surcroit, le modéle foyer-travail peut étre délicat a cali-
brer en pratique, car il requiere une bonne connaissance a la fois des paramétres du réseau
et des parametres épidémiques. Nous visons donc ensuite a développer un modéle réduit
parcimonieux qui approche la dynamique du modéle foyer-travail. Plus précisément, nous
proposons d'utiliser un modele SIR déterministe, uniformément mélangeant, qui ne dépend
que de deux parameétres : un taux de guérison «y et un taux de contact réduit 5. Nous
supposons que le taux de guérison v est connu, ce qui est généralement le cas par expertise
médicale, et il ne reste donc qu'a déterminer le taux de contact.

Deux facons naturelles de procéder seraient de choisir 3 de sorte que le modéle réduit
et le modéle initial partagent soit le méme nombre de reproduction, soit le méme taux de
croissance épidémique. D'une part, contrairement au cas uniformément mélangeant, il existe
plusieurs nombres de reproduction pour le modele foyer-travail (Ball et al., 2016). D'autre
part, le taux de croissance épidémique est caractérisé pour notre modele comme |'unique
solution d'une équation implicite (Pellis et al., 2011), pour laquelle nous développons des
formules partiellement plus explicites. Par conséquent, nous choisissons de calibrer le modele
réduit en utilisant le taux de croissance épidémique r, menant au systéme d’'équations suivant,
qui décrit les dynamiques des proportions de susceptibles s et infectés i :

s'(t) = —(y+r)si, @(t)=(y+r)si—~i.

Afin d'évaluer la performance de ce modele réduit, nous calculons par simulations I'erreur
d’approximation pour la taille du pique et la taille finale, en considérant une variété de



54 CHAPTER 1. INTRODUCTION

scénarios épidémiques et de distributions de tailles de lieux de travail. Dans la plupart des
cas, I'erreur commise est inférieure a 5%, ce qui est satisfaisant. De plus, nous remarquons
que le modeéle réduit approche mieux la taille du pique que la taille finale, ce qui est cohérent
avec le fait qu'il ait été calibré sur la phase initiale de croissance exponentielle. Nous avons
également évalué la robustesse de cette approche a diverses variations du modele, a savoir
en considérant un modeéle SEIR, des périodes infectieuses distribuées selon une loi Gamma
(i.e. sortant du cadre Markovien) ou encore des taux d'infection sous-linéaires au sein des
structures. Dans tous les cas, |'approximation est raisonnable.

Cette réduction de modeéle a plusieurs points forts. Elle est élégamment parcimonieuse,
et relativement aisée a calibrer a partir de données, puisqu’elle ne repose que sur les taux
de guérison et de croissance épidémique. En particulier, cela est avantageux en comparaison
avec del Valle Rafo et al., 2021. Par ailleurs, ces résultats établissent que le taux de croissance
épidémique est un bon indicateur de I'impact épidémique des distributions des tailles de
structures 7 et 7.

Néanmoins, il y a aussi quelques inconvénients. En effet, comme mentionné précé-
demment, la précision de ce modele réduit décroit au cours du temps, et il n'y a ni garanties
théoriques sur la qualité de I'approximation, ni quantifications analytiques de I'erreur com-
mise. Cela motive le développement d'un autre modeéle réduit, qui complémente cette
premiére approche. Ce sera I'enjeu du chapitre suivant.

1.4.2 Chapitre 3 - Limite grande population d’un modéle S/IR multicouche
incluant foyers et lieux de travail

Ce chapitre est basé sur la prépublication "Large population limit for a multilayer SIR model
including households and workplaces” (Kubasch, 2023).

Nous étudions la limite grande population du modeéle foyer-travail, ce qui nous permet de
dériver un modele réduit correspondant aux dynamiques épidémiques exactes en population
infinie. Nous commencons par formaliser I'épidémie en population de taille finie K en tant
que processus de Markov a valeur mesure. En effet, cela correspond a un cadre mathématique
favorable pour I'étude de la limite grande population grace au probléme de martingale associé
(e.g. Fournier and Méléard, 2004). Néanmoins, dans notre cas, cela n'est pas immédiat car
les individus infectés correlent I'état épidémique de leur foyer et lieu de travail. Cela est
illustré par les événements de guérison, puisqu’un infecté doit guérir simultanément dans les
deux structures auxquelles il appartient. Par conséquent, la description intuitive des foyers et
lieux de travail par le nombre de membres susceptibles, infectés ou guéris se révele insuffisante
pour représenter correctement la dynamique épidémique.

Pour y remédier, nous proposons d'incorporer a la description des structures la durée
restante des périodes infectieuses des individus ayant été en contact avec la maladie, des
approches similaires existant pour |'approximation branchement (Ball et al., 2014). En
particulier, nous obtenons donc des dynamiques semblables aux modéles structurés en age
(Tran, 2006), ce qui nous permet de considérer une large gamme de distributions de la durée
des périodes infectieuses tout en restant dans un cadre Markovien.

Remarquons ici que nous sommes en présence de deux sources d'aléa : la premiere
correspond a la réalisation du réseau de contact, et la seconde a la propagation du processus
épidémique. Notre modele de graphe aléatoire, dont la construction est détaillée au Chapitre
3, assure que chaque individu choisit son foyer et son lieu de travail indépendamment I'un de
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I"autre, et des autres individus. De plus, la suite obtenue de réseaux de contact en population
de taille K > 1 converge presque siirement vers un réseau foyer-travail de taille infinie, ot
les distributions de tailles des foyers et lieux de travail sont données précisément par 7! et
7, respectivement. Ici, nous considérons une réalisation donnée (GX)~; de cette suite
pour laquelle cette convergence a lieu, et nous ne soulignerons donc plus I'aléa lié au réseau
de contact.

Etant donnée cette réalisation du réseau de contact pour une population de taille K,
nous pouvons maintenant décrire le processus épidémique par un modeéle basé sur agents,
dont les agents sont les foyers et lieux de travail. Chaque structure est caractérisée par sa
taille n, le nombre de membres susceptibles s et un vecteur 7 € R™ax qui représente les
membres infectés et guéris. Plus précisément, pour kK < n — s, 73 est la durée restante de
la période infectieuse du k-eme membre ayant contracté la maladie : si 7, > 0, l'individu
reste infectieux pour 7 unités de temps, sinon il est guéri depuis |7| unités de temps. Pour
k>mn—s, 7, =0 par défaut.

Détaillons maintenant I'évolution des types de structures au cours du temps. Suite a un
événement d'infection, le type du foyer du nouvel infecté saute de x = (n,s,7) a

j(.’L’,O’) = (TL,S - 1a7—+ Je(n_ s+ 1))7

pour o > 0, (e(k),k € [1,nmax]) étant la base canonique de R™ax. En effet, il y a un
susceptible de moins, et le nouvel infecté est le (n — s + 1)-éme membre du foyer a étre
contaminé. La composante correspondante de 7 est donc initialisée a une valeur ¢ distribuée
selon v. Simultanément, le lieu de travail du nouvel infecté change de type de facon analogue,
en utilisant la méme réalisation o de la durée de période infectieuse.

Un tel événement d'infection peut faire suite a une contamination au sein d'un foyer
(X = H) ou lieu de travail (X = W) de type (n,s,7), au taux Axs Y _j 1, ) ol
nous rappelons que Ay et Ay désignent respectivement les taux de contact un-pour-un
au sein des foyers et lieux de travail. La troisieme source d'infection est la population
générale, uniformément mélangeante de taux de contact un-pour-tous Sg. Au sein de celle-
ci, une infection se produit donc au taux SgSI/K, ol S et I correspondent au nombre de
susceptibles et infectés dans la population qui peuvent étre déduits des types des foyers et
lieux de travail.

Enfin, au sein d'une structure de type (n, s, 7), la durée restante des périodes infectieuses
des membres infectés ou guéris décroit au cours du temps, suivant I'équation différentielle
T = —l{z<n—s}. Ainsi, nous obtenons un systéme fermé de dynamiques Markoviennes,
décrit ci-dessous.

Soient K et Ky les nombres de foyers et lieux de travail, et 23\ (t) = (ny, sy (), 725 (t))
pour k € [1, Kx] le type du k-éme foyer (X = H) ou lieu de travail (X = W) au temps
t. Notre processus d'intérét (& = (CH‘K,CWW) peut alors étre décrit comme suit, pour
Xe{HW}ett=0:

X|K 13
= — 1) )
t Ky kz_ll ¥ (1)

Intuitivement, (115 et ¢(WIK correspondent aux distributions de types de foyers et lieux de
travail, au cours du temps. Une définition rigoureuse du processus (¥ peut &tre obtenue en
tant qu’unique solution d'un systeme d’équations différentielles stochastiques par rapport a
des processus ponctuels de Poisson (voir Proposition 3.2.1).
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Désignons par E |'espace de types des structures, i.e.
E = {(n,s,7) € [1,nmax] ¥ [0, max] x R™™> 15 <n; Vj>n—s,7; =0}.

Soit M (E) I'espace de mesures de probabilité sur E. Pour f € C}(R; x E,R), t > 0 et
x € E, soit fi(z) = f(t,z) et

400

fE(@) =, fili(x, ) = , ft,)(z,0))v(do).

Afin d'étudier la convergence de (C¥)x >1 en grande population, nous utilisons un argu-
ment de tension-identification-unicité. Pour cela, nous nous concentrons sur la moyenne de

fonctions f € C}(R+ x E,R) par rapport 2 Cc,{(lK, c'est-a-dire

Kx
<“?h»3[hw¥“@w:2ﬁmﬁT
E k=1

Introduisons maintenant notre résultat de convergence. Celui-ci nécessite quelques hy-
pothéses techniques sur la suite de conditions initiales () =1, qui ne sont toutefois pas
trés restrictives. Par conséquent, nous ne les détaillons pas ici et renvoyons a I'Hypothése
3.3.1.

Considérons I'opérateur différentiel A défini par

Ve = (n,s, 7)€ E, Afi(x)=0of(t,z)— Z@katm

Alors, pour tout = (n,s,7) € E, soient n(z) = n, s(x) = s eti(z) = i(7) = D7 17, ~0)
les fonctions qui a une structure de type x, associent sa taille, le nombre de membres
susceptibles et le nombre de membres infectés. De plus, pour X € {H,W}, X désigne
I'autre sorte de structure, i.e. X = HYx_wy + Wlix_py.

Nous pouvons désormais énoncer notre résultat.

Theorem 1.4.1. Supposons que (g“(f<)l{>1 satisfait Hypothése 3.3.1 et converge en loi vers

no € Mi(E)2. Alors (¢(5)g=1 converge dans D (Ry, M1(E))? vers n = (nf1,nV) défini
comme I'unique solution du systéme suivant d’Equations (1.9). Pour tout f € C{ (R4 x E,R),
pour tout T >0 et X € {H,W},

Omﬁ>@mm+f%wﬁw+kjmﬁl St

<77t 7S> <77t ’ >
0 <"7t ,S)

(1.9)

+ g W, s(fE = f))dt + Ba J <t, (ff = fo)ydt.

De plus, il est possible de montrer que les marginales de X, conditionnellement 2 la taille
n de la structure et au nombre s de susceptibles qu’elle contient, sont absolument continues.
Soient px s les densités associées, pour X € {H, W}, n € [1,nmax] et s € [1,n]. Soit

(ni¥, si) (!, i)
Ax(t) =Xy <7It o +BG<%{,H>-
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Alors la famille de fonctions (px ) est une solution faible de I'équation différentielle suiv-
ante: pour tout Te R"* et te (0,7,

ath n, s t T Z aTkpX n s ) _S(AXi(T) + Ax (t))pX,n,s(ta T)

+ 1{s+1sn} (s +1) (Axi(Trn-s-1) + Ax (1)) px 541t T1n—s-1) 0 (Tn—s),

ol Tip—s—1 = (T1,...,Th—s—1) €t avec des conditions initiales appropriées. Cela relit
I’Equation valeur mesure (1.6) a un systéme d'équations de transport non-linéaires et non
locales.

Pour résumer, Théoréme 1.4.1 donne acceés aux dynamiques épidémiques exactes dans
la limite grande population. L'objet limit 7 est riche, puisqu’il contient des informations
détaillées sur |'état épidémique des foyers et lieux de travail, dont la durée restante de la
période infectieuse de chaque individu ayant été en contact avec la maladie. Par conséquent,
71 reste infini-dimensionnel : nous aimerions donc obtenir une réduction plus forte, fini-
dimensionnelle, en adoptant une description plus grossiere de I'état épidémique de la popu-
lation.

Une telle réduction plus forte peut étre obtenue dans la cas Markovien ou v est ex-
ponentiellement distribuée, de parameétre . Soient s(t) et i(t) les proportions d'individus
respectivement susceptibles ou infectés, dans une population au temps ¢ selon la distribution
1. Par ailleurs, introduisons I'ensemble

S={(n—1,7) : 2 <n < Nmax,0 <i <n—1}.
Pour (S,I) € Set X € {H, W}, soit nfgf](t) la proportion de foyers (X = H) ou lieux de
travail (X = W) contenant S susceptibles et I infectés au temps ¢, selon 7. Introduisons
de plus les applications suivantes :

1¢(t) = Bai(t), et Tx(t) = Z ST nSI ) pour X € {H,W}.

Zk>1 ki (S,1)es

Supposons que, au temps 0, les durées restantes des périodes infectieuses des infectés sont
i.i.d. de loi v, et qu'une fraction ¢ de la population est infectée uniformément au hasard, les
autres étant susceptibles. Alors nous obtenons le résultat suivant.

Theorem 1.4.2. Les fonctions (s, i, n§1 : X e {HW},(S,I) € S) sont caractérisées

comme étant I'unique solution du systéme dynamique suivant : pour toutt >0, X € {H, W}
et (S,I)€S,

%S(t) — —(7u(t) + Tw () + 76 ()s(t)),
d . d ,
a2(75) = f%s(t) —i(t),

d S
@nfg&(t) </\XSI+TX( )—— S

(T + 10 11 (DL (54 T<nman}

¥ </\X(S P -1+ 70 L a5+ 1)) nor (O 1ysny.

#6(0)8 + 91 ) 1) (1.10)
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avec des conditions initiales appropriées, détaillées dans I'énoncé du Théoréme 3.3.3.

Remarquons que le systéme dynamique (1.10) décrit un modéle compartimental, dont les
variables incluent les proportions de foyers et lieux de travail contenant un certain nombre
de susceptibles et infectés. En particulier, cela implique que dans le cadre Markovien, la
corrélation des états sanitaires des structures due aux infectés n'a pas besoin d'étre prise
en compte pour bien décrire la dynamique épidémique. C'est ce qui permet d’'obtenir une
réduction fini-dimensionnelle.

Néanmoins, le systéme dynamique est d’ordre O(n?2,.). Bien que ceci soit avantageux
en comparaison d'un modéle EBCM foyer-travail 3 O(n3,..) équations (Section 3.3.2), cela
souléve la question si la résolution numérique du systeme dynamique est pertinente vis-a-vis
des simulations stochastiques. Des explorations numériques suggerent que sur une large
partie de I'espace de paramétres, résoudre le systéme dynamique (1.10) est significativement
plus rapide que la simulation d'une trajectoire stochastique du processus épidémique initial.
Cela indique que le modele réduit obtenu peut étre un choix pertinent pour des études par
simulations.

1.4.3 Chapitre 4 - Etude de la sensibilité de la précision de réduction aux
parameétres du réseau et de I'épidémie

L'objectif de ce chapitre est d'investiguer et quantifier I'impact des paramétres du réseau de
contact et des parametres épidémiques sur la précision des deux modeles réduits introduits
dans les chapitres précédents. En effet, cela permet d’identifier les conditions sous lesquelles
chacun de ces modeéles réduits fournit une bonne approximation de I'épidémie. De plus,
pour chaque réduction, cela met en lumiére les parameétres influencant le plus la qualité
d’approximation : la réduction bénéficierait donc d'une inférence précise de ces parameétres,
indiquant I'importance de |'estimation de ces derniers.

Rappelons ici que les deux modeéles réduits consistent en des approches complémentaires.
D’une part, le modele réduit uniformément mélangeant du Chapitre 2 est trés parcimonieux,
robuste aux variations du modele, mais sans garanties théoriques de précision. D'autre part,
la limite grande population du Chapitre 3 est exacte asymptotiquement, mais uniquement si
le réseau de contact correspond exactement a celui du modéle foyer-travail. Par conséquent,
notre étude de sensibilité sert a explorer deux questions différentes, qui sont soulevées par
les forces et faiblesses de chaque modéle réduit.

Dans un premier temps, nous nous concentrons sur le modeéle réduit uniformément
mélangeant du Chapitre 2. Etant donnée I'absence de garanties théoriques de précision,
nous avons précédemment exploré par simulations |'espace de paramétres pour identifier les
régions de celui-ci ou la réduction est pertinente. lIci, nous complétons cette approche par
une analyse de sensibilité globale basée sur la décomposition de la variance de Sobol’. Cela
permet de quantifier 'influence de chaque paramétre, et de vérifier si ces résultats sont
cohérents avec les conclusions du Chapitre 2.

Pour cela, nous considérons le modele foyer-travail, dont les paramétres sont les distri-
butions des tailles de structures (77, "), les taux de contact (Bg, A, A\w) et le taux de
guérison -y, voir Section 1.1.2. Ici, nous explorons uniquement I'impact des taux de contact,
les autres parameétres étant fixés. Nous concevons un design expérimental permettant de
couvrir un domaine pertinent de I'espace de parametres, basé sur les scénarios épidémiques
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du Chapitre 2. Ensuite, nous calculons numériquement les indices de Sobol’ principaux et
totaux des quantités d'intérét, a savoir de la différence entre la taille du pique ou la taille
finale prédite par le modéle réduit uniformément mélangeant du Chapitre 2, et par la limite
grande population du Chapitre 3.

Les résultats obtenus sont qualitativement trés différents entre taille du pique et taille
finale. Pour la taille du pique, les trois taux de contact ont un impact significatif comparable
sur la précision de la prédiction du modele réduit uniformément mélangeant, quasiment sans
effets d'interactions. Pour la taille finale, en revanche, le taux de contact en population
générale est responsable de la majorité de la variance, avec des effets d'interaction mineurs.
Notamment, cela semble cohérent avec les résultats du Chapitre 2, qui indiquaient que la
taille finale est mieux prédite si la proportion d'infections en population générale est élevée.

Dans un second temps, nous nous intéressons au modele réduit du Chapitre 3, qui
correspond a la limite grande population du modéle foyer-travail et donne donc accés aux
dynamiques épidémiques asymptotiquement exactes. Néanmoins, ce résultat repose sur le
choix du réseau de contact qui contient deux hypotheéses fortes : (1) I'indépendance du choix
des structures entre individus, et (2) I'uniforme mélange au sein de toutes les structures. En
particulier, toutes les deux sont des simplifications de la vie réelle : par exemple, les deux
partenaires d'un couple peuvent avoir le méme lieu de travail, et les études empiriques
indiquent que les lieux de travail ne sont pas uniformément mélangeants. Mais, si ces
hypotheéses sont relachées, est-ce que la limite grande population du Chapitre 3 fournit
malgré tout une bonne approximation de I'épidémie se propageant sur ce réseau de contact 7

Pour répondre a cette question, nous proposons un modele foyer-travail généralisé qui
ne satisfait pas nécessairement les hypotheses (1) et (2). Comme précédemment, les dis-
tributions (asymptotiques) de tailles de foyers et lieu de travail sont données par 7/ et
W, respectivement. Intuitivement, la premiére différence vis-a-vis du modele foyer-travail
est qu'au sein de chaque foyer, plusieurs individus choisissent leur lieu de travail ensemble,
chaque membre du foyer participant a ce choix commun avec probabilité ¢. Ensuite, au sein
d'un lieu de travail de taille n, le réseau de contact intra-travail est donné par un graphe
Erdés-Rényi G(n, p(n)), ol n — p(n) est une application décroissante, dont la valeur min-
imale p est atteinte si n = nguax < 0. Notamment, le modéle foyer-travail correspond
exactement au choix de paramétres p = 1,q = 0. lIci, nous faisons varier la densité intra-
travail p et le chevauchement des structures q.

Concernant la propagation de I'épidémie, nous considérons des dynamiques SIR, comme
dans les chapitres précédents. La paramétrisation est la méme que pour le modele foyer-
travail, avec les taux de contact Bg, Ay, Aw spécifiques a chaque couche du réseau, et le
taux de guérison v > 0. La seule différence consiste en I'interprétation du taux de contact
Aw, qui représente maintenant le taux auquel un contact est établi le long des arétes de
chaque réseau intra-travail. En particulier, si au sein d'un lieu de travail, le réseau de contact
est complet et contient s susceptibles et ¢ infectés, cela donne lieu a une infection au taux
Aw st, comme attendu.

Nous nous concentrons sur la différence de taille du pique ou taille finale, entre le modéle
foyer-travail généralisé et la limite grande population du Chapitre 3. Ces différences sont
calculées numériquement, en considérant plusieurs choix de paramétres épidémiques, distri-
butions de tailles de structures et valeurs de (p,q). Nos résultats suggérent que sur une
part significative de I'espace de paramétres exploré, la limite grande population donne une
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prédiction satisfaisante (marge d'erreur d’'environ 5%). De plus, la densité intra-travail p a
un impact plus fort que le chevauchement des structures ¢. Ainsi, prendre en compte une
description plus détaillée des réseaux de contact intra-travail serait pertinent.

Ces résultats font partie d'une travail en cours consistant en une analyse de sensibilité plus
large, qui devrait nous permettre d'étudier la robustesse de nos conclusions. Ces perspectives
sont détaillées a la fin du Chapitre 4.

1.4.4 Chapitre 5 - Sur les constructions spinales pour populations en inter-
action

Les chapitres précédents nous ont permis de proposer des modeles réduits qui donnent acces
a des propriétés macroscopiques du modele foyer-travail, telles que la proportion d'infectés
au sein de la population, ou la proportion de foyers contenant un nombre donné de membres
susceptibles et infectés. Toutefois, ils ne sont pas congus pour capter des aspects micro-
scopiques, comme les chaines de contamination, qui donnent accés a une compréhension
précise de la propagation de I'épidémie sur le réseau.

Afin de suivre les chaines d’infection, nous pouvons faire une analogie entre |'arbre
d’infections et un arbre généalogique : les événements de contamination correspondent aux
naissances, et les guérisons aux déces. Par conséquent, les chaines de contamination peuvent
étre vues comme des lignées ancestrales. Tandis que I'étude de telles lignées est classique pour
["approximation branchement valable en début d'épidémie, leur compréhension en-dehors du
régime de branchement est un domaine de recherche actif (Bansaye, 2024; Calvez et al.,
2022; Duchamps et al., 2023; Medous, 2023).

Dans ce chapitre, nous considérons donc le cadre général de processus de popula-
tion stochastiques, densité-dépendants, car nos résultats ne se limitent pas aux modéles
épidémiques puisque ces dynamiques émergent dans d’autre domaines, tels que I'écologie.
Ici, nous faisons quelques hypotheses simplificatrices, en supposant notamment que I'espace
de types des individus est fini. En effet, le modele foyer-travail pointe des difficultés
intéressantes, a la fois techniques et liées a la représentation du processus qui permet de
faire émerger I'arbre d'infection, qui pourront faire I'objet d'un travail futur. Néanmoins,
nos résultats ouvrent d'ores et déja la porte a des applications pertinentes en épidémiologie,
y compris pour les modéles tenant compte de I'hétérogénéité de contacts, comme souligné
dans la discussion du chapitre.

L'objectif de ce travail est d'étudier la lignée ancestrale d’un individu échantillonné au
temps ¢t > 0 dans une population. C'est un objet d'étude classique dans le cadre de processus
de branchement, en quel cas il est bien connu qu'une telle lignée typique se réduit a un
processus de Markov, grace a la formule tous-pour-un (Harris et al., 2016; Harris and Roberts,
2017), qui est apparentée aux équations de Feynman-Kac (Del Moral, 2004, Sections 1.3 and
1.4.4). La construction spinale ainsi définie, simplifie grandement I'étude de lignées typiques
tant sur la plan théorique, comme le modeéle réduit est un processus de Markov, que sur le
plan numérique, car les simulations deviennent moins coliteuses en temps de calcul.

Récemment, Bansaye, 2024 a développé un processus spinal pour des populations multi-
type avec interactions, i.e. ol les taux de reproduction dépendent de I'état de la population.
Dans ce cas, I'auteur se concentre sur la lignée d'un individu échantillonné au temps ¢t > 0
avec probabilité proportionnelle a ¢)(x,z), ot z est le type de I'individu, z la composition en
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types actuelle de la population, et ¥ une fonction strictement positive sur |'espace approprié.
Une formule tous-pour-un reliant une telle lignée a un processus -spinal est établie, en
population finie et dans la limite grande population.

Ici, nous abordons certains inconvénients et questions ouvertes de cette approche. Plus
précisément, nous proposons d'abord une formule tous-pour-un alternative, reliant une lignée
1-échantillonnée a un processus de Markov inhomogene en temps. Cela permet de considérer
une classe plus large de stratégies d'échantillonnage v, donne lieu a une interprétation intu-
itive, et se révele possiblement avantageux sur le plan numérique. Ensuite, nous quantifions
la convergence de la y-épine de Bansaye, 2024 vers sa limite grande population.

Afin d'introduire notre construction spinale inhomogeéne en temps, commencgons par don-
ner une bréve description du processus de population. Nous considérons une population dont
la taille est bornée par K < . Chaque individu est caractérisé par un type x € X, ou X
est un ensemble fini. La population est décrite par le vecteur z = (z,, x € X') appartenant a
I'ensemble Zx = {z € (N U {0})°1M) . ||z|; < K}. Ici, z, compte le nombre d'individus
de type . Dans une population de composition z, chaque individu de type x meurt et laisse
la descendance k € Zk au taux 7y (z,z). Cela signifie que I'état de la population saute de z
az+k—e(z), ou (e(x),x € X) est la base canonique de Zx. Le taux 7y (x,z) est supposé
nul si la population qui en résulte contient plus de K individus.

Soit G(t) I'ensemble des individus en vie au temps t, et écrivons u > v si l'individu u
descend de v et z,(s) pour le type de I'unique ancétre de u vivant au temps s < t. Le
processus de population d'intérét est donné par X (1) = X,c() O(ura(r)). €t Z(t) est la
composition en types de la population associée, au temps ¢ > 0. Enfin, pour (z,z) € Sk =
{(x,2) € X x Z : z, = 1}, nous désignons par X(z,z) une condition initiale adéquate pour
X, qui assure que la population est de composition z, et qui distingue un individu u, de
type x.

Désormais, nous sommes préts a donner une description intuitive du processus spinal, qui
est inspiré par Marguet, 2019. En continuité avec cet article, nous I'appellerons également
processus -auxiliaire. Soit t = 0 le temps auquel I'échantillonnage a lieu. De facon similaire
3 Bansaye, 2024, notre processus spinal prend en compte 3 la fois le type de I'épine Y1),
et la composition de la population C(t), en raison de la densité-dépendance des taux de
reproduction. A la fois les taux de reproduction de I'épine et hors de I'épine sont biaisés, et
ce biais repose sur |'application m,;, définie comme suit. Pour tout (z,2z) € Sk, pour tout
s € [0,t],

mw(x,z,t—s)zE[ 3 @Z)(xu(t),Z(t))X(s)=3€(:L',z)].

ueG(t), u>uy

Cela correspond a la moyenne 1-pondérée des types d'individus en vie au temps ¢, dont
I'ancétre au temps s était un individu donné de type x dans une population de composition
z. Par la suite, nous faisons I'hypothése que m,, est une fonction strictement positive.

Supposons maintenant qu'au temps s € [0,t], la population est de composition z et
I'épine de type x. Alors d'une part, I'épine se reproduit, laisse descendance k € Zi et
devient de type y au taux

m¢(yvz +k — e(x)vt — 8)
mw(xvzvt - S)

Tk(xv Z)ky
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En d’autres termes, une telle transition est plus probable si elle augmente la y-moyenne des
descendants de I'épine au temps t. De facon similaire, un individu de type y € X autre que
I"épine laisse descendance k au taux

my(z,z+k —e(y),t—s)
my(z, 2,1 — s)

Tk(ya Z)

De nouveau, ce taux de transition est biaisé positivement s'il crée un environnement plus
favorable pour I'épine, au sens ou la ¥-moyenne des descendants de I'épine au temps ¢ est
plus grande si au temps s, la population est de composition z + k — e(y) que si elle est de
composition z. Le processus spinal (Y ) (s),((®)(s))s<; est donc un processus de Markov
inhomogeéne en temps, qui peut étre défini rigoureusement comme |'unique solution d'un
systeme d'EDS (voir Proposition 5.3.2).

Le coeur de ce chapitre est la formule tous-pour-un suivante. Nous désignons par
Ex(z2) €t E(;z) respectivement I'espérance conditionnellement a {X(0) = X(x,2z)} et

{(¥(0),¢"(0)) = (,2)}.

Theorem 1.4.3. Pour tout t > 0 et toute fonction mesurable F : D([0,t],Sk) — Ry, pour
tout (z,z) € Sk,

Exea)| T vl 2O () 2())sr)| -
ueG(t), u>=uy .

= My (@, 2, )E (2. [F (YD (5), (1 (5))s0)]-

La preuve consiste 3 identifier les deux membres de I'Equation (1.11) au moyen du
générateur infinitésimal des semi-groupes conservatifs, inhomogénes en temps, associés. Cela
correspond a un changement de probabilité inhomogene en temps (Marguet, 2019) qui relie
une lignée -typique du processus de population au processus -auxiliaire.

Soulignons ici que notre hypothése m,, > 0 est moins restrictive que ) > 0. Notamment,
elle permet d’échantillonner directement au sein de sous-populations, ce qui peut trouver
des applications pertinentes. Par exemple, le processus -auxiliaire est capable de capter les
chafnes de contamination menant a I'infection d’'individus vulnérables, comme les personnes
agées, au temps t. Le Chapitre 5 contient une discussion détaillée des forces et faiblesses du
processus spinal obtenu.

Dans un second temps, nous considérons la i-épine introduite par Bansaye, 2024, et
quantifions sa convergence vers sa limite grande population. Présentons le contexte de cette
étude. Soit d = Card(X). Pour une population de taille au plus K, soit Z%(t) € [0,1]?
I'état de la population au temps ¢, défini comme sa composition en types normalisée par K.
De plus, pour tout k € (N U {0})¢, le taux de reproduction 7 : X x [0,1] — R, dépend
du type de l'individu et de I'état de la population uniquement, et I'ensemble {k : 7, # 0}
est fini. Sous des hypotheses faibles, la suite de processus (Z%)g=1 converge alors en
probabilité, uniformément sur des intervalles de temps finis, vers une fonction déterministe
z: Ry — [0,1]? solution d’un systéme dynamique.

Considérons une application ¢ : X' x[0,1]? — R continue sur X’ x [0, 1] et continliment
différentiable sur X x (0,1)%. Soit ¢ définie par i (x,2) = 1 (x,z/K) pour (r,z) € Sk.
La ¢ x-épine peut alors étre décrite comme suit. Supposons que la population est dans |'état
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z € [0,1]%, et que I'épine est de type = € X. Alors I'épine laisse descendance k € (N U {0})¢
et devient de type y au taux

Py 2+ (k —e(x))/K)
(2, 2) ’

De méme, un individu de type y € X autre que I'épine laisse descendance k au taux

U(z,z + (k —e(y))/K)
U(z,2z)

La suite associée de processus 1) i-spinaux (YK, CK)KzL dont les composantes décrivent
le type de I'épine et I'état de la population, converge en loi vers (T, z), ou Y est un processus
de Markov inhomogeéne en temps. Plus précisément, au temps s > 0, T saute de I'état z € X
a l'état y € X au taux

Tk (z, 2)ky

Tk(ya Z)

Py, 2(s))
b(x, 2(s))

Nous renvoyons a la Section 5.2.2 pour un résumé détaillé des résultats et hypothéses de
Bansaye, 2024.

Or, les fluctuations de ZX autour de sa limite déterministe z sont bien comprises, les
régimes classiques étant les fluctuations gaussiennes, ainsi que les déviations modérées et
les grandes déviations (Ethier and Kurtz, 1986, Chapitre 11; Britton and Pardoux, 2019b;
Pardoux, 2020). Techniquement, ces résultats ne se transférent pas immédiatement a CK
puisque ce dernier distingue un individu, I'épine, de la dynamique générale. Intuitivement,
toutefois, un tel contréle des fluctuations devrait avoir lieu, puisque l'impact de I'épine
devient négligeable en grande population. lIci, nous travaillons donc sous |I'Hypothése 5.4.3
qu'il existe des suites positives (tx) k=1, (€x)Kk>1 et (ax)K>1 telles que, pour tout K > 1,

D kymil(w, 2(s))

ke(NU{0})d

P ( sup [ ¢%(s) = 2(s) |1 = €K> < ax.
s€[0,tk]

L'idée générale est de transférer ce contrdle de la convergence de (¢¥)g=1 vers z, 3
la convergence de (Y®)i~1 vers T. Cela nécessite de plus la régularité des taux de re-
production, qu'on suppose ici Lipschitz-continus (Hypothése 5.4.2). Enfin, un argument de
couplage meéne au résultat suivant :

Theorem 1.4.4. Sous les Hypothéses 5.4.2 et 5.4.3, il existe C' > 0 tel que pour tout K > 1,
Pt <tg:YE@1) #T(t) < ag + Clex + K Hitk.

En particulier, si les suites (tx/K)k>1, (tker)x=1 et (ax)Kx>1 tendent vers 0 lorsque
K tend vers l'infini, avec (tx)x>1 convergeant vers t,, € Ry U {0}, le couplage est asymp-
totiquement exact sur [0,ty]. Ainsi, un régime particulierement prometteur est celui des
déviations modérées en présence d'un équilibre asymptotiquement stable, comme cela est le
cas pour certains modeles endémiques (Pardoux, 2020; Prodhomme, 2023). Nous renvoyons
a la discussion du Chapitre 5 pour plus de détails.
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CHAPTER 2
The epidemic footprint of contact
structures

Models with several levels of mixing (households, workplaces), as well as various correspond-
ing formulations for Ry, have been proposed in the literature. However, little attention has
been paid to the impact of the distribution of the population size within social structures,
effect that can help plan effective interventions. We focus on the influence on the model out-
comes of teleworking strategies, consisting in reshaping the distribution of workplace sizes.
We consider a stochastic SIR model with two levels of mixing, accounting for a uniformly
mixing general population, each individual belonging also to a household and a workplace.
The variance of the workplace size distribution appears to be a good proxy for the impact of
this distribution on key outcomes of the epidemic, such as epidemic size and peak. In par-
ticular, our findings suggest that strategies where the proportion of individuals teleworking
depends sublinearly on the size of the workplace outperform the strategy with linear depen-
dence. Besides, one drawback of the model with multiple levels of mixing is its complexity,
raising interest in a reduced model. We propose a homogeneously mixing SIR ODE-based
model, whose infection rate is chosen as to observe the growth rate of the initial model. This
reduced model yields a generally satisfying approximation of the epidemic. These results,
robust to various changes in model structure, are very promising from the perspective of im-
plementing effective strategies based on social distancing of specific contacts. Furthermore,
they contribute to the effort of building relevant approximations of individual based models
at intermediate scales.

Code availability.
https: // forgemia. inra. fr/ francois. deslandes/ communityepidemics

This chapter is based on the preprint "The epidemiological footprint of contact structures in models
with two levels of mixing”, a joint work with Vincent Bansaye, Francois Deslandes and Elisabeta
Vergu (Bansaye et al., 2023a).
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2.1 Introduction

The dynamics of an epidemic relies on the contacts between susceptible and infected individ-
uals in the population. The number and characteristics of contacts has a major quantitative
effect on the epidemic. In addition to the main features playing a role in the description of
contacts, such as the age and propensity to travel of individuals (Davies et al., 2020; Giles
et al., 2020), the nature of the contact is also crucial: homogeneous mixing in closed struc-
tures (household, workplaces, schools,...) or related to other intermediate social structures
(group of friends, neighbors...) e.g. House and Keeling, 2008. The heterogeneity of contacts
can be captured in network based models (Keeling and Eames, 2005) or models with two
levels of mixing (Ball and Neal, 2002). These models distinguish a global level of mixing
corresponding to a uniformly mixing general population, as well as a local level consisting in
an overlapping groups model, meaning that each individual belongs to one or several small
contact groups such as households and workplaces and schools. These modeling frameworks
or their simplified unstructured versions allow to tackle important questions related to the
control of epidemic dynamics by acting specifically on these different population structures.
Furthermore, the computation of the corresponding reproduction number, arguably one of
the most important epidemic indicators, enables to assess control measures.
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For the homogeneous mixing SIR model, several important characteristics can be sum-
marized by the reproduction number Ry. This threshold parameter indicates whether there
may be a large epidemic outbreak, allows to calculate the final epidemic size and the fraction
of the population that needs to be vaccinated in order to stop an outbreak, see e.g. Heester-
beek and Dietz, 1996; Ball et al., 2016 and references therein. It is also directly linked to the
exponential growth rate r at the beginning of the epidemic, and has a clear interpretation
as the mean number of individuals contaminated by a single infected individual in a large
susceptible population. For models with two levels of mixing, however, the definition of a
unique reproduction number combining these criteria has not been achieved yet. Instead,
various reproduction numbers have been proposed, of which Ball et al., 2016 have given an
interesting overview. All of them respect the threshold of 1 for large epidemic outbreaks, and
they generalize one or another aspect of the traditional Ry. Some of these reproduction num-
bers have the advantage of an intuitive interpretation. This is the case of the reproduction
number R; introduced in the supplementary material of Pellis et al., 2009 for the household-
workplace model, and which was previously introduced for household models (Becker and
Dietz, 1995; Ball et al., 1997). Its definition relies on a multi-type branching process which
focuses on primary cases within households and workplaces, grouping all secondary cases as
descendants of the primary cases. Then R is defined as the Perron root of the corresponding
average offspring matrix. In this paper, we will show that this reproduction number has the
advantage of being connected to further relevant information on the household-workplace
epidemic, namely the proportions of infections occurring at each level of mixing.

Nevertheless, a drawback of most of the reproduction numbers for household-workplace
models that are described by Ball et al., 2016 is that by construction, they lose track of time.
Indeed, in an effort to construct meaningful generations of infected individuals, the timing of
the infections is neglected. As a consequence, contrary to the case of homogeneous mixing,
there is no simple link between these reproduction numbers and the initial exponential growth
rate. The only exception is R, a reproduction number which has originally been introduced
by Goldstein et al., 2009 for household models, and whose definition has been extended
by Ball et al., 2016 to household-workplace models. The definition of this reproduction
number depends explicitly on the exponential growth rate . But as far as we see, it has no
easy intuitive interpretation. It thus seems pertinent to complement the information yielded
by a reproduction number such as R; with the growth rate . While simple closed analytic
expressions seem out of reach, Pellis et al., 2011 have obtained an interesting characterization
that we use and complement by more explicit expressions.

Given the relative difficulty for computing reproduction numbers for models with several
levels of mixing, Goldstein et al., 2009 have suggested, in the case of the simplest model
with two levels of mixing, namely structured only in general population and households, to
first estimate the growth rate from data, and to then compute R,. Trapman et al., 2016
have gone one step further, by proposing to first infer = from data, and then totally neglect
the population structure and approximate a reproduction number from r using the formula
linking the reproduction number to the exponential growth rate in the homogeneous mixing
model. They find that this procedure is generally satisfactory, indicating that this procedure
defines a homogeneous mixing model able to capture key aspects of the beginning of the
epidemic. This makes one wonder to what extent it is possible in general to approach an epi-
demic spreading in a household-workplace model by a simple, unstructured, well parametrized
compartmental model. Some work has been done in this direction by del Valle Rafo et al.,
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2021. They have shown that it is possible to approach an S/RS household-workplace model
by a homogeneously mixing S/YRS model, where Y stands for infected but no longer infec-
tious individuals, once the parameters have been well chosen. Hence, they obtain the first
approximation of multi-level epidemic dynamics using homogeneous mixing compartmental
ODEs.

Naturally, models with two levels of mixing raise the question of the way their social
organisation characterized by small contact structures has an impact on major features of
an epidemic. From the point of view of control, they constitute minimal models allowing
to account for closures of workplaces or schools. For the past years, governments world-
wide have implemented such non-pharmaceutical interventions (NPIs) in reaction to the
COVID-19 epidemic. Since then, several studies have assessed the impact of these measures
on the epidemic spread. Both analysis of empirical studies (Mendez-Brito et al., 2021) and
simulation studies (Backhausz et al., 2022; Simoy and Aparicio, 2021) come to the conclusion
that especially (partial) school closure and/or home working have a substantial impact on the
epidemic. Together, these findings motivate an interest in mathematical models enabling
a closer study of school and workplace closures, and more generally the effect of control
measures targeting small contact structures.

In this paper, we are interested in the impact of the distribution of individuals in closed
structures on epidemic dynamics. In order to address this question, we consider a stochastic
SIR model with two levels of mixing, namely a global and a local level. While the former
corresponds to the general population, the latter is subdivided into two layers representing
households and workplaces, respectively. Note that while our model does not explicitly
distinguish schools, they can be considered as workplaces. In particular, we are motivated by
and study the impact of control policies based on differentiated social distancing. For some
structures, in particular for households, it is natural to assume that their size distribution is
fixed and control policies cannot act on it. For others, such as workplaces and schools, control
measures aiming at contact reduction can be considered, COVID-19 epidemic having raised
this issue in new manners. Focusing on workplaces, we study here how control strategies
which consist in modifying the structures’ size distribution, can impact different epidemic
outcomes. More generally, we demonstrate through simulations that the size distribution
of closed structures has a significant effect on epidemic dynamics, as assessed by the total
number of infections and by the initial growth rate of infection and by the maximal number
of infected individuals along time. In particular, when both the number of individuals and
structures are fixed, implying that the average structure size is constant as well, we show
that these epidemic outcomes are sensitive to the variance of the structure size distribution.
In short, balancing structure sizes reduces the impact of the epidemic.

One drawback of the model with two levels of mixing is that numerical simulations rely
on good knowledge of several epidemic parameters, such as the rates of infection within
each level, which may not be easy to assess. However, considering the significant impact of
structure size distributions on epidemic outcomes and the fact that control measures may
actively impact these distributions, it seems crucial not to neglect this particular population
structure. This motivates the development of reduced epidemic models, which aim to be
more parsimonious, while still being able to capture the impact of small structures on the
epidemic thanks to a pertinent choice of parameters. Here, we propose such a reduced
model, that we evaluate using simulations. It consists of a deterministic, homogeneously
mixing SIR model, whose infectious contact rate is chosen as to ensure that the reduced
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model and model with two levels of mixing share the same exponential growth rate. Hence,
we will see that the initial growth rate is the key parameter for reducing the full epidemic
process at the macroscopic level.

The questions we consider here involve quantities which capture some main features of
the epidemics which are relevant for specific phases of an epidemic. Indeed, starting from a
single infectious individual in a large population of size NV, epidemic dynamics can be decom-
posed into three phases. This has been proven for simple models such as the homogeneously
mixing SIR model, for which we will detail these phases below. However, this decomposition
still holds in more complex models, including the model with two levels of mixing studied
here.

Phase 1: random behavior in small population. When the number of infected individuals I()
is of order 1, I(t) is approximated by a linear birth and death process. This approximation
holds on finite time intervals, but also up to a time Ty which tends to infinity when N
tends to infinity. More precisely, both processes coincide as long as the number of infected
individuals is below /N (Ball and Donnelly, 1995). Let us also mention Barbour and Utev,
2004, for comparison results until the infected population reaches sizes of order of N2/3, for
a discrete time counterpart of the SIR model.

Phase 2: deterministic evolution and linear behavior. When 1 « I(s),I(t) <« N, the number
of infected follows a deterministic and exponential dynamic: I(t) ~ I(s)e(3="(t=%) where
[ is the transmission rate and ~y the recovery rate. This approximation is valid as soon as
s,t tend to infinity but remain far from the time log(N)/(8 — 7y), which corresponds to the
entry in the macroscopic level. This deterministic phase allows to capture the initial growth
rate of infection, 8 — -y, by considering the slope of the growth of I on a logarithmic scale.
We refer to Bansaye et al., 2023b and references therein for more precise results.

Phase 3: macroscopic deterministic behavior. WWhen the number of infected individuals is
of order IV, the proportion of susceptible, infected and recovered individuals can be approx-
imated by a macroscopic deterministic system. More precisely, letting N go to infinity, the
trajectories of (S/N,I/N, R/N) converge in law on finite time intervals to the solutions of
the SIR dynamical system. The approximation is valid for any ¢ greater than log(N)/(5—7).
For accurate results, we refer in particular to Barbour and Reinert, 2013 and Barbour, 1978.
Let us also mention that fluctuations around the deterministic curve are of order 1/+/N by
classical Gaussian approximation (Chapter 7, Sections 4 and 5, in Ethier and Kurtz, 1986).
In our study, phase 1 corresponds to the regime where stochasticity of the individual-based
version of the SIR model is observed in simulations. Phase 2 is the relevant regime for the
definition of R; and the initial growth rate r. Phase 3 yields the deterministic macroscopic
approximation, where stochasticity vanishes. It starts at a random time necessary to reach
a macroscopic proportion of infected. This time represents the starting point of the com-
parison between the stochastic structured model and its reduced ODE-based counterpart we
propose.

This paper is structured as follows. Section 2.2 presents the main modeling ingredients,
such as a detailed description of the model with two levels of mixing and proper introduction
of considered key parameters, as well as numerical settings for simulations. Section 2.3 is
devoted to the study of the impact of the structure size distribution on some main epidemic
outcomes, namely the reproduction number, the exponential growth rate, the peak size and
the final epidemic size. For this purpose, two slightly different situations are considered.
While the size of the population is always considered fixed, we first keep the total number of
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workplaces constant as well but vary the way individuals are distributed among these given
workplaces, see Section 2.3.2. Second, we consider teleworking strategies, which differ from
the previous setting as for simulations, these strategies amount to creating a new workplace of
size one for each teleworking employee, see Section 2.3.3. Finally, in Section 2.4, we propose
an ODE reduction of the initial multi-level model based on the computation of the initial
growth rate and assess its robustness. The paper concludes with a Discussion (Section 2.5)
of the main results on the impact of structure size distributions on epidemic dynamics, their
robustness to different modeling assumptions, and their implications for control measures.

2.2 Model with two levels of mixing: description, simulation
approach, key parameters, simulation scenarios

2.2.1 General model description

We consider an SIR-type model with two levels of mixing by considering global and two types
of local contacts following two local partitions of the population, see Ball and Neal, 2002.
In addition to homogeneous mixing in the general population, contacts occur in households
and workplaces of various sizes, in which the population is structured. Each individual
belongs both to a household and a workplace, which are chosen independently from one
another. Generally speaking, infection spreads through contacts between susceptible and
infected individuals within each level of mixing, which are characterized by different contact
rates among individuals as will be detailed below. Infected individuals recover at rate ~.

We distinguish two slightly different types of parametrization concerning contact de-
scription. For closed structures such as households and workplaces, we will use one-to-one
infectious contact rates Ay and Ay, respectively. In other words, within a household, if
there are s susceptibles and ¢ infected individuals, each susceptible is infected at rate Ay
(resp. Awi for workplaces). This has the disadvantage to make the average number of
contacts established by each individual grow with the size of the structure. This is tractable
for structures of finite size, and a good enough approximation of contacts within very small
structures, but it is not realistic at the scale of the general population. Instead, within the
general population, when there are s susceptibles and 7 infectious individuals, each suscepti-
ble individual becomes infected at rate 5gi/(IN — 1) where N is the population size. Here,
the parameter B¢ represents the one-to-all infectious contact rate, which is the global rate
at which an infected individual makes contact with all other individuals in the population.
Hence the corresponding one-to-one infectious contact rate /\(GN) = Ba/(N—1) is small. This
allows to scale the contact rates when N tends towards infinity, so that the mean number of
contacts made by an infected individual remains constant. The global rate of infection in the
population is then SgIS/(N —1) = )\(GN)IS where S (resp. I) is the number of susceptible
(resp. infected) individuals, and S is indeed of order N.

2.2.2 Structure size distributions

Let us introduce the size distribution of households and workplaces, called 7 and 7",
respectively. When the number of structures is large, ﬂ,f (resp. ﬂ,ZV) is the proportion of
households (resp. workplaces) of size k > 1. The total number of individuals is N, which

is fixed. Besides, all individuals belong to one (and only one) household and workplace, the
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latter being of size one for teleworking employees. Notice that the following equivalences
hold as.
N ~ Ny Y knff ~ Nw Y knj/ (N — o),
k>1 k>1
where Ny (resp. Nyy) is the total number of households (resp. workplaces). We define
My = Y1 kil (resp. my = >, k7)) the average household (resp. workplace) size.

2.2.3 Numerical simulation scenarios: structure size distributions and epi-
demiological parameters

In the numerical explorations of the impact of the structure size distribution on the epidemic
dynamics, we use the household size distribution observed in France in 2018 as reference
distribution and also more generally, unless stated otherwise. We also provide a workplace
distribution derived from the workplace size distribution of lle-de-France in 2018, later called
reference workplace size distribution, and we refer to 2.A for detail. In particular, we assume
homogeneous mixing within structures, which is unrealistic for large workplace sizes, and we
thus have limited workplaces to size 50 at most. The household reference distribution is
stated in Table 2.1, while the workplace reference distribution is shown in Figure 2.1.

Table 2.1: Reference household size distribution corresponding to the size distribution of households
in France in 2018.

Household size 1 2 3 4 5 6
Proportion 0.367 0.326 0.136 0.114 0.041 0.016

Proportion

010
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Figure 2.1: Reference workplace size distribution distribution derived from workplace size distribu-
tions in lle-de-France.
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To study the impact of the average workplace size and workplace variance we provide
the following sets of exploratory workplace size distributions: (A) a set of 160 workplace



72 CHAPTER 2. EPIDEMIC FOOTPRINT OF CONTACT STRUCTURES

distributions with mean ranging from 3 to 30, different variances and maximal size 50; (B) a
set of 100 workplace distributions with mean 20, different variances and maximal size 50; (C)
a set of 100 workplace distributions with mean 7, different variances and maximal size 50.
These workplace size distributions were generated using random mixtures of distributions, as
explained in 2.A. The sets of structure size distributions are summarized in Table 2.2.

Name Number of distributions ~ Average size (value/range) Variance (value/range) Maximum size
Reference household size distribution 1 2.2 1.6 6
Reference workplace size distribution 1 13.8 3315 50
Exploratory workplace size A 160 330 9.8-554.3 50
distributions B 100 20 42.4-544.0 50
C 100 7 5.8-248.8 50

Table 2.2: Household and workplace size distribution sets.

Numerical exploration of the model was performed using a combination of various epi-
demic parameters. We designed scenarios to cover a range of interesting situations that
illustrate the mathematical properties of the model and its approximations as well as the
expected epidemic behaviour of the model for several infectious diseases. Our study covers
several values of the reproduction number, from threshold values to values observed in real
world epidemic such as the flu (Ajelli et al., 2014) or COVID-19 (Locatelli et al., 2021;
Galmiche et al., 2021. We also explore higher values of the reproduction number, closer to
what is observed in highly contagious diseases such as chickenpox (Silhol and Boélle, 2011).
Similarly, we cover a range of distributions of infections between structures and global mixing.
We study balanced scenarios where the proportion of infection in global mixing is between
30 and 40%, such as those observed in influenza or COVID-19 epidemics, as well as more
contrasted situations where infections at the global or local level strongly dominate, as for
chickenpox. An overview of all considered scenarios is given in Table 2.3.

Table 2.3: Main features of the epidemic scenarios considered.

Scenario Reproduction number Distribution of infections Comment

1 COVID-19 balanced COVID-19-like scenario
2 high balanced

3 threshold balanced

4 high mostly global mixing

5 high mostly workplaces

6 flu balanced

7 flu mostly global mixing

8 flu balanced flu-like scenario
9 threshold mostly structures

10 threshold balanced

11 threshold fully structures

Notice that the epidemic parameters Ar, Ay, Bg and v need to be calibrated for each
explored structure size distribution in order to approach the desired scenarios. More detail
is given in 2.B, including values of Ry, epidemic growth rate and proportions of infection
per layers for each scenario, and the corresponding epidemic parameters for the reference
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size distributions. Without loss of generality, the recovery rate is set to 1 in all simula-
tions. lllustration of the simulated final size for each scenario and exploratory workplace size
distribution in the simulation study are provided in Figure 2.2.
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Figure 2.2: Simulated values of the final size as a function of the proportion of infection via global
mixing (pg) for all scenarios of Table 2.3 and all exploratory workplace size distributions from set A,
Table 2.2. For each epidemic scenario and each workplace size distribution, simulations were repeated
10 times. Each colored scatter plot on the figure thus contains 160x10 points. The household size
distribution is the reference household size distribution.

2.2.4 Simulations of the population structure and epidemic process

The epidemic process was simulated using the Gillespie algorithm (Stochastic Simulation
Algorithm). A population structure (contacts between individuals) is first generated from
the size distributions of households and workplaces, generated as described in Section 2.2.3
and 2.A. Individuals are listed from 1 to N and placed in structures randomly by applying
the following iterative process: (i) for each type of structure, randomly select a structure size
k with probability given by the size distribution; (ii) if the number n of individuals that have
not yet been assigned to a structure of the same type exceeds k, randomly select & individuals
among those; otherwise, group all remaining individuals in a structure of size n < k. For a
given population structure, the algorithm computes the rates of events, i.e. infection events
in households, workplaces and the general population, and recovery, as described in Section
2.2.1. These rates are used to derive the next event, i.e. infection of a susceptible individual
or recovery of an infected individual, and the corresponding event time. The epidemic is
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Figure 2.3: For each workplace size, number of employees coming to work on site or teleworking
according to either the linear or the sublinear strategy. The parameters o and § are chosen in order
to observe an average proportion of employees teleworking per workplace equal to 0.5 for the uniform
workplace size distribution (a = 0.46,6 = 2.01).

initiated with a single infected individual, selected uniformly at random in the population.
For each run of the epidemic process, we compute several classical summary statistics: (i)
the final epidemic size, i.e. the number of individuals that are in the recovered state when
the number of infected individuals becomes 0; (ii) the infectious peak size, i.e. the maximum
number of infectious individuals occurring simultaneously over the course of the epidemic;
(iii) the infectious peak time, i.e. the time at which the infectious peak occurs.

2.2.5 Simulation of teleworking strategies

We evaluated the evolution of different epidemic outcomes for varying proportions of tele-
workers using two strategies, as illustrated in Figure 2.3:

(i) Linear strategy. The workplace size distribution is modified according to the function
f1.a(k) = [ak] for ac € [0,1], where [-] is the usual ceiling function. This means that a work
place of size k becomes a workplace of size [ak]| and the remaining k& — [ak]| individuals
now telework. (ii) Sublinear strategy. The workplace size distribution is modified according
to the function fo5(k) = [61{:%] A k, where 6 > 0.This means that a work place of size k

becomes a workplace of size [6k%] and the remaining k — [65] individuals now telework.

The rationale behind the sublinear strategy is that withdrawing an individual from a large
structure has a stronger impact in terms of number of contacts. Notice that we consider
here the exponent 1/2 for the sublinear strategy, but one could more generally consider any
exponent ¢ < 1.
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2.3 The impact of the size distribution of closed structures and
assessment of teleworking strategies

2.3.1 Outbreak criterion, R; and type of infection

Various notions of reproduction numbers have been proposed, as a compromise between
complexity of the computations and epidemiological interpretation. The idea is to capture
the mean number of infections caused more or less directly by one single "typical” individual.
This concept is primarily defined in the first steps of the epidemic, which usually can be
approximated by a branching process, whose mean satisfies a linear ODE. A typical individual
corresponds then to a uniform sample in the corresponding population. The reproduction
number is delicate to define for epidemiological processes with multi-level contacts, such as
the one we consider here. We recall that each infected individual infects an individual outside
his structure with rate SgS/(IN — 1), which is in the phase 1 approximated by (¢, since
the number of susceptibles S is approximately V. As a consequence, the mean number of
individuals directly infected in the general population by a single infected individual is B /7.

Following the Supplementary Material of Pellis et al., 2009, we structure the infected
population following the origin of the infection and consider successive generations of infected
individuals:

(IngVIL_I?IXV)nzm Inzlg"f'];]'i_lr‘:v'
Processes I,?, resp. Iff and IZV, count the number of individuals in generation n, which have
been infected through the mean field, respectively in the household and in the workplace.
Hence I, is the total number of infected individuals in generation n. At time 0, we assume
Iy = Ig*' = 1. The next generation n + 1 of infected individuals is created by considering the
number of direct infections I§+1 in the general population, plus the local epidemic triggered
within structures. This process is illustrated in Figure 2.4.

To compute the mean number of infections per generation, it is necessary to compute
the mean number of individuals infected during the epidemic triggered by a single infected
individual in a given structure. Thus, we introduce ig (k) (resp. iy (k)), the average total
number of infections starting from one infected individual in a closed population of size k&,
one-to-one contact rate Ay (resp. Aw) and recovery rate 7 as defined in Section 2.2.1.
It corresponds to the number of infections caused by a single infected individual which
introduces the epidemic into his household (resp. his workplace) of size k. Recalling that
MmE = Y s kmpl (resp. my = Do km))), we define

H w
7 = k&, resp. 71/ = ﬂ,
mrp mw
as the size biased distribution of structure sizes, which naturally defines the household (resp.
workplace) size distribution of an individual chosen uniformly at random in the population.
Then the numbers of infected individuals at each level triggered by an infected individual
whose size structure is distributed according to the size biased law are defined by:

Io ===,  Iny=Y.#ink), Iw =7 iw(k). (21)
k k
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Figure 2.4: Example of an epidemic with two levels of mixing (in general population and within
structures). The spread of the epidemic is shown on the left. Households and workplaces are delim-
ited respectively in dark and light blue. Only structures containing infected individuals are shown.
Individuals who have been infected during the epidemic appear as plain dots, whose colors indicate
the means by which the infection occurred: through the general population (red), within households
(dark blue) or within workplaces (light blue). The arrows keep track of the spread of the disease,
pointing from the infector to the newly infected. Their color refers again to the type of infection.
Members of a structure who have not been infected during the within-structure epidemic are repre-
sented as crossed circles. In the case of the branching model, they are never going to be infected, as a
secondary introduction of the disease in an already infected structure is negligible at the beginning of
the epidemic. The different generations of infected as seen by the branching process are represented
on the right. Colors still encode the way each infected is contaminated, and arrows represent the true
order of infections as depicted on the left. The branching genealogy is depicted through lexicographic
labeling of individuals. Labels have been reported on the left panel, as to simplify identification of
infected individuals in both means of representation.
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Following Pellis et al., 2009, the expectation E((I$, I, I)V)T) can be approximated by

n »noirin

a sequence X, satisfying the following linear induction
Xn+1 = AXn

where A is the mean reproduction matrix:

Ie Ie Ic
A=|Zy 0 Iy]. (2.2)
Iw Iw O

As A is a primitive matrix, Perron Frobenius theorem vyields the asymptotic behavior of
X, = A" Xy using its positive eigenelements, see Athreya and Ney, 1972. More precisely,
the unique positive vector P = (pg,pH,pW)T solution of

AP = R;P, pc + p +pw =1, (2.3)

gives the proportion of infected individuals from each source: general population, households,
workplaces. The associated positive eigenvalue is

R =| AP |
which corresponds to the mean reproduction number
Rr=Z¢+ (1 —pu)Zy + (1 —pw)Iw. (2.4)

When R; > 1, the process (I,),>1 survives with positive probability and on this event a.s.
grows geometrically fast with speed R; yielding a supercritical regime, under an additional
moment assumption on the number of infections, see also Athreya and Ney, 1972. We
observe that the vector P gives the origin of infections for large times.

Ry can play the role of an outbreak criterion, as illustrated in Figure 2.5. The final size
of the epidemic is plotted against the value of R; for three parameter sets (scenarios 9, 10
and 11 in Table 2.3). These epidemic parameter sets, combined with the set of workplace
size distributions, allow to cover a large range of values for pg, pgr and py (more precisely,
pi between 0 and 0.5 and pyy between 0.05 and 0.65).

Let us end this section with a brief description of the numerical computation of R;. For a
given set of structure size, transmission parameter and recovery rate, we simulate the within
structure epidemic using Gillespie’s algorithm, and record the final epidemic size. We thus
calculate the average size of epidemics in isolated structures from simulations of this epidemic
process (default value of the number of runs: 10000, and 50000 for larger workplaces). Notice
that the average final epidemic size could also be obtained through analytic results, see for
instance Section 6.4 in Bailey, 1975. The value of R; is then obtained from Equation (2.4),
as the largest eigenvalue of the matrix defined in (2.2), by replacing unknown quantities by
simulated quantities. The proportions of infections occurring within each layer of mixing are
obtained from the associated eigenvector.

2.3.2 The effect of structure size distribution on epidemic outcomes

In this section, we will consider both the number of individuals and the number of workplaces
as fixed. For the latter, one can imagine that this is due to logistic constraints, as there
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are only a certain number of offices (or classrooms) to dispose of. In other words, we are
interested in understanding the epidemic impact of the way employees are assigned to those
given workplaces.

From the previous section, one may notice that the workplace size distribution has a
direct impact on R; through Zy,, i.e. the average number of infections occurring within
workplaces under the size-biased workplace size distribution #". In particular, it follows
from Equation (2.4) that diminishing Zyy is enough to ensure that R; decreases. Further,
Figure 2.6 illustrates that for most epidemic scenarios considered (Tables 2.3 and 2.4), the
average number of infected iyy (k) caused by a within-workplace epidemic in a workplace of
size k can be reasonably approximated in some scenarios by a linear function of the workplace
size k. We deduce that, up to a constant c,

(2)
& m
Iy = >, #iw(k) ~ e Y wif k= — > Bafl = X, (2.5)
k>1 k>1 mw = mw

where ml(/‘?,) designates the second moment of the workplace size distribution.

Since we suppose both the population size and the number of workplaces to be fixed, it
follows that the average workplace size myy is constant as well. As thus, in order to reduce
Tw, it is enough to reduce m%,?,). At fixed expected workplace size, modifying m%) is strictly
equivalent to modifying the workplace size variance. Since the latter has a more direct and
intuitive interpretation, we will focus on the variance of 7" as a natural candidate for the
epidemic impact of the workplace size distribution.

In order to assess this impact, we will proceed by numerical exploration. A variety
of workplace size distributions of average fixed at 20 and different variances have been
considered, corresponding to exploratory workplace size distributions set B of Table 2.2.
For each of these distributions and for epidemic scenarios 1, 2, 4 and 5 we have computed
the epidemic growth rate as explained in 2.C, before evaluating through simulations the
epidemic size and the peak size. Results have been reported in panels (A) of Figure 2.7,
which is complemented by panel (B) for additional scenarios. These results thus illustrate the
impact of the variance of the workplace size distributions on our selected epidemic outcomes
(growth rate, final size, and peak size). This figure shows that the workplace size variance
has a linear impact on these epidemic outcomes, observed for various values of average
workplace size, see also panels (C) and (D) of Figure 2.7. Thus, the variance appears as a
relevant indicator of the epidemic impact of the workplace size distribution. This also is of
interest for the design of efficient control policies such as teleworking and (partial) closure
of schools, as will be explored in the next section.

2.3.3 Teleworking strategies

Teleworking, a strategy to mitigate disease outbreaks, results in changes in the distribution
of workplace sizes. These changes have an impact on the value of Rj;, which has been
shown to be a threshold criterion for epidemics, and more generally on the different epidemic
outcomes.

Two teleworking strategies, formalized in Section 2.2.5, were assessed: (i) a linear strat-
egy, where the same proportion of teleworking is applied equally to all workplaces, and (ii) a
sublinear strategy where teleworking is more prevalent in larger workplaces. The motivation
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Figure 2.7: Influence of the variance of the workplace size distribution on the growth rate, epidemic
final size and epidemic peak size. For panels (A, B) (resp. (C, D)), simulations of the stochastic
structured model were performed with the reference household size distribution, exploratory workplace
size distribution set B (resp. C) with average workplace size of 20 (resp. 7) from Table 2.2. The
epidemic scenario considered are 1, 2, 4, 5 (A, C) and 6, 7, 8, 10 (B, D) from Table 2.3. Simulations
were repeated 10 times for each combination of scenario and workplace size distribution.
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reference household and workplace distributions from Table 2.2. Diminution of Ry as a function of
teleworking rate (left) and proportions of infection in the different structures (right).

for such a strategy is twofold: larger workplaces allow for larger within-workplace epidemics,
and they are expected to be better equipped to mitigate the economic impact of teleworking
on the firm. We will indeed show that such a strategy has a beneficial health outcome.

Figure 2.8 illustrates the behaviour of the two teleworking strategies as a function of
the teleworking rate, which is defined as the proportion of individuals in the population
that do not have contacts in a workplace. Implementation of the teleworking strategies
consists in adjusting parameters o and ¢ from Section 2.2.5 to obtain a prescribed value
of the teleworking rate. The proportions of infections in the different structures are the
same for both strategies at the threshold R; = 1. The findings show a large reduction in
the proportion of infections occurring in the workplaces. The sublinear strategy reaches the
threshold for a lower teleworking rate, which indicates that this strategy has a lower impact
on workplace organisation for similar epidemic outcomes.

Figure 2.9 illustrates, for the reference workplace size distribution and epidemic scenario
1 of Table 2.3, that even if the threshold cannot be reached by simply applying teleworking
strategies, the sublinear strategy still outperforms the linear one. In particular, it shows that
for the same global teleworking rate, the final size of the epidemic is lower for the sublinear
strategy, except for the highest teleworking rates.

In other words, using sublinear teleworking policies (and more generally sublinear strate-
gies for the closure of structures) allows either to reduce the need of teleworking in order
to attain a given epidemiological outcome, or to reduce more strongly the epidemiological
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and epidemic peak size (bottom). Simulations of the stochastic structured model were performed
using the reference household size distribution and workplace size distribution from Table 2.2, with
epidemic parameters from scenario 1 of Table 2.3. 10 runs of were performed for each simulation
scenario and distribution.

outcome for a given teleworking rate. Both effects may even be combined: more people go
to work, but the epidemic outcome is reduced when compared to the linear strategy.

2.3.4 Robustness to the form of the infection term

Assuming linear growth of the number of infectious contacts per susceptible with the number
of infected is often an overestimation. Thus, in this simulation study, we focus on having
an infection rate within social structures growing sublinearly with the number of infected
individuals in the structures. More precisely, we assume that within a household (X = H) or
workplace (X = W) containing I infected and S susceptible individuals, the next infection
occurs at rate AxSv/1.

The observed linear effect of variance on the peak size and final size of the epidemic
remains valid when the model is modified to use a sublinear infection rate in households and
workplaces. Figure ?? shows the effect of the variance of the workplace size distribution
with fixed mean on the epidemic outcomes for several scenarios (additional results for other
scenarios can be found in Figure S5 of the Online Resource). This impact of the variance
appears to hold for all scenarios, suggesting that the effect holds true regardless of both
the epidemic speed and the proportions of infections that occur within structures. We also
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confirmed the validity of this result for workplace distributions with smaller mean sizes, as
illustrated in Figures S6 and S7 of the Online Resource.

2.4 Reduction to compartmental ODEs based on the initial
growth rate

In this section, our aim is to propose a relevant reduction of the multi-level contact process,
when the total population is large (N » 1) and the number of infected individuals too,
corresponding to phase 2 and phase 3 presented in the introduction. We propose a deter-
ministic reduction which keeps track of the multi-level structuring of contacts, but has a low
dimension and depends on few parameters only. It thus allows to see the effect of structure
size distributions and control policies modifying them at a low computational cost. We show
that the key parameter to achieve this reduction is the initial growth rate. As expected, it
captures the initial growth of the size of the infected population. Actually, simulations show
that it also allows for a relevant prediction of the rest of the epidemic, see Section 2.4.3 for
details on the interest and limitations of this reduction.

We assume that the total population size N is large and consider an approximation in an
infinite population. As for the branching approximation considered in Section 2.3, we focus
on the beginning of the epidemic (phase 1 and phase 2). As households and workplaces are
chosen independently from one another and for each individual, this implies that whenever
an infection occurs in the general population, it will almost surely affect an individual whose
household and workplace are entirely susceptible otherwise. Similarly, an infection taking
place within a household will cause an infection within an otherwise susceptible workplace,
and vice-versa. Some time is needed to reach a large (but still negligible compared to V)
number of infected individuals and forget the peculiar initial condition. Perron Frobenius
theorem allows to get a deterministic growth rate, which is observable in phase 2. More
precisely, it is observed at the beginning of phase 2 and more generally before the infected
population is too close to V. For more quantitative results on this point for the SIR model,
we refer to Proposition 5.1 of Bansaye et al., 2023b. It is called the initial growth rate r. It
will play a crucial role in reducing and analyzing the process in the deterministic phase with
a macroscopic number of infected individuals (phase 3).

For the stochastic S/R model in large homogeneously mixing populations, the initial
growth rate can readily be obtained (Diekmann and Heesterbeek, 2000). Let us briefly
explain the heuristics of the reasoning. Consider i(t) the number of new infections in the
population occurring at time t after the start of the epidemic. It is easy to see that i(t)
satisfies a renewal equation, which may be used to deduce an implicit equation for the
exponential growth rate 7. Indeed, suppose that i(t) = Ce™ for some constant C, and let
¢(7) denote the average rate at which an individual who has been infected 7 units of time
ago transmits the disease. Then 7 is characterized as follows:

£(0)(7) = LOO C(r)e "dr =1, (2.6)

where £ designates the Laplace transform operator. In order to conclude, it remains to
make ( explicit, and at the beginning of the epidemic, one readily obtains the approximation
¢(1) ~ Pe 7. Injecting this into the implicit equation £(¢)(r) = 1 leads to the well-
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Figure 2.10: Influence of the variance of the workplace size distribution on the growth rate, epidemic
final size and epidemic peak size. For (A, B) (resp. (C, D)), simulations of the stochastic structured
model with sublinear infection rates were performed with the reference household size distribution,
exploratory workplace size distribution set B (resp. C) with average workplace size of 20 (resp. 7)
from Table 2.2. The epidemic scenario considered are 1, 2, 4, 5 (A, C) and 6, 7, 8, 10 (B, D) from
Table 2.3. Simulations were repeated 10 times for each combination of scenario and workplace size
distribution.
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known growth rate ¥ = 5 — «. This derivation can rigorously be obtained using branching
approximations (Mode and Sleeman, 2000).

Exponential growth of infections is also observed when household-workplace structures
are added to homogeneous mixing, and Pellis et al., 2011 characterize the associated growth
rate r. Similarly to what has been done for the reproduction number, they aggregate within-
structure epidemics to facilitate the mathematical analysis of the model. This leads to
a point of view where an infected household contaminates a new workplace each time an
infection occurs during the within-household epidemic, and vice-versa. Using Equation (2.6),
this allows for the exact characterization of r as the unique solution of an implicit equation,
which can be solved numerically. This motivates the study of the Laplace transform (2.6) of
the average rate at which infections occur during the course of within-structure epidemics,
which captures the dynamics of these infections.

Here, we follow and complement the approach in Pellis et al., 2011, mainly by providing
more explicit expressions of the key quantities involved. The following Section 2.4.1 intro-
duces our contribution, which lies in Proposition 2.4.1 and its corollaries. Subsequent Section
2.4.2 summarizes the work of Pellis et al., 2011, and allows to position our contribution in
the context of their work.

2.4.1 Laplace transform of the infection rate in a uniformly mixing popula-
tion

The main point lies in understanding the dynamics of the stochastic SIR model in a pop-
ulation of finite size k, with any one-to-one infectious contact rate A and removal rate 7.
The results on within-household or within-workplace epidemics will follow by choosing these
parameters accordingly.

More precisely, consider the continuous-time Markov chain X},  , = (S, I) taking values
in Q(k) = {(s,i) € (NU {0})? : s + i < k}, and whose transition rates are given by

Transition Rate
(s,3) > (s—1,i+1) Asi; (2.7)
(s,3) = (s,i—1) .

Then S; and I; represent respectively the number of susceptible and infected individuals at
time t. Furthermore, the initial condition of interest is zf = (k —1,1), and Pzg denotes the
probability conditionally on X}, 5 ,(0) = zf.

Let us start by summarizing the results obtained by Pellis et al., 2011 on this matter. From
(2.7), it is obvious that when the population is in state (s,%), a new infection takes place at
rate Ast. In particular, this rate is non-null if and only if si > 1, so we can restrict the study
to the set of transient states Q(k) = {(s,) € Q(k) : i > 1}. Let (x1~(t) be the average
infection rate in a population of composition Xy, ~(t), conditionally on X » ,(0) = zf. It
is clear that, by definition,

(5,0)eQ (k)

Consider Q) (k) the restriction of the generator of X}, » , to £(k), which is defined as the



86 CHAPTER 2. EPIDEMIC FOOTPRINT OF CONTACT STRUCTURES

following matrix indexed by states in (k)1

V(s,i) € QUk), V(s i) € Qk),

—Xsi — i if (s',3") = (s,1);
_ Asi if (8',i') = (s —1,i+ 1);
Q@ (k) o5,y = yi i (s',1) = (5,0 — 1);
0 otherwise.
Then it is well known that for all (s,7) in Q(k),
— (s.3) = (!Qr~ (k)
Pup(Xeas (1) = (5,1)) = (@) o)

Thus, a computation readily yields the following Laplace transform of (y x ,, where Iy, is
the identity matrix of appropriate dimension, namely d(k) = #Q(k) = k(k + 1)/2: for any
u =0,

Senn () = £(Gern) (@) = Y, Asi ((ulagy —Qua(0) 1), L (28)

(s,0)20(k) z:(5:0)

Let us now turn to our contributions. As we will see in the following proposition, we
show that it is possible to go one step further and give an analytic expression for the relevant
coefficients of R

Qi (u) == (ulyp — Q- (k)
for any population size k. This will finally allow us to give a more explicit expression of
Lrny-

Studying the restricted generator Q) (k) leads to consider possible trajectories in (n)
leading from some state (k — ¢, ¢) to another state (s,i), for { < kandi<m =s+i<k
(see 2.D). This incites us to introducing the following set, which allows to encode this set
of trajectories:

Ik:(&m’l) = {(i07 s ’im+1) € {E} x N x {7“} :
im <i, ij-1—1<ij<k—j VI<j<m}
We are now ready to state our result.

Proposition 2.4.1. Let (€ {1,...,k} and consider (s,i) € Q(k) such that s < k — £.
Then for any u = 0,

(Qk,)\,'y(u)> S — DU T Taern (b diwgeman i diu)  (2.9)

(h=0,(s))  utAsi+ i, 0 g

where m = k — (s + i) and
tj+1—L{p=m}

—1
.o u + yw
Qk,)\ﬂ(l?];u) = H [1 + A(k?—j —’LU)U)i|

w=1;

'We have made a slight change here compared to Pellis et al., 2011 since the mortality matrix A needed
to be deleted from the expression of Q.
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and
. [1+u+/\(k / ,ZJH S + )] for j < m,
Grmany (b5 u) = Y(ij+1 +1)
1 forj =m
Furthermore, for every state (s,i) € Q(k) such that s > k — ¢, <Qk’)"7(u))(k o) 0.

The proof of Proposition 2.4.1 uses arguments of linear algebra. Details can be found in
2.D. Using Equation (2.8), a more explicit expression of £,  , follows from Equation (2.9).
Let us define the ensemble

Ti(m) = {(i0, i1, - - - imsims1) € {1} x N™T1,

ima1 <k —m, ip <idmir, ijo1 — 1 <i; V1I<j<m}
We can now state the result, using the same notations as in Proposition 2.4.1.
Corollary 2.4.2. For any integer k and any set of parameters A\, > 0 and any u > 0,
Ly (u Z Z Ckmlu qu)\;yl] W) Grm ey (1 J5 1)
m=0ieT (m
with

. —1
U+ Vim+1 :|
k—m — ZAm+1)im+1

ck7,\77(i;u) = [1 + /\(

In the following section, we will see how £ ) . intervenes in the computation of the
growth rate r of the epidemic. Another quantity of similar nature will be needed, namely
the Laplace transform &y » g, of the average rate Cg)\mﬁc at which all individuals of a
structure of composition X » ,(t), conditionally on X}, » ,(0) = zf, contaminate individuals
in the general population. Obviously, when the structure is in state (s,4) € Q(k), this rate
is given by Sgi, considering that the global proportion of susceptible individuals is close to
one. In other words,

B8 (u) =L (C}S,\,%gc) (u) = Z Bat (Qk,)\,'y(u)>

(,0)2(k) z(:(5:4)

This rate is positive if and only if (s,7) € Q(k). Proceeding like before, we obtain the
following formula:

Corollary 2.4.3. For any integer k, for any set of parameters \,~y, g > 0, for any u = 0,

k—1

Sprn, /3G Z Z Ck A, gc i u) H qk )\,7 i, J; U)gkmm(l Jiu)
m=0ieTy(m) j=0
with
. Bim+1
(b)) = -

u+ Mk —m — iy 1)ime1 + Vims1
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Proof of Corollaries 2.4.2 and 2.4.3. Start by noticing that

k—1 k—m

k) = | | | ] {tk—m—i,i)}.

m=0 i=1
Thus, Equation (2.8) becomes, using Proposition 2.4.1:

Ly (u Z Z u+)\ k m_l)“r,ﬂ DU T T aran (i dsw)grmany (i u)

m=0 i=1 i€Zy (1,m,3) j=0

and the conclusion follows by the definition of Z,(m) and ¢ » ,(i;u). Similarly,

k—1 k—m . m
Gt . .
G y,86 (U Z Z - m_Z)HW > | Hqkz,m(uJ,u)gk,m,m(l,‘y,u)
i€Zy(1,m,i) j=0
and one concludes using the definition of Z;(m) and C;Wwﬂc' O

We now have introduced all necessary ingredients allowing for the computation of r,
which is covered in detail in the next section.

2.4.2 Characterization of the initial growth rate

Let us now turn to the characterization of r for the multi-level model, which has been
obtained by Pellis et al., 2011. We summarize their arguments for the sake of completeness
and in order to illustrate how Corollaries 2.4.2 and 2.4.3 complement their approach.

Their main idea for computing the real time growth rate consists in considering the epi-
demic at the level of households instead of the individual level. Indeed, it is possible to reduce
the epidemic dynamics to a two-type process, distinguishing households that have been con-
taminated locally (type L), if the first infected of the household contracted the disease at his
workplace, or globally (type G) otherwise. Remember that, during the early phase of an epi-
demic, every newly contaminated household or workplace will be fully susceptible except for
its member who has just been infected. Thus, a household infects another household glob-
ally whenever one of its contaminated members transmits the disease through the general
population. Local transmission, on the other hand, occurs in the following way. Every time
a member of a contaminated household H; is infected during its within-household epidemic,
a within-workplace epidemic is started at his workplace. Then again, each coworker who
is infected during the within-workplace epidemic introduces the disease into his household,
which is regarded as locally contaminated by household H;. A slight subtlety is worth notic-
ing: whether the first infected individual of a household participates in locally contaminating
other households depends on the way he has been infected. If he has contracted the disease
at his workplace, then he is not hold responsible for the the within-workplace epidemic there,
and thus the other households that are infected through his workplace are not considered
locally infected by his household. However, the opposite happens if he was infected through
the general population, because he then launches a new within-workplace epidemic. This
two-type process is depicted in Figure 2.11.

Suppose now that the epidemic is in its exponential growth phase, meaning that there
exists a growth rate r such that the number of infected individuals at time ¢ is proportional to
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» Generations

0 2

Figure 2.11: lllustration of the two-type household epidemic process. The example is the same as in
Figure 2.4. The generations correspond here to generations of infected households, where the labels

denote the first infected member of each household consistently with Figure 2.4. The colors of the
arrows and of the households represent the type of infection, either globally (red) or locally (light

green).

e, Pellis et al., 2011 argue that in this case, the household epidemic also grows exponentially
at the same rate r. It thus is enough to study the previously introduced two-type process.

For z,y € {L,G}, let (;y(t) denote the average rate at which a household of type y
which was infected ¢ units of time ago contaminates other households either locally if z = L,
or globally if z = G. For u > 0, consider the matrix

_ (£ar(u) £laa(u)
K<“"<S<LL<u> sxm(u))' (2.10)

It is a classical result (Diekmann and Heesterbeek, 2000; Pellis et al., 2011) that for this two-
type setting, the growth rate r is characterized as being the unique solution of the implicit
equation

p(K () = 5 (Te(E () + /TR ()~ ddet(K () ) = 1, (211)

where the operators p, Tr and det denote the spectral radius, trace and determinant, re-
spectively.

It thus only remains to take a closer look at (4, (t) for all z,y € {L,G}. As these are
average rates of infection, one has to take into account the probability for a newly infected
individual to belong to a household or workplace of a given size. Naturally, as households and
workplaces are chosen independently uniformly at random, size-biased distributions appear
both in the case of global and local infections. This leads us to introduce the following
notation. For any application f : (n,z) — fn(z) on N x R and measure v on N, v(f,)
defines the function on R such that v(f,) : z — >, v(n)fn(2).

Within a household of size k, by definition, the average rate at which global transmissions
occur is CkG,AHmBG' Since a newly locally or globally contaminated household is of size k
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with probability 7,7, it follows that

Caa = CarL = ﬁH(C-CfAH,%ﬂc)‘

On the other hand, within a globally contaminated household of size n, new cases appear
at rate (i », ~- Once infected, each of these individual transmits the disease to his coworkers
on average at rate (y ), Where w is the appropriate workplace size. This also applies to the
globally infected individual who launched the within-household epidemic. If the household is
contaminated locally, the reasoning is the same, except that the initially infected member is
not hold responsible for his workplace epidemic, as he is himself a secondary case only. As a
consequence,

CLG = 7ATW(C-,)\W,W) + ﬁH(C-,AH,V) * ﬁW(COAWﬁ)
CLL = AH(CO,)\H,V) * ﬁW(CO,Aw,'y)'

Using standard properties of Laplace transforms, K (u) thus admits the following expres-
sion as derived by Pellis et al., 2011, where the coefficients can now be computed using
Corollaries 2.4.2 and 2.4.3:

_ ﬁ-H (6‘7)\H7 ﬁc) (u) (® )\H7 BG)( )
K(w) = <ﬁH<s.,AH,7> A ) (@) (14 57 (a1 27 (anr) <1(g)12')

Numerical methods then allow to solve the implicit Equation (2.11) for the exponential
growth rate r. We refer to 2.C for details on the computation procedure.

2.4.3 ODE reduction of the multilevel model based on the initial growth
rate

The reduced model is a standard deterministic S/IR model, with infection rate derived from
the growth rate r, obtained from Equation (2.11). The reduction of the model is defined by
the following set of ordinary differential equations:

as _
dt
dI
=+ )ST =1 (2.13)
dR

o T
a !

— (r+~)SI

The prediction accuracy of the structured model by the reduced model is illustrated in
Figure 2.12, where 1% of individuals are initially infected. In this example, we compare
simulated epidemics of the stochastic structured model with scenario 1 from Table 2.3 and
reference household and workplace size distributions to the ODE reduction from Table 2.2.
The reduced model, based on the initial growth of infected population, accurately predicts,
as expected, the early stages of the epidemic. We note however, that the prediction accuracy
decreases with time and that the epidemic peak and the final size are overestimated by the
reduced model.

Further explorations, using all scenarios and exploratory workplace distributions A, indi-
cate the same trends. Comparison of epidemic outcomes such as the epidemic peak and the



2.4. REDUCTION TO A COMPARTMENTAL ODE SYSTEM 91

final size, between simulations of the stochastic structured model and their reduced coun-
terpart are presented in Figure 2.13. We observe that, regardless of the scenario, the peak
size and final epidemic size are largely correlated between the reduced model and numerical
simulations of the stochastic structured model. A slight tendency to overestimate the epi-
demic outcomes with the reduced model can also be noticed. However, Figure 2.13 (top)
illustrate that the epidemic outcomes of the reduced model remain close to the simulations
of the stochastic structured model, with differences from the exact model simulations of less
than 5% of the total number of individuals with the reduced model. The overestimation
is more visible concerning the final epidemic size. This figure also shows that the epidemic
parameters influence the prediction quality with the reduced model. This figure also illus-
trates the effect of the values of r and pg on the prediction of the final epidemic size with
the reduced model. Higher values of r, combined with low value for ps (or high py), such
as in scenario 1 and 2, tend to decrease the prediction accuracy with the reduced model.
For lower values of the growth rate, which also corresponds to lower epidemic final size, the
prediction accuracy is high, see for example scenarios 6 to 11.

The quality of the prediction is expected to be good for high values of pg, as for pg = 1
the reduced model is strictly equivalent to the deterministic approximation of the stochastic
SIR model without structures. As the value of ps decreases, propagation of the epidemic
through households and workplaces becomes dominant and the structured model cannot
be approximated by a uniformly mixing deterministic SIR model regardless of the growth
rate, as illustrated in Figure 2.13 (bottom). This figure shows that the epidemic outcomes
for the stochastic structured model cannot be obtained by any deterministic SIR model for
scenarios with lower values of pg such as scenario 1 and 2, which deviate from the black
line representing the possible outcomes with a deterministic S/IR model. In addition, Figure
2.13 (top) shows that, for scenarios with lower epidemic size, the prediction of epidemic
outcomes by the reduced model is more accurate. This figure also illustrates that the peak
size is accurately predicted by the reduced model in these cases, while the prediction of the
final size is less accurate. This provides further evidence that the reduction captures the
early phase of the epidemic.

2.4.4 Assessment of the reduction robustness

So far, in the modeling and for the simulations and computations, we have restricted ourselves
to Markovian models and to the SIR structure. The Markovian assumption simplifies the
parametrization: there is one single rate of infection for each of three infection ways and
one single rate of recovery. This assumption is not necessary and most of our results can
be formalized in more general contexts. Similarly, the SIR model is the canonical one,
but models with different structures can be envisaged. We have checked by simulation
that the reduction procedure based on the initial growth rate, as defined in Section 2.4.3
and in 2.F, still provides good predictions in more general contexts. In Figure 2.14, we
illustrate through two examples the prediction of epidemic outcomes between the structured
model with Gamma distributed individual recovery times and the corresponding reduced
deterministic SIR model. We can make similar observations as for the Markovian model
that the reduced model generally provides a good prediction of the epidemic outcomes, even
though the predictions are less accurate in some cases. Notice that the loss of accuracy
was to be expected, as the reduced model differs both in terms of contact structure, and
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Figure 2.12: Evolution of the proportion of S, I, R individuals in 30 runs of the stochastic structured
model (black), and the reduced model (red). Simulations are performed in a population with 100,000
individuals, with the reference household and workplace size distributions and epidemic parameters
from scenario 1. The origin of time of the numerical simulation has been set to the time where 1%
of individuals are infected. The simulation of the reduced model is performed with 1% of initially
infected individuals.

by the choice of the distribution of the infectious period (exponential distribution instead
of Gamma distribution). We also show with an example provided in Figure 2.15 that the
reduction procedure provides good predictions of epidemic outcomes for an SEIR model,
where an additional latent (and non infectious) E state is added to the SIR model. Details
on the growth rate derivation for the SEIR model are provided in 2.E, while computational
aspects are addressed in 2.F.

2.5 Discussion

In this work, we study the effect of the size of closed structures (households, workplaces,
schools...) on the propagation of epidemics, when individuals belong to different structures,
chosen independently for a given individual. We assume that there is no dependence between
the size of households and the size of workplaces. Our motivation comes in particular from
the fact that control policies allow to change the distribution of structure sizes in various
ways, for example by reducing the size of workplaces by teleworking or the size of schools by
their (partial) closure. Optimizing control measures in terms of sanitary outcome has become
a major challenge. Measuring the link between a social organisation, in terms of distribution
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Figure 2.13: Boxplot of the differences in the peak sizes (top left) and final sizes (top right) between
the complete and the reduced models, obtained from simulations of the stochastic structured model
and the corresponding reduced model. Simulated final size as a function of the peak size is reported
(bottom), the black line represents the value for the SIR model (2.13). Simulations of the stochastic
structured model are performed with population size of 100,000, reference household distribution,
workplace size distributions set A, for all scenarios from Table 2.3 (point color). Each combination
of scenario and workplace size distribution from set A is repeated 10 times. Only simulations where
an epidemic outbreak occurred (i.e. more than 3% of the population become infected) are reported
in this figure.

of structure sizes, and the epidemic outcomes is a delicate issue. Indeed, explicit formula
and low dimensional large population approximations are known only in uniformly mixing
populations. These results concern explicit values for Ry and initial growth rate r, simple
equation for the total size of the outbreak, reduction to an SIR three dimensional ODE with
two parameters. Formulae become more complex when adding a local level consisting in
one layer of structures (households), and even intractable with an additional structure like
workplaces, where the chain of transmission does not need mean field infection any longer
to propagate.

We have used both existing approaches (namely Pellis et al., 2011) and added new
developments, by providing more explicit expressions (Section 2.4) and simulations to study
the role of structure sizes on the key outcomes of epidemics. Notice that even though
the results of Corollaries 2.4.2 and 2.4.3 have not been used in this paper for evaluating
the growth rate of simulation scenarios (details on computations in 2.B), their numerical
implementation would have been an alternative method for achieving these computations.
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Figure 2.14: Boxplot (top) of the differences in the peak sizes and final sizes between the complete
and the reduced models, obtained from simulations of the stochastic structured SIR model, with
gamma distributed recovery rates. Simulated final size as a function of the peak size is reported
(bottom), the black line represents the value for the SIR model (2.13). The shape parameter a
and rate parameter v are set to values of 0.5 (panel A) or 2 (panel B), i.e. the density is given
by (r=°T'(a))~ta®le™"*. The average recovery rate is 1. Simulations of the stochastic structured
model are performed with population size of 100,000, reference household distribution, workplace size
distributions set A, for all scenarios from Table 2.3. Each combination of scenario and workplace size
distribution from set A is repeated 10 times. Only simulations where an epidemic outbreak occurred
(i.e. more than 3% of the population become infected) are reported in this figure.

In our setting, this would not be numerically pertinent as workplace sizes can be relatively
large and the formulae obtained in Corollaries 2.4.2 and 2.4.3 need to iterate over all elements
in a set whose cardinal grows exponentially with the structure size. However, making use
of these results may be pertinent when computing the growth rate in models considering
households only, as those typically are of smaller sizes.

We have focused on the Markovian case, i.e. time of infection exponentially distributed
and constant infection rate, and a simple SIR structure, with local infection rates propor-
tional to the number of susceptible and infected individuals. This basic framework was
complemented by a robustness study on more complex settings (Sections 2.3.4 and 2.4.4).
According to our findings, the structure size distribution plays a role on the key outcomes
in most scenarios. More precisely, for a given number of structures and a given number
of individuals and thus for fixed average structure size, the way individuals are distributed
has a quantitative impact on the growth rate of infections, the total number of infected
individuals and the size of the infected peak. In this setting, the variance of the structures
size distribution provides a good proxy of this impact.

This finding may be related to previously known results on the importance of the variance
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Figure 2.15: Boxplot of the differences in the peak sizes (left) and final sizes (middle) between
the complete and the reduced models, obtained from simulations of the stochastic structured SEIR
model and the corresponding reduced model defined in Appendix 2.F, for values of the transition rate
fromEtol, p=1, n=0.5 and p = 2. (Right) Plot of the epidemic final size as a function of the
epidemic peak sizes obtained from simulations of the stochastic structured SEIR model, for values of
the transition rate from E to |, y =1, p = 0.5 and . = 2. The black line represents the epidemic
peak size and epidemic final size for the standard SEIR model.

For all panels, simulations of the stochastic structured model are performed with population size of
100,000, reference household distribution, workplace size distributions set A, for all scenarios from
Table 2.3. Each combination of scenario and workplace size distribution from set A is repeated 10
times. Only simulations where an epidemic outbreak occurred (i.e. more than 3% of the population
become infected) are reported in these figures.

of the degree distribution in configuration model settings. Indeed, Britton et al., 2007 have
pointed out the impact of the degree distribution variance on the reproduction number for
SIR epidemics on configuration graphs. Similarly, Ma et al., 2013 have studied the case
of a model with two levels of mixing, corresponding to a layer of households and a general
population taking the form of a configuration graph. They have shown that in this case,
the variance of the degree distribution in the general population has a strong influence on
epidemic dynamics. In the case of the household-workplace model, we can consider the
epidemic at the household level. In this situation, the size distribution of the workplace plays
a crucial role in determining the number of households to which a given household is directly
connected. Although the framework is clearly more complex than a simple configuration
model, the distribution of workplace size may play a role similar in spirit to that of the
degree distribution in the previously mentioned models based on configuration graphs.
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Figure 2.16: Boxplot of the differences in the peak sizes and (left) and final sizes (right) between
the complete and the reduced models, obtained from simulations of the stochastic structured model
with sub-linear rate and the corresponding reduced model. Simulations of the stochastic structured
model are performed with population size of 100,000, reference household distribution, workplace size
distributions set A, for all scenarios from Table 2.3. Each combination of scenario and workplace size
distribution from set A is repeated 10 times. Only simulations where an epidemic outbreak occurred
(i.e. more than 3% of the population become infected) are reported in this figure.

As for the limitations of our study, the robustness analyses that we have carried out
(Sections 2.3.4 and 2.4.4), even if they are rather summary, point to robustness of the main
results when certain assumptions are modified. A more detailed analysis using sensitivity
analysis is left for a future work.

On the one hand, the effect of the structure size distribution may be overestimated by
the fact that we consider a linear infection rate. Indeed, the rate at which a susceptible
individual is infected at a given time is assumed to be proportional to the number of infected
individuals at the same time. This probably overestimates the real infection rate. We
consider here structures which form a partition of the population, with uniform mixing within
each structure. We think this assumption is rather relevant for households but it could be
improved and extended for workplaces (and schools), where different levels of mixing could
be considered (services/departments within companies, classes within schools, etc). The
simulation study with sublinear infection rates in households and workplaces shows that the
observation on the linear impact of variance on the final epidemic size is still valid (Figure
2.10). With sublinear infection rates, we also observed similar results regarding the robustness
of the prediction of epidemic outcomes using the reduced model, namely that the reduction
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is accurate for high values of pg and a smaller epidemic size, see Figure 2.16. We note
however, that the accuracy of the prediction using the reduced model is lower with sublinear
infection rates, and the early epidemic is not predicted as accurately. When it comes to
policies and controls such as teleworking, a notion of effective size and/or effective infection
rate should probably be introduced, which is one of the interesting perspectives.

On the other hand, the effect of the structure size distribution is observed when looking at
the characteristics of the epidemic. Variance arises using the size biased law and the fact
that mean final size of epidemics is comparable to the size structure. Furthermore, following
preliminary explorations, we observed that the dependence in the structure size distribution
may imply a higher moment of it than the second moment linked to its variance. This could
confer a greater impact of large structures than the variance would predict. This reinforces
the importance of the structure size distribution and specifically the importance of the health
benefit of moving toward structures (workplace offices, school classrooms...) of the same
size. Variance remains the simplest proxy we have found in general, but further exploration
may reveal another form of dependence.

Thus, based on our results, the variance of the structure size distribution, and more gen-
erally the ratio of the second to the first moment when the latter or the number of structures
is not fixed, provides a good indicator to measure the impact of the distribution of individuals
within small social structures. Nevertheless, much work remains to be done to identify the
key parameters related to population structure that determine epidemic outcomes.

In this study, we are also interested in model reduction, in order to have a parsimonious
model that is sufficiently accurate in terms of prediction and fast to run. This is an important
issue, especially in a context where many scenarios and control policies need to be evaluated.
Thus, our goal was to reduce the model to only a few parameters and variables. We obtained
that by using the initial infection growth rate, which keeps track of the contact structure
in a subtle (almost explicit but rather complex) way. We then make use of a classical SIR
model (three variables and two parameters) as a reduction of the initial stochastic individual-
centered model with three types of contacts.

In summary, our study highlights that knowledge and modeling of the size of contact
structures appears to be important in characterizing the outcome of an epidemic. It also
points to the major role of the initial growth rate of the infection, which is unique, contrary
to the reproduction number which can have several interpretations in multilevel contact
models, and also difficult to treat. We have tried to provide a more explicit expression for
the initial growth rate, supplementing the literature. This allowed us first to conduct the
study of the impact of the structure size distribution. As we already know, the initial growth
rate provides the extinction/outbreak criterion by its sign and the rate of progression. It is
related to the peak and timing of the peak, when the epidemic dynamics explode, and to
the extinction rate when this dynamics decline. The initial growth rate has also been a key
input to the reduction problem, allowing a complex contact structure to be reduced to a few
parameters, while retaining the essence of the qualitative and quantitative behavior of the
epidemic beyond the initial time.
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Appendix

2.A Generation of structure size distributions

Let us start by giving detail on the way the reference workplace size distribution is derived
from the INSEE French workplace size distribution of 2018. Indeed, the reference workplace
size distribution is obtained from the number of workers in workplace size classes provided by
INSEE. On the one hand, workers belonging to workplaces in size classes lower than 50 are
placed, for our workplace size distribution, in workplaces with size uniformly chosen in the size
range covered by the size class. On the other hand, workers belonging to workplaces of over
50 employees are arbitrarily placed in workplaces of size 50 in our workplace distribution,
as we assume uniform mixing within workplaces which becomes unrealistic for very large
workplace sizes.

Finally, in order to generate distributions with given mean m, variance and maximum size
Nmax, We proceed as follows. First, we create a set P of distributions which each charge only
two sizes in {1,...,nmax} and mean m. In other words, for any 1 < k < m < K’ < npax,
we define p = ¢d, + (1 — ¢)dp where ¢ = (K’ —m)/(kK' — k). Second, we construct a new
set of distributions D from mixtures of two distributions of the previous set, such that the
resulting distribution has a given variance. An element d € D hence is obtained by taking
p1,p2 € P and letting d = ¢p1 + (1 — ¢)p2, where the weight ¢ is chosen such that d has the
prescribed variance. A target distribution D is then generated by a random mixture of those
elementary distributions:

D= Z wdd,

where wg are random weights such that » ,_, wq = 1.

2.B Parameter values for scenarios

The size distribution of households and workplaces combined with structure-dependent in-
fection rates determines a value for the initial growth rate of the epidemic r, as well as
probabilities of infections corresponding to the three sources, global mixing pg, households
pr and workplaces pyy. Due to the constraints imposed by the structure size distributions in
the structured epidemic model, it is not always possible to find numerical values of infection
rates that lead to given values of growth rate r and infection probabilities pg, pr and pywy .
Parameter selection for scenarios in Table 2.3 was performed, for the reference household and
workplace distributions, using an optimisation procedure that yields infection rates leading
to a solution for growth rate and infection probabilities values as close as possible to the
target values. It relies on a cost function based on the mean square error between the target
values and the trial values of r, pg, pg and py. A hyper-parameter controls the importance
given to the error on the growth rate.

Table 2.4 summarizes the values of r, R;, pg, pug and pw for each scenario of Table
2.3, as well as the obtained values of epidemic parameters for the reference structure size
distributions.

Scenarios provided in Table 2.3 combined with the workplace distributions from Table
2.2 allow the exploration of the relevant behavior of the structured epidemic model, covering
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Table 2.4: Values of growth rate, reproduction number and proportions of infection per layer for each
simulation scenario, as well as the corresponding epidemic parameters, in the case of the reference
structure size distributions (recall that v = 1 in all scenarios).

Scenario Growth rate Ry DH PW PG g Aw Ba
1 2.4822 25028 0.4217 0.1788 0.3995 | 11.852 0.009 1.000
2 49937 4.6876 0.2796 0.3471 0.3732 | 11.443 0.020 1.750
3 0.0009 0.9923 0.4070 0.3927 0.2002 | 0.376 0.010 0.199
4 2.5203 3.6460 0.1521 0.1472 0.7008 | 0.356 0.010 2.555
5 25017 5.2021 0.1301 0.5445 0.3254 | 0.451 0.028 1.693
6 0.5054 1.5740 0.3868 0.3456 0.2676 | 0.653 0.012 0.421
7 0.5061 1.5187 0.1120 0.1122 0.7758 | 0.094 0.004 1.178
8 0.5020 1.5920 0.3975 0.4057 0.1968 | 0.730 0.013 0.313
9 0.1104 1.1330 0.3879 0.4182 0.1940 | 0.404 0.012 0.220

10 0.0900 1.0989 0.2631 0.2646 0.4723 | 0.196 0.007 0.519
11 0.0706 1.1068 0.3449 0.5883 0.0668 | 0.309 0.016 0.074

a wide range of epidemic settings. The epidemic final size for each scenario and workplace
distribution is reported in Figure 2.2.

As mentioned in Section 2.2.3, our scenarios correspond to, or are close to, realistic
epidemic settings for three diseases of interest: influenza (Ajelli et al., 2014), COVID-19
(Locatelli et al., 2021; Galmiche et al., 2021) and chickenpox (Silhol and Boélle, 2011).
Notice that while comparing proportions of infection at the local and global level is straight-
forward, the task is more delicate for reproduction numbers. As Ajelli et al., 2014 and
Locatelli et al., 2021 infer the reproduction number based on the exponential growth rate,
we have followed this approach and based the comparison on the reproduction number Ry
defined as Ry = 1+ r/~, where 7 is the exponential growth rate (Trapman et al., 2016). Of
course, Ajelli et al., 2014, Locatelli et al., 2021 and Silhol and Boélle, 2011 do not use this
precise definition of Ry, but it seemed the best compromise for comparison as it is closest in
spirit to the the studies on influenza and COVID-19, while the study on chickenpox unfor-
tunately does not detail their definition of Ry. The results are shown in Figure 2.17, which
illustrates that our procedure covers a wide range of realistic epidemic settings.

2.C Numerical computations of epidemic parameters and out-
comes

The values of Ry, pg, pg and py are obtained from Equations (2.2) and (2.3). They both
require the values of Z¢;, Z¢, Zyy which are given by Equation (2.1). Evaluations of Z¢, Zg,
Tw require the values of ig (k) and iy (k) which we obtained from numerical simulations of
the within structures epidemic. The growth rate r can be obtained in several ways, which
all involve some form of solution for Equation (2.11), which we solved using a root finding
algorithm. Elements of Matrix (2.10) can be obtained by numerical simulation of within
structure epidemics, numerical integration and numerical matrix inversion. We also provide
analytical formulations for the S/IR and SEIR models, with linear infection rates, in Equations
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Figure 2.17: Values of the reproduction number Ry, and proportion of infection via global mixing
pg for all scenarios of Table 2.3 and all exploratory workplace size distributions from set A, Table 2.2.
The household size distribution is the reference household size distribution. For each scenario 1-11,
labeled black points correspond to the values achieved for the reference workplace distribution. For
comparison, values reported in the literature for COVID-19, influenza and chickenpox are also shown
in black.

(2.8) and forthcoming Equation (2.17). Alternatively, we provide a fully analytical way to
obtain the growth rate of the S/IR model with linear infection rates, in Corollaries 2.4.2 and
2.4.3. The values of the epidemic peak and size are obtained by stochastic simulation of the
structured model, and the values of the epidemic peak and size of the reduced model are
obtained by simulation of Equation (2.13). For a summary of the numerical evaluation of
epidemic quantities, see Table 2.5.

2.D Proof of Proposition 2.4.1

The notations are the same as previously introduced in Section 2.4.1. For two integers p, q,
we further let I, denote the identity matrix of dimension p, and M), ,(R) (resp. My,(R)) the
space of p x ¢ (resp. p x p) matrices with real coefficients. The aim is to compute

Qi (1) = (ulgy — Qry(k) !
for u = 0, which allows us to obtain Corollaries 2.4.2 and 2.4.3.

Proof of Proposition 2.4.1. \We start by noticing that when k = 1, necessarily, £ = 1, (s,1) =



2.D. PROOF OF PROPOSITION 2.4.1 101

Table 2.5: Numerical methods used to compute epidemic parameters and outcomes.

Epidemic parameter/outcome Numerical method

I, I, Iw Equation (2.1), with iz (k) and iy (k) obtained from
numerical simulations of the within structure epidemic.
Ry Largest eigenvalue of Equation (2.2).
pa, pH and pw Equation (2.3).
Growth rate r Equation (2.11) with Laplace transforms for elements of matrix

(2.10) which can be numerically evaluated. Alternatively, in
the case of the SIR (or SEIR) model with linear infection rates,
these elements are defined in Equation (2.8) (resp. (2.17)), where
matrices in the sum are inverted numerically.

Peak and final size Numerical simulation of the structured epidemic model or
numerical simulation of Equation (2.13) for the reduced
epidemic model.

(0,1) and m = 0. The set of interest becomes Z;(1,0,1) = {(1,1)}, and the right side of
Equation (2.9) equals (u +)~'. On the other hand, it is obvious that (ul; — Qy (1)) =
(u+ 7). Thus, (2.9) holds when k = 1.

Suppose now that Equation (2.9) is true for some integer k. We proceed by induction.
Notice that it is possible to enumerate the states of Q(k+ 1) in such a way that Q) ,(k+1)
is upper triangular. Indeed, it is enough to enumerate first all states in Q(k: +1) ={(s,i) €
Qk+1):s+i=k+1}as{(k+1—4,¢):1</{<k+ 1}, so that progression from
one state to another occurs by infections which are not reversible as individuals are immune
after infection. This process is repeated for states Q(m) ={(m—1£,0): 1 < ¢ < m} for
m =k,...,1, so that transition from one set of states to the next occurs by removal of an
infected, which also is irreversible as individuals will remain immune afterwards.

This way of enumerating Q(k + 1) is particularly interesting as Q(k + 1) = | |, Q(m),
so that Q) (k + 1) can be regarded as the following block matrix:

Quy(k+1) = (ﬁ Qj(’ﬂ) '

Here, blocks A € My, 1(R) and B € M 40:)(R) represent events of infections and

removals in ﬁ(k: + 1), respectively, where we recall that d(k) = #Q(k) = k(k +1)/2. As
previously, the elements of Q) ,(k + 1) can also be indexed by states in €2(k +1). Naturally,
ulg41) — Quy(k + 1) also is a block matrix, simply replacing the blocks A and Qj (k)
by A" = ulpy1 — A and ulygy — Qa (k) respectively.

More precisely, A’ is an upper bidiagonal matrix such that

Vﬁ € {1, ey k + 1}, A%,f = Al(k#»l*f,f),(k#’l*@,@) =u -+ )\(k + 1-— E)E + '}/E,
Vﬁ € {1, ceey k}, A27é+1 - A/(k-‘rl—f,f),(k—‘rl—(f-‘rl),[-‘rl) - —)\(k’ + 1 - 5)5

Since A is upper diagonal, its inverse matrix is easily computable (Chatterjee, 1974), and
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letting aé 1) (A’)(kJr1 0),(k+1—iq)r We have:

i—1 i -1
(k+1) ! L
— 1 Ykriogi)
ay,; ﬂu+Aw+1—wi+wIl< +A%+1_j”>

_ Furthermore, as the only states of ()(k) that are directly accessible by removal from
Q(k + 1) belong to Q(k), all coefficients of B are null except for the following:

Beo 1= Bii—00),(kr1-t0-1) = 7 Ve{2,... k+ 1}

Using the fact that uly11) — Qi (K + 1) is a block matrix and that A’ and wly ) —
Q) (k) are upper triangular with positive diagonal coefficients and thus invertible, we have
the following:

~ _ N—1 _(AN—1pA
R e N (AR N O]
I 7’Y

Thus, we obtain that, for all £,i € {1,...,k+ 1} and (s,7) € Q(n),

(Qes1as(w) — o™V

(k-+1—£,0),(k+1—ii)

k+1
(Qk+1,)\,'y(u)) = a§kw+ )’Yw <Qk A,v( ))

(ht1-L0),(s:i) =

(2.14)

(k+1—w,w—1),(s,3)

Let us turn to proving that Equation (2.9) holds true for k + 1. Let £ € {1,...,k + 1}
and consider (s,i) € 2(k + 1) such that s < (k + 1) — £ and define m = (k + 1) — (s +14).

Notice that m = 0 if and only if (s,i) € Q(k + 1) and s = k+1—1. As a consequence, if
i < ¥, the set Z;11(¢,0,1) is empty; otherwise, if i > ¢, Zj,,1(¢,0,7) = {(£,7)}. In both cases,
the right hand side of Equation (2.9) equals aé“ ). Thus, by Equation (2.14), Assertion
(2.9) follows.

Consider now the case m > 0, i.e. (s,i) € Q(k). It follows from Equation (2.14), using
the change of variable ¢/ = w — 1, that

(Qer1an) o = = Y (e + 1) (Quan ) - (219)

_pr
= (k=0,07)(s.4)

Using the inductive hypothesis and noticing that k£ — (s +¢) = m — 1, we get that for any
e{l,.. .k},

(Qk,)\,'y(u)> (k—0/,07) (s,8) =
L > H Ty (i sU)Gkm—1,(1 7 — Liu).

u—l—)\sz—i-wlezk b1y =

Notice that if i € N2 is such thati;_; = 1 for all 7, then gp (i, 7—1;u) = g1 2~ ({, 7 0)
and g m—1.~(L7 — L5u) = grrimany (Vs y, u). Letting 7 be the projection on N™*2: for
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any " = (ig, ..., imy1) € N2 7({') = (i1,...,9ms1), We get that:

m
Do T aeand = Luw)gkm-1aq(5 — 1u) =

€Ty (¢ m—1,0) j=1

m
- .
> [ T akrian (s ds W) gkrman (s ;).
VeNm+2. - j=1
T({eL (W' ;m—1,i)

Furthermore, for i’ € N™*2 such that ig = ¢,i; = ¢, it holds that

k+1 . .
aé zli’Y(f/ +1) = Ly i=0@k14 ({5 0% gy 1,ma (1 05 ). (2.16)
Thus, noticing that the limits of the sum over ¢’ in Equation (2.15) taken together with
1¢p 4150 from Equation (2.16) induce that £/—1 < ¢’ < k, Equation (2.15) yields the desired
result:

<Qk+1,>\,7(u)) (k+1—£,0),(s,) =
1

m
m H dk+1 /\,7 7j; u)gk+l,m,/\,'y(i/7j; U)

+1(€,m,z .]:0

This completes the proof. O

2.E Computation of the exponential growth rate for the SEIR
model with two levels of mixing

In the SEIR model, subsequently to an infectious contact between an infected and a suscep-
tible individual, the susceptible first becomes exposed (E state, assimilated to an infected
but not yet infectious state) for a duration distributed according to an exponential law of
parameter u, before entering the infectious state. Thus, the computation of the exponential
growth rate as proposed by Pellis et al., 2011 needs to be adapted.

For a population of size k, consider the Markov chain giving the numbers (S;, Ey, I})=0
of susceptible, exposed and infected individuals in the population at time ¢ > 0 after the
beginning of the epidemic, of transition rates

Transition Rate

(s,e,1) = (s —1,e+ 1,1) Asi;
(s,e,1) > (s,e—1,i+1) pe;
(s,e,i) — (s,e,i—1) Y.

The set of transient states is then given by
k) ={(s,e,i) e NUO0):s+e+i<keti=1}

of cardinal d'(k) = k(k + 1)(k + 5)/6. The restriction of the generator of this Markov chain
to (k) is given by Q) (k) defined by: V(s,e,1), (s',¢',4") € V'(k),
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(—\si — pe —~i if (s',€,1) = (s,e,1);
Asi if (s',¢,i) = (s—1,e+1,i);
(Q’/\mu(kz))(8,671)?(5,,6,,1.,) = < pe if (s',e,i') = (s,e —1,i+1);
vi if (8',€,i") = (s,e,i—1);
0 otherwise.

Following the work of Pellis et al., 2011 and adopting the notations introduced in Section
2.4, one can then easily see that the exponential growth rate r’ of the SEIR model with two
levels of mixing is characterized by the implicit equation

p(K'(r)) = 1,
where for u = 0, K'(u) is the following matrix:

(0 ) 0 4 () 0
AH ( ) (w) ]

2/07)\}.1711,,’7) (u)7" (E/o,)\w,u,'y) (u) (1 +aH (2/07)\}.1711,,’7) (“)) W (21«\%“,7

given the definition for 8, A\, u,y > 0 of

6;6,)\,;1,7,6(10 = Z BZ ((UId’(k) - Ql)‘v%ﬂ(k))_l)(kfl,l,(]),(s,e,i) )
(s,e,)eQY (k) (2 17)
2’237)\,%7(”) = Z (Asi + pe) ((“Id’(k) - Q//\%M(k))_l)(kfl,l,O),(s,e,z') :

(s,e,0)eQY (k)

2.F Numerical aspects for the model reductions of Section
2.4.4

SIR model with two levels of mixing and Gamma distributed individual recovery
times. The reduced model still takes the form of the dynamical system given in Equation
(2.13), whose parameters are determined as follows. + is set to the average recovery time
and the growth rate r is obtained from Equation (2.11), where the coefficients of the relevant
matrix defined in Equation (2.12) are estimated through simulations.

SEIR model with two levels of mixing. The reduced model is a standard uniformly
mixing deterministic SEIR model, with infectious contact rate A and transition rate y for
the transition from E to I. As before, v designates the recovery rate of infected individuals.

Notice that, given the parameters X 1 and -y, the epidemic growth rate of the deter-
ministic SEIR model can be computed by solving Equation (2.6) with {(7) = (}\\/’Y)W(T)
where w(7) is the distribution of infection times for an infected individual in a uniformly
mixed population and X/v is the average number of infections caused by an individual in
early stages of the SEIR epidemic.

In order to choose the value of A for the model reduction, we proceed as follows. First,
the epidemic growth rate r of the SEIR model with two layers of mixing is computed following
section 2.E. It then remains to set \ in such a way that the epidemic growth rate of the
deterministic SEIR model, which can be computed as described above, is equal to . This
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can be achieved through simulations. Alternatively, it is possible to use the following formula
derived from the Supplementary Material of Trapman et al., 2016 which states that

o (102)(1-5)

The reduced model is then defined by the following set of ordinary differential equations:

ds
dt
dE
dt
dI
dt
dR
dt

= —A\SI
=\SI — ukE

=ul —~I
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CHAPTER 3

Large population limit for a
multilayer SIR model including
households and workplaces

We study a multilayer SIR model with two levels of mixing, namely a global level which is
uniformly mixing, and a local level with two layers distinguishing household and workplace
contacts, respectively. We establish the large population convergence of the corresponding
stochastic process. For this purpose, we use an individual-based model whose state space
specifies the remaining infectious period length for each infected. This allows to deal with
the natural correlation of the epidemic states of individuals whose household and workplace
share a common infected. In a general setting where a non-exponential distribution of in-
fectious periods may be considered, convergence to the unique deterministic solution of a
measure-valued equation is obtained. In the particular case of exponentially distributed infec-
tious periods, we show that it is possible to further reduce the obtained deterministic limit,
leading to a closed, finite dimensional dynamical system capturing the epidemic dynamics.
This model reduction subsequently is studied from a numerical point of view. We illustrate
that the dynamical system derived from the large population approximation is a pertinent
model reduction when compared to simulations of the stochastic process or to an alternative
edge-based compartmental model, both in terms of accuracy and computational cost.

Code availability. https: // github. com/m-kubasch/household-workplace-model

This chapter is based on the preprint "Large population limit for a multilayer SIR model includ-
ing households and workplaces” (Kubasch, 2023).
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3.1 Introduction

Epidemic spread depends by essence on the way individuals interact with one another. As
a consequence, models have been developed which take into account main features of real-
life contacts, for instance through contact networks (Kiss et al., 2017). In particular, some
attention has been drawn to studying clustered networks, as clustering has a strong impact
on epidemic spread (Hébert-Dufresne et al., 2010; Volz et al., 2011) which is intimately
related to the way clustering is achieved within the network (House and Keeling, 2011).
A particular form of clustering consists in the presence of entirely connected small social
structures, such as households or workplaces, which exist in addition to random contacts
in the general population. This kind of population structure is captured by models with
two levels of mixing (Britton and Pardoux, 2019a, and references therein), which are related
to efficient control measures. Indeed, both COVID-19 and influenza epidemics illustrate the
pertinence of teleworking and school closures (Mendez-Brito et al., 2021; Simoy and Aparicio,
2021; Luca et al., 2018), and models explicitly distinguishing different contact types are well
suited to simulate the impact of these measures (Di Lauro et al., 2021). However, precisely
understanding the impact on disease propagation of the way individuals are organized in
households and workplaces is not straightforward (Bansaye et al., 2023a).

This motivates the study of models with several levels of contact, which as we shall see
lead to interesting mathematical issues due to their multiscale population structure. Pellis
et al.,, 2009 have proposed a model with two levels of mixing structured in three layers
of contacts: households, workplaces and the general population. This household-workplace
model has already been studied to some extent, establishing for instance the epidemic growth
rate (Pellis et al., 2011; Bansaye et al., 2023a) and several reproduction numbers (Ball et al.,
2016). In particular, the Ry used throughout this paper was introduced in Pellis et al., 2009,
and computations of R; and proportions of infections per contact layer will make use of the
working package associated to Bansaye et al., 2023a.

One drawback of this model is its complexity, both mathematically and numerically. In-
deed, it is not simple to analyse due to correlations arising as soon as an individual may belong
to several small contact structures at once. Also, simulations require a significant amount
of computation time, especially when considering larger population sizes. As a consequence,
it is of interest to develop reduced models, which may be more prone to theoretical studies
and/or numerical exploration. In particular, large population approximations of stochastic
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models have proven fruitful to achieve such model reductions in many contexts, among which
epidemics on random graphs.

Historically, the standard SIR model developed by Kermack and McKendrick itself cor-
responds to the large population limit of the uniformly mixing stochastic SIR model. In the
Markovian setting, the convergence of the stochastic model to its deterministic limit can
be established using classical results on the convergence of finite type density-dependent
Markov jump processes, e.g. Andersson and Britton, 2000a. When infectious periods are
not restricted to being exponentially distributed, the large population convergence of the
stochastic model to the unique deterministic solution of a system of integral equations can
also be obtained (Kurtz, 1981; Forien et al., 2022). For more complex contact networks
however, it often is challenging to propose closed systems of equations correctly describing
the epidemic dynamics.

A well-understood case is the SIR model on the configuration graph, for which a re-
duced model referred to as edge-based compartmental model (EBCM) (Volz, 2008; Miller,
2011) has been proven to be the large population limit of the underlying stochastic model
(Decreusefond et al., 2012; Janson et al., 2014). Since then, the equivalence with other re-
duced models has been established under appropriate assumptions (House and Keeling, 2011;
Wilkinson et al., 2017; Jacobsen et al., 2018; Kiss et al., 2023), and the EBCM formalism
has been extended to related models (Sherborne et al., 2018; Jacobsen et al., 2018). The
configuration graph is a favorable setting for this analysis thanks to the absence of clustering
in the large graph limit, which however also constitutes a major limitation, prohibiting for
instance the existence of household-like structures.

Some attention has thus been drawn to models where each individual belongs to a random
number of fully connected subgraphs (cliques) of the same type, hence being closely related
to the household-workplace model. Several reduced models have been proposed, including
an EBCM (Volz et al., 2011; St-Onge et al., 2023; Hébert-Dufresne et al., 2010). To our
knowledge, the convergence of the underlying stochastic model to the proposed reduced
model has not been established in any of these settings. Notice that these models share a
major common point, which will also hold true in our setting: they focus on the epidemic at
the level of structures, as they keep track of the proportions of cliques containing a certain
number of susceptibles and infected, leading to high-dimensional dynamical systems for larger
clique sizes.

When considering two levels of mixing, the first model for which a large population limit
has been determined is the household model, which assumes a uniformly mixing general
population and that each individual belongs to exactly one household (House and Keeling,
2008), thus being a special case of the household-workplace model. Here, the stochastic
model can again be formalized as a finite type density-dependent Markov jump process,
ensuring the large population convergence to the deterministic model. If either of these two
assumptions is relaxed, e.g. considering a configuration graph at the global level (Di Lauro
et al., 2021; Ma et al., 2013) or individuals belonging to several households (Barnard et al.,
2018), reduced models have been proposed, but without rigorous derivation from stochastic
models. In particular, the case of the household-workplace model is not covered, and the
only reduced models proposed so far approach the epidemic dynamics using well calibrated
uniformly mixing models (Bansaye et al., 2023a; del Valle Rafo et al., 2021). While these
are capable of capturing some key characteristics of the epidemic, such as the epidemic peak
size and final size, they do not allow for an accurate prediction of the epidemic dynamic over
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time.

As a consequence, in this paper, we will study the large population limit of the multilayer
SIR model with households and workplaces. In order to do so, we will formalize the model in
a finite population as an individual-based stochastic process, and establish that this sequence
of processes converges in law when the size of the population grows to infinity. This allows
to identify a new model reduction, and establishes that it is asymptotically exact. Besides,
it paves the way for more quantitative estimates on this approximation.

Notice here that each infected individual correlates the epidemic spread in his household
and workplace, being infectious for exactly the same period of time in both structures. In
order to deal with this dependence, the duration of infectious periods will explicitly be taken
into account in the mathematical representation of the model. This difficulty actually arises
as soon as one considers the probability of an individual belonging to several cliques at
once, whether they are of different types or not, and we refer to Ball et al., 2014 where a
similar approach has been developed for branching approximations. Let us emphasize that
this model formulation allows to immediately consider a wide range of infectious period
length distributions instead of being restricted to the Markovian case, which is a pertinent
generalisation for many epidemic models (Sherborne et al., 2018; Forien et al., 2022; Feng
et al., 2007; Lloyd, 2001).

The model will be represented by a measure-valued process mixing discrete and con-
tinuous components. More precisely, we establish the convergence of the individual-based
process to the unique solution of an explicit measure-valued equation. In the particular case
where this distribution is exponential, it is possible to go one step further and reduce the
epidemic dynamics to a closed, finite dimensional dynamical system which is similar in spirit
to reductions proposed in related settings (House and Keeling, 2008; St-Onge et al., 2023).

The present paper is structured as follows. Section 3.2 introduces the individual-based
model, and Section 3.3.1 subsequently presents the convergence results in detail. Section
3.3.2 is devoted to numerical aspects. We first illustrate that the obtained dynamical system
is in good accordance with stochastic simulations, discuss its implementation and examine
its computational cost in terms of computation time compared to stochastic simulations.
Next, we confront our reduced model to an alternative model reduction which we obtain
using the EBCM formalism. Finally, Section 3.4 contains the proofs of our results.

Before proceeding, let us introduce some notations that will be used throughout the
paper. For any integers n < m, we write [n,m] = {n,---,m}. For a measurable space
(E,E), let Mp(E) be the set of point measures, Mp(E) the set of finite measures and
M (E) the set of probability measures on E. We define Mp;(E) = Mp(E) n M;(E) the
set of punctual probability measures on E. For a measure p on E and a suitable function
f (either non-negative or belonging to L!(u)), let {u, f) = Sz fdu. Also, for x € E, 6,
designates the Dirac measure at point x. Further, for any metric space E and any integer
m, let C(E,R™) be the set of continuous functions f : E — R™. Similarly, C;(E,R™) is
defined as the subset of bounded functions f € C(E,R™). Finally, the space C}(E,R™)
designates the set of bounded functions f : E — R™ such that f is differentiable and its
differential is continuous and bounded.
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3.2 Presentation of the model

Let us begin by introducing the epidemic model of interest, in two successive steps. At first,
a general model description is yielded, which corresponds to a more intuitive presentation of
the model, before stating the mathematical model in detail using a measure-valued stochastic
differential equation.

3.2.1 General presentation of the model

Let us start by describing the population structure of interest. Consider a population of K
individuals. Each individual is part of exactly one household and one workplace, which are
chosen independently from one another, and independently for each individual.

More precisely, such a population structure can be obtained as described in Bansaye
et al., 2023a. Suppose that households and workplaces are of size at least one and at most
Nmax- Consider distributions (wf) and (7‘(‘;/‘/) on [1,nmax]. These distributions correspond
to the large population limit of household and workplace size distributions, in the sense that
in an infinite population, a proportion WjH of households would be of size j, while 7"V would
play a similar role for workplaces. In such an infinite population, the average household and
workplace sizes, respectively my and myy, would be given for X € {H, W} by

Tmax

- X
mx = Z Jmj .
J=0

On a probability space (Qg, Pg, Fg), we construct a sequence (G) = of this random
population structure as follows. For K > 1, let k € [0, K] be the number of individuals
who are not yet member of a household. While k& > 0, choose a size 7 according to o
independently from the household sizes that were chosen during previous steps. The newly
uncovered household is then of size n = min(n, k), and n individuals out of the k remaining
ones are picked uniformly at random to assemble this new household. Consequently, it
remains to update k to k — n. The process stops as soon as k = 0, as all individuals then
belong to a household. Finally, this process is repeated independently for workplaces, using

7V instead of 7.

It remains to describe the way the disease spreads in the population. The epidemic model
considered here is an extension of the standard SIR model. At each time, each individual is
either susceptible if he has never encountered the disease and may be contaminated; infected
if the individual is currently infectious, in which case he may transmit the disease to other
susceptibles; or recovered, once the infectious period is over, in which case the individual has
become immune against the disease.

The disease is transmitted among individuals as follows. Within each household, each
workplace and the general population, uniform mixing is assumed, but the parameterization
differs slightly between the layers. Indeed, for households, we consider a one-to-one contact
rate Ay, meaning that whenever there are s susceptibles and 7 infected within a household,
the next infectious contact occurs at rate A\jysi. Similarly, another one-to-one contact rate
Aw is associated to workplace contacts. Within the general population, a one-to-all contact
rate O is considered: when there are s susceptibles and 7 infected within a population of
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size K, infectious contacts occur at rate %si. Indeed, each given encounter within the
general population becomes less likely when the population size K increases.

Finally, infected individuals remain infectious for a period of time which is independent
from (Gg)g=1 and distributed according to a probability distribution v on R, which we
assume to be absolutely continuous with regard to the Lebesgue measure. Once they recover,
they are supposed to be immune against the disease from there on. In particular, if v is an

exponential distribution, this corresponds to the Markovian SIR model.

3.2.2 The epidemic model at the level of households and workplaces

As we aim at investigating the large population limit of this model, we choose to enrich the
population description as to obtain a closed Markov process. This corresponds to a favourable
mathematical setting, as it allows us to use the associated martingale problem. In order to
do so, we will represent the population in terms of particles which are described by a type. It
seems natural to consider particles which correspond to entire structures, i.e. households and
workplaces, which are characterized by their size and the number of susceptible and infected
individuals they contain. Indeed, this point of view has already proven useful for deriving
reproduction numbers for related models (Ball et al., 2016), as well as the epidemic growth
rate of the household-workplace model (Pellis et al., 2011). However, this is not enough to
obtain a closed system of Markovian dynamics. The problem is that each infected individual
correlates the spread of the epidemic within his household and his workplace, leading to an
intricate correlation network. In order to circumvent this difficulty, similarly to Ball et al.,
2014, we will thus further characterize each structure by the infectious periods of its infected
members. Adopting this point of view is key, as it allows to handle both the progressive
discovery of the graph as the epidemic spreads, and the correlations arising from infected
individuals, without explicitly keeping in memory the discovered graph.

Let w € Qg. For a population of size K > 1, let K be the number of households and
Ky the number of workplaces in G* (w). While K7 and Ky depend on w, this dependency
is not specified explicitly for readability. This will also apply to the forthcoming notations.
Label the Kz households in an arbitrary fashion 1,..., K. Consider the set

E ={(n,s,7) € [1,nmax] * [0, nmax] x R™™*: s <n; Vj>n—s,7; =0}.
Then for k € [1, K], the k-th household is characterized at time ¢ > 0 by its type
il (t) = (ni], sf (1), 7 (1)) € E.

The first two components of :zrkH correspond respectively to the size of the household
(which is constant over time), and the number of susceptible members of the household at
time ¢. The third component T,f is a vector containing the remaining infectious periods of
the members of the household. Indeed, at time ¢, there are nfl — s (t) infected or removed
individuals within the household. For j € [1,n —sH ()], if T,fj (t) > 0, the individual is still
infectious and will remain so for T,fj(t) units of time. Otherwise, if T,fj(t) < 0, the individual

has recovered, and the recovery has occurred at time ¢t — |7',£{](t)| For j > ni — sH(t),

T,fj(t) has no interpretation, and is set to zero for convenience in computations. In other

words, the infectiousness of a previously contaminated individual with remaining infectious
period T is given by 1(.- ;.



3.2. PRESENTATION OF THE MODEL 113

Similarly, label the Ky workplaces in an arbitrary order 1,..., Ky. For £ € [1, Ky],
the (-th workplace is characterized by its type z}" (t) = (n}", s}V (t), 7,V (t)), which is defined
analogously to household types.

Notice that all of these quantities depend on the population size K, but this dependency
is omitted to simplify notations.

By definition, these types evolve over time. On the one hand, for any X € {H, W}, for
any k € [1, Kx] and j € [1, nmax], the j-th component of T,f( decreases linearly at unitary
rate if it describes the remaining infectious period of an individual having contracted the
disease at some previous time, and stays constant otherwise:

. d
Vi € [1, nmax], %Tlg,(](t) = _l{ankX*sf(t)}‘

Let (€)1<j<nmax denote the canonical basis of R™x. Then for any 0 < ¢t < T, and
x = (n,s,7) € E, we may define ¥(x,T,t) as the type of a structure at time 7" given that
it was in state x at time ¢, supposing that no infections occurred in the meantime:

U(x,T,t) = (TL,S,T — Z_:(T—t)ej) :

j=1

On the other hand, infections within each level of mixing also cause the modification
of the types of the household and the workplace of newly contaminated individuals. More
precisely, consider a contamination occurring at time ¢. Suppose that the newly infected
belongs to the k-th household and /-th workplace. Let o be the realisation of a random
variable of distribution v, which is drawn independently for each new infected. Then l‘kH and
2}V jump from 2 (t—) and 2}V (t—) to j(z (t—),0) and j(z}V (t—), o) respectively, where
for any z = (n,s,7) € E,

i(x,0) =(n,s — 1,7+ 0ep_sy1) -

It remains to describe how one identifies the household k& and workplace £ the newly infected
belongs to. Let S(t—) be the number of susceptibles in the population previously to the
infection event. If it takes place within the general population, any susceptible individual
is chosen with uniform probability to be contaminated. The newly infected thus belongs to
the k-th household with probability st (t—)/S(t—), and independently to the £-th workplace
with probability s}V (t—)/S(t—). Similarly, if the infection occurs within a household, only
the workplace of the newly infected needs to be uncovered, and corresponds to the /¢-th
workplace with the same probability as previously. Within-workplace infections are treated
analogously.

We are now ready to introduce the stochastic process (¢/ = ( th, tW|K))t>O taking

values in Mp; = Mpi(E) x Mp1(E). tH|K and CtW‘K correspond respectively to the
normalized counting measures associated to the distributions of household and workplace
types at time t, i.e. for any time ¢t > 0 and X € {H, W},

X|K 1
t = Ky Z 5x§(t)-
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Start by noticing that, as both household and workplace sizes are bounded, for X €
{H, W}, the following inequality holds:

K

Tmax

< Ky < K.

Thus, studying the asymptotic K — o0 amounts to (Kg, Ky) — (00, 0).
Observe that the number of infected individuals in a household of type (n, s, T) is given
by i(7) = 2%2¢* 1, ~03- Then for any ¢t >0,

corresponds to the average number of infected individuals per household at time ¢. Similarly,
one may define Sy (t) as the average number of susceptibles per household at time ¢, as well
as the workplace-related quantities Iy (t) and Sy (t). Then

VX € {H, W}, S(t) = KxSx(t) and I(t) = KxIx(t). (3.1)

Further, let Ny be the average household size, which is constant over time and always
equal to K /K. This leads to I(t)/K = Ix(t)/Nx, which will be of use in computations.
Notice that we will need to check that Equation (3.1) is well posed, as equalities of the type
KySh(t) = KwSw(t) technically need to be proven for the stochastic process formalizing
the model. Notice that for X € {H, W}, Sx and Ix actually depend on the population size
K, which is omitted in notations for readability.

Finally, let us briefly emphasize that the partition of the population in households and
workplaces is entirely conveyed by (& € M p1, as it does not vary over time. In particular, the
proportions of households and workplaces of each size are supposed to correspond to those
observed in G (w). Similarly, there are some natural constraints on ¢, as CHIK and ¢(WIK
describe the same population, once dispatched into households, and once dispatched into
workplaces. For instance, the total number of members in some epidemic state (susceptible,
infected or recovered) within all households is equal to the total number of members in
this state within all workplaces. Hence K Sg(0) = KwSw(0) and Kglp(0) = Kwlw(0)
almost surely. Further, at time 0, each infected or recovered needs to have the same remaining
infectious period in both his household and workplace. In other words, almost surely,

{71 (0): 1<k < Ku, 1<j<ng —s' (0} = {m;(0): 1<¢< Kw,1<j<n’ -5 (0). (32)

Forthcoming Lemma 3.2.2 shows that these conditions are enough to ensure that the previous
characterization of S(t) and I(t) in terms of Sx(t) and Ix(t) is legitimate.

Before giving the proper definition of (¥, let us introduce some necessary notations.
Again, K-dependency is not specified explicitly in order to simplify notations. Let

Ug = (RJr)g X [[LKH]] X [[LKW]] x Ry, (33)
and consider the following measure on Ug:

pa(du) = pe(dl,dk,dl,do) = dO @ py(dk) @ py(dl) @ v(do),
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where d@ and p14 denote the Lebesgue measure on R3 and the standard counting measure,
respectively. For ¢t > 0 and u = (0,k,¢,0) € Ug where 8 = (01,03,03), let us define
Zg(t, u

)=1 H NG
(t) (t)
{61<7€? S(t) () 62\ S(f) 63\ S(f) }

The idea is that Z¢ will yield the correct rate for infection events in the general population.
More precisely, the constraint on #; corresponds to the rate of infectious contacts at that
level of mixing, while the constraints on 02 and 63 are related to the probability that the
newly infected belongs to the k-th household and ¢-th workplace.
Similarly, let
U=(R,)?x[1,Ky] x [1, Kw] x Ry, (3.4)

endowed with the measure
p(du) = p(d0,dk,dl,do) = d @ py(dk) @ py(dl) @ v(do),

where with slight abuse of notation, d@ designates the Lebesgue measure on R2. Then for
t>0and u=(0,kl,0)eU where 8 = (01, 62), we further introduce

Ty(t,u) = 1{01 W(t)}

KAgs()i(rH (1)), 62< )

This time, the constraints on 67 and 6 correspond respectively to the rate of infection within
the k-th household and the probability of the newly infected belonging to the ¢-th workplace.
Also, forany T'> t > 0 and u = (0,k,¢,0) € Ug v U, consider the following quantity,
which will allow to keep track of the change in the household population due to an infection
within the k-th household:

Ar(u,Tt) = d(w(at 1-).0).10)) ~ (it (1-).1.0)))-

Finally, define Zyy (t,u) and Ay (u, T, t) analogously:

91 )‘WSE (t) ( ()) 92\ S(t)

Tw(t,u) = 1{ o (t)}

and - Aw (U, T 1) = 0@l (1-).0).1)) ~ O(w(al (1) 70)))"
We are now ready to yield the main characterization of ¢/, as inspired by Tran, 2006.

Proposition 3.2.1. Define on the same probability space as C(f(, and independently from
¢{<, three independent Poisson point measures Qy on R x Uy with intensity dtuy (du), for
Y € {H,W,G}. Then ¢K = (¢HIE ¢WIK) s defined as the unique strong solution taking
values in D(R4,Mp 1) of the following equation. For X € {H,W} and T > 0,

XK Z Saexoyro) T D f f Ty (t—, w)Ax (u, T, ) Qy (dt, du) |,

Ye{H,W,G}
(3.5)
where Ug and Uy = Uy = U are defined by Equations (3.3) and (3.4), respectively.



116 CHAPTER 3. LARGE POPULATION LIMIT OF A MULTILAYER SIR MODEL

The idea behind Equation (3.5) goes as follows. Let us focus for example on the distribu-
tion C;ﬂK of household types at time T'. Each household’s type contributes to the distribution
at uniform weight 1/Kp. If no infection event occurs between times 0 and 7', then the state
of the k-th household at time T is given by W(zF (0),7,0). However, suppose now that
before time T, at least one initially susceptible member of the k-th household is infected,
and let ¢ be the first time at which such an event occurs. Then 2 () = j(z (t—), o) where
o is distributed according to v. If no other infections affect this household up to time T,
it will be in state ¥(j(x(t—),0),T,t) instead of ¥ (x(0),T,0) = V(zH (t—),T,t). This
reasoning is reflected in Ay, and can be iterated over the whole of [0,7"]. Finally, the terms
Iy for Y € {G, H,W} assure that all infection events occur at the corresponding rates.

Proof. The proof uses classical arguments, which will only be outlined here. Start by es-
tablishing existence of (®. Consider the sequence (T},),>0 of successive jump times of
¢¥, where we define Ty = 0. Then using a method similar to rejection sampling, (7},)n>0
can be obtained as a subsequence of the jump times of a Poisson process with intensity
Nmax (AHMmax + AW Nmax + Ba) K, whose only limiting value is +00. Thus lim, o 1), =
+00 almost surely, ensuring that (¥ takes values in D(R,,Mp1(E)).

Finally, uniqueness is obtained by an induction argument which proves that for any n = 0,
(Tn,Cﬁ) is uniquely determined by (¢, (Qy)yes) where S = {G, H,W}. This obviously
is true for n = 0. The induction step relies on the observation that 7,41 is uniquely
determined by (Tn,C{{l, (Qy)yes) and C{{Hl by (TnH,Tn,Cﬁ, (Qy)yes). The induction
hypothesis allows to conclude. O

Let us briefly show that it follows from Proposition 3.2.1 that Equation (3.1) is well
posed.

Lemma 3.2.2. Suppose that almost surely, KgSu(0) = KwSw(0) and Equation (3.2)
holds. Then for any t > 0, KgSu(t) = KwSw(t) and Kglg(t) = Kwlw(t), almost
surely.

Proof. Let T' > 0, and for any = = (n,s,7) € E, let n(x) = n, s(x) = s and i(z) = i(7).

Start by focusing on Sx(T') = <C$|K,s> for X € {H,W}. It follows from Equation (3.5)
that

Kx T
KxSx(T) = ) s(¥(z} (0),T,0) + > J J Iy (t— u){Ax (u, T’ t),s)Qy (dt, du).
j=1 ve{HW,ay 70 JUr
Notice that on the one hand, for any x € E and 0 < t < T, s(¥(z,T,t)) = s(x). Hence
the first term of the right-hand side equals KxSx(0), and for any v = (0,k, ¢, 0),

<AH(U, Ta t)a S> = S(\I’(](Ig(t—), U)a Ta t)) - S(\I’(ka(t_)vTa t)) =-1

The analogous computation yields (Aw (u,T,t),s) = —1. Thus KgSu(T) = KwSw(T)
almost surely.

Let us now turn to Ix(7T') = <(7)5|K, i). This time, forany u = (0,k,¢,0) and 0 <t < T,
it holds that (Ax (u,T,t),i) = 1{,~(1r—¢)- Finally, Equation (3.2) ensures that

TLH SK(O) Kw

Ky Ky ™ —Sg
D i (f (0),T,0) = )] Lo o) = > i(W(a(0),T,0)).
k=1 k=1 j=1 = =1

The conclusion follows as previously from Equation (3.5). O
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3.3 Main results

In this section, we are going to present our main results on the convergence of ((%)x=1
in the Skorokhod space D (R, M;(E)). For X € {H,W}, let X be the complementary
structure type, i.e. X = W if X = H and vice-versa.

As we are interested in studying the limit K — o0, an important ingredient will be the
asymptotic behavior of the sequence of random graphs on which the epidemic spreads. Let
7HIE and 7K pe the household and workplace size distributions observed in GX. The
law of large numbers ensures that (715 7WIK) -~ converges Pg-almost everywhere to
(7, 7W). We hence define

O = {we Qg : (11K (@), 7K (w) —— (=, 7))},

and our main results will hold for w € QF.
Further, the following assumption on the sequence of initial conditions (C§)Kzl will be
required from now on.

Assumption 3.3.1. For any X e {H, W} and T > 0, suppose that:
(i)

Kx nmax
lim supE | s = 0.
N Ko LJQET Kx kZl 21 ©>i, [ (0)—t>N}]

(ii) For any c € R, for any i € [1, nyax],

1S
e ]

Briefly, the first assumption allows to control the impact of the initial condition on the
queues of the distribution of remaining infectious periods at each time, while the second
condition is related to aspects of absolute continuity. These conditions are for instance
satisfied if for any K > 1, at time 0, the remaining infectious periods of infected individuals
are i.i.d. of law v, while those of recovered individuals are set to be equal to zero. Notice
that this choice for recovered individuals does not represent a loss of generality, as it does
not affect the epidemic spread and initially recovered individuals will remain recognizable at
any time T as the only ones whose remaining infectious periods equal —

3.3.1 Large population approximation of ((%)x-,

For any f € Cy (R x E,R), let fy(z) = f(t,x) and ff(z) = (v, fi(i(x,-))) for every (t, ) €
Ry x E. Consider the differential operator A defined as follows. For any z = (n,s,7) € E,

Afi(x) = 0 f(t,x) - Zafkftx

Also, for any = = (n,s,7) € E, let n(xz) = n, s(z) = s and i(z) = i(7) be the functions
which to a structure in state x associate the corresponding structure size, number of sus-
ceptible and number of infected members, respectively. For instance, for any X € {H, W}
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the average rate of within-structure infections at time t is given by

. Ax X .
Ax (G s = K—f{ kE(? (£)i(zi (1))

Notice also that as mentioned previously, the average size of structures is constant over time,
hence <§tX| ,n)y = <CX‘K n) for all t > 0. Finally, let My = M;(E)%. We are now ready
to state our first result, whose proof is postponed to Section 3.4.1.

Theorem 3.3.2. Let w € Qf. Suppose that (Céf)K>1 satisfies Assumption 3.3.1 and con-
verges in law to ng € 9. Then (CX)g=1 converges in D (R, My (E))? ton = (n",n")
defined as the unique solution of the following system of Equations (3.6). For any f €

CL(R4 x E,R), forany T >0 and X € {H,W},

T T
G fr = o foy + f S Afdt + Ax f (¥ si(fF — f)bdt
(3.6)

+ Ay <nt ’SI>< X, s(ff — fi)dt + Ba J <nt : >< i s(ff = fi)dt.
o (ni*.s)

This measure-valued equation can further be related to a system of PDEs. Indeed, it
is possible to establish an absolute continuity result for the marginals of X conditioned on
the structure’s size and number of susceptible members. The associated densities can be
shown to satisfy, in the sense of distributions, a system of differential equations related to
non-linear nonlocal transport equations. We refer to Appendix 3.A for detail.

From now on, let us assume that v is the exponential distribution of parameter . As we
shall see, it then is possible to deduce from Theorem 3.3.2 that the proportion of susceptible
and infected individuals in the population converges to the solution of a dynamical system,
when the size of the population grows large.

Let s(t) and i(t) be the proportions of susceptible and infectious individuals, respectively,
in the population at time ¢ according to distribution ;. Further introduce the set

S={(n—14,7) :2<n < Nmax,0 < i <n—1}.

For (S,1) €S, let ngl(t) be the proportion of households containing S susceptible and I
infected individuals at time ¢, according to distribution n/7. Define ngfl(t) analogously for
workplaces. Finally, consider

16(t) = Bai(t), and Tx(t) = :;); Z SI né{l(t) for X e {H,W}.
(S,1)es

We assume that at time 0, a fraction € of uniformly chosen individuals are infected amidst
an otherwise susceptible population. Furthermore, at time 0, the remaining infectious period
of each infected individual is supposed to be distributed according to v, independently from
one another. Let us emphasize here that actually, only this second assumption is crucial for
the results to hold, while the original distribution of infected individuals does not need to be
uniform (in which case forthcoming Equations (3.7) and (3.9) need to be adapted). We have
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chosen this particular initial condition as it has been previously considered in the literature,
and refer to the Discussion for further comments.

In practice, this setting corresponds to the following probability distribution 79, =
(775{5,77&/5) € My characterized for X € {H,W} as follows. For any n € [1,nmax] and
s € [0,n]:

77())(:5(717 s dT) _ ﬂ_i( <Z> (1 B e)sgnfs <V®(n78) ® 50®(nmax_n+8))> (dT) (37)

It then is possible to describe the epidemic dynamics by a finite, closed set of ordinary
differential equations, as shown in the following result whose proof is postponed to Section
3.4.2.

Theorem 3.3.3. Let e > 0 and suppose that 1) satisfies Equation (3.6) with g = 1. Then
the functions (s, i, né{l : X e {H,W},(S,I) € S) are characterized as being the unique
solution of the following dynamical system: for any t > 0, X € {H,W} and (S,I) €SS,

d

(1) = ~(r (1) + (1) + 76(0)5(1), (3.82)
L) = 2 s(6) i), (3.85)
%ngl(z&) __ <)\XSI + TX(t)s‘(St) )8 + 71> nd (1) (3.80)

+y(I + 1)”§1+1(t)1{5+1<nmax}
S+1
# (x5 + D =1+ S 4 (08 1)) i 011,

with initial conditions given by

0 =165 i0) =& ndy0) = (P )i - 0% (3.9)
This dynamical system may be understood as follows. Equation (3.8a) corresponds to
the fact that the proportion of susceptibles decreases whenever a new infection occurs within
the general population, or within a household or workplace. Similarly, Equation (3.8b) is
due to newly contaminated individuals moving from the susceptible to the infected state,
which they in turn leave at rate 7. It remains to take an interest in Equation (3.8c). The
first line indicates that a structure of type (S,I) € S changes its composition upon either
the infection of one of its susceptible members which may occur in any layer of the graph,
or upon the removal of one of its infected members. Simultaneously, a structure of type
(S,I + 1) transforms into a structure of type (S, ) whenever one of its infected members
recovers, while a structure of type (S + 1,1 — 1) becomes of type (S, I) upon infection of a
susceptible member. In particular, this result shows that under the assumptions of Theorem
3.3.3, in the large population limit, we may neglect the natural correlation between structures
caused by the fact that infected individuals belong to two structures at once. This allows
to obtain a stronger model reduction than in Theorem 3.3.2, in the sense that the model
reduces to a finite-dimensional ODE-system instead of a measure-valued equation.
Before detailing the proofs of Theorems 3.3.2 and 3.3.3, let us examine the latter from
a numerical point of view.
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Figure 3.1: Household and workplace size distributions 7% (left) and ="V (right) used in simulations.

3.3.2 Numerical assessment of the limiting dynamical system

The aim of this section is first to portray that the proposed large population limit, under
the form of dynamical system (3.8a—c), is in good accordance with the original stochastic
model for large population sizes. This secondarily leads to some practical comments on
the implementation of the dynamical system. Finally, a comparison with another reduced
model for epidemics with two layers of mixing will be established, namely with an edge-based
compartmental model (EBCM) in the line of work of Volz et al., 2011.

Implementation of the dynamical system and illustration of Theorem 3.3.3

Let us start by illustrating the result of Theorem 3.3.3 through numerical simulations. Using
Gillespie's algorithm, we have performed fifty simulations of the epidemic within a population
of K = 10000 individuals, where 71 and 7" are roughly inspired by the French household
and workplace distributions as observed in 2018 by Insee (Bansaye et al., 2023a). These
distributions are represented in Figure 3.1. Two sets of epidemic parameters have been
considered, leading to either Ry = 2.5 or Ry = 1.2. In both cases, the majority of contami-
nations take place at the local level. Indeed, for the first scenario with Ry = 2.5, 42% and
18% of infections occur within households and workplaces, respectively, and these propor-
tions both equal 40% in the second scenario. Further, the epidemic is started by infecting
either 10 or 100 individuals chosen uniformly at random at time 0. For each simulation, we
have followed the evolution of the proportion of susceptible and infected individuals within
the population over time.

The simulation outcomes are presented in Figure 3.2. For each choice of parameters,
the solutions s and i of dynamical system (3.8a—c) with initial condition given by (3.9) are
plotted on the same graph. As expected, one observes good accordance of the stochastic
simulations and the deterministic functions (s, 7).

Before proceeding further, let us briefly emphasize a few aspects of the implementation
of the proposed deterministic model. A potential drawback of dynamical system (3.8a—c)
consists in its large dimension. Indeed, it holds that #S = npax(nmax + 1)/2 — 1. The
number of equations of dynamical system (3.8a—c) is hence of order O(n? . ). However, this
fast-growing number of equations actually is manageable, as it is possible to implement the
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Figure 3.2: Comparison of the stochastic model with its large population approximation given by
dynamical system (3.8a—c). Household and workplace distributions are those of Figure 3.1. Two sets
of epidemic parameters are considered, namely (B, Amg, A\w,7y) = (0.125,1.5,0.00115,0.125) and
(Bas Ams Aw,y) = (0.03,0.05,0.0015,0.125) for the left and right column respectively (R = 2.5
and R; = 1.2). The initial conditions are either e = 0.001 in Panels (a) and (b), or e = 0.01 in (c)
and (d). For each of these scenarios, Gillespie's algorithm is used to simulate 50 trajectories of the
stochastic model defined in Proposition 3.2.1 in a population of K = 10000 individuals (faint lines).
For Panels (a) and (b), only trajectories reaching a threshold proportion of 0.005 infected are kept,
and time is shifted so that time 0 corresponds to the moment when this threshold is reached. Finally,
the deterministic solution (s,4) of (3.8a—c) is represented for each scenario (thick lines). For Panels
(a) and (b), the same time shifting procedure as for simulations is applied.
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dynamical system in an automated way, in the sense that each equation does not need to be
written one-by-one by the programmer. We refer to Appendix 3.B.1 for details.

Nevertheless, the large dimension of the dynamical system of interest raises the question
whether it is numerically speaking interesting to actually use it for numerical explorations.
We have compared the average time needed to either solve once dynamical system (3.8a—c),
or to simulate one trajectory of the stochastic model using Gillespie's algorithm, for different
choices of epidemic parameters. In practice, for stochastic simulations, it is often necessary
to compute several individual trajectories in order to obtain the general behavior of the
epidemic. However, as it is possible to execute these simulations in parallel, comparison to
one individual simulation seemed the most pertinent. The procedure and results are detailed
in Appendix 3.B.2. In summary, solving the reduced model is up to one order of magnitude
faster than performing one stochastic simulation for values of Ry > 1 that are not too close
to the critical case Ry = 1. This shows that the reduced model is pertinent for numerical
exploration.

Comparison to edge-based compartmental models

One may notice that the population structure, as described in Section 3.2.1, can be regarded
as a modification of the well-studied configuration model. Indeed, our network of household-
and workplace-contacts may be seen as a two-layer graph, where each layer corresponds
to a random graph generated as described in Miller, 2009 and Newman, 2009, that we
shall call clique configuration model (CCM) hereafter. This random graph model generalizes
configuration models to include small, totally connected sub-graphs referred to as cliques.
It then is possible to derive an EBCM for our household-workplace model by reasoning as in
Volz et al., 2011. Details are provided in Appendix 3.C.

Edge-based compartmental models on CCM variants have been known to be in good
accordance with simulations of the corresponding stochastic epidemic models, under the
assumption of a very small initial proportion of infected. In our case, we have confronted the
EBCM with dynamical system (3.8a—c), as well as simulated trajectories of our stochastic
model. As expected, for very small values of ¢, the EBCM and dynamical system (3.8a—c)
both yield the correct epidemic dynamics, whereas for larger values of ¢, the EBCM does
not fit the simulated epidemic trajectories. We refer to Appendix 3.C for details.

Finally, proceeding like before, we obtain that the number of equations of the EBCM is of
order O(n3,..). This has a strong negative impact on computation time, as briefly illustrated
in Appendix 3.C, arguing against the applicability of this EBCM for numerical explorations.

To conclude, in the particular case of the household-workplace model studied in this
article, the EBCM seems to be equivalent to the large population approximation described
by dynamical system (3.8a—c), under the condition that the initial proportion of infected is
very small. However, considering both the computational cost of its higher dimension and
the loss of accuracy for more general initial conditions of the EBCM, the large population
approximation given by dynamical system (3.8a—c) seems more pertinent in the case of the
epidemic model under consideration.
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3.4 Proofs

This section is devoted to establishing Theorems 3.3.2 and 3.3.3. As we will see, the proof
of Theorem 3.3.2 has the intrinsic difficulty of all convergence results for measure-valued
processes, with some technical difficulty arising from the infectiousness being a discontinu-
ous function of the remaining infectious period. This will become apparent in the proof of
forthcoming Proposition 3.4.8. Nevertheless, it allows us to obtain a deterministic prediction
of the dynamics of the structure type distributions during the course of an epidemic. At
this level, the limiting object is rich, allowing it to convey detailed information on the dis-
tribution of remaining infectious periods within structures. This however comes at the cost
of an infinite-dimensional limiting object, which motivates the interest in trying to further
reduce its dimension by adopting a coarser population description. In the case where v is the
exponential distribution, Theorem 3.3.3 shows that this actually is possible, the final reduced
model taking the form of dynamical system (3.8a—c). As mentioned previously, the existence
of an asymptotically exact, closed, finite-dimensional ODE-system capturing the epidemic
dynamics was not obvious from the beginning. Indeed, in order to obtain this result, we need
to show that structuring the population of previously contaminated individuals by remaining
infectious period is not necessary to handle the correlation of epidemic states of structures
sharing a common infected. While this result fundamentally relies on the memory-less prop-
erty of the exponential distribution, it will demand some effort, as illustrated in forthcoming
Propositions 3.4.12 and 3.4.14.

3.4.1 Proof of Theorem 3.3.2

Let us start with the proof of Theorem 3.3.2. It follows a classical scheme, establishing tight-
ness of (() =1, whose limiting values are shown to satisfy Equation (3.6). Uniqueness of
the solutions of this equation given the initial condition then ensures the desired convergence
result. In particular, the proof is inspired by Fournier and Méléard, 2004 and Tran, 2006.

Uniqueness and continuity of the solution of Equation (3.6).

We are first going to establish a uniqueness result for the solutions of Equation (3.6). Notice
that we do not need to prove existence of solutions in this section, as forthcoming Proposition
3.4.8 constructs such solutions as limiting values of (¢%)g>1.

Let us start with a technical lemma, whose proof we present for sake of completeness.

Lemma 3.4.1. Let f € C,(E,R). There exists a sequence (fi)r>1 taking values in C}(E,R)
such that fj, converges simply to f and supy~1 || fill, < |/f]|o-

Proof. Consider a mollifier ¢, i.e. 1 € C®(R™>x) is of compact support in R™max  ijts
Mass (o, ¥(2)dz equals 1, and for k > 1, the function ¢y, : & — k™ =xq)(kx) satisfies
limy_, 4 ¥ = dp in the sense of distributions. Let f € Cy(E, R). Define the sequence (fx)ir>1
as follows:

fr:(n,s,7)e E— f(n,s,-) = (7).

Then, for any = € E, by definition of (¢y)x>1 it holds that limy o, fx(z) = f(z).
Further, as 1, is of integral 1 for any k, it is obvious that for any k, || fx|l,, < ||f]l.,- Finally,
it also follows from the usual properties of convolution that for any k > 1, fi is smooth
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with respect to its last variable and the corresponding partial derivatives are bounded, hence
fr € CL(E,R). O

We may now turn to the main result of this paragraph. With slight abuse of notation,
for an element 7 = (n1,72) € My, we define its total variation norm by |n|lry = |mlrv v

In2|v.

Proposition 3.4.2. Let n. € M. Then Equation (3.6) admits at most one measure-valued
solution 1 which belongs to C(Ry., (M1, | - |7v)), such that g = ..

From now on, for X € {H,W}, define nx = (i, n), sx(t) = (n;X,s) and ix(t) =
(nf!,i). Let us establish the proposition.

Proof. First, notice that it follows immediately from Equation (3.6) that (¥, 1) = (ngf, 1)
for X € {H, W}, thus no € My implies that for any T' > 0, ny € M.

Let us show that any solution 7 of Equation (3.6) belongs to C(R, (M1, | - |7v)). In
order to do so, it is enough to show that X € C(Ry, (M1(E),||rv)) for any X € {H, W}.
We are going to detail the proof for nff only, as n"V' can be handled in the same way.

Let 7> 0 and g € CL(E, R) such that g, < 1. Consider the function defined by

V(t,z) eR x E, fi(z) = g(¥(x,T,t))

and recall that fZ(x) = (v, fi(i(z,-))). Then by definition, fr(z) = g(x). It follows from
the assumption g € CL(E,R) that f € C{(Ry x E,R). The advantage of this construction
is that ¢ — W (xz,T,t) corresponds to a reversal of time, which cancels out the deterministic
dynamics described by the differential operator A. Indeed, letting x = (n,s,7), a brief
computation shows that

Bufi) = 3 B g(W(w, T,1)) and o, i) = Bryg(W (2, T 1),
k=1

which yields that Af;(z) = 0 for all (t,x) € R x E. Using the fact that (nf!, ¢) = (¥, fr),
it follows from Equation (3.6) that

T
i, gy =g fo) + AHJO nftsi (fF — fi))dt

T; WoivenH o (1T _ Tig(t) H o (T
+>\WJO sw(t)<77t ,si)(m;”, (ft ft)>dt+BGJ0 (e (ft ft)>dt-

nH

Recall that ig(t) < nmax and % < 1 since for any x € F, i(x) < n(x). We may
notice that the following inequalities hold, as for any ¢, || f¢||, < 1:

<"7£I7Si (ftz_ft)>< 2(nmax)27 <77{—Ias(ftz_ft)><2nmaxu

1 W in(t), u T
9 < X - < .
s (@) (", si)y < Nma o (i, s ( fi ft)> 2Nmax

(3.10)

Let C = 2nmax (AHMmax + Awnmax + Bg) and let € € R. It then follows from Inequali-
ties (3.10) that
Kt =11y 99| < C|T — (T + €)| = Clel. (3.11)
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Consider now h € Cy(E,R) such that ||h|,, < 1. Lemma 3.4.1 ensures that there exists
a sequence (gi)r>1 taking values in C}(E,R) which converges simply to h and such that
gkl < 1. By dominated convergence, this implies that

[nf' =i )] < CIT — (T + €)| = Clel.
As FE is a Polish space, it follows from Proposition A.6.1 of Tran, 2006 that

07— ntsellry = sup (07— 07ses )] < Clel. (3.12)
heCy(E,R):[|h]| <1

As this holds for any € and any 7' > 0, the strong continuity of 7 is established.

It remains to establish uniqueness of the solution 1 of Equation (3.6) with initial condition
no = Nx. We will once more establish uniqueness component-wise, and focus on 7 as n"v
is treated in a similar fashion.

Let 17,7 be two solutions of Equation (3.6) with initial condition 7,. Let iy (t) = (7, i)
and define Sy/(t) in analogous manner. As before, let T > 0. Consider again g € C}(E,R)
such that ||g||,, < 1, and define f; and fZ as previously. Then

T
Wﬁ—m¥g»<AHf|mﬁ—#ﬂﬁu?—ﬁ»wt

+)‘Wf W()
+5Gf\m Yt s(fF = o)y — i (W)t s(fF — f)|dt.

Proceeding similarly as in Inequalities (3.10), we obtain that

<77t 7SI><77t ’ ( ft)> <77t 7Sl><77t ’ ( ft)>

_ c (T ~
[or — 7t 9)| < Qfo (" —nft, S = fo)l dt
CI("  u _u o oo
<2<J;] ’<77t -, t>’dt+f0 ’<77t — 7ft>’dt>.

On the one hand, by definition, f; € Cy(E,R) and | f||,, < 1. Thus |{nff —5f, fi)| <
l[nfl — 77 ||7v. On the other hand, it follows from the usual criterion of continuity for
parametric integrals that f7 is continuous on E and HftIH < | fill, < 1. As a consequence,

0

(ot =7t 5| < lnf" = 7f'|lrv. Hence

T
@#—ﬁg»<0an—mnnm

We then may follow the same steps that allowed to establish Equation (3.12) from
Equation (3.11), and obtain that
H _ —H TooH
I =i llrv < C | linf" =l vt
Gronwall's lemma then assures that

vt e [0,7], [ln =7 [lrv = 0.

One obtains the analogous result for "V in the same manner. As T' > 0 is arbitrary, this
concludes the proof. O
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Tightness of ((¥) x> in D (R, (Mp(E), w))?

Let us now turn to the tightness of ((¥) g1 in D (Ry, (Mp(E), w))?, where w designates
the weak topology on Mp(FE). We start by establishing the following preliminary result,
whose proof relies on the chain rule.

Lemma 3.4.3. Let f € C} (R} x E,R). Then forany T >ty >0, for any x € E,
T
f(T,\I/(.CC,T, t())) = f(to,l’) + Af (t,‘I’(SE,t,to))dt.

to

Proof. For z = (n,s,7) € E and ty € Ry, define
Gto.x © [to, +0) > R, T — f(T,¥(x,T, 1)) .

Let us start by noticing that for any (tp,z) € Ry x E, g1, € C*(Ry). Indeed, g1y =
fr,s © hig 2, Where

frs t R x R - R (u,v) — f(u, (n,s,V))
n

and hy, . Ry — RIFmmax ¢, (t,T — Z (t— t0)6k> .
k=1

The chain rule and a quick computation of the differentiable of Ay, , yields that for every
t 2 tOy

d
agto, ( ) alfn s(hto, Z ak+1fns hto, ( ))

Notice that on the one hand, 0 fys(u,v) = 0:f(u,(n,s,v)) and on the other, k > 2
Ok fn,s(u,v) = 07, _, f(u,(n,s,v)). As a consequence, we have shown that for any (to,z) €
Ry x E, for every t > tg, g, is differentiable at ¢ and satisfies

%gto,az(t) = Af (t’ \Ij(x’ t, to)) ’

This concludes the proof. O
Throughout the section, we use the notation S = {H, W, G}. Also, for any f € C} (R, x
R), let fi(x) = f(t,z) for any (t,z) € Ry x E. Finally, we define for any continuous
bounded function g : Ry x £ — R, for any t > 0 and u = (0,k,4,0) €  Jys Uy:

i = 9(t,i(xy (8),0)) — g(t.xf () and g = g(t,i(z) (t),0)) — g(t, 2" (1))

Proposition 3.4.4. Consider (¥ as introduced in Proposition 3.2.1. For any f € Cg (R4 x
E,R), T>0and X € {H, W},

Gy = <cX‘K,fo>+f G ARt = Y f j Ty (1=, w) [, Qy (dt, du).

X yes
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Proof. Let f € C}(Ry x E,R) and X € {H,W}. Recall that, by definition, for any bounded
function g: E > R, forany T >t >0and u = (0,k,{,0) € Uycs Uy:

and {Aw (u,T,t), g) is defined analogously, by replacing H by W and k by ¢.
From Equation (3.5), it follows that

<CXK7fT>_<Z fT T 0 +Z f J Iy t—,u <Ax(u T, t) fT>Qy(dt du))
YeS

Using the result from Lemma 3.4.3, this becomes:

" fry = 1% <f (7 (0)) + JT Afi (U (x5 (0),¢ 0))dt)
T »JT KX ~ 0\Ly 0 t j s by

T Z JT LY Iy (t—,u) <LT<AX(U, z,t),Afz>dz> Qy (dt, du)

X YeSs

+ Z J LY Iy (t—,u) fiX Qv (dt, du).

X YeSsS

It follows from the definition of C{ (R4 x E,R) that both f and Af are bounded, hence we
may apply Fubini’s theorem to obtain that

<CX|K7fT> = KiX 2{ fo(x3(0)) gsf JUY Ty (t—,u) X, Qy (dt, du)
f (Z AL(WEX(0),2,0) + “ Ty (b= u) D (1, 2, 1), AF5Oy (dt, du))dz
j YeS Uy

The first sum on the right-hand side equals <C§|K, foy. From the second line, one recognizes

in the integrand the definition of <CX|K Af.» from Equation (3.5). This yields the desired
result. O

For Y € S, let N
Qy (dt, du) = Qy (dt, du) — dtpy (du)

be the compensated martingale-measure associated to Qy .
It follows that, for f € C}(Ry x E,R) and X € {H, W},

G gy = M)+ VR (),
where we define
Xy~ Loy [ —u) X Qv (dt,d
ME ) = gy 2 | Lyzy(t ) [ Gy (dt, du)
and

VR () = " fo>+JT<<X'K Afiydt + — Z f f Ty (¢, u) £ oy (du) .
) 0 t tu

YeS
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Proposition 3.4.5. Let f € C}(R; x E,R) and X € {H,W}. Then (M. X| (f)r=0 is a
square integrable martingale. Using the same notations as in Theorem 3. 3 2, its quadratic
variation is given by

(e = o [ G (R~ 24+ S,
where for anyt > 0 and x € E,
I (1) G st
§($)=BGN7H() Axs(z)i(z) + Ay S0 ~—s(x).

Proof. Let f € C}(E,R) and X € {H,W}. Consider M?'K(f), which can be written as

M) = MEE () + M () + MG (),

where, for Y eS and T = 0,

My (f f L —Iy ,u) X, Qy (dt, du).

Suppose that for any Y € S,

[ J ny <Iy (t,u) fﬁ)zuy(du)dt] <o

then forall Y € S, (M. é(r",,K(f))T% is as square integrable martingale (Meleard and Bansaye,

2015), implying that (M7, XK (f))7=0 also is a square integrable martingale. As QK QWIK

and Q%X are independent, it follows that

MYE(yyp = S ()
YeS

It thus is enough to study (M. ?},K(f))TZO for all Y € S. In the following, we will detail the
necessary computations in the case X = H, the case X = W being similar.

Consider the case Y = H. Start by not|cmg that ZKW sV (t) = KwSw (), and that for
any k € [1,Kg] and t € [0, T, s (t) and ifl(t) are less then nyayx, almost surely. Hence,
replacing S(t) by KwSw(t) in IH,

f LH (IH<t u)fm) MH(dU)dt]

T Ky
=EU 2 > sl ><£<t>><u,(ft<j(x£<t>,~>>ft<xg<t>))2>dt] (3.13)

0 H -1

[<MH‘K( )>T =

1

< e A (max) "4 1115 T

Since further Ky > K /nmax and ||f|]§o < o0, we obtain that

E[MER(£)yr] < hx () IFIET < 0. (3.14)
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Thus (MgLK(f))t>0 is a square integrable martingale whose quadratic variation is given by

AR () = JT LH (1IH(t,u)fﬁ>2uH(du)dt

f<mK, Vo ofT g4 2,

using the computations from Equation (3.13).
Similarly, (M;'f(f))gpzo is a square integrable martingale of quadratic variation

M (F)yr = dw f<§ w<mK(()—Jfﬁ+ﬁDM

Further, for the case Y = G, let us use the equalities S(t) = KgSp(t) and I(t) =
Kyly(t). As I(t)/K = Ig(t)/Nyg < 1 almost surely, we obtain that

E[<MdﬂK(f»T]::EI1LTJ; <15H1c<uuxﬁi)2uc«ﬁ0df‘< §43<nmwa 1115 T

As before, (Mg'f(f));@o thus is a square integrable martingale of quadratic variation given
by

1

My = s [ O (27 g i+ g2

This yields the desired result for (JMT| (f))1r=0. The proof is concluded by proceeding in
W|K
the same way for (M, " (f))r=0- O

We are now ready to focus on the tightness of (()g=1, endowing Mp(E) with the
vague topology v as a first step.

Proposition 3.4.6. Under the assumptions of Theorem 3.3.2, the sequence ((*) i1 is tight
inD (R-H (MF(E)v U))2'

The proof relies on the fact that in order to establish tightness of ((%) g1, it is enough
to show that for any X € {H, W}, ((CX‘K,f>)K>1 is tight for a large enough set of test
functions f (Roelly-Coppoletta, 1986). This in turn is ensured using the Aldous (Aldous,
1978) and Rebolledo (Joffe and Metivier, 1986) criteria, whose application is straightforward
thanks to the upper bounds established in the previous proof.

Proof. Once more, we will proceed component-wise and show that (CH‘K)K>1 and (¢WIK)
are both tight in D (Ry, (Mp(E),v)).

Let us focus on (§H|K)K>1. According to Theorem 2.1 of Roelly-Coppoletta, 1986, it
is sufficient to show that for any function f belonging to a dense subset of

K>1

Co(E,R) = {f : E — R continuous s.t.  lim |f(z)| = 0} ,

llz]lo—0

the sequence (<§H‘K,f>)K>1 is tight in D(R,,R). Notice that by density of the set of
smooth compactly supported functions in Cy(R™=x) endowed with the uniform norm, it
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follows that Co(E,R) n C}(E,R) is also dense in Co(E,R) endowed with the uniform norm.
Thus, let us consider f € Co(E,R) nC}(E,R).

According to the Aldous (Aldous, 1978) and Rebolledo (Joffe and Metivier, 1986) criteria,
in order to prove the tightness of ((¢HI5 f)) k=1, it is enough to show that:

(i) For any t belonging to a dense subset 7 of R, (<MH|K(f)>t)K>0 and (VtH|K(f))K>0
are tight in R.

(i) For any T > 0, for any €, > 0, there exist § > 0 and K{ € N such that for any two
sequences of stopping times (Sk)x>1 and (Tx)g>1 satisfying S < Tx < T for all

integers K,
sup P (| () — MK £y > 0, Tic < Sk +6) < e
K=Ky
and sup P (|V£{|K(f) — Vj{ﬁK(f)\ > o, Tk < Sk + 5) <e.
K=Ky

Notice that, in order to establish (i), it is enough to show that for any ¢t > 0,

sup B [KMH‘K( )>t|] < and supE Hth'K f)H < 0.
Recalling that C' = 2npax (AHMmax + Awnmax + Ba), it follows from Equation (3.14) that

E[KM T (f)el] < *2nmax0 IF 1%

Similar computations yield that

E[V O < 1f e + IAf Iy + ClIfIlo t.

As f € C}(E,R), this implies that (i) holds.

It remains to check (ii). Let ¢, > 0, and consider two sequences of stopping times
(Sk)r>1 and (Tk)k>1 satisfying Sx < Tx < T for all integers K. As previously, using
Equation (3.14), we obtain the following upper bound:

E KM (f))s,c = M (£ || T < Sk +0] <E U T < Sk +61 —anaxC |11,

4]

?2nmaxc Hf”

Hence, using conditional Markov's inequality,

B (KM (1)) — T ()| = 0, Tic < Sic +6) <~ 2mnaC I . (315)

Proceeding similarly, we also obtain that
o
PV () = VAR (1) 2 0 Tic < Sk +8) < = (IAfllo + Cfl) . (3.16)

Equations (3.15) and (3.16) imply the existence of ¢ and K such that (ii) is satisfied.
Naturally, (WX can be handled analogously. This concludes the proof. O
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Finally, this result on the tightness of ((¥)g=1 in D(R,, (Mp(E),v))? lets us establish
the main result of this subsection.

Proposition 3.4.7. Under the assumptions of Theorem 3.3.2, the sequence ((*) =1 is tight
in D(R ., (M (E), w))2.

Proof. Let X € {H,W}. Tightness in D(R,, (Mp(E),w)) of ((X¥) k=, will be shown
using Theorem 1.1.8 from Tran, 2014, which we state in our setting for the sake of com-
pleteness. Let ® : z € R +— 622 — 152 + 1023 and for N > 1, define smooth approximations
ofre £ — 1{”7_(33)“002]\,} by:

Vo e B,YN > 1, én(z) = (0 v (|7(2)], — (N — 1)) A 1).

oo

Then in order to ensure the tightness of ((X1K) g~ in DRy, (Mp(E),w)), it is sufficient
to show that for any 7" > 0, the following conditions hold:

(i) There exists a family of functions F' which is dense in Co(E,R) and stable under
addition, such that for any f € F U {z € E — 1}, the sequence ((¢XI5, f) k=1 is
tight in D(R4, R).

(i)
hm lim sup E[sup <Ct ,¢N>] =0.
t<

N—oo© K o0
(ii) Any limiting value of ((X!K) ks, if it exists, belongs to C([0,T], (Mp(E),w)).

The proof hence consists in checking those assumptions. Let T" = 0, and consider X = H, as
the case X = W can be treated similarly. We may see that (i) is satisfied, as we have shown
in the proof of Proposition 3.4.6 that for any f € Co(E,R) n CLH(E,R), ((¢CHIE, f)) k=1 is

tight, and further for any K > 1, for any T' > <§H‘K 1) =1 almost surely.
Let us now turn our attention to (ii). Start by noticing that for any N > 1 and x € F,

Mmax

qu(LE) < 1{”7_(3:)“0021\7_1} < fol(x) = Z fol,i($)
i=1
where fy_1i(%) = Lin(@)—s(@)>i, |7s(2)|>N—1}-
Lette [0,T]. Forany N—1>t, z€ FE, z€[0,t] and o = 0, it holds by definition that

fol,i(\Il(j(vaLtvz))_fol,i(\Il(xatvz)) = 1{n(1) —s(z)=i—1, |[o—(t—2)|>N—-1} = 1{U>N 1}-
Hence, using Proposition 3.2.1 and the above upper bounds, it follows that almost surely,
nmax
(I oy < 2 Fra((af (0),1,0)) + "2 JJ Ty (2 u) ooy QK (d2, du).
H yes Uy

Defining as previously C' = 2nyax (AHMmax + AWwnmax + B¢), this leads to the following
upper bound:

E[sup(¢;"", o)) < [ ! Iif V(2 (0),£,0))] + °r v((N =1, +0))
?2? t sy PN/ = Sllp KH N— 1 Xy, 9 — Mmax ) .
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As a consequence, Assumption 3.3.1 (i) ensures that (ii) is satisfied. Notice that this as-
sumption could actually be a little bit relaxed here, as it would be enough if the supremum
over K were replaced by the limit superior over K — 0.

In order to check that condition (iii) holds, we will follow the arguments presented in
Jourdain et al., 2012. Suppose that 7" is a limiting value of (C/1%)k~,. By definition,

wp s K- pl <
te[0,T] feL®,|| ], <1
As the application p — supyefo 17 [<tit, f)—pe—, £ is continuous on ([0, T'], (M p(E), v))
for any f in a measure-determining countable set, it follows that ' € C([0, T], (M r(E),v)).
Let us now introduce ¢n v = ¢n(1 — ¢ar), which serves as a smooth and compactly
supported approximation of x € E +— 1{N<HT (@)l <M} for N < M. As, on the one hand,

[t = supyefo 71{tt, BN, M) is continuous on D([0, T, (Mp(E),v)), and on the other hand,
for any K > 1, supte[O,T]<CtX‘K,¢N,M> < 1, it follows that:

E[ sup (! pnan] = lim E[ sup (X", pnan)] <hmsupE[ sup (G, o],
te[0,T7] K=o “ef0,1] K—x©  te[0,T]

Letting M go to infinity in the left hand side, dominated convergence ensures that

E[ sup (nf, énd] < limsup E[ sup (G5, pn )] —— 0
te[0,T] K—o  te[0,T] N

where the convergence of the right hand side is achieved as in the proof of (ii). In particular,
it thus is possible to extract a subsequence from (supte[O,T]@tH,qu»N which converges
almost surely to zero. This implies that for any ¢, there exists IV such that almost surely,

L sup G Ly, en)) < U0 G5 0) < €
Thus (77tH)te[0,T] is almost surely tight.
Let g € Co(E), and let gn = g(1—¢n). It then holds that for h small so that t+h € [0, 17,

H H H
‘<77t+h79> - <77t 7g>| < ’<nt+h:g - gN>’ + |<n£khagN> - <77tvaN>| + |<77tva - gN>|

Let e > 0. As |g—gn| < ||g]l,, ¢n, there exists Ny such that supte[O’T]@,fH,g—gNO) < €/3.
Further, as n! € C([0,T], (Mp(E),v)), for h small enough, [(n, gn,> — i, gngy| <
¢/3. This allows to conclude that € C([0,T], (Mp(E),w)), establishing (iii) and finally
tightness of n7 in D(R,, (Mp(E),w)). O

Identification of the limiting values of (¢¥)x>

The tightness of (¢(¥) k=1 in the space D(Ry, Mp(E),w))? ensures that from any subse-
quence of (¢(¥) k=1, one may extract a subsubsequence which converges in this space. The
limits of these subsubsequences may be characterized as follows.

Proposition 3.4.8. Under the assumptions of Theorem 3.3.2, all limiting values of (¢*) =1
inD (R, (Mp(E),w))? are continuous with regard to the total variation norm, and solutions
of Equation (3.6).
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Before proceeding to the proof of this proposition, let us emphasize that there is some
technical difficulty due to infectiousness being a discontinuous function of an individual's
remaining infectious period. Indeed, tightness of ((¥)x=1 in D(R,, (Mp(E),w))? allows
us to extract a subsequence (C¥(5)) =1 which converges in law in this space to some limiting
value 1, and our aim is to show that 7 satisfies Equation (3.6). However, convergence in
law in D(Ry, (Mp(E),w)) is not enough to ensure that <CtX|“0(K),if> converges in law to
(ni%,if) for f € CL(E), as i is discontinuous on E. This leads to forthcoming Proposition

3.4.9.

Proof. Consider a subsequence (C‘P(K))K>1 of (¢%) k=1 which converges in law in the space
D (R, (Mp(E),w))? and let 7 be its limit.

Notice that it follows from the Proof of Proposition 3.4.7 that n € C(R,, (Mp(E),w))?
almost surely. Hence, following Proposition A.6.1 of Tran, 2006, for any X € {H, W},

Inz —nz_llrv = sup [nzt > = (s )] = 0 almost surely.
fECb(ErR)HfHoo<1

It remains to show that 7 satisfies Equation (3.6). Let T > 0 and f € C} (R} x E,R),
and consider the application 14 defined by

T T
BH ) = ol g5 — (it foy — L ol Afiydt — fo ! Asi(FE — f)dt

- L LW sy s(E — gt — e [ St (T p)va
o s o ntlm)
(3.17)
Hp(K)

Start by noticing that ¢ (¢¥(K)) = My, (f), as KySu(t) = KwSw(t). Using Jensen’s
inequality, it follows from Equation (3.14) that

B[4 (U < E[0H (CU)PT = ELME (1)) < 20 [ I, T~ 0.

Suppose that (2 (¢#5))) =1 converges in law to ¥4 (¢). According to Theorem 3.5
of Billingsley, 1999, it then is enough to proof that (¢4 (¢*(5))) k=, is uniformly integrable
to obtain that its expectation converges to the expectation of wjfi(g). In our case, uniform
integrability is easily assured as the sequence (¢§{(C¢(K)))K>1 is bounded. Indeed, using

the fact that for all T > 0, Cf(K) € My, we obtain from Equation (3.17) that

[N < (@ + O e + 1AL ) T
We may now conclude that
Ellof Q)] = lim E[jwf (")) = o,

which yields the desired result.

It thus suffices to show that (4 (C?U5))) =1 converges in law to /% (¢). According to
Skorokhod's representation theorem, there exists a probability space 2 on which one may
define ((5) k=1 and 7j equal in law to (C¥5)) g~ and 7, respectively, such that (C%) g1
converges almost surely in D(R,, (Mp(E),w))? to 7 on . In particular, it holds that

VT = 0,VX € {H,W},Vg e Cy(E), <C~7{(|K,g> = (7, g) almost surely.
—o
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It follows immediately that for any t € [0, 7] and X € {H, W}, almost surely,
(G 10 G AFD) o (G o, G AR). (3.18)

Since |<@X|K,Aft>| < 2||Dfl|,,, where Df designates the differential of f, dominated
convergence ensures that

f <CX‘K Afpdt —>J <77t , Afeydt almost surely. (3.19)

In order to establish the desired convergence of the last three terms of wgp{(f) we will
make use of the following proposition, whose proof is postponed. In this context, a d-
dimensional rectangle is a set defined as the product of d intervals of R U {—c0, +-00}.

Proposition 3.4.9. For any n € [1,nmax], for any s € [0,n], consider m = m(n,s) < o,
a set (A}"°)<m of pairwise disjoint (n — s)-dimensional rectangles and a set (¢;"")k<m of
functions belonging to C}(R™"™%). For any T € R"™ax Jet 7y ,,_s = (T1,...,Tn—s). Define
the function ¢ : E — R by

m(n,s)

Ve =(n,s,7)e E, ¢z Z 1,4"5 Tin—s)Pp  (Tln—s)-

Then for any X € {H,W} and T > 0, it holds that
IX|K _ .
G 8y —— G ¢) in L.
—00

Let us focus on the second-to-last term, representing infection events occurring within
workplaces, as the other two can be treated similarly.

The application ¢(x) = Aws(z)i(z) is of the form described in Proposition 3.4.9, hence
for any t € [0,T], <C~2/V‘K,)\Wsi> converges in L! to (¥, \si) as K tends to infinity.
Also, notice that as f € C}(R; x E,R), it follows that for any ¢ € [0,7], f£ € CL(E).
Thus Proposition 3.4.9 ensures that for any ¢ € [0, 77, <CH‘K s(ff — fi)) converges in L*
to (A, s(ff — f1)) as K tends to infinity.

In particular, the following convergence holds in probability:

=G MG (= ) ——— X = Y s s - ).

Letting ¢ = 2A\wn2,, |fll, and D = {(z,y) : |z| < cv?}, then (Xt J(EVE Sy and
(X1, (i), s)) belong almost surely to D, for any K > 1. As <Ct ,s> converges almost
surely to (7}{",s), and the application (z,y) — (2/y)1,.0} is continuous on D, we deduce

the following convergence in probability:

~W|K si
v s > WKAV; LK (g7

<”g ;W“Vf‘>< it s(FF — ).

fo) e Vo=
—m
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In addition, for any K > 1 and any t € [0,7], |Y,/| < 2\wnmax || f|l.- Thus using
twice dominated convergence, we first obtain that the above convergence of (Y} KYg=1t0Y;
also holds in L', and subsequently the following convergence holds in L!:

J @ v KAW51>< S s(fE — foat bt ’AWs‘>< S(fE — fi)dt. (3.20)
| ,S 0 77

K—w

Reasoning in a similar manner, one also obtains:

T T
L G Ausi(fE — fi)yat ——*JO GH Apsi(fE — f))dt in LY,

T<§tH7> T<77t7>
<C <0’>

Thus, Equations (3.18-3.21) imply that all the terms on the right hand side of the
definition of 14! () as stated in Equation (3.17) converge in probability, and thus their
linear combination converges in probability to the linear combination of their limits. In other
words, %151(51{) converges in probability to 147 (7), which ensures as desired that 4 (¢¥)
converges in law to w{p{(n). This concludes the proof.

(3.21)

<Ct s(ff — ft)>dt Gt s(fF — fi))dt in LY.

O
In order to conclude, we only need to show that Proposition 3.4.9 holds.

Proof of Proposition 3.4.9. Step 1. Recall that a d-dimensional rectangle is a set A defined
as the product of d intervals of R U {—0, +o0}. If all d intervals are included in R, the
rectangle will further be said finite.

Let X € {H,W}, n € [1,nmax] and s € [0,n]. We start by showing that for any ' > 0
and any finite (n — s)-dimensional rectangle B

<5’1)“(|K7 1{(n,s)}><B> m <ﬁ7)“(7 1{(n,s)}><B> almost surely. (322)

As 7% € C(Ry, (Mp(E),w)), it follows that for any T, f%qK converges almost surely to 75
n (Mp(E),w). Thus, in order to establish the desired result, it is sufficient to show that
B = {(n,s)} x B is a f*-continuity set, in which case the Portmanteau theorem allows to
conclude.

For any set A, let 0A be the boundary of A. Then dB = {(n,s)} x dB. As Bis a
(n — s)-dimensional rectangle, there exist a; < b; € R for i € [1,n — s] such that B can
be written as the product of intervals (potentially open, closed or half-open) delimited by
a; < b, for i € [1,n — s]. Thus

n—s 1—1 n—s

oB=J) U (H[ay"bj] x{cbx ] [ak,bk]> :
i=1 cef{a;,b;} \j=1 k=i+1

Consider any i € [1,n — s] and ¢ € R. We are going to prove that

<77T’ )} (525 Lag bl x e < T T2 7+1[ak,bk])> =0, (3.23)
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which will be enough to conclude. In order to achieve this, let us introduce a mollifier
1 € C*®(R) in the same sense as in the proof of Lemma 3.4.1, with compact support in
[-1,1]. For & > 0, define the function ¢, : = + e~ 4(x/c), whose support lies in [—¢,¢]
and which converges to dp in the sense of distributions, when ¢ goes to zero. For any
x=(n,s,7)€E, let

n—s

QZ)E(J:) = ]-{n(x):n,s(x):s}( 1_[ 1[aj,bj] * 905(7_]')) 1. = 908(7—1')-
j=1
Gt

As ¢. € C{(E) and @qK converges almost surely to 77 in (Mg(E),w), dominated conver-
gence implies that

E[(7, ¢)] = lim E[G ", 60)].

Notice that
G:() < Lin(z)—s(a)>i} Le * pe(Ti(2)).

Hence proceeding as in the proof of Proposition 3.4.7, it follows that

Kx
*X|K 1
ElGr ™ 0l <E [KX ;ll{ngs;((om (7, (0)=T)—cl<e}
C T
+2J v([e+ (T —t)—e,c+ (T —t) +€])dt.
0

Absolute continuity of v with regard to the Lebesgue measure and Assumption 3.3.1
ensure that the right hand side is dominated by a function ¢(g) which does not depend
on K, and which goes to zero with €. Thus E[(7i5¥, #.)] < c(¢). In particular, one may
construct a sequence (&,)n>1 Which converges to 0 and satisfies >, c(¢,,) < 00. Then on
the one hand, the Borel-Cantelli lemma ensures that <ﬁ7)§, ¢y converges almost surely to 0
as n tends to infinity. On the other hand, by dominated convergence, (7%, #.) converges
almost surely to the left-hand side of Equation (3.23) as e tends to zero, hence Equation
(3.23) is proven to be true.

As a consequence, we conclude that (7%, dB) = 0, and thus Equation (3.22) holds.

Step 2. Consider now a function ¢ as described in the proposition. For any N, let us
introduce a partition of R"~* whose elements consist in (partially open) hypercubes of side
length 2. For every k < m(n, s), a partition (B;);>1 of A;*" is obtained by taking the
intersection of A}”® with those hypercubes. As A} is a rectangle itself, the family (B;%)pl
consists of rectangles of side length at most 27V, For every j, consider a point z,% belonging
to B,ffj. Finally, define the set Jy (k) = {j = 0 : sup{||z||,, : z € ng} < N}, which contains
only a finite number of elements. Then we can define the following approximation of ¢:

m
Vee B, ¢on(@) = D, Lin)-ns()s) Z > <P () gy (TLn-s(®))-
1<n<nmax k=1 ]EJN
0<s<n
Using our result from the first step, for every (n,s) such that 1 < n < npyax and
0 < s <mn, for every k < m(n,s) and j < Jy(k), we obtain that

[%im <§~7)5 K on) = (iR, on) almost surely. (3.24)
)
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Notice that for any « € E such that ||7(z)|,, > N, ¢n(z) = 0. Hence for any
x = (n,s,7), one obtains the following inequality:

o (@)= 6(@)] < 9() 11y - ny+ Z D s () ek (i) Ly (rias). (3:25)

k=1 jeJn(k

Notice that there exists at most one (k, j) € [1,m(n,s)] x Jy (k) such that 71,5 € Bl]s\,[j'
As o € Cg(R"*S), the mean value inequality further implies that

Vk<m(n,s),VjeJN(k),VzeB,§[j, |goZ_$(z,fX]) op? < || Dgy || dn,

where dy denotes the maximum of the diameters of d-dimensional hypercubes of side length
27N, for d < npax. Letting M = max,, s || Dep* it follows that :

oo
Ve e F, |¢N(l‘) — ¢($)| < ||¢||oo 1{”7_”00>N} + Mdpn (3.26)

Hence ¢ converges point-wise to ¢. Thus, by dominated convergence,
Gz &Ny ——> i+ 6)- (3.27)

—00
Furthermore, it follows from Equation (3.26) that for any K > 1
IX|K IX|K X|K
BN, 60 = G 11 < 10110 500 BIG ™, Ly, )] + M.

Reasoning as in the proof of Proposition 3.4.7, and using Assumption 3.3.1, we obtain that

Jimsup E[(Gp v1{||T(-)HOO>N}>] =0,

N—w >

and as a consequence
Jimsup E[C, on) — (G K, )] = 0. (3.28)

Noticing that

E[[C5, ¢y — G o)) < B[S 6 — on)l] + E[KCE, on) — Gk, o] + G, o — 0]
together with Equations (3.28), (3.24) and (3.27) finally yields that
G o) — i )l] = 0

This concludes the proof. O

hm E[[X¢

Proof of Theorem 3.3.2

The previous results are sufficient to establish Theorem 3.3.2. Indeed, it follows from Propo-
sitions 3.4.7 and 3.4.8 that from every subsequence of ((®)x=1, one may extract a sub-
subsequence converging in D(R, (Mg(E),w))? to a solution of Equation (3.6) which is
continuous with respect to the total variation norm. As by assumption, C(f{ converges in
law to 19 € 9y, Proposition 3.4.2 implies that all of these subsubsequences converge to
the same limit 7, which is the unique solution of Equation (3.6) with initial condition 7.
As n9 € My, Proposition 3.4.2 further ensures that n € D(R;,My). This establishes the
convergence of ((¥) =1 to nin D(Ry, My (E))2.
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3.4.2 Proof of Theorem 3.3.3

This section is devoted to extracting dynamical system (3.8a—c) from the measure-valued
integral equation (3.6), under the assumption that v is the exponential distribution of pa-
rameter .

Preliminary study of the dynamical system

Before establishing Theorem 3.3.3 itself, let us start by showing that dynamical system
(3.8a—c) endowed with initial condition (3.9) admits at most a unique solution. Existence
will follow from the proofs of the forthcoming subsections, since they construct a solution to
the dynamical system.

For this section, let us rewrite dynamical system (3.8a—c) as follows, in order to emphasize
the associated Cauchy problem. Recall that the dynamical system is of dimension d =
2 4 2#S = Nmax(Mmax + 1).

Let y € C'(Ry,R%) and f : R? — R be defined such that dynamical system (3.8a—c)
amounts to

Y () = Fly(t)) ¥t > 0. (3.29)
The components of y (and resp. f) will be called s, i and n; (resp. fs, f; and fx 1) for
X € {H,W} and (S,I) €S, in order to simplify their identification with the unknowns of
the corresponding dynamical system. More precisely, consider the applications

A
Tx(y) === Y SIng, for X € {H,W}, and 1a(y) = Bai.

MX ($Des
Then f: RY — R is defined as follows, for any y = (s,i,ng; : X € {H,W},(S,1)eS) e
R<:
fs(y) = =(ru(y) + Tw(y) + 7¢(y)s) and fi(y) = —fs(y) — i,
while for all X € {H,W} and (S,I) €S

T (y
Ix,s1(y) = — [(AXI + XS() + TG(Q)) S — ’YI] ngr+ 7+ 1)ng 111185 1<nman)

+ <)\X(I - 1) + TXS(y) + Tg(y)> (S + 1)n§+1’1711{121}.

Also, notice that there are some natural constraints that we expect the solution of
dynamical system (3.8a—c) to satisfy. Clearly, s, i and ”59(,1 should belong to [0,1]. Also, as
the population is partitioned into susceptible, infected and removed individuals, it follows that
s+t < 1. Similarly, as all individuals belong to exactly one household and one workplace, and
as nSJ corresponds to the proportion of structures of type X which contain S susceptible

and [ infected individuals, we expect that for X € {H, W},

Z nSI 1, and Z SnSI mxs. (3.30)
(S,I)es (S, I)es

We thus define the following set V < R¢, which formalizes these constraints:

V= €[0,1]%: s+ < Z ”51 1 and mxs— Z Sn§120 VX e{HW} ;.
(SIES (S,I)esS
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Proposition 3.4.10. Let y* € V. Then the following assertions hold:

(i) Suppose that there exists a solution y of the Cauchy problem (3.29) with initial con-
dition y(0) = y*. Then y(t) € V for any t = 0 for which y is well defined.

(ii) For any T > 0, this problem admits at most a unique solution y on [0,T].

(iii) In particular, for any ¢ > 0, the dynamical system (3.8a—c) endowed with initial
condition (3.9) admits at most a unique solution.

The proof of this proposition is available in Appendix 3.D. It relies on establishing the
Lipschitz continuity of f on V, from which uniqueness is deduced using Gronwall's lemma.

Some properties of the limiting measure 7

The results of this section focus on the limiting measure 7 given by Theorem 3.3.2, and will
be useful for establishing Theorem 3.3.3.
Let us introduce the following notations. For f € C} (R4 x E,R) and T >t > 0, define

frio:ae B f(T,0(2,T,t) and fF, 0 € B (v, frali(z, ). (331)

We further define, for X € {H, W} and t > 0, the following quantity which relates to the
infectious pressure exerted on susceptibles outside of their structure of type X:
Y % ip(t)
Ax(t) = XX si) + Ba———=.
We can now state a result which is similar in spirit to Proposition 3.4.4. Notice that it holds
under the same Assumptions as Theorem 3.3.2, and is not restricted to the Markovian case.

Proposition 3.4.11. Let n be the unique solution in C(R4,9) of Equation (3.6). Then
for any T > 0 and t € [0,T], for any measurable bounded function f : Ry x E — R, it
holds for X € {H, W} that

t t
G ) = s fro) + Ax fomif Si(fE — fra)dt + fo Axc (), S(fEy — fro)ydt.

(3.32)
In particular, the application t — (nX, fr) is continuous.

Proof. Start by noticing that for any f € C} (R4 x E,R), for X € {H, W},

t t
S £ = G froytAx fo X SU(fE,— foa)ydt + fo A () SUE— foa)ydu. (3.33)

Indeed, the proof of Equation (3.33) follows the exact same lines as the proof of Proposition
3.4.4, showing that for any f € C}(Ry x E), Equation (3.33) leads to Equation (3.6) using
Lemma 3.4.3.

Consider now a measurable bounded function f : R, x £ — R. Proceeding as in the proof
of Lemma 3.4.1, we consider a mollifier 1) on R'*"max and let 9y (t, 7) = k™ maxtLo)(kt, kT)
for any (t,7) € R x R™max_ Letting fr(t, (n,s,7)) = f(-,(n,s,)) = Yg(t,7), we obtain by
convolution a sequence of smooth functions (fx)x>1 which converges point-wise to f.
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Then on the one hand, for any t € [0,7] and = € E, as k tends to infinity, (fx)7.:(z)
converges to fr(z), and further (fk)%t(a:) converges to f%t(x) by dominated convergence.
Define g, € CL(E,R) by gr(t,z) = (fi)r+(z), it then holds that (gx)tw = (fi)7u and
(g;c)tI,u = (fk)%u Thus applying Equation (3.33) to g and using dominated convergence
as k goes to infinity yields the desired result.

Finally, the continuity of ¢ — (1%, fr+) on [0,T] is a consequence of Equation (3.32),
as the integrands of the right-hand-side are bounded. O

Proposition 3.4.11 allows us to establish the following result under the assumption that
v is the exponential distribution. In particular, it implies that within each structure, at any
time, the remaining infectious periods of currently infectious individuals are independent and
identically distributed, of common law v.

Proposition 3.4.12. Assume that v is the exponential law of parameter v, and consider n
as defined in Theorem 3.3.2 with initial condition ng = no.. Let (X,)n>0 be a sequence
of independent identically distributed random variables of common law v. Let T > 0,
n € [1,nmax] and s € [0,n — 1]. For any m € [0,n — s], any functions f € By(R; x R™),
gl,...,gn s—m € Bp(Ry x R) and any j1 < -+ < jm and k1 < -+ < kp_s_m such that
{k1,.. . kn—s—m} Y {J1,.. - Jm} = [L,n — s], define

F(t,l‘) =1 n(z)=n,s(xz)=s, (f(tale (l‘),...,ij(Jf)) —E[f(t,Xl, H t Tkg
{Tje (z)>0 Vlsﬂgm} =1

Then
Ve [0,T], (¥, Fry =0 (3.34)

Proof. Let n € [1,nyax]. Consider any m, f, g, {j1,-..,Jm} and {k1, ...k, } satisfying the
constraints given in the proposition, and define F' as above. Throughout the proof, we let
Em(t) = E[f(thh s 7Xm)]'

Notice that F' satisfies the assumptions of Proposition 3.4.11. Letting C' = (Ax7max +
AxMmax + BG)Nmax, it follows from Equation (3.32) that:

t
[, Frol < Ko, Frop| + CL (1 s Fro| + [n s FE 1) du. (3.35)

Let (Yx)rx>1 be a sequence of independent identically distributed random variables of
common law v which is independent from (Xj)x>1, and write pis =mx (M1 —e)em .
Then on the one hand, Equation (3.7) ensures:

<77()](7 FT70> :pis (]E[f(T7 le - T7 s 7ij - T)]‘{Y]1 —T>0,...,ij—T>0}]
n—s—m
—E[f(T, Xy, .. va)]E[l{le—T>o ..... ij—T>O}]) H E[ge(T, Yy, — T)].
{=1

Usual properties of the exponential distribution thus lead to (n‘, Fro) = 0.
On the other hand, let us compute F%u(x) for any x € E. Distinguishing the cases
n—5s€dmn="{j,.-.,Jm} and n — s ¢ J,, leads to:

F’]jiu(x) = 1{ n(z)=n, s(z)=s+1, }(1{nsejm}€7(T“)aT,u(x)
75(2)>T—u Vjelm\{n—s})

+ 1{n,s¢Jm}E[gn—s(Xn—s — (T - u))]bﬂu(x))
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where

a(t,z) = (E[f(t, 75, (2), ..., Tjp_, (), Xn—s)] — Em(t)) H 95 (t, 7, (),
Jell,n—s]\Im

bt.2) = (f(t. 75, (@), 7 (2)) = Em())  []  giltim; (@)

je[l,n—s—1\Jm

We are now ready to proceed by induction on s € [0,n — 1]. First, consider the case
s =mn — 1. Then either m = 0 and the result is immediate, or m = 1 and J; = {1}. Hence
necessarily n — s € J1 and a(z) = 0 as E[f(Xo — (T — t))1(x,>7—1] = E[f(X1)]. Thus
F%t(x) = 0 for any x € E, and Equation (3.35) reduces to

T
G Y| = [, Frnd] < © fo (X, Prodt.

Recalling that t — (1;X, Fr;) is continuous on [0, 7] according to Proposition 3.4.11, Gron-
wall's inequality ensures that [(n:X, Fr;)| = 0 for every t € [0, T].

Suppose now that s < n — 1, and that the result holds for s + 1. It then follows from
the induction hypothesis that for any u € [0,T1],

<771)fa 1{ n(x)=n,s(z)=s+1, }CLT,U(')> = <T71}f? 1{ n(x)=n,s(r)=s+1, }bT7u()> = 0.
7 (@)>T—u Vjelm\{n—s} 7 (@)>T—u Vjelm\{n—s}

Hence (n;*, Ff,» = 0 for any u € [0,T], and Gronwall's inequality allows to conclude as
previously. O

Proof of Theorem 3.3.3

From now on, we assume that 79 = 79 as given by (3.7), and that v is the exponential
distribution with parameter «v. Throughout this section, let i be the Heaviside step function,
i.e. h(z) = 1.~y for any real number z.

Let us establish the following proposition, which serves as a starting point of the proof
of Theorem 3.3.3.

Proposition 3.4.13. Under the assumptions of Theorem 3.3.3, it holds that for any X €
{H, W}, (sx(t))t=0 and (ix(t))i=0 satisfy

Grox(®) = = (320 s+ X sy + 5 20X ),
nx "X X (3.36)
d d .
&Zx(t) = —aSX(f) + yix (1)
Further,
sx(0) = (1 —e)nx and ix(0) = en™. (3.37)

Proof. Notice that s € C} (E,R) is such that As = 0 and s (x) —s(z) = —1 for all z € E.
It thus follows immediately from Equation (3.6) that, for any X € {H, W},

T s b l
(s + A XL s+ g 2

sx(1) = sx(0) = |

0

sX(t)> dt.
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Further, since n € C(Ry, (M1, | - |rv)), it follows that for any ¢ > 0, ((f)x>1 converges
in law to 7. As s is continuous and bounded on F, this implies that <C,§X‘K,s> — (n{¥,s)
when K tends to infinity. The analogous result holds for n. Hence Lemma 3.2.2 ensures
that, for any ¢t > 0, sx(t)/ss(t) = n* /ns. In other words,

T
(1) = sx(0) = [ (T2 s+ 2 s+ o X
0 ng nx
As ne C(Ry, (M, | - |rv)), and s and i are bounded measurable functions, it follows that
the integrand is continuous with regard to t. Thus, the first line of Equation (3.36) comes
from the fundamental theorem of calculus.
Recall that 79 = 7o . as defined in Equation (3.7). In particular, we now have nx = mx,
hence

Sx(0)2<7k){5,s>: 2 Z ( > (1—g)%e" % = (1—¢) Z nmX = (1—¢)n. (3.38)
n=1 s=0

This yields the first part of Equation (3.37).

It remains to take an interest in ix(t). As i does not belong to C}(E,R) we cannot
proceed in the same way. Remember that i(z) = >/ h(7;) for = (n,s,7) € E. Thus,
we may apply Proposition 3.4.11 and obtain that

T
LD = (i im0) + Ax fo S siGE, — i)t

t
10) (X (., — i)t

(3.39)

T
I x . . .
g [ s (i~ i)
0 sx(t)

Further, forany c >0, T >t >0 and x € E,

i(\ll(j(x’o-)vT’ t)) - Z'(\I/(:E,T, t)) = 1{0>(T—t)}a

hence
i:IF,t(x) —irs(z) =v([T —t,0)) = e V(T—t)
Injecting this into Equation (3.39) and using as before that sx(t)/s+(t) = nx/ny yields

T .
, . _ A NS - ip(t) s
() = G ir) 4 e [ (DX sy 4 X G s 4 66X ) g,
0 X

ng nNx
(3.40)
As 19 = 1o, we may compute the first term of the right-hand side of this equation and
obtain that

e’ i) = (- = ire) =e T ix Z < > £)5e" S (n—s) =e TenX. (3.41)

n=1

Using the continuity of the integrand in Equation (3.40), we may now differentiate it with
regard to T

d

Frie(T) = (o s+ T s+

D) i (0) = (D) = i (1)
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We thus have recovered the second line of Equation (3.36). Finally, the second half of
Equation (3.37) is obtained by a computation analogous to (3.38). This concludes the
proof. O

For (S,1I) € S, define the function %! : E — {0,1} by

(@) = Lig(a)=s,i(e)=1}-

Fort > 0, let nSI( ) = ¥, f31), which defines a continuous function on R, as 57
is bounded and measurable and 7 € C(Ry, (M1, | - [7rv)). In words, this corresponds to
the proportion of structures of type X which contain exactly S susceptible and I infected
individuals. Notice that

{we E:s(r)i(z) >0} = {z e E:s(x)i(r) >0, (s(z),i(r)) € S}

We may thus rewrite the first line of Equation (3.36) as follows:

isx(t) —nx ()\X Z SInfq(’I(t)—k)\% 2 S]ng71)(t)+5GiH(t) SX(t)>.

dt n 0 n n
X (8,1)es X (S,1)es H DX

Similarly, it holds that

x X in(t) X ( ).
Ax(t) = 2 si) + E n7s n(t) +
X( ) Sy(t) <77t > /BG N T S ﬁ
which may also be written in terms of the notations of Equation (3.8a—c):
sw(t)\ ig(t)
Ax(t) == (¢ .
xl0) = (T) ey 4 0™

This motivates a closer study of the functions nqu[ for (S,1I) € S.

Proposition 3.4.14. Let X € {H,W} and (S,I) € S. Under the assumptions of Theorem
3.3.3, it holds that

d
En(t) = (T + D a5 renpay — T71(1)

+Ax ((S+ 1) = Dngyy 1 (O)1y=1y — SIng (t)) (3.42)
+Ax(t) ((S+ 1)n§+171_1(t)1{121} - Snéf[(t)) )
Further
n%r(0) = <S }L I) ma (1 —e)%el. (3.43)

Proof. Let us start by establishing the initial condition of Equation (3.43). Let (S,I) € S.
We will make use of another expression of %, which will actually be of use throughout
the proof. For two integers j < n, let B(n, j) be the set of unordered subsets of j elements
chosen in [1,n]. It then holds that for any z € E,

Mmax

ROENY 1{1](@?} EBZ H™5Y(7(x)),

n=S+I (n—5S,I)
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where, for v e B(n — S, I) and any 7 € R"max,

HSY () = [[nm) [T (=),

jeV je[1,n—S\v

The idea behind this expression is that a structure of type (n,s,7) contains S susceptible
and [ infected members if and only if s = S, and further exactly I out of the n — S first
components of T are positive. In other words, there exists at most one element v € B(n—S, 1)
for which the term in the sum is not equal to zero, in which case the set v corresponds to
the indexes of infectious members, while [1,n — S]\v is the set of removed members.

Let £ > 0. Throughout the following, for X € {H, W}, n € [1,nmax] and s € [0,n], let
pis = m (1) (1 — €)*e"*. Notice that by definition of 7o,

nf{z(o) = Z pff,g Z v, YV, 1 — py(n=S)—#v
n=S+1 veB(n—S,1I)

Whenever (n — S) — #v > 0, the term vanishes as (v,1 — h) = 0. Hence only the case
v = [1,n — S] remains, which in turn corresponds to n = S + I and leads to Equation
(3.43).

Next, let us apply Proposition 3.4.11 to f5. A brief computation, based on distinguish-
ing the cases where n —se v orn—sév for any ve B(n— S, I), yields

T —y(T—t) £S+1,I1-1 —(T— S+1,1
(fS’I)T,t = 1{121}e " t)fT,Jtr + 1{S+1<nmax}(1—e s t)) T; .

As a consequence, Proposition 3.4.11 ensures that
S, S, I
w30 = 55— [ (w5 + Ax 0 5D a
sy [T (O S A0 w5 a

+ L(S 4 T<nmax} L (1—e T ()\X<771)“(7 sifpr I> + Ax () sfott I>) dt.
(3.44)

We will thus focus on differentiating with respect to T' the different expressions composing
the right-hand-side.

Let us start with the term (g, f75). By definition of fTo and 7705, it holds that
S[ TMmax I
s, f T0) = 2 pffys <n B S)evlT(l _ e Tyn=S—1,
n=S+1

Hence, using the Equality (n — S —I) (ni,S') =+ 1)(”;5) we obtain that

Mmax

d n—=S\ _ TN ST —
ﬁ@{f,fﬁ@ = I fr H I +1) ] pis( k )e YIHDT (] _ =T yn—5-1-1
n=S+I+1

and we thus recognise that

d
SR 7y = =7 Sy + A+ D) S5 . (345)
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Let us now focus on the remaining terms of the right-hand side of Equation (3.44). This
motivates a closer study of f}qt] for any (S, 1) € S. By definition, for x € E,

Mmax

)= )] 1{,(,@:”} S JTh@) — @ —0) T (1= hlr(z) — (T 1)
veB

n=S+I |s(z)=S (n—=S,I) jev jell,n—=S\v

In particular, fﬁ{(w) > 0 requires that at time ¢, in a structure of type x, there are J > I
infected individuals, out of which exactly I must have a remaining infectious period exceeding
(T —t). Hence, consider (S, 1) and T to be fixed and define, for any J € [I, npax — S] and

reF, .
gi(tw) = ) 1 frio-n) D D Gt T(a)),
n=S+J |s(z)=S ] voeB(n—S,J) :/:%XOI

where, for t > 0 and 7 € R"max

Gn’VO’v(t,T) _ H h(Tj _ (T — t)) H 1{0<Tj<T*t} H (1 - h(Tj)).

jev jevo\v je[1,n=S]\vo

Dependence of gy and G™V%Y on (S,I) and T is omitted in these notations for readability.
It then holds that

Nmax—>S

Vo e E, f;:g(fv)z Z gs(t,x).
J=I

Let J € [I,nmax — S], Vo = {Jj1,...Js} € B(n —s,J) and v € v such that #v = I.
Proposition 3.4.12 applied to the functions f : R x R — R and g;, : R x R — R defined by

f(t, Tjis oo Tjg) = H h(rj — (T —1)) H 1{0<Tj<T*t}7

JEV jevo\v
ge(t,7) =1—h(r) Vke[l,n—S-—J],
leads to the following equality, for all ¢ € [0, T]:

Nmax

W gst )y =Y Y e T — e T X 1 HSY ()
n=S+J voeB(n—=S,J) { }
vCvo:#v=I

— <‘1{> e—v(T—t)l(l _ e—v(T—t))J—Infq{J(t).

As a consequence, we obtain in particular that

n -S

max J

<77tX’ si TS::tI> _ Z <I>e—7(T—t)I(1 _ e—W(T—t))J—[SJng{J(t)‘
J=I

Differentiating with respect to T yields
N . £S,1 . S I+1
aT<7hth SlfT,t> = _'YI<77£Xv SlfT,t )+ 1{S+I<nmax}7(1 + 1)<T7{€Xa SLjp " )-

In particular, (T,t) — or{n;X, sif:f’t]> is continuous, as for any (S, J) € S, n ; is continuous
thanks to the continuity of ¢ — 1;X with regard to the total variation norm. Let g: R — R
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be such that ¢t — g(t)(n;, sif:,‘?”b is continuous on R for any (S, 1) € S. It then holds that

d (T . g :
o7 | 9GS St = g(T)SIng (T) =T f g(t)ni* sif7y
0 0 (3.46)

T
F s rempt( +1) fo o) S STt

Similarly, for ¢ : R — R, such that ¢ — g(t)<ntX,sf:}g”tI> is continuous on R, for any
(S,I)€eSs,

T

d T
| a0 st e = (s ) <1 | g0 spE Dt
0 0 (3.47)

T
S,
F saremy (T + 1>j g(E)n s FE
0

In particular, we may apply Equations (3.46) and (3.47) to g(t) = 1, as well as g(t) =
Ax(t) and g(t) = e " Ax(t). Indeed, t — AX(t)Sné‘:I(t) is continuous and well defined for

any t > 0, thanks to the inequality <77,;X,si>Sn§I(t) < (nmaxnx/ny)sx(t)? which ensures
that despite the division by s+ in the definition of Ay, there are no singularities.

In conclusion, Equation (3.45), together with Equations (3.46) and (3.47), allows to
differentiate the right-hand-side of Equation (3.44). In particular, regrouping the terms
factorised by —vI and (I + 1) allows to distinguish —fylnfgfl(T) and (I + 1)n§]+1(T),
using Equation (3.44). This computation finally leads to Equation (3.42). O

We may finally focus on the main result of this section, namely Theorem 3.3.3.

Proof of Theorem 3.3.3. Before concluding, we need to emphasize that it would have been
possible to chose X = W when replacing S and I by Kx.Sx and KxIx for Zg in Propo-
sition 3.4.5. All of the subsequent results still hold, simply replacing the household-related
quantities in the definition of the rate for mean-field infections by their workplace-related
counterparts.

As a consequence, Propositions 3.4.13 and 3.4.14 show that for any X € {H, W},

s { X
Yx = (X ivng‘(—,l : (S,I)ES,H?&D : (S)I) ES)

mx my

satisfies the Cauchy problem (3.29) with initial condition (3.9). However, Proposition 3.4.10
ensures uniqueness of the solutions to this Cauchy problem. It hence is sensible to define,
fort = 0,

and i(t) = L{(t) = LV(t).
mpg mw mpy mw

This leads to dynamical system (3.8a—c) with initial conditions (3.9), and concludes the
proof. O
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Discussion

This paper has focused on proposing a new reduction for an SIR model with two levels
of mixing, which explicitly includes households and workplaces. This reduced model was
obtained as its large population limit, and the associated convergence of the stochastic
model was established.

A possible model extension would be to consider a local level of mixing containing an
arbitrary, yet finite, number of layers. As long as within each layer, each node is part of exactly
one clique, and as long as cliques within each layer are constituted independently from one
another as in the case for households and workplaces, the adaptation of the aforementioned
results is expected to be straightforward. In particular, for exponentially distributed infectious
period lengths, the dimension of the corresponding dynamical system should still be of order
O(n2,,.), implying that the model should remain tractable.

Furthermore, we have compared the reduced model obtained in this work with the cor-
responding EBCM in the line of Volz et al., 2011. In the case of our household-workplace
model with two levels of mixing, the EBCM seems the less appropriate choice, as it is less
parsimonious and only approaches the epidemic well if the initial proportion of infected is
very small. However, this may change if a more general contact structure within layers is
considered, such as a configuration model for the global level, in which case it seems sensible
to assume that EBCM-like equations will appear.

Finally, let us emphasize that by essence, the large population limit obtained here corre-
sponds to a situation where the number of infected individuals is of the same order as the
population size. In a realistic scenario, however, an epidemic is initiated by very few infected
individuals. In the case of a large epidemic outbreak, the number of infected subsequently
grows until it no longer is negligible when compared to the population size, at which point
the large population limit correctly captures the dynamics of the outbreak. This raises the
question: which initial condition is pertinent for the large population approximation? For
uniformly mixing population, this is rather straightforward, for two main reasons. On the one
hand, at each time, infected individuals are interchangeable in terms of infectious pressure
exerted on susceptibles. On the other hand, the presence of recovered individuals at time ¢
can be neglected in the study of the epidemic dynamics over the time interval [¢,0), simply
by restricting the study to all other individuals, which still constitute a uniformly mixing
population. As a consequence, in such a setting, it makes sense to suppose that at time
zero, there are only infected and susceptible individuals, and that infected individuals are
chosen uniformly at random in the population, with independent and identically distributed
infectious period lengths.

This idea can of course be extended to our setting, and corresponds to the initial con-
dition proposed in Theorem 3.3.3, while similar initial conditions have also been used in
the literature in related settings (Volz et al., 2011; Di Lauro et al., 2021). In our model
however, one actually needs to know how infected and recovered individuals are distributed
among households and workplaces, meaning that neither can recovered be ignored, nor is
there any reason to believe that infected individuals are distributed uniformly at random in
the population. Indeed, Figure 3.3 illustrates that when compared to stochastic simulations
starting from a single infected, the large population approximation with initial condition
given by Equation (3.9) fails to reproduce the epidemic dynamics, while they are correctly
captured when using an initial condition which is inferred from stochastic simulations. As a
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1.00 A Stochastic simulations (SSA)
K=10000,/(0)=1
Proportion of susceptibles
Proportion of infected
0.80 A
" Large population approximation
T:u Initial condition (7), € =0.01
.‘g 0.60 - - Proport?on of ‘susceptibles
'-g == Proportion of infected
%
c Inferred initial condition
-g 0.40 - —— Proportion of susceptibles
% ’ —— Proportion of infected
a
0.20 A
0.03
0.00
-40 -20 0 20 40 60 80 100
Time

Figure 3.3: Comparison of the stochastic model starting from a single infected, with its large
population approximation for two different choices of initial condition. The first initial condition
is given by Equation (3.9) for ¢ = 0.01. The second initial condition is obtained by simulating
a large number (> 2000) of stochastic epidemic trajectories, starting from a single infected until
the proportion of infected reaches one percent. The initial condition corresponds to the average of
the initial conditions observed in each simulation. Regarding the stochastic model, for this figure,
100 epidemics starting from a single infected were simulated. Similarly to Figure 3.2, only those
reaching a threshold of 3% of infected are represented, and a time shift is applied to ease comparison
between model outputs. Structure size distributions are those of Figure 3.1. Epidemic parameters:
(Ba, M Aw, ) = (0.085,0.1,0.001,0.125), Ry = 1.7.

consequence, it seems of interest to get a better understanding of this realistic initial con-
dition, which arises from an epidemic started by a single infected. This may be achieved
using a branching process approximation of the epidemic, which is designed to approach the
initial, stochastic phase of the epidemic, and hence would represent a reduced model which
complements the large population limit obtained in the present work.

Appendix

3.A Absolute continuity of 1 and related PDE system

In this appendix, we show that under the Assumptions of Theorem 3.3.2, the measure-valued
process 7 obtained in the large population limit is connected to a PDE-system.

Consider any n € [1, nmax] and s € [0,n]]. We start by establishing that conditionally on
a structure being of size n and containing s susceptibles, the distribution of the remaining
infectious periods of its n — s members who have contracted the disease at some previous
time, is absolutely continuous with respect to the Lebesgue measure on R™ 5. More precisely,
we will see that at any time ¢t > 0, there exists a function px , s(¢,-) : R"™® — R, such
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that for any non-negative measurable function f: E — R, for any X € {H, W} and t > 0,

<77t a]-{n( J=n,s( s}f( )> = - f(n7 SvT)pX,n,S(taT)dT'

In the following, for any n > 1, let 0,, be the zero of R™. Finally, (ex)i<k<np., 1S the
canonical basis of R"max.

Lemma 3.A.1. For each X € {H,W}, there exists a family of real-valued non negative
measurable functions indexed by n € [1, nmax] and s € [0,n] such that

VT =0, pxnseL'([0,T] x R"™*),

which verifies that for any f : E — R non-negative measurable function, for any t = 0,

Mmax

n—1
<77tX>f>: Z ( (151, Oppa ) PX i (T ZJ (n, s, ETkek pxns(t, T)dT )

n=1

The proof relies on studying the distribution X conditionally on structures being of given
size and number of susceptibles. Absolute continuity with regard to the Lebesgue measure
is then established by domination with another, absolutely continuous measure.

Proof. Let X € {H,W}. To begin with, let us introduce the family of sets
B = {xre E:n(z) =n,s(z) =s}, V(n,s)e[l,nmax] x [0,7]

which constitutes a partition of E. In the following, let (n(t),s(t),7(t)) be distributed
according to 7;X, for any t > 0. Let f be a non-negative measurable function on E. Then

s £ = E[f(n(t), s(1), 7(t))]

Mmax N

=] 2 E[f 7(0)|n(t) = n, s(t) = s|P(n(t) = n,s(t) = s).

n=1 s=

Let 7(t) = (71(t), ..., Tn,a (t)). Conditionally on {n(t) = n,s(t) = s}, almost surely
(n(t),s(t), 7(t)) € Eg ) and 74 (t) = 0 for any k >n —s. Thus

Tmax

WX =) f(nn, 0, JB((E) = 0, s(t) = )
n=1
Nmax N—1 n—s
+ )] Z E [ ( 5 Tk(t)ek> ’n(t) —n,s(t) = s] P(n(t) = n, s(t) = s).
n=1 s= k=1

(3.48)
Let px (t,n,s) = P(n(t) = n,s(t) = s). Then on the one hand, define for any n € [1, nyax],

PX,n,n (t) =DPXx (t') n, n)
~X,n,s

On the other hand, for s < n, let 7; be the distribution of (11(t), ..., Th—s(t)) condi-
tionally on {n(t) = n, s(t) = s}. If we manage to show that 7;>™* is absolutely continuous
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with regard to the Lebesgue measure on R"~*, then letting px , s(t,:) be its density, the
result follows with

Ve R"™% pxns(t,7) = px(t,n,8)pxn,s(t, 7).
In order to show that for any n € [1,nmax] and s € [1,n — 1], 7,°™* is absolutely
continuous with regard to the Lebesgue measure on R"~%, we will proceed by induction.
Let us first consider the case s = n—1. We want to apply Equation (3.6) to test functions
©* € CL(E,R;) which are equal to zero outside of the set {x € E : n(x) = n,s(x) = n—1}.
Hence, let ¢ € C}(R) be non-negative, and define p* € C}(E,R..) by

Vee B, ¢*(z) = o(11(2)l{(n().s(2))=(ns)} -

Let 7> 0 and for ¢t € [0, T], define fi(x) = ¢*(¥(z,T,t)) for x € E. Using Equation (3.48)
and applying Equation (3.6) to f; after noticing that Af;(z) = 0 for any (t,z) € Ry x E,
we obtain that

~ X nn—1
px(t,n,n— D)™ o) = i, %) = (i, fr)

T T
= (s foy + )\HL i si(ff = fo)dt + fo Ax(0)(mi* s(fF = fo))dt.

As ¢ > 0 and letting C' = nmax(AHMmax + Awnmax + B¢), it follows that

T
px(t,n,n— D™ o) < il fo) + CL (¥, fEydt. (3.49)

Let g, : R — R, be the density of v with respect to the Lebesgue measure. Notice that
Equation (3.7) with a change of variables z = o — T" implies that

i, fo) = nwX (1 — 6)”_1£J ©(2)gu(z + T)dz.
R

Furthermore, by definition, for any x € F,

. +o0
fi (x) = 1{n(x)=n,s(x)=n}L (o — (T —1))gu(o)do.

Thus Equation (3.48), Fubini's theorem and a change of variables z = 0 — (T' — t) lead to

T T
f S, fEydt = f so(z)f px(tymim)g (= + (T — £))dtd-.
0 R 0

Let
Hq)ﬂ(’n’nfl :2€R— (nmi((l — )" egy(z + T))
T
+ J px(t,n,n)gy(z + (T —t))dt.
0

Then H%(’”’”_l is integrable on R with respect to the Lebesgue measure, as its integral is
equal to the right-hand side of Equation (3.49) which is finite. It further satisfies

px (T, )i ™" ) < fR Hp ™" (2)p(2)dz.



3.A. ABSOLUTE CONTINUITY OF n AND RELATED PDE SYSTEM 151

In particular, let B be a Borel set which is null for the Lebesgue measure. Consider
a mollifier 1» on R in the same sense as for the Proof of Lemma 3.4.1. For a > 0, let
Yo 1 2 € R a~)(z/a). Then for any a > 0, we may define p, = 1p * 14, which is an
element of C}(R). Thus for every a > 0,

px(Tn, )" pa) < fR Hy ™" (2)pal2)dz. (3.50)
As ¢, further is bounded by 1 for every o > 0, and as ﬁj{(’n’”_l is a finite measure and

HI{(’"’”_I is integrable on R with respect to the Lebesgue measure, dominated convergence

allows to let v go to 0 on both sides of inequality (3.50). As B is a null set for the Lebesgue
measure, the right-hand side goes to 0. This demonstrates that 17%(’"’”_1 is absolutely
continuous with respect to the Lebesgue measure on R.

Let us now suppose that ﬁ?’"’sﬂ is absolutely continuous with respect to the Lebesgue
measure on R"*~1 for some n’ € [1,nmax] and some s € [0,n — 2]. This time, let

¢ € C{(R"*) be non-negative and define ¢* € C}(E,R.) by

VreE, 50*(1:) = 1{n(x)=n,s(x)=s}§0(7—1(x)v s 7Tn78(l'>)'

Forany T'> 0 and t € [0,T], let fi : z € E — ¢*(V(z,T,t)). Proceeding like before, we
obtain that

T
px(Tyn, 8)in ™ @) < Gy fo) + CL (Y, fE . (3.51)

In order to simplify notations in the following, define for T'>¢ > 0 and (71,...,7Tn—s) €
R"™™% the function

Oort(Ti, .o, Tas) = (11 — (T —t), ..., Th—s — (T, 1)).

Then similarly to the case (n,n — 1), Equation (3.7) leads to
n L n—s
e’ foy = ﬂ—r)z((S) (1—¢)%e” f e10(01, - 0ns) [ [ uloj)doy ... doy_s. (3.52)
n—s ]:1

Notice here that for any 7' > 0 and ¢ € [0, T], the application z € R" ™% — z— """ (T —t)ey,
where e}, is the k-th vector of the canonical basis of R"~*, defines a C!-diffeomorphism from
R™™% into itself, whose Jacobian matrix is the identity matrix of dimension n —s. Using the
case t = 0, Equation (3.52) becomes by change of variables:

n—s

n
oy =X (D) a=ore [ pterimed [T + Do

Jj=1

Moreover, notice that this time, for any x € E and ¢ > 0,

+o0
ftI(m) = Lin()=n,s(z)—1=s} L ert(T1(x), ..., Thes—1(x),0)g,(0)do.

Thus, for ¢t € [0,T],

<nf,ff>=px<t,n,s+1>f

Rn—s—l

<J+OO o7.4(T, a)gy(g)dg> 5 (g7

0
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Fubini's theorem together with the induction hypothesis yield

<77ixa fiz> = pX(t7 n,s+ 1) f <JR o (PT,t(Ta U)ﬁX,(n,s-‘rl) (t7 T)dT> gl/(U)dU'

Ry
Throughout the following, for z = (21,...,2,-s 1) € R" ! and u € R, we let ©(z,u) =
©(21,...,2n_s_1,u). The previously introduced family of C!-diffeomorphisms may serve

again for a change of variables, allowing to obtain that

-1

@ 1D = pxttnst) | ( Joor 0+ (T a2 (=0 ) ek>dz> du.

For z = (21,...,2n—s) € R"™%, define
X,n,s XN s _n—s f
H7 " (2) = m;, (1 —¢)’e | | gz + 1))
s =1

T
+ J pX,n,s+1(ta Z1 + (T - t)a sy Zp—s—1 T (T - t))gl,(zn,s + (T - t))dt'
0

n,s

It then follows like before from Equation (3.51) that H%( ’
respect to the Lebesgue measure, and

is integrable on R"™* with

px (T,n, 8)in ™, @) < Hy ™ (2)dz.
R’ﬂ*S

The absolute continuity of 77%(’”’8 with respect to the Lebesgue measure on R"~* follows
using the same arguments as previously.

Finally, the fact that for any n € [1,nmax] and s € [0,n], px s is Lebesgue-almost
everywhere non-negative follows from 7;* being a probability measure on E for any ¢ > 0.
Hence for any T = 0,

T
lpx sl L1 ([0,7) xRP—5) = fo s L) =ns()=s)y < T

This concludes the proof. O

Notice that in the case n = s, px ,, depends on t alone, whereas for s < n, pX’”’s
depends both on ¢ and on 7 € R™ 5. Throughout the following, with some abuse of notation,
this distinction will mostly be implicit. The adaptation to the case s = n is generally

straightforward. For instance, forthcoming Equation (3.53) reduces to

d
@pXm,,n(t) = _AX(t)an,n,n(t)v
where -
(n* s si) i, 1)
Ax (t) = Ay—= + Ba .
* <nth S> <77(€{7n>
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When integrating over 7, the case n = s becomes

fRO PX n.n (t7 T)dT = PXnn (t)

Similarly, symbolically, for any 7 € R"™*, i(7) = 0 whenever n — s = 0. This makes sense,
as in a structure of size n containing n susceptibles, there are no infected. This leads for
example to

J Li(r) =0} PX i (t, T)AT = px pn(t).
RO

When the adaptation is less clear, the case n = s will be treated separately.

Let g, : R — R, be the density of v with respect to the Lebesgue measure. Further, we
will consider here the example of initial condition 7. defined by Equation (3.7).

Proposition 3.A.2. Let T' > 0. The family (px n,s)Xe{H,W},1<n<nmax,0<s<n 1S @ weak
solution to the following system of partial differential equations. For any (n,s) € [1, nmax] X
[0,n], for any T € R"* and t € (0,T),

athn s t, T Z aTkan s _S(AXi(T) + AX(t))pX,n,s(ta T) (3 53)

+ 1{s+1<n}(s + 1) ()\XZ(Tl,n—s—l) + AX (t)> pX,n,s-‘rl(tu Tl,n—s—l)Ql/(Tn—s)a

with initial condition given by
pxnn(0) =Tae™ and Vs < n, 7 € R"™%, px . s(0,7) = mX (Z) ef(1—e)"* H v (k).
k=1

Proof. Let T' = 0 and (n,s) € [1,nmax] % [0,n]. In the case n = s, consider a function
defined for t > 0 and x € E by f(t,x) = 1{n —s(z)=n}f(t), where f e C([0,T)) is

compactly supported. Notice that Af(¢,z) = dtf( ) and f£ =0. As f(T) = 0, Equation
(3.6) leads to

- JOHO <jtf(t)> Pxmin(E)dh = = J(:OO FOAxO)npxnn(t)dt + f(O)my ",

from which the desired conclusion follows.

Throughout the following, for k& € [1,nmax] and 7 € R™x, let 715 = (71,...,7%).
Suppose now that s < n. Consider f measurable on Ry x F such that f(t,x) = 0 if
(n(z),s(z)) # (n,s) and f(t,x) = fns(t, T1,n—s(x)) otherwise, where f,, s € C*([0,T) x
R™™*) is compactly supported. In particular, for any o > 0 and (¢, x) € (0, +00) x E such that
s(z) = 1, notice that f(¢,j(x,0)) is zero, unless s + 1 < n and (n(z),s(x)) = (n,s+ 1) in
which case it is equal to fy, s(t, 71 n—s—1(z) +0en—s). As previously, it holds that f(T,-) = 0.
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Thus Equation (3.6) yields

J+°0Jn Ot fr,s(T)px m,s(t, T)dTdt = — Z J*"Ojn Oy frs(T)px m.s (t, T)dTdt

+o0
- L fnfs(AXSi(T) + Ax(t)8) fn,s(T)px n,s(t, T)dTdt
+o0
+ 1s=n—1} L JR Ax (t)nf”’s(U)QV(U)dUPX,nm(t)dt

+o0
+ 1{s+1<n} J J (AXi(Tl,n—s—l) + AX(t))(S + 1)fn,s(T)gl/(Tn—s)pX,n,s-Fl(tv Tl,n—s—l)det
O n—s

n Y n—s
+ <S)€s(1 —5)”_5_[ SO T [ [ ov(r)dr.

This establishes that px , s is a weak solution to Equation (3.53), and concludes the
proof. O

3.B Implementation of the large population limit

3.B.1 Automatic implementation of the dynamical system

It is possible to implement dynamical system (3.8a—c) in an automated way, in the sense that
equations do not need to be written individually. The key lies in the fact that the set S can be
constructed automatically, with an intrinsic organization of the states (.5, I) it contains. For
example, one may arrange them by growing number n of susceptible and infected members
of the structure, and for each n, by growing number i of infected, leading to

S =1{(2,0),(1,1),..., (Pmax,0), (Mmax — 1, 1), ..., (L, mmax — 1)}.

This in turn allows to make an explicit correspondence between any state (S, 1) € S and e.g.
some position in a vector containing all functions of our dynamical system of interest. A
similar idea was already employed in Pellis et al., 2011, for another purpose. With the previous
structure of S, one may for instance notice that for any n € [2, nmax] and i € [0,n — 1], the
state (n —1,1) is the ¢(n —i,7)-th state enumerated in S, where ¢(n—1,7) = (n —1)n/2 4.
As a consequence, the general expression of Equation (3.8c) may be used to handle all the
dynamics of the functions nf{l, for (S,I)eS and X € {H, W}.

Also, notice that in practice, household sizes tend not to be as big as workplace sizes.
It thus makes sense to distinguish explicitly a maximal size for each type of structure. This
allows to avoid implementing unnecessary equations corresponding e.g. to household sizes
that are not actually observed, and which thus artificially increase the dimension of the
system.

3.B.2 Computational performance

The aim of this section is to numerically assess the computational cost associated to solving
the large dimensional dynamic system (3.8a—c) in comparison to stochastic simulations using
Gillespie's algorithm, also referred to as SSA (stochastic simulation algorithm). In order to
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Table 3.1: Considered values of the contact rates and final times, grouped by value of Ry and
proportions of infections per layer (pa, pm,pw) characterizing the scenarios.

Ri=12 R;=14 R; =17 R; =20 R; =25 (pa,pu.pw)

Ba 0.03 0.035 0.045 0.05 0.06

A 0.05 0.07 0.09 0.15 0.2

Aw  0.0015 0.0016 0.0018 0.002 0.0022 (0.2,04,0.4)
T 130 130 105 85 75

Ba 0.06 0.07 0.085 0.1 0.125

AH 0.06 0.07 0.1 0.15 1.5

Aw  0.00075 0.0008 0.001 0.0011 0.00115 (0.4,0.4,02)
T 145 130 95 80 55

do so, the average execution times of one stochastic simulation (SSA) and of one resolution
of the associated dynamic system using the ODE solver odeint from the scipy.integrate
library are compared.

Let us start by describing the general procedure. Each of the two scripts (stochastic
simulation or reduced model) is executed one hundred times, all runs being independent
from one another. For each run and each script, the computation time of the script of
interest is measured, as well as the computation time of a reference function (summing all
integers up to one billion with a simple for-loop). The ratios of the runtimes of both the
script of interest and the reference function are computed. Comparison of the computation
times for the stochastic and the reduced model is then based on the comparison of the
averages of those normalised runtimes.

It remains to take an interest in the choice of the model parameters, namely the structure
size distributions, the epidemic parameters i.e. the contact rates S, Ay, Aw and the removal
rate 7, as well as the initial proportion of infected ¢ and the time interval [0,7] on which
the epidemic is simulated. For the stochastic model, the population size K will be fixed to
ten thousand individuals. For all scenarios considered here, the structure size distributions
will be those of Figure 3.1, and the initial proportion of individuals will be set to € = 0.005.
Different values of the epidemic parameters will be considered, as to obtain scenarios that
differ both in terms of R; and in terms of the proportions of infections occurring within
the general population, within households or within workplaces, respectively referred to as
pa, pr and py. The removal rate v will be fixed at 0.125, and only the contact rates will
effectively vary. In total, ten different scenarios will be used, characterized by their values of
Ry e {1.2,1.4,1.7,2.0,2.5} and (pg,pm,pw) € {(0.2,0.4,0.4), (0.4,0.4,0.2)}.

Finally, parameter T' will be chosen as follows. For each set of epidemic parameters
detailed above, the reduced model is used to compute the time T, at which the epidemic
falls below one percent of infected individuals in the population, after the epidemic peak. T’
then is determined by rounding down T} to the closest multiple of five.

Figure 3.4 uses the reduced model to plot the trajectories of the proportion of susceptible
and infected individuals in the population, for each scenario. The corresponding parameters
are summarized in Table 3.1. Notice that in particular, this includes the parameters of Figure
3.2.

Let us now turn to the results. For each scenario of Table 3.1, measurement of average
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Figure 3.4: Proportion of susceptible (S) and infected (1) in the population, for each scenario
detailed in Table 3.1, as given by dynamical system (3.8a—c). Scenarios are separated by values of
(pc, pr, pw) of infections per layer, namely (0.2,0.4,0.4) and (0.4,0.4,0.2) for the top and bottom
panels, respectively. The corresponding values of Ry are indicated by the color shades, as shown in
the legend. The black crosses indicate for each curve that the proportion of infected falls below the
threshold of one percent.

normalised computation times was repeated three times. The results are shown in Figure
3.5, which indicates for each scenario the ratio of the average normalised runtime for one res-
olution of dynamical system (3.8a—c) over the average normalised runtime of one stochastic
simulation. Let us first take an interest in the datasets labeled (pg, pr, pw) = (0.2,0.4,0.4)
and (pg, pr,pw) = (0.4,0.4,0.2). One may notice first that for each scenario, the results
of all three repeats are close to one another, indicating that the results are reproducible.
Further, for both possible values of (pg, prr, pw ), the results indicate a shared general trend.
Indeed, for values of Ry close to the critical case Ry = 1, the ratio exceeds one, and dimin-
ishes subsequently, falling below one between Ry = 1.4 and Ry = 1.7 and attaining values
of order 10~1. This behavior suggests that solving dynamic system (3.8a—c) is advantageous
in terms of computation time for intermediate or high values of Rj, being up to one order
of magnitude faster than one stochastic simulation. As the time interval [0,7"] on which
the epidemic is studied originally depends on the scenario and is significantly shorter for
larger values of Ry, one may wonder whether this difference influences the results. As a
consequence, we have repeated the same procedure for all of the scenarios characterised by
(pa,pm,pw) = (0.2,0.4,0.4), with fixed T = 75. Figure 3.5 shows that the associated
results are very similar to those obtained previously, pleading against this hypothesis.

Of course, this comparison could be pushed further. For instance, the most basic version of
the SSA algorithm was used, and more advanced methods such as 7-leaping are expected to
accelerate stochastic simulations. Also, a more thorough exploration of the parameter space
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Figure 3.5: Ratio of the average normalised computation time for solving once dynamical system
(3.8a—c) over the average normalised computation time for one stochastic simulation (SSA). This
ratio was computed three times for each scenario of Table 3.1. The results are presented as a function
of Ry, while colors indicate the value of (pg,pm,pw). Unless stated otherwise, the parameter T
from Table 3.1 was used. The dotted line indicates the threshold of one.

would be pertinent, assessing for instance the influence of the structure size distributions.

3.C Edge-based compartmental model

3.C.1 Presentation of the EBCM

Let us start by describing how to obtain the population structure of the local level of mixture
described in Section 3.2.1 using a clique configuration model (CCM). In our case, each
node belongs to exactly one clique within each layer (one household and one workplace,
respectively). Let us briefly notice that whenever a node is picked uniformly at random, the
probability of it belonging to a structure of type X and size n is given by #X = n7X /mx,
for any n € [1,nmax] and X € {H,W}. As a consequence, the layer corresponding to
structures of type X € {H,W} is obtained by the following two steps. First, associate to
each node a structure size distributed according to the size-biased law #X. This is done
independently for each node. Second, for k € [1, nmax], form cliques of size k by drawing
uniformly without replacement k-tuples in the set of nodes of associated structure size k.
This step stops when all nodes of associated clique size & belong to a clique. This procedure
is repeated independently for each layer, allowing to assemble households and workplaces.
Let us now turn to deriving the EBCM. Consider s and ¢ the proportions of susceptible
and infected individuals in the population, respectively. Let §:X(t) for X € {H,W} and
n € [[1, nmax] be the chance of a susceptible belonging to a structure of type X and size n
to escape infection within this structure, and 6% () the chance of escaping infection through
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Figure 3.6: Comparison of the stochastic model with the large population approximation given by
dynamical system (3.8a—c) and the corresponding EBCM. Household and workplace distributions are
those of Figure 3.1. Epidemic parameters are set to (B¢, Am, Aw,7) = (0.125,1.5,0.00115,0.125).
Initial conditions correspond to e € {0.001,0.01,0.05} as indicated for each panel. For each of these
scenarios, Gillespie's algorithm is used to simulate 50 trajectories of the stochastic model defined
in Proposition 3.2.1 in a population of K = 10000 individuals (faint lines). For Panel (a), only
trajectories reaching a threshold proportion of 0.005 infected are kept, and time is shifted so that
time 0 corresponds to the moment when this threshold is reached. Finally, the deterministic solution
(s,i) of both dynamical system (3.8a—c) (thick lines) and the EBCM (dashed lines) are represented
for each scenario. For Panel (a), the same time shifting procedure as for simulations is applied.
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the mean-field level, up to time ¢ > 0. The key idea is that a node is susceptible at time
t if and only if it has escaped infection up to time ¢, and the risks of infection within each
layer are independent from one another. This makes use of properties of the CCM, which
heuristically explain the decoupling of the risk of infection in the two local layers from one
another. Further, the fact that in an infinite population, each individual structure has a
negligible impact on the proportion of infected yields the intuition behind the decorrelation
of the risks of infection at the local and global level. This leads to

s=609 ] (niwffeff) :
n=1

Xe{HW}

As we are considering an SIR model, it follows that i'(t) = —s'(t) + ~i(t), so that the
difficulty resides in understanding the dynamics of #% and 6:X(t), for X € {H, W} and
n € [1, Nmax]-

Define for X € {H, W} and n € [2, nmax]:

which corresponds to the proportion of individuals who are susceptible and belong to a
structure of type X and size n. Also, let né}I,R) be the proportion of susceptibles belonging
to a structure of type X containing exactly S susceptibles, I infected and R removed
individuals. This allows us to introduce the following quantities, which participate in the
rates at which a member of a structure of type X and size n is infected, either within the
considered structure or outside of it, respectively:

Mmax  __ "XQX
TTLX = )\X Z SITL?&LI% and 7_75( = (BGZ + Z T?) anax "XHX
(S,1,R)eN3 k=1
S+I+R=n

One obtains the following dynamics:

iOG——B 0, and VX e {H,W},Vne[2,n ]}ieX— TXeX
dt - G 9 9 9 9 maxadtn_ mX n

Further, for any X € {H, W}, n € [2,nmax] and (S,I,R) € N3 such that S+ I+ R=n
and either S > 2 or ST > 1

d X

dt (SI R) <)\XSI + —

+(1 + 1)”(5,1+1,R—1)1{R>1}
7__X'

Tl

Additionally, as in a structure of size one, no infection may occur within the structure itself,
011 and 6}" are constant over time. Finally, it remains to define the initial conditions.
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Table 3.2: Numerical assessment of the computation time needed to solve either dynamical system
(3.8a—c) or the EBCM introduced in Appendix 3.C. Model parameters: household and workplace
size distribution from Figure 3.1; (B, A\i, A\w,7) = (0.125,1.5,0.00115, 0.125); initial proportion of
infected € = 0.005, resolution of the numerical system over the time interval [0, 30].

Runs Normalised runtimes
Average Minimum Maximum
Dynamical system (3.8a— 50 0.15 0.14 0.17
‘)
EBCM 10 2076 1887 2254

Following Volz et al., 2011, we consider the case € « 1. Then the only quantities which are
not null at time zero are: for any X € {H, W}, n € [1,nmax] and I € [1,n — 1],

1
3.54
”ﬁ,o,o) = %ﬁgf(l —e)", ( )
né(w—LLO) = X1 —e)n el
The proportions of susceptible and infected as predicted by both the EBCM and dynamical
system (3.8a—c) are shown in Figure 3.6, for different values of . Let us first notice that
in the case ¢ = 0.001, corresponding to Panel (a) of Figure 3.6, the solutions (s,7) of both
the EBCM and dynamical system (3.8a—c) are in perfect accordance, emphasizing the fact
that for very small values of €, the EBCM seems to yield the correct asymptotic population
dynamics. However, for larger values of €, the EBCM struggles to reproduce these dynamics.
The problem for capturing the epidemic dynamics for higher values of ¢ lies in the fact that
defining the proper initial condition for the EBCM is not straightforward, leading to initial
conditions consisting in an approximation which is only sensible whenever ¢ is very small.

3.C.2 Computational performance

In order to compare the computation times needed to solve either dynamical system (3.8a—
c) or the dynamical system associated to the EBCM which has been introduced above, we
will proceed similarly as in Appendix 3.B.2, making use of the ODE solver odeint from the
scipy.integrate library in both cases. However, this time, only one parameter set will be
used, corresponding to the parameters chosen for Panel (a) of Figure 3.2. Further, the
average normalised computation time is only computed once, instead of having three repeats
as in Appendix 3.B.2. Considering the relatively small fluctuations between repeats for all
scenarios in Figure 3.5, this is not expected to significantly affect the qualitative result.

The model parameters and the associated average runtimes are shown in Table 3.2.
Due to the excessive computation needed to solve the EBCM, only 10 runs of this script
were performed. However, considering that the average normalised runtime for solving the
EBCM is several orders of magnitude higher than the average normalised runtime for solving
dynamical system (3.8a—c), this again is not expected to significantly alter the results. Finally,
the computation times necessary for solving the EBCM are relatively homogeneous over all
runs, indicating that the average computation time is not biased by an outlier.
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3.D Proof of Proposition 3.4.10

Let us start with the following lemma, which will be needed afterwards.

Lemma 3.D.1. Consider a solution y of dynamical system (3.8a—c) and let A(t) = mxs(t)—
2(571)65 Sné{l(t). Then

d

LA =i () = (ralt) +

= e (6)) AQ).

s(t)
Proof of Lemma 3.D.1. Let X € {H,W}. First, notice that

{(S+1,I—-1):(S,1)eS,I>1} ={(S,I)eS:5>1}.
As S —1 = 0 whenever S = 1, we thus obtain that

Z 521—"5‘?{1 - Z S(S+1)(I - 1)”§+1,1—11{I>1}
(S,1)eS (S,1)eS

= > SInd;— > (S-1)SIng,; = ) SIng,.
(S,I)eS (S,I)eS (S,I)eS

(3.55)

Similarly, {(S,I+1):(S,1) €S, S+ I < nmax} = S\{{(S,1)eS:T1=0}u{(1,1)}}. As
ST = 0 whenever I = 0, it follows that

D1 ASIng = D0 ST+ D 1S rcnmn) = Y- (3.56)
(S.1)es (S.1)es

The desired conclusion then results directly from Equations (3.8a—c), regrouping the terms
of the form of Equations (3.55) and (3.56) in order to simplify the expression. O

We are now ready to focus on the desired result.

Proof of Proposition 3.4.10. (i) By assumption, y(0) € V. Let us start by checking that all
components of y, as well as A, stay non-negative over time.

Let to > 0 be such that y(tp) € V. If i(to) = 0, then ¢/ (tg) = —s'(ty) = 0 by assumption,
which ensures that 7 will not become negative on a neighbourhood of 3. Similar arguments
hold for the lower bounds of A and s, using Lemma 3.D.1 and Inequality (3.30), respectively.

Let us now turn our attention to né{l for X € {H,W} and (S,I) € S. Recall from
Equation (3.8c) that its derivative may be ill defined, due to the division by s(¢). However,
inequality (3.30) ensures that the ratios Tyné‘:l/s are well defined at all time, for any (S,1) €
S. As a consequence, we may now notice as previously that, if né{l(to) = 0, Equation (3.8c)
ensures that %né‘:l(tg) > 0.

The desired conclusion follows: whenever either of the quantities of interest reach zero,
their derivatives are non-negative which ensures that they do not become negative shortly
thereafter.

Next, let us have a look at the upper bounds. For X € {H, W}, a brief computation
yields

Z né{l(t) = —anl(t) < 0.

4
dt (S,1)es
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This assures that starting from y* € V, the inequality Z(S’I)eg né{l(t) < 1 holds. For
X e{H, W} and (S,I) €S, it follows that if nquf(to) =1, then for any (S',I") € S\(S,I),

d

dtnSI(tO) ()\XsI-‘rTX(to) +Tg(t0)5+’}/[) 0,

S
(to)
from which one may deduce that né(l remains less than or equal to one. The remaining
upper bounds on s, i and s + ¢ may be obtained using similar arguments.

We thus have established that if y* € V, then y(t) € V for all ¢ such that y is well
defined.

(ii) Consider any T' > 0. Let y = (s,1 nSI X e {H,W},(S,I) €S) be a solution to
the Cauchy problem (3.29) with initial condition y* € V. Then it follows from Inequality
(3.30) that

s'(t) = —[(Am + Aw)nmax + Bals(t),

and as further s € C'(R ) according to the Cauchy problem, we obtain by comparison that
s(t) = s(0) exp(—[(Axg + Aw )nmax + Bc]t) for any t € [0,T]. As a consequence, on [0,71],
s is bounded from below by

er = 5(0) exp(—[(Agr + Aw)nmax + Bc]T).

In order to prove that there exists at most a unique solution y for any initial condition
y* € V, we will distinguish two cases.

First, if s(0) = 0, then it follows that s(t) = 0 for any ¢t > 0, and hence nSI( ) =10
forany t > 0 and any X € {H, W}, (S,I) € S. Subsequently, the equation for i reduces to
i'(t) = —vi(t) on R, ensuring uniqueness of y on R .

Second, if s(0) > 0, it follows from (i) and from our lower bound on s over [0,T] that
y(t) € Vp =V n{s > er} for any t € [0,T]. Our aim is to show that f is Lipschitz
continuous on V. Let y = (s,z,nSI X e{H, W}, (S,I)€S) and § = (s,z,nSI X e
{H,W},(S,I)€S) be two elements of V. First, consider fs. Let X € {H, W}, and define
cx = Ax#S(nmaX)Q/mx, then

o) — 7 )] < X

X aX .
Z Sllngr —ngrl <ex |y =9l -
mX(

S,I)eS

It further holds that

A

ma(y)s — ma(9)3] < Balills — 8] + i —il13]) < 26¢ ly — dll, -
Thus, letting ¢s = cgr + cw + 20¢, it follows that
|fs(y) = fs(@)| < cs lly — Gl -
Similarly, letting ¢; = ¢ + 7,

\fiy) — F@D] < [fs(y) = fs@)| +Ali =il < cilly = 9l -
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It remains to focus on fx g 1. Proceeding as above, letting ¢y = (2AxNmax + 458G + ) max.
we obtain that

A ORI

xsa(0) = Fesal@)l < iy = 9o +| P s, - D s,

() = (9)
s 5

+

(S + 1)n§+1,171 - (S + 1)775?&1,171 Loy

Notice that as y belongs to V7, it follows that for kx = Axnmaxmx,
(rx(y)Snd,s) € Dr = {(z,y) s er <y <1, 0 <z < kxy’}.
Let (z,y) and (u,v) be two elements of Dyp. It then holds that

r U 1 /x _
<3 (Go-sl+lo—ul) < 1 kx)llo =]+l — ),

y v
Letting kx 1 = e;l(l v kx)(Axn2,./mx + 1)nmax, we obtain for any X € {H, W} and
(5,1) €S,

Tx( )

v

Ty(l?)

Sngr — Sgr| < ep' (v kx)(Irg(y)Sng r — 7 (9)SA3 1| + |s — 3])

< kxr Hy - Z)Hoo

As a consequence, we conclude that

[fx50(y) = fx.s0(@)] < (x +kxr) Iy = o, -
This establishes the desired Lipschitz continuity of f on Vp, with associated Lipschitz con-
stant ¢y = max(cs, ¢, ¢y + kT, Gy + kwr).
Suppose now that there are two solutions y and § of Equations (3.8a—c) such that
y(0) = 4(0). It then holds that

T T
ly(T) = 9(D)ll o, < JO 1 (y(8)) = F(@@) | dt < CTL 1y (@) = 9()l5 -

Thus Gronwall's lemma ensures that ||y(t) —9(t)||,, = 0 for any ¢ < T. The desired
conclusion on uniqueness follows.

(iii) In order to establish (iii), it remains to show that the initial condition y* defined by
Equation (3.9) belongs to V. Let us start by noticing that, following Equation (3.9), for any
X e {H, W},

Tmax

anfl(o)zf Z() Q=)= mX(1-e" <1
n=2 I=0

(S,I)es n=2

Similarly,

Z SnSI "ix Zn— <> (1—-¢)" ”ide n(l—¢)

(S,I)eS
— (mx —m)(1 —¢) < mxs(0),
where we have used the fact that s(0) = 1 — ¢, and recognizing E[n — B] for B ~ B(n,¢)

to deduce the second equality. The other conditions following immediately from (3.9), we
conclude that y* e V. O
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CHAPTER 4
Sensitivity of the reduction accuracy
to network and epidemic parameters

We investigate the impact of epidemic and/or network parameters on the capacity of the re-
duced models obtained in Chapters 2 and 3 to approximate epidemic dynamics of household-
workplace models. First, we conduct a sensitivity analysis to quantify the influence of the
epidemic parameters on the precision of the reduced model developed in Chapter 2. We
show that while all parameters influence the accuracy of the epidemic peak size prediction,
the general population contact rate has the strongest impact on the quality of the final size
approximation. Second, for the reduced model derived in Chapter 3 as the large population
limit of the household-workplace model, we show that it still yields a satisfying approxima-
tion of epidemic dynamics when considering a more general network model. More precisely,
this generalized household-workplace model allows to take into account the correlation of
the household and workplace choice between individuals. In addition, the within-workplace
contact networks are not necessarily uniformly mixing. Our results indicate that this has a
stronger impact on epidemic outcomes than the correlation of structure membership between
individuals.

Contents

4.1 Introduction . ... ... ...t 165

4.2 Sensitivity analysis of the precision of the uniformly mixing
reduced model . .. ... ... ... 0 00 0oL, 167
4.2.1 General approach and quantities of interest . . . . . . ... .. 167
4.2.2 Experimental design . . . .. ... ... ..o L. 168
423 Results . .. .. 169
4.3 The epidemic impact of network model perturbations . .. .170
4.3.1 A generalization of the household-workplace model . . . . . . . 170
4.3.2  Simulation study design . . . . .. ... Lo 172
4.3.3 Results . . . . .. e 173
4.4 Discussion . . . . v v v v i i e e e e e e e e e e e e e e e e e 176

4.1 Introduction

A natural question arising in the context of reduced models is to gain a thorough understand-
ing of the approximation error committed, when compared to the model which one seeks to
approach. Notably, theoretical guarantees can be achieved in some contexts. For example,
one may use central limit theorems to control the fluctuation of density-dependent Markov

165
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jump processes around their deterministic large population limit (Ethier and Kurtz, 1986,
Chapter 11). In this case, the fluctuations around the reduced model are explicit, opening
the door to their detailed comprehension. However, depending on the way the reduced model
has been derived, such results are not always in reach.

A fruitful and more widely applicable approach consists is capturing the reduced model's
precision through a simulation study, allowing to identify on which parts of the parameter
space the reduction performs well. In particular, we have performed such numerical explo-
rations in Chapter 2. We have assessed the capacity of a well calibrated, deterministic,
uniformly mixing model to predict key epidemic outcomes of the household-workplace model
introduced in Pellis et al., 2009. While this procedure allows to highlight conditions on the
model parameters under which the reduced model is most accurate or performs poorly, it
does not suffice to properly quantify the impact of the model parameters on this precision.

The quantification of the influence of a model’s parameters on its outcomes is at the
heart of sensitivity analysis (Saltelli et al., 2002). Different methods have been developed
in this setting, with complementary strength and weaknesses, as illustrated in detail for
some epidemic models by Wu et al., 2013. In particular, variance-based methods, including
Sobol’s variance decomposition, have a clear, quantitative interpretation, and further allow
to capture interactions among different model parameters. We refer to Chapter 4 of Saltelli
et al., 2007 for an exhaustive introduction to variance-based methods.

In the context of the present thesis, we are interested in developing our understanding of
the accuracy of the reduced models developed in Chapters 2 and 3.

On the one hand, for the uniformly mixing reduced model developed in Chapter 2, we
aim to go beyond the simulation study carried out previously by complementing it with a
variance-based global sensitivity analysis. Here, we study the impact of epidemic parameters
on the quality of this approximation. We are particularly interested in factor prioritization, i.e.
in identifying the most influential parameters. The motivation behind this goal is twofold.
First, it would allow to test the robustness of the qualitative conclusions drawn in Chapter 2.
Second, factor prioritization may lead to an intuitive understanding of the conditions under
which the reduced model performs well.

On the other hand, for the large population limit of the household-workplace model ob-
tained in Chapter 3, it would be possible to investigate gaussian fluctuations of the stochastic
finite-population model around its deterministic limit, in the spirit of aforementioned central
limit theorems. However, this approach only allows comparison to the stochastic household-
workplace model formalized in Section 3.2.2.

Notably, in Chapter 3, we make two strong assumptions on the contact network under-
lying the epidemic spread. Indeed, we first suppose that individuals choose their household
and workplace independently from one another and from other individuals. This does not
hold for real-life settings, as for instance workplace romances are known to be frequent, in-
cluding those leading to long-time partnerships (Bozon and Heran, 1989; Kalmijn and Flap,
2001; Wilson, 2015). Second, within-structure contact networks are simplified by assuming
uniform mixing within all structures. While this arguably seems reasonable for households,
it is not corroborated by data regarding workplace contacts (Contreras et al., 2022).

Thus, we set up a simulation study allowing to investigate the impact of these two
phenomena on epidemic outcomes of the household-workplace model. In other words, we
assess if the large population limit of Chapter 3 yields a satisfying approximation of the
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epidemic for a more general class of contact networks than originally considered.

This chapter is structured as follows. Section 4.2 is devoted to the sensitivity analysis
of the performance of the uniformly mixing reduced model proposed in Chapter 2. Next, In
Section 4.3, we introduce an extension of the household-workplace model, which serves for
numerical exploration of the robustness of the approximation by the large population limit
of Chapter 3 to modifications of the contact network. We conclude with a discussion of the
obtained results and perspectives in Section 4.4, as this chapter contains ongoing work.

4.2 Sensitivity analysis of the precision of the uniformly mixing
reduced model

We conduct a sensitivity analysis in order to assess the influence of the epidemic parameters
on the performance of the uniformly mixing reduced model of Chapter 2. More precisely, we
focus on its capacity to accurately predict the epidemic peak and final size of the household-
workplace model in the large population limit. Let us start by recalling the epidemic models,
which allow us to introduce a general overview of the sensitivity analysis approach adopted
here. Next, we present the experimental design and analyze the results.

4.2.1 General approach and quantities of interest

In this section, we focus on the uniformly mixing reduced model of Chapter 2. Recall that it
corresponds to a deterministic uniformly mixing SIR model, calibrated using the exponential
growth rate 7 and recovery rate v of the household-workplace model. Let s(¢) and i(t) be
the proportion of susceptibles and infected in the population, at time t. If we assume that
at time 0, the proportion of susceptible and infected is given by (1 — ,¢) for ¢ > 0 fixed,
the reduced model is given by:

S(0) = =+ )sOi). (1) = (r+s(Oilt) =it )

s(0)=1—¢, i(0)=

Throughout the chapter, the epidemic growth rate r is computed using the R package
communityEpidemics associated to Bansaye et al., 2023a.

The impact of the epidemic parameters on the performance of the uniformly mixing
reduced model (4.1) is explored through global sensitivity analysis based on Sobol's variance
decomposition. As the large population limit derived in Chapter 3 is asymptotically exact
and its simulation numerically advantageous on a large part of the parameter space when
compared to the household-workplace model, it will be used as reference for comparison.
Here, its initial condition corresponds to a proportion ¢ of infected chosen uniformly within in
otherwise susceptible population, and we refer to Section 3.3.1 for detail. Thus, performance
is measured by the absolute value of the difference between either the epidemic peak size or
the epidemic final size predicted by the uniformly mixing reduced model, and by the large
population limit.

Before presenting our numerical experiments in detail, let us briefly recall the definition
of main and total Sobol’ indices. The basic idea is to consider that the contact rates g,
Ag and Ay are essentially random variables, whose laws are assumed to be known and thus
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Table 4.1: Parameters of the contact rate distributions for sensitivity analysis.

Contact rate (a,b) o' B
Ba (0.2,2.5) 08 227
Arr (0.3,2.0) 055 4.0
Aw (0.013,0.03) 16 5.5

are fixed in the experimental design. Let Y be a model outcome of interest, in our case
the absolute difference between the peak (or final) size estimates using the uniformly mixing
reduced model and given by the large population limit. Notice that Y itself corresponds to
a random variable, which depends on the realizations of 8g, Ay and Ay. Then the main
effect S¢ and total effect St ¢ of B¢ are defined as follows:

_ Var[E[Y|5¢]] and Spg — E[Var[Y|/\H,)\W]].

56 Var(Y) ! Var(Y)

In summary, the main effect S¢ yields the reduction of the variance of model output Y if
the contact rate S were to be fixed: hence if S¢ is large, Sg explains a large part of the
variance of Y. Reciprocally, the total effect St corresponds to the expected reduction of
the variance of Y if all factors but B¢ are fixed, and thus additionally captures the impact of
the interaction between ¢ and all other parameters. The Sobol’ indices of Ay and Ay are
computed analogously, by exchanging the respective roles for each contact rate. We refer to
Saltelli et al., 2002, Chapters 1 and 5 for more detail on sensitivity analysis based on variance
decomposition.

4.2.2 Experimental design

Let us now turn to the experimental design. Similarly to previous chapters, we consider
the French household and workplace size distributions introduced in Section 2.2.3, based on
INSEE data collected in 2018. Household sizes range from one to six, while the workplace
size distribution has been limited to workplaces up to size fifty by splitting larger workplaces
into several smaller ones. We refer to Chapter 2 and upcoming Figure 4.3 for further detail.

It remains to introduce the epidemic parameters considered. First, without loss of gener-
ality, the recovery rate is kept fixed at v = 1. Hence, only the Sobol’ indices of the contact
rates Bg, Ay and Ay will be computed. For this purpose, we assume that the contact
rates follow shifted beta distributions, i.e. their laws are given by a + (b — a)beta(a, 3)
where (a, b) yields the support of the contact rate distribution, and beta(a, 3) designates a
random variable of density co 32! (1— %) 1o <1y, where cq 3 = T'(a+ 8)/(T(a)T(B))
is the appropriate normalization constant. The considered parameters for each contact rate
distribution are given in Table 4.1.

The parameters of these distributions have been chosen as to explore epidemic scenarios
with reasonable characteristics similar to scenarios 1-11 of Chapter 2, in terms of R (Pellis
et al., 2009, Supplementary Material), growth rate r (Pellis et al., 2011) and proportions of
infections par layer (general population pg, households py and workplaces py). Namely,
we focus on intermediate values of epidemic growth rate and reproduction number, while
occasionally larger values occur. Similarly, proportions of infections per layer allow for the
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Figure 4.1: Empirical distributions of proportions (pg,pm,pw) of infections per layer (top), repro-
duction number Ry and epidemic growth rate r (bottom) for the household-workplace model with
French structure size distributions, recovery rate v = 1 and contact rates (8g, Ag, Aw ) sampled from
the distributions given in Table 4.1. The histograms are based on 500 independent samples of the
contact rates.

main source of infection to either be the general population, or the contact structures.
Notably, the distribution of proportions of infections per household concentrates on lower
values than the other sources of infection, which is coherent with French households being
of relatively small size. We refer to Figure 4.1 for detail.

4.2.3 Results

Based on this experiment design, we obtain the main and total Sobol’ indices shown in
Figure 4.2. Let us start by focusing on the peak size error. In this case, all three contact
rates appear to be influential, with Ay and Bg having slightly predominant roles compared
to Ayg. This may be correlated to households being relatively small, leading to generally
smaller proportions of infections occurring within households as shown in Figure 4.1. In
addition, there seem to be almost no interaction effects, as for each parameter, total and
main effects are very close to one another. Given the importance of the epidemic growth rate
for capturing the beginning of the epidemic and calibrating the reduced model, the shared
importance of all three parameters may reflect the fact that the growth rate finely depends
on all three contact rates.

For the final size error, however, the picture is quite different. Notably, contact rate
Ba largely has the highest impact on the final size error, whereas A and Ay play minor
roles, their effects being similar to one another. This essentially corroborates our findings
in Chapter 2, which seemed to indicate that the precision of the final size prediction of the
uniformly mixing reduced model mainly depends on the proportion of infections occurring
in the general population. Notably, the difference between the total and main effect of S
implies a significant part of interactions with the other contact rates. These interaction
effects however remain minor compared to the main effect of S¢.
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Figure 4.2: Main and total Sobol’ indices associated to each contact rate, for the peak and final size
error of the uniformly mixing reduced model compared to the asymptotic dynamics given by the large
population limit. The experimental design is described in Section 4.2.2, and the sample size is equal
to 5000. Computation of the Sobol’ indices is achieved by the sobol jansen implementation of the
Jansen-Sobol’s scheme (Jansen, 1999), in the R package sensitivity. 95% confidence intervals
are estimated from 1000 bootstrap replicates.

4.3 The epidemic impact of network model perturbations

In Chapter 3, we have derived the large population limit of the household-workplace model.
Notably, this was achieved under two major assumptions on the contact network, namely (1)
that individuals choose their household and workplace independently from one another and
from other individuals, and (2) that uniform mixing holds within all households and work-
places. As both of these assumptions do not hold in real-life setting, we aim to investigate
their impact on epidemic outcomes. In other terms, if (1) and/or (2) are not satisfied, does
the large population limit of the household-workplace model still yield a good approximation
of the epidemic dynamics at hand?

In order to address this question, we start by introducing a generalized household-
workplace model. Next, we describe the parameter sets which serve for simulations, and
discuss the results of our numerical study.

4.3.1 A generalization of the household-workplace model

We propose a generalized household-workplace model. As previously, it contains two levels
of mixing: a global, uniformly mixing level, and a local level distinguishing two layers of
household and workplace contacts, respectively. However, we modify the construction of the
local contact network in order to relax Assumptions (1) and (2).

As will be described in detail below, the network model representing the local level
of mixing depends on several parameters. We consider two distributions 7 and 7" on
[1, nmax], which correspond respectively to the household and workplace size distribution
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in the large population limit. In addition, we require an application p : [1, nmax] — [0, 1]
such that within-workplace contact networks of workplaces of size n € [1, nyax] are given
by Erdds-Rényi graphs G(n, p(n)). In particular, within workplaces, the probability that two
nodes are connected by an edge thus depends on the workplace size. Finally, parameter
q € [0,1] depicts how likely members of the same household are to belong to the same
workplace.

Notably, if p is constant equal to one and ¢ is null, we recover the household-workplace
model. Conversely, if p is constant equal to zero, there are no within-workplace contacts and
we recover a household model.

More precisely, for a population of size K, the local level of mixing of the generalized
household-workplace model is constructed according to the following procedure.

1. The household layer. In order to assign individuals to households, we proceed as
described in the previous chapters. Let k be the number of individuals who not yet
belong to a household. While k > 0, pick a size n ~ 7/ and gather a new household
of size n/ = min(k, n) by choosing uniformly at random n individuals among those
k. Subsequently, update k = k — nfl. The procedure stops when k = 0, i.e. when all
individuals are assigned to a household. We let Kz be the number of households, and
{nf he[l,Kg]} the household sizes.

2. The workplace layer. The layer of workplaces is obtained in three steps.

(a) Resolve the workplace sizes. We start by determining the sizes of the workplaces
which will constitute the workplace layer. This is achieved by proceeding as
in Step 1, replacing 7 by 7", but without actually assigning individuals to
workplaces. Instead, we only keep in memory the number of required workplaces
Ky and their sizes {n}V, w e [1, Kw]}.

(b) Assign individuals to workplaces. Independently for each household h € [1, Kx],
the workplaces of its members are chosen as follows. First, the number of its
members who would like to share a workplace is given by Xp ~1+ B(nhH —1,q).
However, at most Ny = maxi<w<ky (n¥) individuals can actually go to the

same workplace. We hence uniformly pick X = min(f(h, Ny ) individuals among

the nhH members of the household, and all of them are assigned to workplace

w € [1, Ky] with probability proportional to the lower integer part of n/V /X,

We then let n!V = n!V — X}, in order to keep track of the remaining number of

individuals who need to be assigned to this workplace. Finally, each remaining

household member independently is assigned to workplace w € [[1, Ky] with

probability proportional to n)V, which then becomes n/V = n!V — 1.

(c) Determine the within-workplace contact networks. For each workplace w €
[1, Kyw], the within-workplace contact network is given by an Erdés-Rényi graph
G(ny , p(nyy))-

Throughout the following, we refer to p as the within-workplace density. Similarly, ¢ will
occasionally be called structure overlap, as high values of ¢ imply on average more individuals
belonging to a given pair of household and workplace.

Subsequently, the epidemic spreads on the contact network. Susceptible individuals may
be contaminated by contacts with infected individuals in each layer. At the global level,
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Figure 4.3: Household and workplace size distribution distribution derived from data collected in
France and India.

we consider a one-to-all contact rate 5, meaning that when there are S susceptible and 1
infected individuals, the next infectious contact occurs at rate 5 SI/K. Similarly, we fix
a one-to-one contact rate Ay such that within a household containing s susceptible and ¢
infected members, as uniform mixing is assumed, the next infection happens at rate \jsi.
Within workplaces, a contact occurs along each edge at rate Ay, leading to the transmission
of the disease if the edge connects a susceptible to an infected. In particular, if the workplace
is totally connected and has s susceptible and i infected members, the next infectious contact
occurs at rate Ay si. Finally, infected individuals recover at rate 7.

4.3.2 Simulation study design

Let us now turn towards the set-up for numerical explorations. Taken together, the gener-
alized household-workplace model depends on two groups of parameter, namely parameters
(7H,7W  p,q) related to the contact network, and epidemic parameters (B3¢, g, Aw,7).

Here, we present and motivate the different parameter sets used throughout this chapter.

Network parameters

For the present study, two sets of structure size distributions are considered. In addition to
the French structure size distributions of Section 4.2, we make use of a second couple of
structure size distributions, inspired by data collected by the Indian government. Indeed,
households of sizes between 1 and 9 or more are reported in IIPS, 2021, based on a survey
conducted between 2019 and 2021. A proxy of a workplace size distribution has been
obtained by modifying the factory size distribution reported in Government of India, 2022,
which as previously is restricted to workplace sizes 1 to 50, and pondered by the Indian labor
force. Inactive individuals are assigned to workplaces of size one. Children attending school
contribute to workplaces of sizes chosen uniformly between 17-23 or 27-37, inspired by the
average school class sizes for primary and secondary schools (Government of India, 2018).
The labor force and number of children attending school are approximated using World Bank,
2024.

Both sets of structure size distributions are depicted in Figure 4.3, and will be referred
to as French and Indian distributions throughout the chapter. Notably, Indian households
tend to be larger than French households, implying that households may have a stronger
impact on epidemic spread. Further, while the Indian workplace size distribution is a coarse
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approximation of the real workplace size distribution, it shares some similarity with the French
workplace size distribution due to the large share of workplaces of size 1 or 50, while being
quite different otherwise (few small workplaces as data is based on factories, notable presence
of school classes). As a consequence, it will not be regarded as ground truth, but occasionally
serve to explore the impact of perturbing the workplace size distribution. Let us mention
here that detailed data on workplace sizes is rarely available, making it difficult to construct
truly realistic workplace size distributions.

Further, it remains to specify the within-workplace density p. Here, we will consider
that within small workplaces, uniform mixing holds, whereas we want the within-workplace
density to decrease for larger workplace sizes. As a first proxy, we will consider p to be a
continuous, piecewise linear function, depending on a parameter p € [0, 1]:

p:nel,nmu]—1—(1 —p)i_zol{nzm}-

In words, this means that workplaces of size less than 20 are uniformly mixing, whereas
for n = 20, the within-workplace density decreases linearly with the workplace size from
p(20) = 1 to p(nmax) = p. Here, fixing the threshold value at which workplaces cease to be
uniformly mixing at 20 is an arbitrary choice. However, given that the considered workplace
size distributions concentrate essentially either on very small or on very large workplaces,
we do not expect this choice to have a strong qualitative impact, at least if workplaces
of size less than ten are assumed uniformly mixing. Hence, this choice of p reduces the
within-workplace density to a unique parameter p € [0,1]. In particular, if (p,q) = (1,0), we
recover the household-workplace model.

Epidemic scenarios for numerical explorations of the generalized household-workplace
model

In order to assess the impact of parameters p and ¢ on epidemic outcomes of the generalized
household-workplace model when compared to the reference p = 1, ¢ = 0, we consider
several combinations of epidemic parameters and structure size distributions. More precisely,
we consider the covid-like scenario (B¢ = 1.00,\y = 11.852, \yy = 0.009,v = 1) and
influenza-like scenario (B¢ = 0.313,\g = 0.730, \yy = 0.013,y = 1) for the French size
distributions, as proposed in Chapter 2. In addition, the same epidemic parameters are used
in combination with either the Indian household size distribution and French workplace size
distribution, to investigate the impact of larger household sizes, or with both Indian size
distributions. Table 4.2 yields information on all 6 scenarios obtained.

4.3.3 Results

We have computed the epidemic peak and final size of all 6 scenarios in Table 4.2 using first
the large population limit of the household-workplace model derived in Chapter 3. Second,
for the same scenarios, peak and final size are computed using stochastic simulations of
the generalized household-workplace model for (p, ¢) € {0.5,0.75,1} x {0,0.25,0.5,0.75,1}.
The average absolute difference between the former and the latter is shown in Figures 4.4
and 4.5, for covid-like and influenza-like epidemic scenarios, respectively.

Notice that for a large share of scenarios, the approximation by the large population
limit of Chapter 3 remains reasonably good, the committed error often being less than
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Table 4.2: Values of growth rate r, reproduction number Ry and proportions of infection in the gen-
eral population p¢, within households pr; and workplaces py for each epidemic scenario, considering
the household-workplace model (recall that v = 1 in all scenarios).

nH i T Ry ba PH bw
France France 248 249 0.40 042 0.18
covid-like India France 4.86 3.23 0.30 0.55 0.15

India India 497 332 030 055 0.15

France France 0.48 154 020 0.40 0.40
influenza-like India France 1.15 226 0.14 055 0.31
India India 121 233 0.13 055 0.31
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Figure 4.4: Heatmap of the absolute difference of the peak size (top) or final size (bottom) between
the large population limit of Chapter 3 and stochastic simulations of the generalized household-
workplace model, for either French structure size distributions (left), French household and Indian
workplace size distribution (middle) or Indian structure size distributions (right) in the covid-like
setting of Table 4.2. For the generalized reduced model, both within-workplace density parameter p
and structure overlap parameter q vary for each scenario. For each set of parameters, 50 epidemic
trajectories of the generalized household-workplace model have been simulated. In order to ease
comparison, the colorbar is consistent between Figures 4.4 and 4.5.

5%. It performs particularly well in the covid-like setting of Figure 4.4, which may be
explained by two factors. Indeed, compared to the influenza-like case, less infections take
place within structures, and especially within workplaces. As p and ¢ act on this part of the
contact network, they are thus expected to have less influence in covid-like than influenza-like
settings. Further, when compared to the influenza-like setting, as shown in Table 4.2, the
epidemic is more intense (higher R; and growth rate). As a consequence, the final epidemic
size is expected to be very high, as corroborated by Figure 4.6, possibly also leading to
smaller errors. This further explains why, in the covid-like setting, the error committed on
the final size tends to be smaller than the one committed on the peak size, despite errors
possibly accumulating over time.

A closer look at the results in Figure 4.5 yields further information. First, as values of
growth rate and reproduction number are lower, the final size error exceeds the peak size
error, as expected. Further, in the case of French structure size distributions, the strongest
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Figure 4.5: Heatmap of the absolute difference of the peak size (top) or final size (bottom) between
the large population limit of Chapter 3 and stochastic simulations of the generalized household-
workplace model, for either French structure size distributions (left), French household and Indian
workplace size distribution (middle) or Indian structure size distributions (right) in the influenza-like
setting of Table 4.2. For the generalized reduced model, both within-workplace density parameter
p and structure overlap parameter q vary for each scenario. Numerical values are reported within
each cell, in addition to the color code. For each set of parameters, 50 epidemic trajectories of
the generalized household-workplace model have been simulated. In order to ease comparison, the
colorbar is consistent between Figures 4.4 and 4.5.

perturbations of the within-workplace contact network density (p = 0.5) actually appear to
hinder epidemic outbreaks as illustrated in Figure 4.6, thus leading to the highest mistake in
approximating the epidemic using the large population limit of Chapter 3.

Notice that when compared to the household-workplace model, the within-workplace
density p generally affects a larger share of an individual's contact than the structure overlap
q. This is due to households being overall smaller than workplaces. Let us illustrate this
for the French structure size distribution. In the case of total structure overlap ¢ = 1, the
number of different contacts of a given individual in the local layer is reduced on average
by 2.2. On the contrary, within workplaces of size n > 20, a fraction 1 — p(n) of contacts
is removed on average due to the reduction in within-workplace density. This represents on
average 2.4 less contacts if p = 0.75, and 4.8 less contacts is p = 0.5. Thus, p is expected
to be the more influential parameter. Indeed, overall, the impact of the within-workplace
density p exceeds that of the structure overlap q.

When replacing the French household size distribution by its Indian counterpart (e.g.
second column of Figure 4.5), households are of larger size and a higher proportion of
infections occurs within that layer (Table 4.2). As a consequence, the impact of ¢ is stronger
in that context, but still remains overshadowed by p, emphasizing the importance of that
parameter.

Let us also mention here that in all scenarios, the large population limit of Chapter 3
generally overestimates the epidemic peak and final size, as illustrated in Figure 4.6. This
again seems consistent with the effect of parameters p and ¢. Indeed, the case (p,q) = (1,0)
corresponds to the setting where each individual has the highest number of distinct contacts.
In other words, the large population limit of Chapter 3 corresponds to a worst-case scenario.
As previously argued in the literature (Trapman et al., 2016), this can be considered to be a
favorable setting as controlling the epidemic for the large population limit of Chapter 3 thus
ensures to control it in more realistic cases as well.
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Figure 4.6: Plot of the epidemic trajectories of the large population limit of Chapter 3 and stochastic
simulations of the generalized household-workplace model, for French structure size distributions in
the covid-like (top) or influenza-like (bottom) setting of Table 4.2. For the generalized reduced model,
both within-workplace density parameter p and structure overlap parameter q vary as indicated per
column. For each set of parameters, 50 epidemic trajectories of the generalized household-workplace
model have been simulated; only those whose maximum proportion of infected exceeds 1% are
depicted. Time is shifted so that the origin corresponds to the first time that threshold is reached,
for each of the deterministic and stochastic trajectories.

Finally, it is worth mentioning that considering Indian household size distributions and
French workplace size distributions yields very similar epidemic characteristics as in the case
of both Indian size distributions (Table 4.2). Figures 4.4 and 4.5 show that the numerical
results are very close for these settings, both in the covid-like and influenza-like scenarios.
This tends to indicate a certain reproducibility of our results. In a future work, we plan
to conduct a more thorough numerical exploration, regarding both the choice of epidemic
parameters and structure size distributions.

4.4 Discussion

In this chapter, we first have conducted a global sensitivity analysis based on Sobol's variance
decomposition to assess the impact of epidemic parameters on the accuracy of the uniformly
mixing reduced model of Chapter 2. This analysis has been designed in order to quantify the
influence of the contact rates (8¢, Amr, A\w) on the reduced model's capacity of predicting
epidemic peak and final size. In particular, the structure size distributions have been fixed
for this purpose. Our findings indicate that while all three parameters have significant and
similar influence on the quality of the prediction of the epidemic peak size, the accuracy of
the final size estimation mainly depends on Sg. This is coherent with previous findings in
Chapter 2.

In order to consolidate our results, we plan to conduct further experiments. Notably,
repeating this analysis for different workplace size distributions is crucial, in order to confirm
that our conclusions are not restricted to our particular choice of French structure size
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distribution. In addition, it is well known that the experimental design can have a strong
impact on Sobol’ indices; see Rimbaud et al., 2018 for an illustration on an epidemic model.
It thus would be interesting to confront the results of several experimental designs, exploring
for instance parts of the parameter space which lead to epidemic characteristics (reproduction
number, growth rate and proportions of infection per layer) which differ from those explored
here.

Importantly, a natural perspective is to include the effect of the structure size distributions
7 and 7" in the sensitivity analysis. This however is not straightforward. Indeed, one
needs to find a pertinent parameterization of these distributions, which should combine the
following two constraints. The involved parameters on which the size distributions depend
should allow for meaningful interpretation of the sensitivity analysis results, and they should
lead to an exploration of realistic structure size distributions. This is left for a future work.

Second, we have investigated the epidemic impact of two parameters of a generalized
household-workplace model, which represent the within-workplace density and correlation
of workplace choice among members of the same household. Numerical explorations show
that the former has a strong impact on the epidemic peak and final size. Conversely, if
the within-workplace density is high enough, or if the epidemic is intense, we find that
the large population limit of Chapter 3 which ignores these phenomena remains a satisfying
approximation of these epidemic dynamics. These results still need to be confirmed by a more
exhaustive simulation study, covering a larger spectrum of epidemic scenarios and structure
size distributions.

The importance of the within-workplace density echoes considerations in the literature
about effective workplace sizes. Indeed, the number of contacts within a workplace not only
depends on its size, but also on the tasks achieved by employees which may condition their
contact with coworkers (Timpka et al., 2016). Additionally, it illustrates the importance of
empirical studies aiming at reporting detailed contact networks within schools or workplaces
(Colosi et al., 2022; Mossong et al., 2008), in order to inform modeling choices for within-
workplace contacts. An interesting perspective would thus be to include more sophisticated
within-workplace contact network models, possibly based on sensor contact data to mimic
real-life settings (Colosi et al., 2022; Contreras et al., 2022).

Finally, a global sensitivity analysis would allow to corroborate and quantify the influence
of both network and epidemic parameters on epidemic outcomes and their deviation with
respect to the household-workplace model. Given the computation time necessary for numer-
ical simulations of the epidemic trajectories of the generalized household-workplace model,
we aim at constructing a metamodel on which the sensitivity analysis can be performed
(Saltelli et al., 2002, Chapter 5.3 and Faivre et al., 2013, Chapter 5).
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CHAPTER 5
On spinal constructions for
interacting populations

We study a density-dependent Markov jump process describing a population where each
individual is characterized by a type, and reproduces at rates depending both on its type
and on the population state. First, using an appropriate change in probability, we show
that a sampled lineage of the population process, together with the population state, can be
captured by a time-inhomogeneous Markov process. This construction allows for more general
sampling procedures than what was previously obtained in the literature, such as sampling
restricted to subpopulations. Second, we consider the 1)-spine construction from Bansaye,
2024 and its large population approximation. Under the assumption that the deviations
of the spinal population state with regard to its large population limit are controlled, we
establish the large population approximation error for the spine’s lineage.

Contents
5.1 Imtroduction .. ... ... ... i 179
5.2 The population process and its ¥-spine construction . . . .. 181
5.2.1 The population process . . . . ... ... oL 181
5.2.2 Reminders on the t-spine construction for interacting populations182
5.3 The ¢-sampled lineage . .. ... ... ... ... .00, 185
5.3.1 A many-to-one formula . . . ... ... . 0oL 185
5.3.2 Proofs . . . . .. .. 187
5.4 Quantification of the )-spine large population approximation 194
5.4.1 Coupling the 1-spine with its large population limit . . . . . . 195
5.4.2 Quantifying the approximation error . . . . . . . .. ... ... 196
55 Discussion . . . . . . i e e e 198

5.1 Introduction

For branching processes, the ancestral lineage of a uniformly sampled (typical) individual is
well understood. Indeed, using an appropriate change in probability, it is possible to exhibit
another genealogical tree, with one distinguished individual whose lineage behaves as the lin-
eage of a typical individual in the original process. This distinguished individual is commonly
called the spine. The key to the construction of the spinal process is that the reproduc-
tion rates of the spine are biased towards leaving more numerous descendants than other
individuals, making emerge size-biased distributions. Generally speaking, the obtained spinal
construction has several strengths. Notably, it allows to establish many-to-one formulas (e.g.
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Harris et al., 2016; Harris and Roberts, 2017), which are closely related to Feynman-Kac
path equations (Del Moral, 2004, Sections 1.3 and 1.4.4). Many-to-one formulas translate
the average value of a functional evaluated over the lineages in the branching process, into
the average of the functional evaluated along the spine, whose trajectories are exponentially
weighted to capture the growth of the population. If the exponential weight is determin-
istic, this immediately implies a numerical advantage for computing such averages through
Monte-Carlo simulations. This is due to simulations of the spine being numerically afford-
able, whereas simulations of the whole genealogical tree in the original branching process can
be numerically challenging; see for instance Nagel et al., 2021 for comments on simulations
of infection trees. Also, spinal constructions have proven an effective way of establishing
classical key results on branching processes, such as the Kesten Stigum theorem (Lyons et
al., 1995; Georgii and Baake, 2003). More recently, the semi-group associated to the spinal
construction has proven a successful tool in the analysis of non-conservative semi-groups,
extending its applications beyond branching processes (Bansaye et al., 2020; Bansaye et al.,
2022).

While many models for population dynamics arising in biology and epidemiology do not
satisfy per se the branching approximation, a classical approach is to consider regimes in
which the population process can be well approached by a branching process, using coupling
arguments. For instance, in epidemiology, it is well-known that at the beginning of an
epidemic, the tree of infections can be captured by a branching process which neglects the
depletion in susceptible individuals (Ball and Donnelly, 1995). Similarly, in order to analyze
the lineage of a uniformly sampled individual in a population which is subject to evolution
under a changing environment, Calvez et al., 2022 consider the stationary regime in which
the population’s type distribution is constant. However, such branching approximations are
restricted to specific parts of the dynamics of interest only; see for instance Barbour and
Reinert, 2013 and Bansaye et al., 2023b for details in the case of epidemic models and
invasion processes.

In order to address this limitation, there have recently been developments towards cap-
turing the ancestral lineage of a sampled individual, as well as the whole genealogical tree,
in populations with interactions. In Bansaye, 2024 a spinal construction is developed for this
setting, focusing on multi-type processes with discrete type space. The general idea consists
in biasing the reproduction rates of the process, both along the spine and outside of it,
according to a positive function v of the reproducing particle’s trait « and the population’s
type composition z. Intuitively, ¢(x, z) can be regarded as the individual's reproductive value
or long-term fertility. Hence, when the spine reproduces, descendances with higher values
of i given the population state are favored, while the descendances of individuals outside
of the spine are biased towards rendering the population more favorable for the spine. The
author derives a many-to-one formula, both for finite populations and in the large population
approximation. In the latter, the population’s type composition converges to the unique so-
lution of an ordinary differential equation. Hence, a time-inhomogeneous branching process
is recovered which describes the lineage of a uniformly sampled individual in the determin-
istic regime. Further, this spinal construction has been extended to include more general
type spaces (Medous, 2023). Finally, while our focus lies on spinal constructions, let us
mention Duchamps et al., 2023 where information on the infection tree in epidemic models
are achieved outside of the branching regime, by tracing contamination chains backwards in
time. Again, both finite populations and the large population limit are considered.
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In the present chapter, we aim at complementing the above spinal constructions for
populations with interactions, by addressing the following topics.

(i) Assuming ¢ > 0 can be restrictive, as it prohibits for instance sampling restricted
to subpopulations. Indeed, this is a pertinent setting arising in applications. For
instance, in epidemiology, chains of infection leading to the contamination of vulnerable
individuals, such as the elderly or immunocompromised, are naturally of particular
interest. In this context, the motivation for a spinal construction designed for targeted
sampling is two-fold. First, the dynamics of the spinal lineage may open the door to
an intuitive understanding of such contamination chains. Second, when considering
the 1-spine under the condition that ¢ > 0, sampling at time ¢ restricted to a given
subpopulation would amount to sampling within the whole population and subsequently
discarding all the trajectories which do not reach the target subpopulation at time ¢.
If the many-to-one formula is to be evaluated by Monte-Carlo methods, this can be
computationally expensive if the subpopulation is rare or rarely visited by the spine.

(i) In addition, in the many-to-one formula of Bansaye, 2024, spinal trajectories are pe-
nalized by an exponential weight, which depends on a functional of the spine’s type
and population state (cf. Section 5.2.2). In particular, this exponential weight is not
necessarily deterministic. In this case, the interpretation of the spinal process is less
straight-forward, as this penalization needs to be taken into account. Further, Monte-
Carlo estimations of the many-to-one formula become delicate as rare trajectories may
have a tremendous impact.

As a consequence, we aim at proposing an alternative many-to-one formula which
relaxes the positivity assumption (i) and which does not require exponential weighting
of trajectories (ii). This will be achieved by making use of a different change in
probability inspired by Marguet, 2019.

(iii) Finally, an open question so far is to evaluate the approximation error of the spinal large
population approximation. Here, we will work under the assumption that the approxi-
mation of the spinal population state by its deterministic limit is well quantified, which
is reasonable as this is generally the case for density-dependent Markov jump processes,
for instance through diffusion approximations (Ethier and Kurtz, 1986, Chapter 11),
moderate or large deviations (Britton and Pardoux, 2019b; Pardoux, 2020)). This
allows us to yield a first control of the gap between the trait sequence of the finite
population spine and its large population limit by a coupling argument.

This chapter is structured as follows. The population process of interest is defined in
Section 5.2, and we recall the associated -spine construction introduced by Bansaye, 2024.
Next, we address questions (i) and (ii) in Section 5.3, followed by (iii) in Section 5.4. Finally,
Section 5.5 discusses our results and the perspectives for applications in epidemiology.

5.2 The population process and its i)-spine construction

5.2.1 The population process

We consider a structured population, where each individual has a type z € X', and we assume
that the type space X is finite. The number of individuals of type x in the population is
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referred to as z,, and the corresponding vector z describes the composition of the population.
Here, we will assume that the population size cannot exceed K individuals (carrying capacity,
absence of demographic births and deaths, etc.). Thus

zeZx =1{ze (NuU{O)": |z|, < K}.

Further, individuals will reproduce at rates depending on their type and the current
population state. More precisely, an individual of type x may be replaced by an offspring
k = (ky, e Nu {0},y € X) € Zk, meaning that the individual dies and for any y € X,
k, individuals of type y are born. This occurs at rate 7 (z,z). We suppose 7(x,z) =
D>k Tk(z,2) < oo for all z € X. Further, let (e(z) : x € X') be the canonical base of Zk, in
the sense that for z € X, the only non-zero component of e(x) is its x component. Then,
as the population size is bounded by K,

Tk(z,2) =0 if ||[z+k—e(2)], > K.

In order to keep track of the genealogy, we will make use of the Ulam-Harris-Neveu

notations. Let U = Uklek, then u = (uq,...,ux) € U represents the uy-th descendent
of (u1,...,ux—1) and for u,v € U we write u > v if v is an ancestor of u . The type of
u € U will be called z,,. Hence when an individual u is replaced by its offspring k, the new
individuals are (u, 1),..., (u,|/k||;) and we need to decide the type of each descendent. We

thus consider a probability distribution Oy on
X = {xe Xkl ve e X #{i:x; = 2} = k. },

and (w4 : i € [1,|k[[{]) is distributed as Q.

Let us now introduce the stochastic process of interest. Intuitively, it corresponds to
describing the set of individuals alive and their types, at each time ¢ = 0. In order to give its
definition, we need the following notations. Consider the set E = {(u,z,) : u € U, x, € X},
then Mp i (E) is defined as the set of positive point measures p on E such that u(F) < K.
The set of atoms of p is given by A(n) = {(u,xy) @ p({(u,24)}) > 0} and we define
g(n) < U as the set of labels of its atoms, and z(u) € Zk as the corresponding type
composition.

We start from an initial set of individuals G(0) = g = N, and the population will evolve
as explained above. At each time t, let G(t) — U be the set of individuals alive. The process
of interest (X (t),t = 0) is a Markov jump process with cadlag trajectories, which can be
defined informally by

Vit > O7 X(t) = 2 5(u,xu) € MP,K(E)
ueG(t)

In particular, notice that there cannot be explosion, since there are at most K individuals
reproducing at rate less than maxgex zez, 7(z,2), which is a finite bound as X’ and Zx are
finite sets. Finally, Z(t) = z(X (t)) yields the composition of the population at time ¢, and
for u € G(t) and s < t, 2, (s) stands for the type of the unique ancestor of u alive at time s.

5.2.2 Reminders on the v-spine construction for interacting populations

Now that the population process is properly introduced, let us briefly summarize some of the
results obtained in Bansaye, 2024 which will be stated in our setting. In particular, we will
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restrict ourselves to understanding the evolution of the types of the ancestors of a typical
individual, and of the population composition over time, instead of dealing with the entire
genealogical tree.

The -spine for finite-size populations

Define the set
Sk ={(z,2) e X x Z 12, = 1}. (5.1)

For any (z,z) € Sk, we consider an (arbitrary) labeling g(z) < N of individuals and fix
Uy € g(2z) such that u, is of type x. We define the corresponding population state

= Z 5(ua:u
ueg(z

We let E(, ,) and Py, ,) designate the expectation and probability conditionally on X (0) =
X(z,z). With these notations,

Mif(,2) =B | D) flau(t), Z(1)]

ueG(t),u>uz

is a semi-group whose generator G is defined by its action on functions f : Sk — R, as
follows. For any (z,z) € Sk,

Gf(x,z) = Z (2, 2) (Zkyf y,z+k—e(x)) — f(:v,z))

keZg yeX 55
+ ) (2y = Loy, 2) (f (2,2 + k —e(y)) — f(x,2)). (5:2)

yeX

kGZK

Consider a positive function ¢ : Sxg — (0,+00) and let A = Gy/1). The 1)-spine
construction corresponds to the stochastic process (Y (s),((s))s>0 whose generator L is
defined as follows. For any f: Sk — Ry,

Lf= M —Af.

(G

Generally speaking, the idea is that Y yields the evolution of the type along the lineage of
a distinguished individual, the spine, whose reproduction rates are biased by (-, (), where
¢ describes the spinal population’s composition. Similarly, reproduction rates outside of the
spine are also biased, favoring descendances which create a population state in which the
spine is more fertile. The interest in this -spinal process is illustrated by the following
many-to-one formula. Let (7,2z) € Sk and consider E,, ,) the expectation conditionally on
the event (Y(0),¢(0)) = (z,z). Also, for t > 0, define

t

W (t) = exp ( [RLt C(s))ds) | (5.3)
0

Then for any ¢ > 0 and any measurable function F' : D([0,t],Sx) — Ry, for any (z,z) € Sk,

Ex(m,z) [ Z ’(/J(l‘u(ﬁ), Z(t))F((CL’u(S), Z(S))sét)] = w(% Z)E(x,z)[W(t)F((Y(S)a <(8))s<t)]' (5'4)

ueG(t)
UZUg
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As mentioned in the introduction, the exponential weight W implies that rare trajectories

of the 1)-spine may have a large impact on the right-hand side of Equation (5.4). This
leads to a potential numerical challenge despite the 1)-spine being easier to simulate than
a typical lineage of the original population process by itself. The issue vanishes if ¢ is an
eigenfunction of G, as A is constant in this case. However, the existence and uniqueness
of such a positive eigenfunction is not always satisfied, even for classical models such as
the epidemic SIR model. This motivates our interest in obtaining a many-to-one formula
without exponential weighting the spinal trajectories. Additionally, one may be interested
for instance in the typical lineage of individuals who at time ¢ have a specific type x. The
positivity assumption ¢» > 0 does not allow choices such as i) = 1(,,, hence this constraint
needs to be incorporated in the function F'. Again, this emphasizes some potential difficulties
for numerically computing the right-hand side of Equation (5.4), as the event {Y (¢) = z}
may be rare itself, particularly if the type x is rare and/or poorly fertile. This will be addressed
in Section 5.3.

Large population approximation of the 1-spine

Further, it is possible to establish the large population limit of the 1-spine construction. Let
d = Card(X) and Z = [0,1]9. Let (1., k € (NuU {0})9) be a family of continuous functions
Tk : X x Z — Ry such that for each z € X, the set 7, = {ke (NuU {0})? : 1 (z,-) # 0} is
finite.

For K > 1, consider the population process X* where an individual of type x in a
population of composition z is replaced by descendance k at rate 7 (z,z/K). For the
population size to be bounded by K, this imposes the following condition:

VK > 1,Vze Zx,Vre X 1z, > 1,Vke To, 7(2,2/K)=0if |z +k —e(x)|; > 1.

Notice that for instance, classical epidemic models satisfy this condition, as the effective
population size is often kept constant. Letting ZX = Z(X®)/K then ensures that ZX (t) e
Z almost surely, for every t > 0.

Also, we consider some xz € X" and zg € (0, l)d and for every K > 1, the initial condition
is set to X (0) = X(z,|Kzo]). Define A(z) = (Azy(2))zyex for z € Z by A, y(2z) =
> ke, (ky — 1)7i(z,2). Under the hypothesis that z — A(z) is Lipschitz continuous on Z,
there exists a unique solution z to the differential equation

2 (t) = 2(t)A(2(t)), 2(0) = zo, (5.5)

and we assume that for all £ > 0, inf ey se[0,] 22(5) > 0. In particular, we know that ZK
converges uniformly in probability to z on finite time intervals.

Consider a continuous function 1) : X x [0,1]¢ — (0, +00) which is continuously differen-
tiable on (0,1)%. Let (Y (%) be the associated v-spine construction with initial condition
(z,|Kzo|/K), the spinal population state ¢ being normalized by K analogously to Z%X.
Notice that for any ¢ > 0, (YX(t), (¥ (t)) € S where

S ={(x,2) e X x [0,1]¢ : z, > 0}.

Then under the assumptions above, the 1-spine converges in law, on finite time intervals,
to (T, z) where z is the unique solution to (5.5), and Y is a time-inhomogeneous X-valued
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Markov jump process which, at time ¢, transitions from x to y at rate

)
2 2O S

In Section 5.4, we exhibit and quantify the speed of this convergence.

5.3 The y)-sampled lineage

In this section, our aim is to propose a many-to-one formula in the line of Equation (5.4),
which relaxes the positivity assumption on . In order to do so, we will introduce a change
in probability, which yields a time inhomogeneous spinal construction. As we will see, this
many-to-one formula further does not require to exponentially penalize the spinal trajectories.
This approach is inspired by Marguet, 2019, in continuity with which we refer to the obtained
time-inhomogeneous process as the -auxiliary process.

5.3.1 A many-to-one formula

Consider a non-negative function ¥ on X x Zk such that the following application my, is
positive on Sk x [0, ]

my(e,2,8) = Baem| D wlra(s) 2()]. (5.6)

ueG(s), u>ug

Notice that, by the Markov property, for s € [0, ],

my(wzt—s5) =E[ Y pl@t), Z()|X(s) = X(z,2)|.

ueG(t), u>uy

In words, m.,(x,2z,t — s) corresponds to the v-weighted average of the types of individuals
alive at time ¢ who descend from a given individual of type = at time s, given that at time
s, the population was in state z. For instance, if ¢ = 1, this yields the average number of
individuals alive at time ¢, who descend from an individual of type x at time s when the
population was in state z. Similarly, if ¢ = 1, for a given y € X', my (v, 2,t — s) yields the
average number of descendants of type y at time t, starting at time s from an individual of
type z in a population of composition z.

Let us now introduce the v-auxiliary process, which will allow to capture the behavior of
the ancestral lineage of a i-weighted sample of the population process. For t = 0 fixed, we
will consider the time-inhomogeneous Markov process (Y () (s), (®) (s)),<; defined as follows.
The main idea is to follow the type Y®) of a distinguished individual, which will be referred
to as spine in analogy to classical spinal constructions. At time s < ¢, when of type = in a
population of state z, the spine divides to leave descendance k and switch to type y with
rate
my(y,z + k —e(x),t —s)

My ($7 z,t — S)

P (5,2,2) = ne(x,2)k,

In other words, compared to the original process, at any time s < t, transitions along the
distinguished lineage are biased in favor of those which lead to a larger i-average descendance
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at the final time . However, due to the density-dependence of division rates, it is necessary
to keep track of the population state ((). Again, transitions need to be biased, in order
to account for the modified behavior of the distinguished individual when compared to the
original process. As a consequence, when the population is in state z and the spine of type
x at time s < t, individuals of type y other than the spine divide to leave descendance k at
rate

my(z,z +k —e(y),t—s)

My (l’, z,t — 8)

A(t)(

Pk S Y, $7Z) = Tk(y,Z)

Here, the bias favors those transitions which lead to a more favorable environment for the
spine, i.e. a population composition in which the -average of the spine’s descendance is
high.

We will now characterize (Y (s),((®(s))s<; as the unique solution of a stochastic
differential equation. In order to do so, we let Y()(s) € {e(z) : € X} for any s € [0, 1],
where Y (*)(5) = e(z) means that the spine is of type z. Define E = R, x Sk, and consider
two independent Poisson point processes () and @ on Ry x F, of density dr ®df®@n(dy, dk)
where dr, df designate the Lebesgue measure and n the counting measure on Sgi. Here, we
assume that ¢ and @ are defined on the same probability space as and independently from
(Y®(0),¢®(0)), whose law is supposed to be given. Then, for any s € [0, ],

Y(t)( Y(t) J J o<p (t> (r,Y &) (r—),¢(®) (r— ))}( e(y )—Y(t)(r—))Q(dndO,n(dy,dk)),
C(t) f J 0<p (t) (r,Y ®) (r—),C® (r ,))}(k - Y(t)(?"—))Q(dT, d@ﬂl(dy,dk))

+ — e(y))Q(dr,df, n(dy, dk)).

J JE -)- - - (
0 {Gé(@gw(” ) 1{},(”(Ti):y})ﬁy)(r,y,y(t)“ Y ))}
(5.7)

Remark 5.3.1. Throughout the following, in order to simplify notations, we will make no
distinction between the sets X and {e(x) : x € X'}, based on the natural bijection between
the two sets. For example, Y*)(s) = x is equivalent to Y (*)(s) = e(x). Similarly, to every
real-valued function f on Sg, we assign a function f on {e(z) : x € X} by f(e(z)) = f(z),
the application f — f being a bijection between the sets of real-valued functions on Sk and
on {e(x) : x € X}. Thus, we will always consider Y!) to take values in the Skorokhod space
D([0,t], X), unless mentioned otherwise.

Our first result shows that the process (Y (®)(s),((")(s))s<; is now well defined, and

additionally provides its semi-group RO = (R,(fi, < s < t) We recall that the latter is

characterized by its action on non-negative functions f on Si: forr < s < t and (z,z) € Sk,
R (x,2) = E[f(Y(t)(S),C(t)(S))I(Y(t)(T),C(t)(r)) = (z,2)].

Proposition 5.3.2. Equation (5.7) admits a unique strong solution (Y®),¢(®)) in the Sko-
rokhod space ([0, ], Sk). Its semi-group R is defined by:

V0

A

s A ()
r<s<t, R =¢k A7 dr (5.8)

)
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where the operator A" is characterized by its action on non-negative functions f on Sk .
For any s € [0,t) and (z,z) € Sk,

AV f(2,2) = my(z,2,t = 8) " (Glmy (-t = 9)())(2,2) = Gmy(,t = 5))(z,2)) . (5.9)

Notice that the operator A®) corresponds to the generator of the semi-group R("). As
our state space Sk is finite, A(Tt) can be represented as a matrix, whose elements correspond
to the instantaneous transition rates at time 7 which can be recovered by taking f = 1, v)
for (y,v) € Sk. In particular, this ensures that the generator A® uniquely characterizes the
semi-group R"), and thus the Markov process (Y ) ¢()). The proof of the proposition is

postponed to Section 5.3.2.

We are now ready to state our main result. With slight abuse of notation, E(, ,) will
designate the expectation conditionally on the event (Y*)(0),¢®(0)) = (x,2).

Theorem 5.3.3. For any t = 0 and any measurable function F : D([0,t],Skx) — R4, for
any (z,z) € Sk,

Exea)| 2 Yl 2O 2(s))s<0)| 10
ueG(t), u>ug .

= my (@, 2, ) E (e ) [F (YD (5), (P (5))st)]-

Before proceeding to the proof of Theorem 5.3.3, let us compare the obtained -auxiliary
process with the -spine from Bansaye, 2024. First, we may notice that both spinal con-
structions remain similar in spirit, as ours may be regarded as a time-inhomogeneous m.;-
transform, instead of the classical -transform. Second, in the special case where ¢ is an
eigenfunction of the generator G introduced above, a brief computation shows that Equation
(5.10) amounts to the Feynman-Kac formula of Equation (5.4), as one would expect.

5.3.2 Proofs

The general idea is to proceed as follows. We start by showing that the i-auxiliary process
is well defined, by Proposition 5.3.2, and compute its generator A(). Next, we introduce a
time-inhomogeneous semi-group corresponding essentially to the left-hand side of the many-
to-one formula given by Equation (5.10) normalized by m,;, and show that its generator is
equal to A®). As mentioned previously, the considered state space being finite, the generator
uniquely characterizes the time-inhomogeneous semi-group. This finally allows to establish
Theorem 5.3.3.

Existence and uniqueness of the v-auxiliary process

We first establish Proposition 5.3.2, ensuring that the i-auxiliary process is well defined. We
start with a technical lemma.

Lemma 5.3.4. For any t > 0, for any (x,z) € Sk, the function s — my(x,z,t — s) is
differentiable on (0,t), and we have:

Osmy(x,2z,t —s) = —G(my(-,t —5))(z, 2).
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Proof. Let (z,z) € Si. Showing that t — my(x, 2, t) is differentiable on R and computing
its derivative is sufficient, as the desired result follows by composition. Let ¢ = 0 and h > 0.
The Markov property ensures that

my(z,2z,t + h) = Ex(x,z)[ Z My (xy(h), Z(h),t)].
ueG(h), u>ug(0)

For i > 1, Let T; be the time of the i-th jump of the population process. Then on the one
hand, if 71 > h, then the population at time h is identical to the population at time 0, and
thus:

mw(CC,Z,t—i-h) = E}E(z,z)[ Z m¢($u(h),Z(h),t)1{T1<h}]
u€G(h), u>us(0)

+ my(x,2,t)P,(T1 < h).
Similarly, on the event {17 < h < Ty}, Z(h) = Z(T}) whence

]EX(:B,Z) [ Z My (xu(h)a Z(h)a t)l{T1<h}] = a(h) + b(h)a
ueG(h), u>u,(0)

where

a(h) = Ex@:,z)[ Z my (2 (T1), Z(T1), 75)1{T1<h<T2}],
ueG(h), u>ug(0)

bh) = Exm| D, mu@a(h), 200,01z, ny |
ueG(h), u>uz(0)

As a consequence, we obtain that
my(x,2,t + h) —my(z,2,t) = A(h) + B(h), (5.11)
with
A(h) = a(h) — my(x,2z,t)P,(Th < h <T3)

and
B(h) = b(h) — my(x,2,t)P,(T> < h).

Let us first focus on B(h). For any t > 0 and (y,Vv) € Sk, it holds that my(y,v,t) <
K ||| ,- As Sk is a finite set, it follows that there exists a constant ¢ > 0 such that

1B(h)| < Py (T3 < h).

For v € Zk, let us write A(v) = > x> ycz, VyTk(y, V) for the total jump rate in a

population whose type distribution is given by v. In particular, A is bounded on Zx. Using
the law of T} given Z(0) = z and the law of 75 — T} given T} and Z(T1), we then obtain:

h h*tl A 2
P,(Ty < h) = f e AN zka(y,z)J Az +k —e(y))e Metk—eWDtz g, gt < AN 2
0 yeX 0 2
keZi

We deduce that
— —— 0. (5.12)
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Let us now focus on A(h). Proceeding in the same way, we have

h
Ay =Y f e N e ACk=e@) =0 4t 1 (2, )k, (my (3,2 + k — e(),8) — my (2, 2, )
keZy VO

yeX
h
+ Z f e M@t g Matk—eWD(h=t) gt 1y (y, 2)(my (2,2 + k — e(y), t) — my(z, 2,1)),
keZg V0
yeX

from which it follows that

Aéh) — Tk(z,2) Z ky(my(y,z + k —e(x),t) —my(z,2,t))
keZyi yeX (5 13)
b (D) my(e,z + k — e(y), 1) — my(e, 1)) |
yeX
kEZK

As a consequence, right differentiability of t — m(x, z,t) is established by Equations (5.11),
(5.12) and (5.13), and its right derivative is given by the right-hand side of Equation (5.13).
As this corresponds to a continuous function on R, we deduce that ¢t — my(x,z,t) is
differentiable on R (see e.g. Corollary 1.2 of Chapter 2 in Pazy, 2012) and

%mw(x,z,t) = 2 Tk (%, 2) 2 ky(my(y,z +k —e(x),t) — my(x,2,t))

keZk yeX
+ Z Tk(y,z)(m¢(x,z+k—e(y),t) —mw(x,z,t)).
yeX
kEZK
This concludes the proof. O

We are now ready to establish the desired result.

Proof of Proposition 5.3.2. The proof is decomposed in three steps, establishing (i) existence
and (ii) uniqueness of the solution to Equation (5.7) by classical arguments, before (iii)
characterizing the associated semi-group R(®).

For ease of notation, throughout the proof, for 0 < s <t we let

(i) Existence. First, notice that by assumption on 7(z,z) for (x,2z) € Sk and continuity
of my, both applications pg%( and [)l(f) are bounded for any y € X and k € Zg. As a
consequence, existence of at least one solution to Equation (5.7) is ensured, as the associated

sequence of jump times (7})k>0 cannot admit an accumulation point on R.

(ii) Uniqueness. Subsequently, in order to establish uniqueness, let us show by induction
that for any k > 0 such that Ty < t, (T}, Y (T},)) is entirely determined by (Y (0), Q, Q).
As Ty = 0, initialization of the induction argument is immediate. If the property holds for
k = 1, then by construction, Ty, only depends on (Tk,Y(t)(Tk),Q,@). Similarly, given
T)+1 and the corresponding atoms A1 and ﬁkﬂ of ) and @ it is clear that Y® (Tk+1) is
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fixed by (Tk+1,Ak+1,ﬁk+1,Y(t) (T%)). The desired conclusion thus is a consequence of the
induction hypothesis.

(ii) Characterization of R™). In order to establish Equation (5.8), it is sufficient to show
that for any non-negative function f on Sk and (z,z) € Sk, the function

7 RO f(w,2) = E[f (YO ()Y (s) = (,2)]
is right differentiable at 7 = s. Indeed, it then follows that Equation (5.8) holds with the

operator Agt) defined for s € [0,t) by

VP Sk = Ry V(ag) € S, AL f(w2) = Tim % (RO, fw.2) — f(a.2)) . (514)

—0+

As we will see, computing the right-hand side of Equation (5.14) leads to Equation (5.9).
Let f : Sk — R4 and (z,z) € Skg. We introduce the following notations. For any
(y,k) € Sk such that 7 (z,z) > 0,

Dy,kf($7z) = f(yaz +k— e(:p)) - f(l‘,Z).
Further, for any y € X’ such that z, > 0 and k € Zk such that 7 (y,z) > 0, let

ay,kf(x7z) = f(.l‘,Z +k— e(y» - f(:L',Z).

Equation (5.7) then ensures that, on the event Y)(s) = (z,z), we have for any h €
[0, — s]:

s+h
PO+ 1) = ) = | | 1o s (20 () QU a8, n(dy. o)

s+h A
+ 1 t t 6 f Y(t) r— Q dr7 d97n dy,dk )
J; JE {9<(<£')(T_)—l{y(t)(T_):y})ﬁf()(n%Y(t)(r_))} v,k ( ( )) ( ( ))

Notice that, for instance,
s+h
Bl et P (2 =)@ ey, ) 0s) = (.2

f S P, YO (1), 1 f (YO () dr YO (s) = (2, 2)].

(y.k)eSk

On the one hand, almost surely,

s+h
m 1j S YO )0y s f (YO (r)dr = > (s, YO (5))0, 0 f (YO (s)).

i
h—0+ h
5 (y,k)eSk (y,k)eSKk

On the other hand, as mentioned at the beginning of the proof,

O, = a < 0.
[0 |0 se[O,t],(y,IkI)leg)S(,(:p,z)eSK yk(s,x,z)
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Further, as Sk is a finite set, | f|o = max(, zyes, f(,2) < 00. Thus, for any h € [0, — 5],

1 s+h
Pl D A YO0 (O dr < 2Card(Sk) o ol e <
s (y,k)ESK

Taken together, we obtain by dominated convergence:

*E JMJ 0 0,1 fF (YO (r=))Q(dr, d9, n(dy, dk))| YD (s) = (z,2)]
9<p ry(t)(r,))} Y, , av, ) ,

t
h—0+ Z 'Oz(/j((s’ z,2)0y k f(2,2).

(y,k)eSK
The other terms arising on the right-hand side of Equation (5.14) can be treated analo-

gously. This leads to the desired result. O

Proof of the many-to-one formula

We are now ready to turn to the proof of Theorem 5.3.3, which comprises several steps.
Let ¢ > 0, and start by introducing the time-inhomogeneous semi-group of interest P() —
( ,(,2,7" < s < t) through its action on applications f : Sk — Ri. For s < t, ug(s)
will designate a chosen individual of type x in G(s), if it exists. For any (z,z) € Sk and
0<r<s<t,

Pffs)f(x,z) = my(x,2,t — [ Z W(xu(t), Z(t)) f(x u(s),Z(s))‘X(r) = %(x,z)]. (5.15)
ueG(t
u>ut( )

Lemma 5.3.5. ( ﬁfs?,r < s < t) defines a conservative, time-inhomogeneous semi-group
acting on the set of functions {f : Sk — R }.

Proof. The conservativity of P(®) follows directly from Equation (5.15) applied to f =1,
which shows that PM1 = 1.

Let us now turn to the inhomogeneous semi-group property. Let » < 7 < ¢, and consider
f: Sk — Ry and (z,z) € Sk. Throughout the proof, we let Xy = X(x,z). By definition
of the semi-group,

P f(w,2) = my(w, 2t =) B[ Y] 0(@a(t), Z() flwals) Z()[X (1) = %o

ueG(t)
u>ug (r)
—my(eat=n)TE YY) Gat), 20 (als), Z6)|X () = %o
veG(r) ueG(t) (5.16)
vE=ug(r) uxv
—my(@,zt =) B[ Y g(@a(n), 2()|X (1) = %o,
veG(T)
V>Ug (1)

where we define the function g : Sk — R, by

)—E| 2, vl Z() f(@u(s), Z(5)| X () = X(w,2))

ueG(t
U>Ug (T)
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Notice that, for any measurable function G : D([0, 7], Sk) — R,

3, Ve ZOmulen(r), 2.0 =17 (o) Z(5))s<r))|X (1) = Xo|

ueG(t
U= Uy (T)

_]E[ Z [ Z ¢ ot ‘X ]mw(xv(T),Z(T),tfT)flG((xU(s),Z(s))ng))
veG(T) ueG(t
v>Ug (7) U>U

Yl Gl@als), 2(9)sen)| X () = o |-

veG(T)
V=g (T)

X(r) = xo]

(5.17)
Applying this equality to G((zy(s), Z(s)s<r) = g(x(7),Z(7)) finally yields the desired
semi-group property:
P{if(w.2) = POIPIS (@,2).

This concludes the proof. O
Let us now compute the generator of (PT(Q,T <s < t).

Lemma 5.3.6. Lett > 0. The generator of the semi-group (Pﬁts) r<s<t)is (Agt), s < t).
Proof. Consider f : Sx — R;. Let (z,2) e Sk and ¢t > 0. Forany 0 < s <t and h > 0
such that s + h < t, it follows from Equation (5.17) and the Markov property that

s erhf(m Z) mw(x’z>t - S)_lE%(r,z)[ Z mw(wu(h)> Z(h),t - (S + h))f<xu(h>7 Z(h))]
ueG(h)
U=, (0)

Using Lemma 5.3.4 as well as the fact that Sk is a finite set, we obtain the following Taylor
expansion:

my((@,2),t = )P (@,2) = Bxen| Y mu(@a(h), Z(R),t = 9)f (wu(h), Z(0) |

ueG(h)
u>ug(0)
FWEx| D Qemuea(), Z(h),t = 5) f(@ulh), Z(h))] + o(h).
ueG(h)
u>ug(0)
AS a consequence,
P :
ozt — 5) el @ :) f(z.2) —Exgea| Y, Gomu(@alh), Z(h),t = s)f(zu(h), Z())]
07 (B Y mul@aB), Z(0),t = )f (wa(h), Z(00) | = m(a,2,t = 5) f(w,2)) + e(h),
ueG(h)
u>ug(0)

where €(h) is such that limj,_,o; €(h) = 0. We thus obtain that

hl—ifg-&- . S+hf(x ;) f(z,Z) = mw(l‘,z,t - S)_l (g(m(’t - s)f())(x, z) + asmd)(x’ z,t — S)) )

where we recall that G is defined by (5.2). Lemma 5.3.4 yields the desired result. O
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We finally are ready to establish Theorem 5.3.3. The proof follows the lines of Marguet,
2019, and is detailed here for the sake of completeness.

Proof of Theorem 5.3.3. Throughout this proof, for readability, we will make use of the
following notations. On the one hand, for ¢ = 0 and u such that there exists v € G(t)
satisfying u > v, let

Xu(t) = (xu(t>7Z(t))'

Similarly, for 0 < s < t, we let

YW (s) = (YW (s),¢M(s))

and for X = (z,2z) € Sk, we let my(X,t) = my(x,2,t).
Let us start by showing that Equation (5.10) holds for

k
F((x(s),2(5)s<t) = | ] fi(a(sy),2(s7),
j=1

where k>1,0<s1<---<sg<tand fi,...,fr : Sk = R.
This part of the proof proceeds by induction. For k > 1, let Hy be the property that for
any 0 < s1 <---<sg<tand fi,..., fr: Sk = Ry,

k k
E%(x,z) [ 2 H ] =My (l’, Z, t)E(x,z) [ H fj (Y(t) (8]))] :
ueG(t), u>u1(0) Jj=1 Jj=1
Let us turn our attention to the initialization step. As Si is a finite set, a semi-group
acting on non-negative functions on Sg is uniquely characterized by its generator. Thus
Lemma 5.3.6 implies that the semi-groups P(*) and R(*) are identical. Hence for any s € [0, t]
and f : Sk — R, Equation (5.15) becomes

Expo| 2 UK (Xuls)] = mule, 2, )RS (2.2).

ueG(t), u>uz(0)

This exactly corresponds to H; by definition of R®).
Suppose now that Hj_q is true for k£ > 1, and let us show that Hj, follows. Consider
functions f1,...,fr : Sk > Ry and 0 < 51 < --- < s < t. Notice that

k
Exa| X, vXu®) [T £(Xu(s))] =

ueG(t)
u>ug(0)
wo] D PU, W(E] Y 00 fu(Ka(0) X (s5-1) = X(Ku(s1-1))] |
ueG(sk—1) veG(t)
U>Uy (0) ”Z“zu(skfﬂ

Using the Markov property and H; leads to:

k
Exga| 2, $(Xu() [ ] £(Xuls)] =

ueG(t)
u>ug(0)

EX(r,z)[ D my(Xu(sko1)t — sk nfj $i)E[fr (YD () [ YD (551) :Xu(Sk—1)]]-

’U.EG(Sk 1)
u>ug(0)
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Equation (5.17) allows to rewrite this as:

k
Exen| ) 00Ku®) [T Xuls))] =
ueG(t) j=1
U= (0)

k—1
Exr| D wXu®) [T £ (sDEF YD (5))¥YO (51-1) = Xu(sr-1)]|
ueG(t) j=1
u>ug (0)

Finally, Hy_1 yields:

ueG(t) j=1
u>ug(0)
k—1
= my (e, 2,0 | [ ] £V )EL (Y (51)] YO (51-1)]]
j=1

This concludes the induction argument.
In order to obtain the desired result, we will reason using the monotone class theorem.
Let us introduce the set

k
I= {ﬂ{x e D([0,t],S8k) : x(sj) € B;}, ke N,s; € [0,t], B; € P(SK)}

J=1

where P(Sk) is the set of subsets of Sk. The set I is a m-system, which induces the Borel
o-algebra B(ID([0,t], Sk)) on the Skorokhod space D([0, t], Sk) (Billingsley, 1999, Theorem
12.5). Further, define

M = {B e B(D([0,t],Sk)) : Equation (5.10) is satisfied for F' = 1g}.

M is a monotone class which contains I according to our induction argument. It thus
follows from the monotone class theorem that M = B(D([0,t],Sk)). In other words, for
any B € B(D([0,t],Sk)), Equation (5.10) is satisfied for F' = 1g. As a consequence,
Equation (5.10) holds for any positive measurable function F': D([0,t], Sk) — R4 as there
exists an increasing sequence of simple functions converging pointwise to F', from which the
result follows by monotone convergence. O

5.4 Quantification of the i-spine large population approxima-
tion

Throughout this section, we will consider the large population )-spine construction intro-
duced by Bansaye, 2024, as summarized in Section 5.2.2 whose assumptions and notations
carry on to the following results. In particular, v is a positive, continuous function on
X x [0, 1] which is continuously differentiable on X' x (0,1)%.
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In a population of size K, let (YK, CK) be the corresponding 1-spine construction where
the population composition is normalized by K. We suppose that there exists (yo,zo) €
X x (0,1)% such that YX(0) = yg and ¢¥(0) = |Kzo|/K, for all K > 1. Recall that ¢¥
converges to the unique solution z of the differential equation (5.5), while Y'X tends towards
an inhomogeneous continuous-time Markov chain Y. In order to quantify the convergence
to this large population limit, we will make use of a specific construction which couples the
sequence of finite population t-spines with their large population limit.

5.4.1 Coupling the v-spine with its large population limit

For the purpose of this section, we let Y& () € {e(x) : x € X} for any t > 0, where
Y (t) = e(z) means that the spine is of type x. As previously, we will identify {e(z) : x € X'}
and X through their natural bijection. Also, recall that S = {(z,z) € X x [0,1]¢ : z, > 0}.

Let J = Ugzex{(z,k) : k € J,} be the set of possible descendances of any individual,
and J = {(y,k) € X x N : k € Upzex T, ky > 0} the set of possible descendances for the
spine, i.e. the type of the child who will become the spine along with the types of all the
spine’s children. For (z,z) € S and (y,k) € J, we introduce the rate pffk(x,z) at which
the spine YX leaves descendance k and becomes of type y, given that it is in state z in a
population of type z € [0, 1]%:

Pya(,2) = mic(z, Z)kyw(y’ z ml&_z(;(i))/K) : (5.18)

Similarly, let p5 (2, y,z) be the rate at which an individual of type x other than the spine is
replaced by k, given that the population state is z and the spine is of type ¥:

P(y,z + (k —e(z))/K)
V(y,2z) '

ﬁl[f(xayaz) = Tk(l',Z)

Define E = R, x J and @ a Poisson point process taking values in R, x FE, of density
ds®@df ®n(dy, dk), where ds, df) represent the Lebesgue measure on R and n(dy, dk) the
counting measure on J. Further, let E = R, x J and consider a Poisson point process
Q on Ry x E, with density ds ® df ® n(dz,dk) where with slight abuse of notation, n
represents the counting measure on 7.

Then for K > 1, the process (Y, (¥) can be defined as the unique strong solution in
the Skorokhod space D(R;,S) of the following system of stochastic differential equations.
For any t > 0,

V@) =0+ | [ ompiormiem e (o) =Y (5-))Qds. by, i),

lKZO

¢ (1) = Kf J gy, (o o) (K = VX (52))QUds, 0, n(dy, dk)) - (5.19)

rxf f i oy (& €@ Qlds, 00, n(dr, )

In order to couple the v-spine with its large population limit, we will construct T using
the same Poisson point process @ as for Y. Define pyx(z,2z) as the rate at which the



196 CHAPTER 5. SPINE FOR INTERACTING POPULATIONS

large population spine leaves descendance k and becomes of type y, given that it is of type
2 in a population of composition z:

pysc(a,z) = Tk(x,z)ky;/jg’ 3 (5.20)

Then T is characterized as the unique strong solution in D(R,, X) of the following stochastic
differential equation. For any t > 0,

T(t) = yo + L JE (o (o} €(0) — T(5)Q(ds. db. m(dy, k). (5.21)

Remark 5.4.1. Existence and uniqueness of the solutions to Equations (5.19) and (5.21)
can be established following the lines of the Proof of Proposition 5.3.2. Indeed, the continuity
and positivity Assumption on 1, the continuity of the applications 1 and the finiteness of
J ensure that the jump rates are bounded. This allows to derive existence, and uniqueness
is again obtained by an induction argument.

5.4.2 Quantifying the approximation error

Let us now turn towards quantifying the large population approximation error. We will work
under the following regularity assumption.

Assumption 5.4.2. For every x € X and k € J,, there exists a positive constant L, such
that the application 1y (z,-) is Ly-Lipschitz continuous on [0, 1]%.

Recall that 4 is continuously differentiable on X x (0,1)% and continuous on X x [0, 1]¢.
Hence for every x € X, 1 (z,-) and v(x,-)~! are Lipschitz continuous with respective Lips-
chitz constant M, and N,. Let M = maxgey M, N = maxgex N, and L = maxgey L.
As the set J is finite, it holds that:

V= rlglax(HkHlHTkHoo)(M\WlHoo + N[tloo) + 7 oo max [k[1 L < o0,
eJ keJ

c= MW‘IHOOrlr{lax(l\klh(HkHl + 1) 7if0) < 0.
eJ

Hence, Equations (5.18) and (5.20) as well as Assumption 5.4.2 ensure that for every K > 1,
for every x € X' and z1,25 € [0,1]?

C

= (5.22)

|p311(,k($vzl) — pyx(T,22)| < V|z1 — 22| +

With this in mind, we make an assumption on the convergence of (¥ to z.

Assumption 5.4.3. There exist non-negative sequences (tx)i>1, (€x)Kx=1 and (ax) k=1
such that, for every K > 1,

se [O,tK]

P ( sup [[¢5(s) — z(s)|1 = 5K> < ak.
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In particular, Assumption 5.4.3 implies that we already know the precision of the large
population approximation at the population scale, which we consider to be reasonable. In-
deed, for many density-dependent Markov jump processes describing population dynamics,
the divergence of the finite-population process from its large population limit is well studied.
Classical regimes include diffusion approximations (Ethier and Kurtz, 1986, Chapter 11),
moderate and large deviations (Britton and Pardoux, 2019b; Pardoux, 2020, for applications
to epidemic models). This will be discussed in more detail in Section 5.5.

As a consequence, it remains to focus on understanding how well T approximates ¢X.
The idea is to control the probability of the coupled spines to differ before time tx thanks
to the control of the fluctuations of (¥ around z on the same time interval. This will allow
to establish the following result.

Theorem 5.4.4. Under Assumptions 5.4.2 and 5.4.3, there exists C' > 0 such that for every
K=>1,
P(3t <tgx : YE@{) #T)) < ag + Cleg + K Hitk.

A particularly nice setting would be to consider

I}l_I)IlQQU(/K = I;linootKeK = I}I—rpooaK = 0, (5.23)

as the probability of the coupling being exact on [0, ¢x | then converges to one as K grows
large. Again, this is expected to be achievable, given the aforementioned results on the fluctu-
ations of density-dependent population processes around their deterministic large population
limits. We refer to Section 5.5 for detail.

Proof. We are interested in the first instant Tk at which Y differs from Y
Tx = inf{t > 0:YE(t) # T(t)}.

Let K > 1. For two sets A and B, we let AAB designate their symmetric difference.
Notice that, by the coupling of Y and Y'¥ through Equations (5.19) and (5.21),

t K
{Tk > tx} 2 {TK > tK,L JEl{ogpijk(YK(sf),cK(sf)}A{e<py,k(r(57),z(s))}Q(dsvd9»n(dy,dk)) = 0}
t K
2 {TK > tK’L Ll{Kpjﬁk<T<sf)7<K<sf>}A{e<py,k<'r<sf>,z<s>>}Q(d5:d‘)v"(dyadk)) = 0}
t i
{Tk > tx} 2 {L Ll{espfk(r(s_),w(s_)}A{espy,k(r(s_),z(s))}Q(dS,d9’n(dyadk)) = 0} :

Define the constant R = VCard(J) and for K > 1, cx = Reg + Card(J) ¢/K. We
introduce the event

Ag =3 sup > [pi(Y(8), 65 (9) = pyac(T(s), 2(s))] < ek
SE[O,tK] (y,k)eS

It follows that

1974
P(Tx < tg) < ]P(AKaJO JE L{o<p, (T(s=).¢" (s—)}A10<p 1 (X (5-),2(5))} @ (d5, A0, n(dy, dK)) = 1)

+ P(A%). 520
5.24
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First, we may notice that Assumption 5.4.2 ensures through Equation (5.22) that

AR < {R sup [¢"(s) - 2(s H1+Cal"d(~7)* K},
se[0,tx] K

from which we deduce:

IP)(A?() < P( sup HCK(s) —z(8)|1 =z ex) < ak. (5.25)

s€[0,tk]
Second, on the event A, it holds that for any (6,y,k) € E,
{0 < pya(T(s=)¢" (s=)}A{0 < py(T(s-), 2(5))}
S {0 € [pyx(T(s-), 2(5)) — e, pyxc(T(s—), 2(s)) + cxc]}-

As a consequence,
tK
AK,J f L0y (T (5)CK (s2)} A0<py 1 (T(5—),2(s))} @ (ds, dO, n(dy, dk)) = 1}

ti
fo fE L{0elpy ac(X(5-).2() —exc oy ac( X (s).2(8) +exc ]y Q(ds, dB, m(dy, dk)) = 1}‘

Hence, Markov's inequality leads to

tK
P (AKJ f Lo<pi, (T(s-),C (s—) A LBy (X (5-),2(5))) @ (8, A0, n(dy, dk)) > 1)

tK
f f L{belp, (0 (s-),2()) ~ci pyac (X (s-),2(s) +exc ]y @ (s, 4B, (dy, dk) )] (5.26)
f L{0elpy e (X (s-),2()) —cic pyac (X (s-),2(5) +exc )y @ (ds, 4B, (dy, dk) )]

<E[ j
O (yk)es 70

< Clex + K_l)tK,

with C' = 2max(c, V)Card(J)?. Thus, the conclusion follows by injecting Inequalities
(5.25) and (5.26) into Equation (5.24). O

5.5 Discussion

Using a change of probability, we first exhibit a time-inhomogeneous Markov process which
allows to establish a many-to-one formula, i.e. which represents trajectories of a typical
lineage of the population process. When compared to the v-spine of Bansaye, 2024, the
general idea remains familiar. Indeed, reproduction rates are biased both along the spine and
outside of it, transitions being most likely if they increase the average fertility of the spine,
where fertility is measured by evaluating 1 over the spine’s descendants at time ¢.
However, the v-auxiliary process has the advantage of relaxing the initial positivity as-
sumption on v, which for instance opens the door to more efficient sampling in subpopula-
tions. Further, it does not require exponential weighting of trajectories, potentially facilitating
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the numerical evaluation of the many-to-one formula. This comes at the cost of introducing
a time-inhomogeneity, a possible inconvenient being the necessity to evaluate the application
my, defined in Equation (5.6). More precisely, it can be delicate to compute explicitly, even
for classical models such as the SIR model. As a consequence, it may need to be computed
numerically, in which case simulating trajectories of the -auxiliary process through standard
algorithms such as Thanh and Priami, 2015 may require excessive computation time.

In this context, the large population approximation may be a pertinent regime. Heuris-
tically, one would expect a similar result as in the case of the -spine: under appropriate
assumptions, the effect of the spine on the population state should vanish, as well as the
bias of reproduction rates outside of the spine. Hence, the dynamics of the population’s type
composition are given by the unique solution z to differential equation (5.5). Similarly, at
time s < t, a spine of type x is expected to be replaced by descendance k and switch to
type y at rate
my(y, z(s), t — s)
my(x, 2(s), t —s)

Tk (z, 2(5))ky

In particular, the process describing the descendance of the spine then corresponds to a time-
inhomogeneous multi-type branching process whose reproduction rates depend on a changing
environment, given by z. If similarly to Calvez et al., 2022, we assume that z admits a stable
equilibrium, then starting from this equilibrium, the descendance is described by a classical
multi-type branching process.

In the case of the -spine, the large population approximation has already been estab-
lished in Bansaye, 2024. Here, we have quantified the error of this approximation when
compared to the -spine in finite population, through the means of a coupling argument.
This argument makes use of Assumption 5.4.3 on the convergence of (¥ to z, which we
consider to be reasonable. Indeed, it corresponds to understanding and controlling the fluc-
tuations of the finite-population stochastic process around its deterministic limit, which is a
well studied question with several classical regimes: Gaussian fluctuations (ex = O(K'/?)),
moderate deviations (ex = O(KP) for p € (0,1/2)) and large deviations (cx = O(1)).

In the case where the deterministic limit has a stable equilibrium at which the process
is initialized, moderate deviations appear to be a pertinent regime. Indeed, if we were to
replace (¥ by ZX, moderate deviations are then known to occur on time scales growing
exponentially with K (Pardoux, 2020; Prodhomme, 2023). This would yield a suitable
choice of the sequences tx, ek, ai satisfying Equation (5.23), and further allowing for tx
to grow to infinity sublinearly with K. In addition, conditions for the existence of stable
equilibria are well understood for classical endemic disease models (Brauer et al., 2019).
However, the dynamics of ¢& and Z¥ differ due to the presence of a distinguished individual
and the induced bias in the reproduction rates. While intuitively the impact of the spine
vanishes in the large population limit, the fluctuations around the deterministic limit still
need to rigorously be established in this case.

Among the many possible applications, let us conclude with a perspective connected to
understanding the impact of measures such as teleworking on epidemic spread. More pre-
cisely, it would be interesting to investigate the modifications of typical contamination chains
induced by these interventions. Hence, we would like to consider an endemic model with
age classes, where contacts are represented using the contact matrixes from the POLYMOD
survey (Mossong et al., 2008). Indeed, these contact matrixes have the advantage of being
split into several components, such as household, school and work contacts. This makes it
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possible to rescale each component separately, yielding a proxy for teleworking and/or school
closure (Di Lauro et al., 2021). As a consequence, spinal constructions for populations
with interactions may allow to investigate how the epidemic typically spreads once different
control measures are applied.
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Titre : Approximation de modéles stochastiques d’épidémies sur grands graphes multi-niveaux

Mots clés : Processus épidémique, graphes aléatoires, deux niveaux de mélange, réduction de modéle

Résumé : Nous étudions un modeéle SIR a deux
niveaux de mélange, a savoir un niveau global uni-
formément mélangeant, et un niveau local divisé en
deux couches de contacts au sein des foyers et
lieux de travail, respectivement. Nous cherchons a
développer des modéles réduits qui approchent bien
cette dynamique épidémique, tout en étant plus ma-
niables pour I'analyse numérique et/ou théorique.
D’abord, nous analysons I'impact épidémique de la
distribution des tailles des lieux de travail. Notre étude
par simulations montre que, si la moyenne de la dis-
tribution des tailles de lieux de travail est fixée, sa
variance est un bon indicateur de son influence sur
des caractéristiques clés de I'épidémie. Cela nous
permet de proposer des stratégies de télétravail ef-
ficaces. Ensuite, nous montrons qu’'un modele SIR
déterministe, uniformément mélangeant, calibré sur le
taux de croissance épidémique fournit une approxi-
mation parcimonieuse de I'épidémie.

Néanmoins, la précision de ce modeéle réduit décroit
au cours du temps et n’a pas de garanties théoriques.
Nous étudions donc la limite grande population du
modéle stochastique a foyers et lieux de travail,
gue nous formalisons comme un processus a va-

leur mesure dont I'espace de types est continu. Nous
établissons sa convergence vers l'unique solution
déterministe d’'une équation a valeur mesure. Dans
le cas ou les périodes infectieuses sont exponentiel-
lement distribuées, une réduction plus forte vers un
systeme dynamique fini-dimensionnel est obtenue.
De plus, une étude de sensibilité nous permet de
comprendre l'impact des parametres du modele sur
la performance de ces deux modéles réduits. Nous
montrons que la limite grande population du modéle
foyer-travail permet de bien approcher I'épidémie,
méme si certaines hypothéses sur le réseau de
contact sont relachées. De méme, nous quantifions
l'impact des parameétres épidémiques sur la capacité
du modele réduit uniformément mélangeant a prédire
des caractéristiques clés de I'épidémie.

Enfin, nous considérons plus généralement des
processus de population densité-dépendants. Nous
établissons une formule tous-pour-un qui réduit la
lignée typique d’un individu échantillonné a un proces-
sus spinal inhomogene en temps. Par ailleurs, nous
quantifions par couplage la convergence en grande
population d’une construction spinale.

Title : Approximation of stochastic models for epidemics on large multi-level graphs

Keywords : Epidemic processes, random graphs, two levels of mixing, model reduction

Abstract : We study an SIR model with two levels of
mixing, namely a uniformly mixing global level, and a
local level with two layers of household and workplace
contacts, respectively. More precisely, we aim at pro-
posing reduced models which approximate well the
epidemic dynamics at hand, while being more prone
to mathematical analysis and/or numerical explora-
tion.

We investigate the epidemic impact of the workplace
size distribution. Our simulation study shows that if
the average workplace size is kept fixed, the variance
of the workplace size distribution is a good indicator
of its influence on key epidemic outcomes. In addi-
tion, this allows to design an efficient teleworking stra-
tegy. Next, we demonstrate that a deterministic, uni-
formly mixing SIR model calibrated using the epide-
mic growth rate yields a parsimonious approximation
of the household-workplace model.

However, the accuracy of this reduced model de-
teriorates over time and lacks theoretical guaran-
tees. Hence, we study the large population limit of
the stochastic household-workplace model, which we

formalize as a measure-valued process with conti-
nuous state space. In a general setting, we establish
convergence to the unique deterministic solution of a
measure-valued equation. In the case of exponentially
distributed infectious periods, a stronger reduction to
a finite dimensional dynamical system is obtained.
Further, in order to gain a finer insight on the impact
of the model parameters on the performance of both
reduced models, we perform a sensitivity study. We
show that the large population limit of the household-
workplace model can approximate well the epidemic
even if some assumptions on the contact network are
relaxed. Similarly, we quantify the impact of epidemic
parameters on the capacity of the uniformly mixing re-
duced model to predict key epidemic outcomes.
Finally, we consider density-dependent population
processes in general. We establish a many-to-one for-
mula which reduces the typical lineage of a sampled
individual to a time-inhomogeneous spinal process. In
addition, we use a coupling argument to quantify the
large population convergence of a spinal process.
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