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Abstract

Segmentation is a crucial primary step in a variety of real-world applications such as med-

ical image analysis, activity recognition, and sound event detection. It involves partitioning

input data into smaller segments, thereby inducing alterations in certain characteristics of

the input data. This process introduces at least two families of uncontrollable biases. The

first family of biases is introduced to the model due to the changes in problem space made

by the segmentation. The second family of biases is caused by the segmentation process

itself, including the fixation of the segmentation method and its parameters. This thesis

presents a novel adaptive layer designed to augment existing medical image segmenta-

tion deep models, enhancing their performance. This adaptive layer dynamically adjusts

the receptive field size based on pixel and neighboring information. These concepts are

then extended to more intricate scenarios involving heterogeneous data types, presenting

a novel meta-decomposition or learning-to-decompose approach for segmentation. This

approach mitigates implicit biases while enabling adaptive segmentation for various data

types, accommodating data variations and heterogeneities such as seasonal differences

in activities. Recognizing the impact of segmentation on the problem space, the research

scrutinizes the drawbacks of state-of-the-art evaluation methods, emphasizing the neces-

sity for more comprehensive frameworks, focusing on point-based evaluation methods, ne-

glects spatial or temporal relationships between instances. To validate the efficacy of the

suggested evaluation techniques and the meta-decomposition approach, extensive experi-

mentation is conducted across diverse concrete real-world datasets.

Keywords: Evaluation, Segmentation, Decomposition, Meta-Decomposition, Meta-Learning,

Medical Image Segmentation, Activity Recognition, Sound Event Detection
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Chapter 1

General Introduction

Evaluation holds significance through the time. According to Nietzsche Philosophy [Nie83],

our understanding of reality is limited to our senses, subjective experiences, historical and

cultural factors, and the fact that truth is subject to interpretation and perspective. However,

he believed that critical self-reflection and evaluation of our assumptions and biases could

broaden our perspectives and improve our understanding of truth. Similar to our under-

standing of truth, the way we evaluate things is also subjective and influenced by biases

and assumptions.

In Machine Learning (ML), the term “bias” refers to any factor that favors one general-

ization over another [MM80; GD95]. Biases are often incorporated in the pre-processing,

learning, post-processing, and evaluation steps of ML to reduce the complexity and learn

correct concepts [GD95; DAr20]. However, it is crucial to evaluate the biases for the bias’s

selection. The effectiveness and quality of bias evaluation methods significantly impact the

overall benefits gained from bias choices and the understanding of the underlying truth by

ML models [GD95]. Moreover, evaluation of the bias evaluation can broaden the models’

perspectives and reduce various types of biases.

An example of a common pre-processing step in many ML models is the segmentation

process, which is our concentration in this thesis. According to the Oxford Dictionary, a

segment is a part of something separate from the other parts or can be considered sepa-

1
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rately and segmentation is the act of dividing something into different parts. Segmentation

extracts relevant features from multiple sources, simplifies the input data. It also overcomes

the limitation of information in a single sample by providing adequate information about a

concept [Che+21b; NGC15] or reducing the problem’s complexity [Ber+18; LMS14]. For

instance, a single door-open event is not adequate to identify whether the actor is leaving

or entering the house. It is often assumed that the loss of information in the segmentation

process is lower than that of the acceptable bound. However, this step can introduce two

at least two families of uncontrollable biases. The first one results from changes made

by the segmentation process on the original problem space, for instance, discretizing the

problem into a fixed one-second frame in Sound Event Detection (SED), which impacts the

understanding of machine learning models and the evaluation process about truth. The

second family of bias arises from the segmentation process itself, including the selection

of a particular segmentation method and its associated parameters, which are inextricably

linked to the evaluation process. For example, an appropriate segmentation approach in

one period of time in Activity Recognition (AR) may not be efficient for another period of

time due to the changes in data over time. Usually, in these contexts, researchers have im-

plicitly included their knowledge about the application in the segmentation and evaluation

procedure, which is often associated with uncontrollable biases in their model and evalua-

tion processes. Therefore, the model may misleadingly present convenience results in the

training and testing phase while the results are not acceptable in the real-world. In addi-

tion, segmentation poses significant challenges due to its complexity and the impracticality

of attaining an exact solution in a reasonable time [Asa+01]. The “no-free-lunch” theorem

states that there is no particular bias that on average is the best one to be used [Ada+19;

DAr20]. As a result, careful consideration and management of the segmentation process

is necessary to ensure the validity and generalizability of the resulting models for the given

application with respect to the biases.

The segmentation problem becomes more challenging when the target concepts devi-

ate from the traditional point-like representations in classical machine learning instances. In
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Figure 1.1: a) Classical instances (0D) b) Durative instances (1D). The horizontal line rep-

resents time, and the box shows activity duration. A durative instance may be partially

correct and partially incorrect while classical instances have a binary correctness status.

the traditional scenarios, we typically work with a set of examples and one or multiple target

values, for instance, predicting the category of an image or the price of a stock. However,

it is not the case with several real-world applications like AR, Medical Image Segmentation

(MIS), and Sound Event Detection (SED). Unlike the classical classification problems in

which the predicted targets are either correct or incorrect, the targets include time intervals

(one-dimensional (1D)) or shapes (two-dimensional (2D) or three-dimensional (3D) in im-

ages) and they can be correct and incorrect at the same time. For example, consider a

scenario where the actual breakfast time for a person is from 8:00 to 9:00, but according to

the system prediction, the person eats from 8:15 to 9:15. In this case, is this prediction cor-

rect or incorrect? This brings up two important questions: 1- How should we evaluate the

methods including targets beyond 0D? 2- Do the classical evaluation methods sufficiently

assess these targets with multiple dimensions? The distinction between traditional and 1D

targets is highlighted in Figure 1.1.

While selecting the right dataset and ensuring that high-quality ground truth play sig-

nificant roles in the evaluation process [De-+18], this thesis narrows its attention to just

the metrics and criteria for evaluating competitive approaches. We assume that both the

datasets and the strongly labeled ground truth are of high quality and the best prediction is

the one that exactly matches the ground truth. Analysis of roughly 200 papers presented

at major Artificial Intelligence (AI) conferences in 2022 (see Section 5.2.6), revealed that

segmentation methods are commonly evaluated using point-based approaches that over-

look spatial or temporal relationships between instances. It is particularly the case when

the targets have more than zero dimensions, which is typical in segmentation problems.
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The typical projection of models’ output into a space with a total order relationship, such as

what is done in point-based assessments, may fail to capture the different characteristics

of a segment. This is particularly important because the significance of different properties

changes in various applications and even different stages of an application. For example,

the optimal technique for early tumor diagnosis may differ from that of used to assess treat-

ment response. During the early diagnosis phase, it is crucial to detect even small tumoral

lesions, while observing volumetric changes is essential for assessing treatment response

[Li+19b]. As a result, it is necessary to review the evaluation process and project the eval-

uation into a multidimensional space with a partial order relationship that considers the

contextual relationships between instances. This can help researchers, users, and models

to make more informed decisions in selecting the appropriate technique for their specific

application.

In this thesis, we address the task of segmentation and evaluation, which is a preva-

lent issue in numerous machine learning applications such as MIS, AR, and SED. Despite

the growing interest in this research area, various challenges persist. This is particularly

evident in real-world scenarios, where biases are inherent in both the segmentation and

evaluation tasks. Therefore, our initial objective is first to address and reduce the potential

uncontrollable biases that arise from the segmentation process. Secondly, after devising a

solution, it is essential to thoroughly evaluate its performance.

As explained earlier, segmentation is a common pre-processing step in methods used

in various applications. However, this step introduces at least two families of uncontrollable

biases. The first one is caused by the alterations made by the segmentation process to

the initial problem space, and the second one results from the segmentation process it-

self, including the fixation of the segmentation method and its parameters. To avoid these

short comings, first, we introduce a comprehensive and unified formalization of segmen-

tation, treating the segmentation problem as a specific case of decomposition problem.

This encompasses the decomposition (segmentation), problem resolution (ML step), and

composition. Incorporating the composer task in the segmentation makes it possible to
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evaluate the relationship between the initial problem to be solved and the problem after the

segmentation, resulting in an improved evaluation and consequently selecting the appro-

priate segmentation method. Therefore, we can define various segmentation algorithms

as hyperparameters to be optimized and automatically selected. Then, we propose a new

meta-decomposition or learning-to-decompose concept, which learns to break down the

original task into sub-tasks for integration with meta-learning approaches that require multi-

ple tasks. Meta-decomposition aims to minimize segmentation biases and optimize overall

system performance by learning how to generate sub-tasks instead of presuming a pre-

determined and fixed segmentation method. By defining segmentation as an ML hyper-

parameter to be adaptively learned based on the application and constraints in the outer

learning algorithm, we enhance the recognition quality of the inner learning process. Our

initial results demonstrate that our framework is more effective.

After developing a potential solution to the recognition problem, evaluating its perfor-

mance becomes crucial, particularly when dealing with targets that extend beyond zero

dimensions. Since segmentation algorithms produce heterogeneous segments (e.g., in

terms of type and size), it is crucial to transfer them into a comparable space for proper

evaluation; otherwise, the comparison would be invalid. In addition, selecting an appro-

priate algorithm is based on the objective of the application. Therefore, comparing them

becomes essential. In this case, can we precisely determine one algorithm that is bet-

ter than the others when dealing with more than 0D targets? These questions are crucial

not only in aiding developers to optimize their systems for a given application but also in

enabling different researchers to compare and contrast their approaches. Therefore, in

this thesis, we first conduct a analysis of the state-of-the-art, revealing that the evaluation

process needs improvement. Then, since the predictions with more than zero dimension,

can be correct and incorrect at the same time, it necessitates further in-depth study. As

interpreting different metrics on real data is a challenging task [Pan15], we propose a Multi-

modal Evaluation Metric (MME) that is adaptable for use in various applications and easily

visualized and interpreted.
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The MME approach refines well-known True Positive (TP), False Positive (FP), and

False Negative (FN) for MIS by permitting fractional values for each target instead of bi-

nary values, accounting for partially correct predictions. It also allows a more compre-

hensive assessment of the segmentation method’s performance. Using the updated TP,

FP, and FN values, we can compute commonly employed metrics like Intersection over

Union (IoU), Recall or True Positive Rate (TPR), Precision (PRC), and Dice Similarity co-

efficient (DC), which are easily interpretable, even for non-experts [Tat+18]. Advancing

beyond prior research relaying on point-based relations, this work examines the spatial or

temporal interdependencies of pixels (voxels), covering both 1D, 2D and 3D relations. To

elaborate further, this metric evaluates the identification of individual segment spots by a

single prediction instead of numerous fragmented ones (uniformity property), the detection

of each segment (detection property), the alignment of ground truth and prediction bound-

aries based on their shape (boundary alignment property), and quantifies the relative and

total volume of accurately predicted segments. This enables evaluating the quality of ex-

tracted targets that have more than 0D which helps experts to select a proper approach

based on their requirements.

The rest of this thesis is organized as follows.

Chapter 2 presents a review of the context and foundational knowledge essential for the

depth and breadth of this thesis. In addition, the applications and the research problems

are introduced.

In Chapters 3 to 5, we provide our contribution followed up by a comprehensive review of

existing literature on segmentation and evaluation. After identifying the gaps in the current

knowledge and positioning the current research within the context of prior work, we propose

our proposal to resolve the issues. In Chapter 3, we propose an adaptive layer to be added

on top of the best-performing segmentation deep network. The experiments presented in

this chapter show the possibility of improving the performance by dynamically changing

the receptive field. In Chapter 4, we extend the finding for a more complex and heteroge-

neous application in AR. The proposed meta-decomposition approach is introduced in this
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chapter.

In chapter 5, we first deeply explore the state-of-the-art and the evaluation process in

a problem in a real-world scenario, such as the well-known COVID-19 pandemic. Then,

this chapter introduces a novel approach for evaluating targets that extend beyond the 0D,

a common scenario in segmentation problems as explained in chapters 3 and 4. This

approach projects the evaluation into high-level properties and is explored in this chapter

in-depth, highlighting its framework, benefits, and potential applications.

Finally, we end with a conclusion. This concluding chapter offers a recap of the research

problem, methods employed, and the primary findings. It also emphasizes the overarching

significance and contributions of this study to the field. Then, suggestions for improving the

current state of segmentation techniques and evaluation processes are provided. Further-

more, potential areas for future research and exploration are identified.

Reading the chapters sequentially helps to fully grasp the concepts introduced and their

implications.
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Chapter 2

Context of the thesis

2.1 Chapter Overview

This chapter embarks on the foundational knowledge essential for the depth and breadth of

this thesis. Three elements are explored: Applications, Challenges, and Preliminaries. Be-

ginning with applications, the focus is narrowed down to three specific domains: MIS, AR,

and SED. Each of these applications, though diverse, shares the characteristic of targets

spanning beyond 0D, a shared property that warrants their collective study. Transitioning

to challenges, we introduce deeper the challenges in the segmentation and the evaluation.

Then, in the preliminaries, we succinctly elucidate the fundamental concepts and terminolo-

gies, setting a stage for readers to delve deeper into the intricate nuances of the subject.

This chapter aims to equip readers with a holistic understanding of the topic, bridging the

abstract with the empirical and the foundational with the advanced.

2.2 Targets Beyond 0D and their applications

Commonly, in machine learning tasks, the target we are seeking from a given input is a

single numerical value or a point devoid of any extra layers of depth [DAr20]. For instance,

consider the usual classifiers used in image processing. They determine the categories

9



10 CHAPTER 2. CONTEXT OF THE THESIS

an image belongs to, or when we predict a people’s age based on their educational back-

ground. Diverging from this, our focus in the thesis is on targets that transcend the zero-

dimension aspect. For example, in AR and SED scenarios, in addition to the category, the

targets encompass dimensions like duration, which is a 1D target. Similarly, in the context

of MIS, targets extend into dimensions like area or volume. The distinction between tradi-

tional targets and 1D targets is highlighted in Figure 1.1. In contrast to classical targets that

are either correct or incorrect, the targets beyond 0D can be correct and incorrect at the

same.

Throughout this thesis, we will approach the problem of evaluation and segmentation

using concrete applications and areas namely AR, SED, and MIS. The shared property

in all these applications is that all targets (concepts) have more than zero dimensions. In

AR, the targets are activity events. Each activity event has an activity class and duration

which is considered a 1D concept. In SED, we are trying to locate sound events in an audio

track. Each sound event has also sound class and duration which is also considered a 1D

concept. In MIS, the goal is to partition the entire image into a set of regions [Aza+22]. Each

region has a class and area in the case of 2D images or volume in the case of 3D images.

The reason for these diverse applications is their impact and their shared properties. In the

following, we provide a concise description and motivation for each application.

2.2.1 Medical Image Segmentation (MIS)

As a trending subject in the field of image processing and computer vision [Asg+21], MIS

involves extracting the boundaries of desired targets, such as tumors, in medical images

and determining their class [Luo+22]. The accurate segmentation of medical images, such

as Computed Tomography (CT), Positron-Emission Tomography (PET), and Magnetic Res-

onance Imaging (MRI), plays a vital role in the diagnosis and treatment of various diseases

and assists physicians in patient management, including staging, assessment, and prog-

nosis of the treatment response [Li+19b; Liu+21; Tia+21]. Nonetheless, manual segmen-

tation of medical images, especially those with irregular geometric shapes, is a high-effort
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task that requires considerable expertise and attention. Therefore, automatic segmentation

methods interest for years to alleviate this burden on physicians and improve the accuracy

and reliability of medical diagnoses [Liu+21]. It presents a formidable challenge, as the

boundaries of tumors or nodules and their surrounding tissues may not be clearly distin-

guishable due to the influence of adhesions, subjectivity, and other complex conditions that

may obscure or confound the identification of relevant features [Tia+21].

Figure 2.1: An example segmentation result in Synapse Multi Organ Dataset is represented

in 3D. Different colors represent different organs.

Deep learning-based MIS has gained considerable traction in recent years [Che+23;

Hou+21; Dev+21; Asg+21; Mal+22; Luo+22; KHS22]. A myriad of models has been intro-

duced in the literature for various MIS tasks and clinical outcomes, encompassing multi-

organ detection, tissue mass detection, tumor or nodule segmentation and classification,

cell counting, multiple diagnoses, prognosis, and the prediction of treatment outcomes for

various chronic diseases like cancers or neurodegenerative diseases [Kum+22; Dev+21;

Roy+23; Sim+19; Ant+22; Rot+16; Son+22]. In the context of cancer diagnosis, for in-

stance, deep models such as [Mel+22; Eal+22; IQ22; Ise+21; SA22] have shown improved
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Figure 2.2: Liver Tumor CT scan Orthogonal View. The tumor spot is shown in green. The

vertical and horizintal lines show the slice of the CT scan.

performance in segmenting tumors or nodules. Despite the significant progress, imple-

menting deep learning in MIS continues to pose challenges since medical images often

contain noise, artifacts, adhesions, and other distortions that can negatively affect the per-

formance of deep learning models, particularly when discerning tumoral tissue boundaries

and surroundings [Kum+22; Mal+22; Tia+21]. MIS is recognized as an NP-hard problem

[Asa+01] requiring heuristics for resolution. This makes the performance metrics crucial

for assisting clinicians and system designers in choosing the appropriate models for the

clinical problem [THT14]. While numerous studies have demonstrated that these models

exhibit robust predictive capabilities, achieving results close to those of clinicians [Mal+22],

recent studies highlight the existence of statistical biases in the assessment method used

to evaluate these models due to the used metrics [MSK22; Rei+21].

Examples of two problems in MIS are shown in Figures 2.1 and 2.2. In the first figure,

the goal is to distinguish different organs in a CT scan, while in the second figure, the goal

is to recognize a tumor spot in a CT scan of the liver.
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2.2.2 Activity Recognition (AR)

We are moving towards the Internet of Things (IoT), and the number of deployed sen-

sors is rapidly increasing [Per+14]. IoT generates a long and heterogeneous series of data

[Hu+19]. Recognition of human activities (AR) from these sensor data is expected to be the

heart of myriad IoT applications such as healthcare, smart homes, and security [Per+14;

QPM18; Che+21b]. AR is crucial to society because it allows computer devices to monitor,

analyze, and improve human daily life by recognizing their behaviors [Che+21b]. However,

it is challenging due to the complexity of human behaviors and their variety from person to

person [BNE21]. In sensor-based human activity recognition, there are two primary sensor

deployment strategies. The first embeds fixed sensors within environments, while the sec-

ond uses sensors that people wear or carry. Ambient sensing may use computer vision,

which has roots in public security and surveillance but raises privacy concerns in private

spaces like homes. Therefore, the use of environmental sensors is preferred for lesser pri-

vacy issues. Acoustic sensing and capturing sound and speech, has also gained traction,

which especially beneficial for remote health monitoring. On the mobile front, smartphones

with myriad functions and sensors have been used for activity recognition, expanding their

scope outdoors but with challenges due to device limitations. Additionally, the surge in

wearable technology has spurred a range of health applications monitoring various physi-

ological signs, leading to increased research in this area. Some studies even merge both

technologies for more comprehensive insights [Ale15]. Without going into details, an exam-

ple of a smart home and human activities is shown in Figures 2.3 and 2.4.

2.2.3 Sound Event Detection (SED)

SED has garnered significant attention in recent years due to its wide-ranging potential

applications and implications in diverse fields. A SED system is designed to discern and

recognize specific auditory events (category and duration) in an audio track. For example,

these systems can pinpoint distinct sounds like gunshots, glass breaking, or a baby’s cry
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Figure 2.4: Example of Daily Activities from the Aruba Dataset. The pattern of one week

is represented by a compact bar at the image’s bottom, with the chosen day highlighted for

clarity. The y-axis enumerates the different classes of activities, while the horizontal lines

mark the length of each activity’s occurrence.

the consistent identification of sound events a complex task [Bil+20]. This randomness can

sometimes lead to false positives or negatives, where the system might mistakenly identify

a sound or fail to recognize an event.

Furthermore, the variability in environmental acoustics, background noises, and over-

lapping sounds add layers of complexity to the problem. An understanding of these chal-

lenges is essential for the development of robust and efficient SED systems. To provide a

visual representation of what sound events look like when represented, refer to Figure 2.8.

2.3 Segmentation Problem Challenges

Segmentation is a concept widely used across diverse domains, including marketing [Dol20;

EBK21], data transmission [BBB19], audio processing [VMM22; McC19], image analysis

[WWZ20], time series [Fu11], biology [Vic+19], genetics [ANJ+22], healthcare [Fer+20],

text and document processing [Bar+20], and activity analysis [Li+19a]. In the Oxford Dic-
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the recognition quality [NGC15]. On the one hand, inadequate information in one seg-

ment may lead to poorly detection of the targets; on the other hand, if a segment contains

too much information, extra complexity may be added for future data processing [KC14;

NGC15]. Consequently, a trade-off exists between the sufficiency of information in each

segment, minimizing the number of segments, and reducing the processing complexity of

each one to discover the expected concepts. Segmentation can also be expressed as a

discretization process [Fu11]. In time series, segmentation is also defined by finding mean-

ingful segments corresponding to the state changes in the underlying process [SEL21].

Few examples for segmentation are shown in Figure 2.6. For instance, to recognize the text

content from an image, dividing the image into several similar repeated segments, such as

characters, facilitates the recognition process. There are 36 different alphanumeric charac-

ters to focus on, making it less complex than that of trying to recognize the entire chunk of

text [RNN99; Chr21]. Another common example in speech recognition is finding boundaries

between words, syllables, and phonemes to help better recognition [GGY10]. Segmenta-

tion in images is a common approach to removing unnecessary information [Asg+21]. In

Figure 2.6, two examples of segmentation in the image are shown that select the important

area and estimate the pose to extract key points of a human. Sometimes, certain limita-

tions make segmentation not just useful but essential for the case that not all data can be

accessed at the required time.

Even though the segmentation process helps to deal with the complexity of problems,

it alters some characteristics of the input data. It introduces at least two families of uncon-

trollable biases. The first family of biases is introduced to the model due to the changes in

problem space made by the segmentation itself. For instance, in AR, a common approach

consists of segmenting the data and feeding them to the model to identify the activity in each

segment. It is often assumed that the classifier performance follows the whole system per-

formance [Per+14; Bil+20; QPM21; CN15; BNE21]. This hard hypothesis may misleadingly

present convenient results because different segmentation algorithms generate dissimilar

segments. For example, a time window that generates equal-length windows cannot be
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Figure 2.6: Segmentation: Examples from Image, Voice, and Activity Recognition

compared to a dynamic windowing method. In Section 4.6.4, this will be explained in de-

tail. Additionally, activities have some properties related to their duration [Mod+22b]. For

example, the fixed event window approach presents an irrelevant number of segments to

their duration [Ale15; Mod+22b]. As an additional example, steady recognition of the sleep-

ing activity is critical; otherwise, it may misleadingly present a disorder [Ale15; Mod+22b].

However, segmentation may break these properties.

The other bias of segmentation is concerned with the segmentation approach itself, in-

cluding the fixation of the segmentation method and its parameters. The segmentation ap-

proach is often implicitly incorporated with the prior knowledge or assumptions originated

from the developers, researchers, or experts during the selection and tuning of the seg-
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mentation approach. It is a crucial step since the accurate recognition of concepts (partic-

ularly complex ones) highly depends on the quality of the segmentation method [Che+21b;

NGC15]. For instance, by including a bias to have smaller segments than the required

segment size for learning a specific activity, the machine learning process may not prop-

erly identify that activity. Furthermore, it is unrealistic to assume that individual activities

(concepts) remain unchanged for a long time; for example, the daily activities in winter

are different from those in summer [Che+21b]. Therefore, an appropriate segmentation

approach in one period may not be efficient for another period. While there has been a

rise in the use of AutoML techniques to automate algorithm and hyperparameter selection

[Mu+22; Tay+18], they do not dynamically change the algorithm over time. In addition, it is

essential to include the segmentation process inside the machine learning pipeline in order

to evaluate the global quality of the recognition system [Mod+22b].

2.4 Evaluation Problem and Challenges

Segmentation is recognized as an NP-hard problem [Asa+01] requiring heuristics for res-

olution. This makes the performance metrics crucial for assisting clinicians and system

designers in choosing the appropriate models for the clinical problem [THT14]. While nu-

merous studies have demonstrated that these models exhibit robust predictive capabilities

and achieving results close to those of clinicians [Mal+22], recent studies highlight the ex-

istence of statistical biases in the assessment method used to evaluate these models due

to the used metrics [MSK22; Rei+21].

Despite the existence of numerous evaluation metrics in the literature, there are con-

cerns regarding these metrics. Limited understanding and interpretability of these metrics

may result in significant bias when selecting a suitable segmentation method for a par-

ticular application [Nai+21]. Common evaluation metrics, such as TPR, PRC, DC or F1,

IoU, also called Jaccard Index, Hausdorff Distance (HD), Average Symmetric Surface Dis-

tance (ASSD), and Normalized Surface Distance (NSD), are widely used to assess the
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Figure 2.9: Example of MIS and its evaluation problem. Providing interpretable information

helps with the selection of an appropriate segmentation approach depending on the spe-

cific goal. For instance, during initial tumor detection, even marginal tumor identification is

critical, while in the treatment response assessment, the changes in the volume are impor-

tant.

tumor presence regardless of size, while treatment response evaluations require monitor-

ing volume changes [Tia+21]. Additionally, the presence of a dominant spot of lesions

(activities or sound events) of the same type might result in overlooking smaller lesions

(activities or sound events) during assessment [TH15; Kim+15]. The quality assessment of

these systems extends beyond these factors; evaluations should also consider the unifor-

mity or fragmentation of predictions and the preservation of segment shapes, which assist

experts and models in identifying tumor types [Tia+21]. Furthermore, predicted segments

can be partially correct and partially incorrect simultaneously, unlike point-based predictions

that are either entirely correct or incorrect. For example, medical treatment outcomes can

vary significantly even if two tumor segments have similar measures of the aforementioned

metrics, such as DC, and HD [Kim+15]. Very recent studies highlight the need for reli-
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able model performance assessments, as well as the presence of statistical biases in the

assessment of both binary and multi-class problems [MSK22; Rei+21; Nai+21; WWZ20;

Kum+17; Kim+15; TH15; GSC22; Hoe+22; Rei+22; Koe+22; Jav+22; Lee+22; Fag+22;

BJ22]. In conclusion, a more appropriate way to evaluate the performance of MIS tech-

niques involves considering their various aspects. To provide a clearer illustration of the

evaluation in SED, AR, and MIS, we have depicted these evaluations using self-descriptive

images in Figures 2.7 to 2.9.

2.5 Preliminaries on Evaluation (Point-based)

The point-based evaluation considers each concept as an individual instance; therefore, a

prediction is either correct or incorrect. Assuming yi is a vector representing the i-th target

in the ground truth and ŷi is the prediction of the system for i-th example. They are vectors

of real values in regression and vectors of the one-hot-encoded labels in the classification

problem. In this thesis, our concentration is on the classification problem.

Confusion Matrix Let us consider {0 : Negative(Background), 1 : Positive(Foreground)}

as the classes (labels) for binary classification and L = {0, 1, ..., k} in multi-class cases with

k interesting classes plus a background (null or 0) class. The Confusion Matrix (CM) is

commonly used to evaluate the performance of a classification system. It provides an

overview of how the model operates by presenting a summary of the number of TP, True

Negative (TN), FP, and FN predictions made by the system [Pan15; Rei+21]. These terms

are defined in the following: [True Positive] TP refers to the number of correctly predicted

positive instances [Pan15]. In multi-class cases, we calculate TP for each class c as the

sum of instances where the ground truth label yi is labeled c, and the system’s prediction ŷi

matches the class c. It is formulated in Equation (2.1) using the Hadamard matrix product

(elementwise product) (◦) notations and one hot encoded representation.

TP =
∑

i

yi ◦ ŷi (2.1)
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[True Negative] TN is the number of correctly predicted negative instances in binary

classification [Pan15]. In multi-class cases, for each class c, the TN is calculated as the

sum of instances where both the ground truth label yi and the system’s prediction ŷi are not

equal to c. This can be represented mathematically in Equation (2.2).

TN =
∑

i

(1− yi) ◦ (1− ŷi) (2.2)

[False Positive] FP are negative instances that have been incorrectly identified as positive

by the classification system [Pan15]. In multi-class cases, we calculate FP for each class

c as the sum of instances where the ground truth label yi is not labeled c, but the system’s

prediction ŷi is labeled as c. Using the ◦ notations and one hot encoded representation, we

can formulate it as shown in Equation (2.3).

FP =
∑

i

(1− yi) ◦ ŷi (2.3)

[False Negative] FN refers to the number of positive instances that are incorrectly predicted

as negative [Pan15]. In multi-class cases, we calculate FN for each class c as the sum of

instances where the ground truth label yi is labeled c, but the system’s prediction ŷi does

not match the class c. It is formulated in Equation (2.4).

FN =
∑

i

yi(1− ◦ ŷi) (2.4)

Therefore, the confusion matrix is a 2 × 2 matrix in the binary case, as shown in Fig-

ure 2.10, where the top left element represents TN, the top right element represents FP,

the bottom left element represents FN, and the bottom right element represents TP.

In multi-class cases, TP, FN, FP, and TN are vectors, where TPc, FNc, FPc, and TNc

represent the corresponding value for class c. Therefore, we can generate a confusion

matrix of size (k + 1) × (k + 1), to visualize the classification performance. Each element

of this matrix mij represents the count of ground truth instances of label i that the system

predicted as label j. Clearly, mii denotes accurate predictions, while all other elements

signify inaccurate predictions. In this context, TPc = mcc represents the number of correct
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predictions for class c, FPc =
∑k

j=1mjc−TPc signifies the number of predictions incorrectly

labeled as class c, and FNc =
∑k

j=1mcj − TPc represents the number of ground truths of

class c that were predicted as other classes. Counting all predictions that do not belong to

class c and were not predicted as class c, denoted as TNc, represents the remainder of the

predictions. These concepts are visually demonstrated in Figure 2.11.

Figure 2.10: Binary Confusion Matrix

Accuracy Acc is a metric that quantifies the ratio of correct predictions over the total

number of predictions [Pan15]. In the binary classification scenario, Acc is calculated using

Equation (2.5). In the multi-class classification scenario, when the number of predictions

equals to the number of ground truth, Acc is equivalent to the micro-average of the TPR or

PRC that is represented in Equation (2.6).

Acc =
TP + TN

TP + TN+ FP + FN
(2.5)

Acc =

∑k
c=1TPc∑k

c=1TPc + FNc
=

∑k
c=1TPc∑k

c=1TPc + FPc
(2.6)

Precision The Precision (PRC) is another performance metric commonly used in clas-

sification tasks. It measures the rate of correctly recognized positive instances among all

predicted instances as positive [Pan15]. It is particularly used in scenarios where the cost

of false positives is high. In such cases, we want to minimize the number of false positives,

i.e., instances that are predicted as positive but are actually negative. Precision helps us

achieve this by measuring the proportion of true positives among all predicted positives. A
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Figure 2.11: Multi-Class Confusion Matrix including TPR, PRC, F1 and Accuracy (Acc)

high precision value indicates that the model is correctly identifying positive instances, and

there are relatively few false positives. The mathematical definition of PRC using Hadamard

matrix division (elementwise division) (⊘) notation is presented in Equation (2.7).

PRC =
TP

TP + FP
·················· (2.7)

Recall or True Positive Rate Recall or True Positive Rate (TPR), also known as sensi-

tivity, measures the proportion of true positive instances that are correctly identified by the

model among all the positive instances in the ground truth [Pan15]. In other words, TPR

quantifies the ability of a classification model to correctly identify positive instances and is

an important metric for evaluating the model’s performance in scenarios where the cost of
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false negatives is high. The mathematical definition of TPR is shown in Equation (2.8).

TPR =
TP

TP + FN
··················· (2.8)

Fβ measure To gain a comprehensive understanding of the performance of a classifica-

tion model, it is common practice to evaluate both TPR and PRC metrics together [Pan15].

It can show better the strengths and weaknesses of the model and make informed decisions

about how to optimize its performance. Fβ measure (Fβ) is the weighted harmonic means

of TPR and PRC [Pan15]. Its special case F1 when β = 1 also called DC is commonly used

in situations where both precision and recall are equally important.

Fβ =
(1 + β2) · TPR ◦ PRC

β2 · PRC+ TPR
············································ (2.9)

F1 = 2
TPR ◦ PRC

PRC+ TPR
························· =

2TP

2TP + FN+ FP
································· =

2TP

R+U
············· = 2

∑
i yi ◦ ŷi∑
i yi + ŷi

···················· (2.10)

Intersection over Union IoU or Jaccard metric is a performance metric commonly used

in image segmentation where the main objective is to evaluate the similarity between the

predicted and ground truth segments [TH15]. It is calculated by dividing the number of TP

by the sum of TP, FN, and FP [Asg+21; Luo+22; LN22] and is formulated in Equation (A.2).

Commonly, Mean Intersection over Union (MIoU) is referred to the macro average of IoU

in each class, or Frequency weighted intersection over union (FWIoU) is their weighted

average where the weights are their frequencies [Zhe+21; Luo+22].

IoU =
TP

TP + FN+ FP
······························ =

DC

2−DC
··············· (2.11)

2.6 Conclusion

This chapter explored the fundamental concepts necessary for the comprehensive under-

standing of this thesis and the practical applications in AR, SED, and MIS. It also provided

a short overview of the segmentation and evaluation challenges and described some fun-

damental and basic concepts.



Chapter 3

Dynamic Receptive Field

3.1 Chapter Overview

In the context of image segmentation, the goal is to partitioning an image into meaningful

regions or segments. convolutional neural network (CNN) models are widely used for an-

alyzing and processing medical images. The fundamental block of CNN is the convolution

layer, which contains tiny adjustable weight grids (known as kernels) that convolved on the

input image. This operation involves moving the kernel over the image, and at every stop,

it performs a mathematical operation (dot product) using the weights of filters and the pixel

values of the image to get a single output. This process provides Local Receptive Fields

for every pixel, assisting the model in concentrating on nearby characteristics. As we go

deeper, the model starts recognizing more intricate and broader patterns, enhancing its

understanding of the image [Liu+21].

Typically, kernels of a predetermined size are employed, often configured as a 3x3 grid.

This can be likened to a windowing technique where the kernel moves over the image in

small segments, processing each segment to generate a corresponding output in a new

feature map. This process involves the kernel striding across the image, analyzing one

small region at a time. A number of researchers highlight that the size of these recep-

tive fields plays a crucial role in enhancing the efficiency of the models [IR20; MNA16;

27
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Wan+21c; Qiu+18]. Consequently, sticking to a kernel of a fixed size might not work well

for every image. For instance, larger input images or targets might require bigger receptive

fields. As demonstrated in Figure 3.1, having varying scales in different images suggests

the usefulness of having diverse receptive fields to accommodate all of them [IR20].

(a) ISIC-2018 Medical dataset. Green contours highlight regions with cancerous lesions.

(b) SegPC-2021 Medical dataset. Green contours highlight cytoplasm and nucleus regions.

Figure 3.1: Illustration of Different Scales in Medical Images. As visible, differences in the

scale of the images needs to be taken into account.

Before we delve into the topic of meta-decomposition in the upcoming chapter, we

sought to understand the recent progress in the Computer Vision domain concerning the

dynamic choice of receptive fields. Then, at the end of this chapter, we introduce a novel

method that incorporates a single dynamic receptive field layer into the best state-of-the-art

models in MIS, which enhances their performance.
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3.2 Related Works

3.2.1 Related Works on Image Segmentation

In the field of computer vision, image segmentation often employs the technique of pixel-

wise dense prediction. It involves assigning a label to each pixel in an image, where the aim

is to classify every pixel into predetermined classes. The group of similarly labeled pixels

forms a segment [YK16; SG16]. Deep learning-based MIS has gained considerable trac-

tion in recent years [Che+23; Hou+21; Dev+21; Asg+21; Mal+22; Luo+22; KHS22]. The

well-known U-Net model proposed by Ronneberger et al. [RFB15] gained significant atten-

tion and is an influential architecture in the field of deep learning. Similar to the Autoencoder

models, the U-Net model contains the encoder (contracting) and the decoder (expanding)

paths. The unique feature of U-Net is the incorporation of skip connections that enable

the flow of information from the encoder to the decoder at different scales, facilitating the

preservation of spatial details and improving the localization accuracy of the segmentation

results [RFB15; Aza+22]. Numerous extensions of U-Net have been proposed to improve

recognition quality in medical tasks. Azad et al. [Aza+22] provide a comprehensive sur-

vey on U-Net and categorize the U-Net extensions into Skip Connection Enhancements,

Backbone Design Enhancements, Bottleneck Enhancements, Transformers, Rich Repre-

sentation Enhancements, and Probabilistic Design. The MISSFormer model [Hua+23] re-

designs the U-Net architecture by incorporating a position-free and hierarchical U-shaped

transformer. It utilizes the Enhanced multi-scale Transformer module to bridge the gap be-

tween the encoder and decoder feature maps. It has a slightly higher performance in the

Synapse dataset [Aza+22].

The recent UCTransNet [Wan+22b] proposes replacing simple skip connections in U-

Net with a multi-scale channel-wise module to solve the semantic gaps for an accurate

MIS. It also includes an attention mechanism and transformer sub-module. The attention

mechanism implicitly learns to suppress irrelevant regions while emphasizing the regions

of interest and the transformer aids in capturing long-range dependencies and addresses
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the limitation of local receptive fields. The transformer sub-module tokenizes feature maps

in each stage within the appropriate patch sizes.

The MissFormer [Hua+23] and UCTransNet [Wan+22b] performs better comparison to

other approaches such as TransUNet [Che+21a], Residual U-Net [ZLW18], MultiResUNet

[IR20], U-Net++ [Zho+18], Att-UNet [Okt+18] and original U-Net [RFB15] over ISIC 2018,

SegPC 2021 and Synapse datasets [Aza+22].

In addition to altering skip connections, transformers, and attention mechanisms, alter-

native backbones are commonly used to improve U-Net performance. ResNet [Cic+16] is

also a common backbone for the U-Net architecture which addresses the issues of stacking

many layers in deep neural networks that causes vanishing gradient problem. The Google

inception module, widely utilized for extracting features across multiple scales, was initially

introduced in InceptionV1, where kernels of different sizes were concatenated in parallel

[Sze+15; Sze+16; Sze+17; Zha+21]. This architecture underwent further refinements in

subsequent versions, with InceptionV2 replacing the 5x5 convolution with two stacked 3x3

convolutions and InceptionV4 breaking down square convolutional kernels into two vectors

to reduce computational operations while increasing the receptive field [Sze+16; Sze+17;

ALB23]. However, this led to a limitation where larger kernels could not be broken down,

resulting in fewer selectable features. MultiRes blocks, which employ a series of convolu-

tional layers with residual connections, have been utilized to provide features at different

scales, although with limited efficacy for small images and fuzzy objects [IR20; Hos+23;

LGL21]. To overcome these limitations, the dual-channel UNet (DC-UNet) was proposed to

incorporate more different-scale features at the cost of increased network parameters and

GPU memory consumption [LGL21; Ans+22]. Gridach [Gri21], Jiang et al. [Jia+19], Lou

et al. [Lou+22], Yang et al. [Yan+20], Fu et al. [FLH23], Wang et al. [Wan+21b], and Zhan

et al. [Zha+23] consider fixed numbers of features for each multi-scale dilated atrous re-

ceptive field in parallel to not increase the computational complexity, which is an alternative

to representing information at various scales. This strategy increases the receptive field

of the layer without adding additional network parameters. A convolutional filter in a CNN
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can be decomposed as a linear combination of pre-fixed bases particularly Fourier-Bessel

bases [Qiu+18]. Wang et al. [Wan+21c] combine the concept of adaptive convolutional

kernel and combination of pre-fixed bases by replacing all convolution filters with adaptive

atoms. This approach are slightly shown better in image classification tasks particularly in

handling intra-image variance. However, it is not yet applied for image segmentation tasks.

Moreover, this method is more efficient when the number of channels is relatively high (e.g.,

256), which contrasts with the scenario in the first layer where, for example, there are only

3 RGB channels. In the next subsection, we study in more detail the works considering

multiple receptive fields.

3.2.2 Related Works on Multi-scale Receptive Field

(a) Inception V1 module

[Sze+15; ALB23]

(b) Inception V2 module

[Sze+16; ALB23]

(c) Inception V4 module

[Sze+17; ALB23]

Figure 3.2: The Evolution of Inception Modules. (a) concatenates kernels with size 1, 3, and

5, (b) Replace intensive 5x5 convolution with two stacked 3x3 convolutions, (c) Replaces

square convolutional kernels with two vectors to expand the receptive field while reducing

the computational operations.

The size of receptive fields is a pivotal factor in improving the model efficiency, as high-

lighted in several studies [IR20; MNA16; Wan+21c; Qiu+18]. The items studied in MIS

are not all the same and can be oddly shaped [IR20]. In CNN, the traditional approach

utilizes shared filters across all samples and pixels, maintaining the translation equivariant

property - a fundamental feature that ensures stability in recognizing patterns irrespective of

their position in the input space. However, to address the challenges of sample scalability, a

strategy of dynamically selecting the filter size for each image has been introduced. While
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this method aims to provide diverse features of different samples, it increases the com-

putational complexity due to adding extra parameters and not respecting the translation

equivariant property of CNN. Moreover, these strategies cannot be extended to efficiently

manage intra-image variances and are computationally considered infeasible [Wan+21c],

addressed in numerous studies in image classification tasks [Che+20; Wan+21c; Ser+07;

Sze+15; ALB23]. In addition, due to specific challenges posed by irregularly shaped items

in MIS, various strategies also have been devised. In [Ser+07], static Gabor filters of dif-

ferent sizes are used, while [Sze+15] proposes a new inception architecture that applies

convolutional layers of varying kernel sizes in parallel and based on the success of even

low dimensional embeddings, they also add one 1x1 convolution to reduce the computa-

tional requirements (Figure 3.2a). The Google inception module, widely utilized for extract-

ing features across multiple scales, was initially introduced in InceptionV1 (Figure 3.2a),

where kernels of different sizes were concatenated in parallel [Sze+15; Sze+16; Sze+17;

Zha+21]. This architecture underwent further refinements in subsequent versions, with In-

ceptionV2 (Figure 3.2b) replacing the 5x5 convolution with two stacked 3x3 convolutions

and InceptionV4 (Figure 3.2c) breaking down square convolutional kernels into two vectors

to reduce computational operations while increasing the receptive field [Sze+16; Sze+17;

ALB23]. However, this led to a limitation where larger kernels could not be broken down,

resulting in fewer selectable features.

MultiRes blocks (Figure 3.3a), which employ a series of convolutional layers with resid-

ual connections, have been utilized to provide features at different scales, although with

limited efficacy for small images and fuzzy objects [IR20; Hos+23; LGL21]. To overcome

these limitations, the dual-channel UNet (DC-UNet) was proposed to incorporate more

different-scale features (Figure 3.3b) at the cost of increased network parameters and GPU

memory consumption [LGL21; Ans+22]. The Adaptive Convolutions with Dynamic Atoms

(ACDA) dynamically generate a kernel for each pixel based on its surroundings, which is

implemented by a fast two-layer network to optimize the receptive field without escalating

computational complexity [Qiu+18; Wan+21c]. Kaur et al. [KKS21] stacked several 3x3
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(a) MultiRes Block [IR20] (b) Dual Channel Block [LGL21]

(c) Consecutive Multi Scale

Feature Learning Block

(CMSFL) [Oli+23]

Figure 3.3: MultiRes Block (right) and its dual version (center). It uses a chain of convolu-

tional layers with residual connections. Lou et al. [LGL21] shows that dual MultiRes block

provide better results. (c) presents the newer extension of MultiRes block, which uses a

convolution layer instead of residual connection.

convolutions to replace 7x7 convolutions. In [Zha+21], authors use consecutive multiple 3

x 3 convolution kernels followed up with the 1 × 1 convolution layer, which replaces the 5 ×

5 or 7 × 7 convolution kernels. It also adds a shortcut connection to improve the diversity

of feature learning and the robustness of CNN. Olimov et al. [Oli+23] introduce consecutive

multiscale feature learning blocks (Figure 3.3c) that require fewer 3x3 blocks to increase the

receptive fields. Wu et al. [Wu+21] combine multi-scale convolution modules and residual

connections in their Multi-scale Residual Block (MSRB) to improve the feature extraction

capability. They also use chains for 3x3 kernels to avoid the computational complexity of

5x5 convolution. Multi receptive field [Liu+20] consider multiple paths of convolution, de-

coder, and encoder for different dilation rate in parallel and then concatenate the extracted

features (Figure 3.2). The Selective Kernel module [Li+19c] consists of Split, Fuse, and

Select operators. It first generates multiple paths with various kernel sizes (split). Then, it

aggregates the information from multiple paths to obtain a global representation (fuse). Fi-

nally, it selects the feature maps from those paths [Byr+20]. In [Kha+22], authors proposed

four convolution input layers in parallel with various kernel size.Bao et al. [BZL23] proposed
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using large multi-scale kernels of size 4x4, 8x8, 16x16, and 32x32 in the first layer with

lower channels for larger kernels to control the total cost and to capture the information

of different scales. Several works concentrate on multi-scale inputs and layers, such as

[Liu+23; Yan+20].

(a) Pyramid Dilated Network Block

[Gri21]

(b) Spatial Context Fusion (SCF) block

[Wan+22d]

Figure 3.4: Dilated Network Blocks. Instead of using intensive kernels, theyconsider fixed

numbers of features for each multi-scale dilated atrous receptive field to not increase the

computational complexity.

Figure 3.5: Multi Receptive Field [Liu+20]. It considers multiple independent paths of con-

volution, decoder, and encoder for different dilation rate in parallel and then concatenate

the extracted features to obtain a multi-scale representation.

Gridach [Gri21], Jiang et al. [Jia+19], Lou et al. [Lou+22], Yang et al. [Yan+20], Fu et al.

[FLH23], Wang et al. [Wan+21b], Zhan et al. [Zha+23], and Gao et al. [Gao+21] considered

fixed numbers of features for each multi-scale atrous receptive field in parallel to prevent

the increasing of computational complexity (Figure 3.4a). In [Gri21], authors used multiple

kernel size in parallel in each layer. In [Wan+22d], authors proposed a spatial context
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fusion (SCF) block to address the limitation of using fixed-scale convolutional operations

in the inner layers (Figure 3.4b). Yang et al. [Yan+21], Mahmud et al. [MPF21], Gao et

al. [Gao+21], and Ibtehaz et al. [IR20] combine MultiRes and Res2Net block with atrous

receptive fields [Gri21] to decrease the number of parameters and extracts the features of

multi-scale receptive fields.

In summary, recently many approaches are proposed to improve segmentation perfor-

mance that are mainly concentrated on the improving skip connections, including attention

mechanism and transformer and improving the backbone such as including dynamic convo-

lution. The UCTransNet [Wan+22b] performs better compared to other approaches such as

TransUNet [Che+21a], Residual U-Net [ZLW18], MultiResUNet [IR20], U-Net++ [Zho+18],

Att-UNet [Okt+18] and original U-Net [RFB15] over several datasets such as ISIC 2018,

and SegPC 2021 [Aza+22].

Although employing a dynamic receptive field offers theoretical advantages, it is still

challenging to implement in practice. On one side, certain approach necessitate extensive

computational resources and memory to calculate the dynamic receptive field; on the other,

they may not yield any enhancement in performance. After a comprehensive study of var-

ious adaptive methods, the rest of this chapter will present a novel dynamic receptive field

layer that can be placed ahead of leading models. It improves the recognition performance

while maintaining a similar number of parameters.

3.3 Adaptive UCTransNet

In this section, we present an adaptive convolution layer to be incorporated into leading

models. Though it is not exclusive to UCTransNet, we showcase its integration at the

top of this architecture, naming it AdaptUCTransNet. The AdaptUCTransNet dynamically

adjusts the kernel size based on the local context of the input image, enabling the net-

work to capture relevant features at multiple scales from the first layer, leading to improved

segmentation accuracy, robustness, and better consider diverse anatomical structures, ir-
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regular shapes, and varying feature scales in medical images. Additionally, leveraging the

benefits of the UCTransNet architecture, which integrates U-Net and transformer models,

AdaptUCTransNet combines spatial information with self-attention mechanisms to extract

meaningful features from medical images.

In MIS, the presence of diverse segments necessitates the adaption of a flexible ap-

proach. By adjusting the kernel size based on the specific context of each pixel, we can

have a higher level of discernment when extracting features within the inner layers of deep

networks. By liberating the network from strict reliance on the hyperparameter associated

with the dataset for determining the kernel size, we empower it to adapt and optimize its

performance according to the unique characteristics of the input data. Therefore, the pro-

posed approach is to add the adaptive multi-size kernel convolution layer to the best deep

learning model for MIS. We leverage the fact that convolution layers can be mathemat-

ically expressed as a linear combination of predetermined bases [Qiu+18] inspired from

[Wan+21c]. By employing a limited number of Fourier-Bessel (FB) bases, we substantially

reduce the number of parameters. Notably, this reduction in parameters does not compro-

mise the accuracy of image classification tasks [Qiu+18; Wan+21a], while it has not yet

been explored for MIS. Additionally, using Fourier-Bessel bases improve the recognition of

the structural information of the input image and effectively mitigates the impact of high-

frequency noise and addresses the computational complexities associated with employing

multiple kernel sizes within the convolution layer.

Formally, the symbol [p] is employed to denote the spatial coordinates on a feature map

Z. These coordinates are applicable to a range of dimensional structures, extending from

1D to more complex, higher-dimensional forms. The notation N δ
Z[p] is used to represent the

receptive field surrounding the feature vector Z[p], where the distance is within a δ. The size

of this receptive field can vary, ranging from being quite small to encompassing the entirety

of the input feature. Considering this receptive field, the T is used to represent transformed

inner receptive field. For instance, in the dilated receptive field, T selects a subset of input

features at specified intervals. Conversely, in the case of a traditional convolution layer,
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T encompasses all pixels, incorporating them without any alterations. Then, traditionally,

this inner receptive field is convolved with a set of kernels, denoted as K. The convolution

operation can be mathematically expressed as Z ′[p] = K ∗ T (N δ
Z[p]), where Z ′ denotes the

resultant feature map post-convolution, and ∗ operation sums the element-wise product.

i.e., this can be expressed as K ∗ N =
∑

q(K ◦N)q, where the ◦ signifies Hadamard

element-wise multiplication and the sum is taken over all elements of the product. These

kernels are learned end-to-end by the network during the training process, typically via

backpropagation and gradient descent. The inclusion of these kernels results in the addition

of extra parameters to the network. As expected, using larger kernels further increases the

total parameter count. Therefore, it will be more challenging to dynamically select the most

suitable kernel size for each spatial coordinate.

Based on the finding in [Qiu+18], a convolution kernel can be decomposed as a combi-

nation of Fourier-Bessel bases. Therefore, instead of using a learnable kernel, we can learn

the weights (W ) for the pre-fixed Fourier-Bessel bases with different sizes (FS). Therefore,

Z ′[p] = FS×W ∗T (N δ
Z[p]). For adaptively changing the receptive field, we use another inner

network to learn these weights (W ) based on the receptive field N δ
Z[p]. This inner network,

called the coefficient generator network, is trained end-to-end with the backpropagation

and gradient descent. In the process of selecting appropriate weights for kernels of varying

sizes, we stack several layers of smaller kernels to control the complexity, as suggested by

Simonyan et al. [SZ15]. This approach ensures that the output comprehensively covers the

entire receptive field. For example, by stacking a minimum of four layers of 3x3 kernels, we

can achieve 9x9 receptive field. This multi layer network convolved through the receptive

field N δ
Z[p] with a smaller kernel size, and the output of this network is the local weights

(W (N δ
Z[p])) for the pre-fixed Fourier-Bessel bases with different sizes (FS). This inner net-

work remains fixed across all receptive fields. Consequently, this approach maintains the

translation invariance characteristic of convolutional networks while taking into account the

local context.

Building upon the specific attributes of medical images, we present our framework to en-
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3.4 Experiment

In the experiments, we conduct an extensive evaluation of the adaptive layer added ahead

of UCTransNet, attunet and well-known U-Net architecture using benchmark medical image

datasets. By comparing the results with traditional CNNs that employ fixed kernel sizes,

we demonstrate the superior performance and generalizability of our adaptive approach.

Experiments are conducted on various public testbeds, including the Multiple Myeloma

Plasma Cell Segmentation (SegPC) 2021 [Gup+23; Gup+21] and the International Skin

Imaging Collaboration (ISIC) 2018 datasets [Cod+19], which will be explained in details in

the next sub section. Then, after explaining the details of implementation, we present the

experimental results.

3.4.1 Environment Setup

In order to foster transparency and repeatability of our work, All the codes, datasets,

and documentation are freely accessible on our GitHub repository: https://github.com/

modaresimr/adaptive_mis. All experiments are run on an NVIDIA DGX-1 machine featur-

ing a Tesla V100-32 GPU, Intel Xeon E5-2698v4 CPUs, and 512 GB of RAM. However, we

use only a part of these resources.

3.4.2 Datasets

Experiments are conducted on various public testbeds, including the Multiple Myeloma

Plasma Cell Segmentation (SegPC) 2021 [Gup+23; Gup+21] and the International Skin

Imaging Collaboration (ISIC) 2018 datasets [Cod+19]. SegPC contains a collection of 775

microscopic 2D images from the bone marrow samples of Multiple Myeloma patients. It sig-

nificantly helped hematologists in making more accurate diagnoses and facilitates cancer

screening. The dataset from ISIC 2018 boasts a large collection of 2,594 RGB dermoscopy

images. Robust segmentation of these images plays a crucial role in medical diagnosis and

is challenging due to inconsistent lighting conditions, varying lesion sizes, texture dispari-
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ties, and differences in color and positioning. Moreover, the presence of unrelated elements

like air bubbles, hair strands, or ruler markers further adds to the complexity [Has+20;

Cod+19; Gup+23; Gup+21; Aza+22]. Both datasets are illustrated in Figures 3.9 and 3.10

with the segmentation result of our approach.

Similar to the work by Azad et al. [Aza+22], we allocated 70% of images for training,

10% for validation, and the remaining 20% for testing, and our research focused on the

segmentation of Cytoplasm components in SegPC 2021 and segmentation of cancer le-

sions in ISIS 2018 datasets.

3.4.3 Hyperparameters and Implementation Details

Our pipeline infers the segments from raw image data. All images underwent a sizing down

operation to a standard size of 224 x 224 pixels. The pipeline is composed of an adaptive

convolution layer with the kernel size of 3, 5, 7, and 9. We also select six Fourier Bessel

bases similar to [Wan+21c]. For the coefficient generator network, we have used six inter-

mediate features (m), which, is responsible for encoding the weights of the prefixed bases.

This network will be trained end to end during the global training process. We maintain

early stopping with a patience of 20 epochs during the training. For better comparison, we

make the other hyperparameters similar to those of given in [Aza+22], such as the batch

size of 16, epochs limit of 100, Adam optimizer with a learning rate of 0.0001, and the

average of cross-entropy loss and dice loss for the loss function. The entire implementa-

tion, along with hyperparameters, is accessible and verifiable through our publicly available

open-source repository.

3.4.4 Model Complexity

An essential factor in the assessment of models is the computational complexity. The num-

ber of trainable parameters of these components is listed in Table 3.1. Therefore, although

the training complexity is similar (the differences are less than 2%), its performance is better
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as shown in Tables 3.2 and 3.3.

Table 3.1: Number of parameters in each model, including the adaptive variant. This indi-

cates that although our method is effective in determining the ideal dynamic kernel size, it

keeps the number of parameters almost the same as those of the original model.

Methods Normal with Adaptive Layer

U-Net 19.487 19.850

Att-UNet 34.879 35.242

UCTransNet 66.431 66.794

3.4.5 Evaluation Metrics

We used a series of performance metrics for a comprehensive analysis of our model’s

effectiveness. Acc, DC, and IoU served as the primary metrics. Accuracy gives a general

idea of the model’s overall performance, which is crucial to be interpreted alongside other

metrics due to data imbalance. We utilize the IoU to measure the overlap between the

predicted and actual segmentation. DC is used as an alternative to the F1 score due to

its increased relevance in medical imaging. It places double emphasis on true positives,

which is the harmonic mean of precision and recall. It effectively gauges the spatial overlap

of the predictions, which is particularly useful in biomedical image segmentation tasks.

Through these varied metrics, we ensured a robust evaluation of our model’s segmentation

performance.

3.4.6 SegPC 2021 Case Study

SegPC contains a collection of 2D microscopic images from the bone marrow samples of

Multiple Myeloma patients. It significantly helped hematologists in making more accurate

diagnoses and facilitates cancer screening. Similar to previous studies [Aza+22], we allo-

cated 70% of 775 images for training, 10% for validation, and the remaining 20% for testing,

and focused on the segmentation of Cytoplasm components in SegPC 2021.



42 CHAPTER 3. DYNAMIC RECEPTIVE FIELD

We have showcased the visual segmentation results from the SegPC 2021 dataset in

Figure 3.9. The strength of our adaptive multi-size-kernel representation effectively demon-

strates its aptitude to generate accurate segmentation maps for cells of diverse scales and

backgrounds. A comparison of results for the SegPC 2021 dataset is detailed in Table 3.2,

further highlighting the effectiveness of our methodology. In Figure 3.7, we have plotted the

training and validation loss curves for the SegPC 2021 dataset. It shows the model’s robust

performance, as it is neither underfitting nor overfitting.

Table 3.2: Comparison of results for the SegPC 2021 dataset. Each experiment is repeated

five times. We have added our adaptive layer to two leading models (AttUNet, UCTransnet),

and traditional UNet, improving not only the performance of these models but also their

consistency (as shown by the standard deviation). For a more comprehensive comparison,

other deep models, such as missformer, resunet, and multiresunet, are included at the sec-

ond part of the table. Their models with our adaptive layer are accessible in our repository.

model Accuracy Dice IoU

Adapt UCTransnet 98.66±0.01 92.11±0.02 91.96±0.02

UCTransnet 98.61±0.04 91.85±0.23 91.71±0.22

Adapt AttUNet 98.71±0.01 92.41±0.03 92.25±0.03

AttUNet 98.65±0.02 92.10±0.08 91.95±0.08

Adapt UNet 98.22±0.01 89.58±0.13 89.60±0.11

UNet 98.07±0.05 88.69±0.35 88.80±0.30

missformer 98.35±0.04 90.38±0.16 90.32±0.15

resunet 97.74±0.04 86.70±0.15 87.04±0.14

multiresunet 96.15±0.41 80.29±1.70 81.46±1.41

Figure 3.7: The train loss and validation loss of SegPC 2021 dataset. They indicate that

the model is neither overfitting nor underfitting.
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3.4.7 ISIC 2018 case study

The dataset from ISIC 2018 boasts an extensive collection of 2,594 RGB dermoscopy im-

ages. Robust segmentation of these images plays a crucial role in medical diagnosis and is

challenging due to inconsistent lighting conditions, varying lesion sizes, texture disparities,

and differences in color and positioning. Moreover, the presence of unrelated elements like

air bubbles, hair strands, or ruler markers further add to the complexity [Has+20; Cod+19;

Gup+23; Gup+21; Aza+22].

Table 3.3: Comparison of results for the ISIC 2018 dataset. It shows the effectiveness

of our methodology. Similar to Table 3.2, Each experiment is repeated five times and we

have added our adaptive layer to two leading models (AttUNet, UCTransnet), and traditional

UNet. This approach improves the performance of these models. For a more comprehen-

sive comparison, other deep models, such as missformer, resunet, and multiresunet, are

included at the second part of the table. Their models with our adaptive layer are accessible

in our repository.

model Accuracy Dice IoU

Adapt UCTransnet 95.64±0.13 89.31±0.18 87.68±0.16

UCTransnet 95.54±0.07 89.04±0.27 87.40±0.25

Adapt AttUNet 95.57±0.16 88.96±0.28 87.36±0.32

AttUNet 95.44±0.15 88.66±0.25 87.04±0.29

Adapt UNet 94.80±0.21 87.09±0.29 85.41±0.36

UNet 94.43±0.25 86.18±0.39 84.49±0.46

missformer 95.25±0.18 88.38±0.42 86.69±0.43

resunet 94.35±0.09 85.84±0.07 84.19±0.09

multiresunet 92.83±0.63 84.01±1.02 81.80±1.15

Similar to previous studies [Aza+22], we allocated 70% of 775 images for training, 10%

for validation, and the remaining 20% for testing, and our research focused on the seg-

mentation of cancer lesions in ISIS 2018 dataset. This dataset is illustrated in Figure 3.10

with the segmentation result of our approach. Skin lesions typically manifest within the

texture and seldom adhere to a definite shape or geometric pattern. This unpredictable

behavior might explain why transformer-based networks may not yield substantial benefits

for texture-related patterns [Aza+22].

Yet again, the adaptive multi-size-kernel representation capability of our methodology

demonstrates its proficiency. Compared to other approaches, it’s remarkably effective at
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Figure 3.8: The train loss and validation loss of ISIC 2018 dataset. Similar to Figure 3.7,

they indicate that the model is neither overfitting nor underfitting.

localizing abnormal regions, which is clearly illustrated in the segmentation results shown

in Figure 3.10. This calls for a deeper exploration of the robustness and applicability of

our approach. In Figure 3.8, we have plotted the training and validation loss curves for the

ISIC 2018 dataset, which shows stability with a minimal gap between training and validation

losses. This figure shows that the model is likely performing well.

3.4.8 Discussion

The conducted experiments substantiate the efficacy of integrating an adaptive layer at

the initial stage of deep networks, enhancing their resilience to diverse scales. This layer

augments the network’s capability to discern structural information across varying sizes,

while maintaining a comparable parameter count. The experiments demonstrate that the

inputs including larger segments are better recognized by the proposed method. The note-

worthy aspect of these experiments was the enhancement of all existing models through

the integration of the adaptive layer, without necessitating any modifications to their struc-

ture. This improvement was observed even in models that inherently feature a multi-scale

module (such as UCTransnet). The accuracy of our experiment and number of parameters

aligns with the recent survey by Azad et al. [Aza+22], further validating the credibility of our

experimental results.
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Figure 3.9: Visual comparisons of different methods for cytoplasm segmentation (depicted

as the white region) on the SegPC 2021 dataset. The blue region denotes the Nucleus area

of a cell. The initial column displays the input image, while the second column presents the

ground truth. Following these, the subsequent columns feature the models along with their

adaptive versions. As is evident, models incorporating the adaptive layer more accurately

recognize the shape of the cytoplasm, and this improvement is particularly greater in larger

segments.
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Figure 3.10: Segmentation output of various deep model in ISIC 2018 dataset. The white

region represents the ground truth that remains undetected (FN), while the gray region

represents the detected ground truth (TP), and red denotes the FP. The columns orders

are similar to Figure 3.9. Once again, our model is more effective in identifying target

regions, particularly noticeable in larger ones where traditional models with fixed kernels

face difficulties in detecting intra-size features.



3.5. CONCLUSION 47

3.5 Conclusion

In this chapter, we delved into recent advancements in the field of computer vision, focusing

on the dynamic modification of the receptive field, a strategy bearing resemblance to the

previously described windowing approach. We introduced a novel adaptive layer designed

for integration into MIS, aiming to enhance their overall performance. We have shown the

effectiveness of our adaptive layer approach by including a dynamic layer on the top of the

best segmentation deep network. This approach improves the recognition performance by

dynamically changing the receptive field in the first layer, resulting better identification of

structural information and various size targets, and reducing high frequency noises while

keeping the number of parameters nearly unchanged.

This exploration raised pertinent questions regarding the applicability of this approach in

handling tasks involving images that different parts are mostly homogeneous and whether

its utility extends to more complex and heterogeneous applications. Consequently, it has

prompted us to consider the potential of employing this dynamic receptive field modification

strategy in segmentation tasks in AR, a topic we plan to elaborate on in the forthcoming

chapter.



48 CHAPTER 3. DYNAMIC RECEPTIVE FIELD



Chapter 4

Segmentation

4.1 Chapter Overview

The process of segmentation assumes diverse interpretations within various applications

at various levels. In the scope of this thesis, we specifically delve into the realm of segmen-

tation at the pre-processing stage before feeding the data to the machine learning models.

Therefore, for instance, in the field of Activity Recognition, segmentation refers to the pro-

cess of dividing the input sensor events into segments before feeding to the model such

common approaches are Event Window and Time Window.

Segmentation is a common step in the processing pipeline of many Internet of Things

applications, such as AR. This step introduces at least two families of uncontrollable bi-

ases. The first is caused by the changes of the segmentation process on the initial problem

space, and the latter results from the segmentation process itself, including the fixation of

the segmentation method and its parameters. For example, an appropriate segmentation

approach in one period may not be efficient for another period due to the changes in data

over time. To avoid these biases, we first redefine the segmentation problem as a special

case of the decomposition problem, including a decomposer (traditional segmentation), res-

olutions, and a composer. In the literature, the composer task is often ignored in machine

learning models. However, incorporating the composer task in the segmentation makes it

49
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possible to evaluate the relationship between the initial problem to be solved and the prob-

lem after the segmentation, resulting in an improved evaluation and consequently selecting

the appropriate segmentation method. It addresses the first families of the aforementioned

biases. Then, we formally present our novel meta-decomposition or learning-to-decompose

concept. It learns how to decompose the original task into sub-tasks to be combined with

the meta learning approaches which require multiple tasks. Meta-decomposition reduces

the second family of segmentation biases by considering the segmentation as a hyperpa-

rameter to be optimized by the outer learning problem. Therefore, meta-decomposition

improves the overall system performance by dynamically selecting the appropriate seg-

mentation method without including the aforementioned biases in this process. As men-

tioned before, without considering the composer part, meta-decomposition introduces an

additional bias in the comparison of different segmentation approaches due to the incon-

sistency in the segments. Extensive experiments on four public datasets demonstrate the

feasibility of finding a proper segmentation method and its hyperparameter by our proposal

with simple and effective data-driven approach.

Our approach consists of two major steps: a) redefining the segmentation problem as

the data decomposition problem, and b) formalizing our novel meta-decomposition model.

In what follows, we first introduce the related works, the definition and terminology and then

elaborate on each step.

4.2 Related Works and Preliminaries

As described previously, the segmentation process assumes diverse interpretations within

various applications at different levels. In the scope of this thesis, we specifically delve into

the realm of low-level segmentation, while evaluating its impact at the higher level. Within

the domain of activity recognition, segmentation denotes the process of dividing the input

sensor events into segments that carry significant meaning. In AR using ambient sensors,

data usually comes as a continuous flow of raw sensors’ data. One challenge is to achieve
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a proper division of these long sequences of raw and continuous data flow into smaller

blocks of information and reduce the needed computational resources [Via18; NGC15].

The segmentation should provide enough information for recognizing the activity and it has

a direct effect on the accuracy of activity recognition [NGC15]. This segmentation enables

the identification and analysis of distinct activities or events within a continuous stream of

sensor data. By segmenting the input, the system can better understand and interpret

different actions or behaviors. Similarly, in the context of image segmentation, the goal

is to partition an image into meaningful regions or segments. One approach to achieve

this is by creating a grid or dividing the image into smaller sections. In the domain of

audio processing, segmentation involves breaking down an audio file into smaller frames

or segments. This division facilitates subsequent analysis, such as speech recognition or

audio classification. By dividing the audio into frames, specific characteristics, and patterns

can be extracted and analyzed within each segment, leading to improved understanding

and processing of the audio data.

In sensor-based HAR, the objective is to identify activities including both activity classes

and their temporal duration based on a sequence of heterogeneous input sensor events

[CN15]. In AR, activities are durative and may occur in parallel by various participants.

Sensors track the actions and interactions over time. These sensors are used to capture

the human actions and activities of daily life. Sensors have various types, quality, noise and

collection rates. For example, several sensors transmit their current state only when there’s

a change due to communication and battery concerns (event-based), thus, they could be

activated at different times. It causes the sampling over time to be patchy and not uniform

[NLL22]. The information provided by a single sensor event is inadequate for identifying a

particular activity. Accordingly, it is crucial to partition sensor events into a collection of seg-

ments that can be mapped to a specific activity [Min+20; BNE21; DTP21]. Segmentation

can significantly affect the system’s performance because it alters some characteristics of

the underlying data. Segmentation is widely considered to be the most common task be-

fore the feature extraction and resolution step [YFF17]. In activity recognition using ambient
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sensors, data usually arrives as a continuous flow of raw data. One challenge is to achieve

a proper division of these long sequences of raw and continuous data flow into smaller

blocks of information and reduce the needed computational resources [Via18; NGC15].

The segmentation should provide enough information for recognizing the activity and it has

a direct effect on the accuracy of activity recognition [NGC15]. Segmentation can also add

extra complexity in further data processing when one segment covers two or more activ-

ities or events belonging to one activity are spread into several segments [NLL22]. This

segmentation enables the identification and analysis of distinct activities or events within

a continuous stream of sensor data. By segmenting the input, the system can better un-

derstand and interpret different actions or behaviors. The common pipeline is shown in

Figure 4.1

Therefore, a trade-off exists among the amount of information in each segment (seg-

ment size), the number of segments, and the processing complexity of each segment.

Since segmentation can significantly affect the final results, several studies in AR mainly

work on utilizing pre-segmented sequences [NLL22]. Nevertheless, this approach is not

practical in real-world scenarios [KC14; De-+18; BNE21; XWG20; Cum+18]. Figures 4.6,

4.7 and 4.10 clearly indicate that pre-segmented data offers an easier path for recognizing

activities than that of non-segmented data. Therefore, other studies rely on a segmentation

approach that is based on temporal information [BNE21; Fu11; KC14; NGC15], similarity

or dissimilarity between segments [NLL22; YFF17; WOO15; SB18], ontology and domain

knowledge [Tri+19; SB18; WM18; NLL22], learning the segment size [KC14; SB18], sensor

events [NGC15; BNE21; OOB11a], activity or explicit segments [NGC15; BNE21; Lun+18],

gathering sufficient features [NGC15; KC14; CN15; YFF17; SB18], evolutionary computa-

tion [Tak+01], detecting change points [AC19; Zam+20], feasible space window [Hu+17],

and hybrid approaches [NLL22]. It has been proved that the dynamic segmentation ap-

proaches perform better than static ones [Fu11]. However, the aforementioned studies are

designed to be used in a particular application and dataset. e.g., some of them need con-

tinuous senses, which means all sensors’ values should be presented at each time point;
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Figure 4.1: Stages of activity recognition include raw data collection, pre-processing, fea-

ture extraction, classifier training, and data classification [FC17].

others work on sparse sensor streams where sensor events are triggered only because of

human activities, like motion sensor sequence [KC14].

Regarding the recent surveys of human activity recognition in smart homes [BNE21;

Ari+22; Min+20; Wan+21a], the most common approaches in data segmentation are Time

Windows (TW), Event Windows (EW), and Dynamic Windows (DW). The selection of the

optimal parameters is the biggest challenge for these techniques [NLL22]. Kasteren [Kas11]
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determined that a time window of 60 seconds in TW provides a high classification perfor-

mance for binary sensors, and it has been used as a reference in several recent works

[BNE21; Ham+21; Med+18; Ham+20]. Moreover, for EW that has variable window duration

due to the occurrence of events at various times, a window of 20 to 30 events is usu-

ally selected [BNE21; AC19]. However, these parameters are completely dependent on a

given dataset. They are hard to tune and may not be efficient for complex activities [BNE21;

KC14; Qui+18; SWL17]. The importance of selecting an appropriate window size is studied

[Min+20]. Quigley et al. [Qui+18] demonstrate that although TW reaches a high accuracy,

it fails to properly identify all classes. On the other hand, DW uses a non-fixed window

size and tries to estimate the activity duration based on the sensor events. However, this

approach is inefficient for complex activities [BNE21; KC14; Qui+18; SWL17]

There is a rise in deep learning approaches for HAR [Wan+19; Che+21b; Lic+20;

BNE21; Bou+21b]. Guan et al. [GP17] claim that the deep learning method can be in-

sensitive to the window size in HAR. Yet, it is not the case for HAR scenarios with the

sparse data stream, since either those works are on the pre-segmented data [Bou+21b] or

the parameters (e.g., length and moving step) need to be carefully tuned to achieve sat-

isfying performance [Che+21b]. Therefore, providing a unified method usable in various

applications is helpful. It prevents including implicit knowledge about the program and data

in the algorithm, implementation, and evaluation.

AutoML techniques are used to automate algorithm and hyperparameter selection [Mu+22;

Tay+18]. However, they do not adapt the algorithm regarding the incoming data, while an

important concern in HAR is due to the fact that the proper segmentation method in one

period may be inappropriate for another period [Ros+14; Ada+19]. Meta-learning, often

known as learning to learn, has been successfully used for algorithm selection [Agu+19]

and provides automatic and systematic guidance on algorithm selection based on the in-

formation gained through a set of algorithms on various tasks [Ros+21]. Meta-learning is

not a novel concept [Sch87; SS10]; however, there has been a recent rise of interest in

meta-learning [Gre+19]. Hendryx et al. [Hen+19], and Aguiar et al. [Agu+19] use a meta-
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learning approach across different image tasks to select the proper algorithm for generating

the mask for a given image [SL21].

One of the considerations in this thesis is the fact that previous studies consider each

experience as an independent instance and do not consider the decomposition of each task

into sub-tasks to be used by meta-learning. Additionally, in IoT, the input sensor events in

each experience are characterized by their continuous and relative nature; therefore, they

are not independent [Fu11; CN15].

The previously mentioned approaches are not appropriate for the IoT data. Therefore,

we initially describe the problem formally. There are a few works around the formal def-

inition of the segmentation problem. They typically formalize their algorithms for a given

application and assumptions [Oke+14; OOB11b; CN15]. In [Oke+14; OOB11b; CN15]

studies, an Activity is assumed as a class label for each segment. This definition does

not consider the continuity of activities that are occurring during a time interval. Alevizos

et al. [Ale+17] formulate probabilistic complex event recognition by presenting simple event

algebra for probabilistic events. Cook et al. [CN15] propose two formalizations for event

segmentation approaches and sliding window approaches. To the best of our knowledge,

no work has been done on dynamically selecting the appropriate segmentation method and

its hyperparameter over time, despite the fact that the appropriate segmentation method

and its hyperparameter in one period may be inappropriate for another period [Ros+14;

Ada+19]. In addition, the previous studies never viewed the segmentation problem as a

data decomposition.

4.3 Problem Formulation

Following the notations of [SS10; HRP21; Hos+22], let us consider domain A as a set

of experiments. Experience s ∈ A is a broad term used on both supervised and non-

supervised learning problems that may refer to an input-target tuple, a single data point,

a sequence of events (e.g., in IoT), etc. We define mθ as a task with hyperparameter
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θ (includes, e.g., the initial model parameters, choice of the optimizer, and learning rate

schedule) that takes the input experiments and outputs the target concepts (e.g., activities

in AR, sound events in SED, and tumor spots in MIS) based on the constraints, objectives,

etc. ϕ(mθ, s) is associated with measuring the performance of task mθ on the experiment s.

We denote the expected performance of task mθ on S ⊆ A by L(mθ, S), such that:

L(mθ, S) = Es∈S [ϕ(mθ, s)] (4.1)

Measurement ϕ is as diverse as the application domains. For instance, in super-

vised learning, ϕ might be the differences between task outputs and teacher-given val-

ues [SS10]. Without losing generality, we consider the optimum hyperparameter minimizes

the expected performance (θ∗S = argminθL(mθ, S)). Finding globally θ∗ is computationally

infeasible [HRP21]. Therefore, we approximate it (θ∗S ≈ gω(S)) guided by pre-defined meta-

knowledge ω which includes, e.g., the initial model parameters (θ0), choice of the optimizer,

and learning rate schedule [Hos+22].

For instance, in sensor-based AR, each experiment contains a sequence of various

sensor occurrences, and activity information (such as their label and duration); task mθ

refers to the activity recognition model and its hyperparameters; and ϕ(mθ, s) evaluates the

performance of the activity recognition model on the experiment s. For instance, ϕ can

evaluate the duration of correctly identified activities.

4.4 Decomposition

Even though decomposition is a well-known approach in designing algorithms [Cor+09],

the data segmentation problem has never been viewed as a data decomposition problem,

which consists of a decomposer that splits the input sequence into a set of smaller data

(traditional segmentation), resolutions that find the concepts from these smaller segments

(usually less complex than original resolutions), and a composer that combines the sub-

results to generate the overall results.
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To the best of our knowledge, previous studies in the literature have not considered

the composer component [KC14; QJE21; YFF17; De-+18; Cum+17; Wan+19; Che+21b;

HSZ20; Ber+18; Via18]. These studies have made the implicit assumption that the seg-

mentation process preserves the integrity of the whole problem, and as such, the overall

system performance is assessed based on the output of each segment. This hard hypothe-

sis may misleadingly present convenient results without even reducing the complexity of the

problem, which is explained in Section 4.6.4. Therefore, this study explicitly redefines the

segmentation problem as a data decomposition that incorporates all three components: the

decomposer, the resolutions, and the composer. The introduced biases, loss of information,

and performance of each component can affect the overall performance of the system and

should be carefully evaluated. Furthermore, neglecting the composer component would

lead to inconsistencies in the comparison of different segmentation algorithms, which will

be discussed in detail in Section 4.6.4. Therefore, including the composer component in the

segmentation problem is crucial for accurately evaluating and comparing the performance

of various segmentation algorithms.

Accordingly, the decomposer task (dδ parameterized by δ) decomposes mθ into M res-

olution sub-tasks (ΠΨ = {πiψi
}i=1:M such that each sub-task is parameterized by ψi ∈ Ψ),

and the composer task (cσ parameterized by σ) that combines the results of sub-tasks to

produce the overall system results. Task mθ is decomposable under the measurement L to

ΠΨ and cσ if and only if the composition of sub-tasks does not perform worse up to ϵ than

task mθ. Formally:

dδ,L(mθ) ≈ϵ ΠΨ, cσ ⇐⇒ L(cσ(ΠΨ), A)− L(mθ, A) ≤ ϵ (4.2)

The task’s performance after decomposition cannot surpass the original task due to the

severed relationship between events, leading to information loss. When ϵ is zero, it means

that mθ is strongly decomposable to ΠΨ and cσ without any loss of information, otherwise,

it is a weakly decomposable task, and some information is lost. δ,Ψ, and σ show the de-

pendencies of the model on pre-defined assumptions about the decomposition, for exam-
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ple, the segmentation approach such as time window and event window, and their internal

parameters such as window size. These assumptions can affect the global system’s per-

formance. For example, the optical character recognition (OCR) task is commonly decom-

posed into sub-tasks with sub-images (each contains one character), and the composition

task merges the results of those tasks to produce the whole problem result (full text). Equa-

tion (4.2) shows that the decomposability of a task depends on the task target, i.e., on the

objective function measured by L. For instance, while we can decompose the face recog-

nition task to analyze only the color frame task with an accuracy of 99.5% [LSX21]; this

decomposition may be inadequate in a highly secure application, where a more detailed

decomposition involving depth and color sub-tasks may be required [App22].

Obviously, all the mentioned components (decomposer, resolution, and composer) play

a crucial role in measuring the performance, the introduced biases, loss of information,

and complexity of the whole system and should be considered in designing and evaluat-

ing segmentation approaches. In particular, ignoring the composer component leads to

inconsistencies and difficulties in comparing different segmentation algorithms, which are

elaborated more in Section 4.6.4. The decomposer task itself can be decomposed into

several sub-tasks and a composer task. For example, in an IoT data processing task, we

can decompose the task into sub-tasks each one containing a meta-segment (for example

one day, week, or month).

4.5 Meta-Decomposition

In a traditional segmentation, the probability distribution of data is supposed to be unknown

but stationary. Nevertheless, the underlying distribution of data in real-world IoT systems

naturally changes over time [Ros+21]. Additionally, fixing the segmentation and its hyper-

parameter is the second family of biases that is often implicitly incorporated with the prior

knowledge or assumptions originating from the developers, researchers, or experts.

Therefore, we propose our novel Meta-Decomposition approach to resolve these concerns.

Learning-to-decompose or meta-decomposition is defined as a model that can dynami-
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cally and systematically select and tune the decomposition algorithm. Formally, in Equa-

tion (4.3), we consider diδi ∈ D as the i-th decomposer task which generates sub-tasks Πi
Ψi

and the composer task ciσi ; then, we define the meta-decomposition task (d̂δ̂) as the selec-

tion of sub-tasks (Π̂Ψ̂) and the meta-composer task (ĉσ̂), such that in the meta-evaluation,

the meta-decomposition task outperforms those decomposition tasks individually.

d̂
δ̂,L

(mθ) ≈ Π̂Ψ̂, ĉσ̂, s.t., Π̂Ψ̂ ⊆ ∪
i
ΠiΨi

∧ L(ĉσ̂(Π̂Ψ̂), A)−min
i

L(ciσi(Π
i
Ψi
), A)≤0 (4.3)

This definition is illustrated in Figure 4.2. The meta-decomposition task can be carried

out in several ways to efficiently and dynamically select the proper segmentation approach

and its hyperparameters depending on the incoming data, application, and constraints.

Moreover, the proposed model can be easily extended to an arbitrary number of meta-

levels and is not limited to a single layer of meta-decomposition. For example, meta-meta-

decomposition algorithm can generate the sub-tasks for the inner meta-decomposition al-

gorithm. For example, we can select a subset of sub-tasks (e.g., person detection and

object detection) in order to recognize the human-object interaction. As mentioned before,

meta-learning [SS10; Agu+19; Van19] has been successfully used for algorithm selection

over various tasks (e.g., [SL21]); however, it requires multiple tasks and is not applicable

to one single HAR task. In meta-decomposition, we generate the sub-tasks from a single

task. These sub-tasks can be fed to the meta-learning approaches [SS10]. Therefore, we

can enhance the overall system performance without including hard prior biases about the

fixation of the segmentation method and its hyperparameters. The next section describes

more about it with an experiment.

The current definition is open to interpretation regarding the distinction between decom-

position and meta-decomposition. Specifically, combining a decomposition with a meta-

decomposition, as well as any number of further meta-meta-decompositions, can always

be seen as a single ”flat” decomposition algorithm. On the other hand, some decomposition

methods can be seen as a type of meta-decomposition. For instance, the one that decom-

poses data and changes the segmentation size over time while composing the results can





4.6. EXPERIMENT 61

ever, we only consider one level in these experiments for simplicity. The details of these

experiments are in the following subsections, which we explain our experiments, selected

datasets, environment, framework, baselines, and evaluation method in detail. Then, we

present a discussion on the results.

4.6.1 Case Studies

Experiments are conducted on various public testbeds, including the widely-used [De-+18;

BNE21; Ari+22] WSU CASAS Home1, Home2 [KC14], and Aruba [Coo12] datasets that

have around 32 sensors and between 250,000 to 1,700,000 events, Orange4Home (Or-

ange4H) dataset [Cum+17] that has 207 sensors and about 700,000 events. Each testbed

consists of heterogeneous sensor events and the daily activities of an individual in a smart

apartment. They have imbalanced activity classes, activity durations, and sensor events.

e.g., bathroom activities are frequent and last a few minutes with a few sensor events, while

cooking activities may occur once a day, last about an hour, and involve numerous sensor

events [Med+18]. These datasets are detailed in the following subsections.

Orange4Home Testbed

The Orange4Home dataset, as detailed in [Cum+17], provides a snapshot of events cap-

tured from a two-floor smart home that spans 87m2, as visualized in Figure 4.3. This

dataset has an extensive network of sensors, strategically placed to capture a multitude

of parameters. The apartment is equipped with an impressive array of 236 sensors. This

includes 83 binary sensors that typically record ’on/off’ states such as door opening, pres-

ence, and switches. In addition to this, there are 55 Integer sensors such as total cold water

consumption, appliance power, and humidity, 67 float sensors such as luminosity, voltage,

CO2 levels, and area noise levels, and 31 categorical sensors such as weather, heater

modes, AC modes, and wind direction. These sensors, in their collective capacity, monitor

a vast spectrum of environmental and activity-related factors. Motion sensors track move-
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within the residence.

Figure 4.5: Visualization of daily activity patterns in the Orange4Home dataset, distin-

guished by different colors. The entirety of the week is condensed into a series of compact

bars at the bottom of the image, with the selected day accentuated for emphasis. The y-axis

categorizes the activities, while horizontal lines denote the length of each activity instance.

Notably, the consistency in activity patterns across various days calls for careful analysis to

avoid overfitting by overlooking to temporal factors.

Data collection was methodically planned. Activities from 8h00 to 17h00, aligning with

standard working hours, were recorded. This was performed over four consecutive weeks,

ensuring that any patterns or anomalies could be clearly discerned. As outlined in [Cum+18;

Cum+17], this approach was designed to yield a comprehensive understanding of a regular

day’s routine within the apartment.

A snapshot of ground truth activities of this dataset can be seen in Figure 4.4. This latter

visualization aids researchers and developers in correlating sensor data with actual human

activities, forming a critical component in the realm of activity recognition.

To better visualize how these sensors capture and represent activities, consider the

diverse response patterns across the 236 sensors for different activity types, as depicted

in Figures 4.6 and 4.7. This sensor heatmap reflects the dataset’s pre-segmentation by

activity, highlighting the frequency of sensor events through five distinct phases of each
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Figure 4.6: Sensor Event Frequency in the First Part (12 of 24 activities) of the Or-

ange4Home Dataset. Each hit map indicates the frequency and distribution of sensor

events for an individual activity, with the Y-axis representing specific sensors. The absence

of events is shown in white, while darker tones indicate higher event frequencies. These vi-

sual patterns reveal significant differences in the occurrence and timing of sensor-triggered

activities, such as between ’Kitchen Cooking’ and ’Kitchen Cleaning’. Pre-segmented data

showcases distinct patterns, reducing ambiguity and enhancing recognition performance

of activities. Although valuable for experimental analysis, the practicality of pre-segmented

data in real-world scenarios may be limited.
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Figure 4.7: Sensor Event Frequency for the remaining activities in the Orange4Home

Dataset, complementing Figure 4.6. Each hit map continues to represent the frequency

and distribution of sensor events, with darker shades denoting more frequent occurrences.

This part maintains the distinct activity patterns identified in the first half, supporting the

more straightforward recognition of pre-segmented data across all 24 activities.

activity: the very beginning, early-mid, exact middle, late-mid, and the very end. This
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division provides a granular perspective on how sensor responses evolve throughout the

entire duration of a given activity.

An essential aspect to bear in mind regarding this dataset is the potential pitfall of using

time as a direct predictor. The primary focus should be on gleaning insights from the

sensor events themselves. Given the minimal daily variations in activities, directly factoring

in time can be misleading. It could result in the mistaken impression of a model’s superior

performance when, in reality, it might simply be echoing the predictable nature of the time-

based activities.

CASAS Testbeds

Researchers at Washington State University introduced CASAS datasets that contain sen-

sor data collected in the homes of volunteers [Coo12]. The dataset labels these activities:

• Meal preparation, • Relax, • Eating, • Work, • Sleeping, • Wash dishes, • Bed to toi-

let, • Personal Hygiene, • Bathing, • Take Medicine, • Enter home, • Leave home, and •

Housekeeping. The duration of these activities is varied. For example, on average, the du-

ration of sleeping is 3h:35, while the duration of eating is 9 minutes [NLL22]. The CASAS

team provides several datasets with the mentioned configuration such as Aruba Figure 4.8a

[Coo12], Home1 Figure 4.8b, and Home2 Figure 4.8c [KC14]. Each experimental setup is

performed in a one-room apartment. An elderly individual carries out its regular unscripted

daily activities which are labeled later by human experts [Asg+20].

Aruba Dataset The data in the Aruba dataset was collected from a single resident living

in an apartment over a period of seven months. The apartment was equipped with a vari-

ety of sensors, including motion sensors, door sensors, temperature sensors, and others,

in order to monitor and log the resident’s activities. Figure 4.8a illustrates these sensor

configurations. When deciphering the sensor identifiers within this dataset, those begin

with the letter ’M’ are associated with motion sensors, while those prefixed with ’D’ point

towards door sensors.
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(a) Aruba. It contains the

events from 34 binary sensors

for a time interval of 7 months.

(b) Home1. It contains the

events from 32 binary sensors

for a period of 5 months.

(c) Home2. It contains the

events from 30 binary sensors

for a period of 5 months.

Figure 4.8: CASAS Aruba [Coo12], Home1 and Home2 datasets [KC14] sensors configu-

ration. Around 70% of the activities are unlabeled.

This dataset’s composition includes an array of different activities. It records instances

like moving from the bed to the toilet, eating, entering or leaving the home, housekeeping

tasks, meal preparations, relaxation, yoga, sleeping, washing dishes, and working. The

volume of events for each activity varies significantly. For instance, there’s a high frequency

of ’meal preparation’ and ’relax’ events, and fewer instances of activities like ’yoga’ or mov-

ing from the ’bed to the toilet.’ Figure 4.9 presents the duration of these activities in a box

plot.

A big part of this dataset is the “Other events” category. These are instances where

the exact activity couldn’t be determined, leading to absent labels. These unlabeled events

constitute a substantial 55% of the entire dataset. An example for the annotated data is

presented in Figure 2.4. In Figure 4.10, we present the sensor activation of each activity

for better understanding the datasets.

CASAS Home1 Dataset The CASAS Home1 dataset represents one of the two distinct

datasets explored in this study, gathered from a one-bedroom apartment inhabited by a

single older adult going about their routine daily activities. Spanning a timeframe of five

months, data was collected from a total of 32 sensors. Among these, 20 were motion

sensors and 12 were specifically designated as door or cabinet sensors which are shown

in Figure 4.8b. Over the course of the data collection period, there were 371,925 sensor





4.6. EXPERIMENT 69

Figure 4.10: Sensor Event Frequency for the activities in the Aruba Dataset, each hit map

continues to represent the frequency and distribution of sensor events, with darker shades

denoting more frequent occurrences. On the legend, the average number of sensor’s heats

are shown. Similar observation to Figure 4.6 is shown clearer. This part maintains similar

observation about the distinct activity patterns identified in Figure 4.6, supporting the more

straightforward recognition of pre-segmented data across all activities.
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can accurately differentiate between these two actions. Additionally, transitional activities,

especially the movement from the Bed to the Toilette, have been captured with a commend-

able degree of accuracy. This figure, thus, offers a comprehensive view into the granularity

with which the Home1 captures and distinguishes various day-to-day activities.

Home2 Dataset Complementary to Home1, the Home2 dataset also derives from a one-

bedroom apartment, where a single older adult engaged in spontaneous daily activities.

This dataset also stretches over a five-months period but was accumulated using 30 sen-

sors – 18 dedicated to motion and 12 for door and cabinet monitoring (Figure 4.8c). Through-

out this period, Home2 registered a total of 274,920 sensor events. The data, once col-

lected, underwent meticulous labeling by human professionals, ensuring that each event

aligned with one of the eleven predefined activity classes. These classes mirror those in

the Home1 dataset and include actions such as bathing, sleeping, taking medicine, and

transitions from the bed to the toilet (appendix Figure B.5). A closer examination of the

Home2 dataset highlights certain disparities and challenges compared to Home1. For in-

stance, some overlapping activities, like the resident eating a meal on a couch—a spot also

associated with napping—resulted in difficulties distinguishing between the two activities.

Nevertheless, a positive distinction for Home2 was observed in the housekeeping activity

class. Appendix Figure B.6 presents the duration of each activity in this dataset [ASN19;

KC14].

Similar to Home1 dataset, in appendix Figure B.3, a visual analysis of the Home2

dataset’s activities is presented. From the figure, it’s evident that some activities in the

dataset can accurately differentiate when we have all the events for an activity. However,

this is not the case, when the data are not pre-segmented.

4.6.2 Environment

All experiments are run on an NVIDIA DGX-1 machine featuring a Tesla V100-32 GPU,

Intel Xeon E5-2698v4 CPUs, and 512 GB of RAM. However, our framework works also on
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a personal computer. All the codes, datasets, and documentations are freely accessible on

our GitHub repository1 .

4.6.3 Framework Description and Baseline

Our pipeline infers activities and their duration from raw sensor data. The pipeline is

composed of several stages: data pre-processing, meta-decomposition, feature extrac-

tion, classification, and meta-composition. For each stage, various techniques are imple-

mented in our repository. However, without losing generality in this experiment, we have

fixed the parameters of the inner learner to focus on the meta-decomposition. For the

inner learner, a fully convolutional network (FCN) with embedded layers is selected. It

outperforms the long-short-term memory (LSTM) networks, while it is significantly quicker

[BNE21; Bou+21a; Bou22]. It treats sensor events as words and activity sequences as

text sentences. Therefore, they encode each sensor event as a word containing the sensor

name and its value. For example, if a sensor with id ‘door1’ fires an ‘open’ event, it will be

encoded as “door1open”. Then, based on the frequency of each word, it will be indexed

from 1 (index zero is reserved for padding). Then, each sequence of the sensor events in

a window is mapped to an activity. A sequential model with three layers of conv1D, batch

normalization, and ReLU activation with 128, 64, and 128 filters, 1D global average pool-

ing, and softmax layers is used. The hyperparameters of the model in the training phase

include the batch size of 1024, epochs limit of 100 with early stop conditions, validation

split of 0.2, Adam optimizer, and categorical cross-entropy loss. Afterward, the composition

step converts the ML results to the problem space. As explained before, this step has been

ignored by several studies. This step itself is a challenging problem and directly impacts the

result. We demonstrate its importance using a basic combiner that combines overlapped

and neighbor windows.

The idea is demonstrated through experiments using a straightforward yet effective

method called SWMeta. Although there is potential for multiple higher-level meta-meta-

1https://Github.com/modaresimr/unified_ar
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decompositions, this study only focuses on one layer of meta-decomposition, breaking

down the data into one-day meta-segments. Then, we randomly select J meta segments

(in this experiment, J = 8) and use grid search to find the inner decomposer’s hyperpa-

rameters for each meta-segment. The inner model parameters are then updated with the

new decomposer. This process is repeated 100 times in this experiment. Next, for each

meta-segment, proper decomposer parameters will be selected by starting from the global

knowledge obtained from the previous step to update the local knowledge that is proper for

this meta-segment. We add the meta-features from this meta-segment and the selected

decomposer parameters to the new train set. For this, we extract the meta-features con-

taining the number of events triggered by each sensor (normalized by the mean and scaling

to unit variance) and the spline-transformed day of week and month [EM96]. After training

the new model using this new training set, we estimate the proper decomposer parame-

ters for each meta-segment in the test set. Next, we generate the segments, predict the

activity of each segment, and compose the predicted activities. After that, we apply the

meta-composer to generate global problem solutions. Based on the recent surveys of HAR

in smart homes, TW, EW, and DW (probabilistic [KC14]) are the most used segmentation

approaches [BNE21; Ari+22; Min+20; Wan+21a]. Therefore, our meta-decomposer selects

the decomposer’s hyperparameters (segmentation algorithm and its parameters) dynami-

cally among them. Finally, we use a multi-layer perceptron model with four hidden layers

(three sequential dense layers with 16 ReLU activations and batch normalizations and one

layer with softmax and linear activation) to train our model to estimate the inner segmen-

tation hyperparameters. The general idea of this algorithm that is inspired from MAML

[FAL17] is shown in the Algorithm 1.

4.6.4 Performance Measurements

Evaluating the model quality is essential to compare and optimize different approaches.

As described in the decomposition definition, the processing performance depends on

the decomposer, composer, segments and their size (structure), and resolution. Decom-
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Algorithm 1 Simple Meta-Decomposition (SWMeta)

Input: Training dataset Atrain, Testing dataset Atest

Input: Hyperparameters δ̂ ▷ e.g., meta-segment size, γ
Output: Predicted activities for Atest

Initialize primary model M and segment decomposer D using δ̂.
Generate meta-segments for training: T = {T1, ..., Tn} from Atrain.

while termination criterion not met do
Sample a batch B of J tasks from T .

for each (Ztrain, Zval) = Tj in B do
Optimize D for best segmentation of M using Ztrain.

Decompose validation data: S = D(Zval).
Update and train M using segmented data S.

end for
end while
Initialize meta-feature matrix X and decomposer vector y.

for each task Ti in T do
Optimize D′ for best segmentation starting from D on Ti.
Extract meta-features: F = MetaFeatures(Ti).
X.append(F ), y.append(D′).

end for
Train model N on the (X, y).
Generate meta-segments for testing: T ′ from Atest.
Initialize predicted activities list C.

for each task Ti in T ′ do
Extract meta-features: F = MetaFeatures(Ti).
Predict decomposer: D′ = N(F ).
Decompose task: S = D′(Ti).
Initialize result list R.

for each segment s in S do
Predict activity k for segment s using M .

R.append(k).

end for
C.append(compose(R)).

end for
return metaCompose(C).

posers generate segments with various sizes and structures. Thus, it is impossible to

compare their quality without transforming the results into a unified space. Figure 4.11 il-

lustrates two examples of HAR systems that use different segmentation algorithms. Activity

A is not appropriately detected in half of the segments in the first segmentation method,

while it is not detected in the 40 percent for the second segmentation method. Classifier

metrics are frequently used to analyze the performance of HAR systems [KC14; NGC15;
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Figure 4.11: Comparison of two segmentation algorithms. One of the segments in the first

method and two of those in the second method fail to detect Activity A accurately. The

box shows the activity and its duration. The vertical colored lines in the sensor sequence

represent the activation of various sensors at different time intervals (represented by the

horizontal line). Correct predictions are denoted by ’✓’ while incorrect ones are denoted by

’×’.

CN15; Fu11; QJE21; YFF17; De-+18; Cum+17; BNE21; Che+21b; Ber+18; Via18]. How-

ever, it may lead to biased results when comparing different segmentation approaches. For

instance, in Figure 4.11, the class accuracy is 50% in the first segmentation method, while

it is 60% in the second one. Obviously, their performances are similar in terms of duration.

However, the aforementioned metric fails to represent the situation correctly as the various

segmentation approaches can alter the problem space substantially. Moreover, activities

have some properties related to their duration [Mod+22b]. For example, steady recognition

of the sleeping activity is critical; otherwise, it may misleadingly present a disorder [ATE15].

However, the segmentation process may break these properties.

Therefore, after applying the composition step, we adapt the time slice (TS) based con-

fusion matrix (CM) [KAE11] to evaluate different segmentation methods in a unified space.

This TS-CM helps us to compare f-score, accuracy, recall (TPR), and other CM measures

in an identical space. Figure 4.12 shows the calculation of TS-CM on an activity. To obtain

Figure 4.12: An example TS-CM calculation after composing the classifier results. (abbr.

T=True, F=False, P=Positive, N=Negative)

the generalized performance, five-fold cross-validation is used for model evaluation, which

is a wide approach used for model evaluation in HAR [BNE21]. It splits the dataset into
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five parts based on temporal occurrence. At each step, four parts are selected for training

and the remaining part for testing. Then, we iterate on the parts until all the parts are used

for testing. To preserve the continuous nature of events, the events of each day appear

on only one part. Each configuration is repeated five times, and the average and standard

deviation of its results are presented.

4.6.5 Results and Discussion

Table 4.1: Performance evaluation of methods used for segmentation. For the first three

methods, the best hyperparameter is selected and shown in parentheses. Our proposed

method (SWMeta) dynamically selects the appropriate segmentation method and its hy-

perparameter at each time. The preliminary results demonstrate that SWMeta outperforms

the other methods alone. These experiments show uncontrollable biases introduced by

the segmentation process can be reduced, as is expected in the formulation of meta-

decomposition. In this table, w and s refer to window size and shift.

Dataset Segmentor TPR F1

Home1 (11 classes)

EW (w=5, s=2) 0.65±0.04 0.42±0.03

TW (w=30, s=20) 0.48±0.09 0.41±0.05

DW 0.35±0.01 0.27±0.01

SWMeta (*) 0.65±0.03 0.43±0.03

Home2 (11 classes)

EW (w=6,s=3) 0.56±0.08 0.40±0.02

TW (w=50, s=40) 0.52±0.07 0.42±0.04

DW 0.32±0.01 0.21±0.01

SWMeta (*) 0.50±0.12 0.39±0.09

Aruba (11 classes)

EW (w=3, s=3) 0.59±0.05 0.34±0.04

TW (w=60, s=50) 0.47±0.06 0.33±0.05

DW 0.26±0.03 0.21±0.01

SWMeta (*) 0.61±0.04 0.39±0.05

Orange4H (24 classes)

EW (w=40, s=20) 0.27±0.07 0.32±0.05

TW (w=60, s=60) 0.32±0.08 0.35±0.06

DW 0.30±0.01 0.34±0.01

SWMeta (*) 0.34±0.04 0.36±0.03

The impact of the segmentation methods and their parameters are shown in Figure 4.13.

It highlights the importance of the composition step in the segmentation process and shows

that our segmentation reformulation as a decomposition problem improves the evaluation of

the biases introduced by the segmentation step. For instance, in the initial subfigure of Fig-
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[BNE21; AC19], introduces a substantial bias. The same applies to TW, thereby necessitat-

ing caution in interpreting the results. To show the usefulness of the meta-decomposition

concept, in these experiments, our method learns the appropriate segmentation method

each time in the training phase. Then, in the test phase, it selects the appropriate seg-

mentation method and its hyperparameter dynamically at each time. To demonstrate the

superiority of this approach, we compare it with the best hyperparameter of each method

individually, which heavily rely on human experience or domain knowledge. The results

are summarized in Table 4.1. To find this best parameter for the baseline, we conducted a

grid search on each dataset. As we can observe from the table, the recommended window

size of 60 seconds for TW in [BNE21; Med+18; Ham+21] introduces a bias, as the optimal

hyperparameter varies between 30 and 60 seconds for different datasets. Our proposed

approach dynamically selects the best segmentation method at each time among those

methods and outperforms those methods individually, except for the Home 2 dataset, which

contains few sensor events, thus meta-segment does not have enough data to predict the

proper segmentation method and its hyperparameters.

For our inner learning model, we adapt the deep learning model proposed by Bouch-

abou et. al. [Bou+21a] which is described in Section 4.6.3. Assuming identical settings, our

results would have been equivalent. However, we introduced three distinct differences in

this experiment. First, we include the composition step, which means we rebuild the initial

problem results and evaluate the results on that space instead of considering the classifi-

cation performance, which is more described in Section 4.6.4. As shown in Figure 4.13,

it produces noticeable disparities. Second, they assumed that the input sensor events are

pre-segmented based on the activity duration; then, they applied the windowing approach

to each segment before the deep-learning step, while we do not have such an assump-

tion, which results in the inclusion of significant noise in the learning model. Third, we use

the macro average while they use the weighted average, which gives more weight to the

dominant activities.

These experiments show that segmentation may introduce uncontrollable biases and
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reduce recognition quality, while, our meta-decomposition concept lessens uncontrollable

biases in segmentation by dynamically choosing the proper decomposer and its parame-

ters based on meta-features. They also show that ML can better decompose (traditionally

segment) the recognizing activities from sensor data into multiple subtasks without implicitly

including knowledge about the problem domain.

4.7 Conclusion

Segmentation is often discussed without giving due attention to the composer component.

Nevertheless, the composer component plays a crucial role in establishing the connection

between machine learning outcomes, segments, and the overall results of the problem.

This is essential for mitigating implicit bias and managing diversity in segmentation. As a

result, we redefine the segmentation problem as a data decomposition problem, comprising

a decomposer, resolutions, and a composer.

Furthermore, while most existing literature primarily focuses on fixed segmentation

methods that heavily rely on human expertise or domain knowledge, we introduce the

concept of meta-decomposition, or the process of learning how to decompose. This ap-

proach treats segmentation as a hyperparameter within the outer optimization loop, allow-

ing for adaptive selection based on incoming data, potentially utilizing machine learning

techniques. This adaptive approach helps control and thereby reduce additional biases

introduced during the segmentation step.

This framework marks the initial step toward enhancing the quality of AR without implic-

itly incorporating human biases related to the application and dataset used in algorithms,

implementations, and evaluations. Since the segmentation step alters the problem space,

and different segmentation algorithms produce diverse segments, this section discusses

and proposes a unified space for their evaluation. However, this alone is insufficient. It is

imperative to reconsider the evaluation of such concepts, especially those extending be-

yond zero-dimensional (0D), which will be explored further in the next chapter by projecting



4.7. CONCLUSION 79

the evaluation onto five high-level dimensions.
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Chapter 5

Evaluation

5.1 Chapter Overview

Despite the existence of numerous evaluation metrics in the literature, there are concerns

regarding these metrics. Limited understanding and interpretability of these metrics, par-

ticularly, for targets beyond 0D may result in significant bias when selecting a suitable seg-

mentation method for a particular application [Nai+21]. Upon reviewing the literature and

analyzing trends discussed in the previous chapter, it has become evident that multiple

aspects are of interest to users, experts, and models. To address these concerns, in this

chapter, we propose a novel formulation that replaces these extensive metrics and projects

the evaluation into a high-level latent space. This formulation makes the evaluation easily

comprehensible and interpretable by both machines and experts.

Considering a set of n test cases, T = {t1, ..., tn}, the goal is to provide a comprehensive

evaluation for each test case. In this chapter, we concentrate on individually evaluating each

sample, without delving into the various aggregation techniques, such as micro-average,

macro-average, weighted average, and ranked average, which can be employed to obtain

a global evaluation. A test case may consist of multiple targets, denoted as t = {c1, c2...}.

For instance, in the context of AR, there could be several instances of moving to the toilet

within a single episode, or in the case of MIS, multiple tumor spots may be present in a
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single CT scan, each treated as an individual target.

The evaluation of algorithms with more than 0D requires consideration of various prop-

erties due to the interdependencies inside the targets (such as the dependency of voxels

in the context of MIS). The significance of these properties varies depending on the appli-

cation or even at different stages within the same application. For instance, the detection

of tumors in their early stages is more critical compared to their size, while changes in size

and shape are more important in evaluating treatment response. Therefore, we propose a

novel evaluation method that defines multiple properties and measurements (based on the

well-known TP, FP, and FN). These measurements can be aggregated (e.g., in a weighted

manner) to produce a scalar value or used collectively as multi-objective metrics. Further-

more, our evaluation method is modular, allowing for the straightforward inclusion of new

measurements for additional properties. The objective is to project the evaluation onto an

interpretable latent space, which can provide valuable insights for domain experts to make

informed decisions regarding the application and stage in question.

Our proposed evaluation method extends point-based metrics to handle partial matches

between ground truth and predicted segments. In contrast to point-based metrics, where

each voxel is either correctly predicted or not (i.e., the value of TP, FP, or FN for each

instance is either 0 or 1), our method generalizes these terms for more than 0D data by

allowing partial value to each target. This enables a more nuanced and detailed evaluation

of segmentation performance, providing insights into the situation of matching between

predicted and ground truth segments.

In the following sections, we present the key properties of evaluating more than 0D

targets, particularly in MIS, AR, and SED drawn from state-of-the-art studies. We also

introduce the formulas for measuring these properties.
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5.2 Beyond Point-based Metrics: Related Works

The evaluation of system performance has been a longstanding concern for computer sci-

ence and engineering researchers, system designers, operators, and end-users [HLR00].

While it is essential to measure the performance of intelligent systems to create reliable and

cost-effective solutions, using consistent settings for comparing different systems is equally

important [Mad+09]. Despite the availability of several metric formulations, the interpreta-

tion of real-world data remains a significant challenge [Pan15; Nai+21].

Evaluation metrics can encompass more than just point-based measurements and may

extend to range-based assessments for 1D, 2D, and 3D data. In this case, in contrast to

point-based targets that are either correct or incorrect, the targets can be simultaneously

correct and incorrect. In this section, we explore the evaluation metrics used in a wide

range of applications including AR, SED, and MIS to analyze the trends and the methods

for evaluating these targets.

5.2.1 Evaluation Methods in Activity Recognition (1D)

AR is the process of automatically identifying and categorizing human activities based on

sensor data from wearable devices or other sources. Human activity can be defined as a

set of actions performed by an individual over a period of time and is typically associated

with a specific activity label. In this section, we consider an activity that is characterized by

its duration (start and end) and its label.

AR is expected to be a core component in numerous future IoT applications such as

healthcare, smart homes, and security [QPM21; Per+14; CN15]. Therefore, evaluating

the effectiveness of different AR algorithms is essential. Some metrics such as accu-

racy, observing the TPR against PRC are common metrics that are easy to understand

and interpret even by non-experts. These metrics are well-used for discrete instances

and pre-segmented data sequences [CN15]; where, a predicted instance is either correct

or incorrect. However, a predicted target in AR can be correct in one period and incor-
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Figure 5.1: Differences between event, frame, and segment analysis. W and R represents

walking and running activity [Min+06]

rect or partially correct in another [Tat+18]. Figure 1.1 illustrates the traditional evaluation

metrics including TP, FP, and FN for the point instances, which are either correct or incor-

rect, and their unsuitability for AR where the targets have duration, which can be partially

correct and partially incorrect [Tat+18]. However, traditional evaluation methods on the dis-

cretized range instances are often assumed to reflect the overall performance of the system

[Per+14; Bil+20; QPM21; CN15]. This assumption neglects practical scenarios and may

misleadingly present convincible results. Despite the importance of evaluating range-based

targets, it is not well-developed. Still, there is no universally accepted formula for evaluating

the effectiveness of these systems [Ser+20].

Evaluating the performance of these systems is usually performed by comparing pre-

dictions with the ground-truths [MHV16]. It can also be viewed as the matching of two

time-series. This can be challenging due to imperfect time boundaries of ground truth la-

bels and unclear distinctions between some targets [CN15]. For example, the transition

between walking and running activity is subjective and hard to enforce in practice. There-

fore, some decision functions accommodate offsets using ambiguous range [Hwa+19],

fuzzy event boundaries [NIS04], time series matching techniques (such as dynamic time

warping, longest common sub-sequences [Fu11]), or categorical probability distribution

[HK11]; however, these techniques fail to distinguish sources of errors (e.g., fragmentation)

[War+11]. Common approaches to evaluate AR systems include time-frame, event-based,

and classifier performance [Min+06; KAE11; QPM21; MHV16], which are detailed in the

following:
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Time-frame based methods divide the entire range into atomic units of fixed period in-

tervals, allowing for easy comparison between algorithms [Min+06; KAE11]. Each frame is

independent of both the ground truth and prediction and can be classified as TP, TN, FP,

and FN. The duration of this atomic unit follows the timescale of the domain such as one

second. The method is illustrated in the second subfigure of Figure 5.1.

These techniques typically decrease the time resolution to an atomic unit, such as one

second, with the aim of accommodating some level of misalignment between the reference

and prediction [MHV16]. However, this approach can lead to an increase in false positives

when a predicted frame is partially incorrect but the ground truth frame is negative, which is

counterproductive to the intended goal of the method. On the other hand, the hypothesis in

the segment method tends to decrease the time resolution, potentially leading to an erro-

neous influence on the final outcome. For instance, the fragmentation that occurs within a

frame may not be detectable. Furthermore, it should be noted that different types of targets

may have varying requirements, with one-second serving as an appropriate threshold for

some classes while being inappropriate for others.

Segment Based Methods define a segment as the maximum interval in the ground truth

and the predictions that remain constant. Therefore, each segment has a different duration

but there are no ambiguities for the boundaries of each interval, which is the case with

frame-based methods [Min+06]. Therefore, each segment can be classified as TP, TN, FP,

and FN. The value of these categories is similar to frame-based methods when the frame’s

size tends to zero.

Event Based Methods consider individual target occurrences as the basic atomic units

for comparison, irrespective of their duration. Event-based methods are essential to con-

sider alongside time-frame methods [War+11]. In these methods, the occurrence time and

the order of the events can be important factors [Min+06]. When time is important, the

correctness of the prediction needs to be defined. Common decision functions employed

in event-based methods include majority, mid-point, etc. [War+06; Fer+21; Bil+20; MHV16;
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Figure 5.2: Common decision functions for the correctness of an event, such as midpoint,

majority, and maximum. The horizontal rows represent the ground truth and different pre-

dictions. The vertical dashed line represents the midpoint of the ground truth.

Lea+17]. For example, when a prediction covers the majority of ground truth, it is classified

as a TP. On the other hand, if it does not cover the majority, the segment is considered

a FP. Some of these decision functions are shown in Figure 5.2. These decision func-

tions help to evaluate the performance of a model using traditionally well-defined metrics

for traditional machine learning evaluations.

Minnen’s Metrics The interpretation of errors varies across different applications. There-

fore, Minnen’s metrics classify each frame/segment’s errors into insertion, overfill, and

merge as sources of FP errors, and deletion, substitutions, underfill, and fragmentation

as sources of FN errors [Min+06] which are visualized the errors using the Error Division

Diagram. These errors are defined as follows:

• FP-insertion detection of an activity when nothing actually happened.

• FP-overfill time before and after the occurrence of an activity that is incorrectly iden-

tified as part of the activity.

• FP-merge covering multiple ground truth by a single prediction

• FN-deletion failure to detect a target,

• FN-substitutions wrongly detected with another class

• FN-underfill not detected duration at the beginning and end of the activity,

• FN-fragmentation detecting a ground truth by multiple predictions in a fragmented

way
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uation method [ATE15]. e.g., duration-sensitive activities need to be evaluated differently

from frequency-sensitive ones. Recognizing the sleeping activity in a fragmented manner

shows a disorder, while an imprecise alignment of the beginning and end of an activity does

not [ATE15].

Timeliness is another metric used for online and real-time prediction [RK13]. It is defined

as the duration of continuous correct prediction of an activity without switching to an inac-

curate prediction. To compare different AR algorithms in a similar situation, a competition

is held and time frame f1-score, recognition delay, installation complexity, user acceptance,

and interoperability are used as the evaluation criteria [Gjo+15].

Therefore, an expert must perform a time-consuming analysis of these massive and

heterogeneous diagrams, matrices, and information. Accordingly, combining them as a

scalar metric is complex. Besides, these approaches also consider the total duration of

positional errors and do not provide an event-based tunable model for it.

5.2.2 Evaluation Methods in Sound Event Detection (SED) (1D)

A Sound Event Detection (SED) system recognizes sound events in audio tracks. It is a

developing research field from both academia and industry due to its potential applications

in healthcare, medical telemonitoring, surveillance, smart home, monitoring, security, audio

content-based searching, etc. [Bil+20; MHV16; CC20].

The time interval included in sound events is one of the most important dimensions in

evaluating SED systems. These systems should determine the occurrence time interval of

sound events in addition to their sound classes. Moreover, sound events can simultane-

ously happen (e.g., opening door sound events during a speech event) [MHV16]. Evalu-

ating the performance of SED systems is often done by comparing their predictions with

the references [MHV16]. One of the first evaluation methods was defined in CLEAR1 2006

challenge named acoustic event error rate [Sti+07]. It marks a reference event as correctly

identified when the temporal center of the predicted event is inside it [Sti+07]. It also defines

1CLassification of Events, Activities and Relationships
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insertion, deletion, and substitution errors. The metric was ambiguous in some cases, e.g.,

whenever a part of a reference is well detected, and the other part has a substitution error

[Tem+09]. In CLEAR 2007 challenge, recall, precision, and f-score (considering the above

definition for correct prediction) were used; however, they redefined the acoustic event er-

ror rate by using frame-based methods [Sti+08; MHV16; Sto+15]. Frame-based (segment)

methods take fixed-duration intervals (e.g., 10 ms) as the basic atomic unit. It facilitates

comparing different algorithms since each frame is independent of both the references and

predictions [KAE11]. In the DCASE2 2013 challenge [Sto+15], the frame-based error rate,

precision, recall, f-score, and collar-based method were used. In collar-based methods, a

reference is considered as correctly detected if the beginning (onset), the ending (offset)

or both are within a specific tolerance (e.g., 200 ms). This tolerance is necessary because

of the inexact labeling of the data [MHV16]. PSDS3 is a recent method for SED evaluation

which is proposed for more robust defining of TP, FN, and FP by considering the intersec-

tion rate based on references and predictions [Bil+20]. It overcomes the dependency of the

evaluation on the sound event’s duration and provides robustness to labeling subjectivity

[Fer+21]. Researchers in [Ton+20] explore the inequality of missing events in different sce-

narios. They break down FP into related and unrelated by considering the scene and sound

event relation; then, they give a double penalty to unrelated FPs in calculating F1. The IEEE

AASP4 challenges on detection and classification of acoustic scenes and events [Sto+15]

highlights the need for an appropriate metric. Still, no universally accepted metric is de-

fined [Ser+20]. The previously mentioned methods consider few situations of errors and

have some certain deficiencies. e.g., they are highly biased by their assumptions [Fer+21]

and may misleadingly present convincible results.

Still, researchers mainly used collar, segment (time-frame based), and PSDS (poly-

phonic sound detection score) methods in SED [MHV16; Bil+20]. However, they cannot

show the different sources of errors.

2Detection and Classification of Acoustic Scenes and Events
3Polyphonic Sound Detection Score
4Audio and Acoustic Signal Processing
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Figure 5.5: Collar and PSDS decision functions.

5.2.3 Evaluation Methods in Other Applications in (1D)

In video action detection [Awa+21], anomaly detection [Tat+18], and video abnormal event

detection [Ion+19], etc., targets are also durative. The National Institute of Standards and

Technology (NIST) developed a challenge for detecting activities in video (ActEV) [Awa+21].

It first used false alarm rate (instance-based) and missed detection probability (instance-

based) as evaluation metrics. However, in 2019, it used the time-frame method for calcu-

lating false alarm rates [Awa+21]. Other metrics in abnormal event detection in the video

are false rejection rate, equal error rate, decidability index, receiver operating characteris-

tic curves, and area under the curve [DB15; Ion+19]. However, the equal error rate can

be misleading in the anomaly detection setting [Lu+19]. Numenta anomaly benchmark

[LA15] is designed to evaluate different anomaly detection algorithms. It uses a scaled

sigmoidal scoring function for the relative position of each detection; however, it ignores

fragmented predictions. To resolve previously mentioned issues, researchers in [Tat+18]

redefine precision and recall for time series (particularly in anomaly detection). They need

some functions to be explicitly defined for a given application. Those functions are: γ (to

consider fragmented events), δ (to consider the positional relation between PE and GTE),

overlap (the rate of the correctly detected events (e.g., overlap(x, y, δ()) = T (x ∩ y)/T (x)),

and α which is a coefficient. They are formulated in Equation (5.1).

exist(e,X)=[e ∩X ̸= ∅], score(e,X)=γ(e,X)× Σ
x∈X

overlap(e, e ∩ x, δ()), (5.1)

Recall=
1

|R|

∑

r∈R

α×exist(r,P) + (1−α)×score(r,P), Precision=
1

|P|

∑

p∈P

score(p,R)
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Analysis of [Tat+18] Despite its potential to enhance the evaluation process, the pro-

posed method by [Tat+18] exhibits some limitations, which are explored in the following

discussion:

1. It disregards the coefficient α in the precision calculation. Consequently, the overlap

function is given inconsistent weights in the calculation of precision and recall. This

inconsistency can lead to a misinterpretation of the results, rendering the method

unsuitable for complementary use, such as in the calculation of F1.

2. Fragmented predictions can result in a significantly positive PRC score. For instance,

in Figure 5.6, the PRC of (a) is considerably higher than that of (b) due to the presence

of fragmented predictions. This situation can also occur for TPR.

3. To account for the impact of duration, the proposed method normalizes the duration

of events. Specifically, precision is calculated as avg
p∈P

( tp

T (p)
), and recall is calculated

as avg
r∈R

( tp

T (r)
). Although this normalization appears to work well for a single prediction

and ground truth, it yields different values for TP in TPR and PRC when applied to

the entire dataset. Thus, they are not calculated in a similar mathematical model

and cannot be used as complementary measures, such as in the calculation of F1.

Equation (5.2) presents these calculations for Figure 5.6 (d).

Precision =
TP1

P1
+ TP2

P2

1 + 1
=

Σnormalized TPs based on PEs

Σnormalized PEs
(5.2)

Recall=
TP1

R1
+TP2

R2
+ 0

R3

1 + 1 + 1
=
Σnormalized TPs based on GTEs

Σnormalized GTEs

4. Defining an appropriate cardinality function for the proposed method is complex. Ad-

ditionally, it is challenging to adjust and fine-tune the formula because the dependen-

cies between cardinality, position, and overlap are not clearly defined [Hwa+19]. For

instance, in Figure 5.6 (c), the first and second ground truths have the same TPR of

0.33 when using γ(e,X) = |e ∩X|−1 as suggested by the authors. A similar situation

can occur when calculating PRC for merged predictions.
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overlooking smaller lesions during assessment [TH15; Kim+15]. The quality assessment of

an MIS system extends beyond these factors; evaluations should also consider the unifor-

mity or fragmentation of predictions and the preservation of segment shapes, which assist

experts and models in identifying tumor types [Tia+21]. Furthermore, predicted segments

in MIS can be partially correct and incorrect simultaneously, unlike point-based predictions

that are either entirely correct or incorrect. For example, medical treatment outcomes can

vary significantly even if two tumor segments have similar measures of the mentioned met-

rics such as DC, and HD [Kim+15]. Very recent studies highlight the need for reliable

model performance assessments in MIS, as well as the presence of statistical biases in the

assessment of both binary and multi-class problems [MSK22; Rei+21; Nai+21; WWZ20;

Kum+17; Kim+15; TH15; GSC22; Hoe+22; Rei+22; Koe+22; Jav+22; Lee+22; Fag+22;

BJ22]. In conclusion, a more appropriate method to evaluate the performance of MIS tech-

niques involves considering their various aspects.

Assessment of Medical Image Segmentation is a crucial task in medical image analysis,

where it should evaluate the correctness of the predicted labels as well as the boundaries

of the targets [Nai+21]. In this context, the input image can be represented as a 2D or

3D matrix, where each element, also known as a pixel or voxel, may have one or more

characteristics, such as radio density.

The performance of medical image segmentation techniques can be evaluated using a

variety of metrics and typically compared against expert-extracted ground truth [Ker+21].

The selection of the best evaluation metric for image segmentation depends on the specific

application and the characteristics of the images being segmented.

According to [TH15], the selection of a suitable algorithm for MIS requires the evaluation of

various properties of these systems. These properties include accounting for outliers, eval-

uating small and large segments, handling different segment shapes and complex bound-

aries, considering TPR for low-density segments, and assessing the volume and alignment

of segments. For example, over-segmenting a tissue can often lead to unfortunate conse-

quences, whereas missing a tumor can easily have catastrophic consequences [Kim+15].



96 CHAPTER 5. EVALUATION

Moreover, four types of basic errors in segmentation based on human visual tolerance are

inside hole, border hole, added background, and added region [WWZ20; SNL13].

In addition to computer science studies, radiomics analysis has shown that accurately seg-

menting tumors requires the detection of approximate tumor locations as a critical first step

[Li+19b; Tia+21]. Therefore, an effective segmentation metric should consider this prop-

erty. Furthermore, tumor morphology (that characterizes tumor margin) is often the most

challenging aspect of detection [Tia+21]. Other important characteristics for clinical treat-

ments include tumor size (dimensions), shape (3-D geometry), and uniformity (irregular

or ellipsoid shape, sphericity, lobulation, speculation, roughness, the longest and short-

est diameters, margin sharpness, surface area, volume, and surface-area-to-volume ratio)

[Li+19b; Tha+18; Tia+21; SJ19]. For small tumors in which even slight changes can signifi-

cantly impact the radiomics measures, robust segmentation is critical [Li+19b]. As a result,

in addition to dominant tumors, small tumors should also be considered in the metric.

Moreover, in MIS, voxel size can vary greatly between scans, and ignoring voxel size can

lead to inaccurate segmentation evaluation [TH15]. For example, the slice thickness of CT

scans can range from 0.5 mm to 5 mm [Li+19b]. Therefore, it is important to consider voxel

size in the metric used for evaluating segmentation algorithms, while it is missing in some

state-of-the-art analyses [TH15].

The following subsections present a concise yet comprehensive overview of prevalent eval-

uation techniques, their limitations, and contemporary evaluation methods by scholars.

Common Evaluation Methods

In general, TP (resp. TN) is used to indicate the correct positive (resp. negative) predictions.

Similarly, for incorrect predictions, there are two situations. FN (resp. FP) refers to the

positive (resp. negative) instances predicted wrongly as negative (resp. positive) [Pop+07].

Voxel-wise metrics such as Acc, PRC, TPR, Fβ, IoU, and DC [SR22; Tar+21; Eel+20;

Ma+21; Luo+22; Ker+21; MS19; Aer10; Sch+20; Tag+19] are commonly used to evaluate

MIS systems. These methods treat each voxel as an independent instance, enabling the



5.2. BEYOND POINT-BASED METRICS: RELATED WORKS 97

straightforward classification of predicted voxels as either correct or incorrect. The primary

components of these metrics, including TP, FP, FN, and TN, are formulated in appendix

Equation (A.1). The IoU, also known as the Jaccard metric [Asg+21; Luo+22] measures the

intersection between the predicted and the ground truth over their union and is formulated

in Equation (A.2). The MIoU provides an overall measure of the segmentation accuracy

across all classes, by macro averaging the IoU values for each class, while FWIoU gives

more weight to the IoU values of the more frequent classes, making it useful for imbalanced

datasets [Zhe+21; Luo+22]. The Acc metric is calculated as the ratio of correctly predicted

instances to the total number of instances, regardless of their class. On the other hand,

the PRC calculates the ratio of correctly predicted positive instances to the total number of

positive predictions. In other words, it measures the accuracy of positive predictions. The

TPR, also known as sensitivity or recall, is the ratio of correctly predicted positive instances

to the total number of actual positive instances. It measures the completeness of positive

predictions [Pop+07; MSK22; Kum+22; TH15]. The Acc, PRC, TPR, and their weighted

harmonic means (Fβ) for binary classes are formulated in Equation (A.3). When β = 1

in Fβ (F1), the resulting metric is known as the Dice Similarity coefficient (DC), which is

shown in Equation (A.4). The DC measures the overlap between the predicted and the

ground truth segmentation masks by considering both the FP and FN rates [Dic45]. It

ranges between 0 (no overlap) and 1 (perfect overlap). Receiver Operating Characteristic

(ROC) curve is generated by plotting the TPR against the False Positive Rate (FPR) for

different classification thresholds, while the area under the ROC curve (AUC) measures

the area beneath the ROC curve [TH15].

As explained, point-based evaluation methods may disrupt the relationships between vox-

els. To address this problem, some studies have expanded the point-based evaluation

method by introducing a threshold to determine correct or incorrect predictions. By adjust-

ing this threshold, we can gain insights into the performance of the prediction system. For

example, P@X, and R@X metrics indicate PRC and TPR of a segmented image, with cor-

rect predictions being defined as those with IoU scores above X. The average of those val-
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ues (AP and AR) is also commonly used in image segmentation [BZB22; Lin+14; Lea+17;

FVS22]. However, this thresholding approach has limitations. It only considers whether a

predicted instance overlaps with the ground truth above or below the threshold and does

not consider the actual situation of overlap. This means that the evaluation does not dif-

ferentiate between instances that are over-segmented, under-segmented, or whether they

are fragmented into multiple segments, or merged with other segments.

While metrics based on voxels provide a straightforward approach to evaluating the seg-

mentation performance, they fail to capture the spatial dependency and consistency of

the segmented regions [Li+19b]. To address this limitation, HD is used in MIS evalua-

tion [Ayd+22]. It measures the distance between the boundaries of the ground truth and

predicted segmentation [Ker+21; TH15; MSK22]. Three variations of HD, namely HDmax,

HD95, and HDmean, are typically used to represent the maximum, 95th percentile, and aver-

age distances between the boundary points of the ground truth and the prediction. While

HDmax is sensitive to outliers and can be influenced by a few points with very large dis-

tances, HD95 and HDmean are less influenced by noise and outliers. HD calculates the dis-

tance without considering the segment size; therefore, the balanced HD metric is proposed

in [Ayd+22] to normalize the distance. Other metrics such as Average Surface Distance

(ASD), ASSD, Mean Absolute Distance (MAD), Mahalanobis Distance, Manifold Distance,

and Chamfer Distance are also commonly used [Pan+22; Qiu+22; Sch+19; TH15]. While

these distance-based metrics can provide useful information about the segmentation accu-

racy, they have limitations in providing interpretable information on the source of errors and

may not be sensitive to the topology of the segmented object.

The points in the boundary of the ground truth and prediction should not be considered

equally [Nik+21]. For instance, misidentifying a group of points in close proximity is more

severe than misidentifying the same number of points that are distributed sparsely along

the boundary. To address this issue, authors of [Nik+21] proposed NSD that allows a

certain tolerance on the boundaries of the ground truth and the prediction. It is defined

in the appendix Equation (A.5). However, this metric also has limitations mentioned for
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point-based methods.

The incompatibility between the metrics and the expected clinical outcome is another im-

portant issue. As it is demonstrated in [Kim+15], clinical outcomes can be highly different

for two predictions even when common metrics like DC and HD provide similar results. The

authors of [Kim+15] propose a medical similarity index (MSI) that is compliant with the clin-

ical requirements. They use local distance [Kim+12] between prediction and ground truth

aligned by their center to determine the dissimilarity. Then, they employ an asymmetric

Gaussian function to impose more penalties on over- or under-segmentation. However,

this metric needs statistically significant data for all clinical cases [Ahn+19] and has limited

correlation with visual assessment [Nai+21]. Furthermore, this metric imposed that each

segment has one single center which is not applicable for all image segmentation cases

such as segmentation of irregularly shaped tumors or lesions [Tia+21; Bur+04; Rei+21].

A good evaluation criterion should penalize both object-level and pixel-level errors, including

missed detection, false detection, under-segmentation, and over-segmentation [Kum+17].

To this end, a combined metric called aggregated Jaccard index (AJI) for nuclear segmen-

tation, which takes into account both object and pixel level errors, is introduced [Kum+17].

However, this metric has limitations in providing an overview of different sources of errors

and interpretable information on different segmentation approaches. For instance, Kromp

et. al. [Kro+21] were unable to analyze their findings using this metric.

The volume of segments is another useful property. However, comparing the total volume

of the prediction and ground truth without considering their alignment (for instance, Volume

Similarity (VS) and Relative Volume Difference) may yield a perfect similarity score even if

there is no actual overlap between the prediction and ground truth, which limits its useful-

ness in evaluating segmentation accuracy, particularly when precise overlap information is

required [TH15; Rei+21; Nai+21].

Without being exhaustive, there are numerous other metrics have been exploited to eval-

uate the Medical Image Segmentation (MIS) performance in the state-of-the-art including

mutual information, interclass correlation, variation of information, probabilistic distance,
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global consistency error, Cohen kappa coefficient, rand index (and its adjusted and proba-

bilistic variation), Segmentation covering, C-Factor, bookmaker informedness, relative vol-

ume difference, bidirectional local distance, objective quality metric, Root Mean Square

Symmetric Contour Distance (RMSD), Number Of generated Proposals, and deformation

vector field [MSK22; Rei+21; Nai+21; WWZ20; Kum+17; Kim+15; TH15; GSC22; TC22;

Rue+14]. Notably, some of these metrics, such as the DC, IoU, rand index, Cohen kappa

coefficient, interclass correlation, probabilistic distance, and adjusted rand index, have been

found to closely approximate each other both relatively and absolutely [Eel+20; GSC22;

Kum+17; Nai+21; Bou+22]. Despite the wide range of metrics available, assessing the per-

formance of segmentation algorithms in MIS remains a challenging task [WWZ20; Nai+21].

The limited understanding and interpretability of these metrics can lead to significant bias

in selecting an appropriate segmentation method for a particular application [Nai+21].

5.2.6 Analysis of Current Trends

In addition to the aforementioned review of evaluation methods in the state-of-the-art lit-

erature, we conduct a comprehensive analysis of the evaluation metrics employed by re-

searchers to obtain an overview of the current trends in segmentation evaluation methods.

For instance, the papers about image segmentation in the year 2022 from two randomly

highly-ranked conferences in image processing and general AI are selected. A total of 200

papers were analyzed: 40 papers from AAAI Conference on Artificial Intelligence and 160

papers from Computer Vision and Pattern Recognition (CVPR). Notably, around 60% of

the analyzed papers (28 at AAAI and 90 at CVPR) employed IoU either alone or in con-

junction with other evaluation methods, indicating its widespread use. This information is

summarized in Table 5.1. Our analysis provides insight into the prevalence of voxel-based

methods (groups I, II, III) in evaluating MIS. However, the limitations of these methods have

driven researchers to explore alternative methods, such as boundary-based methods (IV).

Moreover, distance-based methods (V) rely on actual distances, which may make them

less effective in evaluating small segments when large segments are present. Some works
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Table 5.1: Evaluation metrics for segmentation evaluation used by the authors in two ran-

domly selected top A* conferences as an example. This table demonstrates that voxel-

based approaches are commonly used. Some references have been omitted for brevity.

“Conf.,” stands for “conference”, and the symbol “%” represents the proportion of papers

utilizing the evaluation method mentioned in the row among all segmentation papers pub-

lished in that conference.

Evaluation metric Conf. % Selected References

(I) IoU
AAAI 70% [Qin+22; Kun+22; Hua+22], ...

CVPR 56% [Du+22; Xie+22; Mei+22], ...

(II) PRC, TPR, Acc, Fβ, their

IoU based average

AAAI 25% [HXC22; Ahm+22; SRY22], ...

CVPR 29% [Ke+22; Kim+22; BZB22], ...

(III) DC
AAAI 15% [YHL22; Liu+22; Pan+22], ...

CVPR 4% [Cip+22; ZZ22; Qiu+22], ...

(IV) Border (∂)IoU, ∂PRC, ∂Fβ
AAAI 10% [Lan+22; Wan+22a; Xu+22], ...

CVPR 8% [Tan+22; Zhu+22; Din+22], ...

(V) HD, ASD, MAD, ASSD,

NSD, Chamfer

AAAI 8% [Liu+22; Wan+22c; Pan+22], ...

CVPR 4% [Zho+22; Che+22b; Pen+22], ...

(VI) Execution Time

AAAI 10% [Lan+22; Ahm+22; LZW22], ...

CVPR 3% [Han+22; Zha+22; Che+22c], ...

(e.g., [BZB22; Ahm+22]) employ a threshold based on the IoU to classify correct and in-

correct predictions (TP, FN, and FP). Specifically, some studies in group (II) use multiple

thresholds or the average of different thresholds to evaluate the system performance.

This review has revealed a significant gap in effectively capturing the diverse characteristics

of two-dimensional or three-dimensional segments in MIS systems. This gap coupled with

the highlights from several recent studies [MSK22; Rei+21; Nai+21; WWZ20; Kum+17;

Kim+15; TH15; GSC22] hinders the ability to accurately compare different systems and

select the appropriate system for different conditions or applications. To address these lim-

itations, our study explores alternative evaluation metrics that account for different types of

segmentation errors and provide a more comprehensive assessment of algorithm perfor-

mance in different clinical scenarios which will be presented in the following sections.

In addition to MIS, in Video segmentation (ViS) which is simultaneous detection, segmen-

tation, and tracking of object instances in videos [YFX19]. It has three dimensions: two
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are related to each frame (image) and one in the time. Similar to image segmentation

field, a common metric is IoU [YFX19; Per+16]. As explained before, IoU does not take

into account the relationships between the pixels. In [Per+16], authors proposed evaluating

video object segmentation based on region similarity (IoU), contour accuracy (boundary

detection), and temporal stability [Yao+20]. Temporal stability considers the segmentation

smoothness between frames. To avoid misinterpreting occlusions and deformations as

instability, Perazzi et al. [Per+16] measure it on sequences without these effects. In bound-

ary detection formalization by Canny [Can86], three objectives are single detection, high

detection rate, and accurate localization.

Galasso et al. [Gal+13] present two metrics for evaluating video segmentation based on

boundary and volume. In the matter of boundary, they use each frame separately and

calculate its boundary metric; therefore, they do not consider time relations. In the matter

of volume, they convert the frame and time data into a cube and calculate the total volume

by equalizing the temporal and spatial data. They also resolve the inconsistency of the data

annotated by different people. They consider the union of the boundaries (resp. average

of borders intersections) in all annotations for calculating precision (resp. recall) and the

average of intersection between the best-matched frame for volume calculation. They urge

that their metric is non-degeneracy, does not have assumptions about data generation, and

supports multiple human annotations and adaptive spatial and temporal refinement.

Bounding Box-based metrics are also used for ViS in which the overlap ratio and distance

to the center are common metrics [Yao+20; MM16]; however, we do not take them into

account.

Loss Functions

Loss functions are one of the most important ingredients in learning-based models to mea-

sure the dissimilarity between the ground truth and the predicted segments [Ma+21]. They

are designed to help the network learn meaningful targets closely aligned with the ground

truth. In MIS, loss functions can be broadly categorized into distribution-based, compound
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Figure 5.10: Common Loss functions used in MIS [Ma+21]

loss, region-based, and boundary-based types. Some common examples include the Mean

Squared Error (MSE) and Mean Absolute Error (MAE), which quantify the average squared

and absolute differences between predictions and ground truth, respectively. The SVM loss

ensures the score of the correct category surpasses that of the incorrect ones by a safety

margin. Cross-Entropy Loss (CEL) and its weighted version (WCEL) are prevalent in clas-

sification issues, dealing with predicted probabilities and actual labels, and can address

class imbalances by incorporating class weights. Focal Loss further mitigates the class

imbalance by focusing on challenging instances, while Dice Loss (DL) and its generalized

form (GDL) measure set similarity, crucial in segmentation tasks, with the latter adjusting

for class imbalances. Tversky loss introduces a trade-off between false positives and false

negatives, and Boundary Loss, a recent innovation in image segmentation, emphasizes

the importance of boundary pixels in segments. Each loss function is specifically tailored

and applied based on the unique challenges and requirements presented by the model

and data in various MIS tasks, thereby facilitating more accurate and insightful predictions

and segmentations in medical images. Without going into detail, the commonly used loss

functions in MIS are summarized in Figure 5.10.
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5.2.7 Metric Learning

Metric learning is the process of learning a distance metric tuned to a particular task that

accurately reflects the similarity or dissimilarity between data points [Cak+19; Kul12]. In

metric learning, the objective is to transform data into an embedded space, wherein data

points with high similarity (depending on the given application) are positioned in close prox-

imity, while those exhibiting dissimilar characteristics maintain a considerable distance from

one another [MBL20]. For instance, employing the K-nearest neighbor algorithm, which is

dependent on the distance between various data points, learning an effective distance met-

ric can significantly enhance recognition performance [YJ06].

5.2.8 Discussion

In the previous sub-sections, we reviewed various metrics in several applications. Sig-

nificant achievements and compelling studies on point-based metrics have prompted re-

searchers to reduce the evaluation problem with higher dimensions into a point-based

problem by introducing various forms of bias. An instance of this approach is seen in SED

and AR, where the underlying targets are continuous over time. One common approach

is to split the time range into atomic units and treat each as an independent instance in

point-based methods. This often reduces time resolution to one second to address align-

ment issues to address some degree of misalignment between the reference and prediction

[MHV16]. However, this may lead to unexpected false positives when a predicted frame is

partly incorrect but the ground truth is negative. Additionally, the fragmentation that occurs

within a frame may be undetectable. Moreover, different targets may have varying require-

ments; one second may work for some but not others. Reducing resolution in many cases

is unwise as it introduces unnecessary bias, increasing errors without saving computation

time. Instead of resorting to resolution reduction, it is more prudent to utilize segment-

based methodologies or to select the smallest viable atomic unit (e.g., preserving the input

data’s original resolution) to avoid the inclusion of such biases. In MIS, the situation is dif-
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ferent because of the constraint of acquiring devices. Despite their large size, they have a

low resolution (e.g., 512x512x512 = 128 Mega voxels), and the smallest possible unit used

is usually a pixel or a voxel. However, the acquiring devices vary, and thus, the resolutions

vary on a case-by-case basis. It should be taken into account during the evaluation since

these differences in resolution make each case distinct. Another issue is the utilization of

classifier metrics in the segmentation pre-processing step. For instance, in AR, the input

sensor events are typically partitioned into segments, and a label is assigned to each seg-

ment. This label is then used as a reference, and classification metrics are applied accord-

ingly [KC14; NGC15; CN15; Fu11; QPM21]. The segmentation pre-processing step alters

the problem space. For example, in AR, the commonly used sliding event window and slid-

ing time window segmentation approach change the problem space. As this reduction, is

done by breaking the inter-correlation in the targets, they cannot capture several important

properties of the models. For example, they cannot capture the uniformity of predictions. To

address the aforementioned issues, researchers in [Tat+18] redefine precision and recall

for time series (see Equation (5.1)). Despite its potential to enhance the evaluation pro-

cess, it exhibits some limitations, which are explored in Section 5.2.3. Several attempts are

also made for 2D and 3D targets which are explored in [Eel+20; GSC22; Kum+17; Nai+21;

Bou+22]. It is evident that many of the metrics commonly used to evaluate segmentation

are either relatively or absolutely approximated by one another [Eel+20; GSC22; Kum+17;

Nai+21; Bou+22]. These metrics can be broadly categorized as follows: Discretize-wise

metrics based on voxel-wise, instance-wise or boundary-wise, such as IoU, DC, and NSD;

distance-based metrics, such as HD, and Mahanabolis distance; volume-based metrics,

such as VS and relative volume similarity; and hybrid metrics that combine several metrics

such as AJI, Objective Quality Metric (OQM) and Panoptic Quality (PQ).

Metric learning aims to learn a distance function or similarity measure tailored to a spe-

cific task, enabling the effective comparison of data points [MH19]. Nonetheless, the focus

of this thesis is not on learning an appropriate distance metric; instead, it aims to evaluate

machine learning models that may even incorporate metric learning within their internal pro-
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cesses. For instance, numerous metric learning algorithms are assessed using accuracy

(Acc) as an evaluation metric [MBL20].

Despite the wide range of metrics available, assessing the performance of segmentation

algorithms in MIS remains a challenging task [WWZ20; Nai+21]. Nonetheless, the lim-

ited understanding and interpretability of these metrics can lead to significant bias when

selecting an appropriate segmentation method for a specific application [Nai+21].

These issues can lead to more serious problems since the variety of metrics with similar

properties can create ambiguities for users, models, and experts when selecting an appro-

priate approach for evaluation. In conclusion, a more appropriate method to evaluate the

performance of these techniques is needed, which involves considering various aspects

of the technique while also taking into account the high-level and easily understandable

properties required for different applications.

5.3 Significance of Evaluation in a Real-World Application

In this section, we delve into the critical significance of the evaluation function in a real-

world application. Our goal is to illustrate how the choice of evaluation methodologies can

profoundly impact the outcomes and misleadingly present convincing results.

During the period of this thesis, the COVID-19 has been stated as a global pandemic [22].

One illustrative example of the practical implications of this issue can be found in the realm

of COVID-19 research. We embarked on an in-depth examination of the algorithms for early

diagnosis of this infection, specifically focusing on Nature Medicine journal, a reputable

source of research in this domain. Our analysis uncovered a notable flaw in most models

related to the choice of the evaluation function, such that, all the tested algorithms perform

worse (from the evaluation function perspective) than an algorithm that generates alarms

randomly from a binomial distribution.

For more detail, viral shedding of SARSCoV2 begins 5-6 days earlier than the symptom

onset and decreases 14.6 days after it. The peak period is within two days before and one
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day after the symptom onset [Xin+21; BS21; He+20]. It is shown that COVID-19 patients

have anomalous heart rates based on their daily steps [Sha+21; Sma+20]. This data can be

easily retrieved from common smartwatches. Therefore, several studies such as [Mis+20;

Ski+21; BS21; Ala+22] are done to develop algorithms for identifying COVID-19 infection

during its incubation period (the period from the start of the infection to the first clinical sign

or symptom [Eli+21]).

Our study on the state-of-the-art for predicting pre-symptomatic COVID-19 discovered a

notable flaw related to the choice of evaluation approaches. One reason is that the eval-

uation method components (true and false positive and negative rates) are not computed

in the unified space. As a showcase, we explain it with the results presented in the recent

article published in the famous Nature Medicine journal, which uses wearable gadgets to

predict COVID-19 infection. In this section, we explain how the used evaluation metric in

the literature misleadingly provides better performance for a random algorithm in compari-

son to that of all other state-of-the-art algorithms. We also analyze the results provided by

the latest pre-symptomatic COVID-19 detection systems in the literature which highlights

the need for a new metric to evaluate these systems.

5.3.1 Background and a Short Review of Algorithms on Pre-

symptomatic COVID-19 Detection

The pre-symptomatic COVID-19 detection systems need α days to be adapted to the user-

specific patterns. Then, for each day (d) and each participant (u) they provide an alarm Au
d

that is either positive (C+), negative (C−), or unknown (C?). Unknown alarms are triggered

during the adaptation phase (d < α) or when there are many missing sensor occurrences.

The daily calculation is usually considered in the literature due to the inability to extract the

exact starting date of COVID-19 infection (because of its incubation period) and the fact that

the behaviors of each person change over time in a day [Ala+22; Mis+20]. In this thesis, all

participated users (U ) are divided into positive COVID-19 patients (U+), and non-COVID-
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19 participants (U−). We also define Ku as the symptom appearance day (or the positive

test day in the asymptomatic cases) for each u ∈ U+.

The most commonly used metrics in the literature are based on the CM which is built by

calculating TP, TN, FP, and FN [VCV22]. They assumed that instances are independently

and identically distributed. The sequential nature of sensors and the specific properties of

COVID-19 infection means that instances are not independent. Additionally, the targets are

durative based on the incubation period of COVID-19 infection. Thus, classical metrics are

not appropriate [Mod+22b; Mod+22a; Mod+22c].

Regarding the algorithms for pre-symptomatic COVID-19 detection, Mishra et al. [Mis+20]

propose online and offline methods for COVID-19 detection before its symptom onset. They

evaluate their model by calculating the number of false alarms per month, correct detec-

tion rate (TPR), relative detection date to symptom onset date, and the number of alarms

before and after the onset of symptoms. In [Ski+21], authors use various machine learn-

ing approaches to identify the incubation period of COVID-19 patients by comparing this

pre-defined period with previous healthy data (with a 7-day gap). However, one of the

limitations of their study is the limited number of participants (only 27 COVID-19 and 27

non-COVID-19 participants). In addition, they assumed that heart rate and step count data

are pre-segmented into two specific fixed windows prior to the onset of symptoms, which is

not applicable to real-world scenarios.

Bogu et al. [BS21] developed a deep-learning approach to predict COVID-19 infection.

They use the symptom onset date in COVID-19 patients and random dates for non-COVID-

19 participants as the reference date. Then, they consider the period between 7 days

before and 21 days after the reference date as the infectious period, the period between

10 days and 20 days before the infectious period as the non-infectious period, and 21 days

after the symptom onset as the recovery time. Afterward, they use data earlier than the

non-infectious period to train the model and test it with the rest of the data. They use a

sliding time window approach with a duration of 8 hours and an offset of 1 hour. Then,

they evaluate their method with the number of correctly predicted windows as TP or TN
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and the number of incorrect windows as FP or FN. Pre-symptomatic COVID-19 detection

requires a high level of inference (whether or not the user has COVID-19), regardless of

the window information. The failure to detect COVID-19 in one window does not mean

that the algorithm’s performance is degraded because the heart rate pattern changes over

time during the COVID-19 infection period. Also, comparing the results of algorithms with

different windowing techniques is challenging [Mod+22b].

Abir et al. [Abi+22] extend the study in [BS21] by using Long Short-Term Memory (LSTM)

Variational Autoencoder (VAE). They use a similar configuration as [BS21]. However, this

very recent paper uses a small dataset containing only 25 health and 25 COVID-19 pa-

tients, which was published at the beginning of this pandemic. Since they do not publish

their framework, we cannot reproduce their results in our experiments, which are done on

a recent dataset containing 2048 users. Therefore, we cannot include that work in the

comparison.

In the cutting-edge paper published in Nature Medicine, Alavi et al. [Ala+22] propose a

new method to identify COVID-19 patients using heart rate and step data from various

wearables. They define the infection window as the period from 21 days prior to the onset

of COVID-19 symptoms (for symptomatic cases) or the date of diagnosis (for asymptomatic

cases) and the non-infection window as the non-COVID-19 periods (preceding 21 days to

a negative test result, the entire time frame for untested participants and the period before

infection window for positive COVID-19 cases). Then, they calculate TP, TN, FP, and FN

and show the effectiveness of their method by TPR and True Negative Rate (TNR).

There are several other works around using machine learning methods to control COVID-19

pandemic such as [Abd+21; Als+21; Mot+21; Cha+21; NSH20; Mos+22]. The effectiveness

of their approach is evaluated using traditional approaches. However, it does not involve

intervals in the targets; instead, it deals with discrete elements, which is apart from the

approach adapted in this study.

This can be considered as a special case of Anomaly Detection (AD) in time series. Several

approaches such as the works in [KSH19; Car+21; Hwa+19; Tat+18; LA15; Emm+15] are
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used in AD, however, they usually do not consider interval targets, which is the case with

the incubation period, or they consider strict constraints (such as the studies in [Hwa+19;

Tat+18]). Therefore, there is a need to define a proper evaluation method for the early

detection of COVID-19.

5.3.2 Analysis of Evaluation Methods

In this section, we provide an analysis (in Section 5.3.2) of different pre-symptomatic

COVID-19 detection systems (described in Section 5.3.2) on the largest public dataset

for pre-symptomatic COVID-19 detection (described in Section 5.3.2) along with evaluating

the evaluation method used in the literature.

Dataset

We select the latest and largest public dataset5 that is used in the cutting-edge Nature paper

[Ala+22]. It provides heart rate, and step count data retrieved from smart watches for 2048

participants, which contains 18 asymptomatic and 66 symptomatic COVID-19 patients (84

total). In this dataset, the participants with Fitbit wearables have high-resolution heart rate

data.

Algorithms

We select the latest algorithms in pre-symptomatic COVID-19 infection detection, such as

nightsignal [Ala+22], CuSum [Mis+20], isolationforest (offline) [Mis+20], laad [BS21], rhrad

[Ala+22; Mis+20], and random algorithm (Random Algorithm (RA)) which is described in

Section 5.3.2. It’s worth noting that the rhrad and CuSum methods (in contrast to nightsignal

and laad ones) are susceptible to high-resolution data (Fitbit wearables), and isolation forest

also works better by using this data. Therefore, we use only high-resolution data for rhrad,

5The anonymous step count and raw heart rate data used in this study is downloadable

from: https://storage.googleapis.com/gbsc-gcp-project-ipop_public/covid-19-Phase2/

covid-19-Phase2-Wearables.zip
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To analyze this definition better, we formally describe the aforementioned TP, FP, FN, and

TN in Equation (5.3). In this equation, ∆ is the infection window size (which is pre-defined

as 21 days before the symptom onset in [Ala+22]), and [.] shows the Iverson bracket, that

is either 1 (when the enclosed condition is satisfied) or 0.

∀u ∈ U+ : //For positive COVID-19 users

TPu = [∃d, (Ku −∆) ≤ d ≤ Ku ∧Au
d = C+]

FNu = [∄d, (Ku −∆) ≤ d ≤ Ku ∧Au
d = C+]

FPu =
∑

d<Ku−∆

[Au
d = C+]

TNu =
∑

d<Ku−∆

[Au
d = C−] (5.3)

∀p ∈ U− : //For healthy users

TPu = FNu = 0

FPu =
∑

d

[Au
d = C+]

TNu =
∑

d

[Au
d = C−]

Then, we define a Random algorithm (RAp), that generates a red alarm (C+) randomly

with a probability p and a green alarm with a probability 1− p, and make predictions drawn

from a binomial distribution of all participant data for each day. We use RAp as a base-

line to compare the performance of state-of-the-art algorithms. Obviously, an algorithm is

unacceptable when it performs worse than a random algorithm.

Based on Equation (5.3), the TPR of RAp is equal to the probability of having at least one

red alarm in the ∆ days before the symptom onset. Therefore, its TPR is p × ∆ and TNR

is the probability of correctly negative prediction. For that, the prediction should be outside

the infection window period (∆). Since, in general, the ∆ is small (a few days) compared to

the non-infection period (e.g., six months), we can approximate TNR of RAp with 1 − p for

long-duration experiments. These calculations can be observed in Figure 5.13; however,

because the number of positive COVID-19 patients is limited (around 78) and the missing

days (the days without any sensor events) are ignored, the TPR and TNR in this figure are







5.3. SIGNIFICANCE OF EVALUATION IN A REAL-WORLD APPLICATION 115

5.3.3 Analysis with a Less Biased Evaluation Method

In the previous section, we demonstrated that either the used evaluation method or current

COVID-19 detection algorithms are flawed. Therefore, we define a simple but less biased

evaluation method to show the feasibility of calculating all the TP, FN, FP, and TN in a

unified space (in contrast to previous ones). Briefly, it divides the alarms into multiple

segments, each containing θ days; one of them begins with the onset of symptoms (if

symptomatic) or on the COVID-19 test date (if asymptomatic). Accordingly, a segment is

considered a COVID-19 segment (C+) when it contains at least one red alarm or a non-

COVID-19 segment (C−) if it contains no red alarms but has enough green alarms (θ0). For

patients with COVID-19 infection, the preceding segment to symptom onset is TP (resp.

FN) if it is a COVID-19 (resp. non-COVID-19) segment. Other segments are considered

TN (resp. FP) if they are non-COVID-19 (resp. COVID-19) segments.

Since the goal is pre-symptomatic COVID-19 detection, the alarms after the symptom onset

until 21 days after that are ignored [Shr+20]. Moreover, we ignore the alarms in the second

segment before symptom onset because it is ambiguous between correct and incorrect

detection [Xin+21; BS21; He+20]. In Equation (5.4), we present the formula for calculating

TP, FP, FN, and TN.

wu
i ={Au

d|i× θ ≤ d−Ku < (i+ 1)× θ}

S(w) =





C+ if ∃a∈w, a = C+

C− else if len({a ∈ w|a = C+}) ≥ θ0

C? otherwise

TP u =[u ∈ U+ ∧ S(w−1)= C+],

FNu =[u ∈ U+ ∧ S(w−1) ̸= C+]

Γu ={i ∈ Z|u ∈ U− ∨ i < −2 ∨ i >
21

θ
} (5.4)

FP u =[Σi∈Γ S(wi) = C+],

TNu =[Σi∈Γ S(wi) = C−]
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In this equation, wu
i is the i-th segment for user u, S(w) is a function that shows the segment

status, and Γu is the index of segments in the non-COVID-19 period.

This section describes the experiment settings using the cutting-edge dataset and state-

of-the-art algorithms to support our claims. These algorithms are modified to raise a red

alarm when they detect the COVID-19 pattern. We also publish used methods, datasets,

and manuals in our open-source repository6.

The observation in Section 5.3.2 indicates that either the state-of-the-art algorithms are

inappropriate or the used evaluation method is incorrect because our presented random

alarm generator (RA) performs better than these algorithms. As we explained before, this

section aims to compare the state-of-the-art algorithms, which shows the importance of

a proper evaluation method. Then, we proposed a simple but less biased evaluation ap-

proach to analyze the situation.

In the first experiment, we explore different values for the θ parameter (Figure 5.14). We

also use θ0 = θ/2 to filter segments that do not have enough information in at least half of

the segment size. It shows that θ = 10 provides better performance for rhrad, nightsignal,

isolationforest, and CuSum algorithms; however, as it is expected, it does not affect too

much on the random algorithm. Recent studies show that the mean and median incubation

period of SARS-CoV-2 is 6.38 days and 5.41 days, ranging from 2.33 days to 17.60 days

[Eli+21]. Additionally, the World Health Organization (WHO) defines an incubation period

is up to 14 days [22]. Besides, SARS-CoV-2 viral shedding begins 5-6 days before the

symptom onset [He+20]. Therefore, we select θ = 7 for the next experiment.

Then, in the last experiment, we compare various algorithms using our new metric. Fig-

ure 5.15 displays the ROC of these algorithms using this new metric. It shows the random

algorithm (RA) is close to the line of TPR = FPR, which means this new metric behaves

normally. Interestingly, the algorithm rhrad which was one of the worst algorithms using

the other metrics, outperforms other algorithms in the new metric; and RA, which was the

best algorithm in that metric, is the worst one in our metric. It indicates that this new metric

6https://github.com/modaresimr/covid
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method presents five high-level properties and measurements (based on well-known TP,

FP, and FN). These measurements can be combined in a weighted manner to produce a

scalar value or used collectively as multi-objective metrics. Furthermore, the modularity

of the proposed method enables the straightforward inclusion of new measurements for

additional properties. Our proposal leads to a significant advantage in making informed

decisions concerning the expected clinical outcome.

The proposed method considers the presence of multiple segments, such as tumor spots,

in medical images and treats each segment as an individual instance. As these instances

have 2D or 3D shapes, the predicted segments can simultaneously be partially correct and

partially incorrect at the same time. Our formulation assumes that each G ∈ G represents

one individual ground truth segment, and each S ∈ S represents one individual predicted

segment. For instance, in a medical image containing three tumor spots, S would have

three members, and each S would refer to the label and the corresponding voxels. Our

proposed evaluation method is based on the following assumptions:

1. The set of individual segments in the ground truth (G) and prediction (S) are given as

input.

2. The inputs are given as 3D matrices of size (w× h× d) where w, h, and d denote the

width, height, and depth of the image. In the case of 2D images or 1D intervals, the

input is reshaped to a 3D image with a depth (and height) of one.

3. A perfect prediction is one that exactly matches the ground truth.

4. The G and S are correlated when they overlap, i.e., G ⊓ S ̸= ∅ where X ⊓ Y returns

all the overlaps between all elements of X and Y. For simplicity, we define C(x, Y ) =

{y ∈ Y |x ⊓ y ̸= ∅}. Therefore, C(S,G) returns the correlated ground truths segments

(G) with respect to S, and C(G,S) returns the correlated predicted segments (S) with

respect to G.

5. Each voxel may belong to multiple classes (e.g., both liver and tumor). Therefore, we

evaluate each class separately as positive and the rest as negative. This way allows
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us to use individual settings for each class.

6. To account for the effects of varying machine resolutions and slice thickness on shape

properties, we incorporate a vector (dx, dy, dz) that denotes the voxel size for each

dimension.

Our method normalizes the targets based on the ground truths, which are independent

of the predictions. We achieve this by clustering all G and S into a set called C. More

specifically, C = {(G, Ŝ)|G ∈ G ∧ Ŝ = {S ∈ S|C(S,G) ̸= ∅}}, where Ŝ contains all predicted

segments that are correlated with at least one ground truth segment. Orphan predictions,

which are denoted by C= {S ∈ S|S ⊓ G=∅}, contain predicted segments that are unrelated

to any ground truths. Occasionally, a predicted segment can be associated with multiple

clusters, resulting in division among those clusters.

Our proposed evaluation method extends point-based metrics to handle partial matches

between ground truth and predicted segments. In contrast to point-based metrics, where

each voxel is either correctly predicted or not (i.e., the value of TP, FP, or FN for each in-

stance is either 0 or 1), our method generalizes these terms for 2D and 3D data by allowing

partial value to each segment. This enables a more nuanced and detailed evaluation of

segmentation performance, providing insights into the situation of matching between pre-

dicted and ground truth segments. In the following sections, we present the key properties

of MIS, SED, and AR drawn from state-of-the-art studies. We also introduce the formulas

for measuring these properties.

5.4.1 Detection Property (D)

Detection Property determines the detection of a ground truth target even with a small

prediction (at least θ portion to the ground truth). In other words, it checks for the existence

of overlaps between a single ground truth (G) and a single predicted (S). This property is

crucial in applications such as alarm systems. For example, early detection of all tumor

spots is the most critical component, and then other properties are taken into account.
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5.4.3 Boundary Alignment Property (B)

The Boundary Alignment Property (B) is designed to reward when the ground truth bound-

aries are precisely detected while penalizing for any inaccuracies in the boundaries. In

addition, this property takes into account the boundaries based on the shape of the seg-

ment since the misclassified voxels are not the same, and they should be locally targeted

[Bur+04; Nik+21; WWZ20]. They can significantly change the segment shape and features

(see Figure 5.35).

The shape of a segment, including factors such as compactness, roundness, sphericity,

lobulation, speculation, and roughness, is crucial in clinical treatments [Li+19b]. This prop-

erty is related to the work of [Ker+21; Ma+21]. We examine the ability of segmentation

algorithms to recognize the boundaries of the shape normalized by their local key points.

Using this approach, the normalized boundaries of a spiculated lesion, for example, are not

affected by the large volume in its center.

To measure this property, first, we utilize the medial axis of the ground truth segment,

which provides a thin representation of the segment [LKC94; Wal+14]. This representation

provides the base points for normalizing the distance between the prediction and the ground

truth. The normalized distance is used to determine the reward or penalty for the prediction

based on how accurately it identifies the boundary of the ground truth segment. For an

interval, the center point of the interval is considered as the thin representation.

The segmentation of multiple organs and their medial axis is displayed in Figure 5.18. Un-

like HD and voxel-based metrics, which treat all parts of a segment (or its border) equally,

we use a normalized distance based on the segment’s key points. This is important, partic-

ularly for small tissues, as even minor misdetection can significantly impact the segment’s

radiomic characteristics [Li+19b].

The Boundary Alignment Property (B) is formulated in Equation (5.8). In this equation, the

functions DK(v,G) and DB(v,G) estimate the distance of voxel v from the medial axis and

boundary of the ground truth segment (G). These functions can be computed once during

the pre-processing step for each ground truth segment and need not be recalculated for
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5.4.6 Precision, Recall, and F-score

The evaluation metrics, including Precision (PRC), Recall or True Positive Rate (TPR), and

Fβ measure (Fβ), are computed based on the standard formula given in Equation (2.9),

which uses the TPs, FPs, and FNs that were defined earlier for each property. To compute

the average performance across multiple images, we use the image-wise average, which

independently computes the metric for each image and then averages the TPR, PRC, and

Fβ across all images. Particularly in MIS, the importance of TPR can outweigh that of PRC

[TH15]. This means missing certain regions can be more detrimental than having incorrect

predictions in other regions. For instance, missing a tumor spot can be more harmful than

incorrectly predicting a small tumor. To address this, the Fβ measure can be adjusted by

increasing the value of β.

5.4.7 Computational Complexity

Computational Complexity of the presented formulas is O(|G| × |S|) because elements of

both sets of G and S are iterated. Since each element of G needs only related S; the kd-

tree helps us to optimize it to O(|G|log|S|+ |S|log|G|). In the case that G and S are ordered

and are 1D, this complexity can be reduced to O(|G|+ |S|) by considering the relationships

of G and S. In addition to these, we need to do some computations for each target in 2D

and 3D, such as computing the distance and the key points in B. The complexity of distance

transform methods can be done using 3D distance transform inO(n) time complexity, where

n is the number of voxels/pixels in the discretized space [Gre04]. The key points can also be

computed based on the 3D distance transform inO(n) time complexity [Wal+14]. Therefore,

the best case complexity can be achieved inO(|G|+|S|) for 1D andO((|G|log|S|+|S|log|G|)×

n) for 2D and 3D.
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5.5 Experiments

5.5.1 Activity Recognition Case Study

The main additional problem in AR systems, in contrast to traditional ones, is the impor-

tance of duration: a predicted target in AR is durative and can be correct in a period and

incorrect in another. However, it is often assumed that time-frame, event-based, or classifier

performance follows the whole system performance [Per+14; Bil+20; QPM21; CN15]. This

assumption neglects practical scenarios and may misleadingly present convincible results.

Despite the importance of evaluating durative targets, even in similar areas, few empirical

attempts are proposed which are confronted with the problems of correctness and com-

pleteness. Still, there is no universally accepted formula for evaluating the effectiveness

of systems with durative targets. Therefore, it is fundamental to extend the correctness

vocabulary and to formalize a new evaluation system including these extensions.

This section presents an experimental study of our metric. The first experiment is done on

small visualizable data. The second one compares two algorithms in a real-world dataset.

The parameters of each property of our metric are as follows. The θTP, θFP are needed

to have an appropriate detection property. In this experiment, if a S has any overlap with

G (θTP = 0), we consider it as TP; additionally, if an incorrect part of a S is longer than

its related G’s duration (θFP = 1), we consider it as FP. We also use (βt = 2) to consider

near linear boundary error. The codes and datasets are existed in our repository at https:

//github.com/modaresimr/evalseg .

Analysis of the proposal on small data

Small data is explored in this experiment for simplicity in visualization. This data contains a

subset of 13 relations between two intervals in Allen’s interval algebra [Osm03]. This data

and our metrics’ outputs are illustrated in Figure 5.21 and Table 5.2. Clearly, more S of Alg.a

are incorrectly predicted than that of Alg.b in Figure 5.21, while the number of undetected G

is the same. The precision and recall in detection measurement confirm this observation.
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Table 5.4 shows the metric proposed in [Tat+18] with the different parameters. We can ob-

serve that γ function, which considers fragmented and merged predictions, has a small im-

pact on the TPR and PRC. As it is observable from our uniformity property in Table 5.3, we

can see the predictions of both algorithms are uniform, while HHMM works better. This ob-

servation cannot be captured from Tatbul’s metric. As analyzed at the end of Section 5.2.3,

the main issue of Tatbul’s metric is that recall and precision are not calculated in a simi-

lar model and cannot be used as complementary (e.g., changing α parameter affects only

TPR). Lastly, δ parameter in Table 5.4 is proposed by them to consider the boundary align-

ment errors; however, changing that does not provide significant changes in recall and

precision, while our boundary properties in (Table 5.3) clearly provide the situation of pre-

dictions. This experiment ends with Table 5.6, which compares the macro average of our

metric across all classes of this dataset.

5.5.2 Sound Event Detection Case Study

Time is an important dimension in sound event detection (SED) systems. However, evalu-

ating the performance of SED systems is directly taken from the classical machine learning

domain, and they are not well adapted to the needs of these systems, such as recogniz-

ing the time, duration, detection, and uniformity of sound events. Despite its importance,

it is not well-developed yet. Current methods are highly biased by their assumptions and

may misleadingly present convincible results. The state-of-the-art methods consider few

situations of errors and have certain deficiencies. e.g., they are highly biased by their as-

sumptions [Fer+21] and may misleadingly present convincible results.

In classical problems, an instance is either correctly detected (TP) or not (FP or FN). How-

ever, instances in SED are durative (events start and end at a specific time). Therefore,

predictions may identify parts of references (Figure 2.8). As a result, the TP, FP, and FN

should have a partial value between zero and one. Additionally, the situations of predicted

events (e.g., predicting a reference event by multiple fragmented predictions) should be

considered in the evaluation method.
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Figure 5.22: An example scenario that contains all major possible situations between refer-

ences and predictions. The numbers correspond to the i-th reference (prediction) and are

indicated by ri (pi).

In addition, the dependency on pre-defined strict parameters such as ρDTC and ρGTC in

PSDS, length in collar, and time resolution in frame-based (segment) and event-based

methods (that are widely used in SED evaluation) should be resolved [Sto+15; MHV16;

Tur+19].

In order to analyze our method, we first demonstrate its soundness by considering all

major possible situations between references and predictions. Then, we compare the

sound classes of two SED systems in detail. Lastly, we re-evaluate the best ten sys-

tems presented in DCASE 2020 challenge. For the sake of reproducibility, the data,

source code, and the details of the experiments are available in our repository at

https://github.com/modaresimr/SED-MME-eval

Analysis on Artificially Generated Data

In this experiment, we consider all major possible situations between references and pre-

dictions using artificially generated data. This data contains four parts and is visualized

in Figure 5.22. The first part is about simple situations (one reference is related to only

one prediction). It includes all 13 relations described in Allen’s interval algebra [Osm03].

The second part shows fragmented prediction. The third part considers a single prediction

that covers multiple references. Lastly, fragmented and merged predictions are considered

simultaneously. The evaluation outputs on each part are available in Table 5.7.

Verifying detection property is straightforward. We consider all reference events that have

at least one common part with predicted events as TP (r2...17), other reference events as

FN (r0,1), and falsely predicted positive predictions as FP (p0...2) in this property.
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The uniformity property captures detection of reference events by multiple predictions in a

fragmented manner (e.g., r11 is recognized by three predictions (p12...14); thus, each one is

partial FP (2/3)), or one prediction covers multiple references (e.g., r12...14 are recognized by

p15; thus each one is partial FN (FNr12...14 = 2/3) and partial TP (TPr12...14 = 1/3)); otherwise,

the predictions are complete TP (e.g., TPr2...7 = 1). In the fourth part, similar to the second

one, each reference is identified by multiple predictions, and also, similar to the third part,

one prediction (p18) covers three references (FPp16,17 = 2/3,FPp18 = 3/4,FPp19 = 1/2).

Total Volume Property (T) divides the predictions into independent parts and marks them

as TP, FP, and FN; then it sums their time intervals (e.g., TPr2...10 = FPp2,7 = FNr3 = 1/2).

The segment-based method is similar, but they produce different results since it reduces

the time resolution to one second [Hei+13]).

Evaluation of long events is the dominant output in the total duration property. Therefore,

the relative duration property calculates the normalized correctly recognized part of each

event. Therefore, each partial TP, FP, and FN is normalized depending on its correlated

reference events (e.g., TPr2 = 1,TPr3 = FNr3 = FPp7 = 1/2,TPr4 = 1/3).

The state-of-the-art methods also exist in Table 5.7. In their definition, each of TP, FP, and

FN is either zero or one; while they can have partial values in our definitions. The collar

method provides only one TP (r2) because the collar range is 200 ms [Fer+21], while the

timing errors are 500ms in this data. The psd d/gtc=0.8 has a similar situation because

its acceptable time shift is 200ms for each second of events. The psd d/gtc=0.1 and our

detection property provide similar results because its parameter is small enough in this

artificial data. However, an inconsistency exists in the third part. The FP calculated by

psd d/gtc=0.8 is 1 while the TP calculated by psd d/gtc=0.5 is 3. The result produced by

psd d/gtc=0.8 for the third part is similar to the p2, which means it ignores the existence of

two references in the third part. This shows that PSD method needs some improvements.

However, our method does not show this inconsistency.
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Part 1 Part 2 Part 3 Part 4

TP FN FP TP FN FP TP FN FP TP FN FP

*detection 9 2 3 1 - - 3 - - 3 - -

*uniformity 9 - - 1 - 2 1 2 - 1 2 2.6

*total durati. 4.5 4 4.5 1.5 1 1 1.5 1 1 3 1.5 2

*relative dur. 6.3 2.7 3.5 0.6 0.4 0.7 2 1 - 2.3 0.7 0.7

collar 1 10 11 - 1 3 - 3 1 - 3 4

segment 10 4 5 3 - 1 3 1 - 6 - 1

psd d/gtc=0.1 9 2 3 1 - - 3 - - 3 - -

psd d/gtc=0.5 7 4 4 1 - - 3 - - 3 - -

psd d/gtc=0.8 1 10 8 - - 2 - - 1 - - 3

Table 5.7: Different methods for defining TP, FN, and FP on sample data. Our methods are

identified by *.

Detailed comparison of two SED systems

The second analysis is made over the best systems in DCASE challenge11 2020 Task 4

(Miyazaki and Hao-CQU) on the public dataset [Ser+20]. We provide detailed information

for sound classes by showing the TP, FN, and FP provided by different evaluation methods

in Figure 5.23. By decreasing the parameter of PSD, it will be closer to our detection

property, and by increasing that parameter, it will be closer to the collar method. When

the duration of all references and predictions is one second, 100ms collar and psd d/gtc =

0.8 provide close results. The segment method’s objective is to allow some misalignment

between the reference and prediction [MHV16]; however, when a prediction is completely

incorrect, this method provides more FP than usual (e.g., Blender class in Figure 5.23.b).

This is opposite to its goal. The hypothesis in the segment method decreases the time

resolution; thus, it may have a wrong impact on the final result. Therefore, we choose exact

timing in calculating the total duration property.

Figure 5.23 shows that system (b) recognizes fewer events (detection) than those of system

(a); however, its detections are less fragmented (better uniformity) and more precise in

detecting the event’s time interval (relative duration), while neither the collar method nor

the PSD method can capture uniformity and relative duration.

11website: https://dcase.community/challenge2020/
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events that satisfy these conditions are similar; besides, they provide significant differences

between two events that are close to the boundaries of their preset conditions. For these

reasons, the system ranked ninth by collar method takes third place using our method.

Unlike other approaches with predefined parameters, our metric is independent of strict

parameters in calculating properties (detection, uniformity, total duration, and relative dura-

tion). The only optional parameter (weights) in our metric is used to prioritize the properties,

which can be easily changed without recalculating the properties. Therefore, an appropri-

ate algorithm can be easier selected for a new application with different constraints by

differently prioritizing those properties. e.g., an algorithm that performs better in uniformity

property; is expected to be more suitable for an application where the uniformity property

is essential.

5.5.3 Medical Image Segmentation Case Study

Manual segmentation of medical images (e.g., segmenting tumors in CT scans) is a time-

consuming task that can be accelerated with machine learning techniques. Evaluation is

a crucial step in fine-tuning and selecting the appropriate one. However, an inappropriate

evaluation method that does not entirely meet the requirements may misleadingly present

convincible results. In MIS, the spatial dependencies between voxels in each segment

make evaluating MIS systems challenging. For instance, in contrast to point-based targets

that are either correct or incorrect, in MIS, predicted segments may be partially correct and

partially incorrect at the same time.

This section presents an experimental study of our metric. The first experiment is per-

formed on small visualizable data. The second one compares two algorithms in three real-

world datasets. The parameters of each property of our metrics are as follows. The θtp, θfp

are needed to have an appropriate detection property. In this experiment, if a predicted

segment has any overlap with the ground truth (θtp = 0), we consider it as TP; addition-

ally, if an incorrectly predicted part of a segment is greater than the volume of related

ground truths (θfp = 1), we consider it as FP. The codes are published in our repository at
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Figure 5.25: Pancreas Dataset. Orthogonal View.

https://github.com/modaresimr/evalseg. To compare our methods, we used the recent

implementation for the state-of-the-art metrics [Mül+22] by adapting it for uneven voxel size.

The selected approaches are: DC (F1), IoU (Jaccard Index), TPR, PRC, FPR, Acc, HD,

and Average Hausdorff Distance (AHD).

Datasets

Our experiments are performed on the datasets used in the recent survey [Ma+21] con-

taining Pancreas-CT, LiverTumor, and MultiOrgan datasets. Pancreas-CT includes 363 CT

scans, LiverTumor contains 434 liver tumor cases, and MultiOrgan includes 90 multi-organ

abdominal CT cases containing eight organs (spleen, left kidney, gallbladder, esophagus,

liver, stomach, pancreas, and duodenum).

For ease of reproducibility, we have published all the used datasets in this

paper at our repository at https://www.kaggle.com/datasets/modaresimr/

medical-image-segmentation with complete instructions to visualize and analyze

them.
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Figure 5.28: Synapse Multi Organ Dataset, Orthogonal View.

ing from colorectal, breast, and lung primaries. These CT scans encompass a range of

pre- and post-therapy images, exhibiting authentic clinical scenarios, including metal arti-

facts. With a resolution varying between 0.5 to 1.0 mm and a slice thickness of 0.45 to

6.0 mm, this dataset presents an intricate interplay of complexities, where expert radiolo-

gists meticulously annotated both liver and tumor regions. The challenging nature of this

dataset arises from the inherent label imbalance between the relatively larger liver regions

and the smaller tumor regions, necessitating the development of innovative segmentation

techniques. An example image of this dataset is shown in Figures 2.2 and 5.27.

Synapse Dataset The Synapse Multi-organ Dataset stands as a significant contribution

to the medical imaging, aiming to foster advancements in multi-organ segmentation. The

dataset boasts with high-resolution images that provide intricate details of various organs.

Each image within the dataset is carefully annotated, possessing dimensions that enable

deep and comprehensive analyses.

The MultiOrgan dataset includes 90 multi-organ abdominal CT cases from [Lan+15;

Gib+18], containing eight organs (spleen, left kidney, gallbladder, esophagus, liver, stom-

ach, pancreas, and duodenum). These datasets are also used in the recent review

[Ma+21].
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predicted parts as the positive class (FP). To enhance visibility, a blue frame is placed

around each predicted segment to show the border of the whole prediction. The second

row shows the original 3D CT scan (dataset and slice information are shown in the title) and

the measurement of properties for each prediction (which is in the upper row). These mea-

surements (explained in Section 5.4) compare the performance of each algorithm with the

diagnosis of a radiologist expert (ground truth) and provide interpretable information with

a spider chart. This chart contains five vertices: Detection Property (D), Uniformity Prop-

erty (U), Total Volume Property (T), Relative Volume Property (R), and Boundary Alignment

Property (B). For each vertex, TPR and PRC are shown, which show the performance of a

system in recognizing the ground truth accurately and the precision of the prediction made

by that system.

In Figures 5.29 and 5.30, we can observe how our system can provide meaningful infor-

mation about the performance of a system on detecting tumor spots correctly (D), and

the differences between R and T. Figures 5.30 and 5.31 show better how the uniformity

property considers fragmented and combined predictions. In Figure 5.32, the analysis is

made on a more complex CT scan, where we can observe all the metrics. In Figures 5.33

and 5.34, we show the segmentation of the pancreas and how one algorithm recognizes

it in two parts while the R and T are similar. Our metric can easily show the prediction

situation. In addition, it shows useful information about preserving the segment’s shape

with B. We have shown the CT scan of Figure 5.33 without slicing in Figure 5.34 in 3D. As it

is visible, method (I) recognizes the pancreas in a fragmented manner, which is measured

by the Uniformity Property (U) in the spider chart, while method (II) does not have such an

error. Method (III) recognizes all the parts in the ground truth (FN ≈ 0); however, it has a lot

of false predictions (FP). As it is measured by Detection Property (D) and T, many spots are

wrongly predicted, and their total volume is also huge. Even for correctly detected spots,

the R shows that its error is around 50% of the ground truth volume.

In Figure 5.35, we show, with an example, how boundary alignment property can provide

useful information about the situation of misclassified voxels.
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These experiments show that our metric can provide meaningful information which cannot

be measured by other metrics, such as DC and IoU since they do not consider the spatial

dependency between voxels.

Comparing four systems on real-world datasets

Table 5.8: Evaluation of four methods with different metrics among the LiverTumor dataset.

We can observe that even the 23rd method (Asym) based on previous reports, works better

than the others in some properties. However, the information about their actual behavior is

not visible by others*.

SS Asym DiceTopK10 DiceHD

MME

D
PRC 0.23±0.23 0.64±0.33 0.62±0.35 0.67±0.35

TPR 0.89±0.24 0.81±0.28 0.75±0.34 0.77±0.32

B
PRC 0.59±0.26 0.73±0.28 0.74±0.31 0.76±0.30

TPR 0.86±0.30 0.82±0.32 0.79±0.34 0.79±0.32

U
PRC 0.84±0.28 0.88±0.27 0.84±0.32 0.88±0.30

TPR 0.93±0.22 0.93±0.24 0.86±0.31 0.90±0.28

R
PRC 0.55±0.19 0.67±0.23 0.67±0.28 0.69±0.26

TPR 0.83±0.28 0.71±0.29 0.66±0.30 0.66±0.29

T
PRC 0.36±0.29 0.61±0.29 0.64±0.32 0.65±0.30

TPR 0.84±0.29 0.72±0.31 0.66±0.32 0.66±0.31

Other

HD†

avg 22.8±20.3 13.4±24.4 13.6±24.0 11.5±20.0

95th 60.5±40.4 30.4±34.0 29.5±33.0 27.9±32.5

max 102.5±41.2 53.6±39.0 49.4±36.8 48.6±39.1

Voxel

DC 0.45±0.30 0.61±0.27 0.61±0.30 0.62±0.29

IoU 0.35±0.27 0.49±0.26 0.50±0.28 0.50±0.26

VS 0.51±0.31 0.71±0.27 0.73±0.30 0.75±0.27

NSD‡ τ = 1 0.06±0.05 0.14±0.09 0.15±0.10 0.15±0.10

τ = 5 0.42±0.26 0.66±0.28 0.64±0.30 0.65±0.30

* Bold and underlined values highlight the best and the second-best results.
† The unit of HD is in millimeters, and the lower value is better. HD is “inf” when the segmentation result is

empty. Therefore, it does not represent the average of all cases.
†, ‡ The voxel size is included in NSD and HD. Therefore, they may provide different values than other studies.

Based on the comprehensive study in [Ma+21], we have used DiceTopK, DiceHD, Asym, SS

methods in that study and evaluated them on similar datasets. Based on the DC metric over

all the datasets, the study in [Ma+21] ranks them first, second, twenty-third, and twenty-
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Table 5.9: Evaluation of four methods with different metrics over Pancreas-CT dataset, in

which all CT scans contain one pancreas*.

SS Asym DiceTopK10 DiceHD

MME

D
PRC 0.84±0.25 0.92±0.19 0.96±0.15 0.91±0.22

TPR 1.00±0.00 0.99±0.06 0.99±0.06 0.99±0.06

B
PRC 0.80±0.16 0.90±0.12 0.93±0.11 0.92±0.11

TPR 0.95±0.14 0.94±0.15 0.94±0.13 0.95±0.13

U
PRC 0.99±0.06 1.00±0.00 1.00±0.00 1.00±0.00

TPR 0.97±0.11 0.94±0.18 0.99±0.08 0.94±0.18

R
PRC 0.71±0.13 0.81±0.11 0.85±0.09 0.84±0.10

TPR 0.91±0.14 0.87±0.16 0.86±0.15 0.87±0.14

T
PRC 0.70±0.13 0.81±0.10 0.85±0.09 0.84±0.10

TPR 0.92±0.14 0.87±0.16 0.86±0.15 0.87±0.14

Other

HD†

avg 3.76±3.51 3.01±3.51 2.85±3.46 2.79±3.20

95th 10.4±9.55 7.60±8.23 6.95±7.65 6.98±7.59

max 21.4±20.4 14.6±13.8 13.7±9.86 13.5±9.43

Voxel

DC 0.78±0.11 0.82±0.11 0.84±0.10 0.84±0.10

IoU 0.65±0.13 0.71±0.13 0.73±0.12 0.74±0.12

VS 0.83±0.12 0.88±0.12 0.90±0.11 0.90±0.11

NSD‡ τ = 1 0.16±0.08 0.22±0.08 0.24±0.08 0.24±0.08

τ = 5 0.84±0.13 0.89±0.12 0.90±0.12 0.90±0.12

fifth. Moreover, the difference between DiceHD and DiceTopK is less than one percent.

Tables 5.8 to 5.10 highlight the results of our metric and others over three datasets. Notably,

those methods have huge tolerance (based on all the metrics) over different images in these

datasets.

We can observe in those tables that some properties of Asym and SS are better than

DiceTopK. Particularly in MIS, sometimes TPR is more important than PRC [TH15]. We can

observe SS approach (the 23rd rank in [Ma+21]) has better TPR in most of the properties.

In this situation, we can use Fβ with a higher β value to give more weight to the TPR

and only use this value. Our method can provide simple and interpretable information

based on five properties that show the situation of those methods. Therefore, based on the

application requirement, the expert availability, and even in different stages of treatment,

we can select different methods. However, other metrics do not provide this information. In
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Table 5.10: Evaluation of four methods with different metrics over the MultiOrgan dataset.

We have shown only the macro-average of all classes. The results for all eight classes are

available in our repository*.

SS Asym DiceTopK10 DiceHD

MME

D
PRC 0.29±0.17 0.70±0.18 0.87±0.15 0.83±0.17

TPR 0.99±0.04 0.98±0.05 0.98±0.05 0.99±0.04

B
PRC 0.77±0.07 0.84±0.05 0.90±0.06 0.88±0.06

TPR 0.94±0.07 0.94±0.07 0.93±0.08 0.93±0.06

U
PRC 0.98±0.04 0.98±0.05 0.98±0.04 0.98±0.04

TPR 0.90±0.11 0.92±0.10 0.91±0.10 0.92±0.08

R
PRC 0.73±0.05 0.79±0.05 0.86±0.05 0.85±0.05

TPR 0.91±0.07 0.89±0.07 0.85±0.08 0.86±0.07

T
PRC 0.67±0.08 0.72±0.07 0.84±0.07 0.84±0.05

TPR 0.91±0.07 0.89±0.07 0.85±0.08 0.86±0.07

Other

HD†

avg 9.34±7.22 17.5±3.94 3.91±4.15 4.02±3.04

95th 35.5±25.9 34.0±11.1 11.5±11.8 12.8±10.8

max 88.5±46.0 47.5±15.1 20.5±15.2 23.9±16.0

Voxel

DC 0.75±0.08 0.74±0.07 0.84±0.08 0.84±0.06

IoU 0.64±0.09 0.66±0.08 0.75±0.09 0.75±0.07

VS 0.80±0.06 0.81±0.05 0.92±0.07 0.92±0.05

NSD‡ τ = 1 0.19±0.04 0.24±0.07 0.30±0.09 0.30±0.09

τ = 5 0.77±0.13 0.75±0.11 0.88±0.11 0.87±0.10

addition, our method does not contain certain issues in other metrics.

HD is “inf” when no prediction is made. In addition, it considers all the segments (e.g., big or

small) similarly; therefore, the average of HD can be affected when an image contains small

segments because the distances between prediction and ground truth for small segments

are often smaller than that of larger segments. A similar situation exists for NSD since

the border tolerance (τ ) is fixed to one millimeter for all segments. In Boundary Alignment

Property (B), the distance is normalized based on the shape of the segment. Therefore,

it is robust to this situation. As explained before, voxel-based metrics such as DC, IoU,

and VS do not take into consideration the spatial relation between voxels, and they cannot

provide any information about the situation of the prediction. In addition, greater segments

in contrast to smaller segments have more impact on the final results.
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5.6 Conclusion

Evaluation and selection of the right metric to compare these systems are crucial. Many

researchers, in the absence of a fitting metric, often resort to pixel-wise, time-frame, event-

based, or classifier performance evaluations. Such measures can misleadingly indicate a

system’s convincing performance.

Our work introduced a new mathematical model to evaluate algorithms that produce targets

exceeding zero dimensions. This model stands out for its expressiveness, capturing various

properties like detection, boundary alignment, relative volume, total volume, and uniformity.

It’s tailored to be customizable, allowing for adjustable parameters to accommodate a broad

spectrum of applications and even to emphasize certain properties over others. Another

notable feature of our metric is its extensibility: introducing a new property is seamless and

doesn’t interfere with existing ones.

Not only have we tested our metric across multiple datasets, showcasing its robust abil-

ity to measure different algorithm properties, but it also factors in nuances such as voxel

size, considering how acquisition parameters could influence shape properties. This metric

enhances the expressiveness of diverse approaches, potentially influencing MIS training

methodologies and paving the way for novel machine learning techniques in the upcoming

years.

Lastly, our proposed metric doesn’t just offer clarity for experts; it’s designed to be under-

standable even for non-experts. By ensuring values in calculating TP, FN, and FP take into

account diverse properties, we provide a measurement tool that’s interpretable, adjustable,

and available as open-source.



Chapter 6

General conclusion and perspectives

6.1 Conclusions

Segmentation is a common pre-processing step in many applications, including MIS, AR,

and SED. However, this step introduces at least two families of uncontrollable biases. The

first one is caused by the changes made by the segmentation process on the initial prob-

lem space, for instance, dividing the input into one-second frames, and the latter results

from the segmentation process itself, including the fixation of the segmentation method

and its parameters. To address these biases in the segmentation pre-processing step,

we first reformulate the segmentation as a decomposition problem and then introduce our

novel meta-decomposition approach to address these biases. Therefore, the segmentation

problem is redefined as a particular case of data decomposition one that includes the de-

composer (traditional segmentation), the resolutions (ML), and the composer steps. The

composer step transforms the ML results to the global problem results to better describe

and evaluate the impact of the introduced biases in the segmentation process. It addresses

the first family of biases.

To overcome the second family of biases, we propose a novel approach called meta-

decomposition or learning-to-decompose that learns how to decompose the original task

(e.g., recognizing activities from long data) into smaller sub-tasks. Therefore, it can be in-
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tegrated with meta-learning techniques that require multiple tasks to improve recognition

performance. In addition, while the majority of the work in the literature focuses on fixed

segmentation approaches that heavily rely on human experience or domain knowledge,

the meta-decomposition seeks to reduce the segmentation biases and optimize the overall

system performance by learning how to generate sub-tasks rather than assuming the seg-

mentation method as pre-specified and fixed. In the proposed model, the segmentation is

an ML hyperparameter that is learned adaptively based on the application and constraints in

the outer learning algorithm to improve the recognition quality of the inner learning process.

As explained before, without considering the meta-composer part, meta-decomposition in-

troduces an additional bias in the comparison of different segmentation approaches due to

the inconsistency in the segments. In the experiments, we demonstrate with a simple and

effective data-driven approach, the feasibility of finding a proper segmentation method and

its hyperparameter in our proposal and show the superiority of our approach compared to

the other approaches with their best hyperparameters on four public datasets. As another

example, we have shown its effectiveness by including a dynamic layer on the top of the

best segmentation deep network. This dynamic layer improves the recognition performance

by dynamically changing the receptive field while keeping the number of parameters nearly

unchanged.

Evaluation also introduces several biases and is crucial process in machine learning ap-

plication. e.g., a common segmentation step changes the problem space and different

segmentation algorithms generate heterogeneous segments. Therefore, in this thesis, we

review the evaluation process and propose to project the evaluation into a multidimensional

space with a partial order relationship that considers the contextual relationships between

instances. It projects the evaluation onto five high-dimensions (properties) called Detection

(D), Boundary Alignment (B), Uniformity (U), Relative Volume (R), and Total Volume (T).

This evaluation latent space is easily interpretable and provides a high degree of flexibility

for experts to adopt it for each stage of their considered application. For example, rec-

ognizing distinct tumor spots is more crucial than their sizes in the initial scanning stage
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(property D is vital), while in assessing treatment response, their sizes are more relevant

(property T is important). Our novel MME method evaluates segmentation techniques, em-

phasizing the measurement of essential properties driven by analyzes of relevant studies

in MIS, SED, and AR. The MME method refines well-known TP, FP, and FN by permit-

ting fractional values for each concept instead of binary values, accounting for partially

correct predictions and enabling a more comprehensive assessment of the segmentation

method’s performance. Using the updated TP, FP, and FN values, we can compute com-

monly employed metrics like IoU, TPR, PRC, and DC, which are easily interpretable, even

for non-experts. Advancing beyond prior research restricted to zero-dimensional relation-

ships (point-based), this work examines the spatial interdependencies of pixels (voxels,

times), covering one-dimensional, two-dimensional, and three-dimensional relations. To

elaborate further, this metric evaluates the identification of individual segment spots by a

single prediction instead of numerous fragmented ones (uniformity), the accurate detec-

tion of each segment (detection), the alignment of ground truth and prediction boundaries

based on their shape (boundary alignment), and quantifies the relative and total volume of

accurately predicted segments. Our approach is extensible, interpretable, adaptable, and

open-source. Moreover, it considers the voxel size since some acquisition parameters, such

as slice thickness and resolution, may affect the shape properties. Our evaluation method

significantly improves the expressiveness of various segmentation approaches, which may

have a noticeable impact on segmentation training strategies and lead to the development

of new machine-learning techniques in the future.

6.2 Recommendations and Future Work

Throughout this thesis, we delved into the exploration of a dynamic layer, posited atop the

best-performing segmentation deep network. Future research endeavors could broaden

this exploration by comparing various other dynamic approaches. Although certain state-

of-the-art dynamic approaches did not enhance the performance in our experiments, our
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findings substantiate that it is feasible to improve segmentation performance through the

incorporation of our proposed dynamic layer.

Moreover, an avenue for further exploration arises from the potential of appending this layer

to the last layer of the deep network. Preliminary results hint that there is room for additional

enhancements in this direction. We also posit that the integration of an adaptive layer atop a

lower-parameter inner network might achieve, or even surpass, the performance achieved

with a higher-parameter inner network. This hypothesis presents another interesting aspect

that needs deeper investigation in future studies.

The other suggestion is to consider the integration of the proposed meta-decomposition

concept in the meta-learning approaches. Empirical evidence from our experiments sub-

stantiates that this concept enhances overall machine learning performance, thereby war-

ranting its consideration in future studies. We hope this work will open the way for using the

meta-decomposition in the meta-learning approaches. The integration of the use of these

methods in the internal approaches of base learners will be studied and presented in our

future work. This explicit bias description will improve the segmentation process by select-

ing the appropriate data decomposition according to the current tasks and, consequently,

enhance the quality of the machine learning results.

Finally, for the evaluation part, a promising avenue of exploration from this model is the

potential to generate a profile for each algorithm. This could serve as a heuristic for more

rapid algorithm selection—a facet we aim to delve deeper into in future research. We

hope also to extend to the integration of these properties in deep learning algorithm loss

functions, considering iterative, weighted combinations of varied loss functions. We also

foresee an expansion of these metrics to 4D-CT scans, highlighting the spatiotemporal

aspects of patient lesions and organ movements.



Appendix A

Common Evaluation Metrics
Formulation in Medical Image
Segmentation

In order to provide a uniform formulation for analyzing such systems, we denote S and G
as the predicted and ground truth segments that shows the desired concept class and its

boundary. For binary classification problems, gi ∈ G (resp. si ∈ S) can be either true

or false, where false represent negative or background class and true indicate positive or

foreground class.

TP corresponds to the correctly predicted instances in the foreground (positive), while TN

represents those in the background (negative). Similarly, for incorrect predictions, we have

two situations. FN refers to the foreground instances predicted wrongly as background

(negative) while FP counts the number of background instances that are wrongly classified

as foreground (positive). They are formulated in Equation (A.1)

TP = |G ∩ S| TN = |¬G ∩ ¬S| (A.1)

FP = |¬G ∩ S| FN = |G ∩ ¬S|

In this equation, G∩S returns the voxels with the same class in both predicitons and ground

truth.
The well known IoU, Acc, PRC, TPR, Fβ, and DC are defined in the following equations.

IoU =
TP

TP + FN+ FP
(A.2)

Acc=
TP + TN

ALL
PRC=

TP

TP+FP
TPR=

TP

TP+FN
Fβ=

(1+β2)TPR×PRC

(β2PRC)+TPR
(A.3)

F1 = DC = 2
TPR× PRC

PRC+ TPR
=

2TP

2TP + FN+ FP
=

2|G ∩ S|

|G|+ |S|
(A.4)

In [Nik+21], they proposed NSD by allowing a certain tolerance on the boundaries of the
ground truth (∂G) and the prediction (∂S). This tolerance is denoted as τ and is used to

define a new boundary set denoted as ∂̂G for the ground truth and ∂̂S for the prediction
that includes all points within a distance of τ from the true boundary points. Using these
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sets, the Normalized Surface Distance (NSD) with tolerance τ can be defined as shown in
Equation (A.5) [Ma+21].

∂̂G = {x|∃x̂ ∈ ∂G, ∥x− x̂∥2 ≤ τ} (A.5)

∂̂S = {x|∃x̂ ∈ ∂S, ∥x− x̂∥2 ≤ τ} (A.6)

NSD(G, S) =
|∂G ∩ ∂̂S|+ |∂S ∩ ∂̂G|

|∂G|+ |∂S|
(A.7)



Appendix B

More details of the used Datasets

Figure B.1: The standard routines in Orange4Home dataset [Cum+18]
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Figure B.3: Detailed Activities sensors hit map in the Home1 Dataset. It shows the number

of sensor events occurred at each time for each activity. On the legend, the average number

of sensor’s heats are shown.
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Figure B.4: Home1 Activities

Figure B.5: Home2 Activities
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Rädsch, Minu D. Tizabi, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon

Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina,

Beth A Cimini, Gary S. Collins, Keyvan Farahani, Bram van Ginneken, Fred A

Hamprecht, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre

Jannin, Charles Kahn, Alexandros Karargyris, Alan Karthikesalingam, Hannes

Kenngott, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A.

Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne Martel, Pe-

ter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G.M. Moons,

Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Ra-

jpoot, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty,

Maarten van Smeden, Carole H. Sudre, Ronald M. Summers, Abdel A. Taha,

Sotirios A. Tsaftaris, Ben Van Calster, Gael Varoquaux, and Paul F Jaeger.

“Metrics Reloaded - A new recommendation framework for biomedical im-

age analysis validation”. In: Medical Imaging with Deep Learning (2022). URL:

http://www.mauricioreyes.me/Publications/ReinkeMIDL2022.pdf.

[Ren+22] Yuan Ren, Long Yu, Shengwei Tian, Junlong Cheng, Zhiqi Guo, and Yanhan

Zhang. “Serial attention network for skin lesion segmentation”. In: Journal of



192 BIBLIOGRAPHY

Ambient Intelligence and Humanized Computing 13.2 (2022), pp. 799–810.

ISSN: 18685145. DOI: 10.1007/s12652-021-02933-3. URL: https://doi.

org/10.1007/s12652-021-02933-3.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional

Networks for Biomedical Image Segmentation”. In: IEEE Access. Vol. 9. IEEE

Computer Society, May 2015, pp. 234–241. DOI: 10.1007/978-3-319-24574-

4{\_}28. URL: http://link.springer.com/10.1007/978-3-319-24574-

4_28%20http://arxiv.org/abs/1505.04597.

[RK13] Robert J Ross and John Kelleher. “Accuracy and timeliness in ML based activ-

ity recognition”. In: Proceedings of the 13th AAAI Conference on Plan, Activ-

ity, and Intent Recognition. Vol. WS-13-13. AAAIWS’13-13. AAAI Press, 2013,

pp. 39–46. ISBN: 9781577356240. DOI: 10.5555/2908241.2908247.

[RNN99] Stephen V. Rice, George Nagy, and Thomas A. Nartker. Optical Character

Recognition. Boston, MA: Springer US, 1999, pp. 507–509. ISBN: 978-1-4613-

7281-3. DOI: 10.1007/978-1-4615-5021-1. URL: http://link.springer.

com/10.1007/978-1-4615-5021-1.

[Ros+14] André Luis Debiaso Rossi, André Carlos Ponce de Leon Ferreira de Car-

valho, Carlos Soares, and Bruno Feres de Souza. “MetaStream: A meta-

learning based method for periodic algorithm selection in time-changing data”.

In: Neurocomputing 127 (2014), pp. 52–64. ISSN: 09252312. DOI: 10.1016/

j.neucom.2013.05.048. URL: http://dx.doi.org/10.1016/j.neucom.2013.

05.048.
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Titre: Méta-décomposition et processus d’évaluation dans les applications

d’apprentissage automatique

Mots clés: Évaluation, Segmentation, Décomposition, Méta-décomposition, Seg-

mentation d’images médicales, Reconnaissance d’activités, Détection d’événements

sonores.

Résumé: La segmentation est une

étape cruciale dans diverses applica-

tions du monde réel telles que l’analyse

d’images médicales, la reconnaissance

d’activités et la détection d’événements

sonores. Elle implique de diviser les

données d’entrée en segments plus pe-

tits, ce qui induit des modifications dans

certaines caractéristiques des données

d’entrée. Ce processus introduit au moins

deux familles de biais incontrôlables.

La première famille de biais est intro-

duite dans le modèle en raison des

changements dans l’espace du problème

provoqués par la segmentation elle-

même. La deuxième famille de biais est

causée par le processus de segmenta-

tion lui-même, y compris la fixation de

la méthode de segmentation et de ses

paramètres. Cette thèse présente une

nouvelle couche adaptative conçue pour

améliorer les modèles de segmentation

d’images médicales existants, améliorant

ainsi leurs performances. Cette couche

adaptative ajuste dynamiquement la taille

du champ récepteur en fonction des in-

formations des pixels et de leur voisi-

nage. Ces concepts sont ensuite étendus

à des scénarios plus complexes impli-

quant des types de données hétérogènes,

présentant une nouvelle approche de

méta-décomposition ou d’apprentissage

de la décomposition pour la segmenta-

tion. Cette approche atténue les biais im-

plicites tout en permettant une segmen-

tation adaptative pour différents types de

données, prenant en compte les variations

et les hétérogénéités des données telles

que les différences saisonnières dans les

activités. Reconnaissant l’impact de la

segmentation sur l’espace du problème,

la recherche examine les inconvénients

des méthodes d’évaluation de pointe,

en mettant l’accent sur la nécessité

de cadres plus complets qui se con-

centrent sur des méthodes d’évaluation

basées sur des points, négligeant les

relations spatiales ou temporelles entre

les instances. Pour valider l’efficacité

des techniques d’évaluation suggérées

et de l’approche de méta-décomposition,

des expérimentations approfondies sont

menées sur divers ensembles de données

réels concrets.
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