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Résumé en français
La pose de la caméra est utilisée pour décrire la position et l’orientation

d’une caméra dans un système de coordonnées absolu, en référence à six
degrés de liberté. L’estimation de la pose de la caméra est essentielle dans
divers domaines d’application, tels que la réalité augmentée, la navigation
robotique et les véhicules autonomes. Ces domaines exploitent la pose de
la caméra pour des calculs ultérieurs, comme la localisation des objets et
la perception de la scène.

Estimer la pose d’une caméra présente des défis dans différents scé-
narios ; les conditions d’éclairage médiocres, y compris une obscurité ou
une luminosité extrêmes, limitent l’efficacité de la plupart des méthodes
basées sur des caractéristiques. Ces conditions d’éclairage défavorables
entravent la détection et la correspondance précises des caractéristiques,
affectant ainsi la précision de l’estimation de la pose de la caméra. Les
scènes manquant de textures distinctes compliquent l’extraction de points
clés significatifs, tandis que le mouvement rapide entraîne un flou ciné-
tique, nuisant à la qualité de l’image et à la précision de l’estimation de la
pose.

La plupart de ces défis rencontrés dans l’estimation de la pose de la
caméra sont largement liés à la nature des caméras traditionnelles, qui
capturent le monde sous forme d’une série d’images fixes, prises succes-
sivement à un rythme rapide. Dans les cas où ces difficultés sont parti-
culièrement prononcées, les caméras événementielles offrent des avan-
tages potentiels.

Les caméras événementielles sont des capteurs bio-inspirés qui imitent
le fonctionnement de la rétine humaine, en capturant les changements
d’intensité des pixels plutôt que d’enregistrer des images complètes à un
taux fixe, comme le font les caméras traditionnelles basées sur des trames.

Cette thèse se concentre sur l’estimation de la pose des caméras événe-
mentielles et vise à explorer l’application de méthodes d’apprentissage en
profondeur pour la pose et la relocalisation basées sur ces caméras, en
tirant parti de leurs propriétés uniques telles que la haute résolution tem-
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porelle, la faible latence et la large plage dynamique.

La thèse apporte plusieurs contributions au domaine de l’estimation de
la pose de caméra événementielle en utilisant des techniques d’apprentissage
profond. Ces contributions peuvent être résumées comme suit :

• La thèse fournit un aperçu complet des informations de base et des
travaux connexes, établissant ainsi une base solide et une compréhen-
sion contextuelle de l’estimation de la pose de caméra événemen-
tielle.

• La thèse explore et développe des approches spécialisées d’apprentissage
profond adaptées à l’estimation de la pose de caméra événemen-
tielle. Ces techniques exploitent la puissance de l’apprentissage pro-
fond pour estimer avec précision la pose de la caméra à l’aide de
données événementielles.

• La thèse introduit des méthodes pour projeter les données événe-
mentielles en données semblables à des images, facilitant l’application
d’approches dédiées d’apprentissage profond. Ce processus de pro-
jection permet une utilisation efficace des informations événemen-
tielles dans la tâche d’estimation de la pose de la caméra.

• La thèse propose une nouvelle approche qui applique directement
des techniques d’apprentissage profond aux données événementielles
brutes, les traitant comme un nuage de points plutôt que de les con-
vertir en images. Cette approche exploite l’ensemble des informa-
tions capturées par la caméra événementielle et permet un proces-
sus d’apprentissage de bout en bout.
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English abstract
Camera pose is used to describe the position and orientation of a cam-

era in an absolute coordinate system, with reference to six degrees of
freedom. Estimating the camera pose is essential in various application
domains, such as augmented reality, robotic navigation, and autonomous
vehicles. These fields rely on camera pose for subsequent calculations,
such as object localization and scene perception.

Estimating the pose of a camera presents challenges in different sce-
narios; poor lighting conditions, including extreme darkness or brightness,
limit the effectiveness of most feature-based methods. These unfavorable
lighting conditions hinder precise feature detection and matching, thereby
affecting the accuracy of camera pose estimation. Scenes lacking distinct
textures complicate the extraction of meaningful keypoints, while rapid
motion leads to motion blur, affecting image quality and pose estimation
accuracy.

Most of these challenges encountered in camera pose estimation are
largely related to the nature of traditional cameras, which capture the world
as a series of static images taken successively at a rapid pace. In cases
where these difficulties are particularly pronounced, event-based cameras
offer potential advantages.

Event-based cameras are bio-inspired sensors that mimic the function-
ing of the human retina, capturing changes in pixel intensity rather than
recording full images at a fixed rate, as traditional frame-based cameras
do.

This thesis focuses on estimating the pose of event-based cameras and
aims to explore the application of deep learning methods for pose estima-
tion and relocalization based on these cameras, leveraging their unique
properties such as high temporal resolution, low latency, and wide dy-
namic range.

The thesis makes several contributions to the field of event-based cam-
era pose estimation using deep learning techniques. These contributions
can be summarized as follows:
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• The thesis provides a comprehensive overview of foundational infor-

mation and related work, thus establishing a solid foundation and
contextual understanding of event-based camera pose estimation.

• The thesis explores and develops specialized deep learning approaches
tailored to event-based camera pose estimation. These techniques
harness the power of deep learning to accurately estimate camera
pose using event data.

• The thesis introduces methods to project event data into image-like
data, facilitating the application of dedicated deep learning approaches.
This projection process allows for efficient use of event data in the
camera pose estimation task.

• The thesis proposes a novel approach that directly applies deep learn-
ing techniques to raw event data, treating them as a point cloud rather
than converting them into images. This approach leverages the en-
tirety of information captured by the event-based camera and en-
ables an end-to-end learning process.
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Chapter 1
Introduction
Camera pose estimation is a foundational task in computer vision and robotics.
It also plays a vital role across multiple domains, providing valuable insights
into the real world and enabling a wide range of applications.

In robotics and autonomous vehicles, camera pose estimation enables
accurate navigation and localization. Augmented reality and virtual reality
heavily rely on camera pose estimation to overlay digital information onto
the real world or create immersive virtual environments. It is essential for
3D reconstruction, allowing the creation of detailed models from multi-
ple images. Camera pose estimation aids drone navigation in GPS-denied
situations, facilitates precise medical procedures, enhances sports and en-
tertainment by tracking athletes or actors, and contributes to geographic
information systems by aligning aerial or satellite imagery with maps.

Estimating the pose of a camera, determining its position and orien-
tation in a scene, presents challenges in various scenarios. Poor lighting
conditions, including extreme darkness or brightness, limit the application
of most of feature based methods. These unfavorable lighting conditions
impede the process of detecting and matching features, thereby hindering
accurate camera pose estimation. Scenes lacking distinct textures make it
difficult to extract meaningful keypoints. Fast motion introduces motion
blur, degrading image quality and pose estimation accuracy. Non-rigid ob-
ject movements, such as swaying plants or flowing cloth, complicate the

7



8 CHAPTER 1. INTRODUCTION
process. Wide baselines, where the camera moves significantly between
frames, hinder feature matching. Large scene depth and parallax effects
distort feature matching, especially in outdoor scenes. Repetitive patterns
confuse algorithms, leading to incorrect pose estimation. Occlusions, par-
ticularly moving or rapidly changing ones, obstruct the camera’s view and
affect pose estimation. Lens distortion, common in wide-angle or fisheye
lenses, adds complexity. Finally, dynamic scenes with continuous object
movement pose additional challenges for camera pose estimation.

Most of the challenges faced in camera pose estimation are largely in-
herent to the nature of traditional cameras that capture the world as a
series of static images, taken one after the other in quick succession. This
process involves a mechanical or electronic shutter that opens briefly to
let light reach the sensor array, thereby forming an image, and then shuts
once more. This way, the visual scene is sampled at discrete time intervals,
typically at a constant rate.

However, this prevalent method of visual sensing comes with several
other limitations that predominantly contribute to the challenges men-
tioned earlier: (i) The sampling rate is not adjusted based on the dynamics
of the scene. That is, a scene with little to no movement is sampled at the
same frequency as a scene with rapid motion. (ii) Motion blur is a possibil-
ity due to movement within the scene while the shutter is open. (iii) When
exposure is uniform across all pixels, the dynamic range can be restricted.
(iv) Lastly, the camera is essentially ’blind’ during the periods between con-
secutive images, leaving gaps in visual information capture.

In spite of these constraints, conventional RGB cameras find extensive
applications, notably in photography and videography, video surveillance,
object recognition, gaming, and augmented reality. Nonetheless, while
they are extensively utilized and prove effective in diverse fields, traditional
cameras do face significant challenges and drawbacks. In situations where
these difficulties become pronounced, event-based cameras offer poten-
tial benefits.

Event-based cameras, also known as neuromorphic or asynchronous
cameras, operate on a fundamentally different principle compared to tra-
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ditional cameras. Rather than capturing frames at fixed intervals, event-
based cameras detect pixel-level changes in brightness asynchronously
and transmit these changes as events with precise timestamps.
Event-based Camera Event cameras are bio-inspired sensors that mimic
the functioning of the human retina, capturing changes in pixel intensity
rather than recording entire frames at a fixed rate as traditional frame-
based cameras do Lichtsteiner et al. (2008).

This results in an asynchronous, event-driven data stream, where events
are triggered independently for each pixel whenever the intensity changes
by a certain threshold Gallego et al. (2020). Due to this unique working prin-
ciple, event cameras offer several advantages over traditional cameras, in-
cluding high temporal resolution (in the order of microseconds), low la-
tency, high dynamic range (HDR), and reduced data redundancy Rebecq
et al. (2017).

These characteristics make event cameras particularly well-suited for
fast and accurate pose estimation and relocalization tasks in dynamic en-
vironments. In robotics, for instance, event cameras can provide real-time
feedback for high-speed motion control and navigation Mueggler et al.
(2017). In augmented reality applications, event cameras can enable ac-
curate and low-latency tracking of objects and scene geometry, improving
the user experience and reducing computational requirements Kim et al.
(2008). In the context of autonomous vehicles, event cameras can be uti-
lized for robust and efficient localization and mapping in diverse and chal-
lenging lighting conditions Zhu et al. (2018).

While a substantial body of literature exists in the domain of traditional
camera-based image processing, there is a comparatively limited volume
of research focusing on event-based camera methods. Moreover, the ex-
ploration of recent techniques like deep learning-based approaches within
the context of event-based cameras is even more scant.
The rise of deep learning Deep learning techniques, particularly Convo-
lutional Neural Networks (CNNs), have demonstrated remarkable success
in a wide range of computer vision tasks, such as object detection Redmon
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et al. (2016), semantic segmentation Long et al. (2015), and image classifica-
tion Krizhevsky et al. (2017). Deep learning models excel at learning hier-
archical features from data, allowing them to capture complex and high-
dimensional mappings between inputs and outputs LeCun et al. (2015). The
rise of deep learning can be attributed to several interrelated factors that
have led to its success across various applications, such as computer vision,
natural language processing, and speech recognition. Firstly, the availabil-
ity of large-scale datasets, like ImageNet for image classification, has pro-
vided the necessary data to train complex models effectively. Secondly,
advancements in computational power, specifically the development of
powerful GPUs and specialized hardware accelerators, have facilitated the
training of larger and deeper neural networks, it is possible to harness
the potential of these powerful models for pose estimation and relocaliza-
tion tasks, resulting in improved accuracy, robustness, and efficiency Gal-
lego et al. (2020). Processing event-based data with deep learning mod-
els presents, however, unique challenges, as the data is inherently sparse,
asynchronous, and non-uniform Gallego et al. (2020). Therefore, novel net-
work architectures and preprocessing techniques must be developed to
effectively handle the unique characteristics of event data. Several recent
works have demonstrated the feasibility of using deep learning for event
camera-based tasks, such as optical flow estimation Zhu et al. (2018), fea-
ture extraction Lagorce et al. (2016), and object recognition Gehrig et al.
(2019). These studies provide a foundation for further exploration and de-
velopment of deep learning-based approaches for event camera pose es-
timation and relocalization tasks.

1.1 Problem Statement and Research Questions
This thesis aims at investigating the application of deep learning methods
to event camera-based pose estimation and relocalization tasks, leverag-
ing the unique properties of event cameras, such as high temporal resolu-
tion, low latency, and high dynamic range. The primary research questions
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addressed in this thesis are:

Why should deep learning be used to process event-based data for
pose estimation and relocalization tasks? To answer this question, in
this thesis, we will explore various network architectures, such as Convo-
lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
tailored to handle the unique characteristics of event data, including its
asynchronous and sparse nature. This involves the development of novel
layers and operations that can efficiently process event data and its cor-
responding spatial and temporal information. What are the challenges
and limitations associated with applying deep learning techniques to
event camera data, and how can they be mitigated? This research
question aims to identify the specific challenges that arise when apply-
ing deep learning methods to event data, such as data representation,
network architecture design, and training strategies. Possible solutions
to these challenges include novel preprocessing techniques that convert
event data into a more suitable format for deep learning, the develop-
ment of network architectures that can better capture the temporal dy-
namics of event data, and the investigation of training techniques that
can improve model convergence and generalization. How do the pro-
posed deep learning-based methods compare with traditional, non-
learning-based approaches for event camera-based pose estimation
and relocalization? To evaluate the performance of the proposed deep
learning-based methods, in this thesis we will compare them with existing
non-learning-based approaches for event camera pose estimation and re-
localization. This involve conducting experiments on benchmark datasets
and measuring relevant performance metrics, such as accuracy, robust-
ness, and computational efficiency. Additionally, in this thesis we will an-
alyze the strengths and weaknesses of the proposed methods in various
scenarios, such as different lighting conditions, motion speeds, and envi-
ronmental complexities.
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1.2 Contribution and thesis outline
The thesis makes several contributions to the field of event camera pose
estimation using deep learning techniques. These contributions can be
summarized as follows:

• The thesis provides a comprehensive overview of the background
information and related works, establishing a solid foundation and
contextual understanding of event camera pose estimation.

• The thesis explores and develops specialized deep learning approaches
tailored for event camera pose estimation. These techniques lever-
age the power of deep learning to accurately estimate the camera’s
pose using event data.

• The thesis introduces methods to map event data to image-like data,
facilitating the application of dedicated deep learning approaches.
This mapping process allows for effective utilization of event infor-
mation in the camera pose estimation task.

• The thesis proposes a novel approach that directly applies deep learn-
ing techniques to raw event data, treating it as a point cloud instead
of converting it into images. This approach leverages the complete in-
formation captured by the event camera and enables an end-to-end
learning process.

• The proposed methods and techniques in the thesis aim to achieve
highly accurate camera pose estimation results. By effectively lever-
aging the unique characteristics of event data and employing advanced
deep learning models, the thesis contributes to improving the preci-
sion of camera pose estimation in event-based vision systems.

The remainder of the manuscript is structured into the following five
chapters;

• Chapter 2 offers a comprehensive overview of the background and
the related works to the topic. It sets the foundation for the subse-
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quent chapters by providing a contextual understanding of the sub-
ject matter.

• In Chapter 3, we outline our contributions to event camera pose esti-
mation by leveraging deep learning techniques. Our proposed meth-
ods involve mapping event data to image-like data and employing
specialized deep learning approaches to accurately estimate the cam-
era’s pose. In this chapter, we introduce four model architectures
for event-based pose estimation. The first model combines a CNN
for feature extraction, an LSTM for capturing spatial dependencies,
and a dense fully connected layer for 6-DoF pose estimation. Pre-
trained weights enhance CNN efficiency in extracting features from
event-based images. The second model uses two CNNs with bilin-
ear pooling for improved performance. Our third model includes im-
proved bilinear pooling with matrix function normalization, enabling
computations across the entire matrix. Lastly, the fourth model em-
ploys a self-attention mechanism with a Transformer encoder, creat-
ing a context-aware representation for event patches, incorporating
information from both the corresponding event and others in the se-
quence.
We conducted multiple experiments using diverse evaluation pro-
tocols, and the results exhibit great promise compared to state-of-
the-art methods. This highlights the superiority of our proposed ap-
proaches.

• Chapter 4 focuses on our novel approach of utilizing deep learning
techniques directly on raw event data, treating it as a point cloud,
rather than converting the events into images. Our objective is to
enable an end-to-end learning process that harnesses the complete
information captured by the event camera, ultimately achieving accu-
rate camera pose estimation. We conducted a series of experiments
using various evaluation protocols, and the results are promising,
pointing towards the extensive potential of our approach.
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• Chapter 5 this chapter serves as the conclusion of the thesis, sum-

marizing the research’s key points and reflecting on its implications
for the field.

Publications
1. PointNet For Real Time Pose Estimation With Event Camera (In prepa-

ration)
2. Camera Pose Estimation Using Spiking Neural Networks (In prepa-

ration)
3. 6-DOF Pose Estimation for Event Cameras using a Transformer-based

Approach Dicta 2023
4. Tabia, A.; Bonardi, F. and Bouchafa, S. Improved Bilinear Pooling For

Real Time Pose Event Camera Relocalisation.ICIAP 2023
5. Tabia, A.; Bonardi, F. and Bouchafa, S. Fully Convolutional Neural Net-

work for Event Camera Pose Estimation. VISIGRAPP 2023
6. A. Tabia, F. Bonardi and S. Bouchafa, Deep Learning For Pose Esti-

mation From Event Camera, 2022 International Conference on Digi-
tal Image Computing: Techniques and Applications (DICTA), Sydney,
Australia, 2022

7. Tabia, A.; Bonardi, F. and Bouchafa, S. Bilinear Pooling For Event Cam-
era Pose Estimation. ORASIS 2023



Chapter 2
Background and Related Works
Camera pose estimation is a fundamental task in computer vision, with
applications spanning augmented reality, robotics, and autonomous sys-
tems. The accurate determination of a camera’s position and orientation in
space is crucial for tasks such as object localization, scene reconstruction,
and navigation. Traditional camera pose estimation methods, designed for
standard frame-based cameras, have seen significant advancements, yet
they face challenges in scenarios with poor lighting, fast motion, or low-
textured environments.

In recent years, the emergence of event-based cameras has sparked
new avenues for camera pose estimation. Event cameras, inspired by the
human retina, operate on a principle of capturing pixel-level intensity changes
asynchronously, offering distinct advantages over traditional cameras, such
as high temporal resolution, low latency, and wide dynamic range. These
unique characteristics make event cameras particularly well-suited for ap-
plications where traditional cameras struggle, such as in high-speed mo-
tion tracking, low-light conditions, and dynamic environments.

In this chapter, we provide a comprehensive overview of the background
and related works to the topic of camera pose estimation, focusing specif-
ically on event camera pose estimation. We begin by discussing the di-
verse application domains where camera pose estimation plays a pivotal
role, including augmented reality, robotic navigation, and autonomous ve-

15
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hicles. Next, we delve into the representation of camera pose and evalu-
ation metrics commonly used to assess the accuracy of pose estimation
algorithms. Traditional methods for standard camera pose estimation are
then examined, covering geometric methods, feature-based approaches,
and template-based techniques. Geometric methods rely on geometric
constraints and correspondences between 2D-3D points, while feature-
based methods use distinctive image features for pose estimation. Template-
based methods match predefined templates to input images to estimate
pose. Additionally, we discuss learning-based methods, which leverage
machine learning algorithms to learn the mapping from image features
to camera poses.

However, the limitations of traditional methods in handling challenging
scenarios motivate the exploration of event camera pose estimation. To-
ward event camera pose estimation, we highlight the advantages of event
cameras in addressing issues like fast motion, low-textured scenes, and dy-
namic lighting conditions. Despite the potential benefits, the field of event
camera pose estimation is relatively nascent, with few methods focusing
on this specific camera type. This chapter sets the stage for our research by
outlining the motivations for using event cameras and the sparse existing
literature on event camera analysis using deep learning-based methods.

2.1 Application domains of camera pose estima-
tion

Camera pose estimation with 6 degrees of freedom (6DoF) has a wide range
of application domains across various industries and fields. Here are some
prominent areas where 6DoF camera pose estimation is utilized:

• Augmented Reality (AR) and Virtual Reality (VR):(see Figure2.1e ) In AR
and VR applications, accurate camera pose estimation is crucial for
seamlessly integrating virtual objects or information into the real-
world environment Munoz-Montoya et al. (2018). This enables im-
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mersive experiences where virtual elements appear to interact real-
istically with the physical world.

• Robotics and Automation: Camera pose estimation is essential for
robot navigation, manipulation, and interaction with the environment.
(see Figure2.1b) Robots can use the estimated camera pose to under-
stand their own position and orientation relative to objects and ob-
stacles, enabling tasks such as pick-and-place operations, assembly,
and autonomous exploration Yousif et al. (2015).

• Autonomous Vehicles: Camera pose estimation plays a significant
role in the navigation and perception systems of autonomous vehi-
cles. (see Figure2.1c) It helps vehicles understand their position on
the road, detect lane markings, recognize traffic signs, and identify
other vehicles and pedestrians Scaramuzza and Fraundorfer (2011).

• Industrial Inspection and Quality Control: Camera pose estimation is
used in industrial settings for tasks such as inspecting products on
an assembly line, verifying correct assembly, detecting defects, and
ensuring quality control Zhang et al. (2014).

• Aerial and Satellite Imaging: In aerial and satellite imaging applica-
tions, accurate camera pose estimation is important for creating pre-
cise maps, performing remote sensing, and monitoring changes in
landscapes and urban areas over time Singh et al. (2015).

• Medical Imaging: Camera pose estimation can be used in medical
imaging for procedures such as image-guided surgery and diagnostic
imaging. It helps align preoperative images with the patient’s actual
anatomy during surgery Azizian et al. (2014).

• Cultural Heritage Preservation: Camera pose estimation is employed
in digitization efforts for preserving cultural heritage sites, artifacts,
and artworks in 3D models. It allows accurate capturing of object
geometry and texture Di Angelo et al. (2022).
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• Architectural and Civil Engineering: In architectural and civil engineer-

ing projects, camera pose estimation aids in creating accurate 3D
models of buildings, structures, and construction sites. It can assist
in design, planning, and monitoring progress Whelan et al. (2016).

• Geographic Information Systems (GIS): Camera pose estimation con-
tributes to GIS applications by enabling the creation of accurate geo-
referenced maps, 3D models of landscapes, and environmental mon-
itoring Milosavljević et al. (2010).

• Entertainment and Gaming: Camera pose estimation is used in inter-
active entertainment and gaming applications, where it helps track
user movements and gestures for controlling characters or objects
within virtual environments Mehta et al. (2017).

• Surveillance and Security: (see Figure2.1a In surveillance systems, cam-
era pose estimation assists in tracking and analyzing the movement
of people and objects within monitored areas, enhancing security
and situational awareness Patel et al. (2022).

• Human-Computer Interaction: Camera pose estimation is employed
in human-computer interaction scenarios, such as gesture recogni-
tion and hand tracking, allowing users to interact with computers and
devices using natural movements Chen et al. (2020).

These application domains illustrate the broad and versatile impact of 6DoF
camera pose estimation across different industries, enabling a wide range
of advanced technologies and solutions.

2.2 Pose representation and evaluation metrics
In our exploration of comprehending camera pose, our initial emphasis is
placed on delineating the problem domain that involves the components
of images, cameras, the representation of pose, and the metrics adopted
for assessment. With a given image designated as IC and emanating from
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(a) Drones, or general UAVs-BasedObject Tracking and 3D Pose Estima-tion for Smart Surveillance Systems,Zhang et al. (2019)

(b) Boston Dynamics Expands RobotSpot
https://bostondynamics.com/

(c) An autonomous lawn mower de-veloped by Bosch
https://bosch.com/

(d) An autonomous car developed byWaymo
https://waymo.com/

(e) An Augmented Reality display de-veloped by Microsoft
https://microsoft.com/

(f) A Virtual Reality display developedby Oculus
https://oculus.com/

Figure 2.1: Motivation: Examples of commonly found practical applicationsinvolving camera pose relocalisation.

https://bostondynamics.com/
https://bosch.com/
https://waymo.com/
https://microsoft.com/
https://oculus.com/
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a camera designated as C , a sequence of methodologies is enacted upon
this image to derive the 6 degrees of freedom (6DoF) coordinates. These
coordinates assume the role of a comprehensive depiction, encapsulating
both the spatial placement and orientation of the image within the three-
dimensional space.

Directing our focus toward the task of visual localization, we delve into
the pursuit of determining the pose within a familiar context. This en-
deavor involves a process wherein a query object image is juxtaposed with
a model trained on a dataset containing diverse object images. The result
of this comparative analysis culminates in the successful inference of the
desired pose.

2.2.1 Camera pose
Camera pose refers to defining both the position and orientation of a cam-
era within a world coordinate system, accounting for six degrees of free-
dom (6DoF), and is represented using various methods, such as a transfor-
mation matrix. These 6DoF are divided into two main groups: translations,
encompassing linear, horizontal, and vertical movements, and rotations,
which include pitch, yaw, and roll known also as Euler angles. Moreover,
camera pose estimation extends to determining the positions of objects
within a given scene or scenario as viewed by the camera. In this thesis,
we only focus on estimation of the position and the orientation of the cam-
era within the world coordinate system.

In the context of traditional cameras, the inputs to the system originate
from camera images, encompassing possibilities like RGB and/or depth im-
ages. These images could be singular or in sequences, stemming from sta-
tionary or moving cameras. The ultimate outcome sought from the system
is the determination of the camera’s 6DoF pose. Alongside this, there could
exist intermediary stage outputs.
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2.2.2 Pose representation
Camera pose estimation refers to predicting both the position and orienta-
tion of a camera within a world coordinate system, considering six degrees
of freedom (6DoF). The camera pose, p, could be represented under var-
ious forms. One typical representation is using a transformation matrix
that combines translations and rotations. The 6DoF can be divided into
two main groups:

1. Translations (tx, ty, tz): These parameters represent the linear move-
ments of the camera in the horizontal (x), vertical (y), and depth (z)
directions, respectively.

2. Rotations (θx, θy, θz): These parameters correspond to the rotations
of the camera around its axes, including pitch (θx), yaw (θy), and roll
(θz).

The camera pose matrix, p, can be defined as follows:

p =

[
R t

0 1

]
(2.1)

Where:
• R is a 3x3 rotation matrix representing the rotation of the camera.
• t is a 3x1 translation vector containing the camera’s position in the

world coordinate system.
• 0 is a 1x3 zero vector.
• The bottom row is fixed as [0, 0, 0, 1] to maintain homogeneity.
The rotation matrixR can be constructed from the individual pitch, yaw,

and roll angles as follows:
R = Rz(θz) ·Ry(θy) ·Rx(θx) (2.2)
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Where:

Rx(θx) =

1 0 0

0 cos(θx) − sin(θx)

0 sin(θx) cos(θx)



Ry(θy) =

 cos(θy) 0 sin(θy)

0 1 0

− sin(θy) 0 cos(θy)



Rz(θz) =

cos(θz) − sin(θz) 0

sin(θz) cos(θz) 0

0 0 1



The translation vector t represents the camera’s position relative to the
world origin:

t =

txty
tz

 (2.3)

Note that this is not the only representation used for expressing changes
in position and orientation, encompassing translation and rotation. Con-
cerning orientation, three distinct forms are commonly employed for this
purpose: a 3 × 3 rotation matrix R (as described above), a quaternion
comprising four components, and Euler angles (yaw, pitch, roll) given by
(θx, θy, θz). These formats can be interchangeably converted to depict the
same rotation.

Formally, given Euler angles: (θx, θy, θz), we can compute the quater-
nion in two steps:
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1. Calculate the half angles:

cx = cos

(
θx
2

)
cy = cos

(
θy
2

)
cz = cos

(
θz
2

)
sx = sin

(
θx
2

)
sy = sin

(
θy
2

)
sz = sin

(
θz
2

)

(2.4)

2. Calculate the quaternion components:
W = cx · cy · cz + sx · sy · sz
P = sx · cy · cz − cx · sy · sz
Q = cx · sy · cz + sx · cy · sz
R = cx · cy · sz − sx · sy · cz

(2.5)

After calculating these values, we get the quaternion q = [W,P,Q,R]

representing the orientation in quaternion form.
Typically, the representation of position and orientation is realized sep-

arately. In this thesis, the focus is solely on estimating the position (tx, ty, tz)
and the orientation represented as (θx, θy, θz) or (q = [W,P,Q,R] ) of the
camera within the world coordinate system. We denote the ground truth
camera pose vector by p and the estimated pose vector p̂. p̂ are constructed
by combining the elements of translation and rotation.

This estimation is crucial for various applications, such as augmented
reality, robotic navigation, and scene reconstruction, where knowing the
precise camera pose enables accurate localization of objects within the
scene.
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2.2.3 Evaluation metrics
The assessment strategies for localization tasks undergo adaptation based
on the specific metrics under consideration and the particular methods
employed for localization. In the context of evaluating the efficacy of cam-
era pose estimation methods, a critical step involves juxtaposing the com-
puted pose derived from the estimation technique against the authentic
ground truth pose. This comparative analysis serves as a gauge for deter-
mining the proximity of the estimated outcome to the actual ground truth.

In datasets where ground truth poses are readily available, the preci-
sion of a given method’s poses is evaluated by quantifying the disparity
between the estimated and actual ground truth poses. Within the realm of
direct localization methodologies, two primary error metrics hold promi-
nence: the absolute pose error (APE) and the relative pose error (RPE).

APE serves as a particularly fitting measure for assessing the perfor-
mance of visual Simultaneous Localization and Mapping (SLAM) systems.
It provides an effective means of gauging how accurately the estimated
poses align with the true ground truth poses.

In contrast, RPE finds its utility in evaluating the drift experienced by a
visual odometry system. This metric is well-suited for quantifying drift over
specific time intervals, such as drift per second. It offers valuable insights
into the cumulative deviations that may occur over continuous motion se-
quences.

Absolute pose error (APE) becomes particularly relevant when the al-
gorithm’s input consists of a single image. APE is quantified through the
amalgamation of two distinct components: absolute position error and ori-
entation error.

For the determination of position error, the metric involves computing
the Euclidean distance, measured in meters, between the estimated posi-
tion (represented as X̂ and the actual ground truth position (denoted as
X). This measurement effectively captures the spatial disparity between
the estimated and true positions.
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APE =
√

(x̂est − xgt)2 + (ŷest − ygt)2 + (ẑest − zgt)2 + θerror. (2.6)
Where: (x̂est, ŷest, ẑest) are the estimated position coordinates. (xgt, ygt, zgt)
are the ground truth position coordinates. θerror is the orientation error,
usually represented in terms of an angular difference (e.g., quaternion or
Euler angles).

In essence, APE encapsulates both the position and orientation discrep-
ancies, thereby furnishing a comprehensive evaluation of the accuracy in
estimating the pose from a single image.

Relative Pose Error (RPE) is particularly relevant when the algorithm
is provided with image pairs in the form of a time-series derived from se-
quential images. Much like Absolute Pose Error, RPE is evaluated through
the amalgamation of relative position error and orientation error.

For the assessment of relative position error, the metric involves calcu-
lating the speed of Euclidean distance shift, measured in meters per sec-
ond (m/s), between the estimated relative position (denoted as x̂rel) and
the actual ground truth relative position (xrel). This measurement effec-
tively captures the rate of change in the relative position.

Simultaneously, orientation error is quantified by determining the min-
imum angle deviation rate in degrees per second (degree/s) between the
estimated relative quaternion (q̂rel) and the ground truth relative orienta-
tion (qrel). This assessment employs the quaternion representation to en-
capsulate the angular discrepancy in orientation.

Fixed Thresholds Error is an alternative metric utilized for assessing
the performance of indirect camera pose methods. This metric quanti-
fies the proportion of images that fall within predefined error thresholds
concerning both position and orientation. In essence, it measures the per-
centage of images that achieve accurate registration based on specific lo-
calization criteria.

For instance, this metric may evaluate the localization performance by
considering the proportion of images whose estimated poses are within a
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certain distance threshold (X meters) and angular threshold (Y degrees) of
their respective ground truth poses. It provides a clear and practical evalu-
ation of the algorithm’s effectiveness in achieving accurate pose estimation
within predefined tolerance levels.

Median and Average Error
To rigorously evaluate the performance of pose estimation algorithms,

the provided code outlines a comprehensive criterion. The assessment
focuses on two key metrics: position error and orientation error protocols
that reported in Nguyen et al. (2019) and used in PoseNet Kendall et al.
(2015) and Bayesian PoseNet Kendall and Cipolla (2016).

• Position Error: The spatial accuracy of the estimated pose is gauged
by comparing the predicted 3D position to the true position. Math-
ematically, if Ppred = [xpred, ypred, zpred] is the predicted position and
Ptrue = [xtrue, ytrue, ztrue] is the true position, the position error, Eposition,
is computed using the Euclidean distance formula:

Eposition =
√
(xpred − xtrue)2 + (ypred − ytrue)2 + (zpred − ztrue)2 (2.7)

• Orientation Error: The orientation, represented by quaternions, sheds
light on the rotational accuracy. Before any computation, the quater-
nions are normalized to ensure they correspond to valid rotations. If
qpred and qtrue are the predicted and true normalized quaternions, re-
spectively, the dot product of these two quaternions gives a measure
of their alignment. The orientation error, θ, in degrees, is derived
from:

d = |qpred · qtrue| (2.8)
θ = 2× arccos(d)× 180

π

Here, θ provides a measure of the angular difference between the
predicted and true orientations.

• Median Position Error = median(Eposition1
, Eposition2

, . . . , Epositionn
)
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• Median Orientation Error = median(θ1, θ2, . . . , θn)
• Average Position Error = 1

n

∑n
i=1Epositioni

• Average Orientation Error = 1
n

∑n
i=1 θi

Where:
• Epositioni

is the position error for the i-th sample.
• θi is the orientation error for the i-th sample.
• n is the total number of samples.
As quantitative evaluation, we choose to calculate the median and aver-

age error of the predicted pose in position and orientation. The Euclidean
distance is used to compare the predicted position to the groundtruth, and
the anticipated orientation is normalized to unit length before being com-
pared to the groundtruth. For location and orientation, the median and
average error are recorded in m and deg(°), respectively.

2.3 Traditional camera pose estimation
2.3.1 Geometric Methods
In the realm of computer vision, geometric methods stand out as a piv-
otal set of techniques grounded in mathematical and geometric principles,
tasked with deducing an object’s pose its spatial positioning and orienta-
tion within a three-dimensional space. Esteemed for their theoretical in-
tegrity and direct interpretability, these methods address several core is-
sues, among which the Perspective-n-Point (PnP) Fischler and Bolles (1981)
challenge is prominent, a problem extensively explored by Fischler and
Bolles in their seminal 1981 work.

The essence of the PnP problem lies in determining a camera’s pose
with the knowledge of n three-dimensional points in the world and their
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corresponding two-dimensional projections on the camera’s imaging sen-
sor. Here, the term n signifies the quantity of point correspondences bridg-
ing the three-dimensional reality and the two-dimensional image plane Fig-
ure 2.3. In essence, if the positions of specific points in a three-dimensional
space are known and their appearances on a two-dimensional image are
identifiable, solving the PnP problem entails pinpointing the camera’s pre-
cise location in three-dimensional space to capture the points in the ob-
served manner on the image plane.

Among the spectrum of solutions to this quandary, the Random Sam-
ple Consensus (RANSAC) method proposed by Fischler and Bolles emerges
as notably distinguished. RANSAC, an iterative approach, serves to esti-
mate the parameters of a mathematical model from a dataset potentially
laden with outliers. This process involves the repetitive selection of a ran-
dom data subset, model fitting to this subset, and subsequent exclusion
of ill-fitting data points. Consequently, the method yields a model that
accurately represents the majority of the data, unaffected by the pres-
ence of outliers. Geometric methodologies, especially those tackling the
PnP problem, are celebrated for their established mathematical proper-
ties and comprehensive understanding. Nonetheless, they often demand
meticulous calibration and exhibit sensitivity to data noise and outliers,
underscoring the necessity for robust techniques like RANSAC. Further-
more, these approaches typically assume a rigid transformation between
the three-dimensional points and their two-dimensional image projections,
an assumption that may not universally hold in practical scenarios. While
traditional methods may falter in complex environments such as dynamic
scenes or those featuring non-rigid deformations emerging strategies, no-
tably deep learning, have demonstrated significant promise in overcoming
these challenges.

To illuminate the mathematical underpinnings of the PnP dilemma, con-
sider the following formulation: Given a set of n corresponding points,
where Pi represents a point in three-dimensional space and pi its projec-
tion on the two-dimensional image, the objective is to ascertain the rota-
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Figure 2.2: 6D pose estimation using Perspective-n-Point. The network out-puts nine keypoints in the image space Byambaa et al. (2022).
tion R and translation t that minimize the re-projection error:

min
R,t

n∑
i=1

∥pi − proj(RPi + t)∥2 (2.9)

Here, proj denotes the projection operation from three dimensions to two,
typically encompassing intrinsic camera parameters. This optimization chal-
lenge seeks to identify the pose (rotation and translation) that optimally
aligns the three-dimensional points with their two-dimensional projections
across the image plane, thereby resolving the PnP conundrum.

2.3.2 Feature-based Methods
Feature-based methods are an important category of techniques in the
computer vision domain, widely used for pose estimation tasks. The cen-
tral idea behind these methods is to detect distinctive features or keypoints
in an image, describe these features using robust descriptors, and then
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use the matching features across different images to infer the pose Lowe
(2004).

One of the most popular feature descriptors is the Scale-Invariant Fea-
ture Transform (SIFT), introduced by Lowe in 2004. The SIFT algorithm
can be summarized in four main steps: scale-space peak selection, key-
point localization, orientation assignment, and keypoint descriptor. Math-
ematically figure 2.3, the scale-space peak selection is performed using the
difference-of-Gaussians function that identifies potential interest points
that are invariant to scale and orientation:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2.10)
where L(x, y, σ) is the scale-space function, and D(x, y, σ) represents the
difference-of-Gaussians. This step is followed by keypoint localization, where
keypoints are refined to achieve higher accuracy. The orientation assign-
ment ensures that each keypoint has a consistent orientation based on
local image properties, enhancing invariance to image rotation.

The final step involves creating a keypoint descriptor from the local
image gradient directions, ensuring robustness to affine distortion and
changes in illumination.

Another widely used descriptor is Speeded Up Robust Features (SURF),
which provides a faster alternative to SIFT. SURF utilizes integral images
for efficient image convolutions and employs a blob detector based on the
Hessian matrix for interest point detection:

H(x, y, σ) =

[
Lxx(x, y, σ) Lxy(x, y, σ)

Lxy(x, y, σ) Lyy(x, y, σ)

]
(2.11)

whereLxx(x, y, σ),Lxy(x, y, σ), andLyy(x, y, σ) are the second-order deriva-
tives of the Gaussian-blurred image, which constitute the Hessian matrix
H(x, y, σ) at scale σ.

The Oriented FAST and Rotated BRIEF (ORB) algorithm offers a robust,
binary descriptor that is both faster and less memory-intensive than SIFT
and SURF. ORB combines the FAST keypoint detector and the BRIEF de-
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Figure 2.3: Keypoint matchingGiven a pair of partially covisible images, the goal of keypoint matching isto find a set of 2D-to-2D matches across both images. The accuracy ofsuch correspondences is critical for downstream computer vision taskslike visual localization. Here showen a few putative correspondencesusing SIFT ( Lowe (2004). SIFT detections are matched using a mutualnearest-neighbour algorithm on their respective SIFT descriptors andfiltered using a ratio test

scriptor with modifications for orientation invariance and noise resistance.
After feature extraction and description, the subsequent stage involves

establishing correspondences between features in different images by match-
ing descriptors based on their Euclidean distance in the descriptor space.
This process can utilize various strategies, including brute-force matching
or FLANN-based matching for efficiency.

With established feature correspondences, these can be utilized to es-
timate the relative pose between images, applying techniques like the PnP
problem, Essential Matrix, or Homography, depending on the specific re-
quirements of the scene.

In summary, feature-based methods offer a robust framework for pose
estimation in environments rich in distinctive features. However, challenges
arise in situations with repetitive patterns, textureless surfaces, or severe
occlusions. Moreover, traditional descriptors such as SIFT, SURF, and ORB
may struggle with significant lighting condition variations. Recent develop-
ments in learning-based approaches, particularly deep learning, are mak-
ing strides towards overcoming these limitations by directly learning more
invariant and discriminative features from data.
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2.3.3 Template-based Methods
Template-based methods for pose estimation fundamentally rely on pre-
defined templates of the subject or scene whose pose needs to be de-
duced. These templates can be either 2D or 3D, representing a standard
or known perspective of the subject Hinterstoisser et al. (2013). The pri-
mary idea behind these techniques is to establish a correlation between
the observed subject or scene and the predefined template, generating an
estimate of the subject’s pose. The estimation’s quality heavily depends on
the precision and representativeness of the templates. There are several
ways to match the observed object to the template:
Edge Matching
This technique involves aligning the edges in the observed subject’s image
with the template’s edges. Edge detection algorithms such as Sobel, Canny,
or Laplacian are typically employed to detect an object’s edges in an image.
Once the edges are identified, a similarity measure, usually through a dis-
tance function, is calculated between the detected edges and those in the
template Canny (1986).
Sobel Operator
The Sobel operator is used for edge detection by computing the gradient
magnitude of an image. It applies two 3x3 kernels, one estimating the gra-
dient in the x-direction (Gx) and the other in the y-direction (Gy). The gra-
dient magnitude (G) at each pixel is calculated as:

G =
√

G2
x +G2

y (2.12)
Canny Edge Detector
The Canny edge detector 2.4, introduced by John Canny in 1986, is a multi-
stage algorithm designed to detect a wide range of edges in images. It
includes the following steps:
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1. Noise Reduction: A Gaussian filter is applied to smooth the image

and reduce noise.
2. Gradient Calculation: The gradient magnitude and direction are cal-

culated to identify the edge strength and orientation.
3. Non-maximum Suppression: Thins edges to 1-pixel lines by suppress-

ing all except the maximum gradient magnitudes along the edge di-
rection.

4. Double Thresholding: Determines potential edges by applying two
thresholds, a low and a high one.

5. Edge Tracking by Hysteresis: Finalizes the detection of edges by sup-
pressing weak edges not connected to strong edges.

The gradient magnitude (G) and direction (θ) are given by:
G =

√
G2

x +G2
y (2.13)

θ = arctan

(
Gy

Gx

)
(2.14)

where Gx and Gy are the gradients in the x and y directions, respec-
tively.

Similarity Measure
After edge detection, the next step is to calculate a similarity measure be-
tween the detected edges in the observed image and those in the tem-
plate. This often involves a distance function, such as the Euclidean dis-
tance for simplicity, or more complex measures that can account for geo-
metric transformations. The similarity measure enables the alignment of
the observed image’s edges with the template, facilitating accurate pose
estimation.



34 CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.4: Edge or contour detectionis a basic computer vision problem. The Canny edge detector is a popularalgorithm for detecting edges in an image which uses hystersisthresholding.

Distance Function

The distance between two sets of edges, A from the observed image and
B from the template, can be quantified as:

D(A,B) =
∑
a∈A

min
b∈B

∥a− b∥ (2.15)

This function calculates the minimum distance from each edge point in
setA to the closest edge point in setB, summing these minimum distances
to give a measure of how well the edges from the observed image align
with those of the template.

Edge Matching is a foundational technique in computer vision for pose
estimation, leveraging the precision of edge detection algorithms like the
Canny edge detector and employing similarity measures to align detected
edges with template edges. This method’s effectiveness hinges on the ro-
bust detection of edges and the accurate calculation of similarities, en-
abling precise estimation of the pose of objects within images.
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Gradient Matching
In gradient matching, the gradients – defined as the rates of intensity changes
in pixel values – of the observed image and the template are compared.
This method is predicated on the principle that object surfaces sharing the
same orientation ought to exhibit similar gradients. Formally, if Io(x, y)
and It(x, y) represent the intensity values of the observed image and the
template at coordinates (x, y), respectively, and ∇Io(x, y) and ∇It(x, y) de-
note their gradients, then the similarity measure S between the two can
be defined as:

S =
∑
x,y

cos(θo(x, y)− θt(x, y)) (2.16)

where θo(x, y) = arctan
(

∂Io/∂y
∂Io/∂x

) and θt(x, y) = arctan
(

∂It/∂y
∂It/∂x

) are the
orientations of the gradients at (x, y) in the observed image and the tem-
plate, respectively. The gradients, ∇Io(x, y) and ∇It(x, y), are computed
using operators such as Sobel or Prewitt.

This approach is notably robust to changes in illumination, as it focuses
on the relative changes in pixel intensities rather than their absolute val-
ues Hinterstoisser et al. (2011) 2.5. The effectiveness of gradient matching
is thus significantly enhanced in scenarios where illumination conditions
are variable or difficult to control.

Feature Matching
This technique involves the identification and matching of local features,
such as corners, blobs, and ridges, detected in the observed image with
those present in the template. The process leverages commonly used fea-
ture detectors including Scale-Invariant Feature Transform (SIFT), Speeded
Up Robust Features (SURF), and Oriented FAST and Rotated BRIEF (ORB),
among others. The mathematical foundation of feature matching can be
exemplified by the descriptor matching process used in SIFT, which is de-
fined as follows:
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Figure 2.5: A method can detect texture-less 3D objects in real-timeunder different poses over heavily cluttered background using gradientorientation.Hinterstoisser et al. (2011)

Given a set of keypoints and their descriptors in both the observed im-
age Io and the template It, the goal is to find pairs of keypoints (ko, kt) such
that their descriptors D(ko) and D(kt) minimize the Euclidean distance be-
tween them, under certain threshold to ensure robustness against noise
and minor variations:

min
ko,kt

||D(ko)−D(kt)||2, subject to ||D(ko)−D(kt)||2 < T (2.17)
where T is a predefined threshold value.
Feature matching offers significant robustness against variations in scale,

rotation, and affine transformations, making it highly effective for pose es-
timation tasks Lowe (2004) figure 2.6.



2.3. TRADITIONAL CAMERA POSE ESTIMATION 37

Figure 2.6: The stages of keypoint selection.(a) The 233x189 pixel original image. (b) The initial 832 keypoints locationsat maxima and minima of the difference-of-Gaussian function. Keypointsare displayed as vectors indicating scale, orientation, and location. (c)After applying a threshold on minimum contrast, 729 keypoints remain.(d) The final 536 keypoints that remain following an additional thresholdon ratio of principal curvatures..Lowe (2004)

Advantages and Limitations: A primary advantage of template-based
methods, including feature matching, is their relative simplicity in imple-
mentation and conceptual understanding. Moreover, when the templates
are accurately designed and closely match the object of interest, these
methods can achieve high levels of accuracy. However, challenges arise
in scenarios involving substantial variations in view, scale, or illumination,
as well as in the presence of occlusion or changes in the object’s shape
or appearance. These factors can significantly impact the effectiveness of
template-based pose estimation methods.

In recent years, some advancements have been made to improve the
robustness and flexibility of template-based methods. For instance, learning-
based methods have been proposed to learn a more flexible template rep-
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resentation. Such methods can handle more variations in appearance and
pose than traditional template-based methods.

2.3.4 Learning-based Methods
Learning-based methods for pose estimation, especially those employing
machine learning techniques, have significantly evolved over the last decade.
While traditional algorithms like Support Vector Machines (SVM) and Ran-
dom Forests have been utilized in this domain, the advent of deep learning
has brought about a substantial transformation.

Support Vector Machines (SVMs)
Support Vector Machines (SVMs) represent a class of supervised learn-
ing models used for classification and regression tasks Cortes and Vapnik
(1995). In the context of pose estimation, SVMs are utilized to differenti-
ate between various poses by training on labeled data. The core princi-
ple behind SVMs is to transform the input data into a higher-dimensional
feature space and then identify an optimal hyperplane that separates the
data points into different classes, corresponding to different poses in this
scenario. The mathematical formulation of an SVM that aims to find this
hyperplane can be described as follows:

Given a training dataset of instance-label pairs (xi, yi), where xi ∈ Rn

and yi ∈ {−1, 1}, the SVM solves the following optimization problem:

min
w,b,ξ

1

2
wTw + C

m∑
i=1

ξi (2.18)
subject to

yi(w
Tϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,m, (2.19)

where w is the normal vector to the hyperplane, b is the bias term, ϕ(xi)

maps xi into a higher-dimensional space, C is the penalty parameter, and
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ξi are slack variables allowing for misclassification of difficult or noisy ex-
amples.

SVMs have been effectively applied in numerous pose estimation tasks,
demonstrating their capability to handle complex classification problems
within this field Smola and Schölkopf (2004). One of the strengths of SVMs
is their ability to find a decision boundary that maximizes the margin be-
tween different classes in high-dimensional feature spaces. This is particu-
larly useful in pose estimation, where the pose classes may not be linearly
separable in the original feature space. The use of kernel functions in SVMs
allows for the mapping of input data to a higher-dimensional space where
a linear separator can be found, thereby improving classification perfor-
mance

Random Forests
Random Forests are an ensemble learning technique for classification, re-
gression, and other tasks, which operate by constructing a multitude of
decision trees at training time and outputting the class that is the mode of
the classes (or mean prediction of the trees in the case of regression) Cutler
et al. (2012). For pose estimation, random forests aggregate the decisions
of multiple decision trees trained on various subsets of the dataset to pre-
dict the pose class.

The general approach for using Random Forests in pose estimation in-
volves training multiple decision trees on randomly selected subsets of the
training data and features. The prediction of an unknown pose is made by
aggregating the predictions of all the trees. This method can be formalized
as follows.

Given a set of training data with features and pose labels, a random
forest builds N decision trees. Each tree Ti is trained on a random subset
of the data and features. For a new sample, each tree provides a pose es-
timate, and the final pose prediction is obtained by averaging (regression)
or majority voting (classification) across all trees.

Random Forests have shown promising results in pose estimation, ben-



40 CHAPTER 2. BACKGROUND AND RELATED WORKS
efiting from their ability to model complex decision boundaries and resist
overfitting by averaging multiple trees’ predictions Girshick et al. (2011).

In recent years, the shift towards deep learning-based methods LeCun
et al. (2015) has been evident, largely due to the superior performance of
these methods in many computer vision tasks, including pose estimation.
Deep learning methods like Convolutional Neural Networks (CNNs) and Re-
current Neural Networks (RNNs) have been extensively used for pose esti-
mation. These techniques leverage the power of large amounts of training
data and deep hierarchical feature learning to produce highly accurate and
robust pose estimates Litjens et al. (2017).

Deep Learning-based Methods
In recent years, the advent of deep learning technologies has revolution-
ized the approach to pose estimation. Among these, Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks (RNNs) stand out as
particularly effective for this task. These methods excel in learning com-
plex mappings directly from data, leading to state-of-the-art performance
across a wide range of pose estimation challenges. A notable implementa-
tion of deep learning in pose estimation is PoseNet, a method that employs
a CNN to directly regress the six degrees of freedom (6-DOF) pose from a
single RGB image Kendall et al. (2015).

The mathematical foundation of CNNs, which are pivotal in processing
spatial data, can be succinctly represented by the convolution operation
integral to their function:

F l
ij = σ

(∑
m

∑
n

W l
mn ·X l−1

(i+m)(j+n) +Bl

)
(2.20)

whereF l
ij denotes the feature map at layer l,W l

mn represents the weights
of the convolutional kernel, X l−1

(i+m)(j+n) is the input from the previous layer,
Bl is the bias, and σ is a non-linear activation function.

RNNs, on the other hand, are tailored for sequential data, making them
suitable for video-based pose estimation. Their defining characteristic is
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the feedback loops allowing information to persist, described by:

ht = σ(Wxhxt +Whhht−1 + bh) (2.21)
where ht is the hidden state at time t, xt is the input at time t, Wxh and

Whh are the weights, bh is the bias, and σ is the activation function.
While deep learning methods have demonstrated unparalleled accu-

racy in pose estimation, the choice between CNNs, RNNs, and hybrid mod-
els like PoseNet often depends on the specific application’s requirements,
including the nature of the input data (single images vs. image sequences)
and the desired precision and robustness of the pose estimation.

Each method presents its own set of advantages and limitations. For
instance, CNNs are highly effective for spatial analysis in static images,
whereas RNNs offer advantages in temporal sequence analysis, crucial for
understanding motion in video data. The integration of geometric consid-
erations in models like PoseNet exemplifies the ongoing evolution of deep
learning approaches, blending traditional computer vision techniques with
the latest in neural network architectures to push the boundaries of what
is achievable in pose estimation tasks.

2.4 Toward event camera pose estimation
Frame-based cameras have their limitations, many of which stem from
their inherent design principles. To start, these cameras operate on a fixed
dynamic range, typically around 60 dB for most consumer cameras. This
limited range can significantly impact the camera’s ability to capture de-
tailed images in scenes with stark contrast or varied lighting conditions, like
a shadowed area next to a brightly lit window Xiao et al. (2002). Moreover,
traditional frame-based cameras work at a predetermined frame rate. While
this is acceptable in most scenarios, it can be inefficient when dealing with
scenes where little changes over time, leading to unnecessary data and
power consumption. Additionally, quick, substantial changes that occur
between frames can be missed, hindering the capture of critical informa-
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tion. Fast-moving objects can create what is known as motion blur when
captured at low frame rates. This blurring effect can impair the perfor-
mance of visual recognition and tracking algorithms, which rely on sharp,
distinct images to function effectively. Figure 2.7 provides an example of
this limitation. In low-light conditions, conventional cameras often struggle
to capture clear images. Increasing the sensor’s sensitivity to address this
can unfortunately also increase the amount of noise in the image, thereby
decreasing the overall image quality. Energy efficiency is another challenge
for conventional cameras. While they are relatively low-power compared
to other sensors, they can still consume a significant amount of a robot’s
power resources, especially in applications where power efficiency is cru-
cial, like space probes or remote monitoring devices. Processing overhead
is another concern. Because they capture the entire scene at each frame,
frame-based cameras generate a large volume of data. This requires sig-
nificant computational resources for processing, and can be a challenge
for on-board robotic systems where computational power is typically lim-
ited.
Finally, conventional cameras are also subject to latency issues. There can
be a delay from the time a scene is captured to the time the processed
information is available, which can be problematic in applications that re-
quire real-time responses, such as autonomous vehicles or drones. Given
these limitations, it’s essential for researchers to carefully consider the
choice of vision sensors for each specific robotic application. These lim-
itations also serve as motivation for the continuous exploration and de-
velopment of alternative sensing technologies and processing techniques.

2.4.1 Motivation
The birthplace of event cameras lies within the realm of neuromorphic en-
gineering, a field whose ambitious goal is to understand brain function and
replicate it on a microchip Gallego et al. (2020). Drawing inspiration from
biological retinas, which have been refined through millions of years of
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Figure 2.7: Limitations of conventional frame-based cameras from Bardow(2019)
natural selection, event cameras aspire to capitalize on benefits such as
minimal power usage, efficient data transmission, and rapid motion de-
tection.

They represent a revolutionary departure from traditional frame-based
cameras, potentially addressing issues like inadequate temporal resolu-
tion, restricted dynamic range (over/underexposure), and motion blur fig-
ure 2.7. At the heart of these cameras is a "smart pixel" that springs into
action in response to changes in light intensity, while remaining dormant
otherwise. This is akin to the transient ganglion cells found in the retina
of a biological eye figure 2.8. Each pixel operates in an asynchronous and
independent manner, culminating in a camera that perceives changes in
the environment while remaining ’blind’ to static scenes. This, in essence,
is a dynamic vision sensor.

2.4.2 Event Cameras
Event cameras, inspired by biological vision, capture the dynamic visual
information of the world in a fundamentally different way compared to
traditional cameras figure 2.8. Instead of outputting a sequence of images
at fixed intervals, event cameras continuously record changes in the scene
with a high temporal resolution, resulting in an asynchronous stream of
events.

Each pixel in an event camera operates independently and only reacts
to changes in brightness, thus naturally suppressing redundant informa-
tion. The pixel stores a reference brightness level and continually com-
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Figure 2.8: Circuitry of an event camera pixel (top) is directly inspired bybiological retinas. Adapted from Posch et al. (2014)
pares it with the current level. If the difference exceeds a certain thresh-
old, an event is triggered. This event, encapsulating the x, y coordinates
of the pixel, the polarity (increase or decrease) of the brightness change,
and a precise timestamp, is immediately transmitted off-chip Lichtsteiner
et al. (2008). The data output by event cameras is fundamentally different
from traditional video. It is not a series of frames but a temporal stream
of asynchronous events, with each event encoding a brightness change at
a particular pixel. The data is sparse in space and time because events
are only triggered at the pixels where changes occur, and only when these
changes occur figure 2.9.

Figure 2.9: An event camera pixel
Event cameras offer several benefits over their traditional counterparts.
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They have a high dynamic range (up to 140 dB compared to 60 dB for con-
ventional cameras), which makes them effective in high-contrast environ-
ments. They also have a low latency (on the order of microseconds) and
low power consumption since only the changing pixels need to report their
data Gallego et al. (2020). These attributes make event cameras a promis-
ing technology for various applications, including high-speed robotics, au-
tonomous driving, and augmented/virtual reality. Event cameras primarily
capture dynamic elements within a scene, representing this information
via events that are plotted in a 3-dimensional space-time construct, as seen
in figure 2.10. A practical instance would be a rotating disc, which generates
a spiral sequence of events within this space-time framework. Additionally,
objects in motion incite events at their peripheries.

Figure 2.10: The simplified circuitry of a single DAVIS pixelas described by Brandli et al. Brandli et al. (2014), along with the processof ON/OFF event generation given a log intensity signal, is depicted. Thebottom illustration shows the DAVIS chip and a DAVIS USB camera. Onthe right, events are superimposed on an intensity image, with greenrepresenting ON events and red indicating OFF events. Additionally, a 3Devent point cloud is displayed. This visualization is sourced from Gallegoet al. Gallego et al. (2020).
One crucial aspect of event cameras is their inability to register station-

ary or unchanging parts of a scene. This characteristic partially motivates
the incorporation of a conventional APS camera into the DAVIS device to
supplement the event data. To be more precise, event cameras fail to de-
tect unchanging scenes, including moving objects that lack texture. How-
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ever, these cameras can record static scenes if triggered by certain stim-
uli, such as a strobe light. Event cameras exhibit several nonidealities and
characteristic noise, as characterized by Lichtsteiner et al. Lichtsteiner et al.
(2008), Brandli et al. Brandli et al. (2014), and Delbruck et al. Delbruck et al..
These include:

(i) Mismatch of contrast threshold between pixels: The effective con-
trast threshold has been found to fluctuate spatially across pixels and tem-
porally for a given pixel Lichtsteiner et al. (2008) Brandli et al. (2014). Conse-
quently, direct integration of the event signal is deemed inefficient without
noise suppression, necessitating online calibration to offset temporal vari-
ations in contrast threshold. A typical event camera has a minimum con-
trast threshold of approximately 11% change in log-intensity Brandli et al.
(2014). However, more sensitive cameras can achieve lower thresholds - as
low as 3.5% for ON events and 1% for OFF events Linares-Barranco et al.
(2019).

(ii) Bandwidth limitations: The bandwidth of event cameras increases
monotonically with light intensity, registering about 3 kHz in bright condi-
tions and 300 Hz at 1000x lower intensity Gallego et al. (2020). High band-
width sensors such as the Samsung DVS-Gen4 Son et al. and Prophesee
Gen 4 CD Finateu et al. (2020) have maximum bandwidths exceeding 1 bil-
lion events per second.

(iii) Hot pixels: These refer to pixels that emit many spurious events
in rapid succession, either continuously, randomly, or in overreaction to
changes in illumination, consuming significant bandwidth. A refractory pe-
riod following an event firing at each pixel can mitigate the effect of hot
pixels and alleviate bus congestion. However, this introduces tracking er-
rors for fast brightness changes by suppressing events that ’should’ have
fired.

(iv) Random background noise events: Event cameras, such as DAVIS
that share circuitry to generate image frames, can generate noise events
in approximately 0.25% of pixels under uniform, unchanging illumination
during every frame acquisition. This is attributable to unwanted parasitic
coupling between APS (frame) and DVS (event) pixel circuitry Brandli et al.
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(2014). Random background noise events, typically uncorrelated, result
from leakage in the reset transistor in DVS pixel circuitry and can be fil-
tered out by discarding spatio-temporally isolated events Delbruck et al..

However, these advantages also come with unique challenges. The
asynchronous, event-based data is not directly compatible with most exist-
ing computer vision algorithms, which are designed to work with frames.
Therefore, new algorithms and methods are needed to process and inter-
pret event camera data effectively.

2.5 Pose estimation using event cameras
The field of pose estimation using event cameras is rich, innovative, and
continues to evolve, bringing together facets of neuroscience, computer
vision, robotics, and machine learning. The bio-inspired nature of event
cameras presents both challenges and opportunities in developing effec-
tive algorithms for pose estimation.

2.5.1 Event-Based Visual Odometry (EVO)
EVO, proposed by Reinbacher et al. Munda et al. (2018), is a method for
estimating camera motion from event data. The approach operates on an
accumulated event image and employs an image alignment technique for
motion estimation. While the method showed promising results, it has dif-
ficulty with complex motions due to its reliance on an intensity-like image,
which may be affected by noise. EVO works by accumulating events over
a certain period of time to generate what is called an "event image." This
is similar to a standard intensity image but instead encodes changes in
brightness at each pixel location. These event images can then be aligned
using image alignment techniques to estimate the camera’s motion
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2.5.2 Probabilistic Event-based Motion Tracking
This method, proposed by Kim et al. Kim et al. (2008), employs a proba-
bilistic framework to estimate 6-DOF motion from event data. The work
demonstrated a fast and accurate motion estimation performance, which
is valuable in real-time applications such as robotics. This method builds
on the inherent qualities of event cameras their high temporal resolution
and ability to respond to changes in the scene to estimate motion. The
essence of the approach lies in modeling the motion estimation problem
as a Bayesian inference task. Given the data produced by the event cam-
era, this probabilistic method attempts to estimate the most likely motion
that would lead to the observed data. Specifically, Kim et al. introduced a
novel event likelihood function, which they use to formulate an optimiza-
tion problem. By solving this optimization problem, the method provides
an estimate of the camera’s motion. Notably, this approach considers the
uncertainty associated with the measurements, as characterized by the
probabilistic framework. This enables it to deliver robust performance,
even under noisy conditions

2.5.3 Event-based Pose Tracking using a DAVIS (Dynamic
and Active-pixel Vision Sensor)

In the work by Kueng et al. Kueng et al. (2016), the researchers used a
DAVIS sensor, which can output both events and standard frames, to per-
form pose tracking. Their method combined information from both the
events and frames to achieve accurate pose estimation. The DAVIS sen-
sor is unique in its capacity to output both event data and standard image
frames. The core idea of their method is to exploit the complementary
nature of these two types of data. Traditional frames offer holistic scene
information at fixed time intervals, while event data provides high tempo-
ral resolution updates on pixel-level brightness changes. By combining the
data from both streams, their method aims to overcome the limitations of
either type of data alone and achieve accurate pose estimation. Kueng
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et al. design a pipeline for this process, which includes event preprocess-
ing, feature extraction from both event data and frames, data fusion, and
finally pose estimation. The events and frames are combined in a proba-
bilistic filter, where the events are used for fast updates and the frames for
slower, but more globally accurate corrections.

2.5.4 Deep Learning-based Methods
Recently, Deep learning provides a way to learn complex mappings from
data, making it well-suited for processing the high-dimensional spatio-temporal
event data. One notable contribution in this space is by Nguyen et al. Nguyen
et al. (2017), who presented a real- time pose estimation method using
event cameras and deep learning LeCun et al. (2015). Their work harnesses
the power of LSTM networks to process event data and estimate 6-DOF
pose. The network takes the event data and learns to map it directly to
pose information, thus bypassing the need for hand-crafted features or
explicit event-to-image conversion. Their results demonstrated the effec-
tiveness of LSTM networks in this application and paved the way for further
research into deep learning-based event camera pose estimation. Each
of these methods brings unique approaches to handling the challenges
of event-based pose estimation, and they collectively push forward the
state-of- the-art in the field. Event-Based Visual Odometry (EVO), EVO em-
ploys image alignment techniques on an accumulated event image. How-
ever, it struggles with complex motions due to its reliance on intensity-like
images, which can be heavily influenced by noise. Its performance may
also degrade when the scene has rapid or drastic brightness changes that
can affect the quality of the generated event images. Probabilistic Event-
based Motion Tracking, While this method demonstrates a fast and accu-
rate motion estimation, the probabilistic nature of the model requires it to
deal with uncertainty in measurements. In noisy environments or during
rapid movements, the model’s performance could be adversely affected
due to the increased uncertainty in event data. Event-based Pose Track-
ing using a DAVIS: This method leverages the advantages of both event
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data and standard frames from a DAVIS sensor. However, the data fusion
step may be computationally expensive. Moreover, this method requires
a DAVIS sensor, which limits its applicability to other types of event cam-
eras that only output event data. Deep Learning-based Methods, While
Nguyen et al.’s work showed the potential of deep learning for pose esti-
mation with event cameras, it heavily relies on LSTM networks, which are
computationally intensive and may not be feasible for real-time applica-
tions.The method achieves promising results in camera pose estimation,
but requires an expensive training time due to the retraining of the full
network model with the LSTM layer. Considering these limitations, Chap-
ter 3 will introduce a new approach that specifically addresses some of
these issues. For instance, the data representation could be designed to
be robust to noise and rapid brightness changes. It could also introduce
a more efficient way of combining event data and standard frames, or it
could propose a lightweight deep learning architecture that can be trained
with limited data and still deliver real-time performance.

2.5.5 Spiking Neural Networks (SNNs)
Advancements in computer vision technologies are increasingly being driven
by Spiking Neural Networks (SNNs) and event cameras. These technologies
have shown significant progress in various fields, including optical flow es-
timation, image classification, object detection, and pose estimation. This
discussion explores the applications, advantages, and recent developments
in this area, highlighting the unique capabilities of SNNs and their synergy
with event-based sensing.

Optical flow estimation is a pivotal application in computer vision that
involves analyzing and estimating the motion of objects within a scene.
This task poses substantial challenges due to the dynamic and complex na-
ture of real-world visual environments. SNNs stand out in this domain due
to their event-based computational paradigm. Unlike conventional neu-
ral networks that process continuous data streams, SNNs are designed to
process discrete events, making them inherently suited for capturing the
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temporal dynamics of visual scenes.

• Efficient Temporal Information Processing: SNNs excel at manag-
ing temporal data, a crucial aspect of optical flow estimation. By con-
centrating on temporal changes, SNNs can track the movement and
direction of objects with higher accuracy than traditional methods.

• Energy Efficiency: SNNs offer superior energy efficiency compared
to traditional neural networks. This trait is especially beneficial for
real-time applications where minimizing power consumption is paramount,
such as in wearable devices, mobile phones, and embedded systems.

• Biologically Inspired Design: The architecture of SNNs is inspired by
the information processing mechanisms of biological neural systems.
This biologically plausible approach facilitates a more intuitive and
effective method for dealing with the intricate dynamics of optical
flow.

• Real-time Processing: The capability of SNNs to process information
in real time is critical for applications necessitating instant feedback,
such as autonomous driving and interactive robotics.

Recent advancements in the field have demonstrated the potential of
SNNs for revolutionizing computer vision. Researchers have explored var-
ious architectures and learning algorithms to optimize the performance of
SNNs in tasks requiring complex temporal dynamics and low-latency pro-
cessing. For instance, the work by Lagorce et al. (2017) introduces a hier-
archical temporally aware network architecture that significantly improves
the robustness and efficiency of event-based vision systems. Moreover,
the integration of SNNs with event cameras, which capture changes in light
intensity at each pixel independently, offers a promising direction for de-
veloping highly responsive and efficient vision systems. Event cameras,
such as those described by Gallego et al. (2019), provide high temporal res-
olution and low latency, characteristics that are perfectly complemented
by the event-driven nature of SNNs.
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In summary, the synergy between SNNs and event-based sensing tech-

nologies holds the promise of creating vision systems that are more effi-
cient, faster velocity figure 2.11, and capable of operating in more challeng-
ing environments than ever before. The continuous research and develop-
ment in this area suggest a bright future for applications leveraging these
innovative technologies.

Figure 2.11: Processing pipeline for event-based angular velocity regressionusing a spiking neural network.Gehrig et al. (2020)

2.6 Conclusion
In conclusion, this chapter has provided an in-depth exploration of cam-
era pose estimation techniques, focusing initially on methodologies de-
signed for conventional cameras and then delving into the emerging do-
main of event-based camera pose estimation. While a significant amount
of research has been conducted in the domain of conventional RGB cam-
era pose estimation, spanning from traditional handcrafted feature ap-
proaches to more contemporary learning-based methods, the field of event-
based camera pose estimation remains relatively unexplored, with only a
limited body of work available, particularly in the domain of deep learning
applications. The subsequent chapters of this work will present our con-
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tributions to advancing event camera pose estimation through the utiliza-
tion of deep learning techniques. This research seeks to bridge the gap be-
tween the well-established conventional camera pose estimation methods
and the evolving domain of event-based approaches, potentially paving
the way for new advancements and insights in this dynamic field.
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Chapter 3
Camera pose estimation from
event images
Event cameras, unlike traditional frame-based cameras, record pixel in-
tensity changes as a stream of discrete events. This unique characteristic
presents both opportunities and challenges for image processing. In this
chapter, we introduce a novel approach to processing images captured by
event cameras, focusing on the specific task of 6-Degrees of Freedom (6-
DoF) pose estimation. Our method aims to harness the high temporal res-
olution and low latency of event cameras by converting the event stream
into interpretable "event images" through spatial and temporal event bin-
ning (see Figure 3.1). We then explore the utilization of deep learning mod-
els to process these event images, proposing four different model archi-
tectures.

Our first proposed model architecture consists of a sequence of inter-
connected components: a Convolutional Neural Network (CNN), a Long
Short-Term Memory (LSTM) layer, and a dense fully connected layer. The
CNN extracts features from preprocessed event-based images, leveraging
pretrained weights for efficiency. The LSTM captures spatial dependencies
within these features, crucial for pose regression, and the final output of
the LSTM, processed by a dense fully connected layer, provides detailed 6-
DoF pose estimation, integrating CNN feature extraction and LSTM spatial

55
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learning.

The second proposed model employs two separate CNNs (A and B) to
extract features from event images, followed by bilinear pooling to cap-
ture local pairwise feature interactions. This approach, surpassing single
CNN capabilities, integrates features from both CNNs for improved perfor-
mance in pose estimation.

Our third proposed model architecture introduces improved bilinear
pooling, leveraging deep learning and event camera characteristics. It in-
cludes matrix function normalization post-pooling, specifically utilizing the
matrix logarithm and matrix power function for fractional positive values,
notably p = 1/2 for matrix square root. These matrix functions require
computations dependent on the entire matrix, with techniques like New-
ton iterations or Singular Value Decomposition (SVD) for effective compu-
tation.

The fourth proposed architecture is based on a self-attention mecha-
nism to capture global dependencies and interactions among event patches.
In this model, a feature map obtained from a CNN is passed to a Trans-
former encoder, which generates a context-aware representation for each
event patch. This representation considers not only the information of
the corresponding event but also information from other events in the se-
quence.

Throughout this chapter, we aim to demonstrate the potential of com-
bining event cameras with deep learning techniques for efficient and effec-
tive image processing under challenging conditions. Our proposed meth-
ods represent significant advancements in the field, opening up avenues
for various real-world applications such as robotics, autonomous naviga-
tion, and augmented reality.

By the end of this chapter, readers will gain insights into innovative ap-
proaches to leverage event-based images for precise and reliable 6-DoF
pose estimation, with each proposed model offering unique strengths and
capabilities. Experimental evaluations on real-world event camera datasets
will be presented to validate the performance and effectiveness of these
architectures.
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3.1 From events to event images
In the context of event-based cameras, a fundamental difference arises
when compared to traditional frame-based cameras. Rather than captur-
ing a complete image at fixed intervals, event cameras record individual
events that are triggered by changes in pixel brightness at the local level.

A key part of our work is focused on solving the pose relocalization
problem. This involves determining the pose of the camera at a given point
in time after it has been moved from its original position.

Our primary step is to process the event stream and convert it into what
we term an "event image" ( see Figure 3.1). The event image, denoted as
I , is a matrix of dimensions h x w, where h represents the height and w

denotes the width of the image.
Each event in the stream, denoted as e, can be thought of as a tuple or

ordered pair represented by:
e =< et, (ex, ey)ep >, (3.1)

In this tuple, et denotes the timestamp at which the event occurred,
while ex and ey specify the x and y coordinates of the pixel where the
change in brightness was detected, and ep represents the polarity of the
event, indicating whether the change was an increase or decrease in bright-
ness. This structure allows each event to capture and convey rich, tem-
porally precise information about the dynamic changes happening in the
scene.

Formally the conversion of an event stream into an event image is per-
formed by aggregating events within a specified time window. The process
involves initializing the image I with zeros, setting a time window T , and
iterating through each event e in the event stream. If the event’s times-
tamp et falls within the current time window, the intensity at the event’s
spatial location (ex, ey) in the image is increased by the event’s polarity ep

according to equation 3.1.
Once we have transformed the event stream into an event image, it
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serves as a foundation for subsequent stages of processing and analy-
sis, including the application of feature extraction, matching algorithms,
and pose estimation methodologies. This transformation step facilitates
the usage of methodologies initially designed for traditional images, thus
bridging the gap between event-based and frame-based vision systems.

The figure 3.1 showcases examples of event images generated prior to
the preprocessing stage. From these representations, we can observe the
influence of the parameter ’n’ discussed in the work of Gallego et al. Gal-
lego and Scaramuzza (2017). This parameter proves to be of significant
importance as it directly affects the quality of the event images.

Figure 3.1: Image preprocessing from point cloud events to event image

High-quality event images are pivotal in our process as they form the
input for training our CNN. The performance of the CNN, and consequently
the accuracy of our camera relocalization estimation, depends heavily on
these inputs. This, careful consideration and fine-tuning of this parame-
ter n is necessary to optimize the transformation from event streams to
images, ultimately enhancing the pose estimation results.

I(ex, ey) =


0, if eρ = −1

1, if eρ = 1

0.5, otherwise
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Algorithm 1 Event Stream to Event Image Conversion (with Polarity-basedIntensity)
Require: Event Stream E = {e1, e2, ..., en}Ensure: Event Image I

1: Initialize an empty image I of size h × w (according to your cameraresolution), initialized with zeros
2: Initialize a timestamp T to track the current time window for event ag-gregation
3: for each event e = (et, (ex, ey), eρ) in E do
4: if et is within the current time window then
5: if eρ = 1 then ▷ Event is ON
6: Set intensity at location (ex, ey) in I to 1
7: else if eρ = −1 then ▷ Event is OFF
8: Set intensity at location (ex, ey) in I to 0
9: else ▷ Otherwise (other polarities)

10: Set intensity at location (ex, ey) in I to 0.5
11: end if
12: else
13: Store the current image I for processing or output
14: Reset I to zeros
15: Update T to the timestamp of the new time window
16: if eρ = 1 then ▷ Event is ON
17: Set intensity at location (ex, ey) in I to 1
18: else if eρ = −1 then ▷ Event is OFF
19: Set intensity at location (ex, ey) in I to 0
20: else ▷ Otherwise (other polarities)
21: Set intensity at location (ex, ey) in I to 0.5
22: end if
23: end if
24: end for
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Figure 3.2: Event stream to event images

Wrapping up, our suggested approach to event-based image process-
ing using event cameras unveils a new pathway for efficient and stream-
lined processing of visual data figure 3.2. The distinct advantages of event
cameras, such as their high temporal resolution and minimal latency, are
capitalized upon in our method. This allows us to transform the event
stream into comprehensible event images that are compatible with stan-
dard image processing techniques.

In the second phase of our process, we adjust the dimensions of the
event image. The image is scaled up to a standard size of 224× 224 pixels
while maintaining the original aspect ratio of the image.

Furthermore, we advocate for the utilization of several deep learning
models tailored to process event images for the explicit purpose of 6-DoF
pose estimation. In the subsequent section focused on the network model,
we will delve deeper into the architecture and training procedures of the
models utilized in our approach.

3.2 The proposed network models
In our work, we introduced four distinct model architectures tailored for
event-based pose estimation. Each model takes event images as input and
produces an estimated camera pose as its output.
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1. The first proposed model architecture consists of a sequence of in-

terconnected components: a Convolutional Neural Network (CNN), a
Long Short-Term Memory (LSTM) layer, and a dense fully connected
layer. The CNN extracts features from preprocessed event-based im-
ages, leveraging pretrained weights for efficiency. The LSTM captures
spatial dependencies within these features, crucial for pose regres-
sion, by updating gates and cell states. The final output of the LSTM,
processed by a dense fully connected layer, provides detailed 6-DoF
pose estimation, integrating CNN feature extraction and LSTM spatial
learning.

2. The second proposed model employs two separate CNNs (A and B) to
extract features, followed by bilinear pooling to capture local pairwise
feature interactions. This approach, surpassing single CNN capabili-
ties, integrates features from both CNNs for improved performance
in pose estimation.

3. The third proposed model architecture is based on improved bilin-
ear pooling, leveraging deep learning and event camera characteris-
tics. It introduces matrix function normalization post-pooling, specifi-
cally utilizing the matrix logarithm and matrix power function for frac-
tional positive values, notably p = 1/2 for matrix square root. These
matrix functions require computations dependent on the entire ma-
trix, with techniques like Newton iterations or SVD for effective com-
putation.

4. The fourth proposed architecture is based on a self-attention mech-
anism to capture global dependencies and interactions among these
patches. In this architecture, we pass a feature map obtained from
a CNN model to a Transformer encoder. The Transformer encoder
generates a context-aware representation for each event patch, where
each feature not only captures the information of the corresponding
event but also considers the information from other events in the
sequence.
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The strategic choice of transitioning from one model to another reflects

a progression towards more sophisticated and capable architectures. Each
subsequent model builds upon the strengths of the previous one, aiming
to address the challenges of event-based pose estimation by leveraging
advancements in deep learning and neural network architectures.

The initial model architecture (CNN-LSTM-Dense Model) starts with a
Convolutional Neural Network (CNN) for feature extraction, a Long Short-
Term Memory (LSTM) layer to capture spatial dependencies crucial for pose
regression, and a dense fully connected layer for detailed 6-DoF pose esti-
mation. This model is a foundational step, leveraging the CNN’s efficiency
in extracting features from preprocessed event-based images. The LSTM
then enhances the model’s ability to capture spatial relationships within
these features, improving pose estimation accuracy. The sequential flow
from CNN to LSTM to dense layer demonstrates a progression from basic
feature extraction to spatial learning and detailed pose estimation.

The second model (Dual-CNN with Bilinear Pooling) introduces a more
complex approach with two separate CNNs for feature extraction, followed
by bilinear pooling to capture local pairwise feature interactions. This dual-
CNN architecture surpasses the capabilities of a single CNN by integrat-
ing features from both networks, allowing for a richer representation of
the event images. The strategic choice to move to dual-CNN with bilinear
pooling aims to further enhance the model’s ability to extract and combine
features for improved performance in pose estimation, building upon the
foundation of the CNN-LSTM-dense model.

The third model (Improved Bilinear Pooling) architecture takes a step
further by introducing improved bilinear pooling. This model leverages
deep learning and event camera characteristics, incorporating matrix func-
tion normalization post-pooling. This normalization enables the model
to capture more nuanced and complex relationships among features ex-
tracted from event images. The transition to improved bilinear pooling
demonstrates a strategic choice to refine feature interactions and compu-
tations, aiming for higher accuracy in pose estimation.

Finally, the fourth model (Transformer-Based Model with Self-Attention)
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architecture introduces a Transformer-based approach with a self-attention
mechanism. This model represents a significant departure from traditional
CNN-based approaches. Here, a feature map from a CNN is passed through
a Transformer encoder, which generates a context-aware representation
for each event patch. This representation considers not only the informa-
tion from the corresponding event but also information from other events
in the sequence, capturing global dependencies. The shift to a Transformer-
based model with self-attention reflects a strategic choice to explore more
advanced architectures capable of modeling long-range dependencies and
interactions among event patches, potentially leading to improved pose
estimation accuracy.

A detailed description of each proposed model architecture is provided
in the following sections.

3.2.1 First architecture: CNN-LSTM-Dense Model
Our first proposed approach for precise pose estimation consists of three
interconnected components arranged in a sequential manner: a Convolu-
tional Neural Network (CNN), a Long Short-Term Memory (LSTM) layer, and
a dense fully connected layer. Each component serves a distinct purpose
and collaborates with the others to achieve the ultimate goal of accurate
pose estimation.

• Convolutional Neural Network The initial stage of our approach
involves the utilisation of a CNN, which plays a crucial role in extract-
ing relevant features from preprocessed event-based images. CNNs
have demonstrated exceptional capabilities in computer vision tasks,
thanks to their ability to learn hierarchical representations, progress-
ing from basic features like edges and colors to more complex pat-
terns and shapes LeCun et al. (2015). However, training CNNs from
scratch can be computationally demanding and prone to overfitting
due to the vast number of parameters. To address these challenges,
we incorporate pretrained weights from well-established models such
as ResNet18 He et al. (2016), ResNet50 He et al. (2016), GoogleNet
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Szegedy et al. (2015), VGG16 Simonyan and Zisserman (2014), VGG19
Raja et al. (2021), MobileNet Howard et al. (2017), Inception Szegedy
et al. (2016), and EfficientNet Tan and Le (2019). These models have
been trained on extensive datasets and possess the ability to extract
robust and discriminative features. If X is the input image, then the
k-th feature map Fk at a certain layer could be represented as:

Fk = Activation(Wk ∗X + bk) (3.2)
where Wk are the weights of the k-th filter, bk is the bias term, and
∗ denotes the convolution operation. Activation is a function that in-
troduces non-linearity such as Relu or Sigmoid.
The feature extraction power of CNNs relies on various hyperparam-
eters including the chosen architecture, number of layers, filter sizes,
and the optimization algorithm, among others. In our study, we sys-
tematically evaluated a range of well-known backbones to select the
best-performing model. This thorough evaluation allowed us to iden-
tify the architecture that most effectively extracts features from event-
based images, optimizing our model’s performance for the task of
camera pose estimation.

• Long Short-Term Memory (LSTM) layer: The Long Short-Term Mem-
ory (LSTM) network, introduced by S. Hochreiter and J. Schmidhuber
in their seminal 1997 paper Hochreiter and Schmidhuber (1997), rep-
resents a significant advancement in the field of recurrent neural net-
works (RNNs). LSTMs were designed to overcome the limitations of
traditional RNNs, particularly the challenges associated with learning
long-term dependencies.
In our CNN-LSTM-Dense Model for camera pose estimation, follow-
ing the feature extraction by the CNN, an LSTM layer is introduced to
capture spatial dependencies within these extracted features. LSTMs,
unlike traditional Recurrent Neural Networks (RNNs), can learn and
retain long-term dependencies, making them suitable for tasks where
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past information significantly influences future outputs. In our method,
the LSTM layer receives the feature vectors from the CNN as sequen-
tial input and processes them accordingly. This sequential process-
ing enables the model to aggregate and compress the extracted fea-
tures, focusing solely on the most relevant information for pose re-
gression.
LSTMs are designed to handle sequences of data and are capable of
learning long-term dependencies. An LSTM unit has a cell state ct and
three gates (input it, forget ft, and output ot) that control the flow of
information. These gates are updated at each time step t as follows:

it = σ(Wxivt +Whiht−1 + bi) (input gate) (3.3)
ft = σ(Wxfvt +Whfht−1 + bf ) (forget gate) (3.4)
ot = σ(Wxovt +Whoht−1 + bo) (output gate) (3.5)
gt = tanh(Wxgvt +Whght−1 + bg) (cell input activation) (3.6)
ct = ft ⊙ ct−1 + it ⊙ gt (cell state update) (3.7)
ht = ot ⊙ tanh(ct) (hidden state/output) (3.8)

where σ is the sigmoid activation function, tanh is the hyperbolic tan-
gent function, and ⊙ denotes element-wise multiplication. As the
LSTM processes each feature vector in sequence, it updates its in-
ternal state. This state acts as a memory that retains relevant infor-
mation and discards irrelevant details, effectively compressing the
information.
The final output of the LSTM layer, which can be the last hidden state
hT , or a combination of all hidden states, encapsulates the aggre-
gated information of the entire sequence, focusing on the most rele-
vant features for the subsequent task, such as pose regression.

• Dense Fully Connected Layer: The final component of our archi-
tecture is a dense fully connected layer comprising seven neurons.
This layer receives the output from the LSTM layer, which has been
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Figure 3.3: An overview of our 6DOF pose relocalization method for eventcameras.We first create an event image from stream of events. Then we extractfeatures from the created event image, the feature vector is then given toa single layer reccurent network. Finally, a fully connected layer of sevenneutrons is used to regress the camera pose vector.
condensed to retain only the most important information. Each neu-
ron in this layer is responsible for estimating different camera coor-
dinates, resulting in a detailed 6-DoF pose estimation.

Our proposed CNN-LSTM-Dense model seamlessly integrates these three
components CNN for feature extraction, LSTM for learning spatial depen-
dencies, and a fully connected layer for pose estimation figure 3.3. By em-
ploying this model, we aim to provide an efficient and accurate solution for
pose estimation using event-based images.

Why opt for a single layer instead of two for LSTM and CNN? The
decision to use a single layer for LSTM and CNN depends on a trade-off be-
tween computational complexity and performance. Each additional layer
adds computational cost and complexity to the model, requiring more train-
ing data and time. Furthermore, increasing model depth does not always
guarantee improved performance and can lead to overfitting if not care-
fully managed. Sagheer and Kotb (2019) For CNNs, a single layer can suf-
fice if pretrained models such as ResNet or VGG already provide effective
feature representations. These models are already deep and capable of
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extracting hierarchical features. Regarding LSTMs, a single layer might be
adequate if the temporal dependencies within the data are not excessively
complex. Adding more LSTM layers involves stacking additional LSTMs on
top of each other, which helps when dealing with more intricate sequen-
tial patterns. However, it significantly increases model complexity and the
risk of overfitting. In conclusion, although it may seem that adding more
layers always leads to improved performance, this is not necessarily the
case. It is crucial to consider the specific problem, data complexity, avail-
able computational resources, and the risk of overfitting when designing
the architecture of a deep learning model. We give more details about our
model performance in the experimental section.

3.2.2 Second architecture: Dual-CNN with Bilinear Pool-
ing

Bilinear pooling, a method frequently applied in computer vision for inte-
grating features from varied sources or layers, is predominantly utilized in
classification scenarios but can also be adapted for regression tasks. To
employ bilinear pooling for regression, we start by selecting an appropri-
ate base model for our pose estimation task, we used a CNN model, which
serves to extract features from the input data. This base model is crucial as
it lays the foundation for feature extraction that will be further processed
using bilinear pooling in the context of the camera pose regression.

Bilinear pooling combines features from two different sources. In our
case of camera pose regression, we use the feature maps from a cho-
sen base model as both sources. Compute the outer product between
the feature maps from source 1 and source 2. This is done by flattening
both feature maps and then taking their outer product. To handle the
high-dimensional tensor generated by the outer product in bilinear pool-
ing, a dimensionality reduction step is essential. In our work this has been
achieved by performing a pooling operation, i.e. max or average pooling,
across each tensor dimension. This step is crucial for isolating the most
significant information. Following the pooling process, the next action is to
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transform the pooled tensor into a one-dimensional vector through flat-
tening. This creates a consolidated feature vector suitable for subsequent
stages in the model. Repeat this process for all the samples in your dataset.
Concatenate all the resulting vectors to form a single feature vector for
each sample.

More precisely, in our work, we begin by preprocessing raw event data
acquired from an event camera. This process involves converting the data
into event images, where each pixel corresponds to the polarity of an event,
indicating a brightness change at a specific pixel. To ensure compatibility
with popular convolutional neural networks (CNNs), these event images
are resized to a standard size, typically 224× 224 pixels.

Two separate CNNs, denoted as A and B, are utilized to extract features
from the event images. These CNNs produce output feature maps repre-
sented by matrices U and V, with dimensions m× d and n× d respectively,
where n and m are the number of kernels in the output layers of networks
A and B Lin et al. (2015). The employed CNNs, A and B, are pretrained mod-
els such as VGG16 Simonyan and Zisserman (2014) or MobileNetV2 Sandler
et al. (2018), and each independently processes the event images, resulting
in two sets of feature maps.

Following feature extraction, we apply the technique of bilinear pool-
ing. This step involves taking the outer product of the feature maps from
CNNs A and B, capturing local pairwise feature interactions. The result is a
new feature matrix that combines the strengths of the feature maps from
both CNNs, enabling the incorporation of higher-order, complex feature
interactions and surpassing the capabilities of a single CNN.

The final stage of our approach involves pose estimation. The pooled
feature matrix is fed into a fully connected layer with a linear activation
function, which produces an estimated pose represented by a 7-dimensional
vector encompassing both position (3D) (X, Y, Z) and orientation (4D quater-
nion) (W, P, Q, R). This method aims to enhance the accuracy and compre-
hensiveness of pose estimation by capturing intricate feature interactions
beyond what can be achieved using a single CNN, thereby providing a more
precise and detailed understanding of event-based images.
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Figure 3.4: An overview of our 6DOF pose relocalization method for eventcameras.We first create an event image from stream of events. After we extractfeatures from the created event image using a Bilinear pooling. Then thefeature vector is then given to a fully connected layer of seven neurons isused to regress the camera pose vector.
We put forth an innovative attention-based fully convolutional neural

network for the task of pose estimation. Our distinctive attention mech-
anism enables the model to concentrate on the motion-relevant areas in
images, thereby enhancing its accuracy.

We start by gathering a sequence of events using an event camera.
These raw events are processed and transformed into a set of event im-
ages, following the methodology outlined by Nguyen et al. (2019). The de-
tails of image preprocessing are elaborated in Section3.1.

These features are then subjected to bilinear pooling. Bilinear pool-
ing is a method used to combine features that encapsulates second-order
statistics. Both network A VGG16 Simonyan and Zisserman (2014) and B

MobileNets Howard et al. (2017) outputs feature maps represented respec-
tively by the matrix V of dimensionality n × d, and the matrix U of size
m × d. Here, n and m are the number of kernels in the output layers of
the networks A and B, respectively. The dimensionality of each filter is d;
it is obtained by flattening the 2-dimensional feature map, i.e., the output
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image that has undergone several kernel convolutions and pooling trans-
formations. The bilinear pooling operation is then defined as:

X = UV T , U ∈ Rm∗d, V ∈ Rn∗d, X ∈ Rm∗n (3.9)
Finally, this bilinear pooling vector is used for pose estimation, thus cap-

italizing on the feature-rich information it contains, as explained in Lin et
al.Lin et al. (2015).

3.2.3 Third architecture: Improved Bilinear pooling
Bilinear pooling is a technique used to capture second-order like explain
in section 3.2.2 statistics between feature activations from two different
feature maps. In the context of pose relocalization with event cameras,
the event image is fed into a convolutional neural network (CNN) to obtain
feature maps. These feature maps represent the learned visual features
extracted from the event image. To perform bilinear pooling, pairs of fea-
ture maps are chosen, and the outer product is computed between the
corresponding activations. The outer product combines the activations of
each pair, resulting in a matrix that captures the pairwise interactions be-
tween the features. This process is repeated for all possible pairs of feature
maps, generating a set of bilinear pooled features.

The bilinear pooled features figure 3.4 contain rich information about
the relationships between different visual features in the event image. This
is beneficial for capturing complex spatial dependencies and improving the
discriminative power of the extracted features. After obtaining the bilinear
pooled features, L2 normalization layers are applied to the feature vectors.
L2 normalization normalizes the feature vectors to have a unit Euclidean
length. This normalization step helps to make the features more invariant
to changes in scale and increases the robustness of the pose estimation
process. Moving on to the pose regression step, the normalized feature
vectors obtained from the previous step are fed into a fully connected layer
with seven neurons. This fully connected layer acts as a regression layer,
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Figure 3.5: 6DOF pose relocalization method for event camerasconsists of three steps. First, we create an event image from the eventstream. Next, we extract features from the image using Bilinear poolingand l2 normalization layers added after the bilinear pooling of CNN.Finally, we use a fully connected layer of 7 neurons to regress thecamera’s pose vector from the feature vector.
mapping the feature representations to the camera’s pose vector.

The pose vector typically consists of six degrees of freedom (6DOF), rep-
resenting the camera’s position and orientation in 3D space. The fully con-
nected layer performs regression by learning the mapping between the
features and the corresponding camera poses. During training, annotated
pose labels are provided to supervise the learning process, allowing the
network to learn to estimate the camera’s pose accurately.

By combining the event image creation, feature extraction with bilinear
pooling and L2 normalization, and pose regression with a fully connected
layer, this method aims to achieve real-time pose relocalization with event
cameras. The process leverages the power of deep learning and the unique
characteristics of event cameras to estimate the camera’s pose from the
event stream efficiently. An improved approach introduces matrix func-
tion normalization after the pooling step (as shown in figure 3.5 ). Specifi-
cally, the matrix logarithm (log(A)) proposed in the Second-Order Pooling
(O2P) Carreira et al. (2012) scheme and the matrix power function (Ap) for
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fractional positive values of 0 < p < 1 are considered. Notably, the sce-
nario where p = 1/2 is of special interest because it equates to taking the
square root of a matrix. This entails finding a matrix Z such that ZZ = A.
Unlike element-wise transformations, matrix functions require computa-
tions that depend on the entire matrix. Techniques such as Newton itera-
tions or Singular Value Decomposition (SVD) can be employed to perform
these matrix function computations effectively.

Our third model utilizes bilinear pooling to capture second-order statis-
tics between features, and matrix function normalization is applied to the
resulting covariance matrix. This normalization step improves the net-
work’s performance, and matrix functions like the matrix logarithm and
matrix power functions are utilized to improve feature representations.

3.2.4 Fourth architecture: Transformer-Based Model with
Self-Attention

In contrast to CNNs that revolutionized image processing by convolving
local, translationally invariant filters over the input, Vision Transformers
(ViTs) brought about a significant shift in the field. The central tenet of ViTs
is to perceive an image not as a 2D matrix of pixels, but as a sequence of
patches, each holding its own spatial information. This allows transformers
to leverage their self-attention mechanism to capture global dependencies
and interactions among these patches Dosovitskiy et al. (2020).

The initial step is to partition an image into non-overlapping patches of
a fixed size (P x P), effectively translating a 2D image of size H x W into a
sequence of flattened 1D patches. Each patch is then linearly transformed
to D dimensions, creating a sequence of token embeddings Z0 ∈ R(N+1)×D.
Here, N is the total number of patches (N = H

P
× W

P
), D is the dimen-

sion of the token embeddings, and ’+1’ accounts for an additional learn-
able ’class’ token that’s appended to the sequence for classification tasks
Vaswani et al. (2017). Mathematically, it’s represented as:

Z0 = [zclass;E(x) + Epos], (3.10)
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where zclass ∈ RD is the class token, E(x) ∈ RN×P is the linear transfor-

mation of the patches, and Epos ∈ RN×P is the positional encoding.
Our proposed model harnesses the advantages of Vision Transformers

for the estimation of camera poses from event images. The architecture
is composed of an image patch embedding layer, a transformer encoder
layer, and a final multi-layer perceptron for pose estimation.

In the initial image patch embedding layer, the 2D patches are trans-
formed into 1D embeddings through a convolution operation where both
the kernel and stride size are equivalent to the patch size. The positional
information, which is crucial in the context of a transformer, is preserved
by adding positional embeddings to these patch embeddings.

These initial embeddingsZ0 are then propagated through a transformer
encoder. The core of the transformer encoder is the self-attention mech-
anism which permits the model to calculate the relevance of a patch with
respect to all other patches in the image, thereby capturing a global con-
text. This is achieved using the scaled dot-product attention mechanism
where the input comprises queries Q, keys K, and values V. The output is
computed as Attention(Q,K, V ) = softmax(QKT

√
d
) ∗ V , where ’d’ is the di-

mensionality of the queries and keys, and softmax is the softmax function
applied across the keys Kingma and Ba (2014). The encoder outputs a more
refined sequence of embeddings Zl.

In the final stage, the output of the transformer (i.e., the embeddings
corresponding to the class token) is funneled through a multi-layer per-
ceptron to estimate the pose. The MLP essentially works as a function F :

RD → R6, which maps the D-dimensional embeddings to a 6-dimensional
vector representing the estimated 6-DoF pose.

In mathematical terms, given Zl, the pose ŷ is given by:
ŷ = MLP (Zl), (3.11)

where Zl denotes the class token embedding from the final layer.
The overall process thus forms a pipeline where the input image is

transformed into a sequence of patch embeddings, which after multiple
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Figure 3.6: An overview of our 6DOF pose relocalization method for eventcameras .We first create an event image from stream of events. Then we extractfeatures from the created event image.Once these event images aregenerated, they are fed into our feature extraction model, which is builton a ResNet50 architecture pre-trained on ImageNet. This model extractshigh-level spatial features from the event images, providing a robustrepresentation of the input data. Then the output is passed to a customtransformer encoder.

stages of self-attention and transformations, results in an estimate of the
6-DoF camera pose.

3.3 Experimental results
The proposed camera pose estimation methods were thoroughly evalu-
ated using several datasets, which encompass both synthetic and real-
world scenarios. This section describes the datasets that were utilized
for method validation, the training environment configuration, and the de-
tailed experimental results that substantiate the efficacy of our approach.
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3.3.1 Dataset
We employed a variety of datasets to ensure a comprehensive assessment
of the proposed methods: (1) simulated data and (2) real data.

Figure 3.7: Dataset from CARLA Dosovitskiy et al. (2017)

Figure 3.8: Real Event Camera Dataset After Pre-processing 3.1 Mueggleret al. (2017)
Figure 3.9: Both Real And Similator Datasets

Synthetic dataset
We synthesised a dataset from CARLA Dosovitskiy et al. (2017) 10000 event
frame for both training and testing. Figure 3.7 provides a glimpse into
the simulated images used for evaluation. This dataset is characterized by
its variety, featuring scenes collected in two distinct environments - Clear
Town and Dynamic Town. These virtual towns, complete with nuanced ar-
chitectural elements and a range of atmospheric conditions, serve as ex-
cellent platforms to test the robustness of our model in a controlled but
diverse environment.
Real dataset
The synthetic data is complemented by the use of real-world data. For
this, we utilized the event camera dataset introduced in Mueggler et al.
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(2017) 3.8. This carefully curated dataset comprises a collection of scenes
captured by a DAVIS camera. The camera, designed to mimic the human
eye’s ability to respond to changes in the environment, is versatile enough
to capture both indoor and outdoor environments. Thus, it provides an
excellent resource for the task at hand.

What sets this dataset apart is the precision of its ground truth data.
The camera poses, vital to our task, were collected from a state-of-the-art
motion-capture system. This system can record data with sub-millimeter
precision at an impressive rate of 200Hz. This ensures that the ground truth
data is highly accurate and can be a reliable basis for comparison with the
poses estimated by our model.

For the evaluation process using the real dataset, we adopted the pro-
tocol used in Nguyen et al. (2019). This protocol includes two distinct types
of splits: a random split and a sequential or novel split.

1. In the random split, we select 70% of the event images for training
and the remaining 30% for testing. This selection is random and does
not consider the temporal order of the events. In this split, we used
6 sequences (shapes rotation, box translation, shapes translation, dy-
namic 6dof, hdr poster, poster translation) for this experiment. These
sequences are selected to cover different camera motions and scene
properties.

2. In the sequential (novel) split, we select the first 70% of each event
for training and the rest, 30%, for testing. This implies that the train-
ing and testing data are temporally separate but originate from the
same scene, essentially creating two independent sequences. By fol-
lowing the timestamps suggested by . Nguyen et al. (2019), where the
training sequence spans from timestamp t0 to t70, and the testing
sequence from timestamp t71 to t100, we maintain a clear demarca-
tion between training and testing sequences. This process effectively
trains our model on a large portion of the sequence and then tests it
on the remaining unseen section. In this manner, it puts our model’s
predictive capabilities to the test, giving us a clear picture of its per-
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formance on novel data. We use three sequences from the shapes
scene (shapes rotation, shapes translation, shapes 6dof ) in this novel
split experiment to compare the results when different camera mo-
tions are used.

3.3.2 Training Environment
In order to evaluate the effectiveness and robustness of our proposed
methods, we have undertaken several experiments. These experiments
aim not only to test the performance of our method but also to place our
results in context by comparing them with those obtained from deep learn-
ing architectures.

To carry out these experiments, we employed PyTorch, the open-source
machine learning library, as suggested by Paszke et al Paszke et al. (2019).
This tool offers a wide range of utilities and functionalities that are ideally
suited for our purpose. It provides a platform that not only facilitates the
implementation of our proposed method but also allows for easy replica-
tion of the results. The computational platform on which our experiments
were conducted consists of an Intel(R) Xeon(R) CPU clocked at 2.00GHz,
CPU memory of 24GB, and a single Tesla T4 GPU. This high-performance
platform was chosen to ensure that our experiments could be carried out
seamlessly and without computational bottlenecks.

In terms of training the neural networks, we adhered to a rigorous train-
ing regime. The networks were trained for a significant period - a total of
500 epochs - to ensure that the models had ample opportunity to learn and
capture the underlying patterns within the data. We used a learning rate of
2 exp−3, which strikes a balance between speedy convergence and model
stability. To keep our model robust and prevent overfitting, we utilized
a combination of momentum-decay and weight decay. The momentum-
decay, set to 4 exp−3, helped us accelerate our gradient vectors in the
right directions and thus led to faster convergence. Simultaneously, the
weight decay, set to 0, was used as a regularization technique. Overall, the
described setup and approach were designed to ensure a comprehensive
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evaluation of the proposed method, provide comparable results with state-
of-the-art architectures, and foster an environment conducive to in-depth
exploration and learning.

3.3.3 Experimental Results
As quantitative evaluation, we choose to calculate the median and average
error 2.2.3 of the predicted pose in position and orientation. The Euclidean
distance is used to compare the predicted position to the groundtruth, and
the anticipated orientation is normalized to unit length before being com-
pared to the groundtruth.

We compare our results under the same protocols reported in Nguyen
et al. (2019) also presented in Section 3.3.1 and used in PoseNet Kendall
et al. (2015), Bayesian PoseNet Kendall and Cipolla (2016).

For location and orientation, the median and average error are recorded
in m and deg(°), respectively.
Results from the CNN-LSTM-Dense Model
We start by evaluating the CNN-LSTM-Dense Model, our first proposed ar-
chitecture. The results are given in Table 3.1. In this table, we compare
different CNN architectures combined with LSTM when tested on the syn-
thetic CARLA dataset 3.7. The best-performing architecture in this exper-
iment, as indicated by the bold values, is ResNet18 combined with LSTM,
showing the lowest median and average errors.

Table 3.2) compares the same set of architectures but tested on a real
dataset 3.8 referred to as shapes_6dof. Again, ResNet18 combined with
LSTM shows superior performance compared to the other architectures.
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Architecture Median Error Average ErrorVGG16 + LSTM Nguyen et al. (2019) 0.81 (m) 5.35 (°) 0.88 (m) 6.29 (°)VGG19 + LSTM 0.52 (m) 6.29 (°) 0.62 (m) 7.96 (°)GoogleNet + LSTM 0.52 (m) 6.29 (°) 0.62 (m) 7.96 (°)MOBILENET + LSTM 0.44 (m) 3.36 (°) 0.53 (m) 4.48 (°)INCEPTION + LSTM 0.47 (m) 3.86 (°) 0.61 (m) 4.88 (°)EFFICIENTNET + LSTM 0.52 (m) 5.28 (°) 0.65 (m) 4.36 (°)ResNet50 + LSTM 0.34 (m) 3.21 (°) 0.43 (m) 4.32 (°)ResNet18 + LSTM 0.21 (m) 2.91 (°) 0.33 (m) 3.82 (°)

Table 3.1: Comparison between different architecture. The experimentsare conducted on simulated dataset from CARLA Dosovitskiy et al. (2017)

Architecture Median Error Average ErrorVGG16 + LSTM 0.108 (m) 5.23 (°) 0.125 (m) 6.21 (°)VGG19 + LSTM 0.131 (m) 5.621 (°) 0.123 (m) 6.215 (°)MOBILENET + LSTM 0.100 (m) 5.267 (°) 0.116 (m) 6.742 (°)INCEPTION + LSTM 0.153 (m) 5.685 (°) 0.135 (m) 6.684 (°)EFFICIENTNET + LSTM 0.125 (m) 5.921 (°) 0.124 (m) 5.736 (°)GoogleNet + LSTM 0.102 (m) 5.245 (°) 0.111 (m) 6.548 (°)ResNet50 + LSTM 0.092 (m) 4.513 (°) 0.119 (m) 5.981 (°)ResNet18 + LSTM 0.071 (m) 4.215 (°) 0.091 (m) 5.601 (°)
Table 3.2: Comparison between different model architectures. The exper-iments are conducted on Real dataset Mueggler et al. (2017) shapes_6dof
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The results highlighted in these tables are critical for understanding the

efficacy of different CNN backbones used in our CNN-LSTM-Dense Model
in the task of camera pose estimation. These results help in identifying
which combinations of CNNs and LSTM yield the most accurate pose esti-
mations for both synthetic and real-world data, guiding the choice of the
CNN backbone for similar tasks in the future.

In table 3.1, when using the carla similator dataset (Figure 3.7), we com-
pared different CNN backbones for our CNN-LSTM-Dense Model perfor-
mance. The lower the error values, the better the model’s performance.

In analyzing these results, several observations emerge regarding the
performance of different CNN backbones. The VGG16 + LSTM configura-
tion shows a median error of 0.81 meters and 5.35 degrees, with an av-
erage error of 0.88 meters and 6.29 degrees. Slightly better results are
achieved with the VGG19 + LSTM configuration, with a median error of
0.52 meters and 6.29 degrees, along with an average error of 0.62 meters
and 7.96 degrees. Notably, the ResNet18 + LSTM model stands out as the
best performer in this comparison, demonstrating a median error of 0.21
meters and 2.91 degrees, with an average error of 0.33 meters and 3.82
degrees. The GoogleNet + LSTM model shows similar results to VGG19 +
LSTM, with a median error of 0.52 meters and 6.29 degrees, and an average
error of 0.62 meters and 7.96 degrees. The MobileNet + LSTM configura-
tion achieves a median error of 0.44 meters and 3.36 degrees, with an av-
erage error of 0.53 meters and 4.48 degrees. Meanwhile, the Inception +
LSTM model yields a median error of 0.47 meters and 3.86 degrees, along
with an average error of 0.61 meters and 4.88 degrees. The EfficientNet +
LSTM model presents a median error of 0.52 meters and 5.28 degrees, with
an average error of 0.65 meters and 4.36 degrees. Lastly, the ResNet50 +
LSTM configuration shows a median error of 0.34 meters and 3.21 degrees,
along with an average error of 0.43 meters and 4.32 degrees. These results
highlight the varying performance of the model on the synthetic dataset,
with ResNet18 + LSTM showing the lowest errors, indicating its superior
accuracy in estimating both position and orientation.

In this table 3.2, a comparison is made between different model archi-



3.3. EXPERIMENTAL RESULTS 81
tectures based on their performance on the Real dataset Mueggler et al.
(2017) using the shapes_6dof evaluation metric. In comparing the results of
the different model CNN backbones, several insights emerge. The VGG16
+ LSTM backbone achieves a median error of 0.108 meters and 5.23 de-
grees, with an average error of 0.125 meters and 6.21 degrees. Similarly,
the VGG19 + LSTM model yields a median error of 0.131 meters and 5.621
degrees, along with an average error of 0.123 meters and 6.215 degrees.
The MobileNet + LSTM model stands out with a median error of 0.100 me-
ters and 5.267 degrees, and an average error of 0.116 meters and 6.742
degrees, demonstrating good performance. In contrast, the Inception +
LSTM model presents a median error of 0.153 meters and 5.685 degrees,
with an average error of 0.135 meters and 6.684 degrees. The Efficient-
Net + LSTM configuration showcases a median error of 0.125 meters and
5.921 degrees, along with an average error of 0.124 meters and 5.736 de-
grees. The GoogleNet + LSTM model delivers a median error of 0.102 me-
ters and 5.245 degrees, with an average error of 0.111 meters and 6.548
degrees. Notably, the ResNet50 + LSTM model offers good accuracy with
a median error of 0.092 meters and 4.513 degrees, and an average error of
0.119 meters and 5.981 degrees. However, the standout performer in this
comparison is the ResNet18 + LSTM configuration, achieving the lowest
errors with a median error of 0.071 meters and 4.215 degrees, and an av-
erage error of 0.091 meters and 5.601 degrees. This model demonstrates
superior accuracy in predicting both position and orientation, making it a
compelling choice for event-based pose estimation tasks.

From this two tables3.1 3.2 , we can see that the ResNet18 + LSTM archi-
tecture outperforms the other two in terms of both median and average
errors. It achieves the lowest errors overall, indicating better accuracy in
predicting the camera position and orientation.

Table 3.3 and Table 3.4 report the performance of our best CNN-LSTM-
Dense Model compared to the state-of-the-art methods using random split
and novel split protocols, respectively. Our CNN-LSTM-Dense Model demon-
strates significant improvements in pose estimation accuracy compared to
state-of-the-art techniques. Under the random split protocol1, as shown
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PoseNet Bayesian PoseNet SP-LSTM OursMedian Error Average Error Median Error Average Error Median Error Average Error Median Error Average Errorshapes rotation 0.109m, 7.388° 0.137m, 8.812° 0.142m, 9.557° 0.164m, 11.312° 0.025m, 2.256° 0.028m, 2.946° 0.012m, 1.652° 0.015m, 1.975°shapes translation 0.238m, 6.001° 0.252m, 7.519° 0.264m, 6.235° 0.269m, 7.585° 0.035m, 2.117° 0.039m, 2.809° 0.020m, 1.471° 0.023m, 1.973°box translation 0.193m, 6.977° 0.212m, 8.184° 0.190m, 6.636° 0.213m, 7.995° 0.036m, 2.195° 0.042m, 2.486° 0.013m, 0.873° 0.016m, 0.965°dynamic 6dof 0.297m, 9.332° 0.298m, 11.242° 0.296m, 8.963° 0.293m, 11.069° 0.031m, 2.047° 0.036m, 2.576° 0.016m, 1.662° 0.017m, 1.974°hdr poster 0.282m, 8.513° 0.296m, 10.919° 0.290m, 8.710° 0.308m, 11.293° 0.051m, 3.354° 0.060m, 4.220° 0.033m, 2.421° 0.038m, 3.223°poster translation 0.266m, 6.516° 0.282m, 8.066° 0.264m, 5.459° 0.274m, 7.232° 0.036m, 2.074° 0.041m, 2.564° 0.020m, 1.468° 0.024m, 1.855°Average 0.231m, 7.455° 0.246m, 9.124° 0.241m, 7.593° 0.254m, 9.414° 0.036m, 2.341° 0.041m, 2.934° 0.019m, 1.591° 0.022m, 1,994°

Table 3.3: Comparison between results from our First architecture (CNN-LSTM-Dense Model in Section 3.2.1) and results from PoseNet Kendall et al.(2015), Bayesian PoseNet Kendall and Cipolla (2016) and SP-LSTM Nguyenet al. (2019).The evaluation is performed using the random split protocol. Rowsindicate the 6 event sequences of the real dataset (Section 3.3.1). Theresults are given in term of Median and Average Error.

PoseNet Bayesian PoseNet SP-LSTM OursMedian Error Average Error Median Error Average Error Median Error Average Error Median Error Average Errorshapes rotation 0.201m, 12.499° 0.214m, 13.993° 0.164m, 12.188° 0.191m, 14.213° 0.045m, 5.017° 0.049m, 11.414° 0.036m, 2.113° 0.040m, 4.101°shapes translation 0.198m, 6.969° 0.222m, 8.866° 0.213m, 7.441° 0.228m, 10.142° 0.072m, 4.496° 0.081m, 5.336° 0.061m, 3.372° 0.069m 4.550°shapes 6dof 0.320m, 13.733° 0.330m, 18.801° 0.326m, 13.296° 0.329m, 18.594° 0.078m, 5.524° 0.095m, 9.532° 0.071m, 4.215° 0.091m, 5.602°Average 0.240m, 11.067° 0.255m, 13.887° 0.234m, 10.975° 0.249m, 14.316° 0.065m, 5.012° 0.075m, 8.761° 0.056m, 3.233° 0.066m, 4.417°

Table 3.4: Comparison between our First model architecture (Section 3.2.1)results and the results from PoseNet Kendall et al. (2015), Bayesian PoseNetKendall and Cipolla (2016) and SP-LSTM Nguyen et al. (2019).The evaluation is performed using the novel split protocol. Rows indicatethe 3 event sequences of the real dataset of the novel split protocol(Section 3.3.1).
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PoseNet Bayesian PoseNet SP-LSTM OursMedian Error Average Error Median Error Average Error Median Error Average Error Median Error Average Errorshapes rotation 0.109m, 7.388° 0.137m, 8.812° 0.142m, 9.557° 0.164m, 11.312° 0.025m, 2.256° 0.028m, 2.946° 0.018m, 1.753° 0.020m, 2.551°shapes translation 0.238m, 6.001° 0.252m, 7.519° 0.264m, 6.235° 0.269m, 7.585° 0.035m, 2.117° 0.039m, 2.809° 0.033m, 2.211° 0.036m, 2.717°box translation 0.193m, 6.977° 0.212m, 8.184° 0.190m, 6.636° 0.213m, 7.995° 0.036m, 2.195° 0.042m, 2.486° 0.029m, 1.507° 0.032m, 1.693°dynamic 6dof 0.297m, 9.332° 0.298m, 11.242° 0.296m, 8.963° 0.293m, 11.069° 0.031m, 2.047° 0.036m, 2.576° 0.027m, 1.802° 0.029m, 2.394°hdr poster 0.282m, 8.513° 0.296m, 10.919° 0.290m, 8.710° 0.308m, 11.293° 0.051m, 3.354° 0.060m, 4.220° 0.040m, 2.937° 0.051m, 3.783°poster translation 0.266m, 6.516° 0.282m, 8.066° 0.264m, 5.459° 0.274m, 7.232° 0.036m, 2.074° 0.041m, 2.564° 0.036m, 2.045° 0.039m, 2.315°Average 0.231m, 7.455° 0.246m, 9.124° 0.241m, 7.593° 0.254m, 9.414° 0.036m, 2.341° 0.041m, 2.934° 0,030m, 2.204° 0.034m, 2.708°

Table 3.5: Comparison between the results from our Second architecturebased on bilinear pooling 3.2.2 and the results of PoseNet Kendall et al.(2015), Bayesian PoseNet Kendall and Cipolla (2016) and SP-LSTM Nguyenet al. (2019).The evaluation is performed using the random split protocol.

in Table 3.3, our method outperforms existing methods across all tasks.
Notably, in the shapes rotation and dynamic 6dof scenarios, our method
reduces the median error to 0.012m and 0.016m, respectively, with corre-
sponding average errors also being the lowest among the compared meth-
ods. This improvement is indicative of our method’s robustness to rota-
tional variations and dynamic conditions.

The novel split protocol1, outlined in Table 3.4, further validates the
robustness of our approach. While the difficulty of the tasks increases, our
method consistently maintains lower median and average errors. For in-
stance, in the shapes 6dof task, our method achieves a median error of
0.071m, which is a significant reduction from the PoseNet’s 0.320m median
error. This highlights the capability of our approach to generalize well to
novel data distributions. Across both protocols, our method demonstrates
superior accuracy in both median and average error metrics. The results
indicate that our method not only excels in capturing the translational as-
pects of pose estimation but also significantly improves the rotational ac-
curacy, which is often more challenging to predict.

The average error reduction in the dynamic 6dof task, for example,
from 9.124° to 1.994° in the random split, and from 13.887° to 4.417° in the
novel split, showcases our method’s proficiency in handling complex mo-
tion patterns. Moreover, the consistent performance across different test
conditions underscores the method’s adaptability and reliability.
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PoseNet Bayesian PoseNet SP-LSTM OursMedian Error Average Error Median Error Average Error Median Error Average Error Median Error Average Errorshapes rotation 0.201m, 12.499° 0.214m, 13.993° 0.164m, 12.188° 0.191m, 14.213° 0.045m, 5.017° 0.049m, 11.414° 0.050, 3.681° 0.053m, 6.823°shapes translation 0.198m, 6.969° 0.222m, 8.866° 0.213m, 7.441° 0.228m, 10.142° 0.072m, 4.496° 0.081m, 5.336° 0.062m, 4.554° 0.068m, 5.854°shapes 6dof 0.320m, 13.733° 0.330m, 18.801° 0.326m, 13.296° 0.329m, 18.594° 0.078m, 5.524° 0.095m, 9.532° 0.071m, 5.787° 0.091m, 7.550°Average 0.240m, 11.067° 0.255m, 13.887° 0.234m, 10.975° 0.249m, 14.316° 0.065m, 5.012° 0.075m, 8.761° 0.061m, 3.448° 0.070m, 6.742°

Table 3.6: Comparison between the results from our Second architecturebased on bilinear pooling 3.2.2 and the results of PoseNet Kendall et al.(2015), Bayesian PoseNet Kendall and Cipolla (2016) and SP-LSTM Nguyenet al. (2019).The evaluation is performed using the novel split protocol.
Results from the Dual-CNN with Bilinear Pooling
Now we move to our bilinear pooling approach 3.2.2 heralds significant
progress in the domain of pose estimation, showcasing considerable en-
hancements over contemporary state-of-the-art methodologies. This sec-
tion presents the empirical outcomes using random split and novel split
protocols, accentuating the efficacy of our bilinear pooling technique.

The random split evaluation, given in Table 3.5, illustrates our method’s
superior performance compared to existing models. Our approach no-
tably excels in handling various pose estimation challenges, such as shapes
rotation and dynamic 6dof, where it significantly lowers the median error
to 0.018m and 0.027m, respectively. These results not only underscore the
precision of our technique but also its adeptness in managing rotational
dynamics and motion complexities.

Our bilinear pooling method surpasses the state-of-the-art methods
across all evaluated tasks in the random split protocol. It achieves the
lowest average errors, highlighting its capacity for precise pose estima-
tion. The significant reduction in errors, such as in the dynamic 6dof task
where the average error is minimized to 2.394°, illustrates our method’s
proficiency in accurately capturing complex motions.

The consistent outperformance against methods like PoseNet, Bayesian
PoseNet, and SP-LSTM not only attests to the robustness of our approach
but also its effectiveness in diverse conditions, ranging from static shapes
to dynamic environments.

Through meticulous evaluation, our bilinear pooling approach sets a
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new benchmark in the realm of pose estimation, demonstrating substan-
tial reductions in error rates and consistent accuracy across diverse testing
scenarios. This progress underscores the innovative design of our method
and its potential to significantly enhance the precision and reliability of
real-time 6DOF pose estimation technologies. Comparable to the achieve-
ments of other methods in the field, our approach not only showcases the
ability to accurately estimate poses in real-time scenarios but also high-
lights the efficacy of bilinear pooling in achieving these improvements. This
advancement reflects the proposed methods capacity to push the bound-
aries of current pose estimation capabilities.

Results from the improved Bilinear pooling
We present the results from our third architecture, the improved bilin-
ear pooling model discussed in Section 3.2.3, shown in Table 3.7. This ta-
ble compares our performance with PoseNet Kendall et al. (2015) and SP-
LSTM Nguyen et al. (2019) using the random split protocol. Notably, the im-
proved bilinear pooling architecture exhibits enhanced results compared
to the previous model with dual-CNN and bilinear pooling. However, these
results are still slightly below the performance of our first model, the CNN-
LSTM-Dense Model. This can be attributed to the meticulous search and
optimization process employed for the first model, which explored various
CNN backbones and LSTM configurations. In contrast, the focus here was
specifically on improving the dual-CNN with bilinear pooling. It is worth
noting that despite this, our model continues to outperform state-of-the-
art methods, indicating its effectiveness in event-based pose estimation
tasks.
Results from the Transformer-Based Model with Self-Attention
The fourth model, the Transformer-Based Model with Self-Attention ar-
chitecture, marks a significant departure from traditional CNN-based ap-
proaches. This model introduces a Transformer-based approach with a
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PoseNet SP-LSTM OursMedian Error Average Error Median Error Average Error Median Error Average Errorshapes rotation 0.109m, 7.388° 0.137m, 8.812° 0.025m, 2.256° 0.028m, 2.946° 0.014m, 1.952° 0.017m, 2.144°shapes translation 0.238m, 6.001° 0.252m, 7.519° 0.035m, 2.117° 0.039m, 2.809° 0.020m, 1.396° 0.027m, 1.835°box translation 0.193m, 6.977° 0.212m, 8.184° 0.036m, 2.195° 0.042m, 2.486° 0.024m, 1.132° 0.026m, 1,219°dynamic 6dof 0.297m, 9.332° 0.298m, 11.242° 0.031m, 2.047° 0.036m, 2.576° 0.025m, 1.730° 0.028m, 2.267°hdr poster 0.282m, 8.513° 0.296m, 10.919° 0.051m, 3.354° 0.060m, 4.220° 0.038m, 2.154° 0.047m, 2,686°poster translation 0.266m, 6.516° 0.282m, 8.066° 0.036m, 2.074° 0.041m, 2.564° 0.024m, 1.557° 0.032m, 1.959°Average 0.231m, 7.455° 0.246m, 9.124° 0.036m, 2.341° 0.041m, 2.934° 0.024m, 1.653° 0.029m, 1.951°

Table 3.7: Comparison between results from our third architecture (im-proved bilinear pooling) Section 3.2.3 and the results of PoseNet Kendallet al. (2015) and SP-LSTM Nguyen et al. (2019). The evaluation is performedusing the random split protocol.
PoseNet SP-LSTM OursMedian Error Average Error Median Error Average Error Median Error Average Errorshapes rotation 0.201m, 12.499° 0.214m, 13.993° 0.045m, 5.017° 0.049m, 11.414° 0.029m, 3.281° 0.038m, 5.713°shapes translation 0.198m, 6.969° 0.222m, 8.866° 0.072m, 4.496° 0.081m, 5.336° 0,060m, 4,033° 0,067m,4,943°shapes 6dof 0.320m, 13.733° 0.330m, 18.801° 0.078m, 5.524° 0.095m, 9.532° 0.068m, 4.886° 0.081m, 6.653°Average 0.240m, 11.067° 0.255m, 13.887° 0.065m, 5.012° 0.075m, 8.761° 0.052m, 4.066° 0.062m, 5,769°

Table 3.8: Comparison between results from our third architecture (im-proved bilinear pooling) 3.2.3 and the results of PoseNet Kendall et al.(2015) and SP-LSTM Nguyen et al. (2019). The evaluation is performed usingthe novel split protocol.

self-attention mechanism, where a feature map from a CNN is passed through
a Transformer encoder. This encoder generates a context-aware repre-
sentation for each event patch, considering information not only from the
corresponding event but also from others in the sequence, thereby captur-
ing global dependencies. This strategic shift toward a Transformer-based
model with self-attention reflects our intent to explore more advanced ar-
chitectures capable of modeling long-range dependencies and interactions
among event patches, potentially leading to improved pose estimation ac-
curacy. Tables 3.9 and 3.10 present the results from our fourth model us-
ing the random split protocol and the novel split protocol, respectively.
The Transformer-Based Model with Self-Attention compares favorably to
different state-of-the-art methods, particularly for camera orientation es-
timation, although it exhibits slightly lower performance than our CNN-
LSTM-Dense model. We attribute this to the limited quantity of training
data available for training the transformer-based model. These models
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PoseNet Bayesian PoseNet SP-LSTM OursMedian Error Average Error Median Error Average Error Median Error Average Error Median Error Average Errorshapes rotation 0.109m, 7.388° 0.137m, 8.812° 0.142m, 9.557° 0.164m, 11.312° 0.025m, 2.256° 0.028m, 2.946° 0.020m, 1.893° 0.025m, 2.591°shapes translation 0.238m, 6.001° 0.252m, 7.519° 0.264m, 6.235° 0.269m, 7.585° 0.035m, 2.117° 0.039m, 2.809° 0.035m, 2.321° 0.032m, 2.523°box translation 0.193m, 6.977° 0.212m, 8.184° 0.190m, 6.636° 0.213m, 7.995° 0.036m, 2.195° 0.042m, 2.486° 0.032m, 1.977° 0.041m, 1.825°dynamic 6dof 0.297m, 9.332° 0.298m, 11.242° 0.296m, 8.963° 0.293m, 11.069° 0.031m, 2.047° 0.036m, 2.576° 0.031m, 1.912° 0.042m, 2.594°hdr poster 0.282m, 8.513° 0.296m, 10.919° 0.290m, 8.710° 0.308m, 11.293° 0.051m, 3.354° 0.060m, 4.220° 0.042m, 2.945° 0.059m, 3.883°poster translation 0.266m, 6.516° 0.282m, 8.066° 0.264m, 5.459° 0.274m, 7.232° 0.036m, 2.074° 0.041m, 2.564° 0.038m, 2.145° 0.040m, 2.415°Average 0.231m, 7.455° 0.246m, 9.124° 0.241m, 7.593° 0.254m, 9.414° 0.036m, 2.341° 0.041m, 2.934° 0,031m, 2.198° 0.039m, 2.638°

Table 3.9: Comparison between results from our fourth architecture(transforms-based) 3.2.4 and the results of PoseNet Kendall et al. (2015),Bayesian PoseNet Kendall and Cipolla (2016) and SP-LSTM Nguyen et al.(2019). The evaluation is performed using the random split protocol.
PoseNet Bayesian PoseNet SP-LSTM OursMedian Error Average Error Median Error Average Error Median Error Average Error Median Error Average Errorshapes rotation 0.201m, 12.499° 0.214m, 13.993° 0.164m, 12.188° 0.191m, 14.213° 0.045m, 5.017° 0.049m, 11.414° 0.049, 3.581° 0.048m, 6.901°shapes translation 0.198m, 6.969° 0.222m, 8.866° 0.213m, 7.441° 0.228m, 10.142° 0.072m, 4.496° 0.081m, 5.336° 0.064m, 4.685° 0.071m, 5.384°shapes 6dof 0.320m, 13.733° 0.330m, 18.801° 0.326m, 13.296° 0.329m, 18.594° 0.078m, 5.524° 0.095m, 9.532° 0.072m, 5.875° 0.093m, 7.652°Average 0.240m, 11.067° 0.255m, 13.887° 0.234m, 10.975° 0.249m, 14.316° 0.065m, 5.012° 0.075m, 8.761° 0.061m, 4.713° 0.070m, 6.645°

Table 3.10: Comparison between results from our fourth architecture(transforms-based) 3.2.4 and the results of PoseNet Kendall et al. (2015),Bayesian PoseNet Kendall and Cipolla (2016) and SP-LSTM Nguyen et al.(2019). The evaluation is performed using the novel split protocol.
are known to be data hungry, and we anticipate that higher performance
could be achieved with a larger training dataset. It’s worth noting that
our bilinear and improved bilinear pooling methods could potentially be
combined with the transformer-based methods, which might further en-
hance the model’s performance. However, we halted our search for the
best model architecture configuration as we have already achieved supe-
rior performance compared to the state-of-the-art. Our current focus is
now shifting towards the analysis of raw event data rather than event im-
ages.

3.4 Conclusion
This chapter introduced a pioneering approach to processing images cap-
tured by event cameras, leveraging their unique ability to record pixel in-
tensity changes as events rather than frames. The method presented ex-
ploits the high temporal resolution and low latency of event cameras through
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Figure 3.10: A comparison of the proposed method performance.

an innovative technique that transforms the event stream into interpretable
"event images" using spatial and temporal binning.

Furthermore, we introduced the utilization of deep learning models
to process these event images, presenting four distinct model architec-
tures: (1) CNN-LSTM-Dense Model, (2) Dual-CNN with Bilinear Pooling, (3)
Improved Bilinear Pooling, and (4) Transformer-Based Model with Self-Attention.
A series of experiments were conducted on various synthetic and real datasets,
demonstrating the effectiveness and superiority of the proposed models
over state-of-the-art methods. The proposed models that performs the
best over all proposed ones in the CNN-LSTM-Dense Model. We believe
this is because we conducted an intensive investigation to identify the op-
timal CNN architecture for extracting relevant features. The LSTM serves
as a spatial LSTM that combines the features extracted by the CNN. This
approach also enhances the global features, as the LSTM captures redun-
dancy and correlations between features.

Building upon these foundations, the next phase of our exploration will
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focus on a compelling alternative approach. In the upcoming chapter, we
will shift our attention to the direct application of deep learning methods
on raw event data, bypassing the intermediate step of converting events
into event images.
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Chapter 4
Pose Estimation From raw event
data
4.1 Introduction
In this chapter, our primary focus is on an in-depth exploration of deep
learning architectures that possess a unique capability: the ability to rea-
son about raw, unprocessed events that are represented as point clouds.
Traditional convolutional architectures have been highly effective in han-
dling input data with a well-defined and regular structure, such as images
arranged in grids or 3D voxel representations. These regular formats facili-
tate weight sharing and optimizations within convolutional kernels, leading
to efficient feature extraction.

However, when dealing with events – which are essentially discrete oc-
currences in time and space – the data lacks this inherent regularity. As
a result, the conventional approach often involves a preprocessing step,
where the event data is transformed into a more regular format like 3D
voxel grids or collections of images. This transformation allows the use of
existing deep neural network architectures, which are designed to oper-
ate on structured input formats. As discussed in the previous chapter, this
preprocessing step involves converting the event data into a compatible
representation prior to inputting it into the neural network.

91



92 CHAPTER 4. POSE ESTIMATION FROM RAW EVENT DATA
Unfortunately, this conversion process comes with certain drawbacks.

One significant concern is the potential expansion of data volume. Con-
verting event data into voxel grids or image collections can lead to a sub-
stantial increase in the amount of data being processed, which may impact
computational efficiency and memory requirements.

Moreover, this transformation introduces a risk of introducing quanti-
zation artifacts. Quantization involves discretizing continuous data into a
finite number of levels, which can lead to loss of information and fidelity in
the original data. In the context of event data, such quantization artifacts
can obscure the natural invariances and nuanced patterns that exist within
the raw event representation. This, in turn, might hinder the performance
of the deep learning model and limit its ability to capture the true essence
of the data.

Therefore, the central theme of this chapter is to propose an innova-
tive and alternative approach to handling event data. Specifically, our fo-
cus shifts towards utilizing point clouds as the input representation for
deep learning architectures. Point clouds, which are collections of indi-
vidual data points each carrying information about an event’s location and
possibly other attributes, provide a more direct and unadulterated repre-
sentation of the event data. By directly working with point clouds, we aim
to bypass the need for the data transformation steps that can lead to un-
necessary data volume expansion and quantization artifacts.

In essence, this chapter delves into the exploration of deep learning
methodologies that can effectively operate on raw event data in the form
of point clouds. By embracing the inherent characteristics and irregulari-
ties of event data, we aspire to develop architectures that can capture the
true essence of these unprocessed occurrences, thereby potentially lead-
ing to more accurate and meaningful insights from the data. Through our
investigation, we aim to demonstrate the advantages and challenges of uti-
lizing point clouds as an alternative input representation for deep learning
models, ultimately contributing to the advancement of understanding and
leveraging event data in various applications.
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4.2 Problem Statement
Traditional cameras, as presented in the previous chapters, capture im-
ages by sampling the intensity of light at fixed time intervals, resulting in
a sequence of frames. On the other hand, event cameras operate based
on the principle of temporal contrast, where they detect changes in pixel
intensity (brightness) asynchronously and independently. This means that
they only transmit information when there is a significant change in the
scene, such as motion or lighting changes. Each of these events is charac-
terized by its pixel location (x, y), a timestamp t, and a polarity (indicating
whether the change is a brightness increase or decrease).

The proposed approach introduces a deep learning framework designed
specifically to work with data captured by event cameras. The key inno-
vation is that instead of representing each event as a separate entity, it
suggests treating each event as a 3D point (x, y, t). In this representation,
x and y still correspond to the pixel coordinates, while t represents the
timestamp of the event.

By treating events as 3D points, the framework can take advantage of
existing deep learning architectures that are designed to process 3D point
sets. This is a departure from traditional approaches that often involve
converting event data into image sequences or applying specialized event-
based processing algorithms.

4.3 Network architecture
Our network draws inspiration from the PointNet architecture Qi et al.
(2017) initially designed for point cloud classification. However, a key dis-
tinction lies in our approach, as we leverage a valuable attribute inherent
to our event point cloud data: its temporal order.



94 CHAPTER 4. POSE ESTIMATION FROM RAW EVENT DATA
4.3.1 PointNet architecture
PointNet Qi et al. (2017) is a deep learning architecture designed for pro-
cessing and understanding point cloud data, which is commonly used in
3D data applications like computer vision and robotics Jiang et al. (2020).

1. PointNet takes a set of points {x1, x2, ..., xn}, each represented by its
3D coordinates, as input. These points are typically sampled from a
3D scene.

2. The first step in PointNet is to embed each point into a higher-dimensional
space to capture local and global features. This is achieved through a
shared multi-layer perceptron (MLP) applied independently to each
point:

fMLP : R3 → Rk

The output of this MLP is a new feature vector {fMLP(x1), fMLP(x2), ..., fMLP(xn)}
for each point.

3. To capture global features from the entire point set, PointNet aggre-
gates information from all the point embeddings. This is done by
taking the max or average over all the point embeddings:

g = MAX/AVERAGE {fMLP(x1), fMLP(x2), ..., fMLP(xn)}

The resulting global feature g summarizes the entire point cloud.
4. PointNet then applies another MLP to each point’s embedding to fur-

ther refine the features:
f ′MLP : Rk → Rd′

{f ′MLP(fMLP(x1)), f
′MLP(fMLP(x2)), ..., f

′MLP(fMLP(xn))}

5. The refined point-wise features are aggregated to form a global fea-
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ture vector ĝ:
ĝ = MAX/AVERAGE {f ′MLP(fMLP(x1)), f

′MLP(fMLP(x2)), ..., f
′MLP(fMLP(xn))}

This global feature ĝ captures the higher-level representation of the
entire point cloud.

6. Finally, the global feature ĝ is fed into a fully connected layer for clas-
sification or regression:

y = FC(ĝ)
Where y represents the predicted class probabilities (for classifica-
tion) or continuous outputs (for regression).

PointNet distinguishes itself by directly handling point cloud data, devi-
ating from models that first convert points into images. The shared multi-
layer perceptron (MLP) fMLP within the PointNet architecture embeds the
coordinates of each 3D point into a higher-dimensional feature space, form-
ing the foundation for detailed feature extraction within the point cloud.
Through subsequent global feature aggregation steps, whether through
MAX or AVERAGE operations, PointNet synthesizes these point embed-
dings, capturing overarching trends across the entirety of the point cloud.
The point-wise feature learning MLP f ′MLP then refines these representa-
tions, iteratively enhancing context-specific details. Following this refine-
ment, another round of global feature aggregation amalgamates the re-
fined point-wise features into a coherent global feature vector ĝ. Finally,
the classification/regression head translates these enriched feature repre-
sentations into actionable outputs, showcasing PointNet’s comprehensive
approach from initial transformation to final output. This process under-
scores the significant computational prowess of PointNet in effectively pro-
cessing and interpreting 3D point cloud data.
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4.3.2 Adapting PointNet for event camera pose estima-

tion
Adapting the PointNet architecture to work with processed event camera
data involves modifying the network architecture to handle the unique
characteristics of event data, its temporal nature and sparsity.

Temporal Integration: Event data is inherently temporal, capturing
changes in the scene over time. To incorporate this temporal aspect, we
considered using recurrent neural network (RNN) layers such as Long Short-
Term Memory (LSTM) after the PointNet layers. These recurrent layers can
capture the sequential dependencies in the event frames and help the net-
work understand the motion and dynamics in the scene.

PointNet Layers: The core of your architecture will still be based on
PointNet layers. However, since our data now consists of event points with
three coordinates (x, y, t), we need to modify the input channels of the net-
work accordingly. Instead of using traditional 3D coordinates (x, y, z), we
used (x, y, t) as the coordinates for each point. We represent the point
cloud as a 3D tensor of shape (num_points, 3), where each row corre-
sponds to a point’s (x, y, t) coordinates.

PointNet is designed to work with unordered point sets, but event data
arrives in a stream with timestamps. To account for this, the adaptation
might involve grouping events that occur within a short time interval into
"event frames." Each event frame captures a snapshot of the scene’s changes
during that time window. These event frames can then be treated as point
sets, and the initial PointNet layers process them to extract local features.

After the initial PointNet processing, the extracted features from each
event frame is fed into the LSTM layers. The LSTM units can then capture
the temporal patterns and dependencies between event frames. This al-
lows the network to learn the underlying motion patterns and dynamics
present in the event data, which is crucial for our camera pose estimation
task.
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Predicting Poses and loss functions: The final layers of our adapted

architecture is responsible for predicting the camera poses. We used fully
connected layers to map the extracted features to pose parameters. We
have defined an appropriate loss function that captures the pose estima-
tion task. This involves a combination of translation and rotation losses.
We used the mean squared error (MSE) for translation and quaternion loss
for rotation.

Figure 4.1: An advanced neural network architecture designed for pose es-timation from raw event data.At its core is the Event Point Cloud Representation that inputs 3D tensorsrepresenting spatial and temporal event data. The network employsShared MLPs for extracting local features from each event point, followedby Max Pooling for feature aggregation. It then integrates temporaldynamics using LSTM layers, culminating in a Pose Prediction modulethat outputs the estimated camera pose. This architecture uniquelycombines PointNet’s spatial processing with LSTM’s temporal modeling

4.4 Experiments and results
The evaluation of our event camera pose estimation method using Point-
Net on the hdr_poster dataset, as depicted in Figure 4.2, showcases com-
pelling results. When examining the median error of translation, our method
emerges as the frontrunner, surpassing the performance of state-of-the-
art methods. This heightened precision is particularly noteworthy, with our
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method exhibiting approximately one centimeter higher accuracy in cam-
era translation compared to existing approaches. This improved precision
is crucial in applications where accurate spatial positioning is paramount,
such as augmented reality and robotic navigation.

Moving on to Figure 4.3, which illustrates the median error of rotation,
we observe a similar trend. Our method consistently outperforms other
state-of-the-art methods, demonstrating its robustness and accuracy in es-
timating rotational poses. This aspect is crucial for applications requiring
precise orientation determination, such as 3D scene reconstruction and
object manipulation tasks.

Furthermore, Figure 4.4 and Figure 4.5 provides insights into the mean
and deviation of the translation/orientation error between the ground truth
and the predicted translation/orientation. Here again, our method shines,
showcasing lower mean errors and tighter error distributions compared
to competing methods. This indicates that our approach not only achieves
higher accuracy in individual predictions but also maintains a more consis-
tent performance across different translation and orientation estimations.

These results highlight the effectiveness and superiority of our pro-
posed event camera pose estimation method using PointNet. By lever-
aging the capabilities of PointNet and its ability to directly process point
cloud data, we have achieved remarkable accuracy in both translation and
rotation estimation. These findings bode well for real-world applications
where precise and reliable camera pose estimation is paramount for tasks
ranging from robotics to augmented reality experiences.

4.5 Conclusion
The proliferation of event cameras has ushered in an exciting frontier in
computer vision. Unlike traditional cameras, which operate on periodic
sampling, event cameras respond to dynamic changes in the environment.
This results in data that is not just high in temporal resolution but also
intrinsically adaptive to the scene’s dynamics.
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Figure 4.2: Median error of translation for the hdr_poster dataset.

Figure 4.3: Median error of rotation for the hdr_poster dataset.



100 CHAPTER 4. POSE ESTIMATION FROM RAW EVENT DATA

Figure 4.4: Distribution of translation error.

Figure 4.5: Distribution of rotation error.
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However, this novel data format also presents fresh challenges. Con-

ventional neural architectures, groomed to devour structured, grid-like data,
are caught off-foot by the erratic and asynchronous nature of event data.
This is where the allure of preprocessing comes in. But, as with any trans-
lation, converting raw events into more digestible formats risks loss of nu-
ances and introduces complexities that could be avoided.

The beauty of our approach lies in its simplicity and directness. By
adapting PointNet, we are acknowledging and preserving the inherent na-
ture of event data. We are not trying to retrofit the data into pre-existing
paradigms but are reshaping our tools to understand this new kind of
information. The spatial intricacies captured by PointNet are beautifully
complemented by the temporal modeling prowess of LSTMs, creating a
harmony between space and time.

What this endeavor underscores is the flexibility and potential of deep
learning. Neural networks, often criticized for being black boxes, here show-
case their capability to evolve, adapt, and cater to unconventional data
sources. It’s a testament to the philosophy that rather than forcing data to
fit our models, we can, and should, mold our models to respect the essence
of the data.

In conclusion, the interplay between event cameras and deep learning
is still in its nascent stages. Yet, the early results are promising and indica-
tive of the vast possibilities ahead. We envision a future where event-based
data processing becomes the norm rather than the exception, powering
applications in robotics, augmented reality, and beyond. Our work is just
a stepping stone in this expansive journey, and we eagerly invite the com-
munity to join us in this exploration
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Chapter 5
Conclusion and Future Work
In this thesis, we have made significant contributions to the field of event
camera pose estimation using deep learning techniques. Our work has
aimed to push the boundaries of accuracy and efficiency in camera pose
estimation by leveraging the unique characteristics of event data. The key
contributions of this thesis can be summarized as follows:

Firstly, we provided a thorough overview of the background informa-
tion and related works, laying a solid foundation and contextual under-
standing of event camera pose estimation. This served as the starting point
for our exploration into novel deep learning approaches tailored for event
camera pose estimation.

Secondly, we introduced methods to map event data to image-like data,
enabling the application of dedicated deep learning approaches. This map-
ping process was crucial in effectively utilizing the rich event information
for camera pose estimation.

Thirdly, we proposed a groundbreaking approach that directly applies
deep learning techniques to raw event data, treating it as a point cloud
rather than converting it into images. This innovative method allowed for
an end-to-end learning process, harnessing the complete information cap-
tured by the event camera.

Our main focus was the development and evaluation of four distinct
model architectures for event-based pose estimation. The first model com-
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bined a Convolutional Neural Network (CNN) for feature extraction, a Long
Short-Term Memory (LSTM) for capturing spatial dependencies, and a dense
fully connected layer for 6-DoF pose estimation. The second model uti-
lized two CNNs with bilinear pooling for improved performance, while the
third model introduced improved bilinear pooling with matrix function nor-
malization. Lastly, the fourth model employed a self-attention mechanism
with a Transformer encoder, generating a context-aware representation
for event patches.

We conducted a series of experiments using diverse evaluation proto-
cols, and the results were promising, showcasing the superiority of our
proposed approaches compared to state-of-the-art methods. Our models
exhibited impressive accuracy and efficiency in estimating camera poses
from event data.

In Chapter 4, we delved into our novel approach of directly applying
deep learning techniques to raw event data, treating it as a point cloud.
This approach aimed to unlock the full potential of event data, enabling
accurate camera pose estimation through an end-to-end learning process.
Our experiments yielded promising results, indicating the vast potential of
this approach.

This thesis has significantly advanced the field of event camera pose
estimation by introducing novel deep learning approaches and model ar-
chitectures. By effectively harnessing the unique characteristics of event
data and employing state-of-the-art deep learning techniques, we have
achieved remarkable accuracy and efficiency in camera pose estimation.
The contributions of this thesis pave the way for further advancements in
event-based vision systems, offering new avenues for research and devel-
opment in this exciting field.

Future Work
While our research has achieved significant milestones in event camera

pose estimation, the field offers numerous avenues for future exploration
and enhancement:
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Hybrid Architectures: Combining the strengths of PointNet with other

neural network architectures presents an exciting opportunity. Hybrid mod-
els could potentially leverage the robust feature learning of PointNet along-
side the spatial hierarchies of CNNs or the sequential memory of LSTM
networks, resulting in a more potent model with enhanced performance.

Real-time Applications: Having established the efficacy of our model,
the next step is its deployment in real-time applications. Industries such
as augmented reality (AR), virtual reality (VR), robotics, and drone naviga-
tion could greatly benefit from a fast and accurate camera pose estimation
system. Integrating our model into these applications could pave the way
for innovative solutions in these domains.

Extended Datasets: To further bolster the robustness and generaliza-
tion capabilities of our model, training on larger and more diverse datasets
is crucial. These datasets could encompass various environmental condi-
tions, lighting scenarios, and camera types, ensuring that the model can
effectively handle a wide range of real-world scenarios.

Model Compression and Optimization: With the rise of edge computing
and mobile platforms, there is a growing demand for lightweight models
that can deliver accurate results without requiring substantial computa-
tional resources. Exploring techniques for model compression and opti-
mization could make our pose estimation model more accessible and effi-
cient for deployment on resource-constrained devices.

Incorporating Uncertainty: An important aspect of model reliability is
the ability to quantify uncertainty. By incorporating Bayesian Neural Net-
works or other uncertainty quantification methods, our model can not only
provide predictions but also offer insights into the confidence or uncer-
tainty associated with those predictions. This could be invaluable in critical
applications where understanding the model’s level of certainty is essential
for decision-making.

The future of event camera pose estimation holds exciting possibilities.
By exploring these avenues for improvement, we can continue to advance
the field, creating more robust, efficient, and reliable models that can be
seamlessly integrated into a wide range of applications.
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