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Abstract

The construction of string theory relies on a symmetry relating bosons and fermions,

called supersymmetry, which must be broken at low energies. Supersymmetric solutions

of string theory are signi�cantly simpler than their non-supersymmetric counterpart, and

thus populate the vast majority of the literature. However, supersymmetry can be spon-

taneously broken at arbitrarily high energy. In this thesis, we therefore investigate so-

lutions of type II supergravity, a classical low energy limit of string theory, that are

non-supersymmetric. We do so within the framework of generalised complex geometry,

a generalisation of di�erential geometry which uni�es the spacetime coordinate transfor-

mations and the gauge transformations of one of string theory potentials, called theB

�eld. We �rst construct new type II supergravity solutions, where the supersymmetry

breaking mechanism is dictated by the generalised notion of stability for extended objects

sourcing the supergravity �uxes. We then derive a generalised geometric expression for

the non-supersymmetric supergravity �uxes, and use it to derive constraints that non-

supersymmetric type II supergravity solutions should satisfy in order for their low energy

e�ective theories to fall in the well known class of N = 1 four-dimensional supergrav-

ity. Finally, we describe non-supersymmetric solutions of type II supergravity within

exceptional generalised geometry, a framework now unifying the spacetime coordinate

transformations and the gauge transformations of all string theory potentials.
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Résumé court en français

Les travaux présentés dans cette thèse portent sur l'étude des solutions de la supergravité

de type II, une limite classique à basse énergie de la théorie des cordes.

Dans ce contexte, nous nous intéressons à des solutions dix dimensionnelles de type

produit : la géométrie qu'ils décrivent est le produit d'un espace quadridimensionel non

compact à symétrie maximale et d'une variété compacte à six dimensionsM .

Dans les compacti�cations de cordes, une telle structure est utilisée pour expliquer

pourquoi nous n'observons que quatre des dix dimensions prédites par la théorie des

cordes : l'espace externe est l'espace que nous observons, tandis que les dimensions sup-

plémentaires déterminent les caractéristiques de la théorie quadridimensionnelle obtenue

en réduisant la supergravité de dimension supérieure.

Un aspect clé des compacti�cations est le fait que les modules associés àM (par

exemple le volume de l'espace interne) sont associés à des champs scalaires sans masse

dans les théories e�ectives à basse énergie correspondantes. La phénoménologie dicte

donc la nécessité de stabiliser ces modules par le biais d'un potentiel, par exemple. Au

niveau classique, cela se fait typiquement par l'introduction de �ux : des champs décrits

par des formes di�érentielles vivant le long de cycles de l'espace compact, de telle sorte

qu'ils génèrent le potentiel approprié pour les modules.

En raison de la rétroaction des �ux, les géométries compactes résultantes sont com-

plexes et ont été étudiées avec succès dans le cadre de la géométrie généralisée. La

géométrie généralisée est une généralisation de la géométrie di�érentielle ordinaire, où

les potentiels des �ux sont traités de manière géométrique. Le �bré tangent deM est

étendu à un �bré tangent généralisé dont les fonctions de transition sont dictées par les

di�éomorphismes plus les transformations de jauge pour les potentiels des �ux. Celles-ci

incluent les transformations de jauge du champB pour la géométrie complexe généralisée,

et les transformations de jauge du champB et des potentiels de Ramond-Ramond pour la

géométrie généralisée exceptionnelle. Les travaux présentés dans cette thèse s'inscrivent

dans le cadre des géométries généralisées, complexe et exceptionnelle.

L'exploration du paysage des compacti�cations quadridimensionnelles de la théorie

des cordes s'est principalement concentrée sur les espaces préservant au moins la su-

xi



xii Résumé court en français

persymétrie N = 1 . L'une des raisons est pratique : la résolution des conditions de

supersymétrie, qui sont des équations di�érentielles du premier ordre, ainsi que celle des

identités de Bianchi pour les �ux, garantit d'avoir des solutions à l'ensemble des équa-

tions de mouvement de la théorie des cordes ou de la supergravité. Il est très di�cile de

traiter les équations du mouvement sans cette approche, même dans l'approximation de

la supergravité, puisqu'il s'agit d'équations di�érentielles du second ordre compliquées.

Des considérations physiques motivent également l'étude des compacti�cations de

cordes supersymétriques, notamment l'attente que la supersymétrie soit brisée à des én-

ergies inférieures à l'échelle de compacti�cation.

Même si la brisure de la supersymétrie à basse énergie est un scénario phénoménologique-

ment motivé, rien n'empêche en principe de briser spontanément la supersymétrie à des

énergies arbitrairement élevées. Dans cette thèse, nous considérons cette possibilité, et

nous nous concentrons sur cette région du paysage de la compacti�cation des cordes, bien

moins étudiée, et qui vaut la peine d'être exploré per se.

Une première contribution aux compacti�cations non-supersymétriques de la super-

gravité présentée dans cette thèse aborde la construction de nouvelles classes de solutions

de supergravité de type II non-supersymétriques, où la supersymétrie est brisée de manière

contrôlée: nous déformons les conditions de supersymétrieN = 1 en ajoutant des termes

de brisure de supersymétrie.

Cette approche est motivée par la volonté de préserver certaines des caractéristiques

pratiques des vides supersymétriques, principalement la possibilité de les caractériser via

des équations di�érentielles du premier ordre. Comme la supersymétrie est brisée, nous

devons nous assurer que les équations du mouvement sont satisfaites. L'objectif est de

trouver des déformations spéci�ques des équations BPS telles que les contraintes supplé-

mentaires à imposer pour résoudre les équations du mouvement soient raisonnablement

tractables.

Nous utiliserons le cadre de la géométrie complexe généralisée, où les conditions BPS

N = 1 ont une interprétation en termes de conditions de calibration de di�érentes D-

branes. Les conditions de supersymétrieN = 1 peuvent être reformulées en un ensemble

de trois équations di�érentielles sur des polyformes dé�nies uniquement sur l'espace de

compacti�cation interne [1]. Chacune de ces trois conditions peut être interprétée comme

une condition de calibration pour des D-branes dans la géométrie [2] : des branes remplis-

sant tout l'espace externe et des branes qui sont des murs de domaine ou des "D-cordes"

dans l'espace externe.

Dans ce langage, on peut identi�er di�érents termes de brisure de supersymétrie en

fonction de la condition de calibration déformée.

Dans cette construction, nous souhaitons étendre l'étude des vides non-supersymétriques

violant la condition de calibration des D-cordes. Plus précisément, nous construirons de
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nouvelles solutions non-supersymétriques de type II, où le courant associé aux D-branes

remplissant tout l'espace externe, présentes dans nos solution, servira d'élément constitutif

pour le terme de brisure de supersymétrie violant la condition de calibrage des D-cordes.

La motivation derrière cette construction est double. La première est la simplicité

: dé�nir la brisure de supersymétrie en termes de courant des D-branes de la solution

est un ansatz simple et naturel, qui à son tour réduit les équations du mouvement à un

ensemble raisonnable de contraintes supplémentaires. La deuxième raison est la question

de la stabilité de ces vides non-supersymétriques : en géométrie complexe généralisée,

le courant des D-branes peut entrer dans le potentiel e�ectif associé à un vide de dix

dimensions donné, ce qui est particulièrement utile car il permet d'utiliser de puissants

arguments de positivité dérivés des bornes de calibration des branes dans l'étude du

potentiel e�ectif.

Nous pouvons montrer que notre nouvelle classe de solutions partage une propriété

intéressante avec les vides GKP [3], à savoir le fait qu'il existe une troncature naturelle de

la théorie à dix dimensions, suggérée par la géométrie, telle que le potentiel e�ectif hors

couche est semi-dé�ni positif, et qu'il s'annule au niveau des solutions. Cette a�rmation

n'est cependant pas tout à fait équivalente à celle de la stabilité de ces nouveaux vides,

puisque nous avons un contrôle limité sur cette troncation.

Par ailleurs, nous construisons également une nouvelle classe de vides généralisant les

vides GKP, où les conditions de calibration des branes murs de domaine et des D-cordes

sont toutes deux violées.

Une deuxième contribution aux compacti�cations non-supersymétriques de la super-

gravité présentée dans cette thèse aborde les vides dont la théorie e�ective à basse énergie

est une solution de la supergravité quadridimensionnelleN = 1 , avec un superpotentiel

et des F-termes non nuls, et des D-termes potentiellement non nuls.

Construire des solutions de supergravité avec des D-termes est di�cile. En e�et,

l'exemple prototypique de la brisure de supersymétrie par un D-terme est le terme de

Fayet-Iliopoulos, et la réalisation de son intégration dans la supergravité à une énergie

paramétriquement inférieure à l'échelle de Planck s'avère être très compliqué [4, 5].

Nous étudions ici la possibilité d'avoir des solutions de supergravité avec des D-termes

sous un angle di�érent, en utilisant le cadre de la géométrie complexe généralisée.

Nous nous concentrons sur une classe de solutions qui admet des sources BPS rem-

plissant tout l'espace externe. Cela signi�e que la condition BPS associée à la condition

de calibration des D-branes remplissant l'espace externe, appelée condition de BPSité de

jauge, est préservée, tandis que nous permettons que les conditions correspondant aux

calibrations des D-branes de type D-cordes et murs de domaine soient violées.

Dans le cas supersymétrique, la condition de BPSité de jauge a été reformulée dans

[6], en éliminant la dépendance explicite en la métrique, et en introduisant une version
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généralisée de l'opérateur de Dolbeault. Nous généralisons cette dérivation au cas des

vides non-supersymétriques violant les conditions de calibration des D-cordes et des murs

de domaine.

Toujours dans le casN = 1 , les conditions de BPSité de jauge et des murs de domaine

ont été identi�ées avec des conditions de F-termes, tandis que la BPSité des D-cordes a

été interprétée comme une condition de D-terme pour la théorie e�ective quadridimen-

sionnelleN = 1 dans [7, 8].

Dans notre classe de vides non-supersymétriques préservant la BPSité de jauge, nous

nous concentrerons sur ceux qui peuvent être dimensionnellement réduits à des solutions

de supergravité quadridimensionnelleN = 1 avec des F-termes non nuls, et éventuelle-

ment des D-termes. Pour ce faire, nous exigeons que notre ensemble d'équations BPS

modi�ées continue à avoir une interprétation en termes de (D-) F-termes ou de conditions

d'annulation des (D-) F-termes. En particulier, la BPSité de jauge, nouvellement dérivée,

doit continuer à être identi�é à une condition de F-terme.

Il est intéressant de noter que cette procédure contraint certains termes de brisure de

supersymétrie entrant dans la condition de calibration modi�ée des D-cordes, et donc les

D-termes possibles. Nous explorons ces contraintes pour certains exemples concrets de

compacti�cations.

Nous donnerons le potentiel e�ectif et en déduirons les équations du mouvement pour

notre classe de vides se réduisant à des solutions de supergravité quadridimensionnelle

N = 1 avec des F-termes et des D-termes non nuls, et pour une sous-classe où les con-

tributions des D-termes au potentiel e�ectif sont mises à zéro sur couche, restaurant la

BPSité des D-cordes. Les solutions de ce type correspondent à des vides avec seulement

des F-termes et incluent la classe amplement discutée des vides sans échelle.

Une troisième et dernière contribution aux compacti�cations non-supersymétriques

de la supergravité présentée dans cette thèse traite du développement du formalisme de

géométrie généralisée exceptionnelle pour les vides non-supersymétriques. Nous étudions

en particulier la torsion associée à une certaines structure généralisée non-integrable, dont

l'obstruction à l'intégrabilité provient de la brisure de supersymétrie. Nous établissons

notamment un dictionnaire entre les termes de brisure de supersymétrie en géometrie

généralisée complexe et la torsion de la structure généralisée en géométrie généralisée

exceptionnelle, que nous explicitons pour certains vides non-supersymétriques connus.



Chapter I

Introduction

The twentieth century has witnessed the birth of the two pillars of modern physics.

On the one hand, quantum mechanics -or quantum �eld theory, its special relativistic

version- describes matter and interactions at the microscopic level through the exchange

of fundamental quanta [9]. On the other hand, general relativity, Einstein's theory of

gravitation, spells the large scale behaviour of massive objects in terms of their interplay

with the curvature of spacetime [10].

Crucially, the e�orts to develop a microscopic understanding of the gravitational inter-

action has revealed the profound irreconcilability between these two frameworks. There

are many clues and ideas pointing towards this incompatibility, let us just mention that

gravity is non-renormalisable: applying the usual quantisation technique from quantum

�eld theory [11, 12] to the gravitational interaction leads to drastically unphysical results

[13].

A microscopic formulation of gravity must therefore go beyond this naive way of

quantising. The most promising candidate to this enterprise is string theory. In string

theory, elementary particles are replaced by excitations on vibrating strings, fundamental

one-dimensional extended objects [14�21]. Not only does the spatial extension of the

strings allows to avoid the usual problems one encounters when applying quantum �eld

theory techniques to gravity [20], but also in the spectrum of string excitations one �nds

a particle with the properties of the mediator of gravity, the so called graviton [19].

String theory stands on an extremely simple postulate, from which spectacular con-

sequences can be drawn:

i) The cancellation of quantum anomalies on the string dictates spacetime to be ten-

dimensional [22].

ii) The construction of string theory relies on a symmetry relating bosons and fermions,

called supersymmetry [23]. Supersymmetry arranges fundamental particles into multi-

1
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plets, groups of bosons and fermions of the same mass, related with each other through

supersymmetry transformations. However, such multiplets are not observed at low ener-

gies -below the electroweak scale-: if string theory describes our universe, supersymmetry

must therefore be broken somewhere below the Planck scale.

iii) There are �ve di�erent consistent superstring theories: type I, type IIA and type

IIB, and SO(32) and E8 � E8 heterotic string theories. These are all connected through a

web of dualities [24�28] and are regarded as di�erent limits of a single eleven-dimensional

theory called M-theory [29, 30].

Taken together, these facts have motivated the study of what are called ten-dimensional

type II and heterotic supergravity theories1. Indeed, the string spectrum contains in-

�nitely many massive states, but a �nite number of massless states, which at low energy

-much lower than the scale corresponding to the string's extension- de�ne an e�ective

�eld theory: the theory of supergravity. In that sense, these theories of supergravity are

nothing more than supersymmetric �eld theories, but their �eld content and sources are

dictated by the corresponding high-energy superstring theory.

Studying solutions of type II supergravity is the main focus of this thesis2. More

precisely, we are interested in ten dimensional backgrounds of type II supergravity of

warped product type: the geometry they describe is the (warped) product of a four-

dimensional maximally symmetric non-compact space, the external space, and a six-

dimensional compact manifoldM , the internal space.

Solutions of this type are called string compacti�cations, and such structures model

the fact that we only observe four out of the ten dimensions predicted by string theory: the

external space is the space we observe, while the extra dimensions determine the features

of the four-dimensional theory obtained by reducing the higher-dimensional supergravity.

A key aspect of compacti�cations is the fact that the moduli associated toM (e.g. the

volume of the internal space) are associated to massless scalar �elds in the corresponding

low-energy e�ective theories. Phenomenology thus dictates the need for these moduli to

be stabilised via a potential, for instance. At the classical level this is typically done

through the introduction of �uxes: non-vanishing p-form �eld-strengths along cycles of

the compact space, such that they generate the appropriate potential for the moduli

[32, 33]. Due to the back-reaction of the �uxes, the resulting compacti�ed geometries are

intricate and have been successfully studied within the framework of generalised complex

geometry [34�36] and exceptional generalised geometry [37�42].

Generalised geometry is a generalisation of ordinary di�erential geometry, where the

potentials for the �uxes are treated in a geometric way. The ordinary tangent bundle

1Supergravity is the theory of supersymmetric Einsteinian gravity [31], and is of interest on its own.
2A self-contained review of type II supergravity is presented in appendix A.
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of M is extended to a generalised tangent bundle whose transitions functions are the

di�eomorphisms plus the gauge transformations for the �uxes potentials. These include

the B -�eld gauge transformations for generalised complex geometry, and both theB -�eld

and RR potentials gauge transformations for exceptional generalised geometry. Through-

out this thesis, our study of type II supergravity solutions will sit within the generalised

geometry framework.

The exploration of the landscape of four-dimensional string compacti�cations has been

mostly focused on vacua preserving at least some supersymmetry. One reason is practical:

for the kind of backgrounds we are interested in, solving the supersymmetry conditions, or

BPS conditions, which are �rst order di�erential equations, plus the Bianchi identities for

the �uxes, guarantees to have solutions to the full set of string or supergravity equations of

motion. Handling the equations of motion upfront is very hard, since they are cumbersome

second order di�erential equations.

There are also physical considerations motivating the study of supersymmetric string

compacti�cations, namely the expectation that supersymmetry should be broken at en-

ergies smaller than the compacti�cation scale.

Even if low energy supersymmetry breaking is a phenomenologically motivated sce-

nario, in principle nothing prevents supersymmetry from being spontaneously broken at

arbitrarily high energies. In this thesis, we consider this possibility, and focus on this

much less studied corner of the string compacti�cation landscape, worth exploring per se.

A �rst contribution to non-supersymmetric compacti�cations of type II supergravity

presented in this thesis consists in the construction of new classes of non-supersymmetric

solutions. In these classes of backgrounds, supersymmetry is broken in a controlled way:

we deform the supersymmetry conditions by adding supersymmetry breaking terms.

The motivation behind this approach is to preserve some of the convenient features

of supersymmetric vacua, mainly the possibility to characterise them via �rst order dif-

ferential equations. Since supersymmetry is broken, in order to �nd solutions we have

to make sure that the equations of motion are satis�ed. The goal is then to �nd speci�c

deformations of the BPS equations such that the additional constraints to impose in order

to solve the equations of motion are manageable.

We will use the framework of generalised complex geometry, where the BPS conditions

have an interpretation in terms of stability conditions -called calibration conditions- for

di�erent probe D-branes, extended objects sourcing the supergravity �uxes3 [43]. The

supersymmetry conditions for warped compacti�cations can be recast in a set of three

di�erential equations on polyforms de�ned only on the internal space [1]. Each of these

3 In the full stringy regime, D-branes are dynamical objects on which open strings end.
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three conditions can be interpreted as the conditions for calibrated D-brane probes in

the geometry [2]: branes �lling all the external space and branes that are domain-wall or

string-like.

In this language, one can identify di�erent supersymmetry breaking terms depending

on which calibration condition is modi�ed. In these constructions we will always assume

that space-�lling branes are calibrated, while we will allow the calibrations of D-strings

and domain-wall branes to be violated.

A famous example of non-supersymmetric type IIB solutions that violate the domain-

wall calibration condition are the GKP solutions [3], describing �ux compacti�cations

to four-dimensional Minkowski space with D3 and O3 sources, where supersymmetry is

broken by the H (0;3) components of the NSNS-�ux. The GKP backgrounds have been

described within Generalised Complex Geometry in [44] as speci�c examples of a general

framework to describe non-supersymmetric solutions.

The generalised complex geometry description of the GKP backgrounds also o�ers an

insightful geometrical interpretation of the domain-wall supersymmetry breaking term: it

is given by the current of the D-branes in the background, an internal polyform associated

to the internal submanifold wrapped by the D-brane4

In the literature there is another example of non-supersymmetric solution, this time

in type IIA, [45], which in the language of generalised complex geometry corresponds to

the violation of the D-string calibration condition, where supersymmetry is again violated

through additional NS �ux components with respect to the supersymmetric case, but there

is no further geometrical interpretation of the corresponding supersymmetry breaking

term. Moreover, the question of stability of such backgrounds remains unaddressed.

The new non-supersymmetric type II solutions presented in this thesis extend the

study of non-supersymmetric vacua violating the D-string calibration condition. More

precisely, we will construct non-supersymmetric type II solutions where the current as-

sociated to the space-�lling D-branes present in our backgrounds will serve as a building

block for the supersymmetry breaking term violating the D-string calibration condition.

The motivation behind this construction is two-fold. The �rst one is simplicity: de�n-

ing supersymmetry breaking in terms of the current of the background's D-branes is a

natural and simple ansatz, which in turn reduces the equations of motion to a reasonable

set of additional constraints. The second reason is that it can be useful to address the

question of stability of these non-supersymmetric vacua: in generalised complex geometry,

D-branes current can enter the e�ective potential associated to a given ten-dimensional

background, and are particularly useful as they allow to use powerful positivity arguments

4 In the �uxless case, the current is simply the Poincaré dual of the corresponding submanifold. Its
generalisation to the case of non-vanishing �uxes will be discussed at length in the text.
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from some D-brane calibration bounds in the study of the e�ective potential.

We will also construct a new class of backgrounds generalising the GKP vacua, where

both the domain-wall and D-string calibration conditions are violated.

Another approach to the study of string compacti�cations is the analysis of the associ-

ated low-energy e�ective theories. The results presented in section IV.3 will be devoted to

studying a class of non-supersymmetric solutions of four-dimensionalN = 1 supergravity.

The supersymmetry conditions in N = 1 supergravity can be split in F- and D-term

conditions which come from the superpotential.

Interestingly, the gauge and domain-wall BPSness conditions have been identi�ed with

F-term conditions, while the string BPSness has been interpreted as a D-term condition

in [7, 8].

In section IV.3 we will look for non-supersymmetric solutions of four-dimensional

N = 1 supergravity, with non-vanishing superpotential and F-terms, and potentially

non-vanishing D-terms.

Constructing supergravity solutions with D-terms is di�cult. Indeed, the prototypical

example of D-term supersymmetry breaking is the Fayet�Iliopoulos term, and realising

its (�eld-dependent) embedding in supergravity at energy parametrically lower than the

Planck scale turns out to be challenging [4, 5].

In this work, we investigate the possibility of having supergravity solutions with D-

terms from a di�erent angle, using the framework of generalised complex geometry.

We focus again on a class of vacua that still admit calibrated space-�lling sources.

This means that the BPS condition associated to the calibration condition of space-�lling

D-branes, dubbed the gauge BPSness condition in [44], is preserved, while we allow for

the conditions corresponding to the calibrations of string-like and domain-wall probe D-

branes to be violated.

In the supersymmetric case, the gauge BPSness condition has been reformulated in [6],

eliminating the explicit metric dependence, and introducing a generalised version of the

Dolbeault operator. We will generalise this derivation to the case of non-supersymmetric

vacua violating the string and domain-wall BPSness conditions.

Within our class of non-supersymmetric backgrounds preserving the gauge BPSness,

we will focus on those who can be dimensionally reduced to four-dimensionalN = 1

supergravity solutions with non-vanishing F-terms, and possibly non-vanishing D-terms.

To do so, we require that our set of modi�ed supersymmetry conditions continues to have

an interpretation in terms of either (D-) F-term or (D-) F-term conditions. In particular,

the non-supersymmetric formulation of the gauge BPSness, newly derived, should still be

identi�ed with an F-term condition.

Interestingly, this procedure constrains some supersymmetry breaking terms entering

the modi�ed D-string calibration condition, and therefore the possible D-terms.
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We will give the e�ective potential and derive the equations of motion for our class of

backgrounds dimensionally reducing to non-supersymmetric solutions of four-dimensional

N = 1 supergravity with non-vanishing F-terms and D-terms, and for a subclass where

the D-term contributions to the e�ective potential are set to zero on-shell, restoring the

D-string BPSness. Solutions of this kind correspond to vacua with only F-terms, and

include the amply discussed class of no-scale vacua.

A third and last contribution to non-supersymmetric compacti�cations of type II su-

pergravity presented in this thesis develops the exceptional generalised geometry formal-

ism for non-supersymmetric type II backgrounds. An ambitious goal would be to de�ne a

notion of integrability of a given generalised geometric structure for non-supersymmetric

type II supergravity solutions. This is still work in progress, and for the time being we

investigate in this thesis the torsion associated to a speci�c non-integrable generalised

structure, with the breaking of supersymmetry obstructing its integrability. We establish

a dictionary between the supersymmetry breaking terms in generalised complex geom-

etry and the torsion associated to the generalised structure in exceptional generalised

geometry.

The outline of this thesis is as follows. In chapter II, we introduce the formalism

of G-structures and apply it to the description of supergravity backgrounds. In chapter

III, we develop the frameworks of both generalised complex geometry and exceptional

generalised geometry, and use them to describe supergravity backgrounds, emphasising

the geometrical interpretation associated to preserving supersymmetry. In chapter IV,

we present our new classes of non-supersymmetric type II backgrounds, and our results

on backgrounds reducing to non-supersymmetric solutions of four-dimensionalN = 1

supergravity, notably the derivation of the generalisation of the gauge BPSness condition.

Finally, in chapter V, we construct the exceptional generalised geometry formalism for

non-supersymmetric type II backgrounds.



Chapter II

Supergravity �ux backgrounds

In this chapter we introduce solutions of type II supergravity that are relevant for string

compacti�cations.

We are interested in ten-dimensional solutions of (warped) product type: the geom-

etry they describe is the (warped) product of a four-dimensional maximally symmetric

non-compact space, the external space, and a six-dimensional compact manifoldM , the

internal space

ds2
10 = e2A(y) � �� dx � dx � + gmn dym dyn ; (II.1)

with x � , � = 0 ; :::; 3 the external coordinates onX 4, and ym , m = 1 ; :::; 6 are the coordi-

nates onM . The external space can be Minkowski or AdS1, but for the rest of this thesis

we focus on compacti�cations to four-dimensional Minkowski space.

It has been shown that when such a background is supersymmetric, and when the

�uxes satisfy their Bianchi identities, the background will automatically satisfy the equa-

tions of motion [44, 46�50]. One can therefore trade the complicated second order equa-

tions of motion of type II supergravity with the simpler �rst order supersymmetry con-

ditions (and Bianchi identities), rendering the supersymmetric solutions of type II super-

gravity a favoured corner of the string compacti�cation landscape. The physical scenario

behind such constructions is that supersymmetry is then broken below the compacti�-

cation scale, by some four-dimensional e�ects, such as gaugino condensation for exam-

ple [51, 52]. We will discuss non-supersymmetric backgrounds, where supersymmetry is

(spontaneously) broken at energies higher than the compacti�cation scale in chapter IV.

Crucially, we must set all fermionic �elds to zero in order to preserve the maximal

symmetry of the external Minkowski spacetime. A background will be supersymmetric

if all the supergravity �elds are invariant under supersymmetry transformations, namely

if their supersymmetry variations vanish. These depend on a choice of supersymmetry

1Here we don't discuss the possibility of a dS external spacetime, as it doesn't allow for supersymmetric
solutions.

7
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parameter � , and schematically they take the following form

� � (boson) = � (fermion) � � (fermion) = � (boson): (II.2)

The variations of the bosonic �elds automatically vanish, given that they always contain a

fermionic �eld, set to zero for maximally symmetric spacetime. The non-trivial conditions

thus come from the variations of the fermionic �elds.

As will be discussed in details later, the supersymmetry conditions in supergravity

can be reformulated as di�erential conditions on the internal geometry. This is done in

the language ofG-structure, which we review in what follows.

II.1 G-structures

In this section we introduce the formalism of G-structures, a framework widely used in

the literature to describe supergravity �ux backgrounds [48, 53�59]. Most of the concepts

introduced in this section will be generalised in the next chapter, within the Generalised

Geometry framework.

We carry the discussion for ad-dimensional manifold M , before specialising tod = 6

when discussing supergravity compacti�cation manifolds in the next section.

At each point p of a d-dimensional manifold M , one can de�ne a vector space tangent

to the manifold, the tangent spaceTp, whose elements are vectors. The collection of the

tangent spaces at every point on the manifold de�nes thetangent bundleT. Picking out

in a smooth way a speci�c vector at every point on the manifold de�nes a vector �eld ,

which is a section of the tangent bundle, denoted�( T). At each point p, one can similarly

de�ne the space dual to the tangent space, thecotangent spaceT �
p , whose elements are

one-forms, and the correspondingcotangent bundleT � .

For a given patch Ui on the manifold, one can de�ne alocal frame ei
m with m = 1 ; :::; d,

a collection of d-independent vectors spanningT at every point on Ui
2, forming a local

basis3. One can thus locally expand a vector on such a basisv = vm
i ei

m , and its expressions

on two overlapping patches are related by

vm
i = ( M ij )m

nvn
j on Ui \ U j ; (II.3)

where genericallyM ij 2 GL(d;R). The M ij are called thetransition functions and contain

all the topological information of the bundle T.

2One can similarly de�ne a local coframe em
i , spanning T � .

3The bundle having the set of all frames as �bres is called the frame bundle associated to the vector
bundle T .



II.1 G-structures 9

On a triple overlap they must satisfy the consistency condition

M ij M jk = M ik on Ui \ U j \ U k ; (II.4)

together with

M ij M ji = 1: (II.5)

The set of transition functions therefore forms a group, called thestructure group. For

the tangent bundle, the structure group is GL(d;R).

However one can repeat the above discussion for any vector spaceV and its associated

vector bundle, and the transition functions will take values in another group acting on

V . We will do so in the next chapter, introducing several physically interesting vector

bundles.

II.1.1 De�nition and examples

Crucially, if a manifold admits a (or several) globally de�ned tensor � which is invariant

under a group G, the structure group reduces to G � GL(d;R), and is called the G-

structure of the manifold. One can de�ne a correspondingprincipal G-bundle PG ! M ,

a bundle where the �bres areG itself4. In the literature and throughout this thesis, the

G-structure also refers to the corresponding principalG-bundle.

Indeed, given that � is globally de�ned, one can choose a set of frames preserving its

form on the whole manifold. The set of allowed transition functions is then restricted to

the ones preserving said form, which is preciselyG.

Note that the converse is also true: in general, tensors on a manifold are representa-

tions of GL(d;R). When the manifold admits a G-structure, the tensors can be written as

irreducible representations ofG, and the trivial representations of G form globally de�ned

trivial bundles, corresponding to the G-invariant tensors.

In supergravity, the physically relevant compacti�cation manifolds will typically admit

globally de�ned G-invariant tensors, reducing their structure group. We give here a few

examples.

SL(d; R)-structure

The simplest example is the one of orientable manifolds, admitting a globally de�ned

volume form, invariant under SL(d;R) � GL(d;R).

O(d) -structure

Manifolds admitting a globally de�ned, symmetric, positive-de�nite two-tensor g, a

metric, are called Riemannian manifolds. They admit local frames on every patch, to-
4See [60] for formal details about principal G-bundles.
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gether called avielbein respecting

em
i en

j gmn = � ij : (II.6)

The structure group thus reduces to O(d). If a Riemannian manifold also admits a globally

de�ned volume form, its structure group further reduces to SO(d).

Almost complex structure

An almost complex structureis a globally de�ned endomorphism on the tangent bundle

I : T ! T; (II.7)

respecting

I 2 = � 1: (II.8)

Only manifolds of even dimensions can admit almost complex structures. A manifold

admitting an almost complex structure is called aalmost complex manifold. The presence

of an almost complex structure reduces the structure group to GL(d=2; C).

An almost complex structure induces the decomposition of the complexi�ed tangent

bundle into two maximal eigenspaces5

T 
 C = T1;0 � T0;1 := L 1 � L � 1 ; (II.9)

where L � 1 is the eigenbundle of eigenvalue� i under the action of I . These are com-

plex conjugate �L 1 = L � 1 and they respect L 1 \ L � 1 = 0 . This decomposition allows

for the introduction of holomorphic and anti-holomorphic components, not only on the

complexi�ed tangent bundle, but also on the complexi�ed cotangent bundle

T � 
 C = T � 1;0 � T � 0;1 : (II.10)

This induces the decomposition ofk-forms into holomorphic and anti-holomorphic com-

ponents: we denote� kT � as the bundle of k-forms, and 
 k its global sections, and we

have

� kT � = � k
i (� i T � 1;0 
 � k� i T � 0;1) := � k

i � i;k � i T � : (II.11)

A section of � p;qT � is denoted as
 p;q, and called a (p; q)-form. In particular, � d=2;0T �

is called the canonical line bundle. One can de�ne a local frame ofd=2 independent

5A subspace is maximal if its dimension is half the dimension of the original space.
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(1; 0)-forms � m 2 
 1;0, such that


 = � 1 ^ ::: ^ � d=2 (II.12)

is a local section of the canonical line bundle, which is decomposable6 and non-degenerate


 ^ �
 6= 0 : (II.13)

SL(d=2; C) structure

Given a GL(d=2; C) structure, if 
 is globally de�ned, the structure group is further

reduced to SL(d=2; C).

Symplectic structure

A manifold admits a pre-symplectic structure if there exists a globally de�ned non-

degenerate real two-formJ 2 
 2. Its non-degeneracy can be expressed as

J d=2 6= 0 : (II.14)

The existence of such a two-form reduces the structure group to Sp(d;R). A manifold

admitting a pre-symplectic structure is called almost symplectic.

U (d=2) structure

A U(d=2) structure on an almost complex manifold is de�ned by admitting both a

decomposable(d=2; 0)-form 
 and a pre-symplectic form J , compatible with the almost

complex structure, in the sense that

J ^ 
 = 0 : (II.15)

The forms J and 
 are then simultaneously invariant under the intersection Sp(d;R) \

GL(d=2; C) = U(d=2), reducing the structure group to U(d=2). In terms of the local frame

� m introduced above, we have


 = � 1 ^ ::: ^ � d=2 (II.16)

J = �
i
2

X

m
� m ^ �� m : (II.17)

Together, the pre-symplectic and almost complex structure de�ne a metric. In indices,

it is given by

gmn = � Jmp I p
n : (II.18)

6A form is decomposable if it can be locally written as the wedge product of one-forms.
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This metric is hermitian :

gpqI p
m I q

n = gmn : (II.19)

SU(d=2) structure

If a manifold admits a U(d=2) structure and if the decomposable(d=2; 0)-form 
 is

globally de�ned, then the structure groups is further reduced to Sp(d;R) \ SL(d=2; C) =

SU(d=2).

One can de�ne an SU(d=2) structure in an alternative way. If the manifold admits

a globally de�ned chiral pure spinor7 invariant under SU(d=2), the structure group is

reduced to SU(d=2). One can explicitly construct the pre-symplectic two-form and the

(d=2; 0)-form associated with the SU(d=2) structure out of the spinor �

Jmn = i� y
 mn � (II.20)


 mnp = � T C
 mnp � ; (II.21)

where the charge conjugation operatorC is de�ned so that the complex conjugateC � 1� �

of a given spinor � transforms in the same way as� under the Cli�ord algebra.

II.1.2 Integrability and torsion

Up until this point, we have organised the geometry ofd-dimensional manifolds in terms

of the invariant and non-degenerate tensors they admit, stressing the reduction of their

structure group accordingly. In this subsection, we study the di�erential conditions that

can be imposed on such tensors. These will be of the utmost physical importance, given

that they will be identi�ed with the conditions one has to impose in order to preserve

some amount of supersymmetry, within the context of supergravity8, as will be made

precise later on.

In order to do so, we introduce connections on the tangent bundle. Aconnection r

is a map

r : �( T) ! �( T 
 T � ) (II.22)

satisfying the following derivative property 9

r (fv ) = f r v + v 
 df ; (II.23)

with v a section of the tangent bundle andf a smooth function on the manifold.

7A spinor � is chiral if 
 ( d) � = � , with 
 ( d) the chirality operator, de�ned in Appendix A.3, together
with the gamma matrices conventions. A spinor is pure if it is annihilated by half of the gamma matrices.

8The presence of non-trivial �uxes will spoil this correspondence, as discussed in the next section.
9Here d is the standard exterior derivative d : 
 n ! 
 n +1
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One can then de�ne the torsion of a given connection

Tr (v; w) = r vw � r wv � [v; w] ; (II.24)

where [; ] is the usual Lie bracket10.

For a given G-structure, let � be an invariant tensor under G. A connection is said to

be compatiblewith the G-structure if

r � = 0 : (II.25)

A G-structure is then said to be integrable, or torsion-free if there exists a correspond-

ing compatible connection with vanishing torsion.

One can de�ne a notion of torsion associated to aG-structure without resorting to

picking a speci�c connection. To do so, we start from a given compatible connectionr ,

and we write any compatible connectionr 0 as r 0 = r + � where

� = r 0� r 2 �( K G) with K G = T � 
 adPG ; (II.26)

and with adPG the adPG-bundle with �bres belonging to the adjoint representation of G.

The torsion of a generic connection will be a section of the bundle

Tr 2 �( W ) with W = T 
 � 2T � : (II.27)

We then de�ne the map

� : K G ! W

� ! � (�) = Tr 0 � Tr ; (II.28)

and denoting the vector bundle associated to the image of� by Im� = WG, we can de�ne

W G
int = W=WG : (II.29)

W G
int does not depend on the choice of compatible connection, it only depends on the

G-structure. W G
int is the intrinsic torsion of the G-structure.

It will prove to be useful throughout the thesis to decompose the intrinsic torsion of

a given G-structure into irreducible representations of G

W G
int =

M

i

Wi : (II.30)

10 The Lie bracket is an antisymmetric bracket on T satisfying the Jacobi identity. In coordinates, with
v = vm @

@ym and w = wm @
@ym , it reads [v; w] =

�
vn @wm

@yn � wn @vm

@yn

�
@

@ym .
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A torsion-free compatible connection exists if and only if the intrinsic torsion of the G-

structure vanishes.

The requirement for a G-structure to be torsion-free can be formulated as di�erential

conditions on the G-invariant objects, as we now illustrate for a few examples.

a) Examples

Symplectic structure

For a given connectionr compatible with a pre-symplectic structure J : r J = 0 , one

can show that11

dJ (v; w; u) = J (Tr (v; w); u) + J (Tr (u; v); w) + J (Tr (w; u); v) : (II.31)

A pre-symplectic structure J will therefore be integrable if

dJ = 0 ; (II.32)

such that its intrinsic torsion vanishes. This statement depends only on the intrinsic

component of the torsion, since the left-hand side of (II.31) is clearly independent of

the choice of connection. An integrable pre-symplectic structure is called asymplectic

structure.

Complex structure

For a given almost complex structureI , and for any pair v; w of smooth vectors �elds,

we introduce the following tensor, the Nijenhuis tensor

N I (v; w) = I [Iv; w ] + I [v; Iw ] � [Iv; Iw ] + [ v; w]: (II.33)

Then, introducing a connection r compatible with the almost complex structure: r I = 0 ,

one can show that

N I (v; w) = Tr (v; w) � Tr (Iv; Iw ) + IT r (Iv; w ) + IT r (v; Iw ) : (II.34)

The almost complex structure will thus be integrable if and only if

N I (v; w) = 0 8 v; w 2 �( T) : (II.35)

Interestingly, this condition is equivalent to

[L 1; L 1] � L 1 ; (II.36)
11 Here the three-form and two-forms are taken as the maps T 
 T 
 T ! R and T 
 T ! R respectively.
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with again L 1 the + i -eigenbundle ofI . The integrability of the almost complex structure

is hence equivalent to the stability of the L 1 bundle under the Lie bracket12, in this case

we say that the bundle L 1 is involutive.

Spelling the integrability of an almost complex structure as the involutivity of its

eigenbundles will turn out to be a natural formulation to generalise the notion of inte-

grability in the case of two generalisations of complex structures, the generalised complex

structure and the exceptional complex structure, both discussed in the next chapter.

It is then easy to show that the condition (II.36) is equivalent to

wyvyd
 = 0 8 v; w 2 �( T1;0) ; (II.37)

which is itself equivalent to

d
 = �� ^ 
 with �� 2 �( T � 0;1): (II.38)

The almost complex structure, or GL(d=2; C) structure, is thus integrable if (II.38) is

respected. It is then called acomplex structure.

If we consider again the decomposition (II.11), acting with the exterior derivative on

a (p; q)-form � p;q, we �nd generically

d� p;q 2 
 p+2 ;q� 1 [ 
 p+1 ;q [ 
 p;q+1 [ 
 p� 1;q+2 : (II.39)

However, if the complex structure is integrable, this decomposition reduces to

d� p;q 2 
 p+1 ;q [ 
 p;q+1 ; (II.40)

and the exterior derivative decomposes into the Dolbeault operators@and �@

d = @+ �@ ; (II.41)

with

@: 
 p;q ! 
 p+1 ;q �@: 
 p;q ! 
 p;q+1 : (II.42)

SL(d=2; C) structure

Given an integrable GL(d=2; C) structure, it is straightforward to see that the right-

hand side of (II.38) actually belongs to the SL(d=2; C) intrinsic torsion. An SL (d=2; C)

structure will therefore be integrable if and only if one imposes the stronger condition

d
 = 0 : (II.43)

12 Or equivalently the stability of the L � 1 bundle under the Lie bracket.
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Just as the integrability of a complex structure can be formulated geometrically, as the

involutivity of its subbundles, the further requirement for an SL (d=2; C) to be integrable

also has a geometrical interpretation, as the vanishing of a moment map13.

For an SL(d=2; C) structure, a choice of
 at a point p 2 M is equivalent to picking a

point in the coset


 jp 2 QSL(d=2;C) =
GL(d=2; C)
SL(d=2; C)

: (II.45)

The choice of an SL(d=2; C) structure on M therefore corresponds to a section of the �bre

bundle

QSL(d=2;C) ! Q SL(d=2;C) ! M (II.46)

and we can identify the space of SL(d=2; C) structures as Z ' �( QSL(d=2;C) ). One can

also restrict to the space of SL(d=2; C) structures with an integrable associated complex

structure

Ẑ = f 
 2 Z j I is integrableg: (II.47)

Crucially, the space Ẑ inherits a symplectic structure from the symplectic structure on

the coset spaceQSL(d=2;C) . One can therefore de�ne the following moment map [61]

� : Ẑ ! diff � (II.48)

for the action of di�eomorphisms, where diff is the Lie algebra of di�eomorphisms, and

where

� (V ) =
Z

M
L V 
 ^ �
 ; (II.49)

with V 2 �( T) and L V the standard Lie derivative acting on a p-form ! as L V ! =

f d; Vyg! . Using the integrability of the complex structure (II.38), one can show that

imposing the vanishing of the moment map (II.49) results in �� = 0 and thus

d
 = 0 : (II.50)

The vanishing of the moment map hence imposes the �nal condition that promotes a

complex structure to a torsion-free SL(d=2; C) structure.

This interpretation of the integrability of an SL (d=2; C) structure as the involutivity

of the complex structure subbundles and the vanishing of a moment map for the di�eo-

13 Given a Lie group G, its algebra g and dual algebra g� , with the action of G on a symplectic manifold
M preserving the symplectic form J , the moment map for the G-action is a map

� : M ! g� (II.44)

such that d(h�; � i ) = � (� )yJ , with � 2 g, � (� ) a vector �eld on M induced by the in�nitesimal action of
� , and here h;i : g� � g ! R.
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morphisms action will also turn out to have a natural generalisation when discussing the

integrability of the generalised versions of the complex and SL(d=2; C) structures, as will

be discussed in the next chapter.

SU(3) structure

Given that this is a standard example widely used throughout this thesis, we specialise

here to d = 6 and discuss the case of SU(3) structures.

The intrinsic torsion of an SU(3) structure W G
int can be shown to decompose into SU(3)

irreducible representations as [62]

W G
int � (1 � 1) � (8 � 8) � (6 � �6) � 2(3 � �3) : (II.51)

The intrinsic torsion of an SU(3) structure can thus be represented as 5 tensorsW1; :::; W5.

W1 2 1� 1 is a complex scalar,W2 2 8� 8 is a complexprimitive (1; 1)-form14, W3 2 6� �6

is a real primitive (2; 1) + (1 ; 2) form, and W4; W5 are real one-forms. One can show that

they obey

dJ =
3
2

Im( �W1
) + W4 ^ J + W3 (II.52)

d
 = W1J ^ J + W2 ^ J + �W5 ^ 
 : (II.53)

Hence an SU(3) structure is integrable if and only if

dJ = 0 d
 = 0 : (II.54)

More generally, table II.1 below describes the possible geometries arising for various tor-

sion class con�gurations [63].

II.2 Supersymmetric Flux Backgrounds

In this section, we show how supersymmetry conditions for string compacti�cations are

described in terms ofG-structure. We start with �uxless compacti�cations before treating

�ux compacti�cations, discussing the interplay between physical �uxes and the integra-

bility of the structures on the compacti�cation manifold.

II.2.1 Fluxless Compacti�cations

We �rst consider type II backgrounds where the supergravity �uxes are set to zero. The

only bosonic �elds are thus the metric and the dilaton. As for the fermions, there are two

14 A primitive form ! obeys ! ^ J = 0 .
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Geometry Torsion Classes

Complex W1 = W2 = 0

Symplectic W1 = W3 = W4 = 0

Half Flat ImW1 = ImW2 = W4 = W5 = 0

Special hermitian W1 = W2 = W4 = W5 = 0

Nearly Kähler W2 = W3 = W4 = W5 = 0

Almost Kähler W1 = W3 = W4 = W5 = 0

Kähler W1 = W2 = W3 = W4 = 0

Calabi-Yau W1 = W2 = W3 = W4 = W5 = 0

Conformal Calabi-Yau W1 = W2 = W3 = 3W4 � 2W5 = 0 .

Table II.1: Di�erent geometries of six-dimensional manifolds with an SU(3) structure
depending on their SU(3) torsion classes.

gravitinos  i
M with M = 1 ; :::; 10 ten-dimensional indices and two dilatinos� i of opposite

(the same) chirality for type IIA (IIB). Given two ten-dimensional Majorana-Weyl spinors

� i of opposite (the same) chirality for type IIA (IIB), the supersymmetry conditions are

[64, 65]

� �  i
M = r̂ M � i (II.55)

� � � i = ( ��̂r � )� i (II.56)

where r̂ M is the ten-dimensional Levi-Civita connection, � is the dilaton and where for

a p-form ! the slash symbol denotes

=! =
1
p!

! M 1 :::M p � M 1 :::M p ; (II.57)

with � the ten-dimensional gamma matrices.

We consider the ten-dimensional space-time to be the product of a four-dimensional

Minkowski spaceX 4 and a six-dimensional compact manifoldM , with the following metric

ansatz

ds2
10 = � �� dx � dx � + gmn dym dyn ; (II.58)

where x � , � = 0 ; :::; 3 are the external coordinates onX 4, and ym , m = 1 ; :::; 6 are

the coordinates on M . The supersymmetry parameters decompose accordingly under

Spin(9; 1) ! Spin(3; 1) � Spin(6) as

� 1 = � 
 � 1 + c:c: �2 = � 
 � 2 + c:c: (II.59)
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where� is a Weyl spinor of positive chirality on X 4, and � 1 and � 2 are Weyl spinors on the

six-dimensional internal space.� 1 has positive chirality, while � 2 has negative chirality in

type IIA and positive chirality in type IIB.

The presence of nowhere vanishing spinor �elds onM imposes a reduction of the

structure group of M to a subgroup of Spin(6) ' SU(4). Seen as four-dimensional Weyl

spinors, each internal spinor has an SU(3) stabiliser group, reducing the structure group

of M to SU(3). The two internal spinors can be parallel, nowhere parallel or a mix of

the two depending on the position on the manifold. If they are nowhere parallel, the

intersection of their SU(3) structures de�nes an SU(2) structure. We will return to this

case in chapter IV, and we focus here on the case where the spinors are parallel, andM

has an SU(3) structure group. Without loss of generality we consider� 1 = � 2 := � in type

IIB 15 and normalise it to one. We write the pre-symplectic two-form and the (3; 0)-form

associated with the SU(3) structure in terms of the spinor �

Jmn = i� y
 mn � (II.60)


 mnp = � T 
 mnp � : (II.61)

The supersymmetry condition (II.55) then decomposes into

~r � = 0 r � = 0 (II.62)

with ~r the four-dimensional Levi-Civita and r the six-dimensional one. � is hence a

constant spinor on X 4 and � is constant on M . The constant external spinor � generates

the N = 1 rigid supersymmetry of the e�ective theory.

The second condition in (II.62) translates into

dJ = 0 d
 = 0 : (II.63)

Imposing a �uxless background with parallel internal spinors to be supersymmetric is

therefore equivalent to requiring its SU(3) structure to be integrable.

II.2.2 Compacti�cations with Fluxes

A key aspect of compacti�cations is the fact that the moduli associated to M (for ex-

ample the volume of the internal space) are associated to massless scalar �elds in the

corresponding low-energy e�ective theories. Phenomenology thus dictates the need for

these moduli to be stabilised via a potential, for instance. At the classical level this is

typically done through the introduction of �uxes: non-vanishing p-form �eld-strengths

15 In type IIA one would have � 1 = � �
2 := �
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along cycles of the compact space, such that they generate the appropriate potential for

the moduli. We are thus led to the investigation of type II supergravity backgrounds with

non-trivial �uxes.

It is important to recall that type II compacti�cations to Minkowski space with non-

trivial �uxes must have some negative contributions to the energy momentum tensor

[66, 67], which is typically realised through the introduction of Orientifold Planes [68].

In that context, it is important to note that the discussion below and throughout the

thesis only holds to describe the geometry of the compacti�cation manifold away from

the sources.

We start by quickly reviewing the bosonic content of type II supergravity with �uxes.

The bosonic sector of type II supergravity is composed of the NS sector and the RR

sector, given that the �elds originate from states in the String Theory that obey NS-NS

or R-R boundary conditions. The NS sector contains the metric, the dilaton, and the NS

three-form �ux, which can locally be written

H = d B (II.64)

away from the NS sources, withB its two-form potential.

The RR sector contains the RR �eld-strength: we use the democratic formulation of

[69], where

F 10 =
X

q
F 10

q (II.65)

with q = 0 ; 2; :::10 for type IIA and q = 1 ; 3; :::9 for type IIB. These �elds obey the

following self-duality condition

F 10 = ~� F 10 ; (II.66)

with the Hodge operator ~� de�ned in Appendix A. Away from the RR sources, we write

the RR �uxes from the RR potentials as

F 10 = d C + H ^ C (II.67)

with C =
P

q Cq� 1.

We now specify the compacti�cation ansatz: we consider type II solutions that are the

warped product of four-dimensional Minkowski spaceX 4 and a six-dimensional compact

manifold M , with the following metric

ds2
10 = e2A(y) � �� dx � dx � + gmn dym dyn ; (II.68)

where againx � , � = 0 ; :::; 3 are the external coordinates onX 4, and ym , m = 1 ; :::; 6 are
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the coordinates onM .

The Poincaré invariance ofX 4 constrains the NS and RR-�uxes: the NS-�eld-strength

H can only have internal legs, and the ten-dimensional RR-�eld-strength must take the

form

F 10 = F + e4A vol4 ^ ~F ; (II.69)

with vol 4 the volume form on X 4 and whereF and ~F are purely internal and are related

by the self-duality of F 10 (II.66) as

~F = ~� 6F ; (II.70)

with ~� 6 de�ned in Appendix A.

PreservingN = 1 supersymmetry amounts to the vanishing of the following gravitinos

and dilatinos variations

� �  M =

 

r M +
1
4

�M =H� 3 +
e�

16

 
0 =F 10

� � ( =F 10) 0

!

� M � (10)

!  
� 1

� 2

!

(II.71)

� � � =

 

=@�+
1
2

=H� 3 +
e�

16
� M

 
0 =F 10

� � ( =F 10) 0

!

� M � (10)

!  
� 1

� 2

!

; (II.72)

with � the reversal of all form indices, and where� 1 and � 2 are again ten-dimensional

Majorana-Weyl spinors. The spinors� 1 and � 2 again split in the following way

� 1 = � 
 � 1 + c:c: �2 = � 
 � 2 + c:c: (II.73)

where � is a Weyl spinor of positive chirality on X 4, and � 1 and � 2 are Weyl spinors on

the six-dimensional internal space. � 1 has again positive chirality, while � 2 has negative

chirality in type IIA and positive chirality in type IIB. We focus here on the case where

the internal spinors are parallel, andM has an SU(3) structure group, taking � 1 = � 2 := �

in type IIB 16 and normalising it to one.

We then split the supersymmetry conditions (II.71), (II.72) into internal and external

components. The external spinor again has to be constant, while we get a complicated

set of conditions on the internal spinor.

Crucially, the six-dimensional Levi-Civita connection is no longer compatible with

the internal spinor, and the lack of compatibility precisely comes from the non-vanishing

�uxes, which thus arrange themselves into the torsion classes of the SU(3) structure.

De�ning again the pre-symplectic two-form and the (3; 0)-form associated with the

SU(3) structure in terms of the spinor � , as in (II.60), (II.61), recall from the discussion

16 In type IIA one would have � 1 = � �
2 := �
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of SU(3) structures that we generically have

dJ =
3
2

Im( �W1
) + W4 ^ J + W3 (II.74)

d
 = W1J ^ J + W2 ^ J + �W5 ^ 
 : (II.75)

For a given background, the non-vanishing torsion classes are completely de�ned by the

�uxes. Solutions to these supersymmetry conditions with di�erent �uxes con�gurations

have been studied in depth in the literature [56, 70�76], while a summary of all possible

N = 1 Minkowski SU(3) �ux backgrounds have been presented in [77]. We won't give

here the di�erent solutions and the expressions of their torsion classes in terms of the

�uxes, since these are rather convoluted. We instead display a few solutions in terms of

their vanishing torsion classes

IIA IIB

W1 = W2 = 0 ; �W5 = 2W4 W1 = W2 = 0 ; �W5 = 2W4

W1 = W3 = W4 = 0 W1 = W2 = W3 = 0

W1 = W2 = W3 = 0 .

Each line corresponds to the torsion classes con�guration for a given class of solutions,

where the non-vanishing torsion classes are de�ned by the �uxes. Recalling table II.1, we

see that for type IIA, the compacti�cation manifold is either complex or symplectic. For

type IIB however, the compacti�cation manifold is always complex but it might have a

more re�ned structure depending on which other torsion classes vanish. It is important

to note that the IIB cases are not exhaustive since there exist solutions that interpolate

between the di�erent cases [78].



Chapter III

Generalised Geometry and Supersym-

metry

As we discussed in the previous chapter, for a given supergravity background, the presence

of �uxes spoils the integrability of the corresponding G-structure on the compacti�cation

manifold. Studying non-integrable G-structures turns out to be a complicated task: clas-

sifying the torsion classes can be an involved process, and the moduli space of such

structures is largely unknown except for some speci�c simple cases. TheG-structure for-

malism thus su�ers from important limitations to draw a complete picture of the geometry

of supergravity backgrounds.

Fortunately, these limitations can be circumvented in the formalism of generalised

geometry, which naturally generalises the concept ofG-structures. In generalised ge-

ometry, instead of the tangent bundle, one de�nes structures on a more general bundle

E ! M . The generalised geometry is then organised in terms of an enlarged structure

group GL(d;R) � G � GL(rk E; R), and the generalised structures onE are subgroups of

G.

Crucially, for the appropriate generalised geometry, one can de�ne a notion of integra-

bility for a given generalised structure, even in the presence of �uxes. Roughly speaking,

such generalised geometries "geometrise the �uxes", in a sense that will be made precise

later on. Studying integrable generalised structures has signi�cantly shed some light on

the geometries of �ux backgrounds [1, 61, 77, 79, 80].

Two speci�c generalised geometries are of particular importance to describe type II

supergravity compacti�cation manifolds: G � O(d; d) [81] and G � Ed+1( d+1) [37].

O(d; d) generalised geometry geometrises the NS �uxes, while non-vanishing RR �uxes

obstruct the involutivity of the corresponding generalised structure, and Ed+1( d+1) gen-

eralised geometry geometrises both the NS and RR sectors, it therefore has integrable

generalised structures describing �ux backgrounds. We introduce both generalised geome-

23
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tries in this chapter, before discussing the interplay between the �uxes, supersymmetry,

and the integrability of the generalised structures.

III.1 O(6,6) Generalised Geometry

In this section we introduce O(d; d) generalised geometry, also referred to as generalised

complex geometry, before specialising to six-dimensional compacti�cation manifolds in

order to connect with supergravity �ux backgrounds compacti�ed to four-dimensional

Minkowski spacetime. We then discuss the relationship between supersymmetry and inte-

grability of the generalised structures, and comment on the geometries of non-supersymmetric

�ux backgrounds.

III.1.1 Generalised Complex Geometry

In Generalised Complex Geometry, as introduced in [34, 35], one replaces the tangent

bundle of the internal manifold with a generalised tangent bundle, which is the sum of the

tangent and cotangent bundle

E = T � T � ; (III.1)

and whose sections are thus sums of vectors and one-forms

V = v + � 2 �( E ): (III.2)

There is a natural inner product de�ned on the generalised tangent bundle: for two

generalised vectorsV = v + � 2 �( E ) and W = w + � 2 �( E ), it is

� (V; W) :=
1
2

(vy� + wy� ): (III.3)

Using a two-component notation for the generalised vectors

V = v + � �

 
v

�

!

; (III.4)

we can write it as

� (; ) =
1
2

 
0 1

1 0

!

; (III.5)

which is clearly invariant under O(d; d), where d is the dimension of the manifold. The

structure group on the generalised tangent bundle is therefore not generic, but reduces to

O(d; d)1.
1Actually the inner product � (; ) de�nes a globally de�ned volume form on E , so the structure group

further reduces to SO(d; d)
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Considering E as anO(d; d) frame bundle ~F , one can parametrise the corresponding

adjoint representation of the o(d; d) algebra in terms of gl(d;R) representations as the

following bundle

ad ~F = ( T 
 T � ) � � 2T � � 2T � : (III.6)

It has a natural action on the generalised tangent bundle (and on itself) given in Appendix

B.1.

a) The Dorfman derivative

The bundle E admits a derivative operator, called the Dorfman derivative or Generalised

Lie derivative, as it is the Generalised Geometry analogue of the standard Lie derivative.

It acts on generalised vectors as

L V W = L vw + L v � � wyd� (III.7)

De�ning a natural projection a : E ! T, commonly called the anchor map, the

collection (E; �; L; a ) is a Leibniz Algebroid [82].

One can de�ne an antisymmetric bracket on E as

JV; WK=
1
2

(L V W � L W V) (III.8)

= [ v; w] + L v � � L w � �
1
2

d(vy� � wy� ) (III.9)

called the Courant bracket. The collection (E; �; J; K; a) is then a Courant algebroid [83].

Crucially, this is not a Lie algebroid, given that the Courant bracket fails to satisfy

the Jacobi identity

Jac(X; Y; Z ) := JX; JY; ZKK+ cyclic perms (III.10)

=
1
3

d(� (JX; Y K; Z ) + cyclic perms) ; (III.11)

and is therefore not a Lie bracket.

On another note, using the adjoint action de�ned in Appendix B.1, we can evaluate

the following derivative

L eB �V (eB � W ) = eB � L V W + wyvydB ; (III.12)

where B is a two-form and � denotes the adjoint action.

The Dorfman derivative is therefore covariant under such a transformation if B is

closed B 2 
 2
cl. Moreover, the Dorfman derivative is obviously covariant under di�eo-
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morphism transformations. We call the set of symmetries of the Dorfman derivative the

generalised di�eomorphisms. It is thus given by the following semi-direct product

GDi� = Di� n 
 2
cl � Di� n 
 2

ex; (III.13)

where the second expression is only valid on local patches. This is exactly the set of trans-

formations generated byL V in (III.7). One can hence think about O(d; d) Generalised

Geometry as a way to locally geometrise the two-form gauge transformations, through

their inclusion in a natural generalisation of the di�eomorphism transformations.

The expression (III.12) motivates the de�nition of an alternative derivative, given a

three-form H

L H
V W = L V W + wyvyH: (III.14)

However H must be closedH 2 
 3
cl in order for this derivative to satisfy the required

Leibniz property. We call L H the H-twisted Dorfman derivative2. It has the same set of

symmetries as the Dorfman derivative (III.13).

On a local patch Ui � M , one can always write the three-formH as H = d B i with

B i 2 
 2(Ui ). The H-twisted Dorfman derivative can then locally be written from the

untwisted one as

L H
V W = e� B i � L eB i �V (eB i � W ): (III.15)

In order for this picture to be coherent globally we must have, on the overlap of two

patches

V = eB i (vi + � i ) = eB j (vj + � j ) on Ui \ U j ; (III.16)

where the two-form potentials are related by an exact two-formB j = B i + d� ji . This

ensures that the sections ofE are globally de�ned. This imposes

x i = x j (III.17)

� i = � j + x j yd� ji : (III.18)

This means that the Vi = vi + � i are local sections of a bundleEH de�ned as an extension

of the tangent bundle by the cotangent bundle

0 �! T � �! EH
a��! T �! 0: (III.19)

We therefore have two equivalent pictures, corresponding to the two equivalent Leibniz

algebroid

(E; L H )  ! (EH ; L ) ; (III.20)

2As in (III.8), one can de�ne an alternative Courant bracket, the H-twisted Courant bracket J; KH .
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with the isomorphism between them being de�ned by the three-form �ux H .

To be more precise, the two-form potential B actually has the interpretation of a

connection on agerbe[84], de�ned by the following condition on a triple overlap

� ji + � ik + � kj = d� kji on Ui \ U j \ U k : (III.21)

b) Generalised Complex Structure

One can de�ne a structure on the generalised tangent bundle which naturally generalises

the complex structure on the tangent bundle. It is called ageneralised complex structure.

First, an almost generalised complex structureis an endomorphism onE

J : E ! E; (III.22)

respecting

J 2 = � 1 � (J � V;J � W ) = � (V; W): (III.23)

It is thus simply an almost complex structure on E preserving the O(d; d) structure.

Unlike the ordinary complex structure case, the presence of an almost generalised

complex structure reduces the structure group to U( d
2 ; d

2) � O(d; d).

In the two components notation, (III.23) implies that we can always write the almost

generalised complex structure as

J =

 
� I P

L I T

!

; (III.24)

where P and L are a two-vector and a two-form respectively. An (almost) generalised

complex structure induces the decomposition of the complexi�ed generalised tangent space

into two maximal eigenspaces

E 
 C = L 1 � L � 1 ; (III.25)

where L � 1 is the eigenbundle of eigenvalue� i under the action of J . They are complex

conjugate �L 1 = L � 1 and they respect L 1 \ L � 1 = 0 . Moreover, it follows immediately

from (III.23) that

� (L 1; L 1) = 0 : (III.26)

The bundle L 1 is therefore said to beisotropic.

It is important to note that the subbundle L 1 (or likewise L � 1) and the properties it

respects equivalently de�ne a generalised complex structure.

Indeed, a generalised complex structure is de�ned by a subbundleL � EC such that
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i) L is maximal and isotropic

ii) L \ �L = 0 .

A structure satisfying only the �rst property is called a Dirac structure [81].

In complete analogy with the complex structure case, an almost generalised com-

plex structure is said to be integrable, or simply a generalised complex structure, if the

subbundle L 1 is involutive under the Courant bracket

JL 1; L 1K� L 1: (III.27)

In that case, one can de�ne the restriction of the Courant bracket onL 1, and given that

L 1 is an isotropic space, the Jacobiator (III.11) vanishes and the algebroid(L 1; �; J; K; a)

is thus a Lie algebroid. One can then naturally de�ne a notion of exterior derivative on

the space of forms ofL 1, as shown in [35].

Finally, lets mention that the usual complex and symplectic structures naturally em-

bed as special cases of generalised complex structures. Indeed, an almost complex struc-

ture I de�nes an almost generalised complex structure as

J I =

 
� I 0

0 I T

!

L 1 = T1;0 � T � 0;1; (III.28)

and the almost generalised complex structure is only integrable if the almost complex

structure is integrable.

A symplectic structure J de�nes a generalised complex structure as

J J =

 
0 J � 1

J 0

!

L 1 = eiJ � TC (III.29)

and the almost generalised complex structure is only integrable if the pre-symplectic

structure is integrable.

c) Spinors on E H

One can naturally de�ne a Cli�ord algebra on EH , as

f � M ; � N g = 2 � MN ; (III.30)

where M = 1 ; :::; 2d are O(d; d) indices, f � M g is a basis onEH and � MN = � (� M ; � N ).

It is therefore a Cli� (d; d) algebra, and one can naturally de�ne spinors onEH , as the

spinor representation of this algebra.

To do so, we introduce the following Cli�ord action of sections of EH on sections of



III.1 O(6,6) Generalised Geometry 29

� � T � , the exterior algebra of T �

=V 	 = vy	 + � ^ 	 V 2 �( EH ); 	 2 �(� � T � ) : (III.31)

Here we denoted this action using the slashed notation in reference to the usual notation

of contraction with gamma matrices.

It immediately follows that this action is compatible with the Cli�ord algebra

� � � �f V; Wg	 = 2 � (V; W)	 8V; W 2 �( EH ); 	 2 �(� � T � ) : (III.32)

It would therefore be natural to identify the spinors on EH as being sections of� � T � .

However, the spinorial representation of� � T � actually transforms under the gl(d;R) ad-

joint action as
=A	 = A � 	 +

1
2

Tr A	 ; (III.33)

where here� denotes the standardgl(d;R) adjoint action on polyforms. As a representation

of Spin(d; d), the spinor bundle S(EH ) is thus isomorphic to � � T � 
 (det T)1=2. We can

compensate thisdet T factor by the inclusion of an appropriate R+ factor in the structure

group, which physically corresponds to the trombone symmetry of supergravity. The

spinor bundle can hence take the form

S(EH ) ' � � T � : (III.34)

The exterior algebra � � T � can be decomposed into irreducible Spin(d; d) representations

S(EH ) := S+ (EH ) � S� (EH ) ' � + T � � � � T � ; (III.35)

where � � T � are the bundles of even/odd forms. The bundlesS+ (EH ) and S� (EH ) are

said to be of positive and negative chirality, respectively.

The Spin(d; d) spinor bundle are only locally de�ned: on the overlap of two patches

Ui and Uj , where the B -�eld glues as B j = B i + d� ji , the spinors satisfy the following

gluing condition

	 j = ed� ji � 	 i on Ui \ U j : (III.36)

One can de�ne a bilinear form on the space of polyforms, taking value indet T � , the

Mukai pairing

h!; � i = [ ! ^ � (� )]top ; (III.37)

for !; � 2 �(� � T � ), where the top subscript means the projection onto the top form

component, and where� acts as the reversal of all form indices� (! p) = ( � 1)Int [p=2]! p.
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The Mukai pairing is invariant under O (d; d) actions, and it respects

h=V 	 1; 	 2i = ( � 1)d+1 h	 1; =V 	 2i (III.38)
Z

M
hd	 1; 	 2i = ( � 1)d

Z

M
h	 1; d	 2i ; (III.39)

where the derivative on the spinors is the usual exterior derivative on forms, which maps

spinors with positive chirality to spinors with negative one and vice versa

d : S� (EH ) ! S� (EH ): (III.40)

One can similarly de�ne spinors on the untwisted bundleE . If one locally writes the

three-form H on a patch Ui as H = d B i , we de�ne

	( EH ) i = eB i � 	( E ): (III.41)

We therefore also have

S(E) ' � � T � (III.42)

and its decomposition into irreducible Spin(d; d) representations

S(E) := S+ (E ) � S� (E ) ' � + T � � � � T � (III.43)

As opposed to the twisted spinors, the spinors onE are globally de�ned. The de�nition

of a derivative on the untwisted spinors naturally follows from (III.41)

dH := d + H ^ : S� (E ) ! S� (E ): (III.44)

While the exterior derivative d is the di�erential associated to the untwisted Courant

bracket, dH is the one associated to the H-twisted Courant bracket.

On another note, one can de�ne a natural action of (almost) generalised complex

structures on the space of di�erential forms3

J � =
1
2

�
Jmn em ^ en ^ +2 I m

n [en^ ; em y] + Pmn em yeny
�
: (III.45)

An (almost) generalised complex structure determines an alternative grading of the spinor

bundle

� � T � 
 C =
M

� d
2 � k� d

2

Sk ; (III.46)

with k the eigenvalues of the eigenspacesSk of J , which are representations of the U( d
2 ; d

2)

3We introduce here a frame f em g of T and its dual coframe f em g on T � .
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structure group associated withJ .

For example, in the case of the (almost) generalised complex structure associated to

an almost complex structure, its relation with the standard Hodge decomposition is

Sk =
M

p
�

d
2 � p; d

2 � k� p; (III.47)

where �
d
2 � p; d

2 � k� p are sections of the(p; q)-forms de�ned by the standard associated

(almost) complex structure.

Decomposing the action of the exterior derivatives on the twisted and untwisted spinor

bundles gives

d : Sk (EH ) ! Sk� 3(EH ) � Sk� 1(EH ) � Sk+1 (EH ) � Sk+3 (EH ) (III.48)

dH : Sk (E ) ! Sk� 3(E ) � Sk� 1(E ) � Sk+1 (E ) � Sk+3 (E ): (III.49)

c).1 Pure spinors

One can de�ne a subset of the spinors onEH (or E), the pure spinorsas the vacuum of the

Cli� (d; d) algebra, in the sense that the pure spinors will be annihilated byd independent

generators of Cli� (d; d). We call the subbundle ofEH 
 C annihilating a given spinor its

annihilator space

L 	 = f V 2 EH 
 C : =V 	 = 0 g; (III.50)

which is thus d dimensional for pure spinors. Importantly, given that sections of EH

acting on spinors obey the Cli�ord algebra (III.32), the bundle L 	 is isotropic. Moreover,

if a pure spinor is complex and obeys

h	 ; �	 i 6= 0 ; (III.51)

its annihilator space respectsL 	 \ �L 	 = 0 . Such a pure spinor is called a non-degenerate

pure spinor.

A non-degenerate pure spinor	 therefore de�nes a maximal isotropic bundle obeying

L 	 \ �L 	 = 0 , it thus de�nes a generalised complex structureJ as

L 	 = L 1 ; (III.52)

with L 1 the eigenbundle of charge+ i with respect to J .

Given that the normalisation of 	 plays no role in de�ning L 	 , an (almost) generalised

complex structure is hence in one-to-one correspondence with the line-bundle of a pure

spinor.

It is insightful to reformulate the integrability condition of a given almost generalised
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complex structure J as a di�erential condition on its associated pure spinor	( E )4. The

condition (III.27) reads

� � � �JV; WKH 	 = 0 8 V; W 2 �( E ): (III.53)

This is equivalent to

dH 	 = =V 	 for V 2 �( E ): (III.54)

Hence the almost generalised complex structure associated to a pure spinor respecting

(III.54) is integrable 5.

The integrability of the generalised complex structure (III.54) implies that the H-

twisted exterior derivative behaves as

dH : Sk (E ) ! Sk� 1(E ) � Sk+1 (E ) ; (III.55)

as opposed to the case where the generalised complex structure is non-integrable (III.49).

This allows for a decomposition of the exterior derivative in terms of the generalised

analogues of the Dolbeault operators

dH = @H + �@H @H : Sk (E ) ! Sk+1 (E ) �@H : Sk (E ) ! Sk� 1(E ): (III.56)

d) Generalised Calabi-Yau structure

As we mentioned above, a non-degenerate pure spinor	 reduces the structure group

on E to U(d=2; d=2). If 	 is globally de�ned, the structure group is further reduced to

SU(d=2; d=2). An SU(d=2; d=2) structure is called a generalised Calabi-Yau structure. A

generalised Calabi-Yau structure is integrable if

dH 	 = 0 : (III.57)

The relationship between a generalised complex structure and a generalised Calabi-Yau

structure is analogous to the relationship between a complex and an SL(d=2; C) structure,

discussed in the previous chapter.

e) Compatible Generalised Complex Structures

One can consider the case where a manifold admits several generalised complex structures.

In type II supergravity, a physically crucial case is the one where the manifold admits two

4A similar condition could be written on the twisted pure spinor 	( EH ). We denote 	( E ) as 	 in the
following.

5Note that (III.54) is independent of the speci�c choice of the local section 	 of the line bundle de�ned
by J . The associated condition on the twisted spinor is simply d	 = =V 	 for V 2 �( EH ).
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generalised complex structures, that are said to becompatible. Two generalised complex

structures are compatible if they commute

[J 1; J 2] = 0 : (III.58)

Each generalised complex structure determines a speci�c grading of the space of forms

� � T � 
 C =
M

� d
2 � k� d

2

S1
k =

M

� d
2 � k� d

2

S2
k : (III.59)

In terms of the associated pure spinors, the compatibility condition translates as

	 1 2 �( S2
0) 	 2 2 �( S1

0); (III.60)

and two pure spinors respecting (III.60) arecompatible. The presence of two compatible

pure spinors reduces the structure group to U( d
2)� U( d

2) � O(d; d), and if the pure spinors

are nowhere vanishing and globally de�ned, it further reduces to an SU( d
2)� SU( d

2) struc-

ture.

The condition (III.60) implies that the pure spinors share d
2 annihilators, and there is

a double grading of the space of forms as

� � T � M 
 C =

d
2M

k= � d
2

d
2M

l= � d
2

Sk;l ; (III.61)

where k and l denote the eigenvalues with respect toJ 1 and J 2, and for a given value of

k and l, the Sk;l are irreducible representations of the SU( d
2)� SU( d

2) structure.

III.1.2 Generalised structures of supersymmetric backgrounds

In this subsection, we revisit type II solutions that are the warped product of four-

dimensional Minkowski spaceX 4 and a six-dimensional compact manifoldM , with the

following metric

ds2
10 = e2A(y) � �� dx � dx � + gmn dym dyn ; (III.62)

where again x � , � = 0 ; :::; 3 are the external coordinates onX 4, and ym , m = 1 ; :::; 6

are the coordinates onM . We will describe such backgrounds using the formalism of

O(6; 6) generalised geometry, specialising the results of the above subsection to the six-

dimensional compacti�cation manifold. The framework of O(6; 6) generalised geometry

has been successfully used for example to classify [77, 85] and derive new type II �ux

backgrounds [44, 85, 86].

Recall that the Poincaré invariance of X 4 constrains the NS and RR-�uxes: the NS-
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�eld-strength H can only have internal legs, and the ten-dimensional RR-�eld-strength

takes the form

F 10 = F + e4A vol4 ^ ~F ; (III.63)

where F and ~F are purely internal and obey

~F = ~� 6F : (III.64)

We recall the split of the ten-dimensional spinors� 1 and � 2

� 1 = � 
 � 1 + c:c: �2 = � 
 � 2 + c:c: (III.65)

From now on we take the internal spinors to be globally de�ned, such that they each

de�ne an SU(3) structure on M . It is also important to note that the two six-dimensional

internal spinors must have the same norm in order to admit supersymmetric sources6 [2],

which we denotek� 1;2k.

In order to make contact with the formalism of generalised complex geometry, we

introduce the following objects

	 1 = �
8i

k� 1;2k2 � 1 
 � y
2 (III.66)

	 2 = �
8i

k� 1;2k2 � 1 
 � T
2 : (III.67)

One should think of these tensor products in terms of the following Fierz identity

� 
 � =
6X

k=0

1
k!

�
� y
 mk :::m 1 �

�

 m1 :::m k ; (III.68)

for two spinors � and � . The conventions for the internal gamma matrices are given in

Appendix A. These tensor products are then isomorphic to polyforms through the Cli�ord

map (A.34), so we treat them as such from now on. Through (III.42), we interpret these

polyforms as spinors onE = T � T � , the generalised tangent bundle of the six-dimensional

compacti�cation manifold.

The spinors 	 1 and 	 2 are odd/even and even/odd in type IIA/IIB, respectively

	 1 = 	 � ; 	 2 = 	 � ; (III.69)

and they are normalised such that

h	 1; �	 1i = h	 2; �	 2i = � 8ivol6 ; (III.70)

6Supersymmetric sources of type II supergravity will be discussed in the next chapter.
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with vol 6 the volume form on M in the string frame. Finally, it follows directly from

(III.66) and (III.67) that the spinors 	 1 and 	 2 are pure7.

Given that they are non-degenerate pure spinors, they each de�ne an almost gener-

alised complex structure onE, denoted J 1 and J 2 respectively. Moreover, given that the

internal spinors are globally de�ned, the pure spinors	 1 and 	 2 are also globally de�ned,

so they each de�ne an SU(3; 3) � O(6; 6) structure on E. Finally, 	 1 and 	 2 are com-

patible, so as discussed in the previous subsection, they further de�ne an SU(3) � SU(3)

structure on E.

Crucially, the vanishing of the ten-dimensional supersymmetry variations (II.71),

(II.72) can be elegantly reformulated as the following set of di�erential equations on

the pure spinors [1]

dH (e3A� � 	 2) = 0 (III.71)

dH (e2A� � Im	 1) = 0 (III.72)

dH (e4A� � Re	 1) = e4A ~� 6F: (III.73)

Given that the �rst equation is of the form (III.54), imposing supersymmetry amounts

to requiring the almost generalised complex structureJ 2 to be integrable, while the last

supersymmetry condition (III.73) tells us that the integrability of the almost generalised

complex structure J 1 is precisely obstructed by the RR �uxes.

We illustrate how standard G-structures embed in this formalism with the example of

an SU(3) structure in type IIB, de�ned by a pre-symplectic two form J and a (3; 0)-form


 . If we parametrise the proportionality between the internal spinors as� 1 = � 2, the pure

spinors take the simple form

	 1 = � ieiJ 	 2 = 
 : (III.74)

From the supersymmetry conditions (III.71) and (III.73), we immediately see that the

almost complex structure de�ned by 
 is integrable, while the integrability of the pre-

symplectic structure de�ned by J is precisely spoiled by the RR �uxes.

III.2 E 7(7) � R+ Generalised Geometry

We have seen that the formalism of O(d; d) geometry treats the full NS sector in a ge-

ometric way. When doing so, the only obstructions to the integrability of the O(d; d)

generalised structures are the remaining supergravity bosonic degrees of freedom, the RR

�uxes. In this section we introduce another generalised geometry,Ed+1( d+1) � R+ gener-

7 In six dimensions, every Weyl spinor is pure, so � 1 and � 2 are pure.
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alised geometry, or exceptional generalised geometry, which treats both the NS and the

RR sectors of type II supergravity geometrically.

We �rst introduce exceptional generalised geometry, before describing type II �ux

backgrounds within this framework, emphasising on the relationship between supersym-

metry and the integrability of the relevant generalised structures.

III.2.1 Exceptional Generalised Geometry

On a manifold M of dimension d = 6 , the generalised tangent bundle forE7(7) � R+

generalised geometry is locally isomorphic to

E ' EO(6;6) � S� � (� 6T � 
 EO(6;6)); (III.75)

in type IIA/IIB, with S� the spinor bundles (III.43) on EO(6;6) ' T � T � . We write

sections of this bundle as

V = X + ! + ~X ; (III.76)

with X 2 �( EO(6;6)), ! 2 �( S� ), and ~X 2 �(� 6T � 
 EO(6;6)).

The isomorphism (III.75) is not unique, as the bundle E is actually de�ned as an

extension, through the following exact sequence

0 ! S� ! E 0 ! EO( 6;6) ! 0 (III.77)

0 ! � 6T � 
 EO(6;6) ! E ! E 0 ! 0 : (III.78)

There is thus a non-trivial patching between local sections of the generalised tangent

bundle E : on two overlapping patchesUi \ U j , the patching is de�ned by

Vi = ed~� ij ed
 ij ed� ij � Vj for Vi 2 �( Ui ; E ); Vj 2 �( Uj ; E ) (III.79)

in type IIA, where ~� ij , 
 ij and ~� ij are locally a �ve-form, a polyform of even degree and

a one-form respectively. The action� is the adjoint action, de�ned in Appendix B.2.

De�ning an isomorphism as in (III.75) is equivalent to locally choosing a two-form, a

polyform of odd degree, and a six formB , C and ~B which are patched on overlapsUi \U j

through8

B i = B j + d� ij (III.80)

Ci = Cj + eB j +d� ij ^ d
 ij (III.81)

~B i = ~B j + d ~� ij +
1
2

hd
 ij ; eB j +d� ij ^ Cj i : (III.82)

8This is the patching for massless type IIA.
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Then, for a section ~V 2 �( EO(6;6) � S� � (� 6T � 
 EO(6;6))) , we can de�ne a local section

of E on the patch Ui with the appropriate patching as

V = e
~B i eB i eCi � ~V : (III.83)

From the supergravity point of view, the forms B and C correspond to the NS and RR

gauge potentials, and the patching onE allows one to de�ne the following globally de�ned

forms

H = d B F = d H C ; (III.84)

and from the supergravity point of view these correspond to the NS and RR �uxes.

Di�erent values of H and F de�ne di�erent isomorphism classes ofE . We thus call the

vectors ~V 2 �( EO(6;6) � S� � (� 6T � 
 EO(6;6))) untwisted vectors, and we say that the

vectors V 2 �( E ) are "twisted by the �uxes".

A priori, the bundle E has structure group GL(rk E; R). We can introduce invariant

tensors in order to reduce the structure group. We introduce thesymplectic and quartic

invariants

s : � 2E ! det T � q : � 4E ! (det T � )2 : (III.85)

The symplectic invariant is given explicitely in Appendix B.2, and the presence of these

invariants precisely reduces the structure group toE7(7) � R+ . The generalised tangent

bundle is then an E7(7) � R+ vector bundle, and it transforms in the fundamental repre-

sentation. We denote theR+ value as the weight, and for example a section of the trivial

representation of E7(7) � R+ with weight p is a section of(det T � )p=2.

The isomorphism (III.75) is a direct sum of irreducible representations of O(6; 6), it

realises the embedding of O(6; 6) in E7(7) � R+ . Di�erent isomorphisms of E , realising the

embedding of di�erent E7(7) � R+ subgroups have been used in the exceptional generalised

geometry literature [40, 79]. However, we solely use the embedding O(6; 6) � E7(7) �

R+ , since throughout this thesis we will be concerned with the interplay between the

frameworks of O(6; 6) � R+ and E7(7) � R+ generalised geometry.

We recall that the generalised frame bundle ~F is an E7(7) � R+ principal bundle

constructed from frames ofE . One can de�ne generalised tensors as sections of vector

bundles associated with di�erent E7(7) � R+ representations. Of particular interest is the

adjoint bundle ad ~F , corresponding to the adjoint representation ofE7(7) � R+

ad ~F ' R � R � ad ~FO(6;6) � S� � (� 6T 
 S� ) � � 6T � � � 6T : (III.86)

We write sections of this bundle as

R = q + l + � + s + ~s + a + ~a ; (III.87)
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with q 2 R, l 2 R, � 2 �( ad ~FO(6;6)), etc.

Given that the �bres of this bundle are isomorphic to the Lie algebra of E7(7) � R+ ,

its sections have a natural action onE which is given in Appendix B.2. Let us mention

that the NS and RR gauge potentialsB and C are sections of this adjoint bundle.

Another important bundle is the space of generalised torsions. This will be relevant

when we introduce generalised connections shortly. For now we will just state the prop-

erties of the bundle.

The torsion bundle K � E � 
 ad ~F can locally be written in terms of O(6; 6) irreducible

representations as

K ' EO(6;6) � (EO(6;6) 
 � 6T � ) � S� � (� 6T 
 S� ) � (� 6T � 
 S� )

� [EO(6;6) 
 S� ]0 � � 3(EO6;6) ) � (� 6T � 
 � 3(EO(6;6)) ; (III.88)

where � A 2 �([ EO(6;6) 
 S� ]0) respects� A � A = 0 . The �bres of this bundle transforms

in the 9121 representation of E7(7) � R+ , where the subscript denotes theR+ weight.

The NS and RR �uxes are sections of the torsion bundleH 2 �(� 3(EO(6;6))) 2 �( K )

and F 2 �( S� ) 2 �( K ).

Let us mention one moreE7(7) � R+ bundle N , a subbundle of the symmetric product

S2E. The �bres of N belongs to the1332 representation ofE7(7) � R+ , and N is isomorphic

to

N ' R � � 6T � � (� 6T � 
 � 6T � ) � S� � (� 6T � 
 S� ) � (ad ~FO(6;6) 
 � 6T � ) : (III.89)

a) The Dorfman derivative

As was the case in O(6; 6) generalised geometry, the bundleE admits a derivative operator,

generalising the Lie derivative. We call it the Dorfman or generalised Lie derivative, and

on a local patch Ui it acts on generalised vectors as

L Vi V
0

i = L X i X
0
i + (d( =X i !

0
i ) + =X i d! 0

i � d! i � X 0
i )

+ ( L X i
~X 0

i + ( @;~X i ) � X 0
i � d! i � ! 0

i ) ; (III.90)

with Vi = X i + ! i + ~X i 2 �( Ui ; E ), and similarly for V 0. Here L X X 0 is the standard

O(6; 6) Dorfman derivative (III.7). We also introduced

L X ~X 0 = L v ~X 0+ j (~v0yvol) ^ d� (III.91)

(@;~X ) = d(~vyvol) : (III.92)
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with j de�ned in Appendix A.1 and with the following GL (6) decomposition of sections

of the O(6; 6) generalised bundlesEO(6 ;6) and � 6T � 
 EO(6 ;6)

X = v + � (III.93)

~X = (~v + ~� ) 
 vol : (III.94)

De�ning an anchor map a : E ! T the collection (E; L; a ) is a Leibniz Algebroid.

As was argued in the O(6; 6) generalised geometry case, the Dorfman derivative along

X 2 �( EO(6;6)) generalises the di�eomorphisms to also include the NS gauge transforma-

tions, and from (III.90) we see that the another part of the action of the E7(7) Dorfman

derivative is generated by the action of the exact di�erential forms d! . These are precisely

the RR gauge degrees of freedom of the type II backgrounds.

The Dorfman derivative thus generates the gauge transformations of the supergravity

background.

One can locally de�ne an antisymmetric bracket on Ui patches of E , the Courant

bracket

JVi ; Wi K=
1
2

(L Vi Wi � L W i Vi ) : (III.95)

The collection (E; J; K; a) is then a Courant algebroid.

Crucially, this is not a Lie algebroid, given that the Courant bracket fails to satisfy

the Jacobi identity. Indeed, the Jacobiator reads9

Jac(X; Y; Z ) = JX; JY; ZKK+ cyclic perms

= d � E (JX; Y K� N Z + cyclic perms) ; (III.98)

and doesn't vanish generically.

Let us stress here that without choosing an isomorphism (III.75), we cannot de�ne a

global expression for the Dorfman derivative and (III.90) is a local expression. Choosing

an (III.75) picks out the gauge potentials B and C with �eld-strengths H and F . We

can then de�ne a global Dorfman derivative for untwisted generalised vectors, thetwisted

Dorfman derivative

L H + F
V V 0 := L V V 0+ ( X � H + H ^ ! + =XF + hF; ! i ) � V 0; (III.99)

9The projections � E and � N are the maps

� E : N � E � ! E (III.96)

� N : E � E ! N (III.97)
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where V = X + ! + ~X 2 �( EO(6;6) � S� � (� 6T � 
 EO(6;6))) is a global section, and

similarly for V 0. We introduced X � H := vyH .

Here we see that the Dorfman derivative is twisted by the �uxes while the generalised

tangent bundle remains untwisted. As already discussed in the O(6; 6) generalised ge-

ometry framework, this is an equivalent formulation of generalised geometry and we will

mainly make use of this approach in the following of this thesis.

The twisted Dorfman derivative (III.99) can be rearranged as

L H + F
V V 0 = L H

V V 0+ ( =XF + hF; ! i ) � V 0; (III.100)

with

L H
V V 0 = L H

X X 0+ (d H ( =X! 0) + =X dH ! 0� =X 0dH ! )

+ ( L X ~X 0+ ( @;~X ) � X 0� dH ! � ! 0) ;

whereL H
X X 0 is the twisted O(6; 6) Dorfman derivative (III.14). Here we simply expanded

the contributions involving the NS �eld-strength H and repackaged them into the twisted

exterior derivative dH . This form of the Dorfman derivative will turn out to be convenient

to make contact with the O(6; 6) formalism later on.

We can similarly de�ne a global twisted Courant bracket

JV; WKH + F =
1
2

(L H + F
V W � L H + F

W V) ; (III.101)

which of course also isn't a Lie bracket, as it also fails to satisfy the Jacobi identity.

b) Generalised connection and generalised torsion

One can naturally generalise the notion of connection on the generalised tangent bundle.

A generalised connectionD is a map

D : �( E ) ! �( E � 
 E ) (III.102)

such that

D(fV ) = d f 
 V + fDV (III.103)

for all f 2 C1 (M ), V 2 �( E ). We used here the identi�cation df
a�

,! �( E � ). The

generalised torsion of a generalised connectionD is then some tensorT 2 �( E � 
 ad ~F )

de�ned by

T(V ) � V 0 = L D
V V 0� L V V 0 (III.104)

where L D
V is the Dorfman derivative (III.90), where every instance of the exterior deriva-



III.2 E 7(7) � R+ Generalised Geometry 41

tive d is replaced by the generalised connectionD 10.

From the torsion de�nition (III.104), we can see the torsion as the map

T : E ! ad ~F : (III.106)

One may think that the torsion �lls out the whole of E � 
 ad ~F . However, due to the

precise form of the Dorfman derivative, the torsion can only live inK � E � � E � 
 ad ~F ,

highlighting the importance of the bundle K de�ned above.

One can similarly de�ne a generalised connection and its associated torsion in the

untwisted picture. We denote the untwisted generalised tangent bundle as

~E = EO(6;6) � S� � (� 6T � 
 EO(6;6)): (III.107)

A generalised connection~D then de�nes a map

~D : �( ~E) ! �( ~E � 
 ~E) (III.108)

which respects (III.103) for V 2 �( ~E). Its corresponding generalised torsion is

T(V ) � V 0 = L
~D;H + F
V V 0� L H + F

V V 0; (III.109)

where L
~D;H + F
V is the twisted Dorfman derivative (III.99), where every instance of the

exterior derivative d is replaced by the generalised connection~D.

c) Generalised G-structures

One can naturally generalise the notion of G-structures on the tangent bundle, to de�ne

generalised G-structures on the generalised tangent bundle. The generalisedG-structure

G is again a subgroup of the (now generalised) structure groupE7(7) , and de�nes a

principal G bundle, with �bres transforming in the fundamental representation of G.

As in conventional geometry, the existence of aG-structure is equivalent to the exis-

tence of some globally de�ned non-vanishing generalised tensors that are preserved byG.

We denote such a generalised tensor as� .

This allows us to naturally generalise the notion of integrability of the G-structure:

for a given G-structure, we de�ne the generalised connectionsD that are compatible with

G as

D� = 0 : (III.110)

10 The generalised connection D has a natural action on any generalised tensor bundle X induced by
(III.102):

D : X ! �( E � 
 X ) : (III.105)
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The G structure is then integrable if there exists a torsion free compatible generalised

connection. From the generalised torsion de�nition (III.104), this corresponds to

L D
V = L V : (III.111)

On can similarly de�ne generalisedG-structures on the untwisted generalised tangent

bundle ~E. Then, if ~� is some globally de�ned non-vanishing generalised tensor preserved

by G, a generalised connection~D is compatible with the G-structure if

( ~D + H + F ) ~� = 0 : (III.112)

Given (III.109), the integrability of the G-structure then translates into

L
~D;H + F
V = L H + F

V : (III.113)

Lets come back to the twisted picture and discuss further the integrability of the

G-structure.

Whether or not a generalised connectionD satisfying (III.111) exists depends on the

intrinsic torsion associated to the G-structure. It is the component of the torsion which is

independent of the speci�c choice of connection. Once again, it can be de�ned in complete

analogy with the conventional geometry case.

To de�ne the intrinsic torsion, we start from a given connection D , compatible with

the G-structure, and we write any compatible connectionD 0 as D 0 = D + � where

� = D 0� D 2 �( K G) with K G = E � 
 adPG ; (III.114)

and with adPG the adPG-bundle with �bres belonging to the adjoint representation of G.

As mentioned above, the torsion of a generic connection will be a section of the bundle

TD 2 �( W ) with W ' K � E � : (III.115)

We then de�ne the map

� : K G ! W

� ! � (�) = TD 0 � TD ; (III.116)

and denoting the vector bundle associated to the image of� by Im� = WG, we can de�ne

W G
int = W=WG : (III.117)
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W G
int does not depend on the choice of compatible connection, it only depends on the

G-structure. W G
int is the intrinsic torsion of the G-structure.

It will prove to be useful throughout the thesis to decompose the intrinsic torsion of

a given G-structure into irreducible representations of G

W G
int =

M

i

Wi : (III.118)

A torsion-free compatible connection exists if and only if the intrinsic torsion of the G-

structure vanishes.

Indeed, given a compatible connectionD with non-vanishing torsion T, we can con-

sider its projection onto W G
int , which corresponds to the intrinsic torsion T int 2 �( W G

int ).

As explained above, this part of the torsion is unchanged by the shiftD ! D 0 = D + � .

It is therefore possible to �nd a � such that that the torsion T0 of D 0 vanishes if and only

if the intrinsic torsion T int vanishes.

d) R+ � U (7) and SU (7) structures

We introduce here two important generalised structures, theR+ � U(7) structure and the

SU(7) structure.

As we have done in the case of conventional geometry and O(6; 6) generalised geometry,

we de�ne these structures through their corresponding invariant generalised tensors [61]

J 2 �( ad ~F ) : stabilised byG = C� � SU(7) = R+ � U(7) (III.119)

 2 �( ~K ) : stabilised byG = SU(7) ; (III.120)

with ~K = ( det T � )2 
 K . We denote J as the almost exceptional complex structureand

 as the generalised SU(7) structure.

They are stabilised by the same SU(7), but J is invariant under an extra C� action.

As we will see, these structures are the exceptional analogues of the complex (GL(3; C))

and SL(3; C) structures of conventional geometry introduced in II.1.1, or of the generalised

complex (U(3; 3)) and generalised Calabi-Yau (SU(3; 3)) structures of O(6; 6) generalised

geometry discussed in III.1.1.

In order to de�ne the exceptional complex structure, we introduce a globally de�ned

nowhere vanishing SU(8) spinor � , transforming in the fundamental representation 8 of

SU(8). The stabiliser of � is SU(7), and as such it de�nes a generalised SU(7) structure.

There is a U(1) 2 SU(8)=Z2 which commutes with this SU(7) subgroup. It is generated

by an element of the SU(8) Lie algebra conjugate to the diagonal matrix

� = diag(� 1=2; � 1=2; :::; 7=2) 2 SU(8) � E7(7) � R: (III.121)
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The normalisation is chosen so that exp(i�J ) with 0 � � � 2� generates a U(1) subgroup

of SU(8)=Z2. The commutant of this U(1) is then a R+ � U(7) subgroup of E7(7) � R+ .

This leads us to the following de�nition.

A generalised R+ � U(7) structure, or almost exceptional complex structure, is a

section J 2 �( ad ~F ) that is conjugate at each point p 2 M to the element � 2 SU(8) in

(III.121).

The exceptional generalised structureJ lies within a particular orbit of the 133 rep-

resentation space ofE7(7) . Decomposing the adjointE7(7) representation into irreducible

SU(8) representations, we have

133 = 63 � 70 3 (� �
� ; � ��
� ) ; (III.122)

where we introduced SU(8) indices.

We can then write the exceptional complex structureJ in terms of the spinor � as

J �
� = 4 � � �� � �

1
2

(��� )� �
� ; J��
� = 0 ; (III.123)

where we set��� = 1 . We can further decompose the133 E7(7) representation space into

irreducible SU(7) � U(1) representations

133 = 10 � 480 � (7� 4 � 74) � (352 � 35� 2) ; (III.124)

where now the subscripts denote the U(1) charge. The exceptional complex structureJ

lies in the singlet 10 representation.

Given J , in analogy with a conventional almost complex structure, we can decom-

pose the complexi�ed generalised tangent bundle intoJ eigenbundles, through its adjoint

action. The eigenbundles are irreducible representations of SU(7) � U(1), and we �nd

EC = L 3 � L � 1 � L 1 � L � 3 (III.125)

56C = 73 � 21� 1 � 211 � 7� 3 ; (III.126)

with L � 3 ' �L 3 and L � 1 ' �L 1.

We can similarly decompose the untwisted complexi�ed generalised tangent bundle

EC = ~L 3 � ~L � 1 � ~L 1 � ~L � 3 (III.127)

56C = 73 � 21� 1 � 211 � 7� 3 ; (III.128)

also respecting~L � 3 ' �~L 3 and ~L � 1 ' �~L 1.

As we will see,L 3 can be seen as the analogue ofT1;0 in conventional complex geometry



III.2 E 7(7) � R+ Generalised Geometry 45

and of L 1 in generalised complex geometry. This thus leads to the following alternative

de�nition of the exceptional complex structure.

An almost exceptional complex structure is a subbundleL 3 � EC such that

i) dim C L 3 = 7

ii) L 3 � N L 3 = 0 .

iii) L 3 \ �L � 3 = f 0g

iv) The map h : L 3 � L 3 ! (detT � )C de�ned by h(V; W) = is(V; �W ) is a de�nite

hermitian inner product valued in det T � .

The second condition is the analogue of the isotropy condition for a generalised com-

plex structure.

Again in analogy with the generalised complex structure case, we call a subbundleL 3

satisfying the �rst two conditions a (complex) exceptional polarisation.

The ~L 3 bundle similarly de�nes an untwisted version of the almost exceptional complex

structure.

We now de�ne the generalised SU(7) structure. To do so, we write down the decom-

position SU(7) � U(1) � SU(8)=Z2 � E7(7) of the 912 E7(7) representation space

912 = 36 � 420 � c:c: (III.129)

= 17 � 73 � 28� 1 � 21� 1 � 35� 5 � 1403 � 224 � 1 � c:c: (III.130)

From now on we consider the generalised tensor bundle~K transforming in the 9123

representation of E7(7) � R+ . The presence of an SU(7) singlet in the decomposition

(III.130) implies that each almost exceptional complex structure J de�nes a unique line

bundle UJ � ~K C, satisfying

V �  = 0 8V 2 �( L 3); s( ; � ) 6= 0 ; (III.131)

where is a local section ofUJ , the product V �  is de�ned by the projection map E 
 ~K C

where C is the generalised tensor bundle transforming in the86454 representation of

E7(7) � R+ , and s is the symplectic invariant on the 912 bundle ~K � E 
 E 
 E induced

from the symplectic invariant on E. We are thus led to de�ne a generalised SU(7) structure

in the following way.

Given an almost exceptional complex structureJ with trivial line bundle UJ , a gen-

eralised SU(7) structure is a global nowhere-vanishing section 2 �( UJ ).

We stress again that this is in complete analogy with the almost complex and almost

generalised complex cases: the SU(7) structure naturally generalises the holomorphic

(3; 0)-form 
 and the pure spinor 	 de�ning the SL (3; C) and SU(3; 3) structures respec-

tively. The second condition in (III.131) simply generalises the non-degeneracy condition
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of the tensors
 and 	 .

One can again de�ne an untwisted version of the generalised SU(7) structure, from

the untwisted almost exceptional complex structure ~J : it indeed de�nes a unique line

bundle U~J � ~K C as

V � ~ = 0 8V 2 �( L 3); s( ~ ; �~ ) 6= 0 ; (III.132)

where ~ is a local section ofUJ .

The generalised SU(7) structure again lies within a particular orbit of the 9123 rep-

resentation space. Concretely, decomposing the912 space in terms of irreducible repre-

sentations of SU(8)

912 = 36 � 420 � 36 � 420 3 (� �� ; � ��

� ; �� �� ; �� �

��
 ) ; (III.133)

we can write the generalised SU(7) structure in terms of the spinor � as

 �� = � (volG)3=2� � � �  ��

� = � �� = � �

��
 = 0 ; (III.134)

with vol G the E7(7) -invariant volume de�ned by the generalised metric G [36, 39] and�

a non-vanishing complex number.

d).1 R+ � U (7) and SU (7) intrinsic torsions and integrability

We now discuss the integrability of the R+ � U(7) and SU(7) structures.

As mentioned above, a generalised structure is integrable if its intrinsic torsion van-

ishes. Regarding the SU(7) structure, the � map (III.116) has been explicitly constructed

and the corresponding vector bundleWSU(7) has been given in [42, 87]. One can do the

same for theR+ � U(7) structure, and the resulting intrinsic torsions W SU(7)
int = W=WSU(7)

and W R+ � U(7)
int = W=WR+ � U(7) are, in terms of SU(7) irreducible representations:

W SU(7)
int : 1� 7 � 7� 3 � 21� 1 � 35� 5 � c:c: (III.135)

W R+ � U(7)
int : 1� 7 � 35� 5 � c:c: (III.136)

where again, the subscript denotes that U(1) charge under the action ofJ .

Let us �rst investigate the integrability of the R+ � U(7) structure. It is integrable

if the intrinsic torsion components 1� 7 and 35� 5 vanishes. This can be reformulated in

a convenient way, naturally generalising the integrability conditions of the complex and

generalised complex structures.

To do so, we consider a connection compatible with such a structureJ : DJ = 0 .
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Evaluating (III.104) with V; V0 2 �( L 3), we have

L V V 0 = L D
V V 0� T(V ) � V 0 8V; V0 2 �( L 3) : (III.137)

It is important to note that since the left-hand side of (III.137) doesn't depend on

the choice of connectionD , the non-vanishing sections ofE in the right-hand side only

involve the intrinsic R+ � U(7) torsion.

The compatibility of the connection with J ensuresL D
V V 0 � L 3. The second term then

generates the following sections of the generalised tangent bundle, in terms of SU(7)� U(1)

representations

1� 7 � 73 � 73 � 21� 1 (III.138)

35� 5 � 73 � 73 � 211 : (III.139)

This is equivalent to

8 V; V0 2 �( L 3) : 1� 7 6= 0 () L V V 0\ L � 1 6= 0 (III.140)

35� 5 6= 0 () L V V 0\ L 1 6= 0 : (III.141)

This motivates the following equivalent de�nition of the integrability of the exceptional

complex structure.

A torsion-free R+ � U(7) structure J or exceptional complex structureis one satisfying

involutivity of L 3 under the generalised Lie derivative:

L V V 0 � L 3 8 V; V0 2 �( L 3) : (III.142)

One can then de�ne the restriction of the Dorfman derivative on L 3. Given that the L 3

bundle respectsL 3 � N L 3 = 0 , the Jacobiator (III.98) vanishes and the algebroid(L 3; L; a)

is actually a Lie algebroid.

The integrability of the exceptional complex structure J can similarly be spelled in

the untwisted picture: J is integrable if ~L 3 is involutive under the twisted generalised Lie

derivative

L H + F
V V 0 � ~L 3 8 V; V0 2 �( ~L 3) : (III.143)

This de�nition of the integrability is in complete analogy with the complex and gener-

alised complex structures cases, where the integrability of a (generalised) complex struc-

ture can be recast as involutivity of eigenspaces of the (generalised) complex structure

under the (generalised) Lie bracket.

Furthermore, the analogy carries through to the integrability of the SU(7) structure.
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Indeed, the complex geometry analogue of the SU(7) structure is the SL(3; C) structure.

We have seen in section II.1 that the integrability of the SL(3; C) structure can be recast

as the vanishing of a moment map for the di�eomorphisms action. We now discuss the

generalisation of this reformulation of the integrability for the SU(7) structure, as the

vanishing of a moment map for the generalised di�eomorphisms action.

For an SU(7) structure, a choice of at a point p 2 M is equivalent to picking a point

in the coset

 jp 2 QSU(7) =
E7(7) � R+

SU(7)
: (III.144)

The choice of an SU(7) structure on M therefore corresponds to a section of the �bre

bundle

QSU(7) ! Q SU(7) ! M (III.145)

and we can identify the space of SU(7) structures as Z ' �( QSU(7) ). One can also

restrict to the space of SU(7) structures with an integrable associated exceptional complex

structure

Ẑ = f 
 2 Z j J is integrableg: (III.146)

Crucially, the spaceẐ inherits a Kähler metric from the Kähler metric on the coset space

QSU(7) , picked out by supersymmetry, with the following corresponding Kähler potential

K =
Z

M

�
i s( ; � )

� 1=3
: (III.147)

From the symplectic structure de�ned by this Kähler potential, one can de�ne the corre-

sponding moment map [61]

� : Ẑ ! gdiff� (III.148)

for the action of generalised di�eomorphisms, wheregdiff is the Lie algebra of generalised

di�eomorphisms, and where

� (V ) =
1
3

Z

M
s(L V �; �� )

=
1
3

Z

M
s(L V  ; � )( i s( ; � )) � 2=3 ; (III.149)

with V 2 �( E ) and � = ( i s( ; � )) � 1=3 which transforms in the 9121 representation.

Going to the second line we used
R

M L V (:::) = 0 .

Let us introduce a generalised connectionD compatible with the SU(7) structure

D = D� = 0 . Using the de�nition of the torsion (III.104), we have

� (V ) =
1
3

Z

M
s(L D

V �; �� ) � s(T(V )�; �� )
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= �
1
3

Z

M
s(T(V )�; �� ) ; (III.150)

where the �rst term in the right-hand side of the �rst line vanishes from the compatibility

of the generalised connectionD .

Since the de�nition of the moment map is independent of any choice of connection,

only the SU(7) intrinsic torsion can contribute in the last expression.

Crucially, given that the vector V 2 �( E ) transforms in 7 � 21 � c:c: representations

of SU(7), and since� is an SU(7) singlet, only the 7 and 21 SU(7) representations of the

intrinsic SU(7) torsion enter the moment map (III.150).

From (III.135) and (III.136), we see that these are precisely the extra components of

the SU(7) torsion, relative to the R+ � U(7) torsion, which must vanish in order for the

SU(7) torsion to be integrable.

This leads to the following reformulation of the integrability of the SU (7) structure.

A torsion-free generalised SU(7) structure is one whereL 3 is involutive and the mo-

ment map (III.149) vanishes.

The involutivity of L 3 kills the 1 and 35 components of the SU(7) intrinsic torsion

(III.135), while the vanishing of the moment map kills the remaining 7 and 21 irreducible

representations.

One can de�ne an untwisted version of the moment map, to de�ne the integrability

of the untwisted generalised SU(7) structure ~ 

~� ( ~V ) =
1
3

Z

M
s(L H + F

~V
~ ; �~ )( i s( ~ ; �~ )) � 2=3 ; (III.151)

and the untwisted generalised SU(7) structure will be integrable if this moment map

vanishes.

Finally, let us mention the moduli space of integrable generalised SU(7) structures.

Two SU(7) structures that are related by generalised di�eomorphisms are equivalent, so

the moduli space of SU(7) structures M  should be viewed as the space of torsion-free

SU(7) structures quotiented by the action of these transformations. Given that Ẑ admits

both a symplectic structure and a Kähler structure, there are two ways to view this

quotient, namely as a symplectic quotient by GDi� or as a standard quotient by the

complexi�ed group GDi� C:

M  = f  2 Ẑj � = 0g=Gdi� � Ẑ � GDi� ' Ẑ =GDi� C: (III.152)

We will see in the next subsection how the SU(7) moduli space M  is related to the

physical moduli space ofN = 1 type II supergravity backgrounds compacti�ed to four-

dimensions.
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III.2.2 Generalised structures of supersymmetric backgrounds

In this subsection, we apply the exceptional generalised geometry formalism developed

throughout this chapter to four-dimensional N = 1 �ux backgrounds.

a) R+ � U (7) and SU (7) structures of four-dimensional N = 1 backgrounds

In this subsection we show how theR+ � U(7) and SU(7) structures de�ned above are

well suited to describe the geometry ofN = 1 type II supergravity �ux backgrounds

compacti�ed to four-dimensions.

We described the R+ � U(7) and SU(7) structures in terms of a globally de�ned

nowhere vanishing SU(8) spinor � . In the context of type II supergravity, such a spinor

can be naturally constructed from the two internal type II Killing spinors.

To do so explicitly, we recall our compacti�cation ansatz: we consider here type II

solutions that are the warped product of four-dimensional Minkowski spaceX 4 and a

six-dimensional compact manifoldM , with the following metric

ds2
10 = e2A(y) � �� dx � dx � + gmn dym dyn ; (III.153)

where againx � , � = 0 ; :::; 3 are the external coordinates onX 4, and ym , m = 1 ; :::; 6 are

the coordinates onM .

The ten-dimensional type II Killing spinors are then two ten-dimensional Majorana-

Weyl spinors � i of opposite (the same) chirality for type IIA (IIB).

They decompose accordingly under Spin(9; 1) ! Spin(3; 1) � Spin(6) as

� 1 = � 
 � 1 + c:c: �2 = � 
 � 2 + c:c: (III.154)

where� is a Weyl spinor of positive chirality on X 4, and � 1 and � 2 are Weyl spinors on the

six-dimensional internal space.� 1 has positive chirality, while � 2 has negative chirality in

type IIA and positive chirality in type IIB.

Writing the Spin (6) spinors as SU(4) spinors, we can construct the following SU(8)

spinor

� = eA=2� �= 6

 
� 1

� 2

!

in type IIA ; � = eA=2� �= 6

 
� 1

� �
2

!

in type IIB ; (III.155)

where � 1;2 are seen here as four-dimensional Weyl-spinors, and� hence transforms in the

8 representation of SU(8).

Even though � must be nowhere vanishing, the individual Spin(6) spinors � 1;2 may

vanish while still properly de�ning a generalised SU(7) structure. Backgrounds with such

Killing spinors are thus well de�ned in E7(7) generalised geometry, even if they don't de�ne



III.2 E 7(7) � R+ Generalised Geometry 51

conventional or O(6; 6) generalised (global) G-structures [87, 88]. This is for instance the

case of type II backgrounds with NS5-branes wrapping a Calabi-Yau, described inE7(7)

generalised geometry in [79].

Throughout this thesis, we focus on the subclass of type II backgrounds having

nowhere vanishing globally de�ned Killing spinors � 1;2. In the N = 1 case, this class

of backgrounds, which we refer to as the GMPT family, has been studied within the

context of O(6; 6) generalised geometry in [1, 6, 85].

We �rst brie�y introduce the key aspects of the GMPT class within the O (6; 6) gen-

eralised geometry framework, before embedding it into theE7(7) generalised geometry

formalism, following [61].

As we will discuss in the next chapter, note that the two six-dimensional internal

spinors must have the same norm in order to admit supersymmetric sources, which we

denote k� 1;2k.

In this section we need a slightly di�erent de�nition 11 of the pure spinors introduced

in (III.66) and (III.67):

� 1 =
e3A� �

k� 1;2k2 � 1 
 � y
2 (III.156)

� 2 =
e3A� �

k� 1;2k2 � 1 
 � T
2 : (III.157)

The pure spinors � 1 and � 2 are again odd/even and even/odd in type IIA/IIB, re-

spectively

� 1 = � � ; � 2 = � � ; (III.158)

and their normalisation is such that

h� 1; �� 1i = h� 2; �� 2i =
i
8

e6A� 2� vol6 ; (III.159)

with vol 6 the volume form on M in the string frame.

The resulting pure spinor equations, equivalent to preserving ten-dimensionalN = 1

supersymmetry, read

dH � 2 = 0 (III.160)

dH (e� A Re� 1) = 0 (III.161)

11 The reason for these two set of conventions is that we use the two formalism to do di�erent things. In
O(6; 6) generalised geometry, among other things, we will derive the equations of motion of new type II
backgrounds in chapter IV, requiring the scalar �elds to be factorised out of the pure spinors to vary the
type II action. In E7(7) generalised geometry, we will study the generalised structure and its associated
generalised torsion for non-supersymmetric type II �ux backgrounds in chapter V. To do so, it is most
natural to incorporate some physical �elds into the pure spinor de�nition, themselves embedded into an
all encompassing generalised structure.
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dJ 1
H (e� 3A Im� 1) = �

F
8

; (III.162)

where we wrote here an equivalent form of the pure spinor equations (III.71), (III.72) and

(III.73), derived by Tomasiello [6], with dJ 1
H = [d H ; J 1].

We now show how to embed these solutions into the framework ofE7(7) generalised ge-

ometry, �rst introducing an exceptional complex structure. We work here in the untwisted

picture, and de�ne
~L 3 = e8ie � 3A Im � 1 � (L J 2

1 � U J 2 ) : (III.163)

Here L J 2
1 � EO(6;6)C ' (T � T � )C is the + i -eigenspace ofJ 2, and UJ 2 is the pure spinor

line bundle de�ned by J 2. It is relatively straightforward to check that this ~L 3 satis�es

the necessary and su�cient conditions to de�ne an almost exceptional complex structure.

The corresponding untwisted generalised SU(7) structure is

 = e8ie � 3A Im � 1 � � 2 ; (III.164)

where here� 2 is to be understood as a section of the untwisted~K C bundle.

We now study the integrability condition of the almost exceptional complex structure,

in order to see how it relates to the supersymmetry conditions (III.160), (III.161), and

(III.162). Requiring the almost exceptional complex structure to be integrable amounts

to imposing the involutivity of ~L 3 under the twisted generalised Lie derivative

L H + F
V V 0 � ~L 3 8 V; V0 2 �( ~L 3) : (III.165)

We write a section of ~L 3 ase� � V � e� � (W + � � 2), with W 2 �( L J 2
1 ), � a non-vanishing

complex number, and� � 8ie� 3A Im� 1. We then evaluate the twisted Dorfman derivative

on elements of the~L 3 bundle

L H + F
e� �V (e� � V 0) = e� � [L H

V V 0+ ( =W (F + d H �) + � hF + d H � ; � 2i ) � V 0] ; (III.166)

with V; V0 2 �( L J 2
1 � U J 2 ). The involutivity of ~L 3 then requires the term in brackets to

be an element ofL J 2
1 � U J 2 for all V; V0 2 �( L J 2

1 � U J 2 ). Given that the �rst term in

(III.166) is di�erential, and the remaining terms are algebraic, involutivity requires that

these are sections ofL J 2
1 � U J 2 independently:

L H
V V 0 2 �( L J 2

1 � U J 2 ) (III.167)

( =W (F + d H �) + � hF + d H � ; � 2i ) � V 0 2 �( L J 2
1 � U J 2 ): (III.168)
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We start with the �rst condition. Requiring

L H
W + � � 2

(W 0+ � 0� 2) 2 �( L J 2
1 � U J 2 ) (III.169)

implies �rst that

L H
W W 0 2 �( L J 2

1 ) 8W; W 0 2 �( L J 2
1 ) ; (III.170)

that is, the generalised complex structureJ 2 associated to� 2 must be integrable. Recall

that this is equivalent to

dH � 2 = =X � 2 for someX 2 �( L J 2
� 1) : (III.171)

From this condition, and from =W � 2 = =W 0� 2 = 0 , we immediately have

L H
W (� 0� 2) = � (W; d� 0+ 2X )� 2 2 �( UJ 2 ) (III.172)

L H
� � 2

W 0 = � � (W 0; d� + 2X )� 2 2 �( UJ 2 ); (III.173)

as required. Here� (; ) is the O(6; 6) inner product (III.3). Finally, using (III.171) again,

we have

L H
� � 2

(� 0� 2) = � � 0[(� �d� + =X )� 2] � � 2 = 0 ; (III.174)

identically, as can be seen by counting theJ 2 charges.

The integrability of the generalised complex structureJ 2 is therefore enough to ensure

the condition (III.167). Turning to the second condition (III.168), it �rst imposes

=W 0 =W (F + d H �) 2 UJ 2 ; (III.175)

which is satis�ed if

(F + d H �) V� 1 = ( F + d H �) V� 3 = 0 ; (III.176)

where the subscript Vn denotes the projection onto the in -eigenspace ofJ 2. Combining

these conditions with their complex conjugates is equivalent to

dJ 1
H (e� 3A Im� 1) = �

F
8

; (III.177)

which precisely corresponds to the supersymmetry condition (III.162). Moreover, (III.176)

implies

[ =W (F + d H �)] � � 2 = 0 (III.178)

hF + d H � ; � 2i = 0 : (III.179)
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Every other terms in the involutivity condition (III.168) therefore vanish identically.

The integrability of the exceptional complex structure is hence equivalent to

dH � 2 = =X � 2 dJ 1
H (e� 3A Im� 1) = �

F
8

; (III.180)

which is not equivalent to the full set of supersymmetry conditions (III.160), (III.161),

and (III.162).

Lets now investigate the integrability condition of the generalised SU(7) structure.

We thus specify the untwisted version of the moment map (III.151) for the untwisted

generalised SU(7) structure (III.164), which reads

~� (e� � ~V ) =
1
3

Z

M
s(L H + F +d H �

~V
� 2; e� 2� � �� 2)( i s( ~ ; �~ )) � 2=3 : (III.181)

The integrability of the exceptional complex structure ensures that F + d H � stabilises

L J 2
1 � U J 2 , and hence the singlet� 2 2 �( ~K C). We thus have

L H + F +d H �
~V

� 2 = L H
~V � 2: (III.182)

The remaining terms in the moment map are then of the form

~� (e� � ~V ) � const
Z

M
hL H

Z � 2; �� 2i + const
Z

M
hd� � ; e� A Re� 1i ; (III.183)

Where we wrote ~V = Z + � � + ~Z . This form of the moment map follows from keeping

track of the U(1) � SL(2; R) charge in the O(6; 6) � SL(2; R) � E7(7) decomposition,

noting the R+ weight to get the correct eA factor [61].

The two terms in this moment map must vanish independently in order for the gener-

alised SU(7) structure to be integrable. Plugging the involutivity condition dH � 2 = =X � 2

into the �rst term, it can then only vanish if X = 0 , yielding

dH � 2 = 0 : (III.184)

Integrating by part the second term, it vanishes if

dH (e� A Re� 1) = 0 : (III.185)

The integrability of the generalised SU(7) structure (III.164) is therefore equivalent to

dH � 2 = 0 (III.186)

dH (e� A Re� 1) = 0 (III.187)
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dJ 1
H (e� 3A Im� 1) = �

F
8

; (III.188)

which precisely corresponds to the supersymmetry conditions (III.160), (III.161), and

(III.162).

We can therefore conclude that a type II �ux background compacti�ed to four-

dimensional Minkowski space and preservingN = 1 supersymmetry de�nes an integrable

generalised SU(7) structure  , and the integrability conditions for  are equivalent to the

supersymmetry conditions of said background.

b) Equations of motion

We conclude this section by reformulating the equations of motion ofN = 1 type II

supergravity �ux backgrounds compacti�ed to four-dimensions, within the framework of

exceptional generalised geometry.

To do so, we brie�y introduce the notion of generalised metric. It is well known [89, 90]

that the bosonic �elds of reduced supergravity parametrise a coset(Ed(d) � R+ )=Hd, with

Hd the maximal compact subgroup ofEd(d) . In the case of type II supergravity reduced

to four-dimensions, the bosonic �elds parametrise a coset(E7(7) � R+ )=(SU(8)=Z2), that

is, at each point p 2 M

f g; B; ~B; �; C � ; Ag 2
E7(7) � R+

SU(8)=Z2
; (III.189)

with ~B the six-form potential dual to B and C � the RR potentials in type IIB/IIA.

The group SU(8)=Z2 is the maximal compact subgroup ofE7(7) , and it is the analogue

of the orthogonal group O(d) � GL(d;R) in standard Riemannian geometry. As such, it

de�nes a generalised version of the metricG [39], invariant under SU(8)=Z2, and (III.189)

means that giving the bosonic �elds is thus equivalent to specifying a generalised metric

G.

We now introduce a generalised connectionD compatible with SU(8)=Z2, that is

DG = 0 . Crucially, it is always possible to �nd such connections that are torsion-free,

but they are not unique in general [39] (unlike the case of ordinary Riemannian geometry

which singles out the Levi�Civita connection).

Indeed, writing the bundle K SU(8) = E � 
 adPSU(8) , in terms of SU(8) irreducible

representations, we have

K SU(8) = ( �28 + 28) � 63 = 28 + 36 + 420 + 1280 + c:c: : (III.190)

The map � in (III.116) then splits K SU(8) into

Im � = 28 + 36 + 420 + c:c: � WSU(8) (III.191)
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ker � = 1280 + c:c: : (III.192)

Then, given that the SU(8) decomposition of the torsion bundleW reads

W = 28 + 36 + 420 + c:c: ; (III.193)

we are left with the following intrinsic torsion

W SU(8)
int = W=WSU(8) = 0 ; (III.194)

implying that every SU(8)=Z2 structure is torsion-free, and the space of torsion-free,

compatible connections is given by1280 + c:c:.

Turning to the equations of motion, it is remarkable that the dynamics are simply the

generalised geometrical analogue of Einstein gravity: the bosonic action is given by [39]

SB =
Z

volGR ; (III.195)

where volG is the volume form associated to the generalised metric andR is the analogue

of the Ricci scalar. The corresponding equations of motion are simply

RMN = 0 ; (III.196)

where RMN is the analogue of the Ricci tensor.

Remarkably, one can reformulate the generalised Ricci tensor naturally in terms of

generalised objects. To do so, we introduce two real SU(8) bundles S and J , which

we refer to as the �spinor� bundle and the �gravitino� bundle respectively, since the

supersymmetry parameter and the physical gravitino �eld in supergravity are embedded

in exceptional generalised geometry as sections of them [42]. These are

S = 8 + �8 � S+ + S� J = 56 + 56 � J + + J � : (III.197)

Then, the SU(8) spinor � de�ned by the two internal supersymmetry parameters (III.155)

is naturally a section ofS: � 2 �( S). A gravitino  would then be a section ofJ :  2 �( J ).

One can then rewrite the generalised Ricci tensor as

D � J (D � J � ) + 2 D � J (D � S � ) = R0 � � (III.198)

D � S (D � J � ) + D � S (D � S � ) = R �; (III.199)

where R and R0
MN provide the scalar and non-scalar parts ofRMN respectively. The

projections � S and � J are unique, and in terms of SU(8) indices, projections with the
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generalised connectionD � (D [�� ]; �D [�� ]) read

(D � J � ) ��
 = D [�� � 
 ] 2 �( J + ) (III.200)

(D � S � ) � = �D [�� ]�
� 2 �( S� ) (III.201)

(D � J  ) ��
 = �
1
12

� ��
�� 0� 1 � 2 � 3 D [�� 0] � 1 � 2 � 3 2 �( J � ) (III.202)

(D � S  ) � = �
1
2

�D [�
 ] 
��
 2 �( S+ ) : (III.203)

The existence of the expressions (III.198) and (III.199) is a non-trivial statement. It

can be shown that the left-hand sides are linear in� , and since� and the left-hand sides

are manifestly covariant, these expressions de�ne a tensor. This generalised Ricci tensor

has been calculated explicitly in the M-theory case in [39] for instance.

The resulting equations of motions are therefore

D � J (D � J � ) + 2 D � J (D � S � ) = 0 (III.204)

D � S (D � J � ) + D � S (D � S � ) = 0 : (III.205)

Interestingly, it is immediate in this formalism to read o� the fact that preserving super-

symmetry implies that the equations of motion are satis�ed. Indeed, one can reformulate

the supersymmetry conditions as

� = D � J � = 0 (III.206)

�� = D � S � = 0 : (III.207)

If these are satis�ed, the equations of motion (III.204) and (III.205) are trivially obeyed.
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Chapter IV

Non-supersymmetric �ux vacua and

Generalised calibrations

In this chapter, we will discuss the results derived in [91, 92]. These concern non-

supersymmetric type II supergravity �ux vacua. More precisely, a class ofN = 0 �ux

vacua which are thought of as supersymmetric backgrounds deformed by some pertur-

bations which break supersymmetry in a controllable way, in a sense that will be made

precise throughout this chapter.

In section IV.2, we present a new class of non-supersymmetric �ux vacua [91], gener-

alising the GKP vacua [3] in a sense that will be made precise later on. We derive the

corresponding equations of motion and solve them for various explicit examples. We also

discuss the stability and the e�ective theories associated to this class of backgrounds.

On another note, the supersymmetry condition involving the RR �uxes (III.73) has

been reformulated by Tomasiello [6], eliminating the explicit dependence on the metric.

We generalise this derivation in section IV.3 for non-supersymmetric backgrounds violat-

ing the other supersymmetry conditions (III.71) and (III.72). We use this reformulation

to derive constraints that the ten-dimensional solutions satisfying (III.73) must respect in

order to dimensionally reduce to solutions of four-dimensionalN = 1 supergravity with

non-vanishing F-terms and potentially non-vanishing D-terms [92]. We give the equations

of motion for the class of type II vacua satisfying these constraints in the language of pure

spinors.

The physical motivation to study non-supersymmetric backgrounds which still respect

(III.73) relies on the theory of generalised calibrations, which provides an interpretation

of the supersymmetry conditions in terms of stability conditions for certain probe D-

branes [2, 8, 93]. Moreover, regarding the class of solutions discussed in IV.2, both its

general construction and the discussion of its stability heavily relies on the generalised

calibration theory. We therefore start this chapter by brie�y reviewing the theory of

59
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generalised calibration in section IV.1, following mainly [2].

Finally, let us mention that throughout this whole chapter, we adopt the generalised

complex geometry conventions introduced in subsection III.1.1.

IV.1 Calibrations in generalised complex geometry

The N = 1 supersymmetry equations for type II �ux backgrounds compacti�ed to four-

dimensional Minkowski space, written in the pure spinor formalism, (III.71), (III.72) and

(III.73), have a clear interpretation as being calibration conditions in the generalised sense,

for a certain type of D-branes in the geometry. This interpretation turns out to provide

great tools to understand the geometry and discuss the stability of both supersymmetric

and non-supersymmetric backgrounds.

Generalised calibrations are natural extensions of ordinary calibrations.1 For super-

symmetric compacti�cation on a spin manifold M , where there are no non-trivial bulk

and world-volume �uxes, there is a nice relation between branes wrapping cycles inM

and ordinary calibrations. The calibration forms can be built as bilinears in the covari-

antly constant spinors on the manifold. As these spinors are the internal supersymmetry

parameters, the closure of the calibration form follows supersymmetry. In this case, the

energy of a brane wrapping a cycle in the manifold is given by its volume. Supersymmet-

ric con�gurations are energy mininimising, and therefore correspond to branes wrapping

calibrated cycles in the spin manifold.

In �ux compacti�cations, the energy of the static branes gets contribution both from

the volume and the �uxes. Generalised complex geometry provides a natural extension

of this construction to �ux backgrounds, which takes into account the contribution to the

energy of both RR background �uxes and world-volume degrees of freedom.

We consider D-branes in the warped geometry (III.62). They can wrap a cycle� in the

internal manifold M and they can be string, domain-walls or space-�lling in the external

Minkowski space. As discussed in [2], one can show that a static brane wrapping a cycle

� in the internal manifold of an N = 1 warped �ux backgrounds is supersymmetric if it

wraps a calibrated generalised submanifold.

To make these statements precise, we need to introduce the technology required to

1A calibration form ! is a p-form on M that satis�es an algebraic and a di�erential condition. At
every point q 2 M and for every p-dimensional oriented subspace� of the tangent space Tq

! j � �
p

det gj � d� � vol � ; (IV.1)

where d� = t1 ^ : : : ^ tp , with t � a basis for � � (the dual of � ) and det gj � := det( g�� ), with g�� the
components of the pulled-back metric gj � in the coframe t � . At every point there must exist a subspace
� such that the above bound is saturated. Then the form ! must be closedd! = 0 .
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describe D-branes in generalised geometry: a generalised submanifold(� ; F ) and a gen-

eralised calibration form ! .

A generalised submanifold is a pair(� ; F ) with � � M a submanifold and F a

two-form, which for a D-brane is a two-form on its world-volume, such that

dF = H j � ; (IV.2)

with H j � the pullback of the NS-�eld-strength on � . The generalised submanifold is a

generalised cycle if@� = ; .

As shown in [2], one can construct polyforms of de�nite parity in terms of the pure

spinors de�ning the SU(3)� SU(3) structure of the N = 1 background

! string = e2A� � Im	 1 (IV.3)

! DW = e3A� � 	 2 (IV.4)

! sf = e4A� � Re	 1; (IV.5)

which satisfy the properties of a generalised calibration. They �rst satisfy an algebraic

condition corresponding to the minimisation of the D-brane energy

E(� ; R) � (! j � ^ eR )(�) (IV.6)

for any point p � M and any generalised submanifold(� ; R)2. Here for � a form, � (�)

is the coe�cient of the top form on � of � j � . The energy density corresponds to the

following DBI contribution

E(� ; R) = eqA� �
q

det(gj � + R); (IV.7)

where q is the number of external dimensions. Moreover the di�erential conditions that

must be respected by the above generalised calibration forms correspond to the super-

symmetry conditions (III.71), (III.72), and (III.73)

dH (! DW ) = 0 domain-wall BPSness (IV.8)

dH (! string ) = 0 D-string BPSness (IV.9)

dH (! sf) = e4A ~F gauge BPSness: (IV.10)

A calibrated generalised cycle is a generalised cycle saturating the calibration bound

2Strictly speaking for any point p � M there must exist a generalised submanifold (� ; R ) such that
the above bound is saturated.
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(IV.6). A D-brane in a N = 1 backgrounds is supersymmetric, or BPS, if it wraps a

calibrated generalised cycle. This is why we refer to theN = 1 supersymmetry conditions

as the domain-wall, D-string and gauge BPSness respectively. The above generalised

calibration forms are associated to space-�lling, domain-wall, and string-like D-branes,

which wrap respectively four, three, and two non-compact dimensions.

Another useful characterisation of D-branes is in terms of their generalised current.

The generalised current j (� ; F ) can be seen as the Poincaré dual of the generalised

submanifold (� ; F ): Z

M
h�; j (� ; F ) i =

Z

�
� j � ^ eF (IV.11)

with � any polyform on M . Loosely speaking, as a distributionj (� ; F ) is a localised real

pure spinor proportional to e�F ^ � (d� k) (�) , with � of rank k and with � (d� k) (�) the

standard Poincaré dual of the submanifold� . One can also consider the smeared version

of this current, that we call j , proportional to e�F ^ vol? with vol ? the transverse volume

to � .

We can de�ne the generalised tangent bundle of the foliation associated to the gener-

alised submanifold(� ; F ) as

T(� ; F ) = f V = v + � 2 T � T � �
� V � j = 0g (IV.12)

= f V = v + � 2 T� � T � �
� � j � = �vFg: (IV.13)

This is a real maximally isotropic subbundle of the generalised tangent bundleE .

As discussed in [2], the calibration condition (III.73) implies that T(� ; F ) is stable

under the generalised complex structureJ 2 and hence(� ; F ) is a generalised complex

submanifold.

Finally, it is easy to prove that the generalised current associated to a generalised

cycle (� ; F ) is dH -closed. From (IV.11), we have:

Z

M
h�; dH j (� ; F ) i =

Z

M
hdH �; j (� ; F ) i =

Z

�
dH � j � ^ eF =

Z

@�
� j@� ^ eF ; (IV.14)

where we used both the property of the Mukai pairing (B.13) and Stoke theorem. There-

fore we have

dH j (� ; F ) = j (@� ;Fj @� ) ; (IV.15)

which reduces to

dH j (� ; F ) = 0 (IV.16)

if (� ; F ) is a generalised cycle.

Note that, as the generalised tangent bundleT(� ;F ) is a real maximally isotropic
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sub-bundle of T � T � , it also de�nes an almost Dirac structure [35]. From (IV.12) and

Frobenius theorem it follows that dH j (� ; F ) = 0 implies that the almost Dirac structure

is actually integrable.

IV.2 New non-supersymmetric �ux vacua from generalised cali-

brations

The exploration of the landscape of four-dimensional string compacti�cations has been

mostly focused on vacua preserving at leastN = 1 supersymmetry. One reason is prac-

tical: solving the supersymmetry conditions, which are �rst order di�erential equations,

plus the Bianchi identities for the �uxes, guarantees to have solutions to the full set of

string or supergravity equations of motion. Without this way out, handling the equations

of motion upfront is very hard, even in the supergravity approximation, since they are

cumbersome second order di�erential equations.

There are also physical considerations motivating the study of supersymmetric string

compacti�cations, namely the expectation that supersymmetry should be broken at en-

ergies smaller than the compacti�cation scale.

Even if low energy supersymmetry breaking is a phenomenologically motivated sce-

nario, in principle nothing prevents supersymmetry from being spontaneously broken at

arbitrarily high energies. In this section, we consider this possibility, and focus on this

much less studied corner of the string compacti�cation landscape, worth exploring per se.

More precisely, we construct new classes of non-supersymmetric type II supergravity

solutions by breaking supersymmetry in a controlled way. We deform the conditions for

N = 1 supersymmetry by adding supersymmetry breaking terms, which are controlled

by some parameters, whose vanishing would restore supersymmetry.

The motivation behind this approach is to preserve some of the convenient features

of supersymmetric vacua, mainly the possibility to use �rst order di�erential equations.

Since supersymmetry is broken, in order to �nd solutions we have to make sure that the

equations of motion are satis�ed. The goal is to �nd speci�c deformations of the BPS

equations such that the additional constraints to impose in order to solve the equations

of motion are manageable.

We will use the framework of generalised complex geometry, where theN = 1 BPS

conditions have an interpretation in terms of calibration conditions of di�erent probe

D-branes. As we have discussed in the previous chapter, theN = 1 supersymmetry con-

ditions for warped compacti�cations can be recast in a set of three di�erential equations

on polyforms de�ned only on the internal compacti�cation space (III.71), (III.72), and

(III.73). Each of these three conditions can be interpreted as the conditions for calibrated
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D-brane probes in the geometry [2]: branes �lling all the external space and branes that

are domain-wall or string-like.

In this language, one can identify di�erent supersymmetry breaking terms depending

on which calibration condition is modi�ed. In this section we will always assume that

space-�lling branes are calibrated3, while we will allow the calibrations of D-strings and

domain-wall branes to be violated.

A famous example of non-supersymmetric type IIB solutions that violate the domain-

wall calibration condition are the GKP solutions [3], describing �ux compacti�cations

to four-dimensional Minkowski space with D3 and O3 sources, where supersymmetry

is broken by the H (0;3) components of the NS-�ux. The GKP backgrounds have been

described within generalised complex geometry in [44] as speci�c examples of a general

framework to describe non-supersymmetric solutions.

The generalised complex geometry description of the GKP backgrounds also o�ers an

insightful geometrical interpretation of the domain-wall supersymmetry breaking term: it

is given by the current associated to the D3-branes in the background4.

In the literature there is another example of non-supersymmetric solution in type IIA,

[45], which in the language of generalised complex geometry corresponds to the violation

of the D-string calibration condition, where supersymmetry is again violated through

additional NS-�ux components with respect to the supersymmetric case, but there is no

further geometrical interpretation of the corresponding supersymmetry breaking term.

Moreover, the question of stability of such backgrounds remains unaddressed.

In this section, we want to extend the study of non-supersymmetric vacua violating the

D-string calibration condition. More precisely, we will construct new non-supersymmetric

type II solutions, where the current associated to the space-�lling D-branes present in our

backgrounds will serve as a building block for the supersymmetry breaking term violating

the D-string calibration condition, in a sense that will be made precise later on.

The motivation behind this construction is two-fold. The �rst one is simplicity: de�n-

ing supersymmetry breaking in terms of the current of the background's D-branes is a

natural and simple ansatz, which in turn reduces the equations of motion to a reasonable

set of additional constraints. The second reason is that it can be useful to address the

question of stability of these non-supersymmetric vacua: in generalised complex geometry,

D-branes current can enter the e�ective potential associated to a given ten-dimensional

background, and are particularly useful as they allow to use powerful positivity arguments

3Let us stress here that the interpretation of the BPS conditions in terms of D-brane calibrations
doesn't mean that the backgrounds have to have D-string, domain-wall or space-�lling D-branes, but we
impose the presence of space-�lling D-branes for model building considerations.

4Strictly speaking it is the smeared version of the generalised current associated to the D3-branes, as
we will discuss in the text.
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from the branes calibration bounds in the study of the e�ective potential.

We can show that our new class of vacua shares one interesting property with the GKP

backgrounds, namely the fact that there is a natural truncation of the ten-dimensional

theory, suggested by the geometry, such that the o�-shell e�ective potential is positive

semi-de�nite, and vanishes at the solutions. This statement is however not quite equiv-

alent to claiming the stability of these new vacua, since we have limited control on the

aforementioned truncation, as we will discuss at length.

On another note, we will also construct a new class of backgrounds generalising the

GKP vacua, where both the domain-wall and D-string calibration conditions are violated.

The outline of this section is as follows. In subsection IV.2.1 we review the generalised

complex geometry description of the GKP-like backgrounds and we introduce our two new

classes of non-supersymmetric backgrounds, with pure D-string supersymmetry breaking

and mixed Domain-wall and D-string supersymmetry breaking. In subsection IV.2.2,

we write the e�ective potential for these compacti�cations and derive the equations of

motion in the generalised complex geometry formalism, �rst for completely general D-

string supersymmetry breaking, and then for the two new classes of backgrounds we

found. We also address the question of the stability of these new solutions. Finally, in

subsection IV.2.3, which can be read (almost) independently, we present di�erent explicit

examples of new non-supersymmetric vacua with SU(2) and SU(3) structures.

IV.2.1 N = 0 �ux vacua in generalised complex geometry

The goal of this subsection is to construct and study new non-supersymmetric back-

grounds. To do so we will focus on situations where supersymmetry breaking occurs as a

perturbation around some supersymmetric backgrounds and it is controlled by parameters

whose vanishing would restore supersymmetry.

The idea is to modify the Killing spinor equations (II.71) and (II.72) while still assum-

ing that the internal spinors � 1 and � 2 in (II.59) are globally de�ned. This means that the

internal manifolds are still characterised by an SU(3) or SU(2) structure, and, in the gen-

eralised geometry language, by an SU(3)� SU(3) structure. The modi�ed Killing spinor

equations are then equivalent to adding supersymmetry breaking terms to the right-hand

side of theN = 1 pure spinor equations (III.71), (III.72), and (III.73). From now on, we

will call these new equations modi�ed pure spinor equations.

As discussed in section IV.1, the supersymmetry conditions (III.71), (III.72), and

(III.73) correspond to the calibration conditions for supersymmetric domain-wall, string-

like and space-�lling probe branes, respectively. Thus we will call the corresponding

supersymmetry breaking terms, domain-wall (DWSB), string-like (SSB) and space-�lling

supersymmetry breaking.
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DWSB non-supersymmetric backgrounds have been studied in the framework of GCG

in [44], which also gave the general expression for the non-supersymmetric deformations

of the Killing spinor equations and of the associated modi�ed pure spinor equations.

In this section we will review a simple subclass of the DWSB discussed in [44] and we

will discuss its geometrical properties, a discussion that we will then extend to our new

classes of solutions describing SSB supersymmetry breaking, with and without DWSB

breaking.

However, in contrast with the supersymmetric case, there is no reason to expect the

solutions of the modi�ed pure spinor equations and the Bianchi identities to be solutions of

the equations of motion. So the supersymmetric breaking terms have to satisfy additional

constraints in order to have a real vacuum, which we will discuss in subsection IV.2.2.

a) The DWSB vacua

Non-supersymmetric solutions corresponding to DWSB have been studied in [44]. The

parametrisation of the most general DWSB deformation can be found in Appendix B of

[44]. As it is hard to �nd solution in such general context, [44] focuses on a subset of

solutions that only depend on a single supersymmetry breaking parameter.

For the one-parameter DWSB class, the modi�ed Killing spinor equations are5

� (1)
� =

1
2

eA 
̂ � � 
 (r� �
1) + c:c: � (2)

� =
1
2

eA 
̂ � � 
 (r� �
2) + c:c: (IV.17)

� (1)
m = � 
 (�

1
2

r � n
m 
 n � �

1) + c:c: � (2)
m = � 
 (�

1
2

r � m
n 
 n � �

2) + c:c: (IV.18)

� � 1 = � 
 (� r� �
1) + c:c: � � 2 = � 
 (� r� �

2) + c:c: (IV.19)

As suggested by its name, the one-parameter DWSB subclass only depends on a single

supersymmetry breaking parameter,r , as the O(6) matrix � is completely de�ned by the

background geometry:

� 1 = iU� 2 U
 m U � 1 = � n
m 
 n ; (IV.20)

where U is a unitary, point-dependent operator acting on six-dimensional spinors.

The corresponding domain-wall BPSness violation is then

dH (e3A� � 	 2) = ire 3A� � (( � 1)j 	 2 j Im	 1 +
1
2

� mn 
 m Im	 1
 n ): (IV.21)

where 
 m are Cli� (6) gamma matrices acting on a form! as


 m ! = ( gmn �n + d ym ^ )! !
 m = ( � 1)j! j+1 (gmn �n � dym ^ )!: (IV.22)

5Here we write the modi�ed dilatino variation de�ned in (C.4).
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The modi�ed domain-wall condition (IV.21) can be rewritten in a way that makes

explicit its implications for the geometry of the internal background [44].

We suppose that the internal manifold M admits a generalised submanifold(� ; F ),

where � is a subbundle of odd/even dimensionn in type IIA/IIB. Since the space-�lling

calibration condition (III.73) still holds for this class of backgrounds, we can choose(� ; F )

to be calibrated by ! sf = e4A� � Re	 1, such that the BPS space-�lling branes of our

backgrounds will wrap the calibrated generalised submanifold(� ; F ).

We can then split the tangent bundle as

T = T� � T � ? ; (IV.23)

with T� ? the orthogonal completion ofT� , and de�ne a local vielbein f eag on T� � T � ?

and its associated gamma matrices


̂ a! = ( � ab�b + em ^ )! ! 
̂ a = ( � 1)j! j+1 (� ab�b � ea^ )!: (IV.24)

One can then express the operatorU in (IV.20) as

U = 
 n
(6)

X

k

� a1 :::an � 2k b1 :::b2k

(n � 2k)!k!2k
p

det(gj � + F )

̂ a1 :::an � 2k Fb1b� 2 : : : Fb2k � 1b2k ; (IV.25)

and the corresponding O(6) matrix as

�̂ = 1? � (gj � + F ) � 1(gj � � F ) ; (IV.26)

where 1? is the projection onto T� ? .

Then (IV.21) becomes

dH (e3A� � 	 2) = irj; (IV.27)

with

j = 4( � 1)j 	 2 je3A� �

p
detgj �p

det(gj � + F )
e�F ^ � (vol? ); (IV.28)

where vol? is the volume form on the space orthogonal to the cycle� such that vol6 =

vol� ^ vol? , and j	 2j is the degree mod 2 of	 2.

The polyform j is a smeared version of the Poincaré dual to the generalised cycle

(� ; F ), and therefore it is a (smeared) generalised current for(� ; F )6. Moreover, the

6To illustrate, let's consider the simple cases where F = 0 . We have

j = 4( � 1)j 	 2 j e3A � � � (vol? ); (IV.29)

which is the ordinary smeared Poincaré dual to the cycle � , and T(� ;0) � T � � T � j � ? is the null space of
j , which is a de�ning property of the generalised current.
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right-hand side of (IV.27) is dH -exact and sodH -closed and, by Frobenius's theorem, it

follows that the generalised sub-bundle(� ; F ) is integrable and that dF = H j � . This

means that the manifold M is a foliation with leaves (� ; F ), which are calibrated gener-

alised submanifolds, thanks to (III.73).

Note that solving (IV.27) for a given generalised foliation (� ; F ) constrains the pos-

sible choices forr . Indeed, it has to be chosen such that the right-hand side of (IV.27) is

dH closed. The supersymmetry parameter can therefore not be multiplied by arbitrary

complex functions, and these backgrounds truly depend on one parameter only.

It is also important to note that the sources of these backgrounds are taken to be

parallel, so their internal manifolds admit a unique generalised calibrated cycle(� ; F )

wrapped by all the sources.

The one-parameter DWSB class includes the GKP vacua [3] as well as vacua with

D4, D5 or D6-brane sources that can be obtained by T-dualising the GKP solution.

Non-supersymmetric GKP vacua [3] are solutions of type IIB compacti�cations, with

D3-branes and O3-plane sources, and non trivial NS and RR three-form �uxes.

GKP-like vacua correspond to particularly simple representative of the one-parameter

DWSB class of vacua, where we have

� = 1 (IV.30)

and (� ; F ) is the trivial foliation whose leaves are points ofM . In this case, the D-branes

sitting on such leaves are D3-branes, and the failure to calibrate the would-be domain-wall

branes originates purely from theH (3;0) components of the NS-�ux7:

dH (e3A� � 	 2) = e3A� � H ^ 	 2 = 4 ire 3A� � vol6: (IV.31)

Backgrounds with D5 and D6-branes have been explicitly constructed in [44], and we

will revisit them when turning to the examples of our new backgrounds in section IV.2.3.

Let us consider again the generalised tangent bundle to the foliation with the gen-

eralised submanifold (� ; F ). We saw that for supersymmetric backgrounds,(� ; F ) is

a complex generalised submanifold due to the integrability of the complex structure.

Thanks to this property it is possible to study deformation (� ; F ) and then of D-branes

in the background [2].

For the one-parameter DWSB backgroundsJ 2 is not integrable anymore and one

might wonder what can be said about(� ; F ). Recall from section IV.1 that the generalised

tangent bundle T(� ; F ) associated to the foliation with the generalised submanifold(� ; F )

7with respect to the almost complex structure de�ned by the internal spinor, for which 	 2 is a (3; 0)-
form.
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is an almost Dirac structure. As pointed out in [44], for DWSB vacua (IV.27) implies

the (conformal) closure of the associated generalised current and thereforeT(� ; F ) is still

integrable: it remains closed under the twisted Courant bracket.

The integrability of the Dirac structure associated to (� ; F ) has the important

consequence that one can de�ne a di�erential d(� ; F ) acting on the graded complex
L 6

k=0 � kT �
(� ; F ) . It also allows to preserve some notion of "generalised holomorphicity".

Let L 2 � E be the subbundle with + i -eigenvalues with respect to the generalised almost

complex structure J 2. L 2 de�nes an almost Dirac structure, which is not integrable as

J 2 is not. However, we can consider the complex bundle

L (� ; F ) = T(� ; F ) \ L 2 = f V 2 (T � T � ) 
 C j V � 	 2 = V � j = 0g; (IV.32)

which, in contrast to L 2, is stable under the twisted Courant bracket:

JV; WKH � j = � W � V � dH j = 0 (IV.33)

JV; WKH � e3A� � 	 2 = � W � V � dH (e3A� � 	 2) = � irW � V � j = 0 (IV.34)

precisely because8 of the modi�ed pure spinor equation (IV.27) and because of the in-

tegrability of the Dirac structure associated to T(� ; F ) . The collection (L 2; J; KH ; a)9 is

therefore a Lie algebroid and one can thus de�ne a di�erential that we call �@(� ; F ) on
L 3

k=0 � kL �
(� ; F )

10, and thus even thoughJ 2 is not integrable, the structure of the one-

parameter DWSB class allows one to have a notion of holomorphic di�erential�@(� ; F ) , at

least with respect to the foliation with (� ; F ).

It has been speculated in [44] that the �rst cohomology group of this di�erential

H 1
�@(� ; F )

might de�ne the moduli-space of the D-branes in the one-parameter DWSB

backgrounds, much like in the case of supersymmetric compacti�cations [93]. The authors

also postulated that the non-integrability of the structure J 2 might result in a closed

string moduli space that is not a complex manifold, since it is what happens for the GKP

construction. We refer the reader to [44] for more details on this matter.

b) The SSB vacua

We consider here another class of non-supersymmetric backgrounds where supersymmetry

is broken by deforming the D-string calibration condition (III.72). We refer to this way

of breaking supersymmetry as SSB, D-string or string-like supersymmetry breaking.

An example of SSB solution has been discussed in type IIA [45]. It is obtained by

8Here we considerede3A � � 	 2 for convenience but of course one �nds the same result for 	 2 .
9We recall that a is the anchor map.

10 The subbundle L (� ; F ) is guaranteed to be three-dimensional from the compatibility of the pure
spinors 	 2 and j , see for instance [35].
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adding to a supersymmetric solution new components to the NS-�eld-strength, carefully

chosen for the background to keep on respecting the equations of motion. The modi�ed

pure spinor equations read

dH (e3A� � 	 2) = 0 (IV.35)

dH (e2A� � Im	 1) = e2A� � H ^ Im	 1 = c e6A� 2� vol6 (IV.36)

dH (e4A� � Re	 1) = e4A ~� 6F; (IV.37)

where c is a supersymmetry breaking parameter. We refer the reader to [45] for the

explicit form of the solutions and the details of the construction.11

It is important to note that the supersymmetry breaking term c e6A� 2� vol6 has no

given geometrical interpretation12, and then that no conclusion has been reached regard-

ing the stability of these backgrounds.

This is in stark contrast with the situation of the one-parameter DWSB class, where

the supersymmetry breaking term j is understood as the (smeared) generalised current

associated to the background sources and is a key ingredient in the discussion of the

stability of the one-parameter DWSB class.

It would therefore be interesting to construct non-supersymmetric backgrounds with

string-like supersymmetry breaking, but this time with a supersymmetry breaking term

that has a given geometrical interpretation.

In this section, we will introduce a new class of SSB backgrounds, which relies on the

same ingredient as for one-parameter DWSB solutions, namely the foliation structure of

M by a generalised calibrated submanifold(� ; F ).

More precisely, its supersymmetry breaking term will depend again on the (smeared)

generalised current associated to the calibrated space-�lling D-branes present in the back-

ground, much like the one-parameter DWSB case. The main motivation is that we can

then bene�t from the same kind of arguments when addressing the question of stability.

Our starting point is the following assumption: the internal manifold admits a gener-

alised foliation by the generalised cycle(� ; F ). More precisely, we consider backgrounds

that admit calibrated parallel space-�lling sources and we introduce a polyform j which

plays the role of a (smeared) generalised current for our sources, which therefore wrap

11 Note that our pure spinors, volume form and NS-�ux conventions di�er to the ones in [45]: 	 ours =
� 8i 	 theirs , H ours = � H theirs , vol6 ours = � vol6 theirs .

12 The backgrounds considered in [45] are intersecting NS5-D6-D8 models: the geometrical understand-
ing of intersecting branes in GCG is fairly limited, and the literature on the subject is scarce, with the
exception of [94].
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(� ; F ), as in the DWSB case

j = 4( � 1)j 	 2 je3A� �

p
detgj �p

det(gj � + F )
e�F ^ � (vol? ); (IV.38)

where vol? is the transverse volume to the cycle� . The current j is by construction dH

closed as(� ; F ) is a generalised cycle (see section IV.1).

The decomposition of the generalised currentj on the SU(3)� SU(3) structure is again

j = e3A� � (( � 1)j 	 2 j Im	 1 +
1
2

� mn 
 m Im	 1
 n ) (IV.39)

with, as in the previous section,

�̂ = 1? � (gj � + F ) � 1(gj � � F ) : (IV.40)

However, in contrast with the DWSB construction, the domain-wall and the gauge BP-

Sness conditions are both obeyed

dH (e3A� � 	 2) = 0 (IV.41)

dH (e4A� � Re	 1) = e4A ~� 6F; (IV.42)

and we consider the following violation of the D-string BPSness13

dH (e2A� � Im	 1) = � m [
 m j + ( � 1)j j j j
 m ] (IV.45)

= 2 � m dym ^ j ; (IV.46)

where the gamma matrices are de�ned in (IV.22) anddym span the directions transverse

to the covolume of � . The coe�cients f � m g are real and are the supersymmetry breaking

parameters.

As for DWSB, imposing that the manifold is a generalised foliation constrains the

possible choices for the� m . Indeed, it has to be chosen such that the right-hand side of

(IV.46) is dH closed. Therefore the� m can't be multiplied by arbitrary complex functions,

and these backgrounds depend on dim(�) parameters only.

The supersymmetry breaking term in (IV.45) can also be expanded on the SU(3)� SU(3)

structure de�ned by the two pure spinors 	 1 and 	 2, it is given in (C.33). As it is not

13 It is also useful to consider a local formulation in terms of the vielbein basis, which we will use when
discussing concrete constructions of backgrounds:

dH (e2A � � Im	 1) = �̂ a [
̂ a j + ( � 1)j j j j 
̂ a ] (IV.43)

= 2 �̂ a ea ^ j: (IV.44)
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a particularly insightful expression we will keep on using the parametrisation in terms of

the generalised current from then on.

Note also that this ansatz is simply one of the di�erent possibilities to write down

an SSB term in terms of the generalised current. Our choice is dictated by simplicity:

it is natural to construct backgrounds with such a supersymmetry breaking term and it

requires only relatively reasonable additional constraints in order to �nd solutions to the

equations of motion, as we will discuss at length in subsections IV.2.2 and IV.2.3.

As for the one-parameter DWSB, the closure of the generalised currentj implies that

the generalised bundleT(� ; F ) associated to the generalised submanifold(� ; F ) de�nes a

Dirac structure which is integrable. Then, it is again possible to de�ne the di�erential

d(� ; F ) acting on the graded complex
L 6

k=0 � kT �
(� ; F ) .

However, in contrast with the one-parameter DWSB situation, the generalised almost

complex structure J 2 is integrable, because of the conformal closure of the pure spinor

	 2 (IV.41). Therefore, one can de�ne a di�erential �@J 2 acting on the graded complex
L 6

k=0 � kL �
2, where L 2 is the + i eigenbundle ofJ 2. The di�erential �@J 2 is the generalised

Dolbeaut di�erential, introduced in III.1.1.

Moreover, as the foliation (� ; F ) is an almost generalised complex foliation, we can

consider the three-dimensional complex sub-bundle

L (� ; F ) = T(� ; F ) \ L 2 = f V 2 (T � T � ) 
 C j V � 	 2 = V � j = 0g; (IV.47)

which is stable under the twisted Courant bracket:

JV; WKH � j = � W � V � dH j = 0 (IV.48)

JV; WKH � e3A� � 	 2 = � W � V � dH (e3A� � 	 2) = 0 : (IV.49)

As in the one-parameter DWSB case, one can therefore de�ne a di�erential that we call
�@(� ; F ) on the graded complex

L 3
k=0 � kL �

(� ; F ) . It is then reasonable to postulate that

the �rst cohomology group of this di�erential H 1
�@(� ; F )

might de�ne the moduli-space of

the D-branes present in our backgrounds, like in the supersymmetric case. Note that

the complex bundleL (� ; F ) and thus the cohomology groupH 1
�@(� ; F )

clearly depend only

on one of the pure spinors,	 2. This fact has a clear interpretation for supersymmetric

backgrounds, when described from the four-dimensional perspective, see [93], whereas we

do not have access to an analogous explanation, since we have much less understanding

of the four-dimensional theories associated to our backgrounds (see subsection IV.2.2).

Moreover, the fact that this way of breaking supersymmetry preserves the integrability

of the generalised complex structureJ 2 seems to suggest that the closed string moduli

space could still be a complex manifold. It could be useful to turn to the exceptional
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generalised geometry formalism [39] to address these questions, for instance by performing

a non-supersymmetric analogue analysis of the one developed in [61]. However, even if we

will further comment on such questions in chapter V, making precise statements about

these problems is beyond the scope of the present work.

Finally, from now on, we consider generalised foliations withF = 0 . The form degree

of the supersymmetry breaking term is therefore codim(�) + 1 . Then (IV.43) can only

be respected if

type(	 1) � codim(�) ; (IV.50)

where the type of a pure spinor is its lower form degree. For instance backgrounds with

an SU(3) structure in type IIA have type (	 1) = 3 so dim(�) � 3, which corresponds to

D4 or D6 branes only. We will explicitly construct some backgrounds with such sources

in section IV.2.3.

c) Vacua with both DWSB and SSB contributions

The two classes of symmetry breaking described so far correspond each to the failure to

respect one speci�c di�erential calibration condition, either the domain-wall or the string-

one. Here, we would like to discuss more general cases where supersymmetry is broken

by violating both the domain-wall and string-like calibration condition, while keeping

calibrated space-�lling sources in the background.

In the light of the previous discussion, it is natural to consider non-supersymmetric

backgrounds which combine the speci�c DWSB and SSB contributions discussed in the

previous sections

dH (e3A� � 	 2) = irj (IV.51)

dH (e2A� � Im	 1) = � m [
 m j + ( � 1)j j j j
 m ] (IV.52)

dH (e4A� � Re	 1) = e4A ~� 6F: (IV.53)

Here again the internal space is taken to be a generalised foliation(� ; F ), and j is its

smeared generalised current, while the sources wrap the calibrated generalised cycle� .

The main geometric properties of the one-parameter DWSB class will be preserved by

the additional SSB contribution: the subbundle T(� ; F ) also de�nes an integrable Dirac

structure, the generalised complex structureJ 2 is not integrable, and the foliation (� ; F )

is an almost generalised complex foliation, so one can still de�ne the following complex

bundle

L (� ; F ) = T(� ; F ) \ L 2 = f V 2 (T � T � ) 
 C j V � 	 2 = V � j = 0g; (IV.54)
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which is stable under the Courant bracket. One can therefore again de�ne the di�erential
�@(� ; F ) on

L 3
k=0 � kL �

(� ; F ) , which provides a notion of a holomorphic di�erential, at least

with respect to (� ; F ).

We will come back to this class of vacua later on, write down its equations of motion

in subsection IV.2.2 and construct some explicit backgrounds solving these equations in

subsection IV.2.3.

IV.2.2 E�ective potential and equations of motion from pure spinors

In the previous subsections, we presented di�erent classes of non-supersymmetric back-

grounds in terms of the modi�ed pure spinor equations they obey. However, unlike the

supersymmetric case, the solutions of the modi�ed pure spinor equations (plus Bianchi

identities) are not guaranteed to solve the full set of equations of motion and thus to

describe true vacua of type II supergravity.

In order to check that the solutions of the modi�ed pure spinor equations are actual

supergravity backgrounds, we will follow the strategy of [44]: write the most general four-

dimensional `e�ective potential' from the ten-dimensional type II supergravity action,

and use the fact that the extremisation of the four-dimensional action is equivalent to

satisfying the ten-dimensional type II supergravity equations of motion.

The term `e�ective potential' is a bit misleading since it does not come from a trun-

cation of the ten-dimensional theory to a �nite set of four-dimensional modes.

However, the reason behind this choice (instead of just tackling the ten-dimensional

equations of motion upfront) is two-fold. First of all, the e�ective potential can be written

as an integral over the internal space of expressions involving the pure spinors and, by

varying it, one can express the equations of motion as some tractable di�erential equations

on the pure spinors. Secondly, the e�ective potential allows us to discuss the potential

presence of closed string tachyons from the four-dimensional perspective and thus (par-

tially) address the question of stability of our di�erent backgrounds. For our Minkowski

backgrounds, this translates into the requirement that the e�ective potential must be

positive semi-de�nite.

Indeed, even though we do not perform a complete reductions to the four-dimensional

e�ective theories, we will be able to �nd natural `truncations' suggested by the geometry

for our new classes of backgrounds such that the e�ective potential will be positive semi-

de�nite, therefore excluding the potential presence of closed string tachyons. The semi-

de�nite positiveness will be argued through the use of calibration bounds such as (IV.6)

rewritten in the pure spinor formalism.

The equations of motion in terms of pure spinors are hard to obtain in full generality,

and they have not been derived yet. However, they have been written down in [44] for
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the case of the one-parameter DWSB family, using the speci�c forms of the modi�ed

pure spinor equations discussed in IV.2.1.a). In these cases it has been shown that the

equations of motion reduce to relatively mild additional constraints to add on top of the

modi�ed pure spinor equations.

We start this section by recalling the general expression of the e�ective potential

in terms of the pure spinors derived in [44]. In subsection IV.2.2.b) we summarise the

results for the one-parameter DWSB case, presenting its e�ective potential and equations

of motion. The subsection IV.2.2.c) then contains our new results on the e�ective potential

and equations of motion for both purely SSB constructions and mixed SSB and DWSB

constructions. We �rst derive the equations of motion for the most general violation of

the D-string calibration condition, and we then specify them to our two new classes of

backgrounds.

a) The type II e�ective potential from pure spinors

In this section, we recall the derivation of the `e�ective' potential of [44]. We are interested

in con�gurations where the space-time is warped

ds2
10 = e2A(y)g�� dx � dx � + gmn dym dyn ; (IV.55)

with g�� now a generic four-dimensional metric, and with non-trivial NS and RR-�uxes.

We assume that the metric g�� depends only on the external coordinates, while all the

other �elds, warp factor, internal metric and �uxes depend only on the internal coordi-

nates.

The e�ective four-dimensional action for such con�gurations takes the form

Se� =
Z

X 4

d4x
p

� g4

�
1
2

N R4 � 2� Ve�

�
; (IV.56)

whereR4 is the four-dimensional scalar curvature,N is the warped volume of the internal

space

N = 4 �
Z

M
e2A� 2� vol6 (IV.57)

and the e�ective potential density is given by

Ve� =
Z

M
vol6e4A f e� 2� [�R +

1
2

H 2 � 4(d� )2 + 8 r 2A + 20(dA)2] �
1
2

~F 2g (IV.58)

+
X

i 2 loc. sources

� i

� Z

� i

e4A� �
q

det(gj � i + F i ) �
Z

� i

~Cj � i ^ eF i

�
; (IV.59)

with R the six-dimensional scalar curvature.

The �rst line in Ve� corresponds to the closed string sector, while the second line is the
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contribution from localised sources. We follow the conventions of [44] where2�
p

� 0 = 1 ,

so that the tensions of all D-branes are equal� Dp = 1 and for O-planes � Oq = � 2q� 5.

Notice that we are also omitting the internal �eld kinetic terms, since they are taken to be

constant along the external directions14. The sources couple to the RR potentials de�ned

by dH ~C = e4A ~F .

As argued in [44], the variations of the four dimensional action (IV.56) exactly repro-

duce the ten-dimensional equations of motion (see Appendix A for the expression of the

equations of motion). Moreover, from the variation of the four-dimensional action with

respect to g��
15, one gets that the external space is Einstein, with

R4 = 8 � Ve� =N : (IV.60)

Notice also that the variation of the e�ective action with respect to the electric RR

potentials reproduces the Bianchi identities

dH F = � j tot = �
X

i

� i j i ; (IV.61)

where, as described in section IV.1,j i are the (smeared) generalised current associated to

the D-branes wrapping cycles on the internal manifold.

In the following discussions it will be convenient to consider the external component

of the modi�ed Einstein equations (A.29). This can be obtained by combined variations

of (IV.56)
�S e�

�A
+ 2

�S e�

��
= 0 : (IV.62)

A central result of [44] is the fact that the e�ective potential (IV.58) can be expressed in

term of the pure spinors. The general expression is

Ve� =
1
2

Z

M
h~� 6[dH (e2A� � Im	 1)]; dH (e2A� � Im	 1)i

+
1
2

Z

M
e� 2A h~� 6[dH (e3A� � 	 2)]; dH (e3A� � �	 2)i

+
1
2

Z

M
vol6 e4A j~� 6F � e� 4A dH (e4A� � Re	 1)j2

�
1
4

Z

M
e� 2A

 
j h	 1; dH (e3A� � 	 2)i j 2

vol6
+

j h�	 1; dH (e3A� � 	 2)i j 2

vol6

!

� 4
Z

M
vol6e4A� 2� [(u1

R )2 + ( u2
R )2]

14 As in [44] we neglect anomalous curvature-like corrections to the sources contribution and, for O-
planes, we take F = 0 , as they are not seen as dynamical objects in the compacti�cation.

15 which from the ten-dimensional perspective is equivalent to the internal space integral of the external
ten-dimensional Einstein equation's trace.
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+
X

i � D-branes

� i

Z

M
e4A� � (vol6 � loc

i � h Re	 1; j i i )

+
Z

M
he4A� � Re	 1 � ~C; dH F + j tot i ; (IV.63)

where the square of a polyform is de�ned in Appendix A, and

u1;2
R = u1;2

Rm dym � (u1;2
m + u� 1;2

m )dym ; (IV.64)

with

u1
m =

i h
 m �	 1; dH (e2A� � Im	 1)i
e2A� � h	 1; �	 1i

+
h
 m �	 2; dH (e3A� � 	 2)i

2e3A� � h	 2; �	 2i
(IV.65)

u2
m =

i (� 1)j 	 2 j h	 1
 m ; dH (e2A� � Im	 1)i
e2A� � h	 1; �	 1i

+
(� 1)j 	 1 j h�	 2
 m ; dH (e3A� � 	 2)i

2e3A� � h	 2; �	 2i
: (IV.66)

We have also introduced the Born-Infeld density � loc
i associated with a source wrapping

a generalised submanifold(� i ; F i )

� loc
i =

q
det(gj � i + F i )

p
detg

� (� i ): (IV.67)

With this de�nition, it's insightful to rewrite the algebraic inequality (IV.6) in terms

of � loc:

� loc
i �

hRe	 1; j i i
vol6

; (IV.68)

where the division by the volume form means that we remove the vol6 factor in the numer-

ator. We take the sources to be calibrated as boundary conditions, which corresponds to

the saturation of this bound. This bound also implies that the sixth line in the expression

(IV.63) of Ve� is always positive.

Varying the e�ective potential (IV.63) with respect to the dilaton, the NS and RR-

�elds, and the warp factor, one should obtain the ten-dimensional equations motion di-

rectly in terms of the pure spinors. However, so far this has not been done in the general

case.

In the following, we derive the equations of motion for the most general violation

of the D-string calibration, and we specify them for the cases of our DWSB and SSB

constructions presented in subsections IV.2.1.b) and IV.2.1.c).

b) DWSB e�ective potential and equations of motion

We can now turn to the case of the one-parameter DWSB construction, and extremise

its e�ective potential to �nd out what are the additional constraints to impose on the
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one-parameter DWSB solutions to promote them to actual supergravity vacua. We brie�y

present the results, since they have been derived in [44].

Given that the D-string and gauge BPSness conditions (III.72) and (III.73) are re-

spected for the one-parameter DWSB class, the �rst and third line of the e�ective potential

(IV.63) vanish. Then, combining D-string BPSness (III.72) and the modi�ed DWSB con-

dition (IV.27) one can show that the terms proportional to u1 and u2 in (IV.63) are also

zero. Finally, the saturation of the calibration bound (IV.68) and the Bianchi identities

(IV.61) imply that the last two lines of (IV.63) vanish, leaving

Ve� =
1
2

Z

M
e� 2A h~� 6[dH (e3A� � 	 2)]; dH (e3A� � �	 2)i

�
1
4

Z

M
e� 2A

 
j h	 1; dH (e3A� � 	 2)i j 2

vol6
+

j h�	 1; dH (e3A� � 	 2)i j 2

vol6

!

: (IV.69)

The e�ective potential (IV.69) is su�ciently simple to derive the corresponding equa-

tions of motion [44]. We simply give the main results of the analysis and we refer to [44]

for more details. Ve� depends explicitly on the warp factor, the dilaton and the NS-�eld-

strength, and it depends implicitly on the internal metric through the Hodge operator,

the pure spinors and the volume form. One should therefore vary it with respect to these

�elds to �nd the equations of motions.

The dilaton equation is obtained by varying Ve� with respect to the dilaton and it is

satis�ed identically by imposing the modi�ed domain-wall BPSness equation (IV.27).

As we will also discuss in the next subsection, the external modi�ed Einstein equation

can be written as

he4A ~F � dH (e4A� � Re	 1); F + d H ~� 6(e� � Re	 1)i

+ e4A� �
X

i 2 loc. sources

� i

h
� loc

i vol6 � h Re	 1; j i i
i

= 0 ; (IV.70)

which is identically satis�ed when the gauge BPSness is obeyed and the calibration bound

(IV.68) is saturated. The external components of the modi�ed Einstein equations are

satis�ed not only for the one-parameter DWSB class, but for any background preserving

the D-string and gauge BPSness and violating the domain-wall calibration condition.

For the internal Einstein equation, the variation of the e�ective potential with respect

to the internal metric gives

Im
n

hgk(m dyk ^ �n) 	 2; dH
�
eA� � r � (3Re	 1 +

1
2

(� 1)j 	 2 j � pq
 pRe	 1
 q)
�
i

o
= 0 ; (IV.71)

which imposes some non-trivial constraints the DWSB con�gurations must satisfy to be

true supergravity solutions.
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Another set of constraints comes from the variation ofVe� with respect to the NS-�eld

d
h
e4A� 2� hIm(r � 	 2); 3Re	 1 +

1
2

(� 1)j 	 2 j � mn 
 m Re	 1
 n i
3

i
= 0 : (IV.72)

Interestingly, the NS-�eld equation of motion and the internal Einstein equation can

be uni�ed into the following condition:

Z

M
eA� � Im

�
r � h� g;B [dH (e3A� � 	 2)]; 3Re	 1 +

1
2

(� 1)j 	 2 j � mn 
 m Re	 1
 n i
	

= 0 ; (IV.73)

where � g;B denote a generic deformation of internal metric andB -�eld. Given that the

one-parameter DWSB backgrounds satisfy

hdH (e3A� � 	 2); 3Re	 1 +
1
2

(� 1)j 	 2 j � mn 
 m Re	 1
 n i = 0 ; (IV.74)

the conditions (IV.73) can be seen as a stability condition of (IV.74) under deformations

of dH (e3A� � 	 2), thus providing a four-dimensional interpretation of these equations of

motion, in terms of a stability condition for some F-�atness condition under such defor-

mations, see [44] for more details.

Finally, note that the e�ective potential (IV.69) vanishes when evaluated on the one-

parameter DWSB background. This can be seen by directly expanding the e�ective

potential (IV.69) on the SU(3)� SU(3) structure: we �nd that the terms in the two lines

compensate exactly, as expected for backgrounds with Minkowski4 external spaces.

Alternatively we can also use (IV.27) to rewrite the e�ective potential in terms of the

generalised currentj associated to the generalised foliation(� ; F )

Ve� =
1
2

Z

M
e� 2A jr j2

h
h~� 6j; j i �

j h	 1; j i j 2

vol6

i
; (IV.75)

which will turn out to be an insightful formulation when considering the o�-shell one-

parameter DWSB potential in subsection IV.2.2.d).

The vanishing of the one-parameter DWSB e�ective potential can here be interpreted

as the saturation of a calibration bound. Indeed, if ~| (� ;R ) is the generalised current of

a submanifold (� ; R), which is not necessarily calibrated, the following bound can be

derived from (IV.6)

h~� 6~| (� ;R ) ; ~| (� ;R ) i �
j h	 1; ~| (� ;R ) i j 2

vol6
: (IV.76)

This bound gets saturated if the generalised submanifold is calibrated, which is the case

for the one-parameter DWSB backgrounds, and the e�ective potential therefore vanish.
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c) SSB e�ective potential and equations of motion

We consider now the SSB con�gurations introduced in subsection IV.2.1.b). Since SSB

backgrounds haven't been studied in details in the literature, we discuss this case in more

details.

We consider the most general violation of the D-string BPSness, without any non-

calibrated sources in the backgrounds. We also assume that the Bianchi identities are

respected.

We �rst discuss how the e�ective potential simpli�es. The domain-wall and gauge

BPS conditions, (III.71) and (III.73) set the second, third and fourth line in (IV.63) to

zero. Also in this case, the last two lines of (IV.63) vanish due to the saturation of the

bound (IV.68) and the Bianchi identities (IV.61). Then the e�ective potential is

Ve� =
1
2

Z

M
h~� 6[dH (e2A� � Im	 1)]; dH (e2A� � Im	 1)i

� 4
Z

M
vol6e4A� 2� [(u1

R )2 + ( u2
R )2]; (IV.77)

where f u1;2
m g reduce to

u1
m =

i h
 m �	 1; dH (e2A� � Im	 1)i
e2A� � h	 1; �	 1i

(IV.78)

u2
m =

i (� 1)j 	 2 j h	 1
 m ; dH (e2A� � Im	 1)i
e2A� � h	 1; �	 1i

: (IV.79)

Varying Ve� with respect to the dilaton gives the dilaton equation of motion

hdH (e2A� � Im	 1); � i = 0 ; (IV.80)

while the variation with respect to NS-�eld B is

d
�
e2A� � hIm	 1; � i 3

�
= 0 : (IV.81)

The polyform � is de�ned as

� = ~� 6dH (e2A� � Im	 1) + 2 e2A� � u1
Rm 
 m Re	 1 + 2( � 1)j 	 2 je2A� � u2

Rm Re	 1
 m : (IV.82)

We are left with the Einstein equations. To derive the internal component of the

Einstein equations, one needs the following rules for the variations with respect to the

internal metric

�
p

detg = �
1
2

�g mn gmn
p

detg (IV.83)



IV.2 New non-supersymmetric flux vacua from generalised calibrations 81

� h~� 6� 1; � 2i = �g mn �
h~� 6�m � 1; �n � 2i �

1
2

gmn h~� 6� 1; � 2i
�

(IV.84)

� 	 i = �
1
2

�g mn gk(m dyk ^ �n) 	 i i = 1 ; 2: (IV.85)

Then, we �nd that the internal Einstein equations read

hgk(m dyk ^ �n) (e
2A� � Im	 1); dH � i � h gk(m dyk ^ �n)dH (e2A� � Im	 1); � i = 0 : (IV.86)

It would be interesting to further develop � by plugging in the general SU(3)� SU(3)

decomposition ofdH (e2A� � Im	 1) with only D-string BPSness violation (C.24). One could

then use the fact that the ~� 6 operator eigenstates are also eigenstates of the SU(3)� SU(3)

structure16 to write these equations of motion on the generalised Hodge diamond, as �rst

order di�erential equations on the supersymmetry breaking parameters introduced in

Appendix C. One could then search for more general non-supersymmetric solutions of

type II supergravity with SSB-like supersymmetry breaking. We won't do this here, as

we will focus on our ansatz in IV.2.1.b).

To study the external component of the modi�ed Einstein equation we will follow [44].

We �rst reduce the ten-dimensional equation (A.29) on our warped con�gurations

r m (e� 2� r m e4A ) = e4A ~F � ~F + e4A� �
X

i 2 loc. sources

� i � loc
i ; (IV.87)

and rewrite it in terms of pure spinors as

� d(e� 2� � 6 de4A ) = h~� 6 ~F ; e4A ~F i � h dH ~� 6 ~F ; e4A� � Re	 1i

+ e4A� �
X

i 2 loc. sources

� i

h
� loc

i vol6 � h Re	 1; j i i
i

(IV.88)

by using the Bianchi identity (IV.61) together with the RR-�eld-strength self-duality

(III.64).

At this point we see the di�erence between the DWSB con�gurations of [44] and the

SSB ones. For DWSB, using D-string and gauge BPSness, one can prove the identity

d(e� 2� � 6 de4A ) = d h~� 6dH (e4A� � Re	 1); e� � Re	 1i 5 ; (IV.89)

which in turn allows to rephrase (IV.88) as

he4A ~F � dH (e4A� � Re	 1); F + d H ~� 6(e� � Re	 1)i

+ e4A� �
X

i 2 loc. sources

� i

h
� loc

i vol6 � h Re	 1; j i i
i

= 0 : (IV.90)

16 See for instance [6].
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However, for generic SSB con�gurations the identity (IV.89) does not hold and therefore,

neither does (IV.90).

For generic SSB con�gurations without non-calibrated sources, the external compo-

nent of the Einstein equation therefore can't be reduced further than

� d(e� 2� � 6 de4A ) = h~� 6 ~F ; e4A ~F i � h dH ~� 6 ~F ; e4A� � Re	 1i : (IV.91)

We can now specify the equations of motion we found above to the SSB class intro-

duced in subsection IV.2.1.b), where the pure spinor equations are (IV.41), (IV.42), and

(IV.45).

Let's �rst discuss further the external components of the modi�ed Einstein equations.

Interestingly, using the gauge BPSness and our speci�c ansatz for the D-string BPSness

violation (IV.45), we can show that once again the identity (IV.89) holds. The external

modi�ed Einstein equations are therefore again

he4A ~F � dH (e4A� � Re	 1); F + d H ~� 6(e� � Re	 1)i

+ e4A� �
X

i 2 loc. sources

� i

h
� loc

i vol6 � h Re	 1; j i i
i

= 0 ; (IV.92)

which are satis�ed for our class of backgrounds, thanks to the gauge BPSness and the

calibration of our space-�lling sources.

Moving on to the other equations of motion, the f u1;2
Rm g terms in � reduce to17

u1
Rm =( � 1)j 	 2 jeA (� m � � m

n � n ) (IV.93)

u2
Rm =( � 1)j 	 2 jeA (� m � � n

m � n ): (IV.94)

Then, the dilaton equation of motion is automatically satis�ed, once the speci�c form of

the D-string BPSness violation (IV.45) is used. The NS-�eld equation of motion doesn't

get simpli�ed further, while the internal Einstein equations reduce to

hgk(m dyk ^ �n) Im	 1; dH � i = 0 : (IV.95)

We will construct di�erent concrete examples of backgrounds in section IV.2.3, and

we will see then that the equations of motion presented here can indeed be satis�ed by

such vacua.

Note also that, as in the one-parameter DWSB case, one can unify the equations of

motion for the NS-�eld and the internal Einstein equations, into the following integrated

17 We could also further specify � by expanding on the SU(3)� SU(3) structure the speci�c ansatz (IV.45)
in the ~� 6dH (e2A � � Im	 1) term, but the resulting expression is neither compact nor enlightening.
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condition. Z

M
h� g;B [dH (e2A� � Im	 1)]; � i = 0 : (IV.96)

However, we don't have access to a four-dimensional interpretation of this condition.

Finally, it is important to realise that for our class of SSB backgrounds, the e�ective

potential Ve� can also be rewritten in terms of the generalised current associated to the

generalised foliation. Indeed, it is straightforward to show that18

h~� 6[dH (e2A� � Im	 1)]; dH (e2A� � Im	 1)i = 4 �̂ m �̂ m h~� 6j; j i (IV.97)

(u1
R )2 = ( u2

R )2 = 4 �̂ m �̂ m e� (4A � 2� ) j h	 1; j i j 2

vol26
: (IV.98)

Using these two equations, the e�ective potential of our SSB class can be brought to

Ve� = 2
Z

M
�̂ m �̂ m

h
h~� 6j; j i �

j h	 1; j i j 2

vol6

i
: (IV.99)

Given that the bound (IV.76) is saturated for our SSB class, the e�ective potential van-

ishes again, as expected for Minkowski backgrounds.

However, even though this expression is interesting to highlight a common structure

between the one-parameter DWSB backgrounds, with e�ective potential (IV.75), and

our SSB class, it is also important to remember that the two expressions come from

di�erent terms in the e�ective potential, and these have drastically di�erent physical

interpretations in terms of the e�ective theory, which we will make more precise later on.

We can now turn to con�gurations having both SSB and DWSB contributions, with

the modi�ed pure spinor equations (IV.51), (IV.52) and (IV.53).

The e�ective potential is

Ve� =
1
2

Z

M
e� 2A h~� 6[dH (e3A� � 	 2)]; dH (e3A� � �	 2)i

�
1
4

Z

M
e� 2A

 
j h	 1; dH (e3A� � 	 2)i j 2

vol6
+

j h�	 1; dH (e3A� � 	 2)i j 2

vol6

!

+
1
2

Z

M
h~� 6[dH (e2A� � Im	 1)]; dH (e2A� � Im	 1)i

� 4
Z

M
vol6e4A� 2� [(u1

R )2 + ( u2
R )2] ; (IV.100)

where the �rst two lines are the contributions from the violation of the domain-wall

calibration condition, while the last two lines correspond to the contributions from the

18 We prove these equalities using vielbein, since it gives more compact expressions and allows to make
the connection with the one-parameter DWSB class in the most natural way, but similar equalities can
be derived in the coordinate basis.
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D-string one.

The potential (IV.100) is nothing but the sum of the two e�ective potentials for the

one-parameter DWSB backgrounds and our SSB ansatz from IV.2.1.b). It can thus be

written as

Ve� =
Z

M

�
2�̂ m �̂ m +

1
2

e� 2A jr j2
�h

h~� 6j; j i �
j h	 1; j i j 2

vol6

i
(IV.101)

where the two terms in the bracket still compensate through the saturation of (IV.76),

such that these backgrounds again have vanishing e�ective potentials.

The equations of motion for these backgrounds simply bring together the contributions

from the variations of the two e�ective potentials presented above.

The dilaton equation of motion and the external modi�ed Einstein equation are there-

fore automatically obeyed given that the modi�ed pure spinor equations are respected.

Then the NS-�eld equation of motion is

d
h
(� 1)j 	 2 je4A� 2� hIm(r � 	 2); � i 3 � e2A� � hIm	 1; � i 3

i
= 0 ; (IV.102)

and the internal Einstein equations are

Im
n

(� 1)j 	 2 jeA hgk(m dyk ^ �n) 	 2; dH
�
eA� � r � �

�
i

o
� h gk(m dyk ^ �n) Im	 1; dH � i = 0 :

(IV.103)

For compactness, we introduced here the polyform

� = 3 Re	 1 +
1
2

(� 1)j 	 2 j � mn 
 m Re	 1
 n : (IV.104)

When discussing concrete background examples, the following relationship between

the polyforms � and � will prove to be useful

� =( � 1)j 	 2 je3A� � �̂ a(
 a� + ( � 1)j 	 1 j+1 � 
 a) (IV.105)

=2( � 1)j 	 2 je3A� � �̂ a�a� : (IV.106)

In contrast with the previous situations, both the NS-�eld equation of motion and the

internal Einstein equations could in principle have non-vanishing DWSB and SSB con-

tributions, that could cancel each other out. However, we won't explore this possibility

and the background examples that we will present in section IV.2.3 will have both their

DWSB and SSB contributions vanishing independently.

d) Stability and generalised calibrations

In the previous sections we showed how to �nd classes of non-supersymmetric backgrounds

by solving modi�ed supersymmetry variations and then considering the additional con-
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straints the con�gurations must satisfy to be solutions of the equations of motion.

An important question to address is whether these non-supersymmetric backgrounds

are stable. There are two kinds of instabilities one could face: under small perturbation

or by quantum tunnelling.

We will try here to address the �rst, namely the potential presence of tachyonic

directions. As discussed in [44], a possible way to answer this question in again looking

at the four-dimensional e�ective potentials for the `o�-shell' �elds of ten-dimensional

supergravity around the given con�gurations.

Notice that the e�ective potentials obtained this way are not genuine potentials asso-

ciated to four-dimensional theories, since we didn't choose an appropriate truncation for

the ten-dimensional modes and we didn't perform the actual reduction. To do so would

require the knowledge of the light modes of the theory, which is complicated to access for

general �ux vacua19. This is beyond the scope of this work. However we will see that

their are still some interesting things one can say about our solutions from this approach.

We start by reviewing the analysis of [44] for the one-parameter DWSB backgrounds

and then discuss how to extend it to SBB backgrounds.

The idea of [44] is to go o�-shell, which is a way to look at �uctuations around a given

solution, and to see whether, under minor constraint on the ten-dimensional supergravity

�elds, it is possible to derive an e�ective potential that is positive semi-de�nite.

From the general expression forVe� , it is clear that a �rst constraint to impose is the

Bianchi identity (IV.61) so that the last line of (IV.63) vanishes. The second condition

is to assume that the parametersf u1;2
m g in the modi�ed pure spinor equations are zero.20

These terms correspond to vector-likes modes of the SU(3)� SU(3) structure group, and

should correspond to massive modes from the perspective of the reducedN = 1 and

N = 2 four-dimensional supergravity theories.

This is particularly clear for reductions to the N = 2 four-dimensional supergravity. In

this case, the vector-like modes correspond to massive spin32-multiplet degrees of freedom

for the four-dimensional theory, see for instance [38], and these are seen as non-physical

degrees of freedom ofN = 2 four-dimensional supergravity, that should be truncated

away.

Anyway, these vector-like modes are not expected to give rise to light or tachyonic

contributions to the e�ective theories. Therefore by `truncating' them away one is not

19 See for instance [95] for a discussion of the dimensional reduction of general SU(3)� SU(3) type II
supergravity backgrounds to N = 2 gauged four-dimensional supergravity. It is also worth mentioning here
recent work where the full Kaluza-Klein spectrum have been worked out for a variety of �ux backgrounds
using techniques from Exceptional Field Theory [96, 97].

20 In term of deformations of the ordinary supersymmetry variations these terms appear in the mod-
i�ed dilatino variations. This condition means that the only allowed deformations of this equation are
SU(3)� SU(3) singlets.
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discarding potential instabilities of the reduced e�ective theory.

In order to go o�-shell, we still consider an internal geometry that is a generalised

foliation, but we do not require the associate generalised submanifold,(� ; R), to be

calibrated. This means that the violation of the domain-wall calibration condition now

takes the more general form

dH (e3A� � 	 2) = i ~r ~| (� ;R ) ; (IV.107)

where ~| (� ;R ) is now a generalised current associated to the submanifold(� ; R), which

isn't necessarily calibrated away from the solution, and~r is just a parameter, eventually

identi�ed with the DWSB supersymmetry-breaking parameter mentioned above.

The `o�-shell' potential is then 21

Ve� =
1
2

Z

M
vol6jdH (e2A� � Im	 1)j2

+
1
2

Z

M
vol6 e4A j~� 6F � e� 4A dH (e4A� � Re	 1)j2

+
1
2

Z

M
e� 2A j~r j2

h
h~� 6~| (� ;R ) ; ~| (� ;R ) i �

j h	 1; ~| (� ;R ) i j 2

vol6

i

+
X

i � D-branes

� i

Z

M
e4A� � (vol6 � loc

i � h Re	 1; j i i ): (IV.108)

The terms in the �rst two lines are trivially positive, and the last two lines are positive

because of the calibration bounds (IV.68) and (IV.76). The potential is therefore positive

semi-de�nite, and vanishes precisely for the one-parameter DWSB solutions.

As discussed at length in [44], notice that this implies that, under the previous as-

sumptions, the e�ective potential can naturally be interpreted as being of the no-scale

type. This is not a surprise, given that the one-parameter DWSB class contains the GKP

solutions and all its T-duals, which are of the no-scale type [3].

Let us stress that this is an interesting property of the one-parameter DWSB class,

but it is only an argument for the stability of this class with the caveat that we assumed

a speci�c truncation, that we don't have precise control over.

A somewhat similar construction can be found for the backgrounds with SSB discussed

in sections IV.2.1.b) and IV.2.1.c). Here we discuss the backgrounds with SSB and DWSB

contributions of IV.2.1.c), but the backgrounds of IV.2.1.b) with only SSB contributions

exhibit the same behaviour.

We also impose that the Bianchi identities are satis�ed away from the solutions and

that the internal manifold is still a generalised foliation. However we do not truncate

away the vector-like modes, as they are fundamental for the SSB constructions. This

21 Here we wrote the �rst line of (IV.63) as the square of a polyform, for clarity.
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means that the o�-shell violations of the D-string and domain-wall BPSness are

dH (e3A� � 	 2) = i ~r ~| (� ;R ) (IV.109)

dH (e2A� � Im	 1) = ~̂� m [
̂ m ~| (� ;R ) + ( � 1)j~| (� ;R ) j ~| (� ;R ) 
̂
m ]: (IV.110)

Here ~| (� ;R ) is again a generalised current associated to the submanifold(� ; R), which

isn't necessarily calibrated away from the solution, andf ~̂� m g and ~r are just parameters,

eventually identi�ed with the SSB and DWSB supersymmetry-breaking parameters.

The `o�-shell' potential is then

Ve� =
1
2

Z

M
vol6 e4A j~� 6F � e� 4A dH (e4A� � Re	 1)j2

+
Z

M

�
2~̂� m ~̂� m +

1
2

e� 2A j~r j2
�h

h~� 6~| (� ;R ) ; ~| (� ;R ) i �
j h	 1; ~| (� ;R ) i j 2

vol6

i

+
X

i � D-branes

� i

Z

M
e4A� � (vol6 � loc

i � h Re	 1; j i i ) : (IV.111)

The �rst line is again trivially positive, and the last two lines are positive because of

the calibration bounds (IV.68) and (IV.76). The potential (IV.111) is therefore positive

semi-de�nite, and vanishes precisely for the solutions introduced in IV.2.1.c).

However, the situation di�ers from the one-parameter DWSB case, by the fact that

we purposely keep the vector-like modesf u1;2
m g, that are believed to be massive modes

from the e�ective perspective.

Therefore, we stress that we present this truncation as an interesting property of

our backgrounds: there is a `truncation' naturally suggested by the geometry such that

the e�ective potential is positive semi-de�nite, but this doesn't constitute a proof of

perturbative stability, since we have no way to conclude whether we can truncate the

ten-dimensional modes in this way or not, and no way to re�ect on the relative e�ective

masses between the vector-like modes we kept, and the modes we discarded.

Moreover, it might not even be sensible to talk about e�ective theories associated to

these ten-dimensional backgrounds, given the presence of these massive vector-like modes,

or it could be that their e�ective theories are non-supersymmetric with the �eld content of

N = 1 or N = 2 supergravity with additional massive multiplets, or non-supersymmetric

solutions of four-dimensional supergravity theory with higher supersymmetry. Singling

out one option among these scenarios would require a rigorous prescription to truncate

and reduce the ten-dimensional theory, so we won't address further these questions.
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IV.2.3 Examples of vacua with SSB supersymmetry breaking

Up until here we made a rather abstract presentation of our non-supersymmetric back-

grounds. The purpose of this section is to present concrete examples of our classes of

vacua with SSB contributions. We will focus on internal geometries admitting an SU(3)-

or a static SU(2)-structure, and we will discard the possibility to have a non-trivial two-

form F such that the generalised foliation (� ; F ) will be entirely de�ned by the cycle

� .

Throughout this section, we revisit the examples of one-parameter DWSB vacua con-

sidered in [44], adding SSB contributions to the pure spinor equations and removing or

keeping the DWSB one, to construct examples of the class of backgrounds introduced in

IV.2.1.b) and IV.2.1.c) respectively. We will therefore specify the following set of modi�ed

pure spinor equations

dH (e3A� � 	 2) = 0 or irj (IV.112)

dH (e2A� � Im	 1) = � m [
 m j + ( � 1)j j j j
 m ] (IV.113)

dH (e4A� � Re	 1) = e4A ~� 6F (IV.114)

for our di�erent concrete cases.

We consider the generalised foliations of our internal manifolds to be �brations

� ,! M ! B (IV.115)

with B the base manifold and� the �bre.

As discussed in IV.2.1, the �bres will be calibrated by ! sf and will be wrapped by the

space-�lling sources.

a) Type IIB SU (3) -structure backgrounds with D5-branes

The internal manifolds admitting an SU(3)-structure have parallel internal spinors � 1 and

� 2, and in type IIB they have the following pure spinors

	 1 = ei� eiJ 	 2 = e� i� 
 : (IV.116)

We can introduce a local vielbein to write the Kähler form J and the (3; 0) form 
 as

J = � (e1 ^ e4 + e2 ^ e5 + e3 ^ e6) (IV.117)


 =( e1 + ie4) ^ (e2 + ie5) ^ (e3 + ie6): (IV.118)
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Then, following [2, 8] one can show that for D5 space-�lling branes the algebraic calibra-

tion condition (IV.6) imposes both that the �bre � is almost-complex with respect to the

almost-complex structure de�ned by 
 , and

� = �
�
2

: (IV.119)

We consider constructions with 24 O5-planes wrapping a two-cycle in the internal geom-

etry, at the �xed point of the Z2 involutions on the orthogonal four-dimensional space,

and we allow for nD 5 D5-branes, taken to be parallel to these orientifolds.

We will now specialise the discussion to the case of backgrounds with and without

DWSB contributions.

a).1 Backgrounds with only SSB contributions

We can here specify the pure spinor equations (IV.41), (IV.42) and (IV.44) satis�ed by

type IIB SU (3) backgrounds with space-�lling D5-branes and with an SSB contribution

of the type presented in IV.2.1.b). They yield

H = 0 e2A� � = const. (IV.120)

F1 = F5 = 0 � 6 F3 = � e� 2� d(e� J ) (IV.121)

d(eA 
) = 0 ; (IV.122)

with the �rst line coming from the speci�c violation of the D-string calibration (IV.43),

and the second and third line coming from gauge and domain-wall BPSness respectively.

One condition from (IV.43) is missing here: for now these conditions are the same as the

ones one would impose to have a supersymmetric background. If for instance we take the

�bres to be along the directions e1 and e4, we have vol6 = vol� ^ volB4 with vol � = e1 ^ e4

and volB4 = e2 ^ e3 ^ e5 ^ e6, and we can write the last condition from (IV.43), which

introduces the breaking of supersymmetry, as

e2A� � d(J ^ J ) = 4( �̂ 1e1 + �̂ 4e4) ^ j; (IV.123)

with

j = 4e3A� � volB4 : (IV.124)

Finally, we can specify the equations of motion. The NS-�eld, dilaton and external

modi�ed Einstein equations are trivially respected, and to rewrite the internal Einstein

equations, it is useful to notice that in the case whereF = 0 , we have

� = 4( Re	 1 � Re	 1j � ): (IV.125)
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Using this identity and (IV.106), the internal Einstein equations can be shown to reduce

to

hgk(m dyk ^ �n)J ^ J; d[�̂ a�a(J ^ J ^ J )]i = 0 a = 1 ; 4 (IV.126)

which is identically satis�ed. We conclude that this family of SSB SU(3) backgrounds with

calibrated D5-branes automatically solves its equations of motion, without any further

constraints.

We now turn to the construction of an explicit example of background from this class.

We begin by choosing the following metric:

ds2 = e2A ds2
R1;3

+ d s2
M (IV.127)

ds2
M = � 0(2� )2

n
e2A [R2

1(� 1)2 + R2
4(� 4)2] + e� 2A

X

j =2 ;3;5;6

R2
j (dyj )2

o
; (IV.128)

where the warp factor A only depends on the base directionB4 = f y2; y3; y5; y6g and � 1,

� 4 are non-closed one-forms satisfying

d� a = f a
ij dyi ^ dyj a = 1 ; 4 i; j = 2 ; 3; 5; 6: (IV.129)

In the constant warp factor limit, this is nothing else then the geometry of a twisted

torus. To ensure the compactness ofM we take the structure constants f f a
ij g to be

integer constants, while the radii f Ra; Ri g can take any real value. The Kähler form J

and the (3; 0) form 
 are

J = � � 0(2� )2[e2A R1R4� 1 ^ � 4 + e� 2A (R2R5dy2 ^ dy5 + R3R6dy3 ^ dy6)] (IV.130)


 = � 03=2(2� )3e� A (R1� 1 + iR 4� 4) ^ (R2dy2 + iR 5dy5) ^ (R3dy3 + iR 6dy6): (IV.131)

The domain-wall BPSness (IV.122) now takes the form

f 1
26R1R3R5 � f 4

56R2R3R4 � f 1
35R1R2R6 + f 4

23R4R5R6 =0 (IV.132)

f 4
26R3R4R5 + f 1

56R1R2R3 � f 4
35R2R4R6 � f 1

23R1R5R6 =0 ; (IV.133)

and the RR-�uxes (IV.121) read

F3 = e2A� � [� B4 de� 4A � � 0(2� )2
�
R2

1� 1 ^ � Bd� 1 + R2
4� 4 ^ � Bd� 4

�
]; (IV.134)

� e2A� � � B4 de� 4A + � 0(2� )2F bg
3 (IV.135)

with � B4 the four-dimensional Hodge operator on the unwarped base. The �rst term

comes from the back-reaction of the D5-branes and O5-planes, while the second term
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should be thought as a properly quantised background �ux, so it must be an integer

valued three-form, which constrains the radii Ri and the value of e2A� � .

The generalised current associated to the sources is

j = 4 � 02(2� )4e� A � � R2R3R5R6dy2 ^ dy3 ^ dy5 ^ dy6; (IV.136)

and the D-string BPSness violation (IV.123) is

e2A� � d(J ^ J ) = 8 �
p

� 0eA (R1�̂ 1� 1 + R4�̂ 4� 4) ^ j; (IV.137)

which is satis�ed for the following supersymmetry breaking parameters

�̂ 1 = e2A R4

16�
p

� 0

� f 4
36

R3R6
+

f 4
25

R2R5

�
(IV.138)

�̂ 4 = � e2A R1

16�
p

� 0

� f 1
36

R3R6
+

f 1
25

R2R5

�
: (IV.139)

Finally, we can specify the Bianchi identities (IV.61), which in this case are only non

trivial for F3
22

dF3 = e2A� � �
� r 2

B4
e� 4A +

Y
4� 0(2� )2

�
v~olB4 (IV.140)

=
e2A� �

� 0(2� )2

� 16X

i =1

� 4
B4

(yi ) �
nD 5X

j =1

� 4
B4

(yj )
�
v~olB4 ; (IV.141)

where v~olB4 is the unwarped volume form onB4, the charges of the O5 and D5 sources

have been normalised to� 1 and 1 respectively, and with

Y =
(f 1

23)2

(R2R3)2 +
(f 1

25)2

(R2R5)2 +
(f 1

26)2

(R2R6)2 +
(f 1

35)2

(R3R5)2 +
(f 1

36)2

(R3R6)2 +
(f 1

56)2

(R5R6)2

+
(f 4

23)2

(R2R3)2 +
(f 4

25)2

(R2R5)2 +
(f 4

26)2

(R2R6)2 +
(f 4

35)2

(R3R5)2 +
(f 4

36)2

(R3R6)2 +
(f 4

56)2

(R5R6)2 : (IV.142)

The corresponding tadpole condition connects the sources to the radii and structure

constants:

nD 5 +
Y
4

= 16: (IV.143)

a).2 Backgrounds with both SSB and DWSB contributions

One can construct a similar class of SU(3) backgrounds with space-�lling D5-branes, with

an additional supersymmetry breaking contribution from the violation of the domain-wall

BPSness. Considering again the �bres to be along the directionse1 and e4, the pure spinor
22 Note that the current (IV.137) and the one in (IV.11) di�er by an overall factor.
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equations (IV.51), (IV.52) and (IV.53) take the form

H = 0 e2A� � = const. (IV.144)

F1 = F5 = 0 � 6 F3 = � e� 2� d(e� J ) (IV.145)

and

e2A� � d(J ^ J ) = 4( �̂ 1e1 + �̂ 4e4) ^ j (IV.146)

e2A� � d(eA 
) = irj (IV.147)

with again

j = 4e3A� � volB4 : (IV.148)

Turning to the equations of motion, the NS-�eld equation is still trivially satis�ed, such

as the dilaton equation, and the external modi�ed Einstein equations. Therefore only the

internal Einstein equation has an additional non-trivial contribution. From (IV.125), we

see that it reduces to

Rehgk(m dyk ^ �n) 
 ; d(e� A r � J jB4 )i = 0 : (IV.149)

Sincegk(m dyk ^ �n) 
 is either a (3; 0) or a primitive (2; 1) form, imposing

h
d(e� A rJ jB4 )

i 3;0
=

h
d(e� A rJ jB4 )

i 2;1

prim
= 0 (IV.150)

is enough to satisfy (IV.149). If we considerr and the warp factor to be constant along the

�bre, as is usual when the localised sources wrap the �bres, and if we havedJ jB4 = f ^ J jB4

with f a real function on the base, then the conditions (IV.150) amounts to

h
d(e� A rf )

i 1;0
= 0 : (IV.151)

Let us construct an example of these backgrounds, which will respect this condition.

We start o� with the same metric ansatz as for the case with only the SSB contribution

ds2 = e2A ds2
R1;3

+ d s2
M (IV.152)

ds2
M = � 0(2� )2

n
e2A [R2

1(� 1)2 + R2
4(� 4)2] + e� 2A

X

j =2 ;3;5;6

R2
j (dyj )2

o
; (IV.153)

with the one forms � 1 and � 4 respecting again (IV.129). The Kähler form J and the (3; 0)
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form 
 are once more

J = � � 0(2� )2[e2A R1R4� 1 ^ � 4 + e� 2A (R2R5dy2 ^ dy5 + R3R6dy3 ^ dy6)] (IV.154)


 = � 03=2(2� )3e� A (R1� 1 + iR 4� 4) ^ (R2dy2 + iR 5dy5) ^ (R3dy3 + iR 6dy6): (IV.155)

The gauge BPSness (IV.145) yields the following RR-�ux

F3 = e2A� � [� B4 de� 4A � � 0(2� )2
�
R2

1� 1 ^ � Bd� 1 + R2
4� 4 ^ � Bd� 4

�
]; (IV.156)

� e2A� � � B4 de� 4A + � 0(2� )2F bg
3 (IV.157)

Even though the form of the RR-�ux is similar to the background with only an SSB

contribution (IV.134), we stress that their components di�er, since the structure constants

f f a
ij g are di�erent. Indeed, here we don't respect the conditions (IV.132) and (IV.133)

since we have a DWSB contribution. Besides, the values ofe2A� � and the radii Ri should

be chosen appropriately such that the background �uxes are integer-valued.

The generalised current is again

j = 4 � 02(2� )4e� A � � R2R3R5R6dy2 ^ dy3 ^ dy5 ^ dy6; (IV.158)

and the D-string (IV.146) and domain-wall (IV.147) BPSness violations are

e2A� � d(J ^ J ) =8 �
p

� 0eA (R1�̂ 1� 1 + R4�̂ 4� 4) ^ j (IV.159)

e2A� � d(eA 
) = irj (IV.160)

which are satis�ed if

r =
e3A

8�
p

� 0

� R1f 1
56 + iR 4f 4

56

R5R6
�

R1f 1
23 + iR 4f 4

23

R2R3
(IV.161)

+
iR 1f 1

35 � R4f 4
35

R3R5
�

iR 1f 1
26 � R4f 4

26

R2R6

�
(IV.162)

�̂ 1 = e2A R4

16�
p

� 0

� f 4
36

R3R6
+

f 4
25

R2R5

�
(IV.163)

�̂ 4 = � e2A R1

16�
p

� 0

� f 1
36

R3R6
+

f 1
25

R2R5

�
: (IV.164)

Turning to the equations of motion, we have

d(e� A rJ jB4 ) = 0 (IV.165)

so (IV.150) are obeyed and the internal Einstein equations are satis�ed. As discussed

above, every other equations of motion are satis�ed.
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Finally, we can write down the only non-trivial Bianchi identity, the one for the RR-

�ux

dF3 = e2A� � �
� r 2

B4
e� 4A +

Y
4� 0(2� )2

�
v~olB4 (IV.166)

=
e2A� �

� 0(2� )2

� 16X

i =1

� 4
B4

(yi ) �
nD 5X

j =1

� 4
B4

(yj )
�
v~olB4 ; (IV.167)

with

Y =
(f 1

23)2

(R2R3)2 +
(f 1

25)2

(R2R5)2 +
(f 1

26)2

(R2R6)2 +
(f 1

35)2

(R3R5)2 +
(f 1

36)2

(R3R6)2 +
(f 1

56)2

(R5R6)2

+
(f 4

23)2

(R2R3)2 +
(f 4

25)2

(R2R5)2 +
(f 4

26)2

(R2R6)2 +
(f 4

35)2

(R3R5)2 +
(f 4

36)2

(R3R6)2 +
(f 4

56)2

(R5R6)2 : (IV.168)

Once again, this expression is similar to the one for the background with only SSB con-

tribution presented in a).1, but the addition of the DWSB contribution actually modi�es

the structure constants f f a
ij g upon releasing the constraints (IV.132) and (IV.133), which

also alters the corresponding tadpole condition

nD 5 +
Y
4

= 16: (IV.169)

b) Type IIA SU (3) -structure backgrounds with D6-branes

Type IIA SU (3) backgrounds have the following pure spinors

	 1 = 
 	 2 = e� i� eiJ : (IV.170)

Then, following [2, 8], one can show that the algebraic calibration condition (IV.6) for D6

space-�lling branes wrapping an internal cycle � imposes

J j � = 0 Im
 j � = 0 : (IV.171)

We consider constructions with 23 O6-planes wrapping a two-cycle in the internal geom-

etry, at the �xed point of the Z2 involutions on the orthogonal three-dimensional space,

and we allow for nD 6 D6-branes, taken to be parallel to these orientifolds.

We again introduce a local vielbein and express the Kähler and(3; 0) form as

J = � (e1 ^ e4 + e2 ^ e5 + e3 ^ e6) (IV.172)


 =( e1 + ie4) ^ (e2 + ie5) ^ (e3 + ie6); (IV.173)

and we consider the �bres wrapped by the sources to be along thee1, e2 and e3 directions.
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We then have vol6 = vol� ^ volB3 with vol � = e1 ^ e2 ^ e3 and volB3 = e4 ^ e5 ^ e6. We

can now write the pure spinor equations obeyed by these backgrounds, for the cases with

and without a DWSB contribution.

b).1 Backgrounds with only SSB contributions

The pure spinor equations (IV.41), (IV.42) and (IV.44), which correspond to having only

an SSB contribution, read

e3A� � = const. ei� = const. (IV.174)

H = 0 dJ = 0 (IV.175)

for the domain-wall BPSness,

F0 = F4 = F6 (IV.176)

� F2 = � e� 4A d(e4A� � Re
) (IV.177)

for the gauge BPSness, and

e3A� � d(e� A Im
) = 2(^ � 1e1 + �̂ 2e2 + �̂ 3e3) ^ j (IV.178)

with

j = � 4e3A� � volB3 (IV.179)

for the violation of the D-string BPSness.

Turning to the equations of motion, the internal Einstein equations are

hgk(m dyk ^ �n) Im
 ; d
�
�̂ a�a(Re
 � Re
 j � )

�
i = 0 a = 1 ; 2; 3: (IV.180)

It is natural to construct �bered backgrounds respecting

d
�
�̂ a�a(Re
 � Re
 j � )

�
= 0 a = 1 ; 2; 3 (IV.181)

and thus satisfying the internal Einstein equations. We will now construct such a back-

ground.

We start with the following metric ansatz

ds2 = e2A ds2
R1;3

+ d s2
M (IV.182)

ds2
M = � 0(2� )2

n
e2A

X

a=1 ;2;3

R2
a(� a)2 + e� 2A

X

j =4 ;5;6

R2
j (dyj )2

o
(IV.183)

where as in the type IIB case, the warp factor A only depends on the base direction
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B3 = f y4; y5; y6g and � 1, � 2 and � 2 are non-closed one-forms satisfying

d� a = f a
ij dyi ^ dyj a = 1 ; 2; 3 i; j = 4 ; 5; 6: (IV.184)

In the constant warp factor limit, this again corresponds to the geometry of a twisted

torus. To ensure the compactness ofM , the structure constants f f a
ij g have to be integer

constants, and the radii f Ra; Ri g can take any real value. The Kähler form J and the

(3; 0) form 
 are

J = � � 0(2� )2[R1R4� 1 ^ dy4 + R2R5� 2 ^ dy5 + R3R6� 3 ^ dy6] (IV.185)


 = � 03=2(2� )3(eA R1� 1 + ie� A R4dy4) ^ (eA R2� 2 + ie� A R5dy5) (IV.186)

^ (eA R3� 3 + ie� A R6dy6): (IV.187)

The domain-wall BPSness (IV.175) reduces to

R1R4f 1
56 + R2R5f 2

64 + R3R6f 3
45 = 0 ; (IV.188)

and the RR-�uxes (IV.177) read

F2 = e3A� � �
� B3 de� 4A � � 0(2� )2

X

a=1 ;2;3

R2
a� a ^ � B3 d� a�

(IV.189)

F2 � e3A� � � B3 de� 4A + � 0(2� )2F bg
2 ; (IV.190)

with � B3 the three-dimensional Hodge operator on the unwarped base. As in the type

IIB case, the background RR-�uxes must be integer-valued, constraining the values of the

radii Ri and of e3A� � .

The generalised current is

j = � 4� 03=2(2� )3e� � R4R5R6dy4 ^ dy5 ^ dy6; (IV.191)

and the D-string BPSness violation (IV.178) is

e3A� � d(e� A Im
) = 4 �
p

� 0eA (R1�̂ 1� 1 + R2�̂ 2� 2 + R3�̂ 3� 3) ^ j (IV.192)

which gives

�̂ 1 =
e2A

16�
p

� 0R4

�
R3

R6
f 3

46 +
R2

R5
f 2

45

�
(IV.193)

�̂ 2 =
e2A

16�
p

� 0R5

�
R3

R6
f 3

56 �
R1

R4
f 1

45

�
(IV.194)
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�̂ 3 = �
e2A

16�
p

� 0R6

�
R2

R5
f 2

56 +
R1

R4
f 1

46

�
: (IV.195)

With these �̂ 's, one can show that

d
�
�̂ a�a(Re
 � Re
 j � )

�
= 0 a = 1 ; 2; 3; (IV.196)

and the internal Einstein equations (IV.180) are therefore satis�ed.

Finally, the Bianchi identities reduce to

dF2 = e3A� � �
� r 2

B3
e� 4A +

Z
2� 0(2� )2

�
v~olB3

=
e3A� �

� 0(2� )2

� 8X

i =1

� 4
B4

(yi ) �
nD 6X

j =1

� 4
B4

(yj )
�
v~olB4 ; (IV.197)

with v ~olB3 the unwarped volume form onB3, the charges of the O6 and D6 sources have

been normalised to� 1 and 1 respectively, and with

Z =
(f 1

45)2

(R4R5)2 +
(f 1

46)2

(R4R6)2 +
(f 1

56)2

(R5R6)2 +
(f 2

45)2

(R4R5)2 +
(f 2

46)2

(R4R6)2 +
(f 2

56)2

(R5R6)2

+
(f 3

45)2

(R4R5)2 +
(f 3

46)2

(R4R6)2 +
(f 3

56)2

(R5R6)2 : (IV.198)

The corresponding tadpole condition connects the sources to the radii and structure

constants:

nD 6 +
Z
2

= 8 : (IV.199)

b).2 Backgrounds with both SSB and DWSB contributions

One can construct a similar class of SU(3) backgrounds that has space-�lling D6-branes,

with an additional supersymmetry breaking contribution from the violation of the domain-

wall BPSness. In this case, the pure spinor equations (IV.51), (IV.52) and (IV.53) take

the form

e3A� � = const. ei� = const. F4 = F6 = 0 (IV.200)

� F2 = � e� 4A d(e4A� � Re
) � F0 = e� � H ^ Re
 (IV.201)

and

e3A� � e� i� (H + idJ ) = irj (IV.202)

e3A� � d(e� A Im
) = 2(^ � 1e1 + �̂ 2e2 + �̂ 3e3) ^ j (IV.203)
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with again

j = � 4e3A� � volB3 : (IV.204)

Turning to the equations of motion, the internal Einstein equations are

Re
n

eA e� i� hgk(m dyk ^ �n)J; dH
�
e� 2A r � �

�
i

o
+ hgk(m dyk ^ �n) Im
 ; dH (�̂ a�a�) i = 0 ;

(IV.205)

with a = 1 ; 2; 3 and again

� = 4( Re
 � Re
 j � ): (IV.206)

It is su�cient to obey

dH
�
e� 2A r � �

�
= 0 (IV.207)

dH (�̂ a�a�) = 0 a = 1 ; 2; 3 (IV.208)

to satisfy the internal Einstein equations, and we will shortly turn to the construction of

an example background respecting (IV.207) and (IV.208). As for the NS-�eld equation

of motion, it reduces exactly to (IV.207).

We start the construction of an explicit background belonging to this class with con-

sidering the following NS ansatz

ds2 = e2A ds2
R1;3

+ d s2
M (IV.209)

ds2
M = � 0(2� )2

n
e2A

X

a=1 ;2;3

R2
a(� a)2 + e� 2A

X

j =4 ;5;6

R2
j (dyj )2

o
(IV.210)

H = � 0(2� )2
�
N dy4 ^ dy5 ^ dy6 +

X

a=1 ;2;3

Bad� a ^ dya+3
�

(IV.211)

where N 2 Z, Ba 2 Z and again the warp factor A only depends on the base direction

B3 = f y4; y5; y6g and � 1, � 2 and � 2 are non-closed one-forms satisfying (IV.184). The

Kähler form J and the (3; 0) form 
 are again

J = � � 0(2� )2[R1R4� 1 ^ dy4 + R2R5� 2 ^ dy5 + R3R6� 3 ^ dy6] (IV.212)


 = � 03=2(2� )3(eA R1� 1 + ie� A R4dy4) ^ (eA R2� 2 + ie� A R5dy5) (IV.213)

^ (eA R3� 3 + ie� A R6dy6): (IV.214)

The RR-�uxes (IV.201) read

F0 = � e3A� � R1R2R3

2�
p

� 0Vol(M )

�
N + B1f 1

56 � B2f 2
46 + B3f 3

45
�

(IV.215)

F2 = e3A� � �
� B3 de� 4A � � 0(2� )2

X

a=1 ;2;3

R2
a� a ^ � B3 d� a�

(IV.216)



IV.2 New non-supersymmetric flux vacua from generalised calibrations 99

F2 � e3A� � � B3 de� 4A + � 0(2� )2F bg
2 ; ; (IV.217)

with the internal manifold volume Vol (M ) normalised in � 0 units. Both F0 and F bg
2 are

background �uxes and must be integer-valued, constraining the radii ande3A� � again.

As before, the generalised current is

j = � 4� 03=2(2� )3e� � R4R5R6dy4 ^ dy5 ^ dy6; (IV.218)

and the domain-wall and D-string BPSness violations are

e3A� � e� i� (H + idJ ) = irj (IV.219)

e3A� � d(e� A Im
) = 4 �
p

� 0eA (R1�̂ 1� 1 + R2�̂ 2� 2 + R3�̂ 3� 3) ^ j (IV.220)

and are satis�ed if

r =
e3A e� i�

8�
p

� 0R4R5R6

h
i
�
N + B1f 1

56 � B2f 2
46 + B3f 3

45
�

(IV.221)

+ f 1
56R1R4 � f 246R2R5 + f 345R3R6

i
(IV.222)

�̂ 1 =
e2A

16�
p

� 0R4

�
R3

R6
f 3

46 +
R2

R5
f 2

45

�
(IV.223)

�̂ 2 =
e2A

16�
p

� 0R5

�
R3

R6
f 3

56 �
R1

R4
f 1

45

�
(IV.224)

�̂ 3 = �
e2A

16�
p

� 0R6

�
R2

R5
f 2

56 +
R1

R4
f 1

46

�
: (IV.225)

With these supersymmetry breaking parameters, one can show that (IV.207) and (IV.208)

are satis�ed, and therefore the NS-�eld and internal metric equations of motion are

obeyed.

Finally, the Bianchi identities for the RR-�uxes read

dF2 = e3A� � �
� r 2

B3
e� 4A +

Z
2� 0(2� )2

�
v~olB3

=
e3A� �

� 0(2� )2

� 8X

i =1

� 4
B4

(yi ) �
nD 6X

j =1

� 4
B4

(yj )
�
v~olB4 ; (IV.226)

with again

Z =
(f 1

45)2

(R4R5)2 +
(f 1

46)2

(R4R6)2 +
(f 1

56)2

(R5R6)2 +
(f 2

45)2

(R4R5)2 +
(f 2

46)2

(R4R6)2 +
(f 2

56)2

(R5R6)2

+
(f 3

45)2

(R4R5)2 +
(f 3

46)2

(R4R6)2 +
(f 3

56)2

(R5R6)2 : (IV.227)
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This expression is similar to the one for the background with only SSB contribution pre-

sented in b).1, but the addition of the DWSB contribution actually modi�es the structure

constantsf f a
ij g upon releasing the constraint (IV.188), which also alters the corresponding

tadpole condition

nD 6 +
Z
2

= 8 : (IV.228)

c) Type IIB SU (2) -structure backgrounds with D5-branes

We now turn to the discussion of type IIB backgrounds admitting a static SU(2) struc-

ture and having space-�lling D5-branes. The two internal spinors � 1 and � 2 of such

backgrounds are everywhere orthogonal, which means that one can specify a one-form

� = � m dym such that

� 2 = �
i
2

� m 
 m � �
1: (IV.229)

It is natural to parametrise the two SU(3) structures de�ned by � 1 and � 2 as

J1 = �
i
2

� ^ �� + j 
 1 = � � ^ w (IV.230)

J2 = �
i
2

� ^ �� � j 
 2 = � ^ �w (IV.231)

with � � j = � �� j = � � w = � �� w = 0 . The corresponding pure spinors are

	 1 = w ^ e
1
2 � ^ �� (IV.232)

	 2 = � ^ ei j : (IV.233)

Following [8], one can show that the calibration of the space-�lling D5-branes wrapping

a cycle � imposes

� j � = 0 jj � F = 0 Imwj � = 0 : (IV.234)

We will now specify the pure spinor equations and the equations of motion for both the

cases with and without a DWSB contribution.

c).1 Backgrounds with only SSB contributions

We start by discussing the class of backgrounds having only an SSB contribution. The

domain-wall BPSness (IV.41) �rst imposes

d(e3A� � � ) = 0 : (IV.235)

This means that locally, one can introduce a complex coordinatez such that dz = e3A� � � .

Then, the hypersurfaceD de�ned by z = constant admits an SU(2) structure de�ned by
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the pair (jjD ; wjD ), and (IV.234) means that the �bre � de�nes a Slag �bration of the

leavesD.

We can choose a local basis such thate1; e2; e4; e5 are along D, ande1; e2 are tangent

to the �bre � . We also take

j = � (e1 ^ e4 + e2 ^ e5) (IV.236)

w = ( e1 + ie4) ^ (e2 + ie5) (IV.237)

� = e3 + ie6: (IV.238)

The domain-wall BPSness also imposes

djjD = 0 H jD = 0 ; (IV.239)

so one can expanddj and H as

dj = ( f ^ �� + c:c:) +
i
2

u ^ � ^ �� (IV.240)

H = ( g ^ �� + c:c:) +
i
2

h ^ � ^ �� (IV.241)

with f and g complex two-forms, andu and h real one-forms which can be decomposed

purely along D. The last condition imposed by domain-wall BPSness is then

g + if = 0 : (IV.242)

The gauge BPSness yields the following RR-�uxes

e� � F1 = H ^ Rew � id(2A � � ) ^ Imw ^ � ^ �� (IV.243)

� F3 = � e� 4A d(e4A� � Rew) (IV.244)

F5 = 0 ; (IV.245)

and the violation of the D-string BPSness takes the form

d(e2A� � Imw) = 0 (IV.246)

e2A� � �
H ^ Imw �

i
2

d(Rew ^ � ^ �� )
�

= 4 �
p

� 0eA (R1�̂ 1dy1 + R2�̂ 2dy2) ^ j (IV.247)

with

j = � 4e3A� � volB4 : (IV.248)
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Turning to the equations of motion, the NS-�eld equation is

d
h
e5A� 2� hImw; �̂ a�a(Rew � Rewj � )i

i
= 0 a = 1 ; 2 (IV.249)

while the internal Einstein equations reduce to

hgk(m dyk ^ �n) Imw; d(e3A� � �̂ a�a(i Imw ^ � ^ �� )i = 0 a = 1 ; 2: (IV.250)

We now turn to the construction of a concrete background satisfying these conditions.

To do so, we consider a factorisable warped six-torus

ds2 = e2A ds2
R1;3

+ d s2
M (IV.251)

ds2
M = � 0(2� )2

n
e2A �

R2
1(dy1)2 + R2

2(dy2)2�
+ e� 2A

6X

j =3

R2
j (dyj )2

o
; (IV.252)

and we take the two-torus spanned byy1 and y2 to be the �bre � over the four-torus base

spanned byy3; y4; y5; y6. We also consider the �bre to be wrapped by24 O5-planes and

nD 5 D5-branes. The SU(2) structure is then

j = � � 0(2� )2(R1R4dy1 ^ dy4 + R2R5dy2 ^ dy5) (IV.253)

w = � 0(2� )2(eA R1dy1 + ie� A R4dy4) ^ (eA R2dy2 + ie� A R5dy5) (IV.254)

� = 2 �
p

� 0e� A (R3dy3 + iR 6dy6): (IV.255)

Let us now see what the domain-wall BPSness imposes on the background. First of all

(IV.235) sets

e2A� � = const. (IV.256)

Then, if we consider the following NS-�eld ansatz

H = (2 � )2� 0� NNS1dy3 ^ dy4 ^ dy6 + NNS2dy3 ^ dy5 ^ dy6�
NNS1;2 2 Z; (IV.257)

we see that (IV.239) and (IV.242) are satis�ed, with g = f = 0 , and we haveu = 0 and

h = � e� 2A

R3R6

�
NNS1dy4 + NNS2dy5�

.

The generalised current is

j = � 4� 02(2� )4e� A � � R3R4R5R6dy3 ^ dy4 ^ dy5 ^ dy6: (IV.258)

The violation of the D-string BPSness (IV.246) is identically satis�ed, while (IV.247)

reduces to

e2A� � H ^ Imw = 4 �
p

� 0eA (R1�̂ 1dy1 + R2�̂ 2dy2) ^ j (IV.259)
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which is satis�ed with

�̂ 1 = �
e2A NNS1

16�
p

� 0R3R4R6
(IV.260)

�̂ 2 = �
e2A NNS2

16�
p

� 0R3R5R6
: (IV.261)

The gauge BPSness constrains the RR-�uxes to be

F1 = e2A� � � R4NNS2

R3R5R6
dy4 �

R5NNS1

R3R4R6
dy5�

(IV.262)

F3 = e2A� � � B4 de� 4A (IV.263)

with � B4 the four-dimensional Hodge operator on the unwarped base.

The RR-�ux quantisation implies that we must have

e2A� � R5NNS1

R3R4R6
= NR1 2 Z e2A� � R4NNS2

R3R5R6
= NR2 2 Z; (IV.264)

so the RR Bianchi identities reduce to

� r̂ 2
B4

e� 4A =
1

e2A� � (2� )2� 0� 6
a=3 Ra

�
NNS1NR1+ NNS2NR2+

X

i 2 D5's;O5's

qi � 4
B4

(yi )
�

(IV.265)

with again qD5 = � qO5 = 1 . Integrating this condition on the base yields the following

tadpole condition

NNS1NR1 + NNS2NR2 + nD5 = 16: (IV.266)

Turning to the equations of motion, the NS-�eld equation (IV.249) is identically satis�ed,

and we have

d(e3A� � �̂ a�a(i Imw ^ � ^ �� ) = 0 (IV.267)

so the internal Einstein equations are satis�ed.

c).2 Backgrounds with both SSB and DWSB contributions

We now consider SU(2) backgrounds with space-�lling D5-branes with both SSB and

DWSB contributions. The internal manifold geometry is similar to the one of the back-

grounds with only an SSB contribution. Indeed, the domain-wall BPSness violation

(IV.51) keeps on imposing

d(e3A� � � ) = 0 ; (IV.268)
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so we can similarly de�ne the hypersurfaceD along e1; e2; e4; e5, which admits a Slag

�bration with �bres � . We keep the same parametrisation of the SU(2) structure

j = � (e1 ^ e4 + e2 ^ e5) (IV.269)

w = ( e1 + ie4) ^ (e2 + ie5) (IV.270)

� = e3 + ie6; (IV.271)

and (IV.51) also imposes

djjD = 0 H jD = 0 : (IV.272)

However, using the same expansion ofdj and H (IV.240), (IV.241), the domain-wall

BPSness violation now imposes

g + if = � 2re4 ^ e5: (IV.273)

The gauge BPSness sets the RR-�uxes to be

e� � F1 = H ^ Rew � id(2A � � ) ^ Imw ^ � ^ �� (IV.274)

� F3 = � e� 4A d(e4A� � Rew) (IV.275)

F5 = 0 ; (IV.276)

and the violation of the D-string BPSness takes the form

d(e2A� � Imw) = 0 (IV.277)

e2A� � �
H ^ Imw �

i
2

d(Rew ^ � ^ �� )
�

= 4 �
p

� 0eA (R1�̂ 1dy1 + R2�̂ 2dy2) ^ j (IV.278)

with

j = � 4e3A� � volB4 : (IV.279)

Turning to the equations of motion, the NS-�eld equation is

e3A� � Im h�; d
�
eA� � r � ~�

�
i + 2d

�
e5A� 2� hImw; �̂ a�a ~� i

�
= 0 a = 1 ; 2; (IV.280)

with ~� = Rew � Rewj � . Specifying the internal Einstein equations (IV.103) to this case

gives a rather long and not particularly enlightening expression, so we just give here the

following conditions

d
�
e3A� � �̂ a�a(i Imw ^ � ^ �� )

�
= 0 (IV.281)

d
�
eA� � r � i Imw ^ � ^ ��

�
= 0 (IV.282)
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d
�
eA� � r � ~�

�
= 0 (IV.283)

which are stronger than the internal Einstein equations, but are reasonable conditions

to impose on such SU(2) backgrounds, and which guarantee that the internal Einstein

equations are satis�ed. The example background that we construct below will satisfy

these conditions.

We consider here again a factorisable six-torus

ds2 = e2A ds2
R1;3

+ d s2
M (IV.284)

ds2
M = � 0(2� )2

n
e2A �

R2
1(dy1)2 + R2

2(dy2)2�
+ e� 2A

6X

j =3

R2
j (dyj )2

o
; (IV.285)

and as before we take the two-torus spanned byy1 and y2 to be the �bre � over the

four-torus base spanned byy3; y4; y5; y6. We also consider the �bre to be wrapped bynO5

O5-planes andnD 5 D5-branes. The SU(2) structure is again

j = � � 0(2� )2(R1R4dy1 ^ dy4 + R2R5dy2 ^ dy5) (IV.286)

w = � 0(2� )2(eA R1dy1 + ie� A R4dy4) ^ (eA R2dy2 + ie� A R5dy5) (IV.287)

� = 2 �
p

� 0e� A (R3dy3 + iR 6dy6): (IV.288)

From (IV.268), we see that the domain-wall BPSness violation sets again

e2A� � = const. (IV.289)

However, we now consider the following NS-�eld

H = (2 � )2� 0� NNS1dy3 ^ dy4 ^ dy6 + NNS2dy3 ^ dy5 ^ dy6

+ NNS3dy4 ^ dy5 ^ dy6�
NNS1;2;3 2 Z; (IV.290)

and we see that (IV.272) are still satis�ed. We now havef = u = 0 and g = i�
p

� 0

R6
eA NNS3dy4^

dy5, and the domain-wall BPSness violation (IV.273) now reads

g + if = � 4�r
p

� 0e� 2A R4R5dy4 ^ dy5 (IV.291)

with

r = �
ie3A NNS3

8�
p

� 0R4R5R6
: (IV.292)

The additional DWSB contribution, which happens through the new components of the

NS-�ux in (IV.290), doesn't modify the violation of the D-string BPSness: (IV.277) is
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again identically satis�ed, while (IV.278) reduces to

e2A� � H ^ Imw = 4 �
p

� 0eA (R1�̂ 1dy1 + R2�̂ 2dy2) ^ j (IV.293)

which is satis�ed with

�̂ 1 = �
e2A NNS1

16�
p

� 0R3R4R6
(IV.294)

�̂ 2 = �
e2A NNS2

16�
p

� 0R3R5R6
: (IV.295)

The gauge BPSness sets the RR-�uxes to

F1 = e2A� � � R4NNS2

R3R5R6
dy4 �

R5NNS1

R3R4R6
dy5 �

R3NNS3

R4R5R6
dy3�

(IV.296)

F3 = e2A� � � B4 de� 4A (IV.297)

The RR-�ux quantisation implies that we must have

e2A� � R5NNS1

R3R4R6
= NR1 e2A� � R4NNS2

R3R5R6
= NR2 e2A� � R3NNS3

R4R5R6
= NR3 (IV.298)

with NR1; NR2; NR3 2 Z. The RR Bianchi identities then reduce to

� r̂ 2
B4

e� 4A =
1

e2A� � (2� )2� 0� 6
a=3 Ra

� 3X

k=1

NNSkNRk +
X

i 2 D5's;O5's

qi � 4
B4

(yi )
�

(IV.299)

with again qD5 = � qO5 = 1 . Integrating this condition on the base yields the following

tadpole condition
3X

k=1

NNSkNRk + nD5 = 16: (IV.300)

Turning to the equations of motion, the conditions (IV.280) � (IV.283) are obeyed, pro-

vided that e2A� � = constant. The NS-�eld equation and internal Einstein equations are

therefore satis�ed, as discussed above.

IV.2.4 Discussion

In this section, we investigated some corners of the landscape of non-supersymmetric �ux

vacua, in the light of generalised complex geometry. In generalised complex geometry

the conditions for warped backgrounds with N = 1 supersymmetry can be expressed as

di�erential equations on polyforms, called pure spinors, which, in turn, are seen as gener-

alised calibration conditions for various types of D-branes wrapping cycles on the internal

manifold: D-string, domain-wall, or space-�lling branes, from the four-dimensional per-
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spective.

This interpretation provides di�erent controlled ways of breaking supersymmetry in

ten-dimensions by violating the BPSness of D-string, domain-wall, or space-�lling probe

branes. The philosophy is to look at non-supersymmetric solutions via a two-step proce-

dure: one �rst solves the deformed supersymmetry equations, which are still �rst order

equations, and then look at the extra constraints that the equations of motion impose.

This approach was �rst used in [44], where non-supersymmetric solutions were found

by deforming the domain-wall calibration condition. Our work extends [44] to new classes

of solutions obtained by deforming the D-string BPS condition or both the domain-wall

and D-string ones.

To solve the ten-dimensional equations of motion, it proves convenient to use an e�ec-

tive four-dimensional potential obtained by integrating the ten-dimensional supergravity

action on the internal manifold. The e�ective potential can be expressed in terms of pure

spinors as an integral over the compact space. Then the equations of motion are obtained

by varying it with respect to the physical �elds and are also given in terms of the pure

spinors. The equations of motion are rather convoluted in the general case and are still

to be studied. However, by choosing speci�c classes of supersymmetry breaking, they

become tractable. We were able to solve them for a variety of concrete type II SU(2) and

SU(3) backgrounds respecting (IV.45).

When studying the e�ective potential for the SSB backgrounds, we witnessed the

presence of some terms belonging to vector representations of the SU(3)� SU(3) structure,

which are believed to be massive modes from the e�ective point of view. In that sense, our

classes of backgrounds describe a set of fully ten-dimensional non-supersymmetric solu-

tions of type II supergravity. It is not clear weather they admit a proper four-dimensional

interpretation. It would be interesting to apply the recently developed exceptional gen-

eralised geometry techniques [80] to study potential consistent truncations of such back-

grounds.

However, we showed that our class of background shares a property with the one-

parameter DWSB class introduced in [44], namely the existence of a `truncation' dictated

by the geometry such that the `o�-shell' e�ective potential is positive semi-de�nite, and

vanishes at the solutions. By `truncation' we meant that we only consider the o�-shell

deformations of the potential which are compatible with the generalised foliation of the

internal space, so it is by no mean a rigorous truncation to a �nite set of mode. We

therefore present this as an interesting property of our class of backgrounds, but this is

a weaker statement than arguing for the perturbative stability of our backgrounds, since

we have no control over the modes we are `truncating' away and keeping in our `o�-shell'

potential.

We carried the same analysis, from the e�ective potential and the derivation of the
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equations of motion, to the construction of concrete backgrounds, for another class of

vacua, which have the same supersymmetry breaking term violating the D-string BPSness,

but supplemented with the one-parameter DWSB contribution violating the domain-

wall BPSness. Each supersymmetry breaking term brings di�erent contributions to the

e�ective potential and therefore to the equations of motion, which can be solved separately,

which we did for several explicit SU(2) and SU(3) background constructions.

One obvious extension of this work would be to consider di�erent patterns of the

D-string BPSness violation, depending on the generalised current associated to the back-

ground D-branes or not, and to look for explicit solutions.

Another natural extension of the present work is to carry the constructions of the

analogous Heterotic backgrounds, where the building block of the supersymmetry break-

ing term entering the modi�ed D-string condition could now be, for instance, the base

volume-form of some elliptically �bered internal manifolds like the ones discussed in [98].

Another interesting direction would be to consider solutions of ten-dimensional su-

pergravity violating the D-string BPSness, but without any vector modes under the

SU(3)� SU(3) structure, for which it would probably be possible to get a deeper un-

derstanding of their associated e�ective theories. In the case of vacua with an external

space being Minkowski, such a D-string BPSness violation should be accompanied by a

domain-wall BPSness violation, otherwise there would only be positive contributions to

the e�ective potential. One could then hope to interpret the associated e�ective theories

as, for instance, solutions of four-dimensionalN = 1 supergravity with non-vanishing

D-terms, F-terms and superpotential, extending the supersymmetric analysis of [7]. We

will come back to these questions in the next section.

Finally, the techniques from exceptional generalised geometry can shed a di�erent

light on the study of non-supersymmetric equations of motion: by classifying the possible

supersymmetry breaking terms in terms of di�erent representations of the torsion of an

appropriate generalised SU(7) structure, one can reformulate the equations of motion as

�rst order di�erential conditions on these torsion representations. We will come back to

this idea in the next chapter.

IV.3 Generalised calibrations and D-term supersymmetry-breaking

Constructing supergravity solutions with D-terms is di�cult. Indeed, the prototypical

example of D-term supersymmetry breaking is the Fayet�Iliopoulos term, and realising

its (�eld-dependent) embedding in supergravity at energy parametrically lower than the

Planck scale turns out to be challenging [4, 5].

In this section, we investigate the possibility of having supergravity solutions with D-

terms from a di�erent angle, using the framework of generalised complex geometry. We
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consider again solutions that are warped products of four-dimensional Minkowski space

and an internal six-dimensional compact manifold, and we again break supersymmetry in

a sort of controlled way: we consider �rst order di�erential equations which correspond to

deformations of the pure spinor equations via the introduction of supersymmetry breaking

terms, and then we impose some further requirements from the equations of motion which

guarantee that we have actual solutions of supergravity.

We keep on focusing on the class of vacua that still admits BPS space-�lling sources.

This means that the BPS condition associated to the calibration condition of space-�lling

D-branes is preserved, while we allow for the conditions corresponding to the calibrations

of string-like and domain-wall probe D-branes to be violated.

In the supersymmetric case, the gauge BPSness condition has been reformulated in [6],

eliminating the explicit metric dependence, and introducing a generalised version of the

Dolbeault operator. We will generalise this derivation to the case of non-supersymmetric

vacua violating the string and domain-wall BPSness conditions.

Still in the N = 1 case, the gauge and domain-wall BPSness conditions have been

identi�ed with F-term conditions, while the string BPSness has been interpreted as a

D-term condition for the dimensionally reduced four-dimensionalN = 1 theory in [7, 8].

Within our class of non-supersymmetric backgrounds preserving the gauge BPSness,

we will focus on those who can be dimensionally reduced to four-dimensionalN = 1

supergravity solutions with non-vanishing F-terms, and possibly non-vanishing D-terms.

To do so, we require that our set of modi�ed pure spinor equations continues to have an

interpretation in terms of either (D-) F-term or (D-) F-term conditions. In particular,

the gauge BPSness should still be identi�ed with an F-term condition.

Interestingly, this procedure constrains some supersymmetry breaking terms entering

the modi�ed D-string calibration condition, and therefore the possible D-terms. More

precisely, we will see that the supersymmetry breaking terms set to zero by this require-

ment belong to vector representations of the SU(3)� SU(3) structure de�ned by the pure

spinors, just like the massive spin3
2-multiplet degrees of freedom of the four-dimensional

theory [38, 40].

On another note, we will give the e�ective potential for our class of backgrounds,

written as an integral over the internal compacti�cation space, in the language of pure

spinors. We will see that the requirement to interpret the gauge BPSness condition as an

F-term condition results in the vanishing of some negative semi-de�nite contributions to

the e�ective potential, which naturally �ts within the four-dimensional N = 1 picture,

given that these contributions do not originate from the superpotential.

We derive the equations of motion for our class of backgrounds dimensionally reducing

to four-dimensional N = 1 supergravity solutions with non-vanishing F-terms and D-

terms, and for a subclass where the D-term contributions to the e�ective potential are set
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to zero on-shell, restoring the D-string BPSness. Solutions of this kind correspond to vacua

with only F-terms, and include the amply discussed class of no-scale vacua [99�108]. The

relative simplicity of these equations of motion compared to the general ten-dimensional

type II equations of motion could be used to �nd new non-supersymmetric �ux vacua.

Finally, the requirement to interpret the gauge BPSness condition as an F-term con-

dition turns out to be rather restrictive on the possible D-terms, and we investigate this

in a more concrete way for a class of SU(3) backgrounds with parallel BPS O5-planes.

The outline of this section is as follows. In subsection IV.3.1, we reformulate the

calibration condition associated to space-�lling sources in the non-supersymmetric case.

In subsection IV.3.2, we brie�y review the four-dimensional N = 1 interpretation of the

BPS conditions in the GCG framework, and we introduce the general type II e�ective

potential in the language of pure spinors. In subsection IV.3.3, we derive the constraint

that the gauge BPSness should obey in order to be interpreted as an F-term condition, and

we derive the equations of motion for backgrounds satisfying this constraint. In subsection

IV.3.4, we apply this constraint to SU(3) backgrounds with parallel BPS O5-planes, and

study the restriction it imposes on their possible D-terms.

IV.3.1 Reformulating the gauge BPSness

Throughout this section, we consider non-supersymmetric solutions of type II supergrav-

ity, and we use �rst order di�erential equations on the pure spinors to describe them.

These equations can be thought as modi�cations of the pure spinor equations (III.71),

(III.72) and (III.73), to which we add supersymmetry breaking terms, which is a stan-

dard procedure in the GCG literature [44, 45, 92]. Unlike the supersymmetric case, these

modi�ed pure spinor equations are not equivalent to the equations of motion, and one

has to also consider additional constraints to have genuineN = 0 backgrounds.

In this section, we will again only consider the case ofN = 0 backgrounds which still

respect the gauge BPSness (III.73), therefore admitting stable (BPS) space-�lling sources.

We therefore consider generically

dH (e3A� � 	 2) 6= 0 (IV.301)

dH (e2A� � Im	 1) 6= 0 (IV.302)

dH (e4A� � Re	 1) = e4A ~� F: (IV.303)

It is more convenient to consider a di�erent reformulation of the space-�lling calibra-

tion condition (IV.303), which eliminate its implicit dependence on the metric coming

from the Hodge operator, and express the RR �eld-strength itself in terms of the pure

spinors.
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In the supersymmetric case, this reformulation was derived in [6]:

F = � dJ 2
H (e� � Re	 1) (IV.304)

with the introduction of the following di�erential operator

dJ = e� �
2 J � d e

�
2 J � ; (IV.305)

where � denotes the action of the (almost) generalised complex structure on polyforms

(III.45) . When J 2 is integrable, which is the case forN = 1 backgrounds, this di�erential

reduces to

dJ = [d ; J � ]: (IV.306)

It is worth stressing that the derivation of (IV.304) relies on (III.72) being satis�ed.

Still in the supersymmetric case, a second reformulation of the gauge BPSness has

been presented for instance in [7], and requires the introduction of the following complex-

i�cation of the RR �eld-strength:

G = F + idH (e� � Re	 1): (IV.307)

Decomposing (III.73) on the generalised Hodge diamond, and using again (III.72), it

can be shown that (III.73) is equivalent to

GjV� 1 = 0 GjV� 3 = 0 ; (IV.308)

where the subscript Vn denotes the projection onto thein -eigenspace ofJ 2. The second

equation is actually just

F jV� 3 = 0 ; (IV.309)

since the second term inG is the derivative of a polyform of null charge underJ 2, which

cannot have V� 3 components, from (III.55). This reformulation is particularly useful to

interpret (III.73) as an F-term condition in the four-dimensional theory, as discussed in

[7].

Let us now derive similar reformulations of the gauge BPSness (IV.303) in the non-

supersymmetric case, where the domain-wall and D-string BPSness conditions are relaxed.

We generalise the derivation of [6] in this case, and after some long but straightforward

calculations we �nd

F = � dJ 2
H (e� � Re	 1) + e� 2A J 1 � dJ 2

H (e2A� � Im	 1): (IV.310)

The second term in this expression explicitly shows the relationship between the additional
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RR �ux components and the violation of the D-string BPSness (IV.302). Moreover, the

supersymmetry breaking terms that appear in (IV.301), which are in the V0 bundle,

prevent the generalised complex structureJ 2 from being integrable. As a consequence,

recall that the exterior derivative property (III.55) is generalised to

dH : �( Vk ) ! �( Vk� 3) � �( Vk� 1) � �( Vk+1 ) � �( Vk+3 ); (IV.311)

which also results in additional RR �eld-strength components compared to the supersym-

metric case.

From this reformulation of (IV.303), one can derive the non-supersymmetric analogue

of (IV.308), by decomposing (IV.310) on the generalised Hodge diamond.

Looking �rst at the V j � 3 component, we now have

F jV� 3 = idH (e� � Re	 1)jV� 3 : (IV.312)

The V j � 1 component is

F jV� 1 = � idH (e� � Re	 1)jV� 1 + ie� 2A J 1 � dH (e2A� � Im	 1)jV� 1 : (IV.313)

These can be rearranged into

GjV� 1 = ie� 2A J 1 � dH (e2A� � Im	 1)jV� 1 (IV.314)

GjV3 = 0 ; (IV.315)

which again is the most convenient form to make contact with the four-dimensionalN = 1

e�ective theory. Indeed, an advantage of reformulating the gauge BPSness in this way

for non-supersymmetric backgrounds is that it highlights the relationship between the

complexi�ed RR �ux and the D-string BPSness violation (IV.302). This is particularly

interesting to discuss solutions dimensionally reducing to solutions of four-dimensional

N = 1 supergravity, since the former enters in the corresponding on-shell superpotential,

and the latter has been identi�ed as the D-term contribution in four-dimensional N = 1

supergravity [7]. We will address the four-dimensionalN = 1 supergravity interpretation

in more details in subsection IV.3.3.

Finally, these derivations of the non-supersymmetric version of the gauge BPSness

will prove to be insightful when we will turn to the study of the intrinsic torsion of the

generalised SU(7) structure associated to non-supersymmetric �ux backgrounds. Indeed,

these will highlight the interplay between di�erent irreducible representations of the SU(7)

intrinsic torsion, in a sense that will be made precise in chapter V.
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IV.3.2 4D structure and e�ective potential from pure spinors

In this section we brie�y review N = 1 Minkowksi solutions of type II supergravity dis-

cussed in [7]. More precisely, we discuss the interpretation of the pure spinor equations

(III.71), (III.72) and (III.73) as the vanishing of some D-terms, F-terms and superpoten-

tial.

We then write again the most general four-dimensional `e�ective potential' from the

ten-dimensional type II supergravity action, following [44]. Recall that calling these scalar

functions `e�ective potentials' is a bit misleading, since we write them as integral over

the internal space, without choosing a speci�c truncation for the ten-dimensional modes

and performing the actual dimensional reduction to write down a genuine scalar potential

for the associated e�ective theories. However, in doing so we are able to interpret the

di�erent terms in the closed string sector of this e�ective potential as contributions from

F-terms, D-terms and a superpotential.

In the next section, a similar interpretation in the non-supersymmetric case will moti-

vate some constraints that the modi�ed pure spinor equations should obey in order to be

compatible with a four-dimensional N = 1 supergravity description with non-vanishing

F-terms and D-terms.

a) Four-dimensional N = 1 supergravity

We brie�y review here the work of [7], which provides ten-dimensional expressions for

the four-dimensional N = 1 supergravity superpotential, D- and F-term conditions. The

expression obtained in [7] for the superpotential can be thought as the generalisation of

the well-known Gukov-Vafa-Witten superpotential [109] in the GCG formalism.

We review these notions in order to then move on to the description of the e�ective

potential for non-supersymmetric solutions of four-dimensionalN = 1 supergravity, with

non-vanishing D- and F-terms. We introduce the following rescaled pure spinors

t = e� � 	 1 Z = e3A� � 	 2; (IV.316)

as well as

T = Ret � iC; (IV.317)

with F = F bg + d H C and F bg some �xed non-trivial background �ux. Both Z and T

are chiral �elds of the associated four-dimensionalN = 1 description. The polyform T is

de�ned such that the complexi�ed �ux G is its �eld-strength G = idH T .

We can now de�ne the following superpotential and conformal Kähler potential den-
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sities

W = � (� 1)jZj +1 hZ; Gi N =
i�
2

hZ; �Zi
1=3

ht; �t i 2=3 ; (IV.318)

where jZj is the degree (mod 2) ofZ , which depend on both chiral �elds Z and T , and

the associated superpotential and conformal Kähler potential

W =
Z

M
W N =

Z

M
N: (IV.319)

Consider now a chiral �eld X on which the superpotential and the conformal Kähler

potential depend. Under a holomorphic variation �X of X we de�ne

(� W)X := � X W � 3(� X logN )W: (IV.320)

We evaluate the variations associated to the two chiral �elds at our disposal, Z and

T . First for Z , we distinguish two contributions coming from two distinct holomorphic

deformations of Z

� Z 2 (V1 � V3); (IV.321)

which we denote

(� W)Z (1) and (� W)Z (3) (IV.322)

respectively. They yield

(� W)Z (1) =( � 1)jZj +1 �
Z

M

D
�Z (1) ; GjV� 1

E
(IV.323)

(� W)Z (3) = � �
Z

M

�
�Z (3) ; (� 1)jZj GjV� 3 +

3i
2

W
N

e� 4A �Z
�

: (IV.324)

For T , we �nd

(� W)T = i�
Z

M

�
� T ; (� 1)jZj dH Z + 3 i

W
N

e2A Imt
�

: (IV.325)

Imposing the vanishing of the variations (IV.323)-(IV.325) reproduces the Anti de

Sitter version of the supersymmetric pure spinor equations (III.71) and (IV.308). If we

also impose that the superpotential itself vanishes, they reduce to the corresponding

equations in �at space

dH Z = 0 GjV� 1 = 0 GjV� 3 = 0 : (IV.326)

One can therefore interpret the two N = 1 supersymmetry conditions (III.71) and
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(IV.308) as F-term conditions and the vanishing of the superpotential

W = 0 ( � W)Z (1) = 0 ( � W)Z (3) = 0 ( � W)T = 0 : (IV.327)

On another note, the parametrisation in terms of the chiral �elds T and Z has some

redundancy, due to the the RR gauge transformations� � C = d H � resulting in � � T =

� idH � . These symmetries are gauged in the e�ective theory, and their associated D-terms

have been worked out in [7], yielding

D(� ) = 2 �
Z

M
h�; Di (IV.328)

with

D = d H (e2A Imt); (IV.329)

the D-term density. The last N = 1 supersymmetry condition (III.72) can thus be

interpreted as the vanishing of these D-terms

D = 0 ; (IV.330)

completing the four-dimensional picture.

One can also write down the corresponding covariant derivatives of the superpotential

density. For a chiral �eld X

DX W � @X W � 3(@X logN )W: (IV.331)

In the case ofN = 1 Minkowski solutions, they are23

DZ (1) W = � (� 1)jZj +1 GjV� 1 (IV.332)

DZ (3) W = � (� 1)jZj +1 GjV� 3 (IV.333)

DT W = i� (� 1)jZj dH Z : (IV.334)

b) The type II e�ective potential

In this subsection, we recall the four-dimensional e�ective action for backgrounds with

ten-dimensional space-time of the formX 4 � M with the metric

ds2
10 = e2A(y)g�� dx � dx � + gmn dym dyn ; (IV.335)

23 We deliberately give the expressions with vanishing superpotential in order to make contact with the
on-shell N = 1 Minkowski e�ective potential discussed in the next subsection.
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where g�� is for now a general four-dimensional metric depending only on the external

coordinates, and all the other �elds depend only on the internal coordinates.

The e�ective four-dimensional action is24

Se� =
Z

X 4

d4x
p

� g4

�
1
2

N R4 � 2� Ve�

�
; (IV.336)

where R4 is the four-dimensional scalar curvature, and

Ve� =
Z

M
vol6e4A f e� 2� [�R +

1
2

H 2 � 4(d� )2 + 8 r 2A + 20(dA)2] �
1
2

~F 2g

+
X

i 2 loc. sources

� i

� Z

� i

e4A� �
q

det(gj � i + F i ) �
Z

� i

Celj � i ^ eF i

�
(IV.337)

is the type II e�ective potential density, with R the six-dimensional scalar curvature.

Its �rst line corresponds to the closed string sector, while the second line is the localised

sources contributions. For the O-planes, we setF = 0 , and we have� Dp = 1 ; � Oq = � 2q� 5.

The sources couple to the RR potentials de�ned bydH Cel = e4A ~F .

The variations of the four dimensional action (IV.336) exactly reproduce the ten-

dimensional equations of motion, as argued in [44]. They are given in Appendix A.

Moreover, from the variation with respect to g�� , one gets that the external space is

Einstein, with

R4 = 8 � Ve� =N ; (IV.338)

as expected. From the ten-dimensional perspective this is equivalent to the internal

space integral of the external ten-dimensional Einstein equation's trace. As we consider

Minkowski backgrounds, we focus on the cases where the e�ective potential vanishes at

the solutions.

Finally, the RR equations of motion reproduce the usual Bianchi identities

dH F = � j tot = �
X

i

� i j i ; (IV.339)

where, as described in [44] for instance, thej i are the generalised currents for the localised

sources.

From now on we will use the rewriting of the e�ective potential in terms of the pure

spinors, derived in [44]:

Ve� =
1
2

Z

M
vol6

h
jdH (e2A� � Im	 1)j2 + e� 2A jdH (e3A� � 	 2)j2

i

24 We use the convention 2�
p

� 0 = 1 , so that all D-brane tensions are equal. We are also neglecting
anomalous curvature-like corrections to the sources contribution: they can be easily added without a�ect-
ing the results of the discussion. Finally we are also omitting the internal �eld kinetic terms, since they
are taken to be constant along the external directions.
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+
1
2

Z

M
vol6 e4A j~� F � e� 4A dH (e4A� � Re	 1)j2

�
1
4

Z

M
e� 2A

 
j h	 1; dH (e3A� � 	 2)i j 2

vol6
+

j h�	 1; dH (e3A� � 	 2)i j 2

vol6

!

� 4
Z

M
vol6e4A� 2� [(u1

R )2 + ( u2
R )2]

+
X

i � D-branes

� i

Z

M
e4A� � (vol6 � loc

i � h Re	 1; j i i )

+
Z

M
he4A� � Re	 1 � Cel; dH F + j tot i : (IV.340)

The square of a polyform is de�ned in Appendix A, and we have

u1;2
R = u1;2

Rm dym � (u1;2
m + u� 1;2

m )dym ; (IV.341)

with

u1
m =

i h
 m �	 1; dH (e2A� � Im	 1)i
e2A� � h	 1; �	 1i

+
h
 m �	 2; dH (e3A� � 	 2)i

2e3A� � h	 2; �	 2i
(IV.342)

u2
m =

i (� 1)j 	 2 j h	 1
 m ; dH (e2A� � Im	 1)i
e2A� � h	 1; �	 1i

+
(� 1)j 	 1 j h�	 2
 m ; dH (e3A� � 	 2)i

2e3A� � h	 2; �	 2i
: (IV.343)

The gamma matrix conventions are given in Appendix A. We also introduced here the

Born-Infeld density � loc
i associated with a source wrapping a generalised submanifold

(� i ; F i )

� loc
i =

q
det(gj � i + F i )

p
detg

� (� i ): (IV.344)

It is useful to rewrite the algebraic inequality (IV.6) in terms of � loc:

� loc
i �

hRe	 1; j i i
vol6

; (IV.345)

where the division by the volume form means that we remove the vol6 factor in the

numerator.

Therefore, if one considers the e�ective potential of a (non-)supersymmetric back-

ground with calibrated sources, the above inequality is saturated and the �fth line of

(IV.340) vanishes. Similarly, the last line of (IV.340) will vanish for solutions of ten-

dimensional supergravity satisfying the Bianchi identities (IV.339).

In the case of anN = 1 Minkowski background, the closed-string sector of the on-shell

e�ective potential can be rewritten as

Ve� =
1
2

Z

M
e4A (jG� 1j2 + jG� 3j2) + e� 2A jdH (Z )j2 �

e� 2A+2 �

8vol6
j hZ; Gi j 2
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+
1
2

Z

M
jdH (e2A� � Im	 1)j2: (IV.346)

Though this is simply the N = 1 on-shell e�ective potential, this is the natural formulation

to interpret each term as the vanishing of some D-terms, F-terms and superpotential.

The �rst three terms in the �rst line of (IV.346) can be identi�ed with the covariant

derivatives of the superpotential density (IV.332), (IV.333) and (IV.334) respectively,

while the last term in the �rst line of (IV.346) can be identi�ed with the superpotential

density (IV.318). Finally, the last line of (IV.346) can be identi�ed with the D-terms

(IV.329).

We do not intend to make a rigorous identi�cation with the usual four-dimensional

N = 1 scalar potential here, we simply stress that each term in the closed-string sector of

the e�ective potential of ten-dimensional N = 1 type II supergravity Minkowski solutions

�ts into the four-dimensional N = 1 supergravity description.

IV.3.3 D-terms in generalised complex geometry

In this subsection we investigate the on-shell e�ective potential of non-supersymmetric

solutions of type II supergravity with external Minkowski space. We identify some

conditions that the modi�ed pure spinor equations must satisfy in order for the non-

supersymmetric solutions to have a clear interpretation in terms of four-dimensional

N = 1 supergravity.

We also derive the equations of motion, in the language of pure spinors, associated to

these backgrounds, with and without D-terms.

a) E�ective potential and F-term conditions

Let us recall that we focus on non-supersymmetric solutions having only space-�lling

sources, in order to preserve the Poincaré symmetry of the external space, and that we

consider only BPS sources. We also consider that our backgrounds satisfy the Bianchi

identities (IV.61).

In this case, the type II e�ective potential is

Ve� =
1
2

Z

M
vol6

h
jdH (e2A� � Im	 1)j2 + e� 2A jdH (e3A� � 	 2)j2

i

�
1
4

Z

M
e� 2A

 
j h	 1; dH (e3A� � 	 2)i j 2

vol6
+

j h�	 1; dH (e3A� � 	 2)i j 2

vol6

!

+
1
2

Z

M
vol6 e4A j~� F � e� 4A dH (e4A� � Re	 1)j2

� 4
Z

M
vol6e4A� 2� [(u1

R )2 + ( u2
R )2]: (IV.347)
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For non-supersymmetric Minkowski solutions, this potential still vanishes, but each term

does not necessarily vanish identically.

We now want to restrict ourselves to the study of a subclass of backgrounds dimen-

sionally reducing to a solution of N = 1 four-dimensional supergravity, in the sense that

their scalar potential can be written as F-terms, D-terms, and superpotential contribu-

tions. From the ten-dimensional perspective, this means that we focus on backgrounds

where each terms in the on-shell scalar potential (IV.347) has an interpretation in terms

of the aforementioned contributions.

At this point the most pressing question to address is therefore the superpotential

expression for such backgrounds.

As mentioned above, we consider backgrounds where supersymmetry is broken in a

controlled way, as a perturbation around a certain supersymmetric backgrounds. For

instance, we could think of the right-hand side contributions of the pure spinor equations

(IV.301) and (IV.302) as controlled by some supersymmetry breaking parameters, whose

vanishing would restore supersymmetry. The question now becomes: how is the superpo-

tential in (IV.319) a�ected by switching on right-hand side contributions in (IV.301) and

(IV.302).

In the supersymmetric case, the complexi�cation of the RR potentials entering the

superpotential is suggested by the coupling of a BPS space-�lling D-brane to magnetic

background �elds [7, 8]. Indeed, the action of a space-�lling D-brane wrapping a gener-

alised cycle(� ; F ) can be written as25

SD-brane =
Z

�
e4A� �

q
det(gj � + F )vol� � ie4A Cj � ^ eF ; (IV.348)

with vol � the volume form on the cycle � . The calibration of the space-�lling D-brane

imposes that

e4A� �
q

det(gj � + F )vol� = e4A� � Re	 1 ^ eF ; (IV.349)

so the resulting action is

SD-brane =
Z

�
e4A (e� � Re	 1 � iC ) ^ eF =

Z

�
e4A T ^ eF ; (IV.350)

putting in evidence T as the natural complexi�cation of the RR potentials.

We now consider the breaking of supersymmetry through switching on right-hand

side contributions in (IV.301) and (IV.302). Crucially, the complexi�cation of the RR

�ux entering the superpotential is unaltered. Indeed, this is because the supersymmetry

breaking perturbations are such that the calibration of the space-�lling D-branes (IV.349)

is preserved, and thus the expression of the BPS space-�lling D-brane action (IV.350)

25 The standard space-�lling D-brane action is here Wick rotated to Euclidean space.
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holds. The superpotential expression thus remains as in (IV.319), although it must be

non-vanishing on-shell for non-supersymmetric Minkowski backgrounds, as it is the only

negative contribution to the vanishing e�ective potential. The associated F-terms might

not be vanishing either.

Non-supersymmetric backgrounds with BPS space-�lling sources have been studied

in the GCG literature, and the contributions to the scalar potential of these vacua have

indeed been interpreted as F-terms and a superpotential contribution with the superpo-

tential (IV.319) [44]. It is also interesting to mention that backgrounds respecting the

algebraic calibration condition (IV.349) but not the di�erential one (IV.303) are success-

fully described using the superpotential (IV.319) in [110].

Generically we have no way to control the superpotential expression for non-supersymmetric

backgrounds with non-BPS sources dimensionally reducing to solutions of four-dimensional

N = 1 supergravity. We thus don't further address this case.

Coming back to the scalar potential (IV.347), the BPSness of the space-�lling sources

(IV.303) implies that its third line must vanish on-shell. In the supersymmetric case,

this corresponds to the F-term conditions resulting from the vanishing of the variations

(� W)Z (1) and (� W)Z ( � 3) .We investigate these conditions when the supersymmetry break-

ing contributions are switched on. Given that the BPSness of the space-�lling sources is

preserved on-shell, the third line of the e�ective potential (IV.347) vanishes and thus the

F-term conditions from (� W)Z (1) and (� W)Z ( � 3) should still vanish.

Recall from the previous subsection that the variation of the superpotential with

respect to Z (1) reads

(� W)Z (1) = ( � 1)jZj +1 �
Z

M

D
�Z (1) ; GjV� 1

E
: (IV.351)

The resulting F-term condition is therefore

GjV� 1 = 0 : (IV.352)

However, in the case of generic domain-wall and D-string BPSness violation, (IV.303) is

equivalent to

GjV� 1 = ie� 2A J 1 � dH (e2A� � Im	 1)jV� 1 (IV.353)

GjV3 = 0 : (IV.354)

The F-term condition (IV.352) thus results in

J 1 � dH (e2A� � Im	 1)jV� 1 = 0 : (IV.355)
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This is equivalent to

dH (e2A� � Im	 1)jS2; � 1 = d H (e2A� � Im	 1)jS� 2; � 1 = 0 ; (IV.356)

where the sub-spacesSp;q are de�ned in (III.61). Given that the polyform dH (e2A� � Im	 1)

is real, it implies

dH (e2A� � Im	 1) � U0 ; (IV.357)

where Un is the in -eigenspace ofJ 1. Backgrounds which don't respect (IV.357) fall o�

of the class of solutions dimensionally reducing to solutions of four-dimensionalN = 1

supergravity with the superpotential (IV.319). The e�ective theories associated to such

solutions could be described as solutions of four-dimensionalN = 1 supergravity with

a di�erent superpotential 26, or could be described with a fake superpotential. Alter-

natively, it might not even be sensible to talk about e�ective theories associated to

these ten-dimensional backgrounds, or it could be that their e�ective theories are non-

supersymmetric with the �eld content of N = 1 or N = 2 supergravity with additional

(massive) multiplets, or non-supersymmetric solutions of four-dimensional supergravities

with higher supersymmetry. We don't address these possibilities further and for the rest

of this section we focus on the backgrounds respecting (IV.357).

Interestingly, imposing the condition (IV.357) makes the last line of the potential

(IV.347) vanish27

u1
R = u2

R = 0 : (IV.358)

This last condition turns out to be crucial for the associated four-dimensionalN = 1

supergravity, given that the last line of the potential (IV.347) is negative semi-de�nite

and is not a superpotential contribution, so it must indeed vanish on-shell, which is

guaranteed by (IV.358).

The modes set to zero by (IV.357) belong to vector representations under the SU(3)� SU(3)

structure, just like the massive spin 3
2-multiplet degrees of freedom that appear when

reducing the ten-dimensional theory to four-dimensions [38, 40], which are seen as non-

physical degrees of freedom in the four-dimensionalN = 1 supergravity and should be

gauged away. It is then reasonable to interpret our condition (IV.357) as the requirement

to keep only the four-dimensionalN = 1 multiplets in the low-energy e�ective theories.

On another note, the violation of the domain-wall BPSness condition (IV.301) results

in a non vanishing variation of the superpotential (IV.325). The corresponding contri-

bution to the superpotential (the second term of the �rst line of (IV.347)) is therefore

naturally interpreted as an F-term.

26 And therefore not admitting BPS space-�lling D-branes.
27 This can be seen by imposing (IV.357) on the SU(3)� SU(3) decomposition of the pure spinor equations

given in Appendix C.2.
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The condition (IV.357) ensures the vanishing of the F-term corresponding to the cali-

bration of space-�lling D-branes, but of course it does not guarantee that non-supersymmetric

ten-dimensional solutions respecting this condition will have a four-dimensionalN = 1

low-energy e�ective theory.

The type II supergravity solutions actually reducing to four-dimensional N = 1 models

with vanishing D-terms automatically obey (IV.357), since then dH (e2A� � Im	 1) = 0 .

This is the case for the GKP-like solutions of [3, 44] for example, but more generally

it is true for backgrounds which reduce to no-scale models with non-vanishing F-terms

and superpotential. In the GCG literature, the non-supersymmetric type II supergravity

solutions with a supersymmetry breaking term violating the D-string BPSness (IV.302)

do not respect the condition (IV.357), and therefore do not reduce to solutions of four-

dimensional N = 1 supergravity [45, 92]. In the next section, we will investigate the

constraint (IV.357) in a more concrete setting.

b) Equations of motion

In this subsection we derive the equations of motion in the language pure spinors for the

class of backgrounds discussed above, admitting BPS space-�lling sources and respecting

the condition (IV.357) as well as the Bianchi identities. We do so by requiring the van-

ishing of the variations of the e�ective potential with respect to the internal �elds, which

is equivalent to the ten-dimensional equations of motion given in Appendix A, (see [44]).

We consider the following potential28

Ve� =
1
2

Z

M
e� 2A h~� 6[dH (e3A� � 	 2)]; dH (e3A� � �	 2)i

+
1
2

Z

M
h~� 6[dH (e2A� � Im	 1)]; dH (e2A� � Im	 1)i

�
1
4

Z

M
e� 2A

 
j h	 1; dH (e3A� � 	 2)i j 2

vol6
+

j h�	 1; dH (e3A� � 	 2)i j 2

vol6

!

: (IV.359)

We introduce the polyforms

� = e� 2A ~� 6dH (e3A� � 	 2) + 2 i (� 1)j 	 1 jeA� � (�t1	 1 + �t2 �	 1) (IV.360)

� = ~� 6dH (e2A� � Im	 1); (IV.361)

with

t1 = 2( � 1)j 	 1 j hdH (e3A� � 	 2); 	 1i
h	 1; �	 1i

t2 = 2( � 1)j 	 1 j hdH (e3A� � 	 2); �	 1i
h	 1; �	 1i

: (IV.362)

28 The other terms in the e�ective potential give trivial contributions to the equations of motion since
they are quadratic in quantities vanishing for the considered backgrounds.
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The decompositions of� and � on the SU(3)� SU(3) structure are given in Appendix

C.2.

Then, varying the potential (IV.359) with respect to the dilaton, we �nd the following

dilaton equation of motion

Refhe3A� � 	 2; dH � ig + he2A� � Im	 1; dH � i = 0 : (IV.363)

Note that, in our case, the solutions of the dilaton equation have an identically vanishing

e�ective potential. The B-�eld equation of motion is

d
h
Refhe3A� � 	 2; � i 3g + he2A� � Im	 1; � i 3

i
= 0 : (IV.364)

We derive the internal component of the Einstein equation by varying the e�ective

potential with respect to the internal metric. Given that the Hodge operator and the

pure spinors depend implicitly on the metric, we use the following rules

�
p

detg = �
1
2

�g mn gmn
p

detg (IV.365)

� h~� 6� 1; � 2i = �g mn �
h~� 6�m � 1; �n � 2i �

1
2

gmn h~� 6� 1; � 2i
�

(IV.366)

� 	 i = �
1
2

�g mn gk(m dyk ^ �n) 	 i i = 1 ; 2: (IV.367)

We �nd the following internal Einstein equations

0 =Re
n

hgk(m dyk ^ �n) (e
3A� � 	 2); dH � i � h gk(m dyk ^ �n)dH (e3A� � 	 2); � i

o

+ hgk(m dyk ^ �n) (e
2A� � Im	 1); dH � i � h gk(m dyk ^ �n)dH (e2A� � Im	 1); � i : (IV.368)

These are equations of motion of backgrounds compatible with a four-dimensional super-

gravity solutions with non vanishing F-terms and D-terms.

A subclass of these backgrounds are those compatible with a four-dimensional super-

gravity solutions with non vanishing F-terms and vanishing D-terms. In this class we

have

dH (e2A� � Im	 1) = 0 ; (IV.369)

so obviously � = 0 .

However, the last equation of motion, the external component of the modi�ed Einstein

equation, must be discussed separately for the cases with and without D-terms.

The external component of the modi�ed Einstein equation is equivalent to the van-
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ishing of the following variation of the e�ective potential

� Ve�

�A
+ 2

� Ve�

��
= 0 ; (IV.370)

and it is identically satis�ed for backgrounds with calibrated sources, preserving the D-

string BPSness (i.e. without D-terms) and satisfying the Bianchi identities, as shown in

[44].

For backgrounds with non-vanishing D-terms, thus violating the D-string BPSness,

we simply reduce the ten-dimensional equation (A.29) on our warped con�gurations

r m (e� 2� r m e4A ) = e4A ~F � ~F + e4A� �
X

i 2 loc. sources

� i � loc
i ; (IV.371)

and rewrite it in terms of pure spinors as

� d(e� 2� � 6 de4A ) = h~� 6 ~F ; e4A ~F i � h dH ~� 6 ~F ; e4A� � Re	 1i

+ e4A� �
X

i 2 loc. sources

� i

h
� loc

i vol6 � h Re	 1; j i i
i

(IV.372)

by using the Bianchi identity (IV.339) together with the RR-�eld-strength self-duality

(III.64). For backgrounds admitting only calibrated sources, the second line in (IV.372)

vanishes, and we are left with the external components of the modi�ed Einstein equation

� d(e� 2� � 6 de4A ) = h~� 6 ~F ; e4A ~F i � h dH ~� 6 ~F ; e4A� � Re	 1i : (IV.373)

These equations of motion are drastically simpler than the ones one would obtain by

varying the e�ective potential (IV.347). Considering the case where� = 0 , the complete

set of equations of motion

Refhe3A� � 	 2; dH � ig = 0 (IV.374)

d
h
Refhe3A� � 	 2; � i 3g

i
= 0 (IV.375)

Re
n

hgk(m dyk ^ �n) (e
3A� � 	 2); dH � i � h gk(m dyk ^ �n)dH (e3A� � 	 2); � i

o
= 0 (IV.376)

is simple enough to hope to solve them for new ten-dimensional type II �ux vacua

with BPS space-�lling sources, which would dimensionally reduce to solutions of four-

dimensional N = 1 supergravity with non-vanishing F-terms, like no-scale models for

example.
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IV.3.4 The example of type IIB SU (3) -backgrounds with BPS O5-planes

In this section, we investigate again the condition (IV.357) we have to impose in order

to interpret our solutions as dimensionally reducing to N = 1 four-dimensional super-

gravity. In particular, we want to determine how restrictive the condition (IV.357)

can be. Concretely, we would like to consider the possibility of having non-zero D-

terms dH (e2A� � Im	 1) 6= 0 , and see how constrained their expression is from requiring

dH (e2A� � Im	 1) 2 U0.

We focus on type IIB warped backgrounds with a four-dimensional Minkowski external

space, admitting calibrated parallel space-�lling O5-planes, and possibly D5-branes, and

we restrict to internal manifolds with SU (3) structure. Introducing a local unwarped

vielbein f ~eag, we choose the directions~e1 and ~e4 to be tangent to the unique two-cycle

wrapped by the sources. Our metric ansatz is thus

ds2 = e2A ds2
R1;3

+ d s2
M (IV.377)

ds2
M = e2A [(~e1)2 + (~e4)2] + e� 2A

X

j =2 ;3;5;6

(~ej )2: (IV.378)

For SU(3)-structure manifolds, the pure spinors (III.66) and (III.67) reduce to

	 1 = ei� eiJ 	 2 = e� i� 
 ; (IV.379)

where � is the relative phase between the two parallel internal spinors� 1 = iei� � 2, the

Kähler form J and the (3; 0) form 
 take the form

J = � (e2A ~e1 ^ ~e4 + e� 2A ~e2 ^ ~e5 + e� 2A ~e3 ^ ~e6) (IV.380)


 = e� A (~e1 + i ~e4) ^ (~e2 + i ~e5) ^ (~e3 + i ~e6): (IV.381)

As discussed in [111], the orientifold projection sets

� = �
�
2

: (IV.382)

Notice that, combining the dilaton equation of motion with the appropriately traced

external components of the Einstein equations, as done in [112], one can show that29

r 2(2A � � ) = 0 . Harmonic functions being constant on compact spaces, we set

e2A� � � gs: (IV.383)

As shown in Appendix C.2, imposing that the gauge-BPSness condition still holds
29 Note that both the Bianchi identities and the BPSness of the space-�lling sources (IV.303) are crucial

in this derivation.
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already constrains the allowed non-supersymmetric deformations of the pure spinor equa-

tions to

dH (e3A� � 
) = � i e3A� � K (IV.384)

dH (e2A� � ReeiJ ) = ie2A� � � (IV.385)

dH (e4A� � Im eiJ ) = e4A ~� 6F (IV.386)

with

K =
i
2

h
� t2eiJ � t1e� iJ + ( u1

m + p2
m )
̂ m 
 � (u2

m + p1
m )
^
 m

+ q1
mn 
̂ ne� iJ 
̂ m + q1

mn 
̂ neiJ 
̂ m
i

(IV.387)

and

� =
i
2

h
(r �

1 + t �
2)
 � (u1

m + ( p2
m ) � )
̂ m eiJ � ((u2

m ) � + p1
m )eiJ 
̂ m

+( q1
nm ) � 
̂ m 
^
 n

i
� c:c: (IV.388)

The gamma matrices f 
̂ m g are de�ned in the local vielbein, and their action on poly-

forms is given in Appendix A. Imposing our condition (IV.357) further constrains the

supersymmetry breaking terms� :

� =
i
2

h
(r �

1 + t �
2)
 + ( q1

nm ) � 
̂ m 
^
 n
i

� c:c: (IV.389)

Expending � on the local vielbein yields

� =
1
2

h
eA (x32 � x23)

h
~e1 +

1
2

~e1 ^ J ^ J
i

+ e� A (x13 � x31)
h
~e2 +

1
2

~e2 ^ J ^ J
i

(IV.390)

+ e� A (x21 � x12)
h
~e3 +

1
2

~e3 ^ J ^ J
i

+ eA (y23 � y32)
h
~e4 +

1
2

~e4 ^ J ^ J
i

+ e� A (y31 � y13)
h
~e5 +

1
2

~e5 ^ J ^ J
i

+ e� A (y12 � y21)
h
~e6 +

1
2

~e6 ^ J ^ J
ii

+ X

(IV.391)

with x ij ; yij some real functions on the compact manifold, whose expressions are given in

terms of the supersymmetry breaking parameters in Appendix C.2, and X a three-form

speci�ed in (C.46).

Moreover, the one-form components of� is set to zero by (IV.383). The supersym-

metry breaking parameters must therefore respect

x ij = x ji yij = yji i; j = 1 ; 2; 3: (IV.392)
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It is then interesting to note that this requirement makes the �ve-form components of �

vanish, which imposes

d(J 2) = 0 : (IV.393)

We already see at this stage that the condition (IV.357) highly constrains the possible

D-terms for vacua with space-�lling BPS-sources.

The only remaining possibility in order to have non-vanishing D-terms is through the

NS �ux. However, the most general NS �eld-strength compatible with (IV.357) and the

orientifold projection 30 is also highly constrained

H = y12(eA ~e1 ^ ~e3 ^ ~e4 � e� 3A ~e2 ^ ~e3 ^ ~e5)

+ x13(eA ~e1 ^ ~e4 ^ ~e5 + e� 3A ~e3 ^ ~e5 ^ ~e6)

� x12(eA ~e1 ^ ~e4 ^ ~e6 � e� 3A ~e2 ^ ~e5 ^ ~e6)

� y13(eA ~e1 ^ ~e2 ^ ~e4 + e� 3A ~e2 ^ ~e3 ^ ~e6): (IV.394)

For these backgrounds, the Bianchi identity for the NS �ux and the B-�eld equation of

motion (IV.364) read

dH = 0 d( ~� 6H ) = 0 ; (IV.395)

and together with the NS �ux quantisation condition they would further constrain the

possible NS �ux, upon specifying some internal geometry.

Finally, it is also important to note that the orientifold projection sets

H ^ 
 = 0 : (IV.396)

Since the F-terms from (IV.384) cannot be vanishing31, this means that the breaking of

supersymmetry cannot originate purely from NS �ux components.

Constructing ten-dimensional supergravity solutions with D-terms is di�cult, and

in this illustrative example we see that the mere requirement of consistency with the

four-dimensional N = 1 description highly constrains the possible D-terms expression,

potentially ruling out the possibility for non-vanishing D-terms for the whole class con-

sidered.

IV.3.5 Discussion

In this section, we studied non-supersymmetric solutions of type II supergravity within

the framework of generalised complex geometry. The interpretation of the supersymmetry

conditions in terms of calibration conditions for di�erent types of probe D-branes led us to

30 The NS �eld-strength must be odd under the orientifold projection.
31 There cannot be pure D-term breaking of supergravity in Minkowski space.
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consider a subclass of non-supersymmetric solutions partially preserving supersymmetry,

in the sense that the calibration condition for space-�lling D-branes remains satis�ed and

such backgrounds admit only space-�lling BPS sources. This calibration condition has

been dubbed the gauge BPSness condition in [44]. On the other hand, the calibration

conditions for string-like and domain-wall probe D-branes are allowed to be violated,

which is encoded through the introduction of some supersymmetry breaking terms in

these conditions.

The gauge BPSness condition has been interpreted in [7] as an F-term condition,

making the connection with the four-dimensional N = 1 description.

We derived a generalisation of the gauge BPSness for our class of non-supersymmetric

vacua. We then investigated under which conditions the gauge BPSness can still be

interpreted as an F-term condition. Interestingly, this is the case when (IV.357) is re-

spected, i.e. when some terms violating the string-like calibration condition are set to

zero. These terms belong to vector representations of the SU(3)� SU(3) structure, just

like the modes identi�ed with four-dimensional massive spin 3
2 multiplets degrees of free-

dom in [38]. Given that the violation of the string-like calibration condition has been

interpreted as D-terms of the associated e�ective theory in [7], our condition (IV.357)

restricts the possible D-terms for our class of backgrounds.

On another note, the vanishing of these vector-like modes results in some negative

semi-de�nite contributions to the e�ective potential being set to zero on-shell (the last

line of the e�ective potential (IV.347)). This is in agreement with the four-dimensional

N = 1 picture, given that these contributions do not originate from the superpotential.

We derived the equations of motion for this class of backgrounds, and they are signif-

icantly simpler than the ones one would derive without imposing the constraint (IV.357),

and an obvious extension of this work would be to search for such non-supersymmetric

solutions.

A subclass of these backgrounds is the one containing vacua which would dimensionally

reduce to four-dimensionalN = 1 supergravity solutions with non-vanishing F-terms, and

vanishing D-terms, like the abundantly discussed no-scale vacua. We also presented the

remarkably simple general equations of motion for such backgrounds, and one could again

look for new solutions of this type.

Finally, to illustrate this discussion we analysed how constraining it is to require

(IV.357) for the class of SU(3) backgrounds with space-�lling BPS O5-planes. We showed

that non-vanishing D-terms could only arise through NS �ux components, while the NS

�ux expression is itself highly constrained by (IV.357). It would then be interesting to

investigate further the consequences of imposing our condition (IV.357) on di�erent source

con�gurations, and possibly rule out completely the possibility for D-terms in these cases,

or �nd some new supergravity solutions with non-vanishing D-terms.



Chapter V

Non-supersymmetric �ux vacua in Ex-

ceptional Generalised Geometry

In this chapter we discuss theE7(7) � R+ generalised geometry of non-supersymmetric

�ux backgrounds. We focus on type II supergravity backgrounds with a four-dimensional

Minkowski external space.

As we have discussed at length in chapter III, anN = 1 type II supergravity back-

ground which has a four-dimensional Minkowski external space is in one-to-one corre-

spondence with an integrable generalised SU(7) structure, and the integrability of the

structure is a set of di�erential conditions equivalent to preserving N = 1 supersym-

metry. The integrability of the generalised SU(7) structure amounts to the vanishing

of the generalised intrinsic torsion associated to connections compatible with the SU(7)

structure, the SU(7) intrinsic torsion. For a type II supergravity background compacti-

�ed to four-dimensional Minkowski, if supersymmetry is broken, its corresponding SU(7)

intrinsic torsion will thus be non-vanishing.

In this chapter we investigate the SU(7) intrinsic torsion of non-supersymmetric �ux

backgrounds. As we have discussed in chapter III, we can organise the SU(7) intrinsic

torsion in terms of di�erent irreducible representations of SU(7).

This is useful because it allows one to rewrite the supergravity equations of motion in

terms of the components of the associated intrinsic SU(7) torsion, as is done in section

V.2. The hope is then to be able to identify no-go theorems for supersymmetry breakings

associated to certain components of the SU(7) torsion.

We focus on the class of non-supersymmetric type II backgrounds which still admits

two globally de�ned internal spinors. While not completely general1, this is still a broad

class of backgrounds, which can be classi�ed in O(6; 6) generalised geometry in terms of

1This class of solutions doesn't contain the case of an NS5-brane wrapping a Calabi-Yau for instance.

129
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the di�erent supersymmetry breaking parameters entering in the modi�ed pure spinor

equations, as introduced in chapter IV.

For this class of backgrounds, we provide a direct dictionary between the supersym-

metry breaking parameters and the non vanishing irreducible SU(7) representations of the

intrinsic torsion in section V.1. As such, this provides a bridge between the O(6; 6) � R+

and E7(7) � R+ generalised geometry frameworks, and this thus allows to describe the

known N = 0 backgrounds [3, 44, 45, 91] withinE7(7) � R+ generalised geometry.

Another goal, which is still work in progress, is to associate non-supersymmetric type

II solutions with the integrability of a smaller generalised geometric structure.

For a given non-supersymmetric type II solution, this could be done by de�ning the

common stabiliserG � SU(7) of its SU(7) structure and its intrinsic torsion. This would

also allow one to de�ne deformations of said background and calculate its corresponding

classical moduli space. Such deformations would be cast in terms of irreducible represen-

tations of G. We brie�y initiate this discussion in section V.3.

Throughout this chapter, we use the conventions of section III.2, notably the pure

spinors (III.156) and (III.157).

V.1 The SU (7) torsion

In this section, we study non-supersymmetric type II backgrounds with a four-dimensional

Minkowski external space, and with the following general domain-wall and D-string su-

persymmetry breaking

dH � 2 = ! 2 + ! 0 (V.1)

dH (e� A Re� 1) = ! 1 + ! � 1 + ! 3 + ! � 3 ; (V.2)

with ! i polyforms of chargei under J 2, and with ! 1 = �! � 1 and ! 3 = �! � 3.

We focus on the subclass of backgrounds which satis�es the gauge BPSness, in order

for the physical space-�lling sources of the considered backgrounds to be BPS2. The non-

supersymmetric reformulation of the gauge BPSness derived in section IV.3 now reads

F = � 8dJ 2
H (e� 3A Im� 1) + 8 ie� 2A J 1 � ! � 1 : (V.3)

Let us rearrange this equation into

(F + d H �) � 1 = 8 ie� 2A J 1 � ! � 1 (V.4)

2Recall that Minkowski �ux backgrounds must have space-�lling Orientifold sources to evade the no-go
theorem from [66, 67], further discussed in [113].
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(F + d H �) � 3 = 2d H � j � 3; (V.5)

where we introduced � = 8 ie� 3A Im� 1. It is important to note that dH � j � 3 is non-

vanishing only if ! 0 6= 0 , it should hence be thought of as depending on! 0. We denote it

dH � j � 3 � Y ! 0 in the following.

This reformulation of the gauge BPSness seems quite arbitrary for now but this will

be the most natural formulation in order to connect with the exceptional generalised

geometry framework, as we will discuss below.

The goal of this section is to derive expressions for the di�erent irreducible SU(7)

representations of the intrinsic torsion in terms of the supersymmetry breaking forms

f ! i g.

V.1.1 Connection, torsion and Dorfman derivative

In this subsection, we start by evaluating the SU(7) intrinsic torsion of non-supersymmetric

type II �ux backgrounds in terms of irreducible representation of the SU(3; 3) group as-

sociated to the almost complex structureJ 2.

We will reorganise this intrinsic torsion in terms of the irreducible representations of

the SU(7) group associated with the generalised SU(7) structure in the following subsec-

tion.

Recall that the exceptional complex structure L 3 � EC and generalised SU(7) struc-

ture  2 �( ~K C) for type II backgrounds with a four-dimensional Minkowski external

space read

L 3 = e� � (L 1 � U J 2 ) (V.6)

 = e� � � 2 : (V.7)

We introduce the following seven-dimensional complex bundle

L 0
3 := L 1 � U J 2 ; (V.8)

which we refer to as the untwisted exceptional complex structure.

We consider a generalised connectionD . Recall from section III.2 that we can de�ne

the corresponding generalised torsionT : �( E ) ! �( ad ~F ) in the untwisted picture via

L H + F
V � = L D + H + F

V � � T(V ) � � ; (V.9)

for � any tensors. We considerD to be compatible with the generalised SU(7) structure

(D + H + F ) = 0 : (V.10)
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The compatibility of the generalised connection with the SU(7) structure ensures

L H + F
V  = � T(V ) �  8V 2 �( L 3) : (V.11)

Introducing V = e� � V 0 with V 0 2 �( L 0
3), the above relation is equivalent to

L H + F +d H �
V 0 � 2 = � T0(V 0) � � 2 8V 0 2 �( L 0

3) ; (V.12)

with

T0 = e� � � T ; (V.13)

the untwisted SU(7) torsion.

Writing V 0 = W + � � 2 2 �( L 0
3) with � 2 C1 (M ), the left-hand side of (V.12) reads

L H + F +d H �
V 0 � 2 = =W dH � 2 � � dH � 2 � � 2

+ ( =W (F + d H �) + � hF + d H � ; � 2i ) � � 2 : (V.14)

The terms in the �rst line of this Dorfman derivative can be read o� from the modi�ed

pure spinor equation (V.1), while the ones in the second line only depend on the modi�ed

pure spinor equations (V.4), and (V.5). We can therefore accessT0(V 0) 2 ad ~F through

(V.12). However, given that this section of the adjoint bundle acts on the untwisted

generalised SU(7) structure � 2 2 �( ~K C) in (V.12), its expression will be up to the kernel

of the adjoint action on the untwisted generalised SU(7) structure.

In order to do so, we introduceZ ! 2 2 �( L � 1), Z ! 0 2 �(� 3(L � 1)) , and SU(3; 3) gamma

matrices � i with indices i = 1 ; :::; 6 such that

! 2 = Z ! 2
i � i � 2 ! 0 = Z ! 0

ijk � ijk � 2 : (V.15)

We then evaluate the above Dorfman derivative, using (V.1), (V.4), and (V.5):

L H + F +d H �
V 0 � 2 =

�
� (Z ! 2 ; W) + Z ! 0 � W � �! 0

+ 8 ie� 2A =W (J 1 � ! � 1) + 2 =WY ! 0 + 2 � hY ! 0 ; � 2i
�

� � 2 ; (V.16)

with (Z � W ) ij = W kZkij 2 �(� 2(L � 1)) .

We therefore have

T0(V 0) = � [� (Z ! 2 ; W) + Z ! 0 � W � �! 0

+ 8 ie� 2A =W (J 1 � ! � 1) + 2 =WY ! 0 + 2 � hY ! 0 ; � 2i ] + ker ; (V.17)

with ker a section of the adjoint bundle sitting inside the kernel of the adjoint action on
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the untwisted generalised SU(7) structure.

The terms entering T0(V 0) depend explicitly on the supersymmetry breaking forms

f ! i g, but they are irreducible representations of the SU(3; 3) group associated with the

pure spinor � 2. We make the connection with the di�erent irreducible SU(7) representa-

tions in the following subsection.

V.1.2 The SU (7) torsion from the adjoint bundle

We calculated the section of the adjoint bundle corresponding to the action of the un-

twisted SU(7) torsion on the L 0
3 bundle T0(V 0). We therefore start by analysing further

the adjoint bundle. In particular, we will parametrise the subspace of the adjoint bundle

which acts non-trivially on the untwisted SU (7) structure in terms of irreducible SU(7)

representations. Given that these are eigenstates of the exceptional complex structure,

this will allow us to match the SU(3; 3) representations entering in (V.17) with SU(7)

representations by rearranging them into the corresponding eigenstates.

To do so, we consider the complex embedding SL(7; C) � SL(8; C) � E7C and its

corresponding complex decomposition of the generalised tangent and adjointE7C bundles

56C ' 7 � 21 � 21 � 7 (V.18)

EC ' L 0
3 � � 5(L 0

3) � � � 2(L 0
3) � � [� 7(L 0

3) � 
 (L 0
3) � ] (V.19)

133C ' 1 � 48 � (35 � 35) � (7 � 7) (V.20)

ad ~FC ' C � [L 0
3 
 (L 0

3) � ]0 � � 3L 0
3 � � 3(L 0

3) � � � 6L 0
3 � � 6(L 0

3) � ; (V.21)

where [L 0
3 
 (L 0

3) � ]0 is a traceless7 � 7 complex matrix, corresponding to the SL(7; C)

algebra. The SL(7; C) � E7C adjoint action on the generalised tangent and the adjoint

bundle are given in appendix B.2.1. From this adjoint action, we have that the following

subspaceg of the adjoint bundle

91 ' 1 � 48 � 35 � 7 (V.22)

g ' C � [L 0
3 
 (L 0

3) � ]0 � � 3L 0
3 � � 6L 0

3 (V.23)

stabilises the untwisted almost exceptional complex structureL 0
3. The stabiliser group G

of the untwisted almost exceptional complex structureL 0
3 is therefore G = (( SL(7; C) n

C35) n C7) n C. This group can be thought of as the complex analogue of theR+ � U(7)

group de�ning the exceptional complex structure.

The SL(7; C) subgroup corresponds to the complexi�cation of the compact subgroup

SU(7) � SU(8)=Z2 � E7(7) � R+ , while the groups C35, C7, and C complexify part

of the non-compact part of E7(7) � R+ . In the following we will thus parametrise the
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adjoint bundle in terms of irreducible representations of SL(7; C) � E7C, and these should

be thought of as the complex analogues of the irreducible representations of the SU(7)

subgroup of the realE7(7) � R+ algebra.

The group stabilising the untwisted generalised SU(7) structure � 2 is the same as the

one stabilising the untwisted exceptional complex structure, with the exception of the

complex scalar part which rescales� 2. We denote it H and we haveH = ( SL(7; C) n

C35) n C7. Its algebra, as a subspaceh of the adjoint bundle is

90 ' 48 � 35 � 7 (V.24)

h ' [L 0
3 
 (L 0

3) � ]0 � � 3L 0
3 � � 6L 0

3 : (V.25)

This leaves

133=90 ' 1 � 35 � 7 (V.26)

e7C=h ' C � � 3(L 0
3) � � � 6(L 0

3) � (V.27)

as the subspace of the adjoint bundle acting non-trivially on the untwisted generalised

SU(7) structure. We denote its sections as

R = R1 + R35 + R7 : (V.28)

In terms of irreducible SU(3; 3) representations, it reads

133=90 ' 1 � 15 � 6 � 20 � 1 (V.29)

e7C=h ' C � � 2(L � 1) � S� 2 � S0 � � 6T �
C : (V.30)

The parametrisation of the generalised tangent and adjoint E7C bundles in terms of

SU(3; 3) representations is given in appendix B.2.2. As we have the expression (V.17)

for T0(V 0) as a section of (V.30), the goal is now to connect it with the SL(7; C) repre-

sentations in (V.27).

To do so, we make use of the fact that each SL(7; C) representation entering (V.27)

is an eigenspace of the almost exceptional complex structure. Indeed, as an SL(8; C)

representation, the exceptional complex structureJ reads [61]

J = diag(� 1=2; � 1=2; :::; 7=2) 2 sl(8; C) � E7C : (V.31)

One can explicitly decomposeJ into irreducible SL(7; C) representations, following ap-

pendix B.2.1. Acting on the di�erent irreducible SL (7; C) representations ofe7C=h, we
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have

J � R1 = 0 (V.32)

J � R7 = � 4iR 7 (V.33)

J � R35 = � 2iR 35 : (V.34)

The 1-, 7-, and 35-dimensional SL(7; C) representations living in e7C=h are therefore

eigenspaces of the exceptional complex structureJ with eigenvalues 0, � 4i , and � 2i

respectively.

We can now turn to evaluating the adjoint action of the exceptional complex structure

J on irreducible SU(3; 3) representations of e7C=h, and then construct the eigenstates

corresponding toR1, R7, and R35.

First of all, in terms of SU(3; 3) representations, we have3

J = J 2 + i (� � � ] ) ; (V.35)

with � ] = � 1
2e3A (h� 2; �� 2i ) � 1Re� 1. The corresponding untwisted exceptional complex

structure J 0, equivalent to L 0
3, is

J 0 := e� � Je� = J 2 � 2i � i � ] ; (V.36)

where the scalar piece corresponds to a sectionl of the adjoint space in (B.89). We now

write a section of e7C=h in terms of irreducible SU(3; 3) representations as

X = p + � � 2 + s� 2 + s0 + a ; (V.37)

where each term matches with the ones in (V.30) in the obvious way. We can evaluate

the adjoint action of the untwisted exceptional complex structure J 0 on X from appendix

B.2.2.

From

J 0 � X = � 2i (� � 2 + s0) � 4i (s� 2 + a) � i � ] � (s0 + s� 2 + a) ; (V.38)

we can construct eigenstates ofJ 0 as4

R1 = p (V.39)

R7 = a +
1
2

� ] � a + s� 2 +
1
2

� ] � s� 2 (V.40)

3This expression for J can be calculated from requiring J � L 3 = 3 iL 3 for instance.
4We didn't expand some adjoint actions for the sake of simplicity, but it can be done following appendix

B.2.2.
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R35 = � � 2 �
1
2

� ] � s� 2 + s0 �
1
2

� ] � a ; (V.41)

where R1, R7, and R35 have eigenvalues0, � 4i , and � 2i respectively, under the action

of J 0. We now have a concrete link between the SU(3; 3) and SL(7; C) representations

entering in e7C=h. The �nal step to complete the dictionary between the irreducible

SU(7) representations of the SU(7) torsion and the non-vanishing SU(3; 3) representations

involved in the modi�ed pure spinor equations of a given non-supersymmetric background,

is to connect T0 with the 1, 7, and 35 SU(7) representations ine7C=h.

We denote asT0
1 , T0

7 , T0
21, and T0

35, the sections of the torsion bundle ~K C corresponding

to the 1, 7, 21 and 35 representations of the SU(7) intrinsic torsion (III.135).

From SL(7; C) group theory, we have5

T0
1 (V 0) � T0

1 � V 0 2 �(� 6(L 0
3) � ) (V.42)

T0
7 (V 0) � T0

7 � V 0 2 �( C) (V.43)

T0
35(V 0) � T0

35 � V 0 2 �(� 3(L 0
3) � ) (V.44)

T0
21(V 0) � T0

21 � V 0 2 �(� 3L 0
3) ; (V.45)

for all V 0 2 �( L 0
3), and with

� : ~K C � EC ! ad ~FC (V.46)

given in appendix B.2.1.

We conclude that T0
1 (V 0), T0

7 (V 0), and T0
35(V 0) correspond to sectionsR7, R1, and

R35 of e7C=h, respectively, while T0
21(V 0) is a section ofh, and as such it belongs to the

kernel of the adjoint action on the untwisted generalised SU(7) structure. Its contribution

to (V.12) hence vanishes.

V.1.3 Backgrounds with non-vanishing SU (7) intrinsic torsion

We can now come back to discussing non-supersymmetric type II backgrounds with the

following general domain wall and D-string BPSness violations:

dH � 2 = ! 2 + ! 0 (V.47)

dH (e� � Re� 1) = ! 1 + ! � 1 + ! 3 + ! � 3 ; (V.48)

5Alternatively, the sections T 0
1 , T 0

7 , T 0
21 , and T 0

35 of the torsion bundle ~K C can be written in terms
of SL(7; C) indices following [42]. One can then evaluate these expressions explicitly, with � given in
appendix B.2.1.
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with ! 1 = �! � 1 and ! 3 = �! � 3. These background satisfy the following gauge BPSness

(F + d H �) � 1 = 8 ie� 2A J 1 � ! � 1 (V.49)

(F + d H �) � 3 = 2Y ! 0 : (V.50)

Recall that for such backgrounds, we have

T0(V 0) = � [� (Z ! 2 ; W) + Z ! 0 � W � �! 0

+ 8 ie� 2A =W (J 1 � ! � 1) + 2 =WY ! 0 + 2 � hY ! 0 ; � 2i ] + ker : (V.51)

We introduce the following notation:

T0(V 0) = p + � � 2 + s0 + s� 2 + a + ker (V.52)

with

p = � � (Z ! 2 ; W) (V.53)

� � 2 = � Z ! 0 � W (V.54)

s0 = �! 0 � 8ie� 2A =W (J 1 � ! � 1) (V.55)

s� 2 = � 2 =WY ! 0 (V.56)

a = � 2� hY ! 0 ; � 2i ; (V.57)

which are irreducible representations of the SU(3; 3) group associated with the pure spinor

� 2.

The di�erent irreducible SU (7) representations of the SU(7) intrinsic torsion, acting

on V 0 = W + � � 2 2 �( L 0
3), are then

T0
7 (V 0) = p (V.58)

T0
1 (V 0) = a +

1
2

� ] � a + s� 2 +
1
2

� ] � s� 2 (V.59)

T0
35(V 0) = � � 2 �

1
2

� ] � s� 2 + s0 �
1
2

� ] � a : (V.60)

There are several lessons to draw from these expressions for the SU(7) intrinsic torsion

of non-supersymmetric type II �ux backgrounds with calibrated space-�lling sources.

i) As we discussed in chapter III, only the7 and 21 components of the SU(7) intrinsic

torsion enter the moment map (III.150).

We see here that the7 component of the SU(7) torsion is solely dictated by ! 2. From

(III.183) we can thus conclude that a non-vanishing21 component of the torsion purely
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results from

dH (e� A Re� 1) 6= 0 : (V.61)

ii) As we just discussed, the supersymmetry breaking form! � 1 violating the D-string

BPSness (V.48) generates some non-vanishing21 torsion. We now learn from (V.60) that

it also results in a non-vanishing35 component of the SU(7) intrinsic torsion.

This ultimately comes from the non-supersymmetric expression of the gauge BPSness

derived in chapter IV. In the O (6; 6) generalised geometry context, it highlighted the

interplay between the D-string BPSness violation and the gauge BPSness, while here in

the E7(7) generalised geometry framework, it shows the relationship between the21 and

35 components of the SU(7) intrinsic torsion.

iii) The supersymmetry breaking forms ! � 3 and ! 3 don't appear in the 1, 7, and 35

components of the torsion, they hence correspond to pure21 torsion. They are precisely

the modes that are allowed for type II �ux backgrounds with D-term supersymmetry

breaking and calibrated space-�lling sources, as discussed in chapter IV.

iv) Let us consider backgrounds with BPS space-�lling sources, non-vanishing F-terms

and superpotential. As discussed in chapter IV, they require a non-vanishing! 0 6= 0 , as

it generates the F-terms, as well as a non-vanishingY ! 0 , which is proportional to the

superpotential. We learn from (V.59) and (V.60) that such backgrounds will hence always

have non vanishing1 and 35 components of the SU(7) torsion.

As already mentioned, backgrounds with non-vanishing D-terms must have non-vanishing

supersymmetry breaking forms! � 3 and ! 3, but they also need a non-vanishingY ! 0 , since

it generates the required non-vanishing on-shell superpotential.Y ! 0 can be non-vanishing

only if J 2 is non-integrable, i.e if ! 0 6= 0 . These backgrounds will hence also always have

non vanishing 1 and 35 components of the SU(7) torsion.

v) Finally, let us mention that there can be backgrounds where supersymmetry is

broken via only a ! � 1 supersymmetry breaking form, as in [45, 91]. As was discussed in

the previous chapter, these do not dimensionally reduce to solutions of four-dimensional

N = 1 supergravity with F-terms, D-terms and superpotential.

Before giving the explicit construction of the intrinsic SU(7) torsion for a few concrete

examples, let us brie�y discuss relaxing the gauge BPSness condition.

We hence discuss non-supersymmetric type II �ux background which now have non-

BPS space-�lling sources. We consider the following completely general6 breaking of

supersymmetry

dH � 2 = ! 2 + ! 0 (V.62)

6With the usual caveat that only geometries admitting two globally de�ned internal spinors are con-
sidered.
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dH (e� � Re� 1) = ! 1 + ! � 1 + ! 3 + ! � 3 (V.63)

(F + d H �) � 1 = ! 0
� 1 (V.64)

(F + d H �) � 3 = ! 0
� 3 ; (V.65)

with again ! 1 = �! � 1 and ! 3 = �! � 3. Evaluating (V.14) now yield

T0(V 0) = � [� (Z ! 2 ; W) + Z ! 0 � W � �! 0

+ =W! 0
� 1 + =W! 0

� 3 + � h! 0
� 3; � 2i ] + ker : (V.66)

Introducing

T0(V 0) = p + � � 2 + s0 + s� 2 + a + ker (V.67)

with

p = � � (Z ! 2 ; W) (V.68)

� � 2 = � Z ! 0 � W (V.69)

s0 = �! 0 � =W! 0
� 1 (V.70)

s� 2 = � =W! 0
� 3 (V.71)

a = � � h! 0
� 3; � 2i ; (V.72)

we have the following irreducible SU(7) representations of the SU(7) intrinsic torsion

acting on V 0 = W + � � 2 2 �( L 0
3)

T0
7 (V 0) = p (V.73)

T0
1 (V 0) = a +

1
2

� ] � a + s� 2 +
1
2

� ] � s� 2 (V.74)

T0
35(V 0) = � � 2 �

1
2

� ] � s� 2 + s0 �
1
2

� ] � a : (V.75)

There are fewer lessons to draw from these expressions for the SU(7) intrinsic torsion of

non-supersymmetric type II �ux backgrounds with non-BPS space-�lling sources. How-

ever, we note that:

i) The 7 component of the SU(7) torsion is again solely dictated by! 2. From (III.183)

we can thus still conclude that a non-vanishing21 component of the torsion purely results

from

dH (e� A Re� 1) 6= 0 : (V.76)

ii) The supersymmetry breaking forms ! � 3 and ! 3 don't appear in the 1, 7, and 35

components of the torsion, they hence still correspond to pure21 torsion. However, as

opposed to the case where the sources are BPS, it is now also the case for the! � 1 and
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! 1 supersymmetry breaking forms. The21 and 35 components of the torsion can then

be independent in principle.

iii) The supersymmetry breaking form ! 0
� 3 can be non-vanishing only if ! 0 6= 0 . We

thus �nd again that the 1 and 35 components of the SU(7) torsion are not independent.

We now illustrate the results found above to examples of non-supersymmetric type II

�ux backgrounds from the literature.

a) GKP backgrounds

The type IIB GKP backgrounds [3] are non-supersymmetric �ux backgrounds with an

SU(3) structure and BPS D3-branes and O3-planes, where supersymmetry is broken by

a (0; 3)-component of the NS �ux H � 3, with respect to the underlying complex structure

of the background. They obey the following pure spinor equations

dH � � = H � 3 ^ � � (V.77)

dH (e� A Re� + ) = 0 (V.78)

(F + d H �) � 1 = 0 (V.79)

(F + d H �) � 3 = 2 ie� � H � 3 : (V.80)

Using these, we evaluate the Dorfman derivative of the untwisted generalised SU(7) struc-

ture along V 0 = W + � � � 2 L 0
3

L H + F +d H �
V 0 � � = =W dH � � � dH (� � � ) � � �

+ ( =W (F + d H �) + � hF + d H � ; � � i ) � � � (V.81)

= ( vyH � 3 � �H � 3 ^ � �

+ 2 ie� � =WH � 3 + 2 ie� � � hH � 3; � � i ) � � � : (V.82)

From (V.12), we have

T0(V 0) = � vyH � 3 + �H � 3 ^ � � � 2ie� � =WH � 3 � 2ie� � � hH � 3; � � i ; (V.83)

up to the pieces acting trivially on � � . We decompose this expression in terms of the

di�erent irreducible SU (7) representations of the SU(7) intrinsic torsion

T0
7 (V 0) = 0 (V.84)

T0
35(V 0) = �H � 3 ^ � � + i�e � � � ] � hH � 3; � � i

� vyH � 3 + ie� � � ] � ( =WH � 3) (V.85)

T0
1 (V 0) = � 2ie� � � hH � 3; � � i
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� �ie � � � ] � hH � 3; � � i

� 2ie� � =WH � 3

� ie� � � ] � ( =WH � 3) ; (V.86)

where each line corresponds to a given SU(3; 3) representation. These backgrounds there-

fore have non-vanishing1 and 35 contributions to the intrinsic torsion, while the 7 and

21 contributions vanish, from (V.84) and (V.78). This is a �rst example of a non-

supersymmetric background dimensionally reducing to a solution of four-dimensional

N = 1 supergravity with non-vanishing F-term and superpotential.

b) LMMT backgrounds

A family of backgrounds T-duals to the original GKP construction has been introduced

in [44], the LMMT backgrounds. They have been discussed at length in chapter IV. In

type IIB, they obey the following pure spinor equations

dH � � = irj (V.87)

dH (e� A Re� + ) = 0 (V.88)

(F + d H �) � 1 = 0 (V.89)

(F + d H �) � 3 = 2d H � j � 3 (V.90)

with

j = ( � 1)j � � jRe� + +
1
2

� mn 
 m Re� + 
 n ; (V.91)

and r a complex supersymmetry breaking parameters. � mn and the gamma matrices

conventions are discussed in chapter IV.

Using these, we evaluate the Dorfman derivative of the untwisted generalised SU(7)

structure along V 0 = W + � � � 2 L 0
3

L H + F +d H �
V 0 � � = =W dH � � � dH (� � � ) � � � + ( =W (F + d H �) + � hF + d H � ; � � i ) � � �

=
�
Z � W � i�rj + 2 =W (dH � j � 3) + 2 � hdH � j � 3; � � i

�
� � � ; (V.92)

with, in SU(3; 3) indices: (Z � W ) ij = W kZkij 2 �( � � 2), and Z ijk � ijk � � = irj .

From (V.12), we have

T0(V 0) = � Z � W + i�rj � 2 =W (dH � j � 3) � 2� hdH � j � 3; � � i ; (V.93)

up to pieces acting trivially on � � .

We decompose this expression in terms of the di�erent irreducible SU(7) representa-
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tions of the SU(7) intrinsic torsion

T0
7 (V 0) = 0 (V.94)

T0
35(V 0) = � Z � W + � ] � [ =W (dH � j � 3)]

+ i�rj + � � ] � hdH � j � 3; � � i (V.95)

T0
1 (V 0) = � 2� hdH � j � 3; � � i

� � � ] � hdH � j � 3; � � i

� 2 =W (dH � j � 3)

� � ] � [ =W (dH � j � 3)] ; (V.96)

where each line corresponds to a given SU(3; 3) representation.

These backgrounds therefore have non-vanishing1 and 35 contributions to the intrin-

sic torsion, while the 7 and 21 contributions vanish, from (V.94) and (V.88).

c) Legramandi-Tomasiello backgrounds

Legramandi-Tomasiello backgrounds [45] are massive type IIA backgrounds with a static

SU(2) structure and have been discussed in chapter IV. Their supersymmetry breaking

comes from a violation of the D-string BPSness

dH � + = 0 (V.97)

dH (e� � Re� � ) =
c
8

e6� � 2� vol6 (V.98)

(F + d H �) � 1 = ice4� � 2� J � � (vol6j � 1); (V.99)

with the subscript now denoting the charge underJ + , and c a supersymmetry breaking

parameter. As such, they are an example of string-like supersymmetry breaking back-

grounds (SSB). These backgrounds also respectF� 3 = d H � j � 3 = 0 , which is imposed by

(V.97).

Using these, we evaluate the Dorfman derivative of the untwisted generalised SU(7)

structure along V 0 = W + � � 2 L 0
3

L H + F +d H �
V 0 � � = =W dH � � � dH (� � � ) � � � + ( =W (F + d H �) + � hF + d H � ; � � i ) � � �

= ice4� � 2� =W [J � � (vol6j � 1)] � � � : (V.100)

From (V.12), we have

T0(V 0) = � ice4� � 2� =W [J � � (vol6j � 1)] : (V.101)
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We decompose this expression in terms of the di�erent irreducible SU(7) representations

of the SU(7) intrinsic torsion

T0
7 (V 0) = 0 (V.102)

T0
35(V 0) = � ice4� � 2� =W [J � � (vol6j � 1)] (V.103)

T0
1 (V 0) = 0 : (V.104)

The 1 and �7 representation of the intrinsic torsion therefore vanish for these back-

grounds, whereas the35 representation is non-vanishing, as well as the21 representation,

from (V.98).

d) Other SSB Backgrounds

Focusing on the type IIB case, the family of backgrounds from [92], discussed at length

in IV.2, obeys the following pure spinor equations

dH � � = irj (V.105)

dH (e� � Re� + ) = � m [
 m j + ( � 1)j � + j j
 m ] (V.106)

(F + d H �) � 1 = 8 ie� 2� � m J 1 � [
 m j + ( � 1)j � + j j
 m ]� 1 (V.107)

(F + d H �) � 3 = 2d H � j � 3 (V.108)

where � m are real supersymmetry breaking parameters that are responsible for the D-

string BPSness violation, while r is a complex supersymmetry breaking parameter gen-

erating the domain-wall supersymmetry breaking contribution.

Using these modi�ed pure spinor equations, we evaluate the Dorfman derivative of

the untwisted generalised SU(7) structure along V 0 = W + � � � 2 L 0
3

L H + F +d H �
V 0 � � = =W dH � � � dH (� � � ) � � � + ( =W (F + d H �) + � hF + d H � ; � � i ) � � �

=
�
Z � W � i�rj + 8 ie� 2� =W (� m J 1 � [
 m j + ( � 1)j � + j j
 m ]� 1)

+ 2 =W (dH � j � 3) + 2 � hdH � j � 3; � � i
�

� � � ; (V.109)

with, in SU(3; 3) indices: (Z � W ) ij = W kZkij 2 �( � � 2), and Z ijk � ijk � � = irj .

From (V.12), we have

T0(V 0) = � Z � W + i�rj � 8ie� 2� =W (� m J 1 � [
 m j + ( � 1)j � + j j
 m ]� 1)

� 2 =W (dH � j � 3) � 2� hdH � j � 3; � � i ; (V.110)

up to pieces acting trivially on � � .
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We decompose this expression in terms of the di�erent irreducible SU(7) representa-

tions of the SU(7) intrinsic torsion

T0
7 (V 0) = 0 (V.111)

T0
35(V 0) = � Z � W + � ] � [ =W (dH � j � 3)]

+ i�rj � 8ie� 2� =W (� m J 1 � [
 m j + ( � 1)j � + j j
 m ]� 1) + � � ] � hdH � j � 3; � � i

(V.112)

T0
1 (V 0) = � 2� hdH � j � 3; � � i

� � � ] � hdH � j � 3; � � i ]

� 2 =W (dH � j � 3)

� � ] � [ =W (dH � j � 3)] ; (V.113)

where each line corresponds to a given SU(3; 3) representation.

These backgrounds therefore have non-vanishing1 and 35 contributions to the in-

trinsic torsion, and the supersymmetry breaking term in (V.106) also results in a non-

vanishing 21 representation of the intrinsic torsion.

Note that the subfamily of backgrounds with vanishing supersymmetry breaking pa-

rameter r obey the following set of pure spinor equations

dH � � = 0 (V.114)

dH (e� � Re� + ) = � m [
 m j + ( � 1)j � + j j
 m ] (V.115)

(F + d H �) � 1 = 8 ie� 2� � m J 1 � [
 m j + ( � 1)j � + j j
 m ]� 1 (V.116)

with F� 3 = d H � j � 3 = 0 , which is imposed by (V.114). In this case, the intrinsic torsion

is decomposed as

T0
7 (V 0) = 0 (V.117)

T0
35(V 0) = � 8ie� 2� =W (� m J 1 � [
 m j + ( � 1)j � + j j
 m ]� 1) (V.118)

T0
1 (V 0) = 0 : (V.119)

Therefore only the 35 and 21 representations of the intrinsic torsion are non-vanishing

for this subfamily of backgrounds.

V.2 The equations of motion

Throughout this chapter, we discuss non-supersymmetric type II Minkowski �ux back-

grounds described through modi�ed pure spinor equations. In V.1, we kept the super-
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symmetry breaking forms entering these modi�ed pure spinor equations as general as

possible. However, a crucial question remains to be addressed: given that the supersym-

metry conditions are violated, what is the subset of supersymmetry breaking forms such

that the equations of motion are satis�ed?

This is a very complicated question to answer in the general case, and it has been

partially addressed in the O(6; 6) generalised geometry formalism [44, 45, 91, 92] (see also

chapter IV). We now investigate this problem from the E7(7) � R+ generalised geometry

perspective.

We will derive here the equations of motion in the E7(7) � R+ generalised geometry

framework, and we will see that they can be spelled out in terms of the non-vanishing

SU(7) representations of the SU(7) intrinsic torsion.

Given that, in the above section, we established a dictionary between the supersym-

metry breaking forms entering the modi�ed pure spinor equations and the corresponding

non-vanishing SU(7) representations of the SU(7) intrinsic torsion, these E7(7) � R+ equa-

tions of motion will translate the complicated conditions to impose on the supersymmetry

breaking forms into conditions on the SU(7) representations of the SU(7) intrinsic torsion.

To do so, we start by recalling the two following real SU(8) bundles S and J , the

spinor and gravitino bundles respectively. These are

S = 8 + �8 � S+ + S� J = 56 + 56 � J + + J � : (V.120)

We then recall the equations of motion, discussed in section III.2:

D � J (D � J � ) + 2 D � J (D � S � ) = 0 (V.121)

D � S (D � J � ) + D � S (D � S � ) = 0 ; (V.122)

with � the SU(8) spinor de�ned from the two internal supersymmetry parameters (III.155),

and D a generalised connection.

We considerD to be compatible with the SU(8)=Z2 structure, that is we have DG =

0, with G the generalised metric introduced in section III.2. If one considers another

SU(8)=Z2 compatible generalised derivative,D 0, by de�nition it can be written as D 0 =

D + � , and

� = D 0� D 2 �( K SU(8) ); with K SU(8) = E � 
 adPSU(8) : (V.123)
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In SU(8) indices, sections� of K SU(8) are given by

� = (� ��



� ; � ��

� ) 2 (28 + �28) � 63 = K SU(8) : (V.124)

We can write down the � map discussed in section III.2,� : K SU(8) ! W explicitly using

SU(8) indices, whereW is the space of generalised torsionsW ' K � E � :

� (�) = TD 0 � TD 2 �( W ); (V.125)

with the usual torsion de�nition

TD (V ) � V 0 = L D
V V 0� L V V 0 8V; V0 2 �( E ): (V.126)

It gives

� (�) �� = � �




� ; 2 28 + 36 (V.127)

� (�) ��

� = � 0

[��
�


 ]
; 2 420; (V.128)

where the 0 superscript means that it is completely traceless. The36 and 28 SU(8)

representations correspond to the symmetrised and antisymmetrised two-forms of SU(8)

respectively.

We now consider a speci�c torsion-free SU(8)-compatible generalised covariant deriva-

tive such that

D = D̂ � � ; (V.129)

with D̂ a SU(7)-compatible connection. Since it is SU(7)-compatible, it's also SU(8)-

compatible and therefore � 2 �( K SU(8) ). The compatibility of D̂ with the generalised

SU(7) structure is equivalent to

D̂ � S � = 0 D̂ � J � = 0 : (V.130)

We now decompose all our SU(8) objects into irreducible SU(7) representations, intro-

ducing SU(7) indices a; b; ::: = 1 ; :::; 7. Recall from section III.2 that the SU(8) spinor �

de�nes the generalised SU(7) structure. As such, it is a singlet representation of SU(7),

and as a section of theS+ bundle, it reads

� � � 8; � a = 0 ; (V.131)

where we used again a dead SU(8) index to highlight the SU(7) � SU(8) embedding.

We chooseD̂ such that � 2 W SU(7)
int . Following [42], we decompose� 2 �( K SU(8) ) into
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irreducible SU(7) representations. In SU(7) indices, this gives:

� =(� 8




8; � [ab
8

c]
; � a




8; � [ab

8
8]

; c:c:) (V.132)

1 � 35 � 7 � 21 � c:c: : (V.133)

Similarly, we decompose the SU(7) compatible connectionD̂ into SU(7) representations.

It reads, in SU(8) indices, D̂ � (D̂ [�� ]; �̂D [�� ]), which results in

D̂ = ( D̂ [ab]; D̂ a8; �̂D [ab];
�̂Da8) ; (V.134)

in SU(7) indices. Finally, we decompose theS and J SU(8) bundles into SU(7) represen-

tations:

S+ ! S+
7 � S+

1 J + ! J +
35 � J +

21 (V.135)

8 ! 7 � 1 56 ! 35 � 21 (V.136)

S� ! S�
7 � S�

1 J � ! J �
35 � J �

21 (V.137)

�8 ! �7 � �1 �56 ! �35 � �21 : (V.138)

We calculate the equations of motion (V.121) and (V.122), considering the connectionD

in (V.129), and the SU(7) projections given in appendix B.3, (B.136)-(B.152). This yields

�
1
2

D̂ [ab](� [ab
8

8]
) � D̂ [8a](� a




8) +

1
2

� [ab
8

8]
� [ab8]

8 (V.139)

+
1
2

� [ef
8

g]
� [efg ]

8 + � 8




8� 8




8
+ � a




8� a




8 = 0 (V.140)

for the projection onto the bundle S+
1 , and

� D̂ [ab](� b




8) � D̂ [a8](� 8




8) �
1
2

D̂ [bc](�
[abc]

8) (V.141)

�
1
2

D̂ [b8](�
[ab8]

8) + � a




8� 8




8 +
1
2

� b




8� [ab8]
8 = 0 (V.142)

for the component of the bundleS+
7 .

Then we �nd

1
12

� ab8efghi D̂ [ef ](� [gh
8

i ]
) + 2 D̂ [8a(� b]




8
) (V.143)

+ 2 D̂ [ab](� 8




8) � 2� [aj




8
� jb]




8

� 2� [ab
8

8]
� 8




8 = 0 (V.144)
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for the projection onto the bundle J �
21, and

1
12

� abcd8efg D̂ [d8](� [ef
8

g]
) + 2 D̂ [ab(� c]




8
) � 2� [ab

8
c]

� 8




8 = 0 (V.145)

for the component of the bundleJ �
35.

This formulation of the equations of motion has the advantage that these are fairly

simple �rst order partial di�erential equations. However, a few di�culties remains to be

addressed in order to be able to try and solve these equations explicitly:

i) We only have the explicit expression forT0(V 0) (V.66) in terms of SU(3; 3) represen-

tations, and extracting the exact expressions of the SU(7) torsion componentsT0 2 �( ~K C)

would require the use of the cumbersome decomposition of the action

� : ~K C � EC ! ad ~FC (V.146)

in terms of irreducible SU(3; 3) representations.

ii) Establishing the expression of the SU(7) compatible generalised connectionD̂ in

terms of irreducible SU(3; 3) representations is a non-trivial task.

Investigating further these equations of motion is still a work in progress.

V.3 Deformations of non-integrable SU (7) structures

We conclude this chapter by initiating the investigation of the classical moduli space of

non-supersymmetric Minkowski type II �ux backgrounds within the framework of E7(7) �

R+ generalised geometry.

This discussion is intended as pointing toward an example of applications of the results

derived in section V.1, and doesn't contain any de�nitive results.

In the supersymmetric case, the classical moduli space ofN = 1 Minkowski type II

�ux backgrounds has been calculated in [61].

To do so, the authors introduced the following �bre bundle QR+ � U(7)

QR+ � U(7) ! Q R+ � U(7) ! M (V.147)

with

QR+ � U(7) =
E7(7) � R+

R+ � U(7)
: (V.148)

One can then consider the space of deformations of theR+ � U(7) structure as the principle

adjoint bundle ad(QR+ � U(7) ).
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The integrable deformations of theR+ � U(7) structure are then the ones preserving

the integrability of said structure.

As we have discussed in section III.2, the integrability of the untwisted almost excep-

tional complex structure L 0
3 is equivalent to

L H + F
V V 0 � L 0

3 8 V; V0 2 �( L 0
3) : (V.149)

We therefore de�ne a general deformation of theL 0
3 bundle as

L̂ 0
3 := eR � L 0

3 with R 2 �( ad(QR+ � U(7) )) ; (V.150)

and the subset of integrable deformations correspond to the sectionR 2 �( ad(QR+ � U(7) ))

such that

L H + F
V V 0 � L̂ 0

3 8 V; V0 2 �( L̂ 0
3) : (V.151)

In order to calculate the moduli space of the integrable SU(7) structure, one should impose

the vanishing of the moment map (III.151) and mod out by the trivial deformations

between SU(7) structures, which correspond to the generalised di�eomorphisms GDi�, as

discussed in section III.2.

However, given that

f  2 Ẑj � = 0g=GDi� ' Ẑ =GDi� C ; (V.152)

where Ẑ is the space of SU(7) structures with an integrable associated exceptional com-

plex structure, this is equivalent to simply modding out by the complexi�ed generalised

di�eomorphisms GDi� C. This allows to spell out the moduli space ofN = 1 backgrounds

in terms of generalised cohomologies, as discussed at length in [61].

In the non-supersymmetric case, we can't select the deformations preserving the in-

tegrability of the generalised structures, since these aren't integrable anymore. Instead,

to de�ne deformations, we can select the deformations preserving the value of the non-

vanishing SU(7) intrinsic torsion.

To do so, we need to consider deformations that are irreducible representations of a

group P � SU(7) such that both the SU(7) structure  and the SU(7) intrinsic torsion

live in trivial representations of P. In that case, the deformations will preserve the value

of the SU(7) intrinsic torsion.

Moving to the complex picture presented in section V.1, we must have

PC � Hcomp � SL(7; C) � H � (SL(7; C) n C35) n C7 ; (V.153)

such that the complexi�cation of P sits within the compact subgroup ofH , denotedHcomp,
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with H the group stabilising the untwisted generalised SU(7) structure, as discussed in

section V.1.

A convenient way to de�ne PC is through its corresponding complex subalgebrap

p � h such that (p � [T0(V 0)])=h 2 T0(V 0) 8V 0 2 �( L 0
3) : (V.154)

This ensures that p stabilises T0(V 0) and henceT0 since p is a subgroup of h which

stabilises the untwisted generalised SU(7) structure  and thus V 0 2 �( L 0
3).

This approach circumvents the complications which would result from directly search-

ing for the group which stabilisesT0 as a section of the torsion bundle ~K C.

We can de�ne the following complex bundle

QH ! Q H ! M (V.155)

with

QH =
E7C

H
: (V.156)

Recall that for a given non-supersymmetric background, we have

L H + F +d H �
V 0 � 2 = � T0(V 0) � � 2 8V 0 2 �( L 0

3) : (V.157)

We de�ne the following deformations

L̂ 0
3 := eR � L 0

3 �̂ 2 := eR � � 2 (V.158)

�̂ := eR � � T̂0 := eR � T0 ; (V.159)

with

R 2 �( ad(QH )) : (V.160)

Crucially, we decomposeR into irreducible representations of P, such that

T0 := �T 00 ; (V.161)

with T00 the section of ~K C deformed by R, and � a complex constant which remains

constant under the deformations.

We thus de�ne the �integrable� deformations associated to a given non-supersymmetric

background as the sectionR 2 �( ad(QH )) such that

L H + F +d H �̂
V̂ 0 �̂ 2 = � T̂0(V̂ 0) � �̂ 2 8V̂ 0 2 �( L̂ 0

3) : (V.162)
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Although this approach allows to de�ne the deformations preserving a given non-integrable

exceptional complex structure, de�ning the method to calculate the moduli space of SU(7)

structures is still work in progress. The missing piece is a de�nition of the trivial deforma-

tions of our backgrounds -the non-supersymmetric analogue of modding out by GDi�C-.

We conclude this section with a speculative comment about how to construct such defor-

mations.

For a non-supersymmetric background and its associated non-integrable SU(7) struc-

ture  , one could de�ne a deformed twisted Dorfman derivative

LH + F
V := L H + F

V + T(V ) � 8V 2 �( E ) ; (V.163)

with T 2 ~K C the SU(7) intrinsic torsion of  .

This would allow for a notion of integrability for the exceptional complex structure,

spelled out in terms of the deformed Dorfman derivative:

LH + F
V V 0 � L 0

3 8 V; V0 2 �( L 0
3) : (V.164)

The associated deformed moment map would read7

~m( ~V) :=
1
3

Z

M
s(LH + F

~V
~ ; �~ )( i s( ~ ; �~ )) � 2=3 : (V.165)

Using this deformed moment map, we could de�ne the trivial deformations of non-

supersymmetric backgrounds in complete analogy with the supersymmetric case. Indeed,

crucially, the integrability of the exceptional complex structure is necessary for the equiv-

alence (V.152) to hold (see for instance [114]). It could therefore still hold through the

introduction of the deformed Dorfman derivative. In this case, it reads

f  2 Ẑj m = 0g=GDiff ' Ẑ =GDiff C : (V.166)

The modi�ed complexi�ed generalised di�eomorphisms GDiff C are then generated by the

deformed Dorfman derivative L, and encode the trivial deformations of the corresponding

non-supersymmetric background.

7Recall the moment map (III.151), untwisted by the �uxes.
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Chapter VI

Discussion

In this thesis, we set out to deepen the understanding of non-supersymmetric type

II supergravity �ux vacua. We focused on solutions compacti�ed to four-dimensional

Minkowski space, which we explored within the framework of generalised geometries,

both complex and exceptional.

The results derived in the �rst part of the thesis, presented in chapter IV, all relied on a

central feature: the generalised complex geometric description of the background sources -

the D-branes and orientifolds-. For a given source, this description mainly revolves around

the introduction of two objects: the generalised calibration and the generalised current

associated to the source.

Generalised calibrations are natural extensions of ordinary calibrations: they are poly-

forms of given degree associated to submanifolds. If such a calibration obeys the calibra-

tions conditions -a di�erential and an algebraic condition-, the corresponding submanifold

is said to be calibrated. A D-brane wrapping a calibrated submanifold is then supersym-

metric, it hence minimises its energy1. Crucially, the di�erential calibration conditions

associated to sources extended in two, three, and four non-compact dimensions are exactly

equivalent to preserving N = 1 supersymmetry for the corresponding ten-dimensional

background.

Then, the generalised current associated to a given source is simply a generalisation

of its ordinary current, the Poincaré dual to the calibrated submanifold, now calibrated

by the generalised calibration form.

In this thesis, describing the sources in terms of their generalised calibrations and

currents has allowed to establish the following results:

1The di�erence between ordinary and generalised calibrations stems from the de�nition of the D-brane
energy: in the ordinary case it is proportional to its volume, while the generalised case takes into account
non-vanishing RR potential contributions.
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i) We derived new classes of non-supersymmetric type II supergravity �ux vacua

compacti�ed to four-dimensional Minkowski space. A key aspect to these constructions

has been that supersymmetry was broken via the introduction of supersymmetry breaking

terms into the supersymmetry conditions, and the generalised current associated to the

background sources served as a building block for these supersymmetry breaking terms.

This proved out to be a simple and natural ansatz, drastically simplifying the study of

the corresponding equations of motion, that are very hard to solve in this formalism for

general supersymmetry breaking terms.

ii) We partially addressed the question of perturbative stability for our newly intro-

duced classes of non-supersymmetric �ux backgrounds. Indeed, within the framework

of generalised complex geometry, the generalised current associated to the background

sources can enter the e�ective potential associated to a given ten-dimensional background,

which is particularly useful as it allows to use powerful positivity arguments for the e�ec-

tive potential from the calibration bound, one of the calibration condition. We were able

to prove that for a given truncation suggested by the geometry, the e�ective potential

associated to our classes of solutions is positive semi-de�nite, and vanishes at the solu-

tions. However, this is not quite equivalent to proving that our classes of solutions are

perturbatively stable, given that we have little control over the aforementioned truncation.

iii) For a given non-supersymmetric background with BPS space-�lling sources, we

derived conditions on the supersymmetry breaking terms entering the corresponding de-

formed supersymmetry conditions such that this background dimensionally reduces to a

non-supersymmetric solution of four-dimensionalN = 1 supergravity.

The motivation to study such backgrounds comes from the fact that type II �ux

backgrounds compacti�ed to four-dimensional Minkowski space must admit some space-

�lling orientifold sources in order to evade the no-go theorem of [66, 67]. We therefore focus

on the case of well-behaved backgrounds with stable space-�lling sources. In that regard,

the formalism of generalised complex geometry is very helpful, as it allows to identify the

supersymmetry condition associated to preserving the BPSness of such sources, which

must be satis�ed.

In order to derive the aforementioned constraints, we generalised to the non-supersym-

metric setting the reformulation of the BPSness condition associated to space-�lling

sources derived in [6]. We then required that this condition is an F-term condition, com-

ing from one of the variations of the superpotential, even when supersymmetry breaking

terms are switched on. Interestingly, this procedure constrained the possible supersym-

metry breaking terms generating D-terms in the corresponding e�ective theory.

We then derived the equations of motion for such backgrounds, and for the subclass of

backgrounds having vanishing D-terms on shell. Solutions of this kind correspond to vacua
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with non-vanishing superpotential and F-terms, and include the amply discussed class of

no-scale vacua. These equations of motion were signi�cantly simpler than the equations

of motion associated to the most general supersymmetry breaking ansatz, sparking the

hope to solve them for new non-supersymmetric solutions.

The above results further extend the generalised complex geometry literature on non-

supersymmetric type II �ux backgrounds, initiated in [44]. However, non-supersymmetric

type II �ux backgrounds were never studied within the exceptional generalised geometry

framework. We set out to initiate this line of work in chapter V. Supersymmetric type II

�ux backgrounds were described within exceptional generalised geometry in [40, 42] and

in [61], where a givenN = 1 background was proven to be equivalent to a torsion-free

generalised SU(7) structure. We argued in this thesis that a non-supersymmetric back-

ground is entirely de�ned by a generalised SU(7) structure, and its non-vanishing SU(7)

compatible intrinsic torsion. We arranged the SU(7) torsion of a givenN = 0 background

into irreducible representations of SU(7), the generalised structure group, and established

a dictionary between these intrinsic torsion components and the supersymmetry breaking

terms entering the modi�ed supersymmetry conditions in the generalised complex geom-

etry formalism, bridging the two frameworks. Such a dictionary was then spelled out for

di�erent concrete examples of non-supersymmetric �ux backgrounds.

Another line of work developed in chapter V concerns the reformulation of the su-

pergravity equations of motion within the exceptional generalised geometry framework.

These were written as �rst order di�erential conditions on the di�erent irreducible SU (7)

representations of the intrinsic torsion.

VI.1 Future directions

There are many directions of work extending or completing the results derived in this

thesis. First within the generalised complex geometry framework, the new classes of non-

supersymmetric type II �ux backgrounds presented in chapter IV must have heterotic

analogues which would be interesting to study within O(6; 6 + n) generalised geometry,

with n the rank of the heterotic gauge group. It would also be interesting to look for

other N = 0 backgrounds with di�erent patterns of supersymmetry breaking, still using

the current associated to the space-�lling sources of the background as a building block.

Another direct extension of the results presented in chapter IV would be to look

for concrete ansatz for internal geometries within which one could solve the relatively

simple equations of motion for the class of backgrounds with BPS space-�lling sources
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and dimensionally reducing to non-supersymmetric solutions of four-dimensionalN = 1

supergravity.

From a broader perspective, there are other applications where the formalism of gen-

eralised calibrations must be insightful.

For instance, it would be interesting to develop the generalised calibration theory for

backgrounds with a three-dimensional Minkowski and AdS3 external space, where the

N = 1 supersymmetry conditions consists in two di�erential conditions and an algebraic

one, the "pairing condition" [115, 116]. Supersymmetry thus wouldn't be quite equivalent

to the calibrations of the di�erent possible D-branes, given that the pairing condition has

nothing to do with a calibration condition.

Additionally, this would prove to be very useful to study the non-supersymmetric

solutions of [117], the massive type IIA AdS3 analogues of the DGKT solutions [118],

which are poorly understood. These solutions are particularly interesting given that they

provide one of the very few example of scale separated AdS vacua [119]. Reformulating

such backgrounds within the O(7; 7) generalised geometry framework -as it has been

done in [120], but only for the supersymmetric solutions- would spell the breaking of

supersymmetry in terms of the violation of a calibration condition, providing insights

into the stability of the sources present in these backgrounds.

Finally, there are many directions in which to extend the results derived within the

exceptional generalised geometry framework, given that we have merely initiated the

construction of the formalism suited to describe non-supersymmetric type II �ux back-

grounds.

The most obvious one is to exploit the equations of motion derived in section V.2.

Solving them upfront will be a di�cult task, but they can surely teach us interesting

things about the di�erent possible supersymmetry breaking, by highlighting the interplay

between the di�erent irreducible SU(7) representations of the intrinsic torsion, and thus

the corresponding supersymmetry breaking terms.

Casting the N = 1 supersymmetry conditions in terms of integrability conditions for

a generalised SU(7) structure has allowed the authors of [61] to calculate the classical

moduli space of generalN = 1 type II �ux backgrounds 2.

An interesting extension of the work presented in chapter V would be to set a deforma-

tion problem for non-supersymmetric type II �ux backgrounds, and eventually calculate

(part of) the classical moduli space of some of these backgrounds, if they exist. To de�ne

the deformations of these backgrounds, we cannot rely on requiring their integrability,

2With the caveat that the two type II internal spinors must be globally de�ned.
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as in the supersymmetric case. Instead, one could consider deformations that are irre-

ducible representations of a groupG � SU(7) stabilising both the SU(7) structure and

the non-vanishing intrinsic torsion. The well behaved deformations would then be the

ones preserving the intrinsic torsion.

Finally, let us mention the recent reformulation of consistent truncations within the

exceptional generalised geometry framework [80, 121�125]. The key to these construc-

tions -see [80]- is that the intrinsic torsion is stable under a speci�c groupG within a

given consistent truncation. This suits particularly well within the formalism developed

in chapter V, and could allow one to naturally construct explicit non-supersymmetric

consistent truncations.
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Appendix A

Supergravity Conventions

A.1 Notations

Given a p-vector v 2 � pT and a q-form � 2 � qT � , we write them in components as

v =
1
p!

vm1 :::m p @m1 ^ � � � ^ @mp (A.1)

� =
1
q!

� m1 :::m q dym1 ^ � � � ^ dymq : (A.2)

For v0 2 ^ p0
TM and � 0 2 ^ q0

T � M , the wedge products and contractions are given by

(v ^ v0)m1 :::m p+ p0 =
(p + p0)!

p!p0!
v[m1 :::ap v0mp+1 :::m p+ p0]; (A.3)

(� ^ � 0)m1 :::m q+ q0 =
(q + q0)!

q!q0!
� [m1 :::m q � 0

mq+1 :::m q+ q0] (A.4)

(v : � )m1 :::m q� p :=
1
p!

vn1 :::n p � n1 :::n p m1 :::m q� p if p � q (A.5)

(v : � )m1 :::m p� q :=
1
q!

vm1 ��� p� qn1 :::n q � n1 :::n q if p � q : (A.6)

We also use the �j -notation� from [88]

(j� ^ � )m;m 1 :::m d :=
d!

(q � 1)!(d + 1 � q)!
� m[m1 :::m q� 1 � mq :::m d ] (A.7)

(jv : j� )m
n :=

1
(p � 1)!

vmr 1 :::r p� 1 � nr 1 :::r p� 1 : (A.8)

Given a basisf êag for T and a dual basisf eag for T � , there is a natural gld action on

tensors of any rank. For a vector and a three-form, for example, this action gives

(r � v)m = r m
nvn (A.9)
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(r � � )m1m2m3 = � r m1
n � nm 2m3 � r m2

n � m1nm 3 � r m3
n � m1m2n : (A.10)

We introduce the following ten- and six-dimensional Hodge operators

~� 10 = � 10 � � (A.11)

~� 6 = � 6 � � (A.12)

with � the reversal of all form indices, and with, for ap-form !

� 10 ! p = �
1

p!(10 � p)!
p

� g �M 1 :::M 10 ! M 11� p :::M 10 dxM 1 ^ ::: ^ dxM 10� p (A.13)

� 6 ! p =
1

p!(6 � p)!
p

� g �m1 :::m 6 ! m7� p :::m 6 dym1 ^ ::: ^ dym6� p : (A.14)

A.2 Bosonic sector

Our supergravity conventions are identical to the ones of [44].

The bosonic sector of type II supergravity is composed of the NS sector and the RR

sector. The NS sector contains the metricg, the dilaton � , and the NS three-form �ux

H , which can locally be written

H = d B (A.15)

away from the NS sources, withB its two-form potential.

The RR sector contains the RR �eld-strength: we use the democratic formulation of

[69], where

F 10 =
X

q
F 10

q (A.16)

with q = 0 ; 2; :::10 for type IIA and q = 1 ; 3; :::9 for type IIB. These �elds obey the

following self-duality condition

F 10 = ~� F 10 : (A.17)

Away from the RR sources, we write the RR �uxes from the RR potentials as

F 10 = d C + H ^ C (A.18)

with C =
P

q Cq� 1.

The type II pseudo-action in democratic formalism is

S =
1

2� 2
10

Z
d10x

p
� g

n
e� 2� [R + 4(d � )2 �

1
2

H 2] �
1
4

(F 10)2
o

+ S(loc) ; (A.19)
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where 2� 2
10 = (2 � )7� 04 and for any real p-form ! we de�ne ! 2 = ! � ! with � de�ned as

! � � =
1
p!

! M 1 :::M p � M 1 :::M p : (A.20)

If ! is complex, we consider

j! j2 = ! � �! : (A.21)

S(loc) corresponds to the contributions of the localised sources to the action. Varying this

action and imposing the self-duality condition (A.17) we �nd the following equations of

motion.

The dilaton equation

r 2� � (d� )2 +
1
4

R �
1
8

H 2 �
1
4

� 2
10e2�
p

� g
�S (loc)

��
= 0 ; (A.22)

the B -�eld equation

� d(e� 2� � 10 H ) +
1
2

[� 10F 10 ^ F 10]8 + 2 � 2
10

�S (loc)

�B
= 0 ; (A.23)

the Einstein equation

e� 2� [gMN + 2gMN d� � d� � 2gMN r 2� + 2 r M r N � (A.24)

�
1
2

�M H � �N H +
1
4

gMN H � H )] �
1
4

�M F 10 � �N F 10 � � 2
10T (loc)

MN = 0 ; (A.25)

with

T (loc)
MN = �

2
p

� g
�S (loc)

gMN ; (A.26)

and the RR-�uxes variation gives the Bianchi identities

dH F 10 = � j source: (A.27)

Combining the dilaton equation of motion with the Einstein equations, one can write the

modi�ed Einstein equations

RMN + 2 r M r N � � �M H � �N H �
1
4

e2� �M F 10 � �N F 10 (A.28)

� � 2
10e2�

�
T (loc)

MN +
gMN

2
p

� g
�S (loc)

��

�
= 0 : (A.29)

We now specify the compacti�cation ansatz: we consider type II solutions that are the

warped product of four-dimensional Minkowski spaceX 4 and a six-dimensional compact
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manifold M , with the following metric

ds2
10 = e2A(y) � �� dx � dx � + gmn dym dyn ; (A.30)

where againx � , � = 0 ; :::; 3 are the external coordinates onX 4, and ym , m = 1 ; :::; 6 are

the coordinates onM .

The Poincaré invariance ofX 4 constrains the NS and RR-�uxes: the NS-�eld-strength

H can only have internal legs, and the ten-dimensional RR-�eld-strength must take the

form

F 10 = F + e4A vol4 ^ ~F ; (A.31)

with vol 4 the volume form on X 4 and whereF and ~F are purely internal and are related

by the self-duality of F 10 (A.17) as

~F = ~� 6F : (A.32)

A.3 Gamma matrices

We use a real representation of the ten-dimensional gamma matrices� M . The ten-

dimensional chiral operator is

� (10) = � 01:::9 (A.33)

with �at ten-dimensional indices. For any p-form ! , we denote its image under the Cli�ord

map =! with

! �
1
p!

! M 1 :::M p dxM 1 :::M p  ! =! =
1
p!

! M 1 :::M p � M 1 :::M p : (A.34)

We de�ne the splitting of the ten-dimensional gamma matrices into four- and six-

dimensional gamma matrices
̂ � and 
 m as

� � = e� A 
̂ � 
 1 � m = 
 (4) 
 
 m : (A.35)

The 
̂ � are associated to the unwarped four-dimensional metric, and
 (4) = i 
̂ 0123 is

the usual four-dimensional chiral operator. The six-dimensional chiral operator is
 (6) =

� i
 123456 so we have� (10) = 
 (4) 
 
 (6) .

The chirality of the internal spinors is then


 (6) � 1 = � 1 
 (6) � 2 = � � 2 in type IIA/IIB : (A.36)
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Algebra Conventions

B.1 O(6; 6) � R+ Algebra

The O(6; 6) � R+ generalised tangent and adjoint spaces are

E = T � T � (B.1)

ad ~F = R � (T 
 T � ) � � 2T � � 2T � ; (B.2)

and we write their sections as

V = v + � (B.3)

R = l + r + B + � ; (B.4)

where each term matches with the expressions above in the obvious way.

The adjoint action on a section of the generalised tangent space isR � V = V 0 with

v0 = lv + r � v � � y� (B.5)

� 0 = l� + r � � + vyB (B.6)

The adjoint action on a section of the generalised adjoint space is[R0; R] = R00with

l00= 0 (B.7)

r 00= [ r 0; r ] � (j� 0yjB � j� yjB 0) (B.8)

B 00= r 0� B � r � B 0 (B.9)

� 00= r 0� � � r � � 0: (B.10)
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We de�ne the Mukai pairing for a pair of polyforms ! and �

h!; � i = ! ^ � (� )j6; (B.11)

and more generally, we use throughout Chapter IV

h!; � i k = ! ^ � (� )jk : (B.12)

In the case of a six-dimensional manifoldM , the Mukai pairing satis�es the following

property Z

M
hdH !; � i =

Z

M
h!; dH � i : (B.13)

B.2 E 7(7) � R+ Algebra in type IIB

In type IIB, the decomposition into O (6; 6) generalised bundles of theE7(7) � R+ gener-

alised tangent and adjoint spaces takes the form

E ' EO(6 ;6) � S� � (� 6T � 
 EO(6 ;6) ) (B.14)

ad ~F ' R � R � ad ~FO(6 ;6) � S+ � (� 6T 
 S+ ) � � 6T � � � 6T: (B.15)

We write sections of these bundles as

V = X + ! + ~X (B.16)

R = q + l + � + s + ~s + a + ~a (B.17)

respectively, with X 2 EO(6 ;6) , ! 2 S� , etc.

We recall the GL(6) decompositions of the O(6; 6) bundlesEO(6;6) and � 6T � 
 EO(6;6)

EO(6;6) ' T � T � (B.18)

� 6T � 
 EO(6;6) ' � 6T � 
 (T � T � ) (B.19)

with the following sections

X = v + � (B.20)

~X = (~v + ~� ) 
 vol ; (B.21)

with v; ~v 2 T, �; ~� 2 T � , and vol the volume form in the string frame.
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We introduce O(6; 6) indices A = 1 ; :::; 12 and O(6; 6) gamma matrices, such that

(vy + � ^ )! = X A � A ! � =X!; (B.22)

with ! a form.

The adjoint action on a section of the generalised tangent space isR � V = V 0 with

X 0A = qX A � lX A + � A
B X B + h~s; � A ! i (B.23)

~X 0A = q ~X A + l ~X A + � A
B ~X B + hs; � A ! i (B.24)

! 0 = q! +
1
4

� AB � AB ! + X A � A s � ~X A � A ~s : (B.25)

The adjoint action on a section of the generalised adjoint space is[R0; R] = R00with

q00=
1
2

(� 0A
B � B

A � � A
B � 0B

A + hs0; � A
A ~si � h ~s0; � A

A si ) (B.26)

l00= ~aa0� ~a0a + hs0; ~si � h s; ~s0i (B.27)

� 00A
B = � 0A

C � C
B � � A

C � 0C
B + hs0; � A

B ~si � h ~s0; � A
B si (B.28)

s00= l0s � ls0+ ~sa0� ~s0a +
1
4

� 0
AB � AB s �

1
4

� AB � AB s0 (B.29)

~s00= � l0~s + l~s0+ ~a0s � ~as0+
1
4

� 0
AB � AB ~s �

1
4

� AB � AB ~s0 (B.30)

a00= 2 l0a � 2la0� h s0; si + hs; s0i (B.31)

~a00= 2 l~a0� 2l0~a + h~s0; ~si � h ~s; ~s0i : (B.32)

The torsion bundle K � E � 
 ad ~F can locally be written in terms of O(6; 6) irreducible

representations as

K ' EO(6;6) � (EO(6;6) 
 � 6T � ) � S� � (� 6T 
 S� ) � (� 6T � 
 S� )

� [EO(6;6) 
 S� ]0 � � 3(EO6;6) ) � (� 6T � 
 � 3(EO(6;6)) ; (B.33)

where � A 2 �([ EO(6;6) 
 S� ]0) respects� A � A = 0 . The �bres of this bundle transforms

in the 9121 representation of E7(7) � R+ , where the subscript denotes theR+ weight.

The bundle N is a subbundle of the symmetric productS2E. The �bres of N belongs

to the 1332 representation of E7(7) � R+ , and N is isomorphic to

N ' R � � 6T � � (� 6T � 
 � 6T � ) � S� � (� 6T � 
 S� ) � (ad ~FO(6;6) 
 � 6T � ) : (B.34)

The Dorfman derivative reads

L V V 0 = L X X 0+ (d( =X! 0) + =X d! 0� d! � X 0)
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+ ( L X ~X 0+ ( @;~X ) � X 0� d! � ! 0) ; (B.35)

with L X X 0 the standard O(6; 6) Dorfman derivative, and � the adjoint action.

We also introduced

L X ~X 0 = L v ~X 0+ j (~v0yvol) ^ d� (B.36)

(@;~X ) = d(~vyvol) : (B.37)

We de�ne a �ux-twisted Dorfman derivative as

L H + F
V V 0 := L V V 0+ ( H � X + H ^ ! + =XF + hF; ! i ) � V 0; (B.38)

with H � X = vyH , and where the NS and RR �uxes are sections of the torsion bundle

H 2 �(� 3(EO(6;6))) 2 �( K ) and F 2 �( S� ) 2 �( K ).

The symplectic invariant reads

s(V; V0) = � AB ~X A X 0B � � AB ~X 0A X B + h!; ! 0i ; (B.39)

where � AB is the natural O(6; 6) inner product in indices.

B.2.1 SL(7; C) � SL(8; C) � E 7(7) C embedding for type IIB

The complex generalised tangent, adjoint and torsionE7(7)C bundles can be decomposed

into irreducible representations of SL(8; C)

EC ' 28 � 28 (B.40)

ad ~FC ' 63 � 70 (B.41)

K C ' 36 � 420 � 36 � 420: (B.42)

In SL(8; C) indices �; � = 1 ; :::; 8, the decomposition of sections of the generalised

tangent, adjoint and torsion spaces are written respectively

V = ( V �� ; �V�� ) (B.43)

R = ( R�
� ; R��
� ) (B.44)

� = ( � �� ; � ��

� ; �� �� ; �� �

��
 ) ; (B.45)

with V �� = � V �� , R�
� = 0 , R��
� fully antisymmetric, � �� = � �� , � ��


� = � [��
 ]
� ,

and � ��


 = 0 , and similarly for the barred object.

The adjoint action on a section of the generalised tangent space is thenR � V = V 0
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with

V 0�� = R�

 V 
� + R�


 V �
 + ?R��
� �V
� (B.46)

�V 0
�� = � R


� �V
� � R

� �V�
 � R��
� V 
� ; (B.47)

where ? is the eight-dimensional Hodge operator.

The adjoint action on a section of the generalised adjoint space is[R0; R] = R00with

R00�
� = R0�


 R

� � R�


 R0

� �

1
3

(?R0�
�� R�
�� � ?R�
�� R0
�
�� ) (B.48)

R00
��
� = 4( R0�

[� R�
� ]� � R�
[� R0

�
� ]� ) : (B.49)

We also need the action

� : 912C � 56C ! 133C (B.50)

� � V ! R ; (B.51)

wihch reads

R�
� = ( V 
� �� 
� + �V
� � 
� ) + ( �V
� � 
��

� � V 
� �� �

�� ) (B.52)

R��
� = � 4( �� �
[��


�V� ]� �
1
4!

� ��
�� 1 � 2 � 3 � 4 � � 1 � 2 � 3
� V

� 4 � ) : (B.53)

We now give the decomposition of the generalised tangent, adjoint and torsion bundles

in terms of SL(7; C) 2 SL(8; C) irreducible representations

EC ' 7 � 21 � 21 � 7 (B.54)

ad ~FC ' 1 � 48 � (7 � 7) � (35 � 35) (B.55)

K C ' 1 � 7 � 21 � 28 � 35 � 140 � 224 � c:c: : (B.56)

Introducing SL(7; C) indices: a; b= 1 ; :::; 7, we write the corresponding sections as1

V = ( V a8; V ab; �Vab; �Va8) (B.57)

R = ( R8
8 +

1
7

Ra
a1; R0a

b; Ra
8; R8

a; Rabcd; Rabc8) (B.58)

� = ( � 88; � a8; � ab8
8; � ab; � abc

8; � ab8
d; � abc

d;

�� 88; �� a8; �� 8
ab8 ; �� ab; �� 8

abc ; �� d
ab8 ; �� d

abc ) ; (B.59)

where each term matches with the expressions above in the obvious way, with1 the

1We use the notation of a dead SL(8; C) index "8", in order to see the SL(7; C) � SL(8; C) embedding
explicitly.



168 Appendix B. Algebra Conventions

seven-dimensional identity matrix, and with

V ab = V ba (B.60)

� ab = � ba (B.61)

R0a
a = 0 (B.62)

Rabcd = R[abcd]; Rabc8 = R[abc]8 (B.63)

� abc
c = � a8b

b = 0 (B.64)

� abc
d = � [abc]

d; � abc
8 = � [abc]

8; � ab8
d = � [ab]8

d; � ab8
8 = � [ab]8

8 : (B.65)

and similarly for the barred objects.

The adjoint action on a section of the generalised tangent space is thenR � V = V 0

with

V 0ab = ( R0a
c +

1
7

Re
e� a

c)V cb +
1
2

Ra
8V 8b + ( R0b

c +
1
7

Re
e� b

c)V ac +
1
2

Rb
8V a8

+ ?Rabcd �Vcd +
1
8

? Rabc8 �Vc8 (B.66)

V 0a8 =
1
2

(R0a
c +

1
7

Re
e� a

c)V c8 +
1
2

R8
8V a8 + R8

cV ac +
1
4

? Ra8cd �Vcd (B.67)

�V 0
ab = � (R0c

a +
1
7

Re
e� c

a) �Vcb �
1
2

R8
a �V8b � (R0c

b +
1
7

Re
e� c

b) �Vac

�
1
2

R8
b �Va8 �

1
8

Rabc8V c8 � RabcdV cd (B.68)

�V 0
a8 = �

1
2

(R0c
a +

1
7

Re
e� c

a) �Vc8 � Rc
8 �Vac �

1
2

R8
8 �Va8 �

1
4

Ra8cdV cd : (B.69)

The adjoint action on a section of the generalised adjoint space is[R0; R] = R00with

R8
8 +

1
7

Ra
a1 = R08

aRa
8 � R8

aR0a
8 �

1
16

(?R08abcR8abc � ?R8abcR0
8abc) (B.70)

+
1
7

[(R00f
c +

1
7

R0e
e� f

c)(R0c
f +

1
7

Re
e� c

f ) + R0a
8R8

f

� (R0a
c +

1
7

Re
e� f

c)(R00c
b +

1
7

R0e
e� c

b) � Rf
8R08

b

�
1
3

? R0fcde Rfcde �
1
16

? R0fcd 8Rfcd 8

+
1
3

? Rfcde R0
fcde +

1
16

? Rfcd 8R0
fcd 8]1 (B.71)

R000a
b = ( R00a

c +
1
7

R0e
e� a

c)(R0c
b +

1
7

Re
e� c

b) + R0a
8R8

b

� (R0a
c +

1
7

Re
e� a

c)(R00c
b +

1
7

R0e
e� c

b) � Ra
8R08

b

�
1
3

? R0acdeRbcde �
1
16

? R0acd8Rbcd8 +
1
3

? RacdeR0
bcde+

1
16

? Racd8R0
bcd8
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�
1
7

[(R00f
c +

1
7

R0e
e� f

c)(R0c
f +

1
7

Re
e� c

f ) + R0a
8R8

f

� (R0a
c +

1
7

Re
e� f

c)(R00c
b +

1
7

R0e
e� c

b) � Rf
8R08

b

�
1
3

? R0fcde Rfcde �
1
16

? R0fcd 8Rfcd 8

+
1
3

? Rfcde R0
fcde +

1
16

? Rfcd 8R0
fcd 8]� a

b (B.72)

R00a
8 = ( R00a

c +
1
7

R0e
e� a

c)Rc
8 + R0a

8R8
8 � (R0a

c +
1
7

Re
e� a

c)R0c
8 � Ra

8R08
8

�
1
4

(?R0acdeR8cde � ?RacdeR0
8cde) (B.73)

R008
a = R08

c(R0c
a +

1
7

Re
e� c

a) + R08
8R8

a � R8
c(R00c

a +
1
7

R0e
e� c

a) � R8
8R08

a

�
1
4

(?R08cdeRacde � ?R8cdeR0
acde) (B.74)

R00
abcd = (4( R00e

[a +
1
7

R0f
f � e

[a)Rbcd]e + 3R08
[aRbcd]8

� 4(R0e
[a +

1
7

Rf
f � e

[a)R0
bcd]e � 3R8

[aR0
bcd]8) (B.75)

R00
abc8 = (3( R00e

[a +
1
7

R0f
f � e

[a)Rbc8]e + R08
8Rabc8

� 3(R0e
[a +

1
7

Rf
f � e

[a)R0
bc8]e � R8

8R0
abc8) : (B.76)

The action

� : 912C � 56C ! 133C (B.77)

� � V ! R (B.78)

reads

R8
8 +

1
7

Ra
a1 =

1
4

(V a8 �� a8 + �Va8� a8) + ( �Vab� ab8
8 � V ab �� 8

ab8 )

+
1
7

[(V ce �� ce +
1
4

V 8e �� 8e + �Vce� ce +
1
4

�V8e� 8e)

+ ( �Vcd� cde
e +

1
6

�Vc8� c8e
e � V cd �� e

cde �
1
6

V c8 �� e
c8e )]1 (B.79)

R0a
b = ( V ca �� cb +

1
4

V 8a �� 8b + �Vcb� ca +
1
4

�V8b� 8a)

+ ( �Vcd� cda
b +

1
6

�Vc8� c8a
b � V cd �� a

cdb �
1
6

V c8 �� a
c8b )

�
1
7

[(V ce �� ce +
1
4

V 8e �� 8e + �Vce� ce +
1
4

�V8e� 8e)

+ ( �Vcd� cde
e +

1
6

�Vc8� c8e
e � V cd �� e

cde �
1
6

V c8 �� e
c8e )]� a

b (B.80)

Ra
8 =

1
2

(V ca �� c8 + �Vc8� ca) + ( �Vcd� cda
8 +

1
6

�Vc8� c8a
8 �

1
3

V cd �� a
cd8 ) (B.81)
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R8
a =

1
2

(V c8 �� ca + �Vca� c8) + (
1
3

�Vcd� cd8
a �

1
3

V cd �� 8
cda �

1
6

V c8 �� 8
c8a ) (B.82)

Rabcd = � 4( �� e
[abc

�Vd]e +
1
2

�� 8
[abc

�Vd]8) �
1

2 � 3!
� abcdm1m2m38� m1m2m3

eV 8e

�
1

4 � 3!
� abcdm1m28m3 � m1m28

eV m3e

�
1

8 � 3!
� abcdm1m28m3 � m1m28

8V m38 (B.83)

Rabc8 = � 4(
1
2

�� e
[abc

�V8]e �
1
4!

� abc8m1m2m3m4 � m1m2m3
eV m4e

�
1

2 � 4!
� abc8m1m2m3m4 � m1m2m3

8V m48) : (B.84)

B.2.2 The SU (3; 3) parametrisation

We can parametrise the complexi�ed generalised tangent and adjointE7(7)C bundles in

terms of representations of the SU(3; 3) structure associated to the generalised complex

structure J 2 � J � in type IIA/IIB. We focus on type IIB in the following

EC ' L 1 � L � 1 � S�
3 � S�

1 � S�
� 1 � S�

� 3 � (� 6T � 
 (L 1 � L � 1)) (B.85)

ad ~FC ' C � C � (L 1 
 L � 1)0 � � 2(L 1) � � 2(L � 1) � S+
2 � S+

0 � S+
� 2

� (� 6T 
 (S+
2 � S+

0 � S+
� 2)) � � 6T �

C � � 6TC ; (B.86)

where the subscript denotes the charge underJ � , and with

L 1 ' �L � 1 Si ' �S� i : (B.87)

We write sections of these bundles as

V = X 1 + X � 1 + ! 3 + ! 1 + ! � 1 + ! � 3 + ~X 1 + ~X � 1 (B.88)

R = l + p + � 0
0 + � 2 + � � 2 + s2 + s0 + s� 2 + ~s2 + ~s0 + ~s� 2 + a + ~a (B.89)

respectively, with X 1 2 �( L 1), X � 1 2 �( L � 1), etc, and with l 2 C, p 2 C, � 0
0 2 �(( L 1 


L � 1)0), etc. We introduce SU(3; 3) indices i; j = 1 ; :::; 6 and in index notation we omit

the subscript denoting the charge underJ � . We have p = 1
6 � i

i and

� 0i
j = � i

j �
1
6

� k
k � i

j (B.90)

�� 0�i
�j = ��

�i
�j �

1
6

�
�k

�k �
�i
�j (B.91)

where � is the O(6; 6) metric, with � i �j X i = X �j .

The adjoint action on a section of the generalised tangent space is thenR � V = V 0
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with

X 0i = ( � l + p)X i + � 0i
j X j + � i

�j X
�j + h~s� 2; � i ! 3i + h~s0; � i ! 1i + h~s2; � i ! � 1i (B.92)

X 0�i = ( � �l + �p)X
�i + (�� 0)

�i
�j X

�j + �
�i
j X j + h~s� 2; �

�i ! 1i + h~s0; �
�i ! � 1i + h~s2; �

�i ! � 3i (B.93)

~X 0i = ( l + p) ~X i + � 0i
j ~X j + � i

�j
~X

�j + hs� 2; � i ! 3i + hs0; � i ! 1i + hs2; � i ! � 1i (B.94)

~X 0�i = ( �l + �p) ~X
�i + (�� 0)

�i
�j

~X
�j + �

�i
j ~X j + hs� 2; �

�i ! 1i + hs0; �
�i ! � 1i + hs2; �

�i ! � 3i (B.95)

! 0
3 =

1
4

� �i �j �
�i �j ! 1 + X i � i s2 � ~X i � i ~s2 +

1
4

p�
�i
�i ! 3 +

1
4

�p� i
i ! 3 (B.96)

! 0
1 =

1
4

� ij � ij ! 3 +
1
4

� �i �j �
�i �j ! � 1 +

1
4

� 0
�ij �

�ij ! 1 +
1
4

�� 0
i �j � i �j ! 1 + X i � i s0 + X

�i � �i s2 (B.97)

� ~X i � i ~s0 � ~X
�i � �i ~s2 +

1
4

p�
�i
�i ! 1 +

1
4

�p� i
i ! 1 (B.98)

! 0
� 1 =

1
4

� ij � ij ! 1 +
1
4

� �i �j �
�i �j ! � 3 +

1
4

� 0
�ij �

�ij ! � 1 +
1
4

�� 0
i �j � i �j ! � 1 + X

�i � �i s0 + X i � i s� 2 (B.99)

� ~X i � i ~s� 2 � ~X
�i � �i ~s0 +

1
4

p�
�i
�i ! � 1 +

1
4

�p� i
i ! � 1 (B.100)

! 0
� 3 =

1
4

� ij � ij ! � 1 + X
�i � �i s� 2 � ~X

�i � �i ~s� 2 +
1
4

p�
�i
�i ! � 3 +

1
4

�p� i
i ! � 3 : (B.101)

The adjoint action on a section of the generalised adjoint space is[R0; R] = R00with

l00= ~aa0� ~a0a + hs0
2; ~s� 2i � h s2; ~s0

� 2i + hs0
0; ~s0i � h s0; ~s0

0i

+ hs0
� 2; ~s2i � h s� 2; ~s0

2i (B.102)

p00=
1
6

(� 0ij � ji � � ij � 0
ji + hs0

2; � i
i ~s� 2i � h ~s0

2; � i
i s� 2i

+ hs0
� 2; � i

i ~s2i � h ~s0
� 2; � i

i s2i ) (B.103)

� 000i
j = � 00i

k � 0k
j + � 0i

�k �
�k

j � � 0i
k � 00k

j � � i
�k � 0�k

j

+ hs0
2; � i

j ~s� 2i � h ~s0
2; � i

j s� 2i + hs0
0; � i

j ~s0i � h ~s0
0; � i

j s0i

+ hs0
� 2; � i

j ~s2i � h ~s0
� 2; � i

j s2i �
1
6

�
� 0kl � lk � � kl � 0

lk + hs0
2; � k

k ~s� 2i � h ~s0
2; � k

ks� 2i

+ hs0
� 2; � k

k ~s2i � h ~s0
� 2; � k

ks2i
�

� i
j (B.104)

� 00i
�j = � 00i

k � k
�j + p0� i

�j + � 0i
�k (�� 0)

�k
�j + �p� 0i

�j � � 0i
k � 0k

�j � p� 0i
�j � � i

�k (�� 00)
�k

�j � �p0� i
�j

+ hs0
2; � i

�j ~s0i � h ~s0
2; � i

�j s0i + hs0
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B.3 SU(7) and SU(8) bundles and projections

We introduce two real SU(8) bundles S and J , which we refer to as the �spinor� bundle

and the �gravitino� bundle respectively. These are

S = 8 + �8 � S+ + S� J = 56 + 56 � J + + J � ; (B.115)

with sections

� � 2 �( S+ ) � � 2 �( S� ) (B.116)

 ��
 2 �( J + )  ��
 2 �( J � ) ; (B.117)
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in terms of SU(8) indices�; �; ::: = 1 ; :::; 8. In terms of SU(8) representations, we introduce

the following generalised connection

D � (D [�� ]; �D [�� ]) ; (B.118)

and throughout the text we use the following projections onto the S and J bundles

between the generalised connection and sections of theS and J bundles

(D � J � ) ��
 = D [�� � 
 ] 2 �( J + ) (B.119)

(D � S � ) � = �D [�� ]�
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We now decompose theS and J SU(8) bundles into irreducible SU(7) representations:

S+ ! S+
7 � S+

1 J + ! J +
35 � J +

21 (B.127)

8 ! 7 � 1 56 ! 35 � 21 (B.128)

S� ! S�
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21 (B.129)

�8 ! �7 � �1 �56 ! �35 � �21 ; (B.130)

with sections
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1 ) (B.132)

 abc 2 �( J +
35)  abc 2 �( J �

35) (B.133)

 ab8 2 �( J +
21)  ab8 2 �( J �

21) ; (B.134)

in terms of SU(7) indicesa; b; :::= 1 ; :::; 7. Similarly, we decompose the SU(7) compatible

connection D̂ into SU(7) representations. It reads

D̂ = ( D̂ [ab]; D̂ a8; �̂D [ab];
�̂Da8) ; (B.135)
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Throughout the text we use the following projections onto the S�
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Appendix C

Supersymmetry breaking and pure spinors

We consider a ten-dimensional SU(3)� SU(3) background with a Minkowski four-dimensional

space and a ten-dimensional bispinor� = ( � 1; � 2)T as in (II.59). We give here the

parametrisation of the most general supersymmetry breaking, and we start by writing

down the non-vanishing supersymmetry variations

� (1)
� =

1
2

eA 
̂ � � 
 V 1 + c:c: � (2)
� =

1
2

eA 
̂ � � 
 V 2 + c:c: (C.1)

� (1)
m = � 
 U 1

m + c:c: � (2)
m = � 
 U 2

m + c:c: (C.2)

� � 1 = � 
 S 1 + c:c: � � 2 = � 
 S 2 + c:c:; (C.3)

where V1;2; U1;2
m and S1;2 are internal spinors parametrising the supersymmetry breaking
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1
4

e� 
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Following [44], we expand them in terms of supersymmetry breaking parameters in the

following way

V1 = r1� �
1 + s1

m 
 m � 1 V2 = r2� �
2 + s2

m 
 m � 2 (C.5)

S1 = t1� �
1 + u1

m 
 m � 1 S2 = t2� �
2 + u2

m 
 m � 2 (C.6)
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U1
m = p1

m � 1 + q1
mn 
 n � �

1 U2
m = p2

m � 2 + q2
mn 
 n � �

2: (C.7)

It has been shown in [44] that these parameters do not mix under T-duality. One can

now rewrite the most general non-supersymmetric pure spinor equations, expanded on

the generalised Hodge diamond, in terms of these supersymmetry breaking parameters

e� 2A+ � dH (e2A� � 	 1) + 2d A ^ Re	 1 � e� ~� 6F = � (C.8)
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C.1 String-like supersymmetry breaking

Let us now specify this expansion to the most general case of pure string-like supersym-

metry breaking. We �rst impose domain-wall BPSness, namely

K = 0 ; (C.11)

which gives the following constraints on the supersymmetry breaking parameters

t1 = t2 = 0 (C.12)

u1
m = �

1
2

(1 + iJ 1)k
m p2

k (C.13)

u2
m = �

1
2

(1 + iJ 2)k
m p1

k (C.14)

(1 + iJ 2)k
m q1

kn = 0 (C.15)

(1 + iJ 1)k
m q2

kn = 0 ; (C.16)
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then we impose the gauge BPSness, which amounts to requiring� to be purely imaginary,

which yields

r1 = � r2 � r (C.17)

q1
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nm � qmn (C.18)
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Imposing these constraints, the internal spinors describing the pure D-string super-

symmetry breaking read

V1 = r� �
1 + ( p2

m � (p2
m ) � )
 m � 1 V2 = � r� �

2 + ( p1
m � (p1

m ) � )
 m � 2 (C.21)

S1 = � p2
m 
 m � 1 S2 = � p1

m 
 m � 2 (C.22)

U1
m = p1

m � 1 + qmn 
 n � �
1 U2

m = p2
m � 2 + qnm 
 n � �

2: (C.23)

The most general D-string supersymmetry breaking term is therefore
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The non-supersymmetric backgrounds presented in IV.2.1b) have the following supersym-

metry breaking parameters

r = 0 (C.25)
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where J1;2 are the (almost) complex structures de�ned by � 1 and � 2

J1;2
m

n =
i

k� 1;2k
� y

1;2
 m
n � 1;2; (C.31)

and 
 1;2mnp are the (3; 0)� forms with respect to the (almost) complex structures

de�ned by � 1 and � 2:
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In order to write down the supersymmetry breaking parameters of the non-supersymmetric

backgrounds with both SSB and DWSB contributions presented in c), one just have to

add the pure DWSB parameters given in Appendix B of [44] to the one above.

The above supersymmetry breaking parameters correspond to the following decom-

position of the supersymmetry breaking term in (IV.45) on the SU(3)� SU(3) structure

de�ned by the two pure spinors
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C.2 Pure spinors and D-term supersymmetry-breaking

In this Section we write down the most general pure spinor expansion of the modi�ed

pure spinor equations respecting (IV.357).

We �rst impose the gauge BPSness (IV.303), which gives

r1 + t2 = � (r2 + t1) (C.34)

s1
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m + ( p2
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Then, imposing the condition (IV.357) is equivalent to
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where J1;2 are the (almost) complex structures de�ned by � 1 and � 2
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m )	 2
 m

+
1
2

q1
mn 
 n �	 1
 m �

1
2

q1
mn 
 n 	 1
 m : (C.42)

The polyforms � and � in (IV.360) and (IV.361) then take the form

� =
i
2

eA� �
h
(� 1)j 	 1 j(t2 + 4 t �

1)	 1 + ( � 1)j 	 1 j(t1 + 4 t �
2) �	 1

� 2i Im(p2
m )
 m 	 2 + ( � 1)j 	 2 j2i Im(p1

m )	 2
 m

+ q1
mn 
 n 	 1
 m + q1

mn 
 n �	 1
 m
i

(C.43)

� =
1
2

eA� �
h
(� 1)j 	 1 j(r �

1 + t �
2)	 2 + ( � 1)j 	 1 j(r1 + t2) �	 2

� q1�
mn 
 n 	 2
 m � q1

mn 
 n �	 2
 m
i
: (C.44)

Plugging the supersymmetry breaking expansion (C.42) in (IV.341) and using (C.38) and

(C.39) gives

u1
R = u2

R = 0 : (C.45)

Specifying the supersymmetry breaking terms violating the D-string BPSness condition

(C.41) to the case of Subsection IV.3.4 gives

� =
1
2

h
eA (� x23 + x32)~e1 + e� A (x13 � x31)~e2 + e� A (� x12 + x21)~e3

+ eA (y23 � y32)~e4 + e� A (� y13 + y31)~e5 + e� A (y12 � y21)~e6

+ e� A (a � x11 � x22 � x33)~e1 ^ ~e2 ^ ~e3 � e� A (y23 + y32)~e1 ^ ~e2 ^ ~e5
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+ e� A (� b+ y11 + y22 � y33)~e1 ^ ~e2 ^ ~e6 + e� A (b� y11 + y22 � y33)~e1 ^ ~e3 ^ ~e5

+ e� A (y23 + y32)~e1 ^ ~e3 ^ ~e6 � e� A (a � x11 + x22 + x33)~e1 ^ ~e5 ^ ~e6

+ e� A (� b� y11 + y22 + y33)~e2 ^ ~e3 ^ ~e4 + ( y12 + y21)(eA ~e1 ^ ~e3 ^ ~e4 � e� 3A ~e2 ^ ~e3 ^ ~e5)

� (y13 + y31)(eA ~e1 ^ ~e2 ^ ~e4 + e� 3A ~e2 ^ ~e3 ^ ~e6) + e� A (a + x11 � x22 + x33)~e2 ^ ~e4 ^ ~e6

� (x12 + x21)(eA ~e1 ^ ~e4 ^ ~e6 � e� 3A ~e2 ^ ~e5 ^ ~e6) � e� A (a + x11 + x22 � x33)~e3 ^ ~e4 ^ ~e5

+ ( x23 + x32)(e� A ~e2 ^ ~e4 ^ ~e5 � e� A ~e3 ^ ~e4 ^ ~e6)

+ ( x13 + x31)(eA ~e1 ^ ~e4 ^ ~e5 + e� 3A ~e3 ^ ~e5 ^ ~e6) + e� A (b+ y11 + y22 + y33)~e4 ^ ~e5 ^ ~e6

+ e� A (x12 � x21)~e1 ^ ~e2 ^ ~e3 ^ ~e4 ^ ~e5 + e� A (x13 � x31)~e1 ^ ~e2 ^ ~e3 ^ ~e4 ^ ~e6

+ e� 3A (x23 � x32)~e1 ^ ~e2 ^ ~e3 ^ ~e5 ^ ~e6 + e� A (� y12 + y21)~e1 ^ ~e2 ^ ~e4 ^ ~e5 ^ ~e6

+ e� A (� y13 + y31)~e1 ^ ~e3 ^ ~e4 ^ ~e5 ^ ~e6

+ e� 3A (� y23 + y32)~e2 ^ ~e3 ^ ~e4 ^ ~e5 ^ ~e6
i
; (C.46)

with

x ij =
1
2

e2A� � Ref iq1
i;j +3 + iq1

i +3 ;j � q1
ij � q1

i +3 ;j +3 g (C.47)

yij =
1
2

e2A� � Imf + q1
ij + q1

i +3 ;j +3 � iq1
i;j +3 � iq1

i +3 ;j g (C.48)

a = � 2e2A� � Re(r1 + t2) (C.49)

b =2e2A� � Im(r1 + t2): (C.50)
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Sujet : Géometrie Généralisée (Exceptionnelle) des vides

non-supersymétriques avec Flux

Résumé : La construction de la théorie des cordes repose sur une symétrie reliant les bosons

et les fermions, appelée supersymétrie, et qui doit être brisée à basse énergie. Les solutions

supersymétriques de la théorie des cordes sont nettement plus simples que leurs homologues non-

supersymétriques et peuplent donc la majorité de la littérature. Cependant, la supersymétrie

peut être spontanément brisée à une énergie arbitrairement élevée. Dans cette thèse, nous étu-

dions donc des solutions de supergravité de type II, une limite classique à basse énergie de la

théorie des cordes, qui sont non-supersymétriques. Cette étude se place dans le cadre de la

géométrie complexe généralisée, une généralisation de la géométrie di�érentielle qui uni�e les

transformations des coordonnées spatio-temporelles et les transformations de jauge de l'un des

potentiels de la théorie des cordes, appelé le champB . Nous construisons d'abord de nou-

velles solutions de la supergravité de type II, où le mécanisme de brisure de la supersymétrie

est dicté par la notion généralisée de stabilité pour les objets étendus qui sourcent les �ux de

supergravité. Nous dérivons ensuite une expression généralisée pour les �ux de supergravité non-

supersymétriques, et l'utilisons pour dériver les contraintes que les solutions de supergravité de

type II non-supersymétriques doivent respecter a�n que leurs théories e�ectives à basse énergie

appartiennent à la classe bien connue de la supergravité quadridimensionelleN = 1 . En�n, nous

décrivons les solutions non-supersymétriques de la supergravité de type II dans le cadre de la

géométrie généralisée exceptionnelle, un formalisme qui uni�e les transformations des coordon-

nées spatio-temporelles et les transformations de jauge de tous les potentiels de la théorie des

cordes.

Mots clés : Théorie des cordes, compacti�cation avec �ux, géometrie généralisée, brisure de

supersymétrie, calibrations.
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