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Abstract

The construction of string theory relies on a symmetry relating bosons and fermions,
called supersymmetry, which must be broken at low energies. Supersymmetric solutions
of string theory are significantly simpler than their non-supersymmetric counterpart, and
thus populate the vast majority of the literature. However, supersymmetry can be spon-
taneously broken at arbitrarily high energy. In this thesis, we therefore investigate so-
lutions of type II supergravity, a classical low energy limit of string theory, that are
non-supersymmetric. We do so within the framework of generalised complex geometry,
a generalisation of differential geometry which unifies the spacetime coordinate transfor-
mations and the gauge transformations of one of string theory potentials, called the B
field. We first construct new type II supergravity solutions, where the supersymmetry
breaking mechanism is dictated by the generalised notion of stability for extended objects
sourcing the supergravity fluxes. We then derive a generalised geometric expression for
the non-supersymmetric supergravity fluxes, and use it to derive constraints that non-
supersymmetric type II supergravity solutions should satisfy in order for their low energy
effective theories to fall in the well known class of N = 1 four-dimensional supergrav-
ity. Finally, we describe non-supersymmetric solutions of type II supergravity within
exceptional generalised geometry, a framework now unifying the spacetime coordinate
transformations and the gauge transformations of all string theory potentials.
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Résumé court en français

Les travaux présentés dans cette thèse portent sur l’étude des solutions de la supergravité
de type II, une limite classique à basse énergie de la théorie des cordes.

Dans ce contexte, nous nous intéressons à des solutions dix dimensionnelles de type
produit : la géométrie qu’ils décrivent est le produit d’un espace quadridimensionel non
compact à symétrie maximale et d’une variété compacte à six dimensions M .

Dans les compactifications de cordes, une telle structure est utilisée pour expliquer
pourquoi nous n’observons que quatre des dix dimensions prédites par la théorie des
cordes : l’espace externe est l’espace que nous observons, tandis que les dimensions sup-
plémentaires déterminent les caractéristiques de la théorie quadridimensionnelle obtenue
en réduisant la supergravité de dimension supérieure.

Un aspect clé des compactifications est le fait que les modules associés à M (par
exemple le volume de l’espace interne) sont associés à des champs scalaires sans masse
dans les théories effectives à basse énergie correspondantes. La phénoménologie dicte
donc la nécessité de stabiliser ces modules par le biais d’un potentiel, par exemple. Au
niveau classique, cela se fait typiquement par l’introduction de flux : des champs décrits
par des formes différentielles vivant le long de cycles de l’espace compact, de telle sorte
qu’ils génèrent le potentiel approprié pour les modules.

En raison de la rétroaction des flux, les géométries compactes résultantes sont com-
plexes et ont été étudiées avec succès dans le cadre de la géométrie généralisée. La
géométrie généralisée est une généralisation de la géométrie différentielle ordinaire, où
les potentiels des flux sont traités de manière géométrique. Le fibré tangent de M est
étendu à un fibré tangent généralisé dont les fonctions de transition sont dictées par les
difféomorphismes plus les transformations de jauge pour les potentiels des flux. Celles-ci
incluent les transformations de jauge du champ B pour la géométrie complexe généralisée,
et les transformations de jauge du champ B et des potentiels de Ramond-Ramond pour la
géométrie généralisée exceptionnelle. Les travaux présentés dans cette thèse s’inscrivent
dans le cadre des géométries généralisées, complexe et exceptionnelle.

L’exploration du paysage des compactifications quadridimensionnelles de la théorie
des cordes s’est principalement concentrée sur les espaces préservant au moins la su-
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persymétrie N = 1. L’une des raisons est pratique : la résolution des conditions de
supersymétrie, qui sont des équations différentielles du premier ordre, ainsi que celle des
identités de Bianchi pour les flux, garantit d’avoir des solutions à l’ensemble des équa-
tions de mouvement de la théorie des cordes ou de la supergravité. Il est très difficile de
traiter les équations du mouvement sans cette approche, même dans l’approximation de
la supergravité, puisqu’il s’agit d’équations différentielles du second ordre compliquées.

Des considérations physiques motivent également l’étude des compactifications de
cordes supersymétriques, notamment l’attente que la supersymétrie soit brisée à des én-
ergies inférieures à l’échelle de compactification.

Même si la brisure de la supersymétrie à basse énergie est un scénario phénoménologique-
ment motivé, rien n’empêche en principe de briser spontanément la supersymétrie à des
énergies arbitrairement élevées. Dans cette thèse, nous considérons cette possibilité, et
nous nous concentrons sur cette région du paysage de la compactification des cordes, bien
moins étudiée, et qui vaut la peine d’être exploré per se.

Une première contribution aux compactifications non-supersymétriques de la super-
gravité présentée dans cette thèse aborde la construction de nouvelles classes de solutions
de supergravité de type II non-supersymétriques, où la supersymétrie est brisée de manière
contrôlée: nous déformons les conditions de supersymétrie N = 1 en ajoutant des termes
de brisure de supersymétrie.

Cette approche est motivée par la volonté de préserver certaines des caractéristiques
pratiques des vides supersymétriques, principalement la possibilité de les caractériser via
des équations différentielles du premier ordre. Comme la supersymétrie est brisée, nous
devons nous assurer que les équations du mouvement sont satisfaites. L’objectif est de
trouver des déformations spécifiques des équations BPS telles que les contraintes supplé-
mentaires à imposer pour résoudre les équations du mouvement soient raisonnablement
tractables.

Nous utiliserons le cadre de la géométrie complexe généralisée, où les conditions BPS
N = 1 ont une interprétation en termes de conditions de calibration de différentes D-
branes. Les conditions de supersymétrie N = 1 peuvent être reformulées en un ensemble
de trois équations différentielles sur des polyformes définies uniquement sur l’espace de
compactification interne [1]. Chacune de ces trois conditions peut être interprétée comme
une condition de calibration pour des D-branes dans la géométrie [2] : des branes remplis-
sant tout l’espace externe et des branes qui sont des murs de domaine ou des "D-cordes"
dans l’espace externe.

Dans ce langage, on peut identifier différents termes de brisure de supersymétrie en
fonction de la condition de calibration déformée.

Dans cette construction, nous souhaitons étendre l’étude des vides non-supersymétriques
violant la condition de calibration des D-cordes. Plus précisément, nous construirons de
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nouvelles solutions non-supersymétriques de type II, où le courant associé aux D-branes
remplissant tout l’espace externe, présentes dans nos solution, servira d’élément constitutif
pour le terme de brisure de supersymétrie violant la condition de calibrage des D-cordes.

La motivation derrière cette construction est double. La première est la simplicité
: définir la brisure de supersymétrie en termes de courant des D-branes de la solution
est un ansatz simple et naturel, qui à son tour réduit les équations du mouvement à un
ensemble raisonnable de contraintes supplémentaires. La deuxième raison est la question
de la stabilité de ces vides non-supersymétriques : en géométrie complexe généralisée,
le courant des D-branes peut entrer dans le potentiel effectif associé à un vide de dix
dimensions donné, ce qui est particulièrement utile car il permet d’utiliser de puissants
arguments de positivité dérivés des bornes de calibration des branes dans l’étude du
potentiel effectif.

Nous pouvons montrer que notre nouvelle classe de solutions partage une propriété
intéressante avec les vides GKP [3], à savoir le fait qu’il existe une troncature naturelle de
la théorie à dix dimensions, suggérée par la géométrie, telle que le potentiel effectif hors
couche est semi-défini positif, et qu’il s’annule au niveau des solutions. Cette affirmation
n’est cependant pas tout à fait équivalente à celle de la stabilité de ces nouveaux vides,
puisque nous avons un contrôle limité sur cette troncation.

Par ailleurs, nous construisons également une nouvelle classe de vides généralisant les
vides GKP, où les conditions de calibration des branes murs de domaine et des D-cordes
sont toutes deux violées.

Une deuxième contribution aux compactifications non-supersymétriques de la super-
gravité présentée dans cette thèse aborde les vides dont la théorie effective à basse énergie
est une solution de la supergravité quadridimensionnelle N = 1, avec un superpotentiel
et des F-termes non nuls, et des D-termes potentiellement non nuls.

Construire des solutions de supergravité avec des D-termes est difficile. En effet,
l’exemple prototypique de la brisure de supersymétrie par un D-terme est le terme de
Fayet-Iliopoulos, et la réalisation de son intégration dans la supergravité à une énergie
paramétriquement inférieure à l’échelle de Planck s’avère être très compliqué [4, 5].

Nous étudions ici la possibilité d’avoir des solutions de supergravité avec des D-termes
sous un angle différent, en utilisant le cadre de la géométrie complexe généralisée.

Nous nous concentrons sur une classe de solutions qui admet des sources BPS rem-
plissant tout l’espace externe. Cela signifie que la condition BPS associée à la condition
de calibration des D-branes remplissant l’espace externe, appelée condition de BPSité de
jauge, est préservée, tandis que nous permettons que les conditions correspondant aux
calibrations des D-branes de type D-cordes et murs de domaine soient violées.

Dans le cas supersymétrique, la condition de BPSité de jauge a été reformulée dans
[6], en éliminant la dépendance explicite en la métrique, et en introduisant une version
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généralisée de l’opérateur de Dolbeault. Nous généralisons cette dérivation au cas des
vides non-supersymétriques violant les conditions de calibration des D-cordes et des murs
de domaine.

Toujours dans le cas N = 1, les conditions de BPSité de jauge et des murs de domaine
ont été identifiées avec des conditions de F-termes, tandis que la BPSité des D-cordes a
été interprétée comme une condition de D-terme pour la théorie effective quadridimen-
sionnelle N = 1 dans [7, 8].

Dans notre classe de vides non-supersymétriques préservant la BPSité de jauge, nous
nous concentrerons sur ceux qui peuvent être dimensionnellement réduits à des solutions
de supergravité quadridimensionnelle N = 1 avec des F-termes non nuls, et éventuelle-
ment des D-termes. Pour ce faire, nous exigeons que notre ensemble d’équations BPS
modifiées continue à avoir une interprétation en termes de (D-) F-termes ou de conditions
d’annulation des (D-) F-termes. En particulier, la BPSité de jauge, nouvellement dérivée,
doit continuer à être identifié à une condition de F-terme.

Il est intéressant de noter que cette procédure contraint certains termes de brisure de
supersymétrie entrant dans la condition de calibration modifiée des D-cordes, et donc les
D-termes possibles. Nous explorons ces contraintes pour certains exemples concrets de
compactifications.

Nous donnerons le potentiel effectif et en déduirons les équations du mouvement pour
notre classe de vides se réduisant à des solutions de supergravité quadridimensionnelle
N = 1 avec des F-termes et des D-termes non nuls, et pour une sous-classe où les con-
tributions des D-termes au potentiel effectif sont mises à zéro sur couche, restaurant la
BPSité des D-cordes. Les solutions de ce type correspondent à des vides avec seulement
des F-termes et incluent la classe amplement discutée des vides sans échelle.

Une troisième et dernière contribution aux compactifications non-supersymétriques
de la supergravité présentée dans cette thèse traite du développement du formalisme de
géométrie généralisée exceptionnelle pour les vides non-supersymétriques. Nous étudions
en particulier la torsion associée à une certaines structure généralisée non-integrable, dont
l’obstruction à l’intégrabilité provient de la brisure de supersymétrie. Nous établissons
notamment un dictionnaire entre les termes de brisure de supersymétrie en géometrie
généralisée complexe et la torsion de la structure généralisée en géométrie généralisée
exceptionnelle, que nous explicitons pour certains vides non-supersymétriques connus.



Chapter I

Introduction

The twentieth century has witnessed the birth of the two pillars of modern physics.
On the one hand, quantum mechanics -or quantum field theory, its special relativistic
version- describes matter and interactions at the microscopic level through the exchange
of fundamental quanta [9]. On the other hand, general relativity, Einstein’s theory of
gravitation, spells the large scale behaviour of massive objects in terms of their interplay
with the curvature of spacetime [10].

Crucially, the efforts to develop a microscopic understanding of the gravitational inter-
action has revealed the profound irreconcilability between these two frameworks. There
are many clues and ideas pointing towards this incompatibility, let us just mention that
gravity is non-renormalisable: applying the usual quantisation technique from quantum
field theory [11, 12] to the gravitational interaction leads to drastically unphysical results
[13].

A microscopic formulation of gravity must therefore go beyond this naive way of
quantising. The most promising candidate to this enterprise is string theory. In string
theory, elementary particles are replaced by excitations on vibrating strings, fundamental
one-dimensional extended objects [14–21]. Not only does the spatial extension of the
strings allows to avoid the usual problems one encounters when applying quantum field
theory techniques to gravity [20], but also in the spectrum of string excitations one finds
a particle with the properties of the mediator of gravity, the so called graviton [19].

String theory stands on an extremely simple postulate, from which spectacular con-
sequences can be drawn:

i) The cancellation of quantum anomalies on the string dictates spacetime to be ten-
dimensional [22].

ii) The construction of string theory relies on a symmetry relating bosons and fermions,
called supersymmetry [23]. Supersymmetry arranges fundamental particles into multi-
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2 Chapter I. Introduction

plets, groups of bosons and fermions of the same mass, related with each other through
supersymmetry transformations. However, such multiplets are not observed at low ener-
gies -below the electroweak scale-: if string theory describes our universe, supersymmetry
must therefore be broken somewhere below the Planck scale.

iii) There are five different consistent superstring theories: type I, type IIA and type
IIB, and SO(32) and E8×E8 heterotic string theories. These are all connected through a
web of dualities [24–28] and are regarded as different limits of a single eleven-dimensional
theory called M-theory [29, 30].

Taken together, these facts have motivated the study of what are called ten-dimensional
type II and heterotic supergravity theories1. Indeed, the string spectrum contains in-
finitely many massive states, but a finite number of massless states, which at low energy
-much lower than the scale corresponding to the string’s extension- define an effective
field theory: the theory of supergravity. In that sense, these theories of supergravity are
nothing more than supersymmetric field theories, but their field content and sources are
dictated by the corresponding high-energy superstring theory.

Studying solutions of type II supergravity is the main focus of this thesis2. More
precisely, we are interested in ten dimensional backgrounds of type II supergravity of
warped product type: the geometry they describe is the (warped) product of a four-
dimensional maximally symmetric non-compact space, the external space, and a six-
dimensional compact manifold M , the internal space.

Solutions of this type are called string compactifications, and such structures model
the fact that we only observe four out of the ten dimensions predicted by string theory: the
external space is the space we observe, while the extra dimensions determine the features
of the four-dimensional theory obtained by reducing the higher-dimensional supergravity.

A key aspect of compactifications is the fact that the moduli associated to M (e.g. the
volume of the internal space) are associated to massless scalar fields in the corresponding
low-energy effective theories. Phenomenology thus dictates the need for these moduli to
be stabilised via a potential, for instance. At the classical level this is typically done
through the introduction of fluxes: non-vanishing p-form field-strengths along cycles of
the compact space, such that they generate the appropriate potential for the moduli
[32, 33]. Due to the back-reaction of the fluxes, the resulting compactified geometries are
intricate and have been successfully studied within the framework of generalised complex
geometry [34–36] and exceptional generalised geometry [37–42].

Generalised geometry is a generalisation of ordinary differential geometry, where the
potentials for the fluxes are treated in a geometric way. The ordinary tangent bundle

1Supergravity is the theory of supersymmetric Einsteinian gravity [31], and is of interest on its own.
2A self-contained review of type II supergravity is presented in appendix A.
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of M is extended to a generalised tangent bundle whose transitions functions are the
diffeomorphisms plus the gauge transformations for the fluxes potentials. These include
the B-field gauge transformations for generalised complex geometry, and both the B-field
and RR potentials gauge transformations for exceptional generalised geometry. Through-
out this thesis, our study of type II supergravity solutions will sit within the generalised
geometry framework.

The exploration of the landscape of four-dimensional string compactifications has been
mostly focused on vacua preserving at least some supersymmetry. One reason is practical:
for the kind of backgrounds we are interested in, solving the supersymmetry conditions, or
BPS conditions, which are first order differential equations, plus the Bianchi identities for
the fluxes, guarantees to have solutions to the full set of string or supergravity equations of
motion. Handling the equations of motion upfront is very hard, since they are cumbersome
second order differential equations.

There are also physical considerations motivating the study of supersymmetric string
compactifications, namely the expectation that supersymmetry should be broken at en-
ergies smaller than the compactification scale.

Even if low energy supersymmetry breaking is a phenomenologically motivated sce-
nario, in principle nothing prevents supersymmetry from being spontaneously broken at
arbitrarily high energies. In this thesis, we consider this possibility, and focus on this
much less studied corner of the string compactification landscape, worth exploring per se.

A first contribution to non-supersymmetric compactifications of type II supergravity
presented in this thesis consists in the construction of new classes of non-supersymmetric
solutions. In these classes of backgrounds, supersymmetry is broken in a controlled way:
we deform the supersymmetry conditions by adding supersymmetry breaking terms.

The motivation behind this approach is to preserve some of the convenient features
of supersymmetric vacua, mainly the possibility to characterise them via first order dif-
ferential equations. Since supersymmetry is broken, in order to find solutions we have
to make sure that the equations of motion are satisfied. The goal is then to find specific
deformations of the BPS equations such that the additional constraints to impose in order
to solve the equations of motion are manageable.

We will use the framework of generalised complex geometry, where the BPS conditions
have an interpretation in terms of stability conditions -called calibration conditions- for
different probe D-branes, extended objects sourcing the supergravity fluxes3 [43]. The
supersymmetry conditions for warped compactifications can be recast in a set of three
differential equations on polyforms defined only on the internal space [1]. Each of these

3In the full stringy regime, D-branes are dynamical objects on which open strings end.
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three conditions can be interpreted as the conditions for calibrated D-brane probes in
the geometry [2]: branes filling all the external space and branes that are domain-wall or
string-like.

In this language, one can identify different supersymmetry breaking terms depending
on which calibration condition is modified. In these constructions we will always assume
that space-filling branes are calibrated, while we will allow the calibrations of D-strings
and domain-wall branes to be violated.

A famous example of non-supersymmetric type IIB solutions that violate the domain-
wall calibration condition are the GKP solutions [3], describing flux compactifications
to four-dimensional Minkowski space with D3 and O3 sources, where supersymmetry is
broken by the H(0,3) components of the NSNS-flux. The GKP backgrounds have been
described within Generalised Complex Geometry in [44] as specific examples of a general
framework to describe non-supersymmetric solutions.

The generalised complex geometry description of the GKP backgrounds also offers an
insightful geometrical interpretation of the domain-wall supersymmetry breaking term: it
is given by the current of the D-branes in the background, an internal polyform associated
to the internal submanifold wrapped by the D-brane4

In the literature there is another example of non-supersymmetric solution, this time
in type IIA, [45], which in the language of generalised complex geometry corresponds to
the violation of the D-string calibration condition, where supersymmetry is again violated
through additional NS flux components with respect to the supersymmetric case, but there
is no further geometrical interpretation of the corresponding supersymmetry breaking
term. Moreover, the question of stability of such backgrounds remains unaddressed.

The new non-supersymmetric type II solutions presented in this thesis extend the
study of non-supersymmetric vacua violating the D-string calibration condition. More
precisely, we will construct non-supersymmetric type II solutions where the current as-
sociated to the space-filling D-branes present in our backgrounds will serve as a building
block for the supersymmetry breaking term violating the D-string calibration condition.

The motivation behind this construction is two-fold. The first one is simplicity: defin-
ing supersymmetry breaking in terms of the current of the background’s D-branes is a
natural and simple ansatz, which in turn reduces the equations of motion to a reasonable
set of additional constraints. The second reason is that it can be useful to address the
question of stability of these non-supersymmetric vacua: in generalised complex geometry,
D-branes current can enter the effective potential associated to a given ten-dimensional
background, and are particularly useful as they allow to use powerful positivity arguments

4In the fluxless case, the current is simply the Poincaré dual of the corresponding submanifold. Its
generalisation to the case of non-vanishing fluxes will be discussed at length in the text.
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from some D-brane calibration bounds in the study of the effective potential.
We will also construct a new class of backgrounds generalising the GKP vacua, where

both the domain-wall and D-string calibration conditions are violated.

Another approach to the study of string compactifications is the analysis of the associ-
ated low-energy effective theories. The results presented in section IV.3 will be devoted to
studying a class of non-supersymmetric solutions of four-dimensional N = 1 supergravity.

The supersymmetry conditions in N = 1 supergravity can be split in F- and D-term
conditions which come from the superpotential.

Interestingly, the gauge and domain-wall BPSness conditions have been identified with
F-term conditions, while the string BPSness has been interpreted as a D-term condition
in [7, 8].

In section IV.3 we will look for non-supersymmetric solutions of four-dimensional
N = 1 supergravity, with non-vanishing superpotential and F-terms, and potentially
non-vanishing D-terms.

Constructing supergravity solutions with D-terms is difficult. Indeed, the prototypical
example of D-term supersymmetry breaking is the Fayet–Iliopoulos term, and realising
its (field-dependent) embedding in supergravity at energy parametrically lower than the
Planck scale turns out to be challenging [4, 5].

In this work, we investigate the possibility of having supergravity solutions with D-
terms from a different angle, using the framework of generalised complex geometry.

We focus again on a class of vacua that still admit calibrated space-filling sources.
This means that the BPS condition associated to the calibration condition of space-filling
D-branes, dubbed the gauge BPSness condition in [44], is preserved, while we allow for
the conditions corresponding to the calibrations of string-like and domain-wall probe D-
branes to be violated.

In the supersymmetric case, the gauge BPSness condition has been reformulated in [6],
eliminating the explicit metric dependence, and introducing a generalised version of the
Dolbeault operator. We will generalise this derivation to the case of non-supersymmetric
vacua violating the string and domain-wall BPSness conditions.

Within our class of non-supersymmetric backgrounds preserving the gauge BPSness,
we will focus on those who can be dimensionally reduced to four-dimensional N = 1
supergravity solutions with non-vanishing F-terms, and possibly non-vanishing D-terms.
To do so, we require that our set of modified supersymmetry conditions continues to have
an interpretation in terms of either (D-) F-term or (D-) F-term conditions. In particular,
the non-supersymmetric formulation of the gauge BPSness, newly derived, should still be
identified with an F-term condition.

Interestingly, this procedure constrains some supersymmetry breaking terms entering
the modified D-string calibration condition, and therefore the possible D-terms.
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We will give the effective potential and derive the equations of motion for our class of
backgrounds dimensionally reducing to non-supersymmetric solutions of four-dimensional
N = 1 supergravity with non-vanishing F-terms and D-terms, and for a subclass where
the D-term contributions to the effective potential are set to zero on-shell, restoring the
D-string BPSness. Solutions of this kind correspond to vacua with only F-terms, and
include the amply discussed class of no-scale vacua.

A third and last contribution to non-supersymmetric compactifications of type II su-
pergravity presented in this thesis develops the exceptional generalised geometry formal-
ism for non-supersymmetric type II backgrounds. An ambitious goal would be to define a
notion of integrability of a given generalised geometric structure for non-supersymmetric
type II supergravity solutions. This is still work in progress, and for the time being we
investigate in this thesis the torsion associated to a specific non-integrable generalised
structure, with the breaking of supersymmetry obstructing its integrability. We establish
a dictionary between the supersymmetry breaking terms in generalised complex geom-
etry and the torsion associated to the generalised structure in exceptional generalised
geometry.

The outline of this thesis is as follows. In chapter II, we introduce the formalism
of G-structures and apply it to the description of supergravity backgrounds. In chapter
III, we develop the frameworks of both generalised complex geometry and exceptional
generalised geometry, and use them to describe supergravity backgrounds, emphasising
the geometrical interpretation associated to preserving supersymmetry. In chapter IV,
we present our new classes of non-supersymmetric type II backgrounds, and our results
on backgrounds reducing to non-supersymmetric solutions of four-dimensional N = 1
supergravity, notably the derivation of the generalisation of the gauge BPSness condition.
Finally, in chapter V, we construct the exceptional generalised geometry formalism for
non-supersymmetric type II backgrounds.



Chapter II

Supergravity flux backgrounds

In this chapter we introduce solutions of type II supergravity that are relevant for string
compactifications.

We are interested in ten-dimensional solutions of (warped) product type: the geom-
etry they describe is the (warped) product of a four-dimensional maximally symmetric
non-compact space, the external space, and a six-dimensional compact manifold M , the
internal space

ds2
10 = e2A(y)ηµνdxµdxν + gmndymdyn, (II.1)

with xµ, µ = 0, ..., 3 the external coordinates on X4, and ym, m = 1, ..., 6 are the coordi-
nates on M . The external space can be Minkowski or AdS1, but for the rest of this thesis
we focus on compactifications to four-dimensional Minkowski space.

It has been shown that when such a background is supersymmetric, and when the
fluxes satisfy their Bianchi identities, the background will automatically satisfy the equa-
tions of motion [44, 46–50]. One can therefore trade the complicated second order equa-
tions of motion of type II supergravity with the simpler first order supersymmetry con-
ditions (and Bianchi identities), rendering the supersymmetric solutions of type II super-
gravity a favoured corner of the string compactification landscape. The physical scenario
behind such constructions is that supersymmetry is then broken below the compactifi-
cation scale, by some four-dimensional effects, such as gaugino condensation for exam-
ple [51, 52]. We will discuss non-supersymmetric backgrounds, where supersymmetry is
(spontaneously) broken at energies higher than the compactification scale in chapter IV.

Crucially, we must set all fermionic fields to zero in order to preserve the maximal
symmetry of the external Minkowski spacetime. A background will be supersymmetric
if all the supergravity fields are invariant under supersymmetry transformations, namely
if their supersymmetry variations vanish. These depend on a choice of supersymmetry

1Here we don’t discuss the possibility of a dS external spacetime, as it doesn’t allow for supersymmetric
solutions.

7
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parameter ϵ, and schematically they take the following form

δϵ(boson) = ϵ(fermion) δϵ(fermion) = ϵ(boson). (II.2)

The variations of the bosonic fields automatically vanish, given that they always contain a
fermionic field, set to zero for maximally symmetric spacetime. The non-trivial conditions
thus come from the variations of the fermionic fields.

As will be discussed in details later, the supersymmetry conditions in supergravity
can be reformulated as differential conditions on the internal geometry. This is done in
the language of G-structure, which we review in what follows.

II.1 G-structures

In this section we introduce the formalism of G-structures, a framework widely used in
the literature to describe supergravity flux backgrounds [48, 53–59]. Most of the concepts
introduced in this section will be generalised in the next chapter, within the Generalised
Geometry framework.

We carry the discussion for a d-dimensional manifold M , before specialising to d = 6
when discussing supergravity compactification manifolds in the next section.

At each point p of a d-dimensional manifold M , one can define a vector space tangent
to the manifold, the tangent space Tp, whose elements are vectors. The collection of the
tangent spaces at every point on the manifold defines the tangent bundle T . Picking out
in a smooth way a specific vector at every point on the manifold defines a vector field,
which is a section of the tangent bundle, denoted Γ(T ). At each point p, one can similarly
define the space dual to the tangent space, the cotangent space T ∗

p , whose elements are
one-forms, and the corresponding cotangent bundle T ∗.

For a given patch Ui on the manifold, one can define a local frame eim with m = 1, ..., d,
a collection of d-independent vectors spanning T at every point on Ui2, forming a local
basis3. One can thus locally expand a vector on such a basis v = vmi e

i
m, and its expressions

on two overlapping patches are related by

vmi = (Mij)mnv
n
j on Ui ∩ Uj , (II.3)

where generically Mij ∈ GL(d,R). The Mij are called the transition functions and contain
all the topological information of the bundle T .

2One can similarly define a local coframe em
i , spanning T ∗.

3The bundle having the set of all frames as fibres is called the frame bundle associated to the vector
bundle T .
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On a triple overlap they must satisfy the consistency condition

MijMjk = Mik on Ui ∩ Uj ∩ Uk, (II.4)

together with
MijMji = 1. (II.5)

The set of transition functions therefore forms a group, called the structure group. For
the tangent bundle, the structure group is GL(d,R).

However one can repeat the above discussion for any vector space V and its associated
vector bundle, and the transition functions will take values in another group acting on
V . We will do so in the next chapter, introducing several physically interesting vector
bundles.

II.1.1 Definition and examples

Crucially, if a manifold admits a (or several) globally defined tensor ξ which is invariant
under a group G, the structure group reduces to G ⊂ GL(d,R), and is called the G-
structure of the manifold. One can define a corresponding principal G-bundle PG → M ,
a bundle where the fibres are G itself4. In the literature and throughout this thesis, the
G-structure also refers to the corresponding principal G-bundle.

Indeed, given that ξ is globally defined, one can choose a set of frames preserving its
form on the whole manifold. The set of allowed transition functions is then restricted to
the ones preserving said form, which is precisely G.

Note that the converse is also true: in general, tensors on a manifold are representa-
tions of GL(d,R). When the manifold admits a G-structure, the tensors can be written as
irreducible representations of G, and the trivial representations of G form globally defined
trivial bundles, corresponding to the G-invariant tensors.

In supergravity, the physically relevant compactification manifolds will typically admit
globally defined G-invariant tensors, reducing their structure group. We give here a few
examples.

SL(d, R)-structure

The simplest example is the one of orientable manifolds, admitting a globally defined
volume form, invariant under SL(d,R) ⊂ GL(d,R).

O(d)-structure

Manifolds admitting a globally defined, symmetric, positive-definite two-tensor g, a
metric, are called Riemannian manifolds. They admit local frames on every patch, to-

4See [60] for formal details about principal G-bundles.
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gether called a vielbein respecting

emi e
n
j gmn = δij . (II.6)

The structure group thus reduces to O(d). If a Riemannian manifold also admits a globally
defined volume form, its structure group further reduces to SO(d).

Almost complex structure

An almost complex structure is a globally defined endomorphism on the tangent bundle

I : T → T, (II.7)

respecting

I2 = −1. (II.8)

Only manifolds of even dimensions can admit almost complex structures. A manifold
admitting an almost complex structure is called a almost complex manifold. The presence
of an almost complex structure reduces the structure group to GL(d/2,C).

An almost complex structure induces the decomposition of the complexified tangent
bundle into two maximal eigenspaces5

T ⊗ C = T 1,0 ⊕ T 0,1 := L1 ⊕ L−1 , (II.9)

where L±1 is the eigenbundle of eigenvalue ±i under the action of I. These are com-
plex conjugate L̄1 = L−1 and they respect L1 ∩ L−1 = 0. This decomposition allows
for the introduction of holomorphic and anti-holomorphic components, not only on the
complexified tangent bundle, but also on the complexified cotangent bundle

T ∗ ⊗ C = T ∗1,0 ⊕ T ∗0,1 . (II.10)

This induces the decomposition of k-forms into holomorphic and anti-holomorphic com-
ponents: we denote ΛkT ∗ as the bundle of k-forms, and Ωk its global sections, and we
have

ΛkT ∗ = ⊕ki (ΛiT ∗1,0 ⊗ Λk−iT ∗0,1) := ⊕ki Λi,k−iT ∗ . (II.11)

A section of Λp,qT ∗ is denoted as Ωp,q, and called a (p, q)-form. In particular, Λd/2,0T ∗

is called the canonical line bundle. One can define a local frame of d/2 independent

5A subspace is maximal if its dimension is half the dimension of the original space.
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(1, 0)-forms θm ∈ Ω1,0, such that

Ω = θ1 ∧ ... ∧ θd/2 (II.12)

is a local section of the canonical line bundle, which is decomposable6 and non-degenerate

Ω ∧ Ω̄ ̸= 0. (II.13)

SL(d/2, C) structure

Given a GL(d/2,C) structure, if Ω is globally defined, the structure group is further
reduced to SL(d/2,C).

Symplectic structure

A manifold admits a pre-symplectic structure if there exists a globally defined non-
degenerate real two-form J ∈ Ω2. Its non-degeneracy can be expressed as

Jd/2 ̸= 0 . (II.14)

The existence of such a two-form reduces the structure group to Sp(d,R). A manifold
admitting a pre-symplectic structure is called almost symplectic.

U(d/2) structure

A U(d/2) structure on an almost complex manifold is defined by admitting both a
decomposable (d/2, 0)-form Ω and a pre-symplectic form J , compatible with the almost
complex structure, in the sense that

J ∧ Ω = 0 . (II.15)

The forms J and Ω are then simultaneously invariant under the intersection Sp(d,R) ∩
GL(d/2,C) = U(d/2), reducing the structure group to U(d/2). In terms of the local frame
θm introduced above, we have

Ω = θ1 ∧ ... ∧ θd/2 (II.16)

J = − i2
∑
m

θm ∧ θ̄m. (II.17)

Together, the pre-symplectic and almost complex structure define a metric. In indices,
it is given by

gmn = −JmpIpn . (II.18)
6A form is decomposable if it can be locally written as the wedge product of one-forms.
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This metric is hermitian:
gpqI

p
mI

q
n = gmn. (II.19)

SU(d/2) structure

If a manifold admits a U(d/2) structure and if the decomposable (d/2, 0)-form Ω is
globally defined, then the structure groups is further reduced to Sp(d,R) ∩ SL(d/2,C) =
SU(d/2).

One can define an SU(d/2) structure in an alternative way. If the manifold admits
a globally defined chiral pure spinor7 invariant under SU(d/2), the structure group is
reduced to SU(d/2). One can explicitly construct the pre-symplectic two-form and the
(d/2, 0)-form associated with the SU(d/2) structure out of the spinor η

Jmn = iη†γmnη (II.20)

Ωmnp = ηTCγmnpη , (II.21)

where the charge conjugation operator C is defined so that the complex conjugate C−1η∗

of a given spinor η transforms in the same way as η under the Clifford algebra.

II.1.2 Integrability and torsion

Up until this point, we have organised the geometry of d-dimensional manifolds in terms
of the invariant and non-degenerate tensors they admit, stressing the reduction of their
structure group accordingly. In this subsection, we study the differential conditions that
can be imposed on such tensors. These will be of the utmost physical importance, given
that they will be identified with the conditions one has to impose in order to preserve
some amount of supersymmetry, within the context of supergravity8, as will be made
precise later on.

In order to do so, we introduce connections on the tangent bundle. A connection ∇
is a map

∇ : Γ(T )→ Γ(T ⊗ T ∗) (II.22)

satisfying the following derivative property9

∇(fv) = f∇v + v ⊗ df , (II.23)

with v a section of the tangent bundle and f a smooth function on the manifold.
7A spinor η is chiral if γ(d)η = η, with γ(d) the chirality operator, defined in Appendix A.3, together

with the gamma matrices conventions. A spinor is pure if it is annihilated by half of the gamma matrices.
8The presence of non-trivial fluxes will spoil this correspondence, as discussed in the next section.
9Here d is the standard exterior derivative d : Ωn → Ωn+1
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One can then define the torsion of a given connection

T∇(v, w) = ∇vw −∇wv − [v, w] , (II.24)

where [, ] is the usual Lie bracket10.
For a given G-structure, let ξ be an invariant tensor under G. A connection is said to

be compatible with the G-structure if

∇ξ = 0 . (II.25)

A G-structure is then said to be integrable, or torsion-free if there exists a correspond-
ing compatible connection with vanishing torsion.

One can define a notion of torsion associated to a G-structure without resorting to
picking a specific connection. To do so, we start from a given compatible connection ∇,
and we write any compatible connection ∇′ as ∇′ = ∇+ Σ where

Σ = ∇′ −∇ ∈ Γ(KG) with KG = T ∗ ⊗ adPG , (II.26)

and with adPG the adPG-bundle with fibres belonging to the adjoint representation of G.
The torsion of a generic connection will be a section of the bundle

T∇ ∈ Γ(W ) with W = T ⊗ Λ2T ∗ . (II.27)

We then define the map

τ : KG →W

Σ→ τ(Σ) = T∇′ − T∇ , (II.28)

and denoting the vector bundle associated to the image of τ by Imτ = WG, we can define

WG
int = W/WG . (II.29)

WG
int does not depend on the choice of compatible connection, it only depends on the

G-structure. WG
int is the intrinsic torsion of the G-structure.

It will prove to be useful throughout the thesis to decompose the intrinsic torsion of
a given G-structure into irreducible representations of G

WG
int =

⊕
i

Wi. (II.30)

10The Lie bracket is an antisymmetric bracket on T satisfying the Jacobi identity. In coordinates, with
v = vm ∂

∂ym and w = wm ∂
∂ym , it reads [v, w] =

(
vn ∂wm

∂yn − wn ∂vm

∂yn

)
∂

∂ym .
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A torsion-free compatible connection exists if and only if the intrinsic torsion of the G-
structure vanishes.

The requirement for a G-structure to be torsion-free can be formulated as differential
conditions on the G-invariant objects, as we now illustrate for a few examples.

a) Examples

Symplectic structure

For a given connection ∇ compatible with a pre-symplectic structure J : ∇J = 0, one
can show that11

dJ(v, w, u) = J(T∇(v, w), u) + J(T∇(u, v), w) + J(T∇(w, u), v) . (II.31)

A pre-symplectic structure J will therefore be integrable if

dJ = 0 , (II.32)

such that its intrinsic torsion vanishes. This statement depends only on the intrinsic
component of the torsion, since the left-hand side of (II.31) is clearly independent of
the choice of connection. An integrable pre-symplectic structure is called a symplectic
structure.

Complex structure

For a given almost complex structure I, and for any pair v, w of smooth vectors fields,
we introduce the following tensor, the Nijenhuis tensor

NI(v, w) = I[Iv, w] + I[v, Iw]− [Iv, Iw] + [v, w]. (II.33)

Then, introducing a connection∇ compatible with the almost complex structure: ∇I = 0,
one can show that

NI(v, w) = T∇(v, w)− T∇(Iv, Iw) + IT∇(Iv, w) + IT∇(v, Iw) . (II.34)

The almost complex structure will thus be integrable if and only if

NI(v, w) = 0 ∀ v, w ∈ Γ(T ) . (II.35)

Interestingly, this condition is equivalent to

[L1, L1] ⊂ L1 , (II.36)
11Here the three-form and two-forms are taken as the maps T ⊗T ⊗T → R and T ⊗T → R respectively.
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with again L1 the +i-eigenbundle of I. The integrability of the almost complex structure
is hence equivalent to the stability of the L1 bundle under the Lie bracket12, in this case
we say that the bundle L1 is involutive.

Spelling the integrability of an almost complex structure as the involutivity of its
eigenbundles will turn out to be a natural formulation to generalise the notion of inte-
grability in the case of two generalisations of complex structures, the generalised complex
structure and the exceptional complex structure, both discussed in the next chapter.

It is then easy to show that the condition (II.36) is equivalent to

w⌟v⌟dΩ = 0 ∀ v, w ∈ Γ(T 1,0) , (II.37)

which is itself equivalent to

dΩ = θ̄ ∧ Ω with θ̄ ∈ Γ(T ∗0,1). (II.38)

The almost complex structure, or GL(d/2,C) structure, is thus integrable if (II.38) is
respected. It is then called a complex structure.

If we consider again the decomposition (II.11), acting with the exterior derivative on
a (p, q)-form ϕp,q, we find generically

dϕp,q ∈ Ωp+2,q−1 ∪ Ωp+1,q ∪ Ωp,q+1 ∪ Ωp−1,q+2 . (II.39)

However, if the complex structure is integrable, this decomposition reduces to

dϕp,q ∈ Ωp+1,q ∪ Ωp,q+1 , (II.40)

and the exterior derivative decomposes into the Dolbeault operators ∂ and ∂̄

d = ∂ + ∂̄ , (II.41)

with
∂ : Ωp,q → Ωp+1,q ∂̄ : Ωp,q → Ωp,q+1. (II.42)

SL(d/2, C) structure

Given an integrable GL(d/2,C) structure, it is straightforward to see that the right-
hand side of (II.38) actually belongs to the SL(d/2,C) intrinsic torsion. An SL(d/2,C)
structure will therefore be integrable if and only if one imposes the stronger condition

dΩ = 0 . (II.43)
12Or equivalently the stability of the L−1 bundle under the Lie bracket.
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Just as the integrability of a complex structure can be formulated geometrically, as the
involutivity of its subbundles, the further requirement for an SL(d/2,C) to be integrable
also has a geometrical interpretation, as the vanishing of a moment map13.

For an SL(d/2,C) structure, a choice of Ω at a point p ∈M is equivalent to picking a
point in the coset

Ω|p ∈ QSL(d/2,C) = GL(d/2,C)
SL(d/2,C) . (II.45)

The choice of an SL(d/2,C) structure on M therefore corresponds to a section of the fibre
bundle

QSL(d/2,C) → QSL(d/2,C) →M (II.46)

and we can identify the space of SL(d/2,C) structures as Z ≃ Γ(QSL(d/2,C)). One can
also restrict to the space of SL(d/2,C) structures with an integrable associated complex
structure

Ẑ = {Ω ∈ Z | I is integrable} . (II.47)

Crucially, the space Ẑ inherits a symplectic structure from the symplectic structure on
the coset space QSL(d/2,C). One can therefore define the following moment map [61]

µ : Ẑ → diff∗ (II.48)

for the action of diffeomorphisms, where diff is the Lie algebra of diffeomorphisms, and
where

µ(V ) =
∫
M
LV Ω ∧ Ω̄ , (II.49)

with V ∈ Γ(T ) and LV the standard Lie derivative acting on a p-form ω as LV ω =
{d, V ⌟}ω. Using the integrability of the complex structure (II.38), one can show that
imposing the vanishing of the moment map (II.49) results in θ̄ = 0 and thus

dΩ = 0 . (II.50)

The vanishing of the moment map hence imposes the final condition that promotes a
complex structure to a torsion-free SL(d/2,C) structure.

This interpretation of the integrability of an SL(d/2,C) structure as the involutivity
of the complex structure subbundles and the vanishing of a moment map for the diffeo-

13Given a Lie group G, its algebra g and dual algebra g∗, with the action of G on a symplectic manifold
M preserving the symplectic form J , the moment map for the G-action is a map

µ : M → g∗ (II.44)

such that d(⟨µ, ξ⟩) = ρ(ξ)⌟J , with ξ ∈ g, ρ(ξ) a vector field on M induced by the infinitesimal action of
ξ, and here ⟨,⟩ : g∗ × g → R.
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morphisms action will also turn out to have a natural generalisation when discussing the
integrability of the generalised versions of the complex and SL(d/2,C) structures, as will
be discussed in the next chapter.

SU(3) structure

Given that this is a standard example widely used throughout this thesis, we specialise
here to d = 6 and discuss the case of SU(3) structures.

The intrinsic torsion of an SU(3) structure WG
int can be shown to decompose into SU(3)

irreducible representations as [62]

WG
int ∼ (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6̄)⊕ 2(3⊕ 3̄) . (II.51)

The intrinsic torsion of an SU(3) structure can thus be represented as 5 tensors W1, ...,W5.
W1 ∈ 1⊕1 is a complex scalar, W2 ∈ 8⊕8 is a complex primitive (1, 1)-form14, W3 ∈ 6⊕6̄
is a real primitive (2, 1) + (1, 2) form, and W4, W5 are real one-forms. One can show that
they obey

dJ = 3
2 Im(W̄1Ω) +W4 ∧ J +W3 (II.52)

dΩ = W1J ∧ J +W2 ∧ J + W̄5 ∧ Ω . (II.53)

Hence an SU(3) structure is integrable if and only if

dJ = 0 dΩ = 0 . (II.54)

More generally, table II.1 below describes the possible geometries arising for various tor-
sion class configurations [63].

II.2 Supersymmetric Flux Backgrounds

In this section, we show how supersymmetry conditions for string compactifications are
described in terms of G-structure. We start with fluxless compactifications before treating
flux compactifications, discussing the interplay between physical fluxes and the integra-
bility of the structures on the compactification manifold.

II.2.1 Fluxless Compactifications

We first consider type II backgrounds where the supergravity fluxes are set to zero. The
only bosonic fields are thus the metric and the dilaton. As for the fermions, there are two

14A primitive form ω obeys ω ∧ J = 0.
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Geometry Torsion Classes
Complex W1 = W2 = 0

Symplectic W1 = W3 = W4 = 0
Half Flat ImW1 = ImW2 = W4 = W5 = 0

Special hermitian W1 = W2 = W4 = W5 = 0
Nearly Kähler W2 = W3 = W4 = W5 = 0
Almost Kähler W1 = W3 = W4 = W5 = 0

Kähler W1 = W2 = W3 = W4 = 0
Calabi-Yau W1 = W2 = W3 = W4 = W5 = 0

Conformal Calabi-Yau W1 = W2 = W3 = 3W4 − 2W5 = 0.

Table II.1: Different geometries of six-dimensional manifolds with an SU(3) structure
depending on their SU(3) torsion classes.

gravitinos ψiM with M = 1, ..., 10 ten-dimensional indices and two dilatinos λi of opposite
(the same) chirality for type IIA (IIB). Given two ten-dimensional Majorana-Weyl spinors
ϵi of opposite (the same) chirality for type IIA (IIB), the supersymmetry conditions are
[64, 65]

δϵψ
i
M = ∇̂M ϵi (II.55)

δϵλ
i = (��̂∇ϕ)ϵi (II.56)

where ∇̂M is the ten-dimensional Levi-Civita connection, ϕ is the dilaton and where for
a p-form ω the slash symbol denotes

/ω = 1
p!ωM1...MpΓM1...Mp , (II.57)

with Γ the ten-dimensional gamma matrices.

We consider the ten-dimensional space-time to be the product of a four-dimensional
Minkowski space X4 and a six-dimensional compact manifold M , with the following metric
ansatz

ds2
10 = ηµνdxµdxν + gmndymdyn, (II.58)

where xµ, µ = 0, ..., 3 are the external coordinates on X4, and ym, m = 1, ..., 6 are
the coordinates on M . The supersymmetry parameters decompose accordingly under
Spin(9, 1)→ Spin(3, 1)× Spin(6) as

ϵ1 = ζ ⊗ η1 + c.c. ϵ2 = ζ ⊗ η2 + c.c. (II.59)
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where ζ is a Weyl spinor of positive chirality on X4, and η1 and η2 are Weyl spinors on the
six-dimensional internal space. η1 has positive chirality, while η2 has negative chirality in
type IIA and positive chirality in type IIB.

The presence of nowhere vanishing spinor fields on M imposes a reduction of the
structure group of M to a subgroup of Spin(6) ≃ SU(4). Seen as four-dimensional Weyl
spinors, each internal spinor has an SU(3) stabiliser group, reducing the structure group
of M to SU(3). The two internal spinors can be parallel, nowhere parallel or a mix of
the two depending on the position on the manifold. If they are nowhere parallel, the
intersection of their SU(3) structures defines an SU(2) structure. We will return to this
case in chapter IV, and we focus here on the case where the spinors are parallel, and M

has an SU(3) structure group. Without loss of generality we consider η1 = η2 := η in type
IIB15 and normalise it to one. We write the pre-symplectic two-form and the (3, 0)-form
associated with the SU(3) structure in terms of the spinor η

Jmn = iη†γmnη (II.60)

Ωmnp = ηTγmnpη . (II.61)

The supersymmetry condition (II.55) then decomposes into

∇̃ζ = 0 ∇η = 0 (II.62)

with ∇̃ the four-dimensional Levi-Civita and ∇ the six-dimensional one. ζ is hence a
constant spinor on X4 and η is constant on M . The constant external spinor ζ generates
the N = 1 rigid supersymmetry of the effective theory.

The second condition in (II.62) translates into

dJ = 0 dΩ = 0 . (II.63)

Imposing a fluxless background with parallel internal spinors to be supersymmetric is
therefore equivalent to requiring its SU(3) structure to be integrable.

II.2.2 Compactifications with Fluxes

A key aspect of compactifications is the fact that the moduli associated to M (for ex-
ample the volume of the internal space) are associated to massless scalar fields in the
corresponding low-energy effective theories. Phenomenology thus dictates the need for
these moduli to be stabilised via a potential, for instance. At the classical level this is
typically done through the introduction of fluxes: non-vanishing p-form field-strengths

15In type IIA one would have η1 = η∗
2 := η
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along cycles of the compact space, such that they generate the appropriate potential for
the moduli. We are thus led to the investigation of type II supergravity backgrounds with
non-trivial fluxes.

It is important to recall that type II compactifications to Minkowski space with non-
trivial fluxes must have some negative contributions to the energy momentum tensor
[66, 67], which is typically realised through the introduction of Orientifold Planes [68].
In that context, it is important to note that the discussion below and throughout the
thesis only holds to describe the geometry of the compactification manifold away from
the sources.

We start by quickly reviewing the bosonic content of type II supergravity with fluxes.
The bosonic sector of type II supergravity is composed of the NS sector and the RR
sector, given that the fields originate from states in the String Theory that obey NS-NS
or R-R boundary conditions. The NS sector contains the metric, the dilaton, and the NS
three-form flux, which can locally be written

H = dB (II.64)

away from the NS sources, with B its two-form potential.
The RR sector contains the RR field-strength: we use the democratic formulation of

[69], where
F 10 =

∑
q

F 10
q (II.65)

with q = 0, 2, ...10 for type IIA and q = 1, 3, ...9 for type IIB. These fields obey the
following self-duality condition

F 10 = ∗̃F 10 , (II.66)

with the Hodge operator ∗̃ defined in Appendix A. Away from the RR sources, we write
the RR fluxes from the RR potentials as

F 10 = dC +H ∧ C (II.67)

with C =
∑
q Cq−1.

We now specify the compactification ansatz: we consider type II solutions that are the
warped product of four-dimensional Minkowski space X4 and a six-dimensional compact
manifold M , with the following metric

ds2
10 = e2A(y)ηµνdxµdxν + gmndymdyn, (II.68)

where again xµ, µ = 0, ..., 3 are the external coordinates on X4, and ym, m = 1, ..., 6 are
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the coordinates on M .
The Poincaré invariance of X4 constrains the NS and RR-fluxes: the NS-field-strength

H can only have internal legs, and the ten-dimensional RR-field-strength must take the
form

F 10 = F + e4Avol4 ∧ F̃ , (II.69)

with vol4 the volume form on X4 and where F and F̃ are purely internal and are related
by the self-duality of F 10 (II.66) as

F̃ = ∗̃6F , (II.70)

with ∗̃6 defined in Appendix A.

Preserving N = 1 supersymmetry amounts to the vanishing of the following gravitinos
and dilatinos variations

δϵψM =
(
∇M + 1

4 ιM
/Hσ3 + eϕ

16

(
0 /F

10

−σ(/F 10) 0

)
ΓMΓ(10)

)(
ϵ1

ϵ2

)
(II.71)

δϵλ =
(
/∂ϕ+ 1

2
/Hσ3 + eϕ

16ΓM
(

0 /F
10

−σ(/F 10) 0

)
ΓMΓ(10)

)(
ϵ1

ϵ2

)
, (II.72)

with σ the reversal of all form indices, and where ϵ1 and ϵ2 are again ten-dimensional
Majorana-Weyl spinors. The spinors ϵ1 and ϵ2 again split in the following way

ϵ1 = ζ ⊗ η1 + c.c. ϵ2 = ζ ⊗ η2 + c.c. (II.73)

where ζ is a Weyl spinor of positive chirality on X4, and η1 and η2 are Weyl spinors on
the six-dimensional internal space. η1 has again positive chirality, while η2 has negative
chirality in type IIA and positive chirality in type IIB. We focus here on the case where
the internal spinors are parallel, and M has an SU(3) structure group, taking η1 = η2 := η

in type IIB16 and normalising it to one.
We then split the supersymmetry conditions (II.71), (II.72) into internal and external

components. The external spinor again has to be constant, while we get a complicated
set of conditions on the internal spinor.

Crucially, the six-dimensional Levi-Civita connection is no longer compatible with
the internal spinor, and the lack of compatibility precisely comes from the non-vanishing
fluxes, which thus arrange themselves into the torsion classes of the SU(3) structure.

Defining again the pre-symplectic two-form and the (3, 0)-form associated with the
SU(3) structure in terms of the spinor η, as in (II.60), (II.61), recall from the discussion

16In type IIA one would have η1 = η∗
2 := η
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of SU(3) structures that we generically have

dJ = 3
2 Im(W̄1Ω) +W4 ∧ J +W3 (II.74)

dΩ = W1J ∧ J +W2 ∧ J + W̄5 ∧ Ω . (II.75)

For a given background, the non-vanishing torsion classes are completely defined by the
fluxes. Solutions to these supersymmetry conditions with different fluxes configurations
have been studied in depth in the literature [56, 70–76], while a summary of all possible
N = 1 Minkowski SU(3) flux backgrounds have been presented in [77]. We won’t give
here the different solutions and the expressions of their torsion classes in terms of the
fluxes, since these are rather convoluted. We instead display a few solutions in terms of
their vanishing torsion classes

IIA IIB
W1 = W2 = 0, W̄5 = 2W4 W1 = W2 = 0, W̄5 = 2W4

W1 = W3 = W4 = 0 W1 = W2 = W3 = 0
W1 = W2 = W3 = 0.

Each line corresponds to the torsion classes configuration for a given class of solutions,
where the non-vanishing torsion classes are defined by the fluxes. Recalling table II.1, we
see that for type IIA, the compactification manifold is either complex or symplectic. For
type IIB however, the compactification manifold is always complex but it might have a
more refined structure depending on which other torsion classes vanish. It is important
to note that the IIB cases are not exhaustive since there exist solutions that interpolate
between the different cases [78].



Chapter III

Generalised Geometry and Supersym-
metry

As we discussed in the previous chapter, for a given supergravity background, the presence
of fluxes spoils the integrability of the corresponding G-structure on the compactification
manifold. Studying non-integrable G-structures turns out to be a complicated task: clas-
sifying the torsion classes can be an involved process, and the moduli space of such
structures is largely unknown except for some specific simple cases. The G-structure for-
malism thus suffers from important limitations to draw a complete picture of the geometry
of supergravity backgrounds.

Fortunately, these limitations can be circumvented in the formalism of generalised
geometry, which naturally generalises the concept of G-structures. In generalised ge-
ometry, instead of the tangent bundle, one defines structures on a more general bundle
E → M . The generalised geometry is then organised in terms of an enlarged structure
group GL(d,R) ⊂ G ⊂ GL(rkE,R), and the generalised structures on E are subgroups of
G.

Crucially, for the appropriate generalised geometry, one can define a notion of integra-
bility for a given generalised structure, even in the presence of fluxes. Roughly speaking,
such generalised geometries "geometrise the fluxes", in a sense that will be made precise
later on. Studying integrable generalised structures has significantly shed some light on
the geometries of flux backgrounds [1, 61, 77, 79, 80].

Two specific generalised geometries are of particular importance to describe type II
supergravity compactification manifolds: G ≡ O(d, d) [81] and G ≡ Ed+1(d+1) [37].

O(d, d) generalised geometry geometrises the NS fluxes, while non-vanishing RR fluxes
obstruct the involutivity of the corresponding generalised structure, and Ed+1(d+1) gen-
eralised geometry geometrises both the NS and RR sectors, it therefore has integrable
generalised structures describing flux backgrounds. We introduce both generalised geome-

23
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tries in this chapter, before discussing the interplay between the fluxes, supersymmetry,
and the integrability of the generalised structures.

III.1 O(6,6) Generalised Geometry

In this section we introduce O(d, d) generalised geometry, also referred to as generalised
complex geometry, before specialising to six-dimensional compactification manifolds in
order to connect with supergravity flux backgrounds compactified to four-dimensional
Minkowski spacetime. We then discuss the relationship between supersymmetry and inte-
grability of the generalised structures, and comment on the geometries of non-supersymmetric
flux backgrounds.

III.1.1 Generalised Complex Geometry

In Generalised Complex Geometry, as introduced in [34, 35], one replaces the tangent
bundle of the internal manifold with a generalised tangent bundle, which is the sum of the
tangent and cotangent bundle

E = T ⊕ T ∗ , (III.1)

and whose sections are thus sums of vectors and one-forms

V = v + ξ ∈ Γ(E). (III.2)

There is a natural inner product defined on the generalised tangent bundle: for two
generalised vectors V = v + ξ ∈ Γ(E) and W = w + ρ ∈ Γ(E), it is

η(V,W ) := 1
2(v⌟ρ+ w⌟ξ). (III.3)

Using a two-component notation for the generalised vectors

V = v + ξ ≡
(
v

ξ

)
, (III.4)

we can write it as

η(, ) = 1
2

(
0 1

1 0

)
, (III.5)

which is clearly invariant under O(d, d), where d is the dimension of the manifold. The
structure group on the generalised tangent bundle is therefore not generic, but reduces to
O(d, d)1.

1Actually the inner product η(, ) defines a globally defined volume form on E, so the structure group
further reduces to SO(d, d)
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Considering E as an O(d, d) frame bundle F̃ , one can parametrise the corresponding
adjoint representation of the o(d, d) algebra in terms of gl(d,R) representations as the
following bundle

ad F̃ = (T ⊗ T ∗)⊕ Λ2T ⊕ Λ2T ∗. (III.6)

It has a natural action on the generalised tangent bundle (and on itself) given in Appendix
B.1.

a) The Dorfman derivative

The bundle E admits a derivative operator, called the Dorfman derivative or Generalised
Lie derivative, as it is the Generalised Geometry analogue of the standard Lie derivative.
It acts on generalised vectors as

LVW = Lvw + Lvρ− w⌟dξ (III.7)

Defining a natural projection a : E → T , commonly called the anchor map, the
collection (E, η, L, a) is a Leibniz Algebroid [82].

One can define an antisymmetric bracket on E as

JV,W K = 1
2(LVW − LWV ) (III.8)

= [v, w] + Lvρ− Lwξ −
1
2d(v⌟ρ− w⌟ξ) (III.9)

called the Courant bracket. The collection (E, η, J, K, a) is then a Courant algebroid [83].
Crucially, this is not a Lie algebroid, given that the Courant bracket fails to satisfy

the Jacobi identity

Jac(X,Y, Z) := JX, JY,ZKK + cyclic perms (III.10)

= 1
3d(η(JX,Y K, Z) + cyclic perms) , (III.11)

and is therefore not a Lie bracket.
On another note, using the adjoint action defined in Appendix B.1, we can evaluate

the following derivative

LeB ·V (eB ·W ) = eB · LVW + w⌟v⌟dB , (III.12)

where B is a two-form and · denotes the adjoint action.
The Dorfman derivative is therefore covariant under such a transformation if B is

closed B ∈ Ω2
cl. Moreover, the Dorfman derivative is obviously covariant under diffeo-
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morphism transformations. We call the set of symmetries of the Dorfman derivative the
generalised diffeomorphisms. It is thus given by the following semi-direct product

GDiff = Diff ⋉ Ω2
cl ∼ Diff ⋉ Ω2

ex, (III.13)

where the second expression is only valid on local patches. This is exactly the set of trans-
formations generated by LV in (III.7). One can hence think about O(d, d) Generalised
Geometry as a way to locally geometrise the two-form gauge transformations, through
their inclusion in a natural generalisation of the diffeomorphism transformations.

The expression (III.12) motivates the definition of an alternative derivative, given a
three-form H

LHV W = LVW + w⌟v⌟H. (III.14)

However H must be closed H ∈ Ω3
cl in order for this derivative to satisfy the required

Leibniz property. We call LH the H-twisted Dorfman derivative2. It has the same set of
symmetries as the Dorfman derivative (III.13).

On a local patch Ui ⊂ M, one can always write the three-form H as H = dBi with
Bi ∈ Ω2(Ui). The H-twisted Dorfman derivative can then locally be written from the
untwisted one as

LHV W = e−Bi · LeBi ·V (eBi ·W ). (III.15)

In order for this picture to be coherent globally we must have, on the overlap of two
patches

V = eBi(vi + ξi) = eBj (vj + ξj) on Ui ∩ Uj , (III.16)

where the two-form potentials are related by an exact two-form Bj = Bi + dΛji. This
ensures that the sections of E are globally defined. This imposes

xi = xj (III.17)

ξi = ξj + xj⌟dΛji. (III.18)

This means that the Vi = vi+ ξi are local sections of a bundle EH defined as an extension
of the tangent bundle by the cotangent bundle

0 −→ T ∗ −→ EH
a−−→ T −→ 0. (III.19)

We therefore have two equivalent pictures, corresponding to the two equivalent Leibniz
algebroid

(E,LH) ←→ (EH , L) , (III.20)

2As in (III.8), one can define an alternative Courant bracket, the H-twisted Courant bracket J, KH .
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with the isomorphism between them being defined by the three-form flux H.
To be more precise, the two-form potential B actually has the interpretation of a

connection on a gerbe [84], defined by the following condition on a triple overlap

Λji + Λik + Λkj = dΛkji on Ui ∩ Uj ∩ Uk. (III.21)

b) Generalised Complex Structure

One can define a structure on the generalised tangent bundle which naturally generalises
the complex structure on the tangent bundle. It is called a generalised complex structure.
First, an almost generalised complex structure is an endomorphism on E

J : E → E, (III.22)

respecting

J 2 = −1 η(J · V,J ·W ) = η(V,W ). (III.23)

It is thus simply an almost complex structure on E preserving the O(d, d) structure.
Unlike the ordinary complex structure case, the presence of an almost generalised

complex structure reduces the structure group to U(d2 ,
d
2) ⊂O(d, d).

In the two components notation, (III.23) implies that we can always write the almost
generalised complex structure as

J =
(
−I P

L IT

)
, (III.24)

where P and L are a two-vector and a two-form respectively. An (almost) generalised
complex structure induces the decomposition of the complexified generalised tangent space
into two maximal eigenspaces

E ⊗ C = L1 ⊕ L−1 , (III.25)

where L±1 is the eigenbundle of eigenvalue ±i under the action of J . They are complex
conjugate L̄1 = L−1 and they respect L1 ∩ L−1 = 0. Moreover, it follows immediately
from (III.23) that

η(L1, L1) = 0. (III.26)

The bundle L1 is therefore said to be isotropic.
It is important to note that the subbundle L1 (or likewise L−1) and the properties it

respects equivalently define a generalised complex structure.

Indeed, a generalised complex structure is defined by a subbundle L ⊂ EC such that
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i) L is maximal and isotropic
ii) L ∩ L̄ = 0.

A structure satisfying only the first property is called a Dirac structure [81].
In complete analogy with the complex structure case, an almost generalised com-

plex structure is said to be integrable, or simply a generalised complex structure, if the
subbundle L1 is involutive under the Courant bracket

JL1, L1K ⊂ L1. (III.27)

In that case, one can define the restriction of the Courant bracket on L1, and given that
L1 is an isotropic space, the Jacobiator (III.11) vanishes and the algebroid (L1, η, J, K, a)
is thus a Lie algebroid. One can then naturally define a notion of exterior derivative on
the space of forms of L1, as shown in [35].

Finally, lets mention that the usual complex and symplectic structures naturally em-
bed as special cases of generalised complex structures. Indeed, an almost complex struc-
ture I defines an almost generalised complex structure as

JI =
(
−I 0
0 IT

)
L1 = T 1,0 ⊕ T ∗0,1, (III.28)

and the almost generalised complex structure is only integrable if the almost complex
structure is integrable.

A symplectic structure J defines a generalised complex structure as

JJ =
(

0 J−1

J 0

)
L1 = eiJ · TC (III.29)

and the almost generalised complex structure is only integrable if the pre-symplectic
structure is integrable.

c) Spinors on EH

One can naturally define a Clifford algebra on EH , as

{ΓM ,ΓN} = 2ηMN , (III.30)

where M = 1, ..., 2d are O(d, d) indices, {ΓM} is a basis on EH and ηMN = η(ΓM ,ΓN ).
It is therefore a Cliff(d, d) algebra, and one can naturally define spinors on EH , as the
spinor representation of this algebra.

To do so, we introduce the following Clifford action of sections of EH on sections of
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Λ•T ∗, the exterior algebra of T ∗

/VΨ = v⌟Ψ + ξ ∧Ψ V ∈ Λ(EH), Ψ ∈ Γ(Λ•T ∗) . (III.31)

Here we denoted this action using the slashed notation in reference to the usual notation
of contraction with gamma matrices.

It immediately follows that this action is compatible with the Clifford algebra

����{V,W}Ψ = 2η(V,W )Ψ ∀V,W ∈ Λ(EH), Ψ ∈ Γ(Λ•T ∗) . (III.32)

It would therefore be natural to identify the spinors on EH as being sections of Λ•T ∗.
However, the spinorial representation of Λ•T ∗ actually transforms under the gl(d,R) ad-
joint action as

/AΨ = A ·Ψ + 1
2TrAΨ , (III.33)

where here · denotes the standard gl(d,R) adjoint action on polyforms. As a representation
of Spin(d, d), the spinor bundle S(EH) is thus isomorphic to Λ•T ∗ ⊗ (detT )1/2. We can
compensate this detT factor by the inclusion of an appropriate R+ factor in the structure
group, which physically corresponds to the trombone symmetry of supergravity. The
spinor bundle can hence take the form

S(EH) ≃ Λ•T ∗. (III.34)

The exterior algebra Λ•T ∗ can be decomposed into irreducible Spin(d, d) representations

S(EH) := S+(EH)⊕ S−(EH) ≃ Λ+T ∗ ⊕ Λ−T ∗, (III.35)

where Λ±T ∗ are the bundles of even/odd forms. The bundles S+(EH) and S−(EH) are
said to be of positive and negative chirality, respectively.

The Spin(d, d) spinor bundle are only locally defined: on the overlap of two patches
Ui and Uj , where the B-field glues as Bj = Bi + dΛji, the spinors satisfy the following
gluing condition

Ψj = edΛji ·Ψi on Ui ∩ Uj . (III.36)

One can define a bilinear form on the space of polyforms, taking value in detT ∗, the
Mukai pairing

⟨ω, χ⟩ = [ω ∧ σ(χ)]top, (III.37)

for ω, χ ∈ Γ(Λ•T ∗), where the top subscript means the projection onto the top form
component, and where σ acts as the reversal of all form indices σ(ωp) = (−1)Int[p/2]ωp.
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The Mukai pairing is invariant under O(d, d) actions, and it respects

⟨ /VΨ1,Ψ2⟩ = (−1)d+1 ⟨Ψ1, /VΨ2⟩ (III.38)∫
M
⟨dΨ1,Ψ2⟩ = (−1)d

∫
M
⟨Ψ1,dΨ2⟩ , (III.39)

where the derivative on the spinors is the usual exterior derivative on forms, which maps
spinors with positive chirality to spinors with negative one and vice versa

d : S±(EH)→ S∓(EH). (III.40)

One can similarly define spinors on the untwisted bundle E. If one locally writes the
three-form H on a patch Ui as H = dBi, we define

Ψ(EH)i = eBi ·Ψ(E). (III.41)

We therefore also have
S(E) ≃ Λ•T ∗ (III.42)

and its decomposition into irreducible Spin(d, d) representations

S(E) := S+(E)⊕ S−(E) ≃ Λ+T ∗ ⊕ Λ−T ∗ (III.43)

As opposed to the twisted spinors, the spinors on E are globally defined. The definition
of a derivative on the untwisted spinors naturally follows from (III.41)

dH := d +H∧ : S±(E)→ S∓(E). (III.44)

While the exterior derivative d is the differential associated to the untwisted Courant
bracket, dH is the one associated to the H-twisted Courant bracket.

On another note, one can define a natural action of (almost) generalised complex
structures on the space of differential forms3

J · = 1
2
(
Jmne

m ∧ en ∧+2Imn[en∧, em⌟] + Pmnem⌟en⌟
)
. (III.45)

An (almost) generalised complex structure determines an alternative grading of the spinor
bundle

Λ•T ∗ ⊗ C =
⊕

− d
2 ≤k≤ d

2

Sk, (III.46)

with k the eigenvalues of the eigenspaces Sk of J , which are representations of the U(d2 ,
d
2)

3We introduce here a frame {em} of T and its dual coframe {em} on T ∗.
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structure group associated with J .
For example, in the case of the (almost) generalised complex structure associated to

an almost complex structure, its relation with the standard Hodge decomposition is

Sk =
⊕
p

Λ
d
2 −p, d

2 −k−p, (III.47)

where Λ
d
2 −p, d

2 −k−p are sections of the (p, q)-forms defined by the standard associated
(almost) complex structure.

Decomposing the action of the exterior derivatives on the twisted and untwisted spinor
bundles gives

d : Sk(EH)→Sk−3(EH)⊕ Sk−1(EH)⊕ Sk+1(EH)⊕ Sk+3(EH) (III.48)

dH : Sk(E)→Sk−3(E)⊕ Sk−1(E)⊕ Sk+1(E)⊕ Sk+3(E). (III.49)

c).1 Pure spinors
One can define a subset of the spinors on EH (or E), the pure spinors as the vacuum of the
Cliff(d, d) algebra, in the sense that the pure spinors will be annihilated by d independent
generators of Cliff(d, d). We call the subbundle of EH ⊗ C annihilating a given spinor its
annihilator space

LΨ = {V ∈ EH ⊗ C : /VΨ = 0}, (III.50)

which is thus d dimensional for pure spinors. Importantly, given that sections of EH
acting on spinors obey the Clifford algebra (III.32), the bundle LΨ is isotropic. Moreover,
if a pure spinor is complex and obeys

⟨Ψ, Ψ̄⟩ ≠ 0, (III.51)

its annihilator space respects LΨ ∩ L̄Ψ = 0. Such a pure spinor is called a non-degenerate
pure spinor.

A non-degenerate pure spinor Ψ therefore defines a maximal isotropic bundle obeying
LΨ ∩ L̄Ψ = 0, it thus defines a generalised complex structure J as

LΨ = L1 , (III.52)

with L1 the eigenbundle of charge +i with respect to J .
Given that the normalisation of Ψ plays no role in defining LΨ, an (almost) generalised

complex structure is hence in one-to-one correspondence with the line-bundle of a pure
spinor.

It is insightful to reformulate the integrability condition of a given almost generalised
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complex structure J as a differential condition on its associated pure spinor Ψ(E)4. The
condition (III.27) reads

����JV,W KHΨ = 0 ∀V,W ∈ Γ(E). (III.53)

This is equivalent to
dHΨ = /VΨ forV ∈ Γ(E). (III.54)

Hence the almost generalised complex structure associated to a pure spinor respecting
(III.54) is integrable5.

The integrability of the generalised complex structure (III.54) implies that the H-
twisted exterior derivative behaves as

dH : Sk(E)→ Sk−1(E)⊕ Sk+1(E) , (III.55)

as opposed to the case where the generalised complex structure is non-integrable (III.49).
This allows for a decomposition of the exterior derivative in terms of the generalised
analogues of the Dolbeault operators

dH = ∂H + ∂̄H ∂H : Sk(E)→ Sk+1(E) ∂̄H : Sk(E)→ Sk−1(E). (III.56)

d) Generalised Calabi-Yau structure

As we mentioned above, a non-degenerate pure spinor Ψ reduces the structure group
on E to U(d/2, d/2). If Ψ is globally defined, the structure group is further reduced to
SU(d/2, d/2). An SU(d/2, d/2) structure is called a generalised Calabi-Yau structure. A
generalised Calabi-Yau structure is integrable if

dHΨ = 0 . (III.57)

The relationship between a generalised complex structure and a generalised Calabi-Yau
structure is analogous to the relationship between a complex and an SL(d/2,C) structure,
discussed in the previous chapter.

e) Compatible Generalised Complex Structures

One can consider the case where a manifold admits several generalised complex structures.
In type II supergravity, a physically crucial case is the one where the manifold admits two

4A similar condition could be written on the twisted pure spinor Ψ(EH). We denote Ψ(E) as Ψ in the
following.

5Note that (III.54) is independent of the specific choice of the local section Ψ of the line bundle defined
by J . The associated condition on the twisted spinor is simply dΨ = /V Ψ for V ∈ Γ(EH).
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generalised complex structures, that are said to be compatible. Two generalised complex
structures are compatible if they commute

[J1,J2] = 0. (III.58)

Each generalised complex structure determines a specific grading of the space of forms

Λ•T ∗ ⊗ C =
⊕

− d
2 ≤k≤ d

2

S1
k =

⊕
− d

2 ≤k≤ d
2

S2
k . (III.59)

In terms of the associated pure spinors, the compatibility condition translates as

Ψ1 ∈ Γ(S2
0) Ψ2 ∈ Γ(S1

0), (III.60)

and two pure spinors respecting (III.60) are compatible. The presence of two compatible
pure spinors reduces the structure group to U(d2)×U(d2) ⊂O(d, d), and if the pure spinors
are nowhere vanishing and globally defined, it further reduces to an SU(d2)×SU(d2) struc-
ture.

The condition (III.60) implies that the pure spinors share d
2 annihilators, and there is

a double grading of the space of forms as

Λ•T ∗M⊗ C =
d
2⊕

k=− d
2

d
2⊕

l=− d
2

Sk,l, (III.61)

where k and l denote the eigenvalues with respect to J1 and J2, and for a given value of
k and l, the Sk,l are irreducible representations of the SU(d2)×SU(d2) structure.

III.1.2 Generalised structures of supersymmetric backgrounds

In this subsection, we revisit type II solutions that are the warped product of four-
dimensional Minkowski space X4 and a six-dimensional compact manifold M , with the
following metric

ds2
10 = e2A(y)ηµνdxµdxν + gmndymdyn, (III.62)

where again xµ, µ = 0, ..., 3 are the external coordinates on X4, and ym, m = 1, ..., 6
are the coordinates on M . We will describe such backgrounds using the formalism of
O(6, 6) generalised geometry, specialising the results of the above subsection to the six-
dimensional compactification manifold. The framework of O(6, 6) generalised geometry
has been successfully used for example to classify [77, 85] and derive new type II flux
backgrounds [44, 85, 86].

Recall that the Poincaré invariance of X4 constrains the NS and RR-fluxes: the NS-
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field-strength H can only have internal legs, and the ten-dimensional RR-field-strength
takes the form

F 10 = F + e4Avol4 ∧ F̃ , (III.63)

where F and F̃ are purely internal and obey

F̃ = ∗̃6F . (III.64)

We recall the split of the ten-dimensional spinors ϵ1 and ϵ2

ϵ1 = ζ ⊗ η1 + c.c. ϵ2 = ζ ⊗ η2 + c.c. (III.65)

From now on we take the internal spinors to be globally defined, such that they each
define an SU(3) structure on M . It is also important to note that the two six-dimensional
internal spinors must have the same norm in order to admit supersymmetric sources6 [2],
which we denote ∥η1,2∥.

In order to make contact with the formalism of generalised complex geometry, we
introduce the following objects

Ψ1 =− 8i
∥η1,2∥2

η1 ⊗ η†
2 (III.66)

Ψ2 =− 8i
∥η1,2∥2

η1 ⊗ ηT2 . (III.67)

One should think of these tensor products in terms of the following Fierz identity

η ⊗ χ =
6∑

k=0

1
k!
(
χ†γmk...m1η

)
γm1...mk , (III.68)

for two spinors η and χ. The conventions for the internal gamma matrices are given in
Appendix A. These tensor products are then isomorphic to polyforms through the Clifford
map (A.34), so we treat them as such from now on. Through (III.42), we interpret these
polyforms as spinors on E = T⊕T ∗, the generalised tangent bundle of the six-dimensional
compactification manifold.

The spinors Ψ1 and Ψ2 are odd/even and even/odd in type IIA/IIB, respectively

Ψ1 = Ψ∓, Ψ2 = Ψ± , (III.69)

and they are normalised such that

⟨Ψ1, Ψ̄1⟩ = ⟨Ψ2, Ψ̄2⟩ = −8ivol6 , (III.70)
6Supersymmetric sources of type II supergravity will be discussed in the next chapter.
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with vol6 the volume form on M in the string frame. Finally, it follows directly from
(III.66) and (III.67) that the spinors Ψ1 and Ψ2 are pure7.

Given that they are non-degenerate pure spinors, they each define an almost gener-
alised complex structure on E, denoted J1 and J2 respectively. Moreover, given that the
internal spinors are globally defined, the pure spinors Ψ1 and Ψ2 are also globally defined,
so they each define an SU(3, 3) ⊂ O(6, 6) structure on E. Finally, Ψ1 and Ψ2 are com-
patible, so as discussed in the previous subsection, they further define an SU(3)× SU(3)
structure on E.

Crucially, the vanishing of the ten-dimensional supersymmetry variations (II.71),
(II.72) can be elegantly reformulated as the following set of differential equations on
the pure spinors [1]

dH(e3A−ϕΨ2) = 0 (III.71)

dH(e2A−ϕImΨ1) = 0 (III.72)

dH(e4A−ϕReΨ1) = e4A∗̃6F. (III.73)

Given that the first equation is of the form (III.54), imposing supersymmetry amounts
to requiring the almost generalised complex structure J2 to be integrable, while the last
supersymmetry condition (III.73) tells us that the integrability of the almost generalised
complex structure J1 is precisely obstructed by the RR fluxes.

We illustrate how standard G-structures embed in this formalism with the example of
an SU(3) structure in type IIB, defined by a pre-symplectic two form J and a (3, 0)-form
Ω. If we parametrise the proportionality between the internal spinors as η1 = η2, the pure
spinors take the simple form

Ψ1 = −ieiJ Ψ2 = Ω. (III.74)

From the supersymmetry conditions (III.71) and (III.73), we immediately see that the
almost complex structure defined by Ω is integrable, while the integrability of the pre-
symplectic structure defined by J is precisely spoiled by the RR fluxes.

III.2 E7(7) × R+ Generalised Geometry

We have seen that the formalism of O(d, d) geometry treats the full NS sector in a ge-
ometric way. When doing so, the only obstructions to the integrability of the O(d, d)
generalised structures are the remaining supergravity bosonic degrees of freedom, the RR
fluxes. In this section we introduce another generalised geometry, Ed+1(d+1) × R+ gener-

7In six dimensions, every Weyl spinor is pure, so η1 and η2 are pure.
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alised geometry, or exceptional generalised geometry, which treats both the NS and the
RR sectors of type II supergravity geometrically.

We first introduce exceptional generalised geometry, before describing type II flux
backgrounds within this framework, emphasising on the relationship between supersym-
metry and the integrability of the relevant generalised structures.

III.2.1 Exceptional Generalised Geometry

On a manifold M of dimension d = 6, the generalised tangent bundle for E7(7) × R+

generalised geometry is locally isomorphic to

E ≃ EO(6,6) ⊕ S± ⊕ (Λ6T ∗ ⊗ EO(6,6)), (III.75)

in type IIA/IIB, with S± the spinor bundles (III.43) on EO(6,6) ≃ T ⊕ T ∗. We write
sections of this bundle as

V = X + ω + X̃ , (III.76)

with X ∈ Γ(EO(6,6)), ω ∈ Γ(S±), and X̃ ∈ Γ(Λ6T ∗ ⊗ EO(6,6)).
The isomorphism (III.75) is not unique, as the bundle E is actually defined as an

extension, through the following exact sequence

0→ S± → E′ → EO(6,6) → 0 (III.77)

0→ Λ6T ∗ ⊗ EO(6,6) → E → E′ → 0 . (III.78)

There is thus a non-trivial patching between local sections of the generalised tangent
bundle E: on two overlapping patches Ui ∩ Uj , the patching is defined by

Vi = edΛ̃ijedΩijedΛij · Vj for Vi ∈ Γ(Ui, E), Vj ∈ Γ(Uj , E) (III.79)

in type IIA, where Λ̃ij , Ωij and Λ̃ij are locally a five-form, a polyform of even degree and
a one-form respectively. The action · is the adjoint action, defined in Appendix B.2.

Defining an isomorphism as in (III.75) is equivalent to locally choosing a two-form, a
polyform of odd degree, and a six form B, C and B̃ which are patched on overlaps Ui∩Uj
through8

Bi = Bj + dΛij (III.80)

Ci = Cj + eBj+dΛij ∧ dΩij (III.81)

B̃i = B̃j + dΛ̃ij + 1
2 ⟨dΩij , e

Bj+dΛij ∧ Cj⟩ . (III.82)

8This is the patching for massless type IIA.
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Then, for a section Ṽ ∈ Γ(EO(6,6) ⊕ S± ⊕ (Λ6T ∗ ⊗EO(6,6))), we can define a local section
of E on the patch Ui with the appropriate patching as

V = eB̃ieBieCi · Ṽ . (III.83)

From the supergravity point of view, the forms B and C correspond to the NS and RR
gauge potentials, and the patching on E allows one to define the following globally defined
forms

H = dB F = dHC , (III.84)

and from the supergravity point of view these correspond to the NS and RR fluxes.
Different values of H and F define different isomorphism classes of E. We thus call the
vectors Ṽ ∈ Γ(EO(6,6) ⊕ S± ⊕ (Λ6T ∗ ⊗ EO(6,6))) untwisted vectors, and we say that the
vectors V ∈ Γ(E) are "twisted by the fluxes".

A priori, the bundle E has structure group GL(rkE,R). We can introduce invariant
tensors in order to reduce the structure group. We introduce the symplectic and quartic
invariants

s : Λ2E → detT ∗ q : Λ4E → (detT ∗)2 . (III.85)

The symplectic invariant is given explicitely in Appendix B.2, and the presence of these
invariants precisely reduces the structure group to E7(7) × R+. The generalised tangent
bundle is then an E7(7) × R+ vector bundle, and it transforms in the fundamental repre-
sentation. We denote the R+ value as the weight, and for example a section of the trivial
representation of E7(7) × R+ with weight p is a section of (detT ∗)p/2.

The isomorphism (III.75) is a direct sum of irreducible representations of O(6, 6), it
realises the embedding of O(6, 6) in E7(7)×R+. Different isomorphisms of E, realising the
embedding of different E7(7)×R+ subgroups have been used in the exceptional generalised
geometry literature [40, 79]. However, we solely use the embedding O(6, 6) ⊂ E7(7) ×
R+, since throughout this thesis we will be concerned with the interplay between the
frameworks of O(6, 6)× R+ and E7(7) × R+ generalised geometry.

We recall that the generalised frame bundle F̃ is an E7(7) × R+ principal bundle
constructed from frames of E. One can define generalised tensors as sections of vector
bundles associated with different E7(7)×R+ representations. Of particular interest is the
adjoint bundle ad F̃ , corresponding to the adjoint representation of E7(7) × R+

adF̃ ≃ R⊕ R⊕ adF̃O(6,6) ⊕ S∓ ⊕ (Λ6T ⊗ S∓)⊕ Λ6T ∗ ⊕ Λ6T . (III.86)

We write sections of this bundle as

R = q + l + ν + s+ s̃+ a+ ã , (III.87)
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with q ∈ R, l ∈ R, ν ∈ Γ(adF̃O(6,6)), etc.

Given that the fibres of this bundle are isomorphic to the Lie algebra of E7(7) × R+,
its sections have a natural action on E which is given in Appendix B.2. Let us mention
that the NS and RR gauge potentials B and C are sections of this adjoint bundle.

Another important bundle is the space of generalised torsions. This will be relevant
when we introduce generalised connections shortly. For now we will just state the prop-
erties of the bundle.

The torsion bundle K ⊂ E∗⊗ad F̃ can locally be written in terms of O(6, 6) irreducible
representations as

K ≃ EO(6,6) ⊕ (EO(6,6) ⊗ Λ6T ∗)⊕ S± ⊕ (Λ6T ⊗ S±)⊕ (Λ6T ∗ ⊗ S±)

⊕ [EO(6,6) ⊗ S±]0 ⊕ Λ3(EO6,6))⊕ (Λ6T ∗ ⊗ Λ3(EO(6,6)) , (III.88)

where ΦA ∈ Γ([EO(6,6) ⊗ S±]0) respects ΓAΦA = 0. The fibres of this bundle transforms
in the 9121 representation of E7(7) × R+, where the subscript denotes the R+ weight.

The NS and RR fluxes are sections of the torsion bundle H ∈ Γ(Λ3(EO(6,6))) ∈ Γ(K)
and F ∈ Γ(S±) ∈ Γ(K).

Let us mention one more E7(7)×R+ bundle N , a subbundle of the symmetric product
S2E. The fibres ofN belongs to the 1332 representation of E7(7)×R+, andN is isomorphic
to

N ≃ R⊕ Λ6T ∗ ⊕ (Λ6T ∗ ⊗ Λ6T ∗)⊕ S∓ ⊕ (Λ6T ∗ ⊗ S∓)⊕ (ad F̃O(6,6) ⊗ Λ6T ∗) . (III.89)

a) The Dorfman derivative

As was the case in O(6, 6) generalised geometry, the bundle E admits a derivative operator,
generalising the Lie derivative. We call it the Dorfman or generalised Lie derivative, and
on a local patch Ui it acts on generalised vectors as

LViV
′
i = LXiX

′
i + (d( /Xiω

′
i) + /Xidω′

i − dωi ·X ′
i)

+ (LXiX̃
′
i + (∂, X̃i) ·X ′

i − dωi · ω′
i) , (III.90)

with Vi = Xi + ωi + X̃i ∈ Γ(Ui, E), and similarly for V ′. Here LXX ′ is the standard
O(6, 6) Dorfman derivative (III.7). We also introduced

LXX̃
′ = LvX̃ ′ + j(ṽ′⌟vol) ∧ dλ (III.91)

(∂, X̃) = d(ṽ⌟vol) . (III.92)
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with j defined in Appendix A.1 and with the following GL(6) decomposition of sections
of the O(6, 6) generalised bundles EO(6,6) and Λ6T ∗ ⊗ EO(6,6)

X = v + λ (III.93)

X̃ = (ṽ + λ̃)⊗ vol . (III.94)

Defining an anchor map a : E → T the collection (E,L, a) is a Leibniz Algebroid.
As was argued in the O(6, 6) generalised geometry case, the Dorfman derivative along

X ∈ Γ(EO(6,6)) generalises the diffeomorphisms to also include the NS gauge transforma-
tions, and from (III.90) we see that the another part of the action of the E7(7) Dorfman
derivative is generated by the action of the exact differential forms dω. These are precisely
the RR gauge degrees of freedom of the type II backgrounds.

The Dorfman derivative thus generates the gauge transformations of the supergravity
background.

One can locally define an antisymmetric bracket on Ui patches of E, the Courant
bracket

JVi,WiK = 1
2(LViWi − LWiVi) . (III.95)

The collection (E, J, K, a) is then a Courant algebroid.
Crucially, this is not a Lie algebroid, given that the Courant bracket fails to satisfy

the Jacobi identity. Indeed, the Jacobiator reads9

Jac(X,Y, Z) = JX, JY,ZKK + cyclic perms

= d×E (JX,Y K×N Z + cyclic perms) , (III.98)

and doesn’t vanish generically.
Let us stress here that without choosing an isomorphism (III.75), we cannot define a

global expression for the Dorfman derivative and (III.90) is a local expression. Choosing
an (III.75) picks out the gauge potentials B and C with field-strengths H and F . We
can then define a global Dorfman derivative for untwisted generalised vectors, the twisted
Dorfman derivative

LH+F
V V ′ := LV V

′ + (X ⊙H +H ∧ ω + /XF + ⟨F, ω⟩) · V ′, (III.99)

9The projections ×E and ×N are the maps

×E : N × E∗ → E (III.96)
×N : E × E → N (III.97)
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where V = X + ω + X̃ ∈ Γ(EO(6,6) ⊕ S± ⊕ (Λ6T ∗ ⊗ EO(6,6))) is a global section, and
similarly for V ′. We introduced X ⊙H := v⌟H.

Here we see that the Dorfman derivative is twisted by the fluxes while the generalised
tangent bundle remains untwisted. As already discussed in the O(6, 6) generalised ge-
ometry framework, this is an equivalent formulation of generalised geometry and we will
mainly make use of this approach in the following of this thesis.

The twisted Dorfman derivative (III.99) can be rearranged as

LH+F
V V ′ = LHV V

′ + ( /XF + ⟨F, ω⟩) · V ′ , (III.100)

with

LHV V
′ = LHXX

′ + (dH( /Xω′) + /XdHω′ − /X
′dHω)

+ (LXX̃ ′ + (∂, X̃) ·X ′ − dHω · ω′) ,

where LHXX ′ is the twisted O(6, 6) Dorfman derivative (III.14). Here we simply expanded
the contributions involving the NS field-strength H and repackaged them into the twisted
exterior derivative dH . This form of the Dorfman derivative will turn out to be convenient
to make contact with the O(6, 6) formalism later on.

We can similarly define a global twisted Courant bracket

JV,W KH+F = 1
2(LH+F

V W − LH+F
W V ) , (III.101)

which of course also isn’t a Lie bracket, as it also fails to satisfy the Jacobi identity.

b) Generalised connection and generalised torsion

One can naturally generalise the notion of connection on the generalised tangent bundle.
A generalised connection D is a map

D : Γ(E)→ Γ(E∗ ⊗ E) (III.102)

such that
D(fV ) = df ⊗ V + fDV (III.103)

for all f ∈ C∞(M), V ∈ Γ(E). We used here the identification df a∗
↪→ Γ(E∗). The

generalised torsion of a generalised connection D is then some tensor T ∈ Γ(E∗ ⊗ adF̃ )
defined by

T (V ) · V ′ = LDV V
′ − LV V ′ (III.104)

where LDV is the Dorfman derivative (III.90), where every instance of the exterior deriva-
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tive d is replaced by the generalised connection D10.
From the torsion definition (III.104), we can see the torsion as the map

T : E → adF̃ . (III.106)

One may think that the torsion fills out the whole of E∗ ⊗ adF̃ . However, due to the
precise form of the Dorfman derivative, the torsion can only live in K ⊕E∗ ⊂ E∗ ⊗ adF̃ ,
highlighting the importance of the bundle K defined above.

One can similarly define a generalised connection and its associated torsion in the
untwisted picture. We denote the untwisted generalised tangent bundle as

Ẽ = EO(6,6) ⊕ S± ⊕ (Λ6T ∗ ⊗ EO(6,6)). (III.107)

A generalised connection D̃ then defines a map

D̃ : Γ(Ẽ)→ Γ(Ẽ∗ ⊗ Ẽ) (III.108)

which respects (III.103) for V ∈ Γ(Ẽ). Its corresponding generalised torsion is

T (V ) · V ′ = LD̃,H+F
V V ′ − LH+F

V V ′ , (III.109)

where LD̃,H+F
V is the twisted Dorfman derivative (III.99), where every instance of the

exterior derivative d is replaced by the generalised connection D̃.

c) Generalised G-structures

One can naturally generalise the notion of G-structures on the tangent bundle, to define
generalised G-structures on the generalised tangent bundle. The generalised G-structure
G is again a subgroup of the (now generalised) structure group E7(7), and defines a
principal G bundle, with fibres transforming in the fundamental representation of G.

As in conventional geometry, the existence of a G-structure is equivalent to the exis-
tence of some globally defined non-vanishing generalised tensors that are preserved by G.
We denote such a generalised tensor as ξ.

This allows us to naturally generalise the notion of integrability of the G-structure:
for a given G-structure, we define the generalised connections D that are compatible with
G as

Dξ = 0 . (III.110)
10The generalised connection D has a natural action on any generalised tensor bundle X induced by

(III.102):
D : X → Γ(E∗ ⊗ X ) . (III.105)
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The G structure is then integrable if there exists a torsion free compatible generalised
connection. From the generalised torsion definition (III.104), this corresponds to

LDV = LV . (III.111)

On can similarly define generalised G-structures on the untwisted generalised tangent
bundle Ẽ. Then, if ξ̃ is some globally defined non-vanishing generalised tensor preserved
by G, a generalised connection D̃ is compatible with the G-structure if

(D̃ +H + F )ξ̃ = 0. (III.112)

Given (III.109), the integrability of the G-structure then translates into

LD̃,H+F
V = LH+F

V . (III.113)

Lets come back to the twisted picture and discuss further the integrability of the
G-structure.

Whether or not a generalised connection D satisfying (III.111) exists depends on the
intrinsic torsion associated to the G-structure. It is the component of the torsion which is
independent of the specific choice of connection. Once again, it can be defined in complete
analogy with the conventional geometry case.

To define the intrinsic torsion, we start from a given connection D, compatible with
the G-structure, and we write any compatible connection D′ as D′ = D + Σ where

Σ = D′ −D ∈ Γ(KG) with KG = E∗ ⊗ adPG , (III.114)

and with adPG the adPG-bundle with fibres belonging to the adjoint representation of G.
As mentioned above, the torsion of a generic connection will be a section of the bundle

TD ∈ Γ(W ) with W ≃ K ⊕ E∗ . (III.115)

We then define the map

τ : KG →W

Σ→ τ(Σ) = TD′ − TD , (III.116)

and denoting the vector bundle associated to the image of τ by Imτ = WG, we can define

WG
int = W/WG . (III.117)
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WG
int does not depend on the choice of compatible connection, it only depends on the

G-structure. WG
int is the intrinsic torsion of the G-structure.

It will prove to be useful throughout the thesis to decompose the intrinsic torsion of
a given G-structure into irreducible representations of G

WG
int =

⊕
i

Wi. (III.118)

A torsion-free compatible connection exists if and only if the intrinsic torsion of the G-
structure vanishes.

Indeed, given a compatible connection D with non-vanishing torsion T , we can con-
sider its projection onto WG

int, which corresponds to the intrinsic torsion T int ∈ Γ(WG
int).

As explained above, this part of the torsion is unchanged by the shift D → D′ = D + Σ.
It is therefore possible to find a Σ such that that the torsion T ′ of D′ vanishes if and only
if the intrinsic torsion T int vanishes.

d) R+ × U(7) and SU(7) structures

We introduce here two important generalised structures, the R+×U(7) structure and the
SU(7) structure.

As we have done in the case of conventional geometry and O(6, 6) generalised geometry,
we define these structures through their corresponding invariant generalised tensors [61]

J ∈ Γ(adF̃ ) : stabilised byG = C∗ × SU(7) = R+ ×U(7) (III.119)

ψ ∈ Γ(K̃) : stabilised byG = SU(7) , (III.120)

with K̃ = (detT ∗)2 ⊗K. We denote J as the almost exceptional complex structure and
ψ as the generalised SU(7) structure.

They are stabilised by the same SU(7), but J is invariant under an extra C∗ action.
As we will see, these structures are the exceptional analogues of the complex (GL(3,C))

and SL(3,C) structures of conventional geometry introduced in II.1.1, or of the generalised
complex (U(3, 3)) and generalised Calabi-Yau (SU(3, 3)) structures of O(6, 6) generalised
geometry discussed in III.1.1.

In order to define the exceptional complex structure, we introduce a globally defined
nowhere vanishing SU(8) spinor η, transforming in the fundamental representation 8 of
SU(8). The stabiliser of η is SU(7), and as such it defines a generalised SU(7) structure.

There is a U(1) ∈ SU(8)/Z2 which commutes with this SU(7) subgroup. It is generated
by an element of the SU(8) Lie algebra conjugate to the diagonal matrix

α = diag(−1/2,−1/2, ..., 7/2) ∈ SU(8) ⊂ E7(7) ⊕ R . (III.121)
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The normalisation is chosen so that exp(iθJ) with 0 ≤ θ ≤ 2π generates a U(1) subgroup
of SU(8)/Z2. The commutant of this U(1) is then a R+ × U(7) subgroup of E7(7) × R+.
This leads us to the following definition.

A generalised R+ × U(7) structure, or almost exceptional complex structure, is a
section J ∈ Γ(adF̃ ) that is conjugate at each point p ∈ M to the element α ∈ SU(8) in
(III.121).

The exceptional generalised structure J lies within a particular orbit of the 133 rep-
resentation space of E7(7) . Decomposing the adjoint E7(7) representation into irreducible
SU(8) representations, we have

133 = 63⊕ 70 ∋ (µαβ, µαβγδ) , (III.122)

where we introduced SU(8) indices.
We can then write the exceptional complex structure J in terms of the spinor η as

Jαβ = 4ηαη̄β −
1
2(η̄η)δαβ, Jαβγδ = 0 , (III.123)

where we set η̄η = 1. We can further decompose the 133 E7(7) representation space into
irreducible SU(7)×U(1) representations

133 = 10 ⊕ 480 ⊕ (7−4 ⊕ 74)⊕ (352 ⊕ 35−2) , (III.124)

where now the subscripts denote the U(1) charge. The exceptional complex structure J
lies in the singlet 10 representation.

Given J , in analogy with a conventional almost complex structure, we can decom-
pose the complexified generalised tangent bundle into J eigenbundles, through its adjoint
action. The eigenbundles are irreducible representations of SU(7)×U(1), and we find

EC = L3 ⊕ L−1 ⊕ L1 ⊕ L−3 (III.125)

56C = 73 ⊕ 21−1 ⊕ 211 ⊕ 7−3 , (III.126)

with L−3 ≃ L̄3 and L−1 ≃ L̄1.
We can similarly decompose the untwisted complexified generalised tangent bundle

EC = L̃3 ⊕ L̃−1 ⊕ L̃1 ⊕ L̃−3 (III.127)

56C = 73 ⊕ 21−1 ⊕ 211 ⊕ 7−3 , (III.128)

also respecting L̃−3 ≃ ¯̃L3 and L̃−1 ≃ ¯̃L1.
As we will see, L3 can be seen as the analogue of T 1,0 in conventional complex geometry
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and of L1 in generalised complex geometry. This thus leads to the following alternative
definition of the exceptional complex structure.

An almost exceptional complex structure is a subbundle L3 ⊂ EC such that
i) dimC L3 = 7
ii) L3 ×N L3 = 0.
iii) L3 ∩ L̄−3 = {0}
iv) The map h : L3 × L3 → (detT ∗)C defined by h(V,W ) = is(V, W̄ ) is a definite

hermitian inner product valued in detT ∗.
The second condition is the analogue of the isotropy condition for a generalised com-

plex structure.
Again in analogy with the generalised complex structure case, we call a subbundle L3

satisfying the first two conditions a (complex) exceptional polarisation.
The L̃3 bundle similarly defines an untwisted version of the almost exceptional complex

structure.
We now define the generalised SU(7) structure. To do so, we write down the decom-

position SU(7)×U(1) ⊂ SU(8)/Z2 ⊂ E7(7) of the 912 E7(7) representation space

912 = 36⊕ 420⊕ c.c. (III.129)

= 17 ⊕ 73 ⊕ 28−1 ⊕ 21−1 ⊕ 35−5 ⊕ 1403 ⊕ 224−1 ⊕ c.c. (III.130)

From now on we consider the generalised tensor bundle K̃ transforming in the 9123

representation of E7(7) × R+. The presence of an SU(7) singlet in the decomposition
(III.130) implies that each almost exceptional complex structure J defines a unique line
bundle UJ ⊂ K̃C, satisfying

V • ψ = 0 ∀V ∈ Γ(L3), s(ψ, ψ̄) ̸= 0 , (III.131)

where ψ is a local section of UJ , the product V •ψ is defined by the projection map E⊗K̃C

where C is the generalised tensor bundle transforming in the 86454 representation of
E7(7)×R+, and s is the symplectic invariant on the 912 bundle K̃ ⊂ E ⊗E ⊗E induced
from the symplectic invariant on E. We are thus led to define a generalised SU(7) structure
in the following way.

Given an almost exceptional complex structure J with trivial line bundle UJ , a gen-
eralised SU(7) structure is a global nowhere-vanishing section ψ ∈ Γ(UJ).

We stress again that this is in complete analogy with the almost complex and almost
generalised complex cases: the SU(7) structure naturally generalises the holomorphic
(3, 0)-form Ω and the pure spinor Ψ defining the SL(3,C) and SU(3, 3) structures respec-
tively. The second condition in (III.131) simply generalises the non-degeneracy condition
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of the tensors Ω and Ψ.
One can again define an untwisted version of the generalised SU(7) structure, from

the untwisted almost exceptional complex structure J̃ : it indeed defines a unique line
bundle UJ̃ ⊂ K̃C as

V • ψ̃ = 0 ∀V ∈ Γ(L3), s(ψ̃, ¯̃ψ) ̸= 0 , (III.132)

where ψ̃ is a local section of UJ .

The generalised SU(7) structure again lies within a particular orbit of the 9123 rep-
resentation space. Concretely, decomposing the 912 space in terms of irreducible repre-
sentations of SU(8)

912 = 36⊕ 420⊕ 36⊕ 420 ∋ (καβ, καβγδ, κ̄αβ, κ̄ δ
αβγ ) , (III.133)

we can write the generalised SU(7) structure in terms of the spinor η as

ψαβ = λ(volG)3/2ηαηβ ψαβγδ = ψ̄αβ = ψ̄ δ
αβγ = 0 , (III.134)

with volG the E7(7)-invariant volume defined by the generalised metric G [36, 39] and λ

a non-vanishing complex number.

d).1 R+ × U(7) and SU(7) intrinsic torsions and integrability

We now discuss the integrability of the R+ ×U(7) and SU(7) structures.
As mentioned above, a generalised structure is integrable if its intrinsic torsion van-

ishes. Regarding the SU(7) structure, the τ map (III.116) has been explicitly constructed
and the corresponding vector bundle WSU(7) has been given in [42, 87]. One can do the
same for the R+×U(7) structure, and the resulting intrinsic torsions W SU(7)

int = W/WSU(7)

and W
R+×U(7)
int = W/WR+×U(7) are, in terms of SU(7) irreducible representations:

W
SU(7)
int : 1−7 ⊕ 7−3 ⊕ 21−1 ⊕ 35−5 ⊕ c.c. (III.135)

W
R+×U(7)
int : 1−7 ⊕ 35−5 ⊕ c.c. (III.136)

where again, the subscript denotes that U(1) charge under the action of J .
Let us first investigate the integrability of the R+ × U(7) structure. It is integrable

if the intrinsic torsion components 1−7 and 35−5 vanishes. This can be reformulated in
a convenient way, naturally generalising the integrability conditions of the complex and
generalised complex structures.

To do so, we consider a connection compatible with such a structure J : DJ = 0.
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Evaluating (III.104) with V, V ′ ∈ Γ(L3), we have

LV V
′ = LDV V

′ − T (V ) · V ′ ∀V, V ′ ∈ Γ(L3) . (III.137)

It is important to note that since the left-hand side of (III.137) doesn’t depend on
the choice of connection D, the non-vanishing sections of E in the right-hand side only
involve the intrinsic R+ ×U(7) torsion.

The compatibility of the connection with J ensures LDV V ′ ⊂ L3. The second term then
generates the following sections of the generalised tangent bundle, in terms of SU(7)×U(1)
representations

1−7 ⊕ 73 ⊕ 73 ⊃ 21−1 (III.138)

35−5 ⊕ 73 ⊕ 73 ⊃ 211 . (III.139)

This is equivalent to

∀V, V ′ ∈ Γ(L3) : 1−7 ̸= 0⇐⇒ LV V
′ ∩ L−1 ̸= 0 (III.140)

35−5 ̸= 0⇐⇒ LV V
′ ∩ L1 ̸= 0 . (III.141)

This motivates the following equivalent definition of the integrability of the exceptional
complex structure.

A torsion-free R+×U(7) structure J or exceptional complex structure is one satisfying
involutivity of L3 under the generalised Lie derivative:

LV V
′ ⊂ L3 ∀V, V ′ ∈ Γ(L3) . (III.142)

One can then define the restriction of the Dorfman derivative on L3. Given that the L3

bundle respects L3×NL3 = 0, the Jacobiator (III.98) vanishes and the algebroid (L3, L, a)
is actually a Lie algebroid.

The integrability of the exceptional complex structure J can similarly be spelled in
the untwisted picture: J is integrable if L̃3 is involutive under the twisted generalised Lie
derivative

LH+F
V V ′ ⊂ L̃3 ∀V, V ′ ∈ Γ(L̃3) . (III.143)

This definition of the integrability is in complete analogy with the complex and gener-
alised complex structures cases, where the integrability of a (generalised) complex struc-
ture can be recast as involutivity of eigenspaces of the (generalised) complex structure
under the (generalised) Lie bracket.

Furthermore, the analogy carries through to the integrability of the SU(7) structure.
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Indeed, the complex geometry analogue of the SU(7) structure is the SL(3,C) structure.
We have seen in section II.1 that the integrability of the SL(3,C) structure can be recast
as the vanishing of a moment map for the diffeomorphisms action. We now discuss the
generalisation of this reformulation of the integrability for the SU(7) structure, as the
vanishing of a moment map for the generalised diffeomorphisms action.

For an SU(7) structure, a choice of ψ at a point p ∈M is equivalent to picking a point
in the coset

ψ|p ∈ QSU(7) =
E7(7) × R+

SU(7) . (III.144)

The choice of an SU(7) structure on M therefore corresponds to a section of the fibre
bundle

QSU(7) → QSU(7) →M (III.145)

and we can identify the space of SU(7) structures as Z ≃ Γ(QSU(7)). One can also
restrict to the space of SU(7) structures with an integrable associated exceptional complex
structure

Ẑ = {Ω ∈ Z | J is integrable} . (III.146)

Crucially, the space Ẑ inherits a Kähler metric from the Kähler metric on the coset space
QSU(7), picked out by supersymmetry, with the following corresponding Kähler potential

K =
∫
M

(
i s(ψ, ψ̄)

)1/3
. (III.147)

From the symplectic structure defined by this Kähler potential, one can define the corre-
sponding moment map [61]

µ : Ẑ → gdiff∗ (III.148)

for the action of generalised diffeomorphisms, where gdiff is the Lie algebra of generalised
diffeomorphisms, and where

µ(V ) = 1
3

∫
M
s(LV ϕ, ϕ̄)

= 1
3

∫
M
s(LV ψ, ψ̄)(i s(ψ, ψ̄))−2/3 , (III.149)

with V ∈ Γ(E) and ϕ = (i s(ψ, ψ̄))−1/3ψ which transforms in the 9121 representation.
Going to the second line we used

∫
M LV (...) = 0.

Let us introduce a generalised connection D compatible with the SU(7) structure
Dψ = Dϕ = 0. Using the definition of the torsion (III.104), we have

µ(V ) = 1
3

∫
M
s(LDV ϕ, ϕ̄)− s(T (V )ϕ, ϕ̄)
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= −1
3

∫
M
s(T (V )ϕ, ϕ̄) , (III.150)

where the first term in the right-hand side of the first line vanishes from the compatibility
of the generalised connection D.

Since the definition of the moment map is independent of any choice of connection,
only the SU(7) intrinsic torsion can contribute in the last expression.

Crucially, given that the vector V ∈ Γ(E) transforms in 7⊕ 21⊕ c.c. representations
of SU(7), and since ϕ is an SU(7) singlet, only the 7 and 21 SU(7) representations of the
intrinsic SU(7) torsion enter the moment map (III.150).

From (III.135) and (III.136), we see that these are precisely the extra components of
the SU(7) torsion, relative to the R+ × U(7) torsion, which must vanish in order for the
SU(7) torsion to be integrable.

This leads to the following reformulation of the integrability of the SU(7) structure.
A torsion-free generalised SU(7) structure is one where L3 is involutive and the mo-

ment map (III.149) vanishes.
The involutivity of L3 kills the 1 and 35 components of the SU(7) intrinsic torsion

(III.135), while the vanishing of the moment map kills the remaining 7 and 21 irreducible
representations.

One can define an untwisted version of the moment map, to define the integrability
of the untwisted generalised SU(7) structure ψ̃

µ̃(Ṽ ) = 1
3

∫
M
s(LH+F

Ṽ
ψ̃, ¯̃ψ)(i s(ψ̃, ¯̃ψ))−2/3 , (III.151)

and the untwisted generalised SU(7) structure will be integrable if this moment map
vanishes.

Finally, let us mention the moduli space of integrable generalised SU(7) structures.
Two SU(7) structures that are related by generalised diffeomorphisms are equivalent, so
the moduli space of SU(7) structures Mψ should be viewed as the space of torsion-free
SU(7) structures quotiented by the action of these transformations. Given that Ẑ admits
both a symplectic structure and a Kähler structure, there are two ways to view this
quotient, namely as a symplectic quotient by GDiff or as a standard quotient by the
complexified group GDiffC:

Mψ = {ψ ∈ Ẑ|µ = 0}/Gdiff ≡ Ẑ � GDiff ≃ Ẑ/GDiffC. (III.152)

We will see in the next subsection how the SU(7) moduli space Mψ is related to the
physical moduli space of N = 1 type II supergravity backgrounds compactified to four-
dimensions.
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III.2.2 Generalised structures of supersymmetric backgrounds

In this subsection, we apply the exceptional generalised geometry formalism developed
throughout this chapter to four-dimensional N = 1 flux backgrounds.

a) R+ × U(7) and SU(7) structures of four-dimensional N = 1 backgrounds

In this subsection we show how the R+ × U(7) and SU(7) structures defined above are
well suited to describe the geometry of N = 1 type II supergravity flux backgrounds
compactified to four-dimensions.

We described the R+ × U(7) and SU(7) structures in terms of a globally defined
nowhere vanishing SU(8) spinor η. In the context of type II supergravity, such a spinor
can be naturally constructed from the two internal type II Killing spinors.

To do so explicitly, we recall our compactification ansatz: we consider here type II
solutions that are the warped product of four-dimensional Minkowski space X4 and a
six-dimensional compact manifold M , with the following metric

ds2
10 = e2A(y)ηµνdxµdxν + gmndymdyn, (III.153)

where again xµ, µ = 0, ..., 3 are the external coordinates on X4, and ym, m = 1, ..., 6 are
the coordinates on M .

The ten-dimensional type II Killing spinors are then two ten-dimensional Majorana-
Weyl spinors ϵi of opposite (the same) chirality for type IIA (IIB).

They decompose accordingly under Spin(9, 1)→ Spin(3, 1)× Spin(6) as

ϵ1 = ζ ⊗ η1 + c.c. ϵ2 = ζ ⊗ η2 + c.c. (III.154)

where ζ is a Weyl spinor of positive chirality on X4, and η1 and η2 are Weyl spinors on the
six-dimensional internal space. η1 has positive chirality, while η2 has negative chirality in
type IIA and positive chirality in type IIB.

Writing the Spin(6) spinors as SU(4) spinors, we can construct the following SU(8)
spinor

η = eA/2−ϕ/6
(
η1

η2

)
in type IIA, η = eA/2−ϕ/6

(
η1

η∗
2

)
in type IIB, (III.155)

where η1,2 are seen here as four-dimensional Weyl-spinors, and η hence transforms in the
8 representation of SU(8).

Even though η must be nowhere vanishing, the individual Spin(6) spinors η1,2 may
vanish while still properly defining a generalised SU(7) structure. Backgrounds with such
Killing spinors are thus well defined in E7(7) generalised geometry, even if they don’t define
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conventional or O(6, 6) generalised (global) G-structures [87, 88]. This is for instance the
case of type II backgrounds with NS5-branes wrapping a Calabi-Yau, described in E7(7)

generalised geometry in [79].
Throughout this thesis, we focus on the subclass of type II backgrounds having

nowhere vanishing globally defined Killing spinors η1,2. In the N = 1 case, this class
of backgrounds, which we refer to as the GMPT family, has been studied within the
context of O(6, 6) generalised geometry in [1, 6, 85].

We first briefly introduce the key aspects of the GMPT class within the O(6, 6) gen-
eralised geometry framework, before embedding it into the E7(7) generalised geometry
formalism, following [61].

As we will discuss in the next chapter, note that the two six-dimensional internal
spinors must have the same norm in order to admit supersymmetric sources, which we
denote ∥η1,2∥.

In this section we need a slightly different definition11 of the pure spinors introduced
in (III.66) and (III.67):

Φ1 = e3A−ϕ

∥η1,2∥2
η1 ⊗ η†

2 (III.156)

Φ2 = e3A−ϕ

∥η1,2∥2
η1 ⊗ ηT2 . (III.157)

The pure spinors Φ1 and Φ2 are again odd/even and even/odd in type IIA/IIB, re-
spectively

Φ1 = Φ∓, Φ2 = Φ± , (III.158)

and their normalisation is such that

⟨Φ1, Φ̄1⟩ = ⟨Φ2, Φ̄2⟩ = i

8e
6A−2ϕvol6 , (III.159)

with vol6 the volume form on M in the string frame.
The resulting pure spinor equations, equivalent to preserving ten-dimensional N = 1

supersymmetry, read

dHΦ2 = 0 (III.160)

dH(e−AReΦ1) = 0 (III.161)
11The reason for these two set of conventions is that we use the two formalism to do different things. In

O(6, 6) generalised geometry, among other things, we will derive the equations of motion of new type II
backgrounds in chapter IV, requiring the scalar fields to be factorised out of the pure spinors to vary the
type II action. In E7(7) generalised geometry, we will study the generalised structure and its associated
generalised torsion for non-supersymmetric type II flux backgrounds in chapter V. To do so, it is most
natural to incorporate some physical fields into the pure spinor definition, themselves embedded into an
all encompassing generalised structure.
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dJ1
H (e−3AImΦ1) = −F8 , (III.162)

where we wrote here an equivalent form of the pure spinor equations (III.71), (III.72) and
(III.73), derived by Tomasiello [6], with dJ1

H = [dH ,J1].

We now show how to embed these solutions into the framework of E7(7) generalised ge-
ometry, first introducing an exceptional complex structure. We work here in the untwisted
picture, and define

L̃3 = e8ie−3AImΦ1 · (LJ2
1 ⊕ UJ2) . (III.163)

Here LJ2
1 ⊂ EO(6,6)C ≃ (T ⊕ T ∗)C is the +i-eigenspace of J2, and UJ2 is the pure spinor

line bundle defined by J2. It is relatively straightforward to check that this L̃3 satisfies
the necessary and sufficient conditions to define an almost exceptional complex structure.

The corresponding untwisted generalised SU(7) structure is

ψ = e8ie−3AImΦ1 · Φ2 , (III.164)

where here Φ2 is to be understood as a section of the untwisted K̃C bundle.

We now study the integrability condition of the almost exceptional complex structure,
in order to see how it relates to the supersymmetry conditions (III.160), (III.161), and
(III.162). Requiring the almost exceptional complex structure to be integrable amounts
to imposing the involutivity of L̃3 under the twisted generalised Lie derivative

LH+F
V V ′ ⊂ L̃3 ∀V, V ′ ∈ Γ(L̃3) . (III.165)

We write a section of L̃3 as eΣ ·V ≡ eΣ · (W +αΦ2), with W ∈ Γ(LJ2
1 ), α a non-vanishing

complex number, and Σ ≡ 8ie−3AImΦ1. We then evaluate the twisted Dorfman derivative
on elements of the L̃3 bundle

LH+F
eΣ·V (eΣ · V ′) = eΣ · [LHV V ′ + ( /W (F + dHΣ) + α ⟨F + dHΣ,Φ2⟩) · V ′] , (III.166)

with V, V ′ ∈ Γ(LJ2
1 ⊕ UJ2). The involutivity of L̃3 then requires the term in brackets to

be an element of LJ2
1 ⊕ UJ2 for all V, V ′ ∈ Γ(LJ2

1 ⊕ UJ2). Given that the first term in
(III.166) is differential, and the remaining terms are algebraic, involutivity requires that
these are sections of LJ2

1 ⊕ UJ2 independently:

LHV V
′ ∈ Γ(LJ2

1 ⊕ UJ2) (III.167)

( /W (F + dHΣ) + α ⟨F + dHΣ,Φ2⟩) · V ′ ∈ Γ(LJ2
1 ⊕ UJ2). (III.168)
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We start with the first condition. Requiring

LHW+αΦ2(W ′ + α′Φ2) ∈ Γ(LJ2
1 ⊕ UJ2) (III.169)

implies first that
LHWW

′ ∈ Γ(LJ2
1 ) ∀W,W ′ ∈ Γ(LJ2

1 ) , (III.170)

that is, the generalised complex structure J2 associated to Φ2 must be integrable. Recall
that this is equivalent to

dHΦ2 = /XΦ2 for someX ∈ Γ(LJ2
−1) . (III.171)

From this condition, and from /WΦ2 = /W
′Φ2 = 0, we immediately have

LHW (α′Φ2) = η(W, dα′ + 2X)Φ2 ∈ Γ(UJ2) (III.172)

LHαΦ2W
′ = −η(W ′,dα+ 2X)Φ2 ∈ Γ(UJ2), (III.173)

as required. Here η(, ) is the O(6, 6) inner product (III.3). Finally, using (III.171) again,
we have

LHαΦ2(α′Φ2) = −α′[(��dα+ /X)Φ2] · Φ2 = 0 , (III.174)

identically, as can be seen by counting the J2 charges.

The integrability of the generalised complex structure J2 is therefore enough to ensure
the condition (III.167). Turning to the second condition (III.168), it first imposes

/W
′ /W (F + dHΣ) ∈ UJ2 , (III.175)

which is satisfied if
(F + dHΣ)V−1 = (F + dHΣ)V−3 = 0 , (III.176)

where the subscript Vn denotes the projection onto the in-eigenspace of J2. Combining
these conditions with their complex conjugates is equivalent to

dJ1
H (e−3AImΦ1) = −F8 , (III.177)

which precisely corresponds to the supersymmetry condition (III.162). Moreover, (III.176)
implies

[ /W (F + dHΣ)] · Φ2 = 0 (III.178)

⟨F + dHΣ,Φ2⟩ = 0 . (III.179)
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Every other terms in the involutivity condition (III.168) therefore vanish identically.

The integrability of the exceptional complex structure is hence equivalent to

dHΦ2 = /XΦ2 dJ1
H (e−3AImΦ1) = −F8 , (III.180)

which is not equivalent to the full set of supersymmetry conditions (III.160), (III.161),
and (III.162).

Lets now investigate the integrability condition of the generalised SU(7) structure.
We thus specify the untwisted version of the moment map (III.151) for the untwisted
generalised SU(7) structure (III.164), which reads

µ̃(eΣ · Ṽ ) = 1
3

∫
M
s(LH+F+dHΣ

Ṽ
Φ2, e

−2Σ · Φ̄2)(i s(ψ̃, ¯̃ψ))−2/3 . (III.181)

The integrability of the exceptional complex structure ensures that F + dHΣ stabilises
LJ2

1 ⊕ UJ2 , and hence the singlet Φ2 ∈ Γ(K̃C). We thus have

LH+F+dHΣ
Ṽ

Φ2 = LH
Ṽ

Φ2. (III.182)

The remaining terms in the moment map are then of the form

µ̃(eΣ · Ṽ ) ∼ const
∫
M
⟨LHZ Φ2, Φ̄2⟩+ const

∫
M
⟨dΛ±, e

−AReΦ1⟩ , (III.183)

Where we wrote Ṽ = Z + Λ± + Z̃. This form of the moment map follows from keeping
track of the U(1) ⊂ SL(2,R) charge in the O(6, 6) × SL(2,R) ⊂ E7(7) decomposition,
noting the R+ weight to get the correct eA factor [61].

The two terms in this moment map must vanish independently in order for the gener-
alised SU(7) structure to be integrable. Plugging the involutivity condition dHΦ2 = /XΦ2

into the first term, it can then only vanish if X = 0, yielding

dHΦ2 = 0. (III.184)

Integrating by part the second term, it vanishes if

dH(e−AReΦ1) = 0 . (III.185)

The integrability of the generalised SU(7) structure (III.164) is therefore equivalent to

dHΦ2 = 0 (III.186)

dH(e−AReΦ1) = 0 (III.187)
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dJ1
H (e−3AImΦ1) = −F8 , (III.188)

which precisely corresponds to the supersymmetry conditions (III.160), (III.161), and
(III.162).

We can therefore conclude that a type II flux background compactified to four-
dimensional Minkowski space and preserving N = 1 supersymmetry defines an integrable
generalised SU(7) structure ψ, and the integrability conditions for ψ are equivalent to the
supersymmetry conditions of said background.

b) Equations of motion

We conclude this section by reformulating the equations of motion of N = 1 type II
supergravity flux backgrounds compactified to four-dimensions, within the framework of
exceptional generalised geometry.

To do so, we briefly introduce the notion of generalised metric. It is well known [89, 90]
that the bosonic fields of reduced supergravity parametrise a coset (Ed(d)×R+)/Hd, with
Hd the maximal compact subgroup of Ed(d). In the case of type II supergravity reduced
to four-dimensions, the bosonic fields parametrise a coset (E7(7) × R+)/(SU(8)/Z2), that
is, at each point p ∈M

{g,B, B̃, ϕ, C±, A} ∈
E7(7) × R+

SU(8)/Z2
, (III.189)

with B̃ the six-form potential dual to B and C± the RR potentials in type IIB/IIA.
The group SU(8)/Z2 is the maximal compact subgroup of E7(7), and it is the analogue

of the orthogonal group O(d) ⊂ GL(d,R) in standard Riemannian geometry. As such, it
defines a generalised version of the metric G [39], invariant under SU(8)/Z2, and (III.189)
means that giving the bosonic fields is thus equivalent to specifying a generalised metric
G.

We now introduce a generalised connection D compatible with SU(8)/Z2, that is
DG = 0. Crucially, it is always possible to find such connections that are torsion-free,
but they are not unique in general [39] (unlike the case of ordinary Riemannian geometry
which singles out the Levi–Civita connection).

Indeed, writing the bundle KSU(8) = E∗ ⊗ adPSU(8), in terms of SU(8) irreducible
representations, we have

KSU(8) = (2̄8 + 28)× 63 = 28 + 36 + 420 + 1280 + c.c. . (III.190)

The map τ in (III.116) then splits KSU(8) into

Im τ = 28 + 36 + 420 + c.c. ≡WSU(8) (III.191)
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ker τ = 1280 + c.c. . (III.192)

Then, given that the SU(8) decomposition of the torsion bundle W reads

W = 28 + 36 + 420 + c.c. , (III.193)

we are left with the following intrinsic torsion

W
SU(8)
int = W/WSU(8) = 0 , (III.194)

implying that every SU(8)/Z2 structure is torsion-free, and the space of torsion-free,
compatible connections is given by 1280 + c.c..

Turning to the equations of motion, it is remarkable that the dynamics are simply the
generalised geometrical analogue of Einstein gravity: the bosonic action is given by [39]

SB =
∫

volGR , (III.195)

where volG is the volume form associated to the generalised metric and R is the analogue
of the Ricci scalar. The corresponding equations of motion are simply

RMN = 0 , (III.196)

where RMN is the analogue of the Ricci tensor.

Remarkably, one can reformulate the generalised Ricci tensor naturally in terms of
generalised objects. To do so, we introduce two real SU(8) bundles S and J , which
we refer to as the “spinor” bundle and the “gravitino” bundle respectively, since the
supersymmetry parameter and the physical gravitino field in supergravity are embedded
in exceptional generalised geometry as sections of them [42]. These are

S = 8 + 8̄ ≡ S+ + S− J = 56 + 56 ≡ J+ + J−. (III.197)

Then, the SU(8) spinor η defined by the two internal supersymmetry parameters (III.155)
is naturally a section of S: η ∈ Γ(S). A gravitino ψ would then be a section of J : ψ ∈ Γ(J).
One can then rewrite the generalised Ricci tensor as

D ×J (D ×J η) + 2D ×J (D ×S η) = R0 · η (III.198)

D ×S (D ×J η) +D ×S (D ×S η) = R η, (III.199)

where R and R0
MN provide the scalar and non-scalar parts of RMN respectively. The

projections ×S and ×J are unique, and in terms of SU(8) indices, projections with the
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generalised connection D ≡ (D[αβ], D̄[αβ]) read

(D ×J η)αβγ = D[αβηγ] ∈ Γ(J+) (III.200)

(D ×S η)α = D̄[αβ]η
β ∈ Γ(S−) (III.201)

(D ×J ψ)αβγ = − 1
12ϵαβγδδ

′θ1θ2θ3D
[δδ′]ψθ1θ2θ3 ∈ Γ(J−) (III.202)

(D ×S ψ)α = −1
2D̄[βγ]ψ

αβγ ∈ Γ(S+) . (III.203)

The existence of the expressions (III.198) and (III.199) is a non-trivial statement. It
can be shown that the left-hand sides are linear in η, and since η and the left-hand sides
are manifestly covariant, these expressions define a tensor. This generalised Ricci tensor
has been calculated explicitly in the M-theory case in [39] for instance.

The resulting equations of motions are therefore

D ×J (D ×J η) + 2D ×J (D ×S η) = 0 (III.204)

D ×S (D ×J η) +D ×S (D ×S η) = 0 . (III.205)

Interestingly, it is immediate in this formalism to read off the fact that preserving super-
symmetry implies that the equations of motion are satisfied. Indeed, one can reformulate
the supersymmetry conditions as

δψ = D ×J η = 0 (III.206)

δη = D ×S η = 0 . (III.207)

If these are satisfied, the equations of motion (III.204) and (III.205) are trivially obeyed.
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Chapter IV

Non-supersymmetric flux vacua and
Generalised calibrations

In this chapter, we will discuss the results derived in [91, 92]. These concern non-
supersymmetric type II supergravity flux vacua. More precisely, a class of N = 0 flux
vacua which are thought of as supersymmetric backgrounds deformed by some pertur-
bations which break supersymmetry in a controllable way, in a sense that will be made
precise throughout this chapter.

In section IV.2, we present a new class of non-supersymmetric flux vacua [91], gener-
alising the GKP vacua [3] in a sense that will be made precise later on. We derive the
corresponding equations of motion and solve them for various explicit examples. We also
discuss the stability and the effective theories associated to this class of backgrounds.

On another note, the supersymmetry condition involving the RR fluxes (III.73) has
been reformulated by Tomasiello [6], eliminating the explicit dependence on the metric.
We generalise this derivation in section IV.3 for non-supersymmetric backgrounds violat-
ing the other supersymmetry conditions (III.71) and (III.72). We use this reformulation
to derive constraints that the ten-dimensional solutions satisfying (III.73) must respect in
order to dimensionally reduce to solutions of four-dimensional N = 1 supergravity with
non-vanishing F-terms and potentially non-vanishing D-terms [92]. We give the equations
of motion for the class of type II vacua satisfying these constraints in the language of pure
spinors.

The physical motivation to study non-supersymmetric backgrounds which still respect
(III.73) relies on the theory of generalised calibrations, which provides an interpretation
of the supersymmetry conditions in terms of stability conditions for certain probe D-
branes [2, 8, 93]. Moreover, regarding the class of solutions discussed in IV.2, both its
general construction and the discussion of its stability heavily relies on the generalised
calibration theory. We therefore start this chapter by briefly reviewing the theory of
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generalised calibration in section IV.1, following mainly [2].
Finally, let us mention that throughout this whole chapter, we adopt the generalised

complex geometry conventions introduced in subsection III.1.1.

IV.1 Calibrations in generalised complex geometry

The N = 1 supersymmetry equations for type II flux backgrounds compactified to four-
dimensional Minkowski space, written in the pure spinor formalism, (III.71), (III.72) and
(III.73), have a clear interpretation as being calibration conditions in the generalised sense,
for a certain type of D-branes in the geometry. This interpretation turns out to provide
great tools to understand the geometry and discuss the stability of both supersymmetric
and non-supersymmetric backgrounds.

Generalised calibrations are natural extensions of ordinary calibrations.1 For super-
symmetric compactification on a spin manifold M , where there are no non-trivial bulk
and world-volume fluxes, there is a nice relation between branes wrapping cycles in M

and ordinary calibrations. The calibration forms can be built as bilinears in the covari-
antly constant spinors on the manifold. As these spinors are the internal supersymmetry
parameters, the closure of the calibration form follows supersymmetry. In this case, the
energy of a brane wrapping a cycle in the manifold is given by its volume. Supersymmet-
ric configurations are energy mininimising, and therefore correspond to branes wrapping
calibrated cycles in the spin manifold.

In flux compactifications, the energy of the static branes gets contribution both from
the volume and the fluxes. Generalised complex geometry provides a natural extension
of this construction to flux backgrounds, which takes into account the contribution to the
energy of both RR background fluxes and world-volume degrees of freedom.

We consider D-branes in the warped geometry (III.62). They can wrap a cycle Σ in the
internal manifold M and they can be string, domain-walls or space-filling in the external
Minkowski space. As discussed in [2], one can show that a static brane wrapping a cycle
Σ in the internal manifold of an N = 1 warped flux backgrounds is supersymmetric if it
wraps a calibrated generalised submanifold.

To make these statements precise, we need to introduce the technology required to

1A calibration form ω is a p-form on M that satisfies an algebraic and a differential condition. At
every point q ∈ M and for every p-dimensional oriented subspace τ of the tangent space Tq

ω|τ ≤
√

det g|τ dτ ≡ volτ , (IV.1)

where dτ = t1 ∧ . . . ∧ tp, with tα a basis for τ∗ (the dual of τ) and det g|τ := det(gαβ), with gαβ the
components of the pulled-back metric g|τ in the coframe tα. At every point there must exist a subspace
τ such that the above bound is saturated. Then the form ω must be closed dω = 0.
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describe D-branes in generalised geometry: a generalised submanifold (Σ, F) and a gen-
eralised calibration form ω.

A generalised submanifold is a pair (Σ, F) with Σ ⊂ M a submanifold and F a
two-form, which for a D-brane is a two-form on its world-volume, such that

dF = H|Σ, (IV.2)

with H|Σ the pullback of the NS-field-strength on Σ. The generalised submanifold is a
generalised cycle if ∂Σ = ∅.

As shown in [2], one can construct polyforms of definite parity in terms of the pure
spinors defining the SU(3)× SU(3) structure of the N = 1 background

ωstring = e2A−ϕImΨ1 (IV.3)

ωDW = e3A−ϕΨ2 (IV.4)

ωsf = e4A−ϕReΨ1, (IV.5)

which satisfy the properties of a generalised calibration. They first satisfy an algebraic
condition corresponding to the minimisation of the D-brane energy

E(Π,R) ≥ (ω|Π ∧ eR)(Π) (IV.6)

for any point p ⊂ M and any generalised submanifold (Π,R)2. Here for ρ a form, ρ(Π)
is the coefficient of the top form on Π of ρ|Π. The energy density corresponds to the
following DBI contribution

E(Π,R) = eqA−ϕ
√

det(g|Π +R), (IV.7)

where q is the number of external dimensions. Moreover the differential conditions that
must be respected by the above generalised calibration forms correspond to the super-
symmetry conditions (III.71), (III.72), and (III.73)

dH(ωDW) = 0 domain-wall BPSness (IV.8)

dH(ωstring) = 0 D-string BPSness (IV.9)

dH(ωsf) = e4AF̃ gauge BPSness. (IV.10)

A calibrated generalised cycle is a generalised cycle saturating the calibration bound
2Strictly speaking for any point p ⊂ M there must exist a generalised submanifold (Π, R) such that

the above bound is saturated.
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(IV.6). A D-brane in a N = 1 backgrounds is supersymmetric, or BPS, if it wraps a
calibrated generalised cycle. This is why we refer to the N = 1 supersymmetry conditions
as the domain-wall, D-string and gauge BPSness respectively. The above generalised
calibration forms are associated to space-filling, domain-wall, and string-like D-branes,
which wrap respectively four, three, and two non-compact dimensions.

Another useful characterisation of D-branes is in terms of their generalised current.
The generalised current j(Σ, F) can be seen as the Poincaré dual of the generalised

submanifold (Σ, F): ∫
M
⟨ϕ, j(Σ, F)⟩ =

∫
Σ
ϕ|Σ ∧ eF (IV.11)

with ϕ any polyform on M . Loosely speaking, as a distribution j(Σ, F) is a localised real
pure spinor proportional to e−F ∧ δ(d−k)(Σ), with Σ of rank k and with δ(d−k)(Σ) the
standard Poincaré dual of the submanifold Σ. One can also consider the smeared version
of this current, that we call j, proportional to e−F ∧vol⊥ with vol⊥ the transverse volume
to Σ.

We can define the generalised tangent bundle of the foliation associated to the gener-
alised submanifold (Σ, F) as

T(Σ, F) ={V = v + ξ ∈ T ⊕ T ∗ ∣∣ V · j = 0} (IV.12)

={V = v + ξ ∈ TΣ⊕ T ∗ ∣∣ ξ|Σ = ιvF}. (IV.13)

This is a real maximally isotropic subbundle of the generalised tangent bundle E.
As discussed in [2], the calibration condition (III.73) implies that T(Σ, F) is stable

under the generalised complex structure J2 and hence (Σ,F) is a generalised complex
submanifold.

Finally, it is easy to prove that the generalised current associated to a generalised
cycle (Σ, F) is dH -closed. From (IV.11), we have:∫

M
⟨ϕ,dHj(Σ, F)⟩ =

∫
M
⟨dHϕ, j(Σ, F)⟩ =

∫
Σ

dHϕ|Σ ∧ eF =
∫
∂Σ
ϕ|∂Σ ∧ eF , (IV.14)

where we used both the property of the Mukai pairing (B.13) and Stoke theorem. There-
fore we have

dHj(Σ, F) = j(∂Σ,F|∂Σ), (IV.15)

which reduces to
dHj(Σ, F) = 0 (IV.16)

if (Σ, F) is a generalised cycle.
Note that, as the generalised tangent bundle T(Σ,F) is a real maximally isotropic
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sub-bundle of T ⊕ T ∗, it also defines an almost Dirac structure [35]. From (IV.12) and
Frobenius theorem it follows that dHj(Σ, F) = 0 implies that the almost Dirac structure
is actually integrable.

IV.2 New non-supersymmetric flux vacua from generalised cali-
brations

The exploration of the landscape of four-dimensional string compactifications has been
mostly focused on vacua preserving at least N = 1 supersymmetry. One reason is prac-
tical: solving the supersymmetry conditions, which are first order differential equations,
plus the Bianchi identities for the fluxes, guarantees to have solutions to the full set of
string or supergravity equations of motion. Without this way out, handling the equations
of motion upfront is very hard, even in the supergravity approximation, since they are
cumbersome second order differential equations.

There are also physical considerations motivating the study of supersymmetric string
compactifications, namely the expectation that supersymmetry should be broken at en-
ergies smaller than the compactification scale.

Even if low energy supersymmetry breaking is a phenomenologically motivated sce-
nario, in principle nothing prevents supersymmetry from being spontaneously broken at
arbitrarily high energies. In this section, we consider this possibility, and focus on this
much less studied corner of the string compactification landscape, worth exploring per se.

More precisely, we construct new classes of non-supersymmetric type II supergravity
solutions by breaking supersymmetry in a controlled way. We deform the conditions for
N = 1 supersymmetry by adding supersymmetry breaking terms, which are controlled
by some parameters, whose vanishing would restore supersymmetry.

The motivation behind this approach is to preserve some of the convenient features
of supersymmetric vacua, mainly the possibility to use first order differential equations.
Since supersymmetry is broken, in order to find solutions we have to make sure that the
equations of motion are satisfied. The goal is to find specific deformations of the BPS
equations such that the additional constraints to impose in order to solve the equations
of motion are manageable.

We will use the framework of generalised complex geometry, where the N = 1 BPS
conditions have an interpretation in terms of calibration conditions of different probe
D-branes. As we have discussed in the previous chapter, the N = 1 supersymmetry con-
ditions for warped compactifications can be recast in a set of three differential equations
on polyforms defined only on the internal compactification space (III.71), (III.72), and
(III.73). Each of these three conditions can be interpreted as the conditions for calibrated
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D-brane probes in the geometry [2]: branes filling all the external space and branes that
are domain-wall or string-like.

In this language, one can identify different supersymmetry breaking terms depending
on which calibration condition is modified. In this section we will always assume that
space-filling branes are calibrated3, while we will allow the calibrations of D-strings and
domain-wall branes to be violated.

A famous example of non-supersymmetric type IIB solutions that violate the domain-
wall calibration condition are the GKP solutions [3], describing flux compactifications
to four-dimensional Minkowski space with D3 and O3 sources, where supersymmetry
is broken by the H(0,3) components of the NS-flux. The GKP backgrounds have been
described within generalised complex geometry in [44] as specific examples of a general
framework to describe non-supersymmetric solutions.

The generalised complex geometry description of the GKP backgrounds also offers an
insightful geometrical interpretation of the domain-wall supersymmetry breaking term: it
is given by the current associated to the D3-branes in the background4.

In the literature there is another example of non-supersymmetric solution in type IIA,
[45], which in the language of generalised complex geometry corresponds to the violation
of the D-string calibration condition, where supersymmetry is again violated through
additional NS-flux components with respect to the supersymmetric case, but there is no
further geometrical interpretation of the corresponding supersymmetry breaking term.
Moreover, the question of stability of such backgrounds remains unaddressed.

In this section, we want to extend the study of non-supersymmetric vacua violating the
D-string calibration condition. More precisely, we will construct new non-supersymmetric
type II solutions, where the current associated to the space-filling D-branes present in our
backgrounds will serve as a building block for the supersymmetry breaking term violating
the D-string calibration condition, in a sense that will be made precise later on.

The motivation behind this construction is two-fold. The first one is simplicity: defin-
ing supersymmetry breaking in terms of the current of the background’s D-branes is a
natural and simple ansatz, which in turn reduces the equations of motion to a reasonable
set of additional constraints. The second reason is that it can be useful to address the
question of stability of these non-supersymmetric vacua: in generalised complex geometry,
D-branes current can enter the effective potential associated to a given ten-dimensional
background, and are particularly useful as they allow to use powerful positivity arguments

3Let us stress here that the interpretation of the BPS conditions in terms of D-brane calibrations
doesn’t mean that the backgrounds have to have D-string, domain-wall or space-filling D-branes, but we
impose the presence of space-filling D-branes for model building considerations.

4Strictly speaking it is the smeared version of the generalised current associated to the D3-branes, as
we will discuss in the text.
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from the branes calibration bounds in the study of the effective potential.
We can show that our new class of vacua shares one interesting property with the GKP

backgrounds, namely the fact that there is a natural truncation of the ten-dimensional
theory, suggested by the geometry, such that the off-shell effective potential is positive
semi-definite, and vanishes at the solutions. This statement is however not quite equiv-
alent to claiming the stability of these new vacua, since we have limited control on the
aforementioned truncation, as we will discuss at length.

On another note, we will also construct a new class of backgrounds generalising the
GKP vacua, where both the domain-wall and D-string calibration conditions are violated.

The outline of this section is as follows. In subsection IV.2.1 we review the generalised
complex geometry description of the GKP-like backgrounds and we introduce our two new
classes of non-supersymmetric backgrounds, with pure D-string supersymmetry breaking
and mixed Domain-wall and D-string supersymmetry breaking. In subsection IV.2.2,
we write the effective potential for these compactifications and derive the equations of
motion in the generalised complex geometry formalism, first for completely general D-
string supersymmetry breaking, and then for the two new classes of backgrounds we
found. We also address the question of the stability of these new solutions. Finally, in
subsection IV.2.3, which can be read (almost) independently, we present different explicit
examples of new non-supersymmetric vacua with SU(2) and SU(3) structures.

IV.2.1 N = 0 flux vacua in generalised complex geometry

The goal of this subsection is to construct and study new non-supersymmetric back-
grounds. To do so we will focus on situations where supersymmetry breaking occurs as a
perturbation around some supersymmetric backgrounds and it is controlled by parameters
whose vanishing would restore supersymmetry.

The idea is to modify the Killing spinor equations (II.71) and (II.72) while still assum-
ing that the internal spinors η1 and η2 in (II.59) are globally defined. This means that the
internal manifolds are still characterised by an SU(3) or SU(2) structure, and, in the gen-
eralised geometry language, by an SU(3)×SU(3) structure. The modified Killing spinor
equations are then equivalent to adding supersymmetry breaking terms to the right-hand
side of the N = 1 pure spinor equations (III.71), (III.72), and (III.73). From now on, we
will call these new equations modified pure spinor equations.

As discussed in section IV.1, the supersymmetry conditions (III.71), (III.72), and
(III.73) correspond to the calibration conditions for supersymmetric domain-wall, string-
like and space-filling probe branes, respectively. Thus we will call the corresponding
supersymmetry breaking terms, domain-wall (DWSB), string-like (SSB) and space-filling
supersymmetry breaking.
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DWSB non-supersymmetric backgrounds have been studied in the framework of GCG
in [44], which also gave the general expression for the non-supersymmetric deformations
of the Killing spinor equations and of the associated modified pure spinor equations.

In this section we will review a simple subclass of the DWSB discussed in [44] and we
will discuss its geometrical properties, a discussion that we will then extend to our new
classes of solutions describing SSB supersymmetry breaking, with and without DWSB
breaking.

However, in contrast with the supersymmetric case, there is no reason to expect the
solutions of the modified pure spinor equations and the Bianchi identities to be solutions of
the equations of motion. So the supersymmetric breaking terms have to satisfy additional
constraints in order to have a real vacuum, which we will discuss in subsection IV.2.2.

a) The DWSB vacua

Non-supersymmetric solutions corresponding to DWSB have been studied in [44]. The
parametrisation of the most general DWSB deformation can be found in Appendix B of
[44]. As it is hard to find solution in such general context, [44] focuses on a subset of
solutions that only depend on a single supersymmetry breaking parameter.

For the one-parameter DWSB class, the modified Killing spinor equations are5

δψ(1)
µ = 1

2e
Aγ̂µζ ⊗ (rη∗

1) + c.c. δψ(2)
µ = 1

2e
Aγ̂µζ ⊗ (rη∗

2) + c.c. (IV.17)

δψ(1)
m = ζ ⊗ (−1

2rΛ
n
mγnη

∗
1) + c.c. δψ(2)

m = ζ ⊗ (−1
2rΛm

nγnη
∗
2) + c.c. (IV.18)

∆ϵ1 = ζ ⊗ (−rη∗
1) + c.c. ∆ϵ2 = ζ ⊗ (−rη∗

2) + c.c. (IV.19)

As suggested by its name, the one-parameter DWSB subclass only depends on a single
supersymmetry breaking parameter, r, as the O(6) matrix Λ is completely defined by the
background geometry:

η1 = iUη2 UγmU
−1 = Λnmγn, (IV.20)

where U is a unitary, point-dependent operator acting on six-dimensional spinors.
The corresponding domain-wall BPSness violation is then

dH(e3A−ϕΨ2) =ire3A−ϕ((−1)|Ψ2|ImΨ1 + 1
2ΛmnγmImΨ1γ

n). (IV.21)

where γm are Cliff(6) gamma matrices acting on a form ω as

γmω = (gmnιn + dym∧)ω ωγm = (−1)|ω|+1(gmnιn − dym∧)ω. (IV.22)

5Here we write the modified dilatino variation defined in (C.4).
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The modified domain-wall condition (IV.21) can be rewritten in a way that makes
explicit its implications for the geometry of the internal background [44].

We suppose that the internal manifold M admits a generalised submanifold (Σ, F),
where Σ is a subbundle of odd/even dimension n in type IIA/IIB. Since the space-filling
calibration condition (III.73) still holds for this class of backgrounds, we can choose (Σ,F)
to be calibrated by ωsf = e4A−ϕReΨ1, such that the BPS space-filling branes of our
backgrounds will wrap the calibrated generalised submanifold (Σ,F).

We can then split the tangent bundle as

T = TΣ⊕ TΣ⊥ , (IV.23)

with TΣ⊥ the orthogonal completion of TΣ, and define a local vielbein {ea} on TΣ⊕TΣ⊥

and its associated gamma matrices

γ̂aω = (δabιb + em∧)ω ωγ̂a = (−1)|ω|+1(δabιb − ea∧)ω. (IV.24)

One can then express the operator U in (IV.20) as

U = γn(6)
∑
k

ϵa1...an−2kb1...b2k

(n− 2k)!k!2k
√

det(g|Σ + F)
γ̂a1...an−2k

Fb1b−2 . . .Fb2k−1b2k
, (IV.25)

and the corresponding O(6) matrix as

Λ̂ = 1⊥ − (g|Σ + F)−1(g|Σ −F) , (IV.26)

where 1⊥ is the projection onto TΣ⊥.
Then (IV.21) becomes

dH(e3A−ϕΨ2) = irj, (IV.27)

with
j = 4(−1)|Ψ2|e3A−ϕ

√
detg|Σ√

det(g|Σ + F)
e−F ∧ σ(vol⊥), (IV.28)

where vol⊥ is the volume form on the space orthogonal to the cycle Σ such that vol6 =
volΣ ∧ vol⊥, and |Ψ2| is the degree mod 2 of Ψ2.

The polyform j is a smeared version of the Poincaré dual to the generalised cycle
(Σ, F), and therefore it is a (smeared) generalised current for (Σ, F)6. Moreover, the

6To illustrate, let’s consider the simple cases where F = 0. We have

j = 4(−1)|Ψ2|e3A−ϕσ(vol⊥), (IV.29)

which is the ordinary smeared Poincaré dual to the cycle Σ, and T(Σ,0) ≡ T Σ ⊕ T ∗|Σ⊥ is the null space of
j, which is a defining property of the generalised current.
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right-hand side of (IV.27) is dH -exact and so dH -closed and, by Frobenius’s theorem, it
follows that the generalised sub-bundle (Σ,F) is integrable and that dF = H|Σ. This
means that the manifold M is a foliation with leaves (Σ,F), which are calibrated gener-
alised submanifolds, thanks to (III.73).

Note that solving (IV.27) for a given generalised foliation (Σ, F) constrains the pos-
sible choices for r. Indeed, it has to be chosen such that the right-hand side of (IV.27) is
dH closed. The supersymmetry parameter can therefore not be multiplied by arbitrary
complex functions, and these backgrounds truly depend on one parameter only.

It is also important to note that the sources of these backgrounds are taken to be
parallel, so their internal manifolds admit a unique generalised calibrated cycle (Σ, F)
wrapped by all the sources.

The one-parameter DWSB class includes the GKP vacua [3] as well as vacua with
D4, D5 or D6-brane sources that can be obtained by T-dualising the GKP solution.
Non-supersymmetric GKP vacua [3] are solutions of type IIB compactifications, with
D3-branes and O3-plane sources, and non trivial NS and RR three-form fluxes.

GKP-like vacua correspond to particularly simple representative of the one-parameter
DWSB class of vacua, where we have

Λ = 1 (IV.30)

and (Σ, F) is the trivial foliation whose leaves are points of M . In this case, the D-branes
sitting on such leaves are D3-branes, and the failure to calibrate the would-be domain-wall
branes originates purely from the H(3,0) components of the NS-flux7:

dH(e3A−ϕΨ2) = e3A−ϕH ∧Ψ2 = 4ire3A−ϕvol6. (IV.31)

Backgrounds with D5 and D6-branes have been explicitly constructed in [44], and we
will revisit them when turning to the examples of our new backgrounds in section IV.2.3.

Let us consider again the generalised tangent bundle to the foliation with the gen-
eralised submanifold (Σ,F). We saw that for supersymmetric backgrounds, (Σ,F) is
a complex generalised submanifold due to the integrability of the complex structure.
Thanks to this property it is possible to study deformation (Σ,F) and then of D-branes
in the background [2].

For the one-parameter DWSB backgrounds J2 is not integrable anymore and one
might wonder what can be said about (Σ,F). Recall from section IV.1 that the generalised
tangent bundle T(Σ, F) associated to the foliation with the generalised submanifold (Σ, F)

7with respect to the almost complex structure defined by the internal spinor, for which Ψ2 is a (3, 0)-
form.
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is an almost Dirac structure. As pointed out in [44], for DWSB vacua (IV.27) implies
the (conformal) closure of the associated generalised current and therefore T(Σ, F) is still
integrable: it remains closed under the twisted Courant bracket.

The integrability of the Dirac structure associated to (Σ, F) has the important
consequence that one can define a differential d(Σ, F) acting on the graded complex⊕6

k=0 ΛkT ∗
(Σ, F). It also allows to preserve some notion of "generalised holomorphicity".

Let L2 ⊂ E be the subbundle with +i-eigenvalues with respect to the generalised almost
complex structure J2. L2 defines an almost Dirac structure, which is not integrable as
J2 is not. However, we can consider the complex bundle

L(Σ, F) = T(Σ, F) ∩ L2 = {V ∈ (T ⊕ T ∗)⊗ C | V ·Ψ2 = V · j = 0} , (IV.32)

which, in contrast to L2, is stable under the twisted Courant bracket:

JV,W KH · j = −W · V · dHj = 0 (IV.33)

JV,W KH · e3A−ϕΨ2 = −W · V · dH(e3A−ϕΨ2) = −irW · V · j = 0 (IV.34)

precisely because8 of the modified pure spinor equation (IV.27) and because of the in-
tegrability of the Dirac structure associated to T(Σ, F). The collection (L2, J, KH , a)9 is
therefore a Lie algebroid and one can thus define a differential that we call ∂̄(Σ, F) on⊕3

k=0 ΛkL∗
(Σ, F)

10, and thus even though J2 is not integrable, the structure of the one-
parameter DWSB class allows one to have a notion of holomorphic differential ∂̄(Σ, F), at
least with respect to the foliation with (Σ, F).

It has been speculated in [44] that the first cohomology group of this differential
H1
∂̄(Σ, F)

might define the moduli-space of the D-branes in the one-parameter DWSB
backgrounds, much like in the case of supersymmetric compactifications [93]. The authors
also postulated that the non-integrability of the structure J2 might result in a closed
string moduli space that is not a complex manifold, since it is what happens for the GKP
construction. We refer the reader to [44] for more details on this matter.

b) The SSB vacua

We consider here another class of non-supersymmetric backgrounds where supersymmetry
is broken by deforming the D-string calibration condition (III.72). We refer to this way
of breaking supersymmetry as SSB, D-string or string-like supersymmetry breaking.

An example of SSB solution has been discussed in type IIA [45]. It is obtained by
8Here we considered e3A−ϕΨ2 for convenience but of course one finds the same result for Ψ2.
9We recall that a is the anchor map.

10The subbundle L(Σ, F) is guaranteed to be three-dimensional from the compatibility of the pure
spinors Ψ2 and j, see for instance [35].
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adding to a supersymmetric solution new components to the NS-field-strength, carefully
chosen for the background to keep on respecting the equations of motion. The modified
pure spinor equations read

dH(e3A−ϕΨ2) = 0 (IV.35)

dH(e2A−ϕImΨ1) = e2A−ϕH ∧ ImΨ1 = c e6A−2ϕvol6 (IV.36)

dH(e4A−ϕReΨ1) = e4A∗̃6F, (IV.37)

where c is a supersymmetry breaking parameter. We refer the reader to [45] for the
explicit form of the solutions and the details of the construction.11

It is important to note that the supersymmetry breaking term c e6A−2ϕvol6 has no
given geometrical interpretation12, and then that no conclusion has been reached regard-
ing the stability of these backgrounds.

This is in stark contrast with the situation of the one-parameter DWSB class, where
the supersymmetry breaking term j is understood as the (smeared) generalised current
associated to the background sources and is a key ingredient in the discussion of the
stability of the one-parameter DWSB class.

It would therefore be interesting to construct non-supersymmetric backgrounds with
string-like supersymmetry breaking, but this time with a supersymmetry breaking term
that has a given geometrical interpretation.

In this section, we will introduce a new class of SSB backgrounds, which relies on the
same ingredient as for one-parameter DWSB solutions, namely the foliation structure of
M by a generalised calibrated submanifold (Σ, F).

More precisely, its supersymmetry breaking term will depend again on the (smeared)
generalised current associated to the calibrated space-filling D-branes present in the back-
ground, much like the one-parameter DWSB case. The main motivation is that we can
then benefit from the same kind of arguments when addressing the question of stability.

Our starting point is the following assumption: the internal manifold admits a gener-
alised foliation by the generalised cycle (Σ, F). More precisely, we consider backgrounds
that admit calibrated parallel space-filling sources and we introduce a polyform j which
plays the role of a (smeared) generalised current for our sources, which therefore wrap

11Note that our pure spinors, volume form and NS-flux conventions differ to the ones in [45]: Ψours =
−8iΨtheirs, Hours = −Htheirs, vol6 ours = −vol6 theirs.

12The backgrounds considered in [45] are intersecting NS5-D6-D8 models: the geometrical understand-
ing of intersecting branes in GCG is fairly limited, and the literature on the subject is scarce, with the
exception of [94].
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(Σ, F), as in the DWSB case

j = 4(−1)|Ψ2|e3A−ϕ
√

detg|Σ√
det(g|Σ + F)

e−F ∧ σ(vol⊥), (IV.38)

where vol⊥ is the transverse volume to the cycle Σ. The current j is by construction dH
closed as (Σ, F) is a generalised cycle (see section IV.1).

The decomposition of the generalised current j on the SU(3)×SU(3) structure is again

j = e3A−ϕ((−1)|Ψ2|ImΨ1 + 1
2ΛmnγmImΨ1γ

n) (IV.39)

with, as in the previous section,

Λ̂ = 1⊥ − (g|Σ + F)−1(g|Σ −F) . (IV.40)

However, in contrast with the DWSB construction, the domain-wall and the gauge BP-
Sness conditions are both obeyed

dH(e3A−ϕΨ2) = 0 (IV.41)

dH(e4A−ϕReΨ1) = e4A∗̃6F, (IV.42)

and we consider the following violation of the D-string BPSness13

dH(e2A−ϕImΨ1) = αm[γmj + (−1)|j|jγm] (IV.45)

= 2αmdym ∧ j , (IV.46)

where the gamma matrices are defined in (IV.22) and dym span the directions transverse
to the covolume of Σ. The coefficients {αm} are real and are the supersymmetry breaking
parameters.

As for DWSB, imposing that the manifold is a generalised foliation constrains the
possible choices for the αm. Indeed, it has to be chosen such that the right-hand side of
(IV.46) is dH closed. Therefore the αm can’t be multiplied by arbitrary complex functions,
and these backgrounds depend on dim(Σ) parameters only.

The supersymmetry breaking term in (IV.45) can also be expanded on the SU(3)×SU(3)
structure defined by the two pure spinors Ψ1 and Ψ2, it is given in (C.33). As it is not

13It is also useful to consider a local formulation in terms of the vielbein basis, which we will use when
discussing concrete constructions of backgrounds:

dH(e2A−ϕImΨ1) = α̂a[γ̂aj + (−1)|j|jγ̂a] (IV.43)
= 2α̂aea ∧ j. (IV.44)
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a particularly insightful expression we will keep on using the parametrisation in terms of
the generalised current from then on.

Note also that this ansatz is simply one of the different possibilities to write down
an SSB term in terms of the generalised current. Our choice is dictated by simplicity:
it is natural to construct backgrounds with such a supersymmetry breaking term and it
requires only relatively reasonable additional constraints in order to find solutions to the
equations of motion, as we will discuss at length in subsections IV.2.2 and IV.2.3.

As for the one-parameter DWSB, the closure of the generalised current j implies that
the generalised bundle T(Σ, F) associated to the generalised submanifold (Σ,F) defines a
Dirac structure which is integrable. Then, it is again possible to define the differential
d(Σ, F) acting on the graded complex

⊕6
k=0 ΛkT ∗

(Σ, F).
However, in contrast with the one-parameter DWSB situation, the generalised almost

complex structure J2 is integrable, because of the conformal closure of the pure spinor
Ψ2 (IV.41). Therefore, one can define a differential ∂̄J2 acting on the graded complex⊕6

k=0 ΛkL∗
2, where L2 is the +i eigenbundle of J2. The differential ∂̄J2 is the generalised

Dolbeaut differential, introduced in III.1.1.
Moreover, as the foliation (Σ, F) is an almost generalised complex foliation, we can

consider the three-dimensional complex sub-bundle

L(Σ, F) = T(Σ, F) ∩ L2 = {V ∈ (T ⊕ T ∗)⊗ C | V ·Ψ2 = V · j = 0} , (IV.47)

which is stable under the twisted Courant bracket:

JV,W KH · j = −W · V · dHj = 0 (IV.48)

JV,W KH · e3A−ϕΨ2 = −W · V · dH(e3A−ϕΨ2) = 0 . (IV.49)

As in the one-parameter DWSB case, one can therefore define a differential that we call
∂̄(Σ, F) on the graded complex

⊕3
k=0 ΛkL∗

(Σ, F). It is then reasonable to postulate that
the first cohomology group of this differential H1

∂̄(Σ, F)
might define the moduli-space of

the D-branes present in our backgrounds, like in the supersymmetric case. Note that
the complex bundle L(Σ, F) and thus the cohomology group H1

∂̄(Σ, F)
clearly depend only

on one of the pure spinors, Ψ2. This fact has a clear interpretation for supersymmetric
backgrounds, when described from the four-dimensional perspective, see [93], whereas we
do not have access to an analogous explanation, since we have much less understanding
of the four-dimensional theories associated to our backgrounds (see subsection IV.2.2).

Moreover, the fact that this way of breaking supersymmetry preserves the integrability
of the generalised complex structure J2 seems to suggest that the closed string moduli
space could still be a complex manifold. It could be useful to turn to the exceptional
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generalised geometry formalism [39] to address these questions, for instance by performing
a non-supersymmetric analogue analysis of the one developed in [61]. However, even if we
will further comment on such questions in chapter V, making precise statements about
these problems is beyond the scope of the present work.

Finally, from now on, we consider generalised foliations with F = 0. The form degree
of the supersymmetry breaking term is therefore codim(Σ) + 1. Then (IV.43) can only
be respected if

type(Ψ1) ≤ codim(Σ), (IV.50)

where the type of a pure spinor is its lower form degree. For instance backgrounds with
an SU(3) structure in type IIA have type(Ψ1) = 3 so dim(Σ) ≤ 3, which corresponds to
D4 or D6 branes only. We will explicitly construct some backgrounds with such sources
in section IV.2.3.

c) Vacua with both DWSB and SSB contributions

The two classes of symmetry breaking described so far correspond each to the failure to
respect one specific differential calibration condition, either the domain-wall or the string-
one. Here, we would like to discuss more general cases where supersymmetry is broken
by violating both the domain-wall and string-like calibration condition, while keeping
calibrated space-filling sources in the background.

In the light of the previous discussion, it is natural to consider non-supersymmetric
backgrounds which combine the specific DWSB and SSB contributions discussed in the
previous sections

dH(e3A−ϕΨ2) = irj (IV.51)

dH(e2A−ϕImΨ1) = αm[γmj + (−1)|j|jγm] (IV.52)

dH(e4A−ϕReΨ1) = e4A∗̃6F. (IV.53)

Here again the internal space is taken to be a generalised foliation (Σ, F), and j is its
smeared generalised current, while the sources wrap the calibrated generalised cycle Σ.

The main geometric properties of the one-parameter DWSB class will be preserved by
the additional SSB contribution: the subbundle T(Σ, F) also defines an integrable Dirac
structure, the generalised complex structure J2 is not integrable, and the foliation (Σ, F)
is an almost generalised complex foliation, so one can still define the following complex
bundle

L(Σ, F) = T(Σ, F) ∩ L2 = {V ∈ (T ⊕ T ∗)⊗ C | V ·Ψ2 = V · j = 0}, (IV.54)
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which is stable under the Courant bracket. One can therefore again define the differential
∂̄(Σ, F) on

⊕3
k=0 ΛkL∗

(Σ, F), which provides a notion of a holomorphic differential, at least
with respect to (Σ, F).

We will come back to this class of vacua later on, write down its equations of motion
in subsection IV.2.2 and construct some explicit backgrounds solving these equations in
subsection IV.2.3.

IV.2.2 Effective potential and equations of motion from pure spinors

In the previous subsections, we presented different classes of non-supersymmetric back-
grounds in terms of the modified pure spinor equations they obey. However, unlike the
supersymmetric case, the solutions of the modified pure spinor equations (plus Bianchi
identities) are not guaranteed to solve the full set of equations of motion and thus to
describe true vacua of type II supergravity.

In order to check that the solutions of the modified pure spinor equations are actual
supergravity backgrounds, we will follow the strategy of [44]: write the most general four-
dimensional ‘effective potential’ from the ten-dimensional type II supergravity action,
and use the fact that the extremisation of the four-dimensional action is equivalent to
satisfying the ten-dimensional type II supergravity equations of motion.

The term ‘effective potential’ is a bit misleading since it does not come from a trun-
cation of the ten-dimensional theory to a finite set of four-dimensional modes.

However, the reason behind this choice (instead of just tackling the ten-dimensional
equations of motion upfront) is two-fold. First of all, the effective potential can be written
as an integral over the internal space of expressions involving the pure spinors and, by
varying it, one can express the equations of motion as some tractable differential equations
on the pure spinors. Secondly, the effective potential allows us to discuss the potential
presence of closed string tachyons from the four-dimensional perspective and thus (par-
tially) address the question of stability of our different backgrounds. For our Minkowski
backgrounds, this translates into the requirement that the effective potential must be
positive semi-definite.

Indeed, even though we do not perform a complete reductions to the four-dimensional
effective theories, we will be able to find natural ‘truncations’ suggested by the geometry
for our new classes of backgrounds such that the effective potential will be positive semi-
definite, therefore excluding the potential presence of closed string tachyons. The semi-
definite positiveness will be argued through the use of calibration bounds such as (IV.6)
rewritten in the pure spinor formalism.

The equations of motion in terms of pure spinors are hard to obtain in full generality,
and they have not been derived yet. However, they have been written down in [44] for
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the case of the one-parameter DWSB family, using the specific forms of the modified
pure spinor equations discussed in IV.2.1.a). In these cases it has been shown that the
equations of motion reduce to relatively mild additional constraints to add on top of the
modified pure spinor equations.

We start this section by recalling the general expression of the effective potential
in terms of the pure spinors derived in [44]. In subsection IV.2.2.b) we summarise the
results for the one-parameter DWSB case, presenting its effective potential and equations
of motion. The subsection IV.2.2.c) then contains our new results on the effective potential
and equations of motion for both purely SSB constructions and mixed SSB and DWSB
constructions. We first derive the equations of motion for the most general violation of
the D-string calibration condition, and we then specify them to our two new classes of
backgrounds.

a) The type II effective potential from pure spinors

In this section, we recall the derivation of the ‘effective’ potential of [44]. We are interested
in configurations where the space-time is warped

ds2
10 = e2A(y)gµνdxµdxν + gmndymdyn, (IV.55)

with gµν now a generic four-dimensional metric, and with non-trivial NS and RR-fluxes.
We assume that the metric gµν depends only on the external coordinates, while all the
other fields, warp factor, internal metric and fluxes depend only on the internal coordi-
nates.

The effective four-dimensional action for such configurations takes the form

Seff =
∫
X4

d4x
√
−g4

(1
2NR4 − 2πVeff

)
, (IV.56)

where R4 is the four-dimensional scalar curvature, N is the warped volume of the internal
space

N = 4π
∫
M
e2A−2ϕ vol6 (IV.57)

and the effective potential density is given by

Veff =
∫
M

vol6e4A{e−2ϕ[−R+ 1
2H

2 − 4(dϕ)2 + 8∇2A+ 20(dA)2]− 1
2 F̃

2} (IV.58)

+
∑

i∈loc. sources
τi

(∫
Σi

e4A−ϕ
√

det(g|Σi + Fi)−
∫

Σi

C̃|Σi ∧ e
Fi

)
, (IV.59)

with R the six-dimensional scalar curvature.
The first line in Veff corresponds to the closed string sector, while the second line is the
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contribution from localised sources. We follow the conventions of [44] where 2π
√
α′ = 1,

so that the tensions of all D-branes are equal τDp = 1 and for O-planes τOq = −2q−5.
Notice that we are also omitting the internal field kinetic terms, since they are taken to be
constant along the external directions14. The sources couple to the RR potentials defined
by dHC̃ = e4AF̃ .

As argued in [44], the variations of the four dimensional action (IV.56) exactly repro-
duce the ten-dimensional equations of motion (see Appendix A for the expression of the
equations of motion). Moreover, from the variation of the four-dimensional action with
respect to gµν15, one gets that the external space is Einstein, with

R4 = 8πVeff/N . (IV.60)

Notice also that the variation of the effective action with respect to the electric RR
potentials reproduces the Bianchi identities

dHF = −jtot = −
∑
i

τiji, (IV.61)

where, as described in section IV.1, ji are the (smeared) generalised current associated to
the D-branes wrapping cycles on the internal manifold.

In the following discussions it will be convenient to consider the external component
of the modified Einstein equations (A.29). This can be obtained by combined variations
of (IV.56)

δSeff
δA

+ 2δSeff
δϕ

= 0. (IV.62)

A central result of [44] is the fact that the effective potential (IV.58) can be expressed in
term of the pure spinors. The general expression is

Veff =1
2

∫
M
⟨∗̃6[dH(e2A−ϕImΨ1)],dH(e2A−ϕImΨ1)⟩

+ 1
2

∫
M
e−2A ⟨∗̃6[dH(e3A−ϕΨ2)],dH(e3A−ϕΨ̄2)⟩

+ 1
2

∫
M

vol6 e4A|∗̃6F − e−4AdH(e4A−ϕReΨ1)|2

− 1
4

∫
M
e−2A

(
| ⟨Ψ1, dH(e3A−ϕΨ2)⟩ |2

vol6
+ | ⟨Ψ̄1, dH(e3A−ϕΨ2)⟩ |2

vol6

)

− 4
∫
M

vol6e4A−2ϕ[(u1
R)2 + (u2

R)2]

14As in [44] we neglect anomalous curvature-like corrections to the sources contribution and, for O-
planes, we take F = 0, as they are not seen as dynamical objects in the compactification.

15which from the ten-dimensional perspective is equivalent to the internal space integral of the external
ten-dimensional Einstein equation’s trace.
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+
∑

i⊂D-branes
τi

∫
M
e4A−ϕ(vol6 ρloc

i − ⟨ReΨ1, ji⟩)

+
∫
M
⟨e4A−ϕReΨ1 − C̃,dHF + jtot⟩ , (IV.63)

where the square of a polyform is defined in Appendix A, and

u1,2
R = u1,2

Rmdym ≡ (u1,2
m + u∗1,2

m )dym , (IV.64)

with

u1
m = i ⟨γmΨ̄1,dH(e2A−ϕImΨ1)⟩

e2A−ϕ ⟨Ψ1, Ψ̄1⟩
+ ⟨γmΨ̄2,dH(e3A−ϕΨ2)⟩

2e3A−ϕ ⟨Ψ2, Ψ̄2⟩
(IV.65)

u2
m = i(−1)|Ψ2| ⟨Ψ1γm, dH(e2A−ϕImΨ1)⟩

e2A−ϕ ⟨Ψ1, Ψ̄1⟩
+ (−1)|Ψ1| ⟨Ψ̄2γm, dH(e3A−ϕΨ2)⟩

2e3A−ϕ ⟨Ψ2, Ψ̄2⟩
. (IV.66)

We have also introduced the Born-Infeld density ρloc
i associated with a source wrapping

a generalised submanifold (Σi,Fi)

ρloc
i =

√
det(g|Σi + Fi)
√

detg
δ(Σi). (IV.67)

With this definition, it’s insightful to rewrite the algebraic inequality (IV.6) in terms
of ρloc:

ρloc
i ≥

⟨ReΨ1, ji⟩
vol6

, (IV.68)

where the division by the volume form means that we remove the vol6 factor in the numer-
ator. We take the sources to be calibrated as boundary conditions, which corresponds to
the saturation of this bound. This bound also implies that the sixth line in the expression
(IV.63) of Veff is always positive.

Varying the effective potential (IV.63) with respect to the dilaton, the NS and RR-
fields, and the warp factor, one should obtain the ten-dimensional equations motion di-
rectly in terms of the pure spinors. However, so far this has not been done in the general
case.

In the following, we derive the equations of motion for the most general violation
of the D-string calibration, and we specify them for the cases of our DWSB and SSB
constructions presented in subsections IV.2.1.b) and IV.2.1.c).

b) DWSB effective potential and equations of motion

We can now turn to the case of the one-parameter DWSB construction, and extremise
its effective potential to find out what are the additional constraints to impose on the
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one-parameter DWSB solutions to promote them to actual supergravity vacua. We briefly
present the results, since they have been derived in [44].

Given that the D-string and gauge BPSness conditions (III.72) and (III.73) are re-
spected for the one-parameter DWSB class, the first and third line of the effective potential
(IV.63) vanish. Then, combining D-string BPSness (III.72) and the modified DWSB con-
dition (IV.27) one can show that the terms proportional to u1 and u2 in (IV.63) are also
zero. Finally, the saturation of the calibration bound (IV.68) and the Bianchi identities
(IV.61) imply that the last two lines of (IV.63) vanish, leaving

Veff =1
2

∫
M
e−2A ⟨∗̃6[dH(e3A−ϕΨ2)], dH(e3A−ϕΨ̄2)⟩

− 1
4

∫
M
e−2A

(
| ⟨Ψ1, dH(e3A−ϕΨ2)⟩ |2

vol6
+ | ⟨Ψ̄1, dH(e3A−ϕΨ2)⟩ |2

vol6

)
. (IV.69)

The effective potential (IV.69) is sufficiently simple to derive the corresponding equa-
tions of motion [44]. We simply give the main results of the analysis and we refer to [44]
for more details. Veff depends explicitly on the warp factor, the dilaton and the NS-field-
strength, and it depends implicitly on the internal metric through the Hodge operator,
the pure spinors and the volume form. One should therefore vary it with respect to these
fields to find the equations of motions.

The dilaton equation is obtained by varying Veff with respect to the dilaton and it is
satisfied identically by imposing the modified domain-wall BPSness equation (IV.27).

As we will also discuss in the next subsection, the external modified Einstein equation
can be written as

⟨e4AF̃ − dH(e4A−ϕReΨ1), F + dH ∗̃6(e−ϕReΨ1)⟩

+e4A−ϕ ∑
i∈loc. sources

τi
[
ρloc
i vol6 − ⟨ReΨ1, ji⟩

]
= 0, (IV.70)

which is identically satisfied when the gauge BPSness is obeyed and the calibration bound
(IV.68) is saturated. The external components of the modified Einstein equations are
satisfied not only for the one-parameter DWSB class, but for any background preserving
the D-string and gauge BPSness and violating the domain-wall calibration condition.

For the internal Einstein equation, the variation of the effective potential with respect
to the internal metric gives

Im
{
⟨gk(mdyk ∧ ιn)Ψ2,dH

[
eA−ϕr∗(3ReΨ1 + 1

2(−1)|Ψ2|ΛpqγpReΨ1γ
q)
]
⟩
}

= 0, (IV.71)

which imposes some non-trivial constraints the DWSB configurations must satisfy to be
true supergravity solutions.
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Another set of constraints comes from the variation of Veff with respect to the NS-field

d
[
e4A−2ϕ ⟨Im(r∗Ψ2), 3ReΨ1 + 1

2(−1)|Ψ2|ΛmnγmReΨ1γ
n⟩

3

]
= 0 . (IV.72)

Interestingly, the NS-field equation of motion and the internal Einstein equation can
be unified into the following condition:∫

M
eA−ϕIm

{
r∗ ⟨δg,B[dH(e3A−ϕΨ2)], 3ReΨ1 + 1

2(−1)|Ψ2|ΛmnγmReΨ1γ
n⟩
}

= 0 , (IV.73)

where δg,B denote a generic deformation of internal metric and B-field. Given that the
one-parameter DWSB backgrounds satisfy

⟨dH(e3A−ϕΨ2), 3ReΨ1 + 1
2(−1)|Ψ2|ΛmnγmReΨ1γ

n⟩ = 0, (IV.74)

the conditions (IV.73) can be seen as a stability condition of (IV.74) under deformations
of dH(e3A−ϕΨ2), thus providing a four-dimensional interpretation of these equations of
motion, in terms of a stability condition for some F-flatness condition under such defor-
mations, see [44] for more details.

Finally, note that the effective potential (IV.69) vanishes when evaluated on the one-
parameter DWSB background. This can be seen by directly expanding the effective
potential (IV.69) on the SU(3)×SU(3) structure: we find that the terms in the two lines
compensate exactly, as expected for backgrounds with Minkowski4 external spaces.

Alternatively we can also use (IV.27) to rewrite the effective potential in terms of the
generalised current j associated to the generalised foliation (Σ, F)

Veff = 1
2

∫
M

e−2A|r|2
[
⟨∗̃6j, j⟩ −

| ⟨Ψ1, j⟩ |2

vol6

]
, (IV.75)

which will turn out to be an insightful formulation when considering the off-shell one-
parameter DWSB potential in subsection IV.2.2.d).

The vanishing of the one-parameter DWSB effective potential can here be interpreted
as the saturation of a calibration bound. Indeed, if ȷ̃(Π,R) is the generalised current of
a submanifold (Π,R), which is not necessarily calibrated, the following bound can be
derived from (IV.6)

⟨∗̃6ȷ̃(Π,R), ȷ̃(Π,R)⟩ ≥
| ⟨Ψ1, ȷ̃(Π,R)⟩ |2

vol6
. (IV.76)

This bound gets saturated if the generalised submanifold is calibrated, which is the case
for the one-parameter DWSB backgrounds, and the effective potential therefore vanish.
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c) SSB effective potential and equations of motion

We consider now the SSB configurations introduced in subsection IV.2.1.b). Since SSB
backgrounds haven’t been studied in details in the literature, we discuss this case in more
details.

We consider the most general violation of the D-string BPSness, without any non-
calibrated sources in the backgrounds. We also assume that the Bianchi identities are
respected.

We first discuss how the effective potential simplifies. The domain-wall and gauge
BPS conditions, (III.71) and (III.73) set the second, third and fourth line in (IV.63) to
zero. Also in this case, the last two lines of (IV.63) vanish due to the saturation of the
bound (IV.68) and the Bianchi identities (IV.61). Then the effective potential is

Veff =1
2

∫
M
⟨∗̃6[dH(e2A−ϕImΨ1)], dH(e2A−ϕImΨ1)⟩

− 4
∫
M

vol6e4A−2ϕ[(u1
R)2 + (u2

R)2], (IV.77)

where {u1,2
m } reduce to

u1
m = i ⟨γmΨ̄1, dH(e2A−ϕImΨ1)⟩

e2A−ϕ ⟨Ψ1, Ψ̄1⟩
(IV.78)

u2
m = i(−1)|Ψ2| ⟨Ψ1γm,dH(e2A−ϕImΨ1)⟩

e2A−ϕ ⟨Ψ1, Ψ̄1⟩
. (IV.79)

Varying Veff with respect to the dilaton gives the dilaton equation of motion

⟨dH(e2A−ϕImΨ1),Ξ⟩ = 0, (IV.80)

while the variation with respect to NS-field B is

d
[
e2A−ϕ ⟨ImΨ1,Ξ⟩3

]
= 0 . (IV.81)

The polyform Ξ is defined as

Ξ = ∗̃6dH(e2A−ϕImΨ1) + 2e2A−ϕu1
Rmγ

mReΨ1 + 2(−1)|Ψ2|e2A−ϕu2
RmReΨ1γ

m. (IV.82)

We are left with the Einstein equations. To derive the internal component of the
Einstein equations, one needs the following rules for the variations with respect to the
internal metric

δ
√

detg =− 1
2δg

mngmn
√

detg (IV.83)



IV.2 New non-supersymmetric flux vacua from generalised calibrations 81

δ ⟨∗̃6χ1, χ2⟩ = δgmn
[
⟨∗̃6ιmχ1, ιnχ2⟩ −

1
2gmn ⟨∗̃6χ1, χ2⟩

]
(IV.84)

δΨi =− 1
2δg

mngk(mdyk ∧ ιn)Ψi i = 1, 2. (IV.85)

Then, we find that the internal Einstein equations read

⟨gk(mdyk ∧ ιn)(e2A−ϕImΨ1),dHΞ⟩ − ⟨gk(mdyk ∧ ιn)dH(e2A−ϕImΨ1),Ξ⟩ = 0. (IV.86)

It would be interesting to further develop Ξ by plugging in the general SU(3)×SU(3)
decomposition of dH(e2A−ϕImΨ1) with only D-string BPSness violation (C.24). One could
then use the fact that the ∗̃6 operator eigenstates are also eigenstates of the SU(3)×SU(3)
structure16 to write these equations of motion on the generalised Hodge diamond, as first
order differential equations on the supersymmetry breaking parameters introduced in
Appendix C. One could then search for more general non-supersymmetric solutions of
type II supergravity with SSB-like supersymmetry breaking. We won’t do this here, as
we will focus on our ansatz in IV.2.1.b).

To study the external component of the modified Einstein equation we will follow [44].
We first reduce the ten-dimensional equation (A.29) on our warped configurations

∇m(e−2ϕ∇me4A) = e4AF̃ · F̃ + e4A−ϕ ∑
i∈loc. sources

τiρ
loc
i , (IV.87)

and rewrite it in terms of pure spinors as

−d(e−2ϕ ∗6 de4A) = ⟨∗̃6F̃ , e4AF̃ ⟩ − ⟨dH ∗̃6F̃ , e4A−ϕReΨ1⟩

+ e4A−ϕ ∑
i∈loc. sources

τi
[
ρloc
i vol6 − ⟨ReΨ1, ji⟩

]
(IV.88)

by using the Bianchi identity (IV.61) together with the RR-field-strength self-duality
(III.64).

At this point we see the difference between the DWSB configurations of [44] and the
SSB ones. For DWSB, using D-string and gauge BPSness, one can prove the identity

d(e−2ϕ ∗6 de4A) = d ⟨∗̃6dH(e4A−ϕReΨ1), e−ϕReΨ1⟩5 , (IV.89)

which in turn allows to rephrase (IV.88) as

⟨e4AF̃ − dH(e4A−ϕReΨ1), F + dH ∗̃6(e−ϕReΨ1)⟩

+e4A−ϕ ∑
i∈loc. sources

τi
[
ρloc
i vol6 − ⟨ReΨ1, ji⟩

]
= 0 . (IV.90)

16See for instance [6].
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However, for generic SSB configurations the identity (IV.89) does not hold and therefore,
neither does (IV.90).

For generic SSB configurations without non-calibrated sources, the external compo-
nent of the Einstein equation therefore can’t be reduced further than

−d(e−2ϕ ∗6 de4A) = ⟨∗̃6F̃ , e4AF̃ ⟩ − ⟨dH ∗̃6F̃ , e4A−ϕReΨ1⟩ . (IV.91)

We can now specify the equations of motion we found above to the SSB class intro-
duced in subsection IV.2.1.b), where the pure spinor equations are (IV.41), (IV.42), and
(IV.45).

Let’s first discuss further the external components of the modified Einstein equations.
Interestingly, using the gauge BPSness and our specific ansatz for the D-string BPSness
violation (IV.45), we can show that once again the identity (IV.89) holds. The external
modified Einstein equations are therefore again

⟨e4AF̃ − dH(e4A−ϕReΨ1), F + dH ∗̃6(e−ϕReΨ1)⟩

+e4A−ϕ ∑
i∈loc. sources

τi
[
ρloc
i vol6 − ⟨ReΨ1, ji⟩

]
= 0, (IV.92)

which are satisfied for our class of backgrounds, thanks to the gauge BPSness and the
calibration of our space-filling sources.

Moving on to the other equations of motion, the {u1,2
Rm} terms in Ξ reduce to17

u1
Rm =(−1)|Ψ2|eA(αm − Λmnαn) (IV.93)

u2
Rm =(−1)|Ψ2|eA(αm − Λnmαn). (IV.94)

Then, the dilaton equation of motion is automatically satisfied, once the specific form of
the D-string BPSness violation (IV.45) is used. The NS-field equation of motion doesn’t
get simplified further, while the internal Einstein equations reduce to

⟨gk(mdyk ∧ ιn)ImΨ1,dHΞ⟩ = 0. (IV.95)

We will construct different concrete examples of backgrounds in section IV.2.3, and
we will see then that the equations of motion presented here can indeed be satisfied by
such vacua.

Note also that, as in the one-parameter DWSB case, one can unify the equations of
motion for the NS-field and the internal Einstein equations, into the following integrated

17We could also further specify Ξ by expanding on the SU(3)×SU(3) structure the specific ansatz (IV.45)
in the ∗̃6dH(e2A−ϕImΨ1) term, but the resulting expression is neither compact nor enlightening.
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condition. ∫
M
⟨δg,B[dH(e2A−ϕImΨ1)],Ξ⟩ = 0. (IV.96)

However, we don’t have access to a four-dimensional interpretation of this condition.

Finally, it is important to realise that for our class of SSB backgrounds, the effective
potential Veff can also be rewritten in terms of the generalised current associated to the
generalised foliation. Indeed, it is straightforward to show that18

⟨∗̃6[dH(e2A−ϕImΨ1)],dH(e2A−ϕImΨ1)⟩ = 4α̂mα̂m ⟨∗̃6j, j⟩ (IV.97)

(u1
R)2 = (u2

R)2 = 4α̂mα̂me−(4A−2ϕ) | ⟨Ψ1, j⟩ |2

vol26
. (IV.98)

Using these two equations, the effective potential of our SSB class can be brought to

Veff = 2
∫
M
α̂mα̂

m
[
⟨∗̃6j, j⟩ −

| ⟨Ψ1, j⟩ |2

vol6

]
. (IV.99)

Given that the bound (IV.76) is saturated for our SSB class, the effective potential van-
ishes again, as expected for Minkowski backgrounds.

However, even though this expression is interesting to highlight a common structure
between the one-parameter DWSB backgrounds, with effective potential (IV.75), and
our SSB class, it is also important to remember that the two expressions come from
different terms in the effective potential, and these have drastically different physical
interpretations in terms of the effective theory, which we will make more precise later on.

We can now turn to configurations having both SSB and DWSB contributions, with
the modified pure spinor equations (IV.51), (IV.52) and (IV.53).

The effective potential is

Veff = 1
2

∫
M
e−2A ⟨∗̃6[dH(e3A−ϕΨ2)],dH(e3A−ϕΨ̄2)⟩

− 1
4

∫
M
e−2A

(
| ⟨Ψ1,dH(e3A−ϕΨ2)⟩ |2

vol6
+ | ⟨Ψ̄1,dH(e3A−ϕΨ2)⟩ |2

vol6

)

+ 1
2

∫
M
⟨∗̃6[dH(e2A−ϕImΨ1)], dH(e2A−ϕImΨ1)⟩

− 4
∫
M

vol6e4A−2ϕ[(u1
R)2 + (u2

R)2] , (IV.100)

where the first two lines are the contributions from the violation of the domain-wall
calibration condition, while the last two lines correspond to the contributions from the

18We prove these equalities using vielbein, since it gives more compact expressions and allows to make
the connection with the one-parameter DWSB class in the most natural way, but similar equalities can
be derived in the coordinate basis.
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D-string one.
The potential (IV.100) is nothing but the sum of the two effective potentials for the

one-parameter DWSB backgrounds and our SSB ansatz from IV.2.1.b). It can thus be
written as

Veff =
∫
M

(
2α̂mα̂m + 1

2e−2A|r|2
)[
⟨∗̃6j, j⟩ −

| ⟨Ψ1, j⟩ |2

vol6

]
(IV.101)

where the two terms in the bracket still compensate through the saturation of (IV.76),
such that these backgrounds again have vanishing effective potentials.

The equations of motion for these backgrounds simply bring together the contributions
from the variations of the two effective potentials presented above.

The dilaton equation of motion and the external modified Einstein equation are there-
fore automatically obeyed given that the modified pure spinor equations are respected.
Then the NS-field equation of motion is

d
[
(−1)|Ψ2|e4A−2ϕ ⟨Im(r∗Ψ2),Θ⟩3 − e

2A−ϕ ⟨ImΨ1,Ξ⟩3
]

= 0, (IV.102)

and the internal Einstein equations are

Im
{

(−1)|Ψ2|eA ⟨gk(mdyk ∧ ιn)Ψ2, dH
[
eA−ϕr∗Θ

]
⟩
}
− ⟨gk(mdyk ∧ ιn)ImΨ1, dHΞ⟩ = 0.

(IV.103)
For compactness, we introduced here the polyform

Θ = 3ReΨ1 + 1
2(−1)|Ψ2|ΛmnγmReΨ1γ

n . (IV.104)

When discussing concrete background examples, the following relationship between
the polyforms Θ and Ξ will prove to be useful

Ξ =(−1)|Ψ2|e3A−ϕα̂a(γaΘ + (−1)|Ψ1|+1Θγa) (IV.105)

=2(−1)|Ψ2|e3A−ϕα̂aιaΘ. (IV.106)

In contrast with the previous situations, both the NS-field equation of motion and the
internal Einstein equations could in principle have non-vanishing DWSB and SSB con-
tributions, that could cancel each other out. However, we won’t explore this possibility
and the background examples that we will present in section IV.2.3 will have both their
DWSB and SSB contributions vanishing independently.

d) Stability and generalised calibrations

In the previous sections we showed how to find classes of non-supersymmetric backgrounds
by solving modified supersymmetry variations and then considering the additional con-
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straints the configurations must satisfy to be solutions of the equations of motion.
An important question to address is whether these non-supersymmetric backgrounds

are stable. There are two kinds of instabilities one could face: under small perturbation
or by quantum tunnelling.

We will try here to address the first, namely the potential presence of tachyonic
directions. As discussed in [44], a possible way to answer this question in again looking
at the four-dimensional effective potentials for the ‘off-shell’ fields of ten-dimensional
supergravity around the given configurations.

Notice that the effective potentials obtained this way are not genuine potentials asso-
ciated to four-dimensional theories, since we didn’t choose an appropriate truncation for
the ten-dimensional modes and we didn’t perform the actual reduction. To do so would
require the knowledge of the light modes of the theory, which is complicated to access for
general flux vacua19. This is beyond the scope of this work. However we will see that
their are still some interesting things one can say about our solutions from this approach.

We start by reviewing the analysis of [44] for the one-parameter DWSB backgrounds
and then discuss how to extend it to SBB backgrounds.

The idea of [44] is to go off-shell, which is a way to look at fluctuations around a given
solution, and to see whether, under minor constraint on the ten-dimensional supergravity
fields, it is possible to derive an effective potential that is positive semi-definite.

From the general expression for Veff, it is clear that a first constraint to impose is the
Bianchi identity (IV.61) so that the last line of (IV.63) vanishes. The second condition
is to assume that the parameters {u1,2

m } in the modified pure spinor equations are zero.20

These terms correspond to vector-likes modes of the SU(3)×SU(3) structure group, and
should correspond to massive modes from the perspective of the reduced N = 1 and
N = 2 four-dimensional supergravity theories.

This is particularly clear for reductions to theN = 2 four-dimensional supergravity. In
this case, the vector-like modes correspond to massive spin 3

2 -multiplet degrees of freedom
for the four-dimensional theory, see for instance [38], and these are seen as non-physical
degrees of freedom of N = 2 four-dimensional supergravity, that should be truncated
away.

Anyway, these vector-like modes are not expected to give rise to light or tachyonic
contributions to the effective theories. Therefore by ‘truncating’ them away one is not

19See for instance [95] for a discussion of the dimensional reduction of general SU(3)×SU(3) type II
supergravity backgrounds to N = 2 gauged four-dimensional supergravity. It is also worth mentioning here
recent work where the full Kaluza-Klein spectrum have been worked out for a variety of flux backgrounds
using techniques from Exceptional Field Theory [96, 97].

20In term of deformations of the ordinary supersymmetry variations these terms appear in the mod-
ified dilatino variations. This condition means that the only allowed deformations of this equation are
SU(3)×SU(3) singlets.
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discarding potential instabilities of the reduced effective theory.
In order to go off-shell, we still consider an internal geometry that is a generalised

foliation, but we do not require the associate generalised submanifold, (Π,R), to be
calibrated. This means that the violation of the domain-wall calibration condition now
takes the more general form

dH(e3A−ϕΨ2) = ir̃ȷ̃(Π,R), (IV.107)

where ȷ̃(Π,R) is now a generalised current associated to the submanifold (Π,R), which
isn’t necessarily calibrated away from the solution, and r̃ is just a parameter, eventually
identified with the DWSB supersymmetry-breaking parameter mentioned above.

The ‘off-shell’ potential is then21

Veff = 1
2

∫
M

vol6|dH(e2A−ϕImΨ1)|2

+ 1
2

∫
M

vol6 e4A|∗̃6F − e−4AdH(e4A−ϕReΨ1)|2

+ 1
2

∫
M

e−2A|r̃|2
[
⟨∗̃6ȷ̃(Π,R), ȷ̃(Π,R)⟩ −

| ⟨Ψ1, ȷ̃(Π,R)⟩ |2

vol6

]
+

∑
i⊂D-branes

τi

∫
M
e4A−ϕ(vol6 ρloc

i − ⟨ReΨ1, ji⟩). (IV.108)

The terms in the first two lines are trivially positive, and the last two lines are positive
because of the calibration bounds (IV.68) and (IV.76). The potential is therefore positive
semi-definite, and vanishes precisely for the one-parameter DWSB solutions.

As discussed at length in [44], notice that this implies that, under the previous as-
sumptions, the effective potential can naturally be interpreted as being of the no-scale
type. This is not a surprise, given that the one-parameter DWSB class contains the GKP
solutions and all its T-duals, which are of the no-scale type [3].

Let us stress that this is an interesting property of the one-parameter DWSB class,
but it is only an argument for the stability of this class with the caveat that we assumed
a specific truncation, that we don’t have precise control over.

A somewhat similar construction can be found for the backgrounds with SSB discussed
in sections IV.2.1.b) and IV.2.1.c). Here we discuss the backgrounds with SSB and DWSB
contributions of IV.2.1.c), but the backgrounds of IV.2.1.b) with only SSB contributions
exhibit the same behaviour.

We also impose that the Bianchi identities are satisfied away from the solutions and
that the internal manifold is still a generalised foliation. However we do not truncate
away the vector-like modes, as they are fundamental for the SSB constructions. This

21Here we wrote the first line of (IV.63) as the square of a polyform, for clarity.
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means that the off-shell violations of the D-string and domain-wall BPSness are

dH(e3A−ϕΨ2) = ir̃ȷ̃(Π,R) (IV.109)

dH(e2A−ϕImΨ1) = ˜̂αm[γ̂mȷ̃(Π,R) + (−1)|ȷ̃(Π,R)|ȷ̃(Π,R)γ̂
m]. (IV.110)

Here ȷ̃(Π,R) is again a generalised current associated to the submanifold (Π,R), which
isn’t necessarily calibrated away from the solution, and { ˜̂αm} and r̃ are just parameters,
eventually identified with the SSB and DWSB supersymmetry-breaking parameters.

The ‘off-shell’ potential is then

Veff = 1
2

∫
M

vol6 e4A|∗̃6F − e−4AdH(e4A−ϕReΨ1)|2

+
∫
M

(
2˜̂αm ˜̂αm + 1

2e−2A|r̃|2
)[
⟨∗̃6ȷ̃(Π,R), ȷ̃(Π,R)⟩ −

| ⟨Ψ1, ȷ̃(Π,R)⟩ |2

vol6

]
+

∑
i⊂D-branes

τi

∫
M
e4A−ϕ(vol6 ρloc

i − ⟨ReΨ1, ji⟩) . (IV.111)

The first line is again trivially positive, and the last two lines are positive because of
the calibration bounds (IV.68) and (IV.76). The potential (IV.111) is therefore positive
semi-definite, and vanishes precisely for the solutions introduced in IV.2.1.c).

However, the situation differs from the one-parameter DWSB case, by the fact that
we purposely keep the vector-like modes {u1,2

m }, that are believed to be massive modes
from the effective perspective.

Therefore, we stress that we present this truncation as an interesting property of
our backgrounds: there is a ‘truncation’ naturally suggested by the geometry such that
the effective potential is positive semi-definite, but this doesn’t constitute a proof of
perturbative stability, since we have no way to conclude whether we can truncate the
ten-dimensional modes in this way or not, and no way to reflect on the relative effective
masses between the vector-like modes we kept, and the modes we discarded.

Moreover, it might not even be sensible to talk about effective theories associated to
these ten-dimensional backgrounds, given the presence of these massive vector-like modes,
or it could be that their effective theories are non-supersymmetric with the field content of
N = 1 or N = 2 supergravity with additional massive multiplets, or non-supersymmetric
solutions of four-dimensional supergravity theory with higher supersymmetry. Singling
out one option among these scenarios would require a rigorous prescription to truncate
and reduce the ten-dimensional theory, so we won’t address further these questions.
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IV.2.3 Examples of vacua with SSB supersymmetry breaking

Up until here we made a rather abstract presentation of our non-supersymmetric back-
grounds. The purpose of this section is to present concrete examples of our classes of
vacua with SSB contributions. We will focus on internal geometries admitting an SU(3)-
or a static SU(2)-structure, and we will discard the possibility to have a non-trivial two-
form F such that the generalised foliation (Σ, F) will be entirely defined by the cycle
Σ.

Throughout this section, we revisit the examples of one-parameter DWSB vacua con-
sidered in [44], adding SSB contributions to the pure spinor equations and removing or
keeping the DWSB one, to construct examples of the class of backgrounds introduced in
IV.2.1.b) and IV.2.1.c) respectively. We will therefore specify the following set of modified
pure spinor equations

dH(e3A−ϕΨ2) = 0 or irj (IV.112)

dH(e2A−ϕImΨ1) = αm[γmj + (−1)|j|jγm] (IV.113)

dH(e4A−ϕReΨ1) = e4A∗̃6F (IV.114)

for our different concrete cases.

We consider the generalised foliations of our internal manifolds to be fibrations

Σ ↪→ M → B (IV.115)

with B the base manifold and Σ the fibre.

As discussed in IV.2.1, the fibres will be calibrated by ωsf and will be wrapped by the
space-filling sources.

a) Type IIB SU(3)-structure backgrounds with D5-branes

The internal manifolds admitting an SU(3)-structure have parallel internal spinors η1 and
η2, and in type IIB they have the following pure spinors

Ψ1 = eiθeiJ Ψ2 = e−iθΩ. (IV.116)

We can introduce a local vielbein to write the Kähler form J and the (3, 0) form Ω as

J =− (e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6) (IV.117)

Ω =(e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6). (IV.118)
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Then, following [2, 8] one can show that for D5 space-filling branes the algebraic calibra-
tion condition (IV.6) imposes both that the fibre Σ is almost-complex with respect to the
almost-complex structure defined by Ω, and

θ = −π2 . (IV.119)

We consider constructions with 24 O5-planes wrapping a two-cycle in the internal geom-
etry, at the fixed point of the Z2 involutions on the orthogonal four-dimensional space,
and we allow for nD5 D5-branes, taken to be parallel to these orientifolds.

We will now specialise the discussion to the case of backgrounds with and without
DWSB contributions.

a).1 Backgrounds with only SSB contributions
We can here specify the pure spinor equations (IV.41), (IV.42) and (IV.44) satisfied by
type IIB SU(3) backgrounds with space-filling D5-branes and with an SSB contribution
of the type presented in IV.2.1.b). They yield

H = 0 e2A−ϕ = const. (IV.120)

F1 = F5 = 0 ∗6 F3 = −e−2ϕd(eϕJ) (IV.121)

d(eAΩ) = 0, (IV.122)

with the first line coming from the specific violation of the D-string calibration (IV.43),
and the second and third line coming from gauge and domain-wall BPSness respectively.
One condition from (IV.43) is missing here: for now these conditions are the same as the
ones one would impose to have a supersymmetric background. If for instance we take the
fibres to be along the directions e1 and e4, we have vol6 = volΣ∧volB4 with volΣ = e1∧e4

and volB4 = e2 ∧ e3 ∧ e5 ∧ e6, and we can write the last condition from (IV.43), which
introduces the breaking of supersymmetry, as

e2A−ϕd(J ∧ J) = 4(α̂1e
1 + α̂4e

4) ∧ j, (IV.123)

with
j = 4e3A−ϕvolB4 . (IV.124)

Finally, we can specify the equations of motion. The NS-field, dilaton and external
modified Einstein equations are trivially respected, and to rewrite the internal Einstein
equations, it is useful to notice that in the case where F = 0, we have

Θ = 4(ReΨ1 − ReΨ1|Σ). (IV.125)
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Using this identity and (IV.106), the internal Einstein equations can be shown to reduce
to

⟨gk(mdyk ∧ ιn)J ∧ J, d[α̂aιa(J ∧ J ∧ J)]⟩ = 0 a = 1, 4 (IV.126)

which is identically satisfied. We conclude that this family of SSB SU(3) backgrounds with
calibrated D5-branes automatically solves its equations of motion, without any further
constraints.

We now turn to the construction of an explicit example of background from this class.
We begin by choosing the following metric:

ds2 =e2Ads2
R1,3 + ds2

M (IV.127)

ds2
M =α′(2π)2

{
e2A[R2

1(η1)2 +R2
4(η4)2] + e−2A ∑

j=2,3,5,6
R2
j (dyj)2

}
, (IV.128)

where the warp factor A only depends on the base direction B4 = {y2, y3, y5, y6} and η1,
η4 are non-closed one-forms satisfying

dηa = faijdyi ∧ dyj a = 1, 4 i, j = 2, 3, 5, 6. (IV.129)

In the constant warp factor limit, this is nothing else then the geometry of a twisted
torus. To ensure the compactness of M we take the structure constants {faij} to be
integer constants, while the radii {Ra, Ri} can take any real value. The Kähler form J

and the (3, 0) form Ω are

J =− α′(2π)2[e2AR1R4η
1 ∧ η4 + e−2A(R2R5dy2 ∧ dy5 +R3R6dy3 ∧ dy6)] (IV.130)

Ω =α′3/2(2π)3e−A(R1η
1 + iR4η

4) ∧ (R2dy2 + iR5dy5) ∧ (R3dy3 + iR6dy6). (IV.131)

The domain-wall BPSness (IV.122) now takes the form

f1
26R1R3R5 − f4

56R2R3R4 − f1
35R1R2R6 + f4

23R4R5R6 =0 (IV.132)

f4
26R3R4R5 + f1

56R1R2R3 − f4
35R2R4R6 − f1

23R1R5R6 =0, (IV.133)

and the RR-fluxes (IV.121) read

F3 =e2A−ϕ[∗B4de−4A − α′(2π)2
(
R2

1η
1 ∧ ∗Bdη1 +R2

4η
4 ∧ ∗Bdη4

)
], (IV.134)

≡e2A−ϕ ∗B4 de−4A + α′(2π)2F bg
3 (IV.135)

with ∗B4 the four-dimensional Hodge operator on the unwarped base. The first term
comes from the back-reaction of the D5-branes and O5-planes, while the second term
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should be thought as a properly quantised background flux, so it must be an integer
valued three-form, which constrains the radii Ri and the value of e2A−ϕ.

The generalised current associated to the sources is

j = 4α′2(2π)4e−A−ϕR2R3R5R6dy2 ∧ dy3 ∧ dy5 ∧ dy6, (IV.136)

and the D-string BPSness violation (IV.123) is

e2A−ϕd(J ∧ J) = 8π
√
α′eA(R1α̂1η

1 +R4α̂4η
4) ∧ j, (IV.137)

which is satisfied for the following supersymmetry breaking parameters

α̂1 = e2A R4

16π
√
α′

( f4
36

R3R6
+ f4

25
R2R5

)
(IV.138)

α̂4 =− e2A R1

16π
√
α′

( f1
36

R3R6
+ f1

25
R2R5

)
. (IV.139)

Finally, we can specify the Bianchi identities (IV.61), which in this case are only non
trivial for F3

22

dF3 = e2A−ϕ[−∇2
B4e

−4A + Y

4α′(2π)2
]
võlB4 (IV.140)

= e2A−ϕ

α′(2π)2

( 16∑
i=1

δ4
B4(yi)−

nD5∑
j=1

δ4
B4(yj)

)
võlB4 , (IV.141)

where võlB4 is the unwarped volume form on B4, the charges of the O5 and D5 sources
have been normalised to −1 and 1 respectively, and with

Y = (f1
23)2

(R2R3)2 + (f1
25)2

(R2R5)2 + (f1
26)2

(R2R6)2 + (f1
35)2

(R3R5)2 + (f1
36)2

(R3R6)2 + (f1
56)2

(R5R6)2

+ (f4
23)2

(R2R3)2 + (f4
25)2

(R2R5)2 + (f4
26)2

(R2R6)2 + (f4
35)2

(R3R5)2 + (f4
36)2

(R3R6)2 + (f4
56)2

(R5R6)2 . (IV.142)

The corresponding tadpole condition connects the sources to the radii and structure
constants:

nD5 + Y

4 = 16. (IV.143)

a).2 Backgrounds with both SSB and DWSB contributions
One can construct a similar class of SU(3) backgrounds with space-filling D5-branes, with
an additional supersymmetry breaking contribution from the violation of the domain-wall
BPSness. Considering again the fibres to be along the directions e1 and e4, the pure spinor

22Note that the current (IV.137) and the one in (IV.11) differ by an overall factor.
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equations (IV.51), (IV.52) and (IV.53) take the form

H = 0 e2A−ϕ = const. (IV.144)

F1 = F5 = 0 ∗6 F3 = −e−2ϕd(eϕJ) (IV.145)

and

e2A−ϕd(J ∧ J) = 4(α̂1e
1 + α̂4e

4) ∧ j (IV.146)

e2A−ϕd(eAΩ) = irj (IV.147)

with again
j = 4e3A−ϕvolB4 . (IV.148)

Turning to the equations of motion, the NS-field equation is still trivially satisfied, such
as the dilaton equation, and the external modified Einstein equations. Therefore only the
internal Einstein equation has an additional non-trivial contribution. From (IV.125), we
see that it reduces to

Re ⟨gk(mdyk ∧ ιn)Ω,d(e−Ar∗J |B4)⟩ = 0. (IV.149)

Since gk(mdyk ∧ ιn)Ω is either a (3, 0) or a primitive (2, 1) form, imposing

[
d(e−ArJ |B4)

]3,0
=
[
d(e−ArJ |B4)

]2,1
prim

= 0 (IV.150)

is enough to satisfy (IV.149). If we consider r and the warp factor to be constant along the
fibre, as is usual when the localised sources wrap the fibres, and if we have dJ |B4 = f∧J |B4

with f a real function on the base, then the conditions (IV.150) amounts to[
d(e−Arf)

]1,0
= 0. (IV.151)

Let us construct an example of these backgrounds, which will respect this condition.

We start off with the same metric ansatz as for the case with only the SSB contribution

ds2 =e2Ads2
R1,3 + ds2

M (IV.152)

ds2
M =α′(2π)2

{
e2A[R2

1(η1)2 +R2
4(η4)2] + e−2A ∑

j=2,3,5,6
R2
j (dyj)2

}
, (IV.153)

with the one forms η1 and η4 respecting again (IV.129). The Kähler form J and the (3, 0)



IV.2 New non-supersymmetric flux vacua from generalised calibrations 93

form Ω are once more

J =− α′(2π)2[e2AR1R4η
1 ∧ η4 + e−2A(R2R5dy2 ∧ dy5 +R3R6dy3 ∧ dy6)] (IV.154)

Ω =α′3/2(2π)3e−A(R1η
1 + iR4η

4) ∧ (R2dy2 + iR5dy5) ∧ (R3dy3 + iR6dy6). (IV.155)

The gauge BPSness (IV.145) yields the following RR-flux

F3 =e2A−ϕ[∗B4de−4A − α′(2π)2
(
R2

1η
1 ∧ ∗Bdη1 +R2

4η
4 ∧ ∗Bdη4

)
], (IV.156)

≡e2A−ϕ ∗B4 de−4A + α′(2π)2F bg
3 (IV.157)

Even though the form of the RR-flux is similar to the background with only an SSB
contribution (IV.134), we stress that their components differ, since the structure constants
{faij} are different. Indeed, here we don’t respect the conditions (IV.132) and (IV.133)
since we have a DWSB contribution. Besides, the values of e2A−ϕ and the radii Ri should
be chosen appropriately such that the background fluxes are integer-valued.

The generalised current is again

j = 4α′2(2π)4e−A−ϕR2R3R5R6dy2 ∧ dy3 ∧ dy5 ∧ dy6, (IV.158)

and the D-string (IV.146) and domain-wall (IV.147) BPSness violations are

e2A−ϕd(J ∧ J) =8π
√
α′eA(R1α̂1η

1 +R4α̂4η
4) ∧ j (IV.159)

e2A−ϕd(eAΩ) =irj (IV.160)

which are satisfied if

r = e3A

8π
√
α′

(R1f
1
56 + iR4f

4
56

R5R6
− R1f

1
23 + iR4f

4
23

R2R3
(IV.161)

+ iR1f
1
35 −R4f

4
35

R3R5
− iR1f

1
26 −R4f

4
26

R2R6

)
(IV.162)

α̂1 = e2A R4

16π
√
α′

( f4
36

R3R6
+ f4

25
R2R5

)
(IV.163)

α̂4 =− e2A R1

16π
√
α′

( f1
36

R3R6
+ f1

25
R2R5

)
. (IV.164)

Turning to the equations of motion, we have

d(e−ArJ |B4) = 0 (IV.165)

so (IV.150) are obeyed and the internal Einstein equations are satisfied. As discussed
above, every other equations of motion are satisfied.
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Finally, we can write down the only non-trivial Bianchi identity, the one for the RR-
flux

dF3 = e2A−ϕ[−∇2
B4e

−4A + Y

4α′(2π)2
]
võlB4 (IV.166)

= e2A−ϕ

α′(2π)2

( 16∑
i=1

δ4
B4(yi)−

nD5∑
j=1

δ4
B4(yj)

)
võlB4 , (IV.167)

with

Y = (f1
23)2

(R2R3)2 + (f1
25)2

(R2R5)2 + (f1
26)2

(R2R6)2 + (f1
35)2

(R3R5)2 + (f1
36)2

(R3R6)2 + (f1
56)2

(R5R6)2

+ (f4
23)2

(R2R3)2 + (f4
25)2

(R2R5)2 + (f4
26)2

(R2R6)2 + (f4
35)2

(R3R5)2 + (f4
36)2

(R3R6)2 + (f4
56)2

(R5R6)2 . (IV.168)

Once again, this expression is similar to the one for the background with only SSB con-
tribution presented in a).1, but the addition of the DWSB contribution actually modifies
the structure constants {faij} upon releasing the constraints (IV.132) and (IV.133), which
also alters the corresponding tadpole condition

nD5 + Y

4 = 16. (IV.169)

b) Type IIA SU(3)-structure backgrounds with D6-branes

Type IIA SU(3) backgrounds have the following pure spinors

Ψ1 = Ω Ψ2 = e−iθeiJ . (IV.170)

Then, following [2, 8], one can show that the algebraic calibration condition (IV.6) for D6
space-filling branes wrapping an internal cycle Σ imposes

J |Σ = 0 ImΩ|Σ = 0. (IV.171)

We consider constructions with 23 O6-planes wrapping a two-cycle in the internal geom-
etry, at the fixed point of the Z2 involutions on the orthogonal three-dimensional space,
and we allow for nD6 D6-branes, taken to be parallel to these orientifolds.

We again introduce a local vielbein and express the Kähler and (3, 0) form as

J =− (e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6) (IV.172)

Ω =(e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6), (IV.173)

and we consider the fibres wrapped by the sources to be along the e1, e2 and e3 directions.
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We then have vol6 = volΣ ∧ volB3 with volΣ = e1 ∧ e2 ∧ e3 and volB3 = e4 ∧ e5 ∧ e6. We
can now write the pure spinor equations obeyed by these backgrounds, for the cases with
and without a DWSB contribution.

b).1 Backgrounds with only SSB contributions
The pure spinor equations (IV.41), (IV.42) and (IV.44), which correspond to having only
an SSB contribution, read

e3A−ϕ = const. eiθ = const. (IV.174)

H = 0 dJ = 0 (IV.175)

for the domain-wall BPSness,

F0 = F4 = F6 (IV.176)

∗F2 =− e−4Ad(e4A−ϕReΩ) (IV.177)

for the gauge BPSness, and

e3A−ϕd(e−AImΩ) = 2(α̂1e
1 + α̂2e

2 + α̂3e
3) ∧ j (IV.178)

with
j = −4e3A−ϕvolB3 (IV.179)

for the violation of the D-string BPSness.
Turning to the equations of motion, the internal Einstein equations are

⟨gk(mdyk ∧ ιn)ImΩ,d
[
α̂aιa(ReΩ− ReΩ|Σ)

]
⟩ = 0 a = 1, 2, 3. (IV.180)

It is natural to construct fibered backgrounds respecting

d
[
α̂aιa(ReΩ− ReΩ|Σ)

]
= 0 a = 1, 2, 3 (IV.181)

and thus satisfying the internal Einstein equations. We will now construct such a back-
ground.

We start with the following metric ansatz

ds2 =e2Ads2
R1,3 + ds2

M (IV.182)

ds2
M =α′(2π)2

{
e2A ∑

a=1,2,3
R2
a(ηa)2 + e−2A ∑

j=4,5,6
R2
j (dyj)2

}
(IV.183)

where as in the type IIB case, the warp factor A only depends on the base direction
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B3 = {y4, y5, y6} and η1, η2 and η2 are non-closed one-forms satisfying

dηa = faijdyi ∧ dyj a = 1, 2, 3 i, j = 4, 5, 6. (IV.184)

In the constant warp factor limit, this again corresponds to the geometry of a twisted
torus. To ensure the compactness of M , the structure constants {faij} have to be integer
constants, and the radii {Ra, Ri} can take any real value. The Kähler form J and the
(3, 0) form Ω are

J =− α′(2π)2[R1R4η
1 ∧ dy4 +R2R5η

2 ∧ dy5 +R3R6η
3 ∧ dy6] (IV.185)

Ω =α′3/2(2π)3(eAR1η
1 + ie−AR4dy4) ∧ (eAR2η

2 + ie−AR5dy5) (IV.186)

∧ (eAR3η
3 + ie−AR6dy6). (IV.187)

The domain-wall BPSness (IV.175) reduces to

R1R4f
1
56 +R2R5f

2
64 +R3R6f

3
45 = 0, (IV.188)

and the RR-fluxes (IV.177) read

F2 =e3A−ϕ[ ∗B3 de−4A − α′(2π)2 ∑
a=1,2,3

R2
aη
a ∧ ∗B3dηa

]
(IV.189)

F2 ≡e3A−ϕ ∗B3 de−4A + α′(2π)2F bg
2 , (IV.190)

with ∗B3 the three-dimensional Hodge operator on the unwarped base. As in the type
IIB case, the background RR-fluxes must be integer-valued, constraining the values of the
radii Ri and of e3A−ϕ.

The generalised current is

j = −4α′3/2(2π)3e−ϕR4R5R6dy4 ∧ dy5 ∧ dy6, (IV.191)

and the D-string BPSness violation (IV.178) is

e3A−ϕd(e−AImΩ) = 4π
√
α′eA(R1α̂1η

1 +R2α̂2η
2 +R3α̂3η

3) ∧ j (IV.192)

which gives

α̂1 = e2A

16π
√
α′R4

(
R3
R6

f3
46 + R2

R5
f2

45

)
(IV.193)

α̂2 = e2A

16π
√
α′R5

(
R3
R6

f3
56 −

R1
R4

f1
45

)
(IV.194)



IV.2 New non-supersymmetric flux vacua from generalised calibrations 97

α̂3 =− e2A

16π
√
α′R6

(
R2
R5

f2
56 + R1

R4
f1

46

)
. (IV.195)

With these α̂’s, one can show that

d
[
α̂aιa(ReΩ− ReΩ|Σ)

]
= 0 a = 1, 2, 3, (IV.196)

and the internal Einstein equations (IV.180) are therefore satisfied.

Finally, the Bianchi identities reduce to

dF2 = e3A−ϕ[−∇2
B3e

−4A + Z

2α′(2π)2
]
võlB3

= e3A−ϕ

α′(2π)2

( 8∑
i=1

δ4
B4(yi)−

nD6∑
j=1

δ4
B4(yj)

)
võlB4 , (IV.197)

with võlB3 the unwarped volume form on B3, the charges of the O6 and D6 sources have
been normalised to −1 and 1 respectively, and with

Z = (f1
45)2

(R4R5)2 + (f1
46)2

(R4R6)2 + (f1
56)2

(R5R6)2 + (f2
45)2

(R4R5)2 + (f2
46)2

(R4R6)2 + (f2
56)2

(R5R6)2

+ (f3
45)2

(R4R5)2 + (f3
46)2

(R4R6)2 + (f3
56)2

(R5R6)2 . (IV.198)

The corresponding tadpole condition connects the sources to the radii and structure
constants:

nD6 + Z

2 = 8. (IV.199)

b).2 Backgrounds with both SSB and DWSB contributions
One can construct a similar class of SU(3) backgrounds that has space-filling D6-branes,
with an additional supersymmetry breaking contribution from the violation of the domain-
wall BPSness. In this case, the pure spinor equations (IV.51), (IV.52) and (IV.53) take
the form

e3A−ϕ = const. eiθ = const. F4 = F6 = 0 (IV.200)

∗ F2 = −e−4Ad(e4A−ϕReΩ) ∗ F0 = e−ϕH ∧ ReΩ (IV.201)

and

e3A−ϕe−iθ(H + idJ) = irj (IV.202)

e3A−ϕd(e−AImΩ) = 2(α̂1e
1 + α̂2e

2 + α̂3e
3) ∧ j (IV.203)
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with again
j = −4e3A−ϕvolB3 . (IV.204)

Turning to the equations of motion, the internal Einstein equations are

Re
{
eAe−iθ ⟨gk(mdyk ∧ ιn)J, dH

[
e−2Ar∗Θ

]
⟩
}

+ ⟨gk(mdyk ∧ ιn)ImΩ, dH(α̂aιaΘ)⟩ = 0,
(IV.205)

with a = 1, 2, 3 and again
Θ = 4(ReΩ− ReΩ|Σ). (IV.206)

It is sufficient to obey

dH
[
e−2Ar∗Θ

]
= 0 (IV.207)

dH(α̂aιaΘ) = 0 a = 1, 2, 3 (IV.208)

to satisfy the internal Einstein equations, and we will shortly turn to the construction of
an example background respecting (IV.207) and (IV.208). As for the NS-field equation
of motion, it reduces exactly to (IV.207).

We start the construction of an explicit background belonging to this class with con-
sidering the following NS ansatz

ds2 =e2Ads2
R1,3 + ds2

M (IV.209)

ds2
M =α′(2π)2

{
e2A ∑

a=1,2,3
R2
a(ηa)2 + e−2A ∑

j=4,5,6
R2
j (dyj)2

}
(IV.210)

H =α′(2π)2
(
Ndy4 ∧ dy5 ∧ dy6 +

∑
a=1,2,3

Badηa ∧ dya+3
)

(IV.211)

where N ∈ Z, Ba ∈ Z and again the warp factor A only depends on the base direction
B3 = {y4, y5, y6} and η1, η2 and η2 are non-closed one-forms satisfying (IV.184). The
Kähler form J and the (3, 0) form Ω are again

J =− α′(2π)2[R1R4η
1 ∧ dy4 +R2R5η

2 ∧ dy5 +R3R6η
3 ∧ dy6] (IV.212)

Ω =α′3/2(2π)3(eAR1η
1 + ie−AR4dy4) ∧ (eAR2η

2 + ie−AR5dy5) (IV.213)

∧ (eAR3η
3 + ie−AR6dy6). (IV.214)

The RR-fluxes (IV.201) read

F0 =− e3A−ϕ R1R2R3

2π
√
α′Vol(M)

[
N +B1f

1
56 −B2f

2
46 +B3f

3
45
]

(IV.215)

F2 = e3A−ϕ[ ∗B3 de−4A − α′(2π)2 ∑
a=1,2,3

R2
aη
a ∧ ∗B3dηa

]
(IV.216)
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F2 ≡e3A−ϕ ∗B3 de−4A + α′(2π)2F bg
2 , , (IV.217)

with the internal manifold volume Vol(M) normalised in α′ units. Both F0 and F bg
2 are

background fluxes and must be integer-valued, constraining the radii and e3A−ϕ again.
As before, the generalised current is

j = −4α′3/2(2π)3e−ϕR4R5R6dy4 ∧ dy5 ∧ dy6, (IV.218)

and the domain-wall and D-string BPSness violations are

e3A−ϕe−iθ(H + idJ) = irj (IV.219)

e3A−ϕd(e−AImΩ) = 4π
√
α′eA(R1α̂1η

1 +R2α̂2η
2 +R3α̂3η

3) ∧ j (IV.220)

and are satisfied if

r = e3Ae−iθ

8π
√
α′R4R5R6

[
i
(
N +B1f

1
56 −B2f

2
46 +B3f

3
45
)

(IV.221)

+ f1
56R1R4 − f246R2R5 + f345R3R6

]
(IV.222)

α̂1 = e2A

16π
√
α′R4

(
R3
R6

f3
46 + R2

R5
f2

45

)
(IV.223)

α̂2 = e2A

16π
√
α′R5

(
R3
R6

f3
56 −

R1
R4

f1
45

)
(IV.224)

α̂3 =− e2A

16π
√
α′R6

(
R2
R5

f2
56 + R1

R4
f1

46

)
. (IV.225)

With these supersymmetry breaking parameters, one can show that (IV.207) and (IV.208)
are satisfied, and therefore the NS-field and internal metric equations of motion are
obeyed.

Finally, the Bianchi identities for the RR-fluxes read

dF2 = e3A−ϕ[−∇2
B3e

−4A + Z

2α′(2π)2
]
võlB3

= e3A−ϕ

α′(2π)2

( 8∑
i=1

δ4
B4(yi)−

nD6∑
j=1

δ4
B4(yj)

)
võlB4 , (IV.226)

with again

Z = (f1
45)2

(R4R5)2 + (f1
46)2

(R4R6)2 + (f1
56)2

(R5R6)2 + (f2
45)2

(R4R5)2 + (f2
46)2

(R4R6)2 + (f2
56)2

(R5R6)2

+ (f3
45)2

(R4R5)2 + (f3
46)2

(R4R6)2 + (f3
56)2

(R5R6)2 . (IV.227)
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This expression is similar to the one for the background with only SSB contribution pre-
sented in b).1, but the addition of the DWSB contribution actually modifies the structure
constants {faij} upon releasing the constraint (IV.188), which also alters the corresponding
tadpole condition

nD6 + Z

2 = 8. (IV.228)

c) Type IIB SU(2)-structure backgrounds with D5-branes

We now turn to the discussion of type IIB backgrounds admitting a static SU(2) struc-
ture and having space-filling D5-branes. The two internal spinors η1 and η2 of such
backgrounds are everywhere orthogonal, which means that one can specify a one-form
θ = θmdym such that

η2 = − i2θmγ
mη∗

1. (IV.229)

It is natural to parametrise the two SU(3) structures defined by η1 and η2 as

J1 =− i

2θ ∧ θ̄ + j Ω1 =− θ ∧ w (IV.230)

J2 =− i

2θ ∧ θ̄ − j Ω2 = θ ∧ w̄ (IV.231)

with ιθj = ιθ̄j = ιθw = ιθ̄w = 0. The corresponding pure spinors are

Ψ1 = w ∧ e
1
2 θ∧θ̄ (IV.232)

Ψ2 = θ ∧ eij. (IV.233)

Following [8], one can show that the calibration of the space-filling D5-branes wrapping
a cycle Σ imposes

θ|Σ = 0 j|Σ F = 0 Imw|Σ = 0. (IV.234)

We will now specify the pure spinor equations and the equations of motion for both the
cases with and without a DWSB contribution.

c).1 Backgrounds with only SSB contributions
We start by discussing the class of backgrounds having only an SSB contribution. The
domain-wall BPSness (IV.41) first imposes

d(e3A−ϕθ) = 0. (IV.235)

This means that locally, one can introduce a complex coordinate z such that dz = e3A−ϕθ.
Then, the hypersurface D defined by z = constant admits an SU(2) structure defined by
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the pair (j|D, w|D), and (IV.234) means that the fibre Σ defines a Slag fibration of the
leaves D.

We can choose a local basis such that e1, e2, e4, e5 are along D, and e1, e2 are tangent
to the fibre Σ. We also take

j =− (e1 ∧ e4 + e2 ∧ e5) (IV.236)

w = (e1 + ie4) ∧ (e2 + ie5) (IV.237)

θ = e3 + ie6. (IV.238)

The domain-wall BPSness also imposes

dj|D = 0 H|D = 0, (IV.239)

so one can expand dj and H as

dj = (f ∧ θ̄ + c.c.) + i

2u ∧ θ ∧ θ̄ (IV.240)

H = (g ∧ θ̄ + c.c.) + i

2h ∧ θ ∧ θ̄ (IV.241)

with f and g complex two-forms, and u and h real one-forms which can be decomposed
purely along D. The last condition imposed by domain-wall BPSness is then

g + if = 0. (IV.242)

The gauge BPSness yields the following RR-fluxes

eϕ ∗ F1 = H ∧ Rew − id(2A− ϕ) ∧ Imw ∧ θ ∧ θ̄ (IV.243)

∗F3 =− e−4Ad(e4A−ϕRew) (IV.244)

F5 = 0, (IV.245)

and the violation of the D-string BPSness takes the form

d(e2A−ϕImw) = 0 (IV.246)

e2A−ϕ[H ∧ Imw − i

2d(Rew ∧ θ ∧ θ̄)
]

= 4π
√
α′eA(R1α̂1dy1 +R2α̂2dy2) ∧ j (IV.247)

with
j = −4e3A−ϕvolB4 . (IV.248)
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Turning to the equations of motion, the NS-field equation is

d
[
e5A−2ϕ ⟨Imw, α̂aιa(Rew − Rew|Σ)⟩

]
= 0 a = 1, 2 (IV.249)

while the internal Einstein equations reduce to

⟨gk(mdyk ∧ ιn)Imw,d(e3A−ϕα̂aιa(iImw ∧ θ ∧ θ̄)⟩ = 0 a = 1, 2. (IV.250)

We now turn to the construction of a concrete background satisfying these conditions.

To do so, we consider a factorisable warped six-torus

ds2 =e2Ads2
R1,3 + ds2

M (IV.251)

ds2
M =α′(2π)2

{
e2A[R2

1(dy1)2 +R2
2(dy2)2]+ e−2A

6∑
j=3

R2
j (dyj)2

}
, (IV.252)

and we take the two-torus spanned by y1 and y2 to be the fibre Σ over the four-torus base
spanned by y3, y4, y5, y6. We also consider the fibre to be wrapped by 24 O5-planes and
nD5 D5-branes. The SU(2) structure is then

j =− α′(2π)2(R1R4dy1 ∧ dy4 +R2R5dy2 ∧ dy5) (IV.253)

w = α′(2π)2(eAR1dy1 + ie−AR4dy4) ∧ (eAR2dy2 + ie−AR5dy5) (IV.254)

θ = 2π
√
α′e−A(R3dy3 + iR6dy6). (IV.255)

Let us now see what the domain-wall BPSness imposes on the background. First of all
(IV.235) sets

e2A−ϕ = const. (IV.256)

Then, if we consider the following NS-field ansatz

H = (2π)2α′[NNS1dy3 ∧ dy4 ∧ dy6 +NNS2dy3 ∧ dy5 ∧ dy6] NNS1,2 ∈ Z, (IV.257)

we see that (IV.239) and (IV.242) are satisfied, with g = f = 0, and we have u = 0 and
h = − e−2A

R3R6

[
NNS1dy4 +NNS2dy5].

The generalised current is

j = −4α′2(2π)4e−A−ϕR3R4R5R6dy3 ∧ dy4 ∧ dy5 ∧ dy6. (IV.258)

The violation of the D-string BPSness (IV.246) is identically satisfied, while (IV.247)
reduces to

e2A−ϕH ∧ Imw = 4π
√
α′eA(R1α̂1dy1 +R2α̂2dy2) ∧ j (IV.259)
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which is satisfied with

α̂1 =− e2ANNS1

16π
√
α′R3R4R6

(IV.260)

α̂2 =− e2ANNS2

16π
√
α′R3R5R6

. (IV.261)

The gauge BPSness constrains the RR-fluxes to be

F1 =e2A−ϕ[R4NNS2
R3R5R6

dy4 − R5NNS1
R3R4R6

dy5] (IV.262)

F3 =e2A−ϕ ∗B4 de−4A (IV.263)

with ∗B4 the four-dimensional Hodge operator on the unwarped base.

The RR-flux quantisation implies that we must have

e2A−ϕR5NNS1
R3R4R6

= NR1 ∈ Z e2A−ϕR4NNS2
R3R5R6

= NR2 ∈ Z, (IV.264)

so the RR Bianchi identities reduce to

−∇̂2
B4e

−4A = 1
e2A−ϕ(2π)2α′Π6

a=3Ra

[
NNS1NR1+NNS2NR2+

∑
i∈D5’s,O5’s

qiδ
4
B4(yi)

]
(IV.265)

with again qD5 = −qO5 = 1. Integrating this condition on the base yields the following
tadpole condition

NNS1NR1 +NNS2NR2 + nD5 = 16. (IV.266)

Turning to the equations of motion, the NS-field equation (IV.249) is identically satisfied,
and we have

d(e3A−ϕα̂aιa(iImw ∧ θ ∧ θ̄) = 0 (IV.267)

so the internal Einstein equations are satisfied.

c).2 Backgrounds with both SSB and DWSB contributions
We now consider SU(2) backgrounds with space-filling D5-branes with both SSB and
DWSB contributions. The internal manifold geometry is similar to the one of the back-
grounds with only an SSB contribution. Indeed, the domain-wall BPSness violation
(IV.51) keeps on imposing

d(e3A−ϕθ) = 0, (IV.268)
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so we can similarly define the hypersurface D along e1, e2, e4, e5, which admits a Slag
fibration with fibres Σ. We keep the same parametrisation of the SU(2) structure

j =− (e1 ∧ e4 + e2 ∧ e5) (IV.269)

w = (e1 + ie4) ∧ (e2 + ie5) (IV.270)

θ = e3 + ie6, (IV.271)

and (IV.51) also imposes
dj|D = 0 H|D = 0. (IV.272)

However, using the same expansion of dj and H (IV.240), (IV.241), the domain-wall
BPSness violation now imposes

g + if = −2re4 ∧ e5. (IV.273)

The gauge BPSness sets the RR-fluxes to be

eϕ ∗ F1 = H ∧ Rew − id(2A− ϕ) ∧ Imw ∧ θ ∧ θ̄ (IV.274)

∗F3 =− e−4Ad(e4A−ϕRew) (IV.275)

F5 = 0, (IV.276)

and the violation of the D-string BPSness takes the form

d(e2A−ϕImw) = 0 (IV.277)

e2A−ϕ[H ∧ Imw − i

2d(Rew ∧ θ ∧ θ̄)
]

= 4π
√
α′eA(R1α̂1dy1 +R2α̂2dy2) ∧ j (IV.278)

with
j = −4e3A−ϕvolB4 . (IV.279)

Turning to the equations of motion, the NS-field equation is

e3A−ϕIm ⟨θ,d
[
eA−ϕr∗Θ̃

]
⟩+ 2d

[
e5A−2ϕ ⟨Imw, α̂aιaΘ̃⟩

]
= 0 a = 1, 2, (IV.280)

with Θ̃ = Rew − Rew|Σ. Specifying the internal Einstein equations (IV.103) to this case
gives a rather long and not particularly enlightening expression, so we just give here the
following conditions

d
[
e3A−ϕα̂aιa(iImw ∧ θ ∧ θ̄)

]
= 0 (IV.281)

d
[
eA−ϕr∗iImw ∧ θ ∧ θ̄

]
= 0 (IV.282)
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d
[
eA−ϕr∗Θ̃

]
= 0 (IV.283)

which are stronger than the internal Einstein equations, but are reasonable conditions
to impose on such SU(2) backgrounds, and which guarantee that the internal Einstein
equations are satisfied. The example background that we construct below will satisfy
these conditions.

We consider here again a factorisable six-torus

ds2 =e2Ads2
R1,3 + ds2

M (IV.284)

ds2
M =α′(2π)2

{
e2A[R2

1(dy1)2 +R2
2(dy2)2]+ e−2A

6∑
j=3

R2
j (dyj)2

}
, (IV.285)

and as before we take the two-torus spanned by y1 and y2 to be the fibre Σ over the
four-torus base spanned by y3, y4, y5, y6. We also consider the fibre to be wrapped by nO5

O5-planes and nD5 D5-branes. The SU(2) structure is again

j =− α′(2π)2(R1R4dy1 ∧ dy4 +R2R5dy2 ∧ dy5) (IV.286)

w = α′(2π)2(eAR1dy1 + ie−AR4dy4) ∧ (eAR2dy2 + ie−AR5dy5) (IV.287)

θ = 2π
√
α′e−A(R3dy3 + iR6dy6). (IV.288)

From (IV.268), we see that the domain-wall BPSness violation sets again

e2A−ϕ = const. (IV.289)

However, we now consider the following NS-field

H = (2π)2α′[NNS1dy3 ∧ dy4 ∧ dy6 +NNS2dy3 ∧ dy5 ∧ dy6

+NNS3dy4 ∧ dy5 ∧ dy6] NNS1,2,3 ∈ Z, (IV.290)

and we see that (IV.272) are still satisfied. We now have f = u = 0 and g = iπ
√
α′

R6
eANNS3dy4∧

dy5, and the domain-wall BPSness violation (IV.273) now reads

g + if = −4πr
√
α′e−2AR4R5dy4 ∧ dy5 (IV.291)

with
r = − ie3ANNS3

8π
√
α′R4R5R6

. (IV.292)

The additional DWSB contribution, which happens through the new components of the
NS-flux in (IV.290), doesn’t modify the violation of the D-string BPSness: (IV.277) is
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again identically satisfied, while (IV.278) reduces to

e2A−ϕH ∧ Imw = 4π
√
α′eA(R1α̂1dy1 +R2α̂2dy2) ∧ j (IV.293)

which is satisfied with

α̂1 =− e2ANNS1

16π
√
α′R3R4R6

(IV.294)

α̂2 =− e2ANNS2

16π
√
α′R3R5R6

. (IV.295)

The gauge BPSness sets the RR-fluxes to

F1 =e2A−ϕ[R4NNS2
R3R5R6

dy4 − R5NNS1
R3R4R6

dy5 − R3NNS3
R4R5R6

dy3] (IV.296)

F3 =e2A−ϕ ∗B4 de−4A (IV.297)

The RR-flux quantisation implies that we must have

e2A−ϕR5NNS1
R3R4R6

= NR1 e2A−ϕR4NNS2
R3R5R6

= NR2 e2A−ϕR3NNS3
R4R5R6

= NR3 (IV.298)

with NR1, NR2, NR3 ∈ Z. The RR Bianchi identities then reduce to

−∇̂2
B4e

−4A = 1
e2A−ϕ(2π)2α′Π6

a=3Ra

[ 3∑
k=1

NNSkNRk +
∑

i∈D5’s,O5’s
qiδ

4
B4(yi)

]
(IV.299)

with again qD5 = −qO5 = 1. Integrating this condition on the base yields the following
tadpole condition

3∑
k=1

NNSkNRk + nD5 = 16. (IV.300)

Turning to the equations of motion, the conditions (IV.280)−(IV.283) are obeyed, pro-
vided that e2A−ϕ = constant. The NS-field equation and internal Einstein equations are
therefore satisfied, as discussed above.

IV.2.4 Discussion

In this section, we investigated some corners of the landscape of non-supersymmetric flux
vacua, in the light of generalised complex geometry. In generalised complex geometry
the conditions for warped backgrounds with N = 1 supersymmetry can be expressed as
differential equations on polyforms, called pure spinors, which, in turn, are seen as gener-
alised calibration conditions for various types of D-branes wrapping cycles on the internal
manifold: D-string, domain-wall, or space-filling branes, from the four-dimensional per-
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spective.
This interpretation provides different controlled ways of breaking supersymmetry in

ten-dimensions by violating the BPSness of D-string, domain-wall, or space-filling probe
branes. The philosophy is to look at non-supersymmetric solutions via a two-step proce-
dure: one first solves the deformed supersymmetry equations, which are still first order
equations, and then look at the extra constraints that the equations of motion impose.

This approach was first used in [44], where non-supersymmetric solutions were found
by deforming the domain-wall calibration condition. Our work extends [44] to new classes
of solutions obtained by deforming the D-string BPS condition or both the domain-wall
and D-string ones.

To solve the ten-dimensional equations of motion, it proves convenient to use an effec-
tive four-dimensional potential obtained by integrating the ten-dimensional supergravity
action on the internal manifold. The effective potential can be expressed in terms of pure
spinors as an integral over the compact space. Then the equations of motion are obtained
by varying it with respect to the physical fields and are also given in terms of the pure
spinors. The equations of motion are rather convoluted in the general case and are still
to be studied. However, by choosing specific classes of supersymmetry breaking, they
become tractable. We were able to solve them for a variety of concrete type II SU(2) and
SU(3) backgrounds respecting (IV.45).

When studying the effective potential for the SSB backgrounds, we witnessed the
presence of some terms belonging to vector representations of the SU(3)×SU(3) structure,
which are believed to be massive modes from the effective point of view. In that sense, our
classes of backgrounds describe a set of fully ten-dimensional non-supersymmetric solu-
tions of type II supergravity. It is not clear weather they admit a proper four-dimensional
interpretation. It would be interesting to apply the recently developed exceptional gen-
eralised geometry techniques [80] to study potential consistent truncations of such back-
grounds.

However, we showed that our class of background shares a property with the one-
parameter DWSB class introduced in [44], namely the existence of a ‘truncation’ dictated
by the geometry such that the ‘off-shell’ effective potential is positive semi-definite, and
vanishes at the solutions. By ‘truncation’ we meant that we only consider the off-shell
deformations of the potential which are compatible with the generalised foliation of the
internal space, so it is by no mean a rigorous truncation to a finite set of mode. We
therefore present this as an interesting property of our class of backgrounds, but this is
a weaker statement than arguing for the perturbative stability of our backgrounds, since
we have no control over the modes we are ‘truncating’ away and keeping in our ‘off-shell’
potential.

We carried the same analysis, from the effective potential and the derivation of the
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equations of motion, to the construction of concrete backgrounds, for another class of
vacua, which have the same supersymmetry breaking term violating the D-string BPSness,
but supplemented with the one-parameter DWSB contribution violating the domain-
wall BPSness. Each supersymmetry breaking term brings different contributions to the
effective potential and therefore to the equations of motion, which can be solved separately,
which we did for several explicit SU(2) and SU(3) background constructions.

One obvious extension of this work would be to consider different patterns of the
D-string BPSness violation, depending on the generalised current associated to the back-
ground D-branes or not, and to look for explicit solutions.

Another natural extension of the present work is to carry the constructions of the
analogous Heterotic backgrounds, where the building block of the supersymmetry break-
ing term entering the modified D-string condition could now be, for instance, the base
volume-form of some elliptically fibered internal manifolds like the ones discussed in [98].

Another interesting direction would be to consider solutions of ten-dimensional su-
pergravity violating the D-string BPSness, but without any vector modes under the
SU(3)×SU(3) structure, for which it would probably be possible to get a deeper un-
derstanding of their associated effective theories. In the case of vacua with an external
space being Minkowski, such a D-string BPSness violation should be accompanied by a
domain-wall BPSness violation, otherwise there would only be positive contributions to
the effective potential. One could then hope to interpret the associated effective theories
as, for instance, solutions of four-dimensional N = 1 supergravity with non-vanishing
D-terms, F-terms and superpotential, extending the supersymmetric analysis of [7]. We
will come back to these questions in the next section.

Finally, the techniques from exceptional generalised geometry can shed a different
light on the study of non-supersymmetric equations of motion: by classifying the possible
supersymmetry breaking terms in terms of different representations of the torsion of an
appropriate generalised SU(7) structure, one can reformulate the equations of motion as
first order differential conditions on these torsion representations. We will come back to
this idea in the next chapter.

IV.3 Generalised calibrations and D-term supersymmetry-breaking

Constructing supergravity solutions with D-terms is difficult. Indeed, the prototypical
example of D-term supersymmetry breaking is the Fayet–Iliopoulos term, and realising
its (field-dependent) embedding in supergravity at energy parametrically lower than the
Planck scale turns out to be challenging [4, 5].

In this section, we investigate the possibility of having supergravity solutions with D-
terms from a different angle, using the framework of generalised complex geometry. We
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consider again solutions that are warped products of four-dimensional Minkowski space
and an internal six-dimensional compact manifold, and we again break supersymmetry in
a sort of controlled way: we consider first order differential equations which correspond to
deformations of the pure spinor equations via the introduction of supersymmetry breaking
terms, and then we impose some further requirements from the equations of motion which
guarantee that we have actual solutions of supergravity.

We keep on focusing on the class of vacua that still admits BPS space-filling sources.
This means that the BPS condition associated to the calibration condition of space-filling
D-branes is preserved, while we allow for the conditions corresponding to the calibrations
of string-like and domain-wall probe D-branes to be violated.

In the supersymmetric case, the gauge BPSness condition has been reformulated in [6],
eliminating the explicit metric dependence, and introducing a generalised version of the
Dolbeault operator. We will generalise this derivation to the case of non-supersymmetric
vacua violating the string and domain-wall BPSness conditions.

Still in the N = 1 case, the gauge and domain-wall BPSness conditions have been
identified with F-term conditions, while the string BPSness has been interpreted as a
D-term condition for the dimensionally reduced four-dimensional N = 1 theory in [7, 8].

Within our class of non-supersymmetric backgrounds preserving the gauge BPSness,
we will focus on those who can be dimensionally reduced to four-dimensional N = 1
supergravity solutions with non-vanishing F-terms, and possibly non-vanishing D-terms.
To do so, we require that our set of modified pure spinor equations continues to have an
interpretation in terms of either (D-) F-term or (D-) F-term conditions. In particular,
the gauge BPSness should still be identified with an F-term condition.

Interestingly, this procedure constrains some supersymmetry breaking terms entering
the modified D-string calibration condition, and therefore the possible D-terms. More
precisely, we will see that the supersymmetry breaking terms set to zero by this require-
ment belong to vector representations of the SU(3)× SU(3) structure defined by the pure
spinors, just like the massive spin 3

2 -multiplet degrees of freedom of the four-dimensional
theory [38, 40].

On another note, we will give the effective potential for our class of backgrounds,
written as an integral over the internal compactification space, in the language of pure
spinors. We will see that the requirement to interpret the gauge BPSness condition as an
F-term condition results in the vanishing of some negative semi-definite contributions to
the effective potential, which naturally fits within the four-dimensional N = 1 picture,
given that these contributions do not originate from the superpotential.

We derive the equations of motion for our class of backgrounds dimensionally reducing
to four-dimensional N = 1 supergravity solutions with non-vanishing F-terms and D-
terms, and for a subclass where the D-term contributions to the effective potential are set
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to zero on-shell, restoring the D-string BPSness. Solutions of this kind correspond to vacua
with only F-terms, and include the amply discussed class of no-scale vacua [99–108]. The
relative simplicity of these equations of motion compared to the general ten-dimensional
type II equations of motion could be used to find new non-supersymmetric flux vacua.

Finally, the requirement to interpret the gauge BPSness condition as an F-term con-
dition turns out to be rather restrictive on the possible D-terms, and we investigate this
in a more concrete way for a class of SU(3) backgrounds with parallel BPS O5-planes.

The outline of this section is as follows. In subsection IV.3.1, we reformulate the
calibration condition associated to space-filling sources in the non-supersymmetric case.
In subsection IV.3.2, we briefly review the four-dimensional N = 1 interpretation of the
BPS conditions in the GCG framework, and we introduce the general type II effective
potential in the language of pure spinors. In subsection IV.3.3, we derive the constraint
that the gauge BPSness should obey in order to be interpreted as an F-term condition, and
we derive the equations of motion for backgrounds satisfying this constraint. In subsection
IV.3.4, we apply this constraint to SU(3) backgrounds with parallel BPS O5-planes, and
study the restriction it imposes on their possible D-terms.

IV.3.1 Reformulating the gauge BPSness

Throughout this section, we consider non-supersymmetric solutions of type II supergrav-
ity, and we use first order differential equations on the pure spinors to describe them.
These equations can be thought as modifications of the pure spinor equations (III.71),
(III.72) and (III.73), to which we add supersymmetry breaking terms, which is a stan-
dard procedure in the GCG literature [44, 45, 92]. Unlike the supersymmetric case, these
modified pure spinor equations are not equivalent to the equations of motion, and one
has to also consider additional constraints to have genuine N = 0 backgrounds.

In this section, we will again only consider the case of N = 0 backgrounds which still
respect the gauge BPSness (III.73), therefore admitting stable (BPS) space-filling sources.
We therefore consider generically

dH(e3A−ϕΨ2) ̸= 0 (IV.301)

dH(e2A−ϕImΨ1) ̸= 0 (IV.302)

dH(e4A−ϕReΨ1) = e4A∗̃F. (IV.303)

It is more convenient to consider a different reformulation of the space-filling calibra-
tion condition (IV.303), which eliminate its implicit dependence on the metric coming
from the Hodge operator, and express the RR field-strength itself in terms of the pure
spinors.
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In the supersymmetric case, this reformulation was derived in [6]:

F = −dJ2
H (e−ϕReΨ1) (IV.304)

with the introduction of the following differential operator

dJ = e− π
2 J ·d e

π
2 J ·, (IV.305)

where · denotes the action of the (almost) generalised complex structure on polyforms
(III.45) . When J2 is integrable, which is the case for N = 1 backgrounds, this differential
reduces to

dJ = [d,J ·]. (IV.306)

It is worth stressing that the derivation of (IV.304) relies on (III.72) being satisfied.
Still in the supersymmetric case, a second reformulation of the gauge BPSness has

been presented for instance in [7], and requires the introduction of the following complex-
ification of the RR field-strength:

G = F + idH(e−ϕReΨ1). (IV.307)

Decomposing (III.73) on the generalised Hodge diamond, and using again (III.72), it
can be shown that (III.73) is equivalent to

G|V−1 = 0 G|V−3 = 0 , (IV.308)

where the subscript Vn denotes the projection onto the in-eigenspace of J2. The second
equation is actually just

F |V−3 = 0, (IV.309)

since the second term in G is the derivative of a polyform of null charge under J2, which
cannot have V−3 components, from (III.55). This reformulation is particularly useful to
interpret (III.73) as an F-term condition in the four-dimensional theory, as discussed in
[7].

Let us now derive similar reformulations of the gauge BPSness (IV.303) in the non-
supersymmetric case, where the domain-wall and D-string BPSness conditions are relaxed.

We generalise the derivation of [6] in this case, and after some long but straightforward
calculations we find

F = −dJ2
H (e−ϕReΨ1) + e−2AJ1 · dJ2

H (e2A−ϕImΨ1). (IV.310)

The second term in this expression explicitly shows the relationship between the additional
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RR flux components and the violation of the D-string BPSness (IV.302). Moreover, the
supersymmetry breaking terms that appear in (IV.301), which are in the V0 bundle,
prevent the generalised complex structure J2 from being integrable. As a consequence,
recall that the exterior derivative property (III.55) is generalised to

dH : Γ(Vk)→ Γ(Vk−3)⊕ Γ(Vk−1)⊕ Γ(Vk+1)⊕ Γ(Vk+3), (IV.311)

which also results in additional RR field-strength components compared to the supersym-
metric case.

From this reformulation of (IV.303), one can derive the non-supersymmetric analogue
of (IV.308), by decomposing (IV.310) on the generalised Hodge diamond.

Looking first at the V |−3 component, we now have

F |V−3 = idH(e−ϕReΨ1)|V−3 . (IV.312)

The V |−1 component is

F |V−1 = −idH(e−ϕReΨ1)|V−1 + ie−2AJ1 · dH(e2A−ϕImΨ1)|V−1 . (IV.313)

These can be rearranged into

G|V−1 = ie−2AJ1 · dH(e2A−ϕImΨ1)|V−1 (IV.314)

G|V3 = 0, (IV.315)

which again is the most convenient form to make contact with the four-dimensional N = 1
effective theory. Indeed, an advantage of reformulating the gauge BPSness in this way
for non-supersymmetric backgrounds is that it highlights the relationship between the
complexified RR flux and the D-string BPSness violation (IV.302). This is particularly
interesting to discuss solutions dimensionally reducing to solutions of four-dimensional
N = 1 supergravity, since the former enters in the corresponding on-shell superpotential,
and the latter has been identified as the D-term contribution in four-dimensional N = 1
supergravity [7]. We will address the four-dimensional N = 1 supergravity interpretation
in more details in subsection IV.3.3.

Finally, these derivations of the non-supersymmetric version of the gauge BPSness
will prove to be insightful when we will turn to the study of the intrinsic torsion of the
generalised SU(7) structure associated to non-supersymmetric flux backgrounds. Indeed,
these will highlight the interplay between different irreducible representations of the SU(7)
intrinsic torsion, in a sense that will be made precise in chapter V.
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IV.3.2 4D structure and effective potential from pure spinors

In this section we briefly review N = 1 Minkowksi solutions of type II supergravity dis-
cussed in [7]. More precisely, we discuss the interpretation of the pure spinor equations
(III.71), (III.72) and (III.73) as the vanishing of some D-terms, F-terms and superpoten-
tial.

We then write again the most general four-dimensional ‘effective potential’ from the
ten-dimensional type II supergravity action, following [44]. Recall that calling these scalar
functions ‘effective potentials’ is a bit misleading, since we write them as integral over
the internal space, without choosing a specific truncation for the ten-dimensional modes
and performing the actual dimensional reduction to write down a genuine scalar potential
for the associated effective theories. However, in doing so we are able to interpret the
different terms in the closed string sector of this effective potential as contributions from
F-terms, D-terms and a superpotential.

In the next section, a similar interpretation in the non-supersymmetric case will moti-
vate some constraints that the modified pure spinor equations should obey in order to be
compatible with a four-dimensional N = 1 supergravity description with non-vanishing
F-terms and D-terms.

a) Four-dimensional N = 1 supergravity

We briefly review here the work of [7], which provides ten-dimensional expressions for
the four-dimensional N = 1 supergravity superpotential, D- and F-term conditions. The
expression obtained in [7] for the superpotential can be thought as the generalisation of
the well-known Gukov-Vafa-Witten superpotential [109] in the GCG formalism.

We review these notions in order to then move on to the description of the effective
potential for non-supersymmetric solutions of four-dimensional N = 1 supergravity, with
non-vanishing D- and F-terms. We introduce the following rescaled pure spinors

t = e−ϕΨ1 Z = e3A−ϕΨ2, (IV.316)

as well as

T = Ret− iC, (IV.317)

with F = F bg + dHC and F bg some fixed non-trivial background flux. Both Z and T
are chiral fields of the associated four-dimensional N = 1 description. The polyform T is
defined such that the complexified flux G is its field-strength G = idHT .

We can now define the following superpotential and conformal Kähler potential den-
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sities
W = π(−1)|Z|+1 ⟨Z, G⟩ N = iπ

2 ⟨Z, Z̄⟩
1/3 ⟨t, t̄⟩2/3

, (IV.318)

where |Z| is the degree (mod 2) of Z, which depend on both chiral fields Z and T , and
the associated superpotential and conformal Kähler potential

W =
∫
M
W N =

∫
M
N. (IV.319)

Consider now a chiral field X on which the superpotential and the conformal Kähler
potential depend. Under a holomorphic variation δX of X we define

(δW)X := δXW − 3(δX logN )W. (IV.320)

We evaluate the variations associated to the two chiral fields at our disposal, Z and
T . First for Z, we distinguish two contributions coming from two distinct holomorphic
deformations of Z

δZ ∈ (V1 ⊕ V3), (IV.321)

which we denote
(δW)Z(1) and (δW)Z(3) (IV.322)

respectively. They yield

(δW)Z(1) =(−1)|Z|+1π

∫
M

〈
δZ(1), G|V−1

〉
(IV.323)

(δW)Z(3) =− π
∫
M

〈
δZ(3), (−1)|Z|G|V−3 + 3i

2
W
N
e−4AZ̄

〉
. (IV.324)

For T , we find

(δW)T = iπ

∫
M

〈
δT , (−1)|Z|dHZ + 3iW

N
e2AImt

〉
. (IV.325)

Imposing the vanishing of the variations (IV.323)-(IV.325) reproduces the Anti de
Sitter version of the supersymmetric pure spinor equations (III.71) and (IV.308). If we
also impose that the superpotential itself vanishes, they reduce to the corresponding
equations in flat space

dHZ = 0 G|V−1 = 0 G|V−3 = 0. (IV.326)

One can therefore interpret the two N = 1 supersymmetry conditions (III.71) and
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(IV.308) as F-term conditions and the vanishing of the superpotential

W = 0 (δW)Z(1) = 0 (δW)Z(3) = 0 (δW)T = 0. (IV.327)

On another note, the parametrisation in terms of the chiral fields T and Z has some
redundancy, due to the the RR gauge transformations δλC = dHλ resulting in δλT =
−idHλ. These symmetries are gauged in the effective theory, and their associated D-terms
have been worked out in [7], yielding

D(λ) = 2π
∫
M
⟨λ,D⟩ (IV.328)

with
D = dH(e2AImt), (IV.329)

the D-term density. The last N = 1 supersymmetry condition (III.72) can thus be
interpreted as the vanishing of these D-terms

D = 0, (IV.330)

completing the four-dimensional picture.

One can also write down the corresponding covariant derivatives of the superpotential
density. For a chiral field X

DXW ≡ ∂XW − 3(∂X logN)W. (IV.331)

In the case of N = 1 Minkowski solutions, they are23

DZ(1)W =π(−1)|Z|+1G|V−1 (IV.332)

DZ(3)W =π(−1)|Z|+1G|V−3 (IV.333)

DT W =iπ(−1)|Z|dHZ. (IV.334)

b) The type II effective potential

In this subsection, we recall the four-dimensional effective action for backgrounds with
ten-dimensional space-time of the form X4 ×M with the metric

ds2
10 = e2A(y)gµνdxµdxν + gmndymdyn, (IV.335)

23We deliberately give the expressions with vanishing superpotential in order to make contact with the
on-shell N = 1 Minkowski effective potential discussed in the next subsection.
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where gµν is for now a general four-dimensional metric depending only on the external
coordinates, and all the other fields depend only on the internal coordinates.

The effective four-dimensional action is24

Seff =
∫
X4

d4x
√
−g4

(1
2NR4 − 2πVeff

)
, (IV.336)

where R4 is the four-dimensional scalar curvature, and

Veff =
∫
M

vol6e4A{e−2ϕ[−R+ 1
2H

2 − 4(dϕ)2 + 8∇2A+ 20(dA)2]− 1
2 F̃

2}

+
∑

i∈loc. sources
τi

(∫
Σi

e4A−ϕ
√

det(g|Σi + Fi)−
∫

Σi

Cel|Σi ∧ e
Fi

)
(IV.337)

is the type II effective potential density, with R the six-dimensional scalar curvature.
Its first line corresponds to the closed string sector, while the second line is the localised
sources contributions. For the O-planes, we set F = 0, and we have τDp = 1, τOq = −2q−5.
The sources couple to the RR potentials defined by dHCel = e4AF̃ .

The variations of the four dimensional action (IV.336) exactly reproduce the ten-
dimensional equations of motion, as argued in [44]. They are given in Appendix A.
Moreover, from the variation with respect to gµν , one gets that the external space is
Einstein, with

R4 = 8πVeff/N , (IV.338)

as expected. From the ten-dimensional perspective this is equivalent to the internal
space integral of the external ten-dimensional Einstein equation’s trace. As we consider
Minkowski backgrounds, we focus on the cases where the effective potential vanishes at
the solutions.

Finally, the RR equations of motion reproduce the usual Bianchi identities

dHF = −jtot = −
∑
i

τiji, (IV.339)

where, as described in [44] for instance, the ji are the generalised currents for the localised
sources.

From now on we will use the rewriting of the effective potential in terms of the pure
spinors, derived in [44]:

Veff =1
2

∫
M

vol6
[
|dH(e2A−ϕImΨ1)|2 + e−2A|dH(e3A−ϕΨ2)|2

]
24We use the convention 2π

√
α′ = 1, so that all D-brane tensions are equal. We are also neglecting

anomalous curvature-like corrections to the sources contribution: they can be easily added without affect-
ing the results of the discussion. Finally we are also omitting the internal field kinetic terms, since they
are taken to be constant along the external directions.
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+ 1
2

∫
M

vol6 e4A|∗̃F − e−4AdH(e4A−ϕReΨ1)|2

− 1
4

∫
M
e−2A

(
| ⟨Ψ1,dH(e3A−ϕΨ2)⟩ |2

vol6
+ | ⟨Ψ̄1,dH(e3A−ϕΨ2)⟩ |2

vol6

)

− 4
∫
M

vol6e4A−2ϕ[(u1
R)2 + (u2

R)2]

+
∑

i⊂D-branes
τi

∫
M
e4A−ϕ(vol6 ρloc

i − ⟨ReΨ1, ji⟩)

+
∫
M
⟨e4A−ϕReΨ1 − Cel, dHF + jtot⟩ . (IV.340)

The square of a polyform is defined in Appendix A, and we have

u1,2
R = u1,2

Rmdym ≡ (u1,2
m + u∗1,2

m )dym, (IV.341)

with

u1
m = i ⟨γmΨ̄1, dH(e2A−ϕImΨ1)⟩

e2A−ϕ ⟨Ψ1, Ψ̄1⟩
+ ⟨γmΨ̄2,dH(e3A−ϕΨ2)⟩

2e3A−ϕ ⟨Ψ2, Ψ̄2⟩
(IV.342)

u2
m = i(−1)|Ψ2| ⟨Ψ1γm, dH(e2A−ϕImΨ1)⟩

e2A−ϕ ⟨Ψ1, Ψ̄1⟩
+ (−1)|Ψ1| ⟨Ψ̄2γm, dH(e3A−ϕΨ2)⟩

2e3A−ϕ ⟨Ψ2, Ψ̄2⟩
. (IV.343)

The gamma matrix conventions are given in Appendix A. We also introduced here the
Born-Infeld density ρloc

i associated with a source wrapping a generalised submanifold
(Σi,Fi)

ρloc
i =

√
det(g|Σi + Fi)
√

detg
δ(Σi). (IV.344)

It is useful to rewrite the algebraic inequality (IV.6) in terms of ρloc:

ρloc
i ≥

⟨ReΨ1, ji⟩
vol6

, (IV.345)

where the division by the volume form means that we remove the vol6 factor in the
numerator.

Therefore, if one considers the effective potential of a (non-)supersymmetric back-
ground with calibrated sources, the above inequality is saturated and the fifth line of
(IV.340) vanishes. Similarly, the last line of (IV.340) will vanish for solutions of ten-
dimensional supergravity satisfying the Bianchi identities (IV.339).

In the case of an N = 1 Minkowski background, the closed-string sector of the on-shell
effective potential can be rewritten as

Veff =1
2

∫
M
e4A(|G−1|2 + |G−3|2) + e−2A|dH(Z)|2 − e−2A+2ϕ

8vol6
| ⟨Z, G⟩ |2
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+ 1
2

∫
M
|dH(e2A−ϕImΨ1)|2. (IV.346)

Though this is simply theN = 1 on-shell effective potential, this is the natural formulation
to interpret each term as the vanishing of some D-terms, F-terms and superpotential.

The first three terms in the first line of (IV.346) can be identified with the covariant
derivatives of the superpotential density (IV.332), (IV.333) and (IV.334) respectively,
while the last term in the first line of (IV.346) can be identified with the superpotential
density (IV.318). Finally, the last line of (IV.346) can be identified with the D-terms
(IV.329).

We do not intend to make a rigorous identification with the usual four-dimensional
N = 1 scalar potential here, we simply stress that each term in the closed-string sector of
the effective potential of ten-dimensional N = 1 type II supergravity Minkowski solutions
fits into the four-dimensional N = 1 supergravity description.

IV.3.3 D-terms in generalised complex geometry

In this subsection we investigate the on-shell effective potential of non-supersymmetric
solutions of type II supergravity with external Minkowski space. We identify some
conditions that the modified pure spinor equations must satisfy in order for the non-
supersymmetric solutions to have a clear interpretation in terms of four-dimensional
N = 1 supergravity.

We also derive the equations of motion, in the language of pure spinors, associated to
these backgrounds, with and without D-terms.

a) Effective potential and F-term conditions

Let us recall that we focus on non-supersymmetric solutions having only space-filling
sources, in order to preserve the Poincaré symmetry of the external space, and that we
consider only BPS sources. We also consider that our backgrounds satisfy the Bianchi
identities (IV.61).

In this case, the type II effective potential is

Veff =1
2

∫
M

vol6
[
|dH(e2A−ϕImΨ1)|2 + e−2A|dH(e3A−ϕΨ2)|2

]
− 1

4

∫
M
e−2A

(
| ⟨Ψ1, dH(e3A−ϕΨ2)⟩ |2

vol6
+ | ⟨Ψ̄1, dH(e3A−ϕΨ2)⟩ |2

vol6

)

+ 1
2

∫
M

vol6 e4A|∗̃F − e−4AdH(e4A−ϕReΨ1)|2

− 4
∫
M

vol6e4A−2ϕ[(u1
R)2 + (u2

R)2]. (IV.347)
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For non-supersymmetric Minkowski solutions, this potential still vanishes, but each term
does not necessarily vanish identically.

We now want to restrict ourselves to the study of a subclass of backgrounds dimen-
sionally reducing to a solution of N = 1 four-dimensional supergravity, in the sense that
their scalar potential can be written as F-terms, D-terms, and superpotential contribu-
tions. From the ten-dimensional perspective, this means that we focus on backgrounds
where each terms in the on-shell scalar potential (IV.347) has an interpretation in terms
of the aforementioned contributions.

At this point the most pressing question to address is therefore the superpotential
expression for such backgrounds.

As mentioned above, we consider backgrounds where supersymmetry is broken in a
controlled way, as a perturbation around a certain supersymmetric backgrounds. For
instance, we could think of the right-hand side contributions of the pure spinor equations
(IV.301) and (IV.302) as controlled by some supersymmetry breaking parameters, whose
vanishing would restore supersymmetry. The question now becomes: how is the superpo-
tential in (IV.319) affected by switching on right-hand side contributions in (IV.301) and
(IV.302).

In the supersymmetric case, the complexification of the RR potentials entering the
superpotential is suggested by the coupling of a BPS space-filling D-brane to magnetic
background fields [7, 8]. Indeed, the action of a space-filling D-brane wrapping a gener-
alised cycle (Σ,F) can be written as25

SD-brane =
∫

Σ
e4A−ϕ

√
det(g|Σ + F)volΣ − ie4AC|Σ ∧ eF , (IV.348)

with volΣ the volume form on the cycle Σ. The calibration of the space-filling D-brane
imposes that

e4A−ϕ
√

det(g|Σ + F)volΣ = e4A−ϕReΨ1 ∧ eF , (IV.349)

so the resulting action is

SD-brane =
∫

Σ
e4A(e−ϕReΨ1 − iC) ∧ eF =

∫
Σ
e4AT ∧ eF , (IV.350)

putting in evidence T as the natural complexification of the RR potentials.
We now consider the breaking of supersymmetry through switching on right-hand

side contributions in (IV.301) and (IV.302). Crucially, the complexification of the RR
flux entering the superpotential is unaltered. Indeed, this is because the supersymmetry
breaking perturbations are such that the calibration of the space-filling D-branes (IV.349)
is preserved, and thus the expression of the BPS space-filling D-brane action (IV.350)

25The standard space-filling D-brane action is here Wick rotated to Euclidean space.
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holds. The superpotential expression thus remains as in (IV.319), although it must be
non-vanishing on-shell for non-supersymmetric Minkowski backgrounds, as it is the only
negative contribution to the vanishing effective potential. The associated F-terms might
not be vanishing either.

Non-supersymmetric backgrounds with BPS space-filling sources have been studied
in the GCG literature, and the contributions to the scalar potential of these vacua have
indeed been interpreted as F-terms and a superpotential contribution with the superpo-
tential (IV.319) [44]. It is also interesting to mention that backgrounds respecting the
algebraic calibration condition (IV.349) but not the differential one (IV.303) are success-
fully described using the superpotential (IV.319) in [110].

Generically we have no way to control the superpotential expression for non-supersymmetric
backgrounds with non-BPS sources dimensionally reducing to solutions of four-dimensional
N = 1 supergravity. We thus don’t further address this case.

Coming back to the scalar potential (IV.347), the BPSness of the space-filling sources
(IV.303) implies that its third line must vanish on-shell. In the supersymmetric case,
this corresponds to the F-term conditions resulting from the vanishing of the variations
(δW)Z(1) and (δW)Z(−3) .We investigate these conditions when the supersymmetry break-
ing contributions are switched on. Given that the BPSness of the space-filling sources is
preserved on-shell, the third line of the effective potential (IV.347) vanishes and thus the
F-term conditions from (δW)Z(1) and (δW)Z(−3) should still vanish.

Recall from the previous subsection that the variation of the superpotential with
respect to Z(1) reads

(δW)Z(1) = (−1)|Z|+1π

∫
M

〈
δZ(1), G|V−1

〉
. (IV.351)

The resulting F-term condition is therefore

G|V−1 = 0. (IV.352)

However, in the case of generic domain-wall and D-string BPSness violation, (IV.303) is
equivalent to

G|V−1 = ie−2AJ1 · dH(e2A−ϕImΨ1)|V−1 (IV.353)

G|V3 = 0. (IV.354)

The F-term condition (IV.352) thus results in

J1 · dH(e2A−ϕImΨ1)|V−1 = 0. (IV.355)
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This is equivalent to

dH(e2A−ϕImΨ1)|S2,−1 = dH(e2A−ϕImΨ1)|S−2,−1 = 0, (IV.356)

where the sub-spaces Sp,q are defined in (III.61). Given that the polyform dH(e2A−ϕImΨ1)
is real, it implies

dH(e2A−ϕImΨ1) ⊂ U0 , (IV.357)

where Un is the in-eigenspace of J1. Backgrounds which don’t respect (IV.357) fall off
of the class of solutions dimensionally reducing to solutions of four-dimensional N = 1
supergravity with the superpotential (IV.319). The effective theories associated to such
solutions could be described as solutions of four-dimensional N = 1 supergravity with
a different superpotential26, or could be described with a fake superpotential. Alter-
natively, it might not even be sensible to talk about effective theories associated to
these ten-dimensional backgrounds, or it could be that their effective theories are non-
supersymmetric with the field content of N = 1 or N = 2 supergravity with additional
(massive) multiplets, or non-supersymmetric solutions of four-dimensional supergravities
with higher supersymmetry. We don’t address these possibilities further and for the rest
of this section we focus on the backgrounds respecting (IV.357).

Interestingly, imposing the condition (IV.357) makes the last line of the potential
(IV.347) vanish27

u1
R = u2

R = 0. (IV.358)

This last condition turns out to be crucial for the associated four-dimensional N = 1
supergravity, given that the last line of the potential (IV.347) is negative semi-definite
and is not a superpotential contribution, so it must indeed vanish on-shell, which is
guaranteed by (IV.358).

The modes set to zero by (IV.357) belong to vector representations under the SU(3)×SU(3)
structure, just like the massive spin 3

2 -multiplet degrees of freedom that appear when
reducing the ten-dimensional theory to four-dimensions [38, 40], which are seen as non-
physical degrees of freedom in the four-dimensional N = 1 supergravity and should be
gauged away. It is then reasonable to interpret our condition (IV.357) as the requirement
to keep only the four-dimensional N = 1 multiplets in the low-energy effective theories.

On another note, the violation of the domain-wall BPSness condition (IV.301) results
in a non vanishing variation of the superpotential (IV.325). The corresponding contri-
bution to the superpotential (the second term of the first line of (IV.347)) is therefore
naturally interpreted as an F-term.

26And therefore not admitting BPS space-filling D-branes.
27This can be seen by imposing (IV.357) on the SU(3)×SU(3) decomposition of the pure spinor equations

given in Appendix C.2.
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The condition (IV.357) ensures the vanishing of the F-term corresponding to the cali-
bration of space-filling D-branes, but of course it does not guarantee that non-supersymmetric
ten-dimensional solutions respecting this condition will have a four-dimensional N = 1
low-energy effective theory.

The type II supergravity solutions actually reducing to four-dimensionalN = 1 models
with vanishing D-terms automatically obey (IV.357), since then dH(e2A−ϕImΨ1) = 0.
This is the case for the GKP-like solutions of [3, 44] for example, but more generally
it is true for backgrounds which reduce to no-scale models with non-vanishing F-terms
and superpotential. In the GCG literature, the non-supersymmetric type II supergravity
solutions with a supersymmetry breaking term violating the D-string BPSness (IV.302)
do not respect the condition (IV.357), and therefore do not reduce to solutions of four-
dimensional N = 1 supergravity [45, 92]. In the next section, we will investigate the
constraint (IV.357) in a more concrete setting.

b) Equations of motion

In this subsection we derive the equations of motion in the language pure spinors for the
class of backgrounds discussed above, admitting BPS space-filling sources and respecting
the condition (IV.357) as well as the Bianchi identities. We do so by requiring the van-
ishing of the variations of the effective potential with respect to the internal fields, which
is equivalent to the ten-dimensional equations of motion given in Appendix A, (see [44]).

We consider the following potential28

Veff = 1
2

∫
M
e−2A ⟨∗̃6[dH(e3A−ϕΨ2)], dH(e3A−ϕΨ̄2)⟩

+ 1
2

∫
M
⟨∗̃6[dH(e2A−ϕImΨ1)],dH(e2A−ϕImΨ1)⟩

− 1
4

∫
M
e−2A

(
| ⟨Ψ1, dH(e3A−ϕΨ2)⟩ |2

vol6
+ | ⟨Ψ̄1, dH(e3A−ϕΨ2)⟩ |2

vol6

)
. (IV.359)

We introduce the polyforms

Θ =e−2A∗̃6dH(e3A−ϕΨ2) + 2i(−1)|Ψ1|eA−ϕ(t̄1Ψ1 + t̄2Ψ̄1) (IV.360)

Ξ =∗̃6dH(e2A−ϕImΨ1), (IV.361)

with

t1 = 2(−1)|Ψ1| ⟨dH(e3A−ϕΨ2),Ψ1⟩
⟨Ψ1, Ψ̄1⟩

t2 = 2(−1)|Ψ1| ⟨dH(e3A−ϕΨ2), Ψ̄1⟩
⟨Ψ1, Ψ̄1⟩

. (IV.362)

28The other terms in the effective potential give trivial contributions to the equations of motion since
they are quadratic in quantities vanishing for the considered backgrounds.
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The decompositions of Θ and Ξ on the SU(3)×SU(3) structure are given in Appendix
C.2.

Then, varying the potential (IV.359) with respect to the dilaton, we find the following
dilaton equation of motion

Re{⟨e3A−ϕΨ2,dHΘ⟩}+ ⟨e2A−ϕImΨ1,dHΞ⟩ = 0. (IV.363)

Note that, in our case, the solutions of the dilaton equation have an identically vanishing
effective potential. The B-field equation of motion is

d
[
Re{⟨e3A−ϕΨ2,Θ⟩3}+ ⟨e2A−ϕImΨ1,Ξ⟩3

]
= 0. (IV.364)

We derive the internal component of the Einstein equation by varying the effective
potential with respect to the internal metric. Given that the Hodge operator and the
pure spinors depend implicitly on the metric, we use the following rules

δ
√

detg =− 1
2δg

mngmn
√

detg (IV.365)

δ ⟨∗̃6χ1, χ2⟩ = δgmn
[
⟨∗̃6ιmχ1, ιnχ2⟩ −

1
2gmn ⟨∗̃6χ1, χ2⟩

]
(IV.366)

δΨi =− 1
2δg

mngk(mdyk ∧ ιn)Ψi i = 1, 2. (IV.367)

We find the following internal Einstein equations

0 =Re
{
⟨gk(mdyk ∧ ιn)(e3A−ϕΨ2),dHΘ⟩ − ⟨gk(mdyk ∧ ιn)dH(e3A−ϕΨ2),Θ⟩

}
+ ⟨gk(mdyk ∧ ιn)(e2A−ϕImΨ1), dHΞ⟩ − ⟨gk(mdyk ∧ ιn)dH(e2A−ϕImΨ1),Ξ⟩ . (IV.368)

These are equations of motion of backgrounds compatible with a four-dimensional super-
gravity solutions with non vanishing F-terms and D-terms.

A subclass of these backgrounds are those compatible with a four-dimensional super-
gravity solutions with non vanishing F-terms and vanishing D-terms. In this class we
have

dH(e2A−ϕImΨ1) = 0, (IV.369)

so obviously Ξ = 0.

However, the last equation of motion, the external component of the modified Einstein
equation, must be discussed separately for the cases with and without D-terms.

The external component of the modified Einstein equation is equivalent to the van-
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ishing of the following variation of the effective potential

δVeff
δA

+ 2δVeff
δϕ

= 0, (IV.370)

and it is identically satisfied for backgrounds with calibrated sources, preserving the D-
string BPSness (i.e. without D-terms) and satisfying the Bianchi identities, as shown in
[44].

For backgrounds with non-vanishing D-terms, thus violating the D-string BPSness,
we simply reduce the ten-dimensional equation (A.29) on our warped configurations

∇m(e−2ϕ∇me4A) = e4AF̃ · F̃ + e4A−ϕ ∑
i∈loc. sources

τiρ
loc
i , (IV.371)

and rewrite it in terms of pure spinors as

−d(e−2ϕ ∗6 de4A) = ⟨∗̃6F̃ , e4AF̃ ⟩ − ⟨dH ∗̃6F̃ , e4A−ϕReΨ1⟩

+ e4A−ϕ ∑
i∈loc. sources

τi
[
ρloc
i vol6 − ⟨ReΨ1, ji⟩

]
(IV.372)

by using the Bianchi identity (IV.339) together with the RR-field-strength self-duality
(III.64). For backgrounds admitting only calibrated sources, the second line in (IV.372)
vanishes, and we are left with the external components of the modified Einstein equation

−d(e−2ϕ ∗6 de4A) = ⟨∗̃6F̃ , e4AF̃ ⟩ − ⟨dH ∗̃6F̃ , e4A−ϕReΨ1⟩ . (IV.373)

These equations of motion are drastically simpler than the ones one would obtain by
varying the effective potential (IV.347). Considering the case where Ξ = 0, the complete
set of equations of motion

Re{⟨e3A−ϕΨ2, dHΘ⟩} = 0 (IV.374)

d
[
Re{⟨e3A−ϕΨ2,Θ⟩3}

]
= 0 (IV.375)

Re
{
⟨gk(mdyk ∧ ιn)(e3A−ϕΨ2),dHΘ⟩ − ⟨gk(mdyk ∧ ιn)dH(e3A−ϕΨ2),Θ⟩

}
= 0 (IV.376)

is simple enough to hope to solve them for new ten-dimensional type II flux vacua
with BPS space-filling sources, which would dimensionally reduce to solutions of four-
dimensional N = 1 supergravity with non-vanishing F-terms, like no-scale models for
example.
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IV.3.4 The example of type IIB SU(3)-backgrounds with BPS O5-planes

In this section, we investigate again the condition (IV.357) we have to impose in order
to interpret our solutions as dimensionally reducing to N = 1 four-dimensional super-
gravity. In particular, we want to determine how restrictive the condition (IV.357)
can be. Concretely, we would like to consider the possibility of having non-zero D-
terms dH(e2A−ϕImΨ1) ̸= 0, and see how constrained their expression is from requiring
dH(e2A−ϕImΨ1) ∈ U0.

We focus on type IIB warped backgrounds with a four-dimensional Minkowski external
space, admitting calibrated parallel space-filling O5-planes, and possibly D5-branes, and
we restrict to internal manifolds with SU(3) structure. Introducing a local unwarped
vielbein {ẽa}, we choose the directions ẽ1 and ẽ4 to be tangent to the unique two-cycle
wrapped by the sources. Our metric ansatz is thus

ds2 =e2Ads2
R1,3 + ds2

M (IV.377)

ds2
M =e2A[(ẽ1)2 + (ẽ4)2] + e−2A ∑

j=2,3,5,6
(ẽj)2. (IV.378)

For SU(3)-structure manifolds, the pure spinors (III.66) and (III.67) reduce to

Ψ1 = eiθeiJ Ψ2 = e−iθΩ, (IV.379)

where θ is the relative phase between the two parallel internal spinors η1 = ieiθη2, the
Kähler form J and the (3, 0) form Ω take the form

J =− (e2Aẽ1 ∧ ẽ4 + e−2Aẽ2 ∧ ẽ5 + e−2Aẽ3 ∧ ẽ6) (IV.380)

Ω =e−A(ẽ1 + iẽ4) ∧ (ẽ2 + iẽ5) ∧ (ẽ3 + iẽ6). (IV.381)

As discussed in [111], the orientifold projection sets

θ = −π2 . (IV.382)

Notice that, combining the dilaton equation of motion with the appropriately traced
external components of the Einstein equations, as done in [112], one can show that29

∇2(2A− ϕ) = 0. Harmonic functions being constant on compact spaces, we set

e2A−ϕ ≡ gs. (IV.383)

As shown in Appendix C.2, imposing that the gauge-BPSness condition still holds
29Note that both the Bianchi identities and the BPSness of the space-filling sources (IV.303) are crucial

in this derivation.
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already constrains the allowed non-supersymmetric deformations of the pure spinor equa-
tions to

dH(e3A−ϕΩ) = −i e3A−ϕK (IV.384)

dH(e2A−ϕRe eiJ) = ie2A−ϕΥ (IV.385)

dH(e4A−ϕIm eiJ) = e4A∗̃6F (IV.386)

with

K = i

2
[
−t2eiJ − t1e−iJ + (u1

m + p2
m)γ̂mΩ− (u2

m + p1
m)Ωγ̂m

+q1
mnγ̂

ne−iJ γ̂m + q1
mnγ̂

neiJ γ̂m
]

(IV.387)

and

Υ = i

2
[
(r∗

1 + t∗2)Ω− (u1
m + (p2

m)∗)γ̂meiJ − ((u2
m)∗ + p1

m)eiJ γ̂m

+(q1
nm)∗γ̂mΩγ̂n

]
− c.c. (IV.388)

The gamma matrices {γ̂m} are defined in the local vielbein, and their action on poly-
forms is given in Appendix A. Imposing our condition (IV.357) further constrains the
supersymmetry breaking terms Υ:

Υ = i

2
[
(r∗

1 + t∗2)Ω + (q1
nm)∗γ̂mΩγ̂n

]
− c.c. (IV.389)

Expending Υ on the local vielbein yields

Υ =1
2
[
eA(x32 − x23)

[
ẽ1 + 1

2 ẽ
1 ∧ J ∧ J

]
+ e−A(x13 − x31)

[
ẽ2 + 1

2 ẽ
2 ∧ J ∧ J

]
(IV.390)

+ e−A(x21 − x12)
[
ẽ3 + 1

2 ẽ
3 ∧ J ∧ J

]
+ eA(y23 − y32)

[
ẽ4 + 1

2 ẽ
4 ∧ J ∧ J

]
+ e−A(y31 − y13)

[
ẽ5 + 1

2 ẽ
5 ∧ J ∧ J

]
+ e−A(y12 − y21)

[
ẽ6 + 1

2 ẽ
6 ∧ J ∧ J

]]
+X

(IV.391)

with xij , yij some real functions on the compact manifold, whose expressions are given in
terms of the supersymmetry breaking parameters in Appendix C.2, and X a three-form
specified in (C.46).

Moreover, the one-form components of Υ is set to zero by (IV.383). The supersym-
metry breaking parameters must therefore respect

xij = xji yij = yji i, j = 1, 2, 3. (IV.392)



IV.3 Generalised calibrations and D-term supersymmetry-breaking 127

It is then interesting to note that this requirement makes the five-form components of Υ
vanish, which imposes

d(J2) = 0. (IV.393)

We already see at this stage that the condition (IV.357) highly constrains the possible
D-terms for vacua with space-filling BPS-sources.

The only remaining possibility in order to have non-vanishing D-terms is through the
NS flux. However, the most general NS field-strength compatible with (IV.357) and the
orientifold projection30 is also highly constrained

H = y12(eAẽ1 ∧ ẽ3 ∧ ẽ4 − e−3Aẽ2 ∧ ẽ3 ∧ ẽ5)

+ x13(eAẽ1 ∧ ẽ4 ∧ ẽ5 + e−3Aẽ3 ∧ ẽ5 ∧ ẽ6)

− x12(eAẽ1 ∧ ẽ4 ∧ ẽ6 − e−3Aẽ2 ∧ ẽ5 ∧ ẽ6)

− y13(eAẽ1 ∧ ẽ2 ∧ ẽ4 + e−3Aẽ2 ∧ ẽ3 ∧ ẽ6). (IV.394)

For these backgrounds, the Bianchi identity for the NS flux and the B-field equation of
motion (IV.364) read

dH = 0 d(∗̃6H) = 0, (IV.395)

and together with the NS flux quantisation condition they would further constrain the
possible NS flux, upon specifying some internal geometry.

Finally, it is also important to note that the orientifold projection sets

H ∧ Ω = 0. (IV.396)

Since the F-terms from (IV.384) cannot be vanishing31, this means that the breaking of
supersymmetry cannot originate purely from NS flux components.

Constructing ten-dimensional supergravity solutions with D-terms is difficult, and
in this illustrative example we see that the mere requirement of consistency with the
four-dimensional N = 1 description highly constrains the possible D-terms expression,
potentially ruling out the possibility for non-vanishing D-terms for the whole class con-
sidered.

IV.3.5 Discussion

In this section, we studied non-supersymmetric solutions of type II supergravity within
the framework of generalised complex geometry. The interpretation of the supersymmetry
conditions in terms of calibration conditions for different types of probe D-branes led us to

30The NS field-strength must be odd under the orientifold projection.
31There cannot be pure D-term breaking of supergravity in Minkowski space.
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consider a subclass of non-supersymmetric solutions partially preserving supersymmetry,
in the sense that the calibration condition for space-filling D-branes remains satisfied and
such backgrounds admit only space-filling BPS sources. This calibration condition has
been dubbed the gauge BPSness condition in [44]. On the other hand, the calibration
conditions for string-like and domain-wall probe D-branes are allowed to be violated,
which is encoded through the introduction of some supersymmetry breaking terms in
these conditions.

The gauge BPSness condition has been interpreted in [7] as an F-term condition,
making the connection with the four-dimensional N = 1 description.

We derived a generalisation of the gauge BPSness for our class of non-supersymmetric
vacua. We then investigated under which conditions the gauge BPSness can still be
interpreted as an F-term condition. Interestingly, this is the case when (IV.357) is re-
spected, i.e. when some terms violating the string-like calibration condition are set to
zero. These terms belong to vector representations of the SU(3)×SU(3) structure, just
like the modes identified with four-dimensional massive spin 3

2 multiplets degrees of free-
dom in [38]. Given that the violation of the string-like calibration condition has been
interpreted as D-terms of the associated effective theory in [7], our condition (IV.357)
restricts the possible D-terms for our class of backgrounds.

On another note, the vanishing of these vector-like modes results in some negative
semi-definite contributions to the effective potential being set to zero on-shell (the last
line of the effective potential (IV.347)). This is in agreement with the four-dimensional
N = 1 picture, given that these contributions do not originate from the superpotential.

We derived the equations of motion for this class of backgrounds, and they are signif-
icantly simpler than the ones one would derive without imposing the constraint (IV.357),
and an obvious extension of this work would be to search for such non-supersymmetric
solutions.

A subclass of these backgrounds is the one containing vacua which would dimensionally
reduce to four-dimensional N = 1 supergravity solutions with non-vanishing F-terms, and
vanishing D-terms, like the abundantly discussed no-scale vacua. We also presented the
remarkably simple general equations of motion for such backgrounds, and one could again
look for new solutions of this type.

Finally, to illustrate this discussion we analysed how constraining it is to require
(IV.357) for the class of SU(3) backgrounds with space-filling BPS O5-planes. We showed
that non-vanishing D-terms could only arise through NS flux components, while the NS
flux expression is itself highly constrained by (IV.357). It would then be interesting to
investigate further the consequences of imposing our condition (IV.357) on different source
configurations, and possibly rule out completely the possibility for D-terms in these cases,
or find some new supergravity solutions with non-vanishing D-terms.



Chapter V

Non-supersymmetric flux vacua in Ex-
ceptional Generalised Geometry

In this chapter we discuss the E7(7) × R+ generalised geometry of non-supersymmetric
flux backgrounds. We focus on type II supergravity backgrounds with a four-dimensional
Minkowski external space.

As we have discussed at length in chapter III, an N = 1 type II supergravity back-
ground which has a four-dimensional Minkowski external space is in one-to-one corre-
spondence with an integrable generalised SU(7) structure, and the integrability of the
structure is a set of differential conditions equivalent to preserving N = 1 supersym-
metry. The integrability of the generalised SU(7) structure amounts to the vanishing
of the generalised intrinsic torsion associated to connections compatible with the SU(7)
structure, the SU(7) intrinsic torsion. For a type II supergravity background compacti-
fied to four-dimensional Minkowski, if supersymmetry is broken, its corresponding SU(7)
intrinsic torsion will thus be non-vanishing.

In this chapter we investigate the SU(7) intrinsic torsion of non-supersymmetric flux
backgrounds. As we have discussed in chapter III, we can organise the SU(7) intrinsic
torsion in terms of different irreducible representations of SU(7).

This is useful because it allows one to rewrite the supergravity equations of motion in
terms of the components of the associated intrinsic SU(7) torsion, as is done in section
V.2. The hope is then to be able to identify no-go theorems for supersymmetry breakings
associated to certain components of the SU(7) torsion.

We focus on the class of non-supersymmetric type II backgrounds which still admits
two globally defined internal spinors. While not completely general1, this is still a broad
class of backgrounds, which can be classified in O(6, 6) generalised geometry in terms of

1This class of solutions doesn’t contain the case of an NS5-brane wrapping a Calabi-Yau for instance.
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the different supersymmetry breaking parameters entering in the modified pure spinor
equations, as introduced in chapter IV.

For this class of backgrounds, we provide a direct dictionary between the supersym-
metry breaking parameters and the non vanishing irreducible SU(7) representations of the
intrinsic torsion in section V.1. As such, this provides a bridge between the O(6, 6)× R+

and E7(7) × R+ generalised geometry frameworks, and this thus allows to describe the
known N = 0 backgrounds [3, 44, 45, 91] within E7(7) × R+ generalised geometry.

Another goal, which is still work in progress, is to associate non-supersymmetric type
II solutions with the integrability of a smaller generalised geometric structure.

For a given non-supersymmetric type II solution, this could be done by defining the
common stabiliser G ⊂ SU(7) of its SU(7) structure and its intrinsic torsion. This would
also allow one to define deformations of said background and calculate its corresponding
classical moduli space. Such deformations would be cast in terms of irreducible represen-
tations of G. We briefly initiate this discussion in section V.3.

Throughout this chapter, we use the conventions of section III.2, notably the pure
spinors (III.156) and (III.157).

V.1 The SU(7) torsion

In this section, we study non-supersymmetric type II backgrounds with a four-dimensional
Minkowski external space, and with the following general domain-wall and D-string su-
persymmetry breaking

dHΦ2 = ω2 + ω0 (V.1)

dH(e−AReΦ1) = ω1 + ω−1 + ω3 + ω−3 , (V.2)

with ωi polyforms of charge i under J2, and with ω1 = ω̄−1 and ω3 = ω̄−3.
We focus on the subclass of backgrounds which satisfies the gauge BPSness, in order

for the physical space-filling sources of the considered backgrounds to be BPS2. The non-
supersymmetric reformulation of the gauge BPSness derived in section IV.3 now reads

F = −8dJ2
H (e−3AImΦ1) + 8ie−2AJ1 · ω−1 . (V.3)

Let us rearrange this equation into

(F + dHΣ)−1 = 8ie−2AJ1 · ω−1 (V.4)

2Recall that Minkowski flux backgrounds must have space-filling Orientifold sources to evade the no-go
theorem from [66, 67], further discussed in [113].
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(F + dHΣ)−3 = 2dHΣ|−3, (V.5)

where we introduced Σ = 8ie−3AImΦ1. It is important to note that dHΣ|−3 is non-
vanishing only if ω0 ̸= 0, it should hence be thought of as depending on ω0. We denote it
dHΣ|−3 ≡ Y ω0 in the following.

This reformulation of the gauge BPSness seems quite arbitrary for now but this will
be the most natural formulation in order to connect with the exceptional generalised
geometry framework, as we will discuss below.

The goal of this section is to derive expressions for the different irreducible SU(7)
representations of the intrinsic torsion in terms of the supersymmetry breaking forms
{ωi}.

V.1.1 Connection, torsion and Dorfman derivative

In this subsection, we start by evaluating the SU(7) intrinsic torsion of non-supersymmetric
type II flux backgrounds in terms of irreducible representation of the SU(3, 3) group as-
sociated to the almost complex structure J2.

We will reorganise this intrinsic torsion in terms of the irreducible representations of
the SU(7) group associated with the generalised SU(7) structure in the following subsec-
tion.

Recall that the exceptional complex structure L3 ⊂ EC and generalised SU(7) struc-
ture ψ ∈ Γ(K̃C) for type II backgrounds with a four-dimensional Minkowski external
space read

L3 = eΣ · (L1 ⊕ UJ2) (V.6)

ψ = eΣ · Φ2 . (V.7)

We introduce the following seven-dimensional complex bundle

L0
3 := L1 ⊕ UJ2 , (V.8)

which we refer to as the untwisted exceptional complex structure.
We consider a generalised connection D. Recall from section III.2 that we can define

the corresponding generalised torsion T : Γ(E)→ Γ(adF̃ ) in the untwisted picture via

LH+F
V α = LD+H+F

V α− T (V ) · α , (V.9)

for α any tensors. We consider D to be compatible with the generalised SU(7) structure

(D +H + F )ψ = 0 . (V.10)
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The compatibility of the generalised connection with the SU(7) structure ensures

LH+F
V ψ = −T (V ) · ψ ∀V ∈ Γ(L3) . (V.11)

Introducing V = eΣ · V 0 with V 0 ∈ Γ(L0
3), the above relation is equivalent to

LH+F+dHΣ
V 0 Φ2 = −T 0(V 0) · Φ2 ∀V 0 ∈ Γ(L0

3) , (V.12)

with
T 0 = e−Σ · T , (V.13)

the untwisted SU(7) torsion.
Writing V 0 = W + αΦ2 ∈ Γ(L0

3) with α ∈ C∞(M), the left-hand side of (V.12) reads

LH+F+dHΣ
V 0 Φ2 = /WdHΦ2 − αdHΦ2 · Φ2

+ ( /W (F + dHΣ) + α ⟨F + dHΣ,Φ2⟩) · Φ2 . (V.14)

The terms in the first line of this Dorfman derivative can be read off from the modified
pure spinor equation (V.1), while the ones in the second line only depend on the modified
pure spinor equations (V.4), and (V.5). We can therefore access T 0(V 0) ∈ adF̃ through
(V.12). However, given that this section of the adjoint bundle acts on the untwisted
generalised SU(7) structure Φ2 ∈ Γ(K̃C) in (V.12), its expression will be up to the kernel
of the adjoint action on the untwisted generalised SU(7) structure.

In order to do so, we introduce Zω2 ∈ Γ(L−1), Zω0 ∈ Γ(Λ3(L−1)), and SU(3, 3) gamma
matrices Γi with indices i = 1, ..., 6 such that

ω2 = Zω2
i ΓiΦ2 ω0 = Zω0

ijkΓ
ijkΦ2 . (V.15)

We then evaluate the above Dorfman derivative, using (V.1), (V.4), and (V.5):

LH+F+dHΣ
V 0 Φ2 =

(
η(Zω2 ,W ) + Zω0 ⊙W − αω0

+ 8ie−2A /W (J1 · ω−1) + 2 /WY ω0 + 2α ⟨Y ω0 ,Φ2⟩
)
· Φ2 , (V.16)

with (Z ⊙W )ij = W kZkij ∈ Γ(Λ2(L−1)).
We therefore have

T 0(V 0) = −[η(Zω2 ,W ) + Zω0 ⊙W − αω0

+ 8ie−2A /W (J1 · ω−1) + 2 /WY ω0 + 2α ⟨Y ω0 ,Φ2⟩] + ker , (V.17)

with ker a section of the adjoint bundle sitting inside the kernel of the adjoint action on
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the untwisted generalised SU(7) structure.
The terms entering T 0(V 0) depend explicitly on the supersymmetry breaking forms

{ωi}, but they are irreducible representations of the SU(3, 3) group associated with the
pure spinor Φ2. We make the connection with the different irreducible SU(7) representa-
tions in the following subsection.

V.1.2 The SU(7) torsion from the adjoint bundle

We calculated the section of the adjoint bundle corresponding to the action of the un-
twisted SU(7) torsion on the L0

3 bundle T 0(V 0). We therefore start by analysing further
the adjoint bundle. In particular, we will parametrise the subspace of the adjoint bundle
which acts non-trivially on the untwisted SU(7) structure in terms of irreducible SU(7)
representations. Given that these are eigenstates of the exceptional complex structure,
this will allow us to match the SU(3, 3) representations entering in (V.17) with SU(7)
representations by rearranging them into the corresponding eigenstates.

To do so, we consider the complex embedding SL(7,C) ⊂ SL(8,C) ⊂ E7C and its
corresponding complex decomposition of the generalised tangent and adjoint E7C bundles

56C ≃ 7⊕ 21⊕ 21⊕ 7 (V.18)

EC ≃ L0
3 ⊕ Λ5(L0

3)∗ ⊕ Λ2(L0
3)∗ ⊕ [Λ7(L0

3)∗ ⊗ (L0
3)∗] (V.19)

133C ≃ 1⊕ 48⊕ (35⊕ 35)⊕ (7⊕ 7) (V.20)

adF̃C ≃ C⊕ [L0
3 ⊗ (L0

3)∗]0 ⊕ Λ3L0
3 ⊕ Λ3(L0

3)∗ ⊕ Λ6L0
3 ⊕ Λ6(L0

3)∗ , (V.21)

where [L0
3 ⊗ (L0

3)∗]0 is a traceless 7 × 7 complex matrix, corresponding to the SL(7,C)
algebra. The SL(7,C) ⊂ E7C adjoint action on the generalised tangent and the adjoint
bundle are given in appendix B.2.1. From this adjoint action, we have that the following
subspace g of the adjoint bundle

91 ≃ 1⊕ 48⊕ 35⊕ 7 (V.22)

g ≃ C⊕ [L0
3 ⊗ (L0

3)∗]0 ⊕ Λ3L0
3 ⊕ Λ6L0

3 (V.23)

stabilises the untwisted almost exceptional complex structure L0
3. The stabiliser group G

of the untwisted almost exceptional complex structure L0
3 is therefore G = ((SL(7,C) ⋉

C35) ⋉ C7) ⋉ C. This group can be thought of as the complex analogue of the R+ ×U(7)
group defining the exceptional complex structure.

The SL(7,C) subgroup corresponds to the complexification of the compact subgroup
SU(7) ⊂ SU(8)/Z2 ⊂ E7(7) × R+, while the groups C35, C7, and C complexify part
of the non-compact part of E7(7) × R+. In the following we will thus parametrise the
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adjoint bundle in terms of irreducible representations of SL(7,C) ⊂ E7C, and these should
be thought of as the complex analogues of the irreducible representations of the SU(7)
subgroup of the real E7(7) × R+ algebra.

The group stabilising the untwisted generalised SU(7) structure Φ2 is the same as the
one stabilising the untwisted exceptional complex structure, with the exception of the
complex scalar part which rescales Φ2. We denote it H and we have H = (SL(7,C) ⋉
C35) ⋉ C7. Its algebra, as a subspace h of the adjoint bundle is

90 ≃ 48⊕ 35⊕ 7 (V.24)

h ≃ [L0
3 ⊗ (L0

3)∗]0 ⊕ Λ3L0
3 ⊕ Λ6L0

3 . (V.25)

This leaves

133/90 ≃ 1⊕ 35⊕ 7 (V.26)

e7C/h ≃ C⊕ Λ3(L0
3)∗ ⊕ Λ6(L0

3)∗ (V.27)

as the subspace of the adjoint bundle acting non-trivially on the untwisted generalised
SU(7) structure. We denote its sections as

R = R1 +R35 +R7 . (V.28)

In terms of irreducible SU(3, 3) representations, it reads

133/90 ≃ 1⊕ 15⊕ 6⊕ 20⊕ 1 (V.29)

e7C/h ≃ C⊕ Λ2(L−1)⊕ S−2 ⊕ S0 ⊕ Λ6T ∗
C . (V.30)

The parametrisation of the generalised tangent and adjoint E7C bundles in terms of
SU(3, 3) representations is given in appendix B.2.2. As we have the expression (V.17)
for T 0(V 0) as a section of (V.30), the goal is now to connect it with the SL(7,C) repre-
sentations in (V.27).

To do so, we make use of the fact that each SL(7,C) representation entering (V.27)
is an eigenspace of the almost exceptional complex structure. Indeed, as an SL(8,C)
representation, the exceptional complex structure J reads [61]

J = diag(−1/2,−1/2, ..., 7/2) ∈ sl(8,C) ⊂ E7C . (V.31)

One can explicitly decompose J into irreducible SL(7,C) representations, following ap-
pendix B.2.1. Acting on the different irreducible SL(7,C) representations of e7C/h, we
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have

J ·R1 = 0 (V.32)

J ·R7 = −4iR7 (V.33)

J ·R35 = −2iR35 . (V.34)

The 1-, 7-, and 35-dimensional SL(7,C) representations living in e7C/h are therefore
eigenspaces of the exceptional complex structure J with eigenvalues 0, −4i, and −2i
respectively.

We can now turn to evaluating the adjoint action of the exceptional complex structure
J on irreducible SU(3, 3) representations of e7C/h, and then construct the eigenstates
corresponding to R1, R7, and R35.

First of all, in terms of SU(3, 3) representations, we have3

J = J2 + i(Σ− Σ♯) , (V.35)

with Σ♯ = −1
2e

3A(⟨Φ2, Φ̄2⟩)−1ReΦ1. The corresponding untwisted exceptional complex
structure J0, equivalent to L0

3, is

J0 := e−ΣJeΣ = J2 − 2i− iΣ♯, (V.36)

where the scalar piece corresponds to a section l of the adjoint space in (B.89). We now
write a section of e7C/h in terms of irreducible SU(3, 3) representations as

X = p+ ν−2 + s−2 + s0 + a , (V.37)

where each term matches with the ones in (V.30) in the obvious way. We can evaluate
the adjoint action of the untwisted exceptional complex structure J0 on X from appendix
B.2.2.

From
J0 ·X = −2i(ν−2 + s0)− 4i(s−2 + a)− iΣ♯ · (s0 + s−2 + a) , (V.38)

we can construct eigenstates of J0 as4

R1 = p (V.39)

R7 = a+ 1
2Σ♯ · a+ s−2 + 1

2Σ♯ · s−2 (V.40)

3This expression for J can be calculated from requiring J · L3 = 3iL3 for instance.
4We didn’t expand some adjoint actions for the sake of simplicity, but it can be done following appendix

B.2.2.
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R35 = ν−2 −
1
2Σ♯ · s−2 + s0 −

1
2Σ♯ · a , (V.41)

where R1, R7, and R35 have eigenvalues 0, −4i, and −2i respectively, under the action
of J0. We now have a concrete link between the SU(3, 3) and SL(7,C) representations
entering in e7C/h. The final step to complete the dictionary between the irreducible
SU(7) representations of the SU(7) torsion and the non-vanishing SU(3, 3) representations
involved in the modified pure spinor equations of a given non-supersymmetric background,
is to connect T 0 with the 1, 7, and 35 SU(7) representations in e7C/h.

We denote as T 0
1 , T 0

7 , T 0
21, and T 0

35, the sections of the torsion bundle K̃C corresponding
to the 1, 7, 21 and 35 representations of the SU(7) intrinsic torsion (III.135).

From SL(7,C) group theory, we have5

T 0
1 (V 0) ≡ T 0

1 ⊙ V 0 ∈ Γ(Λ6(L0
3)∗) (V.42)

T 0
7 (V 0) ≡ T 0

7 ⊙ V 0 ∈ Γ(C) (V.43)

T 0
35(V 0) ≡ T 0

35 ⊙ V 0 ∈ Γ(Λ3(L0
3)∗) (V.44)

T 0
21(V 0) ≡ T 0

21 ⊙ V 0 ∈ Γ(Λ3L0
3) , (V.45)

for all V 0 ∈ Γ(L0
3), and with

⊙ : K̃C ⊙ EC → adF̃C (V.46)

given in appendix B.2.1.
We conclude that T 0

1 (V 0), T 0
7 (V 0), and T 0

35(V 0) correspond to sections R7, R1, and
R35 of e7C/h, respectively, while T 0

21(V 0) is a section of h, and as such it belongs to the
kernel of the adjoint action on the untwisted generalised SU(7) structure. Its contribution
to (V.12) hence vanishes.

V.1.3 Backgrounds with non-vanishing SU(7) intrinsic torsion

We can now come back to discussing non-supersymmetric type II backgrounds with the
following general domain wall and D-string BPSness violations:

dHΦ2 = ω2 + ω0 (V.47)

dH(e−∆ReΦ1) = ω1 + ω−1 + ω3 + ω−3 , (V.48)

5Alternatively, the sections T 0
1 , T 0

7 , T 0
21, and T 0

35 of the torsion bundle K̃C can be written in terms
of SL(7, C) indices following [42]. One can then evaluate these expressions explicitly, with ⊙ given in
appendix B.2.1.
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with ω1 = ω̄−1 and ω3 = ω̄−3. These background satisfy the following gauge BPSness

(F + dHΣ)−1 = 8ie−2AJ1 · ω−1 (V.49)

(F + dHΣ)−3 = 2Y ω0 . (V.50)

Recall that for such backgrounds, we have

T 0(V 0) = −[η(Zω2 ,W ) + Zω0 ⊙W − αω0

+ 8ie−2A /W (J1 · ω−1) + 2 /WY ω0 + 2α ⟨Y ω0 ,Φ2⟩] + ker . (V.51)

We introduce the following notation:

T 0(V 0) = p+ ν−2 + s0 + s−2 + a+ ker (V.52)

with

p = −η(Zω2 ,W ) (V.53)

ν−2 = −Zω0 ⊙W (V.54)

s0 = αω0 − 8ie−2A /W (J1 · ω−1) (V.55)

s−2 = −2 /WY ω0 (V.56)

a = −2α ⟨Y ω0 ,Φ2⟩ , (V.57)

which are irreducible representations of the SU(3, 3) group associated with the pure spinor
Φ2.

The different irreducible SU(7) representations of the SU(7) intrinsic torsion, acting
on V 0 = W + αΦ2 ∈ Γ(L0

3), are then

T 0
7 (V 0) = p (V.58)

T 0
1 (V 0) = a+ 1

2Σ♯ · a+ s−2 + 1
2Σ♯ · s−2 (V.59)

T 0
35(V 0) = ν−2 −

1
2Σ♯ · s−2 + s0 −

1
2Σ♯ · a . (V.60)

There are several lessons to draw from these expressions for the SU(7) intrinsic torsion
of non-supersymmetric type II flux backgrounds with calibrated space-filling sources.

i) As we discussed in chapter III, only the 7 and 21 components of the SU(7) intrinsic
torsion enter the moment map (III.150).

We see here that the 7 component of the SU(7) torsion is solely dictated by ω2. From
(III.183) we can thus conclude that a non-vanishing 21 component of the torsion purely
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results from
dH(e−AReΦ1) ̸= 0 . (V.61)

ii) As we just discussed, the supersymmetry breaking form ω−1 violating the D-string
BPSness (V.48) generates some non-vanishing 21 torsion. We now learn from (V.60) that
it also results in a non-vanishing 35 component of the SU(7) intrinsic torsion.

This ultimately comes from the non-supersymmetric expression of the gauge BPSness
derived in chapter IV. In the O(6, 6) generalised geometry context, it highlighted the
interplay between the D-string BPSness violation and the gauge BPSness, while here in
the E7(7) generalised geometry framework, it shows the relationship between the 21 and
35 components of the SU(7) intrinsic torsion.

iii) The supersymmetry breaking forms ω−3 and ω3 don’t appear in the 1, 7, and 35
components of the torsion, they hence correspond to pure 21 torsion. They are precisely
the modes that are allowed for type II flux backgrounds with D-term supersymmetry
breaking and calibrated space-filling sources, as discussed in chapter IV.

iv) Let us consider backgrounds with BPS space-filling sources, non-vanishing F-terms
and superpotential. As discussed in chapter IV, they require a non-vanishing ω0 ̸= 0, as
it generates the F-terms, as well as a non-vanishing Y ω0 , which is proportional to the
superpotential. We learn from (V.59) and (V.60) that such backgrounds will hence always
have non vanishing 1 and 35 components of the SU(7) torsion.

As already mentioned, backgrounds with non-vanishing D-terms must have non-vanishing
supersymmetry breaking forms ω−3 and ω3, but they also need a non-vanishing Y ω0 , since
it generates the required non-vanishing on-shell superpotential. Y ω0 can be non-vanishing
only if J2 is non-integrable, i.e if ω0 ̸= 0. These backgrounds will hence also always have
non vanishing 1 and 35 components of the SU(7) torsion.

v) Finally, let us mention that there can be backgrounds where supersymmetry is
broken via only a ω−1 supersymmetry breaking form, as in [45, 91]. As was discussed in
the previous chapter, these do not dimensionally reduce to solutions of four-dimensional
N = 1 supergravity with F-terms, D-terms and superpotential.

Before giving the explicit construction of the intrinsic SU(7) torsion for a few concrete
examples, let us briefly discuss relaxing the gauge BPSness condition.

We hence discuss non-supersymmetric type II flux background which now have non-
BPS space-filling sources. We consider the following completely general6 breaking of
supersymmetry

dHΦ2 = ω2 + ω0 (V.62)
6With the usual caveat that only geometries admitting two globally defined internal spinors are con-

sidered.
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dH(e−∆ReΦ1) = ω1 + ω−1 + ω3 + ω−3 (V.63)

(F + dHΣ)−1 = ω′
−1 (V.64)

(F + dHΣ)−3 = ω′
−3 , (V.65)

with again ω1 = ω̄−1 and ω3 = ω̄−3. Evaluating (V.14) now yield

T 0(V 0) = −[η(Zω2 ,W ) + Zω0 ⊙W − αω0

+ /Wω′
−1 + /Wω′

−3 + α ⟨ω′
−3,Φ2⟩] + ker . (V.66)

Introducing
T 0(V 0) = p+ ν−2 + s0 + s−2 + a+ ker (V.67)

with

p = −η(Zω2 ,W ) (V.68)

ν−2 = −Zω0 ⊙W (V.69)

s0 = αω0 − /Wω′
−1 (V.70)

s−2 = − /Wω′
−3 (V.71)

a = −α ⟨ω′
−3,Φ2⟩ , (V.72)

we have the following irreducible SU(7) representations of the SU(7) intrinsic torsion
acting on V 0 = W + αΦ2 ∈ Γ(L0

3)

T 0
7 (V 0) = p (V.73)

T 0
1 (V 0) = a+ 1

2Σ♯ · a+ s−2 + 1
2Σ♯ · s−2 (V.74)

T 0
35(V 0) = ν−2 −

1
2Σ♯ · s−2 + s0 −

1
2Σ♯ · a . (V.75)

There are fewer lessons to draw from these expressions for the SU(7) intrinsic torsion of
non-supersymmetric type II flux backgrounds with non-BPS space-filling sources. How-
ever, we note that:

i) The 7 component of the SU(7) torsion is again solely dictated by ω2. From (III.183)
we can thus still conclude that a non-vanishing 21 component of the torsion purely results
from

dH(e−AReΦ1) ̸= 0 . (V.76)

ii) The supersymmetry breaking forms ω−3 and ω3 don’t appear in the 1, 7, and 35
components of the torsion, they hence still correspond to pure 21 torsion. However, as
opposed to the case where the sources are BPS, it is now also the case for the ω−1 and
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ω1 supersymmetry breaking forms. The 21 and 35 components of the torsion can then
be independent in principle.

iii) The supersymmetry breaking form ω′
−3 can be non-vanishing only if ω0 ̸= 0. We

thus find again that the 1 and 35 components of the SU(7) torsion are not independent.

We now illustrate the results found above to examples of non-supersymmetric type II
flux backgrounds from the literature.

a) GKP backgrounds

The type IIB GKP backgrounds [3] are non-supersymmetric flux backgrounds with an
SU(3) structure and BPS D3-branes and O3-planes, where supersymmetry is broken by
a (0, 3)-component of the NS flux H−3, with respect to the underlying complex structure
of the background. They obey the following pure spinor equations

dHΦ− = H−3 ∧ Φ− (V.77)

dH(e−AReΦ+) = 0 (V.78)

(F + dHΣ)−1 = 0 (V.79)

(F + dHΣ)−3 = 2ie−ϕH−3 . (V.80)

Using these, we evaluate the Dorfman derivative of the untwisted generalised SU(7) struc-
ture along V 0 = W + αΦ− ∈ L0

3

LH+F+dHΣ
V 0 Φ− = /WdHΦ− − dH(αΦ−) · Φ−

+ ( /W (F + dHΣ) + α ⟨F + dHΣ,Φ−⟩) · Φ− (V.81)

= (v⌟H−3 − αH−3 ∧ Φ−

+ 2ie−ϕ /WH−3 + 2ie−ϕα ⟨H−3,Φ−⟩) · Φ− . (V.82)

From (V.12), we have

T 0(V 0) = −v⌟H−3 + αH−3 ∧ Φ− − 2ie−ϕ /WH−3 − 2ie−ϕα ⟨H−3,Φ−⟩ , (V.83)

up to the pieces acting trivially on Φ−. We decompose this expression in terms of the
different irreducible SU(7) representations of the SU(7) intrinsic torsion

T 0
7 (V 0) = 0 (V.84)

T 0
35(V 0) = αH−3 ∧ Φ− + iαe−ϕΣ♯ · ⟨H−3,Φ−⟩

− v⌟H−3 + ie−ϕΣ♯ · ( /WH−3) (V.85)

T 0
1 (V 0) = −2ie−ϕα ⟨H−3,Φ−⟩
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− αie−ϕΣ♯ · ⟨H−3,Φ−⟩

− 2ie−ϕ /WH−3

− ie−ϕΣ♯ · ( /WH−3) , (V.86)

where each line corresponds to a given SU(3, 3) representation. These backgrounds there-
fore have non-vanishing 1 and 35 contributions to the intrinsic torsion, while the 7 and
21 contributions vanish, from (V.84) and (V.78). This is a first example of a non-
supersymmetric background dimensionally reducing to a solution of four-dimensional
N = 1 supergravity with non-vanishing F-term and superpotential.

b) LMMT backgrounds

A family of backgrounds T-duals to the original GKP construction has been introduced
in [44], the LMMT backgrounds. They have been discussed at length in chapter IV. In
type IIB, they obey the following pure spinor equations

dHΦ− = irj (V.87)

dH(e−AReΦ+) = 0 (V.88)

(F + dHΣ)−1 = 0 (V.89)

(F + dHΣ)−3 = 2dHΣ|−3 (V.90)

with
j = (−1)|Φ−|ReΦ+ + 1

2ΛmnγmReΦ+γ
n , (V.91)

and r a complex supersymmetry breaking parameters. Λmn and the gamma matrices
conventions are discussed in chapter IV.

Using these, we evaluate the Dorfman derivative of the untwisted generalised SU(7)
structure along V 0 = W + αΦ− ∈ L0

3

LH+F+dHΣ
V 0 Φ− = /WdHΦ− − dH(αΦ−) · Φ− + ( /W (F + dHΣ) + α ⟨F + dHΣ,Φ−⟩) · Φ−

=
(
Z ⊙W − iαrj + 2 /W (dHΣ|−3) + 2α ⟨dHΣ|−3,Φ−⟩

)
· Φ− , (V.92)

with, in SU(3, 3) indices: (Z ⊙W )ij = W kZkij ∈ Γ(ν−2), and ZijkΓijkΦ− = irj.
From (V.12), we have

T 0(V 0) = −Z ⊙W + iαrj − 2 /W (dHΣ|−3)− 2α ⟨dHΣ|−3,Φ−⟩ , (V.93)

up to pieces acting trivially on Φ−.
We decompose this expression in terms of the different irreducible SU(7) representa-
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tions of the SU(7) intrinsic torsion

T 0
7 (V 0) = 0 (V.94)

T 0
35(V 0) = −Z ⊙W + Σ♯ · [ /W (dHΣ|−3)]

+ iαrj + αΣ♯ · ⟨dHΣ|−3,Φ−⟩ (V.95)

T 0
1 (V 0) = −2α ⟨dHΣ|−3,Φ−⟩

− αΣ♯ · ⟨dHΣ|−3,Φ−⟩

− 2 /W (dHΣ|−3)

− Σ♯ · [ /W (dHΣ|−3)] , (V.96)

where each line corresponds to a given SU(3, 3) representation.
These backgrounds therefore have non-vanishing 1 and 35 contributions to the intrin-

sic torsion, while the 7 and 21 contributions vanish, from (V.94) and (V.88).

c) Legramandi-Tomasiello backgrounds

Legramandi-Tomasiello backgrounds [45] are massive type IIA backgrounds with a static
SU(2) structure and have been discussed in chapter IV. Their supersymmetry breaking
comes from a violation of the D-string BPSness

dHΦ+ = 0 (V.97)

dH(e−∆ReΦ−) = c

8e
6∆−2ϕvol6 (V.98)

(F + dHΣ)−1 = ice4∆−2ϕJ− · (vol6|−1), (V.99)

with the subscript now denoting the charge under J+, and c a supersymmetry breaking
parameter. As such, they are an example of string-like supersymmetry breaking back-
grounds (SSB). These backgrounds also respect F−3 = dHΣ|−3 = 0, which is imposed by
(V.97).

Using these, we evaluate the Dorfman derivative of the untwisted generalised SU(7)
structure along V 0 = W + α− ∈ L0

3

LH+F+dHΣ
V 0 Φ− = /WdHΦ− − dH(αΦ−) · Φ− + ( /W (F + dHΣ) + α ⟨F + dHΣ,Φ−⟩) · Φ−

= ice4∆−2ϕ /W [J− · (vol6|−1)] · Φ− . (V.100)

From (V.12), we have

T 0(V 0) = −ice4∆−2ϕ /W [J− · (vol6|−1)] . (V.101)
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We decompose this expression in terms of the different irreducible SU(7) representations
of the SU(7) intrinsic torsion

T 0
7 (V 0) = 0 (V.102)

T 0
35(V 0) = −ice4∆−2ϕ /W [J− · (vol6|−1)] (V.103)

T 0
1 (V 0) = 0 . (V.104)

The 1 and 7̄ representation of the intrinsic torsion therefore vanish for these back-
grounds, whereas the 35 representation is non-vanishing, as well as the 21 representation,
from (V.98).

d) Other SSB Backgrounds

Focusing on the type IIB case, the family of backgrounds from [92], discussed at length
in IV.2, obeys the following pure spinor equations

dHΦ− = irj (V.105)

dH(e−∆ReΦ+) = αm[γmj + (−1)|Φ+|jγm] (V.106)

(F + dHΣ)−1 = 8ie−2∆αmJ1 · [γmj + (−1)|Φ+|jγm]−1 (V.107)

(F + dHΣ)−3 = 2dHΣ|−3 (V.108)

where αm are real supersymmetry breaking parameters that are responsible for the D-
string BPSness violation, while r is a complex supersymmetry breaking parameter gen-
erating the domain-wall supersymmetry breaking contribution.

Using these modified pure spinor equations, we evaluate the Dorfman derivative of
the untwisted generalised SU(7) structure along V 0 = W + αΦ− ∈ L0

3

LH+F+dHΣ
V 0 Φ− = /WdHΦ− − dH(αΦ−) · Φ− + ( /W (F + dHΣ) + α ⟨F + dHΣ,Φ−⟩) · Φ−

=
(
Z ⊙W − iαrj + 8ie−2∆ /W (αmJ1 · [γmj + (−1)|Φ+|jγm]−1)

+ 2 /W (dHΣ|−3) + 2α ⟨dHΣ|−3,Φ−⟩
)
· Φ− , (V.109)

with, in SU(3, 3) indices: (Z ⊙W )ij = W kZkij ∈ Γ(ν−2), and ZijkΓijkΦ− = irj.
From (V.12), we have

T 0(V 0) = −Z ⊙W + iαrj − 8ie−2∆ /W (αmJ1 · [γmj + (−1)|Φ+|jγm]−1)

− 2 /W (dHΣ|−3)− 2α ⟨dHΣ|−3,Φ−⟩ , (V.110)

up to pieces acting trivially on Φ−.
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We decompose this expression in terms of the different irreducible SU(7) representa-
tions of the SU(7) intrinsic torsion

T 0
7 (V 0) = 0 (V.111)

T 0
35(V 0) = −Z ⊙W + Σ♯ · [ /W (dHΣ|−3)]

+ iαrj − 8ie−2∆ /W (αmJ1 · [γmj + (−1)|Φ+|jγm]−1) + αΣ♯ · ⟨dHΣ|−3,Φ−⟩
(V.112)

T 0
1 (V 0) = −2α ⟨dHΣ|−3,Φ−⟩

− αΣ♯ · ⟨dHΣ|−3,Φ−⟩]

− 2 /W (dHΣ|−3)

− Σ♯ · [ /W (dHΣ|−3)] , (V.113)

where each line corresponds to a given SU(3, 3) representation.
These backgrounds therefore have non-vanishing 1 and 35 contributions to the in-

trinsic torsion, and the supersymmetry breaking term in (V.106) also results in a non-
vanishing 21 representation of the intrinsic torsion.

Note that the subfamily of backgrounds with vanishing supersymmetry breaking pa-
rameter r obey the following set of pure spinor equations

dHΦ− = 0 (V.114)

dH(e−∆ReΦ+) = αm[γmj + (−1)|Φ+|jγm] (V.115)

(F + dHΣ)−1 = 8ie−2∆αmJ1 · [γmj + (−1)|Φ+|jγm]−1 (V.116)

with F−3 = dHΣ|−3 = 0, which is imposed by (V.114). In this case, the intrinsic torsion
is decomposed as

T 0
7 (V 0) = 0 (V.117)

T 0
35(V 0) = −8ie−2∆ /W (αmJ1 · [γmj + (−1)|Φ+|jγm]−1) (V.118)

T 0
1 (V 0) = 0 . (V.119)

Therefore only the 35 and 21 representations of the intrinsic torsion are non-vanishing
for this subfamily of backgrounds.

V.2 The equations of motion

Throughout this chapter, we discuss non-supersymmetric type II Minkowski flux back-
grounds described through modified pure spinor equations. In V.1, we kept the super-
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symmetry breaking forms entering these modified pure spinor equations as general as
possible. However, a crucial question remains to be addressed: given that the supersym-
metry conditions are violated, what is the subset of supersymmetry breaking forms such
that the equations of motion are satisfied?

This is a very complicated question to answer in the general case, and it has been
partially addressed in the O(6, 6) generalised geometry formalism [44, 45, 91, 92] (see also
chapter IV). We now investigate this problem from the E7(7) × R+ generalised geometry
perspective.

We will derive here the equations of motion in the E7(7) × R+ generalised geometry
framework, and we will see that they can be spelled out in terms of the non-vanishing
SU(7) representations of the SU(7) intrinsic torsion.

Given that, in the above section, we established a dictionary between the supersym-
metry breaking forms entering the modified pure spinor equations and the corresponding
non-vanishing SU(7) representations of the SU(7) intrinsic torsion, these E7(7)×R+ equa-
tions of motion will translate the complicated conditions to impose on the supersymmetry
breaking forms into conditions on the SU(7) representations of the SU(7) intrinsic torsion.

To do so, we start by recalling the two following real SU(8) bundles S and J , the
spinor and gravitino bundles respectively. These are

S = 8 + 8̄ ≡ S+ + S− J = 56 + 56 ≡ J+ + J−. (V.120)

We then recall the equations of motion, discussed in section III.2:

D ×J (D ×J η) + 2D ×J (D ×S η) = 0 (V.121)

D ×S (D ×J η) +D ×S (D ×S η) = 0 , (V.122)

with η the SU(8) spinor defined from the two internal supersymmetry parameters (III.155),
and D a generalised connection.

We consider D to be compatible with the SU(8)/Z2 structure, that is we have DG =
0, with G the generalised metric introduced in section III.2. If one considers another
SU(8)/Z2 compatible generalised derivative, D′, by definition it can be written as D′ =
D + Σ, and

Σ = D′ −D ∈ Γ(KSU(8)), with KSU(8) = E∗ ⊗ adPSU(8). (V.123)
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In SU(8) indices, sections Σ of KSU(8) are given by

Σ = (Σαβ
γ
δ,Σ

αβγ
δ) ∈ (28 + 2̄8)× 63 = KSU(8). (V.124)

We can write down the τ map discussed in section III.2, τ : KSU(8) →W explicitly using
SU(8) indices, where W is the space of generalised torsions W ≃ K ⊕ E∗:

τ(Σ) = TD′ − TD ∈ Γ(W ), (V.125)

with the usual torsion definition

TD(V ) · V ′ = LDV V
′ − LV V ′ ∀V, V ′ ∈ Γ(E). (V.126)

It gives

τ(Σ)αβ = Σαγ
γ
β, ∈ 28 + 36 (V.127)

τ(Σ)αβγδ = Σ0
[αβ

δ

γ]
, ∈ 420, (V.128)

where the 0 superscript means that it is completely traceless. The 36 and 28 SU(8)
representations correspond to the symmetrised and antisymmetrised two-forms of SU(8)
respectively.

We now consider a specific torsion-free SU(8)-compatible generalised covariant deriva-
tive such that

D = D̂ − Σ, (V.129)

with D̂ a SU(7)-compatible connection. Since it is SU(7)-compatible, it’s also SU(8)-
compatible and therefore Σ ∈ Γ(KSU(8)). The compatibility of D̂ with the generalised
SU(7) structure is equivalent to

D̂ ×S η = 0 D̂ ×J η = 0 . (V.130)

We now decompose all our SU(8) objects into irreducible SU(7) representations, intro-
ducing SU(7) indices a, b, ... = 1, ..., 7. Recall from section III.2 that the SU(8) spinor η
defines the generalised SU(7) structure. As such, it is a singlet representation of SU(7),
and as a section of the S+ bundle, it reads

η ≡ η8, ηa = 0 , (V.131)

where we used again a dead SU(8) index to highlight the SU(7) ⊂ SU(8) embedding.
We choose D̂ such that Σ ∈ W SU(7)

int . Following [42], we decompose Σ ∈ Γ(KSU(8)) into
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irreducible SU(7) representations. In SU(7) indices, this gives:

Σ =(Σ8γ
γ

8, Σ[ab
8
c], Σaγ

γ
8, Σ[ab

8
8], c.c.) (V.132)

1 ⊕ 35 ⊕ 7 ⊕ 21 ⊕ c.c. . (V.133)

Similarly, we decompose the SU(7) compatible connection D̂ into SU(7) representations.
It reads, in SU(8) indices, D̂ ≡ (D̂[αβ],

¯̂
D[αβ]), which results in

D̂ = (D̂[ab], D̂a8,
¯̂
D[ab],

¯̂
Da8) , (V.134)

in SU(7) indices. Finally, we decompose the S and J SU(8) bundles into SU(7) represen-
tations:

S+ → S+
7 ⊕ S

+
1 J+ → J+

35 ⊕ J
+
21 (V.135)

8→ 7⊕ 1 56→ 35⊕ 21 (V.136)

S− → S−
7 ⊕ S

−
1 J− → J−

35 ⊕ J
−
21 (V.137)

8̄→ 7̄⊕ 1̄ 5̄6→ 3̄5⊕ 2̄1 . (V.138)

We calculate the equations of motion (V.121) and (V.122), considering the connection D
in (V.129), and the SU(7) projections given in appendix B.3, (B.136)-(B.152). This yields

− 1
2D̂

[ab](Σ[ab
8

8])− D̂
[8a](Σaγ

γ
8) + 1

2Σ[ab
8

8]Σ
[ab8]

8 (V.139)

+ 1
2Σ[ef

8
g]Σ

[efg]
8 + Σ8γ

γ
8Σ8γ

γ
8 + Σaγ

γ
8Σaγ

γ
8 = 0 (V.140)

for the projection onto the bundle S+
1 , and

− D̂[ab](Σbγ
γ

8)− D̂[a8](Σ8γ
γ

8)− 1
2D̂[bc](Σ[abc]

8) (V.141)

− 1
2D̂[b8](Σ[ab8]

8) + Σaγ
γ

8Σ8γ
γ

8 + 1
2Σbγ

γ
8Σ[ab8]

8 = 0 (V.142)

for the component of the bundle S+
7 .

Then we find

1
12ϵab8efghiD̂

[ef ](Σ[gh
8
i]) + 2D̂[8a(Σb]γ

γ
8) (V.143)

+ 2D̂[ab](Σ8γ
γ

8)− 2Σ[a|γ
γ

8Σ|b]γ
γ

8 − 2Σ[ab
8

8]Σ8γ
γ

8 = 0 (V.144)
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for the projection onto the bundle J−
21, and

1
12ϵabcd8efgD̂

[d8](Σ[ef
8
g]) + 2D̂[ab(Σc]γ

γ
8)− 2Σ[ab

8
c]Σ8γ

γ
8 = 0 (V.145)

for the component of the bundle J−
35.

This formulation of the equations of motion has the advantage that these are fairly
simple first order partial differential equations. However, a few difficulties remains to be
addressed in order to be able to try and solve these equations explicitly:

i) We only have the explicit expression for T 0(V 0) (V.66) in terms of SU(3, 3) represen-
tations, and extracting the exact expressions of the SU(7) torsion components T 0 ∈ Γ(K̃C)
would require the use of the cumbersome decomposition of the action

⊙ : K̃C ⊙ EC → adF̃C (V.146)

in terms of irreducible SU(3, 3) representations.

ii) Establishing the expression of the SU(7) compatible generalised connection D̂ in
terms of irreducible SU(3, 3) representations is a non-trivial task.

Investigating further these equations of motion is still a work in progress.

V.3 Deformations of non-integrable SU(7) structures

We conclude this chapter by initiating the investigation of the classical moduli space of
non-supersymmetric Minkowski type II flux backgrounds within the framework of E7(7)×
R+ generalised geometry.

This discussion is intended as pointing toward an example of applications of the results
derived in section V.1, and doesn’t contain any definitive results.

In the supersymmetric case, the classical moduli space of N = 1 Minkowski type II
flux backgrounds has been calculated in [61].

To do so, the authors introduced the following fibre bundle QR+×U(7)

QR+×U(7) → QR+×U(7) →M (V.147)

with
QR+×U(7) =

E7(7)×R+

R+ ×U(7) . (V.148)

One can then consider the space of deformations of the R+×U(7) structure as the principle
adjoint bundle ad(QR+×U(7)).
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The integrable deformations of the R+ × U(7) structure are then the ones preserving
the integrability of said structure.

As we have discussed in section III.2, the integrability of the untwisted almost excep-
tional complex structure L0

3 is equivalent to

LH+F
V V ′ ⊂ L0

3 ∀V, V ′ ∈ Γ(L0
3) . (V.149)

We therefore define a general deformation of the L0
3 bundle as

L̂0
3 := eR · L0

3 with R ∈ Γ(ad(QR+×U(7))) , (V.150)

and the subset of integrable deformations correspond to the section R ∈ Γ(ad(QR+×U(7)))
such that

LH+F
V V ′ ⊂ L̂0

3 ∀V, V ′ ∈ Γ(L̂0
3) . (V.151)

In order to calculate the moduli space of the integrable SU(7) structure, one should impose
the vanishing of the moment map (III.151) and mod out by the trivial deformations
between SU(7) structures, which correspond to the generalised diffeomorphisms GDiff, as
discussed in section III.2.

However, given that

{ψ ∈ Ẑ|µ = 0}/GDiff ≃ Ẑ/GDiffC , (V.152)

where Ẑ is the space of SU(7) structures with an integrable associated exceptional com-
plex structure, this is equivalent to simply modding out by the complexified generalised
diffeomorphisms GDiffC. This allows to spell out the moduli space of N = 1 backgrounds
in terms of generalised cohomologies, as discussed at length in [61].

In the non-supersymmetric case, we can’t select the deformations preserving the in-
tegrability of the generalised structures, since these aren’t integrable anymore. Instead,
to define deformations, we can select the deformations preserving the value of the non-
vanishing SU(7) intrinsic torsion.

To do so, we need to consider deformations that are irreducible representations of a
group P ⊂ SU(7) such that both the SU(7) structure ψ and the SU(7) intrinsic torsion
live in trivial representations of P . In that case, the deformations will preserve the value
of the SU(7) intrinsic torsion.

Moving to the complex picture presented in section V.1, we must have

PC ⊂ Hcomp ≡ SL(7,C) ⊂ H ≡ (SL(7,C) ⋉ C35) ⋉ C7 , (V.153)

such that the complexification of P sits within the compact subgroup ofH, denotedHcomp,
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with H the group stabilising the untwisted generalised SU(7) structure, as discussed in
section V.1.

A convenient way to define PC is through its corresponding complex subalgebra p

p ⊂ h such that (p · [T 0(V 0)])/h ∈ T 0(V 0) ∀V 0 ∈ Γ(L0
3) . (V.154)

This ensures that p stabilises T 0(V 0) and hence T 0 since p is a subgroup of h which
stabilises the untwisted generalised SU(7) structure ψ and thus V 0 ∈ Γ(L0

3).

This approach circumvents the complications which would result from directly search-
ing for the group which stabilises T 0 as a section of the torsion bundle K̃C.

We can define the following complex bundle

QH → QH →M (V.155)

with
QH = E7C

H
. (V.156)

Recall that for a given non-supersymmetric background, we have

LH+F+dHΣ
V 0 Φ2 = −T 0(V 0) · Φ2 ∀V 0 ∈ Γ(L0

3) . (V.157)

We define the following deformations

L̂0
3 := eR · L0

3 Φ̂2 := eR · Φ2 (V.158)

Σ̂ := eR · Σ T̂ 0 := eR · T 0 , (V.159)

with
R ∈ Γ(ad(QH)) . (V.160)

Crucially, we decompose R into irreducible representations of P , such that

T 0 := αT ′0 , (V.161)

with T ′0 the section of K̃C deformed by R, and α a complex constant which remains
constant under the deformations.

We thus define the “integrable” deformations associated to a given non-supersymmetric
background as the section R ∈ Γ(ad(QH)) such that

LH+F+dH Σ̂
V̂ 0 Φ̂2 = −T̂ 0(V̂ 0) · Φ̂2 ∀V̂ 0 ∈ Γ(L̂0

3) . (V.162)
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Although this approach allows to define the deformations preserving a given non-integrable
exceptional complex structure, defining the method to calculate the moduli space of SU(7)
structures is still work in progress. The missing piece is a definition of the trivial deforma-
tions of our backgrounds -the non-supersymmetric analogue of modding out by GDiffC-.
We conclude this section with a speculative comment about how to construct such defor-
mations.

For a non-supersymmetric background and its associated non-integrable SU(7) struc-
ture ψ, one could define a deformed twisted Dorfman derivative

LH+F
V := LH+F

V + T (V ) · ∀V ∈ Γ(E) , (V.163)

with T ∈ K̃C the SU(7) intrinsic torsion of ψ.
This would allow for a notion of integrability for the exceptional complex structure,

spelled out in terms of the deformed Dorfman derivative:

LH+F
V V ′ ⊂ L0

3 ∀V, V ′ ∈ Γ(L0
3) . (V.164)

The associated deformed moment map would read7

m̃(Ṽ ) := 1
3

∫
M
s(LH+F

Ṽ
ψ̃, ¯̃ψ)(i s(ψ̃, ¯̃ψ))−2/3 . (V.165)

Using this deformed moment map, we could define the trivial deformations of non-
supersymmetric backgrounds in complete analogy with the supersymmetric case. Indeed,
crucially, the integrability of the exceptional complex structure is necessary for the equiv-
alence (V.152) to hold (see for instance [114]). It could therefore still hold through the
introduction of the deformed Dorfman derivative. In this case, it reads

{ψ ∈ Ẑ|m = 0}/GDiff ≃ Ẑ/GDiffC . (V.166)

The modified complexified generalised diffeomorphisms GDiffC are then generated by the
deformed Dorfman derivative L, and encode the trivial deformations of the corresponding
non-supersymmetric background.

7Recall the moment map (III.151), untwisted by the fluxes.
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Chapter VI

Discussion

In this thesis, we set out to deepen the understanding of non-supersymmetric type
II supergravity flux vacua. We focused on solutions compactified to four-dimensional
Minkowski space, which we explored within the framework of generalised geometries,
both complex and exceptional.

The results derived in the first part of the thesis, presented in chapter IV, all relied on a
central feature: the generalised complex geometric description of the background sources -
the D-branes and orientifolds-. For a given source, this description mainly revolves around
the introduction of two objects: the generalised calibration and the generalised current
associated to the source.

Generalised calibrations are natural extensions of ordinary calibrations: they are poly-
forms of given degree associated to submanifolds. If such a calibration obeys the calibra-
tions conditions -a differential and an algebraic condition-, the corresponding submanifold
is said to be calibrated. A D-brane wrapping a calibrated submanifold is then supersym-
metric, it hence minimises its energy1. Crucially, the differential calibration conditions
associated to sources extended in two, three, and four non-compact dimensions are exactly
equivalent to preserving N = 1 supersymmetry for the corresponding ten-dimensional
background.

Then, the generalised current associated to a given source is simply a generalisation
of its ordinary current, the Poincaré dual to the calibrated submanifold, now calibrated
by the generalised calibration form.

In this thesis, describing the sources in terms of their generalised calibrations and
currents has allowed to establish the following results:

1The difference between ordinary and generalised calibrations stems from the definition of the D-brane
energy: in the ordinary case it is proportional to its volume, while the generalised case takes into account
non-vanishing RR potential contributions.
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i) We derived new classes of non-supersymmetric type II supergravity flux vacua
compactified to four-dimensional Minkowski space. A key aspect to these constructions
has been that supersymmetry was broken via the introduction of supersymmetry breaking
terms into the supersymmetry conditions, and the generalised current associated to the
background sources served as a building block for these supersymmetry breaking terms.
This proved out to be a simple and natural ansatz, drastically simplifying the study of
the corresponding equations of motion, that are very hard to solve in this formalism for
general supersymmetry breaking terms.

ii) We partially addressed the question of perturbative stability for our newly intro-
duced classes of non-supersymmetric flux backgrounds. Indeed, within the framework
of generalised complex geometry, the generalised current associated to the background
sources can enter the effective potential associated to a given ten-dimensional background,
which is particularly useful as it allows to use powerful positivity arguments for the effec-
tive potential from the calibration bound, one of the calibration condition. We were able
to prove that for a given truncation suggested by the geometry, the effective potential
associated to our classes of solutions is positive semi-definite, and vanishes at the solu-
tions. However, this is not quite equivalent to proving that our classes of solutions are
perturbatively stable, given that we have little control over the aforementioned truncation.

iii) For a given non-supersymmetric background with BPS space-filling sources, we
derived conditions on the supersymmetry breaking terms entering the corresponding de-
formed supersymmetry conditions such that this background dimensionally reduces to a
non-supersymmetric solution of four-dimensional N = 1 supergravity.

The motivation to study such backgrounds comes from the fact that type II flux
backgrounds compactified to four-dimensional Minkowski space must admit some space-
filling orientifold sources in order to evade the no-go theorem of [66, 67]. We therefore focus
on the case of well-behaved backgrounds with stable space-filling sources. In that regard,
the formalism of generalised complex geometry is very helpful, as it allows to identify the
supersymmetry condition associated to preserving the BPSness of such sources, which
must be satisfied.

In order to derive the aforementioned constraints, we generalised to the non-supersym-
metric setting the reformulation of the BPSness condition associated to space-filling
sources derived in [6]. We then required that this condition is an F-term condition, com-
ing from one of the variations of the superpotential, even when supersymmetry breaking
terms are switched on. Interestingly, this procedure constrained the possible supersym-
metry breaking terms generating D-terms in the corresponding effective theory.

We then derived the equations of motion for such backgrounds, and for the subclass of
backgrounds having vanishing D-terms on shell. Solutions of this kind correspond to vacua
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with non-vanishing superpotential and F-terms, and include the amply discussed class of
no-scale vacua. These equations of motion were significantly simpler than the equations
of motion associated to the most general supersymmetry breaking ansatz, sparking the
hope to solve them for new non-supersymmetric solutions.

The above results further extend the generalised complex geometry literature on non-
supersymmetric type II flux backgrounds, initiated in [44]. However, non-supersymmetric
type II flux backgrounds were never studied within the exceptional generalised geometry
framework. We set out to initiate this line of work in chapter V. Supersymmetric type II
flux backgrounds were described within exceptional generalised geometry in [40, 42] and
in [61], where a given N = 1 background was proven to be equivalent to a torsion-free
generalised SU(7) structure. We argued in this thesis that a non-supersymmetric back-
ground is entirely defined by a generalised SU(7) structure, and its non-vanishing SU(7)
compatible intrinsic torsion. We arranged the SU(7) torsion of a given N = 0 background
into irreducible representations of SU(7), the generalised structure group, and established
a dictionary between these intrinsic torsion components and the supersymmetry breaking
terms entering the modified supersymmetry conditions in the generalised complex geom-
etry formalism, bridging the two frameworks. Such a dictionary was then spelled out for
different concrete examples of non-supersymmetric flux backgrounds.

Another line of work developed in chapter V concerns the reformulation of the su-
pergravity equations of motion within the exceptional generalised geometry framework.
These were written as first order differential conditions on the different irreducible SU(7)
representations of the intrinsic torsion.

VI.1 Future directions

There are many directions of work extending or completing the results derived in this
thesis. First within the generalised complex geometry framework, the new classes of non-
supersymmetric type II flux backgrounds presented in chapter IV must have heterotic
analogues which would be interesting to study within O(6, 6 + n) generalised geometry,
with n the rank of the heterotic gauge group. It would also be interesting to look for
other N = 0 backgrounds with different patterns of supersymmetry breaking, still using
the current associated to the space-filling sources of the background as a building block.

Another direct extension of the results presented in chapter IV would be to look
for concrete ansatz for internal geometries within which one could solve the relatively
simple equations of motion for the class of backgrounds with BPS space-filling sources
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and dimensionally reducing to non-supersymmetric solutions of four-dimensional N = 1
supergravity.

From a broader perspective, there are other applications where the formalism of gen-
eralised calibrations must be insightful.

For instance, it would be interesting to develop the generalised calibration theory for
backgrounds with a three-dimensional Minkowski and AdS3 external space, where the
N = 1 supersymmetry conditions consists in two differential conditions and an algebraic
one, the "pairing condition" [115, 116]. Supersymmetry thus wouldn’t be quite equivalent
to the calibrations of the different possible D-branes, given that the pairing condition has
nothing to do with a calibration condition.

Additionally, this would prove to be very useful to study the non-supersymmetric
solutions of [117], the massive type IIA AdS3 analogues of the DGKT solutions [118],
which are poorly understood. These solutions are particularly interesting given that they
provide one of the very few example of scale separated AdS vacua [119]. Reformulating
such backgrounds within the O(7, 7) generalised geometry framework -as it has been
done in [120], but only for the supersymmetric solutions- would spell the breaking of
supersymmetry in terms of the violation of a calibration condition, providing insights
into the stability of the sources present in these backgrounds.

Finally, there are many directions in which to extend the results derived within the
exceptional generalised geometry framework, given that we have merely initiated the
construction of the formalism suited to describe non-supersymmetric type II flux back-
grounds.

The most obvious one is to exploit the equations of motion derived in section V.2.
Solving them upfront will be a difficult task, but they can surely teach us interesting
things about the different possible supersymmetry breaking, by highlighting the interplay
between the different irreducible SU(7) representations of the intrinsic torsion, and thus
the corresponding supersymmetry breaking terms.

Casting the N = 1 supersymmetry conditions in terms of integrability conditions for
a generalised SU(7) structure has allowed the authors of [61] to calculate the classical
moduli space of general N = 1 type II flux backgrounds2.

An interesting extension of the work presented in chapter V would be to set a deforma-
tion problem for non-supersymmetric type II flux backgrounds, and eventually calculate
(part of) the classical moduli space of some of these backgrounds, if they exist. To define
the deformations of these backgrounds, we cannot rely on requiring their integrability,

2With the caveat that the two type II internal spinors must be globally defined.
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as in the supersymmetric case. Instead, one could consider deformations that are irre-
ducible representations of a group G ⊂ SU(7) stabilising both the SU(7) structure and
the non-vanishing intrinsic torsion. The well behaved deformations would then be the
ones preserving the intrinsic torsion.

Finally, let us mention the recent reformulation of consistent truncations within the
exceptional generalised geometry framework [80, 121–125]. The key to these construc-
tions -see [80]- is that the intrinsic torsion is stable under a specific group G within a
given consistent truncation. This suits particularly well within the formalism developed
in chapter V, and could allow one to naturally construct explicit non-supersymmetric
consistent truncations.
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Appendix A

Supergravity Conventions

A.1 Notations

Given a p-vector v ∈ ΛpT and a q-form λ ∈ ΛqT ∗, we write them in components as

v = 1
p!v

m1...mp∂m1 ∧ · · · ∧ ∂mp (A.1)

λ = 1
q!λm1...mq dym1 ∧ · · · ∧ dymq . (A.2)

For v′ ∈ ∧p′
TM and λ′ ∈ ∧q′

T ∗M , the wedge products and contractions are given by

(v ∧ v′)m1...mp+p′ = (p+ p′)!
p!p′! v[m1...apv′mp+1...mp+p′ ], (A.3)

(λ ∧ λ′)m1...mq+q′ = (q + q′)!
q!q′! λ[m1...mq

λ′
mq+1...mq+q′ ] (A.4)

(v ¬ λ)m1...mq−p := 1
p!v

n1...npλn1...npm1...mq−p if p ≤ q (A.5)

(v ¬ λ)m1...mp−q := 1
q!v

m1···p−qn1...nqλn1...nq if p ≥ q . (A.6)

We also use the “j-notation” from [88]

(jλ ∧ ρ)m,m1...md
:= d!

(q − 1)!(d+ 1− q)!λm[m1...mq−1ρmq ...md] (A.7)

(jv ¬ jλ)mn := 1
(p− 1)!v

mr1...rp−1λnr1...rp−1 . (A.8)

Given a basis {êa} for T and a dual basis {ea} for T ∗, there is a natural gld action on
tensors of any rank. For a vector and a three-form, for example, this action gives

(r · v)m = rmnv
n (A.9)
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(r · λ)m1m2m3 = −rm1
nλnm2m3 − rm2

nλm1nm3 − rm3
nλm1m2n . (A.10)

We introduce the following ten- and six-dimensional Hodge operators

∗̃10 = ∗10 ◦σ (A.11)

∗̃6 = ∗6 ◦σ (A.12)

with σ the reversal of all form indices, and with, for a p-form ω

∗10 ωp = − 1
p!(10− p)!

√
−g ϵM1...M10ω

M11−p...M10dxM1 ∧ ... ∧ dxM10−p (A.13)

∗6 ωp = 1
p!(6− p)!

√
−g ϵm1...m6ω

m7−p...m6dym1 ∧ ... ∧ dym6−p . (A.14)

A.2 Bosonic sector

Our supergravity conventions are identical to the ones of [44].

The bosonic sector of type II supergravity is composed of the NS sector and the RR
sector. The NS sector contains the metric g, the dilaton ϕ, and the NS three-form flux
H, which can locally be written

H = dB (A.15)

away from the NS sources, with B its two-form potential.
The RR sector contains the RR field-strength: we use the democratic formulation of

[69], where
F 10 =

∑
q

F 10
q (A.16)

with q = 0, 2, ...10 for type IIA and q = 1, 3, ...9 for type IIB. These fields obey the
following self-duality condition

F 10 = ∗̃F 10 . (A.17)

Away from the RR sources, we write the RR fluxes from the RR potentials as

F 10 = dC +H ∧ C (A.18)

with C =
∑
q Cq−1.

The type II pseudo-action in democratic formalism is

S = 1
2κ2

10

∫
d10x
√
−g
{
e−2ϕ[R+ 4(dϕ)2 − 1

2H
2]− 1

4(F 10)2
}

+ S(loc), (A.19)
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where 2κ2
10 = (2π)7α′4 and for any real p-form ω we define ω2 = ω · ω with · defined as

ω · χ = 1
p!ωM1...Mpχ

M1...Mp . (A.20)

If ω is complex, we consider
|ω|2 = ω · ω̄ . (A.21)

S(loc) corresponds to the contributions of the localised sources to the action. Varying this
action and imposing the self-duality condition (A.17) we find the following equations of
motion.

The dilaton equation

∇2ϕ− (dϕ)2 + 1
4R−

1
8H

2 − 1
4
κ2

10e
2ϕ

√
−g

δS(loc)

δϕ
= 0, (A.22)

the B-field equation

−d(e−2ϕ ∗10 H) + 1
2[∗10F

10 ∧ F 10]8 + 2κ2
10
δS(loc)

δB
= 0, (A.23)

the Einstein equation

e−2ϕ[gMN + 2gMNdϕ · dϕ− 2gMN∇2ϕ+ 2∇M∇Nϕ (A.24)

− 1
2 ιMH · ιNH + 1

4gMNH ·H)]− 1
4 ιMF

10 · ιNF 10 − κ2
10T

(loc)
MN = 0, (A.25)

with
T

(loc)
MN = − 2√

−g
δS(loc)

gMN
, (A.26)

and the RR-fluxes variation gives the Bianchi identities

dHF 10 = −jsource. (A.27)

Combining the dilaton equation of motion with the Einstein equations, one can write the
modified Einstein equations

RMN + 2∇M∇Nϕ− ιMH · ιNH −
1
4e

2ϕιMF
10 · ιNF 10 (A.28)

− κ2
10e

2ϕ
(
T

(loc)
MN + gMN

2
√
−g

δS(loc)

δϕ

)
= 0. (A.29)

We now specify the compactification ansatz: we consider type II solutions that are the
warped product of four-dimensional Minkowski space X4 and a six-dimensional compact
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manifold M , with the following metric

ds2
10 = e2A(y)ηµνdxµdxν + gmndymdyn, (A.30)

where again xµ, µ = 0, ..., 3 are the external coordinates on X4, and ym, m = 1, ..., 6 are
the coordinates on M .

The Poincaré invariance of X4 constrains the NS and RR-fluxes: the NS-field-strength
H can only have internal legs, and the ten-dimensional RR-field-strength must take the
form

F 10 = F + e4Avol4 ∧ F̃ , (A.31)

with vol4 the volume form on X4 and where F and F̃ are purely internal and are related
by the self-duality of F 10 (A.17) as

F̃ = ∗̃6F . (A.32)

A.3 Gamma matrices

We use a real representation of the ten-dimensional gamma matrices ΓM . The ten-
dimensional chiral operator is

Γ(10) = Γ01...9 (A.33)

with flat ten-dimensional indices. For any p-form ω, we denote its image under the Clifford
map /ω with

ω ≡ 1
p!ωM1...MpdxM1...Mp ←→ /ω = 1

p!ωM1...MpΓM1...Mp . (A.34)

We define the splitting of the ten-dimensional gamma matrices into four- and six-
dimensional gamma matrices γ̂µ and γm as

Γµ = e−Aγ̂µ ⊗ 1 Γm = γ(4) ⊗ γm. (A.35)

The γ̂µ are associated to the unwarped four-dimensional metric, and γ(4) = iγ̂0123 is
the usual four-dimensional chiral operator. The six-dimensional chiral operator is γ(6) =
−iγ123456 so we have Γ(10) = γ(4) ⊗ γ(6).

The chirality of the internal spinors is then

γ(6)η1 = η1 γ(6)η2 = ∓η2 in type IIA/IIB. (A.36)
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Algebra Conventions

B.1 O(6, 6) × R+ Algebra

The O(6, 6)× R+ generalised tangent and adjoint spaces are

E = T ⊕ T ∗ (B.1)

ad F̃ = R⊕ (T ⊗ T ∗)⊕ Λ2T ⊕ Λ2T ∗ , (B.2)

and we write their sections as

V = v + ξ (B.3)

R = l + r +B + β , (B.4)

where each term matches with the expressions above in the obvious way.

The adjoint action on a section of the generalised tangent space is R · V = V ′ with

v′ = lv + r · v − β⌟ξ (B.5)

ξ′ = lξ + r · ξ + v⌟B (B.6)

The adjoint action on a section of the generalised adjoint space is [R′, R] = R′′ with

l′′ = 0 (B.7)

r′′ = [r′, r]− (jβ′⌟jB − jβ⌟jB′) (B.8)

B′′ = r′ ·B − r ·B′ (B.9)

β′′ = r′ · β − r · β′ . (B.10)
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We define the Mukai pairing for a pair of polyforms ω and χ

⟨ω, χ⟩ = ω ∧ σ(χ)|6, (B.11)

and more generally, we use throughout Chapter IV

⟨ω, χ⟩k = ω ∧ σ(χ)|k. (B.12)

In the case of a six-dimensional manifold M , the Mukai pairing satisfies the following
property ∫

M
⟨dHω, χ⟩ =

∫
M
⟨ω,dHχ⟩ . (B.13)

B.2 E7(7) × R+ Algebra in type IIB

In type IIB, the decomposition into O(6, 6) generalised bundles of the E7(7) × R+ gener-
alised tangent and adjoint spaces takes the form

E ≃ EO(6,6) ⊕ S
− ⊕ (Λ6T ∗ ⊗ EO(6,6)) (B.14)

adF̃ ≃ R⊕ R⊕ adF̃O(6,6) ⊕ S
+ ⊕ (Λ6T ⊗ S+)⊕ Λ6T ∗ ⊕ Λ6T. (B.15)

We write sections of these bundles as

V = X + ω + X̃ (B.16)

R = q + l + ν + s+ s̃+ a+ ã (B.17)

respectively, with X ∈ EO(6,6) , ω ∈ S−, etc.

We recall the GL(6) decompositions of the O(6, 6) bundles EO(6,6) and Λ6T ∗⊗EO(6,6)

EO(6,6) ≃ T ⊕ T ∗ (B.18)

Λ6T ∗ ⊗ EO(6,6) ≃ Λ6T ∗ ⊗ (T ⊕ T ∗) (B.19)

with the following sections

X = v + λ (B.20)

X̃ = (ṽ + λ̃)⊗ vol , (B.21)

with v, ṽ ∈ T , λ, λ̃ ∈ T ∗, and vol the volume form in the string frame.
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We introduce O(6, 6) indices A = 1, ..., 12 and O(6, 6) gamma matrices, such that

(v⌟ + λ∧)ω = XAΓAω ≡ /Xω, (B.22)

with ω a form.
The adjoint action on a section of the generalised tangent space is R · V = V ′ with

X ′A = qXA − lXA + νABX
B + ⟨s̃,ΓAω⟩ (B.23)

X̃ ′A = qX̃A + lX̃A + νABX̃
B + ⟨s,ΓAω⟩ (B.24)

ω′ = qω + 1
4νABΓABω +XAΓAs− X̃AΓAs̃ . (B.25)

The adjoint action on a section of the generalised adjoint space is [R′, R] = R′′ with

q′′ = 1
2(ν ′A

Bν
B
A − νABν ′B

A + ⟨s′,ΓAAs̃⟩ − ⟨s̃′,ΓAAs⟩) (B.26)

l′′ = ãa′ − ã′a+ ⟨s′, s̃⟩ − ⟨s, s̃′⟩ (B.27)

ν ′′A
B = ν ′A

Cν
C
B − νACν ′C

B + ⟨s′,ΓAB s̃⟩ − ⟨s̃′,ΓABs⟩ (B.28)

s′′ = l′s− ls′ + s̃a′ − s̃′a+ 1
4ν

′
ABΓABs− 1

4νABΓABs′ (B.29)

s̃′′ = −l′s̃+ ls̃′ + ã′s− ãs′ + 1
4ν

′
ABΓAB s̃− 1

4νABΓAB s̃′ (B.30)

a′′ = 2l′a− 2la′ − ⟨s′, s⟩+ ⟨s, s′⟩ (B.31)

ã′′ = 2lã′ − 2l′ã+ ⟨s̃′, s̃⟩ − ⟨s̃, s̃′⟩ . (B.32)

The torsion bundle K ⊂ E∗ ⊗ ad F̃ can locally be written in terms of O(6, 6) irreducible
representations as

K ≃ EO(6,6) ⊕ (EO(6,6) ⊗ Λ6T ∗)⊕ S± ⊕ (Λ6T ⊗ S±)⊕ (Λ6T ∗ ⊗ S±)

⊕ [EO(6,6) ⊗ S±]0 ⊕ Λ3(EO6,6))⊕ (Λ6T ∗ ⊗ Λ3(EO(6,6)) , (B.33)

where ΦA ∈ Γ([EO(6,6) ⊗ S±]0) respects ΓAΦA = 0. The fibres of this bundle transforms
in the 9121 representation of E7(7) × R+, where the subscript denotes the R+ weight.

The bundle N is a subbundle of the symmetric product S2E. The fibres of N belongs
to the 1332 representation of E7(7) × R+, and N is isomorphic to

N ≃ R⊕ Λ6T ∗ ⊕ (Λ6T ∗ ⊗ Λ6T ∗)⊕ S∓ ⊕ (Λ6T ∗ ⊗ S∓)⊕ (ad F̃O(6,6) ⊗ Λ6T ∗) . (B.34)

The Dorfman derivative reads

LV V
′ = LXX

′ + (d( /Xω′) + /Xdω′ − dω ·X ′)



166 Appendix B. Algebra Conventions

+ (LXX̃ ′ + (∂, X̃) ·X ′ − dω · ω′) , (B.35)

with LXX
′ the standard O(6, 6) Dorfman derivative, and · the adjoint action.

We also introduced

LXX̃
′ = LvX̃ ′ + j(ṽ′⌟vol) ∧ dλ (B.36)

(∂, X̃) = d(ṽ⌟vol) . (B.37)

We define a flux-twisted Dorfman derivative as

LH+F
V V ′ := LV V

′ + (H ⊙X +H ∧ ω + /XF + ⟨F, ω⟩) · V ′ , (B.38)

with H ⊙X = v⌟H, and where the NS and RR fluxes are sections of the torsion bundle
H ∈ Γ(Λ3(EO(6,6))) ∈ Γ(K) and F ∈ Γ(S±) ∈ Γ(K).

The symplectic invariant reads

s(V, V ′) = ηABX̃
AX ′B − ηABX̃ ′AXB + ⟨ω, ω′⟩ , (B.39)

where ηAB is the natural O(6, 6) inner product in indices.

B.2.1 SL(7, C) ⊂ SL(8, C) ⊂ E7(7)C embedding for type IIB

The complex generalised tangent, adjoint and torsion E7(7)C bundles can be decomposed
into irreducible representations of SL(8,C)

EC ≃ 28⊕ 28 (B.40)

adF̃C ≃ 63⊕ 70 (B.41)

KC ≃ 36⊕ 420⊕ 36⊕ 420. (B.42)

In SL(8,C) indices α, β = 1, ..., 8, the decomposition of sections of the generalised
tangent, adjoint and torsion spaces are written respectively

V = (V αβ, V̄αβ) (B.43)

R = (Rαβ, Rαβγδ) (B.44)

ϕ = (ϕαβ, ϕαβγδ, ϕ̄αβ, ϕ̄ δ
αβγ ) , (B.45)

with V αβ = −V βα, Rαα = 0, Rαβγδ fully antisymmetric, ϕαβ = ϕβα, ϕαβγδ = ϕ[αβγ]
δ,

and ϕαβγγ = 0, and similarly for the barred object.
The adjoint action on a section of the generalised tangent space is then R · V = V ′
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with

V ′αβ = RαγV
γβ +RβγV

αγ + ⋆RαβγδV̄γδ (B.46)

V̄ ′
αβ = −RγαV̄γβ −RγβV̄αγ −RαβγδV γδ , (B.47)

where ⋆ is the eight-dimensional Hodge operator.
The adjoint action on a section of the generalised adjoint space is [R′, R] = R′′ with

R′′α
β = R′α

γR
γ
β −RαγR′γ

β −
1
3(⋆R′αγδϵRβγδϵ − ⋆RαγδϵR′

βγδϵ) (B.48)

R′′
αβγδ = 4(R′ϵ

[αRβγδ]ϵ −Rϵ[αR′
βγδ]ϵ) . (B.49)

We also need the action

⊙ : 912C ⊙ 56C → 133C (B.50)

ϕ⊙ V → R , (B.51)

wihch reads

Rαβ = (V γαϕ̄γβ + V̄γβϕ
γα) + (V̄γδϕγδαβ − V γδϕ̄ α

γδβ ) (B.52)

Rαβγδ = −4(ϕ̄ ϵ
[αβγ V̄δ]ϵ −

1
4!ϵαβγδµ1µ2µ3µ4ϕ

µ1µ2µ3
ϵV

µ4ϵ) . (B.53)

We now give the decomposition of the generalised tangent, adjoint and torsion bundles
in terms of SL(7,C) ∈ SL(8,C) irreducible representations

EC ≃ 7⊕ 21⊕ 21⊕ 7 (B.54)

adF̃C ≃ 1⊕ 48⊕ (7⊕ 7)⊕ (35⊕ 35) (B.55)

KC ≃ 1⊕ 7⊕ 21⊕ 28⊕ 35⊕ 140⊕ 224⊕ c.c. . (B.56)

Introducing SL(7,C) indices: a, b = 1, ..., 7, we write the corresponding sections as1

V = (V a8, V ab, V̄ab, V̄a8) (B.57)

R = (R8
8 + 1

7R
a
a1, R

0a
b, R

a
8, R

8
a, Rabcd, Rabc8) (B.58)

ϕ = (ϕ88, ϕa8, ϕab88, ϕ
ab, ϕabc8, ϕ

ab8
d, ϕ

abc
d,

ϕ̄88, ϕ̄a8, ϕ̄
8

ab8 , ϕ̄ab, ϕ̄
8

abc , ϕ̄
d

ab8 , ϕ̄
d

abc ) , (B.59)

where each term matches with the expressions above in the obvious way, with 1 the
1We use the notation of a dead SL(8, C) index "8", in order to see the SL(7, C) ⊂ SL(8, C) embedding

explicitly.
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seven-dimensional identity matrix, and with

V ab = V ba (B.60)

ϕab = ϕba (B.61)

R0a
a = 0 (B.62)

Rabcd = R[abcd], Rabc8 = R[abc]8 (B.63)

ϕabcc = ϕa8b
b = 0 (B.64)

ϕabcd = ϕ[abc]
d, ϕabc8 = ϕ[abc]

8, ϕab8d = ϕ[ab]8
d, ϕab88 = ϕ[ab]8

8 . (B.65)

and similarly for the barred objects.

The adjoint action on a section of the generalised tangent space is then R · V = V ′

with

V ′ab = (R0a
c + 1

7R
e
eδ
a
c)V cb + 1

2R
a

8V
8b + (R0b

c + 1
7R

e
eδ
b
c)V ac + 1

2R
b
8V

a8

+ ⋆RabcdV̄cd + 1
8 ⋆ R

abc8V̄c8 (B.66)

V ′a8 = 1
2(R0a

c + 1
7R

e
eδ
a
c)V c8 + 1

2R
8

8V
a8 +R8

cV
ac + 1

4 ⋆ R
a8cdV̄cd (B.67)

V̄ ′
ab = −(R0c

a + 1
7R

e
eδ
c
a)V̄cb −

1
2R

8
aV̄8b − (R0c

b + 1
7R

e
eδ
c
b)V̄ac

− 1
2R

8
bV̄a8 −

1
8Rabc8V

c8 −RabcdV cd (B.68)

V̄ ′
a8 = −1

2(R0c
a + 1

7R
e
eδ
c
a)V̄c8 −Rc8V̄ac −

1
2R

8
8V̄a8 −

1
4Ra8cdV

cd . (B.69)

The adjoint action on a section of the generalised adjoint space is [R′, R] = R′′ with

R8
8 + 1

7R
a
a1 = R′8

aR
a

8 −R8
aR

′a
8 −

1
16(⋆R′8abcR8abc − ⋆R8abcR′

8abc) (B.70)

+ 1
7[(R′0f

c + 1
7R

′e
eδ
f
c)(R0c

f + 1
7R

e
eδ
c
f ) +R′a

8R
8
f

− (R0a
c + 1

7R
e
eδ
f
c)(R′0c

b + 1
7R

′e
eδ
c
b)−Rf 8R

′8
b

− 1
3 ⋆ R

′fcdeRfcde −
1
16 ⋆ R

′fcd8Rfcd8

+ 1
3 ⋆ R

fcdeR′
fcde + 1

16 ⋆ R
fcd8R′

fcd8]1 (B.71)

R′′0a
b = (R′0a

c + 1
7R

′e
eδ
a
c)(R0c

b + 1
7R

e
eδ
c
b) +R′a

8R
8
b

− (R0a
c + 1

7R
e
eδ
a
c)(R′0c

b + 1
7R

′e
eδ
c
b)−Ra8R

′8
b

− 1
3 ⋆ R

′acdeRbcde −
1
16 ⋆ R

′acd8Rbcd8 + 1
3 ⋆ R

acdeR′
bcde + 1

16 ⋆ R
acd8R′

bcd8
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− 1
7[(R′0f

c + 1
7R

′e
eδ
f
c)(R0c

f + 1
7R

e
eδ
c
f ) +R′a

8R
8
f

− (R0a
c + 1

7R
e
eδ
f
c)(R′0c

b + 1
7R

′e
eδ
c
b)−Rf 8R

′8
b

− 1
3 ⋆ R

′fcdeRfcde −
1
16 ⋆ R

′fcd8Rfcd8

+ 1
3 ⋆ R

fcdeR′
fcde + 1

16 ⋆ R
fcd8R′

fcd8]δab (B.72)

R′′a
8 = (R′0a

c + 1
7R

′e
eδ
a
c)Rc8 +R′a

8R
8

8 − (R0a
c + 1

7R
e
eδ
a
c)R′c

8 −Ra8R
′8

8

− 1
4(⋆R′acdeR8cde − ⋆RacdeR′

8cde) (B.73)

R′′8
a = R′8

c(R0c
a + 1

7R
e
eδ
c
a) +R′8

8R
8
a −R8

c(R′0c
a + 1

7R
′e
eδ
c
a)−R8

8R
′8
a

− 1
4(⋆R′8cdeRacde − ⋆R8cdeR′

acde) (B.74)

R′′
abcd = (4(R′0e

[a + 1
7R

′f
fδ
e
[a)Rbcd]e + 3R′8

[aRbcd]8

− 4(R0e
[a + 1

7R
f
fδ
e
[a)R′

bcd]e − 3R8
[aR

′
bcd]8) (B.75)

R′′
abc8 = (3(R′0e

[a + 1
7R

′f
fδ
e
[a)Rbc8]e +R′8

8Rabc8

− 3(R0e
[a + 1

7R
f
fδ
e
[a)R′

bc8]e −R
8

8R
′
abc8) . (B.76)

The action

⊙ : 912C ⊙ 56C → 133C (B.77)

ϕ⊙ V → R (B.78)

reads

R8
8 + 1

7R
a
a1 = 1

4(V a8ϕ̄a8 + V̄a8ϕ
a8) + (V̄abϕab88 − V abϕ̄ 8

ab8 )

+ 1
7[(V ceϕ̄ce + 1

4V
8eϕ̄8e + V̄ceϕ

ce + 1
4 V̄8eϕ

8e)

+ (V̄cdϕcdee + 1
6 V̄c8ϕ

c8e
e − V cdϕ̄ e

cde −
1
6V

c8ϕ̄ e
c8e )]1 (B.79)

R0a
b = (V caϕ̄cb + 1

4V
8aϕ̄8b + V̄cbϕ

ca + 1
4 V̄8bϕ

8a)

+ (V̄cdϕcdab + 1
6 V̄c8ϕ

c8a
b − V cdϕ̄ a

cdb −
1
6V

c8ϕ̄ a
c8b )

− 1
7[(V ceϕ̄ce + 1

4V
8eϕ̄8e + V̄ceϕ

ce + 1
4 V̄8eϕ

8e)

+ (V̄cdϕcdee + 1
6 V̄c8ϕ

c8e
e − V cdϕ̄ e

cde −
1
6V

c8ϕ̄ e
c8e )]δab (B.80)

Ra8 = 1
2(V caϕ̄c8 + V̄c8ϕ

ca) + (V̄cdϕcda8 + 1
6 V̄c8ϕ

c8a
8 −

1
3V

cdϕ̄ a
cd8 ) (B.81)
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R8
a = 1

2(V c8ϕ̄ca + V̄caϕ
c8) + (1

3 V̄cdϕ
cd8

a −
1
3V

cdϕ̄ 8
cda −

1
6V

c8ϕ̄ 8
c8a ) (B.82)

Rabcd = −4(ϕ̄ e
[abc V̄d]e + 1

2 ϕ̄
8

[abc V̄d]8)− 1
2 · 3!ϵabcdm1m2m38ϕ

m1m2m3
eV

8e

− 1
4 · 3!ϵabcdm1m28m3ϕ

m1m28
eV

m3e

− 1
8 · 3!ϵabcdm1m28m3ϕ

m1m28
8V

m38 (B.83)

Rabc8 = −4(1
2 ϕ̄

e
[abc V̄8]e −

1
4!ϵabc8m1m2m3m4ϕ

m1m2m3
eV

m4e

− 1
2 · 4!ϵabc8m1m2m3m4ϕ

m1m2m3
8V

m48) . (B.84)

B.2.2 The SU(3, 3) parametrisation

We can parametrise the complexified generalised tangent and adjoint E7(7)C bundles in
terms of representations of the SU(3, 3) structure associated to the generalised complex
structure J2 ≡ J± in type IIA/IIB. We focus on type IIB in the following

EC ≃ L1 ⊕ L−1 ⊕ S−
3 ⊕ S

−
1 ⊕ S

−
−1 ⊕ S

−
−3 ⊕ (Λ6T ∗ ⊗ (L1 ⊕ L−1)) (B.85)

adF̃C ≃ C⊕ C⊕ (L1 ⊗ L−1)0 ⊕ Λ2(L1)⊕ Λ2(L−1)⊕ S+
2 ⊕ S

+
0 ⊕ S

+
−2

⊕ (Λ6T ⊗ (S+
2 ⊕ S

+
0 ⊕ S

+
−2))⊕ Λ6T ∗

C ⊕ Λ6TC , (B.86)

where the subscript denotes the charge under J−, and with

L1 ≃ L̄−1 Si ≃ S̄−i. (B.87)

We write sections of these bundles as

V = X1 +X−1 + ω3 + ω1 + ω−1 + ω−3 + X̃1 + X̃−1 (B.88)

R = l + p+ ν0
0 + ν2 + ν−2 + s2 + s0 + s−2 + s̃2 + s̃0 + s̃−2 + a+ ã (B.89)

respectively, with X1 ∈ Γ(L1), X−1 ∈ Γ(L−1), etc, and with l ∈ C, p ∈ C, ν0
0 ∈ Γ((L1 ⊗

L−1)0), etc. We introduce SU(3, 3) indices i, j = 1, ..., 6 and in index notation we omit
the subscript denoting the charge under J−. We have p = 1

6ν
i
i and

ν0i
j = νij −

1
6ν

k
kη
i
j (B.90)

ν̄ 0̄i
j̄ = ν̄ īj̄ −

1
6ν

k̄
k̄η
ī
j̄ (B.91)

where η is the O(6, 6) metric, with ηij̄X
i = Xj̄ .

The adjoint action on a section of the generalised tangent space is then R · V = V ′
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with

X ′i = (−l + p)Xi + ν0i
jX

j + νij̄X
j̄ + ⟨s̃−2,Γiω3⟩+ ⟨s̃0,Γiω1⟩+ ⟨s̃2,Γiω−1⟩ (B.92)

X ′̄i = (−l̄ + p̄)X ī + (ν̄0)ī j̄X
j̄ + ν ījX

j + ⟨s̃−2,Γīω1⟩+ ⟨s̃0,Γīω−1⟩+ ⟨s̃2,Γīω−3⟩ (B.93)

X̃ ′i = (l + p)X̃i + ν0i
jX̃

j + νij̄X̃
j̄ + ⟨s−2,Γiω3⟩+ ⟨s0,Γiω1⟩+ ⟨s2,Γiω−1⟩ (B.94)

X̃ ′̄i = (l̄ + p̄)X̃ ī + (ν̄0)ī j̄X̃
j̄ + ν ījX̃

j + ⟨s−2,Γīω1⟩+ ⟨s0,Γīω−1⟩+ ⟨s2,Γīω−3⟩ (B.95)

ω′
3 = 1

4νīj̄Γ
īj̄ω1 +XiΓis2 − X̃iΓis̃2 + 1

4pΓ
ī
īω3 + 1

4 p̄Γ
i
iω3 (B.96)

ω′
1 = 1

4νijΓ
ijω3 + 1

4νīj̄Γ
īj̄ω−1 + 1

4ν
0
ījΓ

ījω1 + 1
4 ν̄

0
ij̄Γ

ij̄ω1 +XiΓis0 +X īΓīs2 (B.97)

− X̃iΓis̃0 − X̃ īΓīs̃2 + 1
4pΓ

ī
īω1 + 1

4 p̄Γ
i
iω1 (B.98)

ω′
−1 = 1

4νijΓ
ijω1 + 1

4νīj̄Γ
īj̄ω−3 + 1

4ν
0
ījΓ

ījω−1 + 1
4 ν̄

0
ij̄Γ

ij̄ω−1 +X īΓīs0 +XiΓis−2 (B.99)

− X̃iΓis̃−2 − X̃ īΓīs̃0 + 1
4pΓ

ī
īω−1 + 1

4 p̄Γ
i
iω−1 (B.100)

ω′
−3 = 1

4νijΓ
ijω−1 +X īΓīs−2 − X̃ īΓīs̃−2 + 1

4pΓ
ī
īω−3 + 1

4 p̄Γ
i
iω−3 . (B.101)

The adjoint action on a section of the generalised adjoint space is [R′, R] = R′′ with

l′′ = ãa′ − ã′a+ ⟨s′
2, s̃−2⟩ − ⟨s2, s̃

′
−2⟩+ ⟨s′

0, s̃0⟩ − ⟨s0, s̃
′
0⟩

+ ⟨s′
−2, s̃2⟩ − ⟨s−2, s̃

′
2⟩ (B.102)

p′′ = 1
6(ν ′ijνji − νijν ′

ji + ⟨s′
2,Γiis̃−2⟩ − ⟨s̃′

2,Γiis−2⟩

+ ⟨s′
−2,Γiis̃2⟩ − ⟨s̃′

−2,Γiis2⟩) (B.103)

ν ′′0i
j = ν ′0i

kν
0k
j + ν ′i

k̄ν
k̄
j − ν0i

kν
′0k

j − νik̄ν
′k̄
j

+ ⟨s′
2,Γij s̃−2⟩ − ⟨s̃′

2,Γijs−2⟩+ ⟨s′
0,Γij s̃0⟩ − ⟨s̃′

0,Γijs0⟩

+ ⟨s′
−2,Γij s̃2⟩ − ⟨s̃′

−2,Γijs2⟩ −
1
6
(
ν ′klνlk − νklν ′

lk + ⟨s′
2,Γkks̃−2⟩ − ⟨s̃′

2,Γkks−2⟩

+ ⟨s′
−2,Γkks̃2⟩ − ⟨s̃′

−2,Γkks2⟩
)
ηij (B.104)

ν ′′i
j̄ = ν ′0i

kν
k
j̄ + p′νij̄ + ν ′i

k̄(ν̄
0)k̄ j̄ + p̄ν ′i

j̄ − ν
0i
kν

′k
j̄ − pν

′i
j̄ − ν

i
k̄(ν̄

′0)k̄ j̄ − p̄
′νij̄

+ ⟨s′
2,Γij̄ s̃0⟩ − ⟨s̃′

2,Γij̄s0⟩+ ⟨s′
0,Γij̄ s̃2⟩ − ⟨s̃′

0,Γij̄s2⟩ (B.105)

ν ′′̄i
j = ν ′̄i

kν
0k
j + pν ′̄i

j + (ν̄ ′0)īk̄ν
k̄
j + p̄′ν īj − ν īkν ′0k

j − p′ν īj − (ν̄0)īk̄ν
′k̄
j − p̄ν ′̄i

j

+ ⟨s′
0,Γīj s̃−2⟩ − ⟨s̃′

0,Γījs−2⟩+ ⟨s′
−2,Γīj s̃0⟩ − ⟨s̃′

−2,Γījs0⟩ (B.106)

s′′
2 = l′s2 − ls′

2 + s̃2a
′ − s̃′

2a+ 1
4ν

′0
ījΓ

ījs2 + 1
4 ν̄

′0
ij̄Γ

ij̄s2 −
1
4ν

0
ījΓ

ījs′
2 −

1
4 ν̄

0
ij̄Γ

ij̄s′
2

+ 1
4ν

′
īj̄Γ

īj̄s0 −
1
4νīj̄Γ

īj̄s′
0 + 1

4p
′Γī īs2 + 1

4 p̄
′Γiis2 −

1
4 p̄Γ

i
is

′
2 −

1
4pΓ

ī
īs

′
2 (B.107)

s′′
0 = l′s0 − ls′

0 + s̃0a
′ − s̃′

0a+ 1
4ν

′0
ījΓ

ījs0 + 1
4 ν̄

′0
ij̄Γ

ij̄s0 −
1
4ν

0
ījΓ

ījs′
0 −

1
4 ν̄

0
ij̄Γ

ij̄s′
0
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+ 1
4ν

′
ijΓijs2 + 1

4ν
′
īj̄Γ

īj̄s−2 −
1
4νijΓ

ijs′
2 −

1
4νīj̄Γ

īj̄s′
−2

+ 1
4p

′Γī īs0 + 1
4 p̄

′Γiis0 −
1
4pΓ

ī
īs

′
0 −

1
4 p̄Γ

i
is

′
0 (B.108)

s′′
−2 = l̄′s−2 − l̄s′

−2 + s̃−2a
′ − s̃′

−2a+ 1
4ν

′0
ījΓ

ījs−2 + 1
4 ν̄

′0
ij̄Γ

ij̄s−2

− 1
4ν

0
ījΓ

ījs′
−2 −

1
4 ν̄

0
ij̄Γ

ij̄s′
−2 + 1

4ν
′
ijΓijs0 −

1
4νijΓ

ijs′
0

+ 1
4p

′Γī īs−2 + 1
4 p̄

′Γiis−2 −
1
4 p̄Γ

i
is

′
−2 −

1
4pΓ

ī
īs

′
−2 (B.109)

s̃′′
2 = −l′s̃2 + ls̃′

2 + ã′s2 − ãs′
2 + 1

4ν
′0
ījΓ

īj s̃2 + 1
4 ν̄

′0
ij̄Γ

ij̄ s̃2 −
1
4ν

0
ījΓ

īj s̃′
2 −

1
4 ν̄

0
ij̄Γ

ij̄ s̃′
2

+ 1
4ν

′
īj̄Γ

īj̄ s̃0 −
1
4νīj̄Γ

īj̄ s̃′
0 + 1

4p
′Γī īs̃2 + 1

4 p̄
′Γiis̃2 −

1
4 p̄Γ

i
is̃

′
2 −

1
4pΓ

ī
īs̃

′
2 (B.110)

s̃′′
0 = −l′s̃0 + ls̃′

0 + ã′s0 − ãs′
0 + 1

4ν
′0
ījΓ

īj s̃0 + 1
4 ν̄

′0
ij̄Γ

ij̄ s̃0 −
1
4ν

0
ījΓ

īj s̃′
0 −

1
4 ν̄

0
ij̄Γ

ij̄ s̃′
0

+ 1
4ν

′
ijΓij s̃2 + 1

4ν
′
īj̄Γ

īj̄ s̃−2 −
1
4νijΓ

ij s̃′
2 −

1
4νīj̄Γ

īj̄ s̃′
−2

+ 1
4p

′Γī īs̃0 + 1
4 p̄

′Γiis̃0 −
1
4pΓ

ī
īs̃

′
0 −

1
4 p̄Γ

i
is̃

′
0 (B.111)

s̃′′
−2 = −l̄′s̃−2 + l̄s̃′

−2 + ã′s−2 − ãs′
−2 + 1

4ν
′0
ījΓ

īj s̃−2 + 1
4 ν̄

′0
ij̄Γ

ij̄ s̃−2

− 1
4ν

0
ījΓ

īj s̃′
−2 −

1
4 ν̄

0
ij̄Γ

ij̄ s̃′
−2 + 1

4ν
′
ijΓij s̃0 −

1
4νijΓ

ij s̃′
0

+ 1
4p

′Γī īs̃−2 + 1
4 p̄

′Γiis̃−2 −
1
4 p̄Γ

i
is̃

′
−2 −

1
4pΓ

ī
īs̃

′
−2 (B.112)

a′′ = 2l′a− 2la′ − ⟨s′
2, s−2⟩ − ⟨s′

0, s0⟩ − ⟨s′
−2, s2⟩+ ⟨s2, s

′
−2⟩

+ ⟨s0, s
′
0⟩+ ⟨s−2, s

′
2⟩ (B.113)

ã′′ = 2lã′ − 2l′ã+ ⟨s̃′
2, s̃−2⟩+ ⟨s̃′

0, s̃0⟩+ ⟨s̃′
−2, s̃2⟩ − ⟨s̃2, s̃

′
−2⟩

− ⟨s̃0, s̃
′
0⟩ − ⟨s̃−2, s̃

′
2⟩ . (B.114)

B.3 SU(7) and SU(8) bundles and projections

We introduce two real SU(8) bundles S and J , which we refer to as the “spinor” bundle
and the “gravitino” bundle respectively. These are

S = 8 + 8̄ ≡ S+ + S− J = 56 + 56 ≡ J+ + J−, (B.115)

with sections

ηα ∈ Γ(S+) ηα ∈ Γ(S−) (B.116)

ψαβγ ∈ Γ(J+) ψαβγ ∈ Γ(J−) , (B.117)
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in terms of SU(8) indices α, β, ... = 1, ..., 8. In terms of SU(8) representations, we introduce
the following generalised connection

D ≡ (D[αβ], D̄[αβ]) , (B.118)

and throughout the text we use the following projections onto the S and J bundles
between the generalised connection and sections of the S and J bundles

(D ×J η)αβγ = D[αβηγ] ∈ Γ(J+) (B.119)

(D ×S η)α = D̄[αβ]η
β ∈ Γ(S−) (B.120)

(D ×J ψ)αβγ = − 1
12ϵαβγδδ

′θ1θ2θ3D
[δδ′]ψθ1θ2θ3 ∈ Γ(J−) (B.121)

(D ×S ψ)α = −1
2D̄[βγ]ψ

αβγ ∈ Γ(S+) (B.122)

(D ×J η)αβγ = D[αβηγ] ∈ Γ(J−) (B.123)

(D ×S η)α = D̄[αβ]ηβ ∈ Γ(S+) (B.124)

(D ×J ψ)αβγ = − 1
12ϵ

αβγδδ′θ1θ2θ3Dδδ′ψθ1θ2θ3 ∈ Γ(J+) (B.125)

(D ×S ψ)α = −1
2D̄

[βγ]ψαβγ ∈ Γ(S−) . (B.126)

We now decompose the S and J SU(8) bundles into irreducible SU(7) representations:

S+ → S+
7 ⊕ S

+
1 J+ → J+

35 ⊕ J
+
21 (B.127)

8→ 7⊕ 1 56→ 35⊕ 21 (B.128)

S− → S−
7 ⊕ S

−
1 J− → J−

35 ⊕ J
−
21 (B.129)

8̄→ 7̄⊕ 1̄ 5̄6→ 3̄5⊕ 2̄1 , (B.130)

with sections

ηa ∈ Γ(S+
7 ) ηa ∈ Γ(S−

7 ) (B.131)

η8 ∈ Γ(S+
1 ) η8 ∈ Γ(S−

1 ) (B.132)

ψabc ∈ Γ(J+
35) ψabc ∈ Γ(J−

35) (B.133)

ψab8 ∈ Γ(J+
21) ψab8 ∈ Γ(J−

21) , (B.134)

in terms of SU(7) indices a, b, ... = 1, ..., 7. Similarly, we decompose the SU(7) compatible
connection D̂ into SU(7) representations. It reads

D̂ = (D̂[ab], D̂a8,
¯̂
D[ab],

¯̂
Da8) , (B.135)
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Throughout the text we use the following projections onto the S±
1 , S±

7 , J±
35, and J±

21
bundles between the generalised connection and sections of the said bundles

(D̂ ×J+
35
η)abc = D̂[abηc] ∈ Γ(J+

35) (B.136)

(D̂ ×J+
21
η)ab8 = D̂[ab]η8 + D̂8[aηb] ∈ Γ(J+

21) (B.137)

(D̂ ×S−
7
η)a = ¯̂

D[ab]η
b + ¯̂

Da8η
8 ∈ Γ(S−

7 ) (B.138)

(D̂ ×S−
1
η)8 = ¯̂

D8aη
a ∈ Γ(S−

1 ) (B.139)

(D̂ ×J−
35
ψ)abc = − 1

12ϵabcdd
′e1e28D̂

[dd′]ψe1e28

− 1
12ϵabcd8e1e2e3D̂

d8ψe1e2e3 ∈ Γ(J−
35) (B.140)

(D̂ ×J−
21
ψ)ab8 = − 1

12ϵab8dd
′e1e2e3D̂

[dd′]ψe1e2e3 ∈ Γ(J−
21) (B.141)

(D̂ ×S+
7
ψ)a = −1

2
¯̂
D[bc]ψ

abc − 1
2

¯̂
Db8ψ

ab8 ∈ Γ(S+
7 ) (B.142)

(D̂ ×S+
1
ψ)8 = −1

2
¯̂
D[ab]ψ

ab8 ∈ Γ(S+
1 ) (B.143)

(D̂ ×J+
35
η)abc = D̂[abηc] ∈ Γ(J+

35) (B.144)

(D̂ ×J−
35
η)abc = D̂[abηc] ∈ Γ(J−

35) (B.145)

(D̂ ×J−
21
η)ab8 = D̂[ab]η8 + D̂8[aηb] ∈ Γ(J−

21) (B.146)

(D̂ ×S+
7
η)a = ¯̂

D[ab]ηb + ¯̂
Da8η8 ∈ Γ(S+

7 ) (B.147)

(D̂ ×S+
1
η)8 = ¯̂

D8aηa ∈ Γ(S+
1 ) (B.148)

(D̂ ×J+
35
ψ)abc = − 1

12ϵ
abcdd′e1e28D̂[dd′]ψe1e28

− 1
12ϵ

abcd8e1e2e3D̂d8ψe1e2e3 ∈ Γ(J+
35) (B.149)

(D̂ ×J+
21
ψ)ab8 = − 1

12ϵ
ab8dd′e1e2e3D̂[dd′]ψe1e2e3 ∈ Γ(J+

21) (B.150)

(D̂ ×S−
7
ψ)a = −1

2
¯̂
D[bc]ψabc −

1
2

¯̂
Db8ψab8 ∈ Γ(S−

7 ) (B.151)

(D̂ ×S−
1
ψ)8 = −1

2
¯̂
D[ab]ψab8 ∈ Γ(S−

1 ) . (B.152)



Appendix C

Supersymmetry breaking and pure spinors

We consider a ten-dimensional SU(3)×SU(3) background with a Minkowski four-dimensional
space and a ten-dimensional bispinor ϵ = (ϵ1, ϵ2)T as in (II.59). We give here the
parametrisation of the most general supersymmetry breaking, and we start by writing
down the non-vanishing supersymmetry variations

δψ(1)
µ = 1

2e
Aγ̂µζ ⊗ V1 + c.c. δψ(2)

µ = 1
2e

Aγ̂µζ ⊗ V2 + c.c. (C.1)

δψ(1)
m = ζ ⊗ U1

m + c.c. δψ(2)
m = ζ ⊗ U2

m + c.c. (C.2)

∆ϵ1 = ζ ⊗ S1 + c.c. ∆ϵ2 = ζ ⊗ S2 + c.c., (C.3)

where V1,2, U1,2
m and S1,2 are internal spinors parametrising the supersymmetry breaking

V1 = /∂Aη1 + 1
4e

ϕγ(6) /Fη2

V2 = /∂Aη2 −
1
4e

ϕγ(6) /F
†
η1

S1 = ( /∇− /∂ϕ+ 2/∂A+ 1
4
/H)η1

S2 = ( /∇− /∂ϕ+ 2/∂A+ 1
4
/H)η2

U1
m = (∇m + 1

4 ιm
/H)η1 + 1

8e
ϕ /Fγmγ(6)η2

U2
m = (∇m −

1
4 ιm

/H)η2 −
1
8e

ϕ /Fγmγ(6)η1. (C.4)

Following [44], we expand them in terms of supersymmetry breaking parameters in the
following way

V1 = r1η
∗
1 + s1

mγ
mη1 V2 = r2η

∗
2 + s2

mγ
mη2 (C.5)

S1 = t1η
∗
1 + u1

mγ
mη1 S2 = t2η

∗
2 + u2

mγ
mη2 (C.6)
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U1
m = p1

mη1 + q1
mnγ

nη∗
1 U2

m = p2
mη2 + q2

mnγ
nη∗

2. (C.7)

It has been shown in [44] that these parameters do not mix under T-duality. One can
now rewrite the most general non-supersymmetric pure spinor equations, expanded on
the generalised Hodge diamond, in terms of these supersymmetry breaking parameters

e−2A+ϕdH(e2A−ϕΨ1) + 2dA ∧ ReΨ1 − eϕ∗̃6F = Υ (C.8)

e−3A+ϕdH(e3A−ϕΨ2) = K (C.9)

with

Υ =1
2(−1)|Ψ1|(r∗

1 + t∗2)Ψ2 + 1
2(−1)|Ψ1|(r2 + t1)Ψ̄2 + 1

2(s1
m)∗γmΨ̄1 + 1

2(−1)|Ψ1|s2
mΨ̄1γ

m

+ 1
2[u1

m + (p2
m)∗]γmΨ1 + 1

2(−1)|Ψ1|[(u2
m)∗ + p1

m]Ψ1γ
m

+ 1
2(q2

mn)∗γmΨ2γ
n − 1

2q
1
mnγ

nΨ̄2γ
m

K =1
2(−1)|Ψ1|t2Ψ2 −

1
2(−1)|Ψ1|t1Ψ̄2 + 1

2(u1
m + p2

m)γmΨ2 + 1
2(−1)|Ψ2|(u2

m + p1
m)Ψ2γ

m

+ 1
2q

1
mnγ

nΨ̄1γ
m − 1

2q
2
mnγ

mΨ1γ
n. (C.10)

C.1 String-like supersymmetry breaking

Let us now specify this expansion to the most general case of pure string-like supersym-
metry breaking. We first impose domain-wall BPSness, namely

K = 0, (C.11)

which gives the following constraints on the supersymmetry breaking parameters

t1 = t2 = 0 (C.12)

u1
m = −1

2(1 + iJ1)kmp
2
k (C.13)

u2
m = −1

2(1 + iJ2)kmp
1
k (C.14)

(1 + iJ2)kmq
1
kn = 0 (C.15)

(1 + iJ1)kmq
2
kn = 0, (C.16)
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then we impose the gauge BPSness, which amounts to requiring Υ to be purely imaginary,
which yields

r1 = −r2 ≡ r (C.17)

q1
mn = q2

nm ≡ qmn (C.18)

s1
m = 1

2(1 + iJ1)kmp
2
k − (p2

m)∗ (C.19)

s2
m = 1

2(1 + iJ2)kmp
1
k − (p1

m)∗. (C.20)

Imposing these constraints, the internal spinors describing the pure D-string super-
symmetry breaking read

V1 = rη∗
1 + (p2

m − (p2
m)∗)γmη1 V2 = −rη∗

2 + (p1
m − (p1

m)∗)γmη2 (C.21)

S1 = −p2
mγ

mη1 S2 = −p1
mγ

mη2 (C.22)

U1
m = p1

mη1 + qmnγ
nη∗

1 U2
m = p2

mη2 + qnmγ
nη∗

2. (C.23)

The most general D-string supersymmetry breaking term is therefore

Υ =1
2(−1)|Ψ1|(r∗Ψ2 − rΨ̄2) + (1

4(1− iJ1)km(p2
k)∗ − 1

2p
2
m)γmΨ̄1

+ (−1)|Ψ1|(1
4(1 + iJ2)kmp

1
k −

1
2(p1

m)∗)Ψ̄1γ
m

− (1
4(1 + iJ1)kmp

2
k −

1
2(p2

m)∗)γmΨ1

− (−1)|Ψ1|(1
4(1− iJ2)kmp

1
k −

1
2p

1
m)Ψ1γ

m

+ 1
2(qmn)∗γmΨ2γ

n − 1
2qmnγ

mΨ̄2γ
n. (C.24)

The non-supersymmetric backgrounds presented in IV.2.1b) have the following supersym-
metry breaking parameters

r = 0 (C.25)

p1
m = eA(−1)|Ψ1|+1

[1
2J

k
2m(−δnk + 1

2Λnk)αn + 1
4ΛnmαqJqn1 (C.26)

+3i
2 (−δnm + 1

2Λnm)αn + i

4J
k
2mΛnkαqJqn1

]
(C.27)

p2
m = eA

[
(−1)|Ψ1|+1Jk1mΛknαqJnq2 −

1
2((−1)|Ψ2|δnm + (−1)|Ψ1| 1

2Λmn)αn (C.28)

−3i(−1)|Ψ1|ΛmnαqJnq2 −
i

2J
k
1m((−1)|Ψ2|δnk + (−1)|Ψ1| 1

2Λkn)αn
]

(C.29)

qmn =− eA

2 αp
[
(−1)|Ψ1|Λmq(Ωqp

2 n)∗ − ΛqnΩpq
1 m

]
, (C.30)
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where J1,2 are the (almost) complex structures defined by η1 and η2

J1,2
m
n = i

∥η1,2∥
η†

1,2γ
m
nη1,2, (C.31)

and Ω1,2mnp are the (3, 0)−forms with respect to the (almost) complex structures
defined by η1 and η2:

Ω1,2mnp = 1
∥η1,2∥

ηT1,2γmnpη1,2. (C.32)

In order to write down the supersymmetry breaking parameters of the non-supersymmetric
backgrounds with both SSB and DWSB contributions presented in c), one just have to
add the pure DWSB parameters given in Appendix B of [44] to the one above.

The above supersymmetry breaking parameters correspond to the following decom-
position of the supersymmetry breaking term in (IV.45) on the SU(3)×SU(3) structure
defined by the two pure spinors

dH(e2A−ϕImΨ1) =e3A−ϕ
(
γmΨ1

[
(−1)|j|+1ΛmnαpJnp2 −

i

2αn((−1)|Ψ2|δnm + (−1)|j| 1
2Λmn)

]
+ γmΨ̄1

[
(−1)|j|+1ΛmnαpJnp2 + i

2αn((−1)|Ψ2|δnm + (−1)|j| 1
2Λmn)

]
+ Ψ1γ

m
[
−1

4ΛnmαpJpn1 −
i

2αn(−δnm + 1
2Λnm)

]
+ Ψ̄1γ

m
[
−1

4ΛnmαpJpn1 + i

2αn(−δnm + 1
2Λnm)

]
+ i

4γ
mΨ2γ

nαp
[
(−1)|j|Λmq(Ωqp

2 n)∗ − ΛqnΩpq
1 m

]
− i4γ

mΨ̄2γ
nαp

[
(−1)|j|ΛmqΩqp

2 n − Λqn(Ωpq
1 m)∗

])
. (C.33)

C.2 Pure spinors and D-term supersymmetry-breaking

In this Section we write down the most general pure spinor expansion of the modified
pure spinor equations respecting (IV.357).

We first impose the gauge BPSness (IV.303), which gives

r1 + t2 =− (r2 + t1) (C.34)

s1
m =− [u1

m + (p2
m)∗] (C.35)

s2
m =− [u2

m + (p1
m)∗] (C.36)

q1
mn = q2

nm . (C.37)
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Then, imposing the condition (IV.357) is equivalent to

u1
m =− 1

2(1 + iJ1)km(p2
k)∗ s1

m = −1
2(1− iJ1)km(p2

k)∗ (C.38)

u2
m =− 1

2(1 + iJ2)km(p1
k)∗ s2

m = −1
2(1− iJ2)km(p1

k)∗ , (C.39)

where J1,2 are the (almost) complex structures defined by η1 and η2

J1,2
m
n = i

∥η1,2∥
η†

1,2γ
m
nη1,2. (C.40)

This results in

Υ =1
2(−1)|Ψ1|(r∗

1 + t∗2)Ψ2 −
1
2(−1)|Ψ1|(r1 + t2)Ψ̄2

+ 1
2(q1

nm)∗γmΨ2γ
n − 1

2q
1
nmγ

mΨ̄2γ
n (C.41)

K =1
2(−1)|Ψ1|t2Ψ2 −

1
2(−1)|Ψ1|t1Ψ̄2 + iIm(p2

m)γmΨ2 + (−1)|Ψ2|iIm(p1
m)Ψ2γ

m

+ 1
2q

1
mnγ

nΨ̄1γ
m − 1

2q
1
mnγ

nΨ1γ
m. (C.42)

The polyforms Θ and Ξ in (IV.360) and (IV.361) then take the form

Θ = i

2e
A−ϕ

[
(−1)|Ψ1|(t2 + 4t∗1)Ψ1 + (−1)|Ψ1|(t1 + 4t∗2)Ψ̄1

− 2iIm(p2
m)γmΨ2 + (−1)|Ψ2|2iIm(p1
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m

+ q1
mnγ
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m + q1

mnγ
nΨ̄1γ

m
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(C.43)

Ξ =1
2e

A−ϕ
[
(−1)|Ψ1|(r∗

1 + t∗2)Ψ2 + (−1)|Ψ1|(r1 + t2)Ψ̄2

− q1∗
mnγ

nΨ2γ
m − q1

mnγ
nΨ̄2γ

m
]
. (C.44)

Plugging the supersymmetry breaking expansion (C.42) in (IV.341) and using (C.38) and
(C.39) gives

u1
R = u2

R = 0. (C.45)

Specifying the supersymmetry breaking terms violating the D-string BPSness condition

(C.41) to the case of Subsection IV.3.4 gives

Υ =1
2
[
eA(−x23 + x32)ẽ1 + e−A(x13 − x31)ẽ2 + e−A(−x12 + x21)ẽ3

+ eA(y23 − y32)ẽ4 + e−A(−y13 + y31)ẽ5 + e−A(y12 − y21)ẽ6

+ e−A(a− x11 − x22 − x33)ẽ1 ∧ ẽ2 ∧ ẽ3 − e−A(y23 + y32)ẽ1 ∧ ẽ2 ∧ ẽ5
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+ e−A(−b+ y11 + y22 − y33)ẽ1 ∧ ẽ2 ∧ ẽ6 + e−A(b− y11 + y22 − y33)ẽ1 ∧ ẽ3 ∧ ẽ5
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, (C.46)

with

xij =1
2e

2A−ϕRe{iq1
i,j+3 + iq1

i+3,j − q1
ij − q1

i+3,j+3} (C.47)

yij =1
2e

2A−ϕIm{+q1
ij + q1

i+3,j+3 − iq1
i,j+3 − iq1

i+3,j} (C.48)

a =− 2e2A−ϕRe(r1 + t2) (C.49)

b =2e2A−ϕIm(r1 + t2). (C.50)
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Sujet : Géometrie Généralisée (Exceptionnelle) des vides
non-supersymétriques avec Flux

Résumé : La construction de la théorie des cordes repose sur une symétrie reliant les bosons
et les fermions, appelée supersymétrie, et qui doit être brisée à basse énergie. Les solutions
supersymétriques de la théorie des cordes sont nettement plus simples que leurs homologues non-
supersymétriques et peuplent donc la majorité de la littérature. Cependant, la supersymétrie
peut être spontanément brisée à une énergie arbitrairement élevée. Dans cette thèse, nous étu-
dions donc des solutions de supergravité de type II, une limite classique à basse énergie de la
théorie des cordes, qui sont non-supersymétriques. Cette étude se place dans le cadre de la
géométrie complexe généralisée, une généralisation de la géométrie différentielle qui unifie les
transformations des coordonnées spatio-temporelles et les transformations de jauge de l’un des
potentiels de la théorie des cordes, appelé le champ B. Nous construisons d’abord de nou-
velles solutions de la supergravité de type II, où le mécanisme de brisure de la supersymétrie
est dicté par la notion généralisée de stabilité pour les objets étendus qui sourcent les flux de
supergravité. Nous dérivons ensuite une expression généralisée pour les flux de supergravité non-
supersymétriques, et l’utilisons pour dériver les contraintes que les solutions de supergravité de
type II non-supersymétriques doivent respecter afin que leurs théories effectives à basse énergie
appartiennent à la classe bien connue de la supergravité quadridimensionelle N = 1. Enfin, nous
décrivons les solutions non-supersymétriques de la supergravité de type II dans le cadre de la
géométrie généralisée exceptionnelle, un formalisme qui unifie les transformations des coordon-
nées spatio-temporelles et les transformations de jauge de tous les potentiels de la théorie des
cordes.

Mots clés : Théorie des cordes, compactification avec flux, géometrie généralisée, brisure de
supersymétrie, calibrations.
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