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Abstract

Quantum information promises to revolutionize our world, from the way in which we
communicate to the way in which we compute, deriving its power directly from the
laws that govern the behavior of nature on extremely small scales – quantum mechanics.
In the near future, the hardware of possibly useful quantum computers is expected to
remain very expensive and thus out of reach for most interested end users. In such a
world, it is an important problem to provide security guarantees for customers who
wish to remotely instruct quantum servers, by keeping their data private (blindness)
and checking the correctness of the results (verification). This functionality of secure
delegated quantum computing received a lot of attention during recent years, but still
admits many open questions.

In this thesis, we explore the (im)possibility of securing delegated quantum compu-
tations in different settings: what is the hardware that the client needs trusted access
to, what is the minimum hardware required by the server, and how must the parties
communicate? This work is driven by the motivation to break down the barriers that
keep us from securing and verifying quantum computations in practice, by identifying
and removing unnecessary overheads.

We set out by questioning the necessity of quantum communication between the
client and the server, and find that, while in specific situations classical communication is
entirely sufficient, most generally the security of delegation protocols relies irreplaceably
on the very quantumness of the information exchanged between the parties. This proves
that quantum communication is indeed an essential asset in our cryptographic toolbox.

We then shift our focus to the server that was suffering from impractical overheads in
previous attempts at quantum verification. We show that for a large class of interesting
quantum computations, there is no fundamental need to reserve extra hardware for any
cryptographic techniques. Indeed, we give concrete constructions of secure protocols
that achieve blindness and verification on hardware of the same size that would be
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required to perform the original, unsecured computation, and provide a systematic way
of optimizing their efficiency in customized settings.

Our journey then takes us to the problem of quantum secure multi-party computation,
a generalization of the previous functionality to more than two participating, mutually
distrusting parties. We explore how the improvements that we obtained in the two-party
setting can be transferred to the multi-party case, and finish with the presentation of
two actual experiments that demonstrate the practical impact and real-world feasibility
of the results obtained during the course of this thesis.
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Chapter 1

Introduction

If quantum machines eventually turn out to eclipse their classical counterparts with
respect to computational power, how will we, caught within the limitations of our
restricted means, be able to possibly witness this miracle? How will we be able to
develop trust in the results that more and more powerful quantum computers present
us once we are out of methods to obtain them using devices familiar to us?

In this thesis, we offer a concrete approach to this epistemological conundrum through
the study of protocols for the verification of quantum computation. In particular, we
ask:

What minimal assumptions or trust in hardware do we require to secure
quantum computations performed on an untrusted and possibly maliciously
acting device?

Quantum information and computing. At first (human) glance, our world seems
classical. However, at very small scales, our world behaves fundamentally differently from
what humankind believed for a long time. The discovery of these strange phenomena and
the proposal of the theory of quantum mechanics at the beginning of the 20th century
eventually paved the way towards a new paradigm in the theory of information. While
classical computers operate on bits that are restricted to the binary values of 0 and 1,
their quantum analogue, qubits, can exist in superpositions of these two poles. Even
though a qubit can take infinitely many different states, this does not mean that an
infinite amount of information can be stored in it, due to limited accessibility of the full
description of a quantum state. According to the laws of quantum mechanics, information
about a quantum system can only be accessed by the means of measurements, a process
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CHAPTER 1. INTRODUCTION

that can be thought of as the extraction of a limited amount of classical information
about the quantum system while irreversibly changing the system itself. This inherent
restriction leads to other principles of quantum information that might appear odd
to our classical intuition. As one example, the no-cloning principle states that there
is no general way of copying an unknown quantum state. Quantum information can
therefore not be distributed just as classical information and requires special treatment
in communication. While this might sound like a disadvantage, this property can also be
incredibly powerful in cryptographic contexts, as we will soon see. One final non-classical
feature of quantum information that deserves to be mentioned at this point is its ability
to retain entanglement. At the core, this property allows the state of one qubit to be
inherently connected to the state of another, even when separated by physical distances.

This behavior of quantum systems opens up new possibilities for computation and
communication. As one of the most famous examples, Shor’s algorithm [Sho99] manages
to efficiently factor large numbers on a quantum computer. It is currently not known
whether it is possible to achieve this on a classical computer. But also beyond tackling
abstract mathematical problems, scalable quantum computers are believed to have a
drastic impact on our world.

Cryptography. In some sense, cryptography can be seen as a tool in the hands of the
weak in the struggle for justice and equality. Cryptography is the science and practice
of secure communication, seeking to protect information from unauthorized access or
alteration. Through the use of mathematical algorithms, it strives to equilibrate the
imbalance between weak parties and much more powerful, potentially malicious actors.

Maybe surprisingly, classical cryptography has been very successful in the design
of algorithms that achieve a wide array of functionalities, from basic primitives such
as private and authenticated communication, to advanced tools like secure multi-party
computation, that allows multiple, each other distrusting parties to jointly evaluate a
function over their secret inputs.

With the advent of quantum computing, cryptography needs to be rethought to
adapt to a quantum world. Quantum adversaries will be able to outperform classical
adversaries and stage even more powerful attacks against our cryptosystems. We will
hence need to update them to keep secure. This is the goal of post-quantum cryptography.
At the same time, the distinct properties of quantum information can also be used to
our advantage, to create new cryptographic protocols in which also the honest parties
wield the quantum power, giving rise to truly quantum cryptography.

2



This thesis is drawing from both of these fields, and employs post-quantum and
quantum primitives to construct better quantum cryptography.

Secure delegated quantum computing. Any first useful quantum computers to
be available will be very expensive and will most likely require frequent calibration,
making them inaccessible to most potential users. It seems therefore likely that quantum
computing will be offered as a cloud service, to which customers could submit their
tasks on demand. Indeed, this development can already be observed with currently
available experimental quantum devices. In such a scenario, clients will want to ensure
confidentiality of their data and algorithms, and the integrity of their computations.

Several protocols have been proposed for this purpose, one of them being the Universal
Blind Quantum Computing (UBQC) protocol [BFK09]. It allows a client to delegate a
universal computation to a more powerful quantum server while keeping their input,
output, and algorithm private, or blind. To this end, the client is required to operate on
single qubits only, all other of the client’s operations being classical.

More protocols have been developed to additionally provide verification, which
empowers the client to check the obtained results for correctness [FK17; Aha+17; Bro18;
GKK19]. Further works in this line of research [KW17b; Mah18b; XTH20] are aimed at
reducing the resources consumed by the protocols, in terms of (quantum) computing
power of client and server, and their (quantum) communication.

However, no proposal has so far managed to optimize these schemes sufficiently to
reach the regime of current implementability, because of impermissible computation or
communication overheads. It is the goal of this thesis to finally close the gap between
our theoretical protocols and our practical quantum abilities, and to present the first
readily realizable schemes for secure delegated quantum computing.

Contributions

The contributions of this work are split into the following six main chapters.

Chapter 3: Classical-client delegated quantum computing. Many protocols
for the secure delegation of quantum computing require the client and server to establish
the necessary correlations using communication via quantum channels, rendering them
unfeasible before the widespread deployment of a reliable quantum network.

3



CHAPTER 1. INTRODUCTION

This naturally leads to the question of whether it is possible to securely delegate
quantum computations in a setting where client and server are restricted to classical
communication and do not have access to other kind of shared quantum resources. More
generally, we are interested in the fundamental question:

Can quantum channels generally be securely replaced by protocols relying
only on classical communication?

We formalize this problem by asking about the possibility of securely implementing
a functionality called classical-client remote state preparation (RSPCC) that allows a
client to remotely prepare quantum states over a classical channel. We investigate this
question in the Abstract Cryptography framework which guarantees a strong sense of
general-purpose security, context-insensitive and robust to arbitrary composition.

In Chapter 3 which is based on publication [Bad+20] we answer this question in
the negative. Even for computational security only, any classically constructed ideal
RSP resource must leak the full classical description of the prepared quantum state to
the server. We further study the possibility of using RSPCC in the restricted context of
Universal Blind Quantum Computing (UBQC), and find that while generally composable
security still remains impossible, a concrete implementation can be found that achieves
security in a weaker, but yet useful game-based notion.

Chapter 4: Quantum verification with minimal overhead. Previously existing
protocols for the blind and verifiable delegation of quantum computation were suffering
from high overheads and over-sensitivity to noise: device imperfections would trigger
the same detection mechanisms as malicious attacks, resulting in perpetually aborted
computations. This leads to the fundamental question of whether these overheads are
inherent and necessary for quantum verification, or whether they could, in principle, be
avoided.

Do protocols for the verified delegation of quantum computations necessarily
require more powerful quantum hardware than would be needed to perform
the target computation in an unsecured manner?

This problem can also be seen as asking whether all available quantum hardware
can be used to perform the algorithm of interest, or whether at least a part of it must
be wasted to secure its execution.

4



In Chapter 4 which is based on publications [Kas+21; Lei+21] we provide an answer
to this question by introducing the first blind and verifiable protocol for delegating BQP
computations to a quantum server with repetition as the only overhead. The protocol
achieves composable, statistical security with only negligible soundness error and can
tolerate a constant amount of global noise. This represents an important step towards
bringing the verification of quantum computations closer to near-term feasibility.

Chapter 5: A framework for quantum verification. In an attempt to further
optimize protocols for verifiable blind quantum computing, in Chapter 5, which is based
on publication [Kap+22], we search for sufficient conditions for generally composable
security and uncover a fundamental correspondence between error-detection and ver-
ification. As a direct application, we demonstrate how to systematize the search for
new efficient and robust blind verification protocols and give a concrete construction for
the verification of BQP computations beating previously known protocols in terms of
efficiency.

Chapter 6: Quantum secure multi-party computation. Secure multi-party com-
putation (SMPC) protocols allow several mutually distrusting parties to collectively
compute a function over their joint inputs.

In Chapter 6, based on publication [Kap+23], we introduce a protocol that lifts
classical SMPC to quantum SMPC in a composable and statistically secure way, even for
a single honest party. Our proposal is a generalization of efficient single-client verification
protocols to the multi-client case and, hence, unlike previous SMPC protocols, requires
only a very limited overhead compared to the unsecured target computation.

As a building block in the construction of the new protocol, we find two cryptographic
primitives of independent interest. The first is a modular way to turn single-client remote
state preparation (RSP) into multi-client collaborative remote state preparation (CRSP).
We further present a new technique for quantum verification that requires the client to
prepare state only in a single plane of the Bloch sphere. Previous comparable verification
protocols required the preparation of states from more than a single plane. In the course
of proving the security of this new verification protocol, we uncover a fundamental
invariance inherent to measurement-based quantum computing.

Chapters 7 & 8: Experimental realizations of delegated quantum computing.
While the core part of this thesis is of a theoretical nature, we also present two novel
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experimental realizations of single-client and multi-client secure delegated quantum
computing, respectively.

Chapter 7 is based on publication [Drm+23b] and presents the first hybrid matter-
photon implementation of verifiable blind quantum computing with a single client. The
experiment uses a trapped-ion quantum server and a photonic client that are connected
by a fibre-optic quantum network link. The implementation admits all main features
necessary for scalability, including the avoidance of post-selection, rendered possible by
the availability of memory qubits.

Chapter 8, which is based on publication [Pol+23], generalizes this setting to the
case of multiple weak clients that collaboratively delegate a quantum computation to
a more powerful quantum server, thereby implementing multi-client blind quantum
computing. While this entirely photonic experiment does not feature the verifiability of
the target computation, it is based on a novel quantum network architecture, the Qline,
designed with a focus on scalability and ease of deployment. In particular, the clients
only need to be able to perform single-qubit operations and do not require access to
trusted state preparations or measurements, making this the first protocol of its kind.

Publications. This thesis is based on the results presented in the following papers,
listed in chronological order:

• [Bad+20] rules out the existence of composably secure protocols that could replace
a quantum channel using only classical communication. However, it proves that in
the restricted scenario of UBQC, classical communication suffices to achieve weaker
non-composable security. This work was published in the conference proceedings
of ASIACRYPT 2020.

• [Kas+21] presents a new, highly efficient, and noise-robust protocol for the verified
and blind delegation of pseudodeterministic quantum polynomial-time compu-
tations. [Lei+21] generalizes these results to the larger class of bounded-error
quantum polynomial-time computations (BQP). This work was published in PRX
Quantum.

• [Kap+22] introduces a framework for the design of blind verification protocols
which uncovers a deep connection between the fields of quantum verification, error
detection, and error correction. This framework allows for the construction of even
more efficient and customizable protocols for the secure delegation of quantum
computation. This work is currently under review.
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• [Kap+23] constructs a quantum secure multi-party computation protocol optimized
for resource efficiency, using the tools from the antecedent works on quantum
verification. This work is currently under review.

• [Drm+23b] demonstrates that quantum verification has reached practical imple-
mentability by presenting an experimental realization of a single-client secure
delegation of quantum computation, achieving both blindness and verifiability.
This work was accepted for publication in PRL.

• [Pol+23] pushes the boundaries of the practically possible further by experimentally
implementing a multi-client blind delegation of quantum computation on an entirely
photonic setup. This work was published in Nature Communications.

How to read this thesis

Chapter 2 gives an overview of the preliminary knowledge required to read this thesis.
It focuses on the basic principles of quantum computing and quantum information, and
explains fundamental concepts of cryptography that are of subsequent importance.

In Chapters 3-8, the main research contributions of this thesis are presented. Each of
the chapters is based on a different publication and attempts to be as self-contained as
possible. It is, therefore, entirely possible and up to the reader to directly jump to the
chapter of interest. Every chapter starts with its own abstract, which briefly summarizes
its main research questions and contributions.

The final Chapter 9 wraps up this work by recalling the main milestones of this
journey through the realm of delegated quantum computing. We conclude by presenting
a few interesting open questions that hopefully the invested reader will feel challenged
to answer.
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Chapter 2

Preliminaries

In this chapter, we present a selection of concepts important for the understanding of
this thesis: Abstract Cryptography, measurement-based quantum computing, and basic
protocols for delegated quantum computing. This overview is not meant to replace full
courses on these topics, but rather to gather some of the basic concepts required to read
this thesis.

We assume basic familiarity with quantum information and computing; for a detailed
introduction, see [NC00] (note that henceforth all Hilbert spaces are assumed to have a
finite dimension).

2.1 (Abstract) Cryptography

The definition of game-based security is pretty straightforward: we define a game between
a challenger and an (arbitrary) adversary: a protocol is secure if no adversary can win
this game with “good” probability. The problem with this approach is that one game
describes only one possible attack, and it might be hard to list all the possible attacks
against a protocol. Therefore, a protocol that proves to be secure in a specific game
might not be secure in an arbitrary environment (composed with other protocols in
parallel or in series).

Composable security on the other hand takes a different approach to phrasing the
guarantees achieved by a protocol. Loosely speaking, a protocol is composable when
it is shown to be secure in an arbitrarily adversarial environment1, and where secure

1Of course, the environment may still be limited to “efficient” computations.
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means that it achieves a well-defined ideal (secure-by-definition) resource. This means
the protocol retains the desired functionality even if it is composed of other instances
of its own or a completely different protocol. There are several approaches which
provide a general framework to study this cryptographic definitions [Can01; BPW03;
MR11], but we will focus in this thesis on Abstract Cryptography (AC) (also known
under the term Constructive Cryptography (CC)). In this section, we provide relevant
terminologies required to analyze composable security in this framework, introduced
by Maurer and Renner in [MR11]. For more details, we refer readers to some of the
previous works [Mau11; MR11; Dun+14; DK16].

Note, that the AC framework is equivalent to the Quantum Universal Composability
(Q-UC) Model of [Unr10] if a single adversary controls all corrupted parties – which is
the case in this work. Therefore, any protocol which is secure in the Q-UC model is
also secure in the AC model considered here.

The basic elements of AC are systems: objects with well-distinguished and labeled
interfaces. The system uses interfaces to exchange information with the outside world
and/or other systems. Systems are grouped into distinct classes: resources, converters,
filters, and distinguishers.

In this framework, the purpose of a secure protocol π is, given a number of available
resources R, to construct a new resource – written as πR. This new resource can be
itself reused in a future protocol.

The actions of all honest players in a given protocol are represented as a sequence of
efficient CPTP maps acting on their internal quantum registers – which may contain
communication registers, both classical and quantum. An n-party quantum protocol
is therefore described by π = (π1, . . . , πn) where πj is the aforementioned sequence of
efficient CPTP maps executed by party j, called the converter of party j.

A resource R is described as a sequence of CPTP maps with an internal state. It
has input and output interfaces describing which party may exchange states with it.
Some interfaces may be filtered, meaning that they are only accessible to a corrupted
party.2 Resources work by having the participating parties sending it states at its
input interfaces, applying the specified CPTP map after all input interfaces have been
initialised and then outputting the resulting state at its output interfaces in a specified
order. Classical resources are modelled by considering that the input state is measured
in the computational basis upon reception and the output is a measurement result of its

2In this thesis, filtered input interfaces consist of single bits, set to 0 in the default, honest case.
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internal state.
In order to define the security of a protocol, we need to give a pseudo-metric on

the space of resources. The security analysis then consists of considering a special type
of converters called distinguishers. The distinguisher’s aim is to discriminate between
resources R0 and R1 which have the same input and output interfaces. It attaches
to the inputs and outputs of one of the resources, interacting with it according to its
own – possibly adaptive – strategy, and outputs a single bit indicating its guess as to
which resource it had access to. Two resources are said to be indistinguishable if no
distinguisher can make this guess with good probability.

Definition 2.1.1 (Indistinguishability of Resources). Let ε(η) be a function of security
parameter η and R0 and R1 be two resources with the same input and output interfaces.
Then, these resources are ε-statistically-indistinguishable, denoted R0 ≈stat,ε

R1, if for all
(unbounded) distinguishers D, we have:

|Pr[b = 1 | b← DR0]− Pr[b = 1 | b← DR1]| ≤ ε. (2.1)

Analogously, R0 and R1 are said to be computationally indistinguishable if this holds for
all quantum polynomial-time distinguishers.

The correctness of a protocol π applied to resource R can be expressed as the
indistinguishability between the resource πR and a desired target resource S.

The security of the protocol is captured by the fact that the resources remain
indistinguishable if we allow some parties to deviate, in the sense that they are no longer
forced to use the converters defined in the protocol but can use any other CPTP maps
instead. This is done by removing the converters for those parties in Equation 2.1,
keeping only πMc = {πj}j /∈M where M is the set of corrupted parties. On the other
side, there must exist a converter called a simulator which attaches to the interfaces of
S for corrupted parties j ∈M and aims to reproduce the transcript of honest players
interacting with the corrupted ones. The security is formalised as follows in Definition
2.1.2.

Definition 2.1.2 (Construction of Resources). Let ε(η) be a function of security param-
eter η. We say that an n-party protocol π ε-statistically-constructs (or realizes) resource
S from resource R against adversarial patterns P ⊆ ℘([N ]), denoted R

π−−→
ε

S, if:

1. It is correct: πR≈
stat,ε

S⊥, where ⊥ filters the malicious interfaces;
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2. It is secure for all subsets of corrupted parties in the pattern M ∈ P: there exists
a converter called simulator σM such that πMcR≈

stat,ε
SσM .

Analogously, computational correctness and security are given for computationally
bounded distinguishers as in Definition 2.1.1, and with a quantum polynomial-time
simulator σM .

The intuition behind this definition is that if no distinguisher can know whether he
is interacting with an ideal resource or with the real protocol, then it means that any
attack done in the “real world” can also be done in the “ideal world”. Because the ideal
world is secure by definition, so is the real world. Using such a definition is particularly
useful to capture the “leakage” of information to the server. This is quite subtle to
capture in the real world, but very natural in the ideal world.

In this thesis, we instantiate a general model of computation to capture general
quantum computations within converters which ensures that they follow the laws of
quantum physics (e.g., excluding that the input-output behavior is signaling). Indeed,
without such a restriction, we could not base our statements on results from quantum
physics, because an arbitrary physical reality must not respect them, such as cloning of
quantum states, signaling, and more. More specifically, in this work, we assume that any
converter that interacts classically on its inner interface and outputs a single quantum
message on its outer interface can be represented as a sequence of quantum instruments
(which is a generalization of CPTP maps taking into account both quantum and classical
outputs, a concept introduced by [DL70], see Definition 2.1.3) and constitutes the most
general expression of allowed quantum operations. As one example, the representation
of a protocol as a sequence of quantum instruments is depicted in Figure 3.4.

Definition 2.1.3 (Quantum Instrument). A map Λ : Cn×n → {0, 1}m1 × Cm2×m2

is said to be a quantum instrument if there exists a collection {Ey}y∈{0,1}m1 of trace-
non-increasing completely positive maps such that the sum is trace-preserving (i.e. for
any positive operator ρ, ∑y Ey(ρ) = Tr(ρ)), and, if we define ρy = Ey(ρ)

Tr(Ey(ρ)) , then
Pr[ Λ(ρ) = (y, ρy) ] = Tr(Ey(ρ)).

More precisely, this model takes into account interactive converters (and models
the computation in sequential dependent stages). This is similar to if one would in
the classical world instantiate the converter by a sequence of classical Turing machines
(passing state to each other) [Gol01].

We can now present the General Composition Theorem (Theorem 1 from [MR11]).
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Theorem 2.1.4 (General Composition of Resources). Let R, S and T be resources, α,
β and id be protocols (where protocol id does not modify the resource it is applied to).
Let ◦ and | denote respectively the sequential and parallel composition of protocols and
resources. Then the following implications hold:

• The protocols are sequentially composable: if αR ≈
stat,εα

S and βS ≈
stat,εβ

T then (β ◦
α)R ≈

stat,εα+εβ
T

• The protocols are context-insensitive: if αR ≈
stat,εα

S then (α | id)(R | T) ≈
stat,εα

(S | T)

Combining the two properties presented above yields concurrent composability (the
distinguishing advantage cumulates additively as well).

The computational versions of these definitions are obtained by quantifying over
quantum polynomial time parties. Composing a statistically-secure protocol with
a computationally-secure protocol is possible provided that the simulator for the
statistically-secure one runs in expected polynomial time. The resulting protocol is of
course only computationally secure.

Comments on the Security Framework. First, we always consider in this work a
single Adversary controlling all the corrupted parties. As explained above, it is therefore
possible to instantiate all purely classical Resources using any classical protocol which
is secure in the Q-UC framework of [Unr10] with the same security guarantees. It is
also possible to instantiate them with any classical UC-secure protocol whose security
relies on a quantum-hard problem thanks to Theorem 18 (Quantum Lifting Theorem –
Computational) from [Unr10].

Also, it is impossible to have fairness of output distribution in the case of a dishonest
majority, the malicious parties can always choose to receive their output before the
honest players. This is modelled in the resources by a filtered bit fj at each player’s
interface, indicating that it receives the output before others. The corrupted players
can then decide to make the honest players abort before receiving their output.

2.2 Measurement-Based Quantum Computing

The Measurement-Based Quantum Computing (MBQC) model of computation emerged
from the gate teleportation principle. It was shown in [RB01] that any quantum
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computation can be implemented by performing single-qubit measurements on a type of
entangled states called graph states.

Given a graphG = (V,E), and input and output vertices I, O ⊆ V , the corresponding
graph state is generated by initialising a qubit in state |+〉 for each vertex in V and
performing entangling operator CZ between qubits whose vertices are linked by an edge
in E. The qubits are measured according to an order given by a function f : Oc → Ic

called the flow of the computation.
We define the rotation operator around the Z axis of the Bloch sphere by an angle θ as

Z(θ) =

1 0

0 eiθ


 and |+θ〉 = Z(θ) |+〉 = 1√

2(|0〉+ eiθ |1〉). For approximate universality,

we can restrict the set of angles to Θ =
{
kπ
4

}
k∈{0,...,7}

[BFK09]. The measurement
associated to an angle φ ∈ Θ is given by the basis |±φ〉. We consider from now on that
this measurement is performed by rotating the state to be measured using the operation
Z(−φ) and then measuring in the X-basis.

Later measurements may depend on the outcomes of previous measurements. Let
{φ(v)}v∈Oc be a set of default measurement angles for non-output qubits. Let SX(v)
and SZ(v) be respectively the X and Z dependency-sets for qubit v.3 The measurement
result s(w) for qubit w ∈ SX(v) ∪ SZ(v) induces Pauli corrections on qubit v which are
equivalent to measuring qubit v with corrected angle φ′(v) = (−1)sX(v)φ(v) + πsZ(v),
where sX(v) = ⊕

w∈SX(v) s(w) and sZ(v) = ⊕
w∈SZ(v) s(w).

The special case of classical inputs is handled by adding an angle x(v)π to the
measurement angle φ(v) of input qubit v ∈ I. Classical outputs correspond to the case
where all qubits are measured.

The classical input-output computation is defined by a graph G = (V,E), input
and output vertices I, O ⊆ V , a set of default measurement angles {φ(v)}v∈V and a
flow function f : Oc → Ic. To perform the computation, one generates the graph state
associated with G, and performs the measurements with angles φ′(v) using the default
angles and the flow. The outcome is defined by bit-string {s(v)}v∈O.

Formally, an MBQC computation is defined by a measurement pattern as follows.

Definition 2.2.1 (Measurement Pattern). A pattern in the Measurement-Based Quan-
tum Computation model is given by a graph G = (V,E), input and output vertex sets I
and O, a flow f which induces a partial ordering of the qubits V , and a set of measurement
angles {φ(i)}i∈Oc in the X − Y plane of the Bloch sphere.

3These sets are also given by the flow, see [HEB03; DK06] for details.
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Execution of MBQC patterns can be delegated to servers using Protocol 1, thus
alleviating the need for the client to own a quantum machine.

Protocol 1 Delegated MBQC Protocol
Client’s Inputs: A measurement pattern (G, I,O, {φ(i)}i∈Oc , f) and a quantum
register containing the input qubits i ∈ I.
Protocol:
1. The Client sends the graph’s description (G, I,O) to the Server;
2. The Client sends its input qubits for positions I to the Server;
3. The Server prepares |+〉 states for qubits i ∈ Ic;
4. The Server applies a CZ gate between qubits i and j if (i, j) is an edge of G;
5. The Client sends the measurement angles {φ(i)}i∈Oc along with the description

of f to the Server;
6. The Server measures the qubits i ∈ Oc in the order defined by f in the rotated

basis
∣∣∣±φ′(i)

〉
where

sX(i) =
⊕

j∈SX(i)
b(j), sZ(i) =

⊕

j∈SZ(i)
b(j), (2.2)

φ′i = (−1)sX(i)φ(i) + sZ(i)π, (2.3)

where b(j) ∈ {0, 1} is the measurement outcome for qubit j, with 0 being
associated to

∣∣∣+φ′(j)
〉
, and SX(i) (resp. SZ(i)) is the X (resp. Z) dependency

set for qubit i defined by SX(i) = f−1(i) (resp. SZ(i) = {j : i ∈ NG(f(j))});
7. The Server performs the correction ZsZ(i)XsX(i) for output qubits i ∈ O, which it

sends back to the Client.

2.3 Universal Blind Quantum Computing

If the client is able to perform single qubit preparations and use quantum communication,
it can delegate an MBQC pattern blindly [BFK09], meaning that the Server does not
learn anything about the computation besides the prepared graph G, the set of outputs
O and the order of measurements. This is done using Protocol 2.

Note that if the output of the client’s computation is classical, the set O is empty
and the client only receives measurement outcomes. The output measurement outcomes
b(i) sent by the Server need to be decrypted by the Client according to the equation
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Protocol 2 UBQC Protocol
Client’s Inputs: A measurement pattern (G, I,O, {φ(i)}i∈Oc , f) and a quantum
register containing the input state ρC on qubits i ∈ I.
Protocol:
1. The Client sends the graph’s description (G, I,O) and the measurement order

to the Server;
2. The Client prepares and sends all the qubits in V to the Server:4

(a) For i ∈ I, it chooses a random bit a(i). For i ∈ Ic, it sets a(i) = 0.
(b) For i ∈ O, it chooses a random bit r(i) and sets θ(i) = (r(v) + aN(v))π

where aN(i) = ∑
j∈NG(i) a(j). For i ∈ Oc, it samples a random θ(i) ∈ Θ.

(c) For i ∈ I, it sends ⊗i∈I Zi(θ(i))Xa(i)
i (ρC). For i ∈ Ic it sends

∣∣∣+θ(i)
〉
.

3. The Server applies a CZ gate between qubits i and j if (i, j) is an edge of G;
4. For all i ∈ Oc, in the order specified by the flow f , the Client computes the

measurement angle δ(i) and sends it to the Server, receiving in return the
corresponding measurement outcome b(i):

sX(i) =
⊕

j∈SX(i)
b(i)⊕ r(i), sZ(i) =

⊕

j∈SZ(i)
b(i)⊕ r(i), (2.4)

δ(i) = (−1)a(i)φ′(i) + θ(i) + (r(i) + aN(i))π, (2.5)

where φ′(i) is computed using Equation (2.3) with the new values of sX(i) and
sZ(i);

5. The Server sends back the output qubits i ∈ O;
6. The Client applies ZsZ(i)+r(i)

i XsX(i)+a(i)
i to the received qubits i ∈ O.

s(j) = b(j)⊕ r(j), thus preserving the confidentiality of the output of the computation.
To analyze the security of our protocol later, we will require the following Pauli

Twirling Lemma as a way to decompose the actions of an adversary in the blind protocol
above. A Pauli twirl occurs when a random Pauli operator is applied (such as an
encryption and decryption). The result from the point of view of someone who does
not know which Pauli has been used is a state or channel that is averaged over all
possible Pauli operators. This has the effect of removing all off-diagonal factors from the
operation sandwiched between the two applications of the random Pauli, thus making it

4In the original UBQC Protocol from [BFK09], the outputs are prepared by the Server in the |+〉
state and are encrypted by the computation flow. In the verification protocol in which we will use
the UBQC Protocol later, some inputs to auxiliary trap computations may be included in the global
output, meaning that all output qubits must also be prepared by the Client. This does not change the
security properties of the UBQC Protocol.
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a convex combination of Pauli operators.

Lemma 2.3.1 (Pauli Twirling). Let ρ be an n-qubit mixed state and Q,Q′ ∈ Pn two n
qubit Pauli operators. Then, if Q 6= Q′, we have:

∑

P∈Pn
P†QPρP†Q′†P = 0. (2.6)

On the other hand, the following Resource 1 models the abstract security of the
UBQC Protocol 2. It leaks no information to the Server beyond a controlled leak,
but allows the Server to modify the output by deviating from the Client’s desired
computation.

Resource 1 Blind Delegated Quantum Computation
Public Information: Nature of the leakage lρC .
Inputs:

• The Client inputs the classical description of a computation C from subspace
ΠI,C to subspace ΠO,C and a quantum state ρC in ΠI,C .

• The Server chooses whether or not to deviate. This interface is filtered by two
control bits (e, c) (set to 0 by default for honest behaviour). If c = 1, the Server
has an additional input CPTP map F and state ρS.

Computation by the Resource:
1. If e = 1, the Resource sends the leakage lρC to the Server’s interface.
2. If c = 0, it outputs C(ρC) at the Client’s output interface. Otherwise, it waits

for the additional input and outputs TrS(F(ρCS)) at the Client’s interface.

The following Theorem 2.3.2 captures the security guarantees of the UBQC Protocol 2
in the Abstract Cryptography Framework, as expressed in [Dun+14].

Theorem 2.3.2 (Security of Universal Blind Quantum Computation). The UBQC
Protocol 2 perfectly constructs the Blind Delegated Quantum Computation Resource 1 for
leak lρC = (G,O,�G), where �G is the ordering induced by the flow of the computation.

2.4 Quantum Verification

Verifiable protocols allow the Client to check that its computation has been done correctly.
One way to achieve this is by enlarging the graph used for the computation and to
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insert traps. These traps are made from qubits randomly prepared in |+θ〉 states and
disconnected from the sub-graph used for performing the desired computation with
the help of dummy qubits – i.e. randomly initialised qubits sent by the Client in states
{|0〉 , |1〉}. The first verification protocol via trappification was introduced in [FK17].
It was further optimised in the Verifiable Blind Quantum Computation Protocol (or
VBQC) of [KW17b; XTH20], achieving a linear overhead.

Resource 2 captures the security properties of a blind and verifiable delegated
protocol for a given class of computations. It allows a single Client to run a quantum
computation on a Server so that the Server cannot corrupt the computation and does
not learn anything besides a given leakage lρ. We recall the original definition from
[Dun+14, Definition 4.2].

Resource 2 Secure Delegated Quantum Computation
Public Information: Nature of the leakage lρC .
Inputs:

• The Client inputs the classical description of a computation C from subspace
ΠI,C to subspace ΠO,C and a quantum state ρC in ΠI,C .

• The Server chooses whether or not to deviate. This interface is filtered by two
control bits (e, c) (set to 0 by default for honest behaviour).

Computation by the Resource:
1. If e = 1, the Resource sends the leakage lρ to the Server’s interface; if it receives
c = 1, the Resource outputs |⊥〉〈⊥| ⊗ |Rej〉〈Rej| at the Client’s output interface.

2. Otherwise, it outputs C(ρC)⊗ |Acc〉〈Acc| at the Client’s output interface.

Note, that Resource 2 can be seen as a strengthening of Resource 1 by adding verifi-
ability to the blindness guarantees, thereby restricting the power of possibly adversarial
servers.

Trappification is not the only known way to construct verification protocols, although
it is the approach that will be used for large parts of this thesis. For other quantum
verification schemes and concrete protocols, we refer to the survey in [GKK19].

2.5 Notation

Throughout this thesis, we will use the following notations. We denote by Zπ
2 the set of

the 4 angles {0, π2 , π, 3π
2 }, and Zπ

4 = {0, π4 , ..., 7π
4 } the analogous set of 8 angles. If ρ is

18



2.5. NOTATION

a quantum state, [ρ] is the classical representation (as a density matrix) of this state.
For a protocol P = (P1, P2) with two interacting algorithms P1 and P2 denoting the
two participating parties, let r ← 〈P1, P2〉 denote the execution of the two algorithms,
exchanging messages, with output r. We use the notation C to denote the classical
channel resource, that just forwards classical messages between the two parties. For
a set V , ℘(V ) is the powerset of V , the set of all subsets of V . For a set B ⊆ A, we
denote by Bc the complement of B in A, where A will often be the vertex set of a graph
and B a subset of vertices, usually input or output locations. For n ∈ N, the set of all
integers from 0 to n included is denoted [n]. For a real function ε(η), we say that ε(η) is
negligible in η if, for all polynomials p(η) and η sufficiently large, we have ε(η) ≤ 1

p(η) .
For a real function µ(η), we say that µ(η) is overwhelming in η if there exists a negligible
ε(η) such that µ(η) = 1− ε(η).
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Chapter 3

Classical-Client Delegated Quantum
Computing

Secure delegated quantum computing is a two-party cryptographic primitive, where a
computationally weak client wishes to delegate an arbitrary quantum computation to an
untrusted quantum server in a privacy-preserving manner. Communication via quantum
channels is typically assumed such that the client can establish the necessary correlations
with the server to securely perform the given task. This has the downside that all these
protocols cannot be put to work for the average user unless a reliable quantum network
is deployed.

Therefore the question becomes relevant whether it is possible to rely solely on
classical channels between client and server and yet benefit from its quantum capabilities
while retaining privacy. Classical-client remote state preparation (RSPCC) is one of the
promising candidates to achieve this because it enables a client, using only classical
communication resources, to remotely prepare a quantum state. However, the privacy
loss incurred by employing RSPCC as sub-module to avoid quantum channels is unclear.

In this work, we investigate this question using the Abstract Cryptography framework
by Maurer and Renner [MR11]. We first identify the goal of RSPCC as the construction
of ideal RSP resources from classical channels and then reveal the security limitations of
using RSPCC in general and in specific contexts:

1. We uncover a fundamental relationship between constructing ideal RSP resources
(from classical channels) and the task of cloning quantum states with auxiliary
information. Any classically constructed ideal RSP resource must leak to the server
the full classical description (possibly in an encoded form) of the generated quantum
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state, even if we target computational security only. As a consequence, we find
that the realization of common RSP resources, without weakening their guarantees
drastically, is impossible due to the no-cloning theorem.

2. The above result does not rule out that a specific RSPCC protocol can replace the
quantum channel at least in some contexts, such as the Universal Blind Quantum
Computing (UBQC) protocol of Broadbent et al. [BFK09]. However, we show that
the resulting UBQC protocol cannot maintain its proven composable security as
soon as RSPCC is used as a subroutine.

3. We show that replacing the quantum channel of the above UBQC protocol by
the RSPCC protocol QFactory of Cojocaru et al. [Coj+19], preserves the weaker,
game-based, security of UBQC.

This chapter is based on the paper “Security limitations of classical-client delegated
quantum computing” [Bad+20] which is joint work with Christian Badertscher, Alexandru
Cojocaru, Léo Colisson, Elham Kashefi, Atul Mantri, and Petros Wallden, and has been
published in the conference proceedings of ASIACRYPT 2020.

3.1 Introduction

The expected rapid advances in quantum technologies in the decades to come are likely to
further disrupt the field of computing. To fully realize the technological potential, remote
access, and manipulation of data must offer strong privacy and integrity guarantees
and currently available quantum cloud platform designs have still a lot of room for
improvement.

There is a large body of research that exploits the client-server setting defined
in [Chi05] to offer different functionalities, including secure delegated quantum com-
putation [BFK09; MF12; Dun+14; Bro15; Mah18a] 1, verifiable delegated quantum
computation [ABE10; RUV12; FK17; HM15; Bro18; FHM18; Tak+18; Mah18b] 2,
secure multiparty quantum computation [KP17; KMW17; KW17a], quantum fully
homomorphic encryption [BJ15; DSS16]. It turns out that one of the central building
blocks is secure remote state preparation (RSP) that was first defined in [DKL12]. At a
high level, RSP resources enable a client to remotely prepare a quantum state on the

1For more details see review of this field in [Fit17]
2For more details see recent reviews in [GKK19; Vid20]
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server and are, therefore, the natural candidate to replace quantum channel resources
in a modular fashion. These resources further appear to enable a large ecosystem of
composable protocols [DKL12; Dun+14], including in particular the important Universal
Blind Quantum Computation (UBQC) [BFK09] protocol used to delegate a computation
to a remote quantum server who has no knowledge of the ongoing computation.

However, in most of the above-mentioned works, the users and providers do have
access to quantum resources to achieve their goals, in particular to quantum channels in
addition to classical communication channels. This might prove to be challenging for some
quantum devices, e.g. those with superconducting qubits, and in general, it also restricts
the use of these quantum cloud services to users with suitable quantum technology.
Motivated by this practical constrain, [Coj+21] introduced a protocol mimicking this
remote state preparation resource over a purely classical channel (under the assumption
that learning with error problem is computationally hard for quantum servers). This is
a cryptographic primitive between a fully classical client and a server (with a quantum
computer). By the end of the interactive protocol the client has “prepared” remotely
on the server’s lab, a quantum state (typically a single qubit |+θ〉 := 1√

2(|0〉+ eiθ |1〉)).
This protocol further enjoys some important privacy guarantees with respect to the
prepared state.

The important role of such a classical RSP primitive as part of larger protocols –
most notably in their role in replacing quantum channels between client and server –
stems from their ability to make the aforementioned protocols available to classical users,
in particular clients without quantum-capable infrastructure on their end. It is therefore
of utmost importance to develop an understanding of this primitive, notably its security
guarantees when composed in larger contexts such as in [GV19].

In this chapter, we initiate the study of analyzing classical remote state-preparation
from first principles. We thereby follow the Abstract Cryptography (AC) framework
[MR11; Mau11] to provide a clean treatment of the RSP primitive from a composable
perspective. Armed with such a definition, we then investigate the limitations and
possibilities of using classical RSP both in general and in more specific contexts. Using
AC is a common approach to analyze classical as well as quantum primitives and their
composable security guarantees in general and in related works including [Dun+14;
DK16; MK13].
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3.1.1 Overview of our Contributions

We present an informal overview of our main results. In this work, we cover the security
of RSPCC, the class of remote state preparation protocols which only use a classical
channel, and the use-case that corresponds to its arguably most important application:
Universal Blind Quantum Computing (UBQC) protocols with a completely classical
client. More specifically, we analyze the security of UBQCCC, the family of protocols
where a protocol in RSPCC is used to replace the quantum channel from the original
quantum-client UBQC protocol. An example of an RSP resource is the SZπ2

3 resource
(depicted in Figure 3.1) outputting the quantum state |+θ〉 on its right interface, and
the classical description of this state, θ, on its left interface.

θ ←
{

0, π2 , π,
3π
2

}SZπ2
θ |+θ〉

Figure 3.1: Ideal resource SZπ2

We show in Section 3.2 a wide-ranging limitation to the universally composable
guarantees that any protocol in the family RSPCC can achieve. The limitation follows
just from the relation between (i) the notion of classical realization and (ii) a property we
call describability – which roughly speaking measures how leaky an RSP resource is. The
limitation directly affects the amount of additional leakage on the classical description
of the quantum state. In this way, it rules out a wide set of desirable resources, even
against computationally bounded distinguishers.

Theorem 3.2.6 (Security Limitations of RSPCC). Any RSP resource, realizable by an
RSPCC protocol with security against quantum polynomial-time distinguishers, must leak
an encoded, but complete description of the generated quantum state to the server.

The importance of Theorem 3.2.6 lies in the fact that it is drawing a connection
between the composability of an RSPCC protocol – a computational notion – with the
statistical leakage of the ideal functionality it is constructing – an information-theoretic
notion. This allows us to use fundamental physical principles such as no-cloning or
no-signaling in the security analysis of computationally secure RSPCC protocols. As one

3The notation Zπ2 denotes the set of the 4 angles {0, π2 , π, 3π
2 }.
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direct application of this powerful tool, we show that secure implementations of the
ideal resource in Figure 3.1 give rise to the construction of a quantum cloner, and are
hence impossible.

Input of the polynomial distinguisher

Impossible box that outputs a classical
description of the state in exponential time

θ ←
{

0, π2 , π,
3π
2

}SZ
π
2

σ πB

θ ←
{

0, π2 , π,
3π
2

}SZ
π
2

σ

Classically
emulate πB

π̃B

|+θ〉θ |+θ〉

|+θ〉θ θ

Figure 3.2: Idea of the proof of impossibility of composable RSPCC, exemplified by the
SZπ2 primitive from Figure 3.5. The green boxes run in polynomial time, while the red
box runs in exponential time. π̃B runs the same computations as πB by emulating it. In
this way, the classical description of the quantum state can be extracted.

Proof sketch. While Theorem 3.2.6 applies to much more general RSP resources having
arbitrary behavior at its interfaces and targeting any output quantum state, for simplicity
we exemplify the main ideas of our proof for the ideal resource SZπ2 .

The composable security of a protocol realizing SZπ2 implies, by definition, the
existence of a simulator σ which turns the right interface of the ideal resource into a
completely classical interface as depicted in Figure 3.2. Running the protocol of the
honest server with access to this classical interface allows the distinguisher to reconstruct
the quantum state |+θ〉 the simulator received from the ideal resource. Since the
distinguisher also has access to θ via the left interface of the ideal resource, he can
perform a simple measurement to verify the consistency of the state obtained after
interacting with the simulator. By the correctness of the protocol, the obtained quantum
state |+θ〉 must therefore indeed comply with θ. We emphasize that this consistency
check can be performed efficiently, i.e. by polynomially-bounded quantum distinguishers.

Since the quantum state |+θ〉 is transmitted from σ to the distinguisher over a
classical channel, the ensemble of exchanged classical messages must contain a complete
encoding of the description of the state, θ. A (possibly unbounded) algorithm can hence
extract the actual description of the state by means of a classical emulation of the honest
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server. This property of the ideal resource is central to our proof technique, we call it
describability.

Having a full description of the quantum state produced by SZπ2 would allow us
to clone it, a procedure prohibited by the no-cloning theorem. We conclude that the
resource SZπ2 cannot be constructed from a classical channel only.

One could attempt to modify the ideal resource, to incorporate such an extensive
leakage, which is necessary as the above proof implies. However, this yields an ideal
resource that is actually not a useful idealization or abstraction of the real world (because
it is fully leaky) which puts in question whether they are at all useful in a composable
analysis. Consider for example constructions of composite protocols that utilize the
(non-leaky) ideal resource as a sub-module. These constructions require a fresh security
analysis if the sub-module is replaced by any leaky version of it, but since the modified
resource is very specific and must mimic its implementation (in terms of leakage) it
appears that this replacement does not give any benefit compared to directly using
the implementation as a subroutine and then examining the compsoable security of
the combined protocol as a whole. This latter way is therefore examined next. More
precisely, we might still be able to use RSPCC protocols as a subroutine in other, specific
protocols, and expect the overall protocol to still construct a useful ideal functionality.
The protocol family UBQCCC is such an application. Unfortunately, as we show in
Section 3.3, UBQCCC fails to provide the expected composable security guarantees once
classical remote state preparation is used to replace the quantum channel from client
to server (where composable security for UBQC refers to the goal of achieving the
established ideal functionality of [Dun+14] which we recall in Section 3.3). This holds
even if the distinguisher is computationally bounded.

Theorem 3.3.10 (Impossibility of UBQCCC). No RSPCC protocol can replace the quan-
tum channel in the UBQC protocol while preserving composable security.

Proof sketch. We first show that the existence of any composable UBQCCC protocol (in
the sense of achieving the ideal UBQC resource) implies the existence of a composable
single-qubit UBQCCC protocol. In turn, the impossibility of composable single-qubit
UBQCCC protocols is then proven in two steps. First, we show that single-qubit UBQCCC

protocols can, in fact, be turned into RSP protocols. This allows us to employ the
toolbox we developed before on RSP protocols. As a second step, we deduce that an
RSP protocol of this specific kind (that leaks the classical description, even in the form
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of an encoded message) would violate the no-signaling principle, thereby showing that a
composable UBQCCC protocol could not have existed in the first place.

Finally in Section 3.4, we show that the protocol family RSPCC is not trivial with re-
spect to privacy guarantees. It contains protocols with reasonably restricted leakage that
can be used as subroutines in specific applications resulting in combined protocols that
offer a decent level of security. Specifically, we prove the blindness property of QF-UBQC,
a concrete UBQCCC protocol that consists of the universal blind quantum computation
(UBQC) protocol of [BFK09] and the specific LWE-based remote state preparation
(RSPCC) protocol from [Coj+19]. This yields the first provably secure UBQCCC protocol
from standard assumptions with a classical RSP protocol as a subroutine.

Theorem 3.4.9 (Game-Based Security of QF-UBQC). The universal blind quantum
computation protocol with a classical client UBQCCC that combines the RSPCC protocol
of [Coj+19] and the UBQC protocol of [BFK09] is adaptively blind in the game-based set-
ting. We call this protocol QF-UBQC. This protocol is secure under standard assumptions.

The statement of Theorem 3.4.9 can be summarized as follows: No malicious (but
computationally bounded) server in the QF-UBQC protocol could distinguish between
two runs of the protocol performing different computations. This holds even when it is
the adversary that chooses the two computations that he will be asked to distinguish.
The security is achieved in the plain model, i.e., without relying on additional setup
such as a measurement buffer. The protocol itself is a combination of UBQC with the
QFactory protocol. For every qubit that the client would transmit to the server in the
original UBQC protocol, QFactory is invoked as a subprocedure to the end of remotely
preparing the respective qubit state on the server over a classical channel.

Proof sketch. By a series of games, we show that the real protocol on a single qubit is
indistinguishable from a game where the adversary guesses the outcome of a hidden coin
flip. We generalize this special case to the full protocol on graphs with a polynomial
number of qubits by induction over the size of the graph.
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3.1.2 Related Work

While RSPCC was first introduced in [Coj+21] (under a different terminology), (game-
based) security was only proven against weak (honest-but-curious) adversaries. Security
against malicious adversaries was proven for a modified protocol in [Coj+19]4, this
protocol, called QFactory, is the basis of the positive results in this work. In parallel
[GV19] gave another protocol that offers a stronger notion of verifiable RSPCC and proved
the security of their primitive in the AC framework. The security analysis, however,
requires an assumption of measurement buffer resource in addition to the classical
channel to construct a verifiable RSPCC. Our result confirms that the measurement
buffer resource is a strictly non-classical assumption.

In the information-theoretic setting with perfect security5, the question of secure
delegation of quantum computation with a completely classical client was first considered
in [MK14]. The authors showed a negative result by presenting a scheme-dependent
impossibility proof. This was further studied in [DK16; Aar+19] which showed that
such a classical delegation would have implications in computational complexity theory.
To be precise, [Aar+19] conjecture that such a result is unlikely by presenting an oracle
separation between BQP and the class of problems that can be classically delegated with
perfect security (which is equivalent to the complexity class NP/poly∩coNP/poly
as proven by [AFK87]). On the other hand, a different approach to secure delegated
quantum computation with a completely classical client, without going via the route of
RSPCC, was also developed in [Man+17] where the server is unbounded and in [Mah18a;
Bra18] with the bounded server. The security was analysed for the overall protocol
(rather than using a module to replace quantum communication). It is worth noting
that [Man+17] is known to be not composable secure in the Abstract Cryptography
framework [Man19].

3.2 Impossibility of Composable Classical RSP

In this section, we first define the general notion of what RSP tries to achieve in terms
of resources and subsequently quantify information that an ideal RSP resource must
leak at its interface to the server even if the distinguisher is computationally bounded.

4In [Coj+19] a verifiable version of RSPCC was also given, but security was not proven in full
generality.

5By perfect security we mean at most input size is allowed to be leaked
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One would expect, that against bounded distinguisher, the resource can express clear
privacy guarantees, which we prove cannot be the case.

The reason is roughly as follows: assuming that there exists a simulator making
the ideal resource indistinguishable from the real protocol, we can exploit this fact
to construct an algorithm that can classically describe the quantum state given by
the ideal resource. It is not difficult to verify that there could exist an inefficient
algorithm (i.e. with exponential run-time) that achieves such a task. We show that
even a computationally bounded distinguisher can distinguish the real protocol from the
ideal protocol whenever a simulator’s strategy is independent of the classical description
of the quantum state. This would mean that for an RSP protocol to be composable
there must exist a simulator that possesses at least a classical transcript encoding the
description of a quantum state. This fact coupled with the quantum no-cloning theorem
implies that the most meaningful and natural RSP resources cannot be realized from
a classical channel alone. We finally conclude the section by looking at the class of
imperfect (describable) RSP resources which avoid the no-go result at the price of being
“fully-leaky”, not standard, and having an unfortunately unclear composable security.

3.2.1 Remote State Preparation and Describable Resources

We first introduce, based on the standard definition in the Abstract Cryptography
framework, the notion of correctness and security of a two-party protocol which constructs
(realizes) a resource from a classical channel C.

Definition 3.2.1 (Classically-Realizable Resource). An ideal resource S is said to be
ε-classically-realizable if it is realizable (in the sense of Definition 2.1.2) from a classical
channel, i.e. if there exists a protocol π = (πA, πB) between two parties (interacting
classically) such that:

C
π−−→
ε

S (3.1)

We would like to point out that since Alice is honest, this definition incorporates
already the case when Alice and Bob share purely classical resources that are achievable
by Alice emulating the resource and sending Bob’s output over a classical channel.
A simple ideal prototype that captures the goal of a RSP protocol could be phrased
as follows: the resource outputs a quantum state (chosen from a set of states) on one
interface and classical description of that state on the other interface to the client. For
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our purposes, this view is too narrow and we want to generalize this notion. For instance,
a resource could accept some inputs from the client or interact with the server and be
powerful enough to comply with the above basic behavior if both follow the protocol.
We would like to capture that any resource can be seen as an RSP resource as soon as
we fix a way to efficiently convert the client and server interfaces to comply with the
basic prototype. To make this formal, we need to introduce some converters that will
witness this:

1. A converter A will output, after interacting with the ideal resource6, a classical
description [ρ] which is one of the following:

(a) A density matrix (positive and with trace 1) corresponding to a quantum
state ρ.

(b) The null matrix, which is useful to denote the fact that we detected some
deviation that should not happen in an honest run.

2. A converter Q, whose goal is to output a quantum state ρ′ as close as possible to
the state ρ output by A.

3. A converter P, whose goal is to output a classical description [ρ′] of a quantum
state ρ′ which is on average “close” to ρ.

An RSP must meet two central criteria:

1. Accuracy of the classical description of the obtained quantum state: We require
that the quantum state ρ described by A’s output is close to Q’s output ρ′. This
is to be understood in terms of the trace distance.

2. Purity of the obtained quantum state: Since the RSP resource aims to replace
a noise-free quantum channel, it is desirable that the quantum state output by
Q admit a high degree of purity, i.e. more formally, that Tr (ρ′2) be close to one.
Since ρ′ is required to be close to ρ, this implies a high purity of ρ as well.

It turns out that these two conditions can be unified and equivalently captured requiring
that the quantity Tr(ρρ′) is close to one. A rigorous formulation of this claim and its
proof is provided by Lemma 3.5.3.

6A is allowed to interact with the (ideal) resource in a non-trivial manner. However, A will often
be the trivial converter in the sense that it simply forwards the output of the ideal resource, or – when
the resource waits for a simple activation input – picks some admissible value as input to the ideal
resource and forwards the obtained description to its outer interface.
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We can also gain a more operational intuition of the notion of RSP by considering
that an RSP resource (together with A and Q) can be seen, not only as a box that
produces a quantum state together with its description but also as a box whose accuracy
can be easily tested7. For example, if such a box produces a state ρ′, and pretends
that the description of that state corresponds to |φ〉 (i.e. [ρ] = [|φ〉〈φ|]), then the
natural way to test it would be to measure ρ′ by doing a projection on |φ〉. This test
would pass with probability ps := 〈φ|ρ′|φ|φ|ρ′|φ〉, and therefore if the box is perfectly
accurate (i.e. if ρ′ = |φ〉〈φ|), the test will always succeed. However, when ρ′ is far
from |φ〉〈φ|, this test is unlikely to pass, and we will have ps < 1. We can then
generalise this same idea for arbitrary (eventually not pure) states by remarking that
ps = 〈φ|ρ′|φ|φ|ρ′|φ〉 = Tr(|φ〉〈φ| ρ′) = Tr(ρρ′). Indeed, this last expression corresponds8

exactly to the probability of outputting E0 when measuring the state ρ′ according to
the POVM {E0 := ρ, E1 := I − ρ}, and since the classical description of ρ is known,
it is possible to perform this POVM and test the (average) accuracy of our box. This
motivates the following definition for general RSP resources.

Definition 3.2.2 (RSP resources). A resource S is said to be a remote state preparation
resource within ε with respect to converters A and Q if the following three conditions
hold: (1) both converters output a single message at the outer interface, where the output
[ρ] of A is classical and is either a density matrix or the null matrix, and the output ρ′

of Q is a quantum state; (2) the equation:

E
([ρ],ρ′)←AS`Q

[ Tr(ρρ′) ] ≥ 1− ε (3.2)

is satisfied, where the probability is taken over the randomness of A, S and Q, and finally,
(3) for all the possible outputs [ρ] of ([ρ], ρ′)← AS ` Q, if we define E0 = ρ, E1 = I − ρ,
then the POVM {E0, E1} must be efficiently implementable9 by any distinguisher.

Whenever we informally speak of a resource S as being an RSP resource, this has to
be understood always in a context where the converters A and Q are fixed.

Describable resources. So far, we have specified that a resource qualifies as an RSP
resource if, when all parties follow the protocol, we know how to compute a quantum

7This testable property will be of great importance in our argument later.
8Note that it also turns out to be equal to the (squared) fidelity between ρ and ρ′ when ρ is pure.
9We could also define a similar definition when this POVM can only be approximated (for example

because the distinguishers can only perform quantum circuits using a finite set of gates) and the
theorems would be similar, up to this approximation, but for simplicity we will stick to that setting.
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state on the right interface and classical description of a “close” state on the other
interface. A security-related question now is, if it is also possible to extract (possibly
inefficiently) from the right interface a classical description of a quantum state that is
close to the state described by the client. If we find a converter P doing this, we would
call the (RSP) resource describable. The following definition captures this.

Definition 3.2.3 (Describable Resource). Let S be a resource and A a converter
outputting a single classical message [ρ] on its outer interface (either equal to a density
matrix or the null matrix). Then we say that (S,A) is ε-describable (or, equivalently,
that S is describable within ε with respect to A) if there exists a (possibly unbounded)
converter P (outputting a single classical message [ρ′] on its outer interface representing
a density matrix) such that:

E
([ρ],[ρ′])←ASP

[ Tr(ρρ′) ] ≥ 1− ε (3.3)

(the expectation is taken over the randomness of S, A and P).

Reproducible converters. In the proof of our first result, we will encounter a crucial
decoding step. Roughly speaking, the core of this decoding step is the ability to convert
the classical interaction with a client, which can be seen as an arbitrary encoding of a
quantum state, back into an explicit representation of the state prepared by the server.
The ability of such a conversion can be phrased by the following definition.

Definition 3.2.4 (Reproducible Converter). A converter π that outputs (on the right
interface) a quantum state ρ is said to be reproducible if there exists a (possibly inefficient)
converter π̃ such that:

1. the outer interface of π̃ outputs only a classical message [ρ′]

2. the converter π is perfectly indistinguishable from π̃ against any unbounded distin-
guisher D ∈ Du, up to the conversion of the classical messages [ρ′] into a quantum
state ρ′. More precisely, if we denote by T the converter that takes as input on
its inner interface a classical description [ρ′] of a quantum state and outputs that
quantum state ρ′ (as depicted in Figure 3.3), we have:

Cπ ≈Du

0 Cπ̃T (3.4)
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π = π̃ T
ρ [ρ′] ρ′

Figure 3.3: Reproducible converter.

Classical communication and reproducibility. We see that in general, being
reproducible is a property that stands in conflict with the quantum no-cloning theorem.
More precisely, the ability to reproduce implies that there is a way to extract knowledge
of a state sufficient to clone it. However, whenever communication is classical, quite the
opposite is true. This is formalized in the following lemma. Intuitively, it says that in
the principle it is always possible to compute the exact description of the state from
the classical transcript and the quantum instruments (circuit) used to implement the
action of the converter, where an instrument is a generalized CPTP map which allows a
party to output both a quantum and a classical state and is formalized more precisely
in Definition 2.1.3. Recall that this is the most general way of representing a quantum
operation.

In the proof, we just need to assume that π interacts (classically) with the inner
interface first, and finally outputs a quantum state on the outer interface, so for simplicity
we will stick to that setting. In this way we can decompose π as depicted in Figure 3.4
using the following notation:

π := (πi)i (3.5)

Each πi represents a round, and we denote with (yi, ρi+1)← πi(xi, ρi) the output of the
i-th round, assuming that xi ∈ {0, 1}li is a classical input message sent from the inner
interface, ρi is the internal quantum state (density matrix) after round i − 1, ρi+1 is
the internal state after round i, and yi ∈ {0, 1}l′i ∪ ⊥ is a classical message, sent to the
inner interface when yi 6= ⊥. For the first protocol, we set ρ0 = (1), which is the trivial
density matrix of dimension 1. Moreover, when yi = ⊥, we do not send any message
to the inner interface and instead we send ρi+1 to the outer interface and we stop the
protocol. Note that if we want to let π send the first message instead of receiving it, we
can set x0 = ⊥, and similarly, if the last message is sent instead of received, we can add
one more round where we set xn+1 = ⊥.

Now, we can prove that a party, that produces a quantum state at the end of a
protocol with exclusively classical communication, is reproducible:
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π0

ρ0 = (1)

ρ1

x0

y0

π1
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πn

ρn

xn

yn = ⊥

ρn+1

π

x0

y0

x1

y1

xn

ρn+1

Figure 3.4: Representation of an interactive protocol π as a sequence of quantum
instruments.

Lemma 3.2.5. Let π = (πi)i (using the notation introduced (3.5)) be a converter such
that:

1. it receives and sends only classical messages from the inner interfaces

2. it outputs at the end a quantum state on the outer interface

3. each πi is a quantum instrument

then π is reproducible.

Proof. The intuition behind the proof is to argue that because the only interactions
with the outside world are classical as seen from Figure 3.4, the internal state of π can
always be computed (in exponential time) manually.
More precisely, for all i, because πi is a quantum instrument, there exists a set {Eyi}
of maps having the properties defined in Definition 2.1.3. And because for all yi, Eyi
is completely positive, there exists a finite set of matrices {B(i,yi)

k }k, known as Kraus
operators, such that we have for all ρ (and in particular for ρ = |xi〉 〈xi| ⊗ ρi):

Eyi(ρ) =
∑

k

B
(i,yi)
k ρB

(i,yi)†
k (3.6)
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Therefore, for all xi, ρi and yi, we have with probability pyi := Tr(Eyi(|xi〉 〈xi| ⊗ ρi)):

πi(xi, ρi) = (yi,Eyi(|xi〉 〈xi| ⊗ ρi)) (3.7)

= (yi,
∑

k

B
(i,yi)
k (|xi〉 〈xi| ⊗ ρi)B(i,yi)†

k

︸ ︷︷ ︸
ρi+1

) (3.8)

We remark that if we know [ρi], the coefficients of the matrix ρi, then for all yi we
can compute the probability pyi of outputting yi, and the corresponding [ρi+1], (the
coefficients of the matrix ρi+1) by just doing the above computation. So to construct π̃
(using notations from Definition 3.2.4) we do as follows:

• first, for all i we construct π̃i, which on input (xi, [ρi]) outputs (yi, [ρi+1]) with
probability pyi using the formula (3.8).

• then, we define π̃ as (π̃i) with [ρ0] = (1).

Then, we trivially have Cπ ≈0 Cπ̃T, even for unbounded distinguishers, because π̃ is
exactly the same as π, except that the representations of the quantum states in π̃ are
matrices, while they are actual quantum states in π. Therefore, adding T (which turns
any [ρi] into ρi) on the outer interface (which is the only interface that sends a classical
state [ρi]) gives us π ≈0 Cπ̃T.

3.2.2 Classically-Realizable RSP are Describable

In this section we show our main result about remote state preparation resources, which
interestingly links a constructive notion (composability) with respect to a computational
notion with an information theoretic property (describability).

This implies directly the impossibility result regarding the existence of non-describable
RSPCC composable protocols (secure against bounded BQP distinguishers). While this
theorem does not rule out all the possible RSP resources, it shows that most “useful”
RSP resources are impossible. Indeed, the describable property is usually not a desirable
property, as it means that an unbounded adversary could learn the description of the
state he received from an ideal resource. To illustrate this theorem, we will see in the
Section 3.2.3 some examples showing how this result can be used to prove the impossibility
of classical protocols implementing some specific resources, and in Section 3.2.4 we will
see some example of “imperfect” resources escaping the impossibility result.
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Theorem 3.2.6 (Classically-Realizable RSP are Describable). If an ideal resource
S is both an ε1-remote state preparation with respect to some A and Q and ε2-
classically-realizable (including against only polynomially bounded distinguishers), then it
is (ε1 + 2ε2)-describable with respect to A. In particular, if ε1 = negl(n) and ε2 = negl(n),
then S is describable within a negligible error ε1 + 2ε2 = negl(n).

Proof. Let S be an ε1-remote state preparation resource with respect to (A,Q) which is
ε2-classically-realizable. Then there exist πA, πB, σ, such that:

E
([ρ],ρ′)←AS`Q

[ Tr(ρρ′) ] ≥ 1− ε1 (3.9)

πACπB ≈ε2 S ` (3.10)

and
πAC ≈ε2 Sσ (3.11)

Now, using (3.10), we get:
AπACπBQ ≈ε2 AS ` Q (3.12)

So it means that we can’t distinguish between AS ` Q and AπACπBQ with an advantage
better than ε2 (i.e. with probability better than 1

2(1 + ε2)). But, if we construct the
following distinguisher, that runs ([ρ], ρ′) ← AS ` Q, and then measures ρ′ using the
POVM {E0, E1} (possible because this POVM is assumed to be efficiently implementable
by distinguishers in D), with E0 = [ρ] and E1 = I − [ρ] (which is possible because we
know the classical description of ρ, which is positive and smaller than I, even when
[ρ] = 0), we will measure E0 with probability 1 − ε1. So it means that by replacing
AS ` Q with AπACπBQ, the overall probability of measuring E0 needs to be close to
1− ε1. More precisely, we need to have:

E
([ρ],ρ′)←AπACπBQ

[ Tr(ρρ′) ] ≥ 1− ε1 − ε2 (3.13)

Indeed, if the above probability is smaller than 1− ε1 − ε2, then we can define a
distinguisher that outputs 0 if he measures E0, and 1 if he measures E1, and his
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probability of distinguishing the two distributions would be equal to:

1
2 E

([ρ],ρ′)←AS`Q
[ Tr(ρρ′) ] + 1

2 E
([ρ],ρ′)←AπACπBQ

[ Tr((I − ρ)ρ′) ] (3.14)

>
1
2 ((1− ε1) + 1− (1− ε1 − ε2)) (3.15)

= 1
2(1 + ε2) (3.16)

So this distinguisher would have an advantage greater than ε2, which is in contra-
diction with (3.12).

Using a similar argument and (3.10), we have:

E
([ρ],ρ′)←ASσπBQ

[ Tr(ρρ′) ] ≥ 1− ε1 − 2ε2 (3.17)

We will now use πBQ to construct a B that can describe the state given by the ideal
resource. To do that, because πBQ interacts only classically with the inner interface and
outputs a single quantum state on the outer interface, then according to Lemma 3.2.5,
πBQ is reproducible, i.e. there exists10 B such that CπBQ ≈0 CBT. Therefore11, we
have:

E
([ρ],ρ′)←ASσBT

[ Tr(ρρ′) ] ≥ 1− ε1 − 2ε2 (3.18)

But because T simply converts the classical description [ρ′] into ρ′, we also have:

E
([ρ],[ρ′])←ASσB

[ Tr(ρρ′) ] ≥ 1− ε1 − 2ε2 (3.19)

After defining P = σB, we have that S is (ε1 +2ε2)-describable, which ends the proof.

3.2.3 RSP Resources Impossible to Realize Classically

In the last section we proved that if an RSP functionality is classically-realizable (secure
against polynomial quantum distinguishers), then this resource is describable by an
unbounded adversary having access to the right interface of that resource.

Our main result in the previous section directly implies that as soon as there exists
no unbounded adversary that, given access to the right interface, can find the classical

10Note that here B is not efficient anymore, so that’s why in the describable definition we don’t put
any bound on B, but of course the proof does apply when the distinguisher is polynomially bounded.

11Indeed, we also have in particular ASσCπBQ ≈0 ASσCBT, and because C is a neutral resource
[MR11, Sec. C.2] we can remove C.
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description given on the left interface, then the RSP resource is impossible to classically
realize (against bounded BQP distinguishers). Very importantly, this no-go result shows
that the only type of RSP resources that can be classically realized are the ones that leak
on the right interface enough information to allow an (possibly unbounded) adversary
to determine the classical description given on the left interface. From a security point
of view, this property is highly non-desirable, as the resource must leak the secret
description of the state at least in some representation.

In this section we present some of these RSP resources that are impossible to classically
realize.

Definition 3.2.7 (Ideal Resource SZπ2 ). SZπ2 is the verifiable RSP resource (RSP which
does not allow any deviation from the server), that receives no input, that internally
picks a random θ ← Zπ

2 , and that sends θ on the left interface, and |+θ〉 on the right
interface as shown in Figure 3.5.

θ ← Zπ2

SZπ2
θ |+θ〉

Figure 3.5: Ideal resource SZπ2 .

Lemma 3.2.8. There exists a universal constant η > 0, such that for all 0 ≤ ε < η the
resource SZπ2 is not ε-classically-realizable.

Proof. This proof is at its core a direct consequence of quantum no-cloning: If we define
A(θ) := [|+θ〉〈+θ|] (A just converts θ into its classical density matrix representation)
and Q the trivial converter that just forwards any message, then SZπ2 is a 0-remote state
preparation resource with respect to A and Q because:

E
([ρ],ρ′)←ASZπ2

`Q
[ Tr(ρρ′) ] = 1

4
∑

θ∈Zπ2

Tr(|+θ〉〈+θ| |+θ〉〈+θ|) = 1 ≥ 1− 0 (3.20)

Then, we remark also that there exists a constant η > 0 such that for all δ < η, SZπ2 is
not δ-describable with respect to A.

Indeed, it is first easy to see that SZπ2 is not 0-describable with respect to A. Indeed,
we can assume by contradiction that there exists P such that:

E
([ρ],[ρ′])←ASZπ2

P
[ Tr(ρρ′) ] = 1 (3.21)
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Then, because ρ = |+θ〉〈+θ| is a pure state, Tr(ρρ′) corresponds to the fidelity of
ρ and ρ′, so Tr(ρρ′) = 1 ⇔ ρ = ρ′. But this is impossible because P just has a
quantum state ρ as input, and if he can completely describe this quantum state
then he can actually clone perfectly the input state with probability 1. But because
the different possible values of ρ are not orthogonal, this is impossible due to the
no-cloning theorem.

Moreover, it is also not possible to find a sequence (P(n))n∈N of CPTP maps
that produces two copies of ρ with a fidelity arbitrary close to 1 (when n→∞),
because CPTP maps are compact and the fidelity is continuous.
Therefore, there exists a constant η > 0,12 such that:

E
([ρ],[ρ′])←ASZπ2

P
[ Tr(ρρ′) ] < 1− η (3.22)

Now, by contradiction, we assume that SZπ2 is ε-classically-realizable. Because
limn→∞ ε(n) = 0, there exists N ∈ N such that ε(N) < η/2. So, using Theorem 3.2.6,
SZπ2 is 2ε(N)-describable with respect to A, which contradicts 2ε(N) < η.

Next, we describe RSPV, a variant of SZπ2 introduced in [GV19]. In the latter, RSPV,
the adversary can make the resource abort, that the set of output states is bigger, and
that the client can partially choose the basis of the output state. Similar to the SZπ2 , we
prove that classically-realizable RSPV is not possible. Before going into the details of the
no-go result, we formalize the ideal resource for a verifiable remote state preparation,
RSPV, below.

Definition 3.2.9 (Ideal Resource RSPV, See [GV19]). The ideal verifiable remote state
preparation resource, RSPV, takes an input W ∈ {X,Z} on the left interface, but no
honest input on the right interface. The right interface has a filtered functionality that
corresponds to a bit c ∈ {0, 1}. When c = 1, RSPV outputs error message ERR on both
the interfaces, otherwise:

1. if W = Z the resource picks a random bit b and outputs b ∈ Z2 to the left interface
and a computational basis state |b〉 〈b| to the right interface;

2. if W = X the resource picks a random angle θ ∈ Zπ
4 and outputs θ to the left

interface and a quantum state |+θ〉 〈+θ| to the right interface.
12Note that for finding a more precise bound for η, it is possible to use Semidefinite Programming

(SDP), or the method presented in [KRK12, p. 2]. However in our case it is enough to say that ε > 0
as we are interested only in asymptotic security.
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Corollary 3.2.10. There exists a universal constant η > 0, such that for all 0 ≤ ε < η

the resource RSPV is not ε-classically-realizable.

Proof. The proof is quite similar to the proof of impossibility of SZπ2 . The main difference
is that we need to address properly the abort case when c = 1. The main idea is to
define A a bit differently: A picks always W = X, and outputs as ρ the classical density
matrix corresponding to s when s 6= ERR, and when s = ERR, A outputs the null
matrix ρ = 0 (Q is still the trivial converter). It is easy to see again that this resource
is a 0-remote state preparation resource, and it is also impossible to describe it with
arbitrary small probability: indeed, when c = 1, ρ = 0, so the trace Tr(ρρ′) (that appears
in (3.3)) is equal to 0. Therefore, from a converter P that (sometimes) inputs c = 1,
we can always increase the value of Tr(ρρ′) by creating a new converter P′ turning c
into 0. And we are basically back to the same picture as SZπ2 , where we have a set of
states that is impossible to clone with arbitrary small probability, which finishes the
impossibility proof.

Remark 3.2.11. Note that our impossibility of classically-realizing RSPV does not
contradict the result of [GV19]. Specifically, in their work they make use of an additional
assumption (the so called “Measurement Buffer” resource), which “externalizes” the
measurement done by the distinguisher onto the simulator. In practice, this allows
the simulator to change the state on the distinguisher side without letting him know.
However, what our result shows is that it is impossible to realize this Measurement Buffer
resource with a protocol interacting purely classically. Intuitively, the Measurement
Buffer re-creates a quantum channel between the simulator and the server: when the
simulator is not testing that the server is honest, the simulator replaces the state of the
server with the quantum state sent by the ideal resource. This method has however a
second drawback: it is possible for the server to put a known state as the input of the
Measurement Buffer, and if he is not tested on that run (occurring with probability 1

n
),

then he can check that the state has not been changed, leading to polynomial security
(a polynomially bounded distinguisher can distinguish between the ideal and the real
world). And because in AC, the security of the whole protocol is the sum of the security
of the inner protocols, any protocol using this inner protocol will not be secure against
polynomial distinguishers.
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3.2.4 Accepting the Limitations: Fully Leaky RSP resources

As explained in the previous section, Theorem 3.2.6 rules out all resources that are
impossible to be describable with unbounded power, and that the only type of classically-
realizable RSP resources would be the one leaking the full classical description of the
output quantum state to an unbounded adversary, which we will refer to as being
fully-leaky RSP. Fully-leaky RSP resources can be separated into two categories:

1. If the RSP is describable in quantum polynomial time, then the adversary can
get the secret in polynomial time. This is obviously not an interesting case as
the useful properties that we know from quantum computations (such as UBQC)
cannot be preserved if such a resource is employed to prepare the quantum states.

2. If the RSP are only describable using unbounded power, then these fully-leaky
RSP resources are not trivially insecure, but their universally composable security
remains unclear. Indeed, it defeats the purpose of aiming at a nice ideal resource
where the provided security should be clear “by definition” and it becomes hard to
quantify how the additional leakage could be used when composed with other proto-
cols. A possible remedy would be to show restricted composition following [JM17]
which we discuss at the end of this paragraph.

For completeness, we present an example of a resource that stands in this second category
when assuming that post-quantum encryption schemes exist (e.g. based on the hardness
of the LWE problem). As explained before, this resource needs to completely leak the
description of the classical state, which in our case, is done by leaking an encryption
of the description of the output state. The security guarantees therefore rely on the
properties of the encryption scheme, and not on an ideal privacy guarantee as one would
wish for, which is an obvious limitation.

A concrete example. In this section we focus on the second category of fully-leaky
RSP and we show an example of resource that belongs to this class and a protocol
realizing this resource. The fully-leaky RSP resource that we will implement, produces
a BB84 state (corresponding to the set of states produced by the simpler QFactory
protocol) and is described below:

Definition 3.2.12 (Ideal Resource RSP4−states,F
CC ). Let F = (Gen,Enc,Dec) be a family

of public-key encryption functions. Then, we define RSP4−states,F
CC as pictured in Figure 3.6.
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B1 represents the basis of the output state, and is guaranteed to be random even if the
right interface is malicious. B2 represents the value bit of the output state when encoded
in the basis B1, and in the worst case it can be chosen by the right interface in a malicious
scenario13. Note however that in a malicious run, the adversary does not have access (at
least not directly from the ideal resource) to the quantum state whose classical description
is known by the classical client.

B1 ← {0, 1}
if c = 0 then
B2 ← {0, 1}
|ψ〉 := HB1XB2 |0〉

else
(sk, pk)← Gen(1n)
y0 ← Encpk(B1)
B2 := f(F, B1, sk, pk, y0)

fi

RSP4−states,F
CCn

(B1, B2)

c

|ψ〉

(pk, y0)

f

Figure 3.6: Ideal resource RSP4−states,F
CC , which prepares one of the four BB84 states.

The “snake” arrow is sent only in the honest case (c = 0), and the dashed arrows are
send/received only in the malicious case (c = 1).

Lemma 3.2.13. The 4-states QFactory protocol [Coj+19] (Protocol 2) securely con-
structs RSP4−states,F

CC from a classical channel, where F is defined as follows:

1. (tK , K)← Gen(1n) outputs two matrices: public K (used to describe the function)
and secret tK (a trapdoor used to invert the function) as defined in [Coj+19; Coj+21]
(which is itself based on the learning with errors problem and the construction
presented in [MP12]);

2. y0 ← EncK(B1) , where y0 = Ks0 + e0 + B1
(
q/2 0 . . . 0

)T
, s0 and e0 being

sampled accordingly to some distribution presented in [Coj+19; Coj+21]

3. B1 ← DectK (y) - using tK we can efficiently obtain B1 from y0.
13Note that here the right interface can have (in a malicious scenario) full control over B2, but in

the QFactory Protocol 2 it is not clear what an adversary can do concerning B2.
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Proof. We already know that the protocol of QFactory (πA, πB) is correct with super-
polynomial probability if the parameters are chosen accordingly (Theorem 3.4.1), there-
fore

πACπB ≈ε RSP4−states,F
CC ` (3.23)

for some negligible ε. We now need to find a simulator σ such that

πAC ≈ε′ RSP4-states,F
CC σ (3.24)

The simulator is trivial here: it sends c = 1 to ideal resource then, it just forwards
the (K, y0) given by the resource to its outer interface, and when it receives the (y, b)
corresponding to the measurements performed by the server, it just sets the deviation f
to be the same function as the one computed by πA. Therefore, πAC ≈0 RSP4-states,F

CC σ,
which ends the proof.

Concluding remarks. We see that using this kind of leaky resource is not desirable:
the resources are non-standard and it seems hard to write a modular protocol with
this resource as an assumed resource. The resource is very specific and mimics its
implementation. As such, we cannot really judge its security.

On the other hand however, if a higher-level protocol did guarantee that the value
B2 always remains hidden, i.e., a higher level protocol’s output does not depend on
on B2 (e.g., by blinding it all the time), it is easy to see that we could simulate y0

without knowledge about B1 thanks to the semantic security of the encryption scheme.
If we fix this restricted context, the ideal resource in Figure 3.6 could be re-designed to
not produce the output (pk, y0) at all and therefore, by definition, leak nothing extra
about the quantum state (note that in such a restricted context, the simulator can
simply come up with a fake encryption that is indistinguishable). This can be made
formal following [JM17]. We note in passing that this particular example quite severely
restricts applicability unfortunately. Indeed, it is interesting future research whether it
is possible to come up with restricted yet useful contexts that admit nice ideal resources
for RSP following the framework in [JM17].
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3.3 Impossibility of Composable Classical-Client UBQC

In the previous section, we showed that it was impossible to get a (useful) composable
RSPCC protocol. A (weaker) RSP protocol, however, could still be used internally in
other protocols, hoping for the overall protocol to be composably secure. To this end,
we analyze the composable security of a well-known delegated quantum computing
protocol, universal blind quantum computation (UBQC), proposed in [BFK09]. The
UBQC protocol allows a semi-quantum client, Alice, to delegate an arbitrary quantum
computation to a (universal) quantum server Bob, in such a way that her input, the
quantum computation and the output of the computation are information-theoretically
hidden from Bob. The protocol requires Alice to be able to prepare single qubits of the
form |+θ〉, where θ ∈ Zπ

4 and send these states to Bob at the beginning of the protocol,
the rest of the communication between the two parties being classical. We define
the family of protocols RSP8−states

CC as the RSP protocols that classically delegate the
preparation of an output state |+θ〉, where θ ∈ Zπ

4 . That is, without loss of generality, we
assume a pair of converters PA, PB such that the resource R := PACPB has the behavior
of the prototype RSP resource except with negligible probability. Put differently, we
assume we have an (except with negligible error) correct RSP protocol, but we make no
assumption about the security of this protocol. Therefore, one can directly instantiate
the quantum interaction with the RSP8−states

CC at the first step as shown in Protocol 1.
While UBQC allows for both quantum and classical outputs and inputs, given that we
want to remove the quantum interaction in favor of a completely classical interaction,
we only focus on the classical input and classical output functionality of UBQC in the
remaining of the chapter.

Protocol 1 UBQC with RSP8−states
CC (See [BFK09])

• Client’s classical input: An n-qubit unitary U that is represented as set of angles {φ}i,j
of a one-way quantum computation over a brickwork state/cluster state [MDF17], of the
size n×m, along with the dependencies X and Z obtained via flow construction [DK06].

• Client’s classical output: The measurement outcome s̄ corresponding to the n-qubit
quantum state, where s̄ = 〈0|U |0〉.

1. Client and Server runs n×m different instances of RSP8−states
CC (in parallel) to obtain

θi,j on client’s side and
∣∣∣+θi,j

〉
on server’s side, where θi,j ← Zπ

4 , i ∈ {1, · · · , n},
j ∈ {1, · · · ,m}
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2. Server entangles all the qubits, n × (m − 1) received from RSP8−states
CC , by applying

controlled-Z gates between them in order to create a graph state Gn×m

3. For j ∈ [1,m] and i ∈ [1, n]

(a) Client computes δi,j = φ′i,j+θi,j+ri,jπ, ri,j ← {0, 1}, where φ′i,j = (−1)s
X
i,jφi,j+sZi,jπ

and sXi,j and sZi,j are computed using the previous measurement outcomes and the
X and Z dependency sets. Client then sends the measurement angle δi,j to the
Server.

(b) Server measures the qubit
∣∣∣+θi,j

〉
in the basis {

∣∣∣+δi,j

〉
,
∣∣∣−δi,j

〉
} and obtains a

measurement outcome si,j ∈ {0, 1}. Server sends the measurement result to the
client.

(c) Client computes s̄i,j = si,j ⊕ ri,j .

4. The measurement outcome corresponding to the last layer of the graph state (j = m) is
the outcome of the computation.

Note that Protocol 1 is based on measurement-based model of quantum computing
(MBQC). This model is known to be equivalent to the quantum circuit (up to polynomial
overhead in resources) and does not require one to perform quantum gates on their side
to realize arbitrary quantum computation. Instead, the computation is performed by an
(adaptive) sequence of single-qubit projective measurements that steer the information
flow across a highly entangled resource state. Intuitively, UBQC can be seen as a
distributed MBQC where the measurements are performed by the server whereas the
classical update of measurement bases is perfomed by the client. Since the projective
measurements in quantum physics, in general, are probabilistic in nature and therefore,
the client needs to update the measurement bases (and classically inform the server
about the update) based on the outcomes of the earlier measurements to ensure the
correctness of the computation. Roughly speaking, this information flow is captured by
the X and Z dependencies. For more details, we refer the reader to [RB01; Nie06].

Next, we show that the Universal Blind Quantum Computing protocol [BFK09],
which is proven to be secure in the Abstract Cryptography framework [Dun+14], cannot
be proven composably secure (for the same ideal resource) when the quantum interaction
is replaced with RSPCC (this class of protocol is denoted as UBQCCC). We also give an
outlook that the impossibility proof also rules out weaker ideal resources.
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3.3.1 Impossibility of Composable UBQCCC on 1 Qubit

In order to prove that there exists no UBQCCC protocol, we will first focus on the simpler
case when the computation is described by a single measurement angle. The resource
that performs a blind quantum computation on one qubit (SUBQC1) is defined as below:

Definition 3.3.1 (Ideal resource of single-qubit UBQC (See [Dun+14])). The definition
of the ideal resource SUBQC1, depicted in Figure 3.7, achieves blind quantum computation
specified by a single angle φ. The input (ξ, ρ) is filtered when c = 0. The ξ can be any
deviation (specified for example using the classical description of a CPTP map) that
outputs a classical bit, and which can depend on the computation angle φ and on some
arbitrary quantum state ρ.

if c = 0 then
s̄ = M±φ |+〉

else
s̄ = ξ(ρ, φ)

fi

SUBQC1φ

s̄

c

(ξ, ρ)

Figure 3.7: Ideal resource SUBQC1 for UBQC with one angle, with a filtered (dashed)
input. In the case of honest server the output s̄ ∈ {0, 1} is computed by measuring
the qubits |+〉 in the {|+φ〉 , |−φ〉} basis. On the other hand if c = 1 any malicious
behaviour of server can be captured by (ξ, ρ), i.e. the output s̄ is computed by applying
the CPTP map ξ on the input φ and on another auxiliary state ρ chosen by the server.

Theorem 3.3.2 (No-go composable classical-client single-qubit UBQC). Let (PA, PB)
be a protocol interacting only through a classical channel C, such that (θ, ρB)← (PACPB)
with θ ∈ Zπ

4 , and such that (by correctness) the trace distance between ρB and |+θ〉 〈+θ|
is negligible with overwhelming probability14 with overwhelming probability15. Then, if
we define πA and πB as the UBQC protocol on one qubit that makes use of (PA, PB) as
a sub-protocol to replace the quantum channel (as pictured in Figure 3.8), (πA, πB) is

14In the following, the parties PA and PB (and therefore πA and πB) and the simulator σ depend
on some security parameter n, but, in order to simplify the notations and the proof, this dependence
will be implicit. We are as usual interested only in the asymptotic security, when n→∞.

15Note that here ρB is different at every run: it corresponds to the density matrix of the state
obtained after running PB , when tracing out the environment and the internal registers of PB and PA.
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not composable, i.e. there exists no simulator σ such that:

πACπB ≈ε SUBQC1 `c=0 (3.25)

πAC ≈ε SUBQC1σ (3.26)

for some negligible ε = negl(n).

PA

θ

r ← {0, 1}
δ = θ + rπ + φ

s̄ = s⊕ r

πAφ

s̄

PB

ρB ≈ |+θ〉

s = M±δρB

m
...

πB

δ

s

Figure 3.8: UBQC with one qubit when both Alice and Bob follows the protocol honestly
(see Protocol 1)

Proof. In order to prove this theorem, we will proceed by contradiction. Let us assume
that there exists (PA, PB), and a simulator σ having the above properties.
Then, for the same resource SUBQC1 we consider a different protocol π′ = (π′A, π′B) that
realizes it, but using a different filter16 `σ and a different simulator σ′:

π′ACπ
′
B ≈ε SUBQC1 `σ (3.27)

π′AC ≈ε SUBQC1σ
′ (3.28)

More specifically, the new filter `σUBQC1 will depend on σ defined in (3.26). Then our
main proof can be described in the following steps:

1. We first show in Lemma 3.3.4 that SUBQC1 is also ε-classically-realizable by (π′A, π′B)
with the filter `σ.

2. We then prove in Lemma 3.3.5 that the resource SUBQC1 is an RSP within negl(n),
16 Note that we could include this new filter inside SUBQC1 and use a more traditional filter `c=0

but for simplicity we will just use a different filter.
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A π′
A π′

B Q

PA PB
ρB
≈ |+θ〉θ

φ

δ
ρ̃ := RZ(−δ)ρB
s := 0s ρ̃ ρ̃

φ0←$ Zπ
2

φ := −φ0

φ′ := φ0 + s̄π
[φ′]

r←$ {0, 1}
δ := θ + φ+ rπ
s̄ := s⊕ rs̄

Figure 3.9: Definition of A, π′A, π′B and Q.

with respect to some well chosen converters A and Q (see Figure 3.9) and this new
filter `σ.

3. Then, we use the main result about RSP (Theorem 3.2.6) to show that SUBQC1 is
describable within negl(n) with respect to A (Corollary 3.3.6).

4. Finally, in Lemma 3.3.8 we prove that if SUBQC1 is describable then we could
achieve superluminal signaling, which concludes the contradiction proof.

Definition 3.3.3. Let π′ = (π′A, π′B) the protocol realizing SUBQC1 described in the
following way (as pictured Figure 3.9):

• π′A = πA (Figure 3.8)

• π′B: runs PB, obtains a state ρB, then uses the angle δ received from its inner
interface to compute ρ̃ := RZ(−δ)ρB, and finally outputs ρ̃ on its outer interface
and s := 0 on its inner interface.

Then we define `σ= σπ′B depicted in Figure 3.10 (with σ the simulator defined in (3.26)
as explained before).
We define the converters A and Q as seen in:

`σ

SUBQC1 σ π′
B

φ

s̄
ρ̃

Figure 3.10: Description of `σ.

Lemma 3.3.4. If SUBQC1 is ε-classically-realizable by (πA, πB) with the filter `c=0 then
SUBQC1 is also ε-classically-realizable by (π′A, π′B) with the filter `σ.
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Proof. If SUBQC1 is ε-classically-realizable with `c=0, then as seen in Theorem 3.3.2, we
have:

πACπB ≈ε SUBQC1 `c=0 (3.29)

πAC ≈ε SUBQC1σ (3.30)

Now we can show that SUBQC1 is ε-classically-realizable by (π′A, π′B) with `σ , i.e. that
there exists a simulator σ′ such that:

π′ACπ
′
B ≈ε SUBQC1 `σ (3.31)

π′AC ≈ε SUBQC1σ
′ (3.32)

For the correctness condition, we have:

π′ACπ
′
B = (πAC)π′B (3.33)

≈ε (SUBQC1σ)π′B (3.34)

= SUBQC1 `σ (3.35)

For the security condition, we define σ′ = σ. Then, we have:

π′AC = πAC (3.36)

≈ε SUBQC1σ (3.37)

Which concludes our proof.

Lemma 3.3.5. If SUBQC1 is negl(n)-classically-realizable with `c=0 then SUBQC1 is an
negl(n)-remote state preparation resource with respect the converters A and Q and filter
`σ defined in Figure 3.9.

Proof. We need to prove that:

E
([ρ],ρB)←ASUBQC1`σQ

[ Tr(ρρB) ] ≥ 1− ε (3.38)

First, we remark that due to Lemma 3.3.4:

ASUBQC1 `σ Q ≈ε Aπ′ACπ′BQ (3.39)
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However, from the protocol description it is easy to check that in the real world
s̄ = 0⊕ r = r, and therefore φ′ := φ0 + s̄π = φ0 + rπ and ρ = |+φ′〉〈+φ′ |. And because
the trace distance between ρB and |+θ〉〈+θ| is negligible with overwhelming probability
(by the correctness of (PA, PB)), then we also have that ρ̃ = RZ(−δ)ρBR(−δ)† is
negligibly close in trace distance to |+θ−δ〉〈+θ−δ| = |+−φ0+rπ〉〈+−φ0+rπ| = |+φ′〉〈+φ′ |.
Therefore, we have:

E
([ρ],ρ̃)←Aπ′ACπ

′
BQ

[ Tr(ρρ̃) ] ≥ 1− negl(n) (3.40)

Then it also means that:

E
([ρ],ρ̃)←ASUBQC1`σQ

[ Tr(ρρ̃) ] ≥ 1− negl(n) (3.41)

otherwise we could (using a similar argument to the one given in the proof of Theo-
rem 3.2.6) distinguish between the ideal and the real world, contradicting (3.39), which
concludes the proof.

Now, using our main Theorem 3.2.6 we obtain directly that if SUBQC1 is classically-
realizable and RSP with respect to filter `σ, then it is also describable:

Corollary 3.3.6. If SUBQC1 is negl(n)-classically-realizable with respect to filter `c=0

then SUBQC1 is negl(n)-describable with respect to the converter A described above.

Lemma 3.3.7. Let Ω = {[ρi]} be a set of (classical descriptions of) density matrices,
such that ∀i 6= j, Tr(ρiρj) ≤ 1−η. Then let ([ρ], [ρ̃]) be two random variables (represent-
ing classical description of density matrices), such that [ρ] ∈ Ω and E

([ρ],[ρ̃])
[ Tr(ρρ̃) ] ≥ 1−ε,

with η > 6
√
ε. Then, if we define the following “rounding” operation that rounds ρ̃ to

the closest ρ̃r ∈ Ω:

[ρ̃r] := RoundΩ([ρ̃]) := arg max
[ρ̃r]∈Ω

Tr(ρ̃rρ̃) (3.42)

Then we have:
Pr

([ρ],[ρ̃])
[ RoundΩ([ρ̃]) = [ρ] ] ≥ 1−√ε (3.43)

In particular, if ε = negl(n), and η 6= 0 is a constant, Pr[ RoundΩ([ρ̃]) = [ρ] ] ≥
1− negl(n).

Proof. We know that E
([ρ],[ρ̃])

[ Tr(ρρ̃) ] ≥ 1− ε. Therefore, using Markov inequality we get
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C D

A SUBQC1 P P ′
[ρ̃] φ′

π

= φ0 mod π

φ0←$ Zπ
2

Figure 3.11: Illustration of the no-signaling argument

that:

Pr
([ρ],[ρ̃])

[ 1− Tr(ρρ̃) ≥ √ε ] ≤ E[ 1− Tr(ρρ̃) ]
ε

(3.44)

Pr
([ρ],[ρ̃])

[ Tr(ρρ̃) ≤ 1−√ε ] ≤ ε√
ε

(3.45)

Pr
([ρ],[ρ̃])

[ Tr(ρρ̃) ≥ 1−√ε ] ≥ 1−√ε (3.46)

But when Tr(ρρ̃) ≥ 1−√ε, we have RoundΩ([ρ̃]) = ρ.
We will indeed show that ∀ρi ∈ Ω, Tr(ρiρ̃) ≤ Tr(ρρ̃). By contradiction, we assume
there exists ρi ∈ Ω such that ρi 6= ρ and Tr(ρiρ̃) > Tr(ρρ̃) ≥ 1−√ε. But due to
Lemma 3.5.4 we have:

Tr(ρiρ) ≥ 1− 3(
√
ε+
√
ε) = 1− 6

√
ε (3.47)

However, because both ρi and ρ belong to Ω, we also have Tr(ρiρ) ≤ 1−η < 1−6
√
ε,

which is absurd.
Therefore, using (3.46) we have

Pr
([ρ],[ρ̃])

[ RoundΩ([ρ̃]) = [ρ] ] ≥ 1−√ε (3.48)

which concludes the proof.

Lemma 3.3.8. SUBQC1 cannot be negl(n)-describable with respect to converter A.

Proof. If we assume that SUBQC1 is negl(n)-describable, then there exists a converter P
(outputting [ρ̃]) such that:

E
([ρ],[ρ̃])←ASUBQC1P

[ Tr(ρρ̃) ] ≥ 1− negl(n) (3.49)

We define the set Ω := {[|+θ′〉〈+θ′|] | θ′ ∈ {0, π/4, ..., 7π/4}}. For simplicity, we will
denote in the following [θ] = [|+θ〉〈+θ|].
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In the remaining of the proof, we are going to use the convertersA and P together with
the ideal resource SUBQC1, to construct a 2-party setting that would achieve signaling,
which would end our contradiction proof. More specifically, we will define a converter D
running on the right interface of SUBQC1 which will manage to recover the φ0 chosen
randomly by A.
As shown in Figure 3.11, if we define C as C := ASUBQC1 and D the converter described
above, then the setting can be seen equivalently as: C chooses as random φ0 and D
needs to output φ0 mod π. This is however impossible, as no message is sent from
SUBQC1 to its right interface (as seen in Figure 3.11) (and thus no message from C to
D), and therefore guessing φ0 is forbidden by the no-signaling principle [GRW80].

We define P′ as the converter that, given [ρ̃] from the outer interface of P computes
[φ̃] = RoundΩ([ρ̃]) and outputs φ̃π = φ̃ mod π (as depicted in Figure 3.11). We will now
prove that φ̃π = φ0 mod π with overwhelming probability.

All elements in Ω are different pure states, and in finite number, so there exist a
constant η > 0 respecting the first condition of Lemma 3.3.7. Moreover from (3.49) we
have that SUBQC1 is ε-describable with ε = negl(n), so we also have (for large enough
n), η > 6

√
ε. Therefore, from Lemma 3.3.7, we have that:

Pr
([ρ],[ρ̃])←ASUBQC1P

[ RoundΩ([ρ̃]) = [ρ] ] ≥ 1− negl(n) (3.50)

But using the definition of converter A, we have: [ρ] = [φ′], where φ′ = φ0 + s̄π, and
hence φ′ mod π = φ0 mod π. Then, using the definition of P′, the (3.50) is equivalent
to:

Pr
([φ′],φ̃π)←ASUBQC1PP

′
[ φ̃π = φ0 mod π ] ≥ 1− negl(n) (3.51)

However, as pictured in Figure 3.11, this can be seen as a game between C = ASUBQC1

and D = PP′, where, as explained before, C picks a φ0 ∈ Zπ
2 randomly, and D needs

to output φ0 mod π. From (3.51) D wins with overwhelming probability, however, we
know that since there is no information transfer from C to D, the probability of winning
this game better than 1/4 (guessing both the bits at random) would imply signalling.

Remark 3.3.9. The guessing game described at the end of the preceding proof can be
generalized to the case when some (partial) information transfer from C to D takes place.
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More precisely, whenever we consider a new resource together with some converters
A and Q, it is enough to show that this resource is not describable to prove that it is
impossible to classically realize. To that purpose, it may as above be practical to define a
guessing game similar to the above one, but without the nice property that no information
flows from C to D. Here, the connections with the non-local games [Bru+14] and
information causality [Paw+09] could provide an upper bound on the winning probability
(e.g., as a function of the conditional mutual information conditioned on the information
exchanged). We leave the quantitative analysis for future work.

3.3.2 Impossibility of Composable UBQCCC on Any Number of
Qubits

We saw in Theorem 3.3.2 that it is not possible to implement a composable classical-
client UBQC protocol performing a computation on a single qubit. In this section, we
prove that this result generalizes to the impossibility of UBQCCC on computations using
an arbitrary number of qubits. The proof works by reducing the general case to the
single-qubit case from the previous section.

Theorem 3.3.10 (No-go Composable Classical-Client UBQC). Let (PA, PB) be a pro-
tocol interacting only through a classical channel C, such that (θ, ρB)← (PACPB) with
θ ∈ Zπ

4 , and such that the trace distance between ρB and |+θ〉 〈+θ| is negligible with
overwhelming probability. Then, if we define (πGA , πGB) as the UBQC protocol on any fixed
graph G (with at least one output qubit17), that uses (PA, PB) as a sub-protocol to replace
the quantum channel, (πGA , πGB) is not composable, i.e. there exists no simulator σ such
that:

πGACπ
G
B ≈ε SUBQC1 `c=0 (3.52)

πGAC ≈ε SUBQC1σ (3.53)

for some negligible ε = negl(n).

Proof. To prove this statement, we just need to prove that we can come back to the
setting with a single qubit, where we want to perform a computation with angle φ, and
output one angle close to φ as in the proof of Theorem 3.3.2. Because the graph has at

17Note, that in UBQCCC with zero output qubits the client does not receive any results. Hence, the
protocol is trivially implementable for this degenerated case.
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least one output qubit, we will denote by ω the index of the last output qubit. So the
idea is to let the distinguisher choose the client input such that for any node i 6= ω in
the graph, φi = 0, and for the output qubit, φω = φ. Moreover, on the server side, the
distinguisher will behave like the honest protocol πGB , except that it will not entangle
the qubits provided by PA, and it will deviate on the output qubit ω by not measuring
it and sending s := 0, the qubit being rotated again with angle −δω, and outputed on
the outer interface, like in the one-qubit case. It is now easy to see by induction (over
the index of the qubit, following the order chosen on G) that, in the real world, for
all i 6= ω, we always have si = ri, therefore s̄i = 0. So for all nodes i, (including ω),
sXi = ⊕i∈Di s̄i = 0 and sZi = ⊕i∈D′i s̄i = 0. Thus we have on the last node:

δω = θω + (−1)sXω φω + sZωπ + rωπ

= θω + φ+ rωπ

which corresponds exactly to the single-qubit setting, shown to be impossible.

3.4 Game-Based Security of QF-UBQC
While we know from Theorem 3.3.10 that classical-client UBQC (henceforth simply
UBQCCC) cannot be proven secure in a fully composable setting, there is hope that
it remains possible with a weaker definition of security. And indeed, in this section
we show that UBQCCC is possible in the game-based setting by implementing it using
a combination of the known quantum-client UBQC Protocol 1 [BFK09] and 8-states
QFactory Protocol 3 [Coj+19].

3.4.1 QFactory: Remote State Preparation, Revisited

The construction of the QFactory protocol relies on a family of functions with cer-
tain cryptographic properties, specifically, a 2-regular homomorphic-hardcore family of
functions. For the formal definition of these properties, see [Coj+19].

We first begin by recalling the formal description of the protocol in Section 3.4.1.1
and then in Section 3.4.1.2 and Section 3.4.1.3 we present the results concerning the
correctness and security of QFactory.

3.4.1.1 4-states and 8-states QFactory protocol
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Protocol 2 4-states QFactory: classical delegation of the BB84 states ([Coj+19])

Requirements: Public: A 2-regular homomorphic-hardcore family F with respect to {hk}
and d0. For simplicity, we will represent the sets D′ (respectively R) using n (respectively m)
bits strings: D′ = {0, 1}n, R = {0, 1}m.

Stage 1: Preimages superposition

1. Client runs the algorithm (k, tk)← GenF(1n).

2. Client instructs Server to prepare one register at ⊗nH |0〉 and second register initiated
at |0〉m.

3. Server receives k from the client and applies Ufk using the first register as control and
the second as target.

4. Server measures the second register in the computational basis, obtains the outcome y.
The combined state is given by (|x〉+ |x′〉)⊗ |y〉 with fk(x) = fk(x′) = y and y ∈ Im fk.

Stage 2: Output preparation

1. Server applies Uhk on the preimage register |x〉+|x′〉 as control and another qubit initiated
at |0〉 as target. Then, measures all the qubits, but the target in the { 1√

2(|0〉 ± |1〉)}
basis, obtaining the outcome b = (b1, ..., bn). Now, the Server returns both y and b to
the Client.

2. Client using the trapdoor tk computes the preimages of y:

• if y does not have exactly two preimages x, x′ (the server is cheating with over-
whelming probability), defines B1 = d0(tk), and chooses B2 ∈ {0, 1} uniformly at
random

• if y has exactly two preimages x, x′, defines B1 = hk(x)⊕ hk(x′) = d0(tk), and B2.

Output: The quantum state that the Server has generated is (with overwhelming probability 18)
the BB84 state |out〉 = HB1XB2 |0〉 (see (3.55) and (3.56) for the exact value of B1 and B2).
The output of the Server is a quantum state |out〉 and the output of the Client is given by
(B1, B2) (2 bits).

18As for the previous protocol, the probability comes from the probability of F being a 2-regular
homomorphic-hardcore family of functions
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Protocol 3 8-states QFactory: classical delegation of the |+θ〉 states ([Coj+19])

Requirements: Same as in Protocol 2

Input: Client runs twice the algorithm GenF(1n), obtaining (k1, t1k), (k2, t2k). Client keeps
t1k, t

2
k private.

Protocol Steps:

1. Client runs 4-states QFactory Protocol 2 to obtain a state |in1〉 and a "rotated" 4-states
QFactory to obtain a state |in2〉 (by rotated 4-states QFactory we mean a 4-states
QFactory, but where the last set of measurements in the |±〉 basis is replaced by
measurements in the

∣∣∣±π
2

〉
basis).

2. Client records measurement outcomes (y1, b1), (y2, b2) and computes and stores the
corresponding indices of the output states of the 2 runs of 4-states QFactory protocol:
(B1, B2) for |in1〉 and (B′1, B′2) for |in2〉.

3. Client instructs Server to apply the Merge Gadget in Fig. 3.12 ([Coj+19]) on the states
|in1〉, |in2〉.

4. Server returns the 2 measurement results s1, s2.

5. Client using (B1, B2), (B′1, B′2), s1, s2 computes the index L = L1L2L3 ∈ {0, 1}3 of
the output state (see (3.57), (3.58), and (3.59) for the exact value of L1, L2, and L3,
respectively.)

Output: The output of the Server is (with overwhelming probability) a quantum state
|out〉 :=

∣∣∣+Lπ4

〉
and the output of the Client is given by L (3 bits).

∣∣∣+π
4

〉
• |±〉 s1

|in1〉 Z • |±〉 s2

|in2〉 Z |out〉

Figure 3.12: Merge Gadget (Taken from [Coj+19])
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3.4.1.2 Correctness of QFactory

In an honest run, the description of the output state of the protocol depends on
measurement results y ∈ Im fk and b, but also on the 2 preimages x and x′ of y.

The output state of 4-states QFactory belongs to the set of states {|0〉 , |1〉 , |+〉 , |−〉}
and its exact description is the following:

Theorem 3.4.1 (4-states QFactory is correct ([Coj+19])). In an honest run, with
overwhelming probability the output state |out〉 of the 4-states QFactory Protocol 2 is a
BB84 state whose basis is B1 = hk(x)⊕ hk(x′) = d0, and:

• if d0 = 0, then the state is |hk(x)〉 (computational basis, also equal to |hk(x′)〉)

• if d0 = 1, then if ∑i bi · (xi ⊕ x′i) = 0 mod 2, the state is |+〉, otherwise the state
is |−〉 (Hadamard basis).

i.e.

|out〉 = HB1XB2 |0〉 (3.54)

with

B1 = hk(x)⊕ hk(x′) = d0 (3.55)

B2 = (d0 × (b · (x⊕ x′)))⊕ h(x)h(x′) (3.56)

(the inner product is taken modulo 2, and x⊕ x′ is a bitwise xor)

Theorem 3.4.2 (8-states QFactory is correct ([Coj+19])). In an honest run, the Output
state of the 8-states QFactory Protocol is of the form

∣∣∣+L·π4

〉
, where L = L1L2L3 ∈ {0, 1}3,

defined as:

L1 = B′2 ⊕B2 ⊕ [B1 · (s1 ⊕ s2)] (3.57)

L2 = B′1 ⊕ [(B2 ⊕ s2) ·B1] (3.58)

L3 = B1 (3.59)

3.4.1.3 Security of QFactory

In any run of the protocol, honest or malicious, the state that the client believes that the
server has is given by Theorem 3.4.1. Therefore, the task that a malicious server wants

57



CHAPTER 3. CLASSICAL-CLIENT DELEGATED QUANTUM COMPUTING

to achieve, is to be able to guess, as good as he can, the description of the output state
that the client (based on the public communication) thinks the server has produced. In
particular, in our case, the server needs to guess the bit B1 (corresponding to the basis)
of the (honest) output state.

Definition 3.4.3 (4-states basis blindness). We say that a protocol (πA, πB) achieves
basis-blindness with respect to an ideal list of 4 states
S = {SB1,B2}(B1,B2)∈{0,1}2 if

1. S is the set of states that the protocol outputs, i.e.,

Pr[ |φ〉 = SB1B2 ∈ S | ((B1, B2), |φ〉)← (πA‖πB) ] ≥ 1− negl(n), (3.60)

2. and no information is leaked about the index bit B1 of the output state of the
protocol, i.e for all QPT adversary A, it holds that

Pr[B1 = B̃1 | ((B1, B2), B̃1)← (πA‖A) ] ≤ 1/2 + negl(n). (3.61)

Theorem 3.4.4 (4-states QFactory is secure ([Coj+19])). Protocol 2 satisfies 4-states
basis blindness with respect to the ideal list of states

S = {HB1XB2 |0〉}B1,B2 = {|0〉 , |1〉 , |+〉 , |−〉}. (3.62)

Definition 3.4.5 (8-states basis blindness). Similarly, we say that a protocol
(πA, πB) achieves basis-blindness with respect to an ideal list of 8 states S =
{SL1,L2,L3}(L1,L2,L3)∈{0,1}3 if:

1. S is the set of states that the protocol outputs, i.e.,

Pr [|φ〉 = SL1,L2,L3 ∈ S | ((L1, L2, L3), |φ〉)← (πA‖πB)] = 1, (3.63)

2. and if no information is leaked about the “basis” bits (L2, L3) of the output state
of the protocol, i.e for all QPT adversary A, it holds that

Pr[L2 = L̃2 and L3 = L̃3 | ((L1, L2, L3), (L̃2, L̃3))← (πA‖A) ] ≤ 1/4 + negl(n).
(3.64)
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Theorem 3.4.6 (8-states QFactory is secure ([Coj+19])). Protocol 3 satisfies 8-state
basis blindness with respect to the ideal set of states

S =
{∣∣∣+πL/4

〉}
L∈{0,...,7}

=
{
|+〉 ,

∣∣∣+π
4

〉
, . . . ,

∣∣∣+ 7π
4

〉}
. (3.65)

3.4.2 Game-Based Blindness

We start with giving a formal definition of the game-based security of UBQCCC.

Definition 3.4.7 (Blindness of UBQCCC). A UBQCCC protocol P = (PC , PS) is said to
be (computationally) adaptively blind if no computationally bounded malicious server can
distinguish between runs of the protocol with adversarially chosen measurement patterns
on the same MBQC graph.

In formal terms, P is said to be (computationally) adaptively blind if and only if for
any quantum-polynomial-time adversary A it holds that

Pr
[
c′ = c

∣∣∣ (φ(1), φ(2))← A, c←$ {0, 1},
〈
PC(φ(c)), A

〉
, c′ ← A

]

≤ 1
2 + negl(λ), (3.66)

where λ is the security parameter, and
〈
PC(φ(c)), A

〉
denotes the interaction of the two

algorithms PC(φ(c)) and A.

Remark 3.4.8. Although, Definition 3.4.7 is written using the terminology of measurement-
based model, it doesn’t compromise the generality, as the model is universal and can
be easily translated into a circuit model, because the measurement pattern and unitary
operator have a one-to-one mapping.

3.4.3 Implementing Classical-Client UBQC with QFactory

The UBQC protocol from [BFK09], where the quantum interaction is replaced by a
RSP8−states

CC protocol, is shown in Protocol 1. In this section, we replace the RSP8−states
CC

protocol with the concrete protocol proposed in [Coj+19]. This protocol, known by the
name of 8-states QFactory19 and described in Protocol 3, exactly emulates the capability
of RSP8−states

CC . The resulting protocol contains a QFactory instance for each qubit that
19We refer here to the 8-states QFactory implementation with negligible abort probability, and

superpolynomial parameters. This is necessary since our proof does not take the abort case into account
for now.
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would have been generated on the client’s side. The keys to all QFactory instances are
generated entirely independently by the client.

Unfortunately, considering the results from Section 3.3 there is no hope that the
composable security of any UBQCCC may be achieved. Nonetheless, letting go of
composability, we are able to prove the game-based security for this specific combination
of protocols. This leads us to the main theorem of this section.

Theorem 3.4.9 (Game-based Blindness of QF-UBQC). The protocol resulting from com-
bining the quantum-client UBQC protocol with QFactory is a (computationally) adaptively
blind implementation of UBQCCC in the game-based model according to Definition 3.4.7.
We call this protocol QF-UBQC.

The proof of Theorem 3.4.9 which will be given in the remainder of this section
follows two main ideas:

1. Every angle used in the UBQC protocol has only eight possible values, and can,
therefore, be described by three bits. In the protocol, the first bit is the one for
which QFactory cannot guarantee blindness. Fortunately, the additional one-time
padding in UBQC allows analyzing the blindness of the protocol independently of
the blindness of exactly this first bit. Therefore, it suffices to rely on the blindness
of the last two bits which is conveniently guaranteed by QFactory and the hardness
of LWE.

2. To analyze the leakage about the last two bits during a QFactory run, it is
sufficient to notice that the leakage is equal to a ciphertext under an LWE-based
encryption scheme. The semantic security of this encryption scheme and the
hardness assumption for LWE guarantee that this leakage is negligible and can be
omitted.

In more detail, the 8-states QFactory protocol which is used here consists of two
combined runs of 4-states QFactory, each contributing with a single blind bit to the three-
bit angles used in the UBQC protocol. Recall from Theorem 3.4.2 and Theorem 3.4.6
the formulae for how these angles from the 4-states protocol are combined in the 8-states
protocol. If B1 is the hidden bit of the first 4-states QFactory instance and B′1 the
hidden bit of the second instance, then we obtain

L1 = B′2 ⊕B2 ⊕ [B1 · (s1 ⊕ s2)], L2 = B′1 ⊕ [(B2 ⊕ s2) ·B1], L3 = B1, (3.67)
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where L = L1L2L3 ∈ {0, 1}3 is the description of the output state
∣∣∣+Lπ4

〉
, s1, s2 are

computed by the server, and

B2 = f(sk, B1, y, b), B′2 = f(sk′, B′1, y′, b′) (3.68)

for some function f , QFactory secret keys sk, sk′, and server-chosen values y, b, y′, b′.

The two 4-states QFactory instances now leak the ciphertext of B1 and B′1, respec-
tively. Given the semantic security of the encryption, after a run of 8-states QFactory,
L2 and L3 remain hidden, while the blindness of L1 cannot be guaranteed by QFactory.
This fact is going to be useful in the following proof.

3.4.4 Single-Qubit QF-UBQC

We first prove the security of combining QFactory with UBQC on a single qubit.

Lemma 3.4.10 (Blindness in the single-qubit case). The protocol resulting from com-
bining the quantum-client UBQC protocol with (8-states) QFactory is a (computationally)
adaptively blind implementation of UBQCCC in the game-based model for MBQC compu-
tations on a single qubit.

Proof. We start with the real protocol, describing the adaptive blindness of QFactory
combined with single-qubit UBQC. In the following, we denote the set of possible angles
by M = {jπ/4, j = 0, . . . , 7}. The encryption scheme that appears in Game 1 is the
semantically secure public-key encryption scheme from [Reg09]. Note that the two key
pairs are generated completely independently on the challenger’s side.
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Game 1:

Adversary Challenger

1 : Choose φ(1), φ(2) ∈M φ(1), φ(2)
c←$ {0, 1}

2 : B1, B
′
1 ←$ {0, 1}

3 :
pk, pk′,

Encpk(B1),Encpk′
(B′1) Generate key pairs (sk, pk), (sk′, pk′)

4 : y, b, y′, b′, s1, s2 B2 = f(sk, B1, y, b), B′2 = f(sk′, B′1, y′, b′)

5 : L1 = B′2 ⊕B2 ⊕ [B1 · (s1 ⊕ s2)]

6 : L2 = B′1 ⊕ [(B2 ⊕ s2) ·B1]

7 : L3 = B1

8 : r ←$ {0, 1}

9 : δ δ = φ(c) + L3π/4 + L2π/2 + L1π + rπ

10 : s

Compute guess
11 : c′ ∈ {0, 1} c′ Check c′ = c?

In the following, instead of repeating the redundant parts of subsequent games, we
only present incremental modifications to Game 1. Every not explicitly written line is
assumed to be identical to the previous game.

Clearly, since s is never used by the challenger, we can remove it from the protocol
without distorting the success probability of the adversary. Next, we remove L1 from
the protocol and from the calculation of δ. L1 is only used in the calculation of δ, which
can be rewritten as

δ = φ(c) + L3π/4 + L2π/2 + (L1 + r)π. (3.69)

Since r is a uniform binary random variable with unique use in this line, (L1 + r) is
still uniform over {0, 1}. Therefore, removing L1 leaves the distribution of the protocol
outcome unchanged.
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Game 2:

...
4 : y, b, y′, b′, s1, s2 B2 = f(sk, B1, y, b), B′2 = f(sk′, B′1, y′, b′)

5 : L1 = B′2 ⊕B2 ⊕ [B1 · (s1 ⊕ s2)]
...
9 : δ δ = φ(c) + L3π/4 + L2π/2 + L1π + rπ

10 : s

...

The next step introduces a (negligible) distortion to the success probability of the
adversary. By the semantic security of the employed encryption scheme, no quantum-
polynomial-time adversary can notice if the plaintext is replaced by pure randomness
except with negligible probability, even if information about the original plaintext is
leaked on the side. Therefore, replacing B′1 in the encryption by independent randomness
cannot lead to a significant change of the adversary’s success probability. Further, since
ciphertexts of independent randomness can be equally generated by the adversary herself
(being in possession of the public key), we can remove the encryption of B′1 from the
protocol altogether.

Game 3:

...
3 : pk, pk′,Encpk(B1), Encpk′

(B′1) Generate key pairs (sk, pk), (sk′, pk′)
...

Next, note that B′1 perfectly one-time pads the value of L2. This breaks the
dependency of L2 on B2, s2 and B1. It does not change the distribution of L2, if L2 is
instead directly sampled uniformly from {0, 1}. Since B2 is unused, we remove it in the
following game, and y, b, y′, b′, s1, s2 can be ignored.

Game 4:

...
4 : y, b, y′, b′, s1, s2 B2 = f(sk, B1, y, b)
...
6 : L2 = B′1 ⊕ [(B2 ⊕ s2) ·B1] L2 ←$ {0, 1}
...
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By the same argument as for the transition from Game 2 to Game 3, we remove the
encryption of B1 from the following game. This introduces at most a negligible change
in the success probability of the adversary.

Finally, since the encryption scheme is not in use anymore, we can also remove
the key generation and the message containing the public key without affecting the
adversary’s success probability.

Game 5:

...
3 : pk,Encpk(B1) Generate key pair (sk, pk)
...

We now see that δ is a uniformly random number, L2, L3, and r being i.i.d. uniform
bits. Therefore, the calculation and the message containing δ can be removed from the
protocol without affecting the adversary.

Game 6:

...

2 : B1, B
′
1 ←$ {0, 1}

...

6 : L2 ←$ {0, 1}

7 : L3 = B1

8 : r ←$ {0, 1}

9 : δ δ = φ(c) + L3π/4 + L2π/2 + rπ
...

In Game 6, the inputs of the adversary are ignored by the challenger. Therefore, the
computation angles φ(1), φ(2) can equally be removed from the protocol, leaving us with
the final Game 7.

Game 7:

Adversary Challenger

1 : Choose φ(1), φ(2) ∈M φ(1), φ(2)
c←$ {0, 1}

11 : Compute guess c′ ∈ {0, 1} c′ Check c′ = c?

Game 7 exactly describes the adversary’s uninformed guess of the outcome of an
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independent bit flip. Therefore, by a simple information-theoretic argument, any strategy
for the adversary will lead to a success probability of exactly 1/2.

We summarize:

Succ-PrGame1 = Succ-PrGame2, |Succ-PrGame2 − Succ-PrGame3| ≤ negl(λ), (3.70)

Succ-PrGame3 = Succ-PrGame4, |Succ-PrGame4 − Succ-PrGame5| ≤ negl(λ), (3.71)

Succ-PrGame5 = Succ-PrGame6 = Succ-PrGame7 = 1
2 , (3.72)

and therefore we have
∣∣∣Succ-PrGame1 − 1

2

∣∣∣ ≤ negl(λ) concluding the proof.

3.4.5 General QF-UBQC

We extend the security proof from Section 3.4.4 to UBQC on polynomially-sized graphs,
i.e. MBQC computations on a polynomial number of qubits. The proof works by
induction over the number n of qubits in the graph. Lemma 3.4.10 with n = 1 serves
as start of the induction. We continue with proving the induction step, assuming the
security of QF-UBQC on graphs of size n and showing its security for any graph of size
n+ 1. The induction step works analogously to the proof of Lemma 3.4.10. In this way,
the security of QF-UBQC on n qubits is reduced to the security of QF-UBQC on n− 1
qubits, which can be reduced to the security of QF-UBQC on even one qubit less. This
chain continues down to the single-qubit case whose security was already established
in Lemma 3.4.10. Every step in this chain adds at most a negligible probability to the
adversary’s advantage. Therefore, also any such chain of polynomial length adds no
more than a negligible probability to the adversary’s advantage in the single-qubit case,
thereby showing the security of the protocol on n qubits. We now provide the full details
of the induction step.

Details of the proof of Theorem 3.4.9. The proof works by induction over the number
n of qubits in the graph. Lemma 3.4.10 with n = 1 serves as start of the induction. We
continue with proving the induction step, assuming the security of QF-UBQC on graphs
of size n and showing its security for any graph of size n+ 1.

We first state some useful observations for the proof:

1. The existence of a flow on the MBQC graph induces a total order of all qubits in
the graph, the order in which the qubits are measured. We subsequently assume
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that in the protocol the qubits are processed in exactly this order.

2. Given this order on the qubits, the dependence of the computation angles δi
on outcomes of measurement of other qubits takes a specific form, they solely
depend on previous (corrected) measurement outcomes {s̄j, j < i}, i.e. outcomes
of measurements of qubits smaller in the order induced by the flow. Since the
exact form of this dependence does not matter for the following proof, we denote
the update of the angles in the following general way:

δi =(−1)f1(s1,r1,...,si−1,ri−1)φi + θ1π/4 + θ2π/2 + θ3π + riπ

+ f2(s1, r1, . . . , si−1, ri−1)π, (3.73)

with (deterministic families of) functions f1 and f2.

3. Given the previous observation, one can generalize the statement of the theorem
to a family of protocols for any functions f1 and f2. For the remainder of the
proof, we do hence not assume anything about these two functions, but simply
take them as given. The actual statement of the theorem then follows as a special
case, imposing that f1 and f2 describe the MBQC correction terms.

Given these observations, the rest of the proof works analogously to the proof of
Lemma 3.4.10, removing one-by-one the ciphertexts of the two basis bits B1, B

′
1 of the

last QFactory instance, before removing the last measurement angle δ and reducing the
protocol on n+ 1 qubits to the protocol on one qubit less.

By the inductive nature of this proof, every qubit – and hence every QFactory instance
– adds some negligible value to the success probability of the malicious adversary. This
explains that the security only holds for polynomially-sized graphs. For an MBQC graph
on a superpolynomial number of qubits, there are no guarantees anymore that these
small errors don’t add up to something constant. Having in mind that QFactory is
trivially broken by exponential adversaries, it is clear that this is the best we can expect.

3.5 Appendix: Distance Measures for Quantum States

In this section, we give some distance measures for density matrices that are useful for
the formal definition of RSP resources and their describability.
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Lemma 3.5.1. For any two self-adjoint trace-class operators ρ, σ it holds that

Tr(ρσ) = 1
2
[
Tr
(
ρ2
)

+ Tr
(
σ2
)]
− 1

2 ‖ρ− σ‖
2
HS , (3.74)

where the Hilbert-Schmidt norm is defined as

‖A‖HS =
√

Tr(A∗A). (3.75)

Proof. This follows directly from the relation

(ρ− σ)2 = ρ2 − ρσ − σρ+ σ2 (3.76)

and the fact that ρ and σ are self-adjoint operators.

The following lemma formalizes the following statement: If Tr(ρσ) is close to 1, then
both ρ and σ must be almost pure, and ρ and σ must be close. Note that Lemma 3.5.2
holds in particular for density matrices ρ and σ, despite being stated for a more general
class of operators.

Lemma 3.5.2. Let ε ≥ 0 and Tr (ρσ) ≥ 1− ε for two self-adjoint, positive semi-definite
operators ρ, σ with trace less than 1. Then, it holds that

1. Tr (ρ2) ≥ 1− 2ε,

2. Tr (σ2) ≥ 1− 2ε, and

3. ‖ρ− σ‖HS ≤
√

2ε.

Proof. 1. With the formula from Lemma 3.5.1, we infer that

Tr(ρσ) ≤ 1
2
[
Tr
(
ρ2
)

+ Tr
(
σ2
)]
≤ 1

2
[
Tr
(
ρ2
)

+ 1
]
, (3.77)

using the non-negativity of the Hilbert-Schmidt norm and the fact that Tr (σ2) ≤ 1.
Hence,

Tr
(
ρ2
)
≥ 2 Tr (ρσ)− 1 ≥ 1− 2ε. (3.78)

2. Analogously to 1.
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3. Using Tr (ρ2) ≤ 1 and Tr (σ2) ≤ 1, we obtain

Tr (ρσ) ≤ 1− 1
2 ‖ρ− σ‖

2
HS (3.79)

⇒ ‖ρ− σ‖2
HS ≤ 2 (1− Tr (ρσ)) ≤ 2ε, (3.80)

which implies the claim.

Lemma 3.5.3. Let λ be a security parameter and let ρ, σ be two density matrices of
finite and fixed dimension. Then, the following statements are equivalent:

1. Tr (ρ2) ≥ 1− negl(λ), Tr (σ2) ≥ 1− negl(λ), and TD (ρ− σ) ≤ negl(λ),

2. Tr (ρσ) ≥ 1− negl(λ),

where TD denotes the trace distance.

Proof. One direction of the equivalence follows directly from Lemma 3.5.2. The other
direction follows from the formula in Lemma 3.5.1 and the fact that in finite-dimensional
spaces the trace norm is equivalent to the Hilbert-Schmidt norm.

Lemma 3.5.4. Let ε1, ε2 ≥ 0. Let further Tr (ρ1ρ2) ≥ 1 − ε1 and Tr (ρ2ρ3) ≥ 1 − ε2

for self-adjoint, positive semi-definite operators ρ1, ρ2, ρ3 with trace less than 1. Then it
holds that Tr (ρ1ρ3) ≥ 1− 3 (ε1 + ε2).

Proof. From Lemma 3.5.2 we know that Tr (ρ2
1) ≥ 1− 2ε1, Tr (ρ2

3) ≥ 1− 2ε2, and

‖ρ1 − ρ2‖HS ≤
√

2ε1, ‖ρ2 − ρ3‖HS ≤
√

2ε2. (3.81)

By the triangle inequality for the Hilbert-Schmidt norm, it follows readily that

‖ρ1 − ρ3‖HS ≤
√

2ε1 +
√

2ε2 (3.82)

and therefore

‖ρ1 − ρ3‖2
HS ≤

(√
2ε1 +

√
2ε2

)2
= 2ε1 + 2ε2 + 4√ε1

√
ε2 ≤ 4 (ε1 + ε2) (3.83)

where we applied the inequality of the geometric mean to obtain the last bound. Using
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the formula from Lemma 3.5.1, we then conclude that

Tr (ρ1ρ3) = 1
2
[
Tr
(
ρ2

1

)
+ Tr

(
ρ2

3

)]
− 1

2 ‖ρ1 − ρ3‖2
HS

≥ 1
2 [1− 2ε1 + 1− 2ε2]− 1

24 (ε1 + ε2) ≥ 1− 3 (ε1 + ε2) , (3.84)

which implies the claim.
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Chapter 4

Verifying BQP Computations with
Minimal Overhead

With the development of delegated quantum computation, clients will want to ensure
confidentiality of their data and algorithms, and the integrity of their computations.
While protocols for blind and verifiable quantum computation exist, they suffer from
high overheads and from over-sensitivity: When running on noisy devices, imperfections
trigger the same detection mechanisms as malicious attacks, resulting in perpetually
aborted computations. We introduce the first blind and verifiable protocol for delegating
BQP computations to a powerful server with repetition as the only overhead. It is
composable and statistically secure with exponentially-low bounds and can tolerate a
constant amount of global noise.

This chapter is based on the papers “Securing Quantum Computations in the NISQ
Era” [Kas+21] and “Verifying BQP Computations on Noisy Devices with Minimal
Overhead” [Lei+21], published in PRX Quantum, which are joint work with Elham
Kashefi, Luka Music, and Harold Ollivier.

4.1 Introduction

Remotely accessible quantum computing platforms free clients from the burden of
maintaining complex physical devices in house. Yet, when delegating computations,
they want their data and algorithms to remain private, and that these computations are
executed as specified. Several methods have been devised to achieve this (e.g. [BFK10;

71



CHAPTER 4. VERIFYING BQP COMPUTATIONS WITH MINIMAL OVERHEAD

FK17], see [GKK19] for a review). Nonetheless, a practical solution remains to be found
as all known protocols are too sensitive to noise. Indeed, they have been designed for
perfect devices, thus aborting as soon as the smallest deviation is detected. Unfortunately,
replacing such machines by even slightly noisy ones would make the verification procedure
abort constantly, mistaking plain imperfections for the signature of malicious behaviour.

For dealing with this over-sensitivity, previous research either gave up on blind-
ness [GHK18], imposed restrictions on the noise model [KD19], switched to a setting
with two non-communicating servers and classical clients [MF13b], or introduced computa-
tional assumptions [Mah18b]. Yet, these protocols either only achieve inverse-polynomial
security or obtain exponential security by requiring an additional fault-tolerant encoding
of the computation on top of the one used to suppress device noise.

We tackle this problem for BQP computations – i.e. the class of decision problems
that quantum computers can solve efficiently – by introducing a protocol that provides
noise-robustness, verification, blindness and delegation. The protocol repeats the client’s
computation framed in the Measurement-Based Quantum Computation (MBQC) model
– a natural choice for delegating computations – several times in a blind fashion while
interleaving these executions with test rounds which aim at detecting a dishonest
behaviour of the server. A final majority vote over the computation rounds mitigates
possible errors, thus providing the desired robustness.

Combined with blindness, this forces the server to attack at least a constant fraction
of the rounds to corrupt the computation, hence increasing its chances of getting caught
by the tests. Information theoretic security is proven in the composable framework of
Abstract Cryptography [MR11], ensuring security is not jeopardised by sequential or
simultaneous instantiations with other protocols.

Crucially, our protocol has no space overhead for each round when compared to
the insecure computation in the MBQC model: the only price to pay for exponential
security and correctness is a polynomial number of repetitions of computations similar
to the unprotected one. This lets the client use the full extent of the available hardware
for its computational tasks, and any increase in the capabilities of the quantum devices
can be used entirely to scale-up these computations. These properties make it, to
our knowledge, the first experimentally realisable solution for verification of BQP
computations, thus going beyond experimental feasibility demonstrations of verifiable
building blocks [Bar+12; Bar+13; Gre+16; McC+16] and potentially serving as a
blueprint for the development of future quantum network applications.
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Figure 4.1: An example of rounds of the proposed protocol. Graphs in grey denote
computation rounds while graphs containing red nodes (traps) and green nodes (dummies)
are test rounds. Each qubit is always included in one type of test round. The Server
remains completely oblivious of the differences between the rounds, which are solely
known to the Client.

4.2 Noise-Robust Verifiable Protocol

Our Noise-Robust VBQC Protocol is formally defined in Protocol 4 where test rounds
are used in conjunction with computation rounds to provide verifiability. We introduce
it more intuitively in the next paragraphs and discuss the features that make it suitable
for practical purposes.

BQP Computations. The complexity class BQP contains the decisions problems
that can be solved with bounded error probability using a polynomial size quantum
cricuit. More formally, a language L is in BQP if there is a family of polynomial size
quantum circuits which decides the language with an error probability of at most p.
The chosen value for p is arbitrary as long as it is fixed and smaller than 1/2, and is
usually taken to be 1/3. Hence, a BQP computation for L will have output F (x) = 1
for x ∈ L with probability at least 1− p, while it will have output F (x) = 0 for x /∈ L
with probability at least 1− p. In the following, for a given BQP computation, p will be
referred to as the inherent error probability to distinguish it from errors due to external
causes such as the use of noisy devices.

Trap Insertion for BQP Computations. Because BQP computations have classical
inputs and classical outputs, there exists a more economical trap insertion than what
is available for quantum input and quantum output computations. More concretely, it
does not require any enlargement of the graph to insert traps alongside the computation.
Rather, the idea is to interleave pure computation rounds (i.e. without inserted traps)
and pure test rounds (i.e. only made up of traps).

Given a UBQC computation defined by a graph G, we construct test rounds based
on a k-colouring {Vi}i∈[k] of G. A partition of a graph in k sets – called colours – is a
valid k-colouring if all adjacent vertices in the graph have different colours. Therefore,
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Algorithm 4 Noise-Robust VBDQC for BQP Computations
Client’s Inputs: Angles {φv}v∈V and flow f on graph G, classical input to the
computation x ∈ {0, 1}#I (where #X is the size of X).
Protocol:
1. The Client chooses uniformly at random a partition (C, T ) of [n] (C ∩ T = ∅)

with #C = d, the sets of indices of the computation and test rounds respectively.
2. For j ∈ [n], the Client and the Server perform the following sub-protocol (the

Client may send message Redoj to the Server before step 2.c while the Server
may send it to the Client at any time, both parties then restart round j with
fresh randomness):
(a) If j ∈ T (test), the Client chooses uniformly at random a colour Vj ∈R
{Vk}k∈[K] (this is the set of traps for this test round).

(b) The Client sends #V qubits to the Server. If j ∈ T and the destination qubit
v /∈ Vj is a non-trap qubit (therefore a dummy), then the Client chooses
uniformly at random dv ∈R {0, 1} and sends the state |dv〉. Otherwise, the
Client chooses at random θv ∈R Θ and sends the state |+θv〉.

(c) The Server performs a CZ gate between all its qubits corresponding to an
edge in the set E.

(d) For v ∈ V , the Client sends a measurement angle δv, the Server measures
the appropriate corresponding qubit in the δv-basis, returning outcome bv
to the Client. The angle δv is defined as follows:
• If j ∈ C (computation), it is the same as in UBQC, computed using the

flow and the computation angles {φv}v∈V . For v ∈ I (input qubit) the
Client uses θ̃v = θv + xvπ in the computation of δv.

• If j ∈ T (test): if v /∈ Vj (dummy qubit), the Client chooses it uniformly
at random from Θ; if v ∈ Vj (trap qubit), it chooses uniformly at random
rv ∈R {0, 1} and sets δv = θv + rvπ.

3. For all j ∈ T (test round) and v ∈ Vj (traps), the Client verifies that bv = rv⊕dv,
where dv = ⊕

i∈NG(v) di is the sum over the values of neighbouring dummies of
qubit v. Let cfail be the number of failed test rounds (where at least one trap
qubit does not satisfy the relation above), if cfail ≥ w then the Client aborts by
sending message Abort to the Server.

4. Otherwise, let yj for j ∈ C be the classical output of computation round j (after
corrections from measurement results). The Client checks whether there exists
some output value y such that # {yj | j ∈ C, yj = y} > d

2 . If such a value y exists
(this is then the majority output), it sets it as its output and sends message Ok
to the Server. Otherwise it sends message Abort to the Server.
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by definition, a k-colouring satisfies ⋃ki=1 Vi = V, and ∀i ∈ [k], ∀v ∈ Vi : NG(v) ∩ Vi = ∅,
where NG(v) are the neighbours of v in G. Hence, for each colour i, the Client can
decide to insert traps for all vertices of Vi and dummies in all other positions. This
defines the test round associated to colour i. These tests require the same sequence of
operations for the Server as regular UBQC computations, making them undetectable.

Informal Presentation of the Protocol. Suppose the Client wishes to delegate
a BQP computation corresponding to a measurement pattern on a graph G to the
Server. The Client chooses a colouring {Vi}i∈[k] of G, and two integers d and t. All these
parameters are fixed for a given instantiation of the protocol and are publicly available
to both parties.

The Client runs the UBQC Protocol n := t + d times successively. For d of the
rounds chosen at random (computation rounds), the Client updates the measurement
angles according to the measurement pattern of its desired computation. The remaining
t rounds are test rounds. For each such test round, the Client secretly chooses a colour
at random and sends traps for vertices of that colour and dummies everywhere else. The
Client instructs the Server to measure all qubits as in computation rounds, but with
the measurement angle of trap qubits corresponding to the basis they were prepared in
and a random measurement basis for the dummies. Because the trap qubits are isolated
from each other, they should remain in their initial state. A test round is said to have
passed if all the traps yield the expected measurement results, and failed otherwise.
Figure 4.1 depicts such possible succession of rounds.

At the end of the protocol, the Client counts the number of failed test rounds. If this
number is higher than a given threshold w, it aborts the protocol by sending the message
Abort to the Server 1. Otherwise it sets the majority outcome of the computation rounds
as its output and sends message Ok to the Server.

In this construction all rounds share the same underlying graph G, the same order for
the measurements of qubits, and all angles are chosen from the same uniform distribution.
We prove formally later that this implies blindness – i.e. the Server cannot distinguish
computation and test rounds, nor tell which qubits are traps – which in turn makes
this trap insertion strategy efficient to obtain verifiability. The parameters’ range and

1w would typically be set by the Client given its a priori understanding of the quality of the Server.
As explained in the Discussion, this does not affect security: a higher value would induce more rounds
than necessary to achieve a given confidence level, while a lower value would risk aborting with high
probability.
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influence on verifiability and noise-robustness bounds are detailed in the next section.

Redo Feature. Because the Client or the Server may experience unintentional devices
failures, they might wish to discard and redo a round j ∈ [n]. In this case, our protocol
allows each party to send a Redoj request to the other, in which case both parties simply
repeat the exact same round albeit with fresh randomness. Redoj requests are allowed
only so long as the party asking for it is still supposed to be manipulating the qubits
of round j. We show that this does not impact the blindness nor verifiability of the
scheme. This means that a dishonest Server cannot use Redo requests to trick the
Client into accepting an incorrect result. Such capability of our protocol is crucial in
practice: without it, detected honest failures of devices happening during a test round
would be counted as a failed test round, thus decreasing drastically the likelihood of
successfully completing the protocol. Since concerned rounds can be safely repeated,
the only consequence of experimental failures caught during an execution is an increase
in the expected number of rounds.

Exponential Security Amplification. The above approach to trap insertion is
efficient as the only overhead is the repetition of the same sub-protocol. Yet, using a
single computation round and n− 1 test rounds would leave at least 1/n chance for the
Server to corrupt the computation. The only previously-known method to obtain an
exponentially-low cheating probability was to insert traps into a single computation
round at the expense of drastically increasing the graph’s complexity and then using
fault-tolerant encoding on top to amplify the security. By restricting the computation
to BQP computations, we prove that a classical repetition error-correcting code is
sufficient to achieve exponentially-low cheating probability. This amplification technique
is common in purely classical scenarios where attacks can be classically correlated across
various rounds. Although this claim has been made as well in the quantum case in
previous works [FK17; KW17b; KD19], it remained up to now unproven. The difficulty,
which we address below, is that quantum attacks entangled across rounds are much
more powerful than what classical correlations allow.

4.3 Security Results and Noise Robustness

This section presents the protocol’s security properties in the Abstract Cryptography
Framework of [MR11] (AC) and its noise-robustness on honest devices.
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4.3.1 Overview of Security Analysis

Security Analysis. In AC, security is defined as indistinguishability between an
Ideal Resource, which is secure by definition, and its real-world implementation, i.e. the
protocol. This framework ensures a higher standard of security than in other approaches
(see e.g. [Kön+07] and Section 5.1 of [PR14]) and is inherently composable, meaning that
security holds when the protocol is repeated sequentially or in parallel with others. This
property is crucial as delegated protocols are important stepping stones towards more
complex functionalities (e.g. subroutine for building Multi-Party Quantum Computation
protocols [Kap+21]).

Our security proof uses the results of [Dun+14] that reduce the composable security
of a Verifiable Delegated Quantum Computation Protocol to four stand-alone criteria:

• εcor -local-correctness: the protocol with honest players produces the expected
output;

• εbl-local-blindness: the Server’s state at the end of the protocol is indistinguishable
from the one which it could have generated on its own;

• εver -local-verifiability: either the Client accepts a correct computation or aborts
the protocol.

• εind-independent-verification: the Server can determine on its own, using the
transcript of the protocol and its internal registers, whether the Client will decide
to abort or not.

Then, the Local-Reduction Theorem (Corollary 6.9 from [Dun+14]) states that if a
protocol implements a unitary transformation on classical inputs and is εcor -locally-
correct, εbl-locally-blind and εver -locally-verifiable with εind-independent verification,
then it is ε-composably-secure with:

ε = max{εsec, εcor} and εsec := 4
√

2εver + 2εbl + 2εind . (4.1)

With this at hand, we can state our main result:

Theorem 4.3.1 (Security of Protocol 4). For n = d + t such that d/n and t/n are
fixed in (0, 1) and w such that w/t is fixed in (0, 1

k
· 2p−1

2p−2), where p is the inherent error
probability of the BQP computation, Protocol 4 with d computation rounds, t test rounds,
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and a maximum number of tolerated failed test rounds of w is ε-composably-secure with
ε exponentially small in n.

Simple Upper-Bound on the Probability of Failure. The εver -local-verifiability
amounts to upper bound the probability that an erroneous result is accepted by εver .
Given a BQP computation that decides whether x belongs or not to the language L, our
protocol would yield the correct result after the majority vote whenever less than d/2
computation rounds yield F (x)⊕ 1. These erroneous results can be due to malicious
behaviours of the server, to its use of noisy devices or to inherent errors of the BQP
algorithm. It is expected that, in pd computation rounds, the BQP computation will
give an inherently erroneous result, and that this will happen for a fraction greater than
p only with negligible probability. Therefore, the result obtained by running our protocol
will be correct whenever it is possible to guarantee that there is a negligible probability
that the server corrupts more than

(
1
2 − p− ϕ

)
d computation runs for some ϕ > 0.

To this end, we use the trapification paradigm. First, it ensures that each non-trivial
deviation to the computation will be detected by at least one of the k possible types
of test rounds. Second, because the deviations are distributed equally among test and
computation runs, we can conclude that if less than (1

2 − p − ϕ − ε1)t test runs are
corrupted for some ε1 > 0, then less than (1

2 − p−ϕ)d computations are corrupted with
overwhelming probability. This implies that setting w = ( 1

k
− ε2)(1

2 − p− ϕ− ε1)t for
ε2 > 0 yields an exponentially low probability of failure. Since ϕ, ε1, ε2 can be chosen
arbitrarily small, we conclude that εver can be made negligible for 0 < w/t < 1

k
(1

2 − p).

Improved Upper-Bound on the Probability of Failure. The former bound can
be improved by realising that some situations leading to incorrect results were double
counted. Indeed, we need to consider inherent errors from the BQP computation solely
for the computation rounds that where unaffected by the Server’s malicious behaviour.
This is due to the blindness of the scheme ensuring that the Server’s deviation will
be distributed equally among computation rounds with or without inherent errors.
Denoting by m the total number of rounds affected by the Server’s deviation, we
expect (md+ (n−m)pd)/n computation rounds to be erroneous. The first term comes
from deviations of the Server, while the second comes from inherent errors in the
BQP computation when the Server has not deviated on these rounds. Requiring this
quantity to be below d/2 amounts to guarantee that m < 2p−1

2p−2n, which can be obtained
following the line of arguments given in the previous paragraph whenever w satisfies
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0 < w/t < 1
k
· 2p−1

2p−2 .

Local-Correctness on Honest-but-Noisy Devices. None of the stand-alone cri-
teria introduced above consider device imperfections. In fact, the analysis of correctness,
blindness and verification makes no distinction between device imperfections and poten-
tially malicious behaviours. Although satisfactory – these properties make our protocol
a concrete implementation of the Ideal Resource for Verifiable Delegated Quantum
Computation –, it could still fall short of expectations in terms of usability because non
malicious device imperfections could cause unintentional aborts. Fortunately, for a class
of realistic imperfections, our protocol is capable of correcting their impact and accepts
with high probability. In such case, the final outcome is the same as that obtained on
noiseless devices with honest participants.

This additional noise-robustness property, the main innovation of this chapter, means
that Protocol 4 also satisfies the local-correctness property with negligible εcor for noisy
but honest Client and/or Server. This property holds under the following restrictions:

• The noise can be modelled by round-dependent Markovian processes – i.e. a
possibly different arbitrary CPTP map acting on each round.

• The probability that at least one of the trap measurements fails in any single test
round is upper-bounded by some constant pmax <

1
k
· 2p−1

2p−2 and lower-bounded by
pmin ≤ pmax .

Theorem 4.3.2 states that, in order for the protocol to terminate correctly with
overwhelming probability on these noisy devices, w should be chosen such that w/t >
pmax . Conversely, for any choice of w/t < pmin, we show that the protocol aborts with
overwhelming probability.

Theorem 4.3.2 (Local-Correctness of VDQC Protocol on Noisy Devices, Informal).
As before, p denotes the inherent error probability for the BQP computation. Assume a
Markovian round-dependent model for the noise on Client and Server devices and let
pmin ≤ pmax <

1
k
· 2p−1

2p−2 be respectively a lower and an upper-bound on the probability that
at least one of the trap measurement outcomes in a single test round is incorrect. If
w/t > pmax , Protocol 4 is εcor-locally-correct with exponentially low εcor . On the other
hand, if w/t < pmin, then the probability that Protocol 4 terminates without aborting is
exponentially low.
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Using again the Local-Reduction Theorem from [Dun+14], this new bound concerning
local-correctness on noisy devices can be combined with noise-independent blindness,
input-independent verification and verifiability, to yield a composably secure protocol
for ε = max{εsec, εcor}. Here, ε might depend on the noise level of the devices through
εcor .

4.3.2 Formal Security Definitions

We model N -round two party protocols between players A (the honest Client) and B
(the potentially dishonest Server) as a succession of 2N -CPTP maps {Ei}i∈[1,N ] and
{Fj}j∈[1,N ]. The maps {Ei}i act on A, A’s register, and C, a shared communication
register between A and B. Similarly, the maps {Fj}j act on B and C. Note that B and
the maps {Fj}j can be chosen arbitrarily by B and thus, unless B is specified to be
behaving honestly, there is no guarantee that they are those implied by our protocol.
Since we are only interested in protocols where A is providing a classical input x, we
will equivalently write the input as the corresponding computational basis state |x〉 used
to initialize A, whereas B and C are initialized in a fixed state |0〉.

Below, we denote by ∆(ρ, σ) = 1
2‖ρ− σ‖, the distance on the set of density matrices

induced by the trace norm ‖ρ‖ = Tr
√
ρ†ρ. We first define S the ideal resource for

verifiable delegated quantum computation and then the local-properties from [Dun+14].

Ideal Resource for Verifiable Delegated Quantum Computation. The ideal
resource S has interfaces for two parties, A and B. The A-interface takes two inputs:
a classical input string x and the description of U, the computation to perform. The
B-interface is filtered by a bit b. When b = 0, there is no further legitimate input
from B, while for b = 1, it is allowed to send a bit c that determines the output of the
computation available at A’s interface. When b = 0 or c = 0, the output at A’s interface
is equal to MComp ◦U(|x〉), where MComp is the computational basis measurement. This
corresponds to a “no cheating” behaviour. When c = 1, B decided to cheat and A

receives the Abort message which can be given as a quantum state of A which is taken
orthogonal to any other possible output state. At B’s interface, S outputs nothing for
b = 0 while for b = 1, B receives l(U, x), the permitted leakage. For generic MBQC
computations, the permitted leakage is set to G, the graph used in the computation.
When G is a universal graph for MBQC computation, the permitted leakage reduces to
an upper-bound on the size of the computation #U.
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For this ideal resource, the blindness is an immediate consequence of the server receiv-
ing at most the permitted leak, while verifiability is a consequence of the computation
being correct when the server is not cheating while being aborted otherwise.

εcor-Local-Correctness. Let PAB be a two-party protocol as defined above with the
honest CPTP maps for players A and B. We say that such a protocol implementing U

is εcor-locally-correct if for all possible inputs x for A we have:

∆ (TrB ◦PAB(|x〉),U(|x〉)) ≤ εcor (4.2)

εbl-Local-Blindness. Let PAB be a two-party protocol as defined above, and where
the maps {Ei}i are the honest maps. We say that such protocol is εbl-locally-blind if,
for each choice of {Fi}i there exists a CPTP map F′ : L(B)→ L(B) such that, for all
inputs x for A, we have:

∆ (TrA ◦PAB(ρ),F′ ◦ TrA(|x〉)) ≤ εbl (4.3)

εind-Independent Verification. Let PAB be a verifiable 2-party protocol as defined
above, where the maps {Ei}i are the honest maps. Let B̄ be a qubit extending B’s
register and initialized in |0〉. Let QAB̄ : L(A⊗ B̄)→ L(A⊗ B̄) be a CPTP map which,
conditioned on A containing the state |Abort〉, switches the state in B̄ from |0〉 to |1〉
and does nothing in the other cases.

We say that such a protocol’s verification procedure is εind-independent from player
A’s input if there exists CPTP maps F′i : L(C⊗B⊗ B̄)→ L(C⊗B⊗ B̄) such that:

∆ (TrA ◦QAB̄ ◦ PAB(ρ),TrA ◦P′ABB̄(ρ)) ≤ εind (4.4)

where
P′ABB̄ := E1 ◦ F′1 ◦ . . . ◦ En ◦ F′n (4.5)

εver-Local-Verifiability. Let PAB be 2-party protocols as defined above where the
maps for A are the honest maps, while the maps {Fj}j for B are not necessarily
corresponding to the ideal (honest) ones. Let x be the input given by A in the form of
a computational state |x〉 and U the computation it wants to perform. The protocols
PAB are εver-locally-verifiable for A if for each choice of CPTP maps {Fj}j, there exists
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p ∈ [0, 1] such that we have:

∆
(

trB PAB(|x〉), pU(|x〉) + (1− p) |Abort〉〈Abort|
)
≤ εver . (4.6)

4.3.3 Composable Security

In the paragraphs below, we show that our protocol satisfies each of the stand-alone
criteria before combining them to get composable security.

Perfect Local-Correctness. On perfect (non-noisy) devices, local-correctness is
implied by the correctness of the underlying UBQC Protocol. This is because all the
completed computation rounds correspond to the same deterministic UBQC computation,
and that on such devices, general UBQC Protocols have been proven to be perfectly
correct [BFK10; Dun+14]. Thus εcor = 0.

Perfect Local-Blindness. In case the computation is accepted, each round looks
exactly like a UBQC computation to the Server. Therefore the blindness comes directly
from the composability of the various UBQC rounds that make our protocol [Dun+14].
In case the computation is aborted, we need to take into account the fact that a possibly
malicious Server could deduce the position of a trap qubit. That could be the case if it
attacked a single position in the test rounds and got caught. Yet, as the position of the
traps is not correlated to the input nor to the computation itself, knowing it does not
grant additional attack capabilities to the Server, and blindness is recovered again as a
consequence of the blindness of UBQC. Subsequently, we give more detailed arguments
and show that Redo requests have no effect on the local-blindness of the scheme.

Proof. To prove that Equation 4.3 holds for εbl = 0, first note that at the end of our
protocol, the Client A reveals to the Server B whether the computation was accepted
or aborted. Hence, each case can be analyzed separately. Second, we show that the
interrupted rounds that have triggered a Redo can be safely ignored. Indeed, each one
of them is the begining of an interrupted UBQC computation, and, because UBQC is
composable and perfectly blind [Dun+14], no information can leak to the Server through
the transmitted qubits. In addition, our protocol restricts the honest party A in its
ability to emit Redo requests, so that no correlations are created between the index
of the interrupted rounds and U or the secret random parameters used in the rounds
(angle and measurement padding, and trap preparations). As a consequence, from the
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point of view of B, the state of the interrupted rounds is completely independent of the
state of the non-interrupted ones and does not contain information regarding the input,
computation or secret parameters. That is, its partial trace over A can be generated by
B alone.

For the non-interrupted rounds, we can invoke the same kind independence argument
between the computation rounds and the test rounds. As a result blindness of our
protocol stems from the blindness of the underlying computation rounds. In case the
full protocol is a success, we can rely on the composability of the perfect blindness of
each UBQC computation round to have perfect local-blindness. For an abort, we can
consider a situation that is more advantageous for B by supposing that alongside the
Abort message sent by A, it also gives away the location of the trap qubits. In this
modified situation, the knowledge of the computation being aborted does not bring
additional information to B as it only reveals that one of the attacked position was a
trap qubit, which B now already knows. Using our independence argument between
trap location on the one hand and the inputs, computation and other secret parameters,
we conclude that revealing the location of the trap qubits does not affect the blindness
of the computation rounds. Hence, using composability again and combining the abort
and accept cases, we arrive at Equation 4.3 with εbl = 0.

Perfect Local-Independent-Verification. Because in our protocol, the Client shares
with the Server whether the computation was a success or an abort, this is trivially
verified.

Exponential Local-Verifiability. Local-verifiability is satisfied if any deviation by
the possibly malicious Server yields a state that is εver -close to a mixture of the correct
output and the Abort message. Equivalently, the probability that the Server makes the
Client accept an incorrect outcome is bounded by εver . Let d/n, t/n and w/t be the ratios
of test, computation and tolerated failed test rounds. Our protocol’s local-verifiability is
given by Theorem 4.3.3 and proven subsequently.

Theorem 4.3.3 (Local Verifiability of Protocol 4). Let 0 < w/t < 1
k
· 2p−1

2p−2 and 0 < d/n <

1 be fixed ratios, for k different test rounds and where p is the inherent error probability
of the BQP computation. Then, Protocol 4 is εver-locally-verifiable for exponentially-low
εver .

Proof. Proving verifiability of a computation amounts to upper-bounding the probability
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of yielding a wrong output while not aborting. This could be the result of the inherent
randomness of the BQP computation that gives the wrong outcome with probability p, or
of the server deviating from the instructed computation. In the following, although rounds
are expected to be run sequentially, the proof will examine the state of the combined
computation. This state corresponds to the server having simulaneous unrestricted access
to all quantum systems sent by the client and possibly operating on them as a whole
irrespectively of the underlying rounds they belong to. In particular, the server could
decide to perform some action on a qubit given measurements in one or several of the
underlying runs, or to entangle the various underlying runs together.

Note that, because the parties can only ask for redoing a run independently of the
input, of the computation, of used randomness and of the output of the computation itself
(comprising the result of trap measurements), interrupted runs can be safely ignored in
the verification analysis as the state corresponding to these runs is uncorrelated to that
of the completed runs.

Output of the combined computation. First, consider the output density operator
B({Fj}j, ν) representing all the classical messages the Client A receives during its
interaction with the Server B, comprising the final message containing the encrypted
measurement outcomes. Below, the CPTP maps {Fj}j represent the chosen deviation
of B on the combined computation. By encoding the classical messages as quantum
states in the computational basis, the output density operator satisfies:

B({Fj}j, ν) = TrB
{∑

b

|b+ cr〉〈b|FP×
(
|0〉〈0|B ⊗

∣∣∣Ψν,b
〉〈

Ψν,b
∣∣∣
)
× P†F† |b〉〈b+ cr|

}

(4.7)

where b is the list of measurement outcomes defining the computation branch; ν is a
composite index relative to the secret parameters chosen by A, i.e. the type of each
underlying run, the padding of the measurement angles and measurements outcomes
and the trap setup; |b+ cr〉〈b| ensures that only the part corresponding to the current
computation branch is taken into account and removes the One-Time-Pad encryption
on non-output and non-trap qubits while leaving output and trap qubits unaffected,
i.e. encrypted; |0〉〈0|B is some internal register for B in a fixed initial state; and

∣∣∣Ψν,b
〉
is

the state of the qubits sent by A to B at the beginning of the protocol tensored with
quantum states representing the measurement angles of the computation branch b.
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To obtain this result, the line of proof of [FK17] can be applied to the combined
computation. This works by noting that for a given computation branch b and given
random parameters ν, all the measurement angles are fully determined. Therefore,
provided that the computation branch is b, the measurement angles can be included
into the initial state. This defines

∣∣∣Ψν,b
〉
. Then, each Fj is decomposed into an honest

part and a pure deviation. All the deviations are commuted and collected into F applied
after P, the unitary part of honest protocol, is applied. The projections onto |b〉 then
ensures that, after the deviation induced by B, the perceived computation branch is b.
This, together with the decrypting of non-output non-trap qubits, gives Equation 4.7.

Probability of failure. Recall that a failure for the combined computation on input
x occurs when the result after decrypting the outputs and performing the majority vote
differs from F (x) while the computation is accepted.

For the combined computation to be accepted, no more than w test runs should
have a trap qubit measurement outcome opposite to what was expected. Let T denote
the set of trap qubits which is determined by T , the set of test runs, and the type
of each test run. In absence of any deviation on the combined computation, their
expected value is |rT〉 = ⊗

t∈T |rt〉 where rT = (rt)t∈T denotes the measurement outcome
padding values restricted to trap qubits. Therefore, the projector onto the states
of the trap qubits yielding to an accepted combined computation can be written as
Q⊥ = ∑

w∈W X
w
T |rT〉〈rT|Xw

T with Xw
T = ⊗

t∈T X
wt
t , and where W is the set of length |T|

binary vectors w that have at least a one in no more than w underlying (test) runs.

Similarly, define by O the set of output qubits. The correct value for these out-
put qubit is |F (x)O + rO〉. Then, for V the set of length |O| binary vectors v that
have at least d/2 ones in the underlying (computation) runs, the operator P⊥ =
∑

v∈V X
v
O |F (x) + rO〉〈F (x) + rO|Xv

O with Xv
O = ⊗

o∈O X
vo
o is the projector onto the sub-

space of states that yield an incorrect result for the whole computation. This is because
when each output has been decrypted by the Client – the one-time-padding rO is removed
– the majority vote will output F (x) + 1 because more than half of the outputs are equal
to F (x) + 1.
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Combining these two projectors allows to write the probability of failure:

Pr[fail] =
∑

ν

∑

b,k,σ,σ′
Pr[ν] Tr

{
(P⊥ ⊗Q⊥)×

(
αkσα

∗
kσ′ |b+ cr〉〈b|σP

∣∣∣Ψν,b
〉〈

Ψν,b
∣∣∣P†σ′ |b〉〈b+ cr|

)}
(4.8)

where F has been decomposed into Kraus operators indexed by k, that were in turn
decomposed onto the Pauli basis through the coefficients αkσ and αkσ′ . Consequently, σ
and σ′ are Pauli matrices.

Using the explicit expressions for P⊥ and Q⊥, the above formula can be simplified:

Pr[fail] =
∑

ν

∑

v∈V,w∈W

∑

b′,k,σ,σ′
Pr[ν]

{
〈F (x)O + rO| ⊗ 〈rT| ⊗ 〈b′| (Xv

O ⊗Xw
T )×

(
αkσα

∗
kσ′P

∣∣∣Ψν,b
〉〈

Ψν,b
∣∣∣P†σ′

)
(Xv

O ⊗Xw
T ) |F (x)O + rO〉 ⊗ |rT〉 ⊗ |b′〉

}
(4.9)

where b′ is the binary vector obtained from b by restricting it to non-output and non-
trap qubits. This was obtained using the circularity of the trace and the fact that
∑
b 〈F (x)O + rO|⊗ 〈rT| (Xv

O ⊗Xw
T ) |b+ cr〉〈b| =

∑
b′ 〈F (x)O + rO|⊗ 〈rT|⊗ |b′ + cr〉〈b′| (Xv

O ⊗
Xw

T ) since there is no decoding for output and trap qubits – i.e. cr is 0.

Using blindness of the scheme. At this point, standard proofs of verifiability sum
over the secret parameters defining the encryption to twirl the deviation of the Server
and trace out non-trap qubits. Here, because it is necessary to assess the probability
of having more than half of the output qubits yielding the wrong measurement output
F (x) + 1, the trace shall be taken on non-trap and non-output qubits only.

The design of the protocol yielding the combined computation ensures blindness.
This implies that the resulting state of any set of qubits after applying P and taking
the average over their possible random preparations parameters is a completely mixed
state. This can be applied in the above equation for the set of non-output and non-trap
qubits. For output and trap qubits, the inner products must be computed before taking
the sum over their random preparation parameters νO and νT respectively.
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This gives:

Pr[fail] =
∑

νO,νT,u

∑

v∈V,w∈W

∑

b′,k,σ,σ′
Pr[νO, νT]αkσα∗kσ′ ×

{
〈F (x)O + rO| ⊗

〈rT| ⊗ 〈b′| (Xv
O ⊗Xw

T )× σ
(
|sO + rO〉〈sO + rO| ⊗ |rT〉〈rT| ⊗

I
Tr I

)
σ′×

(Xv
O ⊗Xw

T ) |F (x)O + rO〉 ⊗ |rT〉 ⊗ |b′〉
}

(4.10)

where |so〉 is the state of the output qubit o ∈ O when no deviation is applied by the
Server.

In the above equation, the contribution of each qubit factorizes. For l /∈ O ∪ T,
because the Pauli matrices are traceless save for the identity, the only non-vanishing
terms are obtained for σl = σ′l, where subscript l is used to select the action of σ and
σ′ on qubit l. In such case, the corresponding multiplicative factor equals 1. A direct
calculation shows that, for an output qubit o ∈ O,

∑

ro

〈F (x)o + ro|Xvo
o σo |so + ro〉 〈so + ro|σ′oXvo

o |F (x)o + ro〉 = 0 (4.11)

for σo 6= σ′o Similarly, for a trap qubit t ∈ T, ∑rt 〈rt|Xwt
t σt |rt〉〈rt|σ′tXwt

t |rt〉 vanishes
for σt 6= σ′t. Combining these yields:

Pr[fail] =
∑

νO,νT

∑

v∈V,w∈W

∑

k,σ

Pr[νO, νT]|αkσ|2×
∏

o∈O
| 〈F (x)o + ro|Xvo

o σo |so + ro〉 |2 ×
∏

t∈T
| 〈rt|Xwt

t σt |rt〉 |2

=
∑

k

∑

σ

|αkσ|2f(σ) (4.12)

with

f(σ) =
∑

νO,νT

∑

v∈V,w∈W
Pr[νO, νT]×

∏

o∈O
| 〈F (x)o + ro|Xvo

o σo |so + ro〉 |2 ×
∏

t∈T
| 〈rt|Xwt

t σt |rt〉 |2

(4.13)

In short, this proves that the overall deviation F has the same effect as a convex
combination of Pauli deviations σ each occuring with probability ∑k |αk,σ|2.
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Implicit upper bound. Because, ∑k,σ |αkσ|2 = 1, the worst case scenario for the
bound in Equation 4.13 is when αkσ = 1 for σ such that f(σ) is maximum. Hence, the
probability of failure is upper-bounded as follows:

Pr[fail] ≤ max
σ

f(σ). (4.14)

Protocol 4 defines trap and output qubit configuration νO, νT by (i) the set T of
trap qubits, itself entirely determined by the position and kind of test runs within the
sequence of runs, and (ii) the preparation parameters θl and rl of each trap and output
qubits. Each parameter of (i) and (ii) being chosen independently, the probability of
a given configuration νO, νT can be decomposed into the probability Pr[T] for a given
configuration of trap locations multiplied by the probability of a given configuration for
the prepared state of the trap and output qubits, ∏l∈O∪T

∑
θl,rl Pr[θl, rl]. Using this, one

can rewrite f(σ):

f(σ) =
∑

T

∑

v∈V,w∈W
Pr[T]×

∏

o∈O

∑

θo,ro

Pr[θo, ro]| 〈F (x)o + ro|Xvo
o σo |so + ro〉 |2×

∏

t∈T

∑

θt,rt

Pr[θt, rt]| 〈rt|Xwt
t σt |rt〉 |2 (4.15)

For σ a Pauli deviation, denote by σ|X the binary vector indexed by qubit positions
of the combined computation where ones mark qubit positions for which σ acts as X
or Y . Abusing notation, in the following, O will denote the binary vector over qubit
positions i of the combined computation where ones are positioned for qubits in O –
that is the vector (1i∈O)i for i a qubit location. Similarly, T will also denote (1i∈T)i.

Using the fact that | 〈rt|Xwt
t σt |rt〉 |2 is 1 for Xwt

t σt ∈ {I, Z} and 0 otherwise, the
product over the trap qubits can be writen as:

∏

t∈T

∑

θt,rt

Pr[θt, rt]| 〈rt|Xwt
t σt |rt〉 |2 =





1 for T.σ|X = w

0 otherwise
(4.16)

where, for a and b binary vectors, a.b is the bit-wise binary product vector.
For output qubits, before attempting the same computation, it is important to point

out a important dependency of the deviation for the output qubits. Failing to take it
into account would yield an overly optimistic bound. This dependency is due to the
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fact that, contrarily to trap qubits where the perfect protocol performs the identity, the
output qubits are the result of more complex computation. More precisely, the guarantee
given by the protocol at this stage is only blindness. Following the definition of local
blindness – Equation 4.3 – the Server is able to choose a deviation E and have it applied
to the unprotected input of the protocol x, while himself not getting either x nor E(x).
While E has been reduced here to a convex sum of Pauli deviations applied after the
perfect protocol, nothing prevents these Pauli deviations to incorporate a dependency
on the input x or on the unencrypted output of the perfect protocol. In short, this
means that the Server could craft a deviation in such a way that only outputs equal to
F (x) are flipped, leaving those yielding F (x) + 1 unaffected.

Going forward with the computation of factors for output qubits in Equation 4.15, it
is thus necessary to distinguish output qubits that belong to computation rounds where
no non-trivial deviation take place, and those that don’t. Define u to be the random
binary vector of length |O| such that so = F (x) + uo. For an output qubit that is part of
a computation round without a non-trivial deviation,

∑

θo,ro

Pr[θo, ro]| 〈F (x)o + ro|Xvo
o σo |so + ro〉 |2

=
∑

θo,ro

Pr[θo, ro, uo]× | 〈F (x)o + ro|Xvo
o σoX

uo
o |F (x) + ro〉 |2

=





Pr[uo] for σ|X,o + uo = vo

0 otherwise
(4.17)

When the output qubit is part of a computation round with a non-trivial deviation, the
dependency argument given above yields:

∑

θo,ro

Pr[θo, ro]× | 〈F (x)o + ro|Xvo
o σoX

uo
o |F (x) + ro〉 |2 ≤ Pr[uo]. (4.18)

Hence, for a fixed σ, a necessary condition on u and T for having a non zero
contribution to f(σ) is thus:

wt(T.σ|X) ≤ w and wt(u.¬S) ≥ d/2− |S|

where wt(.) is the Hamming weight of a binary vector, S is a length |O| binary vector
where the ones are located on output qubits where at least one non-trivial deviation was
performed in the corresponding computation round, and ¬S is the bitwise negation of S.
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Combining the corresponding bounds and summarizing the necessary condition with
(T, u) ∈ Υσ, one obtains:

f(σ) ≤
∑

(T,u)∈Υσ
Pr[T, u]. (4.19)

Otherwise said, to record a failure of the protocol, the number of incorrect trap rounds
need to be below the threshold w, while the number of non-trivially attacked computation
rounds need to be greater than d/2 reduced by the amount of incorrect outcomes on
non-attacked rounds due to the inherent randomness of the algorithm.

Explicit upper bound. Now, assume that the maximum of the bound above is
attained for some σ that happens to non-trivially affect one of the round, say k, on more
than one qubit. Consider σ′ with the sole difference to σ that σ′ restricted to one of
these two qubits is equal to the identity. Then, σ′ still affects the round k non-trivially,
which implies that all configurations (T, u) in Υσ are also in Υσ′ . Therefore

Pr[fail] ≤ max
m

max
σ∈Em

∑

(T,u)∈Υσ
Pr[T, u]. (4.20)

where Em denotes the set of Pauli operators with m single qubit non-trivial deviations
all in distinct rounds.

Because the bound above depends on u only through wt(u.¬S) and because for
any such subset the random variable wt(u.¬S) is less than B(wt(¬S), p) in the usual
stochastic order, one obtains:

Pr[fail] ≤ max
m

max
σ∈Em

∑

(T,u)∈Υσ
Pr[T]× Pr[ũ = u], (4.21)

where ũ is a random binary vector where each coordinate follows a Bernouilli law with
probability p, and where B(n, p) is the binomial distribution for n draws and probability
p. Using the fact that the random choice of test runs is completely uniform, the right
hand side is invariant under permutations of the test and computation runs. It is thus
possible to restrict the range of the maximum to the specific Pauli operators σm with a
deviation on a single qubit in each of the first m runs:

Pr[fail] ≤ max
m

∑

T∈Υσm

Pr[T]. (4.22)
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Figure 4.2: The four cases needed to determine a closed form upper bound for the
probabiliity of failure. First, we determine the probability for the number of affected
computation rounds. If it is low enough (Z < d(2p− 1)/(2p− 2)), no need to abort. If
it is high (Z ≥ d(2p− 1)/(2p− 2)), we find a bound on the probability that the number
of failed test rounds Y is below or above w.

A closed from for the upper bound. To find a closed form upper bound for the
soundness error, we now distinguish between two regimes for m, controlled by the
parameter ϕ > 0:

1. For m ≤
(

2p−1
2p−2 − ϕ

)
n, we find a small upper bound on the probability that the

client obtains a wrong result,

2. whereas for m ≥
(

2p−1
2p−2 − ϕ

)
n, we find a small upper bound on the probability

that the client accepts the outcome of the protocol, i.e. that the verification passes.

In the following, we define the constant ratios of test, computation and tolerated failed
test runs as δ := d/n, τ := t/n and ω := w/t. Let Z be a random variable counting the
number affected computation runs (by the server’s deviation or by inherent failure of
the algorithm) and Y a random variable counting the number of failed test runs, i.e.
the number of affected test runs where the deviation hits a trap. We have that:

Pr [fail] ≤ max
m

∑

T∈Υσm

Pr[T ] = max
m

Pr
[
Z ≥ d

2 ∧ Y ≤ w

]

≤ max



 max
m≤( 2p−1

2p−2−ϕ)n
Pr
[
Z ≥ d

2

]
, max
m≥( 2p−1

2p−2−ϕ)n
Pr [Y ≤ w]



 . (4.23)

Since Pr [Z ≥ d/2] and Pr [Y ≤ w] are respectively increasing and decreasing with the
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number of attacked runs, both inner maximums are attained for m =
(

2p−1
2p−2 − ϕ

)
n and

we therefore focus on this case.

Analogously to the verification proof of the original protocol, the second term can
be bounded from above by first determining the minimum number of affected test runs
before calculating the probability that the server’s attack triggers a sufficient number of
traps.

Hence, with X denoting the number of test runs affected by the server’s deviation,
tail bounds for the hypergeometric distribution imply for all ε1 > 0 that

Pr
[
X ≤

(
m

n
− ε1

)
t
]
≤ exp


− 2τ 2ε21

2p−1
2p−2 − ϕ

n


 . (4.24)

Further, it follows by Hoeffding’s bound for the binomial distribution that

Pr
[
Y ≤

(1
k
− ε2

)(
m

n
− ε1

)
t
∣∣∣∣ X =

(
m

n
− ε1

)
t
]

≤ exp
(
−2

(
2p− 1
2p− 2 − ϕ− ε1

)
τε2

2n

)
. (4.25)

All in all, we therefore obtain

Pr [Y ≤ w] ≤ exp

− 2τ 2ε21

2p−1
2p−2 − ϕ

n


+ exp

(
−2

(
2p− 1
2p− 2 − ϕ− ε1

)
τε2

2n

)
, (4.26)

where the threshold of tolerated failed test runs is set to w = (1/k − ε2)
(

2p−1
2p−2 − ϕ− ε1

)
t.

Let’s now focus on the first term and introduce the hypergeometrically distributed
random variable Z̄ counting the number of computation runs that are affected by the
server’s deviation. Then, for ε3 > 0 tail bounds on the hypergeometric distribution
imply

Pr
[
Z̄ ≥

(
m

n
+ ε3

)
d
]
≤ exp


− 2δ2ε2

3
2p−1
2p−2 − ϕ

n


 . (4.27)

Next, let Z ′ be the random variable counting the number of computation runs that
have not been affected by the server’s deviation but which give a from x̄ distinct result
because of inherent failures of the algorithm. Note, that Z ′ conditioned on Z̄ fixed to a
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specific value is binomially distributed. It hence follows that

Pr
[
Z ′ ≥ (p+ ε4)

(
1− m

n
− ε3

)
d

∣∣∣∣ Z̄ =
(
m

n
+ ε3

)
d
]

≤ exp
(
−2

(
1− 2p− 1

2p− 2 + ϕ− ε3

)
δε2

4n

)
. (4.28)

Note that it holds that Z = Z̄ + Z ′. Therefore, it follows that

Pr
[
Z ≥ d

2

]
≤ Pr

[
Z ≥ d

2

∣∣∣∣∣ Z̄ ≤
(
m

n
+ ε3

)
d

]

+ Pr
[
Z̄ ≥

(
m

n
+ ε3

)
d
]

≤ Pr
[
Z ′ ≥ d

2 −
(
m

n
+ ε3

)
d

∣∣∣∣∣ Z̄ =
(
m

n
+ ε3

)
d

]

+ Pr
[
Z̄ ≥

(
m

n
+ ε3

)
d
]
. (4.29)

Using the inequalities from above, we arrive at

Pr
[
Z ≥ d

2

]
≤ exp

(
−2

(
1− 2p− 1

2p− 2 + ϕ− ε3

)
δε2

4n

)

+ exp

− 2δ2ε2

3
2p−1
2p−2 − ϕ

n


 (4.30)

where we set

d

2 −
(
m

n
+ ε3

)
d = (p+ ε4)

(
1− m

n
− ε3

)
d. (4.31)

This condition can be rewritten as

1
2 −

2p− 1
2p− 2 + ϕ− ε3 = (p+ ε4)

(
1− 2p− 1

2p− 2 + ϕ− ε3

)
, (4.32)

or equivalently

ε4 =
(

1− 2p− 1
2p− 2 + ϕ− ε3

)−1

·
(

1
2 −

2p− 1
2p− 2 + ϕ− ε3

)
− p. (4.33)

It can be readily seen that this equation has solutions ε3, ε4 > 0 when ϕ is fixed.
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We finally conclude that

Pr [fail] ≤max
{

exp
(
−2

(
1− 2p− 1

2p− 2 + ϕ− ε3

)
δε2

4n

)
+ exp


− 2δ2ε2

3
2p−1
2p−2 − ϕ

n


 ,

exp

− 2τ 2ε21

2p−1
2p−2 − ϕ

n


+ exp

(
−2

(
2p− 1
2p− 2 − ϕ− ε1

)
τε2

2n

)}
(4.34)

for

w = (1/k − ε2)
(

2p− 1
2p− 2 − ϕ− ε1

)
t,

0 < ϕ <
2p− 1
2p− 2 ,

0 < ε1 <
1
2 − ϕ,

0 < ε2 <
1
k
,

0 < ε3 < ϕ,

ε4 =
(

1− 2p− 1
2p− 2 + ϕ− ε3

)−1

·
(

1
2 −

2p− 1
2p− 2 + ϕ− ε3

)
− p. (4.35)

To obtain an optimal bound, this expression must be minimized over ε1, ε2, ε3 and ϕ.
Irrespective of the exact form of the optimal bound, choosing ϕ, ε1, ε2, and ε3

sufficiently small implies the existence of protocols with verification exponential in n,
for any fixed 0 < w/t < 1

k
· 2p−1

2p−2 and fixed d
n
, t
n
∈ (0, 1).

Optimality of the bound. To obtain the improved bound above, Z2 was introduced
as the count of non-affected computation runs yielding the correct result – i.e. accept
on yes instances, and reject on no instances. Making sure that Z2 would be greater than
d/2 ensures that no matter what happens on computation runs that would yield an
incorrect result, there is no possibility of being mistaken and reject in place of accept,
and vice versa. Yet, one might wonder if the situation is not more favorable: if the
deviation by the server induces a flip of the accept / reject then could it be possible
that some of the runs yielding incorrect result would be corrected by the deviation. At
first sight, this could be motivated by the fact that the computation being blind, the
server could not possibly craft an attack that would selectively affect the runs yielding
the correct results. Unfortunately, this intuition is wrong: blindness does not rule out
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attacks that have different effects depending on the result of the computation itself.
To see this, consider the following situation. Consider an algorithm solving a decision

problem deterministically, so that in case of a yes instance, the algorithm outputs |+〉,
and, in case of a no instance the output is |−〉. This deterministic algorithm yields a
trivial randomized algorithm where a second qubit is generated in state α |0〉+ β |1〉,
with |α|2 > 2/3. The new algorithm would take the output of the first one and apply a
control-Z gate between both qubits so that when the second qubit is traced out, the
first one yields the correct answer with probability |α|2. Yet, nothing could rule out
an alternate implementation where after the control-Z gate, the state of the first qubit
undergoes two H gates controlled by the second qubit being |0〉. Clearly this operation
applies the identity to the first qubit as H2 = I. However, if the server applies a X
gate on the first qubit between these two control-H gates, it will amount to a deviation
consisting of a Z gate applied only when the second qubit is |0〉. As a result, its attack
only affects runs with the correct result. Note that the attack affects correct outcomes
only because in between the two control-H gates, the computational branch for correct
outcomes yields a state in the computational basis, while for incorrect ones it is the |±〉
basis. This property is true independently of the quantum one-time-pad encryption of
the states and can hence be applied on an encrypted computation.

This example might seem excessively artificial, but such situations cannot be ruled out
a priori, i.e. without an extensive understanding of the algorithm being implemented and
of the proposed implementation. In fact, a similar situation [Kap+21] has already been
encountered in the context of multi-party quantum computation where attacks could be
crafted to evade detection when using less obvious inappropriate implementations.

Proof of Exponential Composable-Security. Our protocol has perfect correctness
(for noiseless devices), blindness and input-independent verification. In addition, it is εver -
locally-verifiable with εver exponentially small in n. Therefore, by the Local-Reduction
Theorem, it is ε-composably-secure with ε = εsec = 4

√
2εver and ε exponentially small in

n. Note that because we used the Local-Reduction Theorem to obtain fully composable
security, we incurred an additional square root on our verifiability bound given by
Equation 4.1 and needed to satisfy the additional independence property. This is of
course not required if the protocol is only used sequentially with other schemes, which
will probably be the case in early quantum computations since the machines will not be
able to handle multiple protocols at the same time. In this case, the stand-alone model
would be sufficient since it provides sequential composition, but would fail if parallel
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composition is needed.

4.3.4 Noise Robustness

Recall that the constant ratios of test, computation and tolerated failed test rounds
are given by δ = d/n, τ = t/n and ω = w/t. We define the acceptance of the protocol
to be the probability that the Client does not abort at the end of an execution. We
then bound this probability in two regimes: (i) if the maximal noise pmax is smaller the
(ratio) threshold of failed test runs, the protocol accepts with high probability; (ii) if the
noise of the device is too large, i.e. pmin is already too large compared to the threshold,
the protoco will most certainly abort.

Lemma 4.3.4 (Acceptance on Noisy Devices). Assume a Markovian round-dependent
model for the noise on the Client and Server devices and let pmin ≤ pmax < 1/2 be
respectively a lower and an upper-bound on the probability that at least one of the trap
measurement outcomes in a single test round is incorrect.

If ω > pmax , then the probability that the Client does not accept at the end of Protocol 4
is bounded by exponentially small εrej where

εrej = exp
(
−2(ω − pmax)2τn

)
. (4.36)

On the other hand, if ω < pmin, then the Client’s acceptance in Protocol 4 is exponentially
small and bounded by exp (−2(pmin − ω)2τn).

Proof. We define the random variables Y that corresponds to the number of failed test
rounds during one execution of the protocol. We call Ok the event that the Client
accepts at the end of the protocol – if not too many test rounds fail, meaning that
Y < w.

For ω > pmax. Equivalently, we have that w > tpmax . We are looking to lower-bound
the probability that an honest round does not abort:

Pr [Ok] = Pr [Y < w] . (4.37)

Note that Y describes exactly the number of test rounds in which at least one trap
measurement outcome is incorrect (by definition of a failed test round). The probability
that a given test round fails is therefore upper-bounded by pmax . Let Ŷ1 be a random
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variable following a (t, pmax)-binomial distribution. Since we suppose that the noise is
not correlated across rounds, Y is upper-bounded by Ŷ1 in the usual stochastic order:

Pr [Y < w] ≥Pr
[
Ŷ1 < w

]
= 1− Pr

[
Ŷ1 ≥ w

]
. (4.38)

Further, since E
[
Ŷ1
]

= tpmax < w, applying Lemma 4.5.6 yields:

Pr
[
Ŷ1 ≥ w

]
≤ exp

(
−2(tpmax − w)2

t

)
= exp

(
−2(ω − pmax)2τn

)
= εrej . (4.39)

For ω < pmin. In that case, we have that w < tpmin. We show that the probability
of accepting is upper-bounded by a negligible function. Let Ŷ2 be a random variable
following a (t, pmin)-binomial distribution, Y then is lower-bounded by Ŷ2 in the usual
stochastic order:

Pr [Y < w] ≤ Pr
[
Ŷ2 < w

]
. (4.40)

Since w < tpmin, using Lemma 4.5.6 directly and with the same simplifications as above,
we get:

Pr
[
Ŷ2 < w

]
≤ exp

(
−2(pmin − ω)2τn

)
, (4.41)

concluding the proof.

Theorem 4.3.5 (Local-Correctness of VDQC Protocol on Noisy Devices). Assume a
Markovian round-dependent model for the noise on Client and Server devices and let
pmax be an upper-bound on the probability that at least one of the trap measurement
outcomes in a single test round is incorrect.

If pmax < ω < 1
k
· 2p−1

2p−2 , then the protocol is εcor-locally-correct with exponentially
small εcor = εrej + εver , with εrej from Lemma 4.3.4 and εver from Theorem 4.3.3.

Proof. We call Ok the event that the Client accepts at the end of the protocol – if not
too many test rounds fail – and Correct the event corresponding to a correct output – if
only few of the computation rounds have their output bits flipped.

We are looking to lower-bound the probability of an honest round producing the
correct outcome and not aborting:

Pr [Correct ∧ Ok] = Pr [Ok]− Pr [¬Correct ∧ Ok] . (4.42)
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As pmax <
1
k
· 2p−1

2p−2 < 1/2, from Lemma 4.3.4 we have

Pr [Ok] ≥ 1− εrej . (4.43)

Since ω < 1
k
· 2p−1

2p−2 , the parameters of Protocol 4 comply with Theorem 4.3.3, from which
we get that

Pr [¬Correct ∧ Ok] ≤ εver . (4.44)

It follows that

Pr [Correct ∧ Ok] ≥ 1− εrej − εver , (4.45)

which concludes the proof.

4.4 Discussion

Role of Noise Assumptions in Correctness Analysis. Our security proof does
not rely on any assumption regarding the form or amplitude of the noise: it considers
any deviation as potentially malicious and shows that the protocol provides information-
theoretic verification and blindness. The assumptions on the noise – limited strength
and markovianity – are used only to show that correctness holds not only in the honest
and noiseless case, but also when the imperfections of the devices are mild. In such
cases, their impact on the computation can be mitigated and the protocol will accept
with high probability.

Fine-Tuning the Number of Repetitions. For specific computations with fixed
security and correctness targets as well as noise levels, several parameters can be tuned
to optimise the total runtime of our protocol. First, distributing rounds across different
machines is an effective way to reduce the overall execution time while composability
ensures that security is preserved. Second, for a fixed graph, a smaller value of k
allows a larger value of pmax , since exponential verification and correctness require
pmax < w/t < 1

k
· 2p−1

2p−2 : finding a small k-colouring of the graph used for the computation
widens the gap between the chosen threshold ratio w/t and 1

k
· 2p−1

2p−2 , thereby reducing
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the number of rounds required to get the desired security and correctness levels.2 Third,
the ratio d/t also influences the number of repetitions. Given fixed values for p, k, w/t,
security and correctness levels, the optimal ratio can be determined numerically using
equations 4.34 and 4.36, which explicitly relate the failure and success probabilities to
these parameters.

Decoupling Verifiability and Fault-Tolerance. Because a single trap has bounded
sensitivity – the probability α of not detecting an attack at a given vertex is bounded
away from 0 – it must be boosted to get exponential security. Previous work resorted to
fault-tolerant encoding of the computation path to ensure that r errors can be corrected
(see [FK17; KW17b]). This forces attackers to corrupt at least r locations to affect
the computation, which decreases the probability of not detecting such attacks to αr.
Increasing the security of these protocols simultaneously increases the minimum distance
of the fault-tolerant amplification scheme, thereby reducing the number of available
qubits to perform the computation.

Our protocol’s repetition of test rounds and majority vote serve the same purpose
but with a much lighter impact. Because our detection probability amplification relies
on a classical procedure, all qubits can be devoted to useful computations irrespective
of the desired security level.

Additionally, our protocol does not abort at the first failed trap while previous
approaches do. This means that, in the presence of noise, other protocols always require
an exponentially low global residual error level to accept with overwhelming probability.
On the contrary, our protocol only needs the average ratio of failed test rounds to be
upper-bounded away from 1

k
· 2p−1

2p−2 , which requires to bring the global residual error level
to a constant only. This promises to drastically ease experimental feasibility of verified
quantum computations.

4.5 Appendix: Useful Inequalities from Probability
Theory

The following definitions and lemmata are useful tools for our proof. We refer the reader
to [Fel91] for more in-depth definitions.

2This can be done once by the Server for its architecture and later shared with the Client before
starting the protocol as a service.
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Definition 4.5.1 (Hypergeometric distribution). Let N,K, n ∈ N with 0 ≤ n,K ≤ N .
A random variable X is said to follow the hypergeometric distribution, denoted as
X ∼ Hypergeometric(N,K, n), if its probability mass function is described by

Pr [X = k] =

(
K
k

)(
N−K
n−k

)

(
N
n

) . (4.46)

As one possible interpretation, X describes the number of drawn marked items when
drawing n items from a set of size N containing K marked items, without replacement.

Lemma 4.5.2 (Tail bound for the hypergeometric distribution). LetX ∼ Hypergeometric(N,K, n)
be a random variable and 0 < t < K/N . It then holds that

Pr
[
X ≤

(
K

N
− t

)
n
]
≤ exp

(
−2t2n

)
. (4.47)

Corollary 4.5.3. Let X ∼ Hypergeometric(N,K, n) be a random variable and 0 < λ <
nK
N
. It then holds that

Pr [X ≤ λ] ≤ exp

−2n

(
K

N
− λ

n

)2

 . (4.48)

Lemma 4.5.4 (Serfling’s bound for the hypergeometric distribution [GW17; Ser74]).
Let X ∼ Hypergeometric(N,K, n) be a random variable and λ > 0. It then holds that

Pr
[√

n
(
X

n
− N

K

)
≥ λ

]
≤ exp

(
− 2λ2

1− n−1
N

)
. (4.49)

Corollary 4.5.5. Let X ∼ Hypergeometric(N,K, n) be a random variable and λ > nK
N
.

It then holds that

Pr [X ≥ λ] ≤ exp

−2n

(
λ

n
− K

N

)2

 . (4.50)

Note the symmetry of Corollary 4.5.3 and Corollary 4.5.5.

Lemma 4.5.6 (Hoeffding’s inequality for the binomial distribution). LetX ∼ Binomial(n, p)

100



4.5. APPENDIX: USEFUL INEQUALITIES FROM PROBABILITY THEORY

be a random variable. For any k ≤ np it then holds that

Pr [X ≤ k] ≤ exp
(
−2(np− k)2

n

)
. (4.51)

Similarly, for any k ≥ np it holds that

Pr [X ≥ k] ≤ exp
(
−2(np− k)2

n

)
. (4.52)
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Chapter 5

Unifying Quantum Verification and
Error-Detection

With the recent availability of cloud quantum computing services, the question of verifying
quantum computations delegated by a client to a quantum server is becoming of practical
interest. While Verifiable Blind Quantum Computing (VBQC) has emerged as one of the
key approaches to address this challenge, current protocols still need to be optimised before
they are truly practical. To this end, we establish a fundamental correspondence between
error-detection and verification and provide sufficient conditions to both achieve security
in the Abstract Cryptography framework and optimise resource overheads of all known
VBQC-based protocols. As a direct application, we demonstrate how to systematise the
search for new efficient and robust verification protocols for BQP computations. While
we have chosen Measurement-Based Quantum Computing (MBQC) as the working model
for the presentation of our results, one could expand the domain of applicability of our
framework via direct known translation between the circuit model and MBQC.

This chapter is based on the paper “Unifying Quantum Verification and Error-Detection:
Theory and Tools for Optimisations” [Kap+22] which is joint work with Theodoros
Kapourniotis, Elham Kashefi, Luka Music, and Harold Ollivier.
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CHAPTER 5. UNIFYING QUANTUM VERIFICATION AND ERROR-DETECTION

5.1 Introduction

5.1.1 Context

Secure delegation of quantum computation is a long-standing topic of research where a
client wants to perform a computation on a remote server, without necessarily trusting
it. In this context, a computation is deemed blind when the privacy of the data and
algorithm is guaranteed, and verified whenever the integrity of the computation is
guaranteed or else the computation has aborted. None of these criteria are specific to
quantum computing as users have always needed to protect their data, their algorithmic
know-how and ensure that no party can manipulate results beyond their ability to
choose their inputs [Gen09; Gen17]. Initially, the main interest for verifying quantum
computations was relative to the nature of the client (or verifier) [Aar07; Vaz07]: what
quantum power is needed by the client to verify a possibly unbounded quantum server
(or prover)? Yet, this topic has gained attention due to the recent development of
remotely accessible quantum computers, where no cryptographic guarantee is currently
provided to clients delegating their computations to service providers. This, in turn,
transformed a mostly theoretical question into a more practical one.

The first line of work to tackle this question introduced protocols guaranteeing
statistical security by requiring the client to perform single qubit operations – either
preparations or measurements. More recent protocols provide only computational
security, with the benefit of being applicable to fully classical clients. In addition to
the theoretical implications raised by verification, the possible practicality of proposed
protocols has always been an important aspect of research on this topic as it was
anticipated that quantum computers would be mostly available remotely. Recent years
have confirmed this direction. Existing end-users of quantum computing services often
emphasise the importance of integrity guarantees for the computations they delegate, as
well as privacy of their data and algorithms.

Several protocols have been introduced along the years with the purpose of lowering
some of the resource overhead of secure delegated computations. Yet, there is a lack of
theoretical understanding of the requirements to construct robust and efficient verification
protocols, as well as a lack of tools to systematise their optimisation. More precisely,
while there are protocols that optimise the qubit communication, the complexity of
the operations on the client’s side, the overhead on the server’s side, or the amount of
tolerable noise, none provide general methods that could be applied when designing
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the protocols themselves and used to tailor their performance to specific contexts and
use-cases.

In this work, we deconstruct composable and statistically secure protocols for dele-
gated quantum computations, to both exhibit their fundamental structure and allow for
their convenient optimisation. We focus on protocols framed in the Measurement Based
Quantum Computation (MBQC) model [RB01]. Our results are based on the simple
yet powerful ideas that detecting deviations from the client’s instructions which are
potentially harmful for the computation should yield verification, while the ability to be
insensitive to those that are not harmful should provide noise-robustness. We formalise
this intuition through the concept of trappified schemes – a set of computations contain-
ing factitious computations whose results are known only to the client –, together with
a necessary condition for obtaining negligible security errors with polynomial resources.
Even more importantly, this work naturally connects the field of error-detection to
that of verification, opening considerably the sources of inspiration for designing new
trappified schemes and thus verification protocols.

As a concrete application, we construct a generic compiler for verifying BQP com-
putations without any overhead of physical resources compared to the unprotected
computation. Its efficiency is then optimised thanks to the introduction of new traps
inspired by syndrome measurements of error-correcting codes.

Related Work. The first verification protocols have relied on the client’s ability to
access a small constant size quantum machine. It serves to encrypt the instructions
delegated to the server or to perform the necessary operations to complete the computa-
tion once a complex resource state is provided by the server [ABE10; Aha+17; FK17;
Bro18; HM15]. In both cases, the behaviour of the server is checked thanks to insertion
of smaller computations alongside the one of interest whose result is known to the client.

More recent protocols used the mapping of BQP computations onto the 2-local
Hamiltonian problem. In [FHM18; Han+17], the necessity of encryption was removed
while the client was still required to perform X and Z measurements. In the ground
breaking work of [Mah18b], the client was made entirely classical at the expense of some
post-quantum secure computational assumptions.

Unfortunately, all these protocols – even those with a classical client – are too
resource-intensive on the server’s side to be practical. Several efforts have been devoted
to improve the situation, in particular for protocols using Universal Blind Quantum
Computing to encrypt the instructions sent to the server. [KW17b; XTH20] seek to
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reduce the connectivity of the graph supporting the computation; [KDK15] reduces the
communication instead; and the objective of [FKD18] is to limit further the set of oper-
ations that the client must wield to be able to perform the protocol. Recently, [Lei+21]
considers the joint optimisation of the space overhead as well as the level of honest noise
that the protocol is able to withstand while still accepting.

5.1.2 Overview of results

In this chapter, we express our results in the prepare-and-send model trading generality
for simplicity, whereas we rely on the equivalence with the receive-and-measure model to
extend their applicability [WEP22]. In this model, the client is prepares a small subset
of quantum states, performs limited single-qubit operations and sends its prepared states
to a server via a quantum communication channel. The server then executes the client’s
instructions and possibly returns some quantum output via the same quantum channel.
As we seek not only verification but also blindness, we will use extensively the simple
obfuscation technique put forth in the Universal Blind Quantum Computation (UBQC)
protocol (see Section 2.3 for basics about UBQC) and consisting in randomly rotating
each individual qubit sent by the client to the server.

The main idea that has been put at work in previous verification protocols is that,
in such case, the client can chose to insert some factitious computations alongside the
one it really intends to delegate. Because the client can choose factitious computations
whose results are easy to compute classically and therefore to test, and because the
server does not know whether the computation is genuine or factitious, these allows to
ensure that the server is non-malicious.

Analyzing Deviations with Traps (Section 5.2). Here, we lay out a series of
concepts that formally define theses factitious computations, or traps, as probabilistic
error-detecting schemes. More precisely, we define trappified canvases as subcomputations
on an MBQC graph with a fixed input state and classical outputs which follow a
probability distribution that is efficiently computable classically. This is paired to
a decision function which, depending on the output of this subcomputation, returns
whether the trap accepts or rejects. The term canvas refers to the fact that there is
still empty space on the graph alongside the factitious computation for the client’s
computation to be “painted into”. This task is left to an embedding algorithm, which
takes a computation and a trappified canvas and fills in the missing parts so that the
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output is a computation containing both the client’s computation and a trap.
Because we aim at blind delegating the execution of trappified canvases to a possibly

fully malicious server that can deviate adaptively, a single trappified canvas will not be
enough to constraint its behaviour significantly. Instead we randomise the construction
of trappified canvases, and in particular the physical location of the trap. This gives
rise to the concept of trappified schemes (Definition 5.2.7) which are sets of trappified
canvases from which the client can sample efficiently.

Additionally, for these constructs to be useful in blind protocols they need to satisfy
two properties. First, no information should leak to the server when it is using one
trappified canvas over another. This means that executing one trappified canvas or
another must be indistinguishable to the server. If this is the case, we say that they are
blind-compatible. Second, no information should leak to the server about the computation
in spite of being embedded into a larger computation that contains a trap. This implies
that the decision to accept or reject the computation should not be depending on
the client’s desired computation. If this is the case, we call the embedding a proper
embedding.

Finally, we examine the effect of deviations on individual trappified canvases as well
as on trappified schemes. More precisely, we categorise deviations with the help of
trappified schemes as follows: (i) if the scheme rejects with probability (1− ε), then it
ε-detects the deviation; (ii) if the scheme accepts with probability 1−δ, it is δ-insensitive
to the deviation; and finally (iii) if the result of all possible computations of interest is
correct with probability 1− ν, then the scheme is ν-correct for this deviation.

Secure Verification from Trap Based Protocols (Section 5.3). Here, our con-
tribution is a series of theorems that give general design rules for constructing secure,
efficient and robust verification protocols based on the detection, insensitivity and
correctness properties of trappified schemes.

We start by constructing a natural Prepare-and-send protocol from any trappified
scheme, see the informal Protocol 3.

We then address the following question: what are the conditions required for these
error-detection mechanisms to provide verification? The following theorem states
that the trappified scheme should detect with high probability all errors for which the
computation is not correct.

Theorem 5.1.1 (Detection Implies Verifiability, Informal). Let E1 and E2 be two sets
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Protocol 3 Trappified Delegated Blind Computation Protocol (Informal)

1. The Client samples a trappified canvas from the trappified scheme and embeds its
computation, yielding a trappified pattern.

2. The Client blindly delegates this trappified pattern to the Server using the UBQC
Protocol, after which the Client obtains the output of the trappified pattern.

3. The Client decides whether to abort or not based on the result of the decision
function of the trappified canvas.

4. If it didn’t abort, the Client performs some simple classical or quantum post-
processing on the output.

of Pauli deviations such that E1 ∩ E2 = ∅, and I ∈ E2. If the Trappified Delegated Blind
Computation Protocol uses a trappified scheme which:

• ε-detects E1,

• is δ-insensitive to E2,

• is ν-correct on GV \ E1,

then the protocol is max(ε, δ + ν)-secure.

In other words, it is acceptable to not detect a deviation so long as it has only little
effect on the result of the computation of interest. This intuitive result is proved in
the framework of Abstract Cryptography [MR11]. We introduce novel techniques to
derive the protocol’s composable security directly, without resorting to local criteria
as in [Dun+14]. We construct a simulator that is able to correctly guess whether to
accept or reject its interaction with the server without ever knowing what the client’s
computation is, thereby reproducing the behaviour of the concrete protocol although
it is accessing a secure-by-design ideal delegated quantum computation resource. As
such, this provides the first direct proof of composable security of the original VBQC
protocol [FK17].

We next examine the conditions under which the protocol is robust against honest
noise. We show that it is sufficient for the trappified scheme to be both insensitive to
and correct on likely errors generated by the noise model.

Theorem 5.1.2 (Robust Detection Implies Robust Verifiability, Informal). We assume
that the server in the Trappified Delegated Blind Computation Protocol is honest-but-
noisy: the error applied is in E2 with probability (1− p2) and GV \ E2 with probability
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p2. Then, the client accepts with probability at least (1 − p2)(1 − δ), and if accepted
the distance between the implemented transformation and the client’s computation is
bounded by ν + p2 + δ.

We conclude this theoretical deconstruction of verification protocols by exploring the
necessary conditions for obtaining a security error which is exponentially close to zero
without blowing up the server’s memory requirements. We show that efficient trappified
schemes must incorporate some error-correction mechanism.

Theorem 5.1.3 (Error-Correction Prevents Resource Blow-up, Informal). Assume that
the Trappified Delegated Blind Computation Protocol has a negligible security error with
respect to a security parameter λ. If the size of the output in the trappified pattern is
the same as an unprotected execution of the Client’s computation for a non-negligible
fraction of trappified canvases in the trappified scheme used in the protocol, then the
size of the common graph state required to implement the trappified patterns scales
super-polynomially in λ.

These results reveal the strong interplay between the deviation detection properties of
trappified schemes and the properties of the corresponding prepare-and-send verification
protocol. As a consequence, the optimisation of verification protocols translates into
tailoring the deviation detection properties of trappified schemes to specific needs, for
which the rich tools of error-correction can be used. This is the focus of the rest of this
chapter.

Correctness and Security Amplification for Classical Input-Output Compu-
tations (Section 5.4). Here, we construct a general compiler for obtaining trappi-
fied schemes. It interleaves separate computations and test rounds in a way inspired
by [Lei+21]. As a consequence, the overhead for protocols based on such schemes is
simply a repetition of operations of the same size as the client’s original computation,
meaning that verification comes for free so long as the client and server can run the blind
protocol. Using our correspondence between error-detection and verification, we then
show that this compiler’s parameters can be chosen to boost the constant detection and
insensitivity rates of the individual test rounds to exponential levels after compilation.

Theorem 5.1.4 (From Constant to Exponential Detection and Insensitivity Rates,
Informal). Let P be a trappified scheme and P ′ be the compiled version described above
for n rounds combining a number of tests and computations which are both linear in n.
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If P ε-detects error set E1 and is δ-insensitive to E2, then there exists k1, k2 linear in n
and ε′, δ′ exponentially-low in n such that P ′ ε′-detects errors with more than k1 errors
on all rounds from set E1 and is δ-insensitive to errors with less than k2 errors from set
E2.

This however not enough to obtain negligible security and, as per Theorem 5.1.3, we
must recombine the results of the computation rounds to correct for these low-weight
errors which are not detected. This is done by using a simple majority vote on the
computation round outcomes, so that correctness can be independently amplified to an
exponential level by using polynomially many computation rounds.

Theorem 5.1.5 (Exponential Correctness from Majority Vote, Informal). There exists
k linear in n and ν exponentially-low in n such that P ′ is ν-correct so long as there are
no more than k errors.

In doing so, we have effectively untangled what drives correctness, security and
robustness, thereby considerably simplifying the task of designing and optimising new
protocols. More precisely, we can now focus only on the design of the test rounds as
their performance greatly influences the value of exponents in the exponentials from the
two previous theorems.

New Optimised Trappified Schemes from Stabiliser Testing (Section 5.5). In
this section, we design test rounds and characterise their error-detection and insensitivity
properties. This allows to recover the standard traps used in several other protocols,
while also uncovering new traps that correspond to syndrome measurements of stabiliser
generators – hence once again fruitfully exploiting the correspondence between error-
detection and verification.

Finally, we combine all of the above into an optimisation of the deviation detection
capability of the obtained trappified schemes that not only beats the current state-of-
the-art, but more importantly provides an end-to-end application of our theoretical
results.

5.1.3 Future Work and Open Questions

First, the uncovered connection between error-detection and verification raises further
questions such as the extent to which it is possible to infer from the failed traps what
the server has been performing.

110



5.2. ANALYSING DEVIATIONS WITH TRAPS

Partial
Pattern

Trappified
Canvas

Embedding
Algorithm
Trappified

Scheme

𝜖-Detection

𝛿-Insensitivity

𝜈-Correctness

Blind
Compatible

Proper
Embedding

Constructs
Essential

Properties Performance

Section 3

Section 4

Trappified
Blind

Delegated
QC Protocol

Security

Efficiency

Noise 
RobustnessPure Test 

Optimisation

Section 5

Section 6 Section 7

Performance
Amplification

Compiler

Security

Correctness

Pure Tests 
from Graph 
Stabilisers

Figure 5.1: Structure of Chapter 5. The blue boxes represent the main objects which
we construct, the orange ones are the main properties and the green the main theorems.
The blue arrows go towards a higher level of granularity, meaning that an object can be
simplified by using the next construction. The orange arrows indicate which property
plays a role in the proof of each theorem.

Second, Theorem 5.1.3 implies that some form of error-correction is necessary to
obtain exponential correctness. Yet, our protocol shows that sometimes classical error-
correction is enough, thereby raising the question of understanding what are the optimal
error-correction schemes for given classes of computation that are to be verified.

5.2 Analysing Deviations with Traps

The goal of this section is to introduce the concepts and tools for detecting deviations
from a given computation. Later, in Section 5.3, we combine these techniques with
blindness in order to detect malicious deviations, i.e. perform verification.
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5.2.1 Abstract Definitions of Traps

We start by defining partial MBQC patterns in Definition 5.2.1, which fix only a subset
of the measurement angles and flow conditions on a given graph. We constrain the
flow such that the determinism of the computation is preserved on the partial pattern
independently of the how the rest of the flow is specified.

Definition 5.2.1 (Partial MBQC Pattern). Given a graph G = (V,E), a partial pattern
P on G is defined by:

• GP = (VP , EP = E ∩ VP × VP ), a subgraph of G;

• IP and OP , the partial input and output vertices, with subspaces ΠI,P and ΠO,P

defined on vertices IP and OP through bases BI,P and BO,P respectively;

• {φ(i)}i∈VP \OP , a set of measurement angles;

• fp : VP \OP → VP \ IP , a flow inducing a partial order �P on VP .

Example 1 (Partial Pattern for Computing). Let G be the n×m 2D-cluster graph –
i.e. n-qubit high and m-qubit wide – and the ordering of the qubits starting in the upper-
left corner, going down first then right. Such graph state is universal for MBQC [RB01].
There are many possible partial patterns that can be defined on such graph. For instance,
consider a pattern Q that runs on a smaller n′ ×m′ 2D-cluster graph. Then, one can
define a partial pattern P on G as the top-left (n′+ 1)× (m′+ 1) subgraph. The set IP is
defined as the set I of Q together with all the qubits on the bottom row and right column.
The input space corresponds to the Hilbert space of the input qubits of Q tensored with
|0〉 for the qubits of the bottom row and right column. The output set OP is the same set
as in Q and ΠO,P is the full Hilbert space of the output qubits. The measurement angles
are the same as in Q for the corresponding qubits and set to be random for the bottom
row and right column. The flow is the same as in Q, provided that the added |0〉 qubits
have no dependent qubits. Because the added qubits are forced to be in the |0〉 state, this
isolates a n′ ×m′ 2D-cluster graph that can then be used to perform the same operations
as in Q, thereby allowing to compute the same unitary, albeit using a larger graph, see
Figure 5.2. Note that one can change the location of the n′ ×m′ 2D-cluster graph used
for the computation, as long as it is properly surrounded by qubits in the |0〉 state. This
is done by defining the input subspace of the partial pattern to take that constraint into
account.
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Figure 5.2: Partial pattern for computing. The partial pattern is in the dashed box.
Input qubits are surrounded in blue, output qubits in yellow. Red filled qubits are
prepared in |+〉 while the green ones are prepared in |0〉. The green qubits define a
subspace of the Hilbert space of the input qubits that guarantees that a 4× 6 cluster
state computation can be run inside the long-dashed box.

We now use this notion to define trappified canvases. These contain a partial pattern
whose input state is fixed such that it produces a sample from an easy to compute
probability distribution when its ouput qubits are measured in the X basis. These
partial patterns are called traps and will be used to detect deviations in the following
way. Whenever a trap computation is executed, it should provide outcomes that are
compatible with the trap’s probability distribution. Failure to do so is a sign that the
server deviated from the instructions given by the client.

Definition 5.2.2 (Trappified Canvas). A trappified canvas (T, σ,T, τ) on a graph
G = (V,E) consists of:

• T , a partial pattern on a subset of vertices VT of G with input and output sets IT
and OT ;

• σ, a tensor product of single-qubit states on ΠI,T ;

• T, an efficiently classically computable probability distribution over binary strings;

• and τ , an efficient classical algorithm that takes as input a sample from T and
outputs a single bit;

such that the X-measurement outcomes of qubits in OT are drawn from probability
distribution T. Let t be such a sample, the outcome of the trappified canvas is given by
τ(t). By convention we say that it accepts whenever τ(t) = 0 and rejects for τ(t) = 1.
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Figure 5.3: Trappified canvas. The partial pattern inside the dashed box is the trap. The
central qubit (red) is prepared in |+〉 and is surrounded by |0〉’s (green) that effectively
ensure that irrespective of the measurement angles on the remaining qubits the central
qubit will remain in |+〉. Failure to obtain the 0-outcome when measuring X will be
a proof that the server deviated from the given instructions. The preparation and
measurement angles of the remaining qubits is left unspecified.

We will often abuse the notation and refer to the trappified canvas (T, σ,T, τ) as T .

Example 2 (Canvas with a Single Standard Trap). Consider the n × m 2D-cluster
graph and consider the partial pattern of Example 1 where the subgraph is a 3× 3 square
– i.e. a single computation qubit surrounded by 8 |0〉 states. The input state is fixed
to be σ = |+〉 ⊗ |0〉⊗8 where |+〉 is the state of the central qubit, the others being the
aforementioned peripheral ones. Because the central qubit is measured along the X-axis
T is deterministic – the measurement outcome 0 corresponding to the projector |+〉〈+|
has probability 1. The accept function is defined by τ(t) = t so that the trappified
canvas accepts whenever the measurement outcome of the central qubit corresponds to
the expected 0 outcome. Here, the 3× 3 partial pattern defines a trap( see Figure 5.3).

Note that the input and output qubits of a partial pattern may not be included in
the input and output qubits of the larger MBQC graph. This gives us more flexibility
in defining trappified canvases: during the protocol presented in the next section, the
server will measure all qubits in Oc – which may include some of the trap outputs –,
while any measurement of qubits in O will be performed by the client. This allows the
trap to catch deviations on the output qubits as well.

In order to be useful, trappified canvases must contain enough empty space – vertices
which have been left unspecified – to accommodate the client’s desired computation.
Inserting this computation is done via an embedding algorithm as described in the
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following Definition.

Definition 5.2.3 (Embedding Algorithm). Let C be a class of quantum computations.
An embedding algorithm EC for C is an efficient classical probabilistic algorithm that
takes as input:

• C ∈ C, the computation to be embedded;

• G = (V,E), a graph, and an output set O;

• T , a trappified canvas on graph G;

• �G, a partial order on V which is compatible with the partial order defined by T ;

and outputs:

• a partial pattern C on V \ VT , with

– input and output vertices IC ⊂ V \ VT and OC = O \OT ;

– two subspaces (resp.) ΠI,C and ΠO,C of (resp.) IC and OC with bases (resp.)
BI,C and BO,C;

• a decoding algorithm DO,C;

such that the flow fC of partial pattern C induces a partial order which is compatible
with �G. If EC is incapable of performing the embedding, it outputs ⊥.

As will be come apparent in later definitions, a good embedding algorithm will yield
patterns which apply a desired computation C to any input state in subspace ΠI,C ,
with the output being in subspace ΠO,C after the decoding algorithm has been run.
The decoding algorithm can be quantum or classical depending on the nature of the
output. We will furthermore require all embedding algorithms in this chapter to have
the following property.

Definition 5.2.4 (Proper Embedding). We say that an embedding algorithm EC is
proper if, for any computation C ∈ C and trappified canvas T that do not result in a ⊥
output, we have that:

• fC does not induce dependencies on vertices VT of partial pattern T ;
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• the input and output subspaces ΠI,C and ΠO,C do not depend on the trappified
canvas T .

Example 3 (Embedding Algorithm on a 2D-Cluster Graph Canvas with a Single Trap).
Define C as the class of computations that can be implemented using a (n − 3) × m
2D-cluster state. An embedding algorithm for C on T can be defined in the following
way. Consider the trappified canvas T of Example 2 with a n×m 2D-cluster graph and
a single 3× 3 trap in the upper left corner. The output of the embedding algorithm would
be the pattern P defined in the following way. For C ∈ C, by assumption, one can define
a pattern Q on a (n− 3)×m 2D-cluster graph that implements C. The angles and flow
of the partial pattern P is identical to that of Q albeit applied on the lower n− 3 rows
of T . On the 3× (m− 3) upper right rectangular subgraph, all angles are set randomly.
IC is such that it comprises all inputs defined in Q and the last m − 3 qubits of the
third row. Choose ΠI,P so that these m− 3 qubits are set to |0〉. Then, by construction,
this together with the trap isolates a (n− 3)×m rectangular subgraph on which P will
be defining MBQC instructions identical to those of Q, thereby implementing C. In
addition, one can see that there are no dependency between measurements of P and that
of the trap in T so that the embedding algorithm is proper. Note that one can change
the location of the trap to any column. If in addition the 2D-cluster graph if cylindrical
instead of rectangular, the trap can be moved to any location within the cylinder.

Definition 5.2.5 (Trappified Pattern). Let EC be an embedding algorithm for C. Given
a computation C ∈ C and a trappified pattern T on graph G with order �G, we call the
completed pattern C ∪T which is the first output of EC(C, G, T,�G) a trappified pattern.

While embedding a computation in a graph that has enough space for it might seem
simple, the hard part is to ensure that the embedding is proper. This property implies
that no information is carried via the flow of the global pattern from the computation
to the trap and it is essential for the security of the verification protocol built using
trappified canvases. In Example 3 above, this is done by breaking the graph using
the states initialised in |0〉. The only other known way is to separate runs for tests
and computations and satisfying this condition using other methods is left as an open
question.

Note that the input and output qubits of the computation C might be constrained to
be in (potentially strict) subspaces ΠI,C and ΠO,C of IC and OC respectively. This allows
for error-protected inputs and outputs, without having to specify any implementation
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Figure 5.4: Trappified canvas. Input qubits are surrounded in blue, output qubits in
yellow. Red filled qubits are prepared in |+〉 while the green ones are prepared in |0〉,
white ones are left unspecified. The trap is located in the upper left corner. The actual
computation takes place in the 5×11 rectangular cluster state surrounded by a solid-line
while the computation pattern comprises the qubits surrounded by long-dashed line.
This allows to include some dummy |0〉 qubits in the inputs so as to disentangle the
lower 5 rows from the rest of the graph and perform the computation. Output qubits
of the computation are surrounded by a yellow line. The partial pattern inside the
dashed box is the trap. The central qubit (red) is prepared in |+〉 and is surrounded by
|0〉’s (green) that effectively ensure that irrespective of the measurement angles on the
remaining qubits the central qubit will remain in |+〉. Failure to obtain the 0-outcome
when measuring X will be a proof that the server deviated from the given instructions.
The preparation and measurement angles of the remaining qubits is left unspecified.
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for the error-correction scheme. In particular, it encompasses encoding classical output
data as several, possibly noisy, repetitions which will be decoded by the client through
a majority vote as introduced in [Lei+21]. It also allows to take into account the case
where the trappified pattern comprises a fully fault-tolerant MBQC computation scheme
for computing C using topological codes as described in [RJK07].

For verification, our scheme must be able to cope with malicious behaviour: detecting
deviations is useful for verification only so long as the server cannot adapt its behaviour
to the traps that it executes. Otherwise, it could simply decide to deviate exclusively
on non-trap qubits. This is achieved by executing the patterns in a blind way so that
the server has provably no information about the location of the traps and cannot avoid
them with high probability. To this end, we define blind-compatible patterns as those
which share the same graph, output vertices and measurement order of their qubits.
The UBQC Protocol (Protocol 2) leaks exactly this information to the server, meaning
that it cannot distinguish the executions of two different blind-compatible patterns.

Definition 5.2.6 (Blind-Compatibility). A set of patterns P is blind-compatible if
all patterns P ∈ P share the same graph G, the same output set O and there exists a
partial ordering �P of the vertices of G which is an extension of the partial ordering
defined by the flow of any P ∈ P . This definition can be extended to a set of trappified
canvases P = {(T, σ,T, τ)}. The partial order �P is required to be an extension of the
orderings �T of partial patterns T .

A single trap is usually not sufficient to catch deviations on more than a subset of
positions of the graph. In order to catch all deviations, it is then necessary to randomise
the blind delegated execution over multiple patterns. We therefore define a trappified
scheme as a set of blind-compatible trappified canvases which can be efficiently sampled
according to a given distribution, along with an algorithm for embedding computations
from a given class into all the canvases.

Definition 5.2.7 (Trappified Scheme). A trappified scheme (P ,�G,P, EC) over a graph
G for computation class C consists of:

• P , a set of blind-compatible trappified canvases over graph G with common partial
order �P ;

• �G, a partial ordering of vertices V of G that is an extension of �P ;

• P, a probability distribution over the set P which can be sampled efficiently;
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• EC, an proper embedding algorithm for C;

such that for all C ∈ C and all trappified canvases T ∈ P , EC(C, G, T,�G) 6= ⊥, i.e. any
computation can be embedded in any trappified canvas using the common order �G.

Without loss of generality, in the following, the probability distribution used to
sample the trappified canvases will generally be u(P ), the uniform distribution over
P . The general case can be approximated from the uniform one with arbitrary fixed
precision by having several copies of the same canvas in P . We take T ∼ P to mean that
the trappified canvas is sampled according to the distribution P of trappified scheme P .

Note that in Definition 5.2.7 above, while the blindness condition ensures that a
completed patterns obtained after running the embedding algorithm hides the location
of the traps, the existence of a partial order �G compatible with that of the trappified
canvases ensures that this remains true when considering the scheme as a whole, i.e the
order in which the qubits are measured does not reveal information about the chosen
trappified canvas itself, which would otherwise break the blindness of the scheme.

Example 4 (Trappified Scheme for a Cylindrical-Cluster Graph). Consider the set of
trappified canvases together with the embedding algorithm EC on the cylindrical cluster-
graph with a single randomly placed 3× 3 trap as defined in Example 3. This defines a
trapification scheme for C consisting of computations that can be implemented using a
(n− 3)×m 2D-cluster graph (See Figure 5.5).

5.2.2 Effect of Deviations on Traps

We can now describe the purpose of the objects described in the previous subsection,
namely detecting the server’s deviations from their prescribed operations during a given
delegated computation. We start by recalling that the blindness of UBQC Protocol is
obtained by Pauli-twirling the operations delegated to the server. This implies that any
deviation can be reduced to a convex combination of Pauli operators. Then, we formally
define Pauli deviation detection and insensitivity for trappified canvases and schemes.
We show in the next section that these key properties are sufficient for obtaining a
verifiable delegated computation by formalising the steps sketched here.

When a client delegates the execution of a pattern P to a server using Protocol 2,
the server can potentially deviate in an arbitrary way from the instructions it receives.
By converting into quantum states both the classical instructions sent by the client –
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Figure 5.5: Trappified scheme. Two possible canvases extracted from a trappified scheme
with a single 3× 3 trap on a toric 8× 11 toric cluster state. Input qubits are surrounded
in blue, output qubits in yellow. Red filled qubits are prepared in |+〉 while the green
ones are prepared in |0〉, white ones are left unspecified. The actual computation takes
place in the 5 × 11 rectangular cluster state, while the trap is located at a different
positions in each picture allowing to detect all possible deviations performed by a server,
albeit with a low probability of success.

i.e. the measurement angles – and the measurement outcomes sent back by the server,
all operations on the server’s side can be modelled as a unitary F acting on all the qubits
sent by the client and some ancillary states |0〉S, before performing measurements in
the computational basis to send back the outcomes |b〉 that the client expects from the
server.

The instructions of the server in an honest execution of the UBQC Protocol 2
correspond to:

1. entangling the received qubits corresponding to the vertices of the computation
graph with operation EG = ⊗

(i,j)∈E CZi,j;

2. performing rotations on non-output vertices around the Z-axis, controlled by the
qubits which encode the measurement angles instructed by the client;

3. applying a Hadamard gate H on all non-output vertices;

4. measuring non-output vertices in the {|0〉 , |1〉} basis.

The steps (i-iii) correspond to a unitary transformation UP that depends only on the
public information that the server has about the pattern P – essentially the computation
graph G and an order of its vertices compatible with the flow of P .
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Hence, the unitary part UP of the honestly executed protocol for delegating P can
always be extracted from F, so that F = F′ ◦ UP . Here, F′ is called a pure deviation and
is applied right before performing the computational basis measurements for non-output
qubits and right before returning the output qubits to the Client.

When the pattern is executed blindly using Protocol 2, the state in the server’s
registers during the execution is a mixed state over all possible secret parameters chosen
by the client. It is shown in [Kap16] that the resulting summation over the secret
parameters which hide the inputs, measurement angles and measurement outcomes is
equivalent to applying a Pauli twirl to the pure deviation F′. This effectively transforms
it into a convex combination of Pauli operations applied after UP .

Hence, any deviation by the server can be represented without loss of generality by
choosing with probability Pr[E] an operator E in the Pauli group GV over the vertices
V of the graph used to define P , and executing E ◦ UP instead of UP for the unitary
part of the protocol. By a slight abuse of notation, such transformation will be denoted
E ◦P . Furthermore, if C ∪ T is a trappified pattern obtained from a trappified canvas T
that samples t = (t1, . . . , tN) from the distribution T, then in the presence of deviation
E, it will sample from a different distribution. For instance, whenever E applies a Z
operator on a vertex, it can be viewed as an execution of a pattern where the angle δ
for this vertex is changed into δ + π. Whenever E applies a X operator on a vertex, δ is
transformed into −δ. We now give a lemma which will be useful throughout the rest of
this chapter.

Lemma 5.2.8 (Independence of Trap and Computation). Let C ∪ T be a trappified
pattern obtained from the trappified canvas T which samples from distribution T through
a proper embedding algorithm of computation C. Then, for all Pauli errors E, the
distribution of trap measurement outcomes is independent of the computation C and of
the input state in the subspace ΠI,C.

Proof. Let fC be the flow of computation of the embedded computation C. Because
the embedding is proper according to Definition 5.2.3, the dependencies induced by fC
do not affect trap qubits VT . Furthermore, the input of the trap is fixed along with its
partial pattern, independently of the computation. Therefore, the distribution of the
trap measurement outcomes is also independent of the embedded computation being
performed on the rest of the graph as well as the input state of such computation.

Indeed, for a completed trappified pattern C∪T obtained by embedding a computation
C onto a trappified canvas T , the action of E on the vertices outside VT does not have
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an impact on the measurement outcomes of the vertices in VT . This allows to define the
trap outcome distribution under the influence of error E solely as a fuction of E and T.
Such modified distribution is denoted E ◦ T.

As an additional consequence, it is possible to define what it means for a given
trappified canvas to detect and to be insensitive to Pauli errors:

Definition 5.2.9 (Pauli Detection). Let T be a trappified canvas sampling from distri-
bution T. Let E be a subset of GV . For ε > 0, we say that T ε-detects E if:

∀E ∈ E, Pr
t∼E◦T

[τ(t) = 1] ≥ 1− ε. (5.1)

We say that a trappified scheme P ε-detects E if:

∀E ∈ E,
∑

T∈P
Pr
T∼P
t∼E◦T

[τ(t) = 1, T ] ≥ 1− ε. (5.2)

Definition 5.2.10 (Pauli Insensitivity). Let T be a trappified canvas sampling from
distribution T. Let E be a subset of GV . For δ > 0, we say that T is δ-insensitive to E if:

∀E ∈ E, Pr
t∼E◦T

[τ(t) = 0] ≥ 1− δ. (5.3)

We say that a trappified scheme P is δ-insensitive to E if:

∀E ∈ E,
∑

T∈P
Pr
T∼P
t∼E◦T

[τ(t) = 0, T ] ≥ 1− δ. (5.4)

Above, the probability distribution stems both from the randomness of quantum
measurements of the trap output qubits yielding the bit string t, and the potentially
probabilistic nature of the decision function τ . In the case of trappified schemes, the
probability distribution for obtaining a given result for τ also depends on the choice of
canvas T ∈ P , sampled according to the probability distribution P.

In the same spirit, there are physical deviations that nonetheless produce little effect
on the computations embedded into trappified canvases and trappified schemes. When
they occur, the computation is still almost correct.

Definition 5.2.11 (Pauli Correctness). Let (T, σ,T, τ) be a trappified canvas and EC

an embedding algorithm. Let C ∪ T be the pattern obtained by embedding a computation
C ∈ C on T using EC and let |ψ〉 be a state in IC ⊗ R, for sufficiently large auxiliary
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system R, such that TrR(|ψ〉) ∈ ΠI,C, where ΠI,C is the client’s input subspace. Let
E be a subset of GV . For E ∈ E, we define C̃T,E = DO,C ◦ TrOcC ◦E ◦ (C ∪ T ) to be the
CPTP map resulting from applying the trappified pattern C ∪ T followed by the decoding
algorithm DO,C on the output of the computation. For ν ≥ 0, we say that T is ν-correct
on E if:1

∀E ∈ E, ∀C ∈ C, max
ψ
‖(C̃T,E − C⊗ IT )⊗ IR(|ψ〉〈ψ| ⊗ σ)‖Tr ≤ ν. (5.5)

This is extended to a trappified scheme P by requiring the bound to hold for all T ∈ P .

In the following, sets of deviations that have little effect on the result of the compu-
tation according to diamond distance will be called harmless, while their complement
are possibly harmful.

We conclude this section with some remarks regarding basic properties of trappified
schemes and a simple but powerful result allowing to construct trappification schemes
from simpler ones.

Remark 5.2.12 (Existence of Harmless Deviations). Why not just detect all possible
deviations rather than count on the possibility that some have little impact on the actual
computation? The reason is that these are plentiful in MBQC. Following our convention
to view all measurements as computational basis measurements preceded by an appropriate
rotation, any deviation E that acts as I and Z on measured qubits does not change the
measurement outcomes and have no effect on the final outcome. Consequently, for
classical output computations, only X and Y deviations need to be analysed. These are
equivalent to flipping the measurement outcome, which propagate to the output via the
flow corrections.

Remark 5.2.13 (A Trappified Canvas is a Trappified Scheme). Any trappified canvas T
can be seen as a trappified scheme P = {T} and the trivial distribution. If the trappified
pattern ε-detects E1 and is δ-insensitive to E2, so is the corresponding trappified scheme.

Remark 5.2.14 (Pure Traps). A trappified scheme P may only consist of trappified
canvases that cover the whole graph G = (V,E) if VT = V for all T ∈ P . This corresponds
to the special case where the trappified scheme cannot embed any computation, i.e. C = ∅
and the embedding algorithm applied to a canvas T ∈ P always return T . The detection,

1Equation 5.5 corresponds to the diamond norm between the correct and deviated CPTP maps,
but with a fixed input subspace and a fixed input for the trap qubits.
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insensitivity and correctness properties also apply to this special case, although the
correctness is trivially satisfied.

Lemma 5.2.15 (Simple Composition of Trappified Schemes). Let (Pi)i be a sequence
of trappified schemes with corresponding distributions Pi such that Pi εi-detects E(i)

1 and
is δi-insensitive to E

(i)
2 . Let (pi)i be a probability distribution.

Let P = ⋃
iPi be the trappified scheme with the following distribution P:

1. Sample a trappified scheme Pj from (Pi)i according to (pi)i;

2. Sample a trappified canvas from Pj according to Pj.

Let E1 ⊆
⋃
i E

(i)
1 and E2 ⊆

⋃
i E

(i)
2 . Then, P ε-detects E1 and is δ-insensitive to E2 with:

1− ε = min
E∈E1

∑

i
E∈E(i)

1

pi(1− εi), and (5.6)

1− δ = min
E∈E2

∑

i
E∈E(i)

2

pi(1− δi). (5.7)

Note that we do not consider above the embedding function. If we assume that
all schemes can embed the same set of computations, then it is possible to use the
embedding of the one which is chosen at step 1 above. We will see later an example of
how to combine trappified schemes with different computation classes in Section 5.4.

5.3 Secure Verification from Trap Based Protocols

In this section we use the properties defined above to derive various results which help
break down the tasks of designing and proving the security of verification protocols
into small and intuitive pieces. We start by giving a description of a general protocol
using trappified schemes which encompasses all prepare-and-send MBQC-based protocol
aiming to implement the SDQC funtionality (Definition 2). We then relate the security of
this protocol in the Abstract Cryptography framework to the ε-detection, δ-insensitivity
and ν-correctness of the trappified scheme used in the protocol. Consequently, we can
from then on only focus on these three properties instead of looking at the full protocol,
which already removes a lot of steps in future proofs.

Then we demonstrate how increasing the insensitivity set yields a protocol which
is robust to situations where the server is honest-but-noisy with a contained noise

124



5.3. SECURE VERIFICATION FROM TRAP BASED PROTOCOLS

parameter. These results further simplify the design of future protocols since many
complex proofs can be avoided, allowing us to concentrate on designing more efficient
trappified schemes and directly plugging them into the generic protocol and compiler to
yield exponentially-secure and noise-robust protocols implementing SDQC. We finally
describe a consequence of these results in the case where the security of the protocol
is exponentially-low in a given security parameter. We show that this automatically
implies that the computation must be protected against low-weight errors if we restrict
the server’s resources to be polynomial in the security parameter.

5.3.1 General Verification Protocol from Trappified Schemes

Given a computation C, it is possible to delegate its trappified execution in a blind way.
To do so, the Client simply chooses one trappified canvas from a scheme at random,
inserts into it the computation C using an embedding algorithm and blindly delegates
the execution of the resulting trappified pattern to the Server. The steps are formally
described in Protocol 4.

Note that this protocol offers blindness not only at the level of the chosen trappified
pattern, but also at the level of the trappified scheme itself. More precisely, by delegating
the chosen pattern, the client reveals at most the graph of the pattern, a partial order
of its vertices and the location of the output qubits of the pattern, if there are any,
comprising computation and trap outputs. However, trappified patterns of a trappified
scheme are blind-compatible, that is they share the same graph and same set of output
qubits. Therefore, the above protocol also hides which trappified pattern has been
executed among all possible ones, hence concealing the location of traps.

Blind Deviation Detection Implies Verifiability. We now formalise the following
intuitive link between deviation detection and verification in the context of delegated
computations. On one hand, if a delegated computation protocol is correct,2 not
detecting any deviation by the server from its prescribed sequence of operations should
be enough to guarantee that the final result is correct. Conversely, detecting that some
operations have not been performed as specified should be enough for the client to reject
potentially incorrect results. Combining those two cases should therefore yield a verified
delegated computation.

2Here we use correctness in a cryptographic setting, meaning that all parties execute as specified
their part of the protocol.
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Protocol 4 Trappified Delegated Blind Computation
Public Information:

• C, a class of quantum computations;
• G = (V,E), a graph with output set O;
• P , a trappified scheme on graph G;
• �G, a partial order on V compatible with P .

Client’s Inputs: A computation C ∈ C and a quantum state ρC compatible with C.
Protocol:
1. The Client samples a trappified canvas T from the trappified scheme P .
2. The Client runs the embedding algorithm EC from P on its computation C, the

graph G with output space O, the trappified pattern T , and the partial order
�G. It obtains as output the trappified pattern C ∪ T .

3. The Client and Server blindly execute the trappified pattern C ∪ T on input
state ρC using the UBQC Protocol 2.

4. If the output set is non-empty (if there are quantum outputs), the Server returns
the qubits in positions O to the Client.

5. The Client measures the qubits in positions O ∩ VT in the X basis. It obtains
the trap sample t.

6. The Client checks the trap by computing τ(t). It rejects and outputs (⊥,Rej) if
τ(t) = 1.

7. Otherwise, the Client accepts the computation. It applies the decoding algorithm
DO,C to the output of Protocol 2 on vertices O \ VT and set the result as its
output along with Acc.

To this end, we show how the deviation detection capability of trappified schemes is
used to perform verification. This is done by proving that Protocol 4 above constructs
the Secure Delegated Quantum Computation Resource 2 in the Abstract Cryptography
framework. This resource allows a Client to input a computation and a quantum state
and to either receive the correct outcome or an abort state depending on the Server’s
choice, whereas the Server only learns at most some well defined information contained
in a leak lρ. More precisely, we show that any distinguisher has a bounded distinguishing
advantage between the real and ideal scenarios so long as the trappified scheme P
detects a large fraction of deviations that are possibly harmful to the computation.

Theorem 5.3.1 (Detection Implies Verifiability). Let P be a trappified scheme with a
proper embedding. Let E1 and E2 be two sets of Pauli deviations such that E1 ∩ E2 = ∅,
and I ∈ E2. If P :
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• ε-detects E1,

• is δ-insensitive to E2,

• is ν-correct on GV \ E1,

for ε, δ, ν > 0, then the Trappified Delegated Blind Computation Protocol 4 for computing
CPTP maps in C using P is δ+ν-correct and max(ε, ν)-secure in the Abstract Cryptograhy
framework, i.e. it max(ε, δ + ν)-constructs the Secure Delegated Quantum Computation
Resource 2 where the leak is defined as lρ = (C, G,P ,�G).

Proof of Correctness. We start by analysing the correctness of Protocol 4, i.e. the
distance between the real and ideal input/output relation if both parties follow their
prescribed operations. Let C ∈ C be the client’s desired computation. Let ρC be the
Client’s input state and |ψC〉 a purification of ρC using the distinguisher’s register D.
Let C ∪T be a trappified pattern obtained from sampling a trappified canvas T from the
trappified scheme P using probability distribution P and embedding computation C into
in using the embedding algorithm. We denote C(ρC)⊗ |Acc〉〈Acc| and TrOcC (C ∪ T (ρC ⊗
σ)⊗ |τ(t)〉〈τ(t)|) the final outputs of the Client in the ideal and real settings, where the
trace is over all registers not containing the output of the Client’s computation.3 The
distinguishing advantage is defined as:

εcor =
∥∥∥C⊗ ID(|ψC〉〈ψC |)⊗ |Acc〉〈Acc| −

C̃T,I ⊗ ID(|ψC〉〈ψC | ⊗ σ)⊗ |τ(t)〉〈τ(t)|)
∥∥∥

Tr
, (5.8)

where C̃T,I = DO,C ◦ TrOcC ◦(C ∪ T ). In the honest case, the concrete and ideal settings
will output different states only in the case where the protocol wrongly rejects the
computation or outputs a wrong result despite the absence of errors.

Since the trappified scheme is δ-insensitive to I ∈ E2, the probability that the
decision function outputs Rej is bounded by δ as per Definition 5.2.10. Furthermore,
using Lemma 5.2.8, the output of the test is independent of the computation being
performed. Combining these two properties yields:

εcor ≤ ‖C⊗ ID(|ψC〉〈ψC |)⊗ |Acc〉〈Acc| −
C̃T,I ⊗ ID(|ψC〉〈ψC | ⊗ σ))⊗ (δ |Rej〉〈Rej|+ (1− δ) |Acc〉〈Acc|)‖Tr.

(5.9)

3We use here the notation P (ρ) to mean the application of the trappified pattern P to the input
state ρ. Also we consider here that the decision function τ outputs either Acc for acceptance or Rej for
rejection instead of a binary value.
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Using the convexity of the trace distance, we get:

εcor ≤ (1− δ)‖C⊗ ID(|ψC〉〈ψC |)− C̃T,I ⊗ ID(|ψC〉〈ψC | ⊗ σ))‖Tr + δ. (5.10)

Finally, the trappified pattern is ν-correct on I ∈ E2 ⊆ GV \ E1. Therefore we have
that ‖C⊗ID(|ψC〉〈ψC |)−C̃T,I⊗ID(|ψC〉〈ψC |⊗σ))‖Tr ≤ ν, meaning that εcor ≤ (1−δ)ν+δ.
Hence, the protocol is (δ + ν)-correct.

Proof of Security against Malicious Server. To prove the security of the protocol, we
define as per Definition 2.1.2 a Simulator σ that has access to the Server’s interface of
the Secure Delegated Quantum Computation Resource. The interaction involving either
the Simulator or the real honest Client should be indistinguishable.

Defining the Server’s Simulator. To do so, we use again the fact that when the
protocol is run and a deviation is applied by the Server, the probability of accepting or
rejecting the computation is dependent only on the deviation and not of the computation
performed on the non-trap part of the pattern. This is a crucial property as this allows
to simulate the behaviour of the concrete protocol even when the computation performed
is unknown. More precisely, we define the Simulator in the following way:

Simulator 1

1. The Simulator request a leak from the Secure Delegated Quantum Computation
Resource and receives in return (C, G,P ,�G).

2. It chooses at random any computation CS ∈ C and an input which is compatible
with C.

3. It performs the same tasks as those described by the Client’s side of the Trappified
Delegated Blind Computation Protocol 4.

4. Whenever τ accepts, the Simulator sends c = 0 to the Secure Delegated Quantum
Computation Resource, indicating that the honest Client should receive its output.
If it rejects, the Simulator sends c = 1 Secure Delegated Quantum Computation
Resource, indicating an abort.

We now show that the distinguisher cannot tell apart with high probability the
simulation and the concrete protocol.
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Applying the Pauli Twirl. We first use the twirling lemma to decompose the
deviation of the Server. Here we are only concerned with the state representing the
interaction of the Client or of the Simulator with the Server. Since the Simulator defined
above performs the same tasks as the Client when the Protocol is run, we only need to
derive the expression for the Client’s interaction. The following steps are similar to the
ones in [FKD18, Proof of Theorem 3] and work as can be seen here for the basic UBQC
protocol and any protocol based on it.

Let C and ρC be the Client’s computation and input, let T and σ be the trappified
canvas chosen from the trappified scheme P and the associated input. Finally, let C ∪T
the trappified pattern resulting from embedding C into T , with base angles {φ(i)}i∈Oc .

We start by expressing the state in the simulation and the real protocol. The Server
first receives quantum states which are encrypted with Z(θ(i))Xa(i) for all vertices v ∈ V .
This is explicitly the case for the inputs to the computation and trap patterns, but also
for the other qubits of the graph, since we have that |+θ〉 = Z(θ) |+〉 = Z(θ)Xa |+〉.4
Recall that aN(i) = ∑

j∈NG(i) a(j) and the outputs qubits are only Quantum One-Time-
Padded, i.e. θ(i) = (r(i) + aN(v))π for i ∈ O. Then, omitting the Client’s classical
registers containing the secret values θ,a, r, state from the point of view of the Client
is noted ρθ,a,rin,b+r, defined as:

ρθ,a,rin,b+r =
(⊗

i∈V
Zi(θ(i))Xa(i)

i

)
(ρC ⊗ σ ⊗ |+〉〈+|⊗|V |−|I|)

⊗

i∈Oc
|δb+r(i)〉〈δb+r(i)| , (5.11)

where b corresponds to the perceived branch of computation based on the outcomes
returned by the Server to the Client. The values δb+r(i) = (−1)a(i)φ′b+r(i) + θ(i) + (r(i) +
aN(i))π are each encoded as computational basis states on three qubits from a register
R with 3n qubits. The angle φ′b+r(i) is obtained through the formula for φ′(i) from the
UBQC Protocol 2, Equation (2.5), and includes the corrections stemming from b and r,
while aN(i) compensates the effect of the X encryption from a qubit on its neighbours.
While this seems that the Client is sending the values of δb+r(i) at the beginning breaks
the causal structure of the protocol, these states will indeed not be affected by any
operations before they can actually be correctly computed by the Client. This will be
made formal below. Finally, note that for simplicity, the qubits in the state above are
not grouped in the order in which the Client sends.

4In the real protocol, this value is always 0. This is perfectly indistinguishable since the distribution
of the values of δ are identical regardless of this choice of parameter for non-input qubits and correctness
is unaffected.
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We consider a purification |ψS〉〈ψS| of the Server’s input ρS. Let Fin be a unitary
such that |ψS〉 = Fin |0〉⊗w for the appropriate work register size w. Then the operations
which the Server applies before any measurement can be written as unitaries acting on
all qubits which have not yet been measured and the available values of δb+r(i). These
can be then decomposed into the correct unitary operation followed by a unitary attack
of the Server’s choice. The Server receives all qubits, applies the entanglement operation
corresponding to the Client’s desired graph, then a unitary attack FG, then the correct
rotation on the first measured qubits, followed by another attack F1. These two last
steps are repeated for all measured qubits.

The entanglement according to the graph G = (V,E) is noted G = ⊗
(i,j)∈E CZi,j.

The Z-axis rotations required for performing the measurement in the basis defined by
δb+r(i) are represented by unitaries CRv, controlled rotations around the Z-axis with the
control being performed by the registers containing the corresponding value of δb+r(i).
Figure 5.6 shows one possible implementation of this controlled operation.

ρ Z(·)

|δ〉 / • /

ρ Z Z(π2 ) Z(π4 )

|δ1〉 •

|δ2〉 •

|δ3〉 •
Figure 5.6: Controlled rotation used to unitarise Protocol 2. The right hand side is a
possible implementation of the rotation on the left, where δi are the bits composing the
value δ. The 3 controlling qubits are sent by the client to the server in the computational
basis as they correspond to classical values.

The quantum state representing the interaction between the Client and Server
implementing the protocol just before the measurements are performed, noted ρθ,a,rpre,b+r,
is thus:

ρθ,a,rpre,b+r = FnCR†n . . . F1CR†1FGFinG(ρθ,a,rin,b+r ⊗ |0〉〈0|⊗w), (5.12)

with |Oc| = n. We can move all deviations through the controlled rotations and
regroup them as F′.5 Then, it is possible to replace the (classically) controlled rotations
corresponding to the honest execution of the protocol by ordinary rotations Z(δb+r(i))†,

5Formally, we have F′ = FnCR†n . . .F1CR†1FGFin ◦
⊗

i∈Oc CRi.
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thus yielding:6

ρθ,a,rpre,b+r = F′
(⊗

i∈Oc
Zi(δb+r(i))†

)
G(ρθ,a,rin,b ⊗ |0〉〈0|⊗w). (5.13)

We now apply the decryption operations performed by the Client on the output layer
qubits after the Server has returned these qubits at the end of the protocol. The resulting
state, noted ρθ,a,rdec,b+r, can be written as:

ρθ,a,rdec,b+r =
(⊗

i∈O
ZsZ(i)+r(i)
i XsX(i)+a(i)

i

)
(ρθ,a,rpre,b+r), (5.14)

where sX(i) and sZ(i) stem from the flow of the trappified pattern C ∪ T . To finish, we
enforce that the computation branch is effectively b by projecting all non-output qubits
i ∈ Oc onto Zb(i)+r(i)i |+〉〈+|Zb(i)i .7,8 Since |+〉 is a +1 eigenstate of X, this is equivalent
to projecting onto Zb(i)+r(i)i |+〉〈+|i X

a(i)
i Zb(i). The final state, noted ρθ,a,rout,b+r, is therefore:

ρθ,a,rout,b+r =
(⊗

i∈Oc
Zb(i)+r(i)i |+〉〈+|i

)(⊗

i∈Oc
Xa(i)
i Zb(i)i

)
(ρθ,a,rdec,b+r). (5.15)

We then apply the change of variable b′(i) = b(i) + r(i) and then relabelling b′(i) into
b(i). This has the effect of removing the influence of r(i) in the corrected measurement
angles, transforming φ′b+r(i) into φ′b(i):9

ρθ,a,rout,b =
(⊗

i∈Oc
Zb(i)i |+〉〈+|i

)(⊗

i∈Oc
Xa(i)
i Zb(i)+r(i)i

)
(ρθ,a,rdec,b)

= PbŨP

(
ρC ⊗ σ ⊗ |+〉〈+|⊗|V |−|I|

⊗

i∈Oc
|δb(i)〉〈δb(i)| ⊗ |0〉〈0|⊗w

)
. (5.16)

6If these operations were replaced before, the deviations would pick up a dependency on δb+r(i)
during the commutation.

7These qubits can be assumed to be measured without loss of generality since (i) the Server needs
to produce the values b using its internal state and the values received from the Client and (ii) the
operation F′ is fully general, meaning that the Server can use it to reorder the qubits before the
measurement if it so desires.

8The difference in coefficients takes into account the corrections which the Client applies to the
outputs of the measurements to account for r(i).

9This value uses the formula for φ′(i) from the Delegated MBQC Protocol 1, Equation (2.3).
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where we defined Pb as:

Pb =
⊗

i∈Oc
Zb(i)i |+〉〈+|i , (5.17)

and ŨP as:

ŨP =
(⊗

i∈Oc
Xa(i)
i Zb(i)+r(i)i

)(⊗

i∈O
ZsZ(i)+r(i)
i XsX(i)+a(i)

i

)
F′◦

(⊗

i∈Oc
Zi(δb(i))†

)
G
(⊗

i∈V
Zi(θ(i))Xa(i)

i

)
.

(5.18)

We now look at the state from the point of view of the Server, noted ρout,b, which can
be written as follows considering that in this case the secret parameters are unknown:

ρout,b = 1
8|Oc| · 4|V |

∑

θ,a,r

ρθ,a,rout,b. (5.19)

We focus on the state before the projection Pb is applied. The goal is to remove
dependencies on r(i), a(i) which appear outside the encryption and decryption procedures
in order to be able to use the twirling lemma, using the fact that these parameters are
chosen at random.10 To this end we cancel out the values of θ(i) coming from the initial
encryption with those which appear in the rotations by δb(i) = (−1)a(i)φ′b(i) + θ(i) +
(r(i) + aN(i))π for i ∈ Oc:

Zi(δb(i))†GZi(θ(i))Xa(i)
i = Zi((−1)a(i)φ′b(i) + (r(i) + aN(i))π)†GXa(i)

i , (5.20)

due to the fact that the entanglement operation consists of CZ operations through which
the Z rotations commute. Now, the values θ(i) appear only through the definition of
the angles δb(i). Hence, they perfectly One-Time-Pad these angles and summing over
θ(i) yields the perfectly mixed state in the register R. Formally:

ρout,b = 1
4|V |

∑

a,r

PbŨP

(
ρC ⊗ σ ⊗ |+〉〈+|⊗|V |−|I| ⊗ 13n ⊗ |0〉〈0|⊗w

)
, (5.21)

where 13n is the perfectly mixed state over the 3n qubits of R. This register has thus
no effect on either the computation or the traps and is in tensor product with the rest

10These paramters must be perfectly random as using them multiple times might introduce correla-
tions which the Server can exploit to derandomise the Pauli twirl.
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of the state, it can therefore be traced out by assuming without loss of generality that
the Server’s deviation has no effect on it.

We can now commute the encryption on both sides of the deviation so that the
deviation is exactly sandwiched between two identical random Pauli operations. We
start on the right side of F′ in the expression of ŨP . For all qubits in the graph, we need
to commute Xa(i) through the entanglement operation first. Since CZi,jXi = ZjXiCZi,j
(and similarly for Xj), using aN(i) = ∑

j∈NG(i) a(j) we get that:

G
(⊗

i∈V
Xa(i)
i

)
=
(⊗

i∈V
ZaN (i)
i Xa(i)

i

)
G. (5.22)

The additional Zr(i)+aN (i)
i encryption of the output qubits commute unchanged through

the entanglement operation G. These encryptions now need to be commuted through
the Z rotations for measured qubits:

Zi((−1)a(i)φ′b(i) + (r(i) + aN(i))π)†ZaN (i)
i Xa(i)

i = Zr(i)i Xa(i)
i Zi(φ′b(i))† (5.23)

On the other hand, on the output qubits, the operation applied is ZaN (i)
i Zr(i)+aN (i)

i Xa(i)
i =

Zr(i)i Xa(i)
i . In total, we have that:
(⊗

i∈Oc
Zi(δb(i))†

)
G
(⊗

i∈V
Zi(θ(i))Xa(i)

i

)
= Qa,r

(⊗

i∈Oc
Zi(φ′b(i))†

)
G (5.24)

where Qa,r = ⊗
i∈V Zr(i)i Xa(i)

i . On the other side of F′ in the expression of ŨP , we simply
have that:
(⊗

i∈Oc
Xa(i)
i Zb(i)+r(i)i

)(⊗

i∈O
ZsZ(i)+r(i)
i XsX(i)+a(i)

i

)
=
(⊗

i∈Oc
Zb(i)i

)(⊗

i∈O
ZsZ(i)
i XsX(i)

i

)
Q†a,r,

(5.25)

up to a global phase.

We note ρcor,b =
(⊗

i∈Oc Zi(φ′b(i))†
)

G(ρC⊗σ⊗|+〉〈+|⊗|V |−|I|) the correct state before
the encryption-deviation-decryption, and define Db =

(⊗
i∈Oc Zb(i)i

) (⊗
i∈O ZsZ(i)

i XsX(i)
i

)

as the measurement outcome and final plain MBQC correction operator. We then

133



CHAPTER 5. UNIFYING QUANTUM VERIFICATION AND ERROR-DETECTION

obtain:

ρout,b = 1
4|V |PbDb

∑

Qa,r∈GV
(Q†a,r ⊗ Iw)F′(Qa,r ⊗ Iw)(ρcor,b ⊗ |0〉〈0|⊗w). (5.26)

Without loss of generality we can decompose the Server’s deviation in the Pauli
operator basis over the graph’s vertices as F′ = ∑

E∈GV αEE⊗UE. Applying the notation
U(ρ) = UρU†, we get:

ρout,b = 1
4|V |PbDb

∑

Qa,r∈GV
Q†a,rF′Qa,rρcor,b ⊗ |0〉〈0|⊗w Q†a,rF′†Qa,r (5.27)

= 1
4|V |PbDb

∑

E,E′∈GV
αEα

∗
E′

∑

Qa,r∈GV
Q†a,rEQa,rρcor,bQ†a,rE′†Qa,r ⊗ UE |0〉〈0|⊗w U†E′ ,

(5.28)

where α∗E′ is the complex conjugate of αE′ . We now apply the Twirling Lemma 2.3.1,
leading to ∑Qa,r∈GV Q†a,rEQa,rρcor,bQ†a,rE′†Qa,r = 0 for E 6= E′. Therefore:

ρout,b = 1
4|V |PbDb

∑

Qa,r ,E∈GV
|αE|2Q†a,rEQa,rρcor,bQ†a,rE†Qa,r ⊗ UE |0〉〈0|⊗w U†E, (5.29)

The result is a CPTP map defined by {E⊗ UE, pE = |αE|2}E∈GV , a convex combination
of Paulis on the graph’s vertices tensored with an operation on the Server’s internal
register. Overall, this shows that the effect of the Server’s deviation is – when averaged
over the choice of secret parameters – a probabilistic mixture of Pauli operators on the
qubits of the graph.

The Pauli encryption and decryption Qa,r commutes up to a global phase with the
Pauli deviation E. We can therefore rewrite the state as:

ρout,b = PbDb

∑

E∈GV
pEE(ρcor,b)⊗ UE(|0〉〈0|⊗w) (5.30)

Since the distinguisher wishes to maximise its distinguishing probability, it is sufficient
to consider that it applies a fixed Pauli deviation E ∈ GV for which the distinguishing
probability is maximal. Furthermore, the state in the Server’s register is unentangled
from the rest and therefore does not contribute to the attack of the Server on the Client’s
state. Once this is traced out, seeing as Db and E are Paulis and therefore commute up
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to a global phase, the final state can be written as:

ρout,b = PbEDb(ρcor,b) = E ◦ (C ∪ T )(ρC ⊗ σ). (5.31)

The final equality stems from the definition of the notation E◦P for a pattern P (Section
5.2.1) and the fact that applying Db to ρcor,b performs exactly the correct unitary portion
of plain MBQC pattern C ∪ T – up to the measurements.11

Applying the Composable Security of UBQC. We next show that this deviation
depends on the same classical parameters in the ideal and real scenarii. To this end, we
apply the composition Theorem 2.1.4 of the AC framework to replace the execution of
the UBQC Protocol by the Blind Delegated Quantum Computation Resource 1 both
in the simulation and the real protocol. As per the security of the UBQC Protocol
as expressed in Theorem 2.3.2, the distinguishing advantage is not modified by this
substitution so long as the graph, order of measurements and output set of qubits are
known to the Server. The results can be seen in Figures 5.7 and 5.8. The distinguisher
has access to all outward interfaces.

C ∪ T, ρC ⊗ σ

E ◦ (C ∪ T )(ρC ⊗ σ)

Rbl

b, c

E

lρC

C, ρC

ρout

ΠC

Figure 5.7: Real world hybrid interaction between the Client’s protocol CPTP map ΠC

and Blind Delegated QC Resource Rbl.

The Simulator receives the leak lρC = (C, G,P ,�G) from the Secure Delegated
Quantum Computation Resource. In both cases, we assume that both the Client and
Simulator send (C, G,P ,�G) as a first message to the Server. All canvases in P are
blind-compatible (Definition 5.2.6) meaning that they all share the graph G and the
same output set O, and the order �G is used for all patterns generated from P and the

11This is correct up to a relabelling of GV since in the rest of the chapter we assumed that the
measurements are performed in the computational basis.
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S

C′ ∪ T ′, ρsim ⊗ σ′

E ◦ (C′ ∪ T ′)(ρsim ⊗ σ′)

RblRver

b, c

lρsim

E

b

lρC

c′

C, ρC

ρout

Figure 5.8: Simulator S interacting with the Secure and Blind DQC Resources Rver and
Rbl.

embedding algorithm. Since these parameters are the same in all executions of both
the real and ideal case, the leak lρideal obtained by the Server in the simulation does not
yield any more information. Overall, the classical information in both cases is identical
and does not help the distinguisher on its own.

Output and Abort Probability Analysis. The interactions are therefore indistin-
guishable before the output is sent back to the Client and we focus in the following on
the output state and the abort probability in both cases, which are the only remaining
elements which the distinguisher can use to decide which setup it is interacting with.
The outputs ρ out

real
, ρ out

ideal
of the Client in respectively the real and ideal settings can be

written as follows for Pauli deviation E ∈ GV introduced by the distinguisher:

ρ out
real

= pAcc
real

C̃T,E(ρC ⊗ σ)⊗ |Acc〉〈Acc|+
(

1− pAcc
real

)
|⊥〉〈⊥| ⊗ |Rej〉〈Rej| , (5.32)

ρ out
ideal

= p Acc
ideal

C(ρC)⊗ |Acc〉〈Acc|+
(

1− p Acc
ideal

)
|⊥〉〈⊥| ⊗ |Rej〉〈Rej| , (5.33)

where C̃T,E = DO,C ◦ TrOcC ◦E ◦ (C ∪ T ) and for all C ∈ C we have that:

pAcc
C

=
∑

T∈P
Pr
T∼P

[
τ
(
TrOcT (E ◦ (C ∪ T )(ρC ⊗ σ))

)
= 0, T

]
(5.34)

=
∑

T∈P
Pr
T∼P
t∼E◦T

[τ(t) = 0, T ], (5.35)

which uses Lemma 5.2.8, namely that the acceptance probability does not depend on
the input or the computation. Therefore this probability is identical in the real and
ideal setting pAcc

real
= p Acc

ideal
= pAcc, regardless of the deviation chosen by the distinguisher.
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We see that whenever the computation is rejected, the output state is identical in both
setups. On the other hand, whenever the computation is accepted, the ideal resource
will always output the correct state, while the concrete protocol outputs a potentially
erroneous state. By convexity of the trace distance, the distinguishing probability pd
can therefore be written as:

pd = max
E∈GV
C∈C
ψC

(
pAcc × ‖(C̃T,E − C⊗ IT )⊗ ID(|ψC〉〈ψC | ⊗ σ)‖Tr

)
, (5.36)

where |ψC〉 is a purification of the Client’s input ρC using the distinguisher’s register
D. We now therefore analyse the output state in the case where the computation is
accepted.

Error Influence on Distinguishing Probability. First consider the case where
E ∈ E1. Since P ε-detects such errors (Definition 5.2.9), the probability of accepting is
upper-bounded by ε, which implies:

pd,E1 ≤ ε×max
E∈E1
C∈C
ψC

(
‖(C̃T,E − C⊗ IT )⊗ ID(|ψC〉〈ψC | ⊗ σ)‖Tr

)
. (5.37)

The distinguisher can freely choose the Client’s input state ψC and the computation
C ∈ C and there is no constraint on the effect of this deviation on the computation part
of the trappified pattern. In the worst case the incorrect real output state is orthogonal
to the ideal output state, meaning that the distinguisher can tell apart both settings with
certainty and the trace distance is upper-bounded by 1. The distinguishing probability
in this scenario therefore follows pd,E1 ≤ ε.

Second, we consider the alternate case, where E /∈ E1. Here, we assumed that the
trappified scheme P is ν-correct on the set GV \ E1 (Definition 5.2.11), therefore the
trace distance between the correct result of the computation and the real output of the
protocol is upper-bounded by ν:

‖(C̃T,E − C)⊗ ID(|ψC〉〈ψC | ⊗ σ)‖Tr ≤ ν. (5.38)

137



CHAPTER 5. UNIFYING QUANTUM VERIFICATION AND ERROR-DETECTION

Therefore:

pd,GV \E1 ≤ ν × max
E∈GV \E1

(pAcc), (5.39)

where the maximisation is done only over the error since the acceptance probability is
independent of the input and computation. In this case, the accepting probability pAcc

is not constrained and hence only upper bounded by 1, yielding pd,GV \E1 ≤ ν.
Since the deviation chosen by the distinguisher falls in either of these two cases, we

have pd = max(pd,E1 , pd,GV \E1) and the maximum distinguishing probability between the
Resource together with the Simulator and the concrete Protocol is thus upper-bounded
by max(ε, ν).

Remark 5.3.2 (Using Other Blind Protocols.). In this work we use the UBQC protocol
to provide blindness. This protocol is based on the prepare-and-send principle. The direct
mirror situation, where the Server prepares states and sends them to the Client, is called
the receive-and-measure paradigm. These are also based on MBQC and were shown to
be equivalent to prepare-and-send protocol by [WEP22] using the Abstract Cryptography
framework. Our techniques are therefore directly applicable to this setting as well with
the same security guarantees. These two setups together cover most protocols that have
been designed and which may be implemented in the near future.

The work of [Mah18b] introduced an explicit protocol for verifying BQP computations
by relying only on classical interactions and a computational hardness assumption.
Our techniques are fully applicable as well using a protocol which εbl-computationally-
constructs the Blind Delegated Quantum Computation Resource 1 in the AC framework
and is capable of implementing MBQC computations natively. The resulting protocol is
of course computationally-secure only. A simple hybrid argument can be used first to
replace any such computationally-secure protocol with Resource 1 first – at a cost of εbl –
and then the UBQC protocol at no cost. The other steps of the proof remain unchanged.

5.3.2 Insensitivity Implies Noise-Robustness

Then, we give conditions on protocols implementing SDQC so that they are able to run
on noisy machines with a good acceptance probability. We show formally the following
intuitive reasoning: if the errors to which the trappified scheme is insensitive do not
disturb the computation too much, then a machine which mostly suffers from such errors
will almost always lead to the client accepting the computation and the output will be
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close to perfect.

Theorem 5.3.3 (Robust Detection Implies Robust Verifiability). Let E1 and E2 be two
sets of Pauli deviations such that E1 ∩ E2 = ∅ and I ∈ E2. Let P be a trappified scheme
for computation set C, which is δ-insensitive to E2 and ν-correct on GV \ E1. Let C ∪ T
be a trappified pattern resulting from embedding computation C ∈ C in trappified canvas
T sampled from P . We assume an execution of Protocol 4 with an honest-but-noisy
Server whose noise is modelled by sampling an error E ∈ E2 with probability (1− p2) and
E ∈ GV \E2 with probability p2. Then, the Client in Protocol 4 accepts with probability at
least (1−p2)(1− δ), and if accepted the distance between the implemented transformation
and the client’s computation is bounded as follows:

∀C ∈ C, max
ψ
‖(C̃T,E − C)⊗ IR(|ψC〉〈ψC | ⊗ σ)‖Tr ≤ ν + p2 + δ, (5.40)

where |ψC〉 is a purification of the Client’s input ρC using auxiliary quantum register R,
and C̃T,E = DO,C ◦ TrOcC ◦E ◦ (C ∪ T ).

Proof. By construction, P is δ-insensitive to E2. Hence, it will accept deviations in E2

with probability at least 1− δ which yields the overall lower bound on the acceptance
probability of (1− p2)(1− δ).

There are then two cases when the computation is accepted. If the deviation E is in
E2 ⊆ GV \ E1, we have by definition:

∀C ∈ C, max
ψ
‖(C̃T,E − C)⊗ IR(|ψ〉〈ψ| ⊗ σ)‖Tr ≤ ν. (5.41)

Otherwise, if the deviation is not in E2 but is accepted, the distance can always be
bounded by 1.

The first case happens with probability at least (1− p2)(1− δ), since according to
Bayes’ theorem:

Pr [E ∈ E2 |Acc] = Pr [Acc |E ∈ E2] · Pr [E ∈ E2]
Pr [Acc] ≥ (1− p2)(1− δ). (5.42)

Consequently, for the second case it holds then that:

Pr [E 6∈ E2 |Acc] = 1− Pr [E ∈ E2 |Acc] ≤ 1− (1− p2)(1− δ) = p2 + δ − p2δ. (5.43)

Using the convexity of the trace norm, for the case of an accepting run of the protocol
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we finally arrive at

∀C ∈ C, max
ψ
‖(C̃T,E − C)⊗ IR(|ψ〉〈ψ| ⊗ σ)‖Tr (5.44)

≤ ν Pr [E ∈ E2 |Acc] + 1− Pr [E ∈ E2 |Acc] = 1− (1− ν) Pr [E ∈ E2 |Acc] (5.45)

≤ 1− (1− ν)(1− p2)(1− δ) = ν(1− p2)(1− δ) + p2 + δ − p2δ, (5.46)

which concludes the proof.

This Theorem shows that whenever (i) a noise process generates deviations that
are within E2 with overwhelming probability, (ii) the embedding of the computation C
within P adds redundancy in such a way that ν is negligible, and (iii) P is δ-insensitive
to E2 for a negligible δ, then the protocol will accept the computation almost all the time,
and the computation will be very close to C. We will see in the next section how these
parameters can be amplified. The theorem above shows the importance not only of the
parameters of the scheme, but also the size of the sets E1 and E2. By creating schemes
which have more errors fall in set E2, it is possible to have a direct impact both in terms
of acceptance probability and fidelity in the context of honest-but-noisy executions. We
now show that this error-correction is not only necessary for the noise-robustness of the
protocol but also its efficiency.

5.3.3 Efficient Verifiability Requires Error-Correction.

We now present an important consequence of Theorem 5.3.1 in the case where the
correctness error (δ + ν) and the security error max(ε, ν) are negligible with respect to
a security parameter λ. We show that this correctness and security regime can only be
achieved with a polynomial qubit overhead if the computation is error-protected.

More precisely, we denote P (λ) a sequence of trappified schemes indexed by a
security parameter λ, such that it ε(λ)-detects a set E1(λ) ⊆ GV (λ) of Pauli deviations,
is ν(λ)-correct outside E1, and is δ(λ)-insensitive to E2(λ) ⊆ GV (λ)\E1(λ), for ε(λ), ν(λ)
and δ(λ) negligible in λ. Additionally, let C be a computation pattern which implements
the client’s desired computation CPTP map C ∈ C on some input state |ψ〉.

We are now interested in the server’s memory overhead introduced by implementing
C using P (λ) for computation class C instead of the unprotected pattern C. This is
expressed by the ratio |GP (λ)|/|GC | between the number of vertices in the graph GP (λ)

common to all canvases in P (λ) and the graph GC used by the pattern C.
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For a trappified pattern C ∪ T obtained by using the embedding algorithm on a
trappified canvas from P (λ) we denote by |OC∪T | the number of computation output
qubits in C ∪ T . Similarly, |OC | is the number of output qubits in C. Without loss of
generality, we impose that |OC | is minimal, in the sense that given the set of possible
inputs and C, the space spanned by all possible outputs is the whole Hilbert space of
dimension 2|OC |. This is always possible as one can add a compression phase at the end
of any non-minimal pattern.

Theorem 5.3.4 (Error-Correction Prevents Resource Blow-up). Let C be a minimal
MBQC pattern implementing a CPTP map C. Let C ∪ T denote a trappified pattern
implementing C obtained from P (λ). Further assume that Protocol 4 using P (λ) has
negligible security error max(ε, ν) with respect to λ.

If |OC∪T |/|OC | = 1 for a non-negligible fraction of trappified canvases T ∈ P (λ),
then the overhead |GP (λ)|/|GC | is super-polynomial in λ.

The usefulness of this theorem comes from the contra-positive statement. Achieving
exponential verifiability with a polynomial overhead imposes that |OC∪T |/|OC | > 1 for
an overwhelming fraction of the trappified patterns. This means that the computation
is at least partially encoded into a larger physical Hilbert space, which then serves to
actively perform some form of error-correction.

Proof. Consider a trappified pattern C ∪ T for computing C obtained from P (λ) such
that |OC∪T | = |OC |. Given �GP (λ) , let oC∪T ∈ OC∪T be the first output position of
the computation. By definition, a bit-flip operation applied on position oC∪T cannot
be detected by the trap in C ∪ T since the outcome of the trap is independent of the
computation. Yet, because C is minimal and |OC∪T | = |OC |, we get that for some input
states, the bit-flip deviation on oC∪T si harmful. As a consequence, there exists a λ0

such that, for all λ ≥ λ0, the diamond distance between C and the bit-flipped version is
greater than ν(λ). To obtain exponential verification it is therefore necessary for this
bit flip to be in the set of ε-detected deviations. This means that deviating on this
position without being detected can happen for at most a negligible fraction η(λ) of
the trappified canvases in P (λ). In other words, the position oC∪T can only be the first
output computation qubit for a negligible fraction η(λ) of trappified patterns in P (λ)
that satisfy |OC∪T | = |OC |.

Then define P̃ (λ) = {P = EC(C,P (λ)), |OC∪T | = |OC |} as the set of trappified
patterns for C that have no overhead, and O = {oC∪T , T ∈ P̃ (λ)} the set of vertices
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corresponding to their first output location. By construction, we have ∑o∈O |{T ∈
P̃ , oC∪T = o}| = |P̃ |. But, we just showed that |{T ∈ P̃ , oC∪T = o}|/|P (λ)| is
upper-bounded by η, negligible in λ. Thus, |O| is lower-bounded by |P̃ (λ)|/(|P (λ)|η)
which is super-polynomial in λ so long as |P̃ (λ)|/|P (λ)|) is not negligible in λ.

Note that the situation where |OC∪T | > |OC | is interesting only if the bit-flip deviation
on qubit oC∪T does not alter the computation. Otherwise, the same reasoning as above
is still applicable. This shows that enlarging the physical Hilbert space storing the
output of the computation is useful only if it allows for some error-correction which
transforms low-weight harmful errors into harmless ones.

5.4 Correctness and Security Amplification for Clas-
sical Input-Output Computations

We now construct a generic compiler to boost the properties of trappified schemes
in the case of classical inputs. This compiler is a direct application of the results
from the previous section regarding the requirement of error-correction since it uses a
classical repetition code to protect the computation from low-weight bit-flips. It works
by decreasing the set of errors which are detected and increasing the set of errors to
which the trappified scheme is insensitive. These errors then can be corrected via a
recombination procedure, which in the classical case can be as simple as a majority vote.

5.4.1 Classical Input-Output Trappified Scheme Compiler

Theorem 5.3.1 presents a clear objective for traps: they should (i) detect harmful
deviations while being insensitive to harmless ones. Yet, a trap in a trappified pattern
cannot detect deviations happening on the computation part of the pattern itself. To
achieve exponential verifiability, one further needs to ensure that there are sufficiently
many trappified patterns so that it is unlikely that a potentially harmful deviation hits
only the computation part of the pattern, and that it is detected with high probability
when it hits the rest. This is best stated by Theorem 5.3.4, which imposes to (ii)
error-protect the computation so that hard-to-detect deviations are harmless while
remaining harmful errors are easy to detect. Additionally, one further needs to (iii)
find a systematic way to insert traps alongside computation patterns to generate these
exponentially many trappified patterns.
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Ideally, we would like to be able to design and analyse points (i), (ii) and (iii) indepen-
dently from one another as much as possible. We show here a general way of performing
this decomposition given slight constraints on the client’s desired computation.

It is based on the realisation that if the client has d copies of its inputs – which
is always possible whenever the inputs are classical – it can run d times its desired
computation by repeating d times the desired pattern C on graph G sequentially or in
parallel. If the output is classical, it is then naturally protected by a repetition code of
length d and the result of the computation can be obtained through a majority vote.
These d executions are called computation rounds. To detect deviations, the client needs
to run s additional rounds which contain only traps. More precisely, each of these test
rounds is a pattern run on the same graph G so that it is blind-compatible with C (see
Definition 5.2.6). The collections of these s test rounds themselves constitute trappified
canvases according to Definition 5.2.2, where acceptance is conditioned to less than w
test rounds failures. Now, because computation rounds and test rounds are executed
using blind-compatible patterns on the graph G, the trap insertion (iii) can be achieved
by interleaving at random the s test rounds with the d computation rounds.

These steps, which are a generalisation of the technique from [Lei+21], are formalised
in the following definition.

Definition 5.4.1 (Amplified Trappification Compiler). Let P be trappified scheme on
a graph G = (V,E), and let d, s ∈ N, n = d + s and w ∈ [s]. Let C be the class of
computations with classical inputs that can be evaluated by an MBQC pattern on G

using an order �G which is compatible with the order �P induced by P . We define the
Amplified Trappification Compiler that turns P into a trappified scheme P ′ on Gn for
computation class C as follows:

• The trappified canvases T ′ ∈ P ′ and their distribution is given by the following
sampling procedure:

1. Randomly choose a set S ⊂ [n] of size s. These will be the test rounds;

2. For each j ∈ S, independently sample a trappified canvas Tj from the distri-
bution of P .

• For each trappified canvas T ′ defined above and an output t = (tj)j∈S, the output of
the decision function τ ′ is obtained by thresholding over the outputs of the decision
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functions τj of individual trappified canvases. More precisely:

τ ′(t) = 0 if
∑

j∈S
τj(tj) < w, and 1 otherwise (5.47)

• The partial ordering of vertices of Gn in P ′ is given by the ordering �G on each
copy of G.

• Let C ∈ C and C the pattern on G which implements the computation C. Given a
trappified canvas T ′ ∈ P ′, the embedding algorithm EC sets to C the pattern of the
d graphs that are not in S.

5.4.2 Boosting Detection and Insensitivity

The next theorem relates the parameters d, s, w with the deviation detection capability
of the test rounds, thus showing that not only (i), (ii) and (iii) can be designed separately,
but also analysed separately with regards to the security achieved by the protocol.

Theorem 5.4.2 (From Constant to Exponential Detection and Insensitivity Rates).
Let P be a trappified scheme on graph G which ε-detects the error set E1, is δ-insensitive
to E2 and perfectly insensitive to {I}. For d, s ∈ N, n = d+ s and w ∈ [s], let P ′ be the
trappified scheme resulting from the compilation defined in Definition 5.4.1.

For E ∈ GV n, let wt(E) be defined as the number of copies of G on which E does
not act as the identity. We define E≥k,F = {E ∈ (F ∪ {I})n | wt(E) ≥ k}, and E≤k,F

analogously.
Let k1 > nw/(sε) and k2 < nw/(sδ). Then, P ′ ε′-detects E≥k1,E1 and is δ′-insensitive

to E≤k2,E2 where:

ε′ = min
χ∈[0, k1

n
− w
sε ]

exp
(
−2χ2s

)
+ exp


−2

((
k1
n
− χ

)
sε− w

)2

(
k1
n
− χ

)
s


 , (5.48)

δ′ = min
χ∈[0, wsδ− k2

n ]
exp

(
−2χ2s

)
+ exp


−2

((
k2
n

+ χ
)
sδ − w

)2

(
k2
n

+ χ
)
s


 . (5.49)

Proof. For a given deviation E, let X be a random variable describing the number of
test rounds on which the deviation’s action is not identity, where the probability is taken
over the choice of the trappified canvas P ′. Let Y be a random variable counting the
number of test rounds for which the decision function rejects.
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Let x ∈ [s], we can always decompose Pr [Y < w] as:

Pr [Y < w] = Pr [Y < w | X ≤ x] Pr [X ≤ x] + Pr [Y < w | X > x] Pr [X > x]

≤ Pr [X ≤ x] + Pr [Y < w | X > x] . (5.50)

We now aim to bound both terms above.

Let E ∈ E≥k1,E1 . In this case, by definition of E and construction of P ′, X is
lower-bounded in the usual stochastic order by a variable X̃ following a hypergeometric
variable distribution of parameters (n, k1, s). We fix x =

(
k1
n
− χ

)
s for χ ≥ 0 and use

tail bounds for the hypergeometric distribution to get:

Pr
[
X ≤

(
k1

n
− χ

)
s

]
≤ Pr

[
X̃ ≤

(
k1

n
− χ

)
s

]
≤ exp

(
−2χ2s

)
. (5.51)

For the other term, note that Y , conditioned on a lower bound x for X, is lower-
bounded in the usual stochastic order by an (x, ε)-binomially distributed random variable
Ỹ . Hoeffding’s inequality for the binomial distribution then implies that:

Pr [Y < w | X > x] ≤ Pr
[
Ỹ < w

]
≤ exp

(
−2(xε− w)2

x

)
. (5.52)

All in all, replacing the value of x above with
(
k1
n
− χ

)
s and combining it with the

first bound, we have for χ ≤ k1
n
− w

sε
that:

Pr [Y < w] ≤ exp
(
−2χ2s

)
+ exp


−2

((
k1
n
− χ

)
sε− w

)2

(
k1
n
− χ

)
s


 . (5.53)

This concludes the first statement.

For the second statement, we can similarly decompose Pr [Y ≥ w] as:

Pr [Y ≥ w] ≤ Pr [Y ≥ w | X < x] + Pr [X ≥ x] . (5.54)

Let E ∈ E≤k2,E2 . Now X is upper-bounded in the usual stochastic order by a variable
X̃ following a hypergeometric distribution of parameters (n, k2, s), by definition of E.
This holds here because the scheme is perfectly insensitive to I, and therefore the identity
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never triggers tests. It then holds for all χ ≥ 0 that

Pr
[
X ≥

(
k2

n
+ χ

)
s

]
≤ Pr

[
X̃ ≥

(
k2

n
+ χ

)
s

]
≤ exp

(
−2χ2s

)
, (5.55)

using tail bounds for the hypergeometric distribution.
Similarly, here, Y (conditioned on an upper bound x for X) is upper-bounded in the

usual stochastic order by an (x, δ)-binomially distributed random variable Ỹ . This also
holds because of the perfect insensitivity of tests to I. Hoeffding’s inequality yields

Pr [Y ≥ w | X ≤ x] ≤ Pr
[
Ỹ ≥ w

]
≤ exp

(
−2(xδ − w)2

x

)
. (5.56)

We then conclude that

Pr [Y ≥ w] ≤ exp
(
−2χ2s

)
+ exp


−2

((
k2
n

+ χ
)
sδ − w

)2

(
k2
n

+ χ
)
s


 (5.57)

for χ ≤ w
sδ
− k2

n
.

The consequence of the above theorem is that whenever the trappified schemes are
constructed by interleaving computation rounds with test rounds chosen at random from
a given set, the performance of the resulting protocol implementing SDQC crucially
depends on the ability of these test rounds to detect harmful errors. Therefore, when
using the compiler, optimisation of the performance is achieved by focussing only on
designing more efficient test rounds. This is addressed in Section 5.5.

Remark 5.4.3. Note that we do not make use in Definition 5.4.1 of the embedding
function or computation class associated with the trappified scheme P . In fact the initial
scheme can even consist of pure traps as described in Remark 5.2.14. This is the case
for the schemes described in the next sections. If each trappified scheme used for tests
can also embed the client’s computation of interest, it is possible to use the alternative
parallel repetition compiler presented in Appendix 5.8 which has no separate computation
rounds.

5.4.3 Correctness Amplification via Majority Vote

Theorem 5.4.2 has given detection and insensitivity errors that are negligible n. In
order to recover exponential verifiability, we must now also make the correctness error
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negligible in n. To this end, we recombine the multiple computation rounds into a single
final result so that error of weight lower than k2 are corrected.

Here, C is the class of BQP computations that can be implemented on G, which
implies that the failure probability for obtaining the correct result is c, below and
bounded away from 1/2. Then, we define V from the compiled P ′ by requiring that the
input subspace is symmetric with respect to exchanging computation rounds – i.e. all
computation rounds have the same inputs – and by defining the output subspace as the
bitwise majority vote of computation round outputs.

Intuitively, if it is guaranteed that the fraction of all rounds affected by a possibly
harmful deviation is less than (2c − 1)/(2c − 2) then the output of V will yield the
correct result of the computation. This is because, in the large n limit, out of the d
computation rounds a fraction c will be incorrect due to the probabilistic nature of the
computation itself. Consequently, to maintain that more than 1/2 the computation
rounds yield the correct result so that the majority vote is able to eliminate the suprious
results, the fraction f of computation rounds that the deviation can affect must satisfy
(1− c)(1− f) > c+ (1− c)f , that is f < (2c− 1)/(2c− 2). Due to the blindness of the
scheme, it is enough to impose that no more than a fraction (2c− 1)/(2c− 1) of the n
rounds is affected by the deviation to obtain the desired guarantee on the computation
rounds with high probability.

Theorem 5.4.4 (Exponential Correctness from Majority Vote). Let T be a trappified
scheme on graph G which is perfectly correct on {I}, for computations C = BQP ∩G

where G is the set of MBQC computations which can be performed on graph G. For
d, s ∈ N and n = d+ s, let V be the trappified scheme obtained through the compiler of
Definition 5.4.1 and let the input subspace ΠI,C be symmetric with respect to exchanging
computation rounds. The output subspace ΠO,C is defined as the concatenation of the
(classical) outputs of all computation rounds and the decoding algorithm DO,C is the
bitwise majority vote of computation rounds outputs from the d computations.

Let c be the bounded error of BQP computations and k < 2c−1
2c−2n. Then, V is ν-correct

on E≤k,GV for
ν ≤ exp

(
−2

(
1− 2c− 1

2c− 2 + ϕ− ε1
)
dε22

)
, (5.58)

with
1
2 −

(2c− 1
2c− 2 − ϕ+ ε1

)
= (c+ ε2)

(
1− 2c− 1

2c− 2 + ϕ− ε1
)

(5.59)

and ϕ, ε1, ε2 > 0. Thus ν is exponentially small in n if d/n is constant.
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Proof. We will compute the bound on the correctness for finite n. First, define two
random variables Z1 and Z2 that account for possible sources of erroneous results for
individual computation rounds. More precisely, Z1 is the number of computation rounds
that are affected by a deviation containing an Y or Z for one of the qubits in the round.
Z2 is the number of computation rounds which give the wrong outcome due to the
probabilistic nature of the computation itself – i.e. inherent failures for the computation
in the honest and noise free case. Given that V uses a majority vote to recombine the
results of each computation rounds, as long a Z1 + Z2 < d/2, then the output result
will be correct.

Our goal now is to show that the probability that Z1 + Z2 is greater than d/2 can
be made negligible. For any z1 one has the following:

Pr
[
Z1 + Z2 ≥

d

2

]
= Pr

[
Z1 + Z2 ≥

d

2 |Z1 ≤ z1

]
Pr[Z1 ≤ z1] (5.60)

+ Pr
[
Z1 + Z2 ≥

d

2 |Z1 > z1

]
Pr[Z1 > z1]. (5.61)

Then:

Pr
[
Z1 + Z2 ≥

d

2

]
≤ Pr

[
Z1 + Z2 ≥

d

2 |Z1 ≤ z1

]
+ Pr[Z1 > z1] (5.62)

≤ Pr
[
Z2 ≥

d

2 − z1|Z1 ≤ z1

]
+ Pr[Z1 > z1] (5.63)

≤ Pr
[
Z2 ≥

d

2 − z1|Z1 = z1

]
+ Pr[Z1 > z1]. (5.64)

Now, consider a deviation in E≤k,GV . Using the tail bound for the hypergeometric
distribution defined by choosing independently at random and without replacement d
computation rounds out of a total of n rounds, k of which at most are affected by the
deviation, one finds that for z1 = (k/n+ ε1)d with 0 < ε1,

Pr
[
Z1 >

(
k

n
+ ε1

)
d

]
≤ exp

(
−2ε21d

)
. (5.65)

Additionally, once Z1 is fixed, Z2 is biniomally distributed with probability c. Therefore,
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using tail bound for this distribution, one has for ε2 > 0:

Pr
[
Z2 ≥ (c+ ε2)

(
1− k

n
− ε1

)
d|Z1 = (k

n
+ ε1)d

]
≤ exp

(
−2

(
1− k

n
− ε1

)
dε22

)
.

(5.66)

Using these inequalities, we obtain that:

Pr
[
Z1 + Z2 ≥

d

2

]
≤ exp

(
−2ε21d

)
+ exp

(
−2

(
1− k

n
− ε1

)
dε22

)
, (5.67)

where we set
d

2 −
(
k

n
+ ε1

)
d = (c+ ε2)

(
1− k

n
− ε1

)
d, (5.68)

which has solutions for ε1, ε2 > 0 when k/n = (2c− 1)/(2c− 2)− ϕ with ϕ > 0. This
shows that the correctness error ν = Pr[Z1 + Z2 ≥ d/2] can therefore be made negligible
in n for fixed d/n.

To conclude this section, we obtain simultaneous negligibility for detection, insen-
sitivity and correctness errors by combining the conditions from Theorems 5.4.2 and
5.4.4:

w =
(2c− 1

2c− 2 − ϕ− χ
)
s(1− p),

0 < ϕ <
2c− 1
2c− 2 , 0 < χ <

2c− 1
2c− 2 − ϕ, 0 < ε1 < ϕ,

1
2 −

2c− 1
2c− 2 − ε1 = (c+ ε2)

(
1− 2c− 1

2c− 2 − ε1
)
.

(5.69)

Under these conditions, Theorem 5.3.1 yields an exponentially secure verification protocol
using the trappified scheme V .

Finally, while a simple majority vote is sufficient to recombine the computations in
the classical case, finding such a distillation procedure in the quantum case is left as an
open question.
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5.5 New Optimised Trappified Schemes from Sta-
biliser Testing

In this section we demonstrate how the various tools and techniques introduced earlier can
be combined to design trappified schemes that provide efficient and robust verifiability.
To achieve this, we use Remark 5.2.13 and Lemma 5.2.15 to construct a trappified
scheme T based on stabiliser testing with a constant detection error. Here we again
focus on classical-input classical-output computations. Theorems 5.4.2 and 5.4.4 show
that it is sufficient in this case to focus on designing test rounds, with the compiler
from Definition 5.4.1 and majority vote then boosting the detection, insensitivity and
correctness.

In the process, we show a close correspondence between prepare-and-send protocols
derived from [FK17], and protocols based on stabiliser tests following [McK16]. This
broadens noticeably the possibilities for designing new types of trappified patterns
beyond those which are used by existing prepare-and-send protocols. It also allows
to transfer existing protocols based on stabiliser testing from the non-communicating
multi-server setting to the prepare-and-send model, thus lowering the assumptions of
these protocols and making them more readily implementable and practical. We show
in later subsections how to use the compiler results together with these new possibilities
to optimise the current state-of-the-art protocol of [Lei+21].

5.5.1 Trappified Schemes from Subset Stabiliser Testing

Given G = (V,E) and a partial order �G on V , the first step for constructing a
verification protocol for computations on G is to detect deviations from the server.
To this end, we recall that any action from the server can be always be viewed as
first performing the unitary part of Protocol 2 followed by a pure deviation that is
independent from the computation delegated to the server (see Section 5.3). To be
constructive and build traps that can be easily computed and checked by the client, we
impose in this section that the outcomes of trappified canvases are deterministic and
that they accept with probability 1 for honest executions of the protocol.

We first focus on the simplest case of deterministic functions, where the decision
algorithm τ for the trappified canvas is such that τ(t) = ti where ti is measurement
outcome of qubit i. In other words the test round accepts if the outcome ti = 0, which
corresponds to obtaining outcome |0〉 for qubit i, while all other measurements outcomes
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tj for j 6= i are ignored.12

For the outcome of the trappified canvas to be deterministic, qubit i must be equal
to |0〉 in absence of deviations before the computational basis measurement. In other
words, the state of i is an eigenstate of Zi. By commuting Zi towards the initialisation
of the qubits – through the Hadamard gate and the entangling operations defined by
the graph G, we conclude that determinism and acceptance of deviation-less test rounds
implies that the initial state of the qubits before running the protocol is an eigenstate
of Xi

⊗
j∈NG(i) Zj = Si.

The following lemma explains how to prepare a single-qubit tensor product state
stabilised by such given Pauli operator.

Lemma 5.5.1 (Tensor Product Preparation of a State in a Stabiliser Subspace). Let P
be an element of the Pauli group over N qubits, such that P2 6= −I. Then, there exists
|ψ〉 = ⊗N

i=1 |ψi〉 such that |ψ〉 = P |ψ〉, and ∀i, |ψi〉 ∈ {|0〉 , |+〉 ,
∣∣∣+π/2

〉
}.

Proof. Without loss of generality, one can write P = s
⊗

i P(i) with s = ±1 and where
P(i) ∈ {I,X,Y,Z} is the restriction of P to qubit i. Then by construction, P ∈ 〈S〉,
where 〈S〉 denotes the multiplicative group generated by the set S = {sP(i0)⊗j 6=i0 I} ∪
{P(i)⊗j 6=i I}i 6=i0 , where i0 is the smallest index i for which P(i) 6= I. Now, consider
the state that is obtained by taking the tensor product of single qubit states that are
the common +1 eigenstates of the operators in set S. The above shows that it is a +1
eigenstate of all operators in 〈S〉, and in particular of P, which concludes the proof as
eigenstates of single-qubit Pauli operators are precisely the desired set.

One can further note that the above lemma also holds for a set R of Pauli operators
if,

∀P,Q ∈ R, ∀i ∈ V, P(i) = Q(i) or P(i) = I or Q(i) = I. (5.70)

Now take R a set of Pauli operators generating the stabiliser group of |G〉, and
{R(k)}j a collection of subsets of R that such that each R(k) satisfies the condition of
Equation 5.70 and ∪kR(k) = R – note that R need not be a minimal set of generators.
We then construct a set of trappified canvases T (k) which have V as their input set and
for which all qubits are measured in the X basis. They only differ in the prepared input
states, each being prescribed by Lemma 5.5.1 for the stabilisers in R(k) – that is qubits
are prepared in an X, Y or Z eigenstate each time one of the Pauli operator in R(k) is

12Recall that throughout this chapter, our convention is to view rotated {|±θ〉} measurements as Z
rotations followed by a Hadamard gate and a measurement in the computational basis.
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respectively X, Y or Z for this qubit, and chosen arbitrarily to be X eigenstates elsewhere.
As above, the computation defined by the pattern where all qubits are measured in the
X basis amounts to measuring the stabiliser generators Si. The output distribution T(k)

can be computed given the prepared input state for T (k) using elementary properties of
stabiliser states. But for our purposes, it is sufficient to construct the decision function
τ (k). This can be done by noting that for all P ∈ R(k), there is a unique binary vector
{pi}i such that P = ∏

i S
pi
i . This, in turn, implies that T(k) is such that⊕i piti = 0 where

ti is the outcome of the measurement of the i-th qubit in the X basis. Therefore, we
define

τ (k)(t) =
∧

P∈R(k)

(⊕

i

piti = 0
)
, (5.71)

which reconstructs the measurement outcomes of stabilisers in R(k) from the mea-
surements outcomes of operators Si. The function τ (k)(t) will accept whenever the
measurement outcomes of all stabilisers in R(k) are zero. We denote by E

(k)
1 the set

of Pauli deviations that are perfectly detected by T (k) and E
(k)
2 = GV \ E(k)

1 the set of
deviations to which T (k) is perfectly insensitive.

Now, using Remark 5.2.13 and Lemma 5.2.15, the trappified canvases T (k) can be
composed with equal probability p to obtain a trappified scheme T . We then consider
the sets of all Pauli deviations E1 = ⋃

k E
(k)
1 and E2 = ⋃

k E
(k)
2 = GV . We conclude that

the scheme T then (1− p)-detects E1 and is (1− p)-insensitive to GV . Note that these
values are upper-bounds, with equality being achieved if there is no overlap in the set of
errors which each canvas can detect.

The scheme T therefore detects all possibly harmful deviations with finite probability,
and is partly insensitive to all deviations – i.e. both harmless and harmful – that can
affect computations in C.

5.5.1.1 A Linear Programming Problem for Trap Optimisation

At first glance, the main goal to optimise such schemes seems to be to lower as much as
possible the number of subsets of stabilisers R(k) which cannot be tested at the same
time. Each such subset of stabilisers needs a different canvas T (k) to test for it, and the
probability p increases with a lower number of canvases. An increase in p automatically
decreases the detection and insensitivity errors. These in turn appear in the exponential
bounds from Theorem 5.4.2, meaning that even a slight decrease greatly influences the
total security for a given number of repetitions, or equivalently the number of repetitions
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required to achieve a given security level.
However this is the case only if each test detects a set of errors disjoint from those

detected by the other sets. Another way to increase the probability of detection is
to increase the coverage of each canvas by increasing the number of stabiliser errors
which each can detect. In this case, the sets can be made to overlap and the detection
probability can be lowered below the upper-bound of 1− p. We explore both approaches
in the next two subsections. We now give a general process for systematising this
optimisation with different constraints.

In particular situations, it might be useful to have more granular control of the design
and error-detecting capabilities of the test rounds. For instance, because of hardware
constraints or ease of implementation, it might be favourable to restrict the set of tests
one is willing to perform to only a subset of the tests resulting from generalised traps. As
one example, one might desire to avoid the preparation of dummy states and therefore
restrict the set of feasible tests to those requiring the preparation of quantum states in
the X − Y -plane only. It might also not be necessary for the employed tests to detect
all possible Pauli errors because of inherent robustness of the target computation.

In such cases, we can expect better error-detection rates if we (i) allow for more
types of tests, or (ii) remove deviations from the set of errors that are required to be
detected. To this end, we present a linear programming formulation of the search for
more efficient tests in Problem 1.

Remark 5.5.2. While efficient algorithms exist to find solutions to such real-valued
constrained linear problems, in this case the number of constraints grows linearly with
the number of errors that need to be detected, and therefore generally exponentially in
the size of the graph.

Remark 5.5.3. Solutions to the dual problem of Problem 1 are distributions of deviations
applied to the test rounds. An optimal solution to the dual gives therefore an optimal
attack, i.e. a distribution of deviations that achieves a minimal detection rate with the
tests at hand.

5.5.2 Standard Traps

The simplest application of Lemma 5.5.1 is to prepare qubit i0 as an eigenstate of X,
while its neighbours in the graph are prepared as an eigenstate of Z. This setup can
detect all deviations which do not commute with the Zi0 measurements of i0. Here, the
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Problem 1 Optimisation of the Distribution of Tests
Given

• a set of errors E to be detected,

• a set of feasible tests H,

• a relation between tests and errors describing whether a test detects an error,
R : H × E→ {0, 1},

find an optimal distribution p : H → [0, 1] maximising the detection rate ε ∈ [0, 1]
subject to the following conditions:

• p describes a probability distribution, i.e. ∑H∈H p(H) ≤ 1,

• all concerned errors are detected at least with the target detection rate, i.e.

∀E ∈ E :
∑

H∈H
R(H,E)=1

p(H) ≥ ε. (5.72)

reader familiar with the line of work following [FK17] note that we have recovered their
single-qubit traps: single qubits prepared in the X−Y plane and surrounded by dummy
|0〉 or |1〉 qubits.

Additionally, within each test round, it is possible to include several such atomic
traps as long as their initial states can be prepared simultaneously – i.e. they can at
most overlap on qubits that need to be prepared as eigenstates of Z. More precisely, take
H to be an independent set of vertices from G (see Definition 5.7.1). We define the set
of stabilisers associated to H as RH = {Si}i∈H . Such sets naturally follow the condition
of Equation 5.70 since H is an independent set and therefore if i 6= j, Si(j) = Sj(i) = I
and both stabilisers are equal to either Z or I for all qubits different from i or j. This is
the extreme case where all stabilisers in RH have a single component when decomposed
in the generator set {Si}.

Following the same line of argument as above, in absence of deviation, the state of
qubit i must be |0〉 for all i ∈ H before the measurement, or equivalently, is an eigenstate
of Zi. Commuting these operators towards the initialisation of the qubits shows that
the qubits in H must be prepared in the state |+〉, and |0〉 for qubits in NG(H). These
qubits form the input set IT of the trappified canvas TH associated to the independent
set H. Other qubits can be prepared in any allowed state. Its output locations OT are
the independent set H.
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Using the formula from Equation 5.71 for set RH , we get τ(t) = ∧
i∈H ti for the

decision algorithm. That is, the trappified canvas accepts whenever all outcomes Z
measurements for qubits i ∈ H are 0.

A trappified canvas TH generated in this way depends only on the choice of indepen-
dent set H. Such trappified canvases will be called standard trap in the remaining of
this work.

Let {H(j)}j be a set of independent sets. Since RH(j) contains all stabilisers Si for
i ∈ H(j), the sets RH(j) cover the generating set of stabiliser {Si}i∈V entirely if and only
if each qubit i ∈ V is in at least one of the independent sets H(j). Then one can conclude
that all X and Y deviations have a non-zero probability of being detected, while I and Z
deviations are never detected, but are harmless for classical output computations.

5.5.2.1 Optimising Standard Traps.

The background in graph theory and graph colourings necessary for this section can be
found in Appendix 5.7.

The crucial parameter to optimise is the detection probability of individual test
rounds with respect to X deviations. In other words, the performance of the scheme will
vary depending on the choice of probability distribution over the independent set I(G)
and the detection capability of each individual test round.

A test round, and therefore its corresponding trappified canvas, will detect a Pauli
error if and only if at least one of the |+〉-states is hit by a local X or Y deviation.

Lemma 5.5.4 (Detection Rate). Let G = (V,E) be an undirected graph. Let D be a
probability distribution over I(G), giving rise to the trappified scheme P where every
element of I(G) describes one trappified canvas. We define the detection rate of D over
G as

pdet(D) = 1− ε(D) = min
M⊆V
M 6=∅

Pr
H∼D

[M ∩H 6= ∅] . (5.73)

Then P ε(D)-detects the error set E = {I,X,Y,Z}⊗V \ {I,Z}⊗V .

Proof. The trappified canvas induced by the independent set H ∈ I(G) detects an error
E if and only if M ∩H 6= ∅, where M is the set of all vertices on which E reduces to the
Pauli-X or Y. The claim is then implied by Lemma 5.2.15.
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In the definition above, H corresponds to a choice of test round, while M is the set
of qubits that are affected by to-be-detected X and Y deviations.

To obtain the lowest overhead, the distribution D should be chosen such that it
maximises the detection probability 1 − ε(D) for a given graph G. The following
characterisation of the detection rate is going to be useful to determine upper bounds
on pdet.

Remark 5.5.5. For any graph G and any distribution D over I(G) it holds that

pdet(D) = min
M

Pr
M∼M
H∼D

[M ∩H 6= ∅] (5.74)

where the minimum ranges over distributions M over ℘(V ) \ {∅}.

It can be shown that the best achievable detection rate by standard traps for a graph
G lie in the interval

[
1

χ(G) ,
1

ω(G)

]
, where χ(G) and ω(G) are respectively the chromatic

number and the clique number of G. The protocol of [Lei+21] in particular is designed
with security bounds depending on the chromatic number of the underlying graph. Note
that the two graph invariants χ(G) and ω(G) are dual in the sense that they are integer
solutions to dual linear programs and the gap between these two values can be large
(see Lemma 5.7.4). It turns out that both bounds can be improved to depend on the
solutions of the relaxations of the respective linear programs. This closes the integrality
gap between the chromatic number and the clique number.

Lemma 5.5.6. For every (non-null) graph G there exists a distribution D over I(G)
such that pdet(D) ≥ 1

χf (G) , where χf(G) is the fractional chromatic number of G (see
Definition 5.7.5).

Proof. LetD be a distribution over I(G) such that for all v ∈ V it holds that PrH∼D [v ∈ H] ≥
1
k
. For all M ⊆ V,M 6= ∅, then PrH∼D [M ∩H 6= ∅] ≥ 1

k
and therefore pdet(D) ≥ 1

k
. By

Lemma 5.7.6, we can find such a distribution D for any k ≥ χf (G).

We can also improve the upper bound using fractional cliques.

Lemma 5.5.7. For every (non-null) graph G and every distribution D over I(G) it
holds that pdet(D) ≤ 1

ωf (G) , where ωf(G) is the fractional clique number of G (see
Definition 5.7.7).

Proof. This statement is a direct consequence of Lemma 5.7.8.
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Figure 5.9: Traps on the cycle graph G with 5 nodes from Example 5.

As a consequence, this shows that the protocol described in [Lei+21], which is the
current state-of-the-art, can sometimes be improved by constructing additional test
rounds that would allow to have a probability of detection greater than the reported
1/χ(G). In fact, this proves that the best possible detection rate by standard traps is
equal to 1/χf(G) since χf(G) = ωf(G) by Lemma 5.7.9. This is achieved precisely by
choosing the set of possible tests to be a fractional colouring of the graph.

Example 5. Let G = (V,E) be the cycle graph on 5 nodes with V = {0, 1, 2, 3, 4}. An
optimal proper 3-colouring of G is given by ({0, 2}, {1, 3}, {4}), which gives rise to a
standard trap with detection rate 1/3. However, this may be further improved using
Lemma 5.5.6 and the fact that χf (G) = 5/2. A standard trap with the optimal detection
rate of 2/5 is given by the uniform distribution over the set {{0, 2}, {1, 3}, {2, 4}, {0, 3},
{1, 4}}.

Yet, this leaves a dependency of the protocol’s efficiency on graph invariants, meaning
that depending on the chosen computation, the protocol could perform poorly. The
next section shows how to overcome this obstacle, as long as the client is willing to use
more generalised traps.

5.5.3 General Traps

Above, the trappified canvases we obtained are a consequence of determinism, insensitivity
to harmless deviations and a restriction on the subsets H, constrained to be independent.
To construct general traps, we simply remove this last requirement and define instead
RH = {∏i∈H Si}. Using Equation (5.71), τ is then the parity of measurement outcomes
for qubits from H, i.e. τ(t) = ⊕

i∈H ti. This means that to accept the execution of such
trappified canvas, the state of the qubits i ∈ H needs to be in the +1 eigenspace of the
operator ⊗i∈H Zi. This is the other extreme case since there is only a single stabiliser in
the set RH .
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Commuting this operator towards the initialisation imposes to prepare a +1 eigenstate
of ⊗i∈Heven Xi

⊗
j∈Hodd Yj

⊗
k∈Nodd

G (H) Zk, where Heven (resp. Hodd) are the qubits of even
(resp. odd) degree within H, and k ∈ N odd

G (H) means k is in the odd neighbourhood of
H. Again, applying Lemma 5.5.1 allows us to find in the eigenspace of this operator a
state that can be obtained as a tensor product of single-qubit states, simply by looking
at the individual Paulis from the operator ∏i∈H Si.

It is easy to see that this trappified canvas detects all deviations that anti-commute
with ⊗i∈H Zi, that is deviations that have an odd number of X or Y for qubits in H.
Varying the sets H allows to construct a trappified scheme which detects all possible
deviations containing any number of X or Y with a constant probability.

5.5.3.1 Optimising General Traps.

General traps are based on test rounds defined by a set H ⊆ V of qubit locations. It
accepts whenever the parity of outcomes of Z-measurements on the qubits of H is even.
Here the testing set H can be chosen freely and does not need to be independent as in
the construction of standard traps.

Lemma 5.5.8 (General Stabiliser-Based Trappified Scheme). Let P be the trappified
scheme defined by sampling uniformly at random a non-empty set H ⊆ V and preparing
the trappified canvas associated to RH = {∏i∈H Si}. Then P 1/2-detects the error set
E = {I,X,Y}⊗V \ {I⊗V }.

Proof. Looking at a given deviation E, we conclude that a test-round defined byH detects
E if and only if |E∩H| is odd – here E denotes the set of qubits where E is equal to X or Y.
IfH is sampled uniformly at random from ℘(G), then PrH∼U(℘(G)) [|E ∩H| ≡ 1 mod 2] =
1/2, and this is valid for any E 6= I.

As a conclusion, we obtain that the probability of detection for this scheme is equal
to 1/2, which is independent of the graph G, and generally will beat the upper bound
obtained in the previous section through standard traps.

5.6 Discussion and Future Work

We uncovered a profound correspondence between error-detection and verification that
applies and unifies all previous trap-based blind verification schemes in the prepare-
and-send MBQC model, which covers the majority of proposed protocols from the
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literature. In addition, all results mentioned here also apply to receive-and-measure
MBQC protocols via the recent equivalence result from [WEP22]. On the theoretical
side, it provides a direct and generic composable security proof of these protocols in the
AC framework, which also gives the first direct and explicit proof of composability if
the original VBQC protocol [FK17]. We also formally showed that error-correction is
required if one hopes to have negligible correctness and security errors with polynomial
overhead when comparing unprotected and unverified computations to their secure
counterparts. On a practical side, this correspondence can be used to increases the tools
available to design, prove the composable security, and optimise the performance of
new protocols. To exemplify these new possibilities, we described new protocols that
improve the overhead of state-of-the-art verification protocols, thus making them more
appealing for experimental realisation and possibly for integration into future quantum
computing platforms.

The uncovered connection between error-detection and verification raises new ques-
tions such as the extent to which it is possible to infer from the failed traps what the
server has been performing. Additionally, Theorem 5.3.4 implies that some form of
error-correction is necessary to obtain exponential correctness. Yet, our protocol [Lei+21]
shows that sometimes classical error-correction is enough, thereby raising the question
of understanding what are the optimal error-correction schemes for given classes of
computations that are to be verified. Finally, we strongly suspect the link between error
detection and verification can be further developed and yield new trappified schemes
with not only more efficient implementations but also additional capabilities.

5.7 Appendix: Graph Colourings

In this section, we introduce graph colourings and recall some known related results
that are useful to our theory.

Definition 5.7.1 (Independent Set). Let G = (V,E) be a graph. Then a set of vertices
t ⊆ V is called an independent set of G if

∀v1, v2 ∈ t : {v1, v2} 6∈ E. (5.75)

The size of the largest independent set of G is called the independence number of G and
denoted by α(G). The set of all independent sets of G is denoted I(G).
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Definition 5.7.2 (Graph Colouring). Let G = (V,E) be a graph. Then a collection of
k pairwise disjoint independent sets H1, . . . , Hk ⊆ V such that ⋃kj=1Hj = V is called a
(proper) k-colouring of G. The smallest number k ∈ N0 such that G admits a k-colouring
is called the chromatic number of G and denoted by χ(G).

Definition 5.7.3 (Clique). Let G = (V,E) be a graph. Then a complete subgraph
C ⊆ V of size k is called a k-clique of G. The largest number k ∈ N0 such that G admits
a k-clique is called the clique number of G and denoted by ω(G).

Lemma 5.7.4. For any graph G it holds that ω(G) ≤ χ(G). For any n ∈ N, there
exists a graph Gn such that χ(Gn)− ω(Gn) ≥ n.

Definition 5.7.5 (Fractional Graph Colouring). Let G = (V,E) be a graph. For b ∈ N,
a collection of independent sets H1, . . . , Hk ⊆ V , such that for all v ∈ V : |{1 ≤ j ≤
k | v ∈ Hj}| = b, is called a k:b-colouring of G. The smallest number k ∈ N0 such that
G admits a k:b-colouring is called the b-fold chromatic number of G and denoted by
χb(G). Since χb(G) is subadditive we can define the fractional chromatic number of G
as

χf (G) = lim
b→∞

χb(G)
b

= inf
b∈N

χb(G)
b

. (5.76)

Note that k:1-colourings are k-colourings and therefore χ1(G) = χ(G) which in turn
implies that for all b ∈ N it holds that

χf (G) ≤ χb(G) ≤ χ(G). (5.77)

Lemma 5.7.6. Let G = (V,E) be a graph. Then χf(G) equals the smallest number
k ∈ R+

0 such that there exists a probability distribution D over the independent sets I(G)
such that for all v ∈ V it holds that

Pr
H←D

[v ∈ t] ≥ 1
k
. (5.78)

Definition 5.7.7 (Fractional Clique). Let G = (V,E) be a graph. For b ∈ N, a function
f : V → N0, such that for all H ∈ I(G) : ∑v∈H f(v) ≤ b and ∑v∈V = k, is called a
k:b-clique of G. The biggest number k ∈ N0 such that G admits a k:b-clique is called
the b-fold clique number of G and denoted by ωb(G). Since χb(G) is superadditive we
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can define the fractional clique number of G as

ωf (G) = lim
b→∞

ωb(G)
b

= sup
b∈N

ωb(G)
b

. (5.79)

Note that k:1-cliques are k-cliques and therefore ω1(G) = ω(G) which in turn implies
that for all b ∈ N it holds that

ω(G) ≤ ωb(G) ≤ ωf (G). (5.80)

Lemma 5.7.8. Let G = (V,E) be a graph. Then ωf(G) equals the biggest number
k ∈ R+

0 such that there exists a probability distribution D over the vertices V such that
for all H ∈ I(G) it holds that

Pr
v←D

[v ∈ H] ≤ 1
k
. (5.81)

Both the fractional clique number ωf (G) and the fractional chromatic number χf (G)
are rational-valued solutions to dual linear programs. By the strong duality theorem,
the two numbers must be equal.

Lemma 5.7.9. For any graph G it holds that ωf (G) = χf (G).

5.8 Appendix: General Parallel Repetition

We here show an alternative method for performing the same decomposition, by focusing
solely on the error-detection amplification of classical input computations. We then
recover the results above as a consequence of this generic amplification. We start as above
by defining a compiler taking as input a trappified scheme and running it several times
in parallel before thresholding over the outcomes of the individual decision functions.

Definition 5.8.1 (Parallel Repetition Compiler). Let (P ,�G,P, EC) be trappified
scheme over a graph G for computation class C with classical inputs, and let n ∈ N and
w ∈ [n− 1]. We define the Parallel Repetition Compiler that turns P into a trappified
scheme P‖n on Gn for computation class C as follows:

• The set of trappified canvases is defined as {T‖n} = P‖n = P n, the distribution
P‖n samples n times independently from P;
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• For each trappified canvas T ′ defined above and an output t = (tj)j∈n, we have:

τ ′(t) = 0 if
n∑

j=1
τj(tj) < w, and 1 otherwise (5.82)

• The partial ordering of vertices of Gn in P‖n is given by the ordering �G on every
copy of G.

• Let C ∈ C. Given a trappified canvas T‖n = {Tj}j∈[n], the embedding algorithm
EC,‖n applies EC to embed C in each Tj.

The next lemma relates the parameters above to the detection and insensitivity of
the compiled scheme.

Lemma 5.8.2 (Exponential Detection and Insensitivity from Parallel Repetitions). Let
P be a trappified scheme on graph G which ε-detects the error set E1, is δ-insensitive to
E2 and perfectly insensitive to {I}. For n ∈ N and w ∈ [n− 1], let P‖n be the trappified
scheme resulting from the compilation defined in Definition 5.8.1.

Let E≥k,E and E≤k,E be defined as in Theorem 5.4.2. Let k1 > w/ε and k2 < w/δ.
Then, P‖n ε‖n-detects E≥k1,E1 and is δ‖n-insensitive to E≤k2,E2 where:

ε‖n = exp
(
−2(k1ε− w)2

k1

)
, (5.83)

δ‖n = exp
(
−2(k2δ − w)2

k2

)
. (5.84)

Proof. As in the proof of the previous lemma, we denote Y a random variable counting
the number of trappified canvases whose decision function rejects.

Let E ∈ E≥k1,E1 . We can lower-bound Y in the usual stochastic order by a (k1, ε)-
binomially distributed random variable Ỹ . Then, Hoefffding’s inequality yields directly
that:

Pr[Y < w] ≤ Pr
[
Ỹ < w

]
≤ exp

(
−2(k1ε− w)2

k1

)
. (5.85)

Similarly, let E ∈ E≤k2,E2 . Due to the perfect insensitivity of P to I, we can now
upper-bound Y in the usual stochastic order by a (k2, δ)-binomially distributed random
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variable Ỹ . Then,

Pr[Y ≥ w] ≤ Pr
[
Ỹ ≥ w

]
≤ exp

(
−2(k1ε− w)2

k1

)
(5.86)

follows from a direct application of Hoefffding’s inequality.

Test and Computation Separation from Parallel Repetitions. We can now
recover the case where some runs contain tests only while others consist only of the
client’s computation. This will be based on the following remark

Remark 5.8.3 (Pure Computation). A trappified scheme P may also only contain a
single trappified canvas on graph G = (V,E) such that VT = ∅. This is the opposite case
from Remark 5.2.14 above in the sense that all vertices serve to embed a computation
of interest and none are devoted to detecting deviations. The decision function always
accepts. Correctness is trivially (perfectly) satisfied for set {I}, the detection and
insensitivity are ε = 1 and δ = 0 respectively for any set.

We then use Remarks 5.2.14 and 5.8.3, which allow us to define trappified schemes
PC and PT on a graph G. PC contains a single empty trappified canvas (with no trap)
which can then be used to embed any computation on graph G, with 1-detection and
0-insensitivity to all Paulis. On the other hand, PC may only contain pure traps with
no space for embedding any computation, which ε-detects a set of errors E1 and is
δ-insensitive to E2 (and perfectly insensitive to {I}).

Then, Lemma 5.2.15 allows us to compose these two schemes via a probabilistic
mixture noted PM . For parameters d, s ∈ N and n = d + s, PM chooses schemes
PC and PT with probabilities d/n and s/n respectively. The parameters for PM are
εM = (d+ sε)/n = 1− (1− ε)s/n and δM = sδ/n. It is also perfectly insensitive to {I}.

Now the parallel repetition of Lemma 5.8.2 can be applied to PM with parameters
n,w to yield P‖n with the following parameters:

ε‖n = exp
(
−2(k1(1− (1− ε)s/n)− w)2

k1

)
, (5.87)

δ‖n = exp
(
−2(k2sδ/n− w)2

k2

)
, (5.88)

for values k1 > wn/(n− s+ sε) and k2 < wn/sδ.
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Notice that the bound on k2 is identical to the one from Theorem 5.4.2, while the value
for k1 is smaller. The bounds obtained here are also simpler since they do not require
an optimisation over the parameter χ, while still being exponential. However, they may
be less sharp due to the degradation of εM (since we consider here the computation as
trappified canvases which always accept). Finally, note that PM is not strictly speaking
a trappified scheme since it cannot embed computations with probability 1 as is required
from Definition 5.2.7. However, all claims here are valid as they only consider the
detection and insensitivity parameters, showing again the importance of separating these
three properties. Consequently, the analysis in terms of correctness may slightly more
complex since the number of computation runs is probabilistic, but can be bounded
using tail bounds.
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Chapter 6

Quantum Secure Multi-Party
Computation

Secure multi-party computation (SMPC) protocols allow several parties that distrust each
other to collectively compute a function on their inputs. In this chapter, we introduce a
protocol that lifts classical SMPC to quantum SMPC in a composably and statistically
secure way, even for a single honest party. Unlike previous quantum SMPC protocols,
our proposal only requires very limited quantum resources from all but one party; it
suffices that the weak parties, i.e. the clients, are able to prepare single-qubit states in
the X − Y plane.

The novel quantum SMPC protocol is constructed in a naturally modular way, and
relies on a new technique for quantum verification that is of independent interest. This
verification technique requires the remote preparation of states only in a single plane of
the Bloch sphere. In the course of proving the security of the new verification protocol, we
also uncover a fundamental invariance that is inherent to measurement-based quantum
computing.

This chapter is based on the paper “Asymmetric Quantum Secure Multi-Party Computa-
tion With Weak Clients Against Dishonest Majority” [Kap+23] which is joint work with
Theodoros Kapourniotis, Elham Kashefi, Luka Music, and Harold Ollivier.
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6.1 Introduction

6.1.1 Motivation

Secure Multi-Party Computation (SMPC) protocols allow several parties who do not
trust one another to collectively compute a function on their inputs. This question was
first considered by Yao [Yao86] and has been developed extensively in various settings
(see [CDN15] and references therein). Several security guarantees can be provided by
such protocols depending on the setting: all parties can be on an equal footing, doing
each their share of the computation, or one can handle the brunt of the computation
while all others provide the data. In the first case, the security goal is to maximise the
privacy of the data, while in the latter it extends to the privacy of the computation
which is delegated to the server.

Practical computationally-secure protocols have been developed and implemented in
commercial solutions for protecting classical multi-party computations. In the quantum
case, several concrete protocols have been proposed (see § 6.1.2). In the circuit model,
the state-of-the-art protocol [Dul+20] provides an information theoretic upgrade of
classical SMPC that can withstand a dishonest majority. In the measurement-based
model, where weakly quantum clients delegate their computation to a powerful server,
the best protocol [KP17] does not provide verification of the computation and settles
instead for blindness (i.e. privacy) of the data when there is no client-server collusion.

In this work, we show that this difference is not due to the asymmetry of the clients-
server setting. We introduce for this specific situation a statistically secure lift of a
classical SMPC protocol to a quantum one that provides blindness and verification
for BQP computations. It remains secure so long as a single client is honest, thus
withstanding possible collusions between dishonest clients and the server. Building on the
techniques introduced in [Kap+22], its security is proved in the Abstract Cryptography
(AC) framework. The protocol is highly modular and can tolerate a fixed amount
of global noise during the quantum computation without aborting nor compromising
statistical security. Additionally, it has no space overhead compared to an unprotected
delegated computation, thereby allowing clients to use the server’s full power to perform
their desired computation, while security comes only at the price of a polynomial number
of repetitions.
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6.1.2 Related Work

Quantum SMPC is a long standing research topic in quantum cryptography, with several
directions being explored in the past two decades.

The first one started with [CGS02]. Along with the introduction of the concept itself,
it provided a concrete protocol for performing such computations in the quantum circuit
model. It guarantees the security of the computation as long as the fraction of malicious
parties does not exceed 1/6. This work has been later extended in [Ben+06], lowering
the minimum number of honest players required for security to a strict majority.

The second focuses on the interesting edge case of two-party quantum computations.
Several constructive results have been proposed in the circuit model. In [DNS10], a proto-
col was introduced and proven secure for quantum honest-but-curious adversaries. This
restriction on the adversaries was removed in [DNS12] which proved security in the fully
malicious setting and with negligible security bounds. The measurement-based model of
quantum computation has also been considered for constructing secure two-party quan-
tum computations as it provides a different set of tools than the circuit model. Verifiable
Blind Quantum Computation (VBQC) first was introduced in [FK17] in this model,
followed by optimised protocols [KW17b; KDK15]. In [KW17a] a protocol was proposed
in this setting and proven secure against honest-but-curious adversaries. In [KMW17]
this result was extended to fully malicious adversaries with inverse-polynomial security
using the Quantum Cut-and-Choose technique. More recently, a round-optimal protocol
was given in [Bar+21] based on Oblivious Transfer and LWE, showing that two-party
quantum computation tasks can be performed in as little as three rounds in the CRS
model, and two if quantum pre-processing is allowed.

A third set of results focuses on the composability of such protocols, as earlier
results didn’t satisfy this property. Bit commitment was shown to be complete in the
Quantum Universal Composability framework of [Unr10], meaning that it is sufficient
for constructing quantum or classical SMPC if parties have access to quantum channels
and operations. This result was later extended in [Feh+13; Dup+16], which gives a
full analysis of feasibility and completeness of cryptographic primitives in a composable
setting.

More recently, building on these previous works, new concrete protocols have been
proposed to decrease the restrictions on adversaries while also providing composable
security. In the circuit model, a composably-secure protocol has been introduced
in [Dul+20]. It is an extension of [DNS12] that is able to cope with a dishonest majority,
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but which relies on a complete graph for quantum communication and on a large number
of quantum communication rounds together with powerful quantum participants. In
the MBQC model, [KP17] describes a protocol that is composable, can tolerate a
dishonest majority and allows the clients to delegate the quantum computation to a
powerful server. Its security is an information-theoretic upgrade of the classical SMPC
primitive used for constructing the protocol. It is however limited by the absence of
verifiability of outputs and the impossibility to tolerate client-server collusions. Other
protocols have been proposed in alternative models or with different trust assumptions
such as [Hou+18; LRW20]. Finally, recent protocols for secure delegated quantum
computations can be run even by purely classical clients. These have been lifted to a
multi-client setting in [Bar21] while at the same time optimising the number of classical
rounds of communication. This is however at the cost of a larger computation space on
the server’s device, which needs to be able to perform QFHE computations of functions
large enough to be computationally-secure.

A subset of the authors proposed an earlier protocol for QSMPC [Kap+21] which
comprised a blind pre-computation step meant to produce a resource state that could
then be used to perform VBQC. This pre-computation turned out to be vulnerable to
an attack that can be applied blindly by the server while having an effect only on some
specific types of qubits thereby compromising security of the whole protocol. While the
present work is a complete redesign of the protocol that shows improved performance, we
include in § 6.6 an in-depth analysis of the shortcommings of the previous construction.
This might be a useful tool to revisit earlier work where a similar blind pre-computation
step is used.

6.1.3 Overview of the Protocol and Results

In this chapter, we consider the setting where several weakly quantum clients want
to securely delegate their quantum computation to a powerful server. The proposed
construction turns a single-client MBQC-based protocol into a multi-party one. More
precisely, we use single-client Secure Delegated Quantum Computing (SDQC) protocols
obtained through the techniques presented in [Kap+22]. Such protocols interleave
several computation rounds and test rounds, the latter of which correspond to stabiliser
measurements of the MBQC resource graph-state used to perform the computations. In
such a protocol, the client must perform two different tasks. First, it has to prepare
encrypted single-qubit states and send them to the server. This prevents the server from
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distinguishing computation and test rounds and also hides the client’s data. Then, the
client uses the classical encryption key as well as the measurement outcomes reported
by the server to classically drive the computations and tests performed by the server on
these encrypted qubits. Hence, turning this protocol into a multi-party one amounts to
finding (i) an appropriate single-client SDQC protocol that will (ii) be composed with a
secure collaborative remote state preparation for the single qubit encrypted states and
that will (iii) be driven collaboratively to perform and verify the desired computation.

In § 6.2, we describe a single-client SDQC Protocol using only |+θ〉 = (|0〉+eiθ |1〉)/
√

2
states, based on the generic single-client SDQC Protocol of [Kap+22]. This was an
open question in the field as all previous SDQC protocols in the MBQC framework with
a formal security analysis use computational basis states (called dummies) to isolate
single qubits in the computation graph. These remain unchanged if the server is honest
and can be used as traps to detect deviations. To overcome this restriction, we must
ideally find a generating set of stabilisers of the graph state for the client’s computation
that can be written with I, X and Y Paulis only.

However, while it is possible to construct N − 1 independent stabilisers of this form –
where N denotes the number of vertices of the graph – it seems that the stabiliser which
consists of Z operators on odd-degree vertices of the graph cannot be generated. This
therefore corresponds to a server’s deviation which cannot be caught by our tests on
graphs containing odd degree nodes. If this attack would corrupt the client’s computation,
the whole protocol would be insecure. Fortunately, this is not the case for classical
input/output computations. Indeed, we prove that this deviation corresponds to a server
which has chosen a different orientation of the Z axis compared to the client. Because
inputs are prepared in the X − Y plane and outputs are projected onto it, we show
that this has no effect on the outcome of the computation. As a consequence, it is not
necessary to detect this specific deviation by the server to verify the computation. This
proves that the generic single-client SDQC Protocol of [Kap+22] can be used to produce
secure dummyless protocols.1

Theorem (Informal). For any graph G, there exists a single-client statistically secure
SDQC protocol in the Abstract Cryptography framework that requires the client to only
prepare states in the X − Y plane.

We then focus on turning this new single-client protocol into a multi-party one.
1Note that here has been a previous protocol for dummyless verification [FKD18], whose security

analysis didn’t take into account the above deviation. Our proof of invariance of MBQC to this specific
error shows that this deviation does not constitute a security threat to the protocol in [FKD18].
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In § 6.3, we introduce a Collaborative Remote State Preparation (CRSP) protocol.
We show that this gadget (Protocol 6) securely implements Remote State Preparation
(Resource 4), which allows a classical party request any |+θ〉 state to be prepared on the
server’s device with the help of clients preparing single qubit states in the X −Y plane.

Theorem (Informal). The CRSP gadget is a statistically secure implementation of the
Remote State Preparation Resource in the Abstract Cryptography framework.

The second set of tasks in the single-client protocol, i.e. choosing the measurement
angles of the various computation and test rounds according to the states prepared using
CRSP, only involve classical computations. These can be performed using a composably
secure classical SMPC.2

In § 6.4, we compose the CRSP gadget, classical SMPC, and the dummyless SDQC
protocol into a complete quantum SMPC protocol (Protocol 7). Its outline is:

1. The clients use the CRSP gadget to prepare |+θ〉 states on the server’s side.

2. They use the classical SMPC together to drive and verify the single-client SDQC
protocol.

3. Upon acceptance, the results and decryption keys are sent by the classical SMPC
to each client.

The security proof relies on the composable security of all three ingredients. Because
the CRSP gadget and the dummyless protocol are statistically secure, this is a direct
upgrade of classical to quantum SMPC.

Theorem (Informal). Composable classical SMPC can be lifted to perform robust quan-
tum SMPC for BQP computations in a statistically secure way, such that all parties but
one are restricted to singe-qubit preparations.

We note that this protocol requires no additional resources in terms of hardware or
quantum communication from the client’s side compared to the single-client protocol.
The server only needs to be able to perform the CRSP gadget in addition to the
operations required by the single-client protocol.

2The Abstract Cryptography framework used in this work is equivalent to the Quantum Universal
Composability (Q-UC) Model of [Unr10] if a single Adversary controls all corrupted parties – which is
the case here. Therefore any Classical SMPC protocol which is secure in the Q-UC model can be used
to instantiate this functionality.
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6.1.4 Discussion

In the course of constructing our protocol, we have built two new ingredients that we
believe are of independent interest.

The first one is the Collaborative Remote State Preparation gadget. Its main feature
is to provide some privacy amplification for the classical-quantum correlations that
clients share with the server. Interestingly, we give evidence that it is hard to construct
a generic gadget that would have similar features for correlations outside of a single
plane of the Bloch sphere, while retaining its usefulness for cryptographic purposes. We
leave it as an open question to prove a full no-go theorem in the Abstract Cryptography
framework to further explore what seems to be a deep difference between classical and
quantum input-output computations. Note also that this work supersedes a previous
effort to construct a quantum SMPC protocol in the clients-server setting with quantum
input and outputs. The proposed construction was similar in spirit with a collaborative
remote state preparation gadget that allowed to prepare encrypted X − Y plane states
but also dummies. However, we give an attack on multiple approaches which were
explored to perform this task, further strengthening the belief that such cryptographic
protocols are hard if not impossible to construct.

The second new ingredient of our proof is the first dummyless SDQC protocol.
Outside of the specific purpose of quantum SMPC, it exemplifies the usefulness of the
general tests that were introduced in [Kap+22]. By reducing the requirements on the
client side, it also possibly decreases a source of errors in physical implementations as it
is not uncommon that rotations around one specific axis of the Bloch sphere are notably
easier to perform than others. We also strongly believe that similar approaches, where
traps are tailored to specific settings, will find applications in the future. Additionally,
we show that while dummyless tests were not enough to detect all deviations, it is
possible to nonetheless verify computations thanks to an as of now unknown invariance
in MBQC. This raises the question of whether it is possible to do this on purpose, and
engineer an invariance in order to lighten the constraints on the error-detection scheme
that the traps implement.

Finally, note that because all SDQC protocols constructed from the generic protocol
of [Kap+22] are robust to a fixed amount of global noise, so is our new multi-party
protocol. While not being enough to scale to large quantum computations, it opens
the possibility to implement experimental proof-of-concepts without resorting to error
correction on near term devices.

171



CHAPTER 6. QUANTUM SECURE MULTI-PARTY COMPUTATION

6.1.5 Organisation of this chapter

In § 6.2 we construct a single-client SDQC Protocol using only |+θ〉 = (|0〉+ eiθ |1〉)/
√

2
states. §§ 6.2.1-6.2.3 construct a family of such schemes and prove their security, while
§ 6.2.4 provides optimised protocols for various classes of MBQC resource graph-states.
In § 6.3, we introduce a Collaborative Remote State Preparation (CRSP) protocol and
prove its security in the AC framework. In § 6.4, we compose the CRSP Protocol, the
dummyless SDQC Protocol and a classical SMPC into a complete quantum SMPC
Protocol (Protocol 7) for BQP computations. In § 6.5, we provide an in-depth comparison
with other protocols, give arguments justifying the proposed construction – especially
the need for a dummyless SDQC Protocol – and discuss some open questions.

Some preliminary notation and material relevant for this chapter can be found in
the corresponding sections of Chapter 2: Abstract Cryptography in § 2.1, MBQC
computation in § 2.2 and the Universal Blind Quantum Computation (UBQC) Protocol
in § 2.3. A detailed analysis of a previous attempt at constructing quantum SMPC for
weakly quantum clients is provided in § 6.6.

6.2 Verification with States in a Single Plane

6.2.1 A Framework for Verification

The goal of the protocol presented in this section is to construct the Secure Delegated
Quantum Computation Resource 3 (SDQC), introduced by [Dun+14]. It allows a single
Client to run a quantum computation on a Server so that the Server cannot corrupt
the computation and doesn’t learn anything besides a controlled leakage lρ about the
Client’s computation and input. The value of lρ, as a function of inputs and computation,
is specified by each protocol.

Several protocols implementing this resource have been constructed in the past [GKK19].
Yet, none has the ability to provide negligible statistical security while having a client
sending states in a single plane. To achieve this, we use the framework from [Kap+22]
which neatly separates the various ingredients required to implement SDQC. We start
by briefly summarising the ingredients which are relevant to this chapter.

Reduction to Pauli Deviations. Using the UBQC Protocol 2 to delegate compu-
tations from Client to Server hides the operations which the Client wishes to delegate.
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Resource 3 Secure Delegated Quantum Computation with Classical Inputs and Outputs
Inputs:

• The Client inputs a bit-string x and the classical description of a unitary U.
• The Server chooses whether or not to deviate. This interface is filtered by two

control bits (e, c).
Computation by the Resource:
1. If e = 1, the Resource sends the leakage lρ to the Server’s interface and awaits

further input from the Server; if it receives c = 1, the Resource outputs Abort at
the Client’s output interface.

2. If c = 0, it outputs O = MC ◦ U |x〉 at the Client’s output interface, where MC

is a computational basis measurement.

The encoding scheme of UBQC naturally imposes a Pauli twirl on any deviation and
hence any attacks by the Server can always be decomposed as a convex combination of
Pauli operators acting on the qubits of the graph just before performing the X-basis
measurement. Because X Pauli operators applied in this fashion have no effect on the
computation, as they are absorbed by the X-basis measurement, we can focus on convex
combinations of deviations of the form ⊗

v∈V Z(v)e(v) where the values of e(v) are chosen
by the Server and Z(v) applies the Pauli Z to qubit v. Such deviation are equivalent to
flipping the measurement outcome for vertices where e(v) = 1.

General Strategy for Robust Verification. Once all operations delegated to the
Server are blind a general strategy for robust and secure computation follows from the
intuition that (i) correctness is obtained by accepting with overwhelming probability in
the absence of deviation, (ii) security derives from the ability of the protocol to detect
with overwhelming probability all deviations that potentially affect the computation,
and (iii) robustness follows from accepting additional deviations which have, with
overwhelming probability, no effect on the computation.

Generic Trappified Schemes for Classical I/O. With this strategy in mind, a
whole class of protocols for verifying BQP computations can be easily described. Their
flexible design is able to accommodate objectives that go beyond security, e.g. for instance
the absence of dummy qubits. These protocols work by performing separate rounds
which are indistinguishable from the Server’s point of view, some implementing tests,
and others computing C, the Client’s target computation. More precisely, s test rounds
and d computation rounds are delegated to the Server using the UBQC Protocol 2, with
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the requirement that they share the same graph G and the same order �G for measuring
the qubits.

Each test round is sampled uniformly at random from a set P of possible traps called
a trappified scheme. They each consist of an input state σ which is a tensor product
of single-qubit states, one for each vertex in the graph G, a measurement pattern T ,
and a binary decision function τ . The test round is accepted when the decision function
outputs 0 when evaluated on the measurement results returned by the Server for this
trap. It is rejected when the output is 1. The d computation rounds correspond to
repeating d times the target computation C on the target input chosen by the Client
using the graph G. The outputs of these computations are then combined through a
majority vote. When all rounds have been executed, the Client accepts if less than a
fixed fraction of test rounds reject. In this case, the output of the protocol is the result
of the majority vote. The formal protocol is described in Protocol 5.

Security Conditions for Trappified Schemes with Classical I/O. The analysis
of the security and robustness properties in the Abstract Cryptography framework for
the resulting protocol depends on two sets of Pauli operators defined relatively to P :
the set of detectable deviations and the set of deviations to which P is insensitive.
These rely on the following definitions, where we use T to denote the probability of the
measurement outcomes for a trap T in P and E◦T to denote the probability distribution
of measurement outcomes when the deviation E is applied to T .

Definition 6.2.1 (Pauli Insensitivity). We say that the trappified scheme P is δ-
insensitive to E ⊂ GV if:

∀E ∈ E,
∑

T∈P
Pr
T∼P
t∼E◦T

[τ(t) = 0, T ] ≥ 1− δ. (6.1)

Definition 6.2.2 (Pauli Detection). We say that a trappified scheme P ε-detects E ⊂ GV

if:

∀E ∈ E,
∑

T∈P
Pr
T∼P
t∼E◦T

[τ(t) = 1, T ] ≥ 1− ε. (6.2)

Definition 6.2.3 (Pauli Correctness (Informal)). We say that a computation is correct
on deviation E if the output distribution is the same whether the deviation is applied or
not.
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Protocol 5 Trappified Delegated Blind Computation
Public Information:

• G = (V,E, I, O), a graph with input and output vertices I and O respectively;
• P , a trappified scheme on graph G;
• �G, a partial order on the set V of vertices;
• N, d, w, parameters representing the number of runs, the number of computation

runs, and the number of tolerated failed tests.
Client’s Inputs: A set of angles {φi}i∈V and a flow f which induces an ordering
compatible with �G.
Protocol:
1. The Client samples uniformly at random a subset C ⊂ [N ] of size d representing

the runs which will be its desired computation, henceforth called computation
runs.

2. For k ∈ [N ], the Client and Server perform the following:
(a) If k ∈ C, the Client sets the computation for the run to its desired compu-

tation ({φi}i∈V , f). Otherwise, the Client samples a test (T, σ, τ) from the
trappified scheme P .

(b) The Client and Server blindly execute the run using the UBQC Protocol 2.
(c) If it is a test, it uses τ on the measurement results to decide whether the

test passed or not.
3. At the end of all runs, let x be the number of failed tests. If x ≥ w, the Client

rejects and outputs (⊥,Rej).
4. Otherwise, the Client accepts the computation. It performs a majority vote on

the output results of the computation runs and sets the result as its output.

The virtue of defining these properties is that the sets of deviations above can be
characterised efficiently and yield correctness and security with negligible errors for the
overall protocol:

Theorem 6.2.4 (Security of Protocol 5, Combining Theorems 8 and 13 from [Kap+22]).
Let C be a set of classical BQP computations on graph G. Let P be a trappified scheme
on graph G that ε-detects a set of Pauli deviations E1 and is δ-insensitive to E2 and
perfectly insensitive to I. Assume that all computations in a set C are correct on GV \E1.
Let n = s+ d for d and s proportional to n, and c the bounded error of BQP. Let w be
the maximum number of test rounds allowed to fail, chosen such that w < 2c−1

2c−2s(1− ε).
Then Protocol 5 η(n)-constructs the Secure Delegated Quantum Computation Re-

source 3 for computations in set C in the Abstract Cryptography framework, where the
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leak is defined as lρ = (C, G,P ,�G), for η(n) negligible in n.

Note that the value of η(n) heavily depends on the value of δ and ε, in particular
via the coefficient in the exponential. This means that it is crucial to minimise these
detection and insensitivity errors.

Notice also thatw is also reliant on ε, and minimising this error also allows the protocol
to tolerate more honest errors before aborting. This noise-robustness of Protocol 5 can
be characterised as follows.

Theorem 6.2.5 (Noise-Robustness of Protocol 5, Combining Theorems 9 and 13 from
[Kap+22]). For the same parameter choices as in Theorem 6.2.4, assume an execution
of Protocol 5 with an honest-but-noisy Server such that p is the probability that less than
w
sδ
n rounds are affected by a Pauli error. Then the Client accepts the outcome with

probability (1− p)(1− δ′), for δ′ negligible in n.

Since the protocol is secure, we can then guarantee that, if the client accepts, the
outcome is also correct up to negligible total variational distance. This means that for
machines with a constant amount of global noise below a certain bound, our protocol
accepts and yields the correct result with overwhelming probability.

Traps from Stabiliser Tests. As a result, the performance of Protocol 5 is governed
by the choice of s, d, w defined above, together with the error detection and insensitivity
capabilities of traps in P . Ref. [Kap+22] § 6.1 shows how to construct general traps
from subset stabiliser testing. Indeed, let S be the stabiliser group for |G〉〈G| the
graph state associated to G, and consider {Sv = X(v)⊗(v,w)∈E Z(w), v ∈ V } the set of
canonical generators of S. One can then associate a trap to each R ∈ S by (i) having
the Client prepare a +1 eigenspace of R as input, and (ii) delegating to the Server the
computation consisting of measuring R using the UBQC Protocol 2. An accepted trap
then corresponds to the measurement of R returning the +1 eigenvalue.

For the preparation, the client sets each qubit v ∈ V in the +1 eigenstate of R(v)
with R(v) being uniquely defined by:

R =
⊗

v∈V
R(v), (6.3)

R(v0) ∈ {±1} × {I,X,Y,Z}, for v0 = argminv∈V R(v) 6= I, (6.4)

R(v) ∈ {I,X,Y,Z}, for v ∈ V \ v0. (6.5)
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This corresponds to preparing a +1 eigenstate of the group generated by {R(v), v ∈ V }
which contains R hence satisfying (i) above.

For the delegated computation consisting of measuring R, the Client simply instructs
the Server to measure each qubit in the X-basis, getting outcome t(v). The motivation
for these measurements is better understood by examining to which observable they
correspond on the inputs provided by the Client. To this end, one can conjugate each
X(v) by ∏(v,w)∈E CZ(v,w), the entangling operation that the Server performs prior to
the measurement. A simple stabiliser computation shows that X(v) is mapped to Sv.
That is, measuring X(v) after the entangling operation corresponds to measuring Sv on
the inputs provided by the client. As R is uniquely defined as ∏v∈1R Sv for some set
1R ⊂ V , and because S is abelian, the outcome of R on the input state provided by
the client is the binary sum of the outcomes of Sv. Using the above correspondence
for measurements of Sv on the inputs, one concludes that ⊕v∈1R t(v) determines the
outcome of the measurement of R on the inputs provided by the Client. Combining
the preparation and the measurement, the Client therefore expects that for an honest
Server, ⊕v∈1R t(v) = 1, thereby fulfilling (ii) above.

The freedom in choosing which R’s to include in the trappified scheme P will be at
the core of constructing dummyless verification protocols.

6.2.2 A Natural Invariance of MBQC with Classical Input and
Output

In MBQC, computation qubits, i.e. v ∈ Oc, are measured in the
∣∣∣±φ′(v)

〉
basis, where

φ′(v) ∈ Θ =
{
kπ
4

}
k∈{0,...,7}

is defined by the pattern used for the computation. As a
result, the computation is invariant under rotations around the φ′(v) axis in the X − Y
plane just before the measurement. The reason is that such rotations leave the projectors∣∣∣+φ′(v)

〉〈
+φ′(v)

∣∣∣ and
∣∣∣−φ′(v)

〉〈
−φ′(v)

∣∣∣ untouched so that it does not affect the probabilities
of the outcomes of a measurement in the

∣∣∣±φ′(v)
〉
basis. This property is well known

and is actively used in the proof of security of the UBQC protocol as it allows to fully
twirl the deviation of the server on computation qubits.

If one not only considers local unitary transformations but more generally local
invertible transformations, then MBQC is also invariant under reflections through
the X − Y plane for v ∈ Oc. The reason is similar to the one given above: such
transformations do not change the projectors onto the

∣∣∣±φ′(v)
〉
basis and hence do not

affect probability distributions of measurements in the
∣∣∣±φ′(v)

〉
basis.
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We will now explore the latter invariance in the special case of classical input classical
output computations where it naturally extends to the result of the computation itself,
as in such case all qubits are measured in the X − Y plane.

Lemma 6.2.6. For matrices ρ = ∑
P∈{I,X,Y,Z}⊗n αPP decomposed in the Pauli basis, let

FA be the linear map that applies the reflection through the X − Y plane for all vertices
in A ⊂ V , defined as

FA(ρ) =
∑

P∈{I,X,Y,Z}⊗n
(−1)zwtA(P)αPP, (6.6)

where zwtA(P) = |{v ∈ A|Pv = Z}| counts the number of vertices in A on which P equals
the Pauli Z. Then, MBQC is invariant under FA when applied right before the

∣∣∣±φ′(v)
〉

measurements.

Proof. The probability to obtain the all-zero outcome when measuring all qubits v ∈ Oc

of a state ρ in the
∣∣∣+φ′(v)

〉〈
+φ′(v)

∣∣∣-bases is given by

Tr
((

idO ⊗
⊗

v∈Oc

∣∣∣+φ′(v)
〉〈

+φ′(v)

∣∣∣
)
ρ

)
. (6.7)

Decomposing the above expression in the Pauli basis yields

Tr



 ∑

P′∈{I,X,Y}⊗n
βP′P′




 ∑

P∈{I,X,Y,Z}⊗n
αPP






=
∑

P′∈{I,X,Y}⊗n

∑

P∈{I,X,Y,Z}⊗n
βP′αP Tr (P′P) =

∑

P∈{I,X,Y}⊗n
βPαP2|V |. (6.8)

Calculating the same probability for the all-zero outcome when measuring after applying
FA yields

Tr
((

idO ⊗
⊗

v∈Oc

∣∣∣+φ′(v)
〉〈

+φ′(v)

∣∣∣
)
FA(ρ)

)

= Tr



 ∑

P′∈{I,X,Y}⊗n
βP′P′




 ∑

P∈{I,X,Y,Z}⊗n
(−1)zwtA(P)αPP






=
∑

P∈{I,X,Y}⊗n
βPαP2|V |, (6.9)

and therefore the same value. By an analogous argument, the probabilities for any other
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outcome coincide as well.

Note that FA(ρ) might not always be a physical state. As a result, if |G〉〈G| denotes
the graph state used to implement classical input classical output MBQC on G, one has:

|G〉〈G| = 1
2|V |

∑

S∈S
S, (6.10)

for S the stabiliser group of the graph state, so that for any S′ ∈ S we have:

Tr(S′ |G〉〈G|) = 1
2|V |

∑

S∈S
tr(S′S) = 1. (6.11)

In turn, this implies that

Tr(S′FA(|G〉〈G|)) = 1
2|V |

∑

S∈S
(−1)zwtA(S) Tr(S′S) = (−1)zwtA(S′). (6.12)

If FA(|G〉〈G|) was a physical state, Equation (6.12) would imply that it would be
stabilised by (−1)zwtA(S)S for all S ∈ S. The group structure of stabilisers would then
imply that it is also stabilised by the operator (−1)zwtA(S)+zwtA(S′)SS′ for all S, S′ ∈ S,
and hence zwtA(SS′) ≡ zwtA(S) + zwtA(S′) (mod 2).

However, for A ( V , zwtA(·) does not in general satisfy the above equation. More
precisely, take (v, w) ∈ E, the stabiliser SvSw will then satisfy zwt(SvSw) ≡ zwt(Sv) +
zwt(Sw)− 1 (mod 2). This is because the overlap of Sv and Sw at v will always remove
a single Z coming from Sw, while if the two stabilisers overlap at some other Z location
in A this will remove 2 from the weight.

Conversely3, setting A = V , then indeed zwtV (SS′) ≡ zwtV (S) + zwtV (S′) (mod 2)
for all S, S′ ∈ S. Moreover, it is possible to find a unitary transformation that has
the same effect as FA on |G〉〈G|, implying that FA(|G〉〈G|) is then a physical state, as
witnessed by the following lemma.

Lemma 6.2.7. For any graph G = (V,E) it holds that FA(|G〉〈G|) = U |G〉〈G|U†, where

U =
∏

v∈V,
deg v≡1 (mod 2)

Zv (6.13)

describes the application of Z’s to all odd-degree vertices of G.
3More generally, for disconnected graphs this holds if and only if A is a connected component or a

union of connected components.
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Proof. It will be useful to rewrite the stabilisers of |G〉〈G| as follows. For every S ∈ S,
there exists exactly one subset of vertices VS ⊂ V such that

S =
∏

v∈VS

Sv. (6.14)

We start with the right side of the equation:

U |G〉〈G|U† = U

 1

2|V |
∑

S∈S
S

U† = 1

2|V |
∑

S∈S
U

∏

v∈VS

Sv


U†. (6.15)

Complementing U†U terms, this expression gives:

1
2|V |

∑

S∈S

∏

v∈VS

USvU†. (6.16)

It is easy to verify that USvU† = (−1)zwtV (Sv)Sv because of the particular structure of U,
and hence the above expression equals

1
2|V |

∑

S∈S

∏

v∈VS

(−1)zwtV (Sv)Sv. (6.17)

Exploiting the additivity of zwtV (·), we arrive at

1
2|V |

∑

S∈S
(−1)

∑
v∈VS

zwtV (Sv)S = 1
2|V |

∑

S∈S
(−1)zwtV (S)S = FV (|G〉〈G|), (6.18)

which concludes the proof.

Combining the statements of Lemma 6.2.6 and Lemma 6.2.7, we finally arrive at
the following result, capturing the inherent invariance of classical I/O MBQC to one
specific nontrivial error.

Lemma 6.2.8. Let G = (V,E) be a graph and U be the unitary operation given by

U =
∏

v∈V,
deg v≡1 (mod 2)

Zv, (6.19)

describing the application of Z’s to all odd-degree vertices of G. For MBQC on G with
classical input and output, the application of U before the measurements has no effect on
the results of the computation.
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Summarising the results of this section, for any classical-input classical-output MBQC
there exists a non-trivial and non-stabiliser deviation that has no influence on the results
of the computation. It is important to bear in mind the harmlessness of this error when
constructing a verification scheme, as dummyless stabiliser tests will – by construction –
not be able to detect it.

6.2.3 Dummyless Verification

We now arrive at the core of this section: designing single-round traps restricted to
preparing states in the X − Y plane. Using the construction of traps from Section 6.2.1,
it amounts to finding a set of stabilisers of |G〉〈G| that are only made out of I, X, Y
tensor products.

More precisely, we show that

Lemma 6.2.9. For any G = (V,E), consider the graph state |G〉 and its stabiliser group
S. Then, it is always possible to find |V | − 1 generators of S that are tensor products of
I, X and Y only.

Proof. We proceed constructively and exhibit a set of |V | − 1 generators of R, subgroup
of S, and show that |R| = 2|V |−1.

We start with one such stabiliser, Rfull = ∏
v Sv. This follows simply from

Rfull(v) = XZdeg(v), (6.20)

as for qubit v, Sv contributes to the X and all neighbours contribute a Z each. Additionally,
this shows that for vertices v of even degree R\v = ∏

w∈V \v Sv = RfullSv is also a tensor
product of I, X, Y. This is because removing Sv from Rfull leaves an I at v and changes
by one the number of Zs on the neighbours of v. Unfortunately, removing Sv for v of
odd degree leaves a Z at v. To further remove this unwanted Z, one can also remove
one stabiliser Sw from a neighbouring node w of v from the product. If, in addition,
w is of odd degree, then the obtained stabiliser will be a tensor product of I, X, Y
only. The reason is that at w, one Z has been removed when Sv was removed from
Rfull thereby leaving an X at w, so that removing Sw leaves an I. In the general case,
one can always remove from Rfull the stabilisers Sv along a chain between u and w

consisting of even degree nodes except for u and w that are odd degree. We denote by
R\(u,w) such generator. Note that a given odd-degree node will always be in at least one
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such stabiliser as there are always an even number of odd degree nodes in a connected
component of a graph.

Now define the group R generated by Rfull, R\v and R\(u,w) above. Notice that
multiplying Rfull with R\v gives Sv, so that Sv is in R for even deg(v). Similarly,
multiplying Rfull with R\(u,w) and Sv for v an even-degree node linking u to w shows
that any SuSw with u and w odd-degree nodes are also in R. Therefore, R contains all
stabilisers that have an arbitrary number of even-degree node and an even number of
odd-degree ones. Counting the number of such stabilisers gives 2|V |−1 while we know
that the size of S is 2|V |, which concludes the proof.

We now consider the trappified scheme P that can be obtained by sampling uniformly
at random from all these traps rounds. We can characterise the errors that can be
detected by P and those to which it is insensitive using properties of stabilisers. To
this end, recall that if a Pauli error E is applied right before the measurement of a
2-outcome observable M, then (i) the measurement outcome probabilities are unchanged
if [E,M] = 0, and (ii) are swapped for {E,M} = 0. Hence, whenever E commutes
with ⊗

v∈1R X(v) the trap never detects E, whereas it always detects it whenever it
anticommutes. As a consequence, the set of detectable errors is the set of errors that
anticommute with at least one of the ⊗v∈1R X(v) for R a dummyless trap measurement.

Hence, for an error E = EZEX we need to assess whether there exists at least one R in
P such that |1R∩1EZ | ≡ 1 (mod 2) – where we have implicitely defined EZ (resp. EX) as
the operators made of Zs at location of Y or Z qubits in E (resp. X or Y qubits). To this
end, consider F such that UGF = EUG where UG is the entangling operation for creating
the graph state. Because a trap amounts to measuring the corresponding stabiliser
before the entangling operation, the above question amounts to knowing whether F
commutes with the stabilisers used to define the dummyless traps of P . Alternatively,
we can answer this question by finding out which Pauli operations commute with all
stabilisers defining the dummyless traps while not being a product of them.

Using Lemma 6.2.9, there is one generator S0 of S that is not in R and such that
all errors that commute with R and are not in R are of the form S0R. From the above
description of R, S0 can be taken as being equal to Z on all odd-degree nodes. S0

commutes with all elements of R since they have an even number of Sv for v odd-degree,
and it is not in R as R has no element with Zs only. Yet, Lemma 6.2.8 shows that while
S0 cannot be detected, it is indeed harmless for the computation.

Hence, we are led to conclude that all possibly harmful errors are detected by the
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trappified scheme P . Using § 6.2.1, we conclude that

Theorem 6.2.10. Let G = (V,E) be a graph, and P the trappified scheme on G defined
by sampling at random from a generating set of R containing only stabilisers with no Zs.
Then, P constructs the SDQC Resource 3 for BQP computations that can be embedded
on the graph G with negligible correctness and security errors.

This follows from the fact that Theorem 6.2.4 states that a secure verification scheme
can be built from a trappified scheme that 1) detects a specific set E of Z-Pauli errors,
and 2) correctly evaluates the target computation in the presence of any other Z-Pauli
error in GZ

V \ E. Lemma 6.2.8 then shows that there is a specific error E∗ which never
affects the output distribution of the target computation and which therefore does not
need to be detected. It hence suffices to find a dummyless trappified scheme detecting
E = GZ

V \ {I,E∗}. As shown with Lemma 6.2.9, it is indeed possible to find such a
trappified scheme. Therefore, this settles the question whether dummyless verification
for BQP is possible by the affirmative.

6.2.4 Concrete Dummyless Tests

The previous subsection left open how to concretely construct the trappified scheme P .
More precisely, since the efficiency of the resulting SDQC protocol is tightly linked to
the detection rate of the trappified scheme, it is important to minimise its detection,
insensitivity and correctness errors. In this section, we discuss the question of optimising
the detection rate. In particular, we construct concrete dummyless trappified schemes
for universal BQP computations with constant detection rates, independent of the size
of the computation.

[Kap+22] shows that the general optimisation problem of maximising the detection
rate can be expressed in the language of linear programming. Adapted to the case of
dummyless trappified schemes, we recall it in the following, as Problem 2.

For any feasible solution to Problem 2, the trappified scheme induced by the given
distribution of tests gives rise to a secure dummyless SDQC protocol if and only if the
detection rate satisfies ε > 0.

Recall from Section 6.2.2 the structure of the harmless error:

E∗ =
∏

v∈V (G),
deg(v)≡1 (mod 2)

Zv. (6.22)
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Problem 2 Optimisation of the Distribution of Tests
Given

• the set of errors E = GZ
V \ {I,E∗} to be detected,

• the set of dummyless tests Tdummyless,

• the relation between tests and errors describing whether a test detects an error,
R : Tdummyless × E→ {0, 1},

find an optimal distribution p : Tdummyless → [0, 1] maximising the detection rate
ε ∈ [0, 1] subject to the following conditions:

• p describes a probability distribution, i.e. ∑T∈Tdummyless p(T ) ≤ 1,

• errors are detected at least with the target detection rate, i.e.

∀E ∈ E :
∑

T∈Tdummyless
R(T,E)=1

p(T ) ≥ ε. (6.21)

Further, as described in Section 6.2.3, the set of dummyless tests can be expressed as:

Tdummyless =





∏

v∈Vtrap

Xv
∏

w∈NG(v)
Zw

∣∣∣∣∣∣
Vtrap ⊆ V, ∀v 6∈ Vtrap : |NG(v) ∩ Vtrap| ≡ 0 (mod 2)



 .

(6.23)

The last condition ensures that there are no vertices with a single Z in the respective
stabiliser. In this way, every test can be identified with the subset of vertices which
act as traps, or equivalently with the complement, the subset of vertices which act as
holes, i.e. vertices on which the respective stabiliser equals the identity and which can
therefore be ignored by the decision function of the trappified scheme. In the following
we will also write Vtrap(T ) and Vhole(T ) as shorthands for these two sets of vertices.

Analogously, we write Verror(E) for the set of vertices on which the error E is not
equal to the identity (and therefore equals the Pauli Z). This makes it easy to give a
short description of the relation R:

R : (T,E) 7→ |Verror(E) ∩ Vtrap(T )| (mod 2). (6.24)

Handling Errors on Even-degree Vertices. As described in Section 6.2.3, for
all even-degree vertices v ∈ V , the test T with Vhole(T ) = {v} is indeed dummyless.
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Generalising this concept, for any independent set V ∗ of even-degree vertices, we can
define a dummyless test T with Vhole(T ) = V ∗. Similarly to the construction of tests
in [Kap+22], any (fractional) colouring of the vertices of a graph G gives rise to a
distribution of independent sets of G, and therefore also a distribution of independent
sets of even-degree vertices and tests. To this end, let D be a distribution of independent
sets of G such that

∀v ∈ V : Pr
I←D

[v ∈ I] ≥ 1
χf (G) , (6.25)

where χf(G) is the fractional chromatic number of G. This distribution exists by
definition of the fractional chromatic number. Consider the test strategy given by the
distribution Deven of tests in Tdummyless described as follows:

1. Sample an independent set: V1 ← D.

2. Restrict the set to even-degree vertices: V2 = V1 ∩ Veven(G), where Veven(G) =
{v ∈ V | deg(v) ≡ 0 (mod 2)}.

3. Choose a random subset to determine the location of holes: V3 ← U (℘(V2)).

4. Perform the dummyless test T determined by Vhole(T ) = V3.

As the following Lemma shows, this strategy allows for a detection rate of errors that
affect even-degree vertices that scales inversely with the fractional chromatic number of
the graph.

Lemma 6.2.11 (Even-degree Error Detection). The above-mentioned test strategy(
1

2χf (G)

)
-detects the error set Eeven = {E ∈ GZ

V | Verror(E) ∩ Veven 6= ∅}, i.e.

∀E ∈ Eeven : ET←Deven [|Verror(E) ∩ Vtrap(T )| ≡ 1 (mod 2)] ≥ 1
2χf (G) . (6.26)

Proof. Let E ∈ Eeven. Then, by definition of the test distribution, it holds that

ET←Deven [|Verror(E) ∩ Vtrap(T )| ≡ 1 (mod 2)]

≥ EV3←U(℘(V2)) [|Verror(E) ∩ V3| ≡ 1 (mod 2) | Verror(E) ∩ V2 6= ∅]
· Pr
V1←$D

[Verror(E) ∩ V1 ∩ Veven(G) 6= ∅]

≥ 1
2 ·

1
χf (G) , (6.27)
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which concludes the proof.

Handling Errors on Odd-degree Vertices. Since all errors acting non-trivially on
even-degree vertices are already handled in the previous case, it remains to detect errors
that affect only odd-degree vertices and act as the identity on even-degree vertices.

To this end, we construct a specific type of test. For k ≥ 2, let (v1, . . . , vk) ∈ V k be
a chain of vertices in G satisfying the following conditions:

1. The end vertices are of odd degree: deg(v1) ≡ deg(vk) ≡ 1 (mod 2).

2. All intermediate vertices are of even degree: deg(v2) ≡ · · · ≡ deg(vk−1) ≡ 0
(mod 2).

3. Only subsequent vertices are neighbours in G:

∀i, j ∈ {1, . . . , k} : {vi, vj} ∈ E(G)⇔ |i− j| = 1. (6.28)

It is easy to verify that under these conditions there exists a valid dummyless test T
with Vhole(T ) = {v1, . . . , vk}. Note, that there might not be a chain of this type in G for
any pair of odd-degree vertices as end points. However, it is possible to connect any
two odd-degree vertices through a chain of chains that might traverse other odd-degree
vertices at the end and starting points of chains. In this way, it is possible to choose
a “spanning tree” of (|Vodd(G)| − 1) chains that connects all odd-degree vertices in the
graph G.

Define the set of errors on odd-degree nodes only as Eodd = {E ∈ GZ
V | Verror(E) ∩

Veven(G) = ∅ ∧ Verror(E) ∩ Vodd(G) 6= ∅} and let E ∈ Eodd \ {E∗}. Then, there must
exist two odd-degree vertices v1 ∈ Verror(E) and v2 6∈ Verror(E). But then at least one
of the chains connecting v1 and v2 with start in a vertex affected by the error E and
end in a vertex unaffected by E. Since all intermediate vertices are of even degree and
therefore unaffected by E, the test given by this chain detects E. This essentially shows
the following statement.

Lemma 6.2.12 (Odd-degree Error Detection). There exists an efficient testing strategy
that

(
1

|Vodd(G)|−1

)
-detects errors in Eodd \ {E∗}.

Combining the testing strategies from Lemma 6.2.11 and Lemma 6.2.12 immediately
yields the following result for testing strategies on general graphs.
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Lemma 6.2.13 (Error Detection on General Graphs). For any graph G, there exists
an efficient testing strategy that ε-detects E = GZ

V \ {I,E∗}, where

ε = 1
2χf (G)(|Vodd(G)| − 1)

(
1

2χf (G) + 1
|Vodd(G)| − 1

)−1

≥ 1
2 min

{
1

2χf (G) ,
1

|Vodd(G)| − 1

}
. (6.29)

This already shows that the detection rate that is achievable on general graphs
decreases at most linearly in the number of vertices of the graph. This lower bound is
however far from tight in many cases. In fact, even for universal graph states a constant
lower bound is possible as the following result shows.

(a) Holes in even-
degree vertices,
type 1.

(b) Holes in even-
degree vertices,
type 2.

(c) Holes in odd-
degree vertices,
type 1.

(d) Holes in odd-
degree vertices,
type 2.

(e) Holes in odd-
degree vertices,
type 3.

(f) Holes in odd-
degree vertices,
type 4.

(g) Holes in
odd-degree ver-
tices, type 5.

Figure 6.1: The seven types of dummyless tests for the brickwork graph. A trap
configuration is sampled by randomly choosing one of the seven types, and then in cases
6.1a-6.1b sampling uniformly at random a subset of marked vertices as holes, and in
cases 6.1c-6.1g sampling uniformly at random a subset of marked chains as holes.

Lemma 6.2.14 (Error Detection on the Brickwork State). Let G be a brickwork graph.
Then, there exists an efficient testing strategy that (1/14)-detects E = GZ

V \ {I,E∗}.

Proof Sketch. To detect errors affecting even-degree vertices, use the strategy from
Lemma 6.2.11. As the brickwork graph is bipartite, this will yield a detection rate of
1/4.

To detect errors on odd-degree vertices, follow the strategy from Lemma 6.2.12, but
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use chains that can be tested in parallel to boost the detection rate. There are five
classes of chains between odd-degree vertices that can each be run at the same time.
One class consists of all vertical chains, and the other four of horizontal chains where
every class contains chains only in every second row and only every second horizontal
chain on these rows. By testing random subsets of these classes of chains, the detection
rate in this case is lower bounded by 1/10.

Optimal switching between these two strategies (with probabilities 2/7 and 5/7)
yields an overall detection rate of 1/14. The different types of tests on the brickwork
graph are depicted in Figure 6.1.

6.3 Collaborative State Preparation

Following the approach outlined in § 6.1.3, we now turn to the design of a composably
secure protocol for implementing the preparation of the input states required by the
dummyless protocols introduced in § 6.2.3. The Collaborative Remote State Preparation
Protocol 6 presented here will allow n Clients to collaboratively construct an encrypted
state on the Server whose encryption key is held by a purely classical party called the
Orchestrator. It guarantees that no malicious coalition including up to n− 1 Clients
and the Server (but not the Orchestrator) has any knowledge about the final state.

This security property is captured formally as follows. The Remote State Preparation
Resource 4 (or RSP) allows one party called the Sender to prepare a quantum state on a
device held by another party called the Receiver. Its simplest instantiation requires only
a direct quantum channel between the two participants but more interesting scenarios
can be considered, for example using untrusted relays or additional participants. We
specify this resource for our specific case, i.e. sending states in the X − Y plane.

Resource 4 Remote State Preparation

Inputs: The Sender has as input an angle θ ∈ Θ =
{
kπ
4

}
k∈{0,...,7}

.
Computation by the Resource: The Resource prepares and sends the state |+θ〉
to the Receiver.

The goal of the Collaborative Remote State Preparation Protocol is then to construct
this Remote State Preparation Resource 4 between the Orchestrator and the Server
using one Quantum Channel Resource between each Client and the Server and one
Secure Classical Channel Resource between each Client and the Orchestrator. This
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latter Resource transmits faithfully and privately any classical message from the sender
to the receiver, while only leaking the size of the message to an eavesdropper.

Protocol 6 Collaborative Remote State Preparation
Input: The Orchestrator has as input an angle θ ∈ Θ. The Server and Clients have
no input.
Protocol:

• Client j samples uniformly at random θj ∈R Θ and sends
∣∣∣+θj

〉
to the Server.

• Client j sends θj to the Orchestrator using a Secure Classical Channel.
• For each j 6= n, the Server applies CNOTn,j between the qubits n and j, with the

first being the control and the second the target. It measures the target qubit j
in the computational basis with measurement outcome tj. It sends the vector t
containing all the measurement outcomes to the Orchestrator.

• The Orchestrator computes θ′ = θn + ∑
j∈[n−1](−1)tjθj and sends a correction

(b, (−1)bθ − θ′) to the Server, who applies XbZ((−1)bθ − θ′) to the unmeasured
qubit, keeping it as output.

We can now state the main result of this section, namely the correctness and security
of Protocol 6 in the AC framework. Both properties are proven independently below.

Theorem 6.3.1 (Security of Collaborative Remote State Preparation). Protocol 6
perfectly constructs the Remote State Preparation Resource 4 from Secure Classical
Channel Resources between each Client and the Orchestrator, for malicious coalitions
that include the Server and at most n− 1 Clients.

Proof of Correctness. The state of the central qubit after an honest execution of Proto-
col 6 before the correction sent by the Client is |+θ′〉 with:

θ′ = θn +
∑

j∈[n−1]
(−1)tjθj. (6.30)

It is sufficient to prove this for a pure state |φ〉 = α |0〉+ β |1〉 as control. We apply a
CNOT gate with |φ〉 as control and |+θ̂〉 with θ̂ ∈ Θ as target, followed by a measurement
of this second qubit in the computational basis. Let t ∈ {0, 1} be the measurement result.
After tracing out the second qubit post-measurement, the system is in the following
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(a) The Server receives the qubits and
applies CNOT gates. The central qubit
n is the control, the rest are targets.

(b) The Server measures all qubits but
the central one in the computational ba-
sis and gets outcomes tj ∈ {0, 1}.

Figure 6.2: Collaborative Remote State Preparation for eight qubits. All qubits start in
the state

∣∣∣+θj

〉
.

state:

√
2 〈0|2 Xt

2CNOT1,2 |φ〉 |+θ̂〉 = 〈0|2 Xt
2

(
α |00〉+ αeiθ̂ |01〉+ β |11〉+ βeiθ̂ |10〉

)

= 〈0|2 (α |0〉+ βeiθ̂ |1〉) |t〉+ eiθ̂ 〈0|2 (α |0〉+ βe−iθ̂ |1〉) |t⊕ 1〉
=Z(θ̂) |φ〉 〈0|t〉+ eiθ̂Z(−θ̂) |φ〉 〈0|t⊕ 1〉 (6.31)

Therefore, the result of this single step is Z((−1)tθ̂) |φ〉 up to a global phase. Replacing
the result above in the sequence of CNOT’s and measurements performed by the Server
where the control is qubit n and the targets are qubits j 6= n yields the desired value for
θ′. Finally, the rotation correction (−1)bθ − θ′ sent by the Orchestrator, along with Xb,
transform the value of the final state into |+θ〉.

Proof of Security. We first construct a Simulator against an adversarial Server and a
coalition of n − 1 Clients, which represents the worst case. The Server expects to
receive n qubits and a final correction after transmitting the measurement results. The
Simulator has single-query oracle access to the Remote State Preparation Resource 4 for
state set {|+θ〉}θ∈Θ. It receives a state from this resource, without the corresponding
classical description, and must make the Server accept this state as its output at the
end of the interaction. The actions of this Simulator are described in Simulator 2. Let
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h be the index associated to the honest Client.

Simulator 2 Malicious Server and n− 1 Clients

1. The Simulator calls the Remote State Preparation Resource 4 and receives a state
|+θ〉.

2. It then emulates the behaviour of the n Quantum Channel Resources:

• For indices j 6= h, it simply forwards the state from corrupted Client j to the
Server;

• For index h, it samples uniformly at random θh ∈R Θ and bh ∈R {0, 1}, and
sends an encrypted version Z(θh)Xbh(|+θ〉) of the state received from the RSP
Resource.

3. It then emulates the Secure Classical Channel Resources and receives from each
corrupted Client j 6= h a value θj

4. It receives from the Server a bit-string of measurement results t ∈ [n− 1].

5. After extending the bit-string t with tn = 0, it computes θ′ using Equation 6.30 and
sends the correction (th⊕bh,−θ′) to the Server (by impersonating the Orchestrator)
and halts.

We can now prove that no Distinguisher can tell apart the following two situations
with one honest client: (i) the ideal resource interacting with the Simulator, and (ii) the
real scenario.

Data and transcripts available to the Distinguisher. By construction, the Distin-
guisher fixes θ the angle of the desired state to be prepared at the Server output-interface.
It also fixes the value of all θj for j 6= h both in the real and ideal scenarios and has
perfect knowledge of the states sent by malicious parties. It does not have access to θh
as this is fixed by the honest client protocol.

Before sending the values for the measurement outcomes, the Distinguisher receives
from the non-corrupted party the state |+θh〉 in the real case and the state

∣∣∣+(−1)bhθ+θh

〉

in the ideal case. After sending the bit-string t, regardless of how it was chosen, the
Distinguisher receives a bit and an angle corresponding to the corrections chosen by
either the Orchestrator or the Simulator. In the first case this is equal to (b, (−1)bθ− θ′)
and in the second case (th ⊕ bh,−θ′) with b being chosen uniformly at random and θ′

being computed in the exact same way in both settings (see Equation 6.30).
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The remaining parameters in the real case and ideal cases are the received honest
state, the associated measurement outcome, the X-correction bit and the Z-correction
angle. This gives us the following variables that are in the hands of the Distinguisher
(rows are labeled by the meaning of the corresponding data in the real setting):

Real world Ideal world

Orchestrator-chosen output angle θ θ

Server’s received quantum state |+θh〉
∣∣∣+(−1)bhθ+θh

〉

Measurement result bit th th

Orchestrator correction bit b bh ⊕ th
Orchestrator correction angle (−1)bθ − (−1)thθh −(−1)thθh

Indistinguishability of data and transcripts for the Distinguisher. To finish
the security proof, we need to show that the distributions of the above data and transcripts
are statistically indistinguishable in both scenarios. To do this, we will perform a series
of row-wide operations and eliminate the parameters of the corrupted parties so that
we are left with a new set of variables that will be trivially indistinguishable. The
reversibility of each operation and its dependency on values that are known to the
Distinguisher guarantees that it can always undo them.

First, multiply the final angle by (−1)th and use this angle to apply a rotation to
the state. This transforms the above values into:

Real world Ideal world

θ θ∣∣∣+(−1)b⊕thθ

〉 ∣∣∣+(−1)bhθ

〉

th th

b bh ⊕ th
(−1)b⊕thθ − θh −θh

Note that in both cases, the value for θh only appears in the last row term. Since it is
chosen uniformly at random both final terms follow the same distribution, meaning that
they give no distinguishing advantage. We can therefore safely omit them in the rest of
the process:
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Real world Ideal world

θ θ∣∣∣+(−1)b⊕thθ

〉 ∣∣∣+(−1)bhθ

〉

th th

b bh ⊕ th

Since b in the first row is a bit sampled uniformly at random, we can substitute it with
b⊕ th without changing the distribution.4 We arrive at

Real world Ideal world

θ θ∣∣∣+(−1)bθ

〉 ∣∣∣+(−1)bhθ

〉

th th

b⊕ th bh ⊕ th

Because the b and bh are uniformly random bits, the above two distributions are identical,
which concludes the proof.

6.4 Quantum Secure Multi-Party Computation

We present in this section an extension of the SDQC Protocol 5 from Section 6.2.3
based on the trappified schemes in the X − Y plane. We consider here that n Clients
want to perform a joint MBQC computation on private classical inputs, receiving at the
end either the same classical output or an abort message. There are two steps in the
SDQC protocol which must be modified: the preparation of a state which is compatible
with the SDQC protocol and does not leak any information to coalitions of malicious
parties, and the classical interaction between with the server to drive the computation
and tests. If these components are available, the composable security of the SDQC
protocol ensures that the multi-party version is also secure.

The second step is purely classical once the state and computation have been fixed
and we will use a Classical SMPC Resource to handle it. This Resource will also sample
the trappified canvas and embed the Client’s desired computation into it. Hence, no
malicious coalition will be able to learn where the tests are located among the blind
computations. The first step will make use of the Collaborative RSP Protocol 6 from the

4This is the hidden reason for the additional encryption via Xb in the protocol.
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previous section, replacing the Orchestrator by calls to the Classical SMPC Resource.
The n Clients will use it to prepare rotated |+〉 states on the Server such that the
encryption angle θ is unknown to any malicious coalition, which protects the blindness
of each computation.

Our resulting Secure Delegated Quantum Secure Multi-Party Computation Protocol
with Classical IO (Protocol 7) is therefore an information-theoretic upgrade of the
Classical SMPC functionality. This is the best one can hope for without an honest
majority since it is impossible in that case to construct an information-theoretically
secure Quantum SMPC protocol. Crucially, no additional computational assumptions
are used beyond what is required to construct the Classical SMPC Resource. This
modularity means that we can instantiate our protocol using any post-quantum secure
assumption which is capable of constructing a Classical SMPC.

Quantum Secure Multi-Party Computation Resource. Our protocol will con-
struct the following Quantum Secure Multi-Party Computation Resource 5. It has
n + 1 interfaces, one for each Player and the last one for an Eavesdropper. It allows
n Players to perform a collectively defined quantum computation C over their private
classical inputs with the guarantee that their computation is either executed properly,
in which case Player j receives the correct classical output, or it is aborted altogether.
It is allowed to leak a known value lρ about the Players’ computation and input on the
Eavesdropper’s filtered interface.

In order to construct this resource, we will make use of its classical equivalent. Our
protocol will in the end be an information theoretical upgrade of the following Resource.

Classical Secure Multi-Party Computation Resource. Resource 6 allows n Play-
ers to provide their private inputs and perform a collectively defined computation C on
them with the guarantee that the computation is performed properly. We assume that
it keeps an internal state between calls.

Delegated QSMPC Protocol. Our final protocol will be built upon the two pre-
sented earlier. In an execution the Trappified Delegated Blind Computation Protocol 5,
the Client can perform all of its classical interactions with the Server via a Classical
SMPC Resource 6 if it provides this resource with its input and computation (angles
and flow). This resource is then responsible for sampling all the secret parameters –
angles, bits, order of test and computation runs, which tests to perform – and simply
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Resource 5 Quantum Secure Multi-Party Computation with Classical IO
Inputs:

• Player j sends a classical bit-string xj. It can also input two bits fj and cj as a
filtered interface.

• The n Players send the classical description of a quantum polynomial-time
computation C with classical inputs and outputs.

• The Eavesdropper can input two bits e and c as a filtered interface.
Computation by the Resource:

• If e = 1, the Resource sends the leakage lρ to the Eavesdropper’s interface.
• If c = 1 or there exists j such that cj = 1, the Resource sends Abort to all Players
j such that cj = 0.

• It computes O = C(x), where x is the concatenation of strings xj.
• If there exists j ∈ [n] such that fj = 1, it sends O to Player j.
• If there has been no abort at this stage, it sends the outputs O to all other

Players j in a similar fashion.

instructs the Client to prepare specific states to send to the Server. Since only rotated
|+〉 states are required for this verification protocol, this step can further be replaced
by an instance of the Remote State Preparation Resource 4 for states {|+θ〉}θ∈Θ, as
sending a state from this set is a perfect protocol constructing the RSP Resource. We
can then finally replace this resource by the Collaborative Remote State Preparation
Protocol 6, in which the Orchestrator is played by the Classical SMPC Resource.

In essence, the Classical SMPC together with the Collaborative RSP emulate the
behaviour of the honest Client in an execution of the Trappified Delegated Blind
Computation Protocol, whose tests – described in Section 6.2.4 – needed to be tailored
specifically to require only the preparation of rotated |+〉 states. The full description is
given below in Protocol 7. We continue to refer to the Classical SMPC Resource as the
Orchestrator for simplicity, since in the Abstract Cryptography framework there is no
formal difference between an honest party and an interactive Resource.

Extending the Functionality. The presentation above restricts how the input and
output are treated for simplicity’s sake and any additional efficient classical pre- and
post-processing steps can be performed by the Orchestrator with no impact on the
security of the protocol.
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Resource 6 Classical Secure Multi-Party Computation
Inputs:

• Player j sends a classical bit-string xj. It can also input two bits fj and cj as a
filtered interface.

• The n Players send the description of a classical polynomial-time computation
C.

Computation by the Resource:
• If there exists j such that cj = 1, the Resource sends Abort to all Players j such

that cj = 0.
• It computes O = C(x), where x is the concatenation of strings xj.
• If there exists j ∈ [n] such that fj = 1, it sends O to Player j.
• If there has been no abort at this stage, it sends the outputs O to all other

Players j in a similar fashion.

Removing the Correction in the Collaborative RSP Protocol used with
UBQC. The final step of the Collaborative RSP Protocol calls for the Orchestrator to
instruct the Server to apply a correction XbZ((−1)bθ− θ′) to a state which in the honest
case is equal to |+θ′〉, for a random value of b ∈R {0, 1} and the Orchestrator’s desired
angle θ. This is required to make the protocol simulatable against a malicious coalition
– otherwise, the Simulator has no way of transmitting the correct state to the Server.
However, in Protocol 7 these qubits are used in an execution of the UBQC Protocol, in
which the Orchestrator requests that the Server measures the qubit in the basis {|±δ〉}
for δ = φ′ + θ + rπ. Together, the unitary operations on this qubit in the honest case
can be written as

Z(−δ)EXbZ((−1)bθ − θ′)Z(θ′) |+〉 ⊗ |ψ〉 (6.32)

for a state |ψ〉 representing the rest of the state and the graph entangling operation E.
Then, this is equal to

Z(−φ′ − θ − rπ)EZ(θ − (−1)bθ′)Z((−1)bθ′) |+〉 ⊗ |ψ〉
= Z(−φ′ − (−1)bθ′ − rπ)EZ((−1)bθ′) |+〉 ⊗ |ψ〉 . (6.33)

By performing the change of variables θ̂ = (−1)bθ′, which is drawn from the same
distribution, we recover the state in the original UBQC Protocol, with no correction
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Protocol 7 Secure Delegated Quantum Secure Multi-Party Computation with Classical
IO
Public Information:

• G = (V,E, I, O), a graph with input and output vertices I and O respectively;
• {Ij}j∈[n], a partition of the input vertices, with each Ij being associated to Client
j.

• P , a trappified scheme on graph G;
• �G, a partial order on the set V of vertices;
• N, d, w, parameters representing the number of runs, the number of computation

runs, and the number of tolerated failed tests.
Clients’ Inputs:

• Each Client j has as input a classical bit-string xj ∈ {0, 1}|Ij |.
• The n Clients collaboratively have as input a set of angles {φi}i∈V and a flow f

which induces an ordering compatible with �G.
Protocol:
1. The Clients send their input xj to the Orchestrator, together with the computation

angles {φi}i∈V and flow f . Let x be the concatenation of all xj.
2. The Orchestrator and the Server perform an execution of the Trappified Delegated

Blind Computation Protocol 5. Instead of having the Orchestrator send rotated
states during the UBQC execution, they perform for each state an instance of
the Collaborative State Preparation Protocol 6 together with the n Clients.
(a) The Orchestrator samples uniformly at random a subset C ⊂ [N ] of size d

representing the computation runs.
(b) For k ∈ [N ]:

i. If k ∈ C, the Orchestrator sets the computation for the run to ({φi}i∈V , f)
with input x. Otherwise, the Orchestrator samples a test (T, σ, τ) from
the trappified scheme P .

ii. The Orchestrator and Server execute the chosen run with the UBQC
Protocol 2. For each qubit sent during the execution of the protocol,
they instead execute the Collaborative RSP Protocol 6 together with
the n Clients.

iii. If the run is a test, the Orchestrator checks whether it passed.
(c) If the number of failed tests is greater than w, the Orchestrator sets the

output to (⊥,Rej).
(d) Otherwise, let O be the majority vote on the output results of the computa-

tion runs. The Orchestrator sets the output to (O,Acc).
3. The Orchestrator sends its set output to all Clients.
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from the Orchestrator:

Z(−φ′ − θ̂ − rπ)EZ(θ̂) |+〉 ⊗ |ψ〉 . (6.34)

Therefore in the full protocol, requesting and applying the correction are unnecessary
steps, either for correctness or security, since the states with or without these corrections
are equal.

Security of QSMPC. We now prove the correctness and security of our QSMPC
protocol using the composition of AC resources and protocols.

Theorem 6.4.1 (Security of Delegated Quantum SMPC). Suppose that the Trappified
Delegated Blind Computation Protocol 5 εV -constructs the Secure Delegated Quantum
Computation with Classical IO Resource 3 for leak lρ. Then Protocol 7 εV -constructs
the Quantum Secure Multi-Party Computation with Classical IO Resource 5 from an
interactive Classical Secure Multi-Party Computation Resource 6 for the same leak lρ,
against malicious coalitions that include at most the Server and n− 1 Clients.

Proof. This proof is very simple and works by retracing in reverse order the high-level
description of the protocol in the worst case with n− 1 malicious Clients in collusion
with a malicious Server

We first use the security of the Collaborative RSP Protocol as expressed in Theo-
rem 6.3.1 to replace each instance of this protocol with a call to the RSP Resource 4,
at no security cost. The Secure Classical Channel Resources from the Clients to the
Orchestrator come for free since this party is now replaced by the Classical SMPC
Resource in our protocol.

We can then replace these Resources with a direct quantum communication channel
between the Orchestrator and the Server, since this protocol perfectly implements the
RSP Resource. We obtain as a result exactly an execution of the UBQC Protocol 2
between the Orchestrator and the Server in step 2.b.ii of Protocol 7. The whole step 2
of Protocol 7 is then exactly an execution of Protocol 5 between the Orchestrator and
the Server.

We then use the fact that this protocol εV -constructs the Secure Delegated Quantum
Computation with Classical IO Resource and replace it by a call to that resource with a
cost of εV .

In this final stage, the Clients send their desired computation and inputs to the
Orchestrator, which only forwards the concatenated input to the SDQC Resource. This
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Resource leaks the value lρ to the Server and returns the correct value to the Orchestrator
if there has been no abort from the Server. The Orchestrator then sends back this
output to the malicious Clients if they desire to receive it first. If there has been no
abort at this stage, the Orchestrator finally transmits the output to the honest Clients
as well. Therefore merging the Orchestrator – a Classical SMPC Resource – and the
SDQC Resource yields exactly the behaviour of the desired QSMPC Resource between
the n Clients and the Server.

6.5 Discussion

6.5.1 Comparison with Other QSMPC Protocols

Table 6.1 below gives a comparison of our protocol with the peer-to-peer protocols
of [Dul+20] and [LRW20], and with the more recent semi-delegated protocol of [Alo+20].
We note n is the number of parties, d the depth of the computation (MBQC in our case,
circuit for [LRW20] and {T,CNOT}-depth for [Dul+20]), t the number of T gates, c
the number of CNOT gates, Cdist the code distance used in [LRW20] and η a statistical
security parameter. The values below correspond to the simple case where each player
has a single qubit of input.

Security guarantees. Reference [Dul+20] achieve an information-theoretic upgrade
of a Classical SMPC to the quantum domain, secure against an arbitrary number of
corrupted parties. On the other hand, the protocol from [Alo+20] is only computationally-
secure since it relies on a Fully-Homomorphic Encryption Scheme on top of the Classical
SMPC, but it is also secure against arbitrary corruptions. The protocol of [LRW20]
constructs an information-theoretically secure Quantum SMPC but suffers from an
artificial blow-up in the number of participants and exchanged qubits.5 The protocols of
[LRW20; Alo+20] are proven secure in the Stand-Alone Model, whereas ours and that
of [Dul+20] are fully composable. On top of blindness, all protocols provide verifiability
with unanimous abort apart from that of [Alo+20] which achieves the stronger notion

5It is based on error-correcting codes and the size of the code must correspond to the number of
players n. The maximum number of cheaters tolerated by the protocol is the number of correctable
errors

⌊
Cdist−1

2
⌋
, which by the quantum Singleton bound [Rai99] is at most

⌊
n−1

4
⌋
. In their example, 7

players are required for implementing a two-party computation since the code that is used is of size 7
and corrects 1 error. This leads to a situation where 5 participants that don’t have inputs nor outputs
must still exchange messages and none can be malicious if one of the players with inputs is.
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Dulek et al. [Dul+20] Lipinska et al. [LRW20] Alon et al. [Alo+20] This work

Security Stat. upgrade of CSMPC Stat. Comp. (FHE + CSMPC) Stat. upgrade of CSMPC

Abort Unanimous Unanimous Identifiable Unanimous

Composability Composable Stand-Alone Stand-Alone Composable

Max adversaries n− 1
⌊
Cdist−1

2

⌋
n− 1 n− 1

Protocol nature Symmetric Symmetric Semi-Delegated Delegated

Network topology Q and C: Complete Q and C: Complete Q and C: Complete Q: Star / C: Complete

Q operations FTQC FTQC FTQC Cl: Single Qubit
S: FTQC

Classical SMPC Clifford Computation,
Operations in Z2, CT

CT Clifford Computation,
FHE verification Operations in Z8, Z2, CT

Rounds (C) O(d+ η(N + t)) d+ 2 O(1) d+ 3

Rounds (Q) Par: O(nd)
Seq: O(n(n+ t+ c))

Par: 3 (2 if C output)
Seq: O(η2(n+ t)) Par: O(n4) Par: 1

Seq: O(ηnd)

Size of Q memory Par: O(η2(n+ t)))
Seq: O(η2n)

Par: O(η2n(n+ t))
Seq: O(n2) Par: O(tn9η2)

Cl: 0
S (par): O(ηn2d)
S (seq): O(nd)

Table 6.1: Comparison with [Dul+20; LRW20; Alo+20]. Q stands for quantum and
C for classical. The abbreviations Cl and S stand for Client and Server respectively.
Stat. means statistical, FTQC stands for Fault-Tolerant Quantum Computer and CT
for Coin-Toss.

of identifiable abort.6

Communication requirements. One key advantage of our protocol over the others
lies in its delegated nature, where only one participant needs a full fault-tolerant quantum
computer while the rest only perform very limited quantum operations, compared with
the symmetric setup in [Dul+20; LRW20] where all participant has requires fault-
tolerance. The protocol of [Alo+20] can be considered semi-delegated in the sense that
the brunt of the quantum computation is performed by a single player. However, all
players must have the ability to perform arbitrary Cliffords on large states and cannot do
so without having at their disposal a full fault-tolerant quantum computer. This is also
reflected in the network topology: whereas the best performance in [Dul+20; LRW20;
Alo+20] can only be reached by using a complete quantum and classical communication
graph, we only need a star graph for quantum communications. While the network
topology of [Dul+20] and [LRW20] can also be star-shaped – with one player acting as
a router – this would degrade their performance in terms of quantum communication

6A protocol satisfies the unanimous abort property if all honest players abort at the same time, as
compared with selective aborts where the Adversary can choose which players will abort separately. On
top of that, identifiable abort means that all honest players agree on the malicious party responsible for
the failure of the protocol.
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rounds.

Usage of Classical Primitives. Regarding classical primitives, [LRW20] only re-
quires secure coin-tossing and authenticated broadcast channels (information-theoretically
secure since they can rely on an honest majority). We only use our Classical SMPC to
perform coin-tossing, basic string operations (array lookup) and computations in Z8 and
Z2. The Classical SMPC is more complex in [Dul+20; Alo+20] since it must be able to
sample uniformly at random and perform computations on the classical descriptions of
arbitrary Cliffords.

Rounds of communication. We can now quantify more precisely the number of
classical rounds of communication or calls to the Classical SMPC resource, quantum
rounds of communication, and size of quantum memory required by each participant
in the protocol. [Dul+20] calls the Classical SMPC very often: a constant number
of times for each input qubit and gate in the circuit. But the most costly part is the
generation of ancillary magic states (for implementing T gates via gate-teleportation),
which requires O(η(n+ t)) invocations of the Classical SMPC. Our protocol simply uses
d + 3 calls to this Resource, 2 for setting up the state and 2 for the key-release step.
This is equivalent to the classical communication requirements of [LRW20], where they
only need d+ 2 classical broadcasts per participant (with one for setting up the shared
randomness and another for the state preparation). If all quantum communications are
done in parallel in [LRW20], it can be further parallelised to only require a constant
number of classical broadcast rounds. The protocol of [Alo+20] uses FHE (classical
and quantum) to perform the computation and consequently the number of calls to
the Classicl SMPC is only constant. We note that using a classical primitive called
functional encryption, where a party in possession of an evaluation key can recover
the clear-text of a function of the encrypted values (and only that), would allow to
attain the same result for our construction by allowing the Server to compute the next
measurement angle as a function of the encrypted secrets and previous measurement
results.

The protocol of [Dul+20] requires numerous rounds of quantum communication as
they need to send encoded states around for the verification of inputs and T and CNOT
gates. After parallelisation the total cost is O(nd) quantum rounds. [Alo+20] aims
to remove the circuit dependency in the number of rounds, obtaining O(n4) quantum
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rounds in the worst case in the case where the protocol is parallelised.7

Qubit Count and Memory Requirements. [LRW20] seeks to optimise the quan-
tum memory requirement of players and therefore their communication is done sequen-
tially, yielding O(η2(n+ t)) quantum rounds. Parallelisation lowers it to 3 (or 2 for
classical outputs), at a higher quantum memory cost for all parties. Our protocol is
optimal as there is only a single quantum round (in the parallel case): sending to the
Server all states required for the collaborative state preparation phase.

Finally, the number of qubits required by [Dul+20] during the computation phase is
O(η(n+ t)) for each participant (they encode each of their input qubits, ancillae and
magic states using O(η) qubits). However they use O(η2(n+ t)) additional qubits in
the offline phase to prepare the ancillary qubits (if the quantum communications are
performed in parallel). On the other hand, [LRW20] reduces the number of qubits for
each participant to O(n2) for sequential quantum communication, but this blows up
to O(η2n(n+ t)) if parallelised. The construction from [Alo+20] uses a compiler that
adds automatically a cost of O(n2) for each base qubit. The costly double encryptions
and multiple layers of traps, in particular for the magic state distillation procedure,
yields a total quantum memory cost per participant of at least O(tn9η2) (this is a weak
lower bound). In our proposal the Server needs O(nd) qubits to perform each blind
computation or test. Each qubit in these graphs is generated using n qubits via the
Collaborative RSP Protocol and the computations and tests are repeated O(η) times in
total, resulting in a total qubit cost of O(ηn2d) for parallelised quantum communication
but only O(nd) if the rounds are performed sequentially. However, the Clients can
prepare these states on the fly and the Clients do not need quantum memory.

6.5.2 Impossibility of Single-Qubit Privacy Amplification on
the Whole Bloch Sphere

The construction and security of Protocol 7 relies on the composition of a collaborative
encryption gadget with the regular robust VBQC protocol driven by the Orchestrator.

The crucial features of the collaborative encryption are that (i) a single honest Client
providing a random state from the allowed input set is enough to randomize the output

7They send states along a path of size n2 in the communication graph of the parties, and remove a
party if it doesn’t deliver a packet before resending the states along a different path of the same size.
In the worst case where there are n− 1 malicious players which do not want to get caught cheating,
they can drop (n− 1)(n− 2)/2 packets without being disconnected from the communication graph.
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of the gadget, and (ii) no information about the state provided by an honest Client
leaks to the Server. These are the two properties that were shown to hold in § 6.3.

It can also be seen that those do not hold whenever the set of input states for the
clients not only comprise the 8 |+θ〉 states in the X−Y plane but also the computational
basis states |0〉 , |1〉. The reason is that in such case, if the central qubit is set to a
computational basis state, it cannot be randomized by the states provided by other
clients.

While this specific failure is contingent to the chosen transformation implemented
by our gadget, we will show here that it is indeed a more generic problem that gadgets
fulfilling (i-ii) have in common, thereby restricting these “gadget-assisted” approaches
to verification of classical input classical output computations.

First, we give a mathematical definition of (i):

Definition 6.5.1 (Randomizing gadget). Let P be a protocol with two Clients and one
Server such that it takes a quantum state at each Client’s input interface, and produces
a quantum state at the Server’s output interface together with a common classical bit
string at each of the parties output interface.

We say that this gadget is randomizing whenever conditionned on the value of the
common bit string, the linear maps implemented by the protocol when one of the two
input states is fixed is invertible for pure input states.

The motivation for this definition is simple: whenever one of the input is fixed, then
the other one is enough to randomize the output at the Server’s side. The role of the
common bit string shared by all the parties at the end of the protocol is to allow the
possibility of having a linear map that depends on this bit string as it is the case in our
construction. As a consequence, the output state at the Server’s interface might not be
normalized in order to encapsulate the probability of a specific common bit string to be
produced by the protocol.

The following Lemma 6.5.3 shows that for a fixed common string, there will always
exist a specific state for one of the two inputs such that the map will not be invertible.
This can result in one of the two following cases. Either the output is a fixed non-zero
quantum state or it produces the null vector. In the former, this implies that the gadget
is not able to correctly produce random states required by the VBQC protocol to be
secure. In the latter, observing a specific common bit string excludes some input state
for the honest Client, thereby also violating the assumptions required to obtain the
security of the whole protocol.
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Lemma 6.5.2. Every two-dimensional linear subspace V ⊂ C2×2 contains at least one
nonzero, singular matrix.

Proof. Let A,B ∈ V form a basis of V . If A or B is singular, the claim is trivial. Assume
henceforth that both A and B are invertible.

For α ∈ C, let Cα = A + αB. Clearly, Cα ∈ span({A,B}). Since A and B are
linearly independent, Cα 6= 0. It further holds that

det(Cα) = det

a11 + αb11 a12 + αb12

a21 + αb21 a22 + αb22




= (a11 + αb11)(a22 + αb22)− (a12 + αb12)(a21 + αb21)

= α2(b11b22 − b12b21) + α(a11b22 + b11a22 − a12b21 − b12a21) + a11a22 − a12a21

= α2 det(B) + α(a11b22 + b11a22 − a12b21 − b12a21) + det(A). (6.35)

As det(B) 6= 0, this is a polynomial of degree 2 in the variable α. By the fundamental
theorem of algebra, this polynomial admits at least one complex root.

Lemma 6.5.3. There exists no linear map Ξ : C2×2 → C2 such that for all nonzero
v ∈ C2 both Ξ(· ⊗ v) and Ξ(v ⊗ ·) are invertible.

Proof. Assume the existence of such a map Ξ. By the rank-nullity theorem, it holds
then that

dim(Ker(Ξ)) = dim(C2×2)− dim(Im(Ξ)) ≥ 2. (6.36)

By Lemma 6.5.2, there exists a rank-one matrix C ∈ Ker(Ξ). We can rewrite C =
vwT = v ⊗ w with nonzero vectors v, w ∈ C2. It follows that Ξ(v ⊗ w) = 0 which
contradicts the invertibility of Ξ(· ⊗ w) and Ξ(v ⊗ ·).

This leads us to conclude that such gadget assisted approaches will inherently be
limited to classical I/O computations.

6.5.3 Open Questions

This work closes a gap between the circuit and MBQC models regarding secure multi-
party computations. It shows that both are able to perform the required lift from classical
to quantum in a statistically secure way, in spite of the more stringent requirements the
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delegation imposes on what clients can do. Yet, this is only partially satisfactory as we
do not consider the quantum input/output case. This specific question was considered
by some of the authors. This lead to designing a protocol that was similar in spirit to
the one presented here, but where the Collaborative Remote State Preparation would
not only be able to prepare states in the X − Y plane, but also dummy qubits. An
attack on this protocol is analysed in § 6.6. It’s discovery initiated the current work
using dummyless verification as a way to avoid it. Yet, we also show in § 6.5.2 that such
approach based on Collaborative Remote State Preparation outside a single plane is
not likely to succeed, thereby leaving open the question of how to perform Delegated
QSMPC with quantum I/O.

Other open questions regarding SMPC in the MBQC model include the verification
of sampling with possibly better than polynomial security bounds. The question of the
delegation of fault-tolerant computation in the MBQC model is also a long standing open
question that we believe can benefit from the theoretical tools developed in [Kap+22]
and from an approach similar to the one exemplified in this work.

Finally, [Ma+22] showed how to blindly delegate quantum computations with trusted
rotations, even if both state preparations and measurements are untrusted, but left
open the question whether verification is possible in this setting. The difficulty of
verification seems to stem from the fact that (i) their analysis concerns states in the
X − Y plane, but not dummy states, and (ii) the remotely prepared states are blind,
but not necessarily verifiable. While this work does not overcome the second obstacle,
it shows that verification is indeed possible without the remote preparation of dummy
states, and therefore constitutes a step towards the solution of this open problem.

6.6 Appendix: Post-Mortem of Previous Protocol

An earlier proposal for QSMPC [Kap+21] claimed similar results, but suffers from serious
security shortcomings. We show here the limits of the design and discuss possible paths
towards fixing it.

State-Selective Flipping Attack. The principle of the previous protocol was to
separate the computation in two parts. The first section, which is blind only and not
verifiable, is responsible for preparing the verifiable graph state from [KW17b], i.e. a
single graph state which includes traps. This requires to prepare both rotated qubits
and dummies. The Collaborative RSP prepares only rotated states which must then
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either be transformed into dummies {|0〉 , |1〉} or left undisturbed (for computation and
trap qubits). This is done with a blind computation on all these qubits, the additional
qubits required for this computation being also generated using the Collaborative RSP.
This is essentially a way to extend the Collaborative RSP to a bigger set of states.

The blindness of this gadget is proven in the Abstract Cryptography framework,
so it would seem that it can be composed with the single-Client SDQC protocol to
yield QSMPC in the same way as in the current work. However, this is not the case
since we do not verify that the Server acts honestly so the final state is correct up
to a global deviation. In general this deviation depends on the state that is being
prepared, in particular the deviation can depend on whether the final state is a dummy
or computation/trap qubit. Conscious of this, [Kap+21] exhibit a number of sufficient
conditions on the computation so that this global deviation is independent of the secret
state the the Clients prepare collaboratively.

These conditions are as follows:

1. The inputs in the graph of the Clients’ desired computation have degree 1.

2. All measurement angles are from the set {kπ/2}0≤k≤3, i.e. the computation is
Clifford.

3. The graph, flow of this computation and the angles of all vertices beyond the first
layer of the gadget are independent of the final desired state of the qubits.

This final condition restrains a lot the possible types of computations that can be
performed in this step but [Kap+21] proposes a scheme which seems to satisfy them.
We recall it here for completeness. The MBQC pattern is given by the following graph
and angles.

π/2 π/2

Arbitrary input ρ Output qubit

0 0 0 0

00

|±i〉 or |±〉 input

The qubit which must be transformed is denoted ρ (upper left qubit) and the lower
left qubit’s state is chosen depending on whether the upper qubit should be turned into
a dummy or not. We refer to [Kap+21] for details. In order to be correct, it requires an
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additional correction step after this computation. The correction depends on the state
of the second input qubit and the measurement outcome of the last qubit in the lower
line.

2nd qubit input Outcome Correction Effect

|+i〉 0 Y I
|+i〉 1 Y I
|−i〉 0 I I
|−i〉 1 I I
|+〉 0 X H
|+〉 1 Z H
|−〉 0 Z H
|−〉 1 X H

Unfortunately, this correction depends on the final state. More precisely, by flipping
the value reported as measurement outcome, the Server can apply an Y operation on
dummy qubits and leave the rest unaffected. This flips selectively the state of dummies
only, even if the server does not know that the qubit being prepared is in fact a dummy.
We show in the next section how this breaks the verifiability of the protocol. The main
take-away is that any correction applied after the computation does not also depend on
the final state.

A potential patch was constructed using a more compact setup which seemingly
satisfies all conditions. The graph that is used consists of a three vertex line for each
final qubit. The first qubit in the line is measured either with an angle π/2 for dummy
vertices or 0 for other positions. The second vertex will always be measured with an
angle of π/2. This is presented below in Figure 6.3.

In the first case, the operation that is applied is HZ(π/2)HZ(π/2) = X(π/2)Z(π/2),
which has the effect of transforming the state |+〉 first into

∣∣∣+π/2
〉
with the Z-rotation

and then into |0〉 via the X-rotation. Note that this does not correspond to a Hadamard
gate since it transforms |−〉 into −i |1〉, but it is sufficient for our purposes. In the
second case, the operation correspond to X(π/2), which has no effect when applied to a
|+〉 state up to a global phase. Since all qubits are rotated |+〉 states, the rotation of
the last qubit in the three vertex line graph re-encodes the state if the final state is not
a dummy. This yields the full set of states required by the SDQC protocol.

207



CHAPTER 6. QUANTUM SECURE MULTI-PARTY COMPUTATION

(a) Measurement pattern for rotated
qubits.

(b) Measurement pattern for dummy
qubits.

Figure 6.3: DBQC measurement pattern applied to each qubit in the verifiable graph.
The vertices surrounded with squares are inputs, round vertices are measured, diamond
vertices are outputs. Blue vertices correspond to a measurement angle of π/2 while
white vertices are measured with angle 0.

Note that once again, the conditions appear to be satisfied. Also, there are no
post-processing steps beyond the standard MBQC flow corrections. However, here the
input states do not span the full 8 rotated states, but are always considered as |+〉
states and they are re-encrypted via the rotation of the last qubit. By applying Z on the
input before the computation and the output after the computation, it is also possible
to selectively flip dummies only: the two Zs will cancel out for rotated qubits, but the
second Z will have no effect on dummies while the first Z will flip the dummy.

Attack from Selective Dummy Flipping. We describe here an attack on the
VBQC scheme of [KW17b], assuming that the Adversary can flip the value of dummy
qubits (without affecting the computation and traps). We assume for this section
knowledge about the Dotted-Triple Graph construction of [KW17b]. Consider a line
graph of two qubits and its transformation in a Dotted-Triple Graph. This graph
contains two primary locations with three qubits and one added location with nine
qubits.

Through the application of CZ gates to construct the graph, flipping the value of
a dummy is equivalent to applying Z on all adjacent qubits. For a given qubit in the
graph, the global effect is I if an even number of adjacent dummies are flipped, and Z if
an odd number of adjacent dummies are flipped. As we wish to disrupt the computation
but not affect traps, the key to our attack is to use the difference in the number of
dummies in the neighbourhood of traps and computation qubits. Traps are only linked
to dummies while a computation qubit will always have at least one other computation
qubit among its neighbours. As shown in Figure 6.4 below, we selectively flip added
vertices so that each primary vertex is linked to exactly two attacked added vertices.
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Figure 6.4: Example of attack layout where each top and bottom primary qubit is
attached to exactly two attacked added qubits. Qubits that have been chosen for the
attack are circled in blue.

In that case, since the primary trap qubits are only linked to dummies, the attack
does not trigger either trap (if one of the middle qubits that is attacked is a trap, the
effect of the attack on this trap is I as explained above). However, the attack may either
affect two dummies linked to the primary computation qubits, in which case there is no
attack since the effects cancel out, or one added dummy and the added computation
qubit. Then, the effect on the added computation qubit is I but the attacked dummies
will apply a Z operation on primary computation qubits on both sides of the link. If we
assume fixed (but unknown) attack positions, whether this attack succeeds in modifying
the computation depends only on the colouring that is used, while never triggering any
trap. The probability of success is equal to 2/3: the attack succeeds if the computational
added qubit is chosen for the attack, there are 6 possible choices of attack configuration
and each added qubit is left untouched by 2 out of the 6 attack configurations. We give
in Figure 6.5 two possible colourings, ones in which the attack has no effect one the
computation while the other corrupts it.

Extension and Take-away. Essentially, allowing an attack to depend on the nature
of the qubits introduces new attacks compared to those that are possible in the plain
VBQC Protocol. We have shown above that even a simple attack of this type is sufficient
to break verifiability.

This attack is not specific to the construction of [KW17b] and can also be applied to
the robust SDQC Protocol of [Lei+21]. There, a trap is also always linked to dummies
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(a) Z attack on both primary computational
qubits due to odd number of attacked added
dummies.

(b) No attack on either primary computa-
tional qubit due to even number of attacked
added dummies.

Figure 6.5: Two colourings of the previous graph (computational qubits are green, traps
are white and dummies are red) for the same attacked qubits but a different effect on
primary computational qubits. Attacked qubits are circled in blue, which translates
to an X effect on dummies (yellow-filled circle) and no effect on added computational
qubits (empty circle). The primary trap qubits are never affected by the attack since
they are always attached to an even number of attacked added dummies.

but computation qubits are never linked to dummies (the test and computation graphs
are separated as in the current work). Applying the selective flip and apply a Z on all
neighbours will corrupt the computation but leave traps unaffected.

There are two main ingredients to these attacks: (i) the possibility for the server to
selectively attack qubits depending on whether they are dummies or rotated qubits, and
(ii) the difference in the neighbourhoods of computation and trap qubits in terms of
dummies. Regarding the first point, the sufficient conditions above are very restrictive
as to what types of computations can be performed to generate a wider range of states.
Together with the result from Section 6.5.2, this is a strong indication that starting from
a Collaborative RSP for a restricted set of states and expanding it is hard to construct
securely. As for the second point, if it is possible to construct an SDQC protocol in which
the effect of flipping any number of dummies is the same on the tests and computations,
then this attack would have no effect beyond what the SDQC protocol already protects.
This proposal provides a solution to this problem by removing dummies altogether in
the case of classical inputs and outputs. Other directions can be explored as well in
order to construct a protocol which resits these attacks and handles quantum inputs
and outputs.

We note that at no point do we break the theorem from [Kap+21] proving the
sufficient conditions for constructing an MBQC gadget for blindly generating an SDQC
resource state up to state-independent deviations. However, it shows that the following
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conditions were implicitly assumed in the proof: (i) the starting states should span the
full range of rotated |+θ〉 states, and (ii) any post-processing should be independent of
the final state.
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Chapter 7

Verifiable quantum computing with
trapped ions

We present the first hybrid matter-photon implementation of verifiable blind quantum
computing. We use a trapped-ion quantum server and a client-side photonic detection
system connected by a fibre-optic quantum network link. The availability of memory
qubits and deterministic quantum logic enables interactive protocols without post-selection
– a requirement for any scalable blind quantum cloud server which previous realisations
could not provide. Our apparatus supports guaranteed privacy with < 0.001 leaked bits
per qubit and shows a clear path to fully verified quantum computing in the cloud.

This chapter is based on the paper “Verifiable blind quantum computing with trapped
ions and single photons” [Drm+23b] which is joint work with Peter Drmota, David
Nadlinger, Dougal Main, Bethan Nichol, Ellis Ainley, Atul Mantri, Elham Kashefi,
Raghavendra Srinivas, Gabriel Araneda, Christopher Ballance, and David Lucas, and
which was accepted for publication in Physical Review Letters (PRL).

7.1 Introduction

Quantum computers are poised to outperform the world’s most powerful supercomputers,
with applications ranging from drug discovery to cyber security. These computers harness
quantum phenomena such as entanglement and superposition to perform calculations
that are believed to be intractable with classical computers. As quantum processors
control delicate quantum states, they are necessarily complex and physical access to
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ClientServer

m

computation proceeds layer-by-layer

quantum link

classical link

Computation

Test

network
qubit

photon

memory qubitsvirtual qubits

Figure 7.1: Verifiable blind quantum computing in the measurement-based model. The
computation is expressed as a sequence of measurements on a brickwork state (two-
dimensional graph with vertices representing virtual qubits, and edges indicating CZ
gates). The server (left) holdsm physical memory qubits (orange atoms) and one physical
network qubit (violet atom). The server can entangle these qubits deterministically with
each other. The network qubit can also be entangled with a photon; by measuring this
photon, the client (right) can steer the network qubit in the server remotely without
the server learning about its state. This allows the client to hide the computation
(inputs, outputs, and circuit) from the server. Moreover, the client can verify that the
computation has not been tampered with by interleaving test rounds, which produce
classically simulatable outcomes and cannot be distinguished from the actual computation
by the server.

high-performance systems is limited. Cloud-based approaches, where users can remotely
access quantum servers, are likely to be the working model in the near term and
beyond; many users already perform computations on commercially available devices
for state-of-the-art research [Sar+19; ALP20; Pro+22; Ama+22; Kir+22].

However, delegating quantum computations to a server carries the same privacy and
security concerns that bedevil classical cloud computing. Users are currently unable to
hide their work from the server or to independently verify their results in the regime
where classical simulations become intractable. Remarkably, the same phenomena
that enable quantum computing can leave the server “blind” in a way that conceals
the client’s input, output, and algorithm [BFK09; FK17; GKK19]; because quantum
information cannot be copied and measurements irreversibly change the quantum state,
information stored in these systems can be protected with information-theoretic security,
and incorrect operation of the server or attempted attacks can be detected – a surprising
possibility which has no equivalent in digital computing. Blind quantum computing
(BQC) requires not only a universal quantum computer as the server, but also a quantum
link connecting it to the client [Bad+20; Coj+21]. Photons are a natural choice to
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provide that link, and indeed the first demonstrations of (BQC) were performed in purely
photonic systems [Bar+12; Bar+13; Fis+14; Gre+16]. However unavoidable photon
loss, either due to limited photon detection efficiencies or absorption in the link, results
in potential security risks [Bar+12; Fis+14] and places hard limits on the scalability of
this approach due to the resource overhead incurred by post-selection [Li+15]. Ideally,
quantum information at the server should be stored in a stable quantum memory that can
be manipulated with high fidelity, yet interfaced readily to a photonic link. The ability to
retain quantum information on the server then facilitates the client to perform adaptive
mid-circuit adjustments in order to execute the target computation deterministically
and securely. Combining two completely different platforms at the single-quantum
level is technically challenging [Pfa+14; Huc+15]; so far, quantum network nodes with
integrated memory qubits have been realised with solid state systems [Kal+17; Sta+22]
and trapped ions [Drm+23a].

Here, we demonstrate (BQC) using a trapped-ion quantum processor (server) that
integrates a robust memory qubit encoded in 43Ca+ with a single-photon interface based
on 88Sr+ to establish a quantum link to the client (photon detection system). We
implement an interactive protocol, where the client can remotely prepare single-qubit
states on the server adaptively from shot to shot using real-time classical feedforward
control. The complexity needed for universal quantum computation is contained entirely
within the server, while the client is a simple photon polarisation measurement device
that is independent of the size and complexity of the algorithm and supports near-perfect
blindness by construction. The client and the server are controlled by independent
hardware and connected only by a classical signalling bus and an optical fibre. The
combined system of server and client achieves noise levels below a certain threshold for
which arbitrary improvements to the protocol security and success rate (robustness) are
theoretically possible [Lei+21].

7.2 Protocol

Quantum algorithms can be described in the measurement-based quantum computing
model, which prescribes a sequence of measurements on a highly entangled resource
state [RB01; Nie06]. Information-theoretic blindness can be achieved, even against
maliciously operating servers, if either the state preparation or the measurements are
performed by the client [CLN05; BFK09; MF13a; Fit17]. To this end, the client must
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ensure that the quantum information stored by the server appears maximally mixed to
any adversary [Fis+14]. Additionally, the client encrypts all classical messages using a
private secret key.

In the presence of noise, even a faithfully operating server produces erroneous results
that are indistinguishable from nefarious deviations from the honest protocol [Aha+17;
FK17; Bro18; GKK19]. Blindness allows the client to perform tests on the quantum
resources provided by the server without leaking information, and subsequently verify
the outcomes to establish confidence in the quantum operations performed by the server.
The protocol implemented here achieves this by interleaving “computation” and “test”
rounds; the latter use the same quantum resources as the former and are therefore
indistinguishable from them. A statistical argument provides bounds for the security and
robustness of this protocol for the important class of bounded-error quantum polynomial
time (BQP) decision problems [Lei+21]. Accepting incorrect results would be considered
a security issue, whilst a protocol that rejects all results cannot be considered robust
against noise. The client accepts the result if the observed fraction of failed test rounds,
pfail, is below a chosen threshold, ω, which must be below the theoretical maximum,
ωmax. If this condition is met, the overhead due to repetition is low: the probability of
accepting an incorrect result decreases exponentially with the number of rounds. The
minimum value for ω depends on the amount of noise in the devices. The client assumes
a maximum expected test round failure rate, pmax, and chooses ω > pmax such that
the probability of rejecting any result also decreases exponentially with the number of
rounds, making the protocol robust to a limited amount of noise.

For universal quantum computation, particular graph states and a discrete set of
single-qubit measurements, {B̂ϕ}, are sufficient [MDF17]. Without loss of generality,
B̂α = cos(α)X + sin(α)Y, where α ∈ Θ = {0, π/4, . . . , 7π/4}, and X and Y are Pauli
operators. Graph states are specific multi-qubit states in which vertices represent
qubits and edges represent entanglement created by two-qubit CZ gates [Fig. 7.1], where
CZ = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Z is the controlled-Z gate, which applies the Pauli operator
Z = |0〉〈0| − |1〉〈1| to the target qubit conditioned on the state of a control qubit. The
qubits are measured in a fixed order, using the basis B̂α` at node `, where α` depends
on the algorithm and on previous measurement outcomes. In test rounds, the graph
state is broken down into isolated “trap” qubits by introducing Z eigenstates at adjacent
vertices, so-called “dummies”, which commute with the CZ gate.

Here we consider prepare-and-send protocols to implement blind quantum computa-
tions on a linear cluster state [Fig. 7.2]. Two physical qubits are sufficient to implement
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Initialisation Interaction ℓ = 1 Interaction ℓ = 2

Z B̂δ1 B̂δ2

B̂θ̃1
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B̂θ̃3

Memory: |0⟩ |θ1⟩

Network: |θ1⟩ |θ2⟩ |θ3⟩ · · ·
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Figure 7.2: Protocol used to generate a linear cluster state using a trapped-ion quantum
server and a photonic client. As the network qubit (violet, 88Sr+ ion) is entangled with
the emitted photon, the client can steer the state of the network qubit by measuring
the polarisation of the photon. The outcome a` ∈ {0, 1} of a polarisation measurement
in the basis B̂θ̃`

steers this qubit into the state |θ1〉 =
∣∣∣θ̃` + a`π

〉
. In the initialisation

step, the server transfers this state onto a memory qubit (orange, 43Ca+ ion) such that
the network qubit can be steered again [Drm+23a]. Every subsequent interaction step
extends the size of the cluster state; the client steers the network qubit remotely into
|θ`+1〉, the server entangles it (red CZ gates), and performs a measurement in the basis
B̂δ` , where δ` is provided by the client. See text for details.

linear clusters of arbitrary length, as qubits can be reinitialised after every mid-circuit
measurement. The first qubit – the network qubit – can be steered into an arbitrary
state by the client using remote state preparation (RSP) [Ben+01], while the second
qubit – the memory qubit – carries the information encoded in the leading node of the
expanding linear cluster state. To blindly run the measurement-based protocol outlined
above with measurement angles α`, the client performs RSP into superposition states,
|θ`〉 = (|0〉 + exp(iθ`) |1〉)/

√
2, with secret random phase reference, θ` ∈ Θ, for every

qubit ` = 1, 2, . . . , q in the cluster computation. In the server’s global phase frame, the
measurement angles are then given by (α` + θ`), where θ` acts as the classical encryption
key for α`. To ensure that the corresponding measurement outcomes, m` ∈ {0, 1},
are maximally mixed, the client hides bit flips in half of the measurement angles that
are indicated by secret key bits, r` ∈ {0, 1} [Eq. (7.1)]. The client can recover the
unencrypted measurement outcomes as m`⊕ r`. We break the cluster state into discrete
interaction steps between the server and the client, starting after the initialisation step
[Fig. 7.2], which prepares the memory qubit in |θ1〉. At each interaction of a computation
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round, indexed by `, the client performs RSP to steer the network qubit into |θ`+1〉 and
communicates

δ` = (−1)R`−1α` + θ` + πr` (7.1)

to the server, where R` = ⊕
1≤j<`/2(m`−2j ⊕ r`−2j) is the adaptive feedforward correction

from decrypted previous measurements. After applying the CZ gate and a SWAP gate,
the server measures the network qubit in the B̂δ` basis and returns the result, m`, to the
client [interaction blocks in Fig. 7.2]. This process leaves the state of the leading cluster
state node on the memory qubit, encrypted by Rq, while the network qubit is available
for further RSP. To complete the cluster computation, the client needs to specify the
angle δq+1 for a final measurement of the memory qubit. The client randomly assigns
each round a secret label identifying them as a computation or a test, where the optimal
proportion of rounds which are tests depends on the protocol parameters [Lei+21]. In
test rounds, trap qubits are prepared in |θ`〉 and adjacent dummy qubits in the Z basis
eigenstate |r`〉. This step disentangles adjacent trap qubits, enabling the client to predict
their outcomes, m`

!= r`, if they are measured with δ` = θ` + πr`.

Server. The server controls an ion trap quantum processor containing one 88Sr+

and one 43Ca+ ion. Ion-photon entanglement needed for RSP is generated by fast
excitation and spontaneous decay [Bli+04] on the 422 nm transition of 88Sr+. The
joint state of the photon polarisation and the spin state of the ion can be described
by |Ψ〉 ∝ |H〉 |0〉+ |V 〉 |1〉, where |H〉 and |V 〉 are orthogonal polarisation states. The
single photons are collected by a high-numerical aperture lens and coupled into a
single-mode optical fibre [Ste+20], which forms the quantum link with the client. The
memory qubit [Drm+23a] is encoded in 43Ca+, which provides a long coherence time
and is unaffected by concurrent manipulation of 88Sr+. Thus, 88Sr+ can be used for
mid-circuit measurements and sympathetic cooling between interaction steps. Errors
during the initialisation step are detected in real time [merr = 1 in Fig. 7.2] in which
case the current round is aborted. The CZ gate required to build the cluster state is
combined with the SWAP gate into an iSWAP gate. This enables reuse of 88Sr+ for RSP
whilst the current state of the computation is retained on the memory qubit until the
client initiates further interactions, or is measured when the end of a round is reached.
The coherence time of the memory qubit is ∼ 100ms and can be extended to ∼ 10 s
using dynamical decoupling [Drm+23a]. The ion trap server automatically performs
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calibration routines to maintain the stability of the photonic interface, the micromotion
environment [Nad+21], the magnetic field [Mai20], and laser detunings.

Client. The client receives single photons from the server through an optical fibre. The
average time taken to obtain a single-photon herald is ≈ 100 µs; hence the probability for
no herald to occur within the timeout period of 1ms is < 10−4. The quantum capability
of the client is reduced to projective polarisation measurements of these photons in a
basis that can be dynamically changed using a fast-switching polarisation analyser. The
polarisation analyser [Fig. 7.3] can be configured to perform an arbitrary polarisation
rotation by changing the voltages on two electro-optic modulators (EOMs). Following
this rotation, a polarising beamsplitter and two avalanche photodiodes implement the
polarisation measurement. This measurement remotely steers the network qubit into a
state that depends only on the polarisation measurement basis and the measurement
outcome obtained, information known exclusively to the client [θ̃` and a` in Fig. 7.2].
Birefringence in the optical fibre transforms the photonic state before reaching the
client by an unknown unitary operation, which drifts on a timescale of ∼ 10min due
to thermal effects. To compensate for this drift, the client periodically recalibrates the
EOM voltages [Fig. 7.3(c)].

Blindness. We now consider information that could leak to an adversarial server,
concerning the client’s choice of photon measurement basis. We distinguish between
information leaked via the network qubit, which is controlled by the server, and leak-
age through classical signals, which are controlled by the client [Table 7.1]. In our
demonstration, mismatched electronic delays between heralds corresponding to different
polarisation measurement outcomes are the dominant cause for information leakage
in both these cases. However, as the client is in full control of the relevant classical
signals, these issues could be eliminated and information leakage to the server could be
reduced to ∼ 0.001 bits per interaction step. The remaining leakage would be dominated
by imperfections in the polarisation optics used by the client to perform the photon
polarisation measurement.

7.3 Results

We realise different quantum computations with one and two interaction steps, see
Figs. 7.4(a) and 7.4(b), respectively. We could use the output qubit in further interaction

219



CHAPTER 7. VERIFIABLE QUANTUM COMPUTING WITH TRAPPED IONS

from
server

E
O
M

λ
4

E
O
M

P
B
S

p

s

APD
s

Ua

Ub

(a)

−10 −5 0 5 10

−10

−5

0

5

10

Ua / V

U
b
/
V

(b)

X

Y

0.968(3)

0.986(4)

0.970(3)
0.979(5)

0.966(3)

0.973(5)
0.965(3)

0.980(5)

X

Z 0.997(1)

0.991(2)

(c)

Figure 7.3: The client uses a fast-switching polarisation analyser to perform remote
state preparation (RSP). (a) The control voltages of two EOMs separated by a λ/4
waveplate enable the client to arbitrarily rotate the polarisation measurement basis given
by the PBS. (b) Precalibration measurements with laser light are used to reconstruct the
measurement basis implemented by the device as a function of the control voltages Ua
and Ub. Polarisation ellipses are shown for the basis states heralded by detector p, where
the colour represents the phase of these states. (c) To find the control voltage settings
Ua and Ub which maximise the fidelity to each of the 10 target states needed during the
protocol, we perform tomography on the network qubit after RSP over a range of control
voltages. The averaged results from 36 calibrations performed over 2 weeks of operation
are shown in the Bloch sphere representation of the network qubit. Values indicate the
fidelity of the states to the pure target state, with standard deviations obtained from
bootstrapping.
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Figure 7.4: Experimental results on an expanding linear cluster state, where the leading
qubit is measured in the Z basis after (a) one interaction step, and (b) two interaction
steps between the client and the server. (a) While the server observes mixed outcomes
(squares), the client can decode the results using the secret keys. A fit (solid curve) to
the decoded computation outcomes (circles) is shown to guide the eye. The expected
average test round error for the two-node cluster state (crosses) is below the threshold
for verification (dashed line). Error bars indicate binomial standard errors. (b) The
decoded computation outcome is shown as a function of blind measurement angles α1
and α2.
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Channel Source Method Leakage / bits

Observed Optimised

classical
measurement angles enforced 0 0
heralding efficiency inferred 0.00006 0.00006
heralding delay inferred 0.35 0.00007

quantum
measurement basis inferred 0.035 0.0007

imbalanced outcomes inferred 0.00029 0.00026
— measured 0.031(4) —

Table 7.1: Sources of information leakage. The optimised values assume matching herald-
ing delay (from excitation of 88Sr+ until electronic detection) and balanced polarisation
measurement outcomes, which could be achieved with minimal changes to the existing
client apparatus. We use quantum state tomography to quantify the information that
the server could gain from measuring the network qubit and find good agreement with
independent estimates inferred from known imperfections in the photon polarisation
measurement basis and imbalanced polarisation measurement outcomes. The values are
to be compared with the number of bits of information (3 bits) that specify the client’s
photon measurement basis, θ`.

steps, or make a final measurement in the basis B̂δq+1 to complete the (q+1)-node cluster
computation. In this demonstration, however, the output qubit is always measured
in the Z basis. Since this measurement commutes with the CZ gate preceding it,
the computation result is equivalent to the result for a cluster state with one fewer
node. The actions of the one- and two-step interactions are therefore given by the
computations HZ(α1) |+〉 and X(α2)Z(α1) |+〉, respectively, where H is the Hadamard
gate, X(α) = exp

(
−iα2 X

)
and Z(α) = exp

(
−iα2 Z

)
are single-qubit rotations, and α1

and α2 are encrypted using Eq. (7.1) during the protocol. From the server’s perspective,
the outcomes appear maximally mixed [squares in Fig. 7.4(a)] as a result of the bit-flip
encryption, δ` ∝ r`π, which is applied by the client in both the computation and test
rounds. The client on the other hand can use the round type (computation or test)
and encryption key (r`) to decode the outcomes. The decoded computation outcomes
indicated by the circles in Fig. 7.4(a) and the colourmap in Fig. 7.4(b) match the expected
fringe pattern as a function of the blind measurement angles α1 and α2. Experimental
imperfections lead to a reduction in contrast and to phase shifts. The fraction of failed
tests [bottom panel in Fig. 7.4(a)] is nevertheless low enough to perform a fully verified
two-node cluster computation: we observe an error rate of ptrap

fail = 0.201(3) on the trap
qubit. Due to the Z basis measurement performed on the final qubit, the correctness of
the dummy qubit can be verified as well: we obtain pdummy

fail = 0.095(2). The expected
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average test round failure probability for the two-node cluster state is therefore ∼ 0.15,
which is significantly below ωmax = 0.25 required for secure and robust verification of the
linear cluster state with two nodes. We could change the final measurement basis from
Z to B̂δq+1 with only one additional π/2 pulse, which would have no significant impact
on the error budget. For the three-node cluster computation, the observed failure rates
indicate that verification is not possible in this case, largely due to technical limitations
on the ≈ 0.91 fidelity of the iSWAP gate [Drm+23a].

7.4 Discussion

We have implemented a protocol for blindly delegating quantum computations to a
trapped-ion quantum processor, using a client apparatus that requires only single-photon
polarisation measurements and classical communication. We have established bounds on
the information that could be leaked to the server through both classical and quantum
channels that are present in our implementation. We have shown that the size of the
cluster state can be increased without increasing the number of physical qubits in the
server and without modifications to the client hardware. If more memory qubits were
added to the server [Wri+19], the computational space could be extended to higher-
dimensional cluster states. We have taken steps to include verification into the protocol,
and the measured test round error indicates that the amount of noise in the system
is low enough to perform a fully verified computation on the two-node cluster state
robustly and reliably. For a threshold ω = 0.18 and n = 20 000 repetitions (of which
9800 are test rounds), we predict that the probability of accepting an incorrect result of a
BQP decision problem with small inherent algorithmic error would be 3× 10−9, and the
probability of rejecting any result 2× 10−9. This approach is expected to provide both
security and robustness for larger cluster states and other algorithms as long as the errors
remain below the size-dependent threshold, ωmax ≈ 1 − (3/4)2/q, where q is the total
number of qubits in the cluster state. As the protocol that we have implemented does
not rely on error correction, one cannot expect to achieve scalability without reducing
the errors per interaction step. We identify the infidelity of the iSWAP gate as the
leading error source in this proof-of-principle demonstration. We note that in other
systems, CZ gates between 88Sr+ and 43Ca+ with fidelity exceeding 0.995 have been
demonstrated [Hug+20]. However, the state-of-the-art ion-photon entanglement fidelity
of 0.979(1) (this setup) would also need to be improved further in order to meet the
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requirements for fault-tolerance. We note that the ion-photon entanglement fidelity is
limited primarily by technical imperfections in the optical setup.

In comparison with previous experimental implementations [Bar+12; Bar+13; Fis+14;
Gre+16], which were based on purely photonic platforms without quantum memory, this
work overcomes several major challenges associated with real-world BQC deployments.
As quantum logic operations in the server are deterministic and the interaction with the
client is heralded, our implementation eliminates the need for post-selection, avoiding
the associated efficiency, scalability, and security issues [Bar+12; Bar+13; Gre+16].
Here, photon losses in particular do not present a security threat, and the use of a
memory qubit combined with fast and adaptive hardware facilitates true shot-by-shot
randomisation of all protocol parameters in real time.

Future realisations could involve a complex network of servers and clients. Photons
could be routed to a number of clients using optical switches, and the distance to
the server increased using frequency conversion of the photons to telecommunication
wavelengths [Kru+19] or using recent developments in fibre technology [Fok+23]. The
photonically interfaced trapped-ion quantum information platform demonstrated here
paves the way for secure delegation of confidential quantum computations from a client
with minimal quantum resources to a fully capable, but untrusted, quantum server.

7.5 Appendix: Remote state preparation by steer-
ing

In this section, we show that steering can be used to securely implement remote state
preparation. In particular, only one-way quantum communication from the server to
the client is sufficient, and the preparation of entangled pairs by the server does not
need to be trusted.

Lemma 7.5.1. Protocol 8 implements Resource 7 with perfect correctness.

Proof. After the client’s measurement, the remaining single-qubit state in the server’s
quantum register can be described by U †1Xm|0〉. The server’s output therefore becomes
U2U

†
1Xm|0〉 = U |0〉.

Lemma 7.5.2. Protocol 8 implements Resource 7 with perfect security against a mali-
cious server.
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Resource 7 Remote State Preparation

Inputs:
• Client: the classical description of a single-qubit unitary U .
• Server: no input.

Outputs:
• Client: no output.
• Server: the single-qubit state U |0〉.

Simulator 3

Instructions:
1. The simulator expects a single-qubit quantum state |φ1〉 as an input from the

ideal functionality on its left interface.
2. It expects a single-qubit quantum state |φ2〉 as an input from the distinguisher

on its right interface.
3. It samples a single-qubit unitary U1 randomly from the Haar measure.
4. It applies the two-qubit unitary U1 ⊗ I to the state |φ1〉|φ2〉 and performs a Bell

measurement on it, obtaining measurement outcomes m1 and m2.
5. It then sets U2 = U †1Zm1Xm2 and outputs the classical description of U2 on its

right interface to the distinguisher.

Proof. As part of the proof, let σ be defined as in Simulator 3.

It remains to be shown that the composition of Resource 7 with σ (the ideal world)
generates the same distribution on its interfaces as the client’s instructions of Protocol 8
(the real world).

Let |ψ〉 be the purification of the distinguisher’s quantum register just before sending
the first qubit of its register to the client. Then, in the real world, after the client’s
measurement, the state of the server’s quantum register can be described (up to a global
phase) by

〈0|(XmU1 ⊗ I)|ψ〉, (7.2)

and the classical message from the client contains the description of the unitary UXmU1,
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Protocol 8 RSP by steering

Inputs:
• Client: the classical description of a single-qubit unitary U .
• Server: no input.

Required resources:
• Secure one-way quantum channel from server to client.
• Secure one-way classical channel from client to server.

Instructions:
1. The server prepares a two-qubit Bell state |Ψ〉 = 1√

2 (|00〉+ |11〉), and sends one
of the qubits to the client.

2. The client samples a single-qubit unitary U1 randomly from the Haar measure. It
then applies U1 to the state received by the server and performs a measurement
on it in the computational basis, obtaining measurement outcome m.

3. The client sends the classical description of the single-qubit unitary U2 = UXmU1
to the server.

4. The server applies U2 to the remaining single-qubit state, and sets it as its output.

where U1 is chosen according to the Haar measure. Substituting U1 for XmU1 yields

〈0|(U1 ⊗ I)|ψ〉, (7.3)

and the classical description of UU1 without changing the distribution of U1.

In the ideal world, after the simulator’s measurement, the state of the server’s
quantum register can be described (up to a global phase) by

〈Φ+|(Zm1Xm2U1 ⊗ I)(U |0〉 ⊗ |ψ〉), (7.4)

and the classical message from the client contains the description of the unitary
U †1Zm1Xm2 , where U1 is chosen according to the Haar measure. This can be rewritten
equivalently as

〈0|(U †U †1Zm1Xm2 ⊗ I)|ψ〉. (7.5)

A change of variables from U1 to Zm1Xm2U †1U
†, without changing the distribution of U1,
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yields

〈0|(U1 ⊗ I)|ψ〉, (7.6)

and the classical description of (Zm1Xm2U †1U
†)†Zm1Xm2 = UU1, which concludes the

proof.
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Chapter 8

Multi-client blind quantum
computing on the Qline

Universal blind quantum computing allows users with minimal quantum resources to
delegate a quantum computation to a remote quantum server, while keeping intrinsically
hidden input, algorithm, and outcome. State-of-art experimental demonstrations of such
a protocol have only involved one client. However, an increasing number of multi-party
algorithms, e.g. federated machine learning, require the collaboration of multiple clients
to carry out a given joint computation. In this work, we propose and experimentally
demonstrate a lightweight multi-client blind quantum computation protocol based on a
novel linear quantum network configuration (Qline). Our protocol originality resides in
three main strengths: scalability, since we eliminate the need for each client to have its
own trusted source or measurement device, low-loss, by optimizing the orchestration of
classical communication between each client and server through fast classical electronic
control, and compatibility with distributed architectures while remaining intact even
against correlated attacks of server nodes and malicious clients.

This chapter is based on the paper “Multi-client distributed blind quantum computation
with the Qline architecture” [Pol+23] which is joint work with Beatrice Polacchi, Leonardo
Limongi, Gonzalo Carvacho, Giorgio Milani, Nicolò Spagnolo, Marc Kaplan, Fabio
Sciarrino, and Elham Kashefi, and which has been published in Nature Communications.
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8.1 Introduction

Despite the increasing technological progress in the manipulation of many-qubit systems
[Bao+23; CDG21; Aru+19], providing quantum computing as a service for end-users
poses several challenges, including scalability, privacy, and integrity. Indeed, in order
to achieve true quantum advantage from emerging devices, they must scale up beyond
the current monolithically designed noisy intermediate-scale quantum regime. As of
today, the only viable solution being pursued by all qubit platforms is modularity
and interconnected architecture, where photonic links are considered the best option.
Moreover, it is also clear that quantum machines need to be integrated into cloud services
or data centers, allowing multiple clients to connect locally or globally to access these
devices. In such a context, the issue of keeping the computation and data protected
from malicious parties will be a key challenge for such large-scale adaptation. Notably,
photonic links to quantum servers enable the capability of achieving informational
security for delegated computing, known as blind quantum computing (BQC), which is
not achievable using only classical communication between client and server [Aar+19].
Such a protocol builds on the measurement-based model for quantum computation
[RB01; Rau09] that exploits mid-circuit measurements for teleportation-based quantum
computing on encrypted quantum states sent to a remote server via a quantum link
[BFK09; Lei+21]. Over the last decade, many BQC protocols have been proposed
[Liu+23; Kap+22; Ma+22; GWK17; Aha+17; GKW15; PF15; HPF15; HM15; Mor14;
MF13a; SKM13; MPF13; RUV12; MF12; DKL12], together with proof-of-concept
experimental demonstrations in different settings [Drm+23b; SZ18; Hua+17; Gre+16;
Tak+16; Mar+16; Fis+14; Bar+13; Bar+12]. However, the challenge of multi-client
settings has been explored only theoretically due to the high resource requirements of
the proposed protocols [Kap+23; SCY21; QW21; Cia+20; KP17].

Yet, a growing number of classical delegated computing tasks require that multiple
clients collaborate to carry out a joint function, e.g. federated machine learning tasks
[Kon+16; Yan+19]. Notably, quantum counterparts of such algorithms have been
proposed as well [CY21], including a federated quantum machine learning protocol based
on BQC [LLD21].

In this chapter, we propose a modular lightweight distributed architecture for multi-
client BQC based on the recently proposed Qline quantum network link configuration
[Doo+23], that enables scalable client insertion. With such an architecture in mind,
we present a tailor-made multi-party blind quantum computing protocol such that the
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clients in the Qline only own trusted single qubit rotation devices, while the overall
protocol still provides privacy for the joint computation performed by several users on
the cloud. In the Qline network architecture, the quantum resource is first generated
by a potentially untrusted server, then distributed to the clients, such that each client
can apply arbitrary single-qubit operations on the incoming qubits and, at the end
of the line, measured by a second again potentially untrusted server. An analogous
architecture was first introduced in [HBB99] for quantum-assisted secret sharing, and
later used for various tasks such as quantum key distribution or secure computation
[Cle+17; Gri+15; Sch+05]. The main advantages of such a structure reside in the
possibility to integrate it easily into larger-scale networks, its compatibility with key
establishment protocols [Doo+23], and its low hardware complexity. In order to simplify
the resource requirements of the multi-client BQC protocol in [KP17; Kap+23], we
show that, within such an architecture, it is enough that each client in the Qline adds
a new layer of encryption to the flying qubits that will be used as the common key
for their later private joint computation on the remote server. Such collaboration may
be typical, for instance, of privacy-preserving machine learning algorithms where each
client’s input data and parameters related to the algorithm should remain private to
all parties. To implement it, we employ a fibered photonic platform equipped with
genuine measurement adaptivity to enable deterministic computation [RB01]. Within
this setup, we are able to show the blindness and the correctness of the protocol, in
both cases where the function to be computed has a classical or a quantum output.
Our experimental proof-of-concept demonstrates a two-client scenario that can be easily
extended to larger and more complex quantum networks featuring any number of clients
at arbitrary distances.

8.2 A multi-client BQC protocol

In this section, we describe in detail the protocol proposed and successfully implemented
in this work. It is built on the theoretical premises in [Kap+23; KP17], and tailored
to a Qline architecture [Doo+23]. Differently from the single client original protocol
of [BFK09] depicted in Fig. 8.1, the results of [Kap+23; KP17] enable multi-client
BQC by exploiting secure multi-party computation (SMPC), whose aim is to allow
several users to collaboratively compute a joint function on their private data. The
classical SMPC functionality enables coordination of the parties in a delegated quantum
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Update
measurement 

Measurement

Outcome

...

Figure 8.1: Conceptual scheme of BQC. In the BQC protocol, a client randomly prepares
n qubits and sends them to a quantum server. The server uses the qubits to form a
resource state and, at each of the O(n) rounds of the computation, it measures one qubit
in the measurement basis given by the client. Then, it gives back the measurement
outcome to the client, who decides accordingly on the next measurement basis. Figure
inspired by [Fit17].

computing task, such that the full computation details are blind not only to the server,
but also to potentially dishonest clients that collude with it. However, implementing such
functionality would need additional rounds of classical communication among the clients
and server, during which it would be unfeasible to coherently store the quantum state.
Therefore, to optimize the storage time, in our implementation, we substitute classical
SMPC with a trusted third party (TTP) that mediates the communication between the
clients and the server reducing the number of rounds, while the blindness of the protocol
is still proven against any strict subset of colluding malicious adversaries. In this way,
the quantum state needs to be stored for significantly shorter times than if using full
classical SMPC, thus enabling our first proof-of-concept experimental demonstration
of a two-client BQC. To motivate our experimental design, this section is divided into
two parts: the first one is devoted to the description of a two-client example, which we
implemented experimentally demonstrating the key building blocks that are required for
a fully scalable solution. In the second part, we present the extension to the n clients
case and universal quantum computing resources.

8.2.1 The two-client protocol

Consider Alice and Bob wish to run a joint computation on a remote server. Alice has
private classical data x1 and x2 while Bob has private gate parameters φ1 and φ2, and
the target joint circuit is

(
MX ⊗MX

)
(Rz(φ1)⊗Rz(φ2)) CZ12 (Zx1 ⊗ Zx2) (|+〉 ⊗ |+〉) (8.1)

232



8.2. A MULTI-CLIENT BQC PROTOCOL

as shown in Fig. 8.2a. This is a typical building block of any large-scale privacy-
preserving QML, such as the one proposed in [CY21]. In what follows we demonstrate
the steps to make the above joint computation both distributed and secure as shown in
Fig. 8.2b.

State preparation. A source of maximally entangled bipartite states, S1, distributes
two-qubit states along two quantum channels, of the form:

|ψ〉 = 1
2 (|00〉+ |01〉+ |10〉 − |11〉) (8.2)

Alice receives the two qubits, and applies single-qubit z-rotations of angles θAi to them,
randomly chosen in the set A = {0, π/4, 2π/4, ... 7π/4}. This will hide (via quantum
one-time padding) her classical input data which would be encoded on these qubits
via Zxi operations. Moreover, she chooses two random bits rA1 , rA2 that will later hide
the outcome of the computation. She communicates her secret parameters to the TTP.
She then sends her two encrypted qubits to the second client, Bob, who applies further
random θB1 , θ

B
2 z-rotations, again chosen from the set A to one-time pad his private

algorithm parameter φ1, φ2. Bob also chooses two random bits rB1 , rB2 for the encryption
of the output as well. He then communicates his secret parameters to the TTP. From
now on, we will use the following definitions: θi = θAi + θBi and ri = rAi ⊕ rBi . The
resulting quantum state at this stage is the following:

|ψ〉 = 1
2
(
|00〉+ eiθ2 |01〉+ eiθ1 |10〉 − ei(θ1+θ2) |11〉

)
(8.3)

This state is then sent to server S2.

Interaction and measurement stage. From now on, the clients and S2 only
communicate classically, through the TTP. The protocol requires two rounds, one for
each qubit to be measured. The blind measurement angle δi at the i−th round, for
i = 1, 2, is computed by the TTP according to the formula:

δi = θi + xiπ + (−1)m
true
(i−1)φi + riπ (8.4)

where mtrue
0 = 0 and mtrue

1 = m1 ⊕ r1. Analogously to the first measurement outcome,
the outcome of the second measurement is decrypted according to the formula: mtrue

2 =
m2 ⊕ r2 before giving it back to the clients. A slight change in the protocol is needed
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Figure 8.2: Conceptual scheme of the two-client BQC and distributed quantum computing
over a Qline architecture. a) The desired joint quantum circuit computation where
x1 and x2 are Alice’s private input data and φ1 and φ2 the private angles of Bob’s
algorithm. b) The same computation of the circuit presented in a) is encrypted to
preserve the privacy of each party’s information. In our two-client BQC protocol, a
quantum channel connects a source of bipartite quantum states to two clients disposed
along the Qline. Each client chooses their secret parameters θji , r

j
i , xi, φi, for i = 1, 2

and j = A, B, and applies z-rotations to both qubits. All secret parameters and
measurement outcomes pass through a TTP to compute the transformed measurement
bases δi and the corrected outcomes. At the end of the line, the quantum state is sent
to the server S2 to carry out the desired computation, which is carried out through
two rounds of classical communication between clients, TTP, and the server S2. c)
Generalization of our architecture to m Qlines with n clients distributed along them. In
a Qline, a quantum state source distributes single qubits and each client applies random
rotations to all qubits. At the end of the line, a powerful quantum server employs the
received qubits to generate the resource state for the computation and calculate a joint
function.
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in the case where a quantum function is computed, i.e. the output qubit must be
prepared by the clients in the state |+〉 [BFK09]. The correctness of the protocol is
straightforward and can be directly obtained from [BFK09; KP17; Kap+22]. However,
the security proof is more subtle compared to previous works that were based on trusted
state preparation for each client. We first present the generalization of our protocol and
then provide the full proof of security that is applicable to this special case as well.

8.2.2 Generalization to the multi-client scenario

In this section, we generalize our protocol to a scenario where n clients want to perform
a joint computation on a possibly larger resource state. Blindness should be guaranteed
for any single honest client. We consider the target computation to be defined as a
measurement pattern [RB01] by the measurement angles (φv)v∈V , where v ∈ V ranges
over all qubits in the resource graph state. These angles can be fixed and publicly
known, or jointly input by any subset of clients. In the latter case, blindness holds
for the measurement angles as well. The input qubits I ⊂ V are partitioned into sets
(Ij)j∈{1,...,n}, where Ij belongs to the j-th client who has the bit string xj ∈ {0, 1}|Ij | as
input. To keep each client’s input blind, it is required that each qubit in the resource state
travels once along the Qline and accumulates random rotations by all clients, as depicted
in Fig. 8.2c. In this way, a resource state on m = |V | qubits would require m Qlines.
However, this process may be (partially) parallelized, in the sense that multiple qubits
can be sent along the Qline at once – as long as the clients can perform the necessary
rotations in parallel as well. After the server received the qubits that have passed
through the Qline, it follows a standard execution of the BQC protocol (Protocol 2).
As all communication from this point forward is entirely classical, the TTP governs the
instructions to the server for the remainder of the protocol. A detailed description of
the full multi-client protocol on scalable resource states is given in Protocol 9.

Note that the orchestrator from Protocol 9 must be trusted, but is an entirely
classical party. To remove all trust assumptions on this party, it can be replaced with
any composably secure classical SMPC protocol which is performed by the clients and
the server. Moreover, much of the calculations that the orchestrator needs to perform,
including the sampling of random coins and the evaluation of the formulae for the
corrected measurement angles, can be done in a classical pre-processing step. The
computation during the quantum phase then boils down to the choice of one of two
possible measurement angles based on the previously reported measurement outcomes.
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Protocol 9 Multi-Client Blind Quantum Computation

Public Information:
• A graph G = (V,E, I, O) with input and output vertices I and O, respectively.
• A partition (Ij)j∈{1,...,n} of the input vertices, where Ij belongs to client j.
• A partial order � on the set V of vertices.

Inputs:
• Client j has a classical bit string xj ∈ {0, 1}|Ij |.
• The n clients collaboratively input a set of angles (φv)v∈V , and a flow f on G

compatible with �.
• The orchestrator and the server have no inputs.

Protocol:
1. The n clients send all of their inputs to the orchestrator.
2. The orchestrator and the server perform the BQC Protocol S4. For every |+θ〉-

state that the orchestrator would need to send to the server, they instead perform
the following:
(a) The server prepares a |+〉-state.
(b) All parties perform one execution of the Collaborative Remote State Rotation

Protocol S5, where the server uses the |+〉-state as an input, and the
orchestrator inputs the angle θ.

(c) The server uses the output state in the BQC Protocol S4.
3. The orchestrator distributes the classical output among the clients. The server

sends the output qubits in O to the designated clients, with the orchestrator
providing the decryption keys.

Finally, it is worth mentioning that the requirement that every client has access to each
Qline can be weakened when accepting stronger trust assumptions. Blindness holds as
long as there exists at least one honest client along each Qline. Therefore, even if not
every client participates at each Qline, blindness is still guaranteed if we restrict the
adversarial patterns to not corrupt all clients along any Qline at once.

In the concrete case of our experiment, the graph G is a two-qubit cluster state, that
is, V = {1, 2}. Both qubits are Alice’s input qubits, so I1 = I = V , while Bob has no
input qubits (I2 = ∅) but chooses the measurement angles (φ1, φ2). We consider two
different computations: in the first case, we interpret both measurement outcomes as
the classical output of the computation, while in the second case, we consider the second
qubit to be the quantum output of the computation, hence O = {2}.
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8.3 Security

In our protocol, the clients’ quantum abilities are restricted to receiving single-qubit
states, applying a random z-rotation to it, and forwarding it to the next client or server.
From the perspective of an honest client, this behavior is exactly captured by the Remote
State Rotation (RSR) functionality introduced in [Ma+22]. The latter showed that
RSR can indeed be used in the context of the BQC protocol to delegate a universal
quantum computation with perfect blindness. This immediately implies the security
of the proposed protocol with a single honest client and an untrusted server, as the
instructions of the protocols exactly coincide. By a similar argument, security can be
shown for the two-client and multi-client generalizations. In the spirit of the security
proof in [Kap+23], the sequential rotations of a single qubit by all clients along the Qline
can be seen as a collaborative version of RSR where the role of the RSR-client is now
taken by an entirely classical trusted virtual party, the orchestrator. The entire execution
of the protocol then becomes one run of the BQC protocol between the orchestrator
and the server. Finally, in real-world implementations, the orchestrator can be replaced
by a classical SMPC protocol. Security follows by composition of the above-mentioned
building blocks which have all been proven to be composably secure in the Abstract
Cryptography framework [MR11].

In the following, we provide the details of the security proof for the full multi-client
blind quantum computation protocol. The security analysis uses techniques and results
from previous work on the Qline architecture [Doo+23], on quantum secure multi-party
computing (QSMPC) [Kap+23], and on blind delegated computing using trusted Remote
State Rotation (RSR) [Ma+22].

8.3.1 Ideal functionalities

In the AC framework, the desired, perfect behavior of protocols is captured by resources
that we call ideal functionalities. We present the ideal functionalities of the resources
relevant to the presented security proof in the following.

Resource 8 describes the Remote State Rotation functionality, as defined in [Ma+22,
Definition 7]. Its purpose is to capture the quantum abilities of the clients which are
limited to performing single-qubit rotations around the z-axis.

Resource 1 captures Blind Delegated Quantum Computing without verifiability [Dun+14].
In our version of the ideal functionality, we assume the delegated computation to be
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Resource 8 Remote State Rotation
Inputs:

• The client sends an angle θ ∈ A = { jπ4 |j = 0, . . . , 7}.
• The server sends a single-qubit quantum state ρ.

Computation by the resource:
1. Set ρ′ = Rz(θ)ρ(Rz(θ))† and return ρ′ to the server.

restricted to classical inputs. A malicious server (setting c = 1) has the option to corrupt
the state that the client receives at the end of the protocol.

Note that universal computation is possible with Resource 1 if U is a universal
quantum map, and the description of the target quantum computation is encoded in
the client’s input x. For honest servers, the filter ⊥c=0 sets c = 0 and blocks access to
the other interface on the server’s side.

Finally, we need to describe the ideal functionality of our target Resource 9, Multi-
Client Blind Quantum Computation. As before, the jointly evaluated computations are
restricted to classical inputs.

Resource 9 Multi-Client Blind Quantum Computation

Inputs:
• For j = 1, . . . , n, client j sends a classical bit string xj . It also inputs cj ∈ {0, 1}

as a filtered interface.
• The server inputs a flag c ∈ {0, 1}.
• All malicious parties, that is all clients with cj = 1, and the server if c = 1,

jointly send a quantum state ψ and the description of a map E.
Computation by the resource:
1. If cj = c = 0 for all j = 1, . . . , n, the resource computes the correct output
y = U

(⊗n
j=1 |xj〉〈xj|

)
and sends it to the clients.

2. Otherwise, the resource computes the corrupted output y =
E
(⊗n

j=1 |xj〉〈xj| ⊗ ψ
)
and sends it to the clients.

8.3.2 Security of the full protocol

Universal Blind Quantum Computing [BFK09] is a protocol that allows a client to
delegate a computation to a server with the guarantee that the server cannot learn
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anything about the computation, its inputs, or its outputs, except for the amount of
resources that were used. In other words, only the computation graph and the order of
qubits are leaked to the server. Protocol 10 is a version of the UBQC Protocol 2 that
does not require universal resource states, but rather works directly on the graph that
is used to implement the target computation.

Protocol 10 Blind Quantum Computation

Public Information:
• A graph G = (V,E, I, O) with input and output vertices I and O, respectively.
• A partial order � on the set V of vertices.

Inputs:
• The client has as input a classical bit string x ∈ {0, 1}|I|. It further inputs a set

of angles (φv)v∈V , and a flow f on G compatible with �.
• The server has no inputs.

Protocol:
1. For all v ∈ V , the client samples an angle θ(v) ←R A uniformly at random,

prepares the single-qubit state
∣∣∣+θ(v)

〉
, and sends it to the server.

2. The server applies the entangling operation according to the graph G, i.e., for
every edge {v, w} ∈ E, the server applies the two-qubit gate CZvw.

3. For all v ∈ V \O, such that the partial order � is respected, the client and the
server perform the following interactive steps:
(a) The client uses the previous (corrected) measurement outcomes to compute

the corrected angle φ′(v) from φ(v) according to the flow f .
(b) The clients samples a bit r(v) ←R {0, 1} uniformly at random, calculates

δ(v) = φ′(v) + θ(v) + (r(v) + x(v))π, and sends δ(v) to the server.
(c) The server measures qubit v in the

∣∣∣±δ(v)
〉
-basis and returns the measurement

outcome m(v) to the client.
(d) The client calculates the corrected measurement outcome as m′(v) = m(v)⊕

r(v).
4. The client outputs the bit string (m′(v))v∈V \O. The server further sends the

qubits in O to the client, who decrypts them (using θ(v), r(v) and m′(v) as keys)
and keeps them as additional output.

Previous work showed that Resource 8 can be used in combination with Protocol 10
to securely construct Resource 1. Since we use this result as part of our security proof,
we reiterate it here for convenience [Ma+22, Theorem 4].
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Theorem 8.3.1. The BQC Protocol 10 where the client uses Resource 8 to remotely
prepare the required single-qubit states perfectly constructs Resource 1 against a malicious
server.

The security analysis of the multi-client protocol proposed in this work follows a
modular paradigm. In this spirit, we first analyze the security of Protocol 11, the
subprotocol which consists of the communication of a single qubit along the Qline. Since
both the photon source and the server are untrusted and potentially colluding in the
protocol, they are treated as a single untrusted party in the following.

Protocol 11 Collaborative Remote State Rotation
Inputs:

• The n clients have no input.
• The orchestrator has as input an angle θ ∈ A.
• The server receives as input a single-qubit quantum state ρ.

Protocol:
1. For j = 1, . . . , n, client j samples uniformly at random θj ←R A, and sends θj

to the orchestrator.
2. The server sends ρ to client 1.
3. For j = 1, . . . , n, client j applies the operation Rz(θj) to the received quantum

state and forwards it to the next client. After applying its own rotation, client n
forwards the final state to the server.

4. The orchestrator computes θ′ = θ−∑n
j=1 θj (mod 2π) and sends θ′ to the server.

5. The server applies the operation Rz(θ′) to the single-qubit state that it received
from client n, and keeps the resulting state as its output.

We continue to prove the security of Protocol 11.

Theorem 8.3.2. Protocol 11 perfectly constructs Resource 8 between the orchestrator
and the server from secure classical and quantum channels against malicious coalitions
of at most the server and n− 1 clients.

Proof of correctness. If all participating parties are acting honestly, the single-qubit
quantum state sent from client n to the server takes the following form:

Rz(θ̄)ρ
(
Rz(θ̄)

)†
, (8.5)
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where θ̄ = ∑n
j=1 θj . After the final correction which is applied to this state by the server,

the output becomes

Rz(θ′)Rz(θ̄)ρ
(
Rz(θ̄)

)†
(Rz(θ′))† = Rz(θ)ρ (Rz(θ))† , (8.6)

which shows that the protocol is correct.

Proof of soundness. As security in the AC framework is simulation-based, we need to
provide the construction of a simulator fit to translate real-world to ideal-world attacks.
In the following, we assume the worst case of a colluding malicious coalition of the server
and n− 1 clients. Because the protocol and the ideal resource are sufficiently symmetric
in the enumeration of the clients, we can assume without loss of generality that the first
client behaves honestly. The construction of the simulator for this scenario is given as
Simulator 4.

Simulator 4 Malicious server and clients 2, . . . , n

Behavior of the simulator:
1. The simulator expects angles θj ∈ A for j = 2, . . . , n from the malicious clients,

and a single-qubit quantum state ρ from the malicious server.
2. The simulator forwards ρ to the ideal functionality described by Resource 8, and

receives the state ρ′ from it.
3. It samples uniformly at random the angle θ1 ←R A.
4. It applies the operation Rz(θ1) to ρ′ and returns the resulting quantum state to

the malicious server.
5. Finally, the simulator computes θ′ = −∑n

j=1 θj and sends θ′ to the malicious
server.

It remains to be shown that the views of the distinguisher in the real world where it
has access to the inputs θ, ρ and to the views of all malicious parties, and in the ideal
world where it has access to the inputs θ, ρ and to the interfaces to the simulator are
perfectly equal. These two views can be summarized as follows:

Real world Ideal world
Input angle θ θ

Input state ρ ρ

Client 1 output Rz(θ1)ρ(Rz(θ1))† Rz(θ + θ1)ρ(Rz(θ + θ1))†

Correction θ −∑n
j=1 θj −∑n

j=1 θj
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Since θ1 is chosen uniformly at random by the simulator in the ideal world, we can
substitute it by θ1 − θ without changing the view of the distinguisher. This yields:

Real world Ideal world
θ θ

ρ ρ

Rz(θ1)ρ(Rz(θ1))† Rz(θ1)ρ(Rz(θ1))†

θ −∑n
j=1 θj θ −∑n

j=1 θj

Clearly, these two distributions are identical, which proves that the views of the
distinguisher in the two worlds are perfectly indistinguishable.

It now remains to piece together all building blocks to obtain the security of the full
protocol.

Theorem 8.3.3. The Multi-Client Blind Quantum Computation Protocol 1 of the main
text, where the orchestrator is replaced by a classical SMPC resource between all other
parties, perfectly constructs Resource 9 against malicious coalitions of at most the server
and n− 1 clients.

Proof. After having established the security of all building blocks, this proof is straight-
forward and works by repeated application of the general composition principle in
Theorem 2.1.4, analogously to the proof of [Kap+23, Theorem 5].

Retracing the steps of the construction of the protocol in question, we begin by
replacing the classical SMPC resource by a trusted classical party, the orchestrator. This
step does not incur any security loss.

Next, Theorem 8.3.2 allows us to replace every execution of Protocol 11 by one call
to Resource 8, with zero security loss.

Finally, Theorem 8.3.1 establishes that the remaining protocol between orchestrator
and server is indeed a secure construction of the Blind Delegated Quantum Computing
Resource 1. Keeping in mind that the orchestrator additionally is in charge of collecting
the clients’ inputs and distributing the outcome of the computation, this protocol is
indeed a perfect realization of Resource 9.

Remark 8.3.4 (Removing redundant correction steps). When considering the realization
of a resource by itself, the final correction step in Protocol 11 is indeed necessary, as this
is the only way for the simulator to transmit the correct quantum state to the server.
However, when using the protocol in the context of UBQC, this correction step can be
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combined with the corrections that are anyway present in the BQC protocol, and do hence
not need to be performed as a separate round of communication. This observation is
similar to the one made by [Kap+23] in the context of Collaborative RSP and QSMPC.

Remark 8.3.5 (Varying the location of the entangling step). The security of the protocol
is independent of whether the qubits are entangled before or after their communication
along the Qline. Therefore, both setups in which the photon source creates cluster
states and the server performs only adaptive measurements, as well as setups in which
the photon source emits unentangled qubits, and entanglement and measurements are
performed by the server are possible. Even combinations of both, in which part of the
entanglement is created before, and part after the Qline, are conceivable.

8.4 Experimental apparatus

In Fig. 8.3 we describe the experimental apparatus we employ to implement the two-client
protocol.

Photon source. A Sagnac-based source of polarization-entangled photons, i.e. server
S1, generates pairs of photons in the state defined in Eq. (8.2), where we encode the
computational basis vector |0〉 in the photons’ horizontal polarization (|H〉), and |1〉 in
the vertical one (|V 〉). The photon pairs are sent to the clients who apply their random
rotations. The resulting state after these transformations is defined in Eq. (8.3).

Clients’ preparation. At each run of the protocol, we set all random parameters
through an ID Quantique quantum random number generator (QRNG). Both clients
use liquid crystals (LCs) to apply their rotations, which are set in this preparation stage.
The TTP is made up of a computer linked to a fast electronic circuit and stores all
clients’ parameters. With such information, the TTP pre-computes the measurement
angle δ1, and the first measurement station is set accordingly. Moreover, the TTP also
pre-computes the two possible values for δ2, considering that the first outcome is still
unknown, namely δ±2 = θ2 + x2π + r2π ± φ2, to speed up the measurement step of the
protocol.

Measurement. The two photons are sent to server S2 of Fig. 8.3 where measurements
of the form M(δ) = cos (δ)σx + sin (δ)σy are performed. The first one is made up of a
quarter-wave plate (QWP), a half-wave plate (HWP), and a polarizing beam splitter
(PBS). The two single-photon avalanche photodiodes (APD) of the first measurement
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UV laser

ppKTP

APD

QWP

HWP

PBS
mirror

fiber coupler

phase-shifter

dichroic
mirror

LC

PC

S2

Alice Bob
m1=0

m1=1

m2=0

m2=1

S1

~ 

Fast data
elaboration

system

QRNG

coincidence 
      box

m1=0true

m1=1true

Figure 8.3: Experimental apparatus. The state defined in Eq. (8.2) is generated through
a Sagnac-based source of entangled photons, where horizontal polarization (|H〉) encodes
the state |0〉 while vertical polarization (|V 〉) encodes the state |1〉. The photons are first
sent to Alice and Bob who performs single-qubit rotations by means of liquid crystals
(LC). To make the clients’ choices random, the clients’ secret parameters are chosen
by means of a quantum random number generator (QRNG). Then, the two photons
are sent to Server 2 (S2). While the second photon is delayed through a ≈ 65 m-long
single-mode fiber, the first photon is measured, by using a sequence of a quarter-wave
plate (QWP), a half-wave plate (HWP), and a polarizing beam splitter (PBS). The
second measurement station, instead, is composed of a Pockels cell (PC), a HWP, and a
PBS. A fast data elaboration system, constituted by a computer and a fast electronic
circuit, embodies the TTP. The two detectors of the first measurement station are
linked to such a system, that directly activates the PC with a suitable high-voltage (HV)
pulse according to the desired second measurement basis. All outcomes are collected
through a coincidence box that records as two-fold coincidences all events occurring in a
given time window.
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station are connected to a fast electronic circuit that selects δ+
2 or δ−2 , according to the

corrected outcome of the first measurement, mtrue
1 = m1⊕r1. In the second measurement

station, we substitute the QWP with a Pockels cell (PC), i.e. a fast electro-optical
modulator that performs the identity when no voltage is applied, while applying a
phase shift between orthogonal polarizations when a voltage is applied. The second
photon is delayed with respect to the first one by using a ≈ 65 m single-mode fiber to
enable feed-forward in the second measurement station. Finally, the second outcome is
corrected according to mtrue

2 = m2 ⊕ r2. All events are collected through a coincidence
box that records as two-fold coincidences all detector clicks occurring in a given time
window.

8.5 Results

Blindness of the protocol. To show that the server cannot gain any information
about the outcome of the computation, we suppose that the clients want to compute a
given quantum function whose outcome is represented by the second qubit. We repeated
the experiment for both qubits of the cluster state, but we show in the main text only
the resulting density matrix for the second qubit. We demonstrate blindness of the
second qubit by keeping the measurement angle δ1 = π fixed and by averaging over all
density matrices resulting in the output qubit for different initial rotation angles θj1,
where j = A,B, namely 64 combinations. The density matrix in Fig. 8.4a shows the
resulting quantum state, which has a fidelity with a single-qubit completely mixed state
amounting to F2 = 0.99870 ± 0.00003, while the measured Von Neumann entropy is
S2 = 0.9963 ± 0.0001, to be compared with the expected value of 1 for a completely
mixed single-qubit state. Furthermore, we demonstrate the blindness of the whole
initial two-qubit cluster state, by averaging over all density matrices corresponding to
64 combinations of the initial z-rotations, for parameters θA1 and θB2 , while keeping
θB1 , θ

A
2 = 0. We stress that these combinations are enough to demonstrate blindness,

as the random rotations on each qubit still take all possible values in the set A. For
the two-qubit state, whose density matrix is shown in Fig. 8.4b, we estimated a fidelity
F = 0.99433±0.00003 with the completely mixed state and with a Von Neumann entropy
of S = 1.9836± 0.0001, to be compared with the expected value of 2 for a completely
mixed two-qubit state. All density matrices are retrieved from raw experimental data
through quantum state tomography [NC00].
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Correctness of the protocol. Let us now consider the scenario where the clients
want to compute a quantum function. In this case, we take the second qubit as
the outcome of the computation, by preparing it in the state |+〉. We perform the
computation φ1 = π/4, with input bits x1, x2 set to 0. We set the clients’ secret
parameters as θA1 = π/2, θB1 = π/4 and rA1 = rB1 = 0. We show our results in Fig. 8.5.
The estimated fidelity with the ideal state amounts to Fπ/4 = 0.972±0.003. The algorithm
performed over input data x1, x2 is characterized by the two true measurement angles
φ1, φ2. Choosing x1 or x2 equal to 1 has simply the effect of inverting the minima
and the maxima of the distributions. In Fig. 8.6, we show ten different probability
distributions obtained by trying ten different combinations of the algorithm parameters
(φ1, φ2, x1, x2), and the comparison with the ideal and the noisy model case. All the
obtained results are in good agreement with our noisy model and follow qualitatively
the ideal expectations. Small deviations from the expected values are mainly due to
the visibility of the quantum state at the end of the Qline and to imperfections coming
from the non-ideal electro-optical modulators employed, i.e. the LCs and the PC.

Figure 8.4: Demonstration of blindness. a) Density matrix of the second qubit averaged
over all possible θA1 and θB1 configurations. b) Density matrix of the two-qubit initial
state, averaged over all possible values of θA1 and θB2 .
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Real part Imaginary part

Figure 8.5: Computation of a quantum function. In this figure, we show the results of
the computation of a quantum function. Bob chose φ1 = π/4, while the clients’ random
parameters are θA1 = π/2 and θB1 = π/4. Both input bits x1, x2 are set to 0. The first
qubit is thus measured in the basis δ1 = π. The experimental density matrix is shown
in light blue, while the theoretical one is shown in red.

8.6 Discussion

In this work, we proposed a multi-client version of the BQC protocol [BFK09] and
experimentally demonstrated it in a two-client setting. We first simplified the protocol
described in [Kap+23; KP17] to tailor it to the photonic Qline network introduced
in [Doo+23]. To this end, we studied a photonic platform equipped with a source of
polarization-entangled photon pairs, an active feed-forward system, and a fiber-based
structure to connect the involved parties. In our scheme, the clients only need to apply
single-qubit rotations. Within this setup, we computed the outcomes of ten different
classical functions, by changing the input data and the algorithm, and compared the
results with a noisy model compatible with our experimental conditions. Also, we
demonstrated the correctness of the protocol when the function to be computed has a
quantum output. Finally, we showed that the server cannot gain any information about
the inputs of the clients or the outcome of the computation.

Scalability. Our proof-of-concept demonstration can represent a step forward toward
the realization of a scalable and secure quantum cloud access infrastructure with multiple
clients. Indeed, in a real-world protocol, the necessary classical communication as part
of the SMPC in between the measurements would considerably increase the time latency,
in particular, if run over a slow network, such as the internet. Therefore, to make the
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Figure 8.6: Computation of a classical function. In this bar plot, we show ten different
measurement angles and Alice’s input combinations (φ1, φ2, x1, x2). In the grey region,
we kept the algorithm fixed while changing the input data, to show the changes in both
the expected and experimental distributions. In the white region, instead, we changed
both algorithms and input data. The uncertainties on the experimental frequencies were
obtained assuming Poissonian statistics, and the black bars correspond to one standard
deviation. The eventual absence of black bars means that the uncertainty was too small
to be visible in this plot.
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experimental realization of the proposed protocol feasible, we replaced the SMPC with
a fast electronic data elaboration circuit to both reduce the communication rounds and
compensate for the absence of a quantum memory. This allowed us to reduce the delay
between measurements to a manageable level. Scaling up the size of the computation
would require more qubits and their communication from the photon source past all
clients to the server. In principle, this could be realized in two ways that can eventually
be combined. First, the qubits could be sent all at once, which would require the clients
to be able to apply rotations to multiple states at once. Alternatively, the qubits could
be sent sequentially, one at a time. However, this second option would require the ability
to store or delay them until the clients were able to adjust their rotation gates since
every qubit is rotated by a different angle. In our demonstration, we opted for the first
option as it represented the optimal way to minimize time latency and, consequently,
photon loss. Moreover, the choice of adopting an optimized feed-forward system for
measurement adaptivity in our setup is not only crucial to ensure blind and deterministic
computation, but also to scale up the protocol. Indeed, post-selection schemes would
require an exponentially growing number of measurements depending on the dimension
of the quantum system, which would affect significantly the possibility of applications
to larger quantum systems.

Future work. While our implementation guarantees the privacy of the inputs pro-
vided by the clients, the outcome of the computation is not verified. We leave the
addition of verification to the proposed protocol as future work. One possible path
towards verification with Qline architecture might be the employment of the novel
dummyless testing technique from [Kap+23]. However, as of now, the question whether
states prepared by rotation-only clients are sufficient for verification remains open, as
[Ma+22] only showed that this kind of states are enough to achieve blindness.

We believe that this work has insightful implications both from a theoretical and
an experimental point of view. From a theoretical perspective, it constitutes a strong
encouragement toward the development of collaborative computational algorithms over
distributed quantum networks, as well as investigations about their verification. From an
experimental point of view, instead, it represents a step forward toward the applications
of photonic linear quantum networks as building blocks for more complex networks,
toward the realization of a large and densely connected quantum cloud.
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8.7 Methods

Photon pairs are generated in a parametric down-conversion source, composed of a
25-mm-thick periodically-poled Potassium Titanyl Phosphate (ppKTP) crystal inside
a Sagnac interferometer. The source uses a Toptica continuous-wave diode laser with
a wavelength equal to 405 nm. Both photons are generated at a wavelength equal
to 810 nm. To test the quality of the bipartite state generated by S1, we perform a
CHSH Bell test [Cla+69] and obtain a Bell parameter equal to 2.752 ± 0.006. The
generated photons are filtered in wavelength and spatial mode by using, respectively,
narrow-band filters and single-mode fibers. The PC is a LiNbO3 crystal made by the
Shangai Institute of Ceramics having a rise-time equal to 90 ns. A fast electronic circuit
transforms signals coming from the detectors of the first measurement station into
high-voltage calibrated pulses, needed to activate the PC. The amount of delay on the
second photon was evaluated considering the response time of the detectors, the speed
of the signal transmission through a single-mode fiber, whose refraction index is ≈ 1.45,
and the activation time of the PC. Therefore, we used a ≈ 65 m long single-mode
fiber that allows a delay of ≈ 320 ns of the second photon with respect to the first.
The voltages applied to the PC to insert a phase shift equal to π/4, π/2, 3π/4 were,
respectively, Vπ/4 = 650 V, Vπ/2 = 850 V, V3π/4 = 1100 V. Our experiment is performed
shot-by-shot, namely, each event of our data takings is characterized by a different
randomly chosen set of initial parameters θji , r

j
i , for i = 1, 2 and j = A, B, while the

algorithm (φi, xi, for i = 1, 2) is kept fixed for each data taking.
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Chapter 9

Conclusions

We conclude this thesis with a summary of its contributions, and a selection of open
questions that are naturally arising from the results presented previously.

9.1 Summary

Our playground for this thesis was the realm of secure delegated quantum computing, a
functionality that allows computationally weaker clients to delegate a quantum compu-
tation to a more powerful quantum server, all while observing security guarantees such
as the blindness of data and algorithm, and the verifiability of the outcomes. During the
course of this work, our focus was on designing new protocols with i) improved efficiency,
ii) reduced resource and hardware requirements, iii) generalized applicability, and iv)
strong security. At the same time, we researched the theoretical foundations of quantum
verification, and links to the fields of post-quantum cryptography, error detection and
correction, and error mitigation.

Our journey started, in Chapter 3, with an investigation into the role of quantum
communication in delegation protocols. While it would be desirable to get rid of quantum
communication altogether, we showed that this is not possible in the most general and
context-insensitive way while preserving security. However, it turned out that there
are concrete cryptographic constructions that can fill in for a quantum channel in the
restricted context of blind quantum computing if we are satisfied with the lower level of
game-based security only.

Accepting the necessity of single-qubit communication for now, we then shifted our
focus to the server and asked, in Chapter 4, whether server-side hardware overheads
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were really unavoidable, since those were the main reason that existing blind verification
schemes were unfeasible in practice. Fortunately for the security of quantum compu-
tations, we found that this was actually not the case and designed a novel protocol
for blind BQP verification that managed to entirely avoid any server-side quantum
hardware overheads. Additionally, the new protocol required only an efficient number of
repetitions to achieve exponential statistical security, and is tolerant to globally bounded
noise. This makes it the first practically feasible protocol for full quantum verification.

After finding one specific construction that showed that verification without hardware
overhead is possible, we set out to answer the bigger question, in Chapter 5, of how
to optimize verification schemes systematically in a more general way. The result was
a framework that allowed for the optimization and customization of blind verification
protocols, and that could directly be applied to find even more efficient schemes than
previously known.

This framework also immediately proved useful in the following Chapter 6 where the
need for a verification technique with very particular properties naturally arose. Using
the tools from Chapter 5, we were able to construct a dummyless verification scheme,
that exactly matched our requirements. As a consequence, we were able to transfer the
improvements for delegation protocols previously obtained in the two-party case to the
multi-party setting, and give the first quantum secure multi-party computing (QSMPC)
scheme feasible already in the near term. This new QSMPC scheme avoids both the
superposition evaluation of post-quantum primitives and any kind of fault-tolerant
encoding, introduces (almost) no hardware overheads, and even achieves a basic sense
of noise robustness.

Finally, we demonstrated in two different experimental scenarios, in Chapters 7 and 8,
that our work and optimizations moved secure delegated quantum computing to a regime
of current practical feasibility. Both implemented protocols, an implementation of fully
verified blind quantum computing with a single client, and blind quantum computing
with more than one client, achieve a high level of composable security.

To summarize, the work in this thesis started off in a situation where none of the
proposed schemes for secure delegated quantum computing were remotely implementable
and managed to move us to the comfortable position of having access to currently realiz-
able protocols, demonstrated by proof-of-concept experimental implementations. During
the course of these discoveries, we developed a theory to better understand necessary
and unnecessary overheads and assumptions for security, and possible optimizations
both in the near-term and in the scalable regimes.
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9.2 Future work

Despite the better understanding that we obtained for the security of delegated quantum
computing, many bigger and smaller open questions remain. In the following, we give a
selection of important and more fundamental problems that remain unsolved, but for
which theory and tools from this thesis might prove useful.

Quantum verification without trusted preparations or measurements. The
experiment [Pol+23] described in Chapter 8 already realizes multi-client blind quan-
tum computing without trusted preparations or measurements, extending previous
work [Ma+22] that achieved the same security guarantees for a single client. This leaves
open the natural question of whether it is possible to also achieve verification in this
restricted setting. More formally:

Is statistical quantum verification possible in a setting where the verifier is
restricted to single-qubit operations, and does not have trusted access to state
preparations, measurements, or quantum memory?

Securing quantum computations with noisy verifiers. So far, protocols for the
(statistically) secure delegation of quantum computations, including the ones presented
in this thesis, needed to assume that the quantum operations performed by the verifier
are implemented perfectly. This assumption is often implicit in the cryptographic setting,
in which the verifier is honest. However, it does clearly not reflect the reality in which
the analogue nature of quantum computing prevents the construction of noiseless devices.
Moreover, as the verifier’s quantum operations depend on their private coins, we need
to realistically expect the noise to be secret-dependent as well.

Hence, one could argue that the problem of quantum verification under realistic
assumptions still remains untreated. In fact, as the secret-dependency of the noise could
lead to potential leakage of information about the verifier’s private coins, this question
is highly non-trivial. This is reflected in the fact that all known proof techniques and
tools to obtain verification break down in the presence of realistic noise. In particular,
and to distinguish this open problem from self-testing scenarios, we are interested in the
situation where the verifier has access to a small, noisy, but faithfully operated quantum
device. Translating this to more formal assumptions, the verifier’s quantum operations
might suffer from secret-dependent imperfections of arbitrary structure, but of bounded
magnitude. We explicitly also wish to capture the inherent uncertainty that the verifier
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might have about the structure of the noise on their own device, which is making active
mitigation strategies much more intricate. This leads us to the following fundamental
question, essential to realistic quantum verification:

Is statistical quantum verification possible in a setting in which the verifier
has access only to imperfect quantum operations whose noise can be secret-
dependent and of arbitrary structure, but only of bounded magnitude?

Fault-tolerant quantum verification. It has been argued that full fault-tolerance
is necessary for the true scalability of quantum computations, since otherwise present
noise would cause entropy to accumulate in the outcome, rendering it useless. While
multiple blind verification schemes in the prepare-and-send model have been proposed,
none of them achieves full quantum fault-tolerance, a prerequisite for useful scalable
verification. Previous work [Aha+17] discussed the problems with trying to construct a
secure and fault-tolerant verification protocol, and has raised the question of whether
such a construction is possible at all.

Is fully fault-tolerant statistically secure blind verified quantum computing
possible?

The first of the two main obstacles in the design of such a protocol is the verifier-
instructed logical encoding of states that must remain hidden from the server, in a
scenario in which the verifier is restricted to single-qubit operations, or more generally
constant-size quantum operations, on the physical level. Secondly, even when allowing
the verifier to operate on a logarithmic number of physical qubits which would allow
them to perform the logical encoding locally, the security problems caused by noise in the
verifier’s setup remain. This intimately links the problem of fault-tolerant verification
to the previous open question involving noisy verifiers.

There is hope that this problem could be solved, at least in the special case of
stochastic verifier-side noise, by employing techniques similar to the Collaborative
Remote State Preparation protocol presented in Chapter 6. Instead of leakage caused
by some of the clients involved in the protocol maliciously colluding with the server, in
the noisy case leakage results probabilistically from imperfections of the verifier’s device.
There is hope a similar mitigation technique could be applied here as well, yielding a
distillation procedure consuming multiple copies of blind, but possibly leaky states and
returning a blind state with the leakage removed. This would also immediately make the
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dummyless verification technique [Kap+23], presented in Chapter 6, a natural candidate
for the core verification mechanism of a possibly fully fault-tolerant realization.

Verification-inspired benchmarking. Benchmarking protocols aim at capturing
the quality and power of quantum devices. Given the emerging availability of multiple
commercial, competing quantum computers, the question of quantum benchmarking
experiences growing interest. Most proposals focus either on specific algorithms believed
to be representative of larger classes of quantum algorithms of interest, or rely entirely on
heuristic metrics that are attempting to capture the quality of a device. Unfortunately,
these kinds of benchmarking protocols do not allow making more formal and provable
statements about the investigated device’s properties. We, therefore, ask:

How to design a quantum benchmarking protocol that gives provable guaran-
tees about a tested device’s computational power?

As observed in previous work [Dun+14] and in work presented in this thesis [Kap+22]
(see Chapter 5) composably secure verification schemes admit a property called inde-
pendent verifiability which guarantees the independence of the verification mechanisms
from the target computation. Protocols observing this level of security, therefore, accept
or reject entirely independently of the target computation that was delegated. Hence,
the successful execution of such a protocol yields more information than the ability of
the used quantum device to perform one specific computation. It lets us conclude that
the device would have been able to perform equally well for any computation (from
some class) that could have been swapped for it. Given the efficiency of state-of-the-art
composable verification schemes, it would be extremely interesting to further explore
this approach for the construction of rigorous benchmarking techniques.
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