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Plus particulièrement, les membres de l’équipe Probabilités et Statistiques ainsi que mes collègues
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Chapter 1

Introduction

Accurate weather prediction is crucial in various fields (e.g., renewable energy, transport net-
works or farming) for both decision-making and its financial impact (Palmer, 2002). Proba-
bilistic forecasts are an essential component of optimal decision-making as they quantify the
uncertainty of the prediction (Gneiting and Katzfuss, 2014). In weather forecasting, statistical
postprocessing is necessary to produce calibrated and sharp probabilistic forecasts from ensem-
ble prediction systems. This thesis focuses on three different aspects of statistical postprocess-
ing: theoretical convergence rates, grid-based postprocessing of precipitation and verification of
spatial probabilistic forecasts.

This thesis was conducted in collaboration with Météo-France via the direct supervision of
Maxime Taillardat but also through exchanges with other members of Météo-France and the
use of their high-performance computing resources.

Statistical postprocessing methods use the output of a physical model to improve the pre-
diction of a variable of interest. Scoring rules are used for probabilistic forecast verification to
measure and compare the predictive performance of competing forecasts. This thesis studies
different aspects of statistical postprocessing and verification of probabilistic forecasts.

• From a theoretical point of view, only limited results are available regarding the conver-
gence of postprocessing methods. Chapter 2 (Pic et al., 2023) is a theoretical contribution
that focuses on the optimal minimax rate of convergence for the theoretical risk associated
with the continuous ranked probability score.

• In weather forecast applications, spatial forecasts are ubiquitous. However, the random
forest-based methods that are used operationally to postprocess forecasts at Météo-France
do not really take into account the spatial setting. Furthermore, they suffer from storage
memory voracity and an inability to extrapolate. In Chapter 3 (Pic et al., 2024b), we
propose a U-Net-based distributional regression method to postprocess ensembles circum-
venting storage memory voracity while achieving a predictive performance comparable to
state-of-the-art methods.

• Regarding probabilistic forecast verification, no single scoring rule is able to provide an
ideal assessment of the predictive performance of forecasts, and thus, different scoring
rules should be used to understand it. This statement is even more important in a spatial
forecast verification setting as predictive performance is subject to complex characteristics.
With that in mind, interpretable scoring rules are powerful tools facilitating forecast
verification. Chapter 4 (Pic et al., 2024a) presents how aggregation and transformation
principles can be used to construct interpretable proper multivariate scoring rules.

In addition, Chapter 5 provides perspectives on the works composing this PhD thesis.
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The remainder of this chapter is organized as follows. Section 1.1 introduces the context
necessary to the comprehension of the contribution of this thesis. Section 1.2, Section 1.3 and
Section 1.4 summarize works related in Chapter 2, Chapter 3 and Chapter 4, respectively. Sec-
tion 1.5 briefly summarizes the works related in Appendix A and Appendix B.

1.1 General introduction

1.1.1 Uncertainty in deterministic systems modeling and ensemble forecasts

An intuitive approach to weather prediction is to consider that the physics of the atmosphere is
governed by a set of deterministic nonlinear differential equations (Bjerknes, 2009). However,
in the 1960s, Lorenz (1963) has shown that the atmosphere is a chaotic system characterized
by multiple sources of uncertainty (see Wilks and Vannitsem 2018 for more details).

Sensitivity to initial conditions combined with initial conditions uncertainty represents a
major source of uncertainty for weather prediction. Initial conditions uncertainty arises from
various aspects, such as the combination of different types of observations and the varying
quality and coverage depending on the variable of interest, location, and mean of measurement.
For example, as used in Chapter 3, radar-based precipitation measurement quality depends
on the distance to the instrument and the underlying orography (see, e.g., Germann et al.
2022). The field of data assimilation is dedicated to the combination of different sources of
data to provide well-suited initial conditions for numerical weather prediction (NWP) systems.
Additionally, in practice dynamical weather forecast models do not perfectly describe the true
dynamics. First, the model might provide an incorrect modelization of the phenomena at play.
Second, all NWP systems are incomplete due to spatial and temporal discretization and the
parametrization of unresolved physical processes.

Moreover, the atmosphere has a flow-dependent predictability, meaning that the propaga-
tion of initial condition uncertainty depends on the state of the system. This causes forecast
errors to fluctuate across the globe and depending on the variable of interest but also from
one day to another (Buizza, 2018). These limitations also affect other physical models such as
climate models and hydrology models.

Ensemble forecasts have been developed as a means to try to capture model uncertainties.
However, choosing a well-suited ensemble is challenging, as random sampling based on a range
of possible outcomes does not lead to an informative ensemble. Moreover, a large number of
members may be appealing but computationally expensive, and an increase in resolution is of-
ten preferred as it enables resolving processes at finer scales. In order to sample a system with
millions of degrees of freedom with few tens of members, different approaches have proven to
be capable of representing model uncertainties: multimodel approaches, perturbed approaches,
perturbed-tendency approaches, stochastic back-scatter approaches, and combinations of them.
Readers may refer to Buizza (2018) for a historical overview of the use of ensemble forecasting.

Regardless of the continuous improvement of NWP systems over the past decades (Bauer
et al., 2015), the improvement of near-surface variables’ predictive performance is slower than
that of variables higher in the atmosphere (Buizza, 2018). Ensemble forecasts issued from NWP
systems suffer from bias and underdispersion. This phenomenon affects all NWP systems re-
gardless of the weather service and of the physical variable of interest. As the dynamical systems
they rely on, ensemble forecast errors vary depending on the variable of interest and the region
of interest. Moreover, the increase in lead time (i.e., time between when a forecast is issued and
its validity) is associated with a decrease in predictability. As these errors are systematic they
can be corrected by statistical approaches called statistical postprocessing methods.
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1.1.2 Statistical postprocessing

Statistical postprocessing methods aim to use previous pairs of the raw ensemble and observa-
tions to improve prediction of a variable of interest. The raw ensemble denotes the unprocessed
(i.e., raw) ensemble output of NWP systems. As the aim is to provide forecasts that are infor-
mative to end-users, forecasts should be probabilistic forecasts. Probabilistic forecasts provide
a prediction in the form of a probability distribution. This enables the quantification of the
prediction uncertainty, ensuring optimal decision-making (Gneiting and Katzfuss, 2014). The
raw ensemble is a probabilistic forecast as it can be interpreted as an empirical distribution
where all members have the same probability. Probabilistic forecasts can take the form of any
formulation able to describe the whole probability distribution. In a univariate setting, they
can take the form of a probability density function, a cumulative distribution function, or a
quantile function, for example.

Statistical postprocessing methods can be classified in multiple manners. We present three
different classifications of methods based on their distributional parametrization, their usage
and their complexity. First, statistical postprocessing methods can be classified into two groups
(”nonparametric” and ”parametric”) based on the assumption of a family of distributions. Non-
parametric methods include analog ensemble (see, e.g., Delle Monache et al. 2013) which uses
similar past atmospheric situations to improve on the raw ensemble. Analog ensemble is related
to k-nearest neighbor (k-NN) methods as explained in Appendix C. Quantile regression forest
(QRF; Taillardat et al. 2016) is a nonparametric method using the data in terminal nodes (i.e.,
leaves) of a random forest to compute a weighted average of empirical distributions. Parametric
methods include ensemble model output statistic (EMOS; Gneiting et al. 2005) assuming that
the predicted distribution is a normal distribution with parameters linearly depending on the
summary statistics of the raw ensemble. Parametric methods provide a family of parametric
distributions suited to the variable of interest (e.g., based on extreme value theory; Friederichs
et al. 2018). Most nonparametric methods lack any extrapolation availability beyond the range
of observed data but are able to conserve the characteristics of the true distribution from the
observed data. The frontier between the two classes is porous: QRF with tail extension (TQRF;
Taillardat et al. 2019) is a semi-parametric method fitting a parametric distribution on the out-
put of a QRF. The classification into parametric and nonparametric methods is discussed in
greater detail in Vannitsem et al. (2021).

Second, statistical postprocessing methods also differ in their usage. The most common
usage of postprocessing is to separately postprocess univariate marginals and the dependence
structure. The dependence structure can be obtained from the raw ensemble as done by en-
semble copula coupling (ECC; Schefzik et al. 2013) or from historical observations as done
by Schaake shuffle (ScS; Clark et al. 2004). Alternatively, if the raw ensemble or historical
data do not model the dependence structure sufficiently well, it can be postprocessed using
adapted techniques such as a Gaussian copula approach (see, e.g., Möller et al. 2013). Cer-
tain statistical postprocessing methods directly consider multivariate quantities (e.g., Pinson
et al. 2009). Readers may refer to Schefzik and Möller (2018) for more details on dependence
structure postprocessing. Some methods directly postprocess each member of the raw ensem-
ble simultaneously. Member-by-member (Van Schaeybroeck and Vannitsem, 2015) correct for
ensemble mean and spread via a linear combination of the raw predictors. Postprocessing of
ensembles with transformers (PoET; Ben Bouallègue et al. 2024b) uses transformers within a
U-Net architecture to postprocess ensemble members.

Third, statistical postprocessing methods differ in their level of complexity. Less complex
methods are related to statistical learning methods as for analog ensemble with k-NN and
QRF with random forests (Breiman, 2001; Meinshausen, 2006). The relative simplicity of these
methods allows for more simplicity but less flexibility in terms of modeling the dependence of
a variable of interest given predictors. More complex methods issued from machine learning
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can also be employed. Distributional regression networks (DRN; Rasp and Lerch 2018) is a
neural network (NN-)based approach predicting the parameters of a distribution of interest. It
leverages the flexibility of fully connected NN to model the dependency of the parameters on
the covariables (used as input of DRN). DRN can be seen as an extension of EMOS. Instead of
linearly modeling the dependence of the parameters on summary statistics of the raw ensem-
ble, it allows for more flexible nonlinear dependencies to be accounted for. At the upper end
of the complexity spectrum are methods based on deep learning (DL) techniques. The PoET
approach, introduced above, uses transformers that were originally introduced for natural lan-
guage processing tasks (Vaswani et al., 2017). Not all DL-based methods represent the same
level of complexity. Complexity can be accompanied by an increase in flexibility but also in
terms of difficulty of implementation. Chapter 3 proposes a U-Net-based method to predict
parametric distributions which extends DRN to grid-based data.

The three classifications provide a first view of the wide scope of statistical postprocessing
methods. For more detailed overviews, readers may refer to Taillardat et al. (2019), Vannitsem
et al. (2021) and Schulz and Lerch (2022b).

As briefly mentioned, depending on the application, different postprocessing methods could
be preferred. We briefly focus on parametric methods to explicitly discuss how variables of
interest differ in terms of postprocessing. First, different families of distribution are suited
to different variables. For example, temperature and sea-level pressure can be modeled by
normal distributions. Other variables may present asymmetric, multimodal or discontinuous
distributions which can be modeled using truncated, censored or mixed distribution families.
For example, rainfall presents an atom mass in zero related to dry events (i.e., absence of
rainfall). Moreover, rainfall is often heavy-tailed; thus, a distribution family leveraging extreme-
value theory can improve its postprocessing. Lerch and Thorarinsdottir (2013) proposed a
variant of EMOS using a generalized extreme-value distribution to postprocess maximum daily
wind speed. Taillardat et al. (2019) introduces TQRF as an extension of QRF to improve
the prediction of extreme rainfall. A complete review of postprocessing for extreme events is
provided in Friederichs et al. (2018).

Moreover, Hemri et al. (2014) and Taillardat and Mestre (2020) have highlighted that all
variables of interest do not represent the same difficulty in terms of postprocessing. Variables
with short-scale spatio-temporal dependence (e.g., rainfall or wind gusts) are more difficult to
treat than spatially smooth variables (e.g., surface temperature or sea-level pressure). In the
same vein, Schulz and Lerch (2022b) states that ”wind gusts are a challenging meteorological
target variable as they are driven by small-scale processes and local occurrence, so that their
predictability is limited even for numerical weather prediction (NWP) models run at convection-
permitting resolutions.” The predictability of variables is related to their physical characteristics
and to their representation within NWP models.

1.1.3 Verification of probabilistic forecasts

Verification of probabilistic forecasts fulfills two main purposes: quantifying a forecast’s predic-
tive performance and comparing competing forecasts. In the context of statistical postprocess-
ing, the obvious forecast of reference is the raw ensemble and postprocessing techniques should
improve predictive performance with respect to this baseline.

Gneiting et al. (2007) proposed a paradigm for the evaluation of probabilistic forecasts:
”maximizing the sharpness of the predictive distributions subject to calibration.” Calibration is
the statistical compatibility between the forecast and the observations. Sharpness is the con-
centration of the forecast and is a property of the forecast itself. In other words, the paradigm
aims at minimizing the uncertainty of the forecast given that the forecast is statistically con-
sistent with the observations. This principle for the evaluation of probabilistic forecasts has
reached a consensus in the field of probabilistic forecasting (see, e.g., Gneiting and Katzfuss
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2014; Thorarinsdottir and Schuhen 2018).

For univariate forecasts, multiple definitions of calibration are available depending on the
setting. The most used definition is probabilistic calibration and, broadly speaking, it con-
sists of computing the rank of observations among samples of the forecast and checking for
uniformity with respect to observations. If the forecast is calibrated, observations should not
be distinguishable from forecast samples, and thus, the distribution of their ranks should be
uniform. Probabilistic calibration can be assessed by probability integral transform histograms
(Dawid, 1984) or rank histograms (Anderson, 1996; Talagrand et al., 1997) for ensemble fore-
casts when observations are stationary (i.e., their distribution is the same across time). Readers
interested in a more in-depth understanding of univariate forecast calibration are encouraged
to consult Tsyplakov (2013, 2020). For multivariate forecasts, a popular approach relies on a
similar principle: first, multivariate forecast samples are transformed into univariate quantities
using so-called pre-rank functions and then the calibration is assessed by techniques used in the
univariate case (see, e.g., Gneiting et al. 2008; Allen et al. 2024).

With a quantitative perspective, scoring rules provide a quantitative assessment of the qual-
ity of a probabilistic forecast in view of the observation that materializes. A scoring rule S
assigns a real-valued quantity S(F, y) to a forecast-observation pair (F, y), where F ∈ F is a
probabilistic forecast and y ∈ Rm is an observation. In the negative-oriented convention, a
scoring rule S is proper relative to the class F if

EG[S(G,Y )] ≤ EG[S(F,Y )] (1.1)

for all F,G ∈ F , where EG[· · · ] is the expectation with respect to Y ∼ G. In simple terms, a
scoring rule is proper relative to a class of distribution if its expected value is minimal when
the true distribution is predicted, for any distribution within the class. Moreover, the scoring
rule S is strictly proper relative to the class F if the equality in (1.1) holds if and only if F = G.
This ensures the characterization of the ideal forecast (i.e., there is a unique forecast associated
with the minimal expectation and it is the true distribution). Moreover, proper scoring rules
are powerful tools as they allow the assessment of calibration and sharpness simultaneously
(Winkler, 1977; Winkler et al., 1996).

However, as recalled in Chapter 4, (strict) propriety solely is not sufficient to lead to infor-
mative scoring rules. We propose a framework to construct interpretable proper scoring rules
that are more informative in the verification of spatial probabilistic forecasts.

Moreover, since statistical postprocessing methods learn to predict a probabilistic distribu-
tion based on past observations, their practical evaluation should be based on an independent
set of unseen data to avoid potential bias. In practice, additional limitations may arise from
seasonality or the lack of data consistency (e.g., due to climate change or NWP systems up-
dates).

1.2 Distributional regression and its evaluation with the CRPS:
bounds and convergence of the minimax risk

Numerous statistical postprocessing methods rely on distributional regression. Postprocessing
methods aim to model the conditional distribution of a variable of interest Y ∈ Rm (e.g., 3-h
accumulated precipitation) given the output of a physical model X ∈ Rd (e.g., in the form of
summary statistics), denoted F ∗

X . In a verification setting, scoring rules are used to measure
and compare the predictive performance of competing probabilistic forecasts. Scoring rules can
be seen as the equivalent of loss functions (also known as scoring functions) in point regression.
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Let S(F,G) = EG [S(F, Y )] denotes the expected score of F for the scoring rule S. In
distributional regression, the predictive performance of a probabilistic forecast F̂ : x 7→ F̂x is
assessed by its theoretical risk

RP (F̂ ) = E(X,Y )∼P

[
S(F̂X , Y )

]
;

= EX∼PX

[
S(F̂X , F ∗

X)
]
,

where P is the joint distribution of (X,Y ) and PX is the marginal distribution of X. If S is
strictly proper, then F ∗ is a Bayes predictor and its theoretical risk

RP (F ∗) = E(X,Y )∼P [S(F ∗
X , Y )] ;

= EX∼PX

[
S(F ∗

X , F ∗
X)
]

is the Bayes risk. We recall that the Bayes risk is the minimal theoretical risk over all possible
predictors and that a Bayes predictor is a predictor achieving the Bayes risk. Moreover, if S is
strictly proper, the set of Bayes predictors are the forecasts F̂ such that F̂X = F ∗

X PX -almost
everywhere.

Statistical postprocessing techniques rely on a training sample Dn = {(Xi, Yi), 1 ≤ i ≤ n}
and are evaluated in terms of their predictive performance with respect to new data (X,Y ). Both
the training sample Dn and the test data (X,Y ) are independent and identically distributed
from the same distribution P . Given the training sample Dn, an algorithm F̂n : x 7→ F̂n,x is
constructed to estimate the conditional distribution F ∗

x . In this context, the theoretical risk of
F̂n is expressed as

EDn∼Pn

[
RP (F̂n)

]
= EDn∼PnE(X,Y )∼P

[
S(F̂n,X , Y )

]
;

= EDn∼PnEX∼PX

[
S(F̂n,X , F ∗

X)
]
.

The theoretical risk is averaged over possible values of the training sample Dn, making it solely
dependent on the distribution P and the sample size n. As previously, if the scoring rule S is
proper, F ∗ is a Bayes predictor and its risk is the Bayes risk. Then, the quantity of interest is
the excess of risk defined as the difference between the theoretical risk of an algorithm F̂n and
the Bayes risk :

EDn∼Pn

[
RP (F̂n)

]
−RP (F ∗) = EDn∼PnEX∼PX

[
S(F̂n,X , F ∗

X) − S(F ∗
X , F ∗

X)
]
. (1.2)

When S is proper, the difference of expected scores within the expectation on the right-hand
side is called the divergence of S (see, e.g., Gneiting and Katzfuss 2014, Section 3.1 and Tho-
rarinsdottir et al. 2013).

We are interested in convergence results in distributional regression. The framework in-
troduced above is widely used in practice but lacks theoretical guarantees. Most convergence
statements in distributional regression are not only derived within an unconditional framework
but also assume arbitrarily large sample sizes (see, e.g., Thorey et al. 2017 and Mösching and
Dümbgen 2020). One exception is the isotonic distributional regression, which, under mono-
tonicity assumptions, was shown to minimize the in-sample continuous ranked probability score
(CRPS) and to satisfy consistency in the sense of the Kolmogorov distance (Henzi et al., 2021).

We focus on the univariate case (m = 1) as it corresponds to the setting of numerous statis-
tical postprocessing methods. Moreover, we choose the scoring rule of interest to be the CRPS
(Matheson and Winkler, 1976) which benefits from being strictly proper relative to P1(R) (i.e.,
distributions on R with a finite first moment). Since m = 1, distributions are identified to
their cumulative distribution function (cdf). The divergence of the CRPS is the L2-norm of the
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difference between the cdf of F̂X and the conditional cdf F ∗
X (also known as the squared second-

order Cramér’s distance or the integrated quadratic distance; Thorarinsdottir et al. 2013).

In point regression, it is necessary to restrict the convergence over a given class of distribution
to obtain non-trivial results (Stone 1982; Györfi et al. 2002). In order to study the rate of
convergence of the excess risk (1.2) to zero as n → ∞, we introduce the notion of optimal
minimax rate of convergence. The minimax risk corresponds to the best achievable risk in the
worst-case scenario (whence the name minimax). More precisely, given a class of distributions
D, the optimal minimax rate of convergence quantifies the minimal error that an algorithm F̂n

can achieve uniformly on a given class of distributions D, when the size n of the training set Dn

gets large. The formal definition of minimax rate of convergence for distributional regression is
as follows.

Definition 1.1. A sequence of positive numbers (an) is called an optimal minimax rate of
convergence on the class D if

lim inf
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)] −RP (F ∗)

an
> 0 (1.3)

and

lim sup
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)] −RP (F ∗)

an
< ∞, (1.4)

where the infimum is taken over all distributional regression models F̂n trained on Dn. If
the sequence (an) satisfies only the lower bound (1.3), it is called a lower minimax rate of
convergence.

We consider the following classes of distributions.

Definition 1.2. For h ∈ (0, 1], C > 0 and M > 0, let D(h,C,M) be the class of distributions P
such that F ∗

x (y) = P (Y ≤ y|X = x) satisfies:

i) X ∈ [0, 1]d PX-a.s.;

ii) For all x ∈ [0, 1]d,
∫

R F ∗
x (z)(1 − F ∗

x (z))dz ≤ M ;

iii) ∥F ∗
x′ − F ∗

x∥L2 ≤ C∥x′ − x∥h for all x, x′ ∈ [0, 1]d.

The conditions defining the class of distribution D(h,C,M) are analogous to the conditions
in point regression. We provide an interpretation and discussion of the conditions i) − iii).
Condition i) is a condition on the covariables and can be extended to a compact. This con-
dition arises from the fact that increasing the number of samples n tries to fill the covariates
space in order to have a training sample representative of all the possible values. Hence, every
covariable point needs to be approachable and the span of the covariable space impacts the
convergence. Condition ii) bound the sharpness (or entropy) of F ∗

x for all x ∈ [0, 1]d. Sharpness
is associated with the information carried by distribution, and it may appear intuitive that the
less information is carried (i.e., the larger M), the more samples are required to obtain the
same predictive performance (in terms of theoretical risk). Condition iii) is a regularity condi-
tion imposing that close covariates lead to close conditional distributions. Since the algorithm
F̂n uses knowledge from past observations to estimate the conditional distribution at X = x
and increasing the number of sample n leads to having training data closer to X = x, regular-
ity of F ∗ is needed to ensure that the increase in n is associated with an increase of predictability.

Definition 1.1 can be restated: an optimal minimax rate of convergence on the class D is a
lower minimax rate of convergence on D, and there exists an algorithm F̂n achieving this rate.
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We are able to obtain a lower minimax rate of convergence using a subclass of D(h,C,M) which
reduces the problem to standard results of point regression (Györfi et al., 2002).

In order to find an algorithm F̂n such that it achieves the lower minimax convergence rate of
convergence obtained, we investigate k-nearest neighbor (k-NN) methods and kernel methods.
k-NN is well-known in the classical framework of regression and classification (see, e.g. Biau
and Devroye 2015). In distributional regression, k-NN can be suitably adapted to estimate the
conditional distribution F ∗

x and the estimator is written as

F̂n,x(z) =
1

kn

kn∑
i=1

1Yi:n(x)≤z, (1.5)

where 1 ≤ kn ≤ n and Yi:n(x) denotes the observation at the i-th nearest neighbor of x. As
usual, possible ties are broken at random to define nearest neighbors.

The kernel estimate in distributional regression (see, e.g., Györfi et al. 2002, Chapter 5) can
be expressed as

F̂n,x(z) =

∑n
i=1K(x−Xi

hn
)1Yi≤z∑n

i=1K(x−Xi
hn

)
, (1.6)

if the denominator is nonzero. When the denominator is zero, we use the convention F̂n,x(z) =
1
n

∑n
i=1 1Yi≤z. Here the bandwidth hn > 0 depends on the sample size n, and the function

K : Rd → [0,∞) is called the kernel.

We obtain explicit and non-asymptotic upper bounds for the excess risk (1.2) of the k-
NN and the kernel methods, respectively, uniformly on D(h,C,M). Optimizing the bounds with
respect to suitable choices of kn and hn leads to the following results on the optimal minimax
rate of convergence.

Theorem 1.1. The sequence an = n− 2h
2h+d is the optimal minimax rate of convergence on the

class D(h,C,M).

In particular, k-NN and kernel methods reach the optimal minimax rate of convergence
for in dimension d ≥ 2 and in any dimension d, respectively. In the context of statistical
postprocessing, k-NN, and kernel methods are related to analog ensemble techniques (see, e.g.,
Delle Monache et al. 2013), and this relation is discussed in more detail in Appendix C. Addi-
tional comments on Chapter 2 are provided in Appendix C.

Chapter 2 : Summary of contributions

• We formalize a framework to adapt concepts of estimation theory to study theo-
retical risks in terms of scoring rules.

• We obtain the optimal minimax rate of convergence in distributional regression for
a given class of distribution (Theorem 2.1).

• k-NN and kernel methods reach the optimal minimax rate of convergence in di-
mension d ≥ 2 and in any dimension d, respectively.

• We obtain non-asymptotic upper bounds on the convergence rate for k-NN and
kernel methods with a fixed sample size n (Propositions 2.1 and 2.2).

• The results can be extended to the threshold-weighted CRPS (see Appendix C).
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1.3 Distributional regression U-Nets for the postprocessing of
precipitation ensemble forecasts

Operationally at Météo-France, temperature and precipitation forecasts postprocessing rely
on local (i.e., one model per location) random forest-based models (Taillardat and Mestre,
2020). Quantile regression forests (QRF; Meinshausen 2006) is a nonparametric method able
to predict conditional quantiles or, more generally, a conditional distribution. Similarly to
random forests, it uses the data in terminal nodes (i.e., leaves) to compute a weighted average
of empirical distributions. QRFs have proven their performance for a large variety of variables
(Taillardat et al., 2016; Whan and Schmeits, 2018; van Straaten et al., 2018; Rasp and Lerch,
2018; Taillardat et al., 2019; Schulz and Lerch, 2022b). QRFs are known to have three main
limitations: potential spatial inconsistency, storage memory voracity (Taillardat and Mestre,
2020), and inability to extrapolate.

Rasp and Lerch (2018) proposed distributional regression networks (DRN), a neural network
(NN-)based global model predicting the parameters of a distribution of interest. It leverages
the flexibility of NN to model the dependency of the parameters on the covariables (used as
input of DRN). DRN can be seen as an extension of EMOS (Gneiting et al., 2005), which itself
fits a parametric distribution where the parameters linearly depend on summary statistics of
the raw ensemble. DRN is a global model thanks to the presence of an embedding module
within its architecture, allowing the network to learn location-specific parameters and to ben-
efit from data at similar locations. Rasp and Lerch (2018) and Schulz and Lerch (2022b) have
shown that DRN outperforms other state-of-the-art methods in most stations over Germany
for the postprocessing of temperature and wind gusts, respectively. In spite of being a global
model, the architecture of DRN makes it ill-suited to gridded data. Its architecture does not
use knowledge of the spatial structure of the points and thus has to try to learn it through its
embedding module.

32 32

32 64 64

64 128 128 128 64

64+64 64 32

32+32 32 32 p

11
2
×

19
2

56
×

96

28
×

48 3×3 Conv, BN, ReLU

2×2 Max Pooling

2×2 Bilin. Upsampling

Copy & Concatenate

7+24

Figure 1.1: Architecture of distributional regression U-Nets. Conv stands for convolution, BN
stands for batch normalization, ReLU stands for rectified linear unit and Bilin. Upsampling
stands for bilinear upsampling. p is the number of distribution parameters: for GTCND and
CSGD, p = 3.

We propose a U-Net-based distributional regression method suited to gridded data, which
predicts parameters of marginal distributions at each grid point. Distributional regression U-
Net (DRU) takes as input both constant fields (e.g., orography) and summary statistics of the
raw ensemble (see Figure 1.1). On the left part, the succession of specific convolutional blocks
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(red arrows and purple arrows) leads to an increase in the number of features and a reduction
of the spatial dimension (i.e., a coarsening of the spatial resolution) as the data progresses
through the network. These convolutional blocks are constructed in order to learn useful rep-
resentations of the features of the fields at various spatial scales. On the right part, upscaling
blocks (orange arrows), based on bilinear upsampling, use the features learned in the central
part of the architecture to predict features at finer resolutions and finally learn the parameters
of the distribution selected. Additionally, we use skip-connections (yellow arrows) since they
have proven to improve the stability of the convergence of NN (Li et al., 2018).

We focus on 3-h accumulated precipitation over the South of France, which is a region
prone to Mediterranean heavy precipitation events. Ensemble forecasts are taken from the
17-member ensemble forecasting system AROME-EPS (Bouttier et al., 2015) which produces
a gridded ensemble over Western Europe with a horizontal resolution of 0.025◦. Probabilistic
forecasts are compared to 3-h accumulated precipitation data obtained from the gauge-adjusted
radar product ANTILOPE (Champeaux et al., 2009). Precipitation is a challenging meteorolog-
ical quantity to predict due to its heavy-tailed climatology and its short-scale spatio-temporal
dependence (Hemri et al., 2014; Taillardat and Mestre, 2020). Moreover, another challenging
aspect of the dataset is that only three years of training data are available. This is especially
challenging regarding the prediction of high precipitation.

To suit the prediction of precipitation, two parametric distributions with an atom mass in
zero (i.e., for dry events) are selected: the generalized truncated/censored normal distribution
(GTCND; Jordan et al. 2019) and the censored-shifted gamma distribution (CSGD; Scheuerer
and Hamill 2015a). We denote U-Net+distrib the DRU where distrib is the parametric distri-
bution.

(a) CRPSS of U-Net+CSGD w.r.t. raw (b) CRPSS of U-Net+CSGD w.r.t. QRF

Figure 1.2: Predictive performance of U-Net+CSGD in terms of CRPS. CRPSS w.r.t. (a) the
raw ensemble and QRF (b) of U-Net+CSGD.

Chapter 3 provides a thorough comparison between the raw ensemble, QRF, QRF with tail
extension (TQRF; Taillardat et al. 2019) and DRU. Here, we provide a simplified comparison
between U-Net+CSGD, the raw ensemble and QRF only. In terms of CRPS, the relative
improvement can be expressed using the continuous ranked probability skill score (CRPSS)
defined as

CRPSS(F, Fref) = 1 − EG[CRPS(F, Y )]

EG[CRPS(Fref , Y )]
,

where G is the distribution of the observations and EG[· · · ] is the expectation with respect to
Y ∼ G.. The CRPSS is positive if the forecast F improves the expected CRPS w.r.t. the
reference forecast Fref and negative otherwise. In the following, the CRPSS is expressed in

14



percentage. Figure 1.2 provides the CRPSS of U-Net+CSGD w.r.t. raw ensemble and QRF. U-
Net+CSGD leads to a CRPSS w.r.t. the raw ensemble of 22.36% when averaged over the region
of interest. As QRF, DRUs lead to improvement in terms of CRPSS over the vast majority of
grid points. Nonetheless, there are areas where they have a poorer predictive performance com-
pared to raw ensemble. These areas are located over the Mediterranean Sea or near the coast,
and one patch is located in the Rhône River valley. This is caused by the fact that the area
over the Mediterranean Sea is associated with the lowest precipitation accumulations and lower
observation quality since it is far from the nearest radar and cannot be corrected by gauges.
Overall, U-Net+CSGD has a higher expected CRPS than QRF (average CRPSS of −1.37%),
but they have improved predictive performance (in terms of CRPS) over a non-negligible part
of the region of interest. When censoring grid points located over the sea and at the border, the
average CRPSS w.r.t. QRF is 0.26%, showing that U-Net+CSGD has a predictive performance
comparable to QRF over land in terms of CRPS.

As mentioned in Section 1.1.3, rank histograms are a useful diagnostic tool for probabilistic
calibration of forecasts. In particular, the flatness of the rank histogram characterizes calibrated
forecasts. Flatness and other informative shapes can be statistically tested for by, as referred to
here, Jolliffe-Primo-Zamo (JPZ) tests (Jolliffe and Primo, 2008; Zamo, 2016). Figure 1.3 shows
the rank histograms over the whole grid and the JPZ tests for flatness. As is often the case,
the raw ensemble is biased and underdispersed, which is visible by the triangular shape of the
rank histograms and the fact that the lowest and highest ranks are over-represented. Its JPZ
test confirms that the raw ensemble forecast is not calibrated (only 6% of grid points do not
reject the flatness of the rank histogram). QRF shows a very high calibration with JPZ tests not
rejecting flatness at 93% of grid points. U-Net+CSGD methods present a lower calibration level
compared to QRF, but it is still significantly calibrated. The JPZ tests do not reject the flat-
ness hypothesis at 77% of the grid points. The grid points at which U-Net+CSGD forecasts are
not calibrated (i.e., JPZ rejecting the flatness hypothesis) are associated with high climatologies.

Figure 1.3: Rank histogram for the raw ensemble, QRF and U-Net+CSGD.

To focus on forecasts’ predictive performance regarding extreme events, we are interested
in predicting binary events in the form of the exceedance of a high threshold t (see Fig. 1.4).
We use ROC (Receiver Operating Characteristic) curves to evaluate the discriminant power
of forecasts in terms of binary decisions. In particular, ROC curves can inform on the risk of
missing an extreme event. A good forecast should maximize the rate of events detected while
minimizing false alarms. For high thresholds t = 10 mm and t = 20 mm (corresponding to
the quantile of level 0.995 and 0.999, respectively, of the climatology over the region of inter-
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Figure 1.4: Receiver operating characteristic (ROC) curves of binary events corresponding to
the exceedance of a threshold t = 10 mm and t = 20 mm.

est), the ROC curves of the different postprocessing methods have a clear ranking. For both
thresholds, the performance of the raw ensemble is close to the random guess (dashed line).
For t = 10 mm, both QRF and U-Net+CSGD are able to maintain good predictive power.
However, U-Net+CSGD has a better performance than QRF. For t = 20 mm, the gap in per-
formance between U-Net+CSGD and QRF continues to grow as the predictive performance of
QRF deteriorates.

We propose U-Net-based methods that can simultaneously postprocess marginal distribu-
tions at each grid point using information from nearby grid points. It circumvents the storage
memory voracity and the inability to extrapolate of QRF. DRU outperforms the raw ensemble
for all metrics used. Moreover, DRUs have predictive performance comparable to QRF-based
methods in terms of CRPS. DRUs are (probabilistically) calibrated over a large part of the
domain studied except for areas associated with high climatological precipitation. Regarding
predictive power for heavy precipitation, U-Net+CSGD outperforms QRF-based methods.

Chapter 3 : Summary of contributions

• Distributional regression U-Net (DRU) is a global model that predicts marginal
parametric distributions and circumvents some known limitations of QRF. It pro-
vides a natural extension of DRN to grid-based data.

• We review methods using U-Net architectures in statistical postprocessing (Ta-
ble 3.4).

• In terms of CRPS, the predictive performance of DRU is comparable to state-of-
the-art methods (Figure 3.5 and Table 3.5).

• DRUs provide (probabilistically) calibrated forecasts at most grid points. However,
it fails in areas of high climatological precipitation (Figures 3.8 and 3.9).

• U-Net+CSGD outperforms other methods in terms of exceedance of high-
precipitation thresholds (Figure 3.10).
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1.4 Proper scoring rules for multivariate probabilistic forecasts
based on aggregation and transformation

The previous section (and the associated chapter) does not postprocess the dependence structure
of the quantity of interest, assuming it can be retrieved from the raw ensemble (e.g., using ECC;
Schefzik et al. 2013) or from the climatology (e.g., using ScS; Clark et al. 2004) or that it can be
processed separately as mentioned in Section 1.1. Nonetheless, it is a crucial aspect of forecasts
since it can influence the impact of an event. Spatial probabilistic forecasts require appropriate
verification methods.

Scoring rules are a tool of choice to both quantify how good a forecast is and compare
competing forecasts. Recall that propriety allows to assess both calibration and sharpness
simultaneously (Winkler, 1977; Winkler et al., 1996); thus, it encourages forecasters to follow
their true beliefs and prevents hedging. However, it is a necessary property of good scoring
rules, but it does not guarantee that a scoring rule provides an informative characterization
of predictive performance. In particular, propriety does not ensure that forecasts minimizing
the expected score are of interest to the task at hand. Even strict propriety does not ensure
that forecasts in the vicinity of the minimum expected score are close to the ideal forecast in
an interesting manner. In univariate and multivariate settings, numerous studies have proven
that no scoring rule has it all, and thus, different scoring rules should be used to get a better
understanding of the predictive performance of forecasts (see, e.g., Scheuerer and Hamill 2015b;
Taillardat 2021; Bjerreg̊ard et al. 2021).

This may explain the development of spatial verification tools (Gilleland et al., 2009; Dorninger
et al., 2018) which are physics-based verification methods for spatial forecasts. They rely on
robustness to the double-penalty effect (Ebert, 2008) and the interpretability of both single
values and the ranking of forecasts. However, the vast majority of methods are not proper. In
the context of proper scoring rules, interpretability can arise from being induced by a consis-
tent scoring function for a functional (e.g., the squared error is induced by a scoring function
consistent for the mean; Gneiting 2011), knowing what aspects of the forecast the scoring rule
discriminates (e.g., the Dawid-Sebastiani score only discriminates forecasts through their mean
and variance; Dawid and Sebastiani 1999) or knowing the limitations of a certain proper scoring
rule (e.g., the variogram score is incapable of discriminating two forecasts that only differ by a
constant bias; Scheuerer and Hamill 2015b). In this context, interpretable proper scoring rules
become verification methods of choice as the ranking of forecasts they produce can be more
informative than the ranking of a more complex but less interpretable scoring rule.

Scheuerer and Hamill (2015b) proposed the variogram score to target the verification of the
dependence structure. The variogram score of order p (p > 0) is defined as

VSp(F,y) =
d∑

i,j=1

wij (EF [|Xi −Xj |p] − |yi − yj |p)2 ,

where Xi is the i-th component of the random vector X ∈ Rd following F , the wij are non-
negative weights and y ∈ Rd is an observation. The construction of the variogram score relies
on two main principles. First, the variogram score is the weighted sum of scoring rules acting
on the distribution of Xi,j = (Xi, Xj) and on paired components of the observations yi,j . This
aggregation principle allows the combination of proper scoring rules and summarizes them into
a proper scoring rule acting on the whole distribution F and observations y. Second, the scor-
ing rules composing the weighted sum can be seen as a standard proper scoring rule applied
to transformations of both forecasts and observations. Let us denote γi,j : x 7→ |xi − xj |p the
transformation related to the variogram of order p, then the variogram score can be rewritten
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as

VSp(F,y) =
d∑

i,j=1

wijSE(γi,j(F ), γi,j(y)),

where SE(F, y) = (EF [X]−y)2 is the univariate squared error (SE) and γi,j(F ) is the distribution
of γi,j(X) for X ∼ F . This second principle is the transformation principle, allowing to build
transformation-based proper scoring rules that can benefit from interpretability arising from a
transformation (here, the variogram transformation γi,j) and the simplicity and interoperability
of the proper scoring rule they rely on (here, the SE).

These two principles have been disseminated across the literature for the past decades. More
explicitly, Dawid and Musio (2014) proposes the notion of composite score which is a partic-
ular case of the combination of both principles. Heinrich-Mertsching et al. (2024) introduces
the transformation principle and applies it in the context of point processes. We formalize
general forms of the aggregation and transformation principles and their combination leads to
Corollary 1.1.

Corollary 1.1. Let T = {Ti}1≤i≤m be a set of transformations from Rd to Rk. Let ST =
{STi}1≤i≤m be a set of proper scoring rules where S is proper relative to Ti(F), for all 1 ≤ i ≤ m.
Let w = {wi}1≤i≤m be nonnegative weights. Then, the scoring rule

SST ,w(F,y) =
m∑
i=1

wiSTi(F,y)

is proper relative to F .

To gain interpretability, it is natural to have dimension-reducing transformations (i.e., k < d)
as it leads to transformations simplifying the multivariate quantities. Particularly, it is gener-
ally preferred to choose k = 1 to make the quantity easier to interpret and focus on specific
information contained in the forecast or the observation. Additionally, we show that all kernel
scoring rules can be expressed as the aggregation of SE applied to a sequence of transformations.

Aggregation-and-transformation-based scoring rules can leverage the interpretability of both
transformations and standard scoring rules. For example, if interest is on the predictive per-
formance of forecasts in terms of their prediction of the exceedance of a threshold t, the Brier
score (Brier, 1950) should be used in a univariate setup. The Brier score is expressed as

BSt(F, y) = ((1 − F (t)) − 1y>t)
2 = (F (t) − 1y≤t)

2,

where 1−F (t) is the predicted probability that the threshold t is exceeded. The expectation of
the Brier score is minimum for all forecasts F such that the probability of exceedance of threshold
t is correctly predicted. In a spatial verification context, the exceedance of the threshold at each
location can be summarized by the aggregated Brier score

1

d

d∑
i=1

BS(Fi, yi),

where Fi is the marginal distribution of F at the location i and yi is the value of Y at the
location i. In that case, the transformations are projections onto each location (i.e., the 1-
dimensional marginals) and the aggregation uses uniform weights since no assumption is made
on the locations.

When considering the spatial dependence structure, a quantity of interest can be the ex-
ceedance of a threshold t at neighboring locations. In the case of precipitation, the neighbor-
hoods might be defined as catchment areas of rivers. The fraction of threshold exceedance (FTE)
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is the summary statistic associated with the simultaneous exceedance of a certain threshold and
it is defined as

FTEP,t(X) =
1

|P |
∑
i∈P

1{Xi≥t},

where P is a patch (or neighborhood) of interest and |P | its dimension. Using the aggregation
and transformation principles, the aggregated SE of FTE is defined as∑

P∈P
wPSE

(
FTEP,t(F ),FTEP,t(y)

)
=
∑
P∈P

wP

(
EF [FTEP,t(X)] − FTEP,t(y)

)2
where P is an ensemble of patches, wP is the weight associated with a patch P ∈ P. This scoring
rule is proper and focuses on the prediction of the exceedance of a threshold t via the fraction
of locations over a patch P exceeding said threshold. The resemblance with the Brier score is
clear and the aggregated SE of FTE becomes the aggregated BS when patches containing a
single location are considered.

Numerous other examples of transformations (and the scoring rules they result in) are
presented, discussed, and linked to the literature in Chapter 4. Multiple numerical experiments
are developed to showcase the importance of interpretability in a practical setting and, more
particularly, how aggregation-and-transformation-based scoring rules can be used in spatial
forecast verification. In particular, we show how usual scoring rules can be adapted to avoid
the double-penalty effect.

Chapter 4 : Summary of contributions

• We provide a comprehensive review of both univariate and multivariate scoring
rules in light of interpretability (Section 4.2).

• We formalize a framework (disseminated in the literature) based on the aggrega-
tion and transformation principles to construct interpretable proper scoring rules
(Section 4.3).

• Kernel scores can be expressed as an aggregation of squared error applied to a
sequence of transformations (Proposition 4.3).

• List examples of aggregation-and-transformation-based scoring rules from both the
literature and original suggestions (Section 4.4).

• Numerical experiments have been conducted to illustrate the benefit of inter-
pretable proper scoring rules in various contexts (Section 4.5).

• In particular, concrete solutions are given to help bridge the gap with spatial
verification tools.

1.5 Related works

Appendix A and Appendix B reproduce two related works conducted during the thesis (Dombry
et al., 2024; Al Masry et al., 2023). These works are related to distributional regression but
not directly connected to statistical postprocessing. Hereafter, we briefly motivate these works,
explicit their relation to the works presented in the previous sections and summarize their main
contributions.
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1.5.1 Stone’s theorem for distributional regression in Wasserstein distance

As mentioned above, Chapter 2 adapts results from point regression to distributional regression.
Instead of targeting optimal convergence for a given class of distribution, Appendix A focuses
on universal consistency in distributional regression (i.e., convergence results holding for any
distribution but without guarantee on the rate of convergence).

Recall the general regression framework introduced in Section 1.2. We observe a sample
Dn = {(Xi, Yi), 1 ≤ i ≤ n}, of independent copies of (X,Y ) ∈ Rd × Rm with distribution P .
Based on this sample and assuming Y integrable, in point regression, the goal is to estimate
the regression function

r(x) = E[Y |X = x], x ∈ Rd.

Local average estimators take the form

r̂n(x) =
n∑

i=1

Wni(x)Yi

with Wn1(x), . . . ,Wnn(x) the local weights at x. The local weights are assumed to be measurable
functions of x and X1, . . . , Xn but not to depend on Y1, . . . , Yn. Consider the case of probability
weights satisfying

Wni(x) ≥ 0, 1 ≤ i ≤ n, and
n∑

i=1

Wni(x) = 1. (1.7)

Stone’s Theorem states the universal consistency of the regression estimate in Lp-norm.

Theorem 1.2 (Stone 1977). Assume the probability weights (1.7) satisfy the following three
conditions:

i) there is C > 0 such that E
[∑n

i=1Wni(X)g(Xi)
]
≤ CE[g(X)] for all n ≥ 1 and measurable

g : Rk → [0,+∞) such that E[g(X)] < ∞;

ii) for all ε > 0,
∑n

i=1Wni(X)1{∥Xi−X∥>ε} → 0 in probability as n → +∞;

iii) max1≤i≤nWni(X) → 0 in probability as n → +∞.

Then, for all p ≥ 1 and (X,Y ) ∼ P such that E[∥Y ∥p] < ∞,

E
[
∥r̂n(X) − r(X)∥p

]
−→ 0 as n → +∞. (1.8)

Conversely, if Equation (1.8) holds, then the probability weights must satisfy conditions i)− iii).

Examples of local average estimators include k-NN, kernel methods and some variants of
random forests.

To adapt this result to distributional regression, we use a definition of convergence based on
Wasserstein distance rather than relying on scoring rules, contrary to Chapter 2 :

E
[
Wp

p (F̂n,X , F ∗
X)
]
−→ 0 as n → +∞, (1.9)

where Wp is the Wasserstein distance of order p and F̂n,X is an estimate of the conditional
distribution of Y given X, noted F ∗

X . Consider the weighted empirical distribution estimator
based on the training sample Dn

F̂n,X =
n∑

i=1

Wni(X)δYi , (1.10)
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where δy denotes the Dirac mass at point y ∈ Rm.
Using the notion of max-sliced Wasserstein distance (Bayraktar and Guo, 2021), this work

extends Stone’s theorem to distributional regression in Wasserstein distance of order p ≥ 1.
More precisely, there is an equivalence between the fact that the weights of the weighted em-
pirical distribution estimator (1.10) satisfies conditions i) − iii) and the convergence of (1.9).
Moreover, for p = 1, the optimal minimax rates of convergence on specific classes of distribu-
tions are obtained. Applications of Stone’s theorem in distributional regression are illustrated
using the estimation of conditional tail expectation and probability-weighted moments, among
others.

Appendix A : Summary of contributions

• We adapt Stone’s theorem to (multivariate) distributional regression: universal
consistency in terms of Wasserstein distance of order p ≥ 1 in a multivariate
setting (Theorem A.2).

• We determine optimal minimax rates of convergence for p = 1 and m = 1 (Theo-
rem A.3).

• We illustrate applications of Stone’s theorem to summary statistics in distributional
regression (Section A.3.3).

1.5.2 A new methodology to predict the oncotype scores based on clinico-
pathological data with similar tumor profiles

Appendix B uses a distributional regression technique to assist clinicians in their decision-
making regarding the prediction of breast cancer recurrence risk and potential treatments.

The Oncotype DX (ODX) test is a commercially available molecular test for breast cancer
assay that provides prognostic and predictive breast cancer recurrence information for hormone-
positive, HER2-negative patients. The ODX test provides a recurrence score (ODX score) be-
tween 0 and 100. Higher values of the ODX score correspond to a higher risk of recurrence.
Several retrospective and prospective studies have validated this test and its clinical utility (see,
e.g., Paik et al. 2004, 2006; Albain et al. 2010). The most common interpretations of the ODX
score are through cutoffs defining two or three classes of risk: for example, low risk < 11, in-
termediate risk 11-25 and high risk > 25 (Sparano et al., 2018). Despite its clinical utility, the
ODX test is expensive and the ODX score lacks explainability. In order to bypass these limi-
tations, studies have tried to use clinico-pathological characteristics to predict the ODX score
via its direct value or via a classification in terms of risk levels. Numerous statistical learning
methods have been studied, such as multiple linear regression (Klein et al., 2013; Hou et al.,
2017), random forests (Kim et al., 2019; Pawloski et al., 2021) and neural networks (Kim et al.,
2019; Baltres et al., 2020).

In order to have complete knowledge of the uncertainty, we proposed to predict the full
distribution of the ODX conditionally on clinico-pathological characteristics: the distributional
regression forest (DRF; Meinshausen 2006; Athey et al. 2019). As DRF provides a probabilistic
prediction, its output can take the form of a discrete probability density function. Moreover, it
can be summarized by more understandable quantities for practitioners, such as its mean and
the standard deviation or the probabilities of classes of interest, leveraging the practitioner’s
familiarity with interpretations of the ODX score. In particular, patients with similar profiles
(in terms of the weights of the forest) can be used to inform practitioners of related patients
present in the cohort and detect uninformative predictions linked to a lack of representativity.
In the meantime, DRF has a performance comparable to the previous methods proposed in the
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literature.

Appendix B : Summary of contributions

• We use a distributional regression technique (DRF) to predict breast cancer recur-
rence risk and provide information useful for decision-making.

• DRFs provide a probabilistic prediction that can be summarized in understandable
quantities for practitioners (e.g., a neighborhood of close patients on the cohort)
(Figure B.2).

• In terms of low-risk and high-risk classification, DRFs achieve a predictive perfor-
mance comparable to state-of-the-art methods (Table B.3).
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Chapter 2

Distributional regression and its
evaluation with the CRPS: bounds
and convergence of the minimax risk

This chapter reproduces an article published in International Journal of Forecasting, and written
by Romain Pic1, Clément Dombry1, Philippe Naveau2 and Maxime Taillardat3.

Abstract The theoretical advances on the properties of scoring rules over the past decades
have broadened the use of scoring rules in probabilistic forecasting. In meteorological fore-
casting, statistical postprocessing techniques are essential to improve the forecasts made by
deterministic physical models. Numerous state-of-the-art statistical postprocessing techniques
are based on distributional regression evaluated with the Continuous Ranked Probability Score
(CRPS). However, theoretical properties of such evaluation with the CRPS have solely consid-
ered the unconditional framework (i.e. without covariates) and infinite sample sizes. We extend
these results and study the rate of convergence in terms of CRPS of distributional regression
methods. We find the optimal minimax rate of convergence for a given class of distributions and
show that the k-nearest neighbor method and the kernel method reach this optimal minimax
rate.
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2.1 Introduction

In meteorology, ensemble forecasts are based on a given number of deterministic models whose
parameters vary slightly in order to consider observation errors and incomplete physical repre-
sentation of the atmosphere. This leads to an ensemble of different forecasts that overall also
assess the uncertainty of the forecast. Ensemble forecasts suffer from bias and underdispersion
(Hamill and Colucci, 1997; Baran and Lerch, 2018) and need to be statistically postprocessed in
order to be improved. Different postprocessing methods have been proposed, such as Ensemble
Model Output Statistics (Gneiting et al., 2005), Quantile Regression Forests (Taillardat et al.,
2016) or Neural Networks (Schulz and Lerch, 2022b). These references, among others, also
discuss the stakes of weather forecast statistical postprocessing.

Postprocessing methods rely on distributional regression (Gneiting and Katzfuss, 2014)
where the aim is to predict the conditional distribution of the quantity of interest (e.g. temper-
atures, wind speed, or precipitation) given a set of covariates (e.g. raw outputs of a physical
ensemble model). Algorithms are often based on the minimization of a proper scoring rule that
compares actual observations with the predictive distribution. Scoring rules can be seen as an
equivalent of loss functions in classical regression. A detailed review of scoring rules is given
by Gneiting and Raftery (2007). The Continuous Ranked Probability Score (CRPS; Matheson
and Winkler, 1976), defined in Equation (2.2), is one of the most popular scores in meteorolog-
ical forecasting. The CRPS is also minimized to infer parameters of statistical models used in
postprocessing (e.g. Gneiting et al., 2005; Naveau et al., 2016; Rasp and Lerch, 2018; Taillardat
et al., 2019). Recently, under monotonicity assumptions, the isotonic distributional regression
Henzi et al. (2021) was shown to minimize the in-sample CRPS and to satisfy consistency in
the sense of Kolmogorov distance.

To the best of our knowledge, most convergence statements in distributional regression (e.g.
Thorey et al., 2017 and Mösching and Dümbgen, 2020) are not only derived within an uncondi-
tional framework, i.e. without taking into account the covariates, but also these limiting results
assume arbitrarily large sample sizes. In this work, our goal is to bypass these two limitations.

This paper is organized as follows. Section 2.2 introduces preliminary notions that are
needed to state our main results in Section 2.3. Section 2.2.1 introduces our framework and
notation for distributional regression. Section 2.2.2 provides the theoretical background on
distributional regression and its evaluation using the CRPS and Section 2.2.3 provides some
elements on minimax risk theory. Section 2.2.4 briefly introduces the two models that are studied
in this article: the k-nearest neighbor and kernel estimators. The main result on minimax rate
of convergence for distributional regression is stated in Section 2.3.1 where suitable classes of
distributions D(h,C,M) are defined. In Section 2.3.2, we study the k-NN estimators and derive a
non-asymptotic upper bound for the excess risk of the CRPS uniformly on the class D(h,C,M).
Section 2.3.3 provides similar results for the kernel method. In Section 2.3.4, we find a lower
minimax rate of convergence by reducing the problem to standard point regression solved by
Györfi et al. (2002). We can deduce that the k-NN method for the distributional regression
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reaches the optimal rate of convergence in dimension d ≥ 2, while the kernel method reaches
the optimal rate of convergence in any dimension. All the proofs are postponed to and detailed
in the Appendix. A short conclusion and discussion is provided in Section 2.4.

2.2 Preliminaries

2.2.1 Distributional regression framework

In this article, we consider the regression framework (X,Y ) ∈ Rd × R with distribution P . The
goal of distributional regression is to estimate the conditional distribution of Y given X = x,
noted

F ∗
x (y) : = P (Y ≤ y|X = x), x ∈ Rd.

In forecast assessment, we make the distinction between the construction of the estimator
relying on the training sample Dn = {(Xi, Yi), 1 ≤ i ≤ n} and its evaluation with respect to new
data (X,Y ). Given the training sample Dn, the forecaster constructs a predictor F̂n : x 7→ F̂n,x

that estimates the conditional distribution F ∗
x . In this context, it is crucial to assess if F̂n,x is

close to F ∗
x over the entire range of possible values of X = x. To this aim, we consider

EX∼PX ,Dn∼Pn

[∫
R
|F̂n,X(z) − F ∗

X(z)|2dz
]

(2.1)

where PX denotes the marginal distribution of X, EX∼PX ,Dn∼Pn denotes the expectation with
respect to X and Dn following PX and Pn respectively. The squared L2-norm within the
expectation is usually referred to as the squared second-order Cramér’s distance. We focus on
this specific distance because it corresponds to the excess risk associated with the CRPS, also
called divergence of the CRPS, as explained in the next section.

2.2.2 CRPS and evaluation of distributional regression

The Continuous Ranked Probability Score (CRPS; Matheson and Winkler, 1976) compares a
predictive distribution F and a real-valued observation y by computing the following integral

CRPS(F, y) =

∫
R
(F (z) − 1y≤z)2dz. (2.2)

The expected CRPS of a predictive distribution F when the observations Y are distributed
according to G is defined as

CRPS(F,G) =

∫
R

CRPS(F, y)G(dy), F,G ∈ M(R), (2.3)

where M(R) denotes the set of all distribution functions on R. This quantity is finite when
both F and G have a finite first moment. Then, the difference between the expected CRPS of
the forecast F and the expected CRPS of the ideal forecast G can be written as

CRPS(F,G) − CRPS(G,G) =

∫
R
|F (z) −G(z)|2dz ≥ 0. (2.4)

This implies that the only optimal prediction, in the sense that it minimizes the expected CRPS,
is the true distribution G. A score with this property is said to be strictly proper. This property
is essential for distributional regression as it justifies the minimization of the expected score in
order to construct or evaluate a prediction.
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In distributional regression, the quality of a predictor F̂ : x 7→ F̂x is assessed by its risk

RP (F̂ ) = E(X,Y )∼P

[
CRPS(F̂X , Y )

]
= EX∼PX

[
CRPS(F̂X , F ∗

X)
]
.

This quantity is important as many distributional regression methods try to minimize it in order
to improve predictions. When Y is integrable, Equation (2.4) implies

RP (F̂ ) −RP (F ∗) = E(X,Y )∼P

[
CRPS(F̂X , Y ) − CRPS(F ∗

X , Y )
]

= EX∼PX

[∫
R

∣∣∣F̂X(z) − F ∗
X(z)

∣∣∣2 dz

]
≥ 0. (2.5)

We recall that the Bayes risk is the minimal theoretical risk over all possible predictors and
that a Bayes predictor is a predictor achieving the Bayes risk. Thus, Equation (2.5) implies
that RP (F ∗) is the Bayes risk and that F ∗ is a Bayes predictor if and only if F̂x = F ∗

x PX -a.e.
An introduction to the notions of theoretical risk, Bayes risk and excess risk can be found in
Section 2.4 of Hastie et al. (2009).

Finally, we consider the case of a predictor F̂n built on a training sample Dn = {(Xi, Yi), 1 ≤
i ≤ n}, as presented in Section 2.2.1, to estimate the conditional distribution of Y given X.
Then, (X,Y ) denotes a new independent observation used to evaluate the performances of F̂n.
The predictor has the expected CRPS

EDn∼Pn [RP (F̂n)] = EDn∼Pn,(X,Y )∼P [CRPS(F̂n,X , Y )],

with expectation taken both with respect to the training sample Dn and test observation (X,Y ).
Once again, when Y is integrable, the theoretical risk has a unique minimum given by RP (F ∗).
The excess risk becomes

EDn∼Pn

[
RP (F̂n)

]
−RP (F ∗)

= EDn∼Pn,X∼PX

[∫
R

∣∣∣F̂n,X(z) − F ∗
X(z)

∣∣∣2 dz

]
≥ 0. (2.6)

This justifies the choice of the squared Cramér’s distance in Equation (2.1).
For large sample sizes, one expects that the predictor correctly estimates the conditional

distribution and that the excess risk (2.6) tends to zero. A genuine question is to investigate
the rate of convergence of the excess risk to zero as the sample size n → ∞. The risk depends
on the distribution of observations and we want the model to perform well on large classes of
distributions. Hence, we consider the standard minimax approach, as described in the next
section.

2.2.3 Optimal minimax rates of convergence

In order to study the rate of convergence, as n → ∞, of the excess risk (2.6) to zero, we introduce
the notion of optimal minimax rate of convergence. The minimax risk corresponds to the best
achievable risk in the worst-case scenario (whence the name minimax). More precisely, given a
class of distributions D, the optimal minimax rate of convergence quantifies the minimal error
that an estimator F̂n can achieve uniformly on a given class of distributions D, when the size
of the training set Dn gets large.

Stone (1982) provided minimax rates of convergence within a point regression framework
and the minimax theory for nonparametric regression is well-developed, see e.g. Györfi et al.
(2002) or Tsybakov (2009). To the extent of our knowledge, this paper states the first results
for distributional regression.

The formal definition of minimax rate of convergence for distributional regression is as
follows.
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Definition 2.1. A sequence of positive numbers (an) is called an optimal minimax rate of
convergence on the class D if

lim inf
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)] −RP (F ∗)

an
> 0 (2.7)

and

lim sup
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)] −RP (F ∗)

an
< ∞, (2.8)

where the infimum is taken over all distributional regression models F̂n trained on Dn. If
the sequence (an) satisfies only the lower bound (2.7), it is called a lower minimax rate of
convergence.

2.2.4 k-NN and kernel predictors in distributional regression

Many predictors F̂n can be studied and possibly achieve the optimal minimax rate of conver-
gence. In this paper, we focus on two simple cases: k-nearest neighbor and kernel estimators.

The k-nearest neighbor (k-NN) method is well-known in the classical framework of regression
and classification (see, e.g. Biau and Devroye, 2015). In distributional regression, the k-NN
method can be suitably adapted to estimate the conditional distribution F ∗

x and the estimator
is written as

F̂n,x(z) =
1

kn

kn∑
i=1

1Yi:n(x)≤z, (2.9)

where 1 ≤ kn ≤ n and Yi:n(x) denotes the observation at the i-th nearest neighbor of x. As
usual, possible ties are broken at random to define nearest neighbors. Note that, in weather
forecast statistical postprocessing, the k-NN method corresponds to a type of analog ensemble
method (see Delle Monache et al., 2013).

The kernel estimate in distributional regression (see, e.g., Chapter 5 of Györfi et al., 2002)
can be expressed as

F̂n,x(z) =

∑n
i=1K(x−Xi

hn
)1Yi≤z∑n

i=1K(x−Xi
hn

)
, (2.10)

where the function K : Rd → [0,∞) is a density function, called kernel, and hn > 0 is the
so-called bandwidth, that depends on the sample size n. If the denominator in (2.10) vanishes,
we use the convention F̂n,x(z) = 1

n

∑n
i=1 1Yi≤z.

Minimax rates of convergence of the k-NN and kernel models in point regression are well-
studied and it is known that, for suitable choices of the number of neighbors kn and bandwidth
hn respectively, the methods are minimax rate optimal on classes of distributions with Lipschitz
or more generally Hölder continuous regression functions (see e.g. Theorem 14.5 in Biau and
Devroye, 2015 and Theorem 5.2 in Györfi et al., 2002). For suitable classes of distributions
defined hereafter, we are able to extend these results to distributional regression. Moreover,
we obtain non-asymptotic bounds for the minimax rate of convergence for both the k-NN and
kernel models (see Sections 2.3.2 and 2.3.3).

2.3 Main results

2.3.1 Optimal minimax rate of convergence

We consider the following classes of distributions.

Definition 2.2. For h ∈ (0, 1], C > 0 and M > 0, let D(h,C,M) be the class of distributions P
such that F ∗

x (y) = P (Y ≤ y|X = x) satisfies:
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i) X ∈ [0, 1]d PX-a.s.;

ii) For all x ∈ [0, 1]d,
∫

R F ∗
x (z)(1 − F ∗

x (z))dz ≤ M ;

iii) ∥F ∗
x′ − F ∗

x∥L2 ≤ C∥x′ − x∥h for all x, x′ ∈ [0, 1]d.

Conditions i) − iii) in Definition 2.2 are very similar to the conditions considered in the point
regression framework, see Theorem 5.2 in Györfi et al. (2002). In condition i), [0, 1]d could be
replaced by any compact set of Rd. Condition ii) requires that CRPS(F ∗

x , F
∗
x ) remains uniformly

bounded by M , which is a condition on the dispersion of the distribution F ∗
X since it implies

that the absolute mean error (MAE) remains uniformly bounded. Condition iii) is a regularity
statement of the conditional distribution in the space L2(R). As an illustration, the different
conditions are expressed for the Generalized Pareto distribution model in Section 2.3.5 below.

Our main result is the following optimal minimax rate of convergence.

Theorem 2.1. The sequence an = n− 2h
2h+d is the optimal minimax rate of convergence on the

class D(h,C,M).

It should be stressed that the rate of convergence n− 2h
2h+d is the same as in point regression

with square error, see Theorems 3.2 and 5.2 in Györfi et al. (2002) for the lower bound and
upper bound, respectively.

Remark 2.1. As pointed out by a referee, conditions i) and iii) together with the integrability
of Y imply condition ii) for some M > 0. However, the dispersion, as measured by M , plays
an important role throughout the proofs and, for this reason, we keep condition ii) in order to
obtain bounds as tight as possible.

The proof of Theorem 2.1 is divided into three steps:

1. We provide in Section 2.3.2 an explicit and non-asymptotic upper bound for the excess
risk of the k-nearest neighbor model uniformly on the class D(h,C,M); the upper bound is
then optimized with a suitable choice of k = kn.

2. In Section 2.3.3, we obtain similar results for the kernel model.

3. We show in Section 2.3.4 that an = n− 2h
2h+d is a lower minimax rate of convergence; the

main argument is that it is enough to consider a binary model when both the observation
Y and prediction F̂X take values in {0, L}; we deduce that in this case, the CRPS coincides
with the mean squared error so that we can appeal to standard results on lower minimax
rate of convergence for regression.

Combining these three steps, we finally obtain Theorem 2.1 providing the optimal minimax
rate of convergence of the excess risk on the class D(h,C,M). All the proofs are postponed to the
Appendix (Section 2.5).

2.3.2 Upper bound for the k-nearest neighbor model

The k-NN method for distributional regression is defined in Equation (2.9). Here we do not use
only the mean of the nearest neighbor sample (Yi:n(x))1≤i≤kn but its entire empirical distribu-
tion. Interestingly, the tools developed to analyze the k-NN in point regression can be used in
our distributional regression framework.
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Proposition 2.1. Assume P ∈ D(h,C,M) and let F̂n be the k-nearest neighbor model defined by
Equation (2.9). Then,

EDn∼Pn [RP (F̂n)] −RP (F ∗) ≤


8hC2

(
kn

n

)h

+
M

kn
if d = 1,

cd
hC2

(
kn

n

)2h/d

+
M

kn
if d ≥ 2,

where cd = 23+
2
d (1+

√
d)2

V
2/d
d

and Vd is the volume of the unit ball in Rd.

Let us stress that the upper bound is non-asymptotic and holds for all fixed n and kn.
Optimizing the upper bound in kn yields the following corollary.

Corollary 2.1. Assume P ∈ D(h,C,M) and consider the k-NN model (2.9).

• For d = 1, the optimal choice kn =

(
M

hC28h

) 1
h+1

n
h

h+1 yields

EDn∼Pn [RP (F̂n)] −RP (F ∗) ≤ Bn− h
h+1

with constant B = C
2

h+1M
h

h+1 8
h

h+1

(
h−

h
h+1 + h

1
h+1

)
.

• For d ≥ 2, the optimal choice kn =

(
Md

2hC2chd

) d
2h+d

n
2h

2h+d yields

EDn∼Pn [RP (F̂n)] −RP (F ∗) ≤ Bn− 2h
2h+d

with constant B = (C2chd)
d

2h+dM
2h

2h+d

((
d
2h

) 2h
2h+d +

(
2h
d

) d
2h+d

)
.

2.3.3 Upper bound for the kernel model

Kernel methods adapted to distributional regression are defined in Equation (2.10). For con-
venience and simplicity of notations, we develop our result for the simple uniform kernel
K(x) = 1{∥x∥≤1}. However, it should be stressed that all the results can be extended to boxed
kernels (Györfi et al., 2002, Figure 5.7 p73) to the price of some extra multiplicative constants.
For the uniform kernel, the estimator writes

F̂n,x(z) =

∑n
i=1 1{∥Xi−x∥≤hn}1{Yi≤z}∑n

i=1 1{∥Xi−x∥≤hn}
, (2.11)

when the denominator is non-zero and F̂n(x) = 1
n

∑n
i=1 1{Yi≤z} otherwise.

Proposition 2.2. Assume P ∈ D(h,C,M) and let F̂n be the kernel model defined by Equation
(2.11). Then,

EDn∼Pn [RP (F̂n)] −RP (F ∗) ≤ c̃d
2M + C2dh + M

n

nhdn
+ C2h2hn

where c̃d only depends on d.
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Once again, the upper bound is non-asymptotic and holds for all fixed n and hn. Optimizing
the upper bound in hn yields the following corollary.

Corollary 2.2. Assume P ∈ D(h,C,M) and consider the kernel model (2.11). For any d, the
optimal choice

hn =

(
c̃dd(2M + C2dh + M

n )

2hC2

) 1
2h+d

n− 1
2h+d

yields

EDn∼Pn [RP (F̂n)] −RP (F ∗) ≤ Bn− 2h
2h+d

with

B = C
2d

2h+d

(
c̃d(2M + C2dh +

M

n
)

) 2h
2h+d

((
d

2h

)− d
2h+d

+

(
d

2h

) 2h
2h+d

)
.

2.3.4 Lower minimax rate of convergence

We finally compare the rates of convergence obtained in Corollaries 2.1 and 2.2 with a lower
minimax rate of convergence in order to see whether the optimal rate of convergence is achieved.

To prove a lower bound on a class D, it is always possible to consider a smaller class B.
Indeed, if B ⊂ D, we clearly have

inf
F̂n

sup
P∈B

{
EDn∼Pn [RP (F̂n)] −RP (F ∗)

}
≤ inf

F̂n

sup
P∈D

{
EDn∼Pn [RP (F̂n)] −RP (F ∗)

}
so that any lower minimax rate of convergence on B is also a lower minimax rate of convergence
on D.

To establish the lower minimax rate of convergence, we focus on the following classes of
binary responses.

Definition 2.3. Let B(h,C,L) be the class of distributions of (X,Y ) such that:

i) Y ∈ {0, L} and X is uniformly distributed on [0, 1]d;

ii) ∥F ∗
x′ − F ∗

x∥L2 ≤ C∥x′ − x∥h for all x, x′ ∈ [0, 1]d.

Since a binary outcome Y ∈ {0, L} satisfies
∫

R F ∗
x (z)(1 − F ∗

x (z))dz ≤ L/4, condition ii) in

Definition 2.2 holds with M ≥ L/4. Then B(h,C,L) ⊂ D(h,C,M) and the following lower bound
established on the smaller class also holds on the larger class.

Proposition 2.3. The sequence an = n− 2h
2h+d is a lower minimax rate of convergence on the

class B(h,C,L). More precisely,

lim inf
n→∞

inf
F̂n

sup
P∈B(h,C,L)

EDn∼Pn [RP (F̂n)] −RP (F ∗)

C
2d

2h+dn− 2h
2h+d

≥ C1 (2.12)

for some constant C1 > 0 independent of C.

Combining Corollaries 2.1 and 2.2 and Proposition 2.3, we can deduce that for d ≥ 2, the

k-NN model reaches the minimax lower rate of convergence an = n− 2h
2h+d for the class D(h,C,M)

and that the kernel model reaches the minimax lower rate of convergence an in any dimension
d. This shows that this lower rate of convergence is in fact the optimal rate of convergence and
proves Theorem 2.1.
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2.3.5 Generalized Pareto distributions

Explicit parametric formulas of the CRPS exist for most classical distribution families: e.g.
Gaussian, logistic, censored logistic, Generalized Extreme Value, Generalized Pareto (see Gneit-
ing et al., 2005; Taillardat et al., 2016; Friederichs and Thorarinsdottir, 2012). We focus here on
the Generalized Pareto Distribution (GPD) family and we denote by Hξ,σ the GP distribution
with shape parameter ξ ∈ R and scale parameter σ > 0. Recall that it is defined, when ξ ̸= 0,
by

Hξ,σ(z) = 1 −
(

1 +
ξz

σ

)−1/ξ

+

, z > 0,

with the notation (·)+ = max(0, ·). When ξ = 0, the standard limit by continuity is used. For
ξ < 1, the GPD has a finite first moment and the associated CRPS is given by Friederichs and
Thorarinsdottir (2012)

CRPS (Hξ,σ, y) (2.13)

=

(
y +

σ

ξ

)
(2Hξ,σ(y) − 1) − 2σ

ξ(ξ − 1)

(
1

ξ − 2
+ (1 −Hξ,σ(y))

(
1 + ξ

y

σ

))
.

When Y ∼ Hξ∗,σ∗ , the expected CRPS is (Taillardat et al., 2023)

CRPS (Hξ,σ, Hξ∗,σ∗) (2.14)

=
σ∗

1 − ξ∗
+

2σ

1 − ξ
m0 +

2ξ

1 − ξ
m1 + 2σ

(
1

1 − ξ
− 1

2(2 − ξ)

)

with

m0 = EY∼Hξ∗,σ∗

(1 +
ξ

σ
Y

)−1/ξ
 , m1 = EY∼Hξ∗,σ∗

Y (1 +
ξ

σ
Y

)−1/ξ
 .

In particular,

CRPS (Hξ∗,σ∗ , Hξ∗,σ∗) =
σ∗

(2 − ξ∗)(1 − ξ∗)
.

We now consider the distributional regression framework and we illustrate the statement
of Section 2.2.2 on Bayes risk in the case of a Generalized Pareto regression model where Y
given X = x follows a GPD with shape parameter ξ∗(x) and scale parameter σ∗(x). Then, it is
possible to show that Bayes risk is equal to

RP (F ∗) =

∫
Rd

σ∗(x)

(2 − ξ∗(x))(1 − ξ∗(x))
PX(dx)

when 0 < ξ∗(x) < 1 for all x ∈ Rd. For a forecast in the GPD class, i.e. Fx is a GPD with
shape parameter ξ(x) and scale parameter σ(x), then the risk RP (F ) is equal to Bayes risk if
and only if ξ(x) = ξ∗(x) and σ(x) = σ∗(x) PX -a.e.

In the GPD regression framework, the conditions of the classes of distributions D(h,C,M) can
be interpreted as conditions on the parameters ξ∗(x) and σ∗(x). Condition ii) is equivalent to
σ∗(x) ≤ M(2 − ξ∗(x))(1 − ξ∗(x)) when 0 < ξ∗(x) < 1, for all x ∈ [0, 1]d. The regularity con-
dition iii) holds with constants C and h as soon as x 7→ ξ∗(x) and x 7→ σ∗(x) are both h-Hölder.

For example, the popular case were the shape parameter ξ∗(x) and the scale parameter
σ∗(x) are assumed to be linearly dependent on x (i.e. ξ∗(x) = ξ0 + ξ1 ·x and σ∗(x) = σ0 +σ1 ·x
with ξ1, σ1 ∈ Rd) is in a class of distributions of Definition 2.2.
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2.4 Conclusion and Discussion

We found that the optimal rate of convergence for distributional regression on D(h,C,M) is of
the same order as the optimal rate of convergence for point regression. Thus, with regard to
the sample size n, distributional regression evaluated with the CRPS converges at the same
rate as point regression even though the distributional estimate carries more information on the
prediction of the underlying process.

We have also shown that the k-NN method and the kernel method reach this optimal rate
of convergence, respectively in dimension d ≥ 2 and in any dimension. However, these methods
are not widely used in practice because of the limitations of their predictive power in moderate
or high dimension d ≥ 3 due to the curse of dimension. An extension of this work could be to
study if state-of-the-art techniques reach the optimal rate of convergence obtained in this article.
Random Forests (Breiman, 2001) methods, such as Quantile Regression Forests (Meinshausen,
2006) and Distributional Random Forests (Ćevid et al., 2022), appear to be natural candidates
as they are based on a generalized notion of neighborhood and have been subject to recent
development in weather forecast statistical postprocessing (see, e.g., Taillardat et al., 2016).

The results of this article were obtained for the CRPS, which is widely used in practice,
but can easily be extended to the weighted CRPS in its standard uses. The weighted CRPS is
defined as

wCRPS(F, y) =

∫
R
(F (z) − 1y≤z)

2w(z)dz

with w the chosen weight. The weighted CRPS is used to put the focus of the score in specific
regions of the outcome space (Gneiting and Ranjan, 2011). It is used in the study of extreme
events by giving more weight to the extreme behavior of the distribution.

Moreover, an interesting development would be to obtain similar results for the rate of con-
vergence with respect to different strictly proper scoring rules or metrics, for instance, energy
scores or Wasserstein distances.
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2.5 Appendix

2.5.1 Proof of Proposition 2.1

For the simplicity of notation, we write simply E for the expectation with respect to (X,Y ) ∼ P
and Dn ∼ Pn. The context makes it clear enough so as to avoid confusion.

Proof. Recall that for the CRPS, the excess risk is equal to

E[RP (F̂n)] −RP (F ∗) = E

[∫
R
|F̂n,X(z) − F ∗

X(z)|2dz
]
. (2.15)

We first estimate E[|F̂n,x(z)−F ∗
x (z)|2] for fixed x ∈ [0, 1]d and z ∈ R. Denote by X1:n(x), · · · , Xkn:n(x)

the nearest neighbors of x and by Y1:n(x), . . . , Ykn:n(x) the associated values of the response vari-
able. Conditionally on Xi:n(x) = xi, 1 ≤ i ≤ kn, the random variables Yi:n(x), 1 ≤ i ≤ kn, are
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independent and with distribution F ∗
xi

, 1 ≤ i ≤ kn. This implies that, conditionally, F̂n,x(z) is
the average of the kn independent random variables 1{Yi:n(x)≤z} that have a Bernoulli distribu-
tion with parameter F ∗

xi
(z). Therefore, the conditional bias and variance are given by

E[F̂n,x(z) − F ∗
x (z) | Xi(x) = xi, 1 ≤ i ≤ kn] =

1

kn

kn∑
i=1

(
F ∗
xi

(z) − F ∗
x (z)

)
Var[F̂n,x(z) | Xi(x) = xi, 1 ≤ i ≤ kn] =

1

k2n

kn∑
i=1

F ∗
xi

(z)(1 − F ∗
xi

(z)).

Adding up the squared conditional bias and variance and integrating with respect to Xi:n(x),
1 ≤ i ≤ kn, we obtain the mean squared error

E
[
|F̂n,x(z) − F ∗

x (z)|2
]

= E
[( 1

kn

kn∑
i=1

(
F ∗
Xi:n(x)

(z) − F ∗
x (z)

))2]
+

1

k2n

kn∑
i=1

E
[
F ∗
Xi:n(x)

(z)(1 − F ∗
Xi:n(x)

(z))
]
.

Using Jensen’s inequality and integrating with respect to PX(dx)dz, we deduce that the excess
risk (2.15) satisfies

E[RP (F̂n)] −RP (F ∗) ≤ 1

kn

kn∑
i=1

E

[∫
R
(F ∗

Xi:n(X)(z) − F ∗
X(z))2dz

]

+
1

k2n

kn∑
i=1

E

[∫
R
F ∗
Xi:n(X)(z)(1 − F ∗

Xi:n(X))dz

]
.

Using conditions ii) and iii) in the definition of the class D(h,C,M) to bound from above the
first and second term respectively, we get

E[RP (F̂n)] −RP (F ∗) ≤ C2

kn

kn∑
i=1

E
[
∥Xi:n(X) −X∥2h

]
+

M

kn

≤ C2E
[
∥Xkn:n(X) −X∥2h

]
+

M

kn
,

where the last inequality uses the fact that, by definition of nearest neighbors, the distances
∥Xi:n(X) −X∥, 1 ≤ i ≤ kn, are non-increasing.

The last step of the proof is to use Theorem 2.4 from Biau and Devroye (2015) stating that

E[∥Xkn:n(X) −X∥2] ≤


8
kn

n
if d = 1,

cd

(
kn

n

)2/d

if d ≥ 2.

Together with the concavity inequality (as h ∈ (0, 1])

E[∥Xkn:n(X) −X∥2h] ≤ E[∥Xkn:n(X) −X∥2]h,
we deduce

E[RP (F̂n)] −RP (F ∗) ≤


C28h

(
kn

n

)h

+
M

kn
if d = 1,

C2cd
h

(
kn

n

)2h/d

+
M

kn
if d ≥ 2,

concluding the proof of Proposition 2.1.
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2.5.2 Proof of Proposition 2.2

Proof. Equation (2.11) can be rewritten as

F̂n,x(z) =

∑n
i=1 1{Xi∈Sx,hn}1{Yi≤z}

nPn(Sx,hn)
,

with Sx,ϵ the closed ball centered at x of radius ϵ > 0 and

Pn(·) =
1

n

n∑
i=1

1{Xi∈·}

the empirical measure corresponding to X1, . . . , Xn. Recall that we use the estimator F̂n(x) =
1
n

∑n
i=1 1{Yi≤z} when nPn(Sx,hn) = 0.

Similarly as in the proof of the Proposition 2.1, a bias/variance decomposition of the squared
error yields

E
[
|F̂n,x(z) − F ∗

x (z)|2
]

= E

(∑n
i=1

(
F ∗
Xi(x)

(z) − F ∗
x (z)

)
1{Xi∈Sx,hn}

nPn(Sx,hn)

)2

1{nPn(Sx,hn )>0}


+ E

[∑n
i=1 F

∗
Xi

(z)(1 − F ∗
Xi

(z))1{Xi∈Sx,hn}

(nPn(Sx,hn))2
1{nPn(Sx,hn )>0}

]

+ E

( 1

n

n∑
i=1

1{Yi≤z} − F ∗
x (z)

)2

1{nPn(Sx,hn )=0}


:= A1(z) + A2(z) + A3(z).

The excess risk at X = x is thus decomposed into three terms

E

[∫
R
|F̂n,x(z) − F ∗

x (z)|2dz
]

=

∫
R
A1(z)dz +

∫
R
A2(z)dz +

∫
R
A3(z)dz

that we analyze successively.
The first term (bias) is bounded from above using Jensen’s inequality and property iii) of

D(h,C,M):∫
R
A1(z)dz ≤ E

∑n
i=1

∫
R

(
F ∗
Xi(x)

(z) − F ∗
x (z)

)2
dz1{Xi∈Sx,hn}

nPn(Sx,hn)
1{nPn(Sx,hn )>0}


≤ E

[∑n
i=1C

2∥Xi − x∥2h1{Xi∈Sx,hn}

nPn(Sx,hn)
1{nPn(Sx,hn )>0}

]
≤ C2hn

2h.

The second term (variance) is bounded using property ii) of D(h,C,M) and an elementary
result for the binomial distribution:∫

R
A2(z)dz = E

[∑n
i=1

∫
R F ∗

Xi
(z)(1 − F ∗

Xi
(z))dz1{Xi∈Sx,hn}

(nPn(Sx,hn))2
1{nPn(Sx,hn )>0}

]

≤ ME

[
1{nPn(Sx,hn )>0}

nPn(Sx,hn)

]
≤ 2M

nPX(Sx,hn)
.

34



In the last line, we use that Z = nPn(Sx,hn) follows a binomial distribution with parameters n
and p = PX(Sx,hn) so that E

[
1
Z1{Z>0}

]
≤ 2

(n+1)p , see Lemma 4.1 in Györfi et al. (2002).
The last term is a remainder term and is bounded by∫

R
A3(z)dz ≤ E

[
1

n

n∑
i=1

∫
R

(
F ∗
Xi

(z) − F ∗
x (z)

)2
dz1{nPn(Sx,hn )=0}

]

+ E

[
1

n2

n∑
i=1

∫
R
F ∗
Xi

(z)(1 − F ∗
Xi

(z))dz1{nPn(Sx,hn )=0}

]
.

Properties ii) and iii) of D(h,C,M) and the fact that ∥Xi − x∥ ≤
√
d imply∫

R
A3(z)dz ≤

(
C2dh +

M

n

)
E
[
1{nPn(Sx,hn )=0}

]
≤
(
C2dh +

M

n

)
e−nPX(Sx,hn ).

For the second inequality, we use that P(Z = 0) = (1 − p)n ≤ e−np where Z = nPn(Sx,hn)
follows a binomial distribution with parameters n and p = PX(Sx,hn) .

Collecting the three terms, we obtain the following upper bound for the excess risk at X = x:

E

[∫
R
|F̂n,x(z) − F ∗

x (z)|2dz
]
≤ C2hn

2h +
2M

nPX(Sx,hn)
+

(
C2dh +

M

n

)
e−nPX(Sx,hn ).

We finally integrate this bound with respect to PX(dx). According to Equation (5.1) in
Györfi et al. (2002), there exists a constant c̃d depending only on d such that∫

[0,1]d

1

nPX(Sx,hn)
PX(dx) ≤ c̃d

nhdn
.

Note that c̃d can be chosen as c̃d = dd/2. We also have∫
[0,1]d

e−nPX(Sx,hn )PX(dx) ≤ max
u≥0

ue−u

∫
[0,1]d

1

nPX(Sx,hn)
PX(dx)

≤ c̃d
nhdn

.

We obtain thus

E[RP (F̂n)] −RP (F ∗) = E

[∫
R
|F̂n,x(z) − F ∗

x (z)|2dz
]

≤ C2hn
2h + c̃d

2M + C2dh + M
n

nhn
d

.

2.5.3 Proof of Proposition 2.3

The proof of Proposition 2.3 relies on the next two elementary lemmas. The first one states that
for a binary outcome Y ∈ {0, L}, forecasters should focus on binary forecast F ∈ M({0, L})
only, which is very natural. More precisely, any predictive distribution F ∈ M(R) can be
associated with F ∈ M({0, L}) with a better expected CRPS.
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Lemma 2.1. Let G ∈ M({0, L}). For F ∈ M(R), the distribution

F̃ (z) = (1 −m)10≤z + m1L≤z with m =
1

L

∫ L

0
(1 − F (z))dz

satisfies
CRPS(F̃ , G) ≤ CRPS(F,G).

Proof. Let F ∈ M(R) and G ∈ M({0, L}). We have

CRPS(F,G) =

∫
R

∫
R
(F (z) − 1y≤z)2dzG(dy)

≥
∫

R

∫ L

0
(F (z) − 1y≤z)2dzG(dy)

Because 1 −m is the mean value of F on [0, L], we have for y ∈ {0, L}∫ L

0
(F (z) − 1y≤z)2dz ≥

∫ L

0
((1 −m) − 1y≤z)2dz.

Integrating with respect to G(dy), we deduce

CRPS(F,G) ≥
∫

R

∫ L

0
((1 −m) − 1y≤z)2dzG(dy).

The right-hand side equals CRPS(F̃ , G) and we conclude

CRPS(F,G) ≥ CRPS(F̃ , G).

Lemma 2.2 shows that for binary outcome and predictions, the CRPS reduces to a quantity
proportional to the Brier score (Brier, 1950)

Brier(p, y) = (y − p)2, y ∈ {0, 1}, p ∈ [0, 1],

which is closely related to the mean squared error used in regression.

Lemma 2.2. For all y ∈ {0, L} and F (z) = (1 − p)10≤z + p1L≤z ∈ M({0, L}) with p ∈ [0, 1],
it holds

CRPS(F, y) = LBrier(p,
y

L
) = L(

y

L
− p)2.

Proof. We compute

CRPS(F, y) =

∫ L

0
(1 − p− 1y≤z)

2dz

=

{
Lp2 if y=0
L(1 − p)2 if y=L

.

In both cases, this equals L( y
L − p)2 = LBrier(p, y

L).

Proof of Proposition 2.3. Since only binary outcomes are considered in the class B(h,C,L), Lemma 2.1
implies that

inf
F̂n

sup
P∈B(h,C,L)

{
E[RP (F̂n)] −RP (F ∗)

}
= inf

F̃n

sup
P∈B(h,C,L)

{
E[RP (F̃n)] −RP (F ∗)

}
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where the infimum are taken over models F̂n and F̃n trained on the first observations (Xi, Yi)1≤i≤n

and with values in M(R) and M({0, L}), respectively. Indeed, the left-hand side is a pri-
ori smaller since the family F̂n is larger but Lemma 2.1 ensures that each model F̂n can be
associated with a model F̃n with equal or lower expected score.

We then apply Lemma 2.2. For a binary outcome, the conditional distribution of Y given
X = x writes

F ∗
x (z) = (1 −m(x))10≤z + m(x)1L≤z,

and the model F̃n with values in M({0, L}) takes the form

F̃n,x(z) = (1 −mn(x))10≤z + mn(x)1L≤z,

with m(x) = 1
L

∫ L
0 (1 − F ∗

x (z))dz and mn(x) = 1
L

∫ L
0 (1 − F̂n,x(z))dz.

Then Lemma 2.2 implies

E[RP (F̂n)] −RP (F ∗) = E
[
CRPS(F̂n,X , Y ) − CRPS(F ∗

X , Y )
]

= LE
[
(Y/L−mn(X))2 − (Y/L−m(X))2

]
= LE

[
(mn(X) −m(X))2

]
,

which corresponds to the excess risk in regression with squared error loss. The property iii) of
B(h,C,L) is equivalent to

|m(x) −m(x′)|h ≤ C∥x− x′∥h, x ∈ [0, 1]d,

which is the standard regularity assumption on the regression function m. Using the result
of Problem 3.3 in Györfi et al. (2002) dealing with binary models, we finally obtain that the

sequence an = n− 2h
2h+d is a lower minimax rate of convergence for this class of distributions and

more precisely that Equation (2.12) holds.
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Chapter 3

Distributional regression U-Nets for
the postprocessing of precipitation
ensemble forecasts

This chapter reproduces an article submitted to Artificial Intelligence for the Earth Systems,
and written by Romain Pic1, Clément Dombry1, Philippe Naveau2 and Maxime Taillardat3.

Abstract Accurate precipitation forecasts have a high socio-economic value due to their
role in decision-making in various fields such as transport networks and farming. We propose
a global statistical postprocessing method for grid-based precipitation ensemble forecasts. This
U-Net-based distributional regression method predicts marginal distributions in the form of
parametric distributions inferred by scoring rule minimization. Distributional regression U-
Nets are compared to state-of-the-art postprocessing methods for daily 21-h forecasts of 3-h
accumulated precipitation over the South of France. Training data comes from the Météo-
France weather model AROME-EPS and spans 3 years. A practical challenge appears when
consistent data or reforecasts are not available.

Distributional regression U-Nets compete favorably with the raw ensemble. In terms of
continuous ranked probability score, they reach a performance comparable to quantile regression
forests (QRF). However, they are unable to provide calibrated forecasts in areas associated with
high climatological precipitation. In terms of predictive power for heavy precipitation events,
they outperform both QRF and semi-parametric QRF with tail extensions.
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3.1 Introduction

Correctly forecasting precipitation is crucial for decision-making in various fields such as flood
levels, transport networks, water resources and farming, among others (see, e.g., Olson et al.
1995). Moreover, high-impact events are expected to intensify in the future as a consequence of
climate change (Planton et al., 2008). Numerical weather prediction (NWP) systems have been
continuously improving to take into account uncertainty of the atmosphere and the limitations
of their physical modeling (Bauer et al., 2015). NWP systems produce ensemble forecasts,
consisting of multiple runs of deterministic scenarios with different parameters. Nonetheless,
raw ensemble forecasts suffer from bias and underdispersion (see, e.g., Hamill and Colucci 1997;
Bauer et al. 2015; Ben Bouallègue et al. 2016; Baran and Nemoda 2016). This phenomenon
affects all NWP systems regardless of the weather service and of the variable of interest. Fur-
thermore, the limited number of ensemble members coupled with underdispersion implies that
raw ensemble forecasts may have a limited predictive power regarding extremes (Williams et al.,
2013). In order to correct these systematic errors, it has become standard practice to use sta-
tistical postprocessing of ensemble prediction systems (EPS) in both research and operations.

A popular spatial statistical postprocessing strategy consists of separately postprocessing
marginal distributions at each location and the spatial dependence structure. Numerous meth-
ods for postprocessing univariate marginals have been developed over the past two decades.
There has been a rise in the number of machine learning based statistical postprocessing tech-
niques as they provide a flexible framework enabling the modeling of complex relationships
between the output of NWP models and the target variable. Moreover, they facilitate the use
of a large number of predictors. These methods range from well-established statistical learning
techniques, such as random forests (Taillardat et al., 2016) or gradient boosting (Messner et al.,
2017), to neural networks or deep learning techniques, such as fully connected neural networks
(Rasp and Lerch, 2018) and transformers (Ben Bouallègue et al., 2024b). For a thorough re-
view of the existing statistical postprocessing techniques, readers may refer to Vannitsem et al.
(2021) and Schulz and Lerch (2022b). Once calibrated univariate marginals are obtained, the
spatial dependence structure may be needed by downstream applications. The spatial depen-
dence structure can be obtained from the raw ensemble as done by ensemble copula coupling
(ECC; Schefzik et al. 2013) and its variants (e.g., Ben Bouallègue et al. 2016) or from historical
observations as done by Schaake shuffle (ScS; Clark et al. 2004). Alternatively, if raw ensembles
or historical data do not model the spatial dependence sufficiently well, it can be postprocessed
using adapted techniques (see, e.g., Schefzik and Möller 2018).

An alternative postprocessing strategy consists of direct postprocessing of raw ensemble
members to obtain calibrated members. This can be achieved by postprocessing each member
individually (Van Schaeybroeck and Vannitsem, 2015) or by using ensemble-agnostic methods
(Ben Bouallègue et al., 2024b).

In order to circumvent (potential) data scarcity, it is common to use parametric methods as
they are usually less affected by smaller training datasets. The choice of a specific parametric
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distribution can be motivated by prior knowledge (or assumption) on the distribution of the
variable of interest. Parametric methods can enable extrapolation beyond the range available in
the training data, which is of interest to consider extreme events (see, e.g., Friederichs et al. 2018
and Taillardat et al. 2019). In particular, certain meteorological variables have a heavy-tailed
distribution; thus, a parametric method can be used to ensure that postprocessed distributions
will have an appropriate tail behavior (e.g., Lerch and Thorarinsdottir 2013).

Previous studies, such as Hemri et al. (2014) and Taillardat and Mestre (2020), have high-
lighted that all meteorological quantities do not represent the same difficulty in terms of post-
processing. Variables with heavy-tailed climatological distributions or variables with short-scale
spatio-temporal dependence (e.g., rainfall or wind gusts) are more difficult to treat than light-
tailed variables or spatially smooth variables (e.g., surface temperature or sea level pressure).
In the same vein, Schulz and Lerch (2022b) states that ”wind gusts are a challenging mete-
orological target variable as they are driven by small-scale processes and local occurrence, so
that their predictability is limited even for numerical weather prediction (NWP) models run at
convection-permitting resolutions.”

NWP models produce forecasts on a grid that are of interest to downstream applications
(Hamill, 2018, Section 7.3.2). However, consistent gridded data suited to postprocessing is
computationally costly since reanalyses and reforecasts of gridded products are demanding in
terms of both storage and computation. Numerous observation networks are station-based (e.g.,
temperature, wind speed, or pressure), but they vary in coverage and quality. When forecasts
are required at nearby locations, spatial modeling procedures are required. Both station-based
and grid-based approaches present benefits and drawbacks (Hamill, 2018, Section 7.3.2). No
preference has reached a consensus for any variable, but Feldmann et al. (2019) shows that
the relative improvement is greater for station-based 2-m temperature postprocessing when
station-based observations are used. In the case of precipitation, observations can be measured
by hybrid observations (gauge-adjusted radar images), allowing for improvement in the quality
of gridded postprocessing.

As mentioned by Schulz and Lerch (2022b), one of the main challenges of postprocessing is
to preserve the spatio-temporal information while optimally utilizing the whole available input
data. This motivates the use of global statistical postprocessing models (e.g., a single model
for multiple locations). Distributional regression networks (DRN; Rasp and Lerch 2018) use an
embedding module to learn a representation of stations, allowing the model to learn from nearby
and similar stations in order to preserve the spatial information of the data. When working
with gridded data, a postprocessing method could benefit from taking into account this spatial
structure of the data within its architecture. Convolutional neural networks (CNN) rely on
the image-like structure of their input. Numerous CNN-based methods have been developed to
perform postprocessing (see, e.g., Dai and Hemri 2021 and Lerch and Polsterer 2022). Here, we
want the output of the statistical postprocessing method to be grid-based. U-Net (Ronneberger
et al., 2015) architectures appear to be a natural solution to preserve the spatial structure of
the data. U-Nets use a sequence of convolutional blocks to learn complex features and upscaling
blocks to retrieve parameters of interest at the desired resolution. We propose a U-Net-based
method to postprocess marginals at each grid point using predictors at nearby grid points for
high-resolution precipitation ensemble forecasts.

The paper is organized as follows. Section 3.2 presents the dataset used in this study. In Sec-
tion 3.3, three state-of-the-art methods composing the reference methods of this study, namely
quantile regression forests (QRF), QRF with tail extension (TQRF) and DRN, are presented
and compared based on their known benefits and limitations. A U-Net-based method, called
distributional regression U-Nets (DRU), is introduced and compared with U-Net-based post-
processing methods in the literature. The predictive performance of the models is compared in
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Figure 3.1: Domains covered by AROME-EPS (blue), ANTILOPE (green) and the region of
interest (red).

terms of multiple univariate metrics in Section 3.4. An emphasis is put on the predictive per-
formance of extremes. Finally, Section 3.5 sums up the performance of DRU and offers possible
perspectives.

The code used to implement the different methods and their verification is publicly avail-
able4.

3.2 Data

In this study, we focus on 3-h accumulated precipitation over the South of France (see Fig. 3.1)
at a forecast lead time of 21-h initialized at 15:00UTC daily. Ensemble forecasts are taken from
the 17-member limited area ensemble forecasting system AROME-EPS (Bouttier et al., 2015)
driven by a subsampling of the global5 PEARP ensemble. AROME-EPS produces ensembles
with one control member and 16 perturbed members for forecasts up to 51 hours on four differ-
ent initialization times. It produces a gridded ensemble over Western Europe with a horizontal
resolution of 0.025◦ based on a model run at 1.3 km resolution. The probabilistic forecasts
are compared to 3-h accumulated precipitation data obtained from the gauge-adjusted radar
product ANTILOPE (Champeaux et al., 2009), which has a spatial resolution of 0.001◦ over
Western Europe. We project observations of ANTILOPE onto the AROME-EPS grid using
bilinear interpolation.

4https://github.com/pic-romain/unet-pp
5in the sense of globe-wide
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The region of interest in this study covers areas, such as the Cévennes, prone to heavy precip-
itation events (HPEs) (Ricard et al., 2012). HPEs affect Mediterranean coastal regions regularly
causing flash floods. Mediterranean HPEs are typically characterized by quasi-stationary con-
vective precipitation and may have limited predictability due to their intensity and being very
local (Caumont et al., 2021). Statistical postprocessing methods can help improve forecasting
such events.

Our period of interest spans 4 years from November 2019 to October 2023. The period from
November 2019 to October 2022 is used as a training/validation dataset using 7-fold cross-
validation to tune hyperparameters of the models. The folds are based on the day of the week.
The period from November 2022 to October 2023 is used as a hold-out test set. All the results
of Section 3.4 are provided for models trained on the entirety of the training/validation dataset
and evaluated on the test dataset. The dataset is composed of forecasts and reforecasts from
two different cycles of AROME-EPS. Consistency of both raw ensembles and observations is
important since independent and identically distributed (i.i.d.) data is assumed. The two cy-
cles of AROME-EPS used, namely 43t2 and 46t1, only have minor differences, making the i.i.d.
assumption reasonable.

We use summary statistics of the AROME-EPS ensemble as predictors. The following
variables were selected based on experts’ opinions: precipitation, convective available poten-
tial energy, maximal reflectivity, pseudo wet-bulb potential temperature, relative humidity and
AROME convection index. For each of these variables, the mean, the minimum, the maximum
and the standard deviation of the raw ensemble were computed at each grid point and used as
predictors.

In addition to summary statistics from AROME-EPS, distributional regression U-Nets
(DRU) use constant fields carrying information about the topography and the type of ter-
rain as predictors. The constant fields used are the altitude, a land-sea mask, the distance
to sea and the first four components of a principal component analysis decomposition called
AURHELY (Bénichou, 1994). Lerch and Polsterer (2022) showcased that the use of constant
fields, such as altitude or orography, improves the performance of DRN. The first four com-
ponents of AURHELY can be interpreted as local peak/depression, Northern/Southern slope,
Eastern/Western slope and saddle effects, respectively. Figure 3.2 shows the seven constant
fields used as predictors in DRU. Table 3.1 summarizes the predictors issued from both the raw
ensemble and constant fields. Table 3.2 lists the dimensions of the dataset.
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Table 3.1: List of weather and topographic variables used as predictors.
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Figure 3.2: Constants fields used as predictors in distributional regression U-Nets: altitude,
land-sea mask, four first components of AURHELY procedure, and distance to the sea.
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Variable Value Description

d 31 number of predictors

H 112
height (in grid points) of the region of interest
(latitude)

W 192
width (in grid points) of the region of interest
(longitude)

ntrainval 1091 # of days in the training/validation dataset

ntest 365 # of days in the test dataset

Table 3.2: Dimensions of the dataset used in this study.

3.3 Methods

We compare several postprocessing methods for the marginal distributions of gridded spatial
ensemble forecasts of 3-h accumulated precipitation over the South of France. In a complete
postprocessing scheme used operationally, the multivariate dependencies can then be retrieved
using ECC or ScS, for example. We compare our U-Net-based distributional regression method
to two benchmark methods: quantile regression forest (QRF; Taillardat et al. 2016) and QRF
with tail extension (TQRF; Taillardat et al. 2019). The performance of postprocessed forecasts
using these different methods will be compared to the performance of the raw ensemble. Ad-
ditionally, we recall distributional regression networks (DRN; Rasp and Lerch 2018) since our
method can be seen as an extension of this approach.

These methods differ in their degree of reliance on parametric distributions (nonparametric,
semi-parametric and parametric), in the fact of being local (i.e., a different model for each grid
point) or global (i.e., a single model for the whole grid). Among global methods, differences
lie in the representation of the spatial structure of the data. We briefly present the benchmark
techniques and their limitations.

3.3.1 Quantile regression forests (QRF)

Quantile regression forests (QRF; Meinshausen 2006) is a nonparametric method able to predict
conditional quantiles or, more generally, a conditional distribution. The method is based on
random forests (Breiman, 2001). Similarly, it uses the data in terminal nodes (i.e., leaves) to
compute a weighted average of empirical distributions. QRFs have proven their performance for
postprocessing of wind speed and temperature forecasts (Taillardat et al., 2016) and for precip-
itation forecasts (Whan and Schmeits, 2018; van Straaten et al., 2018). QRFs can outperform
complex postprocessing methods, such as neural network (NN-)based methods, at specific loca-
tions due to their local adaptability (Rasp and Lerch, 2018; Schulz and Lerch, 2022b). Moreover,
QRF is used operationally as a postprocessing method at Météo-France (Taillardat and Mestre,
2020). This, as well as its overall performance, makes it a relevant benchmark method for this
study.

QRFs are known to have three main limitations: potential spatial inconsistency, storage
memory voracity (Taillardat and Mestre, 2020) and inability to extrapolate. The fact that
QRF is a local model (i.e., a different model is used for each location, lead time, and variable)
may cause problems. There is no guarantee that the output of the models is consistent spatially
or temporally. Additionally, QRFs need to store the construction parameters (such as variables
and thresholds of splits) of each tree of the forest and the samples used for training. This latter
limitation results in the need to store a large number of parameters (especially when working
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with gridded data) to perform postprocessing. Lastly, QRF is incapable of extrapolating as
its output is a weighted average of the training samples and does not provide a model for the
distribution tail.

3.3.2 Quantile regression forest with tail extension (TQRF)

In order to circumvent the extrapolation inability of QRF, semi-parametric methods based on
a combination of parametric modeling and random forest were proposed. Schlosser et al. (2019)
introduced distributional regression forests using maximum likelihood to infer the parameters of
a censored Gaussian distribution. Taillardat et al. (2019) proposed a method using probability-
weighted moments (Diebolt et al., 2007) on the output of QRF to infer the parameters of an
extended generalized Pareto distribution (EGPD; Naveau et al. 2016). The EGPD is a flexi-
ble parametric class of distributions able to jointly model the whole range of the distribution
while in alignment with extreme value theory, without the requirement of threshold selection.
The methods proposed in Schlosser et al. (2019), Taillardat et al. (2019) and, more recently,
Muschinski et al. (2023) can all be adapted to any suitable parametric distribution. We choose
to use the semi-parametric method of Taillardat et al. (2019) based on probability-weighted
moments inference.

Our implementation of TQRF differs from the original method described in Taillardat et al.
(2019). It uses refinements that have proven to be useful in operational settings: the tail
extension is only activated if the QRF forecast assigns a large enough probability of exceedance
of certain levels of interest, and in that case, only the quantiles that are higher for the fitted
distribution than in the output of the QRF are updated. Moreover, we did not use EGPD
because, while the QRF+EGPD is robust and efficient, the minimization of its continuous
ranked probability score (CRPS; Matheson and Winkler 1976) for parameter inference is not
direct due to its complex form (Taillardat et al., 2019, 2022). These implementation issues
could, for example, be circumvented by using Monte-Carlo sampling to estimate the CRPS or
by fixing the tail parameter to its climatological value.

Instead of the EGPD, the generalized truncated/censored normal distribution (GTCND;
Jordan et al. 2019) and the censored-shifted gamma distribution (CSGD; Scheuerer and Hamill
2015a) are used as tail extensions of the QRF and as parametric distributions for DRU. The
GTCND used here has a lower endpoint equal to 0 and no upper endpoint and its cumulative
distribution function (cdf) is defined as

F gtcnd
L,µ,σ (z) =

{
L + 1−L

1−Φ(−µ/σ)

(
Φ( z−µ

σ ) − Φ(−µ/σ)
)

if z ≥ 0

0 if z < 0
,

where 0 ≤ L ≤ 1 is the probability of a dry event (i.e., absence of precipitation), Φ is the cdf
of the standard normal distribution, µ ∈ R is the location parameter of the truncated normal
distribution and σ > 0 is its scale parameter. The cdf of the CSGD is defined as

F csgd
k,θ,δ(z) =

{
Gk( z−δ

θ ) if z ≥ 0

0 if z < 0
,

where Gk is the cdf of the gamma distribution of shape k > 0, θ is the scale parameter and
δ < 0 is a shift parameter. The probability of dry events has a point mass of Gk(−δ/θ). These
distributions are both suited to the forecast of precipitation since they have point masses in 0
and take positive values. Moreover, the CSGD can reflect the variations of skewness observed
in precipitation distributions (Scheuerer and Hamill, 2015a). Details on the moments method
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for GTCND and CSGD, as well as CRPS formulas, are provided in Appendix 3.6.1 and Ap-
pendix 3.6.2.

We denote QRF+distrib the TQRF method where distrib is the name of the parametric
distribution family. The QRF+EGPD method is used operationally for rainfall postprocessing
at Météo-France (Taillardat and Mestre, 2020). Nonetheless, this semi-parametric method re-
mains local and thus also suffers from both potential spatial inconsistency and memory voracity
(Taillardat and Mestre, 2020). To bypass these limitations, methods need to be global (i.e., use
one model for all locations) while staying efficient locally.

3.3.3 Distributional regression networks (DRN)

Rasp and Lerch (2018) proposed distributional regression networks (DRN), a NN-based ap-
proach to postprocess 2-m temperature forecasts. DRN is a global model predicting the param-
eters of a distribution of interest. It leverages the flexibility of NN to model the dependency
of parameters on the covariables (used as input of DRN). DRN can be seen as an extension of
EMOS (Gneiting et al., 2005), which itself fits a parametric distribution where the parameters
linearly depend on summary statistics of the raw ensemble. DRN is a global model thanks to
the presence of an embedding module within its architecture, allowing the network to learn
location-specific parameters and to benefit from data at similar locations. DRN learns the em-
bedding and parameters of a dense NN by minimizing a strictly proper scoring rule (Gneiting
and Katzfuss, 2014) such as the CRPS.

Rasp and Lerch (2018) and Schulz and Lerch (2022b) have shown that DRN outperforms
other state-of-the-art methods in most stations over Germany for the postprocessing of temper-
ature and wind gusts, respectively. Moreover, Schulz and Lerch (2022b) studied other NN-based
postprocessing techniques, namely Bernstein quantile network (BQN; Bremnes 2020) and his-
togram estimation network (HEN; see, e.g., Scheuerer et al. 2020 and Veldkamp et al. 2021).
BQN and HEN are nonparametric approaches where NNs learn the coefficient of Bernstein
polynomials to predict a quantile function and probabilities of bins to predict a probability den-
sity function (pdf), respectively. At particular stations, BQN outperforms other postprocessing
techniques, including DRN, for wind gust forecasts.

In spite of being a global model, the architecture of DRN makes it ill-suited to gridded data.
Its architecture does not use knowledge of the spatial structure of the points and thus has to
try to learn it through its embedding module. Moreover, DRN only uses information available
at the location of interest as predictors. Convolutional neural network (CNN)-based architec-
tures make use of the gridded structure of the data and can use the information at neighboring
locations as a predictor. Lerch and Polsterer (2022) studied a modified DRN architecture using
the representation of global fields from a convolutional auto-encoder as predictors and showed
an improvement in skill compared to regular DRN.

DRNs’ architecture makes their implementation on gridded data very costly. They need to
flatten the data across locations (i.e., reshape it into a 1D vector), and they cannot benefit from
GPU computing. For these reasons and their impact on the search for optimal hyperparameters,
DRNs are not used as a benchmark method in this study.

3.3.4 Distributional regression U-Nets (DRU)

Convolutional blocks are the main ingredient of CNN-based architectures. The simplest con-
volutional blocks are composed of a convolutional layer and a max-pooling layer. The role of
the convolutional layer is to learn kernels able to extract useful features from the input of the
convolutional block. The max-pooling layer reduces the resolution of the features, allowing the
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following layers to work at broader scales. The succession of convolutional blocks allows CNNs
to learn patterns at different spatial scales and to learn complex patterns (see, e.g., Simonyan
and Zisserman 2015). CNN-based architectures have been used in numerous postprocessing
studies (e.g., Dai and Hemri 2021; Veldkamp et al. 2021; Li et al. 2022; Chapman et al. 2022;
Lerch and Polsterer 2022).

Since we are interested in global models using the data’s gridded structure and want the
output to be the distributional parameters of marginals on the same grid, we use a U-Net ar-
chitecture (Ronneberger et al., 2015). The U-Net architecture was initially designed for images
but is compatible with gridded data to obtain a grid-based output. It has been used for various
postprocessing applications. Grönquist et al. (2021) used it in a bias/uncertainty postprocess-
ing scheme of temperature and geopotential forecasts. Dai and Hemri (2021) used a U-Net as
a generator within a conditional generative adversarial network (cGAN) for cloud cover post-
processing. Hu et al. (2023) used U-Nets to predict the parameters of a CSGD corresponding
to the postprocessed daily precipitation given a deterministic forecast. Horat and Lerch (2024)
used U-Nets to perform postprocessing of temperature and precipitation at the sub-seasonal to
seasonal scale. The task is a three-level classification problem with below-normal, near-normal
and above-normal conditions as classes. Ben Bouallègue et al. (2024b) used transformers within
a U-Net architecture to postprocess ensemble members directly with temperature and precipi-
tation as variables of interest.
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Figure 3.3: Architecture of distributional regression U-Nets. Conv stands for convolution, BN
stands for batch normalization, ReLU stands for rectified linear unit and Bilin. Upsampling
stands for bilinear upsampling. p is the number of distribution parameters: for GTCND and
CSGD, p = 3.

The U-Net architecture used in this work is presented in Figure 3.3. The U-Net input is a
concatenation of constant fields and summary statistics of the ensemble members. The output
is the parameters of the postprocessed marginal distribution at each grid point (i.e., parameters
of a GTCND or a CSGD). The architecture can be decomposed into two parts. On the left part,
the succession of specific convolutional blocks (red and purple arrows) leads to an increase in
the number of features and a reduction of the spatial dimension (i.e., a coarsening of the spatial
resolution) as the data progresses through the network. As explained above, the convolutional
blocks are constructed in order to learn useful representations of the features of the fields at vari-
ous spatial scales. On the right part, upscaling blocks (red and orange arrows), based on bilinear
upsampling, use the features learned in the central part of the architecture to predict features
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at finer resolutions and finally learn the parameters of the distribution selected. Additionally,
we use skip-connections (yellow arrows), consisting of copying and concatenating features, as
bridges between the left and right parts of the U-Net. Skip-connections have proven to improve
the stability of the convergence of NN (see, e.g., Li et al. 2018). This U-Net-based method
is a global model enabling extrapolation through a parametric distribution (e.g., GTCND or
CSGD). We denote U-Net+distrib the distributional regression U-Net (DRU) where distrib is
the parametric distribution.

DRU learns to predict the parameters of a distribution by minimizing the CRPS at each grid
point. Both the parameterized distribution and the scoring rule to minimize can be chosen to be
suited to the variable of interest or to facilitate computations, thus making the architecture flex-
ible. The convolution blocks allow the parameters of marginal distribution to be learned from
neighboring grid points, potentially accounting for dependencies between grid points (Schefzik
and Möller, 2018, Section 4.5). Moreover, the use of constant fields as input enables the con-
volutional layers to learn representations of these fields that are relevant to the postprocessing
task at hand. This can be seen as a natural extension of the embedding module in DRN (Rasp
and Lerch, 2018).

DRNs are built to bypass the limitations of the methods presented above. The model is
global and uses the predictor fields of the whole grid, this construction enables the predicted
marginals to be spatially consistent. Moreover, the use of convolutional layers facilitates the
learning of relevant spatial features compared to DRN. Memory voracity is not an issue as the
model is global and the number of parameters is contained. Finally, as highlighted previously,
any parameterized distribution can be used as the output of DRU accounting for extrapolation
and relevance to the target variable at hand. Table 3.3 summarizes the characteristics of the
postprocessing methods studied in this article.

The U-Net-based method of this article is related to the one of Hu et al. (2023) in the
sense that both approaches use U-Nets to predict the parameters of a distribution correspond-
ing to the marginals of the variable of interest. The main differences between the approaches
are the following: they studied daily precipitation accumulations, where we are interested in
3-h accumulated precipitation; they postprocess deterministic forecasts, where we postprocess
ensemble forecasts; and finally, we use constant fields as additional predictors. Moreover, in
terms of the number of years in the training data, our work (with only 3 years of training
data) falls in a ”gray area” where their U-Net-based method is outperformed by analog en-
semble (Delle Monache et al., 2013), which is a simpler approach (Hu et al., 2023, Figure 11).
Table 3.4 summarizes the characteristics of the different U-Net-based postprocessing methods
available.

The following hyperparameters of the U-Net architecture have been selected using the train-
ing/validation dataset: the learning rate, the batch size and the number of epochs. The opti-
mizer is Adam with default parameters (except for the learning rate) from its Keras implemen-
tation. In order to limit the number of parameters and prevent overfitting, the depth of the
U-Net is kept at two levels (as shown in Fig. 3.3) and separable convolutions were used instead
of standard ones. Moreover, in order to contain the variability due to random initialization, we
aggregate forecast distributions of 10 models as recommended in Schulz and Lerch (2022a).

Most of the implementation was conducted in Python and the implementation of DRU is
based on Tensorflow (Abadi et al., 2015) and Keras (Chollet et al., 2015). QRF and TQRF are
implemented in R (R Core Team, 2023) using the ranger package (Wright and Ziegler, 2017).
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QRF TQRF DRN DRU

Local/Global local local global global

Principles
grid point
per grid

point

grid point
per grid

point

embedding to
learn from similar

stations

constant fields
and architecture

aware of the
gridded structure

Ability to
extrapolate

✗ ✓ ✓ ✓

Number of
parameters

∼15.3 B ∼15.3 B ∼450,000 ∼1,000,000

Storage
necessary

for
prediction

splits of
each tree

and
training

data

splits of
each tree

and
training

data

parameters and
architecture

parameters and
architecture

Table 3.3: Comparison of the postprocessing methods mentioned in this study. The number
of parameters is provided for hyperparameters selected by cross-validation on the training/val-
idation data set and for the setup described in Section 3.2 (e.g., a 112 × 192 grid). In the case
of DRN, an architecture similar to the one in Rasp and Lerch (2018) has been considered. B
stands for billion.

3.4 Results

We provide a comparison of DRU to QRF, TQRF and the raw ensemble using verification tools
targeting three different aspects of forecasts: verification of the overall performance with the
CRPS, calibration and extreme events. First, we compare the performance of the postprocessing
techniques in terms of their relative improvement compared to the raw ensemble and among
themselves. This improvement is quantified in terms of continuous ranked probability skill score
(CRPSS). Second, we assess the calibration of the postprocessed forecasts using rank histograms.
Finally, the improvement of the postprocessing methods in terms of extreme forecasting is
evaluated using receiver operating characteristic (ROC) curves for events corresponding to the
exceedance of various thresholds.

3.4.1 Continuous ranked probability score

Since the postprocessing techniques considered act on the 1-dimensional marginals, the improve-
ment and comparison of the postprocessing techniques can be done with univariate scoring rules.
The continuous ranked probability score (CRPS; Matheson and Winkler 1976) is one of the most
popular univariate scoring rules in weather forecasting and is defined as

CRPS(F, y) =

∫
R
(F (z) − 1y≤z)

2dz; (3.1)

= 2

∫ 1

0
(1y≤F−1(α) − α)(F−1(α) − y)dα; (3.2)

= EF |X − y| − 1

2
EF |X −X ′|, (3.3)

where the forecast F is assimilated to its cdf, F−1 is its quantile function and X and X ′ fol-
low the distribution F . The CRPS is strictly proper on the set of measures with a finite first
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Grönquist
et al. (2021)

Dai and
Hemri (2021)

Horat and
Lerch (2024)

Ben Bouallègue
et al. (2024b)

Hu et al.
(2023)

Pic et al.
(2024)

Variable
of interest

temperature,
geopotential

cloud cover
temperature,
2-w precip.

temperature,
6-h precip.

24-h precip. 3-h precip.

Output bias
samples from

a cGAN
probability of

classes

postprocessed
ensemble
members

parameters of
a CSGD

parameters
of a gtc-
nd/csgd

Lead
times

48h 1-120h 2-4w 6-96h 0-4d 21h

D
a
ta

se
t ra

w
fo

re
ca

st ECMWF-
ENS10
ensemble

COSMO-E,
ECMWF-IFS
ensemble

ECMWF-IFS
(S2S)

ensemble

ECMWF-IFS
ensemble

West-WRF
deterministic

AROME-
EPS

ensemble

o
b

s.

ERA5 EUMETSAT NOAA-CPC ERA5 PRISM ANTILOPE

Resolution 0.5° 0.02° 1.5° 1° 0.04° 0.025°
Training

data
range

17 years 3 years 20 years 19 years 2-30 years 3 years

Table 3.4: Comparison of the postprocessing methods relying on U-Nets.

moment. Moreover, it benefits from multiple representations that help both its computation
and interpretation. Equation (3.1) is the threshold or Brier score (Brier, 1950) representation
and expresses the CRPS as the integrated squared error between the cdf of the forecast and the
empirical cdf associated with observation y over all thresholds z. Equation (3.2) is the quantile
representation and shows that the CRPS is expressed as the pinball loss over all quantile levels
α. Equation (3.3) is the kernel representation and is particularly useful to compute the score
of ensemble forecasts. The CRPS formulas for the parametric distributions of this article are
available in the Appendix 3.6.1 and 3.6.2. For the raw ensemble, QRF and TQRF forecasts,
the CRPS has been estimated using the fair estimator (Ferro, 2013).

When working with (strictly) proper scoring rules to compare forecasts, the comparison of
the scoring rules of two forecasts can be summarized by the skill score. For a proper scoring
rule S, the skill score of a forecast F with respect to (w.r.t.) a reference forecast Fref is defined
as

SS(F, Fref) =
EG[S(Fref , Y )] − EG[S(F, Y )]

EG[S(Fref , Y )]
, (3.4)

where G is the distribution of the observations and EG[· · · ] is the expectation with respect to
Y ∼ G. The skill score is positive if the forecast F improves the expected score w.r.t. the ref-
erence forecast Fref and negative otherwise. The skill score can be expressed in percentage. In
the context of postprocessing, a reference of choice is the raw ensemble that the postprocessing
procedure aims to improve upon.

We compared the continuous ranked probability skill score (CRPSS) for the different post-
processing methods studied w.r.t. other benchmark methods. Figure 3.4 shows the expected
CRPS of the raw ensemble, the CRPSS of QRF w.r.t. the raw ensemble and the CRPSS of
QRF+GTCND and QRF+CSGD w.r.t. QRF. The raw ensemble has an expected CRPS of
0.3725 mm when averaged over the whole region of interest. However, the expected CRPS
greatly fluctuates over the whole grid and most grid points of higher altitude have larger ex-
pected CRPS since they correspond to higher precipitation accumulations (see Fig. 3.4a). The
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(a) Expected CRPS of raw ensemble (b) CRPSS of QRF w.r.t. raw

(c) CRPSS of QRF+GTCND w.r.t. QRF (d) CRPSS of QRF+CSGD w.r.t. QRF

Figure 3.4: Predictive performance of the benchmark methods in terms of CRPS. (a) Expected
CRPS of the raw ensemble, (b) CRPSS of QRF w.r.t. the raw ensemble and CRPSS w.r.t.
QRF of (c) QRF+GTCND and (d) QRF+CSGD.

lowest expected CRPS values are located over the Mediterranean Sea corresponding to an area
of low precipitation as discussed further (see Fig. 3.6). Moreover, observations in this area are
of lower quality since it is far from the nearest radar and cannot be corrected by gauges.

Figure 3.4b confirms that QRF is able to improve the predictive performance in terms of
CRPSS compared to the raw ensemble (23.51% after averaging over the region of interest). The
CRPSS of QRF w.r.t. the raw ensemble is positive (i.e., improvement of skill) over the whole do-
main except for some localized regions. In particular, over the area that has the lowest expected
CRPS for the raw ensemble, QRF is not able to improve compared to raw ensemble in terms of
expected CRPS. This may be caused by the fact that this area is already well-predicted by the
raw ensemble and the QRF is not able to improve its CRPS. Figures 3.4c and 3.4d show the
CRPSS w.r.t. QRF of QRF+GTCND and QRF+CSGD, respectively. Overall, QRF+GTCND
and QRF+CSGD have a close but slightly smaller expected CRPS than that of QRF (average
CRPSS w.r.t. QRF of −1.04% and −0.33%, respectively). For both GTCND and CSGD tail
extensions, the areas of lower skill (in blue) are located in a mountainous region (the Eastern
part of Massif Central) and near the Mediterranean coast. Nonetheless, the areas are wider and
have lower CRPSS values for QRF+GTCND compared to QRF+CSGD. Both methods also
present areas of improvement of CRPSS (in orange/red) that are sparser and smaller than the
areas of negative CRPSS.

Figure 3.5 provides the CRPSS of U-Net+GTCND and U-Net+CSGD w.r.t. the raw en-
semble and QRF. Figures 3.5a and 3.5b show the CRPSS of DRU w.r.t. the raw ensemble.
Both GTCND and CSGD lead to methods improving CRPSS w.r.t. the raw ensemble with
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(a) CRPSS of U-Net+GTCND w.r.t. raw (b) CRPSS of U-Net+CSGD w.r.t. raw

(c) CRPSS of U-Net+GTCND w.r.t. QRF (d) CRPSS of U-Net+CSGD w.r.t. QRF

Figure 3.5: Predictive performance of the distributional regression U-Nets in terms of CRPS.
CRPSS w.r.t. the raw ensemble of (a) U-Net+GTCND and (b) U-Net+CSGD and CRPSS
w.r.t. QRF of (c) U-Net+GTCND and (d) U-Net+CSGD.

22.28% and 22.36%, respectively, when averaged over the region of interest. As the QRF, DRU
leads to improvement in terms of CRPSS over the vast majority of grid points. Nonetheless,
there are areas where they have a poorer predictive performance compared to raw ensemble.
These areas are also located over the Mediterranean Sea or near the coast, and one patch is
located in the Rhône River valley. When censoring grid points located over the sea and at the
border, the average CRPSS w.r.t. the raw ensemble is 24.34% and 24.48% for U-Net+GTCND
and U-Net+CSGD, respectively.

Figures 3.5c and 3.5d show the CRPSS of U-Net+GTCND and U-Net+CSGD w.r.t. QRF.
Overall, DRU has a higher expected CRPS than QRF (CRPSS of −1.52% for the U-Net+GTCND
and −1.37% for the U-Net+CSGD), but it has an improved predictive performance (in terms of
CRPS) over a non-negligible part of the region of interest. Due to their architecture, DRUs are
affected by a border effect, leading to a less predictive performance on the grid points located at
the boundaries of the grid (see Fig. 3.5c and Fig. 3.5d). Using the censoring mentioned above,
U-Net+GTCND and U-Net+CSGD have an average CRPSS w.r.t. QRF of 0.05% and 0.26%,
respectively. Table 3.5 summarizes the comparisons of methods in terms of CRPSS.

For the training/validation dataset, DRUs are prone to numerical instabilities. This led to
areas of negative CRPSS w.r.t. the raw ensemble caused by the divergence of predicted param-
eters (σ is the case of U-Net+GTCND and θ in the case of U-Net+CSGD) (not shown). In ad-
dition to standard numerical stabilizing tricks, we have tried to constrain the range of diverging
parameters using the value of the climatological fits since higher values would lead to forecasts
less informative than the climatological forecasts. This solved the divergence issues over both
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Reference

Full region Censored region

Raw
ensemble

QRF
Raw

ensemble
QRF

P
os

tp
ro

ce
ss

in
g

m
et

h
o
d

s

QRF 23.51% – 23.56% –

QRF+GTCND 22.67% -1.04% 22.72% -1.05%

QRF+CSGD 23.23% -0.33% 23.29% -0.34%

U-
Net+GTCND

22.25% -1.52% 24.34% 0.05%

U-Net+CSGD 22.36% -1.37% 24.48% 0.26%

Table 3.5: Summary of the performance in terms of CRPSS averaged over the full region of
interest and over the censored one.

Figure 3.6: Total precipitation over the test set. Due to the initial time and the lead time
considered, only precipitation between 12:00UTC and 15:00UTC are taken into account.

the training/validation and test datasets for U-Net+CSGD but not for U-Net+GTCND (not
shown). However, it increased the border effects causing deteriorating performance for both
models. Hence, the constraining of the range of the parameters for DRU method is not used
and the numerical stability of the methods needs to be understood and prevented.

Despite being prone to numerical instabilities, the areas of negative CRPSS w.r.t. the raw
ensemble for the test dataset are not all caused by numerical instabilities. The largest area
of negative CRPSS w.r.t. raw (see Fig. 3.5a and 3.5b) coincide with the area with the lowest
total precipitation over the test period (see Fig. 3.6). This area matches the area of the lowest
expected CRPS for the raw ensemble (see Fig. 3.4a). Numerous dry events occur at this location
and are perfectly predicted by the raw ensemble (i.e., all members predict 0 mm of precipitation).
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(a) Precipitation (mm) (b) CRPS of raw ensemble

(c) CRPS of U-Net+GTCND (d) Predicted L

(e) Predicted µ (f) Predicted σ

Figure 3.7: Example of a numerical instability of U-Net+GTCND for a forecast valid on Novem-
ber 3, 2022 at 15 :00UTC. Note the different scales for CRPS below and above 10 mm.

However, in order to perfectly predict a dry event, U-Net+GTCND and U-Net+CSGD need to
predict L = 1 and −δ/θ = ∞, respectively, which is never the case in practice. This may explain
why the CRPSS w.r.t. the raw ensemble of this area is highly negative for DRU. The CRPS of
QRF (and TQRF) has been computed using 107 quantiles, rendering perfect prediction of dry
events harder and resulting in a deterioration in terms of CRPS over the aforementioned area
(see Fig. 3.4b).

The other smaller areas of negative CRPSS w.r.t. the raw ensemble for DRU seem to be
caused by numerical instabilities. For example, Figure 3.7 presents a numerical instability for
a U-Net+GTCND forecast valid on November 3, 2022 at 12:00UTC. It corresponds to heavy
precipitation over the Easter part of the region of interest (see Fig. 3.7a). Both raw ensemble
and U-Net+GTCND seem not able to correctly predict heavy precipitation, as reflected in the
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high values of their CRPS (see Fig. 3.7b and 3.7c). However, the CRPS of U-Net+GTCND
presents an additional area of high CRPS that is caused by the prediction of precipitation where
no precipitation has been observed. This incorrect prediction is characterized by a low value
of L (i.e., low probability of dry event), a positive value of µ and a very high value of σ (see
Fig. 3.7d, 3.7e and 3.7f). The abnormally large value of σ seems to be caused by a numerical
instability and gives a larger probability to large precipitation. The high CRPS over this region
associated with a low value of CRPS for raw ensemble causes the CRPSS for U-Net+GTCND
w.r.t. the raw ensemble over the test set to be negative (see Fig. 3.5a).

DRUs are able to reach a predictive performance slightly lower but comparable to the QRF.
U-Net+CSGD has a slightly better expected CRPS than U-Net+GTCND. In order to be deemed
worthy postprocessing methods, U-Net+GTCND and U-Net+CSGD need to be calibrated.

3.4.2 Calibration

Since the ideal forecast (i.e., the true conditional distribution) is unknown, it is impossible
to know if a postprocessed forecast has reached the minimum expected CRPS. In order to
decompose the contribution of calibration and sharpness to scoring rules (Winkler, 1977; Winkler
et al., 1996), rank histograms are used to evaluate the calibration of the different postprocessing
techniques.

Multiple definitions of calibration exist with different levels of hypotheses (see, e.g., Tsy-
plakov 2013, 2020). The most used definition is probabilistic calibration which, broadly speak-
ing, consists of computing the rank of observations among samples of the forecast and checking
for uniformity with respect to observations. If the forecast is calibrated, observations should
not be distinguishable from forecast samples, and thus, the distribution of their ranks should
be uniform, leading to a flat histogram. The shape of the rank histogram gives information
about the type of (potential) miscalibration: a triangular-shaped histogram suggests that the
probabilistic forecast has a systematic bias, a ∪-shaped histogram suggests that the probabilis-
tic forecast is underdispersed and a ∩-shaped histogram suggests that the probabilistic forecast
is overdispersed. Jolliffe and Primo (2008) proposed a statistical test to assess the uniformity
(i.e., flatness) of rank histograms. Moreover, slopes in the rank histograms can be accounted
for. Zamo (2016) proposed a test accounting for the presence of a wave in rank histograms.
This test is called the Jolliffe-Primo-Zamo (JPZ) test in the following.

To conciliate with the AROME-EPS raw ensemble composed of 17 members, the rank
histograms can take 18 different classes and 107 quantiles of the forecasts were produced for
the QRF, TQRF and DRU methods (each group of 6 consecutive ranks are gathered as a single
rank).

Figure 3.8 shows the rank histograms of each forecast over the whole grid and the JPZ
tests for flatness of rank histograms. As is often the case, the raw ensemble is biased and
underdispersed, which is visible by the triangular shape of the rank histograms and the fact
that the lowest and highest ranks are over-represented. Its JPZ test confirms that the raw
ensemble forecast is not calibrated (only 6% of grid points do not reject the flatness of the
rank histogram). QRF, QRF+GTCND and QRF+CSGD all show very high calibration with
JPZ tests not rejecting flatness at 93%, 94% and 93% of grid points. Contrary to what was
observed in Taillardat et al. (2019), no noticeable difference in calibration seems to be present
between the QRF and its tail extension. This may be caused by the operational refinement
used in the implementation, the fact that different parametric distributions are used and the
smaller precipitation accumulations compared to the original article (i.e., 3-h vs. 6-h). DRUs
present a lower calibration level compared to QRF-based methods, but their calibration is still
significant. The JPZ tests do not reject the flatness hypothesis at 74% and 77% of the grid
points for the U-Net+GTCND and U-Net+CSGD, respectively. Both DRU forecasts present a
slight underdispersion in the right tail revealed by the higher representation of the largest rank
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Figure 3.8: Rank histogram for raw ensemble, QRF, TQRF (namely, QRF+GTCND and
QRF+CSGD) and distributional regression U-Nets associated with the GTCND and the CSGD.
The hyperparameters are selected as the best performing by cross-validation on the training
dataset.

Figure 3.9: Map of rejection (red) and non-rejection (green) of the flatness of the rank histogram
for the forecasting methods considered: raw ensemble, QRF, QRF+GTCND, QRF+CSGD, U-
Net+GTCND and U-Net+CSGD.

in their histograms.
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Figure 3.9 shows a map of the rejection and non-rejection of the flatness of the rank histogram
given by JPZ tests. Calibrated grid points for the raw ensemble are sparsely located over the
Mediterranean Sea, the coast and the South of the Rhône valley. QRF, QRF+GTCND and
QRF+CSGD are able to calibrate the marginals homogeneously across the region of interest.
The areas explaining the lower rate of calibrated grid point for DRU compared to QRF-based
methods correspond to high climatological precipitation (see Fig. 3.6). The lack of calibration
over these areas may be caused by the small depth of the training/validation data (only 3 years)
resulting in not enough high precipitation observed. Moreover, the lower performance due to
border effects affects the calibration of the DRU forecasts. DRU leads to spatially inconsistent
forecasts in terms of calibration whereas the QRF-based methods are homogeneously calibrated
over the whole domain.

3.4.3 Extreme events

Extreme events are of particular interest. They may lead to the highest socio-economic im-
pacts. However, if verification were to focus only on cases of extreme events, forecasters might
be encouraged to propose forecasts that are overly alarming and, thus, of lower general pre-
dictive performance. Lerch et al. (2017) pinpointed this phenomenon and named it the fore-
caster’s dilemma. Since we have compared the general predictive performance of postprocessing
techniques, we can conduct verification focused on extreme events and not be affected by the
forecaster’s dilemma.

To focus on forecasts’ predictive performance regarding extreme events, we are interested in
predicting binary events in the form of the exceedance of a high threshold t. We use ROC (re-
ceiver operating characteristic) curves to evaluate the discriminant power of forecasts in terms
of binary decisions. In particular, ROC curves can inform on the risk of missing an extreme
event. Given the binary event 1y>t (i.e., exceedance of the threshold t), the ROC curve is the
plot of the rate of predicted events (i.e., true positive), also called hit rate, versus the rate of
false alarms (i.e., false positive). A good forecast should maximize the rate of events detected
while minimizing false alarms. In practice, the compromise between the highest hit rate of the
method and its lowest false alarm rate depends on the application. In the case of high-impact
events, forecasts with a non-negligible false alarm rate may be tolerated if it is accompanied by
a better hit rate. In addition to thresholds associated with extreme events, lower thresholds
corresponding to lower precipitation events are investigated. Note that grid point by grid point
computation of ROC curves does not prevent potential double-penalty effects (Ebert, 2008).

In Figure 3.10, ROC curves for the exceedance of various thresholds are represented for the
raw ensemble, QRF, TQRF and DRU. The lowest threshold is t = 0mm, which characterizes
the prediction of dry events (i.e., absence of precipitation). Raw ensemble has a poor perfor-
mance regarding the prediction of the presence of precipitation. All the postprocessing methods
have comparable performances, as seen in the overlap of their ROC curves. During the cross-
validation over the training/validation dataset, the raw ensemble had a better predictive power
regarding the prediction of dry events but was still lower than the postprocessing methods (not
shown). The threshold t = 5 mm corresponds to intermediate precipitations. The performance
of the raw ensemble already decreases and a difference between DRU and QRF-based methods
appears. DRUs have a slightly higher predictive performance compared to QRF-based meth-
ods. The raw ensemble lacks resolution because of the nature of its miscalibration (i.e., bias
and underdispersion).

For the highest thresholds t = 10 mm and t = 20 mm (corresponding to the quantile of level
0.995 and 0.999, respectively, of the climatology over the region of interest), the ROC curves
of the different postprocessing methods can be distinguished. For t = 10 mm, the performance
of the raw ensemble continues to deteriorate and is close to the random guess (dashed line).
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All the postprocessing techniques are able to maintain a good predictive power but start to
noticeably lack resolution, which can be seen in the sudden change of slope. U-Net+GTCND
and U-Net+CSGD have a better performance compared to QRF-based techniques which con-
tinue to have overlapping ROC curves. U-Net+CSGD has the overall best performance. For
t = 20 mm, the raw ensemble has a performance indistinguishable from a random guess. DRUs
are better than QRF-based methods. QRF+GTCND and QRF+CSGD denote from QRF as
the tail extension improves predictive performance. QRF+GTCND seems to have a slightly
better performance than QRF+CSGD. The gap in performance between U-Net+CSGD and
U-Net+GTCND continues to grow and U-Net+CSGD clearly has to the best predictive power
w.r.t. the exceedance of the threshold t = 20 mm.

Figure 3.10: Receiver operating characteristic (ROC) curves of binary events corresponding to
the exceedance of a threshold t ∈ {0, 5, 10, 20} (in mm of precipitation). As for Figure 3.8, the
hyperparameters are selected as the best performing by cross-validation on the training dataset.

All postprocessing methods compete favorably with the raw ensemble, which has the same
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predictive performance as a random guess for the highest thresholds (t = 10 mm and t = 20 mm).
All postprocessing methods have comparable predictive performances for dry events. For heavy
precipitation events corresponding to quantiles of levels 0.995 and 0.999, DRUs, and in particular
U-Net+CSGD, have a distinctly better predictive power. Moreover, as already observed in
Taillardat et al. (2016), TQRF is able to improve the prediction of heavy precipitation with
respect to QRF (even for a light-tailed extension as the GTCND).

3.5 Discussion

We proposed a U-Net-based method, namely distributional regression U-Nets, to postprocess
marginal distributions for gridded precipitation data. This approach extends DRN to gridded
data by substituting the fully connected NN and embedding module for a U-Net architecture
aware of the gridded structure of the data. Simultaneously predicting marginal distributions
at each grid point using information from nearby grid points represents a means to account for
dependencies between grid points. Both U-Net+GTCND and U-Net+CSGD have predictive
performances comparable to the QRF and TQRF in terms of CRPS. DRUs are (probabilis-
tically) calibrated over a large part of the domain studied except for areas associated with
the highest precipitation over the test set (see Fig. 3.6). This may result from the relatively
small training/validation set and could improve with a larger training/validation set. Future
studies could try to limit this by emphasizing the learning of high precipitation events using
weighted scoring rules for inference. In terms of heavy precipitation, U-Net+CSGD outperforms
QRF-based methods.

One of the challenges of the dataset used is the small amount of available training data. This
is encountered in practice where consistent data is required, but large reforecast and reanalysis
are too computationally expensive. In a more general context, the lack of consistency can be
induced at larger time scales by climate change or in specific regions of the world by El Niño
forcing.

We focused on distributional regression U-Nets where outputs are distribution parameters
based on CRPS minimization. DRU can rely on the minimization of other (strictly) proper
scoring rules. Moreover, DRU can directly be extended to learn nonparametric distributions
such as BQN (Bremnes, 2020) where the quantile function is a combination of Bernstein poly-
nomials or as HEN (e.g., Scheuerer et al. 2020) where the pdf is modeled by the probability of
bins.

As U-Net architecture is aware of the spatial gridded structure of the data, specific architec-
tures can also be used for common data structures. We present architectures related to temporal
and graph-based structures that are currently used in probabilistic forecasting settings. Their
application to postprocessing provides an interesting for future works. For example, if the tem-
poral structure of the data is of interest, recurrent neural networks can be used to predict a
parametric distribution. Pasche and Engelke (2024) proposed to forecast flood risk using high-
quantile prediction based on fitting a generalized Pareto distribution via logarithmic score (i.e.,
negative log-likelihood) minimization. In the case of spatial structure relying on an irregular or
more abstract grid (e.g., station network), graph neural networks (GNNs) are able to predict
graph-based quantities (Battaglia et al., 2018). Cisneros et al. (2024) used graph convolutional
neural networks to learn the parameters of a mixture of a logistic distribution and EGPD via
logarithm score minimization to predict wildfire spread. Using the 3D spatial graph-based
structures, GNNs are already able to produce deterministic forecasts reaching performance
comparable to ECMWF deterministic high-resolution forecasts in performance (Keisler, 2022;
Pathak et al., 2022; Bi et al., 2023; Lam et al., 2023; Chen et al., 2023).
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3.6 Appendix

3.6.1 Generalized Truncated/Censored Normal Distribution

We recall quantities related to the generalized truncated/censored normal distribution (GTCND).
Denote l and u the lower and upper boundaries, L and U are the point masses at these bound-
aries. Since we are working with precipitation, we are interested in the case where u = ∞
(implying that U = 0) and l = 0, leaving L a parameter to determine along µ and σ. Formulas
for the general case are available in Jordan et al. (2019).

The cumulative distribution function (cdf) of the GTCND is

F gtcnd
L,µ,σ (z) =


1 − L

1 − Φ(−µ/σ)

(
Φ( z−µ

σ ) − Φ(−µ/σ)
)

+ L if z ≥ 0

0 if z < 0

where Φ is the cdf of the standard normal distribution. Its quantile function is expressed as

F gtcnd
L,µ,σ

−1
(p) =

{
0 if p ≤ L

µ + σΦ−1
(
(p−L)(1−Φ(−µ/σ)

1−L + Φ(−µ/σ)
)

if p > L

for p ∈ (0, 1). The special case of GTCND used here can be expressed using the truncated
normal distribution :

F gtcnd
L,µ,σ (z) = L1z≥0 + (1 − L)N0

µ,σ(z),

where N0
µ,σ is the cdf of the zero-truncated normal distribution.

Moments methods

E[1X=0] = L

E[X] = µ +
ϕ(−µ/σ)σ

1 − Φ(−µ/σ)

Var[X] = E[X2] − E[X]2 = σ2

{
1 − µ

σ

ϕ(µ/σ)

1 − Φ(−µ/σ)
−
(

ϕ(−µ/σ)

1 − Φ(−µ/σ)

)2
}
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Continuous Ranked Probability Score

CRPS(F gtcnd
L,µ,σ , y) = |y − y+| + µL2

+
1 − L

1 − Φ(−µ
σ )

(y+ − µ)

{
2Φ

(
y+ − µ

σ

)
− 1 − 2L + Φ

(
−µ

σ

)
1 − L

}

+ 2σ
1 − L

1 − Φ(−µ
σ )

(
ϕ

(
y+ − µ

σ

)
− ϕ

(
−µ

σ

)
L

)

−
(

1 − L

1 − Φ(−µ
σ )

)2
σ√
π

Φ

(
µ
√

2

σ

)
with y+ = max(0, y) and ϕ the probability density function of the standard normal distribution.

3.6.2 Censored-Shifted Gamma Distribution

We recall quantities related to the censored-shifted gamma distribution (CSGD). The expres-
sions can be found in Scheuerer and Hamill (2015a) and Baran and Nemoda (2016). The
cumulative distribution function (cdf) of the CSGD is

F csgd
k,θ,δ(z) =

{
Gk( z−δ

θ ) if z ≥ 0

0 if z < 0
,

with Gk the cdf of the gamma distribution of shape k. Its quantile function is expressed as

F csgd
k,θ,δ

−1
(p) = δ + θγ−1(k, pΓ(k)),

where γ is the lower incomplete gamma function, Γ is the gamma function and p ∈ (0, 1).

Moments method

Let c̃ = −δ/θ.

E[X] = (1 −Gk(c̃))
{
θk(1 −Gk+1(c̃)) − δ(1 −Gk((c̃))

}
E[X2] = (1 −Gk((c̃))

{
k(k + 1)θ2(1 −Gk+2(c̃))

− 2δkθ(1 −Gk+1(c̃))

+ δ2(1 −Gk(c̃))
}

E[X3] = (1 −Gk(c̃)
{
k(k + 1)(k + 2)θ3(1 −Gk+3(c̃))

− 3δk(k + 1)θ2(1 −Gk+2(c̃))

+ 3δ2kθ(1 −Gk+1(c̃))

− δ3(1 −Gk(c̃))
}

Continuous Ranked Probability Score

The continuous ranked probability score (CRPS) of the CSGD is

CRPS(F csgd
k,θ,δ, y) = θ

{
ỹ (2Gk(ỹ) − 1) − c̃G2

k(c̃) + θk
(
1 + 2Gk(c̃)Gk+1(c̃) −G2

k(c̃) − 2Gk+1(ỹ)
)

− θk

π
B(1/2, k + 1/2) (1 −G2k(2c̃))

}
,

where ỹ = y−δ
θ , c̃ = −δ/θ and B is the beta function.
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Chapter 4

Proper scoring rules for multivariate
probabilistic forecasts based on
aggregation and transformation

This chapter reproduces an article submitted toAdvances in Statistical Climatology, Meteorology
and Oceanography, and written by Romain Pic1, Clément Dombry1, Philippe Naveau2 and
Maxime Taillardat3.

Abstract Proper scoring rules are an essential tool to assess the predictive performance
of probabilistic forecasts. However, propriety alone does not ensure an informative character-
ization of predictive performance and it is recommended to compare forecasts using multiple
scoring rules. With that in mind, interpretable scoring rules providing complementary informa-
tion are necessary. We formalize a framework based on aggregation and transformation to build
interpretable multivariate proper scoring rules. Aggregation-and-transformation-based scoring
rules are able to target specific features of the probabilistic forecasts; which improves the char-
acterization of the predictive performance. This framework is illustrated through examples
taken from the literature and studied using numerical experiments showcasing its benefits. In
particular, it is shown that it can help bridge the gap between proper scoring rules and spatial
verification tools.
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4.1 Introduction

Probabilistic forecasting allows to issue forecasts carrying information about the prediction
uncertainty. It has become an essential tool in numerous applied fields such as weather and
climate prediction (Vannitsem et al., 2021; Palmer, 2012), earthquake forecasting (Jordan et al.,
2011; Schorlemmer et al., 2018), electricity price forecasting (Nowotarski and Weron, 2018) or
renewable energies (Pinson, 2013; Gneiting et al., 2023) among others. Moreover, it is slowly
reaching fields further from ”usual” forecasting, such as epidemiology predictions (Bosse et al.,
2023) or breast cancer recurrence prediction (Al Masry et al., 2023). In weather forecasting,
probabilistic forecasts often take the form of ensemble forecasts in which the dispersion among
members captures forecast uncertainty.

The development of probabilistic forecasts has induced the need for appropriate verifica-
tion methods. Forecast verification fulfills two main purposes: quantifying how good a forecast
is given observations available and allowing one to rank different forecasts according to their
predictive performance. Scoring rules provide a single value to compare forecasts with observa-
tions. Propriety is a property of scoring rules that encourages forecasters to follow their true
beliefs and that prevents hedging. Proper scoring rules allow to assess calibration and sharpness
simultaneously (Winkler, 1977; Winkler et al., 1996). Calibration is the statistical compatibility
between forecasts and observations. Sharpness is the uncertainty of the forecast itself. Propriety
is a necessary property of good scoring rules, but it does not guarantee that a scoring rule pro-
vides an informative characterization of predictive performance. In univariate and multivariate
settings, numerous studies have proven that no scoring rule has it all, and thus, different scoring
rules should be used to get a better understanding of the predictive performance of forecasts
(see, e.g., Scheuerer and Hamill 2015b; Taillardat 2021; Bjerreg̊ard et al. 2021). With that in
mind, Scheuerer and Hamill (2015b) ”strongly recommend that several different scores be always
considered before drawing conclusions.” This amplifies the need for numerous complementary
proper scoring rules that are well-understood to facilitate forecast verification. In that direction,
Dorninger et al. (2018) states that: ”gaining an in-depth understanding of forecast performance
depends on grasping the full meaning of the verification results.” Interpretability of proper scor-
ing rules can arise from being induced by a consistent scoring function for a functional (e.g., the
squared error is induced by a scoring function consistent for the mean; Gneiting 2011), knowing
what aspects of the forecast the scoring rule discriminates (e.g., the Dawid-Sebastiani score
only discriminates forecasts through their mean and variance; Dawid and Sebastiani 1999) or
knowing the limitations of a certain proper scoring rule (e.g., the variogram score is incapable
of discriminating two forecasts that only differ by a constant bias; Scheuerer and Hamill 2015b).
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In this context, interpretable proper scoring rules become verification methods of choice as the
ranking of forecasts they produce can be more informative than the ranking of a more complex
but less interpretable scoring rule. Section 4.2 provides an in-depth explanation of this in the
case of univariate scoring rules. It is worth noting that interpretability of a scoring rule can
also arise from its decomposition into meaningful terms (see, e.g., Bröcker 2009). This type of
interpretability can be used complementarily to the framework proposed in this article.

Scheuerer and Hamill (2015b) proposed the variogram score to target the verification of the
dependence structure. The variogram score of order p (p > 0) is defined as

VSp(F,y) =
d∑

i,j=1

wij (EF [|Xi −Xj |p] − |yi − yj |p)2 ,

where Xi is the i-th component of the random vector X ∈ Rd following F , the wij are non-
negative weights and y ∈ Rd is an observation. The construction of the variogram score relies
on two main principles. First, the variogram score is the weighted sum of scoring rules acting
on the distribution of Xi,j = (Xi, Xj) and on paired components of the observations yi,j . This
aggregation principle allows the combination of proper scoring rules and summarizes them into
a proper scoring rule acting on the whole distribution F and observations y. Second, the scor-
ing rules composing the weighted sum can be seen as a standard proper scoring rule applied
to transformations of both forecasts and observations. Let us denote γi,j : x 7→ |xi − xj |p the
transformation related to the variogram of order p, then the variogram score can be rewritten
as

VSp(F,y) =
d∑

i,j=1

wijSE(γi,j(F ), γi,j(y)),

where SE(F, y) = (EF [X] − y)2 is the univariate squared error and γi,j(F ) is the distribution
of γi,j(X) for X following F . This second principle is the transformation principle, allow-
ing to build transformation-based proper scoring rules that can benefit from interpretability
arising from a transformation (here, the variogram transformation γi,j) and the simplicity and
interoperability of the proper scoring rule they rely on (here, the squared error).

We review the univariate and multivariate proper scoring rules through the lens of inter-
pretability and by mentioning their known benefits and limitations. We formalize these two
principles of aggregation and transformation to construct interpretable proper scoring rules
for multivariate forecasts. To illustrate the use of these principles, we provide examples of
transformation-and-aggregation-based scoring rules from both the literature on probabilistic
forecast verification and quantities of interest. We conduct a simulation study to empirically
demonstrate how transformation-and-aggregation-based scoring rules can be used. Additionally,
we show how the aggregation and transformation principle can help bridging the gap between
the proper scoring rules framework and the spatial verification tools (Gilleland et al., 2009;
Dorninger et al., 2018).

The remainder of this article is organized as follows. Section 4.2 gives a general review of
verification methods for univariate and multivariate forecasts. Section 4.3 introduces the frame-
work of proper scoring rules based on transformation and aggregation for multivariate forecasts.
Section 4.4 provides examples of transformation-and-aggregation-based scoring rules, including
examples from the literature. Then, Section 4.5 showcases through different simulation setups
how the framework proposed in this article can help build interpretable proper scoring rules.
Finally, Section 4.6 provides a summary as well as a discussion on the verification of multivari-
ate forecasts. Throughout the article, we focus on spatial forecasts for simplicity. However,
the points made remain valid for any multivariate forecasts, including temporal forecasts or
spatio-temporal forecasts.
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4.2 Overview of verification tools for univariate and multivari-
ate forecasts

This section presents the zoology of available verification tools and briefly summarizes their
benefits and limitations. First, we define scoring rules and their key properties. Then, we
recall univariate scoring rules, starting with ones derived from scoring functions used in point
forecasting. Finally, we provide an overview of verification tools for multivariate forecasts.

4.2.1 Calibration, sharpness, and propriety

Gneiting et al. (2007) proposed a paradigm for the evaluation of probabilistic forecasts: ”max-
imizing the sharpness of the predictive distributions subject to calibration”. Calibration is the
statistical compatibility between the forecast and the observations. Sharpness is the concentra-
tion of the forecast and is a property of the forecast itself. In other words, the paradigm aims at
minimizing the uncertainty of the forecast given that the forecast is statistically consistent with
the observations. Tsyplakov (2011) states that the notion of calibration in the paradigm is too
vague but it holds if the definition of calibration is refined. This principle for the evaluation of
probabilistic forecasts has reached a consensus in the field of probabilistic forecasting (see, e.g.,
Gneiting and Katzfuss 2014; Thorarinsdottir and Schuhen 2018). The paradigm proposed in
Gneiting et al. (2007) is not the first mention of the link between sharpness and calibration: for
example, Murphy and Winkler (1987) mentioned the relation between refinement (i.e., sharp-
ness) and calibration.

For univariate forecasts, multiple definitions of calibration are available depending on the
setting. The most used definition is probabilistic calibration and, broadly speaking, consists of
computing the rank of observations among samples of the forecast and checking for uniformity
with respect to observations. If the forecast is calibrated, observations should not be distin-
guishable from forecast samples, and thus, the distribution of their ranks should be uniform.
Probabilistic calibration can be assessed by probability integral transform (PIT) histograms
(Dawid, 1984) or rank histograms (Anderson, 1996; Talagrand et al., 1997) for ensemble forecasts
when observations are stationary (i.e., their distribution is the same across time). The shape
of the PIT or rank histogram gives information about the type of (potential) miscalibration:
a triangular-shaped histogram suggests that the probabilistic forecast has a systematic bias, a
∪-shaped histogram suggests that the probabilistic forecast is under-dispersed and a ∩-shaped
histogram suggests that the probabilistic forecast is over-dispersed. Moreover, probabilistic cal-
ibration implies that rank histograms should be uniform but uniformity is not sufficient. For
example, rank histograms should also be uniform conditionally on different forecast scenarios
(e.g., conditionally on the value of the observations available when the forecast is issued). Addi-
tionally, under certain hypotheses, calibration tools have been developed to consider real-world
limitations such as serial dependence (Bröcker and Ben Bouallègue, 2020). Statistical tests have
been developed to check the uniformity of rank histograms (Jolliffe and Primo, 2008). Readers
interested in a more in-depth understanding of univariate forecast calibration are encouraged
to consult Tsyplakov (2013, 2020).

For multivariate forecasts, a popular approach relies on a similar principle: first, multivariate
forecast samples are transformed into univariate quantities using so-called pre-rank functions
and then the calibration is assessed by techniques used in the univariate case (see, e.g., Gneit-
ing et al. 2008). Pre-rank functions may be interpretable and allow targeting the calibration
of specific aspects of the forecast such as the dependence structure. Readers interested in the
calibration of multivariate forecasts can refer to Allen et al. (2024) for a comprehensive review
of multivariate calibration.

66



A scoring rule S assigns a real-valued quantity S(F, y) to a forecast-observation pair (F, y),
where F ∈ F is a probabilistic forecast and y ∈ Rd is an observation. In the negative-oriented
convention, a scoring rule S is proper relative to the class F if

EG[S(G,Y )] ≤ EG[S(F,Y )] (4.1)

for all F,G ∈ F , where EG[· · · ] is the expectation with respect to Y ∼ G. In simple terms, a
scoring rule is proper relative to a class of distribution if its expected value is minimal when the
true distribution is predicted, for any distribution within the class. Forecasts minimizing the
expected scoring rule are said to be efficient and the other forecasts are said to be sub-efficient.
Moreover, the scoring rule S is strictly proper relative to the class F if the equality in (4.1)
holds if and only if F = G. This ensures the characterization of the ideal forecast (i.e., there
is a unique efficient forecast and it is the true distribution). Moreover, proper scoring rules
are powerful tools as they allow the assessment of calibration and sharpness simultaneously
(Winkler, 1977; Winkler et al., 1996). Sharpness can be assessed individually using the entropy
associated with proper scoring rules, defined by eS(F ) = EF [S(F,Y )]. The sharper the forecast,
the smaller its entropy. Strictly proper scoring rules can also be used to infer the parameters
of a parametric probabilistic forecast (see, e.g., Gneiting et al. 2005; Pacchiardi et al. 2024).

Regardless of all the interesting properties of proper scoring rules, it is worth noting that
they have some limitations. Proper scoring rules may have multiple efficient forecasts (i.e., asso-
ciated with their minimal expected value) and, in the general setting, no guarantee is given on
their relevance. Moreover, strict propriety ensures that the efficient forecast is unique and that
it is the ideal forecast (i.e., the true distribution), however, no guarantee is available for fore-
casts within the vicinity of the minimum in the general case. This is particularly problematic
since, in practice, the unavailability of the ideal distribution makes it impossible to know if the
minimum expected score is achieved. In the case of calibrated forecasts, the expected scoring
rule is the entropy of the forecast and the ranking of forecasts is thus linked to the information
carried by the forecast (see Corollary 4, Holzmann and Eulert 2014 for the complete result).
These limitations may explain the plurality of scoring rules depending on application fields.

4.2.2 Univariate scoring rules

We recall classical univariate scoring rules to explain key concepts. Some univariate scoring rules
will be useful for the multivariate scoring rules construction framework proposed in Section 4.3.
Let P(E) denote the class of Borel probability measures on E. We consider F ∈ F ⊆ P(R)
a probabilistic forecast in the form of its cumulative distribution function (cdf) and y ∈ R an
observation. When the probabilistic forecast F has a probability density function (pdf), it will
be denoted f .

The simplest scoring rules can be derived from scoring functions used to assess point fore-
casts. The squared error (SE) is the most popular and is known through its averaged value
(the mean squared error; MSE) or the square root of its average (the root mean squared error;
RMSE) which has the advantage of being expressed in the same units as the observations. As
a scoring rule, the SE is expressed as

SE(F, y) = (µF − y)2, (4.2)

where µF denotes the mean of the predicted distribution F . The SE solely discriminates the
mean of the forecast (see Appendix 4.7.1); efficient forecasts for SE are the ones matching the
mean of the true distribution. The SE is proper relative to P2(R), the class of Borel probability
measures on R with a finite second moment (i.e., finite variance). Note that the SE cannot be
strictly proper as the equality of mean does not imply the equality of distributions.
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Another well-known scoring rule is the absolute error (AE) defined by

AE(F, y) = |med(F ) − y|, (4.3)

where med(F ) is the median of the predicted distribution F . The mean absolute error (MAE),
the average of the absolute error, is the most seen form of the AE and it is also expressed in
the same units as the observations. Efficient forecasts are forecasts that have a median equal to
the median of the true distribution. The AE is proper relative to P1(R) but not strictly proper.
Similarly, the quantile score (QS), also known as the pinball loss, is a scoring rule focusing on
quantiles of level α defined by

QSα(F, y) = (1y≤F−1(α) − α)(F−1(α) − y) (4.4)

where 0 < α < 1 is a probability level and F−1(α) is the predicted quantile of level α. The case
α = 0.5 corresponds to the AE up to a factor 2. The QS of level α is proper relative to P1(R)
but not strictly proper since efficient forecasts are ones correctly predicting the quantile of level
α (see, e.g., Friederichs and Hense 2008).

Another summary statistic of interest is the exceedance of a threshold t ∈ R. The Brier score
(BS; Brier 1950) was initially introduced for binary predictions but allows also to discriminate
forecasts based on the exceedance of a threshold t. For probabilistic forecasts, the BS is defined
as

BSt(F, y) = ((1 − F (t)) − 1y>t)
2 = (F (t) − 1y≤t)

2, (4.5)

where 1 − F (t) is the predicted probability that the threshold t is exceeded. The BS is proper
relative to P(R) but not strictly proper. Binary events (e.g., exceedance of thresholds) are
relevant in weather forecasting as they are used, for example, in operational settings for decision-
making.

All the scoring rules presented above are proper but not strictly proper since they only
discriminate against specific summary statistics instead of the whole distribution. Nonetheless,
they are still used as they allow forecasters to verify specific characteristics of the forecast:
the mean, the median, the quantile of level α or the exceedance of a threshold t. The simplic-
ity of these scoring rules makes them interpretable, thus making them essential verification tools.

Some univariate scoring rules contain a summary statistic: for example, the formulas of
the QS (4.4) or the BS (4.5) contain the exceedance of a threshold t and the quantile of level
α, respectively. They can be seen as a scoring function applied to a summary statistic. This
duality can be understood through the link between scoring functions and scoring rules through
consistent functionals as presented in Gneiting (2011) or Section 2.2 in Lerch et al. (2017).

Other summary statistics can be of interest depending on applications. Nonetheless, it is
worth noting that mispecifications of numerous summary statistics cannot be discriminated
because of their non-elicitability. Non-elicitability of a transformation implies that no proper
scoring rule can be constructed such that efficient forecasts are forecasts where the transfor-
mation is equal to the one of the true distribution. For example, the variance is known to be
non-elicitable; however, it is jointly elicitable with the mean (see, e.g., Brehmer 2017). Readers
interested in details regarding elicitable, non-elicitable and jointly elicitable transformations
may refer to Gneiting (2011), Brehmer and Strokorb (2019) and references therein.

A strictly proper scoring rule should discriminate the whole distribution and not only specific
summary statistics. The continuous ranked probability score (CRPS; Matheson and Winkler
1976) is the most popular univariate scoring rule in weather forecasting applications and can

68



be expressed by the following expressions

CRPS(F, y) = EF |X − y| − 1

2
EF |X −X ′|, (4.6)

=

∫
R

BSz(F, y)dz, (4.7)

= 2

∫ 1

0
QSα(F, y)dα, (4.8)

where y ∈ R and X and X ′ are independent random variables following F , with a finite first
moment. Equations (4.7) and (4.8) show that the CRPS is linked with the BS and the QS.
Broadly speaking, as the QS discriminates a quantile associated with a specific level, integrating
the QS across all levels discriminates the quantile function that fully characterizes univariate
distributions. Similarly, integrating the BS across all thresholds discriminates the cumula-
tive distribution function that also fully characterizes univariate distributions. The CRPS is a
strictly proper scoring rule relative to P1(R), the class of Borel probability measures on R with a
finite first moment. In addition, Equation (4.6) indicates the CRPS values have the same units
as observations. In the case of deterministic forecasts, the CRPS reduces to the absolute error,
in its scoring function form (Hersbach, 2000). The use of the CRPS for ensemble forecast is
straightforward using expectations as in (4.6). Ferro et al. (2008) and Zamo and Naveau (2017)
studied estimators of the CRPS for ensemble forecasts.

In addition to scoring rules based on scoring functions, some scoring rules use the moments
of the probabilistic forecast F . The SE (4.2) depends on the forecast only through its mean µF .
The Dawid-Sebastiani score (DSS; Dawid and Sebastiani 1999) is a scoring rule depending on
the forecast F only through its first two central moments. The DSS is expressed as

DSS(F, y) = 2 log(σF ) +
(µF − y)2

σF 2
, (4.9)

where µF and σF
2 are the mean and the variance of the distribution F . The DSS is proper

relative to P2(R) but not strictly proper, since efficient forecasts only need to correctly predict
the first two central moments (see Appendix 4.7.1). Dawid and Sebastiani (1999) proposed a
more general class of proper scoring rules but the DSS, as defined in (4.9), can be seen as a
special case of the logarithmic score (up to an additive constant), introduced further down.

Another scoring rule relying on the central moments of the probabilistic forecast F up to
order three is the error-spread score (ESS; Christensen et al. 2014). The ESS is defined as

ESS(F, y) = (σF
2 − (µF − y)2 − (µF − y)σFγF )2, (4.10)

where µF , σ2
F and γF are the mean, the variance and the skewness of the probabilistic forecast

F . The ESS is proper relative to P4(R). As for the other scoring rules only based on moments of
the forecast presented above, the expected ESS compares the probabilistic forecast F with the
true distribution only via their four first moments (see Appendix 4.7.1). Scoring rules based on
central moments of higher order could be built following the process described in Christensen
et al. (2014). Such scoring rules would benefit from the interpretability induced by their con-
struction and the ease to be applied to ensemble forecasts. However, they would also inherit
the limitation of being only proper.

When the probabilistic forecast F has a pdf f , scoring rules of a different type can be defined.
Let Lα(R) denote the class of probability measures on R that are absolutely continuous with
respect to µ (usually taken as the Lebesgue measure) and have µ-density f such that

∥f∥α =

(∫
R
f(x)αµ(dx)

)1/α

< ∞.
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The most popular scoring rule based on the pdf is the logarithmic score (also known as ignorance
score; Good 1952; Roulston and Smith 2002). The logarithmic score is defined as

LogS(F, y) = − log(f(y)), (4.11)

for y such that f(y) > 0. In its formulation, the logarithmic score is different from the scoring
rules seen previously. Good (1952) proposed the logarithmic score knowing its link with the
theory of information: its entropy is the Shannon entropy (Shannon, 1948) and its expectation
is related to the Kullback-Leibler divergence (Kullback and Leibler, 1951) (see Appendix 4.7.1).
The logarithmic score is strictly proper relative to the class L1(R). Moreover, inference via
minimization of the expected logarithmic score is equivalent to maximum likelihood estimation
(see, e.g., Dawid et al. 2015). The logarithmic score belongs to the family of local scoring
rules, which are scoring rules only depending on y, f(y) and its derivatives up to a finite order.
Another local scoring rule is the Hyvärinen score (also known as the gradient scoring rule;
Hyvärinen 2005) and it is defined as

HS(F, y) = 2
f ′′(y)

f(y)
− f ′(y)2

f(y)2
,

for y such that f(y) > 0. The Hyvärinen score is proper relative to the subclass of P(R) such
that the density f exists, is twice continuously differentiable and satisfies f ′(x)/f(x) → 0 as
|x| → ∞. It is worth noticing that the Hyvärinen score can be computed even if f is only known
up to a scale factor (e.g., up to a normalizing constant). This property allows circumventing
the use of Monte Carlo methods or approximations of the normalizing constant when it is
unavailable or hard to compute. This is a property of local proper scoring rules except for the
logarithmic score (Parry et al., 2012). Readers eager to learn more about local proper scoring
rules may refer to Parry et al. (2012) and Ehm and Gneiting (2012).

The logarithmic score and the Hyvärinen score do not allow f to be zero. To overcome this
limitation, scoring rules expressed in terms of the Lα-norm have been proposed. The quadratic
score is defined as

QuadS(F, y) = ∥f∥22 − 2f(y),

where ∥f∥22 =
∫

R f(y)2dy. The quadratic score is strictly proper relative to the class L2(R).
The pseudospherical score is defined as

PseudoS(F, y) = −f(y)α−1/∥f∥α−1
α ,

with α > 1. For α = 2, it reduces to the spherical score (see, e.g., Jose 2007). The pseudo-
spherical score is strictly proper relative to the class Lα(R). The four scoring rules presented
above have been criticized as they do not encourage a high probability in the vicinity of the
observation y (Gneiting and Raftery, 2007). In particular, as the logarithmic score is more
sensitive to outliers, probabilistic forecasts inferred by its minimization may be overdispersive
(Gneiting et al., 2005). Moreover, the pdf is not always available, for example in the case of
ensemble forecasts.

Readers may refer to the various reviews of scoring rules available (see, e.g., Bröcker and
Smith 2007; Gneiting and Raftery 2007; Gneiting and Katzfuss 2014; Thorarinsdottir and
Schuhen 2018; Alexander et al. 2022). Formulas of the expected scoring rules presented are
available in Appendix 4.7.1.

Strictly proper scoring rules can be seen as more powerful than proper scoring rules. This
is theoretically true when the interest is in identifying the ideal forecast (i.e., the true dis-
tribution). Regardless, in practice, scoring rules are also used to rank probabilistic forecasts
and with that in mind, a given ranking of forecasts in terms of the expectation of a strictly
proper scoring rule (such as the CRPS) is harder to interpret than a ranking in terms of the
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expectation of a proper but more interpretable scoring rule (such as the SE). The SE is known
to discriminate the mean, and thus, a better rank in terms of expected SE implies a better
prediction of the mean of the true distribution. Conversely, a better ranking in terms of CRPS
implies a better prediction of the whole prediction, but it might not be useful as is, and other
verification tools will be needed to know what caused this ranking. When forecasts are not
calibrated, there seems to be a trade-off between interpretability and discriminatory power and
this becomes more prominent in a multivariate setting. However, simpler interpretable tools
and discriminatory-powerful tools can be used complementarily. The framework proposed in
Section 4.3 aims at helping the construction of interpretable proper scoring rules.

4.2.3 Multivariate scoring rules

In a multivariate setting, forecasters cannot solely use univariate scoring rules as they are not
able to discriminate forecasts beyond their 1-dimensional marginals. Univariate scoring rules
cannot discriminate the dependence structure between the univariate margins. Multivariate
forecasts can be applied in different setups: spatial forecasts, temporal forecasts, multivariable
forecasts or any combination of these categories (e.g., spatio-temporal forecasts of multiple vari-
ables). Considering weather forecasting, a spatial forecast could aim at predicting temperatures
across multiple locations. A temporal forecast could be focused on predicting rainfall at mul-
tiple lead times at a given location. A multivariable forecast could predict both eastward and
northward components of the wind. In the following, we consider F ∈ F ⊆ P(Rd) a multivariate
probabilistic forecast and y ∈ Rd an observation.

Even if there is no natural ordering in the multivariate case, the notions of median and
quantile can be adapted using level sets, and then scoring rules using these quantities can be
constructed (see, e.g., Meng et al. 2023). Nonetheless, as the mean is well-defined, the squared
error (SE) can be defined in the multivariate setting :

SE(F,y) = ∥µF − y∥22, (4.12)

where µF is the mean vector of the distribution F . Similar to the univariate case, the SE
is proper relative to P2(Rd). Moments are well-defined in the multivariate case allowing the
multivariate version of the Dawid-Sebastiani score to be defined. The Dawid-Sebastiani score
(DSS) was proposed in Dawid and Sebastiani (1999) as

DSS(F,y) = log(det ΣF ) + (µF − y)TΣ−1
F (µF − y),

where µF and ΣF are the mean vector and the covariance matrix of the distribution F . The
DSS is proper relative to P2(Rd) and it becomes strictly proper relative to any convex class of
probability measures characterized by their first two moments (Gneiting and Raftery, 2007).
The second term in the DSS is the squared Mahalanobis distance between y and µF .

To define a strictly proper scoring rule for multivariate forecast, Gneiting and Raftery (2007)
proposed the energy score (ES) as a generalization of the CRPS to the multivariate case. The
ES is defined by

ESα(F,y) = EF ∥X − y∥α2−
1

2
EF ∥X −X ′∥α2 , (4.13)

where α ∈ (0, 2) and F ∈ Pα(Rd), the class of Borel probability measures on Rd such that
the moment of order α is finite. The definition of the ES is related to the kernel form of the
CRPS (4.6), to which the ES reduces for d = 1 and α = 1. As pointed out in Gneiting and
Raftery (2007), in the limiting case α = 2, the ES becomes the SE (4.12). The ES is strictly
proper relative to Pα(Rd) (Székely, 2003; Gneiting and Raftery, 2007) and is suited for ensemble
forecasts (Gneiting et al., 2008). Moreover, the parameter α gives some flexibility: a small value
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of α can be chosen and still lead to a strictly proper scoring rule, for example, when higher-
order moments are ill-defined. The discrimination ability of the ES has been studied in numerous
studies (see, e.g., Pinson and Girard 2012; Pinson and Tastu 2013; Scheuerer and Hamill 2015b).
Pinson and Girard (2012) studied the ability of the ES to discriminate among rival sets of
scenarios (i.e., forecasts) of wind power generation. In the case of bivariate Gaussian processes,
Pinson and Tastu (2013) illustrated that the ES appears to be more sensitive to misspecifications
of the mean rather than misspecifications of the variance or dependence structure. The lack of
sensitivity to misspecifications of the dependence structure has been confirmed in Scheuerer and
Hamill (2015b) using multivariate Gaussian random vectors of higher dimension. Moreover, the
discriminatory power of the ES deteriorates in higher dimensions (Pinson and Tastu, 2013).

To overcome the discriminatory limitation of the ES, Scheuerer and Hamill (2015b) proposed
the variogram score (VS), a score targeting the verification of the dependence structure. The
VS of order p is defined as

VSp(F,y) =
d∑

i,j=1

wij (EF [|Xi −Xj |p] − |yi − yj |p)2 (4.14)

where Xi is the i-th component of the random vector X following F , wij are nonnegative weights
and p > 0. The variogram score capitalizes on the variogram, used in spatial statistics to access
the dependence structure. The VS cannot detect an equal bias across all components. The VS
of order p is proper relative to the class of Borel probability measures on Rd such that the 2p-th
moments of all univariate margins are finite. The weights wij can be selected to emphasize or
depreciate certain pair interactions. For example, in a spatial context, it can be expected the
dependence between pairs decays with the distance: choosing the weights proportional to the
inverse of the distance between locations can increase the signal-to-noise ratio and improve the
discriminatory power of the VS (Scheuerer and Hamill, 2015b).

When the pdf f of the probabilistic forecast F is available, multivariate versions of the
univariate scoring rules based on the pdf are available. The multivariate versions of the scoring
rules have the same properties and limitations as their univariate counterpart. The logarithmic
score (4.11) has a natural multivariate version :

LogS(F,y) = − log(f(y)),

for y such that f(y) > 0. The logarithmic score is strictly proper relative to the class L1(Rd).
The Hyvärinen score (HS; Hyvärinen 2005) was initially proposed in its multivariate form

HS(F,y) = 2∆ log(f(y)) + |∇ log(f(y))|2,

for y such that f(y) > 0, where ∆ is the Laplace operator (i.e., the sum of the second-
order partial derivatives) and ∇ is the gradient operator (i.e., vector of the first-order partial
derivatives). In the multivariate setting, the HS can also be computed if the predicted pdf is
known up to a normalizing constant. The HS is proper relative to the subclass of P(Rd) such
that the density f exists, is twice continuously differentiable and satisfies ∥∇ log(f(x))∥ → 0 as
∥x∥ → ∞.

The quadratic score and pseudospherical score are directly suited to the multivariate setting
:

QuadS(F,y) = ∥f∥22 − 2f(y);

PseudoS(F,y) = −f(y)α−1/∥f∥α−1
α ,

where ∥f∥α = (
∫

Rd f(y)αdy)1/α. The quadratic score is strictly proper relative to the class
L2(Rd). The pseudospherical score is strictly proper relative to the class Lα(Rd).
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Additionally, other multivariate scoring rules have been proposed among which the marginal-
copula score (Ziel and Berk, 2019) or wavelet-based scoring rules (see, e.g., Buschow et al. 2019).
These scoring rules will be briefly mentioned in Section 4.4 in light of the proper scoring rule
construction framework proposed in this article. Appendix 4.7.2 provides formulas for the
expected multivariate scoring rules presented above.

4.2.4 Spatial verification tools

Spatial forecasts are a very important group of multivariate forecasts as they are involved in
various applications (e.g., weather or renewable energy forecasting). Spatial fields are often
characterized by high dimensionality and potentially strong correlations between neighboring
locations. These characteristics make the verification of spatial forecasts very demanding in
terms of discriminating misspecified dependence structures, for example. In the case of spatial
forecasts, it is known that traditional verification methods (e.g., gridpoint-by-gridpoint verifi-
cation) may result in a double penalty. The double-penalty effect was pinned in Ebert (2008)
and refers to the fact that if a forecast presents a spatial (or temporal) shift with respect to
observations, the error made would be penalized twice: once where the event was observed and
again where the forecast predicted it. In particular, high-resolution forecasts are more penalized
than less realistic blurry forecasts. The double-penalty effect may also affect spatio-temporal
forecasts in general.

In parallel with the development of scoring rules, various application-focused spatial verifica-
tion methods have been developed to evaluate weather forecasts. The efforts toward improving
spatial verification methods have been guided by two projects: the intercomparison project
(ICP; Gilleland et al. 2009) and its second phase, called Mesoscale Verification Intercompari-
son over Complex Terrain (MesoVICT; Dorninger et al. 2018). These projects resulted in the
comparison of spatial verification methods with a particular focus on understanding their lim-
itations and clarifying their interpretability. Only a few links exist between the approaches
studied in these projects (and the work they induced) and the proper scoring rules framework.
In particular, Casati et al. (2022) noted ”a lack of representation of novel spatial verification
methods for ensemble prediction systems”. In general, there is a clear lack of methods focusing
on the spatial verification of probabilistic forecasts. Moreover, to help bridging the gap between
the two communities, we would like to recall the approach of spatial verification tools in the
light of the scoring rule framework introduced above.

One of the goals of the ICP was to provide insights on how to develop methods robust to the
double-penalty effect. In particular, Gilleland et al. (2009) proposed a classification of spatial
verification tools updated later in Dorninger et al. (2018) resulting in a five-category classifica-
tion. The classes differ in the computing principle they rely on. Not all spatial verification tools
mentioned in these studies can be applied to probabilistic forecasts, some of them can solely be
applied to deterministic forecasts. In the following description of the classes, we try to focus on
methods suited to probabilistic forecasts or at least the special case of ensemble forecasts.

Neighborhood -based methods consist of applying a smoothing filter to the forecast and ob-
servation fields to prevent the double-penalty effect. The smoothing filter can take various
forms (e.g., a minimum, a maximum, a mean, or a Gaussian filter) and be applied over a given
neighborhood. For example, Stein and Stoop (2022) proposed a neighborhood-based CRPS for
ensemble forecasts gathering forecasts and observations made within the neighborhood of the
location considered. The use of a neighborhood prevents the double-penalty effect from taking
place at scales smaller than that of the neighborhood. In this general definition, neighborhood-
based methods can lead to proper scoring rules, in particular, see the notion of patches in
Section 4.4.

73



Scale-separation techniques denote methods for which the verification is obtained after com-
paring forecast and observation fields across different scales. The scale-separation process can
be seen as several single-bandpass spatial filters (e.g., projection onto a base of wavelets as
wavelet-based scoring rules; Buschow et al. 2019). However, in order to obtain proper scoring
rules, the comparison of the scale-specific characteristics needs to be performed using a proper
scoring rule. Section 4.4 provides a discussion on wavelet-based scoring rules and their propriety.

Object-based methods rely on the identification of objects of interest and the comparison of
the objects obtained in the forecast and observation fields. Object identification is application-
dependent and can take the form of objects that forecasters are familiar with (e.g., storm cells
for precipitation forecasts). A well-known verification tool within this class is the structure-
amplitude-location (SAL; Wernli et al. 2008) method which has been generalized to ensemble
forecasts in Radanovics et al. (2018). The three components of the ensemble SAL do not lead to
proper scoring rules. They rely on the mean of the forecast within scoring functions inconsistent
with the mean. Thus, the ideal forecast does not minimize the expected value. Nonetheless,
the three components of the SAL method could be adapted to use proper scoring rules sensitive
to the misspecification of the same features.

Field-deformation techniques consist of deforming the forecasts field into the observation
field (the similarity between the fields can be ensured by a metric of interest). The field of
distortion associated with the morphing of the forecast field into the observation field becomes
a measure of the predictive performance of the forecast (see, e.g., Han and Szunyogh 2018).

Distance measures between binary images, such as exceedance of a threshold of interest,
of the forecast and observation fields. These methods are inspired by development in image
processing (e.g., Baddeley’s delta measure Gilleland 2011).

These five categories are partially overlapping as it can be argued that some methods be-
long to multiple categories (e.g., some distance measures techniques can be seen as a mix of
field-deformation and object-based). They define different principles that can be used to build
verification tools that are not subject to the double-penalty effect. The reader may refer to
Dorninger et al. (2018) and references therein for details on the classification and the spatial
verification methods not used thereafter. The frontier between the aforementioned spatial ver-
ification methods and the proper scoring rules framework is porous with, for example, wavelet-
based scoring rules belonging to both. It appears that numerous spatial verification methods
seek interpretability and we believe that this is not incompatible with the use of proper scoring
rules. We propose the following framework to facilitate the construction of interpretable proper
scoring rules.

4.3 A framework for interpretable proper scoring rules

We define a framework to design proper scoring rules for multivariate forecasts. Its definition
is motivated by remarks on the multivariate forecasts literature and operational use. There
seems to be a growing consensus around the fact that no single verification method has it all
(see, e.g., Bjerreg̊ard et al. 2021). Most of the studies comparing forecast verification methods
highlight that verification procedures should not be reduced to the use of a single method and
that each procedure needs to be well suited to the context (see, e.g., Scheuerer and Hamill
2015b; Thorarinsdottir and Schuhen 2018). Moreover, from a more theoretical point of view,
(strict) propriety does not ensure discrimination ability and different (strictly) proper scoring
rules can lead to different rankings of sub-efficient forecasts.

Standard verification procedures gradually increase the complexity of the quantities veri-
fied. Procedures often start by verifying simple quantities such as quantiles, mean, or binary
events (e.g., prediction of dry/wet events for precipitation). If multiple forecasts have a satis-
fying performance for these quantities, marginal distributions of the multivariate forecast can
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be verified using univariate scoring rules. Finally, multivariate-related quantities, such as the
dependence structure, can be verified through multivariate scoring rules. Forecasters rely on
multiple verification methods to evaluate a forecast and ideally, the verification method should
be interpretable by targeting specific aspects of the distribution or thanks to the forecaster’s
experience. This type of verification procedure allows the forecaster to understand what char-
acterizes the predictive performance of a forecast instead of directly looking at a strictly proper
scoring rule giving an encapsulated summary of the predictive performance.

Various multivariate forecast calibration methods rely on the calibration of univariate quan-
tities obtained by dimension reduction techniques. As the general principle of multivariate
calibration leans on studying the calibration of quantities obtained by pre-rank functions, Allen
et al. (2024) argue that calibration procedures should not rely on a single pre-rank function
and should instead use multiple simple pre-rank functions and leverage the interpretability of
the PIT/rank histograms associated. A similar principle can be applied to increase the inter-
pretability of verification methods based on scoring rules.

As general multivariate strictly proper scoring rules fail to discriminate forecasts with respect
to arbitrary misspecifications and they may lead to different ranking of sub-efficient forecasts,
multivariate verification could benefit from using multiple proper scoring rules targeting spe-
cific aspects of the forecasts. Thereby, forecasters know which aspect of the observations are
well-predicted by the forecast and can update their forecast or select the best forecast among
others in the light of this better understanding of the forecast. To facilitate the construction of
interpretable proper scoring rules, we define a framework based on two principles: transforma-
tion and aggregation.

The transformation principle consists of transforming both forecast and observation before
applying a scoring rule. Heinrich-Mertsching et al. (2024) introduced this general principle in the
context of point processes. In particular, they present scoring rules based on summary statistics
targeting the clustering behavior or the intensity of the processes. In a more general context,
the use of transformations was disseminated in the literature for several years (see Section 4.4).
Proposition 4.1 shows how transformations can be used to construct proper scoring rules.

Proposition 4.1. Let F ⊂ P(Rd) be a class of Borel probability measure on Rd and let F ∈ F
be a forecast and y ∈ Rd an observation. Let T : Rd → Rk be a transformation and let S be a
scoring rule on Rk that is proper relative to T (F) = {L(T (X)),X ∼ F ∈ F}. Then, the scoring
rule

ST (F,y) = S(T (F ), T (y))

is proper relative to F . If S is strictly proper relative to T (F) and T is injective, then the
resulting scoring rule ST is strictly proper relative to F .

To gain interpretability, it is natural to have dimension-reducing transformations (i.e.,
k < d), which generally leads to T not being injective and ST not being strictly proper. Nonethe-
less, as expressed previously, interpretability is important and it can mostly be leveraged if the
transformation simplifies the multivariate quantities. Particularly, it is generally preferred to
choose k = 1 to make the quantity easier to interpret and focus on specific information con-
tained in the forecast or the observation. Straightforward transformations can be projections
on a k-dimensional margin or a summary statistic relevant to the forecast type such as the total
over a domain in the case of precipitations. Simple transformations may be preferred for their
interpretability and their potential lack of discriminatory power can be made up for via the
use of multiple simpler transformations. Numerous examples of transformations are presented,
discussed, and linked to the literature in Section 4.4. The proof of Proposition 4.1 is provided
in Appendix 4.7.3.
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The second principle is the aggregation of scoring rules. Aggregation can be used on scoring
rules in order to combine them and obtain a single scoring rule summarizing the evaluation. It
can be used to operate on scoring rules acting on different spaces, times or locations. Note that
Dawid and Musio (2014) introduced the notion of composite score which is related to the ag-
gregation principle but is closer to the combined application of both principles. Proposition 4.2
presents a general aggregation principle to build proper scoring rules. This principle has been
known since proper scoring rules have been introduced.

Proposition 4.2. Let S = {Si}1≤i≤m be a set of proper scoring rules relative to F ⊂ P(Rd).
Let w = {wi}1≤i≤m be nonnegative weights. Then, the scoring rule

SS,w(F,y) =

m∑
i=1

wiSi(F,y)

is proper relative to F . If at least one scoring rule Si is strictly proper relative to F and wi > 0,
the aggregated scoring rule SS,w is strictly proper relative to F .

It is worth noting that Proposition 4.2 does not specify any strict condition for the scoring
rules used. For example, the scoring rules aggregated do not need to be the same or do not
need to be expressed in the same units. Aggregated scoring rules can be used to summarize the
evaluation of univariate probabilistic forecasts (e.g., aggregation of CRPS at different locations)
or to summarize complementary scoring rules (e.g., aggregation of Brier score and a threshold-
weighted CRPS). Unless stated otherwise, for simplicity, we will restrict ourselves to cases where
the aggregated scoring rules are of the same type. Bolin and Wallin (2023) showed that the
aggregation of scoring rules can lead to unintuitive behaviors. For the aggregation of univariate
scoring rules, they showed that scoring rules do not necessarily have the same dependence on the
scale of the forecasted phenomenon: this leads to scoring rules putting more (or less) emphasis
on the forecasts with larger scales. They define and propose local scale-invariant scoring rules
to make scale-agnostic scoring rules. When performing aggregation, it is important to be aware
of potential preferences or biases of the scoring rules.

We only consider aggregation of proper scoring rules through a weighted sum. To conserve
(strict) propriety of scoring rules, aggregations can take, more generally, the form of (strictly)
isotonic transformations, such as a multiplicative structure when positive scoring rules are con-
sidered (Ziel and Berk, 2019).

The two principles of Proposition 4.1 and Proposition 4.2 can be used simultaneously to
create proper scoring rules based on both transformations and aggregation as presented in
Corollary 4.1.

Corollary 4.1. Let T = {Ti}1≤i≤m be a set of transformations from Rd to Rk. Let ST =
{STi}1≤i≤m be a set of proper scoring rules where S is proper relative to Ti(F), for all 1 ≤ i ≤ m.
Let w = {wi}1≤i≤m be nonnegative weights. Then, the scoring rule

SST ,w(F,y) =

m∑
i=1

wiSTi(F,y)

is proper relative to F .

Strict propriety relative to F of the resulting scoring rule is obtained as soon as there exists
1 ≤ i ≤ m such that S is strictly proper relative to Ti(F), Ti is injective and wi > 0. The result
of Corollary 4.1 can be extended to transformations with images in different dimensions and
paired with different scoring rules (see Appendix 4.7.4).

As we will see in the examples developed in the following section, numerous scoring rules
used in the literature are based on these two principles of aggregation and transformation.
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Decomposition of kernel scoring rules. We briefly discuss the link between the transfor-
mation and aggregation principles for scoring rules and the specific class of kernel scoring rules.
A kernel on Rd is a measurable function ρ : Rd×Rd → R satisfying the following two properties:

i) (symmetry) ρ(x1,x2) = ρ(x2,x1) for all x1,x2 ∈ Rd;

ii) (non-negativity)
∑

1≤i≤j≤n aiajρ(xi,xj) ≥ 0 for all x1, . . . ,xn ∈ Rd and a1, . . . , an ∈ R,
for all n ∈ N.

The kernel scoring rule Sρ associated with the kernel ρ is defined on the space of predictive
distributions

Pρ =

{
F ∈ P(Rd) :

∫ √
ρ(x, x)F (dx) < +∞

}
by

Sρ(F,y) =
1

2

∫
Rd×Rd

ρ(x1, x2)(F − δy)(dx1)(F − δy)(dx2),

=
1

2
EF [ρ(X,X ′)] +

1

2
ρ(y,y) − EF [ρ(X,y)] (4.15)

where y ∈ Rd, δy denotes the Dirac mass at y and X,X ′ are independent random variables

following F . Importantly, Sρ is proper on Pρ and, for an ensemble forecast F = 1
M

∑M
m=1 δxm

with M members x1, . . . ,xM , it takes the simple form

Sρ(F,y) =
1

2M2

∑
1≤m1,m2≤M

ρ(xm1 ,xm2) +
1

2
ρ(y,y) − 1

M

M∑
m=1

ρ(xm,y), (4.16)

making scoring rules particularly useful for ensemble forecasts.
The CRPS is surely the most widely used kernel scoring rule. Equation (4.6) shows that it is

associated with the kernel ρ(x1, x2) = |x1|+|x2|−|x1−x2| (the function |x1−x2| is conditionally
semi-definite negative so that ρ is non-negative). For more details on kernel scoring rules, the
reader should refer to Gneiting et al. (2005) or Steinwart and Ziegel (2021).

The following proposition reveals that a kernel scoring rule can always be expressed as an
aggregation of squared errors (SEs) between transformations of the forecast-observation pair.

Proposition 4.3. Let Sρ be the kernel scoring rule associated with the kernel ρ. Then there
exists a sequence of transformations Tl : Rd → R, l ≥ 1, such that

Sρ(F,y) =
1

2

∑
l≥1

SE(Tl(F ), Tl(y)),

for all predictive distribution F ∈ Pρ and observation y ∈ Rd.

In particular, the series on the right-hand side is always finite. The proof is provided in
Appendix 4.7.3 and relies on the reproducing kernel Hilbert space (RKHS) representation of
kernel scoring rules. In particular, we will see that the sequence (Tl)l≥1 can be chosen as an
orthonormal basis of the RKHS associated with the kernel ρ.

This representation of kernel scoring rules can be useful to understand more deeply the
comparison of the predictive forecast F and observation y. While the definition (4.15) is quite
abstract, the series representation can be rewritten

Sρ(F,y) =
∑
l≥1

(
EF [Tl(X)] − Tl(y)

)2
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with X a random variable following F . In other words, for l ≥ 1, the observed value Tl(y) is
compared to the predicted value Tl(X) under the predictive distribution F using the SE; then
all these contributions are aggregated in a series forming the kernel scoring rule.

To give more intuition, we study two important cases in dimension d = 1. The details of the
computations are provided in Appendix 4.7.3. For the Gaussian kernel scoring rule associated
with the kernel

ρ(x1, x2) = exp(−(x1 − x2)
2/2),

some computations yield the series representation

Sρ(F, y) =
1

2

∑
l≥0

1

l!

(
EF [X le−X2/2] − yle−y2/2

)2
so that this score compares the probabilistic forecast F and the observation y through the
transforms

Tl(x) =
1√
l!
xle−x2/2, l ≥ 0.

For the CRPS, a possible series representation is obtained thanks to the following wavelet
basis of functions: let T 0(x) = x1[0,1)(x) + 1[1,+∞)(x) (plateau function) and T 1(x) =

(
1/2 −

|x− 1/2|
)
1[0,1](x) (triangle function) and consider the collection of functions

T 0
l (x) = T 0(x− l), T 1

l,m(x) = 2−m/2T 1(2mx− l), l ∈ Z,m ≥ 0,

where l ∈ Z is a position parameter and m ≥ 0 a scale parameter. Then, the CRPS can be
written as

CRPS(F, y) =
∑
l∈Z

SE(T 0
l (F ), T 0

l (y)) +
∑
l∈Z

∑
m≥0

SE(T 1
l,m(F ), T 1

l,m(y))

=
∑
l∈Z

(
EF [T 0(X − l)] − T 0(y − l)

)2
+
∑
l∈Z

∑
m≥0

2−m
(

EF [T 1(2mX − l)] − T (2my − l)
)2

.

We can see that the CRPS compares forecast and observation through the SE after applying
the plateau and triangle transformations for multiple positions and scales and then aggregates
all the contributions.

4.4 Applications of the transformation and aggregation princi-
ples

4.4.1 Projections

Certainly, the most direct type of transformation is projections of forecasts and observations on
their k-dimensional marginals. We denote Ti the projection on the i-th component such that
Ti(X) = Xi, for all X ∈ Rd. This allows the forecaster to assess the predictive performance
of a forecast for a specific univariate marginal independently of the other variables. If S is a
univariate scoring rule proper relative to P(R), then Proposition 4.1 leads to STi being proper
relative to P(Rd). This ”new” scoring rule can be useful if a given marginal is of particular
interest (e.g., location of high interest in a spatial forecast). However, it can be more interesting
to aggregate such scoring rules across all 1-dimensional marginals. This leads to the following
scoring rule

SST ,w(F,y) =

d∑
i=1

wiSTi(F,y),
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where ST is {STi}1≤i≤d. This setting is popular for assessing the performance of multivariate
forecasts and we briefly present examples from the literature falling under this setting. Ag-
gregation of CRPS (4.6) across locations and/or lead times is common practice for plots or
comparison tables with uniform weights (Gneiting et al., 2005; Taillardat et al., 2016; Rasp and
Lerch, 2018; Schulz and Lerch, 2022b; Lerch and Polsterer, 2022; Hu et al., 2023) or with more
complex schemes such as weights proportional to the cosine of the latitude (Ben Bouallègue
et al., 2024b). The SE (4.2) and AE (4.3) can be aggregated to obtain RMSE and MAE, re-
spectively (Delle Monache et al., 2013; Gneiting et al., 2005; Lerch and Polsterer, 2022; Pathak
et al., 2022). Bremnes (2020) aggregated QSs (4.4) across stations and different quantile levels
of interest with uniform weights. Note that the multivariate SE (4.12) can be rewritten as the
sum of univariate SE across 1-marginals: SE(F,y) = ∥µF − y∥22 =

∑d
i=1 SETi(F,y).

The second simplest choice is the 2-dimensional case, allowing to focus on pair dependency.
We denote T(i,j) the projection on the i-th and j-th components (i.e., the (i, j) pair of compo-
nents) such that T(i,j)(X) = Xi,j = (Xi, Xj). In this setting, S has to be a bivariate proper
scoring rule to construct a proper scoring rule ST(i,j)

. The aggregation of such scoring rules
becomes

SST ,w(F,y) =

d∑
i,j=1
i ̸=j

wi,jST(i,j)
(F,y).

As suggested in Scheuerer and Hamill (2015b) for the VS (4.14), the weights wi,j can be chosen
appropriately to optimize the signal-to-noise ratio. For example, in a spatial setting where the
dependence between locations is believed to decrease with the distance separating them, the
weights wi,j can be chosen to be proportional to the inverse of the distance. This bivariate
setting is less used in the literature, we present two articles using or mentioning scoring rules
within this scope. In a general multivariate setting, Ziel and Berk (2019) suggests the use of a
marginal-copula scoring rule where the copula score is the bivariate copula energy score (i.e., the
aggregation of the energy scores across all the regularized pairs). To focus on the verification of
the temporal dependence of spatio-temporal forecasts, Ben Bouallègue et al. (2024b) uses the
bivariate energy score over consecutive lead times.

In a more general setup, we consider projection on k-dimensional marginals. In order to
reduce the number of transformation-based scores to aggregate, it is standard to focus on
localized marginals (e.g., belonging to patches of a given spatial size). Denote P = {Pi}1≤i≤m a
set of valid patches (for some criterion or of a given size) and SP the set of transformation-based
scores associated with the projections on the patches P. Given a multivariate scoring rule S
proper relative to P(Rk), we can construct the following aggregated score :

SSP ,w(F,y) =
∑
P∈P

wPSP (F,y).

This construction can be used to create a scoring rule only considering the dependence of lo-
calized components, given that the patches are defined in that sense. The use of patches has
similar benefits as the weighting of pairs given a belief on their correlations: obtain a better
signal-to-noise ratio and improve the discrimination of the resulting scoring rule. For example,
Pacchiardi et al. (2024) introduced patched energy scores as scoring rules to minimize in order
to train a generative neural network. The patched energy scores are defined for S = ES and
square patches spaced by a given stride. Even though spatial patches may be more intuitive,
it is possible to use temporal or spatio-temporal patches. Patch-based scoring rules appear as
a natural member of the neighborhood-based methods of the spatial verification classification
mentioned in Section 4.2.4. Given that the patches are correctly chosen (e.g., of a size appro-
priate to the problem at hand), patch-based scoring rules are not subject to the double-penalty

79



effect.

As noticeable by the low number of examples available in the literature, aggregation (and
plain use) of scoring rules based on projection in dimension k ≥ 2 is not standard practice,
probably because such projections may lack interpretability. Instead, to assess the multivariate
aspects of a forecast, scoring rules relying on summary statistics are often favored.

4.4.2 Summary statistics

Summary statistics are a central tool of statisticians’ toolboxes as they provide interpretable
and understandable quantities that can be linked to the behavior of the phenomenon studied.
Moreover, their interpretability can be enhanced by the forecaster’s experience and this can be
leveraged when constructing scoring rules based on them. Summary statistics are commonly
present during the verification procedure and this can be extended by the use of new scoring
rules derived from any summary statistic of interest. For example, numerous summary statistics
can come in handy when studying precipitations over a region covered by gridded observation
and forecasts. Firstly, it is common practice to focus on binary events such as the exceedance
of a threshold (e.g., the presence or absence of precipitation). This can be studied by using the
BS (4.5) on all 1-dimensional marginals as mentioned in the previous subsection but also in a
multivariate manner through the fraction of threshold exceedances (FTE) over patches as pre-
sented further. Regarding precipitations, it is standard to be interested in the prediction of total
precipitation over a region or a time period. This transformation of the field can be leveraged
to construct a scoring rule. Finally, it is important to verify that the spatial structure of the
forecast matches the spatial structure of observations. The spatial structure can be (partially)
summarized by the variogram or by wavelet transformations. The predictive performance for
the spatial structure can be assessed by their associated scoring rules: the VS of order p (4.14)
and the wavelet-based score (Buschow et al., 2019). Other summary statistics can be of inter-
est to the phenomenon studied, Heinrich-Mertsching et al. (2024) present summary statistics
specific to point processes focusing on clustering and intensity.

The most well-known summary statistic is certainly the mean. In spatial statistics, it can
be used to avoid double penalization when we are less interested in the exact location of the
forecast but rather in a regional prediction. The transformation associated with the mean is

meanP (X) =
1

|P |
∑
i∈P

Xi, (4.17)

where P denotes a patch and |P | its dimension. Proposition 4.1 ensures that this transformation
can be used to construct proper scoring rules. The scoring rule involved in the construction has
to be univariate, however, the choice depends on the general properties preferred. For example,
the SE would focus on the mean of the transformed quantity, whereas the AE would target
its median. It is worth noting that the total can be derived by the mean transformation by
removing the prefactor

totalP (X) =
∑
i∈P

Xi.

In the case of precipitation, the total is more used than the mean since the total precipitation
over a river basin can be decisive in evaluating flood risk. For example, one could construct an
adapted version of the amplitude component of the SAL method (Wernli et al., 2008; Radanovics
et al., 2018) using the SE if the mean total precipitation is of interest. Gneiting (2011) presents
other links between the quantity of interest and the scoring rule associated. Similarly, the
transformations associated with the minimum and the maximum over a patch P can be obtained
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:

minP (X) = min
i∈P

(Xi);

maxP (X) = max
i∈P

(Xi).

The maximum or minimum can be useful when considering extreme events. It can help un-
derstand if the severity of an event is well-captured. For example, as minimum and maximum
temperatures affect crop yields (see, e.g., Agnolucci et al. 2020), it can be of particular interest
that a weather forecast within an agricultural model correctly predicts the minimum and max-
imum temperatures. After studying the mean, it is natural to think of the moments of higher
order. We can define the transformation associated with the variance over a patch P as

VarP (X) =
1

|P |
∑
i∈P

(Xi − meanP (X))2.

The variance transformation can provide information on the fluctuations over a patch and be
used to assess the quality of the local variability of the forecast. In a more general setup, it can
be of interest to use a transformation related to the moment of order n and the transformation
associated follows naturally

Mn,P (X) =
1

|P |
∑
i∈P

Xn
i .

More application-oriented transformations are the central or standardized moments (e.g., skew-
ness or kurtosis). Their transformations can be obtained directly from estimators. As underlined
in Heinrich-Mertsching et al. (2024), since Proposition 4.1 applies to any transformation, there
is no condition on having an unbiased estimator to obtain proper scoring rules.

Threshold exceedance plays an important role in decision making such as weather alerts. For
example, MeteoSwiss’ heat warning levels are based on the exceedance of daily mean tempera-
ture over three consecutive days (Allen et al., 2023a). They can be defined by the simultaneous
exceedance of a certain threshold and the fraction of threshold exceedance (FTE) is the sum-
mary statistic associated.

FTEP,t(X) =
1

|P |
∑
i∈P

1{Xi≥t}. (4.18)

FTEs can be used as an extension of univariate threshold exceedances and it prevents the
double-penalty effect. FTEs may be used to target compound events (e.g., the simultaneous
exceedances of a threshold at multiple locations of interest). Roberts and Lean (2008) used an
FTE-based SE over different sizes of neighborhoods (patches) to verify at which scale forecasts
become skillful. To assess extreme precipitation forecasts, Rivoire et al. (2023) introduces scores
for extremes with temporal and spatial aggregation separately. Extreme events are defined as
values higher than the seasonal 95% quantile. In the subseasonal-to-seasonal range, the tempo-
ral patches are 7-day windows centered on the extreme event and the spatial patches are square
boxes of 150 km × 150 km centered on the extreme event. The final scores are transformed BS
(4.5) with a threshold of one event predicted across the patch.

Correctly predicting the structure dependence is crucial in multivariate forecasting. Vari-
ograms are summary statistics representing the dependence structure. The variogram of order
p of the pair (i, j) corresponds to the following transformation :

γpij(X) = |Xi −Xj |p.

81



As mentioned in the Introduction, using both the transformation and aggregation principles,
we can recover the VS of order p (4.14) introduced in Scheuerer and Hamill (2015b) :

VSp(F,y) =
d∑

i,j=1

wijSEγp
ij

(F,y) =
d∑

i,j=1

wij (EF [|Xi −Xj |p] − |yi − yj |)2 .

Along with the well-known VS of order p, Scheuerer and Hamill (2015b) introduced alternatives
where the scoring rule applied on the transformation is the CRPS (4.6) or the AE (4.3) instead
of the SE (4.2). As mentioned previously, under the intrinsic hypothesis of Matheron (1963)
(i.e., pairwise differences only depend on the distance between locations), the weights can be
selected to obtain an optimal signal-to-noise ratio. Moreover, the weights could be selected to
investigate a specific scale by giving a non-zero weight to pairs separated by a given distance.

In the case of spatial forecasts over a grid of size d × d, a spatial version of the variogram
transformation is available :

γi,j(X) = |Xi −Xj |p,
where i, j ∈ D = {1, . . . , d}2 are the coordinates of grid points. Under the intrinsic hypothesis of
Matheron (1963), the variogram between grid points separated by the vector h can be estimated
by :

γX(h) =
1

2|D(h)|
∑

i∈D(h)

γi,i+h(X),

where D(h) = {i ∈ D : i+h ∈ D}. This directed variogram can be used to target the verification
of the anisotropy of the dependence structure. The isotropy transformation associated to the
distance h can be defined by

Tiso,h(X) = −
(
γX((h, 0)) − γX((0, h))

)2
2γX((h, 0))2

|D((h, 0))| +
2γX((0, h))2

|D((0, h))|

. (4.19)

This transformation is the isotropy pre-rank function proposed in Allen et al. (2024). The
isotropy transformation considers the orthogonal directions formed by the abscissa and ordinate
axes and evaluates how the variogram changes between these directions. The transformation
leads to negative or zero quantities with values close to zero characterizing isotropy and negative
values corresponding to the anisotropy of the variograms in the directions and at the scale
involved.

4.4.3 Other transformations

Transformations other than projections or summary statistics can be used to target forecast
characteristics. For example, a transformation in the form of a change of coordinates or a
change of scale (e.g., a logarithmic scale) can be used to obtain proper scoring rules. We
highlight two families of scoring rules that can be seen as transformation-based scoring rules:
wavelet-based scoring rules and threshold-weighted scoring rules.

Generally speaking, wavelet-based scoring rules are built thanks to a projection of forecast
and observation fields onto a wavelet basis. Based on the wavelet coefficients, dimension re-
duction might be performed to target specific characteristics such as the dependence structure
or the location. The resulting coefficients of the forecast fields are compared to the coefficients
of the observations fields using scoring rules (e.g., squared error (SE) or energy score (ES)).
Wavelet transformations are (complex) transformations, and thus, the scoring rules associated
fall within the scope of Proposition 4.1. In particular, Buschow et al. (2019) used a dimension
reduction procedure resulting in the obtention of a mean and a scale spectra and used scoring
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rules to compare forecasts and observation spectra. For example, the ES of the mean spectrum
is used and shows good discrimination ability when the scale structure is misspecified.

Note that Buschow et al. (2019) proposed two other wavelet-based scoring rules: one based
on the earth mover’s distance (EMD) of the scale histograms and one based on the distance
in the scale histograms’ center of mass. The EMD-based scoring rules are not proper since
the EMD is not a proper scoring rule (Thorarinsdottir et al., 2013) and the so-called distance
between centers of mass is not a distance but rather a difference of position leading to an im-
proper scoring rule. However, the ES-based scoring rules are proper and could be derived from
scale histograms. Despite their apparent complexity, wavelet transformations allow to target
interpretable characteristics such as the location (Buschow, 2022), the scale structure (Buschow
et al., 2019; Buschow and Friederichs, 2020) or the anisotropy (Buschow and Friederichs, 2021).
The transformations proposed for the deterministic forecasts setting in most of these articles
could be used as foundations for future work willing to propose wavelet-based proper scoring
rules targeting the location, the scale structure or the anisotropy.

As showcased in Heinrich-Mertsching et al. (2024) for a specific example and hinted in
Allen et al. (2024), transformations can also be used to emphasize certain outputs. Threshold
weighting is one of the three main types of weighting conserving the propriety of scoring rules.
Its name comes from the fact that it corresponds to a weighting over different thresholds in the
case of CRPS (4.7) (Gneiting, 2011). Recall that given a conditionally negative definite kernel
ρ, the kernel scoring associated Sρ (4.15) is proper relative to Pρ. Many popular scoring rules
are kernel scores such as the BS (4.5), the CRPS (4.6), the ES (4.13) and the VS (4.14). By
definition (Allen et al., 2023b, Definition 4), threshold-weighted kernel scores are constructed
as

twSρ(F,y; v) = EF [ρ(v(X), v(y))] − 1

2
EF [ρ(v(X), v(X ′))] − 1

2
ρ(v(y), v(y));

= Sρ(v(F ), v(y)),

where v is the chaining function capturing how the emphasis is put on certain outputs. With
this explicit definition, it is obvious that threshold-weighted kernel scores are covered by the
framework of Proposition 4.1. It can be noted that Proposition 4 in Allen et al. (2023b) states
that strict propriety of the kernel scoring rule is preserved by the chaining function v if and only
if v is injective. Weighted scoring rules allow to emphasize particular outcomes: when studying
extreme events, it is often of particular interest to focus on values larger than a given threshold
t and this can be achieved using the chaining rule v(x) = 1x≥t. Threshold-weighted scoring
rules have been used in verification procedures in the literature; we illustrate its use through
three different studies. Lerch and Thorarinsdottir (2013) aggregated across stations twCRPS to
compare the upper tail performance of different daily maximum wind speed forecasts. Chapman
et al. (2022) aggregated the threshold-weighted CRPS across locations to study the improve-
ment of statistical postprocessing techniques, the importance of predictors and the influence of
the size of the training set on the performance. Allen et al. (2023a) used threshold-weighted
versions of the CRPS, the ES, and the VS to compare the predictive performance of forecasts
regarding heatwave severity; the scoring rules were aggregated across stations. Readers may
refer to Allen et al. (2023a) and Allen et al. (2023b) for insightful reviews of weighted scoring
rules in both univariate and multivariate settings.

4.5 Simulation study

This section provides simulated examples to showcase the different uses of the framework intro-
duced in Section 4.3 to construct interpretable proper scoring rules for multivariate forecasts.

83



Four examples are developed. Firstly, a setup where the emphasis is put on 1-marginal veri-
fication is proposed. This setup serves as a means of recalling and showing the limitations of
strictly proper scoring rules and the benefits of interpretable scoring rules in a concrete setting.
Secondly, a standard multivariate setup is studied where popular multivariate scoring rules
(i.e., VS and ES) are compared to a multivariate scoring rule aggregated over patches and an
aggregation-and-transformation-based scoring rule in their discrimination ability regarding the
dependence structure. Thirdly, a setup introducing anisotropy in both observations and fore-
casts is introduced. The anisotropic score is constructed based on the transformation principle
with the goal of discriminating differences of anisotropy in the dependence structure between
forecast and observations. Fourthly, we propose a setup to test the sensitivity of scoring rules
to the double-penalty effect and we introduce scoring rules that can be built to be resilient to
some manifestation of the double-penalty effect.

In these four numerical experiments, the spatial field is observed and predicted on a regular
20× 20 grid D = {1, . . . , 20}× {1, . . . , 20}. Observations are realizations of a Gaussian random
field (G(s))s∈D with zero mean and power-exponential covariance defined as

cov(G(s), G(s′)) = σ0
2 exp

(
−
(∥s− s′∥

λ0

)β0
)
, s, s′ ∈ D. (4.20)

The parameters are taken equal to σ0 = 1, λ0 = 3 and β0 = 1.
In each numerical experiment, we compare a few predictive distributions, including the

distribution generating observations and other ones deviating from the generative distributions
in a specific way. These different predictive distributions are evaluated with different scoring
rules and the aim is to illustrate the discriminatory ability of the different scoring rules.

The simulation study uses 500 observations of the random field (G(s))s∈D. The scoring
rules are computed using exact formulas when possible (see Appendix 4.7.5), and, when exact
formulas are not available, they are computed based on a sample of size 100 (i.e., ensemble
forecasts) of the probabilistic forecast. Estimated expectations over the 500 observations are
computed and the experiment is repeated 10 times. The corresponding results are represented
by boxplots. The units of the scoring rules are rescaled by the average expected score of the
true distribution (i.e., the ideal forecast). The statistical significativity of the ranking between
forecasts is tested using a Diebold-Mariano test (Diebold and Mariano, 1995). When deemed
necessary, statistical significativity is mentioned for a confidence level of 95%.

The code used for the different numerical experiments is publicly available4.

4.5.1 Marginals

This first numerical experiment focuses on the prediction of the 1-dimensional marginal distribu-
tions and the aggregation of univariate scoring rules. For simplicity, we consider only stationary
random fields so that the 1-marginal distribution is the same at all grid points. Although similar
conclusions could be drawn from a univariate framework (i.e., with independent 1-dimensional
rather than spatial observations), this example aims to clarify the notion of interpretability and
presents notions that will be reused in the following examples. The verification of marginals,
along with other simple quantities, is usually one of the first steps of any multivariate forecast
verification process.

Observations follow the model of (4.20) and multiple competing forecasts are considered:

- the ideal forecast is the Gaussian distribution generating observations and is used as a
reference;

- the biased forecast is a Gaussian predictive distribution with the same covariance structure
as the observation but a different mean E[Fbias(s)] = c = 0.255;

4https://github.com/pic-romain/aggregation-transformation
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(a) Aggregated CRPS (b) Aggregated QS

(c) Aggregated BS (d) Aggregated DSS and SE

Figure 4.1: Expectation of aggregated univariate scoring rules: (a) the CRPS, (b) the quantile
score, (c) the Brier score, and (d) the squared error and the Dawid-Sebastiani score, for the ideal
forecast (light violet), a biased forecast (orange), an under-dispersed forecast (lighter blue), an
over-dispersed forecast (darker blue) and a local-scale Student forecast (green). More details
are available in the main text.

- the overdispersed forecast and the underdispersed forecast are Gaussian predictive distri-
butions from the same model as the observations except for an overestimation (σ = 1.4)
and an underestimation (σ = 2/3) of the variance respectively;

- the location-scale Student forecast is used where the marginals follow location-scale Student-
t distributions with parameters µ = 0, df = 5, and τ is such that the standard deviation
is 0.745 and the covariance structure the same as in (4.20).

In order to compare the predictive performance of forecasts, we use scoring rules constructed
by aggregating univariate scoring rules. Here, the aggregation is done with uniform weights since
there is no prior knowledge on the locations. The univariate scoring rules considered are the
continuous ranked probability score (CRPS), the Brier score (BS), the quantile score (QS), the
squared error (SE) and the Dawid-Sebastiani score (DSS). Figure 4.1a compares five different
forecasts based on their expected CRPS. It can be seen that all forecasts except for the ideal one
have similar expected values and no sub-efficient forecast is significantly better than the others.
In order to gain more insight into the predictive performance of the forecast, it is necessary to use
other scoring rules. In practice, the distribution is unknown; thus, it is impossible to know if a
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forecast is efficient; it is only possible to provide a ranking linked to the closeness of the forecast
with respect to the observations. The definition of closeness depends on the scoring rule used:
for example, the CRPS defines closeness in terms of the integrated quadratic distance between
the two cumulative distribution functions (see, e.g., Thorarinsdottir and Schuhen 2018).

If the quantity of interest is the value of a quantile of a certain level α, the aggregated QS is
an appropriate scoring rule. Figure 4.1b shows the expected aggregated QS for three different
levels α : α = 0.5, α = .75 and α = 0.95. α = 0.5 is associated with the prediction of the
median and, since all the forecasts are symmetric and only the biased forecast is not centered
on zero, the other forecasts are equally the best and efficient forecasts. If the third quartile is of
interest (α = 0.75), the location-scale Student forecast appears as significantly the best (among
the non-ideal). For the higher level of α = 0.95, the biased forecast is significantly the best since
its bias error seems to be compensated by its correct prediction of the variance. Depending on
the level of interest, the best forecast varies; the only forecast that would appear to be the best
regardless of the level α is the ideal forecast, as implied by (4.8).

If a quantity of interest is the exceedance of a threshold t at each location, then the aggre-
gated BS is an interesting scoring rule. Figure 4.1c shows the expectation of aggregated BS for
the different forecasts and for two different thresholds (t = 0.5 and t = 1). Among the non-ideal
forecasts, there seems to be a clearer ranking than for the CRPS. The overdispersed forecast is
significantly the best regarding the prediction of the exceedance of the threshold t = 0.5 and the
biased forecast is significantly the best regarding the exceedance of t = 1. As for the aggregated
quantile score, the best forecast depends on the threshold t considered and the only forecast
that is the best regardless of the threshold t is the ideal one (see Eq. (4.7)).

If the moments are of interest, the aggregated SE discriminates the first moment (i.e., the
mean) and the aggregated DSS discriminates the first two moments (i.e., the mean and the
variance). Figure 4.1d presents the expected values of these scoring rules for the different
forecasts considered in this example. The aggregated SEs of all forecasts, except the biased
forecast, are equal since they have the same (correct) marginal means. The aggregated DSS
presents the biased forecast as significantly the best one (among non-ideal). This is caused
by the combined discrimination of the first two moments of the Dawid-Sebastiani score (see
Eq. (4.9) and Appendix 4.7.1).

4.5.2 Multivariate scores over patches

This second numerical experiment focuses on the prediction of the dependence structure. Ob-
servations are sampled from the model of Eq. (4.20) and we compare forecasts that differ only in
their dependence structure through misspecification of the range parameter λ and the smooth-
ness parameter β:

- the ideal forecast is the Gaussian distribution generating the observations;

- the small-range forecast and the large-range forecast are Gaussian predictive distributions
from the same model (4.20) as the observations except for an underestimation (λ = 1)
and an overestimation (λ = 5), respectively, of the range;

- the under-smooth forecast and the over-smooth forecast are Gaussian predictive distribu-
tions from the same model as the observations except for an underestimation (β = 0.5)
and an overestimation (β = 2), respectively, of the smoothness.

Since the forecasts differ only in their dependence structure, scoring rules acting on the
1-dimensional marginals would not be able to distinguish the ideal forecast from the others. We
use the variogram score (VS) as a reference since it is known to discriminate misspecification
of the dependence structure. We introduce the patched energy score, which results from the

86



aggregation of the ES (with α = 1) over patches, defined as

ESP,wP (F,y) =
∑
P∈P

wPES1(FP ,yP ),

where P is an ensemble of spatial patches, wP is the weight associated with a patch P ∈ P and
FP is the marginal of F over the patch P . In order to make the scoring more interpretable, only
square patches of a given size s are considered and the weights wP are uniform (wP = 1/|P|).
Moreover, we consider the aggregated CRPS and the ES since they are limiting cases of the
patched ES for 1×1 patches and a single patch over the whole domain D, respectively. Addition-
ally, we proposed the p-variation score (pVS), which is based on the p-variation transformation
to focus on the discrimination of the regularity of the random fields,

Tp−var,s(X) = |Xs+(1,1) −Xs+(1,0) −Xs+(0,1) + Xs|p

pVS(F,y) =
∑
s∈D∗

wsSETp−var,s(F,y);

=
∑
s∈D∗

ws(EF [Tp−var,s(X)] − Tp−var,s(y))2,

where D∗ is the domain D restricted to grid points such that Tp−var,s is defined (i.e., D∗ =
{1, . . . , 19}×{1, . . . , 19}). Note that in the literature on fractional random fields, the p-variation
is an important characteristic used to characterize the roughness of a random field and is com-
monly used for estimation purposes, see Benassi et al. (2004), Basse-O’Connor et al. (2021) and
the references therein.

In Figure 4.2, the ES and the patched ES were computed using samples from the forecasts
since closed expressions could not be derived. However, closed formulas for the VS and the pVS
were derived and are available in Appendix 4.7.5. As already shown in Scheuerer and Hamill
(2015b), the VS is able to significantly discriminate misspecification of the dependence structure
induced by the range parameter λ (see Fig. 4.2a). Smaller orders of p (such as p = 0.5) appear
as more informative than higher ones. Moreover, it is able to discriminate misspecification
induced by the smoothness parameter β (significantly for all orders p considered) even if it is
less marked than for the misspecification of the range λ.

Figure 4.2b compares the forecasts using the p-variation score with p ∈ {0.5, 1, 2}. Note
that the forecasts are provided in the same order as in the other sub-figures. The pVS is
able to (significantly) discriminate all four sub-efficient forecasts from the ideal forecast at all
order p. In the cases considered, the pVS has a stronger discriminating ability than the VS; in
particular, for misspecification of the smoothness parameter β. The overall improvement in the
discrimination ability of the pVS compared to the VS is due to the fact that it only considers
local pair interactions between grid points; which in the experimental setup considered greatly
improves the signal-to-noise ratio compared to the VS. For example, it would be incapable of
differentiating two forecasts that only differ in their longer-range dependence structure, where
the VS should discriminate the two forecasts.

Figure 4.2c shows that the patched ESs have a better discrimination ability than the ES.
As expected by the clear analogy between the variogram score weights and the selection of
valid patches, focusing on smaller patches improves the signal-to-noise ratio. For all patch
size s considered, the patched ES significantly discriminates the ideal forecast from the others.
Whereas the ES does not significantly discriminate the misspecification of smoothness of the
under-smooth and over-smooth forecasts. Nonetheless, the patched ES remains less sensitive
than the VS to misspecifications in the dependence structure through the range parameter λ or
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(a) Variogram score (b) p-Variation score

(c) Aggregated CRPS, patched ESs and ES

Figure 4.2: Expectation of scoring rules focused the dependence structure: (a) the variogram
score, (b) the p-variation score and (c) the patched energy score (and its limiting cases: the
aggregated CRPS and the energy score), for the ideal forecast (violet), the small-range forecast
(lighter blue), the large-range forecast (darker blue), the under-smooth forecast (lighter orange),
and the over-smooth forecast (darker orange). More details are available in the main text.

the smoothness parameter β.

The VS relies on the aggregation and transformation principles and is able to discriminate
the dependence structure. Similarly, the pVS is able to discriminate misspecifications of the
dependence structure. Being based on more local transformations (i.e., p-variation transfor-
mation instead of variogram transformation), it has a greater discrimination ability than the
VS in this experimental setup. In addition to this known application of the aggregation and
transformation principles, it has been shown that multivariate transformations can be used to
obtain patched scores that, in the case of the ES, lead to an improvement in the signal-to-noise
ratio with respect to the original scoring rule.

4.5.3 Anisotropy

In this example, we focus on the anisotropy of the dependence structure. We introduce geometric
anisotropy in observations and forecasts via the covariance function in the following way

cov(G(s), G(s′)) = exp

(
−
(∥s− s′∥A

λ0

))
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with ∥s− s′∥A = (s− s′)TA(s− s′). The matrix A has the following form :

A =

 cos θ − sin θ

ρ sin θ ρ cos θ


with θ ∈ [−π/2, π/2] the direction of the anisotropy and ρ the ratio between the axes.

The observations follow the anisotropic version of the model in Eq. (4.20) where the covari-
ance function presents the geometric anisotropy introduced above with λ0 = 3 (as previously)
and ρ0 = 2 and θ0 = π/4. Multiple forecasts are considered that only differ in their prediction
of the anisotropy in the model:

- the ideal forecast has the same distribution as the observations and is used as a reference;

- the small-angle forecast and the large-angle forecast have a correct ratio ρ but an under-
and over-estimation of the angle, respectively (i.e., θsmall = 0 and θlarge = π/2);

- the isotropic forecast and the over-anisotropic forecast have a ratio ρ = 1 and ρ = 3,
respectively, but a correct angle θ.

Since these forecasts differ only in the anisotropy of their dependence structure, scoring rules
not suited to discriminate the dependence structure would not be able to differentiate them.
We compare two proper scoring rules: the variogram score and the anisotropic scoring rule.
The variogram score is studied in two different settings: one where the weights are proportional
to the inverse of the distance and one where the weights are proportional to the inverse of the
anisotropic distance ∥·∥A, which is supposed to be more informed since it is the quantity present
in the covariance function. The anisotropic score (AS) is a scoring rule based on the framework
introduced in Section 4.3 and, in its general form, it is defined as

AS(F,y) =
∑
h

whSTiso,h
(F,y) =

∑
h

whS(Tiso,h(F ), Tiso,h(y)), (4.21)

where Tiso,h is a transformation summarizing the anisotropy of a field such as the one introduced
in (4.19). Additionally, we use a special case of this scoring rule where we do not aggregate
across the scales h and where S is the squared error :

STiso,h
(F,y) = SE(Tiso,h(F ), Tiso,h(y)) =

(
ETiso,h(F )[X] − Tiso,h(y)

)2
. (4.22)

We use a transformation similar to the one of (4.19) where instead the axes are the first and
second bisectors. This leads to the following formula:

Tiso,h(X) = −
(
γX((h, h)) − γX((−h, h))

)2
2γX((h, h))2

|D((h, h))| +
2γX((−h, h))2

|D((−h, h))|

.

The choice of this transformation instead of the transformation based on the anisotropy
along the abscissa and ordinate is motivated by the fact that it leads to a clearer differentiation
of the forecasts (not shown).

Figure 4.3a presents the variogram score of order p = 0.5 in its two variants. Both the stan-
dard VS and the informed VS are able to significantly discriminate the ideal forecast from the
other forecasts but they have a weak sensitivity to misspecification of the geometric anisotropy.
Even though the informed VS is supposed to increase the signal-to-noise ratio compared to the
standard VS; it is not more sensitive to misspecifications in the experimental setup considered.
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(a) Variogram score

(b) Anisotropic score for different scales h and aggregated across scales (wh = 1/h)

Figure 4.3: Expectation of interpretable proper scoring rules focused the dependence structure:
(a) the variogram score and (b) the anisotropic score, for the ideal forecast (violet), the small-
angle forecast (lighter blue), the large-angle forecast (darker blue), the isotropic forecast (lighter
orange) and the over-anisotropic forecast (darker orange). More details are available in the main
text.

Other orders of variograms were tested and worsened the discrimination ability of both standard
and informed VS (not shown).

Figure 4.3b shows the AS (4.22) with scales 1 ≤ h ≤ 5 for the different forecasts and the
aggregated AS (4.21), where the scales are aggregated with weights wh = 1/h. The anisotropic
scores were computed using samples drawn from the forecasts; this explains why the ideal fore-
cast may appear sub-efficient for some values of h (e.g., h = 4). As aimed by its construction,
the AS is able to significantly distinguish the correct anisotropy behavior in the dependence
structure for values of h up to h = 3 included. For h = 4, the AS does not significantly dis-
criminate the isotropic forecast and the over-anisotropic forecast from the ideal one. The fact
that h = 1 is the most sensitive to misspecifications is probably caused by the fact that the
strength of the dependence structure decays with the distance (i.e., with h). This shows that
the hyperparameter h plays an important role in having an informative AS (as do the weights
and the order p for the variogram score). For h = 2 in particular, it can be seen that the
AS is not sensitive to the misspecification of the ratio ρ and the angle θ in the same manner.
This depends on the degree of misspecification but also on the hyperparameters of the AS. The
aggregated AS allows us to avoid the selection of a scale h while maintaining the discrimination
ability of the lower values of h.
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The anisotropic score is an interpretable scoring rule targeting the anisotropy of the depen-
dence structure. However, it has the limitation of introducing hyperparameters in the form of
the scale h and the axes along which the anisotropy is measured. Aggregation across scales and
axes can circumvent the selection of these hyperparameters; however, a clever choice of weights
will be required to maintain the signal-to-noise ratio.

4.5.4 Double-penalty effect

In this example, we illustrate in a simple setting how scoring rules over patches can be robust
to the double-penalty effect (see Section 4.2.4). The double-penalty effect is introduced in the
form of forecasts that deviate from the ideal forecast by an additive or multiplicative noise term
(i.e., nugget effect). The noises are centered uniforms such that the forecasts are correct on
average but incorrect over each grid point.

Observations follow the model of (4.20) with the parameters σ0 = 1, λ0 = 3 and β0 = 1.
As per usual the ideal forecast, having the same distribution as the observations, is used as a
reference. Additive-noised forecasts are the first type of forecast introduced to test the sensitivity
of scoring rules to the form of the double-penalty effect (presented above). They differ from the
ideal forecast through their marginals in the following way :

Fadd(s) = N (ϵs, σ
2
0),

where ϵs ∼ Unif([−r, r]) is a spatial white noise independent at each location s ∈ D. This has
an effect on the mean of the marginals at each grid point. Three different noise range values are
tested r ∈ {0.1, 0.25, 0.5}. Similarly, multiplicative-noised forecasts that differ from the ideal
forecast through their marginals are introduced :

Fmul(s) = N (0, σ2(1 + ηs)
2),

where ηs ∼ Unif([−r, r]) and s ∈ D. This has an effect on the variance of the marginals
at each grid point and, thus, on the covariance. The same noise range values are tested
r ∈ {0.1, 0.25, 0.5}.

The aggregated CRPS is a naive scoring rule that is sensitive to the double-penalty effect.
We propose the aggregated CRPS of spatial mean which is defined as

CRPSmeanP ,wP (F,y) =
∑
P∈P

wPCRPSmeanP (F,y);

=
∑
P∈P

wPCRPS(meanP (F ),meanP (y)),

where P is an ensemble of spatial patches, wP is the weight associated with a patch P ∈ P
and meanP the spatial mean over the patch P (4.17). It is a proper scoring rule, and it has
an interpretation similar to the aggregated CRPS, but the forecasts are only evaluated on the
performance of their spatial mean. In order to make the scoring more interpretable, only square
patches of a given size s are considered and the weights wP are uniform. The size of the patches
s can be determined by multiple factors such as the physics of the problem, the constraints of
the verification in the case of models on different scales, or hypotheses on a different behavior
below and above the scale of the patch (e.g., independent and identically distributed; Taillardat
and Mestre 2020). Note that the aggregated CRPS of spatial mean is equal to the aggregated
CRPS when patches of size s = 1 are considered.

If a quantity of interest is the exceedance of a threshold t, the scoring rule associated with
that is the Brier score (4.5). We compare the aggregated BS with its counterpart over patches:
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(a) Aggregated CRPS and CRPS of spatial mean

(b) Aggregated BS and SE of FTE

Figure 4.4: Expectation of scoring rules tested on their sensitivity to double-penalty effect :
(a) the aggregated CRPS and the aggregated CRPS of spatial mean, and (b) the aggregated
Brier score and the aggregated squared error of fraction of threshold exceedances, for the ideal
forecast (violet), the additive-noised forecasts (shades of blue), and the multiplicative-noised
forecasts (shades of orange). For the noised forecasts, darker colors correspond to larger values
of the range r ∈ {0.1, 0.25, 0.5}. More details are available in the main text.

the aggregated SE of the FTE. It is defined as

SEFTEP,t,wP (F,y) =
∑
P∈P

wPSEFTEP,t
(F,y);

=
∑
P∈P

wPSE
(
FTEP,t(F ),FTEP,t(y)

)
=
∑
P∈P

wP

(
EF [FTEP,t(X)] − FTEP,t(y)

)2
where P is an ensemble of spatial patches, wP is the weight associated with a patch P ∈ P and
FTEP,t the fraction of threshold exceedance over the patch P and for the threshold t (4.18).
This scoring rule is proper and focuses on the prediction of the exceedance of a threshold t via
the fraction of locations over a patch P exceeding said threshold. The resemblance with the
Brier score is clear and the aggregated SE of FTE becomes the aggregated BS when patches of
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size s = 1 are considered.

In Figure 4.4, the values of the aggregated SE of FTE have been obtained by sampling the
forecasts’ distribution. Figure 4.4a compares the aggregated CRPS and the aggregated CRPS
of spatial mean for different patch size s. For all the scoring rules, we observe an increase in
the expected value with the increase of the range of the noise r. As expected, the aggregated
CRPS is very sensitive to noise in the mean or the variance and, thus, is prone to the double-
penalty effect. The aggregated CRPS of spatial mean is less sensitive to noise on the mean or
the variance. Moreover, different patch sizes allow us to select the spatial scale below which
we want to avoid a double penalty. Given that the distribution of the noise is fixed in this
simulation (i.e., uniform), patch size is related to the level of random fluctuations (i.e., the
range r) tolerated by the scoring rule before significant discrimination with respect to the ideal
forecast. It is worth noting that the range r of the noise leads to a stronger increase in the
values of these CRPS-related scoring rules when the noise is on the mean rather than on the
variance.

Figure 4.4b compares the aggregated BS and the aggregated squared error of fraction of
threshold exceedances. For simplicity, we fix the threshold t = 1. The aggregated BS is, as
expected, sensitive to noise in the mean or the variance, and an increase in the range of the
noise leads to an increase in the expected value of the score. The aggregated SE of FTE acts as
a natural extension of the aggregated BS to patches and provides scoring rules that are less sen-
sitive to noise on the mean or the variance. The sensitivity evolves differently with the increase
of the patch size s compared to the aggregated CRPS of spatial mean since the aggregated SE
of FTE measures the effect on the average exceedance over a patch. The range r of the noise
apparently leads to a comparable increase in the values of the aggregated SE of FTE when the
noise is additive or multiplicative.

The use of transformations over patches is similar to neighborhood-based methods in the
spatial verification tools framework. Even though avoiding the double-penalty effect is not
restricted to tools that do not penalize forecasts below a certain scale, this simulation setup
presents a type of test relevant to probability forecasts. The patched-based scoring rules pro-
posed here are not by themselves a sufficient verification tool since they are insensitive to some
unrealistic forecast (e.g., if the mean value over the patch is correct but deviations may be as
large as possible and lead to unchanged values of the scoring rule). As for any other scoring
rule, they should be used with other scoring rules.

4.6 Conclusion

Verification of probabilistic forecasts is an essential but complex step of all forecasting proce-
dures. Scoring rules may appear as the perfect tool to compare forecast performance since,
when proper, they can simultaneously assess calibration and sharpness. However, propriety,
even if strict, does not ensure that a scoring rule is relevant to the problem at hand. With
that in mind, we agree with the recommendation of Scheuerer and Hamill (2015b) that ”several
different scores be always considered before drawing conclusions”. This is even more important
in a multivariate setting where forecasts are characterized by more complex objects.

We proposed a framework to construct proper scoring rules in a multivariate setting using
aggregation and transformation principles. Aggregation-and-transformation-based scoring rules
can improve the conclusions drawn since they enable the verification of specific aspects of the
forecast (e.g., anisotropy of the dependence structure). This has been illustrated both using ex-
amples from the literature and numerical experiments showcasing different settings. Moreover,
we showed that the aggregation and transformation principles can be used to construct scoring
rules that are proper, interpretable, and not affected by the double-penalty effect. This could
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be a starting point to help bridging the gap between the proper scoring rule community and
the spatial verification tools community.

As the interest for machine learning-based weather forecast is increasing (see, e.g., Ben Bouallègue
et al. 2024a), multiple approaches have performance comparable to ECMWF deterministic high-
resolution forecasts (Keisler, 2022; Pathak et al., 2022; Bi et al., 2023; Lam et al., 2023; Chen
et al., 2023). The natural extension to probabilistic forecast is already developing and en-
abled by publicly available benchmark datasets such as WeatherBench 2 (Rasp et al., 2024).
Aggregation-and-transformation-based methods can help ensure that parameter inference does
not hedge certain important aspects of the multivariate probabilistic forecasts.

There seems to be a trade-off between discrimination ability and strict propriety. Discrimi-
nation ability comes from the ability of scoring rules to differentiate misspecification of certain
characteristics. By definition, the expectation of strictly proper scoring rules is minimized when
the probabilistic forecast is the true distribution. Nonetheless, it does not guarantee that this
global minimum is steep in any misspecification direction. However, interpretable scoring rules
can discriminate the misspecification of their target characteristic. Should scoring rules discrim-
inating any misspecification be pursued? Or should interpretable scoring rules discriminating a
specific type of misspecification be used instead?
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4.7 Appendix

4.7.1 Expected univariate scoring rules

Squared Error

For any F,G ∈ P2(R), the expectation of the squared error (4.2) is :

EG[SE(F, Y )] = (µF − µG)2 + σG
2,

where µF is the mean of the distribution F and µG and σG
2 are the mean and the variance of

the distribution G.

Proof.

EG[SE(F, Y )] = EG[(µF − Y )2]

= µ2
F − 2 µFEG[Y ] + EG[Y 2]

Using the fact that E[X2] = Var(X) + E[X]2,

EG[SE(F, Y )] = µ2
F − 2 µFµG + σ2

G + µ2
G

= (µF − µG)2 + σ2
G
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Quantile Score

For any F,G ∈ P1(R), the expectation of the quantile score of level α (4.4) is :

EG[QSα(F, Y )] =

∫ F−1(α)

−∞
(F−1(α) − y)G(dy) − α

∫
R
(F−1(α) − y)G(dy);

= EG[QSα(G, Y )] +

{
(G(F−1(α)) − α)(F−1(α) −G−1(α)) −

∫ F−1(α)

G−1(α)
(y −G−1(α))G(dy)

}
.

Proof. Inspired by the proof of the propriety of the quantile score in Friederichs and Hense
(2008).

EG[QSα(F, Y )] =

∫
R
(1y≤F−1(α) − α)(F−1(α) − y)G(dy)

=

∫ F−1(α)

−∞
(1 − α)(F−1(α) − y)G(dy) +

∫ +∞

F−1(α)
(−α)(F−1(α) − y)G(dy)

=

∫ F−1(α)

−∞
(F−1(α) − y)G(dy) − α

∫
R
(F−1(α) − y)G(dy)

Then, using F−1(α) − y = (F−1(α) −G−1(α)) + (G−1(α) − y),

EG[QSα(F, Y )] =

∫ F−1(α)

−∞
(F−1(α) −G−1(α))G(dy) − α

∫
R
(F−1(α) −G−1(α))G(dy)

+

∫ F−1(α)

−∞
(G−1(α) − y)G(dy) − α

∫
R
(G−1(α) − y)G(dy)

= (G(F−1(α)) − α)(F−1(α) −G−1(α))

+

∫ F−1(α)

−∞
(G−1(α) − y)G(dy) − α

∫
R
(G−1(α) − y)G(dy)

= (G(F−1(α)) − α)(F−1(α) −G−1(α))

+

∫ G−1(α)

−∞
(G−1(α) − y)G(dy) +

∫ F−1(α)

G−1(α)
(G−1(α) − y)G(dy) − α

∫
R
(G−1(α) − y)G(dy)

= (G(F−1(α)) − α)(F−1(α) −G−1(α)) + EG[QSα(G, Y )]) −
∫ F−1(α)

G−1(α)
(y −G−1(α))G(dy)

Absolute Error

First of all, for F ∈ P1(R) and y ∈ R, the absolute error (4.3) is equal to twice the quantile
score of level α = 0.5 :

AE(F, y) = |med(F ) − y| = 2 QS0.5(F, y),

where med(F ) is the median of the distribution F .
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It can be deduced that, for any F,G ∈ P1(R), the expectation of the absolute error is :

EG[AE(F, Y )] = EG[|med(F ) − Y |];

= 2

∫ med(F )

−∞
(med(F ) − y)G(dy) − 2α

∫
R
(med(F ) − y)G(dy);

= EG[AE(G, Y )] + 2

{
(G(med(F )) − α)(med(F ) − med(G)) −

∫ med(F )

med(G)
(y − med(G))G(dy)

}
.

Brier score

For any F,G ∈ P(R), the expectation of the Brier score (4.5) is :

EG[BSt(F, Y )] = (F (t) −G(t))2 + G(t)(1 −G(t)).

Proof.

EG[BSt(F, Y )] = EG[(F (t) − 1Y≤t)
2]

= F (t)2 − 2F (t)EG[1Y≤t] + EG[1Y≤t
2]

= F (t)2 − 2F (t)G(t) + G(t)

= F (t)2 − 2F (t)G(t) + G(t)2 −G(t)2 + G(t)

= (F (t) −G(t))2 + G(t)(1 −G(t))

Continuous Ranked Probability Score

For any F,G ∈ P1(R), the expectation of the CRPS (4.7) is :

EG[CRPS(F, Y )] = EF,G|X − Y | − 1

2
EF |X −X ′|;

=

∫
R
(F (z) −G(z))2dz +

∫
R
G(z)(1 −G(z))dz,

where the second term of the last line is the entropy of the CRPS.

Proof.

EG[CRPS(F, Y )] = EG

[∫
R
(F (z) − 1y≤z)2dz

]
=

∫
R

EG

[
(F (z) − 1y≤z)2

]
dz

=

∫
R

EG

[
F (z)2 − 2F (z)1y≤z + 12

y≤z

]
dz

=

∫
R

{
F (z)2 − 2F (z)EG [1y≤z] + EG [1y≤z]

}
dz

=

∫
R

{
F (z)2 − 2F (z)G(z) + G(z)

}
dz

=

∫
R

{
F (z)2 − 2F (z)G(z) + G(z)2 −G(z)2 + G(z)

}
dz

=

∫
R
(F (z) −G(z))2dz +

∫
R
G(z)(1 −G(z))dz
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Dawid-Sebastiani score

For any F,G ∈ P2(R), the expectation of the Dawid-Sebastiani score (4.9) is :

EG[DSS(F, Y )] =
(µF − µG)2

σF 2
+

σG
2

σF 2
+ 2 log σF .

Proof.

EG[DSS(F, Y )] = EG

[
(Y − µF )2

σF 2
+ 2 log σF

]
=

EG

[
(Y − µF )2

]
σF 2

+ 2 log σF

Noticing that EG

[
(Y − µF )2

]
= EG [SE(F, Y )],

EG[DSS(F, Y )] =
(µF − µG)2 + σG

2

σF 2
+ 2 log σF .

Error-spread score

For any F,G ∈ P4(R), the expectation of the error-spread score (4.10) is :

EG[ESS(F, Y )] =
[
(σG

2 − σF
2) + (µG − µF )2 − σFγF (µG − µF )

]2
+ σG

2 [2(µG − µF ) + (σGγG − σFγF )]2

+ σG
4(βG − γG

2 − 1),

where µF , σ2
F , γF are the mean, the variance and the skewness of the probabilistic forecast F .

Similarly, µG, σ2
G, γG and βG are the first four centered moments of the distribution G. The

proof is available in Appendix B of Christensen et al. (2014).

Logarithmic score

For any F,G ∈ P(R) such that F and G have probability density functions in the class L1(R),
the expectation of the logarithmic score (4.11) is :

EG[LogS(F, Y )] = DKL(G||F ) + H(F ),

where DKL(G||F ) is the Kullback-Leibler divergence from F to G and H(F ) is the Shannon
entropy of F . The proof is straightforward given that the Kullback-Leibler divergence and
Shannon entropy are defined as

DKL(G||F ) =

∫
R
g(y) log

(
g(y)

f(y)

)
dy;

H(F ) =

∫
R
f(y) log(f(y))dy.

Hyvärinen score

For F,G such that their densities f exist, are twice continuously differentiable and satisfy
f ′(x)/f(x) → 0 as |x| → ∞ and g′(x)/g(x) → 0 as |x| → ∞, the expectation of the Hyvärinen
score is :

EG[HS(F, Y )] =

∫
R

(
f ′(y)2

f(y)2
− 2

f ′(y)g′(y)

f(y)g(y)

)
g(y)dy

=

∫
R

(
f ′(y)

f(y)
− g′(y)

g(y)

)2

g(y)dy −
∫

R

g′(y)2

g(y)2
g(y)dy
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where the last formula shows the entropy of the Hyvärinen score (second term on the right-hand
side).

Proof.

EG[HS(F, Y )] = E

[
2
f ′′(Y )

f(Y )
− f ′(Y )2

f(y)2

]
= 2

∫
R

f ′′(y)

f(y)
g(y)dy −

∫
R

f ′(y)2

f(y)2
g(y)dy

Integrating by part the integral of the first term on the right-hand side leads to :∫
R

f ′′(y)

f(y)
g(y)dy =

[
f ′(y)

f(y)
g(y)

]+∞

−∞
−
∫

R
f ′(y)

g′(y)f(y) − g(y)f ′(y)

f(y)2
dy

= −
∫

R

f ′(y)g′(y)

f(y)g(y)
g(y)dy +

∫
R

f ′(y)2

f(y)2
g(y)dy

The boundary term is null since f ′(x)/f(x) → 0 as |x| → ∞ and g is a probability density
function.
Thus,

EG[HS(F, Y )] = −2

∫
R

f ′(y)g′(y)

f(y)g(y)
g(y)dy + 2

∫
R

f ′(y)2

f(y)2
g(y)dy −

∫
R

f ′(y)2

f(y)2
g(y)dy

= −2

∫
R

f ′(y)g′(y)

f(y)g(y)
g(y)dy +

∫
R

f ′(y)2

f(y)2
g(y)dy

=

∫
R

(
f ′(y)2

f(y)2
− 2

f ′(y)g′(y)

f(y)g(y)

)
g(y)dy

Quadratic score

For any F,G ∈ L2(R), the expectation of the quadratic score is :

EG[QuadS(F, Y )] = ∥f∥22 − 2⟨f, g⟩,

where ⟨f, g⟩ =
∫

R f(y)g(y)dy.

Pseudospherical score

For any F,G ∈ Lα(R), the expectation of the quadratic score is :

EG[PseudoS(F, Y )] = −⟨fα−1, g⟩
∥f∥α−1

α
,

where ⟨fα−1, g⟩ =
∫

R f(y)α−1g(y)dy.
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4.7.2 Expected multivariate scoring rules

Squared error

For any F,G ∈ P2(Rd), the expectation of the squared error (4.12) is :

EG[SE(F,Y )] = ∥µF − µG∥22 + tr(ΣG),

where µF is the mean vector of the distribution F and µG and ΣG
2 are the mean vector and

the covariance matrix of the distribution G.

Proof. Let Ti denote the projection on the i-th margin.

EG[SE(F,Y )] = EG[∥µF − Y ∥22]

= EG

[
d∑

i=1

(µTi(F ) − Ti(Y ))2

]

=

d∑
i=1

ETi(G) [SE(Ti(F ), Y )]

=

d∑
i=1

(
(µTi(F ) − µTi(G))

2 + σ2
Ti(G)

)
= ∥µF − µG∥22 + tr(ΣG)

Dawid-Sebastiani score

For any F,G ∈ P2(Rd), the expectation of the Dawid-Sebastiani score is :

EG[DSS(F,Y )] = log(det ΣF ) + (µF − µG)TΣ−1
F (µF − µG) + tr(ΣGΣ−1

F ).

The proof is available in the original article (Dawid and Sebastiani, 1999).

Energy score

In a general setting, the expected energy score does not simplify. For any F,G ∈ Pβ(Rd), the
expected energy score (4.13) is :

EG[ESβ(F,Y )] = EF,G∥X − Y ∥β2−
1

2
EF ∥X −X ′∥β2 .

Variogram score

For any F,G ∈ P(Rd) such that the 2p-th moments of all their univariate margins are finite,
the expected variogram score of order p (4.14) is :

EG[VSp(F,Y )] =
d∑

i,j=1

wij

(
EF [|Xi −Xj |p]2 − 2EF [|Xi −Xj |p] EG[|Yi − Yj |p] + EG[|Yi − Yj |2p]

)
.

99



Proof.

EG[VSp(F,Y )] = EG

 d∑
i,j=1

wij (EF [|Xi −Xj |p] − |Yi − Yj |p)2


= EG

 d∑
i,j=1

wij

(
EF [|Xi −Xj |p]2 − 2EF [|Xi −Xj |p] |Yi − Yj |p + |Yi − Yj |2p

)
=

d∑
i,j=1

wij

(
EF [|Xi −Xj |p]2 − 2EF [|Xi −Xj |p] EG[|Yi − Yj |p] + EG[|Yi − Yj |2p]

)
.

Logarithmic score

For any F,G ∈ P(Rd) such that F and G have probability density functions that belong to
L1(Rd), the expectation of the logarithmic score is analogous to its univariate version :

EG[LogS(F,Y )] = DKL(G||F ) + H(F ),

where DKL(G||F ) is the Kullback-Leibler divergence from F to G and H(F ) is the Shannon
entropy of F .

DKL(G||F ) =

∫
Rd

g(y) log

(
g(y)

f(y)

)
dy

H(F ) =

∫
Rd

f(y) log(f(y))dy.

Hyvärinen score

For F,G ∈ P(Rd) such that their probability density functions f and g such that they are
twice continuously differentiable and satisfying ∇f(x) → 0 and ∇g(x) → 0 as ∥x∥ → ∞, the
expectation of the Hyvärinen score is :

E[HS(F,Y )] =

∫
Rd

g(y)⟨∇ log(f(y)) − 2∇ log(g(y)),∇ log(f(y))⟩g(y)dy

where ∇ is the gradient operator and ⟨·, ·⟩ is the scalar product. The proof is similar to the
proof for the univariate case using integration by parts and Stoke’s theorem (Parry et al., 2012).

Quadratic score

For any F,G ∈ L2(Rd), the expectation of the quadratic score is analogous to its univariate
version :

EG[QuadS(F,Y )] = ∥f∥22 − 2⟨f, g⟩,
where ⟨f, g⟩ =

∫
Rd f(y)g(y)dy.

Pseudospherical score

For any F,G ∈ Lα(Rd), the expectation of the quadratic score is analogous to its univariate
version :

EG[PseudoS(F,Y )] = −⟨fα−1, g⟩
∥f∥α−1

α
,

where ⟨fα−1, g⟩ =
∫

Rd f(y)α−1g(y)dy.
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4.7.3 Proofs

Proposition 4.1

Proof of Proposition 4.1. Let F ⊂ P(Rd) be a class of Borel probability measure on Rd and let
F ∈ F be a forecast and y ∈ Rd an observation. Let T : Rd → Rk be a transformation and let S
be a scoring rule on Rk that is proper relative to T (F) = {L(T (X)), X ∼ F ∈ F}.

EG [ST (F,Y )] = EG [S(T (F )), T (Y ))]

= ET (G) [S(T (F ),Y )]

Given that T (F ), T (G) ∈ T (F) and S is proper relative to T (F),

ET (G) [S(T (G),Y )] ≤ ET (G) [S(T (F ),Y )]

⇔ EG [ST (G,Y )] ≤ EG [ST (F,Y )] (4.23)

Proof of the strict propriety case in Proposition 4.1. The notations are the same as the proof
above except the following. Let T : Rd → Rk be an injective transformation and let S be a
scoring rule on Rk that is strictly proper relative to T (F) = {L(T (X)), X ∼ F ∈ F}.

The equality in Equation (4.23) leads to :

EG [ST (G,Y )] = EG [ST (F,Y )]

⇔ EG [S(T (G), T (Y ))] = EG [S(T (F ), T (Y ))]

⇔ ET (G) [S(T (G),Y )] = ET (G) [S(T (F ),Y )]

The fact that S is strictly proper relative to T (F) leads to T (F ) = T (G), and finally since T is
injective, we have F = G.

Proposition 4.3

Proof of Proposition 4.3. The proof relies on the reproducing kernel Hilbert space (RKHS) rep-
resentation of the kernel scoring rule Sρ. For a background on kernel scoring rule, maximum
mean discrepancies and RKHS, we refer to Smola et al. (2007) or Steinwart and Christmann
(2008, Section 4).

Let Hρ denote the RKHS associated with ρ. We recall that Hρ contains all the functions
ρ(x, ·) and that the inner product on Hρ satisfies the property

⟨ρ(x1, ·), ρ(x2, ·)⟩Hρ = ρ(x1,x2).

The kernel mean embedding is a linear application Ψρ : Pρ → Hρ mapping an admissible
distribution F ∈ Pρ into a function Ψρ(F ) in the RKHS and such that the image of the point
measure δx is ρ(x, ·). Equation (4.16) giving the kernel scoring rule for an ensemble prediction
F = 1

M

∑M
m=1 δxm can be written as

Sρ(F,y) =
1

2
⟨Ψρ(F ) − Ψρ(δy),Ψρ(F ) − Ψρ(δy)⟩Hρ

=
1

2
∥Ψρ(F − δy)∥2Hρ

.
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The properties of the kernel mean embedding ensure that this relation still holds for all F ∈ Pρ.
As a consequence, if (Tl)l≥1 is an Hilbertian basis of Hρ, we have

Sρ(F, y) =
1

2
∥Ψρ(F − δy)∥2Hρ

=
1

2

∑
l≥1

⟨Ψρ(F − δy), Tl⟩2Hρ
.

Finally, the properties of the kernel mean embedding ensure that, for all T ∈ Hρ,

⟨Ψρ(F − δy), T ⟩Hρ =

∫
Rd

T (x)(F − δy)(dx) = EF [T (X)] − T (y)

whence the result follows.

Proof of examples illustrating Proposition 4.3

Next, we illustrate the Proposition 4.3 and provide some computations in two cases: the Gaus-
sian kernel scoring rule and the continuous rank probability score (CRPS).

Gaussian Kernel Scoring Rule. This is the scoring rule related to the Gaussian kernel

ρ(x1, x2) = exp(−(x1 − x2)
2/2), x1, x2 ∈ R.

Using a series expansion of the exponential function, we have

ρ(x1, x2) = e−x2
1/2e−x2

2/2
∑
l≥0

(x1x2)
l

l!
=
∑
l≥0

Tl(x1)Tl(x2)

with Tl the transformation defined, for l ≥ 0, by

Tl(x) =
1√
l!

e−x2/2xl.

As a consequence, the Gaussian kernel scoring rule writes, for all F ∈ P(R) and y ∈ R,

Sρ(F, y) =
1

2

∫
R×R

ρ(x1, x2)(F − δy)(dx1)(F − δy)(dx2)

=
1

2

∫
R×R

(∑
l≥0

Tl(x1)Tl(x2)
)

(F − δy)(dx1)(F − δy)(dx2)

=
1

2

∑
l≥0

(∫
R
Tl(x)(F − δy)(dx)

)2
=

1

2

∑
l≥0

(
EF [Tl(X)] − Tl(y)

)2
.

Continuous Ranked Probability Score. The CRPS is the scoring rule with kernel ρ(x1, x2) =
|x1|+ |x2| − |x1−x2|. This kernel is the covariance of the Brownian motion on R and its RKHS
is known to be the Sobolev space H1 = H1(R), see Berlinet and Thomas-Agnan (2004). We
recall the definition of the Sobolev space

H1 =
{
f ∈ C(R,R) : f(0) = 0, ḟ ∈ L2(R)

}
,
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where ḟ denotes the derivative of f assumed to be defined almost everywhere and square-
integrable. The inner product on H1 is defined by

⟨f1, f2⟩H1 =

∫
R
ḟ1(x)ḟ2(x)dx

and one can easily check the fundamental relation

⟨ρ(x1, ·), ρ(x2, ·)⟩H1 =

∫
R
ρ̇(x1, x)ρ̇(x2, x)dx = ρ(x1, x2).

Here the derivative ρ̇(x1, x) = 1[0,x1](x) is taken with respect to the second variable x. Then,
we consider the Haar system defined as the collection of functions

H0
l (x) = H0(x− l) and H1

l,m(x) = 2m/2H1(2mx− l), l ∈ Z, m ≥ 0,

with H0(x) = 1[0,1)(x) and H1(x) = 1[0,1/2)(x) − 1[1/2,1)(x). Since the Haar system is an

orthonormal basis of the space L2(R) and the map f ∈ H1 7→ ḟ ∈ L2 is an isomorphism
between Hilbert spaces, we obtain an orthonormal basis of H1(R) by considering the primitives
vanishing at 0 of the Haar basis functions. Setting T 0(x) = x1[0,1)(x) +1[1,+∞)(x) and T 1(x) =(
1/2−|x−1/2|

)
1[0,1](x) the primitive functions of H0 and H1 respectively, we obtain the system

T 0
l (x) = T 0(x− l), T 1

l,m(x) = 2−m/2T 1(2mx− l), l ∈ Z, m ≥ 0.

The series representation of the CRPS is then deduced from Proposition 4.3 and its proof since
the collection {Tl,m : l ∈ Z,m ≥ 0}, is an orthonormal basis of the RKHS associated with the
kernel ρ of the CRPS.

4.7.4 General form of Corollary 4.1

Corollary 4.2. Let T = {Ti}1≤i≤m be a set of transformations from Rd to Rk. Let S =
{Si}1≤i≤m be a set of proper scoring rules such that Si is proper relative to Ti(F), for all
1 ≤ i ≤ m. Let w = {wi}1≤i≤m be nonnegative weights. Then the scoring rule

SST ,w(F,y) =

m∑
i=1

wiSiTi
(F,y) =

m∑
i=1

wiSi(Ti(F ), Ti(y))

is proper relative to F .

4.7.5 Scoring rules of the simulation study

The following formulas are deduced for a probabilistic forecast F taking the form of the Gaussian
random field model of Equation (4.20). The formulas of the aggregated univariate scoring rules
can be obtained from the formulas in Gneiting and Raftery (2007) and Jordan et al. (2019) and,
thus, are not presented here. We focus on the expression of the variogram score and the CRPS
of spatial mean.

Variogram Score

VSp(F,y) =
∑

s,s′∈D
wss′ (EF [|Xs −Xs′ |p] − |ys − ys′ |p)2

For X ∼ N (µ, σ2), the absolute moment is (Winkelbauer, 2014) :

E[|X|ν ] = σν2ν/2
Γ
(
ν+1
2

)
√
π

1F1

(
−ν/2, 1/2;− µ2

2σ2

)
, (4.24)
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where 1F1 is the confluent hypergeometric function of the first kind. For X ∼ F ,

Xs −Xs′ ∼ N (µs − µs′ , σs
2 + σs′

2 − 2cov(Fs, Fs′)

∼ N (0, 2σ2(1 − e
−
(

∥s−s′∥
λ

)β

)).

This leads to

EG[|Xs −Xs′ |p] =

(
2σ2(1 − e

−
(

∥s−s′∥
λ

)β

)

)p/2

2p/2
Γ
(
p+1
2

)
√
π

1F1

−p/2, 1/2;− (µs − µs′)
2

4σ2(1 − e
−
(

∥s−s′∥
λ

)β

)


= 2pσp

(
1 − e

−
(

∥s−s′∥
λ

)β
)p/2 Γ

(
p+1
2

)
√
π

1F1 (−p/2, 1/2; 0)

= 2pσp

(
1 − e

−
(

∥s−s′∥
λ

)β
)p/2 Γ

(
p+1
2

)
√
π

Finally,

VSp(F,y) =
∑

s,s′∈D
wij (EG[|Xs −Xs′ |p] − |ys − ys′ |p)2

=
∑

s,s′∈D
wij

((
2σ2(1 − e

−
(

∥s−s′∥
λ

)β

)

)p/2

2p/2
Γ
(
p+1
2

)
√
π

− |ys − ys′ |p
)2

p-Variation Score

pVS(F,y) =
∑
s∈D∗

wsSETp−var,s(F,y);

=
∑
s∈D∗

ws(EF [Tp−var,s(X)] − Tp−var,s(y))2,

Denote Z = Xs+(1,1)−Xs+(1,0)−Xs+(0,1) +Xs. For X ∼ F , we have Z ∼ N (µZ , σ
2
Z) with

µZ = µs+(1,1) − µs+(1,0) − µs+(0,1) + µs = 0

and

σ2
Z = σ2

s+(1,1) + σ2
s+(1,0) + σ2

s+(0,1) + σ2
s

− 2cov(F (s + (1, 1)), F (s + (1, 0))) − 2cov(F (s + (1, 1)), F (s + (0, 1)) + 2cov(F (s + (1, 1)), F (s))

+ 2cov(F (s + (1, 0)), F (s + (0, 1))) − 2cov(F (s + (1, 0)), F (s))

− 2cov(F (s + (0, 1)), F (s))

= 4σ2(1 + e−(
√
2/λ)β − 2e−(1/λ)β )

Using (4.24), this leads to

EF [Tp−var,s(X)] =
(

4σ2(1 + e−(
√
2/λ)β − 2e−(1/λ)β )

)p/2
2p/2

Γ
(
p+1
2

)
√
π

1F1 (−p/2, 1/2; 0)

=
(

4σ2(1 + e−(
√
2/λ)β − 2e−(1/λ)β )

)p/2
2p/2

Γ
(
p+1
2

)
√
π
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Finally,

pVS(F,y) =
∑
s∈D∗

wsSETp−var,s(F,y)

=
∑
s∈D∗

ws

((
4σ2(1 + e−(

√
2/λ)β − 2e−(1/λ)β )

)p/2
2p/2

Γ
(
p+1
2

)
√
π

− |ys+(1,1) − ys+(1,0) − ys+(0,1) + ys|p
)2

CRPS of spatial mean

The CRPS of spatial mean is defined as

CRPSmeanP ,wP (F,y) =
∑
P∈P

wPCRPSmeanP (F,y)

=
∑
P∈P

wPCRPS(meanP (F ),meanP (y)),

where P is an ensemble of spatial patches and wP is the weight associated with a patch P ∈ P.
The mean of Gaussian marginals follows a Gaussian distribution :

meanP (F ) ∼ N (
∑
s∈P

µs,
σ2

|P |2
∑

s,s′∈P
e−(

∥s−s′∥
λ

)β ) = N (µP , σ
2
P ),

where |P | is the cardinal of the patch P (i.e., the number of grid points belonging to P ).

Finally,

CRPSmeanP ,wP (F,y) =
∑
P∈P

wPCRPS(N (µP , σ
2
P ),meanP (y)).
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Chapter 5

Perspectives

Chapter 2 provides optimal minimax convergence rates and upper bounds in distributional re-
gression for a theoretical risk based on the CRPS. A first natural extension of this work would
be to obtain similar results for other scoring rules. However, as discussed in Appendix C, the
current form of the proofs might be ill-suited to certain scoring rules (e.g., logarithmic score;
Roulston and Smith 2002) and would require to be adapted by using other algorithms than
k-NN and uniform kernels. If the proofs of Chapter 2 can be obtained using the kernel form
of the CRPS, this could represent an entry point to kernel scores (Steinwart and Ziegel, 2021)
and, in particular, multivariate distributional regression. Another possible perspective is inves-
tigating whether state-of-the-art statistical postprocessing methods achieve optimal minimax
convergence rates. The most direct extension seems to be neighborhood-based methods such as
quantile regression forests (QRF; Meinshausen 2006), used as a benchmark method in Chapter 3.
However, this would again require modifying the proofs since QRF uses weights depending on
neighborhoods based on both covariables and the target variable. It would also be interesting
to investigate the rate of convergence of neural network methods such as distributional neural
networks (Rasp and Lerch, 2018). Last, it could be of interest to focus on universal convergence,
as done in Appendix A, for a large class of methods (e.g., distributional random forests or dis-
tributional neural networks) and for a large class of scoring rules. Universal convergence studies
the convergence on the broadest class of distributions without guarantee on the convergence rate.

One of the known empirical limitations of analog ensembles is that they generally require
more training data than other postprocessing techniques to achieve the same level of predictive
performance (see, e.g., Taillardat et al. 2019). As mentioned in Chapter 3, large and consistent
training datasets are not always available due to NWP updates and the computational cost of
reforecasts. In this regard, the optimal use of the information contained in a finite training
dataset is crucial in an operational setting. A possible perspective could be to investigate non-
asymptotical upper bounds on the theoretical risk of state-of-the-art statistical postprocessing
methods to obtain guarantees on their use of information. This could unveil a better under-
standing of the empirically observed difference in training dataset size requirement between
analog ensembles and QRF. For example, it may originate from their different dependence on
the intrinsic characteristic of the true distribution (e.g., associated with its dispersion or its
regularity) rather than directly on the size of the training dataset. The operational limited con-
sistency of training datasets could also be investigated theoretically by relaxing the independent
and identically distributed hypothesis.

In addition to the rise of machine learning (ML-)based statistical postprocessing methods
mentioned in Chapter 3, the increase of ML-based methods affects weather forecasting in general
(Ben Bouallègue et al., 2024a). Regarding deterministic forecasts, multiple approaches have per-
formance comparable to ECMWF deterministic high-resolution forecasts (Keisler, 2022; Pathak
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et al., 2022; Bi et al., 2023; Lam et al., 2023; Chen et al., 2023). Most of these models learn to
minimize root mean square error, which tends to lead to blurry forecasts for large lead times.
Similar effects can appear for probabilistic forecasts due to the double-penalty effect (Ebert,
2008). As recalled in Chapter 4, an effort to develop spatial verification tools has been carried
out to avoid this undesired effect and specifically assess different important characteristics of
forecasts (Gilleland et al., 2009; Dorninger et al., 2018). The development of similar tools for
probabilistic forecasts within the framework of proper scoring rules will be crucial for both the
development and the verification of ML-based weather forecasts. Pacchiardi et al. (2024) have
exhibited promising results by proposing a generative method for weather forecasting based on
the minimization of the patched energy score. We may hope that our contributions from Chap-
ter 4 to the theory of spatial scoring rules will be useful for future developments in ML-based
weather forecasting.
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Zied Ben Bouallègue, Mariana C. A. Clare, Linus Magnusson, Estibaliz Gascón, Michael Maier-
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Jean-Michel Soubeyroux. Les mesures de précipitations et l’estimation des lames d’eau à
Météo-France : état de l’art et perspectives. La Houille Blanche, 95(5):28–34, 2009. ISSN
1958-5551. https://doi.org/10.1051/lhb/2009052.

William E. Chapman, Luca Delle Monache, Stefano Alessandrini, Aneesh C. Subramanian,
F. Martin Ralph, Shang-Ping Xie, Sebastian Lerch, and Negin Hayatbini. Probabilistic predic-
tions from deterministic atmospheric river forecasts with deep learning. Monthly Weather Re-
view, 150(1):215–234, 2022. ISSN 1520-0493. https://doi.org/10.1175/mwr-d-21-0106.1.

Gaoxiang Chen, Qun Li, Fuqian Shi, Islem Rekik, and Zhifang Pan. RFDCR: Automated brain
lesion segmentation using cascaded random forests with dense conditional random fields.
NeuroImage, 211:116620, 2020. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.
2020.116620.

Kang Chen, Tao Han, Junchao Gong, Lei Bai, Fenghua Ling, Jing-Jia Luo, Xi Chen, Leiming
Ma, Tianning Zhang, Rui Su, Yuanzheng Ci, Bin Li, Xiaokang Yang, and Wanli Ouyang.
Fengwu: Pushing the skillful global medium-range weather forecast beyond 10 days lead.
2023. https://doi.org/10.48550/ARXIV.2304.02948.

François Chollet et al. Keras, 2015. URL https://keras.io.

H. M. Christensen, I. M. Moroz, and T. N. Palmer. Evaluation of ensemble forecast uncertainty
using a new proper score: Application to medium-range and seasonal forecasts. Quarterly
Journal of the Royal Meteorological Society, 141(687):538–549, 2014. ISSN 1477-870X. https:
//doi.org/10.1002/qj.2375.

Daniela Cisneros, Jordan Richards, Ashok Dahal, Luigi Lombardo, and Raphaël Huser. Deep
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Appendix A

Stone’s theorem for distributional
regression in Wasserstein distance

This chapter reproduces an article published in Journal of Nonparametric Statistics and written
by Clément Dombry1, Thibault Modeste2 and Romain Pic1.

Abstract We extend the celebrated Stone’s theorem to the framework of distributional
regression. More precisely, we prove that weighted empirical distributions with local probability
weights satisfying the conditions of Stone’s theorem provide universally consistent estimates of
the conditional distributions, where the error is measured by the Wasserstein distance of order
p ≥ 1. Furthermore, for p = 1, we determine the minimax rates of convergence on specific
classes of distributions. We finally provide some applications of these results, including the
estimation of conditional tail expectation or probability-weighted moments.
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A.1 Introduction

Forecasting is a major task from statistics and is often of crucial importance for decision-making.
In the simple case when the quantity of interest is univariate and quantitative, point forecasting

1Université de Franche Comté, CNRS, LmB (UMR 6623), F-25000 Besançon, France
2Université Claude Bernard Lyon 1, CNRS, UMR 5208, Institut Camille Jordan, 69622 Villeurbanne, France
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often takes the form of regression where one aims at estimating the conditional mean (or the
conditional quantile) of the response variable Y given the available information encoded in a
vector of covariates X. A point forecast is only a rough summary statistic and should at least be
accompanied by an assessment of uncertainty (e.g. standard deviation or a confidence interval).
Alternatively, probabilistic forecasting and distributional regression (Gneiting and Katzfuss,
2014) suggest estimating the full conditional distribution of Y given X, called the predictive
distribution.

In the last decades, weather forecasting has been a major motivation for the development of
probabilistic forecasts. Ensemble forecasts are based on a given number of deterministic models
whose parameters vary slightly in order to take into account observation errors and incomplete
physical representation of the atmosphere. This leads to an ensemble of different forecasts that
overall also assess the uncertainty of the forecast. Ensemble forecasts suffer from bias and
underdispersion (Hamill and Colucci, 1997) and need to be statistically postprocessed in order
to be improved. Different postprocessing methods have been proposed, such as Ensemble Model
Output Statistics (Gneiting et al., 2005), Quantile Regression Forests (Taillardat et al., 2019)
or Neural Networks (Schulz and Lerch, 2022b) among others. Distributional regression is now
widely used beyond meteorology and recent methodological works include deep distribution
regression by Li et al. (2021), distributional random forest by Ćevid et al. (2022) or isotonic
distributional regression by Henzi et al. (2021).

The purpose of the present paper is to provide an extension to the framework of distributional
regression of the celebrated Stone’s theorem (Stone, 1977) that states the consistency of the local
weight algorithm for the estimation of the regression function. The strength of Stone’s theorem
is that it is fully non-parametric and model-free, with very mild assumptions that cover many
important cases such as kernel algorithms and nearest neighbor methods, see e.g. Györfi et al.
(2002) for more details. We prove that Stone’s theorem has a natural and elegant extension
to distributional regression with error measured by the Wasserstein distance of order p ≥ 1.
Our result covers not only the case of a one-dimensional output Y ∈ R where the Wasserstein
distance has a simple explicit form, but also the case of a multivariate output Y ∈ Rd. The use of
the Wasserstein distance is motivated by recent works revealing that it is a useful and powerful
tool in statistics, see, e.g., the review by Panaretos and Zemel (2020). Besides this main result,
we characterize, in the case d = 1 and p = 1, the optimal minimax rate of convergence on
suitable classes of distributions. We also discuss implications of our results to estimate various
statistics of possible interest such as the expected shortfall or the probability-weighted moment.

The structure of the paper is the following. In Section A.2, we present the required back-
ground on Stone’s theorem and Wasserstein spaces. Section A.3 gathers our main results,
including the extension of Stone’s theorem to distributional regression (Theorem A.2), the
characterization of optimal minimax rates of convergence (Theorem A.3) and some applica-
tions (Proposition A.2 and the subsequent examples). All the technical proofs are postponed
to Section A.4.

A.2 Background

A.2.1 Stone’s theorem

In a regression framework, we observe a sample (Xi, Yi), 1 ≤ i ≤ n, of independent copies of
(X,Y ) ∈ Rk × Rd with distribution P . Based on this sample and assuming Y integrable, the
goal is to estimate the regression function

r(x) = E[Y |X = x], x ∈ Rk.
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Local average estimators take the form

r̂n(x) =
n∑

i=1

Wni(x)Yi (A.1)

with Wn1(x), . . . ,Wnn(x) the local weights at x. The local weights are assumed to be measurable
functions of x and X1, . . . , Xn but not to depend on Y1, . . . , Yn, that is

Wni(x) = Wni(x;X1, . . . , Xn), 1 ≤ i ≤ n. (A.2)

For the convenience of notation, the dependency on X1, . . . , Xn is implicit. In this paper, we
focus only on the case of probability weights satisfying

Wni(x) ≥ 0, 1 ≤ i ≤ n, and
n∑

i=1

Wni(x) = 1. (A.3)

Stone’s Theorem states the universal consistency of the regression estimate in Lp-norm.

Theorem A.1 (Stone 1977). Assume the probability weights (A.3) satisfy the following three
conditions:

i) there is C > 0 such that E [
∑n

i=1Wni(X)g(Xi)] ≤ CE[g(X)] for all n ≥ 1 and measurable
g : Rk → [0,+∞) such that E[g(X)] < ∞;

ii) for all ε > 0,
∑n

i=1Wni(X)1{∥Xi−X∥>ε} → 0 in probability as n → +∞;

iii) max1≤i≤nWni(X) → 0 in probability as n → +∞.

Then, for all p ≥ 1 and (X,Y ) ∼ P such that E[∥Y ∥p] < ∞,

E [∥r̂n(X) − r(X)∥p] −→ 0 as n → +∞. (A.4)

Conversely, if Equation (A.4) holds, then the probability weights must satisfy conditions i)−iii).

Remark A.1. Stone’s theorem is usually stated in dimension d = 1. Since the convergence of
random vectors r̂n(X) → r(X) in Lp is equivalent to convergence in Lp of all the components,
the extension to the dimension d ≥ 2 is straightforward. Furthermore, more general weights
than probability weights can be considered: condition (A.3) can be dropped and replaced by
the weaker assumptions that

|Wni(X)| ≤ M a.s. for some M > 0.

and
n∑

i=1

Wni(X) → 1 in probability.

Such general weights will not be considered in the present paper and we therefore stick to
probability weights. The reader can refer to Biau and Devroye (2015) for a complete proof of
Stone’s theorem together with a discussion.

Example A.1. The following two examples of kernel weights and nearest neighbor weights are
the most important ones in the literature and we refer to Györfi et al. (2002) Chapter 5 and 6,
respectively, for more details.
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• The kernel weights are defined by

Wni(x) =
K
(
x−Xi
hn

)
∑n

j=1K
(
x−Xj

hn

) , 1 ≤ i ≤ n (A.5)

if the denominator is nonzero, and 1/n otherwise. Here the bandwidth hn > 0 depends
only on the sample size n and the function K : Rk → [0,+∞) is called a kernel. In this
case, the estimator (A.1) corresponds to the Nadaraya-Watson estimator of the regression
function (Nadaraya, 1964; Watson, 1964). We say that K is a boxed kernel if there are
constants R2 ≥ R1 > 0 and M2 ≥ M1 > 0 such that

M11{∥x∥≤R1} ≤ K(x) ≤ M21{∥x∥≤R2}, x ∈ Rk.

Theorem 5.1 in Györfi et al. (2002) states that, for a boxed kernel, the kernel weights
(A.5) satisfy conditions i)− iii) of Theorem A.1 if and only if hn → 0 and nhkn → +∞ as
n → +∞.

• The nearest neighbor (NN) weights are defined by

Wni(x) =

{
1
κn

if Xi belongs to the κn-NN of x

0 otherwise
, (A.6)

where the number of neighbors κn ∈ {1, . . . , n} depends only on the sample size. Recall
that the κn-NN of x within the sample (Xi)1≤i≤n are obtained by sorting the distances
∥Xi − x∥ in increasing order and keeping the κn points with the smallest distances – as
discussed in Györfi et al. (2002) Chapter 6, several rules can be used to break ties such as
lexicographic or random tie-breaking. Theorem 6.1 in the same reference states that the
nearest neighbor weights (A.6) satisfy conditions i) − iii) of Theorem A.1 if and only if
κn → +∞ and κn/n → 0 as n → +∞.

Example A.2. Interestingly, some variants of the celebrated Breiman’s Random Forest (Breiman,
2001) produce probability weights satisfying the assumptions of Stone’s theorem. In Breiman’s
Random Forest, the splits involve both the covariates and the response variable so that the
associated weights Wni(x) = Wni(x; (Xl, Yl)1≤l≤n) are not in the form (A.2). Scornet (2016)
considers two simplified versions of infinite random forests where the associated weights Wni(x)
do not depend on the response values and satisfy the so-called X-property, that is they are in
the form (A.2). For totally non-adaptive forests, the trees are grown thanks to a binary splitting
rule that does not use the training sample and is totally random; the author shows that the
probability weights associated to the infinite forest satisfy the assumptions of Stone’s theorem
under the condition that the number of leaves grows to infinity at a rate smaller than n and
the leaf volume tends to zero in probability (see Theorem 4.1 and its proof). For q-quantile
forests, the binary splitting rule involves only the covariates and the author shows that the
weights associated to the infinite forest satisfy the assumptions of Stone’s theorem provided the
subsampling number an satisfies an → +∞ and an/n → 0 (see Theorem 5.1 and its proof).

A.2.2 Wasserstein spaces

We recall the definition and some elementary facts on Wasserstein spaces on Rd. More details
and further results on optimal transport and Wasserstein spaces can be found in the monograph
by Villani (2009), Chapter 6.

For p ≥ 1, the Wasserstein space Wp(Rd) is defined as the set of Borel probability measures
on Rd having a finite moment of order p, i.e. such that

Mp(µ) =
(∫

Rd

∥y∥p µ(dy)
)1/p

< ∞. (A.7)
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It is endowed with the distance defined, for Q1, Q2 ∈ Wp(Rd), by

Wp(Q1, Q2) = inf
π∈Π(Q1,Q2)

(∫
∥y1 − y2∥p π(dy1dy2)

)1/p

, (A.8)

where Π(Q1, Q2) denotes the set of measures on Rd × Rd with marginal distributions Q1 and
Q2. A couple (Z1, Z2) of random variables with distributions Q1 and Q2 respectively is called a
coupling. The Wasserstein distance is thus the minimal distance ∥Z1−Z2∥Lp = E[∥Z1−Z2∥p]1/p
over all possible couplings. Existence of optimal couplings is ensured since Rd is a complete and
separable metric space so that the infimum is indeed a minimum.

Wasserstein distances are generally difficult to compute, but the case d = 1 is the exception.
A simple optimal coupling is provided by the probability inverse transform: for i = 1, 2, let
Qi ∈ Wp(R), Fi denotes its cumulative distribution function and F−1

i its generalized inverse
(quantile function). Then, starting from a uniform random variable U ∼ Unif(0, 1), an optimal
coupling is given by (Z1, Z2) = (F−1

1 (U), F−1
2 (U)). Therefore, the Wasserstein distance is

explicitly given by

Wp(Q1, Q2) =

(∫ 1

0
|F−1

1 (u) − F−1
2 (u)|pdu

)1/p

. (A.9)

When p = 1, we have the simpler formula

W1(Q1, Q2) =

∫ +∞

−∞
|F1(x) − F2(x)|dx. (A.10)

which follows from the computation∫ 1

0
|F−1

1 (u) − F−1
2 (u)|du =

∫ 1

0

∫ +∞

−∞
|1x≤F−1

1 (u) − 1x≤F−1
1 (u)|dxdu

=

∫ +∞

−∞

∫ 1

0
|1F1(x)≤u − 1F2(x)≤u|dudx

=

∫ +∞

−∞
|F1(x) − F2(x)|dx.

A.3 Main results

A.3.1 Stone’s theorem for distributional regression

We now present the main result of the paper which is a natural extension of Stone’s theorem
to the framework of distributional regression. Given a distribution (X,Y ) ∼ P on Rk × Rd, we
denote by F the marginal distribution of Y and by Fx its conditional distribution given X = x.
This conditional distribution can be estimated on a sample (Xi, Yi)1≤i≤n of independent copies
of (X,Y ) by the weighted empirical distribution

F̂n,x =

n∑
i=1

Wni(x)δYi (A.11)

where δy denotes the Dirac mass at point y ∈ Rd. For probability weights satisfying (A.3), F̂n,x

is a probability measure and can be viewed as a random element in the complete and separable
space Wp(Rd). We recall that the weights Wni(x) = Wni(x;X1, . . . , Xn) implicitly depend on
X1, . . . , Xn but not on Y1, . . . , Yn.

Theorem A.2. Assume the probability weights satisfy conditions i) − iii) from Theorem A.1.
Then, for all p ≥ 1 and (X,Y ) ∼ P such that E[∥Y ∥p] < ∞,

E
[
Wp

p (F̂n,X , FX)
]
−→ 0 as n → +∞. (A.12)

Conversely, if Equation (A.12) holds, then the probability weights must satisfy conditions i)−iii).
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It is worth noticing that

E [∥r̂n(X) − r(X)∥p] ≤ E
[
Wp

p (F̂n,X , FX)
]

so that Theorem A.2 implies Theorem A.1 in a straightforward way. The proof of Theorem A.2
is postponed to Section A.4. It first considers the case d = 1 where the Wasserstein distance
is explicitly given by formula (A.9). Then, the result is extended to higher dimension d ≥ 2
thanks to the notion of max-sliced Wasserstein distance (Bayraktar and Guo, 2021) which
allows to reduce the convergence of measures on Rd to the convergence of their one-dimensional
projections (a precise statement is given in Theorem A.4 below).

Remark A.2. The fact that the covariate X takes its values in Rk is not necessary and Theo-
rem A.2 holds for covariate in an abstract metric space. Assuming that (X,Y ) ∈ X × Rd with
X a metric space, it is straightforward to check that the proof of Theorem A.2 goes through
with no further complication. This can be useful for instance in the framework of statistical
postprocessing of probabilistic forecast where the covariate itself is a probability distribution,
see, e.g., Gneiting and Katzfuss (2014). This remark has been suggested by an anonymous
referee whom we wish to thank.

A.3.2 Rates of convergence

We next consider rates of convergence in the minimax sense. Note that similar questions and
results have been established in Pic et al. (2023), where the second-order Cramér’s distance was
considered, i.e.

∥F̂n,X − FX∥2L2
=

∫
R
|F̂n,X(y) − FX(y)|2 dy.

We focus here on the Wasserstein distance Wp(F̂n,X , FX) and consider only the case d = 1 and
p = 1 which allows the explicit expression (A.10). The other cases seem harder to analyze and
are beyond the scope of the present paper. Our first result considers the error in Wasserstein
distance when X = x is fixed.

Proposition A.1. Assume d = 1 and (X,Y ) ∼ P such that E[|Y |] < ∞. Then,

E
[
W1(F̂n,x, Fx)

]
≤ E

[ n∑
i=1

Wni(x)W1(FXi , Fx)
]

+ M(x)E
[ n∑

i=1

W 2
ni(x)

]1/2
,

where M(x) =
∫

R

√
Fx(z)(1 − Fx(z))dz.

The first term corresponds to an approximation error due to the fact that we use a biased
sample to estimate Fx. The more regular the model is, the smaller the approximation error
is. The second term is an estimation error due to the fact that we use an empirical mean to
estimate Fx. This estimator error is smaller if the distribution error has a lower dispersion
(as measured by M(x)) or if

∑n
i=1W

2
ni(x) is small. Note that in the case of nearest neighbor

weights, 1/
∑n

i=1W
2
ni(x) is exactly equal to κ so that this quantity is often referred to as the

effective sample size and the estimation error is proportional to the square root of the expected
reciprocal effective sample size.

In view of Proposition A.1, we introduce the following classes of functions.

Definition A.1. Let D(H,L,M) be the class of distributions (X,Y ) ∼ P on Rk ×R satisfying:

a) X ∈ [0, 1]k a.s. and E|Y | < ∞,

b) for all x, x′ ∈ [0, 1]k, W1(Fx, Fx′) ≤ L∥x− x′∥H ,

c) for all x ∈ [0, 1]k,
∫

R

√
Fx(z)(1 − Fx(z)) dz ≤ M .
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The definition of the class together with Proposition A.1 entails that the expected error is
uniformly bounded on the class D(H,L,M) by

E
[
W1(F̂n,X , FX)

]
≤ LE

[ n∑
i=1

Wni(X)∥Xi −X∥H
]

+ ME
[ n∑

i=1

W 2
ni(X)

]1/2
. (A.13)

As a consequence, Proposition A.1 allows to derive explicit bounds uniformly on D(H,L,M)
for the kernel and nearest neighbor methods from Example A.1. For the sake of simplicity, we
consider the uniform kernel only.

Corollary A.1. Let F̂n,X be given by the kernel method with uniform kernel K(x) = 1{∥x∥≤1}
and weights given by Equation (A.5). If P ∈ D(H,L,M), then

E
[
W1(F̂n,X , FX)

]
≤ LhHn + M

√
(2 + 1/n)ck(nhkn)−1/2 + LkH/2ck(nhkn)−1

with ck = kk/2.

Corollary A.2. Let F̂n,X be given by the nearest neighbor method with weights given by Equa-
tion (A.6) and assume P ∈ D(H,L,M). Then,

E
[
W1(F̂n,X , FX)

]
≤
{
L8H/2(κn/n)H/2 + Mκ

−1/2
n if k = 1,

Lc̃
H/2
k (κn/n)H/k + Mκ

−1/2
n if k ≥ 2,

where c̃k depends only on the dimension k and is defined in Biau and Devroye (2015, Theo-
rem 2.4).

One can see that consistency holds — i.e. the expected error tends to 0 as n → +∞ — as
soon as hn → 0 and nhkn → +∞ for the kernel method and κn/n → 0 and κn → +∞ for the
nearest neighbor method.

The next theorem provides the optimal minimax rate of convergence on the class D(H,L,M).
We say that two sequences of positive numbers (an) and (bn) have the same rate of convergence,
noted an ≍ bn, if the ratios an/bn and bn/an remain bounded as n → +∞.

Theorem A.3. The optimal minimax rate of convergence on the class D(H,L,M) is given by

inf
F̂n

sup
P∈D(H,L,M)

E[W1(F̂n,X , FX)] ≍ n−H/(2H+k).

Theorem A.3 is the counterpart of Pic et al. (2023, Theorem 1) where the minimax rate of
convergence for the second order Cramér’s distance has been considered. The strategy of proof
is similar: i) we prove a lower bound by considering a suitable class of binary distributions where
the error in Wasserstein distance corresponds to an absolute error in point regression for which
the minimax lower rate of convergence is known; ii) we check that the upper bound for the
kernel and/or nearest neighbor algorithm has the same rate of convergence as the lower bound,
which proves that the optimal minimax rate of convergence has been identified. In particular,
our proof shows that the kernel method defined in Equation (A.5) reaches the minimax rate of
convergence in any dimension k ≥ 1 with the choice of bandwidth hn ≍ n−1/(2H+k); the nearest
neighbor method defined in Equation (A.6) reaches the minimax rate of convergence in any
dimension k ≥ 2 with the number of neighbors κn ≍ nH/(H+k/2).

Remark A.3. Our estimate of the minimax rate of convergence holds only for d = p = 1 and
we briefly discuss what can be expected in other cases.
When p = 1 and d ≥ 2, one may consider the Kantorovitch duality expressing the Wasserstein
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distance as an integral probability metric. More precisely, in Proposition A.1 and its proof, one
would need to study the estimation error

W1(F̃n,x, Fx) = sup
Lip(f)≥1

∫
Rd

f(y)(F̃n,x, Fx)(dy)

where the supremum is taken over Lipschitz continuous functions with Lipschitz constant smaller
than 1. The properties of the weighted empirical process

∑n
i=1Wni(x)(δỸi

− Fx) should be
useful.
When p > 1, even in dimension d = 1, it seems much more difficult to obtain bounds for
the Wasserstein distance of order p because no simple expression is available. For empirical
distributions (without weights), the theory is already involved: a strong result due to Fournier
and Guillin (2015) is that, provided p > d/2 and integrability condition on Y of order q > 2p,
the rate of convergence of the empirical distribution F̂n = 1

n

∑n
i=1 δYi to F in Wp(Rd) is of

order O(
√
n) for an i.i.d. sample Y1, . . . , Yn with distribution F on R. One strategy could be to

consider the extension of such a result to weighted empirical distributions.

A.3.3 Applications

We briefly illustrate Theorem A.2 with some applications and examples. In statistics, we com-
monly face the following generic situation: we are interested in a summary statistic S with real
values, e.g. quantiles or tail expectation, and we want to assess the effect of X on Y through S,
that is we want to assess SY |X=x. Assuming that S is well-defined for distributions on Rd with a

finite moment of order p ≥ 1, it can be seen as a map S : Wp(Rd) → R and then SY |X=x = S(Fx)
with Fx the conditional distribution of Y given X = x. A natural plug-in estimate of SY |X=x is

Ŝn,x = S(F̂n,x) with F̂n,x defined by (A.11).

In this generic situation, our extension of Stone’s theorem directly implies the following propo-
sition. Recall that Mp(µ) is defined in Equation (A.7).

Proposition A.2. Assume E[∥Y ∥p] < ∞ and P(FX ∈ C) = 1 where C ⊂ Wp(Rd) denotes the
continuity set of the statistic S : Wp(Rd) → R. Then weak consistency holds, i.e.

Ŝn,X −→ SY |X in probability as n → +∞.

If furthermore the statistic S admits a bound of the form

|S(µ)| ≤ aM q
p (µ) + b, with a, b ≥ 0 and 0 < q ≤ p, (A.14)

then consistency holds in Lp/q, i.e.

E
[
|Ŝn,X − SY |X |p/q

]
−→ 0 as n → +∞

Example A.3. (quantile). For a distribution G on R, we define the associated quantile function

G−1(α) = inf{z ∈ R : G(z) ≥ α}, 0 < α < 1.

It is well-known that the weak convergence Gn
d→ G implies the quantile convergence G−1

n (α) →
G−1(α) at each continuity point α of G−1. Equivalently, considering P(R) endowed with the
weak convergence topology, the α-quantile statistic Sα(G) = G−1(α) is continuous at G as soon
as G−1 is continuous at α.

In view of this, we let C = {G ∈ P(R) : G−1 continuous on (0, 1)} and assume that the con-
ditional distribution satisfies P(FX ∈ C) = 1. Then weak convergence holds for the conditional
quantiles, i.e.

F̂−1
n,X(α) → F−1

X (α) in probability.
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Note that no integrability condition is needed here because we can apply Proposition A.2 on
the transformed data (Xi, Ỹi)1≤i≤n, where Ỹi = tan−1(Yi) is bounded so that convergence in
Wasserstein distance is equivalent to weak convergence. If furthermore Y is p-integrable, then
the bound

|Sα(G)|p ≤ 1

α

∫ α

0
|G−1(u)|pdu +

1

1 − α

∫ 1

α
|G−1(u)|pdu

≤
( 1

α
+

1

1 − α

)
Mp

p (G)

implies the strengthened convergence

F̂−1
n,X(α) → F−1

X (α) in Lp.

Example A.4. (tail expectation) The tail expectation above level α ∈ (0, 1) is the risk measure
defined for G ∈ W1(R) by

Sα(G) =
1

1 − α

∫ 1

α
G−1(u) du.

The name comes from the equivalent definition

Sα(G) = E[Y | Y > G−1(α)], Y ∼ G,

which holds when G−1 is continuous at α. One can see that

|Sα(G1) − Sα(G2)| ≤
1

1 − α

∫ 1

α
|G−1

1 (u) −G−1
1 (u)|du

≤ 1

1 − α

∫ 1

0
|G−1

1 (u) −G−1
2 (u)|du

=
1

1 − α
W1(G1, G2).

so that Sα is Lipschitz continuous with respect to the Wasserstein distance W1. As a conse-
quence, the conditional tail expectation Sα(Fx) can be estimated in a consistent way by the
plug-in estimator Sα(F̂n,x) since

E[|Sα(F̂n,X) − Sα(FX)|] ≤ 1

1 − α
E[W1(F̂n,X , FX)] −→ 0.

Example A.5. (probability-weighted moments, Greenwood et al. 1979) A similar result holds
for the probability-weighted moment of order p, q > 0 defined by

Sp,q(G) =

∫ 1

0
G−1(u)up(1 − u)q du, G ∈ W1(R).

The name comes from the equivalent definition

S(G) = E[Y G(Y )p(1 −G(Y ))q], Y ∼ G,

which holds when G−1 is continuous on (0, 1). One can again check that the statistic Sp,q is
Lipschitz continuous with respect to the Wasserstein distance W1 since

|Sp,q(G1) − Sp,q(G2)| ≤
∫ 1

0
|G−1

1 (u) −G−1
2 (u)|up(1 − u)q du

≤ max
0≤u≤1

up(1 − u)q ×
∫ 1

0
|G−1

1 (u) −G−1
2 (u)|du

=
( p

p + q

)p( q

p + q

)q
W1(G1, G2).
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Example A.6. (covariance) We conclude with a simple example in dimension d = 2 where the
statistic of interest is the covariance between the two components of Y = (Y1, Y2) given X = x.
Here, we consider

S(G) =

∫
R2

y1y2 dG−
∫

R2

y1 dG

∫
R2

y2 dG, G ∈ W2(R
2).

Considering square-integrable random vectors Y = (Y1, Y2) and Z = (Z1, Z2) with distribution
G and H respectively, we compute

|S(G) − S(H)|
=
∣∣Cov(Y1, Y2) − Cov(Z1, Z2)

∣∣
=
∣∣Cov(Y1, Y2 − Z2) − Cov(Z1 − Y1, Z2)

∣∣
≤ Var(Y1)

1/2Var(Y2 − Z2)
1/2 + Var(Z2)

1/2Var(Z1 − Y1)
1/2

where the last line is a consequence of the Cauchy-Schwartz inequality. We have the upper
bounds

Var(Y1)
1/2 ≤ M2(G), Var(Z2)

1/2 ≤ M2(H)

and, choosing an optimal coupling (Y,Z) between G and H,

Var(Z1 − Y1)
1/2 ≤ ∥Y − Z∥L2 = W2(G,H), Var(Y2 − Z2)

1/2 ≤ W2(G,H).

Altogether, we obtain,

|S(G) − S(H)| ≤
(
M2(G) + M2(H)

)
W2(G,H).

This proves that S is locally Lipschitz and hence continuous with respect to the distance W2.
Taking H = δ0, we obtain

|S(G)| ≤ M2(G)2

and the bound (A.14) holds with q = 2. Thus Proposition A.2 implies that the plug-in estimator

S(F̂n,x) =
n∑

i=1

Wni(x)Y1iY2i −
n∑

i=1

Wni(x)Y1i

n∑
i=1

Wni(x)Y2i

is consistent in absolute mean for the conditional covariance

S(Fx) = E(Y1Y2 | X = x) − E(Y1 | X = x)E(Y2 | X = x),

i.e. E[|S(F̂n,X) − S(FX)|] −→ 0 as n → +∞.

A.4 Proofs

A.4.1 Proof of Theorem A.2

Proof of Theorem A.2 - case d = 1. We first consider the case when Y is uniformly bounded
and takes its values in [−M,M ] for some M > 0. Then, it holds

Fx(z) =

{
0 if z < −M

1 if z ≥ M
and F̂n,x(z) =

{
0 if z < −M

1 if z ≥ M
.
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and the generalized inverse functions (quantile functions) are bounded in absolute value by M .
As a consequence,

E
[
Wp

p (F̂n,X , FX)
]

= E

[∫ 1

0
|F̂−1

n,X(u) − F−1
X (u)|pdz

]
≤ (2M)p−1E

[∫ 1

0
|F̂−1

n,X(u) − F−1
X (u)|du

]
= (2M)p−1

∫ M

−M
E
[
|F̂n,X(z) − FX(z)|

]
dz. (A.15)

In these lines, we have used Equations (A.9) and (A.10) together with Fubini’s theorem.
Consider the regression model (X,1{Y≤z}) ∈ Rd × R where z ∈ [−M,M ] is fixed. The

corresponding regression function is

x 7→ E[1{Y≤z}|X = x] = Fx(z)

and the local weight estimator associated with the sample (Xi,1{Yi≤z}), 1 ≤ i ≤ n is

x 7→
n∑

i=1

Wni(x)1{Yi≤z} = F̂n,x(z).

An application of Stone’s theorem with p = 1 yields

E
[
|F̂n,X(z) − FX(z)|

]
−→ 0, as n → +∞,

whence we deduce, by the dominated convergence theorem,∫ M

−M
E
[
|F̂n,X(z) − FX(z)|

]
dz −→ 0.

The upper bound (A.15) finally implies

E
[
Wp

p (F̂n,X , FX)
]
−→ 0.

We next consider the general case when Y is not necessarily bounded. For M > 0, we define
the truncation Y M of Y by

Y M =


−M if Y < −M

Y if −M ≤ Y < M

M if Y ≥ M

.

We define similarly Y M
1 , . . . , Y M

n the truncations of Y1, . . . , Yn respectively. The conditional
distribution associated with Y M is

FM
x (z) = P(Y M ≤ z|X = x) =


0 if z < −M

Fx(z) if −M ≤ Y < M

1 if z ≥ M

.

The local weight estimation built on the truncated sample is

F̂M
n,x(z) =

n∑
i=1

Wni(x)1{Y M
i ≤z}.
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By the triangle inequality,

Wp(F̂n,x, Fx) ≤ Wp(F̂n,x, F̂
M
n,x) + Wp(F̂

M
n,x, F

M
x ) + Wp(F

M
x , Fx),

whence we deduce

E[Wp
p (F̂n,x, Fx)]

≤ 3p−1
(

E[Wp
p (F̂n,X , F̂M

n,X)] + E[Wp(F̂
M
n,X , FM

X )] + E[Wp
p (FM

X , FX)]
)
.

By the preceding result in the bounded case, for any fixed M , the second term converges to 0
as n → +∞. We next focus on the first and third terms.

For fixed X = x, there is a natural coupling between the distribution F̂n,x and F̂M
n,x given

by (Z1, Z2) such that

(Z1, Z2) = (Yi, Y
M
i ) with probability Wni(x).

Clearly Z1 ∼ F̂n,x and Z2 ∼ F̂M
n,x and this coupling provides the upper bound

Wp
p (F̂n,x, F̂

M
n,x) ≤ ∥Z1 − Z2∥pLp =

n∑
i=1

Wni(x)|Yi − Y M
i |p. (A.16)

Let us introduce the function gM (x) defined by

gM (x) = E
[
|Y − Y M |p | X = x

]
.

Using the fact that, conditionally on X1, . . . , Xn, the random variables Y1, . . . , Yn are indepen-
dent with distribution FX1 , . . . , FXn , we deduce

E
[
Wp

p (F̂n,x, F̂
M
n,x)
]
≤ E

[
n∑

i=1

Wni(x)gM (Xi)

]
.

The condition i) on the weights in Stone’s Theorem then implies

E

[
n∑

i=1

Wni(X)gM (Xi)

]
≤ CE[gM (X)].

Because |Y − Y M |p converges almost surely to 0 as M → +∞ and is bounded by 2p|Y |p which
is integrable, Lebesgue’s convergence theorem implies

E[gM (X)] = E
[
|Y − Y M |p

]
−→ 0 as M → +∞.

We deduce that the first term satisfies

E
[
Wp

p (F̂n,X , F̂M
n,X)

]
≤ CE[gM (X)] −→ 0, as M → +∞

where the convergence is uniform in n.
We now consider the third term. Since Y M is obtained from Y by truncation, the distribution

functions and quantile functions of Y and Y M are related by

FM
x (z) =


0 if z < −M

Fx(z) if −M ≤ z < M

1 if z ≥ M
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and

(FM
x )−1(u) =


−M if F−1

x (u) < −M

(Fx)−1(u) if −M ≤ F−1
x (u) < M

M if F−1
x (u) ≥ M

.

As a consequence

Wp
p (FM

x , Fx) =

∫ 1

0
|(FM

x )−1(u) − F−1
x (u)|pdu

= E
[
|Y M − Y |p | X = x

]
= gM (x).

We deduce
E
[
Wp

p (FM
X , FX)

]
= E[gM (X)] −→ 0, as M → +∞

where the convergence is uniform in n.
We finally combine the three terms. The sum can be made smaller than any ε > 0 by first

choosing M large enough so that the first and third terms are smaller than ε/3 and then choosing
n large enough so that the second term is smaller than ε/3. This proves Equation (A.12) and
concludes the proof.

In order to extend the proof from d = 1 to d ≥ 2, we need the notion of sliced Wasserstein
distance, see Bayraktar and Guo (2021) for instance. Let Sd−1 = {u ∈ Rd : ∥u∥ = 1} be the
unit sphere in Rd and, for u ∈ Rd, let u∗ : Rd → R be the linear form defined by u∗(x) = u · x.
The projection in direction u of a measure µ on Rd is defined as the pushforward µ ◦ u−1

∗ which
is a measure on R. The inequality |u ·x| ≤ ∥x∥ implies that µ ◦u−1

∗ ∈ Wp(R) for all µ ∈ Wp(Rd)
and u ∈ Sd−1. The sliced and max-sliced Wasserstein distances between µ, ν ∈ Wp(Rd) are then
defined respectively by

SWp(µ, ν) =

(∫
Sd−1

Wp
p (µ ◦ u−1

∗ , ν ◦ u−1
∗ )σ(du)

)1/p

,

where σ denotes the uniform measure on Sd−1 and

SW p(µ, ν) = max
u∈Sd−1

Wp(µ ◦ u−1
∗ , ν ◦ u−1

∗ ).

In plain words, the sliced and max-sliced Wasserstein distance are respectively the average and
the maximum over all the 1-dimensional Wasserstein distances between the projections of µ and
ν. The following result is crucial in our proof.

Theorem A.4 (Bayraktar and Guo 2021). For all p ≥ 1, SWp and SW p are distances on
Wp(Rd) which are equivalent to Wp, i.e. for all sequence µ, µ1, µ2, . . . ∈ Wp(Rd)

SWp(µn, µ) → 0 ⇐⇒ SW p(µn, µ) → 0 ⇐⇒ Wp(µn, µ) → 0.

Proof of Theorem A.2 - case d ≥ 2. For the sake of clarity, we divide the proof into three steps:

1) we prove that the result holds in max-sliced Wasserstein distance, i.e. E[SW
p
p(F̂n,X , FX)] →

0;

2) we deduce that Wp(F̂n,X , FX) → 0 in probability;

3) we show that the sequence Wp
p (F̂n,X , FX) is uniformly integrable.
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Points 2) and 3) together imply E[Wp
p (F̂n,X , FX)] → 0 as required.

Step 1). For all u ∈ Sd−1, the projection F̂n,X ◦ u−1
∗ is the weighted empirical distribution

F̂n,X ◦ u−1
∗ =

n∑
i=1

Wni(X)δYi·u.

An application of Theorem A.2 to the 1-dimensional sample (Yi · u)i≥1 yields

E[Wp
p (F̂n,X ◦ u−1

∗ , FX ◦ u−1
∗ )] −→ 0. (A.17)

Note indeed that E[|Y |p] < ∞ implies E[|Y · u|p] < ∞ and that the conditional laws of Y · u are
the pushforward of those of Y , i.e. L(Y · u | X) = FX ◦ u−1

∗ .
We next consider the max-sliced Wasserstein distance. Regularity in the direction u ∈ Sd−1

will be useful and we recall that the Wasserstein distance between projections depends on the
direction in a Lipschitz way. More precisely, according to Bayraktar and Guo (2021, Proposition
2.2),

|Wp(µ ◦ u−1
∗ , ν ◦ u−1

∗ ) −Wp(µ ◦ v−1
∗ , ν ◦ v−1

∗ )| ≤ (Mp(µ) + Mp(ν))∥u− v∥,
for all µ, ν ∈ Wp(Rd) and u, v ∈ Sd−1 (recall Equation (A.7) for the definition of Mp(µ), Mp(ν)).

The sphere Sd−1 being compact, for all ε > 0, one can find K ≥ 1 and u1, . . . , uK ∈ Sd−1

such that the balls B(ui, ε) with centers ui and radius ε cover the sphere. Then, due to the
Lipschitz property, the max-sliced Wasserstein distance is controlled by

SW p(F̂n,X , FX)

= max
u∈Sd−1

Wp
p (F̂n,X ◦ u−1

∗ , FX ◦ u−1)

≤ max
1≤k≤K

Wp(F̂n,X ◦ u−1
k∗ , FX ◦ u−1

k∗ ) + ε(Mp(F̂n,X) + Mp(FX)).

Elevating to the p-th power and taking the expectation, we deduce

E
[
SW

p
p(F̂n,X , FX)

]
≤ 3p−1E

[
max

1≤k≤K
Wp

p (F̂n,X ◦ u−1
k∗ , FX ◦ u−1

k∗ )
]

+ 3p−1εp(E
[
Mp

p (F̂n,X)
]

+ E
[
Mp

p (FX)
]
).

The first term converges to 0 thanks to Eq. (A.17), i.e.

E[ max
1≤i≤K

Wp
p (F̂n,X ◦ u−1

i∗ , FX ◦ u−1
i∗ )] −→ 0.

The second term is controlled by a constant times εp since

E[Mp
p (F̂n,X)] = E

[ n∑
i=1

Wni(X)∥Yi∥p
]
≤ CE[∥Y ∥p]

(by property i) of the weights) and

E[Mp
p (FX)] = E

[
E[∥Y ∥p | X]

]
= E[∥Y ∥p]

(by the tower property of conditional expectation). Letting ε → 0, the second term can be
made arbitrarily small. We deduce E[SW

p
p(F̂n,X , FX)] → 0.

Step 2). As a consequence of step 1), SW p(F̂n,X , FX) → 0 in probability, or equivalently

F̂n,X → FX in probability in the metric space (Wp(Rd), SW p). Theorem A.4 implies that
the identity mapping is continuous from (Wp(Rd), SW p) into (Wp(Rd),Wp). The continuous

144



mapping theorem implies that F̂n,X → FX in probability in the metric space (Wp(Rd),Wp).

Equivalently, Wp(F̂n,X , FX) → 0 in probability.

Step 3). By the triangle inequality,

Wp(F̂n,X , FX) ≤ Wp(F̂n,X , δ0) + Wp(δ0, FX)

with δ0 the Dirac mass at 0. Furthermore, for any µ ∈ Wp(Rd),

Wp(µ, δ0) =

(∫
Rd

∥x∥p µ(dx)

)1/p

= Mp(µ).

We deduce
Wp

p (F̂n,X , FX) ≤ 2p−1Mp
p (F̂n,X) + 2p−1Mp

p (FX).

In order to prove the uniform integrability of the left-hand side, it is enough to prove that

Mp
p (FX) is integrable and Mp

p (F̂n,X), n ≥ 1, is uniformly integrable. (A.18)

We have
Mp

p (FX) = E[∥Y ∥p | X]

which is integrable because E[∥Y ∥p] < ∞. Furthermore,

Mp
p (F̂n,X) =

n∑
i=1

Wni(X)∥Yi∥p

and Stone’s Theorem ensures that

n∑
i=1

Wni(X)∥Yi∥p −→ E[∥Y ∥p | X] in L1.

Since the sequence Mp
p (F̂n,X) converges in L1, it is uniformly integrable and the claim follows.

A.4.2 Proof of Proposition A.1, Corollaries A.1-A.2 and Theorem A.3

Proof of Proposition A.1. The proof of the upper bound relies on a coupling argument. With-
out loss of generality, we can assume that the Yi’s are generated from uniform random variables
Ui’s by the inversion method – i.e. we assume that Ui, 1 ≤ i ≤ n, are independent identically
distributed random variables with uniform distribution on (0, 1) that are furthermore indepen-
dent of the covariates Xi, 1 ≤ i ≤ n and we set Yi = F−1

Xi
(Ui). Then the sample (Xi, Yi) is

i.i.d. with distribution P . In order to compare F̂n,x and Fx, we introduce the random variables
Ỹi = F−1

x (Ui) and we define

F̃n,x(z) =

n∑
i=1

Wni(x)1{Ỹi≤z}.

By the triangle inequality,

W1(F̂n,x, Fx) ≤ W1(F̂n,x, F̃n,x) + W1(F̃n,x, Fx).

In the right-hand side, the first term is interpreted as an approximation error comparing the
weighted sample (Yi,Wni(x)) to (Ỹi,Wni(x)) where the Ỹi have the target distribution Fx. The
second term is an estimation error where we use the weighted sample (Ỹi,Wni(x)) with the
correct distribution to estimate Fx.
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We first consider the approximation error. A similar argument as for the proof of Equa-
tion (A.16) implies

W1(F̂n,x, F̃n,x) ≤
n∑

i=1

Wni(x)|Yi − Ỹi|.

Introducing the uniform random variables Ui’s, we get

E[W1(F̂n,x, F̃n,x)] ≤ E
[ n∑

i=1

Wni(x)|F−1
Xi

(Ui) − F−1
x (Ui)|

]
= E

[ n∑
i=1

Wni(x)

∫ 1

0
|F−1

Xi
(u) − F−1

x (u)| du
]

by independence

= E
[ n∑

i=1

Wni(x)W1(FXi , Fx)
]
,

where the equality relies on Equation (A.9). Note that this control of the approximation error
is very general and could be extended to the Wasserstein distance of order p > 1.

We next consider the estimation error and our approach works for p = 1 only. By Equa-
tion (A.10),

E[W1(F̃n,x, Fx)] = E
[ ∫

R

∣∣∣ n∑
i=1

Wni(x)
(
1{Ỹi≤z} − Fx(z)

)∣∣∣dz].
We apply Fubini’s theorem and use the upper bound

E
[∣∣∣ n∑

i=1

Wni(x)
(
1{Ỹi≤z} − Fx(z)

)∣∣∣]
≤ E

[∣∣∣ n∑
i=1

Wni(x)
(
1{Ỹi≤z} − Fx(z)

)∣∣∣2]1/2
= E

[ n∑
i=1

W 2
ni(x)

]1/2√
Fx(z)(1 − Fx(z)),

where the last equality is obtained by integrating first with respect to Ỹ1, . . . , Ỹn and recognizing
a variance term and then with respect to X1, . . . , Xn. We deduce

E[W1(F̃n,x, Fx)] ≤ E
[ n∑

i=1

W 2
ni(x)

]1/2 ∫
R

√
Fx(z)(1 − Fx(z))dz.

Collecting the two terms yields Proposition A.1.

Proof of Corollary A.1. For the kernel algorithm with uniform kernel and weights (A.5), we
denote by

Nn(X) =
n∑

i=1

1{Xi∈B(X,hn)}

the number of points in the ball B(X,hn) with center X and radius hn. If Nn ≥ 1, only the
points in B(X,hn) have a nonzero weight which is equal to 1/Nn. If Nn = 0, then by convention
all the weights are equal to 1/n. Thus we deduce

E
[ n∑

i=1

W 2
ni(X)

]
= E

[ 1

Nn(X)
1{Nn(X)≥1}

]
+

1

n
P(Nn(X) = 0)
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and

E
[ n∑

i=1

Wni(X)∥Xi −X∥H
]
≤ hHn P(Nn(X) ≥ 1) + kH/2P(Nn(X) = 0)

because the distance to X for the points with nonzero weight can be bounded from above by
hn if Nn(X) ≥ 1 and by

√
k otherwise (note that

√
k is the diameter of [0, 1]k).

Next, we use the fact that, conditionally on X = x, Nn(x) has a binomial distribution with
parameters n and pn(x) = P(X1 ∈ B(x, hn)). This implies

E
[ 1

Nn(X)
1{Nn(X)≥1}

]
≤ E

[ 2

npn(X)

]
≤ 2ck

nhkn

where the first inequality follows from Györfi et al. (2002, Lemma 4.1) and the second one from
Györfi et al. (2002, Equation 5.1) where the constant ck = kk/2 can be taken. Similarly,

P(Nn(X) = 0) = E[(1 − pn(X))n] ≤ E[e−npn(X)]

≤
(

max
u>0

ue−u
)
× E

[ 1

npn(X)

]
≤ ck

nhkn
.

In view of these different estimates, Equation (A.13) entails

E
[
W1(F̂n,X , FX)

]
≤ L

(
hHn + kH/2 ck

nhkn

)
+ M

(
(2 + 1/n)ck

nhkn

)1/2

≤ LhHn + M
√

(2 + 1/n)ck(nhkn)−1/2 + LkH/2ck(nhkn)−1.

Proof of Corollary A.2. For the nearest neighbor weights (A.6), there are exactly κn non-
vanishing weights with value 1/κn whence

n∑
i=1

W 2
ni(X) =

1

κn
.

Furthermore, the κn nearest neighbors of X satisfy

∥Xi:n(X) −X∥ ≤ ∥Xκn:n(X) −X∥, i = 1, . . . , κn.

In view of this, Equation (A.13) entails

E
[
W1(F̂n,X , FX)

]
≤ LE

[
∥Xκn:n(X) −X∥H

]
+ Mκ−1/2

n

≤ LE
[
∥Xκn:n(X) −X∥2

]H/2
+ Mκ−1/2

n

where the last line relies on Jensen’s inequality. We conclude thanks to Biau and Devroye (2015,
Theorem 2.4) stating that

E
[
∥Xκn:n(X) −X∥2

]
≤
{

8(κn/n) if k = 1,

c̃k(κn/n)2/k if k ≥ 2.
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Proof of Theorem A.3 (lower bound). The proof of a lower bound for the minimax risk in Wasser-
stein distance is adapted from the proof of Proposition 3 in Pic et al. (2023, Appendix C) and
we give only the main lines.

Consider the subclass of D(H,L,M) where Y is a binary variable with possible values 0
and B. Note that condition c) of Definition A.1 is automatically satisfied if B ≤ 4M . The
conditional distribution of Y given X = x is characterized by

p(x) = P(Y = B | X = x)

and the Wasserstein distance by

W1(Fx, Fx′) = B|p(x) − p(x′)|,

so that property b) of Definition A.1 is equivalent to

B|p(x) − p(x′)| ≤ L∥x− x′∥H . (A.19)

Similarly as in Pic et al. (2023, Lemma 1), one can show that a general prediction with values in
R can always be improved (in terms of Wasserstein error) into a binary prediction with values
in {0, B}. Indeed, for a given prediction F̂n,x, the binary prediction

F̃n,x = (1 − p̃n(x))δ0 + p̃n(x)δB

with

p̃n(x) =
1

B

∫ B

0

(
1 − F̂n,x(z)

)
dz

always satisfies
E[W1(F̃n,X , FX)] ≤ E[W1(F̂n,X , FX)].

This simple remark implies that, when considering the minimax risk on the restriction of the
class D(H,L,M) to binary distributions, we can focus on binary predictions. But for binary
predictions,

E[W1(F̃n,X , FX)] = B|p̃n(X) − p(X)|,
showing that the minimax rate of convergence for distributional regression in Wasserstein
distance is equal to the minimax rate of convergence for estimating the regression function
E[Y |X = x] = Bp(x) in absolute error under the regularity assumption (A.19). According to
Stone (1980, 1982), a lower bound for the minimax risk in L1-norm is n−H/(2H+k) (in the first
paper, we consider the Bernoulli regression model referred to as Model 1 Example 5 and the Lq

distance with q = 1).

Proof of Theorem A.3 (upper bound). For the kernel method, Corollary A.1 states that the ex-
pected Wasserstein error is upper bounded by

LhHn + M
√

(2 + 1/n)ck(nhkn)−1/2 + LkH/2ck(nhkn)−1.

Minimizing the sum of the first two terms in the right-hand side with respect to hn leads to
hn ∝ n−1/(2H+k) and implies that the right-hand side is of order n−H/(2H+k) (the last term is
negligible). This matches the minimax lower rate of convergence previously stated previously
and proves that the optimal minimax risk is of order n−H/(2H+k).

For the nearest neighbor method, minimizing the upper bound for the expected Wasserstein
error from Corollary A.2 leads to

κn ∝
{
nH/(H+1) if k = 1

nH/(H+k/2) if k ≥ 2
,
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with a corresponding risk of order {
n−H/(2H+2) if k = 1

n−H/(2H+k) if k ≥ 2
,

whence the nearest neighbor method reaches the optimal rate when k ≥ 2.

A.4.3 Proof of Proposition A.2

Proof of Proposition A.2. The first point follows from the fact that composition by a continuous
application respects convergence in probability. Indeed, as the estimator F̂n,X converges to FX

in probability for the Wasserstein distance Wp, S(F̂n,X) converges to S(FX) in probability.
In order to prove the consistency in Lp/q, it is enough to prove furthermore the uniform

integrability of |S(F̂n,X) − S(FX)|p/q, n ≥ 1. With the convexity inequality of power functions
as p/q ≥ 1, Equation (A.14) entails

|S(F̂n,X) − S(FX)|p/q ≤ 2p/q−1
(
|S(F̂n,X)|p/q + |S(FX)|p/q

)
≤ 2p/q−1

(
(aM q

p (F̂n,X) + b)p/q + (aM q
p (FX) + b)p/q

)
≤ 22(p/q−1)

(
ap/qMp

p (F̂n,X) + ap/qMp
p (FX) + 2bp/q

)
.

This upper bound together with Equation (A.18) implies the uniform integrability of |S(F̂n,X)−
S(FX)|p/q, n ≥ 1, which concludes the proof.
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Appendix B

A new methodology to predict the
oncotype scores based on
clinico-pathological data with similar
tumor profiles

This chapter reproduces an article published in Breast Cancer Research and Treatment, and
written by Zeina Al Masry1, Romain Pic2, Clément Dombry2 and Christine Devalland3.

Abstract

Purpose The Oncotype DX (ODX) test is a commercially available molecular test for breast
cancer assay that provides prognostic and predictive breast cancer recurrence information for
hormone-positive, HER2-negative patients. This study aims to propose a novel methodology to
assist physicians in their decision-making.

Methods A retrospective study between 2012 and 2020 with 333 cases that underwent an
ODX assay from three hospitals in the Bourgogne Franche-Comté region (France) was con-
ducted. Clinical and pathological reports were used to collect the data. A methodology based
on distributional random forests was developed to predict the ODX score classes (ODX ≤ 25
and ODX > 25) using 9 clinico-pathological characteristics. This methodology can be used to
identify the patients of the training cohort that share similarities with the new patient and to
predict an estimate of the distribution of the ODX score.

Results The mean age of participants is 56.9 years old. We have correctly classified 92%
of patients in low risk and 40.2% of patients in high risk. The overall accuracy is 79.3%. The
proportion of low-risk correct predicted value (PPV) is 82%. The percentage of high-risk correct
predicted value (NPV) is approximately 62.3%. The F1-score and the Area Under the Curve
(AUC) are 0.87 and 0.759, respectively.

Conclusion The proposed methodology makes it possible to predict the distribution of the
ODX score for a patient. The determination of a family of known patients with a follow-up
of identical scores reinforces this prediction. Using this methodology with the pathologist’s
expertise on the different histological and immunohistochemical characteristics has a clinical
impact to help oncologists in decision-making regarding breast cancer therapy.

1Institut FEMTO-ST, Université Bourgogne Franche-Comté, CNRS, SUPMICROTECH-ENSMM, Besançon,
France

2Université de Franche Comté, CNRS, LmB (UMR 6623), F-25000 Besançon, France
3Service d’anatomie et cytologie pathologiques, Hôpital Nord Franche-Comté, 90400 Trévenans, France
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B.1 Introduction

The Oncotype DX (ODX) test is a commercially available molecular test for breast cancer assay
(Genomic Health) that provides prognostic and predictive breast cancer recurrence information
for hormone-positive, HER2-negative patients. The ODX test is based on 1A-level evidence
and it is included in the main international clinical guidelines recommendations such as those
of the American Society of Clinical Oncology (ASCO; Andre et al., 2019) or the National
Comprehensive Cancer Network (NCCN) as well as in the last staging guidelines of AJCC
8th edition (Giuliano et al., 2017). The ODX test is the most widely available molecular test
used in the world. This assay analyzes 21 genes by RT-qPCR (16 cancer-related genes and
5 housekeeping genes) and aims to predict the risk of recurrence at 10 years by providing a
recurrence score ranging from 0 to 100 and to estimate the benefit of adjuvant chemotherapy.
Several retrospective and prospective studies have validated this test and its clinical utility. Paik
et al. (2004) have shown a correlation between ODX score and disease-free survival in patients
with ER-positive/HER2-negative, node-negative, tamoxifen-treated breast cancer, based on the
NSABP B-14 trial. As for the chemotherapy benefits, Paik et al. (2006) and Albain et al. (2010)
have evaluated the test using studies related to NSABP-B20 and SWOG 8814. The prospective
phase III trial TAILORx study (Sparano et al., 2018) has modified the ODX score’s cutoff values
(low risk <11, intermediate risk 11-25 and high risk >25) in order to avoid under-treatments
of cancer. To be more precise, in the low-risk group, the risk of recurrence at 5 years is very
low (<10%) with hormonal therapy, which confirms the uselessness of adding chemotherapy
(Sparano et al., 2015). For the intermediate group, chemotherapy has a benefit only for women
younger than 50 years old. For the high-risk group, chemotherapy is highly recommended.
Nevertheless, one-third of women with hormone-receptor-positive breast cancer have a lymph
node disease. Thus, the prospective trial RxPONDER trial study analyzes the capacity of
the ODX test to predict the benefit of chemotherapy for women with positive lymph node
disease (Kalinsky et al., 2021). RxPONDER showed that postmenopausal patients with node
involvement and an ODX score between 0 and 25 did not benefit from chemotherapy, whereas
premenopausal patients with node involvement with 1-3 nodes and ODX scores between 0 and
25 benefited significantly from chemotherapy.

Despite its proven value, the ODX test is not routinely used due to its high cost. For
this reason, less than 20% of patients in Europe have access to the ODX test. Health-related
economic studies are performed to understand for which patients the assay is the most useful
(Albanell et al., 2016). From this economic point of view, many alternative tools have been
developed to predict this score. These tools are based on clinico-pathological data such as
Magee equations (Klein et al., 2013; Sughayer et al., 2018) and the IHC4 score (Yeo et al.,
2015). Indeed, many studies have shown the correlation between the results of the latter tools
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and the ODX score (see, e.g., Flanagan et al., 2008). Few works used features with machine
learning techniques in order to provide an ODX-based methodology to divide the patients into
categories corresponding to low or high risk of cancer (Kim et al., 2019; Orucevic et al., 2019;
Baltres et al., 2020; Pawloski et al., 2021).

This paper aims to propose a novel methodology to assist physicians in their decision-
making. It is based on random forests for distributional regression as presented in Meinshausen
(2006) and Athey et al. (2019). This methodology creates links between a new patient and
the cohort used for training based on clinico-pathological characteristics. These links can be
used particularly to identify the patients of the training cohort that share similarities with the
new patient and to predict an estimate of the distribution of the ODX score. This information
is available to clinicians to help them better understand the probable clinical evolution of the
tumor in order to optimize the treatment.

Moreover, it enables knowledge capitalization by feedback and analysis of patient history.
One of the consequences of this study is to weigh the variability of the anatomo-pathological
data so that this new methodology can adapt to the specificities of a cohort.

B.2 Materials and methods

B.2.1 Dataset description

The cohort is a retrospective study between 2012 and 2020 with 333 cases that underwent an
ODX assay from three hospitals in Bourgogne Franche-Comté: Besançon, Belfort and Dijon.
All patients have ER-positive and HER2-negative early breast cancer. Clinical and pathologi-
cal reports were used to collect the data such as the age at diagnosis, the menopausal status,
the treatment, the recurrence, the tumor size, the lymph node status, the histological type,
the Nottingham grade, hormone receptors for estrogen (ER) expression, hormone receptors for
progesterone (PR) expression, the human epidermal growth factor receptor 2 (HER2) status
and the protein p53 and Ki67 proliferation index. Immunohistochemical staining was per-
formed (Ventana Benchmark XT system®, Roche™) on the tumor block of ODX testing with
UltraView Universal DAB detection with ER antibody (clone SP1; Roche/Ventana Medical
Systems, Tucson, USA), PR antibody (clone 1E2; Roche/Ventana Medical Systems, Tucson,
USA), HER2 antibody (clone 4B5; Roche/Ventana Medical Systems, Tucson, USA), Ki67 anti-
body (clone Mib-1, Dako, Glostrup, Denmark) and p53 antibody (clone DO-7, Dako, Glostrup,
Denmark). The HER2 immunostaining was interpreted using the 2018 American Society of
Clinical Oncology/College of American Pathologists guidelines (Wolff et al., 2018). The Ki67
proliferation index was evaluated by manual counting with a counter on at least 200 tumor
cells. The protein p53 was assessed by immunohistochemistry. The positive threshold is greater
than 10% of the tumor cells’ nuclei. The ODX test was realized by Genomic Health (Redwood
City, CA, USA) and analyzed 21 genes by RT-qPCR from paraffin-embedded blocks of tumor
tissue. The ODX score was obtained from the clinical reports. The three ODX categories were
the same as the ones defined in the ODX‘s assays using TAILORx and RxPONDER: low risk
(<16), intermediate risk (16-25) and high risk (>25). The institution review board approved
this study.

The cohort contains more than 50 features, from which we selected the most critical ones
using feature importance in random forest and physicians’ assessments. Table B.1 describes the
tumor characteristics using the features selected for our study.

B.2.2 Distributional Random Forest

Random Forest (Breiman, 2001) is a powerful machine learning algorithm that can be used for
prediction in various settings and has been successfully applied in the field of medicine (Chen
et al., 2020; Fernandez-Lozano et al., 2021; Zare et al., 2021). Our goal here is to predict the
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Percentage of patient by category
< 16 16 − 25 > 25 Total

Population 113 138 82 333

Age
≤ 50 yr 14.41 10.51 5.71 30.63
> 50 yr 19.52 30.92 18.92 69.37

Tumor size

< 1 cm 3.90 4.51 3.00 11.41
1-2 cm 15.62 22.52 15.62 53.76
> 2 cm 14.41 14.41 6.01 34.83

p53
≤ 10% 18.62 23.12 12.01 53.75
> 10% 15.32 18.32 12.61 46.25

SBR grade
1 5.41 3.30 0.00 8.71
2 21.02 24.03 10.81 55.86
3 7.51 14.11 13.81 35.43

Mitotic grade
1 12.61 14.42 4.50 31.53
2 17.12 20.12 12.01 49.25
3 4.20 6.91 8.11 19.22

ER status
Negative 0.00 0.00 0.00 0.00

Positive (≥ 10%) 33.93 41.44 24.63 100

PR status
Negative 2.10 7.51 8.11 17.72

Positive (≥ 10%) 31.83 33.93 16.52 82.28

Ki67-positive
cells

< 10% 0.00 0.30 0.00 0.30
10 − 20% 16.22 15.92 4.80 36.94
> 20% 17.72 25.22 19.82 62.76

Lymph node
status

0 15.02 15.52 13.81 45.35
1 10.81 14.11 4.20 29.13
2 3.61 3.30 0.90 7.81
3 1.80 2.10 2.10 6.00

NA 2.70 5.41 3.60 11.71

Table B.1: ODX score distribution by patient and tumor characteristics.

result of the expensive ODX test based on clinico-pathological features. We propose the use of
a Distributional Random Forest that provides a predictive distribution for the ODX score based
on the clinico-pathological features. We shall expose the methodology for Random Forest and
Distributional Random Forest.

Standard regression links the mean of the response variable Y to a set of features X based
on observations from a training sample of feature–response pairs, say (Xi, Yi) for i = 1, . . . , n.
Random Forest (RF) prediction is an ensemble method that consists of the bootstrap aggrega-
tion (Breiman, 1996) of randomized classification and regression trees (CART, Breiman et al.,
1984). The predictive mean can be written as the average

Ŷ =
1

B

B∑
b=1

Tb(X), (B.1)

where T 1(X), . . . , TB(X) corresponds to the prediction of the different trees built on different
bootstrap samples. Each single tree prediction takes the form of an average across a neighbor-
hood of X in the tree, i.e.

Tb(X) =
1

|Rb(X)|
∑

Xi∈Rb(X)

Yi,

with Rb(X) being the region of the feature space that contains X in the tree Tb and |Rb(X)| the
numbers of observations that fall into this region. Consequently, the Random Forest prediction
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(B.1) has the equivalent form

Ŷ =

n∑
i=1

wi(X)Yi, (B.2)

with the Random Forest weights defined by

wi(X) =
1

B

B∑
i=1

1{Xi∈R(X)}

|Rb(X)| , 1 ≤ i ≤ n, (B.3)

and these weights are non-negative with sum 1 (probability weights).
The main idea of Distributional Random Forest (DRF) relies on Equation (B.2): the pre-

diction Ŷ is the sample mean of the weighted sample Yi with weights wi(X) which can be seen
as an approximation of the conditional distribution of Y given X. The cumulative distribution
function F (y|X) = P(Y ≤ y|X) is thus approximated by

F̂ (y|X) =

n∑
i=1

wi(X)1{Yi≤y}. (B.4)

This idea was first suggested by Meinshausen (2006) who proposed the construction of a quantile
regression forest by approximating the conditional quantile of Y given X by the quantiles of
the weighted empirical distribution (B.4).

Figure B.1 presents a synthetic representation of the DRF procedure with the different steps:
subsampling of the original sample, tree construction on each subsample, computation of the
neighborhood/weight at the point to predict, averaging of weights given by the different trees
that finally provide the predictive distribution.

The Random Forest weights (B.3) are interesting in themselves and provide relevant infor-
mation in terms of similar/influential observations. Given a new feature X, the weight wi(X)
is interpreted as the proportion in which the observation Yi contributes to the prediction of Y
given X. Observations with the largest weights are interpreted as the nearest neighbors of X in
terms of an implicit metric on the predictor space that is tailored for predicting the response,
see Lin and Jeon (2006). The random forest weights make it possible to identify the most
similar/influential individuals in the training data. Comparing X to these similar observations
can help understand the relationship between X and Y .

Finally, let us mention that the weights (B.2)-(B.3) depend on the specific structure of the
trees that are used for prediction. Trees are grown by recursive binary splitting, maximizing
a homogeneity criterion; the goal is to partition the feature space into different regions that
are as homogeneous as possible. In the standard CART algorithm, the variance is used as the
homogeneity criterion, resulting in a partition adapted to the prediction of the mean. Sev-
eral different splitting rules have been considered in the statistical literature that emphasized
the prediction of quantiles (Athey et al., 2019, Generalized Random Forest) or on the overall
distribution (Ćevid et al., 2022, Distributional Random Forest).

A Distributional Random Forest is fitted to the whole data set. The software R with
the package grf (Generalized Random Forest) is used to compute the random forest and the
associated weights. When no new test set is provided, the grf::predict method performs out-
of-bag prediction on the training set. This means that, for each training example, all the trees
that did not use this example during the training are identified (the example was ‘out-of-bag’),
and a prediction for the test example is then made using only these trees.

B.2.3 Applications of Distributional Random Forest

DRF is a fully non-parametric and model-free method that performs probabilistic forecast and
distributional regression. For a set of features X, it provides the full predictive distribution
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Figure B.1: Flowchart of Distributional Random Forest. Starting from the training data, a large
number of subsamples are randomly chosen and binary trees are constructed on each subsample;
the neighborhood/weights at the point to predict are computed in each tree and then averaged
to give the forest weights; the predictive distribution corresponds to the weighted sample of the
original training data with these forest weights.

of the response variable Y , that is to say, exhaustive information for its possible fluctuations
knowing the features. The method is very informative and powerful (see Figure B.2) as it
provides:
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• (distributional regression) a predictive distribution for each new case that can be repre-
sented by a histogram;

• (mean or median prediction) a predictive mean or median when a point estimate is needed
- the mean is commonly used while the median is more robust to outliers;

• (uncertainty assessment) a graphical assessment of the uncertainty with the shape of
the histogram (either peaked or flat) or numerical statistics such as standard error or
confidence interval for the prediction;

• (classification) the probability of classes of particular interest can be instantly computed
- for the ODX score, the classes ODX ≤ 25 and ODX > 25 are considered;

• (similar/influential patients) the patients in the cohort (training set) that are the most
similar to a new case can be easily identified through the random forest weights that are
interpreted as a measure of proximity - this proximity is meant in the sense of an implicit
distance that is learned by the model and that gives more importance to the relevant
features; this information can allow the practitioner to make meaningful and informative
comparisons between the new case and the patients from the cohort.
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i wi Ki67 p53 . . .

1 0.2 17 8 . . .

2 0.18 20 2 . . .

. . . . . . . . . . . . . . .

(Ŷ , σ̂Y )

Classification Most similar patientsMean prediction
Uncertainty assessment

Figure B.2: Applications of Distributional Random Forest. Once the DRF is trained, the
prediction of classes (classification) or conditional mean or median (regression) together with
an uncertainty estimate is straightforward. Furthermore, the weights at the point to predict
make it possible to identify the most similar neighbors in the training data, with an adaptive
notion of similarity tailored for the purpose of prediction.
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B.2.4 Evaluation of predictive performance

To evaluate the distributional random forest algorithm and compare it with concurrent meth-
ods, the theory of proper scoring rules (Gneiting and Raftery, 2007) is used. In probabilistic
forecasting, a scoring rule compares a predictive distribution F and the outcomes y. It plays the
role of a measure of error similar to the mean squared error in regression or the misclassification
rate in classification. A scoring rule is strictly proper if the expected score is minimal when the
predictive distribution F matches the outcome distribution. A strictly proper scoring rule can
be used for the evaluation of probabilistic forecast and distributional regression (Gneiting and
Katzfuss, 2014).

The most popular scoring rule is the Continuous Ranked Probability Score (CRPS; Matheson
and Winkler, 1976) and is defined by

CRPS(F, y) =

∫
R
(F (z) − 1{y≤z})

2dz.

In a case where the predictive distribution F corresponds to a weighted sample (yi)1≤i≤n with
weights (wi)1≤i≤n, the CRPS is easily computed by

CRPS(F, y) =
n∑

i=1

wi|yi − y| −
∑

1≤i<j≤n

wiwj |yi − yj |.

The first term compares the predictive distribution F and observation y (calibration) while the
second term assesses the precision of the prediction (sharpness). This expression also shows
that CRPS(F, y) is reported in the same unit as the observation y and that it generalizes the
absolute error to which it is reduced if F is a deterministic forecast, that is to say a point
measure.

In order to evaluate the generalization capacity of the model, that is to say, its predictive
performance on a new sample, different validation methods can be used to assess the prediction
error. Simple validation uses a training set to fit the model and an independent test set to
compute error (CRPS). K-fold cross-validation is more involved and splits the data into K
groups that successively play the role of the test set. More precisely, K different models are
fitted on training sets consisting of all folds but one which is left out during training and used
as a test set to compute the CRPS; this results in K different test errors which are averaged
so as to obtain the K-fold cross-validation error. In the specific case of bagging including our
random forest method, the out-of-bag (OOB) method can be used instead. It usually provides
similar results as K-fold cross-validation but is much more numerically efficient since only one
fit of the model is required. Indeed, due to resampling, a given observation does not belong
to all the subsamples and one can consider the submodel aggregating all the trees that were
trained without this observation; this submodel is then evaluated at the observation and the
error (CRPS) is computed; averaging all these errors yield the OOB error.

B.3 Results

The DRF was applied to 333 patients to predict the ODX score using the 9 features presented
in Table B.1. In order to compare with the literature, we emphasize the classification into two
classes (ODX ≤ 25 and ODX > 25).

Before presenting the results of the DRF, we shall first present the evaluation of our model.
Simple graphical diagnostics can be performed by considering the regression model deduced
from DRF. The results of the regression are presented in Figure B.3, where the predictive mean
(Figure B.3a) and predictive median (Figure B.3b) versus the real ODX score are plotted. We
can observe a rather good fit, and that an important proportion of the observations are within

158



their confidence intervals. In Figure B.3a, the grey ribbon has a semi-amplitude equal to the
standard error and accounting for uncertainty. The grey ribbon in Figure B.3b represents the
credibility interval with a level of 90%.

Figure B.3: Evaluation with regression diagnostics. Mean regression (left figure - a) plots the
ODX observation versus their predictive mean; the grey ribbon represents the standard errors.
Median regression (right figure - b) plots the ODX score versus their predictive median; the
grey ribbon represents the 90%-confidence interval.

Additionally, in order to assess the ODX probabilistic forecast, we compared the OOB
predictive distribution and the actual observation for the ODX, for each observation. The
prediction error is measured in terms of the CRPS introduced in Section B.2.4. The different
scores are represented in Figure B.4a. The smaller the CRPS, the more accurate the forecast.
We can observe that most of the predictions have a small or medium CRPS, which indicates
the overall good quality of prediction. A smaller number of observations have a large CRPS,
indicating individuals for whom the ODX score notably differs from what we might expect in
comparison with the overall population. Together with the CRPS, the figure provides the results
for the binary classification task (ODX ≤ 25 or ODX > 25): classification errors are indicated
with the color orange while the color blue corresponds to correctly classified observations. We
can observe a good match between classification errors and a large CRPS, which confirms the
ability of the CRPS to assess forecast quality. Then, for each patient, the DRF provides a
predictive distribution represented by a histogram that can be compared with the actual ODX
score. We also indicate the two class probabilities corresponding to the light-green/left or
dark-green/right classes.

We have selected three patients respectively with a low (Figure B.4b, Patient A), medium
(Figure B.4c, Patient B) and large CRPS (Figure B.4d, Patient C). The predictions associated
with these patients can be considered ”good”, ”average” and ”bad”, respectively. In Figure B.4b
we can observe a sharp predictive distribution (peaked histogram) and an ODX score close to
the peak. In Figure B.4c, the histogram is flatter, indicating more uncertainty, and the true
ODX score is contained in a high probability region. In Figure B.4d, the predictive distribution
has also a large dispersion and the ODX score is contained in a low probability region, which
means that the match between the two is poor. We insist on the fact that a large CRPS does not
necessarily mean a miss-classification of a patient as it can be seen for some of the higher CRPS
values in Figure B.4a. The CRPS considers the distributional regression and is not explicitly
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Figure B.4: Out-of-Bag evaluation of the prediction with the CRPS - a low CRPS corresponds
to a precise forecast. The subfigures b, c and d correspond to three different patients chosen in
different ranges of the CRPS presented in the subfigure a. In the three lower subfigures, the gray
histogram corresponds to the predicted distribution of the ODX score obtained by the DRF.
The red dashed line represents the true ODX score of the patient. The two classes (ODX ≤ 25
and ODX > 25) are represented as areas of different colors and the predicted probabilities of
each class are given for each patient.

related to the binary classification presented here.

Due to the impact of the classification of ODX in the two classes ODX ≤ 25 and ODX > 25,
we shall present the detailed evaluation of the classification model deduced from DRF (see Table
B.2). This evaluation is based on the standard classification metrics such as the confusion matrix
and standard metrics. The standard metrics are as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
, (B.5)

Sensitivity =
TP

TP + FN
, (B.6)

Specificity =
TN

FP + TN
, (B.7)

Positive Predictive Value =
TP

TP + FP
, (B.8)

Negative Predictive Value =
TN

FN + TN
, (B.9)
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Predicted

ODX ≤ 25 ODX > 25

T
ru

e ODX ≤ 25 231 20

ODX > 25 49 33

Accuracy 79.3%

Sensitivity 92.0%

Specificity 40.3%

Positive Predictive Value 82.5%

Negative Predictive Value 62.3%

F1-score 0.870

Area Under Curve 0.759

Table B.2: Evaluation with classification diagnostics. Confusion matrix (left) together with
standard metrics (right).

F1-score =
2 ∗ Positive Predictive Value*Sensitivity

Positive Predictive Value+Sensitivity
(B.10)

where TP is the number of patients correctly classified as ODX ≤ 25, FP is the number of
patients incorrectly classified as ODX ≤ 25, TN is the number of patients correctly classified as
ODX > 25 and FN is the number of patients incorrectly classified as ODX > 25.

We have correctly classified 231 out of 251 patients (92%) as low-risk and 33 of 75 patients
(40.2%) as high-risk. The overall accuracy is 79.3% and the p-value is less than 0.05. The
proportion of low-risk correct predicted value (PPV) is 82%. The percentage of high-risk correct
predicted value (NPV) is approximately 62.3%. The F1-score and the Area Under the Curve
(AUC) are 0.87 and 0.759, respectively. The DRF will provide additional information such as
the nearest neighbor patients, the distribution of the ODX score and the uncertainty prediction
(see Figure B.2). We now consider the 69 miss-classified patients with low and high risks.
First of all, we notice that the majority of these patients have predictions that are close to
the decision border (i.e. close to ODX = 25). These patients are miss-classified because of
the binary decision and additional information available with the DRF method shows either
that the patient’s ODX score is close to the decision border or that the neighborhood of the
patient is not realistic because of limitations of the training cohort. This first part of the miss-
classified patients might have a small CRPS as the CRPS accounts for the dispersion of the
prediction and its bias. The second part of the miss-classified patients corresponds to extreme
values of the ODX score within our cohort. The nearest patients provided by the DRF for these
miss-classified patients are thus less informative as they are taken within the cohort that is not
representative of these outlier patients. In order to give more quantitative results, we compared
the mean absolute difference for the ODX score, Ki67 and p53 between the 69 miss-classified
patients and the weighted average value of their neighborhoods. The miss-classified patients
have a mean absolute difference of ODX score compared to their neighborhood of 9.84 whereas
the correctly classified patients have an average absolute difference of 6.29. In terms of Ki67
and p53, the average absolute difference is 24.56% and 5.77% respectively when the average
absolute difference for the correctly classified patient is 16.77% for Ki67 and 5.84% for the p53
respectively.

These classification results are then compared with state-of-the art techniques: Klein et al.
(2013); Hou et al. (2017); Kim et al. (2019); Orucevic et al. (2019); Baltres et al. (2020); Pawloski
et al. (2021). A detailed comparison is given in Table B.3.

161



K
le

in
et

al
.

(2
01

3)
H

ou
et

al
.

(2
01

7)
K

im
et

al
.

(2
01

9)
O

ru
ce

v
ic

et
al

.
(2

01
9)

B
al

tr
es

et
al

.
(2

02
0)

P
aw

lo
sk

i
et

a
l.

(2
02

1
)

A
l

M
as

ry
et

al
.

(2
02

3)

P
at

ie
n
ts

(n
tr
a
in
,n

te
st

)
(8

17
,

25
5)

(-
,

16
3)

(2
08

,7
6)

(6
5,

75
4
,

18
,5

85
)

(1
52

,
1
68

)
(2

,5
87

,
1,

29
3
)

(3
33

,
O

O
B

)

A
ge

M
ea

n
–

58
.6

–
–

–
–

56
.9

M
ed

ia
n

–
–

44
.0

58
57

.5
6
2

58
.0

R
an

ge
–

34
-8

2
–

19
-9

0
30

-8
4

56
-6

9
3
0-

84

C
li

n
ic

o-
p

at
h

ol
og

ic
fe

at
u

re
s

u
se

d
fo

r
m

o
d

el
in

g

T
u

m
or

si
ze

T
u

m
or

gr
ad

e
L

y
m

p
h

ov
as

cu
la

r
in

va
si

on
L

y
m

p
h

n
o
d

e
st

at
u

s
E

R
P

R
K

i6
7

p
53

O
D

X
P

re
d

ic
ti

on
T

y
p

e
C

on
ti

n
u

ou
s

C
on

ti
n
u

ou
s

C
la

ss
ifi

ca
ti

on
C

la
ss

ifi
ca

ti
on

C
la

ss
ifi

ca
ti

o
n

C
la

ss
ifi

ca
ti

on
D

is
tr

ib
u

ti
o
n

a
l

T
h

re
sh

ol
d

<
18

18
−

30
>

30

<
18

18
−

30
>

30

<
11

>
25

≤
25

>
25

<
1
8

18
−

3
0

>
3
0

≤
25

>
25

≤
2
5

>
2
5

M
et

h
o
d

M
u

lt
ip

le
L

in
ea

r
R

eg
re

ss
io

n

M
u

lt
ip

le
L

in
ea

r
R

eg
re

ss
io

n

N
eu

ra
l

N
et

w
or

k
D

ec
is

io
n

J
u

n
gl

e

B
in

om
ia

l
L

og
is

ti
c

R
eg

re
ss

io
n

D
ee

p
M

u
lt

i-
L

ay
er

P
er

ce
p

tr
o
n

R
an

d
o
m

F
or

es
t

D
is

tr
ib

u
ti

o
n

a
l

R
a
n

d
om

F
or

es
t

P
re

ci
si

on
L

ow
ri

sk
62

.5
-6

9.
4%

72
.6

%
10

0%
87

.5
%

5
8.

3
%

92
.9

%
8
2.

5
%

H
ig

h
ri

sk
68

.8
-7

7.
8%

–
25

.0
%

79
.6

%
6
3.

0
%

65
.1

%
6
2.

3
%

S
en

si
ti

v
it

y
58

.6
-5

9.
1%

85
.7

%
11

.0
%

99
.2

%
5
5
%

96
.3

%
9
2.

0
%

S
p

ec
ifi

ci
ty

70
.5

-7
7.

4%
41

.4
%

10
0%

18
.3

%
7
8
%

48
.3

%
4
0.

2
%

A
U

C
–

–
0.

74
4

0.
81

0.
6
3

–
0.

75
9

T
a
b

le
B

.3
:

C
o
m

p
a
ri

so
n

o
f

o
u

r
st

u
d

y
w

it
h

si
x

se
le

ct
ed

p
u

b
li

sh
ed

st
u

d
ie

s
(K

le
in

et
al

.,
20

13
;

H
o
u

et
a
l.

,
20

1
7
;

K
im

et
a
l.

,
2
0
1
9
;

O
ru

ce
v
ic

et
a
l.

,
2
0
1
9
;

B
al

tr
es

et
al

.,
2
02

0;
P

aw
lo

sk
i

et
al

.,
2
02

1)
to

p
re

d
ic

t
th

e
O

D
X

sc
or

e.
F

or
th

re
e

cl
as

se
s

on
ly

th
e

se
n

si
ti

v
it

y
a
n

d
sp

ec
ifi

ci
ty

o
f

th
e

lo
w

er
cl

a
ss

a
re

gi
ve

n
.

162



B.4 Discussion

ODX is the most commonly available breast genomic test used in early-stage ER-positive/HER2-
negative breast cancer. It makes it possible to define patients who are unlikely to benefit from
chemotherapy. The ODX score is based on 6 gene groups. These groups correspond to the
analysis of the markers in pathological reports. Some have compared the ODX score to this
immuno-histological data and proved the predictive relationship with the ODX score. Several
studies were published using this clinicopathological data to predict the ODX score with different
methods (see Table B.3). The present study was realized to predict the ODX score from a specific
regional cohort of 333 patients with clinical and immuno-histological data using distributional
random forests. This prediction is associated with a predictive error on the one hand, and the
ability to determine similar patients on the other hand. The proposed DRF model detected
82% of lower risk patients (ODX ≤ 25) and 62.3% of high risk patients (ODX > 25).

A few studies have proposed some prediction tools for the ODX score (Klein et al., 2013;Hou
et al., 2017; Kim et al., 2019; Orucevic et al., 2019; Baltres et al., 2020; Pawloski et al., 2021).
Each study is based on the specific categorization of patients according to the original ODX
categories and TAILORx (see ODX Prediction Threshold in Table B.3). The prediction results
of the different studies are similar and based on clinico-pathological data. The tumor size,
tumor grade and PR are used in all the six selected published studies as well as for our current
study. The Ki67 is not used in Orucevic et al. (2019) and Pawloski et al. (2021). In our study,
we integrated the p53. The threshold used for the ODX score is different from one study to
another. Our DRF model performs as well as the other prediction tools. The novelty is in
providing additional information to the prediction (see Figure B.2) such as the probability of
classes (low and high risk), the similar profiles and the uncertainty prediction.

The correct predicted values are 82.5% and 62.3% for low and high risk, respectively. We
used the CRPS score to distinguish the best and worst predictions. The best results were
obtained for ODX profiles below 16. The average Ki67, for the first best ten results, is under
14%, which corresponds to the low-risk profile of our previous study (Baltres et al., 2020). The
average percentages of ER and PR are 93% and 77%, respectively, which fits into the same
low-risk profiles. When looking at the surrounding family and the profile of close patients, we
observe that similar profiles vary between 0 and 25 for ODX. The similarities fall in the low-risk
profile. The Ki67 scores of similar profiles for the first ten results are below 25%.

As for the discordant results, they lie in the high-risk class. The averages of the ODX score,
Ki67 and PR are respectively 46%, 36% and 22%. In addition, a negative correlation between
ODX and PR for the best and worst results can be observed. The similar profiles for such cases
have a high PR. This behavior is due to the small number of cases in the high-risk category.
An example of the worst prediction is a patient with a high ODX score and probability of lying
in the high class of 50%. The real ODX score is 49 and the predicted ODX score is near to
the cut-off. The average ODX score for the 10 first similar profiles is 31 and the distribution
is centered around 25. The similar profiles are very dispersed, which is difficult to analyze.
Most of the nearest neighbors have an SBR grade of 3. The prediction is bad, but nevertheless,
the similar profiles have a low ODX score and a high SBR grade. The size of the cohort and
the training and testing phase could impact the prediction results. In addition, we have an
unbalanced cohort in our study, since we have fewer patients in the high-risk class. In that
case, the factors of the similar profiles that influence the ODX score such as PR, Ki67 and
p53 should be considered. The distribution of identical profiles allows the clinician to retrieve
similar historical cases in terms of evolution. The proposed model can be applied even when
there is missing data. It makes it possible to predict the low-risk class with high certitude,
which means no chemotherapy to plan. Our study is related to the dataset and it is therefore
difficult to generalize to a different cohort because of known inter-cohort variability, especially
on some biomarkers such as Ki67.
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B.5 Conclusion

This paper proposes a new methodology for oncotype scoring prediction. This methodology
is based on distributional random forests and uses 9 clinico-pathological features. It makes it
possible to predict the distribution of the ODX score for a patient and provides an explanation of
the predicted score by computing the probability of belonging to the low- or high-risk category
and identifying the nearest similar profiles. The proposed Distributional Random Forest model
detects 82% of low-risk patients (≤ 25) and 62.3% of patients with high risk (> 25). However,
DRF presents certain limitations. The use of DRF with the pathologist’s expertise on the
different histological and immunohistochemical characteristics has a clinical impact to help
oncologists in decision-making regarding breast cancer therapy. The medico-economic interest
of this strategy is obvious. Additional studies are needed to further validate the DRF method
and improve knowledge extraction from pathological data.
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Appendix C

Additional comments

This appendix addresses three comments related to the work of Chapter 2 (Pic et al., 2023).
Chapter 2 and its summary in the Introduction (Section 1.2) are prerequisites to the following
comments.

C.1 Can the results of Chapter 2 be adapted to the logarithmic
score?

During my follow-up committee, Christopher Ferro from the University of Exeter raised the
question of the adaptation of the results in Chapter 2 (Pic et al., 2023) to other scoring rules,
such as the logarithmic score, instead of the CRPS. Both the convergence rates and the upper
bounds obtained are stated in a univariate setting and for a risk defined in terms of CRPS.

As introduced in Chapter 4, the logarithmic score (also known as ignorance score; Good
1952; Roulston and Smith 2002) is defined as

LogS(F, y) = − log(f(y)),

for y such that f(y) > 0 and where f is the probability density function (pdf) of the probabilistic
forecast F .

The definition of convergence relies on the excess risk of the algorithm F̂n (1.2) where the
divergence of the scoring rule appears. When S is the logarithmic score, the divergence of S is
the Kullback-Leibler divergence (Kullback and Leibler, 1951) :

divLogS(F,G) = DKL(G||F ) =

∫
R

log

(
g(y)

f(y)

)
g(y)dy

where f and g are the pdfs of F and G, respectively.

The Kullback-Leibler divergence is defined if G is absolutely continuous with respect to
F , noted G ≪ F . Thorarinsdottir and Schuhen (2018) explains this in simpler words: ”The
Kullback-Leibler divergence becomes ill-defined if the forecast distribution F has positive mass
anywhere where the observation distribution G has mass zero.” However, the proofs of the re-
sults of Chapter 2 rely on the k-nearest-neighbor (k-NN) algorithm (1.5) and the uniform kernel
algorithm (1.6). These algorithms have atoms on {Yi:n(X), 1 ≤ i ≤ kn} and {Yi, s.t. ∥Xi−X∥ ≤
hn}, respectively. This prevents F ∗ from being absolutely continuous with respect to them (at
finite kn and n).

Hence, the adaptation of convergence rates and upper bounds in Chapter 2 is not straight-
forward since the proof relies on the k-NN and uniform kernel algorithms. A potential solution
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to circumvent the issue of absolute continuity could be to use kernel smoothing techniques (see,
e.g., Wilks 2011, Section 3.3.6) to obtain densities. Kernel smoothing techniques are related to
the postprocessing techniques known as ensemble dressing (see, e.g., Wilks 2018, Section 3.5.3).

C.2 Details on how the results of Chapter 2 adapt to the weighted
CRPS

In the discussion of Chapter 2 (Section 2.4), it is mentioned that the results ”can easily be
extended to the weighted CRPS”.

First, it should be specified that the weighted CRPS the article references is the threshold-
weighted CRPS (twCRPS; Gneiting and Ranjan 2011). The threshold-weighted CRPS is defined
as

twCRPS(F, y) =

∫
R
w(z) (F (z) − 1y≤z)2 dz,

with w the weight function such that w(z) ≥ 0. As mentioned in Thorarinsdottir and Schuhen
(2018), the twCRPS reduces to the CRPS for w(z) = 1 and to the Brier score (Brier, 1950) for
w(z) = 1z=t. The strict propriety of the twCRPS is ensured if and only if the weight function
w is strictly positive and integrable over R. The choice of w allows the emphasis on regions
of interest and eases the interpretability of forecast comparisons. In particular, it is used to
emphasize the upper tail of the distributions when extreme events are of interest.

The two other families of weighted CRPS leading to proper scoring rules are the outcome-
weighted CRPS (owCRPS; Holzmann and Klar 2017) and the vertically-rescaled CRPS (vrCRPS;
Allen et al. 2023b). Gneiting and Ranjan (2011) also introduced a quantile-weighted CRPS
where the weighting intervened in the expression of the CRPS as an integral of quantile scores.
The results around the convergence in terms of CRPS can indeed easily be extended to its
threshold-weighted counterpart and we provide more information on how the results can be
adapted. However, whether the results can be extended to the owCRPS or the vrCRPS remains
an open question and can lead to future research. Allen et al. (2023a) presents the three types
of weighted CRPS and provides a comprehensive comparison of the different weighting methods.

Even if the results of Chapter 2 can be ”easily” be adapted to the threshold-weighted CRPS,
we want to explicit the details of this adaptation. As mentioned in the previous comment, both
the convergence rates and upper bounds rely on the divergence and the entropy of the new
scoring rule considered :

divtwCRPS(F,G) =

∫
R
w(z)(F (z) −G(z))2dz = ∥F −G∥2wL2 ;

enttwCRPS(F ) =

∫
R
w(z)F (z)(1 − F (z))dz.

The divergence of the twCRPS is the weighted version of the squared L2-norm between the
cdfs.

Given a weight function w such that the twCRPS is strictly proper, the steps toward adapting
the results are the following :

1. Modification of the class of distributions D(h,C,M)

This is done by updating the following conditions of Definition 2.2 :

ii) ∀x ∈ [0, 1]d,
∫

R w(z)F ∗
x (z)(1 − F ∗

x (z))dz ≤ M ;

iii) ∥F ∗
x′ − F ∗

x∥wL2 ≤ C∥x′ − x∥h, ∀x, x′ ∈ [0, 1]d.
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2. Adapting the proofs of Propositions 2.1 and 2.2
Since the proofs rely on the integration of an upper bound of E[|F̂n,x(z) − F ∗

x (z)|2] (at
fixed x ∈ [0, 1]d) with respect to z to obtain an upper bound of E[RP (F̂n) −RP (F ∗)], the
weight function w appears naturally and simply in the proofs.

3. Adapting the proof of Proposition 2.3
This proof uses Lemmas 2.1 and 2.2 as well as the result of Problem 3.3 in Györfi et al.
(2002) and considers the subclass where Y ∈ {0, L}. The adaptation of Lemma 2.1
requires m to be redefined as

m =

∫ L
0 w(z)(1 − F (z))dz∫ L

0 w(z)dz
,

which coincides with the original definition for w(z) = 1. The adaptation of Lemma 2.2
leads to

twCRPS(F, y) = W (L)Brier(p,
y

L
),

where W (L) =
∫ L
0 w(z)dz and where F and y are a binary forecast and a binary observa-

tion, respectively, taking values in {0, L}.

This adaptation leads to the same optimal minimax rates of convergence on the adapted class
of distribution D(h,C,M) and to the same upper bounds. However, the constants (h,C,M) may
depend on the weight function w.

C.3 Analog ensemble techniques, k-nearest-neighbor algorithm
and Cover-Hart inequality

Recall that given a training sample Dn = {(Xi, Yi), 1 ≤ i ≤ n}, the k-nearest-neighbor (k-NN)
and uniform kernel algorithms give the following cdf estimators :

F̂n,X(z) =
1

k

k∑
i=1

1Yi:n(X)≤z; (k-NN)

F̂n,X(z) =

∑n
i=1 1∥X−Xi∥≤h1Yi≤z∑n

i=1 1∥X−Xi∥≤h
, (uniform kernel)

with X ∈ Rd the covariates associated with the prediction and z ∈ R. For a given X, the band-
width h = h(X) can be chosen such that the number of (Xi)1≤i≤n is equal to k. Vice-versa, for
a given X, the number of neighbors k = k(X) can be chosen such that the number of neighbors
coincides with the number of (Xi)1≤i≤n within the bandwidth h. Issues might appear when
two covariates in the training sample are at the same distance of X but this case is marginal.
Even though the equivalency strictly holds only for a fixed training sample and requires the
hyperparameters (i.e., k or h) to depend on X, k-NN and uniform kernel algorithms are strongly
related. They only differ in their definitions of neighborhood, either by restricting the number
of neighbors or the span of the neighborhood.

In statistical postprocessing of weather forecasts, analog ensemble methods are nonparamet-
ric methods estimating a probabilistic distribution with an ensemble of past observations that
are similar, called analogs, to the current state of the atmosphere. In order to obtain analogs
that are similar enough to lead to an informative analog ensemble, most methods treat the
problem as local, such that analogs are selected for each location and forecast lead time (Hamill
and Whitaker, 2006). The search for analogs depends on the size of the historical dataset used
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as training data and on the dimension of the search space (i.e., the number of features compared
and their range). A local approach based on selected features, as well as a large training sample,
improves the pertinence of the analog ensembles. With this general definition, analog ensemble
methods encapsulate numerous statistical learning techniques: k-NN when the ensemble size
needs to be fixed, uniform kernel methods when the span of the neighborhood of analogs needs
to be controlled, kernel methods when the weights of the analogs in not uniform or when the
span of the neighborhood is not limited, and random forests (e.g., quantile regression forests;
Taillardat et al. 2016) when a more complex relation characterizes analogs.

In general, analog ensemble methods mainly differ on the metric or similarity measure they
rely on and on the features selected to define analogs. In order to perform the postprocessing of
ensemble forecasts, the training sample is composed of pairs of raw output of the ensemble fore-
cast and corresponding observations. In particular, only summary statistics of the raw ensemble
forecast and most informative variables are kept as selected features to avoid having a search
space too large. Standard metrics, such as the Euclidean distance, have been used but more
complex metrics, such as the one proposed in Delle Monache et al. (2013), have outperformed
simpler metrics. The metric provided in Delle Monache et al. (2013) considers the features’
standard deviation and allows the analog ensembles to capture the flow-dependent forecast un-
certainty. The metric is not the only means to capture the flow-dependent uncertainty: k-NN
and uniform kernel algorithm can capture flow dependency by allowing their hyperparameters
to depend on the features, i.e. allowing the number of analogs k = k(X) or the span of the
analogs h = h(X) to vary with the flow. The importance of flow-dependent uncertainty in
weather forecasting has been introduced in Section 1.1.1.

In classical regression, an estimate based on infinite samples can, at best, halve the theo-
retical risk of an estimate based on one sample. This result holds under a large class of loss
functions, called the Cover-Hart family. Gneiting (2012) showed that this result, known as the
Cover-Hart inequality (Cover and Hart, 1967), can be adapted to distributional regression for
the class of kernel scores. Let P be the family of the Radon probability measures on a Hausdorff
space (Ω,B), where B is the Borel-σ-algebra. Let S : P × Ω → R be a kernel score, then

EP [S(P, Y ′)] ≤ EP [S(δY , Y
′)] ≤ 2EP [S(P, Y ′)] (C.1)

for all probability measures P ∈ P, where Y and Y ′ are independent with distribution P . The
class of kernel scores encapsulates the CRPS (Matheson and Winkler, 1976) and the Brier score
(Brier, 1950) in the univariate case, as well as the energy score (Gneiting and Raftery, 2007)
and the variogram score (Scheuerer and Hamill, 2015b) in the multivariate case. The second
inequality in (C.1) is an equality but is showcased in that way to explicit the link with the
Cover-Hart inequality in point regression. This result is stated in the unconditional framework
but can be extended to the conditional framework that is of interest in distributional regression.

The Cover-Hart inequality (C.1) can be adapted to a conditional setting and provide insights
on distributional regression. In the conditional framework, the one-sample estimator is the 1-
NN estimator (i.e., an analog ensemble method where only the closest analog is used). This
implies that, in distributional regression, the 1-NN estimator has a risk that is exactly twice
the Bayes risk (i.e., the minimal risk which is associated with the true distribution of Y given
X) when the risk is associated with a kernel score.

This result is somehow encouraging because the best improvement (of a factor two) over the
1-NN estimator can be obtained in distributional regression. Even though this result applies
to the same framework as the results of Chapter 2, this is the only meaningful connection that
exists between these two works.
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Appendix D

Résumé long
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La précision des prévisions météorologiques est cruciale dans divers domaines (par exem-
ple, les énergies renouvelables, les réseaux de transport ou l’agriculture), tant pour la prise de
décision que pour son impact financier (Palmer, 2002). Les prévisions probabilistes sont une
composante essentielle de la prise de décision optimale car elles quantifient l’incertitude de la
prévision (Gneiting and Katzfuss, 2014). Dans les prévisions météorologiques, le post-traitement
statistique est nécessaire pour produire des prévisions probabilistes calibrées et précises à par-
tir de systèmes de prévision d’ensemble. Cette thèse se concentre sur trois aspects différents
du post-traitement statistique : les taux de convergence théoriques, le post-traitement des
précipitations sur grille et la vérification des prévisions probabilistes spatiales.

Cette thèse a été réalisée en collaboration avec Météo-France sous la supervision directe
de Maxime Taillardat mais aussi par des échanges avec d’autres membres de Météo-France et
l’utilisation de leurs moyens de calcul haute performance.

Les méthodes de post-traitement statistique utilisent la sortie d’un modèle physique pour
améliorer la prédiction d’une variable d’intérêt. Les règles de sore sont utilisées pour la vérification
probabiliste des prévisions afin de mesurer et de comparer la performance prédictive de prévisions
concurrentes. Cette thèse étudie différents aspects du post-traitement statistique et de la
vérification des prévisions probabilistes.

• D’un point de vue théorique, seuls des résultats limités sont disponibles concernant la
convergence des méthodes de post-traitement. Chapitre 2 (Pic et al., 2023) est une con-
tribution théorique qui se concentre sur le taux de convergence optimal minimax pour le
risque théorique associé au continuous ranked probability score.

• Dans les applications de prévisions météorologiques, les prévisions spatiales sont om-
niprésentes. Cependant, les méthodes basées sur les forêts aléatoires qui sont utilisées
de manière opérationnelle pour post-traiter les prévisions à Météo-France ne prennent pas
vraiment en compte le cadre spatial. De plus, elles souffrent de la voracité de la mémoire
de stockage et d’une incapacité à extrapoler. Dans le Chapitre 3 (Pic et al., 2024b),
nous proposons une méthode de régression distributionnelle basée sur les U-Nets pour
post-traiter les ensembles en contournant la voracité de la mémoire de stockage tout en
obtenant une performance prédictive comparable aux méthodes état de l’art.

• En ce qui concerne la vérification des prévisions probabilistes, aucune règle de score unique
n’est en mesure de fournir une évaluation idéale de la performance prédictive des prévisions
et, par conséquent, différentes règles de score devraient être utilisées pour la compren-
dre. Cette affirmation est d’autant plus importante dans le cadre de la vérification des
prévisions spatiales que la performance prédictive est soumise à des caractéristiques com-
plexes. Dans cette optique, les règles de score interprétables sont des outils puissants qui
facilitent la vérification des prévisions. Regarding probabilistic forecast verification, no
single règle de score is able to provide an ideal assessment of the predictive performance
of forecasts, and thus, different règles de score should be used to understand it. This
statement is even more important in a spatial forecast verification setting as predictive
performance is subject to complex characteristics. With that in mind, interpretable règles
de score are powerful tools facilitating forecast verification. Le Chapitre 4 (Pic et al.,
2024a) présente la manière dont les principes d’agrégation et de transformation peuvent
être utilisés pour construire des règles de score multivariées interprétables.

De plus, le Chapitre 5 fournit des perspectives sur les travaux qui composent cette thèse de
doctorat.

Le reste de ce chapitre est organisé comme suit. La Section D.1 introduit le contexte
nécessaire à la compréhension de la contribution de cette thèse. Les sections D.2, D.3 et D.4
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résument les travaux liés aux Chapitres 2, 3 et 4, respectivement. La Section D.5 résume
brièvement les travaux présentés dans les annexes A et B.

D.1 Introduction générale

D.1.1 Incertitude dans la modélisation de systèmes déterministes et prévisions
d’ensemble

Une approche intuitive de la prévision météorologique consiste à considérer que la physique
de l’atmosphère est régie par un ensemble d’équations différentielles non-linéaires déterministes
(Bjerknes, 2009). Cependant, dans les années 1960, Lorenz (1963) a montré que l’atmosphère
est un système chaotique caractérisé par de multiples sources d’incertitude (voir Wilks and
Vannitsem 2018 pour plus de détails).

La sensibilité aux conditions initiales combinée à l’incertitude des conditions initiales représente
une source majeure d’incertitude pour les prévisions météorologiques. L’incertitude des condi-
tions initiales découle de divers aspects, tels que la combinaison de différents types d’observations
et la variation de la qualité et de la couverture en fonction de la variable d’intérêt, de l’emplacement
et de la méthode de mesure. Par exemple, comme indiqué dans le Chapitre 3, la qualité
des mesures radar des précipitations dépend de la distance par rapport à l’instrument et de
l’orographie sous-jacente (voir, par exemple, Germann et al. 2022). Le domaine de l’assimilation
des données est consacré à la combinaison de différentes sources de données afin de fournir des
conditions initiales bien adaptées aux systèmes de prévision numérique du temps (PNT). En
outre, dans la pratique, les modèles dynamiques de prévision météorologique ne décrivent pas
parfaitement la dynamique réelle. Tout d’abord, le modèle peut fournir une modélisation in-
correcte des phénomènes en jeu. Deuxièmement, tous les systèmes de prévision météorologique
numérique sont incomplets en raison de la discrétisation spatiale et temporelle et de la paramétrisation
de processus physiques non résolus.

De plus, l’atmosphère a une prévisibilité dépendante du flux, ce qui signifie que la prop-
agation de l’incertitude de la condition initiale dépend de l’état du système. Les erreurs de
prévision fluctuent donc d’un bout à l’autre du globe et en fonction de la variable considérée,
mais aussi d’un jour à l’autre (Buizza, 2018). Ces limites affectent également d’autres modèles
physiques tels que les modèles climatiques et les modèles hydrologiques.

Des prévisions d’ensemble ont été élaborées pour tenter de tenir compte des incertitudes
des modèles. Cependant, le choix d’un ensemble bien adapté est difficile, car l’échantillonnage
aléatoire basé sur une gamme de résultats possibles ne conduit pas à un ensemble informatif.
En outre, un grand nombre de membres peut être intéressant mais coûteux en termes de calcul,
et une augmentation de la résolution est souvent préférée car elle permet de résoudre des pro-
cessus à des échelles plus fines. Afin d’échantillonner un système comportant des millions de
degrés de liberté avec quelques dizaines de membres, différentes approches se sont avérées capa-
bles de représenter les incertitudes du modèle : approches multimodèles, approches perturbées,
approches à tendance perturbée, approches à rétrodiffusion stochastique, et des combinaisons
de ces approches. Les lecteurs peuvent se référer à Buizza (2018) pour un aperçu historique de
l’utilisation des prévisions d’ensemble.

Malgré l’amélioration continue des systèmes de prévision numérique au cours des dernières
décennies (Bauer et al., 2015), l’amélioration des performances prédictives des variables proches
de la surface est plus lente que celle des variables situées plus haut dans l’atmosphère (Buizza,
2018). Les prévisions d’ensemble émises par les systèmes de PNT souffrent de biais et de sous-
dispersion. Ce phénomène affecte tous les systèmes de prévision numérique, indépendamment
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du service météorologique et de la variable physique concernée. Comme les systèmes dynamiques
sur lesquels elles reposent, les erreurs des prévisions d’ensemble varient en fonction de la variable
d’intérêt et de la région concernée. En outre, l’augmentation de l’échéance (c’est-à-dire le
temps écoulé entre l’émission d’une prévision et sa validité) est associée à une diminution de
la prévisibilité. Comme ces erreurs sont systématiques, elles peuvent être corrigées par des
approches statistiques appelées méthodes statistiques de post-traitement.

D.1.2 Post-traitement statistique

Les méthodes de post-traitement statistique visent à utiliser les paires passées de l’ensemble
brut et d’observations pour améliorer la prévision d’une variable d’intérêt. Le terme ensemble
brut désigne la sortie d’ensemble non traitée (c’est-à-dire brute) des systèmes de PNT. L’objectif
étant de fournir des prévisions informatives aux utilisateurs finaux, les prévisions doivent être
probabilistes. Prévisions probabilistes fournissent une prévision sous la forme d’une distribution.
Cela permet de quantifier l’incertitude de la prévision, garantissant ainsi une prise de décision
optimale (Gneiting and Katzfuss, 2014). L’ensemble brut est une prévision probabiliste car il
peut être interprété comme une distribution empirique où tous les membres ont la même prob-
abilité. Les prévisions probabilistes peuvent prendre la forme de n’importe quelle formulation
capable de décrire l’intégralité de la distribution de probabilité. Dans un cadre univarié, elles
peuvent prendre la forme d’une fonction de densité de probabilité, d’une fonction de répartition
ou d’une fonction quantile, par exemple.

Les méthodes de post-traitement statistique peuvent être classées de plusieurs manières.
Nous présentons trois classifications différentes de méthodes basées sur leur paramétrage distri-
butionnel, leur utilisation et leur complexité. Premièrement, les méthodes de post-traitement
statistique peuvent être classées en deux groupes (”non paramétriques” et ”paramétriques”)
sur la base de l’hypothèse d’une famille de distributions. Les méthodes non paramétriques
comprennent analog ensemble (voir, par exemple, Delle Monache et al. 2013) qui utilise des
situations atmosphériques antérieures similaires pour améliorer l’ensemble brut. Analog en-
semble est lié aux méthodes de k-nearest neighbor (k-NN; k plus proches voisins), comme
expliqué dans l’Annexe C. Quantile regression forest (QRF ; Taillardat et al. 2016) est une
méthode non paramétrique qui utilise les données dans les nœuds terminaux (c’est-à-dire les
feuilles) d’une forêt aléatoire pour calculer une moyenne pondérée des distributions empiriques.
Les méthodes paramétriques comprennent l’ensemble model output statistics (EMOS ; Gneit-
ing et al. 2005), qui suppose que la distribution prédite est une distribution normale dont les
paramètres dépendent linéairement des statistiques sommaires de l’ensemble brut. Les méthodes
paramétriques fournissent une famille de distributions paramétriques adaptées à la variable con-
sidérée (par exemple, basées sur la théorie des valeurs extrêmes ; Friederichs et al. 2018). La
plupart des méthodes non paramétriques n’ont pas de capacité d’extrapolation au-delà de la
plage des données observées, mais sont capables de conserver les caractéristiques de la vraie
distribution à partir des données observées. La frontière entre les deux classes est poreuse
: les QRF avec extension de queue (TQRF ; Taillardat et al. 2019) sont une méthode semi-
paramétrique qui ajuste une distribution paramétrique sur la sortie d’une QRF. La classification
en méthodes paramétriques et non paramétriques est examinée plus en détail dans Vannitsem
et al. (2021).

Deuxièmement, les méthodes de post-traitement statistique diffèrent également dans leur
utilisation. L’utilisation la plus courante du post-traitement consiste à post-traiter séparément
les marginales univariées et la structure de dépendance. La structure de dépendance peut être
obtenue à partir de l’ensemble brut, comme dans le cas du couplage de copules d’ensemble
(ECC ; Schefzik et al. 2013), ou à partir d’observations historiques, comme dans le cas Schaake
shuffle (ScS ; Clark et al. 2004). Par ailleurs, si l’ensemble brut ou les données historiques ne
modélisent pas suffisamment bien la structure de dépendance, ils peuvent être post-traités à

172



l’aide de techniques adaptées telles qu’une approche par copule gaussienne (voir, par exemple,
Möller et al. 2013). Certaines méthodes de post-traitement statistique prennent directement
en compte des quantités multivariées (par exemple, Pinson et al. 2009). Les lecteurs peu-
vent se référer à Schefzik and Möller (2018) pour plus de détails sur le post-traitement de la
structure de dépendance. Certaines méthodes traitent directement et simultanément chaque
membre de l’ensemble brut. Member-by-member (Van Schaeybroeck and Vannitsem, 2015) cor-
rige la moyenne et la dispersion de l’ensemble via une combinaison linéaire des prédicteurs
bruts. Le post-traitement des ensembles à l’aide de transformers (PoET ; Ben Bouallègue et al.
2024b) utilise des transformateurs dans une architecture U-Net pour post-traiter les membres
de l’ensemble.

Troisièmement, les méthodes de post-traitement statistique diffèrent par leur niveau de
complexité. Les méthodes les moins complexes sont liées aux méthodes d’apprentissage statis-
tique, comme par exemple analog ensemble et k-NN et QRF et les forêts aléatoires (Breiman,
2001; Meinshausen, 2006). La relative simplicité de ces méthodes permet plus de simplicité
mais moins de flexibilité en termes de modélisation de la dépendance d’une variable d’intérêt
en fonction de prédicteurs. Des méthodes plus complexes issues du machine learning peuvent
également être employées. Les distributional regression networks (DRN ; Rasp and Lerch 2018)
sont une approche basée sur les réseaux neuronaux (NN) qui prédit les paramètres d’une distri-
bution d’intérêt. Elle tire parti de la flexibilité des réseaux de neurones entièrement connectés
pour modéliser la dépendance des paramètres par rapport aux covariables (utilisées en entrée
du DRN). Le DRN peut être considéré comme une extension d’EMOS. Au lieu de modéliser
linéairement la dépendance des paramètres sur les statistiques sommaires de l’ensemble brut,
il permet de prendre en compte des dépendances non linéaires plus souples. À l’extrémité
supérieure du spectre de complexité se trouvent les méthodes basées sur les techniques de deep
learning (DL). L’approche PoET, présentée ci-dessus, utilise des transformers qui ont été in-
troduits à l’origine pour les tâches de traitement du langage naturel (Vaswani et al., 2017).
Toutes les méthodes basées sur l’apprentissage profond ne représentent pas le même niveau de
complexité. La complexité peut s’accompagner d’une augmentation de la flexibilité, mais aussi
de la difficulté de mise en œuvre. Le Chapitre 3 propose une méthode basée sur U-Net pour
prédire les distributions paramétriques qui étend DRN aux données en grille.

Ces trois classifications donnent un premier aperçu du large éventail de méthodes de post-
traitement statistique. Pour des aperçus plus détaillés, les lecteurs peuvent se référer à Taillardat
et al. (2019), Vannitsem et al. (2021) et Schulz and Lerch (2022b).

Comme nous l’avons brièvement mentionné, différentes méthodes de post-traitement peuvent
être préférées en fonction de l’application. Nous nous concentrons brièvement sur les méthodes
paramétriques pour discuter explicitement de la manière dont les variables d’intérêt diffèrent
en termes de post-traitement. Tout d’abord, différentes familles de distribution sont adaptées
à différentes variables. Par exemple, la température et la pression au niveau de la mer peu-
vent être modélisées par des distributions normales. D’autres variables peuvent présenter des
distributions asymétriques, multimodales ou discontinues qui peuvent être modélisées à l’aide
de familles de distribution tronquées, censurées ou mixtes. Par exemple, les précipitations
présentent une masse atomique en zéro liée aux événements secs (c’est-à-dire l’absence de
précipitations). En outre, les précipitations présentent souvent une queue lourde ; une famille
de distribution s’appuyant sur la théorie des valeurs extrêmes peut donc améliorer le post-
traitement. Lerch and Thorarinsdottir (2013) a proposé une variante d’EMOS utilisant une
distribution (GEV) pour le post-traitement de la vitesse maximale quotidienne du vent. Tail-
lardat et al. (2019) présente TQRF comme une extension de QRF pour améliorer la prévision
des précipitations extrêmes. Un examen complet du post-traitement des événements extrêmes
est fourni dans Friederichs et al. (2018).

En outre, Hemri et al. (2014) et Taillardat and Mestre (2020) ont souligné que toutes
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les variables d’intérêt ne représentent pas la même difficulté en termes de post-traitement.
Les variables présentant une dépendance spatio-temporelle à courte échelle (par exemple, les
précipitations ou les rafales de vent) sont plus difficiles à traiter que les variables lisses dans
l’espace (par exemple, la température de surface ou la pression au niveau de la mer). Dans
le même ordre d’idées, Schulz and Lerch (2022b) indique que ”les rafales de vent sont une
variable cible météorologique difficile car elles sont régies par des processus à petite échelle
et une occurrence locale, de sorte que leur prévisibilité est limitée même pour les modèles de
prévision météorologique numérique exécutés à des résolutions permettant la convection”. La
prévisibilité des variables est liée à leurs caractéristiques physiques et à leur représentation dans
les modèles de PNT.

D.1.3 Vérification de prévisions probabilistes

La vérification des prévisions probabilistes répond à deux objectifs principaux : quantifier
la performance prédictive d’une prévision et comparer des prévisions concurrentes. Dans le
contexte du post-traitement statistique, la prévision de référence évidente est l’ensemble brut
et les techniques de post-traitement devraient améliorer la performance prédictive par rapport
à cette référence.

Gneiting et al. (2007) a proposé un paradigme pour l’évaluation des prévisions probabilistes
: ”maximizing the sharpness of the predictive distributions subject to calibration.” La calibra-
tion est la compatibilité statistique entre les prévisions et les observations. La sharpness est
la concentration de la prévision et est une propriété de la prévision elle-même. En d’autres
termes, le paradigme vise à minimiser l’incertitude de la prévision, étant donné que la prévision
est statistiquement cohérente avec les observations. Ce principe d’évaluation des prévisions
probabilistes a fait l’objet d’un consensus dans le domaine des prévisions probabilistes (voir,
par exemple, Gneiting and Katzfuss 2014; Thorarinsdottir and Schuhen 2018).

Pour les prévisions univariées, il existe plusieurs définitions de calibration en fonction du
contexte. La définition la plus utilisée est la calibration probabiliste et, d’une manière générale,
elle consiste à calculer le rang des observations parmi les échantillons de la prévision et à vérifier
l’uniformité par rapport aux observations. Si la prévision est calibrée, les observations ne de-
vraient pas pouvoir être distinguées des échantillons de la prévision et la distribution de leurs
rangs devrait donc être uniforme. La calibration probabiliste peut être évaluée par des his-
togrammes de transformation intégrale de probabilité (Dawid, 1984) ou des histogrammes de
rang (Anderson, 1996; Talagrand et al., 1997) pour les prévisions d’ensemble lorsque les ob-
servations sont stationnaires (c.-à-d. que leur distribution est la même dans le temps). Les
lecteurs intéressés par une compréhension plus approfondie de l’étalonnage des prévisions uni-
variées sont invités à consulter Tsyplakov (2013, 2020). Pour les prévisions multivariées, une
approche populaire repose sur un principe similaire : tout d’abord, les échantillons de prévisions
multivariées sont transformés en quantités univariées à l’aide de ce que l’on appelle des fonctions
de pre-rank, puis la calibration est évaluée à l’aide de techniques utilisées dans le cas univarié
(voir, par exemple, Gneiting et al. 2008; Allen et al. 2024).

D’un point de vue quantitatif, les règles de score fournissent une évaluation quantitative
de la qualité d’une prévision probabiliste au regard de l’observation qui se concrétise. Une
règle de score S attribue une quantité réelle S(F, y) à une paire prévision-observation (F, y), où
F ∈ F est une prévision probabiliste et y ∈ Rm une observation. Dans la convention orientée
négativement, une règle de score S est propre par rapport à la classe F si

EG[S(G,Y )] ≤ EG[S(F,Y )] (D.1)

pour tout F,G ∈ F , où EG[· · · ] est l’espérance par rapport à Y ∼ G. En termes simples,
une règle de score est propre par rapport à une classe de distribution si sa valeur attendue
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est minimale lorsque la vraie distribution est prédite, pour n’importe quelle distribution de la
classe. En outre, la règle de score S est strictement propre par rapport à la classe F si l’égalité
dans (D.1) se vérifie si et seulement si F = G. Cela garantit la caractérisation de la prévision
idéale (c’est-à-dire qu’il existe une prévision unique associée à l’espérance minimale et qu’il
s’agit de la vraie distribution). En outre, les règles de score propres sont des outils puissants car
elles permettent d’évaluer simultanément la calibration et la sharpness (Winkler, 1977; Winkler
et al., 1996).

Toutefois, comme le rappellé dans le Chapitre 4, la propreté (stricte) ne suffit pas pour
obtenir des règles de score informatives. Nous proposons un cadre pour construire des règles
de score propres interprétables qui sont plus informatives dans la vérification des prévisions
probabilistes spatiales.

De plus, comme les méthodes de post-traitement statistique apprennent à prédire une dis-
tribution probabiliste sur la base d’observations passées, leur évaluation pratique devrait être
basée sur un ensemble indépendant de données non vues afin d’éviter tout biais potentiel. Dans
la pratique, des limitations supplémentaires peuvent résulter de la saisonnalité ou du manque
de cohérence des données (par exemple, en raison du changement climatique ou des mises à jour
des systèmes de prévision numérique du temps).

D.2 Distributional regression and its evaluation with the CRPS:
bounds and convergence of the minimax risk

De nombreuses méthodes de post-traitement statistique reposent sur la régression distribution-
nelle. Les méthodes de post-traitement visent à modéliser la distribution conditionnelle d’une
variable d’intérêt Y ∈ Rm (par exemple, les précipitations cumulées sur 3 heures) compte tenu
de la sortie d’un modèle physique X ∈ Rd (par exemple, sous la forme de résumés statistiques),
dénotée F ∗

X . Dans un contexte de vérification, les règles de score sont utilisées pour mesurer et
comparer les performances prédictives de prévisions probabilistes concurrentes. Les règles de
score peuvent être considérées comme l’équivalent des fonctions de perte (également connues
sous le nom de fonctions de score) dans la régression ponctuelle.

Soit S(F,G) = EG [S(F, Y )] le score espéré de F pour la règle de score S. En régression
distributionnelle, la performance prédictive d’une prévision probabiliste F̂ : x 7→ F̂x est évaluée
par son risque théorique

RP (F̂ ) = E(X,Y )∼P

[
S(F̂X , Y )

]
;

= EX∼PX

[
S(F̂X , F ∗

X)
]
,

où P est la distribution jointe de (X,Y ) et PX est la distribution marginale de X. Si S est
strictement propre, alors F ∗ est un prédicteur de Bayes et son risque théorique

RP (F ∗) = E(X,Y )∼P [S(F ∗
X , Y )] ;

= EX∼PX

[
S(F ∗

X , F ∗
X)
]

est le risque de Bayes. Nous rappelons que le risque de Bayes est le risque théorique minimal
pour tous les prédicteurs possibles et qu’un prédicteur de Bayes est un prédicteur qui atteint
le risque de Bayes. En outre, si S est strictement correct, l’ensemble des prédicteurs de Bayes
sont les prévisions F̂ telles que F̂X = F ∗

X PX -presque partout.
Les techniques de post-traitement statistique reposent sur un échantillon d’apprentissage

Dn = {(Xi, Yi), 1 ≤ i ≤ n} et sont évaluées en termes de performance prédictive par rapport
à de nouvelles données (X,Y ). L’échantillon d’apprentissage Dn et les données de test (X,Y )
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sont indépendants et identiquement distribués à partir de la même distribution P . Étant donné
l’échantillon d’apprentissage Dn, un algorithme F̂n : x 7→ F̂n,x est construit pour estimer la
distribution conditionnelle F ∗

x . Dans ce contexte, le risque théorique de F̂n est exprimé comme
suit

EDn∼Pn

[
RP (F̂n)

]
= EDn∼PnE(X,Y )∼P

[
S(F̂n,X , Y )

]
;

= EDn∼PnEX∼PX

[
S(F̂n,X , F ∗

X)
]
.

Le risque théorique est moyenné sur les valeurs possibles de l’échantillon d’apprentissage Dn, ce
qui le rend uniquement dépendant de la distribution P et de la taille de l’échantillon n. Comme
précédemment, si la règle de score S est strictement propre, F ∗ est un prédicteur de Bayes et
son risque est le risque de Bayes. La quantité d’intérêt est alors l’excès de risque défini comme
la différence entre le risque théorique d’un algorithme F̂n et le risque de Bayes :

EDn∼Pn

[
RP (F̂n)

]
−RP (F ∗) = EDn∼PnEX∼PX

[
S(F̂n,X , F ∗

X) − S(F ∗
X , F ∗

X)
]
. (D.2)

Lorsque S est propre, la différence entre les scores espérés du côté droit de l’équation est appelée
divergence de S (voir, par exemple, Gneiting and Katzfuss 2014, Section 3.1 et Thorarinsdottir
et al. 2013).

Nous nous intéressons aux résultats de convergence en régression distributionnelle. Le cadre
présenté ci-dessus est largement utilisé dans la pratique mais manque de garanties théoriques.
La plupart des énoncés de convergence dans la régression distributionnelle sont non seulement
dérivés dans un cadre inconditionnel, mais supposent également des tailles d’échantillon arbi-
trairement grandes (voir, par exemple, Thorey et al. 2017 et Mösching and Dümbgen 2020).
Une exception est la régression distributionnelle isotonique qui, sous des hypothèses de mono-
tonicité, minimise le continuous ranked probability score (CRPS) et est consistante au sens de
la distance de Kolmogorov (Henzi et al., 2021).

Nous nous concentrons sur le cas univarié (m = 1) car il correspond au cadre de nombreuses
méthodes de post-traitement statistique. De plus, nous choisissons le CRPS (Matheson and
Winkler, 1976) comme étant la règle de score qui nous intéresse, qui a l’avantage d’être stricte-
ment propre par rapport à P1(R) (c.-à-d. les distributions sur R avec un premier moment fini).
Puisque m = 1, les distributions sont identifiées à leur fonction de répartition (cdf). La diver-
gence du CRPS est la norme L2 de la différence entre la cdf de F̂X et la cdf conditionnelle F ∗

X

(également connue sous le nom de distance de Cramér au carré du second ordre ou de distance
quadratique intégrée; Thorarinsdottir et al. 2013).

En régression ponctuelle, il est nécessaire de restreindre la convergence sur une classe donnée
de distribution pour obtenir des résultats non triviaux (Stone 1982; Györfi et al. 2002). Afin
d’étudier le taux de convergence de l’excès de risque (D.2) vers zéro lorsque n → ∞, nous
introduisons la notion de taux de convergence minimax optimal. Le risque minimax correspond
au meilleur risque réalisable dans le pire des cas (d’où le nom minimax). Plus précisément,
étant donné une classe de distributions D, le taux de convergence optimal minimax quantifie
l’erreur minimale qu’un algorithme F̂n peut atteindre uniformément sur une classe donnée
de distributions D, lorsque la taille n de l’ensemble d’apprentissage Dn devient importante.
La définition formelle du taux de convergence minimax en régression distributionnelle est la
suivante.

Definition D.1. Une suite positive (an) est appelée taux de convergence optimal minimax sur
la classe D si

lim inf
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)] −RP (F ∗)

an
> 0 (D.3)
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et

sup
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)] −RP (F ∗)

an
< ∞, (D.4)

où l’infimum est pris sur tous les modèles de régression distributionnelle F̂n formés sur Dn.
Si la suite (an) ne satisfait que la borne inférieure (D.3), elle est appelée taux de convergence
minimax minimal.

Nous considérons les classes de distributions suivantes.

Definition D.2. Pour h ∈ (0, 1], C > 0 et M > 0, soit D(h,C,M) la classe de distributions P
telle que F ∗

x (y) = P (Y ≤ y|X = x) vérifie :

i) X ∈ [0, 1]d PX-a.s. ;

ii) Pour tout x ∈ [0, 1]d,
∫

R F ∗
x (z)(1 − F ∗

x (z))dz ≤ M ;

iii) ∥F ∗
x′ − F ∗

x∥L2 ≤ C∥x′ − x∥h pour tous x, x′ ∈ [0, 1]d.

Les conditions définissant la classe de distribution D(h,C,M) sont analogues aux conditions
en régression ponctuelle. Nous proposons une interprétation et une discussion des conditions
i)− iii). La condition i) est une condition sur les covariables et peut être étendue à un compact.
Cette condition découle du fait que l’augmentation du nombre d’échantillons n tente de remplir
l’espace des covariables afin d’avoir un échantillon d’apprentissage représentatif de toutes les
valeurs possibles. Par conséquent, chaque point de covariable doit être accessible et l’étendue
de l’espace des covariables a un impact sur la convergence. La condition ii) limite la sharpness
(ou l’entropie) de F ∗

x pour tout x ∈ [0, 1]d. La sharpness est associée à l’information trans-
portée par la distribution, et il peut sembler intuitif que moins il y a d’information transportée
(c’est-à-dire plus M est grand), plus il faut d’échantillons pour obtenir la même performance
prédictive (en termes de risque théorique). La condition iii) est une condition de régularité
imposant que des covariables proches conduisent à des distributions conditionnelles proches.
Puisque l’algorithme F̂n utilise la connaissance des observations passées pour estimer la dis-
tribution conditionnelle à X = x et que l’augmentation du nombre d’échantillons n conduit à
avoir des données d’apprentissage plus proches de X = x, la régularité de F ∗ est nécessaire
pour garantir que l’augmentation de n est associée à une augmentation de la prédictibilité.

La définition D.1 peut être reformulée : un taux de convergence minimal optimal sur la
classe D est un taux de convergence minimax minimal sur D, et il existe un algorithme F̂n

réalisant ce taux. Nous sommes capables d’obtenir un taux de convergence minimax inférieur
en utilisant une sous-classe de D(h,C,M) qui réduit le problème à des résultats standards de
régression ponctuelle (Györfi et al., 2002).

Afin de trouver un algorithme F̂n qui atteigne le taux de convergence minimax minimal
obtenu, nous étudions les méthodes k-nearest neighbor (k-NN) et les méthodes à noyau. La
méthode k-NN est bien connue dans le cadre classique de la régression et de la classification
(voir, par exemple, Biau and Devroye 2015). En régression distributionnelle, k-NN peut être
adapté de manière propre pour estimer la distribution conditionnelle F ∗

x et l’estimateur s’écrit
comme suit

F̂n,x(z) =
1

kn

kn∑
i=1

1Yi:n(x)≤z, (D.5)

où 1 ≤ kn ≤ n et Yi:n(x) désigne l’observation au i-ième plus proche voisin de x. Comme
d’habitude, les éventuelles égalités sont rompues au hasard pour définir les plus proches voisins.
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L’estimateur à noyau en régression distributionnelle (voir, par exemple, Györfi et al. 2002,
Chapter 5) peut être exprimée comme suit

F̂n,x(z) =

∑n
i=1K(x−Xi

hn
)1Yi≤z∑n

i=1K(x−Xi
hn

)
, (D.6)

si le dénominateur est différent de zéro. Lorsque le dénominateur est nul, nous utilisons la con-
vention F̂n,x(z) = 1

n

∑n
i=1 1Yi≤z. La largeur de bande hn > 0 dépend de la taille de l’échantillon

n, et la fonction K : Rd → [0,∞) est appelée le noyau.
Nous obtenons des limites supérieures explicites et non asymptotiques pour l’excès de

risque (D.2) de la méthode k-NN et de la méthode à noyau, respectivement, uniformément
sur calD(h,C,M). L’optimisation des bornes par rapport à des choix appropriés de kn et hn
conduit aux résultats suivants sur le taux de convergence optimal minimax.

Theorem D.1. La suite an = n− 2h
2h+d est le taux de convergence minimax optimal sur la classe

D(h,C,M).

En particulier, les méthodes k-NN et à noyau atteignent le taux de convergence minimal
optimal en dimension d ≥ 2 et en toute dimension d, respectivement. Dans le contexte du
post-traitement statistique, les méthodes k-NN et à noyau sont liées aux techniques d’analog
ensemble (voir, par exemple, Delle Monache et al. 2013), et cette relation est examinée plus en
détail dans l’annexe C. Des commentaires supplémentaires sur le chapitre 2 sont fournis dans
l’annexe C.

Chapitre 2 : Résumé des contributions

• Nous formalisons un cadre permettant d’adapter les concepts de la théorie de
l’estimation à l’étude des risques théoriques en termes de règles de score.

• Nous obtenons le taux de convergence optimal minimax en régression distribution-
nelle pour une classe de distributions donnée (Théorème 2.1).

• Les méthodes k-NN et à noyau atteignent le taux de convergence minimax optimal
en dimension d ≥ 2 et en toute dimension d, respectivement.

• Nous obtenons des bornes supérieures non asymptotiques sur le taux de conver-
gence pour les méthodes k-NN et à noyau avec une taille d’échantillon fixe n
(Propositions 2.1 et 2.2).

• Les résultats peuvent être étendus au CRPS pondéré par seuil (voir l’annexe C).

D.3 Distributional regression U-Nets for the postprocessing of
precipitation ensemble forecasts

Opérationnellement à Météo-France, le post-traitement des prévisions de température et de
précipitations repose sur des modèles locaux (c’est-à-dire un modèle par localisation) basés sur
des forêts aléatoires (Taillardat and Mestre, 2020). Les forêts de régression quantiles (QRF
; Meinshausen 2006) sont une méthode non paramétrique capable de prédire des quantiles
conditionnels ou, plus généralement, une distribution conditionnelle. De manière similaire aux
forêts aléatoires, elles utilisent les données dans les nœuds terminaux (c’est-à-dire, les feuilles)
pour calculer une moyenne pondérée des distributions empiriques. Les QRF ont prouvé leur
performance pour une grande variété de variables (Taillardat et al., 2016; Whan and Schmeits,
2018; van Straaten et al., 2018; Rasp and Lerch, 2018; Taillardat et al., 2019; Schulz and
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Lerch, 2022b). Les QRF sont connues pour avoir trois principales limitations : une potentielle
incohérence spatiale, une voracité en mémoire de stockage (Taillardat and Mestre, 2020), et une
incapacité à extrapoler.

Rasp and Lerch (2018) a proposé les réseaux de régression distributionnelle (DRN), un
modèle global basé sur les réseaux de neurones (NN) qui prédit les paramètres d’une distribu-
tion d’intérêt. Il exploite la flexibilité des NN pour modéliser la dépendance des paramètres
aux covariables (utilisées comme entrées du DRN). Le DRN peut être considéré comme une
extension d’EMOS (Gneiting et al., 2005), qui ajuste lui-même une distribution paramétrique
où les paramètres dépendent linéairement des statistiques sommaires de l’ensemble brut. Le
DRN est un modèle global grâce à la présence d’un module d’embedding au sein de son archi-
tecture, permettant au réseau d’apprendre des paramètres spécifiques à une localisation et de
bénéficier des données provenant de localisations similaires. Rasp and Lerch (2018) et Schulz
and Lerch (2022b) ont montré que DRN surpasse les autres méthodes de pointe dans la plupart
des stations en Allemagne pour le post-traitement de la température et des rafales de vent,
respectivement. Bien qu’il soit un modèle global, l’architecture du DRN le rend mal adapté aux
données grilles. Son architecture ne tient pas compte de la structure spatiale des points et doit
donc tenter de l’apprendre via son module d’embedding.
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Figure D.1: Architecture des U-Nets de régression distributionnelle. Conv signifie convolution,
BN signifie normalisation par lot, ReLU signifie rectified linear unit et Bilin. Upsampling
signifie échantillonnage bilinéaire. p est le nombre de paramètres de distribution : pour GTCND
et CSGD, p = 3.

Nous proposons une méthode de régression distributionnelle basée sur U-Net adaptée aux
données grilles, qui prédit les paramètres des distributions marginales à chaque point de grille.
La régression distributionnelle U-Net (DRU) prend en entrée à la fois des champs constants
(par exemple, l’orographie) et des résumés statistiques de l’ensemble brut (voir Figure ??). Sur
la partie gauche, la succession de blocs convolutionnels spécifiques (flèches rouges et flèches vio-
lettes) conduit à une augmentation du nombre de caractéristiques et à une réduction de la dimen-
sion spatiale (c’est-à-dire un grossissement de la résolution spatiale) au fur et à mesure que les
données progressent dans le réseau. Ces blocs convolutionnels sont construits afin d’apprendre
des représentations utiles des caractéristiques des champs à différentes échelles spatiales. Sur
la partie droite, les blocs de mise à l’échelle (flèches orange), basés sur un échantillonnage
bilinéaire, utilisent les caractéristiques apprises dans la partie centrale de l’architecture pour
prédire des caractéristiques à des résolutions plus fines et finalement apprendre les paramètres
de la distribution sélectionnée. De plus, nous utilisons des connexions de saut (flèches jaunes)
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car elles ont prouvé qu’elles améliorent la stabilité de la convergence des NN (Li et al., 2018).

Nous nous concentrons sur les précipitations accumulées sur 3 heures dans le sud de la France,
qui est une région sujette aux événements de précipitations méditerranéennes intenses. Les
prévisions d’ensemble sont issues du système de prévision d’ensemble à 17 membres PEAROME
(Bouttier et al., 2015), qui produit un ensemble maillé sur l’Europe de l’Ouest avec une résolution
horizontale de 0.025◦. Les prévisions probabilistes sont comparées aux données de précipitations
accumulées sur 3 heures obtenues à partir du produit radar ajusté par pluviomètre ANTILOPE
(Champeaux et al., 2009). La précipitation est une grandeur météorologique difficile à prévoir
en raison de sa climatologie à queue lourde et de sa dépendance spatio-temporelle à courte
échelle (Hemri et al., 2014; Taillardat and Mestre, 2020). De plus, un autre aspect difficile de
l’ensemble de données est que seules trois années de données d’entrâınement sont disponibles.
Cela est particulièrement difficile en ce qui concerne la prévision de fortes précipitations.

Pour adapter la prévision des précipitations, deux distributions paramétriques avec une
masse atomique en zéro (c’est-à-dire, pour les événements secs) sont sélectionnées : la distri-
bution normale tronquée/censurée généralisée (GTCND ; Jordan et al. 2019) et la distribution
gamma décalée-censurée (CSGD ; Scheuerer and Hamill 2015a). Nous désignons U-Net+distrib
le DRU où distrib est la distribution paramétrique.

(a) CRPSSde U-Net+CSGD par rapport à raw (b) CRPSS de U-Net+CSGD par rapport à QRF

Figure D.2: Performance predictive de U-Net+CSGD en terme de CRPS. CRPSS par rapport
à (a) l’ensemble brut (raw) et QRF (b) de U-Net+CSGD.

Le Chapitre 3 fournit une comparaison approfondie entre l’ensemble brut, QRF, QRF avec
extension de queue (TQRF ; Taillardat et al. 2019) et DRU. Ici, nous fournissons une com-
paraison simplifiée entre U-Net+CSGD, l’ensemble brut et QRF uniquement. En termes de
CRPS, l’amélioration relative peut être exprimée en utilisant le continuous ranked probability
skill score (CRPSS) défini comme

CRPSS(F, Fref) = 1 − EG[CRPS(F, Y )]

EG[CRPS(Fref , Y )]
,

où G est la distribution des observations et EG[· · · ] est l’espérance par rapport à Y ∼ G. Le
CRPSS est positif si la prévision F améliore le CRPS attendu par rapport à la prévision de
référence Fref , et négatif sinon. Dans ce qui suit, le CRPSS est exprimé en pourcentage. La
Figure D.2 fournit le CRPSS de U-Net+CSGD par rapport à l’ensemble brut et à QRF. U-
Net+CSGD conduit à un CRPSS de 22, 36% par rapport à l’ensemble brut en moyenne sur la
région d’intérêt. Comme QRF, les DRU conduisent à une amélioration en termes de CRPSS
sur la grande majorité des points de grille. Néanmoins, il existe des zones où leur perfor-
mance prédictive est inférieure à celle de l’ensemble brut. Ces zones sont situées sur la mer
Méditerranée ou près de la côte, et un patch est localisé dans la vallée du Rhône. Cela est dû
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au fait que la zone au-dessus de la mer Méditerranée est associée aux plus faibles accumulations
de précipitations et à une qualité d’observation moindre, car elle est éloignée du radar le plus
proche et ne peut pas être corrigée par les pluviomètres. Globalement, U-Net+CSGD présente
un CRPS attendu supérieur à celui de QRF (CRPSS moyen de −1, 37%), mais ils présentent
une performance prédictive améliorée (en termes de CRPS) sur une partie non négligeable de
la région d’intérêt. En excluant les points de grille situés au-dessus de la mer et à la frontière,
le CRPSS moyen par rapport à QRF est de 0, 26%, montrant que U-Net+CSGD a une perfor-
mance prédictive comparable à QRF sur terre en termes de CRPS.

Comme mentionné dans la Section D.1.3, les histogrammes de rang sont un outil de di-
agnostic utile pour la calibration probabiliste des prévisions. En particulier, la planéité de
l’histogramme de rang caractérise les prévisions calibrées. La planéité et d’autres formes infor-
matives peuvent être testées statistiquement par ce que l’on appelle ici les tests Jolliffe-Primo-
Zamo (JPZ) (Jolliffe and Primo, 2008; Zamo, 2016). La Figure D.3 montre les histogrammes
de rang sur l’ensemble de la grille et les tests JPZ pour la planéité. Comme c’est souvent le cas,
l’ensemble brut est biaisé et sous-dispersé, ce qui est visible par la forme triangulaire des his-
togrammes de rang et par le fait que les rangs les plus bas et les plus élevés sont surreprésentés.
Le test JPZ confirme que la prévision de l’ensemble brut n’est pas calibrée (seulement 6% des
points de grille ne rejettent pas la planéité de l’histogramme de rang). QRF montre une cali-
bration très élevée avec des tests JPZ ne rejetant pas la planéité à 93% des points de grille. Les
méthodes U-Net+CSGD présentent un niveau de calibration inférieur à celui de QRF, mais elles
sont encore significativement calibrées. Les tests JPZ ne rejettent pas l’hypothèse de planéité
pour 77% des points de grille. Les points de grille pour lesquels les prévisions U-Net+CSGD
ne sont pas calibrées (c’est-à-dire les JPZ rejetant l’hypothèse de planéité) sont associés à des
climatologies élevées.

Figure D.3: Histogramme de rang pour l’ensemble brut, QRF et U-Net+CSGD.

Pour se concentrer sur la performance prédictive des prévisions concernant les événements
extrêmes, nous nous intéressons à la prédiction d’événements binaires sous la forme du dépassement
d’un seuil élevé t (voir Fig. D.4). Nous utilisons les courbes ROC (Receiver Operating Charac-
teristic) pour évaluer le pouvoir discriminant des prévisions en termes de décisions binaires. En
particulier, les courbes ROC peuvent informer sur le risque de manquer un événement extrême.
Une bonne prévision doit maximiser le taux d’événements détectés tout en minimisant les fausses
alertes. Pour des seuils élevés t = 10 mm et t = 20 mm (correspondant respectivement aux
quantiles de niveau 0,995 et 0,999 de la climatologie sur la région d’intérêt), les courbes ROC des
différentes méthodes de post-traitement ont un classement clair. Pour les deux seuils, la perfor-
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Figure D.4: Courbes Receiver Operating Characteristic (ROC) d’évènements binaires corre-
spondant au dépassement d’un seuil t = 10 mm et t = 20 mm.

mance de l’ensemble brut est proche du choix aléatoire (ligne pointillée). Pour t = 10 mm, QRF
et U-Net+CSGD sont tous deux capables de maintenir un bon pouvoir prédictif. Cependant,
U-Net+CSGD a de meilleures performances que QRF. Pour t = 20 mm, l’écart de performance
entre U-Net+CSGD et QRF continue de crôıtre à mesure que la performance prédictive de QRF
se détériore.

Nous proposons des méthodes basées sur U-Net qui peuvent simultanément post-traiter les
distributions marginales à chaque point de grille en utilisant les informations des points de grille
voisins. Cela permet d’éviter la voracité en mémoire de stockage et l’incapacité à extrapoler de
QRF. Le DRU surpasse l’ensemble brut pour toutes les métriques utilisées. De plus, les DRU
ont des performances prédictives comparables aux méthodes basées sur QRF en termes de
CRPS. Les DRU sont (probabilistiquement) calibrés sur une grande partie du domaine étudié,
sauf pour les zones associées à de fortes précipitations climatologiques. En ce qui concerne le
pouvoir prédictif pour les fortes précipitations, U-Net+CSGD surpasse les méthodes basées sur
QRF.

Chapter 3 : Résumé des contributions

• Le U-Net de régression distributionnelle (DRU) est un modèle global qui prédit
des distributions paramétriques marginales et contourne certaines des limitations
connues de QRF. Il fournit une extension naturelle de DRN aux données sur grille.

• Nous passons en revue les méthodes utilisant des architectures U-Net dans le post-
traitement statistique (Table 3.4).

• En termes de CRPS, les performances prédictives du DRU sont comparables aux
méthodes de pointe (Figure 3.5 et Table 3.5)

• Les DRU fournissent des prévisions (probabilistiquement) calibrées sur la plupart
des points de grille. Cependant, ils échouent dans les zones de fortes précipitations
climatologiques (Figures 3.8 et 3.9).

• U-Net+CSGD surpasse les autres méthodes en termes de dépassement des seuils
de précipitations élevées (Figure 3.10).
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D.4 Proper scoring rules for multivariate probabilistic forecasts
based on aggregation and transformation

La section précédente (et le chapitre associé) ne post-traite pas la structure de dépendance de
la quantité d’intérêt, supposant qu’elle peut être récupérée à partir de l’ensemble brut (par
exemple, en utilisant ECC ; Schefzik et al. 2013) ou à partir de la climatologie (par exemple,
en utilisant ScS ; Clark et al. 2004) ou qu’elle peut être traitée séparément comme mentionné
dans la Section D.1. Néanmoins, c’est un aspect crucial des prévisions, car cela peut influencer
l’impact d’un événement. Les prévisions probabilistes spatiales nécessitent des méthodes de
vérification propres.

Les règles de score sont un outil de choix pour quantifier à quel point une prévision est bonne
et pour comparer des prévisions concurrentes. Rappelons que la propreté permet d’évaluer si-
multanément la calibration et la sharpness (Winkler, 1977; Winkler et al., 1996); ainsi, elle
encourage les prévisionnistes à suivre leurs véritables croyances et prévient les contournements.
Cependant, c’est une propriété nécessaire des bonnes règles de score, mais cela ne garantit pas
qu’une règle de score fournit une caractérisation informative de la performance prédictive. En
particulier, la propreté ne garantit pas que les prévisions minimisant le score attendu sont per-
tinentes pour la tâche à accomplir. Même la stricte propriété ne garantit pas que les prévisions
à proximité du score attendu minimum soient proches de la prévision idéale. Dans les con-
textes univariés et multivariés, de nombreuses études ont prouvé qu’aucune règle de score n’a
tout, et donc, différentes règles de score devraient être utilisées pour mieux comprendre la per-
formance prédictive des prévisions (voir, par exemple, Scheuerer and Hamill 2015b; Taillardat
2021; Bjerreg̊ard et al. 2021).

Cela peut expliquer le développement des méthodes de vérification spatiale (Gilleland et al.,
2009; Dorninger et al., 2018), qui sont des méthodes de vérification basées sur la physique pour
les prévisions spatiales. Elles reposent sur la robustesse face à l’effet de double pénalité (Ebert,
2008) et sur l’interprétabilité à la fois des valeurs uniques et du classement des prévisions.
Cependant, la grande majorité des méthodes ne sont pas propres. Dans le contexte des règles
de score propres, l’interprétabilité peut découler d’une fonction de score consistante pour une
fonctionnelle (par exemple, l’erreur quadratique est induite par une fonction de score consistante
pour la moyenne ; Gneiting 2011), de la connaissance des aspects de la prévision que la règle de
score discrimine (par exemple, la règle de score de Dawid-Sebastiani ne discrimine les prévisions
que par leur moyenne et leur variance ; Dawid and Sebastiani 1999) ou de la connaissance des
limites d’une certaine règle de score propre (par exemple, le variogram score est incapable de
discriminer deux prévisions qui ne diffèrent que par un biais constant ; Scheuerer and Hamill
2015b). Dans ce contexte, les règles de score propres et interprétables deviennent des méthodes
de vérification de choix car le classement des prévisions qu’elles produisent peut être plus infor-
matif que le classement d’une règle de score plus complexe mais moins interprétable.

Scheuerer and Hamill (2015b) a proposé le variogram score pour cibler la vérification de la
structure de dépendance. Le variogram score d’ordre p (p > 0) est définie comme

VSp(F,y) =

d∑
i,j=1

wij (EF [|Xi −Xj |p] − |yi − yj |p)2 ,

où Xi est le i-ème composant du vecteur aléatoire X ∈ Rd suivant F , les wij sont des poids
non négatifs, et y ∈ Rd est une observation. La construction du variogram score repose sur
deux principes. Tout d’abord, le variogram score est la somme pondérée de règles de score
agissant sur la distribution de Xi,j = (Xi, Xj) et sur des composants appariés des observations
yi,j . Ce principe d’agrégation permet la combinaison de règles de score propres et les résume
en une règle de score propre agissant sur l’ensemble de la distribution F et des observations
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y. Deuxièmement, les règles de score composant la somme pondérée peuvent être considérées
comme une règle de score propre standard appliquée à des transformations des prévisions et des
observations. Soit γi,j : x 7→ |xi−xj |p la transformation liée au variogramme d’ordre p, alors le
variogram score peut être réécrit comme

VSp(F,y) =
d∑

i,j=1

wijSE(γi,j(F ), γi,j(y)),

où SE(F, y) = (EF [X]− y)2 est l’erreur quadratique univariée (SE) et γi,j(F ) est la distribution
de γi,j(X) pour X ∼ F . Ce deuxième principe est le principe de transformation, permettant de
construire des règles de score propres basées sur des transformations qui peuvent bénéficier de
l’interprétabilité découlant d’une transformation (ici, la transformation de variogramme γi,j) et
de la simplicité et de l’interopérabilité des règles de score propres sur lequelles elles s’appuient
(ici, la SE).

Ces deux principes ont été diffusés dans la littérature au cours des dernières décennies.
Plus explicitement, Dawid and Musio (2014) propose la notion de score composite, qui est
un cas particulier de la combinaison des deux principes. Heinrich-Mertsching et al. (2024)
introduit le principe de transformation et l’applique dans le contexte des processus ponctuels.
Nous formalisons des formes générales des principes d’agrégation et de transformation et leur
combinaison conduit au Corollaire D.1.

Corollary D.1. Soit T = {Ti}1≤i≤m un ensemble de transformations de Rd vers Rk. Soit
ST = {STi}1≤i≤m un ensemble de règles de score propres où S est propre par rapport à Ti(F),
pour tout 1 ≤ i ≤ m. Soit w = {wi}1≤i≤m des poids non négatifs. Alors, la règle de score

SST ,w(F,y) =

m∑
i=1

wiSTi(F,y)

est propre par rapport à F .

Pour gagner en interprétabilité, il est naturel d’avoir des transformations réduisant la di-
mension (c’est-à-dire, k < d) car cela conduit à des transformations simplifiant les quantités
multivariées. En particulier, il est généralement préférable de choisir k = 1 pour rendre la quan-
tité plus facile à interpréter et se concentrer sur des informations spécifiques contenues dans la
prévision ou l’observation. De plus, nous montrons que toutes les règles de score de noyau peu-
vent être exprimées comme l’agrégation de SE appliquées à une séquence de transformations.

Les règles de score basées sur l’agrégation et la transformation peuvent tirer parti de
l’interprétabilité à la fois des transformations et des règles de score standard. Par exemple,
si l’intérêt porte sur la performance prédictive des prévisions en termes de leur prédiction du
dépassement d’un seuil t, le Brier score (Brier, 1950) devrait être utilisé dans un cadre univarié.
Le Brier score s’exprime comme

BSt(F, y) = ((1 − F (t)) − 1y>t)
2 = (F (t) − 1y≤t)

2,

où 1 − F (t) est la probabilité prédite que le seuil t soit dépassé. L’espérance du Brier score
est minimale pour toutes les prévisions F telles que la probabilité de dépassement du seuil t
est correctement prédite. Dans un contexte de vérification spatiale, le dépassement du seuil à
chaque emplacement peut être résumé par le Brier score agrégé

1

d

d∑
i=1

BS(Fi, yi),
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où Fi est la distribution marginale de F à l’emplacement i et yi est la valeur de Y à l’emplacement
i. Dans ce cas, les transformations sont des projections sur chaque emplacement (c’est-à-dire, les
marges unidimensionnelles) et l’agrégation utilise des poids uniformes puisque aucune hypothèse
n’est faite sur les emplacements.

Lorsqu’on considère la structure de dépendance spatiale, une quantité d’intérêt peut être le
dépassement d’un seuil t à des emplacements voisins. Dans le cas des précipitations, les voisi-
nages pourraient être définis comme des bassins versants de rivières. La fraction de dépassement
de seuil (FTE) est la statistique résumée associée au dépassement simultané d’un certain seuil
et elle est définie comme

FTEP,t(X) =
1

|P |
∑
i∈P

1{Xi≥t},

où P est un patch (ou un voisinage) d’intérêt et |P | sa dimension. En utilisant les principes
d’agrégation et de transformation, la SE agrégée de la FTE est défini comme∑

P∈P
wPSE

(
FTEP,t(F ),FTEP,t(y)

)
=
∑
P∈P

wP

(
EF [FTEP,t(X)] − FTEP,t(y)

)2
où P est un ensemble de patchs, wP est le poids associé à un patch P ∈ P. Cette règle de
score est propre et se concentre sur la prédiction du dépassement d’un seuil t via la fraction de
lieux dans un patch P dépassant ce seuil. La ressemblance avec le Brier score est claire et l’SE
agrégé de la FTE devient le BS agrégé lorsque des patchs contenant un seul emplacement sont
considérées.

De nombreux autres exemples de transformations (et des règles de score qui en résultent) sont
présentés, discutés et liés à la littérature dans le Chapitre 4. Plusieurs expériences numériques
sont développées pour illustrer l’importance de l’interprétabilité dans un cadre pratique et,
plus particulièrement, comment les règles de score basées sur l’agrégation et la transformation
peuvent être utilisées dans la vérification des prévisions spatiales. En particulier, nous montrons
comment les règles de score habituelles peuvent être adaptées pour éviter l’effet de double
pénalité.

Chapitre 4 : Résumé des contributions

• Nous fournissons une revue complète des règles de score univariées et multivariées
à la lumière de l’interprétabilité (Section 4.2).

• Nous formalisons un cadre théorique (présent dans la littérature) basé sur les
principes d’agrégation et de transformation pour construire des règles de score
propres interprétables (Section 4.3).

• Les scores de noyau peuvent être exprimés comme une agrégation d’erreurs quadra-
tiques appliquées à une suite de transformations (Proposition 4.3).

• Nous listons des exemples de règles de score basées sur l’agrégation et la transfor-
mation provenant à la fois de la littérature et de suggestions originales (Section 4.4).

• Des expériences numériques ont été réalisées pour illustrer les avantages des règles
de score propres interprétables dans divers contextes (Section 4.5).

• En particulier, des solutions concrètes sont données pour aider à combler le fossé
avec les outils de vérification spatiale.
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D.5 Travaux associés

L’Appendice A et l’Appendice B reproduisent deux travaux connexes réalisés durant la thèse
(Dombry et al., 2024; Al Masry et al., 2023). Ces travaux sont liés à la régression distribu-
tionnelle mais ne sont pas directement connectés au post-traitement statistique. Ci-après, nous
motivons brièvement ces travaux, explicitons leur relation avec les travaux présentés dans les
sections précédentes et résumons leurs principales contributions.

D.5.1 Stone’s theorem for distributional regression in Wasserstein distance

Comme mentionné précédemment, le Chapitre 2 adapte des résultats de la régression ponctuelle
à la régression distributionnelle. Au lieu de viser une convergence optimale pour une classe
donnée de distributions, l’Appendice A se concentre sur la consistance universelle en régression
distributionnelle (c’est-à-dire, des résultats de convergence valables pour toute distribution mais
sans garantie sur le taux de convergence).

Rappelons le cadre général de la régression introduit dans la Section D.2. Nous observons
un échantillon Dn = {(Xi, Yi), 1 ≤ i ≤ n}, de copies indépendantes de (X,Y ) ∈ Rd × Rm avec
distribution P . Sur la base de cet échantillon et en supposant que Y est intégrable, en régression
ponctuelle, l’objectif est d’estimer la fonction de régression

r(x) = E[Y |X = x], x ∈ Rd.

Les estimateurs de moyenne locale prennent la forme

r̂n(x) =

n∑
i=1

Wni(x)Yi

avec Wn1(x), . . . ,Wnn(x) les poids locaux à x. Les poids locaux sont supposés être des fonctions
mesurables de x et de X1, . . . , Xn mais ne pas dépendre de Y1, . . . , Yn. Considérons le cas de
poids de probabilité satisfaisants

Wni(x) ≥ 0, 1 ≤ i ≤ n, et
n∑

i=1

Wni(x) = 1. (D.7)

Le théorème de Stone stipule la consistance universelle de l’estimation de régression dans la
norme Lp.

Theorem D.2 (Stone 1977). Supposons que les poids de probabilité (D.7) satisfassent les trois
conditions suivantes :

i) il existe C > 0 tel que E
[∑n

i=1Wni(X)g(Xi)
]
≤ CE[g(X)] pour tout n ≥ 1 et toute

fonction mesurable g : Rk → [0,+∞) telle que E[g(X)] < ∞ ;

ii) pour tout ε > 0,
∑n

i=1Wni(X)1{∥Xi−X∥>ε} → 0 en probabilité lorsque n → +∞ ;

iii) max1≤i≤nWni(X) → 0 en probabilité lorsque n → +∞.

Alors, pour tout p ≥ 1 et (X,Y ) ∼ P tel que E[∥Y ∥p] < ∞,

E
[
∥r̂n(X) − r(X)∥p

]
−→ 0 quand n → +∞. (D.8)

Inversement, si (D.8) est vraie, alors les poids de probabilité doivent satisfaire les conditions
i) − iii).
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Des exemples d’estimateurs de moyenne locale incluent les k-NN, les méthodes à noyau et
certaines variantes des forêts aléatoires.

Pour adapter ce résultat à la régression distributionnelle, nous utilisons une définition de
convergence basée sur la distance de Wasserstein plutôt que sur les règles de score, contrairement
au Chapitre 2 :

E
[
Wp

p (F̂n,X , F ∗
X)
]
−→ 0 quand n → +∞, (D.9)

où Wp est la distance de Wasserstein d’ordre p et F̂n,X est une estimation de la distribution
conditionnelle de Y donné X, notée F ∗

X . Considérons l’estimateur de distribution empirique
pondérée basé sur l’échantillon d’entrâınement Dn

F̂n,X =
n∑

i=1

Wni(X)δYi , (D.10)

où δy désigne la masse de Dirac au point y ∈ Rm.
En utilisant la notion de max-sliced distance de Wasserstein (Bayraktar and Guo, 2021), ce

travail étend le théorème de Stone à la régression distributionnelle dans la distance de Wasser-
stein d’ordre p ≥ 1. Plus précisément, il existe une équivalence entre le fait que les poids de
l’estimateur de distribution empirique pondérée (D.10) satisfont les conditions i) − iii) et la
convergence de (D.9). De plus, pour p = 1, les taux de convergence minimax optimaux sur
des classes spécifiques de distributions sont obtenus. Les applications du théorème de Stone en
régression distributionnelle sont illustrées à l’aide de l’estimation de l’espérance conditionnelle
de la queue et des moments pondérés par probabilité, entre autres.

Appendix A : Résumé des contributions

• Nous adaptons le théorème de Stone à la régression distributionnelle (multidimen-
sionnelle) : consistance universelle en termes de distance de Wasserstein d’ordre
p ≥ 1 dans un cadre multivarié (Théorème A.2).

• Nous déterminons les taux de convergence minimax optimaux pour p = 1 et m = 1
(Théorème A.3).

• Nous illustrons les applications du théorème de Stone aux statistiques
récapitulatives en régression distributionnelle (Section A.3.3).

D.5.2 A new methodology to predict the oncotype scores based on clinico-
pathological data with similar tumor profiles

L’Appendice B utilise une technique de régression distributionnelle pour aider les cliniciens dans
leur prise de décision concernant la prédiction du risque de récidive du cancer du sein et des
traitements potentiels.

Le test Oncotype DX (ODX) est un test moléculaire commercialement disponible pour
l’analyse du cancer du sein qui fournit des informations pronostiques et prédictives sur le risque
de récidive du cancer du sein pour les patientes hormonodépendantes et HER2-négatif. Le test
ODX fournit un score de récidive (score ODX) compris entre 0 et 100. Des valeurs plus élevées
du score ODX correspondent à un risque de récidive plus élevé. Plusieurs études rétrospectives
et prospectives ont validé ce test et son utilité clinique (voir, par exemple, Paik et al. 2004,?,
2006; Albain et al. 2010).

Les interprétations les plus courantes du score ODX passent par des seuils définissant deux
ou trois classes de risque : par exemple, faible risque < 11, risque intermédiaire 11-25 et risque
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élevé > 25 (Sparano et al., 2018). Malgré son utilité clinique, le test ODX est coûteux et
le score ODX manque d’explicabilité. Afin de contourner ces limitations, des études ont tenté
d’utiliser des caractéristiques clinico-pathologiques pour prédire le score ODX, soit par sa valeur
directe, soit par une classification en termes de niveaux de risque. De nombreuses méthodes
d’apprentissage statistique ont été étudiées, telles que la régression linéaire multiple (Klein
et al., 2013; Hou et al., 2017), les forêts aléatoires (Kim et al., 2019; Pawloski et al., 2021) et
les réseaux de neurones (Kim et al., 2019; Baltres et al., 2020).

Afin d’avoir une connaissance complète de l’incertitude, nous avons proposé de prédire la
distribution complète de l’ODX conditionnellement aux caractéristiques clinico-pathologiques
: la forêt de régression distributionnelle (DRF ; Meinshausen 2006; Athey et al. 2019). Étant
donné que la DRF fournit une prédiction probabiliste, sa sortie peut prendre la forme d’une
fonction de densité de probabilité discrète. De plus, elle peut être résumée par des quantités plus
compréhensibles pour les praticiens, telles que sa moyenne et son écart-type ou les probabilités
des classes d’intérêt, tirant parti de la familiarité des praticiens avec les interprétations du
score ODX. En particulier, les patients ayant des profils similaires (en termes de poids de la
forêt) peuvent être utilisés pour informer les praticiens des patientes similaires présentes dans la
cohorte et détecter les prédictions non informatives liées à un manque de représentativité. Par
ailleurs, la DRF a une performance comparable aux méthodes précédemment proposées dans la
littérature.

Appendix B : Résumé des contributions

• Nous utilisons une technique de régression distributionnelle (DRF) pour prédire le
risque de récidive du cancer du sein et fournir des informations utiles à la prise de
décision.

• Les DRF fournissent une prédiction probabiliste qui peut être résumée en quantités
compréhensibles pour les praticiens (par exemple, un voisinage de patients proches
dans la cohorte) (Figure B.2).

• En termes de classification à faible risque et à haut risque, les DRF atteignent une
performance prédictive comparable aux méthodes de pointe (Tableau B.3).
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tions des méthodes utilisées opérationnellement
lors de l’utilisation de données sous forme de
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