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Chapter 1

Introduction

“L’humain est la nature prenant conscience d’elle-même ” 1

[Élisée Reclus (1830-1905) Geographe 1905]

Philosophical preliminaries

Nature is one, and as such we are an intrinsic part of it. Through physics we can
understand how we are connected to the world that surrounds us. Understating
nature is a two step process, differentiating and unifying. First we differentiate
nature into isolated objects, moving as if they were disconnected from the whole.
Then we weave them together in an effort to best describe what our senses detect and
our subjective mind deduces. In that sense, mathematics is a language, a grammar,
made for us to communicate with one another. In that same way a theoretician is
much like a poet, where each verse follows the rules dictated by mathematics. In
that logic, numerics is nothing more than illustrating that poem through an image.
Let it be to magnify a certain aspect of the poem or to unify it into something our
senses are more familiarized with. To be a great poet we need to write about what
we have lived. We need to interact with nature, fell it and then write about it.
And then interact again, confront what we have written and correct ourselves as we
iterate. As we iterate, we calibrate our brain into better correlating what our senses
detect to what our subjective mind interprets. And that is what I think to be so
beautiful about physics, it helps us calibrate ourselves such that we become, with
each iteration, closer to the nature surrounding us. The purpose of this thesis is to
investigate how to visualize the environment electrons live in using numerics.

General Introduction

In 1948, when John Bardeen and Walter Brattain realized the first (point-contact)
transistor [Bardeen & Brattain 1948], they made one of the first tools for us to
control with precision the electrostatic environment where electrons propagate. It
consisted of a simple - and large - superposition of P-N doped germanium sand-
wiched between two metals. The precision at which we modified the electrostatic

1The original sentence is “L’homme est la nature prenant conscience d’elle-même”. However I
decided to actualize it.
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environment however was still too rough for the electrons to sense it individually;
hence only their macroscopic behavior was modified. The increase in technical pro-
ficiency of the academic community allowed us to downsize the initial devices from
the cm scale (e.g. MOS transistor [Atalla et al. 1959]) to µm and nm scale. By
reducing the noise from defects and impurities, by reducing the size of the metal-
lic gates and by reducing their distances from the conducting region, we increased
the precision with which we alter the electrostatic environment of the electrons -
to the point it is of the order of their wavelength. An example of a typical device
is the quantum point contact: two gates placed a distance of tens of nanometers
from each other, and a few hundreds of nanometers above the propagating elec-
trons. By decreasing the gate voltage we can create a electrostatic potential barrier
that constricts the electron flow through a valley that is on the order of the elec-
tronic wavelength. Hence by measuring the electronic flow after the constriction,
we see the quantum behavior of electrons. Moreover, as the electrons leave the
constriction, they are characterized by a quantum phase. However, material defects
and impurities altering the electrostatic environment of the electrons in addition
to ourselves also scatter the electrons, thus changing the quantum phase and the
electronic trajectory. To quantify this we can define a quantum coherence length,
upon which the electronic wave looses its phase coherence. Systems whose coherence
length is smaller than the active region of the device are considered ballistic, i.e.
can be treated by single-particle quantum models. This length can go from µm to
nm depending on the material the electrons propagate. Therefore, there are two
key quantities characterizing a quantum device, the carrier wavelength (concerning
manipulation) and coherence length (concerning measurement).

Historically, in 1988 two independent groups measured conductance quantiza-
tion due to confinement in GaAs-AlGaAs hetero-junctions [van Wees et al. 1988,
Wharam et al. 1988]. They were the first to be able to measure ballistic
transport in nanoelectronic devices due to the high mobility of the electrons
in the two-dimensional electron gas (2DEG), see e.g. [Pfeiffer et al. 1989,
Shayegan et al. 1988a]. This meant we could use microscopic semiconducting de-
vices to measure the quantum states we manipulate. Coupled to advances in
cryogenics and metrology, nanoelectronics became a miniaturized laboratory for
probing the quantum behavior of matter. Formally we call it mesoscopic physics.
Fast forward to today, we are not only exploring the quantum helm, but we have
also started to manipulate with great precision its different elements. As exam-
ples we can cite the control of quantum confinement (Quantum Point Contact
(QPC)s [van Wees et al. 1988, Topinka et al. 2000, van Houten & Beenakker 1996,
Bauer et al. 2013]), coherent transport of single electrons [Bäuerle et al. 2018,
Duprez et al. 2019] and controlled interferometry of coherent quantum states (Mach-
Zehnder interferometers (MZI) [Wei et al. 2017, Jo et al. 2021, Ji et al. 2003]).
They have all become building blocks for technological applications (quantum bits
[Bautze et al. 2014, Edlbauer et al. 2022, Yamamoto et al. 2012, Koch et al. 2007])
or for more complex experiments (probing fractional Quantum Hall (QH) quasi-
particles [Saminadayar et al. 1997, Shayegan et al. 1988b, Nakamura et al. 2020,
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Chang 1990, Carrega et al. 2021, Bolotin et al. 2009, Bhattacharyya et al. 2019]).
Although we have managed, through mesoscopic physics, to experimentally

bridge the gap between classical electrostatics (energy scales of eV ), e.g. gate field
effect electrostatics, and that of quantum particles (meV to µeV ), the theoretical
tools used to model them are - for the most part - disconnected. This large difference
in energy scales is what renders difficult unifying models capturing the electrostatic
environment of the device to those aimed at studying the quantum effects we seek to
understand. However, this large difference in energy scales is also what renders the
quantum mechanical effects we study extremely sensible to small variations of their
electrostatic environment [Martinez & Niquet 2022, Percebois & Weinmann 2021].
Usually what is done is to represent the electrostatic environment of a device
with an effective potential added to the hamiltonian [Bautze et al. 2014]. In
part, this effective potential absorbs all complicated features semiconducting de-
vices have. However, they are unable to relate the experimental voltages ap-
plied at the gates to the measured quantum transport quantities. They also ig-
nore details of the device geometry and interactions with its surrounding envi-
ronment. Already this renders predictive simulations of nanoelectronic devices
impossible. More importantly, using an effective potential can be a fatal limi-
tation to the qualitative simulation of quantum transport. In 1993 Chklovskii,
Shklovskii and Glazman (CSG) showed sometimes the electrostatic environment
must be treated quantitatively for the models to capture quantum behavior qual-
itatively [Chklovskii et al. 1992a, Chklovskii et al. 1992b, Chklovskii et al. 1993].
In this thesis we have also shown that effective potential models can misguide
researchers and lead to a wrong physical interpretation of experimental results
[Flór et al. 2022]. Therefore, as the field of mesoscopic physics progresses, the need
for a tool capable of predicting quantum features from quantitative models of the
device electrostatic environment becomes pressing.

Within this context :

The objective of this thesis is to develop a theoretical model, numerical
algorithm and software capable of calculating the electrostatic control
we exert over the charge carriers in mesoscopic devices so that we can
predict their behavior.

This implies correlating how the eV energies we fix at the device gates affect the
meV electrostatic landscape where the carriers propagate. It also means capturing
the meV to µeV electrostatic screening the charge carriers exert on the electrostatic
environment. This requires :

I ) Modeling the mesoscopic device electrostatic environment;

II ) Capturing the interaction between the electrostatic environment and the elec-
tron quantum mechanics.

These are two very distinct tasks. The first task requires precise understanding
of the materials science behind mesoscopic devices and a pragmatic knowledge of
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their measurable effects on quantum transport. It also requires working closely with
experimental research groups to get a regular feedback on our model. The second
task requires accounting for the self consistent effect the charge carriers have on
their electrostatic environment and the electrostatic environment has on the charge
carriers. It can be achieved by accounting for the electrostatic screening of the
charge carriers in the mean field approximation. This implies solving a highly non-
linear self-consistent problem formulated by coupling the Schrödinger equation to
the Poisson equation.

The first part of this Introduction illustrates why it is fundamental to quanti-
tatively model the electrostatic environment where the charge carriers propagate.
We do so using the Quantum Hall Effect (QHE) as an example. The second part
formulates the Self-Consistent Quantum Electrostatics (SCQE) problem, review the
existing methods to solve it and explain where they fail. The third part is semicon-
ductor materials science. We list the different microscopic effects found in semicon-
ducting mesoscopic devices and explain how they contribute to quantum transport
experiments. The fourth explain in detail the purpose of this thesis and summarizes
the main results. Last is the outline.

1.1 The importance of electrostatics at a quantitative
level

Most quantum transport simulations are limited to a qualitative view of the de-
vice’s electrostatic environment. For example, suppose we want to calculate the
conductance through a 2DEG in a heterostructure over which we depose metal-
lic gates. Figure 1.1 (a) shows a simplified schematic for a device invariant on ~y
and whose 2DEG is formed at a AlGaAs/GaAs heterostructure. To calculate the
conductance defined in, e.g. the Landauer-Büttiker (LB) formalism, one solves the
non-interacting Schrodinger equation under the effective mass approximation at the
2DEG:

1

2m∗
(i~~∇+ e ~A)2Ψ(x, y)− eU(x)Ψ(x, y) = EΨ(x, y) (1.1)

withm∗ = 0.067me the effective mass for GaAs [Lawaetz 1971] and e the electron
charge. The effect of the gates and the device microscopic details, such as dopants
and interface charges, are captured by the potential term U(x). Here we consider
the potential invariant on ~z due to the 2DEG small dimension (≈ 10nm) compared
to the distance of the 2DEG from the gates, dopants and device interfaces.

Often U(x) is an effective potential, a function chosen so that the solution of
Eq.(1.1) best captures the experimental features one seeks to explain. For instance,
one can take analytical solutions to U(x), e.g. a saddle point potential of the form
U(x, y) = V0 − 1/2ω2

xx
2 + 1/2ω2

yy
2 whose ωx and ωy values are calibrated to best

describe the experimental results. The problem with assuming the shape of the
potential is that first it can not give a quantitative result and second it can trick us
into thinking we have a correct understanding of the physics taking place.
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To get an intuition to what is wrong with this approach think of the energy
scales in place. The electrostatic landscape where the charges propagate are on the
order of tens - hundreds of meV . The quantum oscillations we want to understand
are of the order of tens - hundreds of µeV . To be sure we are looking at the right
place in the Hilbert space it is important to first capture correctly the meV physics.
This requires a quantitative knowledge of the nanoelectronic device electrostatics.
To get a quantitative knowledge we need know where are the charges in the device.
Changing the number of electrons in a system is extremely costly energetically, hence
if we can calculate the charge dispersion at the meV precision, then calculating the
charge dispersion at the µeV precision is only a matter of changing the result very
slightly. In contrast the shape of the potential can change quite a lot. Hence
if we simply assume a shape of the electrical potential, the corresponding charge
dispersion can be quite far from the correct solution.

In the next section we shall illustrate our argument by comparing the difference
in the physical interpretation of the QHE obtained under a qualitative treatment of
the device electrostatics versus a quantitative treatment.

1.1.1 Case study : the quantum hall effect

In this section we shall compare the qualitative treatment of electrostatics
of the LB approach [Büttiker 1988] to the quantitative treatment of CSG
[Chklovskii et al. 1992a]. In doing so we shall elucidate how the results obtained
with the two pictures differs as we go from a low magnetic field QHE regime to a
high magnetic field regime, see [Armagnat & Waintal 2020].

As a toy model, we take the device on Fig 1.1. It is close enough to experimental
devices to illustrate some interesting QH physics, and simple enough to be easily
solved. The gates (in gray) apply a confining potential U(x) at the 2DEG, depleting
the charge beneath them. A magnetic field ~B = B~uz, perpendicular to the 2DEG,
is also applied. We disregard the spatial extension of the 2DEG in ~z.

Lets start by calculating the energy spectrum and electronic states at the two
dimensional electron gas (2DEG) by solving Eq.(1.1). A general solution for Eq.(1.1)
takes the form of plane waves along the y direction s.t.

Ψ(x, y) = eikyψ(x), (1.2)

with momentum k. To find ψ(x) we need to specify a gauge for the vector potential
s.t. ~B = ~∇× ~A. Under the Landau gauge - ~A = Bx ~uy, Eq.(1.1) writes:

ψ′′(x) +
2m∗

~2
[(E − eU(x))− 1

2
m∗ωc(x− xk)2]ψ(x) = 0 (1.3)

with ωc = (eB)/m∗ the cyclotron frequency, xk = kl2b and lb =
√

~/(eB) the
magnetic length.

For U(x) = 0 this is the equation for a harmonic oscillator, oscillating at ωc
around the center coordinate xk. The energy spectrum is called Landau levels
[Landau & Lifshitz 1981]: degenerated energy levels equally spaced following En =
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Figure 1.1: Taken from [Armagnat & Waintal 2020] - a) 2D cut along x − z of a
typical (simplified) nanoelectronic device invariant in ~y. The 2DEG is located at the
GaAs side of the heterostructure. The plus sign in red indicate the ionized donor
dopants at the AlGaAs layer. b) Non interacting energy dispersion at the 2DEG for
the effective potential on the inset of (c) and constant magnetic field ~B = B.~uz, with
B = 1T . The fermi level is EF = 0 and x = kl2b , with lb the magnetic length and k
the momentum (see text). c) Charge density at the 2DEG for the energy dispersion
in (b). Both (b) and (c) have been calculated by [Armagnat & Waintal 2020] using
Eq.(1.1).
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~ωc(n + 1/2), whose states are exponentially localized in x at around kl2b . This is
the bulk QH physics.

In the next two sections we consider the case where U(x) is not zero. In the
first we use the LB approach. In the second we use the CSG approach. We fol-
low the works of [Büttiker 1988, Chklovskii et al. 1992a, Chklovskii et al. 1992b,
Chklovskii et al. 1993, Armagnat & Waintal 2020].

1.1.1.1 Quantum hall physics under Landaeur Buttiker and Halperin

In the LB picture U(x) is an external input of the problem [Büttiker 1986,
Halperin 1982]. For instance, it can be an analytical function, e.g. U(x) = U0 +ax2

for a constant. If U(x) is slowly varying, we can approximate the spectrum following:

En(k) ≈ ~ωc(n+ 1/2)− eU(xk) (1.4)

Figure 1.1 (b) shows a numerically calculated energy spectrum for the device
on (a) with an external potential U(x) (inset on (c)). In the calculations EF = 0,
hence En(k) = 0 gives the conducting channels. They are centered at around xk,
with propagating velocity vk = (1/~)dE/dk. Hence they are located at the edge,
with positive vk for the channels on the right and negative for those at the left.

Up to here the LB picture seems to capture some essential features of the QHE,
notably the chiral edge states. However, the charge profile at Figure 1.1 (c) reveals
a profound flaw of the LB approach. In the calculations shown in Figure 1.1 (b)
- (c) there are two filled Landau levels. The total number of available states in a
Landau level is 1/(2πl2b ), hence the bulk electron density is n = 2eB/h. As we
go to the edge of the sample, the number of filled Landau levels decreases to one,
s.t. n = eB/h, and then to zero when it reaches the edge. This means the density
at the sample is set by the magnetic field B, which is unreasonable. Indeed, in
the LB picture the density profile under magnetic field field changes considerably
compared to density profile for B = 0. Such large displacement of charges has a
high potential energy cost, which can not be explained by the change in magnetic
energy, ~ωc - typically of the order of 10meV . In practice the charge density profile
changes very little as the magnetic field is added to the system, the LB picture
is wrong. Furthermore, a large displacement of charges is associated with a large
change of the electrostatic potential surrounding it. Therefore even if there was a
large displacement of charges, there is no valid reason to consider the U(x) invariant
under variations of the magnetic field. This leads one to conclude the main flaw of
the LB picture is to consider U(x) a fixed input of the problem.

1.1.1.2 Quantum hall physics under Chklovskii, Shklovskii and Glazman

In 1992 CSG presented a series of papers revisiting the LB picture
[Chklovskii et al. 1992a, Chklovskii et al. 1992b, Chklovskii et al. 1993]. From the
energetic argument presented in Section 1.1.1.1, they argued it is the charge profile
that should slowly change with the magnetic field. Therefore, they first calculate the
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charge profile at B = 0, namely n(x,B = 0). Under the assumption the magnetic
field will only slightly alter n(x,B = 0), they derive n(x,B 6= 0) and the energy
dispersion. In this section we shall follow their method to derive the charge profile
and energy dispersion at B = 3.7T for the device in Fig.1.1 (a).

First we calculate the charge density and the energy dispersion at B = 0T ,
c.f. top of Fig.1.2. To do so we solve the SCQE problem under the Thomas-Fermi
approximation using the PESCADO software, c.f. Chapter 4. For the 2DEG density
of states, we use the bulk value. We choose a dopant concentration such that the
charge density at the 2DEG is n = 2.02.1011cm2 at zero gate voltage. We apply a
gate voltage Vg = −0.05V for the calculations shown on the top of Fig.1.2. Second,
we calculate the Landau level charge density for B = 3.7T , nLL = eB/h. With
this we can find the charge density positions of the Landau level plateaus at the
n(x,B = 0) profile. This is the Step I shown in Fig.1.2. From the charge profile at
the top of Fig.1.2 we deduce that under B = 3.7T there can be two filled Landau
levels, ν = 1 and ν = 2 with ν the filling factor of Landau levels. The gray dotted
lines shown where n(x,B = 0) crosses n = νeB/h. The position x where they cross
marks the central position of the edge state, namely xν . This concludes the first
Step. Here we can already deduce that the charge profile at n(x,B 6= 0) will be
divided into regions of varying charge density and constant charge density, called
respectively compressible and incompressible stripes. At the compressible stripes
the potential is constant and at the incompressible stripes the potential varies.

We need now to extract the size of incompressible stripes, noted aν . To do so we
will use an energetic argument. First, we can relate xν to the electron momentum
k using the relation x = kl2b . Therefore, between the two edges of an incompressible
stripe there is a potential energy drop of ~ωc. This change in potential energy is
accompanied by a charge displacement :

δn = aν
dn

dx
|x=xν (1.5)

where the derivative is taken with respect to the charge profile for B = 0T and
assumed constant within x ∈ [xν − aν/2, xν + aν/2]. To find the energy variation
associated with displacing δn we can model the incompressible stripe as a 2D capac-
itor composed of two plates placed next to each other and separated by a distance
of aν , s.t. :

aν
dn

dx
|x=xν = c

ε

eaν
δU (1.6)

with the geometrical constant for the device in question c = 5.1, c.f.
[Armagnat et al. 2019]. Replacing eδU with ~ωc we obtain :

aν =

√
~ωc

dn
dx |x=xν

cε

e2
(1.7)

Using Eq.(1.7) we can place the charge plateaus of size aν in n(x,B = 0), c.f.
Step II of Fig.1.2. With this we can sketch n(x,B 6= 0) and the energy dispersion,
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c.f. black profile in bottom of Fig.1.2. In light grey is shown the charge profile for
B = 0T .

The CSG approach is valid when the spatial spread of the Landau level is much
smaller than the size of the incompressible stripe, i.e. lb � aν . This is only true
for high magnetic fields. For intermediary and low values of magnetic field the CSG
approach looses accuracy. Recently [Armagnat & Waintal 2020] performed full self
consistent quantum electrostatics calculations for the toy model of Fig.1.1 (a). They
showed that the qualitative difference between CSG (thomas fermi) and a full self
consistent calculation is the absence of charge plateaus in the incompressible stripes.
This is indeed due to the spread of the Landau levels. At the high magnetic field limit
they recovered the CSG results. At low values of magnetic field the LB approach of
spatially localized propagating channels is recovered.

1.2 The Self Consistent Quantum - Electrostatics prob-
lem

The SCQE problem, also known as Schrödinger-Poisson, describes moving charged
quantum particles coupled to the classical electrostatic environment that they gener-
ate. It is that of many independent (non-interacting) particles propagating together
in the same electrostatic landscape. While they propagate, they affect their land-
scape, as much as the landscape affects the particles themselves - and their density.
Although we assume the particles do not interact directly with themselves, they fell
each other through their impact in the electrostatic landscape surrounding them. In
the SCQE problem, the two quantities we seek to calculate are the quantum charge
density n(~r) and the classical electrostatic potential - U(~r). The SCQE problem is
formulated by a set of three equations, relating n(~r) calculated with the Schrodinger
equation to U(~r) solution of the Poisson equation. Formally, it accounts for the effect
of coulomb interaction at the mean field level of approximation - the Hartree term
of the Hartree-Fock method. It provides a sound foundation from which many-body
models can be constructed. In what follows we shall formulate the SCQE problem
and discuss the approach taken in this thesis to solve it.

1.2.1 Problem definition

First comes the Schrödinger equation :

[H0 − eU ]ΨαE = EΨαE (1.8)

where H0 is the system Hamiltonian, U(~r) the electrostatic potential seen by
the carriers (that we suppose to be electrons with negative charges without loss of
generality), e > 0 the elementary charge, ΨαE the electronic wave function at energy
E and sub-band α. In the simplest situation H0 = p2/(2m∗) is the effective mass
Hamiltonian but it can also account for orbital degrees of freedom and/or spins,
superconductivity etc. We suppose that the system is in the thermodynamic limit
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Figure 1.2: Illustration of the CSG method to derive the B = 3.7T charge profile
and energy dispersion from B = 0T calculations. Here n and U are respectively the
charge density and potential at the 2DEG of Fig.1.1 (a), with lb the magnetic length
and k the electron momentum. The profile at B = 0T (top) is calculated using the
PESCADO software, c.f. Chapter 4. The B = 3.7T profile (bottom) is obtained
using the CSG method. C and I correspond to respectively the compressible and
incompressible stripes of the CSG model for the QHE. In the middle the two Steps
to go from top to bottom, with ν the filling factor, xν the central position for the
Landau level ν and aν the size of the Landau level ν.
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so that the energy E varies continuously. The index α, however, is discrete and
labels the different sub-bands (including those originating from the non-trivial band
structure). A typical setup that corresponds to the above is the one of the Kwant
package [Groth et al. 2014]. Solving the quantum problem provides the wavefunc-
tion ΨαE(~r) or more generally the Local Density of States (LDOS) that counts the
density of electrons per unit volume and per unit energy:

ρ(~r,E) =
1

2π

∑
α

|ΨαE(~r)|2 (1.9)

Filling the states up to the Fermi energy (statistical physics) provides the elec-
tron density n(~r), also called Integrated local density of states (ILDOS):

n(~r) =

∫ ∞
−∞

dEρ(~r,E)f(E) (1.10)

where f(E) = 1/[eβ(E−EF ) + 1] is the Fermi function with EF the Fermi energy
and β = 1/kBT the inverse temperature. The last equation is simply the Poisson
equation :

∇ · (ε(~r)∇U(~r)) = en(~r)− end(~r). (1.11)

where ε(~r) is the dielectric constant and the doping charge density nd(~r) accounts
for electric charges that are not treated at the quantum mechanical level (for instance
dopants or charges trapped at a surface). The Poisson equation is complemented
by boundary conditions such as Dirichlet U(~r) = Vg at metallic gates or Neumann
on other boundaries.

1.2.2 Review of common numerical approaches

The traditional approach to solve the SCQE problem involves calculating the po-
tential U(~r) with the Poisson equation from a given input density n(~r). Then to
calculate a new value for the density from the potential U(~r) using the ILDOS.
Then to iterate over this until the charge n(~r) converges. Alternatively one can
start with an initial guess for the potential U(~r) [Gummel 1964, Tan et al. 1990,
Gudmundsson 1990]. To speed up convergence a simplified model can be used to
find an initial guess for either U(~r) or n(~r), e.g. [Wang et al. 2006]. These simple
approaches work when the filling of energy levels is independent of the variations the
value U(~r) takes in between iterations. In fact, we can use such criteria to classify
SCQE problems into two categories: confined systems (e.g. molecules) described
by a discrete gapped set of orbitals and extended systems (e.g. semiconductors and
2D materials, the focus of this thesis) with a continuous spectrum. For confined
systems calculating the ILDOS (from the Density of States (DOS)) is straightfor-
ward, since the presence of a large gap makes the integrated charge density invariant
under the variations U(~r) might take in between iterations. For extended systems
however, this is not the case. The ILDOS can be highly non-linear, specially at
lower temperatures, making iterative algorithms unstable and even diverge.
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To improve on the convergence one of the simplest method is the under-
relaxation algorithm [Rana et al. 1996, Stern 1970]. It consists of adding a
damping parameter on the previous iteration solution. Regardless, even when
simple iterations with or without under-relaxation converge, they do it slowly
[Trellakis et al. 1997]. More stable and faster approaches tend derive the next iter-
ation input by mixing the solutions of several previous iterations [Eyert 1996]. For
instance, the Anderson mixing uses a linear combination of several previous iteration
as the next iteration input [Vuik et al. 2016, Anderson 1965, Antipov et al. 2018,
Escribano et al. 2019]. Other mixing methods worth mentioning are the Direct In-
version in the Iterative Subspace, a.k.a. Pulay mixing [Pulay 1980] and the Broyden
mixing [Broyden 1965]. We refer to [Eyert 1996] for a good formal reference of the
most used mixing algorithms. We refer to [Vuik et al. 2016] for a good practical
example on the implementation of the Anderson mixing. Not only they justify their
choice of mixing by benchmarking with other methods, but they even make their
code available !2

Other than direct iterative algorithms, root-finding methods have also been
used. For instance, [Andrei & Mayergoyz 2004, Lake et al. 1997, Pacelli 1997,
Kumar et al. 1990] have used Newton-Raphson based algorithms to solve the SCQE
problem. The major improvement over the mixing approaches is that Newton-
Raphson and variations also make use of the gradient of the function they seek to
find the root. For a good source to delve into the helm of non-linear PDEs - of the
likes found in fluid dynamics simulations; we refer to [Knoll & Keyes 2004].

However, either root-finding or mixing algorithms are still too unstable. More
modern methods implement a Predictor-Corrector approach [Mikkelsen et al. 2018,
Trellakis & Ravaioli 1999, Curatola & Iannaccone 2003, Ren et al. 2003]. It con-
sists of finding an approximation to SCQE problem - called “predictor”; that can be
solved using root-finding or mixing algorithms. Then we solve the predictor, take
its solution and use it to update the predictor. The problem we use to correct the
predictor is called “corrector”. Therefore a simple Predictor-Corrector scheme is to
solve the predictor, use its solution as input to the corrector, and then from the
corrector output update the predictor.

For the SCQE problem the predictor takes the form of a Non Linear Helmholtz
(NLH) equation [Trellakis & Ravaioli 1999, Curatola & Iannaccone 2003,
Niquet et al. 2014]:

∇.(ε(~r)∇U(~r)) =

∫ µ(~r)

−∞
ρ(~r,E)dE (1.12)

with

µ(~r)± eU(~r) = EF (1.13)

and where ρ(~r,E) is calculated by solving Eq.(1.9) and is now independent of
U(~r). Often we use the Thomas-Fermi (TF) approximation to calculate the LDOS

2It is unfortunate that this is not standard practice
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on the right hand side of the NLH. In the TF approximation we calculate the LDOS
for a potential U that is not necessarily the solution of the NLH problem, but close
enough to give a reasonable LDOS. For instance, one generally uses the bulk LDOS,
i.e. U = 0. This transforms the SCQE problem into:

∇.(ε(~r)∇U(~r)) =

∫ µ(~r)

−∞
ρ(E)dE (1.14)

with ρ(E) independent of U(~r).
Depending on the physics we seek to capture, solving the SCQE at the

TF approximation gives a solution not far from the full SCQE problem. See
[Winkler et al. 2019, Escribano et al. 2019], notably [Mikkelsen et al. 2018] for a
good comparison of the potential obtained within the TF approximation and a full
SCQE calculation for a Semiconductor-Superconductor nanowire device. Another
example is our study of the QH edge channel spacing in Graphene PN junctions
[Flór et al. 2022]. The calculations we performed under TF were in good agreement
with the experimental measurements. See Chapter 5 for more detail.

To finish formulating the Predictor-Corrector problem, we define the corrector
as the Schrödinger equation. Therefore in a Predictor-Corrector scheme for the
SCQE, we solve Eq.(4.3) for an initial n(~r), then from its solution U(~r) we use the
Schrödinger equation to update n(~r) - and then iterate. For instance, this is the
algorithm implemented by the NextNano commercial software [Birner et al. 2007,
Trellakis et al. 1997].

The main limitation of the Predictor-Corrector approach is the stability of the
NLH equation solver (the predictor). When the LDOS shows rapid variations in
energy, the ILDOS becomes too non-linear and current approaches tend to fail.
Generally the most advanced methods to solve the predictor are gradient based root-
finding schemes. However, they do not handle well functions with cusps. Cusps are
discontinuities at the derivative of the function. Those discontinuities can destabilize
gradient based methods. In fact, in extreme cases it can even cause them to diverge.
One good example is the ILDOS for the QHE. At zero temperature the ILDOS
consists of a series of cusps stacked together. In [Armagnat et al. 2019] they use
a simple 1D toy model to illustrate how fast a SCQE problem formulated using
the QHE ILDOS diverges. It is possible to smooth out an ILDOS with cusps. For
instance one can use an artificial temperature. However, this comes with the cost
of degrading the energy resolution of the simulations. During my thesis we have
developed a simple algorithm that isolates the cusps and treats them with care.
The algorithm is called Pure Electrostatic Self consistent Approximation (PESCA),
we explain it in detail in Chapter 2.

The PESCA algorithm was inspired by my predecessor’s work, Pacome Armag-
nat [Armagnat 2019]. During his thesis he managed to pinpoint when the estab-
lished algorithms, such as the one of NextNano, failed to converged. After much
suffering he figured the origin of the instabilities in the self-consistent iterations
were the regions in the simulation where the charge density reached zero. The algo-
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rithm P.Armagnat developed during his thesis [Armagnat et al. 2019] is already an
improvement over the traditional Predictor-Corrector approach.

1.3 Modeling the electrostatic environment of semicon-
ductor based nanoelectronic devices

Predicting the field effect a gate has on a conducting region placed tens to hundreds
of nm into a semiconductor heterostructure is not a simple task. The materials sci-
ence behind semiconducting devices is incredibly rich. The workfunction difference
at the gate - heterostructure interfaces and the band offset at the semiconductor
- semiconductor interfaces modify the band diagram of the device. The dopants
dynamics and chemistry is rich, e.g. dopants can interact with each other forming
new energy levels in the band diagram. And on top of all that, defects permeate
the device adding unintended energy states in the band gap. The objective of this
thesis is not to perform a model capturing each detail of the device materials sci-
ence, it is rather to understand how - as a whole, they affect the field effect of the
gates. To this goal we formulate two questions. First is how the device materials
science contribute to the potential we fix at the gates. Second is how this potential
is going to be screened by the charges (intended and unintended) everywhere in the
structure.

In searching for an answer to these two questions we learn how each individ-
ual microscopic effect contributes to the behavior of the device. Nonetheless, in
itself each effect is complex enough [Das Sarma & Hwang 2014, Wang et al. 2013,
Das Sarma & Stern 1985, MacLeod et al. 2009] such that a model capturing their
behavior as a unique ensemble should not search to capture their individual behavior
to perfection. In fact - a so to say - model with perfect fidelity to each microscopic
effect individually, would have so many fitting parameters that it could be used to
describe virtually anything. Therefore loosing any sort of predictive quality. To fix
this we need an intermediary description to their behavior that satisfies the level
of approximation we require and minimizes the fitting parameters. Preferably one
that removes any fitting parameters and replaces them by experimentally tuned
parameters. This raises a third question, how the screening of the gate potential
can be measured experimentally. That is, what type of experiments can help us de-
velop the appropriate level of modeling required for predicting quantum transport
measurements ?

In this section I shall first go through the main microscopic effects taking place in
a semiconducting device. The goal here is to have a correct phenomenological view
of the physics taking place. What happens, where it happens, and how does it affect
the gate field effect. Then I shall discuss how they can be measured experimentally.
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1.3.1 Microscopic description of semiconducting nanoelectronic
devices

A typical nanoelectronic device is a quantum point contact (QPC) fabricated over
an AlGaAs/GaAs heterojunction. We shall use it as a case study. As we define
the microscopic effects taking place in a semiconducting device, we shall locate it
on the QPC. Figure 1.3 shows an schematic of the QPC. The small schematics
on the top left shows the entire device. The enlarged schematics on the lower right
gives a detailed view of the different effects taking place at the device. In grey are
the undoped dielectrics, green the doped dielectric layer, red the 2DEG formed at
the GaAs layer, wine and and gold the metallic gates. The simplest model for the
device of Figure 1.3 is one where the charge density at the dopants is constant and
the voltage set at the gates is the value fixed during experiments. At the 2DEG
the charge density is calculated by solving the SCQE problem. Everywhere else in
the structure the charge density is set to zero. In what follows we explain how this
reference - minimalistic - model differs from a real device.

1.3.1.1 Workfunction difference

A materials workfunction is the smallest energy required to move an electron from
the materials surface to infinity. When stacking materials with different workfunc-
tion electrons will move from the highest workfunction material to the lowest until
equilibrium is reached. This induces an electrostatic potential at the interface that
bends the valence and conduction bands.

For a metal-insulator-semiconductor junction this represents an additional po-
tential at the gates. In nanoelectronics we call flat band voltage the gate voltage
applied at the gate to compensate for this additional potential. In practice, we ac-
count for it as an offset to the gate voltage used in the simulations. For the QPC
example of Figure 1.3 this implies a voltage offset must be added to the side and
QPC gates in gold and wine respectively. The actual values of the voltage offset
depend strongly on the interface physics taking place. It is something that should
be calibrated experimentally (unless you wanna do a PhD in interface physics).

For a semiconductor-semiconductor interface the band bending can cause the
accumulation of charges in e.g. a potential well. Generally the accumulation region
is dynamically filled with the gate voltage, hence a proper treatment its behav-
ior requires solving the SCQE problem. At the QPC heterostructure - beyond the
accumulation region where the 2DEG is formed, there is also one located at the
GaAs/AlGaAs interface between the gates and the dopants. Recent measurements
made by Boris Brun within the Lateqs group [Brun & Fouad Kalo 2023] seem to
indicate that the charges accumulated at the GaAs/AlGaAs interface might mea-
surably affect their device behavior.
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1.3.1.2 Dopant chemistry and dynamics

To a perfect semiconducting material, we can add impurity atoms. Intentional
impurities are called dopants. These dopants will add energy levels in the band gap.
They are called donors if close to the conduction band and acceptors if close to the
valence band. The energy levels added to the gap are characterized by a density n0

and activation energy EA. The activation energy is the energy required for a dopant
to be ionized, i.e. for an electron to go from a donor level to the conduction band
or from the valence band to an acceptor level.

With regards to the dopants dynamics, lets at first assume n0 and EA to be
known and constant under temperature and potential energy variations. Under this
considerations, the dopants dynamics are controlled by the EA parameter. The ratio
between EA and the thermal energy dictate how many dopants will be ionized. If EA
is small compared to the thermal energy, then all dopants are ionized. If EA is on the
order of the thermal energy then the dopants are only partially ionized. If EA is large
compared to the thermal energy, then the dopants are frozen. When the dopants are
fully ionized the dopant layer behaves as a charged layer. However, if the dopants
are partially ionized, the number of ionized dopants change with, e.g. gate voltage
[Buks et al. 1994b, Buks et al. 1994a]. A correct treatment of this behavior requires
solving the SCQE problem at the dopant layer. Furthermore, if the charge density
at the dopant layer can change, then it can screen the field effect of the gate. At high
and intermediary temperatures, the dopants are generally fully or partially ionized,
i.e. they are mobile. For the low temperatures of quantum transport measurements
the dopants are generally frozen. The variation of dopant dynamics as a function of
temperature can lead to a phenomena known as bias cooling. There the gate voltage
required to deplete the charge carriers at low temperatures depend on the voltage
applied at the gates during cooldown [Buks et al. 1994a, Buks et al. 1994b]. This is
an important effect to account for when studying quantum nanoelectronic devices,
we shall come back to it in Chapter 6 when discussing the predictive modeling of
quantum point contacts.

With regards to the dopants chemistry, this will play a role on the actual n0 and
EA values of the added energy levels. First, during sample fabrication the doping
impurities can move, causing n0 to vary in space and deviate from the intended
value, e.g. due to thermal diffusion. Second, EA is controlled by the energy position
in the band gap of the doping energy state. This is related to the configuration
a doping impurity occupies in the semiconductor crystalline structure. First, a
doping impurity will not necessarily have a single stable configuration. Hence for a
single type of doping impurity one can have different EA values. And even if there
was a single configuration, “the” stable configuration is affected by modifications
of the crystalline structure, e.g. strain, alloy composition. It also follows that
other dopants, which shuffle the original atomic atoms around, will interact to form
additional dopant configurations. Lets take as example the doped AlGaAs layer of
Figure 1.3. When doped with Si atoms [Chand et al. 1984], the AlGaAs crystalline
structure will generate what we call a d0 donor level. It is energetically interesting
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for two d0 levels to react and form a negatively charged bound state called DX−

center. We refer to [Chadi & Chang 1989] for a detailed description of DX centers.
The consequence of this that the actual behavior of the donor layer will be a result of
not only the gate voltage and temperature, but also correlation between the DX−

centers and d0 donor levels [Buks et al. 1994a]. In conclusion, detailed modeling
of the dopant chemistry is complex. Fortunately, we do not need to perform such
modeling to capture the dopants chemistry effect on quantum transport, see Chapter
6.

1.3.1.3 Charged defects

Lets move on to the defects found in bulk semiconductors and at the interfaces be-
tween two different materials. To the level of detail of this introduction we classify
them into two types: unintended impurities and bulk crystalline defects. The un-
intended impurities are atoms (accidentally) added during growth, processing (e.g.
doping) and due to reaction with external environment (e.g. air). They behave in
the same way as a doping impurity. Only their chemistry is less understood. The
crystalline defects can be located at the bulk (e.g. dislocations due to growth) but
are generally located at the interfaces. For instance, at the surface of a semicon-
ductor (interface with e.g. air) one can find dangling bonds [Atalla et al. 1959] that
capture charge and cause scattering [Wang et al. 2013]. At the interface between
two materials two relevant defects are interface roughness and charged traps, e.g.
[Martinez & Niquet 2022]. Indeed, at the interface the different lattice spacings will
induce a mechanical strain. This mechanical strain will at best distort the atomic
lattice and at worst break the atomic bonds. Lattice defects change locally the
potential background on which the electrons live. By themselves this change can
create energy states in the band gap that are both localized in energy and space.
The change in the potential landscape can also attract impurities, which themselves
carry additional energy states. This leads, for instance, to a concentration of im-
purities at the interfaces or at the grain boundaries in polycrystalline materials.
Anyhow, to the level of modeling regarding this thesis, we only consider the defects
to add available energy levels in the band gap. That is, we do not introduce in the
model neutral defects such as interface roughness. The charged defects (either in the
bulk or at the interface) are characterized by a density and activation energy, e.g.
[Rassekh et al. 2019]. Their dynamics follow the same discussion as for the dopant
impurities. Applied to the QPC device of Figure 1.3, the main source of charged
defects is the Air/GaAs interface, i.e. surface states [Wang et al. 2013]. A second
meaningful source is the bulk GaAs wafer, e.g. background impurities added during
growth [MacLeod et al. 2009, Shayegan et al. 1988a, Pfeiffer et al. 1989].

One special consideration must be added to the interface defects at the gate/in-
sulator interface, e.g. Metal/GaAs interfaces in Figure 1.3. If the defect distribution
is homogeneous at the gate/insulator interface, then their effect is to induce a poten-
tial offset. However this is rarely true and their usually inhomogeneous distribution
breaks the equipotential lines formed at the gate side of the interface. When the
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gate is metallic the high DOS implies a fast stabilization of the electric field lines.
Hence when simulating a metallic gate, e.g. gold and wine regions in Figure 1.3,
the true equipotential assumption is good.

1.3.1.4 Summary

The difference in workfunction between the gate and semiconductor causes a voltage
offset. The defects at the interface will both cause a voltage offset and break the
equipotential lines at the gate interface. The accumulation region at the interfaces,
charged defects (bulk and interface) and the complicated dopant dynamics / chem-
istry will alter the field effect of the gate over the active region of the device. The
enlarged schematics of Figure 1.3 contains all relevant microscopic effects for the
AlGaAs/GaAs QPC.

Figure 1.3: Relevant defects in a AlGaAs/GaAs heterostructure. Inspired from
Fig.1 of [Armagnat et al. 2019]

1.3.2 Experimental signatures

The workfunction difference and charges located near the gate cause - for the most
part - a shift of the entire quantum transport curve. For the devices studied in
this thesis the gates are a few hundreds of nm away from the active region. Hence
any inhomogeneity in the electric field lines at the gate interface are smoothed
out. Adding a voltage offset parameter - calibrated from experimental data - seems
enough to capture the physics at the gate interface.
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Regarding the dopant behavior and other unintended and intended charges in
the structure, it is a bit more complicated. Their effect will be to screen the field
effect of the gate and to add disorder to the electric potential at the device active
region. The screening effect can be observed by studying the conductance versus gate
voltage characteristics. The voltages for which the conductance vanishes or presents
a cusp are called pinch-off voltages. The pinch off values are directly correlated to
the amount of screening the gate suffers from the charge everywhere in the device.
Hence, up to a quite good approximation, understanding the charge distribution in
a device amounts to predicting its pinch-off voltages. This is essentially what we do
in Chapter 6.

The effect of dopant disorder and unintended charges can be summed up as a
disordered potential Ud(~r) defined at the device active region. Lets take as example
the the 2DEG in Figure 1.3. Assume we have a model that calculates Ud(~r),
by solving e.g. the SCQE problem at the 2DEG with a disordered dopant charge
distribution. Then we model the 2DEG with a Hamiltonian for a free electron
under the effective mass approximation, noted H0, to which we add the disordered
potential Ud(~r) s.t. H(~r) = H0 + Ud(~r).

First, spatial variations of Ud(~r) are followed by spatial variations of the charge
density in the active region, e.g. the 2DEG. Here we can introduce two length scales,
the distance between two identical nanoelectronic devices in the same wafer (or die)
and the length of the device active region. If the spatial variations of the charge
density are on the order of the distance between two devices, then the quantum
transport measurements for a device with the same design will be sample-dependant.
This effect has been observed experimentally by the QPC fabricated by C.Bäuerle
we study in Chapter 6. If the spatial variations of the charge density is on the
order of the active region, then lower density regions can be depleted before higher
density ones. In Chapter 6 (section 6.5.3) we use a percolation model to describe how
transport can be affected by such variations. Other recent experimental studies on
the spatial variation of the charge density are [Chung et al. 2019, Qian et al. 2017,
Zhou et al. 2015].

Second, a disordered potential will cause the electrons to scatter. We focus on
systems whose propagating states coherence length is larger then the active region of
the device. Hence we can neglect inelastic scattering. It is well known that time in-
dependent fluctuations of Ud(~r) generate measurable sample dependant fluctuations
on coherent quantum transport. For instance, spatial fluctuations of the poten-
tial have been shown to generate sample dependant magnetoresistance and con-
ductance fluctuations in mesoscopic wires [Stone 1985, Al’tshuler & Spivak 1985,
Lee & Stone 1985]. Another interesting work is that of [Ralls et al. 1984]. They
show that changing the position of a single impurity can induce conductance os-
cillations of the order of e2/~. Lastly, [Topinka et al. 2001] observed branching of
the electronic flow after it goes through a constriction, in their experiment a QPC.
This branching is due to disorder in the dopant layer of their device. The elas-
tic scattering due to disorder in the potential can focus the electronic flow in a
2DEG to certain areas of the sample [Fratus et al. 2019]. In Chapter 7 we use neu-
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ral networks to reconstruct the disorder potential in a 2DEG from scanning gate
microscopy measurements [Percebois & Weinmann 2021, Jura et al. 2009].

1.4 Purpose of this thesis and summary of the main re-
sults

The electrostatic energy is the largest in the system, the energy associated with the
quantum effect we actually seek to understand is only a fluctuation in comparison.
Nature always seems to minimize energy, and in the same way as we would not ap-
proach any optimization problem, it doesn’t make sense to attempt to understand
Nature by only minimizing its fluctuations. In Section 1.1 we have illustrated this
argument through the QHE, and have shown the importance of correctly under-
standing electrostatics (the sea) to correctly understand the quantum effects (the
waves). After, in Section 1.2, we have formulated the SCQE problem, which upon
solving couples the waves to the sea they lie upon. As we have seen, this is not an
easy problem to resolve.

The difficulty in solving the SCQE problem stems from: (i) potentially
strong non-linearities due to quantum mechanics and (ii) non-locality of the
electrostatic problem (long range electrostatic interaction). From my prede-
cessor work, P.Armagnat, we took mainly two conclusions [Armagnat 2019,
Armagnat et al. 2019]. The first regards difficulty (i), the SCQE problem becomes
a lot more manageable when approximated as the NLH equation. Although he did
not develop a method to actually solve the NLH, he did figure out an approxima-
tion allowing us to simplify the SCQE into a NLH, called the quantum adiabatic
approximation - a generalization of the TF approximation. The second regards dif-
ficulty (ii), he attempted to approximate the non-local electrostatic problem into a
more locally defined one. Although he was successful, the algorithm was not stable.
The main message is that for one to develop a robust algorithm to solve the SCQE
problem, one must deal with the non-local aspect of the electrostatic interaction
without cutting corners.

The main purpose of this thesis is to solve the SCQE problem by first approx-
imating it into a NLH equation and then solving the latter equation exactly. That
is, without smoothing out the non-linearities in the ILDOS - as it is often done
(e.g. increase temperature); and by accounting for the spatial fluctuations of the
potential when calculating the local DOS - which are often ignored. This brings us
to the first main result of this thesis: solving the NLH problem. To that avail we
have :

• Introduced the PESCA. It removes the quantum aspect of the problem al-
together by simplifying the semiconductor as a metal - the ILDOS has two
branches, one where its slope (the DOS) is zero, and the other is infinity.
What PESCA taught us is how to treat the cusp of the ILDOS - the discon-
tinuity in the DOS. In developing PESCA we learned to isolate the cusp of
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the ILDOS, and hence how to approach the non-linearities of any ILDOS in a
simple and efficient way. One simply needs to keep track of the DOS and not
(only) the ILDOS (the charge). It is the DOS that contains the information a
NLH solver requires for it to converge, not the charge;

• We have implemented an iterative algorithm to solve the NLH problem that,
at each iteration, takes as input the DOS. By having as information the
dependence of the charge on the chemical potential, our algorithm knows where
the cusps are located in the ILDOS. We can then isolate them and treat them
accordingly;

• To be able to take as input the DOS, we have developed a Linear Helmholtz
(LH) equation solver - the PESCADO software (see Eq.(3.15) for a definition
of the LH). PESCADO is an open source python software. It solves the LH
equation for 1D, 2D and 3D systems. To define the nanoelectronic device we
simulate we have developed a geometrical engine and to discretize it a memory
efficient and adaptive finite volume mesher.

Since the subject of this thesis is the predictive modeling of quantum devices,
we want to predict the field effect of the gate on the active quantum region of the
device. Naively we would think that in order to solve such problem we are required to
model in detail the charges in the device. In the third section of this Introduction,
section 1.3.1, I have gone through where the charges are in the device and how
they behave. The lesson is that the complexity of the phenomena taking place
means we should not seek to model precisely their behavior. To discover with which
precision we should model the charges, we have worked closely with Christopher
Bäuerle’s experimental group at Institut Néeel. They have fabricated 110 quantum
point contacts (QPC) of 48 different gate designs [Chatzikyriakou et al. 2022]. For
each device they have measured the conductance versus gate voltage characteristics.
Their QPCs are built over the 2DEG located at a AlGaAs/GaAs heterostructure.
By using their data we have concluded that :

• A minimal model should not attempt to predict the charge distribution at the
2DEG along the plane of propagation (we do not care about the charge profile
perpendicular to the 2DEG plane). It should instead use the experimental
value for the charge distribution as a input parameter. We have developed
such model for Chris Bäuerle’s QPCs. Using a single global value for the
charge distribution, we have been able to predict the 2DEG depletion voltages
of the QPCs with a precision of 5− 10%. The limiting factor of our accuracy
seems to be spatial variations of the charge density.

1.5 Outline of this thesis

This thesis is split into two parts. In the first we discuss the technical developments
(Chapter 2-4) to solve the SCQE problem. In the second we talk about the modeling
of nanoelectronic devices through solving the SCQE problem (Chapter 5-7).



22 Chapter 1. Introduction

In Chapters 2 and 3 we explain three new algorithms we have developed:

• In Chapter 2 we introduce the PESCA. It is the simplest level of modeling
required to account for electrostatic screening and partial carrier depletion in
a semiconductor device. We show that the validity of PESCA depends on
the smallness of the κ = Cg/Cq parameter, with Cg and Cq the geometrical
and quantum capacitance respectively. We apply PESCA to a few common
2DEG devices, where κ is on the order of few percent. We show that it can
quantitatively estimate the position in space where the 2DEG charge depletes
as a function of gate voltage. We also extend the PESCA to the integer
QHE, and obtain results in good agreement to those of [Armagnat et al. 2019].
Section 2.2 gives a detailed explanation of the PESCA algorithm;

• In Chapter 3 we explain two algorithms we have developed to solve the NLH
equation: the piecewise Newton-Raphson algorithm and the piecewise linear
helmholtz algorithm. We demonstrate the convergence of the second method
within a finite number of iterations. Section 3.4.2 explains the two algorithms.

Then,

• In Chapter 4 we give a detailed description the PESCADO software. We
illustrate the capabilities of the software by solving the SCQE problem for a
constriction in a 2DEG (3D model) - see Figures 4.3 and 4.4. Then, we explain
in detail (implementation details and code examples) the geometrical engine,
mesher and linear helmholtz equation solver implemented in PESCADO .
Lastly we explain how to solve the NLH with PESCADO using either of the
two algorithms described in Chapter 3.

Regarding the second part of this Thesis, it is the fruit of collaborations with dif-
ferent groups, made possible through the technical developments of the first part. In
what follows I will summarize the main results and indicate which sections contains
new results :

• In Chapter 5 we calculate the QH edge channel separation in Graphene PN
junctions. We study the experiments of [Wei et al. 2017, Jo et al. 2021] with
a 2D model were we solve the SCQE problem under a Generalized TF approx-
imation. The model has no fitting parameters. The main lesson learned from
our simulations is that the edge separation is controlled by the electrostatics
of the device. This is in contrast to the explanation given by [Wei et al. 2017],
where they considered the Exchange energy to control the separation. This
conclusion can already be reached from the qualitative energetic argument of
CSG we have described earlier in this Introduction, see Section 1.1. In Chap-
ter 5 we went a step further and have shown quantitatively for it to be the
case. In fact, we show the separation value to be independent of the exchange
energy. For [Jo et al. 2021] our results match the experimental data with an
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error smaller than 10%. For [Wei et al. 2017] the difference is on the order
of 20%. Our results have been published as [Flór et al. 2022]. Sections 5.1
and 5.2 introduce the experiments. Sections 5.3, 5.4 and 5.5 explain the main
results of the chapter;

• In Chapter 6 we have developed a minimal model free of fitting parameters
capturing the electrostatics of quantum point contacts. We have compared
our model to 110 experimental devices of 48 different designs fabricated and
measured by Christopher Bäuerle’s group at Institute Néel. We calculated
the pinch-off voltages with an accuracy of 5-10%. The factor limiting the
precision of our model seems to be slow spatial variations of the electronic
density at the 2DEG. We give several arguments in our favor, notably ex-
perimental data that points out towards charge fluctuations on the order of
±5-10%. We propose a percolation model to account for the effect of charge
density fluctuations on the pinch-off values. Our results have been published
as [Chatzikyriakou et al. 2022]. A summary of the main results is given in
Section 6.1 and for a detailed description see Section 6.4. Sections 6.2 and
6.3 give the technical details and Section 6.5 gives a critical discussion of the
main results.;

• In Chapter 7 we use a neural network and PESCADO to reconstruct the poten-
tial disorder (due to dopant disorder) from Scanning Gate Microscopy (SGM)
measurements. We have used the model developed in Chapter 6, PESCADO
and Kwant [Groth et al. 2014] to generate a large numerical dataset of SGM
data. Then G.Percebois and D.Weinmann at Strasbourg developed and
trained a neural network into reconstructing the disorder potential from
the SGM data. We have then used the reconstructed disorder potential to
calculate a new set of SGM data and we compared it to the experimen-
tal results of [Iordanescu et al. 2020]. Our results have been published as
[Percebois et al. 2023]. Section 7.5 shows the main results. Section 7.1 gives
an introduction to SGM. Sections 7.2, 7.3 and 7.4 contain the technical details
of the simulations.





Part I

Technical development





Chapter 2

The pure electrostatic
self-consistent approximation

In quantum nanoelectronic devices, to a large extend it is the electrostatic energy
that determines the charge distribution inside a device. In this chapter we intro-
duce the pure electrostatic self-consistent approximation PESCA. PESCA provides
the minimum level at which a semiconductor must be included in an electrostatic
calculation to properly account for both screening and partial depletion due to e.g.
field effect. We show that PESCA captures the salient features of interest in actual
devices within a accuracy better than ∼ 1% in many situations.

In Section 2.1 we introduce the small parameter κ = Cg/Cq, the ratio of the
geometrical capacitance to the quantum capacitance. The parameter κ is what
controls the validity of the PESCA. Then, in Section 2.2 we formulate PESCA
and the algorithm we use to solve it. In Section 2.3 we apply PESCA to calcu-
late the pinch-off phase diagrams in the gate voltages space for a split quantum
wire defined in a GaAs/GaAlAs heterostructure. Notably, in Section 2.4 we show
how to use experimental pinch-off diagrams to extract important information char-
acterizing the device measured, such as the dopant concentration. Then, in Sec-
tion 2.5 we extend the PESCA algorithm to solve the SCQE problem when the
ILDOS is a step like function. We use as example the integer quantum hall effect
ILDOS. Finally, we compare our calculation to the Thomas-Fermi results obtained
by [Armagnat et al. 2019].

2.1 The small parameter of the SCQE problem

To get started, let’s consider a SCQE problem simple enough to be solved in a few
lines of algebra. We consider an infinite 2DEG, such as the one found in GaAS/-
GaAlAs heterostructures. The 2DEG is situated at a distance d from the surface,
where we place a metallic electrode. A voltage Vg is applied between the metallic
electrode and the 2DEG with a voltage source. Setting the zero of the energy in
the metallic gate, the gate voltage sets the electro-chemical potential in the 2DEG
µ = eVg. In the effective mass approximation, the density of states in the 2DEG is
a constant ρ = m∗/(π~2). The solution of the quantum part of the problem reduces
to a simple spatially independent ILDOS,

n = ρ(eVg − eU) (2.1)
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where the electric potential U in the the 2DEG sets the position of the bottom of
the conduction band. The electrostatic problem reduces to a simple planar capacitor,

n =
ε

ed
U (2.2)

Introducing the geometrical capacitance (per unit surface) Cg = ε/d and the
quantum capacitance Cq = e2ρ one arrives at,

n =
1

1 + κ
CgVg with κ =

Cg
Cq

(2.3)

For most semiconducting systems, the dimensionless parameter κ is actually very
small κ� 1. Therefore from Eq.(2.3) we conclude that to good approximation the
density in the 2DEG is given by n ≈ CgVg/e, i.e the density in the 2DEG is entirely
controlled by the electrostatics.

Table 2.1 shows an estimate of κ in a few common situations (GaAs and Silicon
devices). We find that κ ≈ 1% is the common situation. This means the pure
electrostatic approximation, κ = 0 limit, makes an error of ≈ 1%. The PESCA that
we will develop in this article is essentially the generalization of the κ = 0 limit to
a spatially dependent problem. Like the κ = 0, the PESCA result is independent of
the details of the quantum problem, e.g. the effective mass of the material, and as
such clarifies how these (geometrical and quantum) parameters affect the physics.

Semi. m∗

me
ε
ε0

Deg. d Cq Cg κ

[nm] [mF/m2] [mF/m2]
GaAs (e) 0.067 12.9 2 100. 89.7 1.14 1.3%
Si (e) 0.2 11.7 4 20 535.4 5.18 0.97%
Si (e) 0.2 11.7 4 5 535.4 20.7 3.9%
Si (h) 0.49 11.7 2 20 655.9 5.18 0.79%

Table 2.1: Typical values of the κ parameter for a few common 2DEG. Deg. is
the degeneracy (2 for spin, 4 for spin and valleys in the silicon conduction band). e
stands for electron gas and h for holes.

2.2 The Pure Electrostatic Self-Consistent Approxima-
tion: PESCA

Before we introduce the PESCA, let’s define a concrete electrostatic problem that
will be used for illustrations. We consider an infinite split quantum wire defined in
a GaAs/GaAlAs 2DEG. A side view of the system is shown in Fig.2.1. The de-
vice is directly inspired by the experiments [Bautze et al. 2014, Roussely et al. 2018,
Bäuerle et al. 2018] on split wires aiming at demonstrating flying qubits. Using the
top side electrodes, one can deplete the gas underneath and define a wire. Using
the central electrode, one can further split this wire into two, potentially leaving
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some tunneling coupling between the two sub-wires. Besides the 2DEG, the model
contains positive dopants of concentration ndop [m−3] in the green region and sur-
face charges of concentration nsc [m−2] at the free surface of the stack. The metallic
gate correspond to electric equipotentials at voltage Vside and Vmiddle respectively.
The dimensions of the different layers are, from top to bottom : 7.5 nm (GaAs cap
layer), 88 nm (doped AlGaAs) and 49.3 nm (AlGaAs). The 2DEG is considered
infinitely small on ~z.

Figure 2.1: Side view of the split quantum wire system studied in this chapter.
Various colors correspond to different regions. The active quantum region containing
the 2DEG is shown in gray and is 10nm thick. The system is infinite along the y
axis. The orange and yellow regions correspond to GaAs and AlGaAs respectively.
The green region corresponds to the doped AlGaAs layer. A finite density of surface
charges appears at the GaAs/vacuum upper interface and is shown in violet. Metallic
electrodes are shown in brown and correspond to equipotential. The electron density
at special points xside = −585nm, xwire = −225nm and xmiddle = 0nm are called
nside, nwire and nmiddle respectively. We use different scales along the x and z

directions (See text).
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2.2.1 Formulation of PESCA

Figure 2.2: Example of ILDOS. a): ILDOS obtained from a quantum calculation.
b) ILDOS corresponding to Thomas-Fermi for a 2DEG without magnetic field. c)
ILDOS in the PESCA approximation. The latter is independent of the material.

Fig.2.2 (a) shows an example of the ILDOS calculated by solving Eq.(1.8) and
Eq.(1.10) explicitly for a finite width 2DEG in the effective mass approximation.
The curve is approximately linear above the bottom of the band with occasional
small √µ kinks due to the opening of a conducting channel. It also has small varia-
tions between different positions x in the 2DEG. It should be noted however, that
the biggest source of non-linearity is the large kink at the bottom of the 2DEG
conduction band µ = 0. Fig.2.2 (b) shows the ILDOS in the Thomas-Fermi approx-
imation. Instead of solving the quantum problem for a finite system, one uses the
bulk density of states calculated for a translation invariant 2DEG. Since the density
of states of the infinite 2DEG is constant, the Thomas-Fermi ILDOS is linear for
µ > 0, with a slope equal to the averaged one of Fig.2.2 (a).

The PESCA approximation amounts to taking the slope of the ILDOS to be
infinite. Therefore under PESCA the self-consistent problem is defined by the set
of equations :

∇.(ε(~r)∇U(~r)) = end(~r)− en(~r, µ(~r)), (2.4)

µ(~r) = EF + eU(~r), (2.5)

where nd(~r) is any constant charge in the system, e.g. dopants, and the ILDOS,
only non-zero at the 2DEG for the current example, writes :

n(µ) =

{∞ ∀ µ > 0 eV

0 ∀ µ ≤ 0 eV
(2.6)

i.e. the ILDOS is made of a horizontal branch n(µ < 0) = 0 and a vertical branch
µ(n > 0) =∞, as shown in Fig.2.2 (c) (we remove the dependance on ~r for clarity).



2.2. The Pure Electrostatic Self-Consistent Approximation: PESCA 31

For a bulk system it is equivalent to setting the small parameter κ = 0. Keeping
only the vertical branch µ = 0 would correspond to a good metal with a density of
states high enough for the conductor to always remain an equipotential. Keeping
only the horizontal branch would correspond to a fully depleted 2DEG. By keeping
both branches, one allows for partially depleted devices, i.e. for a proper treatment
of field-effect transistors. In particular, PESCA can predict the “pinch-off” phase
diagrams, i.e. the values of the gate voltages where the gas is depleted underneath
the side gates or the middle gates in Fig.2.1. Solving the PESCA problem amounts
to finding which part of the 2DEG is on the horizontal/vertical branch and solve
the associated electrostatic problem.

As argued in the preceding section, the PESCA is expected to be quantitative
(within a few percent) for the calculation of thermodynamic quantities such as the
density. Its validity for more subtle observables such as the conductance remains to
be asserted. The relevance of PESCA lies in several features. (i) First, as we shall
see, PESCA can be calculated very easily, at a much smaller computational cost
than the full treatment of the SCQE problem. (ii) PESCA can help solving SCQE
problems more accurately. For instance, suppose one wants to solve the SCQE prob-
lem of our split wire, c.f Fig.2.1, in a regime where the 2DEG is depleted below the
side gates so that the wire is formed. One could treat the 2DEG inside the wire
region |x| < |xside| by solving the corresponding quantum problem. However, it is
inefficient to treat the 2DEG outside of the wire region in the same way, as it would
be very costly computationally. It is not necessary to take into account that part of
the 2DEG as it partially screens the effect of the gates. Treating this outside region
|x| > |xside| within PESCA would provide a precise and efficient compromise with
an automatic calculation of the position of the boundary of the wire. (iii) PESCA
can quantitatively (i.e. within a few percent) predict the voltages needed to deplete
the 2DEG in different regions (e.g. underneath the side or middle gates). With
these depletion voltages we construct what we call "Pinch-off" phase diagrams, c.f.
Fig.2.5. Pinch-off phase diagrams can be easily measured experimentally. They de-
pend on the geometry of the device as well as on the charge distribution in the stack.
As such, PESCA calculations may be very valuable to reconstruct the charge dis-
tribution of experimental devices and develop precise electrostatic models. Finding
what is the correct distribution of e.g. ionized donors or surface charges, is indeed
a prerequisite for predictive simulations of nanoelectronic devices, such as quantum
point contacts [Chatzikyriakou et al. 2022] or the split wire devices studied in this
chapter [Bautze et al. 2014]. (iv) PESCA forms the basis onto which more precise
algorithms for treating Thomas-Fermi problems or SCQE problems will be built,
c.f. Chapter 3.

2.2.2 PESCA algorithm

To solve the PESCA problem, one needs to extend traditional Poisson equation
solvers s.t they allow one to dynamically update the status of the 2DEG so that
some parts of it belong to the horizontal branch (depleted) while the rest belongs
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Figure 2.3: Illustration of the PESCA algorithm. For each iteration, the upper
panel shows the D/N partitioning (black for D cells, N for yellow cells), the middle
panel shows the potential U(x) for this partitioning (blue curve) and the lower panel
shows the corresponding density profile n(x) (red curve). The results shown here
correspond to a full Dirichlet initialization. For this example, Vside = −0.52V and
Vmid = −0.88V .
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to the vertical branch of the ILDOS (not depleted).
Following [Armagnat et al. 2019] we first discretize the Poisson equation into

a finite volume discrete problem where the system is divided in to small cells i
of finite volume. Other discretization schemes such as finite differences or finite
elements could be use as well. One arrives at,∑

j

CijUj = Qi. (2.7)

where Cij is a discretized version of the Laplacian operator, Ui the electric
potential at the center of cell i and Qi the number of electrons inside the cell :

Qi = −
∫
Ci

d~r[n(~r)− nd(~r)] (2.8)

A detailed derivation of the Cij terms is shown in Chapter 3, see Section 3.1.
Cells that belong to the 2DEG can be sorted out in two categories. For those

belonging to the horizontal part of the ILDOS, we know the density (ni = 0) and
want to calculate the potential Ui. We call these cells the Neumann cells (N ). The
cells on the vertical branch of the ILDOS are of a different type that we call Dirichlet
(D). In these cells we know the electric potential Ui = 0 and want to calculate the
density ni. Writing Eq.(2.7) in a block form for the Dirichlet (D) and Neumann
(N ) blocks, it reads [

CNN CND
CDN CDD

]
·
[
UN
UD

]
=

[
QN
QD

]
. (2.9)

Rewriting the above equation so that the known inputs are on the right hand
side and the unknowns on the left hand side, we get a new linear problem that can
be solved using standard routines for solving linear problem with sparse matrices,[

CNN 0

CDN −1

]
·
[
UN
QD

]
=

[
1 −CND
0 −CDD

]
·
[
QN
UD

]
. (2.10)

The algorithm for solving PESCA solves Eq.(2.10) iteratively as follows. (I)
First, we partition the 2DEG between N and D cells. For instance, one may set
all the cells to be D, which assumes the 2DEG is nowhere depleted. (II) Second,
we solve Eq.(2.10) to calculate UN and QD. (III) Third, we determine the new
partitioning of the cells. To do so we proceed as follows.

For the D cells,

• if Qi > 0 then the cell remains a D cell.

• if Qi ≤ 0 then the cell is in the wrong branch of the ILDOS and one must
change it to N .

For the N cells,

• if Ui < 0 then the cell remains a N cell.



34 Chapter 2. The pure electrostatic self-consistent approximation

• if Ui ≥ 0 then the cell is in the wrong branch of the ILDOS and one must
change it to D.

We repeat steps II and III until the partitioning is stable. Since there is a finite
number of partitioning, the algorithm is guaranteed to converge in a finite number
of iterations. In practice the convergence is extremely fast (see Fig.2.4) and when
attained the result is exact.

Figure 2.4: Fraction of Dirichlet cells (D) in the 2DEG as a function of the number
of PESCA iterations for Vside = −52V and Vmid = −0.88V . In green all cells
belonged to D at the first iteration. In blue all cells were set to Neumann (N ) in
the initial configuration. The inset on the right corner shows the D/N partitioning
as a function of position x. The black regions correspond to Dirichlet cells and
yellow to Neumann points.

Fig.2.3 shows the first three iterations of the above algorithm for the split wire
geometry. Starting from a full Dirichlet initialization in iteration-1, we calculate the
associated density (red curve) and find that it is negative below the gates that have
been polarized with a negative voltage. In iteration-2, we first update the D/N
partitioning and assume that cells with Q(x) < 0 are actually depleted. Then we
calculate a new density and potential profile. Since some cells are now depleted, the
density close to them is slightly affected (those cells used to screen the metallic gates
and do not do so anymore) and the position of the D/N interface moves slightly
in iteration-3. After a few iterations, the partitioning converges to its final form.
The full set of iterations is shown in Fig.2.4, where the fraction of Dirichlet cells is
shown as a function of the iteration number for two different initializations. At 5
iterations most cells are converged and both U(x) and Q(x) profiles are calculated
with good precision. Within 12 iterations the cell partitioning is fully converged.
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We find that for an initialization where there is an equal amount of Dirichlet and
Neumann sites, convergence is achieved within 10 iterations as well. The inset of
Fig.2.4 shows the evolution of the partitioning with the number of iterations. We
identify in yellow the depleted regions and in black the non depleted regions.

2.3 Application to Pinch-off phase diagrams

We now turn to a practical application of PESCA for the split wire geometry. The
electrostatic model of such a wire contains several parameters that are more or
less well known. For instance the density of dopants is only approximately known
by the grower, and even if known, the fraction of the dopants that are actually
ionized is difficult to assess. Additionally, a large fraction of the electrons coming
from the dopants actually go to surface states. Hence the actual fraction of ionized
donor charge populating the conducting region of the device is difficult to estimate.
Another parameter is the workfunction of the metal used in the gates, as it should
give rise to offsets on the gate voltages.

These unknown parameters determine the charge distribution in the sample. We
argue that, to a large extend, these parameters can be inferred from a combination of
measurements and PESCA calculation. For an in depth discussion of the modeling
and the comparison to experiments we refer to Chapter 6. Here we concentrate on
how the PESCA calculation can be made and fitted to the experimental findings

To study the split wire device with PESCA we use a 2 stages model, a high
temperature model and a low temperature model. At high temperature, the surface
of the stack is modeled by an equipotential at a voltage Vsc and the metallic gate by
an equipotential at a voltage Voff . On the other hand we describe the dopant region
by its concentration of dopants ndop. If we were to use an equipotential Vdop, it
would amount to supposing the phenomena of “Fermi level pinning” happens in the
dopant region. We do not believe Fermi level pinning to take place here. We first
solve the high temperature Poisson problem and calculate the distribution of charge
nsc(x) at the surface. At low temperature, we freeze the surface charge. That is, we
turn the surface from D to N with a distribution of charges given by nsc(x). Among
the regions outside of the 2DEG, only the gates remain D at the low temperature
model. We note ns the bulk 2DEG density far away from the gates. Although ns is
calculated, it is easily measured experimentally with e.g. Hall resistance. One can
adjust the dopant density to obtain the correct value of ns.
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Figure 2.5: Top panel: PESCA Pinch-off phase diagram for the split wire device
shown in Fig.2.1. ndop = 1.431016m−2, ns = 1.281015m−2 (dotted line), Voff =

−0.813V and Vsc = −0.668V . The different linesWwire,Wside andWmiddle separate
the different regions A-E, see text. Bottom panels: 2DEG density profile calculated
for the points A-E in the phase diagram. The labels nside, nmiddle and nwire indicate
the 2DEG density at specific points, respectively, underneath the side gate, the
middle gate and in between, see Fig.2.1.
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Fig.2.5 shows the PESCA “Pinch-off” phase diagram of the model for a particular
set of parameters ndop, Vsc and Voff . For each region, a density profile is shown in the
bottom panels for a particular (Vside, Vmiddle) point. In region A, the 2DEG is present
underneath all gates. Note however that even though no gate voltage is applied in
point A, the density underneath the gates is reduced due to the workfunctions of
the electrodes. In region B, the 2DEG is entirely depleted in the central part of the
split wire.

When the side gate voltage is negative enough, the 2DEG underneath the side
gates get depleted and the quantum wire is formed (region C). Upon further apply-
ing a negative voltage on the middle gate, one eventually cuts the wire into two,
thus reaching the split wire regime (region E). In region D, only the gas underneath
the central gate is depleted. The point of Pinch-off phase diagrams is that they
can be easily measured experimentally. For example, they can be constructed by
measuring the conductance between ohmic contacts separated by the different re-
gions of the split wire device, see Fig.2.6 for an example. Then, each point in the
diagram correspond to the gate voltages for which the conductance reaches zero. At
the same time, the different lines of the phase diagram depend on the model param-
eters. Hence, pinch-off phase diagrams can put strong constraints on the underlying
modeling.

Figure 2.6: Sketch of the top view of the split wire device. In grey the 2DEG and
black the gates. A, B, C and D indicate the electrodes. Current is sent through
electrodes A or B, and received at C (D). If the device is in the one wire regime,
then current from B to C will not be zero. If in the two wire regime, then B to C is
zero.

Fig.2.7 shows the density at xwire = −225nm as a function of the gate voltage
(the same voltage is applied to all the gates). First, these curves are not linear. This
is a consequence of the self-consistent nature of PESCA. Indeed for a given, fixed
D/N partitioning, the density at every point depends linearly on the gate voltage.
Hence the non-linearity is a consequence of the variation of this partitioning as some
regions get depleted. The different curves of Fig.2.7 (black, green and blue) are
calculated by varying the gate voltage applied at the high temperature stage of the
calculation. This is aimed at mimicking a common experimental practice known as
“bias cooling”, where a positive bias is applied during the cooling of the sample. This
bias attract electrons under the gate which in turn are screened by charges elsewhere
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in the device. In our model, it is the surface charges that screen the electrons under
the gate. At low temperature these screening charges get frozen, hence remain even if
the bias voltage is removed. They contribute to depleting the 2DEG underneath the
gate even at zero voltage. We find that this effect is qualitatively reproduced by our
calculations. However, typically a one to one correspondence is found experimentally
between the bias used during cooldown and the gate value at which pinch-off is
found at low temperature [Pierre et al. 2022]. In our calculations the offset in the
pinch-off value is only that of half the cooldown bias voltage. This points to the
presence of additional screening effects in the donor layer not taken into account
here. For instance, we have supposed that the donor ionization is fully frozen at
high temperature.

Figure 2.7: Effect of bias cooling. Density n(xwirel) versus gate Vside = Vmiddle at
xwire = −225nm as a function of Vbias. The n(V ) profiles are all calculated at the low
temperature stage but for different Vbias at the high temperature stage. The different
curves correspond respectively to black for Vbias = 0V , green for Vbias = 0.3V and
blue for Vbias = 0.6V .

Fig.2.8 shows the pinch off voltage in a simpler geometry where only a single gate
is present. When the gate width is larger than roughly 200-300 nm (about twice the
distance from the 2DEG to the gate), one approaches the bulk value of the pinch-off
(which can easily be calculated analytically). However, the Pinch-off value changes
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quite strongly when the gate is made thinner. Since in actual devices this width
may be as thin as 30 nm or perhaps even thinner, we find that the geometry must
be accounted for precisely if one wants to make quantitative predictions.

Figure 2.8: Pinch off voltage in a single gate geometry (see inset) versus gate width.
The parameters are ndop = 1.43 1016m−2, Voff = −0.813V and Vsc = −0.668V .
The different curves correspond to three different distances between the gate and
the 2DEG obtained by increasing the thickness of the undoped AlGaAs layer

2.4 Adjusting the Pinch-off phase diagram to experi-
mental data

In this section we look at the inverse problem to the one from the preceding section:
suppose that we are given an experimental Pinch-off phase diagram, how do we
extract the microscopic parameters ndop, Vsc and Voff of the model ? Of course,
one could design some optimization problem and minimize the difference between
the target pinch-off phase diagram and the one calculated from PESCA. However
such a step is rather computationally intensive and lacks physical insights. Besides,
further insight can be obtained by using the particularly simple structure of PESCA
in some limiting regimes, as we show below.

The first limit of interest corresponds to the region A of the phase diagram of
Fig.2.5. In this region, where the gate voltages are only weakly negative, the 2DEG
is depleted nowhere. Hence all the cells are D cells and as such no self-consistency
is required. This is the fully metallic limit. In the Fully metallic limit, the 2DEG
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Regions

PESCA
Region A

Full metallic limit
Region B

Depleted limit

smid
sside

ssc
sdop soff

ssc
sdop soff

Umid Uside Usc Udop Uoff

High T Low T Low T High & Low T High T Low T High T Low T

Surface charge D N N D D N D N

Gates D D D D D D D D

Dopants N N N N N N N N

2DEG D/N D/N D D D N∗ D/N D/N

Table 2.2: Summary of the boundary conditions we fix at each region of the model
throughout this chapter. D means the cells are of Dirichlet type. N means the cells
are of Neumann type. D/N means the cells can be of either Dirichlet or Neumann
type.
* The 2DEG far from the side gates are of D type instead of N (See text)

density is the solution of a single linear system of the form of Eq.(2.10). From
the additivity of different solutions, it results that n(x) is a linear function of the
different input parameters,

n(x) = Vmiddlesmid(x) + Vsidesside(x)

+ Voffsoff(x) + Vscssc(x) +
ndop

1016
sdop(x)

(2.11)

where smid(x), sside(x), soff(x), ssc(x) and sdop(x) are functions to be determined.
Each function can be obtained from a single call to the linear solver. In other
words we can get the full parametric dependance of n(x) with respect to the input
parameters. An example of the smid(x) set of functions is given in Fig.2.9. The
frontiers of the Pinch-off phase diagram that connect region A to another region
can be obtained directly from Eq.(2.12). The frontierWmiddle between region A and
D is given from n(x = xmiddle ≡ 0) = 0, which translates into

Vmiddlesmid(0) + Vsidesside(0)

+ Voffsoff(0) + Vscssc(0) +
ndop

1016
sdop(0) = 0

(2.12)

Similarly, the frontier Wside between region A and region C is given from n(x =

xside ≡ −585nm) = 0 in Eq.(2.12). If these frontiers are known experimentally,
we directly obtain a set of linear constraints on the microscopic parameters that
facilitate the fitting of the model to the experiments.
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Figure 2.9: Functions smid(x), sside(x), soff(x), ssc(x) providing the full solution
of PESCA in region A of the phase diagram, see Eq.(2.12). The vertical red dotted
lines show the positions of the electrostatic gates.

The calculation of the set of functions s(x) require a little care with respect to
the boundary conditions. For instance the workfunction Voff can naively be thought
as a voltage which could be simply added to Vside and Vmiddle. However, Voff is
present at high temperature where the surface charges are mobile (i.e. modeled by
D cells) while the gate voltages Vside and Vmiddle are set at low temperature when
the surface charges are frozen (i.e. modeled by N cells). Table 2.2 summarizes the
boundary conditions we fix at each calculation we performed in this article. For
instance, it shows that to calculate smid we set the surface charge region to N , the
(middle and side) gates region to D, the dopants region to N and the 2DEG region
to D.

Another interesting limit is the “depleted limit”. It corresponds to region B of
the Pinch-off diagram. In this regime there is no electron gas inside the central split
wire region. However, some electron gas remains in the region |x| > |xdep| far away
from the central region. In PESCA, the position xdep is determined self-consistently.
However, it is interesting to consider the case where xdep is fixed, as it allows us to
study the screening role of the electron gas far away from the central region. For a
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fixed value of xdep, the potential inside the wire is given by

U(x) = VmiddleUmid(x) + VsideUside(x)

+ VoffUoff(x) + VscUsc(x) +
ndop

1016
Udop(x)

(2.13)

where Umid(x), Uside(x), Uoff(x), Usc(x) and Udop(x) are functions to be deter-
mined. To determine the frontier between region B and the other regions from
Eq.(2.13), one can use

∃ x, such that |x| < |xdep| and U(x) = 0. (2.14)

Contrary to region A, in region B the position of depletion is not directly under
the gates, it depends instead on the ratio Vside/Vmiddle. Therefore the curve delim-
iting the region B of the Pinch-off diagram, i.e. Wwire, is not a simple straight line.
Much like for s(x), calculating the set of U(x) functions require special care with
respect to the boundary conditions, as summarized in Table 2.2. This is specially
true at the 2DEG. At low temperature the 2DEG is made of N cells while at high
temperature it is made of D cells. Therefore, calculating, e.g. Usc(s), requires solv-
ing two different linear systems: one to determine ssc and a second to calculate the
effect of ssc when the 2DEG is depleted.

Fig.2.10 shows the PESCA phase diagram together with the predictions obtained
from the full metallic limit and the depleted limit. The prediction from the full
metallic limit is essentially exact. Its appeal steems from the fact that (in contrast to
a PESCA calculation) we have the full dependance of n(x) on ndop, Vsc and Voff . The
prediction from the depleted limit depends strongly on the value of xdep. This means
the occupied 2DEG outside of the split wire region plays an important screening
role, which cannot be ignored if one wants to make quantitative predictions.
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Figure 2.10: Comparison between PESCA Pinch-off phase diagram with the full
metallic limit and the depleted limit. The full lines correspond to PESCA re-
sults obtained with ndop = 1.431016m−2, ng = 1.951015m−2, ns = 1.281015m−2,
Voff = −0.813V and Vsc = −0.668V . The red and blue dotted lines correspond to
calculations in the full metallic limit. The green, black, violet and yellow dotted
lines correspond to calculations in the depleted limit as one varies xdep. Here xdep

delimits the distance between the last depleted 2DEG cell and the side gates.
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2.5 Extension of PESCA to the integer quantum Hall
effect

Figure 2.11: a) Thomas Fermi ILDOS for B = 1.4T . One can see the µ and n

regions for which a site is of Ni or Di type up to i = 2. For example, if 1/2~ωc <
µ < 3/2~ωc then the site is of N1 type with n = 1.81.1014m−2. b) Thomas Fermi
ILDOS for B = 0.2T and B = 2mT in blue and black respectively. The ILDOS in
red corresponds to Thomas-Fermi at B = 0T . At the energy scales relevant to the
problem in question there is no discernable difference between the B = 2mT and
the Thomas-Fermi ILDOS

We end this chapter with the first extension of the PESCA algorithm to more
complex situations. As we have seen, PESCA essentially relies on the ILDOS
having two different branches. However, it is straightforward to generalize the
algorithm s.t. it can handle an ILDOS with a discrete number of branches.
Such a situation arises naturally in the quantum Hall regime when the 2DEG is
put under a perpendicular magnetic field. The role of electron-electron interac-
tions is known to have drastic effects in this regime and in particular leads to
the reconstruction of the edge states into compressible and incompressible stripes
[Chklovskii et al. 1992a, Chklovskii et al. 1992a, Chklovskii et al. 1993]. The den-
sity of states of a bulk 2DEG in the quantum Hall regime is highly non-linear. It
is made of delta function peaks in the (highly degenerate) Landau levels separated
by insulating regions of vanishing density of states. The resulting ILDOS is a step
like function as shown in Fig.2.11 (a). In Fig.2.11 (a), ~ωc = 2.45 meV, with ωc
the cyclotron frequency and lB = 21.6 nm the magnetic length. To solve the self
consistent problem corresponding to this ILDOS, one updates the PESCA algo-
rithm by introducing the cells Dp and Np. The integer p ≥ 0 indicates on which
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branch of the ILDOS the cell is. The Dp cells are Dirichlet cells with fixed po-
tential U = ~ωc(p + 1/2) while the Np cells are Neumann cells with fixed density
n = p/(2πl2B). Step III of the PESCA algorithm also needs to be extended as
follows. For the Dp cells,

• if ni > (p+ 1)/(2πl2B) then the cell must change to Np+1

• if ni < (p/(2πl2B)) then the cell must change to Np

• otherwise the cell remains in Dp.

For the Np cells,

• if Ui ≥ −~ωc(p+ 1/2) then the cell must change it to Dp−1.

• if Ui ≤ −~ωc(p+ 3/2) then the cell must change it to Dp.

• otherwise the cell remains in Np.

Fig.2.12 shows the convergence of the the Np / Dp partition for the extended
PESCA. On the top Fig.2.12 an initial zero magnetic field PESCA (two-branch
ILDOS Fig.2.2 (c)) calculation is performed before switching on the magnetic
field and performing a second calculation with extended PESCA. On the bot-
tom Fig.2.12 the iterations are directly done with a finite magnetic field. We find
that both schemes converge although starting with a simple PESCA initialization
seems to speed up the convergence. This is particularly the case at very low mag-
netic fields where many Landau levels are filled. The converged partition gives
direct access to the so-called compressible (Dp) and incompressible (Np) stripes
[Chklovskii et al. 1992a, Chklovskii et al. 1992a, Chklovskii et al. 1993].

Fig.2.13 shows the converged profile of electric field (top) and density (bottom).
We refer to [Armagnat & Waintal 2020, Armagnat et al. 2019] for a discussion of
the physics of the different stripes present in the system. We note that, even though
the magnetic field is fairly high B=1.42T (cyclotron energy ~ωc = 2.45meV ), the
density profile is only weakly affected by the field with respect to PESCA (≈ 5%).
Also, the modification of the electric potential of a few mV is small compared to the
larger scales at play within the rest of the sample, of the order of 1V. These few mV
might be associated to important physics, but on the other hand they only weakly
affect the Pinch-off gate voltages. This confirms that PESCA is an appropriate level
of approximation for reconstructing the charge distribution inside the sample.

This can be further seen in Fig.2.14 where a similar calculation is performed at
low B = 0.2T and very low B = 0.002T magnetic field. We also add a direct Thomas
Fermi calculation corresponding to the ILDOS of Fig.2.2b that was performed using
the algorithm of [Armagnat et al. 2019]. The direct Thomas-Fermi calculation is
indistinguishable from the B = 0.002T one. This can also be seen in Fig.2.11b,
where the different ILDOS are plotted. Besides being an independent validation of
the calculation (the two algorithms only share the Poisson solver), this points to
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Figure 2.12: Np/Dp partitioning as a function of the iteration number for the
results in Fig.2.13. (a) Up to iteration 12 the PESCA approximation was used. At
the latter iteration the PESCA N/D partitioning is stable. The resulting potential
and charge profile are then used as input to iteration 13. For the latter and onwards
thomas-fermi approximation is used for B = 1.42T . The yellow and black regions
correspond to N and D cells under PESCA approximation. Under thomas fermi the
cells located within the first five landau levels are shown in varying degrees of green
for Np cells and blue for Dp cells. p is the filling factor s.t. n = p/(2πlb) and m is
defined s.t. p = (1 +m)/2~ωc. (b) The thomas fermi approximation for B = 1.42T

is used for all iterations.
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Figure 2.13: Top panel : Chemical potential profile at the 2DEG as a function of
x. The profile in green was obtained for B = 1.4T with the ILDOS on Fig.2.11 (a).
In red the profile was obtained with the PESCA approximation, i.e. the ILDOS on
Fig.2.2 (c). The gray (white) stripes correspond to the incompressible (compressible)
region. Lower panel : Charge density profile for B = 1.4T and with the PESCA
approximation. At the regions where the charge density is depleted, the red curve
converges towards the green one. For this calculation Vside = −1V and Vmid =

−0.35V .
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Figure 2.14: Top panel : Chemical potential profile at the 2DEG as a function
of x. In blue and grey the profile was obtained for with B = 2mT and B = 0.2T

respectively . They were calculated using the ILDOS on the right panel of Fig.2.11.
In red the profile was obtained with the PESCA approximation, i.e. the ILDOS
on Fig.2.2 (c). The thicker green line corresponds to a Thomas Fermi calculation
for B = 0T using the algorithm of [Armagnat et al. 2019]. Lower panel : Charge
density profile. For this calculation Vside = −1V and Vmid = −0.35V .
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the fact that any ILDOS could be approximated by step like functions with Np /
Dp partitions, which would allow the PESCA algorithm to be extended to arbitrary
Thomas-Fermi approximations (i.e. with fixed ILDOS).

2.6 Conclusion

In this chapter we have first used the small parameter in the SCQE problem (ratio of
the geometric to quantum capacitance) to develop the PESCA. We have shown that
PESCA is enough to reconstruct the charge distribution in a sample, a prerequisite
for predictive simulations. Second we have extended the algorithm we used for
PESCA towards solving the SCQE with a step-like ILDOS, that of the integer
quantum hall effect. We have shown its results to be equivalent to the Thomas-
Fermi calculations of [Armagnat et al. 2019].

The PESCA algorithm, and its extension to the IQHE ILDOS, are guaranteed
to converge and form a first step into a new type of solver for SCQE problems. The
next step is to extend Np, Dp branches to allow for arbitrary slopes of the branches
and address any piece-wise linear ILDOS. This is addressed in the next chapter.





Chapter 3

Solving the self-consistent
quantum electrostatic problem

In this chapter we discuss the method we have developed to solve the self-consistent
quantum electrostatic problem. It consists on approximating the SCQE into a NLH
equation, and then correcting the approximation iteratively. The local density of
states, updated at the end of each iteration, contains key information about the
energy dependance of the quantum problem. Therefore it is a fundamental quantity
to be transferred as input to the new iteration of the algorithm. More precisely,
at each iteration we solve a NLH equation, and the LDOS allows us to isolate the
non-linearities of the problem and address them accordingly.

In Section 3.1 we first formulate a discrete version of the continuous SCQE
defined in the Introduction. Then in Section 3.2 we introduce the quantum adiabatic
approximation, it approximates the SCQE problem into a NLH equation. In Section
3.3 we detail the algorithm to solve the SCQE and in Section 3.4 how to solve the
NLH equation using two different algorithms. In particular, we show that one of
them is guaranteed to converge for any non-linear ILDOS. Both schemes are inspired
from the PESCA algorithm of Chapter 2. Lastly in Section 3.5 we illustrate both
our algorithms by solving the NLH for three different Piecewise-ILDOS and one
continuous ILDOS.

3.1 Discrete SCQE problem definition

Here we formulate a discrete version of the continuous SCQE problem defined in
Section 1.2. We shall start with the electrostatic problem an then move on to the
quantum problem. The Poisson equation can be discretized in many ways using e.g.
finite difference or finite elements. In this thesis we use finite volume discretization.
Finite volume has the advantage of defining a physically valid discrete electrostatic
problem for any grid coarseness. It does so by ensuring electric flux conservation,
i.e. charge conservation, within the simulated region.

The electrostatic problem is defined in terms of capacitance matrix Cij . We
discretize the simulation volume into a set of cells Ci centered on point ~ri, see Figure
3.1 for an example. Each cell has a few neighbors j at distance dij = |~ri − ~rj | and
Sij is the surface that separates them. We use Voronoi cells so the surface is planar.
Gauss theorem for a given cell takes the form :
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∑
j

Φij = −eQi (3.1)

where Qi is the total number of charge inside the cell (Qi = −1 for one electron,
+1 for one hole), it writes :

Qi(µ) = −
∫
Ci
d~r [n(~r)− nd(~r)], (3.2)

and Φij the flux of the electric field :

Φij =

∫
Sij

ε(~r)~∇U(~r) · ~n dS (3.3)

where ~n is the unit vector perpendicular to the surface Sij (parallel to ~ri−~rj for
Voronoi cells). We approximate ~∇U(~r) · ~n with (Uj − Ui)/dij where Ui the electric
potential at the center of cell i. We arrive at :∑

j

CijUj = Qi(µ) (3.4)

with the capacitance matrix given by

Ci 6=j = −εijSij
edij

≤ 0 (3.5)

for neighboring cells and

Cii = −
∑
j(i)

Cij ≥ 0 (3.6)

for the diagonal part, where j(i) stands for the neighbors of cell i (Cij = 0

otherwise). Beware of the slight abuse of notations since we have incorporated the
electric charge e inside the definition of Cij . The dielectric constant εij is averaged
over neighboring sites according to :

εij =
2εiεj

(εi + εj)
(3.7)

where εi is the dielectric constant inside cell i.
Finally, defining the discrete LDOS as :

ρi(E) =

∫
Ci
d~r ρ(~r,E), (3.8)

we have for electrons

∂Qi
∂µ

= −ρi(µ) ≤ 0. (3.9)

Regarding the quantum problem, there are also various ways to obtain a dis-
cretized model, e.g. tight-binding model, finite difference from a k.p Hamiltonian
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Figure 3.1: Schematics of a 2D voronoi diagram. Each voronoi cell is delimited by
the black lines. For the cell i, its central point is in green, its region (in grey) is
delimited by the red lines. In blue are the vertices of the cell. In red are the central
point of the cells j first neighbor of cell i. Here dij is defined as the distance from the
green point i to the red point in cell j. The Sij is defined by the red line separating
cell i from cell j, a line since it is a 2D voronoi diagram (for a 3D diagram it would
be a surface). This figure was generated using PESCADO , see Chapter 4.
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etc... Here we suppose that this discretized model is obtained on the same grid as
the electrostatic model, possibly with additional local degrees of freedom on each
site (spin, orbitals, different atoms per unit cell etc.) in the usual framework of
quantum transport [Groth et al. 2014]. ΨαE becomes a vector with ΨαE(i) the sub-
vector on site i (whose components span the local degrees of freedom). The discrete
Schrödinger equation reads:∑

j

[(H0)ij − eUiδij1]ΨαE(j) = EΨαE(i) (3.10)

where 1 is the identity matrix of the local degrees of freedom. With these
notations, the discrete LDOS reads :

ρi(E) =
1

2π

∑
α

ΨαE(i)†ΨαE(i). (3.11)

Together, the above set of equations form the discrete SCQE problem.

3.2 Approximating the SCQE as a NLH equation

We already wrote a continuous form of the NLH problem in Eq.(4.3), when we
described the Predictor-Corrector approach. In this section we shall give a more
detailed explanation on how to approximate the discrete SCQE problem into a gen-
eralized (discrete) NLH equation. In order to achieve this, we introduce the quantum
adiabatic approximation (QAA). In essence, the QAA assumes the LDOS ρi(E) in-
dependent of the electrostatic potential up to a small shift eδUi. It can be seen as
a generalization of the Thomas-Fermi approximation, in [Armagnat et al. 2019] we
discuss it in more detail.

Suppose that for an electrostatic potential Ui we have computed the LDOS
ρi(E). Now consider a different potential U ′i = Ui + δUi. QAA approximates the
corresponding LDOS as :

ρ′i(E) = ρi(E + eδUi) (3.12)

i.e. it supposes that the electrostatic potential simply shifts the different energy
bands. The approximation is exact in the limit where the difference of potential δUi
varies infinitely smoothly with position. Let EF be the electro-chemical potential
of the quantum problem, Eq.(3.4) reduces to an equation for U ′i :∑

j

CijU
′
j = Qi(EF + eU ′i − eUi) (3.13)

which is the NLH equation mentioned earlier. Eq.(3.13) can be recast into a
slightly more convenient form :∑

j

CijδUj = Qi(EF + eδUi) + ni (3.14)
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where the source term ni is given by ni = −∑j CijUj . Hereafter, we ignore the
ni term that we absorb in the definition of Qi. In contrast to the SCQE problem
for which, as far as we are aware, there is no proof of convergence of the various
iterative schemes that are commonly used, in Section 3.4.1 we show that the NLH
equation has very nice properties both theoretically and in practice.

It is also possible to get a linear version of the NLH. For small δUi, we can
linearize Eq.(3.14) and obtain a discretized version of the LH equation :∑

j

CijδUj = Qi(EF )− eρi(EF )δUi. (3.15)

The LH equation is a (sparse) linear equation that can be solved by standard
numerical approaches. As we shall see in Section 3.4.2, all algorithms developed in
this thesis eventually reduce to sequentially calling the LH equation solver. Lastly, if
Ui = 0 and the LDOS is the bulk DOS (ρbulk) at the Fermi energy (site independent),
then the LH equation reduces to a generalization of the well-known Thomas Fermi
approximation : ∑

j

CijUj = Qi(EF )− eρbulkUi. (3.16)

3.3 The secret lies in the density of states

Considering we can solve the NLH equation, how to use it to find the solution to
the SCQE problem ? The answer is the following iterative scheme :

1. Start with an initial LDOS ρi(E). A common choice is to use the bulk DOS
of the material on all sites ρi(E) = ρbulk(E). Alternatively, one can solve the
quantum problem with Ui = 0 on all sites.

2. Given this LDOS, solve the NLH problem and obtain Ui.

3. Given this potential Ui, solve the quantum problem and obtain a new LDOS.

4. Repeat steps (2) and (3) until convergence (no mixing scheme has been nec-
essary in our experience so far).

The main difference between this strategy and standard iterative schemes is that
the input of the electrostatic problem is not the density but the LDOS. The local
density of states contains information about the energy dependance of the quantum
problem. Therefore the NLH equation already captures the main sources of non-
linearities of the problem. It knows about the LDOS at the Fermi level, about the
presence of gaps in the spectrum, etc ... In other words, it knows about the cusps
in the ILDOS that cause havoc in many modern approaches that solve the NLH
relying solely on the charge density. As an added bonus, if we use the bulk DOS at
initialization, then the first solution of the NLH equation (iteration 1 step 2) gives
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a generalization of the Thomas-Fermi potential of the problem. The rest of this
chapter is consecrated to solving the NLH.

3.4 Solving the NLH equation

In this section we shall explain how to solve the NLH formulated by Eq.(3.14).
First we discuss some interesting properties of this equation. In particular, we show
the existence of a functional F ({Ui}) that that (i) admits the solution of the NLH
equation as its global minimum and (ii) has no local minimum or saddle points. The
existence of such functional guarantees the unconditional convergence of a scheme
seeking to solve NLH by minimizing F . With this in hand, we then propose two
algorithms to solve the NLH equation.

3.4.1 Properties of the NHL equation

The NHL equation (3.13) takes the generic form,∑
j

CijUj = Qi(Ui) (3.17)

with the following properties:

• Cij is symmetric.

• Cij is semi-definite positive.

Indeed,
∑

j Cij = 0 and Ci 6=j ≤ 0 imply that ∀Ui,

∑
ij

UiCijUj = −1

2

∑
i 6=j

(Ui − Uj)2Cij ≥ 0 (3.18)

• Qi(E) is a decreasing function of the energy (dQi/dE = −ρi(E) and the LDOS
is positive).

• ρi(E) = 0 for E < EB, the bottom of the lowest band.

The goal of this section is to construct a functional F ({Ui}) that (i) admits the
solution of the NLH equation as its global minimum and (ii) has no local minimum
or saddle points.

We define F ({Ui}) as,

F ({Ui}) =
1

2

∑
ij

UiCijUj −
∫ Ui

−∞
dE Qi(E). (3.19)

F is the sum of two convex functions and is therefore convex itself. The gradient
of F is given by
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∂F

∂Ui
=
∑
j

CijUj −Qi(Ui), (3.20)

and its Hessian is,

∂2F

∂Ui∂Uj
= Cij + ρi(Ui)δij (3.21)

i.e. a semi-definite positive matrix. This functional admits a global minimum
which is the solution of the NLH equation. When all bands are empty, NLH can have
degenerate global minimums that differ by a global shift of the potential Ui → Ui+U .
However, when at least one band is partially occupied, one can explicitly check that
there is a unique global minimum. Indeed, if U∗i is a minimum of F then for any
variation δU∗i around this minimum,

F ({U∗i + δU∗i }) = F ({U∗i }) +
1

2

∑
ij

δU∗i CijδU
∗
j

−
∫ U∗i +δU∗i

U∗i

dE [Qi(E)−Qi(U∗i )] (3.22)

which is the sum of two positive terms. F ({U∗i + δU∗i }) = F ({U∗i }) implies that
δU∗i does not depend on i (first term) and the local density of states vanish on all
sites at E = Ui.

To summarize, we are in a very comfortable situation fo solve the NLH equation:
it is the global minimum of a convex functional of which we know both the gradient
and the Hessian. This is a much more satisfactory situation than the SCQE problem
we started with.

3.4.2 Practical algorithms for solving the NLH equation

We now turn to the practical schemes used to solve the NLH equation. In practice,
there remains one small but crucial difficulty that we must treat with care: the
LDOS is usually a smooth function of energy but it has cusps or discontinuities
at the band edges. To illustrate this problem, let’s consider a simple quadratic
band H ∝ p2. The corresponding DOS has the form ρ(E) ∝ Ed/2−1 and has a
discontinuous derivative (d = 3), is discontinuous (d = 2) and even diverges (d = 1)
at the band edge E = 0. The existence of these singular points make traditional
gradient descent sort of methods unstable unless one treats these points explicitly.
This is particularly true in low dimension.

We handle this difficulty by explicitly tracking the problematic points in energy
on each site. Physically, it means that we are tracking the regions of space that are
depleted (due to e.g. a gate) and those that are not. Below, we explain the algorithm
to deal with this aspect. Once this is taken care of, we have found most approaches
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to converge quickly to the solution. We present two of them: the piecewise Newton-
Raphson algorithm (a variation of the eponym algorithm) and the piecewise linear
Helmholtz algorithm.

3.4.2.1 Breaking the ILDOS into piecewise-smooth regions

The input of all solvers is the ILDOS Qi(E). On each site i, we break the energy
regions into different intervals [Eαi , E

α+1
i ] where the energies Eαi mark the position

of the (possibly) singular point in energy of the ILDOS (E0
i = −∞ by convention).

A different function Qαi (E) is used on each subinterval. For example, in the case
of the quadratic band, one would use E0 = −∞, E1 = 0 and E2 = +∞. For
E ∈ [−∞, 0], one would use Q0

i (E) = 0 while inside the band E ∈ [0,+∞], one
uses Q1

i (E) ∝ Ed/2. These sub-intervals are used in the two different NLH solvers
described below.

3.4.2.2 Piecewise Newton-Raphson algorithm

We first describe the Piecewise Newton-Raphson algorithm, a simple adaptation of
the Newton-Raphson algorithm. The algorithm works as follows:

1. We initialize the potential on all sites Ui. A typical choice is Ui = 0 ev-
erywhere. On each site, we identify the energy interval α(i) such that
Ui ∈ [Eαi (i), E

α(i)+1
i ].

2. We linearize the NLH equation at Ui and form Eq.(3.15). This is a linear
equation that can be solved e.g. with a sparse LU solver such as MUMPS
[Amestoy et al. 2001, Amestoy et al. 2006]. We obtain U ′i .

3. for all sites, if U ′i ∈ [Eαi (i), E
α(i)+1
i ] then we set Ui → U ′i . However, if U ′i <

Eαi (i) then the corresponding point has switched to the previous branch (e.g.
the corresponding site is depleted). We set Ui → Eαi (i) and α(i) → α(i)− 1.
Likewise, if U ′i > E

α(i)+1
i then we switch to the next branch. We set Ui →

E
α(i)+1
i and α(i)→ α(i) + 1.

4. We repeat steps (2) and (3) until convergence.

Keeping track of the index α(i) of the solution on each site is the key to prevent
the band edges from destabilizing the algorithm.

3.4.2.3 Piecewise Linear Helmholtz algorithm

In practice the piecewise Newton-Raphson algorithm is very stable in almost all the
situations that we have encountered. When the ILDOS is particularly non-linear, it
can nevertheless fail to converge. In this situation, the following, somewhat slower
but very stable, "Piecewise Linear Helmholtz algorithm" usually solves the problem.
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Figure 3.2: Construction of the piecewise linear ILDOS Q̄i(E) (black line) from the
continuous one Qi(E) (thin grey line). The red points correspond to the initial list of
points Eαi . Left: the two tangents (dotted line) do not intersect inside the segment,
one interpolates linearly between the two red points. Middle panel: the tangents do
intersect, one uses two linear segments (the two tangents) to interpolate between
the two red points. Right panel: when a new red point is inserted, the piecewise
linear ILDOS Q̄i(E) is updated.

This algorithm can also be used in cases where the quantum solver provides the
ILDOS Qi(E) but not (its derivative) the LDOS ρi(E).

The Piecewise Linear Helmholtz algorithm uses a piecewise-linear-ILDOS Q̄i(E)

that approximates the actual ILDOS Qi(E). Here, the points Eαi are not only used
to separate smooth regions; they also correspond to a discretization of the ILDOS.
The algorithm to construct Q̄i(E) works as follows (see Fig.3.6 for an illustration):

• On each point Eαi , we set Q̄i(Eαi ) = Qi(E
α
i ).

• On each point Eαi , we calculate the tangent y = Qi(E
α
i )− ρi(Eαi )(E − Eαi ).

• If the tangent at point Eαi and Eα+1
i do not intersect inside the segment

[Eαi , E
α+1
i ] (left panel of Fig.3.6), we set Q̄i(E) to simply interpolate linearly

between Eαi and Eα+1
i :

Q̄i(E) = Qi(E
α
i ) + (E − Eαi )

Qi(E
α+1
i )−Qi(Eαi )

Eα+1
i − Eαi

(3.23)

• If the tangent at point Eαi and Eα+1
i do intersect (middle panel of Fig.3.6),

we set Q̄i(E) to be equal to the tangents up to the intersection point. To do
so we insert an extra temporary point Eα′i at the intersection in between Eαi
and Eα+1

i .

The idea of the algorithm is to solve the piecewise-linear-NLH equation defined
by Q̄i(E) and at the same time refine our description of Q̄i(E) so it becomes a
fair approximation of Qi(E). We refine Q̄i(E) by inserting new points Eα. The
algorithm works as follows:
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1. We initialize the potential on all sites Ui. We also initialize the points Eαi . We
construct the corresponding piecewise linear ILDOS Q̄i(E). On each site, we
identify the energy interval α(i) such that Ui ∈ [E

α(i)
i , E

α(i)+1
i ].

2. We solve the linear Helmholtz equation associated with Q̄i(E). We obtain U ′i .

3. For all sites, if U ′i ∈ [E
α(i)
i , E

α(i)+1
i ] then we set Ui → U ′i . If U ′i < Eαi (i)

then the corresponding point has switched to the previous branch. We set
Ui → E

α(i)
i and α(i)→ α(i)− 1. Likewise, if U ′i > E

α(i)+1
i then we switch to

the next branch. We set Ui → E
α(i)+1
i and α(i)→ α(i) + 1.

4. If we have not switched branch, then the new point U ′i is used to update our
piecewise linear ILDOS Q̄i(E). The value U ′i is added to the list of ener-
gies {Eαi } cutting the previous interval [E

α(i)
i , E

α(i)+1
i ] into two subintervals

[E
α(i)
i , U ′i ] and [U ′i , E

α(i)+1
i ]. We reconstruct Q̄i(E) using this new point (see

the right panel of Fig.3.6 for an example).

5. We repeat steps (2)-(4) until convergence.

In this algorithm, the intervals Eαi are not static, they evolve along the iterations.
Furthermore, since we split the intervals α(i) at the position of the previous iteration
energy solution, Q̄i(E) will be more refined near the actual solution of the NLH
problem. Note that if Qi(E) is actually piecewise linear, then step (4) above is
omitted.

3.5 Solving the NLH problem for a hexagonal nanowire
device

In this section, we illustrate the different algorithms described above on a practical
use case. More examples can be found, see the split wire example in Chapter
4, the quantum point contact example of Chapter 2, the application to graphene
pn-junction [Flór et al. 2022] of Chapter 5 and the simulations of scanning gate
microscopy [Percebois et al. 2023] of Chapter 7. All the numerics shown here were
performed using the open source software PESCADO described in Chapter 4.

3.5.1 Piecewise linear ILDOS

We consider an infinitely long hexagonal nanowire. We suppose it is invariant by
translation and therefore model it in two dimension. A back gate (Dirichlet bound-
ary condition at Ui = −6V ) positioned below the nanowire depletes it while a top
gate (Dirichlet boundary condition at Ui = +2V ) placed over two of the nanowire
edges attract electrons into the system. The LDOS vanishes outside the nanowire.

We start with the simplest situation where the ILDOS is piecewise-linear with
only two branches: an horizontal and a vertical branch. Fig. 3.3a shows the ILDOS
and Fig. 3.3b the geometry together with the final result (color plot shows the charge
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Figure 3.3: Solving the NLH equation using the piecewise linear Helmholtz algo-
rithm: PESCA. a) Input ILDOS : a piecewise linear ILDOS with two branches.
This corresponds to the PESCA approximation. b) Colormap and schematics of a
side view of the the hexagonal nanowire with top (black) and back gate (green). The
color code corresponds to the charges in each cell of the nanowire. c) Convergence
of α(i) on each site versus different iterations. α = 0 (yellow, first branch) or α = 1

(green, second branch). The initial configuration α(i) is random here.

on each cell). In fact, this NLH problem corresponds to the PESCA approximation
studied in Chapter 2.

For this first example we have used the piecewise Linear Helmholtz algorithm.
However, since the ILDOS is actually piecewise linear, step (4) can be omitted.
There is no need to refine something which is already exact. Fig. 3.3c shows
the different iterations until convergence (iteration 6) for an initially random α(i)

configuration (iteration 0). We observe that convergence is reached in very few (six)
iterations. Contrary to the Newton-Raphson algorithm, the convergence here is not
a continuous process. It is only when all the sites are in the correct branch that the
piecewise Linear Helmholtz algorithm has converged (there is no precision criteria).
The electrons only accumulate on a single layer of cells, this is due to the PESCA
approximation. Since the density of states is infinite (vertical branch of the ILDOS),
the corresponding Thomas-Fermi length vanishes and charge accumulates purely on
the surface (purely metallic limit).

In our second example we replace the vertical line of the ILDOS (PESCA) by a
line of finite slope:
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Figure 3.4: Solving the NLH equation using the piecewise linear Helmholtz al-
gorithm: Thomas-Fermi. a) Input ILDOS: a piecewise linear ILDOS with two
branches. This corresponds to the Thomas-Fermi approximation. b) Colormap and
schematics of a side view of the the hexagonal nanowire with top (black) and back
gate (green). The color code corresponds to the charges in each cell of the nanowire.
c) Convergence of α(i) on each site versus different iterations. α = 0 (yellow, first
branch) or α = 1 (green, second branch). The initial configuration α(i) is random
here.

Qi(E) =

{
0 ∀ E < 0.25eV

ρE ∀ E ≥ 0.25eV
(3.24)

This corresponds to the Thomas-Fermi approximation. Fig. 3.4 shows the re-
sults. Convergence is even faster than in PESCA, it is more physically accurate and
all of it at no additional computing cost. Thomas Fermi usually leads to a good,
quantitative, description of the electronic density. The main difference with PESCA
is that the finite density of states means the electric field can now penetrate inside
the wire over a finite (Thomas-Fermi) length (see Fig. 3.4b).

In the last example of this series, we use an ILDOS with three branches. The
first describes the valence band, the second the gap and the third the conduction
band of a semi-conductor, see Fig.3.5. We have,
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Figure 3.5: Solving the NLH equation using the piecewise linear Helmholtz algo-
rithm: Valence-Conduction band model. a) Input ILDOS: a piecewise linear ILDOS
with three branches. They correspond respectively to the valence band, the gap and
the conduction band. b) Colormap and schematics of a side view of the the hexago-
nal nanowire with top (black) and back gate (green). The color code corresponds to
the charges in each cell of the nanowire. c) Convergence of α(i) on each site versus
different iterations. α = 0 (yellow, first branch) or α = 1 (green, second branch).
The initial configuration α(i) is random here.

Qi(E) =


ρE ∀ E ≤ −∆

0 ∀ −∆ ≤ E ≥ ∆

ρE ∀ E ≥ ∆

(3.25)

Due to the valence band and the large negative voltage applied to the back
gates, it is now possible to attract holes at the lower part of the nanowire (in red,
see Fig.3.5b).

3.5.2 Continuous ILDOS

We now turn to a genuine NLH equation where the ILDOS varies continuously. We
describe the valence and conduction bands using a free 3D density of states:

Qi(E) =


−a|E + ∆|3/2 ∀ E ≤ −∆

0 ∀ −∆ ≤ E ≥ ∆

a|E −∆|3/2 ∀ E ≥ ∆

(3.26)
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Fig.3.6 illustrates the Piecewise Linear Helmholtz algorithm for this ILDOS. The
upper panels show the evolution of the charge in the nanowire at different iterations.
The middle and lower panels show the corresponding piecewise linear ILDOS Q̄i(E)

on two different representative sites (green and black cross in the upper panel).
Fig.3.7 shows te charge profile evolution with iteration. After just two iterations,
the result is indistinguishable from the converged result. On each plot in Fig.3.6 (b)
and (c), the small circle correspond to the new solution U ′i obtained after the call to
the LH solver. This new solution is used to improve Q̄i(E). Observe how these new
points accumulate close to the final solution (right panel) such that, in fine, Q̄i(E)

is a extremely good approximation of Qi(E) for E close to the solution E = Ui. On
the last column the results have been zoomed to show the (tiny) difference between
Q̄i(E) and Qi(E) close to the solution.
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Figure 3.6: Solving the NLH equation using the piecewise linear Helmholtz algo-
rithm: continuous ILDOS. (a) Charge profile for the first three and last iterations.
(b) Evolution of Q̄i(E) (black line) for same iterations and for the site tagged by a
black cross in (a). Thin grey line: continuous ILDOS Qi(E) that is being approx-
imated. Red crosses: points Eαi added to the list, yellow circle: value U ′i given by
the LH solver. (c) Same as (b) for the site tagged by a green cross in (a)

3.6 Conclusion

In this chapter we have explained how to solve the SCQE problem. We first applied
the quantum adiabatic approximation to the SCQE problem to transform it into
a NLH equation. Then, we have introduced two iterative schemes, the Piecewise
Newton-Raphson and the Piecewise Linear Helmholtz algorithm. The first solves
the NLH equation quickly and works for most cases. The second is slightly slower,



3.6. Conclusion 65

Vtg = 2V

Vbg = −6V

Iteration 0

Iteration

0 51 2 3 4 5 6 7
Vtg = 2V

Vbg = −6V

Iteration 8

−0.2

0.0

0.2

|Q
i(
E

)|

Figure 3.7: Evolution of the charge profile as a function of iteration for the con-
tinuous ILDOS of Eq.(3.26). The colormap on the left corresponds to the charge
profile at iteration zero. It was obtained by solving the Helmholtz equation with a
random initial guess for the ILDOS interval. The colormap on the right corresponds
to the converged solution of the self consistent problem. The data on the middle
corresponds to the charge value at x = 0 for each iteration of the solver. One no-
tices that after the second iteration the result becomes indistinguishable from the
converged result.

however its convergence is guaranteed. The key difference of our methods compared
to traditional approaches is that we use the local density of states as input to
the electrostatic problem instead of the charge density. Then, we have applied
the piecewise linear algorithm for three examples where we solve a NLH problem
defined with a piecewise linear ILDOS. We have also solved a NLH problem with
a continuous ILDOS using both methods and compared their performance. For an
example of a self-consistent quantum electrostatics calculation obtained using the
Piecewise Newton Raphson algorithm, see Figure 4.4. In the next chapter we shall
explain in detail the linear-helmholtz equation solver, PESCADO - the backbone of
both algorithms.





Chapter 4

PESCADO : An open source
software

The two algorithms we have developed in Chapter 3 rely on the existence of a LH
equation solver. Therefore, in this chapter we shall explain PESCADO , an open
source python library for solving electrostatic problems. It solves the LH problem
and implements the Piecewise Newton-Raphson and Piecewise Linear Helmholtz
algorithms. Overall, PESCADO offers:

• A lightweight geometrical engine. The first step to solve a partial differential
equation is to describe the geometry of the system. For example, defining
the shapes and positions of the different layers of materials, charge dopants,
metallic gates, etc .... This is usually done using a complex hierarchy of
tools for defining volumes, surfaces, edges and points. The choice made in
PESCADO was to use a very light, yet surprisingly powerful, solution: for
each volume, the user defines a function of space ~r = (x, y, z) that returns 1 if
~r is inside the volume and zero outside (what we call a “Shape”). For instance
to define a spherical gate, one associates it with a function f(~r) returning 1 if
x2+y2+z2 < 1. All surfaces, edges and points are defined implicitly. Different
Shapes can be combined through the usual logical operators (and, or, xor...)
to create more complex Shapes. We have found that the shape system is an
interesting compromise between expressivity and effectiveness. In practice it
easily covered all the geometries that we have encountered while being very
lightweight to use in practice. PESCADO geometrical engine is not specific
to electrostatics and could be used for other problems.

• A finite volume mesher. The second step of the solver is to discretize the
geometry. PESCADO uses finite volume which is particularly well adapted
for electrostatics. Finite volume provides a valid, even for a coarse, discrete
electrostatic problem. In practice, one uses a list of points ~ri and PESCADO
constructs the Voronoi cells centered around these points, together will the
needed information to discretize the Poisson equation (volume of a cell, list of
its neighbors with the corresponding surfaces of contact...). There are well es-
tablished general algorithms (and libraries) to perform these computations for
an arbitrary set of points ~ri. However, these calculations can be computation-
ally expensive, time and memory wise. In many situations, it is enough to use
a regular grid where the Voronoi cell can be computed analytically. PESCADO
intends to get the best of both worlds by providing algorithms to combine, in
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a single mesh, the different discretization techniques in different regions of the
simulation. PESCADO mesher is also not specific to electrostatics.

• An electrostatic solver. In its basic form, it solves the Poisson equation

∇ · (ε(~r)∇U(~r)) = −en(~r), (4.1)

and computes the electric potential U(~r) for a given input density of charge
n(~r) (with ε(~r) the dielectric function). An important feature of this solver
is that it also solves the Helmholtz equation i.e. one can replace the right
hand side of Eq.(4.1) with n(~r) → n(~r) + ρ(~r)U(~r) where ρ(~r) is the local
density of states at the Fermi level. The solver supports arbitrary Dirichlet
and Neumann boundary conditions: on each cell the unknown variable can
either be the potential (Neumann cells, the standard type) or the density
(Dirichlet cells, for these cells the electric potential is an input). The solver
works in one, two and three dimensions.

• A NLH solver. A quantum system is described by its LDOS ρ(~r,E). When
this system is at equilibrium, described by a electro-chemical potential EF (the
Fermi level), one has µ(~r)±eU(~r) = EF , with µ(~r) the chemical potential (the
minus sign applies to electrons, plus for holes). The electronic density is given
by,

n(~r) =

∫ µ(~r)

−∞
ρ(~r,E)dE (4.2)

so that the electrostatic problem becomes the NLH equation,

∇ · (ε(~r)∇U(~r)) = ∓e
∫ EF∓eU(~r)

−∞
ρ(~r,E)dE (4.3)

PESCADO solves this equation robustly, with theoretically guaranteed con-
vergence for any arbitrary input ρ(~r,E), see Section 3.4.1. The main source
of non-linearity in Eq.(4.3) are the cusps of the LDOS, at e.g. band edges.
PESCADO ensures convergence by treating theses cusps explicitly, see chapter
3.

At the time of writing, PESCADO does not provide an API for solving the full
self-consistent quantum problem. More precisely, it does not implement a tool
to calculate the LDOS. This is by design, since there are many techniques to
calculate the LDOS for a given electric field. Each method has its place depending
on the physics being modeled. However, PESCADO has been designed to integrate
seamlessly with the software Kwant [Groth et al. 2014]. Hence performing such
calculations is relatively straightforward. From an initial LDOS (typically the bulk
DOS of the material, in that case the NLH equation corresponds to the Thomas
Fermi approximation), one computes the electric potential. The quantum solver
takes the potential and recomputes the LDOS which is then given as an input to
PESCADO . In our experience, the results are converged after 2-3 plain iterations.
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Note that this is very different from schemes where the self-consistency is performed
on the electronic density n(~r): here the electrostatic solver is aware of the energy
dependance of the quantum system. the self-consistency is performed on ρ(~r,E)

which makes the convergence of the scheme much more robust.
Prototypes of PESCADO were used to calculate compressible and

incompressible stripes in the quantum Hall effect [Armagnat et al. 2019,
Armagnat & Waintal 2020]. The current version of PESCADO has been used
to calculate the quantum hall edge state position in graphene pn junctions
[Flór et al. 2022] and in machine learning reconstruction of scanning gate microscopy
experiments [Percebois et al. 2023]. Also related are simulations of a large data set
of quantum point contact experimental data [Chatzikyriakou et al. 2022].

This chapter is organized as follows. First, we provide a few examples of how
PESCADO works in practice. We start with a simple simulation where we solve the
Poisson equation in 2D. This first example showcases the simplicity of the API. Then
we move on to more complex situations solving Helmholtz, NLH problems and end
with a quantum calculation (conductance in a quantum point contact). After that,
we describe the different features of PESCADO one after the other (geometrical
engine, mesher, electrostatic solver, NLH solver).

4.1 Examples of PESCADO usage

This section contains examples of increasing complexity illustrating the usage of
PESCADO .

4.1.1 Classical electrostatics of quantum nanoelectronic devices

Our first example is a split wire, a geometry inspired from electronic flying quantum
bit experiments [Bäuerle et al. 2018, Bautze et al. 2014]. In the upper panel of Fig.
4.1 is a sketch of a side view along the x − z plane of the device (the system is
infinite along y). A two-dimensional electron gaz (2DEG, in red) is formed at the
interface between a layer of GaAlAs (beige) and a layer of GaAs (not shown). The
green region is implanted with some dopant density (nd = 1023m−3). Three metallic
gates are deposited on the top of the device (in blue). Applying a negative voltage
on these gates depletes the 2DEG underneath them and creates the quantum wire.
With the central gate, one can further split the wire in two and/or allow tunneling
between the two subwires. In this first example we make a very crude approximation
and model the 2DEG with an equipotential U(~r) = 0 purely at the electrostatic level
(Dirichlet boundary condition). This corresponds to an infinitely large LDOS in the
2DEG. This approximation should only be used when the electronic density is
positive as it cannot handle the depletion of the 2DEG. The metallic gates are also
treated with a Dirichlet boundary condition U(~r) = Vg with a unique gate voltage
Vg applied to all of them.

1 from pescado.mesher import patterns, shapes
2 from pescado.poisson import ProblemBuilder
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Figure 4.1: Electrostatics of a split wire. Upper left: side view of the device
simulated in Script 4.1 and Script 4.2. The different regions are the 2DEG (red),
the doped dielectric (green), the undoped dielectric (beige), the metallic gates (blue)
and the air (white). Upper right: Voronoi cells in the central part after meshing.
Middle left: calculated potential in the (x, y) plane. Middle right: potential versus
z along the two cuts A (x = 0) and B (x = 175nm) indicated on the left. Lower
panel: density of charge −en(~r) in the 2DEG.
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3

4 # Define the device regions
5 dielectric = shapes.Box(lower_left=[-1e3, -55], size=[2e3, 160])
6 dopants = shapes.Box(lower_left=[-1e3, 35], size=[2e3, 20])
7 twodeg = shapes.Box(lower_left=[-1e3, -4.9], size=[2e3, 9.8])
8

9 gate = (shapes.Box(lower_left=[-1e3, 105], size=[650, 10])
10 | shapes.Box(lower_left=[-100, 105], size=[200, 10])
11 | shapes.Box(lower_left=[350, 105], size=[650, 10]))
12

13 # Define the simulation region
14 system = shapes.Box(lower_left=[-1e3, -55], size=[2e3, 600])
15 # Define the mesh point spacing
16 rect_pattern = patterns.Rectangular.constant(element_size=(2, 10))
17

18 # Define the ProblemBuilder
19 pb = ProblemBuilder()
20

21 # Make the mesh
22 pb.initialize_mesh(simulation_region=system, pattern=rect_pattern)
23

24 # Define material properti
25 pb.set_metal(region=gate, setup_name=’gate’)
26 pb.set_relative_permittivity(val=12, region=dielectric)
27

28 # Define local boundary conditions for the dielectric and tag it
29 pb.set_dirichlet(region=twodeg, setup_name=’2deg’)
30 pb.set_neumann(region=dopants, setup_name=’dopants’)
31

32 # Discretize the problem
33 pd = pb.finalized()
34

35 # Save the discrete problem
36 pd.save(’Problem_phys_example_2D’)

Script 4.1: This code defines the electrostatic problem for the system shown in
Fig.4.1.

The construction of this system is shown in Script 4.1. The geometry is con-
structed in Lines 4-14. Since all the regions are rectangular, we can use the Box
shape predefined in PESCADO , but we shall see that handling more complex shapes
is not much more difficult. Notice the usage of the or operator | on Lines 9-11 to
combine the three rectangular shapes into a larger one containing the three gates.
Lines 16-22 initialize the Poisson problem and perform the initial discretization (and
unique in this simple example) with a regular grid. Lines 25-30 set the boundary
conditions at each region and the dielectric permittivity value (here ε = 12ε0). Line
33 finalizes the problem, i.e. precomputes the matrix elements needed for actual
simulations. Line 36 saves the finalized problem into a file for future use.

1

2 pd = Problem.load(’Problem_phys_example_2D’)
3

4 # Set the voltage and charge values
5 charge_density_in = pd.sparse_vector(val=1e-4, name=’dopants’)
6

7 voltage_in = pd.sparse_vector(val=-.3, name=’gate’)
8 voltage_in.extend(pd.sparse_vector(val=0, name=’2deg’))
9

10 # Solve
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11 voltage_res, charge_res = pd.solve(
12 voltage=voltage_in, charge_density=charge_density_in)
13

14 # Transform into charge density -nm^{-3}
15 charge_res[charge_res.indices] = (
16 charge_res[charge_res.indices] / pd.volume[charge_res.indices])
17

18 # 2DEG density
19 charge_res[pd.points(name=’2deg’)] = (
20 charge_res[pd.points(name=’2deg’)] * 10 * 1e18)

Script 4.2: Solves the electrostatic problem (poisson equation) for the sketch at the
top of Fig.4.1. It calculates the potential profile and charge shown in the middle
and bottom of Fig.4.1.

We solve the electrostatic problem in Script 4.2. We start by by loading the
problem we have constructed and saved in Script 4.1. Saving/loading the problem
to/from file is not necessary but is a useful feature when the same electrostatic prob-
lem must be solved several times on e.g. different processors. To solve a problem,
one starts by defining the values of the input (see Lines 5-8), here Vg = −0.3V (Line
7), U = 0 at the 2DEG (Line 8) and the dopant density nd = 10−4nm−3 (Line 5,
note that all lengths are in nm in PESCADO ). In this simple example we have
used constant values for the inputs, but it is easy to replace that with spatially
varying values. For instance, one can use functions on the right hand side of the
val=? assignment. Line 11 calls the actual solver. How to change from PESCADO
to more conventional units, c.f. Lines 15-20, will be explained later. The results are
plotted in the middle and lower panels of Fig. 4.1. In the lower panel, we observe
that the electron density actually changes sign. Such a behavior could be possible in
e.g. graphene but not in a 2DEG. This is an indication that one should go beyond
the crude approximation of treating the 2DEG as an equipotential. We shall come
back to this problem in Sec.4.5.2.

4.1.2 Constriction in a 2DEG at the Thomas Fermi level

1

2 import numpy as np
3

4 from pescado.mesher import shapes, patterns
5 from pescado.poisson import ProblemBuilder, Problem
6

7 ############ A) Create the PoissonProblem
8

9 ##### A.0) Define the device regions
10

11 size = np.array([1100, 1400, 1450])
12

13 sim_region = shapes.Box(lower_left=size * -.5, size=size)
14

15 device_region = shapes.Box(
16 lower_left=(size[0] * -.5, size[1] * -.5, -50),
17 size=(size[0], size[1], 200))
18

19 dielectric = shapes.Box(
20 lower_left=(size[0] * -.5, size[1] * -.5, -725),



4.1. Examples of PESCADO usage 73

Figure 4.2: Schematics of the device defined in Script 4.3. On the left top view
of the device. On the right cut along the x-z plane for y = 0. In blue are the
constriction gates, on gray the side gates. In salmon the dielectric layer, in green
the doped dielectric and white air. In red is the 2DEG.

21 size=(size[0], size[1], 790))
22

23 doped_dielectric = shapes.Box(
24 lower_left=(size[0] * -.5, size[1] * -.5, 35),
25 size=(size[0], size[1], 10))
26

27 gas = shapes.Box(
28 lower_left=(size[0] * -.5, size[1] * -.5, -5),
29 size=(size[0], size[1], 10))
30

31 side_gate_left = shapes.Box(
32 lower_left=(-551, size[1] * -.5, 65), size=(50, size[1], 10))
33

34 side_gate_right = shapes.Box(
35 lower_left=(501, size[1] * -.5, 65), size=(50, size[1], 10))
36

37 gate_left = shapes.extrude(
38 (shapes.Delaunay(
39 coordinates=np.array([[-200, 50], [-200, -50], [-30, 0]]))
40 | shapes.Box(lower_left=(-500, -100), size=(300, 200))),
41 axis=2, bounds=np.array([[65], [75]]))
42

43 gate_right = shapes.extrude(
44 ((shapes.Ellipsoid(center=(200, 0), radius=(150, 200))
45 - shapes.Ellipsoid(center=(200, 0), radius=(75, 150)))
46 - shapes.Box(lower_left=(153, 25), size=(1000, 400))
47 | shapes.Box(lower_left=(325, -25), size=(175.9, 50))),
48 axis=2, bounds=np.array([[65], [75]]))
49

50 ##### A.1) Make the mesh
51

52 pb = ProblemBuilder()
53

54 step_coarse = 50
55 coarse = patterns.Rectangular.constant(
56 element_size=(step_coarse,) * 3)
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57 pb.initialize_mesh(simulation_region=sim_region, pattern=coarse)
58

59 step_fine = 10
60 fine = patterns.Rectangular.constant(
61 element_size=(step_fine, ) * 3)
62 pb.refine_mesh(region=device_region, pattern=fine)
63

64 pb.mesh.save(’Mesh_QPC_3D_DISC’)
65

66 ##### A.2) Define the device materials
67

68 # Dielectric
69 pb.set_relative_permittivity(val=12, region=dielectric)
70

71 # Metal
72 pb.set_metal(region=(gate_right | gate_left),
73 setup_name=’gate’)
74 pb.set_metal(region=(side_gate_left | side_gate_right),
75 setup_name=’side_gate’)
76

77 ##### A.2) Define the Boundary Conditions
78 pb.set_flexible(region=gas, setup_name=’gas’)
79

80 pb.set_neumann(region=doped_dielectric, setup_name=’dopant’)
81

82 pd = pb.finalized()
83

84 pd.save(’Problem_QPC_3D_DISC’)

Script 4.3: define the electrostatic problem associated with the constriction shown
in Fig.4.2

In our second example, we will increase the complexity of the problem in two
ways. First, we will treat the 2DEG properly, at the Thomas Fermi level. Instead
of using Dirichlet boundary condition in the 2DEG as in the previous example, we
will use our NLH solver with ρ(~r,E) = θ(E)ρ0. Here θ(E) is the Heaviside function
and ρ0 = m∗e/(π~2) the bulk density of states of a 2DEG, with m∗e = 0.067me the
effective electron mass. The crucial aspect here is not that ρ0 is finite (as opposed to
infinite when the 2DEG is treated at the Dirichlet level) but that ρ(~r,E < 0) = 0,
i.e. the 2DEG can actually get depleted; and depleted regions do not screen the
electric field anymore.

Second, we will consider a three dimensional geometry. The device layout is
shown in Fig.4.2 : on the left is a top view showing the two metallic gates (in
blue) that form a constriction with a pointed shape for the left gate and a question
mark shape for the right gate. The gray region also correspond to (side) gates, they
prevent an abrupt drop of density on the edges.On the right of Fig.4.2 is a side view
that shows the different layers (2DEG in red, dopants in green, metallic gates in
blue on top). Note that this figure is easy to generate using PESCADO , as we shall
see later in Section 4.4.5. The device of Fig.4.2 is a sort of QPC showing quantized
conductance plateaus as we deplete the electrons underneath the gate and force the
current to flow in the constriction region.

Script 4.3 defines the geometry of the problem. There we use more advanced
Shapes to describe the various regions: in addition to the shapes.Box (a rect-
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angular box), we make use of shapes.Delauney (take a list of coordinates and
construct a convex polyhedron from it), shapes.Ellipsoid (an ellipsoid shape),
shapes.extrude (extrudes a 3D shape from a 2D one) as well as arithmetic oper-
ations between Shapes (minus sign (−) to remove some parts, or (|) to glue two
parts together).

The problem needs to be discretized with a mesh size a smaller than the charac-
teristic length scales of the problem. As characteristic length scales we have those
given by the geometry (typically ≈ 70nm, the gate-2DEG distance) and the Fermi
wave length λF =

√
2π/ns ≈ 88nm. We use a coarse discretization with rectangular

elements of size 50 × 50 × 50nm3 except at the active device region, where we use
a fine mesh of size 10× 10× 10nm3. Using two different meshes instead of just one
fine mesh provides a reduction of the number of cells from roughly 2. 106 to 4. 105,
which provides a significant gain in simulation time. The rest of the script assigns
the cell within each region to a specific type. A metal type cell is one with Dirichlet
boundary condition and an infinite dielectric constant. A Neumann type cell is the
default, it models a dielectric with some possible charge density. A Flexible type
cell is used for the active 2DEG region for the Helmholtz solver, see Section 4.4.6.

1

2 import copy
3 import pickle
4 import numpy as np
5 from scipy import constants
6

7 from pescado.poisson import Problem
8 from pescado.tools import SparseVector, meshing
9 from pescado.self_consistent import problem as sp_problem

10

11 ############ B) Load the Problem and define the Discrete ILDOS
12

13 #### B.1) Load the Problem
14

15 pd = Problem.load(’Problem_QPC_3D_DISC’)
16

17 #### B.2) Define the ILDOS
18

19 def disc_ildos(surf):
20

21 dos = (1 * (0.067 * constants.m_e)
22 / (np.pi * constants.hbar ** 2))
23 dos *= 1e-18 * surf
24 dos *= constants.elementary_charge
25

26 coord = np.empty((3, 2), dtype=float)
27 coord[:, 0] = np.array([-1, 0, 1])
28 coord[:, 1] = np.array([0, 0, dos])
29

30 return coord
31

32 ildos = [disc_ildos(surf=10 * 10),]
33

34 gas_idx = pd.points(name=’gas’)
35

36 site_ildos = SparseVector(
37 values=np.zeros(len(gas_idx)), indices=gas_idx, dtype=int)
38
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39 diff_vol_idx = gas_idx[
40 (np.abs(pd.volume[gas_idx] / 10 - 10**2) > 1e-10)]
41

42 for idx in diff_vol_idx:
43 ildos.append(disc_ildos(surf=pd.volume[idx] / 10))
44 sites_ildos[idx] = len(ildos) - 1
45

46 ############ C) Define the SelfConsistent Problem
47

48 ###### C.0) Initialize an instance of ScrodingerPoisson
49

50 sp_problem = solver.thomas_fermi(
51 ildos=ildos, sites_ildos=site_ildos, poisson_problem=pd)
52

53 ###### C.1) Solve for a given gate voltage / dopant configuration
54

55 u_d = pd.sparse_vector(val=-.274, name=’gate’)
56 u_d.extend(pd.sparse_vector(val=-1., name=’side_gate’))
57

58 q_n = pd.sparse_vector(val=4 * 1e-4, name=’dopant’)
59

60 poisson_input = {’voltage’: u_d, ’charge_density’: q_n}
61

62 initial_guess = SparseVector(
63 values=np.zeros(len(gas_idx)), indices=gas_idx, dtype=float)
64

65 sp_problem.solve(
66 poisson_input=poisson_input,
67 initial_guess=initial_guess)
68

69 qcharge_btf = sp_problem.quantum_charge(iteration=-1)
70 chem_pot_btf = sp_problem.chemical_potential(iteration=-1)

Script 4.4: How to solve the thomas fermi problem for the 3D PESCADO problem
of Fig. 4.2 and the 2DEG bulk ILDOS

Script 4.4 performs the self-consistent calculation. We need to provide
PESCADO with the ILDOS inside the 2DEG. The ILDOS is defined as n(~r, µ) ≡∫ µ
−∞ ρ(~r,E)dE which becomes, for our simple bulk DOS, n(~r, µ) = ρ0µθ(µ). Since
this ILDOS is piecewise linear, we will use our solver dedicated to this particular
case. It takes as an input a list of values of µ (ildos[:,0]) and a corresponding list
of values of n(µ) (ildos[:,1]).

Fig.4.3 shows the calculated potential (left) and electronic density (right) inside
the 2DEG. At this gate voltage (Vg = −0.274V ), the 2DEG is depleted beneath the
gate so that the current only flows through the constriction.
4.1.3 Conductance calculation - going beyond Thomas Fermi

To proceed, we need to make some quantum calculations. We do so using the
Kwant package [Groth et al. 2014]. We describe the 2DEG with a simple effective
mass Hamiltonian given by

H =
p2
x + p2

y

2m
− eU(x, y) (4.4)

which we discretize on the same grid as the electrostatic problem. We only treat
the part referred to as the quantum active region, zone delimited by the red square
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Figure 4.3: Result of the Thomas Fermi calculation for the device of Fig.4.2. Left
panel: electric potential, right panel: electronic density. Top panels: cut in the x-y
plane at the 2DEG region (z = 0nm). Middle panels, one-dimensional cut along the
black line shown in the top panels. Lower panels: zoom inside the quantum active
region (square region delimited by the red line).
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in in Fig.4.3. The scripts for the quantum calculation are given in supplementary
material. From the calculation of U(x, y) performed in Section 4.1.2, we can already
compute the conductanceG(Vg) versus gate voltage Vg. The results are shown in Fig.
4.4. We recover the expected conductance plateaus which are gradually smeared out
as one opens the constriction (an experimental curve would look very similar).

Kwant also allow us to recalculate the ILDOS from a given potential profile
U(x, y). There are various methods to do so, here we use the Kernel polynomial
method (KPM, see Appendix B and kwant.kpm) which has a good balance between
speed and accuracy. Then the self-consistent potential is recalculated from the new
ILDOS. We observe that the potential and density are only slightly affected by
this step. The conductance G(Vg), which is more sensitive, is essentially shifted by
around 50mV but its shape is barely affected. One quantum update is sufficient
to obtain a (visually) converged result. There is very little noticeable difference
between the conductance obtained after one quantum iteration (black) and three
(green), c.f. Fig. 4.4.

This concludes the introductory part of this chapter. We shall now go back from
the very beginning and slowly go through the different concepts of PESCADO . As
we do so, we shall introduce the API.

4.2 Describing geometries within PESCADO : a
lightweight geometrical engine

The first feature an electrostatic solver must provide — actually that any partial
differential solver must provide — is a way to describe the volumes, surfaces, lines
and points that define the geometry of the problem one wants to solve. This in-
cludes describing the electrostatic gates, regions with different dielectric constants
or dopant concentration, quantum region of interest...This is the role of the “ geo-
metrical engine ”.

PESCADO geometrical engine is based entirely in the description of the volumes.
The surfaces are defined implicitly through the boundaries between the different vol-
umes (and lines are the intersections of different surfaces). This is in contrast to
other approaches where one defines the low dimensional objects first. These latter
approaches are suitable when the solution of the problem is very sensitive to the
precise nature of the low dimensional objects. For instance, in magnetism it is im-
portant that a disk object is precisely described as a disk with a circular boundary
otherwise the numerical solution might show some spurious anisotropy. The elec-
trostatic problem is however not very sensitive to these details. The description by
volumes used in PESCADO has the advantage of being very versatile as well as
easy to use and parametrize. Note that PESCADO simulations work in one, two
and three dimensions but we use the vocabulary of 3D objects everywhere. In d

dimensions, we use the world "volume" for d dimensional object, "surface" is a d−1

dimensional object, and "line" for a d− 2 object. Hence, an object like e.g. a disk
in 2D will be called a volume.
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Figure 4.4: Upper panels: electric potential (left) and electronic density (right) in
the 2DEG at y = z = 0nm (same cut as in Fig.4.3) for Vg = −0.274V . bottom panel:
conductance G versus gate voltage Vg showing the quantized conductance plateaus.
The curves in red correspond to a potential U(x, y) calculated at the Thomas-Fermi
approximation while the curves in black correspond to a single quantum update (see
text). Those in blue and green correspond to, respectively, two and three quantum
updates.
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4.2.1 The concept of "shape"

We define a volume, hereafter referred to as a “region” simply by a function f(~r)

such that f(~r) = 1 when ~r is inside the region and f(~r) = 0 when the point ~r is
outside. The user simply needs to define various Python functions and associate
each of them to a region and that’s it, one has defined the geometry of the problem.
For instance, to describe a spherical electrostatic gate centered in ~r0 and of radius
R, one would define the function f(~r) = θ(R− |~r− ~r0|) where θ(x) is the Heaviside
step function.

In practice this concept is implemented using the Python class Shape. A “
shape” (an instance of the class Shape) is a thin wrapper around the above mentioned
function. For implementation reasons, a shape also needs to know, at least vaguely,
where the volume is. This becomes handy later when one tries to mesh the system
to know where to generate points. Hence, a shape also contains a “ bounding box”
(a rectangle in 2D, a rectangular parallelepiped in 3D) that encapsulates the region
of interest. Strictly speaking, the function f(~r) is the intersection of the function
provided by the user and the bounding box.

The shapes submodule contains many tools to create, manipulate and combine
shapes. One can simply create a shape by providing an arbitrary function f(~r) and
the bounding box (defined by the lower left corner and upper right corner of the
rectangular parallelepiped). Common geometries such as rectangles, triangles, or
circles can be created with their own methods for convenience. A given shape can
also be rotated, translated or dilated. Last, several shapes can be combined to form
a new shape: the logical and operator provides the intersection of two shapes, the
logical or provides the union and one can also remove a shape from another. Using
these tools, it is usually a matter of very few lines of code to define a given region.

4.2.2 Examples of defining shapes

Let us illustrate the above concepts by defining a few shapes within PESCADO . The
different regions that we will construct are shown in Fig.4.5 while the corresponding
script is shown in Script.4.5.

Example I creates a shape by providing explicitly the function f(~r), see Script.4.5
lines 6 to 14 and the resulting shape in Fig.4.5 panel I. This shape corresponds to
a rectangle from which we “subtract” two disks. The bounding box is an array
with the format [[xmin, ymin], [xmax, ymax]]. Note that the function f(~r) must be
vectorized for efficiency reasons: its input is a 2-dimensional (numpy) array whose
different columns correspond to the different coordinates x,y and z (the number of
coordinates fix the dimension of the problem) and the different rows correspond to
different point ~r1, ~r2, ~r3.... We refer to such a 2-dimensional (numpy) array as a
“set of points”. The Python function f(r) takes a set of points and return a one-
dimensional numpy array of booleans that indicate which point is in (1) or out (0)
of the corresponding region.

1 import numpy as np
2 from pescado.mesher import shapes
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3

4 # Example I: providing f(r) explicitly
5 def f(r):
6 x, y = r[:, 0], r[:, 1]
7 circ_1 = (x ** 2 + (y + 5.5) ** 2) >= 5 ** 2
8 circ_2 = (x ** 2 + (y -5.5) ** 2) >= 5 ** 2
9 rect = (np.abs(x) <= 5 / 2) * (np.abs(y) <= 10 / 2)

10 return circ_1 * circ_2 * rect
11

12 bounding_box = np.array([[-5, -5], [5, 5]])
13 region = shapes.General(func=f, bbox=bounding_box)
14

15 # Example II: a rectangle
16 rectangle = shapes.Box(lower_left=[-14, -4], size=[12, 8])
17

18 # Example III: an ellipse
19 ellipse = shapes.Ellipsoid(center=[0, 0], radius=(4.2, 2.75))
20

21 # Example IV: a convex polyhedron
22 triangle = shapes.Delaunay(coordinates=np.array(
23 [[-8, -5], [-2, -5], [-5, 5]]))
24

25 # Example V: rotation of a shape
26 rotated_triangle = shapes.rotate(
27 shape=triangle, angle=3 * np.pi / 2,
28 axis=(0, 0, 1), origin=[-5, 0])
29

30 # Example VI: dilatation of a shape
31 dilated_rectangle = shapes.dilatate(
32 rectangle, dilatation=(0.4, 0.2), center=[-8, 0])
33

34 # Example VII: substraction of one shape from another
35 lead_l = rotated_triangle - dilated_rectangle
36

37 # Example VIII: reflection around the y-axis
38 lead_r = shapes.reflect(
39 shape=lead_l,
40 origin=np.array([0, 0]), normal=np.array([1, 0]))
41

42 # Example IX: combining various shapes
43 operations = (rectangle | lead_l | lead_r) - sphere

Script 4.5: Tutorial ilustrating how to define the 2D regions of Fig.4.5 using instances
of Shape. Lines 7-30 show how to define standard shapes (regions I-IV). Lines 34-56
ilustrate some of the operations that can be performed to and in between instances
of Shape (regions V-IX).

Examples II, III and IV use convenient methods to build respectively a rectangle,
an ellipse and a (arbitrary complex) convex polyhedron (here a triangle). For the
convex polyhedron, the input of the method is a list of the points ~r1, ~r2... that form
the vertices of the polyhedron. This method is quite versatile to build relatively
complex shapes.

Examples V, VI and VIII showcase methods that transform a shape into an-
other using respectively rotations, dilatations and reflection with respect to an axis.
Shapes can also be translated and extruded (not shown).

Examples VII and IX show how several shapes may be combined to form a new
shape. The “and” operator a&b performs the intersection between two shapes (not
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Figure 4.5: Regions defined in the Script.4.5 above. Regions I-IV are obtained
using standard shapes. Regions V to VIII are obtained by applying geometrical and
logical operations to regions II-IV. Region IX is obtained by applying logical and
arithmetic operations between regions II, III, VII and VIII.
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shown), the “or” operator a|b performs the union (see IX), the subtraction a − b
remove the second shape b from the first a (see VII and IX and the “xor” operator
is defined as a ∧ b = a|b− a&b.

Using a combination of all the methods shown above, one can quickly build
any desired shape. The examples above were given in two dimensions. The same
methods also work in one and three dimensions, one just need to adapt the number
of components to the value of the dimension, see the examples X-XIII in Script.4.6.

To use the function f(~r) of a shape, one simply calls it with a “set of points” as
argument (in the form of a two dimensional numpy array as described in example I)
and the shape returns a one dimensional numpy array of zeros and ones. In example
XIV, the call to pyramid(pts) returns an array indicating which of the points in pts
belong to the pyramid. Indexing pts with this array (pts[pyramid(pts)]) returns the
set of points that belong to the pyramid.

1

2 import numpy as np
3 from pescado.mesher import shapes
4

5 # Example X: a one dimensional box (a segment)
6 pescado.mesher.shapes.Box(lower_left=[0, ], size=[5, ])
7

8 # Example XI: a three dimensional box
9 shapes.Box(lower_left=[-14, -4, -2], size=[12, 8, 5])

10

11 # Example XII: a 3D three dimensional ellipse
12 shapes.Ellipsoid(center=[0, 0, 0], radius=(4.2, 2.75, 3))
13

14 # Example XIII: a 3D pyramid
15 pyramid = shapes.Delaunay(coordinates=np.array(
16 [[-8, -5, 0], [8, -5, 0], [-8, 5, 0], [8, 5, 0],
17 [0, 0, 10]]))
18

19

20 # Example XIV: how one uses the f(r) function of a shape
21 pts = np.array([[-8, -5, 2], [-4, -3, 1], [-5, 5, 0],
22 [0, 0, 3], [0, 0, -2]])
23

24 pts_inside_pyramid = pts[pyramid(pts)]

Script 4.6: Line 7 show how to create a 1D box. Lines 5-13 shows three examples
on how to create 3D regions using instances of Shape. Lines 18 to 21 shows how to
use an instance of Shape to obtain the coordinates inside the region it describes.

4.3 A lightweight finite volume mesher.

Once the continuum geometry has been defined, the second feature a electrostatic
solver must provide is some way to discretize the problem. PESCADO implements
a finite volume discretization scheme, i.e. the volume of the simulation is discretized
into a set of small cells. Finite volume is particularly well suited for the electro-
static problem since it allows one to conserve the charge exactly irrespectively of
the coarseness of the discretization (the main source of errors in an electrostatic
simulation). In fact, for any discretization, however coarse, the resulting discretized
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Figure 4.6: Example of discretization with finite volumes. Left: a 2D problem
in the continuum with two regions of interest (green and blue). Right: Voronoi
diagram obtained after discretization. The black circles indicate the mesh points.
The Voronoi cells are separated by thin black lines. This mesh is generated by
Script 4.7. The red line indicates a region for which a zoom is shown in Fig.4.7

problem is a valid discrete electrostatic problem defined in terms of a lamp system
of capacitors. Hence the results are always guaranteed to be physical (although to
be precise, one must also use a fine enough grid).

The small cells used in PESCADO are “Voronoi cells”. One discretizes the geom-
etry by defining a set of mesh points ~ri which are the centers of the Voronoi cells. A
voronoi cell Ci centered around a given point ~ri consists of all the points ~r that are
closer to ~ri than to any other mesh point: ~r ∈ Ci if and only if ∀j 6= i|~r−~rj | > |~r−~ri|.
In 2D, a Voronoi cell Ci is a polyhedron separated from its neighbors Cj by the
perpendicular bisector of (~ri, ~rj); it trivially extends to 3D. There exists standard
algorithms that can construct a set of Voronoi cells from the list of mesh points ~ri (as
implemented in e.g. the Qhull library). However this construction can be memory/-
computationally intensive for large systems. The approach taken in PESCADO is
to precalculate the Voronoi cells for some regular set of points (these will be referred
as a “pattern”, see below) and only use the explicit Voronoi construction to combine
several patterns in order to e.g. refine the grid in a region of particular interest.
This strategy allows one to construct a wide variety of regular meshes (rectangular,
spherical etc ...) and meshes with a wide variety of voronoi cells (within the same
mesh, different discretization steps and voronoi cell shapes) at a relatively low com-
putational cost. An example of Voronoi diagram used in PESCADO is shown in
Fig. 4.6. On the left of Fig. 4.6 is the continuum geometry of the problem, a rect-
angular box with two colored regions: a blue circle and a green rectangular “belt”.
For instance, each region could be e.g. doped dielectric, a 2DEG where we would
solve the quantum problem or metallic regions described by an equipotential. On
the right of Fig. 4.6 is the Voronoi diagram after discretization. The mesh points
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are represented as black circles. Each mesh point is surrounded by its Voronoi cell;
different Voronoi cells are separated by thin black lines. The Voronoi cells are sim-
ple squares when the mesh points are themselves on a square lattice, e.g. close to
the green region or inside the blue region. At the intersection between two regular
regions, the Voronoi cells are more complex. Fig. 4.6 shows a typical example where
a relatively coarse grid is sufficient in the bulk of the system but one requires a finer
resolution in some region of interest (here the blue region).

4.3.1 The concepts of pattern and mesh

The PESCADO mesher uses two concepts, implemented in two different python
classes: Mesh and Pattern.

An instance of Mesh represents the current discretization of a system. It is
defined by the set of coordinates of the mesh points ~ri. Internally, a mesh also keeps
track of the Voronoi diagrams associated to the mesh points. In particular, it can
provide the list of neighbors of a given point and the corresponding distances or
surfaces.

A pattern (an instance of Pattern) is the primary way to define a mesh in
PESCADO . A pattern is a precalculated Voronoi diagram in a common situa-
tion, i.e. for a common voronoi cell shape or grid, e.g. squared. The simplest
(and most most common) pattern used in PESCADO is the rectangular pattern
(patterns.Rectangular) where the ~ri = (xi, yi, zi) are positioned on a regular
rectangular grid, xi = nax, yi = may and zi = paz where (n,m, p) are integers
and (ax, ay, az) the discretization step along the three axis. For such pattern, the
Voronoi cells are simple rectangles. The main advantage provided by a pattern is
the ability to construct a mesh from the said pattern and a shape: the set of mesh
points is just given by the points of the pattern that belong to the shape.

PESCADO possesses a powerful tool that allows one to build meshes that are
more complex than simple patterns: the ability to merge two meshes together.
Last, a special kind of pattern, the finite pattern (instances of of patterns.Finite)
builds a pattern from an arbitrary list of points ~ri (using the scipy python API to the
Qhull library). Finite patterns allows one to build fully general patterns, including
irregular ones, but can be computationally costly and are rarely needed in practice.

The rest of this section is organized as follows. We first present, in Section 4.3.2,
the minimum python script that was used to generate the Voronoi diagram shown
in Fig. 4.6. Section 4.3.3 provides some background material on Voronoi Diagrams.
Section 4.3.4 goes through the API for accessing the different properties of the
Voronoi diagram once it has been constructed. Section 4.3.5 shows some advanced
functionalities to build more complex Voronoi diagrams. Section 4.3.6 describes the
algorithm used internally for merging two meshes. Finally, Section 4.3.7 contains
implementation details of the Pattern class. In particular, it explains how a user
may define new patterns.
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4.3.2 A simple example of mesh construction.

1 from pescado.mesher import shapes, patterns, Mesh
2

3 # 1. Define the coarse mesh region and spacing
4 coarse = patterns.Rectangular.constant(element_size=(2, 2))
5 box = shapes.Box(lower_left=[-20, -20], size=[40, 40])
6 mesh = Mesh(simulation_region=box, pattern=coarse)
7

8 # 2. Refine the mesh in the fine mesh region
9 fine = patterns.Rectangular.constant(element_size=(0.5, 0.5))

10 sphere = shapes.Ellipsoid.hypersphere(center=(0, 0), radius=5)
11 mesh.refine(region=sphere, pattern=fine)
12

13 # 3. Save the mesh
14 mesh.save(’mesh_minimal_example’)

Script 4.7: Minimal example to construct an irregular mesh using PESCADO .

Script 4.7 generates the mesh shown in Fig.4.6. The mesh consists of a fine
spherical region inside a larger and coarser rectangular region. The construction
is done in two steps. First, one defines the pattern of the coarse region (coarse)
and the shape defining the full simulation box (box ). Here element_size gives the
discretization step of the rectangular pattern, (ax, ay) = (2, 2). The initial mesh
(mesh) is directly obtained from coarse and box.

In the second step, one defines a finer pattern (fine, now (ax, ay) = (0.5, 0.5) is
four times smaller) and the associated shape where the refinement will be performed
(sphere). The refine method of mesh performs all the important calculations: (i) it
removes all the existing mesh points inside sphere, (ii) it adds all new mesh points
from the fine pattern that are inside sphere and (iii) it updates the Voronoi diagram
of mesh. For most applications it is sufficient to call the refine method once but it
can be called as many times as needed. Note that in practice the refinement is done
with the intersection of sphere and the simulation_region (which is in fact box ), as
the latter cannot be changed once mesh is defined.

4.3.3 More on Voronoi Diagrams

A voronoi diagram is defined implicitly by its set of mesh points {~ri}. A point ~r
belongs to the Voronoi cell Ci of mesh point ~ri if it is closer to ~ri than to any other
point ~rj ∀j 6= i, i.e. verifies [

~r − ~ri + ~rj
2

]
· (~ri − ~rj) > 0 (4.5)

In other words, a Voronoi cell is a Convex polyhedron separated from its neighbors
by intersection of planes (defined by Eq.(4.5) with an equal sign). Fig. 4.7 shows
an example of a Voronoi cell Ci (in gray) centered on a mesh point ~ri (in green).
The neighbors of ~ri, in the Voronoi sense, are the mesh points ~rj (in red) whose
Voronoi cell touch Ci (have a finite surface of contact with Ci called a ridge). The
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Figure 4.7: Zoom of the Voronoi diagram of Fig.4.6 (inside the rectangle delimited
by the red line). The voronoi cell Ci of the point ~ri (in green) is shown in gray. The
red points are the points rj that are the neighbors of the mesh points ~ri. The blue
points are the vertices of Ci that define the ridges (dark red lines) that separate Ci
from its neighbors Cj .
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borders of the Voronoi cell are defined by the vertices (blue points) which allow one
to reconstruct its ridges (red lines in Fig.4.7). The set of all voronoi cells pave the
simulation space.

Calculating a Voronoi diagram from the mesh points {~ri} amounts to computing
(i) the list of neighbors j of each mesh point i and (ii) the Voronoi cells {Ci}. Each
cell is further described by (a) its set of vertices and (b) its set of ridges, each
ridge being an ordered subset of the vertices. There are efficient algorithms for the
construction of the voronoi diagram from an arbitrary set of points {~ri}. PESCADO
relies on the Qhull library for this purpose [Barber et al. 1996]. However, even these
efficient algorithms can be computationally expensive (time wise or memory wise).
Hence, the strategy of PESCADO is to rely on these algorithms only for small
subsets of the mesh points, as we shall see in Section 4.3.6.

4.3.4 Extracting the Voronoi diagram from a mesh

Once a mesh has been constructed it can be used to recover the information needed
to construct the discretized electrostatic problem, e.g. the list of neighbors of a
given site, the distance to a given neighbor, the volume of the cell... This section
illustrates the API for extracting such information. Each mesh point ~ri is labeled by
its index i, index which is also used to label the Voronoi cells. The API facilitates
accessing these indices.

Let’s consider the examples shown in Script 4.8. We suppose that the mesh of
Fig. 4.6 has already been constructed with Script 4.7.

There are two methods for selecting a set of mesh points from a mesh, either
through a shape or by giving the coordinates explicitly. Let us consider the first
method. Line 10 of Script 4.8 defines the shape corresponding to the red region of
Fig.4.6. The method plot() used in line 13 produces a plot of the selected region
(the shape zoom). The output looks much similar to Fig.4.7 - albeit with fewer
details. To obtain the list of the indices (more precisely a numpy array) of the mesh
points inside the shape zoom, one uses the method inside() as in Line 18. Once this
list of indices (ele_in_zoom) has been obtained, one can get: (i) the coordinates
of the mesh points using coordinates() (a numpy array of ~ri with one column per
dimension, c.f. line 19); (ii) the indices of the neighbors using neighbors() (a list
of numpy array of indices, c.f. line 22); (iii) the surfaces separating the mesh point
from its neighbors using surface()(a list of numpy array of the surfaces, c.f. line
27); (iv) the distances to the neighbors using distance (a list of numpy array of
distances, c.f. line 28) and (v) the volumes of the cell using volume (line 29). More
explicitly i = ele_in_zoom[k] is the index of the (k + 1)th mesh point inside zoom,
and j = neig_zoom[k][m] is the index of the (m+1)th neighbor of i (with no specific
rule for ordering them). The surface that the Voronoi cells of indices i and j have
in common is given by surf_zoom[k][m].

The second selection method is to provide explicitly the coordinates of the points
one is looking for. An example is provided line 35 and 36. The method points()
returns the indices associated to a numpy array of coordinates. Here there is a
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unique point of coordinate ~ri = (−6,−2), the green point of Fig.4.7.
Besides the basic properties of the Voronoi cell (surface, distances, volumes and

neighbors one can also retrieve the entire Voronoi cell, described by its vertices and
ridges. This is done line 41 using the voronoi() method, it returns an instance of
VoronoiCell for a single mesh point index. The voronoi cell (vor_ce) allows one
to access the basic mesh properties: the volume, surfaces and distances; but also
more detailed information: the list of the vertices of the cell (line 44) and the ridges
(line 45, the vertices of each ridge, so a list of list of vertices).

1

2 import numpy as np
3 from pescado.mesher import shapes
4

5 import matplotlib.pyplot as plt
6

7 # Accessing the properties of a mesh
8 # Method 1: the mesh points are defined by a shape
9 # Define the region of interest

10 zoom = shapes.Box(lower_left=[-9, -5], size=[5.5, 6])
11

12 # Plot a region of mesh (only for 2D meshes)
13 mesh.plot(
14 regions=[zoom, ], c=’g’, mew=5, ratio=0.7, lw=2)
15 plt.show()
16

17 # Select the elements inside it and get its coordinates
18 ele_in_zoom = mesh.inside(zoom)
19 coord_in_zoom = mesh.coordinates(ele_in_zoom)
20

21 # Find its neighbors
22 neig_zoom = mesh.neighbors(ele_in_zoom)
23 problem_builder_tuto
24 # Here surface() and distance() also return neig_zoom.
25 # They correspond to the mesh point index sharing
26 # the surface / distance with the element in ’points’
27 surf_zoom, neig_zoom = mesh.surface(points=ele_in_zoom)
28 dist_zoom, neig_zoom = mesh.distance(points=ele_in_zoom)
29 volumes_zoom = mesh.volume(points=ele_in_zoom)
30

31 # Method 2. the mesh points are defined by their coordinates
32 # Lets focus on the central point ’i’. It has the coordinates
33 # (-6, -2), lets select it.
34 central_coord = np.array([[-6, -2]])
35 central_ele = mesh.points(coordinates=central_coord)[0]
36

37 # Lets find its first neighbors
38 neig_ce = mesh.neighbors(central_ele)
39

40 # Lets recover its voronoi cell
41 vor_ce = mesh.voronoi(central_ele)
42

43 # Then its properties
44 vertex_ce = vor_ce.vertices
45 ridges_ce = vor_ce.ridges
46

47 # Acess a cell volume, distances and surfaces
48 volumes_ce = vor_ce.volume
49 # With one specific neighbour
50 surfaces_ce = vor_ce.surface(neig_idx=[0, ])
51



90 Chapter 4. PESCADO : An open source software

52 # Or all of its neighbors
53 distances_ce = vor_ce.distance(neig_idx=np.arange(len(neig_ce)))

Script 4.8: API to recover the mesh properties from a Mesh instance.

4.3.5 Advanced mesh construction

This section describes three more advanced features of mesh construction beyond
the simple one used to build Fig.4.6. The first feature allows one to control in more
detail the meshing at the boundary between a coarsely meshed region and a refined
one - c.f. Script.4.9. The second feature shows how to use Rectangular patterns
with a discretization that varies along the different dimensions - c.f. Script.4.10.
The last feature is the Finite pattern, it allows one to construct a mesh using an
arbitrary set of points - c.f. Script.4.11. The Finite pattern construction time is
long and requires considerable memory, hence it should only be used if the required
mesh eludes construction by other means.

Figure 4.8: Three advanced features for mesh construction. (I) illustrates the
use of the refine() method, c.f. Script.4.9. Left: nth=0 (default), Right: nth=2
(the second nearest neighbors of the refined mesh are also added). (II) Illustrates a
rectangular mesh with a continuously varying mesh point spacing, c.f. Script.4.10.
(III) illustrates a hexagonal voronoi cell mesh built using Finite, c.f. Script.4.11.

Script.4.9 shows a typical situation where one first defines the simulation region
and meshes it somewhat coarsely (lines 6-8). Then one refines the mesh close to
a region of interest (lines 11-12). The mesh constructed in this example is shown



4.3. A lightweight finite volume mesher. 91

Figure 4.9: Two advanced features for amorphous mesh construction. (I) Illustrates
an amorphous mesh created from a set of coordinates using the Finite pattern, c.f.
Script.4.12. The green points are those inside mesh_amorhpous. The red points are
the first neighbors of the green points according to amorphous_finite. (II) Illustrates
an amorphous mesh (brown points) embedded within a larger rectangular mesh.
To create this mesh refine the region occupied by the amorphous mesh with the
brown points. This is done by calling the refine() method with the brown points
coordinates, c.f. Script.4.13.

on the left of Fig.4.8-I. The shape fine_reg is chosen such that when filled with
fine points it contains a single row of points along the x-axis. See Fig.4.8-I left, it
corresponds to using the refine() method as in lines 15-17. Notice that the voronoi
cells in the fine_reg region have different shapes depending on the x coordinate.
This might not be desirable in the simulation as it adds some sort of disorder due to
the irregularity of the cells. To circumvent this issue, one may use a larger shape for
the refined region (larger fine_reg). Alternatively, one may set the nth argument
of the refine() method; this argument adds the nthth neighbors of the points to
the refined region. In line 22 of Script.4.9 nth=2. The resulting mesh extends the
refinement region by adding the first and second neighbors of the points that are
inside fine_reg to the mesh (according to the fine pattern). The result is shown on
the right side of Fig.4.8-I.

1

2 import numpy as np
3 from pescado.mesher import shapes, patterns, mesh
4

5 # Define the coarse pattern
6 coarse = patterns.Rectangular.constant((6, 6), center=(0, 0))
7 simulation_region = shapes.Box(
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8 lower_left=[-90, -20], size=[180, 40])
9

10 # Define the fine pattern
11 fine = patterns.Rectangular.constant((3, 1), center=(0, 0))
12 fine_reg = shapes.Box(lower_left=[-70, -0.9], size=[140, 1.8])
13

14 # Refine the coarse pattern without using the ’nth’ parameters
15 mesh_s_ext = mesh.Mesh(
16 simulation_region=simulation_region, pattern=coarse)
17 mesh_s_ext.refine(region=fine_reg, pattern=fine)
18

19 # With the ’nth’ parameter
20 mesh_wext = mesh.Mesh(
21 simulation_region=simulation_region, pattern=coarse)
22 mesh_wext.refine(region=fine_reg, pattern=fine, nth=2)

Script 4.9: The nth parameter in refine() ensures all voronoi cells inside fine_reg
are of the shape defined by the fine pattern.

Script.4.10 shows how one may construct a Rectangular pattern with a non-
constant discretization step. In general a Rectangular pattern has its points ~r
labeled by two integers n and m (in 2D, 3 in three dimensions): ~r = (xn, ym) with
xn and ym arbitrary sequences of floats. The tuple (n,m) is referred to the tag of
the pattern point ~r. A simple choice xn = an provides a constant discretization
step but one may use an arbitrary sequence. To define such a generalized pattern,
one must provide both the sequences xn, ym and their inverses n(x), m(y) defined
as xn(x) = x and ym(y) = y (or equivalently, n(xn) = n = m(yn)). This two way
definition x↔ n (y ↔ m) is redundant but technically necessary since the pattern
is defined for any (arbitrarily large) shape.

An example of such a construction with an exponentially increasing discretiza-
tion step as one gets away from the center (with two different exponential along the x
and y directions) is shown in Script.4.10. The resulting mesh is drawn in in Fig.4.8-
III. Here xn is ticks_X, ym is ticks_Y, n(x) is tag2ticks_X andm(y) is tag2ticks_Y.
The Rectangular object is initialized by providing its function [xn, ym] (the ticks
parameter) and its inverse [n(x),m(y)] (the tag2ticks parameter). Notice the use
of np.round in lines 12 and 24, it ensures the correct float to integer conversion.

1

2 import numpy as np
3 from pescado.mesher import shapes, patterns, mesh
4

5 # Define the ticks function along x
6 def ticks_X(tag):
7 x = np.sign(tag) * np.abs(tag) ** 1.25 / 5
8 return np.around(x, 2)
9

10 # Define the inverse ticks function along x
11 def tag2ticks_X(x):
12 tag = np.round(
13 np.sign(x) * (np.abs(x) * 5) ** (1/1.25),
14 decimals=0)
15 return (tag).astype(int)
16

17 # Define the ticks function along y
18 def ticks_Y(tag):
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19 x = np.sign(tag) * np.abs(tag) ** 1.4 / 5
20 return np.around(x, 2)
21

22 # Define the inverse ticks function along y
23 def tag2ticks_Y(x):
24 tag = np.round(
25 np.sign(x) * (np.abs(x) * 5) ** (1/1.4),
26 decimals=0)
27 return (tag).astype(int)
28

29

30

31 # Define the Pattern and initialize the Mesh
32 fin_down = patterns.Rectangular(
33 ticks=[ticks_X, ticks_Y],
34 tag2ticks=[tag2ticks_X, tag2ticks_Y], center=(0, 0))
35 down_edge = shapes.Box(lower_left=[-53, -53], size=[106, 106])
36 mesh.Mesh(simulation_region=down_edge, pattern=fin_down)

Script 4.10: A Rectangular pattern can be used to construct a mesh whose dis-
cretization step varies arbitrarily along each direction.

Finally, it is possible to define a pattern from a set of points. To do so we use
the Finite pattern. We shall illustrate this with three examples, c.f. an hexagonal
mesh in Fig.4.8-III and two amorphous meshes in Fig.4.9-I-II.

The mesh in Fig.4.8-III is built by making a Finite pattern from the points
in green, c.f. Script.4.11. To initialize a Finite one uses a numpy array of points
~r = (x, y), with x, y two floats defining the real space coordinates of ~r (3 floats
in 3D). To obtain an hexagonal voronoi cell the points must define a triangular
grid (green points Fig.4.8-III). One can think in terms of Bravais lattice: to obtain
an hexagonal unit cell, one disposes the points in a triangular lattice. Lines 7 to
9 make the numpy array defining ~r (coordinates). Line 12 defines the hexagonal
Finite pattern (hex_finite). Notice a Finite pattern is only defined within the
region spanned by the coordinates given in the points parameter. For instance,
coordinates span from x = −41.89 to x = 41.89 and y = −76.18 to y = 76.18.
Therefore hex_finite is only defined within |x| ≤ 41.89 and |y| ≤ 76.18. Line 13
defines the rectangular region to be meshed. Line 16 makes the mesh of Fig.4.8-III.

In Fig.4.9-I-II we make two amorphous meshes. Lets start with Fig.4.9-I. First,
the amorphous mesh is only defined for the green points, their voronoi cells are
drawn by the black lines. The red dots do not belong to the mesh, however they en-
sure all the voronoi cells of the green points are closed. Line 8 of Script 4.12 defines
the red points coordinates (boundary_coord). Line 9 defines the green points coordi-
nates (inside_coord). Line 22 makes the Finite instance from boundary_coord and
inside_coord. Notice, even though the boundary_coord points were used to define
the Finite instance, they can not be used as mesh points. This is because they do
not form a closed voronoi cell. Line 25 defines a rectangular region capturing only
the inside_coord. Line 27 makes the mesh shown in Fig.4.9-I.

Finally, Fig.4.9-II shows a larger rectangular region (green points) refined with
a smaller amorphous mesh (brown points). To make such mesh we start by making
the rectangular mesh with a Rectangular pattern. See line 23 of Script 4.13, it
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initializes a rectangular mesh (mesh_amorphous). Then we need to refine it with
the green points of Fig.4.9-II. First we define a numpy array with their coordi-
nates, line 7 - amorphous_coordinates. Then we define a region containing those
points (amorphous_region) - here we use the Delaunay shape, see Section 4.2.
Lastly, we call the mesh_amorphous.refine() method with amorphous_region and
amorphous_coordinates. Notice there is no need to make a Finite pattern from
amorphous_coordinates.

1

2 import numpy as np
3 from pescado.mesher import shapes, patterns, mesh
4 from pescado.tools import meshing
5

6 # Define the coordinates of the mesh points
7 coordinates = 2 * np.pi / 3 * np.array([
8 [i + j, (i - j) * np.sqrt(3)]
9 for i in range(-11, 11) for j in range(-11, 11)])

10

11 # Initialize a pattern and region defining the mesh
12 hex_finite = patterns.Finite.points(points=coordinates)
13 region_mesh = shapes.Box(
14 lower_left=np.array([-15, -15]), size=(30, 20))
15

16 mesh.Mesh(simulation_region=region_mesh, pattern=hex_finite)

Script 4.11: How to construct an hexagonal mesh from a set of points using Finite.

1

2 import numpy as np
3 from pescado.mesher import shapes, patterns, mesh
4 from pescado.tools import meshing
5

6 # Coordinates delimiting the boundary of the Finite pattern
7 # Required to have closed cells inside the pattern
8 boundary_coord = np.array([
9 [.2, 1.1], [.5, 1.1], [.2, -.1], [.5, -.1],

10 [-.1, .2], [-.1, .5], [1.1, .0], [1.1, .2]])
11

12 # Coordinates inside the pattern
13 inside_coord = np.array([
14 [.0, .3], [.05, .5], [.1, .1], [.2, .05],
15 [.3, .0], [.3, .4], [.38, .6],
16 [.43, .0], [.43, .2], [.48, .3],
17 [.54, .5], [.54, .1], [.57, .3],
18 [.63, .6], [.63, .0], [.69, .2], [.75, .4],
19 [.9, .0], [.9, .2], [.9, .3], [.9, .5], [.9, .6]])
20

21 # Amorphous pattern
22 amorphous_finite = patterns.Finite.points(
23 points=np.concatenate((boundary_coord, inside_coord)))
24

25 region_mesh = shapes.Box(
26 lower_left=np.array([0.2, 0.1]), size=(0.55, 0.4))
27 mesh_amorphous = mesh.Mesh(
28 simulation_region=region_mesh, pattern=amorphous_finite)

Script 4.12: How to construct an amorphous mesh from a set of points using Finite.

1

2 import numpy as np
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3 from pescado.mesher import shapes, patterns, mesh
4 from pescado.tools import meshing
5

6 # Coordinates of the amorphous mesh points
7 amorphous_coordinates = np.array([
8 [.2, -.1], [.5, -.1], [.65, .23], [.6, .09],
9 [-.1, .2], [-.1, .5], [.0, 1.1], [.2, 1.1],

10 [.3, .0], [.5, .05], [.1, .1], [.05, .2],
11 [.0, .3], [.4, .3], [.6, .38], [-.14, .35],
12 [.0, .43], [.2, .43], [.3, .48],
13 [.5, .54], [.1, .54], [.3, .57],
14 [.6, .63], [.0, .63], [.2, .69], [.4, .75],
15 [.0, .9], [.2, .9], [.3, .9], [.5, .9], [.6, .9]])
16

17 amorphous_region = shapes.Delaunay(amorphous_coordinates)
18

19 region_mesh = shapes.Box(
20 lower_left=np.array([-.35, -.35]), size=(1.2, 1.7))
21 rect_pat = patterns.Rectangular.constant(element_size=(0.1, 0.1))
22

23 mesh_amorphous = mesh.Mesh(
24 simulation_region=region_mesh, pattern=rect_pat)
25 mesh_amorphous.refine(
26 region=amorphous_region, coordinates=amorphous_coordinates)

Script 4.13: How to construct a regular mesh and then refine part of it with an
amorphous mesh.

4.3.6 Algorithm for merging two meshes

The most important functionality of the PESCADO mesher is the refine() method
(it takes a shape and a pattern as arguments). This method does in fact three
things: first it removes the points of the mesh that belongs to the pattern; then it
creates a new mesh by selecting the points of the pattern that belong to the shape;
last it merges the old mesh with the new one. This last operation is somewhat
delicate and in this section we describe the algorithm used to perform it efficiently.

4.3.6.1 Merging two meshes

The problem is defined as follows: given two meshes defined by their set of mesh
points {~ri} and {~ri′} whose Voronoi cells Ci and C′i have already been calculated,
calculate the Voronoi diagram of ({~ri} \A)∪ {~ri′}, where A is the list of the points
of {~ri} that are to be removed.

The strategy used in PESCADO is to find out the list of points whose Voronoi
cells will be affected by the new points and only recalculate the Voronoi cells for this
(usually small) subset of points using Qhull [Barber et al. 1996]. A point ~ri needs
to have its Voronoi cell recalculated if and only if one of the two following things
happen:

• this point has lost one of its neighbors during the first (extrusion) stage of
the refinement. Indeed for these points the number of voronoi neighbors is
smaller than the number of ridges in their voronoi cell. We call these points



96 Chapter 4. PESCADO : An open source software

‘incomplete’. They are identified as the neighbors of the points of A that do
not belong to A.

• this point has acquired one or more new neighbors, i.e. one of the new point
{~rj ′} is close enough to affect its Voronoi cell. Note that ~rj ′ ∈ Ci is a sufficient
condition for these to happen but by no mean necessary. Sometimes ~rj ′ being
in a neighboring cell or even second nearest neighbor cell is sufficient to disturb
the cell Ci. Below we define the concept of safety region of point i: when ~rj

′

is inside this safety region, the Voronoi cell Ci needs to be recalculated.

The above criteria are used on {~ri}. Then the converse criteria are used on {~ri′}
and one arrives at the complete list of points that need to be recalculated. To this
list, one adds their neighbors to make these points ‘complete’ and the list is given
to qhull. Last, one needs to perform the book-keeping operation of merging all the
obtained Voronoi cells (existing with recalculated).

4.3.6.2 The voronoi safety region

The key part of the merging algorithm is the definition of the safety region for each
point ~ri (or ~ri′). The question is, for a given point ~ri, define a condition on any
point ~r for this point to affect the Voronoi cell Ci. More precisely, we will define a
‘conservative’ safety region for efficiency reasons, i.e. it is OK to recalculate a few
extra points even if their Voronoi cell will not actually change.

The safety condition is best understood visually. Fig.4.10 shows a point ~r (the
light blue cross) intruding in the Voronoi cell of ~ri (the black circle at the center of
the gray Voronoi cell). Also shown is the perpendicular bisector of (~r, ~ri). When
this perpendicular bisector has an intersection with the Voronoi cell (right panel of
Fig.4.10), the Voronoi cell needs to be recalculated. Otherwise, as illustrated on the
left panel of Fig.4.10, the Voronoi cell is unaffected. The boundary between the two
cases corresponds to the perpendicular bisector touching the vertex point ~v (green
point). This translates into the following condition,[

(~v − ~ri)−
~r − ~ri

2

]
.(~r − ~ri) ≤ 0 (4.6)

Eq.(4.6) can be written as,

‖~r − ~v‖2 ≤ ‖v − ~ri‖2 (4.7)

i.e. ~r is inside the disk (a sphere in 3D) of center ~v and radius ‖v−~ri‖. It follows
that the overall safety region is given by the union of all the disks centered on all the
vertices of Ci as shown on the right hand side of Fig.4.11(b) (small green circles).
In practice keeping track of all the disks associated with the different vertices is
somewhat cumbersome. Instead we consider a slightly larger ‘conservative’ safety
region (hence we might unnecessarily recalculate a few extra points) by using the
light gray large disk in Fig.4.11(b) (limited by a black dashed line) of equation
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Figure 4.10: Schematic for the safety condition. Left: the point ~r (blue cross) does
not affect the Voronoi cell in gray. Right: ~r affects the gray Voronoi cell that will
need to be recalculated. The blue line is the perpendicular bisector of ~r and the
center ~ri of the gray Voronoi cell. See text for more details.

‖~r − ~ri‖ ≤ 2 max
~v
‖~v − ~ri‖ (4.8)

4.3.7 Defining a custom pattern in PESCADO

A pattern in PESCADO is an abstract class. PESCADO currently contains two
instantiable patterns that derive from this abstract class (Rectangular and Finite)
but users could define more if they want. Future releases of PESCADO might
contain patterns for e.g. arbitrary lattices with complex unit cells (so that the center
of the Voronoi cells actually match the positions of the atoms) or a discretization in
terms of spherical coordinates.

To define a pattern a user must create a class (derived from the abstract class
Pattern) that implements the following four methods:

• __call__(tags) : Returns the coordinates ~r for an array of points. In a
Pattern each point is defined by its tag (an immutable python object). For
instance, in a 2D Rectangular pattern the tag is a tuple (n,m). Therefore,
__call__() has one argument, an array of tags, and returns one output,
an array of point coordinates.

• inside(shape) : Returns the tags inside a Shape.

• first_neighbours(points_tag) : Returns the first neighbors for a given array
of tags.
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(a) (b)

Figure 4.11: (a) Safety condition associated with the green vertex. (b) Overall
safety region for all vertices (green disks) and conservative (larger) safety region
used in practice in PESCADO algorithm (light gray disk delimited by a dashed
line).

• ridges_and_vertices(points_tag, neig_tags, neighbors, point_neighbors) :
Returns the voronoi ridges and its vertices separating a set of points from their
first neighbors. For a detailed description of each parameter, see the method
description in the source code.

We refer the reader to the Finite class implementation as an example.
Regarding testing the newly written class, we refer the reader to the script
‘pescado.mesher.tests.tests_patterns.py’ for inspiration.

With the four methods above we can define any type of pattern, let it be irreg-
ular or regular. In a irregular pattern there is no relationship between the position
of its points, e.g. the amorphous pattern in Section 4.3.5. In contrast, in a regular
pattern the points are distributed regularly in space. Hence from the point coor-
dinate one can calculate the position of its nearest neighbors and its voronoi cell
properties. Therefore, for a regular pattern one does not need to store in memory
a list of all first neighbors and voronoi cell information. One can simply store an
array of coordinates and their tags, the rest can be calculated as required by the
PESCADO mesher. In PESCADO we have implemented a Regular class, that in-
herits from Pattern. It is an abstract class that defines the interface the PESCADO
mesher requires to generate as it needs the mesh geometrical information (distances,
surfaces, volumes and safety radius). Therefore, we strongly recommend the user
to inherit from Regular when implementing a custom regular pattern. In addition
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to the four methods mentioned above, a class inheriting from Regular must also
define _geometrical_properties(). In essence, the purpose of this method is to
return the distances, surfaces, volumes and safety radius for a given tag. The advan-
tage is that the user can optimize the calculation of each one of these geometrical
properties. This comes in hand when dealing with large 3D systems, and provides
a consequent gain in both time and memory. The Rectangular pattern inherits
from Regular and can be used as an example.

4.4 The electrostatics solver

The main solver of PESCADO solves the Poisson equation. Actually, it solves a
generalization of the Poisson equation, a generalized Helmholtz equation. It reads,

∇ · (ε(~r)∇U(~r)) = −e[n(~r) + ρ(~r)U(~r)]. (4.9)

Without the local density of states ρ(~r) term LDOS, Eq.(4.9) is simply the Pois-
son equation with U(~r) the electric potential, n(~r) the density of charges (positive
for holes, negative for electrons) and ε(~r) the dielectric function. As we shall see, the
LDOS term allows one to incorporate some quantum mechanical effects at a semi-
classical level. Since the equation remains linear in presence of the LDOS term, it
does not render the problem more complicated to solve. In practice the LDOS term
is moved to the left hand side of the equation.

4.4.1 Finite volume discretization

To obtain a discrete problem from the continuous equation, we follow the usual route
of finite volumes discretization. We start by integrating Eq.(4.9) over one Voronoi
cell i and use the Green-Ostrogradsky theorem to arrive at∑

j

Φij = eQi + eQ̃i (4.10)

where Qi is the total charge inside the cell,

Qi =

∫
Ci
d~r n(~r), (4.11)

Q̃i the total charge inside the cell induced by the LDOS term and Φij the flux of
the electric field through the planar surface Sij that separates cell i from its neighbor
j,

Φij =

∫
Sij

ε(~r) ~E(~r) · ~n dS (4.12)

~E = ~∇U is the electric field and ~n is the unit vector perpendicular to Sij . We
define Eij as the average of the normal part of ~E on the line that connects ~ri to ~rj ,
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Eij =
1

dij

∫ ~ri

~rj

d~r · ~E =
1

dij
(Uj − Ui) (4.13)

where dij is the distance |~ri − ~rj | and Ui the electric potential at the center of
cell i. At this stage, the equations are exact and satisfy a discrete version of the
Gauss theorem [Eq.(4.10)] as well as a discrete version of the circulation theorem,
i.e. for any path that makes a loop i1...in with in+1 = i1 of straight lines between
~rα and ~rα+1, ∮

d~r · ~E =
n∑

α=1

Eiαiα+1diαiα+1 = 0 (4.14)

To close the system of equation, we suppose that the electric field varies suffi-
ciently smoothly so that the average value of ~E.~n over the surface Sij is equal to its
average Eij over the line that connects ~ri to ~rj . We arrive at,

Φij ≈
εijSij
dij

(Uj − Ui) (4.15)

with the average dielectric constant εij given by

εij =
2εiεj

(εi + εj)
(4.16)

where εi is the dielectric constant of cell i. Finally, defining

ρi =

∫
Ci
d~r ρ(~r), (4.17)

we obtain Q̃i ≈ ρiUi and finally arrive at,

Qi =
∑
j

(Cij − δijρj)Uj (4.18)

with the capacitance matrix Cij defined as,

Ci 6=j = −εijSij
edij

(4.19)

for neighboring cells,

Cii = −
∑
j(i)

Cij (4.20)

for the diagonal part (j(i) stands for the neighbors of cell i) and Cij = 0 other-
wise.

An important property of the finite volume discrete problem is that it is a valid
discrete electrostatic problem even if a very coarse discretization is used, in the
sense that both the discrete Gauss theorems and circulation theorems are satisfied.
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In particular Cij = Cji,
∑

j Cij = 0 and Ci 6=j ≤ 0 which implies that the matrix is
positive: ∀Ui,

∑
ij

UiCijUj = −1

2

∑
i 6=j

(Ui − Uj)2Cij ≥ 0 (4.21)

We end this discussion with a note on dimensionality. The electrostatic problem
solved in PESCADO always corresponds to the three dimensional (physical) space.
However, in some cases the system is invariant along one or two directions and
in that case the problem reduces effectively respectively to a two dimensional or
a one dimensional problem. The derivation follows accordingly with one minor
modification: the charge Qi becomes a charge per unit length (effective 2D problem)
or per unit surface (1D problem). All electric potentials in PESCADO are in Volts
and all distance in nanometers. The units of the different quantities follow, as shown
in Table.4.1.

Ui Qi ρi
1D V nm−2 nm−2.V −1

2D V nm−1 nm−1.V −1

3D V - V −1

Table 4.1: PESCADO default units for 1D, 2D and 3D systems. Ui is the voltage,
Qi the charge and ρi the local density of states.

4.4.2 Neumann, Dirichlet, Helmholtz (and Flexible) cells

When solving an electrostatic problem, the user can define three different sorts of
cells, depending on the physics occurring in the corresponding region of space:

• The “Neumann" cells (N) are the cells for which the charge Qi is known, ρi = 0

and one seeks to calculate the potential Ui. These are the “normal" cells of
an electrostatic problem which include the regions with dielectrics (including
vacuum) and regions with fixed densities of charge such as dopant regions.

• The “Dirichlet" cells (D) are the cells where the potential Ui is known, ρi = 0

and one seeks to calculate the total charge in the cell Qi. Typically, the
Dirichlet sites correspond to metallic region such as electrostatic gates (with
infinite density of states) where the electric potential is imposed by e.g. a
voltage source.

• The “Helmholtz" cells (H) are the cells for which ρi 6= 0 and one seeks to
calculate the potential Ui. These are typically the active (quantum) part
of the device where one has fixed the electro-chemical potential but not the
electric potential.
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Each cell belongs to one of the three types (and only one) as defined by the
user (the default being Neumann). Note that, in principle, Helmholtz cells cover
the three cases since a Dirichlet cell corresponds to ρi =∞ and a Neumann cell to
ρi = 0. However, for both numerical stability and efficiency reasons, it is better to
sort the cells according to these three categories. Actually, PESCADO possesses a
fourth category, the flexible cells (F). A flexible cell is a cell whose status (N,D or H)
is defined at the latest possible moment, just before solving the linear problem. Flex-
ible cells exist purely for efficiency reasons because, in PESCADO ’s self-consistent
algorithms, some cells need to change of status from one call to the solver to the
next; flexible cells allows one to pre-calculate the associated matrix elements.

We now write the linear problem Eq.(4.18) according to its 3×3 block structure,
denoting UH , UN and UD (QH , QN and QD) the vectors of electric potentials
(charges) in the set of H, N and D cells. ρH is the diagonal matrix defined as
(ρH)ij = δijρi. We get,CHH − ρH CHN CHD

CNH CNN CND
CDH CDN CDD

 .
UHUN
UD

 =

QHQN
QD

 (4.22)

Moving the unknown variables of the equation (QD, UN and UH) to the left
hand side and the known input (UD, QN , QH) to the right hand side, we arrive at
the linear problem actually solved by PESCADO electrostatic solver,

CHH − ρH CHN 0

CNH CNN 0

CDH CDN −I

 .
UHUN
QD

 =

I 0 −CHD
0 I −CND
0 0 −CDD

 .
QHQN
UD

 (4.23)

which we call the “mixed Neumann-Dirichlet-Helmholtz Problem”. Taking ad-
vantage of the sparsity of the capacitance matrix, solving Eq.(4.23) can be done with
efficient linear problem packages such as the MUMPS package [Amestoy et al. 2001,
Amestoy et al. 2006].

Solving an electrostatic problem in PESCADO is done in two steps. In the
first, one defines the problem and its discretization in order to form the set of linear
equations Eq.(4.23). This is the role of the Poisson.ProblemBuilder class as
illustrated in Script 4.1. In the second, one actually solves the linear problem and
extracts the physical quantities. This is the role of the Poisson.Problem class as
illustrated in Script 4.2. In the rest of this section, we document the usage of these
two classes.

4.4.3 Electrostatic solver API: The ProblemBuilder class

Let us follow the step by step construction of an electrostatic problem, following
Script 4.14, in order to construct the system shown in the top panel of Fig.4.12.
This 2D system consists of a two dimensional electron gas (red), some dielectric
layers (salmon), part of which contain dopants (green), two metallic gates (blue)
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and some air/vacuum (white). We need to define the mesh and name the different
regions of interest in order to set their properties: the type of each site (N,D,H or
F) and the value of the dielectric constant. The values of the inputs (potential or
charge depending of the site type) will be set later, just before solving the linear
system Eq.(4.23). Internally an instance of ProblemBuilder merely contains the
mesh of the system (which can be accessed through the mesh attribute) and the
different (named) shapes of the different regions. Its role is to eventually produce
an instance of Problem which contains the capacitance matrix.

The first part of the script meshes the system. The method initialize_mesh()
does exactly what its name suggests and takes the shape of the simulation box
and the pattern to be used as arguments. Subsequent refine steps are identical
to what was described in Section 4.3, the refine_mesh() method being a simple
warper for a call to Mesh.refine(), c.f. Script 4.7. It is possible to retrieve the
Mesh instance ProblemBuilder creates, c.f. line 23. In the second part of the
script (after line 24), one defines various shapes for the regions of different colors
of Fig.4.12 and then call various methods to assign these shapes to a cell type
or to set the value of the electric permittivity. The methods to set the cell type
are respectively set_dirichlet, set_Helmholtz and set_neumann. Besides the
shape argument, they also take a name argument (setup_name) that will be used
later to extract specific information about these regions. In addition to the three
main methods above, PESCADO also implements set_metal. It not only sets the
cell type to Dirichlet, but also mark it as a metal. This is important, because for
metallic sites there is no point in defining the value for the electric permittivity.
The set_metal method takes the same argument as the other three. By default,
all cells are assigned to Neumann (N), so that set_neumann is actually only used
to name a N region (here, the doped region).

In our example, we set the cells inside the electrostatic gates (blue) as metal type
and name them gate, see Line 29 of Script 4.14. The sites inside the 2DEG (red)
are helmholtz sites and we name them 2deg, see Lines 31-32. Using the method
set_relative_permittivity we can change the value of the relative dielectric per-
mittivity, εr, from the default value of εr = 1. Hence by default the dielectric
permittivity in a cell is ε = ε0, the vacuum permittivity. In line 39 we set εr = 12

at the entire dielectric region, including the 2DEG.
1 from pescado.mesher import patterns, shapes
2 from pescado.poisson import ProblemBuilder
3

4 # Define the ProblemBuilder
5 pb = ProblemBuilder()
6

7 ### Define the Finite volume mesh
8

9 # Define the simulation region and mesh point spacing
10 system = shapes.Box(lower_left=[-1000, -300], size=[2000, 693])
11 rect_pattern = patterns.Rectangular.constant(element_size=(10, 10))
12

13 # Make the mesh
14 pb.initialize_mesh(
15 simulation_region=system, pattern=rect_pattern)
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Figure 4.12: Top panel: schematics of the nanowire device constructed in Script
4.14. The system is invariant by translation along the y dimension so that the
simulation reduces to a 2D one. The different colors stand for the different regions of
interest: gates (blue), dopants (green), two-dimensional gaz (red), vacuum (white)
and other dielectric (salmon). Bottom panel: electric potential profile calculated
using Script.4.17
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16

17 # Refine the mesh
18 fine_pattern = patterns.Rectangular.constant(element_size=(2, 2))
19 ref_region = shapes.Box(lower_left=[-1000, -3], size=[2000, 200])
20 pb.refine_mesh(region=ref_region, pattern=fine_pattern)
21

22 ### Access the Mesh instance
23 mesh_pb = pb.mesh
24

25 ### Split sites into N, D, H and F.
26 # Define local boundary conditions
27 gate = (shapes.Box(lower_left=[-1000, 120.1], size=[850, 10])
28 | shapes.Box(lower_left=[150, 120.1], size=[850, 10]))
29 pb.set_metal(region=gate, setup_name=’gate’)
30

31 twodeg = shapes.Box(lower_left=[-1000, -1], size=[2000, 2])
32 pb.set_helmholtz(region=twodeg, setup_name=’2deg’)
33

34 dopants = shapes.Box(lower_left=[-1000, 40], size=[2000, 60])
35 pb.set_neumann(region=dopants, setup_name=’dopants’)
36

37 ### Set relative dielectric permittivity
38 dielectric = shapes.Box(lower_left=[-1000, -100], size=[2e3, 220])
39 pb.set_relative_permittivity(val=12, region=dielectric)
40

41 ### Create the capacitance matrix
42 pd = pb.finalized()
43 # Save the obtained Problem (optional)
44 pd.save(’elec_problem_tutorial’)

Script 4.14: Tutorial on making a finite volume mesh and discretizing the device on
Fig.4.12. It explains how to use pescado.poisson.ProblemBuilder.

The last two lines of Script 4.14, respectively, generate and save on disk the
Poisson.Problem that will be subsequently solved. The saving step is optional
but can be handy when the problem needs to be solved many times (e.g. different
machines in a parallel calculation), as it avoids calculating the capacitance matrix
more than necessary. In particular, ProblemBuilder can have a significant memory
footprint (as it stores the whole mesh) so it is a good practice to delete it when
the Problem instance has been initialized. In contrast, Problem only stores the
capacitance matrix, the coordinates of the mesh points and their volume, hence is
a much smaller object.

Before we finish on the ProblemBuilder class, let us discuss the func-
tions used to visualize the partition of the system in terms of D,N,H and F
cells (plot_boundary_condition()) and in terms of the various named regions
(plot_system_regions()). These tools help, upon building a system, to make
sure that one has defined the various regions properly. They work for 1D, 2D or 3D
systems.

For 1D and 2D systems, plot_boundary_condition() takes two parameters,
pattern (aPattern) and region (a Shape). The function first generates the points of
the pattern that are inside the region. For each of these points ~u, ProblemBuilder
finds the point ~r in the mesh which is the closest and attributes the type (N,D,H)
of ~r to ~u with one color per type. The advantage of this approach is that one
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Figure 4.13: Top colorplot shows the regions according to their boundary condi-
tions. Bottom colorplot shows the regions according to their setup_name. Ob-
tained with Script 4.15.

obtains a regular grid of points ~u, easy to plot and manipulate while the original
mesh ~r may be highly unstructured. Calling plot_boundary_condition() does
not generate the plot immediately. It returns a function. Calling this function with
a matplotlib axis generates the actual plot. plot_system_regions() works very
similarly but plot the different tags instead of the types of sites. For a tutorial on
plot_boundary_condition() and plot_system_regions() for 3D systems we
refer to Section 4.4.5.

Lines 3-11 in Script 4.15 generates the top figure in Fig.4.13 for the device
on Fig.4.12. Line 14-15 makes the bottom colorplot in Fig.4.13 for the device on
Fig.4.12. The function can be called with optional arguments. The ax argument
defines the matplotlib.pyplot.gca() instance containing the plot. The remaining
arguments are passed down to matplotlib.imshow().

1 import matplotlib.pyplot as plt
2

3 fig, ax = plt.subplots(2, 1, sharex=True, figsize=(5, 15))
4

5 # Define the plot region and the plot pattern
6 plot_region = shapes.Box(lower_left=[-300, -3], size=[600, 200])
7

8 # Plot the boundary condition
9 bc_profile = pb.plot_boundary_condition(
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10 region=plot_region, grid_step=10)
11 bc_profile(ax=ax[0])
12

13 # Plot the region
14 region_profile = pb.plot_system_regions(
15 region=plot_region, grid_step=10)
16 region_profile(ax=ax[1])

Script 4.15: Tutorial on plotting the regions according to their boundary condition
and setup_name.

4.4.4 Electrostatic solver API: The Problem class

We are now in possession of a Problem instance for the device shown in Fig.4.12.
There are two remaining steps to solve the electrostatic problem: provide the missing
necessary input (charge in the Neumann regions QN , voltages at the gates UD and
density of states ρH and charges QH in the active Helmholtz regions) and solve the
corresponding linear problem.

Each mesh point in a Problem is identified by an index that ranges from 0 to
N − 1 where, N is the total number of mesh points in the problem. An instance
of Problem contains several attributes and methods that facilitate the handling of
the indices (used internally for solving) and the real coordinates.

• npoints is the number of mesh points N .

• coordinates is a 2D numpy array of coordinates where the first dimension
corresponds to the site index and the second to the x, y and z axis (respectively
for values 0, 1 and 2).

• volumes is a 1D numpy array that contains the volume Ωi of each cell.

• The points_inside(shape) method returns a 1D numpy array that contains
the indices of the mesh points inside shape.

• The points(name=None, coordinates=None) method retrieves the in-
dices for some mesh points. To indicate which points we are looking for, we
can either give the name or coordinates argument. If name is given (string),
then the method returns the indices inside a region tagged name. Otherwise
if coordinates (a 2D numpy array whose second dimension labels the x, y
and z axis) is given, then it returns the indices of the mesh points with such
coordinates.

4.4.4.1 Using SparseVector to represent the inputs and outputs

The input (UD, QN , ρH and QH) and output (QD,UH ,UN ) of the electrostatic
problem are vectors that are often defined on small regions of the device and have
value zero everywhere else. To manipulate these values, we use the concept of
SparseVector, a simple class that implements a sparse 1D array.
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A SparseVector contains a list of index and a list of associated values (both
lists have the same sizes). For instance the vector (0, 1.1, 0, 0, 5.2, 0, 0, 0, 0, 0) can
be encoded into a SparseVector that stores the list of non zero indices (1, 4) and
the list of associated values (1.1, 5.2). Lines 5-7 in Script 4.16 show the construc-
tion of this SparseVector with a default value of zero for all elements that are
not explicitly set. A SparseVector can also have an undefined default value. In
that case unset indices have an undefined value. This will be used, for instance, for
defining UD since the input potential is undefined on Neumann sites. A Sparse-
Vector can be accessed and sliced like a regular normal 1D numpy array. Line 10
shows an example and returns a numpy array with the values of the first 6 elements
(including several zeros). Accessed elements can be modified (see Line 18) and the
whole SparseVector can also be multiplied by a constant (see Line 21). It is also
possible to add two SparseVector together (Line 27). A SparseVector can also be
extended with new non-zero elements (Line 30). In that case only the new indices
are included in the SparseVector, the preexisting ones are not modified. Last, the
extract() method of SparseVector produces another SparseVector restricted to
the list of sites that are given to the indices argument (see Line 35).

1 from pescado.tools import SparseVector
2 import numpy as np
3

4 # Defining a SparseVector
5 sv_1 = SparseVector(
6 values=np.array([1.1, 5.2]),
7 indices=np.array([1, 4]), default=0)
8

9 # Access the elements 0 to 5
10 sv_1_elements = sv_1[np.arange(0, 6)]
11

12 # Define the U_D input
13 gate_idx = pd.points(name=’gate’)
14 voltage_in_sv = SparseVector(
15 indices=gate_idx, values=np.ones(len(gate_idx)) * -0.5)
16

17 # Multiply the values of the gate_idx elements by -1
18 voltage_in_sv[gate_idx] = voltage_in_sv[gate_idx] * -1
19

20 # Or multiply all values by -1
21 voltage_in_sv *= -1
22

23 # Add two sparse vectors
24 voltage_in_sv_II = SparseVector(
25 indices=gate_idx, values=np.ones(len(gate_idx)) * -1)
26

27 voltage_in_sv_II = voltage_in_sv + voltage_in_sv_II
28

29 # Define the voltage somewhere else
30 voltage_in_sv_II.extend(SparseVector(
31 indices=np.array([0, 1, 10, 20]),
32 values=np.array([1, 10, 15, 20])))
33

34 # Extract the voltage at the gates
35 voltage_in_sv_II = voltage_in_sv_II.extract(indices=gate_idx)

Script 4.16: Tutorial on SparseVector. The pd variable refers to the Problem
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instance from line 41 Script 4.14

Defining an input such as UD is done using a combination of the properties of
SparseVector and of the Problem considered. Lines 13-15 of Script 4.16 define a
UD SparseVector for the system on Fig.4.12. There, the Dirichlet sites are located
at the gate, and we set UD to be equal to −0.5V on the gate sites and undefined on
other sites. Line 13 recovers the indices of the mesh points inside the gate region
(blue region of Fig.4.12). Then, lines 14 and 15 initialize the SparseVector defining
UD.

4.4.4.2 Setting the inputs and solving the electrostatic problem

Such a manual construction of the input vectors is somewhat cumbersome and error
prone. Problem contains a sparse_vector() method that facilitates the creation
of these inputs. sparse_vector() defines the input value for an entire region of the
system. For example, line 4 of Script 4.17 generates the same UD SparseVector as
lines 13-15 of Script 4.16. The val parameter sets the values of the SparseVector
elements (a float or a function of the coordinates). The name parameter describes
the region (a name of the region or a Shape). Lines 13 to 16 illustrate how to define
a SparseVector using a function as the val parameter. The function should take a
numpy array of real space coordinates and return numpy array of the values to be
set at the input coordinates. Line 19 defines QN in a similar manner to UD, using
a float as val.

To finish setting the inputs and solve the electrostatic problem, we need to
define both QN and ρH . The former is defined line 7 of Script 4.17. Note that,
for convenience, there are two different ways to set the charge: (i) one can either
define the total charge in the cell (the default; in 3D this quantity is dimensionless.
It has dimension nm−1 in 2D and nm−2 in 1D) using the charge argument to the
solve function. Or (ii), one can define the value of the charge _density in the cell
and the charge is computed by PESCADO by multiplying the value of the charge
density by the volume of the cell. The charge density always has units of nm−3.
In our case, we want to set an density of electrons for the 2DEG of 2.1015m−2.
Since the size of the cell along the z axis is 60nm (see Line 37 of Script 4.14) ,
this translates into a charge density of 2.1015/60/1018 = 0.33 10−4nm−3. Similarly,
we want to set the density of states to the 2D bulk value of 2DEG given by the
standard formula ρ2deg = 2m∗e/(π~2) (m∗e = 0.067me: effective electron mass in
GaAs). Since ρ2deg has units of electrons m−2J−1, one needs first to convert to
nm−2V −1 by multiplying it by 10−18e, then by −1 because electrons are negatively
charged, then divide by a factor 2nm (height of the 2DEG ) because ρH stands for
the total charge in the cell per volt, not the density.

The last three lines of Script 4.17 finally call the solve() method of the problem,
c.f. Eq.(4.23), with the inputs that we have prepared. It returns the solution (volt-
ages and charges) of the electrostatic problem for the device on Fig.4.12. The values
of ρH , UD are set respectively by the parameter voltage and helmholtz_density.
QN and QH are set either by the (optional) parameters charge (to set the total
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charge in the cell) or charge_density (in that case PESCADO multiplies the entry
by the volume of the cell). If these parameters are not given, the default density
is zero. Both charge and charge_density can be used simultaneously as long as
the same site is not set twice.

The solve() method returns two outputs, voltage_res and charge_res. They are
both instances of SparseVectors. The first is the voltage value for all mesh points
- including dirichlet points. The second is the charge value for all mesh points -
including Neumann and Helmholtz points. Their units follow Table.4.1. In Section
4.4.5 we explain how to further use and plot the output data.

1

2 from scipy import constants
3 from pescado.poisson import Problem
4

5 # Load the \PESCADO Problem
6 pd = Problem.load(’elec_problem_tutorial’)
7

8 # Define the U_d sparse vector
9 u_d = pd.sparse_vector(val=-.5, name=’gate’)

10

11 ## Define the Q_N sparse vector
12 # Using a function
13 def dop(r):
14 return (0.33e-4
15 + 0.33e-4 * np.exp(-(np.abs(r[:, 0]) / 400) ** 2))
16 q_n = pd.sparse_vector(val=dop, name=’dopants’)
17

18 # As a constant concentration
19 q_n = pd.sparse_vector(val=0.33e-4, name=’dopants’)
20

21 # Define the helmholtz density sparse vector
22 gas_idx = pd.points(name=’2deg’)
23 dens_si = (2*0.067 * constants.m_e) / (np.pi * constants.hbar ** 2)
24 dens_helm = (
25 -dens_si * 1e-18 * constants.elementary_charge
26 * pd.volume[gas_idx] / 2)
27

28 helmholtz_dens = SparseVector(indices=gas_idx, values=dens_helm)
29

30 # Solve
31 voltage_res, charge_res = pd.solve(
32 voltage=u_d, charge_density=q_n,
33 helmholtz_density=helmholtz_dens)

Script 4.17: This script starts from a Problem that has been saved into a file. Here
we load it and solve the electrostatic problem for the device shown in Fig.4.12. The
Problem was created in Script 4.14.

4.4.5 Reading and Plotting

The solve() method in Problem returns the voltage and the charge in the whole
system (two SparseVector). In this section we discuss how to manipulate these
vectors to extract the information. In particular, we show how to recover the voltage
and charge for specific regions of the system, manipulate the corresponding values
and plot them.
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The most straightforward way to access the value of a SparseVector is to
directly request them using the vector[index] syntax (similar to e.g. a numpy ar-
ray). For instance if we want to extract the charge in the 2DEG region, we first
obtain the list of indices using the method Problem.points_inside() or Prob-
lem.points(). In a second step we get the values of the charge (a numpy array)
using charge[indices]. See Script 4.16 and the associated description of sparse vec-
tors.

PESCADO implements a convenient function to do the above in a more transpar-
ent way. The read_sparse_vector() method of Problem takes a SparseVector
and returns the values of its elements located inside a given region of the Prob-
lem (in the form of a numpy array). There are two ways to define the region, first
(region parameter) using a Shape or second (name parameter) using the name it
was attributed when Problem as made, e.g. at line 32 of Script 4.14. Setting the
return_indices parameter to True will also return the associated list of indices. See
Script 4.18 for an example. Script 4.18 also shows how one can use SparseVector
to manipulate the data (here summing sparsevectors and multiplying by a float).
In this example, we calculate the total electronic density in the cells in S.I. units
n = (ρV +Q)/Ω where Ωi is the volume of the cell.

1 # Extract the values and indices inside a region
2 gas_charge, gas_idx = pd.read_sparse_vector(
3 charge_res, name=’2deg’, return_indices=True)
4

5 # Define the total charge sparse vector
6 total_charge = SparseVector(
7 indices=charge_res.indices,
8 values=charge_res.values, default=0)
9

10 total_charge[gas_idx] += (
11 helmholtz_dens[gas_idx] * voltage_res[gas_idx])
12

13 total_charge[total_charge.indices] = (
14 total_charge[total_charge.indices]
15 / pd.volume[total_charge.indices])
16 total_charge *= 1e18

Script 4.18: Working with PESCADO data output.

Let us now discuss how to plot the objects calculated in PESCADO . The dif-
ficulty lies in that PESCADO uses an unstructured mesh. To circumvent this,
PESCADO implements an interpolation scheme that allows one to evaluate the
charge/voltages on a uniform grid. For each point ~u on the uniform grid, PESCADO
looks for the closest point ~r in the SparseVector and attributes the corresponding
value to ~u (in practice this is implemented internally using an efficient KDTree -
from scipy.spatial.KDTree).

The primary method for plotting is Problem.plot_sparse_vector(). It is
designed to produce 1D or 2D interpolated slices of the data along the x, y or z
direction (1D) or in the xy, xz, yz plane (2D). This method takes four parameters as
input: sparse_vector (the data, an instance of SparseVector), region (the region
to plot, an instance of Shape), grid_step (distance between points in the uniform
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grid where the interpolation will be performed, a float) and optionally direction (the
dimension ignored when the plot has a smaller dimension than the initial problem,
it is an integer or sequence of integers). The interpolation data generated is either
1D or 2D while the electrostatic problem is typically of higher dimension. The
direction parameter tells which dimension (or dimensions) are frozen when taking
the slice. It takes the value 0, 1 and 2 respectively for the x, y and z axis. The
cut_position variable (see below) then sets the value where the cut is performed.
For instance, suppose that one has a 3D simulation and wants to plot the potential
in the xz plane (2D slice) for a fixed value y = 3.5. Then we have direction=1 and
cut_position=3.5. For a 1D plot along y at fixed value x = 0, z = 1.3, one would set
direction=(0,2) and cut_position=(0,1.3). The Problem.plot_sparse_vector
does not plot the figure immediately, it returns instead a function. Calling this
function actually makes the plot. The first three input parameters are cut_position
(floats or sequence of floats), ax (instance of matplotlib.pyplot.gca()) and cmap
(string). One can also add more parameters. They will be sent directly to either
matplotlib.imshow() (if 2D section) or ax.plot() (if 1D cut).

Script 4.19 and Script 4.20 illustrate how to use plot_sparse_vector() in con-
crete examples. The Script 4.19 plots the results total_charge and voltage_res from
respectively Script 4.18 and Script 4.17. Line 7 defines the 2D region parameter,
lines 9 to 11 generates the plotting function and line 14 plots the 2D voltage profile
shown on the bottom of Fig. 4.12. Line 18 defines the 1D region parameters, lines
20 to 22 generates the plotting function and line 29 plots the 1D charge cut along ~x
for y = 0 shown on the left of Fig. 4.14. The line 31 plots the 1D voltage cut along
~x for y = 0 shown on the right of Fig. 4.14. The Script 4.20 plots the qcharge_btf
results obtained from the bulk thomas fermi calculations done with Script 4.4. Lines
7 to 22 plots a 2D x− y slice for z = 0 and lines 24 to 31 a 1D cut along ~x for z = 0

and y = 0. Line 12 defines the 2D region, line 15 to 17 make the plotting function
and line 19 actually plots the 2D section of the charge shown on the top right of
Fig. 4.3. Lines 24 defines the 1D region, lines 25 to 27 make the plotting function
and finally line 29 plots the 1D cut along ~z of the charge shown on the bottom right
of Fig. 4.3.

The function ProblemBuilder.plot_boundary_condition() (resp. Prob-
lemBuilder.plot_system_regions()) that was used in Section 4.4.3 to plot the
Dirichlet / Neumann / Helmholtz/Flexible partitioning of the system (resp. the
different regions) uses the same interpolation scheme as plot_sparse_vector().

1

2 from pescado.mesher import patterns
3 from pescado.mesher import shapes
4 import numpy as np
5 import matplotlib.pyplot as plt
6

7 plot_region = shapes.Box(lower_left=[-300, -3], size=[600, 293])
8

9 voltage_section = pd.plot_sparse_vector(
10 sparse_vector=voltage_res,
11 region=plot_region, grid_step=5)
12
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Figure 4.14: Charge (left) and potential (right) profile along ~x at the 2DEG for
Fig.4.12. Obtained with Script 4.19.

13 fig, ax = plt.subplots()
14 ax, img = voltage_section(ax=ax)
15 fig.colorbar(img, ax=ax)
16 plt.show()
17

18 plot_region = shapes.Box(lower_left=[-600, ], size=[1200, ])
19

20 total_charge_cut = pd.plot_sparse_vector(
21 sparse_vector=total_charge,
22 region=plot_region, grid_step=2, direction=1)
23

24 voltage_cut = pd.plot_sparse_vector(
25 sparse_vector=voltage_res * 1e3, # to mV
26 region=plot_region, grid_step=2, direction=1)
27

28 fig, ax = plt.subplots(1, 2, figsize=(12, 5))
29 total_charge_cut(cut_position=0., ax=ax[0], c=’k’, linewidth=3)
30 voltage_cut(cut_position=0, ax=ax[1], c=’k’, linewidth=3)
31 plt.show()

Script 4.19: How to useProblem.plot_sparse_vector() to reproduce the voltage
2D profile on the bottom of Fig. 4.12 (Lines 7 to 16) and the charge and voltage 1D
cut in Fig. 4.14 (Lines 18 to 31). The charge and voltage it plots are obtained from
respectivelly Script 4.18 and Script 4.17.

1

2 from pescado.mesher import patterns
3 from pescado.mesher import shapes
4 import numpy as np
5 import matplotlib.pyplot as plt
6

7 qcharge_btf = qcharge_btf * (1e18 / 100) # to SI
8 qcharge_btf.default = np.nan
9

10 fig, ax = plt.subplots()
11

12 plot_region = shapes.Box(
13 lower_left=[-500, -500], size=[1000, 1000])
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14

15 total_charge_section = pd.plot_sparse_vector(
16 qcharge_btf, region=plot_region,
17 grid_step=10, direction=2)
18

19 ax, img = total_charge_section(cut_position=0, ax=ax)
20 fig.colorbar(img, ax=ax)
21

22 plt.show()
23

24 plot_region = shapes.Box(lower_left=[-150, ], size=[450, ])
25 total_charge_cut = pd.plot_sparse_vector(
26 qcharge_btf, region=plot_region,
27 grid_step=10, direction=(1, 2))
28

29 total_charge_cut(cut_position=(0, 0), c=’k’, linewidth=3)
30

31 plt.show()

Script 4.20: How to use Problem.plot_sparse_vector() to reproduce the charge
2D profile on the top right of Fig. 4.3 (Lines 7 to 22) and the charge 1D cut on the
bottom right of Fig. 4.3 (Lines 24 to 32). The charge it plots are obtained with
Script 4.4.

4.4.6 Solving a discrete electrostatic problem with flexible sites

From a physics point of view, PESCADO implements only three types of sites: N ,
D and H. Nothing else is needed. However, in practice there are many iterative
algorithms where one site is, say, H in one iteration and becomes N in the next.
For instance in a self-consistent quantum-electrostatic calculation, the sites of the
“active” region (e.g. the 2DEG ) are generally H. If during the calculation one
finds that some of these sites are depleted then they become N (the inverse is
also possible, the iterative algorithm may have wrongly depleted a site). To deal
with this situation in a way that introduces the minimum computational overhead,
PESCADO implement a fourth site type, flexible sites F . When a site is set as F
during the construction of the Problem, PESCADO pre-calculates the capacitance
matrix elements in such a way that one can easily switch these sites between N , D
and H at the solving stage. Hence a F site is simply one whose status is undecided
at the construction stage. It must be set before solving. Flexible sites are just an
optimization. It is particularly convenient in the common situation where there is
only a small fraction of F sites (e.g. in a 2DEG where the electron gas is only a
small fraction of the entire stack).

To set a site as flexible during the construction of the problem, one must use
the set_flexible() method of ProblemBuilder. Then, to partition the flexible
sites into the N , D and H sets, one must use the assign_flexible() method of
Problem. Once all flexible sites have been assigned, one uses the freeze() method
to update Eq.(4.23). One then proceeds with solving the problem as explained in
Section 4.4.4.

Script 4.21 shows how to modify Script 4.14 such that the sites in the 2DEG
region become flexible sites. First, one must replace line 32 of Script 4.14 with
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line 4 of Script 4.21. Second, one must set the flexible sites before calling the
Problem.solve() method. This is done by adding the lines 9-14 of Script 4.21. In
this example the first 50 sites of the 2DEG will be N and the remaining sites will
be H.

1 [...]
2

3 # Replace line 38 of Script 10
4 pb.set_flexible(region=twodeg, setup_name=’2deg’)
5

6 [...]
7

8 # Add before calling pd.solve()
9 gas_idx = pd.points(name=’2deg’)

10 pd.assign_flexible(
11 neumann_index=gas_idx[:50],
12 helmholtz_index=gas_idx[50:])
13

14 pd.freeze()
15

16 [...]

Script 4.21: Modifications of Script 4.14 and Script 4.17 to introduce flexible indices.

4.5 The Non-Linear Helmholtz solver

We have covered how PESCADO solves linear electrostatic problems. We now turn
to the PESCADO NLH solver. The NLH solver can be used by itself (in that
case it yields a solution of the generalized Thomas-Fermi approximation problem)
or in conjunction with a quantum solver to perform fully self-consistent quantum-
electrostatic calculations, see Chapter 3. PESCADO NLH solver is itself constructed
on top of the LH equation solver we have seen previously.

The NLH problem is defined by the following equations:

∇ · (ε(~r)∇U(~r)) = ∓e
∫ µ(~r)

−∞
dEρ(~r,E) (4.24)

µ(~r)± eU(~r) = EF . (4.25)

It describes one (or more) quantum region with electro-chemical potential EF
(Fermi level) containing electrons (lower sign) or holes (upper sign). The LDOS per
volume and per energy, ρ(~r,E), is considered to be known. The right hand side
of Eq.(4.24) is the number of charges per unit volume and is known as the ILDOS
n(~r, µ). It reads,

n(~r, µ) =

∫ µ(~r)

−∞
dEρ(~r,E) (4.26)

These definitions are valid at zero temperature. At finite temperature or out-of-
equilibrium, one simply needs to adapt the definition of n(~r, µ) and its derivative.
As before ε(~r) is the dielectric constant and U(~r) is the electric potential. Eq.(4.25)
decomposes the electro-chemical potential as the sum of its electric ±eU(~r) and
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chemical µ(~r) contributions. After discretization of the problem one arrives at the
site- ILDOS and site-LDOS,

Qi(µ) =

∫
Ci
d~r n(~r, µ) (4.27)

ρi(µ) =

∫
Ci
d~r ρ(~r, µ) (4.28)

The input of the NLH problem is the (site variant of the) ILDOS Qi(µ) and its
derivative the LDOS ρi(µ) > 0 (which importantly is always positive). There are
different ways to arrive at a NLH problem. One could want to solve the electro-
static problem self-consistently with quantum mechanics. The standard approach
for this is to calculate the density of electrons for a given potential using quantum
mechanics. Then one solves the electrostatic problem to obtain the potential from
this density and iterates this loop until convergence to the self-consistent equation.
In this approach the self-consistency is obtained on the electronic density itself. The
PESCADO approach to the self-consistent problem is different: one computes the
full LDOS from quantum mechanics not just the density, then one solves the NLH
problem and obtains the potential. The LDOS is recalculated and one continues
until self-consistency is achieved. We see that much more information is exchanged
between the quantum and electrostatic solver: the electrostatic solver knows not
only what is the density but also the density of states, i.e. how the density changes
when the potential is modified (screening). The corresponding self-consistent loop
converges in a handful of iterations, very robustly. Very often a full self-consistent
quantum-electrostatic solution is not needed and one can obtain accurate results
at a cruder approximation level. A common one is the generalized Thomas-Fermi
approximation: instead of calculating the LDOS, one uses the bulk density of states
ρ(E) (DOS) which is known for each material: ρ(~r,E) ≈ ρ(E). Note that we use
the same letter ρ for the LDOS, the DOS (its bulk value) and the density of states
ρ(~r) of the LH solver [implicitly ρ(~r) is the LDOS at a given energy, for instance
ρ(~r) = ρ(~r,EF )]. We use the arguments to determine which object is used. When
ρ(~r,E) does not depend on energy, the NLH problem reduces to the linear one.

PESCADO has two different algorithms for solving the NLH problem: the piece-
wise Newton-Raphson algorithm and the piecewise dichotomy algorithm. The piece-
wise Newton-Raphson algorithm is fast and robust, it should be preferred as a de-
fault. The piecewise dichotomy algorithm is a bit slower but more robust, it should
be preferred in the rare cases where piecewise Newton-Raphson algorithm fails to
converge. Both explicitly handle the discontinuities of the LDOS. These discontinu-
ities are always present at the band edges and are the main source of non-linearity in
the problem (in particular when one partially depletes the system with electrostatic
gates). A detailed description of these algorithms is given in Chapter 3.

PESCADO has two possible representations of the ILDOS: the general
self_consistent.ildos.PContinuousIldos class implements arbitrary functions
Qi(µ). The second representation is the self_consistent.ildos.PLinearIldos class
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Figure 4.15: On the left a piecewise linear Ildos, defined with PLinearIldos. In
this simple case, one uses just two intervals, blue and red. The black dots correspond
to the intervals bounds. The figure on the right shows a piecewise continuous ILDOS
n(µ) ∝ θ(µ)µ2, defined with PContinuousIldos.

which is restricted to ILDOS that are piecewise linear (see Fig. 4.15 for examples).
This latter class can be used directly in simple cases where the ILDOS is actually
piecewise linear. It is also generated internally by the piecewise dichotomy algo-
rithm.

The two solvers are implemented in the self_consistent.solver.PieceWiseDichotomy
and self_consistent.solver.PieceWiseNewtonRaphson class. The
thomas_fermi constructor is a thin wrapper that returns an instance of
one of the two classes. In the next subsections we first explain how to define the
problem, i.e. set up an instance of PContinuousIldos or PLinearIldos. Then
we proceed with solving Eq.(4.24). Finally, we show how to customize the self
consistent algorithm implemented in PESCADO .

4.5.1 Defining an ILDOS

Let us illustrate how to define the two ILDOS functions shown in Fig.4.15. For
the function on the left we shall use a PLinearIldos instance. Regarding the one
on the right, we shall use an instance of PContinuousIldos. Finally, we will also
show how to discretize the function on the right using a series of linear intervals.

4.5.1.1 API of PLinearIldos

We start with the ILDOS on the left side of Fig.4.15. It corresponds to the bulk
DOS of a 2DEG : ρ(E) = 0.067me/π~2 (in SI units) for E > Eb where Eb = 0.1eV

is the band edge (red interval) and ρ(E) = 0 for E ≤ Eb (blue interval). To define



118 Chapter 4. PESCADO : An open source software

the corresponding PLinearIldos instance, one needs to provide a series of values
(Eα, Qα) and PESCADO interpolates linearly between them. By convention, the
first segment is continued al the way to −∞ and the last segment all the way to +∞
so that the energy value of the first (last) point is irrelevant as long as it is chosen
to be smaller (larger) than Eb (here we chose E0 = −0.4eV , E1 = Eb = 0.1eV and
E2 = 1eV ).

Script 4.22 shows the construction of the ILDOS. The DOS is defined in Si units
on line 6 (m−2.J−1). We transform it to PESCADO units on line 7 (nm−2.eV −1).
The next step (lines 9-12) is to define a numpy array bounds that contains the values
(Eα, Qα) (bounds[α, 0] = Eα and bounds[α, 1] = Qα). Last, in line 20 we initialize
the ILDOS using the PLinearIldos.from_array method that takes bounds as the
coordinates parameter.

There is also a second method to initialize an instance of PLinearIldos. One
simply calls the class directly with three parameters coordinates, dos and origin
(this bypasses the from_array() method). The coordinates argument is the same
as that for from_array(). The dos and origin are the, respectively, DOS and
origin for each interval defined by coordinates. Lines 15 to 17 define the ildos_pl
instance.

Once the ILDOS has been constructed, it provides methods to easily use it.
Calling it directly with a numpy array (a list of energies E) returns a tuple of
numpy arrays with the DOS and the ILDOS (line 23). Calling it with a float E
returns a tuple (DOS,ILDOS) together with the index of the interval to which E

belongs if return_intervals is set to True (line 24). The interval(E) just returns this
index (line 25). Last, one may also directly access the list of dos and origin in the
different intervals (line 26). In each interval a, one has Q(µ) =dos[a]*µ + origin[a].

1 import numpy as np
2 from scipy import constants
3 from pescado.self_consistent import ildos
4

5 # Define the ILDOS intervals bounds
6 dos = (0.067 * constants.m_e) / (np.pi * constants.hbar ** 2)
7 dens_helm = dos * 1e-18 * constants.elementary_charge
8

9 E_b = 0.1
10 bounds = np.empty((3, 2), dtype=float)
11 bounds[:, 0] = np.array([-0.4, E_b, 1])
12 bounds[:, 1] = np.array([0, 0, dens_helm * (1 - E_b)])
13

14 # Define the piecewise linear ILDOS
15 ildos_pl = ildos.PLinearIldos(
16 coordinates=bounds, dos=np.array([0, dens_helm]),
17 origin=np.array([0, - E_b * dens_helm]))
18

19 # Define a piecewise linear Ildos using from_array
20 ildos_plfa = ildos.PLinearIldos.from_array(coordinates=bounds)
21

22 # Recover the dos, q for a given set of u
23 dos, q = ildos_plfa(np.linspace(-0.2, 0.5, 50))
24 dos, q, interval = ildos_plfa(u=0.2, return_intervals=True)
25 interval = ildos_plfa.interval(u=0.2)
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26 dos, origin = ildos_plfa.dos, ildos_plfa.origin

Script 4.22: Define the piecewise continuous ILDOS shown in Fig.4.15

4.5.1.2 API of PContinuousIldos

We now consider the continuous ILDOS shown on the right side of Fig.4.15 (in
black). To define it in PESCADO , we must use an instance of PContinuousIl-
dos. The two arguments used to initialize an instance of PContinuousIldos are
coordinates and functions. The functions argument is a list of python functions.
Each function takes as input either a float or array of chemical potential and return
their density of states and ILDOS value (tuple of two floats or two arrays). There
is no limitation to the number of elements in the functions list. Lines 10 to 25 of
Script 4.23 defines the ildos_quadratic function. It defines the black ILDOS on the
right side of Fig.4.15. The coordinates parameter behaves in the same way as for
PLinearIldos. It must have n+1 elements, with n the number of elements in func-
tions. Lines 28 to 30 define the bounds for ildos_quadratic. Line 32 of Script 4.23
initializes an instance of PContinuousIldos, ildos_cont. It is possible to recover
the density of states, ILDOS and interval value for a given chemical potential. To
do so we refer to lines 23 to 25 of Script 4.22.

Finally, it is possible to discretize an instance of PContinuousIldos into a
set of linear intervals. Each linear interval is defined around a chemical potential
value, which we refer to as functional point. The linear interval is the tangent
touching the ILDOS at its functional point. The bounds of the interval is defined
by the intersection between the current interval tangent and that of its neighboring
intervals. In case no intersection is found within its neighboring functional points,
PESCADO adds either a vertical or horizontal interval in between them. This
ensures the discretized ILDOS is monotonically continuous.

In practice, to discretize a PContinuousIldos instance we call the linearize()
method. It discretizes the piecewise continuous ILDOS around a set of functional
points. Calling this method returns an instance of PLinearIldos. Line 36 and 37
of Script 4.23 call linearize() with five functional points. The discretized ILDOS
is shown by the blue dotted line on the right of Fig.4.15. It is also possible to
iteratively add intervals to the discretized ILDOS even after it has been initialized.
To do so use the add_interval method. It takes as parameter µ, dos, origin and q.
The q parameter is optional, it is only required if dos is infinity (vertical interval)
or None. Lines 40 to 43 update ildos_discretized for four different µ values. The
resulting linear approximation is shown as the red dotted line on the right side of
Fig.4.15. The green dots are the functional points. The left ILDOS of Fig.4.15
has only seven functional points (green), instead of the nine added in lines 35 and
39-42 of Script 4.23. This is because the discretization algorithm we implemented
in PESCADO removes functional points that are redundant. Redundant points are
those whose LDOS and origin are the same as those of at least one of its neighboring
functional points.
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Figure 4.16: Quadratic ILDOS (faded black) of Fig.4.15 after discretization into
linear intervals. On the left the ILDOS is discretized around four functional points
(green dots). The four linear intervals are marked as the dotted blue lines, the blue
points are their bounds. On the right the discretization on the left is refined with
four additional functional points. The linear intervals and their bounds are shown
in red.

1

2 from collections.abc import Sequence
3 import numpy as np
4 from scipy import constants
5 from pescado.self_consistent import ildos
6

7 # Quadratic ildos
8 E_b = 0.1
9 def ildos_quadratic(mu):

10

11 t = constants.m_e * 0.067 * 1e-18 / constants.hbar ** 2
12 dens = t ** 2 * (constants.elementary_charge ** 2) / np.pi
13

14 if isinstance(mu, (Sequence, np.ndarray)):
15 ildos_ = dens * ((mu - E_b) ** 2)
16 dens_ = 2 * np.ones(len(mu)) * dens * (mu - E_b)
17 ildos_[mu <= E_b], dens_[mu <= E_b] = 0, 0
18 else:
19 dens_, ildos_ = 0, 0
20 if mu > E_b:
21 dens_ = 2 * dens * (mu - E_b)
22 ildos_ = dens * ((mu - E_b) ** 2)
23

24 return dens_, ildos_
25

26 # Define the two intervals
27 bounds = np.zeros((2, 2))
28 bounds[[0,1], 0] = np.array([-0.4, 1.1])
29 bounds[[0,1], 1] = ildos_quadratic(mu=bounds[[0,1], 0])[1]
30

31 ildos_cont = ildos.PContinuousIldos(
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32 coordinates=bounds, functions=[ildos_quadratic, ])
33

34 # First linearize around fpoints
35 fpoints = np.array([-0.3, 0.06, .2,.9, 1.0])
36 ildos_discretized = ildos_cont.linearize(fpoints=fpoints)
37

38 # Add additional function points
39 for fp in [-0.05, .3, .55, .8]:
40 dos, q = ildos_cont(fp)
41 ildos_discretized.add_interval(
42 u=fp, dos=dos, origin=q - dos * fp)

Script 4.23: Define the piecewise continuous ILDOS shown in Fig.4.15

4.5.2 Solving the NLH equation

Once we have defined the ILDOS for our problem, we must construct the elec-
trostatic problem as before. A selection of the sites - hereafter referred to as
the quantum sites will be attributed an ILDOS. All the quantum sites must
be flexible sites, the other sites can be of any type. We can then proceed
with calling the solver. The thomas_fermi constructor returns an instance of
one of the two solvers self_consistent.solver.PieceWiseNewthonRaphson or
self_consistent.solver.PieceWiseDichotomy (by default the first one). The
function takes five parameters (the last three being optional). The first parameter
poisson_problem is the Poisson problem, the construction of which has been dis-
cussed in the preceding sections. The second ildos is the ILDOS. If a single instance
of PContinuousIldos or PLinearIldos is given, then the same ILDOS is used on
all the quantum sites. ildos can also be a list of ILDOS when the ILDOS is e.g. spa-
tially dependent. In that case, one needs to set the input sites_ildos, an instance of
SparseVector. For each site present in sites_ildos, the corresponding value of the
sparsevector is the index of the ildos (i.e. the ILDOS of site i is ildos[sites_ildos[i]]).
The last two parameters are the Fermi level EF (e_f ) which is 0.0 by default and
method that decides on the solver (a string, either PieceWiseNewthonRaphson
or PieceWiseDichotomy). Let us go through a practical calculation for the 2D
model shown in the top sketch of Fig.4.1. We will treat the 2DEG at the Thomas-
Fermi level, a much better approximation than what was done in Script 4.1 (where
the 2DEG was described by an equipotential). First, let us construct the Poisson
problem. We will use the simple Script 4.1 and only need to modify two lines:

• in Line 29, we replace pb.set_dirichlet( region=twodeg, setup_name=’2deg’)
with pb.set_flexible(region=twodeg, setup_name=’2deg’) since the quantum
sites will correspond to the sites of the 2DEG.

• change the last line to a different name pd.save(’Problem_tf_example_2D’)
since it is a different electrostatic problem.

Script 4.24 shows the API of the solver. In Line 7, one loads the Problem.
Line 10 constructs the solver. Here we use the piecewise linear ILDOS shown on
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the left of Fig.4.15 and constructed at the beginning of this section (see Script
4.22). The same ILDOS is used in all quantum sites (a single ILDOS is given,
not a list). Since this ILDOS is the one of a bulk 2DEG, this is effectively the
Thomas-Fermi approximation. The actual calculation is done when one calls the
solve() method. It takes two input parameters, poisson_input and initial_guess.
The poisson_input is a dictionary defining the usual inputs that need to be given
to the poisson problem for all the sites that are not a quantum site. For this specific
example, it defines the values of the gate voltage and the doping charge density.
The keys of this dictionary are the names of the input parameters passed down to
the Problem.solve() method. The initial_guess is a SparseVector. It plays a
double role. First, the sites that are present in this sparsevector will be defined as the
quantum sites. The self-consistency only applies to these sites. It may change from
one call to solve() to another. For instance if some sites are depleted for a given gate
voltage, one may set them to Neumann and remove them from the quantum sites
to save computing time. Second, it sets the initial guess for the chemical potential
on the quantum sites. It is not important to have a good initial guess but it can
speed up the convergence (using e.g. the result of a previous calculation at a slightly
different gate voltage). Line 17 to 19 define the initial_guess setting µ = 0 at all
quantum sites. It happens that for this example all flexible sites are quantum sites,
hence line 19.

Line 21 to 23 call tf_plinear.solve(). To recover the physical results there are
five available methods. They all take as input iteration, an integer specifying the
iteration number in the self-consistent calculation (iteration=-1 for the last one).
They all return an instance of SparseVector.

• charge(iteration) returns the charge Qi for all sites in the poisson problem.
Note that for the quantum sites, this charge does not include the contribution
from the chemical potential (see below for the correct method);

• potential(iteration) returns the potential Ui for all sites in the poisson prob-
lem (including the quantum sites);

• quantum_charge(iteration) returns the full charge Qi for the quantum
sites only;

• chemical_potential(iteration) returns the chemical potential µi for the
quantum sites only;

• intervals(iteration) returns the index of the ILDOS interval to which the
solution belongs, for the quantum sites.

Lines 25 and 26 of Script 4.24 recovers respectively the charge and chemical
potential at the quantum sites at convergence. Figure 4.17 shows the charge (black)
and chemical potential (green) recovered in lines 25 and 26 respectively.

1

2 from pescado.poisson import Problem
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Figure 4.17: In black and green respectively the charge and chemical potential
thomas fermi solution. Obtained with the piecewise Newton Raphson algorithm
with Script 4.24. The dashed green line is at the fermi energy EF = 0.1

3 from pescado.self_consistent import solver
4 from pescado.self_consistent import ildos
5 from pescado.tools import SparseVector
6

7 pd = Problem.load(’Problem_tf_example_2D’)
8

9 e_f = 0.1
10 tf_plinear = solver.thomas_fermi(
11 ildos=ildos_plfa, poisson_problem=pd, e_f=e_f)
12

13 sv_gate = pd.sparse_vector(val=-0.2, name=’gate’)
14 sv_dop = pd.sparse_vector(val=1e-4, name=’dopants’)
15 poisson_input = {’voltage’:sv_gate, ’charge_density’:sv_dop}
16

17 initial_guess = SparseVector(
18 values=np.zeros(len(pd.flexible_indices)),
19 indices=pd.flexible_indices, dtype=float)
20

21 tf_plinear.solve(
22 poisson_input=poisson_input,
23 initial_guess=initial_guess)
24

25 charge_tf_plinear = tf_plinear.quantum_charge(iteration=-1)
26 cp_tf_plinear = tf_plinear.chemical_potential(iteration=-1)

Script 4.24: Define the piecewise continuous ILDOS shown in Fig.4.15

Let us now consider a slightly different calculation: we replace the ILDOS with
the continuous ILDOS shown on the right of Fig.4.15. Script 4.25 shows the code
for this calculation. We also use a different solver, the PieceWiseDichotomy,
as shown in Line 13. Line 15 calls the solve() method of tf_pd. In the piece-
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wise dichotomy method, the continuum ILDOS is approximated by a piecewise
linear ILDOS that matches the continuum one (both for the ILDOS and its deriva-
tive the LDOS) on certain points (the so-called functional points or fpoints). The
list of fpoints is constantly updated with new points (close to the solution) until
convergence. The piecewise dichotomy method, requires an additional input - ini-
tial_fpoints. It is a numpy array of floats defining the initial values of chemical
potential used in the discretization of the continuous ILDOS. For each quantum
site this solver creates an instance of PLinearIldos that matches the input ILDOS
on the initial_fpoints. More points are added to this PLinearIldos until conver-
gence (see Figure 3.6). Figure 4.18 shows the charge (black) and chemical potential
(green) recovered in lines 20 and 21 respectively.

1

2 from pescado.poisson import Problem
3 from pescado.self_consistent import solver
4 from pescado.self_consistent import ildos
5 from pescado.tools import SparseVector
6

7 pd = Problem.load(’Problem_tf_example_2D’)
8

9 e_f = 0.1
10

11 tf_pd = solver.thomas_fermi(
12 ildos=ildos_cont, poisson_problem=pd,
13 e_f=e_f, method=’PieceWiseDichotomy’)
14

15 tf_pd.solve(
16 poisson_input=poisson_input,
17 initial_guess=initial_guess,
18 initial_fpoints=np.array([-1e-4, 0.3]))
19

20 charge_tf_pd = tf_pd.quantum_charge(-1)
21 cp_tf_pd = tf_pd.chemical_potential(-1)

Script 4.25: Define the piecewise continuous ILDOS shown in Fig.4.15

Script 4.26 shows a third variation on the same problem. This time, we want to
use different ILDOS on different sites. This illustrates a situation where e.g. one
would like to use a gross approximation for the ILDOS in a not so interesting part
of the sample (here the discrete bulk ILDOS for |x| ≥ 700nm) and a more accurate
one for the interesting region (for instance recalculated using a quantum solver),
here we use the continuum ILDOS that we have defined for 300nm ≤ |x| ≥ 700nm.
We assume that all other sites are depleted and set them to Neumann condition.

Line 11, 14 and 16 construct the corresponding list of sites using standard numpy
tools. In line 20, we construct the list of ildos, here there are only 2 of them. There
can be up to one ILDOS per quantum site in the case where one is interested
in coupling this solver with a quantum solver that calculates the ildos. Line 21
constructs the sites_ildos which takes value 0 for the sites associated to the discrete
ILDOS and one for the sites associated with the continuum one. Line 29 constructs
the initial guess and sets which sites are the quantum sites (here not all the flexible
sites will belong to this set since we’re setting some to be Neumann). Last, in line 33,
we need to add the information about the flexible sites that will be set to Neumann
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Figure 4.18: In black and green respectively the charge and chemical potential
thomas fermi solution. Obtained with the piecewise Dichotomy algorithm with
Script 4.25. The dashed green line is at the fermi energy EF = 0.1

using the flexible_input entry. The rest of this example is identical to the previous
two cases.

1

2 from pescado.poisson import Problem
3 from pescado.self_consistent import solver
4 from pescado.self_consistent import ildos
5 from pescado.tools import SparseVector
6

7 pd = Problem.load(’Problem_tf_example_2D’)
8

9 e_f = 0.1
10

11 quantum_sites = pd.flexible_indices[
12 np.abs(pd.coordinates[pd.flexible_indices][:, 0]) < 700]
13

14 quantum_cont_sites = pd.flexible_indices[
15 np.abs(pd.coordinates[pd.flexible_indices][:, 0]) < 300]
16 quantum_lin_sites = np.setdiff1d(quantum_sites, quantum_lin_sites)
17

18 empty_sites = np.setdiff1d(pd.flexible_indices, quantum_sites)
19

20 ildos_list = [ildos_plfa, ildos_cont]
21 sites_ildos = SparseVector(
22 values=np.zeros(len(quantum_sites)), indices=quantum_sites)
23 sites_ildos[quantum_cont_sites] = np.ones(len(quantum_cont_sites))
24

25 tf_mixed = solver.thomas_fermi(
26 ildos=ildos_list, sites_ildos=sites_ildos,
27 poisson_problem=pd, e_f=e_f)
28

29 initial_guess = SparseVector(
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30 values=np.zeros(len(quantum_sites)),
31 indices=quantum_sites, dtype=float)
32

33 poisson_input_partial = {
34 ’voltage’:sv_gate, ’charge_density’:sv_dop,
35 ’flexible_input’:{
36 ’charge’:SparseVector(
37 values=np.zeros(len(empty_sites)),
38 indices=empty_sites)}}
39

40 tf_mixed.solve(
41 poisson_input=poisson_input_partial,
42 initial_guess=initial_guess)
43

44 charge_mixed = tf_mixed.quantum_charge(-1)
45 cp_mixed = tf_mixed.chemical_potential(-1)

Script 4.26: Define the piecewise continuous ILDOS shown in Fig.4.15

4.6 Conclusion

We have presented the python library PESCADO , a high level, lightweight, NLH
solver package. While PESCADO is geared towards electrostatics, more precisely
to the SCQE problem, it is constructed from various abstraction layers that may
be used for other projects. Its geometrical engine, based on the concept of shapes,
is very lightweight. We have found that it is sufficiently expressive to cover all the
practical use cases that we have encountered so far. For instance, using shapes, it
was relatively straightforward to construct a PESCADO simulation from the GDS
files that are used as an input to the e-beam lithography machines, hence providing
a direct tool to simulate a device prior to fabrication [Fouad Kalo 2023]. The finite
volume mesher has been constructed in the same spirit. It provides enough control
to adapt the grid to e.g. another python package in charge of a different part of the
calculation. The next layer solves the electrostatic problem (LH) and the last layer
the NLH problem. Future work will present an API that fully integrates this last
layer with a quantum solver such as Kwant. At the moment this last step is left to
the user but is relatively straightforward to do.
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Chapter 5

Positioning of edge states in
quantum hall graphene PN

junction

Electronic interferometers probe the phase of quantum states. For instance, they
can be used to read the phase of a quantum bit, e.g. flying quantum bits
[Bäuerle et al. 2018], or observe fractional statistics, e.g. anyonic statistics of frac-
tional quantum hall states [Nakamura et al. 2020]. In this Chapter we shall simulate
a MZI. It is a two-path interferometer. In a MZI an initial pulse is split into two
independent paths, the two arms of the MZI. When propagating along two different
paths, the two pulses can gain a relative phase to one another. At the end of the
MZI the two paths interfere. The interference pattern gives us information about
the phase difference gained during propagation.

Although the MZI is a theoretically simple device, only recently has it been real-
ized experimentally [Ji et al. 2003]. Double slit [Schuster et al. 1997, Ji et al. 2000]
or Fabry-Pérot interferometers [de C. Chamon et al. 1997, Deviatov & Lorke 2008]
are simpler to fabricate. However due to their multiple interference paths and open
geometry (double slit), extracting information from the measured pattern is consid-
erably harder. Since the MZI has only two paths interfering at a single spot, sim-
ulating their behavior is much simpler. However, it also means during experiments
we must have a precise control of the path taken by the propagating pulse. The
first MZI has been achieved using the quantum hall chiral edge states of the 2DEG
in GaAs/AlGaAs heterojunctions [Ji et al. 2003]. First, the states are localized at
the edge of the sample. Second, their chiral nature drastically reduces the prob-
ability for elastic scattering, thus avoiding counter-propagating states, and hence
unexpected interference events. Often modern MZIs uses the chiral edge states,
hence are devices that function under high magnetic fields. This is not a necessity
though. Recently an MZI has been fabricated by drawing electronic highways in
the underling 2DEG through precise gate placement [Yamamoto et al. 2012]. This
implies a huge nanofabrication effort, notably on the lithography side. Hence MZIs
using large magnetic fields still dominate the experiments.

Recently graphene has emerged as a another promising material for "electron
quantum optics" experiments. A more general term encompassing experiments seek-
ing to generate, manipulate and measure coherent quantum states. First, the use
of hexagonal boron nitrate (h-BN) to encapsulate graphene instead of depositing
the graphene layer directly on SiO2 or other oxides has drastically increased car-
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rier mobility [Dean et al. 2010]. Second, nearby graphite electrostatic gates screen
the electrostatic interaction as well as the charges trapped in the substrate at the
Si/SiO2 interface. MZIs based on graphene PN junctions now report record perfor-
mances with interference visibilities nearing 100% [Wei et al. 2017, Jo et al. 2021].

Most features of these graphene Mach-Zehnder experiments could be understood
within a LB picture, c.f. section 1.1.1.1. One observation, however, remained puz-
zling: the large separation W between the two interfering channels that form the
two paths of the Mach-Zehnder, ranging between W = 50 and 200 nm, depending
on the experimental setup [Wei et al. 2017, Jo et al. 2021]. In a naive LB picture,
such a large separation should be associated with an abnormally high value of the
exchange interaction, almost in the 100 meV range. In this Chapter we will show
that this paradox is due to a breakdown of the LB picture in the QHE regime.

The LB approach does not account for the dominating electrostatic energy
[Armagnat & Waintal 2020] and must be replaced by the more elaborate CSG
model, see [Chklovskii et al. 1992a] and section 1.1.1.2. Performing the CSG con-
struction of the compressible and incompressible stripes in a graphene pn junctions,
our main result is a simple explanation to the above mentioned paradox. Even
though the splitting between the interface states is indeed due to the presence of
an exchange interaction, we find, in contrast to previous claims [Wei et al. 2017],
that the actual value of the distance between the edge states is entirely controlled
by the geometry of the device (via its electrostatic properties) and is essentially
independent of the value of the exchange splitting.

This chapter is organized as follows. In Section 5.1 we introduce the electronic
MZI. In Section 5.2 we describe the graphene MZI, notably the experimental device
and main results of [Wei et al. 2017, Jo et al. 2021]. Then, in Section 5.3 we study
qualitatively the role of exchange interaction on the edge state separation W . In
Section 5.4 we follow CSG and perform the compressible / incompressible stripes
reconstruction. Finally, in Section 5.5 we perform SCQE calculations of the com-
pressible / incompressible stripes for the devices in [Wei et al. 2017, Jo et al. 2021].
It confirms the predominant role of electrostatics on the chiral edge state separation
at the PN junction. This work has been published as:

I.M. Flor, A. Lacerda-Santos, G.Fleury, P.Roulleau and Xavier Wain-
tal. Positioning of edge states in a quantum Hall graphene pn
junction Physical Review B 105, L241409 (2022)

5.1 Mach-Zehnder interferometer

The Mach-Zehnder is a two path interferometer. Figure 5.1 (a) shows an optical
MZI. First a light beam is emitted by the source S. Then BS1, a beam splitter,
splits the incoming light into two paths. The mirrors M1 and M2 redirect the two
incoming beams s.t. they recombine and interfere at BS2. Afterwards the two
outgoing beams reach the detectors D1 and D2. As the phase along one of the
paths oscillates, the signals recovered from D1 and D2 oscillate out of phase.
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Figure 5.1: Taken from [Ji et al. 2003]. (a) Schematics of an optical MZI. (b)
Schematics of the electronic MZI of [Ji et al. 2003] (c) Scanning electron microscopy
image of the experimental MZI. For a detailed description of the schematics we refer
to Section 5.1.

Figure 5.1 (b)-(c) shows the first realization of an electronic MZI by
[Ji et al. 2003]. The MZI is defined on the 2DEG of an AlGaAs/GaAs heterostruc-
ture placed in the quantum hall regime. The light beam is replaced by a current
carried by the chiral edge states of the 2DEG. The beam splitters BS1 and BS2
are replaced by respectively QPC1 and QPC2. The QPC1 splits current incoming
from the source. Part of it is transmitted into the device “inner path” and the rest
reflected into the device “outer path”. They recombine at QPC2, interfere and are
collected by D1 and D2. MG1 and MG2 are two gates used to define the edge of the
(populated) 2DEG. Hence, they can change the inner path of the interferometer.
The area A enclosed by the inner and outer paths can be tuned by VMG, the voltage
applied at the MG1 and MG2 gates.

Let B be the magnetic field perpendicular to the 2DEG plane. Then the
Aharonov-Bohm effect implies that at QPC2 the phase of the electrons flowing
through each path will differ by

Φ =
eBA

~
(5.1)

Therefore the interference current measured oscillates as a function of B and
A. Figure 5.2, adapted from Figure 2 of [Ji et al. 2003], shows how the current
measured at D1 oscillates as a function of B and VMG. The amplitude of oscillation
is proportional to cos(Φ).
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Figure 5.2: Taken from [Ji et al. 2003]. Interference pattern of the device in 5.1.
The colormap shows the current measured at D1 as a function of gate voltage and
magnetic field.

5.2 Graphene PN junction Mach-Zehnder interferome-
ter

Figure 5.3: Schematics of a Mach Zehnder interferometer made using a graphene PN
junction in the quantum hall regime. The P side is shown in red and the N side in
blue. The current is injected from the right side. As it reaches the junction it splits
into two, part of it is carried by the holes of the P side and the rest by electrons
of the N side. Then they propagate separately along the junction, as shown by the
dotted lines. As they reach the end of the junction, the two paths mix and are
scattered to the right and left side of the device, where two detectors measure the
current.

In this chapter we study the MZI measured by [Wei et al. 2017] and [Jo et al. 2021].
They are both fabricated using Graphene PN junctions. Similarly to the electronic
MZI explained in Section 5.1, the device is placed under a perpendicular magnetic
field B. This places the PN junction into the quantum hall regime, with counter-
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propagating edge channels at each side of the junction and a insulating ν = 0 state
at the graphene’s charge neutrality point.

Figure 5.3 shows a minimalist sketch of the device. The blue and red regions
correspond to the respectively N and P type graphene. The counter-propagating
edge channels are shown in the blue and red lines. The beam splitters are formed
at the two opposing edges of the PN junction due to interchannel scattering, see
hatched black circles. In the middle of the junction interchannel scattering is sup-
pressed, hence the electrons propagate coherently on each side of the junction. This
forms the two arms of the interferometer, see the dotted lines in Figure 5.3. The
surface englobed by the two paths, WL, is the surface of the MZI capturing the
magnetic flux. Figure 5.6 (c) shows a typical measurement of the MZI transmission
as a function of magnetic field. From the period of oscillations, ∆BMZ , and Eq.(5.1)
we can extract the surface :

WL =
h

e

1

∆BMZ
(5.2)

The question we seek to answer in this chapter is : what controls the separation
W between the edge channels ? To answer this question we have developed the two
models shown in Figure 5.4. In Section 5.2.1 we describe them in detail. To verify
theW we extract from the models in Figure 5.4, we use as reference the experiments
of [Wei et al. 2017] and [Jo et al. 2021], see Section 5.2.2.

5.2.1 Device geometry

We consider the two geometries (I) and (II) displayed in Figure 5.4. They closely
mimic the experimental setups used in [Wei et al. 2017] and [Jo et al. 2021] respec-
tively. We also consider a third geometry (III) studied in the supplementary material
of [Jo et al. 2021]. It is essentially identical to (I) but with a different value of the
distance between the graphene layer and the top gate, noted d2.

A hBN encapsulated graphene monolayer is sandwiched by two gates. A bottom
gate (at voltage Vb) spans the full graphene flake while a top gate (at voltage Vt) is
only present on half of the flake, x < 0. By setting different values of the voltages
Vb and Vt, one may form a pn junction with e.g. electrons accumulated under the
top gate and holes in the other part of the sample. A magnetic field B = +Bẑ

is applied perpendicular to the graphene flake to bring the graphene layer into the
QHE regime. Here, we focus on the situation with Vb < 0 and Vt > 0 such that the
filling factor is ν = 2 at the n side and ν = −1 at the p side, where ν = nsh/(eB) (ns:
electron surface density). In the n region, two channels circulate counter-clockwise
while in the p region one propagates in the clockwise direction. In setup (II), the
two additional side gates (at voltage Vs) allow one to tune the transmission between
the edge channels along the graphene boundaries and the interface states along the
pn junction.

For −2 ≤ ν ≤ 2, only a single Landau level is filled. This peculiar Landau level
is pinned at the Dirac point (our energy reference) and is a specificity of the Dirac
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Figure 5.4: Two graphene pn junctions (I) and (II) respectively without
[Wei et al. 2017] and with [Jo et al. 2021] side gates (in yellow). The top (blue)
and bottom (red) gates create the pn interface. Insulating hBN fill the empty space
between gates and graphene. A magnetic field B = 9 T is applied in the ẑ direction.
Two spin-split quantum Hall channels with valley isospin K propagate at the n side
(x < 0). One spin-polarized channel with opposite valley isospin K ′ propagates at
the p side (x > 0).
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dispersion relation of graphene. In a non-interacting theory, this Landau level is de-
generate in both spin (↑, ↓) and valley (K,K ′). The exchange interaction Eex, how-
ever, lifts this degeneracy [Werner & Oswald 2020]. The existence of interference in
these experiments relies on the intervalley scattering at the intersection between the
physical edges of the sample and the pn interface [Tworzydło et al. 2007]. In the
LB picture, an incoming state — say K ↑ coming from the n side at y = 0 — is
scattered into a state K ′ ↑ (respectively K ↑) at point (A) in the pn junction with
amplitude SAK′K (respectively SAKK). We write the scattering eigenstate at point A
as :

|ΨA〉 = SAK′K |↑,K ′〉+ SAKK |↑,K〉 (5.3)

The state then propagates along the pn junction (near x = 0 between y = 0 and
y = L) as a superposition ofK ↑ andK ′ ↑. It does so coherently due to valley conser-
vation along the interface [Tworzydło et al. 2007, Trifunovic & Brouwer 2019]. As it
propagates along the junction, state |↑,K〉 gains a phase difference ΦAB = eBWL/~,
s.t :

|Ψ(x = 0, y = L)〉 = SAK′K |↑,K ′〉+ SAKKe
iΦAB |↑,K〉 (5.4)

Then, it is scattered again at the (B) corner with an amplitude SBKK′ (respec-
tively SBKK) into an outgoing channel, say K ↑ towards the n side where it further
propagates towards an Ohmic contact situated at x = −∞, y = L. Note that
the valley index K, K ′ is not necessarily well defined on the edges of the sample
where intervalley scattering can occur (depending on the microscopic structure, say
armchair versus zigzag) but we keep the same letter for labeling these states for
convenience. The transmission probability of |Ψ(x = 0, y = L)〉 onto, say state
|↑,K〉 propagating along the n side, is :

TMZI =
∣∣〈ΨB |Ψ(x = 0, y = L)〉

∣∣2 (5.5)

with |ΨB〉 the scattering eigenstate at point B :

|ΨB〉 = SBKK′ |↑,K ′〉+ SBKK |↑,K〉 (5.6)

s.t.

TMZI =
∣∣SBKK′SAK′K + SBKKS

A
KKe

iΦAB
∣∣2 (5.7)

The resulting differential conductance obtained from the Landauer formula is

g =
e2

h
TMZI =

e2

h

∣∣SBKK′SAK′K + eiΦSBKKS
A
KK

∣∣2 (5.8)

Note that in this picture, the K ↓ state has a different spin from the other two
channels and is simply a spectator. Indeed, in the absence of magnetic impurities
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(a) (b)

Figure 5.5: (a) Schematics of the graphene PN junction fabricated by
[Wei et al. 2017] (adapted from Figure 1). The position where the junction is formed
is shown by the zoom, with p type in red and n type in blue. (b) On the top left the
conductance as a function of magnetic field and bias voltage VDC for a filling factor
of 1 in the n region and −2 in the p region. On the bottom left the visibility of
the interferometer as a function of VDC . On the right a 1D cut of the conductance
as a function of magnetic field for a constant VDC (red line on the top left figure).
Adapted from Figure 3 of [Wei et al. 2017].

or spin-orbit coupling, spin is conserved along the edge states. Eq.(5.8) predicts
that the conductance oscillates with magnetic field. The period of these oscillations
directly provides the separation W between the edge states K ↑ and K ′ ↑ in the
pn junction, the length L of the junction being defined by the sample geometry, c.f.
Eq.(5.2).

5.2.2 Main experimental observations

Figure 5.5 (a) shows the device studied by [Wei et al. 2017], c.f. model (I) of Figure
5.4. Figure 5.5 (b) shows their main results. From Eq.(5.2) and the frequency
of the conductance oscillations of Figure 5.5(b), we can extract W = 52nm. The
left bottom figure shows the visibility of their device, defined as V = (gmax −
gmin/gmax + gmin). The visibility reaches values as high as 98%.

Among the findings of [Wei et al. 2017], the most relevant to this chapter are:
i) the edge channels belonging to the zeroth Landau Levels (LL) are well isolated
from higher energy LL; ii) interchannel scattering does not occur at electrostatically
defined edges, only at the physical edges and iii) the high visibility of the MZI
indicates near perfect phase coherence at the PN interface.

Figure 5.6 shows the device of [Jo et al. 2021], c.f. model (II) of Figure 5.4. It
differs from the device of [Wei et al. 2017] by the two side gates at the edges of the
PN junction. By tunning the side gate voltages Vs, they move the edge channel
away from the physical edge of the sample. When the edge of the PN junction is far
enough from the physical edge s.t. no interchannel scattering is allowed, the beam
splitter is in total reflection mode. They found that for Vs > −0.3 they obtain total
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Figure 5.6: Schematics of the graphene PN junction fabricated by [Jo et al. 2021].

reflection at the beam splitters, c.f. [Jo et al. 2021] Figure 2(a).
Figure 5.7 is the main result of [Jo et al. 2021]. Figure 5.7 (a) shows the device

transmission oscillations when the transmission at the second beam splitter is set
to zero (T2 = 0). Figure 5.7 (b) shows the device transmission oscillations for
when T2 6= 0. They observed small scale oscillations superimposed to the large
scale oscillations of Figure 5.7 (a). The small scale oscillations are those due to
the magnetic flux captured by the MZI. From their periodicity (∆BMZ ≈ 25mT ),
they extracted W = 110nm. Using the periodicity on V1 (∆VMZ

1 = 50mV ), they
also extracted how the area WL changes with V1. They estimate a shift of the PN
junction bellow the top gate of δW ≈ 1nm for a ∆V1 = 100mV .

5.3 Qualitative role of the exchange interaction in the
value of the edge state separation W .

Lets go back to the model of Figure 5.4. We now focus on the pn junction and ignore
the boundaries at y = 0 and y = L. In the Landau gauge, a Landau level with
momentum k along the y-direction is centered along x = k`2B where `B =

√
~/eB is

the magnetic length. In the presence of an electrostatic potential U(x) that varies
smoothly on the scale of `B, the dispersion relation of the propagating channels
(within the Dirac point Landau level) takes the form :

Ep(k) = −eU(k`2B) +
pEex

4
(5.9)
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Figure 5.7: (a) Measurement of the top beam splitter transmission (T1 = IT /(I0/2))
as a function of top side gate voltage V1 and magnetic field. The filling factor of the
graphene bellow the bottom side gate is set to zero (total reflection hence T2 = 0).
(b) Measurement of the Mach-Zehnder transmission (TMZ) for a filling factor bellow
the bottom side gate set to −1 (hence T2 6= 0). (c) TMZ as a function of magnetic
field and V1 when the transmission at both beam splitters is the same and equal to
1/2. Taken from [Jo et al. 2021]
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Figure 5.8: Calculations of a pn junction in the absence of magnetic field for the
geometry (I) with d1 = d2 = 20 nm as in [Wei et al. 2017] and Vb = −0.2 V,
Vt = 0.6 V. (Left) TF potential U(x). Also shown is the value of Eex ≈ 85 meV
needed to account for the experimentally observed W = 52 nm in [Wei et al. 2017]
according to the LB picture. (Right) electronic density ns(x) in the pure electrostatic
approximation. Also shown are the positions in x where the filling ν would take
integer values at B = 9 T. These locations will become incompressible stripes (in
white) separating the conducting compressible stripes (in gray) following the CSG
picture.
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where the integer p ∈ {±1,±3} labels the 4 different channels with different
valleys K,K ′ and spins ↑, ↓. Here, the exchange interaction energy takes the value
Eex for valleys and Eex/2 for spins. As we shall see, this choice of values will be
mostly irrelevant in what follows. It follows from the dispersion relation that, for two
channels at the Fermi energy EF , the exchange energy must exactly compensate the
change of electrostatic energy due to the spatial separation. Hence, for a constant
gradient of potential :

e
∂U

∂x
W = Eex. (5.10)

In Equation (S1.6) of [Wei et al. 2017], Eq.(5.10) was used to determine the
width W ≈ Eex/(e∂U/∂x). To calculate W they assumed the electric potential
under magnetic field to be the same as the one in the absence of magnetic field.
However this assumption is false and using it to solve Eq.(5.10) leads one to set
unreasonably high values for Eex if the experimental values of W [Wei et al. 2017]
are to be recovered, e.g. left panel Fig. 5.8. It is instead the charge density that
only slightly changes when the magnetic field is added, c.f. CSG picture in Section
1.1.1.2 (the potential can change quite a lot). Therefore, in the section bellow we
argue that while Eq.(5.10) is strictly speaking correct, it cannot be used to determine
W . In contrast, Eq.(5.10) defines the value the potential gradient takes while W is
essentially determined by the geometry of the system (in the (I) geometry, W ∝ d2

the distance to the top gate).

5.4 Construction of the Chklovskiii-Shklovskii-Glazman
(CSG) compressible and incompressible stripes.

Following CSG, see [Chklovskii et al. 1992a] and Section 1.1.1.2, we start by cal-
culating the potential profile U(x) and density profile ns(x) in the junction in the
absence of magnetic field. We do so within the TF approximation. In our 2D ge-
ometry (infinite pn junction along y), there is no bulk electronic density so that
Poisson equation reads:

∆U(r) = 0 (5.11)

with Dirichlet boundary conditions at the electrostatic gates. The graphene 2D
electronic density ns(x) gives rise to a discontinuity of the electric field given by:

∂U

∂z
(x, z = 0+)− ∂U

∂z
(x, z = 0−) = −e

ε
ns(x) (5.12)

where ε = 4ε0 corresponds to the hBN dielectric constant. In the TF approxi-
mation, the density is controlled by the bulk graphene density of state ρ(E) which
reads at zero temperature:

ns(x) =

∫ µ=eU(x)

0
dE ρ(E) (5.13)
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assuming that the Fermi energy EF = 0 = µ− eU(x) (µ: chemical potential) is
constant across the graphene sheet. In the absence of magnetic field, graphene has
a linear density of states :

ρ(E) =
2|E|

π~2e2v2
F

(5.14)

with vF ≈ 106 m/s the Fermi velocity in graphene. In the calculation shown in
Figure 5.8, we adjust the top and bottom gate voltages in order for the electronic
density in the bulk n and p regions to correspond respectively to that of ν = 2 and
ν = −1 at B = 9 T. Note, however, that the magnetic field remains zero in the
calculation at this stage.

The numerical calculation is performed using a generalization of the approach
described in [Armagnat et al. 2019]. In the left panel of Figure 5.8, the electrostatic
potential was calculated for the setup in experiment (I) where the distance between
the top gate and the graphene layer is d2 ≈ 20 nm [Wei et al. 2017]. Assuming
that this potential profile would be weakly affected by the magnetic field, one finds
[using Eq.(5.10)] that the large value W = 52 nm observed experimentally requires
an exceedingly large exchange energy of Eex ≈ 85 meV. As a reference, this value is
almost as large as the distance to the next Landau level ~vF

√
2/`B ≈ 100 meV. Such

a large exchange energy would imply a deep reconstruction of the Landau levels that
is not observed experimentally. The assumption that the electrostatic potential is
unaffected by the magnetic field is in fact not valid [Armagnat & Waintal 2020]. In
contrast, it is the electronic density ns(x) shown on the right panel of Figure 5.8
that is almost unaffected by the presence of a magnetic field. Indeed, modifying
the electronic density can provide a gain in energy of the order of the exchange
energy Eex or the cyclotron frequency ~ωc at a great loss in electrostatic energy.
This is favourable only when the density is close to an integer filling factor. To
understand this statement more quantitatively, suppose that the exchange energy
or the cyclotron energy is at the origin of a change of density δn that is transferred at
a distance x. The associated increase of electrostatic energy EU due to the creation
of this dipole is :

EU ≈
e2δnx

cε
(5.15)

with c = 1 the geometrical constant for a simple planar capacitor geometry
[Armagnat et al. 2019]. This translates into :

EU ≈
e3δνxB

chε
(5.16)

in terms of the variation of filling factor δν. For δν ≈ 1, x = 100 nm and
a magnetic field of B = 10 T, one arrives at EU ≈ 400 meV, an energy scale
which is much larger than any other energy scale present in the problem. It follows
that such an important variation of the density is impossible; such a large increase
of electrostatic energy cannot be compensated by a gain in cyclotron or exchange
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energy. Hence, the onset of quantum Hall effect can only change the density a little
and locally.

Hence we consider the B = 0 density and, in the spirit of the CSG ap-
proach, we identify the positions in the right panel of Figure 5.8 that corre-
spond to integer values of ν. Upon switching the magnetic field, a small re-
gion around these points will become incompressible stripes with a flat density
ns(x) = νh/eB. Away from these points, ns(x) is not constant which means
that there must be one partially filled Landau level pinned at the Fermi level.
These regions are the compressible stripes, where propagation is allowed. In
these regions, the electrostatic potential U(x) remains constant. We refer to
[Chklovskii et al. 1992a, Chklovskii et al. 1993] for the details of the original con-
struction and to [Armagnat & Waintal 2020, Armagnat et al. 2019] for a more re-
cent version compatible with numerical calculations. Note that in the numerics, in
contrast to the analytical construction, we do not assume that the change of den-
sity due to B and Exc is small. In the CSG picture, the size of each incompressible
stripe is proportional to

√
Eex [Armagnat et al. 2019]. Their positions, however, are

entirely determined by the electrostatic potential at B = 0 hence by the geometry
of the problem. In particular the width W , that corresponds to the distance be-
tween the centers of the two outer compressible stripes, is entirely determined by the
electrostatics (hence independent of Eex). Here we estimate W ≈ 62 nm, without
adjustable parameter, which is in good agreement with the experimentally found
value W = 52 nm in experiment (I) for the same geometry. For experiment (III)
with d2 = 50 nm, we findW = 90 nm, also in good agreement with the valueW ≈ 83

nm found experimentally (see Figure S3 in the supplementary of [Jo et al. 2021]).

5.5 Numerical calculations of the compressible/incom-
pressible stripe structure.

To actually calculate the stripes, we now use the finite B density of states. It is a sum
of Dirac peaks at the positions of the Landau sublevels [Castro Neto et al. 2009]:

ρ(E) =
1

2π`2B

∑
n∈Z

∑
p=±1
,±3

δ
(
E − En −

p

4
Eex

)
(5.17)

where En = ~vF sgn(n)
√

2|n|/`B are the Landau levels of degenerate graphene.
This Generalized Thomas-Fermi (GTF) approximation includes the effect of the
(Fock) exchange interaction phenomenologically. Indeed, it is only the existence
of a splitting and not its exact value that affects the results presented here. At
B = Eex = 0, one recovers the TF approximation above. Considering only the
n = 0 Landau level in the limit Eex = 0, we obtain the Pure Electrostatic (PE)
approximation, i.e. the graphene is subject to a Dirichlet condition with an equipo-
tential U(x, z = 0) = EF = 0.

The right panel of Figure 5.9 illustrates the three cases considered by showing
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the integrated density of state Eq.(5.13) in bulk graphene. The results of the self-
consistent calculation are shown in the upper (density) and lower (potential) left
panel of Figure 5.9. They are fully consistent with the picture described in the
above paragraph. We have also verified (not shown) that the width of an incom-
pressible strip is indeed proportional to

√
Eex and that the value of W does not

depend on it. Hence the value of Eex used in the calculations can be chosen arbi-
trarily. The energy ordering of the states with different spins and valleys depends on
the competing interactions at the junction, and is here chosen to match the exper-
imental observations. We note that the PE calculation approximates the quantum
Hall graphene better than the B = 0 TF one. This is unsurprising since the PE
approximation naturally captures the position of the n = 0 Landau level.

5.5.1 Effect of a side gate.

We now turn to the experimental setup (II) with additional side gates at voltage Vs.
The main usage of the side gates is to control the scattering amplitudes of Eq.(5.8)
in order to maximize the visibility of the interference pattern [Jo et al. 2021]. We
retain two experimental findings associated with this side gate: (i) The interference
is only present for negative values of Vs < −0.3 V, (ii) the period of the oscillations
is equal to 25 mT, c.f. 5.2.2. The period of oscillations is roughly constant except
close to Vs = −0.3V where it is about 45% smaller, around 14 mT. The values are
extracted from an analysis of the data of Figure 5.7, the qualitative period change
is visible with the bare eye.

In Figure 5.10 (left), we distinguish four density profiles for different values of the
potential Vs. When Vs < 0, all compressible stripes are situated at the left (x < 125

nm) part of the side gate. However, when Vs > 0, an incompressible region necessar-
ily finds itself extended over the entire width of the side gate in between two Landau
sublevels. The inter-channel separation in this case is increased dramatically. Con-
sistent with observation (i), inter-channel scattering at the graphene edges A and B
is expected to be fully suppressed. As for observation (ii), W steeply decreases as Vs
tends away from zero, resembling the experiment. Quantitatively, the experimental
results correspond to an average shift dW/dVs = 10 nm/V; in our calculations, the
center of the pn interface shifts by 17 nm over 2 V, which results dW/dVs = 8.5

nm/V in close agreement. As a final quantitative comparison, we calculate the av-
erage edge-channel separation Wavg along the entire interface of setup (II). For this,
we approximate the interferometer area of the more complex geometry and get :

Wavg = (W0(L− 2Lsy) +Ws(Lsx + 2Lsy))/(L+ Lsx), (5.18)

with : W0 = 195 nm and Ws = 40 nm the calculated inter-channel separation
without and with side gates respectively; Lsx = 500 nm and Lsy = 200 nm the side
gate lengths in the x and y-directions respectively. This yields Wavg =102 nm. The
same estimate in the experiments (effective area divided by L+Lsx = 1.5µm) gives
Wavg = 110 nm. We find again a very good agreement.
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Sample I Sample II Sample III
Exp W 52 nm 110 nm 83 nm
Num W 62 nm 102 nm 90 nm

Exp dW/dVs 10 nm/V
Num dW/dVs 8.5 nm/V

Table 5.1: Numerical vs experimental data. Sample I and II see Figure 5.4. Sample
III has the same geometry as I, but with a different d2 (distance between the top
gate and graphene sheet). Sample I has d2 = 20 nm and sample II d2 = 50 nm

5.6 Conclusion

The results of this chapter, see Table 5.1, show that the edge states structure in
a graphene pn junction can be understood quantitatively from the sole knowledge
of the device electrostatics. Hence, the properties of these interferometers can be
engineered by clever design of the device geometry. Compared to conventional semi-
conductors, it opens up new research avenues in electron quantum optics where in-
teraction between propagating edge states can be precisely tuned. This should lead
to the demonstration, in future experiments, of more complex quantum operations
in graphene such as entanglement [Ionicioiu et al. 2001].
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Figure 5.9: Reconstruction of the edge channels in geometry (I) with three approx-
imations: pure electrostatic (PE) (dashed gray) and (generalized) TF with B = 0

(solid black) and B = 9 T (solid red) respectively. For each case, the density profile
(top left), the carrier density in the zeroth Landau level (top right) and the poten-
tial (bottom left) are shown. Here d1 = d2 = 20 nm. The chosen value Eex = 30

meV only affects the width of the incompressible region. The integer filling factors
are shown with gray horizontal lines in both top plots. (In)compressible regions
are shown in (white) gray patches and the horizontal position of the top gate is
indicated by the blue hatched region.
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Figure 5.10: (Left) Density profiles calculated in the generalized TF approximation
for B = 9 T and different values of Vs (color) and for an identical device without side
gate (gray). The top and side gate horizontal position are indicated by the hatched
regions. (Right) (In)compressible stripes as a function of Vs with lines drawn at the
values for Vs depicted in (left). d1 = d3 = 30 nm and d2 = 60 nm. Below Vs = 0,
the inter-channel separation decreases from 48 nm to 35 nm.





Chapter 6

Predictive Modeling of
GaAs-based nanoelectronic

devices

A predictive model of nanoelectronic devices must be simple enough such that all
of its parameters are extracted experimentally. At the same time, it must be gen-
eral enough to predict the behavior of devices of different design. For instance,
a single model must predict the behavior of devices with different gate geome-
try or dopant concentration. In this chapter we present the work published in
[Chatzikyriakou et al. 2022]. We develop a model for nanoelectronic devices built
on GaAs/AlGaAS heterostructures. We validate our model by assessing its ca-
pacity to predict a large experimental dataset of conductance measurements made
on 110 devices with 48 different geometries. Indeed, due to the complexity of the
semiconductor physics taking place in nanoelectronic devices, a match between the
experimental data from a single device and quantum transport simulations is insuf-
ficient. It does not guarantee we have properly captured the device electrostatics.
By making a comparative study between a single model and a large experimental
dataset we put significant constraints on the modeling and asses its level of pre-
dictability. Furthermore, we have designed the experiments on well known systems
such that their sole purpose is to validate our numerical model.

The work presented in this chapter is divided into two parts. First an experi-
mental part where we generate the data-set used to develop our numerical model.
Second a simulations part where we asses our model predictive power.

The experimental part provides the extensive data set we use to calibrate the
modeling and assess its predictive power. Indeed, as pointed out recently by
[Ahn et al. 2021], there is a lack of extensive experimental measurements of na-
noelectronic, quantum devices in the literature. Our objective is to assess how well
we can predict quantitatively the behavior of devices whose physics is supposed to
be already well understood. Therefore, we worked in close collaboration with Chris
Bauerle’s experimental group at Néel Institute (hereafter referred to as CBG). CBG
fabricated a large set of QPC on the 2DEG formed in a GaAs/AlGaAs heterostruc-
ture. They have measured the low temperature differential conductance of a total
of 110 different QPCs with 48 different geometries of various shapes, widths and
lengths. The full set of experimental data is published in [dat 2022].

The simulation part predicts the different values of the gate voltages where
the QPC conductance vanishes, the “pinch-off" voltages. The pinch-off values are



148Chapter 6. Predictive Modeling of GaAs-based nanoelectronic devices

unaffected by the low energy physics affecting the quantum behavior of the device.
Understanding them amounts to understanding the charge distribution in the device.
That is, the physics in the meV–eV range. Only when one is confident that this
physics is taken care correctly, it makes sense to try to predict the physics taking
place at lower energies. That is, only when one can correctly predict the pinch-off
voltage for any QPC among the 110 devices fabricated to generate the data set,
one can hope to develop a model precise enough such that it can correctly capture
the relevant quantum physics. Hence, the simulations we perform aim at giving a
quantitative answer to the question: “where are the charges in the device?"

This chapter is organized as follows: Section 6.1 summarizes our main findings:
We show that the experimental pinch-off voltages match the predictions of the sim-
ulations within a ±5% accuracy. Section 6.2 describes our experimental protocol.
Section 6.3 explains the model used in the simulations. In section 6.4 we present
the comparison between the experimental data and the simulations. We end this
article with section 6.5, which contains a critical discussion of the modeling.

The experiments were performed by C.Baurle’s group at Institut Néel. The
initial model development and simulations was performed by me. Most of the
simulations generating the results presented in this chapter were done by Eleni
Chatzikyriakou. The work in this Chapter is published as :

Eleni Chatzikyriakou, Junliang Wang, Lucas Mazzella, Antonio
Lacerda-Santos, Maria Cecilia da Silva Figueira, Alex Trellakis, Stefan
Birner, Thomas Grange, Christopher Bäuerle and Xavier Waintal. Un-
veiling the charge distribution of a GaAs-based nanoelectronic
device: A large experimental dataset approach. Physical Review
Research 4, 043163, 2022.

6.1 Summary of the approach and model predictions

CBG fabricated and measured a large set of QPCs of various shapes and sizes.
Quantum points contacts are one of the simplest devices used in quantum na-
noelectronics [van Wees et al. 1988, Wharam et al. 1988]. Despite their simplicity,
there remains open questions about their behavior, notably in the regime called 0.7
anomaly [Thomas et al. 1996]. In the work presented in this Chapter we do not
focus on the 0.7 anomaly nor on the conductance quantization, but we rather estab-
lish, on firm grounds, the electrostatic potential seen by the conducting electrons.
This amounts to understanding the charge distribution in the device. To reach this
goal, we perform a systematic comparison between the simulated and measured
“pinch-off" voltages.

Experimentally, the pinch-off voltage is the voltage value applied to the electro-
static gates such that the conductance vanishes or presents a cusp — an indication
that the 2DEG gets fully depleted in some part of the system.

Figure 6.1c shows a schematic of a typical device (see Fig. 6.5 for a SEM picture
with the scales). The device (zoomed-in inset) has a transistor-like geometry with
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Figure 6.1: a) Schematic of the 3D stack with GaAs (dark gray), AlGaAs (light
gray), top QPC gate (yellow) and the 2DEG region (blue). b) Typical experimental
curve for gate voltage measurements. The three different points, V1, V2 and V3,
correspond to values of the gate voltage where the gas is depleted underneath the
different gate regions. V1 depletes the gas in the gated region, V2 in the narrow gate
region and V3 in the QPC region. c) Simplified top view of a device with a transistor-
like geometry. The Ohmic contacts (source and drain) and the electrostatic gates
(situated ≈ 110 nm above the 2DEG) are indicated in yellow. For the simulations,
the system is broken into 4 different subregions tagged ungated, gated, narrow gate
and QPC region, see text.
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source and drain Ohmic contacts and electrostatic split gates. Applying a negative
voltage Vg on the gates depletes the 2DEG underneath. As we indicate in Fig.
6.1c, each gate is further divided into three regions of different width. The region
closest to the border of the 2DEG is very wide (several µm) and is called the “gated
region". A second region of intermediary width (50 nm) is noted “narrow gate”
region. Finally, the “QPC” region is located at the middle of the device where the
gates split. A sketch of the full stack, a standard high mobility GaAs/AlGaAs
heterostructure, is shown in Fig. 6.1a.

The current I versus gate voltage Vg characteristics for each device were mea-
sured; see Fig. 6.1b for a typical experimental trace. As one decreases Vg from
zero towards negative values, one first depletes the 2DEG underneath the “gated"
region. Indeed, the large width of the gates (several µm) on this region compared
to the rest of the split gate means the 2DEG will first be depleted underneath it.
The value for which the 2DEG is depleted underneath the “gated” region is denoted
V1. There, one observes a cusp in the current–gate voltage curve, as indicated on
Fig. 6.1b.

In the simplest model for V1, accurate within a few percent (see the discussion
in section 6.5), the 2DEG and the electrostatic gate form a simple plane capacitor.
The electron density in the gated region is given by:

n(Vg) = ng −
εVg
ed

(6.1)

with ng the electronic density in the gated region with zero volts applied to the gate,
ε ≈ 12ε0 the dielectric constant, d = 110nm the total distance between the 2DEG
and the gate.

It follows that V1 is an almost direct measure of the electronic density in the
gated region:

ng ≈
εV1

ed
. (6.2)

As one further decreases the gate voltage, one eventually depletes the gas below
the “narrow gate" region. This region is tens of micron long along the y direction,
but only 50 nm wide. A second cusp in the conductance versus Vg curve is observed
at the voltage V2 where this region is fully depleted. Finally, as one continues to
decrease Vg towards strongly negative values, the gas is depleted in the central QPC
region. At that moment the conductance between the left and right Ohmic contacts
vanishes entirely. We denote the gate voltage at which this depletion is observed as
V3. The set of voltages V1, V2 and V3 reflect the initial density at various parts of
the sample and the interplay between the field effect of the gate and the screening of
the 2DEG. This is the main data we use to asses the predictive power of our model.
The full set of current-gate voltage characteristics is provided as a zenodo archive
[dat 2022]. They could be further used to study, e.g. conductance quantization.

In order to predict the different values V1, V2 and V3, we perform a different type
of calculation for each of the three gate regions. The dimensions of the “gated” and
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Figure 6.2: Comparison between simulation (small black symbols and dashed line)
and experiment (color symbols and solid line). The QPCs are grouped according
to design: A (top), B (middle), C (bottom). The results have been color-coded
according to the width of the QPC, WQPC (Figure 6.4): blue for 250 nm, orange for
300 nm and green for 500 nm. The different symbols correspond to different devices
with identical nominal characteristics but at different locations in the wafer, c.f.
Figure 6.6. A letter is attributed to each symbol: “a" (rectangles), “b" (circles), “c"
(up triangles) and “d" (down triangles) so that a given QPC is uniquely identified
by its geometry (A, B, C or equivalently upper, middle and down panel), its rank
(1-8 from left to right in the figure) and the letter a,b,c,d. For instance QPC “A5b"
corresponds to the fifth circle in the upper panel. Arrows point to outliers that we
attribute to lithography problems or structural damage during cooldown or initial
measurements, see text.
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“narrow gate” regions have been kept constant for all QPCs. Hence we expect very
little sample to sample variation of the experimental value for V1 and V2. The value
of V3, however, corresponds to the “QPC” region that has been varied in different
devices.

• To calculate V1, one simulates the “gated" region. It can be approximated
as infinite along x and y directions due to the large dimensions of the gates.
Therefore one only needs to perform 1D simulations along the z direction.
Additional 1D simulations were performed for the “ungated” region, i.e. with-
out top gate. It allows one to calculate the 2DEG bulk density ns far away
from the gates. Such value can be compared to the experimental bulk density
nbulk = 2.8 · 1015 m−2 obtained by Hall measurements.

• To calculate the value of V2, we simulate the narrow gate region. The latter
is very long along the y direction (up to 50 µm), but very narrow (50 nm in
most samples) along x. Hence we consider a system infinite along y and need
only to perform 2D simulations in the (x, z) plane. We decrease Vg until the
density vanishes underneath the middle of the narrow gate. Then we record
the associated value of Vg as V2.

• To calculate the value V3 we perform a full 3D simulation of the “QPC” region.
The V3 value is then extracted by decreasing Vg until the density vanishes
underneath the middle of the gap between the two gates. At Vg ≤ V3, the
2DEG is split into two disconnected left and right parts.

The model we used to simulate the devices has two a priori independent input
parameters: the dopant density nd and surface charges density nsc (see Sec.6.3).
With this model we do not attempt to predict the experimental bulk 2DEG density
in the ungated (nbulk) or gated (∝ V1) regions. Instead, we calibrate the model
values of nd and nsc by fitting the model to the experimental values of V1 and nbulk.
This calibration sets the value of the electronic density in the model in the ungated
(ns) and in the gated (ng) regions. While ns = nbulk after calibration, we keep
two different letters for the model and experimental values, respectively, for clarity.
Predicting ns and ng would imply having a precise knowledge of many microscopic
parameters. Accurate values of the dopant ionization energy, dopant concentration,
surface states energy, band alignment, dielectric layers thickness etc. would have to
be obtained either from theoretical arguments or from experiments. This is a hard
task, and also not necessary for the physics we seek to understand, the transport
properties - see Section 1.3.1. In Section 6.5 we argue that nd and nsc are in fact
not independent and that a single effective input parameter may be used (Fermi
level pinning). This further increases the predictive power of our model. However,
the relation between nd and nsc has not been assumed in the simulations and is
considered here as a prediction of the modeling.

Once nd and nsc have been calibrated, we then proceed to predict the V2 and V3

pinch-off voltages. In Fig. 6.2 we compare the experimental (color symbols) to the
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Figure 6.3: Panel (a): Side view of the experimental heterostructure stack. The
widths of the different layers are respectively d1 = 25 nm, d2 = 65 nm, d3 = 10

nm and d4 = 10 nm. The central AlGaAs layer of width d2 is doped. Panel (a),
(b) and (c) correspond, respectively, to the ungated, gated and narrow gate regions
as indicated in Fig. 6.1c. In the simulations, (a) and (b) correspond to 1D models
without and with a top gate, respectively, while (c) corresponds to a 2D model with
a gate of finite width (50 nm) at its surface.

simulated (black symbols) values of V3 for the different QPC designs; see Fig.6.4 for
the latter. It shows a systematic agreement of the theoretical prediction for V3 with
that obtained experimentally within a precision of 10% or better. Figure 6.2 implies
that we can reliably predict the spatial variations of the electronic density in devices
of arbitrary geometries. This opens the path for making quantitative calculations
at smaller energy scales and predict genuine quantum effects quantitatively and
without fitting parameters.

Beyond the overall agreement between experiments and simulations, Fig. 6.2
further shows significant sample to sample variations for nominally identical samples
as well as systematic deviations (the simulation curves being systematically above
the experimental ones). These features, which we attribute to disorder, will be
discussed later in this chapter.

6.2 Experiments: details of the set of quantum point
contact devices

The experimental samples were fabricated on a Si-modulation-doped
GaAs/Al0.34Ga0.66As heterostructure grown by molecular beam epitaxy (MBE).
The high mobility 2DEG lies at the GaAs/AlGaAs interface, located 110 nm
below the surface. Performing Hall measurements at 4.2 K under dark conditions,
CBG found a bulk 2DEG density of nbulk ≈ 2.79 × 1015 m−2 and a mobility of
µ ≈ 9.1× 105 cm2/Vs. The corresponding Fermi wave-length is λF =

√
2π/ns ≈ 47

nm. The surface electrodes that define the QPCs are made out of a metal stack of



154Chapter 6. Predictive Modeling of GaAs-based nanoelectronic devices

W

R

B

R

W

L

C

W

A

L

Figure 6.4: Schematic of QPC designs: Rectangular (A), Round (B) and Smooth
(C). The characteristic geometrical parameters L (length),W (width) andR (radius)
are indicated by arrows.

4 nm titanium and 13 nm gold, deposited by successive thin-film evaporation. The
composition of the stack of the heterostructure is shown in Fig. 6.3a together with
the widths of the different layers.

In order to investigate the geometrical influence of QPCs, we designed three kinds
of shapes: Rectangular (A), Round (B) and Smooth (C) (see Fig. 6.4). Rectangular
(A) designs correspond to a wire of length L defined by two parallel gates separated
by width W . Round (B) designs consist on two semi-circular gates with radius R
that define the point contact. At last, Smooth (C) designs belong to an intermediate
design between A and B, combining the linear constriction with adiabatic entrances.

For each design (A,B,C), 16 different combinations of geometrical parameters L,
R and W are investigated, from the smallest (A1, B1, C1) to the largest (A16, B16,
C16) sizes.

Figure 6.5 shows Scanning Electron Microscopy (SEM) images of various fab-
ricated designs; see Appendix A for exact parameters. To account for statistical
variability, devices with the exact same design are repeated across the chip. We
label them with an additional Latin letter (“a" to “d") in the device name. For
example, A2a and A2b are different QPCs with identical nominal characteristics.

In order to maximize the number of measured devices in a same cooldown, a
set of 8 QPCs is placed in series sharing a common pair of Ohmic contacts (see
top panel in Fig. 6.5). With a separation more than 40 µm, we ensure that no
mutual effect occurs between the neighboring QPCs. We call such a set of 8 QPCs,
a sample. We draw attention to the fact that we follow this notation throughout
this chapter, as different such sets of QPCs (samples) present larger deviation in
their measured characteristics than QPCs within the same sample.

CBG fabricated and measured a total of 110 QPCs with 48 unique designs that
are distributed in 16 sets on a chip of 10 mm × 8 mm. A schematic layout is shown
in Figure 6.6. The sample that contains a given QPC can be identified by the a
column index X and a row index Y. For example, the device A2a is located in the
set X=1 and Y=2.

The conductance characterization was performed at two temperatures T ≈ 4.2
K and T ≈ 50 mK. Unless stated explicitly, all the data shown below have been
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taken at 4.2 K as only a limited number of samples have been measured at 50
mK. While the temperature strongly affects features like conductance quantization,
the temperature variations of the pinch-off voltages can be ignored, as one can
observe in Fig. 6.1b. We note, however, that there is a small decrease of ≤ 25
mV of the V3 pinch-off voltages between 4.2 K and 50 mK. This small variation is
irrelevant here considering the level of accuracy of the simulations and the sample
to sample experimental variations. CBG apply a bias voltage VB = 500µV between
the Ohmic contact to induce the current I. To characterize the transport properties,
CBG measured the current I as a function of surface-gate voltage Vg for each device.
The full data set of these transport measurements can be found in [dat 2022].

Figure 6.7 shows conductance versus Vg measurements for various QPCs at 50
mK temperatures, which have more pronounced quantization features than those at
4.2K. Three distinct regions can be identified separated by the pinch-off voltages
V1, V2 and V3. In the first two regions (Vg ≥ V2 ≈ -0.75 V), different devices share
the same conductance behavior. This is expected as in this regime the current is
dominated by the electron flow in the large “gated" or the “narrow gate" regions,
which is identical for all QPCs (see Fig. 6.1). In the third region (Vg ≤ V2), the
transport properties are only affected by the narrow constriction formed between
the gates. Clear conductance quantization steps are observed for numerous QPCs
with wide-ranging pinch-off voltages V3. Note that the pinch-off voltages V1 and V2

are also visible when one biases only one of the two gates (e.g. top or bottom). Also
note that we show the raw data without subtraction of the series resistance due to
the Ohmic contacts and measuring apparatus.

A few samples deviated significantly from the theoretical predictions, as indi-
cated by the grey arrows in Fig. 6.2. CBG have performed a visual inspection of
the SEM image of some of these samples which did not reveal any particular prob-
lem. We attribute these outliers to fluctuations of the density in the QPC region
due to e.g. a fluctuation of the concentration of dopants above.

As a general trend, we find the conductance plateaus to get quickly washed out
upon increasing the temperature to 4.2 K or making the sample too long (only the
ones with L ≤ 250 nm showed clear plateaus). This is commonly observed by other
experimental groups.

6.3 Simulations: details of the modeling

The simulations predicting the the pinch-off values of the CBG QPCs were done
within the Thomas-Fermi approximation at zero temperature using the commer-
cial software nextnano++ [Birner et al. 2007, Trellakis et al. 2007]. At the time
PESCADO was still in early development and was not ready to be used on the scale
required by this project. This is why nextnano++ was used.

We model the QPC using the self-consistent Poisson equation,

~∇.
[
ε(~r)~∇U(~r)

]
= eN [µ = EF + eU(~r)]− eNd(~r) + eNsc(~r) (6.3)
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Figure 6.8: (a) Simulation of the electron density distribution in the 2DEG for QPC
B6 at different voltages. Left: Vg = −1.0 V. Right: Vg = -1.8 V. (b) Density versus
Vg at the two different points indicated in the right (a) panel. V3 is identified as the
value for which n(x = 0, y = 0, Vg = V3) vanished.
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where U(~r) is the electrostatic potential, ε(~r) the dielectric constant, Nd(~r) is the
ionized dopant density in the doped layer, EF = 0 the Fermi level (electro-chemical
potential) of the 2DEG and Nsc(~r) the frozen surface charge density at the surfaces
not covered by metallic gates and µ is the chemical potential of the 2DEG. We use
the uppercase letter N to indicate volume densities (e.g. density of dopants Nd) in
m−3 and the lowercase letter n to indicate surface densities in m−2 (e.g. ns the bulk
2DEG electronic density). Whenever possible, we will convert the volume densities
to effective surface densities. For instance the dopant density Nd over a layer of
thickness d2 is equivalent to an effective 2D dopant density of nd = Ndd2. We use
Dirichlet conditions U(~r) = Vg − Vw at the gate-semiconductor interface. Vg is the
applied voltage with respect to the grounded 2DEG. Vw is the work function of the
gold/GaAs interface which for definiteness we take as Vw ≈ 0.75 V. However, the
actual value of Vw is irrelevant since any change of Vw will be compensated by a
change in nd to keep V1 calibrated to the experiments.

To complete the theoretical model we must provide the relation between the
density N of the 2DEG and the chemical potential µ.

This relation is defined by the integral up to µ of the system local density
of states. Here, we approximate the local density of states to be equal to the
bulk density of states of GaAs, ignoring the quantum fluctuations (Thomas-Fermi
approximation). The integrated DOS equation for N thus reads:

N(µ) =
(2m∗)3/2

3π2~3
(µ− Eb)3/2 for µ > Eb

N(µ) = 0 for µ ≤ Eb (6.4)

where Eb is the position of the bottom of the conduction band in GaAs and m∗ its
effective mass. As discussed for Vw above, the actual value of Eb is irrelevant to the
predictions of our model. Note that for the purpose of pinch-off voltage calculations,
we could have used the constant density of state of a 2DEG, n = m∗µ/(π~2), instead
of the three dimensional Eq.(6.4) and obtained the same results within our accuracy.

Figures 6.3a and 6.3b show a side view of the geometry used in the simulations
of the “ungated" and “gated" QPC regions respectively (see Fig. 6.1c). We define:
ns as the 2DEG density underneath the ungated region, and ng the 2DEG density
underneath the gated region for Vg = 0. The stack is made of several layers of widths
di. The models for the gated and ungated regions are translationally invariant along
the (x, y) plane, hence the problem reduces to a 1D simulation along the z direction.
Figure 6.3c shows a side view of the geometry of the “narrow gate" region. Since
it is invariant only along y, the problem reduces to a 2D simulation of the (x, z)
plane. Finally, Fig.6.1a shows the geometry used for a QPC region. The simulations
of the QPC regions are performed in 3D. A single set of parameters nd, nsc and the
thicknesses d1 = 25 nm, d2 = 65 nm, d3 = 10 nm and d4 = 10 nm is used in the
simulations of all the different regions.

The values of ns and ng at Vg = 0 is a complex function of the model parameters
nd, nsc, Vw, Eb and the di. However, once these parameters are set (in our case,
calibrated to the experiments), the density profile and the electric potential in the
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2DEG are simply a function of ns, ng, Vg and the total distance d =
∑4

i=1 di = 110

nm between the 2DEG and the gates. The approach we take in our model is to use
ns and ng as effective parameters and ignore the large set of microscopic parameter.
Note that in a typical 2DEG, nd is roughly equal to 10 times ns, i.e. 90% of the
dopant electrons go to the top surface and only 10% to the 2DEG [Buks et al. 1994b].
Furthermore, not all dopants necessarily get ionized. Hence a precise calculation of
ns (idem for ng) requires a very precise knowledge of the dopant density and of the
various energies level of the dopants and at the surface, c.f. Section 1.3.

In the simulations, we used a mesh with a discretization step smaller than 1 nm.
We explicitly checked that the results are unaffected by the discretization within a
precision better than 10 mV by performing several simulations with higher accuracy.

Figure 6.8(a) shows a typical 3D simulation of a QPC region (here device B6)
at different gate voltages. The color map shows the electronic density around the
central part of the device. At Vg � V3 , the density is only slightly decreased
below the gates. At Vg = −1.8V < V3 , the region in between the two gates is
fully depleted. Figure 6.8(b), shows the density versus Vg at two different points
of interest. As expected, we find that the pinch-off, i.e. cutting the system into
disconnected left and right parts, occurs when the central point x= y = 0 is depleted.
Hence we take the corresponding Vg value as our calculated V3. The typical potential
profile observed in the simulations is almost flat in the 2DEG and abruptly rises in
regions where the 2DEG has been depleted and cannot screen the gates. Plots of
the behavior of the potential (at zero field but also in the quantum Hall regime) can
be found in [Armagnat et al. 2019].

6.4 Comparison between Experimental and Simulation
Pinch-off Voltages

6.4.1 Model Calibration using the V1 pinch-off of the gated regions

Our model has two free parameters. One is the dopant density nd. It sets the 2DEG
charge density underneath the “gated" region at Vg = 0 equal to ng. The second is
the surface charge density nsc. It sets the 2DEG density underneath the “ungated"
region, ns, for a given ng. Our model allows for a spatially varying density even
in the absence of applied voltage, i.e. ns 6= ng. As we shall see in section 6.5,
there are multiple experimental evidences that point towards the fact that these two
densities are in fact equal (ns = ng) due to “Fermi level pinning" and the model
could be further simplified. Our calibration always leads to ns ≈ ng within 10%
which is consistent with Fermi level pinning.

To calibrate our model, we use a two step process and two experimental values,
V1 and nbulk. First, we vary nd and calculate the pinch-off voltage V1 in the “gated"
region. We set nd so that the simulated V1 matches the experimental value. This
sets ng. In the second step, we vary nsc and calculate the density ns in the ungated
region. We set nsc so that ns matches the experimental 2DEG bulk charge density
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Figure 6.10: Colormaps of the variation of the experimental pinch-off values over
the die. (a) ungated region values V exp

1 ; (b) and (c) narrow gate region values V exp
2

with W g = 50 nm and W g = 80 nm respectively. Each thin stripe corresponds to a
different sample. For each set of QPCs, the average value and the standard deviation
between the different samples of the set is also shown. The top scale indicates the
positions of the samples on the wafer in mm. The scale is not linear as consecutive
pairs of samples are separated by 2 mm. No data is available in the gray regions
(un-measured or distributed between (b) and (c).)

nbulk = 2.79× 1015m−2. The calibration process is illustrated in Figure 6.9(a) (first
step) and Fig. 6.9(b) (second step). It is repeated for each QPC.

Figure 6.10(a) shows the variations of V1 for all the devices that have been
measured. We find that the variations for QPCs within the same set are small, on
the order of 0.5% (±2 mV). Therefore, using a unique average value of nd to model
a given set would give identical result with respect to the QPC per QPC calibration.
However, the variations of V1 for QPCs of different sets are larger - of the order of
10% (40 mV). They are of the same order of magnitude as typical variations observed
between different cooldowns. They imply the presence of significant variations over
large distances of ng. We suspect that similar variations of ns are also present, see
the discussion in section 6.5. In the dies X = 3 and 4 with Y = 3, the calibration
with V1 ≈ −0.49 V gives ng = ns while in the other samples the two densities
differ by less than 10%.



6.4. Comparison between Experimental and Simulation Pinch-off
Voltages 163

6.4.2 Simulations of the QPC regions pinch-off voltages V3

After calibrating the model, we performed 3D simulations of the “QPC" region to
calculate the pinch-off voltage V3. Figure 6.2 shows the predicted (dashed lines)
and measured (full lines) pinch-off voltages. We compare V3 as a function of L (top
panel, A samples), R (middle panel, B samples) and L (bottom panel, C samples).
Figure 6.2 highlights the main results of this article. It shows that the simulations
correctly capture the pinch-off voltages. The main features of interest of Fig. 6.2
are:

(P1) Overall the simulations predict the pinch-off voltages quantitatively with a
precision of the order of 10%.

(P2) There are significant experimental V3 variations in between QPCs with the
same nominal characteristics. They are also of the order of 10%. For instance the
values of V3 observed for the four A2 samples (A2a, A2b, A2c and A2d) range from
-2.2 V to -1.8 V, while the numerics predict a V3 close to -1.8 V. We also observed
similar variations of the values of V3 (of the order of 0.1 V) on the same QPCs
between different cooldown. Hence, the accuracy of the predictions is as good as
the level of reproducibility of the experiments. Getting beyond this accuracy would
involve a local in-situ calibration of the model so that any spatial variations of
ns, ng within the wafer would be accounted for. One could, for instance, include
an additional QPC in the device, close to the active part of interest, and use the
associated V3 value to calibrate the modeling with the actual local electronic density.

(P3) The V3 dependence on the QPC nominal characteristics L, R and W are
correctly reproduced qualitatively.

(P4) The predicted V3 is almost always smaller (in absolute value) than the
experimental one by an offset of the order of 0.1–0.2 V. This indicates that our
calibration slightly underestimates the value of the electronic density by 5–10%. We
attribute this fact to disorder as explained in section 6.5.3.

Figure 6.11 shows the V3 data on samples with lengths 1 µ ≤ L ≤ 50 µm.
For such long samples, the simulations predict that V3 should not depend on L.
This trend is already observed in Fig. 6.2 for lengths exceeding 1 µm. Indeed,
the largest length scale in the problem is the distance between the 2DEG and the
gate, i.e. d ≈ 110 nm. When L � d, V3 no longer depends on L. In practice,
we have found that for L ≥ 5d, one has already reached the infinite L limit in the
simulations. Hence, the simulations for devices with L ≥ 5d are done by supposing
L =∞, i.e. a system invariant by translation along the y direction. We have used
two different calibrations of the model: the same one as described in the preceding
section (black) and a different one where we calibrate ng with the experimental V1

and then set ns = ng. Both simulations give similar results and fail to capture the
main experimental observation of Fig. 6.11 which is,

(P5) V3(L) has a large variation of ≈ +600 mV as the sample length goes from
L = 1 µm to L = 50 µm (from -3.34 V at L = 1 µm to -2.72 V at L = 50 µm for
WQPC = 750 nm) .

Property (P5) cannot be explained by the model that we have used so far. In
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order to account for (P5), one must take into account the smooth density fluctuations
that take place on long scales. Indeed, in the presence of spatial variations of the
density along the x direction, the pinch-off V3 is determined by the position in x

where the density is smallest. A model analyzing semi-quantitatively the role of the
disorder will be presented in section 6.5.3.

6.4.3 Simulations of the narrow gate region pinch-off voltages V2

We now turn to the simulations of the “narrow gate" region. They correspond
to the very long (> 20 µm) but thin (50 nm wide) gate. Figure 6.12(a) shows a
typical simulation of the electronic density versus x at zero applied gate voltage.
The different curves correspond to different densities of surface charge and dopants.
Specifically, we have used different calibrations for the density ns far away from the
gate and the density ng under a (wide) gate. While the simulated 2DEG density
varies below the gate, this variation is smaller than 5% which corresponds to the
variation of V1 that we have observed on different samples. It follows that our
findings are fully compatible with a uniform density at zero voltage.

The main observation we make for the voltage V2 is that our predictions are
significantly lower than the experimental data for both values of width Wg, see
Table 6.1. More precisely:

(P6) The simulations systematically underestimate the magnitude of V2 by ≈
0.15 V (20%).

The error in (P6) is the largest discrepancy we have observed between the sim-
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V2 exp. σV2 exp. V2 sim. mean
50 nm -0.90 0.032 -0.73
80 nm -0.77 0.010 -0.63

Table 6.1: Comparison between experimental (exp) and simulated (sim) values of
V2 for the two different widths W g. σV2 is the standard deviation of V2 between
different QPC. We observe a systematic deviation of ≈ 0.15V (20%) between the
simulation and the experiments.

ulations and the experiments. We identify four possible origins for this discrepancy.
(1) The bulk value ns is higher than the one we used. (2) The width Wg is narrower
than what is drawn in the design. Gate fabrication uses standard lithographic tech-
nique with e-beam insolation of a resist, chemical lift-off of the resist followed by
metal deposition and chemical lift-off of the residual resist. This process should have
an accuracy better than 10 nm in the width of the gates. (3) The width Wg fluctu-
ates along the gate due to lithography accidents. (4) There are density fluctuations
of the 2DEG due to disorder.

Figure 6.12(b) shows the predicted value of V 2 as a function of the 2DEG density
ns assuming a uniform 2DEG density at V g = 0 (ns = ng). The vertical line
corresponds to the nominal value ns = 2.8 · 1015m−2. The horizontal line is the
measured value of V2. We see that to obtain the experimental value of V2 for
Wg = 50 nm, one needs ns = 3.4 · 1015 m−2 which is unreasonably high (This
21.5% higher than the nominal value while typical density variations inside a wafer
are in the 5–10% range). Hence, we can rule out (1) as the origin of (P6). The
straight blue line in Figure 6.12(b) shows the value of V2 obtained when one reduces
the width of the gate by 20%, i.e. Wg = 40 nm. We see that this is not sufficient
to reproduce the experimental data and larger variations of Wg would be visible
on the SEM images. In contrast the SEM images indicate a width that is slightly
larger than 50 nm. Hence, we rule out (2). Finally, we do not observe sample to
sample variations of V2 and the SEM pictures do not show fluctuations of the width
Wg along the gate. Hence we rule out (3).

The last scenario (4) corresponds to smooth spatial fluctuations of the density
inside the sample. This could be due to e.g. doping density or background dop-
ing fluctuations [Zhou et al. 2015, Qian et al. 2017, Chung et al. 2019]. Indeed, if
the electronic density varies underneath the 20 µm long gate, the corresponding
V2 pinch-off will be given by the region of largest density. This interpretation is
fully consistent with the observation of the significantly large sample to sample fluc-
tuations of V3. In section 6.5.3 we perform a systematic analysis of the effect of
long range disorder on V1, V2 and V3. We find that a 5–10% density fluctuation
consistently explain (P2), (P5) and (P6).
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6.5 Critical discussion of the modeling

In this section we discuss various aspects of the modeling in more detail. We em-
phasize again that we refrained from the particularly difficult goal of trying to
predict the bulk density of the device. That is, to develop a model capturing
the microscopic details along the 1D z-direction of our samples. While the cor-
responding physics is well understood and has been studied rather extensively, the
resulting electronic density depends on many parameters which are often poorly
known. These microscopic parameters include the density of dopants, the frac-
tion of dopants that are ionized (or equivalently the precise dopant ionization
energies - including the so called DX centers), the residual doping in the bulk
of the wafer, the density of surface charges (or equivalently the precise value of
the binding energy of the surface states), the workfunction of the metals used
in the electrostatic gate with respect to GaAs, the values of the band offsets,
the effective masses, the relative dielectric constants of the different materials
[Buks et al. 1994a, Chung et al. 2017, Davies 1997, Weisbuch & Vinter 1991] etc.
Making quantitative predictive simulations with so many unknown parameters that
depend on the growth condition of the wafer is very challenging. It also serves a very
different purpose, more related to wafer characterization than to the understanding
of the devices made out of it.

Our goal instead is to be able to predict the spatial variations along the 2D x-
and y-directions. We use experimental measurements to tabulate the result of the
interplay between all the above mentioned parameters. Indeed, and this is a very
important point, while this interplay is quite subtle at room temperature, at sub-
Kelvin temperatures on the other hand all the possible source of charges (surface,
dopants) are essentially frozen. Hence, while they do contribute to the electronic
density, their effect boils down to a contribution to the 2DEG electronic density
that can be measured independently through e.g. Hall measurements. The fact
that the charge sources are frozen, a well established experimental fact, coupled to
the linearity of the Poisson equation, means that to predict the effect of the gate
voltages on the 2DEG density one only needs: (i) the distance of the 2DEG with
respect to the gates and (ii) the low temperature 2DEG density profile in the xy
plane at zero applied gate voltage. This is precisely what we are trying to capture
in our simulations. Below we discuss how the choices of (i) and (ii) made in our
modeling affect the results.

6.5.1 Role of quantum capacitance and quantum fluctuations on
the electronic density

Let us discuss a 1D minimummodel to discuss the electronic density in the “ungated"
(bulk) or “gated" regions. These regions are sufficiently large so that the 2DEG can
be considered far from the gate boundaries. The spatial variation of the 2DEG
density in the xy plane can thus be ignored, assuming no disorder. We are left
with a, possibly complex, 1D problem along the z-direction. We describe the 2DEG
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by its 2D density of states ρ. We suppose the vertical distance to the gate (at
voltage Vg) to be d. Lastly, we assume there is an arbitrary distribution of doping
charges nd(z). It includes the ionized dopants, the surface charge and any other
frozen charge that might be present in the system. The 2DEG density ns is given
by ns = ρµ where µ is the chemical potential of the 2DEG. Assuming without loss
of generality, that the 2DEG is grounded, the electrochemical potential vanishes so
that µ− eU(z = 0) = 0. The model reduces to solving the Poisson equation,

∂2

∂z2
U(z) =

e

ε
nd(z) (6.5)

with the boundary conditions U(d) = Vg and ∂zU(0) = (e2ρ/ε)U(0). This
equation being linear, its solution can be written as a linear combination of two
terms U(z) = U(z,Vg = 0) + VgU(z,Vg = 1). We thus arrive at,(

1

e2ρ
+
d

ε

)
eng = V1 − Vg (6.6)

where the parameter V1 is the pinch-off voltage. It corresponds to the contribu-
tion of nd(z) to the electronic density. In such a simple model, V1 could be expressed
explicitly in terms of nd(z). However, we will refrain from doing so and take it as
an experimentally measurable parameter. Eq.(6.6) provides a direct conversion re-
lation between 2DEG density to voltages. For a distance of d = 100 nm and using
ε = 12ε0, the density is ng = 6.6 · 1015m−2V1. For our stack, i.e. a bulk density of
ns = 2.8 · 1015 m−2 and d = 110 nm, we calculate V1 = (2.8/6.6)*(110/100) = 0.46
V. The latter is the predicted pinch-off voltage in the “gated" region. This simple
calculation actually matches the measured value of V1.

In the calculation above we have neglected the contribution from the density of
states. Indeed, the contribution of the 1/(e2ρ) term, i.e. the inverse of the quantum
capacitance, is for most devices negligible compared to the inverse of the geometrical
capacitance d/ε, see Chapter 2. For the QPCs studied in this paper, the quantum
capacitance term adds a correction of 2% to the voltage pinch off. The latter is
estimated using the effective mass approximation and assuming only the first sub-
band as occupied when calculating ρ. That is ρ = m∗

~2π withm∗ ≈ 0.067m0 for GaAs.
A 2% correction is smaller than our experimental resolution. We conclude that the
various pinch-off voltages are almost entirely controlled by the electrostatics of the
problem, i.e. the geometrical capacitance. They are enough to characterize the
distribution of charges in the 2DEG.

The value d = 110 nm is the physical distance between the electrostatic gate
and the GaAs/AlGaAs interface. In principle one should take into account the
finite width of the 2DEG which is of the order of 10 nm. This effect is partially
taken into account in the simulations at the Thomas-Fermi level, but would be
more pronounced if the quantum fluctuations along the z-direction were included.
We have performed various full self-consistent 1D Schrodinger-quantum simulations
(not shown). They show a small correction of the final width of the 2DEG of less
than 1%.
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6.5.2 Fermi level pinning of the dopants at room temperature

In our model we have assumed that, at Vg = 0 the density underneath a gate could
be different from the density away from a gate. This is reflected in the presence of
the two parameters ns (density in the ungated region) and ng (density in the gated
region) that can a priori take distinct values ns 6= ng. We have found a posteriori
that the experiments are best fitted by ns ≈ ng indicating that the Vg = 0 density
has small spatial variations inside a given sample. Here, we discuss the phenomena of
“Fermi level pinning" in the dopant region at room temperature, i.e. the possibility
that –at room temperature– the dopant layer behaves essentially as a (metallic like)
equipotential. The existence of Fermi level pinning in an actual stack requires a
sufficiently high concentration of dopant and sufficiently low disorder in the dopant
region for the dopants to remain on the metallic side of the metal-insulator transition
at room temperature (however so slightly). The presence of Fermi level pinning
would imply ns = ng. We argue that there are strong experimental evidences for
Fermi level pinning in our samples. This fact can be used to reduce the model to a
single fitting parameter.

A homogeneous dopant distribution leads naturally to ns 6= ng unless the
surface charge density accidentally matches the contribution coming from the work-
function at the gate-GaAs interface. An opposite hypothesis — Fermi level pinning
— is that, at room temperature, the electric potential (not the ionized dopant den-
sity) is constant inside the dopant layer. Fermi level pinning happens when the
charges in the dopant layer are sufficiently mobile to form a metallic-like equipoten-
tial. The associated charge distribution (now spatially dependent) gets frozen upon
cooling the sample to low temperature. By construction, Fermi level pinning implies
ns = ng since the sources of spatial inhomogeneities (the gates) are situated above
the dopant region, hence screened. Below, we list experimental evidences for the
presence of Fermi level pinning in GaAs/AlGaAs heterostructures. These evidences
are very strong for some heterostructures (in particular in the case of “delta doping"
where the dopant concentration is very high hence more likely to form a band) but
it is not certain that Fermi level pinning is present in all of them.

• In [Buks et al. 1994a, Buks et al. 1994b], the field effect of HEMTs made in
these heterostructures is shown to disappear at high temperature, indicating
that the dopant layer screens the effect of the gate, c.f. Figure 6.13.

• Fermi level pinning is also the natural explanation for the hysteretic effect
known as “bias cooling" [Buks et al. 1994b]: when one applies a voltage on an
electrostatic gate during the cooling of the sample, one observes that the low
temperature current versus gate voltage characteristics gets shifted horizon-
tally by the same amount, c.f. Figure 6.14. For instance if a sample normally
pinches at −1.5 V for a regular cooling, a +1 V bias cooling will make it pinch
at −0.5 V. This is a strong indication that the voltage applied at room tem-
perature did not affect the electronic density. Upon cooling, the dopants get
frozen and must be considered as a fixed charge density. Hence, to deplete the
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Figure 6.13: Taken from [Buks et al. 1994a]. Charge density at the 2DEG of an
AlGaAs/GaAs heterostructure as a function of gate voltage (MIS junction geometry,
delta Si doping) and device temperature. For a temperature higher than Tm = 160K

the charge density is constant. This indicates the absence of field effect at high
temperatures. This is due to fermi level pinning at the dopants. Even at lower
temperatures the screening of the gates due to the donor charge persists until a low
enough Vg is reached (saturation regime).

gas, what matters is the variation of the voltage with respect to the value used
during the cooling, not the absolute value of the voltage. Bias cooling is often
used by experimentalists to reduce the pinch-off voltage and avoid leakages.
It has been observed repeatedly including in wafers nominally identical to the
one used in the experiments presented in this article.

• There are multiple experimental evidences showing that using different met-
als for the electrostatic gate, say gold and aluminum, give devices with very
similar properties in terms of pinch-off voltages [Pierre et al. 2022]. This is
an additional experimental evidence for Fermi level pinning. Indeed, different
gate materials, such as gold and aluminum, have very different work func-
tions of the order of 0.8 V. In the absence of Fermi level pinning, one would
get very different pinch-off values as well as signature of a strongly varying
spatial distribution of the 2DEG density (visible in e.g. quantum Hall effect
experiments). None of these effects are observed experimentally.

• We have found that the best fit to our model implies ns ≈ ng within 5% which
is unlikely to happen accidentally.

We conclude that Fermi level pinning of the dopants is very likely present in our
samples. This could be used to further simplify our model to a single parameter
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Figure 6.14: Taken from [Buks et al. 1994b]. Illustration of bias cooling. Charge
density at the 2DEG of an AlGaAs/GaAs heterostructure as a function of gate
voltage (MIS junction geometry, delta Si doping) and cooling gate voltage Vc. First
Vc is applied by the gate during cooldown, as the sample temperature goes from
above to bellow the donor freeze-out temperature (where the donor charge freezes).
Then, at T = 1.4K, the charge as a function of Vg is measured. Notice the saturation
regime, where the gate effect is screened, and the linear regime where the charge in
the dopant layer is constant.

ns = ng that can be calibrated in situ using pinch-off voltage.
We note that the phenomena of Fermi-level pinning could also be discussed with

respect to the surface states. Our calculations show that such an effect, if present,
could not account for phenomena such as the hysteresis observed in bias cooling but
at most to half of the observed effect. The presence of Fermi-level pinning of the
surface states would, however, further contribute to enforce ns = ng.

6.5.3 Long range disorder and density fluctuations.

We end this article with a discussion of the role of disorder in the system. So
far, all the analysis has been done assuming a perfect 2DEG whose spatial density
profile is only affected by the electrostatic gates. Despite the very high mobility
of the 2DEG, there remains some disorder in the system. There are several types
of disorder that can be present in the system[Buks et al. 1994a, Buks et al. 1994b]
including inhomogeneities in the dopant density, interface roughness or background
impurities. Note that some types of disorder such as interface roughness may very
well affect the conductance. However as interface roughness varies mostly on short
(atomic) scale it is unlikely to significantly affect the electronic density unless the
disorder is very strong. This type of disorder can be ignored for the purpose of this
discussion. Indeed, the goal of this section is to understand the effect of disorder
on the pinch-off properties of the device. Hence we focus on the slowly varying
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V1 V2 

V3 (long samples) V3 (short samples)

Figure 6.15: Schematic of the percolation model used to explain the effect of the
smooth long range disorder. Each circle corresponds to a region of size ξ with a
random electronic density (symbolized by different colors). As one increases the
gate voltage towards negative values, the density decreases everywhere. The pinch-
off is obtained when there is no path left with finite density to go from left to right.
The fluctuations of density manifest themselves differently for the different pinch-off:
2D percolation problem for V1 (upper left), many regions in parallel for V2 (upper
right) or in series for V3 of long samples (lower left) while the fluctuations of density
induce fluctuations of V3 for short samples (lower right).
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part of the disorder on scale larger than the Fermi wave length. We attribute
this disorder mostly to variations of dopant density, but other sources could be
present as well without affecting the discussion that follows. Recent experimental
works that explicitly study the spatial variation of the electronic density include
[Zhou et al. 2015, Qian et al. 2017, Chung et al. 2019]

We construct a simple percolation model to discuss the effect of long range dis-
order on the three thresholds V1, V2 and V3. A schematic of the model is shown
in Fig.6.15. We will see that this simple model can account for all the systematic
discrepancies observed between the simulations and the experiments, at least qual-
itatively. Let’s consider a Lx × Ly 2DEG sample. We suppose that the density
is slowly varying on a typical length scale ξ, the disorder correlation length. The
2DEG can thus be considered as made of Lx/ξ ×Ly/ξ small samples (the circles in
Fig.6.15), hereafter referred to as “cells". Typically, we expect ξ to be of the order of
a few hundred nanometers for a disorder due to dopant density fluctuations. Each
cell has a constant density nij with i ∈ {1....Lx/ξ} and j ∈ {1....Ly/ξ}. The value
of the density nij in cell (i, j) is a random variable of mean ng and variance σ2

g,
independent from the density in other cells. For definiteness, we suppose that the
associated probability density is flat,

P (n < nij < n+ dn) =

1

2
√

3σg
θ(n− ng −

√
3σg)θ(ng +

√
3σg − n)dn (6.7)

where θ(x) is the Heaviside function. Last, we suppose that the pinch-off voltage
on each cell (i, j) is simply proportional to nij as found in the minimal model of
section 6.5.1.

Let us first examine the implication of this model for the threshold V1. In the
absence of density fluctuations, the conductance through the gated region vanishes
when the gate voltage depletes the 2DEG entirely. In presence of fluctuations,
however, depleting only a fraction of the 2DEG cells suffice. That is, if the fraction
p of remaining cells with non zero density is bellow the percolation threshold pc ≈ 0.6

of the 2D square lattice of cells, then the conductance vanishes. We introduce the
probability P (nij ≥ n) for a cell to have a density larger than n = ng + δn,

P (nij ≥ ng + δn) =
1

2
− δn

2
√

3σg
(6.8)

for |δn| ≤
√

3σg. The percolation threshold corresponds to P (nij ≥ ng+δn) = pc.
From the latter we obtain the variation δV1 induced by the density fluctuations,

δV1

|V1(σg = 0)| = (2pc − 1)
√

3
σg
ng
≈ 0.34

σg
ng

(6.9)

Eq.(6.9) leads to a positive variation of V1. Since V1 < 0, it leads to a decrease
of V1 in absolute value. Conversely, not taking the density fluctuations into account
when estimating V1 leads us to underestimate the density ng.
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Next, we examine the implications of the disorder model for the threshold V2.
In the narrow gate region, Lx is smaller than the correlation length ξ. Therefore,
the current travels through Ly/ξ cells in parallel. The pinch-off is reached when
the voltage is sufficiently negative to deplete all the cells. Hence V2 corresponds
to the voltage needed to deplete the cell with largest density. The probability for
the cell with highest density to have a density smaller than ng + δn is given by
[1/2 + δn/(2

√
3σg)]

Ly/ξ. It corresponds to the probability that all cells have a
density smaller than ng + δn. For Ly ≈ 50µm � ξ this probability is strongly
peaked around δn =

√
3σg, from which we obtain the variation δV2 induced by the

density fluctuations,

δV2

|V2(σg = 0)| = −
√

3
σg
ng
≈ −1.7

σg
ng

(6.10)

The effect of disorder on V2 is around 5 times larger than on V1. It is also of
opposite sign. We can calculate the standard deviation σV2 of V2 due to sample to
sample variations. We find,

σV2
|V2(σg = 0)| = 2

√
3
ξ

Ly

σg
ng

(6.11)

Last, we look at the influence of disorder on V3 in two different limits. For the
small samples L ≤ 2 µm, the QPC region corresponds essentially to a single cell. In
that limit, the fluctuations σV3 of the threshold V3 are simply given by the density
fluctuations of a single cell and,

σV3
|V3(σg = 0)| =

σg
ng
. (6.12)

A second interesting limit corresponds to the very long samples 10 µm ≤ L ≤
50 µm. These samples correspond to the dual situation to V2: the different Lx/ξ
cells are in parallel instead of being in series. Therefore the pinch-off is limited by
the cell that has the smallest density. The probability for the smallest density to be
larger than ng + δn is given by [1/2− δn/(2

√
3σg)]

Ly/ξ. For Lx � ξ, we get,

δV3

|V3(σg = 0)| =
√

3
σg
ng
≈ 1.7

σg
ng

(6.13)

i.e. the fluctuations make it easier to pinch-off a long wire. This ends our analysis.
Note that the precise value of the prefactors in Eqs.(6.9), (6.10),(6.11) and (6.12)
depend on the choice of distribution Eq.(6.7) so that the percolation model should
be used for trends, not precised comparisons.

6.5.4 Comparison between the experiments and the percolation
model

Let’s now go back to the experimental data and show that the above percola-
tion model accounts for all the imperfections of the no-disorder model at a semi-
quantitative level. The largest discrepancy between our predictions and the ex-
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Figure 6.16: Colormap of the current versus the top (Vt) and bottom (Vb) gates
that were biased separately for QPC A1a. Green (blue) lines show the experimental
(simulated) pinch-off voltage. V3 ≈ −2.1 V corresponds to Vt = Vb and is used to
calibrate the simulations in a single parameter model ng = ns ≈ nbulk + 5%

periments is the one of V2 (property P6). Indeed, the simulations for perfect sys-
tems systematically show values of V2 that are around 20% smaller (in absolute
value) than what is observed experimentally. To account for this δV2/|V2| ≈ 0.2,
Eq.(6.10) implies that density fluctuations with σg/ng ≈ 0.12 occur in the system.
Density fluctuations of 12% is compatible with what is commonly believed by the
community for this system if somewhat large [Zhou et al. 2015, Qian et al. 2017,
Chung et al. 2019]. It is also compatible with what we have observed on larger
scales on the fluctuations of V1 (see Fig. 6.10) . Eq.(6.12) then implies that the
sample to sample variations of V3 are also of the order of 12%. While we do not have
enough statistics to properly estimate the variance of V3, a rough estimate from our
data is of the order of 6% (property P2, see Fig.6.2).

Eq.(6.9) then predicts a correction to V1 of 4%. Taking that correction into
account in our calibration would bring all our predictions in Fig.6.2 down by 4%
(80 mV). This would significantly improve the match between experiments and sim-
ulations, see the discussion of property (P4). Another possible source of error in V1

stems from an imprecision when extracting the experimental value from the con-
ductance curve. Near V1 the “gated" region contribution to the overall conductance
is much smaller than that of the “narrow gate" region. The latter contribution thus
obscures the conductance due to the “gated" region. This adds an error to the
extracted value of V1 that is not accounted by our theoretical model.

Using Eq.(6.11), the small observed fluctuations σV2 ≈ 5 mV imply a correlation
length ξ ≈ 1-2 µm. This is fully compatible with our expectations.

Last, Eq.(6.13) predicts that when going from small to large values of L (with
respect to ξ), V3 must increase by 0.6V (δV3/|V3| ≈ 0.2) which is indeed what is
observed experimentally (see property P5).

Overall, the above analysis is fully consistent with smooth density variations
being the current bottleneck in our quantitative predictions of pinch-off voltages.
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To go beyond this limitation, one needs to incorporate information about the local
electronic density within the model. An example of such a procedure is shown in Fig.
6.16 where we use the experimental value of V3 to calibrate a single parameter model
with ns = ng (see the discussion of section 6.5.2). Figure 6.16 shows the pinch-off
“phase diagram" as a function of the bottom Vb and top Vt gate voltages when these
two gates are biased independently. We find that the case Vb 6= Vt is quantitatively
predicted with an accuracy better than 1%, i.e. significantly improved with respect
to a global calibration.

6.6 Conclusion

In this Chapter we have developed a minimal model capturing the electrostatics of
QPCs. We validated our model by comparing its predictions to 110 different QPCs
made in 48 different designs measured by the experimental group of Christopher
Bauerle at Institut Néel. In this work we have restrained ourselves to studying the
pinch-off voltages of their QPCs. The large and diverse dataset allowed us to develop
a robust calibration protocol for the parameters in the numerical model. The model
focused on reconstructing the charge distribution within the device. The calculated
pinch off voltages are accurate within 5−10% when using a single global calibration
of the modeling. The limiting factor of our accuracy seems to be slow spatial varia-
tions (disorder) of the electronic density. Multiple aspects of the experiments point
out to charge fluctuations on the order of ±5− 10%. This is likely due to inhomo-
geneities in the dopant layer, leading to fluctuations in the charge density at the
2DEG on a µm scale. In fact, the presence of disorder in the dopant layer is known.
For instance, its effect on the transport through QPCs can be seen in scanning gate
microscopy measurements [Topinka et al. 2001, Percebois & Weinmann 2021]. As a
continuation of the work presented here, in the next chapter we show some of our
recent results on reconstructing the disorder potential at the 2DEG from scanning
gate microscopy measurements [Percebois et al. 2023].

Regarding future work. To improve the predictive power of the simulations, the
simplest solution is to design samples small enough (≤ 2 µm) s.t the calibration
of the model can be done in situ, e.g. using the value of V3. For larger samples,
one may design them so that the density in different parts of the device may be
calibrated separately using independent gates. Finally, we have only used the pinch
off voltages of the courant vs voltage behavior of the QPCs. It would be interesting
to analyze how the conductance plateaus depend on the gate geometry and how well
our model manages to capture them.



Chapter 7

PESCADO and Neural Networks
: Extracting the disorder potential

from scanning gate microscopy

Disorder in the electrostatic potential at the conducting region of nanoelectronic de-
vices plays a significant role on how the conducting electrons flow. The microscopic
origin of such disorder is complex and device dependent. This renders difficult and
unpractical to simulate the disorder from microscopic models such as the ones in
Chapter 6. A more straightforward way to obtain a sample disordered potential
is to extract it from experiments. For samples whose conducting region are buried
beneath layers of dielectrics there is no direct experimental method to obtain the dis-
order potential. However it has been shown [Topinka et al. 2001, Jura et al. 2007,
Fratus et al. 2019, Percebois & Weinmann 2021] that SGM measurements contain
information about the disordered potential where the electrons flow. In a collabo-
ration with G.Percebois and D.Weinmann at Strasbourg we have developed a tech-
nique capable of using Neural Networks to extract the disorder configuration from
SGM data. The work was led by the group at Strasbourg and has been published
as :

Gaëtan J. Percebois, Antonio Lacerda-Santos, Boris Brun, Benoit
Hackens, Xavier Waintal, Dietmar Weinmann. Reconstructing the
potential configuration in a high-mobility semiconductor het-
erostructure with scanning gate microscopy. SciPost Phys. 15,
242 (2023) · published 15 December 2023

This chapter is organized as follows. First in Section 7.1 we describe the SGM
technique. Then in Section 7.2 we discuss the Neural Network approach developed
by the G.Percebois from the Strasbourg group. Afterwards in Section 7.3 we describe
the experimental sample and data of [Iordanescu et al. 2020]. Then in Section 7.4
we describe the technique we developed to calculate a large dataset of SGM maps
using PESCADO . Finally, in Section 7.5 we show the predicted disorder potential
and validate it using the experimental data of [Iordanescu et al. 2020]. We worked
closely with B.Brun, one of the researchers in [Iordanescu et al. 2020], to understand
their data and compare it with the Neural Network predictions. The machine learn-
ing aspect of the work was mainly done by the Strasbourg group. Here at Grenoble
we worked mostly on the modeling of the device electrostatics.
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potential from scanning gate microscopy

7.1 Scanning gate microscopy

SGM is an experimental technique for imaging the electron flow in devices whose
conducting region is deep bellow the surface [Sellier et al. 2011]. It works by plac-
ing a biased metallic tip close to the device surface, e.g. that of an Atomic force
microscope (AFM). The electric field the tip generates penetrates the device het-
erostructure and reaches its conducting region, e.g. 2DEG in AlGaAs/GaAs het-
erostructure. As the amplitude of the potential generated by the tip increases, it
depletes the charge beneath the tip. If the depletion disk underneath the tip is larger
than the electron fermi wavelength, then backscattering of incoming electrons oc-
cur 1 [Fratus et al. 2019]. This significantly alters electron transport through the
sample.

A typical transport quantity we study is the device conductance. Using the
SGM setup we measure the impact of the metallic tip on the device conductance
as a function of tip position and tip voltage. For instance, consider a quantum
point contact fabricated in a AlGaAs/GaAs heterostructure. A typical SGM setup
consists of hovering an AFM tip over the heterostructure and away from the QPC
gates, see Figure 7.1(a). In a SGM measurement we first characterize the QPC
conductance as a function of the QPC gate voltage for an unbiased AFM tip. Then
we turn on the AFM tip voltage. For a given AFM tip voltage, AFM tip position
and QPC gate voltage we measure the device conductance. We call ∆G the device
conductance measured with a biased tip subtracted by that without the tip. By
varying the tip position only, we obtain a 2D map of ∆G, hereafter referred to
as a SGM (conductance) map. Figure 7.1(b) extracted from [Topinka et al. 2001]
shows a 2D SGM map obtained by hovering the AFM tip away from the QPC
gates. The higher the conductance variation due to the presence of the tip, higher
is the electronic flow at that position in the device. Therefore, the dark regions in
Figure 7.1(b) are areas of low electronic flow while the red regions are areas of high
electronic flow. Hence the SGM map of 7.1(b) is a direct image of the electronic
flow in a QPC.

One striking feature of Figure 7.1(b) is the branched pattern the electronic flow
takes as it leaves the QPC. This is rather unintuitive, one would expect a fan like
flow after the electrons go through the QPC constriction. Such branch-like structure
has been shown to be due to disorder in the potential landscape where the electrons
propagate [Topinka et al. 2001, Topinka et al. 2000]. For instance, [Jura et al. 2007]
have shown a strong dependance of the branches on GaAs/AlGaAs 2DEG mobility.
Figure 7.2, taken from [Jura et al. 2007], shows the SGM map for a dirty sample
(left) and two high mobility samples (middle and right). In the dirty samples,
the hard scattering centers, e.g. due to impurities, cause tall and sharp spikes in

1SGM experiments can be classified into a non-invasive and a invasive regime. In the first
the tip voltage is weak, it only alters the local density of states and causes a small perturbation
to electronic transport. In the invasive regime, the depletion disk formed underneath the tip is
large enough to cause backscattering, thus strongly affecting transport. See [Steinacher et al. 2018,
Fratus et al. 2019]
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(a)

(b)

Figure 7.1: (a) Schematics of a SGM setup. In yellow a set of metallic gates
creating a potential constriction in the middle of the sample conducting region
(in green). In blue the atomic force microscope hovering over the sample sur-
face. It scatters the electron waves as they leave the constriction. Taken from
[Topinka et al. 2001] (b) SGM conduction map showing the electronic flow. Mea-
sured by [Topinka et al. 2001] for a QPC made on a AlGaAs/GaAs heterostructure.
The QPC gate voltage is set such that the device conductance is G = 2e2/h. The
regions in red correspond to areas of high electronic flow and those in dark blue of
low electronic flow.
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potential from scanning gate microscopy

Figure 7.2: Taken from [Jura et al. 2007]. SGM maps for QPCs built on GaAs/Al-
GaAs 2DEG of different mobility. a) SGM map for a device with the 2DEG 57nm

beneath the heterostructure surface and 22nm beneath the Si donors layer. It has a
mobility µ = 0.14 106cm2V −1s−1 and mean free path l = 1.5µm. The electronic flow
is twisted and diffusive. b) The 2DEG is placed 68nm beneath the heterostructure
surface and 25nm beneath the Si donors layer. It has µ = 1.7 106cm2V −1s−1 and
l = 13µm. The flow is much smoother and shows only few possible hard scattering
sites, pointed by the arrows. c) The 2DEG is placed 100nm beneath the heterostruc-
ture surface and 68nm beneath the Si donors layer. It has µ = 4.4 106cm2V −1s−1

and l = 28µm. The flow is smooth and mostly straight. d) Schematics of the SGM
setup.

the disordered potential. This in turn causes the diffusive and twisted flow of the
dirty sample, see left Figure 7.2. For the clean samples, there are only small-angle
scattering sites, e.g. uneven distribution of Si ionized donors, they cause smooth
ondulations to the disordered potential. Such smooth ondulations cause the flow to
be continuous and concentrated in straight and smooth branches, see middle and
right Figure 7.2 [Jura et al. 2007]. Moreover, the branch structure has been shown
stable under large changes of the 2DEG fermi energy [Fratus et al. 2019]. This
indicates that the SGM response, in particular the form of the branches, mainly
depends on the disorder in the potential seen by the propagating electrons.

This raises the question of wether we can use SGM maps to extract the disorder
configuration of nanoelectronic devices. It is possible to calculate the SGM map
for a given disorder configuration using numerical approaches, such as solving the
SCQE problem discussed in the first part of this manuscript (left to right Figure
7.3). Solving the inverse problem, however, is a lot harder. One approach currently
studied to extract the disorder potential from quantum transport measurements is
to use Machine Learning techniques (right to left Figure 7.3).
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Figure 7.3: Example of the dataset we calculated to train the neural network.
Left image shows a disorder potential configuration seen by the 2DEG. Right image
shows the corresponding SGM map. For a given disorder configuration, kwant calcu-
lates the SGM map (left to right). For a given SGM map, a neural network trained
to solve the inverse problem (right to left) predicts the associated disorder configu-
ration. Simulations performed with PESCADO and Kwant for the GaAs/AlGaAs
2DEG QPC of Figure 7.6. Taken from [Percebois et al. 2023]

7.2 Neural Network approach for solving the inverse
problem

Machine learning is a great tool to capture the behavior of a non-linear function
f(X) as long as the result f(X) = A is known for a large number of X (thousands
and tens of thousands). In a typical machine learning scheme, such as a neural
network (NN), a large training data set X - where A is known, is used to train
the NN into learning the behavior of the function f(X). To calculate with which
precision a NN has has learned f(X), one typically uses a second (and typically
smaller) set of X with known A as reference. Applied to our problem X is the SGM
conductance map (right of Figure 7.3), A is the disorder potential (left of Figure
7.3) and f(X) is a Neural Network mapping X → A.

In order to train the Neural Network we need to generate thousands of SGM
maps from known disorder configurations. However calculating one full SGM
map means calculating the conductance through a QPC for hundreds of tip po-
sitions. Hence the computational cost of the machine learning based approaches is
a considerable limitation. In a preliminary work by [Percebois & Weinmann 2021]
they showed an artificial neural network is capable of extracting the disorder
potential in QPCs from the samples partial local density of states (PLDOS),
c.f. Eq.2 from [Percebois & Weinmann 2021]. The PLDOS is a fast to calcu-
late quantity related to the disorder in the sample similarly to the SGM map.
However the PLDOS can not be measured experimentally. After the proof-
of-principle by [Percebois & Weinmann 2021], [Carlo R da Cunha & Lai 2022] and
[da Cunha et al. 2023] trained an NN (with a different architecture compared to
[Percebois & Weinmann 2021]) to extract the disorder potential from SGM maps.
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Figure 7.4: Convolutional encoder-decoder neural network used to solve the inverse
problem, c.f. Figure 7.3. Taken from [Percebois et al. 2023].

Their work is a slight improvement on that by [Percebois & Weinmann 2021]. How-
ever when calculating the conductance of the QPC they used an effective potential
to represent the effect of the gates and tip. A correct treatment of the device elec-
trostatics requires a self-consistent treatment of the electronic screening. This is
specially true underneath the tip, since depleting the charge changes considerably
the electronic screening. The work we present in this Chapter builds up on the work
by [Percebois & Weinmann 2021] and uses PESCADO to generate the SGM maps
by solving the SCQE problem in the Thomas-Fermi approximation.

7.2.1 Neural Network architecture and training

The input and output of our neural network are both images (c.f. Figure 7.3),
i.e. 2D matrices. Hence we used a NN of the convolutional encoder-decoder type,
typically used for image analysis. A neural network can be divided into multiple
layers, see Figure 7.4 for a schematics of the architecture we have used. In blue
and grey are the convolutional type layers. Each convolutional layer can be thought
of as applying a Kernel to its 2D input matrix. This allows the neural network to
transform the input image data, e.g. to enhance a certain feature. In red are the
encoder type layers, they reduce the number of pixels in the image, thus compressing
the information. This forces the neural network to select the main features of the
image. In yellow are the decoder type layers, they decompresses the image, forcing
the neural network to extrapolate new image pixels. Therefore our NN first choses
a feature of the SGM map to enhance, then compresses the image. This is the
encoder part. Then the NN takes the compressed image, enhances a feature it
deems pertinent, and then extrapolates from the image some new pixels. This is the
decoder step. The specific features the NN enhances, removes after compression or
extrapolate after decompression are optimized during training.

The training of our neural network happens in two steps. First it is pre-trained
using the partial local density of states. We used 50000 PLDOS samples to train the
neural network. Only after it is trained with the PLDOS, we train it using the SGM
dataset. This considerably increases the accuracy of the neural network prediction.
For more technical information regarding the neural network architecture, training
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and statistical evaluation of the prediction quality, we refer to [Percebois et al. 2023,
Percebois 2023].

Regarding the training dataset, for the PLDOS calculation we refer
to [Percebois et al. 2023, Percebois & Weinmann 2021]. The SGM dataset
is calculated from a numerical model reproducing the experiments of
[Iordanescu et al. 2020]. In the next section we shall explain their experiments.
Afterwards we shall describe the numerical model and the SGM calculations.

7.3 Experimental device and measurements

The QPCs of [Iordanescu et al. 2020] are fabricated over an Al0.3Ga0.7As/GaAs

heterostructure. Figure 7.5(a) shows a schematic of the experimental setup. In
blue are the metallic gates defining the QPC, they are 300nm apart and located
10nm above the heterostructure surface. In grey is the metallic tip placed at a
distance of 30nm from the heterostructure surface. In red is the 2DEG formed at
the AlGaAs/GaAs interface located 57nm bellow the heterostructure surface and
with an electron density of ns = 2.53.1015m2. The electrons filling the 2DEG come
from the Si doped AlGaAs 15nm thick layer placed 30nm above the 2DEG and 12nm

bellow the heterostructure surface (not shown in the schematics). The conductance
measurements are performed at a temperature of 100mK. For further information
regarding the device and technical details of the conductance measurements, we
refer to [Iordanescu et al. 2020].

Figure 7.5(b) shows a conductance versus QPC gate voltage curve. The con-
ductance plateaus are well defined at multiples of G0 = 2e2/h. For this QPC
the tip starts to deplete the 2DEG beneath it for a Vtip = −4.5V . Figure 7.5(c)
shows a SGM map for a QPC gate voltage of Vg = −0.95V (black circle in Figure
7.5(b)) and tip voltage of Vtip = −6V . Figure 7.5(c) shows a single, well defined
branch, as expected for a QPC in the first conductance plateau. For Vtip = −6V

the 2DEG is depleted up to an estimated radius of 60nm from the tip position. See
[Iordanescu et al. 2020] for the method to extract the radius of depletion. Hence a
electromagnetic cavity is formed between the QPC gates and the depleted 2DEG.
For a device whose electronic coherence length is high enough 2 and a sufficiently
high thermal length there are constructive / destructive interference between the
backscattered electrons in the cavity [Jura et al. 2009]. Figure 7.5(d) shows the
derivative of the data in Figure 7.5(c). It shows interference fringes characteristic
of a Fabry-Pérot interferometer. Based on this observation we can extract the elec-
tron fermi wavelength from the period of the oscillations. For 7.5(d) one extracts
λF ≈ 40nm. This is similar to the theoretical value for λF =

√
2π/ns = 49.8nm cal-

culated under the assumption of parabolic dispersion (valid considering we remain
in the first conductance plateau).

2At least twice or four times the tip distance from the QPC depending on the interference
mechanism [LeRoy et al. 2005]
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Figure 7.5: Taken from [Iordanescu et al. 2020]. (a) Schematics of a SGM setup
of (b) Conductance versus QPC gate voltage Vg. (c) SGM conductance maps for
Vg = −0.95V and tip voltage Vtip = −6V . For a Vg = −0.95V the QPC is placed
in by the end of the first conductance plateau, see black circle in (c). (d) Numerical
derivative of (c) with respect to X.
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7.4 Generating the scanning gate microscopy training
dataset

The transport data we have calculated is the SGM 2D conductance map shown in
Figure 7.5(c). We have generated a large dataset of 2650 SGM conductance maps,
each an image of 40×65 pixels, e.g. right panel of Figure 7.3. Each pixel correspond
to calculating the device conductance for a given tip position. Hence to make one
SGM map, we perform 2560 conductance calculations. Each conductance map is
calculated for a unique randomly generated ionized dopant distribution, e.g. the
disorder configuration on the left panel of Figure 7.3.

To generate such dataset we first calculate the electrostatics of the QPC device as
a function of the tip position and dopant configuration, see third panel in Figure 7.7.
To calculate the electrostatics we solve a 3D model inspired from the one developed
in Chapter 6 using PESCADO under the Thomas Fermi approximation, see Section
7.4.1. Then we extract the electrostatic potential U(r, rtip), c.f. Eq.(7.2), at the two-
dimensional electron gas for a given dopant configuration and tip position rtip, see
Section 7.4.2. The third panel in Figure 7.7 shows an example of U(r, rtip) extracted
from the 3D PESCADO model. Finally we use a 2D tight binding non-interacting
model built from the U(r, rtip) (mean-field a.k.a thomas-fermi) potential to calculate
the conductance (with Kwant), e.g. right panel of Figure 7.3. The conductance
calculations were performed at zero temperature, i.e. for E = EF = 9.1meV . To
avoid backscattering from the leads in the tight-binding model, we have smoothly
extended the potential extracted from PESCADO towards zero before sending it to
Kwant. In the next two sections we shall explain respectively the 3D electrostatic
model and how to extract from it the 2D electrostatic potential used for the tight-
binding model.

7.4.1 Calculating the electrostatics of the quantum point contacts

We simulate the QPC of [Iordanescu et al. 2020] with the 3D model shown in Figure
7.6. The QPC metallic gates, in gold, have a width of 150nm, thickness of 40nm
and are spaced from each other by 250nm. The dielectric stacking (blue, light
blue and cyan) is, from top to bottom : 10nm Hafnium oxide, 5nm GaAs (vs
7nm experimentally), 5nm undoped AlGaAs, 15 doped AlGaAs, 30nm undoped
AlGaAs and 80nm GaAs. The 2DEG is located between the AlGaAs/GaAs layer,
as indicated in Figure 7.6. The dielectric permittivity is set to εr = 12ε0 for the
AlGaAs and GaAs and εr = 20ε0 for the Hafnium oxide, with ε0 the vacuum
permittivity. The tip is modeled by a metallic half sphere with a radius of 50nm

located 30nm from the top GaAs layer. The tip position on the (x, y) plane (referred
to as rtip) is not constant and can change from one simulation to another. The values
rtip can take are bounded by the grey region named “SGM zone” on the right side
of Figure 7.6.

We solve the SCQE problem for this system under the Thomas Fermi approxima-
tion. At the 2DEG we fix the ILDOS to that of the bulk 2DEG, i.e. N(µ) = ρµθ(µ),



186
Chapter 7. PESCADO and Neural Networks : Extracting the disorder

potential from scanning gate microscopy

Figure 7.6: Sketch of the numerical model used to simulate the electro-
statics of the QPC device measured by [Iordanescu et al. 2020]. Taken from
[Percebois et al. 2023].

with µ the chemical potential, θ(µ) the Heaviside step function and ρ = m∗e/(π~2).
At the QPC gates we set Dirichlet b.c.s with VQPC = Vgate + Voff , Vgate the ex-
perimental gate voltage and Voff an offset voltage to account for the materials
workfunction and surface states (see Chapter 6). At the metallic tip we set Dirich-
let b.c.s as well with Vtip the tip voltage. Everywhere else in the system we set
Neumann b.c.s, with non-zero charge only at the dopants. We refer to Chapter 4
for tutorials on how to define this problem with PESCADO .

We set Voff = 0.162V and fix Vgate = −0.82V , for which the QPC conductance
is between the first and second plateaus depending on the ionized donor distribution.
The Vtip is taken s.t. the depletion region it induces in the 2DEG layer has the same
radius as the experimental depletion radius. To obtain a depletion radius of 60nm

we set Vtip = −5.8V . For the dopant layer, we consider them not fully ionized,
see the fermi level pinning argument of Chapter 6. We consider the position of
the ionized donors to be random, following a Poissonian distribution s.t. the overall
density of ionized donors is ndop = ns/ddop = 1.69.1023m−3. The electrostatic model
has two outputs: the potential U(r, rtip) and charge density n(r, rtip).

To discretized the 3D model on the left side of Figure 7.6 we use the finite
volume mesher implemented in PESCADO . The electrostatic simulation box is of
size 1068nm on ~x, 564nm on ~y and 395nm on ~z. At the boundaries of the simulation
box the electric potential is considered constant, i.e. no flux leaves or enters the box.
We only seek to reproduce the experimental result at the “SGM zone”, making the
simulation box size a good compromise between numerical precision and calculation
time. We have used a non-uniform rectangular mesh. Along ~x and ~y the rectangle
is 6nm long (in the entire system), this ensures the mesh is regular at the 2DEG
region. Also, 6nm is much smaller than the electronic fermi wavelength at the 2DEG.
Furthermore, the lattice spacing of the tight binding model Kwant solves is also 6nm

along ~x and ~y. This makes it trivial to use the electrostatic potential calculated
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with PESCADO as input to the Kwant system. Regarding the discretization on ~z,
it follows the formula :

3z2 + 2 z < 0

5 0 < z < 115

20 z > 115

(7.1)

with z = 115nm the vertical position delimiting the top of the QPC gates. For
an example of the potential U(r, rtip) calculated at the 2DEG, we refer to the two
first panels (left to right) in Figure 7.7. The code can be made available upon
request.

7.4.2 Approximation on the electrostatic potential

To generate a single SGM conductance map, we calculate the potential U(r, rtip) for
2560 different tip positions. We need thousands of SGM conductance maps to train
a neural network. Each SGM conductance map has a unique randomly calculated
ionized dopant distribution. This puts the number of electrostatic calculations we
would have to perform on the order of millions. This is unreasonable. There is
however an approximation we can make that significantly reduces that number. We
split the potential into three parts :

U(r, rtip) ≈ U(r)− Uuni(r) + Uuni(r, rtip) (7.2)

Where Uuni(r) is the potential calculated for a system without the tip and with
a uniform dopant distribution. Where U(r) is the potential calculated for a system
without the tip and with a disordered dopant distribution (see leftmost panel of
Figure 7.7). Where Uuni(r, rtip) is the potential calculated for a system with a tip
placed at rtip and with an uniform dopant distribution (see second, left to right,
panel of Figure 7.7). This approximation implies we do not need to make a new
electrostatic calculation for every tip position whenever we change the dopant dis-
order configuration. The third and fourth panels of Figure 7.7 compare respectively
the approximated potential to the exact potential. It illustrates the case where the
error induced by the approximation is the largest. As the tip is moved further away
from the QPC gates, their cross talk is decreased and the approximation gains in
accuracy.

7.5 Extracting the disordered potential from experimen-
tal data

With the SGM dataset of Section 7.4 we have trained the neural network of Section
7.2.1. In this section we shall first compare the disorder potential predicted from a
numerical SGM map to the expected disorder potential. Then we shall extract the
disorder potential from a experimental SGM map and evaluate the quality of the
prediction.
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Figure 7.7: Electrostatic potential at the 2DEG calculated using the 3D model
of Figure 7.6. First panel shows the disordered potential calculated for a system
with zero tip voltage. The second panel shows the potential calculated for a system
with non-zero tip voltage, but without disorder in the dopant layer. The third panel
shows the approximated potential, c.f. Eq 7.2. The fourth panel shows the exact
potential calculated for a system with disorder in the dopant layer and non-zero tip
voltage. The error made by the approximated potential (third panel) is the largest
when the tip is closest to the QPC gates. Taken from [Percebois et al. 2023]
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During training the QPC gate voltage is fixed to Vgate = −0.82V . We change
the gate voltage when testing the accuracy of the neural network to evaluate how
it handles a slightly different QPC voltage profile. An unbiased neural network
should predict the same disorder potential regardless of Vgate. Figure 7.8 shows the
disorder potential predicted for a trained neural network as a function of the QPC
gate voltage. The top panel is the calculated SGM map for one disorder potential
(bottom panel) and four different QPC gate voltage values, corresponding to a QPC
conductance of respectively G = 1.0G0, G = 1.3G0, G = 1.7G0 and G = 2.0G0.
The middle panels show the disorder potential predicted by the neural network.
It shows that the predicted disorder potential captures the main features of the
expected disorder potential. Upon visual inspection it is possible to observe some
discrepancies. However, it is difficult to evaluate from Figure 7.8 if the predicted
potential contains all the meaningful information required to reproduce the initial
SGM map. The SGM map does not depend only on local variations of the disorder
potential. Furthermore, there is no reason to assume every pixel in the potential
image has the same effect on the calculated SGM map.

To better evaluate the performance of the neural network, we decided to extract
the disordered potential from an experimental SGM map (top panel of Figure 7.9)
and then to use the extracted disordered potential to calculate (with Kwant) a
simulated SGMmap (four bottom lines in Figure 7.9). We compare the experimental
SGM map with the calculated SGM map to assert the performance of the NN. Take
the second line in in Figure 7.9. The disorder potential is the one predicted for
the first experimental SGM map (G = 1.0G0) on the top of Figure 7.9. The four
SGMmaps are calculated by using the predicted potential on the left and varying the
QPC gate voltage s.t. the QPC conductance corresponds respectively to G = 1.0G0,
G = 1.3G0, G = 1.7G0 and G = 2.0G0. For lines three, four and five we follow
the exact same procedure, however using the disorder potential predicted from the
experimental SGM map for respectively G = 1.3G0, G = 1.7G0, G = 2.0G0. The
main features of the branches are successfully captured. We do notice however
some oscillations in the predicted SGM map compared to the experimental one.
Considering the work shown here is the first of its kind, we consider this to be
already of good resemblance. Of course, further investigation is required if this
technique is to be used to predict the transport behavior of GaAs/AlGaAs 2DEG
devices.

7.6 Conclusion

We have generated a large SGM dataset. Then we have used it to train a neural
network into extracting the experimental disorder potential at the 2DEG layer of
GaAs/AlGaAs QPCs. The work presented here is a good proof of principle. However
for it to be used towards predictive modeling of nanoelectronic devices, we need to
first improve the validation method of the neural network. The current method
does not assess possible systematic bias in the neural network. To do so we would
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Figure 7.8: Top panels indicate the calculated SGM maps for a fixed disorder
configuration (bottom panel) and four different QPC gate voltages. The middle
panels contain the disorder potential predicted by the Neural network. Taken from
[Percebois et al. 2023]

Figure 7.9: Top line four experimental SGM maps. The four bottom lines show the
SGM maps calculated using the disorder potential extracted from the experimental
SGM maps. Each one of the four bottom lines are calculated by keeping the disorder
potential constant and changing the QPC gate voltage s.t. the conductance of the
QPC matches the experimental value. Taken from [Percebois et al. 2023].



7.6. Conclusion 191

need a dedicated set of experiments. For instance, one where the SGM maps were
measured under different tip voltages and magnetic fields. Once we have been able
to assess the bias in the neural network, we can think about improving the quality
of the training dataset or modify the NN architecture.

Regarding the numerical dataset, we could relax the approximations we made
to the numerical model, such as the one to the disorder potential, c.f. Eq. 7.2. We
could also change the voltage of the tip, in order to change the depletion radius
of the 2DEG; increase the resolution of the SGM maps, i.e. number of pixels; or
increase the size of the SGM scanning zone, c.f. grey rectangle of Figure 7.6.





Chapter 8

Conclusion

In this thesis we have worked on the predictive modeling of quantum transport in
nanoelectronic devices. To this avail we have: i) developed an algorithm to solve the
self-consistent quantum electrostatics problem in non-linear regimes (e.g. Quantum
Hall Effect), ii) developed an open source python software PESCADO to model the
electrostatics of quantum devices and iii) developed a minimalistic model with no
fitting parameters to account for the effect of unexpected charges in experimental
nanoelectronic devices.

The SCQE problem is known to be difficult to solve due to the non-linearities
in the quantum part. The first main conclusion of this thesis is that to stabilize an
algorithm attempting to solve the SCQE problem, one needs to use the information
the local density of states (LDOS) has on the energy dependance of the quantum
problem to detect where those non-linearities will appear, see Chapter 2 and 3.
To be more precise, we introduce first the quantum adiabatic approximation (a
generalization of Thomas Fermi), this simplifies the SCQE to a non-linear Helmholtz
(NLH) equation. To solve the NLH equation then we use the LDOS to isolate the
non-linearities. This is in contrast to most current approaches that rely only on
the charge. We have implemented two algorithms to do so, the Piecewise Newton
Raphson and Piecewise Linear. The first is very similar to the Newton-Raphson
algorithm, is robust and converges quickly. The second is slower, but its convergence
is guaranteed. Both methods rely on repeatedly solving the linear helmholtz (LH)
equation. Hence, during my thesis we developed PESCADO , it allows one to solve
the LH equation for a 1D, 2D or 3D model of nanoelectronic devices.

The PESCADO software, see Chapter 4, implements a versatile geometrical
engine and a memory efficient finite volume mesher. It also implements the Piecewise
Newton Raphson and Piecewise Linear algorithms. Hence PESCADO can solve
the non-linear Helmholtz problem for nanoelectronic devices. We have extensively
tested PESCADO during its development, either on the form of integrated testing
(automatic tests for specific methods of the code) or through the collaboration with
experimentalists and other theoreticians (comparison with experimental results).
From the beginning of my thesis, where we worked on the graphene PN junctions
(Chapter 5), to the end, the scanning gate microscopy application (Chapter 7), we
have always searched to confront PESCADO ’s calculations to experiments. This
allowed us to not only validate our software, but also realize which features of
PESCADO to develop in priority.

The difficulty in modeling quantum devices does not only comes from the non-
linearity of the SCQE. It is also due to the non-local electrostatic interaction. In
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one hand, this non-local aspect means we can use the gate field effect to change
the behavior of conducting electrons. On the other hand, any other charge in the
device will do so as well. During this thesis we have worked on figuring out what
is the minimum level of modeling required to correctly simulate the rich electro-
static environment where electrons propagate. We have restricted our question to
AlGaAs/GaAs heterostructures. We have shown that a minimalistic model should
not seek to predict the charge density of the 2DEG, but rather use the experimental
value to calibrate the theoretical model. More precisely, we have developed a model
whose dopant charge density is calibrated from the experimental 2DEG charge den-
sity (Fermi level pinning) and used it to predict experimental pinch-off voltages with
an accuracy on the order of 5− 10%, see Chapter 6. With the same modeling tech-
nique, we have used PESCADO to generate a numerical data-set to train a Neural
Network into reconstructing the disorder potential (due to dopant disorder) from
scanning gate microscopy experiments, see Chapter 7.

Continuing the work of this Thesis can be done in three paths, applications,
software and formalism. Regarding the first path it is about extending on the ex-
ploratory work done in this thesis regarding the predictive modeling of experimental
devices and the effect of disorder. We have ongoing collaborations with the Lateqs
(experimental nanoelectronics) group within Pheliqs (specially Boris Brun) as well
with Christopher Bäuerle at Institut Néel. For the group at Lateqs the work is on
its early stages, we have only started to work on the quantum dots they fabricate
on SiGe/Ge/SiGe heterostructures 1 and we are still developing the appropriate
model to capture the charges in the device (similar to the work in Chapter 6). The
collaboration with C.Bäuerle in contrast is much more developed (Xavier’s work
with him pre-dates me by quite some years), the nearest next step is to predict the
actual shape of the conductance plateaus of their devices. The longer term goal is to
actually use PESCADO to guide the design of future flying qubit devices. The work
done on the scanning gate microscopy data is quite exploratory and to continue it
would be important to develop a collaboration with an experimental group so that
we can design some experiments to better asses the fidelity of the neural network
and the PESCADO simulations. Last on the applications path, one interesting long
term goal is to predict the 0.7 conductance anomaly [Thomas et al. 1996].

Regarding the software path, it is focused on expanding PESCADO capabilities
as a software. On the immediate term it is its full release as an open-source software,
there is still mainly some documentation work to be finished before end of summer.
Then, for a future version of PESCADO we need to revisit the implementation of
the Piecewise Linear algorithm (it is too slow) and the linear helmholtz solver (we
can probably speed it up). We also need to improve the visualization and ILDOS
integration tools as well as the compatibility with Kwant (it works, but there is
some work to do).

Regarding the formalism path, we have solved only the Hartree term of the
Hartree-Fock (HF) equation. That is, we do not include the effect of the exchange

1For a relevant review on the type of devices they work with see [Scappucci et al. 2021]
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interaction 2. The most immediate solution is to include the Fock term, however
the long range of the exchange interaction makes this approach computationally
expensive. A lower cost approach, and that might suffice, is to use density functional
theory (DFT). Through the local density approximation we can write a potential
(function of the charge density) that accounts for the exchange interaction. This
potential is inserted in the Schrödinger equation of the SCQE problem and hence is
quite straightforward to implement.

Lastly, to go beyond DFT or HF, we could use the mean field (or even DFT
or HF) potentials calculated with PESCADO to obtain the lowest energy prop-
agating modes, in e.g. a QPC device. With this information we can map the
3D model into a effective 1D system, to which we can add correlation. More
precisely, current is carried only through the lowest modes, hence the contribu-
tion of the rest can be neglected. We can then use the algorithm proposed by
[Darancet et al. 2010] to derive a basis set for the restricted Hilbert space spanned
by the contributing conduction modes where the system Hamiltonian is tridiagonal,
with only 1D first neighbors hopping. To this 1D Hamiltonian we can add correla-
tion and then solve the many-body problem using state of the art techniques such
as tensor train decomposition being currently developed by Xavier’s Waintal group
[Núñez Fernández et al. 2022, Ritter et al. 2024]. This is an interesting approach to
use what we have learned in this thesis to bridge the gap between (semi) classical
models and full quantum models.

2In Chapter 5 we have accounted for the effect of the exchange interaction on the QH graphene
ILDOS phenomenologically.
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In this appendix, we collect the values of the different pinch-off voltages V1, V2

and V3 that have been extracted from the experimental I(Vg) curves. The raw
experimental data can be found in [dat 2022].

QPC W(nm) L(nm) V3a V2a V1a V3b V2b V1b V3c V2c V1c
A1 250 50 -2.10 -0.86 -0.44 -1.95 -0.86 -0.45 -2.20 -0.89 -0.46
A2 300 100 -2.09 -0.88 -0.44 -1.87 -0.88 -0.45 -2.02 -0.90 -0.46
A3 300 250 -1.41 -0.88 -0.45 -1.29 -0.87 -0.45 -1.52 -0.89 -0.46
A4 300 500 -1.22 -0.89 -0.45 -1.17 -0.87 -0.45 -1.22 -0.89 -0.46
A5 500 1000 -1.96 -0.88 -0.45 -1.84 -0.88 -0.45 -2.05 -0.90 -0.46
A6 500 2500 -1.46 -0.86 -0.45 -1.82 -0.86 -0.45 -1.97 -0.91 -0.46
A7 500 5000 -1.83 -0.88 -0.44 - - - - - -
A8 500 1e4 -1.79 -0.88 -0.45 - - - - - -

QPC W(nm) L(nm) V3d V2d V1d
A1 250 50 -2.00 -0.93 -0.47
A2 300 100 -2.13 -0.95 -0.47
A3 300 250 -1.47 -0.94 -0.47
A4 300 500 -1.24 -0.93 -0.46
A5 500 1000 -1.97 -0.94 -0.46
A6 500 2500 -1.90 -0.90 -0.46

QPC W(nm) R(nm) V3a V2a V1a V3b V2b V1b V3c V2c V1c
B1 250 25 -1.94 -0.88 -0.43 -2.43 -0.95 -0.48 - - -
B2 300 50 -2.35 -0.88 -0.44 -2.42 -0.95 -0.48 - - -
B3 300 125 -1.71 -0.88 -0.44 -1.77 -0.96 -0.48 -1.59 -0.94 -0.47
B4 300 250 -1.51 -0.86 -0.44 -1.57 -0.96 -0.49 - - -
B5 500 500 -2.31 -0.88 -0.44 -2.49 -0.98 -0.50 - - -
B6 500 1250 -1.98 -0.87 -0.44 -2.20 -0.97 -0.49 - - -
B7 500 2500 -1.97 -0.86 -0.45 -2.08 -0.97 -0.50 -2.00 -0.91 -0.47
B8 500 5000 -1.93 -0.87 -0.44 -2.00 -0.98 -0.50 - - -
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QPC W(nm) R(nm) L(nm) V3a V2a V1a V3b V2b V1b V3c V2c V1c
C1 250 1000 50 -1.0 -0.98 -0.49 -0.96 -0.87 -0.44 -1.05 -0.92 -0.46
C2 300 1000 100 -1.64 -0.90 -0.48 -1.09 -0.87 -0.45 - - -
C3 300 1000 250 -1.21 -0.98 -0.49 -1.09 -0.88 -0.45 -1.21 -0.94 -0.46
C4 300 1000 500 -1.18 -0.97 -0.48 -1.08 -0.86 -0.45 -1.15 -0.92 -0.46
C5 500 1000 1000 -1.98 -0.93 -0.48 -2.02 -0.89 -0.46
C6 500 1000 2500 -1.94 -0.95 -0.48 -1.79 -0.89 -0.45 -1.93 -0.92 -0.47
C7 500 1000 5000 -1.91 -0.95 -0.48 -1.68 -0.88 -0.45 -1.92 -0.91 -0.48
C8 500 1000 10000 -1.85 -0.94 -0.48 -1.70 -0.88 -0.45 -1.87 -0.92 -0.48

Table A.1: Experimental pinch-off voltages for the short designs.

QPC W(nm) R(nm) L(nm) V3a V2a V1a V3b V2b V1b
A9 750 0 1000 -3.37 -0.90 -0.45 -3.34 -0.87 -0.44
A10 750 0 2500 -3.17 -0.89 -0.45 -3.10 -0.88 -0.44
A11 750 0 5000 -3.03 -0.90 -0.45 -3.00 -0.88 -0.44
A12 750 0 10000 -2.99 -0.78 -0.44 -2.92 -0.78 -0.43
A13 750 0 25000 -2.89 -0.78 -0.44 -2.85 -0.77 -0.43
A14 750 0 50000 -1.96 -0.77 -0.44 -2.72 -0.78 -0.43
A15 1000 0 10000 -4.1 -0.90 -0.44 -4.18 -0.91 -0.44
A16 1000 0 50000 -3.92 -0.78 -0.42 - - -
B9 750 500 0 -3.81 -0.86 -0.44 -4.00 -0.90 -0.47
B10 750 1250 0 -3.50 -0.89 -0.44 -3.40 -0.86 -0.46
B11 750 2500 0 -3.25 -0.89 -0.44 -3.18 -0.88 -0.45
B12 750 5000 0 -3.21 -0.77 -0.43 -3.10 -0.75 -0.45
B13 750 12500 0 -3.11 -0.78 -0.44 -3.02 -0.77 -0.44
B14 750 25000 0 -3.08 -0.78 -0.44 -3.04 -0.78 -0.44
B15 1000 5000 0 -4.00 -0.90 -0.45 -7.0 -0.90 -0.46
B16 1000 25000 0 -3.47 -0.80 -0.44 - - -
C9 750 1000 1000 -3.07 -0.87 -0.45 -3.20 -0.89 -0.45
C10 750 1000 2500 -2.96 -0.90 -0.45 -3.02 -0.89 -0.45
C11 750 1000 5000 -2.92 -0.89 -0.45 -1.10 -0.89 -0.45
C12 750 1000 10000 -1.73 -0.77 -0.44 -2.93 -0.77 -0.45
C13 750 1000 25000 -0.78 -0.76 -0.44 -2.82 -0.77 -0.45
C14 750 1000 50000 -1.91 -0.76 -0.43 - - -
C15 1000 1000 10000 -4.13 -0.91 -0.46 -4.17 -0.93 -0.47
C16 1000 1000 50000 -3.88 -0.79 -0.45 -3.55 -0.78 -0.44

Table A.2: Experimental pinch-off voltages for the long designs. Designs that
have Wg = 80 nm in the narrow gate region are highlighted in blue. The rest have
Wg = 50 nm like the short designs.
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Figure A.1: Cumulative distribution of V1 (top), V2 with Wg = 50 nm (middle)
and V2 with Wg = 80 nm (bottom) for the entire set of measured samples. The N
versus x plots show the number of samples N(x) whose pinch-off voltage V1/V2 is
smaller than x.





Appendix B

Integrated of the local density of
states

In this Appendix we derive an analytical expression for the integrated local density
of states based on the Kernel Polynomial method (KPM) [Weiße et al. 2006]. The
KPM consists of writing the LDOS as a finite series of Chebyshev polynomials whose
expansion coefficients (called moments) are modified by damping kernels to improve
convergence.

Let ρi(E) be the LDOS at the site i of a tight-binding system we can solve
with e.g. Kwant [Groth et al. 2014]. First we write the LDOS as a infinite series of
Chebyshev polynomials that we truncate at M :

ρi(Ẽ) ≈ 1

π
√

1− Ẽ2

[
µ0,i + 2

M−1∑
m=1

µm,iTm(Ẽ)

]
(B.1)

with µm,i the moments and Tm(Ẽ) the Chebyshev polynomials of first kind :

Tm(Ẽ) = cos(m arccos(Ẽ)) (B.2)

Since Tm(Ẽ) are only defined on the real interval [−1, 1], Ẽ are rescaled energies:

Ẽ = (E − β)/α

α = (Emax − Emin)/(2− ε)
β = (Emax + Emin)/2

(B.3)

with ε a small cutoff added to avoid instabilities near the borders of the interval
[−1, 1]. The moments µm,i we calculate with Kwant [Groth et al. 2014], otherwise
see [Weiße et al. 2006] for an analytical expression.

Using Eq.(B.1) leads to fluctuations when ρi(Ẽ) is not continuously differentiable
(Gibbs oscillations). To damp these oscillations we modify the moments µm →
gmµm, with gm depending on the order of the approximation M . The truncation
of the series up to M and the modification of the moments is equivalent to the
convolution of ρi(Ẽ) with a Kernel (see equations 48 and 49 of [Weiße et al. 2006]).
For the integration of the LDOS in question, we best use the Jackson-Kernel 1. In
the Jackson-Kernel we write :

1We refer to Figure 1 of [Weiße et al. 2006] for a good comparison of different kernels effect on
damping the oscillations that arise when Chebyshev expanding the delta function.
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gm =
1

M + 1

(
(M −m+ 1) cos

(
πm

M + 1

)
+ sin

(
πm

M + 1

)
cot

(
π

M + 1

))
(B.4)

It is possible to integrate the KPM LDOS with Kwant, it uses the Chebyshev-
Gauss quadrature rule. Although it works for any distribution function, e.g. Fermi
distribution, it has the drawback of defining the ILDOS only at the energy values of
the nodes of the Chebyshev polynomial. It makes the ILDOS look like a staircase.
Fortunately at T = 0 it is rather straightforward to derive an analytical expression
to the ILDOS, we do so bellow.

First we write the primitive function of ρi(Ẽ) :

Pi(Ẽ) =

∫
ρi(Ẽ)dẼ =

∫
1

π
√

1− Ẽ2

[
µ0,i + 2

M−1∑
m=1

µm,iTm(Ẽ)

]
dẼ (B.5)

where we introduce the change of variables Ẽ = cos(θ) s.t.

Pi(Ẽ) =
−1

π

[
µ0,iθ + 2

M−1∑
m=1

µm,i

∫
cos(mθ)dθ

]
(B.6)

hence the primitive reads :

Pi(Ẽ) =
−1

π

[
µ0,i arccos(Ẽ) + 2

M−1∑
m=1

µm,i
m

sin(m arccos(Ẽ)) + C

]
(B.7)

with C a constant.
At T = 0 the fermi distribution is a step function, hence the ILDOS reads :

ni(Ẽ) =

∫ ẼF

−1
ρi(Ẽ)dẼ =

−1

π

[
µ0,i

[
arccos(ẼF )− π

]
+ 2

M−1∑
m=1

µm,i
m

sin(m arccos(ẼF ))

]
(B.8)

with ẼF = (EF − β)/α and EF the fermi energy.
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Predictive modeling of nanoelectronic devices

Abstract:
With the progress of mesoscopic physics we have gained precise control over the

environment where electrons propagate. Through careful device design we are able
to control the electrostatic environment with a precision within the electrons fermi
wavelength and draw actual highways allowing for coherent transport over long dis-
tances, going as far as hundreds of µm. This allows for experimental physicists
to use nanoelectronic devices to probe complex quantum states, such as fractional
quantum hall quasiparticles, or to manipulate single electron states. The theoreti-
cal modeling of such devices however is not nearly as advanced, there is no single
model capable of quantitatively correlating the volts applied at the electrostatic
gates to the quantum transport observed experimentally. Most approaches model
the quantum particle behavior independently from their electrostatic environment.
They account for the field effect of the gates and charges in the device as an effective
potential added to the hamiltonian of the system in the form of a fitting param-
eter. The actual form of the fitting potential is usually derived from analytical
calculations or complex semiconductor material models. A single model capturing
both the gate field effect and the quantum particle behavior has to correlate the eV
physics at the gates to the meV quantum physics. This is not an easy task and
requires solving the Schrödinger equation self-consistently with the Poisson equa-
tion (Schrödinger-Poisson problem). In this thesis we propose an algorithm and a
software (PESCADO) to solve the Schrödinger-Poisson problem. The Schrödinger-
Poisson problem is highly non-linear and most approaches to solve it are unstable
at low temperatures and near the device regions where the charge density is de-
pleted. We have managed to stabilized our algorithm by developing a method to
first find where the non-linearities lie in the energy space and then isolate them s.t.
they can be dealt with appropriately. During this thesis we have also developed a
model capable of predicting the experimental gate (pinch-off) voltages required to
deplete the two-dimensional electron gas beneath quantum point contact devices.
We have applied it to predict the pinch-off voltages of 110 experimental quantum
point contacts of 48 different designs and to study the effect of disorder in scanning
gate microscopy conductance maps.

Keywords: Quantum device, Schrödinger-Poisson, predictive modeling





Modélisation prédictive des dispositifs nanoélectroniques

Abstract:
Grâce aux progrès de la physique mésoscopique, nous avons acquis un contrôle

précis sur l’environnement dans lequel les électrons se propagent. Avec un design
judicieux des dispositfs nous sommes capables de contrôler l’environnement électro-
statique avec une précision de l’ordre de la longueur d’onde de Fermi électronique et
de tracer de véritables autoroutes permettant le transport quantique cohérent sur
de longues distances, allant jusqu’à des centaines de µm. Cela permet d’utiliser des
dispositifs nanoélectroniques pour sonder des états quantiques corrélées, tels que
les états de hall quantique fractionnaire, ou pour manipuler des états électroniques
uniques. La modélisation théorique de tels dispositifs n’est cependant pas aussi
avancée, il n’y existe pas encore un modèle capable de corréler quantitativement les
volts appliqués aux électrodes au transport quantique observé expérimentalement.
La plupart des approches modélisent le comportement des particules quantiques in-
dépendamment de leur environnement électrostatique. Ils prennent en compte l’effet
de champ des grilles et les charges dans le dispositif comme un potentiel effectif qu’on
ajoute au hamiltonien du système sous la forme d’un paramètre d’ajustement. La
forme du potentiel est généralement dérivée de calculs analytiques ou de modèles
complexes de matériaux semi-conducteurs. Un modèle unique capturant à la fois
l’effet de champ et le comportement des particules quantiques doit corréler les eV
fixées aux électrodes avec la physique quantique qui est généralement de l’ordre
du meV . Cela n’est pas une tâche facile et nécessite de résoudre l’équation de
Schrödinger de manière auto-cohérente avec l’équation de Poisson (problème de
Schrödinger-Poisson). Dans cette thèse nous proposons un algorithme et un logiciel
(PESCADO) pour résoudre le problème de Schrödinger-Poisson. Le problème de
Schrödinger-Poisson est hautement non linéaire et la plupart des approches pour le
résoudre sont instables à basse température et à proximité des régions du dispositif
où la densité de charge est depleté. Nous avons réussi à stabiliser notre algorithme
en développant une méthode permettant d’abord de trouver où se situent les non-
linéarités dans l’espace énergétique, puis de les isoler afin de les traiter de manière
appropriée. Au cours de cette thèse, nous avons également développé un mod-
èle capable de prédire les tensions de grille expérimentales(tensions de pincement)
nécessaires pour depleter le gaz électronique bi-dimensionnel dans un point de con-
tact quantique. Nous l’avons appliqué pour prédire les tensions de pincement de 110
dispositifs expérimentaux avec 48 designs de grille différentes et pour étudier l’effet
du désordre dans les cartes de conductance en microscopie de grille à balayage.

Keywords: Dispositifs Quantiques, Schrödinger-Poisson, Modélisation Prédic-
tive
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